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HYPERREAL TRANSIENTS IN TRANSFINITE RLC
NETWORKS

A.H. Zemanian

Abstract — Up to the present time, there have been no transient analyses of RLC
transfinite networks. Standard analyses of transfinite networks have been restricted to
purely resistive ones. In this paper, it is shown how nonstandard analysis can be used to
examine the transient behavior of transfinite networks having lumped resistors, inductors,
and capacitors. To do so, the time line is expanded into the hyperreal time line, and the
transients obtained take on hyperreal values. It is also shown how the diffusion of signals
on artificial RC cables and the propagation of waves on artificial RLC transmission lines
can “pass through infinity” and penetrate transfinite extensions of those cables and lines.
Less precisely but more suggestively, we can say that diffusions and waves can reach—with
appreciable values—nodes that are transfinitely far away from their starting points, but
that it will take infinitely long times in order to get there.

KEY WORDS: hyperreal transients; hyperreal time line; transfinite RLC networks;

nonstandard analysis

1 Introduction

All the analyses so far of transfinite electrical networks have been restricted to the “resistive
case,” that is, to the case where the elements are (linear or nonlinear) resistances and also
independent voltage and current sources (see [9] or [11] and the bibliographies therein).
Moréover, except for two recent papers {12], {13], those analyses were standard—employing
only the real numbers; as a result, a variety of restrictions had to be imposed on such
networks in order to ensure the existence of voltage-current regimes. These difficulties

can be completely overcome by using instead nonstandard analysis. Indeed, by allowing



hyperreal voltages and currents, all restrictions on the transfinite networks can be removed
except for the property of restorability, which avoids a certain kind of graphical pathology
(see [12, Theorem 5.3] or {13, Theorem 4.3]).

The purpose of this paper is to show that nonstandard analysis also allows us to intro-
duce reactive elements into transfinite networks and to establish transient behavior, wherein
voltages and currents are hyperreals depending upon hyperreal time. For instance, we show
in Sec. 8 that an artificial wave produced by a unit step of voltage applied to the input
of a lumped RLC transmission line can “pass through infinity” and continue on through
transfinite extensions of that line during unlimited hyperreal times.

To understand this paper, some knowledge of nonstandard analysis and of transfinite
graphs is needed. In the following, we will provide enough definitions and explanations to
make our use of nonstandard analysis comprehensible. For tutorials on this subject, one
might refer to [3] or [4] or to the substantial textbook [2]. There is some divergence in
terminology for nonstandard analysis; we follow that used in [2]!

As for transfinite graphs and networks, one may refer to either of the books [9] or [11]

or to the tutorial/survey article [10].

2 Some Elements of Nonstandard Analysis

In this section we point out some definitions and results from nonstandard analysis without
proving anything. The basic idea is the following: Let K and R, denote respectively the
real line —co0 < £ < oo and the nonnegative real line 0 < z < c0. These can be expanded
into the “hyperreal line” "R and the “nonnegative hyperreal line” "R, by using equivalence
classes of sequences of real numbers as determined by a chosen “nonprincipal ultrafilter”
F. Each such equivalence class is a “hyperreal number.” It is convenient to refer to real
numbers simply as “reals” and to hyperreal numbers as “hyperreals.” We will use boldface
notat.ion for hyperreals in order to distinguish them from reals.

More specifically, let N = {0, 1;2, ...} be the set of all the natural numbers. A non-

principal ultrafilter F on N is a collection of nonempty subsets of IV satisfying the following

'Except for the notation of a hyperreal: We write (in) as in [4], whereas [i,] is used in [2].



axioms:
1.If A,B¢e F,then ANB € F.
2. f Ac Fand AC BC A, then B¢ F.

3. For any A C N, either A € F or A° € F but not both. Here, A° = IV\ A denotes the

complement of A in IV.
4. No finite subset of A/ is a member of F.
As a result of these assumptions, we have the following properties:
a. ¢ F and IV € F, where @ denotes the emptyset.

b. If {Ay, As, ..., Ax} is a finite collection of mutually disjoint subsets of F, then no more
than one of them is a member of . If in addition Uf=1A]~ = IV, then exactly one of

the A; is a member of F.
c. Every cofinite set (i.e., the complement of a finite set) in IV is a member of F.

d. F is a maximal filter in the following sense: A proper filter on IV is by definition a
collection G of subsets of IV with @ ¢ G and satisfying Conditions 1 and 2 above.
There is no proper filter that is larger than F in the sense that F is a proper subset
of G. On the other hand, for each proper filter G, there is an ultrafilter F having G

as a subset (possibly, G = F).

