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Abstract. Two firms with constant capital run their

separate operations and in addition cooperate in a joint venture.

These three operations are periodic in that an investment at

the beginning of a period receives a payoff at the end of the

period. Between two periods each firm adjusts.its capital allocation

toward that operation that payed it a greater rate of return in

the preceding period. Tnus, each firm has a rule for capital

allocation, but we do not specify the precise values of that

rule in 'order to maintain the generality of our analysis. Given

an initial capital allocation and the producti on .fwlctions of'

the three ope rat ions, the rules c;enerate time series in the

capital allocations. It is shown that, if the firms do not

. react too strongly to differences in their rates of return and

i.f the rates o.freturn do not vary too strongly with chan8cs in

capital input, then these time series converge to a unique

globally stable equilibrium point. The location of the equilibrium

point shaHS Hhich operation Hill succeed and Hhich will fail.

It also indicates hOH the two firms will eventually interact.

~7:.i1.is wark Has su.pported.by thB Na tianal Science F\:'mda tion

G~ant Mca 78-01092.
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Introduction

We consider herein the behavior o£ two fi~ns,.which in

addition to their own operations, engage in a joint venture~

We assume that the venture as well as the individual operations

are periodic in the sense that investments made at the beginning

o£ a period receive a payoff.at the end of that period. At the

latter time, each firm is fre€ to decide how much of its capital

it will invest into the joint venture for the forthcoming period.

An example of this model.might be two farmers who jointly own

a cider mill and whose yearly capital investments are the

quantities o£ apples.they convert to cider, the alternative

being to sell the apples whole. (rrhis assumes that all apples

are of uniform quality, no rotten or bruised ones that are good

only for cider.) Another example might be two oil companies that

jointly drill offshore. At the end or each exploration, each

company is free to decide how much, if anythinG' it will invest

into the next joint exploration.

We ask whether the joint ven'turewill succeed, and, if it

does, what share of the joint venture will each firm eventually

se ttle u110n~ Actually, nine cases can ar~se bcc~use each firw

may either abandon the joint venture, abandon its own enterprise,

or support both. The case vJherea firm abandons both the joint

venture and. its own enterprise does not arise in our analysl.s

since vJe assume that the firm has a fixed amount of capital

which it must invest in either or both operations.. ~~e seek and

find precise conditions under which the nine possibilities occur.
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He attack our problem by examining the dynamic behavior of'

each firm and how it adjusts its capital allocations between its

own operation and the joint venture. In this regard, our approach

is a behaviorist one in the spirit of the Cyert-March behavioral
.

theory of the firm [1], but the behavior we attribute to the

firms is simply that they seek to improve the overall rates of
. #

return to~heir investments when adjusting their capital allocations.I

It is not a marginalist approach - at least at this point - in

that the amount of that adjustment is left unspecified. We merely

assume that at the end of each period the firm examines the tHO

rates of return it has just received and then shifts its next

capital allocation toward that enterprise that provided the better

rate of return. These rates of return are determined by the

production functions of the operations and the capital investmer;ts.

He also assume consistency of behavior: Under the same circ~mstances

(i.e., faced with the same received rates of return and the same

prior capital allocation) the firm will make the same capital

adjustment. However, the two firIns are allovJed to behave differently.

Thus, each firm is characterized by its ovm rule for adjusting

capital allocations~ This rule Hill appear as a function £:;HLlose

precise values Vie leave unspecified. 'v'Jeonly impose SOr.le ass1J.J.'T:pticns

concerning the general sl)ape of the g functions.

The adju.stment rules generate time series in the capital

allocations, and the qu.estion He are led to is Vlhether those

time series converge. The anSWer is yes if two conditions hold:

The firms must not react too sharply to imbalances in their rates

of return (they should not overreact), and the rates of return

r.mst not vc..ry -:00 radically wi th variations i:n the capital inputs
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(the operations should be relatively stable). These ideas are

made precise by Conditions H below.

Under these circumstances we show that there is one and

only one equilibrium point E tOHard Hhich the time series converge.

'Uhen none of the three operations 'are ever abandoned, E. occurs

where the three rates of return are equal - a classical marginalist

result. When one or two of the operations are eventually abandoned,

the location of E is determined by certain inequalities between

the rates of return, which we explicate in Figure ~. It's noteworthy

that tll~location of E does not depend upon the adjustD~nt rules g.

TIloseg merely determine how quickly convergence to £ occurs.

It ~s alao worth pointing out that we do not aSGwne that

the firms are in conflict, as we would were we to take a

game-theoretic approach to their interaction. Nor is the purpose

of the joint venture to coalesce interests or irulibit competition.

Its purpose is taken to be profit, and the firms take part in it

perhaps because they do not have enough capital to raaintain both it aLd

the initially ftesired levels of operation for their own enterprises

or perhaps because the joint venture may initially appear to be

too risky for B...YJ.Y company to undertake alone.

, A l'emark or two about notation: \lieuse the SYInbol (a, b)

to denote both an open interval in the real line and a point in

the real plane. \-Ihich meanint; is intended in any pa rticular

case will be clear from the context. A closed interval is denoted

by [a, b], Hhereas (a, bJ is an interval open on the left and
~ ,

t7

closed on the right. @ denotes tilliinterior of a set @, and
~ A

§ denotes its closure.j
c;,';;;-;'/.'\

, TllfTA" /~'--
''; 0..

.~",'--_/
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.The Model

. Let there be two firms, one with capital H, the other with

capital M available for investment. So as not to introduce too

many symbols, weIll refer to these firms-a3 "firm N" and "firm.HU.

Also, let there be three ventures having the production fWlcti~ons'-'

x, Y, and Z, each of the latter being a function of its total

investment. We r 11 call these "venture X.U, "venture Y", and

"venture Z ". Only firm N invests in venture X, only firm M invests

in venture Z, whereas firms Nand M invest jointly in venture Y.

'£heseinvestments are made at the times t :::: 1, 3, 5, ... .

The returns to the firms occur at times t+l::::2, 4, 6, ... .

This is Illustrated in l1'igure 1.

At time t, firm N invests the capital nt into venture Y and

the capital N - nt into venture X, and firm M invests the

capital mt into venture Y and-the capital M - mt into venture Z.

. ThrouVloutthiswork,M and N are positivenumbers,and nt and

rot are restricted to the intervals 0 ~ nt ~ N and 0 $ IDt~ M.

