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Abstract—Transfinite resistive electrical networks may (or may not) have operating
points, and, even when voltages and currents do exist within them, Kirchhoff’s laws may
not be satisfied everywhere. Moreover, rather severe restrictions have to be placed on such
networks in order to obtain such results because of the inability of standard calculus to
encompass certain interchanges of limiting processes. However, the comparatively recent
theory of nonstandard analysis has this ability. The idea of a nonstandard electrical network,
introduced in a prior work, is expanded herein to cover all transfinite networks that are
“restorable” in the sense that the network is taken to be the end result of an expanding
sequence of finite networks. Kirchhoff’s laws will always be satisfied in restorable transfinite
networks. Several transfinite networks are then examined under nonstandard analysis, and

explicit hyperreal currents and voltages are established for them.

Key Words: Transfinite networks, nonstandard networks, nonstandard graphs, hvperreal

voltages and currents, restorable networks.

1 Introduction

Nonstandard electrical networks were introduced in [24] to rectify the failure of Kirchhoff’s
laws in various infinite resistive networks. See [22, Sec. 1.6] or [23. Examples 5.1-6 and 5.1-7]
for several examples of this anomaly. The basic problem is that standard calculus does not
always allow the order of applying limiting processes to be reversed. Moreover, some severe
restrictions have to be placed ou the infinite networks in order to get convergent expressions
for the voltages and currents. Such, for instance, is the requirement of finite total power

generated or dissipated, but other restrictions are also used for the same purpose. See, for



example, [1] - 7], (8], [11], [19] - [23], [26].

However, nonstandard analysis can overcome these problems. For example, a finite
current source applied to an infinite parallel circuit of 1 §2 resistors results in a violation
of Kirchhoff’s current law under standard calculus, but the use of infinitesimal currents
in the parallel circuit restores Kirchhoff’s current law. Moreover, nonstandard analysis
allows us to reestablish Kirchhoff’s laws even when the currents and voltages are infinite
in size. It does these things by replacing the real-number system by a hyperreal-number
system, which is an enlargement of the former through the addition of infinitesimals and

1" Let us emphasize that these results are

other such entities of finite and infinite size.
simply unattainable via standard analysis. There is no way Kirchhoff’s laws can hold in
the examples of transfinite networks given below if only real numbers are used. On the
other hand, not only infinitesimal but also infinite voltages, currents, and powers become
distinguishable and explicit with hyperreal numbers—an advantage that is unavailable with
real numbers alone.

By a “nonstandard network” we will mean a conventionally infinite or transfinite re-
sistive electrical network having countably many branches whose voltages and currents are
hyperreals; in addition, the network is viewed as the end result of an expanding sequence
of finite networks (i.e., networks with finitely many branches). As was determined in [24],
it is not enough to specify just the graph and element values in order to uniquely designate
the nonstandard network. How the network is built up by connecting together branches
sequentially must also be stipulated. Indeed, the hyperreal branch currents and voltages
will depend in general upon the sequence through which the branches are appended and
inserted. Different sequences can lead to different hyperreal currents and voltages. even
when the resulting nonstandard networks have the same graph and element values.

The purpose of this work is to define this new class of nonstandard networks, to prove
they exist (i.e., they make sense), and to present some examples of them. The paper encom-
passes and generalizes the earlier work [24], which was overly complicated and too restrictive:

in contrast, the present work only requires that the transfinite network be “restorable.” as

'1t is conventional to say real instead of real number and hyperreal instead of hyperreal number.



defined in Sec. 5. We examine herein linear resistive networks, but our results extend imme-
diately to nonlinear resistive networks of the monotone type and to AC steady-state analysis
of linear RLC networks. Moreover, more complicated nonstandard analyses encompass the
transient behavior of transfinite RLC networks [27)].

Abraham Robinson introduced nonstandard analysis in a work [14] that makes essential
use of mathematical logic and is rather inaccessible to those unfamiliar with that subject.
Other expositions are based more upon mathematical analysis. See, for example, [9] and
[10]. Shorter introductions can be found in [12] and {13]. A brief summary of some basic
ideas of nonstandard analysis is presented in [24, Sec. II] and is more than enough for an
understanding of this paper. In the next section we will state those elements of nonstandard
analysis needed for a comprehension of this paper.

Most of the earlier applications on nonstandard analysis were aimed at showing that
it provided a simpler and more elegant means of obtaining results that are nonetheless
obtainable by standard analysis. However, nonstandard analysis provides much more; it
opens up areas of mathematical endeavor in which standard analysis is useless. This paper
is a demonstration of that fact. Standard analysis certainly works very well indeed for
finite networks. It also yields results, albeit highly qualified and restricted results, for
transfinite networks [23], [26], but nonstandard analysis enables far more general results
for transfinite networks. Indeed, nonstandard networks comprise an entirely new class of

electrical networks.

