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Abstract

A significant problem in the computation of capacitances coefficients for VLSI intercon-
‘ nection and other electromagnetic transmission systems is caused by the singularities in the
‘ electric field at the corners and edges of conductors. For two-dimensional models. a solution
‘ is given by the so called “Duncan Correction”, which is based on a polar expansion of the

field. No such exact expansion exists in the three-dimensional case. Recent research has

led to some appropriate asymptotic expressions for those singularities, and these are used
to derive algorithms for correcting conventional capacitance computation. This correcting- -
factor accounts for the singularities at the corners of the conductors. Finally we present

a few examples to illustrate the three-dimensional capacitance correction procedure and

computational accuracy.

' This research was support by the National Science Foundation under Grants MIP-9200748 and DMS-
9200738



I Introduction

This paper concerns the “interconnection lines of interconnection network™. One com-
mon category of such networks consists of the interconnection circuits on a VLSI chip; other

such systems are power transmission networks and microwave striplines.

Much work has been done in the computation of capacitance coefficients for two-dimensional
models of interconnection lines and other conducting bodies. but much less has been ac-
complished for three-dimensional models. See [5], [6], [8], [9]. [13], [17], [20]-[25], [27]-[30],
[32].[34]. A major difficulty in the computation of capacitance coefficients arises from sin-
gularities in the electrical field at the three-dimensional corners of a conductor. There are
also field singularities along the edges of conductors, but their contributions to capacitance
coefficients are readily determined by Duncan’s correction [7]. [32], which is based upon an
exact polar expansion of the field. Since no such exact expansion exists in spherical coor-
dinates, there is no exact three-dimensional analog of the Duncan Correction. Instead, we
have sought an approximating asymptotic expression for the electrical field near a three-
dimensional reentrant corner. There is a literature on this subject, see [2]-[4]. [11]-[13], [16],
[18], [19]. Much of this work is of a very general nature dealing with a variety of differential
equations and a variety of geometries. The paper of Beagle and Whiteman [3] appears to
be the most pertinent one for our purposes. By using the results of that work, we construct
a correction factor for capacitance of three-dimensional conductors. The factor accounts for

the singularities at the corners of the conductors.



II Two-dimensional Capacitance Corrections

In order to calculate capacitance we first solved the Laplace equation using a finite-
difference method. However, this method is less accurate in the vicinity of a conductor’s
reentrant corner because of a singularity in the electric field at the corner. Duncan [T} cor-
rects much of the resulting error for a two-dimensional corner by using a series approximation
for the electrical potential in that vicinity. As is illustrated in Figure 1. He chooses a polar
coordinate system with the origin at the center. In our examples. 8y = 37/2. Moreover, we
shall choose the nodal array such that a node exists at the corner and the array’s axes are

parallel to the conductor’s surface.

LSS

Figure 1: A two-dimensional corner.

According to the Duncan correction, we have

V(r,0) = Vot 3 anr™/% sin(mn8/6,) (1)

m=1
If we sample (1) at M points in the vicinity of the corner node, we can determine the
coefficients a,, for the truncated series expansion for the electrical potential:

M
V(r,0) = Vo+ O anr™ % sin(mr6/6,) (s

m=1

(8]
N



In particular. since we have computed V(r,8) at several nodes in the vicinity of the
corner through our finite-difference analysis, we can substitute M of those values into (2)
to determine approximately a;,...,ap. Next, the normal component of VV along the
conductor’s surface can be determined by differentiating (2), which in turn determines the
normal component of the electric flux density along the surface. By integrating the latter
quantity along the surface from —Az/2 to the origin and then to Az/2 (see Figure 1), we

finally obtain the charge at that part of the corner.

Now let’s get the corrected charge for the two-dimensional corner. In Figure 1, along the

surface at § = 0 and for » = vVz2 + 22,2 = rsinf, we have

/

or

37 = 71_;? =sinf
0z = Orsin8 + r cos 806

1= s1116 +r cos&ae
28 _ c_os_9
az = r
Therefore,
oV _ov_ovor ovos
on ~ 9z Ordz 060z
oV 64 0V cos
h dr sin 96 r
= Z ammzr—r"?_t;r-1 cos [0(1 — EI)] (4)
m=1 90
Hence,
dV m‘n’
dn ‘0 =0 = mz_l amm" % (3>
Note that r = z: so, the charge Q;,, on the top surface between 0 and 22 is
$ oV
Qeop = € o ’ %k):odw
M N\ i
- =2 () @
m=1

where ¢ is dielectric constant, and € = 8.85 * 10'? farad/m in a vacuum. Also for the side



