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Abstract - Defined and examined herein are transfinite random walks. These are ran-

dom walks on a generalized version of a graph that consists of many infinite graphs connected

together at their infinite extremities. Those connections are made by "I-nodes" and allow

a random walker to "pass beyond infinity" through a I-node. The probabilities for such

transitions are obtained as extensions of the Nash-Williams law for random walks on ordi-

nary infinite graphs under the nearest-neighbor rule. The analysis is based on the theory

of transfinite electrical networks, but it requires that the transfinite graph have a structure

that generalizes local-finiteness for ordinary infinite graphs. Branches that are incident to

I-nodes are allowed, which complicates the transitions through infinity. Another general-

ization achieved herein is an extension to transfinite networks of the maximum principle for

node voltages. Finally, it is shown that a transfinite random walk can be represented by an

irreducible reversible Markov chain, whose state space is the set of I-nodes.
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1 Introduction

Analyses of random walks on count ably infinite graphs are invariably restricted to graphs in

which two nodes are either connected by a finite path or not connected at all; see the survey

by Woess [8], which contains an extensive bibliography. This work develops the concept of

a random walk on a transfinite graph, an idea initiated in [11] and [12]. Transfinite graphs

.in turn were defined and developed in [9] and [10]. The simplest kind of transfinite graph,

called a "I-graph", can be obtained by connecting together ordinary countable infinite

graphs (now called "a-graphs") at their infinite extremities. Those connections are made

at "I-nodes" - a generalization of ordinary nodes, which are now called "a-nodes". As a

result, two a-nodes may not be connected in the usual sense - that is, through a finite

path - but may instead be connected in a weaker and more general sense: One may get

from one a-node to the other by tracing along a finite number of infinite paths, where the

transition from one infinite path to the next is via a I-node.

Once graphs have been generalized to the transfinite case, so too can random walks be

generalized. Indeed, an ordinary random walk can be defined on a locally finite a-graph

by assigning real positive numbers gj, called "conductances," to the branches bj and then

using the nearest-neighbor rule: The probability that a random walker 1Jiwill proceed from

a a-node no to an adjacent node nk in one step is gk/ L9I, where the summation is taken

over all nodes nl adjacent to no and gl is the conductance of the branch connected between

no and nl. From this, one can derive relative probabilities oftransition between nonadjacent

nodes. For example, let no be any node and let JV1and /V2 be two disjoint sets of a-nodes

such that N1 U N2 separates a finite subgraph containing no from the rest of the graph.

~ ash-Williams [6] has shown that the probability of 1Jistarting at no and reaching some

node of N1 before reaching any node of N2 can be obtained electrically; it is the voltage

at no when the nodes of N1 are held at 1 volt and the nodes of JV2 are held at a volt. By

taking certain limits and other extensions, one can extend this result to define a random

walk on a transfinite graph [11], [12]. This requires new definitions for the probabilities

for transitions to and from nodes of higher ranks. Appropriate ones can be devised using

electrical criteria, much like the Nash-Williams law. In this case, the random walker 1Jimay
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"wander through infinity" to reach nodes infinitely far away.

In this work, we develop a theory for random walks on a transfinite graph of rank 1.

This is accomplished by relating those walks to an electrical network having a graph of

that rank. In an earlier version of our theory [11], [12], a number of strong restriction were

imposed. One of these was the imposition of Halin's finitely chainlike structure for ordinary

infinite graphs [2], [3]. That assumption happens to be much stronger than need be, at

least in the case of I-graphs. The objective of this paper is to weaken it and to obtain

thereby more general kinds ofrandom walks on I-graphs. For example, in [11] the only way

W could reach a I-node was through an infinity of steps because no branch was allowed to

be incident to a I-node through an embraced a-node. However, such branches can appear

in transfinite graphs, and hence a random walk might also reach a I-node in finitely many

steps. Our objective now is to construct a theory for this more general kind of random

walk. This requires substantially altered arguments because W can now "wander through

infinity" in different ways.

Actually, nodes of still higher ranks may also embrace nodes of lower ranks. Hence,

the ideas developed herein may be extendible to transfinite random \valks on graphs whose

ranks exceed 1. This hopefully will be the subject of a subsequent work.

We use the definitions and terminology of transfinite graphs as given in [9] or [10], but

all the ideas concerning transfinite random walks are defined herein. After conductances

are assigned to branches, we will say "network" instead of "graph." Our arguments are

based upon the theory of transfinite electrical networks.

The next section establishes a needed decomposition for I-graphs arising from the re-

moval of the connections at infinity. A structure that extends the idea of local finiteness

to I-nodes is presented in Section 3, and Section 4 adds the electrical assumptions that

empower a theory of transfinite random walks. This permits the connection of pure voltage

sources to infinite extremities of the network, as is prown in Section .5; in general, such

connections are not permissible because some infinite networks effectively short those ex-

tremities [9, Sections 3.6 and 3.7]. Other requirements of our theory are the existence of

node voltages and a maximum principle for them; these too are not in general available
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[13], but our restrictions allow their establishment in Section 6. The definitions of transfi-

nite walks are given in Sectio_n7, and then a theory for transfinite random walks based on

electrical networks is developed in Sections 8 and 9. Finally, it is shown in Section 10 that

transitions between I-nodes are governed by an irreducible and reversible Markov chain.

2 Subsections and Cores

Let g1 be a I-connected I-graph with no infinite O-nodes, no self-loops, and no parallel

branches. Embraced O-nodes are allowed; that is, branches may be incident to I-nodes. By

definition of a I-graph, g1 has a countable infinity of branches and at least one I-node.

The presence of branches incident to I-nodes complicates matters considerably. In order to

develop a theory for random walks on I-graphs, we now have to identify a more detailed

structure for the I-graph.

The opening of a I-node n1 will mean the replacement of n1 by singleton I-nodes. one

for each O-tip in n1, and by singleton O-nodes, one for each elementary tip embraced by

n1 if there are any. Let us now partition the set of branches in g1 into subsets as follows:

If two branches remain O-connected after all the I-nodes of g1 are opened, then those two

branches are taken to be in the same subset. The reduced O-graph induced by the branches

in anyone of those subsets will be called a subsection of g1. Some immediate consequences

of this definition are the following: Every subsection lies entirely \vithin some O-section of

g1; moreover, each O-section is partitioned by some or all of the subsections, and so too is

g1.

Ivery ordinary O-node of a subsection Sb is identical with a O-node in g\ that is. those

two O-nodes have the same incident branches. However, an embraced O-node nO of g1

may have some incident branches in Sb and some not in Sb. As a result, the corresponding

reduced O-node n~ of Sb may be a proper subset of nO. Nonetheless, we can uniquely identify

n~ to nO and will say that nO itself belongs to Sb - as well as to any other subsection having

branches incident to nO. We also say that the I-node n1 that embraces nO is incident to Sb,

and conversely.

Furthermore, if gr is any reduction of g1 with respect to any subset of branches. we
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can identify each O-tip t' of gr with the unique O-tip t of g1 that contains t' as a subset. In

fact, t' f---7t is an injection. We say that gr has or possesses t as a O-tip if there is at least

one representative of t that lies entirely in gr' In this sense, every 0-tip of gr is a 0-tip of

gl. In the same way, we can identify each reduced I-node with exactly one of the original

I-nodes of gl.

Lemma 2.1. If a subsection Sb has no ordinary O-node, it consists of a single branch.

Proof. Since there are no self-loops, every branch of Sb is incident to two I-nodes.

Lpon opening the I-nodes, we disconnect such a branch from all other branches. Hence,

that branch must be a subsection by itself. 0

Lemma 2.2. If a subsection Sb has exactly one ordinary O-node nO, it is a star graph

u'ith nO as its central node.

Proof. By the preceding proof, no branch of Sb is incident to two I-nodes, for otherwise

that branch would be a subsection by itself with no ordinary O-node. Hence, every branch

of Sb is incident to nO and to a I-node. )'Ioreover, since there are no parallel branches, Sb

must be a star graph, as stated. 0

We will need still another idea. The core of a subsection Sb having two or more ordinary

O-nodes is the reduced O-graph induced by all branches of Sb that are not incident to 1-

nodes. (We will argue in a moment that there is at least one such branch.) In the special

case where Sb has exactly one ordinary a-node nO, its core is taken to be nO. When Sb has

no ordinary a-node, it core is void. Thus, all the nodes of a core of a subsection Sb are

precisely the ordinary O-nodes of Sb (where, as usual, we identify a reduced O-node n~ with

the a-node of g1 that contains n~ as a subset).

Lemma 2.3. If a subsection Sb has two or morE.ordinary O-nodes, its core has at

least one branch and is O-connected through itself. Alorwrer, every embraced node of Sb is

adjacent to a core node of Sb.

Proof. If the core has no branch or if the core has two nodes that are not O-connected

through the core, then the opening of the I-nodes incident to Sb will change Sb into two or

more components. This contradicts the hypothesis that Sb is a subsection.

The second sentence of the lemma follows from the fact that a branch that is incident
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to two I-nodes is a subsection by itself. 0

It follows now that every two nodes of a _coreare connected by a O-path that remains

within the core and therefore has no embraced nodes.

For an illustration of subsections and cores, refer to Figure 1. The heavy dots represent

ordinary O-nodes; the heavy lines represent I-nodes, each of which embrace a O-node (not

shown); the other lines represent branches; and L1 and L2 label two doubly infinite ladders,

whose O-tips are embraced by the I-nodes. All branches are O-connected; for example, b3

and b4 are O-connected through the O-node embraced by n~. Consequently, this entire 1-

graph has only one O-section. On the other hand, the branch bo is a subsection by itself;

it has a void core. The star consisting of b}, b2, and b3 is another subsection, and its core

is the O-node n~. Another (degenerate) star taking the role of a subsection is indu.ced by

b4 alone, and its core is ng. The ladder L1 along with b.5and b6 is still another subsection,

and L1 is its core. Similarly, L2 is the core of the subsection consisting of L2 along with b7.

Finally, let us note that the idea of an "end" introduced by Halin [1] can also be defined

for I-graphs in terms ofO-tips. Let B1 be any finite set of branches in gI, and let g} = 91\B1

denote the reduction of gl induced by all branches of gl that are not in Bl' Since the

removal of B1 disrupts at most a finite part of anyone-ended path, we have that gl and g}

possess exactly the same O-tips. Two O-tips of gl will be called end-equivalent if, for every

choice of Bj. the two O-tips have representatives lying in the same subsection of g}. This

is an equivalence relationship, and the corresponding equivalence classes will be called the

Ends of gl. Clearly, the O-tips in an end belong to a single subsection of gl: we say that

the end bElongs to that O-section. Moreover, gl and g} have the same ends.

3 Finitely Structured I-Graphs

Let the I-graph gl be as before and let gr be any reduced graph of gl. A path P is said

to meet a node n of gl if P has or embraces a tip or node embraced by n.

