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ABSTRACT

A technique for expanding certain Schwartz distributions
into series of orthonormal functions is devised. The method
works for all the classlical orthogonal polynomials and many
other sets of orthogonal functions. This result is then used
to generalize various standard integral transforms, which are
based on orthogonal series expansions, to distributions, As
specific examples, the following distributional transforms
are developed: the finite Fourier transform, the Iaguerre
transform, the Hermite transform, the Jacobl transform, the
Legendre transform, the Chebyshev transform; the Gegenbauer
transform, the finite Hankel transform.of zero order. An

application to the solution of differential equations is gilven.
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J. Introduction. The objectives of this paper are to

develop a method for the expansion of certain Schwartz dis-
tributions [1] into series of orthonmormal functions and to
generalize in a distributional way a variety of integral
tranéforms. Any complete system of functions that are the
eigenfunctions of a certain type of self-adjoint differentia-
tion operator may be used in the expansions; .The resulting
integral transforms that are thereby generalized include the
finite Fourier transform, the Laguerre transform, the Hermite
transform; %he Jacohl transform with its speclal cases: the
Legendre, Chebyshev, and Gegenbauer transforms, and finally
the finite Hankel transform of zero order. There is quite
an extensive literature on these classical transforms. See
for example [2] - [10] . Apparently, however, they have not
as yet been extended to Schwartz distributions, evcept for
the finite Fourier and Hermite transforms [1; Vol. II, pp.
80-87 and 116=119 .]

Other works that apply the technigque of orthogonal series

expansion to generalized functions are by 0. Widlund [11]
and M. Giertz [12] o Their procedures are developed for the
generalized functions of Temple [13] and Iighthill [14] ,
whereas the preseht work is suitable for the distributions

of Schwartz.

2. BSome Definitlons and Assumptions. ILet I denote the

open interval, a ¢ x { b, on the real line. Here, a = = o

2



and b = o are not excluded. As is customary, L,(I) shall
denote the space of guadratically (ILebesgue) integrable
functions on I (more precisely, the space of equivalence
classes of such functions that equal each other almost every-

where.) I,(I) is a normed linear space with the norm,

Izl = [S:m‘ dx]vz

Thus, a sequence { f,},., is said to converge in I,(I) if
lfs = full —> 0 as v and p tend to infinity independently.
L,(I) is a sequentially compiete space [15, PP 216] s that
is, to each sequence {f,} that converges in IL,(I), there
exists a function f € I,(I) such that [[f - f,]| —> 0 as
v— o , The inner product in I,(I) is defined by
b
(f,8) = Lf(x)g‘("x) ax
Ry a smooth function on I we shall mean a function that

has ordinary derivatives of all orders at every point of I.
0y (k =0, 1, 2, ...) shall always denote a real=-valued
smooth function on I such that §,(x) # 0 on a ¢ x < bo

1t shall denote a linear differentiation operator of the

form,
”n n y
n e eoD ° el Dz ¢ o o D‘n 99 9

where D' = af /ax® . We also impose the restrictions,
Ok = Oy, » D4, =1y, , and, if » is odd, Apny/z 1S even.

Moreover, we shall assume that ® possesses eigenvalues g
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and normalized eigenfunctions V¥, (n =0, 1, 2, .... ) with
the following properties. The Ya form a complete orthonormal
system in I,(I). The N, are real and have no finite point of
accumulation. We shall always number the Ay such that

PR P P RPA |

A1l the orthonormal systems arising from the classical
orthogonal polynomials and many other standard sets of orthogo-
nal functions appear as special casesof this general formula=-
tion. We list a number of these at the end of this paper.

i denotes the space of smooth functions whose supports
are contained in I. We assign to 1t the topology that makes
its dual &),; the space of Schwartz distributions on I. This
topology is rather complicated [1; Vol. I, DD 65] but we can
describe it simply by saying that a sequence {‘9»};1 converges
in Hi if and only if the supporits of the ¢, are all contained
within a fixed compact subset of I and, for each k, {D'&‘@»}Z{
converges uniformly. This concept of convergence in c@; is
all we shall need. Clearly, &; is a sequentially complete
space.

