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ABSTRACT 

A new definition for,the distributional two-sided 

Laplace transformation is devised as follows. Let t be a 

one-dimensional real variable. Spaces of testing functions 

on - a, < ti < m are coulstructed, which contain exponential 
--st 

functions e , s being a complex parameter, Their dual 
3 

spaces turn out to be subspaces for the space of distribu- 

tions. Then, for any f in such a subspace, a f is defined as 
the application of f to e-" 

This definition is entirely equivalent to L. Schwartz1s 

definition. Moreover, it simplifies a number of proofs and 

.derivations far the various properties of this transformation. 

It also provides greater f acilit*. in manipulating s.pecif l c  

distributional transform. 

The distributional Mellin transform of' a distribution 

on 0 .( x ( oo is analogously defined as 

where xC-' is a member of a certain space of testing functions 
on 0 ( x ( 00 and f is in 'the dual space. 

These ideas are developed for the case where t and x 

are n-dirnenaionkl, 



1, Introduction, This report appears in two parts, 

In the first we develop an apparently new approach t o  the 

n-dimensional two-sided Laplace transfoma%ion for distri- 

butions, The second part is devoted to a similar analysis 

for the n-d.hensiona1 Mellin trmsformation,of distributions.. 

Tbe basic idea in the one-dimensional case is the following. 

A space of testing f'unotions on - oo 4 t ( oo is 

const~ucted, which contains exponential kunctions eeSC, 

s beingaa complex parameter, Its dual space turns out to be 
5 

a subspace of the space 8 of distributions. Then, the one- 

dimensional two-sided Laplace transformation of a distri- 

bution f is simply defined by 

Analogously, the one-dirnensilonal Mellin transformation 

of the distribution f on 0 < x 4 00 is defined as 

khere xS" is a member of a certain testing. function spaca 

and f .(x)  is, in the. dual space, These ideas carry over to 

the n-dimensional case . 
The customary definition for the distributLona1 two- 

sided Laplace transformation is due to L. Schwarte [ 11, 

It defines f as a Fourier transformation 3 ,  



L f = 3{brtf(t)) (1-3 

Here, v is a real number restricted to those values for 

which e-ut f (t ) is a temperate distribgtion. The defini- 

tion proposed here is entirely equivalent to Schwartzls 

definition in that (1-1) exists in our sense if and only i f  

(1-3) exists in Schwartzls sense. 

The use of definition (1-1) simplifies a number of 

proofs and derivatians for various properties of the distri- 

butional LapXhce transfornation. Furthermore, it provides 

a fairly direct method of introducLng the distributioiial 

Mellin transformation through a change of variables. 
I !  . 

T. Ishlhara (21 has adopted the methods of Gelfand 
i 

and Shilov 131 $0 extend the Laplace transformation to all 1 -  I 
distributions: OU; definition, being equivalent to Schwart z a, 

i . . <  

is not as general but can be developed more concisely and I 

manipulated more simply. 

A number of other methods have been proposed for assign- 1 
( 

ing a sense to (1-1) but they were designed for the one- ! 

sided Laplace transformation and require that the supports . i . I  
* I 

I of the distributions be bounded on one side. See [4] - 181. I 

! I  

To be sure, one can decompose any distribution into a sum 

of a distribution with support bounded on the left and a 



distribution with support bounded on the right. Then, these 
I 

I 

i 
other techniques can be used to generalize the two-sided f 

I 

Laplace transformation 181. But, this is awkward and 1 I I 
computati~~all~ troublesome . 

I [  i 1 
i 1 
1 ,  

In the second part of this report, the distributional I ,  

i 
i 

Mellin transformation is defined by applying a,sense direct- 

ly to (1-2). To the author's knowledge, there has been only 

one other extension of the Mellin transformation to distri- 

butions. It is due to Fung Kang [ 91 and uses the method of 

Gelfand and Shilov f 3.3 . to generalize the one-dimensional 

Mellin transformation, It too does not assign a sense direct- 

ly to (1-2). As before, the defini tion given here is not 
t 

as general, It remains instead within the framework of . i 

I 

distribution theory and leads to a number of simplificationS. I 

! 

In addition, our results have been developed for the n-dimen- I 

sional case. ; 
i 

I I 

We shall make use of the following notation. dZn and e* , 

are respectively the real and the complex n-dimensional 

Euclidean apaces. An integer in en is an element of d?? 

whose components are integers. Moreover, we shall always 

set 

t = { t,, a * . '  ,*.I 1 e @', . 

and s = , . s e en* 



If f is a function on a subset of R ' ,  then f ( x )  shall 

denote 

f ( x 1  = [ f (x , ) ,  * * a  , f(x*)l 

If f is a function on a subse t  o f  & we s e t  

f ( x , t )  = {f(xJ,t, 1, 0 . .  , f ( x a , t m ) j  

The same notationsare used f o r  functions on C', c', or R'*c' 

For example, 

log x = f lag x, , . . . , l o g  x.) , 

- Sf 
[ e  ] = exp (-s, t, - .. -s;t,) 

' The notations, x i t and x 4 t, mean x , s  tY and, 

respec't;ively, X, 4 t, ( = 1, 2 ,  . . . , n) . k s h a l l  always * 

denote a nonnegative integer in @, We foLlow standard 

procedure i n  s e t t i n g  .Ikl = kl -+ ,.* + k*, This should not 

be confused w i t h  the "magnitude" symbol, 



I 
8 .  

D,' denotes I , 

a "I 
. . 

3 x 5  - - + - -  + ax,$ 1. * ,  

i 

Simi lar ly ,  D? denotes a p a r t i a l  d e r i v a t i v e  with r e spec t  t o  

the  components of s e c*, 

By a smooth funct ion  we mean a funct ion  that possesses 
I ' .  

(ord inary)  p a r t i a l  derivatives of a l l  orders a t  a11 po in t s  
1 1  
I 

of its domain. Throughout this paper the p r i n c i p a l  branch I i 
I 

of any.multivalued func t ion  i s  always understood. 



PART I 

THE DISTRIBUTIONAL LAPLACE ,'TRANSFORMATION. 

2. The Tes t ing  Function Space $b,b 

Let t, a, b t R? w i t h  a 4 b. Also, l e t  %,a,, by be 

a r b i t r a r y  components .of t, a, b, respect ive ly .  The funct ion  

Kas, b, ( t, ] from R' i n t o  R' i s  defined t o  be a p o s i t i v e  

smooth f u n c t i o n  such that a,, 4 by and 

The p r e c i s e  values f o r  this f u n c t i o n  on -1 < t, 4 I is unim- 

por tan t  bu t  we assume throughout t ha t  it is a f ixed  functfon. 

Let K,,,(*) be t h e  p o s i t i v e  smooth func t ion  from i n t o  P' 

given by 
n 

La,. , shall denote t h e  space of all smodth funct ions 
such 

Y ( t )  from R* i n t o  C' t h a t ,  f o r  each fixed k, 
A .  

where Cl i s  a constant depending upon k and . t r,b is a 

l i n e a r  space ovep the  f i ~ & d  c' .  Note t h a t  [ e m s t  is in z 4 b  

f o r  a4Re.  a & b  and [ t ' eo" ]  i s  i n  f o r  a < R e  s < b. 

On the o t h e r  hand, i f  a t  least one of the  components of the  



integer k is positive, neither [t4eoat nor [t4e-bt is in &d,b. 

'. . 
We assign a topology to &&,b by making .use of the follow- 

, < 

in8 separating system of seminorms . 

(Here, it is understood that k traversed a l l  integers in R~ 

for which 0 C ( k 1 4 Y .) That the '~TP are truly serninomns 

follows from the fact that they possess the following properties 

(Taylor 1101 , p. l4.3). For a c  C' , (4 4 , t . s  and e L a , b ,  

we have 

r, ( u + 9 )  4 Y, ( rq)  +' ~ ( 9 )  

and 

Vv ( 4 Q )  = Id1 r p ( q )  

The YV constitute a separating s e t  of seminoms in the 

sense that for every q f 0 in t a , b  there is a YV such that 

Yv ( q )  # 0. This is because To is a n o m ;  that is, it also 

satisfies' the condition, - 

. r. ( 9 )  = 0 .ce3 '4 =co* (2 -5 )  



These seminorms generate a topology in da,b in the 
i 

following way. A neighborhood of a given )V e ffa,b is any ' 

subset of that contains a set odnsisting of all 

c4 '2 dt~l ,b  satisfying 

where the Gj comprise a finite collection of serninorrna and 

the EJ are p o s i t i v e  numbers. The colLection of all such 

neighborhoods (for a l l  9 4 d a , b  ) constitutes the topology of' ' 

$+. Note that these neighborhoods satisfy axioms for a 
topological linear space (Martineau et Treves t 111, pp. 

