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H
; 1. Introduction
5

F- -4 gignificant part of electrical network theory iz concer

1 with the relation-
ships between the idealized physical properties of systems such as linearity, time-
invariance, causality, and passivity, on the one hand and certain analytic properties,
L such as convolubion representations and positive-reality, on the other hand. Almost
all of this work is concerned with n~ports:.that is, with systems whose inputs and
outputs are (ordinary or generalized) functions having values in n-dimensional
Euclidean space. (See the bibliography in Zemanian [L47].) This is despite the fact
that many physical phenomena are better represented by systemé whose 1nputs and outputs
have values in a Hilbert space. For example, a cavity resonator that is being excited
through a wave guide is such a system (Csurgay [1]). What is usually done is to ‘
assume that all but a finite number of modes in the wave guide are negligible at any
appreciable distance from the cavity resonator so that the system can be viewed approx-
imateiy as an n-port (Carlin [1]). It may at times be desirable not to make such an
! approximatioq, and therefore a realizability theory for systems having Hilbert-space-
valued functi;ns on the real line as thelr inputs and'outpufs is called for. To coin
aphrase, we chépse to call suéh a system a'Hilbert portﬁ since it is such a natural
extension of the idea of an n-port.
Previous works that relafe the physical and ahalytié properties of a system having
inpﬁts and outputs in an arbitrary Hilbert space ére Batt and Konig [1], Beltrami [2],
Dolph [1], Hackenbroch [17, Lax and Phillips 11, Saeks [11], Schwindt [1], and Tonning [1].
'anning's work deals primarily with- frequency-domain properties of electromagnetic
“propagation systems. The recent report of Saeks possesses great generality but does
not-atﬁack the problem congidered here. The works of Beltrami, Dolph, and Lax—Phillipé
(see also the references theréin) are based on a spectral analysis of the so-called
"dissipative operators." For instance, Dolph assumes that the input v and output u ére

related by (1.1)
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where A is a dissipative operator. Then, he shows that the resolvent for A is positive-
real when the system is passive, and converselya The theories thabt come clozest to

this one are those of Batt-Konig, Schwindt, and Hackenbroch; which extend the classical
paper by Kénig and Meixner [1] and obtain time-domain representations for certain linear
operators on a Hilbert space.

In contrast to the aforementioned literature, we &llow our inputs and outputs to be
Hilbert-space-valued distributions and make essential use of the convolution of Banach
space~valued distributions. This does not appear to have been done before. Our theory

in faﬁt is a generalization of one for an n-port (Zemenisn [3] which is the reason we use
the phrase "Hilbert port'" instead 6f "Hilbert system."  Many of the steps of our
analysis, which in the case of n-ports reguired no proof, must be justified when deal-
ing with Hilbert ports. Furthemore, we have to employ some rather uncommon ideas, such
. as the convolution and lLaplace transformation of Banach~space-valued distributions.
- The theories for the latter two subjects, which are described in sections 2 and 3 re-
spectively, are we believe rather novel and have not been prefiously developed in quite
theway presented here. In summary, in comparison to n-port theory, the Hilbert port
theory is considerably more involved and requires more extensive proofs.

In this work R denotes the real line and C the complex plane. When a € R and
b € R with a <D, [a,b] and (éjb) denote respectively closed and open intervals, and
similarly for (a,b], and [a,b). B and later on A will denote Banach spaces. The norm
- in B is dencﬁed by'H’H = H'HB. H will be a Hilbfrt space, which need not be separable,
and its inner product is denoted by (.,.). The étrong kth derivative of any B-valued

- -fanction o) -on either R or G ig denctad alternatively by
o

) |
L . ¢ (0) = 0 = 0. 5(0)
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A smooth function is one having continucus derivatives of 21l orders &t all

‘points of its domain. supp ¢ denotes the support of 9. We at times use the

symbol A to denote an equality when it is a definition.
The symbols D, Dg, D' E, E DLJ B, B, ,DLl and B'denote the customary
spaces of testing functions and distributions. We will define them subsequently in

a more general context.

Next, let a € R, b € R, and

(4) - et ¢ > 0)

%a:b ebt t < 0)

’Ea b in the space of smooth functions ¢ from R to C such that for each nonnegative
2

integer k,

'Yk(CP) ~-°°<'t lna,b(t,) (‘O(k)(t>]< ®*

It is assigned the topology generated by the sequence of seminorms {yk}z;l .
Lé’b is its dual. Now, 1efc {an} and {bn} be sequences of real numbers such that

a;twt and bypz-(w = - ® and z = + © are allowed here). Then L(w,z) is defined as

the countabls-union space generated by the Lan, by, spaces. }JI(W,Z) is the dual of

L(w,z). These spaces are discussed in greater detail in Zemanian [2], [5].



. 2. Banach-space-valued Distributions and Their Convelution

The theory of distributions having values in an arbitrary topological
vector space has been worked out in great depth by L. Schwaﬁtz (see Schwartz
[2] and [3]). Sebastiao e Silva [1] also has a theory for such vector-valued
distributions based on his axiomatic method of treating distributions és the
derivatives of continuous functions. These theories are complicated, but
fortunately the present work requires only the much simpler case of Banach-space-
valued distributions. J. L. Lions summarizes a few results for this simpler case
(see Lions [1], chapter II, seétion I). Mikusinski [1] has a theory for the con-
volution of Banach-space-valued distributions based on the Mikusinski-Sikorski
[1] sequential theory of distributions.

" In this section we shall present that part of the theory of Banach-space-
valuned distributions that will be used in the subsequent séctions. We choose to
use Schwartz's approach to such distribution by treating them as continuous linear
mappingsRQn certain testing-function spaces.

Let éabe a complex Banach space. In subsequent sections, we shall on occas-
ion deal with a reél Banach space. But all the results that we state for a com-
plex Banach space carry over to a real Banach space; We now formulate a general
type of testiﬁg~function space H(B) of functions from R into B. H(B) encompasses
as special caseé_all but two of the particular testing-functions spaces that appear

.. R S L .
in this work. -

.-In-the following u, vy k, m, n,-p,‘ana q denote nonnegative integers. The
" notation a < k, m, ..., ngmeaﬁs that a<k<b, a<m<b, ...2<q<Db. A"

. fee]
sequence {Kn}n=o will be called a nested closed-interval cover of R if each Kn is

@

a closed interval, K, c K €K € ..., andUJ_ K = R. Let {K} _

o
R and {Iq}q=0
be two nested closed interval covers of R. For each pair n and m, let there be

given a continuous function (t) from R into R such that (t) > 0 for all t.
. n,m A n, A



(This implies that, for any compact subset ( of R, there exists an ¢ > 0 such

thatn_ . (t) > e on Q). Also, assume that, for each m, x (t) > » (t) >
n,m - o,m T oi,m 7

"o um (t) > «v+ « For each pair n and p, we define the functional p, p on
3

suitably restricted smooth functions cp(t) from R into B by

R F (k)
FRONEN < kﬂ;’ i<p B2 by, (8 4@

For each n, we define H, (B) as the linear space of all smooth functions

@(t) from R into B such that supp ¢ < K, and on,ple) < for every p. E,n(B)

(o=}
is assigned the topoliogy generated by the sequence of seminorms {pn,p}p=o; This

sequence will be called the multinorm for H (B). H (B) and its topology are in-
: ~n

dependent of theckoice of {Iq}q=0 so long as {Iq}q o

cover of R, [Note that, if Iq = R, then for each p > q,

is a nested closed interval
Pn,p 5 @ norm on H,(B).

On the other hand, if o, is a norm, then I = R],
Clearly, ¢ b (p(k) is a contimuous linear mapping of H_ (B) into H (B).
>

Moreover, since Mo m(’o) < - (t), we have that pn+1 D(cp) < pn,p(cp) for every

© e H (B), this implies thdt for every n, H (B) cH (B) and the topology of

~nH
H (B) is stronger then the topology induced on H (B) by Hpn (B). Also En(B) is
a Hausdorff, locally convex, metrizable, topological vector space. A standard
argument (see Zemanian [2], the proof of lemma 3.2-1) shows that En(B) is complete.

Thus, En(B) is a Fréchet space.

Next, we let E(B) = U, n(B), and we supply H(B) with the follow:Lng rule -

@

. for sequential convergence: A sequence fc; 7\\;=1 convergss in ~‘~B) if and only if

there exists a ¢ ¢ H(B) and a fixed n such that all 9, ¢ En(B), © e gn(B), and

cov +@in H (B). This makes H(B) a sequential-convergence linear space. (Zemanian
‘v ~1 . ~

[2], section 1.4). Since each En(B) is complete, En(B) is also complete (we will

always mean sequentially complete, when we write complete). The proof of this is



precisely the same as that for the special case where B = C (Zemanian [2],
section 1.7). The fact that we are now dealing with B-valued functions in-
troduces no difficulties; this will always be the situation whenever we ﬁlake
a reference to Zemanian [2], which deals with only C-valued functious.

A special case arises when all K = R and simultaneously nn’m(t) =
Mo 41 ’m(t) for all n, In this case I (B) = H(B) for all n so that the se-
quential-convergence linear space H(B) is simply a Fréchet space.

A subset Q of H(B) is called b'ounded‘if, for all ¢ e Q, supp ¢ < K, for some

fixed n and there exists constants C, such that p, p(cp) < G, for all cpAe Q.
I,

E‘qgiValently, Q is a bounded set in H(B) if and only if Qc r%n(B) for some n and

Q is a bounded set in Em(B). Here again, @« tp(k) is a continuous linear mapping of
H(B) into H(B), and, as @ traverses a bounded set in H(B), o(k) also traverses a
bounded set in H(B).

Let Y be an index set. To each u e Y we assign a function ¢, e H(B) and a

o

seqguence {qu,\;}vﬂ_ in E(B) The sequence {(PU,\)}:=1 is said to converge to o,

uniformly in H(B), if there exists and n such that o€ En(B) for all v ¢ ¥ and
5V

all v and if, for each p, pn,pﬁpu - épu’v) + 0 as y - o uniformly for all v e Y.

We now define a teﬁninology that we shall use in this work. Any space of

functions that fits into the general formulation for ,IE(B) will be said to be a

p-type testing-function space.

£

In table I, we list the defining quantities for a number of p-type testing-
- fuanction gpaces. The symbols in the last two colummns of that table will be dis-
cussed in a moment. Examples of the special case mentioned in a previous para-

graph are given in rows II, IIT, and VII.
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When B = C, we denote H (B) simply by H and H(B) by H. Next, we define
~F) ~I1 ~ ~
H'(B) as the linear space of all continuous linear mappings of H into B. Here

again we use the notation H'(C) = H'. < £, ¢ > denotes the member of B assigned

by £ ¢ H'(B) to g ¢ H. The symbols for H'(B) in several particular cases are
indicated in the next to the last column of Table I. Note that, in rows V and VI,

we use a somewhat different notation for H’(B).. For example, the members of DL(B)

are smooth functions whose supports extend in general infinitely toward the. left
but are bounded on the right. On the other hand, it can be shown that the con-
t.iriuous linear mappings of EL into B have supports that extend in general in-
finitely to the right but are bounded on the left. To imply this property of the
supports we denote the space of such mappings by D’ (B), instead of by EL(B).
Since D is a dense subspace of E, L(w,z), D, ’\R, a.nd S and since sequential con-
vergence in B implies sequential convergence in any of the other spaces, B'(B)
contains as subspaces E'(B), E(w, z) (B), Bé(B}, Eﬁ(B), and E'(B).

¥We assign to g’ (B) two concepts of sequential convergence. To arrive at the

concept of weak convergence, we first define a collection {wﬁP}<PEH of seminorms
w_ on H'(B) by
Qp ~~

wm(f) All< £, 0 >HB, f € H'(B)

Then, a sequence {£, }”_1 is said to convergé' weakly in H'(B) of all £, € 1’ (B)
and there emsts an £ € H’ (B) such that o8 (f -f) 2 0as vy -+ o
- Slmllarly upon 1ett1ng Q vary through all the bounded sets in }\IJ, we define

the collection {O'Q}Q of seminorms oy on H'(B) by

oo (f) 4 sup I< £, 0 >|g £ e 1 (B)
<!



Then, we say that a sequence {f\)}tj)::l converges strongly in H'(B) if all
£, € ’}E’ (B) and there exists an f € E'(B) such that GQ(fv - f) s 0as vy o,
Cléarly strong convergence implies weak convergence. |

In an analogous way we can define the weak Cauchy sequences in ’Ii’ (B). &
straightforward modification of a standard argument(Zemanian [2], théorems 1.8-3
and 1.9-2) shows that E' (B) is weakly (sequentially) complete.

If ¢ € E and a €B, then ga is that function from R into B that assigns to
each t € R the value 9(t)a € B. Clearly, ¢ a € E(B). H@®B is the subspace of
H(B:) consisting of all finite.linear combinations of elements of the form ga.

| It is a fact that D@®B is dense in R(B) (see Schwartz [2], pp. 109-110);
we shall need this fact later on.
Note that, if B is real, then it is understood that the members of H are real;
valued functions. .
Next, if g€ H' and a € B, ga is defined by the equation;

)

<ga, 9o>A<g,p>a @E‘Ii

It is eas;}: to show that ga € E' (B). E’ ®B denotes. the subspace of E’ (B) consisting
of all finite linear combinations of'elemelntvs ‘of the form ga.

Next, iefc, B’ denotevthe dual of B, and let [a,. a'] be the complex number
assigned by a’ € B’ to a € B. For any f € ;gf (B) and any a’ € B’ we define the
symbol [£, a’] through the equation . |

<[f, a’l, >0 [ <L, o>, a’] 9 € H.

The right~lzézﬁ& side has é sénse as a complex number since < f, ¢ > € B.

