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Abstract., , , ------ A periodic marketing network that operates between

two ecological zones and entails a movement of goods over long

distances is examined.. This network includes as special cases

the dumbell and dendritic marketing networks. More over, its

analysis can be easily extended to the hourglass net~rk, multilevel

systems, and networks wherein the traders at the lowest level

follow marketing rings. The model assumes that there is perfect

competition in each market of the network. This leads to a set

of nonlinear difference equations from which time series in all

prices and commodity flows can be computed recursively. It is

shown that, for a given set of time-invariant supply and demand

functions in the lowest-level markets, the network has a unique

equilibrium state. Some qualitative conclusions concerning the

propagation of disturbances and the significance of trader

profit margins are then drawn. The model can be modified to allow

at least some of the traders to be monopsonists or monopolists

in their respective markets.

1. Introduction.~ This work is a continuationof a study

initiated in [5] 01:the dynamic economic behavior of the

marketing syste~occurring in third-world countries. The

papers [51 and [6] were devoted to one kind of marketing network

that W.O.Jones [2] refers to as the two-level system. It consists

of a number of central markets at the upper level that supply
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and are in"turn supplied by rural markets at the lower level.

Trade flows between the two levels but not exclusively along

either level. Thus, the graph of this marketing network is

bipartite. Others, such as C.A.Smith [4J refer to such structures

as solar systems. There is some difference between these two

concepts in that for solar systems each lower-level rural market

is coupled by trade primarily to only one higher-level central

market, whereas in the two-level system a rural market may

interact appreciably with two or more central markets.

Another kind of system was examined in [71 and [8]. It too

consists of a number of central markets supplying and supplied

by many rural markets, but now traders follow various marketing

rings through the rural markets before returning periodically to

the central markets.

In both of these systems each trader engages in comparatively

short-range trade, and a good moves a short distance between

a rural market and a central market or along a single marketing

ring. In the present work we study a system where at least some

traders move goods large distances perhaps between different

ecological zones. This system, which we refer to as an interzonal

marketing network, is illustrated in Figure 1. We assume that

an agricultural commodity is produced in one ecological zone,

throughoutwhich the rural markets $ are located. The commoditym

is brought by producers to the ~ where it is sold to small-scalem

traders, who bulk and transport it to the central markets o/j of

that zone. Large-scale traders buy the commodity in the ~., bulkJ
centralit still further, and ship it over long distances to the

y~
markets of another ecological zone that does not produce the

A
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commodity. In the Yk the commodity is sold to many small-scale

traders who transport it to the rural markets w of the secondr

ecological zone, where it is retailed to consumers. This system

occurs, for example, in Nigeria; cowpeas are produced in the

north, gathered in rural markets and shipped through such

northern cities as Kano and Zaria to Ibadan, Lagos, Enugu,and

other southern cities, where the cowpeas are then redistributed

to lower-levelmarkets [2; pp. 118-1191, [3].

It should be pointed out that the subnetwork consistingonly

of the' to ~ branches and the y to w branches is assumed to be

a collection of solar systems. The only place we allow loops

(in the graph-theoretic sense) to occur is among the ~ to y

branches. It should also be pointed out that our analysis extends

readily to networks having even more levels at the lower end, that

is, to networks having trees (again in the graph-theoretic sense)

appended to the $ and ~ markets.

A special case of this network arises when there is only

one ~ market and one y market and therefore just one long-distance

transportation branch between the two ecological zones. This

is the network discussed by W.O.Jones [2; pp. 118-119] as the

basic redistribution system. E.P.Scott refers to it as the

dumbell model [3].

Another special case - at least from a network-theoretic

point of view - is the dendritic marketing system [1; pp. 83-92].

[3], [4; pp. 177-179]. Its e conomi.c function is much different

from that of the interzonalmodel, for it s~s as the marketing

channel through which raw materials are extracted from a colonial

or neocolonial region and shipped through a port city to overseas
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markets. We can make the network of Figure 1 represent a

dendritic system by restricting it as follows. The network has

only one w market, which serves as the port city. Also, it has

one y market, which functions as a major inland assembly and

wholesale market. On the other hand, it has severalo/markets

and many ~ markets, which serve respectively as lower-level

assembly markets and lowest-level rural markets. Finally,

there are no loops among the 0/ to y branches (or anywhere else)

so that the graph of the overall network is a tree. Here too,

we can extend the model by allowing additional markets-at still

lower levels beneath the $ markets.

Another variation of these marketing networks is the

hourglass model. It occurs when an isolated region having two

ecological zones is dominated by one central city. In this

case, all the 0/ and y markets are replaced by one highest-level

central market ~. Goods are shipped from the ~ markets to 0/where

they are sold and redistributed as shipments to the w markets.

This is similar to a solar system, but now the examined commodity

flows toward 0/ along some of the branches and flows away from 0/

along the remaining branches. Strictly speaking, this is not

a special case of Figure 1 because we have to coalesce all

the ~ and y markets and the branches between them into one
4

market in order.to obtain the hourglass configuration.

Nevertheless, the analysis given below can be directly applied

to the hourglass model.

The primary objective of this paper is to construct a

dynamic economic model of the interzonal marketing network
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(Figure 1) from which time series in every price and COIT~odity

flow can be computed once an appropriate set of initial conditions

is chosen. As with our prior works the model is a set of

nonlinear difference equations derived from the excess-supply

functions in the $ markets, the demand functions in the w markets,

and the transfer-supply functions of the traders under the

assumptions that there is perfect competition in every market.

