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ABSTRACT
1. INTRODUCTION

Cramer-Rao lower bound (CRLB) [1, 2] is a widely used bounds on the variances of unbiased estimators. It was
originally developed under the frequentist set up. Under this set up, unknowns are considered deterministic and
inferences are drawn from the likelihood distribution. However, when unknowns are random, inferences concerning
unknowns are drawn according to Bayesian theory from the posterior distribution which is proportion to the
product of the likelihood and the prior distribution. The counterpart of the CRLB in the Bayesian paradigm has
also been studied and reported (2, 3] as the lower bound on the posterior variance of the estimator or posterior
CRLB (PCRLB).

Although theoretically the Bayesian methods can only be applied to problems whose unknowns are random, in
the practical engineering applications, it is often seen that the Bayesian methods are used for the estimation of the
deterministic parameters. By this it implies that the deterministic unknowns are taken as if they are random and
the prior distributions reflect the constrains of the problem and one’s prior knowledge about unknowns. In this

case, the only randomness in the problem is still only introduced by observations, hence like other estimators for



t+he deterministic parameters, the performances of the Bayesian estimators should also be evaluated by the variance

or the mean square error (MSE) concerning the likelihood function. Indeed they are the most referred criterion

for the comparison between the Bayesian estimators and the maximum likelihood estimators (MLE) in practice

[4, 5]. Therefore, in order to access the performance of the Bayesian estimators for the deterministic parameters,
especially provide the comparison with MLE, it is of both practical and theoretical importance to formulate the
lower bound on the variance or MSE of the Bayesian estimators. However, by far, no such bounds have been
reported in the literature.

It is the objective for this paper to provide such lower bounds of the Bayesian estimator for the deterministic
parameters. We first briefly introduce the basic concept of Bayesian inference as well as CRLB and PCRLB. Then,
we scrutinize the derivation of the lower bound of both unbiased and biased estimators for the scalar unknown.

Next, the results are further generalized for vector parameters. In addition, we also provide the bound for the case

when nuisance parameters exist. Finally, an example is presented to illustrate the obtained bounds.

2. THE PARAMETRIC INFERENCE AND LOWER BOUNDS OF ESTIMATORS

Suppose that noisy observation y is generated according to some model parameterized by a vector of unknowns
0. The objective of the parametric inference is to provide the accurate estimate of the unknowns 8. In the
non-Bayesian approaches, the unknowns 6 are considered as deterministic, and inferences to 8 is drawn from the
likelihood distribution p(y|@). One such instance is the maximum likelihood estimator (MLE). The performances
of any unbiased estimators are usually evaluated by compared the variance (for the scalar parameters) or the
covariance matrix (for the vector parameters) of the estimator with certain lower bound. CRLB is the most often

refered lower bound. The covariance matrix of the estimate 6 is defined as
C(8) =E,[(6-6)0-0)] (1)

where Ey[-] denote the expectation with respect to the likelihood function p(y|@). Then, CRLB indicates that if

p(y|8) satisfies Wolfowitz’s regularity condition [1], the covariance matrix C(8) satisfies

Cy217(9) 2



where 1(@) denotes the Fisher information matrix which is given by

2
10y, = B g ®)
The estimators which achieve CRLB are usually said to be efficient.

In the Bayesian approaches, the unknown parameters @ are considered as random and inferences are drawn
from the posterior distribution p(8|y) which is proportion to the product of the likelihood distribution p(y|8) and
the prior distribution p(@). The minimum mean square error (MMSE) estimator and maximum a posterior are
the most popular Bayesian estimators. Bayesian analog of the CRLB on the estimator  is usually called posterior

CRLB (PCRLB). PCRLB is the lower bound on the Bayesian MSE and has the form
E,gl0-0)(6-0)T] 21 (4)

where Iy is an information matrix with ij-th element defined as

821 ,0
{Irh; = -Ey,a[—;‘%‘;’j—)]- (5)

Notice that the expectation here is with respect to both the likelihood p(y|@) and the prior p(8), hence PCRLB is

independent on 6.