~ ow, let. VI and N2 be two (not necessarily disjoint) node sets in gl. A set Ns of nodes

in gl is said to sEparate N1 and N2 within gr if every path P in gr that meets a node of

'\'1 and a node of .V2 also meets a node of Ns. (We also say that, within gr. .Vs separatEs
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the nodes of Ns from the nodes of Ns.) This definition allows nodes of Ns to embrace

nodes of N1 and/or N2, and conversely. For instance, (N1 nN2) c JVs since the paths P

can be trivial ones. Similarly, if a I-node nl is incident to a subsection Sb only through

an embraced O-node nO - but not through any O-tip of Sb, then, within Sb, nO separates

nl from all the O-nodes of Sb. As another example, consider Figure 1; the I-node n6 is

separated from the other two I-nodes by the set of O-nodes consisting of n~, ng, ng, n~, and

the O-node embraced by n6' On the other hand, within the core L1 the set of nodes n~ and

ng separates n6 from nt, and within the subsection having L1 as its core the set of nodes
° ° d o t I f 1

nl' n2, an n5 separa es no rom nl'

Similarly, two branches in (iT are said to be separated by Ns in (iT if the two nodes of

one branch are separated in (iT from the two nodes of the other branch by Ns.

.:\ow assume that the core Sc of a subsection Sb has infinitely many branches. Since all

O-nodes are of finite degree and since Sc is O-connected (Lemma 2.3), it follows from Konig's

lemma that Sc possesses at least one one-ended a-path. Thus, there is at least one I-node

nl incident to Sc. Moreover, by the definition of a core, no branch of Sc is incident to nl;

that is, nl is incident to Sc only through O-tips.

We assume henceforth that there are only finitely many I-nodes incident to any core

Sc. ~ow, assume in addition that there are at least two such I-nodes. V will be called a

minimal separating set for nl in Sc if V is a finite nonvoid set of O-nodes in Sc and separates

nl from all the other I-nodes incident to Sc and if for every node nOof V there is a path in

Sc that meets nl and another I-node incident to Sc but does not meet any node of V\{nO}.

If there is a finite nonvoid separating set, there will be a minimal separating set.

In the e\'ent Sc has only one incident I-node n1. we alter the last definition as follows.

A set V of a-nodes in Sc will be called a minimal .<eparating set for nl in Sc if V is finite and

nom'oid and if there exists a nonvoid finite set. ,-:>of a-nodes in Sc such that V separates

A-a from n1 and for every node nO E V there is a path in Sc that meets nl and a node of

A-a but does not meet any node of V\ {nO}. A finite set V of this sort can always be found.

for we can choose V to be some or all of the finitely many nodes of Na that are adjacent to

nodes of Sc not in Na.
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In either case, let V be such a minimal set. A branch of Sc will be said to be separated

from n1 by V within Sc if both of its nodes are separated from n1 by V within Sc. The

reduced O-graph A induced by all branches of Sc that have both nodes in V or are not

separated from n1 by V will be called an arm for n1 and V will be called the base of A.

The set of O-tips for A will be called the extremity of A. That extremity will be a subset of

n1, for otherwise V would not separate n1 from all the other 1-nodes incident to Sc.

For example, in Figure 1, V = {ng, n~o} is a minimal separating set for ni within the

core Sc = L1. The corresponding arm A is the O-graph induced by the horizontal and

vertical branches in L1 lying to the left of V along \vith the branch connecting ng and n~o.

V is the base of A. The extremity of A consists of all the O-tips of L1 that are embraced

by ni.

When the said minimal separating sets exist in every core for every I-node incident to

that core through a O-tip, we can set up an equivalence relationship between the O-tips of

Q1 by calling two O-tips "equivalent" if they belong to the same extremity of some arm of

some core of Q\ the equivalenceclasses are those extremities. Thus, the extremities of Q1

partition the O-tips of Q1. Clearly, a core and the subsection in which it resides have the

same extremities. As was noted above, an extremity is entirely contained in a single I-node.

Moreover, e\"ery I-node n1 will contain at least one extremity, one for every subsection to

which n1 is incident through a O-tip. As usual, we say that a I-node embraces its extremities.

With Sb still denoting a subsection, Sc its core, A an arm of Sc (assuming Sc is infinite),

V the arm's base (by definition a minimal separating set within Sc), and n1 the I-node

incident to A. let us set W = V U {nO} if n1 is incident to Sb through an embraced O-node

nO (as \vell as through 0- tips), and let us set }V = V otherwise. If Sc is finite, n1 can only

be incident to Sb through an embraced O-node nO, in which case we set W = {nO}. \Ye

call W an isolating set for n1 within Sb. By definition, an isolating set is finite. It is also

nomoid because n1 is incident to Sb either through O-tips or through nO or both. Assume

the following:

Conditions 3.1. For each i-node incident to Sb through a O-tip, there is a sequence

{}Vp}~l of isolating sets Wp for n1 within Sb such that the following two restrictions hold,

8



wherein Ap denotes the arm corresponding to rVp and Vp denotes the base of Ap.

(a) Given any branch b, there is a p such that b is not in Aq for all q ~ p.

(b) There exists a finite set {Pf}k=1 of one-ended O-paths, each of which meets exactly onE

node in Vp for every p, and every node in Vp is met by at least one of the Pf.

Under Conditions 3.1, we will call {Wp}~1 a (nontrivial) contraction to nl within Sb and

will say that {Wp}~1 isolates nl within Sp' Also. the Pf will be called the contraction paths

to nl for {Wp}~I' An immediate consequence of Conditions 3.1 is that the cardinalities

of the Wp are all bounded by the natural number m + 1. Another is that every branch of

Ap is O-connected within Ap to one of the contraction paths, for otherwise Sb itself would

not be O-connected.

If a I-node nl is incident to the subsection S; only through a O-node nO embraced by

nl, then we set Wp = {nO} for all p. In this case. \ve call {Wp}~1 a trivial contraction to

n 1 within Sb.

Now, let us assume that nl is incident to only finitely many subsections: Sbb"" S;}\

and that there-is a (perhaps trivial) contraction {Wk,p}~1 to nl within Sbk for each k =
1,..., K. This time set Wp = U[;'=1Wk,p' vVenow call Wp an isolating set for nl and call

{Wp}~1 a contraction to nl. Also, we say that {}Vp}~1 isolates nl. Xote that, since every

I-node nl embraces at least one O-tip, it must be incident to at least one subsection through

a O-tip. Hence, for at least one k, {Wk,p}~1 is a nontrivial contraction to nl within Sbk.

Definition 3.2. A I-graph gl will be called finitely structured if it has the following

prop erties:

(a) gl is I-connected and has no infinite O-nodes, no self-loops, no parallel branches. and

only finitely many I-nodes.

(b) For each I-node nl there is a contraction to nl (i.e., each I-node is incident to only

finitely many subsections, and Conditions :3.1hold whenever a I-node is incident to a

subsection though a O-tip).

In the following lemma, Ap and Aq will - as before - denote the pth and qth arms for
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a particular nontrivial contraction to a I-node within a subsection Sb, and Vp and Vq will

denote the bases of Ap and Aq respectively.

Lemma 3.3. Let the i-graph gl be finitely structured. Then the following statements

hold:

(i) ~:? has only finitely many subsections and only finitely many extremities.

(ii) For any q > p, the reduced graph Ap \Aq induced by all branches of Ap that are not in

Aq is a finite O-graph.

(iii) For each p, there exists a q > p such that Aq C Ap and Vq n Vp = 0.

(iv) Every end is contained entirely within a single extremity, and each extremity contains

only finitely many ends.

(v) Choose an arm for each extremity in ~f1. Then, everyone-ended O-path pO will even-

tually lie within one of those arms; that is, all but a finite part of pO will be in one of

the chosen arms.

Proof. (i) There can be only finitely many subsections in ~f1 because there are only

finitely many I-nodes, each I-node is incident to only finitely many subsections, and every

subsection meets at least one I-node. Furthermore, the incidence between a subsection and

a I-node is either through a single extremity or through a O-node or both; hence, there are

only finitely many extremities.

Iii) Note that the boundary of Ap \Ai consists entirely of some O-nodes on the finitely

many contraction paths in Ap. Hence, every branch of Ap \Aq must be O-connected within

A; \ Ai to one of the finitely many contraction paths in Ap, for otherwise Sb would not be

O-connected - in violation of the definition of a subsection. Consequently, Ap \Aq can have

only finitely many components.

Suppose now that Ap \Aq is an infinite O-graph. Then, so too is one of its components.

Bm. that component is locally finite and therefore by Konig's lemma must contain a one-

ended O-path. Thus, it must have a O-tip that is not in the I-node nl incident to Ap. This

means that Ap has two incident I-nodes - in violation of the definition of an arm.
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(iii) Consider the branches incident to Vp. They are finite in number because Vp is a

finite set and.all O-nodes are of finite degree. Hence, we can choose q so large that every

such branch is not in Aq. Since for each node nO of Vq there is at least one branch of Aq

incident to nO, Vp and Vq must be disjoint.

Now every branch b of Aq must be in Ap, for otherwise we could choose a path that

meets b and the I-node nl incident to Aq and also another I-node incident to Sb (or some

O-node not in Ap if nl is the only I-node incident to Sb) without meeting Vp.

(iv) No end can be partly in one extremity of and partly in another, for, were this so, the

removal of the finitely many branches incident to some separating set Vp would disconnect

those two parts from each other - in violation of the definition of an end. Furthermore,

since for each p every branch of Ap is O-connected within Ap to one of the contraction paths

in Ap, the number of ends in the extremity of Ap can be no larger than the finite number

of contraction paths in Ap.

(v) The O-tip of pO will be a member of one of those extremities. Let A be the cor-

responding chosen arm and let V be its base. pO will have at least one branch in A.

Furthermore, po cannot pass into and out of A infinitely often, for each such passage must

be through a different O-node of V and V is a finite set. Hence, pO must eventually lie in

AD

Definition 3.4. A nontrivial contraction {Wp}~l to a I-node nl within a subsection

Sb will be called proper if the following three conditions are satisfied by the arms Ap and

the arm bases Vp corresponding to the Wp:

(a) Ap :) Ap+l for all p.

(b) Vp n Vp+l = 0 for all p.

(c) No node of Al (and therefore of ewry Ap) is adjacent of n1.

Furthermore, a contraction {Wp}~l to nl is called propEr if Wp = Uf"=lWk,p for every p,

where {Wk,p}~l is a proper contraction to nl in the kth subsection incident to nl whenever

{}Vk,p}~l is nontrivial; also, J( denotes the number of subsections incident to nl. As was

noted above, {Wk,p}~l will be nontrivial for at least one k.
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This definition does not impose any further restrictions upon gl other than the assump-

tion that gl is finitely structured. It merely requires a judicious choice of {Wp}~l' Indeed, -

Conditions (a) and (b) can be fulfilled by virtue of Lemma 3.3(iii). Also, if nl embraces a

O-node, there will be only finitely many O-nodes adjacent to nl; hence, we need only choose

Al small enough to avoid all those O-nodes, thereby fulfilling Condition (c).

4 Finitely Structured Perceptible I-Networks

A O-network or a I-network is respectively a O-graph or a I-graph whose branches haye

been assigned electrical parameters - as well as orientations, with respect to which branch

voltages and branch currents are measured. We will use boldface notation for networks

in place of the script notation used for graphs. Also, the terminology used for graphs is

transferred directly to networks. Thus, for example. a I-network is called finitely structuTtd

if its graph is finitely structured (Definition 3.2).