The number that f e O assigns to € e ; is denoted by

(f,@). If f is an integradle function on I, we set
b

(f, @) = ~S‘f(x) @ (x) dx

k]
To oE)I we assign its weak topology, which i1s generated by

the seminorms

Po(£) = |(£,e)]

4
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Thus, a sequence {f,};:) is sald to converge in @; if, for
o
each ¢ in °91 , the numerical sequence {(fy,t@)} vt
9 .
converges., It is a fact that ‘@1 is also sequentially
complete [16: Sec. 2-2 )
Still another class of functions we shall make use of
is the space &; of 2ll smooth functions on I. The topology

of €; is generated by the seminorms,

Pam(@) = max sup |D7e(x)] (eeé;),
where o is an arbitrary compact subset of I. For every ..
and every m, we have another seminorm. Thus, a sequence
{@),., is said to converge in &; if each ¢, is in &; and,
for each P, IDP%! converges uniformly on every .. as
Yy —s o0 [‘i; Vole I, ppr. 881 . The sequential completeness
of &; is clear. The dual of &; is the space 8’1 of all

distributions whose supports are compact subsets of I [1;

Vole I, PDP. 89 .

é_. The Testing Function Space @ . We shall now describe

a certain space @ = & (71 ,I) of testing functioms. Its dual
turns out to be a space of distributions which can be expanded
into a series of the ¥,. @ consists of all complex-valued
functions € defined and smooth on I such that
b V2
T () = [J}ﬂ*@lzax] < ® (k = 0, 1, 2, voo )

a
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and ( nte, ¥v.) = (e, 'yﬁ%) for each n and k. ( is a linear
space over the field of complex numbers. The ¥V, (¢) are taken
as the seminorms of (L. They are a seperating set since 7, (¢)
; is the customary norm for L,(I). In accordance with the
topology generated by these seminorms, we shall say that a

[

sequence {Q?y} converges in A if each ¢, is in A and, for

ya1
each k, (¢, ~¥,)—> 0 as vy and x4 tend to infinity indepen=-
dently. |

Obviously, &; is contained im (L 2nd convergence in £
implies convergence in & ,

Moreover, each ¥, is in QA because

S, b o [
[V-ra(%)l = j{ﬂ&,“\z dx = Ixnlﬂj\l‘hlz dx & ®

and, with S,,,.,,, denoting the Xronecker delta,

(ﬂ'&"haq}m) = 7\.::? S,m(%,%) = ‘>\’i 5,,.,,\( "Y-w\y-m) = ("}Jms ﬂ—éq/vn)°

We also note that the operator 7t is a continuous linear
mapping of & into itself. This follows directly from the
definition of A .

Theorem 1: @ is segquentially complete.

Proof: For each k, we have that ?’E‘QLP,,, converges in Lz(I)

as m—»0ca , By the sequential completeness of LZ(I), there
exists a function X, e L,(I) such that n*e,, converges to it
in L,(I). We shall first show that M X, = X,,, at each point of

I and for every k.

L & - Npe— i B, .
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Let x be a fixed point of I and x a varisble point in I.
Also, let D be the integration operator,

-l *
D = j oa;dte
X,

1

Thus, for any continuous function 3, D D3 = 3(x) ~ 3 (x,)e

Using Schwarz's inequality, we may write

X
b1

The first factor on the right-hand side is a bounded function

b~

b
D7) WA (4n- 0,)| < j I+ o= 40| ate

on every (i ( £ denotes an arbitrary compact subset of I),

whereas the second factor converges to zero as m and n tend

to infinity independently. This shows that the left~hand
side converges uniformly on every fL.

We may remove the differentiations and multiplications

Sy T
by the 6, in the operator 7 step by step to obtain ?}'7?"@m

where

m“l -t

ﬂ - é, D e e:l D é°

and D= (D). At each step the resulting quantity will

converge uniformly on every fL as m-—3w o Moreover,
4 -t .k (3
W(x) = W N (x) + 2 @ () g (x,5,),
. J
where

@ (x,) = D €]

=%,

The summation has only a finite number of terms, and the



g (x,%,) arve linearly independent smooth functions on I that

do not depend upon ¢,. A4S m—»c the sum on j converges
uniformly on every . if it converges at all, It must converge
since N*¢., converges in L,(I) and ™ g, converges uniformly
on every L. Since the g, (x,%,) are linearly independent, it
follows that, for each j, @, (x,) converges as m—> © ,