In addition,we prove.that our model has a unique equilibrium

state whenever the excess-supplyfunctions in the ~ and them

demand functions in the ware fixed with respect to time.r

We end this paper with four short sections. In the first two of

these some qualitative conclusions are drawn concerning the

propagation of disturbances in the marketing network and the

significance of small or large profit margins for the traders.

The penultimate section briefly describes the extension of the

present work to interzonal marketing networks wherein the traders

in the lowest-level rural markets follow rings of markets.

In the last section, we indicate how our model can be modified

to allow some of the traders to act as monopsonists in the

~ markets and monopolists in the w markets.

2. A2sumptions. The notations used herein follow for the~

most part that of our prior works on perio~ic markets. The

indices of the markets ~ , ~., Yk' and w follow a consecutivem J r

numbering; that is, m = 1, ... , M; j = M+l, ... , 3; k = 3+1,

... , K; and r = K+l, ... , R. We shall assume that each market in

the system is periodic and opens regularly on only one and the

same day of each marketing week, but the market days for the

various markets are staggered throughout the week. {The market
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week need not be seven days long. Marketing weeks as short as

two days and aslong as 10 or 12 days can be found in various

parts of the world.) The time variable v = ... , -1, 0, 1, ...

numbers the marketing weeks. We assume that each market cl&ars

at a single price on each of its market days and therefore the

clearance price and quantity exchanged can be written as functions

of the market-week index ~.

We also assume that each trader restricts his trading

activity to justcne branch of Figure 1. The market where he buys

(sells) the commodity will be calle4 his initial (respectively,

final) market. A trader that operates between one of the ~

markets and one of the ~ markets will be called a ~:~ trader,

and a subscript will be appended to either $ or ~ or both if we

wish to specify the particular market or markets the trader is

using. A similar terminology is used for other pairs of initial

and final markets.

The ~:~ traders and the y:w traders complete each cycle

of their trade within one week's time. For example, consider all

the $:~. traders as they buy goods in their respective ~ marketsJ

in week v (but in general in different days of the week). After

shipping their goods to o/j'they sell them there either in week

V or in week ~+l. In both cases, they then return to their

$ markets where they buy more goods in week v+l. Thus, when we

use the week numbers as the discrete time variable, the time

delay between the buying and selling of a shipment from ~ to 0/.,m J

which we denote by ~ ., equals either 0 or 1. The corresponding
, MJ

time delay between Yk and wr is denoted by ~kr' which also equals

either 0 or 1. As for the long-distance shipments between ~j



7

and Yk' the corresponding time delay is ~jk' which we allow to

be any nonnegative integer. Thus, a trader buying in ~j and

selling in Yk may have several shipments in transit during any

one week. This may require that the trader operates in one or

both of his markets through agents who keep in touch with him

by telephone.

Actually, our notation allows the case where all the markets

meet daily, that is the marketing week is one day long. This

simply requires that a trader operating between, say, m and~.m J

buys, transports, and sells goods every day.

'~We turn now to the supply and demand functions in the various

markets. Any variable such as a price or quantity exchanged

that belongs to a particular market is given the same index as

that market. Thus, by referring to the index of such a variable,

one can ascertain to which kind of market that variable belongs.

As usual."p denotes price and q denotes quantity demanded, supplied,

or stored; P is restricted to the range 0 ~ p < -.

The excess-supply function in ~ is denoted by S (p, v).m m

For fixed V, it is a function of p alone, but it can change as

V varies. We let S (p, v) be negative for sufficiently small pm

in order to allow in $ buyers other than the traders. This ism

illustrated in Figure 2. We think of S (p,v) as being negativeill

only for the very lowest values of p but do not need to impose

this condition. What we do impose are

Conditions 1. For fixed V, S (p, v) is a continuous, strictlyill

that S (0, ~) = a-(v) ~ 0 and, asill mincreasing function of p such

..;-

p -+., S (p, )J)":"a (v) > O.
ill m

The demand function in wr is denoted by Dr(p, v) and is assumed
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to satiary Conditions 2. A typical D (p" v) is illustrated inr

Figure 3.

Conditions 2. For fixed v, D (p" ).I)is a continuous"r

nonnegative~ decreasingfunction of p such that, as p~O+"

treating each trader as a profit-maximizing firm that supplies

the service of transferring the ownership of goods ever space

and time. This derivation has been presented in some detail

in C6]. Therefore" we shall merely state herein the results of

that derivation.

We number the traders with the index i. Any variahle that

belongs exclusively to the ith trader is denoted with a superscipt

i. Let ~a and ~b denote respectively the initial and final

markets of the ith trader; a and b are the indices for those

markets. Within ~ the ith trader is a buyer, and his demanda

function there is characterized by a function V;b which is derived

from that trader's behavior as a firm. V;b satisfies the following.

Conditions 3. V;b is a Lipschitz continuous~ nonnegative

function on the real line such that V;b(x) == 0 for x ~ 0,

V;b(X) is strictly increasi~ for 0 ~ x < -, and V;b(X) tends

to a finite limit as x ~ <D.