A branch bj is called sourceless if it consists only of an electrical conductance gj; by

definition, gj is the proportionality factor relating the current i through the conductance to

the voltage v across the conductance: i = gjv. Moreoyer, rj = g;1 is the branch resistanCt.

In this work, all conductances and resistances will be real, positive numbers. A network or

reduced network will be called sourceless if all its branches are sourceless.

Henceforth Nl will denote a I-network that satisfies the following

Conditions 4.1.

(a) The i-graph ofN1 is finitely structured.

(b) For every i-node nl in N1, there exists a contraction to nl such that all its contraction

paths art perceptible (i.e., the sum of all the resistances in wch contraction path is

finite) .

(c) N1 is sourceless.

A contraction to nl will be called perceptible if it satisfies Condition 4.I(b).

Lemma 4.2. Between every two nodes (O-nodes or i-nodes) ofN1 there is a perceptible

finite i-path that terminates at those nodes.
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Proof. If n~ and n~ are two O-nodes lying in the same O-section of NI, they are

connected by a finite O-path pO. Since pO has only finitely many branches, it is perceptible.

But then, {n~, pO,nn is the asserted I-path.

So, assume that na and nb are O-nodesor I-nodes that are infinitely distant from each

other. The I-connectedness of NI implies that there is a finite I-path

pI = {na,P~,n~,Pf,...,n~"P~pnb} (1)

connecting na and nb. Consider any a-path Pf in (1). If it is finite, it is perceptible.

So, assume pf is one-ended and not perceptible. For every I-node nI in NI, choose a

perceptible contraction to nI, Then, pf will eventually lie within an arm - according to

Lemma 3.3(v). We can replace Pf by a perceptible one-ended path, one that eventually

follows a perceptible contraction path to reach the same I-node that pO reaches. A similar

replacement can be made for any endless a-path in (1) by first partitioning it into one-ended

a-paths. Such replacements for all the nonperceptible a-paths in (1) yield a perceptible finite

I-path that terminates at na and nb. 0

In manipulating networks, we will at times combine nodes. Their ranks need not be

the same. Borrowing the terminology of electrical circuits, we will say that two or more

O-nodes have been shorted when the following is done: Replace those a-nodes by a single

O-node nO and take a branch to be incident to nO if and only if that branch is incident to

one or two of the original O-nodes. Then remove any branch that becomes a self-loop, and

combine parallel branches by adding their conductances. This may produce a O-node nOof

infinite degree if the original O-nodes were infinitely many.

~Iore generally, given any set of a-nodes and I-nodes, we short them as follows. First

short all the a-nodes - including those embraced by the I-nodes - to get a new O-node

nO. Then, create a new I-node nI by taking the union of all the O-tips embraced by the

original I-nodes and letting nO be the single O-node embraced by n1. Of course, nO will be

absent when there are no O-nodes - ordinary or embraced - among the original of nodes.
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5 Voltage-Current Regimes with Pure Sources

We need some existence and uniqueness theorems for the voltage-current regimes when N1

is excited by various sources. They will be obtained by modifying [9, Theorem 3.3-5], which

assumed that all sources had resistances. This will also yield a form of Kirchhoff's current

law suitable for a finite set of branches that separate a I-node from all other I-nodes.

With N1 satisfying Conditions 4.1, let us denote its branches by bj, where j = 1,2,3,... .

Let bo be the branch for a pure voltage source eo, which we shall append to N1 by shorting

the nodes of bo to two nodes of N1. For the moment we require that one of those nodes of

N1 be an orilinary O-node. The other may be a I-node or an embraced O-node. Later on.

we will relax this restriction (see Theorem 5.5). N~ will denote N1 ".lith bo appended as

stated. Thus, TO= 0 and Tj > 0 for j > O.

We now transfer eo through the ordinary O-node nO to which it is incident. This does

not change the branch currents, but it does render bo into a short circuit. We may then

invoke [9, Theorem 3.3-5]. Upon restoring eo to boowe obtain the following fundamental

theorem.

First some notation: i = (io, iI, i2, . . .) is a branch current vector for N~. At this point.

we only require that Kirchhoff's current law be satisfied at nO, not necessarily at other

nodes. This uniquely determines io from iI, i2, i3. . . . . I is the Hilbert space of all such

branch current vectors for N~ with the inner product (i, s) = L~l Tjijsj. Convergence in

I implies branchwise convergence. J(° is the span of all O-loop currents and I-basic currents

[9, page 75] in I, and K is the closure of J(° in I. Thus, J(° c J( c I. and J( is a Hilbert

space by itself under the same inner product.

Theorem 5.1. With the branch bo incident to an ordinary O-node of N1, there is a

unique i E J( for N~ such that, for every s E K,

00

eoso = L rjijsj.
j=l

(2)

Henceforth, we assume that the voltage-current regime in N~ is ilictated either by this

theorem of by an extension of it wherein bo may be incident to two I-nodes. That extension

is derived below (Theorem 5.5).
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r nder Conditions 4.1, any node no in N~ can be assigned a unique node voltage '110with

respect to some arbitrarily chosen ground node Ug, whatever be the ranks of no and ng.

To do this, first assign the node voltage '11g= 0 to ng. Then, choose a perceptible path P

within N1 that terminates at ng and nO. Such a path exists by virtue of Lemma 4.2. The

node voltage '110is defined to be

'110 = L :!:Vj (3)
p

where the summation is over the indices j for the branches embraced by P, Vj is the

jth branch voltage, and the plus (minus) sign is chosen when a branch orientation agrees

(disagrees) with a tracing of P from no to ng. When P has infinitely many branches, (3) will

conyerge absolutely because P is perceptible [9, page 83]. Moreover, if two O-tips of N1 are

nondisconnectable [9, page 104], they must be in the same extremity because their I-nodes

cannot be separated by any finite O-node set. This allows us to invoke [13, Corollary 8.3] to

conclude that '110does not depend upon the choice of the perceptible path P. Thus, once

the ground node has been chosen, every node in N~ has a unique voltage, as determined by

(3 ).

We now consider how Kirchhoff's current law may be applied indirectly to any I-node

n1 - actually, to a certain set of branches that separates n1 from all the other I-nodes. Let

{}Vp}~l be a contraction to n1. Choose some p. There is a finite set of arms, one for each

extremity embraced by n1, whose bases are contained in Wp. Let Ap be the union of those

arms and let Vp be the union of their bases. We define a cut-branch at Wp to be a branch

that is separated from n1 by Wp and has one node in Wp and one node not in Wp. Thus,

such a branch is not in Ap but is incident either to Vp or to the possible O-node embraced

by n1 with one of its nodes not in Ap. Let C be the set of all cut-branches at Wp. C is a

finite set. Vie call C the cut faT' n1 at Wp, or simply a cut for n1.

For example, in Figure 1 let nj be the I-node under consideration. We may choose

Wp to be {ng,n~o,n~} where n~ is the O-node embraced by nj. Then, C = {bo,b1,bg,blO},

but b'5rf.C. (In this case, Wp cannot be a member of a proper contraction because of the

presence of branch bs; were bs absent and Wp = WI, WI would be the first isolating set of

a proper contraction.)
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Kirchhoff's current law for e is

L:bj = 0 (4)

where the summation is over the indices of the branches in e and the plus (minus) sign is

chosen if branch bj is oriented away from (toward) a node of Wp.

Lemma 5.2. Kirchhoff's current law (4) holds whenever i E K.

Proof. Since e is a finite branch set, any O-loop or I-loop can embrace branches of e

at most finitely often. Moreover, each O-loop current or I-loop current appears as additive

terms to the :!:ij in (3) an even number of times, positively for half of those times and

negatively for the other half. Hence, its total contribution to the left-hand side of (3) is

zero.

The same is true for any I-basic current i = 2: im. Indeed, by the definition of such

a current vector [9, page 75], each im is a proper I-loop current (i.e., its I-loop is not

a O-loop), and only finitely many of the I-loops corresponding to the im meet any given

ordinary O-node. This implies that only finitely many of the im pass through e, as we shall

now show.

Let J denote the set of I-loops corresponding to the im. J is in general an infinite set.

For the chosen Wp, let e' be the set of branches in e incident to the union Vp of bases in

Wp and let e" be the other branches in e. Since Vp is a finite set and since the nodes of

Vp are all ordinary O-nodes, only finitely many of the I-loops in J pass through branches

of C'.

:\ext, note that no proper I-loop can be confined only to the branches that are incident

only to I-nodes because there are only finitely many such branches; this follows from the

facts that there are only finitely many I-nodes, every I-node embraces at most one O-node,

and every O-node is of finite degree. Thus, every proper I-loop in J that passes through

C" must also pass through a branch that is incident to both a I-node and to an ordinary

O-node. But, for the same reasons as those just given, there are only finitely many ordinary

O-nodes adjacent to I-nodes. We can conclude that only finitely many of the I-loops in

J pass through C". Hence, the same is true for e = c' u e". It now followsthat every

I-basic current makes a zero contribution to the left-hand side of (4).
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Consequently, the same is true for every member of }COand therefore of K as well since

convergence in K implies branchwise convergence. 0

vVe turn to the case where the appended source branch bo is a pure current source ho

connected to any two nodes of N1. Such a connection is permissible whenever there is a

perceptible path P between the two nodes of bo [9, Sections 3.6 and 3.7], as is the case for

Nl (Lemma 4.2). By transferring ho into Nl to get current sources across all the resistances

in P and an open in place of bo, we induce thereby a voltage-current regime in N1 whose

current vector k = (ko,k1, k2, . . .) is a member of K with ko = O. But, the current vector i

induced in N~ (i.e., in N1 augmented with bo) is equal to k plus the I-loop current whose

value is ho and which flows around P and booHence, i E K too. We may now invoke Lemma

5.2 to conclude with

Lemma 5.3. Kirchhoff's current law (4) continues to hold when Nl is augmented with

a pure current source appended to any two nodes of Nl .

We shall now show that, for any network N1 satisfying Conditions 4.1, a pure voltage

source may also be connected to any two I-nodes of N1. (Actually, we will prove something

more general.)

Let nj, nk denote all the I-nodes of N1 and let there be pure current sources

connected between these I-nodes. Without loss of generality, we can take them to be

K - 1 current sources feeding the currents h2,. . .. hK from nj to n~,. . ., nk respectively.

This creates a unique voltage-current regime in N1. Moreover, as was noted above for K~

and by virtue of the superposition principle, every node in N1 will have a unique node

voltage with respect to nj. Denote the node voltage at nl by Uk and set h = (h2,..., hf..')

and u = (U2.. . ., UK)' In this way, Nl acts as an internally transfinite, resistive (K -1 )-pon

with nj acting as the common ground for all the ports, Moreover, the mapping Z: hI- u

is the (I( - 1 ) X (I( - 1) resistance matrix for this (K - 1)-port. We will now show that Z

is imertible. This will imply that any choice of the node-voltage vector u can be obtained

by setting h = Z-l U. In other words, it will follow that any set of pure voltage sources U:;.

where k = 2, . . ., K, can be connected from nj to the nl to produce the currents hk passing

from nj through the sources to the nl, yielding thereby a unique voltage-current regime
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within NI.

Lemma 5.4. Z is symmetric and positive-definite and therefore nonsingular.

