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ABSTRACT

A new definition for the distributional two-sided:
Laplace ‘bransformétion L is devised as follows. Let t be a
one-dimensional real variable. Spaces of testing functions
.--_on — o { t o are constructed, which contain exponential
functions o™, s being a complex parameter. Their dual
spaces turn out to be subspaces for the space & of distribu-
tions. Then, for any f in such a subspace, L £ is defined as

the application of f to e °*

L=<z, e”st>

This definition is entirely equivalent to L. Schwartz's

definition, Moreover, it simplifies a number of proofs and

-derivations far the various properties of this transformation.

It also provides greater facility in manipulating specific

distributional transforms.

The distributional Mellin transform of a distribution

on 0 { x { oo is analogously defined as

<f: x* >

where x°' is a member of a certain space of testing functions

on 0 ¢ x {© and f is in the dual space.

‘These ideas are developed for the case where t and x

are n-dimensional.
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1., Introduction, This report appears in two parts.

In the first we develop an apparently new approach to the A
n-dimensional two-sided Laplace transformation for distri-

butions, - The second part is devoted to a similar analysis

for the n-dimensional Mellin transformation of distributions..

The basic idea in the one-dimensional case is the following.

A space of testing functions on - < t { ® is
constructed, which contains exponential functions e“St,
s being ‘a complex parameter., Its dual space turns out to be

3 .
a subspace of the space(ﬁ of distributions. Then, the one-

dimensional two-sided Laplace transformation L of a distri-

‘bution f is simply defined by
Lr=Ls), >, | (1-1)

Analogously, the one-dimensional Mellin transformation Mt

of the distribution f on 0 ¢ x < ®© is defined as

Me = {£(x) , x°7' > |  (1-2)

where x°' is a member of a certain testing.function space
and f(x) is in the dual space. Thesé ideas carry over to

the n-dimensional case.

The customary definition for the distributional two-—
bsided Laplace transformation is due to L. Schwartz [1].

It defines L f as a Fourier transformation ¥ .

1l
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Le=3F{ e} (1-3) | |

Here, o is a real number restricted to those values for
which e™"*£(t) is a temperate distribution. The defini-
tion proposed here is entirely equivalent to Schwartz's
definition in that (1-1) exists in our sense if and only if

(1-3) exists in Schwartz's sense.

The use of definition (l-l) simplifies a number of i
proofs and derivations for various properties of the distri—
butional Laplace transformation. Furthermore, it provides
a fairly direct method of introducing the.distributioﬁal

Mellin transformation thréugh a change of variables,

- T. Ishihara (2] has adopted the methods of Gelfand
and Shilov [3]‘to'extend the Laplace transformation to all o i;ﬁ
distributions, Our definition, being equivalent to Schwartz's, .
is not as general but can be developed more concisely and | , ﬂ“

manipulated more simply.
A number of other methods have been proposed for assign-

sided Laplace transformation and require that the supports . Hid

|

#i

ing a sense to (1-1) but they were designed for the one- il i
F:

of the distributions be bounded on one side. See [4] - [8]. h

To be sure, one can decompose any distribution into a sum

of a distribution with support bounded on the left and a

2




distribution with support bounded on the right. Then, these
other techniques can be used to generalize the two-sided
Laplace transformation [8). But, this is awkward and

computatioﬁally troublesome.

In the second part of this report, the distributional
Mellin transformation is defined by applying a sense direct-
ly to (1-2). To the author's knowledge, there has been only
one other extension of the Mellin transformation to distri-
butions., It is due to Fung Kang [9] and uses the method of

Gelfand and Shilov [3] to generalize the one-dimensional

Mellin transformation. It too does not assign a sense direct-

ly to (1-2). As before, the definition given here is not

as general. It remains instead within the framework of
distribution theory and leads to a number of simplifications.
In addition, our results have been develoﬁed for the n-dimen-

sional case,.

We shall make use of the following notation. & and ¢&"
are respectively the real and the complex n-dimensional
Euclidean spaces. An integer in & is an element of &

whose components are integers. Moreover, we shall always

set
2= {ti, eee »ta} € R,
X = { Xy eos sXa) € R”
and o 8= {8, «e0 ,9n) € C .

3
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If T is a function on a subset of R , then £(x) shall
‘denote | |
£(x) = [£(x)y eou , £(xa )}
If £ is a function on a subset of Q’,‘ we set
Plx,t) = {£(xi,80), coe 5 F(Xa,b0)]
The same notationsare used for functions on &', ¢*, or R'xc'
For example, |
log X ={10g Xy eoe 1031:..} ,

xt = {X|t|’ ces g x"'t“)ﬁ_

x*=1{x", ... , xf"},

Q-St = {e-s‘t. 9 eoe e-s“t“} .

By" [x), we mean the product XyXa... Xn. Thus,
[e'”] = oxp (=8, ty= .. =85by)

and
| [(x%) = x5 ... %2

T]:le notations, x £ t and x < t, mean x,< t, and,

respectively, x,<t, (¥ =1, 2, vu.e ,n) k Ashall always

denote a nonnegative integer in &'. We follow stendard

procedure in setting |k| = k, + ... + ka. This should not

be confused with the "magnitude" symbol.




D;‘ denotes.
al&\

Ixk P <. aNGEn

Similarly, Ds* denotes a partial derivative with respect to

. the components of s e C*.

By a smooth function we mean a function that possesses

(ordinary) partial derivatives of all orders at all points

of its domain. Throughout this paper the principal branch

of any multivalued function is always understood.
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PART I

THE DISTRIBUTIONAL LAPLACE ~TRANSFORMATION.

2. The Testing Function Space Lab

Let t, a, b e & with a < b. Also, let tu,ay, b, be
arbltrary components .of t, a, b, respectively. The function
Ka,,b, (tv) from R into R is defined to be a positive

smooth function such that a, < b, and

exp a, t, : (ty > 1)
K"w by ( t") = k
exp b, t, (ty < =1)

The precise values for this function on -1 < %, < 1 is unim-
.portant but we assﬁme throughout that it is a fixed function.
Let X, ,(t) be the positive smooth function from ® into ®'
given by .

Kap (1) =TT Koy, (1)

y=1i

_ L a,» .Shall denote the space of all smooth functions

suc .

@ (t) from & into C'Athat, for each fixed k,
Xay (8 DE@td| < Cy (me<ct<ew) (2.1)

where C, is a constant depending upon k and €@, £La, is a

| ‘ -5ty L. '
linear space over the field ¢'. TNote that [e s ] 1s in Lap
for a ¢Re. s ¢b and [t"‘ e"t] iz in XL,, for a < Re s < b, |

On the other hand, if at least one of the components of the

-6
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integer k is positive, neither [t*e'“t] nor [t"‘e’“l is in dLay,

We assign a topology to &Lap bY maklng use of the follow- 3
ing separating system of seminorms. ' ;
T =% (¢) = mex  sup |K.,..(t) Dy* @ (%) l . (2-2) i
o<lh|ey t L _ il
(v=10,1, 2, ...) E
(Here, it is understood that k traverses all integers in "
for which 0 ¢ | k| &¥ .) That }the T are truly seminorms ' . i
follows from the fact that they poésess the following prOperties‘ ' ;
(Taylor [10] , p. 143). For de¢ C', wed,, , and ¥ e L;,.,, | ‘ I
we have - | ‘ 1
| N (R+Y) SN0+ B (¥ (2-3) it
and | | : | | _. t
Yy (de) = |dln (%) (2-4) i
‘The ¥y constitute a separating set of seminorms in the . I'

sense that for every @ £ 0 in I.a,;. there is a Y, such that

Yy (¢) # O. This is because ¥ is a norm; that is, it also

satisfies the condition,

Y. (¢) = 0 &= ¥ =00, | (2-5) J
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These seminorms generate a topology in s, in the
follo;ring way. A neighborhood of a given ¥ e&ap is any '.
| subset of Las that contains a set odnsisting of all
¢ € Lap satisfying

Y,J(te-.-‘l’)é Ej <j=|)27 ";;N.),

where the ¥y comprise a finite collection of seminorms and
the & are positive numbers. The collection of all such
neighborhoods (for all Yedayr ) constitutes the topology of
L,,. Note that these neighborhoods satisfy axioms for a
topblogical linear space (Martineau et Treves [11l]), pp.
1-2), Since our set of seminorms is a seperating one, all

‘neighborhoods of a given ¥ in Las have only ¥ in cormon.

- A sequence {\P,‘}:_l (or, more,generally, a directed set
{9}, ,0) is said to be a Cauchy sequence in Law if every
¢y 1s in Lap and if for each neighborhood s of the zero
| function here exists an integer N such that, for all 4 and
¥ greater than N, ¥u—% is in o . It follows that {@u).,
is a Cauchy sequence if and only if for each fixed » the
¥ (@, —wy ) converges to zero as 4 and ‘; go to infinity
independently. - In view of (2-2) and the fact that X..(t)> 0,

this means that the sequence of derivatives {D¢*@u(t)},.,

converges uniformly over every bounded t;-domain. Thus, there

8
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exists some limit function ¥ , which is smooth. Moreover,
it satisfies the ineq‘;\alities (2=1)., As a result,. @ is in
ciq,h and {4u},., converges to it in the topology of VoZa,B 3 |
that is, for every neighborhood no of the Zero functivon,
there exists an N such that, for all a> N, Vu—¢ is in a .

Because this is true for every Cauchy sequence, JL., is said

to be sequentially compllete.

If {@u),., 1is a Cauchy sequence in &, and has ¥ as
its 1limit, we shall say that {7, converges in £,, to ¢ .
(If ¢ = 0, we say that the sequence converges to zero.) It
follows that a sequence {'e,:x};?_“ converges in oLay if and
only if each ¥, is in ol’..;,b and for each k>0

- -4
M=)

{ 28] DF wuled

converges uniformly on R". ( The uniformity of the

—— P — v

convergence need not hold over all k.)

A subset B of £Las is said to be bounded if there exist
a set of constants C,such that, for all ¢ in B, ¥, (%)< C,

(y-“:O,.l, o )a

e NI —

Two easily established facts concerning £4, are the
following:
| I. Let & be the space of all smooth functions having

compact supports. Then, £ C o‘CA,., for every a,b & R (a<b). ‘

9




Moreover, convergence in & implies convergence in Lab. ' |
IT. If as¢c<d b , then &L - &,, and convergence -in

&Le,a implies convergence in Lap.

We now prove two results that we shall need subsequent-

ly. 4 shall denote the space of all smooth functions of
rapid descent. We assign to it the customary topology.
(Schwartz 12 , Vol., II, Pp. 89).

Lerma 1l: Let a, b, € R" with a ¢e ¢ b, If e A
Pt il cm—— Pt ——— b

then [e™ ']y e Lap. If {¥),., converges in ,§ to zero,

then {[e™] ¥y Y yer also converges in L,, to zero. .

_1?_;‘_9_9_;1_'_: We prove the last statement, the proof of the

preceding one being almost the same., We may write
Xap 0 DF{ 03[ ™)} = {x, €T} { Z apo D g, 0

The summation in the right-hand side is on the finite
number of n-dimensional integers q that satisfy O<q<¢ k.
Moreover, the a4 are constants and the P,,(o') are polynomials
in the components in ¢. The quantity, Kaw ()[e™™] is a
bounded fﬁnction for all t. Also, each term in the summation
converges uniformly to zero for all t. Thus, the same may
be said of the left-hand side. Q. E. D.

Lerma 2: Let a, b, ¢, d.e R” with a<c<d<b, If

R e Lea s then %@ 4, If {\Py}v , gconverges in Lea

- %o zero, then {x“)\e,}y.| also converges in 4 to zero.

10




Proof : We again consider just the last statement.
‘Let m and k be arbitrary nonnegative integers in & . Then,
using the notation described above, we write |

,,. o £ DEF xap (1)
.[t T D {xp 1 O(D)) = 4:; a?{ Ko ) DY %(t)}{ = txc,d(d:) }

' The quantity in the first set of braces under the summafion
sign converges to the zero functions uniformly for all t,

whereas the quantity in the second set of braces is bounded
for all t. Thus, the lsft-hand side converges to the zero

function uniformly for all t. Q. E. D.