2 Some Elements of Nonstandard Analysis and Other Pre-
liminaries

Every hyperreal is an equivalence class of sequences of reals, as is indicated below. We will
always deal with any hyperreal by choosing a representative sequence of reals for it, that
is. by choosing one of the sequences in that equivalence class. An analysis then involves

manipulations of such sequences.? We are led to the use of representative sequences for

“An analog to this would be the use of a particular Cauchy sequence of rational numbers for a given
real number. (For example, a decimal representation of a real number is in fact such a Cauchy sequence.)
Then real numbers would be added, multiplied, etc. by adding, multiplying, etc. corresponding terms
in the Cauchy sequences. However, in nonstandard analysis, equivalent Cauchy sequences will in general



hyperreals because an infinite network is viewed herein as the end result of an expanding
sequence of finite networks. Any hyperreal voltage, current, or power in the infinite network
can then be represented by the corresponding sequence of voltages, currents, or powers in
those finite networks.

Furthermore, in nonstandard analysis, all sequences of real numbers are partitioned into
equivalence classes with respect to a chosen and fixed “nonprincipal® ultrafilter” F on the
set IV, where IV is the set of natural numbers: {0,1,2,...}. In particular, F is a set of
subsets of IV satisfying certain axioms [9, pages 18-19, 24]. Then, two sequences of real
numbers are considered to be equivalent modulo F or are said to agree for almost all n,
where n € N, if they agree on a subset of IV that is a member of 7. More particularly, the

real number sequences {r,}32, and {s,}52, are said to be equivalent modulo F if

n=
{neN:r,=s,} € F.

Each such equivalence class is a hyperreal, and * R denotes the set of all hyperreals. For our
purposes, the critical property is that every cofinite subset of IV (i.e., every subset containing
all but at most finitely many natural numbers) is a member of every nonprincipal ultrafilter
[9, page 19]. Thus, every hyperreal can be specified by specifying a sequence of real numbers
indexed by the positive integers. Just which hyperreal that is depends upon the choice of
F, but this need not be stipulated—as we explain below.

Correspondingly, two sequences of finite networks will be called equivalent modulo F
if there is a set ' € F such that for each n € F the corresponding finite networks
have the same graph and the same element values. In this case. we also say that the two
sequences of finite networks agree for alimost all n.* Such an equivalence class of sequences
of finite networks will be called a nonstandard network. (NU) denotes that equivalence
class, where {NO}% . is any one of the sequences of finite networks in the class. Here
too, we shall choose a particular sequence from the equivalence class of sequences of finite

networks and will analyze the members of that sequence in order to analvze the nonstandard

correspond to different, but infinitesimally close, limited hvperreals.

3 Also, called a “free ultrafilter.”

“By this “agreement” we mean that for each n € F we have a graph-isomorphism that preserves element
values.



network. Note that any finite network can be viewed as a nonstandard network by using a
sequence, whose every member is that finite network, as a representative of an equivalence
class of networks. However, our attention will generally be on some expanding sequence
of finite networks that fill out a given countably infinite network® in order to analyze the
corresponding nonstandard network.

Now, upon choosing such a sequence of networks, we determine a sequence for eacll
branch voltage or current in the infinite network. Just which hyperreal that sequence
represents depends upon the choice of F. In fact, since every cofinite subset of IV is a
member of every nonprincipal ultrafilter F, the choice of an expanding sequence of finite
networks will specify a nonstandard image of the infinite network for each choice of 7, in
general, a different image for a different choice of F. To repeat, the hyperreal voltages and
currents in a nonstandard network are not uniquely determined by choosing that expanding
sequence of finite networks; those hyperreals still depend upon the choice of 7. What can
we make of this nonuniqueness? Simply this:

Nonstandard analysis provides many different nonstandard images of a given countably
infinite network, each image determined by the choice of 7. Within each such image,
Kirchhoff’s laws will be satisfied with the use of hyperreal voltages and currents. Thus,
any nonstandard image will serve to insure the satisfaction of Kirchhoff’s laws. There is
no need to explicate which nonstandard image is being used. All of them become available
upon choosing that expanding sequence of finite networks. In short, we may simply use the
corresponding sequences of voltages and currents as representatives of hyperreals determined
by some unspecified choice of F.

The terminology of certain nonstandard entities is not uniform throughout the literature.
Here are some definitions we use. We shall use lower case letters for reals and upper-case
letters for hyperreals. n will always denote the index for a representative sequence, say,
{in}5%; of a hyperreal. In this case, the corresponding hyperreal is denoted as I = (i,,),
which in fact is the equivalence class of sequences (modulo F) having the representative

sequence {i, }5,.

=

A network is called countably infinite or simply countableif its set of branches is infinite and countable.
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If a condition depending upon n holds for all n in some set F € F, we will simply say
that it holds “almost everywhere” or simply “a.e.”. For example, the hyperreals X = (x,,)
and Y = (y,) are defined to be equal (ie., X = Y)if {n € N:z, = y,} = F € F,
and we say in this case that z, = y,, a.e. Furthermore, addition, multiplication, inequality,
and absolute value are defined componentwise on the répresentatives of hyperreals. Also,
X <Y meaus z, < yn a.e., and X <Y is defined similarly. Furthermore, |X| = (|z,]).

