THE COMPLETE BEHAVIOR OF CERTAIN INFINITE NETWORKS

UNDER KIRCHHOFF'S NODE AND LOOP LAWS

by

A. H. Zemanian

Department of Applied Mathematics and Statistics

Report No. 240

COLLEGE OF ENGINEERING

STATE UNIVERSITY OF NEW YORK AT STONY EROOK

This work was supported by the National Science Foundation under Grant PO 33568-X00L.

September 1973




THE COMPLETE BEHAVIOR COF CHERTAIN INFINITE NEIWORKS

gny oo

®
UNDER KIRCHHOFF'S NODE ANDLOOP LAWS'

9/6l g

A.H.Zemanian
Department of Applied Mathematics and Statistics

State University of New York at Stony Brook

Abstract. The objective of this work is the investigation
of all possible current distributions in an infinite electrical
network subject only to Kirchhoff's node and loop laws. These
laws are in general not strong enough to yield a unique set of
branch currents, All prior investigations of infinite networks
imposed additional requirements, such as finiteness of the total
power dissipation, in order to force uniqueness, but in doing
. so the other possible resp onses of ' a network were discarded,

The main result of this work holds not for all countably
infinite, locally finite networks but for some fairly general
classes of such networks. It states that, if the currents in
certain branches, called"joints", are arbitrarily chosen, then

currents _ _
all other branch A are uniquely determined, Moreover, all possible

sets of branch currents satisfying only the node and loop laws .
are encompassed in this result; one need merely choose the joint
currents properly in 'order to obtain any given permissible set

of branch currents. Another result concerns the idea of a
homogeneous current flow; this is a set of branch currents
satisfying the node and loop laws when all sources are set equal
to zero, The dimension of the linear space of all homogeneous
current flows is shown to be equal to the cardinal numter of' the

set of .joints. Finally, it is worth noting that our analysis

provides a method for calculating the current in any given




branch through a finite number of computational steps.

A iaebet=0N. I N addition to the fairly extensive liter-
ature on lumped infinite transmission lines, the idea of an
infinite electrical network has been cropping up in the literature
for quite some time now. See, for example, [53, [8], 191, [11} - [17].
In fact, some of these works employ infinite networks to model
phenomena governed by partial differential equations [5], [11] - [16].
However, it was only until the recent works of H.Flanders [6], [7]
that a general method for analyzing a fairly unrestricted class
of infinite networks was devised. Alternative methods of still
more recent vintage are given in [3], [4], [18] - [20].

Actually, Kirchhoff's node and loop laws coupled with the
relationships between voltages and currents imposed Aby the elements
of the network are not in general strong enough to yield 2 unique
current distribution in the infinite network. For example,
assuming that each branch in the endless series circuit of
Figure 1 has a complex impedance and that there i s no mutual
coupling between branches, we see that any complex value is
allowed for the current i flowing therein. Indeed, Kirchhoff's
node law i s obviously satisfied and Kirchhoff 's loop law, which
Is a requirement only for finite loops, is automatically satisfied
since the network has no finite loops. In the aforementioned
methods for analyzing an infinite network, a unique current
distribution i n the network i s acheived by imposing additional
requirements such as the finiteness of the total power dissipation
throughout the network. Thus, if every branch resistance in
Figure 1 were one ohm, then i would have to be zero for the total

power dissipation to be finite.



The objective of this work is to investigate the class of
all current distributions in a given infinite netwerk. We impose
only Kirchhoff's node and loop laws, and therefore many different
current distributions are possible. Actually, in addition to the
node and loop laws we also have the connections between voltages
and currents?}esulting from the elements of the network. That
the latter are al so operative will be tacitly understood throughout
this work,and we will usually not mention them explicitly. Unlike
finite networks, infinite networks with dissipation in all branches can
carry a current flow under the node and loop laws even when there
are no .voltage or current sources present.

For the sake of a more concise terminology, whenever a graph
of a network has a certain property, wesall say that the network
itself has that property. W shsll assume that our networkas are
connected, countably infinite,and locally finite; that is, the
set of all nodes i s countable and every node has a finite number
of incident branches. Ve allow parallel branches but do not permit
isolated nodes or self loops. (A self-loop is a single branch
both of whose ends coincide at a single node.) Voltages, curre_nts,
and impedances are complex numbers,and mutual coupling between
branches i s allowed. W shall also assume that the network
possesses only voltage sources; this is really no restriction
since current sources can always be converted into voltage sources.

The main result of this work i s an existence theorem for the
current distribution in the network. It states that, if the currents
in certain branches, called "joints", are arbitrarily chosen,

then the currents in all other branches are uniquely determined,



and indeed every current distribution satisfying Kirchhoff's
node and loop laws can be uniquely specified by assigning the
joint currents properly. This result has been established not
for all infinite networks but rather for what appears to be a
fairly broad class of infinite networks. A variety of examples
for which our method works and one for which it doesn't appear
to work will be given. Our existence theorem contains a step-by-step
procedure for computing any given branch current. In particular,
the current in any branch can be computed by solving a finite
number of linear simultaneous equations having only a finite number
of unknowns, |

2. _Some examples. To motivate our subsequent discussions
we shall now present a number of examples showing how the branch
currents can be computed in a steb— by—step procedure. As in
Figure 1, branches will be indicated by lines; 1itl s understood
that each branch i s a series connection of a complex impedance
and a complex voltage source, either or both of which. may be zero.

Example 2.1, In Figure 2 |l et us assign arbitrarily the currents
in branches 1, 2, and 3. This determines the currents in branches
0 and -1 by Kirchhoffts node law and 'the current in branch 4 by.
Kirchhoff's |loop law., Then,the current in branch -2 is obtained
by the loop law and the currents in branches § and 6 by the node
law. Continuing in this way, we can obtain the current in any
branch. Thus, we cannot arbitrarily assign a current to any other
branch once the currents in branches 1, 2, and 3 are assigned.

Another choice of currents in branches 1, 2, and 3 will yield &a.

different current distribution throughout the network. Moreover,



it can be seen that an initial choice of the currents in only
two or less branches will not determine the branch currents in
the rest of the network.

A heuristic approach to this situation is to assume that there
are energy sources out at infinity feeding currents into the
network. As with a common approach to finite networks, |let us
choose a spanning tree T for our network and assume that the
current distribution consists of a superposition of fundamental

mesh currents. Let us further assume that the currents coming
from the sources out at infinity are fundamental mesh currents,

V¢ choose T as the subgraph consisting of the two endless
horizontal paths and the single vertical branch numbered 1. .