We have already noted that otq,b is a linear épace, which

means '(._’em:‘mg'other things) that it is closed under the opera-

tion of addition and multiplication-by-a-~complex-number.
We shall 1list in a moment a mumber of operations that may

be applied to Lap . But, first some terminology.

Ali operations discussed in the report are understood
to be single-valued. An operation (or,mapping) 1t from a
sequentiglly camplete topological linear space & into
another such space B 1s said to be lineax; if for every
scalar & and every two elements ¢,¥ € & one has
T(R+Y) = Nt + 1Y eﬁ,, T(2¢) = ANY e

1 is said to be continuous if for each sequence {¢),.,

that converges in the topology of (A to the limit ¥ one has

that {‘}’Et(’,},:., converges in the topology of the space B to

N, It is a fact that a linear operation is continuous

11
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if it 1s continuous at the origin. T is said to be a !
topological isomorphism from CL‘ onto B if it is one-to-
one and if 1% and its inverse are both céntinuous linear
operations. (Henceforth, when we ‘say "iéomorphism" we shall
mean "topological isomorphism.™)

Now, for the list of operations. We identify each
operation either as an isomorphism or as a continuous linear
operation. The proofs of these properties are given in
| Appendix A,

l. For T e &, @ (t)—» €(t-T) is an isomorphism from
Lap onto oLa,. |

2, Wity — v(-t) i3 gn isomorphism" from L., onto I,-b,_a

3. For 7 eR" with % > 0, Qt)—> ¥ (st) is an iéomorphism

' from im onto Iuﬁ;, (Here, no component of & is allowed to
be zero.) |

L. Let p (t) be a polynomial in the componentsof t.
Then, ¢ — P¥ 1is a continuous linear mapping of L e,d into ef.u,;,
for every a and b such that a < ¢ < & < b,

5., For d€C"  and ¥ = Re ok , *e(t)—-»[e-“t] ¢ (t) is an

isomorphism from La,s onto oLavy,bey-

6, Let N (t) be a smooth function from ® into R such

that 1t and all its derivatives are bounded functions.
ce--; x¢ 1s a continuous linear mapping of Ota,b into Las.

Te €W —> D‘JQ is a continuous linear mapping: 86f of,,‘,b

into i/l,b .

12
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2
"3, The Dual Space La.

A functional on a space @ is a mapping of Q into e,

Thus, it is a special case of an operator and we define its

lin'éarity and continulty as we did for operators.

'of;). shall denote the space of all boni;inuous linear
functionals on Lap, It is called the dual of Jf,a,». The
complex number that an + e ci,:‘\, assigns to a @ € ia,b is
denoted by < f-,‘é) = L £(8), €(t)> (We write £(t) to
indicate Ithe independent variable of the testing functions‘ '
for f.) Two numbers f and §, of i;,g are said to be equal
ir <& f,«e >=dg,¢> for every w & Lap « Addition éﬁd

multiplication-by-a~-complex-number are defined by
Lfr+g9,e> =<1£,¢> + <9,¢>

{Af,@ > = {f,4e > | - .,::I'f

. Y { -
where ® traverses J:q,:.. Clearly, Jf_a,;, is closed under ‘ {F N

oo ' 4
these operations. With these operations, IL‘,;, becomes & 1 K
, : . 1E
linear space. Some other pertinent facts are the following.

9

I. i.,.), is a subspace of D’ s the space of distribu-

JE———

‘tions. This follows from note I of Sec. 2 . We may, there-

fore,' use all the definitions, properties, ‘and operations

= e

that are applicable to distributions,.

' II., The space & of distributions of bounded support

My

o — A . 5.0
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. b .. ' .
is a subspace of Lapr. This is because the space £° of
smooth functions contains L.y and because convergence in oLap

implies ¢onvergence in £ . (See Schwartz 12 , Vol.l, p. 88.).

III. If a<c<d<b, then Lap & ot:,d. This follows
from Note II of Sec. 2. |
Iv, If ¢ e otz,d and if £(t) = O whenever any component
of t is less than a given number, then f & .I:,‘, for every B | , | ;
b>d. If f < -il,a and if £(t) = O whenever any component |
of t is greater than a given riumber, then f € ot:,a for every r
alC., ‘
V. If f is a locally integrable function such that
f /Ka,h is absolutely integrfable over'dl", then the regular

2,

0’
distribution f is in Laps .

. IS 4
A (weak topology) is generated in olas through the

following system of seminorms. Each ¢ in X,, produces &

e S - Gui
- —— T T T g e T

. 0’ .
seminorms Pw(f) on o'f.q,., through the expression,
be]
Polf) 2 |<F,u>| (r e Lay ). (3-1)
Note that the axioms for a seminorm are satisfied since

Pl f) = [¢<<f,e>] = Idlll<+,ce>| =[] P (£

and |
| Pelfi+ f2) = |<+l++z re >|"‘~<- [<fi,@>] +|<fare>| = ?Q(f.)+ P,

Uy




The pP¢ comprise a separating set of seminorms since, if

£ # 0, there is some norm @ in & for which < f,¢> # O.

Let g be a given distribution in ct:,b . A neighborhood
. ? . . s
of g is any subset of ota,s that contains & set consisting of

all £ e :C;,; such that
PQ; (f b g) é gi (j = l’ 2, ¢ e 0 3 N)’

 where the Py, comprise a finite collection of seminorms
and the £ are positive numbers. The (weak’ topology Tw
of i,:,s is the set of all neighborhoodé in i:,b generated by
the P.,(f).' Such neighborhoods will be called T,-neighbor-

hoods,

o

A sequence {f,},, of distributions in i:?b (or, more
generally, a directed set {fy},_,,,) is called a Cauchy
sequence (or, respectively, a Cauchy directed set) with
respect to the topology Tw if , for each Tw~-neighborhood =
of the zero distribution, there exists an integer N such
thét, for all ¥ and g greater than N, f, - £, is in =.
Thus, {$),. 1s a Cauchy sequence if and only if for every
R the éorreSpondinzg seminorm p, (£, -f, ) converges to zero

-as ¥ and 4 tend tok infinity separately. This is the safmé
as requiring th'ét for each' -q’ the numerical sequence

{{f,,‘()} :,, conv'ergeé-. The limits of all such numerical

15
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sequences define a functional on Lap. It is a fact thet
this functional is linear and continuous on &La.p and is
thefefore, in‘JC;b. (This can be established by adapting

M. S. Brodsku's proof of the sequential completeness of &,

~ The details are given in Appendix C.) Thus, every Cauchy
sequence with respect to T, possesses a limit, which is
also in JCLB s In other words, 5ﬁ;h is sequentially
complete with respect to Tw . If {fy\::. is a Cauchy
sequence in <Il¢ with this topology, we shall say fhat {f.)om
converges in L£aey td f. (We simply say "céﬁvéfges to

zero" if f is the zero distribution.)

. e} .
A subset B' of Lap 1is said to be bounded (with

respect to Ty ) if, for every ¥ in Lap ,

sup  P(f)
feB!

exists (i. e., is a finite number.,)

. .
A strong topology can also be generated in Jﬂms by
using the seminorms p,(f), which are defined as follows.,

For each bounded set B in Laps ,
Po(£f) = sup |<f,¢>| (£ eLap). (3-2)
QeB _ v
Note that every  po(f) is also a py(f). When B is a

16




finite set, p,(f) is obviously a finite number. This is
~8till true even when B is an infinite set. Indeed, let us
assume the opposite. Then, there exists a sequence {@u),.,
of olements in B such that r,'(te,) < Cy (¥v=0,1, 2, eus),
the C, being independent of u , and such that [< f,€4> —>
as ,uu;»oo . Therefore, we can choose a subsequence {@, }:,.‘
from {4} such that |<f, Q;.>l >H.  Set Y= Pu/u

Then, 4 '

[ <y Yu>] > 1 (3-3)

: © I :
Moreover, {%A}#-,, converges in L., to zero because 'for .

each ¥

| C
Ty(‘)’ﬂ) = TY,.(%L) = /Ay' > O

as u— o0, Since £ is a continuous functional on Lay ,
{<r, 9’,.)};, converges to zero. But, this contradicts (3-3),

which proves that P,(f) must be finite,

We can construct a system of neighborhoods in ot:,\, s
by ﬁsing the seminorms (3-2) in precisely the same way as
was done before usipg the seminorms (3-1l). The resulting
collection of neighborhoods constitutes the stroﬁg topology
Ts of Jf,:,s . Obviously, the weak topology T, is a subset of

the strong topology Tg.
Similarly, we can define Cauchy sSequences with respect

17
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to the strong topology "l’s as we did for the weak topology
Tw » A neighborhood with respect to Tw is clearly a neigh-
borhood with respect to Tg. Therefore, if a sequeénce is a
Cauchy' sequence with fespect to Tgiy .it is certainly a Cauchy
| sequence with respect to T,. By the sequential completeness
of otZ,,, with respect to Tw, it follows that Lap is sequen-

tially complete with respect to Ts.

A subset B! of otl,., is said to be bounded with respect

to Ts if, for every bounded set B in o'C:,L ’

sup . @u(f)
feB'

is a finite number.

We shall not make use of the strong topology'in our
subsequent discussion. Whenever we speak of "convergende'
9
in -'Ca,b," it will be understood that this is with respect

to the weak topology Ty.

. ' 'ﬁ ’ L}
We now relate the space J.a,\, to the space J . First
-t ” . : .
note that (6™ ] £ € Jd for a<o ¢b if end only if

£/ Xap € ,J) Indeed, assume T / Kap e,.é” We may write

[e-ﬂ't]f(t} = {Ka,b(t)[e°nl}{' £0%)

Xapb t) ,>

‘where the quantity in the first, set of braces is a bounded

18




. ~ot . s
function. Thus, Le 7 ] £(¢) is in 7. To prove the

~ .converse, we set |

T = 11 0,(6) + 8,08 ]

Here, 64, is’ a smooth function with a support bounded on
the left and equals exp (-a,t,) for t,>1. Also, By, is a
sméoth function with a support bounded on the right and

equals exp (=b,ty) for t,<=l. So, £ /Xaw 1S a finite

sum of terms, a typical term being

i . ‘ea‘ez.«-' ea,.
-f eﬁ;ebz e ennz {f' exp ("aatl"b:'tz"- . wahth)}{ exp (-—dtt;,"bz‘tl“""'anth) }

The function in the second set of braces is smooth and
bounded over R" . Moreover, under the assumption that
[e™™J£(t) is in 4’ for a ¢ ¢ ¢ b, the distribution in the
first set of braces is in 4. Thus, T /Kap is also in 4L

This completely establishes our original assertion,

v -
Theorem 3-1 : If £ € &ay, then [67" 1t e d for

asao<hb ’(?_q_:g_, equvalently ;3 f /Ka,b € )!’ ).

Proof : By lemma 1, [e"ﬁ'] ¥ e of,g. whenever ¥ é-)da.

.

Then, ['e_ﬂ] f is defined as a functional on )f through

the equation,

L™,y > =< £, [Ty >

19 .




“ﬂ]f is a linear functional on .4 . Moreover,

Clearly, [e
by the last statement of lerma 1, if {*}’y};‘ convérges in

)3 to zero, then

=gt

<[e }f:%v> =<f,[e-¢t19’y>——“"">o

as ¥y-—o, Thus, [e'ﬂ']f is a continuous functional on .J .

e,

Q. E. D.

Theorem 3-2 : If [e'ﬂ]f e)J” for a< v < b (or, equi-

valently, if £ /xa,b € ,cf’ ), then £ € I_:d for every ¢ and
d such that a<c < d < b,
Proof : By lemma 2, Xa,\W é,é’ whenever ¢ € otc,d.

We define f as a functional on Leq by

L L,e > = 4 X-ib y Xap ¥ >

£ is clearly a linear functional on ;Cc’d. That it is a
continuous functional on af,c,.,, follows from the second state-

ment of lemma 2. Q. E. D.

. Some Operations on otz,b.

Since an arbitrary f in oi:,b is a distribution, we may
perform eny operation on f that is applicable to distributions.
However, the resulting distribution may not be in_of/:,b .

We haw-ré alreadyv' mentioned that the space i«:‘b'is closed under

the 'operations of addition.and multiplication-~by-a~-complex-

¥
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7
number and that iq,b is a linear space., We shall now des=-
- cribe some other operations of interest to us. But first,

some rather general remarks are in order.