Proof. The symmetry of Z follows from the reciprocity principle [9, page 80]. We

will prove that Z is positive-definite. Choose any vector h = (hI,. . ., hK) for the current

sources connected as above. For any 711(k > 0), choose as above a cut C that separates n1

from all other I-nodes. Thus, the source branch bk for hk is a member of C, but the other

source branches are not. Hence, C = D U {bd, where D is the set of branches in C other

than bk. Let dk be the number of branches in D. By Lemma 5.3 and superposition, the

net current flowing through D oriented away from 711is hk. Therefore, there is at least one

branch of D carrying a current no less than hk/ dl:. With rmin denoting the least value for

all the resistances in D, we can conclude that the power dissipated in all the resistances of

D is no less than 8kh~, where 8k = Tmindi:2 > O. Hence, with a cut chosen for each of the

I-nodes n~, . . ., ni<,we see that the power dissipated in the resistances in all those cuts is

no less than Zk=2 8kh~.

Now let (-. .) be the inner product for (I( - 1)-dimensional Euclidean space. Tellegen's

equation holds for transfinite networks [9, page 79], a consequence of which is that the

power (u, h) = (Zh, h) supplied by the sources appended to NI is equal to the power

dissipated in all the resistances ofNI. Thus, (Zh,h) ~ Z~28kh~, which proves that Z is

positive-definite. 0

The next theorem asserts that the conclusion of Theorem 5.1 continues to hold even

when the pure voltage source eo is connected to two I-nodes of NI.

Theorem 5.5. Let N~ now denote NI with a pure voltage source eo connected to any

fu'o nodes of NI. Then, there is a unique i E K for N~ such that, for every s E K, (2)

holds.

Proof. To prove this theorem, we will insert a resistance p > 0 in series with the voltage

source eo in the branch bo to obtain the unique current vector iP = (iri,ii, i~,...) dictated

by [9, Theorem 3.3-5], and then will take p -4 0 to obtain (2) in the limit.
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With p inserted as stated, [9, Theorem 3.3-5] asserts that
:xc

.p ~.p
eoso = p20S0 + L rj2jSj.

j=l
(5J

By virtue of Lemma 5.4, N1 appears as a positive driving-point resistance z between the

two nodes to which the source branch bo is connected. Hence,

.p .p
eo - p20 = Zto' (6)

With A being another positive value for the resistance inserted into bo,

'P'A eo eo
2 -20= 0
0 p+z A+Z

as p, A -+ 0+ independently. From (5) and (6), v;e obtain

(7)

00
~ (

.p 'A
) (

\ 'A Op
) (

.p 'A
)L Tj 2j - 2j Sj = /\20 - pzo So = Z 20 - 20 So.

j=l

(8)

Note now that both iP and iA are members of K. Indeed, the definition of K only imposes

an inner product upon the currents within N1 - v;ith the current in the source branch bo

being uniquely determined by Kirchhoff's current law. That law has now been extended to

the case where bo is incident to two I-nodes. Also, recall that the norm Ilill for any i E K is

given by IIil12= ~.i=:1TjiJ. Consequently, we may set Sj = ij - i] for all j in (8) and then

invoke (7) to get
00

IW-iAI12 = LTj(ij-iJ)2 = z(ig-i6)2 -+ 0
j=l

as p, A -+ 0+ independently. Hence, {iP : p > O} is a Cauchy directed function in K and

therefore converges in K to an i E K. Since the inner product of K is bicontinuous, we may

pass to the limit in (.5) to obtain (2).

i is uniquely determined by (2) because its right-hand side is the inner product (i, s)

determined for all s E K by the left-hand side. 0

6 A Maximum Principle for Node Voltages

Our objective now is to extend the maximum principle to the node voltages in a transfinite

I-network N~ specified as follows:
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Conditions 6.1. Let Nl satisfy Conditions 4-1. N~ is a transfinite network obtained

by appending finitely many (voltage and/or current) sources to Nl by shorting the nodes of

those sources to some of the nodes of Nl .

Since Nl presents a positive driving-point resistance z between any two of its nodes,

each current source h can be replaced by an equivalent voltage source e = zh, which does

not alter the voltage-current regime. Thus, that regime in N~ is the superposition of the

regimes induced by each of the sources - as dictated by Theorem 5.5.

A subsection Sb is sourceless if none of its ordinary O-nodesis incident to a source. (How-

ever, its embraced O-nodes and incident I-nodes may be incident to sources). A sourceless

subsection is perforce a subsection of both Nl and N~, in contrast to O-sections, which may

differ in those two networks. When speaking of a O-section, we will mean a O-section of N1

- not of N~.

Let us now assume that a ground node ng has been chosen in N~ and assigned the

voltage Ug = O. Then, every other node nO has a unique node voltage Uo given by (S.2),

and Uo is independent of the choice of the perceptible path P between ng and nO.

Lemma 6.2. Under Conditions 6.1, the node voltages in N~ along anyone-ended 0-

path pO (whether perceptible or not) converge to the voltage ul of the I-node nl that pO

meets terminally with a O-tip.

Proof. Choose a proper contraction for every I-node in Nl. By Lemma 3.3(v), pO

will eventually remain within every arm for one of those proper contractions. Denote that

contraction by {Wp}~l and let {Ap}~l be the corresponding sequence of arms. The arm

base Vp of Ap is a finite set of O-nodes, each of which lies on a perceptible contraction path

for Wp.

Since there are only finitely many sources, an integer q can be chosen so large that Aq

contains no nodes incident to sources. So, let p > q. Each Ap \Ap+l is a finite resistiw

sourceless O-net\vork, and therefore its node voltages lie between the maximum umax.p and

minimum Umi".pof all the node voltages for the finite node set VpUVp+l. Since all contraction

paths for {rVp}~l are perceptible, the voltages along anyone of them converge to the node

\'oltage ul for nl. Since the number of those contraction paths is finite, umax,p -" ul and
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Um;rLp ---+ul as p ---+00.

So, consider again pO. The node voltages for pO n (Ap \Ap+l) lie between umax,p and

um;r..p' It follows that the node voltages of pO also converge to Ul - even when pO is not

perceptible. 0

let Sb denote a subsection. Since the number of I-nodes is finite, we can let u~ax (and

U~;rJ be the largest (respectively, least) node voltage for all the I-nodes incident to S6.

Theorem 6.3. Let N~ satisfy Conditions 6.1 and let Sb denote a sourceless subsection

of N~. A.ssume Sb has a (nonvoid) core C. Then, exactly one of the following statements

is true:

(i) All the (ordinary and embraced) O-nodes of Sb have the same voltage, namely, u~,;r,=

1 .umax

(ii) There are at least two I-nodes incident to Sb u'ith different voltages, and every nodE of

the core C has a voltage strictly larger thanu;nin and strictly less than u~ax'

Proof. Either (i) holds or it does not. Assume it does not. We will show that (ii) must

hold. We consider two cases, exactly one of which must hold.

Case 1: The node voltages in the core C are all the same. Hence, the current in ewry

branch connected between two core nodes will be zero. Let Vc be that common value for

the core node voltages. By Lemma 6.2, any I-node that embraces a O-tip of Sb must also

ha\"e the same voltage Vc. So, the only way an incident I-node can have a different \"oltage

is when it is incident to Sb only through an embraced node (and not through a O-tip). let

us refer to such a I-node as being nodally incident to Sb. Suppose u;nn = u;n;n :/: Vc. Then,

all the I-nodes incident to Sb are nodally incident. Thus, all the branches of Sb that are

incident to I-nodes will all carry positiw currents in the same direction with respect to the

core: that is, those currents will all flow toward the core or all flow away from it. This

implies that Kirchhoff's current law must be violated at a core node. So, our supposition

is false. Since we have assumed that (i) does not hold, we must have that U;nin < u;,n'

Hence. there are at least two I-nodes incident to Sb.

:\ext, suppose that Vc ::; u;nin' Then, every branch of Sb incident to a I-node will carry a

nonnegative current toward the core, and at least one of those branches will carry a positiw
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current, as for instance any branch that is incident to a I-node with a voltage equal to u!nax.

Again Kirchhoff's law will be violated at a core node.

Similarly, we cannot have Vc 2: u:nax. It follows that u:nin < Vc < u!nax, as asserted in

(ii).

Case 2: The node voltages in the core C are not all the same. Recall that all the nodes

of a core are ordinary finite O-nodes and therefore satisfy Kirchhoff's current law. Choose a

O-node n~ in the core arbitrarily. There will be another O-node n~ in the core with a different

node voltage. By Lemma 2.3, there is a O-path pO lying entirely in the core and terminating

at those two nodes. We can trace along pO starting from n~ to find a O-node n? (possibly

n~ itself) with the same voltage u? = u~ as that of n~ and lying adjacent to a O-node with

a different voltage. By Kirchhoff's current law applied to n?, there is a O-node ng adjacent

to n? with a voltage larger than u? If ng is embraced, we have u~ = u? < ug ~ u:nax' If

ng is ordinary, then Kirchhoff's current law applied to ng implies that there is still another

O-node ng with ug > ug. If ng is embraced, u~ < ug ~ u:nax. If ng is ordinary, we continue

tills process. Either an embraced O-node is reached in a finite number of steps, in which

case u~ ~ u!nax, or a one-ended O-path QO of ordinary O-nodes in the core with successively

strictly increasing node voltages is generated. In the latter case, QOwill - through a O-tip

- meet a I-node n6 incident to Sb, and, by Lemma 6.2, the node voltages along QO will

conwrge to the node voltages U6 at n6. Thus, u~ < U6 ~ u!nax' Since n~ was chosen

arbitrarily, u:nax is strictly larger than the voltage at every core node of Sb.

The strict lower bound U:nin < u~ for every core node n~ can be established similarly.

Since u:nin < u:nax, we again must have at least two I-nodes incident to Sb. 0

Our next objective is to show that, when N~ is driven by a single 1 V voltage source, all

node voltages remain within 1 V of each other. We shall prove this by supposing otherwise

and then constructing a contradiction. The next lemma is a step toward that goal.

Conditions 6.4. Let N~ satisfy Conditions 6.1, but let there be only one source - a

purl'. wltage source of value 1 V. Let that source's negative terminal be the ground node ng

u'ith voltage Ug = 0 and let ne denote its positive terminal.

Lemma 6.5. Let N~ satisfy Conditions 6.4 and let Sb be the subsection ofN~ containing
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the source. Let na be either a O-node in Sb or a i-nodE incident to Sb with a node voltage

Ua > 1. Then, there is a i-node incident to Sb whosEvoltage is larger than i, is no less

than the voltages at all the other i-nodes incident to S~. and is strictly larger than the core

node voltages for Sb.

Proof. Sb must have a core, for otherwise it is a single branch, the source branch, and

cannot have a node with a voltage larger than 1. If the core consists of a single O-node, it

is a star network (Lemma 2.2), one of whose branches is the source branch. So, the voltage

at the single core node is either 1 V or 0 V. Our conclusion then follows.