Thus, T is the graph induced by ail branches other than

ey =5, =2, U4, 7, «us « Now,the sources at infinity cannot feed
current exclusively through the tree if branches 1, 2, and 3 are
removed.In this fashion the specification of the currents in
branchez 1, 2, and 3 indirectly specifies the sources at infinity.
We could of course have started with another spanning tree but

that tree would have to have the property that exactly three branches
in it must be removed in order to stop all currents flowing .
exclusively in the tree. This is because exactly three independent
sources can be connected out at infinity between the four
infinitely 1on§iegs of T. For example, thk tree consisting of

the branches ..., =5, =3, =2, =1, 1, 3, 4, 5, 7, ..+ does not
possess the stated property and would not therefore be a proper
choice. These admittedly nebulous ideas provide nevertheless

a clue for our subsequent discussion,



Example 2.2, In Figure 3 we have an infinite grid that

covers a half-plane. Let us assumne tzat the currents in all the
branches labeled 8y s where k = ,..,.-1, O, 1, ..., are given.

Then, the node law determines the currents in all the branches

b, 3 next, the loop law determines the currents in all the Cy
then, the node law determines the currents i n the dk’ and so

forth. Thus, the specification of the currents in the a, determine
the currents in the rest of the network.

Here again, the a, can be viewed as branches whose removal
disrupts all endless paths in a certain spanning tree, That
tree can be taken to be the subgraph?induced by the a, and all
horizontal branches bys d;s Ty s «oo .

Example 2.3, The one-ended |attice structure of Figure L

can be viewed as an infinite sequence of bridges. Branch 1 is
the central branch of the bridge whose arms comprise the set

B, of branches 2, 3, 4, and 5; branches 6, 7, 8, and 9 are the

1
arms of the next bridge,. and we denote that set by B,; ete,

If we specify the current in branch 1, then Kirchhoff 's node | aw
applied to the two nodes of branch 1 and Kirchhoff's loop law
applied to the loops 1, 2, L and 1, 3, 5 yield four equations

in the four unknown currents in branches 2, 3, I, and 5. If the
bridge is unbalanced, the equations can be solved. Once this

is done, the node and loop laws determine in the same fashion
the currents in branches 6, 7, 8, and 9 so long as this bridge
is also unbalanced. Continuing this step-by-step procedure, we
obtain the currents in all branches. To identify branch 1 as a
branch whose removal opens up all endless paths in a certain
tree, we choose that tree as the one induced by the branches

1’ 2, 5’ 6! 9’ 10’ 13’ ese N

-

I




At this point it is worth pointing out a fact concerning
the homogeneous current fiows in the examples presented so far.

By a homogenecus currert flow in a given network we mean a set

of branch currents which satisfy Kirchhoff's node and loop laws
when all sources in the network are set equal to zero. A homogeneous
current flow is called nonzercif at least one of its branch currents
is nonzero. The network of Figure 1 obviously possesses a nonzero
homogeneous current flow whatever be its branch impedances. The
sTame is true for the networks of' Figures 2 and 3 if all branches
have nonzero impedances. We need merely specify nonzero values
for the currents in branches 1, 2, and 3 for Figure 2 and nonzero
values for the currents in the branches a for Figure 3. Upon
setting all sources egual to zero and then computing as before,
we will obtain the corresponding homogeneous current flows. This
procedure will work no matter what nonzero values the branch
impedances assume,

This is no lenger the case for the netwrk of Figure 4.
It will not have a nonzero homogeneous current flow if every bridge
Is balanced. For then, the current in branch 1 must be zero
since it is the central branch of the first bridge. Similarly,
the current passing through the first bridge is the central current
for t he second bridge, and so It too must be zero. This in turn
implies that the current in the arms 2, 3, L4, and 5 must be zero.
Continuing in this way, we see that every brsnch current is zero.
Actually, the network of Figure L will not have a homogeneous
current flow if there exists an infinite subsequence {Bki} ;___1
of the arm sets By, such that the arms of every B1< are balanced

i
with regard to the corresponding bridge.
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We conclude that not every infinite network 'containing an
endless path possesses a noniero homogencous current flow.

3. _Some concepts concerning infinite graphs, Our subsequent
discussion will employ certain notions concerning infinite
graphs. W shall define them here and develop some preliminary
results. Actually, we have already used some of the terms defined
below, but nevertheless we give their definitions here to avoid
subsequent ambiguity.

W assume that the reader is already familiar with the idea
of a connected, countably infinite, locally finite graph G in
which parallel brsnches are allowed but no isloated vertices or
self-loops are permitted. In general, we denote branches by b,
and nodes by Ny but other symbols are also used. 4 walk Win
G is an alternating sequence of branches and nodes such that

every branch is immediately preceded and succeeded by the two

nodes to which it is incident. W is said to be finite, one-ended,

or endleuss if the sequence isfinite, one-way infinite, or two-way
infinite respectively. A path Pin G is a walk such that no node
appears more than once in P. A loop L is afinite walk such that
no node appears more than once except for the first and | ast
nodes; these nodes are identical and appear nowhere else in L.

If we remove the branches bl’ bz, b3, ees from G but do not
remove the nodes to which bl’ b2, b3, .es are incident, we
denote the resulting graph by Gl - b1 - b2 - ceo o

A tree T in G is any connected subgraph of G that contains
no loops." A tree may be finite or infinite. T is said to be

spanning if it contains all the nodes of G; in this case, T must

be infinite since G is infinite.




The foregoing are common definitions. W now introduce
some new concepts and terminology which will be useful in our
subsequent development. Let T be a, spanningj;ree inG. If T

contains an endless path Py choose any brench b, in Py and

remove it from T, T ~ by will have precisely two components, both
of which are infinite trees. |If T =~ b1 contains an endless path P2,
choose any branch b, in P, and remove it. T = b, = b2 will

have exactly 3 components each of which is an infinite tree.

We continue this procedure of removing a branch bk from an endless

path P, contained in T = b, = b, = e¢+¢ = b until there no

k 1 2 k=1
longer exists any endless paths, If the process terminates after
a finite number, say, m of branches are removed, then T - bl = vee = b
will have m + 1 components. Otherwise, an infinity of branches
must be removed in crder to break all endless paths and the resulting
graph T - bl - b2 - s+« will have an infinity of components.
We shall refer to the bk as joints. The finite or infinite set
J={b,t k=1, 2, ...} of a1l jointswill be called a full set

of Joints. The components of T - bl - b2 eee Will be called

imbs.