There are many nonprincipal ultrafilters on IV. Let us choose and fix our attention on
one of them, say, F. Also, let {z,}22, and {y,}32, be two sequences of real numbers. We
call these sequences equivalent modulo F—or simply equivalent when a chosen and fixed
F is understood—if {n € N: z, = y,} € F. This is truly an equivalence relation. As a
result, the set of all sequences of reals is partitioned into equivalence classes, each of which
is defined to be a hyperreal. Each member of an equivalence class is a representative of

that hyperreal, and that hyperreal is denoted by x = (z,) or x = (z1,z2,23,...), where

{zn}32, is any such representative. Every real z € R has a hyperreal version (z,z,z,...).




In this way, we view R as being a subset of the set *R of all hyperreals, in which case it is
convenient to use the same symbol for the real and the hyperreal. For example, 2 is a real,
and 2 also denotes the corresponding hyperreal (2,2,2,...).

If a condition depending upon n holds for all n in some set F' € F, we will simply say
that it holds “for almost all »” or simply “a.e.”.? For example, the hyperreals x = {z,) and
¥y = (yn) are defined to be equal (i.e., x=y)if {ne N:z, = yn} = F € F, and we say in
this case that z,, = y,, a.e. Furthermore, addition, multiplication, inequality, and absolute
value are defined componentwise on the representatives of hyperreals. That is, if x = (z,,)
and y = (y,), then x +y = (2, + y») and xy = (znyn). Also, x < y means z, < y, a.e.,
and x < y is defined similarly. Furthermore, |x| = (|z,|). Finally, *R, will denote the sét
of all nonnegative hyperreals: x = (z,,) €* R4 if and only if 2, > 0 a.e.

The hyperreal (z,,) is called infinitesimal if, for every positive real ¢, we have {n € IV:
|z,| < €} € F, thatis, if |z, < € a.e. Also, (z) is called unlimited if |z,| > € a.e. for
every positive real e. Thus, the reciprocal (z;;!) of an infinitesimal (z,) is unlimited, and
conversely. A limited hyperreal is one that is not unlimited. Thus, x = (z,) is limited if and
only if there is a ¥ € R4 such that |z,]| < 7 a.e. A hyperreal that is neither infinitesimal
nor unlimited is called appreciable. Thus, (z,) is appreciable if, for every € and v with
0 < € < v < oo, we have that € < z, < 7 a.e. Around each real x = (z,z,z,...) in *R,
there is a set of hyperreals y = (y1,¥2,¥3,...) that are infinitesimally close to x (i.e., |x —y]|
is infinitesimal for each such y). The set of such hyperreals is called the halo of x, and x is
called the shadow or standard part of every y in that halo.

Since every cofinite set is a member of every nonprincipal ultrafilter, any of the adjec-
tives: infinitesimal, appreciable, limited, and unlimited holds for x = (z,) whenever the
corresponding inequality on z, holds for all n in a cofinite subset of IV. Moreover, we are
free to change the values of z,, in x = (z,,) for all » in any subset of IV not in F; this will

not alter x.

2The abbreviation “a.e.” stands for “almost everywhere”. Although brief and convenient, “a.e.” is rather
a misnomer, for the set of those n for which the condition holds can be a very small subset of V.



3 Hyperreal Transients on the Hyperreal Time Line

When discussing hyperreal transients, we will take the hyperreal time line to be "R, and
t = (t,) € *Ry will be hyperreal time. Thus, t = (n) is an example of an unlimited point
in hyperreal time. Arbitrarily large unlimited time points exist in *R4. Thus, we can view
the hyperreal time line as starting at 0, passing through the infinitesimals, then through
the appreciable hyperreals (whose shadows comprise the conventional time Iirie), and finally
through the unlimited hyperreals (infinite values of time). Any unlimited time point is an
upper bound on all the appreciable time points, but there is no upper bound on the set of
unlimited time points. |

Both *R and *R, are “internal sets.” More generally, if A, is a subset of R for each n

(possibly, A, = R), then the subset (A,) of *R, defined by
(zp) € "Rif andonly if {n € N:2, € A,} € F,

is called an “internal set”; it is a subset of *R [2, page 126].

Next, let {fn}52, be a sequence of standard (i.e., conventional, real-valued) functions
mapping Ry into R. Then, the *R.-valued function f = (f,) can be defined on *Ry by
setting

f(t) == (fulta))y t=(ta) €™ Ry.
Similarly, another sequence {g,}5, of standard functions mapping R, into R is taken to
be equivalent to {f,}32, if g = fu a.e. (ie,, {n € N: f, = g,} € F). As before, f = (f,)
denotes the equivalence class of all such equivalent functions. We will view such an f as a
hyperreal transient defined on the hyperreal time line.

