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Abstract. Two firms with constant capital run their
separate cperations and in addition ccoperate in a joiﬁt venture.
These three operations are periodic in that an investment at
the beginning of a périod receives a payoff at the end of the
period. Betwéen two periods each firm adjusts its capital allocaticn
toward that operation that payed it a greater rate of return in
the preceding period. Thus, each firm has a rule for capital
allocation, but we do not specify the precise values of that
rule in order to maintain the generality of our analysis. Given
an initial capital allocation and the production functicns of
the three operat ions, the rules generate time series in the
capital allocations. It is shcown that, if the firms do not
react too strongly to differences in their rates of return and
if the rates of return do not vary toc strongly with chéanges in
capital input,‘then these time series converge to a unigue
globally stable equilibrium point. The location of the equilibrium
point shows which operuation will succeed and which will fail,

It slso indicates how the two firms will eventually interact.
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Introduction

We consider herein the behavior of two firms, which in
addition to.their own ocperations, engage in a joint venture,

We assume that the venture as well as the individual operations
are periocdic in the sense that investments made at the beginning
of a period receive a payoff at the end of that pericd. At the
latter time, each firm is free to decide how much of its capital
it will invest into the joint venture for the férthcoming period.
An example of this model might be two farmers who jointly own .
a cider mill and whose yearly capital investments are the
quantities of apples they convert to cider, the alternative

being to sell the apples whole. (This assumes that all apples
are of uniform quality, no rotten or bruised ones that are good
only for cider.) Another example might be two 0il companies that
jolntly drill offshore. At the end of each exploration, each
company is free to decide how much, if anything, it will invest
into the next joint exploratione.

We ask whether the joint venture will succeed, ana, i It
does, what share of the joint venture will each firm eventually
settle upon. Actually,.nine cases can arise becouse ggch firpy
may either abandon the joint venture, abandon its own enterprise,
or support both. The case where a firm abandons both the juint
venture and its own enterprise does not arise in our analysis
since we assume that the {irm has a fixed amount of capital
which 1t must invest in either or both operations. We seek and

find precise conditions under which the nine possibilities occur.



Wie attack our problem by examining the dynamic behavior of
each firm and how it adjusts its capital allocations between its
own operation and the joint venture., In this regard, our approach
is a behaviorist one in the spirit of the'Cyert-Harch behavicral
theory of the firm [1], but the behavior we attribute to the
firms is fimply that they seek to improve the overall rates of
.return to%heir investments when adjusting their capital allocations.
It is not a mérginalist approach = at least at this point = in
that the amount of that adjustment is left unspecified. We merely
assume that at the end of each period the firm examines the two
rates of return it has just received and then shifts its next
capital allocation toward that enterprise that provided the better
rate of return. These rates of return are determined by the
production functions of the operations and the capital investments.
We-also assume consistency of behavior: Under the same circumstarces
(Lees, faced with the same received rates of return and the same
prior capital allocation) the firm will make the Same capital
ad justment. However, the two firms are allowed to behave differently.
Thus, each firm is characterized by its own rule for adjusting

iy

capital allocations. This rule will appear as a function g wiaose
preclise values we leave unspecified., We only impose some assumpticns
concerning the general shape of the g functions.

The adjustment rules generate time series in the capital
allocations, and the question we are led to is whether those
time series converge. The answer is yes if two conditions hold:
The firms must not react too sharply to imbalances in their rztes

of return (they should not overrcact), and the rates of return

must not vary too radically wlth variations 1lnm the capltal inputs



(the operations should be relatively stablé). These ideas are
made precise by Conditions H below,
Under these circumstances we show that there is one and
only one equilibrium point E toward which the time series converge,
‘When none of the three operations are ever abandoned, E occurs

where the three rates of return are equal - a classical marginalist

result. When one or two of the operations are eventually abandoned,

the location of E is determined by certain inequalities between

the rates of return, which we explicate in Figure #. It's noteworthy

that the location of E does not depend upon the adjustment rules g.
Those g merelf determine how quickly convergence to £ occurs,.

It is also worth pointing out that we do not assume that
the firms are in conflict, as we would were we to take a
game—theoretic approach teo their interaction., Nor is the purpose

of the joint venture to coalesce interests or inhibit competition.

Its purpose is taken to be profit, and the firms take part in it

perhaps because they do not have enough capital to maintain both 1t aud

the initially desired levels of operation for their own enterprises

or §erhaps because the joint venture may initially appear to be
too risky for any company to undertake alone,

A remark or two about notation: We use the symbol (a, b)
to denote both an open interval in the real line 2and a point in
the real plane, Which meaning is intended in any particular

case will be clear from the context. A closed interval is denoted

by [a, bl, whereas (a, b] is an interval open on the left and
e

o
closed on the right. © denotes the interior of a set &, and
A

€ denotcs its closure, |



‘The Model

Let there be two firms, one with capital N, the other withn
capital M available for investment. So as not to introduce too
many Symbols, we'!ll refer to these firms as "firm N" and "firm M",.
Also; let there be three ventures having the production functi:ons
X, Y, and 4, each of the latter being a function of its total
inves£ment. We'!ll call these "vénture x*, "yenture Y", and
"venture 24", Only firm N invests in venture X, only firm M invests
in véntgre Z, whereas firms N énd M invest jointly in venture Y.
These investments are made at the times € = 1, 35 55 eee =
The returns to the firms occur at times t+l = 2, Ly, 65, coe o
This is illustrated in Figure 1.

At time t, firm N invests the capital ny into venture Y and
the capital N = n, into venture X, and firm M invests the

capital m,_ into venture Y and the capital M - m_ into venture Z.