(In this work we invoke merely the continuity of V;bJ not

its Lipschitzian character. However, we also use Theorem 2

of [5] whose hypothesis required that Vi. satisfy a LipschitzaD

condition. )

D (P, v)---". It is strictlydecreasingfor 0 < p (v),r r

where, r(v) > 0" and is equal to zero for r(v) p < e.

The economic behavior of the traders can be derived by
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An examination of the trader's cost functions indicates

that V~b should have a step-like shape, rising rapidly for

small positive values of x and then leveling off for larger values

of x. However, except for Section 6, we do not need to impose
i

this shape as a requirementon Vab.

The demand function of the ith trader in his initial market

~ isa
i

[
i i

]Vab Eab(V) - T - p (2.1)

where p denotes the price in ~a and E~b(V) is the price he expects

to receive in his final market ~b at the time the goods he is

presently b~ying in ~a reacnes his final market. Let Pa(V) denote

the price in ~ at~. Then, Ti is the smallest value ofa

Eib (V) - P (v) above which the trader is willing to transfera a
iWe assume that T > O.

goods.

This demand function is illustratedin

Figure 4. E;b{V) varies in general with Y, thereby causing the

trader's demand function to shift vertically as V changes.

Furthermore, we assume that E;b(P) is determined by the ith

trader through some memory function M~b of prior prices in ~b.

If within a single week the market day for ~b precedes the

market day ror ~ ,a

Ei (v)ab
=

M;b [Pb ()I), Pb (V-l), Pb (V-2), ...] . (2.2a)

Otherwise,

E;b(V)
=

M;b[Pb(V-I), Pb(V-2), Pb(JI-3), ...]. ( 2. 2b )

These equations mean that, while trading in ~ , the tradera

prognosticatesabout the next price in ~b by extrapolatingfrom

prior prices in ~b.
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Conditions4eM;b is a monotonic increasing function of

each of its arguments,and a history of a constant price Pb

in ~b yields the same price Pb for E;b(V). N~, which is defined below

also satisfies these conditions.

We can assign a more sophisticated prognosticating ability

to the trader by making M;b depend not only on prices in ~b but

on prices in other markets as well. We can in fact admit market

news into our model by including the prices in markets other than

~a and ~b. This will alter (2.2) but not any other equations in

our dynamic model.

The ith trader is a seller within ~b' his economic behavior

now being characterized by a supply function. We shall analyze

two cases, one where the trader does not store goods and therefore

sells the goods he brings into ~b at whatever price he can get.

In this case, his supply function is perfectly inelastic. When

this is so for all the traders, we refer to our model as the

no-storage model. The second case, which we call the storage

model, allows the trader to store goods in ~b if he feels that

the price in ~b will improve with time. We assume that, in order

to determine how much to store, the trader compares the per-unit

gain he expects from the price improvement to the per-unit cost

of storage, and, thinking marginally, chooses that quantity for

storage for which the gain and the cost are equal. This requires

the ith trader to know the per-unit cost of storing goods from

v to v+l as a function ~ of the amount q stored. We impose
i

upon each Zb the following.

Conditions 5. ~ is a continuous, strictly increasing function
. i i i

of q for 0 ~ q ~ Bb' and Z£ (q) = a>for Bb < q < OD.



11

B~ is the ith trader's storage capacity. Since it is

infinitely costly for him to store more than B~~ he will sell the
i

of Bb for whatever price he can get.goods he holds in excess

i i i
We set Ib = Zb(Bb).

Moreover, we assume that the trader, while operating

in ~b at v, estimates an expected price F~(V) in ~b at V+l by

means of a memory function N~ of past prices in ~b.

F~(~)
=

N~[Pb())-l), Pb(V-2), Pb(V-3) ...] (2.3)

N~ is also assumed to satisfy Conditions 4. Again, a more

sophisticated prognosis can be had by introducing prices from

other markets among the arguments of N~. For example, if the trader

while operating in ~b has access to news about prior prices in

a market °d that supplies goods (perhaps indirectly through

other markets) to ~b and if it takes ~ weeks for goods to be shipped

from °d to ~b' then a shortfall in cd' signalled by a sharp rise

in price there, will be felt in ~b ~ weeks later on. So, the

trader might predict a rise in price in ~b at V+l; this ability

can be formulated by including the price Pd(V-~+l) among the
i

aruments of Nb.

The total amount of goods the trader has on hand in ~b at v

is denoted by

G~ ()I)
= i

Ab(V-l)
+ Ui (JI-~ ).ab ab (2.4)

Here, ~(V-l) is the amount the ith trader has stored in ~b

from Y-l to Y. ~ab is the time in weeks it takes to ship goods

from ~a to ~b (assumed to be the same for all traders operating

between ~a and ~b). U~b(V-~ab) is the amount the ith trader brings
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into {3b at )/ from ,,(a. Thus, U;b (v-'tab) is the amount the ith

trade r buys in,,( a t )I-'t b.a a

i
Uab (v -'tab)

= i
[
i i

]V E (V-'t ) - T - P (v-'t )ab ab ab a ab (2.5 )

When (2.5) is zero, we say that the ith trader cuts off. When

all the traders along one branch of Figure 1 cut off, we say that

the branch has cut off.