surface at § = 2T and noting that r = Vau? + z2,r = rcosf. we have

o _ s

3z — m = C.089
Ox = Jrcos@ — rsin 690

ar : 30 (7)
1 =3 cosf —rsinfy;
36 __ sin 6
\ 3z = T r
Therefore,
v _ v __(avor oves
on oz or 0z 00 0z
oV JV sinfd
- 27 il 8
or cos b + a6 r (8)
At 6 = 37' cos@ =0, sin@ = —1; therefore
ov, _ _ovi
on =% T T 96r
M mr _1 mﬂ'a() mu=
= - Z a,,r %  cos —_—
m=1 90 80
M m 2
I Y 0
m=1
Note that r=z; so, the charge Q;;4e on the side surface between 0 and —%—" 1s
=220V
Wside = —6/0 —671-]9:371:(12
M _ 2m
= 3 an(-" ‘Az) " (10)
m=1 2
Thus the total corrected charge Qotar at the two-dimensional corner node is
Qtotal = Qtop + Qside
M Az 2m —-Az 2m )
= €3 an [-(SF + (NS (1)
m=1

We shall refer to this as the M-point Duncan correction since we have matched (2) at M

points to obtain the first M coefficients a,,.

How does the Duncan correction affect our computed capacitance coefficients? By choos-

ing each corner as a node in our nodel array and using symmetric differences to compute the



incremental capacitors of the grid, we in fact overestimated a conductor’s edges because the
incremental capacitors at each corner node extend beyond the conductor’s corner. Hence
we have assigned too much charge to the conductor. One possible correction is to reduce
those corner incremental capacitors so that they do not extend beyond the edges, but this
underestimates the total capacitance because the finite-difference method doesn’t adequately
account for the singularity in the electric field. The Duncan correction yields a capacitance

value in between these two estimates.

III Three-dimensional Capacitance Corrections

We have conducted investigations into computationally efficient means of determining
capacitance coefficients for three-dimensional models of interconnection lines and other con-

ducting bodies.

A major difficulty in the computation of capacitance coefficients arises from singularities
in the electrical field at the three-dimensional corners of a conductor. Since there is no exact
three-dimensional expansion for the electric field, there is no exact three-dimensional analog
of the Duncan correction. Instead, we have sought an approximating asymptotic expression
for the electrical field near a three-dimensional reentrant corner. By following some ideas

in {2], we construct a correction procedure for the field singularities at the corners of three-

dimensional conductors as follows.

The coordinate system: We wish to compute the surface charge density in the vicinity of
a three-dimensional rectangular corner of a conductor. For our asymptotic analysis, we can
assume that the corner configuration extends to infinite. We also assume that the conductor
is held at 1V and that the electric field decays to 0 as infinite is approached outside the
conductor. We choose spherical coordinates (r, 8, ¢) with the principle axis passing through
the vertex of the corner and remaining equidistant from the three edges of the corner. This
is illustrated in Figure 2. A unit sphere centered at the origin will intersect the three plane

surfaces of the corner along a curve I'. We choose our coordinate system such that ¢ equals



0°. 120°, and 240° at the three points where the edges of the corner meet the unit sphere.
On ', the minimum value of # is 125.26° and occurs at those three edge points. Also, on I,

the maximum value of § is 144.74° and occurs where ¢ equals 60°, 180° and 300°.

6=0
0=125.26

=60 |
0=144.74 i

Figure 2: Intersection between a three-dimensional rectangular corner and the unit sphere.

Surface charge density: According to [3], an approximate asymptotic expression for the



potential in the vicinity of the corner is

N-1
V(r,8,6) =1+ a,cos3noP;*"(cosd) (12)

n=0

It is shown in Appendix A that (12) satisfies the Laplace equation. Moreover we note that
the range of « is in {0, 1]. Indeed, for a < 0, the potential V(r,8,4) — oo as r — 0, which
contradicts our boundary condition at 7 = 0. Also, for a > 1, the electrical field — 0 as

r — 0; this does not account for the field singularity in the vicinity of the corner.

In (12), P73"(cos 8) is the associated Legendre function of the first kind of degree a and
order —3n. An appropriate value for « depends on the chosen value of N; it is estimated at
a=.461 for N=2. as will be described later. @ = [ao, a1, ...,aN_l]T is the eigenvector of B

corresponding to the zero eigenvalue, where B* is a certain singular N x N matrix which is

chosen as indicated below.

For N=2, we have

V(r,0,¢) ~ 1+ r*'agP% (cos 8) + a; cos 3¢ P35, (cos 6)] (13)

Therefore, the surface charge density will be

o =¢cE, = -—52—: (14)
where in the MKS units we have ¢ = 8.85 x 107! farad/m for a vacuum and
av. v ov oV <
= COS Ynr + 30 COS Yng + 7—51—11—96_¢ COS Yno (15)
From Figure 3, we have
Yur = 90°
Ynp = —180° (16)
Yne = 90°

where the 4's are the angles between the outward normal unit vector 1, and the three
coordinate unit vectors. Substituting (16) into (15), we get
aVv oV -
— = ——x (17)
on r06



- ————

Figure 3: Angles between unit vectors.