Lemma 3.1 (The structure of a limb).

(i) Every limb is an infinite trse containing no endless paths.
(1i) Every node of G is contained in a unique limb,
(111) Given any node of G there exists a unique one-ended
path P starting at the node and contained in the limb that
contains the node.
(iv): All other paths starting at that node and contained
exclusively in the limb are finite.
(v) Only a finite number of the latter finﬁ:e paths have

no branches i n common with P,
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Proof. By its definition every 1limb must be a tree containing
no endless paths. Let us ussume that one of the limbs, say, F
isafinite tree. Because of our local-finiteness condition,
there can be only a finite number of joints connected to F in
the original tree T. This means that in the process of removing
the joints one by one there will be one stage at which there exists
exactly one joint connected to F. But this is impossible because
that joint will not then be in an endless path. This contradiction
establishes (1i).

(i1) follows from the fact that at no point in the process
of generating limbs is a node removed.

To establish (i1i), we first observe that every infinite
tree must contain a one-ended path [2; p. 17]. By the connectedness
of' each limb we can conclude that there exists &t leas% one
one-ended path starting at any given node of a limb and contained
in that limb. W cannot hsve two different one-ended paths in
the limb starting from the same node for, otherwise, the limb would
contain either a loop or an endless path. This wuld contradict
the fact that each Iimb is a tree possessing no endless paths.

{1v) follows immediately from (iii).

Finally, for (v), let ny be a node inalimb L and let us
consider the subgraph H of L consisting of all finite paths in
L starting at n, and having no branches in common with the unique
one-ended path P in L that starts at nye If there are an infinity
of such paths, then H must be an infinite connected graph and
therefore must contain a one-ended pathAQ{zg p. 17]. Since P and

Q are distinct, this contradicts (iv). Lemma 3.1 is hereby establishcd.




Another concept we shall introduce is that of a "twig".

Consider a tree containing s* least one endless path. Then

consider the set of all branchss dl’ d2’ «xa that are not contained
in endless paths, A twig is a component of the subgraph induced
by the set of all d . T with all its twigs removed (i.e.,

T-ada =-d, = »«+« ) will be called a stripped tree. Similarly,

1 2
a stripved limb is a component of the subgraph cbtained by

removing from T a full set of joints and all the 4, .
are ignored.)
Our next objective is to show that the cardinality of any

(Isolated nodes

full set J of joints is an intrinsic property of the tree T and

does not vary for different choices of J. Assume for the moment
that there are only a finite nonzero number of endless paths in

T and consider the corresponding stripped tree T, These endless
paths lie exclusively in T and every branch of Ts lies 1n at

least one endless path. 4iven any choice of a full set J of joints

we can choose a finite subtree T of Ty that contains every joint

because there are only a finite number of joints. Then, T, is

the union [1; p. 76] of T, and a finite number of subtrees Py.

f

P2, . Pn such that the nodes of Pk and the nodes of Pj form

disjoint sets if k # j. Each end-node of P, must also liein

T. since T, has no twigs.

Actually, each P Is a one-ended path that is cannected to

Tf only at its end node. Indeed, upon applying Lemma 3.1(1) to

T and noting that 'I‘f' isfinite, we see first of all that Pk iIs

an infinite tree containing no endless paths, Now, assume

that Pk is not a one-ended path. Then, Pk contains a node ny

whose degree i s greater than two. By (iii) and (lv) of Lemma 3.1,

there exists a finite path Q passing through n, and terminating

0
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at two end nodes nl and n2 of Pk. out then, nl and n2

also liein Tes and so Q is part of a loop in Tg- This cnntradicts

the fact that Ts Isa tree. Thus, P

must

K isS a one-ended path. It

IS connected to Ts only at its unique end node because, were it

to be connected to T, at two or more nodes, there would again

be a loop in Ts.

Since Te isfinite, it now follows that every limb resulting
from the given J contains one and only one P ; that is, the
number n of the P, is equal to the number of limbs.

k
Every infinite path in T ccnsists of the union of two one-ended

paths, say, Py and Pj, where k # j, and a finite path in Tf;
conversely, every such union yields an endless path in T. Since
n is the number of Pk it follows that there exist (n = 1)!
endless paths in T. But, the number of endless paths in Tis
an intrinsic property of T and does not depend upon the choice
of J. Therefore, the same can be said of the number n.

Now, the choice of a joint in Ty partitions the set {Pk}rézl
into two subsets, two of the Pk being in the same subset if ard
only if there exists an endless path passing through both of
them and not through the joint. Upon choosing two joints in T_,

)
we will partition P, into three subsets under the same rule.

k

Ihis process can be continued until each subset contains exactly
one P, , at which point we will have chosen n = 1 joints. |t
follows now that the number of joints in a full set Jis independent
of the choice of the joints,

Let us turn now to the case where T possesses an infinity
of endless paths. “hen, Jmust have an infinity of joints.
Indeed, if only a finite number, say, k of joints sufficed to

disrupt all endless paths, then the removal of these k joints




from T, would yield exacly k+l compenente, none oOf which
conttains an endless path. But this implies that Ts would
have exactly k! endless paths, and therefore so too would T.
This i s a contradiction. Thus, the cardinality of Jis f—';o,
the cardinal number for a countably infinite set.

In this case we will also have an infinity of limbs.
Consequently, the cardinality of the set of limbs must also be
HO since it cannot be greater than the cardinality of the set
of branches.

We summarize our foregoing discussion as follows.

Lemma 3.2. |f a tree T contains at least one endless path,
then the cardinality of a full setfof joints is independent of
the choice of the joints and is equal to one less than the
cardinality of the set of 1imbs resulting from the removal of
J from T.

Let us return now to our infinite graph G and assume that
a spanning tree T and a full set J of joints in T have been
chosen. Thus, the limbs in G are the ccmponents of the subgraph
of T obtained by removing all joints in J from T. Asis
commonly done, every branch not in T will be called a chord,
Given a chord, there exists a uniouve loop consisting of the
chord and unique tree path connecting the nodes of the chord;

4
this loop}will be called the chord-tree_loop. Moreover, if

both nodes of the chord are contained in a single limb, we

shall also refer to .that loop as the chord-limb lcon. On the

other hand, if the two nodes are contained in different limbs,
it follows from Lemma 3(iii) that there exists a unique endless
path consisting of the chord and uiis two unicuc one-ended paths

starting atthe nodes of t he chord and remaining within their
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respective limbs; this endless path will be called the chord-limb
path. Later on, it w11 te conveniznt not to have to refer to
chord-limb loops and chord-limb paths with two separate names.