We now show that [f, a’] € E’. Indeed, for o, B € C and g, q € H,

< [£, a’]’dﬂh tBp, > =[ <L, 0xp; *Bp >, aI]=[a<f3‘~Ps>+B.<f:%>:al]

= o [<Ff, o, >, alj + B [< £, @>, 3-'] =ao < [f, 3‘}]'% >+B<[f, aI:I: 0 7



so that, [f, a’] is a linear functicnmal H. Moreover, if 9, 0 inH, we
have' that
<[f,a'l],9 >=[<f,p > a" 1> 0since< f, o >+ 0inB.
v v v

Hence, [f, a’] is also a continuous functional on H,

Moreover, £+ [f, a’] is a continuous linear mappiﬁg of H'(B) into H’,
where continuity is understood in either of the following two senses: If
£, + £ strongly (weakly) in H'(B), then (£, a7+ [f, a’'] strongly (respectively,
weakly) in H’. Indesd, the linearity of f& [f, a’] follows readily from the
standard definitions of addition and multiplication by a scalar. On the other
hand, <ty 2 ) 0> = | [<f»‘P>-: a’l | < a ”B' ”<f:‘P>”B
from which our assertion concerning continuity follows.

The preceding arguments hold equally well when we assume that B is a

Hilvbert space H, that a and a’ are members of H, and that [.,.] is replaced by
the inner product (.,.) im H. In this ca.se, f+r (£, a’) is a continuous linear

mapping of H(H) into H'.

. [+
Proposition 2-1: Let f € H'(B), let {pn p}p=o be the multinorm for En’ and
~ 3

assune that, for each n, fn,o is a norm on ,IlIn Then, corresponding to each n,

there exist a positive constant M and a nonnegative integer r such that

(2.1) I<£o>ll;<Mo @)

for a1l ¢ € H . Both M and r depend in genéral on f and n.

,EZE.?.Q?,_CJ;??J'J-Y_» pn’o(@‘)‘ S Pnp () < pn}?(tp) < e+« for each _cpr_e En _S;lnce

P is a norm on H , we also have that o (¢) > O if ¢(t) # O. Also, note that
n,o ~ n,o ,

(2.1) is obviously satisfied if ¢(t) = O.

Now, suppose that the proposition is not true. Then, for each v there exists

H 0
ag €H such that cpv(‘b) # 0 and



2.2) }é oom ML > . >
(g.z.} <jr. (’::\}}UB - A rnj\’(o\})"f Og
Set & o YRR ({s:) }o heuce, & g o

\ A Ll
ﬁihw(cv) < <°v) 5o 0 Y - e,

TigV
Therefore, {(f, 8,) + 0 in B as v - =, .However, according to (2.2), |[{Z, Gv>HB > 1.
This contradiction proves the theorem.
Hext, let both A and B be either both complex Bansch spaces or both real

Banach spaces. L{B,A) denotes the Banach space of all continuous 1ix WAPPIILES
of H(BE) inte A. Ve define H'[L(B,A)] as the linear sﬁane of all continuous linear

o ~
mApp ings of H(B) into 4. Now, {y, ¢} denotes that ncrber of A assigned by y € Ef
[L(B,4)] to ¢ € I(B). Only one concept of sequential convergence will be assigned

to B'[L(B,4)]

-

the weak one generated by the collection of seminorms

<Y . Ias o)
n, ()8 s o, y € B'[L(B,4)]
| ¥ = ' ~
Th“ e g . .} [e3] . c*r-'d _t o . . NI']— (1355_) f .-,11 ' :H'/ T.('H F)
us, a sequence {7pin=m s szld to cenverge in H'[L(B,A)] if 211 y, € H[L(B,4)]
and there exists a y € H'[L(B,A)] and that m, (y -y) + 0 as n = « whatever be the
k ~ \lj 1’1
choice of ¢ € H(BJ).
Again we cen define the (weak) Cauchy s equ”uceain\H'EL(B,A)] by using the
vilection of seninorme {710 o Lgain a modification of a standard arguuent
colle 101 O nATIOTn { 11.}11’7 € H(B) £ G 14
(Zemarian [2), theorems 1.8-3 and 1.9-2) shoys that H(R) is (weakly soquentially)

corplete,

)

"We use the brackets in the sywbol H[L(E,4)] to distinguish this space from
- Y N ” . - PR ;
the space B’ (L(B,4)) of all continuous linear muppings of H into L(B,A). We sh a1l
show in a moment that to each y € H [L(B A)] there corresponds a unique

£ € H/(L(B,A)). But, first we state

10.
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to each n, there exdists a positive coustant M and 2 nonnsmative integer r such

that

v, CP}I‘A < K Pn,r(‘?)

for all o € E(B) Both M and r depend in gencral 511 y and n.

The proof is the game as that of proposition 2-1.

D(B) ir a dense subspace 0 fJ(B), L(,r,z)(B), BL(B), P_R(B), and E(B)_, and se-
quential convergence in D( 3) implies sequential con‘#ergmce in any of the other
spaces. Co: seque M‘ﬂv, E TL(B,A)], E (wyz) [L(B, A)], FLL(B,A)], DL[L( ;0] and
SI{L(B,A)] are all subspaces of D [L(B,A)].

We now show that under the hypothesis of properties 2-2, every y € H'[L(B,A)]
defines a unique continuous linear mapping fy off E in L(B,4). Let ¢ € Haud 2 € B sg that
va € HE®B. Then, (y, cpa) € A. Thus aw+ {y, wa) is a napping of B into A. It is
also tiix'leétr and continuous; its linearity is easily seen and its continuity follows
from propo:ji tion 2-2 and the inequality:

s ool < e, (o) =3 lally o _mx e e (9) 0]
where }fn is chosen to contain ¢. Ve denote tre operator al» (y, ga) by (fy, wy
and write |

(fgs @2 a2 (v, o225 (I @) € L(B,4).

We have hereby shown that ¢ <'fy" )] is a mapping of H into L(B,A), and it is
undquely determined by y. We are naturally lead to denote the latter mapping by fy.
We finally note that the mapping f : o+ (£ s ©) is clearly linear and is continucus

since, by proposition 2-2 again,

O0< %xm, g<r

0 5 [ 3 g 3 woo (%) T
1<tys @ines, 1) ]zuzl <y o3|, <™ < B 5w | n’m(‘o) o\ (1)

11.
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don 2-3: Under the opoihoznis of v

into L(B,A) wherc (:E‘yj ¢y is defined in ‘tu:c*n as the mavning a v (y, ga).

Note t}‘la‘t; if supp y < [o,®), then supp .fy < [0,0). We shall use this
fact in the proof of theorem 5-1.

We have to generalize the concept of the convolution of distributions in
order to arsive at our realizability theory for Hilbert ports. We shall asswic
that we are dealing with complex spaces. Our discussion of convolution remains
the same vhen all spaces are real.

Let A and B be two complex Banach spaces. Let there also be given three
p-type testing-function spaces :{{J(B), L, and K, and the three corresponding
spaces H'[L(B,4)], I7(B), and K'(A). We assume that the following four conditions

are satisfied:

Conditions E:

.

El. . If ¢ € K, then, for each fixed t, @(t+7) as a function of 1 is a mewber

of I.

¢

2. Ifve 5’(B),‘cp € K, and
§(8) & (vl oo,

then @+ ¢ is a continuous linear mapping of K into H(B).

E3. If {v )34 converges strongly in E'(B) to zero, if ¢ € X, and if

b5 () = (r(e)s wlaim)y,

then {y,},= converges in H(B) to zero uniformly for all ¢ in any bounded subsei;
K. [This means that, for all ¢ in a given bounded set A in K and for all v, the
functions g;v(t) are all contained in ’Iin(B) for some n and that {},]} converges to
a limit under every seminorm Pn,p (p=o, 1, 2, ...) wniformly for all ¢ € A.]

<«

By, Let {pn’p}pzo be the multinorm for Ell(B). Given any y € E'[L(B,A)] and

12.



any i : > O, thers exists a constant M > 0 ool o dxtoy o o> 0 such that

S VIN < Moy )
for all § € H (B,, M and r depend in general on y and Ti.
Ve define the convolution products y % v for any y € § TL(B,A)] and v € T (B)
as a mapping on‘g'by
(2.3) v @ = ), (ule), glemy) v € K.
Note that, under conditions EL and 'Ez, the right-hand side has a sense and is
a member of A.

Pronosition 2-h: (Given the Banach spaces A and B, the p-type testing-function

e

spaces H(B)} I, and K and the corresponding spaces H'[L(B,A)], I'(B) and K'(A),

assume that conditions E are satisfied. Define the convolution product y*v of a

y € H'[L(B, )] and a v € I (B) by (2.3). Then, the operator v y*v is a linear

mapping of I'(B) into K'(4) that is also continuous in the following semsa:

Lt {v,}{= converzes to v stromgly in I'(B), then {y#v }7; comverges to y*v
strongly in K'(4). ‘

_1?_3;__93? In the following, we ";ief‘zne y anc §,, as in conditions E2 and E3. Ve
have already noted that y¥*v maps I’ into A. "y¥%v is linear on K since y and ¢ & ¥

g both linear mappings. Moreovver,' if Py = 0in X as v + », then ¥y 0in E(B)
by condition E2. But then, (y, ¢, * O in A. Hence, y¥*v is alsc a continuous
mapping of K into A. Thus, y*v € K'(4).

Next, the linearity of the mapping v« y*vrfol'lows from the standard defini-
tions of addition and multiplication-by-a-~scalar for operators. Finally, let |

(o]

{v,},= converge to v strongly in I'(B). Then, {w,-v},, converges o zero strongly

v

in I'(B), and, by condition E3, {§,~y3}, converges to zero in H(B) uniformly for

all @ in any bounded subset, say, A of K. This implies that {¢,-¢}, is contained

in H (B) for some n, vhatever be the choice of ¢ in A. Therefore, by condition El,
S
n

13.
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)

e, vs @l = |
‘ By condition E3 again, as v -+ =, the right-hand side converges to zero uﬁiformly
for all @ in A. So truly, y¥v, - y¥v strongly in,ﬁf(ﬁ), The proof is complete.
Each one of the first five columns of tsble II presents a system of spaces
that satisfy the conditions assumed in the hypothesis of properties 2-L. That
IE(B),‘Eﬁ and’§ are p-type testing~funclbien spacesiis readily seen by referring

to table I. The spaces indlicated in the sixth columa also sabisfy conditions E

but now the spaces 1 (B) = Ei5<B)’ I=58, and X = D are not p-type testing -
. tard " ~ ~ avi ’\)_i

function spaces. Nevertheless, our convolution can readily be extended to this
case alsc, as we shall see.

We now discuss in turn the first five cases indicated in table II to show
that conditions E are satisfied in each czse.

Case T: Condition Fl is obviously satisfied.

To verify condition E2, we have to show that, for any v G‘E'(B) and ¢ € D,
the operator g ¢ (t) £ (v(r), o(t+r)) is a continuous linear mapping of D into
‘E(B). Since the supports of v and ¢ are both bounded, the support of ¢ is also
bounded. We cen show that ¢(ﬁ) is smooth and that
(2.1) ¢ (8) = (vlr), o) (ger)) X=0,1, 2, ...
through an inductive argumsnt. Assume that (2.4) is true for some k. It is truc

by definition for k = 0. Then, let At # 0,flet t be fixed, and consider

L - (v(), @Ck*l)(t+q)>_= QICOPR:IECO)

where

(k)

i
S

(t+At+¢)ﬂ@(k)(t+T) - @(k*1>(t+w)

0,4 (T)
At At

st
=i [ [T ol et

‘\'i} t O

1h.
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It is not difficult to show that @ ( ) convergss in D uo wero as [At] - O.

i - . ! P R P, S A e A S . A LS e 1 .
Thie s ‘J}:L\E) and the \f'emld_i.b‘y G \2‘“.3, Sedtoar Pron thiio fact.  Thus

y(v) € n(B).
Next, let » € D be such that M) = 1 on a noighborhood of supp v{(r). If

K =[-n,n] is a cowpact interval containing supp A, then X o € DK for all ¢ € D.

n
Consequently, by virtue of propositicn 2-1,

|w<k><t>nB < v, q>(k)(t+T)>HB = 1<), w(r) o) (e O

< M max sup |DLb A (1) @(k) (tﬂ—)]
- Ogpsr o7 07

(2.5) <u max B E) e O] sw o))
BT oyE0 T T

®)
IA

Moreover, as ¢ traverses any convergent sequence in D, the supports of the corres-
ponding ¢ are all contained in a fixed bounded interval. This fact and the estimate
(2.5) smply that the mapping @+ ¢ 1is continuous, its linéarity being obvious.
Condition EZ has been verified.

To ‘ver ~ify condition E3, assume that v, ? 0 strongly in E 2/ (B) as vy + w. This
neans thét for every v, the supp'v are all contaired in a fixed compact subset,
say, G of R and that <v s, 8y + 0 in B uniformly for all & in any bounded subset of
L. Moreover, defining A € D to be such that A (r) = 1 on a neighborhood of G, ws
may write

§,(8) = (v (), ) (i) )
From this it follows that the supp &V'are a1l contained ina fixed compact subset of
R for all v and all ¢ in a bounded subset o? D.

Furthermore, for any fixed nonnegative integer k, the Q<k>(t+q) comprise a -
boitnded set in E as t traverses R and ¢ traverses any bounded set in D. This
implies that, as v -+ «, the

1, 098) = (v (1), U ()

15.



“for 2ll t € R and 81l ¢ in any bounded set in D.

that §, + 0 in D(B) uniformly for all ¢ in any bounded
set in D. ) .

To see that condition Ey is satisfied we nsed merely invoke proposition 2-2
since g -is truly a norm on H (B) =D, (B) in case I.

“1,0 ~1 ~K

n

ase ILl: Here again, condition El is obvicusly fulfilled.

