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ABSTRACT

Closures at the third and fourth order moment are presented for the
problem of the decay of reactants which obey an arbitrary Rth order
equation (where 1<R<3) and whose initial description is given stochas=
tically. Thekclosures are shown to satisfy prescribed realizability
and asymptotic conditions for certain initial assignments of the mean,
the mean square fluctuations, third order moments, and fourth order
moments of the concentration field.

From theoretical considerations, it was found that non-second
order reactions réquired setting limits on the values of the initial
data (in terms of dimensionless ratios that are independent of the
form of the closure chosen) in ovder to cbtain physically acceptable
results., Thus, they are not as generally applicable as the second
order model, which may be applied to any initially realizable values
of the mean, mean square, third, ﬁnd fourth order moments fluctuations.
In addition, the fourth order moment closure required a more stringent

set of initial conditions than that for the third order moment closure.



I. INTRODUCTION

O0'Brien has presen’cedl’5 a closure at the third order moment for
the problem of the decay of reactants which'obey a second order equation.
The closure has been shown to satisfy prescribed realizability and
asymptotic conditions for both the general infinite series form5 and
the simpler two term form of the expansionl. C'Brien has also shownl
that this simpler form can quite closely model the exact solutions for
the case of second order reactions.

.The objective of this report is two-fold: 1) to extend the analysis
" to non-second order reactions, and 2) to find a simple fourth order
moment closure that satisfies prescribed realizability and asymptotic

conditions.



II. THE STATISTICAL PROBLEM

The system is described by the equation

AT
&_g@ - (‘t‘) (2.1)

where T is the concentration which will be a random variable bounded
between 0<T<», R is the order of the reaction which is bounded by
1<R<3, and t is the time which has been normalized by a constant
reaction rate.

The problem is made stochastic by assigniﬁg initial conditions
in a statistical mannerl. For example, if P[T'(0)] is a prescribed
initial probability density for the concentration field, then the
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exact solution for anv order moment exists in the following form':
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where the overbar denotes an ensemble average.
There are some asymptotic properties of (2.2) which will play a

role in determining the forms of the moment closures to be suggested:
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where y = T - T, These follow simply from an asymptotic expansion of

(2.2) and the assumption that

T peodx = T

exist for N = 1, 2,73, 4,
However, in trying to form moment equations, we find that a binomial

expansion of (2.1) for R not an integer leads to an infinite series

representation. Thus we are now confronted with two formidable problems.

Firsf, we do not have moments of all orders readily available; and

second, &n infinite series is convergent only for I;ﬁ}TNIf l,.where N

is an integers. This second problem must be overcome since a goal of

this work is to have the capability to handle cases where I;ﬁ}TNI>l.

Therefore, we must form acceptable criteria to decide which terms are

to be retained in those moment equations so affected.

Th

o

following three criteria were felt to be reasonable means of
deciding the number of terms to be retained in the first three lowest
order moment equations: First, since the highest order moment closure

scheme to be attempted is at the fourth order moment, the moment equations

. - 2 .
for the derivatives of T and y were truncated to include terms up to and

including yu; second, since assuming R = 3 in (2.1) leads to a YS term

. . s . 3 . o s
in the moment equation for the derivative of y , the corresponding infi-
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nite series moment equation is truncated to include the effect of y 3
and third, the first three lowest order moment equations formed from
the infinite series expansion and truncated as indicated, must collapse B

to the same expressions that can be obtained by substituting R = 1, 2,

and 3 into (2.1) and forming the moment equations in the usual manner.



With these requirements in mind, the first three moment equations

of an infinite unclosed hierarchy werse found to be:
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Note that it is the fractional orders that significantly introduce

the effect of Yu. At the integral orders, (2.7) and (2.8) are independent

T
of 74.