Since k is arbitrary, all this shows that we can
interchange the limit on m with 7} to get

NX, =N lim #, = 1m0, = X

My - e for

To complete the proof, we have to show that (*’f}“"&x‘,,%)
= (X% ¥a) for every n and k. Since the innmer product is
a continuous function under convergence in L, (I) [17; P 75],

(ﬂ&'xa) "l",,) = 1lim (ﬂ%%’—ma L%"n)z 1lim ((?'Maﬂﬁfe "n)
~» 00

l~»co m

= (Xojﬁn&\%ﬂ)

Qs . E. Do
We shall need the following lemmas.
Iemma 1: If ¢ is in A&, then
¢ = Z (@5 9a) Yy

where the series converges in Q.

Proof: By the definition of Q ,‘ﬁé%’ is in I,(I) for

each nonnegative integer k. Hence, we may expand ’Vi”"‘?



into a series of the orthonormal functions ¢, to obtain

o0

o= > (e, %) ta

=0

S, Y = S (e Y,
(3-1)
T (et N Y. = ST (2,401,

These series converge in IL,(I). Consequently, for each k,

2 ‘/2
dx ]

(@3 (e4h) = Hb]ﬂ% - ;Z (e, 4) 14,
—> 0

as N—»e, This is what we had to show.
We can characterize orthonormal series that converge in
& in the following waye

o0

Temma 2: Iet a, denote complex numberse. Thewn, E aﬁql,,

o nT=0
+
converfes in @ Af and only if S |au{|na| converges
NI

Lo °

r

Proof: We ewmploy the fact that the Y. form an orthonormal

set to write

]
—

b
f ]’ﬂ&i Qq¥n 12 ax
a =g

Qur assertlon follows directly from this equation.
M is self-adjoint on A, That is, for every pair of elements,

¢ and X , in Q , we have



(e, x) = (¢,tx).
Indeed, using (3-1) and the fact that the inner product is a

continuous function under convergence in LZ(I), we obtain

b

b
(he,x) = f’k‘;(v,mﬂ%ax: ;wmnf&"w% ax

b b
= %_ (€, Y )j "K,?}i dx = JZ_(‘es Yo ) L)Uﬁﬂ:i dx = ("?7%7().
a o ™

0. is obviously a subspace of ﬁxa Moreover, convergence
in (0 implies convergence in 61 , as we shall now show.
Again, L denotes an arbitrary compact subset of I. We have
aiready demonstrated in the proof of theorem 1 that, if
{Qm}sl‘ converges in @ , then it converges uniformly on every
fLo Ve have also shown that {'ﬁy?m}:;‘ converges uniformly

on L at the same time, where

i

M,= D PO, D6, ...D”0,

P

denotes a partial application of'?@% obtained by terminating
the differentiations and multiplications by @ﬁ at some step.
Répeatedly applying the rule for the differentiation of a

product, we find that

g1
= p p* * %
W, @ = ;42:7 Pud Cm 4+ 00,000 0,07
where
@ = n, +n + eee + 1,

P P+t

and the P, denote polynomials in the variablesiﬁjéﬁa

10



Assuming that {D’“ Wm}:,l converges uniformly on every 4L for
M=0, 1, coesy q=1, we conclude that {D?"%’SM also converges
‘uniformly on every L. By induction, therefore, {%.1}.,,,
converges in &y.

9

4. The Space of Distributions @ . ad = a)(’(&,I)

denotes the dual of @ o That is, f is in & if and only if
it is a continuous linear functional on @ . The number that
fed assigns to any © € (& 1is again denoted by the inner
product symbolism (f,9). (We shall show later on that IL,(T)
is imbedded in o by defining (f,¢) as the number that any f €
L,(I) assigns to any ¢ in d.)

We assign to Q& the (weak) topology, generated by the

seminorms,

T.(8) = |(z,0)]

where the ¢ are arbitrary elements of & . Thus, a seguence
{f,,}:ﬂ is said to converge in Q4 if and only if every f, is
in O’ and for each © € A, the numerical sequence | (£, ,\9)}::‘
converges.

Theorem 2: Q& is sequentially complete.