More generally, if each f, has a domain A, C R, then (f,) is an “internal function”
f mapping the internal set (A,) C "R into *R; it is defined by (f»)((z.)) = (fa(zn)) [2,
pagel47].

As an example, let
fO(t) = 1, fn(t) =1- e—-t/n, te R+a n=1,2,3,...

For n > 0, each f, is a strictly increasing function with f,,(0) = 0 and lim;— fu(t) = 1.

Then, for f = (f,), we have f(t) = (1 — e~!»/*). The hyperreal function f is strictly



increasing; indeed, if t = (t,) < x = (z,), we havet, < z, a.e. and l1—e~tn/n < ] —e=2n/n
a.e., and thus f(t) < f(x). Furthermore, f(t) is a positive infinitesimal when t = (t,) is

positive and limited; indeed, 0 < t, < T a.e. for some fixed real T € R, and therefore
0 < fulty) < 1—¢eTIn o 0, n — oo,

Thus, on the limited hyperreal time line, f(t) increases but remains infinitesimal. However,
on the unlimited hyperreal time line, f(t) continues to increase and eventually increases
through limited hyperreals but remains less than 1; indeed, we can choose t,, such that t,/n

approaches any positive real z so that 1 — e~tn/™ approaches 1 — €®.

4 Nonstandard Versions of Restorable Transfinite Graphs

For finite RLC networks, our use of nonstandard aﬁalysis is not needed; standard analysis
certainly serves well enough. But, for many conventionally infinite RLC networks and for
all transfinite RLC networks, nonstandard analysis provides for the first time a means of
establishing and examining transient behavior. However, certain pathological transfinite
networks do not (as yet) have nonstandard versions; but, the “restorable ones” do. Let us
briefly explain what “restorability” means, and refer the reader to {12, Sec. 5] or to {13,
Sec. 4] for a thorough discussion.

Let G¥ be a transfinite graph of rank v having countably many branches.> We can
“open” a branch simply by removing it from G¥, and we can “short” it by removing it and
then coalescing its two nodes into a single node. This works even for transfinite nodes.
Furthermore, we can render G into a finite graph G, as follows: Each transfinite node n” is
a set of extremities (called “tips”) of transfinite paths that reach that node. We can short
portions of such paths to eliminate all such tips in n7, rendering n” into a conventional
node. We can then open enough branches to obtain the finite graph G,. Moreover, we can
repea;tedly generate in this way an expanding sequence {Gn}3%, of finite graphs such that
G, is a subgraph of G, 41 for each n. We can get from G,, to G,41 by restoring finitely many

branches. If it is possible to choose {G,}32, such that the restoration of all the branches

3See either of [9, Chap. 2] or [11, Chap. 2] for a discussion of transfinite graphs.



produces the same connections between tips as those in G¥, we say that G¥ is “restorable.”
Necessary and sufficient conditions for G¥ to be restorable are given in [12, Theorem 5.3]
and [13, Theorem 4.3].

Actually, many such sequences can be generated depending upon how we open, short,
and restore branches. Two such sequences {G,, }32, and {H,}52, will be called equivalent if
Gn = M, a.e.® In this way, we partition all such sequences into equivalence classes (modulo
F), and each such class is taken to be a nonstandard version G} of G¥. G will have many
such nonstandard versions.

As-an example, consider the transfinite graph of Fig. 1(a) consisting of two one-way-
infinite grounded ladders, with the first ladder connected at its infinite extremity to the
input of the second ladder. That second ladder does not have anything connected to its
infinite extremity. The small circles denote transfinite nodes of rank 1. The bottom ground
line is an ordinary node of infinite degree.® v

To obtain a finite graph, we short and open branches as indicated in Fig. 1(b). The
shorted branches are indicated by heavy lines, and the opened branches by gaps. The other
branches are indicate as resistors, but later on we will allow them to be RLC one-ports.
This leaves a finite graph, say, Go. We can generate a sequence of finite graphs Go,G;,Ga, . ..
by restoring the shorted and opened branches one at a time, proceeding from left to right
and alternating between the first and second ladders. Upon completion of this infinite
process, we will have restored the transfinite graph of Fig. 1(a). The sequence {G,}2, is a
representative of an equivalence class G = (G,,) (modulo a given F) of sequences of finite
graphs. G is a nonstandard version of G*. Other nonstandard versions can be obtained by
restoring branches two at a time, or three at a time, and so forth—or by varying the way

the branches are initially opened and shorted.