The resulting equations suppose that T'(0), 72(0), and ys(O) are

prescribed. We will require that 73 and Yu be replaced by specified

functions of T and 72 whose forms do not depend on the initial data

. 2 N2
(though the magnitude of ¥ (0) T'(0) © is restricted) and are such that

(2.7) and (2.8) yield physically acceptable descriptions of the first

. 5 . .
three moments. Note that since y (0) is not prescribed, we cannot use

(2.8), even to the extent of evaluating %%~ (0).



The following realizability conditions are imposed to specify a

certain degree of physical reascnableness to the solution:
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The inequalities (2.12) and (2.13) arise from a restriction’ on the
skewness and kurtosis of any probability density which is zero for
values of the random variable that are less than or equal to zero.

In the next section, closures are proposed whose results satisfy
the realizability conditions (2.10), (2.11), (2.12) and (2.13) for all
values of T(0), 72(0), ;gko), and ;Eko) which themselves do not violate
(2.10), (2.11), (2.12) and (2.13). Ve will also require that the
asymptotic behaviors given by (2.3), (2.%), (2.5), and (2.6) are

satisfied. The closures are to be simple functional forms that do nct

vary for different initial data.

(2.10)

(2.11)

(2.12)

(2.13)



III, PROPOSED CLOSURES

0'Brien has shownl that the follewing simple third order moment
closure satisfies asymptotic and realizability conditions for the
second order equation. For simplicity, we assume that this form is
applicable to non-second order reactions without any modification.

The third order moment closure

S/z (3.1)

R 2 - S
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is a combination of simple, dimensionally correct, simultaneous functions.

In the same spirit, the following simple closure for the fourth

order moment is proposed:

Y =B e -8l T 0

In (3.1), the constant A, is obtained from Ao, T(0), YQ(O), and

1

73(0). We will show that there exists a maximum positive value of
i <
Ao and of Bl (say Ayax and Byax respectively) such that for Ao Ayax

and B, < , the closures (3.1) and (3.2) satisfy the asymptotic

BMAX
conditions (2.3), (2.4), (2.5), and (2.6) and the realizability conditions
-(2.10), (2.11), (2.12), and (2.13) for certain allowable ranges of the
values of T(0), ;Eko), ;éko), and ;Eko). This differs from [1] in
which the use of a second order reaction equation enabled the proof that
(3.1) could be applied to all realizable values of I'(0), ;5?;), and :3_(3).
‘As suggested by O'Briens, (3.1) and, analogously, (3.2) have more
general closure forms in terms of an infinite series. However, the

purpose here is to explore the relevance of these simpler closures by

showing that for certain values of the initial data, they satisfy the



previously mentioned conditions.
For convenience in constructing subsequent proofs, the following

definitions are made:

\(‘ ) =T (¢ | (3.3)
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¥hen (3.1) through (3.6) are incorporated into (2.7) and (2.8), they

become:
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An immediate consequence of the forms of (3.7a, b, ¢, d) and the
fact that Yl(0)>0 and Y2(0)>0 is that if Yl(tl) = 0 for some t = t,,
then so is

N
JUY, (8D
§ AtN ) for all N.
Similarly, if Y2(t2) = 0, then so is ‘
' N
Cl \{5.(1;2) for all N,
4t

This implies that if T and 1 are increasing functions, then:




\Y: [15) 2 O for all t | (3.8a)

/

and Yz (~{;) > 0 for all t . (3.8b)

However, as can be seen from (3.5) and (3.6), certain restrictions

on the values of Y A A, Bl’ and B

9o Bys Ag must be made before T>0 can be

2
assured. ‘If the necessary restrictions are made then it is clear that
T and T are increasing functions of time.