1-2). Since our set of seminorms Ls a seperating one, all 

neighborhoods of a given Y in have only 'Y in common. 

a0 
I 

- A sequence { +),, (or, more generally, a dirbcted set 

{ q p ) r + a )  is said to be a Cauchy sequence in if every 

qA is .in and if for each neighborhood a of the zero 

function here exists an integer N such that, for all$ and ' 

J greater than N, Yp--Yy is in R . It follows that { qP);=, 

is a Cauchy sequence if and only if for each fixed the ' 

T y  ( G -  IPy ) converges to zero as p and go to infinity 

independently. . In view of (2-2) and the fact that xab(t ) > 0, 

this means that the sequence of derivatives { 'pr (t ) }lm, 
converges uniformly over every bounded t-d-omain. Thus, there 



exis.t;s some limit funct ion  14 , which i s  smooth. Moreover, 

it s a t i s f i e s  the  inec$lit ies 2 1  A s  a r e s u l t ,  le i s  in  

64b and (el;, converges t o  it i n  t h e  topology o f  Z.., ; 

that is, f o r  every neighborhood a- of t h e  zero funct ion,  

t h e r e  e x i s t s  an N such that, f o r  a l l  p > N, Vp-Q is in n. . 
Because this is true f o r  every  Cauchy sequence, XeJb is  said 

t o  be s e q u e n t i a l l y  complete. 

If {VPG-I is a Cauchy sequence in X,,b and has IQ as 

i t s  l i m i t ,  we shall say that (7,,);-, - conve~ges  & b,, ip . 
(If 'Q - 0, we say t h a t  t h e  sequence converges t o  zero.)  It 

follows t h a t  s sequence {vp);, converges i n  6 % ~  i f  and 

only if  each V p  is  in Z O , ~  and f o r  each k 3  0 

{ , D,* qyP,(t3 I;=, 
converges uniformly ondLn. ( The u n i f o m i t y  of the 

convergence need not  hold over  all k. ) 

A subset  B of $la,, i s  said t o  be bounded i f  t h e r e  e x i s t  

a s e t  of constants  Cysuch that, f o r  a l l  c9 i n  B, Y,(Q)Q C y  

( Y  = 0, 1, .*. 1. 

Two easily e s t a b l i s h e d  f a c t s  concerning x , ,  are t h e  

following: 

I. L e t  be the space of a l l  smooth funct ions  having 

compact supports. Then, ~8 C ha,, for every a,b c (a 4 b). 



Moreover, convergence in oE) bnplies convergence in d a , b ;  

11. If a t c  d d  t b  , then dc,dC and convergence . in 

, implies convergence in x a , b .  

We now prove two results that we shall need subsequent- 

ly. shall denote the space of all smooth functions of 

rapid descent. We assign to it the customary topology. 

Lemmal: - - Let a, b , r c @  - withaso-Cb. - If 9 ed, 
then [eoct] 9 a+,. - - If { Y N )  ;=, converges in $ t o  zero, . - 
then { [eoct] ly. * - v r r  - - also converges in l,b zero. . 

Proof: We prove the last statement, the proof of the 

preceding one being almost the same. We may write . 

xqbct) ~ $ ( y l ~ ( t ~ [ e & ] )  = {~.,~(*)b-~l) ( x  % apPg(e~: htt>). 

The summation in the right-hand side is on the fini.te 

number of n-dimensional integers q that satisfy 0 Q g 4  k. 

Moreover, the ap are constants and the ps(p)  are polynomials 

in the components in r. The quantity, K , , ~  (t) leeel is a 

bounded function for all. t. Also, each term in the summation 

converges uniformly to zero for a l l  t. Thus, the same may 

be said af the left-hand side. Q. E. D, 

L e m z :  a, b, o, d,cdZn with a . c c c d c - b .  If - - 
t e t r , d  , then x4,bq rd. If (\PV);, Converges in z c , d  

to zero, then { x +  q,) E, also, converges in to zero. -- - - -- 
LO 



- 
I 

I ,  ' ,  
4 . I l  , , 

1 I ' 

I I 

Proof : We again consider  j u s t  t h e  l a s t  s ta tement ,  
b 

Let m and k be a r b i t r a r y  nonnegative i n t e g e r s  i n  gn. Then, I ,I 

using the notation, descr ibed above, we w r i t e  

The q - m t i t y  i n  t h e  f irst  s e t  of b races  under t h e  summation 
' i  s i g n  converges t o  the  zero func t ions  uniformly f o r  a l l  t, 

1 .  

whereas the i p a n t i t y  i n  the  second se t  of braces i s  bounded 
, 

f o r  a l l  t. Thus, the left-hand sZcle converges t o  the zero I , . .  
. .  

func t ion  unifomnly fop a l l  t. Q. E. D. L 

I 

! I 

We have al ready noted that i s  a l i n e a r  space, which , 
8 .  . 

means .(f:among o the r  thrngs ) "cat it is c losed  under the  opera- . I .  
i '  
1 : 

t i o n  of a d d i t i o n  and multLplication-by-a-coaplex.-nwnber. l 1  ' I  . I  

I I 

We shall l i s t  i n  a moment'a number of  opera t ions  t h a t  may 1 

I 

be applied t o  . But, first some terminology. 

A l l  opera t ions  discussed i n  the report are understood 

t o  be single-valued. A n  opera t ion  (or,mapping) ?$ f rom a . 
s e q u e n t i a l l y  cmplete  t o p o l o g i c a l  l i n e a r  space U i n t o  

another  such space E!I is sa id  t o  be l i n e a r  if f o r  every 

s c a l a r  d and every two B&ements rQ,Y C d one has 

? ' ? W + u ) =  nq+ny 643, 3 t . q )  = q y e a  
i 

i s  s a i d  t o  be continuous i f  f o r  each  sequence {yy) ; . ,  I 1 

: . .  
that converges in the topology o f  4 t o  t h e  l i m i t  V one has 

r 
I I: 

I? 

t h a t  {filp9}#t, converges in  t h e  topology of' the  space B t o  

. It is. a fact that a linear o p e r a t i o n  is .continuous 



if it is continuous at the origin, 9 is said to be a ' 

topolog$cal isomorphism from CZ onto 6 if it is one-to- 

one and i$ 7t and its inverse are both continuous linear 

operations. (Henceforth, 'when we say "isomorphism" we shall 

. mean "topological isomorphism, " ) 
Now, for the list of operations. We identify each 

operation either as an isomorphism or as a continuous linear 

operation. The proofs of these properties are given in 

Appendix A. 

1. For T e R", t.t ct) --+ \e C t - ~ l  is an isomorphism from 

b r,b onto 2 a . r  . 
2. I c+> -4 * (4) i s  an isomorphism from Xa,b  onto L-b,-r 

3. For .r e bL" with i 7 0 , *(*) - 7 (.rt) is an isomorphism 

' from onto tShjqb. (Here, no component of s is allowed to 

be zero, ) 

4. Let P (t) be a polynon&al in the components of t, 

Then, Q+ pq is a continuous linear mapping of d l ~ , d  5nto Ll,b 

for every a end b such that a'< c < d < b, 

. For d~ cn and y = Red , V(t)-+[e-"] (t) is an 

isomorphism from a. ,,b onto ba+Y, b+u . 
6. Let X (t) be a smooth function from & into R' such. 

that it and a l l  its derivatives a are bounded functions, 

q--,hq is a continuous linear mapping of 2 4 . b  into L n . b .  

7, q -4 ~,*q is a conti~uous linear mapping. df t 4 , b  

into L , b .  



7 
3, The Dual Space $a,b. 

/ . '  
! . ,  
I 

A functional on a space Ct i s  s mapping of U i n to  c:. I 

i 

Thus, it i s  a special  case o f  an operator and we define i t s  I ' 
: I 

l i n e a r i t y  and continuity as we did fo r  operato~s.  
I 

. -  
7 4, s h a l l  denote the space of a l l  continuous l inear  

functionals on %%r. It i s  ca l led  the dual of de.,.. The 
9 

complex number tha t  an -f c k+ assigns t o  s lp 6 2 4 , b  i s  

denoted by < f . , Y  > = ( f (t), (t) > (We m i t e  f ( t )  t o  

indicate the independent variable o f  the tes t ing  functions 

for 2.) Two numbers f and 8 ,  of &b are  said t o  be equal 

i f  < f, Y ) = < 9 , Q > f o r  .every u E %.,b . Addition and 

multiplication-by-a-complex-nwnber are  defined by 

where Q traverses Xqr . Clearly, zbb i s  closed under 

these operations. With these operations, f ;  becomes a 
. * 

l i nea r  space. Some other per t inent  f a c t s  are the following. 

I. i s  a subspsce o f  8' , the space of distr ibu- - 

t ions.  This follows from note I of Sec, 2 . We may, there- 

fore, use a l l  the definit ions,  propert ies ,  'and operations 

that  ' are applicable to  d i s t r ibu t ions ,  

11. The space 4' of d i s t r ibu t fons  of bounded support 

k3 



7 
is a subspace of r&,b . This is because the space ,4?? of 
smooth functions contains k a , b  and because convergence in $s,b 

1. 

