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TRANSMISSION NETWORKS *

Armen H. Zemanian, Yaw-Ruey Chan, and Victor A. Chang

Abstract — Proposed herein is a new method for solving arbitrary networks of nonuni-
form transmission ladders and lines. Two cases are considered, the first occurring when all
circuit elements are purely resistive and in general nonlinear and the second occurring when
they are linear but in general have both resistive and reactive components. The first case
arises for example when the DC operating point of a nonlinear interconnection network is to
be detefmined, and the second arises for example when the transient behavior of a network
of linear, possibly nonuniform, RLCG transmission lines and ladders is desired. Moreover,
our method eliminates the voltages at internal nodes of a ladder and only treats nodes at
which three or more ladders or lines meet or just one ladder or line terminates. The internal
node voltages are obtained at the end of our procedure with very little additional compu-
tation. This provides a computatioflal advantage, which may save orders of magnitude in

computation time. A similar facility accrues to cascades of distributed lines and ladders.

1 Introduction

We propose a novel way of analyzing networks of lumped and/or distributed transmission
ladders and lines, which we feel has some intrinsic theoretical value and in certain circum-
stances provides some computational advantages. The method works when the ladders and
lines possess certain properties that are not overly restrictive. Two cases are considered.
The first concerns the determination of the DC operating point for a transmission network

whose elements may be nonlinear functions of voltage or current and whose ladders and

lines may be nonuniform. Thus, we will be dealing with purely resistive structures. In the
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second case, the parameters are required to be linear, but now reactances are allowed. For
example, we now encounter linear but possibly nonuniform RLCG lines. Qur procedure
yields a means of efficiently computing the transient behavior of the network.

The first model, the nonlinear purely resistive one has not we claim been previously ana-
lyzed with the power of our proposed method. This is primarily a theoretical contribution to
the study of electrical circuits. Nonetheless, there is at least one practical configuration that
is encompassed by the first model. Consider a fan-out circuit from the collector terminal of
a BJT feeding the base terminals of several other BJTs. The output of the first BJT may
be represented by a voltage source in series with a nonlinear resistor connected from ground
to the input of the fan-out circuit. The outputs of the fan-out circuit are connected to the
nonlinear base-emitter resistances of the other BJTs. Linear resistances for the intercon-
nection wires might be adequate, but some interconnects use a reverse-biased p-n junction
to get isolation from ground, in which case there is a nonlinear distributed conductance
to ground along the length of the interconnect under DC conditions. The question is how
much of the output voltage from the first BJT appears as input voltages on the other BJTs
— a DC operating point problem. Qur method provides a solution. Moreover, our method
applies just as well to far more complicated interconnection configurations such as those
having transmission loops.

The second case, a network of linear resistance-reactance transmission ladders and lines,
is of greater practical interest. Our method provides a new approach to the computation of
transient behavior for arbitrary networks of interconneﬁté modeled by nonuniform RLCG
transmission lines. We do not allow coupling between lines gxcep't when these too are
modeled by network elements, the simplest case being lumped capacitors connected to
nodes along the lines.

We can treat this second case as a special case of the the first one by restricting the
complex variable s for the Laplace transform to a real positive number. Then, all reactances
appear as resistances. The transient behavior can then be obtained numerically by applying
the Gaver-Stehfest algorithm [11], which needs only finitely many real positive values of s,

ten such values being typical and adequate. However, this algorithm works well only when



the transients are monotonic or close to monotonic. For more oscillatory transients other
algorithms using complex values of s, such as the Singhal-Vlach algorithm [10], [13, Chapter
10}, are available. The linear version of our method can be directly extended to this complex
case.

How does our method compare to prior works? First of all, it applies to arbitrary
networks of transmission ladders and lines, not just to simple configurations of them. Fur-
thermore, it allows the replacement of any cascade of such ladders and lines by a single
grounded two-port, thereby eliminating many unknowns before the network equations are
to be solved. For example, consider a nonuniform RLCG transmission line. For only certain
simple distributed-parameter variations along the line can the line’s two-port parameters
(e.g., its A,B,C,D parameters) be determined in closed form. For other nonuniform varia-
tions, one might replace the line by a lumped ladder network, but this then introduces many
~ additional nodes. Rather than treating the node voltages within each ladder as unknowns
— as SPICE would do, our method treats the entire ladder by input-output operators and
only their input and output voltages are taken as unknowns. After these fewer unknowns are
determined, the internal-node voltages can be obtained with very little additional compu-
tation. This same advantage accrues to cascades of nonlinear nonuniform resistive ladders
~and lines.

A number of methods have been proposed for finding the voltage-current regime in
a finite nonlinear resistive network (not to mention the many existence and uniqueness
theorems that have appeared). A probably incomplete list of them is the following: (1], [2],
(3], [5], (8], [12], [14]. None of these take advantage of the special structure of a transmission
network to reduce the number of simultaneous nonlinear equations that must be iteratively
solved.

Our method has another advantage over SPICE when DC operating-point analyses are
made. This advantage arises when some internal node of a ladder network has incident resis-
tors that are all large. An almost open circuit appears at that node, and the corresponding
Jacobian matrix appears close to being singular (i.e., that matrix has a row and a column of

near-zero entries). In this case, SPICE can collapse. However, such a situation presents no
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problem at all for our technique. Qur recursive procedure for eliminating such internal node
voltages passes through such a node as easily as any other node, and the almost singularity
is then masked out by other nodes of the ladder. After the reduced number of unknowns

are determined by our procedure, the eliminated voltages are then easily determined.

2 Some Preliminary Ideas

In the following, R™ denotes n-dimensional real Euclidean space with its conventional norm
llz|l = (E;‘ﬂ x?)llz for z = (zy,...,%,) € R". [a,)] denotes a compact interval in R! with
endpoints @ and b and a < b. We shall take the adjectives “nonlinear” and “nonuniform” as
subsuming “linear” and “uniform”; that is, “linear” is treated as a special case of “nonlin-
ear,” and “uniform” is treated as a special case of “nonuniform.” We say “operating point”
in place of “DC operating point.”