Thus, in order that T and T be non-decreasing functions of time

and that (3.7a) and (3.7b) satisfy (2.3) and (2.4) respectively,

it is necessary that, from (3.7a):

|+ REDY, +R(12~l?(2~2) {h, +E£,§>B;}Yf+

v C.
~RE-DED(p 745, YER) > 0
FOR O<YLMA)EY,(0) AND !<R\<3) (3.9)

and from (3.7¢):
R _
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FOR Oﬁ\fz/'ﬁ)é\ﬂ.{@ awp |<R<3, (3.10)
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IV. THEQORETICAL RESULTS

A. General Considerations

Since the terms in (3.9) and (3.10) are explicit functions of "R",
while the realizability conditions do not contain "R" explicitly, we
find that we will not be able to prove for the whole range of "R" con-
sidered, l<£53, that using the assumed closures to satisfy (3.9) and
(3.10) is tantamount to satisfying the realizability conditions. In
fact, as shown in Ref, [1], only for the particular case of R = 2 is it
true that employing the assumed closures in (3.9) and (3.10) leads exactly
to the realizability conditions.

In the general case, different limits on the values of ;g.and ;E-
are required by realizability than by (3.9) or by (3.10). Simultaneous
satisfaction of realizability, (3.9), and (3.10) requires limiting the
values of Y2(0), ;5253 and ;EZES to be within ranges amenable to them
all. (See Appendix I for details.) Thus, for arbitrary R, not only
must the constants used in the closures be limited by certain relations,
as in Ref. [1]; but also the value of the initial data must be restricted
if one is to obtain physically meaningful results.

The restrictions may be divided into two major divisions: those
applicable for 1<R<2 and those for 2<R<3. Within each division, different

restrictions are required by a third order moment closure than by a fourth

order moment closure.

B. TFourth Order Moment Closure
Using the assumed third and fourth order moment closures and requiring
that realizability, (3.9) and (3.10) be simultaneously satisfied, yields

the following requirements:
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For 1<R«<2
OLY, 0) < (-3+27 ")/2 < 0.79, 1)
Yo 3L2+R(R-DY,(0)] _
Y *(0) = R(rR-N(2-R) ) :
T
1\;’” Y [0) =Y, [O) (4. 1c)
I\EZ‘; < HILY.(0)~3 R, 10)+R {3 +(2-R) /o))
o)
x’)({é())J][R(Z—R)(/‘/‘F{B R}Y[OB] (%.14)

Y0 5 NP0y +3Y,10) ~3Y2/0) +

s )
4] (4.1e)
A 1

By substituting closures (3.1) and (3.2) into (4.1b) through (4.le), it can

be shown that the constants used in the closures must be such that:

A Z ”{Y /O)[B/(z—l&) A] +[R(R~ >(2”Rﬂ }Yﬁsﬁzo) (4.1F)
AD < Z(AFDZ | For A‘>[) (h.2g)
B, €4 Lk RE3+ (-0, 03{4,Y, 1) ADYZ(@} BRY/)x

X [Y (0) R(2-=)(4+{3-R3Y, /o)ﬂ +
) - R Yl(m (4.1h)
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‘ J

AND FOR 24R£3)

O<Y, (o) £ (3+3)/2 = 079, (4.19)
YB(O) < O '
\{3[0) / (4.1k)

Vi V) +E)

\r‘s[o) 7 % [34 (2-2)\{2[@)] ) (4.12)
YN0 ¢ 24 [) 4@ te-1/2) Y1tk D) E2 |
\(‘f/o) R//Q /) (2”2)/3 R) J(4.1m)
rl’//aj

RPN _ J=73;
\C’/ﬂ) l0)43Y10) =3, fo) - //;2; . .
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And by following the procedure previously indicated, it can be shown

that the constants used in the closures must be such that:

— oo <ALK ,%EYL/O) (A-D +ZA1(2~“ R)/BEY;[@ +2/r ]
\:_%/o) (5—R)

However, if R is very close to 2, or if

3 O
@31@)(2ez)\;[o)<¥%%j-

Nalo) =Y 0) + & )%%)

- then it can be shown that (4.lo) may be simplified to yield the require-

e (4.10)

< j_ ) | (4.1p)

ment that Ao be such that:

A
— oo <A, <L 2[%— (A;l)t{ Z)“ A,?) 3 (4.1q)

Returning to generally amplicable results, we find that:

B, < ALA-AT ()] pl2 [z REe-NY (0] /o
(3-2) Y;[o)#z(a 1 R 2){3-@) 2 1209)) (v.10)

and |

B, /Y, (o) +3~ 3oy TA-AGE (R e

Using the same procedures, the third order moment closure problem was

also considered.