From these assumptions one can conclude [6; Section 4] that

in the storage model the ith trader's supply function in his final

market {3b in week v is

i
3b (p, v) max {o, G~ (V) - W~ [F~ (y) - p]}

for F~(V) - I~ ~ P ~ F~(V)

(2.6)

G~()I) for p ~ F~(V)

=

[
. i i

}max 0, Gb(V) - Bb for p ~ F~(V) - I~

where it is understood that p is restricted to positive values.

Also, W~ is the function-inverse Of~. S~(p, y) is sketched
. i i i i

in Figure 5 for tne case where Fb(v) - Ib and Gb(v) - Bb are

both positive. On the other hand, ~(p, v) may intersect the

ordinate or the abscissa on its curved part. When it inersects
i

the ordinate,3b(p, v) is identical to the ordinate below the

intersection point. In Figure 5, Pb(v) is the clearance price
i

in Pb' and ~ (v) is the amount the ith trader sells in ~b; thus,

the amount he stores from V to v+1 is

~(V )
=

G~(V) - ~(v)
=

G~(V) - S~[Pb(V)' v].
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Henceforth, we tacitly assume that all the assumptions

and conditionsstated in this section hold - except when

alternatives are explicitly stated.

3. Dynamic equations. The price p = p (v) at which them

market $ clears at v is obtained by solving the followingm

relation that equates excess supply to aggregate trader demand

in $m

Sm(p, v)
=

2:. Vi .[Ei .(V) - Ti -
J

. i mJ mJ p
(3.1)

Here, the summation in understood to be over the indices i of all

the $ :~traders, that is, over the indices for all tradersm

having $ as their initial market. Ei.(v) is determined inm mJ

accordance with (2.2). With p = P (y), the right-hand sidem

of (3.1) becomes the amount U .(y) of goods carried out of
. mJ

~m by the traders in week v.

Let us now digress for a word of explanation about our

symbolism. It is not apparent from the right-hand side of

(3.1) alone just which indices i should be included in the

summation. We specified that in the sentence following (3.1).

(An alternative would be to use a more cumbersome notation, such

as appending $m:t as a subscript on the summation symbol.) It

should also banoted that in (3.1) j changes in general as i varies.

and should therefore be denoted by j(i); we prefer the simpler

notation j since the sentence following (3.1) removes any uncertainty

concerning our notation. We shall follow this procedure in our

subsequent equations involving aggregations over subsets of

traders.

Next, consider market 0/..J
The clearance price p = P.(v)

J
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in 0/. at Y is determined by solvingJ

~ S~(p, v)
i J

= i f. i i
]~ VjkLEjk(V) - T - P .

(3.2)

Now, the left-hand side is the aggregate of all the supply

"t .

mJ

model,

functions for the ~:~. traders, and the right-hand side is theJ

aggregate of all the demand functions (2.1) for the 'Y..:Ytraders.J
In the no-storage model, each S~(p, v) is constant with respectJ
to p and indeed is equal to Ui.(y-'t .) as given by (2.5); m ismJ mJ

the index for the initial market for the ith ~: 'P. trader, andJ
is the delayin shippinggoodsfrom ~ to ~.. In the storagem J

S~(p, v) is given by (2.6). The location of the upperJ
. i

corner point of sj(p, v) - and thereby the location of Sj(p, v)

itself - in the (p, q) plane is established by the values of

(2.3) and (2.4), variabl~s that can be determined from the prior

behavior of the marketing system.

Similarly, the clearance price p = Pk(V) in Yk at v is the

solution of

2: ~(p,v)i
= i

[
i i

]~ Vkr Ekr (V) - T - p ,i
(3.3)

where the summation on the left-hand side is over the indices

of all the ~:Yk traders and the summation on the right-hand side
i

is over the indices of all the Yk:~ traders. Here too, 3k(p, V)

is given in the same two ways indicated in the preceding paragraph,

one way for the no-storage model and the othErway for the storage

mode1.

Finally, the clearance price p = P (y) in ~ at Y is thatr r

price at which aggregate trader supply equals demand in ~ :r
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~ Si(p, v)
i r

= D (p, ~)r (3.4)

The summation herein is over the

Again, Si(p, v) is determined inr

Equations (3.1) through (3.4) can be

indices of all the y:w traders.r

ei ther of two ways.

used recursively to

compute all the prices and quantity flows in our zonal model,

once all the S (p, v) and D (p, v) are specified for v = 1, 2,m r

3, ... and an appropriateset of initial conditionshas been'

assumed. For example, if we wish to determine prices and quantity

flows for v = 1, 2, 3, ... , we must specify certain prices including

those in the arguments of the memory functions (2.2) and (2~3)

for certain values of v ~ O.
Indeed, when ~ab ~ 1, the amount

(2.5) of goods brought into ~b at V = 1, 2, 3, ... by an ~a:~b

trader depends upon the prices

Pa(l-~ab)' Pa(2-~ab)' ... , Pa(O) (.3.5)

and upon the trader's estimates E;b(l-~ab)' E;b(2-~ab)' ... .

This requires that all the prices (3.5) and any additionalprices

that appear as arguments in the memory functions (2.2)for

v = l-~ab' ... 0 and in the argUments of (2.3) for Y = 0 be

specified as well. In addition, when dealing with the storage
i

model, we have to specify the quantities Ab{O) the traders

store from Y = O,to v = 1. (If instead of assuming only price

values as the initial conditions we also assume the flow values

U;b(V)for appropriate Y, then fewer initial prices need be specified.)