These investments result in the p:r'°.fitsX(N - nt) and Z(1-1 - fit)'

which are returned to firms Nand H respectively at time t + 1.

At the same time, the profit yen. + IDt. ) is divided between .firms
1:; ,,'

Nand M according to the custom~ry rule that each .firm shares

that profit in proportion to its investment. 'l'hus, firm N

re c e i ve s

nt

. Ut+l
:::: yen + )

nt + illt t mt
~

and flrm M receivos

rot

Vt+l
::::

n Y(nL + In )
t fit (., t
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from the venture Y. TI1US, at time t + 1, firm N receives the

rates of return

from ventures X and Y respectively. Also, firm 11 receives the

rate of return (2) from venture Y and the rate of return

Z(H - mt)
= r (N - m )

z. tM-m t

vie shall assume

(i.e., rx' ry, or rz)
Every rate of return .is a continuous,1\

':~-;
, 1.,..",.-

,{/-f.

posl ti va:

valued, stl"ictlymonotonic decreasing function defined on a

close~ interval [0, C] of v~lues for its capital input~.

This implies that the production function X is a continuous

function on the interval [0, N] with X(O) = 0 and posltive on

(0, N]. Moreover, X is such that every straight line passing

.through the origin and intersecting tile graph of X at lea~t

once over (0, N), has exactly one intersection over (0, N) and

passes from below that ~raph to above that graph as the independent

variable increases. Similar conditio~s hold for Y and Z.

The Behavior of the Firms

How each firm decides to a.llocate its capital between

its two ventures at tile beglnniPG of eacllinvestment period

(at t = 1, 3, 5, 00.) is yet to asswned. To this end, we usc

X(N - nt)

(N - nt)
=

rx
=(1) rxt

N - nt

and

Y(nt + mt)

(n + mt)
=

ry t
=(2)

ryt
n + mtt

(3) rzt
=

from venture Z.

Condition R.
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the procedure introduced in [2] an~ [3]. Consider firm N.

We assume that at time t + 2 firm N adjusts its investments

into ventures X and Y in accordance with the relative rates of

return from these ventur~s at time t + 1. It does so by increasing

(decreasing) its investment to that venture that provided the

greater (respectively, lesser) rate of return. Greater

discrepancies in the rates of return induce greater adjusments.

These ideas ~re formulated by

(6 ) Yt+2 = 'gN(-<t' Yt)

where the function gN is assumed to satisfy the following

..-'-~, condi tions on the first
.2.-- C# \

XJ ;:..

-< by ~, and y
eTA, t tz -_..._-----_.-..-

Cond.i ti ons

quadrant. Here, gN is represented by g,

-

by'2.
.-/"

G. F'or 0 ~ '3 < GO and 0 ~ '$ < ..,

li..)

(ii)

g ('~, ?) ..i-Ln,oill1~gf?:t.iye__.a,nc;i_c9.pt;irl1touS,

for fIxed?:> 0 (or fixed s> 0), g(r, ~) is a

s tr i ctl y mO_D-gJ;9~i~aJ,.J,y__in_Q.reas ing- f'u1}~'ti Q!1- of r (r:'.~~f3_ctively, I),

~,

(i_t~J for some fixed ~O ~ 1, g (:sO' ?) = ? for all}.

Similarly, the behavior of firm 1-1i3 determined by the

following three equations:

Let /-- -

(4)
')..-" ryt'

.(t
= -

and

rxt

(5)
,-- nt

; J_<-w:
, L;ANI'1A./--- "(t

= -
'--.------/

N - n
.

t
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(7 )

/-"",

~\,

(8)

"
..., t

" //~ :/
,.,-

BE"-'" i

\ ])Et.Tj,~

''--~ ~ 0t

(9 ) °t+2
=

gM ( (3t' 0 t ) ,

where gM satisf'ies Conditions G with g replaced by gM' 5 by "t'

and '2by Ct.

We set ""0= rO' when g is replaced by gN' and set Po = 50'

when g is replaced by gM. ""0need not be equal to f30.

The meaning of Conditions G is the following. Consider

(6), let 3 = ""t' 2 = Yt' and g = gN' and assume for the moment

that 30 = 1. Conditions G, especially its monotonicity

requirement with respect to r and the condition g(l, 2) = ~~

insure that g(3, ]) < 2 for ~ < 1. But, according to (4), the

condition r < 1 means that for firm N the rate of return from

the joint venture Y is not as good as the rate of return from

its own venture X. The fact that g Cf, :n < ? when 5 <' 1 insures

through (6) that firm N will cut back on its investment into

the joint venture Y and will increase its investment into

venture X. Similarly, '5 > 1 yields g(\, '2)> '2and the result

that firm N increases its investment into venture Y and decrea3es

its investment into venture X. This ia just the behavior we

wish to model. The monotonicity requirement with respect to }

insures that, when the ratio of returns (4) remains constant,

adjustments fram higher relative investments into the joint

vent-~~e yield higher relative investments into the joint

venture again.

ryt
= -

,

rzt

mt
,

=

M - mt
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rJhen "<0 > 1, firm H has a bias tOvTard its ovm venture X.

rfhat is, the rate of return ryt from Y must be lare;er than the

rxt from X in order for 111to treat both X and Y as equall~T attractive.

14hen "<0 ::: 1, there is no such preference toward X. Analogous

meanings attach to the behavior of firm M and ventures Y and Z

when BO > 1 and ~O ::: 1.

Equations (6) and (9) taken toe;ether comprise the rules

by w.hichthe trajectory of the joint capital allocation E~ :::u

(nt$ mt) can be determined for t ::: 3, 5, 7, ... from the initial

capital allocation (nl' ml).

as follo1-1s.

Indeed, (6) and (9) can be rearranGed

N

(10) nt+2
::: :::

fN(nt' m)1
1 +

C yt nt,
gN ,

I'xt N-nt)

1-1

(11) Irlt+2
::: :::

fn(nt' fit)1
1 +

C yt ffit)
gN '

r. H-rTlt'Z"C

For the s alee of a simpler notation, we shall at times discard

the subscrlot t on the variables n. and lHt.
Let, ... ...."
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~ '.
/' . \

/ r~ , ~ Il; t1ft;A,
. r.} /

= [en, m): 0 s n ~ N, 0 ~ m ~ M}.