. C. Third Order Moment Closure

If it is assumed that Yu terms can be neglected from (3.9) and (3.10),

and thus only a third order moment closure is required, then 73 realizability,

(3.9), and (3.10) require that:
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then, as before, (4.2g) is simplified to:

;._004/\[ 2[2(/-\ ﬂ A?l | ;4.2i)

In general, therefore, the major advantage of the third order
noment closure over the fourth order moment closure is that it is
applicable to many more initial values of YQ(O). A plot of (4.2a) and

(4.2e) versus R (see Fig. 1) shows that the maximum allowable value of

R 3 s .
the ratio y (O)/Ylg(o) for the third order moment closure is at least
three times that allowed by the fourth order moment closure.
Estimates of the value of the constants Ao and Bl may also be

obtained from an asymptotic expansion of (2.2). By comparing the re-

sultant time series with (2.%), (2.5), and (2.6), one finds that:

C, *‘(R n (“-Z’2R2) . "‘7—(2.—))2>/

(o) 12> (4.3)

= (RN (T8 ?%Zﬂ:{fi +
— 30 (Rl) P"* 7583)7‘ , o (4.4)

Cg—'(R'l) ( -(HPL/ L{mp (71)) +

py p— e = (»-~ DH .
4+ LI (ZC‘;?) o) — 5 I (0 >‘ (4.5)

Thus, from the closures (3.1) and (3.2), together with the asymptotic
condition (2.3) through (2.6) it is possible to identify A and B, as

Follows:

— — 32 (1.6)
A= C,
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which, for R=2 reduce

/q o

3[0) g o)

B.=Y ") Y o),

=Lt

and
where \/.4
If only T

_l(O) and y

bound to Ao and Bl in the following fashion.

random variable,

Thus, we can write that

-2-":§P"/ L T =)
V%0 Y [ Jw —) M =

or /9‘ po
(o]

and ),«4/[0) >

= B,

—
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Since I

— =2
O (A )’-70) /)

5,

2(O) exist, ‘then it is possible to obtain a lower

is a non-negative

‘/Q/V/AJ)

(k.

(4.

(x4,

it too, simplifies an inequality such as (2.12) or (2.13).

(4.

- 73— —=3—— 2 -3 =2
Y e 70 43y T =3 o)
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12)

.13)
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.15)



Because of the approximate nature of our analysis, the preceding
should be considered as order of magnitude estimates for Ao and Bl.
However, in the cases of distributions for which negative moments do
not exist, there appears to be no analytical way in which the constants

Ao and B, can be estimated.

1

D. Asymptotic Conditions
As indicated in sections B and C, if the initial statistics fall

within the ranges outlined, one can then say that Ya(t)‘realizability
(2.12), ;Ez;5 fealizability—(Q.iS), (3.9) and (3.10) are simultaneously
satisfied.

If (3.9) is satisfied, then this implies from (3.5) that T is a

non-decreasing function of time. Using this fact, one can find from (3.7b)

L ’ R-) *—!':
YI(T): EY;(,@ /{,H*(R'DY, (O)T}]% ’ (4.16)

With T increasing, (4.16) is a monotonically decreasing function

of time. Changing the time scale, we can write that (4.16) indicates

, — L
%Lw \)/n [t> - [/E"/)flj R:/ (4.17)
o

Thus, asymptotic condition (2.3) is satisfied.

that

Further, use of (3.7c) and (3,6) with the results of (4.16) imply

that

2R
%,;/,v Yz re) = O[f ;Z” __70 (4.18)

25'—$*c>c>

This with (2.3) implies that



+~ —> 0
Thus, asymptotic condition (2.4) is satisfied.

a——

Using these results, (3.8a and b), i.e., T(t)z20, 72(t)20, together

with the forms of the closures, (3.1) and (3.2), suggested for Ya(t)

and Y“(t) indicate that asymptotic conditions (2.5) and (2.6) are also

satisfied, i.,e,:

e FT =~ A, e )

‘é——?DD
/é,w y 3 =—Ao /ZZL ’R’/) IS
ST
%;ws/ij :’”'/40[26 —%_Z (4.20)

which satisfies (2.5), and

/é;w )/‘V/‘L‘) = 5 )72—/“5,1
£ o
Aoy ) =D, (&7,

TS

T = =
%%/ ) 5/% R/ (4.21)

£—=>oo

which satisfies (2.6).