Condition E2 states that, if v.€ D'(B), ¢ € N, and ¢ () = (v(r), o(ttr)),
then @+ § is a continuous linear mapping of D into B(B). We can show that

~

§(t) € E(B) and that (2.1) holds by following the argument used in case I. More-

over, if K, = [-n,n] and J is another compacl interval, then, for &ll t € J and

all o € DK ., all the supports of cp(tﬁ*) consicdered as functions of T are contzined
n .

in another coupact interval, say, I. Hence, by proposition 2-1, there exists a

constant M > 0 and an integer r > 0 guch that

sup [h(k) (W)l <1 max sup [ép(m““)(t—w)]
ted B O<p<r 1€l
ted
=M max sup |.,)(1<+U~)(T)I
in,fr ~w g T < :

for all ¢ € EKH@ This iﬁequalijy impli Cu that ¢+ 4§ _lS a continuous linear mzpbing
of D into E(B).

Turning to condition E3, assume that {V'SJ} converges strongly in B'(B) 0 zero.
This means tha H(V\) s G)HB -+ 0 uniformly for a1l 6 in any bounded set O in D.
But,

) P P R CE N

and, for any compact set K, the qp(k)(t%r)v comprise a bounded set in E as t traverses
K and o traverses any bounded subset of D. Consequently, the supremum on t € K

of the last expression converges to zero uniformly for all ¢ in Q. This is true

16.



vhatover be the nomnsostive integer k or the compact set K. This proves that

L

0

{\!;v} converges to zeve in B(B) uniformly for all ¢ € Q. Condition E3 is verified.
For condition EL, let y € E‘[L(B,4)]. Hence, y € D'[L(B,A)] and y has a
compact support. Choose A € D such that A(t) = 1 on a neighborhood of supp y.

Therefore, {y, 4) = (¥, ), and X ¢ € EKn(B) for all y € E(B) = ’Iiln(B) = H(B),

where K D supp L. Invoking proposition 2-2 for y € D'[L(B,A)], we may write

®

v, ¢)],< M max suy D%
s Ol 0< X <r T Eugupp xh () (0l

This inequality implies that condition E) is satisfied.

Case ITT: Again condition EL is clearly satisfied.

For condition E2, we first note that tl‘leisupport of v € D'(B) is bounded on
the left and that the support of ¢ € Dy is bounded on the right. It follows that
Y () g (v(7), o(t+r)) is a B-valued function on R whose support is boundéd or: the
right. That ¢ is smooth and tha’p (2.4) holds follows as in case I. Now, however,
ws have to show that eAt(’r) converges in EL to zero for each fixed t. The coipu-
tation is straightforward. Thus, § € EL(B).,

Furthermore, let Kpn = (==, nl, and lct n and g be fixed positive integers.
Then, for a1l ¢ € EKn(ieea, for all ¢ € E with swp ¢ € K, ) and for all ¢ € [~-q, =],

he intersections of supp v(7) with the supgﬁ@rts of (p(t-l"'r) congidered as. functions
of 7 are all contained in a fixed compact interval, say, J. So, chcose X € D such
that A (1) = 1 on a neighborhood of J. Then, since v is also a member of D'(B), -

~

we may invoke proposition 2-1 to write

sup @ <u max sup IDr A1) @ ()]
..C]_<'b<co B Of_u_<__r v € supp )
-q< t < w

This implies that ¢!~ ¢ is a continuous linear mappiﬁg of DL into DL(B), and there-

~ o

fore condition-E2 is verified.

17.



To prove condition E3, let v, + 0 strongly in BI(B) as v =+ o, let g € T,

—i

AY)

and set ¢, (t) A MECA ()5 olt+e)). By ouwr asswption, H{"iw ey 0 wnifornly for

all 8 in any bounded seb in D iven any g, as t traverses [~q, «) and g

LS
traverses a bounded set O in D, cp(k>(t+*r) as a function of T traverses another
bounded set in Dr. So, the right-hand side of

RO SN (LM ORERCE NN

- <o
converges to zero uniformly for all ¢ € Q. This verifies éondition E3.
Turning to concition El, we have y € %[L(B,A)] c D'[L(B,A)]. Given any m,
set Ky = (-, n]. Then, for all ¢ € EK (B) = Hy(B), supp y N supp ¢ is contained
in a fixed compact interval, say, J. Choose A € D such that A(t) = 1 on J. Then,

invoking proposition 2-2, we obtain

s ol =¥ 0L Lo ®, I 2 () ¢ (815

This in turn iwplies that condition EL is satisfied.

Case IV: The argumeﬂt here is the same as that for case IIT. We merely
interchange "left~sided" for "right-sidsd".

Case V: Condition El is again satisfied since L(w,z) is closed under trans-
lation.

That condition E2 is satisfied can be shown by modifying the proofs of lemmas
3.7-1, 3.7-2, and 3.7-3 of Zenanian [2].

Consider now condition E3. That v, » © strongly in L (w,2)(B) as v + « means
that (v\), 8) converges in B to zero umfowr y for all & in any bounded set in
,E(W: z) Furthermore s O is a boundsd set in L{w,z) if and only if there exist an
a>wand a b < z such that, for each positive integer m, the values:

Y (o) i sup l“a,b(T) o(m)(r)]

a,b,m

are finite and couprise a bounded set as ©w traverses Q. Now, for each fixed k,

180
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the funcbions PO

r C et e w b oA ded set AN
YL CLomnDTiie J p0ililgeEQq set An

L{w,uz) an & troverses R and ¢ traverses Q. Indeed,
~~

g, b(tg, nlr)
%a,b (t"{"f)

”a,b(T) s [”a,b<t> @(k)(t+w)j = ”a,b(t+7) w(k+m)(t+f)

and ”a,b(t) ”a,b(T)/%a.b(t+T) is bounded on the (t, 7) plane. (See Zemanian

[2], Sec. 3.7). Thus,

Sup Hna}b(t) q;v@f)»(t)HB = Sup | o), na,b(t) (k) (t+T)>IIB -0

Vv 4w
uniformly for all ¢ € Q. This shows that condition E3 is satisfied.

For condition EL, we need merely invoke proposition 2-2 since pn’O is a norm
on }a,b(B) = En(B).

We have so far shown that the systems of spaces irdicated in the first five
columns‘of table II satisfy the hypothesis of proposition 2~k so that the convo-
lution pfpcess defined herein can be applied in each case. We shall now show that
this convc}ution process can be gpplied when we have the system of spaces indicated
in the sixgh colwun of table II, even‘though.ghﬁ(B) and g are not p-type spaces.

We first state what these spaces are; our.notétion follows that used by
Schwartsz (sec Schwmrtsz [1], vol. IL, pp. 55-50). Eﬁi(B) is the space of smooth
fﬁnction @ from R into B such that, for each nonnegative integer Xk,

pp((’r’) 0<k<p f_: ”tp(k)(t")HB it <

@
D. (B) is supplied the topology generated by the multinorm {p }

D Dot D (B) is com-

4 .
‘plete and in fact a Frechet space. 4lso, Po is a norm.on.gli(B). Both the shifting

operator o,: ©(t) v o(t+7) and differentiation are continuous linear mappings of

DIE(B) into D (B). As before, when B = C, we denote this space simply by Eﬁi.

Next, B’(B) is the linear space of all continuous linear mappings of D, into
~ Lt

- B. The elements of D. are the so-called B-valued bounded distributions. We assign

19.
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o oth a weal and a strong topology in the usuval vay., Moreove
t }j' B) both } i a strong topology in the usuval val Moreover,
tion 2-1 possesses the following analogue which 1s proven in just the same way.

" Proposition 2-5: Let f € B'(B). Then, there exists a positive constant M

and a nonnegative integer r such that

[I<£ @HB < M PI.(CP)

for all ¢ € DIi . Both M and r depsnd on f.

On the other hand, for L(B,A) defined as before, B/[L(B,A)] is the linear

space of all continious linear mappings of D. (B) into A. We will not .need a

~,

topology for this space. The analogue to proposition 2-2 reads as follows.

Proposition 2-6: Let y € B[L(B,A)]. Then, there exists a positive constant
M and a nonnegative integer r such that

<y M, < Mo (¥)

for every ¢ € DL‘1 (B). M and r depend on y.

When H denotes D
~ NIQ_

and E' denotes E' = B'(C), the symbols 211 ® B and

B’ @B have the same meanings as before. Moreover, for f € B/(B) and a’ € B,

[f, a’] is also defined as before and is a member of B’, and similarly for (f, a’)
when B is a Hilbert space H.
D(B) is a dense subspace Of":\DLl (B) (sce for example, lemma 8-1) and the topol-

ogy of D(B) is stronger then the topology induced on ’Q(B) by ’P’Ll (B). Consequently,

B’(B) is a subspace of D'(B), and B'[L(B A)T is a subspace of D'[L(B A)].

Flnally, B(B) 1;; the spa.oe of ST’lOOuh functions ¢ from R into B such that (p

and each of 1tu demvatwes are boundod in B on R. B(B) is oupplied the topology

‘generated by the multinorm {Yk}k=o where

'Yk(CP) _A-: o <S'%p< I ”"P(k)(t)”B

20'



é(B) is that subspace of B(B) such that for ¢ € é(B) and any nonnégatjve
intéger k H@(k>(t)HB-¢ 0 as [t] + e, %KB)lmﬂse&fs the topology induced.by‘E(B),
D/(B) is the linear space of all continuous linear mappings of B into B, and we
sli%ply]]{il (B) with both a weak and strong topology in the usual way, The members
oi'EE;(B) are the so-called Bwvalued.integrable distributions on R. As before,

we drop the argument notation (B) whenever B = C.

Our next objective is o show‘th;t tbe conélusioﬁs of proposition 2-L hold
even when we make the identification of spacés indicated in the sixth golumn of
table II. Actually, we need merely verify that the conditionsiE are satisfied
éince the proof of theorem 2-L applies just és well in this case.

That condition El is satisfied is again obvious.

Now for condition ﬁ?: We first show that, for v € D/(B) and @ € D, ¢ (t)

‘ds smooth and fhat ,

(2.6) ) = ), 0@ (e)y k=0, 1, 2, ...

by using an inductive argument. Assume Eq. (2.6) is true for some k; it is true
by definition for k = 0. Also, assume that A © # 0 and that t is fixed; and con-

sider

£ 2ee) = LU L o), 0 (b)) =Gole), 0,,(0))

where

o, () = @) = o) ey (par)
At i

The smoothness of §(t) and the validity of Eq. (2.6) will be established once we
<éhb%'tﬁaf-é; E%v C6h§éf’éévin D. ‘ﬁo'zero as At’ -+ 0. | ’ -

Some manipulation shows that, for each nonnegative integer m,

(<]

() Ver = 1 af B e (erm#2 ) (g ) dc|
IAm leAt(T ar = TX%T f;m T jo ; jo ® T+()dg
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By Fubini's theorem, we may change the order of integration. Hence

o2 (mD f 1 »IAti ,[.:3 }{fﬂg e |
: e L o (7L e ) (gt | s
j“m IGAt(T)Idﬂ S‘TAtf' Jo dg Jod¢ j_m‘ ¢ i (t+r glc

gl [ gl

The right-hand side tends to zero as |At| + O, which proves the smoothness of §(t)
~and the validity of Eq. (2.6).
Next, we prove that ¢ € IEi(B).' This will be accomplished when we show that,

for each nonnegative integer k,

FrPop e <

Since v € DifB), for every ¢ € D

V09 = ¢xm), ol (b)) = 55 [ 1) oUW (ser)0n

-0

where the j are nonnegative integers, T denotes a finite sum, and the h (1) are
B~valued Lebesque-integrable functions on R (i.e., h, € In (B) ). (See Schwartz

[1], vol. II, p. 57). By a standard estimate (see Williamson [1], p. 65),

W o] w

S oy aves™ [ av P Il oo er

(2.7) \ 22" [ m ()fer [® Jolemd(@)|at < e
. p‘ Q0 'J‘ —C0

. Ed .
which is what we wished to show. (Although the references cited here discuss only

... C-valued functions and distributiens, their arguments carry over to B-valued

functions and distributions.)
Finally, o+ § is clearly a linear mapping of DH. into Ehi(B), and the
estimate (2.7) shows that it is also continuous. The completes our verification

of condition E2.
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¥We now turn to condition B3. That v, - 0 strongly in D/(B) means the
S v e ~L, 4
following. For each p in a finite set of nommegative integers, there exists
[~

a sequence {hp»;v}v:i of continuous B-valued functions which converges in L (B)

i .
to zero (i.e., j‘ th‘w(t)ﬂsdt + 0 as v =+ »), and, in addition,

(2.8) (V s @) = Z _f hp, ('r) cp(“f)(’r) dr

for every ¢ in B. (See Scnwartz, vol II, p. 58,) Now, if ¢ is an arb1 trary

member in a bounded subset O of D, , we have that, for each nonnegative integer

~y

X, o :
[ o)) at < Ky

where the constantsXy do not aepend on ¢ € Q. Hence, by (2.8) and the estimate

1ndlcated in (2.7),

P e Sl < 5Ty ol ar I 1 ]

<3 K b ()] dr 40 voe
TR PV B '

We have established that {va} converges in’ Eli (B) to zero uniformly for all ¢
in any bounded subset Of,BLl .
Finally, condition Ei is satisfied by virtue of proposition 2-6.

We have hereby established the following analogue to proposition 2-4.

Propogition 2-7: For any y € B'[L(B,A)] and any v € Pil(B), the domvolution

Rroduct ;y ¢ v can be defmed by_ (2 3)(w1th K = D )as a mapping from ELl into A.