Let 7¢ be a continuous linear mapping of otc.,d into iq,a.
(Here, we do not place any restrictions on the real points,
a, b, ¢, and d other than a<b and ¢ < d.) We define the

3 L
adjoint operator Tt (acting on L.y ) by
(e, > = < f,ned, (4-1)

where £ € ot:,h and ¥ traverses all of ofc,d o Thus, 7t@ is
in &Lay and the right-hand side has a sense. This equation

defines 7 f as & functional on otc,a o
Actually, 7}’1‘ is a member of ot:,d . Indeed, let
«,p e C and ‘(’}‘}'eofc.’d- Then,
(n"{:,dq-p@y) = {Ff,NEAL+BYI> = LF, MY+ BNV >
= CF, MY + B MYy = L SWF, >+ 8K, Y >,

which shows that 7 f is a linear functional on Led.

«© .
Moreover, let {‘-(’p‘yy,,. converges in oﬁc,a to zero. Then, as

y...._...)oo,

{We, 4y > =L £, M9 Y ——> O

. ” i | .
and this shows that ¥ £ is a continuous functional on olca.
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) [
Thus, 17} £ is truly in Lcg .

Furthermore, the fact that 7 is a continuous linear

- mapping of Led. into Lap implies that 7 is a continuous

9 i .
linear mapping of iq,\. into otc.,d « To show the linearity of

W, let @ eLed, «,p e C', and £,9 €Ly, Then,
W (af+03), € >=<Kf+pI,The>==olFf e + <INy
= L KW, @+ B, > = LW+ W9, 0> .

=]

,
To show its continuity, let {f,},., converges in I,a’b to zero.

Then, a8 VYV —»m,
{<Ng,¢>=<5,,H¢> —> 0.

Similarly, if 7 is an isomorphism from Lcu onto ota,b ,

9 b ] b
then ¥ is an isomorphism from ota,b onto ﬁtc,d o Indeed,

‘ by the definition of an isomorphism, T is a continuous
linear mapping of I,c,a onto ata,b and there exists a unique

~ inverse operator " ror T, which is e continuous linear
) - -1
mepping of Lap onto otc,d . The adjoint (717" )? to M

is defined by

LY, > =<, ¥>, (L4-2)

, 9 .
where Y € ia,;. end g € otc).i « From our preceding results,

' - -
(n- g ¢ Ota,b and (7% )! is a continuous linear mapping
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‘e

’ 7, '
of otc,d onto of,a,t, » To complete the proof, we have to show
that (N )t is the inverse of YW, Let ¥ =N¢ or,
equvalently, ¥ = ’Y}—";" and let g = ’Yf’ f . Then, from (4-1)
and (4~2), we have .
CE, Y =<LWF, 8> =<3,8y =M™V, ¥,
Thus, (7™ )' is truly the

which shows that £'= (1™ )'g .
inverse of ’Y}’ . This completes the proof.

?

We now define a number of operations on otqj), as the

‘adjoint operations of those given in Sec. 2. Our definitions
conform with those that apply to distributions in £ and

testing functions in & . We assume throughout the following

list that f € of,:,\, and NW® €Lap where 1 denotes the

particular operation on @ under consideration.

l. For Te R , £f(t) — £{t-7) is defined by
{£(t-2), @ (8] > = {£(8), 9 (¢+0)>

7

: ‘ N
It is an isomorphism from ota,b onto Lap o
2, f(t)—>f(-t) is defined by |
{r(-8), @ () > = L £(8), €(-6)>

?

nhna.

: ?
It is an isomorphism from of,a;,; onto

| 3. For tc¢R with ©>0, f£(t)—>f(ct) is _defined.by
eles), @(6) > = o), [77les/n) )

23
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7 ’
It is an isomorphism from ot“,b onto "t‘ra)'t'b ’
L. Let f be a polynomial in the components of t.
f— @£ is deflned by
<(Pf)“e> =<f:(?l€>
. - » 7 1
It is a continuous linear mepping of Otaji, into ol:ojd s Where

5. For «€C and y = Rek , £—s[e™*¥|f is defined by
L1e™)] r,9> =4£, [l

. - e " : ,
- It 1s an isomorphism from iq,b onto oL a-y,b-y .

6. Lét X Dbe a smooth function from R" into R' such
that 1t and all its derivatives are bounded functions.
f—-—)’\f is def:.ned by

{xf,e > =L15,2¢ 7>

9
It 1s a continuous linear mapping of afa,b into ota,b .

" Te f—> Dtf 15 defined by -
<otr,e > = <r, (-1)¥pRe ).

b
It is a continuous linear mapping of Lap into Lo,

5. A Boundedness Property for Distributions in Lab.

Theorem 5-1 : For each f € Lap there exist a nonnegative

inteper re R and a positive constant ¢ € R' such that, for

a1l @ in Lay , v | ,
I<£,e>l £ cye) o (5-1)
2l | |




gr_é_o_f_ : Assume that ﬁo such relation (5-1) holds.
Then, for each nonnegative integer Y, there is a ¥, € ialb
such that .
< £, @5 >y, (e) (5-2) .
Let ¥ € Lap be defined by

V. / —
Y V¥ (Yy)
From the definition (2-2), we clearly have that 0& ¥ <V ¥W ",

Thus, for M <y,
| Q f
) € % (%) = y?,((qy,)) R

Hence, for each fixed 4 , {‘oj[( 9’,,)};:; converges to zero and

consequently, {Y¥,};., converges in Lap to zero. Since T is

4 — = T ————— Lz "
- - - e — - —T i e - - "™ - 3
V b e —y - > - PRy~ 5
: Yoy e =
X ~ - —— - riy P —

~ st sy

et " e

a continuous functional on Lap ,
{fy ¥ > —> 0o (%-3)
as ¥ —> oo.
On the other hand, (5-2) implies that
Kz, %> > 1,
This contradicts (5-3). Q. E. D.

6. The Distributional Two-sided Laplace Transformation L.

We turn now to the (apparently new) definition of the
Laplace transformation L. We shall say that a distribution

£ is L ~transformable if there exist some a, b € R" (a<b)

such that £ € JCZ,\,‘. In this case the Laplace transform L f

of f is defined as that function F(s) from a subset of C"

25




‘into C', given by
L =F(s)=<r£(t), [F] D

We shall also'.sp€ak of the tube of existence £, which’
is a set in ¢ defined a$ follows. A point s € C"is in ¢
if and only if there exist two points a,b € R" (a<b), which
: dezﬁend in general én s, such that a { Re s { b and € i:,h.
The right-hand sidé of (6=1) will have a sense as the appli-—
cation of f € I;:b on fe'St] e,ta) if s € £y, Hence, the nane,
"tube of existence." ©Note that by this definition Q¢is an
‘open set in R". 1In certain cases the right-hand side of
(6=1) will have a sense on the boundary of g, but we will
~ never include: this boundary as part of L. |
| Whenever we writ‘e L £ it shall be understood that f is
L-transformable and that L f exists in the aforementioned

sense. £y shall always designate the tube of existence,

Theorem 6=1 : N, is a convex gef.

. 9 )
Proof :- Assume that £ € Lax and also £ € "t‘bbi where
, s
a<x <y < b, We shall show that £ € L4, By the defini-

tion of £y, this will prove that Lf1y is a convex set.

. Let X(t,) be & smooth function from R into ®' such
that it and all its derivatives are bounded functions on K.

Also, assume that A(ty) = 1 for t,> 1 and X(t,) = 0 for

26




"1y, < -1, Set

n

A(E) = TT A(tp)

=)

and ' f =X 4 (1-A)F.

Since f Eotg:x it folld;srs from item 6 of Sec. l. that AN f e ot:,x
Hence, by note IV of Sec. 3, nf € J:Z),. A similar argument
shows that (1-A)f € Lap. Q. E. D,

The Laplg.ce transformation is a linear operation in
the following sense. If L= F(s) for s € 1, and L g = a(s)

for s €Nyq and if N,N Ny is nonvoid, then for «,8 € ¢' we have

L @&f +pg) =«F(s) +80G(s)
- for at least all 5 € NN Ny,

The classical two-sided Laplace transformation is baséd

on the integral,

F(s) = Sf(’c) [ 7 at.
R" .
If £(t) is a locally integrable function such that, for all
real ¢ in some open convex subset = of R", [ "] £(t)
is absolutely integrable on R", then this integral certainly
converges for all s such that Re s ¢ = . In this case the
regular distribution corresponding to f(t) is certainly in
5 | | _ _
Lay for each a, b ¢ = (a < b) and the above integral cen

be interpreted as the application of the regular distribution -

27




£ to the testing function [e"ﬂ] 3 cfﬁ)h (a. % Re s $ b).
Thus, the classical Laplace transform of a function f£(t)
that satisfies the aforementioned conditions is a special

case of our distributional Laplace transform.

As in the olassiéal cajse',_.F’('s) is an analytic function

within the tube of existence. To prove this we shall need

Lemma 3 : Let s € C", a, b€ R", and & < Re s £ b,

With s being fixed, let A s, be an increment in the v th

component of s such that |as,/<Y and a,< Re s, =~ Y{Re s, +¥v’

<by. PFinally, for asy # 0, set

: exp (=bsy %y ) - 1 - 4
W,s,(t) = T AS, [e 1

-stl

Then, as [asy|—>» 0, W g, (b) converges in cfa,b to - t,,[e
Proof : Let

Yas, (8] = Was, (8) + 5,[e7]

R SR

The derivative Dt* Yas, (£) is a finite linear combination

of terms of the forms,

(6-2)

- ("’A ty) - 1
g ls) [ {5, o t”} )
M,ﬂ,,(s\) [e"St] { 1 - exp (-As,ty)} , ’ (6-3)

28




and

M]M{u (s) I oSt ] (-asy )Ju exp (=-As,ty)

(2<¢ns|al), O (6el)

‘where M,(s) designates some monomial in the components' of:‘."é,
of degreey, As |t|—> o, Ka,h(t)Dt* Y45, (8) tends to zero
uniformly for |&sy{< ¥ . In other words, given an € » O,
there exiists a T > 0 such that, for all |t} > T and for all.

lasy| < v , we have that
Ixa,b(t) D Yas, (’G)] < ¢

Fix T in this way. Also as |asy]—> 0, all the terms (6-2),
(6-3), and (6-)_;) can be made less than € in magnitude over
‘the domain, |t|] & T. All this shows that Yas,(t) converges

in ‘;C“;b to the zero function as |Asy|—> 0. Q. E. D.

Theorem 6-3(The Analyticity Theorem) : If L = F(s)

for s € Ng, then F(s) is analytic on fNp and

2;, = {-,0(8), [e7) > | (s e o). . (6-5)

Proof : Let a, b be real points in Ly and restrict s

-

and Asy as in lerma 3. Then, by the linearity of f,

' ' {F(S;, o.,Sy+ Asy, o,s'" )"‘F(SI,-‘OSy;'o’Sh)} =<f(t))(eASy(t)>.
AS, U

In view of lemma 3, as |Asy|—>0 the right-hand side converges
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to

< £(t), -ty [e-St] > 1

v

which is equal to the right-;hahd side of (6-5). Since s
- can be chosen as any point in Ny by choosing a and b

appropriately, the proof is complete.

Corollary 6-3a : Under the hypothesis of theorem 6-3,
pd F = (-D® A e(s), [T > (seny) (6-6)

Our next objective' is to relate our Laplace transforma-
tion L to Schwartz's distributional Fourier transformation
F (Schwartz 2 , Vol, II). xft’ denotes the space of
temperate distributions on R, where t is the independent
varia‘ble for the corresponding testing functions. TLet wefR
Jt,w shall be the space of testing ’functions Y (t,w) of

rapid descent defined on R x R,
3
Lemma L : If g e,& and ¢ (t,w) € )jt,w’ then

{ g(s), S‘}'(t,w) dw » = S<g(t),'}‘(t,w)> d‘w

Proof : I‘In the following ltw) shall designate ‘the

‘ .functioh of w that; equals 1 éverywhere. The direct product
g(t) x 1(w) is a temperate distribution over R x R (Schwartsz
[12)] s Vol. II, pp. 9.9). By the commutativity of the direct
prbduct, we may write |
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‘e

£308), §yiweany= g), {10, ¥ (5,05
'y ' '

{101, 4306, $le,05> = (9080, ¢ (6,0) dwx-
&7"

an E. Dc

Theorem 6-lf : If LT = F(s) for s e Ny then

L =rF(e+in) = F{[e""] £) (v ey, (6-7)

—— C————— S— S————

Pourier transform.’

