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NONSTANDARD ELECTRICAL NETWORKS
AND THE RESURRECTION OF KIRCHHOFF’S LAWS *

A. H. Zemanian

Abstract — Kirchhoff’s laws fail to hold in general for infinite electrical networks. Stan-
dard calculus is simply incapable of resolving this paradox because it cannot provide the
infinitesimals and more generally the hyperreal currents and voltages that such networks
often require. However, nonstandard analysis can do precisely this. The idea of a nonstan-
dard electrical network is introduced in this paper and is used to reestablish Kirchhoff’s laws
for a fairly broad class of infinite electrical networks. The second section herein presents a
fairly brief tutorial on infinitesimals, hyperreal numbers, and the key ideas of nonstandard

analysis needed for a comprehension of this work.

1 Introduction

It is fairly well-known now that Kirchhoff’s laws need not always hold in infinite networks
(see [12, Sections 1.6 and 3.4]). Perhaps the simplest example of this is provided by Figure
1, wherein an infinite parallel circuit of 1 ( resistors is fed by a 1 V voltage source in series
with another 1 Q resistor. The infinite parallel circuit must be a short (r = 0 §2), and thus
the voltage across it is ¥ = 0 V. Hence, the current i) in each resistor (k = 1,2,3,...)is 0
A, and therefore Y 2, ix = 0 A too. On the other hand, since v = 0, we have that 7p = 1
A. We conclude that 1 A flows toward node n; but 0 A flows away from it — in violation
of Kirchhoff’s current law.

How to explain this discrepancy would have been no problem two hundred years ago,
for a conventional mathematical argument at that time (had electrical circuits been extant

then) would assert that the current i in each parallel resistor is not exactly 0 A but is
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instead an infinitesimal and that the sum Y 32, ¢x of those infinitesimals is 1 A. Though
intuitive and useful, infinitesimals were not legitimate — at least by later standards of
mathematical rigor; in fact, they simply served as a “fudge factor,” allowing one to achieve
apparently valid results. During the nineteenth century, infinitesimals were expunged from
rigorous mathematics and replaced by limit processes based upon cumbersome epsilon-delta
arguments. But, the facility of infinitesimals insured their survival at least for informal argu-
ments. Not surprisingly, they were eventually reinvented, this time rigorously by Abraham
Robinson [9], [10] about 35 years ago. Not only did this justify at last techniques that were
so useful in the early development of calculus and differential equations during the 17th and
18th centuries, it also established an alternative method, called nonstandard analysis, for
generating new mathematics, both pure an applied. As the literature survey of Lindstrom
[8, pages 90-98] indicates, nonstandard analysis has been effectively used in a variety of
mathematical subjects.

The objective of this paper is to introduce nonstandard circuit theory (perhaps for the
first time?). One consequence will be the establishment of Kirchhoff’s laws as inviolate
rules for certain infinite networks. The kind of nonstandard network we shall consider is
a finite interconnection of one-ports having nonstandard parameters. We shall show that
certain one-ports, which are internally infinite, have nonstandard descriptions. The network
of Figure 1 is of this sort, the infinite parallel circuit being a one-port with a nonstandard
input resistance..

In Section 2 we provide some information about nonstandard analysis; this may serve
as a brief tutorial on that subject. In Section 3 we lift Kirchhoff’s laws and Ohm’s law
into the nonstandard realm and thereby obtain nonstandard versions of nodal analysis.
This discussion also indicates that much more of conventional network analysis, such as
fundamental-loop analysis and Thevenin’s and Norton’s theorems, can be extended in a
nonstandard way. Certain one-ports having infinite internal circuits, such as infinite par-
allel circuits and infinite series circuits, are introduced in Section 4 and are shown to have
nonstandard descriptions. These examples are generalized in Section 5 to obtain two broad

classes of internally infinite one-ports that not only have nonstandard port-terminal de-



scriptions but also satisfy Kirchhoff’s laws at their internal infinite nodes and infinite loops
in a nonstandard way. Upon combining the results of Sections 3, 4, and 5, we finally obtain
in Section 6 a nonstandard theory for a broad class of infinite networks in which Kirchhoft’s
laws are always satisfied and determine voltage-current regimes. This final conclusion is

stated succinctly in the italicized paragraph of that section.

2 Some Elements of Nonstandard Analysis

Let us explain some of the elements of nonstandard analysis, enough to provide an under-
standing of the nonstandard circuit theory we introduce below. This section presents but a
bare minimum of ideas. More detailed introductions to nonstandard analysis can be found
in a number of sources. Davis and Hersh [2] provide a historical perspective along with a
short description of some key ideas. Henle and Kleinberg [3] and Keisler [5] give elementary
expositions. Introductions at a somewhat higher level are those of Keisler [6] and Lindstrom
(8]. Far more is presented in the books by Davis [1] and Hurd and Loeb [4], but it may be
advisable for the novice to read the aforementioned introductions before attempting these
books. Robinson’s original book [10] is at an advanced level and requires a knowledge of
symbolic logic.

There are two approaches to nonstandard analysis, the axiomatic and the constructive.
Actually, each subsumes the other, the only difference being the order in which ideas are
introduced. The axiomatic approach is based upon symbolic logic and is the method used
by Robinson in his seminal works [9}, [10]. As a result, the earlier expositions were of this
kind but did not provide much intuition as to the nature of infinitesimals. The constructive
approach is probably more accessible to those accustomed to mathematical analysis rather
than mathematical logic, in particular, to circuit theorists.

So how can one construct an infinitesimal? Well, how are the real numbers constructed?
Answering the latter question may give us a clue about the former one. The constructions
of the rational numbers as ratios of integers was accomplished by the ancients, but it was
disconcerting when the Pythagoreans discovered that the diagonal of the unit square is not

such a ratio [7, pages 104-105). This situation remained unresolved from ancient times to



the late 19th century, when at last Cantor and Dedekind [7, page 179] proposed different
but equivalent definitions for the real numbers. The definition most pertinent for us is that
whereby a real number is defined as an equivalent class of Cauchy sequences of rational
numbers, two Cauchy sequences being considered equivalent if their terms approach each
other. In this way, the real numbers expand and fill out the set of rational numbers.

This idea can be reworked to define infinitesimals as certain equivalence classes of se-
quences of real numbers that approximate 0 in a certain way. More generally, all real
sequences can be partitioned into equivalence classes, called hyperreal numbers, and they
include not only infinitesimals but also numbers infinitesimally close to any real number, as
well as infinitely large numbers.

To be more specific, let N = {1,2,3,...} be the set of all positive natural numbers n, and
let {a,} = {an}nen denote a sequence of real numbers. Two (not necessarily convergent)
sequences {a,} and {b,} will be called “equivalent” if they are the same on a “large enough”
subset of N. In order to specify which subsets are “large enough,” we choose a measure m

for all the subsets M of N as follows.
Conditions 2.1.

(i) For each M C N, either m(M) =0 or m(M) = 1.
(ii) m(N) = 1.
(iii) If M is a finite subset of N, then m(M) = 0.