V¢ will refer to these two entities as chord-limb orbs. Sometimes
we designate a chord by a symbol, say, b and then refer to the

b-tree loon and b-limb orb.

Similarly, the nodes of any given joint must lie in two
different limbs. By Lemma 3.1(1ii) again, there exists a unique
endless path passing through the joint and the two limbs containing
the joint's nodes. This endless path will be called the

Joint-limb path, or the b-limb path if the joint is denoted by b.

In summary then we can state the following.
dLemma 3.3. Every chord lics in a unique chord-limb orb, and every
jointt\ ies in a unique joint-limb path.

L. Current flow. Fromnow on, we shall assume that every branch

e

in G has an orientation. The current in any branch is a complex
number measured with respect to that branch's orier;:tation. As
before, we assume that we have fixed upon a spanning tree and

"a full set J of joints in our graph G.

Lemma /j,1. A specification of all the chord currents and
joint currents uniquely determines all the branch currents if
Kirchhoff 's node law is satisfied at every node.

Proof. We need to determine the currents in all the limb
branches. Let L be any Iimb. Then, L possesses at |least one

node ny having exactly one limb b, incident to it. For, if

1
this were.not so, L would have to contain an endless path. If’
n1 has other branches incident to 1%, the latter branches will

2ll be chords or joints. Thus, Kirchhoff's node law applied to
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n, uniquely determines the current in bl'

3

Next we consider efther L = b, Or any other limb and

1
determine the current in another Ilimb branch by applying Kirchlioff's
node law to a node, only one of whose incident branches is
contained in either L = b, or that other limb. Continuing in

this fashion, we determine all branch currents.

Assumption 4.1. W assume that each chord current flows

along its chord-limb orb and that each joint current flows along
its corresponding joint-limb path. The direction of each such
current flow agrees with the orientation of the corresponding
chord or joint.

That we are free to adopt Assumption 4.1 without violating
Kirchhoff 's node | aw can ve shown as follows. viven any nouve ., 0
in some limb L, let ¥ denote the union of all the finite paths
specified in (v) of Lemma 3.,1. Thus, Fis afinite tree. Now,
every chord current or joint current that passes through n, under
Assumption 4.1 passes into or out of L at one of the nodes of F.
Because G is locally finite, it follows that only a finite number

of chord currents and joint currents flow through n But,

O.
every such chord or joint current by itself satisfies Kirchhoff 's

node law at n and therefore so too do the branch currents

0°*
incident at e Since every node lies in some limb according to
Lema 3.1 (i1i), Kirchhoff 's node law is satisfied everywhere.
Since the current in a branch is a combination of some or
all of the chord and joint currents impinging on one of its
nodes through adjacent branches, the argument of the preceding
par agr aph also shows that tach limbt branch carries cnly a finite
number of chord currents or joint currents. W calculate the

current'in any limb branch b, by summing the chord currents

0
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and joint currents in b, after aftfixing a plus (minus) sign to

0
such a current it its flow agrees {(respectively, disagrees)
with the orientation of the branch.

In view of Lamma 4.1, we have now obtained the following
result.

Lenma 4.2. Upon specifying all chord currents and joint
currents and then computing the remaining branch currents in
accordance with Assumption 4.1, we obtain the unique set of
branch currents dictated by Kirchhoff 's node law.

5. Partitioning inkfinite subnetworks. Given an infinite
network i, we define the union U’f?k of afinite or infinte
collectlion of subnetworks ‘Y%k of 1 in the same way as is the
union of subgraphs of a given finite graph [1; p. 76]. Uﬂk is
that subnetwork of 7t whose node set is the union UN(?’tk) of the

node sets N(Tt. ) of the ﬂk and whose branches are those branches

k

of Tt having both nodes inUN(Tt. ). On the other hand, a partition

k

of a subnetwork It of 1t is a collection {*ﬂk} of rubnetworks

T, of M such that every branch of 1t occurs in one and only

one of the ’f’tk and T = UT}kc Finally, 1t = 1t denotes the

subnetwork of 1t induced by all branches that are not in %,
We are now ready to state our main theorem.

Theorem 5.1. Let 7t be an infinite network satisfying the

conditions stated in the penultimate paragraph of the Introduction
and possessing at |least one endless path. Assume there exists

a spanning tree T, a full set J of joints, and a partition {n k§

of @ subnetwork M of ¥t (possibly W = #) into finite subnetworks

‘ﬁk such that the following conditfons are satisfied.
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(1) 77 contains all the chords of ¥/, and, if a chord is
in 'an, then the corresponding cnord-tree loop lies entirely within
[}ksnf}k and the corresponding chord-limb orb lies entirely within
M= Upsnon Ty
(11) Arbitrary mutual coupling between the branches of a
single ‘V}k is allowed, but mutual coupling between a branch b,
in ‘V?k and a branch b, in ﬂm, where k < m, is allowed only if
the following unilateral property holds: The current in b, may
produce a nonzero voltage in b2, but a current in b‘2 produces
zero voltage in b
(111) Write down the equations dictated by Kirchhoff's
loop law around the chord-tree loops for ell the chords in ﬂk,
treating the corresponding chord currents as unknowns but treating
as known all the joint currents and all the other chord currents
(that is, the chord currents for the chords in all ?’tm, where
m# k). In doing so, let the current in each limb-branch be
computed in accordance with Assumction 4.1. Let Z, be the
souare impedance matrix obtained by writing these equations In
the matrix form 2, ¢, = g, , where ¢, is the vector of unknown

kwk K

chord currents for the chords in 1’}k and is a vector of known

gk
quantities. Assume that 2, I S nonsingular for every k.

Then, upon assigning an arbitrary current to each joint,
we have that Kirchhoff 's node and loop laws uniquely determine
the current in every branch of ; moreover, any set of branch
currents that satisfy Kirchhoff 's node and l1oop laws corresponds
in this wéy to a particular choice of joint currents.