The hyperreal (z,,) is called infinitesimal if, for every positive real ¢, we have {n € IV:
|z, < €} € F, that is, if |2,] < € a.e. Also, (z,,) is called unlimited if |2,| > € a.e. for
every positive real €. Thus, the reciprocal (z;') of an infinitesimal (,,) is unlimited, and
conversely. A limited hyperreal is one that is not unlimited. Thus, X = (z,) is limited if
and only if thereis ay € R, such that |z,]| < 4 a.e. A hyperreal that is neither infinitesimal
nor unlimited is called appreciable. Around each real X = (z,z,2,...) in *R, there is a
set of hyperreals Y = (y1,¥2,¥3,...) that are infinitesimally close to X (i.e., |[X = Y] is
infinitesimal for each such Y'). The set of such hyperreals is called the halo of X, and X is
called the shadow or standard part of every Y in that halo.

We assume throughout that each branch consists of a positive resistor and possibly a
source, a voltage source in series with the resistor (the Thevenin form) as shown in Fig.1(a)
or a current source in parallel with the resistor (the Norton form) as shown in Fig. 1(b).
We allow self-loops.®

Some basic ideas from the theory of transfinite networks are used in this paper. We
explain such concepts as they arise. For more detailed explanations, one may refer to any

of three books [22], [23], [26] or to the tutorial/survey paper [25].
3 Restorations of Networks

Our objective in this and the next section is to find some procedure for approximating an
infinite network’ with a sequence of finite networks by shorting some branches and opening

others in such a fashion that the network obtained by restoring all branches in sequence is

A self-loop is a branch incident to a single node, and thus its two elementary tips are shorted together.

"By an infinite network N we mean either a conventionally infinite network or a transfinite network.
The former has no transfinite nodes and is thus a O-network, and the latter does have them and is thus a
v-network with v > 1.



identical to the original infinite network. This implies among other things that the original
network must be countable (i.e., have only countably many branches) if the restoration of
all the branches one at a time is to be feasible.

Let us be more specific by what we mean by “opening” or “shorting” a branch. We
assume that every branch has a positive resistance and possibly a source. Any branch
can be represented either by its Norton circuit, shown in Fig. 1(a), or equivalentiy by its
Thevenin circuit, shown in Fig. 1(b). To open the branch will mean that, with respect to
its Norton representation, the branch conductance g, current source h, and current i are
all set equal to 0: g = h = ¢ = 0. The branch voltage v cannot be determined from Ohm’s
law, i+ h = gv, and its value will not be needed until the branch is restored.® To short the
branch will mean that with respect to its Thevenin representation, the branch resistance r,
voltage source ¢, and voltage v are all set equal to 0: 7 = ¢ = v = 0. The branch current
¢ cannot be determined from Ohm’s law, v + € = r7, and its value will not be needed until
the branch is restored.®

A sequence of finite networks can be generated from a given countably infinite network
N¥ as follows. First number all the branches with the natural numbers: & = 0,1,2,....
Then, open and/or short all but finitely many branches. Then, “restore” branches finitely
many at a time in accordance with the branch numbering. A branch is restored simply by
restoring its original electrical-parameter values.

At each step of the restoration, we will have a finite network N2 (n = 0,1,2,...)
obtained by removing all opened and shorted branches that have not yet been restored
and by coalescing the two nodes of each shorted branch into a single node. Each subgraph
induced by a maximal set of shorted branches that are connected through branches of
that set coalesces into a single 0-node.!® Thus, at each step of the restoration process. all
transfinite nodes will have disappeared, and only finitely many 0-nodes will remain. We

will refer to each finite network NU obtained in this way as an embedded finite network of

#In fact. when specifving a sequence for the hyperreal voltage V for that branch, we may arbitrarily set
v = 0 until the branch is restored.

®Here. too. when specifying a sequence for the hyperreal current /, we can set i = 0 before the branch is
restored.

1®Restored self loops may arise at this point from restored opened branches whose two nodes Lie in a path
of shorted branches.

-~1



the original infinite network N".

It can happen that two different maximal nodes in N” remain connected through a path
of shorted branches at each step of the restoration, as some later examples will show. If this
never happens, the sequence {N9}°2, of embedded finite networks defines a nonstandard
network N¥, = (NY). The operating point of each finite embedded network determines
a voltage and current for each branch that has already been restored. Before a branch
has been restored, that branch’s voltage and current are taken to be 0; this occurs only
finitely many times. Thus, the process of restoration yields a sequence of voltages and a
sequence of currents for each branch. These are representatives of the hyperreal voltage

and hyperreal current for that branch. N} will be called a nonstandard image of NV,

ns
In any nonstandard network N, Kirchhoff’s voltage law is always satisfied around every
finite or transfinite loop by the hyperreal branch voltages, and Kirchhoff’s current law is
always satisfied at every finite or infinite node by the hyperreal branch currents. In this
way, standard analyses of finite resistive networks can be lifted to nonstandard analyses of

transfinite resistive networks without any restrictions imposed on the transfinite network

other than restorability. Restorability is discussed more fully in Sec. 6.

