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I. Introduction

With rapid proliferation of personal mobile computing and communication devices,
future mass transportation vehicles such as trains may provide services via mobile LANS aboard
the vehicle. Connectivity of onboard users to the world's communication networks would then
depend on providing a high bandwidth link or links to the vehicle's LAN as the vehicle moves
throughout a region. If the region in which such vehicles travel is served by a cellular type
wireless infrastructure, it is natural to consider how connectivity for such platforms can be
provided by the infrastructure. The traffic loading in a cell may change abruptly as such vehicles
enter and leave cellular coverage areas. Ordinarily, communication systems are designed under
the assumption that demands arrive randomly but more or less smoothly in time. But if there are
likely to be abrupt and high demands for limited resources, there will be difficulty in
accommodating communications needs unless the specific nature of these demands can be
exploited. Simply increasing the number of channels in the cell to accommodate such events is
unsatisfactory because resources will be wasted when the demand disappears.

However, mass transportation vehicles such as trains follow a more or less fixed
schedule. If this is taken into consideration the cellular infrastructure might efficiently
accommodate communication demands by using a call admission control policy that assigns
resources 1n anticipation of scheduled demand changes. We consider strategies to accommodate
such mass transportation vehicles.

For simplicity of engineering and practical implementation, we assume that a fixed

number of wireless channels or a fixed bandwidth is required for the LAN to provide satisfactory



QoS to all the mobile users on the train. Extension to cases for which other communication
resources (in addition to bandwidth) are also required is deferred to future work. The essential
characteristics of the train are that it has a more or less fixed schedule and requires a significant
resource allocation during its sojourn in a cell.

In Section II, the problem statement and the system model are described and a strategy to
accommodate mass transportation vehicles is briefly introduced. The call admission control
scheme is described in Section III. In Section IV, equations for system state probabilities are
formulated and solved by numerical methods. Additionally, appropriate performance metrics are
defined. An optimization algorithm for call admission control is proposed in Section V. In
Section VI, the strategy is described in detail for two typical scenarios: 1) a single train enters
and leaves the cell, and 2) two trains enter and leave the cell. The performance of the strategy is
also analyzed theoretically. The numerical results are presented in Section VII. Conclusions are

drawn in Section VIIIL
I1. Problem Statement

Consider a region serviced by a cellular system using a fixed channel assignment. We
assume that the base stations serve a large number of mobile subscribers with relatively modest
resource needs in addition to the heavy and abrupt demands imposed by mass transportation
platforms traversing the region. We refer to the large number of mobile subscribers that generate
a statistically regular or stationary pattern of demand as the local users. The local user
population generates a new (local) call origination process and a hand-off (local) call arrival

process, each of which is assumed to be Poisson. Let 4, denote the known new call origination
rate. Let A; denote hand-off arrival rate when the cell is in the statistical steady state. That is,

the state probabilities are not changing with time. The cell will be in the statistical steady state if
the current train has left the cell for a sufficiently long time and the next train will enter the cell a
sufficiently long time later. From previous work [3]-[5], we know that A; is an implicit function
of 4, andthat A; is determined by the dynamics of the system. We assume that the duration of

an individual session is a ned (negative exponential distributed) random variable with mean of

1/ u. We assume that the dwell time of a platform in a cell is also a ned random variable with a



mean of 1/ up . Let C be the number of channels in a cell and C; be the fixed number of

channels that are required by the service of the train.
In the proposed scheme, the service of the train has preemptive priority over the service

of local users in each cell along the train’s path. That is, when the train arrives at a cell in which
the number of available channels is less than C , some local calls in progress will be terminated
to guarantee the required C; channels for service of the train. Because interruption of ongoing
calls is undesirable to local mobile users we develop a strategy for the system to minimize such
interruptions.

Let D,y denote the time that a train spends in a cell. The value of D, is known to
the train and announced to the BS. According to the speed of a train and the size of a regular
cell, D,y can be of several minutes in duration. In the proposed strategy, each train notifies the

next base station (BS) that it will visit of its arrival time a fixed time interval before the actual
arrival. (Notification of time to arrive at other base stations can also be considered). The fixed
time interval (between the notification and actual arrival) is called the notification interval and is
denoted by D, . Suppose that the train notifies the BS at 1 =T, that it will enter the cell at 1 =T,

and leave the cell at =1, where T; =T,+ D_,;. Then the notification interval D,, 1s [T, ,T,].