Proof, First assume that an cvriblcrary current nas been




assigned to each joint. The vector € is afunction of the
voltage sources, impedances, end joint currents, all of which
are known quantities. Because oOf conditiona (i) and (i1), Zy
is also a function of the chord currents for the chords in

Ny» +++ » Ty-1» but it does not depend on the chord currents
forthe chords in T Tt (When.k = 1, there are no

K+1°? Kk+p? "o

chord currents in 5.1'} Since each Z, is nonsingular, We can

k

solve in turn each oft he ecuations Z > fork =1, 2,

1S T By

to determine the g, and thereby any chord current.

k
Since all the joint currents have been specified, we have

from Lemma 4.2 that all the branch currents are uniquely deteimmined

under the imposition of Kirchhoff's node law. Moreover, Kirchhoff's

loop law is satisfied around each chord-tree locp since this iz

precisely what the equations Z = o recuire, Also, it can be

Kok T Rk
shown in just the same way as is dcne for finite networks that
the sum of the voltage drops around an arbitrarily chosen loop
L is equal to the sum of the voltage drops around a finite
number of chord-tree loops [10; Theorem 4.5-11. Thus, Kirchhoff's
loop law is satisfied around L as well.

Finally, let us assume that we are given any set of branch.
currents that satisfy Kirchhoff's node and locp laws. This
means that we have specified the joint currents as well. Since
the loop law is satisfied and each Z, is nonsingular, the

equations Z = g must yield precisely the same chord currents

ko Sk
as the given ones. n the other hand, the limb-brsnch currents
resulting from Assumption L.l must also agree with those given

because of the uniqueness assertion of Lemma 4.2, ihis completes

the proof.
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Note that, since each branch carries only a 'finite number
of chord currents, we nsed compute only a finite number of the
g, and then apply Assumption 41 in.order to determine the
current in any given branch. This involves no more than a finite
number of computational steps.

It is also worth mentioning that, if does not possess
an endless path (in violatior of the hypothesis of Theorem 5.1),
It must consist exclusively of an infinity of finite blocks.
Thus, its behavior can be analyzed by applving the techniques
for finite networks to each of the bl ocks.

Example 5.1. In the network of Figure 3 let T be the tree

induced by all the branches a, and all the horizontal branches

bk’ dk’ . «:x « Then, the a, W |l ccmprise afull set J of

joints. For ﬂl we may choose the subnetwork induced by branches
84s DPgs boys and cg; N I, there is but one chord, namely, cj.

For T, use a;, b the chord being ¢;. For ﬂB use a_q,

1’ P12 1

b_p, c¢_y, the chord being c¢_;. For 7}4 use dn, d the

O) ..1) eOJ

chord being e For 7/?5 use a,, Bss Coy the chord being Coe

OO

For\ 7}6 use dq end eq with e, being the chord. For ﬂ7 use

1

855 b-3s and c-2 with c¢_, being the chord, For 1/?8 use d_,

2

and e_; with e, =as the chord. For 7’39 use f,, f_;, ard 9o with

gy as the chord. Continuing in this trigngular fashion, we

can choose our ’V?k such that condition (i) of Theorem 5.1 i s
satisfied. (Note that each chord-tree loop lies to the left

of' its chord and each chord-limb pnth lies to the right of its
chord.) Assume there is no mutual coupling so that (ii) is trivially
satisfied. Now each Jf{k has only wne chord, and so 2, is a lX 1

n

matrix. Zk will be nonsingular if each chord impedance is nonzero;

in this case condition (1ii1) will also be satisfied. Upon
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assigning a current to esch a,, We can conclude from Theorem 5.1 that
the network has a unique current in every branch.

Example 5,2. Ir the network of Figure Lt we choose as our

tree T the subgraph induced by the branches 1,2, 5, 6, 9, 10,

13, «ss « The chords are now the diagonal branches, Since T

is simply an endless path, only one joint is needed for our full

set J; let this be branch 1. Choese f05_77 the subgraph induced
by branches 1, 2, 3, L4, 5, for 1’?2 that induced by branches 6,

7, 8, 9, for ?’?3 that induced by branches 10, 11, }2, }3, and

so forth, Condition (i) can now be seen to be satisfied. With

rno mutual coupling, condition (11) is also satisfied. Finally,

if the bridge corresponding to each ﬂk is unbslenced (i1.e., letting
z, be the impedance in branch k, we recuire that ZEZS # 22,
2629 # ZYZB’ «s+), then each z), is a 2%2 nonsingular matrix so
that condition (i1ii) is fulfilled. Thus, upon choosing the
current In branch 1, we determine the currents in all other
branches,

6. _The set of branch-current vectors. Our objective in
this section is to develop an expression for the branch currents
and then to discuss the dimensionality of the space of homogeneous
current flows. W assume throughout this se:c_ti"én that the
hypothesis of Theorem 5.1 holds,

Let us number all the branches of our network using the
positive integers. 1 = [il, 12, 1.3, ...]T wi"ll denote the
branch-current vector, where 1m is the current in the mth branch
measured with respect to the orientation of that branch. Here
as well as elsewhere, the superscript T denctes matrix transpdse,

Thus, 1 is an ’,f-éox 1 vector,
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Similarly, e = e, €5, see]t Will

denote the branch-voltage souice vector, where e, is the voltage

m
rise in the mth branch measured in the direction of' the branch's
orientation.
Next, we number all the joints consecutively using again
the positive integers until all joints are numbered. Thus, each
joint will have two numbers assigred to it, its number as a
branch and itsS number as a joint. '; = Ul’ 52, ,,.]T will be
the jolnt=-current vector, where jm is the current in the mth
joint measured in the direction of the jointfs orientation.
Similarly, in addition to a chord's branch number, we
essign a chord number to every chord, but now we do so in a special
way. We consecutively number the chords 1, 2, 3, ,., starting
" first with the chords in 7'1‘1, then proceeding to the chords in

n T

09 then to the chords in 7}3, and so forth. ¢ = {cl, Css eee]
is the chord-current vector, where c 1s the current in the mth
chord meesured in accordance with the chord's orientation.