From (13), (14) and (17), we have

5 OPY,(cos B) 8P 33 (cos 6)
_.—.5339 461 . o1
o =¢r [ao——————ae + a; cos 3¢———————00 ]
Let cos@ = £ and dx = — sin 6d#
P 4] ‘ -3 \
o= —er *¥®sin G[GOQE‘};“@ + a cos 3¢5P.1461(13)}
oz oz

From [10, page 161] for —1 < z < 1, we have

dngEz) -G : Sl DePE@) = (v = e+ )Pl (0]

According to (20), the surface charge density (19) becomes

67.-—.539

o=—

il {1.461ap[cos O P%, (cos 6) — PP s, (cos 8)] +

ay cos 3¢[1.461 cos P 4o (cos 8) — 4.461 P73 (cos 0)]}

9



Determination of the eigenvector @ with N=2: Noting that the conductor is at 1 volt,
we see that the summation in (12) should be zero. i.e.,

N-1
r* > @, cos 3nd P (cos §) = 0 (22)

n=0

For each point on curve I' in Figure 2, ¢ and 8 are determined and this yields a linear equation
in the a, obtained by equating that summation to zero. Upon choosing N different points
on the curve I between the points where ¢ = 0° and ¢ = 60°. we obtain N simultaneous

equations. With r=1, they may be written in matrix form as
B*a =0 (23)

where & is the vector of coefficients [ag, a1, . .. ,aN_l]T and B® is an .V x NN matrix obtained
by collocating N points along curve I' in such a fashion that B? is singular. This yields
a nontrivial solution for &, namely, the eigenvector for the zero eigenvalue. As mentioned
above, at the present time we have chosen N=2 and set o = 0.461. To find values for q;
and a, we collocate at two points 1o(6o, ¢o), ¥1(61,¢1) on curve I'. Pairs(, ¢) for points on

the curve I' can be given parametrically in terms of a variable v in the interval [0, 7/4] as

follows.
cos§ = —/2/3sin(y + 7/4) (24)
cos ¢ = Yacozloeost ¥ € [0.7/4]
See an Appendix B for the derivation of (24). From (22) we have
aoP2(cos bp) + a; cos 3¢ P 3(cos bp) = 0 (25)
25
aoPL(cos ;) + a; cos 3¢y P 3(cos 6,) = 0
We express (25) in matrix form
[ P2(cosfy) cos3 cos
(cos 6o) $oFs*(cosbo) | | a0 | _ 0 (26)
| P(cos 61) cos31P;3(cosby) a
Therefore )
B _ B, Bg; _ PY(cos 8y) cos 3¢oP3(cos ) 1)
| By B Pl(cos6y) cos3¢; P 3(cos by)

10



U}

Maximum of det B

Assuming that det B = 0. we get B§yBy, = B{yBg. From (25), the expression for the

eigenvector 1s

- Qo 1 1
a= = (l() B& = ao Be (28)
a, T — g
B& By

For (25) to have a non-trivial solution we require that the determinant det B* for N = 2
remains as close to 0 as possible as (8, ) range over I between the points (6, ¢) = (0°,125.26°)
and (0, 8) = (60°,144.74°). To this end, we choose « in the interval 0 < o <1 to minimize
the maximum value of det B over the said range for (6,¢). This was done numerically.
We took increments of .001 for & and computed max { det B*:(f.0) € T' }. The smallest of

those maxima occured when « = .461. See Figure 4.

Figure 4: Maximum value of detB* on curve I for various value of a.

11



Having determined a in this way, we now wish to determine the eigenvector & = (ao, a1)
for the eigenvalue 0 to within an arbitary constant. That is . we now want (1.a;/ao) as the
solution of B*a = 0, using ao as the arbitary constant. (ao in turn will be determined by
matching the potential value at a point off the conductor but near the apex of the corner.)
To pick up the best value of ay/aq we consider the function

F(ai/ao,¥) = Pﬂm(cos 6) + “ cos 3¢R;§1(cos 6)

Qg

we calculate its Ly, L, and Lo, norm respectively, for various value of a;/as. We found the

smallest value of these norms occurred at the same value a,/ag = —0.05 . See Figures 5, 6,

and 7.