© t
. Throughout this work, M and N are positive numbers, and ny and
m_ are restricted to the intervals O = n, S Nand O S m S Mo

These investments result in the profits X(N - nt) and Z(M =~ mt),
ﬁhich are returned to firms N and 1 respectively at time t + 1.
At the same time, the profit ¥(n, + m_) is divided between firms
N and M according to the customary rule that each firm shares

that profit in proportion to its investment., Thus, firm N

receives
Ny
c Uy T m Y(nt + mt)
t t e
and flrm M receives
My
Ve, = ——— Y(n +m)



from the venture Y. Thus, at time t + 1, firm N receives the

rates of return

X(N - nt) _
T
and .

i Y(ng +mg)
& Tye T n, +m ) rY(nt % )

from ventures X and Y respectively, Also, firm M receives the

rate of return (2) from venture Y and the rate of return

S Z(M - mt)

r = — = pr (M=mn
(3) ” L (i = m)
M =-mn
t
from venture Z. We shall assume
(Le€e, Tx, Py, Or T, )
Ccondition R. bverv rate of return is a conulnuous, UOSLthC“
A

valued, strictly monotonic decreasing function defined on a

Lr:,f '

closed interval [0, C] of values for its capital inputs.

This implies that the production function X is a cocntinuous
function on the interval [0, N] with X(0) = 0 and positive on
(O, N]._ Moreover, X is such that every straight line passing
through the origin and intersecting the graph of X at leasat
once over (0, N), has exactly one intersection over (0, N) and

passes from below that graph to above that graph as the independent

variable increases, Similar conditions hold for ¥ and Z,

The Behavior of the Firms
How each firm decides to allocate its capital between
its two ventures at the beginning of each investment period

(at & = 1, 3, 5, ¢s¢) 18 yet to assumed. To this end, we use



the procecdure introduced in f21 and [3]. Consider firm N,

Let = —
(1) S o —
Txt
and
’“‘“w\ i
{5) o e Ny, i
Rl . e n,

We assume that at time t + 2 firm N adjusts its investments

into ventures X and Y in accordance with the relative rates of
return from these ventures at time t + 1., It does so by increasing
(decreasing) ifs investment to that venture that provided the
greater (respectively, lesser) rate of return. Greater
discrepancies in the rates of return induce greater adjusments,

These ideas are formulated by

(6) Yoz = Bylsgs ¥y

where the function By is assumed to satisfy the following

~.conditions on the first quadrant., lere,
5’4";} l:.__t_‘_‘-__.-‘----—-——"-‘m--,m =
<y by ¥, and ; 7 bi} .

z £TA

&y 1s represented by g,

e

Conditions G. For 0 S 3 < eand 0S ¥< -,

(1) g5, 3) is nonnegative and continuous,

(1) for fixed 3> 0 (or fixed ¥ > 0), g(3¥, 3) is a

strictly monotonically increasing function of 7§ (respectively, 7),

and,

(1ii) for some fixed 50 = 1, g(?o, }) = FLop all 3,
Similarly, the behavior of firm M is determined by the

following three equations:



A5 Tyt
(7 ) ,Qw»"“' - Bt = 2
cont b I
. ReTA "‘/ zt
VR LTAX
i mi,// y
6, = i
. t M- my
(9) ’ 6t+2 = 8M(Bt’ Gt)"

where gy satisfies Conditions G with g replaced by gM; § by @t,
and 3 by ﬁt.

We set “q = EO’ when g is replaced by gys and set Bg = }O,
when g 1s replaced by 8y “o need not be equal to SO'

The meaning of Conditions G is the following. Consider
(G, let 3 = 43 3 =Y., and g = gy» &nd assume for the moment
that 5, = 1. Conditions G, especially its monotonicity
requirement with respect to ¥ and the condition g(i, 3) = 3,
insure that g(5, 7) < 3 for § < 1. But, according to (L), the
condition § < 1 means that for firm N the rate of return from
the joint venture Y is not as good as.the rate of return from
its own venture X, The fact that g(¥, 3%) <'3 when ¥ < 1 insures
 through (6) that firm N will cut back on its investment into
the joint venture Y and will increase its investmen:t into
venture X, OSimilarly, § > 1 yields g(%, 3) > ¥ and the result
that firm N increases its investment into venture Y and decreases
its investment into venture X, This is just the behavior we
Wish to model. The monotonicity requirement with respect to 3
insures that, when the ratio of returns (L) remains constant,

ad justments from higher relative investments into the jcint

i
o

ventuire yield higher relative investments into the joint

venture againe



When 45 > 1, firm K héé a bias toﬁaré.its own venture X,
That is, the rate of return ryt from Y must be larger than the
. from X in order for N to treat both X and Y as equally attractive,
When 5 = 1, there is no such preference toward X, Analogous
meanings attach to the behavior of firm M and ventures Y and Z
when SOI> 1 and BO = 1.
Equatiéns (6) and (9) taken together comprise the rules
by which the trajectory of the joint capital allocation Et =
(nt, mt) can be determined for t =3, 5, 7, ... from the initial
capital allocation (nl, ml). Indeed, (6) and (9) can be rearranged

a3 follows.

N
(10) nt+a = - = fN(nt, mt)
Lo+ r ' n
vt t
gN T )
rx o N=n .
M
(11) Mo = " .= *M(nt’ mt)
1 +
(r e Tt )
&1 %
250N h-mtj

For the sake of a simpler notation, we shall at times discard

the subscript t on the variables n_ and My e Let
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L oHEGA [T () S {kn, m): 02 nEN, 0Sm= M}.

Since Bys By and the rates of return are continuous functions,
fN and fM are continuous onJi. Moreover, Conditions G insure
that‘fN and fM have continuous extensions onto the boundary of
and f,. on that

N M
boundary. In essence, we are imposing another assumptions on the

{1, which we take to be the definitions of f

behavior of the firms. For instance, we are requiring that, e
at the boundary point n = N and m € [0, M], firm N remains Ammi-f
aware of what its return r g Would be if 1t made & very small

investment into venture X.
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Bquilibrium Points
Bquations (10) and (11) are equivalent to (6) and (9)
respectively. From any given initial values n, and m, , they

determine time series in the n_ and m_. We say that E = (no, moJ

t t
is an equilibrium point for this system if the equations ny = n,

and m, = m, imply that n. = n, and m,_ = g Top Bl 62 3, 5; T3 waw »

t
A principal result of this paper is the following theorem, Its
proof is given in the Appendix,

Theorem 1, Let there be two firms, which, in addition to

their own exclusive ventures, may share a jolnt venture as

indicated in Figure 1. Let the time sequence El’ EE’ ES’ o

of their joint capital allocations be determined by (10) and (11),

where Et = (nt, mt). Assume that Conditions R and G are satisfied.