(iv) m is finitely additive; that is, if My and M; are disjoint subsets, then m(M; U M;) =

The “large enough” subsets are those having measure 1. These four conditions imply the
following results: If m(M) = 1 (or m(M) = 0), then, for the complement M¢ = N\M of
M, m(M°¢) = 0 (respectively, m(M°) = 1). If {My,M,,...,M,} is a finite partition of N,
(that is, if these finitely many subsets are pairwise disjoint and if their union is N), then
exactly one of the M} has measure 1 and all the others have measure 0. If m(M;) = 1 and

m(M;) = 1, then m(My; N M;) = 1. If My C M; and if m(M;) = 1, then m(M3) = 1. A



proof that such a measure can be assigned to the subsets of N is given in [8, pages 84-85].
In fact, there are many such measures.

Having chosen a particular measure m of this sort, we can partition the set of all se-
quences of real numbers into equivalence classes by taking two such sequences as being
equivalent if the subset of N on which they agree has measure 1; in symbols, {a,} and {b,}
are considered equivalent if m{n: a, = b,} = 1. An equivalence class will be denoted by
(an) or by (ay,a2,as,...), where {a,} is any one of the sequences in that class. Any such
sequence {a,} is called a representative of that class. These equivalence classes represent
new entities, called hyperreal numbers or simply hyperreals. (Similarly, we often say just
“real” in place of “real number.”) We let R denote the set of reals and *R the set of hy-
perreals. *R can be viewed as an extension of R as follows. If a € R, then the equivalence
class A = (a,4a,a,...) € *R is the image of a in *R; A is also called the hyperreal image of
a. On the other hand, the hyperreal number (1,1/2,1/3,1/4,...) is not the image of any
real number but is in fact an “infinitesimal” (see below). Also, (1,2,3,...) is an “infinite
hyperreal” (in particular, an “infinite integer” because all its entries are integers). Further-
more, (1,1/2,1/3,1/4,1/5,1/6,...) and (1,0,1/3,0,1/5,0,...) denote the same hyperreal
if the measure we have chosen assigns 1 to the set of odd positive natural numbers.

We shall use the following symbolism. n will always be an index varying through N.
Thus, {a,} = {a1,a2,a3,...} is a sequence, and (a,) = (a1,a3,4a3,...) is the hyperreal
having {a,} as one of its representatives. A constant ¢ € R will have (c¢) = {(c,¢,c,...)
as its hyperreal image (the symbol *c is also used for {c)). Moreover, a hyperreal symbol,
such as (ax), involving a subscript other than n will always denote the hyperreal image
of a constant a; € R; thus, (ax) means (ak,ax,ax,...), not (a1, az,as,...). Also, real
numbers will be denoted by lower-case Roman letters, and hyperreals by upper-case Roman
letters. We will usually use corresponding lower-case and upper-case letters, as for example
A = (a) = (a,a,qa,...) or A = (a,) = (a1,a;,as,...). If the hyperreal carries an index, that
index will never be n; thus, we may write “A;” but never “A4,.”

The hyperreals are ordered as follows. If X = (z,) and Y = (yn) andif m{n: z, < y,} =

1, then X < Y. Thus, the real numbers and their images in *R have the same order, and that



order extends to all of *R. In this way, we have positive hyperreals X > (0) and negative
hyperreals X < (0). Moreover, we define the arithmetic operations componentwise using
any representatives for the hyperreals. In particular, X +Y = (zp,+yn), X =Y = (Zn ~yn),
XY = (zpyn), and X/Y = (z,/ys) if Y # (0) in the last case. The usual arithmetic laws
hold in *R; in fact, *R is an ordered field with the zero element (0) and the unit element
(1). Therefore, we can manipulate the hyperreals as we do the real numbers. The absolute
value | X| of a hyperreal X is X if X > (0),is —X if X < (0), and is (0) if X = (0).

A hyperreal X is called infinitesimal (resp. infinite) if | X| < (a) (resp. |X| > (a))
for every positive real number a. A hyperreal that is not infinite is called finite. Two
hyperreals X and Y are said to be infinitesimally close if X — Y is infinitesimal, in which
case we write X = Y. Altogether, the set of all hyperreals is called the hyperreal line, and
that line consists of the infinitesimals (those hyperreals infinitesimally close to (0)), the
finite hyperreals (each of which is infinitesimally close to some image of a real number),
and the infinite hyperreals. In fact, for each hyperreal X (finite or infinite), there is a set
of infinitely close hyperreals called the monad for X, and there is a larger set of finitely
close hyperreals Y (i.e., X — Y is finite) called the galazy for X. Furthermore, each finite
hyperreal X has a standard part stX € R such that X = (stX). There is only one such real
stX having an image in *R to which the finite hyperreal X is infinitesimally close.

Let us at this point discuss the arbitrariness arising from the choice among many pos-

sibilities of the measure m. For example, consider the hyperreal
(1,0,1,0,1,0,1,...). (1)

One of the measures we may choose will assign 1 to the set of even positive integers, in
which case (1) will be equal to the hyperreal (0). On the other hand, another permissible
measure will assign 1 to the set of odd positive integers, in which case (1) will be equal to
the hyperreal (1), and (0) will now be equal to {0,1,0,1,...). We can view this arbitrariness
as simply different ways of arriving at the same hyperreal line. Moreover, the final result of
this paper, namely, the resurrection of Kirchhoff’s laws will be accomplished whatever be
the choice of the measure m.

Another peculiarity arises from the fact (pointed out before) that, for any finite partition
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of N, any chosen measure m assigns 1 to exactly one of the subsets in the partition and
0 to all the others. Consider for example the nested subsets of N of the form N, = {n:
n = 2Pk,k = 1,2,3,...}, where p is an even positive natural number; thus, if p; < p;, then
Np, C N,,;. We can choose a measure m such that m(Np) = 1 for all p. Also, for any fixed

p, let ap, =1 for n = 2Pk, and let a, , = 0 for n # 2Pk. Because of our choice of m,
(a1,,) = (0,1,0,1,0,1,...) = (1,1,1,...) = (0,0,0,1,0,0,0,1,...) = (azn).

This indicates that a sequence of progressively sparser samplings of a given hyperreal (a,)
identify that hyperreal; in fact, the a, can be changed outside any particular subset of
measure 1 without altering that identification. Actually, for a fixed measure m, it is the
asymptotic behavior of {a,} that determines (a,), and that asymptotic behavior can be
determined by a sampling within an arbitrarily sparse subset of N of measure 1.