By an increasing locus we will mean the graph in the (v,%)-plane of a function v — 4 that
is continuous and strictly monotonically increasing and is such that i — +o00 as v — 400
and ¢ — —00 as v — —o00. By a decreasing locus we will mean the graph in the (v, %)-plane
of a function v — i that is continuous and strictly monotonically decreasing and is such
that ¢t — —00 as v — +00 and ¢ — +00 as v — —00. (The same definitions result when we
reverse the roles of v and ¢.) A horizontal locus (resp. vertical locus) is a straight line that
is horizontal, i.e., ¢ remains constant (resp. vertical, i.e., v remains constant).

Duffin established the following fundamental about 50 years ago [4].

Duffin’s Theorem: A finite network of nonlinear resistors excited by independent
voltage sources has a unique operating point if the voltage-current characteristic curve of
every resistor is an increasing locus.

Henceforth, we always assume the following for the branches (i.e., one-ports) in our
network.

Conditions 2.1. Every branch has a voltage-current characteristic curve that is an
increasing locus.

Welet G: v+~ iand R: i+~ vdenote the corresponding bijective mappings. In general,

G(0) = h need not be 0. When this is so, R(0) = ¢ will not be 0 either, and moreover there



will be an independent source implicitly encompassed within the branch. This is illustrated
in Figure 1.

In addition to branches, we may have distributed transmission lines. More generally, our
networks will consist of connections of grounded two-ports. A typical two-port is shown in
Figure 2 along with the polarity conventions for its input voltage-current pair zo = (vp, %) €
R? and for its output voltage-current pair z; = (vy,4;) € R%. The forward mapping of the
two-port is the operator f : zo — z; and its backward mapping is b : z; — zo. The
two-ports we allow are specified in the next section, and in every case their forward and
backward mappings will always exist, as determined by Kirchhoff’s laws and the nonlinear
version of Ohm’s law; moreover, f and b will be inverse mappings : b = f~1. (In the special
case where the two-port contains only linear positive re;istors but no sources, the backward
mapping is represented by the chain matrix of A, B, C, D parameters and the forward

mapping by the inverse of that chain matrix.)

3 Building Blocks

Let us now point out several kinds of grounded two—porté that will serve as the basic building
blocks for our resistive transmission networks. The networks will be obtained by connecting
such two-ports at their port terminals without violating the ground configuration.

3a. The single grounding branch. We will say that a branch is grounding if exactly
one of its two nodes is the ground node. A two-port having just one branch, a grounding
branch, is shown in Figure 3(a); the branch is shown in the Thevenin form. The forward
mapping of the two-port is g"iire? by .
' v = vo, (1)

i1 =0 — g(vo + €). (2)

3b. The single floating resistor. We will call a branch floating if heither-of its nodes.js
the ground node. A two-port having just one branch, a floating branch, is shown in Figure
3(b); it is convenient now to represent the branch in the Norton form. The forward mapping

of the two-port is given by
v = v — 1(io + h), : (3)
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il = i(). . (4)

3c. The lumped ladder network. Consider now a ladder network obtained by alternately
éa.scading the two-ports of Figures 3(a) and 3(b). The result is a cascade of el-sections as
shown in Figure 3(c). For the first el-section the forward mapping fo : (vo, %) — (v1,¢1) is

given by
v = vo — 7o(é1 + ho), (5)

i1 = ig ~ go(vo + €q), (6)

and similarly for the subsequent el-sections. The forward mapping of the ladder is then the
composition

f = fac1fa=z.. fo: (vo,i0) = (n,in),

where f; is the forward mapping of the kth el-section. Moreover, the first branch of the
ladder may be a floating branch, and the last branch may be a grounding branch. In both
cases, f may be obtained by altering fo and f,—; in accordance with (1) through (4). When
all the sources in the cascade are absent, the ladder of Figure(c) becomes the basic lumped
transmission line, which in general may be nonuniform and nonlinear.

3d. The distributed. resistive transmission line. The last of our building blocks is the
distributed version of the lumped transmission line. It is illustrated in Figure 3(d). It
too has no internal sources and is in general nonuniform and nonlinear. In particular, the
voltage v(l) and current i(!) depend upon the distance ! along the line from the input at
[l = 0 to the output at { = L. We shall abuse notation by letting v and ¢ be the values
v(l) and i(!) of the line voltage and line current at an unspecified point / along the line;
thus, v and ¢ denote the range values v(!) and #(!) in volts and amperes respectively, instead
of the corresponding ma,ppingsi [ » v(l) and [ — i(l). (A more precise notation would
encumber our equations unnecessarily.) Furthermore, r(/,?) will denote the rate of voltage
decrease at the point ! and current ¢, and g(/, v) will denote the rate of current decrease at
the point ! and voltage v. Thus, r and g represent the effects of distributed, nonuniform,

and nonlinear series resistance and conductance-to-ground for the line. With the prime



denoting differentiation with respect to [, we have the line equations:
V(1) = ~r(l,i(1)), (7)

i'(l) = —g(l,v(1)). (8)

They govern the variations of v and ¢ in the forward direction from input to output. More-
over, they can be written more concisely by using a matrix-like notation. Set z(I) =

(v(1),i(1)) € R? for each ! € [a,b]. Then,

/ — .
A=) =ty T[] = e @
Thus, F maps [0, L] x R? into R%. Here too, we will abuse notation by letting = and z(l)
denote the same value in R?.

A solution to these équations for 0 < ! < L and for the initial conditions v(0) = vy and
i(0) = i yields the forward mapping f of the line. Upon setting zo = (vo,i0) € R? and
zy = (v1,4) € R%, where v; = v(L) and 4; = i(L), we have f : zo — z;. The backward
mapping is b : z; — z9. These mappings exist under certain conditions which we now
specify.

