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Superspace is the greatest invention since the wheel [1] .

Preface

Said ¥ to ¢, =, and Y: “Let’s write a review paper.” Said ® and =: “Great
idea!” Said T: “Naaa.”

But a few days later T had produced a table of contents with 1001 items.

=, &, U, and T wrote. Then didn’t write. Then wrote again. The review grew;
and grew; and grew. It became an outline for a book; it became a first draft; it became
a second draft. It became a burden. It became agony. Tempers were lost; and hairs;

and a few pounds (alas, quickly regained). They argued about “;” vs. “.”  about

“which” vs. “that”, “77 vs. “77 “~” ys. “I'”, “47 vs. “-”. Made bad puns, drew pic-
tures on the blackboard, were rude to their colleagues, neglected their duties. Bemoaned
the paucity of letters in the Greek and Roman alphabets, of hours in the day, days in

the week, weeks in the month. =, &, ¥ and T wrote and wrote.

* ok ok

This must stop; we want to get back to research, to our families, friends and stu-
dents. We want to look at the sky again, go for walks, sleep at night. Write a second
volume? Never! Well, in a couple of years?

We beg our readers’ indulgence. We have tried to present a subject that we like,
that we think is important. We have tried to present our insights, our tools and our
knowledge. Along the way, some errors and misconceptions have without doubt slipped
in. There must be wrong statements, misprints, mistakes, awkward phrases, islands of
incomprehensibility (but they started out as continents!). We could, probably we
should, improve and improve. But we can no longer wait. Like climbers within sight of
the summit we are rushing, casting aside caution, reaching towards the moment when we
can shout “it’s behind us”.

This is not a polished work. Without doubt some topics are treated better else-
where. Without doubt we have left out topics that should have been included. Without
doubt we have treated the subject from a personal point of view, emphasizing aspects
that we are familiar with, and neglecting some that would have required studying others’
work. Nevertheless, we hope this book will be useful, both to those new to the subject
and to those who helped develop it. We have presented many topics that are not avail-
able elsewhere, and many topics of interest also outside supersymmetry. We have

1]. A. Oop, A supersymmetric version of the leg, Gondwanaland predraw (January 10,000,000
B.C.), to be discovered.



included topics whose treatment is incomplete, and presented conclusions that are really
only conjectures. In some cases, this reflects the state of the subject. Filling in the
holes and proving the conjectures may be good research projects.

Supersymmetry is the creation of many talented physicists. We would like to
thank all our friends in the field, we have many, for their contributions to the subject,
and beg their pardon for not presenting a list of references to their papers.

Most of the work on this book was done while the four of us were at the California
Institute of Technology, during the 1982-83 academic year. We would like to thank the
Institute and the Physics Department for their hospitality and the use of their computer
facilities, the NSF, DOE, the Fleischmann Foundation and the Fairchild Visiting Schol-
ars Program for their support. Some of the work was done while M.T.G. and M.R. were
visiting the Institute for Theoretical Physics at Santa Barbara. Finally, we would like to
thank Richard Grisaru for the many hours he devoted to typing the equations in this
book, Hyun Jean Kim for drawing the diagrams, and Anders Karlhede for carefully read-
ing large parts of the manuscript and for his useful suggestions; and all the others who
helped us.

S.J.G., M.T.G., M.R., W.D.S.
Pasadena, January 1983

August 2001: Free version released on web; corrections and bookmarks added.
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1. INTRODUCTION

There is a fifth dimension beyond that which is known to man. It is a
dimension as vast as space and as timeless as infinity. It is the middle
ground between light and shadow, between science and superstition; and it lies
between the pit of man’s fears and the summit of his knowledge. This is the

dimension of imagination. It is an area which we call, “the Twilight Zone.”

Rod Serling

1001: A superspace odyssey

Symmetry principles, both global and local, are a fundamental feature of modern
particle physics. At the classical and phenomenological level, global symmetries account
for many of the (approximate) regularities we observe in nature, while local (gauge)
symmetries “explain” and unify the interactions of the basic constituents of matter. At
the quantum level symmetries (via Ward identities) facilitate the study of the ultraviolet
behavior of field theory models and their renormalization. In particular, the construc-
tion of models with local (internal) Yang-Mills symmetry that are asymptotically free
has increased enormously our understanding of the quantum behavior of matter at short
distances. If this understanding could be extended to the quantum behavior of gravita-
tional interactions (quantum gravity) we would be close to a satisfactory description of
micronature in terms of basic fermionic constituents forming multiplets of some unifica-
tion group, and bosonic gauge particles responsible for their interactions. Even more
satisfactory would be the existence in nature of a symmetry which unifies the bosons

and the fermions, the constituents and the forces, into a single entity.

Supersymmetry is the supreme symmetry: It unifies spacetime symmetries with
internal symmetries, fermions with bosons, and (local supersymmetry) gravity with mat-
ter. Under quite general assumptions it is the largest possible symmetry of the S-
matrix. At the quantum level, renormalizable globally supersymmetric models exhibit
improved ultraviolet behavior: Because of cancellations between fermionic and bosonic
contributions quadratic divergences are absent; some supersymmetric models, in particu-
lar maximally extended super-Yang-Mills theory, are the only known examples of four-

dimensional field theories that are finite to all orders of perturbation theory. Locally
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supersymmetric gravity (supergravity) may be the only way in which nature can recon-
cile Einstein gravity and quantum theory. Although we do not know at present if it is a
finite theory, quantum supergravity does exhibit less divergent short distance behavior
than ordinary quantum gravity. Outside the realm of standard quantum field theory, it
is believed that the only reasonable string theories (i.e., those with fermions and without
quantum inconsistencies) are supersymmetric; these include models that may be finite

(the maximally supersymmetric theories).

At the present time there is no direct experimental evidence that supersymmetry is
a fundamental symmetry of nature, but the current level of activity in the field indicates
that many physicists share our belief that such evidence will eventually emerge. On the
theoretical side, the symmetry makes it possible to build models with (super)natural
hierarchies. On esthetic grounds, the idea of a superunified theory is very appealing.
Even if supersymmetry and supergravity are not the ultimate theory, their study has
increased our understanding of classical and quantum field theory, and they may be an

important step in the understanding of some yet unknown, correct theory of nature.

We mean by (Poincaré) supersymmetry an extension of ordinary spacetime sym-
metries obtained by adjoining N spinorial generators ) whose anticommutator yields a
translation generator: {@,Q } = P. This symmetry can be realized on ordinary fields
(functions of spacetime) by transformations that mix bosons and fermions. Such realiza-
tions suffice to study supersymmetry (one can write invariant actions, etc.) but are as
cumbersome and inconvenient as doing vector calculus component by component. A
compact alternative to this “component field” approach is given by the super-
space--superfield approach. Superspace is an extension of ordinary spacetime to include
extra anticommuting coordinates in the form of N two-component Weyl spinors 6.
Superfields ¥(z, ) are functions defined over this space. They can be expanded in a
Taylor series with respect to the anticommuting coordinates #; because the square of an
anticommuting quantity vanishes, this series has only a finite number of terms. The
coefficients obtained in this way are the ordinary component fields mentioned above. In
superspace, supersymmetry is manifest: The supersymmetry algebra is represented by
translations and rotations involving both the spacetime and the anticommuting coordi-
nates. The transformations of the component fields follow from the Taylor expansion of

the translated and rotated superfields. In particular, the transformations mixing bosons
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and fermions are constant translations of the 6 coordinates, and related rotations of 6

into the spacetime coordinate x.

A further advantage of superfields is that they automatically include, in addition
to the dynamical degrees of freedom, certain unphysical fields: (1) auxiliary fields (fields
with nonderivative kinetic terms), needed classically for the off-shell closure of the super-
symmetry algebra, and (2) compensating fields (fields that consist entirely of gauge
degrees of freedom), which are used to enlarge the usual gauge transformations to an
entire multiplet of transformations forming a representation of supersymmetry; together
with the auxiliary fields, they allow the algebra to be field independent. The compen-
sators are particularly important for quantization, since they permit the use of super-

symmetric gauges, ghosts, Feynman graphs, and supersymmetric power-counting.

Unfortunately, our present knowledge of off-shell eztended (N > 1) supersymmetry
is so limited that for most extended theories these unphysical fields, and thus also the
corresponding superfields, are unknown. Omne could hope to find the unphysical compo-
nents directly from superspace; the essential difficulty is that, in general, a superfield is a
highly reducible representation of the supersymmetry algebra, and the problem becomes
one of finding which representations permit the construction of consistent local actions.
Therefore, except when discussing the features which are common to general superspace,
we restrict ourselves in this volume to a discussion of simple (N = 1) superfield super-
symmetry. We hope to treat extended superspace and other topics that need further

development in a second (and hopefully last) volume.

We introduce superfields in chapter 2 for the simpler world of three spacetime
dimensions, where superfields are very similar to ordinary fields. We skip the discussion
of nonsuperspace topics (background fields, gravity, etc.) which are covered in following
chapters, and concentrate on a pedagogical treatment of superspace. We return to four
dimensions in chapter 3, where we describe how supersymmetry is represented on super-
fields, and discuss all general properties of free superfields (and their relation to ordinary
fields). In chapter 4 we discuss simple (N = 1) superfields in classical global supersym-
metry. We include such topics as gauge-covariant derivatives, supersymmetric models,
extended supersymmetry with unextended superfields, and superforms. In chapter 5 we
extend the discussion to local supersymmetry (supergravity), relying heavily on the com-

pensator approach. We discuss prepotentials and covariant derivatives, the construction
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of actions, and show how to go from superspace to component results. The quantum
aspects of global theories is the topic of chapter 6, which includes a discussion of the
background field formalism, supersymmetric regularization, anomalies, and many exam-
ples of supergraph calculations. In chapter 7 we make the corresponding analysis of
quantum supergravity, including many of the novel features of the quantization proce-
dure (various types of ghosts). Chapter 8 describes supersymmetry breaking, explicit
and spontaneous, including the superHiggs mechanism and the use of nonlinear realiza-

tions.

We have not discussed component supersymmetry and supergravity, realistic
superGUT models with or without supergravity, and some of the geometrical aspects of
classical supergravity. For the first topic the reader may consult many of the excellent
reviews and lecture notes. The second is one of the current areas of active research. It
is our belief that superspace methods eventually will provide a framework for streamlin-
ing the phenomenology, once we have better control of our tools. The third topic is
attracting increased attention, but there are still many issues to be settled; there again,

superspace methods should prove useful.

We assume the reader has a knowledge of standard quantum field theory (sufficient
to do Feynman graph calculations in QCD). We have tried to make this book as peda-
gogical and encyclopedic as possible, but have omitted some straightforward algebraic

details which are left to the reader as (necessary!) exercises.
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A hitchhiker’s guide

We are hoping, of course, that this book will be of interest to many people, with
different interests and backgrounds. The graduate student who has completed a course

in quantum field theory and wants to study superspace should:

(1) Read an article or two reviewing component global supersymmetry and super-

gravity.

(2) Read chapter 2 for a quick and easy (?7) introduction to superspace. Sections 1,
2, and 3 are straightforward. Section 4 introduces, in a simple setting, the concept of
constrained covariant derivatives, and the solution of the constraints in terms of prepo-
tentials. Section 5 could be skipped at first reading. Section 6 does for supergravity
what section 4 did for Yang-Mills; superfield supergravity in three dimensions is decep-
tively simple. Section 7 introduces quantization and Feynman rules in a simpler situa-

tion than in four dimensions.

(3) Study subsections 3.2.a-d on supersymmetry algebras, and sections 3.3.a,
3.3.b.1-b.3, 3.4.a,b, 3.5 and 3.6 on superfields, covariant derivatives, and component
expansions. Study section 3.10 on compensators; we use them extensively in supergrav-
ity.

(4) Study section 4.1a on the scalar multiplet, and sections 4.2 and 4.3 on gauge

theories, their prepotentials, covariant derivatives and solution of the constraints. A

reading of sections 4.4.b, 4.4.c.1, 4.5.a and 4.5.e might be profitable.

(5) Take a deep breath and slowly study section 5.1, which is our favorite approach
to gravity, and sections 5.2 to 5.5 on supergravity; this is where the action is. For an
inductive approach that starts with the prepotentials and constructs the covariant
derivatives section 5.2 is sufficient, and one can then go directly to section 5.5. Alterna-
tively, one could start with section 5.3, and a deductive approach based on constrained

covariant derivatives, go through section 5.4 and again end at 5.5.

(6) Study sections 6.1 through 6.4 on quantization and supergraphs. The topics in

these sections should be fairly accessible.
(7) Study sections 8.1-8.4.

(8) Go back to the beginning and skip nothing this time.
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Our particle physics colleagues who are familiar with global superspace should
skim 3.1 for notation, 3.4-6 and 4.1, read 4.2 (no, you don’t know it all), and get busy
on chapter 5.

The experts should look for serious mistakes. We would appreciate hearing about

them.

A brief guide to the literature

A complete list of references is becoming increasingly difficult to compile, and we
have not attempted to do so. However, the following (incomplete!) list of review articles
and proceedings of various schools and conferences, and the references therein, are useful

and should provide easy access to the journal literature:
For global supersymmetry, the standard review articles are:
P. Fayet and S. Ferrara, Supersymmetry, Physics Reports 32C (1977) 250.
A. Salam and J. Strathdee, Fortschritte der Physik, 26 (1978) 5.
For component supergravity, the standard review is
P. van Nieuwenhuizen, Supergravity, Physics Reports 68 (1981) 189.

The following Proceedings contain extensive and up-to-date lectures on many
supersymmetry and supergravity topics:

“Recent Developments in Gravitation” (Cargese 1978), eds. M. Levy and S. Deser,

Plenum Press, N.Y.

“Supergravity” (Stony Brook 1979), eds. D. Z. Freedman and P. van Nieuwen-
huizen, North-Holland, Amsterdam.

“Topics in Quantum Field Theory and Gauge Theories” (Salamanca), Phys. 77,
Springer Verlag, Berlin.

“Superspace and Supergravity”(Cambridge 1980), eds. S. W. Hawking and M.
Rocek, Cambridge University Press, Cambridge.

“Supersymmetry and Supergravity ’81” (Trieste), eds. S. Ferrara, J. G. Taylor and

P. van Nieuwenhuizen, Cambridge University Press, Cambridge.

“Supersymmetry and Supergravity '82” (Trieste), eds. S. Ferrara, J. G. Taylor and

P. van Nieuwenhuizen, World Scientific Publishing Co., Singapore.
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2. A TOY SUPERSPACE

2.1. Notation and conventions

This chapter presents a self-contained treatment of supersymmetry in three
spacetime dimensions. Our main motivation for considering this case is simplicity. Irre-
ducible representations of simple (N = 1) global supersymmetry are easier to obtain
than in four dimensions: Scalar superfields (single, real functions of the superspace coor-
dinates) provide one such representation, and all others are obtained by appending
Lorentz or internal symmetry indices. In addition, the description of local supersymme-

try (supergravity) is easier.

a. Index conventions

Our three-dimensional notation is as follows: In three-dimensional spacetime
(with signature — + +) the Lorentz group is SL(2, R) (instead of SL(2,C)) and the cor-
responding fundamental representation acts on a real (Majorana) two-component spinor
Y = (b ,17). In general we use spinor notation for all Lorentz representations, denot-
ing spinor indices by Greek letters «,3,---,u,v,---. Thus a vector (the three-dimen-
sional representation) will be described by a symmetric second-rank spinor

Vel = (V™ V* V) or a traceless second-rank spinor V,”. (For comparison, in four

dimensions we have spinors ¢, ¥® and a vector is given by a hermitian matrix V%))

All our spinors will be anticommuting (Grassmann).

Spinor indices are raised and lowered by the second-rank antisymmetric symbol

C .3, which is also used to define the “square” of a spinor:

-
Cop=—Cpa = (z Z) =—C" ,  CopC" =01"05" =0,705" —3570,"

0
« « 1 4 . _
77Z}a = 77Z}/80ﬁa ’ ¢ =C ’81%) ) 77Z}2 = 577ZJ 77Z}a = Z¢+¢ . (211)
We represent symmetrization and antisymmetrization of n indices by ( ) and [ |, respec-

tively (without a factor of %) We often make use of the identity

A[Uz Bﬂ] — _Caﬁ A’Y B,y , (212)
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which follows from (2.1.1). We use C,; (instead of the customary real €,5) to simplify
the rules for hermitian conjugation. In particular, it makes )* hermitian (recall ¥* and
1, anticommute) and gives the conventional hermiticity properties to derivatives (see

below). Note however that whereas 1)” is real, v, is imaginary.

b. Superspace

Superspace for simple supersymmetry is labeled by three spacetime coordinates "

and two anticommuting spinor coordinates 6", denoted collectively by z" = (z",6").

M

They have the hermiticity properties (2M)" = 2. We define derivatives by

0,0"=1{0,,0"y=6" |

0,27 = [0,z

w 0'7']

5, (2.1.3a)

j22)
so that the “momentum” operators have the hermiticity properties
(i0,)' = —(i9,) , (i0,,)" =+ (i0,,) . (2.1.3b)

and thus (i0M)" = i9™. (Definite) integration over a single anticommuting variable = is

defined so that the integral is translationally invariant (see sec. 3.7); hence / dyl1=0,

/ dy~ = a constant which we take to be 1. We observe that a function f(v) has a ter-
minating Taylor series f(y) = f(0) + ~ f/(0) since {v,7} =0 implies v* =0. Thus
/ dvy f(v) = f'(0) so that integration is equivalent to differentiation. For our spinorial

coordinates / df, = 0, and hence

/Mﬁhﬁf. (2.1.4)

Therefore the double integral
/mmz_1, (2.1.5)

o

and we can define the J-function 6%(0) = — 6> = — %9“ 0

* ok ok

We often use the notation X | to indicate the quantity X evaluated at 6 = 0.
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2.2. Supersymmetry and superfields

a. Representations

We define functions over superspace: ®..(z,6) where the dots stand for Lorentz
(spinor) and/or internal symmetry indices. They transform in the usual way under the
Poincaré group with generators P, (translations) and M,; (Lorentz rotations). We
grade (or make super) the Poincaré algebra by introducing additional spinor supersym-

metry generators () ,, satisfying the supersymmetry algebra

[P;w 9 Ppo] =0 ) (221&)
{Q..Q,}=2P, |, (2.2.1b)
[Qu ’ Pup] =0 ) (221C)

as well as the usual commutation relations with M ,;. This algebra is realized on super-

fields ®...(x ,0) in terms of derivatives by:

P, =10, , Q,=1i9,-0%0,,) ; (2.2.2a)

(2", 0") = expli(EV Py, + Q)| (a" + &M — % ) o1 4 ) . (2.2.2b)
Thus VP At €* @, generates a supercoordinate transformation
gt =g 4 M — % ehgy) L gr =gt et (2.2.2¢)

with real, constant parameters &V | €.

The reader can verify that (2.2.2) provides a representation of the algebra (2.2.1).
We remark in particular that if the anticommutator (2.2.1b) vanished, @, would annihi-
late all physical states (see sec. 3.3). We also note that because of (2.2.1a,c) and
(2.2.2a), not only ® and functions of ®, but also the space-time derivatives d,,® carry a
representation of supersymmetry (are superfields). However, because of (2.2.2a), this is

not the case for the spinorial derivatives 0,®. Supersymmetrically invariant derivatives

can be defined by

Dy=(D,.,D,) =(0,,,0,+0"i0,,) . (2.2.3)
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The set D), (anti)commutes with the generators: [Dy,, P, ] = [Dy,Q,} =0. We use
[A, B} to denote a graded commutator: anticommutator if both A and B are fermionic,

commutator otherwise.

The covariant derivatives can also be defined by their graded commutation rela-

tions
{p,,n,} =2iD,, , [D,,D,]=[D,,D,]=0 ; (2.2.4)
or, more concisely:
[Dy s Dy} = TMNPDP 3
T, =16,79," , rest=0 . (2.2.5)

Thus, in the language of differential geometry, global superspace has torsion. The

derivatives satisfy the further identities

oo,,=06,,00 , D,D,=1d,,+C,D* |,

7

p'D,D,=0 , D°D,=-D,D*=i9,D" , (D=0 . (2.2.6)

They also satisfy the Leibnitz rule and can be integrated by parts when inside d*z d*6
integrals (since they are a combination of z and € derivatives ). The following identity is

useful

/d?’x d*0 ®(z,0) = /d?’x 0* ®(x,0) = /d?’x (D*®(z,0))| (2.2.7)

(where recall that | means evaluation at § = 0). The extra space-time derivatives in D,

(as compared to 0, ) drop out after z-integration.

b. Components by expansion

Superfields can be expanded in a (terminating) Taylor series in 6. For example,

Qop..(2,0) = Aps..(z) + 01N (z) — 0> Fop..(z) . (2.2.8)

o

A, B, F are the component fields of ®. The supersymmetry transformations of the com-
ponents can be derived from those of the superfield. For simplicity of notation, we con-

sider a scalar superfield (no Lorentz indices)
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®(1,0) = A(x) + 0, (2) — 0*°F(z) (2.2.9)
The supersymmetry transformation (" = 0, € infinitesimal)

6®(z,0) = — (0, — i0"0,,)®(z,0)

=6A + 0%y, — 0*6F (2.2.10)
gives, upon equating powers of 6,
0A = —€"Y, (2.2.11a)
6y = — € (CoyF + i0,34) (2.2.11b)
§F = — €0,y . (2.2.11c¢)

It is easy to verify that on the component fields the supersymmetry algebra is satisfied:
The commutator of two transformations gives a translation, [d4(€),do(n)] = —2i€*n’d,4,

etc.

c. Actions and components by projection

The construction of (integral) invariants is facilitated by the observation that

supersymmetry transformations are coordinate transformations in superspace. Because
we can ignore total @-derivatives ( / d*zd*0 0, f* =0, which follows from (9)*=0) and

total spacetime derivatives, we find that any superspace integral
S = /d?’x d*0 f(®,D,®,---) (2.2.12)

that does not depend explicitly on the coordinates is invariant under the full algebra. If
the superfield expansion in terms of components is substituted into the integral and the
f-integration is carried out, the resulting component integral is invariant under the
transformations of (2.2.11) (the integrand in general changes by a total derivative). This
also can be seen from the fact that the f-integration picks out the F' component of f,

which transforms as a spacetime derivative (see (2.2.11c)).

We now describe a technical device that can be extremely helpful. In general, to

obtain component expressions by direct f-expansions can be cumbersome. A more
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efficient procedure is to observe that the components in (2.2.9) can be defined by projec-
tion:

A(x) = CI)(x,Q)| )

Ya(z) = Do ®(2,0)]

F(z) = D*®(z,0)| . (2.2.13)

This can be used, for example, in (2.2.12) by rewriting (c.f. (2.2.7))
S = /d?’x D*f(®,D,®,---)| . (2.2.14)

After the derivatives are evaluated (using the Leibnitz rule and paying due respect to
the anticommutativity of the D’s), the result is directly expressible in terms of the com-
ponents (2.2.13). The reader should verify in a few simple examples that this is a much

more efficient procedure than direct #-expansion and integration.

Finally, we can also reobtain the component transformation laws by this method.

We first note the identity
iQ, + D, =20"i0,; . (2.2.15)
Thus we find, for example

§A =ie"Q, 9|
= —€" (D, ® — 20°i0,,9)|

=—€e"Y, . (2.2.16)
In general we have

This is sufficient to obtain all of the component fields transformation laws by repeated

application of (2.2.17), where f is ®, D,®, D*® and we use (2.2.6) and (2.2.13).
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d. Irreducible representations

In general a theory is described by fields which in momentum space are defined
for arbitrary values of p?. For any fixed value of p? the fields are a representation of the
Poincaré group. We call such fields, defined for arbitrary values of p*, an off-shell repre-
sentation of the Poincaré group. Similarly, when a set of fields is a representation of the
supersymmetry algebra, for any value of p?, we call it an off-shell representation of super-
symmetry. When the field equations are imposed, a particular value of p® (i.e., m?) is
picked out. Some of the components of the fields (auxiliary components) are then con-
strained to vanish; the remaining (physical) components form what we call an on-shell

representation of the Poincaré (or supersymmetry) group.

A superfield ;Zam(p, 0) is an irreducible representation of the Lorentz group, with
regard to its external indices, if it is totally symmetric in these indices. For a represen-
tation of the (super)Poincaré group we can reduce it further. Since in three dimensions
the little group is SO(2), and its irreducible representations are one-component (com-
plex), this reduction will give one-component superfields (with respect to external
indices). Such superfields are irreducible representations of off-shell supersymmetry,
when a reality condition is imposed in z-space (but the superfield is then still complex in
p-space, where ®(p) =®(—p) ).

In an appropriate reference frame we can assign “helicity” (i.e., the eigenvalue of
the SO(2) generator) i% to the spinor indices, and the irreducible representations will
be labeled by the “superhelicity” (the helicity of the superfield): half the number of +
external indices minus the number of —’s. In this frame we can also assign i% helicity
to 6*. Expanding the superfield of superhelicity % into components, we see that these
components have helicities h,hi%,h. For example, a scalar multiplet, consisting of
“spins” (i.e., SO(2,1) representations) 0,% (i.e., helicities O,i%) is described by a
superfield of superhelicity 0: a scalar superfield. A wvector multiplet, consisting of spins
%,1 (helicities 0, % , % ,1) is described by a superfield of superhelicity +%: the “+” com-

“—” component being gauged away (in a light-cone

ponent of a spinor superfield; the
gauge). In general, the superhelicity content of a superfield is analyzed by choosing a
gauge (the supersymmetric light-cone gauge) where as many as possible Lorentz compo-

nents of a superfield have been gauged to 0: the superhelicity content of any remaining
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component is simply % the number of 4+’s minus —’s. Unless otherwise stated, we will

automatically consider all three-dimensional superfields to be real.
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2.3. Scalar multiplet

The simplest representation of supersymmetry is the scalar multiplet described

by the real superfield ®(z,0), and containing the scalars A, F and the two-component
spinor 1,. From (2.2.1,2) we see that 6 has dimension (mass)_%. Also, the canonical

dimensions of component fields in three dimensions are 3 less than in four dimensions

(because we use / d*z instead of / d*z in the kinetic term). Therefore, if this multiplet

1
is to describe physical fields, we must assign dimension (mass)z to ® so that 1, has

canonical dimension (mass)'. (Although it is not immediately obvious which scalar

should have canonical dimension, there is only one spinor.) Then A will have dimension

(mass)% and will be the physical scalar partner of 1, whereas F' has too high a dimen-

sion to describe a canonical physical mode.

Since a 6 integral is the same as a 6 derivative, / d*0 has dimension (mass)'.

Therefore, on dimensional grounds we expect the following expression to give the correct

(massless) kinetic action for the scalar multiplet:
S = — %/d?’x %0 (D, @) (2.3.1)

(recall that for any spinor v, we have 1)* = %;/J“;/Ja). This expression is reminiscent of

the kinetic action for an ordinary scalar field with the substitutions / Pz — / d*z d*0

and d,3 — D,. The component expression can be obtained by explicit f-expansion and
integration. However, we prefer to use the alternative procedure (first integrating D® by

parts):

S in = d*z d*0 ®D*®

N —

d*z D*[® D*®]|

N | —

d*z (D*® D*® + D“® D,D*® + ®(D*)*®)|

N | —

— — —

d*z (F? + 90, 5 + AOA) (2.3.2)

N | —
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where we have used the identities (2.2.6) and the definitions (2.2.13). The A and ¥

kinetic terms are conventional, while F' is clearly non-propagating.

The auxiliary field F' can be eliminated from the action by using its equation of
motion F =0 (or, in a functional integral, F' can be trivially integrated out). The
resulting action is still invariant under the bose-fermi transformations (2.2.11a,b) with
F = 0; however, these are not supersymmetry transformations (not a representation of
the supersymmetry algebra) except “on shell”. The commutator of two such transforma-
tions does not close (does not give a translation) except when 1, satisfies its field equa-
tion. This “off-shell” non-closure of the algebra is typical of transformations from which

auxiliary fields have been eliminated.

Mass and interaction terms can be added to (2.3.1). A term

S, = /d% d*o f(®) (2.3.3)

leads to a component action

g, / 0%z D* (@)
B / &z [f"(®) (D,®)* + f'(®) D*®]|

= [@s i+ (2.3.4)

In a renormalizable model f(®) can be at most quartic. In particular,
f(®) = %mqﬂ + %)@3 gives mass terms, Yukawa and cubic interaction terms. Together

with the kinetic term, we obtain

/d3xd20[ — 5 (D,®)* + 5 md? + % AP
:/d%[% (ADIA 4 %0, 0, + F?)

+m(y? + AF)+\(AY + 5 A°F)] (2.3.5)

F can again be eliminated using its (algebraic) equation of motion, leading to a
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conventional mass term and quartic interactions for the scalar field A. More exotic

kinetic actions are possible by using instead of (2.3.1)

gl = /d?’x 2007, ), (“=D | (2.3.6)
here € i functi b that —22 — Yo o If we introd th
where 1S some runction suc a W |C-<I>:0 = — 5 aB - we 1mtroduce more an

one multiplet of scalar superfields, then, for example, we can obtain generalized super-

symmetric nonlinear sigma models:

S—-3 [ a0 g,@)J (@) (D) (23.7)
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2.4. Vector multiplet

a. Abelian gauge theory
In accordance with the discussion in sec. 2.2, a real spinor gauge superfield T',

with superhelicity h = % (h=— % can be gauged away) will consist of components with

helicities 0,%,%,1. It can be used to describe a massless gauge vector field and its

fermionic partner. (In three dimensions, a gauge vector particle has one physical compo-
nent of definite helicity.) The superfield can be introduced by analogy with scalar QED
(the generalization to the nonabelian case is straightforward, and will be discussed
below). Consider a complex scalar superfield (a doublet of real scalar superfields) trans-

forming under a constant phase rotation

b =P |

P — @' =t | (2.4.1)

The free Lagrangian | D®|* is invariant under these transformations.

a.l. Gauge connections

We extend this to a local phase invariance with K a real scalar superfield depend-

ing on z and 6, by covariantizing the spinor derivatives D,:
D,—-V,=D,F L, , (2.4.2)

when acting on ® or ®, respectively. The spinor gauge potential (or connection) T},

transforms in the usual way

6T, = D, K | (2.4.3)

« «

to ensure
V,=efv,e ™ . (2.4.4)

This is required by (V®) = e (V®), and guarantees that the Lagrangian |V®|* is

locally gauge invariant. (The coupling constant can be restored by rescaling ', — gI',).
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It is now straightforward, by analogy with QED, to find a gauge invariant field
strength and action for the multiplet described by I', and to study its component cou-
plings to the complex scalar multiplet contained in |[V®|?. However, both to understand
its structure as an irreducible representation of supersymmetry, and as an introduction
to more complicated gauge superfields (e.g. in supergravity), we first give a geometrical

presentation.

Although the actions we have considered do not contain the spacetime derivative

0,3, in other contexts we need the covariant object
Vaﬁ - 8aﬂ - iraﬁ , 5Faﬂ - 8aﬁK , (245)

introducing a distinct (vector) gauge potential superfield. The transformation 6I',; of

this connection is chosen to give:
v/aﬂ = ' Vaﬂe_iK . (246)

(From a geometric viewpoint, it is natural to introduce the vector connection; then I,
and I},; can be regarded as the components of a super 1-form I'y = (I',, I',5); see sec.
2.5). However, we will find that I, ; should not be independent, and can be expressed in

terms of [,.

a.2. Components

To get oriented, we examine the components of I' in the Taylor series #-expansion.

They can be defined directly by using the spinor derivatives D ,:

xa=T . B=3DT| ,
1 1
V("ﬂ = - 5D(arﬂ)‘ ) )\O( - 5 DﬁD(yFﬁ‘ 9 (247&)
and
W(XB:F(XB‘ ) pﬂ:DaEyﬂ’ )
wam = D(U(F/B’Y)’ , Toc,@ = DQF(xﬂ’ . (247b)

We have separated the components into irreducible representations of the Lorentz group,

that is, traces (or antisymmetrized pieces, see (2.1.2)) and symmetrized pieces. We also
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define the components of the gauge parameter K:
w=K| , o,=D,K| , 71=DK| (2.4.8)

The component gauge transformations for the components defined in (2.4.7) are found

by repeatedly differentiating (2.4.3-5) with spinor derivatives D,. We find:

oxX, =0, , O6B=71 |

5Vaﬁ = 8aﬂw y (S)\a =0 s (249&)
and

5Wuﬂ = aa,ﬁw ) 5p04 = aaﬂoﬂ )

5waﬂ’y = a(,@vaa) ) 5T04,8 - aaﬁT . (249b)

Note that y and B suffer arbitrary shifts as a consequence of a gauge transformation,
and, in particular, can be gauged completely away; the gauge y = B = 0 is called Wess-
Zumino gauge, and explicitly breaks supersymmetry. However, this gauge is useful since

it reveals the physical content of the I', multiplet.

Examination of the components that remain reveals several peculiar features:

There are two component gauge potentials V5 and W ;5 for only one gauge symmetry,
and there is a high dimension spin g field 1,3,. These problems will be resolved below

when we express I',; in terms of T',,.

We can also find supersymmetric Lorentz gauges by fixing D°T',; such gauges are
useful for quantization (see sec. 2.7). Furthermore, in three dimensions it is possible to
choose a supersymmetric light-cone gauge I', = 0. (In the abelian case the gauge trans-
formation takes the simple form K = D, (id,,) 'T',.) Eq. (2.4.14) below implies that in
this gauge the superfield I',, also vanishes. The remaining components in this gauge are

X, V,,V_ jand A, withV,, =0and A\, ~0,,x_.

a.3. Constraints

To understand how the vector connection I',3 can be expressed in terms of the
spinor connection I, recall the (anti)commutation relations for the ordinary derivatives

are:
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[DM7DN}:TMNPDP . (2410)

For the covariant derivatives V4= (V,,V,s) the graded commutation relations can be

written (from (2.4.2) and (2.4.5) we see that the torsion T, is unmodified):
(Va, Vet =Tus" Ve —i Fyp . (2.4.11)

The field strengths F .5 are invariant (F', 5= F45) due to the covariance of the deriva-
tives V4. Observe that the field strengths are antihermitian matrices, F 45 = — F 4, S0
that the symmetric field strength F,; is imaginary while the antisymmetric field

strength F',; .5 is real. Examining a particular equation from (2.4.11), we find:
{VQ,Vﬂ}:2ivaﬂ—iFaﬁ - 2i8aﬂ+2raﬁ—iFaﬂ . (2412)

The superfield I',; was introduced to covariantize the space-time derivative 0,;. How-

of — %Faﬂ since F 5 is covariant (a

ever, it is clear that an alternative choice is I, =T’
field strength). The new covariant space-time derivative will then satisfy (we drop the

primes)
{Va, Vst =2iV,; (2.4.13)

with the new space-time connection satisfying (after substituting in 2.4.12 the explicit

forms V, = D, — il'y)

i
DIy - (2.4.14)

' ,=-—
aff 92

Thus the conventional constraint
F.,; =0, (2.4.15)

imposed on the system (2.4.11) has allowed the vector potential to be expressed in terms
of the spinor potential. This solves both the problem of two gauge fields W5,V 5 and
the problem of the higher spin and dimension components .3, ,T,3: The gauge fields
are identified with each other (W,; =V ,3), and the extra components are expressed as
derivatives of familiar lower spin and dimension fields (see 2.4.7). The independent com-

ponents that remain in Wess-Zumino gauge after the constraint is imposed are V5 and
A

a
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We stress the importance of the constraint (2.4.15) on the objects defined in
(2.4.11). Unconstrained field strengths in general lead to reducible representations of
supersymmetry (i.e., the spinor and vector potentials), and the constraints are needed to

ensure irreducibility.

a.4. Bianchi identities

In ordinary field theories, the field strengths satisfy Bianchi identities because they
are expressed in terms of the potentials; they are identities and carry no information.
For gauge theories described by covariant derivatives, the Bianchi identities are just

Jacobi identities:
[V[/M[VB?vC)}}:O ) (2416)

(where [) is the graded antisymmetrization symbol, identical to the usual antisym-
metrization symbol but with an extra factor of (—1) for each pair of interchanged
fermionic indices). However, once we impose constraints such as (2.4.13,15) on some of
the field strengths, the Bianchi identities imply constraints on other field strengths. For
example, the identity

0=[Va{ Vs,V + Vs, AV, Vo + [V, {Va, Vs }]

[V :{V5,V,) }] (2.4.17)

N | =

gives (using the constraint (2.4.13,15))
0= [V(a ,Vﬂ,y)] =—1 F(a,ﬁ'y) . (2418)

Thus the totally symmetric part of F' vanishes. In general, we can decompose F into

irreducible representations of the Lorentz group:

1 1 5
Fopy =5 w0 = 3Cae am (2.4.19)
(where indices between |---| , e.g., in this case J, are not included in the symmetriza-
tion). Hence the only remaining piece is:
Fa,ﬂ'y =1 Ca(ﬁ W’Y) y (2420&)

where we introduce the superfield strength W,. We can compute F, 45, in terms of I,

Y
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and find

Wo=35D'D,T; . (2.4.20b)

The superfield W, is the only independent gauge invariant field strength, and is
constrained by D®W, =0, which follows from the Bianchi identity (2.4.16). This
implies that only one Lorentz component of W, is independent. The field strength

describes the physical degrees of freedom: one helicity % and one helicity 1 mode. Thus

W, is a suitable object for constructing an action. Indeed, if we start with
1
__/ﬁ3d0W2 /J‘f@@pﬁ%mﬁ, (2.4.21)
we can compute the component action

__/ﬁznw /ﬁ[WWWm—(UWWWMWH

1
2

zgg/d%[A“MJﬁﬂ—%fwfw . (2.4.22)

Here (cf. 2.4.7) A\, = W,| while f,; =D,Wg|= DzW | is the spinor form of the usual
field strength

Uzﬂ 6’ - ( F’}5 676110{5)‘ 5 ’Y fﬂ

= — i3 [0,,D0T) — 97D, Ty) . (2.4.23)

To derive the above component action we have used the Bianchi identity D“W , = 0, and

its consequence D*W, = iaaﬁWﬁ.

a.5. Matter couplings

We now examine the component Lagrangian describing the coupling to a complex

scalar multiplet. We could start with

S:—%/ﬁ%fmv@xv@)
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_ %/d%D?[(Dw +i)B)[(D, —iT,)®] (2.4.24)

and work out the Lagrangian in terms of components defined by projection. However, a
more efficient procedure, which leads to physically equivalent results, is to define covari-

ant components of ® by covariant projection

A=z, 0) ,
w()( = V(X@(x, 0)‘ )
F =V*®(z,0)| . (2.4.25)

These components are not equal to the ordinary ones but can be obtained by a (gauge-

field dependent) field redefinition and provide an equally valid description of the theory.

/d3x d*0 = /d?’x D?| = /d3x Vi, (2.4.26)

when acting on an invariant and hence

We can also use

S = / d*z V@V
= / Bz [V2OV?*® + VOV, V20 + &(V?)2D]|

= /d% [FF 4+ ¢°(10," + V)5 + (10" N A + hoc.) + A(Dy — i Vop)? Al (2.4.27)

We have used the commutation relations of the covariant derivatives and in particular
V. V=iV ,'Vy+iW,, VV,=—iV,'V;-2iW,, (V*)?=0-iW*V,, where [ is

the covariant d’Alembertian (covariantized with I',4).

b. Nonabelian case

We now briefly consider the nonabelian case: For a multiplet of scalar superfields
transforming as ®' = e'® ®, where K = K'T, and T, are generators of the Lie algebra,

we introduce covariant spinor derivatives V, precisely as for the abelian case (2.4.2).

We define I', =T',' T, so that
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V,=D,—-il',=D, —4il)T, . (2.4.28)
The spinor connection now transforms as
r,=v,kK=D,K —i[l,,K] , (2.4.29)

leaving (2.4.4) unmodified. The vector connection is again constrained by requiring

F,3 = 0; in other words, we have

V= % (V.,Vs} (2.4.30a)

Ty =—i % [DwTs — i{Ta,T5}] . (2.4.30Db)

The form of the action (2.4.21) is unmodified (except that we must also take a trace over
group indices). The constraint (2.4.30) implies that the Bianchi identities have nontriv-

ial consequences, and allows us to “solve” (2.4.17) for the nonabelian case as in

(2.4.18,19,20a). Thus, we obtain
[V(X ’ vﬂ’y] = C(y(ﬂny) (2431&)

in terms of the nonabelian form of the covariant field strength W':

1 ) 1
W,=3D'D,Ly— (17, DT, ] — = [T7 {T,T,}] (2.4.31b)
The field strength transforms covariantly: W', = e® W _ e *. The remaining Bianchi
identity is
[{Vomvﬂ}7v'y6] —{V(a,[Vm,v.ﬂg]}:O : (2432&)

Contracting  indices ~we find  [{V*,V"}, V4] = {V*, [V?,V,4]}. However,
[{V*, V7, V5] = 2i[V* V5] = 0 and hence, using (2.4.31a),

0={V,[V) Vy]}=-6{V" W} . (2.4.32b)
The full implication of the Bianchi identities is thus:

{ Va y Vﬁ } = QiVaﬁ (2433&)
(Vi Vi ]=CogW, , {V*,W,}=0 (2.4.33b)

1. 1
[vaﬁ ) VW&] = - 9 Z(s(oz(v fﬂ)d) s faﬂ = 9 { v(a ) Wﬁ) } : (2433C)
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The components of the multiplet can be defined in analogy to (2.4.7) by projec-

tions of I':

(X‘ Y

Xo =To| , B =_DT
(2.4.34)
Va,@ = Fa,@" > )‘a = Wu‘

c. Gauge invariant masses

A curious feature which this theory has, and which makes it rather different from
four dimensional Yang-Mills theory, is the existence of a gauge-invariant mass term: In

the abelian case the Bianchi identity D*W , = 0 can be used to prove the invariance of
Su= = [ @ods [Jmrew,] (2.4.35)

In components this action contains the usual gauge invariant mass term for three-dimen-

sional electrodynamics:
m/d?’x VP,V = m/d3x Vs (2.4.36)

which is gauge invariant as a consequence of the usual component Bianchi identity
8a/8faﬂ =0.
The superfield equations which result from (2.4.21,35) are:

0" Ws+mW,=0, (2.4.37)

which describes an irreducible multiplet of mass m. The Bianchi identity D*“W_, =0

implies that only one Lorentz component of W is independent.

For the nonabelian case, the mass term is somewhat more complicated because the

field strength W is covariant rather than invariant:

1 1 o i @
Sm:trg—g/d?’deH sm (DWW, + AT , I} D,T,

+ AT, T H{T,,Ty})
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. 1 3 2, 1 a 1 4
The field equations, however, are the covariantizations of (2.4.37):

iV Wi+ mW,=0 .

27

(2.4.38)

(2.4.39)
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2.5. Other global gauge multiplets

a. Superforms: general case

The gauge multiplets discussed in the last section may be described completely in
terms of geometric quantities. The gauge potentials I'y = (I',, I',5) which covariantize
the derivatives D, with respect to local phase rotations of the matter superfields consti-
tute a super 1-form. We define super p-forms as tensors with p covariant supervector
indices (i.e., supervector subscripts) that have total graded antisymmetry with respect to
these indices (i.e., are symmetric in any pair of spinor indices, antisymmetric in a vector
pair or in a mixed pair). For example, the field strength F,p = (F, 3, F\s 3y, Fup.s) con-

stitutes a super 2-form.

In terms of supervector notation the gauge transformation for Iy (from (2.4.3) and

(2.4.5)) takes the form

The field strength defined in (2.3.6) when expressed in terms of the gauge potential can

be written as
Fap =Dyl — TipTe . (2.5.2)

The gauge transformation law certainly takes the familiar form, but even in the abelian
case, the field strength has an unfamiliar nonderivative term. One way to understand
how this term arises is to make a change of basis for the components of a supervector.
We can expand D, in terms of partial derivatives by introducing a matrix, E,, such

that

DA:EAM6M7 6M5(6;¢78;w) )

1.
I 2ious v)
) 220 0

EM = : (2.5.3)

1 v
0 5 0a485"

This matrix is the flat vielbein; its inverse is
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R A
Eyt = : (2.5.4)

1< (a
0 55,} 5,%

If we define I'y; by I'y = E,MT,,, then

oy =0yK . (2.5.5)
Similarly, if we define F';;y by
Fap = (—)A(B+N)EBN EM Fyy (2.5.6a)
then
Fyy =0uly) - (2.5.6Db)
(In the Grassmann parity factor (—)A(B”v ) the superscripts A, B, and N are equal to

one when these indices refer to spinorial indices and zero otherwise.) We thus see that
the nonderivative term in the field strength is absent when the components of this
supertensor are referred to a different coordinate basis. Furthermore, in this basis the

Bianchi identities take the simple form

The generalization to higher-rank graded antisymmetric tensors (superforms) is
now evident. There is a basis in which the gauge transformation, field strength, and

Bianchi identities take the forms

1

5FM1---M,, = ma[MlKMQ---Mp) )

1
FMl"'Mp+1 = H@[erMQ---Mp+1) )

O — G[MlFM2~~~Mp+2) . (258)

We simply multiply these by suitable powers of the flat vielbein and appropriate Grass-

mann parity factors to obtain

1 1 B
O pa, = oy Pt Kageny = 5 =gy T aal” Kplagea,)
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1 1 B
FAI"'AP+1 = E D[AerQ"'AP+1) - 2(p — 1)! T[A1 Ay FB\AS'"AIJH) )

1 1

B
(p+1)! D[AlFAQ"'Ap+2) - Z_p' T[Al Ay FB|A3“'Ap+2) : (2'5'9>

0=

(The | ’s indicate that all of the indices are graded antisymmetric except the B ’s.)

b. Super 2-form

We now discuss in detail the case of a super 2-form gauge superfield I',p with

gauge transformation

5I’aﬂ - D(aKﬂ) - 2Z Kaﬁ 5

5F — DUKKB’Y - aﬂ,yK

a,By a

51—‘&/3775 = aaﬂK75 - afydKaﬂ . (2510)
The field strength for ', is a super 3-form:

F (Dl's7) + 200 8y)

N —

o8y =
Fopns = D@l + 056ap =21 Lo
Foc,,@v,& = D(XF,B’Y,(SE + adfra,ﬁv - aﬂ’yra,& )

Foc,@q&eC = aa,BFW&GC + aeCFaﬂ,’yd + 675F6C,aﬂ . (2511>
All of these equations are contained in the concise supervector notation in (2.5.9).

The gauge superfield I'y was subject to constraints that allowed one part (I', 5) to
be expressed as a function of the remaining part. This is a general feature of supersym-
metric gauge theories; constraints are needed to ensure irreducibility. For the tensor

gauge multiplet we impose the constraints
FC%B{}’ = 0 Y F(X,ﬂ,’ﬂ; = Zé(a'y 5ﬂ)6 G = T(y,ﬂ’ﬂ;G P (2512)

which, as we show below, allow us to express all covariant quantities in terms of the sin-
gle real scalar superfield G. These constraints can be solved as follows: we first observe

that in the field strengths T', 5 always appears in the combination D, T's.) + 2i T, 3,)-
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Therefore, without changing the field strengths we can redefine T’ by absorbing

a0y
D, T's, into it. Thus I', 5 disappears from the field strengths which means it could be
set to zero from the beginning (equivalently, we can make it zero by a gauge transforma-

tion). The first constraint now implies that the totally symmetric part of I' is zero

a,By

and hence we can write I’ =1C,3®P, in terms of a spinor superfield ®,. The

o,y
remaining equations and constraints can be used now to express I',5.5 and the other

field strengths in terms of ®,. We find a solution

Lop=0, Top,=iCop3®y

s 1 / 5 5
Lop = 10" [Dy@" + DV0y)]

G=-D"%, . (2.5.13)
Thus the constraints allow I'j5 to be expressed in terms of a spinor superfield ®,. (The
general solution of the constraints is a gauge transform (2.5.10) of (2.5.13).)

The quantity G is by definition a field strength; hence the gauge variation of ®,
must leave G invariant. This implies that the gauge variation of ®, must be (see
(2.2.6))

1
0P, = 3 D°D,A; (2.5.14)
where Aj is an arbitrary spinor gauge parameter. This gauge transformation is of course

consistent with what remains of (2.5.10) after the gauge choice (2.5.13).

We expect the physical degrees of freedom to appear in the (only independent)
field strength G. Since this is a scalar superfield, it must describe a scalar and a spinor,
and ®, (or I'yp) provides a wariant representation of the supersymmetry algebra nor-

mally described by the scalar superfield ®. In fact ®, contains components with helici-

ties 0, 1 , L , 1 just like the vector multiplet, but now the 1 ,1 components are auxiliary
272 2

fields. (®, =1, + 0,4 + Qﬁvaﬁ — 6*x,). For ®, with canonical dimension (mass)%, on

dimensional grounds the gauge invariant action must be given by
S = % / &3z d?0 (D,G) . (2.5.15)

Written in this form we see that in terms of the components of GG, the action has the
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same form as in (2.3.2). The only differences arise because G is expressed in terms of
®,. We find that only the auxiliary field F' is modified; it is replaced by a field F’'. An

explicit computation of this quantity yields
F'=—DD®,| =i DByl = 0V 5| . Vg = LDy, . (2.5.16)

In place of F' the divergence of a vector appears. To see that this vector field really is a

gauge field, we compute its variation under the gauge transformation (2.5.14):

1 4
5Vo¢,8 — Z 87(0( [Dﬂ) AW + D’y Aﬁ)] . (2517)
This is not the transformation of an ordinary gauge vector (see (2.4.9)), but rather that
of a second-rank antisymmetric tensor (in three dimensions a second-rank antisymmetric
tensor is the same Lorentz representation as a vector). This is the component gauge
field that appears at lowest order in ¢ in I', 5.5 in eq. (2.5.13). A field of this type has no

dynamics in three dimensions.

c. Spinor gauge superfield

Superforms are not the only gauge multiplets one can study, but the pattern for
other cases is similar. In general, (nonvariant) supersymmetric gauge multiplets can be
described by spinor superfields carrying additional internal-symmetry group indices. (In
a particular case, the additional index can be a spinor index: see below.) Such super-
fields contain component gauge fields and, as in the Yang-Mills case, their gauge trans-
formations are determined by the 6 =0 part of the superfield gauge parameter (cf.
(2.4.9)). The gauge superfield thus takes the form of the component field with a vector
index replaced by a spinor index, and the transformation law takes the form of the com-

ponent transformation law with the vector derivative replaced by a spinor derivative.

For example, to describe a multiplet containing a spin % component gauge field, we

introduce a spinor gauge superfield with an additional spinor group index:
0¢,“=D,K" . (2.5.18)

The field strength has the same form as the vector multiplet field strength but with a

spinor group index:
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1
Wf:§DU%®ﬁ. (2.5.19)

(We can, of course, introduce a supervector potential Iy, in exact analogy with the
abelian vector multiplet. The field strength here simply has an additional spinor index.

The constraints are exactly the same as for the vector multiplet, i.e., F,5" = 0.)

In three dimensions massless fields of spin greater than 1 have no dynamical
degrees of freedom. The kinetic term for this multiplet is analogous to the mass term

for the vector multiplet:
Sw/ﬁ%fewwqm. (2.5.20)

This action describes component fields which are all auxiliary: a spin g gauge field

Y(ap)y> @ vector, and a scalar, as can be verified by expanding in components. The
invariance of the action in (2.5.20) is not manifest: It depends on the Bianchi identity
D*W .3 = 0. The explicit appearance of the superfield @, is a general feature of super-
symmetric gauge theories; it is not always possible to write the superspace action for a

gauge theory in terms of field strengths alone.
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2.6. Supergravity

a. Supercoordinate transformations

Supergravity, the supersymmetric generalization of gravity, is the gauge theory of
the supertranslations. The global transformations with constant parameters £", €' gen-
erated by P, and @, are replaced by local ones parametrized by the supervector

KM(z,0) = (K" ,K"). For a scalar superfield ¥(z, ) we define the transformation
U(z) = U'(2) =e®U(2) =e®V(2) e ™ | (2.6.1)
where
K =K"iDy = K"i9,, + K"iD, . (2.6.2)

(To exhibit the global supersymmetry, it is convenient to write K in terms of D, rather
than @, (or 9,). This amounts to a redefinition of K"”). The second form of the
transformation of ¥ can be shown to be equivalent to the first by comparing terms in a
power series expansion of the two forms and noting that iK' W = [iK, V]. It is easy to see
that  (2.6.1) is a  general coordinate transformation in  superspace:

efW(2)e ™ = W(e™ 27 ); defining 2’ = e " 2™, (2.6.1) becomes U'(2') = U(z).

We may expect, by analogy to the Yang-Mills case, to introduce a gauge superfield

H," with (linearized) transformation laws
sHM =D, K" | (2.6.3)

(we introduce H 5" as well, but a constraint will relate it to H,") and define covariant

derivatives by analogy to (2.4.28):
E,=D,+HMD,=E,"D, . (2.6.4)

E M is the wielbein. The potentials H, ", H,* have a large number of components
among which we identify, according to the discussion following equation (2.5.17), a sec-
ond-rank tensor (the “dreibein”, minus its flat-space part) describing the graviton and a
spin g field describing the gravitino, whose gauge parameters are the § = 0 parts of the

vector and spinor gauge superparameters K*|. Other components will describe gauge

degrees of freedom and auxiliary fields.
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b. Lorentz transformations

The local supertranslations introduced so far include Lorentz transformations of a
scalar superfield, acting on the coordinates z" = (2/,6"). To define their action on
spinor superfields it is necessary to introduce the concept of tangent space and local

M

frames attached at each point 2" and local Lorentz transformations acting on the

indices of such superfields \If%g,,,(zM ). (In chapter 5 we discuss the reasons for this pro-

cedure.) The enlarged full local group is defined by
lpa,ﬁm(x? 0) - \I]/a.ﬂ'--(xv 9) = 6ZK lpa,ﬁm(x? 0) 67iK ) (265>
where now
K=K"YiDy + K,”iM "~ . (2.6.6)

Here the superfield K ,” parametrizes the local Lorentz transformations and the Lorentz

generators M ;" act on each tangent space index as indicated by
(XM, ]=X,¥,; | (2.6.7)

for arbitrary X4". M s is symmetric, i.e., M " is traceless (which makes it equivalent to
a vector in three dimensions). Thus, X,” is an element of the Lorentz algebra SL(2, R)

(i.e., SO(2,1)). Therefore, the parameter matrix K,” is also traceless.

From now on we must distinguish tangent space and world indices; to do this, we
denote the former by letters from the beginning of the alphabet, and the latter by letters
from the middle of the alphabet. By definition, the former transform with K,” whereas

the latter transform with K.

c. Covariant derivatives

Having introduced local Lorentz transformations acting on spinor indices, we now

define covariant spinor derivatives by
Vo=EMDy+®,,7 M7 (2.6.8)

as well as vector derivatives V,5. However, just as in the Yang-Mills case, we impose a

conventional constraint that defines

.1
vaﬂ =—1 5 {v(m V,B} ) (269>
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The connection coefficients ® 457, which appear in
Va=EM"Dy+@,57 M/ | (2.6.10)

and act as gauge fields for the Lorentz group, will be determined in terms of H, " by

imposing further suitable constraints. The covariant derivatives transform by
Vi—=Vi/=elfv,e ™ | (2.6.11a)
All fields V... (as opposed to the operator V) transform as
U =ef W e =KV (2.6.11b)

when all indices are flat (tangent space); we always choose to use flat indices. We can
use the vielbein E,¥ (and its inverse E %) to convert between world and tangent space
indices. For example, if ¥, is a world supervector, ¥, = E ¥, is a tangent space

supervector.

The superderivative £, = E " D,, is to be understood as a tangent space super-
vector. On the other hand, D, transforms under the local translations (supercoordinate
transformations), and this induces transformations of E," with respect to its world
index (in this case, M). We can exhibit this, and verify that (2.6.6) describes the famil-
iar local Lorentz and general coordinate transformations, by considering the infinitesimal

version of (2.6.11):
0V, =[iK,V,] , (2.6.12)
which implies

SEM=E,"DyK" — KNDyE,M — E,"K'T ;™ — K ,PEpM

60, =E, K" —K"Dy®,' ' —K,"®3° — K ‘®,°+ K ®,°

=V,K,'— K"Dy®, ' — K,"®p° , (2.6.13)

where T,y is the torsion of flat, global superspace (2.4.10), and Kaﬁ“s = %K(a” 6[,))5).
The first three terms in the transformation law of E * correspond to the usual form of
the general coordinate transformation of a world supervector (labeled by M), while the
last term is a local Lorentz transformation on the tangent space index A. The relation

between K (WV‘S and K7 implies the usual reducibility of the Lorentz transformations on
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the tangent space, corresponding to the definition of vectors as second-rank symmetric

spinors.
d. Gauge choices

d.1. A supersymmetric gauge

As we have mentioned above, the gauge fields (or the vielbein E, ") contain a
large number of gauge degrees of freedom, and some of them can be gauged away using
the K transformations. For simplicity we discuss this only at the linearized level (where
we need not distinguish world and tangent space indices); we will return later to a more

complete treatment. From (2.6.13) the linearized transformation laws are
5E0zu = Doz K" — Kozu ’

SE, =D, K" —is, " K . (2.6.14)

Thus K," can be used to gauge away all of E " except its trace (recall that K " is
traceless) and K" can gauge away part of E,*. In the corresponding gauge we can

write

(2.6.15)

this globally supersymmetric gauge is maintained by further transformations restricted

by

K)=1D.K"=D,K'- 15D K" |
9 @ « 9 Ca 5

«Q

Kh=— %DVKW . (2.6.16)
Under these restricted transformations we have
1 v
ov=-9, K" |

= 59w

SEWro) = Dl gro) (2.6.17)
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In this gauge the traceless part A7) of the ordinary dreibein (the physical graviton
field) appears in E¥?. The trace h = h,,"" is contained in (the § = 0 part of) ¥ and
has an identical (linearized) transformation law. (In super “conformal” theories the viel-
bein also undergoes a superscale transformation whose scalar parameter can be used to
gauge WU to 1, still in a globally supersymmetric way. Thus E""?) contains the “confor-

mal” part of the supergravity multiplet, whereas ¥ contains the traces.)

d.2. Wess-Zumino gauge

The above gauge is convenient for calculations where we wish to maintain manifest
global supersymmetry. However just as in super Yang-Mills theory, we can find a non-
supersymmetric Wess-Zumino gauge that exhibits the component field content of super-

gravity most directly. In such a gauge

U=h+6'vy,—0a |,

Eve) = _plwer) _ g2 plwe) (2.6.18)

where h and A7) are the remaining parts of the dreibein, Y, and PP of the grav-
itino, and «a is a scalar auxiliary field. The residual gauge invariance (which maintains

the above form) is parametrized by
KW =¢m 4 glre) (2.6.19)

where ¢"(z) parametrizes general spacetime coordinate transformations and €”(z)

parametrizes local (component) supersymmetry transformations.

e. Field strengths

We now return to a study of the geometrical objects of the theory. The field

strengths for supergravity are supertorsions T 45 and supercurvatures R4 37,5, defined by
Vi,V =T4Ve+ RABW(SM(SW . (2.6.20)
Our determination of V4 in terms of V,, (see (2.6.9) ), is equivalent to the constraints

Toﬁw5 = Z'(S(oﬂ(sﬂ)d ) Tozﬁny =R, =0 . (2'6'21)

apfy

We need one further constraint to relate the connection ®,;7 (the gauge field for the
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local Lorentz transformations) to the gauge potential H,” (or vielbein E,™). It turns

out that such a constraint is

T,s5.°=0. (2.6.22)

a,By

To solve this constraint, and actually find ® in terms of E, it is convenient to make

some additional definitions:

EaEEa ) EaﬁE_%{Ea7Eﬂ} )

[E,,Ez}=C,5E. . (2.6.23)

The constraint (2.6.22) is then solved for ®,;7 as follows: First, express [V,,Vy,] in
terms of ®,57 and the “check” objects of (2.6.23) using (2.6.9). Then, find the coeffi-
cient of Eaﬁ in this expression. The corresponding coefficient of the right-hand side of

(2.6.20) is Tam‘se. This gives us the equation

oe __ /Y de 1 45 € 1 4 €
Top" = Capy™ = 5 @300 + 5 @500,
3 de 1 de
=Cop = 5 Cop@y =0 . (2.6.24)

From the Jacobi identity [E . ,{FE,,E =0, we have, independent of (2.6.21,22),
( B )

C(am)‘gf =0.) We then solve for ®,,7: We multiply (2.6.24) by C*’ and use the identity

(paﬂ’y = (@(aﬁ)’y — Ca/g@(’y&)(;). We find

1
2

o (Cv’&da,ﬁv - Ca’&(ﬂq)a) ) (2.6.25)

W~

afy —

the C’s being calculable from (2.6.23) as derivatives of E,".

f. Bianchi identities

The torsions and curvatures are covariant and must be expressible only in terms
of the physical gauge invariant component field strengths for the graviton and gravitino
and auxiliary fields. We proceed in two steps: First, we express all the T’°s and R’s in
(2.6.20) in terms of a small number of independent field strengths; then, we analyze the

content of these superfields.
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The Jacobi identities for the covariant derivatives explicitly take the form:
[[Vi4,Vp}, Ve } =0 . (2.6.26)

The presence of the constraints in (2.6.21,22) allows us to express all of the nontrivial
torsion and curvature tensors completely in terms of two superfields R and G4, (where
G

braically solving the constraints plus Jacobi identities (which are the Bianchi identities

op 18 totally symmetric), and their spinorial derivatives. This is accomplished by alge-

for the torsions and curvatures). We either repeat the calculations of the Yang-Mills

case, or we make use of the results there, as follows:

We observe that the constraint (2.6.21) {V,,V;3} = 2iV,; is identical to the Yang-
Mills constraint (2.4.13,30a). The Jacobi identity [V(,{V, V. }] =0 has the same solu-
tion as in (2.4.17-20a,31a):

[va’ Vﬂ'y] = Ca(ﬂW'y) ) (2627)

where W, is expanded over the supergravity “generators” iV and iM (the factor i is

introduced to make the generators hermitian):

W, =W, iV + WiV, + W,5iM.," . (2.6.28)
The solution to the Bianchi identities is thus (2.4.33), with the identification (2.6.28).