Mo*r’eover, vy ¥vi a _1_;_{1(: V. ﬂagp ng of of DLL(B) 1nto B'(A) that is also con-

Loe]

tinuous in the following sense: If {v } , converges to v strongly in Dlli(B)’
- V'V Tm———— e T
then, {y *v }v”’ converges to y % v strongly in B (.A).‘
Another result we shall employ is a regularization process corresponding to
the convolution in proposition 2-7. More specifically, we shall nesd

/
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Proposition 2-8: If y € B'[L(B,A)] and v € D, (B), and if the convolution
~ ) AM NA‘{L Rasnand —
product y % v is defined by (2.3) for K = ,P»Il s then
(2.9) (v % v)(r) = () v(r-t))

in the sense of equality in B'(A4). Moreover, vw y % v is a continuous linear

napping of Dy (B) iuto B(A).

Proof: The left-hand side of (2.9) has a sense as‘a convolution in accord-
ance with proposition 2-7 beoause Eﬁi(Bj c:EEfB).V Next, 1eti@ € ;ﬁi. Tne equality
in (2.9) is established through the following ﬁanipulations:

¥ v, @) = (y(t), (v(7), olttr)y )
(y(t), j: v(r) o(t+r)dr)

"

(2.10) - (3(8), [ vir-t) olr)ar)
(2.11) - [ (), vletlolr)dr

=y (), vlr-t)), ¢(r))
Note that (v(t), o(t+r)) is a Bochner integral and is in fact a member of Eii(B).

To see this, we need merely refer to the arguments culminating in (2.7). Thus,
the equalities dowm to (2.10) in the above manipulations are valid.

Moreover, the last two expressions in the gbove manipulations have a sense
and are equal because (y(t), v(r-t)) is a member of B(A), the space of all A~
valued bounded smooth functions on R each of whose derivatives are also bounded on
R. Indeed, we can show that (y(t), v(t~t)) is smooth in the usual way [see the
argument'following (2.6)]. That it is a memger of B(4) follows from proposition
(26 and the following: .. |
I ), vy, = e, v(k><¢~t>>nA'

(2.12) < max 0 ()]l ab
O<k<r ™7 ‘

IA
AA

=M  max jl “V(k)(t)HB dt < .

o

A
=

A
s
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Thus, to establish (2.9) we hafe only to prove that (2.10) is equal to
(2.11)s To do this we shall replace the integréls on r by certain Riemann
suns and then will show that the resulting approximaticns are equal to each
other and converge to (2.10) and (2.11). |

. Let T‘be (for the moment,.an unspecified) positi%e number. Partition the
interval [-T, T] into 2N subintervals of length T/N. Also;.let Ty be a point in

the nth subinterval. Since v € 211 (B) and o €, DLL » We can approximate

(2.13) Iis v(r-t) o(r) dr
by

C 2N

(2.11) NI, Vi) olry)

Upon applying v € B'[L(B,A)] to (2.1L4), which is a member of ELl (B), we obtain
the following member of A,

T 2N T 2N
(2'15) (Y(t): 'N' Z._l V('Tn—t) (P(Tn)> = N z <y(t’>} V(Tn——t)> CP('Tn)
n= , n=l .

We have already noted that (y(t), v(r-t)) is a member of B(4), and it therefore
follows that, as N + « and then T + « the right-hand side of (2.15) converges to
the Bachner integral (2.11). On the other hand, we w11 have proven that the

left-hand side of (2.15) converges to (2.10). as first N - o and then T + « vwhen'

we prove that

2N .
Ay T(t) é% n virp-t) olrg) - f v(r-t) o(r) dr.
2 n= ¢

converges in Eli (B) to zero.
- We first note that ‘(?_;13)' Gan be differentiated with respect to t under the

integral sign any number of times. Next, for any fixed nomnegative integer k,
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B ST I+ T v e o) oo e

< fiwdt (f;w + I:)Hv(k)(T—t)HB lo(T)] dT‘

<l 1wl e (f

+ JZ) lo(r)] ar

Given any ¢ > O, the right-hand side can be made less than ¢/2 by choosing T
~large 'enough, Fix T this way. .

Next, using the aforementioned pa:r'-titiori of [-T, T] we may write

N

N

I Aﬁk)(t)HBdt <m + [ 1z v () o(r,)- j 5 (et o(r)ar| yat

D

!3["3

=1

€ + ] + '
<z " Py rx T By Tx

where

M
ﬁz

-X =
N, T,X |CP(TD)I (I__m * IX)HVQK) K’rl'l"-[_’)HBdt

Ly ot (7« ol o

and

7 2N T ()

v(k)(fnwt) oln) - [ o v (r=t) glr)arg

X
By Ty IS

3
(We have used Fubini's theorem to change the order of integration in the last

t bl °
erm o DN,T) Now,

...

(f 1) nv w—-wn

—can be ms.de as sma.ll as de51red umformly for all [ ] <T by 011003111g X large

enough. Moreover,

2N T
%—;“1:1 loCry)| =+ [ o lo(r)] ar
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as N+ o .+ It fellows that D can be made less than ¢/L uniformly for all

N, T
N> .1 by choosing X large enough. Fix X this way.

Finally, EN, T,X becomeé less than e/L for all sufficiently large N because
the integrand of the integral on t tends to zero uniformly on - X< t < X as
N + o by virtue of tﬁe fact that v(¥)(7-t) and @(r) are smooth on the (t, T)
plane. This completes the proof of (2..9).

The last statement 6f pfoposition 2-8 :Ls now implied by the inequality
(@ 12) Q.E.D, |

We also have a regularizétion for column I of table IL. We shall need

it in section l.

Proposition 2-9: If y € D[L(B,A)] and v € D(B), and if the convolution

product y % v is defined by (2.3) for K = D, then

(y *v) (1) = (y(t), v(r-t))

D'(A). Moreover, vt y % v is a continuous linear

mapping of D(B) into E(4).

The proof of this ié just like that of proposition 2-8 and in fact simpler.
We therefore omit it.

We shall need still another property of our convolution process. Let x be
any real number, and let oy be the shifting operator. That is, for any function
@(t) from R into B, o o(t) 5 o(t+x). It :Ls,, a fact that oL is a continuous
linear operator mapping E(B)—into E(B), where E(B) denotes either ELl (B), E(B),

' ’%(B), or anyons of the {;és‘bing-fur’iction‘ spaces indicated in the first column of
table I. This is readily seen from the definitions of these spaces. In these

cases we define o, on H’(B) by

{ox £5 @) = {f, oy © fe€H (B), o € H,
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and it follows that Oy is a continuous linear mapping of H (B) into H (B).

We can now prove.

&

Proposition 2-10: If, for any of the systems of spaces indicated in table II,

pe———

y E.E’[L(B,A)] and v € ’:IJ'(B), then oy (y * v) =y % (oy¥)s _Z_L_I_J: other words, o,

commutes with the operator v y % v.

Proof: For ¢ € H,

(ox(y *v), @) =<y * v, 0_yg o) = (y(t), (v(n), o yelt + 1))

"

((8), (o v(r), oltimd)= (v # (o, v), 0)
Q.E.D.

_Later on, we will identify t as the time variable. In such a case, we will re-
fer to the property that o, commutes with the operator vi+ y % v by saying that the

operator ver ¥ % v is time-invariant.
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‘‘‘‘‘‘‘ 3. Ths Laplace- Transformation

We shall say that f is a Laplace-transformable menber of D'(B) if there
exists two members ¢y and o, of the extended real line [-co, m] such that
o <oy, fE€ E' (o5 05)(B), and in addition, f ¢ E'(w, z) (B), if either w< o
or z > g,. The strip in the complex s plane: | |

Qp = {s: 0, <Re s<0q,}

Will be called the strip of definition for the Lapla‘c;e trénsform Qf of f£f. Noting
that e St ¢ L(oy , Op) for s € Qp, we define §f by |
‘ F(s) i (Qf)(sj i (£(t), e—St> s € Qp
It is easily shown that F(s) is a B-valued analytic function on Qp. (One need
merely modify slightly the proof of theorem 3.3-1 of Zemanian rejl.)

Similarly, if there exist two members T; and T, of the extended real line
[-=, ®] such that T, < T, and if y € L (n1 T ) [L(B,A)] and y & L' (w,z) [L(B,4)]
whenever either w< T, or z > T,, then y will be called a Laplace-transformable
member of D’[L(B A)]. Also, corresponding to y, we have the unique mapping fy
of L(‘ql ’ﬂz) into L(B,A) specified in proposition 2-3. We define the Laplace
transform QY of y as simply the Laplace transform ny of fy , and we take
Qy _é_ {st ‘< Re s < My} as the cofrespondingfstriﬁ of definition. Thus,

() & () (s) L (2g)(s) & (£y(1), & s € Qy.
In this case, Y(s) is an L(B,A)-valued analytlc Tunction on Oy This is proven By

modifying the proof of theorem 3.3-1 in Zcmama.n [2] in an obvious way. Whenever

. we write "f € D (B) and 2f = F(s) for g_,e. Qp", it is understood that f is a

Laplace-transformable member of D’ (B) and that Qp is the strip of definition for -
ef. A similar convention is followed whenever we write'y € D'[L(B,A)] and

Ry = Y(s) for s € Qy.”

We are now ready to state the exchange formula which is given by (3.1) below.

This formula states how convolution is converted by the Laplace transformation,
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. 3. The Laplace-Transformstion
We shall say that £ is a TLaplace-transformable _E.TZ!'-j'f:‘.bE‘l" cf R’ (B) if there
exists two members o, and o, of the extended real line [—o'o; m]" such that
o <G, fE€ ’l:j’ (015 05,)(B), and in addition, f QEI(W,Z) (B), if either w < ¢
or z> g,. The strip in the complex s plane: ‘ |
Qp = {st 0 <Re s<q,)}
will be called the strip of definition for the Lapiaee t:c’;ansform Qf of f. Noting
that ¢SV ¢ Loy, 0z) for s € Qp, we define ¢f by
Fs) 2 @6)(s) = (2(8), &™)

It is easily shown that F(s) is a B-valued analytic function on Qe (One need

sEQf

merely modify slightly the proof of theorem 3.3-1 of Zemanian rej.)

Similarly, if there exist two members Ty and T, of the extended real line
[-=, ] such that T, < T, and if y € L' (h, M) [L(B,A)] and y ¢ L' (wy,z) [L(B,4)]
whenever elther w< Ty or z > Ty, then y will be called a Laplace-transformable
member of D'[L(B,A)]. Also, corresponding to y, we have the unique mapping £y
éf ,I:',(Th s Tlg) into L(B,A) specified in proposition 2-3. We define the Laplace
transform 9y of y as simply the Le;place transform S}fy of fy , and we take
Qy g {st T, < Re s <M} as the cofresponding?strif of definition. Thus,

(o) & ())& (Bg)0e) A (g0, & s € 0.
In this case, Y(s) is an L(B,A)-valued analytic function on Qy. This is proven by
modifying the proof of theorem 3.3-1 in Zem;nian [2] in an obvious way. Whenever
_we write "f EE’(B) and 8f ff.F(s) for sE Qg", 4t is understood that f is a
Laplace~transformable member of E’ (B) and that Qp is the strip of definition for-
@f. A similar convention is followed whenever we write'y € E'[L(B,A)] and
By = ¥(s) for s € Qy." |

We are now ready to state the exchange formula which is given by (3.1) below.

This formula states how convolution is converted by the Laplace transformation.
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Proposition 3-1: If @y = Y(s) for s € Qp and v ¢ DIL(R,2)], 4f Qv = V(s)

i . - ; - FAVIRRN ]
S VPN L N

Tor 8 < {r zand v € D ‘( Dje &N by

PR, ¥ e —n ~ - v i — J

sense of the convelution of y € L (w,z) [L(B, A)} uuh v &L (Q,z) (B) where the

~

open interval (w,z) is the intersection of Qy N Qy 31 Uv the real axis. Moreover,

for s € Qy N Qgs
(3.1) 8(y * v) = ¥(s) V(s)
-~ and for gach giw_g € Qy N Oy, Y(s) V(s) € A.
Proof: That y % v exists in the stated sense follows from proposition 2-L
and the facts that, if v € ,LVI(Ul 5 0,) (B) and oy < w< z< 0, then v € g’(w,z) (B),
aQnd similarly for y. Moreover, for each fixed s such that w< Re s < z

(1), (v(z), es(tT)yy

(y(t), e (v(r), e T)

i

2(y # v)

i}

Here, e~St € L(w,z) and (v(r), ¢ °T) ¢ B. Hence,

b (vit), G—ST> € Ii(IfI,Z)@B

and by proposition 2-3 we get

8y % v) = (gy(t), &) (v(r), ™) = ¥(s) V(s)
Finally, since ¥(s) € L(B,A) and V(s) € B, we have that ¥(s) V(s) € A for any fixed

S E Qy ﬂ QV" QoE-D»

2]

We now state two lemmas which will be used in the proof of an inversion theorem

for the Laplace transformation. .

Lemma 3-1: Let y € L (07, 0p) [L(B,A)], and let fy be the corresponding

-member of ,[J)' {03 57 047) (L(B,A)) in accordancé with proposition” 2-3. " Also, 50, let
’ o - t 4 'CO ‘ "St
o € D(8), o' € 1, g(e) = [ olt) o % at, and v/(s) = [ o) & lat.

~C0 -0

Then, for any two fixed real numbers r and ¢ such that O<r< = ando, < 0 < g,

znd for s = ¢ + 1 w,
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- (‘1 o TN LY e = e T - 87
(3.2) ‘j»r <*v< Jy o eTFT) {(s) o (), fﬂr e q,(\) dw)

and

(3.3) [

I‘r.<fy(fi_)3 6”5T> \;/(s) dw = (fy('r), ffr e‘ST 1}}/(8) dw)

Lemma 3-2: Let a, b, o, and r be real numbers with a < 0 < b. Also, let

¢ € D(B). Then, asr -+ «,

S t si :
L7 gler) SPElnrt g

T deeo

converges in L, ,(B) to o(r).