! I 
i , I  implies<, bonvergence in E . (See Schwartz 12 , VoLl', PO 88.1 , ,  

, 

111. If a C c 4 d 4 b, then &:,b C x;. This follows 
' .t 
I 

from Note I1 of Sec, 2. 
7 

IV. If f e d c , d  and if f (t) = O whenever any component 
3 

of t is less than a given number, then' f c Xc,t, for every 

b > d . If f G ; ~ k r  and if f (t) = 0 whenever any component 
9 

of t is greater than a given number, then f E %a,* for every 

a < c .  

V. If f is a locally integrable function such that 

f / is absolutely integrable over &? , then the regular 
.. 

7 
distribution f is in hr,b.  

3 

A (weak topology) is generated in La,, through the 
following system of seminorms. Each T in de4,, produces a 

7 
s eminoms e, ( f ) on %$L through the expression, 

Note tha% the axioms for a seminom are satisfied since 

and 



I 
I 

all f , such that I i I 
. [ I  

2 cj . I  I eqj (f - 63) (j = 1, 2, . a .  , N ) ,  I f  : I ,  
. / I  I 

3 .  

i i l  

where the comprise a finitecollection of seminoms . I 
I 

-----* -a 

I 3 '  

! P t r L , .  

j r  
e '  
( 9 ' '  

! ' : I  
< 

I 
* j s  

The f q  comprise a separating set of serninomns since, if 
. jl 

and the Ei ape positive numbers. The [weak) topology T, 
3 

of $:,t, is the set of all neighborhoods in &,b generated by 

A !', r a  

f f 0, there is some norm IP in for which < f,q > f 0. ;, . 
: i ;  c 

9 h. 
r 

the pq ( f ) . Such neighborhoods will be called T,-neighbor- I I , , 
* I  I 

hoods. I . /  
I I 

! I  I 

1 ' , I  

A sequence { f,):=, of distributions in L.,b (or, more , , !  I 

1 ,  

generally, a directed set f f ~ ) , , + ~ )  is cal led  a Cauchy 

Let g be a given distribution in L.,I, . d neighborhood n " ; ;  

7 
of g is any subset of that contains a set consisting of -' ,I 

I ,  

' 4 1  

1 .  

sequence (or, respectively, a Cauchy directed set) wXth '. I 
-.L 

t 
respect to the topology Tw if , f o r  each T,-neighbo~hood s ! i u ; l  A 1 

. , 
of the zero distribution, there 0xis.t~ an integer N such 

. ! 

7 : ': ., ' - 
that, for all v and p greater than N, fy - fp is in s . 

4 i l ! i .  
Thus, (f,):, is a Cauchy sequence if and only if for every , 'i! i;l 

Q the corresponding seminorm Pu (fv -f, ) converges to zero 

as u and ,u tend to infinity separately. This is the same 
,: 

I , ! I  

9 ' : i  

as requiring that for each 14 the numerZcal sequence 
1 

f 4 f u , ~ ) ) z l  converges. The limits of a11 such numerical I 

I I 
. I! 

15 
' I  I< 

* ; 1; 

, i, 
. .  t !  
: I  ' i  

I . .  
i :  ,: i 
q '  , ; 
i !  ; ! 



sequences define a functional on %aS . It is a fact that 
this functional is linear and continuous on %&,b and is 

9 
therefore, in d e , b .  (This can be established by adapting 

M. S. 5rodsku:'s proof of the sequential completeness of 8. 
The details are given in Appendix C, ) Thus, every Cauchy 

sequence with respect to Tw possesses a limit, which is 
7 'I 

also in &r,* , In other words, &,b is sequentially 

complete with respect to Tw . I Y is a Cauchy 

sequence in &; with this topology, we shall say that if,);, 

converges in &;, t b  f. (We simply say "converges to 

zero" if f is the zero distribution.) 

9 

A subset Bt of , is said to be bounded (with 

respect to X w  ) if, for every 14 in x a , b  , 

exists (i. e., is a finite number.) 

> 
A strong topology can also be generated in &,,I, by 

using the seminorms P, (f), which are defined as follows. 

For each bounded set B in &a,b , 

f , ( f )  = sup I c f , q > (  
'4 e 0 

Notethatevery fq(f) is slsoa ~,(f). WhenBis a 



still true even when B is an infinite Set. Indeed, let us i : I  
, . 

m I t , L  : . assume the opposite. Then, there exists a .seqUehCe ('Q~1r.l i : :  

of elements in B such that Yy ( qp) C C, ( Y = 0, 1, 2, . . . 1, 
the C ,  being independent of ,u , and such that I< f , % > I  -+ oo 

as ,u --t . Therefore, we can choose a subsequence (4  I.,:, I .! I ,. . i . 
,. . ;' ; 

Then, ,:I! 
! I 

I >  > I (3-3) I 8 %  . / I  

8 -  . 
' , I  

" I !  Moreover, f yfi)b, converges in d - , b  to zero because 'for , I 

I I ,  
I - 

each Y 
I I 

I 

I C v .  
Ty cup, - ~ ~ ( 4 )  = - A' ------+ 0 

as p + ~ .  Since f is a continuous functional on x a , b  , 
f (  f, J;));, converges to zero. But, this contradicts (3-3) ,  

, 

which proves that p,(f) must be ffnite. 

9 . . a  i . ' .  ' We can construct a system of neighborhoods in dea,b , . .  .4  

t ; ' .  
1 ,  

by using the seminorms (3-2) in precisely the same way as I ! :  
, . 

i I 

was done before using the seminorms (3-1). The resulting 
, 

collection of neighborhoods constitutes the serong topology 
7 ! ! , ,  

Ts of Z a , b  . Obviously, the weak topology Tw is a subset of I 

! f ': 
I '  

the s tron@; topology Ts. ! .  I 

Similarly, we can define Cauchy s equencles with respect ! I , !  : 1 ' 4  , ,  
1 I 
i '  I I 

I . '  

17 1 ,  ' 
I ' 



1 I 
I I 
I I 

to the strong topology Ts as we did for the weak topology I I  , 
8 1 )  

I .  
1 ;  

Tw . A neighborhood with respect to Tw is clearly a neigh- , 
I . I  

borhood with respect to Ts. Therefore, i f  a sequence is a . I ' i  
I 

Cauchy sequence with respect to Ts:., it is certainly a Cauchy 5 . . ' I  
, ' .  . 

E I ,  ' i  
, I 9 T ,  sequence with respect to Tw. By the sequential, completeness I l l  . $  

of h$ with respect to Tw, it fo l lows  that Z; is sequen- , . I  : 
: ' I ,  I j !  a 

t i a l l y  complete with respect to Ts . I 

A subset B f  of dl,  is said to be bounded with respect 
3 

t o  T c  if, for every bounded set B in L a , b  , 

sup . QB(f) 
f e B '  

I b 
I .  

is a finite number. 
, . 

Fde shall not make use of the strong topology in our , . 
' . 

subsequent discussion. Whenever we speak of "convergence * / I  . . ,  . r ' I 

in L;," it will be understood that this is with respect 
to the weak topology Tw. 

3 
: / I  

I t 

We now relate the space L G , b  to the space 8'. First ! ,I 

note that [e-&] f c A' for a 4 0- L b if and only if 1 ii 
' 1 '  

7 -- - i ': , 

f / Xqb e d :  Indeed, assume f /Xa, CJ: We may write 4 1  
! 8 :  

1 I .  
I 

where the quantity in the first. set of braces is a bounded 



Function. Thus, [e*(lt] f(t) is in $'. To prove the 

.converse, we set 
I n 

K4,b Ct) 
= { Olq(+,) + 0 b , ( b ) )  

l'= l 

Bere, $., is' a smooth function with a support bounded on 

the left and equals exp (-apt,) for t,>l. Also, tjb, is a 

smooth function with a support bounded on the rizht and 

equals exp (-b,tu) for t#<-~., SO, f / x R 1 b  is a finite 

sum of terns, a typical t e r n  being 

o,, Q,,, 
f - a .  0%- f exp ( - a ~ - % - = - - ~ ~ t . ) ) {  exp . (-a,%, -h,- .. .- ahth) "'. 1 - 

The function in the second set of braces is smooth and 

bounded over . Moreover, under the assumption that 
[e-ct)f(t) is in 8'for a 4 o d b, the distribution in the 

first set of braces is in A'. Thus, f / ~ . . b  is also in $'.' 
This completely establishes our original assertion, 

3 
Theorem 3-1 : . g f E dbp, then [e-=' 1 f E $' foT 

a 6  r < b $2, equva1entI.z ; f / ~ a , b  E 8'1. 
Proof : By lemma 1, [e-ut] E t q h  whenever \Y €$. 

Then, [*e-ct] f is defined as a functional on through 

the, equation, 



Clearly, [e-ct] f is a linear functional on $ . Mopeover, 
by the last statement of lemma. l, if { ')'PI,:, converges in . 