It was noted above that, with the arithmetic operations transferred into *R by means of
componentwise definitions, *R is a field in quite the same way as R is a field. Consequently,
rational functions of hyperreals and equations between such rational functions can be set up
in the hyperreal realm. More specifically, consider two rational functions that involve some
real coefficients a; and some real variables z;, which we may display together by means
of a vector s = (a@,...,aK,Z1,...,27). Then, the equation between the rational functions
will be true in the real realm when and only when s lies in some subset S of the Cartesian
product RE+/ of R taken K + J times. (Of course, that subset may be void.) It is an
important property of nonstandard analysis that that equation will again be true in the
subset *S of *RX*J consisting of all (s,) such that m{n:s, € S} = 1. *S is called an
“internal set” in *RK+J, but there are more general kinds of “internal sets” in *RK+J [,
page 43), [8, pages 10 and 24]. All this is a result of the so-called “transfer principle” of
nonstandard analysis [6, pages 34-35), 8, page 77).

As a simple example, consider a;z = a; in the real realm. This equation is true whenever

a; € R\{0}, a; € R, and z = az\a;. Thus, the set S mentioned above is given by
S = {s=(a1,02,2): a1 € R\{0},a; € R,z = az\a1}.

Consequently, any (s, ) of the form (s,) = ({(a1s), {(@2n), {(Z5)), where a1, € R\ {0}, a2, € R,



and z, = agn\a1, for all n in a subset of N of measure 1, will be a member of *S. We can
succinctly restate this by setting A; = (a1,), A2 = (az,), and X = (z,) and asserting that
A1 X = A; has the solution X = A;/A; € *R when A;,A; € *R and A, # (0). Here, 4,
and A; need not be the images of real numbers.

This is a critically important result, for it allows us to find solutions in the hyperreal
realm that do not have preimages in the real realm. For instance, Kirchhoff’s current law
does not hold for the network of Figure 1 because the total resistance r of the infinite parallel
circuit cannot be obtained through finitely many arithmetic operations. Actually, the result
r = 0 can be obtained in R by passing to a limit as the number of parallel resistances
increases toward infinity. But, that passage to a limit through an infinite sequence of
parallel combinations is an operation falling outside of the theory of finite networks. On the
other hand, we shall show in the next section that the total resistance of the infinite parallel
circuit can be represented by an infinitesimal obtained by means of an infinite sequence
of finite parallel combinations. Moreover, the other parameters of Figure 1 can be taken
as the hyperreal images of constants. So, by finite circuit theory lifted into the hyperreal
realm, we shall find a hyperreal solution for the current Iy in the source. Furthermore, the
current in each branch of the infinite parallel circuit will be found to be an infinitesimal,
and the sum of all those infinitesimals will be equal to the hyperreal solution for Iy. This
latter result will be a consequence of how we define the hyperreal image of an infinite series.
Thus, Kirchhoff’s current law will hold in *R at the nodes n; and ns.

But how, one may persist in asking, does nonstandard analysis of some other infinite
network provide a hyperreal solution when standard analysis provides none at all? It does
so as follows. The kind of infinite network we shall consider will be a finite network of
one-ports, some or all of which consist internally of infinite circuits. Each infinite circuit
may in turn be viewed as the end result of a sequence of finite circuits. So, standard
analysis, applied to finite networks of internally finite one-ports, will provide solutions for
the currents entering and within the one-ports at each stage of the sequence. Thus, upon
considering the sequence all at once, those currents become sequences of real numbers. The

current sequences need not converge, but they will always be representatives of hyperreal



currents. Moreover, sufficiently many components of those representatives will satisfy the
standard Kirchhoff current law to warrant the satisfaction of the nonstandard Kirchhoff
current law. The nonstandard Kirchhoff voltage law will be satisfied in the same way. The
hyperreals that we obtain may depend upon the ways in which the internally finite one-
ports are expanded into internally infinite ones. Nonetheless, whatever ways are chosen,
the resulting hyperreals will satisfy the nonstandard Kirchhoff laws.

Actually, our analysis is more complicated than this brief synopsis indicates. Choosing
a finite circuit to accommodate Kirchhoff’s current law fails to work for Kirchhoff’s voltage
law, and conversely. Thus, any internally infinite one-port can have either infinite nodes or
infinite loops — but not both.

One last matter: Subsequently we will meet infinite series of hyperreals, as for iﬁstance
when we sum the conductances in the infinite parallel circuit of Figure 1 or the currents in
those conductances. We can sum an infinite series of hyperreals just as we do a series of reals
whenever the hyperreals are images of reals. In particular, let X = (zx) = (2, zk, zk, - - )
for each k = 1,2,3,.... Then, define ) 7=, Xk as the hyperreal having as a representative

the sequence of partial sums of the reals taken in their natural order:

o0

ZXI‘ = (sz) = (21,21 + 22,21 + 22 + 23,...) (2)
k=1 k=1

This result may be either infinitesimal, finite, or infinite. For instance,

(-3 + L™ = (55 g ) ¥ O

Yt = (5
k=1

i(l) =(1,234,...),
k=1

1
, 1—,) n"’a(l),

b

]
e AR

where the last series is an infinite hyperreal. Note however that an alteration in the order
in which the terms of a hyperreal series is taken will in general change the hyperreal value
of the series.

We will also encounter hyperreal infinite series whose terms are not images of reals.

These too can be summed in *R if each X has the form X = (), where zx, = 0 when
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1 < n < k. Any hyperreal X can be put into this form just by changing finitely many of

its representative components. In this case, we have

EXk = (211, 12, 21,3, -+ )
+(0, z32, 723, ...)
+(0, 0, =z33,...)
+ o (3)

(The series (2) has just this form with zg , replaced by zx whenever n > k.) Summing the
X componentwise is the same as summing the rectangular array in (3) columnwise. This
works because each column has only finitely many nonzero entries. The result is

oo n

Yo Xk = (X wkn) = (T11, Tr2+ 222, T13+ T3+ T3, .- ) (4)

k=1 k=1
This then is our hyperreal definition of 3"¢>, X when the X have the stated form. More-
over, this is just the form the X will have when we build our infinite circuits by inserting
one branch at a time. Here too, the final result will depend in general on the order in
which we i'nsert the branches. Note that we are not free to alter arbitrarily the represen-
tatives of infinitely many of the X for this may change the hyperreal value of the series.
This difficulty will be avoided by choosing and fixing a particular order for the insertion of
branches.

Here ends our brief tutorial. QOur expla,na_mtion of the hyperreals has been cursory but

hopefully informative. We have left out many essential concepts that one should know if
one is to be knowledgeable about nonstandard analysis. We recommend [6] or [8] for an

introduction to this subject.