Let W represent some nonvoid open interval in R!. We shall say that r(l,%) is Lipschitz
in i on W and that g(l,v) is Lipschitz in v on W both uniformly with respect to alll € [0, L]

if there exists a constant Kw not depending on ! such that
Ir(l,i) = r(,3)] = Kwli-i| (10)

and
lg(l,v) - g(1, )| = Kwlv— 19| (11)

for all | € [0, L] and for all 4,7,v,9 € R!. These conditions do not restrict the growth of
r(1,%) or of g(I,v) as || or |v] tends to oo; we need merely increase the constant Ky as W
increases in size.

Henceforth, the following conditions are assumed.

Conditions 3.1.



(a) r(-,-) and g(-,-) are continuous functions from [0, L] X R! into R'. Moreover, for each
[, we have that 7({,0) = ¢({,0) = 0 and that r(l,-) and g({,-), as functions of their
second arguments, are strictly monotonically increasing functions and are bijections

from R! onto R!.

(b) For each nonvoid open interval W in R!, r(l,:) is Lipschitz in i on W and g(l,v) is
Lipschitz in v on W both uniformly with réspect to all ! € [0, L].

Condition 3.1(1) implies that F(,) is continuous from [0, L} x R? into R%. By Condition
3.1(2), F(l,z) is Lipschitz with respect to  on W x W uniformly for all { € [0, L]; that is,

IF(,z)—F(l, &) < Kwlle - 2] (12)

for all € [0,L) and all z,# € W x W. These properties allow us to invoke a standard
_ theorem (see, for instance, Theorem 1 on page 297 of [6]) to assert the following.

Theorem 3.2. Letl, € [0, L] and z, € R%. Assume Conditions 3.1. Then, there ezists
a unique solution z(l) to (9) defined for all | € [0, L] such that z(l,) = z,. Moreover, the
mapping | — z(l) is differentiable from [0, L] into R?.

Proof. The cited theorem in [6] only asserts the unique existence of a differentiable z
on an open interval J C [0, L] with {, € J. However, since the conclusion holds for every
l, € [0,L], we can get the unique existence of the trajectory for all [ € [0, L] by piecing
together the open intervals (open with respect to [0, L]) around each point of [0, L]. Indeed,
if J is one such interval and if ¢ is one of its limit end points, then there will be another
open interval J containing ¢, and the two solutions z on J and £ on J must coincide on

J N J if that cited theorem is to hold at any point of JNJ. &

4 Mappingé of Loci

In this section we shall note that the two-port building blocks forward map decreasing loci
into decreasing loci and similarly for horizontal and vertical loci.

Lemma 4.1.

(a) The two-port for a grounding branch (Figure 3(a)) forward maps a decreasing locus

or horizontal locus into a decreasing locus, and forward maps a vertical logus into a
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vertical locus.

(b) The two-port for a floating branch (Figure 3(b)) forward maps a decreasing locus or
a vertical locus into a decreasing locus and forward maps a horizontal locus into a

horizontal locus.

(¢) Any ladder network of grounding branches and floating branches having at least one
grounding branch and one floating branch (such as in Figure 3(c)) forward maps each

decreasing locus, each vertical locus, and each horizontal locus into a decreasing locus.

(d) Every distributed resistive transmission line (Figure 3(d)) forward maps each decreas-

ing locus, each vertical locus, and each horizontal locus into a decreasing locus.

Note. Similar properties hold for backward mappings when dealing with increasing
loci.

Proof. Assertions (a) and (b) follow directly from Conditions 2.1 and equations (1)
through (4). Compositions of the mappings corresponding to assertions (a) and (b) then
leads to assertion (c). Finally, to verify assertion (d), let

Qs = {(v,9):v>0,i <0},

Vi = {(v,%):v > 0,i = 0},

I_ = {(v,3):v=0,i < 0}.
Thus, @4 is the open fourth quadrant of the (v,i)-plane, V; is its positive voltage ax1s,
and I_ is its negative current axis. Also, let y = (vy,%y) and z = (vz,zz) be two dlfferent |
points in the voltage-current plane for a point ! on.the jransmissian. lme, and cons1der the

i

difference y’ — 2’ between the tangent vectors of the locus. By (1) and (2),

Y=<' = (r(1iz(D) - r(L,3(1) , 9(4 v2(1) = g (4, vy(1))).
According to the monotonicity properties asserted in Condition 3.1(a), we have the following
results at each value of I. f y—z € Q4, theny'—2' € Q4. Uy—z €V, theny -2’ € I_. If
y—x € I_, then 3y — 2’ € V. Since these hold whatever be ! and since trajectories cannot
stay fixed except at the origin, it follows immediately once more that the forward mapping

of the line sends a decreasing, horizontal, or vertical locus into a decreasing locus. O



5 Transmission Networks and Schematics

As was indicated above, we will throughout this paper take a transmission network to be
a network obtained by connecting the two-ports of Section 3 at their port terminals while
maintaining the common ground node throughout. The schematic is the graph obtained by
representing each maximal cascade in the transmission network by a line segment, which
we shall refer to as a leg. Thus, each node of the schematic corresponds to a non-ground
node of the transmission network incident to three or more two-ports or incident to just
one two-port (the non-ground nodes of Figure 3(a) being treated as different nodes). Non-
ground nodes incident to exactly two two-ports are interior nodes of a cascade and do not
appear in the schematic. For example, Figure 4(a) shows a transmission network consisting
of nine maximal ladders. Two of them close on themselves to form transmission self-loops.
The corresponding schematic is shown in Figure 4(b). It has nine legs, whereas the network
of Figure 4(a) has 63 branches.