Once the needed initial conditions are known, the recursive

computation of all prices and quantity flows is straightforward.
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specifically, consider markets ~a and ~b an ~a:~b trader. Once

E b(l) is known, every trader's demand curve (Figure 4) in ~a a
i

is located in the (p, q) plane for ~ = 1. Also, Eab(l-~ab) and

U;b(l~ab).

inelastic supply

p' (l-~ b ) are also known and therefore so too isa a

The last quantity is the value of the. perfectly

of the ith trader in ~b at y = 1 in the case of the no-storage

model. For the storage model, U;b(l-~ab) in conjunction with the

initial condition ~(O) o~ the ith trader's storage determines

G~(l). Moreover, the initial price conditions determine through
i .

(2.3) the vlaue Fb(l). Tohelast two values locate the upper corner

of S~(p, v) and thereby the ith trader's supply function in ~b

at v = 1 in the storage model. In this way, the aggregate supply

and demand function in all the markets can be determined and

thereby all the clearance prices. These prices also determine

how much each trader sells in his final market at y = 1 and, if

he has a storage facility, how much he stores from y = 1 to Y = 2.

It also determines how much he buys in his initial market at v = 1.

We can therefore repeat this computation to determine all prices

and flows for v = 2, then-for v = 3, and so forth.

4. The equilibrium state. An interzonal marketing network

is said to be in an equilibrium state or simply in equilibrium

if for all m and r the excess-supply functions S (p, v) and them

demand functions D (p, v) do not vary with y and if all the pricesr

also do not vary with v. ~ a consequence, it will follow that

all the commodityflowsare also invariantwith respectto v.

The equations (3.1) to (3.4) are solved first for those markets

that meet on the first day of week V =1, then for those markets

that meet on the second day of week y = 1, and so forth. More
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In this section, we discuss the existence and uniqueness of the

equilibrium states. Since all variables are time-invariant in

an equilibrium state, we can and will simplify our notation by

dropping the argument v. For example, we will replace the notation

P (11) by P ;m m that is, instead of having P denote a mapping of vm

into a price, P will now represent a price.m

We first establish the existence and uniqueness of the

equilibrium states for the no-storage model. This result requires

a fairly long argument, but, once it is obtained, its extension

to ~he storage model turns out to a brief matter.

In view of Conditions 4, when an equilibrium state is in

force, the memory functions (2.2) and (2.3) yield the following

simple formula for the expected prices.

Eiab
= Fib

=
Pb

Moreover, for the no-storage model the dynamic equations (3.1)

through (3.4) simplify into (4.1) through (4.4) respectivelywhen

in addition the equilibriumprices are substitutedfor the

variable p.
In <!>m'

S (P )m m
= i i

)2: V . (P. - T - P ,
i mJ J m (4.1)

the summation being for all <b : 0/ traders.m In 'P.,J

2: Vi. (P. - Ti - P )

i mJ J m
= ~ i i

~ V'k(Pk - T - P.),i J J
(4.2)

the summation on the left being for all <b:~.traders and the
J

summation on the right being for all ~j:Y traders. In Yk'
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~ 1 1
~ V.k(Pk - T - P.)
i J J

= s: Vi ( P - Ti - p )

i kr r k ~
(4.3 )

the left-hand summation being for all o/:Yktraders and the right-

hand summation being for all Yk:ootraders. 1'linally, in U)r~

i iL. Vk (P - T - Pk )

i r r
=

Dr(Pr)' (4.4)

the summation being for all Y:U) traders.r

Theorem 1. The no-storage model for }'igure1 has a unique

equilibrium state for each set of time-invariant excess-supply

functions S (p) and time-invariant demand functions D (p).- m r

Proof. The proof of this theorem is divided into three steps.

The second step is by far the longest. Were it not for the existence

and uniqueness theorems of [6], which we invoke, the third step

would also be quite long.

Step 1. Consider the subnetwork induced by ~j and its

adjacent ~ markets. We first show that each P. > 0 determines
J

a unique inflow C. to ~. from all the ~ adjacentJ J m
for one such ~ , a given P. determines the demandm J

Vi. (P. - Ti - p) for the ith ~ :0/. trader and thereby the aggregatemJ J m J

demand function in ~ for all the ~ :~. traders. The intersection
. m m J

of that aggregate demand function with the given supply function

to 0/.. Indeed,J
function

s (p) determinesa unique price P in ~ and the total $ to t'.m mm m J
flow U .. Summing over all the ~ adjacent to o/.j~ we obtain amJ m

unique inflow C. = !: U . to o/
j
.

J mJ
Moreover, by the monotonicities

P. increases, each ~ :~. trader increases his
Jro J

to Umj' except possibly when U~j remains zero (i.e., when

trader remains cut off). This means that C. is monotonic
J

i
of the S and the V ., asm mJ

contribution ui.
mJ

the ith

increasing
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with respect to P.. Furthermore, the continuities of the SJ m
and Vi. imply that these variations are continuous. Altogether,mJ

C. is a continuous, monotonically increasing function of P. > 0,J J

as illustratedin Figure 6. We denotethe functionP.~C. byJ J

sj and call it the derived-equilibrium-supply function in o/j.