. Except for some obvious _cha;‘lges, the proofs of these two lemmas are respect-
ively the same as those of lemmas 3.5-1 and 3.5-2 in Zemanian [2]. The integrand
on the left-hand side (3.2) is the result of applying the L(B,A)-valued function
(fy('r), e™5TY to ths B-valued function ¢ (s). The integral on the left—-ha.hd side
can be defined from the corresponding Riemann sums in the usual *Qray, and possesses
the usual properties (see Sec. 7).

Proposition 3-2 (An Inversion Formula): Ify € R'[L(B,A)] and Qy = Y(s) for

= 4w L ¥ st
(3.1) y(8) = lin [ ¥(s) e do

vhere s = o + 1 @ and o is a fixed real number satisfying oy < o < gy,

e

Similarly, if £ € D'(B) and ¢f = F(s) for s € Q

¢ = {s: 0, <Re s < o0p}, then, in

. s 1
the sense of weak convergence in D'(L(B,4)),,

N s 1T st
(3.5) £f(t) = rl_J;mm ?F‘r—r F(s) e aw

where s and ¢ are restricted as before.

Proof: We prove the first statement only since the proof of the second one
ig aimost the same. Let o € D(B), and choose a and b such that oy < a< o< b < Og e
We want to show that

Tin (e 7 ¥(s) %Y ay, o(t)) - {55 9

oo 7 L &
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We note that the integral on ¢ within the left-hand sids ie an L(B,A)-valued
continuous function of t. Thus, the passage to the 1limit here is taking place
in the Banach space A. The left-hand side without the limit notation is equal to

© r |
L [T & wolt) at

and, by a Fubini theorem (Hille and Phillips [1], p. 8L), the order of integration
may be changed. Then, upon invoking lemma 3-1, we find the last expression to be
equal to

(y(r), %;-jir e " jw o(t) & ab do)

which, by the same Fubini theorem, is the same as

R N O ot sin rt .
(y('r),ﬁ_ qu“w o(trr) ¥ 2 T db)

Lemma 3-2 now completes the proof.

Corollary 3-2a (The Uniqueness of the Laplace Transformation): Let vy and ¥, he -

members of D'[L(B,4)], let Qy, = Yy, (s) for s € Oy, and v = 1, 2, and let

Y, (s) = Y, (s) 9_{_1;(2, N QV . Then, ¥ =¥, in the sense of eguality in

L (v,z) [L(B,A)] where the interval (w,z) is the intersection of Oy, nQ, wth
ot . WL

the real axis. A similar statement holds true when the spaces N'[L(B,A) and

L' (w,z) [L('B,A)] are replaced by D'(L(B,A)) and L'(w,z) (L(B,4)) respectively.
" Proof: That y, and y, are identical on R(B) follows from proposition 3-2.

Furthermnore, D(B) is demse in L(W, z) (B), aftd ¥ and ¥» are both members of

L’ (w,z) [L(B A)] Thercfore, yl and y2 are 1dentﬂcd1 on L(w z,) (ﬁ) as wdl.

The second conclu 1on is provcn in the same waygu - S
We can characterize Laplace transforms as follows:

Proposition 3-3: Necessary and sufficient conditions for Y(s) to be the

Laplace transform of a y € D'[L(B,A)] and for the corresponding strip of definition

1o be q, = d analytic fu

on gy and, for each closed substrip {s: a < Re s < b} of () <i7’1 < a<b<o,), bherd
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be a polvncmial P osuch that HY(S)”L(B N P(ls]) . fo e C’ 8.5 b

Hote: It is a fact that P depends in geners! on'the cheloes of a and b..

Proof: Necessity: It has already been pointed out that Y(s) is an _L(B,!\;)~
valued analytic function on Qy. Morebyer, |
gy = (fy(r), 5% s€ Qy
where ij G}‘a,‘b(l:'\'B,A)) for every a and b ’such that 0, < a<b< o,. Therefore,
by proposition 2—?., the-rj’e _exist a positive number M é,nd a nonnegative integer r
such that, for all s in the strip {s: a < Re s < b}, o

R OIS EX O

M max sup l”a,b(t) Dl{: ™5t
1

<
L(B,4) = O<k<orox

i

=
L=
o
>

| 5| (k)sgp g, 1 (t) e“St[ < P(|s])

Sufficiency: We first prove
Lemma 3-3: If, on the strip {s: a < Re s < b}, G(s) is an L(B,A)-valued

analytic function that satisfies ”G(S)“L(B,A) < K/|s|?, where X is a constant,

o) e =g [T ) o

where s = o + i o and ¢ is f_‘_lxed with a < 0 < b, then g(L) is an L(B,A)-valued

! i
continuous function that does not ‘depend on the choice of g, and also g(t)

generates a member g of L'(a,b) (L(B,A)) through the definition:

(8> @) = [ g(t) p(t) dt . g€ L(aD)

- Moredver, g = -G{(s) for at least a < Re's < b =

Proof of lemma 3~3: That g(t) does not depend on o follows from Cauchy's

theorem (Hille and Phillips [1], p. 95). Also,

w0 .
e g(t) = %—- [ 6o +1iw) e
T
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is a continuous funclion by the uniform convergence of the infinite integrai.
Furthermore, for at le=st a < Re s < b, we have that

a(s) = [T g(t) &P at
This can be established by extending the proof of theorem 8.2-3 of Zemanian [1]
to the case of two-sided L(B,A)-valued functions in acéordance with the discussion
of Secs. 6.2 and 6.3 of Hille and Phillips [1]. Finally, for each o such that

a<o<hb, He"gt is bounded on - ®» < t < &. Therefore, g(t) €

g<t)ilL(B;A)
L'(a,b) (L(B,4)), and
= (g(t), e = [T g(t) a; = G(s)
i’c’)r‘ at least a < Re s < b. |
Turning now to the proof of sufficiency, we choose &z numerically-valﬁed
polynomial Q(s) that is different from zero oﬁ the given strip{sf a < Re s < b]

and satisfies

H“SZHMB e = a<hes<b.

| s[?
Set G(s) = Y(s)/Q(s). Then g(t), as determined by (3.0), possesses the properties
stated in the conclusion of lemma 3.3. In the seunse of differentiation D in the

space L’ (a,b) (L(B A)), we set Ty (t) = Q(D) g(t), 50 that, for all ¢ € L Lo where
~C .
o, < a< c < d<b<d2, e have

(3.7) (£, ©) = Ji g(t) Q(-D) () dt € L(B,4)

Furthermore, we define y on L d(B) by

{

(3.8) s 9 2 j’w g(t) Q(-D) ¢(t)at €4 . § €L (B)
’
'For each t tne lac;t :Ln’tegrand is a member of A. 'ﬂAlso, the :Lntegral converges; indee:
: (&)
‘ ”(3’, ‘W“A = J.‘m ”%c,d t) “L(B ) ””c alt) Q(-p) ‘?(t)”B dt

00

I g(t)

< J—m WHL(B,A) dt swgp H%c,d(t) Q(-D) \{»’(t)HB
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This also shows that ¥ € 7 [L(B,4)7.
~3G,d

| Now, by the stardsrd foraula:r
{eDf) (s) = s(ef) (s) = s € Qp
we have the;’c, for at least ¢ < Re s < d,
(gy) () = (£5(%), &% = as) als) = ¥(e)
since y and fy correspond in accordance with proposition 2-3. Since a and ¢ can

be chosen arbitrarily close to o

;5 and b and d arbitrarily close to o, , we have

that y € L'(0, , o, ) [L(B,A)] and 8y = Y(s) for o, < Re s < 0, by the uniqueness of
the Laplace transformation (corollary 3-2a). This completes the proof of proposi-

tion 3-3.

Proposition 3-L: For w< z, there is a one-to-one correspondence y + fy

from all of the space E' (w,z) [L(B,A)] onto the space L' (w,z) (L(B,A)) defined

by the equation:

(3.9) vy va)y = (L5 ¢) a
vhere y € L'(w,z) [L(B,A)], £ € L'(w,z) (L(B,4)), o ég(w,z), and a € B.

Proof: Proposition 2-3 asserts that eachy € rI;’(w,z) [L(B,A)] determinss
through (3.9) a unique f}., € E'(w, z) (L(B,A)). Conversely, we saw in the preceding
proof that fy defines through (3.7) and (_3.8) a-y E-El(w,z) [L(B,A)]. We wish to
show that y is unique'. Set § = a, ¢ € L(w,'z)-, a € B; It follows from (3.9) |

Yy
contains D@ B, and DB is a dense subspage of D(B) (see Schwartz [2],'pp. 109~

that each f, € L'(w,z) (L(B,4)) defines y uniguely on L(w,z) @ B. Wow, L(w,z) @B

110). Also, D(B) is dense in L(w,z) (B). Therefore, ,}\:}(wﬂ)@B is a dense subspace

of ;E(w; z) (B). Since y is a continuous mapping of ’g(wjé) (B) into 4, it follows
that y is uniquely determined on L(w,z) (B). That is, two different members y,

and 'y, of L'(w,z) [L(B,A)] camnot simultaneously satisfy (3.9) for a given £y

€ ;[\:J' (w,z) (L(,B,A)). This ends the proof.
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L. Input-Output Systems with Convolution Representations

Airz;a:;t Anvari zbly thoe 1 1 Q’mtput oyotem— COIlu.LdCI’Ed in network theory
are finite—dimgnsional; That is, in the time-domain the input v to a gystem is
assumed to be an m x 1 vector whose components are functions or, more generally,
distributions on the time axis, whereas the output u ‘is assumed to be an n x 1L
vector having simiia.r components. When such a system possésSes certain physical
‘properties, namely, single-valuedness, lineagrity, time-invariance, and a certain
type of continuity, the system possesses a convolution representation (Zemanian
[3]:
(L.1) U=y ¥v
where y is an n x m matrix whose components are distributions. The rules of
matrix multiplication are foilowed when computing the convolution on the right-
hand side of (L.1) from the components of y and v.

This kind of a representation is used not only for lumped networks, but
also as an approximation to distributed systems. As an example, consider a
resﬁnant cavity to which is conneéted an input wave gulde and an Qutput wave
guide. These wave guldes carry electrOInagnetiQ energy to and from the cavity.
Now, at a fixed transverse plane sqmewhere in the input wave guide ,‘ both the
transverse electric and magnetic fields a:c’;a‘jbima—dependent elements of a Hilbert
space. The same thing is true for the transverse electlfic and magnetic ;’c*ields
at a fixed transverse plane somewherevin thé output wave guide. Then, fixing

our attentlon on, say, J'Llnt the elec’cmlc fleld%, we see that the system acts. as an

operauor mapplng a tlme dependent element in one Hllber space into a time-
dependent element in another Hilbert space. Furthermore, the inner-product of

the transverse electric and magnetic fields at a transverse plane in a wave

guide is the electromagnetic power flowing past that plane.
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Thus, the imput and output varisbles of such distributed systems are
natﬁrally elemenis of infinite-dimensional h¢]bﬁ“ sbaces. Nevertheless,
the common approach at least in network theory is to decompose any elements
of a Hilbeft gpace into components with respect to some orthonormal baéis and
then to assume that all components with indices hlcher than some integer can
be neglected. Thus; the infinite~dim@nsional syétem is replaced by a finite-
dimensional one (sea, for example,.Carlih [1])+« . Although this technique may
be adequate in most cases, it may be desirable at tlmes to avold such an
approximation. This is the motivation of the‘present work.

In this section we consider a system whose input v is a member of some
subspace oflg’(B) and whose output u is a member of some subspace of‘@'(A),MﬁBTG
A and B are, in general, different Banach spaces. Our discussion is based on
the convolution process developcd in the previous sections, and, in particular, we
assume that the system %t has a convolution represantation:

=QRlv=y*v
where y is a suitably restricted fixed member ofE'[L(BgA)]v We shall show that
% is causal if and only if supp y.c [o, w]; whiph'is certainly no surprise.

In sections 5, 6, and 8, we resﬂrict outselves.tq the special case when the
input and output are both members of‘E’(H),i&@re H is a Hilbert space, and wé take
up energy considerations using the inner product (u,.v) as the power into W; In
this way we extend the concept of an n-portto an infinite-dimensional system,
vhich we choose to call a "Hlloert port."

‘I‘hrousmout the follomng, 1‘0 is undnrstood that 2} 'TL(B, )7, I (B), and
ES'(A) are the three spaces in any given column of table IT. Let y be a fixed
nember of E}[L(B,A)]. Also, assume that t, the independent variasble of the
testing functions, represents time. Thus, E/(B) and K'(4) are spaces of Banach-

Space-valved distributions on the real time axis. Now, we can define a systen
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ft = y %, which maps any v € I°(B) into a u € X/ (./\) through the equation:
(4.1) ' o= Gy o= y # V.

By virtue of propositions 2-L, 2-8, and 2-10, M.is a continuous, linear time-
invariant m%ppj.ng of I'(B) into K'(4).

Definition l-1: Let X(B) be a subset of I'(B) which may in fact be all of

I’(B). % is said to be causal on X(B) if, whenever v € X(B), v, € X(B), and

e ————— ——— ot oot ———r

v, (t) = w(t) for - ® < t < %, we also have that My, =0y, for - «< t < %, and

if this condition holds for every t .

Proposition LL—IL: Let @ =y %, when y € S ‘[L(B,A)]. If M is causal on D(B), -

then supp y < [0, »). On the other hand, if supp y < [0, =), then % is causal on

I'(B).

Proof: Assume that 0 is. causal on-D(B). This statement has a sense since
R(B) is a subspace of every ,IV’(B) indicated in table II. By virtue of proposition
2~9 and the fact that every E’[L(B,A)] indicated in table II is a subspace of
D'[L(B,A)], we have that, for all v € D(B),

(L.2) @v) (¢) = (v *v) (t) = {ylr), v(t-7)) € E(4).