*Here, equality means that G, and H,, are graphically isomorphic.
At this point, we are using the resistor symbol merely to distinguish a branch from a short; the solid
lines along the bottom path are shorts that comprise the said ordinary node.



5 Nonstandard RLC Networks

Starting with a restorable transfinite graph G¥ of rank v, we can construct a nonstandard
graph GY. as stated above. We can then obtain a nonstandard transfinite RLC network
NY. by assigning resistors, inductors, capacitors, and independent sources to the branches
of G%. (In this paper, we allow neither dependent sources nor mutual coupling between
brancheé.) Thus, N¥, is an equivalence class (N} (modulo F) of sequences of finite RLC

ns

networks, where {N%}22, is a representative sequence of finite RLC networks corresponding
to the representative sequence {G,}5%, for the nonstandard graph GJ of NY . It will be
undérstood that the electrical parameters have fixed values independent of 7.

Then, with the sources being functions of time ¢ € R, and with initial conditions
assigned to the inductor currents and capacitor voltages, we obtain a transient regime of
real values in each N,,. For instance, for each branch b, we have a sequence {3, (1)}, of
branch currents, where 7, ,(t) is the current in b as a branch in N,. Thus, for each fixed
real t € Ry, (ipn(t)) is a hyperreal current in b with {4, (¢)}52, being a representative
sequence for it. (If b has not yet been restored in N,,, we can assign any value to % ,(t)
without affecting the hyperreal current for b.)

More generally, we can take time to be hyperreal as well: t = (t,) € *Ry4. Then,
(t6n(tn)) € *Ry4 is a hyperreal current for the chosen t € *Ry; it is defined even for
unlimited (i.e., infinitely large) t. More particularly, *R; = (A,) is an internal subset of
*R, wherein A, = R, for each n [2, page 126], and i, = (i) is an internal function [2,
page 147] mapping t = (t,) € "R, into i(t) = {ip»(tn)) € *R. Hence, 1;(t), where t €* R,
is well-defined. In fact, i, is an internal function defined on any internal subset of R, such
as the set A = ([0, €,]), where ¢, is any real number for each n. In this way, that branch
current i, is a nonstandard transient mapping the hyperreal time line *R, into the set *R
of hyperreals. |

In the same way, we have a nonstandard trafxsient for each‘branch voltage and for

each node voltage with respect to a chosen ground node. The set of all these nonstandard

6Still more generality can be obtained by a.lIoWing those parameters to be hyperreals (i.e., by letting the
parameter values vary with n). We will not pursue that possibility in this paper.



transients is a nonstandard transient regime for Ny.

In the rest of this paper, we shall illustrate these ideas by examining an artificial (i.e.,
lumped) RC cable and an artificial RLC transmission line that extend transfinitely (“spa-
tially beyond infinity,” so to speak). We will find that nonstandard artificial diffusions and
waves can “penetrate infinity” and can pass on to transfinite extensions of artificial cables

and lines during unlimited hyperreal times with appreciable hyperreal values.

6 A Transfinite RLC Ladder

Let us now consider a transfinite ladder in the form of Fig. 1(a), where now every branch is
a one-port consisting internally of finitely many resistors, inductors, and/or capacitors, the
series branches all being the same and the shunt branches all being the same but in general
different from the series branches. The only source is a voltage source e(t), t € Ry, at the
input of the ladder. Upon applying the Laplace transformation, we obtain the transformed
circuit of Fig. 2(a), where Z denotes an impedance s — Z(s), Y denotes an admittance
s+ Y(s),and E:s+— E(s)is the transformed input voltage; here, s is a complex variable.
Later on, we set £ = ZY. By an el-section we will mean a series Z followed by a shunt Y.

To obtain a particular nonstandard version of this network, we short and open branches
as shown in Fig. 1(b) to obtain a finite ladder and then restore el-sections two at a time, one
for each conventional ladder, proceeding from left to right in each ladder. One stage of this
restoration process is shown in Fig. 2(b), where the natural numbers j = 0,1,...,m,m +
1,...,2m serve as indices for the nodes that have restored incident branches.