3 Finite Nonstandard Electrical Networks

Our objective in this section is to show how nonstandard analysis can be applied to finite
electrical networks. In other words, we wish to lift the theory of such networks from the

real realm into the hyperreal realm.
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For the sake of specificity, let us do so for a nodal analysis of a particular kind of network.
We start in the real realm with a finite connected network of p + 1 nodes and ¢ branches,
with each branch assigned an orientation and consisting of either a positive conductance g;
alone, or an independent current source h; alone, or a parallel combination of g; and A; as
shown in Figure 2(a). This is the Norton form of a branch. The branch index varies from
1 to g. We will call this the standard network. With the superscript T' denoting matrix

transpose, we let the column vectors
v = [v1,...,07 (5)

and

i= [i1,...,3)7 (6)

represent respectively the vector of branch voltages and the vector of branch currents. Next,
choose a ground node n, and index the remaining nodes by k¥ = 1,...,p. Let [ax;] be the
P X q incidence matrix, wherein ax; = 1 (or —1) if branch b; is incident toward (respectively,
away from) node ni and ax; = 0 if b; is not incident to ng. It follows that Kirchhoff’s

current law holds at every node if and only if
[akj]i =0 (7

Next, assign 4, = 0 V as the voltage at the ground node n,4, and choose the other
node voltages ux (k = 1,...,p) arbitrarily — at least for the moment. If branch b; is
incident away from node n; and toward node n;, then its branch voltage is related to the

corresponding node voltages by v; = uy — uj; one of these nodes may be ground. Let
u = [ug,...,u)7 (8)

be the vector of voltages at all the nodes other than ground. Then, the relationship between

node voltages and branch voltages can be written succinctly as
v = [a)]Tu 9)

It is a fact that Kirchhoff’s voltage law holds around every loop of the network if and only

if v is given by (9) for some vector u of node voltages.
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Furthermore, let [g;;] be the diagonal ¢ x ¢ matrix whose main-diagonal entries are
gj; = g; and whose other entries are 0; possibly, some of the main diagonal entries may be
0 too (i.e., g; = 0 for some j). By Ohm’s law, the vector of currents in the conductances
is {g;;]v. With h = [hy,...,hg]T being the vector of branch current sources, the branch

current vector 1 is then
i = [gjj]v - h (10)

So, given the finite network, that is, its graph and all the values g; and h;, a combination

of (7), (9), and (10) comprises a nodal analysis yielding the following expression for v

v = [ag;]T(lar;llgsillar; 1) axs)h (11)

so long as [ak;][g;5](ak;]T is nonsingular. A sufficient condition for that nonsingularity is
that every branch have a positive conductance: g; > 0 for all j. These are all conventional
results in the real realm. In summary, if Ohm’s law (10) is satisfied and if [ak;)[g;;)[ak;]¥
is nonsingular — or, more particularly, if every branch has a positive conductance, then
Kirchhoff’s laws are satisfied throughout the network if and only if (11) holds.

Note that the right-hand side of (11) involves no more than a finite number of arithmetic
operations. Since these have been lifted into the hyperreal realm through componentwise
definitions, we can transfer (11) into that realm under the caveat of nonsingularity. Indeed,
we can now analyze in the very same way a finite connected network whose every branch
is either a hyperreal positive conductance G, or a hyperreal independent current source
H;, or a parallel combination of these two elements. Such a network will be called a
nonstandard network or synonymously a network in the hyperreal realm. All voltages and
currents will now be hyperreals. So, upon replacing all lower-case symbols for the source
currents, conductances, and voltages by upper-case symbols, we have the following results.

Kirchhoff’s current law becomes

[ai;]T = (0) = [(0),...,(O)), (12)

where

I=[G;]V-H. (13)

12



Kirchhoff’s voltage law is assured whenever
V = [a]"U (14)
for some node voltage vector U. Finally, (11) becomes
V = (k] (lak)(G5){ar)") " awiJH. (15)

(We could also replace the 0’s, 1’s, and —1’s in [ak;] by (0)’s, (1)’s, and (—1)’s to get [Ax;] in
place of [a;], but the operations with the [Ag;] merely represent additions and subtractions,
which we have already defined on the hyperreals componentwise; thus, there is no need for
this latter change in symbols.)

In order for (15) to be meaningful in the hyperreal realm, we need to confine the de-
terminant of [ak;](G;;](ak;]T to the internal set *R\(0). This will certainly be so if G is
a positive hyperreal for every j. Other than this, there is no restriction on the hyperreal
elements of [G;;] and H. We can conclude as follows: If Ohm’s law (13) is satisfied and if
the determinant of [ax;][G;;)[ax;]T is not equal to (0) or, more particularly, if every branch
of the nonstandard network has a positive hyperreal conductance G, then, for every choice
of the hyperreal independent current-source vector H, (15) holds, and the hyperreal branch-
voltage vector V and the hyperreal branch-current vector 1 will satisfy Kirchhoff’s voltage
and current laws throughout the network. Note that, the G; and H; need not be hyperreal
images of real numbers, and therefore the nonstandard network need not be the hyperreal
image of a standard network. In particular, any conductance, voltage, or current in the
nonstandard network may be either an infinitesimal, finite, or infinite hyperreal.

We have been considering a nonstandard nodal analysis. Nevertheless, much more of
standard network theory can be transferred into the hyperreal realm to get, for example,
a nonstandard mesh analysis or more generally a fundamental-loop analysis [11]. Also,
many of the usual network theorems, such as Thevenin’s and Norton’s theorems, can be
transferred into the hyperreal realm as well. We will not explicitly do so here because the
needed arguments are much the same as those used for a nodal analysis. All the nonstandard

finite-network theory we employ in this paper is truly available.
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Let us now restate Kirchhoff’s laws in terms of hyperreals. His current law (12) can be

rewritten as

Zi(ij,n) = (0)’ (16)
(no)

where ng is any node in the nonstandard finite network, the summation is over the indices
j for the branches incident to ng, (i;,) = (4;1,%j2,...) is the hyperreal current in the jth
branch, and the plus (minus) sign is used if branch j is incident toward (respectively, away
from) node ng. The equality in (16) holds componentwise for almost all »; that is, there is
a subset N; of N of measure 1 such that E(m) +i;, =0 for all n € Ny.

As for Kirchhoff’s hyperreal voltage law, we have

S +(v0) = (0), a7
@

where L is any oriented loop in the nonstandard finite network, the summation is over the
indices j for the branches in L, (v;.) = (vj1,9;2,...) is the hyperreal voltage in the jth
branch, and the plus (minus) sign is used if the orientation of branch j agrees (respectively,
disagrees) with the orientation of loop L. Finally, the equality in (17) holds componentwise
for almost all n, as indicated above.

Finally, let us note that not all finite networks of hyperreal one-ports are amenable
to a nonstandard analysis — as, for example, when there is a loop of pure voltage sources
that violate (16), or a node with only pure current sources as its incident branches which
violate (17), or simply a three-branch network consisting of a parallel circuit of a (1) €
resistor, a (—1) € resistor, and a (1) V voltage source. So, we have to restrict the kinds of
nonstandard networks we consider. With regard to nodal analysis, our assumption about

the nonsingularity of [ak;][G;;][ax;]T suffices for this purpose.

4 Nonstandard One-Ports and Their Hyperreal Represen-
tations

We have seen in the last section that a nonstandard finite network of one-ports with hy-
perreal parameters has a hyperreal voltage-current regime, but we have not looked inside

the one-ports to see if their hyperreal parameters represent any standard electrical circuits,
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finite or infinite. If the hyperreal parameters of a given nonstandard one-port are images
of real parameters, then the one-port is internally the hyperreal image of a real circuit. For
example, if the nonstandard one-port is described by I = GV — H, where G = (g) and
H = (h) are hyperreal images of the reals g and &, then the nonstandard one-port is just
the hyperreal image of the real Norton branch such as that of Figure 2(a). If in addition
0 < g < o0, then the nonstandard one-port is also the hyperreal image of the equivalent
Thevenin branch of Figure 2(b).