For sufficientlysmall P., all the ~ : 0/. traders cut off, andJ m J
therefore there is a unique price P: > 0 such that s~ is strictlyJ J

for 0 < p S P~. This argumentJ

= S~(P.), there existsJ J
the ~ adjacent tom

in the subnetwork induced by 0/.J

increasing for p ~ P: and is zeroJ
shows that, when C. and Pj are related by C.J J

> 0 a uniaue set of Prices P in. mfor each P.
J

~. for which equilibrium holdsJ

and those ~ .m

Step 2. Our next objective is to show that, under equilibrium

conditions, each Yk has a certain demand function D~ derived

from the demand functions in the w .r

Choose any Yk and restrict r to the indices of those w markets

that are adjacent to Yk. Then, choose any set of Pr > 0 and thereby

the ~ = Dr(Pr) such that L~ < Q.L' where Q.L = LV~r(Pr - Ti);

QL is the abscissa intercept of the aggregate of the

~(Pr - Ti - p) functions of p for all the Yk:w traders. Such

a choice of the P can be made because, as the P increase, ther r

~ decrease to zero while ~L increases toward larger positive

values. Now, let Q.k= z:~ and equate ~ to Yk's aggregate demand

function

"i i
~ V (P - T - p)
i kr r

(4.5 )

of all the Yk:w traders. The resulting equation has a unique
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positive solution for p, which we denote by Pk8

Yk:(a)r trader, let

For each

Uikr
= Vi (P - Ti - p ).kr r k

This is the amount the ith trader transports from Yk to (a)r

denote the amount

Thus, we have

(4.6)

where on both sides the summation is over the indices r for the

w markets adjacent to Yk.

In other words, Ukr is the amount transported into and

supplied in (a)r'and ~ is the amount demanded in (a)r. If Ukr = ~
for every admissible r, we have found a set of prices for Yk and

its adjacent (a)such that the subnetwork induced by these marketsr

is in equilibrium. If however Uk ~ Q for at least one admissible r,
;# r ~
I

we will hold Pk fixedand will adjust the P in such a fashion thatI r

(4.7) will be satisfiedas well as (4.6) after all the adjustments

are made.

So, examine in turn e~ch of the Ukr - ~. Let r = p be the

first index for which Uk ;f Q.. If Uk > Q. , start decreasingp p p p

P but keep Pk and all the other P fixed. This decreases Ukp r p

and increasesQ.. Eventually,Uk - ~ will become negativep pp

because, as P approaches zero, Uk will reach zero whereas Q.p p P

will increase toward larger positive values. These variations

are continuous and monotonic with respect to changes in P 8P
Therefore, by the intermediate-value theorem, there exists a

unique P such that Uk = Q. for the fixed Pk8

p P P (However, (4.6)

under equilibrium conditions. Then let Ukr

LUr transportedby all the Yk:(a)rtraders.

Ukr
= Q = Lkr r
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will no longer hold if we vary only one of the P .)r

On the other hand, if Uk < ~ 6 start increasing P but keepp p p
Pk and all the other P fixed. This decreasea ~ and eventuallyr p

increases Ukp. EventuallY6 Ukp - ~p will become positive because6

as Pp~ -6 Ukp increases toward larger positive values while Qp

decreases and reaches zero. As before, we can conclude again

that there is a unique P such that Uk = Q. at the fixed Pk.
p P P

. Keep doing this until all the Pk for which Ukr ~ ~ have

been adjusted in turn to acheive Ukr = ~6 keeping Pk fixed

throughout. Although (4.6) will be violated during some of this

process, it will hold again at the end. This yields then the

unique equilibrium state for the subnetwork induced by Yk and

its adjacent oorfor which Pk is the price in Yk.

The process can be repeated for different values of Pk to

obtain a function D~: Pk~ "':k6which we shall refer to as thein

derived-equilibrium-demand functionAYk.

is continuous and monotonic decreasing6

e
We now show that Dk

as illustrated in Figure 7.

While keeping each Pr constant, decrease Pk from the value

it had above by some amoUIi'tsuch that Pk remains positive 8 This

increases each Uk but keeps each ~ fixed6 except possibly whenr zero

~ is zero and Ukr remains;\atthe new lowervalue of Pk8

At the new value of Pk6 we will have Ukr ~ ~, with ~ity occurring

only in the exceptional case. For each r such that Ukr > ~, we

can restore equality at the new value of Pk by decreasing Pr an

appropriate amount; indeed, by virtue of the argument used in

establishing the existence of D~, this increases ~ or keeps it

fixed at zero in the exceptional case. (It also decreases Ukre)

When equality is restored for all admissible r, ~ = )C~ will
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have increased - or stayed rixed at zero- Clearly, ~ will not

become larger than the maximum aggregate capacity I:V~r(~} or

all the Yk:w traders, no matter how much Pk is initially decreased-

Again, these variations are continuous with respect to the changes

in Pk and the Pr-

The opposite variations occur when Pk is initially increased

and the Pr are then increased to restore the equalities Ukr = ~-

Note that, since D (p) = 0 ror p ~ ~ , under equilibrium conditions,r r

~ = 0 ror all surriciently large Pk-

We can conclude that D~ is derined ror all positive values

or Pk and is a continuous, monotonically decreasing runction or

Pk- As Pk~O+-, ~ approaches a rinite value. At those values

or Pk ror wjich D~(Pk} is positive, D~ is strictly decreasing.