3. THE LOWER BOUNDS OF BAYESIAN ESTIMATIOR FOR DETERMINISTIC

PARAMETERS

In practice, Bayesian approaches are often used to estimate the deterministic parameters. Although in such cases,
parameters are treated as if they are random, the only randomness of the problem comes from the data. Hence, the
variance rather than the Bayesian MSE of the estimators would be the characteristic for evaluating the performance
of the estimators. However, since CRLB does not consider the contribution from the prior distribution p(8), it
cannot be used as the lower bound for the Bayesian estimators. In the following sections of the paper, the theory
of CRLB is extended, under the Bayesian framework, to provide the lower bound of the Bayesian estimators for

the deterministic parameters.



3.1. The lower bounds for the scalar parameter

Let 6 and 85 represent the unknown scalar parameter and its Bayesian estimate. Since 8 is deterministic, the
bounds that we are about to discuss are imposed on Ey[(éB — 6)?] which defines the variance of the estimate 6

when 6 is unbiased, or MSE when § is biased. Before finding the lower bounds, we would like to first introduce the

following proposition.

Proposition 1

82 Inp(y|8) 81np(9)

Olnp(y,) .,
E ZEPY. 00 2
where ezpectation is with respect to the likelihood distribution p(y|@).
Proof: Consider a trivial equality
[#w.6)dy = 5(6) 7

Differentiating the both side of (7) over 8, and considering the transformations that Qﬂg’;#’el —l—"&—gl p(y,6) and
9%021 = —l"—”@p(e), we have

Olnp(y,6) Olnp(8)
a6 PUIOdy = —5 ®)
Now, differentiate (8) again over 8, we have
& Inp(y,8
[ 5 iy igyay-+
dlnp(y,6) dlnp(y|8) 3% Inp(6)
I 86 g POI)dy = T 882 ©
which may be further written as
8% Inp(yld
[ R 1)y
8% Inp(8 )
,, I T oy + [Py -
dlnp(d) f dlnp(y,8) 82 &% Inp(8)
36 g9 POy = —F5. (10)
In review of (8), we have
8% Inp(y|9) d1np(y,6) 8lnp(8
By 1+ By 2O ey @y
or
dlnp(y,9) ., 8% np(y|@ 8lnp(8
Ev[T] ~Ey[ 262 | )] +( p( ))2 (12)



Now let us first consider an unbiased Baye

the variance of 6.

¢

sian estimator 8. The following theorem provides a lower bound on

Theorem 1 (Lower Bound of Unbiased Bayesian Estimator for the Deterministic Scalar Parameter

)

It is assumed that p(y|@) satisfies the regularity condition
Eﬂampywﬁ 0 for all 6.

Then, the variance of any unbiased Bayesian estimator must satisfy

sor®) 2 (~B TP+ ZEOF)

Furthermore, an unbiased Bayesian estimator may be found that attains the bound for all 8 if and only if

Olnp(y,8) _
%0 = k(8)(g(8) ~ 6)

for some functions k(-) and g(-). That estimator is 6 = g(8) and the minimum variance is 1/k(8)
Proof. Since the estimator is unbiased, we have
E,6-6)=0
or
J@-opivipray =o

After multiplying the prior p(6) to both side of {17) and differentiating over 8, we have

- [0y + [6- 02 Pay o

Notice that [ p(y|6)dy = 1, the equation (18) can be further expressed as

[@-o 21.8) oy, 6)dy = (o).

By applying the Schwarz inequality on (19), we have

J R /9—1’1?1—?"—‘”) p(y,6)dy

> p*(6).