Moreover, hy hypothesis, for all v € D(B) such that supp v < [y, ®), we have that
(y(r), v(t=1)) = 0 for - ®» < t < t,. But, treating v( ~r) as a function of 7, we
see that supp v(t~r) c (- o, £ ~ 4, ). Moreover, by choosing t < t, and v a.ppropriately
we can set v(t-1) equal to any o(t) € D(B) such that .supp o < (- =, 0). Thus,

(¥s @» = 0 for all such ¢; that is, supp y <t [o, oo). |

Now, assume that supp v < [0, ) and that v € I (B). We first show. that supp
y." v [‘Eo ,-ce) a.ssummg that supp v CILtO, ) Tt | (p € K with supp o C (- o, ).

Then, (v(7), o(t+r)) € H(B), and supp (v(1), ¢(t+7)) < (- =, 0)- But then,

(v % v, @ = {y(t), (vir), cp(’ﬁ**r))) = 0
Since ¢ is arbitrary, this shows that supp y % v C [t,, ®). By virtue of the

linearity of % = y %, we can now conclude that % is causal on I'(B). Q.E.D.

o’
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5. Passive Hilbert Ports with Convolution Representations

Let H be a Hilbert space; H need not be separable. We hounceforth assums
that:both of the Banach spaces B and A éonsidared before are the space H. More-
over, we assume that the inner product (* , *) in H has the significance of
power in the following way:

If the input v € I'(H) and the output u € K'(H) happen to be Ordinary
functions at some point t and therefore map t into H, then Re(u(t), v(t)) is
‘the‘power p(t) flowing into the system. [In what follows, £he reader must
bear in mind that the inner product (u(t), v(t)) is with respect to H and does
not denote an integration with respec£ to t. Thus, (ﬁ(t), v(t)) varies in gen-

eral as t varies.] Moreover, if p(t) happens to be Lebesgue integrable on any

open interval of the form (-w, x), where x is finite, then

(5.1) e(x) b Re fx (u(t), v(t)) dat

is the energy ébsorbed by £he system M during the time interval -« < t < x,

We have hereby arrived at a "Hilbert port," an infinite-dimensional gen-
eralization of an n-port. As an example, consider again a resonénﬁ cavity hav-
ing this time only.one wave guide leadihé to it, thréugh which electrémagnetic
energy flows. In this case w and v cen be respectively related to the trans-
verse magnetic field and transverse electric, field at some.fixed transverse
plene in the wave guide in such a way ‘that (5.1) truiy represents the total
eneray ebsorbed by the civity and wave cuide beyond the fixed plane.

We can now introduce the concept of passivity for a Hilbeft port.

Definition 5-1: Let M = y* with v € H/[L(H, H)]. Also, let W(H) be a sub-

set of I'(H) consisting of H-valued ordinary functions. % is said to be pes-

=4

sive on W(H) if, for every v € W(H), for u = Bv, and for every finits real

number x, we have that (u(t), v(t)) is Lebesgue integrable on -« < t < x and
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e(x> é Re Ix (u( )5 v(#)) % > 0.

ngmﬁwizl: Ifw € B(H) and v € DL (#), then (v, v) € I, . Similarly, if
fACbiilng = . RSN : ‘ o
uw € E(H) and v € D(H), then (u, v) € D,

Proof: We first show that (u, v) € E whenever u and v are both members of

E(H). Consider the equation, wherein A t # O:

(u(t + A1), v(t + &%) - (u(t) v(v))
At - ‘

_ (ﬁ(t + A t) a8 | vt + 0)+ (ace), K L

t)-v(t))

Since the inner product is a continuous function of its arguments, we may pass to
the 1imit as At - O to obtain

D, (u(t), v(t)) = @G)(8), v(t)) + (u(v), v (&),

Repeatedly epplying this result, we get

pa(s), v(8) = z & P, Py k-0, 1,2,

3
\

Thus, (u,zy) is truly in E .

Next, e apply Schwarz's inequality:

)] o8 ()]

lD (u<t } ‘ )!

The first statement of the lemma now follows from the facts that Hu(p)(t)ﬂ €B

k-
and Hv< p>(t)“ € Dy . The second statement{follows in & similar way. Q.E.D.
: 1 |

Proposition 5-1: Let R = y¥, where y € H' [L(H, H)]. -Also, let N be pas-

" sive on D(H). Then, supp y C [0, «) so that M is causal on I'(H).

Proof: Note that D(H) ¢ I’(H) for every space in the fourth rocw of Table
II, and therefore D(H) is truly in the domain of M = y%. By lemma 5-1 and

proposition 2-9, if v € D(H) and u = % v, then (u, v) € D, in which case

IX (u, ﬁ) dt

LO.



exigts for all x, Now, assume in addition that for some real number tg,

v(t) =0 for t <t . Klwo, let v, € D(H) and set

where b is an arbitrary real number. Therefore, v,(t) = v,(t) for t < tye We
may write .

u, = fv, = v, + by
For any fixed x < tys we have by the passivity of M that

0 < Re j?(uz, v,) dt = Re jx(mvl + by, v,) dt

-0 -0

1

Re [*(Mv,, v;) dt + b Re fx(Mv, v,) dt
Since b is arbitr;?y, we must have that-w
Re jx(mv; v,) dt =0
J ,
for all x < t_. In view of lemma 5-1, this implies that (T, vy) =0 on —e<t <t
But, since V1<t) € E(H) -can be chosen arbitrarily, we see that (%tv) (t) = 0 on

-0 < t < t,. It now follows from the linearity of % that M is causal on D(H).

By proposition -1, supp v © [0, =), and M is causal on I’(H).

Lemma. 5-2: Ifyce¢ E’[L(B, A)7, where B and A are Banach spaces, and }f supp
¥y C o, ), then ¥ € L'[o, =) [L(B, &)J.

"Proof: Let a and b be a:ny real numbers satisfying 0 < a < b < », and let |
o € _I_ja,b(B)' Also, let A\(t) be a smooth fupf:tion such that A(t) = 0 for ~o<t<-1

and AM(t) =1 for X < t <. Then, ) @ € DL1 (B)-, Indeed,

L e R e

(5.2) [P el®)lat <z () [ M) llot (0)]] at
P B U=0 e . B

Since [lcp<"") ®)] < Ke ®% on -1 < t < @ for some constant K, the right-hand side

of (5.2) is finite. Since supp y € [0, ») and y € B[L(B, 4)J, we can extend

the definition of y onto La,b(B) through the equation (y, ¢ é (75 X @),

0 - ‘l»\ "Q &
© € _;L_a.,b<'t'>
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From (5.2) we also obbtain

0 k )
P . Lk , N - k . . . ( ,> )
| Dl t)lat < DRI
(5.3) gth M) ()] 4at < i=o(”> e, _mgg%<:mﬂna’b(t)w (£l

where the M " are the rezl numbers:

(k-p)
M ='j"m)‘ Wl gt <o,
boote %a’b(t)
Upon invoking proposition 2-6, we obtain

<y o3, =<y 2 o A < BN [wllnkm)cp(t)HBdt

which, in view of (5.3), implies that y is a continuous linear mapping of Eﬂa,b(B>
inté A. But this is true for every a and b such thé.t 0<a<b<x< » Hence,
yEE%omﬂlﬁ,Aﬂ. Q.E.D.

We now state a basic definition:

Definition 5-2: ¥(s) is called a positive mapping of H into H if the fol-

lowing three conditions are satisfied on the half-plane {s: Re s > o].

1. For each fixed s, Y(s) is a continuous linear mapping of H into H [1.e.,

Y(s) € L(H, H)].

2. Y(s) is analytic.

3. For every a € H, Re (¥(s) a, a) > 0.
Assuming that condition 1 holds true, we can interpret condition 2 in eith-
er of two equivalent ways: First, Y(s) is an&lytic on {s: Re s > 0} if and ouly

if as |4 s| ~ 0,

(5.14) C Y(s + As) - Y(s)
' ‘ As

converges under the norm of the space L(H, H). Secondly, Y(s) is analytic on

{s: Re s > 0} if and only if, for every choice of a € Hand b € H, (Y(s) a, b)



is an anzlytic functiow on {s: Re s > 03}, Thal these twn criicvion are equiv-

sient is & staz It is aleo & fact the', in this coos, the 'coz‘zvez}
gence of (5.1) is auvtomatically wniform with respect to s 'im‘ wry compact sub- |
set of {s: Re s > 0}, (See Hille and Phillips "[11], pps 92-9L or Taylor [1],
pp. 653-65L.) |

One of the principal results of this vwor}; is

Theorem 5-1: i 7=y, where y € BIL(H, H)] and 1i‘ n is passive on

DL (H), them ¥(s) = (Qv)(s) exists for {s: Re s >0} and ¥(s) is positive.
Proof: By proposition 5-1 and lemma 5-2, supp ¥ © [o, ®) and
y € E’(o,m) [L(H, H)]. Therefore, y does possess a Laplace transform whose re-
gion of definition contains {s: Re s > 0}; namely, for at least Re s > O,
¥(s) & (8y) (s) = (82 )(s) = (£ (8), %)
, , y y
Here, fy(t) is the member of E’(o,w) (L(H, H)) generated by y as indicated in
proposition 2-3. Tt follows that Y(s) is an L(H, H) ~valued analytic function
for Re s:‘> 0. Thus, the first two conditions of defizﬁtion 5-2 are satisfied.
To p:lz’ove the thn.rd condlt:z.on, choose any two r:eal numbers x and % such
that -o < x < x < . Gven apy s -with Re s‘ > 0, choose o(t) € E such that

St on e < 8 < x and «o(t) = 0 on x,

il

+

o(t) 1<+t <o, Hence, o(t) €EL(-=, Re s),
and it follows that we may convolve y with v = ©w a, a € H, in acccrdance with

. -' -
columm 5 of Table II wherein w = O and z = Be s. Moreover, since y € B'[L(H,H)]

.and.v = g.a € (H),.we may . invoke proposition 2- 8 to write .

s
w =9y = yx (¢ a) = (1), o(t-1) a) = (£(7), o(t-1)) a € B (H).

By lemma 5-1, (u, v) € Dy, . So, by the passivity of ® on Dy (H) we have
! 1

| ’ X
0 < Re jx(u, v) dt = Re [ ({215 o(t-7)) a, o(t) a) dt.
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Since supp ¥ C [o,%), supp LV4C1[O}W . Therefore, because - < t < x, the
last insquality may be rewriitlben as

; s(t-r st
0 < Re J ((fy(T), e } a, e a) dt

V.4 (s = ~-ST
= jx e\s ¥ S)? dt Re ((fy(T), e. Y a, a)

<@ .

5 .
= fx o ©° Stdt Re (¥(s) a, a)

Q.E.D.

We now wish to introduce the idea of a real mappiﬁg of H into H. In or-
der to do this we shall assume that H has been geherated from a real Hilbert
space H through complexification (Bachman and Narici [1]). That is, given a
real Hilbert space H,, the eléments of U gre defined to be a + ia2 where a
and a, are arbitrary ﬁembers of Hr‘ Mso, the inner product (¢ , °) on H,. is
extended onto H through fhe definition
(5.5) () +ia, b +ib)L2(a,b) (a,b)+1i(a,n)-1i(a,b)
where ai, & s b1’ and be are arbitrary numpers of H.. It is easy to show that
H is a complex Hilbert space whenever it is generated in this way from a gilven

Hp. Mlso, any orthonormal basis for H, is also an orlhonormal basis for H.

Throughout the remainder of this section it is understood that H has this struc-
ture.
1
Next, a linear mapping Z of H into H is said to be real if 7 maps H,, into
"‘Hf}‘ Note that, if the (not necessarily real) linear mepping Z is defined only
on H,,- it can be extended into a real linear mapping of H into H through the

definition:

Z(a+ib) =Za+12Zb a, b € H_

Ll



This convention is adopted in the fellowing.

On the other hand, if 7 is a (not necessarily real) mapping of ¥ inte H,
we can decompose it into real. and imaginary parts as follows. Z maps any
a € H, into a member b1 + i bz of H where bl € H, and bg € Hr‘ So, we define

the real part Z, and the imaginary part 22 of Z by

b =Za, b =2Za
1 1 2 2

and we write Z = 21 + 1 Zz. The complex conjugate of Z is by definition

72=7 -4i7.
1 2

Definition 5-3: ¥(s) is called a positive-real mepping of H into H if it

E a positive mapping 9}‘_ H into H and, for each real positive number o, Y(o) is

a real mapping of H into H.

Corollary 5-la: If M = yx, where y € B'[L(H,, H,)], and if Bt is passive

on Dy (H.), then M satisfies the hypothesis of theorem 5-1 and Y(s) is positive-

real.

Proof: Any ¢ € DL (H) can be decomposed into @ = ¢ i 9, where ¢ and
—_— ~ 1
1 .
cpz are unique members of Dy (Hr)‘ So, following the aforementioned convention,
~

we define y on P,Ll (H) by .
DL o) iy, g) €R
It follows readily that y € E'[L(H, H)J.
Moreover, for v € Dy (H), we have tha”(: a € E(H) by virtue of proposition
2-8. Upon making the usulal dec}ompositio.ns Vo=Vt i Vs V) € BLl (Hr)’
-;'2\ G.]ng(Hr) and —u.: =u1 ¥ l Liz; ,ul - E(HQ, U € E(Hr),.‘we' see fi’did (5.'5)‘ that

M is passive on Dy (H) whenever it is passive on _]le (H,). Thus M satisfies the

1
hypothesis of theorem 5-1.
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6. Representations for Positive-real Mappings.

Our finsl cobjsctive ig to develep the conv rerse to theorem 5-1 and its corol-
lary. We accomplish this by using some representations of positive-real mappingé,
which is the'subjéct of the present section. We étart with a representaﬂion due
fo Beltrami [1].