$ to zero, then 

Theorem 3-2 : - If ~e-=~]f e A ' - for a 6 a + b (or, equi- 
valently, if f / r , b  p ' ), then f E L:~ - for every c - and 

d such that a r : c  4 d 1 b, -- 
Proof : By lemma 2, Xa,bq e whenever 0 L C , ~ .  

We define f as a functional on by 

f is clearly a linear functional on %+, . That it is a 

continuous functional on follows from the second state- 

ment of lemma 2. Q. E, D. 

3 4. Some Operations on z a , b .  

,'G 

# .  .. , , 

1 . .  . i ,. , . . ..! , 
d !  : . I ,  

I , . r i  

I . 3 .  

! .  ; . :  ! i i . !  
i 1 I ,  . . 8  4 .  

' : , ,  i .  , ! 

; ,  ! j  
! , ,  i . !  

. , 
i . : !  
! '. 
' ' ,  , .  
t 1 
5 '  : :  . , ,  , , 
! ,  . I.! 

I )  
t - i  
{ j l '  

I . .  
. .  , 
; . / . ,  , 

I .  

3 i I Since an arbitrary f in &,, is a distribution, we may 
I g j  
. , I  

' 9  1 :  
perform any operation on f that is applicable to distributions. : , I  . ,  I 

3 

However, the resulting distribution may not be in dt,,, . 
9 

We have already mentioned that the space is closed under 

the operations of addit ion. and mult9pli cation-by-a-complex- 
1 

20 



3 
number and t h a t  &,I, i s  a l i n e a r  space. We shall now des- ' 

c r i b e  some o t h e r  operat ions of i n t e r e s t  t o  us, fjut f i r s t ,  

some r a t h e r  general  remarks a re  i n  order.  

Let X be a continuous l i n e a r  mapping of % , d  i n t o  &~,r .  

(Here, we do not place my r e s t r i c t i o n s  on t h e  real poin ta ,  

a, b, c, and d . o t h e r  than  a < b  and c 4 d.)  We def ine  the 
7 

ad j o i n t  opera tor  %' ( a c t i n g  on &a,b by 

7 
where f e bala and ip t r a v e r s e s  a l l  of k r , d .  !l%ust %(e is 

i n  o f e r  and the  right-hand s i d e  has a sense. T h i s  equat ion 

defines %'f as a functional on &,r.  

? 

Actual ly,  7' f 2 member $.~,d . Indeed, l e t  

4 , p  e C' and ' 9 , ~ e $ ~ .  'Then, 

which shows that n' f i s  a l i n e a r  functional on b r , d .  

Moreover, l e t  4 ,  converges i n  $ ~ , 4  t o  zero. Then, as 

$ - - b a a  

3 
and t h i s  shows that %! f i s  a 



3 
~ h u s ,  rj)f i s  t~1.117 i n  bCp . 

Furthermore, the f a c t  that  7'! a continuous linear_ 

_mappin); of & , d  into 2 n . b  implies tha t  T' i s  a continuous 
7 

l inea r  rnap~inp, 1; i n t o  L c , a  . To show the l i nea r i t y  of 

n', l e t  V' L c , d ,  4,e c ' ,  and f,,g E. L:,~. Then, 

9 

'Po show i t s  continuity, let (f,),:,~ converges i n  t o  zero. 

Then, as V --+a, 

' Similarly, M .n an isomorphism f r o m  LC,, onto Xa,b , 
7 

then 3' i s  an isomorphism .from Q Q  ~ : , d  . Indeed, , 

by the def ini t ion of an isomorphism, i s  a continuous :! 

l inea r  mapping of L c , d  onto 2 a . b  and there exis t s  a unique 

. inverse operator %-I f'or ?? , w h h h  i s  a continubus l inear 
' 

mapping o f  &I,) onto $. .,r . The ad joint  ( ?"I-' )? to n-' 
is d e f i h e d  by 

7 

where e 2 and 8 e & . From our preceding resul ts ;  

( ?'I -' ) 6 ~: ,a and ( 3 ) 1 ia a continuous l inea r  mapping 



of d , r  onto .eh.,r . To complete the proof ,  w e  have t o  show 

that '  ( 3-' ) i s  t h e  inverse of  %' . Let = 3 Y or ,  

equvalently, 7 = ?"kJ7 and l e t  g = 3' f .   hen, from (4-1) 

and (4-2), we have 

which shows that f '= (3" '  113, . Thus, (x" ) f  i s  truly the 

inverse of 31' . This completes the proof.  

3 . .  
We now define a number o f  opera t ions  on k a , b  as the  ' , 

a d j o i n t  operat ions of those given i n  See. 2. Our d e f i n i t i o n s  
3 

conform w i t h  those that apply t o  d i s t r i b u t i o n s  i n  3 and 

t e a  t ing funct ions  i n  $ . We assume, throughout t h e  fol lowing 

l i s t  t l ~ a t  f L:,~ and 3 7 where ?? denotes t h e  

p a r t i c u l a r  opera t ion  on (9. under considerat ion.  

1. For  '7 R~ , f ( t )  + f (t-g) i s  defined by 

7 7 

It i s  an isomorphism from &,t, onto . 
2. f (t )+r(-tj is defined by 

7 3 
It is  an isomorphism from &.,b onto t-~.,-,. 

3. FOP c dn w i t h  T > O ,  f ( t ) - -+ f (+ t )  i s  defined by 



7 7 

It i;a an isomorphism from $,,L onto % ~ ~ , r , + t ,  - 
4. Let p be a polynomial in the components of t . 

f--;c 6 f  is defined by 

<6f,*> = < f s P 4 ! >  
3 

It is a continuous linear mapping of Zqb into ~ : , d ,  where 

5. For 4 G en and y = Red. , f - [eudt ]  f is defined by 

< f, v > = < f, [ e e d t ] q  > 
7 7 

. It is an isomorphism from %,t,b Onto %a-%,b-% . 
6.  Let X be a smooth function from d ln  into R' such 

that it and all its derivatives are bounded functions, 
I 

f+Xf is defined by 

4 hf,(e > = <f ,hrQ > 
3 3 

It is a continuous linear mapping of b a , b  into ba,b . 
+& 7. f--, D f is defined by . 

141 4 
< ~ ' f , i p  > = < f ,  (-1) D LP >. 

3 7 

It is a continuous linear mapping of &,a into d=,b, 

5. A Boundedness Proper ty  for Distributions in a;,b. 
: 
i / ,  

7 
Theorem 5-1 : F o r  each f e x r p  there exist a nonnegative 1 -- - 

: $ 2  . 
inte~;er r e and a *dsitive constant C e R' such that, for I -- 7- - I .  

i i '  

all 9 in Xa,b , ' 
l:,' 

, 
I > ,  

I 

, 

t < f I 4 c Tp(lp) .(5-1) ' .i 
24 ' j 

1 I 

i 
I , /  -.I. 

I I .  
1 ,  1 



consequently, f y,,);-, converges in Z R , ~  to zero. Since f is I 
i. I 

" 1 

4 ;  , 

I - / I 
i 
I !  

I I 

+ ,  * 
< .  " ' 

a continuous functional on &,b ," 
< f, 3; > ----, 0 (5-3) 

as Y ----+ a. 
On the other hand, (5-2)  implies that 

l < f , 3 ; > 1  > 1. 

. This contradicts ( 5 - 3 ) .  Q. 3. D. 

I '. . 

i. I 
I 

i 
I 

.' ! 
a .  

a .  

" I '  

6 .  The Distributional Two-sided Laplac3 Transforniation L. 

Proof : Asswne that no such relation (5-1) holds. ,, , - ' / 
! A .  : a  I 

1; Then, for each nonnegative integer 9, there is a d ,  e g a , b  ' 1  : , I , !  , 
such that dl . , :  1, , l i  , 

I I< f, >..Y &(c) ( 5-2 
L e t  y9 e $*,a be defined by 

'4v J: - ~rya,Cc4v)  

From the definition (2-2), we clearly have that 0 4 ye ab yt 6 Tz *". 

Thus, for p 4 Y ,  
& O ' v \  - I t :. I 

bjA ty,,') ( (b) = Y YY(149) Y a  -- 
I !, 1 

, :. t 
cb ; ! l  I 

Hence, for each fixed p , {$~~')},,, converges t o  zerb and 
1 1 ,  . I 

We turn now to the (apparently new) defini"con of the 

Laplace transformation . We shall' sag that a distribution 

f is L-transformable if thez?e exist some a, b E  dt'" (a4b) 

such that i P i:~,. In this case the Laplace transf o~rn f 

of f is d*fined as that function F(s) from a subset of cn 



i n t o  c ' ,  given by 

We s h a l l  a&sa..sp8ak of  the  tube of existence fif , which 

i s  a s e t  i n  C" defined 'ag follows, A point  s E en i s  in 

i f  and only i f  there  ex i s t  two points  a,b E Rn ( a  < b), which 
3 

depend i n  general on s, such that a ( Re s < b and f E k a , r  , 

The right-hand s i d e  of (6-1) w i l l  have a sense as , the appli-  
1 

ca t ion  of f C 4, on [e-st] G &, i f  s E .  fife Renoe, the  nama, 

"tubs of existence." Note that by this de f in i t i on  %is an 

open s e t  i n  Rn . In ce r ta in  cases the right-hand s ide  of 

(&I) w i l l  have a sense on t h e  boundary of fif, but  we w i l l  

never includei this boundary as p a r t  of fife 

h'henever we write f it s h a l l  be understood that f is  

mtransf ormable and tha t  L f exists i n  the aforementioned 

sense, -hf s h a l l  always designate the tube of existence, 

Theorem 6-1' : 2 convex. &. 
9 1 

Proof  : a Assume that  f E %., and a l so  f P zytb, v h r e  - 
5 

a < x < y < b.. W e  s h a l l  s h o w  that f k $,+. 37 t h e  def in i -  

t i o n  of fLf , tb.is will prove that fi+ j.s 3. convex se t .  