Note: 1In this case, sequential completeness mesns that
for every sequence {f,,}:,‘ that converges in @& there exists
a unique £ € & such that lim (fy,¢) = (f,¢) for each ¥ ¢ Q.

Proof: Assume that {f,},., comverges in & . Thus,

1im (f, ,%¢) exists for each ¢ € & and defines, therefore, a

unique functional f on & . This functional is clearly linear,

11



To show that it is continuous, we modify M. S. Brodskii's
proof of the sequential completeness of &) , the space of all
distributions [16; Sec. 2.2].

Assume that f is not continuous on A o Then, there exists
a sequence of testing functions which converges in Q to the
zero function and is such that the corresponding sequence of
numbers assigned to it by £ does not converge to zere. We

can certainly choose a subsequence {Qy}::, such that

lz,90] 2 ¢ >0 (v=1, 2, 3,0000)
and
. b Va '
2 —3
(%) = [\fi”ﬁ&f{’,l d:«:] € 47 (X = 0,1,000,0)  (4-1)
. a
Tet ¥, = 2”9, . By (4-1), the sequence %S?y};;l converges in

A to the zero function, whereas {‘(f,‘?u )X):il tends to + <o,
We can choose a subsequence {‘%; } from §‘§y} and a sub=
sequence {f;} from {f,} such that the following two conditlons

can be satisfied.

!(fy’,\:f}:)l < -—-—é‘%,;:;;—' (y = 15 29 eoe o p=~1) (4-2)
8] > Z .8 - (1-3)
=

Indeed, we first choose‘%: and f, such that i(f,??)‘> 1 and
[(£] ,%)] > 1. Then, assuming that the first »-1 elements
of these subsequences have been chosen, we can select @;as

an element from {4@}:ﬂ such that (4-2) 1s satisfied as well

12



as (4-3) with f) replaced by f. This is because, for each-
fixed £}, (£} , ¥, )~ 0 as u—>o» and because l(f,\l’,)i—-——*m
as y—p»e o Then, £ can be chosen to satisfy (4-3) since
(fy,9)—>(f,9) for each fixed € € &,
Next, consider the series, ¥ = % P o We know that
G(P) = 27w (e) < 27 (K = 0, 1, 2, vosy¥)
Hence, using Minkowski's inequality, we can write for m>»n

oo ®
YA E) ¢ ) & Zn(w) € >
¥=n = ¥y=N
The right-hand side converges to zero as n—» o , which proves
that the series converges in Q& . By the sequential '

completeness of &, ¥ ¢ Q.

Finally,
(25 ,%) ~Z.(f' 1)+ (£ ,8) “‘,%.‘f' ) (4=4)
By (4-2) .
| é‘(ﬂ ) s%;l—é—‘;;;: 1. (4-5)

Therefore, by (4~3), (4~4) and (4-5)

> e | > -

=P

29> e - | 2w 2]
This shows that, asy—>o, \(f,' )| — =, which contradicts
the hypothesis that (f,,¥) converges as »—»o o Thus, the
proof is complete.
is is usual, f = g(f,g ¢ @) means that (f,¢) = (g.e)

for every ¢ e & « We define the sum £ + g by

(f +g,%) = (£,9) + (g,9),
and multiplication by the complex number d by

(*f,¢) =d(£,¥).

It follows that @ is a linear space.

13



The operator 7t 1is defined on & vy (nf,9) = (£, 1n¢),
where f ¢ @ and @ €& , 1In words, 7t £ is that functional on
Q@ which assigns to each @€ & the same number that f assigns
to M¥. Clearly, tf is continuous and linear on @ and,
therefore, f ¢ @. Since @ is a linear space, Tt is a linear
operator on & . Moreover, 7} is a continuous operator because,

if {f»}::, . converges in & o zero, then
(N £,¢8) = ( £,HE) —es O

In short, 1% is a continuous linear mapping of @ into &',

Since °@1 is a subspace of (A and since convergence in eBI
implies convergence in Q& , every element of C(’is a distribution
in a@l» Moreover, the weak topology of a@; is generated by the
seminorms,

Te(8) = [(2,)]

where now ¢ is any element of :81. Consequently, convergence
in a implies convergence in @;.