Proof : Let a, b, and ¢ be real points in Q¢ with
. ] . .
a e (b, Consequently, f & oi“’b. According to theorem 3-1,

, _
[e"™] r(t) e . Since the Fourier transformation is an
isomorphism from ,Jt, onto itself, 7 {[e"“] f} € )J‘:. Thus,
CF{le™™ £, ww) > =< [7]) £(t), (e (o) [e™*] aud
. R :
= __{'_(2_ f)%,h(t) [e-—(a‘uw)‘b ] @ (w) dw >

Kaplt) *

The integrand inside the right-hand side is a testing function

in twe Therefore, by lemma l. the last expressi¢n equals.

£< To? SO T ) 20 =(Lee), [ S e )
= { Flo+iw), © (@) >

. . 9 .
' (Note that theoren 5-1 implies that F(« +iw) € x?u, .)

.31
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Since & can be any real point in Qy, we have proved (6-7).

Theorem 6-5 ¢ The Unigueness Theorem ) : If L £ = F(s

for s engand L9 = G(s) for s e.C).s s 1f 0y N9 is nonvoid,

and if F(s) = G(s) for se.o.;,nns, then £ = g.

| Proof :. Let o be a fixed real point in '_a{nn.s .
' Assume for the moment that F(s) = 0 on a;N 0y, Then, by

theorem 6-l,

3_-.{[9"“] f} = P(o+iw) =

> v . . o hd ) 3
Since the Fourier transformation is an isomorphism from ,X

~onto itself,

[e"ﬁ‘] f =0

~or, equi}val‘ently, for every @ € &,

L) (), W(t) ) =< £(t), [ w(t)) =

But, [e""F)¢ traverses all of  as € traverses all

of £, Hence, £ = 0,

Now, assume that F(s) = G(s) # 0 on a.nng, "By the

linearity of the Fourier tré.nsformation,

3’{[6',” ] (£ -9} = F(s) -c(s) =

By our preceding result, £ - 3 0. Q. E. D.
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Theorem 6-6 (The Continuity Theorem) : If {f,},o, e

e i T P

1 M oLy
converges in KLup to f for some a, b ¢ R" (a < b), and if , e e

L1, =F,(s), then L T = F(s) exists for at least a <Re s<b, SRRk

and {F,(s)},., converges pointwise in the tube a ¢ Re s &< b

Lo F(s).

Proof : Since [e‘“] is in IA,L for each s satisfying

.

a £ Re s ¢ b, this theorem follows from the definition of

|
convergence in £La) and the fact that tiq‘), is sequentially - R l
|

complete,

B —

7. Some Operation-transform Formulas for the Laplaée

Transformation,

We now list somé operation-transform formulas., Each
one 1s a direct consequence of some operation listed in
Sec. It éxcept for the first one which is a restatement of
(6=6). We assume here that .L £(t) = F(s) for s € fOpand
that © e ®R" , & ¢ ¢, Each formula represents a continuous
(1in§ar) opefation L1 in the sense that, if {f,}:;. converges
in i;,b to £, then {{M £},., converge pointwise to LNf |

in the appropriately transformed tube.

LI ee)) = (1M pdrs)  (seqy) (6-6)
Lof#r(s) = [s*]r(s) (seng)  (7-1) *
Lo -n) =[] Re)  (ska)  (7-2) it
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- L {[e™"] £} = F(s#a) (st & ng) (7-3)

]

L £(-t) =TF(-s) (-5 ¢ ) (-l

L f(xt)

il

[+7) F( s/ ) ( s/een) (7-5)

8. The Inversion of the Distributional Laplace

Transformation.

In this section we establish necessary and sufficient
conditions in order for a function F(s) to be a Laplace
transform, The sufficiency proof of tile following théorem
provides a method for inverting the distributional Laplace

transform.

‘Theorem 8-1 : A mnecessary and sufficient condition,
for s function F(s) to be the Laplace transform of a disg=-
tribution f is that there be a tube a € Re s ¢ b (a < Db)

~on which F{s) is analytic and bounded according to

[F(s)| & @ (Ist), | (8-1)

where @ (|s|) is a polynomial in |s|.

Proof : Necessity : If Lf = F(s), then by definition
the}_re‘ exists a tube & & Re 8 € b (a<¢b) inside the tube
v .
of existence N, for which f e Lay. For a & Re s < b,

[e"“] € ia’y,. Moreover,

3l




sup | (00 D [0 | = [ sup|x (0[] | = [#]x

where K € R' is a constant, So, by the boundedness property

(theorem 5-1), there is a constant C ¢R' and a nonnegeative

integer v € R' such that
F(s) & |<£(6), [™]}] ¢ on(le™**])
= C K max [s*] &@P({sl)..
o0&|RI&Y

Sufficiency : We shall make use of the following

classical fact. If |G(s)|€ K/|s|™ for a¢Re s¢b and if

C,tio Cpt Lo

3‘(’5) = 5 < F (8.5 5n)exp S, =5%.) ds, - -- S (8-8)
C,~ it

P\
{2mi) Cpmico

(a<c<b),

then, gl(t) is a continuous function of t € R" and L£9=G(s)
for at least a ¢ Re s < b. (The continuity of 9(t) follows
from the facts that the integrand in (8-2) is a continuous
function of (s,t) ¢ C¢'x R and that the integral cénverges
uniformly for all t e R" . That L9 = G(s) for a < Re s < b
is é consequence of the inversion formgla for the‘olassical
Fourier transformation ; see Bochner [13]; pp. 2Ll - 245,
where we use the fact that on a & Re s & b all partial
deri\vatives up to the second oOrder are also bounded by a
polynomia.l’ of the same degree as { ( Is| ), in view of

~Cauchy's integral formula.)
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Now , set G(s) = [é*]l?(s), where k is 2 nonnegative
integer in ®. Since IF(s)¢ @ (1s1), we can make
lG(s)|$ K/(si™ (K being a constant) for a ¢ Re s & b
bj choosing the components of k largé enough., Thus,

F(s) = [s*]G(s) and by (7-1) we have
= DRy
and L £ = F(s) for at least a < Re s < b, Q. E. D.

If we are given an F{s) that satisfieé (8-1), a
possible means of obtaining its inwverse.Laplace transform
is first to.éonstruct a G(s) as above, then to evaluate -
its inverse Laplace transform by using (8-2) or perhaps

some table of classical Laplace transforms, and finally

to differentiatezaccording to (8-3). Of.course, in
practical cases this procedure may be very difficult'to

perform.

.9 Convolution.

Before stating the definition of the convolution of

distributions, we shall establish some facts about the
function,

Yt) = { 9(t), € (t+e) >, ‘ (9-1)

where 361; and Qéiﬁ, .
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Lemma 5 : 1
D y(t) =< 9(x), DF @ (t+e) >  (9-2)

Proof : Let t be fixed, let At = {o,-++,0 4t ,0,---0Yang
conslder the function, |

' ¢ (t+e+dt) - € (t+7)
0 (a6, 1) = K (=) [ - AT, B alte(t'kﬂ}

(At, # 0).

Clearly, 8 (At,,T) is a smooth function of T for each fixed
Aty Assuming t and = are fixed and using Taylor's formula
with exact remainder for At, as the single independent

variable, we may write
A'ty

@ (braeat) = € (tre) + Aty 20D, f‘a‘m(‘tﬁ -4 a4y

Whel‘e y = {0) -~.7o)y'y,og'.'7o}

So, oty ‘
’ () >
|0 at, ,m)| = | Lot { TEETTED (a3 dy, |
o »
Moreover,
de(,:) sup 32'»‘?(1"‘*'(‘7“’3’)
I, ¢ 18t CR

K being some constant with respect to T. Hence,

klaty)
-———‘—'—-'4- ,

—

&,
5 (st -4,) 44,
L] : .

IQ (At’ "t)l 2A‘c»

Thus, as |aty]—>0, 8 (at,, T ) tends to the zero function

uniformly for all T.
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Next, consider

, DY ¢ (t+e+at) - DR (trr) 5
Y (%) { Aty T *(’(t-i-'r)} ’

where Aty # 0. The same argument as above shows that as .

Aty —> 0 this also converges to the zero function uniformly

for all ©. Thus,

@ (t+a+dt) - @ (+7) -
’ Aty

converges to d €(t+%) /3%, in ofa,;,.

>
The continuity and linearity of §6& £y now shows that

ay . Y(uiat) - ¥(v)
oty A:.l;ciﬁo ATy
@ (t+e+ at) -~ € (t+x)
= - lim <8(¢): , At >

4

At,—>0

it

{§(x), %L@(tffr) >

Repeatedly applying this last result, we get (9-2). Q.E.D.

Lemma 6 : Y (%) is a member of L.

Proof : In view of (9-2), ¥ (t) is smooth. Thus, we
need merely show that it is bounded according to (2-1).

Using (9-1) and the boundedness property (5-1), we may

write, for _éach fixed t,

"rca's(t) oY, {D}* (t+m>}.J (9-3)

K“,b (t) Dt& ‘}J (t)l é
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Next, consider

- { D% @ (t+erat) - DEw(vrr) . | [
T - ——T]) S
)C“:b( ) ﬁty : . atyD¢ le(t’i"l') s ' ‘ ‘ : E:
where Aty # O. The same argument as above shows that as - ‘?
. . . é!' ¥ ‘I "
Aty —> 0 this also converges to the zero function uniformly B l | L

for all . Thus,

Y (t+a+At) - @ (t+7)
' Aty

i
|
|
il
t '
M
|
i
i
gl
I

converges to d € (t+%) /at, in ofa),.

o

~Lemma 6 : ¥ (t) is a member of Ia‘},.

J
Proof : In view of (9-2), ¥ (t) is smooth. Thus, we _ I

» | .
The continuity and linearity of g6 L, now shows that §R
. ' i ;"- ! .
3y 11 ¢ (t+at) - ¥ (t) l §
——— im SHiE
oty Aty=r0 2ty iy
¢ (t+a+ at) - € (t+a) N
= .11 T
éﬁ_l‘f,,< ), - 2ty > M8
| S [
— ’ 3 . ' g_- Y
| L
Repeatedly applying this last result) we get (9-2). Q.E.D. ' B 'E p
| i
111 1
i
i
i

need merely show that it is bounded according to (2-1). . il

Using (9-1) and the boundedness propert’y’ (5-1), we may

write, for each fixed t,
e ‘ - piliel

Ka,\:'(t) Dt& ‘}l (t)l s ka,b(t) CT\.{D.;&' L' ('b+¢)}l (9_3) ! ; :,
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X , (l

= Cmax sup| K, (t)x%x,, (=) D D,f ¢ (t+1) l i
o¢liley ' ' Bl
K, (t)x,, () Bl
£ C max sup i i Coea Bl
o¢lijsy * )gb(t+'r) .

Here, the C;,; denote the constants given in (2-1). More-

over, as a function of (t,t) e R x R“,

K (£) Kap (T) ( 9-)_‘-) :
Kg,hst‘*"r) o '

is clearly a bounded function over every bounded domain., ’ ; { B !
Even more is true. It is bounded over all of R x R . | ‘I f .‘ | :
To see this, we may assume that t, T, &, and b are in R’ E’ ‘ | H
since (9-L) is simply a product of such one-dimensional l I
facﬁ‘ors. We then consider the following possible ways that | § ' : 3
(t,T) may approach infinity. (i) For t > land T > 1, o ,: 14 ;
(9-l) equals one. (ii) For t > 2 and 1«1 < 1, (9-l) remains f | g
bounded. (iii) If t—® and T —s ~» such that t + = E ii K :‘5 E
remains bounded, then (9-l) .approaches zero since a < b. ; fl ,.i
(iv) If t —>w and ©—> -® such that t + T —»w , then I e
' (9-l4) again approaches zero since a < b. Because of the “.E
symetry in the form of (9-L), we can make similar state- - | ‘ | " E
ments for the corresponding four cases when t—> - , ‘ ‘ H . ' |
We can now conclude that (9-L) is boundéd for all (t,t). | ‘- ; ' '
Thus, the right-hand side of (9-3) is a finite number, TI f
which proves that ¥ (t) satisfies (2-1). Q. E. D. , {ff
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Lemma 7 : Let {%},,l converges in ia,b Lo zero and

let

Y (£) = L g(2), ¢ (t+a) >,

‘ ; .
where § eia,;, « Then, {%}M also converges in ia,'b to zero.