We will now examine several cases wherein the parameters of a nonstandard one-port
are hyperreals that need not be images of reals.

4a. An infinite parallel circuit of conductances: Let us assume that the non-
standard one-port is described by I = GV, where I, V, and G are the one-port’s hyperreal
current, voltage, and input conductance. In particular, let G = (g1, g2,93,...) be any hy-
perreal. By virtue of the definition (2) of an infinite series of hyperreals, G is synthésized as
the infinite parallel circuit of hyperreal images (ax) of real conductances aj, where a; = ¢4

and ax = g — gr-1 for k =2,3,4,.... Thus,
G = (a1,a1 + az,01 + a2 + a3,.. ). (18)

This is illustrated in Figure 3(a). There are no restrictions on the g; and thus none on
the aj either; they can be positive or negative and have any order of growth or decay.
Consequently, G can be either an infinitesimal, finite, or infinite hyperreal. Since each (ax)
is the hyperreal image of the real conductance ax, we may take the preimage of the hyperreal
circuit branch by branch to obtain the real parallel circuit shown in Figure 3(b), but now

that real circuit may not have a real input conductance. If the sequence

{ge}izs = {aa + ...+ a}isy (19)

converges, then its limit will be the standard part stG of G [6, Theorem 8(i), page 56], and

the difference between GG and the hyperreal image of stG will be the infinitesimal

(stG) - G = <{::ak, iak, iak,...>.

k=2 k=3 k=4
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This will be so whatever be the choice of the measure m. However, if the sequence (19)
strictly increases in absolute value unboundedly, then G will be infinite whatever be m
and therefore will not have a standard part [6, Theorem 9(i), page 57]. Finally, if the
sequence (19) oscillates boundedly, then G will be finite as long as the measure m is chosen
appropriately [6, Theorem 9(ii), page 57], in which case it will have a standard part. A
particular case of interest is when all the a; are positive; now (19) either increases to a
limit or increases unboundedly, and G is either a positive finite hyperreal or respectively a
positive infinite hyperreal.

Now, let G # (0). The hyperreal input resistance R of the circuit of Figure 3(a) is
R = G_l = <7‘1, re,r3,.. .),

where rp = g;l = (a1 ++--+ ax)"!. R has a nonzero standard part when and only when G
has a nonzero standard part; otherwise, st R = 0 when G is infinite, and R is infinite when
stG = 0.

There is an important feature of these infinite parallel circuits that must be taken into
account: The hyperreal G depends in general upon the order in which the conductances
are connected into the parallel circuit. We may alter that order for finitely many of the
ar without changing G, but infinitely many such changes may affect G. For example, let
ar = k for all k¥ € N and insert these a; in accordance with the natural order of their

indices. Then, G = (a;,a; + a3,a;1 + a2 + a3,...) becomes
G = {1,3,6,10,15,21, 28, 36,45, 55, .. .). (20)

On the other hand, let us instead reorder those conductances by first connecting a,, then
a3 and as, then aq, then a7 and ag, then a4, and so forth. That is, we continue choosing
sequentially two odd-indexed conductances and then one even-indexed conductance, repeat-
ing this cycle indefinitely. This corresponds to reindexing the conductances according to

1»1,3—2,5—3,2—4,7—59—6,4—7,.... With this reindexing, G becomes
G = (1,4,9,11,18,27,31,42,55,61,...). (21)

No two corresponding subsequences of (20) and (21) will be identical, and therefore G and G’

must represent different hyperreals. This shows that one cannot rearrange the conductances
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of an nonstandard infinite parallel circuit without in general changing its input conductance.
Because of this, it is not enough to specify the set of conductances in a nonstandard infinite
parallel circuit if the hyperreal input conductance is to be uniquely determined; the order
in which the conductances are introduced into the parallel circuit must also be specified —
except in certain special cases, such as the case where all the conductances have the same
value.

Another discrepancy can arise when one tries to simplify an infinite parallel circuit by
combining conductances. For instance, consider again the infinite parallel circuit of 1-U
conductances. Its input conductance is G = (1,2,3,...). However, if we combine pairs of
conductances into 2-U conductances, the resulting parallel circuit of 2-U conductances will
have the input conductance G’ = (2,4,6,...). Clearly, G and G’ are different hyperreals.

It is noteworthy however that, if
G = (a1, a1 + a3, ay + a3 + a3, ...),

if Y22, ax converges absolutely, and if G’ is obtained by combining some of the conductances
ay before inserting them, then G — G’ will be an infinitesimal. (To see this, compare the
terms of G — G’ with Y 52, ax.)

All this indicates that there is more subtlety to infinite parallel circuits in the hyperreal
realm than there is in the real realm. Actually, it is this subtlety that allows us to resurrect
Kirchhoff’s current law. In the real realm that law simply collapses at times.

So, let us consider the currents in the nonstandard infinite parallel circuit of Figure 3(a),
where the order of the conductances (ai) is taken to be that of its indices k¥ = 1,2,3,....
Its input conductance G is given by (18), and its input current I is related to its input

voltage V' by Ohm’s law: Iy = VG. By virtue of (3), this can be expanded into

Io = V(al,al,al,...)
+V<0, ag,ag,...>
+V<0, 0, (l3,...>

+ o (22
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Each row in this array is the hyperreal current in the kth hyperreal conductance {ax).
Thus, we now have Kirchhoff’s current law in the form of a nonstandard infinite series
IL=h+L+L+....

We can use this technique to resolve the paradox concerning Figure 1. Let us consider the
more general case where the conductances and voltage source are arbitrary reals. Thus, in
the hyperreal realm we have the infinite parallel circuit of Figure 3(a) being fed from a source
branch with the voltage source E = (e) in series with the conductance Go = (go). Upon
making a Thevenin-to-Norton conversion, that source branch becomes a current source
EGg = (ego) in parallel with Go = (go). As before, we take it that the conductances {ax)
of the parallel circuit are built up in the order of their indices. By the current division law

for a finite nonstandard network,

G
In = —
0 EGOGO +G
— <eg0) (al, ay + az, a1 + a2 + as, .. )

(90) + (a1, @1 + a3, a1 + a3 + a3, ...)
< egoar  ego(a1 + az) ego(ar + az + as) >
gota’ gotar+a’ gotar+az+az’

S
k=1

where

Iy = <0 £9adk €902k €goak >
’ " gotar+...tar gotar+...+agy gotar+...+akp2’

(In the last expression, there are k — 1 initial 0’s.) So again, the nonstandard Kirchhoff’s
current law is satisfied.