70 T 1 ¥ T T T t ]

60 |

50

40

L. norm

30 |

10

-1 -0.8 -0.6 -0.4 -0.2 ¢] 0.2 0.4 0.6 J.= 1
al/ao

Figure 5: L, norm of the function ¢ + F(ay/ao,) for various values of a;/ag
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Lz norm

140

100

60 |

40

Figure 6: L, norm of the function o — F(a1/ao, ) for various values of a;/ag

We can conclude that the optimum eigenvector & is:

a= = Qo (29)
a —0.05

Thus we have & with an arbitrary constant ag, which in turn is determined by sampling
the computed voltage at one point in the vicinity of the corner. That computed voltage is

obtained from an initial finite-difference analysis of the given configuration of conductors.

We next discuss how P2(cos §) and P;3(cos 8) was calculated. From [14. page 623 ] and

13




Lo NOorm

[1. page 356], for —1 < = < 1, we have

N~

1 I+ 27320 L=z .
Pv<z>=r(1_y)[1_;] Fl=vw 411 = —) (30)

w
I

Figure 7: Lo norm of the function ¢ — F(ay/ao, ) for various values of a;/ao

and

F(a,b;c;z) = i ————(a)n(b)" = (31)

= (c)n n!
Note that I' now denotes the standard Gamma function rather than the curve I" of Figure
2. According to (30) and (31), we get

1 —cosf .

Pcosf) = F(—aa+1;1; 5 )

14




—a),(a+ 1), <1 —CosH)"

()un! 2

L

%
> (—a)y(a+1), (1 —cosf\"
5 ()

(n!)? 2
= 1 - cos@
= D ol —5— (32)
n=0
where F is now the hypergeometric series and
(a), = ala+1)(a+2)...(a+n—-1) n=123....
Co = 1

a = (—a)(a+1)/(1)’ = co(—a)(a+1)/17

e, = (—a)(—a+1)(a+1)(a+2)/(2")? = ci(—a+1)(a +2)/2°

(—a+n - D(a+n)

Ch = Cu-1
n

The use of 130 terms in the summation (32) produces a convergence to within five sig-

nificant figures . From (30) and (31), we obtain

_3 1 [1+cosf 1 —cos@
P °(cosf) = @) \T—cosd F( a; o+ 154 5 )
1 [1+cosb -3 i (—@)n(a+1), (1 —cosf\"
T4 \1- cosG = (4),n! 2
(1l +4cosb Z (—a)n(a+ 1), 1 —cosf\"
~ \l=cosb = (rD2(n+3)(n +2)(n +1) 2
1+ cosf > 1 —cosd\" ..
- (1 — cos 0) g)d" ( 2 ) (33)
where
1
do = g
(—a)(a+1) 1
d = —
1T Txexaxd - axielmeetl)
(—a)(—a+1)(a+ 1)(a+2) 1
d; = -
? (22 x3x4x5 5o (matla+2)



and nj are direction cosines of QZ, then we have

r = 11X + ng + ng
y = miX +myY + mayZ (34)
z=mX +nY +n3Z

Conductor Corner

Figure 9: Rotation of coordinate system from that of Figure 8 to that of Figure 2. Again

the conductor is in the octant z < 0,y < 0,z < 0.

The position of the new coordinate system can be determined by the three socalled Euler

angles. We define these three angles as follows, also see Figure 10.

Thf.colaltit_ude angle 0y 1s the angle between OZ and Oz along the positive directions (0 <

17



90 < 71').

The longitude angle g is the angle between OA and Ox, viewed in the positive direction

of the Oz axis, starting from the Ox axis in counterclockwise direction, where OA is the

intersection line between OXY and Oxy (0 < )y < 27).

The rotation angle ¢q is the angle between OA and OX, viewed in the positive direction of

OZ axis, starting from the OX axis in counterclockwise direction (0 < ¢p < 27).

Z

Figure 10: Relative positions of Euler angles

18



According to {34, page 331]. we have the relationships between the direction cosines and

the Euler angles as follows,

Iy = cos Yy cos g — cos g sin g sin @g

ly = — cos g sin ¢g — cos By sin g cos og
I3 = sin g sin g

my = sin ¢g cos ¢g + cos bp cos g sin @g
my = — sin g sin ¢gp + cos Gy cos Py cos g
m3 = — sin g cos g

nq, = sin @y sin ¢g

ny = sin g cos ¢g

n3 = cos g

In our problem, we have 8y = 54.73°, ¥ = 135°, ¢g = 30°. Thus

— 2 _ 1 _ 1
I, = ——\/; my = n o=z
' 1

=0 my=—-2% m=

r=—/X+ 71§Z
y=LX—LY+17 (36)
z= 16X + ﬁy + 71-52

Therefore
X = §I+ﬁy+%z
Y = \}Ey + %z (37)
Z = 13m+%y+ 132

and also /

r=(X24+Y?24 227 /
¢ = arctan % (38)

f = arctan L&ZY;)%- ’

19

/
/



/

Determination of the arbitary constant ag:  With (36) to (38) in hand, we can determine

the arbitary constant ag of the eigenvector & From (13) and (29). we have that

V(r,8,6) = 1+ aoP%,(cosb) + a; cos 36P ;3 (cos 8)]

= 1+ aor*®[Plg(cos ) + (=0.05) cos 30 P73 (cos 6)] (39)

We wish to use the sampled voltage located at a point near the corner in the diagonal
direction along the Z coordinate, that is, at a point Az = Ay = Az > 0 in order to estimate
the value of ag. At first, we need to determine the spherical coordinates of this point. If we
choose the origin of Oxyz at the apex of the corner, and Az = Ay = Az = 0.5 in the finite

difference analysis, then the Oxyz coordinates for this point are x=0.5. y=0.5, z=0.5.