We imbed I1,(I) (end, therefore, @ ) into @ by defining the

number that £ '€ I,(I) assigns to any € ¢ Q& as

b
(f,@) = j’f(x)‘?(x) dx

In this case, T can‘ be shown to be a continuous linear
functional on Q& . More generally, if f = “Y}“&g for some k,
where g € L,(I), then f e & . To see this let @ € & . Then

(f, @) : (ﬂ&gaw) = (g, 7}&({’)3

14



so thst (f,9¢) exists. £ is clearly linear omn Q. Its
o0

continuity on Q follows from the faect that, if {Q»},m

converges in (I to the zero function, then by the Schwarz's

inequality

b Va
](f,<€,) < [J\g\zdxl ¥ (@) —> 0.

2
Still another subspace of a?is (fl, the space of all
distributions whose supports are compact subsets of I, This
is a consequence of the facts that & C £{ and convergence

in & implies couvergence in &,

;2. Orthonormal Ser;gg Expansions and Distributional

Iransforms. Any £ ¢ &' can be expanded into a series of .the

orthonormal eigenfunctions ¥,, as follows

T o= 2 (£,%) Y (5-1)
N=O© .
Here, the series is understood to converge in Gf; That is,
for every €« € @ we have
[~4}
(£,@) = > (£,%.)(Y.,%). | (5-2)

n=0

To show this, we need me¥ely invoke lemma 1 and write

(f,c{’) (f’Z(c@,kﬁ‘)\*}“) = Z_(f’\kn)((?’\'i"n)

i

2 (£, %) (4,,9)

We can view the orthonormal series expansion (5=~1) as the

inversion formula for a certain distributional transform T,

15



defined by
TE = Fn) = (£,Y.) (fel, n =0, 1,...} (5=3)
Thus, T is a2 mapping on & into the space of complex-

valued functions defined on n. For the inverse mapping Tf‘

we shall use the notation

T"'F(n) = i F(a)Y¥a = ¢ (5-4)

MN=Q

(Henceforth, the transform function (5-3) shall be denoted by
the capital letter corresponding to the lower case letter
used for the original distribution in.tf.) Clearly, T is a
linear mapping and is continuous in the sense that, if
{fﬁ:;‘ converges in & to f, them {F, (n)}:\ converges

to F(n) for each n.

Theorem 3 (Unigueness of T ): If f, g ¢ d’and_ig

F(n) = G(n), then f = g.

Proof:
f—g:Z(f-g,\{{n)"K‘ = Z{(fs\ym) - (gs\h)]q{n =0

We now turn to the problem of precisely characterizing
the functions F(n) that are generated by the transform T .

We do this by adapting some arguments due to 0. Widlund [11]

and M. giertz [12] .

Theorem 35 Iet b, denote complex numbers. Then,

ib“% (5-5)



converges igllf if and only if there exists an integer g

such that

i 2] - (5-6)
(1 + )

n=o

converges. Furthermore, if f denotes the limit in @ of

(5-5), then b, = (f,¥.).

Proof: FPirst, assume that (5-6) converges for some q.

We wish to show that, for each ¢ € Q4 ,

S Data, @) (5-7)

TN=0

converges., Using the Schwarz inequality, we may write

(ORI R L R TS
= 2.5 \i::\\% (1 + 1) e, )

2

T

(1 +‘>\n

The first series in the right-hand side of this inequality

converges by assumption, whereas the second series converges

by lemmas1 and 2. Thus, (5-7) truly does converge.

Next, assume that (5-5) converges in @ . Tts limit £

] 5
must be in & because of the sequential completeness of & .,

Since WY..e A, we may write

17
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o -

(-fy‘kn) = Z. ’0,,(%,%)

=0

and by the orthonormality of thé Yo we get (£,¥m) = b o
This verifies the last statement of the theorem,

Sti1l assuming that (5-5) converges im @ , we finally
wish to show that (5-6) converges for some g. Assume the

opposite., Then, we can choose a sequence of integers, m, = O,

My, Myy oee , Which tend to infinity, such that

| ‘b r

T
TR 7 et
11:‘7)1%’_' .

Setting P..= g for m £n <'m% , we obtain the divergent

Tl

i ‘b"‘z (5-8)

m=o (1 + it )®

series

Let lz denote the normed linear space of infinite sequences

=]
of complex numbers, a = {am} » Where
- n30

fl

Izl = | 2—“1 2| 1 “ea

It is a fact that L, is its own dual; that is,J is a

continuous linear functional on £, if and only if

[
He)= 2 2,
n= o

where a, ¢ elz [17; DPD. 108-109].