The constraint (2.6.22) implies ﬁ/faﬁ”:(), and we can “solve” {V*, W_} =0 (see
(2.4.33b)) explicitly:

1 N 2 .
Was == CasR s Wapy = Gupy + 5 CupVR s VG == 2iVsR, (2629)

afy afy

where we have introduced a scalar R and a totally symmetric spinor G,3,. The full

solution of the Bianchi identities is thus the Yang-Mills solution (2.4.33) with the substi-

tutions

—iW,=— RV, + %(VBR)MJ’ + GQBWMWK’
N 2 .
\% Gaﬂ'y == 3 Zvﬁ'YR

(VaR)Vj) + Gos'V, = 2RIV o5 + 2 (VER)M

W =

~if s = -
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+ 5 (iVy R My + W5, My (2.6.30)

afy

N | —

where W 5.5 = %V(QG[M). We have used V,V; =1V, 5 — C’WV2 to find (2.6.30). Indi-

vidual torsions and curvatures can be read directly from these equations by comparing

with the definition (2.6.20). Thus, for example, we have

s, ¢c_ 1 s
Ramv ,EC — 5(;(oé(w T >€< ,

5 s 1 5 1 .
rag = Wa® = 300765 VIR + 16,1V R . (2.6.31)

The #-independent part of r is the Ricci tensor in a spacetime geometry with (#-inde-

pendent) torsion.

In sec. 2.4.a.3 we discussed covariant shifts of the gauge potential. In any gauge
theory such shifts do not change the transformation properties of the covariant deriva-
tives and thus are perfectly acceptable; the shifted gauge fields provide an equally good
description of the theory. In sec. 2.4.a.3 we used the redefinitions to eliminate a field

strength. Here we redefine the connection ®,.° to eliminate Taﬁm;EC by

aBy

Vg =Vag — iRM 5 . (2.6.32)

(This corresponds to shifting ®,,. by a term ~e ;. R to cancel T,;.; we temporarily make
use of vector indices “a” to represent traceless bispinors since this makes it clear that the
shift (2.6.32) is possible only in three dimensions.) The shifted ra[ﬂ‘s, dropping primes,

1S

rog? = Wog" — i%v%a ro o= %vm +92R? . (2.6.33)

This redefinition of ®,4.° is equivalent to replacing the constraint (2.6.9) with

aflyy
{Va4,V3}=2iV,; —2RM 5 . (2.6.34)

We will find that the analog of the “new” term appears in the constraints for four
dimensional supergravity (see chapter 5). This is because we can obtain the three
dimensional theory from the four dimensional one, and there is no shift analogous to

(2.6.32) possible in four dimensions.

The superfields R and G
below) with respect to the two unconstrained superfields ¥ and Evo) of (2.6.15-17).

o, are the variations of the supergravity action (see



42 2. A TOY SUPERSPACE

The field equations are R = G35, = 0; these are solved only by flat space (just as for

afy
ordinary gravity in three-dimensional spacetime), so three-dimensional supergravity has

no dynamics (all fields are auxiliary).

g. Actions

We now turn to the construction of actions and their expansion in terms of com-
ponent fields. As we remarked earlier, in flat superspace the integral of any (scalar)
superfield expression with the d®zd*0 measure is globally supersymmetric. This is no
longer true for locally supersymmetric theories. (The new features that arise are not
specifically limited to local supersymmetry, but are a general consequence of local coor-

dinate invariance).

We recall that in our formalism an arbitrary "matter" superfield ¥ transforms

according to the rule

U/ = ezK\Ile—zK — 6—2[( ‘I’@ZK ,

K = KMiD y + K,JiM (2.6.35)

where D » means that we let the differential operator act on everything to its left. (The
various forms of the transformation law can be seen to be equivalent after power series
expansion of the exponentials, or by multiplying by a test function and integrating by
parts). Lagrangians are scalar superfields, and since any Lagrangian IL is constructed

from superfields and V operators, a Lagrangian transforms in the same way.
IL' =e® Le™™ =™ Le™ . (2.6.36)

Therefore the integral / d?z d*0 IL is not invariant with respect to our gauge group. To

find invariants, we consider the vielbein as a square supermatrix in its indices and com-
pute its superdeterminant E. The following result will be derived in our discussion of

four-dimensions (see sec. 5.1):

(E7V) = e E~le~ (1 - ezf?)

=FE1'e® (2.6.37)
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Therefore the product E~! IL transforms in exactly the same way as £~ ':
(E'IL) = E'ILek (2.6.38)

Since every term but the first one in the power series expansion of the e’® is a total

derivative, we conclude that up to surface terms
S = /d?’x d’0 BV IL (2.6.39)

is invariant. We therefore have a simple prescription for turning any globally supersym-

metric action into a locally supersymmetric one:
[ lL(DAq) 7(1))]global - E_l lL(vA(I) 7(1)) ’ (2640)

in analogy to ordinary gravity. Thus, the action for the scalar multiplet described by eq.

(2.3.5) takes the covariantized form
Gy = /d% @20 B [ = 5 (V,0) + S md? + %@3] . (2.6.41)

For vector gauge multiplets the simple prescription of replacing flat derivatives D 4
by gravitationally covariant ones V, is sufficient to convert global actions into local
actions, if we include the Yang-Mills generators in the covariant derivatives, so that they
are covariant with respect to both supergravity and super-Yang-Mills invariances. How-
ever, such a procedure is not sufficient for more general gauge multiplets, and in particu-
lar the superforms of sec. 2.5. On the other hand, it is possible to formulate all gauge
theories within the superform framework, at least at the abelian level (which is all that
is relevant for p-forms for p > 1). Additional terms due to the geometry of the space
will automatically appear in the definitions of field strengths. Specifically, the curved-
space formulation of superforms is obtained as follows: The definitions (2.5.8) hold in
arbitrary superspaces, independent of any metric structure. Converting (2.5.8) to a tan-
gent-space basis with the curved space E 4", we obtain equations that differ from (2.5.9)
only by the replacement of the flat-space covariant derivatives D, with the curved-space

ones V 4.

To illustrate this, let us return to the abelian vector multiplet, now in the presence

of supergravity. The field strength for the vector multiplet is a 2-form:
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Faﬁ - Vafﬂ + Vﬁfa - 22Faﬁ ,

Fogy =Vagly =Volag = Top T

Fuﬂ,’yd = vaﬂF’yd - v’ydraﬂ - T(xﬂ,’y(SEFE . (2642>

We again impose the constraint F,3; = 0, which implies
. 1
Fopy =iCoyWy . Wo=5V'V,Iy+ RL, ; (2.6.43)

where we have used (2.6.30) substituted into (2.4.33). Comparing this to the global field
strength defined in (2.4.20), we see that a new term proportional to R appears. The

extra term in W, 1is necessary for gauge invariance due to the identity
VoV4V, =i % [V, V,5]. In the global limit the commutator vanishes, but in the local

case it gives a contribution that is precisely canceled by the contribution of the R term.
These results can also be obtained by use of derivatives that are covariant with respect

to both supergravity and super-Yang-Mills.

We turn now to the action for the gauge fields of local supersymmetry. We expect

to construct it out of the field strengths G,3, and R. By dimensional analysis (noting

afy
1
that x has dimensions (mass) 2 in three dimensions), we deduce for the Poincaré super-

gravity action the supersymmetric generalization of the Einstein-Hilbert action:
2 3. 120 -1
K

We can check that (2.6.44) leads to the correct component action as follows:
/d20 E'R~V’R~ %r (see (2.6.33)), and thus the gravitational part of the action is

correct. We can also add a supersymmetric cosmological term
A 3. 129 1
Scosmo = — | d’xd"0 E7 | (2.6.45)
K

which leads to an equations of motion R = X\, G5, = 0. The only solution to this equa-

afy
tion (in three dimensions) 1is empty anti-deSitter space: From (2.6.33),

r = 2)\2 s Waﬁ'y(s = 0.

and R. For

example, the analog of the gauge-invariant mass term for the Yang-Mills multiplet exists

Higher-derivative actions are possible by using other functions of G,
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here and is obtained by the replacements in (2.4.38) (along with, of course, / d*z d*0
— /d?’x d*0 E):

Ly T — @57 iM)" , W'T; — Goy'iM,” + 3 (Vs R)iM,"” . (2.6.46)
This gives

laa 2 1 ey
leass = /'d33j d29 E l(p 75 ( Gaév + gaavvéR - 6(p 5/®(a€)nW) . (2647)
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2.7. Quantum superspace

a. Scalar multiplet

In this section we discuss the derivation of the Feynman rules for three-dimen-
sional superfield perturbation theory. Since the starting point, the superfield action, is
so much like a component (ordinary field theory) action, it is possible to read off the
rules for doing Feynman supergraphs almost by inspection. However, as an introduction
to the four-dimensional case we use the full machinery of the functional integral. After
deriving the rules we apply them to some one-loop graphs. The manipulations that we
perform on the graphs are typical and illustrate the manner in which superfields handle
the cancellations and other simplifications due to supersymmetry. For more details, we

refer the reader to the four-dimensional discussion in chapter 6.

a.l. General formalism

The Feynman rules for the scalar superfield can be read directly from the
Lagrangian: The propagator is defined by the quadratic terms, and the vertices by the
interactions. The propagator is an operator in both z and 6 space, and at the vertices
we integrate over both z and 6. By Fourier transformation we change the z integration
to loop-momentum integration, but we leave the # integration alone. (6 can also be
Fourier transformed, but this causes little change in the rules: see sec. 6.3.) We now

derive the rules from the functional integral.

We begin by considering the generating functional for the massive scalar superfield

® with arbitrary self-interaction :

Z(J) = /ZD<I> exp /d3xd20 (5 ®D*® + L m® + f(@) + JO]
= /]D‘I) exp [S(J(CI))+SINT(‘I))+/JCI)]

— exp [S[NT(%)] /11)@ exp [/%@(D2+m)®+m] : (2.7.1)

In the usual fashion we complete the square, do the (functional) Gaussian integral over

®, and obtain
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J

1 1
Z(J) = exp [S[NT(E)] exp [—/cl?’a;dQH5 J DT m

J . (2.7.2)

Using eq.(2.2.6) we can write

1 _DQ—m
D2+m  O-m?

(2.7.3)

(Note D? behaves just as § in conventional field theory.) We obtain, in momentum

space, the following Feynman rules:

Propagator:
0 d / Tk pl T (k,0) DQJJ(—k 0)
6J(k,0) 6J(=k,0) ) (2m)3 "2 7 k2 4m? ’
_Dem 5*(0 — ') (2.7.4)
= : 7.

Vertices: An interaction term, e.g. /d?’deQ PDPD P - .. | gives a vertex with @

lines leaving it, with the appropriate operators D®, D”, etc. acting on the corresponding
lines, and an integral over d*6. The operators D, which appear in the propagators, or
are coming from a vertex and act on a specific propagator with momentum £k leaving

that vertex, depend on that momentum:

D =

. ae<¥+9ﬁk“5‘ (2.7.5)

In addition we have loop-momentum integrals to perform.

In general we find it convenient to calculate the effective action. It is obtained in
standard fashion by a Legendre transformation on the generating functional for con-
nected supergraphs W (J) and it consists of a sum of one-particle-irreducible contribu-
tions obtained by amputating external line propagators, replacing them by external field

factors ®(p,,0;), and integrating over p;,0;. Therefore, it will have the form

1 d3p "'d3pn

x (2m)? 5(2 ;) H / (;iﬁljg H /d29 Hpropagators H vertices (2.7.6)

loops internal vertices
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As we have already mentioned, all of this can be read directly from the action, by anal-

ogy with the derivation of the usual Feynman rules.

The integrand in the effective action is a priori a nonlocal function of the z’s (non-
polynomial in the p’s) and of the 6,,---6, . However, we can manipulate the f-integra-
tions so as to exhibit it explicitly as a functional of the ®’s all evaluated at a single com-
mon 6 as follows: A general multiloop integral consists of vertices labeled i, ¢ + 1, con-
nected by propagators which contain factors 6(0; —60,,;) with operators D, acting on
them. Consider a particular loop in the diagram and examine one line of that loop.

The factors of D can be combined by using the result (“transfer” rule):

Da(gm k)a(gz - 9i+1) - - Da(giJrla _k)(s(ez - 0i+1) ) (277)

as well as the rules of eq.(2.2.6), after which we have at most two factors of D acting at
one end of the line. At the vertex where this end is attached these D’s can be integrated
by parts onto the other lines (or external fields) using the Leibnitz rule (and some care
with minus signs since the D’s anticommute). Then the particular d-function no longer
has any derivatives acting on it and can be used to do the 6, integration, thus effectively
"shrinking" the (60;,0,,,) line to a point in f-space. We can repeat this procedure on
each line of the loop, integrating by parts one at a time and shrinking. This will gener-
ate a sum of terms, from the integration by parts. The procedure stops when in each
term we are left with exactly two lines, one with 6(6, —6,,) which is free of any deriva-
tives, and one with §(6,, — 6;) which may carry zero, one, or two derivatives. We now

use the rules (which follow from the definition 6%(0) = — 6?),

62(91 - em)(sQ(em - 91) =0 )
52(01 - gm) Daé?(gm - 01) =0 )

52(0, —0,,) D*5%(6,, — 0,) = 62(0, —0,,) . (2.7.8)

Thus, in those terms where we are left with no D or one D we get zero, while in the
terms in which we have a D? acting on one of the é-functions, multiplied by the other
o-function, we use the above result. We are left with the single J-function, which we can

use to do one more 6 integration, thus finally reducing the #-space loop to a point.
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The procedure can be repeated loop by loop, until the whole multiloop diagram

has been reduced to one point in f-space, giving a contribution to the effective action

dgpl"'dgpn 2

X G(pb U 7pn> q)(plve) T Daq)(piv 9) T DQ@(ppe) ) (279>

where G is obtained by doing ordinary loop-momentum integrals, with some momentum
factors in the numerators coming from anticommutators of D’s arising in the previous

manipulation.

a.2. Examples

We give now two examples, in a massless model with ®* interactions, to show how
the 6 manipulation works. The first one is the calculation of a self-energy correction

represented by the graph in Fig. 2.7.1

¢(=p,0) ¢(p,0)

k+p

Fig. 2.7.1

4k D25(0—0") D25(0'—0)
(2m)® k2 (k+p)?

d?’p
F — 2 2 /q)_ /q)
= [ G EOEIB(—p.0)0(p.0)

The terms involving 6 can be manipulated as follows, using integration by parts:

(2.7.10)

D*5(6 — 0") D25(6" — 6) ®(p, 0)

S % D°5(0 —0") [D,D*6(0' — 0)®(p,0) + D*5(6'— ) D, & (p, 0)]
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— 3(6— 0)[(D2)26(6" — 0)D(p, 6) + D* D*5(9" — 6) D, B (p, 0)

+ D*5(6' — 0)D*®(p,0)] . (2.7.11)

However, using (D?)? = — k* and D*D? = ko‘ﬂDg we see that according to the rules in

eq. (2.7.8) only the last term contributes. We find

>k 1
(27m)* k2(k +p)?

d’p 2 2
Ty, = / o)’ d“0®(—p,0)D CID(p,Q)/ (2.7.12)

Doing the integration by parts explicitly can become rather tedious and it is
preferable to perform it by indicating D’s and moving them directly on the graphs. We
show this in Fig. 2.7.2:

D2
D, D?
D2 DQ D2 D2 D¢ D2

Fig. 2.7.2

Only the last diagram gives a contribution. One further rule is useful in this procedure:
In general, after integration by parts, various D-factors end up in different places in the
final expression and one has to worry about minus signs introduced in moving them past
each other. The overall sign can be fixed at the end by realizing that we start with a
particular ordering of the D’s and we can examine what happened to this ordering at

the end of the calculation. For example, we may start with an expression such as
D*...D?...D?... = %D"Da-~-%DﬁDﬂ~-~%D7DW-~- and end up with
D*...D%...D7...D, --- D, ---Dg--- where the various D’s act on different fields. The
overall sign can obviously be determined by just counting the number of transpositions.
For example, in the case above we would end up with a plus sign. Note that this rule
also applies if factors such as k,, arise, provided one pays attention to the manner in

which they were produced (e.g., at which end of the line were the D’s acting? Did it

come from D, D, or from D, D,?).

Our second example is the three-point diagram below, which we manipulate as

shown in the sequence of Fig. 2.7.3:
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DQ

D2

Fig. 2.7.3

At the first stage we have integrated by parts the D? off the bottom line and immedi-
ately replaced (D?)* by [0 = — k* . At the second stage we have integrated by parts the
D? off the right side, but kept only those terms that are not zero: The bottom line has
already been shrunk to a point by the corresponding d-function (but we need not indi-
cate this explicitly; any line that has no D’s on it can be considered as having been
shrunk) and in the end we keep only terms with ezactly two factors of D in the loop. For
the middle diagram this means using DaDQDﬂ =Dk, D7 = — k[mD2 + a term with no

D’s which may be dropped. The integrand in the effective action can be written then as

/ (;iﬂ];?’ k2 (k +p1)12(k — py)? (ps, 0)[ = ©(p1, 0)(py, O)k°

— DD (p,,0) D B(ps, 0) ks + D*®(py, 0) D*B(py, 0)] | (2.7.13)
and only the k-momentum integral remains to be done.

In general, the loop-momentum integrals may have to be regularized. The proce-
dure we use, which is guaranteed to preserve supersymmetry, is to do all the D-manipu-
lations first, until we reduce the effective action to an integral over a single 6 of an
expression that is a product of superfields, and therefore manifestly supersymmetric.

The remaining loop-momentum integrals may then be regularized in any manner
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whatsoever, e.g., by using dimensional regularization. We shall discuss the issues
involved in this kind of regularization in sec. 6.6. An alternative procedure, somewhat
cumbersome in its application but better understood, is supersymmetric Pauli-Villars
regularization. In three dimensions this is applicable even to gauge theories, since gauge

invariant mass terms exist.

b. Vector multiplet

Nothing new is encountered in the derivation or application of the Feynman
rules. However, the derivation must be preceded by quantization, i.e., introduction of

gauge-fixing terms and Faddeev-Popov ghosts, which we now discuss.

We begin with the classical action

Sy = ;_Qtr/d%d% w2 (2.7.14)

The gauge invariance is 61", = V,K and, by direct analogy with the ordinary Yang-Mills

. . 1 .
case, we can choose the gauge-fixing function F' = 3 D°T', . We use an averaging proce-

dure which leads to a gauge-fixing term without dimensional parameters, FD*F, and

obtain, for the quadratic action,

1 3 2,71 ,1 o 1
S, = g—Qtr/d zd*0 3 (EDﬂD ') (3 D'D,L,)
1,1 5,1
- Lidprypdor)
=Ll [ Baea?ota+ Hrear, + 21— LHreio, D21 (2.7.15)
2 g2 2 « ) « @ plo o
Various choices of the gauge parameter o are possible: The choice o = — 1 gives the

)

kinetic term %Fo‘iﬁaﬁDQFﬂ , while the choice a =1 gives %FQDF which results in the
simplest propagator.

The Faddeev-Popov action is simply
Spp = ;—Qtr/d?’deG c'(z,0) % DV c(x,0) (2.7.16)

with two scalar multiplet ghosts. (Note that in a background-field formulation of the
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theory, similar to the one we discuss in sec. 6.5, one would replace the operator D? in
the gauge fixing term by the background-covariant operator V?, and this would give rise

to a third, Nielsen-Kallosh, ghost as well.)

The Feynman rules are now straightforward to obtain. The ghost propagator is
conventional, following from the quadratic ghost kinetic term ¢’D?*c, while the gauge

field propagator is

2520 -0 . (2.7.17)

Vertices can be read off from the interaction terms. The gauge-field self-interactions (in

the nonabelian case ) are

. (03 1 (03
9’ Ly = — ¢ D'D°T, [T, D0, ] — = DID°T, [I¥ {T, Ty }]

[T7, DT [T7, DTy ] + 5 [T7, DT [TV {T, T, }]

oo | =

+ o [T AT, T} 17, (T, T, }] (2.7.18)
those of the ghosts are
Ly = — i % ¢'D°[T, ,c] (2.7.19)
while those of a complex scalar field are

¢*Livy = B(V? = D*)® = §[~i[* D, —i £ (DT,) ~T*|o . (2.7.20)
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3. REPRESENTATIONS OF SUPERSYMMETRY

3.1. Notation
An 1 for an i, and a 2 for a 2.

We now turn to four dimensions. Our treatment will be entirely self-contained; it
will not assume familiarity with our three-dimensional toy. Although supersymmetry is
more complicated in four dimensions than in three, because we give a more detailed dis-
cussion, some general aspects of the theory may be easier to understand. We begin by

giving the notation and conventions we use throughout the rest of the work.

a. Index conventions

Our index conventions are as follows: The simplest nontrivial representation of

the Lorentz group, the two-component complex (Weyl) spinor representation (%,0) of
SL(2,C), is labeled by a two-valued (+ or -) lower-case Greek index (e.g., = (", 17)),

and the complex-conjugate representation (O,%) is labeled by a dotted index

(w‘;:(w*.,qb:)). A four-component Dirac spinor is the combination of an undotted
spinor with a dotted one (% ,0)(0, %), and a Majorana spinor is a Dirac spinor where
the dotted spinor is the complex conjugate of the undotted one. An arbitrary irre-
ducible representation (A, B) is then conveniently represented by a quantity with 24
undotted indices and 2B dotted indices, totally symmetric in its undotted indices and in
its dotted indices. An example is the self-dual second-rank antisymmetric tensor (1,0),
which is represented by a second-rank symmetric spinor f°. (The choice of self-dual vs.
anti-self-dual follows from Wick rotation from Euclidean space, where the sign is unam-
biguous.)

Another example is the vector (% , %), labeled with one undotted and one dotted

index, e.g., V4. A real vector satisfies the hermiticity condition Vol — 7o — s, As
a shorthand notation, we often use an underlined lower-case Roman index to indicate a
vector index which is a composite of the corresponding undotted and dotted spinor
indices: e.g., V= V4. We consider such an index merely as an abbreviation: It may

appear on one side of an equation while the explicit pair of spinor indices appears on the
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other, or it may be contracted with an explicit pair of spinor indices. When discussing
Lorentz noncovariant quantities (as, e.g., in light-cone formalisms), we sometimes label

the values of a vector index as follows:
V&: (V+-;,V+—.,V—-;,V——.) = (V+,VT,VT,_V—) , (3.1.1)

where V7 is the complex conjugate of V', and V* are real in Minkowski space (but V*
is the complex conjugate of V'~ in Wick-rotated Euclidean space). More generally, we

can relate a vector label ¢ in an arbitrary basis, where a # acy, to the ac basis by a set

of Clebsch-Gordan coefficients, the Pauli matrices: We define

for fields: V' = oV V= Zol ved
for derivatives: 0, . = Uba&ab , Oy = % Q‘“’@ ;
. ad 1 _ad, b b b ad
for coordinates: x"* = T =0t (3.1.2a)
The Pauli matrices satisfy
s ¢ = b
0,0 0 = 20," . 0 a0 f’ﬂ —25,05:7 . (3.1.2b)

These conventions lead to an unusual normalization of the Yang-Mills gauge coupling

constant g, since

Vag =00s —19Vog = Uba&ag adVb = Ub a(0y —igVy)

f

and hence our ¢ is V2 times the usual one ¢. (We use the summation convention: Any
index of any type appearing twice in the same term, once contravariant (as a super-

script) and once covariant (as a subscript), is summed over.)

Next to Lorentz indices, the type of indices we most frequently use are isospin
indices: internal symmetry indices, usually for the group SU(N) or U(N). These are
represented by lower-case Roman letters, without underlining. We use an wunderlined
index only to indicate a composite index, an abbreviation for a pair of indices. In addi-

tion to the vector index defined above, we define a composite spinor-isospinor index by

an underlined lower-case Greek index (undotted or dotted): =", wézwa‘;,
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77Z}(_x = 77Z}aa7 1@ = ¢aot-

b. Superspace

We define N-extended superspace to be a space with both the usual real com-

a

muting spacetime coordinates z““ = z* = r“, and anticommuting coordinates 6°* = 6¢

(and their complex conjugates 8¢ = (62)") which transform as a spinor and an N-com-
ponent isospinor. To denote these coordinates collectively we introduce supervector

indices, using upper-case Roman letters:
A= (2%,0%,0%) | (3.1.3a)
and the corresponding partial derivatives

aA = (8g7agaa_g') ) 8AZB = 5AB 5 (313b)

where the nonvanishing parts of §,7 are 5;, 625 =4,",", and 6(_;9 =6,%0:". The deriva-
tives are defined to satisfy a graded Leibnitz rule, given by expressing differentiation as

graded commutation:
(0aXY) = 1[04, XY} = [04, X}Y + (=)™ X[04,Y} (3.1.4)

where (—)* is — when both X and 0, are anticommuting, and + otherwise, and the
graded commutator [A,B} = AB — (—)*? BA is the anticommutator {4, B} when A
and B are both operators with fermi statistics, and the commutator [A, B] otherwise.
Eq. (3.1.4a) follows from writing each (anti)commutator as a difference (sum) of two

terms. The partial derivatives also satisfy graded commutation relations:

(04,051 =0 . (3.1.4b)

c. Symmetrization and antisymmetrization

Our notation for symmetrizing and antisymmetrizing indices is as follows: Sym-
metrization is indicated by parentheses ( ), while antisymmetrization is indicated by
brackets [ ]. By symmetrization we mean simply the sum over all permutations of
indices, without additional factors (and similarly for antisymmetrization, with the appro-
priate permutation signs). All indices between parentheses (brackets) are to be

(anti)symmetrized except those between vertical lines | |. For example, A 3B, =



3.1. Notation 57

AypB.s+ AssB.,. In addition, just as it is convenient to define the graded commutator
[A, B}, we define graded antisymmetrization | ) to be a sum of permutations with a plus
sign for any transposition of two spinor indices, and a minus sign for any other kind of

pair.

d. Conjugation

When working with operators with fermi statistics, the only type of complex con-
jugation that is usually defined is hermitian conjugation. It is defined so that the hermi-
tian conjugate of a product is the product of the hermitian conjugates of the factors in
reverse order. For anticommuting c-numbers hermitian conjugation again is the most
natural form of complex conjugation. We denote the operation of hermitian conjugation

by a dagger ', and indicate the hermitian conjugate of a given spinor by a bar:

(¢(¥)TEJ&, or (X‘;)T =y". In particular, this applies to the coordinates # and 6 intro-
duced above. Hermitian conjugation of an object with many (upper) spinor indices is

defined as for a product of spinors:
(1™ - -wj“%ﬁl e ')Zkﬂk)T = Xkﬂk e 'Xlﬂligj% T Jlal

— (_1)%[7(]71)+k(k71)]xlﬂl e Xk/gk&l&l e 77576.” , (315&)
and hence
(wal...ajél...ék)f — (_1);u(.771>+k<k71>]gﬂl...ﬂk&l...di . (3.1.5b)

In addition, isospin indices for SU(N) go from upper to lower, or vice versa, upon her-

mitian conjugation. Hermitian conjugation of partial derivatives follows from the reality
of (SAB = (6A2B> = [6,4 N ZB}l

04)'=— ()", , (3.1.6a)
where (—)% is —1 for spinor indices and +1 otherwise:
(3.1.6b)

Hermitian conjugation as applied to general operators is defined by

/;zow = /W¢ , (3.1.7)
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where the integration is over the appropriate space (as will be described in sec. 3.7) and

X is the hermitian conjugate of the function y, as defined above.

Since integration defines not only a sesquilinear (hermitian) metric / X% on the

space of functions, as used to define a Hilbert space, but also a bilinear metric / XY, we

can also define the transpose of an operator:

[x0v= [ow . (3.1.)

where + is — for O and y anticommuting, + otherwise. When the operator is expressed
as a matrix, the hermitian conjugate and transpose take their familiar forms. We can

also define complex conjugation of an operator:
Ox=+0%*y , (3.1.9)

with + as in (3.1.8). For c-numbers we have 1’ =1 and v *=1). For partial deriva-
tives, integration by parts implies (94)'=— d4. In general, we also have the relation
O *'=0", and the ordering relations (0,0,)' =+ 0,'0," and (0,0,) *==4 0, * 0, *, as
well as the usual (0,0,)" = 0,'0,".

e. Levi-Civita tensors and index contractions

There is only one nontrivial invariant matrix in SL(2, C'), the antisymmetric sym-
bol C,; (and its complex conjugate and their inverses), due to the volume-preserving
nature of the group (unit determinant). Similarly, for SU(N) we have the antisymmet-

ric symbol C (and its complex conjugate). In addition we find it useful to introduce

AN

the antisymmetric symbol of SL(2N,C)D>SU(N)®SL(2,C), C Because of anti-

Qy...QoN *

commutativity, it appears in the antisymmetric product of the 2N €’s of N-extended

supersymmetry. These objects satisfy the following relations:

Cup = Csa CosC? =01,765" (3.1.10a)
Cal...aN = Cal.“aN Y CalaNCble = 6[a1b1 e 5&N}bN ; (3'1'10b>
CQ1'--Q2N = CQ.QN~~~Q.1 ’ CQL--QzNC@ngN = 6[&1@ T 6@2N]/§2N : (3110C)

The SL(2N, C) symbol can be expressed in terms of the others:
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1
C‘ll---‘lQN = m ( ay...an C“N+1---“2N CQMNH e CanZN
+ permutations of «;) . (3.1.11)

The magnitudes of the C’s are fixed by the conventions

Coy=CH | €, =Clv-di (3.1.12)

Qr...oN
which set the absolute values of their components to 0 or 1.

We have the following relation for the product of all the ’s (because {6,6”} =0,

the square of any one component of § vanishes):

P ... euN — CQQN---%( (2]1\7)' CQQN...@@@ . gﬁzN)

= CQ2N~--Q192N , (3113)

and a similar relation for 6, where, up to a phase factor, #*" is simply the product of all
the 0’s. Our conventions for complex conjugation of the C’s imply YT =02, Although
seldom needed (except for expressing the SL(2,C)QSU(N) covariants in terms of covari-
ants of a subgroup, as, e.g., when performing dimensional reduction or using a light-cone
formalism), we can fix the phases (up to signs) in the definition of the C’s by the follow-

ing conventions:

Cpy=C.. , C =C ~ C

aB ay...QoN Ql---QQN

= Qoo (3.1.14)

ay...ay

In particular, we take

Cos = (3 _0’> (3.1.15)

For N =1 we have 6> = % C3,0°0° =i070~. C,; is thus the SL(2,C) metric, and can be

used for raising and lowering spinor indices:

wa = ¢ﬂoﬁa 9 ¢o¢ — Caﬂ@bﬂ ) (3116&)
PXZ PN =XV VPE Ot = LN, = g =i (3.1.16b)

w&:wécéd ; wazca'%- , (3.1.16¢)
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GX=0a=X0 P = 0N = L0y = S0 b= 5 (3.1.16d)
V,=ViC4Cy = Viny, , VE=CPCWV, =0y, (3.1.16¢)

VW=VIW, =WV
V= S VAV = SV, = SV V = VIV VIV = det VO (3.1.16f)

(As indicated by these equations, we contract indices with the contravariant index first.)
Our unusual definition of the square of a vector is useful for spinor algebra, but we cau-

tion the reader not to confuse it with the standard definition. In particular, we define
= %8@8@ (However, when we transform (with a nonunimodular transformation) to a

cartesian basis, then we have the usual [ :8@3(}. For the coordinates, we have

1 a . . .
a— 1% Te Our conventions are convenient for superfield calculations, but may lead to
a few unusual component normalizations.)

Defining

9,200, . 00=50" ; (3.1.17)

we have the identities

070, =0,"0 , 0470, = 6,200 . (3.1.18)

From (3.1.10a) we obtain the frequently used relation

w[ax,@] = Cﬂ(x(C(SW’q?DWX(S) = Cﬁa(¢6X5) ) (3119>

which is the Weyl-spinor form of the Fierz identities. Similar relations follow from

(3.1.10b,c).

The complex conjugation properties of C,5 imply that the complex conjugates of
covariant (lower index) spinors, including spinor partial derivatives (cf. (3.1.6)), have an

additional minus sign:

(Vo) = =g (3.1.20)

From (3.1.11) and (3.1.18), or directly from the fact that antisymmetric symbols define
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determinants (det ol = (det V“ﬁ.)N = (=V?)"), we have the following identity:

Cgpop 00 gy — gy ()Y (3.1.21)

Finally, we define the SO(3,1) Levi-Civita tensor as

€abed = i(C’m;CmC'o.ééC% - Caﬁo,},go&gcﬁ}’;) 5

€abed Ggigh = — 6[2252i5£26d]]_b . (3122)
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3.2. The supersymmetry groups

Lie algebras and Lie groups play an important role in field theory; groups such as
the Poincaré group ISO(3,1), the Lorentz group SO(3,1), SU(3) and SU(2)®U(1) are
familiar. The new feature needed for supersymmetry is a generalization of Lie algebras
to super-Lie algebras (also called graded Lie algebras; however, this term is sometimes

used in a different way).

a. Lie algebras

A Lie algebra consists of a set of generators {2, }, A =1,..., M. These objects
close under an antisymmetric binary operation called a Lie bracket; we write it as a

commutator:
Q, , Q] =92,0, — 2,9, . (3.2.1)
The Lie algebra is defined by its structure constants f,; °:
[, Q] =ifu® QL - (3.2.2)
The structure constants are restricted by the Jacobi identities

fABDfDCE+fBCDfDAE+fCADfDBE:O (323>

which follow from
(s , %], %]+ [, %], 2]+ [Q%,2],2%]=0 . (3.2.4)

The generators form a basis for vectors of the form K = A\* Q, , where the \* are coordi-
nates in the Lie algebra which are usually taken to commute with the generators €2, . In
most physics applications they are taken to be real, complex, or quaternionic numbers.
Because the structure constants satisfy the Jacobi identities, it is always possible to rep-
resent the generators as matrices. We can then exponentiate the Lie algebra into a Lie

K. in general, different representations of the Lie algebra will

group with elements ¢ = e
give rise to Lie groups with different topological structures. If a set of fields ®(z) trans-
forms linearly under the action of the Lie group, we say ®(z) is in or carries a represen-

tation of the group. Abstractly, we write

®'(z) = e ®(x)e ™™ ; (3.2.5)
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to give this meaning, we must specify the action of the generators on @, i.e.,[2, ,®]. For
example, if K is a matrix representation and ® is a column vector, the expression above

is to be interpreted as &' = ¢’X .

b. Super-Lie algebras

For supersymmetry we generalize and consider super-Lie algebras. The essential
new feature is that now the Lie bracket of some generators is symmetric. Those genera-
tors whose bracket is symmetric are called fermionic; the rest are bosonic. We write the

bracket as a graded commutator
[y, ) = Q0 — (5)" Qe Q= Q Q) (3.2.6)

The structure constants of the super-Lie algebra obey super-Jacobi identities that follow

from:
0= 5 (=) ([ , %}, %)}
= ()%, 2%}, 2%+ ()%, 2, AU+ (5)™ %, 2%}, 2%} - (3.2.7)

Again, we can define a vector space with the generators {2, acting as a basis; however,
in this case the coordinates A* associated with the fermionic generators are anticommut-
ing numbers or Grassmann parameters that anticommute with each other and with the
fermionic generators. Grassmann parameters commute with ordinary numbers and
bosonic generators; these properties ensure that K = A\* ), is bosonic. Formally, we
obtain super-Lie group elements by exponentiation of the algebra as we do for Lie

groups.

c. Super-Poincaré algebra

Field theories in ordinary spacetime are usually symmetric under the action of a
spacetime symmetry group: the Poincaré group for massive theories in flat space, the
conformal group for massless theories, and the deSitter group for theories in spaces of
constant curvature. For supersymmetry, we consider extensions of these groups to
supergroups. These were investigated by Haag, Lopuszanski, and Sohnius, who classified
the most general symmetries possible (actually, they considered symmetries of the S-

matrix and generalized the Coleman-Mandula theorem on unified internal and spacetime
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symmetries to include super-Lie algebras). They proved that the most general

super-Poincaré algebra contains, in addition to {J,s, j& ,é’Pu ﬂ-} (the generators of the
Poincaré group), N fermionic spinorial generators ),, (and their hermitian conjugates
—Q":), where a = 1,..., N is an isospin index, and at most %N (N — 1) complex central

charges (called central because they commute with all generators in the theory)

Ly = — 2Ly, The algebra is:

{Qua . Q";}=0."P ; . (3.2.82)
{Qua s Qust = CopZau (3.2.8b)
[Qua s P sl = [Pog P sl = [T 55, Q)] =0, (3.2.8¢)
[Jag > Qcy] = %ioy(anﬂ) ; (3.2.8d)
[Jag Pl = %ic’y(upﬂ)f{ ; (3.2.8¢)
g, I = = 518605 (3.2.8f)
[Jaﬁ ) jo-é[;] =[Zu, 24l =124, ZCd] =0 . (3.2.8g)

The essential ingredients in the proof are the Coleman-Mandula theorem (which restricts
the bosonic parts of the algebra), and the super-Jacobi identities. The N =1 case is
called simple supersymmetry, whereas the N > 1 case is called extended supersymmetry.
Central charges can arise only in the case of extended (N > 1) supersymmetry. The

supersymmetry generators () act as “square roots” of the momentum generators P.

d. Positivity of the energy

A direct consequence of the algebra is the positivity of the energy in supersym-
metric theories. The simplest way to understand this result is to note that the total
energy € can be written as

+_py=ls .pf__Lsip |
(Pt —P7) =30, ,P S0P . (3.2.9)
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Since PCy 5 can be obtained from the anticommutator of spinor charges, we have

€= 5507 {Qua Q'3} = 55 {Qua» (Qua)'} (3.2.10)

(we use Q°s = — (Q,.)"). The right hand side of eq. (3.2.10) is manifestly non-negative:
For any operator A and any state |1 >,

<A, AT > =) (< ¢lAln >< n|AT]p > + < ¢|AT|n >< n| Al >)

n

= (| <nlAllp > P+ ] <nldly > ") . (3.2.11)

n
Hence, € is also nonnegative. Further, if supersymmetry is unbroken, ) must annihilate
the vacuum; in this case, (3.2.10) leads to the conclusion that the vacuum energy van-
ishes. Although this argument is formal, it can be made more precise; indeed, it is possi-
ble to characterize supersymmetric theories by the condition that the vacuum energy

vanish.

e. Superconformal algebra

For massless theories, Haag, Lopuszanski, and Sohnius showed what form exten-

sions of the conformal group can take: The generators of the superconformal groups

consist of the generators of the conformal group (P -, J.5,J Iy K, 5 A) (these are the

aB’
generators of the Poincaré algebra, the special conformal boost generators, and the dila-

tion generator), 2N spinor generators (Q,,,S5") (and their hermitian conjugates

—Q°,, —ga‘; with a total of 8N components), and N? further bosonic charges (A4,7,")

where T, = 0. The algebra has structure constants defined by the following (anti)com-

mutators:
{Qu. @3y =8P, . {557} =5K" (3.2.12a)
{Quar 87} = —i6,"(J" + 5 0,°8) — 26,76,°(1— 1) A +20,°T," (3.2.12b)
T, 87 =5 (0,°8" = +-0,'87) (3.2.12¢)
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4,87 =287, [A,87)=—ig 87, (3.2.12d)
15,57 = = Zib IS | [Py 57 =~ 6,Q% (3.2.12¢)
T.", Q] = — % (0."Qur — %%wa) : (3.2.12f)
4,00 == 5Qn . [A,Q.]=i5Q, (3.2.12g)
7,Q0) = 5i60,Qu . [K°%,Q.) =628, (3.2.12h)
7,', 7,9 = %(@dnb — 5t (3.2.12i)
A, K = —iK*Y | [A,P,]=iP,, , (3.2.12j)
T K == Sis KT P = Cis, PP, (3.2.12K)
ag 7% == 560757, (3.2.121)
[P K% = i(6:°7.° +6,°T:% + 6,76:°A) = i(J L+ 5,50 . (3.2.12m)

All other (anti)commutators vanish or are found by hermitian conjugation.

The superconformal algebra contains the super-Poincaré algebra as a subalgebra;
however, in the superconformal case, there are no central charges (this is a direct conse-
quence of the Jacobi identities). In the same way that the supersymmetry generators @
act as “square roots” of the translation generators P, the S-supersymmetry generators S
act as “square roots” of the special conformal generators K. The new bosonic charges A
and T," generate phase rotations of the spinors (axial or y; rotations) and SU(N) trans-
formations respectively (all but the SO(N) subgroup of the SU(N) is axial). For N = 4,
the axial charge A drops out of the {@,S} anticommutator whereas the [@Q,A] and

[S, A] commutators are N independent. The normalization of A is chosen such that

T, + %5(11’14 generates U(N) (e.g., [T," + %5(1”,4 Q] = — %601’62(”,).
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f. Super-deSitter algebra

Finally, we turn to the supersymmetric extension of the deSitter algebra. The
generators of this algebra are the generators of the deSitter algebra (15, J , 7 ), spinorial
generators (é, Cj), and %N(N — 1) bosonic SO(N) charges T, =—T,,. They can be
constructed out of the superconformal algebra (just as the super-Poincaré algebra is a
subalgebra of the superconformal algebra, so is the super-deSitter algebra). We can

define the generators of the super-deSitter algebra as the following linear combinations

of the superconformal generators:
ﬁao‘z = Pad + |)‘|2Kad ’ Qvaa = Qaa + Aéabsba ’

~

Jaﬁ = ‘]aﬁ ’ j:;ab = 5c[bTa]c ’ (3213)

where, since we break SU(N) to SO(N), we have lowered the isospin indices of the
superconformal generators with a kronecker delta. (We could also formally maintain
SU(N) invariance by using instead ), satisfying A\, = \,, and A, A"~4,", with

Ay = Ady, in an appropriate SU(N) frame.) Thus we find the following algebra:

{Qvaa ; @bﬂ} = QA(_iéabjaﬁ + Caﬂfab) ) (3.2.14a)
{Qua @5} =0."P ; (3.2.14b)
[Ques P g = = ACosdu@'5 (3.2.14c)
s Qo] = 51C, Qs (3.2.14d)
[T ﬁﬁ] = %icq/(aﬁﬁ)r{ ; (3.2.14e)
[Pogr Pl = = i2A2(C T s + Cag 5) (3.2.14f)
[Jap, T = — % 10,0 T 5" . (3.2.14g)

~ ~ 1 ~
[Tab ) ch] = 2 60[(1@[)]7/ s (3214h)
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[fab 7fcd] = (5b[chd]a - 6(1[ch][)> (3.2.14i)

N —

This algebra, in contrast to the superconformal and super-Poincaré cases, depends on a
dimensional constant A. Physically, |A|? is the curvature of the deSitter space. (Actu-
ally, the sign is such that the relevant space is the space of constant negative curvature,
or anti-deSitter space. This is a consequence of supersymmetry: The algebra deter-

mines the relative sign in the combination P + |A\|?K above.)
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3.3. Representations of supersymmetry

a. Particle representations

Before discussing field representations of supersymmetry, we study the particle
content of Poincaré supersymmetric theories. We analyze representations of the super-
symmetry group in terms of representations of its Poincaré subgroup. Because P? is a
Casimir operator of supersymmetry (it commutes with all the generators), all elements

of a given irreducible representation will have the same mass.

a.l. Massless representations

We first consider massless representations. We then can choose a Lorentz frame
where the only nonvanishing component of the momentum p, is p,. In this frame the

anticommutation relations of the supersymmetry generators are

{Qa+ ’ Qb+} =0 ; {Qa+ ’ @bi} = p+5ab ’
{Qa— ) Qb—} =0 ) {Qa— ) Qb:} =0 )

{Qa+ ) Qb—} =0 ) {Qa+ ) Qb:} =0 . (331)

Since the anticommutator of ), with its hermitian conjugate vanishes, (), must van-
ish identically on all physical states: From (3.2.11) we have the result that

0=<¢{A, ANy >=3 (| <nlAllp > [P +] <nl4]y > )

n

— <n|Alp >=<n|Allp>=0 . (3.3.2)

On the other hand, @), and its hermitian conjugate satisfy the standard anticommuta-
tion relations for annihilation and creation operators, up to normalization factors (with
the exception of the case p, =0, which in this frame means p, =0 and describes the
physical vacuum). We can thus consider a state, the Clifford vacuum |C >, which is
annihilated by all the annihilation operators @,, (or construct such a state from a given
state by operating on it with a sufficient number of annihilation operators) and generate
all other states by action of the creation operators Q° +. Since, as usual, an annihilation

operator acting on any state produces another with one less creation operator acting on
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the Clifford vacuum, this set of states is closed under the action of the supersymmetry
generators, and thus forms a representation of the supersymmetry algebra. Further-
more, if the Clifford vacuum is an irreducible representation of the Poincaré group, this
set of states is an irreducible representation of the supersymmetry group, since any
attempt to reduce the representation by imposing a constraint on a state (or a linear
combination of states) would also constrain the Clifford vacuum (after applying an
appropriate number of annihilation operators; see also sec. 3.8.a). The Clifford vacuum

may also carry representations of isospin and other internal symmetry groups.

The Clifford vacuum, being an irreducible representation of the Poincaré group, is
also an eigenstate of helicity. In this frame, Q° + has helicity — %, thus determining the
helicities of the other states in terms of that of the Clifford vacuum. (In general frames,
the helicity —% component of Qé is the creation operator, and the helicity +% compo-

nent, which is the linearly independent Lorentz component of P‘*&Q“ 5, Vvanishes:
{P‘w"@“& , PﬂﬁQbﬂ} = (5,,“P2Pa/é =0, since p® = 0 in the massless case.) The representa-
tions of the states under isospin are also determined from the transformation properties
of the Clifford vacuum and the @’s: We take the tensor product of the Clifford vac-

uum’s representation with that of the creation operators (namely, that formed by multi-

plying the representations of the individual operators and antisymmetrizing).

As examples, we consider the cases of the massless scalar multiplet (N = 1,2),
super-Yang-Mills (N =1,...,4), and supergravity (N =1,...,8), defined by Clifford
vacua which are isoscalars and have helicity +%, +1, and +2, respectively. (In the
scalar and Yang-Mills cases, the states may carry a representation of a separate internal

symmetry group.) The states are listed in Table 3.3.1. Each state is totally antisym-

metric in the isospin indices, and thus, for a given N, states with more than N isospin

indices vanish. The scalar multiplet contains helicities (% s % — g), super Yang-Mills
contains helicities (1,...,1 — %), and supergravity contains helicities (2,...,2 — %) In

addition, any representation of an internal symmetry group that commutes with super-
symmetry (such as the gauge group of super Yang-Mills) carried by the Clifford vacuum
is carried by all states (so in super Yang-Mills all states are in the adjoint representation
of the gauge group). Thus the total number of states in a massless representation is

2VF, where k is the number of states in the Clifford vacuum.
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helicity scalar multiplet super-Yang-Mills supergravity
+2 v=|C >
+3/2 (U
+1 v=|C> P
+1/2 Y=|C > Y Pt
0 e e e
1/2 P e qpobede
1 e ovede!
-3/2 qobedefs
9 qobedefgh

Table 3.3.1. States in theories of physical interest

The CPT conjugate of a state transforms as the complex conjugate representation.
Just as for representations of the Poincaré group, one may identify a supersymmetry
representation with its conjugate if it has the same quantum numbers: i.e., if it is a real
representation. (In terms of classical fields, or fields in a functional integral, this self-
conjugacy condition relates fields to their complex conjugates: see (3.12.4¢) or (3.12.11).
Thus, in a functional integral formalism, self-conjugacy is with respect to a type of
charge conjugation: A charge conjugation is complex conjugation times a matrix (see
sec. 3.3.b.5).) For the above examples, this self-conjugacy occurs for N = 4 super Yang-
Mills and N = 8 supergravity. (This is not true for the N = 2 scalar multiplet, since an
SU(2) isospinor cannot be identified with its complex conjugate, unless an extra isospin
index of the internal SU(2) symmetry, independent of the supersymmetry SU(2), is
added. The self-conjugacy then simply cancels the doubling introduced by the extra

index.)

a.2. Massive representations and central charges

The massive case is treated similarly, except that we can no longer choose the

Lorentz frame above; instead, we choose the rest frame, p, o =—md,z:

{Qg ) QQ} =0 ) {Qg y Q[_}} = - mégé . (333)

Now we have twice as many creation and annihilation operators, the () ’s as well as the
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Q.’s. Therefore the number of states in a massive representation is 22V . (For example,

an N = 1 massive vector multiplet has helicity content (1, % , % ,0).)

The case with central charges can be analyzed by similar methods, but it is simpler
to understand if we realize that supersymmetry algebras with central charges can be
obtained from supersymmetry algebras without central charges in higher-dimensional
spacetimes by interpreting some of the extra components of the momentum as the cen-
tral charge generators (they will commute with all the four-dimensional generators).
The analysis of the state content is then the same as for the cases without central
charges, since both cases are obtained from the same higher-dimensional set of states
(except that we do not keep the full higher-dimensional Lorentz group). However, the

two distinguishing cases are now, in terms of PZ,Lig,Le,._di,,w,,m-o,,ml = P4+ 77 =
1 _
3 (PP, + Z"Z,): (1) P*+ Z* =0 , which has the same set of states as the massless

Z =0 case (though the states are now massive, have a smaller internal symmetry group,
and transform somewhat differently under supersymmetry), and (2) P? + Z* <0, which
has the same set of states as the massive Z = 0 case. By this same analysis, we see that

P?+ Z? >0 is not allowed (just as for Z = 0 we never have P?>0).

a.3. Casimir operators

We can construct other Casimir operators than P?. We first define the supersym-
metric generalization of the Pauli-Lubanski vector

) 3= 1 ~a
Was = Z(Pﬂ&‘]aﬁ_PaﬂJ ) D) [anmQ &] ) (3'3'4)

e & G

where the last term is absent in the nonsupersymmetric case. This vector is not invari-

ant under supersymmetry transformations, but satisfies

P,Q; - (3.3.5)

N | —

[WQ7Q,8]:_%PQQQ ) [Wgaég’]:

As a result, P,W; commutes with @,, and thus its square P*W? — —(P-W)* com-

1
4
mutes with all the generators of the super-Poincaré algebra and is a Casimir operator.
In the massive case this Casimir operator defines a quantum number s, the superspin.

The generalization of the nonsupersymmetric relation W? = m?s(s + 1) is
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P*W? — —(P-W)?=—-m's(s+1) . (3.3.6)

] =

In the massless case, not only P?> =0, but also P“‘%)aCy :P“&Q‘Q;:O, and hence
P-W=P,W, =0. However, using the generator A of the superconformal group
(3.2.12), we can construct an object that commutes with @ and Q: W,— AP,. Thus
we can define a quantum number A, the superhelicity, that generalizes helicity A,

(defined by W, = A\gP,):

W,— AP, = AP, . (3.3.7)

We also can construct supersymmetry invariant generalizations of the axial genera-

tor A and of the SU(N) generators:

W5 = PQA + iP(X&[Qaa7@ad] )

W, =P, + 1 P([Que, Q'] — 5 0.'1Qua» Q) (3.3.8)

In the massive case, the superchiral charge and the superisospin quantum numbers can
then be defined as the usual Casimir operators of the modified group generators

—m2Wy, —m2W,". In the massless case, we define the operators

1 Na
W5o¢o'z = PadA + 1 [Qaa s Q &] )

1 — 1 =
Wabad = PadTab + Z ([Qaa ) Qb&] - N 5ab[Qca 5 Q &]) . (339)

These commute with Q and @ when the condition P“‘%)aCy = 0 holds, which is precisely

the massless case. Since PMW5M-, = Pm’Wabw- =0, we can find matrix representations

gs, 9, such that

W5c =95 Pc ) Wabg = gab Pc . (3310)

The superchiral charge is g5, and superisospin quantum numbers can be defined from the
traceless matrices ¢,’. All supersymmetrically invariant operators that we have con-
structed can be reexpressed in terms of covariant derivatives defined in sec. 3.4.a; see sec

3.4.d.
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b. Representations on superfields

We turn now to field (off-shell) representations of the supersymmetry algebras.
These can be described in superspace, which is an extension of spacetime to include
extra anticommuting coordinates. To discover the action of supersymmetry transforma-
tions on superspace, we use the method of induced representations. We discuss only

simple N = 1 supersymmetry for the moment.

b.1. Superspace

Ordinary spacetime can be defined as the coset space (Poincaré group)/(Lorentz
group). Similarly, global flat superspace can be defined as the coset space
(super-Poincaré group)/(Lorentz group): Its points are the orbits which the Lorentz
group sweeps out in the super-Poincaré group. Relative to some origin, this coset space

can be parametrized as:

_ i( ma[;ﬁa[; + etha + 9_‘;@(;)

h(z,0,0)=¢e (3.3.11)

where z,0,0 are the coordinates of superspace: z is the coordinate of spacetime, and
0,0 are new fermionic spinor coordinates. The “hat” on P and Q indicates that they

are abstract group generators, not to be confused with the differential operators P and
Q used to represent them below. The statistics of 6,8 are determined by those of Q, é:
(0,0} ={0,0} ={Q,0} =[0,2] =[0,P] =0 , (3.3.12)

etc., that is, 6,0 are Grassmann parameters.

b.2. Action of generators on superspace
We define the action of the super-Poincaré group on superspace by left multiplica-
tion:

h(z',0,0") =g ' h(z,0,0) mod SO(3,1) (3.3.13)

where ¢ is a group element, and “mod SO(3,1)” means that any terms involving Lorentz
generators are to be pushed through to the right and then dropped. To find the action

of the generators (J, P, () on superspace, we consider
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Y

;= (e—z'(wagjag-l-(ﬂ&éj&é) e EPy) e—z‘(e‘k@ﬁe‘“’@z)) . (3.3.14)

1
respectively. Using the  Baker-Hausdorff  theorem  (e”e? = A BH5AB]

[A,[A, B]] = [B, [4, B]] = 0) to rearrange the exponents, we find:
J & j: x/ao’c — [6w]ﬂa [65]5(; lﬂ,é , g — [6w]ﬂa 9,8 , 0_/& — [65]5(; e_ﬂ. ,
Pt gt gt gr=g, G4 =G0

Q& Q: z*=a"—i % (0% +E%0%) , 0 ="+ ¢, 4 =%+ &% .  (3.3.15)

Thus the generators are realized as coordinate transformations in superspace. The
Lorentz group acts reducibly: Under its action the x’s and 6’s do not transform into each

other.

b.3. Action of generators on superfields

To get representations of supersymmetry on physical fields, we consider superfields
U, (z,0,0): (generalized) multispinor functions over superspace. Under the supersym-
metry algebra they are defined to transform as coordinate scalars and Lorentz multi-
spinors. They may also be in a matrix representation of an internal symmetry group.
The simplest case is a scalar superfield, which transforms as: ®'(z/,6',0') = ®(z,0,0) or,
infinitesimally, 6® = ®'(2) — ®(z) = — 62" 9,,®(z). Using (3.3.13), we write the trans-
formation as 0® = —i[(e*Q, + G_O:é(;> L) = i[(e"Q, +€°Qg),®], etc. Hence, just as in
the ordinary Poincaré case, the generators Q, etc., are represented by differential opera-

tors @), etc.:

.1 v .
‘]aﬂ = —1 5 (:U(Cﬂ@ﬂh- + Q(Cﬁm) - ZMaﬂ s

Pozﬂ. — 28%6-, ;
Qu=i(00 — 50%i0,4) . Qa=1(05 — 50%0,;) ; (3.3.16)

where M,; generates the matriz Lorentz transformations of the superfield W:
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1
[Ma,87 \ij] =35 Cw(aq’g)... S

For future use, we write Q and Q as

Q. =eVid e’ | Qs =e 3V idest | (3.3.17a)

where
U=60%0 ; . (3.3.17h)

Finally, from the relation {Q, @} = P, we conclude that the dimension of # and 0 is

1

(m) .

b.4. Extended supersymmetry

We now generalize to extended Poincaré supersymmetry. In principle, the results
we present could be derived by methods similar to the above, or by using a systematic
differential geometry procedure. In practice the simplest procedure is to start with the
N =1 Poincaré results and generalize them by dimensional analysis and U(N) symme-
try.

For general N, superspace has coordinates z4 = (x‘w.‘ , 0, G_QO.‘) = (z%,0°, 9_‘5).
Superfields W ,5.4...(, 0,0) transform as multispinors and isospinors, and as coordinate

scalars. Including central charges, the super-Poincaré generators act on superfields as

the following differential operators:

Qua = (0 — 28,50 .~ Lov 7, | (3.3.184)
2 aB 2

Na < Da 1 e 1 7 Zba

Qs=i(0" — 0 71045 — 5%2’) ), (3.3.18b)
1 . . .

Jaﬂ = — 5 (x(avaﬁ)i —+ 0 (aaaﬂ)) — ZMaﬁ s (3318C)

Ni « = — ] —_ v . . 3 . _(l . — 1 i .

S5 i3 (z (aﬁw) + 0,49 ﬁ)) iMoo (3.3.18d)

Pad = iaad . (33186)

Central charges are discussed in section 4.6.
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b.5. CPT in superspace

Poincaré supersymmetry is compatible with the discrete invariances CP (charge
conjugation X parity) and T (time reversal). We begin by reviewing C, P, and T in
ordinary spacetime. We describe the transformations as acting on c-number fields, i.e.,
we use the functional integral formalism, rather than acting on ¢-number fields or

Hilbert space states.

Under a reflection with respect to an arbitrary (but not lightlike) axis u,, (v = 4,

u? = 4 1) the coordinates transform as

2" = R(u)r® = —u? u“ﬂ'uﬂ‘;xw

=g¢ —uutu-z , R*=1 (3.3.19)

(u - = changes sign, while the components of z orthogonal to u are unchanged.) T then
acts on the coordinates as R(§,”) while a space reflection can be represented by
R(5,"YR(6,°)R(6,”) (in terms of a timelike vector 6,°, and three orthogonal spacelike

vectors §,', i = 1,2,3).

We define the action of the discrete symmetries on a real scalar field by

¢'(z') = ¢(x). The action on a Weyl spinor is

w/a(xl) _ iuo‘(;qzd(x) ’ 1;’02(.%/) _ z'ua%o‘(x) :

' (x) = uPp*(z) . (3.3.20)
Since this transformation involves complex conjugation, we interpret R as giving CP and
T. Indeed, since under complex conjugation e %" — et we  have

24ty - p). Therefore p” changes sign for spacelike u, and this is consis-

pe=—(p*—u"
tent with our interpretation. The combined transformation CPT is simply z — — 2 and
the fields transform without any factors (except for irrelevant phases). The transforma-

tion of an arbitrary Lorentz representation is obtained by treating each spinor index as

in (3.3.20).

The definition of C, and thus P and CT, requires the existence of an additional,
internal, discrete symmetry, e.g., a symmetry involving only sign changes: For the pho-

ton field CA, = —A,; for a pair of real scalars, C¢; =+ ¢, Cpy = — ¢y gives



78 3. REPRESENTATIONS OF SUPERSYMMETRY

C(¢y + igy) = (¢ + i)', For a pair of spinors, Cepy® = 1h,, Cipy® = 1,* gives, for the
Dirac spinor (wla,@ga‘), the transformation C(wlaﬂ;f.‘) = (sz‘,@bf‘)T, i.e., complex con-
jugation times a matrix. Therefore, C generally involves complex conjugation of a field,
as do CP and T, whereas P and CT do not. (However, note that the definition of com-
plex conjugation depends on the definition of the fields, e.g., combining ¢, and ¢, as
¢1 + i)

The generalization to superspace is straightforward: In addition to the transforma-

tion R(u)z given above, we have (as for any spinor)

91 = ju:0.% | 0% = ju, 50 . (3.3.21)
A real scalar superfield and a Weyl spinor superfield thus transform as the corresponding
component fields, but now with all superspace coordinates transforming under R(u). To
preserve the chirality of a superspace or superfield (see below), we define R(u) to always

complex conjugate the superfields. We thus have, e.g.,

O =B(z) , () = o ;00(z) = i 5T (F) (3.3.22)

As for components, C can be defined as an additional (internal) discrete symmetry
which can be expressed as a matrix times hermitian conjugation.

We remark that R(u) transforms the supersymmetry generators covariantly only

for u? = + 1. For u? = — 1 there is a relative sign change between 0, and 0_’9’.1'6@5. This

is because CP changes the sign of p°, which is needed to maintain the positivity of the

energy (see (3.2.10)).

b.6. Chiral representations of supersymmetry

As in the N =1 case (see (3.3.17)), @, Q can be written compactly for higher N,

even in the presence of central charges:
1. 1 _ly
Qg =e2 Z(at_x - 59 (XZb(I)e 2 ’

— 1 —

Q.= e_iUi(ﬁ-

Q

— 20, 2e (3.3.23a)

Qe

— Qb _sd
U= 910 z@lé- y 5% = 50 ng . (3323b>
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This allows us to find other representations of the super-Poincaré algebra in which @ (or

Q) take a very simple form. We perform nonunitary similarity transformations on all

generators {2 ,:

1

0@ = eTVQ 5V | (3.3.24)

which leads to:

0,:2")eV | (3.3.25)
or

Qa(i) = eUi<6(x - %gbazba)eiU )

Q') =05 — 50,:7") . (3.3.26a)
The generators act on transformed superfields
T () = G%U\If(z)ei%U (3.3.26b)

These representations are called chiral or antichiral representations, whereas the original
one is called the vector representation. They can also be found directly by the method
of induced representations by using a slightly different parametrization of the coset space

manifold (superspace) (cf. (3.3.11)):

B = i0Q i DP Li0Q B — ifQ e P ,i6Q : (3.3.27a)

where

t® =z £ %09_ = 5z eToV (3.3.27b)

are complex (nonhermitian) coordinates. The corresponding superspaces are called chi-
ral and antichiral, respectively. The similarity transformations (3.3.26b) can be regarded

as complex coordinate transformations:

U(z) = ei%U\I!(i)(z)ejF%U =UEH ()|
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2B = eF Tl = (2@, 0,9) . (3.3.28)

Hermitian conjugation takes us from a chiral representation to an antichiral one:

(V) = V). Consequently, a hermitian quantity V = ¥V in the vector representation

satisfies
V=elUVe" (3.3.29)

in the chiral representation.

b.7. Superconformal representations

The method of induced representations can be used to find representations for the
superconformal group. However, we use a different procedure. The representations of
Q, P, and J are as in the super-Poincaré case. The representations of the remaining
generators are found as follows: In ordinary spacetime, the conformal boost generators
K can be constructed by first performing an inversion, then a translation (P transforma-
tion), and finally performing another inversion; a similar sequence of operations can be

used in superspace to construct K from P and S from Q.

We define the inversion operation as the following map between chiral and antichi-

ral superspace:

gree — Z(95(7))72 x(*)a&g_aa = — i (z)2 ) dgoa
0,4 =i(zt))? gt dge = (xCN) 2 p(Hagh & (3.3.30)
we have z”" = z. The essential property of this mapping is that it scales a supersymetri-
cally invariant extension of the line element. We write ds® = %sa Bs‘”é , where
s — dgof 4 %(9%0_“5 +0,7dom) | (3.3.31)

is a supersymmetrically invariant 1-form (invariance follows at once from (3.3.15)).