From (37), we have X=0, Y=0 and Z=0.8660. From (38), we get » = 0.8660,0 = 0° and
¢ = 0°. From (32), (33) and cos = 1, ¢¢c = 1, we finally obtain P%(cos0°) = 1 and

P33 (cos0°) = 0. Substituting these values into (39), we get
ap = 1V (r,0,4) — 1] = 1.06857[V(r.8.0) — 1] (40)
Here V/(r, 6, ¢) is obtained from our initial finite-difference analysis.

Corrected charge at a rectangular corner: We now calculate the charge at the corner.

From (21) and (29), we have the charge density

o(r,0,0) = —r~%%ay{1.461[cos 8 P4, (cos 0) — P ¢, (cos 8)] — 0.05 cos 3¢

[1.461 cos O P2 (cos §) — 4.461 P2 (cos )]}/ sin 8 (41)

The corrected charge at the corner is equal to the charge density o integrated over the region
shown in Figure 11. We can divide this region as region 1 and region 2 in Figures 12 and
Figure 13. Region 1 is composed of three equal fanlike areas on the corner whose boundary

is at r=.75,7whi17e the ;egioa 2 is the rest of the region shown in Figure 11. We will call the,

charge on region 1 as @; and the charge on region 2 as Q..

Because of the symmetries of the region 1, to calculate Q; we only need integrate o on

one fanlike area. Furthermore, we only need to integrate o on half that area. We call the

20




result Qr: thus ¢, = 6Q. For a more detailed explaination of this, see Appendix C. As for

Qn, from (41) we see that

@r = /U(7‘,9,d>)pdpdz/) (42)

Figure 11: The incremental areas on a three-dimensional corner.

Note here that v is the same as in (24) and that (p,) are the polar coordinates of the zy

plane. So we have z = pcos®, y = psin+. Substituting (37) into (38), we get

r = (1:2 +y2 + 22)%

6 = arctan 3E=¥ (43)
y+z—-2z
_ 5 (22 +y2 422 —a:y—yz—-::z:)%
8 = arctan v/2 s

In the Oxy plane, z=0. So from (43), we get r = p. Also note that by (24) , (42) becomes

Q= [olov)pdpdy
0.5 z
= —(10/0 p"‘“dp/O F(yp)dy

—  —0.2486a, / F($)dy (44)

4
0



where

F(L,‘) = F(9,¢)
= {1.461[cos 8 PS¢, (cos 0) — P} 44, (cos 8)] — 0.05 cos 3¢

[1.461 cos P, (cos 8) — 4.461 P, 4, (cos §)]}/sin 6 (45)

Figure 12: The three fan-like regions within the three incremental areas of Figure 11.

For the integral fo% F(%)di in the (44) we incremently integrate by using the trapezoidal

rule with a uniform partition. According to that rule, we have

[ 5@z = M) 2+ @)+ fax)f2
= Af(@)/2+ fla+ B)+...+ f(b—h)+ F(b)/2] (46)

where z; =a+1th,1=0,...,N,zy = b.

22



S C
o’ \\

Region 2

Figure 13: Region 2 beyond the fanlike region of the incremental areas.

In our problem, zo = 0 and z; = ¢h, zy = §. If we choose N=100, then h = 3f;. Therefore,

00
we have
/4 © | F(0) T T o F(%)
N = — | —2 —)+... —— )+ — 47
o Fle)dv 400[ > TH ) T PG ) Ty (47)
Substituting (47) into (44), we get
F(0) T T @ F(%)
= —0. —)+... - —— 48
Qn 000195(10[ 9 +F(400)+ +F(4 400)+ 5 (48)
Therefore the charge on region 1 is
F(0) T T o= F(%)
= -0. — . - —— 4
@1 001171«10[ 5 +F(400)+ +F(4 400)+ 5 (49)

Next we calculate the charge ()2 on region 2. Region 2 consists of three identical areas
because of the symmetries of the region 2 (see Appendix C). Indeed we only need to compute
the charge on the one of the three areas; let us indicate it by @Q;. Thus @, = 3Q);. In order
to get Q:, we need to get the charge density o(A) at the point A half-way along the curve
. Then Q¢ = o(A) X (0.5* — 3 x m x 0.5%) = 0.053650(A). For the point A, we know that
r = —0.5cos45° = —0.3536,y = —0.5cos45° = —0.3536,z = 0. From (37) and (38). we

have the spherical coordinates of point A as follows:

23



r=0.5,0=14474,¢ = 60°. From (32) and (33), we get
PO, (cos 144.74°) = —.1817, PP ,q (cos 144.74°) = —.3295
P73 (cos 144.74°) = 4.2590, P35, (cos 144.74°) = 1.6770

Substituting these values into (21), we have o(A) = —0.1764ao. Therefore ¢); = —0.0095a,.