So, let S~ have a core with two or more nodes. At least one of the nodes of the source

branch must be in the core, for otherwise Sb would be sourceless. If na is a O-node in the

core, we can - according to Lemma 2.3 - choose a finite O-path pO that connects na to a

node of the source. If na is an embraced O-node, it is adjacent to a node of the core (Lemma

2.3), and pO can be chosen such that all its nodes are in the core except for na. If na is a

I-node incident to Sb through a O-tip, then by Lemma 6.2 there is a O-node nb in the core

with a voltage greater than 1; pO can again be chosen as a finite O-path connecting nb to a

source node through the core. In every case, we can trace along pO to find a node with the

highest voltage on pO and then can argue as in Case 2 of the preceding proof to assert that

there is a I-node incident to Sb with a voltage strictly larger than the core node voltages

on pO. Since 11,"can be chosen arbitrarily, this implies the conclusion of Lemma 6..5. 0

Theorem 6.6. Let N~ satisfy Conditions 6.4. Thw, every node in N~ has a voltage

that is no larger than i and no less than O.

Proof. Suppose there is a node somewhere in I\~ with a voltage larger than 1. An

immediate consequence of Theorem 6.3 and Lemma 6..) in conjunction with the fact that

N~ has only finitely many I-nodes is that there is a I-node n~ in N~ with a voltage limn

larger than 1 and no less than the voltages at all the other I-nodes and O-nodes of N~. Once

again, we can trace a path from n~ to a node of the source branch to find a I-node n~ with

the voltage C7i1X and incident to a subsection Sd having at least one node voltage less than

Umax. By Theorem 6.3 and Lemma 6.5 again, if Sd has a core, its core node voltages will

all be less than Umax. If Sd has no core, it consists of a single branch with one of its nodes
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at a voltage less than Umax.

We wish to apply Kirchhoff's current law to n~. Since }ts voltage is larger than 1, the

source branch cannot be incident to n~. Let us examine all the subsections that are incident

to n~. According to Theorem 6.3(i), some of them may have all their node voltages equal to

Umax. This can only happen if they are sourceless. Moreover, all their branches will carry

zero current. Hence, we can ignore those subsections so far as Kirchhoff's current law is

concerned.

As for the other subsections incident to n~, their node voltages will vary as do the node

voltages in Sd: if anyone of them has a core, its core node voltages will be less than Umax.

Now, if one or more of those subsections are incident to n~ only through branches (not

through any a-tips), those branches incident to n~ will carry positive currents away from
1

nd'

All the remaining subsections will have extremities embraced by n~. Choose a proper

contraction to n1 (Definition 3.4). This yields sequences of arms for the said extremities

embraced by n~. one sequence for each extremity. Set M = U~l Mp, where Mp = Ap \Ap+1

and Ap is the union of the pth arms in the said sequences. All the nodes of M are core nodes,

and none of them are adjacent to n~. Moreover, every Mp is a finite a-network (Lemma

3.3(ii)), and, for p > 1, Mp-1 nMp = Vp where Vp is the union of the arm bases for those

pth arms. The node voltages in M will be strictly less than Umax, and, by Lemma 6.2, the

node voltages along each contraction path in M will converge to Umax. Consequently, we

can choose two integers p and q with p < q and so large. that the following two conditions

are satisfied: The largest node voltage for Vp is less than the least node voltage for Vq. The

finite network Mp,q = Uk:~Mk is not incident to the source.

We can generate the same voltage-current regime in Mp,q as it has as a finite part of N~

by connecting pure voltage sources as follows: Let n~.1 be a a-node of Vp with the largest

node voltage Up.1for Vp. Let n~,k be any other a-node of Vp and let Up,k be its voltage.

Connect a pure voltage source of value Up,1- Up,k from n~,k to ng,l with its positive terminal

at n~,l' (That source will be a short if Up,1 = Up,k') Do this for all n~,k' Similarly, connect

a pure voltage source from a node n~,1 of Vq with the least node voltage Uq,l for Vq to each
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of the other nodes of Vq to establish their relative node voltages at the values they have in

N~. Finally, connect a pure voltage source ep,kof value Uq,l- Up,l > 0 from np,l to nq,l'

Mp,q with these appended sources is a connected finite network.

Now, choose a cut Cq for n~ at Wq, the isolating set that contains Vq. That cut may

contain branches incident to n~ and to nodes not in Uk::,pMk' Since the voltage at n~ is no

less than all the node voltages in N~, those branches will carry nonnegative currents away

from n~. All the other branches of the cut Cq will be cut-branches at Vq, the set of which

we denote by C~. Orient C~ away from Vq. The total current in C~ will be zero when any

appended vohage source is acting alone (all other appended sources set equal to zero) and

has both of its nodes in Vp or both of its nodes in Vq. However, for tp,q acting alone, the

total current in C~ will be positive. So, by superposition, with all the appended sources

acting simuhaneously, the total current in C~ will be positive. Hence, the total current in

Cq will be positive too. This is the same current that Cq will carry for the voltage-current

regime in N~.

But, this violates Kirchhoff's current law (4), which must hold according to Lemma .).2

and Theorem .5.5. Hence, our supposition that there is a node in N~ with a voltage larger

than 1 is false.

In a similar way, we can show' that no node vohage in N~ can be negative. 0

We will need a refinement of Theorem 6.6. As before, ne and ng are the nodes to which

the source branch is incident (positive terminal at ne); no is another node, and Uo is its

voltage.

Corollary 6.7. Assume N~ satisfies Conditions 6.4.

(i) Let therE be a path P that terminates at no and ng and does not embrace ne. ThEn.

Uo < 1.

(ii) Let ther'E be a path that terminates at no and ne and does not embrace ng.

Uo > o.

ThETi.

Proof. rnder the hypothesis of (i), supposeuo = 1. Trace P from no to ng. Three

cases arise:
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Case 1. We find an o7'dinary O-node n~ with a voltage equal to 1 and adjacent to a 0-

node with a voltage less than 1. This is impossible, for by Kirchhoff's current law applied to

n~ there must be another O-node adjacent to n~ with a voltage larger than 1 - in violation

of Theorem 6.6.

Case 2. We find a 1-node n1 with a voltage equal to 1 and incident to a subsection having

a core with voltages less than 1. We can choose an arm for each extremity embraced by n 1

(if there are any such extremities) such that the arm is not incident to the source branch.

In each arm the node voltages will all be equal to 1 or will all be less than 1. Similarly,

the branches incident to n1 (if there are any such branches) will carry nonnegative currents

away from n1. Moreover, there will be such an arm \vith voltages less than 1, or such a

branch incident to a core node with a voltage less than 1, or both. Whatever be the case,

there will be a cut that isolates n1 from all the other I-nodes and carries a positive current

av.:ay from n1. This violates Kirchhoff's current law at that cut for n1.

Case 3. We find a 1-node n 1 with a voltage equal to 1 and adjacent to a 1-node with a

voltage less than 1. The branch connecting those two I-nodes will carry a positive current

away from n1. Moreover, as in Case 2, a cut that isolates n1 from all the other I-nodes

can be so chosen that all its branches carry nonnegative currents away from n,1. Again

Kirchhoff's current law will be violated at that cut.

These three cases exhaust all possibilities. Hence, Uo < 1. A similar argument estab-

lishes (ii). 0

7 Transfinite Walks

In this section we define walks of ranks 0 and 1 on a sourceless I-network satisfying Con-

ditions -U. A walk of either rank may "arrive at infinity" by reaching a I-node - and

can do so in two different ways, namely by reaching an embraced node through an incident

branch or by passing along an arm. I\Ioreover, a I-walk may then "pass through infinity"

by lea\'ing the I-node again in one of two possible ways. Furthermore, if it passes from one

O-section to another, at most one of the two transitions to and from the I-node can be along

a branch incident to the I-node. As compared to the simpler transfinite walks discussed in
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[11, Section 5], we have here some complications.

A O-walk i~ a walk of the conventional sort; it is an an alternating sequence of O-nodes

n?n and branches bm:

WO = {...,n~pbm,n~'+l,bm+I""} (9)

such that, for each m, bm is incident to both n~ and n~+l' Moreover, if WO terminates on

either side, we require that it terminate at a O-node.

Since there are no self-loops in NI, n~ and n?n+I are different O-nodes whatever be m.

Except for this restriction, the elements of WO may repeat. That (9) is a sequence means

that the indices. . . , m, m + 1, . . . traverse a strictly increasing, consecutive set of integers.

This also implies that WO is restricted to a single O-section because a transition from one

O-section to another would require the conjunction of two sequences, at least one of which

meets the other with an infinitely extending subsequence.

WO is called nontrivial if it has at least one branch. We say that WO embraces itself

and all its elements. WO may be either finite with t\VOterminal nodes, or one-ended with

exactly one terminal node, or endless without any terminal node. \Vhen WO has a terminal

node, \ve say that WO starts at (stops at) its terminal node on the left (respectively, on

the right). We also say that WO reaches each of its elements and passes through each of its

elements other than any terminal node. If a O-node of IVo is embraced by a I-node nI, we

use the same terminology with respect to nl. Thus, a O-walk may pass through a I-node

via incident branches, but nonetheless it will remain within a single O-section because all

the branches incident to a I-node are O-connected.

On the other hand, a one-ended or endless O-walk WO may "reach" a I-node by pro-

ceeding infinitely through an arm. To be more precise, let us denote one-ended parts of n-o

by

W~oo,m = {..., bm-2'n~'-I' bm-I' n~J

and

Wr~"oo = {n~"bm,n~'+l,bm+I""}'

Let 5 be the O-section to which WO is confined, let x be an extremity of 5, let 5b be the

subsection to which x belongs, and let nI be the I-node that embraces x. By the definition
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of an extremity, no other extremity of S6 will be embraced by nt. Choose any prop~r

contraction {Wp}~1 that isolates nl within S6, and let {Ap}~1 be the corresponding

sequence of arms. Thus, for every p, Ap = U~pAq and Ap \Ap-I is a nonvoid finite 0-

network. We say that WOstarts at (stops at) x - as wellas at the I-node nI that embraces

x - if, given any natural number q, there is an Tnsuch that W~oo,m (respectively, W~,oo)

remains within Aq. In either case, we also say that WO reaches x and its embracing I-node.

This definition does not depend upon the choice of {Wp}~I; if the defining condition is

fulfilled for one choice, it will be fulfilled for every choice. When WO reaches a I-node

through an arm in this way, we at times call WO transient. This use of the adjective

"transient" differs from customary usage: indeed, we are now applying it to a deterministic

walk rather than to a random walk.

It is worth pointing out that WO may intermittently reach further and further away

from some starting O-node without ever reaching a I-node. For instance, choose a proper

contraction within Sb for every I-node n1 (k = 1,...,1\) incident to Sb, and for every p

let Mp = U[;"=IAk,p be the union of the corresponding pth arms Ak,p' It is possible for a

O-walk WO to have the following property: For every choice of the natural numbers m and

q, the one-ended part W7~~,ooof WO meets both MI \M2 and Mq. Thus, WO keeps getting

into ever-larger portions of Sb but also keeps returning to MI \M2 before it reaches any

I-node. We might call such a O-walk "recurrent" even though WO is a deterministic walk.

As we shall see later on when we discuss random walks. the probability of a O-walk on NI

being recurrent is zero.