Since gN' gM' and the rates of return are continuous functions,
0

fN a~d fM are continuous onll. Moreover, Conditions G insure

that fN and fM have continuous extensions onto the boundary of

il, which we take to be the definitions of fN and fM on that

boundary. In essence, we are imposing another assumptions on the

behavior of'the firms. For instance~_we are requiring that '/-:--'-~
;;.-" . - -', . .. - u,. " ")-'v-

at the boupdary point n = N and m E [0, MJ I firm N remains .;1.--J; -1-'" ..

aware of what its return rxt wo~ld be if it made a very small

investment into venture X.
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Equilibrium Points

Equations (10) and (11) are equivalent to (6) and (9)

respectively. From any given initial values nl and ~~ they

determine time series in the nt and mt. We say that E = (nO' mo)

is an equilibrium point for this system if the equations nl = nO

and ~l = mO imply that nt = nO and mt = mO for all t = 3, 5,1, ... .

A principal result of this paper is the following theorem. Its

proof is given in the Appendix.

Theorem 1. Let there be two firms, which, in addition to

their own exclusive ventures, may share a joint venture as

indicated in Figure 1.

of their joint capital

where Et = (nt' mt).

Let the time sequence El' E), E5' ...

allocations be determined by (10) and (11),

Assume that Conditions R and G are satisfied.

Then, there exists at most one equilibriQm point in the interior
0 0

.(l of 1L. \!.fb.enthere is no equilibrium point in ./1,the boundary

offt will have at least one eauilibrium point.
0

Finding the equilibrium point within~~, if one exists therein,

requires a closer examination of (10) and (11). First of all,

the nonnegativity of gN and gM imply that fN maps Jl into [0, N1

and fM maps fl into [0, M]. This is indicated in Figure 2, where

the point Et = (nt,mt) E Jl is ,mapped under the simultaneous

application of (10) and (11) into Et+2 = (nt+2' mt+2) E:i1..

The direction of the shift from Et to Et+2 is determined by

two curves C and C , whose derivation is also given in then m

Appendix.
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C is a continuous curve within~.m It terminates on the

lines n = a and n = N. With respect to the n axis, it is a

continuous monotonic decreasing curve. If any portion of it
0

lies withinJl, the chords of that portion will have slopes

strictly less than a and strictly greater than -1. Those parts

of C that lie on the boundary ofJl will be contained withinm

the m = a or m = M lines. C has similar properties exceptn

that the roles of nand m are reversed. It follows that

there is one and only oneinterseetion point E between Cn

and C. E may be anJ'whe'rewithin Jl.including its boundary.m

All this is illustrated in Figure 2. Other configurations

for C and C are indicated in the first column of Figure 4.n m

\'leshow i.nthe Appendix that the shift from Et to Et+2'

as dictated by (10) and (11), is toward the curves C and G ;n m

that is, rit+2-nt is a shift toward Cn' which mayor may not

pass beyond Cn' and mt+2 - mt is a shift toward Gm' which also

mayor may not pass beyond C .m We illustrate such &~ifts

in Figure 2 for the case where the individual shifts (i.e., the

solid arrows) do not reach the said curves whereas the combined

shift passes over C .m It is also shown in the Appendix that

when the initial point Et = (nt' mt) lies on one of the curves

(say, C ), then there is no shift in the corresponding variablem

(that is, mt+2 = mt). It follows that Cm is a locus of equilibrium

points for the mt varia.ble alone. Similarly, Cn is such a locus

for nt alone. Consequently, E is an equilibrium point for the

system (10) and (11) taken together. These ideas comprise the

essence of our first theorem's proof, and they lead in addition



\

\
\
\
I

\
Co1rl'ectioD:-for page 13..;.. I

, ' \

Replace the last paragraph on page 11" I
!

",--,.
\ !

~~
,",
! ' ,

:1 'The only places in.o. wher'e equilibri

'-

d~stinct from E may appear are
I /

t~e four points where,C meets the edgesn

the edges n = 0 and n = NoCnl meets
\
,
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to the following corollary.

Corollar;r la. Under the hypothesis of Theorem 1, the unique

intersectionpoint E between C and C is an equilibrium pointn -- m
()

for the system (10) and (11). When E €P_, E is the only equilibrium
~ . 0

point within 11. When E ~ ft, there is no equilibrium point
<J

wi thin .1t.

Actually, the only places on the boundary that equilibrium

points other than E can occur are the four corners of 11. This

is so because Conditions G allow the following possibilities.

fM(n, 0) can equal zero along an interval [w, N], where 0 ~ w $ N,

in the n axis. fN(O, m) can equal zero along an interval [w, M],

where 0 ~ w S M, in the maxis. fM(n, M) can equal M along an

interval [0, w], where 0 ~.w ~ N, in the line m == M.
fN(N, m)

can equal N along an interval [0, w], where 0 ~ w ~ M, in the

line n == N. At ea.ch of the four corners, a pair of such extreme

values for fN and fM can occur simultaneously. When this

happens, the corner can be an equilibriumpoint distinct from E.
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0

Whether or not E lies within!L~ it is the only possible

limit of any convergent sequence arising from (10) and (11)
a

and starting from within ft. More precisely, we have

Lemma 1. Under the hypothesis of Theorem 1, let
('

iEt: t = 1, 3, 5~ ...} be a sequence of points Et = (nt~ mt)
0

determined by (10) and (11). Assume that (nl' ~) E .fl.

If [Et} converges, it converges to E.

See the Appendix for the proof of this lemma.

Another Restriction on the Behavior of the Firms.

The intersectionpoint E between C and C may have anothern m

property besides being the only possible equilibrium point
0

wi thin 11. It may be the only stable equilibrium point-anywhere

in Jl (including IL's boundary). We are able to prove this

syability property-in the case where the shift in nt does not cross

over the curve Cn and the shift in mt does not cross o"er the

curve C .m A crossing of one or both of these curves may still

occur when both ~hift3 are considered together, as is indicated

in Figure 2, but the shift in nt alone or in mt alone is to be

prohibited from such a crossing.

The meaning of this condition is that the system reacts

moderately; that is, the shifts in nt and mt ar6 never too large.
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Our purpose in this section is to impose some precise conditions

on the runctions gN and gM and the rates or return r . r , andx y
r that insurez the prohibition against crossings.

.

"

We need to derine some more symbols. Set

r (n -+ m)

l3(n, m)
y

(12) =

rz(M - m)

and

m
(13) 6(m) = - .