Beltrami's Representation: Y(s) is a positive mapping of H into H if and

only if, for Re s > 0, Y(s) admits the following repregentatlon: For every a and

b in H,

(6.1) (1(s) a, b) =(ha, b) s + (Qa, b) + fw 1ns -

d (V(ﬂ)a: b)

- l -3

where the following conditions are satisfied. A is constant self-adjoint non-

negative-definite continuous Ilinear mapping of H into H. Q is a constant skew-

self-adjoint (i.e., Q = —Q* where Q% denotes the adjoint of Q) continuous linear

mapping of H into H. TFor each T € R, ¢(7) is a self-adjoint continuous linear

mapping of H into H; for each a € H, ({(M)a, a) is a real nondecreasing bounded

function on -~ < T < ;3 for every a and b in H, (¢(Me, b) is of bounded varia-

tion on - < N < «; with (¢(-=)a, b) é lim = oo (y(Mea, b) =0

We extend Beltrami's representation as follows:

Proposition 6-1: Y(s) is a positive-real mupping of H into H if and only

if the representation (6.1) possesses the following additional properties: A and

Q are real mappings, and ¢(T) = - Y(-M).

We first prove

Lenma 6 1 Let H and H be as before. An opcrator Z mapplng H into H is

real 1f and only 1f (Z a, b) is real whenever a and b are in H.

Proof: Let ¢ = c, ¥ iec, = Za where c s and a are in H,. If (Z a, b) is

real for a1l a and b in H,, then (cg, b) = O because
(z2,b) = (c, ) +i (e, D)

¢ = 0. Hence, Z is real. The converse 1s obvious.



Proof of Proposition 6-1: Assume that A, Q, and | have the stated

s
>
e}
o

w3
fx
"

ties., Setting ¢ = ¢1 + 1 ¢ where $1 and ¢2 are real opsrators, we ses that

g (M) is an odd napping of the real line into L(H, H) and that ﬁg(ﬂ) is an even
1 - _

mapping. Moreover, for o real and positive, the imaginary part of the last term

on the right-hand side of (6.1) is

") 4 (4 (ma, b>j “) 4 (4 (ma, )

._oo(Y +T] 'ﬂ

This expfession is equal to zero for o real and positive by virtue of the oddness

and evenness of the twc integrands and of (We(ﬂ)a, b) and(vl(ﬂ)a, b) with respect
to M. By lemma 6-1, Y(o) is a real operator for ¢ real and positive.
To prove the "only if" part of proposition 6-1 we shall need two more lemmas.

Lemma 6-2: Let Q be a linear operator mapping the (complex) Hilbert space H

into itself. If Q is skew-self-adjoint, then (Qa, a) is imaginary for all a €H.

Proof: If Q is skew-self-adjoint, then (Qa, &) = (a, Q'a) = -(a, Q&)= -(Qa, &)
so that (Qa, a) is imaginary.

Lemma 6-3: Let Q be a skew-self-adjoint continuous linear mapping of the com-

plex Hilbert space H which is generated from the real Hilbert space H,, through com-

plexification. Then, Q is real 1f and only 1f (Qa, a) = 0 for all a €H,.

Proof: If Q 1S‘real, “then Q a € H, for all a € Hy, and (Qa, a) is real. But

since Q is skew-self-adjoint, (Qa, a) is imaginary according to lemma 6-2. There-

fore, (Qa, a) = O.

ke

0O for all a € Hr, and set Q =Q +1Q
1 2

il

Conversely, assume that (Qa, a)

X

13

n

. ; . . A ~ N . kY
'wharefQ “and- Q are real. Then, @ ~ =Q - 1Q 7 Simce § = - Q°, we have

1 2

Q =Q and Q =Q7F. Moreover,
1 1 2 2

(Qa, 2) = (@2, @) + 1 (Q.2 a).

L8.



Since Q1 is skew-self-adjoint, (Qla,Aa) is dmaginary by lemma 6-2. But
(Qlaj &) is alszso real since Ql ig real and a € Hr. Hence, (Qla, a) =4O for
all a € H_. Yy assuiption, (Qa, a) = O for all a € H,. also. Thus,
(an,_a) =0 for all a € Hf. But, if Q2 were not the zero operator, there
would be at least ome a # O in H_ for which (an, a) # 0 because

15,1 = o0, 12 @)

(See Riesz and Nagy [1], ppf 229-230.) Thus, Qg mist ‘be the zero operator,
and Q therefore real. | | |

Returning to the proof of proposition 6-1, assume that Y(s) is positive-
real. Since (¢(Ma, b) is of bounded variation on - < N < e, it follows that

for ¢ real,

im £X£§l§L~E>= (4 ;, b) -

o o
(See Shohat and Tamarkin [1], pp. 23-2L.) Thusﬁi(Aa, b) is real for every a
and b in H,.,, and therefore A is a real operator by lemma 6-1. |

Next, since Q is skew—self~adjoint, (Qa, a) is imaginary for all a € 1,
According to lemma 6-2. Now, set s =1 and a =b in (6.1) to get

(X()a, &) = (42, ) + (Qa, &) + [ d (#(Ma, 2)

The left-hand side is real for all a € Hy bécaus;wY(l) is a real opérator. Ai_
so, the first and last terms are real since A and ¢(ﬁ) are self-adjoint (see
Riesz and Nagy [1], p. 229). Consequently, {Qa, a) is equal to zero for all
a E H . By lemma 6- 3, Q is a real Operauor.

Wé can néw comclude that, for all & and.b in h and all real p051t1ve s,

(¥(s) a, b), (La, b), and (Qa, b) are real. Therefore,
(6.2) . k() L[ 6 () &, )

J iMf-s

is real under the same restrictions om a, b, and s. Since K(s) is analytic for
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Re s > 0, we have from the reflection principle that

(6.3) K(s)y = K(é) Re s >0
Moreover, upon meking the change of variable § = - T, we obtain
- o i8g-1 , ——
k() = [ rp ¢ (-¥(-8lap 2, b EH,
-0

We now replace € by T in this expression and invoke (6.3) to get
(== (o + T 2 0 - Re s > 0

—e
for all a dnd b in Hr' By a known‘inversion fofmula (see Greenstein [17,
theorem 2.1), ([4(N) + $(-1)] a, b) is a constant on -» < N < =, and this cén~
Stant is equal to zero since ({(-») a, b) = 0, Since this is true for all a
and b in Hp, (m) = - @?fﬁf for all M. This completeé the proof of proposition
6-1. | |

For our purposes we shall have to strengthen Beltrami's representation.
The next proposition is a step in thié direction, but we ﬁill eventually as-
sume a still stronger representation. Ve first note that, if we set s = 1 in
Beltrami's representation, we obtain, for all 2 and b in H,

(¥(1) a; v) = (42, b) + (Qa, b) + lim (¥(T) a, b)

M= e
or

L‘Lm(('ﬂ) a, b) = ([Y(l) - A-Q] a, b)
n- e £

Sll’lce Y(l), A; and Q, are members of L(H H), it follews that Y(1) - 4 - Q, which

we denote by V(”>; is in L(H H) also. Moreover, we have that

(6.1) lim (¢(M) a, b) = (§(=) 2, b)
Tﬂ —

for all a and b in H. Thus, we can view ¢(7) as being defined on the extended

real line -» < 7 < » with §(-=) = 0 and ¢(=) satisfying (6.L).
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Next, we show that that §(T) is of bounded variation on -» < T < e in the
sense of definition 3.2.4(2) of Hille and Phillips [1]. Let {{zy, Bi)} be any
finite collection of nonoverlapping open intervais on the extended real line
[-©, «]. Then, 21 ¥(B;) - ¢(ai) is a member of L(H, H) because ¢(7) € L(H, H)
for each 1 in [-», «]. Moreover, for each fixed a € H and each fixed T € [-wo,»],
(¢(1N) 2, b) defines a continuous linear functional on all b € H, Also, for
fixed a and b, (¥(7) a, b) is of bounded variatipn‘on ~o < T < @ because it is
of bounded vériation on -» < T < « and continuous from the right and the left'
at T = -» and T = = respectively. Thus ) |

[([izw(fﬂi) - (1)) a, b)| = l'gfw(ag 2, b) - (4(e;) 2, b)[ <Var.(4(10) a,b)
where the right-hand side denotes the total variatibn of (§(M) a, b) on ~»< N<w,
Consequently, by the principle of uniform boundedness (Hille and Phillips, p. 26),
for any fixed a € H

sup IIDi? §(8;) - Vel e, <=
where the supremum is takeﬁ over all choices of the collection {(ai, Bi)}. Since
this is true for every a € H, we may apply the principle of uniform boundedness
again to write

(6.5 - sup HE 16 - ¥l g <

 where the supremum is again taken over all choices of {(ai, Bi)}.

So truly, ?(ﬂ) is of bounded variation on —wrg 1 < «. Henceforth, we denote the

left-hand side of (6.5) by Var_ y(m.

m<ﬂ<m

'”We.noﬁ.note that for each fixed s witﬁ a positive real part,

S iMs-1
iM-s

is a continuous function on - < 7 < « which converges to s as either N — - or

TN = . Therefore, by theorem 3.3.2 of Hille and Phillips [1], the integral:
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ORI, Ty JTv -
f :
'

| ;rm iMs-1

: ay(m)
i 1”ﬂ-;s
exists in the norn topology of L(H, H) for every finite n and 1, and we can
r’ ’ < 4

take n = © and m — independently to get the integral
~ iMs-1
2(s) & [ HEZE ay(m)

which also exists in the norm topology of L(H, H). It follows that for any
a and b in H

) &, ) = [ ML g (yn) o, )

o 1T-8

It now follows from Beltrami's representation that

J(s) a = Y(s) a - Aas - Qa
for every a € H, and that
J(s) = Y(s) - As - Q.
We have ﬁhus arrived at the following stronger representation:

Proposition 6-2: Y(s) is a positive mapping of H into H if and only if,

for Re s 5QO, Y(s) admits the representation:

6.6) T(s) = bs + @+ [ T (0

where A, Q, and ¥(1) satisfy the conditions stated in Beltrami's representa-

tion and in addition ¢(T) is of bounded variation on -® < 1 < « with y(-=@) = 0

and y(=) = Y(1) - A-Q. The integral in (6.6f exists in the norm topology of

L(H H). Furthermore, Y(s) is p051t1ve real 1f and only if, in addltlon to the

}

-precedlng condltlons, A and Q are real and ¢(ﬂ) —W( .
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7. The Riemann-Stieltjes Integral of an H-valued Integrand with Respect

to an L(H, H)-valued Integrator.

Definition 7-1: Let B be a Banach space. A B;valued function ¢(T) on the

if the supremum of the set of strong total variations on all compact intervals

is finite. (See Hille and Phillips [1], definition 3.2.L(3) for the definition

of strong total variation on é compact intérval.) This supremum is denoted by

g, Var. (1)
- < T\ < @

Since

S. Var. ¢(7)
0<M<Eg

is a monotonically increasing bounded function of § as & = «, it follows that

(7.1) S. Var 4(1) = 0 E - o,
E<N<e

But, by the definition of strong bounded variation on compact intervals

l¥(m) - (&) -0

as M and € tend to infinity independently. By the completeness of B, there ex-
ists a ¢(«) € B to which Q(ﬂ) converges in B as N = =. Similarly, there exists
a (-») € B to which ¥(7) converges in B as T - -, Thus, when §(7) is of

strong bounded variation on -o < T < «, wWe c?n define it‘through continuity on

the extended real line -« < 1 < ». By formally applying the definition

‘3.2;L(3).éf:ﬁiiié éﬁa§§hiiii§s:[l]-féfsﬁhe interval [-o, ®], we obtain a defi-

nition for

S. Var. (1)
. g 'ﬂ S ©

and it follows easily that

S. Var. ¢(m) = 8. Var. (M)
—-C0 -<— ']'] —<_ <) . -0 < ']'1 < @

53.



We henceforth follow these conventions in extending the definition of ¢(ﬂ) onto
[-=, =1

We have defined {(«) in two ways, as a limit under the operator norm and as
a weak 1limit according to (6.L). These two definitions are equivalent ﬁhenever
¢(ﬂ) is of strong bounded variation on -« < N < «, The same situation holds for
P(~=) .

Next, we 1et_§o(B) dgnote the space of B-valued (strongly) ?ontinuous bound-
ed functions on -o < T < «.  Our first objective in tﬁis section is to show that

we can apply a sense to the Riemann-Stieltjes integral:

(7.2) IR

where h{(n) ¢ BO(B) and ¢(M) is an L(B, A)-valued function of strong bounded vari-
ation on -« < TN < o, Here, A is another Banach space. We shall show in particu-

lar that (7.2) is a member of A and will obtain an estimate for it.

Let [ﬂL, ﬂR] denote a compact interval, and let 7 denote a finite partition.

of it:
ﬂL 5 5 see < ﬂn = Ty
Set ]ﬂ{ max. |ﬂl ﬂ I, Also, we associate with 7 the points §; such that
ﬂl X :_% < Ty The Riemann-Stieltjes sum:
(7.3) s (h, ¥) 2 X (e, DM -, )]
1=1 . _1*1

is a member of A, and we shall show that it converges as [ﬂl-* 0. Im (7.3) it
is understoou that hy is just another way of wrltlng Vh.
Next, let m’ be another partition of s Mr] of n’ segments and partition

points ﬂ{; g{ denotes the assoclated points as above. Thus,
s

Sy 9 LT mEDTHM) - 41, )],




We now take the union of {ﬂi} and {ﬂi} to obtein the partition points {61} of

the partition:

This yilelds

5.8, 1) - 800, 9 = 3 [a(E) - B(EDI0HE,) - ¥(e; )]

4=1

where each [, is one of the points . and each gi’_is one of the péintS'C.' and
. _ =1
leg - ¢l <2 max (|n], [n']).