Next, we let
- T

1’ sy cn +ono+n ] :

4%{ = [cn +oco+n 1 k

1 k-1"

be the vector of chord currents for the chords in ‘V?k, where

k =1, 2, aaa and n,_ is the number of chords ‘in ﬂk. Thus, ¢

can be written in partitioned form as

-

o

r%o

jo

> n ¢ i

Let us now write the Kirchhofi-loop=~law equations for the

chord-tree loops corresponding to the chords. in T?l. In matrix
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form we obtain

21& = Ejeo o+ d9J

where the matrices El and ‘]1 have ny rows and each of their rows
has only a finite number of nonzero entries. .The same equations

for ﬂZ’ cee 5 Ny waa yield

2280 = Epg v it X5 08

potiey v | o e o e
e " S v N P RS P B

. A k1%

As before, E, and J_ have n rows and each row has only a finite

number of nonzero entries. Moreover, Xl«: m is an n,
3

Since by assumption each 2y i s nonsingular, we may eliminate

Xnm mat ri x.

the ¢is <o 5 &4 from the equation for 2 %«: by using the prior

k
equations. Then, solving that equation for S0 We get

S T Veas oWkl

where again W and w have n, rows and each row 'has only a
E,k J’k k o

finite number of nonzero entries. Upon setting

W L] w. |
5,1 KA
L T N R - :

. 8

| L]

we obtain

V¢ now define some incidence matrices. Let C, be the
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matrix whose k,m entry is 1 or -1 if branch mis in the

chord-limb orb for chord k and the orientations of the branch

and the orb agree or, respectively, disagree. (We orient the

orb in accordance with the orientation of its chord, and similarly
and joint-limb paths.

for chord-tree IoopsA) That k,m entry is zero if branch m is

not in the chord-limb orb for chord k. Similarly, let CJ be the

matrix whose K, mentry is L or -1 if branch m is in the joint-limb

path for joint kK with agreement or respectively disagreement in

the orientations and whose k,m entry is zero if branch m is not

in the joint-limb path for joint k. Since cnly a finite number

cf joint-limb paths and chord-limb orbs pass through any given

trznch, each column of CC or €. contains only a finite' number

8
of nonzero entries. As a result, we have the f ollowing equations
relating the branch=-current vector i to the branch=voltage-source

vector g and the joint-current vectcr j.

T T,
A= Gt G4
- T T T
= CgWge + (Cg™Wy + C;7)J
= Ke + Hj
AN

Here, K has an infinity of columns and the rumber nJ-of columns

of H equals the number of joints. Thus, ngy = HO if'there are

an infinity of joints. On the other hand, each row of K and H

has only a finite number of nonzero entries. This expression
shows that each branch current is a function not only of the 'branch
voltage sources but also of the assumed jeint currents. In other
.18, even when all branch voltage sources are fixed, there is

an infinity of possible branch-current vectors so long as there

exists at least one joint. The latter occurs if the network L4
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contains at least one endless path.
Let us now discuss the branch currents occurring when every
branch voltage source is zero. W shall say that the branch-current

vector i 1s homogeneous whenever ¢ - o, In this case, i = Hj,
Laiad faal P N ~n

and it follows that the set 4 of all homogeneous branch-current

vectors is a linear space under componentwise addition.

J
and whose other entries are all ¢. The, with Iy being the kth

Next, let L denote the n_X 1 vector whose kth entry is 1

joint current, we have
n

J
{ = ) jH
- =1k
Ovserve that . IS a linearly independent set in the space 4.

Indeed, each joint carries no jointcurrent other that its own and
no chord current; consequently, the entry in E,,J_,k correspending
to the branch number for, say, the mth joint if L for k = m and
is 0 for k #m. We can conclude that, when ny is finite, fH,I_,k§
is a basis for &, and J is ny-dimensional. When nJ/ is g

4 is infinite-dimensional.

Theorem 6.1. Under the hypothesis of Theorem 5.1, the
cardinality of a full set 3 of joints is equal to the dimension
of the linear apace 4 or-all homogeneous. brgnch-current vectors.

From this theorem and Lemma 3.2 it follows that all trees,
for which the hypothesis of Theorem 5.1 is satisfied, possess the
same cardinal number of joints and therefore the same cardinal

number of limbs,

.7« A general class of networks sat|sfy|ng the condltlons

F T e T Tl e L

vy

of Thooren B0 W2 shall now describe a Talrly 2reoad class of
networks that satisfy the hypothesis of Theorem 5.1, Ore condition

we shall impose is that there be no parallel branches, However,
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in those cases were mutual coupling does not exist this is no
restriction because parallzl branches c2n then be combined into
a single branch through Thevenin's theorem,
We make use of the following standard terminology. If N is
a subset of the set of nodes of our network 7', the subgraph
induced by N i s the graph whose node set is N and whose branch set
consists of those branches in 7t having all their nodes in N. This
subgraph will be denoted by <{§). Here are the restrictions on
the graphs of those networks we wish to consider.
Copditions 7.l. Let ¥ be a connected, countably infinite,
locally finite network having no parallel btranches, isolated
nodes, or self loops and satisfying the roll-owing conditions:
Its set of nodesg can be partitioned into (finite or infinite)

subsets N NB’ ... Such tnhat at least one Ni has two or more

1’2 2
nodes and such thst

(1) each branch either lies entirely within <Ni} or has

one node in <Ni> and the other node in <Ni+l> for some i,

one or rneie

(ii) each node in Ni is adjacent toA nodesi n Niﬂ’

(i11) no two distinct nodes in Ni are adjacent to the

and finally

same node in Ni+l'

The networks of Figuresd through 3 .satisfy'Conditions 7.1.
For example, in Figure 3 we may take all the nodes lying on a
vertical line as comprising one of the Ni'

We will now indicate how appropriate cholices of a tree T,

a full set J of joints, and the subnetworks ﬂk can be made.

Before doing so however it will be convenient to introduce still
o2 bermirolopy. By a radia’ brenen we mean 2 branch with one node
in N, and the other node in Ny for some 1. A tangential branch

is a branch with both nodes in Ni for some i.




The choice of T. For T we choose a subgraph in 7t such

that every radial brasnch isin T, and, for every i, the branches
. . yi H o i
that are both in T and 'n<Uk=1 Nk> induce a svanning tree in
- )
Wipmy M) o
Actually, T can always be chosen by first choosing a tree
in (Nl>, then extending the tree by sdding all radial branches

between N, and N, then appending enough branches in <N2> to extend

1
the tree to all nodes in (N2>, then adding all the radial branches

between N, sna N? and so forth. Clearly the resulting subgraph T

2
contains 211 ncdes of 7t but rno finite loops; that is, Tis a

3

spanning tree in Tt.