M-m
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Next, let n"be any fixed number in ~,NJ. Then, define men)t>

as that valuepf m € (0, H) for which r (n + m) = Par (1'1- m),
# y z

if such a value exlsts~n (0. M). (There will be at most one

such men) because r (n + m) is a strictly monotonicallyy
decreasin~ function of m whereas r (1'1- m) is a strictlyz
monotonically increasing function of m.) In this case, He have

c(m(n» = m(n)/(M - men»~. On the other hand, if ry(n) ~ POrz(M),
we setm(n) = 0 and 0 (m(n» = O. Horeover, if I' (n + N) :::POI' (0)"y z
we set men) = Nand o(m(n» = <D. Thus, in all cases men) is

that value of m for which (n, m) E C .m

Condition H (for firm M). Let n E [0, N] be iQy~n.

.Then,_~"f.?F_~ver.y~m f. 0 such that (n, m(n) + b.m) E 11, it is

required that"

gN(p(n; men) +.6.m), o(m(n) +6m»

pe greater than Q (m(n») if.6m > 0 and less than b (m(n» if

L:ill1 < O.
.

l'he meaning of this condi tion can be appreciated by examining

the function gr1 on the first quadrant. Upon fixing n E [0, H]

and letting m,vary from ill= 0 to m = M, He obtain a locus of

corresponding values for (12) and (13). This is illustrated

in Figure 3. For example, consider the locus for n = n2;

m(n2) is that value of m for which the locus intersects the

vertical line at P = PO' On the other hand, tilere may be no

such intersection, as is indicated for n = N. The actual shape~; c1'

the se loci de pend of course on jus t \.<Jha t the func tions r y and

I' are.z
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Consider any.locus L that intersects the vertical line

~ = ~O at some point I. Condition H for firm M states that,

on the portion of L to the left and higher than I, the function

gM takes on values greater than its vlaue at I and, on the

portion of L to the right and lower than I, the function gM

takes on values less than its value at I. No restriction is imposed

if L does not intersect the line ~ = ~O'

Remember that gM(~' 5) is a monotonic increasing function

of ~ for fixed 5 and a monotonic increasing function of 5 for

fixed ~. Thus, our condition requires indirectly that gM does

not vary too strongly on either side of the line ~ = ~O as

~ varies. This is equivalent to saying that firm M does not

adjust its capital investments mt too radically.
.

Note also that the flatterrand r are, the steeperwilly z

be the loci of Figure 3, and the more likely will be the fulfilLment

of Condition H for a given gM; here too, flatter rates of'return

signify a more moderate system so far as the effects of

investment variations are concerned.
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This discussion can also be appled to firm N so long as

its behavior function ~N satisfies an analog to the above Gonditlon H.

To state the appropriate analog, we nOH set

I' (n + m)
y

(14) -<(n, m) :;
I' {N - n}x

and

n
(1$ ) y(n) :; .

N - n

For a given m € (0, N), we define n(m} as that value of n E (0, .N)

for ,"lhichI' (n + m) :; -<Or (N - n) if such a value exIsts. If
. y x

hOHever I' (m) ~. -<Or (In, we set n{m) :; 0 and y{n(m» :; O. If
Y x

I' (N + m) ~ -< Or (OJ, we set n(m) :; Nand y{n(m» :; GO. Thus, iny x
every case n(m) is that value of n f or which (n, m) E C 8n

.

Condition H (for firm N). L8 t m E [0, M] J?2-Et_~~D. Tl~XG

for every ~n ::f. 0 such that (n(m) + ~h, m) E il, J:~.J_~-~.~q~~~~~-that

gN(-«n{m) +b.n, m), y(n(m) + L1.n»

be gre.a~~T to..~_ny(n(m» if ~n > 0 an9--_1~::;~__~!_~?::g-y(n{rr..» if L\n < O.

Our discussion for this case now continues exactly as before.

We prove the next lemma in the Appendix. It states that

the aforementioned crossings of C and C do not occur.
. n m

LeJ}.m13.~_. Le t Conelltions F:.J_~,___~T:.~-!:1 ~~_f'~~.fi lle d.

.Ci )_~~~.~T!1~.!l~~~ m = mt is.held flxcd and that nt+2 ~~

determined by (lO). Let n(m) be that unique point of [0, NJ such

!;J1...§. t (n(m), m) E Cn" If 0 < nt < n (m), then nt < nt+2 < n (Hi)5

Ii' n(m) < nt < H, then n(m) < nt+2 < nt8

(ii) As sume th at n = nt is he Id fIxed and that illt+2 is"

determined bv (II)."'- Le t ill(n) ~~l)aJ~- ill) hl\~e-I?.S?lnt of [0, n 1 §_~~L-

that (n, m(n» E Cm. JK.O < Ir1t < m(n), ~_Ll~E!mt < Dlt+2 < m(n).

If rn(n) < r.lt < 1'1, th en m(n) < mt +2 < mt .
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Convergence and Stability

Our second principal conclusion, given by the next theorem,

asserts that under certain conditions the equilibrium point E is

globally. stable and is indeed the limit toward which the dynamic

behavior of the two firms tends. This too is proven in the Appendix.

Theorenl 2. Let there be two firms, which, in addition to

their own exc~usive ventur~s, may share a joint venture as

Jndicated in :Fie;ure1. Let the time sequence El' E3' E5' ...

of their joint capital allocations be determined by (10) and (11);
"

wher'e Et :;; (nt' lit)' and assume that El E .fl. _Also, asswne that

Conditions H, G, and H are satisfied. Then, the sequenc'e El'

E3' E5' ... converges. Horcover, there is a unique point E E Il.

(namely, the intersection between curves C and C ) that is then- ill

.

0

limit of.every sequence El' £3' E5' ... that starts in.Il(i.e.,
Q

for which E.lE Jl). Thus" E Js 1he one and only globally stable

equilibrium point for the system. of Fi~ure 1 under the assUI1mtion

that thE: initial flows at t = 1 along the four leRs of that

figure are all nonzero.

Note that neither this theorem nor Theorem 1 requires a

specification of particular functions for gN and 811' and in

.this Hay we maintain the generality of our model. '1'he rate of

convergence to E Hill depend of course on just Hhat functions

gN and gM may be. But, Conditions Rand G alone insure the

existence of the equili-briwn point E, and Conditions R, G,

and H alone insure that convergence to F. Hill occu.r - regardless

of its rate.