The proof of this lemma 1s almost identical to the -
preceding proof, In this case we rely on the fact' that

for each fixed j and k and for v— the functions,
Kap(t+2) D DF @ (t+e)
converge to the zero function uniformly for all (t,T).

We turn now to the definition of the convolution of
two L -transformable distributions, f and 9. Let L £ and

L3 exist for s e Ny and s e N4 , respectively, and let

LL¢ N0y be nonvoid. Let a and b be arbitrary real points

in a;nn, with a < b. We define the convolution f¥§ as

a functional on L., by

Crxg,@ > = < £(8), <3(2), e (t+e) (eeLap)  (9-5)

. ? .
The right-hand side has a sense since f € ia,b and, according
to lemma 6, < 9(%), ¢(t+x)) e aﬁa_)b. Actually, f—fz-g is a
distribution in I;b . Indeed, its linearity as a functional

on ia,., is obvious. Moreover, by lemma 7 and the continuity
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of £ as a functional on L., we have that, if {@},., gl

converges in ia)h to the zero function, then

T —— " o
k. ey

{r#9,4> = <L, 4> —>0

_ |
as y—>o, Thus, £%J is a continuous linear functional on ,,
Lap as was asserted. ! 1 |

|

The convolution of distributions can be defined even ’ ' ':

when the distributions are not L -transformable {see Zemenian i{ I' ’
(8], chapter 5) but we do not do this here. i f ‘
’ e S
Convolution is a linear process in the sense that, if o “ LB

A,p¢ C, if £, 9, and h are distributions whose Laplace E 3
transforms exist for se 4, sefg, and s € Oy, respectively, | ;i!f‘; :t :
and if 0N 0yN.04 is nonvoid, then o ;"_"‘:‘f;

|

£ (a3 +ph) = ol £ + pluh ‘

.
(& f + 89 )h =oLxh +pJh ! f, f ’! ‘

Under certain restrictions; on f and g, our distributional 11 ‘
convolution f%g is equivalent to the classical convolution. i},{ ' n
- In particular, assume that £ and g are locally inte‘grvable %5 ! [ 1
 functions from ® into ¢' and that £ /x.p and 9/xes are. ij : ::?

absol'utely' integrable on R" for some a, b € R" (a < b)Y, . ii{i

Then, f‘or Q€ Ji,‘b we may Write o ;,I |

S - i

e —

L | | B

Sl
el i LA
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i

d£rg,9)> = {£(t), £9(w), @(t+a) D>

il

§ at ff(t)S('C) ¢(t+T) 4. (946)
R"ﬂ R"h

The last integrand is locally integrable as a function of
(t,T). It is also absolutely integrable over the (t,T)

Euclidean space. (Indeed,

£(t)a(z) ’xa,h(tm,m)

£(t)3(T)@(t+T)| = |—
| R (B raple) | K (t)

The first factor on the right-hand side is integrable on

the (t,€) space whereas the second ahdrthird factors are
bounded and continuous on this space.) Applying the éhange
of variablé x = 1t and y‘= t + © and noting that the Jacobian

determinant equals one, we convert (9-6) into
rraey= (ay (rnsty-m)ewman = < fex)s(y-rlax, € ),
R 4
Thus, we may write
£9(y) = 5~f(x)3(y~x) dx, | k | (9-7)
3 '

where the right-hand side is a locally integrable function
9
in <ia¢, Expression (9-7) is the classical form for a

convolution.

- The Laplace transformation converts convolution into

multiplication, as follows.

L2

K (£ € (seT)

T T = 3 . i . ’ . - e = - e - ¥
e A 5 —— e e ;
T S T . S e ———— e - Ep— = T

— .~ — T e = - e - g -t - - . Y e
. - - . - — — - e - S R S Y.
4 T S N d ; - . :

-y




Theorem 9-1 : Let L £ = F(s) for s € Npand L 9= G(s)

for s eng ., Also, assume that 0N Ngis nonvoid. Then,

L (£x3) = TF(s)a(s) (se0.Noy). (9-8)

B Ty s e

Proof : In the definition of £#9 , the points a and bl‘

P o ,.. e e

(2 < b) can be chosen arbitrarily in NNy, Therefore,

B

L (£#3) exists for s e OeNH, Hence,

L(ex9) = {£(8),<8(e), [ DT5)

{e(), [ »Ca(m), 167>

i

F(s) G(s)

et (v g o U L
T S— -

..
-

We can use this result to prove the cormutativity

S

and assoclativity of our convolution,

Theorem 9~2 : Under the hypothesis of theorem 9-1,

| Hl
1 I
f3¢9 = 9xr (commutativity). (9-9) i f { 181

If, in addition, L h = H(s) for sen, and a.na,n.a, is

nonvoid, then

£x(9+h) = (£29)xh (associativity). | (9-10) Al

‘ Fid! i
Proof : From theorem 9-1, we have . L 1 31
L (£x3) = Fls)els) = G(s)F(s) =L (3%8) (se.aynay) f

b3 | oo i
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P ER
i 1
i i
= PHER|
. AURHER
Equation (9-9) now follows from the uniqueness of the E Ei E |
Laplace transformation. 11 BRE
AR
Similarly, ; Ca e
L {r#(g:n)}y = F(s) L(s%n) = F(s) &(s) H(s)
= {L(ex§)VH(s) =L {(£%3)xn) (senNngNOy ) |

The uniqueness theorem now implies (9-10). Q. E. D.

7
We can now conclude that<f%5 is a commutative algebra

of convolution having the n-dimensional delta functional §(t) A ;ﬁ':

as its unit element., It does not have any divisors of zero. fii Eiff

. Indeed, if £%9 = 0, then L(f%3) = F(s) G(s) = 0 for R i |
| 18

Se O,NNg, By the analyticity of F and G, either F(s) or

(‘!.
G(s) ( or both ) equals zero on N.N0g. By the uniqueness ;L%:'y
theorem, either £ or g (or both) is the zero distribution. rﬁg ;
| o
' 4 (e
Convolution is a continuous operation in the following ‘@y g
way. é?f.;,
@ . 4 § | ' .
. Theorem 9-3 : Let {f)},., comverge in Lap to I and . .iii; b
- e S
let g G=i;b- Then, {fy*3}y=, converges in ;t%h to fi9, 1 F b
| ‘ 141 { + BN
| ) HEEE )
1 N . . ) ik ,#‘ ,.v.
Proof : Let @ e Loy : In view of (9-5) and lemma 6, HJ.‘E'F
we may write,. , S §‘2!1:£; 8
o - GRS
‘ BHKA 1Y
s e iR ir
. . - EISL R LS
<fy*s"€>= <fy,9’>""‘"§ <f,}’> = (f-,rs,\e> .. QA E. D. | . ‘: ’l g. ﬁ
: o _ I

B

Tt -

:_q' = . - - D
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Equation (9-9) now follows from the uniqueness of the

Laplace transformation.
Similarly,
L {r=(g=n)}y = P(s) L(sxn) = F(s) G(s) H(s)

= {L(£x4)}H(s) = L {(£¥g)wn) (se o NngNOy )

The uniqueness theorem now implies (9-10). Q. E. D.

We can now conclude that io:}, is a commutative algebra
of convolution having the n-dimensional delta functional §(t)
as its unit element. It does not have any divisors of zero.

. Indeed, if %Y = 0, then L(f%9) = F(s) G(s) = O for
Se Ny, By the analytbicity of F and G, either F(s) or
G(s) ( or both ) equals zero on £.N .0y, By the uniqueness

theorem, either £ or g {(or both) is the zero distribution.

Convolution is a continuous operation in the following

Way.

) . 4
~Theorem 9-3 : Let {£,Y,., converge in L., to f and

oo . 7
let g e ef,:,b . Then, {f, ""3},5, converges in ota,h to £33,
—_— —— -

froof ¢ Let w e ia,; ¢ In view of (9~5) and lerma 6,

we may write,.
(58,00 = {f,,¥>—s<{L,¥> = {r%s5,¢> . Q. E. D,
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PART II | LR
S BB
THE DISTRIBUTIONAL MELLIN TRANSFORMATION, 0 i !‘QH
| B 1B
10. The Testing Function Space May j ] ;i“WT
- ‘ I
R’ shall denote the open domain 0 < x < . The f -%1!
. i LE
change of variable, x = e¢*, t = - log x, will be of im- i il
' i
portance to us. As t traverses R s X traverses R . We ;ﬁf
. . . N r,
set 3, (x) = Kgp(~ log x). Thus, 3,,(x) 1s a smooth positive iRl
function defined on ®: . Moreover, ! £ :f
3a'b(x)‘ =D3ayb,(xv )s i} ! jl
(i

where

_.ay

!
i
!
i
) X, (0< x, < e ) il ,}” :
X. ‘_i of !i‘; »
3“;/\’;: y . xy—-by (e < XV < © ). :‘,"i' : ? .“‘:‘; 1
‘ - ;
1 1
%
{

i

‘M., is the space of all smooth functions @ (%) defined
on R} with values in €', which satisfy the following set

of inequalities. For each fixed k,

'3@#x9hf“]Dfe(xﬂ < K, (0<xLw), (10-1)

where K; denote constants that depend only upon the choices

of k and 0. | ' o Z»;;

> m’.' -
function whose support is contained in Riis in Map.

b
Moy is a linear spaée over the field C. Any smooth _j.yvgigt;
| itk
L5 . ey
. e



Other menbers of My, are [x*') for a ¢ Re's ¢ Db and
» [(1og x)ﬁxw] for a < Re s < b, However, [(1og x')ﬁx“"]

and [(log x)&xb"'] are not in ’m%\, if at least one of the

components of k is positive,

We assign to ’ma,b the topology generated by the semi-

norms,

Xy = 2,(8) = max sup

3, (x) [x™] D,f‘e(x)l (10-2)
oglkiey x ' .

A sequence {éy‘]:‘;\ is a Cauchy sequence in M,, if and

only if each 6,€ M, and for each fixed k the functions,

3A,b(x) [X'ﬁ“] D;& 0, (x), . | £l

converges uniformly‘on ®, a‘st y—so, It follows that the
limit function 0 (x) for this sequence is aiso in Maps
that is, Map is sequentially complete. We shall refer to
this type of convergence as "convergence in M, ." If the
© 1imit is the zero function, we say "convergence in MM, to

ZEero,"

If a sequence {0,\[ :).-4 converges in D to 0 such that

e s —

the supports of all the 8 are contained in a fixed finite il
. @ ; ' R

closed subset of R , then {6Y,., converges in Manr to § ‘ gl
‘ , il

for every a, b e® (a < b). Also, if a & ¢ < d & b, then P i

MeqaC My, and convergence in M,y implies convergence in My,

L6 L
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Theorem 10-1 : The mapping,

6 (x)—>[eF] 8(e~%) = @ (t), , (10-3)

is an isomorphism from May onto ota,b « The inverse mapping

is given by

@ (5) — [x'] @ (- log x) = 6 (x) (10-L)

Proof : That the mappings (10-3) and (10-l.) are

inverses of each other is obvious. Now, assume that G(x)e’m“‘b

The derivative,
DA 0 (a5 1),
is equal to a finite sum of terms, a typical term being

a'p,[x?ﬂl Dxp 0 (x),

t

where x = ¢~ , O ¢ pP£ k, and 4y is a constant. Thus,

i}

Bap(x) FF-QPEKP“] DS 8 (x)

£ Z- a’PKP 3

Kan (8) D {[)0(e7)) l

where the K, are the constants indicated in (10-1). Thus,

¥ (t)eio.,b.