The choice of J. Every tangentisl T-brench is chosen to be

a joint, snd,in addition, for each i and ehch node ny in (Ni>,

£1ll but one of the branches that are incident to ng and connect

to nodes in N, are also chosen as joints.

+1
We hsve to show that these choices comprise a full set J
of joints, We will use the fact that all radial brsnches are in

T. By Condition 7.1{(ii), from every node ng there exists a one-ended

path starting at n, and consisting entirely of radial ,branches.

0
By Condition 7.1 (iii), any one-ended entirely radial path starting

at one ncde of a tangential T-brsnch does not Méet any of the
nodes of the one-ended entirely radial paths'starting at the node
of that T-branch. Thus, that tangential T-branch lies in at
least one endless path in T and can therefore be chosen as a
joint, Indeed, every tangential T-branch can be chosen as a
joint since the removal of any such branch does not disturb the
elcrementicred endless paths varsine through the olher tangential

T-branches,
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Now, ccnsider the subgraph induced by all radial branches.

If, for some node n, in N, there are two or more radial brenches

incident to Ny and to nodes in Ny 4o

endless path consisting of two one-ended entirely radial paths starting

then there exists at |least one

at Nye The removal of any branch incident to n, and a node in N, +1

breaks at |least one such endless T-path, W may continue removing

radial branches incident tc Ny and nodes in Ni+l until all but one of

them are removed. |f we do this at every node, we will cbtain the
remaining joints as indicated in our choice cf J.
Since at least one N, contains two or more nodes, 3 i S not

i
empty; wmoreover, T and Tt posses;; at least one endless path.

The graph remaining sfter the removal of all these joints
. endless
from T does not contain an endless path since every/T—path must
\

either pass through a tangential T-branch or pass through two
adjacent radial branches incident at a node in N; and twc distinct
2 \
nodes in Noy1e
For later use some observations are worth making at this point.

So truly, JIs a full set of joints.

Lemmsa 7.1, |If we remove all joints from T, we obtain a set
of limbs. each of which is a cne-ended path consisting entirely
of radial branches. Moreover, every chord-1imb orb inft is an
endless path whose only tangential branch is the chord itself'.
If thnt chord lies in <Ni>’ then its chord-limb path is contained
in (Uk=1 N§.

This lemma follows directly from our choices of T and J.

Lemma 7.2. Let 1t satisfy Conditions 7.1 and |l et T be chosen
as indicated above. Choose a chord b in, say, {N;). Then, the
b-tree lcop is contained in <Uli«:=1 Nk>' Moreover, the b-tree loop

- e oy - e Be ~ ke f A )
and b-limb vpath have only cne traiv-n in common, b Itself., MNoreover,

[

the other chord-limb paths that have branches in common with the




b-tree loop are finite in number and correspond tc chords in those
{w.» for which x < i.
This 1lemma follows easily from. the preceding one.

The choice of the partition {ft,}. In the following procedure,

each “I’fk IS ccnstructed by first chocsing a certain specified chord.
If that chord does not exist, it is understood thet the corresponding
step i s simply skipped.

Choose any chord bl in <Nl> and |l et 7}1 be the unique bl-tree
loop.

Next, choose a chord ¢ in <1\*2> and examine the c-tree lcop.
By Lemma 7.2, there will be at nost a finite number of chord

currents flowing in the various branches of that loop. Denote
the corresponding cherds by b, b3.. »ss , b . By Lemma 7.1,
boy wee 5 b willall liein {N,). Choosing k =2, ... , «1in
turn, we let ‘ﬁk be induced by b, and those branches of the

b, ~tree loop that have not been assigned to prior subnetworks.

We then | et ‘/}Ml be induced by ¢ = b and the other unassigned

<+1

branches’ of the b__,-tree loop.

+1

Next, we choose any chord b, in (Nl) and construct 'r“r_(

+2 +2

as before. Following this, we choose a chord in <N2> and proceed

as in the preceding paragraph to construct several more subnetworks,
say, 1’}“3, ces WB. Then, we choose a chord d in <N3> and examine
the d-tree loop ascertaining which chord=limb paths meet it for
chords that have not as yet been used to generate subnetworks.

With these latter chords, we generate as before subnetworks first
using those chords:in (N1> and then using those chords in <N2>

and any other necded chords in v cbtaining therebw ﬁ5+1’ e

Y}Y. Finally, we |l et 'H'Y be induced by d = bY' and those

+1 +1




branches in the d-tree loop that have not as yet been assigned
to subnetworks.

Proceeding in this triangular fashion, we can choose our
subnetworks in such a way that each chord. b_Lies in some 7’?1{

and every ’l?k contains only one chord b, . Note also that

ccndition (1) of Thecrem 5.1 is automaticelly satisfied by this
procedure, Indeed, given any chord'b_, all branches of the
b -tree loop that do not lie in Tt for some k < n induce ¥

so that that lcop lies in U # O the other hand, 1o branch
ksn  k°
of the b -limb path can lie in ngn“l ffk,

procedure would have required us to choose b_ as the.chord for

won

199

for; otherwise ocur

one of the prior ’Vij, where j < n - 1., Thus, the bn-limb path lies
in Tt - (jkﬁn"11?k°

The objective of this secticn is the fellowing result,

Brearem 7,1, Let I be a network satisfying Conditions T.l.
Assume that each branch is a series connection of a complex
impedance and a complex veoltage source, either or both of which
may be zero. Choose T, J, and {ﬂk} as indicated above, and
assume that each chord impedance is nonzero. Also, assume that
there are neither current sources Nor mutual coupling. Then,
Tt satisfies the hypothesis of Theorem 5,1,

Proof. We have already noted that ¥t satisfies condition (i)
of Theorem 5.1. Since there i s no mutual coupling, ccndition (1i)

is trivially satisfied.

Now, each 'Y)k possesses exactly one chord bk, and so the

matrix Zz, described in condition (iii) is a 1X 1 matrix whose element
is the impedance In chora bk. Since tnls is ncnzer «

nonsingular. |t follows that Tt does satisfy all the assumptions




in Theorem D.1.