Then, there exists at most one equilibrium point in the interior

fig§204 When there is no equilibrium point in.ﬁ, the boundary

of 1 will have at least one equilibrium point.

Finding the equilibrium point within.ﬁ, if one exists therein,
requires a closer examination of (10) and (11). First of gLl
.the nonnegativity of &y and 8y imply that fN maps fL into [0, N]
and fH maps {1 into [0, M]le This is indicated in Figure 2, where
the point Et = (nt,lmt}e L) is mapped under the simultaneous
application of (10) and (1l) into B = (nt¢2, mt+2) € (L.

The direction of the shift from B, to B is determined by

t+2

two curves Cn and Cm’ whose derivation is also given in the

Appendix.



Cm is a continuous curve within Q. It terminates on the
lines n = 0 and n = N, With respect to the n axis, it is a
continuous monotonic decreasing curve. If any portion of it
lies within.ﬁ, the chords of that portion will have slopes
strictly less than O and strictly greater than -1, Those parts
of C, that lie on the boundary of {1l will be contained within
the ﬁ = 0 orm =M lines. Cn has similar properties except
that the roles of n and m are reversed, It follows that
there ig one and only one intersection point E between Cn
and C_. E may be anywhere within (1 including its boundary,
All this is illustrated in Figure 2. Other configurations
for C, and C_are indicated in the first column of Figure l.,

We show in the Appendix that the shift from Et to Et+2’

as dictated by (10) and (11), is toward the curves C, and C_;

that is, n = o, is a shift toward Cn’ which may or may not

T2

pass beyond Cn’ and m = my is a shift toward Cm, which also

t+2
may or may not pass beyond C_. We illustrate such shifts

in Figure 2 for the case where the individual shifts (i.e., the

'solid arrows) do not reach the said curves whereas the combined
shift passes over Cm' It is also shown in the Appendix that
when the initial point Et = (nt, mt} lies on one of the curves
(say, Cm), then there is no shift in the corresponding variable

(that is, m =m,_ )e It follows that C_1is a locus of equilibrium

t+2 t

points for the m, variable alone., Similarly, Cn is such a locus
ror n alone, Consequently, E is an equilibrium point for the
system (10) and (11) taken together. These ideas comprise the

essence of our first theorem's proof, and they lead in additiocon
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to the following corollary.

Corollary la, Uncer the nypothesis of Theorem 1, the unique

intersection point B between Cn and Cle is an equilibrium point

for the system (10) and (1l)., When E é.ﬁ, E is the only equilibrium

, ©
point within fi. When E ¢.ﬂ, there is no equilibrium point

3

Actually, the only places on the boundary that equilibrium
points other than E can occur are the four corners of L, This
is so because Conditions G allow the following possibilities,
fy(n, 0) can equal zero along an interval [w, N], where 0 S w S N
in tbe n axis,. fN(O, m) can equal zero along an interval [w, MI,
where O s W S M, in the m axis. fM(n, M) can equal M along an
interval [0, w], where 0 S w S N, in the line m = M. £ (N, m)
can equal N along an interval [0, w], where 0 S w S M, in the
line n = N. At each of the four corners, a pair of such extreme

values for f and fM can occur simultaneously. When this

N

happens, the corner can be an equilibrium point distinct from E.
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Whether or not E lies withinuﬁj it is the only possible
limit of any convergent sequence arising from (10) and (11)
and starting from within_;. More precisely, we have

Lerma 1, Under the hypothesis of Theorem 1, let

{Et: t =1, 3, 5, «ss} be a sequence of points Et = (nt, mt)

determined by (10) and (11l). Assume that (nl, ml) €.

If [Et} converges, it converges to E.

See the Appendix for the proof of this lemma,

Another Restriction on the Behavior of the Firms,

The intersection point E between Cn and CIn nay haée another
property besides being the only possible equilibrium point
within N, It may be the only stable equilibrium point anywhere
rin £l (including (I's boundary). We are able to prove this
ayability property in the case where the shift in ng does not cross
over the curve Cn and the shift in m, does not cross ower the
curve Cm' A crossing of one or both of these curves may still
occcur when both chifts are considered together, as is indicated
in Figure 2, but the shift in n, alone or in m, alone 1s to be
prohibited from such a crossing.

The meaning of this condition is that the system reacts

moderately; that is, the shifts iIn n, and m, are never too large.
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OQur purpose in this section is to impose some precise conditions

on the functions gy and 8y and the rates of return T,s T and

:},J
r, that insure the prohibition against crossings.

We need to define some more symbols. Set
r (n + m)

(12) B(n: ) & eesenms
Po(M = m)
and
m
(13) 6(m) = .
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Next, let n'be any fixed number in [0, N]. Then, define m(n)

as that valuejof m € (0,’ M) for which r_(n + m) = BT, (M = i)y

if such a value existsfin (0, M). (There will be at most ocne

such m(n) because r_(n + m) is a strictly monotonically

decreasing function of m whereas r (M = m) is a strictly
monotonically increasing function of m.) In this case, we have
6§(m(n)) =m(n)/(M - m(n))e On the other hand, if ry(n} . Bor, (M),
we set m(n) = 0 and 6 (m(n)) = 0. Moreover, if ry(n + M) 2 ﬁorz(UJ,

we set m(n) = M and 6(m(n)) = =, Thus, in all cases m(n) is

that value of m for which (n, m) € Qm'

Condition H (for firm M). Let n e [0, N] be given.