18




I\Tow consider the subset of ,Q?_ consisting of the vectors

b, b& ‘
C = ¢ 00 O O °®
Bt -3 1+ lxa\h 9 3 1 - P\.ﬁ\h" ’ y Yy
Iif
& a. b
[ ;] A
sup lj( c )i = sup < o
0¢h<o ~* 4 ; 1+ )P

for every continuous linear j on &,, then by the principle

of uniform boundedness [18; pp. 202]

- lbﬂr }'/2 -
wp fea] = {Z TSR

Mn=0

& Consequently, the divergence of (5-8) implies that

P

T 1 +v!>\n\Pn

diverges for at least one 2 € L.

Finally, choosing such an a, set

e a

0 = Z. 1 +l>\:{P" tn

M=0

€ is in ( bvecause this series comverges in { by lemma 2.

The application of (5-5) to B yilelds

s b

’ %bw(?ﬂ’e) = Z:.. 1 +‘>\“§Pm

m= 0
l o 19




The left-~hand side converges under our assumption that (5-5)
converges in tl?, whereas the right-hand side has been shown
to diverge. This contradiction completes the proof.

We can characterize the elements of a’ in still another

way.
Theorem 5: Necessary and sufficient conditions for f
to be in & are that there be some nonnegative integer q and

2 g¢e L,(I) such that
(1) if X, # O for every n, then £ = "¥g, and

(11) if Xy =0 for O £ n < N and Avw# O for n = N, then

Nt

g « 5 eV,

n=0

]
]

where the C., denote complex numhers.

Proofs gSufficiency: We have already shown in Sec. 4

that 7t1¥g ¢ @ and that AC @ . Since V¥, ¢ A it follows
that £ e @ .

Egggﬁglig: Set G(n) = P(n)/»Y, for n > ¥ and choose
G(n) arbitrarily for O € n<¥., In view of theorem 4 and
the comparison test,jz_;zoiG(n)r converges. Ry the
Riesz-Fischer theorem, there exists a g e L,(I) such that

G(n) = (g,¥,). Hence,

H

S or@t, = o et +  Zr@t.

Nz © Me N

T

= 2 et Y.+ TR,

N=o
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= 2 (nte, v ¢+ S r)b

i

%’ N~
Mg + > Fn)V¥.
Q. E. D.

6. L Transform Calculus. We have already indicated

o

that the differential operator ¥} is a continuous linear

mapping on & into a’ o Therefore, we may write for every

£ e a’
o= SR = 2 (e

We can use this fact to solve the differential equation,
P("t)u = g, where P is a polynomial with real coefficients
and the given g and unknown u are required to be in a .
P(13) is a self-adjoint operator whenever 7 is one.
Through the transform T , we obtain P(X,)U(n) = G(n). If
P(X.) # 0 for every n, we can divide by P(X.) and then apply

T to get

= G(n)
= 2 Yo (6-1)
M=o PU‘M) ' .

Ry theorems 3 and 4, this solution exists and is unique in CL’.
If P(X) = O for some Aw, say for Anz (k =1, ...., m), and if Gl )=
then the solution is no longer unique and we can add to (6~1)

any complementary solution,

21



™
u, = .21 aﬁ$;&
f=|
where the a, are arbitrary numbers. The extension of this
transform calculus to simultaneous differential equations of
this type is straightforward. See [16; Secs, 11=7 and 11~8]

for a discussion of such an extension in the case of ordinary

Fourier series.

:i. Special Cases. In this section we 1list a number of

particular operators 1t , their eigenfunctions ¥, and eigen-
Valueé An, and the corresponding intervals I on which our
analysis can be made, In every case the assumptions made in

Seces 2 are found to be fulfilled so that our transform calcﬁlus-
can be applied simply by substituting the appropriate quantities.
In most cases the name of the transform conforms with name

of orthonormal functions‘that are generaied as the eigenfunctions.
A reference for the information listed here is [2; vol.11I]

Ao The Finite Fourier Transform:

(-YTHT) "

(an !
t

D2

=
i

U for n = O
(211')'/2

1

Y, ()

CO0S nx for n = 2k
I '

sin nx for n =2k -~ 1

il

1, 25 3, ees)
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B, The ILaguerre Transform:

i = (O’m)

—od % - —
T = x /2 e/il px™ &7 Dx e em"2

- B X o> o+ |
= DXD = A-TX—+ 5

Here, & is a real number greater than =1.