Corollary 7.1. If 7 satisfies the hypcthesi s of Theorem 7.1,

then, 7t possesses a nonzero homogeneous current flow.,

Proof, Since Jis not empty, we can choose at |least one
joint current as nonzero, This yields a nonzero homogeneous
current flow when all sources are set equal to zero,

8. More examples, We have already mentioned that the
networks of Figures 1, 2, and 3 satisfy Conditions 7.1. In fact,
they also satisfy the hypothesis of Theorem 7.1 if suitable choices
of T, J, and §1?k§ and appropriate assumptions on the element values
are male. On the other hand, the network of' Figure l doez not
appear to satisfy Conditions 7.1 since condition (iii] scems
unattainable: in fact, there does not appear to be-any way of
choosing T and the {ﬁ%kl such that =zach ﬂ?k has only one chord,.

We shell now present a number of other examples, Scme of
the following networks can satisfy the hypotheses of both Theorems
51 and 7.1. Others do not appear to do so. Henceforth, the
branches in the tree T will te denoted by solid lines, with the
joints being indicated by the thickest lines, The chords will
be denoted by dotted lines. V\élgpdizc'a.te in this way our choice's
of Tand J. In all but the penA ‘e;:ar‘:]ple we will also indicate what
our choices of the *nk are. In these cases appropriate element
values can then be 'assigned to insure that- the corresponding
matrices Zk are nonsingular and that mutual coupling either

satisfies consition (ii) of Theorem 5.1 or is nonexistent for

Theorem 7.1,

. -
T e S -
sos oy Kol . e

- ps R e e Coe
e G.1e PFipgure © shows a nebyorie U720 03D ;

hypotheses of both Theorems 5.1 and 7.1. An appropriate set of




11, can be obtained by modifying the triangular procedure of

k
Example 5.1, For Condibtions 7.1, Nl is the vertical line of joints,
and, for 1 = 2, 3, ... , each Ni is taken to be a pair of vertical
lines of branches equally distant from Ng

Example 8.2. The network of' Figure 6 is another network that

can satisfy the hypotheses of Theorems 5.1 and 7.1. An appropriate
set of ?}k is indicated by the numbers within the faces of this
rlane network. this numbering can be continued by extending the
indicated triangular srray. ZEach ??k consists of those branches
thet border the face k and anot her face m, where m » k. For
the N, of Conditions 7.1 we can chocse pairs of lines paralleling ard
equally distent from the boldface line (i.e., the set of joints)
in Figure 6.

Exaxnle , The network of Figure 7 can satisfy the hypothesis
0o Theorem 5.1 when T, J, and ?}k are chosen as shown, The 7}k
are indicated as in the preceding example. However, the network
does not seem to satisfy the hypothesis of Ifheorem 7.1 because
there does not appear to be any choice of the Ni for which
Condition 7.1 (i1i) is satisfied. Nevertheless, every .ﬂk in Figure 7

ccntains exactly one chord.

Example 8.4. We have already remarked 'that there does not

seem to be any way of choosing the ﬂk in figure L sueh that every
'?“tk contains only one chord. ¥igure 8 is another such network.

Thus, the hypothesis of Theorem 7.1 does not appear to be satisfied,.
A set of T, such that the hypothesis of Theorem 3.1 can be satisfied.
is indicated as follows. ’ﬂl is induced by the five branches

e e Byt hparelias Gaoeled O 4 Y ke . PRI
wheled 1, N1, by the brenchee laveled 2, i by the branches labeled
L

3, etc.

Example 8.5, Figure 9 shows a network for which there
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does not seem to be any way of choosing the T, J,.and ﬁk such

that the nk are finite subnetworks. FoOr example, if we chocse

T and J as shown and then write Kirchhoff's voltage law around

the chord-tree loop for chord 1, we find that the equation contains
the current for chord 2. So, if ‘/tl contains chord 1, it must
also contain chord 2 if Z1 is to be a square matrix. But, by the
same reasoning, it must al so contain chord 3. Centinuing in this
fashion, we see that 1"?1 must contain an infinity of chords and
hence cannot be a finite subnetwork. Thus, it appears that
Theorems 5.1 and 7.1 are not applicable to this network,

Lxample 8.6, Another fairly general class of networks for

which Theorem 5.1 holds is indicated in Figure 10. The nodes of
the network are indicated by heavy dots, the limb branches by

the thin solid 1lines, and the joints by the heavy solid lines.

The chords are not shown. Instead, the dotted lines now delineate
portions of the network to which the chords are restricted; in
;jf;\bticular, the two nodes of any given chord are required to lie
within a.region enclesed by one cf the dotted lines. This condition
restricts the confluences between the chord currents in such a
way that a proper sequence of finite subnetworks 1’?k can be
chosen; each 'I’?k will be a subnetwork contained within ocne of

the dotted lines together with those limb branches that intersect

the lower horizontal portion of tnst dotted line.
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9. Countably ir,nfi‘\r/]ite networks that are not locally
finite, Under certain circumstances, a countably infinite
network Fi that; is not locally finite may also be analyzed by
cur method as follows, T is expanded into a locally finite
network 1t by replacing every node ny of infinite degree with a
one-ended or endless path P of short circuits. The branches b,
incident to n, are then connected to the nodes in P in such a fashion
that the degree of each node in P is finite, By a proper
arrangement 0Of the branches bk It may occur that ﬂe satisfles the
hypothesis of Theorem 5.1, A choice of joint currents then yields
a current distribution in ﬂe’ and thiz in turn yields a current
distribution in 7, which is obtained by assigning co ary branch
in 7t the same current that it has in ?’58 Kirchhoff's loop law
will be satisfied around every loop in 7%, and Kirchhoff'!s node
law will be satisfied at the nodes of finite degree but nct
necessarily at the nodes of infinite degree, Moreover, it is
not difficult to show that every current distribution in % that
satisfies the loop and node laws, in this way can be obtained

from an appropriate choice of joint currents in 7

i [ ]

e
10, Infinite operator networks. The results of' this paper

apply just as well to those infinite networks whose source values
and impedance values, rather than being complex numbers, are
respectively elements of a Hilbert space H and bounded linear

operators on that space. (See [3], [L], [18], and [19].) Upon




applying our method to such a network, we find that the

impedance matrix Zk indicated in conditionn (1ii) of Iheorem 5.1

| s now a bounded |inear operator on the direct am S = H® ... & H,
where H occurs as MANY times as there are chords in ‘f?k. The

only alteration we need make in Theorem 5.1 i S t0 assume that

z, s invertible on S. Similarly, to keep Theorem 7.1 in force

we need merely revise the assumpticn on each chord impedance by

assuming that It is an invertible operator on H.
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