4 Restorations of Two Ladder Networks

To establish some ideas with respect to the sought-for procedure, let us now consider the
1-network consisting of a one-way infinite ladder network connected at its infinite extremity
to a resistor 7, through two 1-nodes n} and n}. See Fig. 2. Here, ni (resp. n}) contains
the 0-tip of the upper (resp. lower) path of horizontal branches and one of the 0-nodes of
7. After numbering all the branches, we short some of them and open the others and then
restore them in sequence according to the numbering. Were we to open all the branches
and short none of them, r, would be disconnected from the rest of the network at each
stage of the restoration, and thus would remain so in the final restored network, as shown
in Fig. 3. In order to recover the connections to r_,. we may use shorts instead of opens for

some of the ladder’s branches leading to nj and n}. More specifically, we may choose two

representative 0-paths for the ladder’s 0-tips in n} and nl and short all their branches. The



other branches are opened. Then, after all branches are restored, we will have recovered
the original network of Fig. 2.
For the general case of any countably infinite network, we will always short the branches

of a representative path for each nonopen?!

nonelementary tip in order to maintain connec-
tions through transfinite nodes. This is not done for the open tips. All the other branches
are opened before the restoration begins.

Let us now consider the 2-network obtained by replacing every branch in Fig. 2 by an
endless path. Every 0-node becomes a 1-node and the two 1-nodes become two 2-nodes n?
and n2 that embrace the 0-nodes of r,. This is shown in Fig. 4. The resulting network
is still countable. Number its branches in any fashion using the natural numbers. To
obtain an expanding sequence of finite networks that fill out this 2-network, we choose two
representative one-ended 1-paths'? for the two 1-tips in n? and n2 and short their branches.
We then choose representative one-ended 0-paths for all the 0-tips of all the 1-nodes and
short their branches too. Some of those branches will already be shorted in the first step. At
this point, we can and do choose the representative paths of the two 0-tips of each vertical
endless path to be disjoint. Next, we open all the other branches. Finally, we restore the
branches one-by-one in accordance with the branch numbering. At each stage, we have a
finite network. Moreover, after all the branches are restored, we will have recovered the
original 2-network because connections through the l-nodes and 2-nodes will have been
maintained.

The reason for choosing disjoint representative paths in each of the vertical endless paths
is to insure that n? and n3 do not coalesce into a single 2-node. Indeed, if an infinity of
those vertical endless paths had been shorted, then at every stage of the restoration the two
2-nodes would have been coalesced into a single 0-node. As a result, they would be replaced
by a single 2-node in the final restored network. Thus, it appears that some care must be

taken in the way the transfinite network is restored from a sequence of finite networks.

A tip of any rank is said to be nonopen if it is embraced by a nonsingleton node and thus is shorted to
at least one other tip; otherwise, it is said to be open.
2 These can be any one-ended l-subpaths of the upper and lower horizontal 1-paths.



5 Restorable Networks

In fact, there is a more substantial problem. Not all transfinite networks can be restored
through a sequence of finite networks. For example, consider the 1-network of Fig. 5 having
two nondisconnectable!® 0-tips in two different 1-nodes nl and n}. Such a network can also
occur as part of a larger transfinite network. We wish to maintain the connection provided
by the 1-node n! between the 0-tip of the 0-path of the a) branches and the elementary
tip of branch ¢;. In order to ensure this when building up the l-network from a sequence
of finite networks, we have to short (the branches of) a representative path for that 0-tip.
For a similar reason, we have to short a representative path for the 0-tip in nj. We open all
the other branches. Those two shorted representative paths meet infinitely often, and thus
the network obtained through any‘ sequence of branch restorations will yield the different

1-network of Fig. 6(a), in which n} and n} are coalesced into a single 1-node nl. That is,

1

1 and n} coalesce into a single 0-node through

at each step of the restoration sequence, n
the shorting of some representative paths for their 0-tips. As a result, n! and n} have the
same hyperreal voltage after the restoration process is completed. Electrically, nl and n}
have been shorted, and we draw the restored network accordingly with n}! and n} replaced
by the single 1-node nl.

On the other hand, were we to open all branches in Fig. 5, we would lose the connections
through n} and n} and would end up with the disconnected I-network of Fig. 6(b). We
can conclude that the network of Fig. 5 cannot ‘be restored through a sequence of finite
networks.

Networks that can be so rebuilt this way will be called “restorable.” Let us be more

specific. Given a countably infinite network N, consider the following procedure.

Procedure 5.1.
1. Number all the branches of N* using the natural numbers: & = 0.1,2,....