A similar argument shows that, if {6,} :o_._, converges Iin

(rn,o\'b to zero and if ‘?y(t) = e—-—'t] ey(e;t )’ then {"Qy}:jﬂ

L7

o e

e i e - -

T —————
v L Skl L e 3 -
- ¥

-

e ——

L. Mt 405 ~ e ’ da i o

x s £ - WY g 1 L -
- il TRy s . rs £
- - - o S S — - N - - . ’ "
et p : i v 3
F et oy i e W - by ‘
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= e

converges in éfqb to zero. The mapping (10-3) is clearly i

linear. Thus, we have shown that it is a continuous linear 3§"j '}
mapping from T into Lay . 1 e
Now, assume that @ (t)e Ji%b. Some computation shows éf}é :\

that ‘! {8

il

) _ . S i '8

Df{lx N ¢ (= log x)} = [x7*) Z?_bPD,f(e(t), gt

1'%
where x = e“h, the bp' are constants, and the summation f
extends over all integers pe R that satisfy 0 ¢ p ¢ k, B {

Thus,

[hém'b(x)[x‘*‘]bfe(x)[ = .’Ka,b(t)z:_brbﬁ Q@ (t)]| % > b.C
. - P

SR e R A Y YT

where the C, are the constants given in (2-1). Consequently,  'if
6 (x) € Map. The same reasoning shows that (10-L) is a 3{%5 i
conbtinuous mapping. Its linearity is clear, éfﬂ?ﬁ {_
l 5‘ ",
: o
Thus, we see that (10-3) is a one-to-one continuous }.ﬁg f%
linear mapping of La» onto M., and that its inverse ‘ﬁ@i ﬂ{é}f
mapping has the same properties from Qﬂ%bonto Lap o Q. E. D. ;‘é'f ;

We now list a number of operations that may he applied

to 7n%’ The proof of the properties associated with each

AR R ¥ AT TSRS SR e

operation is given in Appendix B, Bt

_ . o

| ]
1. TFor 4e® and y > O, f(x)—>0(yx) is an isomorphism i _
from Map onto Map. | ; . B 11 i
;.

1,8




clH B
J l |
. R SN EE
Tl
[ BBl
2o 6 (x) ——>0(x™") is an isomorphism from Ma. onto Moot 2ea. ‘ ;f l
3, Forye®R andy >0, 0 (x)—>0(x*) is an isomor- [1{ !'
phism from Mep onto Mivyaoy,ivg-y. | | ' “ |
Jo For yef and vy < 0, O (x)—> 0(x?*) is an isomor- | ! ‘ } I
phism from Mas onto My, 14yay. ‘ fl
5. Let @(log x) bevba polynomial in the components of | 1
log x. Then, § — P(log x ) 8§ is a contihuous linear . !
mapping of Mea 3'.nto»’ma,b for every a and b such that ; : |
cc o <a <o |
b, If 4 € ¢ and y = Re & , then 8 —>[x] ¢ is 1;'-|
an isomorphism from ?rna,‘, onto fYna+§,\,+,, | “; | i%
7. 6 —>D*0 is a continuous linear mapping of 11' | g !
Mep into ’mq-&,w., | 2! | li
8., 6——=[x*1 D} is a continuous linear mapping i j 1h
of Meap into Map. E;
9. Let [x DJ*¢ denote | | . B
xy—ga;(—;-( cee (x, aaxﬂ (x, ;;Ly 8) ) ... ), !: {l
( i1
where the number of times x,,—a—% appears in the expression ) gl
is k. (The order in which these terms &ppear is unimpor- ’f
tant in view of the smoothness of 6 e Mepr.) Then, g —> ' i: ;L
[X.D,]*e is a continuous linear mepping of M,, into ma',,, | ' i
110, 6 ——> D% ( [x*—). 6) is g' continuous linear mapping ;’ {
of M., into M., R | | | 5
A




=

11. Let [Dx)*6 denote

3 D e 3 g

S T P L Sl B ol

where the number of times x, appears is k,. Then,

3
a Xy

£ R . . s .
§ ——> [D,x]"9 is a continuous linear mapping of Map into M,,.

= S

' v 3
11l. The Dual Space Mas. b

'm’a'b_ is the dual space of T,p. In other words, f € ml,b
if and only if £ is a continuous linear functional on Ma,
Equality, addition, and multiplication-by-a-complex number

. . ’ . . X
are defined in the usual way. M., is a linear space over

SRSl i

e e e g e e e

c'.  (£,8> = {f£(x), 6(x)> is the number that £ e M),

assigns to § € Map.

S ———————— S —————

i
‘ |

If the support of the distribution f is contained in ' *’F{E

a bounded closed subset of tf?_'l,,_ then £ is in ’le‘, for every | i'l' })il
a, b € " with a < b. On the other hand, every member of (E i
Moy is a distribution on R:. Since convergence in Meca :iig
implies convergence in M,, for a ¢ ¢ < 4 £ b, it follows : E
that Mas C Med. - | i

We define a (weak) topology for ’m:}, by using the {
following seminorms. For each € in 'm,,,h, we define a

seminorm §,(f) on Moy by }

§,(0) = | <£,6> | (e M) (a1-1) |

50 | ‘   :515 |
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It follows that a sequence {f,}i, (fye ’m;,,,) is a Cauchy -;i '{'z.;: ‘
IR |
9 PR
sequence in Map if and only if for every © € MMap the | IEHEE
@ : ' o ¥ 111
numerical sequence {(fy,(})‘],,,, converges. We shall refer 1 f
to this type of convergence as ''convergence in 'm;b . ’ ! r
. . . . n I" B 48 :I
("Zero" in M.y means the zero distribution on ®RL.,) One ' Fil ikl B
A ’ H il A
can show that Map is sequentially complete by using the | '1 i
- 9 Ly
same proof as that given in Appendix C for ota..b . | '; ;
\ B |
A strong topology can also be defined on M4, as was B}
: ' 1
Y
done for ota,b s but we shall make no use of 1it. : jl ‘
R
: ’ 1B
We can relate the elements of ’ma,b to those in Lap S
U1
by formally applying the standard change~of-variable formula BE }
for distribution, which is the following. Let x = u(t) ‘ ', i
and t = v(x), where u and v are smooth functions mapping an . ,; Ll
' _ o I
open simply=-connected domain in the t-space onto an open g :;
— 1 I
simply-connected domain = in the xX-space in a one-to-one ii%
¢ (AR
fashion. Also, assume that the Jacoblan ;l
o) 3 (X5 eee 3Xy) '! 4
I () =
a(t|, e o ’t'h) ;IE:
HL ;.
' |; {1
does not egual zero on N. .,  Then, for every © € & with ‘ { r
compact support (with respect to =) and for every distribution ’}' 1l
f defined on =, we have ‘ - ' i' |

Le(x), 0(x)> = o)), [76)] 6 (u(6) SRS

S TR T




Ag usual, we set x = e, t = - log x, ¥ (t)=[e‘t]®(e"t )s "

and 6 (x) =[x'] € ( - log x ). In view of theorem 10-1,

. . - - 4
we can associate to each f(%) ¢ 'ml@ a distribution f(e* Je Ly

by | 1B

{t(e™), € ()Y = L £(x), 6(x)>  (11-2) L
9 - 5 i ; , 1R
Conversely, if §(t) € Lav , then 9(- log x) € Map given by |} 1
{3(-logx), 6 (x)> = {9(t), € (x)> (11-3) el
, . e ’i
Clearly, we may state ; ; -'1‘,'1;
Ry | | 41
| w R
Theorem 11-1 : The mapping f(x) ~> f£(e”%), defined ! |
: : g 9 . R
by (11-2), is an isomorphism from May onto oialb « The 4 i
inverse mapping is defined by (11=3). : : l;H
12. Some Operations ‘on” May.. “ |
|
L] R ! i
We now list some operations that may be applied to Map ‘, | |J
| | | i
and their characteristics. The definitions given below B b I lg
A
conform with the formulas one would obtain by either apply- A 8
ing theorem 11-1 to the operations listed in Sec. L or by ,g' : ilj
'formally using the change-of-variable formula to construct il : i
A TR
the adjoint operations corresponding to those listed in e ':
4y B 3
Sec., 10. We assume here that f & ’mi,., and 106 € My, i E T
. : 1:1 fi
where 7} is the particular operation on € under considera:r . Rl
X 11 i
£ 3
tion, _ _ | ‘ Al
52‘ v ‘ .




1. Fory €®" and y > 0, f(x)—s £(yx) is defined vy
Le(yx), 8(x)> = {2x), [y Vo (x/v)>
Tt is an isomorphism rrom Map onto Myp .
2. f(x)—s f(x™") is defined byr
<£(x™), 8(x)> = {£(x), [z7] 6 (x)>

, R N
It is an isomorphism from ’ma,b onto ’m*b,_a .

3. For y e R" and y >0, £(x)—> f(x?¥) is defined by

. A ; ]
{r(xt), 6 (x)p=<8x), (v 7 Joh >,
9 ”
It is an isomorphism from My onto ’mga,%.
}_pg For ye ®R" and v < 0, f(x)—> £(x*) is defined by
4 ~t Uk Vg
- e(xY), 8(x)y= < f(x), ][y =716 (x )>_
N ) 9
It is an isomorphism from M,, onto Mgy ya -

5. Let P (log =) be a polynomial in the components

[

of log x. Then, f—s P (log x) £ is defined by

C(Plogx) £,0> =<5, p(logx)6 )

9 q
It is a continuous linear mapping of ’ma‘\, into M4 for

‘ ewvery c and d such that & < ¢ & d < b,
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6. TFor &€ C" and y = Rek, f— [¥*) T is defined by N éf
. C : ’.\
La EIEE
L[V E, 6 > = <vf,[x°‘}e> :I;
B8 11l
| L ” B i

It is an isomorphism from M,,"onto Moy by . E gl

. L
7. f——DFf is defined by . i il

Kofe, 9> = <1, (-1)FpReS A

~ ox L - s \7 % T LB
-“. . H g
' ) L) Kil: 18 &Rl

It i1s.a continuous linear mapping of ’m% into ’mm,;,%. e
8. r—[x*]Df is defined by

< Ix*pte, 6> =<r, (1™ (1=t 0)

" )
It is a continuous linear mapping of M, into Mes .
9. f—(x D,}'kf is defined by

tendr,e > = <o, (1M TR0 )

, s ”
It is 2 continuous linear mapping of My, into Map .

10, £f——D* ([x*] £) is defined by

(DA, 605> =<5, (1)¥AnEe Y

’ 5
It is a ¢ontinuous linear mapping of Mg, into M.

11. f——[p,x)*f 1a defined by

il

CInxte oy = g, (MR e

Sl




o | . ?
It is a continuous linear mepping of ’md,‘, into ’ma,., .

g : . ‘ o ?
- 13, A Boundedness Property for Distributions in Map .-

By using the samdargmhents as those employed in Sec. 5, "

we can prove

Theorem 13-1 ¢ TFor each f.e 'ml,\.‘ there exist & non-

negative integer v € R and g positive constant C € R'

such that for all 6 € Mays 7"

|<¢£, 0 >|' _év"ﬂ c A(0).

- 1. The Distributional Mellin Transformation %.

A distribution f defined on &, will be called M-

transformable if f & My for some &, b € & such that a < b,

Its Mellin transform Mf is a function F(s) from a subset
of C" into C' defined by

e =Fs) = Celx), (S (1y=1)

The fight-hand side has a sense since [x* '] e M, for
a £ Re 8 & b, The interior of the set of all s for
which (1=1) has 8 Sense 1rf this way 1s called the tube of

;existence and is doncted by n.p. Noté'that as 8 traverses

'.n.f the choices of u a:ad b, for which fe ’m“ » may have
"to be altered. | ‘ o e LR

Dt e g B s




- Let us set () = [e‘"“]‘ and 8 (x) = [x"-]‘e(-lcvg‘x)-v

““.-’"[x,"'{]‘l . Invqkirig theorem 11-1, we can state

Theorem 1lli-1 ¢ The distribution f(x) is 'm-j;_ ansform
~ able if and onl:r if f(e‘*’) is L—transformable. __I_I}_. this

E.Eé_.’
Mme(x) =F(s) =L£e?) (seny,
It follows that various properties of the Laplace.

' transformation can be ,carr'ied over to.the Mellin trans-

formation, For example,

(1) The tube of existence . for a Mellin transform
1s & convex set., ‘ |

(11) The Mellin transformation is linear in the same

way as 15 the Laplace transformation.