The BS checks the state of the cell (i.e., the number of occupied channels in the cell) and takes
appropriate call admission control action to control (restrict) the admission of new calls and

hand-off calls beginning at some time 7T, > T, in the notification interval. The time interval
between T, and T, is denoted by D, and is called the action interval. The value of D, isa
constant value that has to be determined by the analysis. A train will leave the cell D, time

units after its arrival, and the (resources) channels that it uses during the sojourn will be released

upon leaving. In the following sections we describe the details of the strategy.
II1. Call Admission Control

We use a fractional guard channel policy for the purpose of call admission control.
Generally in a fractional guard channel policy, at each state calls are admitted only with certain

probability. Let «; denote the probability that a new call arrival is admitted when there are i



channels occupied in the cell, and §; denote the probability that an arriving hand-off call is

admitted when there are i channels occupied in the cell. New calls and hand-off calls are always

rejected when all C channels are occupied. We have 0 < o;<l,and 0< B; <1, for 0<i<C-

1, while o; =O, ﬂi =0, for i=C.

IV. Nonstationary State Probabilities and Performance Metrics

We assume that the arrival of the train has no influence on the statistics of local call
origination. Thus, new call origination rates in the cell before the train arrives, while the train is
in the cell and after the train leaves are the same. Also, in the model, blocked calls are cleared
from the system so demand does not accumulate while the train is in the cell. In practice this
means that blocked local calls may retry after a long time.

The cell in which we consider the accommodation of the train is called the target cell.

As the train approaches the target cell, the two neighboring cells that the train will pass before
and after the target cell will take call admission control to restrict new calls and hand-off calls.
Therefore, the number of calls in progress in the two neighboring cells may be lower than the
number of calls if the two cells were in statistical equilibrium. The result is that in the target cell,
the hand-off arrival rate from these two neighboring cells may be lower than the hand-off arrival
rate from the two cells when the two cells were in equilibrium. Thus, the hand-off arrival rate in

the target cell is no greater than the steady state hand-off arrival rate A, . During the call

admission control period, the hand-off arrival rate in the target cell is a time-varying variable and
is very difficult to determine (track). For analytical convenience we use the steady state hand-off

arrival rate A;, as the upper bound of hand-off arrival rate during the call admission control

period. Then, the hand-off failure probability that is computed by using the upper bound hand-

off rate A, is an upper bound on the hand-off failure probability.
Let P, (¢) denote the probability that there are i channels occupied in the cell at time ¢,
where 12 T,,. Developing the basic materials of [1], we can easily show that the state

probabilities are governed by a birth-death process and satisfy the differential-difference

equations



%3(’)=(0‘i—1}~n + Bi_jAp) P (1) + WPy (1) = (@A, + By + )P (F) (1

Because the duration of the action interval D, is short, the system may not reach a steady state
within D,. We adapt the well-known Runge-Kutta algorithm [2] to this problem to calculate the
numerical value of F;(¢).
We divide the duration of the action interval, D,, into many equal-size intervals. Let S
denote the number of intervals and At denote the duration of each interval. We have
S-At=D,=T,-T, (2)
If the interval At is small enough, equation (1) can be written as

P (t+ AN -F ()
At

=1 An + BiciAn) P )+ UF (O — (04 Ay + Bi A + IDE (D) (3)
Thus, P;(t+ At)can be expressed as

P (t + At) =[(04-1 A + B An) B O+ 1Fi OV~ (@ 200 + Bi g + DF O] A+ F(0) (4)
In this way, P;(t)at =T,+nAt(n=1, 2, ..., S) can calculated given F;(¢t) at =T, . Let k denote
the index of the iteration. Let S¥) denote the number of small intervals in the kth iteration, and

At™) denote the duration of small intervals in the th iteration. The numerical algorithm 1s

shown in Fig. 2 and described as follows:

Algorithm:
Step 1: Let £~=1. Begin the iteration with the number of small intervals S () each interval having

a duration, At ), where S0 A/ )=Da. Let P,-(k )(t) denote state probability of i at the ith

iteration. Then, B(k) (t) at =T, +nAt (n=1,2, ..., S(k)) is calculated by applying the Runge-

Kutta method with equation (4). For details of the Runge-Kutta method, readers are referred to

[2].

Step 2: Let &~=k+1. Double the number of small intervals, S, thatis S *)=5. 5= and

ar® =§ Ak, Using the Runge-Kutta method with equation (4) again, we get P,-(k )(t) at



t=Ta+nAt(k) (n=1,2, ..., S(k)). Define €;, (n=1,2, ..., S(k—l)) as the relative error
between Pi(k"” (1, +nAt(k_1)) and I’i(k) T, + 2nAt(k)). This 1s given by

£, = PO T, + 20460y~ pED(T, 4 nt &y PED (@ 40l ®Dy ()

Step 3: If each ¢, (i=0, 1, ...,C,n=1,2, ..., S(k"l)) is less than a very small number { , the

iteration is stopped. Then each P,-(k—l) (t) at =T, +nAt(n=1,2, ..., S(k"l)) is taken as the

(k1)

value of P (t) at our desired accuracy. We also get the duration of interval Ar= At that is

sufficiently small to yield the desired accuracy. (If we take { =1x1 0™, the solution will be
correct to within roughly four significant figures.) If the test for ANY of the quantities, €;,, is

not satisfied the iteration is continued by returning to step 2.