Thus we have

Qs = 3Q, = —0.02839a0 (50)

Finally the corrected charge at a three-dimensional corner is

2+

F(0)
RQe=01+ Q2 0.01171aq + (400 + (4 400)+ 5

— 0.02839aq
2

(51)

IV  Numerical Results and Comparison

Figure 14: A rectangular conductor.

In order to verify the three-dimensional capacitance correction procedure and computational

accuracy, several comparisons are made with exist data.
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Example A

Cousider the single conductor, shown in Figure 14, of 5 units length, 5 units width, 1
unit thickness and 2 units above a conducting silicon plane. If we ignore the singularities of
the electrical field at corners and edges, but allow incremental areas of the finite-difference
method to extend beyond edges, the value of capacitance C/¢q is 49.1F. If incremental areas
extending beyond edges are deleted, the result is 34.8F. On the other hand, if we consider
both factors. i.e., in the most accurate case where singularities are considered but extended
areas are deleted, we get C/¢g equal to 41.8F. This result can be compared to the capacitance
value given by Ruehli and Brennan in [23] by interpolating in their Fig.2. Their result is

42.5F.

Example B

10

/ /
)
5/ 5

S S s -

1

Figure 15: A right-angle three-dimensional bend.

Consider now a right-angle bend 2 units above a silicon chip. Its dimensions are shown
in Figure 15. If we do not consider the singularity of the electrical field at corners and
edges but allow overextending incremental areas, the value of capacitance C/ep is 106.1F. If

overextending areas are deleted, the result is 73.9F. On the other hand, if we correct both

(S
[



factors. we get C'/€g is 83.1F. This result can be compared to the capacitance value given by

Ruehli and Brennan in [20] by interpolating in their Fig.9; this value is 101.2F.
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Appendix A

In this appendix. we will show that V(r,8,¢) in (12) is the solution of the Laplace

equation. In the spherical polar coordinates, AV =0 becomes

J, 0V 1 0 oV 1 0V .
Pl or +smt909(smew)+ in’ =0 (52)

dar sin? @ J¢?
Let V(r,0,¢) = )U(0,4). After separating variables, we have
&2
7d—(7R)—a(a+l)R 0 (53)
r
and
[8; + a(a+ DI U@G) =0 (54)

where I is the identity operator and A} is the Laplace-Beltrami operator defined as

L1 0 0 1 0

= 06— — 35
£7 sing 39(Sm 09) + sin? 6 9o? (53)
where § = (6,¢). In our problem R(r) = r*, U(8) = Y a,cos 3noP > (cos ). It’s
obvious that R(r) satisfies (53). Therefore we only need to prove that
B#(8) = a,, cos 3ng P (cos ) (56)
is the solution of (34), i.e.,
[8; + aa + 1)I] BX() =0 (57)
Let us denote the left-hand side of (57) as L; then
1 0 1 9°Bx(8)
L = — R« —_ 1 \= | Is3
31110(?0[81119093 @1+ sinf  O¢? tala+ 1B
= A+B+C (38)
where
N2 Ro
p - 250
sin‘f 0¢?
- 82[ 3ngP;>"(cos f
= 7908 cos 3n cos 0)]
1 .
— : P—Sn N(— 2 Ind
Szgla (cos 8)(—9n®) cos 3no
9n? §
T sin? HB @) (59)
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and

(' =ala+1)B8) (60)

Consider now the first term A. From [30, page 161]. for —1 < r < 1, we have

dP*(z) 1
dr  l1—2x

v+ Dab) = (v —p+ 1) P (2)] (61)