Our procedure for solving a transmission network is based upon the schematic, and in
particular upon the choice of a spanning tree in the schematic. It is advantageous but not
ﬁecessary to choose a spanning tree with the minimum number of ends, for this will lead
to the minimum number of unknowns and thereby to the minimum number of independent
equations that need to be solved. That minimum number is equal to the number of end
nodes of the chosen spanning tree plus the number of chords in the schematic. Each self-
loop.counts as a chord. Thus, for Figure 4(b) that number vis 3+4 =17. SPICE on the
other hand will require 30 unknowns, one for each non-ground node. Later on, we will argue
that the equations our procedure generates are no overly complicated and that the entire

procedure does provide a computational advantage over SPICE.

6 Transmission Trees

Before we present our general method for solving a transmission network, let us consider a
transmission tree, that is, the special case where the schematic is a tree. The unknowns are

now the voltages at the end nodes of the tree. To be specific, we shall explain our method

in terms of the transmission tree',whpse schematic is shown in Fgure 5. v, ill denote the
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node voltage at node n,. Choose any end node and label it ng. Then place a number &
alongside every node in the schematic, where k is the number of legs in the schematic tree
between that node and node ng; ng gets the number 0. We shall refer to k as the level of the
node. Thus, there may be several nodes at the same level. The forward mapping of each
leg will be oriented from its node of higher level to its node of lower level, as is indicated
by the arrowheads in Figure 5. Next, number all the legs and denote the mth leg by /,,.
The input voltage and input current for /,,, will be denoted by v,, and i,,, and the output
voltage and output current by u,, and j,, as is indicated in Figure 6. Furthermore, let us
treat any grounding branch at a node of the schematic as part of one of the ladders incident
to that node. Thus, the input current to any end leg is 0.

To solve the transmission tree of Figure 5, we start at level 5 and forward map (v;,0),
(vq,0), and (v3,0) through l, I3, and I3 respectively to get (uy,j1), (u2,Jj2), and (us, j3) as
functions of the unknowns v;, v3, and v3 respectively. Equating node voltages at ng, we
get u; = ugy = ug. This represents two independent equations for Kirchhoff’s voltage law
around two loops, The first one corresponding to uy = u; proceeds from ground, then along
l; and back along l;, and then to ground. The one corresponding to u2 = uz proceeds from
ground, then along l; and back along I3, and then to ground. The equation for u; = u3
is a combination of the first two. Then, upon summing the output currents from [;, [,
and 3, we get the input current ig to lg: ¢g = j1 + j2 + 73. The input voltage vg to lg is
Vg = U = Uy = U3.

(Later on, when we use an iterative method to solve the nonlinear equations, the output
voltages u;, uz, and u3 will not in general be the same at each step of the iteration. In this
case, we designate the input voltage vg as equal to any one of the output voltages, say, u3 —
or alternatively to the average or some other combination of u;, us, and uz. The same thing
is done at the other internal nodes of the schematic tree. In this way, the only unknown
voltages being sought in the iterative stage of the solution procedure are the end-node
voltages vg,...,vs. Once these are obtained, all the node voltages of the transmission tree
can be obtained through forward or backward mappings without any further iterations.)

We now repeat this procedure with forward mappings from level 4 to level 3 to get two

11



more independent equations: vyp = u4 = ug and vy; = us = ug. Summations of currents
yield #10 = j4 + Jo and 217, = j5 = jg. These u’s and j’s are also functions of the unknown
end-node voltages. Forward mappings from level 3 to level 2 gives two more independent
equations: vy = ur = uj0 = %1;. It also gives 12 = j7 + J10+J11. From level 2 to level 1, we
have one more independent equation, v;3 = ug = u32 and in addition ;3 = jg + ji2- Finally,
at the initially chosen end node ng, we have two more independent equations involving
the unknown end-node voltages, namely, vg = u;3 and j;3 = 0. Altogether, we have nine
independent equations in the nine unknown end-node voltages. Our equations insure that
Kirchhoff’s laws and the nonlinear form of Ohm’s law are satisfied everywhere, and therefore
they will yield the unique operating point for the network. Duffin’s theorem insures the last
conclusion when all elements are lumped. If there are distributed lines, Duffin’s theorem can
still be invoked by taking each distributed line as the limit of a sequence of discretizations
of that line.

That we will always have the correct number of independent equations for any trans-
mission tree follows from the following theorem.

Lemma 8.1. For any schematic that is a tree, the number of independent equations
generated by voltage equalities at all the non-end nodes is two less than the number of end

nodes.

Proof. Let E be the number of end-nodes (counting ng as well), let I be the number
of non-end nodes, and let d; be the degree of the ¢th non-end node. The total number of
nodes is £ + I. Since we are dealing with a tree, the total number of legs is £ + I — 1; that
number is also. (E + Y7_, d;)/2. Thus,

E 1<
I_—3+1+§§d,-.

Now, the number of independent voltage equations generated by voltage equalities is Zfﬂ(d;—

2). Hence,
I

Z(d,-—2)=id,~-2[=E—2.

i=1 =1

as asserted. O
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It may be informative to note how the monotonicities of the resistances come into play
in our method. Consider again node n; of Figure 5 and assume that every leg has at least
one grounding branch. (When this is not so, the leg will simply be the two-port of Figure
3(b), and our argument can be easily adjusted to accommodate this case.) If v; is adjusted
upward, then the input current of leg /; remains at 0, but, by virtue of Lemma 6.1, the
output voltage u; of [, adjusts upward, and the output current j; of /; adjusts downward.
A similar assertion holds for every other end-node voltage. Consequently, if v; is adjusted
upward, then v, and v3 must also be adjusted upward in order to satisfy Kirchhoff’s voltage
law. In this case, ji, j2, and j3 adjust downward, and therefore ig adjusts downward too.

We can now argue in the same way for legs Iy and I4 to conclude that v4 must also be
adjusted upward if the equation ug = u4 = v19 is to hold. In fact, these latter voltages
adjust upward too. Furthermore, the currents at node nyq satisfy ¢y0 = jg + 74. It follows
as before that #19 adjusts downward.