Given Vg = E, we wish to determine the resulting node voltages V. Perhaps the easiest
way of doing this is to set V;, = 1, compute the V; working from right to left using
Kirchhoff’s and Ohm’s law to get finally Vp, and then multiply all the obtained V; by E/Vj
to get the node voltages corresponding to the input voltage E. In the following, I; is the
curreﬁt in the series impedance flowing from node j —1 to node j. So, upon setting V,,, = 1

and z = ZY, we get (with Qo = 1)

Ly =YVoy =Y = YQO

Vzm_l(.’b‘) =ZY+l=z+1= Pl(.’l?)



I2m—](x) = YVZm—l(x) + I2m(37) = Y(x + 2) = YQ](.'E)
V2'm-—2(x) = ZI2m—1(x) + ng_](.’E) = g? +3z+1= P)(.’L‘)
12m-2(z) = YV?m—?(x) + 12171—1(-7:) = Y(II)2 + 4z + 3) = YQ‘Z(-'E)

Continuing in this fashion, we obtain the following recursive equations, wherein k = 1,2,...,2m.

Po(z) =1, Qo(z)=1
Pi(z) = 2Qx-1(z) + Pr-1(z)
Qi(z) = Pi(z) + Qr-1(2)
Vom=1, I, =Y
Vam-k(z) = Pr(z)
Ipm-i(z) = YQu(2)
Both P; and Qj are polynomials in z of degree k:
Pi(z) = Pro+pra® + .-+ prp—12"1 4 prpzt

Qi(r) = ko + @1z + ...+ Gk k1 z*=1 4 qk,kwk
It follows from these recursive equations that the first and last coefficients are pyo = 1,
Pkk =1, qko = k + 1, and grx = 1. (Values for other coefficients up to £ = 10 are listed
in Table 1 of [8, pageb 605].) Thus, with j = 0,1,...,2m being the indices for the nodes as
in Fig.2(b), we have j = 2m — k (with £ = 0 when j = 2m). Then, the voltage transfer
function from node 0 to node j is

Vi(@) _ Vem-i(z) _ Puz) _ _ l4peaz+...+pep-12tt +oF
E Vo(:l:) P2m($) 1 + P2m % + ...+ p2m,2m_1$2m_1 + 2:2m,

and the transfer admittance from the input voltage to the current in the jth series branch

(1)

is
Li(z) _ Dm-i(z) _ YQu(z) _ Y(k+1+gaz+...+gr-12"" +25)
E VO(z) PZm(z) : 14 P2m T +...+ I’Zm,Zm-laﬂmm1 + z2m )

7 A Nonstandard Transfinite Artificial Cable

As our first example of a nonstandard transient regime on a transfinite network, we examine

a transfinite artificial cable consisting of two conventional one-way-infinite artificial cables

10



in cascade, one being a transfinite extension of the other, as shown in Fig. 2(a). The cables
are “artificial” because they consist of lumped elements. Each series element is a resistor of
value r, and each shunt element is a capacitor of value c. Thus, z = rcs. Let us assume that
the source at the input provides a unit-step of voltage, so that E(s) = 1/s. Consider the
standard voltage v;(t) at node j (1 < j < 2m) for the truncated finite ladder of Fig. .2(b).
It follows from (1) and the initial-value theorem that the node voltages have, for ¢t — 0+,
the asymptotfc values

1t
)~ —=+=, j=0,...,2m. 2
v](t) (TC)J ]!, J m ( )
In fact these asymptotic expressions are also bounds on the v;(t) for all t € R, [6]:

1 v
loj(t)] < OIS (3)

L)

For each 7, this bound holds for all truncations beyond node j of the transfinite ladder.
Furthermore, all the poles of Vj(s) are real and negative [5, page 332] except for a simple
pole at the origin due to the factor E(s) = 1/s. Consequently, we may use (1) and the
final-value theorem to write lim; .o v;(¢) = 1 (Which indeed is physically obvious).

Next, we argue that v;(t) is strictly monotonically increasing for all ¢ > 0. Indeed, the
voltage transfer function V;(s)/E(s) in the Laplace-transform domain can be written as a
product of the driving-point admittances and impedances, shown in Fig. 2(b), measured

toward the right:

V; I I, V. I, V;

E’-=—1-E-—l-—2-"—_1—-4=Y121Y2Z2---Yij. (4)
For each index i (1 < i < j), all the poles and zeros of Z; are simple and alternate along
the nonpositive real axis, with a pole at the origin and a zero at infinity [5, page 412]. As

for the product Y;Z;, we have
1

1+’

from which it follows that all the poles and zeros of Y;Z; are simple and alternate along

YiZ; =

the negative real axis; closest to the origin is a pole, not a zero. Also, Z;(s)Y;(s) tends to 0
as |s] — oo. Thus, the residues of the poles are positive, and the unit-impulse response of

Y;Z; is a finite sum of the form ZkK=1 ar e~?  where a; > 0 and p; > 0 for all k. So, upon

11



applying the convolution integral repeatedly according to the inverse Laplace transform of
(4), we can conclude that the unit-impulse response is positive for all ¢ > 0. It follows
that the unit-step response for v;(t) (i.e., with E(s) = 1/s) is continuous and strictly
monotonically increasing, as asserted.