Under inversions (3.3.30), we find

gob — _ ()2 (z())2 (B3 p(ad o

Ba
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ds” = ()2 ()2 ds? . (3.3.32)

Superfields transform as
H‘I’aﬂ(z) _ (x(+))—2d+(x(—))—2d‘ Foeo JT,Bﬂ ‘If“ﬂ(z/) : (3.3.3?)&)
foa=i(at) tgte, = g(g)) g0 4 (3.3.33b)

Here d = d" + d~ is the canonical dimension (Weyl weight) of ¥, and d~ — d™ is pro-
portional to the chiral U(1) weight w. Note that chiral superfields (fields depending only
on and z™) and 6, not 8; see sec. 3.5) with d~ = 0 and only undotted indices remain chi-

ral after an inversion.

We can calculate S¢ as described above: We use the inversion operator II and
compute S, = IIQ &I and So=1 Q.. Using the superconformal commutator algebra
we then compute K, A, T, and A. We find

A= (0°0, — %0 -V, (3.3.34a)
T — %(ebaaw — g9 — %5,}’(996(l — 0%0,)) + 1, (3.3.34b)
aq T 1 ap a\Aa a o 1
S0 = j(z — 259b 0,)Q" + 00" (05 + i 50470;5)
—2i0"8[5,2(t," + 16,01 — Lyy) — Lo0m,e + Lo 0d)] (3.3.34c)
p A" 40 N 9 b p 98 ’ o

& _ ifoad L abag d o Ba diab.e | 1
S, =i(x +z§9b0b )Qu + 0,0, 2(67’5+z§9bﬁ%)

a

—2if, 7 [-05(t," + 11— DY) — 28, (M + Lata)] (3.3.34d)
A=—ig ({5, 0,4} + 5 (10°,0,) + [0%,8,)) — id (3.3.34e)

ot . afl B4 ofa &au . & pac 1 peag BobBa o
Ko = — (2" 655+xﬁ9a85+xﬂ9 Ous — 70 eaﬁeﬁebaﬁﬁ.)

(Qaﬁe_a&ebaabﬁ o eaag_a,ég_bo.ca_bé)

N | —

+
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. J .1 —~ 3 . 3 .1 — 5= .0
— (2 i 3 0% VM g — i(z™ —q 5 0°0 aﬁ)Mﬁ;“

o xa&id . 20a(x9_b&(tab + iéab(l _ _)Y) . (3334f)

Here d is the matrix piece of the generator A; its eigenvalue is the canonical dimension

d. Similarly, Y ,t," are the matrix pieces of the axial generator A and the SU(N) gener-
ators T,"; the eigenvalue of Y is %w The terms in S, S proportional to Y and ¢,° do

not follow from the inversion (3.3.33), but are determined by the commutation relations

and (3.3.34a,b).

b.8. Super-deSitter representations

To construct the generators of the super-deSitter algebra, we use the expressions

for the conformal generators and take the linear combinations prescribed in (3.2.13).

To summarize, for general N, in each of the cases we have considered the genera-
tors act as differential operators. In addition the superfields may carry a nontrivial
matrix representation of all the generators except for P and ) in the Poincaré and
deSitter cases, and P, (), K, and S in the superconformal case. They may also carry a

representation of some arbitrary internal symmetry group.
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3.4. Covariant derivatives

In ordinary flat spacetime, the usual coordinate derivative 0, is translation

invariant: the translation generator P,, which is represented by J,5, commutes with

ad?
itself. In supersymmetric theories, the supertranslation generator (), has a nontrivial

anticommutator, and hence is not invariant under supertranslations; a simple computa-

tion reveals that the fermionic coordinate derivatives 0,, 0; are not invariant either.

)

There is, however, a simple way to construct derivatives that are invariant under super-
symmetry transformations generated by @, , Q; (and are covariant under Lorentz, chiral,

and isospin rotations generated by J,3, j&,é’ A, and Tab).

a. Construction

In the preceding section we used the method of induced representations to find
the action of the super-Poincaré generators in superspace. The same method can be

used to find covariant derivatives. We define the operators D, and D; by the equation

(eP+ 5—5)(62-(1-15 +0Q + 5@) — (ei(wﬁ +6Q + e’é))(ei(eé + f‘@) ) (3.4.1)
The anticommutator of Q with D can be examined as follows:
(e—i(EQ + ?é))(€<D + 55)(62'&@ + ?5))(6i(wﬁ +6Q + 55))
_ (emie@ e—é)) <(€z(fQ + e‘é))(ei(wﬁ +60Q + 5@))(62‘(@? + 5@)))
_ (ez‘(xﬁ +00 + 5@))(62(@ + 5@))

_ (€QD+ZB)(6i(zP+9Q+5§)) ) (3.4.2)

Thus the D’s are invariant under supertranslations (and also under ordinary transla-

tions):
{Q,D}={Q,D}=[P,D]=0 . (3.4.3)

We can use the Baker-Hausdorff theorem, (3.4.1), and (3.3.11,13) to compute the
explicit forms of the D’s from the )’s. We find

D,=—iQ,+ 0P, , Dg=—iQs+06"P,, . (3.4.4)
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For N =1, when acting on superfields, they have the form

D,=08,+ 0%, , Ds=0;+ %Q%aa& : (3.4.5)

wlr—\

and are covariant generalizations of the ordinary spinor derivative d,, d;. For general

N, with central charges, the covariant derivatives have the form:

Doz: aoz:at_x—}_%ea aa(y+ eb Zba )

Dy=D"s=0;+ 5 ea 1045 + 5 Lg .7t (3.4.6)

They can be rewritten using e’ as:
_1 1 1
Doz =€ QU(at_X + 50bazba)€2U ’

— 1 —

D. = egU(

+ 5 0,: 7 (3.4.7)

I}

Consequently, just as the generators () simplify in the chiral (antichiral) representation,

the covariant derivatives have the simple but asymmetric form:

D, = e V(0 + 500 Za)e” DY =0;+ 50,77,
D, =09, + %%Zab , Dy =e"0; + %H_bdiab)e” : (3.4.8)

In any representation, they have the following (anti)commutation relations:

{_l)g , DQ} - CaﬂZab , {Da , _5/3} - Z.agg' . (349)

It is also possible to derive deSitter covariant derivatives by these methods. How-
ever, there is an easier, more useful, and more physical way to derive them within the
framework of supergravity, since deSitter space is simply a curved space with constant

curvature. This will be described in sec. 5.7.

b. Algebraic relations
The covariant derivatives satisfy a number of useful algebraic relations. For
N =1, the only possible power of D is D? = lDO‘D(X. (Because of anticommutativity
2

higher powers vanish: (D)* = 0.) From the anticommutation relations we also have
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(D°, D = i0*Dy ,  D’D’D*=0D° ,

D*Dy =6,"D* | D =—1 . (3.4.10)
For N > 1 we have similar relations; for vanishing central charges:

n J—
D €5 Raaie 7 = D(ll T D(ln ?

e,

D% +1%N — i' CQQN"'QlD”
n:

1 ,
n — nQp 41 QN
D Qo T (2]\7 _ n)! CQzN"'QlD ’

2N — oy, _ e a, 2N
D= Dty g, = 01g, " 0" D

Y

(D"y.0,) = D"

Q‘n"'ﬂ.l ’
(DQN_"(EI"'QH)T — (_1)"52]\[_"(_;%”'2.1 ,
DQNQQN — (_1)N
D*Np*N DN =OYD*N . (3.4.11)

It is often necessary to reduce the product of D’s or D’s with respect to SU(N), as
well as with respect to SL(2,C). For each, the reduction is done by symmetrizing and
antisymmetrizing the indices. Specifically, we find the irreducible representations as fol-
lows: A product D,Dgs.... D, is totally antisymmetric in its combined indices since the
D’s anticommute; however, antisymmetry in «, [ implies opposite symmetries between
a, b and «, (3, (one pair symmetric, the other antisymmetric), and hence a Young
tableau for the SU(N) indices is paired with the same Young tableau reflected about the
diagonal for the SL(2,C) indices. The latter is actually an SU(2) tableau since if we
have only D’s then only undotted indices appear, and has at most two rows. (Actually,
for SU(2) a column of 2 is equivalent to a column of 0, and hence the SL(2C) tableau
can be reduced to a single row.) Therefore, the only SU(N) tableaux that appear have
two columns or less. The SL(2,C) representation can be read directly from the SU(N)
tableau (if we keep columns of height N): The general SU(N) tableau consists of a first
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column of height p and a second of height ¢, where p + ¢ is the number of D’s; the cor-
responding SL(2C) representation is a (p — ¢)-index totally symmetric undotted spinor.
Therefore this representation of SL(2,C)®SU(N) has dimensionality

(p—q+1)p;++11(]§)(]v;1) . (3.4.12)

c. Geometry of flat superspace

The covariant derivatives define the geometry of “flat” superspace. We write

them as a supervector:
D,=(D,,D;,0,) . (3.4.13)

In general, in flat or curved space, a covariant derivative can be written in terms of coor-

. . . _ 0 .
dinate derivatives 0, = 50 and connections I':

Dy=DM0y +T4(M)+T4(T)+T4(2) . (3.4.14)
The connections are the Lorentz connection
T,(M) =T, M °+ T, (3.4.15a)
isospin connection
Lu(T) =T4°T. (3.4.15b)
and central charge connection

FA(Z> = (FAbCZbC —|— FAchbc) . (3415C>

N | —

The Lorentz generators M act only on tangent space indices. (Although the distinction
is unimportant in flat space, we distinguish “curved”, or coordinate indices M, N,---
from covariant or tangent space indices A, B,---. In curved superspace we usually write
the covariant derivatives as V, = E,MD,, + T4, Dy =6,,"D,, ie., we use the flat
superspace covariant derivatives instead of coordinate derivatives: see chapter 5 for

details.)

In flat superspace, in the vector representation, from (3.4.6) we find the flat viel-

bein
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6QE 0 % '6(%#5(1”10_'m#2

DM = 0 54t % 5205 cgmn | (3.4.16)
0 0 5,
and the flat central charge connection
be 1 b c
FA :_5(0(1[30[/86(1],070) )
1 ~ B¢ a

Lape =—5(0, 040 560", 0) (3.4.17)

all other flat connections vanishing. We can describe the geometry of superspace in
terms of covariant torsions T 45, curvatures R,z(M), and field strengths F 45(T) and

Fap(2):
[Dy,Dp} =Tap“De+ Rap(M) + Fup(T) + F 45(Z) (3.4.18)
From (3.4.16-17), we find that flat superspace has nonvanishing torsion

T 5= i6,76,7057 (3.4.19)

and nonvanishing central charge field strength

F(_chd — Caﬂ(sa[C(de] 9 Fg’[}cd = Cdéa[caad]b ) (3-4.20)

all other torsions, curvatures, and field strengths vanishing. Hence flat superspace has a

nontrivial geometry.

d. Casimir operators

The complete set of operators that commute with P,, @, and @(_; (and trans-
form covariantly under J,; and j&/é) is {D,, M, Mz, Y t, d}. (Except for D,
which is only covariant with respect to the super-Poincaré algebra, all these operators
are covariant with respect to the entire superconformal algebra. Note that the matrix
operators M ,Y ,t,d act only on tangent space indices.) Thus the Casimir operators

(group invariants) can all be expressed in terms of these operators. Following the dis-

cussion of subsec. 3.3.a.3, it is sufficient to construct:
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1 ~N . — 3
P[QWQ] = P[gf@] ) fg = 5 [DaomD O.c] - Z(a,B&Maﬂ - 8QBM0:/8) )
W, — AP, = f, + Yid, , (3.4.21)
Wab:_mQtab - iaa&([l)aomﬁbo?] - %&zb[l)caaﬁcd]) 3

W. =m?Y — iaad[Dw , D) (3.4.22)

W, =t,i0, —

_ 1 —.
([Daomeo'c] - Néab[DcomD o.z]) )

] =

W5a - - YZ'@Q -

1D, D] (3.4.23)

where we have used P? = — m? for W, and P‘w.‘Q(_X = 80‘5‘D(_¥ = 80‘&6g =0 for Wabg (the

massless case: see subsec. 3.3.a.3).
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3.5. Constrained superfields

The existence of covariant derivatives allows us to consider constrained super-
fields; the simplest (and for many applications the most useful) is a chiral superfield

defined by

D;®=0 . (3.5.1)

Q

We observe that the constraint (3.5.1) implies that on a chiral superfield D® = 0 and
therefore {D,D}® =0 — Z® = 0.

In a chiral representation, the constraint is simply the statement that ®) is inde-

pendent of 8, that is ®)(z,0,0) = &) (z, ). Therefore, in a vector representation,

8(2,0,0) = V0 (z,0)e 2V = D (D) 9) | (3.5.2)

+)

where ') is the chiral coordinate of (3.3.27b). Alternatively, one can write a chiral

superfield in terms of a general superfield by using D*'™ = 0:

® =D W(z,0,0) (3.5.3)
This form of the solution to the constraint (3.5.1) is valid in any representation. It is
the most general possible; see sec. 3.11.

Similarly, we can define antichiral superfields; these are annihilated by D,. Note
that ®, the hermitian conjugate of a chiral superfield ®, is antichiral. These superfields

may carry external indices.

The supersymmetry generators are represented much more simply when they act
on chiral superfields, particularly in the chiral representation (3.3.25), than when they

act on general superfields. For the super-Poincaré case we have:

Qu=1i(0, — 50'32,,) , Qy=0"0,; , P,=i0, ,

.1 4 ¢ .
Jozﬂ =1 9 (x(oz 6,8)02 + 6 (aaaﬁ)) - ZM(xﬂ ’

=—i-a1%;0 . —iM,. (3.5.4)
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where Z”® = 0 (as explained above) but Z,,® is unrestricted. If we think of Z, as a

partial derivative with respect to complex coordinates (%, i.e., Z,, = then a chiral

.0
superfield is a function of z,6,¢ and is independent of # ,(. In the superconformal
case, 4, must vanish, and, for consistency with the algebra, a chiral superfield must

have no dotted indices (i.e., M&ﬁ" = 0). On chiral superfields, the inversion (3.3.33) takes

the form
I6™ (2,0) = 220 0 - B0 (2, 0) = 2 fo - 34 (7,F) |
foo=i(x) e, Te=ga"2% , 02 =iz 2z,00" ; (3.5.5)
(note that d~ = 0 and hence d = d"). The generators of the superconformal algebra are
now just (3.5.4),
Gh — _g0dy, | §C=— G, K% =a"G, (3.5.6a)

with

G =T+ 0 I + (a0, +2 = N)]

A=—i(s%0, + 0°0, +2 - N +d) ,
A= %egag — (4= N)"'Nd ,

T, = (0", 0. — D . (3.5.6b)

e~ =

The commutator algebra is, of course, unchanged. Note that the expression for A con-
tains a term (1 — EN )~'d; this implies that for N =4, either d vanishes, or the axial

charge must be dropped from the algebra (see sec. 3.2.¢). The only known N =4 theo-
ries are consistent with this fact: N =4 Yang-Mills has no axial charge and N = 4 con-
formal supergravity has d = 0. We further note that consistency of the algebra forbids
the addition of the matrix operator ¢,” to T',” in the case of conformal chiral superfields.
This means that conformal chiral superfields must be isosinglets, i.e., cannot carry exter-

nal isospin indices.
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For N =1, a complex field satisfying the constraint D?¥ =0 is called a linear
superfield. A real linear superfield satisfies the constraint D*G = D*G = 0. While such
objects appear in some theories, they are less useful for describing interacting particle

multiplets than chiral superfields. A complex linear superfield can always be written as

Y= 5‘;\110-(, whereas a real linear superfield can be written as G = D*D*¥, + h. c..
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3.6. Component expansions

a. f-expansions

Because the square of any anticommuting number vanishes, any function of a
finite number of anticommuting variables has a terminating Taylor expansion with
respect to them. This allows us to expand a superfield in terms of a finite number of
ordinary spacetime dependent fields, or components. For general N, there are 4N inde-

AN AN
pendent anticommuting numbers in 6, and thus Z (

) = 2"V components in an uncon-
=0

strained scalar superfield. For example, for N =1, a real scalar superfield has the

expansion

V=C+0", + 0% — 60°M — 0°M

+0°0%A, — 0%6°N, — 0°0°X; + 60°0°D’ (3.6.1)
with 16 real components. Similarly, a chiral scalar superfield in vector representation

has the expansion:

® = eV (A + 070, — 07 F)e 2"
— A+ 6%, — 0°F +i %eae_&agA

+i50%070,9° + L 0°0°0A (3.6.2)
with 4 independent complex components.

These expansions become complicated for N > 1 superfields but fortunately are
not needed. However, we give some examples to familiarize the reader with the compo-
nent content of such superfields. For instance, for N =2, in addition to carrying
Lorentz spinor indices, superfields are representations of SU(2). A real scalar-isoscalar

superfield has the expansion

V(2,0,0) = C(x) + 0°xy + 055 — 07" M o) — 0> M )

. Q_Q&BM(dE}) . 0_2abM(ab) + gaae_b&(Waba& + 5abva&) + ..
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+0'N +0*N + -+ 02“59_2&5haﬂd5 + -+ 600D (z) (3.6.3)

where W ,* . = 0, while a chiral scalar isospinor superfield has the expansion (in the chi-

.
a oo

ral representation)

(I)(+)a(x7 0) = Aa + gba(cabwa + w(ab)o)
- QQQﬁFa(ozﬂ) - GQbC(F(abc) + Cach>

—6°,%(8," A0 + AS0) +0'D, (3.6.4)

where \,“, = 0. The spin and isospin of the component fields can be read from these

expressions.

General superfields are not irreducible representations of extended supersymmetry.
As we discuss in sec. 3.11, chiral superfields are irreducible under supersymmetry (except
for a possible further decomposition into real and imaginary parts); we present there a

systematic way of decomposing any superfield into its irreducible parts.

The supersymmetry transformations of the component fields follow straightfor-
wardly from the transformations of the superfields. Thus, for example, for N = 1, from
SV =[i(eQ + €Q),V]=6C + 6*9x, + -+ (with a constant spinor parameter €*) we
find:

5C(x) = — ("xa + T%2)

OXal) = €M — €9(i L0,C + A,)

. .1 _3 .1 _
6A,(z) = — " (Cpahg + i 58@)(&) + eB(CédAa +i Eaaéxcg) )

_ 8 .1 /5.’ N T
N (z) =€’ (Cp D' + 4 58/3&/10( ) — 1 5 € 0,aM
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. 1 e .
OD/(x) = i 5 B, ("N + €N, ete., (3.6.5)

Similarly, for a chiral superfield ® we find:

6‘4 = - Ea¢a 3
§hy = — €90, 4 A + €, F |

§F = — %30, . (3.6.6)

b. Projection

For many applications, the #-expansions just considered are inconvenient; an
alternative is to define “components by projection” of an expression as the -independent
parts of its successive spinor derivatives. We introduce the notation X| to indicate the
independent part of an expression X. Then, for example, we can define the components

of a chiral superfield by

Yo(2) = Da®(2,0,0)]

F(z) = D*®(z,0,0)| . (3.6.7)

The supersymmetry transformations of the component fields follow from the algebra of

the covariant derivatives D; we use (—iQV)| = (DW¥)| and {D,,Ds} = i@aé to find
SA=i(e-Q+e€-Q)®|=—(e-D+€-D)d|
= DOl =~ e, |
S, =i(e-Q+€-Q)D,®|=—(e-D+€-D)D,?|
= (e,D* — €910, ,)®| = e, F — €90, . A |,

[e7e%

SF=i(e-Q+e-Q)D*®| = —&-DD*®| = — %oz, . (3.6.8)
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Explicit computation of the components shows that, in this particular case, the
components in the #-expansion are identical to those defined by projection. This is not
necessarily the case: For superfields that are not chiral, some components are defined
with both D’s and D'’s; for these components, there is an ambiguity stemming from how
the D’s and D’s are ordered. For example, the #?0 component of a real scalar superfield
V could be defined as D*DV|, DDDV|, or DD*V|. These definitions differ only by
spacetime derivatives of components lower down in the #-expansion (defined with fewer
D’s). In general, they will also differ from components defined by 6-expansions by the
same derivative terms. These differences are just field redefinitions and have no physical

significance.

Usually, one particular definition of components is preferable. For example, one
model that we will consider (see sec. 4.2.a) depends on a real scalar superfield V' which
transforms as V' =V +i(A—A) under a gauge transformation that leaves all the
physics invariant (here A is a chiral field). In this case, if possible, we select components

that are gauge invariant; in the example above, D*DV | is the preferred choice.

If the superfield carries an external Lorentz index, the separation into components
requires reduction with respect to the Lorentz group. Thus, for example, a chiral spinor

superfield has the expansion in the chiral representation (where it only depends on 6):
®, (2, 0) =X, + 0°(Cs.D" + fo5) — 0°x, - (3.6.9)

Using projections, we would define the components by

Ao =Pl

D/ = %Dacb‘*\ :

Fur= 1D

Xo = D*®,| . (3.6.10)

For N > 1 a similar definition of components by projection is possible. In this
case, in addition to reduction with respect to the external Lorentz indices, one can fur-

ther reduce with respect to SU(N) indices.
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The projection method is also convenient for finding components of a product of

superfields. For example, the product ® = &P, is chiral, and has components

P| = 0,P,| = A, 4,

Da(b‘ = (Daq)l)q)2| + q)l(Da(p2)| = wlaAZ + A1¢2a 9
D*®| = (D*®,)®,| + (D*®,)(D,®,)| + ®,(D*®,)|

= F1 4y + 1" + A1 Fy . (3.6.11)

Similarly, the components of the product ¥ = ®,®, can be worked out in a straightfor-

ward manner, using the Leibnitz rule for derivatives.

c. The transformation superfield

The transformations of Poincaré supersymmetry (translations and @-supersymme-
try transformations) are parametrized by a 4-vector £, and a spinor €, respectively. It is
possible to view these, along with the parameter r of “R-symmetry” transformations

generated by A in (3.2.12, 3.3.34a), as components of an z-independent real superfield ¢

ggE%[EOUDa]d ) EaEiEQDaC| y = DaﬁQDad ) (3612)

1
2
and to write the supersymmetry transformations in terms of ( and the covariant

derivatives D y:

SU = i(€4P, + " Q, + €°Q; + 2rA)V

= — [(iD*D°C)D, + (—iD*D¢)D; + (5 [D, D°C)0), 4

+iw(; D*D*D,O)W (3.6.13)

where %w is the eigenvalue of the operator ¥ (the matrix part of the axial generator A).

These transformations are invariant under “gauge transformations” ¢ = i(A — \), A chi-
ral and z-independent. Consequently, they depend only on &,, €,, and the component 7.

The R-transformations with parameter r are axial rotations

U(2,0,0) =e ™" V(z,e"0, e "0) . (3.6.14)
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3.7. Superintegration

a. Berezin integral

To construct manifestly supersymmetrically invariant actions, it is useful to have
a notion of (definite) integration with respect to 6. The essential properties we require
of the Berezin integral are translation invariance and linearity. Consider a 1-dimensional
anticommuting space; then the most general form a function can take is a + 6b. The

most general form that the integral can take has the same form:
/d&’ (a + 60b) = A 4+ OB where A, B are functions of a,b. Imposing linearity and invari-
ance under translations 6'—#'+¢ leads wuniquely to the conclusion that

/ df (a + 0b) ~ b. The normalization of the integral is arbitrary. We choose

/d90= 1 (3.7.1)
and, as we found above,

/d9 1=0. (3.7.2)

We can define a d-function: We require
/d95(9—0’) (a+60b)=0a+ 0D (3.7.3)

and find
00 —-0)=6-40 (3.7.4)

These concepts generalize in an obvious way to higher dimensional anticommuting

spaces; for N-extended supersymmetry, / d*M9 d*N@ picks out the highest § component

of the integrand, and a J-function has the form
SN —0)= (0 -0V -6 . (3.7.5)

We define §*™ (2 — 2/) = 6*(z — 2/)6*¥ (6 — ¢'). We thus have

/d4+4Nz 54+4N(z o z’)\lf(z)
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= /d4xd4N0 5z — )0 (0 — 0"V (z,0) = ¥(2') (3.7.6)

We note that all the properties of the Berezin integral can be characterized by say-

ing it is identical to differentiation:

/ do, 1(0) =0, f(6). (3.7.7)

This has an important consequence in the context of supersymmetry: Because super-
space actions are integrated over spacetime as well as over 0, any spacetime total deriva-

tive added to the integrand is irrelevant (modulo boundary terms). Consequently, inside

a spacetime integral, in the absence of central charges we can replace / dfs = 04 by Dj.

This allows us to expand superspace actions directly in terms of components defined by

projection (see chap. 4, where we consider specific models). Inside superspace integrals,

we can integrate D by parts, because /d4N08Qy ="V 9, =0 (since 0*"*' =0).
Since supersymmetry variations are also total derivatives (in superspace), we have
/d4xd2N9 Q.Y = /d4xd2N9_@d\If = 0, and thus for any general superfield ¥ the follow-

ing is a supersymmetry invariant:
Sy = /d%d”e\p : (3.7.8)
In the case of chiral superfields we can define invariants in the chiral representation by
Sp = /d%d”&@ , (3.7.9)

since ® is a function of only z* and 6%. In fact, this definition is representation indepen-

dent, since the operator U used to change representations is a spacetime derivative, so

1
only the 1 part of e2” contributes to Sp. Furthermore, if we express ® in terms of a gen-

eral superfield ¥ by ® = D*" ¥, we find

Se = / d*zd* 0 D*NV = / d*zd™o v =S, | (3.7.10)

since D 6= / df 4 When inside a d*z integral.
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Similarly, the chiral delta function, which we define as
§(z — )N (0 — 0) = 5*(z — 2')(=1)V (0 — ¢)*" in the chiral representation, takes the

following form in arbitrary representations:

DN (7 — 2y (3.7.11)

which is equivalent in the chiral representation (D 6= 3}), and in general representations

gives

/d4xd2N0 (DN SN (5 — ] ®(2)

= /d4xd4N0 ST (2 — 2D (2)

= 3(2) (3.7.12)

b. Dimensions
Since the Berezin integral acts like a derivative (3.7.7), it also scales like a deriva-

tive; thus it has dimension | / df] = [D]. However, from (3.4.9), we see that the dimen-

1
sions of D,~m2, and consequently, a general integral has dimension / diz d*N g~m>N 1

and a chiral integral has dimension / d'z d*9~m . In particular, for N = 1, we have

/d4x dio = /dgz ~m~% and /d4x d*0 = /dﬁz ~m 3.

c. Superdeterminants

Finally, we use superspace integrals to define superdeterminants (Berezinians).
Consider a (k,n) by (k,n) dimensional supermatrix M with a k£ by k£ dimensional even-
even part A, a k by n dimensional even-odd part B, an n by k dimensional odd-even
part C', and an n by n dimensional odd-odd part D:

M = (é g) (3.7.13)

where the entries of A, D are bosonic and those of B, (' are fermionic. We define the

superdeterminant by analogy with the usual determinant:
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(sdet M)™' = K/dkx d'z' d"9dre e =" M7 (3.7.14a)
where
M= (20, 2= (g) , (3.7.14b)

and K is a normalization factor chosen to ensure that sdet(1) =1. The exponent
r’Ax + 2'BO + 0'Cz + 0'DO can be written, after shifts of integration variables either in
z or in #, in two equivalent forms: z'Az +6(D—-CA'B)§ or
2'(A— BD ' C)x +6'D0O. Integration over the bosonic variables gives us an inverse
determinant factor, and integration over the fermionic variables gives a determinant fac-

tor. We obtain sdet M in terms of ordinary determinants:

det A det(A — BD'(C)
= = . 7.1
det(D — CA~'B) det D (3.7.15)

sdet(M)

This formula has a number of useful properties. Just as with the ordinary deter-
minant, the superdeterminant of the product of several supermatrices is equal to the

product of the superdeterminants of the supermatrices. Furthermore,
In (sdet M) = str(ln M) |, (3.7.16a)

where the supertrace of a supermatrix M is the trace of the even-even matrix A minus

the trace of the odd-odd matrix D:
strM = trA — trD (3.7.16b)

An arbitrary infinitesimal variation of M induces a variation of the superdeterminant:

d(sdet M) = dexp[str(ln M)]

= (sdet M)str(M 6 M) (3.7.17)
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3.8. Superfunctional differentiation and integration

a. Differentiation

In this section we discuss functional calculus for superfields. We begin by review-
ing functional differentiation for component fields: By analogy with ordinary differentia-

tion, functional differentiation of a functional F' of a field A can be defined as

OF[A] . F[A+0.,A] — F[A]
SA(z) ¢ ’ (38.1)
where
5. A(z) = ed'(z — ') . (3.8.2)

This is not the same as dividing 6 F by dA. The derivative can also be defined for arbi-

trary variations by a Taylor expansion:

F[A+04] = F[A] + (5,4 : 6?—5”) +0((64)%) (3.8.3)

where the product (,) of two arbitrary functions is given by
(C.B) = /d% C(2)B(x) . (3.8.4)

In particular, from (3.8.2) we find

(6.,A,B) =eB(z) . (3.8.5)
This definition allows a convenient prescription for generalized differentiation. For
example, in curved space, where the invariant product is (C, B) = / d'z ¢"*CB, the

normalization (04, B) = eB(z)  corresponds to  the functional variation
§A(z") = eg "*(z)6"(z — z'). Generally, a choice of &, is equivalent to a choice of the

product (,). In particular, for (3.8.2,4) we have the functional derivative

=6z —2) . (3.8.6)

In curved space, using the invariant product, we would obtain ¢~/*(z)§*(z — 2’). Note
that the inner product is not always symmetric: In (C, B), C' transforms contragredi-

ently to B. For example, if A is a covariant vector, the quantity on the left-hand side of



102 3. REPRESENTATIONS OF SUPERSYMMETRY

the inner-product is a covariant vector, while that on the right is a contravariant vector;
OF

if A is an isospinor, SA is a complex-conjugate isospinor; etc.

In superspace, the definitions for general superfields are analogous. The product

(U, ) is /d4+4Nz U(2)0'(2) = /d4xd4N9 U(x,0)¥'(x,0), and thus

=6 (=) =6z — 26" (O - 0) . (3.8.7)

(Appropriate modifications will be made in curved superspace.) However, for chiral

superfields we have
(@, = /d4+2Nz PP’ = /d%d”@ PP’ | (3.8.8)

since ® and ®' essentially depend on only 2% and 6%, not #%. The variation is therefore

defined in terms of the chiral delta function:

6..9(2") = D5V (2 — 2) (3.8.9)
so that

g)((;)) = DANGHN (o (3.8.10)
and the complex conjugate relation

g((j) = DN oy (3.8.11)

(Again, appropriate modifications will be made in curved superspace.) Furthermore,

variations of chiral integrals give the expected result

)
(2

/d4xd2N9 f(@(2)) = /d4xd2N0 f(®(2)) DN (2 — 2)

= /d4xd4N9 F (@) (2 — ) = f1(2(2)) . (3.8.12)

When the functional differentiation is on an expression appearing in a chiral integral
with d*V6, the D* can always be used to convert it to a d*V6 integral, after which the

full §-function can be used as in (3.8.12).
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This result can also be obtained by expressing ® in terms of a general superfield,
as ® = D*W: we have
60(z)  SDPW(z) v 0U(2)

) euz) D w0 o B819)

) ) _
We can thus identify 5 with ST for & = D*V.

These definitions can be analyzed in terms of components and correspond to ordi-
nary functional differentiation of the component fields. We cannot define functional dif-

ferentiation for constrained superfields other than chiral or antichiral ones. For exam-

ple, for a linear superfield T (which can be written as T = 5‘;\56;) there is no functional

derivative which is both linear and a scalar.

b. Integration

In chapters 5 and 6 we discuss quantization of superfield theories by means of
functional integration. We need to define only integrals of Gaussians, as all other func-
tional integrals in perturbation theory are defined in terms of these by introducing

sources and differentiating with respect to them. The basic integrals are

4. 94N 11,2

/ZDV of BP0V (3.8.14a)
4..12Np 1 g2

/11)@ of B0y (3.8.14b)
_ 4,.12Np 152

/11)@ of Hrd R ® (3.8.14¢)

where, e.g., IDV = HZDVi, for V' the components of V. Because a superfield has the

same number of bose and fermi components, many factors that appear in ordinary func-

tional integrals cancel for superfields. Thus we can make any change of variables that

does not involve both explicit 6’s and %’s without generating any Jacobian factor,

because unless the bosons and fermions mix nontrivially, the superdeterminant (3.7.14)
is equal to one. For example, a change of variables V' — f(V , X) where X is an arbi-

trary external superfield generates no Jacobian factor; the same is true for the change of
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variables V' — [V as long as [ is a purely bosonic operator. Nontrivial Jacobian

determinants arise for changes of variables such as V — D?*V or V — OV where O is
background covariant, e.g., in supergravity or super-Yang-Mills theory, and hence con-

tains spinor derivatives.

To prove the preceding assertions, we consider the case with one #; the general case
can be proven by choosing one particular # and proceeding inductively. We expand the
superfield with respect to 6 as V = A + 0; similarly, we expand the arbitrary external
superfield as X = C + 0y. Then we can expand the new variable f(V ', X) as

fV, X)=f(A,C) + 0l fv(A,C) + xfx(A,C)]] (3.8.15)
where f| = f4 = 8{4”’ etc. The Jacobian of this transformation is

sdet

af _ sdet( fa(A,C) ¢fAA+XfAC) _ det(fa) _ 1. (38.16)

ov 0 fa(A,C) ~ det(f )

In particular, the external superfield X can be a nonlocal operator such as 1.

An immediate consequence of the preceding result is that superfield §-functions
=[[ov' —v") (3.8.17a)

are invariant under “#-nonmixing” changes of variables:

Z 5(V : (3.8.17b)

£(ci)=0

In general, if nontrivial operators appear in the actions, the functional integrals are

no longer constant. We first introduce the following convenient notation:

v

(11

o
d

/”t = /d4 /d4N9 v /d2N9 P! /d”e_@) : (3.8.18)

where V, ®, and ® themselves can stand for several superfields arranged as column vec-

tors. We next consider actions of the form
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S = %/EtOE , (3.8.19)

where the nonsingular operator O is such that the components of the column vector O=
have the same chirality as the corresponding components of =. These actions give the

field equations

68
-0
0=

(11

: (3.8.20)

due to the integration measures chosen for the definition of the integrals (3.8.18).

We define, for commuting =,
(det )2 = /]DE@S : (3.8.21)

with S given by (3.8.19). For anticommuting = we obtain (det O)% Then (3.8.14) can

be written as

detI=1 . (3.8.22)
From the definition (3.8.21) we have
/ D=, IDZ,e/570% = (detO)™" . (3.8.23)
We also have

This can be proven as follows: We consider the action
/(E1t0152 + 55'0,8,) . (3.8.25)
The functional integral of the exponential of this action is equal to that of
/(E1t010252 +55'5y) (3.8.26)

as can be seen from the field redefinitions

EQ — 0252 5 54 — 02_154 5 (3827)
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whose Jacobians cancel.

As an important example we consider the N =1 case with one ® and one ® and

no V:

P 0 D?
== , 0= (3.8.28)
P D* 0
This operator satisfies the identity
0’z =[= (3.8.29)
Therefore, from (3.8.24) we have
(det O)* = det O (3.8.30)
and hence the integral of the exponential of the action
S = % [/ d*z d*0 (®,D*®, + ®,D*®,) + h.c.]
= /d4x d40 (él(bl + éQ‘PQ) (3.8.31)
is equal to that of
5=1 [/ diz d20 o0 + h.c.] . (3.8.32)
In the same manner we have the following equivalence:
2m+1
/d% d'oe0d"e — > /d% a0 o,0, . (3.8.33)
i=1
As another example we consider the case of a chiral spinor ®,,:
o, 0 9, D
== , 0= ) (3.8.34)
D, i0” s D? 0
with
0O’z = [’ (3.8.35)



3.8. Superfunctional differentiation and integration 107
Therefore

/d% d'0 390 ;®, [/ d*z d*9 ®*0O®, + h.c.] . (3.8.36)

N |
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3.9. Physical, auxiliary, and gauge components

In section 3.6 we discussed the component field content of supersymmetric theo-
ries. However, the field content of a theory does not determine its physical states. Con-

versely, a given set of physical states can be described by different sets of fields.

Given a set of fields and their free Lagrangian, we can classify any component of a
field as one of three types: (1) physical, with a propagating degree of freedom; (2) auxil-
iary, with an equation of motion that sets it identically equal to zero; and (3) gauge, not
appearing in the Lagrangian. (Super)Fields can contain all three kinds of components;
off-shell representations (of the Poincaré or supersymmetry group) contain only the first
two; and on-shell representations contain only the first. We also classify any field as one
of three types: (1) physical, containing physical components, but perhaps also auxiliary
and/or gauge components; (2) auxiliary, containing auxiliary, but perhaps also gauge,

components; and (3) compensating, containing only gauge components.

The simplest example of this is the conventional vector gauge field of electromag-
netism. The explicit separation is necessarily non(Poincaré)covariant, and is most con-
veniently performed in a light-cone formalism. In the notation of (3.1.1) we treat
£~ =z as the “time” coordinate, and z ¥, 27,77 as “space” coordinates. We are thus
free to construct expressions that are nonlocal in z* (i.e. containing inverse powers of
d, ), since the dynamics is described by evolution in z~~. (In fact, the formalism closely

resembles nonrelativistic field theory, with = acting as the time and 0, as the mass.)

The vector gauge field A, transforms as

SA =0 :\. (3.9.1)

[e7e% ax

By making the field redefinitions (by A — f(A) we mean A = f(A’) and then drop all

”S)

A, — A,
Ap — Ap+(9.)'9r AL,

A, — A,—f—(3+)_1(3,A+—8T/TT—3_TAT) 3 (392)

we obtain the new transformation laws
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SAp=06A =0 , 6A, =9\ . (3.9.3)

Furthermore, the Lagrangian

1 «
L=-3F OF o5, (3.9.4)
where
1 .
Faﬂ - 5 8(0(;%1[7))’7 (395)
in terms of the old A, becomes
- 1
IL = A;0Ar — 5 A_(0.)A_ . (3.9.6)

Thus, the complex component A; describes the two physical (propagating) polarizations,
the real component A_ is auxiliary (it has no dynamics; its equation of motion sets it
equal to zero) , and the real component A, is gauge. In this formalism the obvious
gauge choice is A, =0 (the light-cone gauge), since A, does not appear in IL. However,

gauge components are important for Lorentz covariant gauge fixing: For example,
(aaﬂAaﬁ;)Q — (0, A +2(0,)"'O AL,

We can perform similar redefinitions to separate arbitrary fields into physical, aux-
iliary, and gauge components. Any original component that transforms under a gauge
transformation with a 0, or a nonderivative term corresponds to a gauge component of
the redefined field. Any component that transforms with a d_ term corresponds to an
auxiliary component. Of the remaining components, some will be auxiliary and some
physical (depending on the action), organized in a way that preserves the “transverse”
SO(2) Lorentz covariance. For the known fields appearing in interacting theories, the

components with highest spin are physical and the rest (when there are any: i.e., for
physical spin 2 or g) are auxiliary. These arguments can be applied in all dimensions.
An example that illustrates the separation between physical and auxiliary (but not

gauge) components without the use of nonlocal, noncovariant redefinitions is that of a

massive spinor field:

I = 000 by — = m(y 4 + 3 - (3.9.7)

2

Since v and v may be considered as independent fields in the functional integral (and,
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in fact, must be considered independent locally after Wick rotation to Euclidean space),

we can make the following nonunitary (but local and covariant) redefinition:

Vo = Ya
— — 1. N
1#& — WY — E zﬁa&w . (398)
The Lagrangian becomes
_ b a2 N S
L= oy (O = m?)y, — 5 mi ;. (3.9.9)

We thus find that v represents two physical polarizations, while ¢ contains two auxiliary

components.

The same analysis can be made for the simplest supersymmetric multiplet: the
massive scalar multiplet, described by a chiral scalar superfield (see section 4.1). The

action is
S = /d4xd40 PP — % m(/ d*zd?*0 d* +/d4xd20_§>2) : (3.9.10)

We now redefine

o — P

Y

®— O+ —D*®; (3.9.11)

1
m

and, using /d20_: D?, we obtain the action
S = %/d%d% (0 - m2)d — %m/d4xd29_(f>2 . (3.9.12)

(Note that the redefinition of ® preserves its antichirality D,®=0.) Now ® contains
only physical and ® contains only auxiliary components; each contains two Bose compo-
nents and two Fermi. As can be checked using the component expansion of ®, the origi-
nal action (3.9.10) contains the spinor Lagrangian of (3.9.7), whereas (3.9.12) contains
the Lagrangian (3.9.9). It also contains two scalars and two pseudoscalars, one of each
being a physical field (with kinetic operator (1 —m?) and the other an auxiliary field

(with kinetic operator 1). For more detail of the component analysis, see sec. 4.1.
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As we discuss in sec. 4.1, auxiliary fields are needed in interacting supersymmetric
theories for several reasons: (1) They facilitate the construction of actions, since without
them the kinetic and various interaction terms are not separately supersymmetric; (2)
because of this, actions without auxiliary fields have supersymmetry transformations
that are nonlinear and coupling dependent, and make difficult the application of super-
symmetry Ward identities (e.g., to prove renormalizability); and (3) auxiliary fields are
necessary for manifestly supersymmetric quantization. Compensating fields (see follow-
ing section) are also necessary for the latter two reasons. Although they disappear from

the classical action, they appear in supersymmetric gauge-fixing terms.
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3.10. Compensators

In our subsequent discussions, we will often use “compensating” fields or compen-
sators. These are fields that enter a theory in such a way that they can be algebraically
gauged away. Thus, in a certain sense, they are trivial: The theory can always be writ-
ten without them. However, they frequently simplify the structure of the theory; in par-
ticular, they can be used to write nonlinearly realized symmetries in a linear way. This
is often important for quantization. Another application, which is particularly relevant
to supergravity, arises in situations where one knows how to write invariant actions for
systems transforming under a certain symmetry group G (e.g., the superconformal
group): If one wants to write actions for systems transforming only under a subgroup H
(e.g., the super-Poincaré group), one can enlarge the symmetry of such systems to the
full group by introducing compensators. After writing the action for the systems with
the enlarged symmetry, one simply chooses a gauge, thus breaking the symmetry of the

action down to the subgroup H.

A simple example in ordinary field theory is “fake” scalar electrodynamics. The

usual kinetic action for a complex scalar z(z)

S = %/d% 70%0,2 (3.10.1)

A

has a global U(1) symmetry: 2’ = ¢"* 2. This symmetry can be gauged trivially by intro-

ducing a real compensating scalar ¢, assumed to transform under a local U(1) transfor-
mation as ¢ =¢— A\ We can then construct a covariant derivative

V,=e"d,e"” =0, +i0,¢ that can be used to define a locally U(1) invariant action
g = %/d% VAV (3.10.2)
Fake spinor electrodynamics can be obtained by an obvious generalization.

a. Stueckelberg formalism

In the previous example, the compensator served no useful purpose. The Stueck-
elberg formalism provides a familiar example of a compensator that simplifies the theory.

We begin with the Lagrangian for a massive vector A,:

, — m*(4,)° (3.10.3)
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Fop = 04y - (3.10.4)
The propagator for this theory is:

1 1
Dy = — O_m2 (Map — Y 9,0y) (3.10.5)

We can recast the theory in an improved form by introducing a U(1) compensator ¢

that makes the action (3.10.3) gauge invariant. We define
A=A, + 0,0 (3.10.6)
where A’, and ¢ transform under U(1) gauge transformations:
0A', =0,\ , dp=mA\ . (3.10.7)
In terms of these fields, the gauge invariant Lagrangian is (dropping the prime):

IL=—>-F"F, —m*4,)?

1
8 =2

— mpd*A, — (0,9)* . (3.10.8)
We now choose a gauge by adding the gauge fixing term

Lgr = — - (0°4, — 2m¢)? (3.10.9)

1
4
and find:

L+ Lgp = - A0 - m*) A, + ¢(0 — m*)g . (3.10.10)

N | =

The propagators can be trivially read off from (3.10.10): for A,

D,y = —1,(0 —m*) 7!, and for ¢, D = — % (O — m*)~'. They have better high energy

behavior than (3.10.5). Thus, by introducing the compensator ¢, we have simplified the
structure of the theory. We note that the compensator decouples whenever A, is cou-

pled to a conserved source (i.e., in a gauge invariant way).

b. CP(1) model

Another familiar example is the CP(1) nonlinear o-model, which describes the
Goldstone bosons of an SU(2) gauge theory spontaneously broken down to U(1). It con-

sists of a real scalar field p and a complex field y subject to the constraint
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lyl> +p* =1 (3.10.11)

The group SU(2) can be realized nonlinearly on these fields by

5p = = (By + BY)

1
2

1

oy = —2iay — Bp— S p (By — By - (3.10.12)

where «, 3, and 3 are the (constant) parameters of the global SU(2) transformations.

These transformations leave the Lagrangian
1 B~
IL = = [(8up)* + 10uyl” + 7 (70.4y)"] (3.10.13)

invariant, but because the transformations are nonlinear this is far from obvious.

We can give a description of the theory where the SU(2) is represented linearly by
introducing a local U(1) invariance which is realized by a compensating field ¢. Under

this local U(1), ¢ transforms as
¢ (z) =¢(x) — NMz) . (3.10.14)
We define fields z; by
=€, zy=e Yy . (3.10.15)
Because of this definition they transform under the local U(1) as
2=z . (3.10.16)

The constraint (3.10.11) becomes

|22+ |20)P =1 . (3.10.17)

Ignoring the constraint the SU(2) acts linearly on these fields (see below):

0z = tazy + Bz

82y = —iquzg — B2y . (3.10.18)

The complicated nonlinear transformations (3.10.12) arise in the following manner:

when we fix the U(1) gauge

(3.10.19)

N
2
|
|
2
Il
B
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the linear SU(2) transformations (3.10.18) do not preserve the condition (3.10.19). Thus

we must add a “gauge-restoring” U (1) transformation with parameter

iz) = — %p*1(5z1 _57) = —ia — %pfl(ﬁzQ _ 3z . (3.10.20)

The combined linear SU(2) transformation and gauge transformation (3.10.16) with
nonlinear parameter (3.10.20) preserves the gauge condition (3.10.19) and are equivalent

to (3.10.12).

To write an action invariant under both the global SU(2) and the local U(1) trans-
formations we need a covariant derivative for the latter. By analogy with our first

example we could write
V,=¢"9,e"=0,+i0,6 . (3.10.21)
A manifestly SU(2) invariant choice in terms of the new variables is

V,=0, - ~7'0,2

12

=0, +i0,0 — 570,y - (3.10.22)

This differs from (3.10.21) by the U(1) gauge invariant term yégy; one is always free to
change a covariant derivative by adding covariant terms to the connection. (This is sim-
ilar to adding contortion to the Lorentz connection in (super)gravity; see sec. 5.3.a.3.)

Then a manifestly covariant Lagrangian is

IL=- |ngi‘2

= — 0,2 — = (70 ,2)* . (3.10.23)

In the gauge (3.10.19) this Lagrangian becomes that of (3.10.13).

We consider now another application of compensators: The constraint (3.10.17) is
awkward: It makes the transformations (3.10.18) implicitly nonlinear. We can avoid
this by introducing a second compensating field. We observe that neither the constraint
nor the Lagrangian are invariant under scale transformations. However, we can intro-

duce a scale invariance into the theory by writing

2z, =e "7,

? 1

(3.10.24)
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in terms of new fields Z, and the compensator ((z). The constraint and the action,

written in terms of Z,, (, will be invariant under the scale transformations
Z,i = 67Zi , C/ - C + T . (3.10.25)
The SU(2) transformations of Z; are now the (truly) linear transformations

(3.10.18). The U(1) and the scale transformations can be combined into a single com-

plex scale transformation with parameter

o=T+ i\ (3.10.26)
Z,i - 60Zi , C/ - C + T . (3.10.27)

The constraint (3.10.17) becomes
77 =e* (3.10.28)

where we write ZZ = |Z,|* + |Z,|*. In terms of the new variables the Lagrangian is

IL = — ’V&(efﬁziN?
= —|0,(e 2P = ;e (7'0,2,)° . (3.10.29)

Substituting for ¢ the solution of the constraint (3.10.28), a manifestly SU(2) invariant

procedure, leads to

2 Zia 7 \2
Lo _|og % | 102 Q_ZQ,)
V27 1 (22)
1 Z.7% 4 _.
= — —— (5 - N2 (9.7Y (847, 3.10.30
-2 o) @) (310.30)

This last form of the Lagrangian is expressed in terms of unconstrained fields Z, only. It
is manifestly globally SU(2) invariant and also invariant under the local complex scale
transformations (3.10.27). We can use this invariance to choose a convenient gauge. For
example, we can choose the gauge Z, = 1; or we can choose a gauge in which we obtain

(3.10.13). Once we choose a gauge, the SU(2) transformations become nonlinear again.

These two compensators allowed us to realize a global symmetry (SU(2)) of the

system linearly. However, they play different roles: ¢(x), the U(1) compensator, gauges
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a global symmetry of the system, whereas ((z), the scale compensator introduces an
altogether new symmetry. For the U(1) invariance we introduced a connection, whereas
for the scale invariance we introduced ((z) directly, without a connection. In the former
case, the connection consisted of a pure gauge part, and a covariant part chosen to make
it manifestly covariant under a symmetry (SU(2)) of the system; had we tried to intro-
duce ¢(z) directly, we would have found it difficult to maintain the SU(2) invariance. In
the case of the scale transformations no such difficulties arise, and a connection is unnec-

essary. As we shall see, both kinds of compensators appear in supersymmetric theories.

c. Coset spaces

Compensators also simplify the description of more general nonlinear o-models.
We consider a model with fields y(z) that are points of a coset space G/H; they trans-
form nonlinearly under the global action of a group G, but linearly with respect to a
subgroup H. By introducing local transformations of the subgroup H via compensators

¢(x), we realize G linearly, and thus easily find an invariant action.

The generators of G are T,S, where S are the generators of H and T are the
remaining generators, with 7', S antihermitian. Since H is a subgroup, the generators S

close under commutation:
[S,S8] ~ S . (3.10.31)
We require in addition that the generators T carry a representation of the H, that is
T,S]~T . (3.10.32)

(This is always true when the structure constants are totally antisymmetric, since then

the absence of [5,S] ~ T terms implies the absence of [T, S] ~ S terms.)

We could write y(z) = @7 mod H, but instead we introduce compensating fields

¢(z), and define fields z(z) that are elements of the whole group G:
z = es@T0)S = 2 (3.10.33)

(where ¢ = ¢ ()T + (bA(x)S provides an equivalent parametrization of the group). The

new fields z transform under global G-transformations and local H-transformations:

Z=gzh ' (x) , geG , heH (3.10.34)
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(where again we can use an exponential parametrization for g and h(z) if we wish).

The local H transformations can be used to gauge away the compensators ¢ and
reduce z to the coset variables y. If we choose the gauge ¢ = 0, then the global G-trans-
formations will induce local gauge-restoring H-transformations needed to maintain
¢ =0: For geH, due to (3.10.32), we use h(z) = g:

T =geT g7t (3.10.35)

and thus the fields y transform linearly under H. For geG/H, the gauge restoring trans-
formation is complicated and depends nonlinearly on (, and thus the fields y transform

nonlinearly under G/H.
To find a globally G- and locally H-invariant Lagrangian, we consider the following
quantity:
2 '9,2=0,+ 4,8+ B,T=V,+ B,T . (3.10.36)

Under global G-transformations, both V, and B, are invariant; under local H-transfor-

mations we have

(27'0,2) = hz'9,(z b7 ")
=hd,h" + hz'(9,2)h"

= hd,h" + h(A,S+ B,T)h"' =h(V,+ B,T)h™" (3.10.37)

Because of (3.10.31), hSh™'~S and hd,h~' ~S; because of (3.10.32), hT h™' ~T;
hence A, transforms as a connection for local H transformations (V, transforms as a
covariant derivative), and B, transforms covariantly. Therefore, an invariant Lagrangian

is
L=-— itr(BgBQ) (3.10.38)

If we choose the gauge ¢(z) = 0, this becomes a complicated nonlinear Lagrangian for
the fields y(z). We can also couple this system to other fields transforming linearly

under H by replacing all derivatives with V.

Finally, from (3.10.33) we have

2710,z =0, + e 99(0,e”) + e (e 79 e )e?”
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=0, + (0,0)S + (0,0T + --- (3.10.39)

and hence V, =0, + 9,05 +--- and B, = 0,(T +---=0,yT +---. This is what we

expect: The covariant derivative has the usual dependence on the compensator, and the

Lagrangian (3.10.38) has a term — %tr(agy)Q, which is appropriate for a physical field.
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3.11. Projection operators

a. General

The analysis of many aspects of the superspace formulation of supersymmetric
theories requires an understanding of the irreducible representations of (off-shell) super-
symmetry (physical and auxiliary components). We need to know how to decompose an
arbitrary superfield or product of superfields into such representations. In this section
we describe a procedure for constructing projection operators onto irreducible represen-

tations of supersymmetry for general N.

The basic idea is that a general superfield can be expanded into a sum of chiral
superfields. A chiral superfield that is irreducible under the Poincaré and internal sym-
metry groups is also irreducible under off-shell supersymmetry (except for possible sepa-
ration into real and imaginary parts, which we call bisection). Thus, this expansion per-

forms the decomposition.

To show that chiral superfields are irreducible under supersymmetry up to bisec-
tion, we try to reduce a chiral superfield ® by imposing some covariant constraint
QP = 0. If we do not consider reality conditions (bisection), we cannot allow constraints
relating ® to ®. The only covariant operators available for writing constraints are the

spinor derivatives D,,,D%; and the spacetime derivative 8a 5 In momentum space,

since we are off-shell, all relations must be true for arbitrary momentum, and hence we
can freely divide out any spacetime derivative factors. Therefore, any constraint we
write down can be reduced to a constraint that is free of spacetime derivatives. If the
constraint contained any D spinor derivatives, since ® is chiral, D® = 0, by moving the
D’s to the right we could convert them to spacetime derivatives, which we have just

argued can be removed. (For example DDD® = iDO®.)

We thus conclude that any possible constraint on ® involves only products of the
spinor derivatives D,,. However, by applying a sufficient number of D’s to the con-
straint, we can convert all of the D’s to spacetime derivatives; hence, any constraint on
® independent of ® would set ® itself to zero (off-shell!). Therefore ® must be irre-
ducible. This argument is analogous to the proof in section 3.3 that irreducible represen-
tations of supersymmetry can be obtained by repeatedly applying the generators Q“; to
the Clifford vacuum |C > defined by Q,,|C > = 0: instead of |C >, @, and Q with
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Q|C > =0, we have ®, D, and D with D® = 0, respectively.

The only further reduction we can perform is to impose a reality condition on the

superfield. A chiral superfield of superspin s (the spin content of its external Lorentz

indices) has a single maximum spin component of spin s

max

=5+ % N residing at the
oY (ay-ay](ag~ay) l€Vel of the superfield. (This is most easily seen in the chiral representa-
tion, where a chiral superfield depends only on 6. The reduction of products of 8’s into
irreducible representations is done by the method described for the reduction of products
of spinor derivatives in sec. 3.4. Since the maximum spin component has the maximum
number of symmetrized SL(2C') indices, it must have the maximum number of antisym-
metrized SU(N) indices, i.e., it must have N indices of each type. Terms with fewer 6’s
have fewer SL(2C) indices, whereas terms with more #’s cannot be antisymmetric in N
SU(N) indices, and hence cannot be symmetric in N SL(2C) indices. For examples see
(3.6.1-4)). Only if we can impose a reality condition on the highest spin component can
we impose a reality condition on the entire superfield. This is possible when s,,. is an
integer. (A component field with an odd number of Weyl indices cannot satisfy a local

reality condition.)

a.l. Poincaré projectors

We begin with the decomposition of an arbitrary spinor into irreducible representa-
tions of the Poincaré group in ordinary spacetime, both because it is one of the steps in
the superspace decomposition, and because it illustrates some of the superspace features.

This reduction is most easily performed by converting dotted indices into undotted ones
1

with the formal operator A s = —id B-D*E, reducing under SU(2) (by symmetrizing and

antisymmetrizing, i.e., taking traces), and converting formerly dotted indices back with

1
A. (This insures that no fractional powers of [ remain. We generally consider [172 to
be hermitian, since we mainly are concerned with [1 = m?>0.) Explicitly, we write for

each index

‘ifQZAa/é\Ifé , \ifo;ZABO;‘Ifﬂ ,

(3.11.1)

Thus, for example, a vector ¥, decomposes in the following manner:
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~ 1 S s A
\I]g = A’Y(;\Dav = A’Y& 9 (Coqlp5 + qj(wy))
— A LYo v A )
= a5 ay *§é O Fa)s

e § (5 0
=5 10,40 V) = 9606 Y )]

= (I + 1), (3.11.2)

where IT" and II” are the longitudinal and transverse projection operators for a four-vec-

tor.

The projections can be written in terms of field strengths S and F.:

L), =079 . —Llody .
(), =0"9,,5 . S=10'w

(W), =O7'94F,, , Fo, =210 .0}

=508 (3.11.3)

The field strengths are themselves irreducible representations of the Poincaré group.
The projections ¥ = II*W¥ and ' = II"V¥ are invariant under gauge transformations
oW =TI1"y and 6¥ = ITYx respectively. The field strengths have the same gauge invari-
ance as the projections: (5\1ng =[07'9,05 =0 implies 6S=0, and similarly
§¥’, =07"'9";0F,, = 0 implies 6F,,, = 0.

a.2. Super-Poincaré projectors

Projections of superfields can be written in terms of field strengths in superspace
as well. We will find that projections of a general superfield can be expressed in terms
of chiral field strengths with gauge invariances determined by the projection operators.

Thus, for a superfield with decomposition ¥ = (> II,)¥, any single term ¥, =II,¥ has

a gauge invariance (5\11221_[2)@. Each projection can be written in the form
¥, = D "®" where the chiral field strengths ®™ = D* D"¥ are Poincaré and
SU(N) irreducible and have the same gauge invariance as ¥,: 0 = 0¥, = D*"5p™

implies d®™ = 0 because ® and hence §® are irreducible.
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The same index conversion used in (3.11.1) can be used to define the operation of

rest-frame conjugation on a component field or general superfield ¥ by

. .
ara; BiryBas

— Aal'}’l .. 'Aa,‘%AJM . A% P

a0 Bip1eBos Bin Bos  O2s0i 1171 0

V=0 . (3.11.4)

For example, we have:
~ JE— ~ ._ . ~ . 5 . p—
=" , V¥, =AT; |, H ;=0"NGHy, (3.11.5)

We extend this to chiral superfields and define a rest-frame conjugation operator K

1 —
which preserves chirality, by using an extra factor O 2" D* to convert the antichiral

(complex conjugated chiral) superfield back to a chiral one (and similarly for antichiral

superfields). We define

bib; _ 2N f%N’V . L bib
K¢a1"'aiﬂ.i#—l"'[}%al'"ai l =b70 Q)al"'aiﬁiﬂ"'ﬁzs l a0
K3 =p*0O:"3. , K(@.)= (Ko ) ,
K'=1, [[(1+K)P= (1+K) (3.11.6)

where EQJI)... = Dg@.. = 0. For example, for an N = 1 chiral spinor &,

_p%a b _
Ko, = ?Za“ 3; (3.11.7)

We can define self-conjugacy or reality under K if we restrict ourselves to superfields
that are real representations of SU(N) with s, = s+ % integral (the latter is required

to insure that only integral powers of [1 appear). The reality condition is K®_ =+ &

and the splitting of a chiral superfield into real and imaginary parts is simply
D=5 (1K) . (3.11.8)

In the previous example, if we impose the reality condition K&, 6 = ®,, contract both

)

sides with D® and use the antichirality of ®;, we find the equivalent condition:

)

D*®, = D°®; (3.11.9)
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These “real” chiral superfields appear in many models of interest. For example, isoscalar
“real” chiral superfields with 2 — N undotted spinor indices describe N < 2 Yang-Mills
gauge multiplets. Similar superfields with 4 — N undotted spinor indices describe the

conformal field strength of N < 4 supergravity.

To decompose a general superfield into irreducible representations, we first expand

it in terms of chiral superfields. In the chiral representation (D 6= 5(1) a Taylor series in

0 gives
2N
U(,0,0) =) 0" o, . (z,0) (3.11.10a)
n=0 "
where ®" can be rewritten as
M, 4 (2,0)=D"g 4 U(2,60,0)7_ , (3.11.10b)

or, using {ﬁé,g_ﬁ'} = %é and {9_@.,0_@.} = 0 (which implies §*"*! = 0),

oW 4 (2,0) = (~1)VDPNGND" L, U(x,0,0) . (3.11.10c)

G-y,

However, § is not covariant, and hence neither is the expansion (3.11.10). We can gen-

eralize (3.11.10): For any operator C%() which obeys

(Dg, 0y =062 . (&, Ty=0, (3.11.11)
we can write
U(z,0,¢) = % ii"‘—h“"i@("). . (z,0) (3.11.12a)
0, 27 8a (7,0)
where
oM, 4 (z,0)=(-1)"D*PND"; 4 V(2,0,0) . (3.11.12b)

If we choose ¥(z,0,0) = U(z,0,((0)), we obtain, substituting (3.11.12b) into (3.11.12a):

2N

U(2,0,0) = (~1)V Y = W@ DNEYD 5 U(2,6,0) (3.11.13)
n:

n=0

. .
QpQ

for any ¢ satisfying (3.11.11). A manifestly supersymmetric operator satisfying (3.11.11)
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is

. B _. P
C_g:_l.al:l D[_f: L_i%aé ) (3.11.14)

Substituting (3.11.14) into (3.11.13), we find

2N . 3 . 3
_ B . —ioub — 5O Bn
U(z,0,0)=0 NZHD%...%( = )( = )

n=0

X EQNDQNE"B 2 U(z,0,0) (3.11.15)

By
—i9%8
O

D* | we find (reordering the sum by replacing n — 2N — n)

where we have used ( Dé)m = (—=0O)"¥D*. Pushing D" through D*" to the

2N

1 2N , _ _
_ -N QapQoN _1\n 2N—n 2N yn
\II B D (2N>! C g( 1) < n )D QQN"'QW-HD D Qn'"@l‘ll(x, 9’ 9 )
2N 1
=0y — (F)r DA e DAV L W(a,0,0) (3.11.16)

n=0

This final expression can be compared to the noncovariant § expansion in (3.11.10).