These monotonic relationships can be traced throughout our procedure and lead to
the following conclusion. If any end-node voltage is adjusted upward, all other end-node
voltages (including vg) must also adjust upward if node voltage equations are to be satisfied.
Moreover, output currents will adjust downward. In particular, for leg /13 and node ng, we
have that jo adjusts downward. But, at node ng we must have jo = 0. Since an increasing
vp corresponds to a decreasing jo, there is a unique value of vy for which jo = 0. All the
other voltages and currents in the transmission tree can now be obtained from the found
value of vy and from jo = 0 through backward mappings of the legs or parts of the legs.

Let us also observe that vg and then all voltages and currents can be obtained through
a very simple graphical procedure. We start with a horizontal line at zero current at each
of the end nodes other than ny. These horizontal loci are forward mapped through the
legs of the tree in accordance with our procedure to obtain a single decreasing locus at
ng. Where that locus crosses the zero-current axis is the value of vg. This can be done
quite efficiently thrdugh the secant method, and convergence is assured because that single
locus is decreasing. During the procedure, the output locus of each leg should be stored

in memory. Then, the pair (vo,0) can be successively backward mapped, with the output
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voltage-current pair of any leg being determined by the input voltage of its succeeding leg,
to obtain all voltages and currents. This reduction of the problem to finding where a single
decreasing locus crosses the abscissa works for every transmission tree.

On the other hand, instead of this graphical procedure, we might work with analytical
expressions for the forward and backward mappings obtained from formulas for the elements
of the transmission tree. Then, any standard procedure for solving a system of nonlinear
equations can be employed, as for instance the Newton-Raphson method [9] if characteristic
curves are given by continuously differentiable functions, or the secant method otherwise.
Although the forward and backward mappings will now be combinations of the element
formulas of possibly very high order if there are many elements in a cascade, the number of
unknowns will remain equal to the number of end nodes. Thus, for example, the Jacobian
matrix — in the case of the Newton-Raphson method — will remain of low order even
though the determination of its terms may require extended differentiations. The latter is
straightforward; it does not involve root solving. Thus, we feel that our method provides a

computational advantage over SPICE. We witnessed this when trying several examples.

7 Transmission Networks with Transmission Loops

The most general kind of transmission network is one whose schematic has loops. Each
of the latter reflect a transmission loop within the original network, that is, a sequence of
two-port cascades connected terminal-to-terminal with the last terminal connected to the
first one and possibly with other two-ports connected at intermediate terminals.

Again it is easier to explain our method by referring to an example. Let it be the
transmission network of Figure 4(a); its schematic is shown in Figure 4(b). We have chosen
a tree with the minimal number of ends and have designated one of them as the node ng at
level 0. Passing along the tree from ng we label the levels at all the other nodes as shown
" and orient- each Free leg from higher lévél to lowerdevel. As for the chord legs that are not
self-loops, we orient them in the same way, that is, from higher level to lower level. The
self-loop legs (and, for more general networks, the legs cdnnecting nodes at the same level)

are given any orientation. As always, we will treat any grounding branch at a node of the
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schematic as part of one of the legs incident to that node.

This time, the unknown independent variables will be all the end node voltages, namely,
vo, v1 and vy along with the input currents in each chord, namely, ig, i7, tg, and ig (see
Figures 4 and 5). We now analyze in much the same way as for a transmission tree by
following the chosen spanning tree from higher levels to lower levels in order to write the
needed independent equations.

At the highest level, level 4, we have the inputs (v;,0) and (vq,0). Forward mapping
them, we get uy, 71, 42, and j3 as functions of v; and v;. Equating voltages at ns, we
have u; = u,; this provides one independent equation in vy and vy. Also, vz = uy = uy
gives the input voltage v; to legs I3, lg, and /7. Then, the input current for leg I3 is
i3 = j1 + J2 — 6 — i7. We can now forward map (v3,i3) along leg I3 to get (us,j3) as a
function of vy, vq, 76, and i7. Here, uz = v4. Similarly, the forward mappings of (v4,is)
and (v4,19) along lg and lg respectively give (us, js) and (uo, jo) as functions of vy, vy, e,
i7, g, and ig. Equating voltages, we have v4 = ug and v4 = ug. These two independent
equations represent Kirchhoff’s voltage law around the self-loops Ig and lg. Moreover,
14 = j3 — ig + jg — 9 + jg. Proceeding further along the tree, we forward map (vy4,174) along
l4 and also (v3,ig) and (v3,i7) along lg and l7. This allows us to write vs = us = ug = uy,
which represents Kirchhoff’s voltage law around the loops I3-l4-l¢ and I3-l4-17, two more
independent equations. Furthermore, is = j4 + js + j7, and a forward mapping of (vs, i5)
gives (us,js). Two more independent equations are obtained from us = vg and js = 0.
Altogether we have seven independent equations in the seven unknowns, and Kirchhoff’s
laws and Ohm’s nonlinear law are satisfied éverywhere. After solving for the unknowns,
we can use forward and backward mappings to get all the voltages and currents in the
transmission network.

(At the iterative stages of solving nonlinear equations, u; and u; will in general be
different; so we may set v3 equal to one of them, say u;, thereby eliminating v; as an
unknown for the itertions. Similarly, we may set vs = u3 and vs = u4.)

The secant method can be used to solve these equations when element characteristics

are given as numerical data, and the Newton-Raphson method is applicable when those
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characteristics are given as continuously differentiable functions. There are of course other
methods for solving nonlinear equations such as homotopy methods.