,
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Special Cases: The Abandonment of Ventures

It can occur that, in the limit as t~"", firms Nand H

together or singly abandon venture Y, or firm N abandons

venture X, or firm M abandons venture Z. These situations

arise precise"ly when the equilibrium point E occurs on the

boundary of 11. In fact, eight dif1'erent possibilities arise,

as indicated in Figure Lf.: E may be at one of the corner points

of Jl, or it may be somevrherewithin the straight line segments

between those corner points. For example, ~len E is at the origin,

firms Nand M eventually abandon venture Y and concentrate their

investments on ventures X and Z respectively. On the other

hand, when E is somewhere on the n axis, say, at (nO' 0) 'dhere

0 < nO < H, then ~ventHally firm M abandons Y and concentrates

on Z, whereas f'irm 1-1splits its investments by putting nO into

Y and N - nO into X.

The necessary and sufficient conditions for the occurrence

of each of the eight possible cases calleasily be determined by

examining hO\-J "the surfaces "<Orx' Fy' and 130rz must be situated

"with respect to each other in order for the intersection betHeen.

C and C to occur at the varIous parts ofA's "boundary.n m .
The

resul ts are tabulated in r.'iljureIt, \-;hore typical (but not all

possible shapeR)for C and C arc also indicated.n m Since E = C n C
n [il

is unique, the listed necessary and sufficient conditions arc

mutually exclusive. For tHe sake of completeness, we also exhibit

in Figure If a ninth case: No venture is abandoned;
0

nOH, E. E il .

He are assu!'1inljonce ae;ain that Conditions R, G, and Hare f",li'illcd
0

~nd that all clyrw.micprocesses start Yl.ithin fi.



20

The first e ie;ht degenerate cases are of interest because

they indicate the dlfferelltways the three ventures may eventually

become successes or failures and how the joint venture may

eventually fall under the exclusive proprietorship of one of

the firms. Let IS examine each of the cases of F'i(;ure if from

this point of view. (As a compromise between clarity and brevity,

we will merely use the phrases "is less than" and "is e;reater

than" when in fact we should always add the words "or equal to";

the phrases "is no greater than" and "is no less than".seem

awkward. Also, by a "we~ghted rate of return" we rneanrx

multiplied by '<0 or rz multiplied by ~O')

Case 1. The indicated necessary and sufficient conditions

mean that the worst Heighted rates of return from venture X and

from Ve!ltureZ are greater than the best rate of return from

venture Y. In this case, venture Y ends in failure; both firrns

eventually abandon it.

Case S. This is the extreme opposite of Case 1. Now,

the worst rate of return from venture Y is greater than the best

.weighted rates of return from ventures X and Z. In this case,

venture Y becomes a success, so much so that it preempts all

the capital from firms Nand N, and ventures X. and Z end in

failure.

Case 3. Now, the best weighted rate of return from

venture X is less than the worst weighted rate of return from

venture Z, and lying somewhere between these two values is tile

rate of return from venture Y for the case where venture Y has

maximum capital input from firm 11 and no capital input from

f irni 1,1. Our analysis has shovm that in this case venture X.
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fails whereas ventures Y and Z succeed with firm N exclusively

taking over venture Y and firm M devoting all its capital to

venture Z.

Case 7. This. is the same as Case 3 exce pt that firms Nand

M interchange their roles and ventures X and Z also interchange

their roles.

Case 2. Consider f'or the moment the special circumstance

where firm N, being the only firm to invest in venture Y, has

some nonzero capital allocations nO and N - no to ventures Y

and X for which the rate of return from venture Y equals the

weighted rate of return from venture X, AssUme in addition

that the worst weighted rate of return from venture Z is

greater than this rate of return from venture Y. It folloHs

in this case that, under any dynamic process, firm M eventually

concentrates on venture Z whereas firm N eventually operates \-lith

the aforementioned capital allocations nO and N - nOo

Case 8. This is the same as Case 2 except that the roles

of firms Nand M and the roles of ventures X and Z are again

.interchanged.

Ca s e 4. Now, consider the special case \-/horefirm N puts

all of its capital into venture Y. Assume that in this situation
capital

{irm 1-1has some nonzero I', allocations mO and 1-1- 1110 such

that its rate of return from venture Yequals its \-;eighted rate

of return from venture Z. Assume also that the best '",eighted

rate of return from venture X.is less than the indicated rate

of return from venture Y. Then, any dynamic process Hill tend

toward the situation where firm N abandons venture X and firm E

operates with the capital allocations roo anti H - mO.
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Case 6. This is Case 4 "lith the usual interchange between

the roles of the firms and ventures.

Case 9. This is the nondegerirate case.!\
It occurs v.'hen

all three (Heighted) rates of return are equal at some point

in the interior of It. We have shown that there is at most

only one such point.
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Appendix

Proof of Theorem 1 and Corollary la. The nonnegativity of

gN and gM implies that fN maps ~ into [0, N] and fM maps £L

into [0, MJ. Equation (10) coupled with Conditions G indicates

that nt+2 - nt and ryt - ~Orxt will have the same sign, or they
0

will both be zero together, so long as (nt' rot)lies in 11.

Similarly, under the same condition on (nt' mt)' mt+2 - mt

"and ryt - ~Orzt will have the same sign or they will both be

zero together. What happens when (nt' mt) lies on the boundary

of A requires a special consideration, which we urillertakelater

on.

l'



23

The sign of r yt - f30rzt can be ascertained by comparine;the

surfaces (2) and (3) in the three-dimensional (n, m, r) space

over the rectangle~, as indicated in Figure 5. Under Condition R,

the surface r (n + m) peaks over the origin and is monotonicallyy

decreasing over every .straight line in Il that passes through

the origin. Each of its equielevation lines is a straight line

whose projection onto ft intersects the nand m axes at the same

value. On the other hand, the surface f30r z (11 - m) is a monotonically

increasing function of m:, and its equielevation lines are

parallel to the n axis.