Then, for everyam # O such that (n, m(n) +am) € 0, it is

required that

gMuNn,rMnJ-fam),6(mhﬁ-+&m})

be greater than $(m(n)) if Am > 0 and less than &6§(m(n)) if

am < O.

The meaning of this condition can be appreciated by examining
the function =39 on the first quadrant. Upon fixing n € [O, ]
and letting m vary fromm = 0 tom = I, we obtain a locus of
corresponding values for (12) and (13). This is illustrated
in Figure 3., For example, consiaer the locus for n = n-3
m(ne) ils that value of m for which the locus intersects the
vertical line at B = BO‘ On the other hand, there may be no
such intersection, as is indicated for n = N, The actual shapes cf
these loci depend of course on just what the functions ry and

are
I"ZI'c
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Consider any locus L that intersects the vertical line
B = By at some point I. Conditlon H for firm M states that,
on the portion of L to the left and higher than I, the function
gy takes on values greater than its vlaue at I and, on the
portion of L to the right dnd lower than I, the function 8y
takes on values less than its value at I. No restriction is imposed
if L does not intersect thg line § = BO.'
Remember that gM(ﬁ, 6) is a monotonic increasing function
of p for fixed &6 and a monotonic increasing function of & for
fixed B. Thus, our condition requires indirectly that &y does
not vary too strongly on either side of the line B8 = ﬁo as
B varies, This is equivalent to saying that firm M does not
adjust its capital investments my too radically.
Note also that the flatter ry and r, are, the steeper will
be the loci of Figure 3, and the more likely will be the fulfillment
of Condition H for a given 8y 3 here too, flatter rates of return
signify a more moderate system so far as the effects of

investment variations are concerned.
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This discussion can also be appled to firm N so long as

’

its behavior function gy satisfies an analog to the above Condition !

To state the appropriate analog, we now set

| ry(n + m)
(1h) 4(n, m) =

rx(N -~ n)
and
_ n
15) y(n) = .
N =n

For a given m ¢ (0, M), we define n(m) as that value of n ¢ (0, N)
for which ry(n + m) = xorx(N - n) if such a value exists. If
however ry{m) = dorx(ﬂ), we set n(m) = 0 and y(n(m)) = 0. IT

rv(N +m) 2 -f-orx(O), we set n(m) = N and y(n(m)) = «, Thus, in

v

every case n(m) is that value of n for which (n, m) € C»

Condition H (for firm N). Let m € [0, M] be given. IThen,

for every an # 0 such that (n(m) + an, m) € L, it is required that
gN(-((n(m) +An, m), vy(n(m) + an))

_be greater than y(n(m)) if An > 0 and less than v(n(m)) if an < O.

Our discussion for this case now continues exactly as before.
We prove the next lemma in the Appendix. It states that
the aforementioned crossings of Cq and Cm do not occure.

Lemma 2. Let Conditions R, G, and H be fulfilled.
(1)_Assume that m = m,

determined by (10), Let n(m) be that unique point of [0, N] such

is held fixed and that N o 1S

that (n(m), m) € C_ . If O <n < n(m), then n, < n__ 5 <nfm),

If n(m) < n, < N, then n{(m) < n,
e ¥}

= i
— t+2 t*

- 5
+2 =

(ii) Assume that n = n, is held fixed and that m,

determined by (11)., Let m(n) be that unique voint of [0, M] such

that (n, m(n)) € C,o I£ 0 <m < m{n), then m_ < Ml o < m{n).
| i (] =Sy |9 L

If m(n) <n, < 4, then m(n) <m = oy
_ G y = 7 E

+2
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Convergence and Stability

Our second principal conclusion, given by the next theorem,
asserts that under certain conditions the equilibrium point E is
globally stable and is indeed the 1limit toward which the dynamic

behavior of the two firms tends. This too 1s proven in the Appendix.
. Theorem 2. Let there be two firms, which, in addition to

their own exclusive ventures, may share a joint venture as

indicated in Figure 1. Let the time sequence El, E3, Eay eon

of their joint capital allocations be determined by (10) and (11),

where Et = (nt, mt), and assume that Elfiji. Also, assume that

Conditions R, G, and H are satisfied. Then,the sequence El’

E3, E_, .ee converges., Moreover, there is a unique point b ¢ {L

(namely, the intersection between curves Cn and Cm) that is the

limit of every sequence E., E., E-, ... that starts in'fi(i.e.
Y 5 8 3 5 ’

a = 4 <
for which Elé f1)e Thus, E'is the one and only globally stable

equilibrium point for the system of Fipure 1 under the assumption

ﬁhat the initial flows at ¢t = 1 along the four legs of that

figure are all nonzeroe.

Note that neither this theorem nor Theorem 1 requires a

specification of particular functions for g, and gy» and in

_ N
this way we maintain the generality of our model. The rate of
.convergence to E will depend of course on just what functinons
gy and gy may be. But, Conditions R and G alcne insure the
existence of the equilivrium point E, and Conditicns R, G,

and H alone insure that convergence to E will occur = regardless

of 1ts ratee.
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Special Cases: The Abandonment of Ventures

It can occur that, in the limit as t —=«, firms N and I
together or singly abandon venture Y, or firm N abandons
venture X, or firm M abandons venture Z. These situations
arise precisely when the equilibrium point E occurs on the
boundary of . In fact, eight difterent possibilities arise,
as indicated in Figure #: E may be at one of the corner points
of N, or it may be somevwhere within the straight line segments
between those corner points. For example, when E is at the origin,
firms N and M eventually abandon venture Y and concentrate their
investments on ventures X and Z respectively. On the other
hand, when E is somewhere on the n axis, say, at (no, 0) vwhere
0 < ny < U, then eventuaily firm M abandons Y and concentrates
on 4, whereas firm I splits its investments by putting ng into
Y and N = n, into X.