Example 7.1. To check our method against SPICE, we took it that each maximal
ladder in Figure 4(a) was uniform with the number of el-sections shown therein. The
shunting conductances g; and the series resistances ry for every one of the el-sections in the
kth leg (k = 1,...,9) were chosen to be

g1(v) = g2(v) = g3(v) = gs(v) = 0.0005 (v3 + 3v),
r1(3) = ra(t) = r3(2) = r5(s) = 0.05 (3 + 2i),

94(v) = ge(v) = gr(v) = gs(v) = go(v) = 0.0005 (20° + v),
7‘4(i) = Te(i) = 1"7(i) = Tg(i) = Tg(i) =0.05 (213 + i),

with e = h = 0. Also, we assumed the existence of grounding branches at nodes ng, n,,
and ny and set their conductances g « and series voltages sources ex (k = 0,1,2) equal to

the following values.

gq1(v) =0.1v, e, =4,
gg2(v) = 0.1, ey =3,
gg0(v) =0.1v, e = 1.

We implemented our method with a C program to solve for our seven unknowns and also
ran a SPICE program, which required 30 unknowns. The results for the end-node voltages
vo, V1, and v, for both programs are shown in Table 1. They match to the fifth decimal.
The computation time for SPICE was .54 seconds, whereas that for our method was .02

seconds.

8 The General Procedure

Let us now state explicitly our general procedure for solving resistive nonlinear transmission
networks having perhaps transmission loops.

Draw its schematic, and choose a spanning tree in it. (It is preferable but not necessary
to choose a tree with the minimum number of ends.) Any grounding branch at a node of
the schematic should be treated as part of an incident.leg. Choose any end node ng of the
tree and let its level be 0. The level of every other node is the number of legs in the tree
between that other node and ny. Next, orient every leg from its node of higher level to its

node of lower level, but, if there is no difference in those levels, orient the leg arbitrarily.
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TABLE 1

The End-Node Volitages

From Example 7.1

Our Method SPICE
Vi 1.92666 1.92666
Vo 1.90643 1.90643
V3 1.85257 1.85257




Similarly, arbitrarily orient any leg that forms a self-loop. Consequently, at each node other
than ng, there will be exactly one outgoing tree leg, but any number of incoming tree legs,
that number being zero when and only when that node is an end node of the tree. Also, at
every node other than ng, there can be any number of outgoing chord legs and any number
of incoming chord legs. At ng there can be any number of incoming chord and tree legs but
no outgoing legs unless there are self-loop legs incident to ng. The unknown variables are
the node voltages at the end nodes of the tree and also the input currents to each chord leg.

We will be using the forward mappings of the legs. These are directly available if each
leg is a ladder whose elements are specified either numerically or as explicit functions. If
there is a distributed line anywhere, its forward mapping must be determined or, failing
that, approximated by a ladder with appropriately chosen element characteristics.

Assume for now that all element characteristics are given as explicit functions. Consider
all the nodes at the highest level. They will be some of the end nodes of the chosen sbanning
tree of the schematic. Their voltages and the input currents of all their outgoing chords
are unknowns. Forward map these quantities along their respective legs to get functions of
those unknowns. This yields the output voltages and currents of all the incoming'chords at
those nodes of highest level. Let ni be one of those nodes. Equate the output voltages of the
incoming chords at ny to that node’s voltage vx. This will yield a number of independent
equations in the unknowns, that number being equal to the number of incoming chords at
nk. Next, sum algebraically all the currents entering and leaving ny to get the input current
iy Of the unique tree leg l,, incident to nj as a function of the unknowns. Forward map
(vkyim) along that tree leg [,,. Do this at all nodes of highest level.

All the forward mappings performed so far yield some or all of the incoming currents
at each node n, at the next-to-highest level (and possibly other such currents for nodes at
still lower levels) as functions of the unknowns at the highest level. Moreover, the voltage
vy at n, is equal to every one of the output voltages of the incoming legs at ng. (During
the iteration stages of the nonlinear numerical procedure, we may set v, equal to just one
of those output voltages — or alternatively to their average value.) The input currents of

the outgoing chords at n, are also unknowns. Forward map them and v, too along their

‘
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respective legs. Do this for all nodes at the next-to-highest level. Thus, we now have all the
output voltages and output currents of the incoming chords and incoming tree legs at =,
again as functions of unknowns. Upon equating all the output voltages at n, to each other
_and to vy, we will have still more independent equations. The number of these will be one
less than the number of incoming tree legs at n, plus the number of incoming chord legs at
ng. Next, at each node at the next-to-highest level, say, n, again, sum algebraically all the
currents entering and leaving n, to get the input current i, of the unique outgoing tree leg
l, incident to n,. Forward map (v, ¢,) along Iy.

This process can be continued, working successively from nodes at higher levels to nodes
at lower levels. Upon equating output voltages for all the incoming legs at each node — and
doing so finally at the initially chosen 0-level node ng, we will have a number of independent
equations that is two less than the number of unknowns. Indeed, this follows from Lemma

6.1 (which is stated for a transmission tree) and the fact that each chord provides one
more equation. We then set the unknown vy equal to the common output voltages for the
incoming legs at ng and set the algebraic sum of all the output and input currents for the
legs incident to ng equal to 0 to get two more equations. (If there are no self-loop legs
incident to ng, there are no outgoing chords at ng.)

Now, solve these independent nonlinear equations by whatever numerical procedure that
works. This presents the same difficulties that adhere to all such nonlinear problems, but
we now have the advantage in general of dealing with far fewer unknown variables than
conventional circuit analyses require. Of course, our procedure requires the determination
of the forward mappings of all the legs, but these are simply compositions of element and
distributed-line functions and do not require root solving; that is, no equations need to be
solved to get those compositions. To be sure, those compositions will have many terms
when there are many elements in each leg, but a computer can implement these easily.

In fact, our entire procedure can be automated. Despite the several steps i'nhere;nt in
our procedure, it is quite straightforward with only a few computational rules.