The chiral fields D* D™¥ are the covariant analogs of the ®?¥~™’s. We thus obtain

2N
1 n — —nQar e T n
1= — (-1)'O"prese ppt, L, (3.11.17)
n=0
For example, in N = 1 this is the relation
D*D*  D°D*D, DD’
1= - + (3.11.18)

O O O

Each term in the sum is a (reducible) projection operator which picks out the part
of a superfield ¥ appearing in the chiral field strength D* D"¥ (which is irreducible
under SL(2N,C) but reducible under SU(N)®Poincaré, and possibly also under K).
We thus have the projection operators II,,, n =0,1,...,2N:

ny

1 _
H, — (_1>”|:|*ND2N*T@1"'%DQNDTZ

n Qe ?
n!
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dom, =1 . (3.11.19)

In particular, I, = 0¥ D?*¥ D* and I,y = O Y D** D?¥ project out the antichiral and
chiral parts of ¥ respectively. The projectors (3.11.19) satisfy a number of relations:

Orthonormality
IT,,IT, = §,,,I1,, (not summed) (3.11.20)

follows from D?*YD"D?*M =0 unless n =2N and hence II,II, =0 for m # n; then
ZHW =1 implies II, = H,,LZH,,,L =1II?. There are relations between the II's: II, is

equal to the transpose and to the complex conjugate of Ilyy_,

Hn = HtQN—n
J— 1 -N 2N—TL ~N2N n Q- QoN—p
~ (2N —n)! 0D arany , D7 D ) (3.11.21)
Hn = H*Qan
_ 1 (L[N prdiedw. peN pRN -,
= aN ) (-n"0~—"D DD e (3.11.22)
Combining (3.11.21) and (3.11.22), we find another form of II,,:
1 _ _ o e
I, =M", = 0" D" 5 DN D rarde (3.11.23)
n! Qiln

The complex conjugation relation (3.11.22) implies that half of the II's are redundant for
real superfields: V =V — Iy, V = 1",V = (I, V).

Reduction of the II’s into irreducible projection operators is now easy:
(1) Algebraically reduce D*¥ D"¥ under SU(N)®Poincaré (where ¥ may have further
isospinor and Weyl spinor indices);
(2) When the reduced chiral field strength D* D" is in a real representation of SU(N)
and has s + %N integral, further reduce by bisection, i.e. multiplication by % (1+K).
To perform (1) it is convenient to first reduce D*" D" by using the total antisymmetry of

the D’s (see sec. 3.4), and then reduce the tensor product of the irreducible
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representations of D*' D" with the representation of the superfield ¥ as usual. If we
only want to preserve SO(N), further reduction is performed in step 1; for step 2,

D*N D™ is always in a real representation of SO(N).
Although II, contains the product of 2N D’s and 2N D’s and is thus in its sim-
1 _
plest form, II,,., obtained by directly introducing 3 (1 £ K) in front of the D*", contains

2N D’s and 4N D’s in the K term, and can be further simplified. After some algebra

we find:

For n > N:
KEQNDngl“gn\I!bl...bn _ (_1)2§n|:|%(an)52ND2N—nQl...ﬁncﬁlal . Cﬁ"a"{i}al---an , (3.11.24)
or
KD provesay,
— (_1>2§n|:|%("—N)52NCa1ﬂ1 oo Q2N -nBann 2N -1 Ql"'Q2N77L{IV[a1...a2N_n 7 (3.11.25)

where 25 extra Weyl spinor indices, and extra isospinor indices, reduced as in step 1, are

implicit on W.

For n < N:
KD? DN, W, = (-1)*"O:" DN prie 5020, (3.11.26)
or
KDQNEQN—’M_M"'\IIM... _ (_1)23’”D%(N—’VL)DQNC(;qﬂ.l'”EHﬂ. ‘,Ivlal... ) (31127)
Bie

As an example of this simplification, we consider the N = 1 chiral field above (3.11.7) for
the special case when it is a field strength of a real superfield V: &, = D*D,V

—D%o L,
Ko, = % D’D;V = D*D,V =&, . (3.11.28)

We now collect our results: The superprojectors take the final form

If bisection is possible:

n<N: M= OYD" ;o (1K) PPN DN i

.
&y 9
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) o 1 ~N 2N-n 1 2N pnaiasy -,
n>N: 1I,,, = N 0D ooy 5 (1+£K)IP,D*"D , (3.11.29)
If bisection is not possible:
I, ; = either of the above with % (1+K) dropped (3.11.30)

where the IP; are SU(N)®Poincaré projectors acting on the explicit indices (including
those of the superfield). We have chosen the particular forms of II, from (3.11.19,21-23)
that minimize the number of indices that the IP; act on. The chiral expansion, besides
its simplicity, has the advantage that the chiral field strengths appear explicitly, and the
superspin and superisospin of the representation onto which II projects are those of the

chiral field strength.
b. Examples

b.1. N=0

We begin by giving a few Poincaré projection operators. The procedure for find-
ing them was discussed in considerable detail in subsec. 3.11.a.1, so here we simply list

results. Scalars and spinors are irreducible (no bisection is possible for a spinor:
s+ % = % is not an integer). A (real) vector decomposes into a spin 1 and a spin 0 pro-

jection (see (3.11.2,3)). For a spinor-vector ¢a[§7 = A’5¢,5., we have:

1 1 5 5 1 5
waﬂ,fy = §¢(aﬁ,v) + 5 (w(ad) Cﬂ’y + w(,&ﬂ Com) + 5 Caﬂw(S Ko

and hence
Vogy = I+ I+ D5,
where
W7y 5 = =070 [Corra+ Corrsl o= 506",

L - 1 a
II %waﬁ.’q - D 16@5'87 ’ S’y = 56*¢m . (31131)
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For a real two-index tensor h,. = A’ O:A(S,;haﬂﬂ,g we have

1
hapas = 31 hapas) T (Caalss + Coalp) + CasCisd + CoaCppr

1 ¢ .
+ 4 (Caﬁhe('y,| ‘6) + Cq/6h(a\e|,ﬂ) ) ) (31132)
where
1 o
Gop = = 35 (@™ s + haisn)® + ™ 5y + hiama®)
1 €
r=-—g L0 g = Th (3.11.33)

Therefore the complete decomposition of the the two-index tensor is given by

h . (H23+H15+H05+H05+H1A + 10, 47 )h

aBné afyd

where the projectors are labeled by the spin (2,1,0), the symmetric and antisymmetric

part of h,, (S and A), longitudinal and transverse parts (L and T'), and self-dual and

anti-self-dual parts (+ and —). The explicit form of the projection operators is

H2Sh _D aﬁﬂa §Wapys 5 Wapys = 5 5,3671%35 )

Hl,Sh . °:I:| 26[7)586 [C w55+05 wﬁ ] 5

af,yo

wss = = 35 ot [a5g)h(a5,ﬁ)5 + aﬁ%(m)é] ;
I osh =0 28 8 S, 8= iau/éawghaé,yé :
Wosh s o =02C,Cp0+0 50 )T | T=— 000 , .
Moahys = 070%0 0 ) s = = Thiess
o h s 5= =079 35 "o Fon=—13 3 ,836 6haﬁ, . (3.11.34)

(The field strengths w,s,; and T are proportional to the linearized Weyl tensor and

scalar curvatures respectively.) From this decomposition, we see that the two-index
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tensor field consists of irreducible spins 261G 1H1H0H0.

b.2. N=1

We construct the irreducible projection operators for a complex scalar superfield
U. From (3.9.26-32) we have, for the cases without bisection (s + %N =35+ % is half-

integral, so that s is integral)
I, =0"'p*D* , I, =-0"'D*D*D, , II,=0O"'D?*D* . (3.11.35)

Since ¥ has no external indices we can go directly to step 2. The chiral field strengths
D?*¥ and D?’D*¥ do not satisfy the condition that s +% is integral, whereas D?D, ¥

does. For N = 1, the condition of being in a real isospin representation is trivially satis-

fied, and that means that II; needs to be bisected:

I, =1, +1I,_
M. =-0"D";(1+K)D*D, . (3.11.36)
Therefore, from (3.11.26-7),
M,.¥=—0O'D°D*D, % (T+T) , (3.11.37)

and thus II,, II,, and II, completely reduce W. These irreducible representations turn

out to describe two scalar and two vector multiplets, respectively.

We give next the decomposition of the spinor superfield ¥,. To find the irre-
ducible parts of I[;¥, we Poincaré reduce the chiral field strength

D’D,V, = % [C.sD*D. V" + EQD(Q\I!@]. This gives the projections II, , for superspin s
of this chiral field strength:

1 _ S 1 _ —
I 0¥, = 5 O 'D.D’D¥, , 1,10, = -;0 'D’D’D ¥y . (3.11.38)

The latter irreducible representation is a “conformal” submultiplet of the (% , 1) multi-

plet (see section 4.5). For II; and II, we must bisect:

My, W, = 07 S (1= K)D*D*w, = 07D L (D*w, + i0,,0°)
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.0, = 0" (1=K)D*D*w, = O°'D* L (D*W, +id ;T") . (3.11.39)
3 Qo
Equivalent forms are:

- 1 = =5 o=
My, W, = -0 'D, 5 (D'D*W, £ D'D*W5)

ERTES | = =5
My, W, = O-'D%D,, 3 (DsV” + D507 . (3.11.40)
Finally we decompose the real vector superfield H o Because of its reality bisec-

tion is unnecessary. Poincaré projection is performed by writing H of = A7;H ., and

(anti)symmetrizing in the indices of the chiral field strengths. To ensure that the projec-

tion operators maintain the reality of H o We combine the II,’s with the II;’s, since

from (3.9.24) ILH .= (I[,H 4;)". We obtain

.
«

1 _ —
HT(J,l‘HaE; =3 O 1AW5{D27D2}H(047) )

1 - = ,
HLO’OHW,;,: ;0 ‘A ADYDUHY

T I q-1Ay.1n0 7
W H =~ SO AGD DD H oy

5 af
T I —-1A~. =2 10 52 10
II léHa[;’ =5 O AVB(D(XD D H(v5) + D,D°D H(w;)) ,
L 1= =2 5
II léﬂaé =3 | AaéD”D D, H; (3.11.41)

where T and L denote transverse and longitudinal. Reexpressing H,; in terms of H o

we find
1 —q-24y. = 5
HTo’lHWé =0 207 :{ D, DQ}G(&gHw) :

= 0720 ,{D* D*}o,H*

l-297.n5 7y ¢
oM 5= 070D D*D,0, Hy,
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L 297, D2 DY é P2 1o é
HTI’%HU‘B - 6 U QGVﬂ(DO‘DQD a(WgH‘S) + D’YDQD 6((¥€.H6) ) )
1 o —
M H 5=~ 5070, ;D"D*D,0,H* . (3.11.42)
b.3. N=2

We begin by giving the expressions for SL(4, C') C’s in terms of those of SU(2) and
SL(2,C):

C(_X@’lé = Cabccd0a50,87 - Cadccbcaﬁcdv )

_ ab ved o ad ,vcb ..
Ciﬁi_c C 0&505’& c“c C&ﬂoéi ,

Cvt_x@;yQ — Cab Cvcd 0045 0,6’7 o Cad ch Cva,@ 0(57 ,

e — o o cdeh _ o 0,0P0h (3.11.43)
We define the SU(2)®Poincaré reduction of DQQQ as follows:

DQQ[_? = CﬂaDQab + CbaD2aﬂ ’

2 _ . 2 ab ba N2 .
D5 =0y D* 4+ O D5

D% = P C 0 D?y + CM D>
1 a =94
D2ab:§Da IDI)()z:DQI)a:(D2 b)T 9

1 b _
DQaﬁZECb Daanﬂ:DQp)a: _(DQ&B)T . (31144)
The set of (possibly) reducible projection operators is:

I, =07"?p'D* |, I,,=07"?D'D" |

m,, =07°Dp,0'D** , T,.=-07D*D'D, ,

1

[

HQ,O — D72ccacbdD2ab54D20d ’
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IL,, =07?D*"D'D?,; . (3.11.45)

In writing II,, and II,; we have taken II, defined by (3.11.19) and used (3.11.44) to fur-

ther reduce it. We can now decompose N = 2 superfields.

We start with a complex N = 2 scalar superfield ¥. We need not bisect the terms

obtained from II, 1 and II;:. Bisecting the rest, we find eight more irreducible projec-
2 2

tions.

My ¥ =077 % (1+K)D*D*v =O*D* % (D*w 4+ 0OV)
My ¥ =077 % (1+K)D'D*¥ =O7*D* % (D' +0OV)
I, U = O0°2C*D?, % (1+K)D'C"p2,,w = O2Ccp2,, D' D?,, % (T +T),

My, 0 =0720%7 - (1 £ K)D' D%, = O2D* D' D%, L (W£T) . (3.11.46)

We give two more results without details: For the N = 2 vector multiplet, described by

a real scalar-isovector superfield V,” we find

HO,O,livab =0O°p*D*+0O)V,"
b 1 -2 vdb n3ey 4 e
V0= 2O 0P DY D0 D, V)

b L -2 vdb 3cy P4 e
V., =§|:| C"D* " DD, C.,Vya©

H271’1V b _ D72D2aﬂ54D2aﬂvab ’

b 1 —2b ce d N2 PDidn2 h
. :_JD ceC CngfDD(cdva Con

1 - c e )
HQ,(],lvab = - 1 O 20 dCb D2d(a|D4(D2|e)fch + DchV|e)f) )

HQ,(J,OVab = %D_20b0D2a0540f€D2derd ; (3.11.47)

where the projection operators are labeled by projector number, superspin, superisospin,

and K conjugation +. Again, to construct real projection operators, the complex



134 3. REPRESENTATIONS OF SUPERSYMMETRY

conjugate must be added for the II,’s and II,’s (II, — I, + 114, II; — II; + II;). Finally,
for the spinor-isospinor superfield U** (the unconstrained prepotential of N = 2 super-

gravity) we find

.. v, =0O72D*'D*w°,

0.5
H4é%\wa =0O2D'D'e, |
HZ%’%\WQ _ % D—2D2deﬁ40b(dCe|cD2bc\1,\a)a :
HZ,;%\WO‘ _ % O-2ce e 2, D' D?, 0",
I, 10 = %Df?D%ﬁDQwﬁ‘I’aw) :
1,07, = 20720%,, D' D e,

a _1 72_b[;) 4 y —-113 € a YT
.9 = ;O72D"D'0, (A7 D° | ;0% W, FiD" ;W)

0l
I, 007, = éD*ZDaf;D‘*aj(l:l*lﬁ?’b( SOV TFID )
00,00, = — é 020" D'a SO0 D% w0, FiDCA,T)
T, 0o 0, = — % I:I’25“‘§D46aﬂ-(l:|’18“"53w\11b€ZFz'ﬁbw-\Tfﬁ) ,
I .0, = i|:|—2Dbﬂﬁ402aﬁ0°‘<“(pm,\1ﬂ)h + D37
M0 0%, = - O72C" D, D' D? (D, 0" + D*;¥,7)

HS,(],l:I:\I!aa = i I:l_20bdDba54CacD2dc(D6'y\Ilery + 56';@6’;) )

My 07, = = 0720 Dy, D'C D, (Dy, 07 + D*33,7) (3.11.48a)
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There are 22 irreducible representations. One simplification is possible: Using (3.9.21)

instead of (3.9.25) for just the first term in 1 + K, we find

o _ 1l 2
0,1 9% = g O (=D DDy, 0" 5 Fid, D" D1 D! ")

a 1 a e a e Ty
I 4009, = gD *(-D? ﬁD4D o5 Fi0, D ﬂDA‘D @ \Ilm.)) ,

a 1 — D) a . Ny N (a y
¥ =50 *(D* DD,V )VZFZG(XBDM’D4D( 2Uy7)

a 1 — a 1N e . _a. ne y
00 = — g O *(D**,D'D,,¥ "Fid ;D D'D:w,) . (3.11.48b)

b.4. N=4

We begin by defining a set of irreducible D-operators:

2 2 2
D af — CﬂaD ab T D [ablaB

3 3
D afy — C’(chba aﬂ’y + (CaﬂD laclby — Ca'yD [ab]cﬁ)

1 . )
D% 4505 = Cacsa D aprs + 3 (Cas5C 3, C ey D) — CopCs, Crooy D* i)

+ (C(xﬂceacdD4bev5 - CavceabdD4ce,85 + Ca506abcD4de,37)

DSaﬁ'y CdcbaDS afy + (CaﬁDS[ac]b'} Ca'yDS[ab]cﬂ)

Db = P pieb 4 poletied (3.11.49)
They satisfy the following algebraic relations

2 _ 2 6ab __ 6ba
Dab_Dba ) D =D

Y

D4a af — D [ab] e8] = CadeDg [ablea = CabcdDS[ab]Ca =0 . (3115())
All SL(2, C) indices on the D"’s are totally symmetric. We also have

D4 — i C D4t_¥s--~gs

Qq-Qy 4! Qq-Qg ?
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Qpoy 1 Q@
D47 Qy I s 8D4g,5~~'gs , (31151)
and these imply
D4aﬂ76 CdcbaD4aﬂ'y§ (CaﬁcﬂvccdefDél lab] Caﬁc&'ycbcefDél }[ad])
+ (CozﬂceacdDéleb’yd . vaycreabdD4ec,85 + 0a506abcD4edﬂ’y) ’ (31152)

as can be verified by substituting explicit values for the indices.

We consider now a complex scalar N = 4 superfield ¥ and find first

HO,O,I = D74D858 5 Hg’()’l = D7458D8 s

m,.,=0"D,p*D"¢ |, 1,,,=0"'D,D°D™®
’90 =

1

27
_ -4 n2ab N8 N6

.0 =D DDy,

1 -4 n2la D) o'c.
H2,1,6 = §D ‘D! b]o;gDSDG[ab} ’ )

— D74D3 D8D5 aaﬁ'}

3 —
3-574 aa,@’y
’

_ 1 q—ap3(able , p8 5 d
H’i _gl:l D[](XDD[ab]c

M4 8 P46
., =0"D &BiéD D

5 = D—454abd5D854ba&ﬁ
H4,0,2o' =0 4D4 [“b]D8D4[cd}[ .

H5 5 4 — D—4D3aaﬁ758D5aaﬂ’y ,

— 1 -4 3 N8 M5 [ab]ca
H5120_§D D[ab]caDDH )

_ -4 N2 N8 M6 ab
HG,O,W - D D abD D )



3.11. Projection operators 137

H6,1,6 = %D74D2[ab]aﬂﬁsD6 [ablocf ) (31153)

where the superisospin quantum number here refers to the dimensionality of the SU(4)
representation. The only projectors that need bisection are the real representations of

SU(4): the 1, 6, 15, and 20’. We find:

MooV =0O7D° % (D% +£ %)
HS,(],l:l:\I! - D_4_58 % (DS\I! j: DQ\II) 5

Mo = 07D D0 )

1 —4p2le L & 1 22 [cd|ABT
My5:¥ = 5 L ‘D! b]aéDg 5 (D0 £ §CabcdDD2[ Wy -

1 — As 1 abla 1 abe BTy
g2V = 50 *D? o D° 5 (DS leblody 4 5C *IOD?,, ")

-4 7y adf 1 5,
Iy 1500 = O 4D4ab&ﬁ'D8b ’ D) (rv£vw) |,

H4,0,20/ilp _ D7454[cd] [ab]D854[ab] [ed] % (\If 4+ \T]) , (31154>
and a total of 22 irreducible representations. The 6 is a real representation only if we

use a “duality” transformation in the rest-frame conjugation (3.11.4):

~

X = %Cabcd)? °dl " This occurs for rank %N antisymmetric tensors of SU(N) when N

is a multiple of 4.
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3.12. On-shell representations and superfields

In section 3.9 we discussed irreducible representations of off-shell supersymmetry
in terms of superfields; here we give the corresponding analysis of on-shell representa-
tions. We first discuss the description of on-shell physical components by means of field
strengths. We then describe a (non-Lorentz-covariant) subgroup of supersymmetry,
which we call on-shell supersymmetry, under which (reducible or irreducible) off-shell
representations of ordinary (or off-shell) supersymmetry decompose into multiplets that
contain only one of the three types of components discussed in sec. 3.9. By considering
representations of this smaller group in terms of on-shell superfields (defined in a super-
space which is a non-Lorentz-covariant subspace of the original superspace), we can con-

centrate on just the physical components, and thus on the physical content of the theory.

a. Field strengths

For simplicity we restrict ourselves to massless fields. (Massive fields may be
treated similarly.) It is more convenient to describe the physical components in terms of
field strengths rather than gauge fields: Every irreducible representation of the Lorentz
group, when considered as a field strength, satisfies certain unique constraints (Bianchi
identities) plus field equations, and corresponds to a unique nontrivial irreducible repre-
sentation of the Poincaré group (a zero mass single helicity state). On the other hand, a
given irreducible representation of the Lorentz group, when considered as a gauge field,
may correspond to several representations of the Poincaré group, depending on the form

of its gauge transformation.

Specifically, any field strength 1 totally symmetric in its 2A undotted

(xl...ong&l...&gB’
indices and in its 2B dotted indices, has mass dimension A + B + 1 and satisfies the con-

straints plus field equations

0115 _ afd —
0 w =0 qbal...am&l...&w =0 ) (3121a>

()(1...()(2,4(;(1...(;(23

i =0 . (3.12.1b)

. .
aq...09 A 0...9B

The Klein-Gordon equation (3.12.1b) projects onto the mass zero representation, while
(3.12.1a) project onto the helicity A — B state. The Klein-Gordon equation is a conse-

quence of the others except when A= B=0. To solve these equations we go to
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momentum space: Then (3.12.1b) sets p* to 0 (i.e., ¥~d(p?)), and we may choose the
Lorentz frame p++. = p+‘. =0, p". #0. In this frame (3.12.1a) states that only one com-

ponent of ¢ is nonvanishing: Since each “+” index has a helicity % and each

“L” has helicity — %, the total helicity of v is A — B, and of its complex conjugate

B — A. In the cases where A = B we may choose 1 real (since it has an equal number

of dotted and undotted indices), so that it describes a single state of helicity 0.

The most familiar examples of field strengths have B =0: A =0 is the usual

description of a scalar, A = % a Weyl spinor, A = 1 describes a vector (e.g., the photon),

A= g the gravitino, and the case A = 2 is the Weyl tensor of the graviton. Since we are

describing only the on-shell components, we do not see field strengths that vanish on
shell: e.g., in gravity the Ricci tensor vanishes by the equations of motion, leaving the
Weyl tensor as the only nonvanishing part of the Riemann curvature tensor. (This hap-
pens because, although these theories are irreducible on shell, they may be reducible off
shell; i.e., the field equations may eliminate Poincaré representations not eliminated by

(off-shell) constraints.) The most familiar example of A, B#0 is the field strength of

the second-rank antisymmetric tensor gauge field: (4, B) = (% , %) (see sec. 4.4.c). Some
less familiar examples are the spin—; representation of spin %, (A,B) = (1, %), the spin-2

representation of spin 0, (4, B) = (1,1), and the higher-derivative representation of spin

1, (A,B) = (% , %) Generally, the off-shell theory contains maximum spin indicated by

the indices of ¢: A + B.

Although the analogous analysis for supersymmetric multiplets is not yet com-
pletely understood, the on-shell content of superfields can be analyzed by component
projection. In particular, a complete superfield analysis has been made of on-shell multi-
plets that contain only component field strengths of type (A4,0). This is sufficient to
describe all on-shell multiplets: Theories with field strengths (A, B) describe the same
on-shell helicity states as theories with (A — B,0), and are physically equivalent. They
only differ by their auxiliary field content. Furthermore, type (A,0) theories allow the
most general interactions, whereas theories with B # 0 fields are generally more
restricted in the form of their self-interactions and interactions with external fields. (In

some cases, they cannot even couple to gravity.)
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Before discussing the general case, we consider a specific example in detail. The

multiplet of N = 2 supergravity (see sec. 3.3.a.1) with helicities 2, g , 1, is described by

component field strengths ,5.5(z), V45, (), ¥ ,5(z). They have dimension 3,;,2
respectively, and satisfy the component Bianchi identities and field equations (3.12.1).

We introduce a superfield strength F ((])“baﬂ(x, ) that contains the lowest dimension com-

ponent field strength at the § = 0 level:

Foyas(z,0)] = CFg05(z, 0)] = " o5(z) . (3.12.2)

We require that all the higher components of F, are component field strengths of the
theory (or their spacetime derivatives; superfield strengths contain no gauge Components
and, on shell, no auxiliary fields). Thus, for example, we must have D, F )" .| # 0,
whereas C°UD, +F o) aﬁ| = D F o) aﬂ‘ = 0. Since a superfield that vamshes at 0 =0
vanishes identically (as follows from the supersymmetry transformations, e.g., (3.6.5-6))
CC(dDmF(O)“b)aﬁ = EW-F (O)Gbaﬁ = 0. From these arguments it follows that the superfield

equations and Bianchi identities are:

B) ab
D-F(O) 04/3:0 5

DQD;YF(O) af — 5 511 2)aBys

D.DsD Fig)"05 =0 ; (3.12.3)

where Fy)(z,0) and F () (z,0) are superfields containing the field strengths Y’ 5, (z) and
Yop,s(7) at the 0 =0 level. By applying powers of D, and D_g- to these equations we
recover the component field equations and Bianchi identities, and verify that F(O)“baﬁ

contains no extra components.

Generalization to the rest of the supermultiplets in Table 3.12.1 is straightforward:
We introduce a set of superfields which at # =0 are the component field strengths (as in
(3.12.1)) that describe the states appearing in Table 3.3.1: These superfields satisfy a set
of Bianchi identities plus field equations (as in the example (3.12.3)) that are uniquely

determined by dimensional analysis and Lorentz ® SU(N) covariance.
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helicity scalar multiplet super-Yang-Mills supergravity
+2 F 5y
+3/2 F s,
+1 Fos F* 5
+1/2 F, F°, Fete,
0 o Fab frabed
1/2 o, Foe, Frovede,
1 Fabcd&ﬁ. Fabcdef&ﬁ.
3/2 Fubcdefg&é’;
9 Fabcdefgh&é%

Table 3.12.1. Field strengths in theories of physical interest

We now consider arbitrary supermultiplets of type (A4,0). There are two cases:

For an on-shell multiplet with lowest spin s = 0, the superfield strength has the form
F gy im, % <m < N, and is totally antisymmetric in its m SU(N) isospin indices. If

the lowest spin s > 0, the superfield strength has the form F and is totally sym-

a1 Qgg
metric in its 2s Weyl spinor indices. To treat both cases together, for s > 0 we write
Fgy®on = C""F () Then the superfield strength has the form

F((]) ay--Qm

Qaq--Qag Qs ”

oy-aps @0 is totally antisymmetric in its isospinor indices and totally symmetric

in its spinor indices. It has (mass) dimension s + 1.

This superfield contains all the on-shell component field strengths; in particular, at

6 =0, it contains the field strength of lowest dimension (and therefore of lowest spin).

. C . - N —N+1 .
For s=0, the superfield strength describes helicities m 5 m 5 + ,---,%, and its
.- . . C . m —-m+1 N-—-m .
hermitian conjugate describes helicities — STy Ty Since m < N, some

helicities appear in both F') and F (0)- For s > 0, the superfield strength describes helic-
ities s, s+ % N %, and its hermitian conjugate describes helicities
—(s+ %),~-~,— s. In this case, positive helicities appear only in F(, and negative
helicities only in F(O). For both cases the superfield strength together with its conjugate

describe (perhaps multiple) helicities +s, +(s + %) st (s + %)
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The higher-spin component field strengths occur at § =0 in the superfields F,
obtained by applying n D’s (for n > 0) or —n D’s (for n < 0) to F . They are totally
antisymmetric in their m — n isospinor indices and totally symmetric in their 2s + n spin

indices, and satisfy the following Bianchi identities and field equations:

1

n > 0 : Dn’gn“'glF(O)almamal"-(/ws - m 51)1 [al. t 5bna"F(”)a"+1mam]al"-(/@sﬂl---ﬂn’ (3124a>
Y a1...Qpy __ ay...apby..b_y,
n<0: D é—n---élF(O) 1 = F(n) 1 1 ,él...ﬂ.,n 5 (3124b)

with m — N <n < m; in particular, for s > 0, DF ) = 0. These equations follow from
the requirement that all components of the on-shell superfield strength (defined by pro-
jection) are on-shell component field strengths. The 6 = 0 component of the superfield
F ) is the lowest dimension component field strength; this determines the dimension and
index structure of the superfield. The higher components of the superfield are either
higher dimension component field strengths, or vanish; this determines the superfield

equations and Bianchi identities. Note that the difference between maximum and mini-

mum helicities in the F(, is always %N .

In the special case s =0, m even, and m = %N we have in addition to (3.12.4a,b)

the self-conjugacy relation

F(O) N — CalmaNF(O)al

- (3.12.4c)
(5 N)! ?

NON

For this case only, F',) is related to F'._,; this relation follows from (3.12.4c) for n =0,
and from spinor derivatives of (3.12.4c), using (3.12.4a,b), for n > 0. Egs. (3.12.4a,b)
are U(N) covariant, whereas, because the antisymmetric tensor C*¥ is not phase
invariant, (3.12.4c) is only SU(N) covariant; thus, self-conjugate multiplets have a

smaller symmetry.

b. Light-cone formalism

When studying only the on-shell properties of a free, massless theory it is simpler
to represent the fields in a form where just the physical components appear. As
described in sec. 3.9, we use a light-cone formalism, in which an irreducible representa-

tion of the Poincaré group is given by a single component (complex except for zero
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helicity). For superfields we make a light-cone decomposition of 6 as well as z. We use

the notation (see (3.1.1)):

(x++.,x+:,x"+.,x":) = (x+,xT,fT, —z7) , (0°7,0°) = (6°,¢") , (3.12.5a)

(0,2,0,4,0 2,0 )= (0,,07,97,—8) , (8,.,8,)=(0,,8,) . (3.12.5b)

+
(The spinor derivative 9, should not be confused with the spacetime derivative 0,).
Under the transverse SO(2) part of the Lorentz group the coordinates transform as
+/ + Ty

e =%, 2T =e* gt 0V =", (Y=e"" (" and the corresponding derivatives trans-

form in the opposite way.

In sec. 3.11 we described the decomposition of general superfields in terms of chiral
field strengths, which are irreducible gauge invariant representations of supersymmetry
off shell. Although they contain no gauge components, they may contain auxiliary fields
that only drop out on shell. To analyze the decomposition of an irreducible off-shell rep-
resentation of supersymmetry into irreducible on-shell representations, we perform a
nonlocal, nonlinear, nonunitary similarity transformation on the field strengths ® and all
operators X:

, , , 0
d'=eo X' =eXe ™ . H=(¢"i0,)

T 12.
7. (3.12.6a)

Y

We use this transformation because it makes some of the supersymmetry generators

independent of (“ in the chiral representation. Dropping primes, we have

Qa+ = Zaa ) @a; = Z'(a_a - 0“2’6+) )
Or

5-) o Q=i = 0%i0p +iC” E) : (3.12.6b)
+

—i(§
Qa— Z( a+aa a+

Thus @, and @ are local and depend only on 9,, 6, and 9., but not on §,, ¢*, d_, and
O7, whereas . and Q- are nonlocal and depend on all 0, and 0,. We expand the
transformed superfield strength ® in powers of (* (the external indices of ® are sup-

pressed):

N

. 1 ;
(I)(xaaa gav CZ) = Z % Cmalmam(b(m)am--.al('xaav 9(1) ) (3'12'7>

m=0
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where the m™ power (™, and thus ®(m), 1s totally antisymmetric in isospinor indices.

Each ¢, is a representation of a subgroup of supersymmetry that we call “on-
shell” supersymmetry, and that includes the @, transformations, the transverse SO(2)
part of Lorentz transformations (and a corresponding conformal boost), SU(N) (or
U(N)), and all four translations (as well as scale transformations in the massless case).
Although each ¢, is a realization of the full supersymmetry group off-shell as well as
on-shell, on-shell supersymmetry is the maximal subgroup that can be realized locally

(and in the interacting case, linearly).

The remaining generators of the full supersymmetry group (including the other
Lorentz generators, that mix 6 with ¢*) mix the various ¢,,’s. In particular, @ and
Q- allow us to distinguish physical and auxiliary on-shell superfields: Auxiliary fields
vanish on-shell, and hence must have transformations proportional to field equations.

We go to a Lorentz frame where 0y =0. In this frame, @, =1id, and

Q.= z’(é_ 0t ag) The @ and Q. supersymmetry variation of the highest ¢, compo-

+

nent of @,

.
vy — Py ~ ER -1 (3.12.8a)
+

is proportional to [1, which identifies it as an auxiliary field. Setting ¢y, to zero on-

shell, we iterate the argument: the variation of the next component of ®,

O

' no1y — Pv-ry ~ 1 a9 b(n-2) (3.12.8b)
+

is again proportional to [, etc. We find that only ¢(0) has a variation not proportional

to OJ. This identifies it as the physical on-shell superfield.

Thus, on-shell, ® reduces to ¢q. (All other ¢, vanish.) In the Lorentz frame
chosen above (07 = 0), @ and Q- vanish when acting on ®(0), and thus this superfield is
a local representation of the full supersymmetry algebra on shell, namely, it describes
the multiplet of physical polarizations. By expanding actions in (, it can be shown that
¢(o) represents the multiplet of physical components while the other ¢,,’s represent mul-

tiplets of auxiliary components.
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We can also define (chiral representation) spinor derivatives D,, D® that are

covariant under the on-shell supersymmetry:

D,=0,+0,0, , D*=0" ; {D,,D"} =40, . (3.12.9)

When a bisection condition is imposed on the chiral field strength ® (i.e., ® is real,
as discussed in sec. 3.11), we can express the condition in terms of the on-shell super-

fields. For superspin s = 0, the condition
e =00 (3.12.10)
becomes

NN -1 . —m ay...a
DN(b(m)almam = ZND o (Za-‘r)N m (A (b(N—m) ANyt (31211>

(where DV = %C‘W ~a N and similarly for superspin s > 0. In general, an on-

al...aN>
shell representation can be reduced by a reality condition of the form D¢ ~ (id +)%N o)

1
when the “middle” (A2") component of ¢ has helicity 0 (i.e., is invariant under trans-
verse SO(2) Lorentz transformations ). (Compare the discussion of reality of off-shell

representations in sec. 3.11.)

Putting together the results of sec. 3.11 and this section, we have the following
reductions: general superfields (4N 6’s; physical + auxiliary + gauge) — chiral field
strengths (2N 6’s; physical + auxiliary = irreducible off-shell representations) — chiral
on-shell superfields (N 6’s; physical = irreducible on-shell representations). All three
types of superfields can satisfy reality conditions; therefore, the smallest type of each has
24V 22N " and 2V components, respectively (when the reality condition is allowed), and is
a “real” scalar superfield. All other representations are (real or complex) superfields
with (Lorentz or internal) indices, and thus have an integral multiple of this number of
components. These counting arguments for off-shell and on-shell components can also
be obtained by the usual operator arguments (off-shell, the counting is the same as for
on-shell massive theories, since p*# 0), but superfields allow an explicit construction,

and are thus more useful for applications.

Similar arguments apply to higher dimensions: We can use the same numbers
there (but taking into account the difference in external indices), if we understand “4N”

to mean the number of anticommuting coordinates in the higher dimensional superspace.
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For simple supersymmetry in D < 4, because chirality cannot be defined, the counting of

states is different.
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3.13. Off-shell field strengths and prepotentials

We have shown how superfields can be reduced to irreducible off-shell representa-
tions (sec. 3.11), which can be reduced further to on-shell superfield strengths (sec.
3.12). To find a superfield description of a given multiplet of physical states, we need to
reverse the procedure: Starting with an on-shell superfield strength F', that describes
the multiplet, we need to find the off-shell superfield strength W that reduces to F' g on
shell, and then find a superfield prepotential ¥ in terms of which W can be expressed.
There is no unambiguous way to do this: The same F ;) is described by different W’s,
and the same W is described by different ¥’s. However, for a class of theories that
includes many of the models that are understood, we impose additional requirements to
reduce the ambiguity and find a unique chiral field strength and a family of prepotentials

for a given multiplet.

The multiplets we consider have on-shell superfield strengths of Lorentz representa-

tion type (A,0) (superspin s = A) and are isoscalars: F ) From (3.12.4b), this

Qg ®
implies that the F(y’s are chiral and therefore can be generalized to off-shell irreducible
D [}W

(up to bisection) field strengths W = 0. Physically, the W’s correspond

gy s —
to field strengths of conformally invariant models. (They transform in the same way as
CY: as SU(N) scalars, but not U(N) scalars). In the physical models where these
superfields arise, the chirality and bisection conditions on W are linearized Bianchi
identities. We can use the projection operator analysis of sec. 3.11 to solve the identities

by expressing the W’s in terms of appropriate prepotentials.

When there is no bisection (s + %N not an integer), the W’s are general chiral

superfields: W = DMy The ¥

. P ’s may be expressed in terms of more fun-

RN
damental superfields. An interesting class of prepotentials are those that contain the

lowest superspins: In that case, the W’s have the form

N<2—1W — 1 penpw

Qg (23)! (a1ay

/él . féM o .
80‘]\'“ 80‘N+M \I!aN+zv1+1"'Oézs)/31"v3M

N>2s—1: W — L DDN v “reew(3.13.1)

Qg (—=M)!(25)! ara_py QpQag g T agg)byboy

where U is an arbitrary (complex) superfield and M = s — = (N + 1).

N —



148 3. REPRESENTATIONS OF SUPERSYMMETRY

If W is bisected (s +%N integer, (1 —K)W =0), then U must be expressed in

terms of a real prepotential V' that has maximum superspin s. W has a form similar to

(3.13.1):

1 59N AN Ji 8,
< . — ... M « .
N = 2s: Walma?s (2s)! D= D (alu'O‘NaaN“ aaN*M VU‘N+M+1"'0425)51'”/3M
) _ 1 sonpw byeeb_ ay-a_
N = 2s: Wal"'%s o (—M)! DD [“1"'“—1%][ ' M]ay"agsvbl'--b,M e (3'13'2>

WhereM:s—%N.

Whether or not W is bisected, ambiguity remains in the prepotentials U , V', since

they may still be expressed as derivatives of more fundamental superfields: This leads to
“variant off-shell multiplets” (see sec. 4.5.c). Our expression (3.13.1) for ¥ in terms of ¥
is an example of such an ambiguity: There is no a priori reason why ¥ must take the
special form, unless it is obtained as a submultiplet of a bisected higher-N multiplet (as,
for example, in the case of the N =1 spin g,l multiplet (sec. 4.5.e), which is a submul-
tiplet of the N = 2 supergravity multiplet). Modulo such ambiguities, the expressions

for W in terms of ¥ and V are the most general local solutions to the Bianchi identities

constraining W (i.e., chirality, and if possible, bisection).
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In this chapter we discuss interacting field theories that can be built out of the
superfields of global N =1 Poincaré supersymmetry. This restricts us to theories
describing particles with spins no higher than 1. The simplest description of such theo-

ries is in terms of chiral scalar superfields for particles of the scalar multiplet (spins 0
and %), and real scalar gauge superfields for particles of the vector multiplet (spins %

and 1). However, other descriptions are possible; we treat some of these in a general
framework provided by superforms. We describe N =1 theories and also extended
N < 4 theories in terms of N = 1 superfields. Our primary goal is to explain the struc-

ture of these theories in superspace. We do not discuss phenomenological models.

4.1. The scalar multiplet

a. Renormalizable models

The lowest superspin representation of the N = 1 supersymmetry algebra is car-
ried by a chiral scalar superfield. In sec. 3.6 we described its components and transfor-

mations. In the chiral representation we have &) = A+ 0%, —6°F, with complex

scalar component fields A = 2*%(A—HB), F = 27%(F+iG), and the transformations of
(3.6.6).

a.l. Actions

To find superspace actions for the chiral superfield we use dimensional analysis:

The superfield contains two complex scalars differing by one unit of dimension (recall

that # has dimension — 5); however, it contains only one spinor, and we require this

spinor to have the usual physical dimension % Therefore, we should assign the super-

field dimension 1. This leads us to a unique choice for a free (quadratic) massless action

with no dimensional parameters:
S in = /d% d'g ®d (4.1.1)

(see sec. 3.7.a for a description of the Berezin integral). Up to an irrelevant phase there
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is a unique mass term and a unique interaction term with dimensionless coupling con-

stant:
Simry = [ Az d0 Emd* + 2% + [ d'2d0 Emd + 2P
(m\) = x (§m + 30 ) + x (§m<I> + 5@) ) (4.1.2)

The resulting action describes the “Wess-Zumino model”.

All of the integrals are independent of the representation (vector, chiral or antichi-
ral) in which the fields are given; the integrands in different representations differ by

total z-derivatives (from the e” factors, see (3.3.26)), that vanish upon z-integration.

We can express the action in its component form either by straightforward
f-expansion and integration, or by D-projection. In the former approach, we write for

example, in the antichiral representation for ® = &), and &) = VdH);

Sin = / d*z d'0 eV

= / Ao d'0 [A+ 0%, — 2F) T 0 [A 1 0%, — 0°F] | (4.1.3a)
and after some algebra obtain
Sin = /d4x [AOA + ¢%i0% 31, + FF] . (4.1.3b)

It is simpler to use the projection technique; we write /d4xd49 = /d4x52D2 and

S in = / d'z d'0 dd = / d*z D*[®D*®]|

= /d% [®D*D*® + (D*®)(D*®) + (D°®)(D;D*®)]| . (4.1.4)

Using the identities DD*® = Di0® and D?D?*® = [O®, which follow from the chirality of
®, and the definition of the components (3.6.7), we obtain (4.1.3b).

To evaluate chiral integrals by projection we write, for any function f(®)

/d% d*0 f(®) = /d% D*f(®)
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= [t (@)D + f1@)0")

= [t + rar (4.15)
In particular we obtain for the mass and interaction terms
Smy) = /d4x {m[y* + AF] + M\[A® + %FAQ] +h.c.} . (4.1.6)

(Without loss of generality, we can choose m and A real.)

We could add a linear term £® and its hermitian conjugate to the action (4.1.2).
Such a term would add to the component action a linear £éF + ¢F term. However, in
the Wess-Zumino model such a term can always be eliminated from the action by a con-
stant shift ® — ® 4 ¢. Linear terms do however play an important role in constructing

models with spontaneous supersymmetry breaking (see sec. 8.3).

a.2. Auxiliary fields

The component field F' does not describe an independent degree of freedom; its

equation of motion is algebraic:

F=—-mA—-)\A* | (4.1.7)

N | —

If we eliminate the auziliary field F' from the action and the transformation laws, we find

5= /d% (A0 — m2) A + §9i0° 30, + m(? + )

= S mAAR + AA%) — S NATE 4 A4y + APP)] (4.1.8)
and
0A =—€"Y,
ou = €0 A — e (mA+ AL) (4.1.9)

Therefore the Wess-Zumino action gives equal masses to the scalars and the spinor,

cubic and quartic self-interactions for the scalars, and Yukawa couplings between the
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scalars and the spinor, all governed by a common coupling constant.

After eliminating F', the supersymmetry transformations of the spinor are nonlin-
ear; this makes an analysis of the supersymmetry Ward identities without the auxiliary
fields difficult. This is not the only problem caused by eliminating auxiliary component
fields: The transformations are not only nonlinear, but also dependent on parameters in
the Lagrangian, and it is difficult to discover further supersymmetric terms that could be
added to the component Lagrangian (e.g., gauge couplings). Furthermore, equation
(4.1.7) is not itself supersymmetric unless the equation of motion of the spinor is satis-

fied; only then is
§F = — %0 s1p,, (4.1.10a)

the same as

SF(A) = 6(—mA — 2 AA%) = (m + AA)epy . (4.1.10b)

1
2
For this reason, formulations of supersymmetric theories that lack the component auxil-
iary fields are often called “on-shell supersymmetric”. Indeed, if we calculate the com-
mutator of two supersymmetry transformations acting on the spinor, we find that the
fields A, v, form a representation of the algebra (i.e., the algebra closes) only if the

spinor equation of motion is satisfied.

The Wess-Zumino model can be generalized to include several chiral superfields.

The most general action that leads to a conventional renormalizable theory is
S = /d% d*0 ®,0" + /d% d’0 P(®') + h.c. (4.1.11)

where P is a polynomial of maximum degree 3 in the fields. The component action has

the form

= / o [LOA + §,550° 1,1 + FF

+ /d% [P,(A)F' + Pij(A)%Wwa-f +h.c.] (4.1.12)

where
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2
op p - 9P (4.1.13)

Pi YT DAIDAI

ZZGAZ Y

In particular, elimination of the auxiliary fields gives the scalar interaction terms (the

scalar potential U):
—UAY) ==Y P . (4.1.14)

As a consequence of supersymmetry (see (3.2.10)) the potential is positive semidefinite.
The action (4.1.11) can also be invariant under a global internal symmetry group carried

by the ®’s.

a.3. R-invariance

An additional tool used to study these models is R-symmetry (3.6.14). This is the

chiral symmetry generated by rotating # and # by opposite phases (so that / d*0 is

invariant but / d* is not) and by rotating different chiral superfields by related phases:
O(2,0,0) — e " D(z,e"0,e"0) . (4.1.15)

It may be, but is not always, possible to assign appropriate weights w to the various
superfields to make the total action R-invariant. For example, with only one chiral mul-

tiplet, R-invariance holds if either a mass or a dimensionless self-coupling is present, but
not both: The appropriate transformations weights are w =1 and w = % respectively.

With more than one chiral multiplet, it is possible to write R-symmetric Lagrangians
having both mass and interaction terms: A chiral self-interaction term is R-invariant if

its total R-weight w = 2 (i.e., the sum of the R-weights of each superfield factor is 2).

a.4. Superfield equations

From the action for a chiral superfield, we obtain the equations of motion by func-

tional differentiation (see (3.8.10,11)). For example, including sources, we have
S = /d% 49 3o + {/d% d%0 [P(®) + JO] + h.c.} | (4.1.16)

from which, using (3.8.9-12), we derive the equations

D*® +P'(®)+J =0 (4.1.17a)
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D*® +P'(®)+J =0 . (4.1.17b)

We consider first the massive noninteracting case P(®) = %mCDQ. Multiplying (4.1.17a)

by D?, we find
D?*D*® + mD*® + D*J =0 . (4.1.18)

Substituting (4.1.17b) into (4.1.18) and using the chirality of ® (D*D?® = [®), we

obtain

(O — m*)® =mJ — D*J . (4.1.19)
Similarly, we find

(O - m*)® =mJ — D*J . (4.1.20)
and these equations can be readily solved.

For arbitrary P(®), we derive the equations of motion for the component fields by

projection from the superfield equations. Successively applying D’s to (4.1.17a) we find

iaa&ﬁ& + P”(A)iﬁa + Jd)a —0

OA+P"(A)y* +P'"F+ Jp=0 (4.1.21)

as would be obtained from the component Lagrangian.

b. Nonlinear o-models

If renormalizability is not an issue, we can construct general supersymmetric
actions by taking arbitrary functions of ®, ®, and their derivatives, and integrating over
superspace. An interesting class of supersymmetric models that can be constructed out
of chiral superfields is the generalized nonlinear o-model. In ordinary spacetime, a gen-
eralized nonlinear o-model is described by fields ¢' that are the coordinates of an arbi-

trary manifold. The action of such a model is

—_1

5, =1 [ ' 9,000 | (4.1.22)
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where glj(gbi) is the metric tensor defined on the manifold. The supersymmetric general-
ization of these models is described by chiral superfields ® and their conjugates ®,
which are the complex coordinates of an arbitrary Kéhler manifold (see below). (We use
a group theoretic convention: Upper and lower indices are related by complex conjuga-
tion, and all factors of the metric are kept explicit.) The action depends on a single real
function IK (®,®) defined up to arbitrary additive chiral and antichiral terms that do

not contribute:
S, = /d% d'9 IK(®',®;) . (4.1.23)

The component content of this action can be worked out straightforwardly using the
projection technique; we find

-1

0*IK o
S, = 2/d4x (0,A)(0%A;) + - -+ . (4.1.24)

DADA,

2

This has the form (4.1.22) if we identify % as the metric g;. A complex manifold
. ;

whose metric can be written (locally) in terms of a potential IK is called Kéhler; thus all
four-dimensional supersymmetric nonlinear o-models are defined on Kéahler manifolds.
Conversely, any bosonic nonlinear o-model whose fields reside on a Kéahler manifold can
be extended to a supersymmetric model. The remaining terms in (4.1.24) provide cou-

plings between the scalar fields and the spinor fields.

Kahler geometry is an interesting branch of complex manifold theory that mathe-
maticians have investigated extensively. Here we discuss only those aspects relevant to

subsequent topics (e.g., sec. 8.3.b). We define

0 o 0 0

Jredn _ _ ... : __ ... K . 4.1.25
ttm a‘b“ 8@Zm a(P?l 6<Pjn ( a>
In particular, the metric is
K K (4.1.25b)
L0998, -

Equivalently, we can write the line element as

ds® = IK;/ d®' d®; . (4.1.25¢)



156 4. CLASSICAL, GLOBAL, SIMPLE (N=1) SUPERFIELDS

The metric, like the action (4.1.23), is invariant under Kéhler gauge transformations
K — IK + A(®) + A(D) (4.1.26)

of the Kéhler potential IK. Field redefinitions ®' = f(®) define holomorphic coordinate
transformations on the manifold; under these, the form of the metric (4.1.25b,c) is pre-
served, whereas under arbitrary nonholomorphic coordinate transformations, in general
terms of the form g, d®' d®’ and g¥ dP, d(fj are generated in the line element. The
nonhermitian metric coefficients g;; , g7 are not related to IK ; and IK Y. When working
with superfields, since ®' is chiral, only holomorphic coordinate transformations make

obvious sense; however, we can perform arbitrary coordinate transformations on the

scalar fields A°.

Using the gauge transformations (4.1.26) and holomorphic coordinate transforma-
tions, it is possible to go to a normal gauge where, at any given point ®,, ®,, evaluated

at 0 =0 =0,

K., = IK/vvin =0 forall m,m (4.1.27a)

ZKZYU% =K =0 foralln,m>1 |, (4.1.27b)

K =n’ (4.1.27c¢)

with 7,7 = (1,1,...—1,—1,...) depending on the signature of the manifold. If the ®’

describe physical matter multiplets, 7,7 = §,7. In a normal gauge, all the connections

vanish at the point @, the Riemann curvature tensor has the form:
R =IK," | (4.1.28a)

with all other components related by the usual symmetries of the Riemann tensor or

zero, and hence the Ricci tensor is simply:
R =IK,”" . (4.1.28Db)
In a general gauge, the connection is

b =IK, (IK")" (4.1.29a)

iy
where (IK7'),* is the inverse of the metric IK,'; all other components are related by

complex conjugation or are zero. The contracted connection is, as always,
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I, =T,7 =[Indet IK,']; . (4.1.29b)

L)

The Riemann tensor in a general gauge is

Rijkl = E(ikﬂ - (ZK71>mn ZKikm ZK’nﬂ (4130&)
and the Ricci tensor has the simple form
R =R’,'IK =[Indet IK;'],’ . (4.1.30b)

Manifolds can have symmetries, or isometries. On a Kéahler manifold, an isometry
of the metric is, in general, an invariance of the Kahler potential IK up to a Kahler
gauge transformation (4.1.26). One can require the isometry to be an invariance of the
potential. (Actually, this is only true if there is a point on the manifold where the isom-
etry group is unbroken, i.e., the transformations do not shift the point.) This (partially)
fixes the Kéhler gauge invariance: It is no longer possible to go to a normal gauge
(4.1.27). However, holomorphic coordinate transformations still make it possible to
choose normal coordinates, where the metric IK,;’ satisfies (4.1.27c), and its holomorphic

= IK] , satisfy (4.1.27b) (likewise for the antiholomorphic

L2l 11l

derivatives (IK,;’)

derivatives) but the conditions (4.1.27a) are not satisfied.

In arbitrary coordinate systems, the isometries act on the coordinates as
0O = Ak, 6, = A* k,, (4.1.31)

where the A’s are infinitesimal parameters (A = A are constant unless we introduce
gauge fields and gauge the isometry group; supersymmetric gauge theories are discussed
in the remainder of this chapter), and the k(®,®)’s are Killing vectors. These satisfy

Killing’s equations:

ka4 k9t =k kayg =0 (4.1.32a)
ky'; + (IK Yk " K =0 . (4.1.32b)
where
. Ok
ko= k= = 4.1.32
7% ( c)

and
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, , - Ok' ,
K=k, + kT, = 257 T EPIK N (IK)) (4.1.32d)

For holomorphic Killing vectors k' = k'(®),k; = k;(®), (4.1.32a) is a triviality and
(4.1.32b) follows directly from

Kk, ' +IK'k,, =0, (4.1.33)

which is just the statement that the Kahler potential is invariant under the isometries.
(Actually, invariance up to gauge transformations (4.1.26) suffices to imply (4.1.32Db).)

We can also write the transformations (4.1.31) as

, R _ 0 =
i AA j 7 __ AA ) .
00" = A* k, 57 o' 00, = Ak, —a(fj D, (4.1.34a)
This form exponentiates to give the finite transformation:
D" = exp (A* k,’ i) P’ O =erp (A kb, —) &, (4.1.34b)
A 3<I)J ’ () A a®7 ()

For the cases when there exists a fixed point on the manifold, we can choose a special
coordinate system (that in general is not compatible with normal coordinates) where the

transformations (4.1.31,34) take the familiar form

6" =N (T,); @ , 00, = —i®,A* (T,), (4.1.35a)
or, for finite transformations,
= (M B B =8 (7N Ta), (4.1.35b)

In arbitrary coordinates, the notion of multiplying vectors by ¢ is represented by
multiplication by a two index tensor called the complex structure. It has the property
that its square is —1 x a Kronecker delta. For a Kéahler manifold, the complex structure

is covariantly constant and preserves the metric.

It may happen that there exist nontrivial nonholomorphic coordinate transforma-
tions that do preserve the form of the metric (4.1.25b,c); then one can show that the
manifold is hyperKdhler. Such manifolds have three linearly independent complex struc-
tures and are locally quaternionic. They are even (complex) dimensional; all
hyperKéhler manifolds are Ricci flat, though the converse is true only in four (real)

dimensions (two complex dimensions).
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4.2. Yang-Mills gauge theories

a. Prepotentials

In general, we can find a formulation of any supersymmetric gauge theory either
by studying off-shell representations to derive the free (linear) theory in terms of uncon-
strained gauge superfields or prepotentials, or by postulating covariant derivatives and
imposing covariant constraints on them until all quantities can be expressed in terms of
a single irreducible representation of supersymmetry. In the former case, we must con-
struct covariantly transforming derivatives out of the unconstrained fields and generalize
to the nonlinear case, whereas in the latter case we must solve the covariant constraints
in terms of prepotentials. We study both approaches and exhibit the relation between

them.

a.l. Linear case

From the analysis of sec. 3.3.a.1, the N =1 vector multiplet consists of massless
spin % and spin 1 physical states. We denote the corresponding component field

strengths by A,, f.3. According to the discussion of sec. 3.12.a, these lie in an irre-

ducible on-shell chiral superfield strength W,,, which satisfies the field equations and

)

Bianchi identities D"V, = 0. The corresponding irreducible off-shell field strength is a
chiral superfield W,, D;W, = 0, satisfying the bisection condition (s + %N = % + % is
an integer) KW, = — W, which can be written (see (3.11.9))

DWW, =—DWg . (4.2.1)

(We have a — sign in the bisection condition to obtain usual parity assignments for the
components.) Therefore, by (3.13.2), it can be expressed in terms of an unconstrained

real scalar superfield by
W,=iD*D,V , Ws=—4iD*D;V , V =V (4.2.2)
and this turns out to be the simplest description of the corresponding multiplet.

The definition of W* is invariant under gauge transformations with a chiral param-

eter A



160 4. CLASSICAL, GLOBAL, SIMPLE (N=1) SUPERFIELDS

V=V +iA—-A) , DiA=D,A=0 . (4.2.3)

Later we generalize this to a nonabelian gauge invariance, but for the moment we ana-

lyze the simplest case. The prepotential V' can be expanded in components by projec-

tion:
C=V] , Xa=1iDV| , Xa=—iDgVl] ,
M=DW| , M=DV|, Agz=;[D;DJV|
)‘oz == iEZDaV‘ ) Xo'c = - ZDQD_(;V‘ ’ D’ = %DQEZD&V‘ . (424&)

(To avoid confusion with D,, we denote the “D” auxiliary field by D’.) As discussed in
sec. 3.6.b, there is some choice in the order of the D’s which simply amounts to field
redefinitions. The particular form we chose in (4.2.4a) is such that the physical compo-
nents are invariant under the A gauge transformations (except for an ordinary gauge

transformation of the vector component field). By making a similar component expan-

sion
A=A, A,=D,Al , A,=D?A| |, (4.2.4Db)

we find

0C = Z(‘/_\l - Al) )

6XO[ = A‘OL )

oM = — 1A,

514040'4 =5 aao’z(Al + Kl) y
6)\(¥ - 0 )
oD'=0 . (4.2.5)

Thus, all the components of V' can be gauged away by nonderivative gauge transforma-
tions except for A,, A\, and D’. The vector and spinor are the physical component fields

of the multiplet; D’ is an auxiliary field. They (and their derivatives) are the only
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components appearing in W :

)\(X = W(X‘ )
faﬂ_a (aWﬁ)‘ ) __EZ Wa‘ )
0,5 ;s = D*W,| . (4.2.6)

The symmetric bispinor f,; and its conjugate ]Ta 5 are the self-dual and anti self-dual

parts of the component field strength of the gauge field A4,. The gauge in which A, \,D’
are the only nonzero components of V is called the Wess-Zumino gauge. The remaining

gauge freedom is the usual abelian gauge transformation of the vector component field.

The Wess-Zumino (“WZ”) gauge breaks supersymmetry: The supersymmetry vari-

ations of y, and M violate the gauge condition C' = x, = M =0, e.g.,
OXa = €M + i 5 0,,C — A) (4.2.7)

does not vanish in the WZ gauge. We can define transformations that preserve the WZ
gauge by augmenting the usual supersymmetry transformations with “gauge-restoring”

gauge transformations. Thus, instead of
5V =i(@ Qs + € QIV (4.2.8)
we take

SNV =i(€9Qs + € Qu)V + i(A — M)V

=i(@Qs" + Q") (4.2.9)

where A" is chosen to restore the WZ gauge condition by canceling the terms in 6.V

that violate it. Specifically, §,"”x, = 0 requires
s(D, V) =0 . (4.2.10)
Using D*V| =0 and {Dg, D,}V|=98,V| =0 (in the WZ gauge), we have
AV = DAY | =ieDsD, V| =ieA,, . (4.2.11)

Similarly, from 6.4 M = 0 we find
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A7 = D2AWE = — i N, (4.2.12)
Finally, from 6."2C = 0, we find that A,"? = A,""”. The remaining real scalar in A"7 is
the usual component gauge parameter for the vector gauge field (see (4.2.5)).

The WZ gauge preserving “supersymmetry” transformations are

0A, = —i(Egh, + €.Ng)

6)\04 = _Eﬁfﬂa + iEaD, s

oD’ = £0,4(F N — e XY) | (4.2.13)

The commutator algebra of these transformations closes only up to gauge transforma-
tions of the vector field. The need for gauge-restoring A transformations makes super-
symmetric quantization in the WZ gauge impossible. The (vector) gauge-fixing proce-

dure, by breaking gauge invariance, also breaks supersymmetry.

From the requirement that the physical components A, and A, have canonical
dimension, we conclude that V' has dimension zero. By dimensional analysis and gauge

invariance under the A transformations we find the action
S = /d% 420 W? = %/d‘lx d'9 VD°D*D,V . (4.2.14)
Replacing d*0 by D? and using (4.2.6), we obtain the component action
g = /d% = 5 £ fup + X¥i0" A, + D7) (4.2.15)

We have not added the hermitian conjugate to §; Im S is a total derivative and con-

tributes only a surface term (~ / dtz etbed fafea + spinorial terms). The field D’ is

clearly auxiliary.

a.2. Nonlinear case

The nonabelian generalization can be motivated by starting with a global internal
symmetry and making it local. For this purpose we consider a multiplet of chiral scalar
fields @ transforming according to some representation of a global group with generators

T, and constant parameters \*:
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=6. = = . N
' =erd , AN=X\T, , T,=T,! (4.2.16)

We extend this to a local transformation in superspace. Clearly, to maintain the chiral-
ity of ® the local parameters should be chiral. We therefore consider transformations of

the form
'=ed , A=AT,, D:A=0 , (4.2.17)

and correspondingly, for the antichiral ®, transforming with the complex conjugate rep-

resentation,

DA=0 . (4.2.18)

The Lagrangian ®® is invariant if the parameters A* are real. For local transfor-
mations A # A and we must introduce a gauge field to covariantize the action. The sim-
plest procedure is to introduce a multiplet of real scalar superfields V* transforming in

the following fashion:
e’ =eteVe ™ v =VriT, . (4.2.19)

In the abelian case, this transformation is just (4.2.3). We covariantize the action by

/d% d'0 de'® . (4.2.20)

The gauge field V acts as a "converter", changing a A representation to a A repre-

sentation of the group. Thus,
(eV®) = eMe D) | (4.2.21a)
and similarly

(@) = (Pe)e ™ . (4.2.21b)

In the nonabelian case, even the infinitesimal gauge transformations of V are
highly nonlinear. Nonetheless, as in the abelian case they can be used to algebraically
gauge away all but the physical components of V* and take us to the Wess-Zumino
gauge: Starting with an arbitrary V, we perform successive gauge transformations to
gauge away C, x,, and M. Requiring that the first transformation gauge away C we
find, by evaluating (4.2.19) at 6 = 0:
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1=¢"| = eiﬂ(l)eve’mm\ = (emm])ec(e’m(l)]) , (4.2.22)

and hence we must choose A, = A(1)| =—1 % C. The gauge C’ =0 is preserved by all

further transformations with ImA;, = 0. To gauge away Y, we choose a second gauge

transformation A (with A®; = 0) by requiring

0= Daevn| = Da(emmewe_“\@)ﬂ
=D, V'| —iD AP | = — iy, —iA?, | (4.2.23)
and hence A, = D,A?| = — /,. Finally, we can find a third transformation A® to

gauge away M. In the WZ gauge, the only gauge freedom left corresponds to ordinary

gauge transformations of the vector field A,, with parameter A = A = w(z).