There are two important performance measures that result from the call admission control
scheme. One is the probability that a local call that is in progress is preempted at the time of the
train's arrival. This is called the preemption probability. The other is the hand-off failure
probability during the action interval. Define the state when the BS begins to take call admission

control as the initial state of call admission control. Let P, (/,D,) denote conditional

preemption probability given that the initial state is / and the duration of the action interval is
D, . This conditional preemption probability is defined as the expectation of the ratio of the
number of preempted calls to the number of calls in progress at the time the train enters the cell.

The expectation counts only those ratios when at least one call is preempted. Let G denote the

maximum number of local calls in the cell so that no local calls will be preempted when the train

enters. In the case under discussion we have, G=C - C . Then, Pp, (l,D,) is given by

p D)= S i=G
ot (LDg)= Y — B(T,) (6)
i=G+1

To provide satisfactory Quality-of-Service to local users, it is required that the preemption

probability, P, (/,D,) not exceed some given threshold, say.



During the action interval D, the admission of new calls and hand-off calls will be

restricted to accommodate the scheduled arrival. Because of the non-stationarity induced by the
train arrival and the onset of admission control, the hand-off failure probability changes with

time. Since the failure of hand-off calls is undesirable for local users, our call admission control
scheme will keep the time average hand-off failure probability (that is, averaged over the action
interval) as low as possible and meet the preemption probability requirement. Let P;; denote the

probability that the cell of interest is in state i in the jth time interval [T, + jAt, T, +(j+1)Ar) . If
we use piecewise linear interpolation to get the value of F;(¢) during the jth interval, Pj;is given

by

BT, + AN+ B(T, +(j + DAr)
2

Py (7)

If the cell is in state i, an arriving hand-off call will fail with a probability of (/- f3;). Let
P, (j|l,D,) denote the conditional hand-off failure probability during the jth interval given that
the initial state is / and the duration of action interval is D,. The probability is given by
C
Py(j|6,Dg)=3 By (1= ;) ®)
i=0
The time averaged hand-off failure probability < P, (1,D,) > is given by
; J=S-1
<P,,(1,Da)>=§ Y P,(jll,Dy) 9)
J=0

(Note: The time average is over the action interval with the given condition that the initial state

1s /).
V. Optimum Call Admission Control

A. Optimization Goal and Expression

From equation (4), we see that the new call and hand-off arrival rates, 4, and 4,
respectively, influence the state probabilities only through the weighted sum, A;, given by

Ai=a;h,+ BiAy (10)



where o; and B; are the admission probabilities for new calls and hand-off calls respectively as

defined in Section III. So (4) can be written as

Py(t + A1) =[A;_ Py () + 1P (O)~(A; + DR O} 4+ B (0) (11)
We can see that

0< A A+ A, if0<i<C-1 (12)
From (11), it can be seen that the state probabilities are determined only by A; =4, + B;4;,
(and not ¢; and fB; separately). In order to keep the hand-off failure probability as low as
possible, (intuitively) hand-off calls should be accommodated as much as possible. So S;
should take the highest possible value. This can be seen from (10) and (11). Let o; opt(A;) and

Bi_opt(A;)denote the optimal value of ¢;and B; that minimize the hand-off failure probability

for a given A; respectively. They are given by

0 if A; <Ay
%iopt i) {(Ai—lh)/ln if Ap > Ay ()
AiTAy i A S Ay

For a given initial state / and a given action interval D, , the admission control policy is
to minimize the hand-off failure probability < P, (/,D,) > (withrespectto A;(0<i<C-1))
while at the same time keeping the value of preemption probability P, (/,D,) below the
prescribed constant, 6. Then, the optimization problem can be stated mathematically as follows:

n/q\in <Py(l,D,)> and also assure P, (I,D,)<6,
0<i<C-1

where Ai € Rand 0 < Ai < A‘n +A‘h . a,-=ai_0p,(A,-)andﬂ,- = ﬁi_opt(Ai) (15)

Many optimization methods require knowledge of the derivative(s) of the objective

function or at least numerical evaluation of the derivative(s). However, these methods are not

applicable in this case because the expressions for Py, (/,D,) and <, (/,D,) > contain £ (1),
which may not be expressible in closed-form. Thus, expressions for derivatives of Pp, (,D,)

and < P, (/,D,) > are unavailable and even the numerical evaluation of the derivatives



of P, (1,D,;) and < P, (1,D,) > are difficult to obtain. In order to solve the optimization

problem to a given accuracy, at first we quantize the value of A; into small steps. Then, the
optimization problem in (15) can be converted into a nonlinear integer programming problem.
The nonlinear programming problem can be solved using a step-by-step increment method that
does not require the knowledge of the derivative of objective functions. In this way, we can
circumvent the difficulty of finding the derivative of the objective function. The details are
given below:

Suppose that M is a large integer. Let m; denote the quantization level for A;, where m,
1s an integer and 0 <m; <M . Let A;(m;) denote the quantized value of A;. Since

0< A; €A, + Ay, we can express A;(m;) as
Ai(m) =2 (A, + Ay) (16)
M

If M is sufficiently large, the optimization problem in (15) can be written as the following
nonlinear integer-programming problem
min P, (l,D,) and also assure that Py (,Dy)<8,

ml
0<i<C-1

where m, e Jand 0<m, <M, o =a,-_0pt(—xl'—(ln +Ap), 4; = ﬁi_opt('A_/}('ln +A,))(17)

Let m be a vector whose components are (my,my, ..., mc_;). It is called the admission
- —0 C . ~] =2 —~m
decision vector. Let m denote the initial guess vectorand m , m , ..., m denote the

—k —k
subsequent refined vectors. Let 7, (m )and Pp(m ) denote the hand-off failure probability

. o . o L. . —k
and the preemption probability respectively when the admission decision vectoris m . Here

arguments of initial state / and the duration of action interval D, are omitted as default to make
the expression concise. Let E(—z'; denote the ith unit vector.

e(i)=(eg, €], .. ec_p) (18)
where e, =1 only if n=i, otherwise e, =0. The optimization algorithm diagram is shown in Fig. 3

and described as follows.



B. Optimization Algorithm

A benchmark policy of the call admission control scheme is m; =0 (0 <i < C-1), which

we call the “closed-gate” policy. This policy corresponds to the call admission control policy for
which no new or hand-off calls are admitted during the admission control period. The
benchmark policy is used in the optimization algorithm to test whether the optimization objective

is achievable for specific initial state and action time interval D, .

Step 1: If the preemption probability when the closed-gate policy is used is greater than the
preemption probability requirement 8, then optimization constraint can not be met and the

admission parameters ;= f3; =0, 0 <i < C -1 are taken as the optimized parameters in this case.
Otherwise, there exists a set of m; (0 <i < C—1) that can achieve the optimization objective

function in (17) and the algorithm proceeds with step 2.

Step 2: Select an M that is sufficiently large (for example, M=1x 1] 0%). Set m,-0=0 (0<i<C-1).
Let £=0.

Step 3: Search through 0 <i < C -1 and determine the index i that maximizes

—~k —_k — -k —
[B(m )- P,(m +e(i))] while at the same time the constraint Ppi(m +e(i)) <0 1s still met.

. . =kt =k — . .
Then, update the admission decision vector as m =m +e(i). Then, increment the index k by 1.

. . . -k — —k -k —
Step 4: If the index i that satisfies the requirement Py (m +e() <0 and F,(m )>PF,(m +ei))
can not be found for 0 <i < C -1, the search terminates and the optimal admission decision

. —k . . . -
vector 1s found to be m . We denote the optimal admission decision vector by ;.

Otherwise, go back to step 3 and continue the search.



VI Strategies for Two Typical Scenarios of Scheduled Priority Arrival

A. Scenario 1: A single train enters and leaves the cell

At D, time units before the arrival (i.e., at the beginning of the action interval), the BS

checks the state of the cell. Suppose that the initial state is i. Recall from Section II that the

value of D, is known. If the state i is among the states G, G+1, ..., C, the BS will take call
admission control that is optimized in Section V with initial state / and action interval D, .
Remember that P, (i, D,) and < B, (i, D, ) >are respectively, the resulting preemption

probability and hand-off failure probability given the initial state i and the duration of the action

interval D, . The value of P, (i, D,)and < P, (i, D) > are given in (6) and (9) in Section IV.

If the state i is among 0 to G-1, the BS will wait until the state of the cell increases to G
to initiate call admission control. But with some corresponding probability, the state may
increase to G at any time instant. This requires the BS to be able to compute the optimized call
admission parameters in real time at any time instant. The computation of the optimized
parameters is time-consuming. It may be difficult for the BS to finish the computation in real
time. Therefore, we propose a simplified method in which the BS checks the state of the cell
after every period. Let D,, denote the duration of one period. The value of D,, is a design
parameter and should be chosen properly so that the probability that the state increases to higher
than G in the duration of one period is low. We assume that

D,=L-D,,, Lis an integer (19)
The optimized call admission control parameters for states G, G+1, ..., C and possible remaining
time D, —kD,, (1<k < L-1) can be calculated beforehand and stored in the BS. So the BS
does not need to calculate the optimized control parameters in real time when call admission
control is initiated.