The necessary and sufficient conditions for #tlie occurrence
of each of the eight possible cases can easily be determined by
examining howlthe surfaces “0Tx? ry, and ﬁorz must be situated
with resgqu to each other in order for the intersection between
Cn and Cm to occur at the various parts of N's boundary. The
results are tavbulated in Figure ¥, where typical (but not all
possible shapes)for C, and Cm are also indicated, Since E = Cnf}cm
.is unique, the listed necessary and sufficient conditions are
mutually exclusive., For the sake of ccmpleteness, we also exhibit
in ¥igure # a ninth case: lio venturc is abandonred; now, E;EI%,

ng once again that Conditions R, G, and H are fulfilied

s

¥le are ass:

T

g

o
and that all dynamic processes start within Q.
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The first eight degenerate cases are of interest beceuse
they indicate the different ways the three ventures may eventually
become successes or failures and how the joint venture may
eventually fall under the exclusive proprietorship of one of
the firms. Let's examine each of the cases of Figure # from
this point of view. (As a compromise between clarity and brevity,
we will merely use the phrases "is less than" and "is greater
than" when in.fact we should always add the words "or equal to'";

"{s no less than'" seem

T phrases "is no greater than" and
awkward, Also, by a "weighted rate of return" we mean B
multiplied by <y or r_ multiplied by B,.)

Case 1. The indicated necessary and sufficient conditions
mean that the worst weighted rates of return from venture X and
from venture Z are greater than the best rate of return from
venture Y. In this case, venture Y eﬁds in fellure; both Iirms
eventually abandon 1it, |

Case 5. This 1s the extreme opposite of Cese 1., Now,
the worst rate of return from venture Y is greater than the best
weighted rates of return from ventures X and Z. In this case,
venture Y becomes a success, so much so that it preempts all

ar

the capital from firms N and M, and ventures X aud 4 end

t_}l
bl

failure,

Case 3, Now, the best weighted rate of return from
venture X is less than the worst weighted rate of return from
venture Z, and lying somewhere between these two values is the
rate of return from venture Y for the case where venture Y has
maximum cepital input from firm N and no capital input from

firm Me Our analysis has shown that in this case venture X



falls whereas ventures Y and 4 succeed with firm N exclusively
taking over venture Y and firm M devoting all its capital to
venture Z.
Case 7. This is the same as Case 3 except that firms N and
M interchange their roles and ventures X and Z also interchange
their roles.
| Case 2. Consider for the moment the 8peciai circumstance
where firm N, being the only firm to invest in venture Y, has
some nonzero capital allocations ng, and N - n, to ventures Y
and X for which the rate of return from venture Y equals-the
weighted rate of return from vcntufe Xy Assume in addition
that Ehe worst weighted rate of return from venture 2 is
greater than this rate of return from venture Y. It follows
in this case that, under any dynamic process, firm M eventually
concentrates on venture 24 whereas firm N eventually operates with
the aforementlioned capital allocations n, and N = Dgo
Case 8, This is the same as Case 2 except that the roles
of firms N and M and the roles of ventures X and Z are again
-interchanged.
Case l. Noﬁ,_ccnsider the special case where firm N puts
all of its capital into venture Y. Assume that in this situaticn

capital

firm 1 has some nonzero , allocatlons my and M = mg,

that its rate of return from venture Y equals its weighted rate

such

of return from venture 4., Assume also that the best weighted
rate of return from venture X is less than the indicated rate
of return from venture Y. Then, any dynamic process will tend
toward the situation wnere firm N abandons venture X and firm I

operates with the capltal allocations my and M = mj.



Case 6. This is Case 4 with the usual interchange between
the roles of the firms and ventures,

Case_ﬁ. This is the nondegeﬁ%ate case, It occurs when
all three (weighted) rates of return are equal at some point
in the interior of n. We have shown that there is at most

only one such point,
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Appendix

Proof of Theorem 1 and Corollary la., The nonnegativity of

gy and g, implies that £ maps n into [0, N] and £, maps
into [0, M]. Equation (10) coupled with Conditions G indicates
that n . ~ n, and ryt ol will have the same sign, or they
will both be zero together, so long as (nt, mt) lies in 3.
Similarly, under the same condition on (nt, mt), Mo = My

"and ryt - Gorzt Wwill have the same sign or they will both be
zero together. What happens when (nt, mt) lies on the boundary
of [l requires a special consideration, which we undertake later

CIle
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The sign of ryt = ﬁOrzt can be ascertained by comparing the
surfaces (2) and (3) in the three-dimensional (n, m, r) space
over the rectangle f1, as indicated in Figure 5, Under Condition R,
the surface ry(n + m) peaks over the origin and is monotonically
decreasing over every straight line in N that passes through
the origin, Each of its equielevation lines is a straight line
whose projection onto fL intersects the n and m axes at the same
value, On the other hand, the surface BOrZ(M - m) is a monotonically
increasing function of m, and its equielevation lines are
parallel to the n axis,

Since both surfaces are continuous and have positive values
over.ﬁ, their intersection Iyz (if it exists) is a continuocus
curve abbve_ﬂ, and the projection of Iyz onto ﬁ.is a cocntinuous
curve all of whose chords have slopes (with respect to the n axis)
larger than =1 and less than O. The latter fact follows directly
from the assumption that ry and r, are continuous, strictly
monotonically decreasing functions. (To see this, examine the
point of intersection inm betweeﬁ ry(n 4+ m) and rz(M - ‘m}e

Because of the continuous and strict monotonicities, a shift to

the left of the function m- ry(n + m) by &n > 0 to get the DeiTA

function m+>r (n + An + m) yields a shift to the left in the
point of intersection by the amount Am, where 0 <Am < an,)
;%?It may happen that, for some value of n ¢ [0, NJ, ﬁOrZ(M - m)
is larger (smaller) than ry(n +# m) for all m € [0, MJ. In this
case, the corresponding point on the Iyz curve 1is taien to be
(n, 0) (respectively, (n, M)) to reflect the fact that firm M

; ) 3 . .
would want to decrease (P%?ectively, increase) its investment



m into venture Y as much as possible. A3 a consequence, the
projection of Iyz ontc 1 is a continuous, monotonically decreasing
curve Cm (with respect to the n axis) that starts somewhere on
the line n = 0 and ends somewhere on the line n = N, It satisfies
the aforementioned restriction on its chords except that it may
or ajl valaes
coincide with the line m = M for some lowest values of n and with
or all values o

the line m = 0 for some highest valuesAof ne. The curve Cm
coé&sponding to the situation depicted in Figure 5 is illustrated
again in Figure 3.