In the special case of Figure 1 where e = g = a; = a3 = --- = 1, we have

o (5330 (2
= \2°34""/ T \n+1

1 1 1 1
Iy = <0""’O’k+1’k+2’k+3""> - <n+1>'

We can interpret all of this by saying that, at every stage of the construction of the parallel

and

circuit, Kirchhoff’s current law is satisfied in the real realm, and therefore, for the infinite

network, Kirchhoff’s current law is satisfied in the hyperreal realm.
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4b. An infinite parallel circuit of Norton branches: Let us reverse our approach
now and start with an arbitrary nonstandard Norton branch consisting of a current source
H = (h,) = (h1,h2, hs,...) in parallel with a conductance G = (g,,) = (g1, 92,93,...). Set
J1=hq1 and jg = hg — by for k = 2,3,4,.... Then, H = Y 2,(jk). Also, set a; = g; and
ar = gk — gk—1 for k = 2,3,4,.... Then, G = Y 32 (ax). It follows that any nonstandard
Norton branch with the representation

n n

I =VG-H = <vn2ak - ij>

k=1 k=1
can be synthesized by the infinite parallel circuit of Figure 4, whose elements are images
of reals; it is understood that the conductances and the current sources in Figure 4 are
summed separately. As before, the order in which the elements are summed cannot be
altered in general if those alterations extend over infinitely many elements. In particular, it
is also understood that the infinite parallel circuit is built up through a sequence of finite
parallel circuits by introducing each pair of elements (ax) and (ji) a pair at a time in the
order of their subscripts.

4c. An infinite series circuit of resistances: The kind of circuit we now wish to
consider is a one-port consisting of a one-way infinite series circuit of resistances whose
infinite extremity is one of the port’s terminals. This is illustrated in Figure 5. The theory
of transfinite graphs justifies such a circuit [12, Sections 3.2 and 3.3], but under standard
analysis Kirchhoff’s voltage law may fail if the resistances are not appropriately chosen [12,
Section 3.4]. On the other hand, any hyperreal resistance R € *R can be synthesized by
an infinite series circuit of images of real resistances z; as follows. Let R = (ry,79,73,...).
Set 1 = vy and zx = vy — 1y for k = 2,3,4,.... Then, by (2), R = 322, (k).

Actually, all of the ideas we have discussed for infinite parallel circuits of conductances
carry over to the present case in a dual fashion. For example, in order to specify the input
resistance R uniquely, the infinite series circuit should be viewed as the result of inserting
the resistances z; into a finite series circuit one at a time, and the order in which this is
done may affect R; therefore, that order should be specified. Similarly, combining some of
the resistances before insertion may affect R. However, once these specifications are made,

the nonstandard Kirchhoff voltage law V = Y32, Vi will hold around the infinite series
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circuit, where the summation is defined by (3) and an equation dual to that of (22) occurs.
4d. An infinite series circuit of Thevenin branches: More generally, given any

nonstandard Thevenin branch with the representation V = IR — E, where V = (v,),
I = (iy), R = (rs), and E = (e,), we can set R = Y 32,(zx) as before and in addition
E =3%%2,(fx), where fi = e; and f; = e; —ex—; for k =2,3,4,.... Thus,

n n

V =IR-E = <in2zk - ka>.

k=1 k=1
This expression is realized by an infinite series circuit whose elements are images of reals;
this is illustrated in Figure 6. Here too, it is understood that the infinite series circuit is
built up through a sequence of finite series circuits by introducing each pair of elements
(zx) and (fi) a pair at a time in the order of their subscripts.

4e. An infinite binary tree with terminating resistances: Consider the infinite
resistive binary tree T connected at infinity through 1-nodes to 2% many resistors of value
r. Figure 7 illustrates this network. The resistors at the kth level of the tree all have the
same value ri. What is the input resistance R between nodes ny and n,?

Since there are no restrictions on r and the 74, this question can only be answered
through a nonstandard analysis. To do so, we must first specify the order in which the
network was built up. Let us assume that this was done through a sequence {T,}32, of
finite binary trees T, of n levels ending in 2" many resistances. It follows that the currents
in each level of every T, are all the same, and therefore the same is true for the infinite
binary tree T'. At each step of this construction, let us drive the network with a constant
current source h; thus, the infinite network will be driven by the hyperreal current source
(h). By the symmetry of the infinite network, the current in each resistor (rg) is (h)/(2¥)
and the current in each resistor (r) is (h)/(2"). (Remember that (2%) = (2k,2% 2k .. )
whereas (2") = (2,4,8,...).) Now, the sum V of the voltages along any path from node n,
to node ny is V = (30, rxh/2) 4 (rh/2"). Thus,

Vv r T
e- g - (F S )

k=1

_(r,nr n r2r n r 73
'<2+2’4+2+4’8+2+4+8"”>’
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The reason we have presented this example is that it does not fit into the class of “finitely
constructible” one-ports, which we will be introducing in the next section. By definition,
the finitely constructible one-ports have internally no more than countably many branches.
Even though the network of Figure 7 is constructed out of a sequence of finite circuits, the
final result has uncountably many branches. The difficulty here is that no single terminating
resistor in the final result can be identified with a particular terminating resistor of an
intermediate finite circuit. Such an identification is essential for the finitely constructible
one-ports. Note also that the symmetry in resistance values was essential to our analysis;
without such symmetry, the infinitesimal currents in the terminating resistors are difficult
(impossible?) to determine.

4f. Other one-ports: Nonstandard one-ports can be constructed out of other infinite
circuits by using a sequences of finite subcircuits that “fill out” the infinite circuits. This is

done in the next section in two different ways.

5 Finitely Constructible One-Ports

Henceforth, we will always assume that every standard branch has a positive resistance.
Thus, every branch can be converted either into the Norton form of Figure 2(a) with g; > 0
or into the Thevenin form of Figure 2(b) with r; > 0. This prevents the occurrence of a node
incident only to current sources that do not satisfy Kirchhoff’s current law; it also prevents
the occurrence of loop containing only voltage sources that do not satisfy Kirchhoff’s voltage
law.

We shall now show how some more general kinds of internally infinite one-ports can be
taken as the final result of a sequence of internally finite one-ports. We have two versions
of this.

5a. Internally infinite one-ports constructible from opens: Let M be a one-
port, which is internally a countably infinite, 0-connected 0-network (in the terminology of
[12]); ny and ny will be the nodes of M that serve as the port terminals. 0-connectedness is
the same as the ordinary connectedness of customary graph theory. That M is a 0-network

means that there are no connections at infinity, that is, there are no nodes of ranks larger
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than 0 (again in the terminology of [12]). Thus, M has no infinite loops. In general, M will
have infinite nodes (i.e., nodes with infinitely many incident branches). We may say that
M is “finitely constructible from opens” because of the following construction.

To open a branch b will mean that, with respect to a Norton representation (Figure
2(a)), the branch’s conductance g, current source h, and current ¢ are all set equal to 0:
g =h=1=0. Since ¢ + h = gv, it follows that the branch’s voltage v is indeterminate. We
shall arbitrarily set v = 0 when b is opened. This will not affect the validity of the following
arguments. With regard to the conditions ¢ = h = ¢ = 0, the same result can be obtained
simply by deleting the branch.