(13)

(17)

(18)

(20)



or
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(—E,,[62 1np(y|9)] + (311110(9))2)_ _ (21)
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The last equality is the direct result of Proposition 1. Note that the condition for equality in (20) is

dlnp(y,0) 5
— = k(8)(8 - 6) (22)

for some function k(-), which is the condition for 6 to attain the lower bounds.

¢

Comparing the lower bound (14) with the CRLB, we can see that the first term in the denominator (14) is the

same as that in the CRLB, wherea, the second term (al—%’gﬂl)2 > 0. Therefore we have the following corollary.

Corollary 1 Let p denote a unbiased Bayesian estimator who attains the lower bound (14) and g denote a

efficient estimator who attains the CRLB. Then
var(9s) < var(fg). (23)

The above corollary indicates that as long as we can obtain an unbiased Bayesian estimator which attains the lower
bound (14), it will have smaller variance than the efficient estimator. However, in practice the Bayesian estimators

are often biased. Next the lower bound for the biased estimator is provided.

Theorem 2 (Lower Bound of Biased Bayesian Estimator for the Deterministic Scalar )

It is assumed that p(y|@) satisfies the regularity condition

E,[al—nggl'@] =0 for all 6. (24)

Then, the MSE of any biased Bayesian estimator must satisfy

mse(6g) > (25)
#lnp(yl6),  Onp(),,
—EY[ 562 ] ( a0 )

where b(8) is the bias of the estimator 8.

Apparently, this is a bound on MSE of the estimator.



3.2. The lower bounds for the vector parameters

In this section, we extend the above discussion to provide corresponding bounds of the Bayesian estimators for the

deterministic vector parameters. The theorems that follow are presented without proof due to lack of space.

Theorem 3 (Lower Bound of Uniased Bayesian Estimators for the Deterministic Vector Parameter)

It is assumed that p(y|@) satisfies the regularity condition

E,[a—l-n%g?@] =0 for all 6. (26)

Then, the covariance matriz of any unbiased Bayesian estimator Og must satisfy

Cs) > 13'(6)

d1n p(B) 81n p(H) T)~1
o0 o0

(1(8) + (27)

where I is the Fisher information matriz. Furthermore, the unbiased Bayesian estimators may be found that attain

the bound for all 0 if and only if

SR _ 1, (6)(e(6) - 6) (28

for some function g(-). That estimator is O = g(9) and its covariance matriz is I;'(6).

¢
Note that the positive semidefinite of 15(8), a direct implication from the Theorem 3 by the lower bound on the

variance of each component of 8p is
var(Bs)s) > [I3'ls  i=1,2,---,N (29)

Theorem 4 (Lower Bound of Biased Bayesian Estimators for the Deterministic Vector Parameter)

It 15 assumed that p(y|0) satisfies the regularity condition

91np(y|6)

EY[ aa

1=0 forall@. (30)
Consider a biased Bayesian estimator 5 with bias b(8), then

Ey[(bs - 6)(65-0)T] > HO)I;'(O)H(S)



where H =1+ Qh(g_l + b(8) %@T. Since H(0)I5' (6)H(8) is at least positive semidefinite, therefore we have
8 :
the bound for the mse of each element of 05 as

mse([@p):) > [H(O)I5'(OH®B)],, i=12,---,N. (32)

3.3. Lower bounds in the presence of the nuisance parameters

In this section, we extend our results to the case where part of the parameters are nuisance parameters. In the
Bayesian inference, the effect of the nuisance parameter on the final estimator is usually eliminated by integrating
the nuisance parameter out from the posterior distribution. This results in the marginalized Bayesian estimator.
Apparently the variance of maginalized Bayesian estimator is different from the unmarginalized estimator. Hence,
we should have a different lower bound for the variance of the marginalized estimators. Now we partition 6 as
" = [<I>T, 7], where & and ¥ represent the subvector of desired parameters and nuisance parameters respectively.
Suppose the prior distributions for nuisance parameters are p(¥). The marginalized likelihood function can be
defined as

p(vie) = [ plyio)p(w)ar. (33)
Then all the discussion about the lower bounds in the previous sections can be directly applied to Bayesian
estimators for ¢ by simply replacing all related expectation operations by those with respect to the marginalized

likelihood function.