Thus, in sections B, C, and D we have shown that when the initial
data are found to be within the limits outlined, use of the closure
}ormé (3.1) and (3.2) do indeed satisfy the prescribed realizability . |
and asymptotic conditions for the probability distribution under con-

sideration.



V. CONCLUSIONS

In the previous sections, a method has been presented that will
yield satisfactory closure solutions at the third and fourth order
moments provided that certain requirements on initial data are met. In
addition, this method has been shown to be directly applicable to

reactions of other than second order (though the order is herein limited

to be between one and three).

An interesting result of proceeding from a binomial expansion for

the moment equations is that the effect of the Yu(t) dependence clearly
appears only for R#2, However, in accounting for its presence, the
fourth order momenht closure by its very nature requires a much more
stringent set of limitations on the values of the initial moments than

those imposed by a third order moment closure. Thus, since use of a

. . . b .
third order closure eliminates accounting for the y (t) dependence, it
is probably the more useful of the two for purposes of application.

Quite interestingly, for a closure at either the third or the

fourth order moment, the second order reaction is the only one that

allows any realizable value of T(0), Y2(0), Y3(0), and 74(0) to be used.
This seems to be due to the nature of the form of the third order moment
closure used. This form not only makes the moment equations automatically
satisfy the third order realizability condition, but is also of a functional
form that requires relatively minor constraints on the constants so that
quite accurate solutionsl can be cbtained for any initially realizable

-

value of T(0), Y2(0), and Y3(0)-

As pointed out in Section IV, the fact that the realizability

conditions are not explicit functions of R, while the general moment



equations are, makes it very unlikely that a closure form can be devised
that will automatically satisfy realizability and the physical require-
ments on the moment equations.

In general, it seems that restricting the number of terms and their
forms forces restrictions on the range of allowable initial data:
whereas, attempting to allow for any realizable initial value forces
one to adopt much more complicated closures. Of course, increasing
the number of terms hinders the ease of applicability of the closure.

Besides, as Orszag has pointed outs, a distribdbution function is
not determined by the specification of a few lowest order moments and
it is thus clearly untenable to expect that a specific statistiéal
description will be accurate fcr all possible distribution functions
that display the same initial values of the three lowest moments.

Therefore, since there is no guarantee that increasing the number
of terms by a finite amount will produce more accurate closures and
since practical utility makes a many term closure awkward to use this
paper has been devoted to the demonstration that simple-two-term closure
forms can indeed satisfy realizability and asymptotic conditions and
are thus very useful for practical applications. Reiterating the
remarks inl on the closure and realizability problems, we emphasize that
the use of realizability conditions will be relevant to any problem
involving a statistical description of reactions since, by nature, con-
centrations are non-negative quantities. This special nature of the

concentration as a random variable can be ignored only in the case of

first order reactions; since the mean concentration and the fluctuations

* -do not interact for this order. Of course, initial moments must still

be properly specified.



For turbulently mixed reactions, closures of the kind presented
here can be usefully applied to moments that consist only of the
concentration variables., Moments involving both velocity and concen-
tration will require the input of a closure suited to them; for
example, the results obtained from the Lagrangian History Direct Inter-
action Hypothesis7.