Then, if the initial state i is less than G, the BS will check the state of the cell after D,,
time units to see if the state is in G or higher at that time. If after D,, time units the state is in G

or higher, the BS will initiate call admission control with optimized parameters. Otherwise, the

11



BS will check the state another D, time units later. The same procedure is repeated for each

following period until either the state is in G or higher at the end of some period or the train
enters the cell.

Let s; (k=1, 2, ..., L) denote the state of the cell after the kth period on condition that the
call admission control was not initiated after the (k-1)th period. Let P,(j|h, D,,) denote the
probability that the state of the cell increases from 4 to j after D, time units. For simplicity of
presentation, we categorize the states into two more general states. If the number of calls in
progress in the cell is less than G, the cell is in the /ight state. Otherwise, the cell is in the heavy
state. Suppose that the state of the cell first comes into a heavy state after k periods (each of
duration D, time units). For a particular state s, (s = G), the BS will take call admission
control with the state s; and the remaining time D, — kD,,. The resulting preemption
probability and hand-off probability are Py, (s, Dy —kDp,) and < Py (sg, D, —kD,,) >
respectively. These can be calculated by using the numerical method given in Section IV. Let
P pr(k)and pj (k) denote the weighted resulting preemption probability and hand-off failure
probability respectively for the case that the cell is in heavy state at the end of the kth period.

When k=1, for a particular state s5;(s; 2G), P;(s; |i,D,,)is the probability that the state
of the cell increases from i to s, after D, time units and Py, (s;, D, — Dy, ) is the resulting

preemption probability. Therefore, the weighted resulting preemption probability for the case

that the cell is in heavy state after the first period, p pt), 1s given by
C .
Ppr(1)= ZPS(S]Il’Dm)'Ppt(sl’Da_Dm) (20)
5,=G
When 1<k<L, it means that the cell was not at heavy state at the end of 1st, 2nd, ... and

(k-1)th periods but the cell is in the heavy state after the kth period. For a particular state s, , the
) R ] G-/ G

corresponding probability is  3.F(s7]i,D,,)- X P52 |57, D) X Pe(Sp—t | S50 D) oSk | Sk—gs D)
5,=0 5,=0 5,0

and resulting preemption probability is Pp(sg, Dy —kD,y, ). Therefore, the weighted resulting

12



preemption probability for the case that the cell is in heavy state at the end of the kth period,

Pp (k) is given by

ppk)= ZP(S1| D) ZP 3621800+ 2 RSt 15%-2 D) 2P(Sk|sk 1 D) BolsioDy—kD) (21)

5,0 s=G
When k=L, the BS does not need to check the state of the cell after the Lth period,
because the train enters the cell at this time. For a particular states; (s; = G ), the resulting
sy —
SL

preemption probability is

G . Therefore, p,,(L)is given by

G-I G-I
P pt (L)= XR(s116:Dy)- X Kls2] 51D 2 B(sy115-2D)- EP(SLisL—J’Dm)( . J(22)

5=0 5=0 5.0 5,=G
Similarly, we can find the weighted hand-off probability (i.e., pj(k)) for the case in which the
cell is in a heavy state at the end of the kth period. When =1, p; (1) is given by
C
Pa(D= SP(5116:Dp)- < Py(s1, Do ~Dp) > (23)
When 1<k<L, p, (k) is given by

py(k)= ZP(SA L0,)- ZP(SzlSJ,Qn) Z Bttt ZP(SXISL »D)- <BlseDy—kD)> (24)

5,=0 s =0

k-1

When k=L, it means that the BS did not take any call admission control during the action interval

D,. Let Py denote hand-off failure probability when the cell is in steady states. The value of
Py, can be calculated by using our previous work [3-5]. In this case, the resulting hand-off
failure probability will take the value of P,. Therefore, pj(L)is given by

G-I G-I
pi(L)= g%(Sﬂi,Qn)' EORS'(S2|S]’ Z B(St—1 | Sk—2: D) ZPs(Sk|Sk—1=DnD By (25

‘Sl l=o k

Remember that in the Section IV, P, (i, D) and < P, (i, D, ) > are defined only for

G <i < C because the BS will begin call admission control at D, time units before the arrival

only if the initial state i is among G and C. Here, we use the notations P, (i, D) and

<P (i,D,)>, 0<i<G-1, denote the resulting average preemption probability and hand-off



probability respectively if the state of the cell is i (0 <i < G~-1) at D, time units before the
arrival. Pp, (i, Dy yand < P, (i, D,) >,0<i <G -1, are the sum of the weighted preemption

probability and hand-off probability for every possible case respectively. They are given by

L
Pp,(i,Da)=1\2]pp,(k), 0<i<G-1 (26)