We mentioned before that, in view of (11) and Condition G,
we can say that Myio = My has the same sign as r

or the two quantities are both zero together. Eqguivalently,

vt " BoTat

fM(n, m) is less than m (or équal to zero or larger than m) if
and only if ry(n + m) is less than (respectively, equal to

or larger than) ﬁOrZ(M - m). These two assertions require the
restriction that m be largér than O and less than M, This is
illustrated in Figure 6 for the situation corresponding to
Figure 5. It should be noted however that fM(n, m) may tend
'to zero as m—0+ (n being held fixed) even though

.ry(n + mJ/BOrZ(M - m) tends to a nwiber larger than one; tnis
will be the case if g (B, 0) = 0 for § ¢ (Bys =)+ Similarly,
fM(n, m) may tend to M as m — l= even though ry(n + m}/ﬁorz(i - m)
tends to a2 number smaller than onej; this happens when

gM(B’ 6) >« as 6 — = for flixed B € (O, Bo)w

. -]
We can conclude that, when (n,, mt) g 0. GHE skl B mg ., = m,
¥ ¥

is toward the curve C_, as indlcated in Figure 3. (That shift in m,

may extend beyond curve Cm if Ey varies strongly cnough.

1.0 . A & oo o % 5
When (ng., m.) is on the curve Cps there is no shift in my; that



3

is, the curve Cm is a2 locus of equilibrium points for the

variable m, . Finally, when (nt, mt) is on the boundary lines

m=0o0orm=M, fM(n, m) may be O or M and there may be ro
shift in m, even when.(nt, mt) is not on Cm; this situation

corresponds to an unstable equilibrium for m It occurs when

t.
fH(n, m) approaches the origin from above the line m or approaches

M from below the line m, as is indicated in Figure 6 for n = 0 for

example. There are no other equilibrium points for m e

It should also be noted that the boundary points of /1 may

not be equilibrium points. For example, (B, 0) may be greater

e
than 0 for B é (BO, «), in which case fH(n, 0) will be greater
than O and will dictate a shift away from m = O according to (11).
Similarly, for.B e (0, 50), gm(ﬁ, 5) may tend to a finite limit

as 6 — «, thereby yielding f,(n, M) < M.

This analysis can be applied to the variable n, too. In

t

this case, we campare (1) and (2) by examining the intersection

B . - ] + o 8] m 1!‘ 3
Ixy of the surface AOrX(N n) with the surface ry(n + m). With

regard to the ‘axes of Figure 2, xorx(N - n) is a continucus surface
‘above L that increases with n., Its equielevation lines are

straight lines parallel to the m axis. It follows that Ixy’ it

it exists, is a continuous curve above L whose projection onto
0 is such that all its chords have slopes (with respect to the
n axis) less than -1 and greater than -«, If, for some m,

AOPX(H - n) is larger than (smaller than) ry{n + m) for all n,

set Ixy equal tb (0, m) (respectively, equal to (N, m)) to

reflect the fact that firm N would want to decrease (respectively

J &
increase) its investment n into venture ¥ as much as possible.

: L] £ T
the projection G, of IL,.. onto i has

v

Aith this extension of Ixy’
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the same'properties as Cm when the roles of n and m are reversed.,
In particular, Con starts somewhere on the line m = O and ends
somewhere on the line m = M,

Upon considering fy (n, m) in t?e same way as we did fy(n, m),
we can conclude that Cn is ‘a locﬁs of Qquilibrium points for the

o

variable nt; and, when (nt, mt) € (1, the shift from nt.to Ny .o

is toward (and perhaps crosses over) Cn’ This too is illustrated
in Figure 3. As before, the points on the lines n = 0 and n = N
which are nct on Cn may be points of unstable equilibrium for e
There afe no other equilibrium points for n..
In view of the properties of Cn and Cm’ we can conclude theat
these two curves intersect at exactly one point E, as is
indicated in Figure 2, E may be anywhere in Q, including its
boundary. We can also conclude that E is an equilibrium point
L2 mtJ where the sequences in nt.and m,
are determined by (10) and (1l1). Althcugh E will be the only

for the variable E, = (n

a
equilibrium point inNtif it truly appears therein, there muy be

other cquilibrium points on the boundary of (L. kach of the

four corners of {l may or may not be an equilibrium point dependirg

—_— -L'D

upon whether ., and I,
= I I

edge values at the corner in question. Fcr similar reasons,

simultaneocusly assume the ccrresponding

each of the four points where Cq meets the edges m = C and m = M
4

points,

e

and Cm meets the edges n = 0 and n = N may or may not be equilibriw
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Proof of Lemma l. Let B = lim, __ Et'

- fM(nt, mt) is the increment through

We wish to show

that E, = B. Now, m__,

which m, changes tom It is also the distance between the

t+2°
surface (n, m)~ m, which we denote by m, and the surface £y in the
(n, m, r) space above the point (nt, mt). Thus, we have a sequence
of points'{knt, m, , mt): t =1, 3, 5, see} in the surface m

and a sequence of points ZTnt, m,, fM(nt’ mt): t =1, 3, 5, eee}

in the surface fy. {since B,rt =1, 3, 5, «.s} converges, the
increments in m, tend to zero, which means that the two surfaces
tend toﬁard each other along the points Et' Since these surfaces
are continuous, it follows that they meet at E_. Therefore,