1/2
=T (n+1) Wz %z . %
‘¥@)~ — i) ’
" [Y‘ (% +n+1 )1 e n (%)

where the I,: are the generalized Laguerre polynomials,

n o m
13 (%) = Z(n ’ ) (-x)
, L—\n~-1n m !

An

hn (n = o’ 1, 2’ .OC)

i

The symbol (1) denotes

I (y+1)
U (v41) T (y=v+1)

¢. The Hermite Transform:

I = (=ow,0)
B = o %72 Do pe”
— :D2 - X2 4+ 1
%
e /2 H,(x)

\?](Qt):: Igm(n!)r_r?‘]yz
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where the H,(x) are the Hermité polynomials,

[n/z] (=1 )m (gx)n-—Zm

H_"‘(X) = nlz

mos ! (n-2m)!

[n/2] is n/2 or (n-1)/2 according to the evenness or oddness
of nj

)\ = 2N (1’1 = O, 1, 2, -o.)

n

. In this particular case, @ happens to be the spaoexY of testing
funections of rapid descent and ' the space A of distributions
of slow growthe A proof of this is given in the appendix.

D. The Jacobl Transform:

I = (-1,1) , w(x) = (1=x)" (14x)°

(= ,8 are real and &> =1, §>=1)

. |

= D (x® « 1) wix) D
1% = ( ) wix) —
(4,8
Yo(x) = “’;"3 P (x) (n =0, 1, 2, iei)
n
where
- 24*{“‘ M (as+d+1 ) (n+p+1)

ni{on+at+p+1) [ (nsrdsp+1)

and the P,n(d"p) (x) are the Jacobi polynomials,

(«,8) 1 i n4+d n+ -
28 L \m n-m

n (ned+p+l)

>
4
H

o4



E. The legendre Transform:

I = ("1:1)
T = D (x2 =1)D

Yo (x) = (n + %)‘él’,. (x)

where the P, (x) are the Legendre polynomials,

(x) = .._'_._Im/ﬂ (=1)2 (2} {20 = 2m\ qeom
() 2" 1,,,2: (=) ( )X

m n

[n/2] is n/2 or (n-1)/2 according to the evenness or oddness

of n.
>\-n"—-" n(n+1) (n::O,.1, 2, ooc)

This is a special case of the Jacobi functions with o = g = 0.

Pe The Chebyshev Transform:
I = (=1,1)
) ) VA Vi
no= (1-2%D 0 -x"Dd (0 -2
¥, (x) = ! 57
J7 (1 = x°)*
r"‘v T, (%)
_ 2 T _ .
| \F-n (X) et TT (1 xe)\/q’ (n el 1’ 29 3”“)
{
where the T, are the Chebyshev polynomials,
f_‘ N S (-1)" (0 = m =1) |
: 7,(x) = — — (2g)R20
" 2  m=o m! (n -~ 2m) !
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[n/2] is n/2 or (n=1)/2 according to the evenness or oddness

of n,
)\mz —ng : (n:O, 1, 2, oa.)

This also is a special case of the Jacobi functionswith
9( = p =-1 /2o

G. _The Gegenbauer Transform:

I = (=1,1) , wix) = (1 - xz)x—-| ('kreal and Ay ~%)
1 1 ( g)bwé—- 1
= D (1 = D
Jw(z) * Jw(x)
\%In(x) = W:IX) C: (x) (n': O.s t, 2, H_N)s

7 vhere
* . JUT T{x+F) T (2X+ n)

o nl (n +x )7 (> (2))

and the 0: (x) are the Gegenbauer polynomials (also called

ultraspherical polynomials),

(ex)n-Qm

il

L - [n/2] m
| N (=1)" T (XN+n = mn)
& (=) ;: m! (n - 2m) M)

XN, = =n (n + 2X\)

n

'This too 1s a special case of the Jacobi functions wherein

we set « = p =X~ %,
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H. _The Finite Hankel Transform of Zero QOrder:

&ae. DPirst Form:

I=(0,1)
1 1
N = DxD
S o o =
[2x 3. (y.x)

Y. (x) =

I\ (T)

where Ju ls the A th-order Bessel function of first kind and

y.. denotes the successive roots of J,(x) = O.
>\"n - - y-:

b. Second Form:

I= ( 0, 1 )
1 1
" = DX D eminns
I x [ X
2x
V. (x) = I, (Z4x)
hay

where
2

n, = [J,(z,,)]2 + [Jo(z,,)]

and z., denotes the successive positive roots of

ado(z) = 2J,(z) = O. Here, a is real.