. Let X (t, ) be a smooth funct ion from R' i n t o  such 

that i t  and $11 i t s  der ivat ives  a r e  bounded functions on R%. 

Also ,  assume that X ( t Y )  = 1 f o r  t ,>1 and X ( t , )  = 0 f o r  



t, < -1. Set 

and f = X f  4- (1-h)f, 

,' 
3 

Since f E it follows from item 6 of Sec. 4 that X f e ofajx 
3 

Hence, by note IV of Sec. 3, hf d&,b.  R similar argument 
9 

shows that (1-k)f E bQ,p. 9. E. D. 

The Laplace transformation is a linear operation in 

the following sense. If L f = P ( s  ) f o r  s r fit and L 3 = G (s ) 

for s E n9 and if fi+ ltn 4 is nonvoid, then for 4, p c C' we have 

for at least all s E nf n A$= 

Tl?e classical two-sided Laplace transf omnation is based 

on the integral, 

If f (t) is a locally integrable. function such that, for all. 
8 ,  

* $ 1 .  
. r e a l  in some open convex subset 5 of Rn , [e-"t 1 f (t ) . I  . i, ' 

is absolutely integrable on (R", then this integral certainly ! i /  
, I! 

4 , !' 
converges for all s such that Re s . In this case the ; i: 

: . I  - )I 

regular distribution corresponding to f (t) is certainly in I 

! 
I .  

4 
-C bktb f& each a, b ( ;(a C b) and the above integral can 

! 
I 

, . j  
I 

be interpreted as the application of the regular distribution . I 1 1  



f t o  the t e s t i n g  func t ion  ~ e - ' ~ ]  E dcljb (a  4 R e  s 4 b). 

Thus, t h e  classical Laplace transform or a f u n c t i o n  f ( t )  

. . that s a t i s f i e s  the aforementioned condi t ions  i s  a s p e c i a l  

case  of our distributional Laplace t ransf  o m .  

A s  i n  t h e  c l a s s i c a l  case,. F'(s )  is an a n a l y t i c  f u n c t i o n  

w i t h i n  t h e  tube of ex i s t ence .  Ta prove this we shall need 

W i t h  s being f ixed ,  l e t  A s, be an increment i n  the v th - - -- -- - 
component of s such that I A  syl 4 Y a, < Re s, - Y (  Re s, +Y ' - -- 
< by . F i n a l l y  3 - for A S ~  $ 0, set 

exp (-dsy.t;u) - 1 , 

' - L s y ( t )  = A sv [e-'" 1 

. . Proof : L e t  ' 

The d e r i v a t i v e  D: y,,, (t ) i s  a f i n i t e  linear combination 

of terms o f  t h e  forms, 



and 
-st 

-A ( s ) [ e  ] (-~a~)'-'exp (-~s,t,,) 

( 2 4 ~  < M \ ) ,  (6-4) 

where M y ( s  ) designates some m o n o m i a l  in the components of:.'s, 

of degreer As t ,  l ~ ~ , b ( t ) ~ $  (Yas, (t) tends t o  zero 

uniformly for ) a s y ( (  y . In other words, given an E ) 0, 

there e x k s t s  a T > 0 such that, for all It[ > T and for a13 

!AS,\ < y , we have that 

Fix T i n  this way. A130 as Ias,l--+ 0 ,  a l l  the .terns ( 6 - 2 ) ,  

(6-3), and (6-4) can be made less than E in magnitude over 

t h e  domain, Itj 4 T. All this s h o w s  that YAs, (t ) converges 
in La,+ to the zero function as ~ASY\---+ 0. Q. E. D. 

Theorem 6-3 th he Analyticity Theorem) : x' C f = F (s ) 

for s r fi+, then F ( s )  analytic mat and - 

Proof : Let a, b be real points in nf and r e s t r i c t  s 

and AS,, as in lemma 3. Then, by the linearity of f, 

In view of lemma 3, as )bs,l--bO the right-hand side converges 



which is equal to the right.:hand side of (6-5). Since s 

can be chosen as any point in by choosing a and b 

appropriately, the proof is complete. 

Corollary 6-3a : Under - the hypothesis of theorem 6-3 ,  

Our next objective is to relate our Laplace transforma- 

tion L to Schwartzts distributional Fourier transformation 
9 

3 (Schwartz 2 , Vol. 11). 2% denotes the space of 
temperate distributions on R ~ ,  where t is the independent 

variable for the corresponding testing functions . Let w e 

-$*,a shall be the space of testing functions f' (t,~) of 

rapid descent defined on a* x bCn, 

Lemma 4 : rf g c &  and y(t,m) $ $ t , w t  then, - - 

Proof : 'In the SolSowing l(w) shall designate the - 
function of w that equals 1 everywhere. The direct product 

g(t ) x 1 (w) is a temperate distribution over dl.. x fLn (Schwartz 

130) , Vol. 11, pp. 99). By the commutativity of the direct 

product, we may write 



Theorem 6-4 : - If L f = F (s ) - for s E fif, then - 

where w is taken to be the independent variable for the - - --- -- 
Fourier transform,' 

Proof : Let a, b, and a be real points in fif with 
9 

a c r < b. Consequently, f According to theorem 3-1, 

~e-"'] f ( t )  E A.. Since the Fourier transformation is an 
9 

isomorphism from oonto.itself, 7 {[eo6] f )  E A:. Thus, 

~ h 6  integrand inside the right-hand side is a testing function 

in 4,. Therefore, by lemma 4 the last expression equals 
1 

9 

(Note that theorem 5 1  implies that F(o + i w )  € J, .) 



Since cr can be any r e a l  poin t  i n  a,, we have proved ( 6 - 7 ) -  

,meorem 6-5 ( The Uniqueness Theorem ) : If f = F ( s )  

f o r  s G f i f  and Lg = G ( s )  f o r  s e n g ,  i f  fiq n a g  i s  nonvoid, 

and i f  ~ ( s )  = ~ ( s )  f o r  s ~ I l f i I f i $ ,  then f = g .  

Proof : Let cr be a f ixed  r e a l  po in t  i n  a+ n RS . - 
Assume f o r  the moment that F(s) = 0 on s?+ n fig. Then, by 

theorem 6-4, 

Since.  the Four ier  t ransformat ion  i s  an isomorphism from $' 

- onto itself, 

or ,  equiva lent ly ,  f o r  every  q 6 a, 

([a-d] f (t), q ( t )  ) = < rod, [eVVk' l  ~ ( t )  > = 0- 

But, [ e  -Ct ] Y t r a v e r s e s  all of ol) as  IQ t r ave r ses  a l l  

of a. Hence, f = 0. 

Now, assume that ~ ( s )  = G(s) f 0 o n + n J L g .  By the 

l i n e a r i t y  o f  the  F o u r i e r  transformation, 

By our preceding r e s u l t ,  f - 9 = 0. Q. E. D. 

32 



Theorem 6-6 (The Continuity Theorem) : { fp\vz, 
? 

converpes&%.,b&f for some a, btdEn (a< b),mif , 

-L fv  = F, (s'), then L f = F ( s )  e i i s t d  f911 & l eas t  a < Re s Q b, 

and { F s } convernes ogintwise the tube a 4 Re s C b - 
t4 ~(s). 

Proof : Since [e- '*]  is in for each s satisfying 
I__ 

a < Re s 4 b, this theorem follows from the definition of 
3 

convergence in b.,~ and the fact that b:,~ 18 sequentially 

complete. 

7. Some Operation-traasf o m  Formulas . for the Laplace 

Jransformation, 

FJe now list some operation-transf orm fo~mulaa . Each 
one is a d i r e c t  consequence of some operation listed in 

Sec, 4 except for tho f i r s t  one which is a restatement of 

6 .  We assume here that L f ( t )  = F ( s )  for s of i fand  

that 2 e dZn. , d % cn . Each forinula represents a continuous 

(linear) operation LV in the sense that, if {f'~):~, converges 
3 

in X Q , ~  to f, then {&?'I f,) ;-, converge pointwise to L'r) f 

in the appropriately transformed tube. 
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8, The Inversion of the Distributional Laplace 

Transformation. 