Let us number the branches of M with the indices k¥ = 1,2,3,... . Also, for each
n=123,...,let M, be the one-port obtained from M by opening every branch b; with
k > n but leaving by unchanged when 1 < k < n. We shall think of M,, as having the
same infinite graph as that of M but with branch values as stated. Thus, M, may have
one or more isolated nodes ng whereby all the branches incident to ng have been opened. In
fact, the terminal nodes ny and n; may be isolated for some sufficiently small n. Moreover,
the finite-subnetwork M;, of M induced by those branches b; (k < n) that have not been
opened at some step n may have many components.

Now let the port terminals 1y and n; beexcited by an external branch bg in the Thevenin
or Norton form (Figure 2); in this case, we allow by to be a pure voltage source eg (with
ro = 0) or a pure current source hg (with go = 0). Whatever be the source value eg € R
or hp € R and whatever be n € N, a standard nodal or fundamental-loop analysis can be
applied to M, U bg to obtain a unique voltage vk, and a unique current i, for branch by
for each k = 0,1,...,n. For each fixed n € N and for any (finite or infinite) internal node
ng in M,,, Kirchhoff’s current law in the form E(no) tix, = 0 will be satisfied — even at
the isolated nodes of M,,. The same will be true at the port nodes when the current in by is
taken into account. On the other hand, with n € N still fixed, Kirchhoff’s voltage law will
be satisfied around those loops that remain within M, U by (i.e., those loops that pass only
through branches with indices no larger than n) — and trivially around those loops that

remain outside of M/, U bg (i.e., all branch indices for the loop larger than n). In general,
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Kirchhoff’s voltage law will not be satisfied for loops in M,, Ubg having branch indices both
larger and no larger than n.

For each branch b; of M U by, we have hereby assigned a sequence {ixn}5, of currents
ik,n and a sequence {vk,}5%, of voltages vi, and thereby a hyperreal current Iy = (ix )
and a hyperreal voltage Vi = (vg ). Moreover, it, = 0 and vk, = 0 whenever 1 < n < k.
Therefore, we can invoke (3) to obtain the hyperreal version of Kirchhoff’s current law at

every (finite or infinite) node ng of M U bg:

Yo kL = ) £(ika) = (0). (23)
(no) (no)

(The summation symbol and the choices of signs are the same as that for (16).)
In the same way, we also have established the hyperreal version of Kirchhoff’s voltage

law around any loop L of M U bg:

Ein = Zi(”km) = (0). (24)
(L) (L)

(The summation symbol and the choices of signs are the same as that for (17).) This is
because there are only finite loops in M U bg since M has no nodes of ranks larger than 0
(i.e., has no connections at infinity). Thus, for each fixed loop L, Kirchhoff’s voltage law
will be violated only for finitely many indices n. The set of those n has measure 0, whence
(24).

Finally, we can apply either the standard Thevenin theorem or the standard Norton
theorem to M, to get the components of a hyperreal Thevenin representation Vo+Eo = Rolp
or a hyperreal Norton representation Iy + Ho = GoVy at the port terminals n; and n; of
M; here, Go = Ry ! and Eg = —RoH,. Note that a different numbering of the branches of
M by the indices k¥ = 1,2,3,... will lead in general to different hyperreal representations.
To be sure, there are special cases, such as the infinite parallel circuit of identical resistors,
for which the representation is independent of the numbering.

5b. Internally infinite one-ports finitely constructible from shorts: This time
let M be a one-port, which internally is a countably infinite, v-connected v-network for some

natural number v and whose ordinary 0-nodes are all of finite degree. Again, n; and n;
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will be the port terminals of M. The precise definition of a v-connected v-network is given
in [12, Chapter 5]. Let us merely say here that a v-network is obtained by first connecting
0-networks together at their infinite extremities to get a 1-network, then by connecting 1-
networks together at their infinite extremities to get a 2-network, and so forth through the
countable ordinals up to v. The connections at the infinite extremities are made through
p-nodes (i.e., generalized nodes) of ranks up to v. That M is v-connected means that every
two branches in M are connected through possibly transfinite paths passing through the
p-nodes. In general, M will have infinite loops. That a 0-node is ordinary means that it
is not part of a node of higher rank. We will apply Kirchhoff’s current law only to the
ordinary 0-nodes, and these we assume are all of finite degree. In this case, we may say
that M is “finitely constructible from shorts” again because of the following construction.

To short a branch b will mean that, with respect to a Thevenin representation (Figure 9),
the branch’s resistance r, voltage source e, and voltage v are all set equalto0: r = e = v = 0.
Since e + v = ri, it follows that the branch’s current ¢ is indeterminate. This time we
arbitrarily set ¢ = 0 when b is shorted. This too will not lead to any difficulties.

After numbering the branches of M by k = 1,2,3,... and fixing n € N, let M,, now
be the one-port obtained from M by shorting every branch by with k¥ > n but leaving b
unchanged when 1 < k < n. Here too, we think of M,, as having the same infinite graph as
that of M but with the stated branch values. This time M/, will denote the connected finite
network obtained from M, by coalescing into a single node every maximal set of nodes that
are connected by paths of short circuits in M,,, a different coalesced node for each maximal
set.

Let the port terminals n, and n; be excited by an external branch by in the Thevenin
or Norton form (Figure 2); here too, we allow by to be a pure voltage source ep or a pure
current source hg. Whatever be g € R or hp € R and whatever be n € N, a standard nodal
or fundamental-loop analysis can be applied to M/, Ubo to obtain a unique voltage v, and
a unique current iy, for the kth branch b, where k = 1,...,n. For each finite or infinite
loop L in M, U by, Kirchhoff’s voltage law will be satisfied around L. However, Kirchhoff’s

current law may not be satisfied at any node of M, U by having incident branches with
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indices both no larger than and larger than n.

Once again, we have a sequence {ix ,}52, of currents and a sequence {vg }52, of volt-
ages for each branch b; of MUbg and thereby a hyperreal current I = (ix ) and a hyperreal
voltage Vi = (vg,n). Here too, iy, = 0 and vk, = 0 whenever 1 < n < k. So, we can invoke
(3) to get the hyperreal form of Kirchhoff’s voltage law (24) around every (finite or infinite)
loop L of M U bg. Similarly, we have established the hyperreal form of Kirchhoff’s current
law (23) at every ordinary 0-node ng of M U bg. This is because we are now assuming that
all ordinary 0-nodes of M are of finite degree. Thus, for each node ng, Kirchhoff’s current
law can be violated at ng for only finitely many n.

As before, by the standard Thevenin or Norton theorem applied to M/, we obtain the
components of the hyperreal Thevenin representation Vo + E¢ = Rolp or equivalently the
hyperreal Norton representation Iy + Hy = GoVp for M at its port terminals n; and n,.
Here again, these representations may depend upon the order in which the branches of M
are numbered.