Finally, let us take up the case where some or all of the element and distributed-line

characteristics are given as numerical data. This means that any such distributed line will
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in fact be approximated by a lumped ladder. A numerical technique that can be used in this
case is the secant method [9]. To use it, one makes an initial guess of numerical values for
all the unknowns. These values can be forward mapped throughout the network using the
numerically given element characteristics. (This can be done rapidly; no iterative solving
is involved.) This yields a measure of the error produced by the initial guess. A second
guess is made and treated similarly. The secant method then uses those two error measures
to make a better numerical guess of all the unknowns. The process can be continued by
using at each step the last two error measures to get a sequence of sets of values for the

unknowns, which (hopefully) will converge to the operating-point values.

9 Transient Behavior of Resistive-Reactive Transmission
Networks

Henceforth, we restrict our attention to linear transmission networks that have reactances
in addition to resistances. As before, the distributed transmission lines may be nonuniform,
but linearity is now needed because the Laplace transformation will be used to allow an
application of our procedure in the transformed domain. The basic idea is that an inductive
impedance Ls and a capacitive impedance 1 / Cs act like resistémces when the complex vari-
able s is restricted to the real positive axis Ry. Moreover, there are numerical algorithms,
such as the Gaver-Stehfest algorithm [11], by which a transient response can be computed
from a knowledge of a Laplace transform at a finite number of points on R,. The Gaver-
Stehfest algorithm is very fast and works well when the transient is continuous, bounded,
and either monotonic or close to monotonic (as for example when the inductances are small
as compared to the capacitances — a not uncommon situation).

Thus, given the finitely many points on R, we repeat our procedure for each value of s
at each of those points and then employ the Gaver-Stehfest algorithm to compute transient
behavior. This requires the determination of the forward mappings for each such s, and
in the case of an RLCG nonuniform transmission line, whose forward mapping cannot be
determined explicitly, a lumped ladder network may be used to get an approximation for

the needed forward mapping. On the other hand, because of linearity our procedure now
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involves nothing more than matrix manipulations, and the independent equations can be
solved by inverting a matrix. As a result, our method can be extended to complex values
of s when the transmission network is linear. This allows us to use other algorithms for
inverting the Laplace transformation such as the Singhal-Vlach algorithm [10], [13, Chapter
10], which employs complex quantities.

Let us be more specific about the forward and backward mappings of a nonuniform
linear distributed RLCG transmission line. The line voltage v(l,t) and line current i(l,t)
are now time-varying and depend upon the spatial distance [ along the line and the time

t. With the same polarities as those shown in Figure 3(d), the equations governing the line

are now
do(ht) _ 1)3i(l,t) R(Yi(l, 1) (13)
TR T QLU
ai(l,1) 9v(l,1)
S = — == = Ge(l, ). (14)

The distributed parameters L(l), R(1), C(!), and G(I) are respectively the series inductance
in henries per meter, the series resistance in ohms per meter, the capacitance-to-ground
in farads per meter, and the conductance-to-ground in mhos per meter. (Henceforth, L(I)
denotes the distributed inductance, whereas L — without the argument symbol (I) —
denotes the leﬁgth of the line.) Upon applying the distributional Laplace transformation

[15], we convert these equations into the following.

ﬂgil = —(L(l)s + RUNI(,s) (15)
d_’%’i) = —(C(l)s + GV (L,9) (16)

(The use of the distributional Laplace transformation allows us to incorporate initial values
into the transforms of derivatives [15].) In order to invoke the results of Subsection 3d, we
need merely assume the following.

Conditions 9.1. L(1), R(l), C(l), and G(I) represent continuous positive functions of
| on the compact interval {0, L].

Hence, there are two positive constants K and M such that L(!), R(l), C(1), and G({)
are all bounded above by K and bounded below by M. Aga.iﬁ we abuse notation by letting
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V represent V(I,s) and I represent I{l,s), rather than the corresponding functions. Then,

for fixed s > 0 again,
(IL,I) » (L{l)s+ R(I))I

and

(LV) —» (C()s+ G())V.

are continuous functions from [0, L] x R! into R!, which obviously satisfy all of Conditions
3.1 (with Kw replaced by Ks+ K). Upon setting X = X(I,s) = (V({,8),1(l,s)), we can
therefore restate Theorem 3.2 for this case as follows.

Theorem 9.2. Fix s > 0, and choose [, € [0, L] and X,(s) € R%. Assume Conditions
9.1. Then, there exists a unique solution X (I, s) to (15) and (16) defined for all | € [0, L]
such that X (I,,s) = X,(s). Moreover, the mapping ! — X(!, 8} is differentiable from [0, L]
into R2.

Needless to say, all the other results of Sections 3 and 4 also carry over to the present case.
In particular, in the Laplace-transform domain the line has an input-output representation
with a forward mapping F(s) : X(0,s) — X(L,s)and a backward mapping B(s) = F(s)™!:
X(L,s) X(0,s). Thus, we have the following version of Lemma 4.1(d).

Lemma 8.3. A nonuniform linear distributed RLCG line whose parameters satisfy
Condition 9.1 has a Laplace-transformed input-output representation whose forward map-
ping F(s) sends each decreasing locus, each vertical locus, and each horizontal locus into a
decreasing locus (when f is replaced by F(s) and where s is a fixed positive number.)

Note. The loci we now deal with are straight lines — again because of linearity.

We now have all we need in order to empower our version of a transient analysis.

Example 9.4. Consider the transmission network shown in schematic form in Figure
7. Each line represents an exponentially tapered RC line, all identical. A linear Thevenin
_branch with a (time-varying) voltage ¢ and a 1  resistor appears at node n;. This will
be the one and only source driving the network. All other nodes of the schematic have
1 Q grounding resistors. We have chosen a spanning tree with just two ends, and ng is .
chosen as the node furthest to the right. The other node indices coincide with the node

levels. Each leg is oriented as indicated in Figure 7 by arrowheads on the leg, the direction

21



of the forward mapping for the leg. Thus, the distributed linear series resistance R(!/) and
distributed linear shunting capacitance C(!) are given by R(l) = Roe® and C(l) = Cpe~?,
where Rp, Co, and « are all positive constants and [ varies from 0 to L in accordance with
the arrowheads. We call this a widening taper and use the dotted arrows in Figure 7 to
indicate the direction of widening. A negative a would indicate a narrowing taper. Thus,
in the direction of the leg orientations, the legs /y, l3, l4, and /5 have widening tapers, and
legs I3 and lg have narrowing tapers. .