Questions pertaining to the accuracy of the proposed closures are
presently being investigated. Results are scheduled to be presented as

College of Engineering Report No. 124,
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APPENDIX I

For 1<R<2:

1. Y2 upﬁer bound for fourth order closure

From Y reallzablllty we have that

e
—%C>/Y~+5Y BY L/Y,'

Y . .
and since y is by nature >0, the most stringent requirement on

Yu for the case 73 20 is given by y3 =0, i,e.

% V4 Yz3+ 3\’;2'—"3Yz
|

For (A.2) to be true for all possible yu, i,e. that any yu that

is >0 satisfies Y4 realizability, implies that

S\

YF43Y,*-3Y, €0,

on Y, < 2= 079,

2, YS/Yl3 upper bound

From (3.7a) without yu term we have that:

R(R-1) R(R-D(R-2) y3

3 ¢ L2+ RR-DY,]

OR 3

) f R (R-1)(z2—R)

3; YS/Yl3 lower bound

(3.7¢) without the Yu term reads:

(2.1)

(A.2)

(A.3) ,

(a.4)

(A.5)

(A.6,
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Thus if (A.8) satisfies 73 realizability then use of (A.8) con-

(A.8)

stitutes simultaneous satisfaction of realizability and require-
day :

ment on = . However, if (A.8) does not satisfy realizability,
then use of YS realizability as the lower bound implies that
(A.7) should always be greater than zero, which of course also
satisfies the requirement on (3.7c).

Since substitution of the range of R and Y2 allowable into

(A.8) does not yield satisfaction of Y3 realizability, then by

the previous reasoning, the lower hound on Y3/Yl3 is given by:

' . (A.9)
R _

Yu/Ylu upper bound

From (3.7¢c) with Yu term we find that

<2+ 2O+ &8 R>Y}Y3:] _ (a0
Y' TR (2- 5/ 0 T L RYA3 Y, ]

m
Y /Ylg lower bound

4 sqs
From y realizability we have that

2 Y3 (A.1)
7/\(23’}’3\/;‘3\(‘;"’#2%3 . Aot
While'from (3 7a) with ;E-term we have that:
—_— R .
—ﬁ__ “«ZHEH‘ ’L“”Y 1- Eﬁg’%&’@%] (A.11)

YT R (R-D(R-2)(R-3)

|
!
|
|
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It is obvious that satisfactiocn of (A.5) within this range of

R implies that (A.11) gives:

&
I*E'Z negative number (A.12)
. Y
3 1l
for any y .
However, use of (A.3) and 73 <0 leaves the possibility that

(A.1) can imply:
o
1—1; > positive number. (A.13)
Yl

Thus, since satisfaction of (A.13) automatically satisfies

(A.12), Yu realizabiiity is chosen as the lower bound on
y,n

Y /Y.

Y2bupper bound for third order closure

Since (A.6) is for this range always greater or equal to zero

it automatically satisfies Y3 realizability for stl. However,

for Y2>l, requiring realizability to be satisfied implies:

3L[2+R(R-NDY, ] S
“R(R-1D(2-R) >/Y1'"'Y;L . (A.1%)

Solving for Y, yields (As Y220):

2
2
Y, < D+(Dc+l2C>)

(A.15)

where: D

R(R-1)(5-R)

(@]
"

2R(R-1)(2-R)

Note that since the maximum Y, allowed by Yu realizability is

less than the maximum Y, allowed by (A.15) for the 3rd order

closure, this implies that for the fourth order moment closure

(A.14) also a§plies.
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7a.

7b.

;E}Ylumax 2 ;—)Yl min®
From (A.10)
R A A e ’%ﬁ‘]
4
b [R(2~RB/57E1+{(3~R>/6'}Y2]
and from (A.1)

T | —
'):7 = Y3 +3Y, -3, —4 '\%73
MM !

Thus we want to show that: -
~E R Ry N
LY, {1+ YKX‘T] /Y),3+3\‘:“3Y54/%

I R(2- R)/L,]EH— {(3 R/43Y, 1

is true for any y and Y, allowed by (A.n), (A,.8), and (A.9).