In this section we es.tablish necessary and sufficient 
I .  

conditions in order for a function ~ ( s * )  to be a Laplace I 
I 

1 

transfoi-m. The sufficiency proof of the following theorem 
I 
I 

provides a method for inverting the distributional Lqlace 

transform. ! 
- ~heorern 8-1 : A necessary sufficient condition. 

~A fmction F ( s )  &Q & the Ladace transform of _a m- 
tribution f that there &Q r% tube a 4 Re s i b (a < b) 

, on which F f s )  analytic and bounded. w c  or- 

I 

'I 
'i 

where a> ( Is1 ) is a v o ~ m o m i a l  in tsl li 
Proof : Necessity : If L.f = ~ ' ( s  ), then by definition - 

there exists a tube a 4 Re s 4 'b (a4 b) inside. the tube 
'I 

of existence for which f € %.,b . For a 4 Re  s 6 b, 



sup I xatb(tl D,*[edSt] I = [ ~ s u p I ~ . + ~ t ) ~ e - ~ ' ~ l  =[$]x 
t t 

where K R' is  a constant .  So, by t h e  boundedness p roper ty  

(theorem 5-l), t h e r e  i s  a cons tan t  C e R' and a nonnegative 

i n t e g e r  Y e 62' such that 

= c K max IS*] & P (  Is\ 1.. 
~&lblGu 

Sufficiencg: : We shal l  make use of the fo l lowing  

c lass ica l  f a c t .  If I G ( S  ) I  4 K/ for a 4 Re s 4 b and if 

%hen, 9 . ( t )  i s  a continuous f u n c t i o n  of t E ben and L ~ = G ( s )  

f o r  a t  i e a s t  a .4  R e  s < b. (The c o n t i n u i t y  of 9 ( t )  follows 

from the facts that the  i n t e g r a n d  i n  (8-2) i s  a continuous 

f u n c t i o n  of (s,t) E c * X  6Zn and that t h e  i n t e g r a l  converges 

uniformZy f o r  a $ l  t edZ" . That L9 = ~ ( s )  f o r  a < Re s < b 
i s  a consequence of the i n v e r s i o n  formula f o r  t h e  c l a s s i c a l  

F o u r i e r  t r ans fo rna t ion  ; s e e  Eochner [13], pp. 244 - 245, 

where we  use  the  f a c t  that '  on a 4 Re s 4 b a l l  p a r t i a l  
! :  i j ,  
L ,  

: I  !I 
I 

i ' i '  
d e r i v a t i v e s  up t o  the  second 6rder are a l s o  bounded by a , . 4 1  t 

polynomial of the same degree  as f,p ( 1s) ), i n  view o f  
! ,'i , 

Cauchyfs i r i t eg ra l  f o m l a , )  I ;  I I 
4 , i 

I 
35 1 I 

I 

1 :I 
! 

I . , {  



Now , s e t  ~ ( s )  = [i4] F(s 1, where k is a nonnegative 

integer in Since I F ( s ) \ c  $ ( is( ), we can m a k e  ' 

I G ( s ) ~  4 K/Is\"* (K being a constant) for a 4 Re s 4 b 

by choosing the components of k large enough. Thus, 

~ ( s )  = [ s * ] ~ ( s )  and by (7-1) we have 

and L 2 = F(S) for at least a < Re 8 < b. Q. E. D. 

If we are given an F1(s ) that satisfies (8-l), a 

possible means of obtaining its inverse -,Laplace transform 

is first to. construct a G ( s  ) as above, then- to evaluate 

its inverse Laplace transform by using  (8-2) or perhaps 

some table of classical Laplace transform, and finally 

to differentiate' according to ( 8 - 3 ) .  Of course, in 

practical cases this procedure may be very difficult to 

perform. 

. 9, Convolution. 

Before 3ta t ing  the definition of the convolution of 

distributions, we shall establish some facts about the 

. func%ion, 

4 
where 9 G and ci %a+ 

'., 



Proof : Let  t be f ixed,  l e t  A t  = { 0, ,* .,Q,A~, , ~ , - * * ~ o )  and. 

cons ider  the  function, 

q ( t + % + h t )  - q ( tw) a 0 ( A t , ,  7 = ( " )  A% - -u( t+r) ]  a-t;y ,.. . 

Clear ly ,  6 (~t, ,q) i s  a smooth func t ion  of 2 f o r  each f ixed  

A t y .  Assming .t; and c are fixed and using Taylor's formula 
, 1 :i 

w i t h  exact remainder f o r  A t y  as the  s ingle  independent , . 
a It 

' I .  . ,  
I . .  . 

v a r i a b l e ,  we  may write . I :  :; 

, .: 
: ,  : h i  

3 ? .  
'; 1.: 

, , ' , i :  
, ' i.. 

, . i i  

where g = { o , * * m v O , % , O ,  ' . ' , o )  

:. , 
3. , 

: 
, * !  

.: 

Moreover, 

K being some constant w i t h  respect  to C . Rence, 

.! . 

' f ;  

1 ( i .  
I .  

. '  I .  

I t  
Thus, as l~t*]  4 0 ,  6 (at,,  , T ) tends t o  the zero function 'i I ;  /I 

. I  

. 

. 
' .  

urdf ormly for a l l  2. 
I 
) I  

i 
. j -  
i l :  
' 
> l ; ' ,  

. I: 
1 ;.. 

, 

. 
' 

, , 

i . _ I  

, . . ! f i l . ,  
J r  ' ; I :  " ; I  : 

I , ! .  I !  
, . , :  : : :  ! ; !  

! '  ,. . .. 
! .  I , ' !  

, 1 : :  
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1, : J .i* I 
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Next, consider 

~ $ Q ? ( t + . ~ + b t )  - ~ t < ( t + ~ )  
%l,J q ~ - 1 : ~  at, 

t 

where Atv 4 0. The same argument as above shows t h a t  a s  . 

A ty ---+ 0 this also  converges to the zero function uniformly 

f o r  all. ~t . Thus, 

The continuity and linearity of $ 6  now shows t h a t  

a9 y q t + h t )  - )IrW 
= l i r n  a t v  4 0 A t, 

IQ ( t l-<cat)  - ( t + ~ )  
= l i m  < $ ( T I ,  

At+O atv > 

Repeatedly applying this lase result, w e  get 

Lemma 6 : ' y  ( t )  - is  - a member  of&' $a,b. 

Proof : In  view of (9-2),  3. (t > is smootlz. T-h-us, we 

need merely show that -it is bomded according to (2-1) .  

Using (9-1) and t h e  boundednsss proper ty  (5-l), we may 

wri te ,  for aach f ixed t, 

7-a 
.. . . . , . 

I 
; , ; i  1 , .  

. i:  . .. . , :  
, a : ,  . . 

,; . I .  I , :; . .  . z , .  . 
' , . . i* 

.!: . .. .;;" . .  
> . .  . , -  

. . , 
9 ' 

. . .  
& :  ,. 
i I . .  

', L '  
' :  I I . , .,! - 1  I 

j , .  ..: ; 1 . '  i 
, ,  . 
; , j  . ; ;  

. I '  
. '  
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Next, consider 

where A t ,  # 0. The same argument as above shows that as  

A ty 4 0 this a l so  converges t o  the zero f m ~ c t i o n  uniformly 

f o r  all, 2 . Thus, 

converges t o  a V ( t+o)  / a  r, i n  2,). 

3 
The cont inui ty  and l i n e a r i t y  of 9 .  dap now shows t ha t  

a y  9 ( t + a t )  - P ( t >  
= lim 

aty at,+o a %Y 

( t + c r +  a t )  - IQ ( t+z)  
= lim < 3 ( Q ) ,  

at+o aty > 
' f ! ; 
1 

" /I 
* I !  

I . : I n  
Repeatedly applying this l a s t  r e s u l t ,  tre get (9-2).  Q.E.D. ii 

I 1 
Lema 6 : ')' (t) - -  is a member or Zab. r i' 

I ,  
I' 

1; . 1 

Proof : In  view of  (9-2), ')' (t;) i s  smooth. Thus, we I 
i i ~  

need merely show t h a t  it i s  bounded according t o  (2-1). i 
I 

I !  r I 
:. 

Using (9-1) and the  boundedness proper ty  (5-l), we may ,! . i 
" I :  j 

: . i l  3 
write, f o r  aach fixed t, 

'1 I '  1 , ' I 
, r 

I 

[ ) b , r ( t l ~ ~ ( t ) J ~ I $ , b ( t ~ c ~ v { ~ ~ ~ ( t + ~ ) ) l  (9-3) * 1 1  t 

I '. 
, 
1 .! 

38 I / t  / ! 
1 .  

, .i. 
1 I 
4 

I - 
;1' I 



Here, the Cj+4 denote the constants given in (2-1). More- 

over, as a function of (t,q) e 6 t - X  R~, 

, 

C max sup 

is clearly a bounded function over every bounded domain. 