Now, h(T) is uniformly continuous on {ﬂL, ﬂR]. Hence, given an e > 0, there

exists a & such that, for max (|n|, |n’]|) < 6,

€
“h<gi) - h(Ci)HB < B, Var. )
e < ‘ﬂ < ©
for all i. Therefore,
€ m » ¢
”Sﬂ(hﬂ{’) - S.n.’(hﬁ ‘h)HA < S, za?;l'< q,(*ﬂ)lzl“‘l'(él) - ¢<6i‘1)hL<H’ H) S €

We can now invoke the completeness of A to conclude that there exists a

member of A, which we denote by

"
(7.1 J T n(m a g(n)
s

and to whicl Sn(h,'¢) converges as [ﬂl - 0. Moreover,

i

lIsn(ns 0ll< 2 InCeliglhvtn) - v Dy,

£

< sup In(m)| é. Var ¥ (M)
METS TR By cn<my
Since convergence in A implies convergence of the norms, we can conclude that
: g
(7.5) n(m @ v, < _ 5w [n(ll, 5. var  4(1)
MnL Hlly < <M< PO <0<y




We now turn to.the improper integral (7.2). This is defined as the
Prox eg

Timit in A of (7.1h) as M. — -» and ﬂR = o independstiy. This 1imit exdsts

L

by virtue of (7.1) and (7.5). Thus, we have establirhed

Proposition 7-1: If h € EO(B) and § is en L(B, A)-valued function of

strong bounded variation on the real line -» < T < «, then (7.2) exists in

the norm topology of A and

(7.6) I, 2 a iy < swe,  In(Wlly S var. w0

If, in addition, h(m) = g(1) a, where g E’QO(C) and a € B, then

(7.7) [T e aawm =] g darsn e

where $(7) 2 is an A—valued function of strong bounded variation on -« < T < o,
This result is established by working with the Rieménn—Stieltjes sum approxima-
tions of both sides of (7.7).

In the very same way we can show that, if A = B = H where H is a Hilbert

space and if b € ¥ also, then

(1.8) ([ e 2 am, ») = [ (M a (i(Ma, b)

-—C0
where (y(T) a, b) is a complex-velued function of bounded variation in the usu-

al sense on -» < 7| < @. VWe can also assign « sense to the expression:

(7.9) [ a v, o)

ks

where h(7) and q(1) are both members of‘go(H) and (M) is an L(H, H)-valued

- function of sirong bounded variation ¢én -= < N < ', To do this we start with

a compact interval [ﬂL,,ﬂR] and a partition w of it as above. Then, working
with the Riemann-Stieltjes sum:

By ¥r @) £ E (e [Ty - 35 ate))

-1
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much as before, we can show that, as lTTI - 0, this converges to a complex
numbsi which we denocte by

| M
(7.10) | % @ a e, qm.
_ A Ty,

In doing so, we use the boundedness and uniform continuity of h(T) and q(T) on
T[L <N< ﬂR. We also obtain the estimate:

g
II,HL () ¢ §(m, q(”ﬂ))l} <, S RHh(ﬂ)H Hg(ﬂ)lln S, Yer. ¥(T).

up
psfe’ LM<y

We can then ghow that (7.10) converges to a complex number, which we denote by

(7.9), as ﬂI = - and ﬂR - « independently. In addivion, we get the estimate:

(7.11) Ijm(hm) a (1), a(M| < swp  [nilla(m] s. var. ().

o < ) < e < <@

We conclude this section with

Lemma 7-1: If (M) is an L(H, H) -valued function of strong hounded varia-

tion on -» < Ny < @ and if (¥(M) a, a) is a nondecreasing function of 1M for each

a € H, then, for each h(M) € P_O(H),

[ a e, s> o

Proof:

A
5 (b, ¢ n) 2

1

1-1

= (68 )THT) - 4(1 ) 20

We obtain our conclusion from this by passing to the limit as ITT‘ - O,

£

HBRARY
FYAYE UMIvERSITY OF NEW Yema
AT STONY BROOK
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8. The Realizability of Every Strongly Positive Mapping

In this final section we develop a partial converse to theorem 5-1 and
its corollary 5-la. To do so, we impose an additional condition on the rep-
resentation (6.6) for a positive mapping.

Definition 8-1: Y(s) is called a stongly positive (positive-real) mapping

of H inte H if it is a positive (positive~real) mepping 9£ H into H such that

the L(H, H)-valued function ¢(7) in the representation (6.6) is of strong bound-

ed varlation on the real line -o < T < «,

Before stating our converse to theorem 5-1, we first prove

Proposition 8-1: If Y(s) is a strongly positive (positive-real) mepping

of H into H, then Y(s) is the Laplace transform of ay € B'[L(H, H)] @espeétivé—

ly, v € g’[L(Hr, Hy)]) which is defined on any ¢ égll(H) by

s @ = -2 ¢ v (0)
(8.1) el e g(e)at + Ma- e aP) ()et)
-0 o) o}

Here, A, Q, and (M) are the quantities indicated in the representation (6.6)

with §(T) being of strong bounded variation on -© < N < «,

Proof: First it is easily seen that, as a function of T, the Bochner in-
tegral:
2
)1 at

is a member of‘Eo(H). - Consequently, by virtue of proposition 7-1, the last

jw [ Mo(e) + (1 - ™) o
¢/

term on ‘the right hand side of (8.1) exists 4n the norm topology of H. Obvi-

ously, the other two terms on the rigﬁt_hand side of (8.1) are also members of

B. Moreover, by the estimate (7.6),

s ol <z mlle™ @1y + ol et

© =) (2)
* Of llo(ly as 2l (0l ab] s, Tar. 4(0)
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This proves that y is a continuous mapping of DL H) into H, its linearity on

Dy (H) being obvicus. In other words, ¥y Glpfluxu}, H) .

It is also obvious that suppy < [0, ). Therefore, by lemna 5.2,
v € L'(0, «)[L(H, H)]. So, we can take its Laplace transform to get, for at
least Re s > O, -

Y(s) = (f (t), e > As+Q+ j d\{r(n)[j e” dwj‘ (1-elm’)nz e“SJD

dt]

= Ag + Q +j' %___ﬂi%g . (1)

This verifies that Y(s) is the Laplace transform of y. _

Finally, assume that Y(s) is strongly positive~realﬁ By the second state-
ment of proposition 6-2, A znd Q are members of L(HP, Hr>‘ Consequently, both
of the mappings o b - A@(l>(0) and ¢+ Q ¢(0) are mewbers of B'[L(Hr, H.) 1.

Moreover, for any ¢ E (H ), the real and jmaglnary parts of

I elﬂtm(t}at are rcqpectiwcly even and odd mappings of the real line into H.
o

Also, since ¥(M) = - §¢(-1), the real and imeginary parts of ¥(1) are respect-
ively odd and even mappings of the real line into L(h P Hr). It follows that

the imaginary part of

[es}

(8.2) j ay (1) f & o(t)a

is equal to zerc. 1In other words, the muppﬂug that as51grs to eadhcpéﬂlj(ﬂr)

the member (8.2) of H is also a member of B [L(hr, ‘r)]°

- 7T A similar argument leads to the same conclusion for

oo © int 2
or [ agm [7 - ¢5) as.
—-CO o)
Hence, y € B'[L(Hr, Hr)], and the proof of proposition 8-1 is complete.

We need two lemmas,
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Lemms 8-1: D@ H is dense in DL (1.

o — EGNIEY

Proof: It is = fzchb that DEE is dense in D(i) (see Schwarts [2], pp.
109-110). L\;*cmv 5 D(n} is dense in Dp (H). Indeed, let A (b) = )\(t/\))

1
where A € D, A(t) = 1 for |t] < 1 and A(t) = O for |t] > 2. Also, let © € Dp (H)

Hence, A, ¢ € D(H). A simple computation shows that A ¢ = ¢ in Dp (H) as
. 1
v = o, which justifies our assertion. Lemma 8-1 now follows from the first two

sentences of this proof end the fact that sequential convergence in D(H) im-

-~ 1

plies sequential convergence in D (H)..

Lemma 8-2: If Nis & continuous linear mapping of Dp (#) into B(H) and if

n is passive on D @ H, then M is passive on DL (7).

Proof: In view of lemma 8 1 and the fact that DL (H) has a countable pas-
is of neighborhoods at each of its po:.nts, for any glven v € DL (H) we can
choose a sequence {vn} . such that v, € D&H and v,»vin Do (H) as n = =. UI;’"

on setting u, = Nv, and u = Bv, we then obtain that U‘n - u in B(H) Our proof

n

will be complete when we show that, for each finite real number X,
- - 4
(8.3) [ oy v)ab=[ (s v)a  n-e
-0 -0

becavse the real part of the left-hand in"cegﬁral is nonnegatiVe by hypothesis.
In (8.3) it must be remembered that (u,, v,) is & function of t.

Now,
¢

1 Coys v) - (w, MY et < Il Hlvg - vl as i Il - ul Ivll-at

-0
Since un - u in E(H), there éxi:s‘ts a;-cohéta:nt -MA such that “uhH < M and Hull <M
for all n and all t. So, '

Pl llv - vl ab <2 [l - vl @m0 mme

because v, — v in ELI (1) .
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Fix T this way. Then, for x > T,

f( Hu -} vl at < (mn*t ”V”)J 5 -ul lat < e/2.

for all sufficiently large n because un — U in B(H). Thus,

[ g ull [l @5 =0 e

and our proof is complete.

We are finally ready to state thelast major conclusion of this work.

Theorem 8-1: For every strongly positive (positive-real) mapping Y(g) of

H into H, there exists a unique convolution operator M = y % which is passive

on DL (1) and is such that y € B'[L(H H)J (respectively, ¥ € B '[L(Hy, H,)])with

the Leplace transform of y being Y(s).

f_l_ﬁ'_ég_{: In view of propositlono 2-8 and 8-1 and lemna §-2, we need merely
prove thézj: M = y % is passive on D x H where y is defined on any ¢ € DL (H) by
(8.1).

Correéponding to the second term on the right-hand side of (8.1) we have
’phe convolution operator 'Q S ¥, wh;'.ch maps e-ch v € B ® Hinto Qv € _12 H.
Moreover, for each fixed t, (Qv, v) is purely imaginary according %o Temma 6-2.

, "
Hence, Q & ¥ is cerbainly passive on D ® H..
: Also,A corresponding .to the first- term on the right-hand silde of (8.1) we

have the convolution operator A 8(1 )%, whiéh maps each v € E @‘ H into

A v(l) €D@® H. DNow, an arbitrary Vv €D ® H is equal to the finite sum

s 4. f. where a, € H and f. € D. Hence,
3=1 J J -~
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and

Consider a main diagonal term in this quadratic form. Since (A& aj, aj) is real,

< (1) -
Re £ (A 25 aj) fj £ db = L(A 25 aj) £lx) Tx)

On the other hand, some straightforward manipulation shows that, for a pair of .
terms symmetrically placed around the main diagonal we have from the fact that A
is self-adjoint that

e J:: 0 ., ) f(l)_ (1)_

5 £+ (A 83 aj) £y fj] dt

i

% :fz [(hag, a) D(EF) + (A ey, a) D (£,£,0] at

1]

lhay, &) £ () B () + (hay 2 £ () 7y ()]

Thus, for every x,
n
ZE () a) 20

(2) . ~n
* = A .
Re L: (A8 v, v) db =% (A Z fj (x) 25 5%

3=
because A is a nonnegative-definite member of L(H; H). This shows that A & ’ *
is alsc passive on E(g’_c) H.
Finally, corresponding to third term on.fthe‘righbhand gide of (8.1) we

have the convolution operator y,% where for any v €ED® H

u =y xv = {y (1), v(t-71)) ='j‘wd¢(n§[‘f® eimv(t-'r)d'rfrfm(l— eiﬂ"')v(g)(t— T)dT]
3 3 3 Yeo o ‘ 0 .

The quantity within the brackets on the right-hand side is, as.a function of 1
(t fixed), a memter of B,(H) so that the right-hand side exists according to propo-

sition 7-1. Moreover, by proposition 2-8, u EE(H), ‘and, by lemma 5-1, (uS ;) V) €D,
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v o= Loaf, a, €H, £f. €D
w1 O O J Jd A

as before. Making use of (7.7) and (7.8), we may write

e, (x) = Re ‘fx(us, v) dt

il

Re f‘du z“‘(‘) j a(i(may,e) j PRUENCRO

_1k

H’

(1- eiﬂ'r)f§2> (t- 7)]dr

Novr, (q‘!(’ﬂ)aj, a.k) is of bounded variation in the usual sense on ~wo < T < .,
Moreover, fk € 2 and the integral on 7 inside the right-hand side is a continu-
ous bounded function on the (t, M) plane. It follows that we may invoke
Fubini's theoren to 'éhange the order of integration on t and T. Some integra-

tions by parts then yleld
2 —_— ANt g l'ﬂ'r
e, ()=Fe X I |7 a(4(ma,a)em) P T e [P 5Tt

J—-’.‘l k 1 - —‘OO
N
- Re iy zj N d(¢(Meay, &) f‘ £, () fk(t) dt
j::]_ k=1 L
Since ¥ is self-adjoint, the double integral inside the last double summation
is real, and ﬁence the last expression on the right-hand side is equal to zero.
By breaking the first double summation into real and imaginary parts and then
‘ . *

noting the symmetry of the integrand around the t = T line in the (4, T) plane,

We see ’ohaﬁ We may. wr:n._te e

e (x)=% e 3 zj (e )J (x, n) Jk(x, ﬂ) d(\i!(ﬂ)a ak)

Jj=1 k=1
Where

_ -iT
3,6 M = ey

-1
m o=o(n ) as [n]-=

An integration by ports shows that, for each fixed x, J,(x,
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Then, by (7.8) again,
] n Yi ;c:./ﬂ N 2 ] N
e () =% Re z [ (11 )(ay d50e M ab(m), 2 5y (e, M)

J T k=1 Lo

o, n n
=% Re [P+ 1) 2y 350 M) 64N Zay 50k M)

3

—~c J=1 j=1
Lemma 7-1 now shows that e, (x) > 0 so that y % is also passivé on D & H.
. a . =

This completes the proof of theorem 8-1.
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