We turn now to walks that "pass through" I-nodes and possibly through different 0-

sections. Consider the following alternating sequence of I-nodes n;n and nontrivial O-walks

n-,?,:

wI = { 1I;n'W7~!,11;n+l' n-,~,+l' . . .} (10)

where, for each Tn, H',~~reaches n;n and n;n+l under the following restrictions: No more

than one of the O-\valks W,~~ and VV'~'-;-1reaches n;n+l through an embraced O-node; the

other one must do so through a one-ended part of itself that passes through an arm. (This

insures that each W,~~is maximal as a O-walk in WI and is in fact transient.) Furthermore,
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we allow the sequence (10) to be finite or one-endEd or endless; in the first two cases, each

terminal element is required to be either a O-node or a I-node. Under these conditions, H71

will be called a I-walk.

~ote that, according to this definition, various entries in (10) may be the same I-node

or the same O-walk. We say that W1 embraces itself, and all its elements, and also all the

elements embraced by its elements. Thus, any branch or node may occur many times as an

embraced element of Wl. Wl is called nontrivial if (10) has at least three elements, and

Wl is said to perform a one-step transition from n;. to n~n+1' Also, W1 is said to rOVEif

it has at least two I-nodes and every two consecutiw I-nodes in (10) are always different.

When Wl is finite or one-ended, we say that Wl starts at (stops at) its terminal node on its

left (respectiwly, on its right). We also say that W1 passes through all its elements other

than its terminal nodes and reaches all its elements.

Finally, note that a finite O-walk WOwith the terminal nodes n~ and n~ is a special case

of a I-walk, namely, {n~, WO,nn.

8 Random Q-Walks

Consider a random walker Wthat wanders around N1 in such a fashion that the comparatiye

probabilities of the one-step transitions from any ordinary O-node ng are governed by the

nearest-neighborrule: Let n? (k = 1,. . ., L) be the (ordinary or embraced) O-nodesadjacent

to l1gand let gl denote the branch conductance between ng and n?; then the probability

PO,kof Wmaking the one-step transition from ng to n~ is defined to be PO,k= 9k/ 'Lr=1 g;.

This probability can be measured electrically. Let n~ be held at 1 V and let all the other

n? (l # k) be held at 0 V. By Kirchhoff's laws ~nd Ohm's law, the resulting node voltage
o. P,at no IS O,k.

As IJ1wanders through a subsection Sb of N1. it generates a conventional random wall.

which can be described by a Markov chain whose state space consists of the ordinary and

embraced O-nodes of Sb [5, Chapter 9, Section 10]. Thus, that state space may be either

finite or infinite. Nash-Williams [6] has shown that the nearest-neighbor rule generalizes in

the following way. Let Na be any finite set of O-nodes in Sb. We define the boundary of X'J.
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to be the set of all O-nodes of Na that either are embraced by a I-node, or are adjacent to

O-nodes that are not in Na, or are both. Also, let ,\'e. .Ng, and Ns be three disjoint sets of

O-nodes in Sb such that Ne U .Vg contains the boundary of Na,and Ns is entirely contained

in Jv~. Then, the Nash- Williams rule [6, Corollary 4A] states that the probability of 'if

reaching some node of Ne before reaching any node of Ng, given that 'if starts at some node

of J./s, is equal to the voltage at Ns when the nodes of .Afshave been shorted together while

the nodes of Ne are held at 1 V and the nodes of ~\~ are held at 0 V.

As W wanders through the subsection Sb, it may eventually reach a I-node incident to

Sb. In fact, it may do so either in a finite number of steps by meeting an embraced O-nodeor

in an infinity of steps by passing along an arm to reach an extremity. We will generalize the

N ash- Williams rule through a limiting process in order to establish comparative probabilities

for transitions to the I-nodes incident to Sb.

Assume for now that Sb has at least two incident I-nodes. Sb may not have any ex-

tremities (that is, Sb may be finite), in which case the Nash-Williams rule can be applied

directly to find comparative probabilities for transitions to the various embraced O-nodes

of Sb. On the other hand, if Sb does have extremities, we can choose a proper contraction

{Wk,p}~l within Sb for every I-node nl (k = I,...,J() incident to Sb. Let {Ak,p}~l be

the sequence of arms for the kth contraction, and let Vk,p be the base of Ak,p' We can

and do select those contractions such that Ak,l n Au = 0 whenever k ::/;1. Now, choose a

positive integer Pk for each k and set M(Pl, . . ., PK) = U{f=l Ak,Pk'

Xext, set F(Pl,...,PK) = Sb\M(Pl,...,PK). F(Pl"",pk) is illustrated in Figure 2: it

is the reduced finite network induced by all the branches of Sb that are separated from all

the I-nodes by the nodes of all the WI,PI' For example. the branches b1 and b2 of Figure :2

\vill be in F(Pl" . . ,Pk), and so too will the embraced O-nodes of nl and n~. For a particular

k, let Ne be the nodes of Wk,Pk' let Ng be the nodes of all the other WI,PI(/::/; k), and let. "5

be a singleton whose element is an ordinary O-node ng in F(Pl"" ,pk) but not in Ne or .,~.

Now. hold all the nodes of Ne at 1 V and all the nodes of Ng at 0 V. By the Nash-Williams

rule, the resulting voltage VO,k(Pl,. . . ,PK) at ng is the probability of W starting from ng

and reaching some node of Ne before reaching any node of Ng.
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As was established in Section 5, we are free to apply pure voltage sources to the I-nodes

of Nl. Consequently, another voltage UO,kwill ~e induced at ng when nl is held at 1 V,

and all the other nl (l =I-k) are held at 0 V.

Lem ma 8.1. VO,k(Pb"', PK) converges to UO.kas the PI, . . . ,PK tend to infinity inde-

pendently.

Proof. For each I = 1,... J{, let n?,pl,ibe the ith node of Wt,PI and let Ut,pl,idenote

the voltage at n?,PI,iwhen the I-node nl is held at 1 V and and all the other I-nodes nl

(I =I k ) are held at 0 V. (Thus, if nOt . is an embraced node, UtPI i will be 1 for I = k and 0,Pl,~ , ,

for I =I k.) By the superposition principle, VO,k(Pl.. . ., PK) - UO,kis the voltage at ng when

every nk,pkoi is held at 1 - Uk,Pkoiand when every ni,PI,i (I =I- k) is held at -Ut,pl,i. Theorem

6.6 asserts that 1 - Uk,Pk,i and Ut,PI,iare nonnegative. By the maximum principle for the

node voltages in a finite sourceless network,

rr~~(-Ut'Ploi)::; VO,k(Pl,...,PK)-UO,k::; mrx(l-uk,Pk,i) (11)

where the maximum is taken over all indices i for the nodes in Wk,Pk and the minimum is

taken over all the indices for all the nodes in all the other Wt,PI' Now, the nodes of all the

W's lie on finitely many contraction paths. Therefore, by Lemma 6.2, both sides of (11)

tend to zero as the p's tend to infinity independently. Consequently, so too does the middle.

0

It will be helpful to use the notation

Prob(sNl, rN2, b.\'3 IA) (12)

to denote a comparative transition probability under a given restriction A, where /0/1,.\'2,

and. \'3 are three disjoint node sets. More specifically, let all the nodes of Nl be shorted

together and let the random walker '¥ start from that short; then, (12) will denote the

probability that '¥ will reach some node of N2 before reaching any node of N3. If Nl is a

singleton {nd. we will replace JVl by nl, and similarly for N2 and N3. Also, we will delete

the notation "I A"when no restriction needs to be specified.

lemma 8.1 motivates a rule for the comparative probabilities for the transitions from

a Q-node of a subsection to its incident I-nodes: it arises as a limiting case of the Nash-
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Williams rule. In the next definition, S6 is a subsection of Nl having two or more incident

I-n?des, nl is one of them, N} is the set of all the other I-nodes n~ (l -::Jk) incident to

S6, and A represents the condition that 1lFdoes reach some I-node. We will show through

Theorem 8.4 below that A can occur with a positive probability.

Definition 8.2. Given that 1lFstarts at an ordinary O-node ng of S6 and reaches some

I-node, the probability

Prob(sng, rnk, bN; IA)

that 1lFwill reach nl before reaching any node of /I/} is defined to be the voltage at ng when

nl is held at 1 V and all the nodes of N} are held at 0 V.

A variation of Lemma 8.1 leads to a rule for comparing the probability of transition to

the set Nl of all I-nodes incident to S6 \vith the probability of transition to some finite set

Ngof ordinary O-nodes in S6. Choose the isolating sets WI,PI (l = 1,. . ., K) as before and

let ng be any 0-nodein F(Pl, . . . ,PK) with ng rf.Ng. HoldaJlthe nodesofNg at 0 V, and

let VO(Pl,. . ., PK) be the voltage at ng when all the nodes in all the WI,PI are held at 1 V.

On the other hand, with the nodes of .\~ still held at 0 V and all the nodes of Nel held at

1 V, let Uo be the resulting voltage at ng and let UI,Pl,ibe the resulting voltage at the ith

node of WI,PI' By the superposition principle, Theorem 6.6, and the maximum principle for

the node voltages in the finite network F(Pl, . . ., PK), we get

n~iln(I-UI,ploi) ~ VO(Pl,...,PK)-UO ~ n~alx(l-ul'Pl,i)
t, t,

(13)

as the replacement for (11). By virtue of Lemma 6.2 and the fact that all the nodes of

all the WI,PI lie on finitely many contraction paths, both sides of (13) tend to zero as the

PI -,. 00 independently. Hence, VO(Pl, . . .. PK) -,. Uo.

This motivates the next definition as a limiting form of the Nash- Williams rule. In this

case, the subsection Sb of N1 may haw only one incident I-node. Also. .\'el is the set of

all I-nodes incident to Sb, Ng is any finite set of ordinary O-nodes in S6, and ng rf.Ngo is

another ordinary O-node in Sb.

Definition 8.3. The probability

Prob(sng, rNel, bNgO)
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that w, after starting from ng, reaches some I-node incident to Sb before reaching any

O-node in Ng is defined to be the voltage Uo at ng when all the I-nodes incident ~o Sb are

held at 1 V and all the O-nodes of Ngare held at 0 V.

As promised, we will now check condition A in Definition 8.2. To this end, we define

a subsection Sb as being transient if w, after starting from any arbitrarily chosen ordinary

O-node n~ in Sb, always has a positive probability of reaching some I-node incident to Sb

before returning to n~.

Theorem 8.4. Under Conditions 4.1, every subsection ofNl is transient.

Proof. Choose arbitrarily an ordinary O-node n~ in Sb. The nearest-neighbor rule

insures that, for every O-node n~ adjacent to n~, there is a positive probability that w, after

starting from n~, will reach n~ in one step. So. if any such n~ is embraced, the theorem

follows immediately. On the other hand, to show that Sb is transient when no such n~ is

embraced, we need only show that there is a positiw probability that W, after starting from

n~, will reach some I-node incident to Sb before reaching n~. By Definition 8.3, this can be

accomplished by showing that, for some choice of the adjacent O-node n~, the voltage at n~

is positive when n~ is held at 0 V and all the I-nodes incident to Sb are held at 1 V.