Also, D~(Pk} = 0 ror all surriciently large Pk8

Step 3. Finally, we assert that the subnetwork or Figure

1 induced by all the 0/ and Y markets also has a unique equilibrium

when sj is the supply runction in 'fj and D~ is the demand runction

in Yk; thqt is, there exists a unique set or prices .in the o/j

and Yk ror wbjichequilibrium holds in the atated subnetwork or

~to y branches. This fact rollows immediately rrom Theorems 2

and 3 or [61 because our sj satisry the conditions that the

L. + S. of that work satisry and our Dke satisry the conditionsJ J

that the G~l or that work satisry. (There is one unessential

dirference between the conditions or [6] and the conditions on

D~8 In [6] the demand runctions tend to OlD as p -+- 0+, whereas D~

tends to a finite limit. The proors of C6] extend immediately

to the present case.)

p.- -
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We can now piece together all the subnetworks. We start

with the unique equilibrium state for the tpto y subnetwork

with the found S~ and Dke functions. The unique price in each 0/.J J
then determines a unique equilibrium state in each $ to ~.

. J

subnetwork (Step 1) and the unique price in each Yk determines

a unique equilibrium state in each Yk to w subnetwork (Step 2).

This completes the proof.

It is worth pointing out that this theorem can be extended

immediately to marketing networks having more levels than those

of Figure 1 so lo~ as the extens,ionsof the network of Figure 1

consist of trees appended to the ~ and w markets. Such an extension

at a ~ market is shown in Figure 8. Given a set of time-invariant

supply functions for the Ah~ we need merely repeat Step 1 to obtain

derived-equilibrium-supply functions for the e. From these wes

get through Step 1 again derived-equilibrium-supply functions in

the <bm. A similar procedure can be used when marketing-network
,

trees are appended to the W markets; we now keep repeating Step 2

working back from the lowest-level markets, wherein time-invariant

demand functions are given, to obtain derived-equilibrium-demand

functions in the w market~ and the markets beyond w above the
,

lowest level. Finally, as in Step 3, the equilibrium state for

Figure 1 can be extended to the appended trees to establish an

overall unique equilibrium state.

As another extension of Theorem 1 we have the following

assertion about our storage model. It too can be extended to

multilevel marketing networks that extend Figure 1 as indicated

in the preceding paragraph.
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Theorem 2. The storage model for Figure 1 has a unique

equilibrium state for each set of time-invariant excess-supply

functions S (p) and time-invariant demand functions D (p).- m r

Proof. Given a storage model, we can construct a unique

no-storage model by replacing every trader's storage-model supply

function S~ in his final market ~b by a vertical line (i.e., by

an infinitely inelastic supply function) that coincides with

the upper vertical portion of s~.

associated no-storage model.

We call the result the

If a storage model has an equilibrium state, all prices are

time-invariant, and every expected price F;(V) for a market ~b

coincides with the past history of a constant price Pb in ~b;

that is, F~(V) = Pb for all v and i. Consequently, in an equilibrium

state, every trader operates at the upper-corner point of his

supply function in his final market, and therefore no trader

stores goods. 1hus, the associated no-storage model has the

same equilibrium state. Since the associated no-storage model

can have only one equilibrium state according to Theorem 1, the

same is true for the storage model. Conversely, if the associated

no-storage model has an equilibrium state, then the storage model

has the same equilibrium state with the upper-corner price of

every trader's final-market supply function ~ coinciding with

the clearance price in that market. Thus, we need merely invoke

Theorem 1 to complete the proof.

A corollary of Theorem 2 is that Equations (4.1) through (4.4)

also hold for the equilibrium state of the storage model.
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5. The propagation of disturbances.,--~ When traders have price

information only about the markets in which they trade, disturbances

in market conditions are propagated only through the trading activity.

As a consequence, a disturbance travels from market to market,

proceeding no further in anyone week than one branch of the network.

This was pointed out by W.O.Jones [2]. Our prior models of

periodic markets exhibit this phenomenon, and so too does our

present interzonal model.

For example, assume that the network is in equilibrium and

then a shortfall occurs at v =1 in one of the ~ markets, say,

in ~l' this shortfall exhibiting itself as a sudden shift to the

left of the excess-supply function. ~hat is, Sl(P, 1) lies sub-

stantially to the left of Sl(P, 0). Assume also that all other

Sm(p, v) and Dr(p, v) remain fixed with respect to V. The shift

in 31 raises the price in ~l but does not affect the prices

in other markets at v = 1. It also results in fewer goods being

sent to the 0/ market adjacent to ~l' say o/j. At v = l~lj' the

shortfall reaches 0/. and raises the price there. This inducesJ

the other ~ :~. traders (m * 1) to raise their expected prices.m J

and thereby their demands in the ~ at V = 2~ 1 '. It also
m J

curtails the amount sent to the r markets adjacent to ~.. TheJ
process repeats in those markets, resulting in raised prices and

fewer goods beir~ transpm~ted into the w markets adjacent to those

y markets. In fact, the disturbance propagates throughout the

entire network in this step-by-step fashion. Precise arguments

can be constructed to trace out how the disturbance first reaches

the various markets in the network and to determine the times

at which it does so. The arguments are quite the same as those

given in [5] and [6] and wontt be repeated here. Once the initial
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disturbance has passed through a market, that market will be

subjected in general to oscillating prices as the disturbance

not only propagates on to newer markets but also reflects back

and forth between the markets it has already reached. This can

be demonstrated by computer simulations of our model.