4. EXAMPLE

Let us consider the example of estimation of DC level in the white Gaussian noise. The problem can be model as
- ye=A+w t=0,1,---, N -1 (34)

where y; denotes the observation at time ¢, A is the DC level that is desired to estimate, and wy ~ AN (0,02) with

o* assuming known. It is well known that the CRLB for the estimate of Ais

. 2
var(A) > N (35)

and the unbiased estimator which attains the bound is the sample mean estimator, being mathmatically expressed

A 1 N-1
as AML = § Yeg Ut



Now, in order to study the problem from a Bayesian aspect, we adopt a conjugate prior for A, i.e., p(A) =

N(pa,o%) with pgq and o% preassigned. We know that the choice of pa and 0% will affect the accuracy of the
Bayesian estimator. Typically, a more accurate estimator than Az could be obtained when p4 is chosen around

the true value of A, and performance of the Bayesian estimator would be more resemble to Aps whén 0% — oc.
We should expect that the lower bound of the Bayesian estimator embody above phenomenon. First, the PCRLB

can be shown as

Bmse(A4) > (

%l =

1,._
+ a—i) L (36)

Obviously this bound is unable to reflect the effect of the prior p(4) on the accuracy of the estimator. This is

7

because that the PCRLB is acquired for the random parameters. For this problem, the lower bound on the variance

of any unbiased Bayesian esitmator can be obtained easily from Theorem 1 as

: var(dp) > (5 + (ﬁ—g—f’lﬂrl | (37)

Several observations arise on the bound. First, the bound depends on A. Second, no matter what are the choices
for prior mean p4 and variance 0%, the bound is always lower or at least equal to the CRLB. However, the bound
still can not correctly reflect the the different choice of p(A) on the accuracy of the estimator. Actually, one can
show that there does not exist an unbiased Bayesian estimator which attains the bound (37). Quite often the
Bayesian estimators are biased. One such instance is the well known MMSE estimator which, for this problem,

can be shown as

Aymse=alyr + (1 - a)pa (38)

where a = 0% /(0% + 02 /N). This estimator is biased with an bias of b(Ayarsg) = (1 — a)(ua — A). Besides, the
variance of AM msg is'a’0?/N. Now let us determine the lower ‘bound on the MSE of all the Bayesian estimator

which has the bias b(A){ It follows from Theorem 2 that this bound can be written as

(a+ (1 —a)(pa — 4)%/0%)*
N/o? + (A~ pa)*/o%)

= &?/N+ (1 a)*(A - pa)?

mse(A) >

= b(AmmsE) +var(Aymse)

= mse(flMMst) ‘ . (39)



MSE

&m

Figure 1: Plot of CRLB and proposed bound for the example as a function of g4 and o 4.

The last equality demonstrates that among all Bayesian estimators which bears the bias b(fi MmMmsEg), the MMSE
estimator is the one which attains the bound. In Figure 1, the bound (39) is plotted together with the CRLB as
a function of p4 and 4. It shows that the bound (39) correctly reflects the effect of the choice of the prior on
the accuracy of the estimator. Therefore the bound (39) is the right bound which can reflect the true state of the

Bayesian estimators for the deterministic parameters.

5. CONCLUSION

The lower bounds have developed for both unbiased and biased Bayesian estimators for the deterministic param-
eters. We have shown that the variance of any unbiased Bayesian estimator which attains the proposed bound
is always smaller than CRLB. In addition, the corresponding lower bounds in the presence of nuisance parame-
ters were also discussed. An example demonstrated that our proposed bounds are the appropriate benchmark to

performance of the Bayesian esitmators on the deterministic parameters.
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