As in the abelian case, the WZ gauge is not supersymmetric, and gauge-restoring
transformations are required to define the WZ gauge “supersymmetry” transformations.
The parameter of the transformations is still (4.2.11-12), but the transformations now
become nonabelian and hence nonlinear. To find them, we compute the infinitesimal

gauge transformations of V': We begin by defining the symbol

L, X =[V,X] , (4.2.24)
so that
e"XeV =elvx . (4.2.25)
From [V, e"] = 0 we obtain
(V)eV +V(5e") — eV (6V) — (de")V =0 , (4.2.26a)
or
e*%V((ﬂ/)e%V — e%V((SV)e*%V + e*%V[V,éeV]e*%V =0 , (4.2.26b)
and hence

2 sinh(L 1)0V) = e 5y

1 — 1 1 1
“lveg vty ly
= L,[e 2 ihez” —e2 iAe 2]
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= il [cosh(5 L) (A — A) — sinh(5 L,)(K+A)] (4.2.27)

from which it follows

OV = — Jily [ + A + coth(3 L,) (A — A)]

=i (A=) = iV, K+ A1+ 0(V?) . (4.2.28)

From the transformations (4.2.28) and the parameter (4.2.11-12) we find the non-

abelian WZ gauge-preserving “supersymmetry” transformations:

5Aa = - i(e_&)‘a + ea)‘&) )

5)\(,! = — eﬂfﬁa + iﬁaD/ ;

SD' = 1w (@ — o }d) (4.2.29)

2 [e7e%

where now f,; is the self-dual part of the nonabelian field strength and

V..=0,—1A,_.. The nonlinearity comes from the gauge-covariantization of the linear

.
ax [e7e% ax

transformations (4.2.13). The components of the nonabelian vector multiplet are covari-
ant generalizations of the abelian components; in the WZ gauge, they are the same as

(4.2.4a) (see also (4.3.5)).

a.3. Covariant derivatives

The gauge field V can be used to construct derivatives, gauge covariant with

respect to A transformations
Vi=D,—iI'y=(Vy,Vs, V) (4.2.30)
defined by the requirement
(V@) = eX(V, @) (4.2.31)
ie.,
V' =e*V, e ™ | (4.2.32a)

or
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Since A is chiral, Vs = D is covariant without further modification:
Vie=eDge ™ =v, . (4.2.33)

The undotted spinor derivative D, is covariant with respect to A transformations. We
can use e¢” to convert it into a derivative covariant with respect to A (see (4.2.21));

V, =e "D,e" transforms correctly:

Vla _ (ez‘A efvefi/i)Da(eif\evefiA)
— eiA €7VD(X€V€7iA

=M Voe ™t (4.2.34)

Finally, we construct V, by analogy with (3.4.9): V, =V .= —1i{V,,V;}. Its covari-

ance follows from that of V, and V .

We summarize:
Vi=(e"VD,e", Dy, —i{V,,Vs}) . (4.2.35)

These derivatives are not hermitian. Their conjugates V4, are covariant with

respect to A transformations:

Vig=eVe ™ | (4.2.36)

The derivatives V, (V) are called gauge chiral (antichiral) representation covariant

derivatives. They are related by a nonunitary similarity transformation
Vai=¢e"VyeV . (4.2.37)

This is analogous to the relation between global supersymmetry chiral and antichiral

representations
D, =eVD,HeV (4.2.38)

of (3.4.8).
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The gauge covariant derivatives are usually defined in terms of vector representa-

tion D ,’s; if we express these in terms of ordinary derivatives, (4.2.35) becomes
Vi=(e" 6_%[]8& esV eV, e%Ua_c;e_%U ,—i{V.,Vs}) . (4.2.39)
By a further similarity transformation V, — e*%U Vi e%U, we go to a new representation
that is chiral with respect to both global supersymmetry and gauge transformations:
V= (6_%U eV e_%Uaa eV ¥ e3” 00, —i{V,,Vs}) . (4.2.40)
We define V by

eleV el = UV (4.2.41)

In this form, it 1is clear that 14 gauge covariantizes U: 160 5‘80@ —

009D, . — iA,s) + -+ -. This combination transforms as

(X(;/,

(VY =Ml Ve ™ | O AN=A=0 . (4.2.42)
There also exists a symmetric gauge vector representation that treats chiral and antichi-
ral fields on the same footing. Such a representation uses a complex scalar gauge field
), and requires a larger gauge group. We discuss the vector representation in subsec.

4.2.b, where the covariant derivatives are defined abstractly, and where it enters natu-

rally.

a.4. Field strengths

The covariant derivatives define field strengths by commutation:
[VA ) VB} = TABCVC —iFp (4-2-43)

with V. =V*T,, and T, in the adjoint representation. From the explicit form of the
covariant derivatives (4.2.35) we find that the torsion T 45 is the same one as in flat

global superspace (3.4.19), and some field strengths vanish:
FOéﬂ:F&B:Faﬂ':O . (4244)
The remaining field strengths are

F = CB&EQ(G_VDﬂev) = ZCO'[[}Wﬂ y

8,85
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F —

1
adB8 2 (C&ﬂ'V(aWﬂ) + Caﬁv(&w .)) ,

B
W,=iD*eVD,e") ,
Wo=e " Wge' =eV(-W,)e" . (4.2.45)

(Recall that W& = (W®) implies W = (~=W,)! (3.1.20).) Thus all the field strengths of
the theory are expressed in terms of a single spinor W, that is the nonlinear version of

(4.2.2). It satisfies Bianchi identities analogous to (4.2.1):
VW, =— VW, . (4.2.46)

It is chiral, has dimension %, and can be used to construct a gauge invariant action
S = %tr/d% 0 W? = — 2%]2 tr/d4x d*0 (e D e")D*(e 7V D,e")

V=VAT, , trT,Ty=20, . (4.2.47)

As in the abelian case, this action is hermitian up to a surface term (see discussion fol-

lowing (4.2.15)).

a.5. Covariant variations

To derive the field equations from the action (4.2.47), we need to vary the action
with respect to V. However, since V' is not a covariant object, this results in noncovari-
ant field equations (although multiplication by a suitable (but complicated) invertible
operator covariantizes them). In addition, variation with respect to V is complicated

because V appears in e’ factors. We therefore define a covariant variation of V by

1—elv
— 0V =56V +... . (4.2.48)

AV =e VeV = L

AV satisfies the chiral representation hermiticity condition as in (4.2.37). In practice,
we always vary an action with respect to V by expressing its variation in terms of de",
and then rewriting that in terms of AV. We thus define a covariant functional deriva-

FlV]

ti
1ve AV

by (cf. (3.8.3))
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AF[V]

FIV +8V] = FIV] = (AV, =

)+ 0((AV)?) . (4.2.49)
We now obtain the equations of motion from:

g°68 = itr/d% d*0 §(e " D" YW,

= itr/d4x d*0 [e”V D" | AVIW,

= —itr/d4xd49 AVV'W, (4.2.50)
which gives
AS
2 =~ — _ i\« —
NG VW, =0 . (4.2.51)
Xk K

At the end of sec. 3.6 we expressed supersymmetry transformations in terms of the
spinor derivatives D,. Using the covariant derivatives that we have constructed, we can
write manifestly gauge covariant supersymmetry transformations by using the form

(3.6.13) (for w = 0) and adding the gauge transformation
A =iD*(T*D,C) , (4.2.52a)
where T'j is defined in (4.2.30). We then find
e VoeV = WOV, + WiV = (W VDye" +e " Wae"Dg)¢  (4.2.52b)

(where ( is a real z-independent superfield that commutes with the group generators,
e.g., Vo,( = D,(). Since (4.2.52b) is manifestly gauge covariant, it preserves the Wess-
Zumino gauge (but it is not a symmetry of the action after gauge-fixing). The corre-
sponding supersymmetry transformations for covariantly chiral superfields ®, V ® =0

with arbitrary R-weight w are

60 = —iV[(VOV, + w(V()]® . (4.2.52c¢)
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b. Covariant approach

In this subsection we discuss another approach to supersymmetric Yang-Mills
theory that reverses the direction of the previous section. We postulate derivatives
transforming covariantly under a gauge group, impose constraints on them, and discover
that they can be expressed in terms of prepotentials. This procedure will prove espe-
cially useful in studying supergravity and extended super-Yang-Mills, so we give a

detailed analysis for the simpler case of N = 1 super-Yang-Mills.

We start with the ordinary superspace derivatives D, satisfying
[D,4,Dp} =T 45D, where T, is the torsion and has only one nonzero component

T, /6"2 (see(3.4.19)). For a Lie algebra with generators T, we covariantize the derivatives

by introducing connection fields

VA - DA - ZFA 5 (4253)
where I'y = T',® T, is hermitian and V, = — (=)?V,. At the component level we have
Fa:Ua—F%Q_ava&—F--- , Ty=w, + -, (4.2.54a)

and hence

Va = 804 - i’l)a + %5&(81x1§ - iva&) T,
V& = ({7& - iﬁ(; + %ea(aad - igao’z) T,

Vo=0, —iw, +--- , (4.2.54b)
so that the component derivatives are covariantized.

Under gauge transformations the covariant derivatives are postulated to transform

as
V' =elV e (4.2.55)
where the parameter K = K*T, is a real superfield.
K =w(z)+0°KY (z) + 0KV (z) + - . (4.2.56)

This is very different from what emerged in the previous section: Instead of chiral
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representation derivatives transforming with the chiral parameter A, we have vector rep-
resentation hermitian derivatives, transforming with the hermitian parameter K. The
asymmetric form of the previous section will emerge when we make a similarity transfor-

mation to go to the chiral representation.

For infinitesimal K, we find the component transformations:

v,z =1[0,5 — W

ad ad ,CU] — Wus

w] (4.2.57)

where w = K|, w2 =[Dy,D,)K|=o,;. The component gauge parameter w_s can be
used to gauge away Im v, algebraically; however, the component fields Rewv,, and w,,
both remain as two a priori independent gauge fields for the same component gauge

transformation. To avoid this we impose constraints on the covariant derivatives.

b.1. Conventional constraints

Field strengths F' ,p are defined by (4.2.43). Substituting (4.2.53) we find
Fap =Dl —ill4, T} — TypTe . (4.2.58)
In particular,
F.. =D+ DsT, —i{l,, Ty} —il,; . (4.2.59)
If we impose the constraint
=0 , (4.2.60)

(4.2.59) defines the vector connection I' s in terms of the spinor connections. (In com-

ponents, this expresses w4 in terms of v, and v,.)

In any theory one can add covariant terms to the connections (e.g., (3.10.22))
without changing the transformation of the covariant derivatives. If we did not impose
the constraint (4.2.60) on the connections I',, we could define equally satisfactory new
connections I'y = (T, T, T, s — iF,z) that identically satisfy the constraints. For this

reason (4.2.60) is called a conventional constraint. It implies

Va=(Va,Vs,—i{Va,Vs}) . (4.2.61)
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The theory now is expressed entirely in terms of the connection I',. However, it

contains spin s > 1 gauge covariant component fields, for example

Vs = Flapsl = 105 Dallg |+ (4.2.62)

It also contains a superfield strength F',; whose -independent component
faﬁ = Faﬂ‘ = D(al’m\ + - 5 (4263)

is a dimension one symmetric spinor (equivalent to an antisymmetric second rank ten-
sor). Because of its dimension, it cannot be the Yang-Mills field strength. Although in
principle the theory might contain such fields (as auxiliary, not physical, components), in
the covariant approach there are generally further types of constraints that eliminate

(many) such components.

b.2. Representation-preserving constraints

To couple scalar multiplets described by chiral scalar superfields to super-Yang-
Mills theory, we must define covariantly chiral superfields ®: The covariant derivatives
transform with the hermitian parameter K, and all fields must either be neutral or
transform with the same parameter. However, K is not chiral, and gauge transforma-
tions will not preserve chirality defined with D;. Instead we define a covariantly chiral

superfield by

V,e=0 , &' =0eF | (4.2.64)
This implies
0={Vs,Vs}®=— iF @ (4.2.65)
Consistency requires that we impose the representation-preserving constraint
F.;= F&ﬂ. =0 . (4.2.66)
This can be written as

(V.,Vs}=0 . (4.2.67)

The most general solution is
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V,=e%D, e | Q=0T , (4.2.68)

«Q

where Q* is an arbitrary complex superfield. Eq. (4.2.67) states that V, satisfies the

same algebra as D, and the solution expresses the fact that they are equivalent up to a

)

complex gauge transformation. Hermitian conjugation yields

Ve=e"Dge™? | (4.2.69)

Thus V, is completely expressed in terms of the unconstrained prepotential €2 by the

solutions (4.2.61,68,69) to the constraints (4.2.60,66).

The K gauge transformations are realized by
(e?) = ele & | (4.2.70)

However, the solution to the constraint (4.2.67) has introduced an additional gauge

invariance: The covariant derivatives (4.2.68) are invariant under the transformation

() =ehe? | DsA=0 . (4.2.71)
Therefore, the gauge group of €2 is larger than that of I'y.
We define the K-invariant hermitian part of by
e/ =eef . (4.2.72)

The K gauge transformations can be used to gauge away the antihermitian part of €.
In this gauge, Q =Q = %V, and A transformations must be accompanied by gauge-

restoring K transformations:

oK) — e—Qe—z’j_\(ei[_\eﬂle—z‘A)% . (4.2.73)

In any gauge, the transformation of V' is
(eV) = eheVe ™ | (4.2.74)
We have defined covariantly chiral superfields ® by (4.2.64). We can use  (see

(4.2.69)) to express them in terms of ordinary chiral superfields ®; (which we called ® in

sect. 4.2.a):
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d=¢"0, , DsPy=0 . (4.2.75)

The factor e? converts K -transforming fields into A-transforming fields:

(CI)O)/ = (e_QCI))/ = emq)o . (4.2.76)

A useful identity that follows from the explicit form (4.2.68) expresses dV, in

terms of an arbitrary variation 0€:

0V, = (e NV, + Ve %5 = [V, e %" (4.2.77)

b.3. Gauge chiral representation

We can also use 2 to go to gauge chiral representation in which all quantities are
K-inert and transform only under A. This is analogous to and not to be confused with
the supersymmetry chiral representation (3.3.24-27), (3.4.8). We make a similarity

transformation

Voa=e Wt = (e Dye” Dy, —i{Vu, Vo)

P, =e P |

(50 - é@ﬁ - ((Po)ev . (4.2.78)

The quantities V,, and &, are the chiral representation V, and ® of the previous sub-
section. We sometimes write the chiral representation hermitian conjugate of @, as (f)(]

to avoid confusion with the ordinary hermitian conjugate ®, = (®,)).

In the chiral representation we see no trace of 2 or K: Only V and A appear.

However, we necessarily have an asymmetry between chiral and antichiral objects.

c. Bianchi identities

In subsection 4.2.a we analyzed the physical content of the theory using compo-
nent expansions and the Wess-Zumino gauge. Alternatively, we can find the field con-

tent of the theory by “solving” the Bianchi identities. These follow from the Jacobi
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identities:
[VulVe,Vep =0, (4.2.79a)
which imply
ViuFpe)y = Tiap " Fpioy=0 . (4.2.79b)
Normally these equations are trivial identities. However, once constraints have been
imposed on some field strengths, they give information about the remaining ones, and in

particular allow one to express all the fields strengths in terms of a basic set. We now

describe the procedure.

We solve the equations (4.2.79) subject to the constraints (4.2.60,66) starting with
the ones of lowest dimension. For each equation, we consider various pieces irreducible
under the Lorentz group, and see what relations are implied among the field strengths.
Thus, for example, the relation [{V(,,V3},V,]=0 is identically satisfied when
F,5=0. From {V,,Vs},Vs] + [{V;,V}, V] =0, we find

Fl0i=0 (4.2.80)

which implies, for some spinor superfield W 4,

F=—iCuW;s . (4.2.81)

From [{V,,V;},V.] +{[V., V], Vs} =0 we find
CoaVpWs=0 |, (4.2.82)
which implies
VW;=0 . (4.2.83)
From [{V,,V5}, V] + {[V., V], Vi + {[V., V], Va} = 0 we obtain

F..+C
R

o VW5 + C VW, =0 (4.2.84)

Yo

which separates into two equations:

1 . o _
Fa&.ﬂﬂ. = 5 (CQBV(&Wﬂ-) + C&ﬂ-V(aW/g)) = C(Xﬂf&/é + Co'é,@.’f‘)‘ﬁ 5 (4285)

and
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VW, + VW, =0 . (4.2.86)
These can be reexpressed as
__ ! I T — 1 @
V(XW,B = ZC,BaD + fozﬂ 5 D'=D"= 5 V Wa . (4287)

Finally, [[V,, V], Vgl + [[Vy, V], V] =0 and [[V,, V,], V4] = 0 are automatically sat-

isfied as a consequence of the previous identities. From (4.2.87) we also obtain

ViD=V,

2
Vifos=i5VaWs (4.2.88)
and
1 . — 5
vozfﬂ’y = 2 C(y(ﬂsz)(gwd . (4289)

Therefore, all the field strengths are expressed in terms of the chiral field strength

We. In particular, the commutators of the covariant derivatives can be written as:

{VQ,Vﬂ}:O ,

{Va ,Vﬁ}} - Z'va[;) ,

[Va,iV 5l = —iCs . Wy,

[ivg ’ va] = Z.(Cdéfaﬂ + Caﬁfdé) . (4290)
Furthermore, the set

F:{WaaDlafaﬂ} ) (4291>

is closed under the operation of applying V, and V;: Only spacetime derivatives V, of
F are generated. These superfields are the nonlinear off-shell extension of the superfield
strengths W, of sec. 3.12. The covariant components are the § = 0 projections of these
superfields. Thus the constraints and the Bianchi identities directly determine the field
content of the theory.
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The existence of a “geometric” superspace formulation in terms of a (constrained)
connection ', is important. For quantized super Yang-Mills theories, the geometric (or
covariant) formulation can be combined with the background field method to derive
improved superfield power-counting laws. We can also use I'; to generalize the concept

of the path-ordered phase factor to superspace:

i 24
P [ K XU (4.2.92)

A
for 7 some

where the differential superspace element dz* is to be interpreted as dr
-

parametrization of the path. (In particular, / d0® is not a Berezin integral.) If we
choose a closed path, this quantity defines a supersymmetric Wilson loop. Thus nonper-
turbative studies of ordinary Yang-Mills theories based on the properties of the Wilson
loop should be extendible into superspace. (There is also a manifestly covariant form of

path ordering, expressed directly in terms of covariant derivatives: see sec. 6.6.)
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4.3. Gauge-invariant models

a. Renormalizable models

In this subsection we consider properties of systems of interacting chiral and real

gauge superfields with actions of the form
S = /d% d'0 @;(e") @' + tr/d4x a0 W? + [/ d*z d*0 P(®") + h.c.| (4.3.1)

(in the gauge-chiral representation), invariant under a group G. Here V'; = V*(T,)’;
and (T,)’; is a (in general reducible) matrix representation of the generators T, of G.

In the vector representation, (4.3.1) takes the form
S = /d% d*0 ®,0" + tr/d% d*o W? + [/ d*z d*0 P(®") + h.c.] (4.3.2)

where we have used tre % fef_2 =tr f in the chiral integral, and rewritten the action in
terms of covariantly chiral superfields. The gauge coupling has been set to 1, but can be
restored by the rescalings W, — ¢ 'W,. S may be R-symmetric, with the gauge super-
field transforming as V'(z,0,0) = V(z,e "0,e"0).

Another term can be added to the action: If G is abelian, or has an abelian sub-

group, the Fayet-Iliopoulos term
Spr = tr/d4x d*o vV = tr/d4x vD" | (4.3.3)

is gauge invariant.

Component actions can be obtained by the projection techniques we have dis-
cussed before. A more efficient and, up to field redefinitions, totally equivalent proce-
dure is to define covariant components by projecting with covariant derivatives. Thus,

for a covariantly chiral superfield we define
A= , Y,=V,® , F=V3 . (4.3.4)

Similarly, the covariant components of the gauge multiplet can be obtained by projection

from W, (here f.; denotes the component field strength):

1
)‘a:Wa‘ ) faﬂza{v(a?wﬂ)H ’
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iV e = L VI AV W D= LV WY (4.3.5)

The covariant derivative Va [;)| is the covariant space-time derivative. To obtain compo-

nent actions by covariant projection, we use the fact that on a gauge invariant quantity
52 D2 — 72v2

The component action that results from (4.3.1) plus (4.3.3) takes the form

+ A(D) A+ F'Fy 4 tr (A[iV, % X5] = 5 7 fop + D™)

+ truD’ + (P,F' + %Pijxpmw + hoc.)] (4.3.6)

where [ = %VQVQ, P, ,P; are defined in (4.1.13), (A\)'; = A*T,, etc. The auxiliary
field D’ can be eliminated algebraically using its field equations. This leads to interac-

tion terms for the spin-zero fields of the chiral multiplets:

—Up = — - [A(T) ;A + virT,]? (4.3.7)

=

in addition to those obtained by eliminating F' (see (4.1.14)).

b. CP(n) models

In sec. 4.1.b we discussed supersymmetric nonlinear o-models written in terms of
chiral and antichiral superfields that are the complex coordinates of a Kéhler manifold.
Some nonlinear o-models can be written linearly if we introduce a (classically) non-prop-
agating gauge field. We consider here supersymmetric extensions of the bosonic CP(n)
models. The bosonic models are straightforward generalizations of the CP(1) model of
sec. 3.10. They are written in terms of (n + 1) complex scalar fields z' constrained by
2'Z; = c; the action is written by introducing an abelian gauge field with no kinetic

term:
5= /d% 19,5 — 142 + D — o)) . (4.3.8)

where D’ is a Lagrange multiplier field. Eliminating Aa 5 by its classical field equation,
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we find the action given in (3.10.23). This action is still invariant under the local U(1)

[1e’

gauge transformation z — €'z, Z — e '* where a(z) is a real parameter. It can be

rewritten in terms of n + 1 unconstrained fields Z' in the form (3.10.30).

In the supersymmetric case, the model is most conveniently described in terms of
(n + 1) chiral fields ® (and their complex conjugates ®), and a single abelian gauge field
V. The action, which is globally supersymmetric, SU(n + 1) invariant, and locally

gauge invariant, is:
S = /d4x a0 (®'®,e" —cV) . (4.3.9)

Note the presence of the Fayet-Iliopoulos term. Upon eliminating the gauge field V' by

its field equation we find
S = /d4x d*0 cln(®'®;) . (4.3.10)

This action is still invariant under the (local) abelian gauge transformation ® — e"*®.
We can use this invariance to choose a gauge, e.g., ® = (¢, u,). In components, (4.3.10)
gives the action generalizing (3.10.30) for the CP(n) nonlinear o-model coupled to a

spinor field.

The action (4.3.9) has a straightforward generalization:
S = /d4x d'0 (®,(e") ;@ —ctrv) (4.3.11)

where, as in (4.3.1), V = VAT, and (T,)"; is a (in general reducible) matrix representa-

J
tion of the generators T, of some group. However, in contrast to (4.3.9), when we vary
(4.3.11) with respect to V, we get an equation that in general does not have an explicit

solution:
de'T,® —ctrT,=0 . (4.3.12)

(To derive (4.3.12), we use the covariant variation (4.2.48) AV = AVAT, = e Vde", and
trAV =troV.)
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4.4. Superforms

a. General

In ordinary spacetime, there is a family of gauge theories that can be constructed

systematically; these theories are expressed in terms of  p-forms
r,= % dz™ /\ dz™2/\ - N dx™ Ty where the differentials satisfy
dz™/\ dz" = —dz"/\ dz™. The “tower” of theories based on forms is: I'j = scalar, I, =

vector gauge field, I'y = tensor gauge field, I'y = auxiliary field, and I'y = “nothing”

field. Their gauge transformations, field strengths, and Bianchi identities are given by

gauge transformation : or,=dK, , ,

field strength : F,,=4dI', ,

Bianchi identity : dF,.;, =0 . (4.4.1)
Here K,, I',, F', are p-form gauge parameters, gauge fields, and field strengths respec-

tively, and d = dz™0,,. By definition, —1-forms vanish, and 5-forms (or (D+1)-forms in
D dimensions) vanish by antisymmetry. The Bianchi identities and the gauge invariance

of the field strengths are automatic consequences of the Poincaré lemma dd = 0.

In superspace the same construction is possible, using super p-forms:

T = (1) % AN - Nd2 Ty, Ly, (4.4.22)

p

(note the ordering of the indices), where now
dMN d2Y = — ()" dM (4.4.2D)

the coefficients of the form are superfields, and d = dz™9,,. The same tower of gauge
parameters, gauge fields, field strengths, and Bianchi identities can be built up (now
using the superPoincaré lemma dd = 0). An advantage of this description of flat super-
space theories is that it generalizes immediately to curved superspace and determines

the coupling of these global multiplets to supergravity.

However, superforms do not describe irreducible representations of supersymmetry

unless we impose constraints. To maintain gauge invariance, these constraints should be
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imposed on the coefficients of the field strength form; when the constraints are solved,
the coefficients of the (gauge) potential form are expressed in terms of prepotentials. In

table 4.4.1 the prepotentials /ip correspond to the constrained super p-form A, and the

expressions dA, correspond to dA,.

p | 4, dA,
P i(®— )
1% iD*DV
2 | oo % (D, " + D ;3%
3 1% D*V
4 i) 0

Table 4.4.1. Simple superfields (prepotentials) corresponding to superforms

In this Table ® and ®“ are chiral and V is real. The relation Ap = A4_ corresponds to

p
Hodge duality of the component forms.

The constrained super p-forms correspond to particular prepotentials Ap whether

A, is a gauge parameter K or a Bianchi identity

» a potential I',, a field strength F'

p? po

(dF),. The explicit expressions for A, in terms of /ip take the same form whether A is
K.I',F,or dF. Thus the prepotentials give rise to a tower of theories that mimics (4.4.1):
The gauge field strength and Bianchi identities at one level are the gauge parameter and
field strength at the next level. If A, ;, A,, and A, , are the gauge parameter K, ;, the
gauge field T'), and the field strength F, ., superforms, respectively, then the gauge

transformation, field strength, and Bianchi identities of the prepotentials are

gauge transformation : or, =dK, ,
field strength : F,,=4dl', |,
Bianchi identity : dF . =0 . (4.4.3)

The Lagrangians for all p-form theories are quadratic in the field strengths, without

extra derivatives. We discuss details in the subsections that follow.
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Under a supersymmetry transformation the superforms are defined to transform as

IM(z',dz") =T(z,dz) , (4.4.4)
where (cf. (3.3.15))
de' = (0", d0"", dz") = (d9",dO" , dw' — L (e d0" + ")) . (4.4.5)

Consequently, the coefficients I');y.. mix under supersymmetry transformations and this
makes it difficult to impose supersymmetric constraints on them. To maintain manifest
supersymmetry, we therefore go to a “tangent space” basis, parametrized by the duals of
the covariant derivatives D, rather than the duals of 9;,. We use the flat superspace

vielbeins D 4 (3.4.16):
D,=D,"0,,=(D,,D;,0,;) , (4.4.6)
and the dual forms
w =dM(DY) A . (4.4.7)

From (3.4.18), the D’s satisfy

DuDp™ =T 3D (4.4.8)
and hence
do' = SN WP Tpeh (4.4.9)

In this w-basis we write a superform as

p

r — (_1);p<p—1>i'wA1/\ e AWMT, (4.4.10)
p! '

We also have d = dz"0,; = w?D,. The tangent space coefficients I'y,..a, of the p-form

A

do not mix under supersymmetry transformations because w” is invariant. We can now

impose supersymmetric constraints on individual coefficients of a form.

In this basis, the coefficients of the field strength form (on which we impose the

constraints) F,,; = dI', have the following expression in terms of the gauge fields:
r _1pr L o Bp 4.4.11
Apdp = E (At Ay Apr) — m [A1 As| B|A3--Ayp) o ( L. )

where the torsion terms come from (4.4.9). The Bianchi identity on F takes a similar
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appearance. Equation (4.4.11) is the essential result we need for the discussion of sub-

secs. 4.4.b-e.

We now summarize some of the results of subsecs. 4.4.b-e. In particular, we give
the explicit expressions for the coefficients of the superforms A, in terms of the prepo-
tentials Ap (of table 4.4.1) for all p. In the case of I',, these expressions are found by
solving the constraints on certain coefficients of F,; and choosing a suitable K-gauge
(6" = dK). The expressions for K follow from the new invariance found when solving
these constraints. The expressions for F' follow from solving those Bianchi identities dF
that explicitly express one part of F' in terms of another in the presence of the con-
straints. Finally, for dF', the explicit expressions correspond to the remaining part of the
Bianchi identities that are not algebraically soluble. (For clarification, see subsecs. 4.4.b-

e, where the expressions are worked out in detail.) We find:

p=0 A= (/i—i—j) ;

N | —

1 N N
AQQ = 5 (C&E]D(aAﬂ) + COé/BD(o'cAE;)) 3

P = 3: Aaﬂ’y =A Aa,@g =0 5 A

apy =

~

Aa@ = - C/é,;ca(,Bny)A ’ AM = €dabe [56 ) D6]A ;

b= 4: Aaﬂ’yé = Aaﬂ’yg = Auﬂié = A(Xﬂ’Yi = Aaﬁ';d - Aa,@.’ﬂ =0 ’
Aa,@ﬂ =2 CW-(gC(x(’yC(S)/B A,
A(XM = 2€abcd5d j ’ Aabcd = Qieabcd(ﬁzj_ DQA) ? (4412>

where for even p, ﬁo;/i =0, and for odd p, A=A
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For example, in the case of the vector multiplet of sec. 4.2, we found the vector
representation potentials 'y given by the case p = 1 above, with A=V (in the vector
1
2
above by p = 0); the field strengths F 45 by p = 2 above, with A, =W, =iD*D,V (by
table 4.4.1); and the remaining Bianchi identity dFF on W, by p =3 above, with

representation, and in the gauge where Q= Q = %V; then K == (A+A), as given

A= %(DQW“ + D;W*) (again by table 4.4.1; dF = 0 thus reduces to A(W®*) = 0). Fur-
ther examples will be derived in the remainder of this section. (Note that an action
written in terms of a super O-form does not describe the most general chiral multiplet
theory: The field strength F 4, = D,I'" always has the invariance dI' = k, where k is a
real constant. Here §F = §[i(® — ®)] =0 for 6® = k. This invariance excludes mass
terms, and has consequences even for the free massless multiplet when it is coupled to

supergravity.)

b. Vector multiplet

As an introduction, we describe the abelian vector multiplet in the language of

superforms. We begin with a real super 1 —form
I, =w'T, + & T + 0T, , (4.4.13)

with gauge transformation 6T, = dK,, where K, is a 0 —form (scalar). The field
strength is a super 2 —form F, = dI';, with superfield coefficients that follow from

(4.4.11):

Fops= D(arﬂ) )

F s=D.Ij+ Dy —il

« af

Foz,g = DaFQ - abroz )

1 .
FQ,Q == — 5 C&éa(awrﬂ)i + h cC. . (4414)

We impose a conventional constraint F° . =0 which algebraically determines I' .. We
O[,ﬂ [e7e

further restrict the form by imposing the constraint (4.2.44) F, 5 = 0. The solution to

the constraints is
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r,=i,Q , Tg=—-iD:Q |,

r,=—i(D, s+ DsT,) (4.4.15)

and the prepotential {2 transforms as
0 =—iK,+A . (4.4.16)

The A transformations are an invariance of I'; introduced by solving the constraints.

It is always obvious, by examining equations such as (4.4.14), what conventional
constraints can be imposed. Finding additional constraints is more difficult. In general,
if we wish to describe a multiplet that contains a component p-form, we require that it
be the # = 0 component of a super p-form coefficient with only vector indices (e.g., in
(4.4.14) F,;| is the Yang-Mills field strength), and therefore we will not constrain this
coefficient. For the same reason we assign dimension 2 to this coefficient, and this deter-
mines the dimension of the superform. As a consequence, coeflicients with more than
two spinor indices have too low dimension to contain component field strengths (or aux-
iliary fields), and must be constrained to zero. We also constrain to zero coefficients

that contain at the 8 = 0 level component forms that are not present in the multiplet.
c. Tensor multiplet

c.l. Geometric formulation

The antisymmetric-tensor gauge multiplet contains among its component fields a
second-rank antisymmetric tensor (2-form). To describe it in superspace we consider a

super 2-form I'y:

]. —. e « 1 a
—F2 = 5(,()[7)/\ waFaﬂ + wﬁ/\w Fa,,é.’ + wg/\w Fa’g + Ewg/\ w—C’&ﬂ-F(aﬁ) + h.c. s

(4.4.17)
where we have used the symmetries of I' to write I'y, = C, [;P(aﬁ) + h.c.. The gauge

variations 61y = dK ;| are

(5:[10[7[3 - D(QKﬁ) ,

5FQ7BZDQE5’+55’K& —iK .

«
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1 .
6F((yﬂ) = - 56(0(7[(/8)& . (4418)

The field strengths follow from the definition (4.4.11):

F D(urﬁn) )

. 1
By T 9
Fapq=D@lsy + Dilas + gy
Fope=Dwlpe+0T0s

r..

F s, =Dols + DiTo, + 0L 5 —iC3 T —iCul s,

14 4 1 5
Fape=0Cs:(Dalisy) = 506°L 5 )+ Cay(Dal' g0 + 50,51%0)
FQ,Q,Q = — Eabchd = — Z(C&,;C/gfy Faﬂ. -C,C. Fﬂo‘z) )

T By

Fa[;) = — @'(aawr(m — 50 y) - (4.4.19)

where we have used (3.1.22).

We can impose two conventional constraints. The first,

Fops=0, (4.4.20)
gives
F((X-,ﬁ)/é - Z[D("Fﬁ)/é + Dﬁ.’ra,ﬁ] ) (4421)
which implies
T 1 =.
Fa,ﬁﬁ =1 Caﬂq)ﬂ + Z[DQF@[} + 5 Dﬂra,ﬂ] ’ (4422)
for an arbitrary spinor <T>7'. The second conventional constraint,
. B
Fogs =0 (4.4.23)

gives
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1 P, . ; ;
Loy = —i7[Dl;," + DiTtap’ — 9,,5T5)"] (4.4.24)

3,8)

which implies

1 1 =9 1. 4
F(U(ﬂ) = 5 D(aq)/g) — 5 D Foz.ﬂ — 5 zG(a Fﬂ).ﬂ. . (4425)

The potential Faé is pure gauge: It can be gauged to zero using (4.4.18). To eliminate

the remaining unwanted physical states we choose two additional constraints

Foéﬂ,’}’ - Fa,ﬂ,g - 0 . (4426)

The first implies I', 5 is pure gauge, and the second imposes
D, ;=0 , D3b;=0 . (4.4.27)
In the gauge I', 5 = r 5= 0, all of I';p is expressed in terms of ®,; thus the superfield
P

. is the chiral spinor prepotential that describes the tensor gauge multiplet.

The constraints also imply that all the nonvanishing field strengths can be

expressed in terms of a single independent field strength

G=—-(D®, + D'd;) . (4.4.28)

N | —

For example,

L =3 v "; = L
F #=i,67G=T *G . (4.4.29)

G is a linear superfield: D*G = 0. It is invariant under gauge transformations of the pre-

potential

6®,=iD*D,L , L=1 . (4.4.30)

Projecting the components of ®, we have:

Xo =P, A+iB=-D"9,| ,

1 ~ ) (4.4.31)

The components of the gauge parameter that enter &, are:

L, =1iD*D,L| |,
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W =pD*D,I| = LW

Y

.1 = 1 4 =
L((X,ﬂ) =1 §D((XD2Dﬂ)L‘ = 56(,3 [Doz) 7D<)'4]L’

1

=350 Lys 5 Laa=Lu - (4.4.32)

.
(6767

The components y, and B can be algebraically gauged away by L, and L") respectively,
whereas L, is the parameter of the usual gauge transformation for the tensor gauge
field t,5. The spinor zza is the physical spinor of the theory (up to terms that vanish in
the WZ gauge). The gauge invariant components are found by projecting from the field
strength G:

(’(Zoz - iaoﬁ%&) )

N | —

fa = Fu| = [D(iaDa]G| = i(aﬂo.ctaﬁ - aaét_&ﬂ') )

D*G =D*G=0 . (4.4.33)

Since there is only one physical spinor in the multiplet, G’ has dimension one. This

determines the kinetic action uniquely:
&:—%/ﬁ%ﬁaw . (4.4.34)

The corresponding component action is
S = /d4x [i AOA + i(fg)2 + J‘;i@“diba] . (4.4.35)

Note that none of the fields is auxiliary. The physical degrees of freedom are those of
the scalar multiplet. On shell, the only difference is the replacement of the physical

pseudoscalar by the field strength of the antisymmetric tensor.



190 4. CLASSICAL, GLOBAL, SIMPLE (N=1) SUPERFIELDS

c.2. Duality transformation to chiral multiplet

We can write two first order actions that are equivalent to S;,. Introducing an

auxiliary superfield X, we define
S, = /d% a'0 [; X* - GX] . (4.4.36a)

Varying X and substituting the result back into S’;, we reobtain S,. We also see that
the tensor multiplet is classically equivalent to a chiral scalar multiplet: Varying ®“, we
obtain D*D,X = 0, which is solved by X = x + %, Dax = 0. Substitution back into S’

yields the usual kinetic action for a chiral scalar x (because y is chiral and G is linear,
/ d*z d*0 xG = 0). Because the same first order action can be used to describe the ten-
sor multiplet and the chiral scalar multiplet, we say that they are dual to each other.

Alternatively, we can write
S = /d% a'o [— % X+ (x+0X] . (4.4.36b)

Varying X and substituting the result back into S'’;, we obtain the usual kinetic action
for the chiral scalar x; varying x,X, we find D?*X = D?X =0, which is solved by
X = (. Substitution back into S yields S, (4.4.34).

The tensor multiplet admits arbitrary (nonrenormalizable) self-interactions with a

dimensional coupling constant :

S = /ﬁ/d‘*x ‘o f(p @) . (4.4.37)

The component action contains quartic fermion self-interactions and “Yukawa” terms

¢aqzo:Fa&7 multiplied by derivatives of f(u 'A). Remarkably, we can perform the dual-
ity transformation to a chiral scalar multiplet even in the interacting theory. The first

order action equivalent to S is:
S’ = /ﬂ/d% a0 f(X)—up ' x+xX] . (4.4.38)

Varying x, ¥, we find X = 1 'G (the normalization can be chosen arbitrarily), and reob-

tain the interacting action (4.4.37). Varying X, we find the dual action in terms of x, X:
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§— / ' d0 IK (' (x + ) (4.4.39)
where IK is the Legendre transform of f:
K (' (x+0) = (X o+ 0) — p7 X+ 0X (7 (c+0)

% (40 (4.4.40)

The dual action (4.4.39) is recognizable as the action for a nonlinear o-model (see sec.

41D, e.g. (4.1.23)).

We can also perform the reverse duality transformation, that is, start with a the-
ory described by a chiral scalar superfield and find an equivalent theory described by a
tensor multiplet. Although we can find the model dual to an arbitrary tensor multiplet
model, the reverse is not true: For a chiral scalar model, possibly with interactions to
other chiral and/or gauge multiplets, we can find the dual tensor model only if the origi-
nal action depends only on x + Y, or equivalently, defining n = ue“_lx, on 1. Thus,

starting with an action
S, = / d*z d*0 IK (u ' (x + %) (4.4.41)
we can write the first order action
S = /ﬂ/d% d*0 [IK(X) + u 'GX ] (4.4.42)

Varying G yields X = u '(x + %) and (4.4.41), whereas varying X leads to (4.4.37),

where now f is the (inverse) Legendre transform of IK:

fu'e) = K(X(u'6) + p 'GX (u7'G)

AIK (X)

_ _ -1
oy = n G (4.4.43)

We can now find a second tensor multiplet model dual to the free chiral scalar mul-

tiplet. We begin with

S, = u’ / d'z d'0 = / d*z d*0 e (XY (4.4.44)
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We write this in first order form as
S iy = 1 / d*z d*0 [e¥ — GX] | (4.4.45)
and find the dual action
Simp = — ©? / d*'zd'0 GinG (4.4.46)

where now G has a nonvanishing classical vacuum expectation value. This duality holds
even in the presence of supergravity, where the equivalence is to the superconformal
form of the scalar multiplet (7m), as opposed to the (x -+ %)* form obtained from
(4.4.36); in general curved superspace, these two Lagrangians are different. The model
described by the action S, (4.4.46) is called the improved tensor multiplet, because,

unlike the unimproved action (4.4.34), S, is conformally invariant. (Both are globally

“mp
scale invariant, but the action for an antisymmetric tensor by itself is not invariant

under conformal boosts.)

It is interesting to study what happens to the interactions of a chiral multiplet
after a duality transformation. Here we consider interactions with a gauge vector multi-

plet (for other examples, see secs. 4.5¢, 4.6, 5.5). For an action of the form
S yauge = / d'rd'0 IK(x+x+V) + / d*z d*0 W? (4.4.47)

where V is an abelian gauge superfield, W is its field strength, and

IK(x+x+V) = IK(In(i7e"n)), we can write the first order action
S vauge = / d'zd'0 [IK(X +V)+ GX ]+ / d*z d*0 W? . (4.4.48)
Varying G gives (4.4.47); varying X gives
S = /d% a0 [f(¢) — GV] + /d% o w? . (4.4.49)

Thus the gauge interactions of the original theory are described by the single term G'V
in the dual theory (this coupling is gauge invariant because G is linear). Observe that

for the usual kinetic term IK = 7je'n, the dual theory has the improved Lagrangian

—GIn G — GV (4.4.46) rather than — % G? — GV (4.4.34). Tt is straightforward to verify
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that the latter theory describes a massive vector multiplet rather than a scalar coupled
to a vector. Another way to describe a massive vector multiplet, but without vector
fields, is in terms of the chiral spinor ®, alone by adding a mass term (which breaks the

gauge invariance (4.4.30)) to S, (4.4.34):
Sm:__%m{/d%dw(éﬁ2+h¢;. (4.4.50)

ri massive v r multi . mponent antisymmetri nsor
S, + S, describes a massive vecto Itiplet. The component antis etric tenso
describes a massive spin 1 field, x, and 1, describe a massive Dirac spinor, A is a mas-

sive scalar, and B is auxiliary.
d. Gauge 3-form multiplets

d.1. Real 3-form

We begin by considering a real 3-form. It has the following independent coeffi-

cient superfields

Faﬂn/ ) r

aBy Fa,ﬂ,g ) Foz,,@.’,g

Tagn » Togy o+ Lo (4.4.51)

where we have used the symmetries of I' to write it in terms of Lorentz irreducible coeffi-

cients.
Tape = CpTagany + Ol s
F&QQ = - eabcdrd = - i(c&’;cﬂ’Yraﬁ} N C(WCEWF[}&> ’ (4452>

The independent field strengths are
Fa,ﬂ,’yﬁ ) F

a7ﬂ7’}/7(§ ’ Fa7ﬁ7’;7(§ ’

Fopra » Fapsa >

Foz.ﬂ-,(’ﬂs) ) F%/&(Wo(g) ’ Fuﬁﬂ(%) ’
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F., , F . (4.4.53)

The last five field strengths are Lorentz irreducible coefficients, e.g. (see 3.1.22)),

Fg,b,g,d =F €abed = i(coﬁcﬂ’yc e

We impose the following constraints on the field strengths:

Fu'ﬂ’%d - F(y.ﬂ,’y,(g - F(y.ﬂ,’;,(g =0 )
F(X’ﬂ’ry’i - Favﬁv’%d - F(X-,ﬂ-,(’;(g) - F(%ﬂ.-(ry(s) - O ’
F%&(%) = 20&(“706),81_[ s (4.4.55)

where II is an undetermined gauge invariant superfield. Solving the constraints gives

Fa.ﬂ,’y = Fa,ﬁ,'; = Faﬂ& = Fa(,@.”;) =0 ’

[ =iC,CsV

B, YT By
Loy == CapD)V

up to a pure gauge transformation of I'yp-. Given the solution, we find

=DV . (4.4.57)

The prepotential V' has gauge transformations

5V = — % (D°w, + D'G;) , D,@3=0 . (4.4.58)
The physical component fields of this multiplet are
¢=1=DV| , +,=DJ|=D,DV |,

h = (D*I1 + D*II)| = {D*,D*}V| ,

f=—i(DM - DM)| = . 8,"| = 0" [Ds, D]V . (4.4.59)
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The quantity f is the field strength of the component gauge three-form I s =T, .|. The
component three-form transforms as (cf. (4.4.33) for f,)
R P ﬁ.— _
61&& =1 9 (a O:D(ﬂwa) - 804 D(B &))‘ ) (4460)

so that its field strength f is invariant.

The field strength II is a chiral field of dimension one (determined by %,), and

hence the kinetic action is
S = /d% d*o I . (4.4.61)

It gives conventional kinetic terms for the components ¢ and 1,; the scalar field A is an
auxiliary field and the gauge field [ . enters the action through the square of its field

strength f. Such a field does not propagate physical states in four dimensions.

The only difference between this multiplet, described by II, and the usual chiral
scalar multiplet ® is the replacement of the imaginary part (the pseudoscalar field) of
the F auxiliary field by the field strength of the component gauge three-form. Mass and
interaction terms for ® can also be used for II. However, at the component level, after
elimination of the auxiliary fields the theories differ: We no longer obtain algebraic
equations, since f is the derivative of another field [ 4. Another difference is that the

super three-form gauge multiplet cannot be coupled to Yang-Mills multiplets.

d.2. Complex 3-form

A complex super three-form multiplet can be treated in the same way. It has more

independent coefficient superfields:

Faﬂn/ ) r

a,By Fa.ﬂ.n’ ’ F&-,/éa’; ’

Fa7ﬁ7£ ) Fa’ﬂ..g ’

.
a,f.c

r

Lon Fa,w'w') ’ &(6v) > F&-,(ﬁ.v') ’

T (4.4.62)

a

(For example, Fu( i) # L'45,)-) Correspondingly, there are more independent field
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strengths. These are

Foprs > Fopos o Fapas o Fagas o Fapss o
Fopra s Fapsa » Fosag » Fajgsa

Fope) » I a,8,(70) F a,b,(6) F a,8,(7) F &.0,(v6) F &.6.(48) 7

F F, F (4.4.63)

ab

The constraints however, set more field strengths to zero. The nonzero ones are
Fostey » Fap » F (4.4.64)
and we still impose the constraint:

Fop sy = 2Ca,Cisll (4.4.65)

The only form coefficients that are not pure gauge are given by

Looy) = — Ca(ﬁDv)Ef\I!' )

=iC,,C..DV, |

a,f.e v By

r,=[Ds,D,|DV, |, (4.4.66)

(up to arbitrary gauge transformation terms). These expressions allow us to compute II;

we find that it is expressed in terms of the prepotential ¥, as follows:
II=D?D"V, , DgI=0 . (4.4.67)
The gauge transformations of the prepotential ¥, are
00, =A,+ DLz , Dshy=0 . (4.4.68)
The components contained in the field strength are

A=1I| = D*D"V,| ,
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(o = D | = D,D*D" Wy |

f= DI = %aw&[ﬁ& D, D"y (4.4.69)

where f is the field strength of a complez 3-form.

This multiplet can be described in terms of two real super 3-form multiplets:
I'=T, +il'y. The constraints imposed above are the ones given in sec. 4.4.d.1 for I’

and I'y, plus the additional constraint F s = 0. This is simply the constraint

B.(39)
IT, + ill, = D*(V, + iV,) = 0, which implies V| 4+ iV, = D‘T,.

The field strength II is chiral and of dimension one. Therefore all of the action for-
mulae for the usual chiral scalar can be used for II. As for the real gauge three-form
multiplet, the equations of motion for the auxiliary fields are no longer purely algebraic.

Again, this multiplet cannot be coupled to Yang-Mills multiplets.

e. 4-form multiplet

The final superform we consider has no physical degrees of freedom. It is
described by a real super 4-form I' jpop. The field strength supertensor is a super 5-form
F ypcpr- Therefore the field strength with all five vector indices vanishes by antisymme-

try.

As constraints we “impose” the equations F  pcopp = 0. This implies that all of
I' ypcp is pure gauge. Since all field strengths vanish, no gauge invariant action is possi-
ble at the classical level. However, this multiplet (and the corresponding component
form) has some unusual properties at the quantum level, because its gauge fixing term is

not zero.
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4.5. Other gauge multiplets

a. Gauge Wess-Zumino model

In (3.5.3) we noted that a chiral superfield can be expressed in terms of an

unconstrained superfield
¢ =DV . (4.5.1)

The field ¥ provides an alternate description of the scalar multiplet. The actions we
considered in secs. 4.1-2 can be expressed in terms of W. For example, the Wess-Zumino

action (4.1.1-2) becomes

S = /d% d'0 [(D*T)(D*W) + ;. m(VD*¥ + TDT)

A P20N\2 L T D2T)2
T3 (V(D*W)* + ¥(D*¥)7)] (4.5.2a)
where we have used
/d% d*0 (D*V)* = /d% d*0 W D*V | (4.5.2b)
etc.
The solution (4.5.1) of the chirality constraint introduces the abelian gauge invari-
ance

50 = Dw, (4.5.3)

where w, is an unconstrained superfield. The gauge invariant superfield ® is the chiral
field strength of the gauge superfield ¥, and the action is obviously invariant. The
gauge transformation can be used to go to a WZ gauge, by algebraically removing all the
components of ¥ except those that appear in ®. In this formulation the coupling to
super Yang-Mills can be achieved by covariantizing the derivatives: If ® is covariantly
chiral, then ® = V¥, §U = Viw

Under Yang-Mills gauge transformations ¥ trans-

.
a*

forms in the same way as ®.
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b. The nonminimal scalar multiplet

This multiplet has a number of interesting features: (a) It is a multiplet where
the spin of auxiliary fields ezceeds that of the physical fields; (b) none of the component
fields (in a Wess-Zumino gauge) of this multiplet are gauge fields, even though the multi-
plet is described by a gauge superfield; (c) this multiplet, unlike other scalar multiplets,

forms a reducible representation of supersymmetry.

We introduce a general spinor superfield U* with the gauge transformation
oV = DﬁL(“ﬁ), Lqp) arbitrary. An action that is invariant under this gauge transforma-

tion is
5:—/&mm22, > =D, | (4.5.4)

The field strength 3 satisfies D?Y = 0, so that it is a complez linear superfield; in con-

trast, the field strength of the tensor gauge multiplet is a real linear superfield.

The component fields of the multiplet are

A=3] , (3=Ds3

A\=D,3| , P =DsD3|

F=D% , xs==-D"D;D.,%| . (4.5.5)
The component action is

S:/#xMDA+?M%Q—UW

+ 2P s + XA+ XN (4.5.6)
with propagating complex A and (“. All the other fields are auxiliary.

In terms of superfields we can see that the action (4.5.4) describes a scalar multi-

plet. The constraint and field equations for ¥ are:
D*¥=0 , DgX=0 . (4.5.7)

These are the same as those for the on-shell chiral scalar multiplet, but with constraint

and field equation interchanged.
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To see the reducibility of this multiplet we use the superprojectors of sec. 3.11.

The action can be written

S = / d'z d*9 Ui9" 5211, o + (H2é+ + Hzéf)]\lfa ;
1 _ —
L0, = - ;0 'D,D’D. V",

I,.,%, =07 D°D, 5 (D9 £ D:T) (4.5.8)

Thus the multiplet consists of three irreducible submultiplets: one of superspin 0, and

.1
two of superspin 3

In contrast to the chiral scalar multiplet, it is not possible to introduce arbitrary

mass and nonderivative self-interaction terms. However, we can write down the action
S = /d% ‘o f(,%) (4.5.9)

where f(z,%Z) = f(z,%z). Thus, for example, it is possible to formulate supersymmetric
nonlinear o-models in terms of the nonminimal scalar multiplet. Furthermore, the non-
minimal multiplet can be coupled to Yang-Mills multiplets by covariantizing the deriva-

tives: X = VU,

Just as for the tensor multiplet (sec. 4.4.c), we can exhibit the duality of the non-
minimal scalar and chiral multiplets by writing a first order action. Most of the discus-
sion of sec. 4.4.c.2 has an analog for the nonminimal scalar multiplet, except, since the
multiplet is described by a linear superfield, the Legendre transform is two dimensional
and hence there is no restriction on the form of the nonlinear o-model that can be

described. The two first order actions equivalent to (4.5.9) are (see (4.4.38,42)):

S’:/dsz [f(X,X)-®X —®X] |,

=0, (4.5.10a)

and
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S = /dsz [K(X,X)+YXX +%X] ,

D’ =0 , (4.5.10b)

where X is a complex unconstrained superfield and IK is the Legendre transform of f.
Just as for the tensor multiplet, this duality transformation can be performed even in

the presence of interactions with other multiplets (e.g., supergravity).

c. More variant multiplets

As we have seen, several inequivalent superfield formulations can describe the
same set of physical states. The (0, %) multiplet can be described by a chiral scalar, a

gauge two-form, real (or complex) gauge three-forms, or a gauge spinor. The chiral
scalar provides the simplest representation. All but one of the other representations are
obtained by replacing either the physical or auxiliary field by component 2-forms or

“variant” representations of the scalar multiplet. In

3-forms respectively. We call these
general, variant representations are very restricted in either their self-interactions or cou-
plings to other multiplets. In this subsection we discuss variant vector and tensor multi-

plets.

c.1l. Vector multiplet

We have described super Yang-Mills theories in terms of a hermitian gauge prepo-

tential V. It contains a component vector as its highest spin component:

A, = %[D_ :,D,]V|. There is, however, a smaller superfield that contains a component

(e

vector: A chiral dotted spinor ®; (55}1{5 = 0), has as its highest spin component

A, =—1i(Dg®, + D, Dg)| . (4.5.11)

a

The superfield @, is reducible; it can be bisected (see (3.11.7)

1+ K)®; = - (9, F O 'D%0";®,) . (4.5.12)

N | —
N | —

Since we want to describe a gauge theory, we gauge away one of the representations

instead of constraining it. The transformation
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0d; = Ed(DﬁAB + Eﬂ/_\ﬁ) = D?*Ag — i0“3A, = (1 + K)D*A;;

D,A;=0 (4.5.13)
can be used to gauge away (1 + K)®;, and leaves (1 — K)®,; inert. The gauge parame-
ter DﬁAﬁ + 55/\5’ describes the tensor multiplet of sec. 4.4.

The field strength for ®, is the lowest dimension local gauge invariant superfield:
W, = D1 - K)d, = D*3, + i0, ®, . (4.5.14)
The field strength W, is the familiar chiral field strength of the gauge multiplet

described by V, but now with T', =&, T'y=®;, r,=- i(Ds®, + D,P;), and

[e2me)

A, =T,|. Its components are the same, except for the auxiliary field D":

)\(X = W(»Y‘ ?
=lp.wyl=1Loa,.4,7
fas =5 DaWsl= 3500487

D= iD W = 04 (D;®, — D,®g)| = 0B, . (4.5.15)

We thus see the auxiliary pseudoscalar has been replaced by the field strength of a gauge

three-form. The action is still (4.2.14), and in components differs from the usual vector
multiplet only by the replacement D' — %3”‘;Ba 5

This variant form of the vector multiplet can also be obtained from the covariant
approach of sec. 4.2: In the abelian case, we can solve the constraint F,53 = D,I'3 =0
by T', = ®,. Just as the usual solution I', = — zéDaV directly in terms of the real
scalar prepotential fixed some of the K invariance (corresponding to a gauge condition
D*D°T', = — D*D’T;, which implies K = %(A + A)), the variant solution fixes some of
the K invariance with the gauge condition D°T, =0 (which, together with the con-
straint, implies that I, is antichiral), reducing it to K = D, A® + 5(;/_\0.‘.

The covariant derivatives can be used to couple this abelian multiplet to matter.
However, I', = ®, is not a solution to the nonabelian constraints, nor to the abelian

ones in general curved superspace. Thus, like other variant multiplets, it is limited in

the types of interactions it can have.
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c.2. Tensor multiplet

The variant representation for the tensor multiplet is described by the same chiral
spinor superfield ®, as the usual one (4.4.27), but the gauge transformation is changed.
In place of the real scalar parameter L (4.4.30), we use the chiral dotted spinor Ag.

Explicitly, the modified gauge variation is (cf. (4.5.14))
6@, = D’°A, + i8,%A; . (4.5.16)

This leads to the usual transformations for #5 and leaves A and ¢, invariant (see

(4.4.31)). But the variation of the component field B = i % (D&(fo.‘ — D, @) is

Loedy . (4.5.17)

2 [e7e%

5B = —

Therefore this component field is a gauge four-form.

The action for ¥, is the usual one proportional to G?, and the four-form does not
appear in G? and in the action. However, at the quantum level, the four-form would

reappear in gauge fixing terms, and chiral dotted spinors would appear as ghosts.

d. Superfield Lagrange multipliers

We have given a number of examples of supersymmetric theories that describe
the scalar multiplet on shell (same physical states) but are inequivalent off shell. They
differ primarily in the types of interactions they can have. So far, we have found that
the simplest formulation of the scalar multiplet, a chiral scalar superfield (or, equiva-
lently even off shell, D? on a general scalar), has the most general interactions. How-
ever, in extended supersymmetry none of the known N = 2 theories equivalent on-shell
to the N = 2 scalar multiplet can have all the interactions known from on-shell formula-
tions. We now introduce a form of the N = 1 scalar multiplet that is a submultiplet of
an off-shell formulation of the N = 2 scalar multiplet. Its most distinctive feature is a
superfield that appears only as a Lagrange multiplier. This formulation has some draw-
backs in common with the tensor multiplet (another theory equivalent to the scalar mul-

tiplet on shell), to which it is closely related: (1) It does not have renormalizable self-
interactions (i.e, those corresponding to terms / d*zd*0 P(®)), (2) it is restricted in its

couplings to supergravity, and (3) it is not an off-shell representation of the (chiral) U(1)

symmetry which the scalar multiplet has on shell (corresponding to ®'=¢e®). On the
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other hand, unlike the tensor multiplet (and most variant forms of the scalar multiplet),
it does couple to Yang-Mills. However, because of (3), it can only be a real representa-
tion of any internal symmetry group, and couples to Yang-Mills accordingly (e.g., it can

couple to a U(1) vector multiplet only as a doublet of opposite charges).

The formulation is described by a general spinor gauge superfield with a term in
the action like that of the chiral spinor gauge superfield of the tensor multiplet, and a
real scalar superfield Lagrange multiplier with a term in the action that constrains to
zero the submultiplets in the former term that don’t occur in the tensor multiplet.

Explicitly, the action is

S:_/d4xd40 (%F2+YG) ,

F=_(DW, + DW,) , G=i — D%W,) (4.5.18)

N | —

with gauge invariance
§U” = D,yLY (4.5.19)

in terms of a general superfield gauge parameter. The Bianchi identities and field equa-

tions are:

Bianchi identities : D*(F —iG) =0 , (4.5.20a)

field equations: Dg(F +iY ) =G =0 . (4.5.20b)

If we make a “duality” transformation by switching the Bianchi identities with the field
equations, we obtain the usual formulation of the scalar multiplet, with the identifica-

tions

(@+8) , ¥ =5i(B-2) , G=0 . (4.5.21)

In terms of irreducible representations of supersymmetry, this theory contains
superspins %@%@O in ¥* and %@0 in Y. The representations in Y set the corre-

sponding ones in ¥ to zero on shell, leaving the remaining one as a tensor multiplet.
However, unlike the tensor multiplet, the physical spin zero states are all represented by

scalars: The vector obtained by projection from [Dg;,D,]F is an unconstrained
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auxiliary field, appearing at 8?6 order in ¥, whereas the corresponding vector in the ten-
sor multiplet is the transverse field strength of the tensor appearing at 6 order in the
chiral spinor ®“. This theory has the same component-field content as the nonminimal

scalar multiplet plus an auxiliary real scalar superfield.

Coupling to Yang-Mills is straightforward; however, since both ¥ and ¥ appear in
F and in G, ¥ must transform under a real representation of the Yang-Mills group. We
covariantize by replacing the spinor derivatives in the definitions of F' and G by Yang-
Mills covariant spinor derivatives. Invariance of the action under the Yang-Mills covari-

antization of (4.5.19) then requires

1

0=5vg~:<gv¢ﬂm:-w§Fwﬂw>, (4.5.22)

implying the same representation-preserving constraint F',;=0 as for the chiral scalar
formulation. The total set of Bianchi identities and field equations is the same as for the

chiral scalar.

Just as there is an improved form of the tensor multiplet, with superconformal

invariance, there is an improved form of this scalar multiplet. In analogy to the tensor
multiplet, it is obtained by replacing %FQ in (4.5.18) with F'In F (cf. (4.4.46)). Further-

more, the first-order formulation of this multiplet turns out to be equivalent to the first-

order formulation of the nonminimal scalar multiplet. We start with (cf. (4.4.45))
S = /d% d*0 e — XF -Y G| . (4.5.23)
The first order form of the nonminimal scalar multiplet is usually written as (4.5.10b):
S = /d% d*0 [X'X' — (X'D*V', + h.c.)] . (4.5.24)

Upon elimination of the complex scalar X', this gives the second-order form of the non-
minimal scalar multiplet (4.5.4). Upon elimination of the spinor ¥'*, we obtain the con-
straint D;X’=0, whose solution X’=® in terms of a chiral scalar ® gives the minimal
scalar multiplet (proving their duality). The equivalence of the actions (4.5.23) and
(4.5.24) follows from the change of variables

U= X", X=X (4.5.25)

a )
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(some integration by parts is necessary to show the equivalence).

e. The gravitino matter multiplet

Thus far we have considered supermultiplets with physical fields of spin one or

less. We conclude our discussion of global N =1 multiplets by considering one with a
spin 1 and a spin % (gravitino) component field. It is possible to discuss it without

introducing supergravity only if the multiplet describes a free theory. The gravitino
multiplet is of interest because many of the features encountered in the superfield formu-
lation of supergravity, such as irreducible submultiplets, compensators, and inequivalent

off-shell formulations, are already present.

e.l. Off-shell field strength and prepotential

Following the discussion of sec. 3.12.a we describe this multiplet on-shell with com-
ponent field strengths 1,5 (vector field strength) and v,5, (the Rarita-Schwinger field
strength), totally symmetric in their indices. We denote the off-shell superfield strength
corresponding to .5 by W 5. It is a chiral field strength of superspin 1, no bisection is

possible (s + %N = g is not an integer), and therefore we write (see (3.13.1))

Was =5 D*D0y (4.5.26)
in terms of a general spinor superfield. From dimensional analysis (the gravitino field
has canonical dimension g), the dimension of W is 2.