This also true for the voltage v;(t) at the jth node of a one-way-infinite artificial RC
cable; namely, v;.,(t) is a continuous, strictly monotonically increasing function, starting
at t = 0 and approaching 1 as t — oo (see the Appendix). Moreover, [1, Formula 9.6.7]
implies that v;,(t) has the asymptotic form (2).

Let us now consider the hyperreal voltage transient at a fixed node of the nonstandard
transfinite artificial RC cable resulting from the restoration of el-secltions two at a time,
one for each of the two conventional ladders. That is, the restoration proceeds through the
finite ladders of Fig. 2(b) toward the transfinite ladder of Fig. 2(a).” Let us number these
restoration stages by n = 0,1,2,.... Thus, n = m, and we have 2m el-sections in Fig. 2(b).
When n = 0, we have only the source e(t), which again we take to be a unit-step of voltage.

Going to the nonstandard case corresponding to the stated restoration process, let v;(t)
be the hyperreal voltage transient at the jth node in the first ladder. Ast increases through
*R4, v;(t) does too; indeed, for 0 < t; = (t1,,) < t2 = (t2,,,), we have t; ,, < tp, a.e. and

Vin(t1,n) < vjn(t2,n) a.e., so that
0 < vj(t1) = (vin(t1,n)) < (vjn(t2n)) = vj(tz). (5)

When t increases through the positive infinitesimals, v;(t) also remains infinitesimal.

This follows directly from (3). Indeed, for any positive infinitesimal t = (t,), we have

Vi)l = (Josnlta)l) < ().

= (re)ij!
The right-hand side is infinitesimal.

On the other hand, as soon as t becomes appreciable, v;(t) becomes appreciable, too.
This follows from (2): Let w = (w,) be any positive infinitesimal. Thus, we can take

w, — 0+ as n — oo. Then, for v;(t) = (vj.(t,)) = w = (w,), we have from (2) that

"Let us emphasize that the nonstandard network depends in general upon the chosen restoration sequence.
This issue is explored at some length in [12].

12



t = (t,) = (rc)jj!(w,ll/j) is infinitesimal, too. This means that, as t increases through
the positive infinitesimmals and then becomes appreciable, v;(t) increases through all the
positive infinitesimals. By the permanence principle (see [2, page 137]), v;(t) also achieves
appreciable values. Indeed, let t increase throughout the internal interval (/,), where
I, = [0,¢] for each n and where € is any fixed positive real number. Then, v;({I,)) is
an internal interval {2, page 148] containing all the infinitesimals, and by [2, Theorem
11.9.1], v;j((I,.)) also contains appreciable values. Since this is so for every positive real ¢,
no matter how small, our assertion follows.

Furthermore, v;(t) is infinitesimally close to 1 (more specifically, 1 — v;(t) is a positive
infinitesimal), for all sufﬁcieﬁtly large unlimited t. Indeed, let us choose w = (w,) as a
postive infinitesimal, as before. Then, because of the continuity and strictly increasing
monotonicity of v;n, there is, for each n, a unique T, such that 1 — v;,(T},) = wy, and
0<1-9n(ts) <1 =29j.(Ty) forall t,, > T,. So, forall t = (t,) > T = (T,), we have
0<1-v;(t)<1-v;(T)=w, as asserted.

Altogether, the hyperreal transient v;(t) behaves much like the standard transient
Vj,00(t)-

However, for a fixed node in the second ladder, we have a different situation. Let that
be the pth node therein (0 < p < w). With respect to node numbering shown in Fig. 1(a),
that node’s index is w+p. Ast increases, so too does v, ,(t) (replace j by w+pin (5)). As
t increases first through the infinitesimals and then through all the appreciable hyperreals,
the hyperreal voltage v,4+,(t) remains infinitesimal, even for all appreciable t. This, too,
follows from (3) because now the number of el-sections preceding the node w + p increases
indefinitely during the restoration process. Thus, for any appreciable t = (), there is a
T € R, such that 0 < t, < T a.e. Then,

1 Tn+r
(reynte ' (n+ p)!

for almost all n. The right-hand side tends to 0 as n — oo, whence our assertion.