Similarly, a disturbance in demand in one of the ~ markets,

say, a sudden shift to the right of D (p, y) at ~ = 1 raises thep

price in ~ and 1Dduces the Yk :~ traders to raise their expected
p p

prices at V = 2 in Yk. This raises demand and thereby price in

¥k and causes more goods to flow toward wp. It also causes fewer

goods to flow toward the other wr markets (r # p) adjacent to Yk

because the corresponding traders have not raised their expected

prices and demand functions in Yk. ihis process too can be

precisely traced to see how it propagates throughout the network.

Note that a disturbance passes from an initial market ~a

to a final market ~b along one branch in ~ab weeks, that is, no

faster than the speed at which a good travels from ~a to ~b.

On the other hand, a disturbance travels from ~b to ~a at the speed

at which information passes back from ~b to ~a and can be acted

upon in ~a' a possibly faster process. Actually, had we assumed

that our memory functions (2.2) and (2.3) were also sensitive

to prices in markets other than the indicated final market,

then the disturbance could travel between markets faster than

the trading activity would by itself allow. Here again is an

argument for improved market news.
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6. Profit margins. An examinations of the operating costs

for a trader [6] indicates that his V;b curve has step-like shape;

it rises sharply at small positive values of'its argument and then

levels off at higher argument values. Consequently, his demand

curve in his inittal market has the form illustrated in Figure 4.

It is elastic when he operates at small expe'ctedprofits, that

is, at prices just below E;b(V) - Ti and is inelasticwhen he

operates at large expected profits, that is, at substantially

lower prices. (The large ~:y traders, who are shipping over long

distances - perhaps by train, may not be as restricted by capacity

constraints, and so the inelastic portion of their demand cur¥es

may not be so steep.)
expected

at largeAprofit margins, a disturbance in

~ markets propagates toward the w markets

A3 a result, when all traders are operating

supply in one of the

with relatively large

changes in price but relatively small changes in the commodity

flows. If on the other hand all the traders are operating at
expected

small profit margins, the opposite holds true.A

The same thing can be said for a disturbance in demand at

an 00market, with the following exception. In the no-storage

model the initial transmittal of the disturbance back through the'

00,y, and 0/ markets will not result in any change in the total

amount sold regardless of whether the traders are operating at
expected

large or small profit margins.A
felt through price variations. This is because the supply

The disturbance merely makes itself

functions in those markets are perfectly inelastic. Subsequent

and lateral propagations will however involve quantity variations.
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7. Ring-terminated markets.
'-.....--

A not unusual itinerary for

a small-scale trader operating in the lowest-level rural markets is

one wherein the trader follows a ring of markets. For example,

after leaving his ~., the trader follows a sequence of ~ marketsJ
buying up goods in each one and then returns to ~. after one week.J
A similar route may be followed by a trader on the ~ side of the

network; he buys goods in his Yk and then proceeds through a

sequence of w markets selling those goods and returning to Yk after

one week's time to repeat the process. Such a one-week's

itinerary is called a ring. 1he dynamic behavior and the

equilibrium states of periodic marketing networks consisting

solely of rings was examined in (71 and [8].

We can extend the present interzonal model to the case where

some or all of the ~:o/traders or y:w traders follow rings of

markets, so long as the rings are mutually disjoint except at

the ~ and Y markets. This can be done by combining the analyses

of C7] and [8] with that of the present work. In addition to

dynamic equations, which can be used recursively to compute

time series in the prices and commodity flows, we can also

establish the existence of a unique equilibrium state when the

supply functions in the ~ matkets and the demand functions

in the w markets are fixed with respect to time. The proof of

the latter follows the scheme presented in Section 4, but it

requires some significant changes to incorporate the arguments

of [7] and [81.
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8. Monopsonist and monopolist trader~. We have assumed

so far that there is perfect competition in every market.

This means among other things that there are many traders
~

competi~ith each other. ~uite often however traders are few

in number in one or more of the markwets and collude. What

model of oligopsony or oligopoly is most appropriate for the

behavior of the traders in this case and how such a model can

be incorporated into our interzonal marketing network is presently

uncertain - at least to this author. However, if we go to the

extreme case where a single trader acts as a monopsonist or

monopolist, then the standard theory of such an agent can easily be

incorporated into our interzonal model.

For example, assume that in a ~ market there iB but one trader

buying goods as a monopsonist from many suppliers, and refer to

Figure 9.
-1

S (q) denotes the supply schedule written as a function

of q and with its dependence on the time-variable suppressed.

The marginal cost to the monosonist of buying the amount q is

-1 -1 .."-
C'(q) = P + qdS /dq. Since S is monotonic increasing,the

-1C' curve lies above the S curve. On the other hand, -the

traders expected marginal revenue product is his demand curve H

(also written as a function of q). Standard theory states that

the monopsonistbuys that quantity Q. at which C'(q) = H(q) and
-1

does so at the price P = S (Q.). Thus, we need merely replace

(3.1) by the present relationships in order to allow a monopsonist

in one or more of the ~ markets.

Similarly, the standard theory of a monopoly can be used

to incorporate a monopolist trader selling the commodity in an

w market to many consumers. In this case, the demand curve
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