Since both surfaoes are continuous and have positive values
()

over il, their intersection I (if it exists) is a continuousyz
~ 0

curve above fL, and the projection of I onto 11 is a continuouB
yz

curve all of whose chords have slopes (with respect to the n axis)

lar.ger than -1 and less than O. The latter fact follows directly

from the assillnptionthat rand r are continuous, strictlyy z

monotonically decreasing functions. (To see this, examine the

point of intersection in m between r (n + m) and r (1'-1 - m).
° y z

Because of the continuous and strict monotonicities, a shift to

the left of the function m r (n + m) by An > a to get they

function m ~ r (n + An ..,.m) yields a shift to the left in they

point of intersection by the amount b.m, \oJhere0 < Llm < Lln.)

"""'°

Jl{ It may happen that, for some value of n E [0, NJ, 13Or z(Ivl - m)

is larger (smaller) than r (n "t m) for all m e [0, 11]. In this
y

case, the corresponding point on the I)rz curve is tal~ento be

(n, 0) (respectively, (n, 1-1})to reflect the fact that firm M

would want to decrease (retectivCly, increase) its investment

/' c., "t.t °.
r) ll.1A---
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m into venture Y as much as possible. As a consequence, the

proJoection of I onto ftis a continuous, monotonically decreasingyz

curve C (with respect to the n axis) that starts somewhere onm

the line n = 0 and ends somewhere on the line n = N. It satisfies

the aforementioned restriction on its chords except that it may
01" "'-If v~f...(H"

coincide with the line m = M f'or some lowest values of'n and with
010' a.llvdf..es: "-

the line m = 0 f'orsome highest values of n. The curve Ct\ m

co{esponding to the situation depicted in Figure 5 is illustratedA

again in Figure J.

We mentioned before that, in view of (11) and Condition G,

we can say that mt+2 - mt has the same sign as ryt - I30rzt

or the two quantities are both zero together. Equivalently,

fM(n, m) is less than m (or equal to zero or larger than m) if

and only if r (n + m) is less than (respectively, equal toy

or larger than) ~Orz(M - m). These two assertions require the

restriction that m be larger than 0 and less than M. This is

illustrated in Figure 6 for the situation corresponding to

Figure S. It should be noted however that f1>1(n,m) may tend

'to zero as m -..:;-0+ (n being held fixed) even thouGh

ry(n + m)/~Orz(M - m) tends to a nilllilierlar~er than one;
this

Hill be the case if gm(~' 0) ;: 0 for [3 E (f30'=). Similarly,

f'1'1(n, m) may tend to H as m --'>-H- even though r y (n + m) lBoI' z (r'i- m)

tends to a nurnber smaller than one; this happens when

gM(~' 6) ~.. as 6 ~ - for fixed i3E (0, ~O)o
0

We can conclude that, when (nt' mt) E Jl, the 311.:
.:;m

t+ '" - m...
Co t"

is toward the curve C , as indicated in Fl~ure 3.m (That shift in rYlt

may extend beyond curve Cm if' g}1 varies strongly cnQuch.)

When (nt, HIt) is on the curve Cm' ther'e is no shift in l1lt; that
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is, the curve C is a locus of equilibrium points for them

variable mt. Finally, when (nt' mt) is on tl~ boundary lines

m = 0 or m = M, fM(n, m) may be 0 or M and there may be no

shift in mt even when (nt' mt) is not on em; this situation

corresponds to an unstable equilibrium for mt. It occurs when

fH(n, m) approaches the origin from above the line m or approaches

M from below the line m, as is indicated in Figure 6 for n = 0 fo~

eX<th1ple. There are no other equilibrium points for mt.

It should also be noted that the boundary points of.fL may

not be equilibrium points. For example, e.;H(P, 0) may be greater

than 0 for f3E (130' co), in which casefH(n, 0) will be c;reater

than 0 and will dictate a shift away from m = 0 according to (11).

Similarly, for f3 E (0, f30)' gH«(3, 6) may tend to a finite limit

as 6 _co, thereby yielding fI1(n, I'1)< 11.

'l'hisanalysis can be applied to the variable nt too. In

this case, we ccmpare (1) and (2) by examininG the intersection

I of the surface ~Or (N - n) with the surface I' (n + m). With
xy x y

regard to the 'axes of Figure 2, .,.(Orx(N- n) is a conti:p.uous surface

'above ft that increases with n. Its equielevation lines are

strai[iht lines parallel to the maxis. It folloHs that Ixy' if

it exists, is a continuous curve above n whose projection onto

il is such that all its chords have slopes (Hith respect to the

n axis) less than -1 and greater than -co. If, for some rn,

-'-
or (H - n) is larger than (smaller than) I' (n + m) for' all n,x y

set Ixyequal to (0, m) (respe,ctively, equal to (1'1,m) to

:;,eflectthe fact tlJat firm N would HD.nt to decrease (respectively,

increase) its investment n into venture Y as much as possible.

With this extension of Ixy' the projection en of Ixy onto 11. has
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.

the same Droperties as C when the roles of nand m are reversed.
. m

In particular, Cn starts somewhere on the line m = 0 and ends

somewhere on the line m = M.

Upon considering fN(n, m) in the same way as we did 1'l1(n,m)~
. .

we can concludethat C is'a locus of equilibriumpointsfor then
0

variable nt; and, when (nt' mt) E .il,the shi1't 1'rom nt to nt+2

is toward (and perhaps crosses over) Cn- This too is illustrated

in Figure 3. As bef'ore, the points on the lines n = 0 and n = N

which are not on Cn may be points 01'unstable equilibrium for nt.

There are no other equilibrium points for nt.

In vie\-!01'the properties of' C and C , we can conclude thatn m

these tHO curves intersect at exactly one point E, as is

indicated in Figure 2. E may be anyi.rhere in.!l.fincluding its

boundary. He can also conclude that E is an equilibrium poir:.t

f'or the variable Et = (nt' mt) where the sequences in nt and mt

. are determined by (10) and (11). Although E.will be the only
0

equilibrium point inil.if'it truly a.ppears therein, there may be

other equilibrium points on the ~oundary 01'11. E.ach of' the

1'our corners of'.o..Inay or may not be an equilibrium point depending

upon 1dl1ether 1'1-1and. f'N simultaneously assume the correspondinG

edge values at the corner in question. Fer similar reasons,

each ai'the four points vrhere Cn meets the edp-;eg m = 0 and m = M

and ernmeets tileedges n = 0 and n = N mayor may not be equiliuri~,:

points.
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Proof of Lemma 1.
Le t Ec;g = limt-+.. Et. \<Je wish to show