0 < vw+p,n(tn) <

On the other hand, as t = (t,) increases through the unlimited hyperreals, v 4+,(t)) =
(vw+pn(tn)) remains infinitesimal for a while but then increases through appreciable values,

eventually getting infinitesimally close to 1 but remaining less than 1. For instance, for
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t = (t,) and n > 1, we can choose

t7 n
= = [t p - D), (©)
Then, by (3) again,
(n+p-1)! 1
< = — 00.
|vw+P,n(tn)| - (n + P)' n+p -0, n o0

S0, Vitp(t) = (Vutpm(tn)) is infinitesimal. On the other hand, this choice of the ¢, corre-
sponds to an unlimited t = (¢,,), as can be seen from Stirling’s asymptotic formula for the
gamma function 1, page 257]. Indeed, the right-hand side of (6) is asymptotic to (n + p)/e
as n — 0. |

However, for sufficiently large unlimited t, v,4,(t) becomes appreciable. To see this,
let w € Ry be such that 0 < w < 1. Then, for each n, there is a unique ¢, such that
Vwtpm(ta) = w. By what we have already shown, t = (¢;) must be unlimited. Also,
Vatp({tn)) = (w) is appreciable. If we replace w by w, with w, — 1—, we get that
Vutpmltn) = wy — 1—. Thus, v(t) = (vuipa(ts)) is infinitesimally close to 1 for all
sufficiently large unlimited t, as before.

To summarize all this heuristically, let us first note that voltage transmission along an
artificial RC cable corresponds to a discrete version of diffusion. So, upon applying a unit-
step of voltage at the input to the transfinite artificial cable, we have, for appreciable values
of time, appreciable values of voltage artificially diffusing throughout the first ladder, no
matter how small appreciable time may be. However, the second ladder (the transfinite
extension) has only infinitesimal voltages, no matter how large appreciable time may be
and even for some initial unlimited values of t. It is only when hyperreal time becomes
sufficiently unlimitedly large that appreciable voltage diffuses into the second ladder. Fi-
nally, at each node of both ladders, the voltages become infinitesimally close to 1 for all
sufficiently large unlimited time. |

Similar results can be derived for transfinite ladders that are cascades of many infinite
artificial RC cables, even for higher ranks of transfiniteness. For any node, we need merely

choose (t,) as a sufficiently large unlimited hyperreal in order to get an appreciable voltage.
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8 A Nonstandard Transfinite Artificial Transmission Line

The arguments needed in this section are quite similar to those of the preceding one, and
therefore we will merely summarize most of them.

For this second example, we convert the artificial cable just considered into an artificial
transmission line by inserting an inductor / in series with each resistor 7. Thus, we now have
that z = (s + r)cs. With a unit-step of voltage applied at the input so that E(s) = 1/s,
consider the voltage v;(t) at the jth node of the truncated finite ladder of Fig. 2(b). In
general, v;(t) is not monotonic, although it may be if / is small enough. The initial-value

theorem and (1) yield the asymptotic estimate:

(1 1 i t—0 7
v]()NUC)—j"(z—jﬁ’ — 0+, (7)

which also happens to be a bound on the transient for all t € R, [6]:
iy
Ol < o5 T | ®)
Also, because of the presence of the series resistors, all the poles of the Laplace transform
V; of v;(t) are in the left-half s-plane [5, page 332] except for the simple pole at the origin
due to E(s). Thus, the final-value theorem can be applied to (1) to get v;(t) — 1 ast — oo.

Now let us restore el-sections as in the preceding section. At a fixed jth node in the
first ladder (0 < 7 < m) and with n = m as the index of the restoration procedure, we
have the hyperreal voltage v;(t) = (vj.(tn)) defined for hyperreal time t = (t,) € *R4. By
arguments similar to those given in Sec. 7, we have the following results:

It follows from (8) that v;(t) is infinitesimal when t is. The permanence principle cou-
pled with (7) shows that, as t increases through the positive infinitesimals and then becomes
appreciable, v;(t) also increases through the positive infinitesimals and then becomes ap-
preciable. But now, for sbme larger appreciable values, v;(t) might vary through 0 and its
halo because of the possible oscillatory nature of the v;,(%).

Finally, for all sufficiently large unlimited t, v;(t) is infinitesimally close to 1. For this
last assertion, we have to adjust some inequalities to account for the fact that v; may be

oscillatory. In particular, we choose w = (w,,) as a positive infinitesimal and choose T, as the
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minimum time for which |1 — v;,(t,)| < wy for all t, > T),. So, for all t = (t,) > T = (T3.),
we have |1 — v;(t)| < w.