L
<P, (i,D,)>= X pp(k), 0<i<G-1 @7)
k=1

When the train leaves the cell, the C; channels that the train uses during the time that it

is in the cell will be released and made available for use of local calls. After some time, the cell
will reach statistical equilibrium as before. (The case that the arrival of trains is sufficiently

frequent so that the cell may never reach statistical equilibrium is included in the scenario 2).
B. Scenario 2: Two trains enter and leave the cell

We consider the scenario that a single train enters a cell and another train enters the cell

before the first train departs from the cell. We assume that each train will notify its arrival to the

BS D,, time units before its arrival and spend D,y time units in the cell. Let D; denote the

time difference between the arrivals (or notifications) of the first train and the second train. The

following cases with regard of the difference of the arrival times are considered:

Case 1: The second train enters the cell more than D, time units after the first train leaves.
In this case, Dy > D, + D,,;; and the timing is shown in Fig. 5. This case is equivalent

to that in which two single trains enter and leave a cell separately as in scenario 1. The BS will
take call admission control for the two trains respectively as in the scenario 1.

Although the cell may not be in the statistical equilibrium state when the second train
arrives, but the performance analysis of the arrival of the second train is not affected. The reason
1s that performance of the call admission control is determined only by the action interval and the
initial state (NOT state probability). The system performance analysis for the arrival of both

trains is exactly the same as the performance analysis for a single train as in the scenario 1.



Case 2: The second train is scheduled to enter the cell within D, time units after the first

train leaves the cell.

In this case D,y <Dy <D, + D,y and the timing is shown in Fig. 6. At first, the BS

controls the incoming traffic in the cell using the strategy for scenario 1 as if there is only one
train (the first train) arrival until the first train leaves the cell. Upon the first train’s leaving, all
the channels used by the LAN on the train will be released and the number of channels occupied

by local users is at most G. If Dy >D,+D.,, the BS will wait until D, time units before the

arrival of the second train then check the state of the cell and take proper control action

according to the state as in scenario 1. If Dy <D, + D, , the BS will immediately check the
state of cell. If the state is G, the BS will take call admission control that is optimized in Section
V with the initial state G and the duration of the action interval D, . If the state is between 0 and
G-1, the BS will check the state of the cell every D,, time units and take optimized call

admission control as in the scenario 1.
The performance analysis of the first train is exactly the same as the performance analysis

of a single train. If Dy > D, + D, , the performance analysis of the second train is also the

same as the performance analysis of a single train. If D; <D, + D,y , the performance

analysis of the second train is similar to the performance analysis of a single train except that in

(6), (9) and (20-27) D, — D, will replace D, and in (6) and (9) / will only take the value of G.

Case 3: The second train is scheduled to enter the cell before the first train leaves. At the
time that the second train notifies the BS of its arrival, the BS has not yet initiated any call

admission control action.

In this case, Dy < Doy and Dy < D, —D,. The timing is shown in Fig. 7. During the
interval of D_,;; — D, time units, two trains are simultaneously present in the cell of interest.

So 2C; channels will be required to support the LANS on the trains in this time interval. Let
G’ denote the maximum number of local calls in the cell so that no local calls will be preempted
when the second train enters. Here, G equals to C-2C - After receiving the notification of the

second train, beginning a suitable time interval, denoted by D a' , before the arrival of the first



train, the BS will check the state of the cell and take proper call admission control for both trains.

’
It is obvious that the notification time D,, should be no less than D, + D .

Remember that At is the duration of interval that is sufficiently small to get desired
accuracy of state probabilities P;(f). Let S " denote the number of intervals in the duration of
Da' +D,. Itis given by

S'=(D, +Dy)! At (28)
Let T, a' denote the time instant that the BS begins to check the state of the cell and take control.
State probability P, (T, a' + jAt),j=0,1,2, ..., S’ can be calculated by using the numerical
solution in the Section IV. Remember that the first train will enter the cell at =7, and the

second train will enter the cell at =T, + Dy . Let P;;(l, Da') and Py, (/, Da') denote the
preemption probabilities at the first train’s arrival and second train’s arrival respectively given

that the initial state is / and the duration of the action interval is D a' . Similar to preemption

probability given in (6), they are given by

] _ C l.-—G .
i=G+] !
o £ i-G
PprZ(l’Da )= Z —-P,(T,+Dy) (30)
i=G'+1 !