2. For eacl: nonopen nonelementary tip, short one of its representative paths (i.e.. short

every branch in that path). Open all but finitely many of the branches that have not

**Two tips of any ranks are called nondisconnectable if every representative path of one of them meets
every representative path of the other [23, page 58)]. [26, Sec. 3.1].
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been shorted.

3. Restore branches sequentially finitely many at a time, in accordance with the branch

numbering.

Note that there are many ways of following Procedure 5.1 because of the many ways
of numbering the branches, chonsing shorted representative paths, and restoring branches
finitely many at a time.

At the nth step (n = 0,1,2,...) of the restoration process (item 3 in Procedure 5.1}, let
MY be the infinite network having the same graph as N but with the electrical parameters
existing at that point of restoration; thus, finitely many of the branches of MY will have the

originally electrical-parameter values and the other branches of M¥ will be either opened

v
n?

or shorted. For a given MY, a maximal set of maximal nodes in MY that are pairwise
connected through shorted paths will be called a prozimity. Also, a maximal node that is
not connected to any other maximal node through a shorted path will be called a prozimity,
albeit a singleton one. Every maximal node in M}, will belong to some proximity in M? and
the proximities in M}, partition the set of maximal nodes. We also say that the embraced
tips of a maximal node lie in its proximity. A proximity of a given node may shrink as n
increases, but it will not expand. As n — oo, we have for each maximal node a sequence of
proximities containing that node. Given two maximal nodes, we will say that their sequences
of proximities are eventually disjoint if. for some natural number 7, the corresponding two
proximities are disjoint for every n > n.

Also, note that each MY defines a finite embedded network NY¢ obtained by removing
the opened and shorted branches in the way specified in Sec.3.

It may happen that two distinct maximal nodes of N* remain in the same proximity in
MY for every n. This means that the node voltages at those nodes are the same for every n.
In effect, those nodes—and their embraced tips as well—are shorted together throughout
the restoration process. Thus. the restoration process imposes more shortings between tips
than exist in N¥. When this happens. we say that N¥ is not restorable. This will alwavs
happen if the following condition is violated in N¥. It is a necessary condition for N* to be

“restorable.”

11



Condition 5.2. If two tips (of any ranks) are nondisconnectable in NV, then either
they are shorted together (i.e., are embraced by the same node) or at least one of them 1is
open.

Indeed, if this condition is not satisfied by some pair of tips, then those tips will be
nonopen, will be embraced by different maximal nodes, and will be in the same proximity
in MY for every n, whatever be the choices of the shorted representative paths in Step 2 of
Procedure 5.1.

In general, even when Condition 5.2 is satisfied, not every Procedure 5.1 will restore N*
but some may. We saw this when discussing the 2-network of Fig. 4.

If, however, there is a choice of shortings of representative paths in Step 2 of Procedure
5.1 for which no additional shortings of tips persist throughout the entire restoration process,
we will call N¥ restorable and will also say that NY can be restored with respect to an
appropriately chosen sequence {N2}2° . of finite embedded networks NO. In this case, N*
has a nonstandard image N4, = (N?) as defined in Sec. 3, with the N2 determined by the
MY (n=0,1,2,...) and the graph of Nj, taken to be that of N,

Here is a necessary and sufficient condition for N¥ to be restorable. Its proof follows
readily from our definitions.

Theorem 5.3. NV is restorable if and only if it is possible to choose a shorted rep-
resentative path for every nonopen nonelementary tip in N such that, for every pair of
maximal nodes, the corresponding sequences of proximities in which those two nodes reside
are eventually disjoint.

Proof. Only if: Assume it is impossible to choose shorted representative paths as
stated. Then, for some pair of distinct maximal nodes in N*, their embraced tips will all
be shorted together in M} for every n. Thus, N” is not restorable.

If: Assume shorted representatives can be chosen as stated. If two tips belong to the
same maximal node in N, they will remain in the same proximity for each M and therefore
will be shorted together for all n. If two tips belong to different maximal nodes in N, they

will eventually belong to disjoint proximities. Thus. they will eventually not be shorted

together. So, no additional shortings of tips persist throughout the restoration process. N

12



is restorable. O

Let us note that every countable, conventionally infinite network is restorable whatever
be the choice of branch numbering. In this case, there are no transfinite nodes, and therefore
no representative paths need to be shorted. All branches are first opened and then restored
sequentially. We might say that such networks are “open at infinity.”

At the other extreme, we have countable, conventionally infinite, locally finite networks
that are “shorted at infinity.” That is, the 0-tips of such a network are all shorted together
to get a restorable I-network.

In the rest of this paper we examine several restorable networks and calculate some

hyperreal voltages and currents.