(111) If f(x) is a locally integra.blg function defined
on ®: with values in C' such that, for all Re s = ¢ in
some open convex subset = of ®" , [x™) £(x) is absolutely

: "i,ntegi‘able on Rl, then the classical Mellin transform,

mf(x) S f(x) [x“'] dx,

‘equa.ls the distributional Mellin transi'om for a ¢ Re s & b

.whenever a, b e __. i




Moreover, we can. convert some theorems on the Laple.ce

- : transformation into the follow:.ng.

Theorem lli-2 (The Analyticity Theorem) 3 _I_g‘n’}f = P(s)

for s €Ny, then P(8) is analytic in N and

D;‘F = ¢ [(1og x*] £(x), [#P (se-ﬂf) {1-2)

Theorem 1lli-3 (The Uniqueness Theorem) : If ’n}f Fe¢d)

for s € Ny and MI= G(s) for s e Ny , if NN Oy is nonvoid,

| — S——

d if F(s) = G(s) for s e NeN Ny , then £ =9 on R}.

In addition to theorem 1L-1, let wus ‘invoke the ‘fact
that  {f, (x)},s, converges in ’mZ,,.‘to £(x) if and only if
) - | -
\ i..{f,f(e't )‘]::| converges in i.t\’;, to £f(e”t ), as is asserted

by theorem 11-1, ,Then, theorem 6-6 becomes

‘Theorem 1L-lj (The Continuity Theorem) : If {fyY,=,

converges m'ml,.mx'm_m;a, be ® (a<b)and if
‘\mfy F,(s), then Mf = F(s) exists for at least a £ Re s

b, and {F (s)},., converges pointwise in the tube -

aéResﬁ bggF(s).

Finally,--théorem 8-1 is converted inﬁo

Theorem 15 3 A necessary and sufficient aondition

for a function F(s) to be the Mellin transform of a dis-
¢ (a < b)

pribution r(x) is ghﬁ; there be a tube a ..~Re 8

SELEDN AU -

TSR el TURLLON s, TR TR TR NY el
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'fg;_ywhich F(s) is analytic and bounded according _tgp__

R ¢ plis1) ,

e

* where @ (ls|)its & polynomisl in |s|.

15. Some Operation-transform Formulas for the Mellin

, Trahs formation,

[

In the following list we assume that M f(x) = F(s)
for s € fige Also, y is a fixed point in ®" 'and 4 is a
'fixed point in .c“. The formules given here can be obtained

, 'I’r’oﬁ ‘the opgrations listed in Sec. 12,‘e§ccept for the first
~one, which we stated in theorem -2, ;Each formula repre-

' =~-~$ents a continﬁous linear operation in the éamé sense as

| '_th‘at,”stated 1n'Sec.' 7,’
m {_[(log'x)f] £(x)} = "D‘:"‘F(S)" (sefy) .' Mj(li#"z)

M) = [vUIFG) (7>0, seny)  (15-1)

Mo = Fes) (s eny) (15-2)

il

. Mee¥) = (7] f'( s/y ) (40, 4 < ny) ',;“‘(1'5,_3)_
,ZH‘ez;’e;Aky’ # .O'mean's‘that' ever& do:r‘np’onenp of v s 'noﬁ 'z'eré.-.
m{[x‘]f(x)} '-,-=,‘r(_s&;'a)“ \"f.csmeu:ffy : (1519

C motre (UM Ren) keny G5




Heré,

¥here:

(o {

{[x*] D& £) = (-1)"“[sh F(s) . ’(s € ng ).  '(15-6=)-
‘m{[xDxl* £)= (DY (%] Bla) (s ey). (15-7)
’m{ Aoty f)} = (- 1)\&\ [s-k], F(s) (s ¢ -tlf ), | (15—8)
m{los =)* £} = (-1) ‘[<s-1>*] Fts) (s € Ag)  (15-9)

16, Mellin-type Convolutionse

There are two types of convolutions (which we shall
call "Mellin-type") that are readily analyzed by means of
the Mellin transformation, If f and g are sufficiently well-

f behaﬁod functions these convomutions are given by
;;-f’?.(’?).r v s;(x)**f £(3)86d) e (19‘1’
ot Aswe fr@se e, Gsa)

6 (ht1) oo (ot ) (dyminey

e T




. We can generalize thesé formulas to the casé where f
and g 'ar.e distributions as follows, Let M f exist fof

8 e Ne and g exist for “s; & g, \Aésume that O¢N Ng is
‘nonvoid. Finally, let a, be R" (a £ b) be restricted to‘
‘nk,n.n, but otherwise é.rbitrary‘ Then, we define f V g
- as a functional on Moy bY | |

{fVg ,0>= (f(x._) ’ (ﬂg,(y) » 0(xy)d>

We can show that the right-hand side has ‘a sense by demon-
 strating that <9(y) » @ (xy)> e ’)ﬂa,h o Indeed; by theorem '
11-1, g(e™®) is in ;(1,5 s and by lemmsa 6

L8e™™) , €(v+m ) (16-1)

>

h I3

is in Lap if € € ia,b o Setting t = -log x, T = -logyl,
and § (x) = [x™') @ (+1log x), we invoke theorem 10-1 and 11-1

to convert ‘(16-1;) 1n£o the foliowing member of ’ma,;;
™) < &(3) s [7"'1% (~log x = log y) >
=< gly) » ¢ (xy) >
Furthermore, by the same vchange' of‘v_aria.bles we see

that rle~Y) = g(e‘f*’) %‘i}a,n, ~and that

o

60

(8¢ M) (16-3)




Lt (), € (6) ) = <r(e“‘=>, SICF «»ctm»‘
<r(x). (') {33, 5] @ (-log x -log y)>> (16-5)
= e, (o), 0ap)dy = o Valr), 8

3 ‘ | | | .
~In view of theorem 1l-1, we can conclude that £Vsy ¢ ma;;.

Henceforth, whenever we write rVg, 1t is understood
that £ and § ere Tf-transformable, that .yNfy is nonvoid,
and that £V9 e TMa, is defined by (16-3) for every
a, beR (a<b) that 1lie in g N .

The definition (16-3) contains the classical definition
(1_63-1) as a special case, Indeed, in addition to our previous
aslsmnptqions, assume that f and § are locally integrable
functions from R, into C" and that £/3,, and 3/3".,‘ are
»abSoluteiy integrable on ‘R’;“for some a, b €. R (a < b).

Then, far 0 € Moy |

<fvﬁne> <f(x)a <9(Y)19(XY)>>

S dx S £(x) 9(y) 8 (xy) ay  (16-6)

| &
Let us write

l o _J 0090 | [ Sapt Japt$) \ ( by )
,f(x)ﬂ(Y?O(xy) = { ) 3‘*“)}{. Sealns) {3"‘(:99{:1)}(;6 7)

i The s'e‘c,".:ondv and third factors on the right-hand side are bounded

i éontiriuous funétions“-‘qn”dz." x;ﬂu : H;ence » the "integra.nd,in (16-6)

IR
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| 1s lbcally iht;agrable end absolutely integrable on ®: x &, .’
Fubini's theorem allows us to write the repeated iﬁtegral
,(16-—6) as a double integral, Moreovei', making' the change
.of variables, u = xy, v = x, and noting that the Jacobian

) detex‘minant equals ‘[v '}, we obtain

g jf(v) 9(3) 6 (u) [v"] du dv.

g & |
By Fubini*s theorem again, we flnally get

( Vg ,e) £ Sf(v) 9(-;;—) [v“‘]dv, 0 (u) >
. which is what we had to show,

The Mellin transformation converts our first Mallin-

'typé _ convolution into multi‘p‘lication,, as followse
Theorem ;6-;1: It ngnny is \nonvoid, then
M(£ V9) =F(s) als) (segnay).  (16-8)

Proof: rVy e m’.,.. for every pair of real points

a, b e n,nng (a < bH).: Furthermore, for a £ Re s £ b,

{r(x) , <9ly) » L) 1>>

i

M V)

n .

L), =271 ( 9(y) 5, [T
= ,F(s)‘,G(s)» |

Since a and b can be any real points in n.N0,, this result,,

h°1ds for all 8 ﬁ -nf ﬂ .n-si Qc Eﬁ D' ‘




" We can use theorem 16-1 to establish thé, ¢ommutativitj
" and associativity of the convolution operation defined by
(16=3). : | |

, Theorem 1_6-2.: If n;.N.ny 1s nonvoid, then

i
")

Vg = gVr (commitativity) (16=9)

If n.NNNNy i3 nonvold, then
| £V(3Vh) = (£V8)Vh (assoclativity) K  (16=10)

5

Proof:
M (V) =F(s) als) = ¢(s) F(s) =T (3V £)
| (s e Ny N Ng )

Consequently, (16=9) follows from the uniqueness theorem,

Similary,

it

™ {£ V(svn)} = F(s) {c(s) B(s)} = {F(s) G(s)) H(s)

I

MV vh}
| (s e nnngna, ),

‘Which establishes (16-10).

This convolution operation is linear. That is, if «,pec'

end if Ay NNAyAN), is nonvoid, then
£V (dg +gh)=oEVy+ prVh,

e - o i

e
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. , |
It now follows that 1nl¢ is a conmutatlive algebra where
’_the first Mellin-type convolution “ takes the place of multi; ;
 'p1ication. It has a unit element, the n-dimensional delta f
. functional concentrated at x = 1, Theorems -3 and 16-1 can ' ’%??g.
be used to show that this algebra has no divisors of zero. ;;} g
| Furthermore, this Mellin convolution is continuous in .H
‘ . ' , ol
‘the following sense, - - | o
o ‘ - ) | |
. Theorem 16=-3: _I_I_‘_{f,(x)}:. converges in 'm.,,, to £ and
if g M, then, in the sense of convergence in M, we - T
have ' ' o 7:55
1im gVe, = lim £,V9 = £Vg. o (16-11) - R
Y- . Y-
Proof: By theorem 1l=1, {fg(e‘“)}::, converges in é[;; o
to f(e™*). Let 0(x) € M,, and ‘(’(t)=[e"t} ) (e"t‘);f& Lap.
Then, by (16-5) and theorem 9-3, wse have ' I 3
{£,(x)V3(x), 8(x)) = {ry(e7t)ng(e™), @(t)
g

— (et 3(e7%), €(8)) = {£(x)Vs(x), 0(x))

' The commutativity property (16-9) establishes the other part
of (16-l1),- Q. E. D. | » ' o o . E:ﬁ*:k B

. Let us turn now to the generalization of the second

Melliﬁ—type-convélutionA(l652)¢ ‘We shall use the nctation,

i ?.(;) == =)™

"‘,6¥' ‘1




By operations 2 and 6 of Sec, 12, f(x)qf(x) is an isomorphism
‘from 'm... |-a ONtO 'm.‘, e Thus, MM r =
F(1-s) for all s such that l1-s e f¢. We

F(s) for sefn; if
and only if M?T =
denote the tube of existence for mFT by ﬁf. Also,. asstme
that § is 1M -trensformable and that fi¢N fiy is nonvoid,
Thus, we define fA9 as a distribution iﬁ 'm’a,. wherea, b (a<b)

are any real points in DN -ﬁ--a, by
Lrhs,0>=-{FVy, 6> (6€ Map )  (26-12)
Thus,

<EA8,0>= (=] ex7) , <3 (3) , O (xy) D>

= <f(X) P) (9(Y) » [X_']O(y/x)>> (16-13) s

Consequently, an alternative definition 6f our second Mellin-
) % .

type convolution is the following. If £ € MNis,i-a and

g ¢ 'm“,,. then f/\ﬂ is defined as a distribution in 'm..,

by (16-13).

~ Moreover, from (16-5) and (16-12) we have that, for
@ (t) =[et] 0 (e7t) € Lap o

KEA3,0) =L {lfr(et ) 9(e7t) , € it) D, (16-14)

That the second Mellin-type convolution for distributions
‘contains the classical convolution (16=2) as a special casa '

can be shown as i‘ollows. In addition to our previous
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~aséump‘tions,' assume that f and 3 are locally integrable
functions and that f/3\;s,|.-¢ end /3., are absolutely
integrable on &, Thus ’ ?/3%\, is also absolutely integrable

‘on (R:, and from what we have shown previously w'e, may write

tAs =EVe= B 8 () ey
D &
= S £y) 9 () [v7]ay.