that E- =E. Now, mt+2 - fM(nt' mt) is the increment through

which mt changes to mt+2. It is also the distance between the

surface (n, m)r+ m, which we denote by m, and the surface fM in the

(n, m, r) space above the point (nt' mt). Thus, we have a sequence

of points [(nt' mt' mt): t = 1, 3, 5, ...} in the sur1'ace m

and a sequence 01' points {(nt' mt, fM(nt, fit): t = 1, 3, 5, ...}

in the sur1'ace fM. [Since Et: t = 1, 3, 5, ...} converges, the

increments in mt tend to zero, which means that the two sur1'aces

tend toward each other along the points Et. .Since these surfaces

are' continuous, it follows that they meet at Ea.. There1'ore,

ECD is on Cm or perhaps on the line m = 0 or on the line m = M

since these are the only places in ft over which the two surfaces

can intersect. But,E... cannot be at any point P of those parts

of the lines m = 0 or m = M that do not coincide with C becausem
0

0 < fM(nt' mt) < M whenever (nt' mt) E Sl. and because, for all points
c

infi sufficiently close to P, the increments in m~ are .directed
II

away from P. . (P is an unstable equilibrium point.) Thus, E-

'is on C .m

By the same argumentappliedto l'N(nt' mt)' we can conclude

that E is also on C .
"" n But, C and C have one and only onen m

intersection point, namely, E. Therefore E = Eo...

"
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Proof of Le:inmau2. We prove asserticn(i), the proof of

assertion (ii) being the same except for notational changes.

Consider one of the loci of Figure 3 that intersects the ~ = Po

line. With n held fixed, an increase (decrease) in the value

of m resul~in a shift along a locus upward and to the left

(respectively,downward and to the right) because of Condition R.

Now Condition H asserts that the v~lues of gM(~(n, m), oem»~

on tllatpart of a Given locus to the left (right) of the vertical

line at.~o is strictly larger (respectively, strictly smaller)

than its value at the intercept of that locus alld vertical line,

if such an intercept exists. In view of (11), this implies

that, 1,-lithn fixed, the curve fH(n,' m) in Figure 6 intersects

the straight line m ~ m at men) f [0, l1J and remains larger

than men) for men) < m S 1>1(if men) < 11) and remains smaller than
#:-~

men) for 0 :;;nHn(n) (if men) > 0). l<'urthermore,the strict mono-

tonicity asserted in Condition G(ii) implies that gH(t3(n, m), 6(rn»

is less than (greater than) oem) when (~(n, m), oem»~ is a

point to the left (respectively, right) of the vertical line

at f30. Consequently, fH(n, m) < m for men) < m < H if men) < Ivl

(respectively, fN(n~ m) > mfaI' 0 < m < men) if men) > 0);

that is, as m increases, fN(n, m) crosses at men) the line m~ n:

from above that line to beloH it. 'Since for fixed n the increment

mt+2 - mt is the difference from fH(n, 111) to the straight line

m 1-+fi at the point In = mt' it folloH::> that, if mt :t.m(n), then

mt+2 is closer to men) than is fit; more specifically, we have

mt < Tnt+2< men) if 0 < mt < men), and men) < ffit+2 < Tnt if

m(n) . < mt < H.
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Proof. of Theorem 2.)
~ u ../

C;W;-~ow set about proving that E = (nO' mO) is the limit

point toward which evcry sequence [EJ = {(nt' fit)} that starts
0

inft and is governed by (10) and (II) converges. We establish

r::,-, ~ )

0

this. fact under the assumption that E E~; later on, we point

out how our arguments still apply in the case where E is on the

boundary of .D.. We consider several cases depending on where in
0

11 a point Et of the sequence happens to be. Partitionil into

four open regions bounded by segments of C , C , and the bOllildaryn m

of 11.,as indicated in Fi~ure J. I~call that C and Care
n m

c

continuouscurvcs in ..Qsuch that within Jl the chordsof C haven

slopes more negative than -1 and the chords of C have slopesm

larger than -1 but less than O.

with respect to the n axis.)

(We are measuring tilese slopes

Case 1. ASSUllle that E.t = (nt' TIlt) E Sl2 for some t.

Then, by (10) and Lemma 2, nt+2 - nt is a positive (nonzero)

shift to tbe ri[jht such that (nt+2' mt) E iL2; tba t is, the

shift from nt to nt+2' with mt kept fixed, does not reach Cn or

.pass beyond Cn into fiJ.
In view.of the chord restrictions on

Cn' nt+2 < nO. Similarly, mt+2 - illt is a negative (nonzero)

shift down\-mrd 3uch that (nt' lnt+2) € Jl2. The chord restrictions

on Gm insure that,TIlt+2'> mO and: also (nt+2' mt+2) E .{l2. By

induction, it nOvl folloHs that nt' nt+2' llt+4' ... is a monotcnic8..11~,..

increasing sequence bour1ded above by nO; the ref ore, it c onvcl'ge s .
Also, mt' mt+2' mt+4' ... is ~ monotonically decreasinG sequence,

bounded below by IDO' and therefore it too converges. 'rhus,

the sequence Et' Et+2' Et+L~' ... remains within fl2' converGos,

and by Lemma ~has the limitE = (nO' mo).

"
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A s.irnilar ar~ument shows that, if Et€ flIt'then

Et' Et+2' Et+4' ... remains within .0.4and converges monotonically

upward and to the left toward E.

Case 2. Asswne Et = (nt' fit)€ Cn. If Et = E, then the

subsequent points in the series remain fixed at E. If Et * E,

,:~ then nt+2 = nt' and, by Lemma 2, mt+2 is such that E.t+2= (nt+2' mt+2)
P-~.-t ~~~ T

::!:::// is in'.1l2U11.4. hus, the subsequent points Et+2' Et+4' ...

converge to E as in Case 1.

A similar argwnent ShOHS that, if Et € Cm' then

Et+2' Et+4' ... convergesto E as in Case1 again. Upon combining
- -,J-"-""'"

Cases 1 and 2, He have that, if EtE 1l.21JJl4' \then__Et' Et.,/-2'...

. '~~c,onverge.s to Eo

Case 30..
Asswne that, the sequence E.l' E], ... remains

ld i th in ill . Then, nl' ,n], ... and ml' In], ... are both

monotonically increasing sequences that are bo~nded above.