5c. Internally infinite one-ports with no infinite nodes and with no specifi-
cations at infinity: Finally, let us note that some internally infinite one-ports are both
finitely constructible from opens and finitely constructible from shorts. For example, this
is the case for a one-way infinite ladder network whose connections at infinity (i.e., whether
there is an open or a short at infinity) has been left unspecified. In this case, the procedure
of Subsection 5a will imply an open at infinity and that of Subsection 5b will imply a short
at infinity. Two different hyperreal representations for the one-port may thus be obtained
depending upon which procedure is followed. (For certain branch values, this is even so
under a standard analysis [12, Example 1.6-4].) In general, no infinite electrical network is

completely specified until its connections at infinity are stipulated.

6 Conclusions

By combining the results of Sections 3, 4, and 5, we can draw the following conclusions.
Given any standard infinite network N, whose every branch has a positive resistance, and

having chosen a measure m according to Conditions 2.1, we may be able to partition N into
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finitely many one-ports and then analyze the interior circuitry of each one-port by applying
Kirchhoff’s laws and Ohm’s law to a sequence of finite networks arising from either opens of
shorts in order to find hyperreal solutions to that circuitry. In particular, we can obtain a
hyperreal Thevenin or Norton representation for each one-port at its port terminals. Then,
a nonstandard nodal or fundamental-loop analysis applied to the finite circuit of hyperreal
one-ports will yield the hyperreal port voltages and port currents at all the one-ports of our
partition of N. These in turn determine all the hyperreal currents and voltages within the
one-ports, and the latter will satisfy nonstandard versions of Kirchhoff’s laws at all (finite
and infinite) ordinary nodes and around all (finite and infinite) loops.

Actually, the separate analyses of the individual one-ports followed by the analysis of
Section 3 can be combined into a single analysis as follows. After having partitioned N into
one-ports each of which is either internally finite or of the type discussed in Subsection 5a
or 5b, we can for each n € N make a standard analysis of the finite network obtained from
N by opening or shorting branches in accordance with the types of one-ports the branches
are in. This will yield the nth component of a representative for each hyperreal voltage or
current in N, and thereby the hyperreal voltages and currents throughout N. The latter will
satisfy nonstandard versions of Kirchhoff’s laws and Ohm’s law. Furthermore, those laws
determine in this way the hyperreal voltage-current regime for N. This is our conclusion.
Let us restate it as follows:

Let N be a standard countable infinite network whose every branch has a positive re-
sistance. Assume that N can be partitioned into a finite number of one-ports such that
each one-port is either internally finite, or internally infinite and finitely constructible from
opens, or internally infinite and finitely constructible from shorts. (The one-ports need not
be all of the same kind.) Then, for each choice of such a partitioning, for each choice of a
branch numbering within each one-port, and for each choice of the measure m, N will have
a nonstandard image in which a unique set of hyperreal branch voltages and currents satisfy
nonstandard versions of Kirchhoff’s laws and Ohm’s law. The nonstandard image of each
internally infinite, finitely constructible one-port is obtained from a sequence of internally

finite one-ports as stated in Section 5. Finally, the standard Kirchhoff’s laws and Ohm’s
po Y

26



law determine a unique set of currents and voltages throughout each finite truncation of
N obtained at each stage of the replacements of internally infinite one-ports by internally
finite ones and in this way determine the hyperreal voltages and currents throughout the
nonstandard image of N.

It is perhaps disconcerting that the hypérrea,l voltage-current regime depends upon our
choices of the partitioning of N into one-ports, of the numbering of the branches within
each one-port, and of the measure m. One might say that an infinite electrical network is
an abstraction that defies comprehension. On the one hand, standard analysis is simply not
delicate enough to force the satisfaction of Kirchhoff’s laws at all infinite nodes and around
all infinite loops. On the other hand, it appears that nonstandard analysis is overly delicate,
for it requires more specifications than is provided by just the graph and the element values
of an infinite network. The constructive approach to nonstandard analysis does resolve the
paradoxes about Kirchhoff’s laws, at least for certain infinite networks, but it may also
produce many different nonstandard images of a given infinite network. The circuit theorist
is free to choose among them.

Finally, let us comment on what has not been achieved. The sentences of symbolic
logic are of finite length and therefore cannot encompass an infinity of terms. As a result,
assertions concerning an infinity of real terms cannot in general be transferred into the
hyperreal realm. However, there are exceptions. The infinite series (2) and (3) do deal
with infinitely many hyperreals, but they do so through sequences of finite partial sums
(add columnwise in (3)). This is why we partitioned N into a finite network of internally
infinite one-ports and then dealt with each one-port through a sequence of finite circuits
obtained either by opening branches or by shorting them. Opening branches insures the
satisfaction of Kirchhoff’s current law at each finite stage of an infinite node, but it can fail
for his voltage law at finite stages of an infinite loop; hence, infinite loops were disallowed
when resorting to opens. Similarly, shorting branches works for the voltage law around
finite stages of infinite loops but not in general for the current law at finite stages of infinite
nodes, and so infinite nodes were disallowed in this case. How to proceed when every finite

partitioning of the network N results in at least one one-port having both infinite nodes
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and infinite loops remains an open problem.

Another open problem is the restoration of Kirchhoff’s laws for uncountable networks

like that of Subsection 4e.
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Legends for Figures

Figure 1. An infinite parallel circuit of 1 § resistors fed by a source branch consisting of
a 1 V voltage source in series with another 1 Q resistor. The input resistance of the

infinite parallel circuit is 7.

Figure 2. (a) A standard Norton branch containing both a conductance g; and an inde-
pendent current source h;. The orientation of the branch is from left to right,
and v;, ¢;, and h; are measured accordingly with the polarities shown. u; and

u; are node voltages.

(b) A standard Thevenin branch containing a resistance r; and an independent volt-
age source €. f 0 < r; < 00, if r; = gj'l, and if e¢; = ~r;h;, then this Thevenin
branch is equivalent to the Norton branch so far as terminal conditions are con-

cerned.

Figure 3. (a) The synthesis of an arbitrary G € *R by means of an infinite parallel circuit
of hyperreal images {ax) of real conductances ax. The order of insertion of the

conductances is taken to be the same as that of the indices £k =1,2,3,....

(b) The corresponding infinite parallel circuit of real conductances ar. Now, there

may be no real input conductance.

Figure 4. The synthesis of any hyperreal Norton branch, for which I = VG — H, as an
infinite parallel circuit of images of reals. Again, the order of insertion of the elements

is taken to be the same as that of the indices k = 1,2,3,....

Figure 5. The synthesis of an arbitrary R € *R by means of an infinite series circuit of
hyperreal images (z;) of real resistors zx. The order of insertion of resistors is that

of the indices £ = 1,2,3,....

Figure 6. The synthesis of any hyperreal Thevenin branch, for which V = IR — E, as an
infinite series circuit of images of real. Elements are inserted in the order of their

indices k£ = 1,2,3,....
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Figure 7. An infinite binary tree connected at its uncountably many infinite extremities
to resistors. At each horizontal level, the resistance values are all the same. The entire

circuit is fed by a current source h.
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