E_is on Cm or perhaps on the line m = 0O or on the line m = M

since these are the only places in 1 over which the two surfaces

can intersect. But,E_ cannot be at any point P of those parts

of the lines m = 0 or m = M that do not coincide with Cm because

0 < fM(nt’ mt) < M whenever (nt, mt) ¢ 0 and because, for all points
in45.sufficiently close to P, the increments in I, are -directed
away from P. " (P i1s an unstable eguilibrium point.) Thus, E_
"is on Cm'

By the same argument applied to fY(nt’ mt), we can conclude

that E_ 1s also on Cn‘ But, C,,l and Cm have one and only ocne

b

intersection point, namely, E, Therefore E_ = K.
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Proof of Lemma 2. We prove assertim (i), the proof of

assertion (ii) being the same except for notational changes,
Consider one of the loci of Figure 3 that intersects the g8 = BO
line. With n held fixed, an increase (decrease) in the value

of m. results in a shift along a locus upward and to the left
(respectively, downward and to the right) because of Condition R.

Now Condition H asserts that the values of gM(ﬁ(n, m), 6(m))

on that part of a given locus to thé.left (right) of the vertical

line at B, is strictly larger (respectively, strictly smaller)

than its value at the intercept of that locus aund vertical line,

if such an intercept exists., In view of (I1), this implies

that, with n fixed, the curve fM(n,'m) in Figure & intersects

the straight line m~m at m(n) € [0, 1] and remeins larger

than m(n) for m(n) <m $ M (if m(n) < M) and remains smaller than
e

m(n) for O = %iﬁ(n) (if m(n) > 0). Furthermore, the strict mono-

tbnicity asserted in Condition G(ii) implies that gﬁ{ﬁ{n, m), 6(m))

is less than (greater than) 6(m) when (B(n, m), 6(m)) is a

point to the left (respectively, right) of the vertical line

at BO' Consequently, fM(n, m) <m for m(n) <m < MM if m(n) < M

(respectively{ fM(n, m) >m for O < m < m(n) if m(n) > 0);

that 1s, as m increases, fM(n, m) crosses at m(n) the line mPm

} e

from above thiat line to below it. OSince for {ixed n the increment

- m,_ is the difference from f,(n, m) to the straight line
1]

t+2 M
mm at the point m = m,, it follows that, if m_# m(n), then
My o is cleuser to m(n) thean is my; more specifically, we have
< < m if < < nd r <m,,, <m if
m, o W itn) it © m, m(n), and m(n) My o m, if

m(n) < my < Ma
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Proof, of Theorem Z2.-

C;}.;c-:_r1ow ééé about proving that E = (no, mOJ is the 1limit
point toward which every sequence fEtE = Hnt, mt)} that starts
in A and is governed by (10) and (11) converges. 4e establish
this. fact under the assumption that E é-ﬁ; later on, we point
out how our arguments still apply in the cése where E i3 on the
boundary of {l. We consider several cases depending on where in
Aa point Et of the sequence happens to be. Partition fl into
four open regions bounded by segments of Cn’ Cm, and the boundary
of {1, as indicated in Figure 3., Recall that C, and C_ are
continuous curves in Q such that within £ the chords of Gn'have
slopes more negative than -1 and the chords of Cm have slopes
larger than =1 but less than O. (We are measuring these slopes
with respect to the n axls.)

Case 1. Assume that B, = (nt, mt) €_Q2 for some t,

t

Then, by (10) and Lemma 2, N .o = Dy is a positive (nonzero)

shift to the right such that ( P mt) € flz; that is, the

)

shift from ng to Y with me kept fixed, does not regcn Ln or

.pass beyond Cn into (1.,. In view of the chord restrictions on

3

< e OSimilarly, m -1 is ati nenz
Co» N5 n, 0 ¥y My n, is a negative (nenzero)

shift downward such that {(n_, mt+2} G"QZ' Thie chord restrictions
w

N " L - 4 3~
on C_ insure that m,_, > m, and also (N oy My o) € flye By

g a menotcniecall-

w

b

induction, 1t now follows that Ny Nypoos nt+h’ ses

increasing sequence bounded above by n therefore, it converges,

0’
Also, Mys Mo mt+u, ese 18 2 monotonically decreasing sequcnce,
bounded below by My, and therefore it too ccnverges. Thus,

i ¥ 1 113 ~ ~ .
£409 Et+h’ eee remains within ﬂ?’ converges,

and by Lcmma lhas the limit E = (n Ve
|

the sequence E_, E
L
H

m
4

0* 0
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A similar argument shows that, if Ete J?u, then

E,, E

g2 Bpgos Et+h’ ese remains within.ﬂu and converges monotonically

upward and to the left toward E,.
2] + — E ¥ . 4 — ; }
Case 2. Assume Et (nt, mt) Ln Ir Et E, then the
subsequent points in the series remain fixed at E. If Et # 5B,

then n ., =n,, and, by Lemma 2, My o is such that Lo = (nt+2, m

is iﬁiﬁZU_Qu. Thus, the subsequent points Bpeps Bpgls voe

converge to E as in Case 1,

A similar argument shows that, if B, € C_, then

Et+2’ Et+h’ «ss converges to E as in Case 1 again. Upon combining
o A,

Cases.l and 2, we have that, if E € Il ) flu,.then s E o5 eee
converges to E. ' \fftf“
Case .a. Assume that, the sequence k., EB; ess rcmains

within 2. Then, Dys Dgs s and m, , Mys eees ATE both

monotonically increasing sequences that are bounded above.