Even more is true. It i s  bounded over all of d ~ _ ~  x 62". 
To see this, we may assume that t, T , a, and b are in d?' 
since (9-4) is simply a product of such one-dimensional 

xar(t)Ka,b (c) 
c,4* 

factors, We then consider the following possible ways that 

( t , ~ )  may approach infinity. (i) For t > 1 and % > 1, 
(9-4) equals one. (ii) For t > 2 and Is!< 1, (9-4) remains 

bounded. (iii) If t -+ oo and z -a such that t + 

oclil&r = 

remains bounded, then (9-43 approaches zero since a < b. 

\,Jt+%) 

(iv) If t ----+@ and 2 ---t - m such that t + T -+ ao , then 
(9-4) again approaches zero since a < b. Because of the 

symmetry in the f o m  of (9-4), we can make similar s ta te -  

ment$ for the corresponding f onr cases when t --+ - o6 . 
We can now conclude that ( 9 -4 )  is bounddd for all (t,~). 

Thus, the right-hand side of (9-3 ) is a finite number, 

which proves that (t) satisfies (21. Q. E. D. 



L e m a  7 : Let 1 %)Zl converges & Za,b to zero and :,Iq 
let - 

, ( ' 1 1  
I I 

where 9 G &:,:r . ,Then, {$)- V Y I I  - also converges i.,, $CJ zero. , ; !  ; I  

1 I , !  

; < , ;  . '  i 
The proof of this lemma is almost identical to the ; I - ,  ! 

' -1, 1 

I ! ;, 
preceding proof. In this case we rely on the fact that 

for each fixed 3 and k and for V - - - = Y ~  the functions, 

K,,b(t+z) D: ~,1 \p , ( t+ .c ) ,  ; :,I:; 
. , ' I 

; 1, .; 
: I  : I  

converge to the zero function unif'orrnly for a11 (t,~). ! I 

1 j : j  
We.turn now to the definition of the convolution of ; I 

"i :, 
, . 
I? 3 -  

two -transformable distributions, f and 3 . Let .l f and 1 i 
i l i  

L9 exist for s E and s cs respectively, and let 8 ; !  
I ' I '  

" :1; i i 1 ' 
; 1 

cflfnLL,be nonvoid. L e t  a and b he arbitrary rezl polnts 
. :r ! 
l i  

in +n a9 with a (. b. We define tho convolution P A 9  as 'i : 
I / j j3 

a functional on x a , b  by I, ,I I I 

' I 1  
I 

1'; 

( f 3 1 9 , ' P  > = < f ( t ) , < s ( q ) ,  ~(t++)>) ( q E g a , b )  (9-5 ) J i r  I' I 
1 ! 1 .  

7 I l l ,  
The right-hand side has a sense since f E &q, and, according 

",I it 

I .  
4 .  

to lemma 6, < g ( d ,  q(t+~)> %$b. Actually, is a J:I 

distribution in x;, . Indeed, its linearity as a functional 

on &,, is obvious. Moreover, by lemma 7 and the continuity 



of f as a functional on %&,I,, we have that, if {%):, 

converges in 2 4 )  to the zero function, then 

as Y---+a. Thus, f59 is a continuous linear functional. on 

zap as was asserted. 

The convolution of distributions can be defined even 

when the distributions are' not -transf oimable ( s e e  Zernznian 

/81, chapter 5 )  but we do not do this here. 

Convolution is a linear process in the sense that, i f  

d y  g: Q @', if f r  9, and h are distributions whose Laplace 

trmsf o m  exist for s E a+, s e and s e l z h  , respectively, 
and if Jl+ fl fig nhh is nonvoid, then 

f+$(d$ + gh) = 4 f - q  + PfSCh 

and 

(.df + g g  )$~h =df'%h +g9<:-h  

Under certain restrictions on f and 9, our distributional 

convolution f+:-g is equivalent to the classical convolution. 

In particular, assume that f and 3 are'looally integrable 

functions from @ into C' and that f / ~ , b  'and $ / h a , b  are 

absolutely integrable on R* for some a, b &en (a C b ) .  

Then, for Y E o&p we may write 

. . 

. ,  , ! : .  
. 

!.. 
~, 1: 

.! I 
, , j  

' . I ,  

. 
, 

: 
. 
, . t  . ;  

( 0 ;  I 

; :  , . 
; I ,  . 

I . 
. .  i ,. . 

' .  : 3 .  
' 

, ,. !! 
* 

5; 1 '  i : .. . ,  , . 1 ' 1 ; .  , 

. , , ;  ; ;,I . 

' ; . ; . ,  .! :, 
, I ,  : I  j I 

t .  I ' I  

: v ?  

: , . : ! ,  
' / : . I . ,  ; 
, , ! . a  

. I  , . , 1 :  : 

j ' !  , 

,;.I , , '  
!. , 

' ' 1  , , 
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1 , ,  

_ . I . :  
, i :  

. .  1. : .  
-: , =;:/ :: 

!. 

I '. 

; ' , ;  1 ;  
, \  [ ,' 

. !  , 
i ! i  ,' 

, . I . '  

. . j . ;  
I 

' .l.i 
. , :; 
i .  . . . I ; ,  
. .. 

. ; I  I 
'. ;{: !, 

1 :, 
( , ' I  

i I 

, 
i , . .ill. 
G 3:'. 
: . :it' , 

.11 
, 1 1 : :  ::I: .. - 
, .  ;I,; 
, , *  

. . 
. ' , I  

' I ,  

: 1 
, b' . 
! 

' ' I  
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i .!, . . 
I .. 
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The last integrand is locally integrable as a function of 

( t ) .  It is also absolutely integrable over the (t,~) 

Euclidean space. (Indeed, 

The first factor on the right-hand side is integrable on 

the (t,f) space whereas the second and third factors are 

bounded and continuous on this space.)  Applying the change 

of variable x = t and y = t + ri: and noting that the Jacobian 

determinant equals one, we conve.rt (9-6) into 

<f-:r$,q)= ~dg.Sf(x)9(y-x)~(y)bx = < {f(x)$(~-x)dxs (Y)). 
P* P" 6t" 

Thus, we may write 

En 

where the right-hand side Zs a Locally integrable function 
3 

in EKp~esslon (9-7) is the classical form for a 

convolution. 

The Laplace transformation converts convolution ihto 

multiplication, as follows , 



Theorem 9-1 : Lo.t; f = F(s) - f o r  s E &  and L3 = ~ ( s )  
i I for s e ng . Also, assume that &+nlclg is nonvoid. Then - -9 

L ( ~ + $ Y )  = F(S)G(S) ( s e  -aFnhy 1. (9-8 1 

t'i 
Proof : In the definftion of D:-$ , the points a and b : , I  - * 

' a  I 
i 

c .  

(a < b) can be chosen arbitrarily in q n A 3 .  Therefore, : / ' I  1 ! 
% * 
I '  (f++3 ) exists for s B Hence, 

I 

' .{ ' 

S* I 
' 1  1 ! l l ; #  

We can use this result to prove the commutativity 

and associativity of our convolution. 

Theorem 9-2 : ,Under - the hypothesis - of theorem 9-1, 

f-:~ g = g $:-f (commutativity). (9-9 1 

If in add i t ion ,  L. h = ~ ( s  ) . f o r  s e fib and nf fing is -9  - - - 
ponvoid, then 

I i 
(9-10 1 - fs:-(g+i.h) = (fs:g)-:th (assooiativity). 1 - 1  

:! 
I .  

,Proof : From theorem 9-1, we have 



Equation (9-9) now follows from the uniqueness of the 

Laplace transformation. 

Similarly, 

{fa(g*h)) = F ( S )  ~ ( 9 3 : - h )  = F(S) G ( S )  H(S) 

= { r . ( f a 9 ) ) ~ ( ~ )  =/,{(f*g)~h) ( s e f i + n + n f i ,  ) - 
1 ;  I .  

The uniqueness theorem now implies (9-10). Q. E. D. I j :  
I , ' ,  : 

7 
? ,  

We can now conclude that d+b is a commutative algebra i n l  

, ; I  ! 
of convolution having the n-dimensional delta functional 6 (t ) I ! 

:+;: 
as its unit element. It does not have any divisors of zero. s 1 ,; 

I 

. Indeed, if f3:-3 = 0 ,  then L(fi:-9) = ~ ( s )  ~ ( s )  = 0 for ! ' 
9 1  ;; 

S e f it:nfi3.  By the analyticity of F and G, either F(s) or ! ,. li : 
! 

G(s) ( or both ) equals zero on +ring., By the uniqueness 

theorem, either 9 or 3 (or both) is the zer.0 distribution. 

Convolution is a continuous operation in the following 

way. 

9 
Theorem 9-3 : - L e t  {f Y \ -  V = I  converge &g zLlb to f 

9 

l e t  g 6 L:,~. Then, {f,+rg)y:, - converges $a ,~  - to f t 9 .  

proof  : L e t  IP E. Xa,) . In view of. (9-5) and lemma 6, 
we may write,. 



Equation (9-9) now follows from the uniqueness of the 

Laplace transf ormati on. 