Suppose this is not so. In view of Theorem 6.6. we suppose that all the voltages at the

nodes adjacent to n~ are zero. Hence, the currents in the resistive branches incident to ng

are zero too. Let i be the current vector produced in N~ by the stated assignment of node

voltages. i is determined by Theorem 5.5 when all the I-nodes incident to Sb are shorted

together and a I-V source in the branch bo is connected from n~ to that short. Since the

resistive branches incident to n~ carry zero current. we have from Kirchhoff's current law

that io = O. \Ve are free to set s = i in (2). Therefore, So = io = 0, and L~l Tji; = O.

which implies that ij = 0 for all j. Consequently. there can be no voltage difference betv.;een

any two nodes - in contradiction to the presence of the 1 V source. 0

Let us note that the probability of a O-walk on N1 being "recurrent" - as described

in Section 7 - is zero. Indeed. such a walk starts at M1 \M2, reaches some Mq (q > 1).

and returns to Mo before reaching a I-node; moreowr, it does so infinitely often. But, the

probability of one such round trip occurring is less than 1, and therefore the probability
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of it occurring infinitely often is zero. (However, this does not mean that such a recurrent

a-walk is impossi~le; it merely means that such walks are "rare".)

Finally, it is worth pointing out that, according to [7], the ends of any O-section SOin

N1 can be related in certain cases to the Martin boundary for SOarising from our adopted

nearest-neighbor rule. Assume now that there are no embraced nodes in So. Also assume

that, for every end d of So, a finitely chainlike representation of a spur for d [11] can be

chosen such that the following two conditions are satisfied: (i) For each p > 1 and every

two nodes n~ and n~ in Vp, there exists a path connecting n~ and n~ that does not meet

Vp-l UVp+l. (Here, the Vp are the node sets for the finitely chainlike structure [9, page :33]

and are analogous to our arm bases.) (ii) Comparative transition probabilities satisfy

00

Lmin{Prob(sn~,rn~,bVp+l): n~,n~ E Vp} = 00.
p=l

Then, by virtue of the theorem in [7], the finitely many ends of SO correspond bijectively

to the points of the Martin boundary for SO with regard to a random O-walk on So. The

conditions (i) and (ii) can be satisfied by imposing appropriate restrictions on the spurs and

the resistances of So, some examples of \vhich can also be found in [7].

under the stated conditions, each a-section of N1 will have its corresponding ltfartin

boundary. On the other hand, we are free to choose the I-nodes quite arbitrarily in order

to short various ends together, thereby imposing a structure beyond that of the .Martin

boundaries. To put this another way, just as the a-nodes (i.e., the shorts between elementary

tips) determine the random a-walks on the various a-sections and thereby their Martin

boundaries under appropriate conditions, so too do the shorts between O-tips determine a

random I-walk through N1, as we shall see. It has been shown in [11] that, when there are

no embraced nodes, the I-walks on certain infinite I-networks can be described as a-walks

on a "surrogate" infinite a-network. Consequently. under appropriate conditions again. the

ends of that surrogate a-network determine another Martin boundary, one for a random

I-walk on the infinite I-network. This would be a )'1artin Boundary of, say, rank 1. :\Iore

generally, for a certain infinite iI-network, there can be a hierarchy of Martin boundaries of

differing ranks.
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9 Random 1-Walks

Now that we have examined how a random a-walk may stop at a I-node, we need to exambre

how it may start at a I-node. This will allow us to piece together random a-walks to obtain

a random I-walk that wanders through NI.

Given any I-node nl of NI, choose a proper contraction {Wp}~1 to nl. Let {Sbk}~1 be

the set of subsections incident to nl. Thus, Wp = ur=1 Wk,p, where {Wk,p}~1 is a contrac-

tion to nl within Sbk. Let Ak,p be the arm corresponding to Wk,p, and set Ap = U{<=IAk,p.

We now let Vp be the union of the arm bases h.p for all the arms Ak,p, k = 1,..., K. If

nI embraces a a-node, append to Vp every a-node that is adjacent to nl, and let Xp be the

resulting set of a-nodes. If nl does not embrace a O-node, set ,Yp = Vp.

For example, consider the central I-node nb in Figure 1. Choose WI as the isolating

set {n?, ng, ng. n~,n~}, where n~ is the a-node embraced by n6. Thus, VI = {n?, ng, ng, n~}.

Similarly, we can choose {Wp}~1 as a contraction to n6 such that Vp is a set of four a-nodes

that form a rectangular pattern and are closer to 116than are the nodes of Vp-I (p > 1).

Finally, for each p = 1,2,. .., Xp consists of the four nodes of Vp, the a-node embraced by

nL and the ordinary a-nodes n~, ng, and n~.

\Ve return to the general case. Xp separates 111from the nodes of any branch that is

neither in Ap nor incident to n I. Similarly, for q > p. Xq separates n I from Xp.

In the next two definitions, it is assumed that Xp has two or more nodes. Also, Yp

denotes a proper subset of Xp.

Definition 9.1. Given that W starts at nI and reaches a node of Xp. the probability:

P(nl;yp) = P7'ob(snl,rYp,b,l'p\YpI WreachesXp) (1-1)

that W reaches some node in Yp before it reaches any node of Xp\Yp is defined to be the

voltage at n I when the nodes of Yp are held at 1 V and the nodes of ,Yp\Yp are held at a \'.

With q > p. number the nodes of Xp and of ,1'1and let n~,k and n~,i be the kth and ith

nodes of ,l'p and Xq respectively.

Definition 9.2. Given that W starts at n~,i and reaches some node of Xp, the proba-
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bility:

!(n~,i;n~,k) - Prob(Sn~,i' rn~,k' bXp\{n~,d I 'IFreaches Xp) (15)

that 'IFreaches n~,k before reaching any other node of Xp is defined to be the voltage Uq,i(p,k)

at n~,i when n~,k is held at 1 V and every other node of Xp is held at 0 V.

Although Definition 9.2 is much like the Nash-Williams rule, it is needed because n~,i

resides in an exterior infinite network rather than in an interior finite network. Moreover,

Xp and Xq will intersect when they both contain O-nodes adjacent to the I-node n1; thus,

it may happen that n~,i and n~,k are the same node, in which case P( n~,i;n~,k) = 1.

Definition 9.1 assigns comparative probabilities for transitions from 71,1to the nodes of

any Xp. Since 'IF,when proceeding from n1 to a node n~,k of Xp, must meet at least one

node of Xq, where q > p, we should now prove the consistency of our definitions in the

following sense: The comparative probability for the transition from n1 to n~,k is the same

as that obtained by combining the comparative probabilities for transitions from n1 to the

various nodes of Xq with the comparatiw probabilities for transitions from the nodes of Xq

to n~,k' More specifically, let us replace Yp by n~,k in Definition 9.1. Then, by conditional

probabilities, we should have

P(n1;n~,k) = LP(n1;n~,i)P(n~,i;n~,k) (16)

if Definitions 9.1 and 9.2 are to be consistent. This equation can be established electrically.

Let u1(p, k) be the voltage at n1 when n~,k is held at 1 V and all the other nodes of Xp

are held at 0 V. Let U1(q, i) be defined similarly in terms ofthe node voltages for xq (replace

P by q and k by i). Furthermore, let Uq.i(p,k) be as in Definition 9.2. By the superposition

principle for electrical networks,

u1(p,k) = LU1(q,i)uq,j(p.k). (17)

According to Definitions 9.1 and 9.2. u1(p,k) = P(nl:n~,k)' u1(q,i) = P(n1,n~,;), and

Uq,i(p,k) = P(n~,i' n~,k)' Thus, (16) is justified by (17), and therefore Definitions 9.1 and

9.2 are consistent.

There is still another matter we should examine. 'What is the probability that 'IF, after

starting from n1, reaches Xp for some giwn p before returning to n1? It is zero. To see this,
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first note that "'¥ starting from n1" means that '¥ reaches Xq for some sufficiently large q.

It may do so by leaving n1 either along a branch incident to n1 or along an arm between

n1 and Vq. (See Figure 3.)

We take it that q > p and that a proper contraction to n1 has been chosen. For each

p, this yields a union of arms Ap = Uf=l Ak,p as above. Let D be the set of all O-nodes

adjacent to n1. Hence, no node of 1) is in Ap or in Aq. Moreover, Xq = 1) U Vq. (In Figure

3, D = {n~, n~}, where n~ is the O-node embraced by n~.)

Case 1. '¥ leaves n1 along an incident branch: By Definition 9.1, the probability

Prob(snl, I'D, bVq I '¥ reaches Xq) is the voltage u1 at n1 when the nodes of 1) are held at

1 V and the nodes of Vq are held at 0 V. By the voltage-divider rule, U1= Rq/(Rd + Rq),

where Rq is the resistance of the union of arms between n1 and a short at Vq and Rd is

the parallel resistance of the branches incident to n1. By Condition 4.1(b), every node of

Vq lies on a perceptible contraction path for the chosen contraction to n1. Let m be the

number of such paths. Now, replace every branch in the said union of arms that is not

in a contraction path by an open circuit, and let Rj be the sum of the resistances in the

jth contraction path between n1 and Vq. By Rayleigh's monotonicity law [9, page 10:3],

Rq ~ (2=j~1 Rt )-1. As q -+ 00, each Rj -+ O. Hence, Rq -+ 0, and therefore u1 -+ O. This

means that the probability of'¥ leaving n1 through a branch incident to n1 instead of along

an arm IS zero.

Case 2. '¥ leaves n1 along an ann: Thus, '¥ reaches Vq for some sufficiently large q

greater than p. Let n~,i be any node of Vq, as before. vVewill now show that, as q -+ 00,

Prob(sn~,i' rXp, bn1) tends to zero. Indeed, by Definition 8.3, that probability is the voltage

Uq.iat n~,i when the nodes of Xp are held at 1 V and n1 is held at 0 V. But, by Lemma 6.2,

Uq,i -+ 0 as q -+ 00. This means that '¥, after starting from n1 along an arm, will almost

surely return to n 1 before it reaches Xp for any given p.

Both cases taken together imply that only a \'anishingly small proportion of the random

I-walks that start at n1 will reach Xp without first returning to n1, \vhatever be p. In this

sense, no I-node is a transient node. Thus, there is a zero probability that '¥ will rove.

However, this does not mean that there are no random roving I-walks. It simply means
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that we are dealing with the exceptional case when we compare transition probabilities for

roving I-walks.

As our last task in this section, we shall now show that a random roving I-walk is a

Markov chain with a finite state space consisting of the I-nodes of N1. For this purpose,

consider now a I-node n6 and all its incident subsections, which we denote by Sbi where

2 = 1,..., I. (This is illustrated in Figure 4 wherein n6 has four incident subsections:

Sbb Sb2, and the two subsections having only one branch each, namely, bI and b2.) Let

ni, . . ., n}{ be the I-nodes incident to those subsections Sbi other than n6; we say that those

I-nodes are adjacent to n6. For each nt, choose a proper contraction to nt within every

subsection Sbi that is incident to nt through an ann and is also incident to n6. Let h be

the index set for all such Sbi. (h will be void when there are no such subsections Sbi') For

each p this yields the pth arm base Vk,i,p in Sbi. i E h. Let Vk,p = UiEh Vk,i,p' Then, let

Zk,p = Vk,pU {nn if nt embraces a a-node nZ incident to at least one of the Sbi; otherwise.

let Zk,p = h.p. On the other hand, let Zk,p = {lin if h is void and if nZ is incident to at

least one of the Sbi and is embraced by nt. It follows in every case that Zk,p separates n},

from n6.