Thus, they converge, and therefore El, = converges. By

-5, LI B

Lemma 1 again, El’ «es converges to E. The same result occurs

if the sequence remains within N,

3
Casce « Assume that E € 1. and there is some t > 1
1

such that E_€ n L}jlh Then,E 1 “3’ «ss converges to b,

as was shown in Cases 1 and 2,
ase 3c. Assume that there exists an increasing infinite
seguence tl =1, t,, tj’ eee Of cdd integer time values such thsat
) [==
ng, e Et”“ -1 is in.Ql for k odd and is in 1, Tfor k even.
" d e I >
That is, the sequence El, Ej’ wss Sharks off in_ﬂl fcer one or

more terms, then shifts tofr, for one or more terms, then gces

3

back to.ﬁl for still more terms, and so forth, al'ternating betueecn

jll andilB. (The following argument does not change in any essentiul
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way for the case wherc the sequence El, E3, ese Starts off

in _Q.B-)

Let El = (nl, ml) and B = (no, mo). If my < mg,

Gl be that unique point on Cn having m, as its m coordinate;

let

if my z my, set G1 = E., (See Figure 7.) Similarly, if n, <n

1 02"
let Fl be that unique point on Cm having n, as its n coordinate;

ir nl = ngy, set F1 =K, Note that G1 and Fl cannot both be equal to E

Let Hl be that point lnuﬂl having the same n coordinate as F

1

and the same m coordinate as Gj. (If my <my end n; < ng, wWe

have Hl‘= El’ as indicated in Figure 7.) Finally, let H2 be

that point having the same n coordinate as Gl and the same m
coordinate as Fl' Since the chords of Cn and Cm have negative
(neither zero nor infinite) slopes within 0, we have that H, ¢ (l,.

Let R, be the closed rcctangle H,F,H,G;. Because of Lemma 2 = |

1 s R g
: R e i e
and the chord restrictions on Cn and Cm’ every point in hlflfll o
will, under the displacement dictated by (10) and (11l), rerain
in Rl' This fact coupled with our assumption concerning the

subsequences cof iEt} implies that El’ — are in R, nn

t2-l 1
_ \ and Et2 is 1n¥21f7113.
Ja;;f:ff““‘“ Bet HZ fﬁina,fng. It follows from the above construction

ne

-.that.na - ng and Ko = mee How, let 62 be that unique point on
Cm having the same n coordinatec as HE’ namely, Noe Also, let
F2 be that unigue point on Cn having the same m ccordinate as
He, namely, Hoe Then., lek H3 be the point having the same

W

n coordinate as F2 and the same m coordinate as .. Let RZ be

[A®]

the closed rectangle HZFAH

23

dictated by (10) and (11) carries every point of 32 n o

GP' As befcre, the displagement



RP.. Also, Eta, ess 3 Et -1 are in Ran ﬂ3, and EtB ig in Rzﬂ ﬂlo
Set H3 = {“3’ ps)- _As before, up = n, and s s mye Lot
G

3 be that unique point on Cn having ) as its m coordinate,

Let F, be that unique point on C_ having ﬁ3 as its n coordinate.

3

Then, H) is the point having the same n coordinate as G, and

3

the same m coordinate as‘F3. Let R3 be the closed rectangle

E 2 eee ,E are in R ﬂﬂl,

HyF ) Gye  As before, H) is in A, t £), "1 3

and Et is in RBT1113.

Continuing this process, we obtain a nested sequence
Rl’ RZ’.R3’ ees Of closed rectangles whose intersection is E,

This is because the Gk alternate between Un and Cm and tena

toward E from below, whereas the Fk do the same {rom above E,

Since each segment E, "y see , B of the sequence {E .} is
Sy e E
in Rk’ it follows thgt Et~+ E as t = =,

(If my > m, 1 o

that Case 3b ensues, but we don't have to argue this case,)

or ‘n, = n, and if‘Ele N it can be shown
All the cases considered above exhaust the various ways a
o

sequence generated by (10) and (11) can occur in ML under
ondition nd 1} sumption the I 5

Condit s R, G, and H and the assumption that both El and E

& " 4

are 1in Q.

The possibility that E occurs on the boundary ol L has
yet to be considered. In this situation, one or more of the regions
'ﬂl"ﬂ2’ HB, and‘ﬂu are void, and so only.some of the cases
listed above need be considered. IMor those cases that do
arise, the arguments prescnted above apply virtually word for
word., How, however, it should be noted in particular that, since

[
Ele L, the sequernce El

Wwill thereby avoid any of the unstable limit points that might

o
3 EB’ E.sy wose Will remain within £ and

occur on the boundary of (1,
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LOCATION OF E IN £

NECESSARY AND SUFFICIENT CONDITIONS
(AND INTERPRETATIONS)

2

b M

M o | CASE It
~Cn a,r, (N) 2 ry(O), BOrZ(M)Zry(O).
E  Cm\, (N and M both abandon Y)
0° N " |
! CASE 2:
. aorx(N-n)=ry(n) has a solution n=n, where O<n <N,
“Qcm Crry and Syr;(M) 21y (ng).
= - (M abandons Y.)
'y
CASE 3:
. o a,r (0) < r (N) < B,r, (M).
PN (N abandons X, M abandons Y.) |
E i
! = CASE 4: |
Co N Borz(M-rn) = ry(N+rn) has a solution m=m_ where O<mO<M,-§
CyE and a,r, (0) < v, (N+m,). |
- (N abandons X.) |
f——>—1E | CASE 5: 5
" e 2y, (0) < 1y (N+ M), Byr,(0) < 1, (N+M).
(N abandens X, M abandcns Z.)
: E

CASE 6: :
a,r (N-n) = r),(mM) has a solution n=n, where O<n <N,
and [B,r,(0) < ry(ngt M).
(M abandons Z.)

CASE. 7:
Bor,(0) s 1y (M) < ayry (N).
(N abandons Y, M abandons Z.)

CASE 8:
B,r,(M-m) = 0
and a4, (N) 2 1 (mg).

(N abandons Y.)

(m) has a solution m=m, where O<m <M,

i

Cm

CASE S:
ayr, (N-n) = r,{nem) = B,r,(M-m) has a solution n=n_,
m=m, where O<n <N and O<n,<N.

(No venture is abandoned.)

|

Fiaure 4.
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Figure 6.
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