The gauge transformations that leave W invariant are
oV,=A,+D, Q2 , DsA,=0 , Q#Q |, (4.5.27)

To analyze the transformations of the components, we define

1 72
taﬁ - Waﬂ‘ - ED D(a\llﬁ)‘ ,

1. = 1 1=
Yagy = DW= 5 DD’ Dy =i 50+ o [D°, Ds|W.)|

2 (a

1 _
Xa = DﬂWaﬁ| = §D5D2D(a\yﬁ)‘ 3
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ay

Fos = D*W 5| = %D2520(aqfﬁ)\ -y %6( DD, . (4.5.28)

We identify the gravitino and (complex) vector field strengths, 1,3, and f,5. The corre-

sponding component gauge fields appear in ¥, and are given by
1= . =
Yay =i 5Ds, Do), Ay = iD*DgV,| (4.5.29)
Their gauge transformations are

5, = [% 9,(D,Q — A) +iC.,D;D*Q| ,

§A, = —0,D*Q| . (4.5.30)

The gravitino field, in addition to undergoing a Rarita-Schwinger gauge transformation
described by the first term, also is translated by :C. .73, 775 = Eﬁ'DQQ\. (When coupled
to N = 1 supergravity to give N = 2 supergravity, the transformation (4.5.30) is part of
the N = 2 superconformal group: The first term becomes the second local @)-supersym-
metry transformation, the second term, the second S-supersymmetry transformation.)

We refer to this multiplet as the conformal gravitino multiplet.

The multiplet of component fields of W, is irreducible and gauge invariant and
should appear in the gauge invariant action. However, in the absence of dimensional
constants we cannot write a free action of the correct dimension in terms of W. We can

write a nonlocal gauge invariant action in terms of ¥, e.g.,
. 1 4 4 _,6.’~ Qe
S = §/d rd 0 ¥7i0"511, ¥, + h.c. , (4.5.31)

(II,,¥* is the correct projector onto the physical gauge invariant representation) but it

leads to a nonlocal component action.

To find a local action, we add more representations. Clearly removing IT from the
action restores locality but introduces all the representations in ¥, and destroys the
gauge invariance. We can, however, restrict the representations which appear. We begin

with the general expression

1 =3 . Aa.
S = 5/d‘lac d*o v9io ﬁ(z 1), + h.c. (4.5.32)

with the sum running over all projectors (3.11.38,39), and choose ¢; to obtain a local
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action. We require that the superprojector II;; be present, and find two solutions con-
taining the least number of additional superprojectors. One uses the superprojectors

—II;; — 21_[0_%77 — HQ’%7+ the other uses —II;; — 21‘[0%77 +II,5. (The overall sign is cho-

sen to give the physical vector the correct kinetic term.) The resulting actions are

1) Suy= /d4$ d'0 [=(DYU*)(D,Us) — 5 (P DV, + h.c.) + 7 (DT, + DTy)’]

1 1
2 4

(2) 5(2):/d4xd40 [—(DU)(D,U,) — = (¥*D*W, + h.c.)] . (4.5.33)

1
2
However, the gauge group is no longer described by (4.5.27); the invariance groups asso-

ciated with the actions above are smaller than the invariance group of W 4; they are

(1) oV, =iD’D K, + D K, |, K, =K, |,

2) W, = Ay, + Do(DyA" + D3A,°) | DjA =0 | (4.5.34)
for the two actions.

As compared to (4.5.27), in the first case the invariance group has been reduced
because A, is restricted to the special form iD*D_ K,, K; = K, and Q is restricted to

be real. In the second case A, remains unrestricted but () is restricted to the form

DﬂAQﬂ + D_ﬂ'KQﬁ . In both cases the final gauge group has fewer parameters than the
original one. However, for many purposes (e.g., quantization), we need to use the origi-

nal gauge group; to do this, we introduce compensating multiplets (see sec. 3.10).

e.2. Compensators

For the gravitino multiplet, two inequivalent sets of compensators can be intro-
duced. We do this by nonlocal field redefinitions of the basic gauge superfield. Thus, for

the two local actions we make the redefinitions

(1) v, =W, + 075 D*W, + D*D,G)
W, =iD*D,V V=V,
1

G =5 (D, + D:®Y) , Di®,=0 ,
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(2) v, — v, +0°'(; D*W, + D,D*3) ,

Dsd=0 . (4.5.35)

They induce the following changes in the actions

(1) Sp — Sq — /dﬁz w2 + /dSz [— (WU, + WiTg) + G2

— G(D"V, + DTy)]

(2)  Sp — S — /d% W? + /dgz [— (WU, + WiTs) — 280

— (PDV, + BDT)] . (4.5.36)

Although the redefinitions are nonlocal, the actions remain local. (Actually, in case (1)

we can also use simply ¥, — ¥, + ¢ % D,V +d,)

In the above field redefinitions we introduced a vector multiplet V' and either a
tensor multiplet ®, or a chiral scalar multiplet ®. These choices are a reflection of the
representations that were introduced by the additional projections: A vector multiplet

I, _W¥,, a tensor multiplet 1,1 W,, and a chiral scalar multiplet II, ;¥,. In the pres-
b 72 K

0
2
ence of the compensating multiplets the gauge variation of ¥, is given by (4.5.27). The

compensating multiplets transform as follows:

(1) V=iQ-Q) , 0®,=—A, +iD*D, K, |,

(2) V=iQ-0Q) , §®=-DQ , (4.5.37)

Since they are compensators, they can be algebraically gauged to zero. In the resulting

gauge, the transformations (4.5.27) of ¥, are restricted back to (4.5.34).

The two inequivalent formulations of the gravitino multiplet, one using a tensor
multiplet compensator and the other using a chiral scalar compensator, lead to different
auxiliary field structures at the component level. In the Wess-Zumino gauge for case (1)

the components of the gravitino multiplet are
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A, = Eﬂ.Da\Tfé + DU, + %Da(Dﬂ\yﬂ n Eﬁ'@é) LW, - DG ,
P = —i(D*D*¥, — DiD*T, + D°W,) ,

V,=i(D*DV, + D*D,U,) — 8,[G —

20, ) = 0,(G — S (D', + DT,)]
A',=(D*Ds¥, — D°D, V) ,

t'ap = Dol ®p) + ¥y

tas =2W,5 + 0 By

Y

Xo = D?D,[G — 5 (D"W, + D'T,)]

N —

BQ: %[D(X7D_&]V+Z(Da@&+D_(;lI[“> ’

6, =i 5 (Do, D)V’ + 6, DDy, + D*Ty + W, | (4.5.38)

For case (2) we have instead

o =D'D,T;+ D, + W, D, ,

P =—i(D°D*¥, — DDV, + D°W,) ,
J=D*(D"V, +2®) ,

A

=—iD’D, ¥, + 0,® ,

a

tozﬂ = 2W04,6’ + a(a’yBﬂ)i ’

[e7e% [e7e%

Xo = D*D*V, +id,;D° DV, — i0,, DD |
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BQ: %[D(X7D_&]V+Z(Da@& +D_&lp“> ’
wgﬁ =1 % [Du ) Ea]q]ﬁ + Z'éaﬂ[D’YE&\I]W + DZ‘T]& + W“] ' (4539>

In case (1), the gauge field t’,5 of the tensor multiplet replaces the complex scalar com-
ponent field J, which corresponds to the auxiliary field of the chiral scalar multiplet of
case (2). In the component action t',; only appears as t/,; 80‘7.’14’[’)5 —t_’&/é 8”’0"A’Wﬂ. This
term is invariant under separate gauge transformations of t’,5 and A’Cy 5 Also it should

be noted that the field A’, is real. In case (2) 4 5 # (4, ﬂ-) has no gauge transforma-

tions because the physical scalars of the chiral scalar multiplet have become the longitu-

dinal parts of Aa 5 and cancel the transformation in (4.5.30). In both cases, the physical
vector of the compensating vector multiplet has become the physical vector of the grav-
itino multiplet, while the physical spinor of the vector multiplet becomes the spin % part

of the gravitino and cancels the spinor translation in (4.5.30).

e.3. Duality

Since the two formulations above differ in that (1) has a tensor compensator where
(2) has a chiral compensator, using the approach of sec. 4.4.c.2, we can write first order
actions that demonstrate the duality between the two formulations. For example, we

can start with (1) and write
S’y =S¥, V] + /dsz (X2 — X (D0, + D°U;) — 2X(® + )] . (4.5.40a)

Varying the chiral field ® leads to X = G and formulation (1), whereas eliminating X

results in formulation (2). Similarly, we can start with (2) and write
Sl =S¥, V] + /dgz [~ X2 — X(D"W, 4+ D*T;) + 2XG] . (4.5.40b)

Varying the linear superfield G we find X = ® + & and formulation (2), whereas elimi-
nating X leads directly to (1).

There are other inequivalent formulations where we replace V' by the variant vec-

tor multiplet and/or replace ® by either the real or complex three-form multiplets. This
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simply replaces some of the scalar auxiliary fields with gauge three-form field strengths.

e.4. Geometric formulations

Finally, we give geometrical formulations of the theories. To describe a multiplet
that gauges a symmetry with a spinorial gauge parameter, we introduce a super 1-form
I',% with an additional spinor “group” index. The analysis is simplified if the irreducible
multiplet is considered first. The irreducible theory was described by W,; in (4.5.26).
To describe this multiplet geometrically, we introduce more gauge fields (in particular a
complex super 1-form 'y (# ') and enlarge the gauge group. When we get to super-
gravity we will find that this process can also be carried out. There the irreducible mul-

tiplet is the Weyl multiplet and the enlarged group is the conformal group. The final
form of the (% , 1) multiplet with more irreducible multiplets and compensators is analo-
gous to Poincaré supergravity. We will use the words “Poincaré” and “Weyl” for the

(g , 1) multiplet to emphasize this analogy.

The complete set of gauge fields and gauge transformations that describe the Weyl

(%,1) multiplet is:
5FA’3:DAK’8—5A’3L , 5FA5.:DAK5.—5ABE,

(SFA - DAL , 6FA - DAE . (4541)

The K-terms are the usual gauge transformations associated with a superform and the
L-terms are the “conformal” transformation. Recall that we found that the gauge trans-
formations of the irreducible multiplet contain an S-supersymmetry term. L is the
superfield parameter that contains these component parameters. The vector component
of the complex super 1-form I', is the component gauge field whose field strength

appears in (4.5.28). The field strengths for I'; are those for an ordinary (complex) vec-

tor multiplet, but those for T',” and its conjugate I ;” must be L-covariantized:

Fap" =Dl — T, Tp" + Li4dp)",

Fap’ = DTy’ — Tap”Tp’ + Tiudp)’ (4.5.42)

We can now impose the constraints :
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F,i'=F J=F, = F,5" =0,

Fog=F ;=0 , (F;;70). (4.5.43)

Even with the L invariance the geometrical description here does not quite reduce to the
irreducible multiplet W 5. However, these constraints reduce the super 1-forms to the

irreducible multiplet plus the compensating vector multiplet, which are the two irre-
ducible multiplets common to both forms of the Poincaré (; , 1) multiplet, and thus are

sufficient for their general analysis.

A

The explicit solution of these constraints is in terms of prepotentials V¥, \ffa,

U (complex), and V(real):

=D, —§0

I, =—iD*Dy(¥, —¥,) + 8,V ; (4.5.44)

where W, =4D?D,V. The prepotentials transform under K, and L, as well as under
new parameters {2(complex) and A,(complex) under which the I'’s are invariant (this is

analogous to the A-group parameters in super-Yang-Mills):

0, =K,+D,Q , 6V, =K,—A,, D.A

o T

W=L-DQ ,dV=i(Q-Q) . (4.5.45)

As with the vector multiplet, we can go to a chiral representation where \ifa and \f!a only

appear as the combination ¥, = \ifa — U, with

)

A

§U, =680, —U,)=A, + D,.Q. (4.5.46)
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At this point, by comparison with (4.5.27), we can identify ¥, and V with the cor-
responding quantities there. To recover the full Poincaré theory, we must break the L
invariance. To break the L invariance, we introduce a “tensor” compensator G or (i>, to
obtain the tensor-multiplet or scalar-multiplet, respectively. These “tensor” (scalars) are
not prepotentials, and transform covariantly under all of the gauge transformations

defined thus far. By covariant, we mean that these transform without derivatives D 4.

6G= —(L+1IL), (4.5.47)

b= —1 . (4.5.48)

We now impose the L-covariantized form of the usual constraints (D?’G =0 and

D;® = 0) which describe tensor and chiral scalar multiplets;

DU DsG+ (Ts+Tg) +hoc.=0, (4.5.49)

N —

D +T:=0 . (4.5.50)

The invariance of these constraints follows directly (4.5.27,37,47,48). (The hermitian
conjugate term above is necessary to avoid constraining W, itself.) These constraints

can be solved in terms of prepotentials:

N

G=G—(V+T)—L(pw, + DT, | (4.5.51)

N| =

A

=0 - U; (4.5.52)

where G and ® are given in (4.5.35) and transform as in (4.5.37). To obtain case (1) as
described above, we introduce the tensor compensator G , choose the L-gauge G = 0, and
solve for W+ U in terms of G. The quantity ¥ — V¥ is undetermined, but can be gauged
away by using the remaining invariance parametrized L — L. (Recall gauging G to zero
only uses the freedom in L+ L.) To obtain case (2), we introduce the chiral scalar com-
pensator ® and gauge it to zero which gives ¥ = ®. Thus, gauging either tensor com-
pensator d or G to zero forces the I'’s to contain the correct and complete Poincaré mul-
tiplets. Alternatively, we could gauge ¥ to zero, so that the tensor(scalar) submultiplet
is contained only in G (<i>) We should also mention that other choices could be made for

tensor compensators. Any of the variant scalar or nonminimal scalar multiplets can be
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used by generalizing the discussion above. These will lead to a number of inequivalent

off-shell formulations of the Poincaré (; , 1) theory.

The field equations, obtained from the action (4.5.36), take the covariant form

— N

DX +(Ty+T;)=0, X=G or &+

KA

(4.5.53)

(In case (2), using (4.5.50), these simplify to 55}% +T;=0.)
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4.6. N-extended multiplets

So far in this chapter we have described the multiplets of N = 1 global supersym-

metry. For interacting theories there are two such multiplets, with spins (% ,0), and

(1,%), although their superfield description may take many forms. For N-extended

supersymmetry, global multiplets exist for N < 4. They are naturally described in terms
of extended superfields. It is possible, however, to discuss these multiplets, and their
interactions, in terms of N =1 superfields describing their N =1 submultiplets. In
many cases of interest this is the most complete description that we have at the present

time.

a. N=2 multiplets

As discussed in sec. 3.3, there exist two global N = 2 multiplets: a vector multi-
plet with spins (1, % , %,0,0), and a scalar multiplet with spins (% , % ,0,0,0,0). There
exists only one global N =4 multiplet: the N =4 vector multiplet, with SU(4)
representation ® spins (1®1,4®%,6®0). (The only N = 3 multiplet is the same as
that of N =4.) We begin by discussing the N = 2 situation.

a.l. Vector multiplet

The N = 2 vector multiplet consists of an N =1 Yang-Mills multiplet coupled to a
scalar multiplet in the same (adjoint) representation of the internal symmetry group.

The action is

1 _
S=—tr (/ d4xd40<I>CI>+/d4xd20 W?) (4.6.1)
g

in the vector representation. In addition to the usual gauge invariance, it is invariant

under the following global transformations with parameters x, (:

00 = — WV, x —i[VA(VOV, + (V)W ,]®
= — WOV, = [(5 V5, VIOV + ((VVOV, 0

e 0e = —ix®+ WiV . (4.6.2)
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(For the ( transformation we use (4.2.52), and also a gauge transformation with

K = —i(T°D*D,¢ — °D*D,¢)  + r“&%[ﬁ&,pa]g.) Due to the identity

6V, =[V,, (e 5e)] (4.2.77), the second transformation can be written as

6V, = = Vau(ix® — WV () = — iBV,x + W4 L[Ve, V. (4.6.3)
Both parameters are z-independent superfields and commute with the group generators
(e.g., Vox = D,x). The parameter y is chiral and mixes the two N =1 multiplets,
whereas ( is the real parameter of the N =1 supersymmetry transformations (3.6.13).
Since ¢ has the (z-independent) gauge invariance 6¢ = i(A — \), the global superparame-
ters themselves form an abelian N = 2 vector multiplet. Referring to the components of
this parameter multiplet (x,({) by the names of the corresponding components in the

field multiplet (®,V'), we find the following: The “physical bosonic fields” give transla-

[Dgs, D,]¢|) and central charges (from the scalars z = x|);

)

tions (from the vector (, = %
the “physical fermionic fields” give supersymmetry transformations (e, =iD?D, (|,
€, = D,x|); and the “auxiliary fields” give internal symmetry U(2)/SO(2) transforma-
tions (r = %DQD_QDaC‘7 q = D*x). (The full U(2) symmetry has, in addition to (7, ¢,7q)

transformations, phase rotations 6® =iu®, 6V = 0).

The algebra of the N = 2 global transformations closes off shell; e.g., the commuta-

tor of two x transformations gives a ( transformation:
[0y, ,0y,] =6c, 5 G2 = iXnxy = 1(Xaxe — XoX1) - (4.6.4)
The transformations take a somewhat different form in the chiral representation:

5 = — WV, x — iV (V*V,®

e8¢V = i(x® —x®) + (WIV,+ WV )¢ (4.6.52)
and hence
0V, = YV [i(7® — X&) + (WIV, + WV 5)¢] (4.6.5D)

Now the i(XA — \) part of the ¢ transformation does contribute, but only as a field-depen-
dent gauge transformation A=WV .
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We can add an N =2 Fayet-lliopoulos term (parametrized by constants

V=) +ivy, vy = Us)
/d4xd49 vV —|—(—i/d4xd29 v®+h.c.) (4.6.6)

to the above action in the abelian (free) case. This is invariant under (4.6.5) if we

restrict the global parameters by

—vD*Y =vD*x , vyD*y = iv(2D*D*¢ +u) (4.6.7)
where u is the real constant parameter of the phase SO(2) part of U(2). The constraint
on the parameters implies that the U(2) is broken down to SO(2)®U(1).

This model has some interesting quantum properties. It has gauge invariant diver-
gences at one-loop, but explicit calculations show their absence at the two- and three-
loop level. In sec. 7.7 we present an argument to establish their absence at all higher

loops.
a.2. Hypermultiplet

a.2.i. Free theory

The N = 2 scalar multiplet can be described by a chiral scalar isospinor superfield

®° (the “®* hypermultiplet”) with the free action
S = /d4xd40 P, + % (/ d*zd*0 ®*m,®" + h.c.) (4.6.8)

where the symmetric matrix m satisfies the condition

m,C" = C,m?" . (4.6.9)

ac

(The explicit form is mg, = iMC,7°., M = M, with 7, =0 and 7%, = 7%,. Without
loss of generality, m,, can be chosen proportional to ¢,.) The free action is invariant

under the global symmetries
50" = — (D*YC"®, — xZ®") — iD*[(D*¢)D,®" + (D*¢)®"] (4.6.10)
where Z is a central charge:

79" = C%m,,®° , Z®,=C,m"d, . (4.6.11)
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On shell, we also have
79" = - C"D*®, . (4.6.12)

We can use either of the forms (4.6.11,12) in the transformation (4.6.10), because of the

local invariance

50 =nC»*s, , S, = % , (4.6.13)

for arbitrary z-dependent chiral n. (This is an invariance because the variation of the
action is proportional to 65 ~ S,C%S, =0.) If we use the form (4.6.12), the variations
do not depend on the parameters m,,. An interesting feature of the algebra (4.6.10) is
that it does not close off-shell if we use realization (4.6.11) for Z. On the other hand, if
we use realization (4.6.12) instead, the symmetries (4.6.10) contain part of the field
equations, and hence become nonlinear and coupling-dependent when interactions are
introduced. These effects are a signal that in the decomposition of the N = 2 superfield
that describes the theory into N = 1 superfields, some auxiliary N = 1 superfields have

been discarded. We discuss further aspects of this problem below.

Without the mass term, the internal symmetries of the free scalar multiplet are the
explicit SU(2) that acts on the isospinor index of ®* and the U(2) made up of the r and
q transformations in ¢ and y, and of the uniform phase rotations d®“ =4iu®”. The mass

term breaks the explicit SU(2) to the U(1) subgroup that commutes with m,,.

a.2.ii. Interactions

The N = 2 scalar multiplet can interact with an N = 2 vector multiplet, and it can
have self-interactions describing a nonlinear ¢ model. A class of supersymmetric o-mod-
els can be found by coupling an abelian N = 2 vector multiplet (with no kinetic term

but with a Fayet-Iliopoulos term) to n N = 2 scalar multiplets described by the n-vector

®. The supersymmetry transformations of the vector multiplet are the same as those
given above in (4.6.2) or (4.6.5) for the abelian case. (They are independent of the fields
in the scalar multiplets.) However, the transformations of the scalar multiplets (each of

which is described by a pair of chiral superfields ®*) are gauge covariantized:

60" = — D[, ()", O] — iD*[(D°C)V,@" + (D*Q)®"] — i L ud" .
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(4.6.14)

The matrix 7 is an SU(2) generator that breaks the explicit SU(2) of the scalar multi-
plet down to U(1l). Because SU(2) preserves the alternating tensor C,

(eTV)“b (eTV)C i Coe = Chq. The action that is left invariant by these transformations is:

5= / 'z d0 [3, ()", - B + vyV]

+/d4x 420 z‘@[%%“ Cotle @ — ] + h.c. (4.6.15)

provided (4.6.7) are satisfied. The theory is also invariant under local abelian gauge

transformations:

00" = i AT%®" , oV =i(A—A) , §b=0 ; (4.6.16)
as well as global SU(n) rotations of ®*. For explicit computation, it is useful to choose
a specific 7: We choose T = 73. We write ®* = (&, ,®_) = (®,',®_,) where i =1---n

is the SU(n) index, 4, — are the SU(2) isospin indices, and @, transforms under the

SU(n) representation conjugate to ®_. The transformations (4.6.14) and the action

(4.6.15) become (using (4.6.7))

50, =+ DX(®_") — LV (DQ)D. — iDX(D°O)V, D, (4.6.17a)

+ 2 v

S = /d4x A0 [@ "0 + & e VO +uV]

+/d4x a*0 i®[®_®." —v] + h.c. (4.6.17b)

We now proceed as we did in the case of the CP(n) models (see (4.3.9)): We eliminate
the vector multiplet by its (algebraic) equations of motion. In this case, ® acts as a

Lagrange multiplier to impose the constraint:
0. ' =v . (4.6.18)

Choosing a gauge (e.g., ®,.' = ®_,), we can easily solve this constraint; for example, we

can parametrize the solution as:
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i 11 -
P ' =14uy u) 2V2(17u+> ;

O, =1+u,u)owi(l,u ). (4.6.19)

The V equation of motion gives:

P, D eV fuy =0, (4.6.20a)
or
MoeV = J[(vs? + AM, M )i Fvy] 5 (4.6.20Db)
where
M=%, 0. =0 =[V|[1+uy-u |1+ [usl’) . (4.6.20¢)

Substituting, we find the action
S = /d% 40 {(vs +AM M )2 + |vg| In[(vs? + 4M M )z — |ug|]} . (4.6.21)

In terms of the unconstrained chiral superfields u., the transformations (4.6.17a) become

duy =+ D[ (D) (14 uy - u ) (1+ 7, ) 5 (7 — u)]

—iD?[(D*¢)Du.] (4.6.22a)

where the auxiliary gauge field V is expressed in terms of u, by (4.6.20). The super-
symmetry transformations (4.6.22a) include a compensating gauge transformation with

parameter

iA == D?[x(cosh V)(D)i(1+uy -u )o(1+ 7, 7)) (4.6.22D)

that must be added to (4.6.17a) to maintain the gauge choice we made in (4.6.19).

As for the free N = 2 scalar multiplet, we can add an invariant mass term (which
introduces a nonvanishing central charge). The mass term necessarily breaks SU(n) and

has the form
Im = %/d4x d*f o CabTbc Mo + h.c. ’ (4623>

where M is any traceless n x n matrix (M’s differing by SU(n) transformations are
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equivalent). The supersymmetry transformations that leave this term invariant are the
same as before, including the Z term of (4.6.10). The realization of Z given in (4.6.11)
is preferable, since it is linear, whereas the realization (4.6.12) must be gauge covari-

antized.

These nonlinear o-models live on Kéhler manifolds with three independent com-
plex coordinate systems related by nonholomorphic coordinate transformations (they
have three independent complex structures (see the end of sec. 4.1); the constants
vy, v, U parametrize the linear combination of complex structures chosen by the particu-
lar coordinate system). Thus these manifolds are hyperKahler. Just as we found that
for every Kéhler manifold there is an N = 1 nonlinear o-model (and conversely), one can
show that for every hyperKéahler manifold there is an N = 2 nonlinear o-model, and con-
versely, N =2 nonlinear o-models are defined only on hyperKahler manifolds. An
immediate consequence of this relation is a strong restriction on possible off-shell formu-

lations of the N = 2 scalar multiplet:

No formulation can exist that contains as physical submultiplets two N = 1 scalar
multiplets (e.g., such as we have considered), that can be used to describe N =2
nonlinear o-models, and that has supersymmetry transformations independent of

the form of the action.

If such a formulation existed, then the sum of two N = 2 invariant actions would neces-
sarily be invariant; however, the sum of the Kéhler potentials of two hyperKahler mani-
folds is not in general the Kahler potential of a hyperKahler manifold. We will see
below that we can give an off-shell formulation of the N = 2 scalar multiplet that avoids

this problem.

We can generalize the action (4.6.15) in the same way that we generalized the

CP(n) models (see (4.3.11)):

S = /d4x a0 (@, (™), @ + vytrV]

4 29 11 xa b c
ab! ¢ - by $J.
+/dxd92[5<1> ®C T — vtrd] + h.c (4.6.24a)

where V =V*T,, ®=o*T,, and T, are the generators of some group. The N =2

transformations that leave (4.6.24a) invariant are the obvious nonabelian generalizations
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of (4.6.14). The equations that result from varying (4.6.23a) with respect to ®* ,V* are,

choosing 7 = T4 as above,

e 7, —vtrT, =0,

Q. e"'T, @, —® T,e 'O +vytrT, =0 . (4.6.24b)

As in the N =1 case, these do not, in general, have an explicit solution.

a.3. Tensor multiplet

Just as the N = 1 scalar multiplet can be described by different superfields, we can
describe the N = 2 scalar multiplet by superfields other than the chiral isodoublet ®“.
We now discuss the N = 2 tensor formulation of the scalar multiplet. This is dual to the
previous description in the same way that the N =1 tensor and scalar multiplets are
dual (see sec. 4.4.c). We write the tensor form of the scalar multiplet in terms of one

chiral scalar field n and a chiral spinor gauge field ¢, with linear field strength
G = %(Daqﬁ“ + Eo;qﬁ‘;), D?*G = D*G =0. The N = 2 supersymmetry transformations of

this theory are

6¢a = - 27]Dax - ZEQ[(DﬂC)Dﬁ¢a + (DQC)¢Q] )

on = — D*(XG) — iD*[(D"¢)Dyn + 2(D*¢)n)] . (4.6.25)

In contrast to the & hypermultiplet realization of the N = 2 scalar multiplet, these
transformations close off-shell; they have the same algebra as the transformations of the
N = 2 vector multiplet (4.6.4) (up to a gauge transformation of ¢,). However, although
the superfields describe a scalar multiplet, the central charge transformations z = x|
leave the fields ¢, n inert; this gives one guide to understanding the duality to the hyper-
multiplet.

The simplest action invariant under the transformations (4.6.25) is the sum of the

usual free chiral and tensor actions ((4.1.1) and (4.4.34)):
S = /d% d*o [— % G? +nn) . (4.6.26)

To find other actions, we consider a general ansatz, and require invariance under the
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transformations (4.6.25). Actually, we can consider a slightly more general case that
still has full off-shell N = 2 invariance by restricting the chiral parameter y by D*y = 0,
and the real parameter ¢ by D?D?*¢ = 0. This means that we do not impose SU(2)

invariance. An action

S = /d% d*o f(G,n,n) (4.6.27)

is invariant under (4.6.25) (with D*y = 0) if f satisfies

*f . f _
oGz T ooy~ o TIm =0 (1029

(f contains no derivatives of G, n, 7.) It describes a general N =2 tensor multiplet
interacting model. We also can consider more than one multiplet G',n", 7, each trans-
forming as (4.6.25); then the most general invariant action is (4.6.27) where the

Lagrangian f satisfies

faici + fniﬁj =0 . (4.6.29)

Actually, we can generalize (4.6.27) slightly by adding a term [ d*z d*d h;n' + h.c.
n

where the h;’s are arbitrary constants.)

a.4. Duality

To gain insight into the physics of these models we find the dual theories described
by the ®* hypermultiplet. We consider the following first order action (cf. (4.4.38)):

s'= [atedio (fV ot 7) - ViR, +8)] (4.6.30)

Eliminating ®, ® gives (4.6.27), while eliminating V results in the dual theory. We find

the N = 2 transformations of the resulting ®“; hypermultiplets from the transformations
that leave the first order action (4.6.43) invariant. Since / d*z d*0 f(V,n,7) is invari-

ant under (4.6.25) with G — V except for terms ~ D*V or ~ D*V (V differs from G
only because it does not satisfy the Bianchi identities D*G = D?*G = 0), we can cancel
these terms by choosing the variation of ® appropriately. The first order action (4.6.43)

is invariant under
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(SVL _ Doz,r]iDaX + E&WEdX_F 5CV‘ , (4631&)
on' = —D*(XV') + o', (4.6.31b)
00; = — D*[X(fy + V! (fpvi — fpvi))] + 6.2; (4.6.31c)

where 0. is the usual N = 1 supersymmetry (3.6.13) (with wy =0, w, = — 2, ws = 0).
(To prove the invariance of (4.6.30) under (4.6.31), we need (4.6.29) and its conse-

quences, in particular, fyiyi,n =0 and fo 59 =0 because of the antisymmetrization,

mn
and therefore, using the chain rule we find D faivi = 0.) Performing the duality trans-
formations, we can rewrite the transformations (4.6.31) and the condition (4.6.29) in
terms of the dual variables ®,n and the Legendre transformed Lagrangian

IK(® + ®,n,7). We find (dropping the uninteresting d; terms)

on' = D*(YKKsg,) (4.6.32a)
00, = — D*[X(IK ; + Ko, (IKo,5,) ' K o, — (Ko,5,)  1K,5,))] ,  (4.6.32b)

for the transformations, and
H(—/’/MTJ = (H(—@L(T)J)il + H(—niém(H(—(I)mén)ilqu)nm (4633>

for the condition that the Lagrangian must satisfy to guarantee invariance. Note that in
contrast with the off-shell transformations (4.6.25), the on-shell transformations
(4.6.31,32) depend explicitly on the form of the action. Furthermore, the condition
(4.6.29) needed for invariance of the off-shell version of the model is linear, and hence
the sum of two invariant actions is automatically invariant, whereas the condition
(4.6.33) is nonlinear. The Legendre transformation allows this to occur, and allows us to

comply with the restriction on off-shell formulations that we discussed above.

Although it is always possible to go from the off-shell formulation (in terms of the
tensor multiplet) to the on-shell formulation (in terms of the hypermultiplet), the reverse
transformation is generally not so straightforward. The improved form (see (4.4.45-5))
of the free multiplet can be found by exploiting an analogy with the nonlinear o-models
discussed above (Actually, the tensor multiplet form of the interacting models can be
found in this way). Alternatively, some simple models can be found by using the cen-

tral charge invariance of the tensor multiplet (see below).
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By analogy with (4.6.17), we can write down the following first order N = 2 invari-

ant action by introducing an auxiliary N = 2 vector multiplet V', ®:

S = /d% A0 [@, e"®, +P_e VO — GV]

+ /d% d*0 i®[®_®, —n] + h.c. (4.6.34)

This action is invariant under the transformations (4.6.5,14,25). Varying G and 7, we
find the free hypermultiplet (see discussion in sec. 4.6.a.2); varying V and ®, we find
that ®, drop out of the action entirely, and the improved (N = 2) tensor multiplet

results:
Simp = /44@“ d'0 [(G* + 4n)> — G In(G + (G + 4im)?)] . (4.6.35)

This complicated nonlinear action corresponds to a free hypermultiplet! It is, however,
an off-shell formulation, invariant under the transformations (4.6.25). It generalizes

directly to give an off-shell formulation of the nonlinear o-models we discussed above.

An alternative derivation of the improved tensor multiplet does not require an
N = 2 vector multiplet, but uses the central charge invariance of the tensor multiplet.
We begin with the free hypermultiplet action (4.6.8) (without loss of generality, we take
my, = imC o (73)".). We wish to Legendre transform one of the chiral fields
¢ = (&, ,P_), and keep the other field as the chiral field n of the tensor multiplet.
However, though 7 is inert under central charge transformations, ®, are not; we there-
fore define the invariant combination n = 1®,®_, and in terms of it write the first order

action
S = /d4x d'0 [meV +e" — GV] + %m[/ d*zd*0n+ h.c.] . (4.6.36)

Varying G, we recover the hypermultiplet action (4.6.8) with V = In(®,.®.); varying V,
we recover the improved tensor multiplet action (4.6.35) with a linear n term that acts
as a mass term. The algebra of transformations that act on the massive scalar multiplet
has a central charge; however, the description of the multiplet given by the N = 2 tensor

multiplet only involves fields that are inert under the central charge.
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Finally, we note that the gauge interactions of the N = 2 tensor multiplet are anal-

ogous to the N = 1 case (see sec. 4.4.c).

a.5. N=2 superfield Lagrange multiplier

Another formulation of the N = 2 scalar multiplet with off-shell N = 2 supersym-
metry is the N = 2 Lagrange multiplier multiplet. It is the N = 2 generalization of the
multiplet discussed in sec. 4.5.d, and contains that N = 1 multiplet as a submultiplet.
Unlike the off-shell N = 2 supersymmetric scalar multiplet discussed above (the N = 2
tensor multiplet of secs. 4.6.a.3,4), this multiplet can be coupled to the (N = 2) non-
abelian vector multiplet, though only in real representations. By using the adjoint rep-
resentation, this allows construction of N = 4 Yang-Mills with off-shell N = 2 supersym-

metry, as discussed below in sec. 4.6.b.2.

The N =2 Lagrange multiplier multiplet is described by the following N =1
superfields: (1) U,* and Y, describing an N =1 Lagrange multiplier multiplet as in

(4.5.18), with the gauge invariance of (4.5.19), and field strength >, = D;T,¢ (for which
F and G of (4.5.18) are the real and imaginary parts); (2) a second spinor ¥,", with the
same dimension and gauge invariance, but which is auxiliary; (3) a complex Lagrange
multiplier =, which constrains all of ¥, to vanish (instead of just the imaginary part, as
does Y for ), and has a field strength D;= with gauge invariance 6= = A (for A chi-
ral); (4) a minimal scalar multiplet, described by a complex gauge field ¥, with chiral
field strength @, (see sec. 4.5.a); and (5) two more minimal scalar multiplets ¥, and Vs,
but auxiliary. We thus have an N =1 Lagrange multiplier multiplet, a minimal scalar

multiplet, and assorted auxiliary superfields.

The action is

S:-/d‘*md‘*&[é(&+§1)2+%Y(21—2_31)]

+ /d”zx d*0 [@,®, + (EX, + E5,) + (V&5 + U,d,4)] . (4.6.37)

The most interesting properties of this theory appear when it is coupled to N = 2 super-
Yang-Mills. We do this by N = 2 gauge covariantizing the N = 2 Lagrange multiplier
multiplet field strengths. (In the absence of Yang-Mills coupling, the ®’s can be
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considered as ordinary scalar multiplets, rather than field strengths.) This coupling is

discussed in sec. 4.6.b.2.

b. N=4 Yang-Mills

In many respects, the N = 2 nonlinear o-models, when studied in two dimen-
sions, are analogs of N =4 Yang-Mills theory in four dimensions. Despite power-count-
ing arguments, they are completely finite on shell, and they are the maximally super-
symmetric models containing only scalar multiplets (the vector is auxiliary and can be
eliminated). The N =4 Yang-Mills theory is the first and best-studied 4-dimensional
theory that is ultraviolet finite to all orders of perturbation theory, and thus scale invari-
ant at the quantum as well as the classical level. (Its (-function has been calculated to
vanish through three loops; arguments for total finiteness are given in sec. 7.7. Inde-
pendent arguments using light-cone superfields have been given elsewhere.) It is self-
conjugate and is the maximally extended globally supersymmetric theory. Two super-
field formulations of the theory have been given: Omne uses an N = 2 vector multiplet
coupled to a ®” hypermultiplet and has only N =1 supersymmetry off shell, and the
other uses an N = 2 vector multiplet coupled to an N = 2 Lagrange multiplier multiplet
and has N =2 supersymmetry off shell (however, it has a large number of auxiliary

superfields).

b.1. Minimal formulation

At the component level the theory contains a gauge vector particle, four spin %

Weyl spinors, and six spin 0 particles, all in the adjoint representation of the internal
symmetry group. It can be described by one real scalar gauge superfield V' and three
chiral scalar superfields ®’, and is the same as an N = 2 vector multiplet coupled to an

N = 2 scalar multiplet. If we use a matrix representation for the ®’, the (chiral repre-

sentation) conjugate can be written as ®;, = ¢ " ®;e". The N = 1 supersymmetric action
(in the chiral representation) is given by
1 _ :
S = —tr( / d*zd*0 eV @,V " + / d*zd*0 W*

g2

+%/d4xd20iCzjk<bi[@j ,@k]+%/d4xd20_z‘0“@i[€>j ,®,]) . (4.6.38)
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In addition to the manifest SU(3) symmetry on the i, j, k indices of ® and @, it has the

following global symmetries:

6D = — (WY, + CHVE D) — iV (V) V, @ + 2 (V)]

0V, =V, [i(x2 = X'®,) + (WIV,+ WV 5)(] (4.6.39)
in the chiral representation, and in the vector representation

60 = — (WV X'+ CUVPx,; 8, — i[9, 9])
—i[VAVOV, + (VIQiW 0+ 2 VX (V)@

0V, = — Vo (ix'®, + WV 50) (4.6.40)

The x' are the generalization of those given for the N = 2 multiplets above, but now
they form an SU(3) isospinor, as does ®'. The identification of the components of y and
¢ is the same: The “physical bosonic fields” are the translations and the central charge
parameters (3 complex = 6 real, as follows from dimensional reduction from D=10: see
sec. 10.6), the spinors are the supersymmetry parameters, and the “auxiliary fields” are
internal symmetry parameters of SU(4)/SU(3). The algebra does not close off-shell.
Upon reduction to its N = 2 submultiplets, (4.6.39) (or (4.6.40)) reduces to (4.6.5) (or
(4.6.2)) and (4.6.14) (but with different R-weights).

The corresponding component action has a conventional appearance, with gauge,
Yukawa, and quartic scalar couplings all governed by the same coupling constant. In

sec. 6.4 we discuss some of the quantum properties of this theory.

b.2. Lagrange multiplier formulation

We now briefly describe another N =1 superfield formulation of N =4 super-
Yang-Mills; it employs the (unimproved) type of N =1 scalar multiplet of sec. 4.5.d.
Although even less of the SU(4) symmetry is manifest, this formulation is off-shell
N = 2 supersymmetric: It follows from the N = 2 superfield formulation of the theory,
as described by the coupling of N =2 super Yang-Mills to an N =2 (Lagrange multi-

plier) scalar multiplet. This formulation has a number of other novel features: (1)
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renormalizable couplings between nonminimal and other scalar multiplets, (2) the neces-
sary appearance (in interaction terms) of the minimal scalar multiplet in the form of a
gauge multiplet (sec. 4.5.a), and (3) loss of (super)conformal invariance off shell (this

occurs because the model includes an unimproved Lagrange multiplier multiplet).

The action can be written as (in the super-Yang-Mills vector representation) the
sum of (4.6.1) and (4.6.37). However, the definitions of the field strengths 3, and ®; are

now modified:

Zi = V&\I!i& - i[cbo ,‘I’z‘]

®, =V, (i=0,1,2) , &=V, —i[d,,ZT] ; (4.6.41)

where @, (with prepotential W) is the chiral superfield of the N = 2 Yang-Mills multi-
plet. The V4 in these definitions is the Yang-Mills covariant derivative. In addition to
the usual (adjoint, vector representation) Yang-Mills gauge transformations, we have

many new local symmetries of the action:

K (1=0,1,2) , 00y =VaK,% +i[0,,A] (4.6.42a)

« (4

o0, =V

3

6, = VK, + i@, K,"] (i=1,2) ; 0Z=A; §Y =60=0 ; (4.6.42b)

where A is covariantly chiral (VA =0), and  is the Yang-Mills vector-representation
prepotential. Under these transformations the field strengths &, (i =0,...,3), %,
(i=1,2), V4, Y, and W, are invariant. In the abelian (or linearized) case, the sum of
(4.6.1) and (4.6.37) as modified by (4.6.42) describes an N = 2 vector multiplet (¥, and
®,) plus an N = 2 scalar multiplet consisting of the N = 1 Lagrange multiplier multiplet
of (4.5.18) (¥,“ and Y), a minimal N =1 scalar multiplet (®,), and some auxiliary
superfields (¥, =, U,, and W;). However, in the interacting case the formulation is
somewhat unusual in that ®; is not just N = 1 covariantly chiral (V  ®; # 0) nor are 3,
N =1 covariantly linear (V2X; # 0), but they satisfy the N = 2 covariant Bianchi iden-
tities

7@3 = —i[®y, V,E] ,

o

VY, = —i[®,,®,] . (4.6.43)

The interaction terms of the auxiliary superfields (introduced through the nonlinearities
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of the field strengths 3, and ®;) cancel among themselves: Their terms in the action can

be rewritten as, in the chiral representation,
/d% d'0 (2D 0,% + h.c.) + [/d% d*0 ®,(D*W,) + h.c.] . (4.6.44)

By combining the Bianchi identities (4.6.43), the usual constraint V&, =0 (for
i =0,1,2), and VW, =0, VW, + VW, =0 with the field equations which follow
from the action, we obtain the on-shell equations for all of the superfields

5'5221_21222:¢2:®3:0 ,

«Q

VW, = —iViW s = [0y, 8] + [@,,8)] + - [(Ty +4V ), (T, +4Y )],

1
4

Vi®y = V28 +i[®,, 3 (T, +iV)] =0,
v&q)l 272&)1 + Z[%(El + ZY) 7(p0] =0 9
V(S +1Y) =V, +iY) + 2i[®), 0] =0. (4.6.45)

We can thus identify this formulation on shell with that given above in subsec. 4.6.b.1.

by the correspondences

W,e— W, , (9,0 ,=(Z, +iY)) e & . (4.6.46)

1
2
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5. CLASSICAL N=1 SUPERGRAVITY

5.1. Review of gravity

a. Potentials

Our review is intended to describe the approach to gravity that is most useful in
understanding supergravity. We treat gravity as the theory of a massless spin-2 particle
described by a gauge field with an additional vector index as a group index (so that it
contains spin 2). By analogy with the theory of a massless spin 1 particle its linearized

transformation law is
Shy™ = O\ . (5.1.1)

Since the only global symmetry of the S-matrix with a vector generator is translations,
we choose partial spacetime derivatives (momentum) as the generators appearing con-

tracted with the gauge field’s group index in the covariant derivative

e, =0, —th,"(i0,)

= (0, + 1" )00 = €,"0, (5.1.2a)

Thus, in contrast with Yang-Mills theory, we are able to combine the derivative and

m

“group” terms into a single term. The gauge field e,” is the vierbein, which reduces to a

Kronecker delta in flat space. It is invertible: Its inverse e,,* is defined by

et =0,," e, % et =02 . (5.1.2b)

Finite gauge transformations are also defined by analogy with Yang-Mills theory:

el,=ere, e, N= A0

m (5'1'3>

The linearized transformation takes the form of (5.1.1), whereas the full infinitesimal

form takes the form of a Lie derivative:
(0e,")0,, = 1[N, e,] = — [A\*0, , €,"0,], (5.1.4a)
or, in more conventional notation,

Se,™ = e, BO,N" — N\2D e, . (5.1.4Db)
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The gauge transformation of a scalar matter field is, again by analogy with Yang-Mills

theory,

W= ey = eMpe (5.1.5)
and in infinitesimal form

0 =i\ Y] = —A"0,¢ . (5.1.6)

Equation (5.1.5) can also be written as the more common general coordinate transforma-

tion
Pia) = Plz), ' =eze” . (5.1.7)

(This can be verified by a Taylor expansion.) For the case of constant A it takes the
familiar form of global translations. Orbital (global) Lorentz transformations are
obtained by choosing \* = Ozt + Q‘z;x“”. (which just equals dz™ in the infinitesimal

case); (2 is traceless. Scale transformations are obtained by choosing \* = oz™.

We could at this point define field strengths in terms of the covariant derivatives
(5.1.2), but the invariance group we have defined is too small for two reasons: (1) The
vierbein is a reducible representation of the (global) Lorentz group, so more of it should
be gauged away; and (2) there are difficulties in realizing (global) Lorentz transforma-

tions on general representations, as we now discuss.

Since under global Lorentz transformations i (z) transforms as a scalar field, its
gradient 0,7 will transform as a covariant vector. In general, we define a covariant vec-
tor to be any object that transforms like 0,,4). We can define a contravariant vector to
belong to the “adjoint” representation of our gauge group. Indeed, if we define

V = V™id,, and require that [V,9] = V"i0,,9 transform as a scalar, i.e.,
V'I=V"™io, = e Ve ™ | (5.1.8)

then V™ transforms contravariantly under global Lorentz transformations. However,
this procedure does not allow us to define objects which transform as spinors under
global Lorentz transformations, and in fact it is impossible to define a field, transforming
linearly under the A group, which also transforms as a spinor when the \’s are restricted
to represent global Lorentz transformations. It is possible to get around this difficulty

by realizing the A transformations nonlinearly, but this is not a convenient solution.



234 5. CLASSICAL N=1 SUPERGRAVITY

Comparing (5.1.3) to (5.1.8), we see e,” transforms as four independent contravariant
vectors under the global Lorentz group: The A transformations do not act on the a

indices.

To solve these problems we enlarge the gauge group by adjoining to the A transfor-
mations a group of local Lorentz transformations, and define spinors with respect to this
group. This is a procedure familiar in treatments of nonlinear ¢ models. Nonlinear real-
izations of a group are replaced by linear representations of an enlarged (gauge) group.
The nonlinearities reappear only when a definite gauge choice is made. Similarly here,
by enlarging the gauge group, we obtain linear spinor representations. The nonlinear
spinor representations of the general coordinate group reappear only if we fix a gauge for
the local Lorentz transformations. It will thus turn out that our final gauge group for
gravity can be interpreted physically as the direct product of the translation (general

coordinate) group with the spin (internal) angular momentum group.

We define the action of the local Lorentz group on the vierbein to be

I3

de,

=—N"eg" +hoe , AN"=0. (5.1.9)

These transformations act only on the free indices in the operator e, (but not the hidden
indices contracted with 0, since we want the operator to transform covariantly). From
now on we will indicate indices on which the local Lorentz transformation acts (flat or
tangent space indices) by using letters from the beginning of the Greek and Roman
alphabets (a,f,...a,b,...), and indices on which local translations (general coordinate
transformations) act (curved or world indices) by letters from the middle
(,v,...m,n,...). Transformations represented by a matrix multiplying the free index

of e, are called tangent space transformations.

The linearized form of the local Lorentz transformations is

Oh™ = — 8./ A M + hoc. . (5.1.10)

It is thus possible to gauge away the antisymmetric-tensor part of the vierbein (although
not the scalar part) with a nonderivative transformation. To stay in this gauge a local
coordinate transformation must be accompanied by a related local Lorentz transforma-
tion; the Lorentz parameter is determined in terms of the translation parameter. At the

linearized level we find, using the combined transformations (5.1.1) and (5.1.10),
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8ihieg =0 — /\(ﬁ:— Oua X (5.1.11)

()( ()( ()( ()(

In this gauge the € (orbital Lorentz coordinate) transformation defined above induces
the same global Lorentz transformation acting on the flat indices. We can thus define a
Lorentz spinor by choosing its spinor index to be a flat index; flat, or tangent space,
indices transform under local Lorentz transformations but not local translations except
when a gauge is chosen, e.g., as in (5.1.11). Furthermore, we can define all covariant
objects except the vierbein to have only flat indices. The curved-index vectors defined

above can be related to flat-index ones by multiplying with the vierbein or its inverse.

b. Covariant derivatives

We now define our new local group of Poincaré transformations, derivatives
covariant under it, and its representation on all fields. The parameter of our enlarged

local group is defined by
= X2, + (M + XM ) (5.1.12)

The generator M;* (and the parameter M) is traceless and acts only on free flat

indices. Its action on such indices is defined by

P‘ﬂwM'yﬁ ) 1%] = )‘aﬁwﬁ ) [)\ﬁWM’Yﬂ ’ 1[101] =0,

N, S ] =0, (XM KRTAEDY % . (5.1.13)
Any covariant field with only flat indices transforms under this gauge group as:
P =eMp e (5.1.14)

The covariant derivative is defined by introducing a gauge field for each group generator,

so we must now add to e, of (5.1.2) a new gauge field for the Lorentz generators:
D, = ¢, +(¢ug' M, + ¢, " M;") (5.1.15)
Its transformation law takes the covariant form

D/, =e"D,e ™ . (5.1.16)
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In defining this covariant derivative we have introduced a gauge field ¢, which
transforms with a derivative of the Lorentz gauge parameter ( 8¢, = d,\." + ).
However, due to the vierbein’s Lorentz transformation law (5.1.10), we can define this
Lorentz gauge field to be a derivative of our fundamental field (the vierbein), just as for
the nonlinear o-model (see sec. 3.10), rather than having it as an independent field.
There are two ways to find this expression for ¢,: (1) Compare the full transformation
laws of the vierbein and the Lorentz gauge field, and construct directly from the vierbein
a Lorentz connection that has the correct transformation properties; or (2) constrain
some of the field strengths in such a way that the Lorentz gauge field is determined in
terms of the vierbein. Because the field strengths are covariant this will automatically

lead to correctly transforming gauge fields ¢,.

The field strengths ¢,,“ and r,, (M) are defined by:

[Dz ) DQ] = tz-&ng + (rg,é,waMdv +7 SM(;) : (5-1-17>

aby

We have expanded the right-hand side over D and M instead of @ and M because then
the torsion ¢ and curvature r are covariant. By examining the resultant expressions for

the field strengths in terms of the gauge fields, we find

tos® = ap*+ (605705 +6,5705") —a—1b]

Papy’ = (€aBpr’ — @ —=D) = €y Ppr’ + Pu (o Prc (5.1.184)

where the anholonomy coefficient ¢ is defined by
eqs €] = copie. - (5.1.18b)

We see that constraining the torsion to vanish gives a suitable Lorentz gauge field:

bus’ == 7 (e "+ ) (5.1.19)
(If instead of the torsion we constrained the curvature to vanish, the connection ¢,
would be pure Lorentz gauge, and unrelated to the vierbein. However, the antisymmet-
ric part of the vierbein would remain as a compensator for a second hidden local Lorentz
group of the theory, under which ¢, would transform homogeneously and not as a con-
nection. Hence D defined by (5.1.15) would be noncovariant under the new transforma-

tions, and instead
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D —e — [t A LB 3
DQ - 62 [2 (clﬂﬁ + c 0.17[7)[7),01 )M»} + h C.]
—e _ L A LB 8
- eg [2 (tgvﬁ/g +1 o606, >M’7 + h. C.] (5120)

would be covariant. Since Einstein theory is now described in terms of a curvature con-
structed out of ]5, the original ¢, and its associated Lorentz invariance would be irrele-
vant to the theory. Constraining the curvature to vanish is gauge equivalent to not
introducing any connection at all. Such a formulation of gravity is often referred to as a
“teleparallelism” theory. Of course, if we were to constrain both ¢ and r to vanish, D

would be gauge equivalent to 0, and we would have no gravity.)

In the absence of any constraint, we could always express the covariant derivative
as the constrained covariant derivative (t =0) plus Lorentz covariant terms that contain
only the torsion. The torsion could thus be considered as an independent tensor with no
relation to gravity. Our torsion constraint is thus a “conventional” constraint, just like

the conventional constraint (4.2.60) of super-Yang-Mills theories.

All remaining tensors (i.e., covariant objects that are not operators) can be
expressed in terms of the curvature and its covariant derivatives. The curvature itself is
algebraically reducible (under the Lorentz group) into three tensors:

5 s 1 ) 5
’I"Q’Q”Y = C.' (wa,ﬁ”} — 55(&7 55) 7') + Cozﬂ r7 &b

y P (5.1.21)

where the tensors are totally symmetric in undotted indices and in dotted indices (which
is equivalent to being algebraically Lorentz-irreducible). The tensors r and T opaf AT the
trace and traceless parts of the Ricci tensor, and w,s.; is the Weyl tensor. (Note that
our normalization of the Ricci scalar differs from the standard: We use the more con-
venient normalization, in general spacetime dimension D, r@ﬁ = — 5[29%47" + ---, rather

ab

than r,*“ = r. The sign is chosen so that r is nonnegative on shell in unbroken super-

symmetric theories.) These tensors are, of course, related differentially through the

Bianchi identities (the Jacobi identities of the covariant derivatives). Explicitly from
[[Dg ) DQ] 7D£] + [[DQ ) Dg] ) DQ] + [[Dg ) Dg] 7DQ] =0, (5'1'22>
we find

D[gté-,g]d - t[@,ﬁlgtg,lgld - r[g,b,g]d =0, (5.1.23a)
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D[grb,ghd - t[g,b\grg,lghd = 0. (5.1.23b)

These last two equations (which follow from the linear independence of D, and M W‘S) are

the first and second Bianchi identities, respectively.

c. Actions

In contrast to Yang-Mills theory, in gravity one cannot trace over the group with-
out integrating over the spacetime coordinates, since the translation group acts on the
coordinates themselves. Thus, only integrated quantities can form invariants. Further-
more, gravity differs even from the group manifold approach to Yang-Mills, where the
group generators are treated as translations in the group space, in that the local transla-

tion group is not unitary: Although A" is hermitian, an infinitesimal translation is not:
(AZi0,)" = 10, A" = X250, + (10,\") . (5.1.24)

From the reordering of the two factors, we get an additional term proportional to the
divergence of A. This term arises because some coordinate transformations are not wol-
ume-preserving: e.g., the transformation given by A" ~ z™ is a scale transformation.
Consequently the volume element d*z~dz**/\de*" Adz*/\de is not covariant. To

m

covariantize, we simply replace dz™ with an object that is a scalar under coordinate

transformations (a world scalar): w?® = dz™e,,%. The resulting volume element is w* =

d'ze™!, where e is the determinant of e,™.

The invariance of a scalar integrated with the covariant volume element can also
be seen from the transformation law of e, which we write in the compact and convenient

form
el =eleh (5.1.25)

Here X = )\’1%5

sent discussion we may ignore Lorentz transformations.) Before deriving this transfor-

» means that the derivative acts on all objects to its left. (For the pre-

mation law, we show how it allows e”! to form invariant integrals: For any scalar L,

/ d'z(e'L) = / d'z (e ) (P Le ™)

_ /d4xe_le'ﬁ (e_'ﬁLe’K)
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- /d% (e'L)e™ | (5.1.26a)
where we have used the identity (for any X)
N X]=[X, 2] —  e*Xe™=e X (5.1.26b)

Finally, using Xet = X + total derivative, we find
/d% (e'L) = /d% e 'L . (5.1.27)

To derive the transformation law (5.1.25), we need the identity
§ det X = det X tr(X 16X) (5.1.28)
which follows from det X = ¢”"*. Thus we find, from (5.1.4b),

(56_1 = — e_l(emg(egﬂaﬂ)\m - )\Eaﬂegm))

= —e (O, \" — €,"\"0pe,™)
=— e_lam)\m — )\mﬁme_l

=—0,(\"e ) =eliX . (5.1.29)

To find the finite transformation, we iterate the infinitesimal transformation (5.1.29) and

use e’ = lim (1 + %)”, we thus arrive at the desired result (5.1.25). An equivalent state-

n—oo
ment of our result is that 1-e™ is the Jacobian determinant of the coordinate transfor-

mation e”. (1-¢" means that derivatives act to the left until annihilating the 1.)

We can now construct invariant actions for gravity and its couplings to matter.
The only possible action that gives h,, a second-order kinetic operator is

3 _
S:——2 dize'r
K

: (5.1.30)

where 7 is the curvature scalar defined by (5.1.18) and (5.1.21). The resultant field equa-

tions are r = = 0. Coupling to matter is achieved by covariantization of the

"apap
derivatives, as in Yang-Mills theory, but now the volume element is also covariantized

(with e'). As in Yang-Mills, we are also free to add nonminimal couplings depending
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on the curvature. (For the teleparallelism theory we can still use this action if r is

defined by the commutator of D,. This action leads, by use of the first Bianchi identity,

to an expression that is purely quadratic in t,,*.)

d. Conformal compensator

In flat space (i.e., without gravity) certain theories (e.g., massless ¢*, or massless
QCD) are invariant under (global) conformal transformations at the classical level. On
the other hand, when gravity is present all theories are conformally invariant since con-
formal transformations are a special case of general coordinate transformations. How-
ever, this type of conformal invariance has no physical significance, and is present simply
because the vierbein automatically compensates the conformal transformations of other
fields. This is analogous to global orbital Lorentz transformations: Any nonLorentz
covariant flat-space theory can be made covariant under these orbital transformations in

curved space, because the antisymmetric part of the vierbein acts as a compensator
(e.g., /d4x(69¢)2 — /d4xel(eom8m¢)2 ). As we saw above, it is necessary to intro-

duce additional, local, tangent-space Lorentz transformations to give a meaningful defini-
tion of Lorentz invariance in curved space. Theories that are invariant under these tan-
gent space Lorentz transformations will automatically be invariant under the usual
Lorentz transformations in flat space, or when a gauge for local Lorentz and general

coordinate transformations is chosen.

Similarly, in the presence of gravity it is possible to give a meaning to global con-
formal invariance by observing that in curved space it corresponds to an additional

invariance under local scale transformations

e, = €<€

o W=eCy (5.1.31)

a

Here ((z) is a local parameter and d is the canonical dimension of the field ¢ (usually
1 for bosons, g for fermions) when written with flat tangent-space indices. (Note that

e,, which has no free curved indices and describes a boson, has canonical dimension 1
since it contains a derivative.) Any theory in curved space that has local scale invari-
ance gives a flat space theory which is conformally invariant. The transformation in

(5.1.31) is another example of a tangent space transformation.
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Thus, both local Lorentz and local scale invariance reflect flat space invariance
properties of matter systems. However, there is an important distinction between
Lorentz and conformal transformations: Conformal invariance is not a general property
of physical systems, and consequently we do not introduce local scale generators and cor-

responding gauge fields into our covariant derivatives.

As described above, the antisymmetric part of the vierbein can be gauged away by
local Lorentz transformations. In the resulting gauge, general coordinate transforma-
tions must be accompanied by related local Lorentz transformations that restore the
gauge. The local Lorentz parameter becomes a nonlinear function of the general coordi-
nate parameter, making construction of Lorentz covariant actions more difficult. Simi-
larly, local scale transformations can be used to gauge away the trace of the vierbein. In
fact, in locally scale invariant theories, the determinant of the vierbein can be gauged to
1 by local scale transformations. In the resulting gauge, general coordinate transforma-
tions must be accompanied by local scale transformations with parameter ¢ determined

by
1= (1) =elete™ = (1. e )e ™ . (5.1.32)

The local scale parameter becomes a nonlinear function of the general coordinate param-
eter. In particular, dimension d fields v now transform as densities under general coor-

4/ The formalism

dinate transformations, i.e., with an additional factor (1 - e'ﬁ)
becomes rather cumbersome. (We note that even in theories that are not invariant
under local scale transformations, e can still be gauged to 1, at least in small regions of
spacetime, by some of the general coordinate transformations: de~d,,A\". However, this
results in the constraint 9,A\" =0 on further coordinate transformations, and differen-
tially constrained gauge parameters are undesirable when a theory is quantized (see sec.

7.3); such gauge choices are possible upon quantization, but e should not be set to 1

before quantization.)

We have already indicated that e acts as a compensator for the local scale transfor-
mations of fields ¢ as given in (5.1.31). In fact, by making the field redefinition
Y —e ¥ we can make all fields except e inert under scale transformations. In
terms of the new fields local scale invariance of an action is equivalent to independence

of e. However, to maintain manifest coordinate invariance, it is preferable to keep
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explicit the dependence on e. On the other hand, it is frequently useful to describe to
what extent a theory breaks local scale invariance, both because locally scale invariant
theories are interesting in their own right, and because a decomposition into locally scale
invariant plus scale-breaking parts can be helpful. This can be done by introducing an
additional compensating field into the theory, but one which unlike e is a scalar under
general coordinate and local Lorentz transformations. To distinguish this type of com-
pensator from the e type, we will henceforth refer to them as tensor compensators and

2 for local Lorentz,

density compensators, respectively. Density compensators (e.g., €la
or e for local scale) generally occur as parts of physical fields and are not tensors under
the local symmetry group (e.g., general coordinate transformations) of the action with-
out compensators. Tensor compensators are covariant, and their presence allows the
introduction of a local symmetry even in the absence of a corresponding global, flat

space symmetry.

For local scale transformations we introduce a scalar compensator transforming as
¢ =cp . (5.1.33)
Starting with fields invariant under ( transformations,we now make the replacements

e, — ¢ le,, Y — ¢ (5.1.34)

The new fields still transform according to (5.1.31). The replacement (5.1.34) is just a
¢-dependent scale transformation. Hence local scale invariance of a given quantity is
equivalent to independence from ¢. For example, after the redefinition (5.1.34), the

usual gravity action (5.1.30) becomes

S =- %/d%‘ elo(d+1)o . (5.1.35)

This action is scale invariant because ¢ compensates the transformation of e and [0 + 7.
Since it is not ¢-independent the original Einstein action was not scale invariant. Alter-
natively, (5.1.35) can be interpreted as a scale invariant action for the field ¢. The scale
invariance allows ¢ to be gauged to one. In that gauge one recovers the usual Einstein

action.