Note here £ = cos . we have

oBz(8) d . 3 dcos b
90 = 5oosd cos 3ng P " (cos §) 50
. . 1 =3n/. -3n
= —sinfcos 3n¢m [(a + DzP"(z) — (e +3n+ 1) P11 (:c)]
cos 3ng —3n n
=~ e+ DeP (@) ~ (a 30+ 1P (2)] (62)

and therefore

d 9B (9)

dg(smG 50 ) = sinfcos 3n¢8% [(a + 1)aP7%(z) — (e +3n + 1) P23 (I)}
dp_3n AP
= sinfcos3ng |(a+ 1)P7*"(z) + (a + I)IM —{a+3n+ 1)—&1—]
dz dr
= sinf cos :Bncz){(a + )P (z)+ D — E} (63)

where we have

(a4 )z dP;3"(z)

dzx
= (et Dz [( + 1Dz P (z) — (a + 3n 4+ 1) P 3"(&

o]
I

1_ 22
(a+1)222 P73 (2 ) (@t )(a+3n+1) 4,
- - — 1P (z) (64)
and
d 3n
EF = (a+3n+ l)d P (x)

a+3n+1 —3n .
= O ot 2)2Pie) — (o4 3n + 2P ()] (63

From [34, page334], we have
(2v + Dz Pl(z) — (v —p+ 1)Pl(z) — (v + p) Py (2) =0 (66)
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Therefore
(a+ 1 +3n+ )P0 = 2a+3)a P (2) — (a+ 1 = 3n) P77 (2) (67)

Substituting (67) into (65). we get

o= D (0 10p (e — (20t 32 PIR(E) ok L= 30 P ()
(_‘ﬂlj_l_) (0 +1=3n) P73 (2) = (0 + 1)z Pi3(2)]

1l —1r

a+12-9n% . a+ D(a+3n+1 an
- LRI oy ot et It b (53)

So, from (64) and (68), we have

1 2, 2P—3n , 12_9 2
1 — x? l—=z

From (63) and (69). we have

1 9 . 9B(8)

A = si1198_9(81119 d0 )
: n (a+ 1)2?P7%(z) (a4 1) =9n 5
= cosvino[(aH)Paa(rH T - Fa (@)
1 2 1 — 2 9 2
- cosi}rzo[(a-l-l)Pa—B"(:r)— (“+1) U= prony) 4 2 prong )]
—z 1—2
. 9n?
= (a+1)BIO) ~ (+ 1)?BI(O) + 7 B7(0) (70)
Finally, we have
L = A+B-C
’ 2 Do gnz a 9"’2 a o
= (a+1)B(8) = (a + 1)°Bi(0) + T—— B/ (6) - T—= B (8) + ala+1)B(8)
=0 (71)

So we have showed that V(r, 8, 4) in (12) is the solution of the Laplace equation.

Finally, let us note that V(r,6,¢) is only an asymptotic solution. This is because
V(r,0,¢) — oo as r — oo rather than V(r,0,¢) —» Oasr — oo . Whenr— 0, V(r,0,¢) — 1,

as needed. So trulyv. V(r,6.4) is only an asymptotic solution valid for r — 0.
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Appendix B

The purpose of his appendix is to show that (24) holds, i.e.,

cosf = —/2/3sin(p + 7 /4) (72)
(4
cos & ﬁco;;{;:;osg 1/} € [O’ 7 /4}

From (37) in the paper, we have coordinate transforms as follows,
- Z, 1 1
X == \fhe+Jv+ e
Y = ——7‘,2—31 + Vl—fz (73)
_ 1 1 1
Z=pr+ Yyt 52
and we also have

X =rsinfcos ¢

Y =rsinfsiné (74)
Z =rcosf
and
T = pcos (75)
y = psiny

Assume that a point A on the curve I' has coordinates(X. Y, Z) in the coordinate system
OXYZ, and the coordinates (x, y, 0) in the coordinate system Oxyz. In the Oxy plane. we

have z = —pcosw,y = —psiny for ¢ € [0, 7/4]. Note p = r for point on the curve I.

From (73) and (74) we have

sin 6 cos ¢ = \/gcosv,b——\}gsinw

(76)
cosf = —%comﬁ - —lﬁsinz/)

Therefore, from the second equation we have cosf = —/2/3sin(v + 7/4). From the first

equation we have cos ¢ = —‘/—3%%“9, where 9 € [0, 7/4].
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Appendix C

In this Appendix we explain the symmetries of the region 1 and the symmetries of the
region 2.(See Figures 12, 13). We first examine region 1; it consists of three equal fanlike
areas. To get the charge ¢J; we will integrate the charge density oir. 6, 4) over these areas.
Thus r, §, 0 must be expressed in terms of p and 1), where that (p. ©) are the polar coordinates
of the Oxy plane, or Oyz plane, or Ozx plane. Substituting (37) into (38), we get the

relationship between (7,6, ¢) and (x, y, z) as follows,

r o= (a:2+y2+22)%

) — V3(z-y -
¢ = arctan 51— (77)
§ = arctan Y22+ “oy-rz-yz) s

z+y+z

In the Oxy plane, z = 0 and (77) becomes

r=(a’+y)?
¢ = arctan fhii% (78)