I r 6. 

I I '  

The uniqueness theorem now implies (9-10). Q. E. D. I : 
i 

7 \ .  > 

We can now conclude that %aor is a commutative algebra 

of oonvolution having the n-dimensional delta functional b ( t )  I 1 
1 , .  

as its unit element, It does not have any divisors of zero. 1 ! ' 

8 .  

. Indeed, if f-::-S = 0,  then L(fsb3) = p ( s )  ~ ( s )  = 0 for : I  , 
4 ,. 

S E fif fin3. By the analyticity of F and G, either ~ ( s )  or 
! I' ,I ,I 
1 i 

~ ( s )  ( or both ) equals zero on n4-nSry., By the uniqueness : 1. 
I :  

,,; theorem, either f or 9 (or both) is the z e r o  distribution. ! ! 

Convolution is a continuous operation in the following 

way. ' I ,  ' 
I j 

' ',I. 
we may write,. . , , 1 ~ ,  

' ' j ,  
' ! 

< , =  < , > , >  = < f~cg,V) * Q* E* D. ! 9 

. . 
1 

44 ! 
' i 

1 

5 
Theorem 9-3 : Let ffv\9:l converge & f and 

7 

i 
i 

i i ;  
i 

let g G$,:,~. Then, {fy+9),~, I' - converges $4,b - to fC9, t 

* I! I 

!i 
3 .  1 

proof : Let  cp t Yatb . In view of (9 -5 )  and lemma 6, i: ! 
I \  . 



PART 

THE D.ISTRIBUTI0EAL PIELLIN TLSANSPORMAT ION. 

10. The Testing Function Space m a , b  

(Rn+ shall denote the open domain 0 < x < m . The 
change of variable,, x = em* , t = - l o g  x, will be of im- 

portance to us. As t traverses CR'" , x traverses G .  We 

set sqL(x) = Kq ( -  log X )  . Thus, 31\,b (x) is a smooth positive 

function defined on a . Moreover, 

where 

m,, is the space of all smooth functions 6 ( 7 )  . -. defined 

on with Values in C' , w h i c h  satisfy the following s et 

'of inequalities. For each fixed k, 

where KQ denote constants that depend only upon the choices 

of k and 9. 

8 

mnris a linear space over the field C . Any smooth 
function whose support is contained in W: is in mabe . 



I .  

I !  

I '  . ' ,  ' I4e assign to m4b the topology generated by the semi- ; i 
I 

i 
c ; I  I norms, 1 I i 
I I , .  

{ I , .  ' . 1 
> .  

A, = x,(e) = sup (3a,b(x) I X ~ + ' ~  D S ~ ~ ~ I I  (10-2 ) I : 1  '1 . . I 

0~lk\4V x L / ,  I I 

b i .  i 1 ,  

A sequence { e ~  ,:, is a Cauohy sequence in if and 

only if each Mkp and for each fixed k the functions, 

: I  

, 

converges uniformly on R: as Y -err. It f ollo~~s that ' the 
.i,; 

limit function 0 (x) for this sequence is also in mkIb ; ; i I 

. 

that is, ma,  is sequentially complete. We shall refer td 

this type of convergence as "convergence in ma,, ." If the 

I , ,  

I I 

,' ; , 
limit is the zero function, we say "convergence in mbtb to ) .  , 1: ' 

' I 
I 

zero.  " 1 i 
I 

Cb 
converges in a to 6 such that ~f a sequence { 04 v%, 

I 

I : *  

the supports of all the 69 are contained in a fixed f Lnite 

[(lo;, X )  x ] for a < Re s < b. Bowevar, [(lo2; x)*x4-"j I S  

4 b-I 
i - 1  

and [(log x)  x ) are not in if at least one of the 

components of k is positive, 
I ; 

j j j  , 
I i ' i  

I 

/ 

Other mnnbers of mRPb are (x"'] for a 4 Re s b an6 , .  

, 
.ti b-1 

closed subset of R: , then { b\TS\  converges in ?%$L to 6 

I .  

I I 

for every a, b e R n  (a 4 b) .  Also, if a 4  c < d 6 b, then 

me,, c and convergence in m,,d implies convergence in m.,b, 

I . '  

& , !  ' . ' t . '  .. . , ,  . . f . 
, I . '  , , ' 
i f : . )  , , 

I I . . 
l!; , ' ; ,  

i !  
, . 3 , . ,  1. : i ;  - , 8' 



7 I I 
j .  

, 

8 
/ 

I +  

. '  Theorem 10-1 : The mapping, - 

1 '  

] I; ] 

rp ( t )  - [x-'1 Ip ( -  log X I  = e (x, (10-4) 
f a .  ; i  1 I 

I I 1 8  

a ! 
I / 

Froof : That the mappings ('10-3) and (10-4) a r e  ii 1  I 
. I  ' ' 

i nve r ses  of each o the r  i s  obvious. Now, assume t h a t  6 (x )  EM,, 1 
! 

The d e r i v a t i v e ,  1 1 : '  I 

, t i ; ,  
P I reet] e I), ' I  ! 

is equal t o  a . f i n i t e  sum of terms, a typical tern being 
i 

. I  ' 

! :! 
I 

r l  ! I  I ' 

1 .  
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ap I x  ?+'] D; e (x) ,  .!: . L  t ! I  , 
I :  1 l . l  

i 2 

' i !  (I ' 
where x = e-t, 0 4 P 4 k, and Qp i s  a constant. Thus, . ' I  I _  I ;  1 ,  ' I 

j! i I (  

'* ' I  / , , 

I I 
-i 1 1 :  

i I ' i ' !  
+ I I 

I I 
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l ~ , , ~ ( t )  ~ $ { [ e - ~ ] ~ ( e - ~ ) )  I = 3 , , b ( x ) ~ a p [ x p ~ ' ~  D! 0 (x) !r j ,  I 4, 
P It ' 

I 1; C; L~PKP , 8 

1 ' 1 1 )  

i ' 
where t h e  K p  are the constants  indicated in  (10-1). Thus, iii 
Y ( t )  o &b. 1: 

.'i 

J. similar argument shows Wat, i f  { Q) r., converges in  $Ilr - 
< 

, D 

, I ' t  
ja ' \ (  

(10-3 ' :  i. 0 ( X I  ---+ [ e 3 ]  ece-*I = v (t), 

I I 
: 1 

i s  an isomorphism from mclr onto %.,b . The inverse mapping -- t .  
I 
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i s  given b-~ , ( I  - , # L ,  . 
t '  ' .. ! 

E 

'l7I6,, t o  zero and i f  LP,(t) = [eWt ] ey(e-t 1, then { Y Y )  i i 
! 

I 
I 

' > I  

47 
8 ,  

! 
I 
! ,  

t' ' 

< ?  ! 

I i 
1 i .  
1 .I 



where the  C p  are the  constants given in (2-1). Consequently, 

e ( x )  E . The same reasoning shows .that (10-4) i s  a 

continuous mapping. I t s  l i n e a r i t y  is clear. 

- 
I 

T h u s ,  we ~ e e  t h a t  (10-3) i s  a  one-to-one continuous 

L 

b 

( I . '  

l i n e a r  mapping o f  b , , b  onto ma,b and t h a t  i t s  inverse 

mapping has the  same proper t ies  from ma,, onto 4. E. D. 

. '  . , 
- I  ' 

We now l i s t  a  number of operations that may he applied , 

tg mU. The proof o f  the  proper t ies  associated w i t h  each 'r ; :!, . 

1 1  
i '  

7 

operat ion i s  given j.n Appendix B. 

I 

I 

i 
1. For g c &  and y > 0 ,  $(x)--tG(yx) i s  an isomorphism .. 

from EMab onto . 

converges i n  $.,r t o  zero. The mapping (10-3) i s  c l ea r ly  t .  I 

, 
l i n e a r .  Thus, we have shown that  it i s  a continuous l i n e a r  I I 1 I 
mapping from '?lla,b i n t o  %&,b . I 1 1  , i 

; I 0  1 ,  I 1  

, I '  
I Now, assume t h a t  (t ) k a , b  . Some cornput a t i c n  shows j l  . , . 1 

I S ,  ' I 

t h a t  
1 I 

'( I 

( ! I s  , 

I 1 '  

' 4  
' 1  1 ,  

D, {lx-l] 9 (- l o g  x)) = [x-*-'I X ~ P D :  1P (t), ; !.. I I 

, ' ( I  

P I i:,, 
I 

L : '  I 

I '  
where x = e*' , the bp a r e  constants, an6 the  suimation i ' .  I 

I I, 

,.I 
extends over a l l  in tegers  p G  R~ that satisfy 0 4 p 4 k. , I 1  

1 
& .  
f . I  ' 

1 l i  * 

Thus, I : 
.Il i ,  

I 'I 
h , ~ x ) [ x " l ]  ope = 1 ~ ~ , ~ ( t f Z b ~ ~ ;  Y (t) 15 Z b p ~ I  , c 
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