In contrast, the Weyl tensor, which is the only part of the curvature which is

homogeneous in ¢ after (5.1.34), can form a ¢ independent, locally scale invariant (but
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higher-derivative) action:

&Ww“t/d%“f%wmwy : (5.1.36)

We introduced the linearized vierbein h,™ as a gauge field for translations; alterna-
tively, we can use the analysis of chapter 3 to find h,”. Linearized gravity is the theory
of a massless spin 2 field. As discussed in sec. 3.12, it is described by an irreducible on-

shell field strength 1,55 satisfying (see (3.12.1))
0°%pas =0 . (5.1.37)

Using the results of sec. 3.13, the corresponding irreducible off-shell field strength is the

linearized Weyl tensor w,g.s satisfying the bisection condition (s + % = 2 is an integer)

Wapys = Kwaﬂwé = AaaAﬂﬁAvadéw&éig (5138>
which is equivalent to
8‘*&85510&[,75 = 8,}7855@5&&5 . (5139)

By (3.13.2) applied to N = 0, the solution to this equation is

Wapys = a(ao.zaﬁﬁ.lv (5140)

v)as

where h,, = h is a traceless symmetric tensor. The maximal gauge

adgs = Vas)a)
invariance of (5.1.40) is:

Mmzaﬁm—%mﬁgﬁ. (5.1.41)

These are linearized coordinate transformations identical to (5.1.1), except that scale
transformations and Lorentz transformations are not included. They can be added by

introducing compensators: the trace and antisymmetric parts of h,.
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5.2. Prepotentials

a. Conformal

As for superfield Yang-Mills and for gravity, one can develop a formulation for
superfield supergravity in either of two ways: (1) Study off-shell representations to
determine the linearized formulation in terms of unconstrained superfields (prepoten-
tials), and then construct covariant derivatives, which provide the generalization to the
nonlinear case; or (2) start by postulating covariant derivatives, determine what con-
straints they must satisfy, and solve them in terms of prepotentials. In this section we

will describe the former approach, and in the following section the latter.

a.l. Linearized theory

From the analysis in sec. 3.3.a.1, we know that the N =1 supergravity multiplet
consists of massless spin 2 and spin g physical states. The corresponding on-shell com-

ponent field strengths are 4.5 and v,4, (on-shell Weyl tensor and Rarita-Schwinger
field strength), totally symmetric in their indices, as discussed in sec. 3.12.a. These lie

in an irreducible on-shell multiplet described by a chiral superfield ¥ g4, that satisfies

afy

the constraint

DJ\II((])aﬂ'y = \Il(l)aﬂ'yﬁ ’ (521)

where W is totally symmetric and is the superfield containing the on-shell Weyl tensor

Yaprs (= Wapys) at the @ = 0 level. The constraint implies

Da\ll((]) - 0 . (5.2.2)

afy

By the analysis of sec. 3.13, the corresponding irreducible off-shell superfield

strength is a chiral superfield W ;. satisfying the bisection condition (s + % = %—l— % is
an integer)
1 e
W, = —KW,5, =—0O2D*A* A’ AJW(%. : (5.2.3)
which can be rewritten as
0% 3D W oy = = 0,TDW 5. . (5.2.4)
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By (3.13.2) the solution to this equation is
1 = :
W = —igD D(aaﬂﬁHw)ﬂ. , (5.2.5)

where H o is real. (H might be expressed as a derivative of a more fundamental field;

this possibility is eliminated when we examine the N = 1 theory at the nonlinear level.)

We remark in passing that
S conf = /d4xd20W2 = /d4x[WD2W+ (DW)?| (5.2.6)

contains the action for linearized conformal gravity / d'z(wap,5)°. Thus (5.2.6) is the

extension of conformal gravity to conformal supergravity at the linearized level.

A careful examination of (5.2.4) reveals that the largest gauge invariance of W .,

written in a form containing the fewest derivatives (and thus the component transforma-

tions contain the fewest possible spacetime derivatives), is
(SHQ - DO[IT&—E&LQ . (527)

To get insight into the physical content of H and its transformation, we consider their

components using D projection.

The components of H, are

— .= . @ = p?
h,=H, haﬂﬂ DﬁHaﬁ| , h¥,=DH,| ,
1 = - . N2
h_b:_E[D(mD&]Hﬁﬂ" ) wg_ﬂ':_ZDD&Haﬂ" )
2 = 1 . B
Ay =~ D'D’DyH,| — ¢ ewea (D7, DHY| . (5.2.8)

where €., = '(Cm;CmC&ﬂ-CW.é - Caﬁowa%g%w-) (3.1.22). Although it is convenient to

define the component fields h,, , wa 5 A, as above, these are only the linearized, confor-

mal definitions of these component fields. In the final Poincaré theory additional H,

and compensator superfield dependent terms, as well as nonlinearities, are present.

The components of DL, (the rest of L never enters) are:

o«

&=Dsldl , L' 5=D.DiLs| , e, =DL

a a—o U(ﬂ o ‘ Y
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I’,=DDy;L,| , o=D"DL,| ,
1 — —
Wap = 9 D((XDQLB)’ y Mo = D2D2La’ ) (5'2'9>
and similarly for the complex conjugate (but note E_g = —D,L;). The transformations

of the independent components of H are:

O0h, =2Re&,; ,

_ 1 = _ 71
5haﬁ[§_ 20(1[36[7) Lﬁaﬁ s
oh?, = — I?

a

a

Shy = — (C&éwaﬁ +Caﬁwo'¢§) -+ Caﬁodé Reo—0,Imé¢&,

0 3= 0,65 —1Cyma
64, = 0,0mo . (5.2.10)

We can therefore go to a Wess-Zumino gauge by using Re &, L', L* to algebraically gauge

away all of H, except h,, , V.5 , A, These can be identified as the linearized vierbein,

the spin g Rarita-Schwinger field, and an axial vector auxiliary field, respectively.

We study the remaining transformations: Examining dh, we note that w can be
used to eliminate the antisymmetric part of the vierbein, which identifies it as an
infinitesimal local Lorentz transformation. Reo removes the trace, and is therefore a
local scale transformation. Finally, Im £ generates a coordinate transformation. Exam-

ining Ja 5 we identify the €; term as a Rarita-Schwinger gauge transformation (a lin-

earized local supersymmetry transformation). The 7, term is a local S-supersymmetry
transformation: it gauges away the trace (G 5 #. From 0A, we identify Im o as an axial

gauge transformation. (Note that the local S-transformation of the spin g field contains

no spacetime derivatives. Avoiding derivatives is important for quantization (see sec.

7.3)).
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Thus, in the Wess-Zumino gauge, the L-gauge group that remains consists of local
superconformal transformations: the super-Poincaré subgroup (coordinate, Lorentz, and
local supersymmetry), and axial, S-supersymmetry, and scale transformations (see sec.
3.2.e). Local conformal invariance plays a more important role in supergravity than in
gravity: Whereas the nonconformal part of the vierbein (its trace) can be projected out
algebraically, the analogous statement does not hold for H (a vector is not algebraically
reducible in a Lorentz covariant way). The same distinction between the reducibility of
the vierbein and H applies with regard to local Lorentz invariance (which must be main-

tained in supergravity simply because supersymmetric theories contain spinors).

a.2. Nonlinear theory

To generalize to the nonlinear case we examine (as in super-Yang-Mills) the appro-
priate transformations of the simplest multiplet, the chiral scalar superfield. Since grav-
ity gauges translations, supergravity will gauge supertranslations. We therefore look for

the most general transformation of the form
n' =etne ™ | A=AYiD, ; (5.2.11)

(We choose to parametrize with D, rather than 0,; in order to keep manifest global
supersymmetry. This simply amounts to a redefinition of the parameters.) We maintain

the chirality of n (D;n=0), by requiring A to satisfy

[D; Aln=0, (5.2.12)
which implies
D;A"=0 , DA*=1M\6,7, (5.2.13)
and has the solution
A” = —iDALF A =DIF AP arbitrary (5.2.14a)
ie.,
m 1Lrms 1o
A®0, + "D, = 3 {D",[Ds,1'D,]} . (5.2.14b)

Note that the parameter superfield AY must be complex. In particular this means that

A £ (AT AP £ (AN and A7 # (A*)T . Care must be taken to distinguish A* and
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A% from the hermitian conjugated quantities A* (= (A")") and A* (= (A")). We define
the transformation of an antichiral scalar in a similar fashion:

77/ _ e“‘ﬁe*“\ ’ /—\ _ KMZ'DM ’

A% = —iDr[ | A =D*LF | A" arbitrary . (5.2.15)
The quantity AY is the complex conjugate of AM.

At this point it is clear, by analogy with super-Yang-Mills, that H™ is the correct
field to covariantize the A™ part of the transformation of the scalar multiplet kinetic

term, since its linearized transformation is (from (5.2.7)) dH™ = iA™ — iA™. We there-

fore complete H” to a supervector HY = (H", H *Z,H ) and introduce an exponential

e, H=HMiD,;. As for Yang-Mills, the nonlinear transformation law is
el = e elle™ih (5.2.16)

We note that H” can be trivially gauged away because the parameter A" is arbi-

trary; consequently H* is also gauged away by A”. To preserve this gauge choice, the L-

gauge transformations (5.2.14,15) must be accompanied now by compensating A* and A"

transformations. For infinitesimal A we have

Hmham _ Am LD A Hmham
é(e” "m)y=—(A"9,,+N'D;+A'D,) (e ")

n (eHmwm)(Amam +A"D, _}_Aﬂﬁlz) . (5.2.17)

(This equation is to be interpreted as an operator equation acting on an arbitrary super-
function to the right.) This implies that we must cancel D, and D ; terms on the right-

hand side and hence
A=l Nre ™ = T D2[fe | A= e TR = T D2TeH (5.2.18)

However, we will not restrict ourselves to this gauge in the subsequent discussion.
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a.3. Covariant derivatives

Our next task is to construct covariant derivatives V, = (V,, Vg, V.). By analogy
with Yang-Mills theory we would require (V,®)’ = e(V,®), i.e., V' = eV, e ™ or
0V, =i[A,V,]. However, since we expect local Lorentz transformations to be present,

we can generalize to

(Va®)' = L% Vo |

LAB = (Laﬂ ) L(,;[; ) Laﬂ L&ﬁ}) ) (5219)

We define, by analogy with Einstein’s theory (5.1.15), covariant derivatives that take the

form:

VA - EA +®A75Mﬂ7+®AiﬂMé’; , (5220)

where the M’s are Lorentz rotation operators. Their action is defined in (5.1.13). Again
in analogy with ordinary gravity, we adhere to a late-early index convention to distin-
guish between quantities with curved indices (that transform only under the A-gauge

group) and quantities with flat indices (that transform only under the action of the

Lorentz generators M,” and M ;"). The form (5.2.19) assumes that the Lorentz trans-
formations L,? act in the usual manner: Spinors and vectors do not mix, and both
rotate with the same parameter. For an infinitesimal Lorentz transformation,

L% =6,% +w,?, the covariant derivatives transform as
6V =[N, V] +wiPVy (5.2.21)

~

where w,? = (5,7 ,ws” ,w,b) and (from (5.2.19)) w,t = &,78:" + 6, ws” (5,” is the chi-

ral representation conjugate of w&ﬁ : see below). This implies the following transforma-

tion laws for the connections:
00,457 =[N, 457 — Eqwi’ + wa"®psT + wi @y — 0450wy (5.2.22)

There is a certain amount of arbitrariness in defining connections that transform
properly: One can always add to ®,5" any tensor K 457 that transforms covariantly. As
will be discussed in the next section, this arbitrariness is physically irrelevant. A stan-

dard way to find connections is to compute the anholonomy coefficients C 45 defined by
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[E4,Ep} = C,3°Eo. Suitable connections can be defined as linear combinations of the
C’s.
Pushing the analogy with Yang-Mills further, we can try to construct the following

chiral-representation “covariant” derivatives:

A

E;

A

D, , E,=e¢"De" | E,=-i{E, E;} . (5.2.23)

However, at this point the analogy with Yang-Mills theory breaks down. These deriva-
tives are not covariant for two reasons: (1) Acting on nontrivial representations of the
Lorentz group, they are noncovariant because they have no connections (this is easily
cured); and (2) more seriously, even acting on scalars they are noncovariant because AP

is not chiral. Thus,

=[iA, By +w, E; + SE, (5.2.24)
where
= LB A = 1D A = lEA =L DA (5.2.25)
Wi = T gleh = g esrt o, 2= T ghp = T g MuA 4

The term involving w is harmless: it is just a Lorentz rotation, and will be perfectly
covariant after we introduce Lorentz connections. (There is a slight problem, however.
The indices in (5.2.19,20) are flat spinor indices whereas those in (5.2.24,25) are curved
indices in analogy with our discussion of ordinary gravity. Therefore it is not quite cor-
rect to identify the w in (5.2.25) with the one in (5.2.20). We will find a solution for this
shortly.)

By contrast, the term proportional to ¥ is a superspace scale transformation
which is not part of our original gauge group as defined by (5.2.19) and (5.2.20). For
the time being we introduce into the theory a (density) compensator ¥ that transforms

as:
§U =[iA,T] - XU . (5.2.26)

Later on, ¥ will be determined in terms of H. With this object, we can construct a

covariant spinor derivative:
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E;=VE;=UD; , 6E;=[i\ E;

(5.2.27)

L
The complex conjugate of E ;4 is covariant not with respect to A but rather with respect

to A; however, just as in the Yang-Mills case, we can use e to convert any object

covariant with respect to A into an object covariant with respect to A. We obtain

E,=e WD, " = (e T E

I 2

VE, (5.2.28)

where U is the chiral-representation Hermitian conjugate of ¥ (as in super-Yang-Mills:

see (4.2.37) and (4.2.78)). The covariant transformation of £, is

§E, =[iNE,|+3,"E, (5.2.29)

where &, = e @, e

The spinor vielbeins that we have constructed transform as in (5.2.21) but with
the important restriction that the parameter of Lorentz rotations, w,”, must be deter-
mined (by the definition in (5.2.25) and those following (5.2.29) and (5.2.21)) in terms of
the parameter of supercoordinate transformations AY. In the discussion of ordinary
gravity (see (5.1.10,11)), we saw that an analogous situation occurred only if the anti-
symmetric part of the vierbein was gauged away. We also have the related problem that

the free index on the vielbein is curved whereas the index in (5.2.19) is flat (and conse-

quently the problem of identifying w dﬂ with wﬁl; ). This situation arises because the viel-

bein E," as defined in (5.2.27) is given by ¥4," and thus has no symmetric part (i.e.,

E ) = 0). The solution is to restore the “missing” part by introducing a new superfield

(o

N .. In a general Lorentz frame the spinor vielbein (5.2.27) is modified to
Eg;=N;9D; | (5.2.30)

where Nz" is an arbitrary SL(2C) matrix superfield (det N =1). It acts as a compen-
sating field for tangent space Lorentz transformations. (This is analogous to generalizing
from a frame where the usual vierbein is symmetric.) The N-dependence of the other

equations can easily be found by simply performing the general Lorentz transformation

which takes F &;2 from Wo O-f: to YN &ﬁ. The quantity N," maps between curved and flat
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spinor indices. This permits us to solve the problem of identifying ws” with wﬂ”. . Since

we began in the gauge N 02;2 = 56;@, the two quantities are equal. Furthermore, as long as
we remain in this gauge, we need not be careful to distinguish curved and flat spinor

indices. A distinction must still be made between flat and curved vector indices.

We now attempt to construct the vector covariant derivative by analogy with

Yang-Mills theory:

E,=—i{E, E;} . (5.2.31)

m

The transformation law follows from (5.2.27,29):

6B, =[iNE,) +&,"E,; + w;'E ; — i(E,w;")Es; — i(E;0

Vi fo e I

Defining £y, = (E,,E;, E,,) we can write (5.2.27,29,32) as
However, because of terms like wm”. = — iEuwﬂ”., which are not present in (5.2.19), E, is

not quite covariant.

The terms we want to eliminate are (spinor) derivatives of the Lorentz transforma-

.
v,
o

;s therefore, the remedy is to introduce (spinor) Lorentz connections

tion parameter w
into (5.2.31). These connection terms will redefine £,, so that it transforms covariantly.

To find the connections, we define a (noncovariant) set of anholonomy coefficients Cun’

by
By Exy=Cuy"Ep (5.2.34)
From the transformations in (5.2.27,29,32) we obtain
8Cwuy" = [iM, Coy ™) + Epwny” + wpr BCpwy” — Conwp® . (5.2.35)

In particular we find

0C;;" = [iA O] + Bpwy +wiCop™ = Cpilw;™
6ém,uﬁ = [ZA? ém,uﬁ] - Ez; ("‘)r_Lt -+ W,_LECV(&VK — va/*wﬂz

+ Wu'&é&,mz + iwmp&;p. , (5.2.36)
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and corresponding equations for the conjugates C . and Cv’mf. From (5.2.36) we see

that — %CV’ (Wo_ﬁ”)”. transforms as the needed spinor connection:
o= i 5Clpi” B =i( B;5,") B, — i 53,°C 5",
— iz wi’C ;" E, . (5.2.37)
Therefore we define
By =0,"[B, —i3Cipi V"B, —i5Cop, B (5.2.38)

where §,* = N JN &ﬂ in the gauge N &’i:é&ﬁ. The vector vielbein F, transforms covari-

antly.

We have already constructed one of the Lorentz connection superfields ® 4,7 (as
noted above, in the gauge N,/ =9," we need not distinguish curved and flat spinor
indices). We can construct the remaining connections in the standard way (see subsec.

5.3.b.1) from the anholonomy coefficients C ;3¢ defined by E, = (Es,E,,E,), where
E; = 56;“E;; VB, = (M‘Eu in our particular Lorentz gauge, and E, is given in (5.2.38).
Alternatively, we can use C directly. As we saw above, an appropriately trans-

forming spin connection ® B-QV is given by %C’ 4 For D, ,3'{/ we have a choice: Both

(ad,B

%Cv’& (y(,éa’;) and — % [O& ﬂﬂ.’ + Cv’o-j 5= Cv’/é”.' ] transform appropriately. In general, any

linear combination of these can be used as a spin connection. Furthermore §;7C B dd is

Lorentz covariant, and can be added to q)& El{/ ; see sec. H.3.a.3. We choose

J_Yi_a e s.60, d
(P&ﬁ 4 [ Co’z,a(ﬂ + 60‘ Cﬂ)@ ] : (5239&)
We already had
Ad—_1s 8
(I)aﬁ ) Ca,ﬂ(ﬂ : (5.2.39b)

We also have corresponding expressions for the complex conjugates @57, ®45".

The vector connection is defined by:

Q)Qﬁﬂ == Z.[an)o?,@v + (P%&(gq)éﬁfy + Eo'é(paﬂv + q)ozad(p(w’y + (Pa(ﬂ‘(s@&(ﬂv)] . (5240)
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as follows from V,_; = —i{V,,V;}.

a.4. Covariant actions

In supergravity Lagrangians cannot be invariant because all our quantities, includ-
ing scalars, transform under A transformations. At best a Lagrangian can transform as

a total derivative:

SIL=— (—)"Dy(AMIL) . (5.2.41)
This can be rewritten as
SIL = ilLA =i[A,IL] +i(1-A)IL (5.2.42)
where
A =iAMD = i(5)M[D yAY + (DyAM)] . (5.2.43)

Equation (5.2.42) is the transformation law for a density. It is easy to check that a

scalar times a density is also a density.

By analogy with gravity, we take the vielbein superdeterminant E = sdet E 4" as a

candidate for a density. Indeed, from (3.7.17)
SE = — ()METY(ETY OB LM (5.2.44)
where, from (5.2.21)
SEM =i(AEM) + (E4AY) + w, PEZY . (5.2.45)
(However the Lorentz rotation terms trivially drop out of (5.2.44).) Consequently,

SE~ = —i(—) " B ((E7)y AE M) — (=) B Dy AM]

=i[A, B = ()" (DyAM)E

—

=iE'A . (5.2.46)

Therefore, invariant actions can be constructed as integrals of products of E~' and

scalar quantities of the appropriate dimension (£ itself is dimensionless):

S(E-'IL) = i(E"'IL)A .
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For supergravity we want to have the usual Einstein term in the component action;

hence we require

Sea = %/d% d'0 E 'Ly, = % / d'z e Lyomponent - (5.2.47)

This implies that ILg; is a dimensionless scalar. In general, the only dimensionless

scalars in the theory are constants, so we must take (however, see below)
Sge ~ % / diz d'o B! (5.2.48)

as the locally supersymmetric invariant action for Poincaré supergravity.

The vielbein superdeterminant can be worked out in a straightforward manner

using (3.7.15). We find
E = sdet[E ,M] = sdet|E M| = W0 sdet[E M (H)] . (5.2.49)

However, variation of the action with the field ¥ considered as an independent variable
leads to a singular field equation: (WE)™' = 0. This is not surprising: ¥ was introduced
as a device to simplify the construction of the covariant derivatives, and it should be

related to the fundamental prepotential HY .

b. Poincaré

We now consider specific forms for the compensator ¥ in terms of H. As we dis-
cussed earlier, the A-gauge group includes superconformal transformations: Thus, the
covariant derivatives we have constructed are appropriate for describing a superconfor-
mally invariant theory. The superconformal action is the nonlinear version of (5.2.6). It
is a functional of H only; ¥ drops out completely. To describe Poincaré supergravity,

we will have to break the extra invariance, i.e., the component superscale invariance.

To find an appropriate expression for ¥ we recall that it transforms as a (nonco-

variant) density (5.2.25,26)
SU =[iA, 0] - 2T . (5.2.50)

The only other dimensionless object that transforms as a density with respect to A and
not A is E(U, H) (see (5.2.46)). We therefore express ¥ in terms of H" (implicitly) by

writing
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gin = gt (5.2.51)

(This particular parametrization will prove convenient when writing the explicit action
(5.2.65).) However, this relation is not preserved by the full A-group: If we transform
both sides of (5.2.51), using (5.2.46,50) we find the restriction

—AnY = — (n+ 1)(1-iA) | (5.2.52)

or, more explicitly,
(3n + 1)D;A" = (n + 1)(9,A™ — D,A") . (5.2.53)

This is an acceptable restriction on the gauge group: We can show that it corre-

sponds to reducing the component local superconformal group to the super-Poincaré
group. We note that when n = —% (5.2.53) sets the chiral quantity 9,,A" — D, A" to

zero: i.e., using (5.2.14) the restriction can be written as

1
n=—--:

DA —0,A" = DD, [} =0 . (5.2.54)
On the other hand, for n # — % the condition restricts AX: (5.2.53,54) imply

n#—z: DA =0 . (5.2.55)

We analyze the case n = —% first. Since A” is unrestricted, we can still use it to

gauge away H ‘2; we then need only reconsider our discussion of the Wess-Zumino gauge
for H™ subject to the restriction (5.2.54). This restriction implies the following relations
among the components of L, in (5.2.9):

— a _ 98871 .
o=10,* , n,=—10 La,@ﬂ’

0L, =0 . (5.2.56)

Thus the local superconformal transformations are reduced to those of local

super-Poincaré: ¢ and 7, have been removed as independent parameters. Further, a dif-

ferential constraint has been imposed on one of the parameters, the L? that we used to
m

gauge away extra components of H": B = 8mh(2)— can no longer be eliminated. Conse-

quently (cf. the discussion following (5.2.10)), we find that the minimal set of component
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fields describing N = 1 Poincaré supergravity are the vierbein (the nonlinear extension
of h,), the gravitino 1,5, an axial vector field A4,, and in addition the complex scalar

field B (which could be gauged away in the superconformal case).

For n # — %, we cannot use A" to gauge away all of H . We can gauge away parts

of it by using up all the components of Dle‘z and hence, because of the constraint
(5.2.52), those of D_QDML“. Again the local superconformal group has been reduced to

the super-Poincaré group: o and 7, no longer enter as independent parameters. We will

discuss the component content of n # — % supergravity later.

For n =0, (5.2.51) implies that F = 1 and hence that the action (5.2.48) vanishes.
It is clear from (5.2.53) that for n =0 the parameter A" satisfies (=)D, A =0 .
This is precisely the condition that the supercoordinate transformation parametrized by
A are “supervolume preserving”. However, the n = 0 case is unique because it contains
a (constrained) dimensionless scalar V' (an abelian gauge prepotential) which can be
used to construct an action. Furthermore, the constraint (5.2.51) is invariant under an
arbitrary local phase rotation of W: U/ = "W, K. = l€5 =e K e”. This invariance
can be used to choose a gauge where ¥ = U. Another consequence of (5.2.51),
E = E =1, is that we have imposed a partial gauge condition on H: The hermiticity
condition that E~' satisfies (see (5.2.60) below) implies that (1 - e’ﬁ) =1, ie,
1-H =0. This is achieved by choosing the gauge where H® = —iDgsH 4 instead of
zero, so that H = D, H Q&D_& +DsH O“;Da where the D and D preceding H 4 act on all
objects to the right. The case of n = 0 will be discussed in more detail in the following

sections.

To find the explicit expression for ¥ in terms of H, we use (5.2.49) and (5.2.51)

and write
Uin — o= Hn i _ —H pn+l H (5.2.57)

(For simplicity we have assumed that n is real; the generalization to complex n is
straightforward but not interesting). Therefore, we must compute E£. Although this

could be done by brute force, a more elegant procedure is possible:

In (5.2.28) we defined
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E,=e¢"TE. " | (5.2.58)

o

where F, is the hermitian conjugate of E;. The right-hand side can be interpreted as a
coordinate transformation with imaginary parameter iH" instead of iAY. By hermitian
conjugation E; is the coordinate transform of E; (the hermitian conjugate of E.).
Therefore, any covariant constructed from F, and E; can be obtained by a complex
coordinate transformation from the corresponding object constructed out of E; and E,.

This is the case for F,, and also for the vielbein superdeterminant.

The full nonlinear transformation of the superdeterminant follows from (5.2.46):

(E—l)/ — E—16¢K

— (61'AE—16—1'A)(1 . eLX) . (5259)

By the same method used to derive this result from E’, =™ E ;e ™, from

E,=e"E e (5.2.60a)
we have
E'=Eg e (5.2.60b)
and hence
E'=eHE e (1) | (5.2.60¢c)

Substituting (5.2.60) into (5.2.57) we find

Fin = [B(1 eyt (5.2.61)
or, using the original constraint (5.2.51),

T = pin(1. eyl (5.2.62)

Finally, substituting (5.2.62) and (5.2.51) into (5.2.49) we find

— (n+1)?

) 2 B (5.2.63)

5]

\If4n _ \1,4(n+1)(1 e
or

— (n+1)?2  n+l

U= [1-e")sn F1]?t . (5.2.64)
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Thus we have solved for ¥ in terms of H. Using these results, we can rewrite the n # 0

supergravity action (5.2.48) in terms of the unconstrained superfield H":

~ n+l

1 N
Sse = W/d%d‘*e [E"(1-e ) 27] . (5.2.65)

(The factor 1 gives the appropriate normalization for the physical component actions
n

and for the supersymmetric-gauge propagators: Er = (1+A)"~14+nA; see, e.g.,
(7.2.26).) This action is invariant under the group of A transformations restricted by

(5.2.53).

c. Density compensators

For many purposes, e.g., quantization, it is awkward to work with the con-
strained gauge group. As described in sec 3.10 we can enlarge the invariance group of a
theory by introducing compensating fields. In this case, the constraint (5.2.53) was
introduced by the relation (5.2.51), which is not covariant under the full gauge group.

We choose our compensators to restore the covariance of (5.2.51) under the full A group.

For the n = — % case a suitable compensating field is a chiral density ¢ that trans-

forms as
66 = [iA,¢] + 5 (DA = 0,06, Dso=0 . (5.2.66)

(The factor % gives ¢ the same weight as a density matter multiplet: see below.) From

(5.2.46,50,66), it follows that the covariant version of (5.2.51) is:

[TIFS
@l

Vs = ¢’F (5.2.67)

Eq. (5.2.66) can be rewritten as
(¢3)/ — (¢3)6¢KM , Ach — Amzf)m + AMZ'DN . (5268)

The chiral parameter (1 - iA o) =— 0,

A" + D, A" can be used to scale ¢ arbitrarily: In
particular, if we choose the gauge ¢ =1, from (5.2.67,68) we recover the constraints

(5.2.51,54), respectively.

In the n # —% case, the constrained object is the linear superfield expression (cf.
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n+1
3n+1

(5.2.53,54)) DI;A[L + ( )D*D,L*. Hence, a suitable compensator is a complex linear

superfield Y, D*Y = 0. We determine its transformation properties by requiring that its
variation is linear and that Y can be scaled to 1. (It should be recalled from the discus-
sion in sec. 4 that a complex linear superfield can always be expressed in terms of an
unconstrained spinor superfield: T = D lff’i (4.5.4).) Since the product of a chiral and a
linear superfield is linear, we can always have a term (D,A" — 9,,A™)Y in 6. To scale
T to 1, we need a term (D_,;A‘I)T, but since the product of two linear superfields is not
linear, such a term must come from the combination (EﬂA’z)T - A’Zﬁ;ﬂ“ = ﬁﬂ(A’ZT).

This leads uniquely to

. = . n—+1 m
O = [iA, Y] + (D;A")Y + (3n—|— 1)(DMA“ - 0,A")Y (5.2.69)
and
gin = il prel (5.2.70)
As in the minimal n = — % case, choosing the gauge T = 1 leads back to the constraints

—

(5.2.53,51). We observe that for n = 0, (5.2.70) implies Y = T(1-e¢ 7). (We can define

3n+3
a linear compensator T/ = ¢ #+Y in terms of both T and ¢; this enlarges the gauge

group by a chiral scale transformation, and results in n-independent transformation laws

for both ¢ and Y").

We can repeat the computations of egs. (5.2.57-64) including the compensators; we

find

3n+1)

n ?é - U — [Tn—l ffn-i-l ]7( o

n+1)

[(1 . e—ﬁ)n-ﬁ-l EQn ]7( o

(=

n=—2 , U=¢ g1 e TyWET | (5.2.71)

The n # 0 supergravity action (5.2.48,65) takes the form

S ontl o~ 3n+1

nt -y Ssol D)=L [dwate B e MY AN

n=—1 Ss(H,¢) =~ %/d% A0 E5(1-e)ide (5.2.72)
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These are invariant under the full A gauge group; after f-integration, they become the
usual Poincaré supergravity component action for the graviton, gravitino, and auxiliary

fields. The n = 0 case will be discussed later.

d. Gauge choices

The component field content of the actions (5.2.72) is manifest in a Wess-Zumino
gauge where the A transformations have been used to remove algebraically the gauge
components of the superfields. Since the A group is now unconstrained, we can choose
the gauge H" =0 and H™ with only A, , A as described following (5.2.10). There we
found that the remaining gauge freedom is parametrized by the w, Imé&, €,, Reo + i Imo,
and 7, components of L,; these correspond to Lorentz, coordinate, local supersymmetry,

scale + ichiral, and S-supersymmetry transformations respectively.

For n = — %, we define the (linearized) components of ¢ by
wu=¢| , u*=D" , S=S+iP =D . (5.2.73)

Under the gauge transformations that remain in the Wess-Zumino gauge (we need the

compensating transformations (5.2.18) and in addition Llﬁaﬁ = %C’aﬂe_g in (5.2.10)),

these components transform as

du = — % (U + ialgg) ;

a el 9. 1 a3
du® == (n +’655L ),

1
3
5S =i %aﬁLz . (5.2.74)

In writing these transformation laws we have linearized the full infinitesimal transforma-
tion of (5.2.66) and kept only those terms independent of H* and ¢. (This is analogous
to the approximation given in (5.2.7) as compared to the full infinitesimal transforma-
tion given in (5.2.17).) The scale and axial transformations parametrized by o can be
used to scale u to 1, and the S-supersymmetry transformation can be used to gauge u“
away. Thus we see that ¢ acts as a compensator for the constrained part of the A
group, i.e., v and u” are compensators for the component superscale transformations

(scale, chiral U(1), and S-supersymmetry). Setting w —1=u" =0 restores the
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constraint and leaves only the component super-Poincaré transformations. The remain-
ing fields S, S along with h, 1, and A from H™ are the component fields of minimal

supergravity.

Within the framework of the n = —% theory, the choice of compensator is not

unique. Any superfield that contains only superspin 0 (components v and u,) can be
used as a compensator. In global supersymmetry we found a number of such multiplets:
the variant representations of sec. 4.5.d. Thus we can replace ¢* — 1 in (5.2.66-72) by
the chiral field strengths Il = D*V of (4.5.56) or Il = D*D“¥, of (4.5.66). The new
components u , u, of the new multiplets are completely equivalent to the corresponding
components of ¢. On the other hand the S component is changed. We thus have two

cases in addition to S = D*¢| = S + iP
(2) §=DM|=DD*V|=_{D* D}V|+;[D*, D}V

- %{DQ ,DWV| +i0°[D, , DsV| =S + i0°P, | (5.2.75a)

or
(3) S =D’D*DV,| = —id*D’DyV,| = 8°S, + id*P, . (5.2.75b)

In case (2) the auxiliary fields are the real scalar S and the divergence of the axial vector
P, (instead of the pseudoscalar P). Also in case (2) we can make the replacement
V=iV’ ~The effect of this at the component level is that S takes the form
§=0S,+1P. The auxiliary fields are the divergence of a vector S, and the pseu-

doscalar P. In case (3), both auxiliary fields are divergences.

For n = —%, before we introduced compensators, the restricted gauge group

(5.2.54) could be used to eliminate all but the h,1, A and S components of H™, where
S =09,D*H™| (cf. the discussion after (5.2.56)). In the presence of the compensators,
the full gauge group was used to gauge away S from H™; S appeared in the compen-
sator instead. However, only in case (3) above is S (in the compensator) a divergence;
therefore this is the only case in which the theory with the compensator is completely

equivalent to the theory without the compensator.

For n # — % ,0, we can also go to the Wess-Zumino gauge and find the components
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of the nonminimal theory. We define the (linearized) components of Y:

w="| , w =D , S=D7|
a a dn +1 a~r a a pa —a 2 Aa
X = Dox| - (M Epex| | ve = pebtr| |, xt = DD (5.2.76)

The transformations analogous to (5.2.74) are

. yntly_ m
ou=—0—(3=—7)@ —i0,8%)
6u(¥:na,

55 =i(~tLyom 2,
3n+1 =

oA = —orde, 4 “32111)5 L

SV = —zéa@a— i0" @

ot = Oet . (5.2.77)

As before we can scale u to 1 and gauge u, to zero. The remaining components

x*, V%, A" are the additional auxiliary fields of nonminimal supergravity.

Once again we note that the case n = 0 is different; the transformation du is inde-
pendent of Im o (the axial rotations) so that this gauge invariance survives in the Wess-
Zumino gauge for A. Since T = TN(l e ), we have § = Y =X =0and V* = 8QT[@],

where T2 is a real antisymmetric tensor gauge field.

e. Summary

We summarize here some of the quantities that we have constructed so far:

A

E.

I

D, , E,=e¢"De" | H=HYiD,

B,=WB, | B,—¥B, . W=c"E"

I

E,;=—i{E, E;} , [Ey.Ey}=Cu"Ey . (5.2.784)
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E.—= N.I'E.

[¢] [¢] o ’

_ AN BP
E(X_N(X Eu )

T .1
E(w'c = N(X&H(Euﬂ +Z§Cl,(

fin(p

y)ﬁEVJM-%(j PIELY

pap(f

N &mi _ ﬁa“N&’i , det(N&’i) -1 . (5.2.78b)

[e7

The factor N," is equal to ¢,/ in a suitable Lorentz frame. The superscale compensator

U takes the form

o=
o=

U=¢"'g(1 e )BT

3n+1 n+1

n 4 — % L0: W= [ (1 ey (D) (5.2.78¢)

The tilde quantities are chiral representation hermitian conjugates defined by analogy

with the way U is defined from W. The Lorentz connection superfields ¢ A’Y6 and ¢, 7-‘§

take simple forms when expressed as functions of the anholonomy coefficients defined by

[E,,Ep} = C,3°Ey. They are given by

_ 1 3 d
(paﬂv - Z [Om(ﬂﬁﬂ - 5a(70ﬂ)7d ] P
. 1 .
g _ 2 B9)
(I)oc,@ 4 C(X-ﬂ(ﬁ ’

O, 57 = —i[B, @4, + E;®,5" — C, 4" ®s5" — C, 1" 5

+ Py’ Py + Py Pas” ] (5.2.78d)

and <I>& /3-7. y Pagl s CIDQ /3-7' are obtained by chiral-representation complex conjugation (i.e.,

the tilde operation).

f. Torsions and curvatures

From the covariant derivatives V, = E, + ®,(M) we define torsions and curva-

tures

(V4,Vp}= Ta5Ve + Rap(M) . (5.2.79)
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Using the explicit form, we find that the torsions and curvatures identically satisfy the

following constraints:

L oo
RO«B v - Ra,ﬁ 38 = TO«(Q 5 67_1—104,4d =0 . (5280&)

We also find further constraints whose form depends on the value of n. These are

1 c
n=-—gt T,,=0,
L. c_Llsds d
n?é—g,o T(X,Q _565. (Sa T/&Q 5
n =4 n—1 Fi\-

where R :i%T(ﬂLO“’O‘ and T, = TMQ. We refer to these as conformal breaking con-

straints. In a treatment that does not use compensators, these constraints have to be
imposed directly, to break conformal supergravity down to Poincaré supergravity. In the
compensator approach they arise naturally when a gauge choice is made to break the

conformal invariance; see sec. 5.3.b.6,7.

Another way to express the constraints on the torsions and curvatures is to write

the graded commutator of the covariant derivatives. For the minimal theory (n = — l)

3
we find

{VUMV,B} = _QEMa,B )
[Va ,VQ] _ — ZC(yﬂ[Wé - GVB-VW]

- z'caﬁ[W[%fMg - (VWG&;)Mf] —i(V R)M .y,

Vo, Vil ={lC Wy + Cap(V4G75) = Cs(VaR)S57 |V, +iCosG7 5V 5
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- [C&B(vawﬁj + (V?R + 2RR)C.46,")

— Cop(ViV'G ) IM 7} + hec. (5.2.81)

where W G

these equations.

apyy Gg, and R are independent Lorentz irreducible field strengths defined by

For nonminimal theories (n # — % ,0) the graded commutators take the forms

{Va Vs = 5TV — 2BM,5

{Vv, ,Vé} = zvaé ,

Vo Vil =3 T4V, ; — iCy[ R+ 2 V'T, ]V
+i[CopG5 — 5 Cop((VT + %TW)TB) + %(ngﬂ)5a7]Vv
—i[Cop(V'G )M + (V5 = T5)R)M ]
+iCog[ W, M+ i s WA (5.2.82)

where W5, G,, and T, are the independent tensors. In these equations, R and W, are

defined in terms of T, . The quantity R was defined in (5.2.80b) and W, is given by

Wo=i[;V(V,;+

1 —
5+5T5) +RIT, (5.2.83)

The expression for the commutator of two vectorial covariant derivatives in the nonmini-

mal theory can be calculated from the Bianchi identity;

V.. {V; ,VB}] = {Vﬁ Ve Vel +1{Vys, [VQ,VB] . (5.2.84)
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5.3. Covariant approach to supergravity

a. Choice of constraints

In the previous section we showed how to start with unconstrained prepotentials
and construct out of them a covariant superfield formulation of supergravity. Here we
do the reverse: Starting with a manifestly covariant but highly reducible representation
of supersymmetry, we impose constraints on the geometry and solve them in terms of
the prepotentials. Prepotentials are essential for superfield quantization, whereas mani-
festly covariant formulations make coupling to matter straightforward and allow us to

develop an efficient and powerful background field method for the quantum theory.

a.l. Compensators

As discussed in sec. 3.10, it is often useful to introduce (additional) local symme-
tries realized through compensators. As discussed in sec. 5.1, in gravitational theories
there are two types of compensators: (1) density compensators, which transform nonco-
variantly under the full local symmetry group, and thus appear in covariant quantities
only in combination with other fields; (2) tensor compensators, which transform covari-
antly, and thus allow the realization of symmetries that may not be invariances of the
entire theory. Density compensators allow the linear realization of symmetries that
would otherwise be realized nonlinearly (as, for example, in nonlinear ¢ models, or
Lorentz invariance in gravity with spinors). When such symmetries are global symme-
tries of some theory (at least on-shell), the (super) spacetime derivative of the density
compensator can appear as a gauge connection. (If some field transforms as do = A then

it is easy to construct a connection as do since 600 = O\.)

On the other hand, if the symmetries one wants to realize linearly and locally are
not even global symmetries of the entire theory, it is necessary to introduce tensor com-
pensators to “cancel” arbitrary gauge transformations of this type in terms that are not
invariant. This phenomenon was illustrated in sec. 3.10.b in the discussion of the CP(1)
model, and in (5.1.35), where the compensator ¢ permits a generalization of the Ein-
stein-Hilbert action to an action with an additional local scale invariance. (This does
not imply any new physics. The gauge invariance with respect to scale transformations

must be fixed just as any gauge invariance and the most convenient choice is ¢ = 1.)
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In gravitational theories, some symmetries need both types of compensators. This
is because the symmetries are realized twice. For example, in ordinary gravity, the den-

sity compensator e ! transforms as de ! = — 9,,A™ — 4¢, where 9,,\" represents the local

scale transformation part of the general coordinate transformation parametrized by A" ,

'is thus a gauge

and ( is an independent local tangent space parameter. The quantity e~
field for scale transformations in A™, but also a compensator for the transformations
parametrized by (. It allows the full A" invariance to be realized linearly; it also allows
local scale transformations to be realized linearly via (. However, most gravitational
theories are not locally (tangent space) scale invariant: Thus, if we still want to represent
local scale transformations, we must introduce a tensor compensator ¢ , ¢ = ( , to can-
cel the ¢ transformation of noninvariant terms in an action. To summarize: (1) e’ is a
density compensator for local scale transformations, allowing them to be realized linearly
in locally scale-invariant theories; while (2) ¢ is a tensor compensator for local scale

1

transformations, allowing them to be realized linearly (when e is also present) in non-

invariant theories. Note that e transforms under both 9,,A"™ and ¢ , whereas ¢ trans-

forms only under ¢ (in the linearized transformation). There is also the combination
e ‘¢! | transforming only under O A" as Selogt = — 0,A", which is useful in construct-
ing invariant actions. It should be noted that e ¢! is, in a sense, a “field strength” for
the ¢ gauge transformations. Another such “field strength” is the integrand of the

expression in (5.1.35).

We find a similar situation in supergravity. There we introduce not only local
(real) scale invariance, but also local (chiral) U(1) invariance (as a generalization of the
global R-invariance of pure supergravity) to simplify the analysis of constraints and
Bianchi identities as much as possible, and we include its generator in the covariant
derivatives. (In extended supergravity, the corresponding extra invariance is U(N): i.e.,
the largest internal symmetry of the on-shell theory. See secs. 3.2 and 3.12.) In the pre-
sent application, the result of such an approach is that the torsions and curvatures con-
tain fewer tensors than they would without the enlarged tangent space. (The missing
tensors reappear as field strengths of a tensor compensator.) These latter tensors are
generally the tensors of lowest dimension, so their elimination from the torsions and cur-
vatures allows great simplification in the analysis of the Bianchi identities, as discussed

below (sec. 5.4), and simplifies our analysis of constraints.
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Since neither U(1) (R-invariance) nor scale invariance is a symmetry of general
theories of supergravity + matter, we introduce a complex scalar tensor compensator to
compensate for both (except for n = 0, where R-invariance is maintained, so the com-
pensator is real). In analogy to gravity, there is also a complex scalar density compen-
sator for these transformations: It is the density ¥ of the previous section, now wuncon-
strained, which will appear when solving the constraints. The quantity ¥ is the direct
analog of e~ of gravity, and the tensor compensator is the analog of gravity’s component
field compensator ¢. We will furthermore find a special significance for the analog of
gravity’s combination e '¢*: It is the superspace density compensator ¢ or Y, which sat-
isfies a simple (noncovariant) constraint. The tensor compensator satisfies the direct
covariantization of this constraint. The analog of gravity’s A™ is A, and that of ¢ is
the scale parameter L and U(1) parameter K. A feature of supergravity not appearing
in gravity is that of a global symmetry, namely U(1), with both density and tensor com-
pensators, whose density compensator (V) is used to construct a U(1)-gauge connection
that trivially gauges the symmetry in superspace (as in nonlinear o models). (However,
as in gravity, it is not useful to introduce gauge connections for scale transformations,
since global scale transformations, unlike R-symmetry, are not an unbroken invariance of

the classical theory (even without matter)).

After completing our analysis of the U(1)-covariant derivatives and tensor compen-
sators, we will obtain the (n # 0) U(1)-noncovariant derivatives of the previous section,
which are more convenient for some applications. This is achieved by first gauging the
tensor compensator to 1, which expresses ¥ in terms of H and ¢ or T, and then by

dropping the U(1) connection, should it not disappear automatically.

We begin with the covariant derivatives (cf. (5.2.20))

Va=E 4+ ®4(M)—il,Y |

V4, Vp}= TABCV0+RAB(M> —iF,5Y (5.3.1)

where Y =Y is the U (1) generator, whose tangent space action can be summarized by

Y, V= % w(A)V 4, or explicitly:

YV V==V, [V, Vil =3 Vs, [Y,V,]=0. (5.3.2)
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The covariant derivatives transform as

V' =ekV,e ™ | K =KMiDy+ (K, iM s+ K" iM ;) + K;Y . (5.3.3)

a.2. Conformal supergravity constraints

The covariant derivatives define a realization of local supersymmetry. However, it
is highly reducible and contains much more than the supergravity multiplet. Therefore,
by analogy with Yang-Mills, we impose covariant constraints on these derivatives to
eliminate unwanted representations. The supergravity constraints can be expressed in

the simple form

va& - - i{va ?vd} ’ (534&)
Toy' =Ty'=T, ;" =0, (5.3.4b)
{V.,Vs}x =0 when V,x=0 ; (5.3.4c)
(and their hermitian conjugates) or, in terms of the field strengths,
.g = ) v .’; .ry = . g = « —
T =085 , T =R °=F =0, (5.3.5)
T =Ty'=T, ;7 =0, (5.3.5b)
Tt =Tu =0 . (5.3.5¢)

We have divided the constraints into three categories: (a) conventional constraints
that determine the vector Lorentz component of the covariant derivative, V,, in terms of
the spinor components V,, Vgs; (b) conventional constraints that determine the spinor
connections ¢, and I', (and their hermitian conjugates) in terms of the spinor vielbein
E.; and (c) representation-preserving constraints that are needed for consistency with
the definition of chiral superfields in curved superspace. As for super-Yang-Mills and
ordinary gravity, conventional constraints can be interpreted as either setting certain
field strengths to zero, or as eliminating them from the theory by field redefinitions.
The first set of conventional constraints is of the same form as for super-Yang-Mills the-

ory, while the second is analogous to the constraints of ordinary gravity. The
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representation-preserving constraints are also of the same form as for super-Yang-Mills
theory. Although we have only required the existence of chiral scalars (i.e., scalar multi-
plets), this set of constraints is also sufficient to allow the existence of chiral undotted
spinors (for example, the field strengths of super-Yang-Mills), with arbitrary U(1)
charge. (The second type of constraint already determines the spinorial Lorentz and

U(1) connections.)

The constraints actually have a larger invariance group than that implied by
(5.3.3): in addition to being invariant under the transformations generated by (5.3.3),
they are invariant under local superscale transformations. In the compensator approach,
we use constraints that determine only the conformal part of the Poincaré supergravity
multiplet. The rest of the multiplet (the superscale part) is contained in the compen-
sator itself, and therefore the particular form of the Poincaré supergravity multiplet

depends on the choice of compensator multiplet.

To discover the explicit form of the additional invariance, we first note that the
infinitesimal variation of the spinorial vielbein under scale transformations must be of

the form

§,E, = %LEQ (5.3.6)

where L is a real unconstrained superfield which parametrizes the scale transformation
(see (5.3.4c)). Next, to find the superscale variation of V,, we use (5.3.6), vary ®(M),
I', and E, arbitrarily, and demand that (5.3.5) is satisfied. This determines the remain-

ing variations. The results can be summarized as
5.V, = %Lva +2VsL)M," + 3(V, L)Y | (5.3.7a)

5Lvad = Lvao’z - QZ(V&L> va - QZ(vuL> v&

— 2i(V VDM, — i2(V, VL), + 3i([V, VL)Y (5.3.7h)
and consequently

§,F'=—-2LE". (5.3.8)
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The gauge symmetries of the theory, (5.3.3,7), and the constraints (5.3.4) are suffi-
cient to reduce the covariant derivatives so that they describe an irreducible multiplet:
conformal supergravity. To see this, we study the scaling properties of the remaining
field strengths. These are not all independent; Using the Bianchi identities, as we show
in sec. 5.4, all nontrivial field strengths can be expressed in terms of three tensors R, G,
and W
These objects can be defined by

- For convenience, we also introduce the (dependent) U(1) field strength W,.

1 y 1 &,

Wagy = 13 1%

aipn) = T 13 Ll Ban)

W, =giF,; . (5.3.9)

From (5.3.2,7) we have the U(1) and superscale transformations of V, (and hence V; by
hermitian conjugation), and V, . We can then determine the transformations of these

field strengths by evaluating commutators. The result is:
[Y,Rl=R , 6,R= LR — 2V*L ;

Y,G,=0, 6,G,=LG, —2[V;,V,]L ;

1 3
[Y ) Woz,@v] = 5 Wozﬂ’y ) 5LW(xﬂ’y = 5 LWa,BW ;
Y, W, = %Wa oW, = %Lwa +6i(V2 4+ RV, L . (5.3.10)

Thus the superscale and U(1) transformations can be used to gauge away parts of these

tensors, leaving only the field W 3, of conformal supergravity. At the linearized level,

afy

this contains the pure superspin % projection of H™ discussed in sec. 5.2.a.1.
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a.3. Contortion

There is nothing unique about the set of conventional constraints we use. Any set
that allows us to express the vector derivative and spinor connections in terms of the
spinor vielbeins E, , Ez is equally suitable. For example, we could use T, = 0 instead

of R ﬂ.cd =0 to determine ®,,¢. This would give a ®’,,¢ whose corresponding V', is an

equally good covariant derivative. The difference ® — ®’ is a tensor (the contortion ten-
sor). Adding contortions to connections does not change the physics and simply
amounts to a redefinition of minimal coupling. Indeed, for most familiar models the con-
nections do not enter at all: For the scalar multiplet the Lagrangian 7m and the chirality
constraint V n=0 are independent of the connection. The field strengths of super-

Yang-Mills theory are

Fap=Vul'p + Tl — T45Te

= EuTp 4+ Tulp) — CupTe (5.3.11)

and are also independent of the supergravity connections. Finally, the supergravity

Lagrangian (for n # 0) is £, also independent of the connections.

Furthermore, any other set of constraints that determines E, is correct: We can

always redefine E," by writing
E'M=EM+49,EM+ g, EM | (5.3.12)

where g,” is a covariant object constructed out of the field strengths of V. Therefore,
in superspace, in addition to the contortion tensor for the Lorentz connection, we have a
contortion that changes EQM . However, this does not affect the physics as, once again, it

amounts simply to a redefinition of minimal coupling.

There is another ambiguity in the choice of constraints, which, however, leads to
no modification of the theory at all: Since the Bianchi identities relate various field
strengths, there are many ways to express any particular constraint. For example, since
all curvatures and U(1) field strengths can be expressed in terms of torsions (see sec.
5.4), any constraint on a curvature or U(1) field strength can be expressed in terms of

torsions. Which form is chosen is purely a matter of convenience.
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a.4. Poincaré supergravity constraints

The superspin g superconformal multiplet with field strength W ;3. is not sufficient

afy
to describe off-shell Poincaré supergravity. We must include lower superspin superfields
to obtain a consistent action. We can do this in two ways: By introducing extra confor-
mal representations as compensators, or by directly restricting the gauge group so that
some lower superspin conformal representations contained in HY cannot be gauged
away. Such restrictions on the gauge group are introduced by imposing constraints that
are not invariant under the full group. These constraints appear naturally when we use
the full superconformal transformations to gauge the compensators away and require

that the remaining transformations preserve the resulting superconformal gauge.

There are three types of tensor compensators that can be coupled to conformal
supergravity and can be used to reduce it to Poincaré supergravity. The possible com-
pensators are restricted by the requirement that they must have dimensionless scalar
field strengths to compensate for L of (5.3.6,7,8,10). (Thus, the compensator field
strength X has the usual linearized compensator transformation 06X = L. X| is then a
scalar with action (5.1.35). The remaining type of conformal matter multiplet, the vec-
tor multiplet, cannot be used as a compensator because its only scalar field strength
VW, has the wrong dimension and its prepotential is inert under superscale transfor-

mations.) They are parametrized by the complex number n: (1) the scalar multiplet ®

(n=— %), (2) the nonminimal scalar multiplet ¥ (any n except 0 or — %), and (3) the

tensor multiplet G (n = 0). These multiplets can be defined by constraints and can be

expressed explicitly in terms of unconstrained superfields (prepotentials):

Ve® =0, ®=(V*+R)E ; (5.3.13a)
(V2+RxL=0, x=VE; ; (5.3.13b)
(VP4+RG=0, G=G=_V,(V+RZ"+hc (5.3.13¢)

where R is a field strength (see (5.3.9) and sec. 5.4) and V?+ R gives a chiral superfield
when acting on a superfield without dotted spinor indices (see below). The U(1) and

superscale transformations for which they compensate are
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YV, 0] = %@ 0,8 = LD (5.3.14a)
2n 2

Y3 =%, 68 = o IS (5.3.14b)

Y,Gl=0, 6,G=2LG . (5.3.14c)

In sec. 5.3.b.7 we will break the superconformal symmetry by fixing the compensators.
In the resulting super-Poincaré theory (5.3.13) become additional, conformal breaking

constraints on the covariant derivatives (i.e., on the torsions and curvatures).

The scale weight of ® is arbitrary (since we could replace ® by ®™ and still satisfy
(5.3.13a)). However, the ratio of the U(1) charge to the scale weight for a chiral super-
field is fixed. This can be seen by a simple argument. Consider an arbitrary chiral
superfield y, Vsx = 0. We write its scale transformation in terms of the dilatational
generator d (see (3.3.34)): 0;,x = L[d,x]. If we perform a scale variation of the defining

condition for a chiral field, and use (5.3.7a), we find:

0=(6;,Vs)x + Valdrx)

=-3(VsD)[Y,x] + Va(Lld,x])

= (V4D)[-3Y +d,x], (5.3.15a)
and hence
0=[-3Y +d,x]. (5.3.15b)

Thus the U(1) charge and the dilatational charge always satisfy the rule d —3Y =0 for
W,, and R in (5.3.10) and for ® in (5.3.14a).
(Actually for R this is only clear if the transformation law is written in the form

§,R=3LR—2(V*+ R)L.) The relation of the chiral charge to the dilatation charge for

chiral superfields. This is seen for W ,3,, W,

chiral superfields in N = 1 supersymmetry is a special case of the general relation noted

in sec. 3.5.

In precisely the same manner, starting from the defining condition (5.3.13b,c) for a
linear superfield, we can show that the condition d —3Y =2 must be satisfied for all lin-
ear superfields. This is seen for ¥ and G in (5.3.14b,c). In the case of ¥ in (5.3.14b) we

have chosen a convenient parametrization for its scale weight. The tensor multiplet is
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neutral because its field strength is real (Y = 0), and thus the n = 0 theory (with the G

compensator) retains its local U(1) invariance after superscale invariance is broken.

The relation of the dilatational charge and the chiral U(1) charge for chiral and
linear superfields implies that combined L and K; transformations on arbitrary chiral

and linear superfields, y and = respectively, take the forms

6X = L[d7X] + ZK5[Y7X] ’
=d(L+ig Ky)x (5.3.16a)
0= = L[d, =] + iK,[Y , 5] ,

= [@'L+i 5 (d = 2)K;)Z . (5.3.16b)

The quantities d and d’ are the scale weights of the superfields.
b. Solution to constraints

b.1. Conventional constraints

The first constraint in the form (5.3.4a) is already explicitly solved (as was the

case for super-Yang-Mills).

We begin our analysis of the second constraint by extracting from (5.3.1) the
explicit form of the torsion. In sections 5.1,2 we defined the coefficients of anholonomy

CABC by
[E4, Ep} = CapEc (5.3.17)

They can be expressed explicitly in terms of the E,» and their derivatives. We then

have
1
Tap® = Cap® + Pup —i;w(C)Tadp° ; (5.3.18)

ie.,
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Ty =Ca Tar' = Cap”
T@’}’ — C@’} 5

1.
Ty’ =Cop’ + Pap)” + 500'Lp)

0 . 0 1 . .
J = N J — Z 7
T =C 7+ - 2isr,

1.
Tgﬂ’y = C&gry + (Pgﬁ’y + 5 25[7911& s
Tuég = Caf + q)aﬂv(sﬁ.v + (I)aﬂﬂéﬂv )

T,,C = C@Q + (‘Pgﬁvaéi +h.c.— b Q) : (5.3.19)

as well as the complex conjugates.

By using these equations the first constraint of (5.3.4b) can be solved directly (not-
ing that ® 44" is traceless in its last two indices):
, 1 1.
Ta/gf} =0 — (I)oc,@’v = 5 (0/3704 — Ca(,@v)) — 5 ZCU((ﬂF’y) . (5320)
However, solving the last two equations of (5.3.4b) for T, and <I>Cy 57., respectively, is less
straightforward, since C,,¢ itself depends on them through V,. (On the other hand,
(5.3.4a) introduces no dependence of V, on ®,,7.) To solve these constraints we intro-

duce, as in sec. 5.2.a.3,
Ey,=(E,,Es,E,)=(E,,Es,—i{E,,Eg}) . (5.3.21)

We define C 53¢ by [E4,Ez} = C,3°Es. We emphasize that, since E, is still depen-
dent on <I>a [;ﬂ.' and T',, C' 43¢ is also. In contrast, C' 43¢ is completely determined in terms

of £, and F;. We begin by expressing I/, in terms of EQ and (the as yet undetermined)
oM'
a

E

o= —il{Ba Bi} + (0,0 — Lid T B + (05, + L iTs0,”) B

.
[e7e%
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= B~ i(®,) — Li6y T)E; — i(®s," + L iT0,")E, (5.3.22)

.
ax

where we use (5.3.4a). Then computing the commutator [E,, E,] = C.,” Ep we find

c Y ¢ y 1.c.y .
Cabf = Cabf — 5a’y(®ﬂ.’y — 5 25[371}3) + Z(@é

1. < .
3 S+ 3 i65°T5)C o5 - (5.3.23)

B

As we will see shortly, the next constraint we impose (eq. (5.3.4c)) will set €5 = 0, and

therefore the nonlinear term drops out. Consequently, the last two constraints of

(5.3.4b) (in combined form)

_p H_o 8 4
0="T C 57+

o‘vﬂﬁ a,ﬂ
(0 H_a 4 liss 4
o (Ca.ﬂﬂ (I)aﬁ + 2 Zéﬂ Fa) + Z(I)aﬂ (5.3.24)
give

This completes the solution of the conventional constraints (5.3.4a,b). We have now
determined F,, ®4, and I'y in terms of F, and E;. Furthermore, from the form of

(5.3.22) we immediately obtain
E = sdet E ™ = sdet E,™ . (5.3.26)

(The last terms in (5.3.22) give no contribution to the superdeterminant.)

b.2. Representation preserving constraints

Having determined all quantities in terms of F,, we have a realization of local

supersymmetry with 512 ordinary component fields. In the Yang-Mills case, further
reduction was achieved by imposing representation-preserving constraints: To ensure the

existence of (anti)chiral scalar superfields (defined by V,x = 0), we required
{(Va, Vslx =0 . (5.3.27)

In supergravity (assuming [Y , x] =0 for simplicity), we find (5.3.27) implies
T’V X =Tas' VX + Tog VaxX + TosVex =0 . (5.3.28)

Therefore, to allow the existence of chiral scalars in supergravity we must enforce the
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constraints (5.3.5¢):
Toy’ =Tost =0 . (5.3.29)
From (5.3.19), this implies:
{E.,E;}=C. E, . (5.3.30)

(Equivalently since V,x¥ = E,x =0 it follows that {E,, E3}X =0 which immediately
leads to (5.3.30).) Thus E, = E,” D, is a basis for tangent vectors that lie in a com-
plex two-dimensional subspace of the full superspace: All operators A®FE, generate com-

plex translations with an algebra that closes. We can also parametrize these translations

by a basis of derivatives with respect to coordinates (7%,7%): E, = A" 8%’ where A" is

an arbitrary matrix or zweibein. We can always express the coordinates 7/ as complex

supercoordinate transforms of the wusual #-coordinates: aiﬂ:e_QDﬂeQ, where
T

Q=0YiD,, #Q is arbitrary. Our full solution of the constraints (5.3.4c) is thus

_ w,— Q_ -Q I Q .
E,=Ae " Dye”"=eAD, e ;

Q=0MiD,, , A}l =UN ; (5.3.31)

where we have split A,” into a complex scale factor ¥ and a Lorentz rotation N "
(det N =1). This solution is closely analogous to the Yang-Mills solution V, = e D, e
to {V,,V3} =0, except for the introduction of A,”. In fact, the Q of Yang-Mills can be
interpreted as a complex translation in the group manifold. We now have a description
of supergravity in terms of Q, ¥, and N, *. However, N, * can be gauged away by a

Lorentz transformation (with parameter K,” ).

b.3. The A gauge group

At this point, we can make contact with the previous section: The solution of the
constraints imposed so far has introduced a new gauge group as an invariance of

E, = e’ﬂzﬂa“DueQ. The vielbein E, remains unchanged under the transformations

(eQ)/: eiAeQ ,
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(A,"D,) = e™(A4,"D,)e ™ . (5.3.32)
with
A =AMiD,, |, A,D,|=—4i(D,A")D, ; (5.3.33)
provided that
D, A = D, A — 5 PN =0 , A" arbitrary ; (5.3.34)
or
N =D?[F | A =_ D'} | (5.3.35)

The fact that A” is completely arbitrary implies that the part of the A-gauge group
parametrized by A” can always be “compensated away” by a redefinition of N, *. Thus
as in the Yang-Mills theory solving a constraint (F,; = 0) gives rise to a new gauge

group. The transformation on A, can be rewritten as

,uDu )/ — 61’A(1 X e%f) efz'A

| =

N,"D ; (5.3.36)

7

where the factor (1 - e’ii), > = A*iD
(5.2.59)).

,» is the super-Jacobian of the transformation (c.f.