Let us choose a positive integer Pk for each k = 1,. . . , K. The nodes of Uf"=lZk,Pk lie in

all the a-sections incident to n6 and separate n6 from all the I-nodes nt adjacent to n6' As

a direct extension of Definition 9.1, we can assign comparative probabilities for transitions

from n6 to the various Zk,Pk' In particular, given that \II starts at n6 and reaches a node

of U~lZI'PI' the probability the \If reaches any node of Zk,Pk before it reaches any node of

U{ZI,PI: l = 1 , K; l =1=k} is equal to the node voltage VO,k(Pl,... ,P}{) at n6 when the

nodes of Zk.Pk are held at 1 V and the nodes of all the ZI,PI (l =1=k) are held at a V. As

before, by virtue of Theorem 5.5, another voltage UO.kis obtained at n6 by holding nt at 1 Y

and the other I-nodes nf (l =1= k) adjacent to n6 at a Y. \Ve can repeat the proof of Lemma

8.1, substituting n6 for ng, all the subsections Sbl incident to n6 for the single subsection S:..

and the I-nodes adjacent to n6 for the I-nodes incident to Sb. The proof proceeds exactly

as before, the only difference being that we need a maximum principle for the node voltages

in a I-network. This is provided by Theorem 6.6. All this leads to the conclusion that

38



VO,dPI,' . ., PK) converges to lLO,kas the PI, . . ., PK tend to infillity independently. Hence,

as a limiting case of Definition 9.1, we are led to the following defillition, wherein N} denotes

the set of all the I-nodes adjacent to n~ other than n1.
. . J 1

DefimtIOn 9.3. Assume there are t\VOor more I-nodes adjacent to the I-node no' For

any random roving I-walk, the probability:

P(n6;nk) = Prob(sn6, rnt bN; I w roves) (18)

that W,starting from n~, reaches an adjacent I-node n1 before reaching any of the I-nodes

in .\ i is defined to be the node voltage at 116when n1 is held at 1 V and all the I-nodes of

N} are held at a V.

Lemma 9.4. Under the conditions of Definition 9.3, a < P( n~;n1) < 1.

Proof. This follows directly from Corollary 6.1. For instance, to conclude that P( nb; nD <

1, choose the path of part (i) of that corollary to be the I-path pI = {nb,po, nD, where

n~ is the I-node obtained by shorting the nodes of N} together, and po is a a-path that

reaches nb and n~. Since n1 is adjacent to 11b,we can choose po such that it does not meet

ne = n1. 0

By our definition of "roving", we haye the following one-step transition probabilities:

P(n~: nb) = a. If there is only one I-node ni adjacent to n~, P(nb: nD = 1. Furthermore,

if ni is not adjacent to n~, P(nb;nD = a obviously.These results along with Definition 9.3

giye all the one-step transition probabilities for the roving W.

Finally, to establish that we have a :\Iarkov chain, we have to show that these proba-

bilities for one-step transitions from any given I-node nb sum to 1. By superposition, this

sum is equal to the voltage 1L~at nb when all the I-nodes adjacent to nb are held at 1 V

and all other I-nodes and O-nodes are left floating (i.e., no source connections are made to

them). But then, all branch currents in the O-sections incident to nb are zero, and therefore

1L~= 1 too, as required. vVehave established.

Theorem 9.5. Let the i-network NI satisfy Conditions 4.1. Let W be a random roring

'lralhr on NI that follows the nearest-neighbor rule at every ordinary O-node and follows the

fire definitions in Sections 8 and 9 for comparative probabilities of transitions between the

O-nodes and i-nodes. These five definitions arise as limiting cases or consistent variants
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of the Nash- Williams rule. Moreover, W's transitions among the i-nodes is governed by a

Markov chain with a state space consisting of the i-nodes nl of NI and with the following

one-step transition probabilities: Pk,k = 0, Pk,l= 0 if nl and ni are not adjacent; Pk,l = 1

if ni is the only i-node adjacent to n1; Pk,l is given by Definition 9.3 if nl and ni are

adjacent and there are two or more i-nodes adjacent to n 1.

10 Reversibility and the Surrogate Network

Theorem 10.1. The Markov chain of Theorem 9.5 is irreducible and reversible.

Proof. The case where NI has just two I-nodes is trivial. So, let NI have more than

two I-nodes.

For any two adjacent I-nodes nt and n~, the probability that a roving I-walk will pass

from nt to n~ in one step is positive (Lemma 9.4). The irreducibility [4] of the Markov

chain now follows from the I-connectedness of NI.

As for reversibility, we start by recalling the definition of a cycle-adapted for I-nodes.

This is a finite sequence C = (nL n~,..., n~,n~+l = nO of I-nodes nl, where all I-nodes

are distinct except for the first and last, there are at least three I-nodes (i.e., c > 2), and

consecutive I-nodes in C are adjacent in NI. A Markov chain is reversible if, for every cycle

C, the product TILl Pk,k+l of transition probabilities Pk.k+l from nk to nk+l remains the

same when every Pk,k+l is replaced by Pk+l,k [4, Section 1.5]. Thus, we need only show

that

I\,2P2,3" . pc) = PI,c'" P3.2P2,1. (19)

According to Definition 9.;3, Pk,k+1 is obtained by holding nk+l at 1 volt, by holding all

the I-nodes adjacent to nl other than nl+l at 0 volt, and setting Pk,k+l = uk, where uk is

the resulting voltage at nk. For this situation, Uk will remain unchanged ",'hen still other

I-node voltages are arbitrarily specified.

To simplify notation, let us denote nl by rno and nl+1 by mI. Also, let m2,"', mK

denote all the I-nodes different from nl and nl+l but adjacent to either nl or nk+l or

both. Since the cycle has at least three I-nodes, we have K ?: 2. Now, consider the

K-port obtained from NI by choosing mk, mo as the pair of terminals for the kth port
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(k = 1,"', K) with mo being the common ground for all ports. To obtain the required

node voltages for measuring Pk,k+l, we externally connect a I-volt source to ml from all of

the Tn2,"'mK, with mo left floating (i.e., Tnohas no external connections). The resulting

voltage Uo at mo is Pk,k+l'

With respect to mo, the voltage at ml is 1 - Uo and the voltage at mk (k = 2,..., K)

IS -uo. Moreover, with ik denoting the current entering mk (k = 1,..., K), the sum

i1 +. . .+ iK is zero. (Apply Kirchhoff's current law at mI,) Furthermore, the port currents

and voltages are related by i = Yu, wherei = (il,"',iK), u = (1- uo,-uo,"',-uo),

and Y = [Ya,b]is a K x J( matrix of real numbers that is symmetric (Lemma 5.4). Upon

expanding i = Yu and adding the ik, we get

K

0 = i1 + ... + iJ{ = L Ya,l
2=1

J{ J{

Uo L L Y2.b.
2=lb=1

Therefore,
J{

J) La=l Ya,l
k,k+l = Uo = J{ J{ .

La=l Lb=l Ya,b

Upon setting Gk = L~=l Lb~l Ya,b, we can rewrite (20) as

(20)

J{

GkPk,k+l = L Ya,l.
a=l

(21)

Now. L~=l Ya,l is the sum i1 +... + iJ{ when u = (1,0,'..,0); that is, L~=l Ya,1 is the sum

of the currents entering ml, 1nz,"', mK from external connections when I-volt sources are

connected to ml from all of the mO,m2,"',mJ{.

By reversing the roles of mo and mI. we have by the same analysis that G k+l Pk+l,k is

the sum io+iz+" .+iJ<: of the currents entering mo,Tnz,"', ml\' from external connections

\vhen I-volt sources are connected to mo from all of the Tnl, 171Z,. . ., mJ{. With respect to

the ground node mo, we now have Ul = ... =UK = -1, and therefore i1 = - L~=l 1'1.2'

Moreover, under this latter connection, the sum -il - iz - . . . - iK of the currents leaving

mI. 171Z,"'mK is equal to the current io entering Tno. Hence, -i1 = io+iz +.. .+iK. Thus,

K

Ch+lPk+l,k = -il = L Y1,a'
a=l

(22)
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Since the matrix Y is symmetric, we have Y1,a= }'".l' So, by (21) and (22),

GHI Pk+l,k = GkPk,k+l. (23)

Finally, we may now write

G2 G3 G1
P12 P23 "'P 1 = -P 21 -P 32 "'-P 1 ~ = P21 P32 ...P l

" C, G1' G2' Gc"' " ,C

This verifies (19) and completes the proof. 0

Because the Markov chain is irreducible and reyersible, we can synthesize a finite 0-

network Nh o whose a-nodes correspond bijectively to the I-nodes of N1 and whose random

Q-walks are goyerned by the same transition matri..x as that for the I-node to I-node tran-

sitions of the random roving I-walks of Nl. Nh...,.oacts as a surrogate for N1. A realization

for it can be obtained by connecting a conductance gk./ = g/,k between the Q-nodes n~ and

n? (k i= l) in N1"""O,where gk,/ is given as follows: let nl t-+ n~ denote the bijection from

the I-nodes of N1 to the Q-nodes of N1"""O.If nl and nt are not adjacent in N1, set gk,/ = O.

If nl and nt are adjacent in N1, relabel nl as mo. nt as 1n!, and let 1n2,' . ., 1nK be the

other I-nodes that are adjacent to either 1noor Tnl or both. Then, with our prior notation.

set Gk = L~=l L~l Ya,b. Also, set G = Lk Gk, where this latter sum is over all indices

for all the I-nodes of Nl. Finally, set gk,/ = Pk./Gk/G. By (23), gk,/ = g/,k. This yields

the surrogate network N1"""O. The one-step transition probabilities for a random Q-walk

on N1"""o following the nearest-neighbor rule are the same as the probabilities indicated in

Theorem 9.5 for a random roving I-walk on Nl.
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Figure Captions

Figure 1. A I-graph. The heavy dots denote ordinary O-nodes. The heavy lines denote

I-nodes, each of which embrace O-nodes; the latter are not shown. The other lines denote

branches, except for the long braces which point out two ladder networks L1 and L2 that

comprise the cores of two subsections. It is understood here that all the O-tips on the

left-hand side of L1 are embraced by ni, and similarly for the other O-tips of both ladders.

Figure 2. A subsection Sb in N1. The heavy lines denote I-nodes incident to Sb. The

dash-dot lines denote branches of Sb incident to I-nodes. Vk,Pkdenotes an arm base for an

arm with an extremity embraced by the I-node ni. (Wk,Pk consists of the O-nodes in h'Pk

along with the embraced O-node of nl if the latter O-node exists).

Figure 3. illustrations for the sets Xp and Xq. lip is an arm base for a proper contraction

and similarly for Vq. The heavy lines denote I-nodes, the dash-dot lines denote branches,

the heavy dots denote O-nodes, and the cross-hatched areas denote arms. Xp = VpU{n~,n~}

and Xq = Vq U {n~, n~}, where n~ is the O-node embraced by n;.

Figure 4. A I-node n6, its incident subsections. and its adjacent I-nodes: ni, nj, nL 72].nk'

The subsections incident to n6 are Sb1, Sb2, and the two subsections consisting of single

branches b1 and b2 respectively. Here again, the dash-dot lines denote branches incident to

I-nodes.
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