Ny = -z

n
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3 . Third Form:

I={(a, b) where 0. a <b < &
1 1
'r} = D x D
JX 'X
T X ‘
¥, (z) = ;“‘”“"‘"“ EACEIRACTE y°<w,,x>;r,,<af,,b>]

where
2

[soma)]” = [3, ()]
[w" Jo (w;va) }2

and w, denotes the succesive positive roots of
J, (ax) Y, (bx) - Y, (ax) J_(bx) = O

>\,, = - w’nz
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Appendizx

,xf denotes the space of all smooth functions ¥ on
«® < x < such that for each pair of nonnegative integers,

m and ¥,
2n 57| < op, (~0 < x <o)

where Cypy denote constants. The topology of 4 is generated

by the seminorms,

Tay (@) = sup [(1 + x®)" D (x)

A’ denotes the aual of .

0. Widlund [11] has proven that & =,§ using the Temple-
Lighthill approach to generalized functions. 1In the present
case where Schwartz distributiors are used, a proof can be

constructed as follows. We have the formulas,

1
D = - A
\yo; J‘:,?:— LI)I
1 ;
B \kn = “gﬁ—"}}ﬂ_‘* *ng\‘{}mﬂ (n = 1, 2, noo)
2y, = D2¢g + (2n + 1) Y,

The first two are easily shown from the standard properties
of the Hermite polynomials and the last is explicitly given
in £2; Vol. II, p. 193]. From these, it follows that.

x20 p*¢Y. is a finite linear combination of theﬁg‘ﬁhose

coefficients are of slow growth with respect to n. Moreover,

A=l




from [2; Vol. II, p. 208, eq. (19)], we have that |Y(x)| € €
where C is a constant that is independent of u and x. Hence,

lxgm D”%;lé K n®

for some sufficiently large integer q and constant K.

Temma 3: If @ € @ , thenfor all k and all sufficiently

large n, |
() € Dl Hm*i <)

Proof: Since Nt Y= A¥a and N # 0 for 211l sufficiently
large n,

(¢ = (¢ Ma'B¥a) = X (M, %)
= N7 B, V) = eee = NIFOBR, 90
Therefore, by Schwarz's inequality,
b
el & Il [ el Bl ax

] [nterex [ e ]

Since the Y, are normalized, the last expression proves the
lemma.,

Next, let @ ¢ Q¢ Then,

@ = 2_(e,¥)Y,

N=o
where the series converges in @ according to lemma 1 and the
(¢, ¥.) comprise a sequence of fast descent as n-»® according

to lemma 2. Hence, this series and every one of 1its

A=2



derivatives converges uniformly and consequently, it may be
differentiated term by term any number of times, Moreover,

the series‘ converges in 4 because by lemma 4

]xem D i (0, %)%,

¢ 2 Jesw)| 12 0l
£, [fl*r}(e Izdx]V2 in“k nd

where K, and q are fixed and k can be chosen arbitrartiy.

(2-1)

Since .J is sequentially complete, @ is in ..

Stated another way, we have shown that Ac .4 . (A-1) also

shown that convergence in & implies convergence in Aa

Gonséquently, we can comclude that £ C a, _
Conversely, if ¢ is in P s then nte = (D2 - x2 + 1 YEe

is clearly in L,(-o,®) for every k. Thus, 4 < Q.

Moreover, convergence in )X implies convergence in ( because

j |02 - 22 + ¥,

2

dx
< - ax sup I(1 + x2) {(D2 - x° 4+ 1)k‘-€’,,]z]
= - (1 + x2) —w<x<o

Hence, K s This completes the proof of the fact that
: & C

Q= 4,

A-3
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