Thus, they converge, and therefore El' EJ' ... converGes. By

Lernrrla 1 again,~, E], ... conveq:;es to E.. The :Jarneresult occurs

if the sequence remains H.tthin 11Jo

Case 3b. AssUlne that &1 EJ11 and there i'3 sor~e t > 1

such that EtE 1i2U.D.4. Then,El' EJ' ... converses to f.,

as Has shown in Cases 1 and 2.

Cas e_..l.£. . Assume tt1at there e;"jsts an increasing infinitc

scquence tl = 1,. t2' tJ' ... of odd integer time values sueh that

Ef>' ... Et/ -1 is in ~ for k odd and is in il1 1'01'k even.
/ /k' / 1c+:L' . ...;

That is, the sequence E.l'E3' ,'.. start;>off in 111 for one or

more terms, then shifts toft] for one or more terms, then goes

!Jack to fl.lfor still r;lOre terms, and so forth, a.l'ternatins !Jetw:::G!l

ill an? Sl] .

(The folloHine; argur.Jentdoes not change in any essentL:l
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vlay for tbe case Hhere the sequence E.l' EJ' ... star.ts off

in llJ. )

Let El = (nl' IDl) and E = (nO' IDO). If IDl < IDO' let.

Gl be that unique point on Cn having ml as its m coordinate;

if ml ~ mO' set Gl = F.. (See Figure 7.) Similarly, if nl < nO' ,

.

let Fl be that unique point on Cm having nl as its n coordinate;

if nl ~ nO' set Fl = E. Note that Gl and Fl cannot both be equal to E

Let Hl be that point in.o..lhaving the same n coordinate as Pl

and the.same m coordinate as Gl. (If ml < mO and III< nO' we

have HI = El' as indicated in Figure 7.) Finally, let HZ be

that point having the same n coordinate as Gl and the S8.Plem.

coordInate as Fl. Since the chords of C and C have negativen In

(neither zero nor in.finite) slopes within 11.,we have that H2 E fL~.-'

Let Hl be the closed rectangle HIFIH2Gl. Because of Lemma 2~_.: ";..;.-.~.~~
po . ",,"'j~'

and the chord restrictions on C and C , every point in'Hl n fl.
.L

-

n m

. will, under the displacement dictated by (10) an<.l (11), rer'lain

in Rl. This fact coupled with our assUI'lption concerning the

'.

subs€'1uences of iE.t~ irnplies

.and Et is in R 1 n 11 J.2

Set H2 =,->-112' ~2).
.' -..0'7

> d >
1)2 - nO an ~2 - mO.

that Sl' ..., Et2-1 are illHl n III

~~ L::..--..-.---
ET . -'.,-

t't tJ~-/ tha t/

It follows from the above construction

HOVl,let G2 be that unique point on

Cm havinc:; the saIne n coordInate as H2' naloely, 1\2. Also, let

F2 be that li..Yliq,ue point on Cn having t:}C same m coordInate as

H2' namely, ~2. Then, let HJ be the point having the same

n coordinate as F2 and the saIne m coordinate as G2.
Let R~ be

c.

the closcd rectangle H2F2"1..I3G28As before, the displaG€mcnt

dict~ted by (10) and (11) carries every point of R2 n JlJ into
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R 2. Al so, E t 2' ... , E tJ-1 are in R2 n 12 J' and EotJ is in R 2 n ill .

Set H] = (~J' ~J). As before, 71]~ nO and ~J ~ mO. Lot

GJ be that unique point on Cn having ~J as its m coordinate.

Let FJ bo that unique point on Cm having 11Jas its n coordinate.

Then, H4 is the point having the same n coordinate as GJ and

the same m coordinate as'F3. Let R3 be the closed re,ctaD.81e

H3F3H4G3° As before, H4 is in fl3'E.t ' ... , ~t -1 are in R3 n .Jll'3 4
and Et is in R3 n 11].4

Continuine; this process, He obtain a nested sequence

Rl' R2,RJ' ... of closed rectangles whose intersection is E.

because the Gk alternate between C and C and tend
n In

toward E frem below, Hhereas the Fk do the same from above E.

':>inceeach se'grnent.&t\' ..0 , Et -1 of the sequence {Btl is
.le" . k+l

in Rk' it fo110\-/sthat Et ~ E as t ~ CD.

This is

(If 1111> mO or nl < nO and if El E Ill' it can be allo;.;n

that Case Jb ensues, but we don't have to argue this case.)

All the cases considered above exhaust the various 'days a

sequence generated by (10) and (11) can occur in 1l.under

Conditions R, G, and H and the assumption that both F..land E.
0

'are in f1...

The possibility that E occur~~ on the boundary of Jl has

yet to be considered. In this situation, one or 1'10reof the regions

Jll' ->'12' 1)'3'and ~1l4are void, and so only SOrrieof the cases

lis ted above need ue considered . 1<'01'th ose case s that do

arise, the arguments presented above apply virtually Hord [f)r

word.. 110>-1,hOldover, it should be noted in particular that, since

El Ell, the 3eq'u'cncoEl' E.J'E.S' Hill rer.Hlln Hi thin 21 and
will thereby avoid any of the unstable limit points that might

occur on the bou..Yldary of .f2..

,:.
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LOCATION OF E IN fl

Mr.
'-Cn
E Cm

0

t

l 1.
1 ECm

Cn

E

Cn

E

NECESSARY AND SUFFICIENT CONDITIONS
(AND INTERPRETATIONS)

I
I
~

m =m where O<m <M !
0 0 ",

i
~
.

CASE 4:

(3orz(M~m) = ry(l\J+m) has a solution

and aorx (0) ~ ry (N+mo>'
(N abandons X.)

CASE 5:

aorx(O}:s ry(N+ M), (3orz(O):s ry(N+M).
(N abandons X t M abandons Z.)

CASE 6:

aorx(N-n} = ry(n+M) has a solution n=no where

and 13orz(O):s ry(no+ M).
(M abandons Z.)

CASE 7:

13orz(O) :s ry(M):s aorx (N).

(N abandons Y,. M abandons Z.)

0 < no< N, ;

CASE 8:

13orz(M-m} = ry(m) has a solution m= mo where
and aorx (N) ~ ry (mo).

(N abandons Y.)

CASE 9:

ao rx (N -n) = ry (n .. m) = 130rz ( M - m )

m=mo where O<no<N .and O<no<N.
(No venture is abandoned.)

Fioure 4.

,
0 < mo< M, :

I
i
t
f
i

has a solution n =no t
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