6 An Infinite Binary Tree Connected at Infinity

As an example of a restorable network, consider the infinite binary tree with connections
at infinity, as shown in Fig. 7. That tree has uncountably many 0-tips. Were all such
0-tips connected bijectively to uncountably many branches through 1-nodes, it would be
impossible to number all the branches with the natural numbers. However, we can choose
countably many of those 0-tips and connect them one-to-one to countably many branches—
through 1-nodes again. For instance, we can identify each one-ended 0-path starting at the
apex 0-node ng by the number 582, a;/2*, where a;, = 0 (resp. a; = 1) if the path proceeds
from the kth node after ng toward the left (resp. toward the right). This labels all the 0-tips.
Then, the subset of all 0-tips having only finitely many nonzero a; is a countable set. We
can short each such 0-tip through a 1-node to the elementary tip of a branch. whose other
elementary tip is incident to ng, this being done in a one-to-one fashion. All the other 0-tips
are open and are not indicated in Fig. 7. Note that every two 0-tips are disconnectable;
that is, they have (sufficiently small) representative 0-paths that do not meet. Thus, the
necessary Condition 3.2 is satisfied.

We can now apply Procedure 3.1, numbering all the branches and theu choosing a
representative 0-path for each 0-tip in the chosen countable set. { Anyv representative 0-path

will do in this case.) We can short those paths and open all the other branches. Then, upon

13



restoring branches sequentially, we have at each step a finite embedded network. Moreover,
since every two 0-tips are disconnectable, the sequences of proximities of any two 1-nodes
are eventually disjoint. Thus, this tree with connections at infinity is restorable. So, with
positive resistances and possibly sources assigned to the branches, we obtain a nonstandard
network after the shorted representative paths and the order of restoring branches are
specified (a fixed F being understood).

In particular, assume that the short on the right is replaced by a current source feeding
1 A to the apex node of the binary tree and extracting 1 A from the node of infinite degree
at the bottom connected to the countably many branches there (i.e., at “infinity”). Let
us short all branches and then restore them as follows. First, restore the two uppermost
branches along with the two branches at infinity connected to the two paths that follow
the left-most paths starting at the two nodes just below the apex node. Next, restore
the next four branches and the two extra branches at infinity that are connected to the
two additional left-most paths starting at two of the four nodes two rows below the apex
node. Continuing this way, we see that each of the countably many branches at infinity
carries the hyperreal current (27"). Moreover, there are (2") branches at infinity. Since
(27™)(2™) = (1), Kirchhoff's current law is satisfied at the node of infinite degree at the

bottom.

7 The Fibonacci Numbers

In the rest of this work, we shall examine various nonstandard ladder networks, in which all
resistances are 1  and will then determine explicitly the hyperreal currents and voltages in
them. Because of the 1  resistance values and the ladder structure, the Fibonacci numbers
occur throughout our analyses. Let us therefore review some facts about those numbers.
The Fibonacci numbers F(k) comprise a sequence defined recursively by setting F(0) =
F(1) =1 and
F(ly= F(k = 1)+ F(k - 2) (1)

for k = 2.3.4.... . See, for example, [18, page 144]. Thus, the next several values are

F(2)=2,F3)=3,F(4)=5, F(5)=8, F(6) =13, .... A formula can be derived for any

14



F(k) by solving the linear difference equation (1) with constant coefficients in the standard
way [16, pages 167-168). This gives
k k
)\]+1 _ )\2+1
\/g ’
where Ay = (14 V5)/2 = 1.618 - and Ay = (1 - V5)/2 = —0.618..-. To accomodate a

F(k) = (2)

subsequent need, we also set F(—1) = 0.

8 A One-Way Infinite Ladder with a Source at Infinity

Let us now conmsider a transfinite network for which a standard analysis provides only a
trivial voltage-current regime. The network we examine is the purely resistive one-way
infinite ladder excited at its infinite extremity by a Thevenin branch with a 1 V voltage
source. See Fig. 8(a). This network satisfies the conditions that allow a standard analysis
to be applied [22, Theorem 3.3-5], [23, Theorem 5.2-8]. Every loop passing through the
one and only voltage source is transfinite with an infinite sum for its resistors. Hence, the
solution space K has no such nonzero loop current. Thus, the only solution the standard
analysis gives is the one where every branch current is 0, and in this case Kirchhoff’s voltage
law is violated around every transfinite loop.

Far more interesting are the results provided by nonstandard analyses. They restore
Kirchhoft’s voltage law, albeit with hyperreal values. Now, however, there are many different
solutions depending upon how the network is restored from finite ones. One way is to
truncate the ladder after the mth resistor, m odd, by shorting (resp. opening) all subsequent
series (resp. shunt) resistors. This is indicated in Fig. 8(b). The Thevenin branch at infinity
remains unchanged. A straightforward recursive analysis'? shows that the currents in this
finite network, as shown in Fig. 8(b), have the values

F(k-1)

= F(m+1) k=1,....m, 3)

e

and i; = F(m)/F(m + 1). In that figure. with n: fixed we have set i, = i} ,,. If instead of

truncating after a shunt resistor we were to truncate after the series resistor of index m + 1,

" Compute the sequence of driving-point resistances of the ladder to the left of each resistor, working from
the left to the right. Then, compute the branch currents working from right to left.



the current value would be

F(k 1)

e = ———— k=1,..., 1, 4
thomt1 F(m +2) mE )

and iy = F(m)/F(m + 2).