Let Pij' denote the value of P;(r) during the interval |7, a' + jAn, T, a' +(j+DAt). If the piecewise

linear interpolation is used, P,-j' is given by P,-j'

hro PAT, + jA+P(T, +(j+ 141
i
2

(31
Let Ph' Ui, Da') denote the hand-off failure during the interval [7, a' + 4, T, a' +(j+1)At) given

that the initial state is / and the duration of the action interval is Da'. It is given by

r ’ C ’
Py (jl[aDa)=§«Pij (1= B;) (32)
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The time average hand-off failure probability given that the initial state is / and the duration of
the action interval is Da' , < Ph' (1, Da') >, is expressed as

[ ' 1 j=S'_I [
<Py (I,Dg)>=— I P, (j|1,D,) (33)
S

’

Jj=0
Then the optimization problem is equivalent to finding a suitable set of m; (0<i<C~1)
to meet the following goal:
min < Ph'(l, Da') > and also assure P, (/, Da')SG and P, (l,Da') <86
d,
G<isC—~1
m; . my
where m; € Iand 0<m; <M, o =a,-_0p,(-;/[-(/l,, +Ap), 4; = ﬁi—ol”(—]t/? A +4)) (34)
The detailed optimization procedure is the same as in Section V.
After receiving the notification of the second train, the BS will check the state of the cell

beginning Da' time units before the arrival of the first train. If the initial state i is among the

states G , G'+1, ..., C, the BS will take call admission control that is optimized with the

constraints and objective functions in (34) and with the initial state i and the duration of the

r
action interval D, .

If the BS finds that the current state is between 0 and G -1 , it will check the state of the

cell after every D, time units until at the end of some period the number of occupied channels

in the cell becomes no less than G . Suppose that at the end of the k&th D, time units the state of
the cell increases to s; (s = G). Then the BS will take call admission control that is optimized

in (34) with the initial state s; and the duration of the action interval D, — kD, .

The performances of the arrival of the two trains are analyzed in terms of Pp, Da' ),
Py2(,D, )and < B’ (1,D,') > which are defined in (29-30) and (33). The analysis is carried
out similarly as in the performance analysis of the scenario 1. The only differences are that here

parameter G will replace G, S "will replace S and Da'will replace D, in the scenario 1.
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Case 4: The second train is scheduled to enter the cell before the first train leaves. At the
time that the second train notifies the BS of its arrival, the BS has already initiated call

admission control for the first train.

In this case, the interval durations are related by D, —D, < Dy < D,y and the timing is

shown in Fig. 8. Upon receiving notification of the second train, the BS will stop the call
admission control for the first train, check the state of the cell, and then apply corresponding

admission control according to exactly the same criteria as in case 3. However, as we discussed

in order to meet the performance requirement, D, has to be chosen greater than D, .

Remember that D a' is the action interval to accommodate the arrival of two trains and is much

larger than D,, (the action interval to accommodate the arrival of a single train). Since D, is

small, we have D, >D, >D, +D,,y. Later on in numerical results, this will be verified. This

case will not happen in practical systems at all. So the performance of this case is not analyzed

at all.

In all the four cases, when the trains leave the cell the channels that it uses during the stay
will be released and available for use of other train or local calls. After sufficiently long time,

the cell will go to statistically equilibrium state as before.

VII. Numerical Results

The selection of suitable fixed action time D, , Da' and a suitable fixed notification

time, D, , is very important to the overall performance of the system. In this section, we

examine the performance of different scenarios of the system with different D, Da' and D, .

In the calculations, we take the total number of channels in a cell, C, to be 25, and the number of

channels that are required by the service of a single train, C;, to be 7. We take the mean
duration of an unencumbered session, // 1 , to be 180 sec, the mean dwell time of a platform in a

cell, 1/ up, to be 500 sec, and the new call origination rate in the cell, 4,,, to be 0.11 calls/sec.
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Using our previous framework, we can calculate the value of the hand-off arrival rate in a cell,

Ay, . Itis 0.01873 calls/sec. For the details for calculation of A, readers are referred to [3]-[5].

We assume that the train will stay in the cell for 2 minutes, that means D, 1s 120 sec.

A. Scenario 1: A single train enters and leaves the cell

For the scenario that a single train enters and leaves the cell, we calculate the preemption

probability and average hand-off failure probability for the cell with different action interval D,

and different initial states. The preemption probabilities and average hand-off failure

probabilities for different initial states are plotted as functions of action interval D, in Figs. 9 and

10 respectively. In the figures, IS denotes initial state. We can see that in Figs. 9 and 10 for a
given initial state, the preemption probability and the average hand-off failure probability

decrease as the action interval D, increases. We can also see that for a given action interval, the

larger the initial state is, the larger the preemption probability and average hand-off failure
probability are. This is because that for larger initial state and shorter action interval duration the
BS needs to take more stricter call admission control to make sure the preemption probability
meets the requirement 8. Stricter call admission control will result in a larger preeinption
probability and a larger average hand-off failure probability.