- In the widening direction, each line has the matrix description

V(L,s) | _ W V(0,8) | _ | woo wor V(0,s)
I(L,s) | I{0,s) | ~ | wo wn 1(0, s)

where, in accordance with [7],

wop = e"L/z(cosh YL -~ 2—C;b—sinh Y1),

Wor = —EEQL/Z sinh 'qu,
Y
"o’ Y L/2
= - —]e @ inh ¥ L
o0 (4¢R0 Ro)e . 'sm '¢J‘,

wyy = e=oL2 (cosh WL + — sinh ¢L>,

2y
) 1/2
(a— +. SRoCQ) .

4 4
Thus, W is the forward mapping for legs [y, Iz, l4, and I5. The backward mapping for these

legs is )
w-! = [ wn —w01]

—Wi0 Woo
because det W = 1. The forward mapping N for legs I3 and lg, which is th;, mapping in
the narrowing directions, are obtained by replacing o by —a within W, and their backward
mapping is obtained in the -sa.-me way from WZ1.
We now have five unknowns: v, v3, i4, i5, and ?g. An application of our procedure,
starting at node n3 and taking into account the currents in the grounding branches leads

to the following matrix equations. From node nj -

HErisant
J3 €T U3 —l4— 18
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From node n,,

From node nq,

g = Uy, (17)
U1 U2
. = W] . . .
[Jl] [32+J4~u2]
At node ng,
Vo = U = Us = U, (18)
v = 1+ Js + Je (19)

Equafions (18) provide three independent equations, and (17) and (19) provide the other
two needed to solve for the five unknowns.

We chose e(t) to be the unit-step function and solved for the Laplace transform Vo(s) of
vo(t) at ten values of s in Ry as required by a particular case of the Gaver-Stehfest algorithm,
which then yielded vo(t). We then did the same thing for v3(t). The results are shown in
Figure 8. We also computed v;(t) and v2(t); their curves are virtually the same as that for
vo(t). We were unable to find a version of SPICE that encompasses nonuniform distributed
lines. However, the Singhal-Vlach algorithm is available for checking our inversion of the
Laplace transformation. We used the version of that algorithm employing twenty poles
and seven zeros in their Padé approximation. Plots of the results for vo(t) and v3(t) are
indistinguishable from those obtained from the Gaver-Stehfest algorithm. Indeed, their
numerical values for t = .2, 4,...,6.0 agree to three places and differ in the fourth place
by just one or two digits except at t = .2 where our choices of the numbers of poles and

zeros effects the very beginning of the transient.
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FIGURE LEGENDS

Figure 1. (a) The form of the locus of the voltage-current characteristic for any branch.
Here, h = G(0) and e = R(0) = G~1(0).

(b) The Thevenin form of that branch. g : v + e — i is the function obtained
by horizontally shifting the characteristic of (a) to make it pass through the
origin. Thus, e is an implicit independent voltage source encompassed by that

characteristic.

(¢) The Norton form of that branch. r : i+h ~— v is the function obtained by vertically
shifting the characteristic of (a) to make it pass through the origin. Thus, A is

an implicit independent current source encompassed by that characteristic.
Figure 2. A two-port.

Figure 3. (a) A grounding branch as a two-port.
(b) A floating branch as a two-port.
- (¢) A lumped ladder network as a cascade of el-sections.

(d) A distributed transmission line.

Figure 4. (a) A transmission network consisfing of nine lumped ladders.

(b) The corresponding schematic. The heavy lines denote a chosen spanning tree
in the schematic. That tree has the minimum possible number of ends. The

number near each node indicates the level of that node.

Figure 5. The schematic of a transmission tree. The number near each node indicates the

level of that node.

Figure 6. The input voltage v,,, input current i,,, output voltage w,,, and output current

Jm for the leg I,,.
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Figure 7. The schematic of a transmission network consisting of six identical exponentially
tapered RC distributed lines. The heavily drawn lines denote the chosen spanning tree.
The dotted arrows indicate the directions of the widening tapers. The arrowheads
indicate the directions of the forward mappings. The node-voltage indices and the

node levels are the same in this example. All grounding resistors are 1 2.

Figure 8. The node voltages vo(t) and v3(t) of Example 9.4.

27



) .
“

Fig. 1 alblc



Fig. 2




i s —>» i1
Io——>: )
éL g(vo+e)
Vo V1=V
e _
777
(@)
| | h
] | : ——o—>i1 = io
lg—>
+ + r(io+h) +
.VO W V1
777
(b)



D) )
Io | = |
; Fol) | s Fa®) |+
AN ‘ A
Vo §l90(.) Viy Vn-1 lgn-1(') Vi
) @90 | _ _ €en-1
777 777
0
0= i(0) - i@ )=
————>.— ; P —>
o + - | +
Vo= V(0) v(0) - v(b)=vy



Fig. 4 a/b



EL)

80

EIA

%]

£)

ZIA

H)

97

LA

0k

vy

.. YA ¥

Oka

57

67

‘B14
S

SA
.v
EA
S i
£} ‘
2) $m
A AFM :
mv m






Fig.7 -



Rad
™
>
™
|
\
v
\
\
\
i o
\
\
i ~—
N
~
~ o
1 1 1 S | L 1 L 1 L o
28 3 8 ik 0 o 2 — ¥ )
(syon) ebejjon apoN

Time (seconds)