Now, we can obtain a nonstandard network by alternately restoring the shunt and series
resistors one at a time. Thus, the current in the kth resistor is the hyperreal I, = (i;,:,n),
where £ is fixed, n is the index for the representative sequence, and i, is given by (3)
for n = m odd and by (4) for n = m + 1 even. [ is an infinitesimal. On the other
hand, the hyperreal source current is /s = (i,,), where ¢, = F(n)/F(n + 1) for n odd and
tn = F(n—1)/F(n+1) for n even. I; is limited but not infinitesimal, that is, it is appreciable.
In terms of these hyperreals, Kirchhoff’s laws are satisfied everywhere (including the voltage
law around transfinite loops) since they are satisfied in each of the finite networks.

Let us consider another way of restoring the transfinite network of Fig. 8(a). After
opening all the shunt resistors and shorting all the series resistors, we restore them starting
at the left by restoring the first shunt resistor, then the first and second series resistors, then
the second shunt resistor, then the third and fourth series resistors, and so forth alternately
restoring one shunt and then two series resistors. In general, just after restoring a shunt
resistor, we will have the network of Fig. 9. Also, just after restoring two series resistors,
we will have the same network except for (m + 3)/2 series resistors in place of the indicated
(m — 1)/2 series resistors. A recursive analysis once again yields the following results. Just

after restoring a shunt resistor, we have

) _ 2F(k - 1) - _
Hom = 2F(m = 1)+ (m+ 1)F(m)’ k=1...om, (5)

2F(m)
2F(m = 1)+ (m+ 1)F(m)’

s =
Just after restoring two series resistors, we have

2F(k-1)
2F(m = 1)+ (m +5)F(m)’

k=1.....m, (6)

thom =

P 2F(m)
2T 2F(m—1)4 (m 4+ 5)F(m)
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Now, the nonstandard network corresponding to this sequence of restorations has the
following hyperreal currents. For the kth resistor and with n being the index for the
representative sequence as before, I} = (i, ), where i, is given by (5) for n = m odd and
by (6) for n = m + 1 even (i.e., replace m by n — 1 in (6)). The hyperreal current in the
series circuit of (m — 1)/2 resistors or (m + 3)/2 resistors is the same as the source current

I, which is given by /s = (i,,), where

: 2F(n)

I = , modd,

! 2F(n - 1)+ (n+ 1)F(n) nodd
i, = 2F(n — 1) n even.

2F(n=2)+ (n+4)F(n-1)
In the present case, I; is a smaller infinitesimal than it was for the first method of restoring
resistors because of the larger denominators. Also, I, is now an infinitesimal, in contrast to
the appreciable source current obtained previously. Of course, Kirchhoff’s laws are satisfied

here as well in a nonstandard way.

9 Another One-Way Infinite Ladder

Consider now the ladder of Fig. 10(a). It is excited at its input by a pure current source
of real value h A. All resistors are 1 Q including the resistor r,, connected to the ladder at
its infinite extremity. Under a standard analysis, the real-valued branch currents converge
to 0 as infinity is approached. As a result, we have to conclude that the real current z,, in
r,, is 0. Under a nonstandard analysis, we can determine a nonzero hvperreal current I, in
r, due to a nonzero hyperreal input current H, and can do so whether H is infinitesimal.
appreciable, or unlimited.

We first have to specify how the nonstandard ladder is restored from finite ones. Let us
assume that it is restored by inserting el-sections, each consisting of a shunt resistor followed
by a series resistor. That is, each of the finite networks have the form shown in Fig. 10(b),
which starts with a shunt resistor and ends with a series resistor before the opened and
shorted branches begin. Here, & and m are odd positive integers with £ = 1,3.....m. The

sequence of finite truncations is obtained by increasing m according to m = 1.3.5,.... In



this case, we have

L pFma2-k) Rtk 1
= lm’ = Fm+2) %~ mr F(m+2)

In order to have n as the index for each step of the expanding sequence of finite ladders
(n=1,2,3,...), we set m = 2n — 1. Thus, for the corresponding nonstandard ladder we

have the following hyperreal currents, where H is the hyperreal input source current.

_ F(2n+1-k) _ <F_(2_"___l”2> = <-—]———>
Iy = H<—FW> b = A\ pausny) = "\ Fsny/)

Using (2) again, we see that as n — oo

F(2n+1-k) 1 F@2n-k) 1 1 Vb A
F@2n+1) M P@2n 4+ 1) AL P20+ 1) A2 T\

where A = \/5/ A2, Thus, I and I;4; are infinitesimal (resp. appreciable, resp. unlimited)

whenever H is infinitesimal (resp. appreciable, resp. unlimited). On the other hand,

If H has a representative that is o(A2") as n — oo, then I, is infinitesimal. If H has
2n

a representative that is asymptotic to BA{", where B is a nonzero constant, then I, is

appreciable. Finally, if H has a representative {h,}52, such that hnx\l'zn — oo, then I, is

[e o]
n=

unlimited.