We also noticed that if the action interval is too short the requirement of preemption
probability may not be met and the average hand-off failure probability will be unacceptably
high. For example, we consider the performance of the system when the initial state is 25 and
the action interval is 100 seconds. From Figs. 9 and 10 we can see that the preemption
probability is 1.05%, which exceeds the maximum allowed value of 1%, and he average hand-off
failure probability is 86.59%, which is unacceptably high.

Choice of an appropriate action interval duration D, considers two aspects. First, we
require that the preemption probability cannot exceed the requirement of 1% and the average
hand-off failure probability should be as low as possible. Second, we require that the action
interval duration should be as short as possible. Owing to the trade-off between the average
hand-off failure probability and the action interval duration, a compromise between the two

factors was made. We chose D, to be 300 sec.
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B. Scenario 2: Two trains enter and leave the cell

As discussed in the Section V], in case 1 the performance of both trains are the same as in
the scenario that a single train enters and leaves the cell. Therefore, the performance plotted in
Fig. 9 and 10 are also the performance for the case 1.

In the case 2, the performance when the first train enters and leaves the cell is the same as

the scenario of a single train. If D; > D, +D,,;, the performance when the second train enters

and leaves the cell is also the same as the scenario of a single train. If Dy <D, + D, , the

performance when the second train enters and leaves the cell is similar to the performance of the

scenario of a single train except that the actual action interval D; — D,y is less than D, and

initial state is at most G. This means that the performance of this case corresponds to the curves
where action interval is less than 300 seconds and initial state is no more than 18 in Fig. 9 and

10. Because the initial state is at most G, no matter how small D; — D, is, the requirement of

preemption probability can always be met.

In the calculation for case 3, we found that the preemption probability at the first train’s
arrival is very small and negligible when the preemption probability at the second train’s arrival
meet the requirement of 1%. When the second train enters the cell, the number of channels
required by the trains is 2C; . When the first train enters the cell, only C; channels are required
by the train. The admission parameters are optimized to make the preemption probabilities at
both the first and second train’s arrival meet the requirement. Because the arrival time difference
between the trains is small, the optimized result is that the preemption probability at the arrival
of the first train is very small and the preemption probability at the arrival of the second train
meet the requirement of 1%.

Thus, we only consider the preemption probability at the arrival of the second train and
plot the preemption probability at the arrival of the second train and average hand-off probability
as functions of initial states in Figs. 11 and 12 respectively. We observe the similar trends as in
Figs. 9 and 10. The reason is that because preemption probability at the arrival of the first train
is very small and negligible then the case 3 is similar to the case that a single train with a demand

of 2C; channels enters the cell.
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The criteria of choosing the action interval duration for arrival of two trains, D, , is the

same as the criteria for a single train. We compromise between factors of the preemption
probability, the hand-off failure probability and the action interval duration, and choose D, to

be 540 sec. Because the system is a causal system, the notification interval D, has to be larger
than Da'. The value of D, + D,y equals 420 sec. Therefore, D, satisfies the condition that

D, >D a' > D, + D,y . This means that the case 4 in the scenario 2 can not happen in such a

system, which verifies our discussion of the case 4 of the scenario 2 in the Section V1.

VII. Conclusions

We have considered strategies to accommodate scheduled demand changes brought by
mass transportation vehicles in wireless communication systems. We modeled the system by a
birth-death process and proposed a strategy in which the BS uses call admission control that
assigns resources in anticipation of these scheduled demand changes. We defined the
preemption probability at the arrival of the train and the average hand-off failure probability
during the call admission control as the performance measures of the accommodation strategy.
The call admission control parameters are optimized with the preemption probability as the
constraint and the average hand-off failure probability as the object function. In the scenario that
a single train enters and leaves the cell, the BS will take call admission control immediately if the

initial state is heavy. If the initial state is light, the BS will check the state of the cell every D,

time units and take control if (and when) it finds that the state is heavy. In the scenario that two
trains enter and leave the cell, the BS will take different actions according to the time difference
between of the arrivals of the two trains. If the two trains will not be simultaneously present in
the cell, the BS will take the same call admission control for each of the two trains as in the
scenario of a single train — but in some cases the range of initial state and action interval will
respectively differ from the single train case. If the two trains will be present simultaneously, the
BS will take similar call admission control action as in the scenario of a single train. However,

the BS will begin to check the state of cell earlier than in the single train scenario and the call
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admission parameters are optimized using an objective function that is based on the traffic load
of two trains instead of a single train.

The performance of the accommodation strategy was analyzed and numerical results
were calculated for illustrative scenarios. From the numerical results, we can see that by using
the proposed accommodation strategy the BS can accommodate scheduled traffic load increase
caused by mass transportation vehicles and at the same time guarantee performance requirement
of the local users. Thus, we conclude that the accommodation strategy can accommodate
scheduled demand changes brought by mass transportation vehicles into wireless communication

systems successfully.
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Fig. 1: Timing of the call admission strategy.
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