For Ya 20 and Y, <£0.79, (A.10) is always 20 while (A.1) is

iv

always <0. Thus (A.16) is always satisfied for these conditionms.

However, for 73 20, (A.10) is again always 20, but (4.1) may
be less than, equal to, or greater than zero. Thus, for this
case (A.16) is not obviou;. One way to prove (A.16) is to show
that satisfyving (A.16) is tantamount to satisfying (A.9), i.e

Y3 vealizability. From (A.16) one finds that:

Y343y 23, YRRV [+ Yt £,
B (e, J [RGBy ]

Thus, since we wish to allow for a full range on 73, for (A.16)

to be valid, (A.17) must be related to (A.9), 73 realizability

byé —_—

X < ¥
12 ) k.9 °

(A.18), (A.17), and (A.9) can be rearranged to yield:

..—-(

(A.16)

(A.17)

(A.18)



For

Y3[Y ,][R(z—R)B R)] +_\_2[\._ sz\{lﬂ} L+ 5;3,,32] 0.

As Y, <0.79 and 1<R<2; (A.19) can easily be verified. Thus,

any ys/Yl3 that satisfies (A.9), satisfies (A.18), which implies

that (A.16) is true, which must be for the terms upper and lower

bound on yu to have meaning.

Y2 lower bound

Since Y2 = YQ/TQ physical reality requires that

0 < Y2

2<R<3:

L . .
Y for v closure same as in Section A.

2|max

Y2 < 0.79 .

YS/Yl3 upper bound
As will be seen, the conditions to be satisfied only require a

lower bound on &3/Y13. Thus,
3.3
N/ LoD,

‘YS/Yl3 lower bound

From (3.7a) without yu term, (A.5) we now find that:

_yf_ > ~3 2 +R(R-DY, |
Y R(R-1(2-R)

However, since (B.3) does not satisfy 73 realizability for the

full range of allowable Y2, e.g. let Yé = 0, the lower bound

between these is 73 realizability,

(A.19)

(A.20)

(B.1)

(B.2)

(B.3)
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But if in (3.7c) the size of Y. is restricted such that the

2

following is true _
,y_‘} > '"'\(2 + %\{22
3/ "
Y K [+, ]

vi

(B.4)

(A.8)

Then an examination of (B.4) and (A.8) reveals that the following

is true

—, +5Y,*
B[ 3+(2-R)Y,]

>, =Y,

Thus satisfaction of (A.8) implies satisfaction of requirements

le dY2 -3
from T a0 and vy realizability. Therefore:

R S ._YZ-]—%Y,,Z
\(3 hm 4 (R/Q[B 4—(_2:23\1/23 .

Y for y closure. Since no Yu realizability is needed,

2 max

(A.4) does not hold. However for 73 closure, in order for (A.8)

to be true, the following must be true in (A.7) or (3.7¢c):

' -R
|+ 55 .70,

3
OR \(Z“Hlé R—~2

s

yu/Y N upper bound

From (3.7a) with Yu term, we find that

X ¢ 24 [14BEDY 4 :zm.o(z 2)%]
YH ) R(R:I)CR—-Z)(B-—R')

(B.5)

(B.6)

(B.7)

(B.8)

- (B.9)

and since (B.9) is always >0 (see A.5) it at least satisfies the

Iy
physical reality of vy .



6.

_Y—E/Ylu lower bound

From (3.7c) with F term -5
jﬁ‘; >/-_[\g~ %\{f.}%{HQ%QYZ}A\%S ] . (5.10)
WV IR/ IGRATG] -

Thus from (A.7), (B.10) is always negative. However, from Y
realizability

.Jﬁ__ =2 2 3

\'/'4./ >/ Y2_ ""3\(} ”3\(2"‘7——-\%3’ , (A.1) |

which may be a positive or negative number. Thus, since Yu must
physically be greater or equal to zero, use of (A.l) as a lower
bound automatically satisfies (B.10). Therefore:

SEN N A r ) S AT

lI
l/
\f’ Kin

(8.11)

Y same as (A.20).

2 ]min