10 Two One-Way Infinite Ladders in Cascade

As a last example, let us consider a network that is more substantiallv transfinite than the
networks we have considered so far. In particular, let that network bhe a cascade connection
of two ladders identical to that of Fig. 10(a) except that the second ladder replaces r,. That
is, the infinite extremity of the first ladder is connected through a 1-node to the input of the
second ladder, which in turn has at its infinite extremity a resistor r,,., connected through
another 1-node. We shall now denote the currents with double subscripts, the first subscript
being 1 for the first ladder and 2 for the second ladder. We shall also truncate both ladders
in the same way with the same number of el-sections. Thus. the last el-section in each ladder
has the branches with second-subscript indices m and m + 1. where m is an odd positive

integer. Also, we use the odd positive integers k = 1,3,....m and p = 1.3,...,m to index
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shunt branches in the first and second ladders respectively, and k41 and p+ 1 for the series
branches. The resulting finite network can be analyzed exactly as before except that now
we have twice as many el-sections for each m. Next, we restore el-sections simultaneously;
that is, for a transition from m to m 4 2, we restore two el-sections, one at the end of the
first finite ladder and the other at the end of the second finite ladder. Finally, to get the
current expressions as sequences indexed by n = 1,2,3,..., we set m = 2n — 1. Altogeﬂ1er

then, the following expressions are obtained:

o H<F(4n+1—k)>, I = H<F(4n—k-)>, L - H<F(2n+1)>’

' F(4n +1) F4n+1) F(dn +1)
_ F(2n+l——p)> _ <F(2n—p)> _ < F(1) >
Loy = H< Fidn+1) /° Teper = H Flan + 1)/’ loa = H Fldn+1)/"

As before, we can use the asymptotic behavior of the Fibonacci numbers, Fi(n) ~ /\’1“"1/\/5
as n — 00, to determine the character of each current (whether it is infinitesimal, appre-

ciable, or unlimited) given the character of the hyperreal input-source current H.
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Figure Captions

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1.

(a) The Norton circuit representing a branch with a positive conductance g in parallel
with a current source L. The branch current ¢ and the branch voltage v are related

by Ohm’s law: ¢ + h = gv.

(b) The Thevenin circuit representing a branch with a positive resistance » in series
with a voltage source e. Now, Ohm’s law has the form v+¢ = ri. When 7 = 1/g

and € = —hr, these two circuits are equivalent.

2. A one-way infinite ladder connected at its infinite extremity to a resistor r,, through
two 1-nodes nl and nl. The 0-nodes of r, are embraced by the 1-nodes. Any of the

branches may have sources; these are not shown in the figure.

3. The ladder of Fig. 2 except that the resistor 7, is now disconnected from the
ladder. The 1-nodes (shown by the small circles) no longer embrace the 0-nodes of

Tw-

4. A one-way infinite ladder consisting of endless 0-paths. The ladder’s connections
are now made through 1-nodes (the small circles). The ladder is connected at its
infinite extremity to a resistor r, through two 2-nodes (the double circles). Those

2-nodes embrace the 0-nodes of r,.

5. A l-network. The pairs of parallel branches extend infinitely to the right. The
1-node n! (resp. m}) cousists of the 0-tip of the one-ended 0-path along the upper
branches a; (resp. lower branches b, ) and an elementary tip of the branch ¢; (resp.
¢2). The two 0-tips are nondisconnectable. Every branch has a positive resistor and

possibly a source.

(a) The network resulting from any sequence of restorations of the branches in Fig.

5. wherein the shorting between the upper 0-tip and a 0-node of branch ¢; and
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the shorting between the lower 0-tip and a 0-node of branch c¢; are maintained

by initially shorting representative paths of those 0-tips.

(b) The network obtained after all the branches are opened and then restored se-

quentially.

Fig. 7. An infinite binary tree connected at infinity to countably many branches, which
in turn are incident to the apex 0-node ng. The small circles denote 1-nodes through
which countably many of the 0-tips of the tree are connected bijectively to the branches

at infinity.
Fig. 8.

(a) A one-way infinite, purely resistive ladder excited at infinity by a | V voltage
source in series with a resistor. All resistors are 1 €1. Here, m is an odd positive

integer.

(b) The truncated ladder. All series (resp. shunt) resistors beyond the mth resistor

are shorts (resp. opens).

Fig. 9. The network obtained just after restoring a shunt resistor during the second way
of building up the transfinite network of Fig. 8(a). Here again, m is an odd positive
integer.

Fig. 10.

(a) A one-way infinite ladder connected at infinity to a resistor r,, and excited by a

pure current source h at its input. All resistors, including 7, are 1 §2.

(b) A finite truncation of the ladder. The ladder is built up with el-sections restored

one at a time.
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