2,2 _o\%
§ = arctan Y2y =2y
z+y

Note that we have 2 = pcostp, y = psintp. Therefore (78) is

r=p
_ V3siny ‘
¢ = arctan 5 o ) v
_ Y2(1-cossiny)?
# = arctan cos t+sin ¥

In the Oyz plane, r = 0 and (77) becomes

777~7=(y7'*i7«’7)% - - - - - - - - _ _ _

¢ = arctan L:i(i;—'“’) (30)
0 = arctan Y2 r2-yz)E
y+z

Also note that we have y = pcos, z = psin¢. Therefore (80) is

r=p
_ V3 sin i'—cos Y 2
¢) = arctanm (bl)
L
e V2 1—cosysiny)?
0 = arctan cos Yr+sin
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In the Ozx plane. y = 0 and (77) becomes

r= (2% + rz)%

¢ = arctan —\_ﬁ;; (82)
§ = arctap Y2eltetora)? :
T4z
Finally note that we have z = pcos®, x = psint. Therefore (82) is
r=p
— . V3cosy .
¢ = arctan m (83)
_ \/Z-fl—cosd;sinu/;!&
6 = arctan cos +sin ¥

From (79). (81) and (83), we can see that in the Oxy, Oyz. Ozx plane, r and 6 are the
same functions of (p,¥), but ¢ is not. However, this will not make any difference when we
integrate o(r,8,¢) over the fanlike area in Oxy, Oyz and Ozx plane respectively. We can

explain this point as follows.

If we locate three points on the Oxy, Oyz and Ozx plane respectively such that they have
the same coordinate values (p, %), then by using above equations we can get the values of

G2y, Pyz, 0zz for these three points.

tan ¢gy = ;T‘/f;-’
tan ¢yz = \/?i(i-y—y) = _\/5_(’_3;"“21 (84)

tan ¢, = Lo = V3

z=2z z—2y

Therefore.

tan oz, — tan ¢,
1 —tan ¢z, tan ¢,

tan(pzy — dy.) =

-3y _ V3{y-z)
— y—2z ytz
1 + —\/§y \/§!y-—r}
y=2z y+z

—V3y(y + z) — V3(y — z)(y — 22)
(y —2z)(y + ) — 3y(y — x)
V3(—=2y? + 2zy — 2z?)
(—2y% + 2zy — 2z?)
= V3 (85)
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and

tan dgy — tan @

tan(opy — Gzz) =
n(0zy = ) 1 — tan ¢gy tan é.;

~-V3y _ 3z
y—2z -2y

1 + —\/51‘/ —\/7—31‘

y—2z -2y
—V3y(z — 2y) — V3z(y - 2z)
(y — 2z)(z — 2y) — 3zy
—V/3(=2y* + 22y — 2r?)
(—2y% + 2zy — 222

= —V3 (86)

From (85) and (86). we get

. =
C‘I)zy O~Jt 3 (87)
¢zy — Qyz = 4_37:
In the charge density (41), we only need 3¢. This means that
3 Pzy — 0ze) = 27
(2y = 02e )

3oy — Oyz) = 4m

Therefore, we conclude that these three fanlike areas have geometric symmetry as far as (41)

1s concerned; that is, charge density varies in exactly the same way on all these areas.

Furthermore we need to integrate o on only half of a fanlike area to get @) and then

@1 = 6Qx. We can prove this as follows. For ¢ € [0, 7/4], we have

{ cosf = —/2/3sin(h + 7/4) (89)

,cos¢=-@%};—§—;ﬂ b € [0. 7/4]

We can calculate f_:? F(¥)dv using the same method as given in the above section, Corrected
charge at a rectangular corner. The only difference is that (6. o) is determined by (89) rather

than by (24), where F()’s expression is the (45). When we implemented this calculation

in the computer. we found that

[} Py = [F P (50)

33



Let us now exalmine the symmetries of region 2 shown in Figure 13. For the part of
the region 2 in the Oxy plane, call the charge on it Q). Let A be the point on I' with the

coordinates (z,y.z) = (=.5cos45°, —.5sin45°,0). Then we have

Qu = o(A)(0.5? %ﬂ) (91)

For the part of the region 2 in the Oyz plane, call the charge on it Q2. Select a pomnt B

with the coordinates (z,y,z) = (0, —.5cos45°, —.5sin 45°). Then we have
2 1, .
Qw2 = o(B)(0.5% — il ) (92)

For the part of the region 2 in the Ozx plane, call the charge on it Q3. Select a point C

with the coordinates (z,y,z) = (—.5cos45°,0,—.5sin45°). Then we have

Qo = o(C)(0.5" - 37) (93)
Using (37), (38) and (41), we get
o(A) = a(B) =0(C) (94)
Therefore
Qun=Qun=~Qnr=0: (95)
and Q-g = 3Qt
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