Employing the change--of varible, u = y~', we obtain (16-2),
which is what we set out to do.

»' Cémbining (16-12) and theorem 16=1, we obtain

' Tﬁéoggm 16-1;:“ Ir .ﬁ*nna' is nonvoid, then

M(eA9) = F(1-s) 6ls)  (se Hynny )  (16-15)

The present convolution is clearly & linear operation
in the following way. Let &,p € C, If .ﬂ..;ﬂnsn Ny .is

_nonvoid, then
r /\ (g4 8R) =utf/\3 +8fAn,
Ir .n.f n .,n_:,,n,n.h is nonvoid, then

df +pg)Ab = o(fl\h + psl\h. |
Continuity also holds. '
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o ' ?

. Theorem 16-5: If {) ., converges in ’m’:—s, —s 1o | ‘;i |

I E_@ 1f 9 & Moy, then {£A} 5, ﬁonverges in ML, to fAS, 1 {

if £ e mt:‘»,mél‘-.i if {9,},., ' converges in 'ml,. f__q_ 9, f.b..éﬂ ¢ I
{£A S} r,, converges in ’m’%‘b to f/\s‘.' | o 2 } :

Prosf:  {$},. converges in 'm:_,,.-. to £ if and | - } ;
only if {%},., converges in M}, to f. Invoking theorem | 4 |

. 5 t 34 i
16-3, we see that in the sense of convergence in Ma, | R

—— I |
~ ' ~ : i b %
£f,A9 =L,V —> VI =rA9 . - ol
The second statement can be proved in a similar way. i §

" Our last theorem compiles a number of associative and - : i i !

T

cormutative formulas., As usual, = € el ‘ R

p——

e ——

. Theorem 16-6: If £y N Ay is nonvoid, then o ¢,‘

——— T et

fVsg = sV r, o (16=9)
(evs ) =tvi, | C(16-16)

=) (6 Ve) = ([F)8) V (219 ). - (16-17)

If NN 09 NNy 45 nonvoid, then - | | |
fV(3Vh) = (fVI)Vh. T (16-10)
- If By N .0yis ponvold, then

,ﬁ‘if'/\ls e'f'\/s," o (16-12)




tAg =3A % |  (16-18)
[=*J(e A g) =([x"18) A (Ix*])39), (16-19)

(t A3 ) =FAF o o(a6-200 L

If B; n 5, nH, is nonvoid, then
£ A(gADn)=(fTAg)AR (16~-21)
Proo;:. Equations (16-=9) and (16=10) have already been

established, whereas (16-12) 13 the definition of fAS. éf,; A
The other equations can be proved by applying the Mellin ‘?EJ

transformation and,invoking its‘uniquenQSS'theorem. Thus, fq ;? ¥

for (16-16), we have - Be

Mt v 9 ) =F(l-s) G(l=s) = - M(FT v §).

For (16-17), B o | A

Ml (£ V )} = Fls # 4) 6ls +0) = M{(1xI V(a1 9)}

For'(16-18), ) u | ' ?ﬁ Wil
- ‘ AL

M (£ A 8) = F(l-s) Gls) = &(s) F(l-s) = M (3 A T). .t
For (16-19), | |

m {[xf‘](f‘./\ 9)} =F(l-s-d)G(s + -A) . " - | Bl

M (=) £) A (1= 9}

R N




5For_(16-20),

Mz A g) =F(s)a(1-s) = TMHEAT).

M{t A (8 A B =F(i-s) 6(1-s) H(s)

.~ Finally, for (16=21),.

< M{E A 3) An).

Q. E. D.




Appendix A.

Here, we shall briefly indicate how the properties of

" the operations listed in Sec. 2 can be established. We

-_empldy the same numbéring for the operations as we did in

that section.

| 1. This statement is clear since shifting does not affect
the behavior of the function as % tends to infinity.

2. Note that X.y_e(t) = T(t) I,(=t), where 7 (t)

is bounded on & . Then, setting T = =t, we have
4 ' )
[%a(m) DA € (-0) | = |7 (1) K,\(=2) D @ (1)

=] (=6) Xup(5) DA (6) | = 0y sup T(-8).

- This &nequality also implies the continuity of the mapping.

That it is linear and oné-to-one from otn,., onto i_h.‘._isz obvious,.
as are now the corresponding assertions for the inverse mapping.
3. We have that g, e (t) = T (t) X, (T t), where 7 (1)

is a bounded function, Then,

|K¢.«b(t) Dy «e(cﬁ)| —|'z(t)»<.b(‘:t)[¢*]1>ﬂ te('rt)l C4l*) sup 7 (&)

The rest of the assertion follows easily.

h. The derivative D'&(Pi()) is a finite linear combination
of t;ex'ms of the form. D p D'@, where 0 € j € k. Also,

lk"" HG’D‘QI I _Kap up| ‘KQ‘DQ\

: (A-'l




' Both factors on the right-hand side are bounded on R,

Thus, _pte € ia,\, "o This result also implies the conﬁinuity

of the mapping; its linearity_‘ is obvious.

5, Note that Karebre (B) = M (t) Kap (t) [e®] , where

7 () is & bounded function on R" . Also, D? {[e"“] ¢ (t)}

is a finite linear combination of terms of fthe fdm,
[ %) o™ Dy @ (%) ,

where 0 £ J £ k. Hencé, with B; denoting constants, we may
write .

|X aveyuee (8] DE {[67) € (£))]

e e | =

Thel right-hand ' side is bounded on (Rﬂ. The r'est_folflows

Ky (8)B;[8%7] DA @ (t)l

easily.
. 6. This statement 1ls obvious.

o 7«  So is this one.
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Appendix B

"~ In this a.ppehdix we shall justify the various statements
concerning the operations on M,, listed in Sece 10, Once

., again, we ugse the same numbering:here.

~ In this discussion we shall at times make use of the
following fact. If the operator 1t is an isomorphism from
a space @ onto a space B and if the operatbr £ is an
isomorphism from B onto a space A, then O 7 (thé
application of 7} and then the application of D) is an

isomorphism from (& onto -4 . Also, when we write

e(x)eaMQ(tJE(B

we shall mean (in addition to the usual meaning of 4= ) that"

.the mapping @(x)—>¢(t) is anvisomorphism<from & onto B,
Similerly, by writing
f(x)elq —> @ (t)eB®

we shall also mean that 8 (x)—»@(t) is a continuous linear

op.era.tiyo'n from & into ® .

1, We have that Ja, (x) = T(x) Ba,p (yx) where ﬂ(x) .

ia a bounded function on O {x £ p . Then,

N 3&,’. (x) [x* ] Dt 6 (yx) |

i

I[y,“] T(x) Sop () [ ) D 0 (5m)

K l,i‘imm

B-1l

T S e . po—

S T —
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so that 0 (yx) is also in 'mq’,,{ That the indicated operation

is an isomorphism now follows easily.

2. TUsing theorem 10-1 and some of the operat'ions listed

in Sec. 2, we may write
| 6 (x) e ma) > -[e't] 6 (e”%) e'o'f.,.. =[] 6 (e*) € Loe
— [o™] 0 (6%) € Lanps s O(F) € M acr, 20,
30 B(x)eMyy &= [6%) a(e~¥)e I;,;#%v[e“”] 0 (e"“")k'éiw,ss,
o [P L]0 ) = (27 00 € Lrgy iy
@%’0(1:*) € Mivgany, rem-s.
li. Combine the selc.ond and third operations.
5.' O (x) €M,y 4=>[e7"] g (et )eL Ap(-t)[0"]g(e7t) e Loy
= p (Log %) 0 (x) ¢ M.
o 0 (x) € My ams [571] 0 (o8] € Loy oo [ [¥]0(6) € Loy,
4-;-»[::"] 8(x) ¢ m¢;,,.,;=.. |

-~ 7. Note that I

[(x74) 3., 4%) = T x)3, (),

a4 ,b-4

where f'(‘(x) is a bounded functicn on Q:.' Th’e_n, |

B=2  . “
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3,_,“5_*(':&)[:1"'] D DX o (x)l

.:—'.'? e S

]

o

|7 (x) 3,,(x) [2™] D% 6 (x)]

.t

T

'é K P S'Llp ? (X)

0L XC®

LA

b Eag B

Thus, § e Mysvs» The continuity of D,* follows from this

=%

result, Its linearity is obvious.

T

8., Combine the sixth andlsevehth operations.,

e

- 9. This follows by induction from the eigth dper‘ation.‘ = i g 1 2
10, Combine the sixth and seventh operations.

'11. This follows by induction from the previous

~operations.




Appendix C
9
Proof of the Completeness of o'ta,bv

\ _
We shall show that ia,» 1s sequentially complete with

respect to i.ts weak topology., This will be done by adapting .

the prooflof the sequential completeness of o@’ due to
M. S. Brodsku, N

. 4
Let {f,}::, be a Cauchy sequence in iu.,b s that is, every.

. ’ * o
fy e L. and for each « € ota,b the numerical sequence

{<s, ,@>),. converges., Let f denote the limit functional

bm
Yyt ®

on . i¢,5 generated by {'f,} f is clearly linear on oLas,

Our problem is to show that it is continuous.

Assume the opposite. 'That is, assume there exiéts a
sequence that convefges in J:a,» to zero (i.e., to the zero
functi‘on) such thé_t the corresponding sequence of numbers
assigned by f does .not converge. We can choose éksubsequance

{ Q;}:'l from the original sequence such that
[<t£,06% > e>0  (r=1,2, ...) (6-1)

(where ¢ is a fixed positive number) and such that

| Xap(8) D4 @(8) [ €4 (=0, 1, ...). (C-2)

Now, let Yy = 24, , By (C=2), {9’,},-. ‘converges in Lap
to iverofgf;?By_ (c-1), {|<£ ,%>|),., diverges to + ® . ; '

c-1




: Noﬁ, we choose a subsequence {9y 5., from (%Y, and a
subsequence {f}}:,, from {f,}:,, as follows., First, choose
“]’., such that |<f Y, )\ >1. Since, for évery ¥y e ‘i’.u-b,
{rf, ,?}-—-—-y(f,?‘) as y—> @ , 1 can be chosen such
that |<£) , ¥’5] > 1.

Assuming thet the first -1 elements of these ‘sub-

) ,
sequences have been chosen, choose % such that

|<f5? ’ 7y,'>| 4 ,zj‘y | (i =1y eeey,y=l) (C=3)
and |
l<f,9,>| > z]<f,y,>| + ¥ | (o1

(C-3) can be satisfied since {*)’,’} converges‘ in £,

yai
to zero and, for each fixed £} , < £) 5t Y —>0 gg ¥ —>®,

(C=l) can be satisfied since ,{ f , ¥, > —> o as Y ——> oo,

Bocause {fy ,€¢ > —> {f ,9)  for every ¢ € SC“,L,

f,? ' can be chosen such that
l<f.vf ’ >| > Zl(f ' !%'>l ' '(C'.'S)
Next, we wish to show that |
y -5 % : O (e-6)
,;is’a’,membe_r' of étn + Consider the.‘reinaindér term,

-3y

L y=Em -
- C=2
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'For m ¥ ki,

‘,,m $ 49 t)l

ysm y=m

'AS m—» o, the right-hand side converges to zero. Thus,

over every bounded domain, (C-6) converges uniformly as well

~ as the series of derivatives for ahy given partial derivative.
Thus, we may differentiate (C=6) under the summation sign.
(C=7) also shows that the series (C-6) converges in XL,, to ¥,

By the completeness of Jf‘,\. , we conclude that ¥ e Ia,b v

Finally, we may write

<f:.9'> z< .?;>+<f,.%>+z<r,,f,.>  (c-8)

A=) /l-yi-l
,By (0-3)
< y—u '
Z( ,?, £ > 27" =1, (c=9)
M=y . )}a#ﬂ ‘ . .

By (C-5), (C=-8), end (C=9),

gLy e <5 %>

[+ 28] - | 2459

M3y

>» y""lo

Therefoi-e, as Vy—>w , I <f} ’ y'>| —_— 0 This contradicts

‘the hypo‘chesus that {r,}”‘ is a Cauchy Sequence in ofo,b .

Our proof is complebe.

s

(8) D*%(t)| i 2~ ','_(.c-'z) |
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