Here, too, we can examine transients in the second ladder, something that could not
be done heretofore when only standard analyses of transfinite networks was available. As
before, let w + p denote the index of a fixed node in the second ladder (0 < p < w).
Also, as before, let us restore the transfinite ladder using two el-sections at each step n of
restoration, one for each ladder. Thus, n = m, again as before. For a limited hyperreal
t = (t.), Vutp(t) = (Vutpn(tn)) remains infinitesimal, as can be seen from (8) and an
argument similar to that in the preceding section. However, as t = (tn) increases through
the unlimited hyperreals, v,1,(t) remains infinitesimal at first but then increases through
appreciable hyperreal values and finally gets infinitesimally close to 1 for sufficiently large
hyperreal values of t. This, too, is argued as in the preceding section with some adjustment
of inequalities.

To summarize, the artificial wave propagates down the first ladder with appreciable
values for all appreciable values of time. However, it propagates into the second ladder with

appreciable values only for sufficiently large unlimited hyperreal times.

9 Conclusions

We have shown in Sec. 5 that transient analyses can be made for transfinite RLC networks
if nonstandard analysis is used. Such had not been done heretofore; standard analyses of
transfinite networks have always been restricted to purely resistive ones. As examples, tran-
sient analyses for a transfinite artificial cable and for a transfinite artificial RLC transmission
line are examined in Secs. 7 and 8.

Let us summarize our results more figuratively and succinctly: It is shown in this paper
that it is possible to “pass beyond infinity,” not only spatially along transfinite graphs—as
has been shown in prior works for purely resistive networks, but also temporally in RLC

networks during unlimited hyperreal time.
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Appendix

The voltage transfer ratio across one el-section of a one-way-infinite artificial RC cable is

is V;/Vj—1 = 1/(1 + r/Zy), where Z; is the characteristic impedance. By a customary

T N r
Zy = —— - —.
d 2 + (2) ¢S

manipulation, we have

So, with a = r¢/2, we get, after some manipulation involving the completion of a square,

Vi as+1—+/(as+1)2-1.
Vi

Then, for E(s) = i/s, we get

Il

Jos + 1= flas s 02 1]

By Formula 90 of [7, page 354], we get the following voltage transient at node j due to a

Vi(s) =

| —

unit step of voltage at the input:

t
vi(t) = /0 1 I (br) e~ dr

where I; is the modified Bessel function of first kind and order j and b = 1/a = 2/rc. I;(bt)
is positive for all t > 0, and I;(bt)/t is asymptotic to (b/2)’?~!/j! as t — 0+ for each j > 1.
(See page 374 et seq. of [1].) Thus, v;(t) is continuous and strictly monotonically increasing
for t > 0. We are justified in applying the final-value theorem. (See [7, Theorem 8.7-1] and
[1, Formula 9.7.1].) This gives limy—o vj(t) = lims—04 sV;(s) = 1. This establishes all the

properties of v; ,(t) asserted in Sec. 7.
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Figure Captions
Fig. 1.

(a) A transfinite graph consisting of two one-way-infinite grounded ladders in cascade.
| The small circles denote 1-nodes. The 1-node in the middle connects the infinite
extremity of the first ladder to the input of the second ladder. The upper nodes
are indexed first by the natural numbers 0,1,2,... and then by the transfinite

ordinals wywH+lw+2,...,w-2.
(b) A finite graph obtained by shorting and opening branches in the same way for
both ladders.

Fig. 2.

() A transfinite RLC network having the same graph as that of Fig. 1(a).

(b) The finite RLC network having the same graph as that of Fig. 1(b). Each V; and
I; is the Laplace transform of a time-dependent node voltage and branch current.
The Y; and Z; are driving-point admittances and impedances, respectively, for

the networks to the right of the places where the Y; and Z; occur.

19



()T *b1a
L/
AV >
2 2
- - - ——ANVY MWV—— W
c+m T+m o £ [4 T 0




()T "bt4a

Prael) G




(e)Z "PTa

J_Q

T t ! ! t

X X & X X
o ——-dzg log lg o __ 1z _1lg

t
X
1y

2]




[ —

[ e —

(a)ec
wg wg T+W T+W
A X Z X
I I
! R (N
Mn.LL Mﬁ.A._A._
Lz _lz e ___
EN>A||.. H+E>AIE

“b1a

*>— —_—