We still have the real K = K™iD,, coordinate transformations of the theory (see
(5.3.3)), as well as the tangent space Lorentz and U(1) rotations: E’, =™ E e ' is

realized by
() =ete™™ | (AS) = AL (5.3.37)
while B', = ¢ 33K " is realized by
(€)' =e? | (AS) = (e K, TN Am (5.3.38)

The K transformations can be rewritten as

0'=Q—iK + 0(Q,K) . (5.3.39)
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Since K = K, this implies that 2 — € can be gauged away. In the resulting gauge,
Q=-H , H=H = HYiD,, . (5.3.40)

Similarly, the Lorentz transformation can be used to gauge N,/ to d,”. In the resulting

gauge we have

1o — 1
~Lln 1"
E,=e2"¥D, e |

E;=e"UDge i (5.3.41)

(e}

However, it is more convenient to eliminate the real part of €2 by going to a chiral repre-

sentation (as for super-Yang-Mills), as discused in sec. 5.3.b.5 below.

b.4. Evaluation of ', and R

We can now find simple forms for I', (5.3.25) and R (5.3.9). The results are con-
tained in (5.3.52,53,56). The details of the derivation are not essential for further read-

ing, but present some useful general techniques. To solve for I',,, we use the identity
E7'W ,=—EY(=)PT,," , (5.3.42)

which holds independently of any constraints, for any superspace, for any tangent space.
In cases where (—)®T,;” vanishes (as here), it allows covariant integration by parts,

since
/dz E'W,uX =~ /dz E'V,X=0. (5.3.43)

To derive this identity we will save ourselves a lot of trouble by noting that at the end of
a calculation the signs resulting from graded statistics can easily be determined if the
indices of each contracted pair are adjacent, with the contravariant index first. The net
sign change is then just that resulting from the graded reordering of the indices of the
initial expression. Using this fact to ignore the signs from grading at intermediate steps

of the calculation, we have (in the basis E, = E 7 0,,)

(=)°T 1" = Ey®’IVa, V" = EyPVEp
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= FE, PV E" —E,PVzE M . (5.3.44)

We evaluate the second term by use of the identity (again ignoring grading signs) for

arbitrary superfunctions X and Y
XYV, = XY,V ]+XV,Y=XV,Y+XV,V |, (5.3.45)
where we have used (5.1.26b) to evaluate the commutator. (5.3.44) now becomes

Ey"VaE" —EyPE MV 5+ EyPV g E M

=V, nE—-1-V,40 | (5.3.46)

which leads to (5.3.42). The evaluation of the first term used the usual expression for
the derivative of the logarithm of a determinant (see (5.1.28); for tangent space groups
which include scale transformations, (—)?®,;” #0, so that the scale generator acts non-

trivially on E). The last term vanishes because
EyPV 5 =EyPERY(0y +®y(M)—ilyY ). Therefore 6,,Y(0y+®y(M)—il'yV)
=6,V y =0.

Actually, it is simpler for our purposes to use the form of (5.3.42) in terms of E,

instead of V4. Using E = E, we have:
E7'E ,=—E(-)5C 5% . (5.3.47)

From the expression (5.3.25) for T, B, =E

)

and ¢ .Y =C .7 =0 we obtain
af af

—iT, = (=)’Cop®+Cos’ =—E'E E+C,," . (5.3.48)

Using the expression (5.3.31) for E, in the Lorentz gauge N, " =4," (the general Lorentz
gauge will be easily restored at the end), we find Cv’w” =0 Epln U, so this expression

becomes
Ty =—E'E E+3E,nV=—1-¢"D e 2T+ E InEW ,  (53.49)
where we have used
E,=e "D, e (5.3.50a)

which implies
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1

—

=D e (5.3.50b)

We use the identity, valid for any function f and linear operator X,

= (1-e5)(eX)) (5.3.51a)

to derive the relation

— — — —

I=(1-e)eX =1 -eM)e(1-e¥)] . (5.3.51b)
These two results make it possible to rewrite (5.3.49) as

—il, = —¥(1- e‘ﬁ)e_QDa(l : 65) + B, In EV?
=—U(1- e‘ﬁ)e_QDaeQ(l : 6_5)_1 + E,In EV?

=V, 7r=T, , (5.3.52)
where we have introduced a (noncovariant) scalar density T":
T=n[ET(1-e ) . (5.3.53)

An immediate consequence of (5.3.52) is F',5 = 0 (see (5.3.1)).

We now solve for R, where
{v()( ,Vﬂ} - - QEM(yﬂ 9 (5354)

as follows from the Bianchi identities (sec. 5.4). Using the same form for E, as in the

previous calculation, and using the result for I',, we find from (5.3.20)

)

1

v = . 1 ’ B _
q)ozﬂ’y - - B} 5(X(’}(E/3)ZTL \112 + ZF5)> = — 3 5(X('7Eﬂ)ln (6 T\IIZ)

1 , QN1
= —aaaﬁEﬁ)zn (1-e )BT . (5.3.55)
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We then find (® /3-7. does not contribute)

R = (B)(e "0 = T (B)(1- ") B!
= BV (B )2 (1)t . (5.3.56)
where (B )? = 2 (B%)(E ;)
x ok ok

It is useful to derive the explicit form of the operator that gives a chiral scalar

from a general scalar f. For the case [V, f| =0, a simple calculation using (5.3.55) for

—

the connection gives the result that (V> + R)f = fE’l(ﬁt;)QeT(l - e?)7! is covariantly
chiral. This result can then most easily be extended to arbitrary U(1) charge
Y, fl= % wf by using the expression (5.3.53) for I', to write

J— =

(V2 4+ R)f = [T (V2 + R)e T f](1- )" (5.3.57)

where V? is the form of V2 on a neutral scalar (as implied by (5.3.57) for %w =0). We

thus obtain

«—

A

(V2 + R)f = fe " TEY(E 5207 (1. )1 (5.3.58)

This quantity is covariantly chiral with U(1) charge 1 + % w.

b.5. Chiral representation

Due to the form of £, in (5.3.31), it is possible to define local representations that
are chiral with respect to the supergravity fields. (These are analogous to chiral repre-
sentations in super Yang-Mills (4.2.78) as well as in global supersymmetry (3.4.8).) On

all quantities F' we perform a (nonunitary) similarity transformation
F) = ¢ Fe? (5.3.59)

(Antichiral representations can also be defined, with  — —Q.) In this representation,
as for super-Yang-Mills, all quantities are invariant under K transformations, and the

covariant derivatives transform explicitly under A transformations. Furthermore, we
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choose the Lorentz gauge N, " =4,", which forces K 5 to equal ws” of (5.2.27) to main-

[e]

tain the gauge. In the chiral representation, the vielbein becomes:

=e AUD el =We D e ;

el = e . (5.3.60)

This is precisely what we had constructed in the previous section ((5.2.27) and (5.2.28)).

The transformation of H can be obtained from that of €2:
(ef) = ehef et (5.3.61)

(Note that, as in super-Yang-Mills, (5.3.60) can be used to define H in any K-gauge; it
is K invariant. Alternately the A* and A" transformations can be used to gauge away
H" and H".)

It is possible to go to a representation that is also chiral with respect to U(1).

From (5.3.53) we have
r,=iE,T , Tz=—iE:T ; (5.3.62a)

where T = ¢ "Te is the chiral-representation hermitian conjugate of T (cf. (5.2.28)).

Using (5.3.2), we can write

1
. —ry -t
E,—il,Y =e e 7 E e,

o

Es—iTsY =V el Bee ™V (5.3.62b)

In addition to the transformation 67T = — iK;, these expressions are invariant under

0T = i&:,, where Aj is chiral. We can use this gauge freedom to replace T by

Q=T + 3lng (5.3.62¢)

thus introducing for subsequent use the chiral density ¢, D¢ = 0. We now go to a chi-
ral representation not only with respect to Q" D,, and N,", but also with respect to 2,

by making the appropriate nonunitary U(1) transformation, and obtain:

E;—ilsY = E 2D, |
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—

E, —iT,Y =e VW E:(1-e ) 2B, = EE:B, + (EE:E,V,)Y |

El=FE501-e)ide ; (5.3.63)

where we have used E = U0 (5.2.49) to replace ¥ with E. This effectively replaces
U with E as superscale density compensator: In the U(1)-chiral representation, the
U(1) density compensator {25 no longer appears. For this reason this chiral representa-

tion is useful for n = 0 supergravity, where a true local U(1) invariance remains, but not

very useful for other n. However, it does bear a close relationship to the n = — % results
of the previous section: n = —% can be obtained by constraining I', to vanish identi-

cally. In this representation, the result is simply that V5 vanishes, and hence E~' = E.’l,

in agreement with (5.2.72). In section 5.5, this result will be used to write a first-order

formalism for n = 0 combined with n = — %

b.6. Density compensators

After gauging away H* and H”, we have now determined all the geometrical
superfields in V4 in terms of H™ and ¥, which contain 64 and 32 component fields,
respectively. The axial vector prepotential H™ contains the component gauge fields.
The superfield ¥ is the superconformal (density type) compensator: By scaling ¥ arbi-
trarily (without transforming H™), we generate complex scale transformations (real scale
®U(1)) of the vielbein. Thus, the complex scale transformation properties of any quan-
tity expresses its W dependence. These transformations must be restricted and the rep-
resentation reduced further, since Einstein theory is included in Poincaré supergravity
and is not scale invariant. We now consider the (scalar) tensor-type compensators
¢, %, G (5.3.13), which also transform under these combined transformations. Fixing
the gauges of these transformations by fixing the compensator is a convenient way of
determining W, since it separates the lower superspin multiplets from the conformal

supergravity multiplet in a covariant way.

It is convenient to solve the constraints (5.3.13) on the tensor compensators in

terms of corresponding density compensators that satisfy the corresponding flat-space
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constraints; this allows us to find an explicit solution for W.

b.6.i. Minimal (n = — %) supergravity

We first consider the (covariantly) chiral scalar compensator ®. The constraint is,

using (5.3.62a),
= 175 _1f
iLg)P=es Ege 3@ =0 (5.3.64a)
and is solved by
O =ep=[TTEQL )i, Bgp=0 . (5.3.64b)

It transforms under scale transformations as in (5.3.14). Here ¢ is a flat space chiral
superfield, in the chiral representation, as follows from the definition of E,. If we choose

the gauge ® = 1, then T = — 3In¢ and we obtain

1 5
2

Bro(l-e™)i(1-e) 5 (5.3.65)

o=

V=g

(We have again used E:\IIQ\TIQE.) In this gauge V;® = 0 implies '; = 0; by complex
conjugation and (5.3.4a) I'y =0, and thus the field strength of the axial U(1) transfor-
mations (see (5.3.9)) vanishes: W, = (V?+ R)[,=0. The relation (5.3.58) becomes

«—

(V24 R)f = fEY(E 5)2(1- )t . (5.3.66a)
In the chiral representation, this simplifies to

¢’ (V> + R)f = D*(E"'f) . (5.3.66b)

The theory is now described by H"™ and ¢ and the only superspace gauge freedom
left is that of super-Poincaré transformations. As in (5.2.75), the density compensator ¢

can be replaced by one of its variants.

b.6.ii. Nonminimal (n # — %) supergravity

For the nonminimal scalar multiplet, we again find a solution in terms of a density

compensator Y. The constraint is, using (5.3.58),

—
2n ;2 2n &

V24 R)S = SE leni (B e il (1. 7)1 = 0 5.3.67a
( 5
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and is solved by

Y= wit B(1- )Y = [WT2EL - M)pw 2T, (BT =0 . (5.3.67b)
Here T is a flat-space-linear superfield (as opposed to the covariantly linear superfield
¥): In the chiral representation D*Y =0. Again, in the gauge ¥ =1, we obtain the

solution for W:

3n+1 . n+1

W= [T e (BT e )L e (5.3.68)

In this gauge we have T,=il', as a new tensor (appearing in arbitrary gauges as

~V,%), in terms of which R and W, are determined. The solution (5.3.68) does not
apply to the following cases: (1) n = — %, for which the minimal scalar multiplet is used
instead; (2) n =0, for which the solution of (5.3.67a) is more subtle and will be dis-
cussed next; and (3) n = oo, which does not lead to a sensible theory. The parameter n

can also be generalized to complex values, but the constraints then violate parity (off

shell), and we do not discuss them here.

b.6.iii. Axial (n = 0) supergravity

The constraint (5.3.13c) for n = 0 is most easily solved by expressing the compen-

—_
—Q
—

sator G in terms of a covariantly chiral spinor ¢ = (V?+ R)

Ve, = E(qﬁ“E_lEa) (as follows from integration by parts on /d4xd49 E7'¢°V, . f =

Using the relation

/d4xd49 E~'¢“E, f for any f), we have in the chiral representation (using (5.3.63)):

—
A A ~

G =1(V,0" + V") = %E(%E’%Ea thoe)=EG (5.3.69)

N —

so that G is a function of only H and ¢“. In the chiral representation, but in the

Lorentz gauge @u /3-7.:0, ¢, is flat-space chiral: Ds¢,=0. (This gauge exists because

Raﬁi‘s:O, as follows from the Bianchi identities, see sec. 5.4, which implies that <I>a Bi

and its conjugate are pure gauge.) In such a gauge N,/ = X" # 0,", but depends only
on H . On the other hand, in the Lorentz gauge N, " =4,", where (I)a,éi depends only on

H up to a factor of ¥ (see (5.3.25)), ¢* is (X '),* times a flat-space chiral spinor.

7
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In the Weyl gauge G = 1 we obtain

«—
A A

E™'=GH, ¢,) = (¢, EE + h.c.) . (5.3.70)

N —

In this gauge, (5.3.13c) implies the constraint R = 0. Furthermore, in the chiral repre-
sentation (5.3.70) may be combined with (5.3.63) to replace ¥ with E as the compen-

sator for the n = 0 covariant derivatives:

| =

=G, V=EE 2 =CGE . (5.3.71)

| =

U=F":

b.7. Degauging

The theory and the covariant derivatives we have constructed so far contain
explicit U(1) generators and connections. For n =0, the U(1) symmetry is a genuine
local symmetry of the theory at the classical level (there are anomalies at the quantum
level, see sec. 7.10) and therefore n = 0 supergravity only couples to R-invariant matter
systems (3.6.14, 4.1.15). For n # 0, the superscale compensator can be used to remove
the U(1) charge of any multiplet: By multiplying the superfield by an appropriate power
of the compensator (see (5.3.12a,b)) we can always construct a U(1) neutral object. If
we do this to all quantities (vielbein, connections, matter), the U(1) generators do not
act and can be dropped from the theory. The resulting formalism is applicable to mat-
ter multiplets without definite U (1) charge and hence to systems without global R-invari-
ance (see sec. 5.5). The procedure we are following is similar to what one does in ordi-
nary spontaneously broken gauge theories. One goes to a U-gauge either by using the
Goldstone field to define gauge invariant quantities as we just did, or by gauging the
Goldstone field away, as we do now: Instead of rescaling fields by the compensator, we

can gauge it away, and fix the U(1) (and superscale) gauge as discussed in sec. b.6.

above. For n = — =, this sets I'y =0 and the Y generator drops from the covariant

W =

derivatives. For n # —%,0, the U(1) connection becomes a covariant tensor with

respect to the remaining (super-Poincaré) group. Therefore we can eliminate Y by

adding a  “contortion” term V,—V,—il',Y and thus, by (5.3.18),
T a5 — T ¢ — z’%w(C)F[Aég)C (but with no change in the curvatures). The only modi-

fied torsions are (where 'y, = iT,, see (5.3.52)):
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1 ,
Tozﬂ'y - Tuﬂ’y - 5 6(0z7Tﬂ) ’

v v 1 v
Kl N I8y
T =T +505Ta ,

Tos" = Tag” — %if&ﬂ(vaT& ~ViTo +T.Ts) - (5.3.72)

Furthermore, R and W, have the following explicit expressions in terms of 7', and the Y

independent or degauged V:

_ y1T _n a n—1 md\pm,
R=-Y""VY— 3n+1(v +72(3n+1)T)Ta, (5.3.73)

Wo=(V?+ RIT, =il Vi(V;+ S Ts) + RIT, . (5.3.74)

N —

We emphasize that for n = —% we can simply drop all reference to U(1) without

any other modifications.

Although we have emphasized the compensator approach to the breaking of the
superconformal invariance, we should point out that fixing the conformal gauge by set-
ting the compensator to 1 is completely equivalent to imposing additional, conformal-
breaking constraints on the covariant derivatives. After U(1) degauging, the constraint
equations (5.3.13) or (5.3.64a,67a) become, when the compensators are fixed, conditions
on the covariant derivatives. These conditions are the constraints on torsions and curva-

tures given in (5.2.80Db).

At this point we have a description of Poincaré supergravity in terms of H and one
of the density compensators. They compensate for component conformal transforma-
tions. For example, the #-independent of ¢ can be identified with the component ¢ of

(5.1.33). Similarly, the linear § component, a spinor, compensates for S-supersymmetry.

After degauging, the superconformal invariance of the supergravity constraints is
destroyed for arbitrary superfields L and K. Nevertheless a remnant of superconformal
invariance remains. This is because the unconstrained superfields that describe Poincaré
supergavity are H™ and some scalar superfield compensator. Thus superfield supergrav-
ity, unlike ordinary gravity, always contains a component ¢ compensator of (5.1.33).

(This is the reason why at the component level superconformal symmetry is so useful.)
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Obviously a redefinition of the density compensating multiplet (once its type has been
specified) cannot affect the Poincaré supergravity constraints. This is realized by an
invariance group of the constraints in addition to that parametrized by K" and K ,”.
The transformations of this invariance group are exactly the same as those of the confor-
mal group, but with the important restriction that L and Kj are no longer arbitrary.
The simplest way to obtain the form of these restricted conformal transformations is to

use the tensor type compensators ®, 3, and G.

Before gauging the compensators to 1 we can simply make an arbitrary redefinition
of the tensor type compensators. We have (i): 0& = —A®, (ii) ¥ = —A X, and (iii)
0G = —AG, where A is a covariant superfield. In each case the redefinition must be
such that the product of the compensator times A satisfies the same differential equation
as the original compensator (5.3.13) (i.e., (i) V4A =0, (ii) (V? + R)(AX) =0, and (iii)
(V24 R)(AG) =0, A =A). The A transformations affect only the compensators, not
the covariant derivatives nor matter superfields, whereas L and K; transformations
affect all fields. The combined transformation of the tensor compensators under L,K,

and A is thus

n:—%: 6<I>:(L+i%K5)<I>—A<I> , (5.3.75a)
£-2 0. =+ 2 )L-i(-)K;]E - AX (5.3.75b)

" 37 T \3n+1 LRSI ’ "
n=0:  0G=2LG - AG . (5.3.75¢)

We now degauge by setting the compensator to one. In order to maintain this
gauge condition we must set the total variation of the compensator to zero and we find

that L and K5 satisfy the constraints

L=3(A+D), K;=2i(A-A); (5.3.76a)
L="1(A+A), K=" 1A k) (5.3.76b)
L=A, A=A, (5.3.76c)

respectively.
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5.4. Solution to Bianchi identities

In any gauge theory the field strengths satisfy Bianchi identities that are a conse-
quence of the Jacobi identities for the covariant derivatives, or more generally, for super-
forms, a consequence of the Poincaré theorem. As explained in sec. 4.2, the Bianchi
identities contain no useful information unless some of the field strengths have been con-
strained. In that case they make it possible to express all the field strengths in terms of
an irreducible set (that may still satisfy differential constraints that are also called
Bianchi identities). In sec. 4.2 we gave a detailed example of this procedure for super

Yang-Mills theories; here we consider supergravity.

We begin in a general context, with covariant derivatives for arbitrary N and arbi-

trary internal symmetry generators €, (cf. (5.2.20, 5.3.1)):

Va=EMDy + @, M0+ &, M5° + T, (5.4.1)

where E M, ®,, and T', are the vielbein, Lorentz connection, and gauge potential,

respectively. We define field strengths: torsions T 45, curvatures R,z;” and R, Bgi, and

gauge field strengths F 45" in terms of the graded commutator

[Va, Vet =TapVe + Ryps' M," + Rypi’ Ms* + F45'Q; . (5.4.2)

The geometry of superspace implicit in (5.4.1) gives nontrivial relations among the
field strengths T, R, F'. We have chosen the action of the Lorentz group to be reducible
in tangent space: It does not mix the (V,, Vs, V,) parts of a supervector V4, and it

rotates the vector and the spinor parts by the same transformation; i.e.,
6,V 4=w, PV, where w,? = (w,”,5:7 ,w."8:° + @3°6.°) (cf. (5.2.19, 5.3.3)). Conse-
quently, there are no connections such as ® 44 or @Aﬂi, and ®4,“ = ® 44" (55”. + h.c., etc.
We can view this restriction as a constraint: It has the consequence that the Bianchi

identities now give algebraic relations among the field strengths. Because we have cho-

sen the action of the Lorentz group to be reducible, we have imposed the constraints

0 __ __ s _ d _
RABgi_RABll_RABi _RABI =0 ’

RABlé - RABwaécd : RABQQ _ RABwaéid + RABidé 5 : (5‘4‘3>

v

and their hermitian conjugates. These constraints are sufficient to express all of the
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curvatures R and gauge field strengths F' in terms of the torsions 7' if we assume that
E M transforms under the action of §2,; otherwise F' remains as an independent object.
In particular, in the presence of central charges the corresponding field strengths can

remain as independent quantities. We write the transformation in terms of matrices
(QDABi
9, Va4l = (2)4" V5 (5.4.4)

where the only nonvanishing (£,),” are

Q)67 ()57, (@)L (@) = (@)% (5.4.5)

The Bianchi identities follow from the Jacobi identities 0=

HV[A ) VB}7VC)} = BABCEVE + B 4pc and are:

Bape” == Dupe” + Rupey” + Fupe)” =0 (5.4.6a)
Bupe(M) = — ViuRpey(M) + Tiap” Rpjey(M) =0, (5.4.6b)
Bupc' = = ViuF ey + Tup” Fpie)' =0 (5.4.6¢)

where
Aupe” =VuTpe)y” = Tiap " Toey” o Fape” = Fap'(Q)c" . (5.4.7)

The Bianchi identities are satisfied identically simply because the field strengths are con-
structed out of the potentials E,", ®,, and I'y. In (5.4.6a) by decomposing B 45" into
irreducible pieces under the Lorentz and internal symmetry groups, we express F' and R
in terms of T; this solution automatically satisfies B, pc(M) = B,pc' =0, so that
(5.4.6b-c) contain no useful information.

To organize the analysis of the Bianchi identities, we classify the identities by
(mass) dimension.  The lowest dimension identities have dimension %:
B, .t = Bgﬂii =0 and hermitian conjugates. The highest dimension identities have
dimension 3: By, = By (M) = 0. Ordinarily, we start with the lowest dimension iden-
tities and work our way up; however, the dimension % B’s are relations among the tor-

sions only (they are independent of the curvatures and field strengths). Therefore, to

determine R and F' we start with the dimension 1 B’s. For example, B gﬁf. = 0 implies
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.5506 + Fg/&ced;e' _

Y

Ry, Ayt (5.4.8)

afy

(The graded symmetrization drops out because of the constraints (5.4.3) and (5.4.5)).
To extract F,;3°, and Rgﬁﬁ-g from (5.4.8), we decompose it into Lorentz irreducible

pieces. This gives:

e _ 1 cé
Fop'e= §Ag,§,g e (5.4.9a)
= A (5.4.9b)
aBA T 9N aB(y ¢ 4.

Proceeding in a similar manner, we determine all the remaining curvatures and gauge

field strengths in terms of the torsions:

Ry pos = %A%@m&é)g , (5.4.9¢)
Fopl =505 (5.4.9d)
Furthermore we find
Ryps = % Aupals) (5.4.9¢)
Fap =580 (5.4.9¢)

for (A, B) = (&,8), (&,b), and (a,b), and finally

1 1 ¢ 1 A4
RQ,B'M = Z[(N+1)(AB,(a|a,\c)('y, 0) + §A B,a(705)a)

1

+ (N — 1)( AB,[M@,\C](’y,Cd) + AiB,a(WC(S) )] 5 (549g>
F d 1,1 A N A dy
a8 = 71388, @lalon.” T BB jdaldy, "]
1.1 ¢ c
- 9 [§ R(a\e,B el 5|c)d - R[a\e,B a 6\@]0[] ) (549}’1)

AJFB,g:AB,( e “a ) AiB,g:AB,MaJChCV

Y

for (B) = (B) and (b). This solution automatically satisfies (5.4.6b-c), as can be verified
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by direct computation. From now on we need only consider the Bianchi identities in

(5.4.6a) that are independent of R and F.

We now specialize to N = 1 supergravity: Our tangent space transformations con-

tain only the Lorentz group and U(1); i.e., Q;, =Y. We impose:

Taﬂ’y frd Taﬂ’y g Tozﬁg frd Taﬂ.’y — Ta[;)g _ Z’aQ/Ya[;)’Y — 0 , (5.4.10&)
B — B _m b
T‘%(ﬁﬁ Toz.ﬂ(,@ TOZQ Focﬂ 0 . (5410b)

We proceed as above, starting with the lowest dimension identities. For example,

d _ d [ v d
Ba7ﬁ7,;7—vaTﬁ7,; +V/3T,;7a +V’;T(X7,8

+ Ta,ﬂETE,q'/d + Tﬁ,';ETE,ad + Ti,aETE,ﬁd (5.4.11)

but TaﬁE =0and T ﬂ-E = iéae%g which implies

0=B, ;&= —i6, T, ;+* — 6T, . (5.4.12)

a,B,7 B,ay

Next we decompose T', ,© into irreducible representations of the Lorentz group,

71 72 73
Ta,b,g = C/g,}[f apy T Ca(ﬁf vt Oﬂ’yf 04]

~ ~ ”
+1f (af)(59) + C‘X(ﬁf (57 + C,vi a([;,;)] (5.4.13)

afy

and note T(Mf =0 implies ?3 =0, Ta (ﬁﬂﬂ)é =0 implies P = fl = 0,and finally

T, ﬂ(ﬁ-ﬁ{’) = 0 implies f® = 0. Now substituting (5.4.13) into (5.4.12) leads to

~

— _ 9 Ffd . P
0= =321 oty = P2Casl" 35 » (5.4.14)
which yields ]N”4 (0B = f5 s = 0. In other words T', ,* vanishes identically.

This example shows how we decompose the torsions into irreducible representa-
tions of the Lorentz group, and then solve the constraints by looking at what they imply
about the various irreducible parts. For two component spinors this decomposition sim-
ply consists of symmetrizing and antisymmetrizing in all possible ways. Other examples

are
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1 2 3 4
T - Co.ééC’mX + Cﬂ,yX (O.[[;)) + Co’zﬁ}X (ﬁ'y) + X

&,80,v @8)(67)

_ v1 2 =

T&”%-w. =X B8 + X ﬂ(acﬁ)w’ + X mC’&B . (5.4.15)
These expressions are now substituted into the Bianchi identities which separate into
several equations. These are then solved, with the result that some of the irreducible

parts are zero, while others are expressible in terms of a minimal set.

The complete analysis is straightforward but tedious. We find that all the Bianchi

identities and constraints are satisfied by

{Vomvé} - Z'va/é 5

{V&,Vﬂ.} = —QRM&ﬂ' ,

ViVl =l = RV, = G5V + (viGﬁg)Mié —iWsY

_ %iWVMﬂW + Wy, M) + (VR)

[iva& ’ Zv/g/é] = C/é&fa,@ — h.c. (5416)

where the operator f,; is defined by

4. 1 v
fap = =15 G0 Vi = 5 (VB =13 W@) Vi + Wag'V, — 5 (VGy )V

v

N | —
N | —

.1 .1 4
— i 5 (VW)Y = Weaps M — i o (V"G o) My" + a — ]

IMS (5.4.17)

=25 = 1 oy 1 =-
+ (V*R +2RR + i VWM + 5 (Ve VG

and
1% =1 V. W
aprs = 1 ViaW o) -

The independent tensors R, G,, and W and the dependent one W, satisfy the rela-

afys
tions

G, = @Q , V(;R :V&W
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YOG, . =V.R+iW,
VoW e + iV W) = 20V ,5G
afy T g V(BT ) T g P V(B My)d o

VW, + VW, =0 . (5.4.18)

Therefore, all the torsions, curvatures, and field strengths of (5.4.2) are expressible in

terms of the three covariant superfields W G ., and R, and their derivatives.

afys ad?
By considering the coefficient of M_; on both sides of the equation for the commu-
tator of two vectorial derivatives, we conclude that the superspace analog of the decom-

position in (5.1.21) takes the form

1 ! — = — o1 1
Ry’ =Cys[Woy" — 3 005" (V2R + 2RR + i s VW, + 3 3" X )]
L& .vogd.
+ Cja - (V(QV G ﬂ)) ’ (5.4.19)
where X aﬁ is defined by
.1 &

By comparing this to (5.1.21), we see there is a representation X, present in the super-
covariant curvature RQQV‘S that was absent in the component curvature TQQV‘S. This
occurs because the constraints that we have chosen imply there is nontrivial xz-space tor-

sion TQLCNGQLCQGQ present.

We now choose the scale @ U(1) gauge where the compensator equals 1. For n =0
the only resulting modification of (5.4.16) is that we set R=0 (thus, for n =0, the
spinor derivatives (but not the vector derivatives!) obey the global supersymmetry alge-

bra). For other n it is necessary to drop the Y part of the covariant derivatives. How-
ever, for n = —%, I', vanishes identically in this gauge, so the only modification of
(5.4.16) is to set W, =0 (see discussion before (5.3.72)). In this case, (5.4.16) reduces to
(5.2.81). For n#0, —% the modifications are slightly more complicated: (1) The spinor

U(l) connection T is now covariant; to avoid confusion, we define

«Q

T, = — il (degauged). (2) No tensors are set to zero, but now R is determined by the
compensator constraint (see (5.3.73)), and W, by its explicit form (see (5.3.74)). (3)
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Separating out the Y parts causes shifts in a few of the torsions (see (5.3.72)) by the
covariant quantity 7',. The resulting form of (5.4.16) is

{Va 770.4} = ivao‘c - (Tavooc + To'zvoz>

N —

{Va, Vit =5TaV; — 2RM

1
2 8)

. o 1 — —_ — J—
[V, iV 5l = C sl BV + Gg'Vy] = 5 (VT)5 = VT + TyT§)Va

+ 0&5[—(@'6:&.)]%7-5 — Wy, Ms" + i % W M+ (Vg + Ty)R)M 5, (5.4.21)

with (5.4.18) modified by V, — V, + T,Y and V; — V; — T;Y. This is just the U(1)
degauging described in sec. 5.3.b.7.

This result corresponds to one of the many forms of nonminimal n # —% N =1

supergravity. As explained in sec. 5.3, covariant derivatives can be redefined by shifting
with contortions. As an example, we note that the two anticommutators in (5.4.21) can

be simplified by the shift

vad - Vao'z — 1 % (Tozvo; + To’zva) ) (5422)
which gives (5.2.82). For the remainder of the book, unless otherwise stated, our covari-
ant derivatives for N = 1 supergravity will be in the gauge with the tensor compensator

set to one, and for n # 0, with the Y parts dropped.
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5.5. Actions

In this section we construct and discuss superspace actions for matter systems

coupled to supergravity, and for supergravity itself.

a. Review of vector and chiral representations

In the vector representation (where, e.g., Vg = (VQ)T), a covariant superfield

X, 5 transforms under the gauge transformations of local supersymmetry (hermitian

supercoordinate and tangent space transformations) as

X' =" Xe X (5.5.1a)

with K = K = KMiDy, + K,"iM +[?(;[;i]\_45"; (cf. (5.3.3)). In chiral (Vs~Dg;) or

antichiral (V,~D,) representations, the transformation laws are

XWr= gt xWeit (5.5.1b)

XV = A x et (5.5.1c)

respectively, with A, A given by, e.g., (5.3.33-35), and

X0 = e IXxOet = ¢ 0xe? (5.5.2)

(Recall that the hermitian conjugate of an object in the chiral representation is in the
antichiral representation and transforms with A (5.5.1c). Therefore, just as in (5.2.28)
and in Yang-Mills theory (4.2.21), we must convert the conjugate to an object trans-
forming with A (5.5.1b), and define the chiral representation conjugate
X = H (X (+))T€H .) The transformation properties of E~' in the vector, chiral, and

antichiral representations are

E™V = gl (5.5.3a)
E®-1 = g1k (5.5.3b)
B = Ol (5.5.3¢)

respectively.
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b. The general measure

Using the results of the previous sections, it is straightforward to construct
locally supersymmetric actions: We covariantize all derivatives (with possibly some
ambiguity in whether we use minimal coupling or add contortion terms), including the
derivatives used to define constrained matter fields (such as chiral fields), and we covari-
antize the measure. For integrals over all superspace, by analogy with ordinary space
(see 5.1.23-5), we use E ' as a density to define a covariant measure, and write actions

of the form:
S = /d4xd40 E' L, , (5.5.4)

where IL,, is a general real scalar superfield constructed out of covariant matter fields,

derivatives, etc. Since by construction IL,, must transform as in (5.5.1), and since E~'

gen
transforms as in (5.5.3), the expression in (5.5.4) is invariant. (Recall that coordinate
invariance is defined only up to surface terms (5.1.27).) This type of expression is the

integrated version of what is referred to as a “D - type” density formula.

c. Tensor compensators

Just as in gravity (sec. 5.1.d), we can generalize the coordinate invariant measure
(5.5.4) to a scale (and U(1)) invariant measure by introducing tensor compensators. For
an IL,, that has scale weight d (the reality of the action implies that it must be U(1)

invariant), we have (see (5.3.8,14))

1 _ —.1_¢
n=-—g: S = /d% a9 E71(9®)' 2 IL,,, , (5.5.5a)
1 BRI Y
n#— 3,0 S = /d% d'o E7Y(x8) > YL, (5.5.5b)
n = 0: S = /d% d'0 E-'G' AL, (5.5.5¢)

These actions reduce to (5.5.4) in the gauge where the compensator is 1. (The analo-
gous expression in ordinary gravity is / d*z d*6 e '¢* YL where ¢ is the tensor-type
component scale compensator introduced in (5.1.33) and L is a scale weight d

Lagrangian.)
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d. The chiral measure

In the chiral representation, a covariantly chiral scalar superfield
o) ,V(;q)(” = 0 is chiral in the flat superspace sense D_(;CI)H) = 0. Therefore, its trans-

formation (5.5.2b) can be written as

P = APt =i = gthan(H) g =ihan (5.5.6a)
where
Ay, = A (for A = 0) = A%id,, + A"iD,, . (5.5.6b)
Since for n = — % the transformation of ¢* is (5.2.68)

=gt | N, =N (for AP =0) = (A"id , + A"D,) | (5.5.7)

the quantity ¢° is a suitable chiral density to covariantize the flat space chiral measure

(see sec. 5.2.c).

n=—
3

S 1= /d% d*0 ¢* I - (5.5.8)

This is the integrated version of an “F - type” density multiplet. For other values of n

no dimensionless chiral density exists. We describe how this situation is handled below.

e. Representation independent form of the chiral measure

1 . . .
For n = — 3» we can write the chiral measure in terms of the real measure. From

(5.3.66b) we have, in chiral representation,
D*E'IL=¢*(V*+R)IL . (5.5.9)

Thus
/ d'zd'0 E7'IL,,, = / d'z d*0 ¢*(V*+R)LL,,, . (5.5.10)
From (5.3.66a) we can find the vector representation of (5.5.10):
/d% d'0 E7'IL,,, = /d% d*0 e ¢* (V2 + R)IL,,, . (5.5.11)

If we choose IL,., = R 'IL.irar, since VILm = VR =0,
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/d4$d29 ¢31Lchiml = /d4xd40 E_IR_l.H/Chiral . (5512)

The form of the chiral measure d'zd'9 E~'R™' is valid in all representations since it does
not depend on the existence of a chiral density. It is manifestly covariant and, in princi-

ple, could be used for all n # 0 (R =0 for n =0). Thus “F - type” density multiplets
also exist for nonminimal supergravity. However, unless n = — %, (5.5.12) leads to com-

ponent actions containing inverse powers of the auxiliary fields (with the exception of R-

invariant systems: see below).

The U(1)-covariant form of the chiral measure (n = — %) is somewhat more subtle:

U(1) invariance alone gives the analog of (5.5.12) as

S = / dz d'9 BRI\, (5.5.13)

when [V, IL 0 :%wchhml. In particular, superconformal actions always have w = 2.

However, scale invariance is not so straightforward: Using (5.3.10), we see that R has an
inhomogeneous term in its transformation law proportional to V2L, but because of the
chirality of R, ®, and L, this term vanishes upon integration by parts. Thus the chi-
rality of the compensator is essential for constructing general chiral actions. Since in the

(U(1)-)chiral representation ® = ¢, using (5.3.64a), we reobtain (5.5.8). The expression
(5.5.13) can be used for n # — % ,0 if w = 2, since then the action is ¢ independent and

consequently superconformal.

f. Scalar multiplet

To discuss specific couplings to matter, we first consider the U(1)-covariant form.
According to our general prescription, the direct covariantization of the action (4.1.1) for

the free scalar multiplet is
S = /d% d*0 B~ niy (5.5.14a)

with covariantly chiral n

Vin=0, (5.5.14b)

This form of the action is valid for any n. If we assign scale weight d =1 to n (see
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(5.5.5)), the action is superconformal since it is independent of the tensor type compen-
sators. In particular, it is invariant under the “restricted” superconformal transforma-
tions that survive in Poincaré supergravity (5.3.76). At the component level this action
leads to conformally coupled scalar fields with actions as in (5.1.35) but with the oppo-
site sign. (Compensators generally have actions with an overall minus sign relative to
physical systems). Since the action is superconformal even without the compensators, it
is clear that the scalars of the multiplet are conformally coupled to gravity without the

need for a component calculation.

After degauging, the action (5.5.14a) and defining condition remain unchanged for
n=— % For the nonminimal theories, we use the same action but if we want the com-
ponent scalars to be conformally coupled to gravity we must change the defining condi-
tion ((5.5.18) with w = %; see below). Alternatively if the defining condition is not mod-

ified and the V operator in (5.5.14b) is for a degauged nonminimal theory, then the

action of (5.5.14a) does not have conformally coupled scalars.

f.1. Superconformal interactions
For superconformally invariant actions, the density compensator ¢ can be gauged
away (i.e., removed by a field redefinition which is a superscale transformation). In this

case, the action (5.5.8) written for n = —% makes sense for any n. For example, since

—

E' = ¢oF *é(l e )§ (5.2.72), the conformally invariant action for a covariantly chiral

scalar superfield is

S = /dsz E~Yim + (A%/dﬁz &*n® + h.c.) . (5.5.15)

At the component level, the terms proportional to A\ describe quartic self-interactions
and Yukawa couplings for the component fields of the matter chiral multiplet just as in

the global case. The rescaling 7 = ¢n removes ¢ from the action entirely, and the result
is valid for any n (7 is a chiral density of weight w = ;) This can be generalized

slightly: To remove ¢ from the chiral integrands, full superconformal invariance is not

required; R-invariance (3.6.14) is sufficient. Then ¢ appears only in the full superspace

integrand, and only in the combination (b(%; in that case, the n = — % compensator ¢ can
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be replaced by n = 0 or nonminimal compensators. For example, in the case of a single
chiral multiplet, we can generalize to a rescaled chiral density 7 with arbitrary weight w;

see (5.5.20) and the paragraph after (5.5.32) below.

f.2. Conformally noninvariant actions

Nonconformal couplings of the scalar multiplet are also possible. We can always

add the supersymmetric term

Sunen = [ 500 B + 17 (5.5.16)

This actually vanishes for n = 0. (It is also possible to write a CP non-conserving term
by taking 7 time the difference instead of the sum in (5.5.16).) At the component level,
(5.5.16) generates “dis-improvement” terms r(A* — B?) + - - - with opposite contributions

for the scalar and pseudoscalar fields. Therefore, (5.5.16) cannot be used to eliminate
the improvement terms of both fields. For n = — %, we can rewrite (5.5.16) as the chiral

integral

S nonconf = /d% d*0 > Rn* + h.c. (5.5.17)

For nonminimal (n # —%,O) supergravity (5.5.16) also introduces “dis-

improvement” terms but there exists another way of introducing such nonconformal
terms for the scalar multiplet. Before degauging, if the scale weight of 7 is not 1, then
the only way to write a superconformal kinetic action for the chiral multiplet is to intro-
duce one of the density compensators of (5.5.5). Thus the action without the compen-
sators is not superconformal. After degauging the U(1) invariance (see sec. 5.3.b.8), we
can use the “new” tensor T, to define a modified chiral condition. We can replace

(5.5.14b) by
wTg)n=0 . (5.5.18)

The kinetic action is still given by (5.5.14a), and if w # %, it is not superconformal with-
out one of the compensators of (5.5.5). Even though the U(1) group is no longer
gauged, it still exists as a global R-invariance of the action (5.5.14), and the constraint

(5.5.18) is covariant even under local transformations
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Y 0 =g wn (5.5.19)

The modified chirality condition of (5.5.18) in terms of unconstrained superfields
leads to a more complicated action for the scalar multiplet. We can express 7 in terms
of a flat chiral density 1 = e_%“’Tn,Eo;ﬁ =0 (in the chiral representation Dg7 = 0). In
terms of unconstrained superfields, the action (5.5.14a) becomes (in the gauge with com-

pensators set equal to one)

. . — ﬁ-‘rl R
S = /d% d'0 EM[(1-e™ ) (1-eM)] 2 fny (5.5.20)
where 7 is defined in terms of w by w = 2 :n;ﬁ Only n = —% is superconformal and

has the conventional conformal improvement terms; then w = Thus in the nonmini-

W o

mal theories, conformal coupling for the scalars is achieved by replacing (5.5.14b) by

(5.5.18) with w = %

f.3. Chiral self-interactions

The covariantization of any global chiral polynomial self-interaction terms P(n) is

straightforward. From our general prescription (5.5.12) we have (for n # 0)
Sint = /d4x d'0 E7'R7'P(n) + h.c. . (5.5.21)

The expression (5.5.21) remains locally supersymmetric for fields satisfying the modified

chirality condition (5.5.18) or in the U(1)-covariant formalism with the usual V4n =0

for arbitrary chiral weight. For n = — %,

the elimination of the supergravity auxiliary fields whenever P(n) is polynomial. For

S, 18 polynomial in the component fields after

n# — %, it is in general nonpolynomial, except for P(n) = 77% (for a single chiral multi-
plet; for more multiplets, the condition is given below). Thus, as mentioned earlier,
although “F - type” densities exist for nonminimal theories, in general these will lead to
nonpolynomiality after the elimination of auxiliary fields.

In the chiral representation, for n = — %, (5.5.21) can be rewritten in the form

(5.5.8), and for n # — %, in the form



306 5. CLASSICAL N=1 SUPERGRAVITY

S = /d% d*0 e TP(n) + h.c. (5.5.22)

when the chiral charge of P(n) is %w = 1. This follows from (5.5.13), since for n # — %,

S must be ® independent. (For the special interaction given above, this can be written

as / d'z d*6 f]zz, with no dependence on the supergravity fields.)

g. Vector multiplet

The vector multiplet can be coupled to supergravity by simply defining deriva-
tives that are covariant with respect to the local invariances of both supergravity and

super-Yang-Mills:

VNA — EA+((PA[3WM7,H+@ABW;M§§)—iFAATA ;

Vai=e"Vye™ | K=K"iDy+ (K, iMs;"+h.c.)+K*T, ; (5.5.23)

where I',* is the Yang-Mills potential and K* its gauge parameter. Field strengths for
both supergravity and Yang-Mills are defined by the graded commutators of the covari-
ant derivatives as usual, and the same supergravity and Yang-Mills constraints are
imposed (see (4.2.66) and (5.3.4,5,13)). The solution to the constraints can be given by

expressing V4 in terms of the pure supergravity covariant derivatives V, and the usual
Yang-Mills superpotential Q = Q*T,:

—Q Q

Vo=e V,e , V

.
~ ~ X

=—i{V.,Va} - (5.5.24)

Alternatively, the solution can be written with V of the same form as V but now with
Q=0"iD, +Q (in analogy to U — U +V in the global case). The Yang-Mills field

strength is
W, =iN%{Ya, Vol (5.5.25)
and the action is

S =g? tr/d4x d*0 ET'RT'W? . (5.5.26)
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For n = —% in the Yang-Mills chiral representation, using the Bianchi identities

(5.4.16,18) we can rewrite (5.5.25) as
W,=i(V*+R)e"V,e" | (5.5.27)

and the action is
S =g tr/d4x d*o ¢* W* . (5.5.28)

As for the conformal coupling of the scalar multiplet in (5.5.8), the actions in (5.5.26,28)
are invariant with respect to the conformal transformations parametrized by arbitrary L
and K; superfields. This ensures that the ¢ dependence of W is such that it cancels in
the action of (5.5.28). More generally, also as a consequence of conformal invariance,
(5.5.26) is independent of ¢ or T.

For n =0 the form (5.5.26) cannot be used since R =0 and (5.5.28) cannot be

used since ¢ only occurs in the n = % theory. The correct action is
S =g? tr/d4x d*0 E-'T(W, — %[f&,ra&]) + h.c. (5.5.29)

where W, 1is given by (5.5.25) and I',,I',; are obtained from (5.5.24) using
—il'y =V, — V4. The gauge invariance of the action (5.5.29) follows from the Bianchi

identity VW, +7dW& = 0. We note that this form (valid for all n and in all repre-

sentations) is similar to the three-dimensional gauge invariant mass term (2.4.38).
Alternatively, it is possible to use (5.5.28) for all n, if we are only interested in the
explicit dependence on the supergravity prepotential H". The H™ dependence and den-

sity type compensator independence of any truly conformal action is independent of n.

h. General matter models

We now consider a general class of matter multiplets (chiral and gauge) coupled
to n = —% supergravity. A globally supersymmetric gauge invariant action, restricted

only by the requirement that no bosonic terms with more than two derivatives or

fermionic terms with more than one derivative appear in the component Lagrangian is
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5= /d% 40 [IK(@,8,) + virV]

+ /d% 420 [P(') + § Qus (@)W W] + h.c. (5.5.30)

where

~

o, =0, ("), , W, =iD*(e"D,e")* (5.5.31)

J
and P(®') and @, (®') =0, + O(®) are chiral. The term vtrV is the (global) Fayet-
Iliopoulos term (4.3.3). As explained in sec. (4.1.b), IK can be interpreted as the Kéhler

potential of an internal space manifold.

The corresponding locally supersymmetric action, including (n = — %) supergravity,
is
S - _ % d8Z E*lefg[ﬂ((q)i;q)j)—’_ytrv]
+ /dGz ¢*[P(®") + iQAB (PYW W 2] + h.c. (5.5.32)

In the limit kK — 0, £ and ¢ — 1, this reduces to the global action (5.5.30). The covari-
ant Fayet-Iliopoulos term is (Yang-Mills) gauge invariant only if the chiral action is glob-
ally  R-invariant. Under a  gauge transformation  d(trV) =itr(A — A),

E_lexp(—%ﬁytrV) is invariant if we simultaneously perform the (restricted) complex

superscale transformation discussed at the end of sec. 5.3 with chiral parameter

2
L+ % Ky = —1 % trA. The invariance of the chiral integral in (5.5.32) follows from R-
invariance of (the chiral piece of) the global action.
In general the couplings of the scalar multiplet in superspace involve conformal

coupling of the spin zero component fields to gravity. There is one special choice of the

Kahler potential, however, where all such conformal coupling can be eliminated for the
component scalar fields. This special choice is given by IK (®' ,qNDJ-) — 9P,
For R-invariant theories superscale transformations can be used to rescale the mat-

ter fields and remove ¢ from the chiral integral; as mentioned above, the resulting action

depends only on the combination ¢¢, and we can rewrite it for any n, e.g., using duality
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transformations of the compensator as will be described in sec. 5.5.i below. In particu-
lar, if we perform a duality transformation to the n =0 theory, the action (5.5.32)

becomes

S = /dgz E7 - %V5 + ZK(@,QN)J») + virV]

+ /d% 420 [P(@) + § Quu (®)W™ W, "] + h.c. (5.5.33)

where ®' and W, are suitably defined densities (the ¢-independent quantities we defined

to make the duality transformation possible).

Although we have concentrated here on the n = — % theory coupled to vector and

chiral scalar multiplets, more general systems also can be considered. As we stated
above, coupling of other versions of supergravity can be obtained by performing duality
transformations. As described in chapter 4, there are a large number of “scalar” multi-
plets and many other matter multiplets. These may be coupled to supergravity by use

the prescription of (5.5.4,12).
i. Supergravity actions

i.1. Poincaré

For n # 0, the Poincaré supergravity action is obtained from (5.5.4) (or (5.5.5),

for d = 0) by choosing L,,, = (nk*)~". For n = — %, this can be rewritten as

S =—3k" / d*z d*0 ¢*R . (5.5.34)

For n = 0, the obvious choice § = / d®z B, (or its scale invariant form with the

tensor compensator (see (5.5.5c)) and L, = ) vanishes: With the compensator
G =1, the chiral curvature R = 0 (see sec. 5.3.b.7.iii), and (e.g., in the chiral represen-
tation) (5.3.56) implies D*E~' = 0. If the action vanishes in one gauge, it must do so in
all gauges, including ones where the compensator has not been gauged away. However,
the n = 0 theory has a dimensionless U(1) prepotential V5 that allows us to write an

action: Since D?*E~!' =0, in the gauge G =1 the following action is invariant under
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U(1) gauge transformations 6E = 0,6V 5 = i(A5 — As):
Spg = — %/d% d'9EV, . (5.5.35)
In the chiral representation, this can be rewritten, using (5.3.63), as
S,y = %/d% 49 E\in[E E3(1- e 1) 5) (5.5.36)

Since in the gauge G =1 we have E™' = @ (5.3.70), this is the covariantization of the
flat space action (4.4.46) for the improved tensor multiplet. We saw that (4.4.46) could
be written in a first-order form that made manifest the duality between the scalar and

tensor multiplet. This construction carries over to the local case, and we find that n =0
supergravity (with a tensor compensator) is dual to n = — % supergravity (with a chiral

scalar compensator).

We write a first-order action as

s—_3 / d'zd'0 E(X — GX) |
K

G=2(Vad" +VidY) |, Vida =0 ; (5.5.37)

N | —

where X is an independent, unconstrained, real superfield, and all objects (E.’l, Va) are

those of n = — % This is just n = —% supergravity coupled to the first-order form of

the improved tensor multiplet (4.4.45). If we vary with respect to X, and substitute the
result back into (5.5.37), we find the n = 0 action; on the other hand, if we vary with

respect to ¢,, we find the n = —% action. In detail, we have, from the variation with

respect to X

X = InG (5.5.38)

and hence (5.5.37) becomes

S,y = % / dz d*0 E(GinG — &) (5.5.39)

Because G is linear, the second term can be dropped. Since E'G =G= E7'G, (see
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(5.3.63)), using (5.3.63) we obtain the action (5.5.35) with the compensator G in a gen-

eral gauge:
S,y = % / dz d*0 E7'G(InG — %V5) . (5.5.40)
This action is scale and U (1) invariant.

Alternatively, variation with respect to ¢“ gives (VQ —I—R)VaX =0 and hence

X=m®+nd ,%o-}b = 0, so that again using the linearity of G to eliminate the terms

Gin® + h. c., we obtain

S = %/d% d'0 E-'03 | (5.5.41)
K
i.e., the n = —% action (5.5.5a).
The duality transformation from the n = — % supergravity theory to the n = 0 the-

ory, as described above, can be reversed through a straightforward covariantization of
the reverse dual transform (4.4.38) (compare to (4.4.42)). Both forms of the duality
transform can be performed even in systems where the supergravity multiplet is coupled

to matter multiplets (just as in sec. 4.4.c.2); however, though any n = 0 system can be

“converted” to an n = —% system, the reverse transformation is possible only if the
n = —% system is R-invariant, and hence the action can be written so that it depends
on the n = — % compensator (tensor or density type) in the combination ®® or <b<%.

Analogous duality transformations that are the covariantization of those described
at the end of sec. 4.5.b. can be used to relate n = — % and nonminimal supergravity sys-
tems.

The form of the superspace action for n = 0 reveals a characteristic common to
most extended supersymmetric theories. Naively, we might expect actions to take a geo-
metrical form / dz E~'IL( field strengths). However, we can easily see that for N >3,

even if dz is a chiral measure, there are no quantities of proper dimensions to form such
an action for global or local supersymmetry. Our experience with the n = 0 theory

shows that it is possible, after solving constraints, to find quantities like V5 that we may
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call “semiprepotentials” or “precurvatures”, without which the action cannot be written.
Thus, the unconstrained superfield approach becomes increasingly important, since such

precurvatures are actually found as intermediate steps in solving constraints.

i.2. Cosmological term

To the Poincaré supergravity action we can add a supersymmetric cosmological
term (for a discussion of global deSitter supersymmetry, see sec. 5.7). For n = — %, we

have

S cosme = AK 2 / d*z d*0 ¢* + h.c. (5.5.42)

For n # — % ,0 we could write a type of cosmological term using the form (5.5.12),

but that term contains inverse powers of the scalar auxiliary field; for n =0, R = 0 and
hence it is impossible to write a cosmological term (these difficulties arise because the
cosmological term is not R-invariant). One other interesting feature of the cosmological
term for nonminimal supergravity is that the sum of (5.5.12) (with [L,;, = 1) and
(5.5.5b) (with IL,, = 1) leads to a spontaneous breaking of supersymmetry. The result-
ing field equations are such that it is not possible to construct an anti-deSitter back-

ground which is supersymmetric (see sec. 5.7).

i.3. Conformal supergravity

Next we consider the action for conformal supergravity. It is just the covariantiza-

tion of the linearized expression (5.2.6):

Suay = [ a0 Wos (5.5.43)

The conformal field strength W depends on ¢ only through a proportionality factor

afy
q&_%, so all ¢ dependence cancels. The form of (5.5.43) is valid only for the minimal the-
ory. It can be extended to the nonminimal theory by the use of (5.5.12). For n = 0 even
this insufficient, again because R = 0. This does not imply that conformal supergravity
does not exist; it is n-independent. Instead the action for conformal supergravity takes
a form similar to the three-dimensional supergravity topological mass term with W

afy

taking the place of the three-dimensional G and G, and R the place of the three-

afys
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dimensional R (see (2.6.47)).

j.- Field equations

To obtain covariant field equations from the action by functional differentiation
with respect to the supergravity superfields, which are not covariant themselves, we

define a modified functional variation, as we did for super-Yang-Mills (see (4.2.48)):

AH =e"5e" or AQ=e e | AQ = (6e)e? ; (5.5.44a)

Ap =6(¢°) . (5.5.44b)
The equations of motion for supergravity with action given by (5.5.4) and the cosmologi-

cal term (5.5.42) can then be shown to be

AS
AHe

AS

Ag = R-N=0. (5.5.45)

:—/i’QGQ:O ,

The covariantized field equation for H 24 is the same as that obtained by the background
field method (the variation A is the same as the background-quantum splitting lin-
earized in the quantum field). The derivation of this field equation will be described in
more detail when we describe this splitting in sec. 7.2. The ¢ equation is easily obtained

using (5.2.71,5.3.56,5.5.34,42).

To obtain covariant field equations for a covariantly chiral superfield, it is neces-
sary to define a suitable functional derivative. This can be done in any of three ways:
(1) by first using the flat-space definition for differentiation by 7, and using the relation
(5.5.2); (2) by covariantizing the flat-space form in a way that satisfies the correct
covariant chirality condition; or (3) by expressing the chiral superfield as the field

strength of a general superfield. The result is:

= (V2 +R)&* (2 - 2') , (5.5.46)

where, for n# — %, V is U(1) covariant. The resulting field equations for a scalar multi-
plet are thus the same as in the global case except that D? is replaced with V? + R.
The field equations for supergravity coupled to a scalar multiplet are (for n = — l, and

3
using the action (5.5.14))
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- = _ _
KﬁZGao‘z = § [ﬁzvadn - (vdn)(vaTD + nnGad] )
PR = (VP4 R)T=0 . (5.5.47)

When a self-interaction term is added, the G equation is unchanged, but R becomes
nonzero (except for the superconformal coupling 1*). In the last equation we have used
the equation of motion of the scalar multiplet. Alternatively, terms in field equations
proportional to other field equations can be removed in general even off shell by field
redefinitions in the action. (To remove terms proportional to the field equations of 1),

from the field equations of ;, a field redefinition of the form 1, =1, ¥y =y’ + f

5s _ 85 95 of
L L L
redefinition is n=¢ ' = n' — xn + ---, which removes all ¢ dependence from the

modifies the field equations to ) In this case, the appropriate field

scalar-multiplet action (see sec. 7.10.c).

For the coupled supergravity-Yang-Mills system (sec. 5.5.h), the field equations for
Yang-Mills are still { V¢, W, } =0, while the supergravity equations are

K2Ga=g trW,W, , k’R=0 . (5.5.48)

We have dropped terms in the G equation proportional to the Yang-Mills field equation.
These terms, which in this case are not Yang-Mills gauge covariant, can again be elimi-

nated by a field redefinition (again see sec. 7.10.c).

Although we have only considered n = — % for simplicity, covariant variation with

respect to the compensators for the other versions of supergravity can also be defined
analogously. In both n =0 and nonminimal theories the important point to note in
defining the covariant variations is that the unconstrained compensators for both theo-
ries are spinors (T = ﬁﬂ@i for the nonminimal theory and ¢, for n =0). Thus func-

tional differentiation in these cases lead to spinorial equations of motion.
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5.6. From superspace to components

a. General considerations

So far in our discussion of supergravity we have concentrated exclusively on
superspace and superfields. On the other hand, somewhere in this formalism a super-
gravity theory in ordinary spacetime is being described. The question arises how to
extract from a superspace formulation information about component fields. We know
how to do this in the global supersymmetry case, and here we will describe the corre-
sponding procedure in local supersymmetry, and derive the tensor calculus of component
supergravity. We cannot use D and D to define the components of superfields by pro-
jection as in global superspace, since this would not be covariant with respect to local

supersymmetry.

To discuss component supergravity, we must first choose a Wess-Zumino gauge in
which the K-transformations have been used to set to zero all supergravity components
that can be gauged away algebraically. A Wess-Zumino gauge is necessary so that
results for noncovariant quantities (i.e. gauge fields) can be derived along with those for
covariant quantities. We can then derive transformation laws for the remaining super-
gravity components as well as components of other superfields and exhibit supercovari-
antization and the commutator algebra of local supersymmetry at the component level.
We derive multiplication rules for local (covariantly chiral) scalar multiplets, and write
the component form of the integration measures (density formulae), from which compo-
nent actions can be obtained. All the results reflect the underlying superspace geometry
and can be obtained for any N, imposing as few constraints as possible (preferably
none). This implies that superspace geometry is more general than a component tensor
calculus which follows from a choice of constraints on superspace torsions and/or curva-
tures. The final form of the tensor calculus is determined by which solution of the

Bianchi identities is utilized.

We begin with a general superspace for N-extended supergravity. (We will special-
ize to N =1 whenever needed.) In such a superspace we have a vielbein E, which
describes supergravity. We also introduce a number of connection superfields ®,* for
tangent space symmetries such as Lorentz rotations, scale transformations, SU(N)-rota-

tions, central charges, etc. These superfields are combined with operators D;, and M,
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to form a supercovariant derivative
Vi=E,+®,')M, , E,=E,MD, (5.6.1)

where M, are the generators of the tangent space symmetries. The t-subscript is a label
that runs over all the generators of the tangent space symmetries. For instance, in
N =1, n #0 supergravity M, = (MQB,M&B). The realization of these generators is
specified by giving their action on an arbitrary tangent vector X 4. Thus, for some set of

matrices (M), we have
[M,, X 4] = (ML>AB Xp . (5.6.2)
We write Dy = DY -2 +1T,,*M, for fized matrices D~ and T'y,* where D/~ — 6,
M M Ay M My M M M M
and I'j;* vanish at 6 =0 (see sec. 3.4.c). We assume the vielbein is invertible; specifi-

cally, we assume that we can always find a coordinate system (or gauge) in which we can

write
Vi=0,+4A, . (5.6.3)
The gauge transformations of V , are given as usual by
V'iy=exV,e ™ . (5.6.4)
The parameter K is a superfield which is also expanded over ¢D,; and M,
K = KMiD,, + K“M, | (5.6.5a)

and is subject to a reality condition K = (K). We can equally well expand the parame-

ter K over the covariant derivatives V, and M ,:

K = K%V, + (K' — K'® ,")iM, |

= K4V, + KYiM, . (5.6.5b)

A gauge transformation of an arbitrary covariant superfield quantity is always generated
by acting with K as in (5.6.4). For infinitesimal transformations of supercovariant

quantities this implies that we simply act on the quantity with the operator iK.
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b. Wess-Zumino gauge for supergravity

We define components of covariant quantities (matter fields, torsions and curva-
tures) using the local generalization of the covariant projection method introduced in a
global context: these components are the 6, § independent projections of the superfields
and their covariant derivatives. We define components of gauge fields E M, ®,* by
choosing a special gauge and then projecting as on covariant quantities. This Wess-
Zumino gauge choice reduces the superspace gauge transformations to component gauge
transformations: It uses all but the 6, § independent part of K to algebraically gauge
away the noncovariant pieces of the higher components of the gauge fields (the lowest
components remain as the spacetime component gauge fields). We use the notation X|
to mean the 0, # independent part of any superfield quantity X; if X is an operator
XMiD,, 4+ X%M,, then X| is the operator X¥|id,; + X*|iM,; we use D,,| = 9,; and do
not set 8H, 8_12 to zero. In particular, we define the components of the covariant deriva-

tives by VC’, VQVC‘, V(XVﬁVC‘, Vav/évC’, etc.

We define the usual component gauge fields by

Vol =e,"0y + 9,20, + Jgéa_é + ¢, M,

=D + Q%Haﬁ + _géa_ﬁ ) (566)

a

where e,”™ is the component inverse vierbein, ¥ ,2 1,2 are the component gravitino

fields, and ¢, are the component gauge fields of the component tangent space symme-

tries. (For M, = (M Wﬁ .M W'ﬂ ) these gauge fields are the Lorentz spin connections ¢,;"

and gbggﬂ..) From the infinitesimal transformation law 0V, = [iK ,V,]=—1i0,K + ---,
we see that these components transform as spacetime gradients of the gauge parameters,
which justifies the definition. We have also introduced the ordinary spacetime covariant
derivative D, = e, + ¢, M, (cf. 5.1.15). Covariantly transforming components of the
supergravity multiplet (e.g. auxiliary fields) appear as components of the torsions and

curvatures.

We now derive the first few components of the covariant derivatives. We begin by
exploiting the existence of a Wess-Zumino gauge. From the infinitesimal transformation

law 6V, = [iK ,V,], using (5.6.3) we find
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SA,| = —i0,K + -

= [iK,V,]| =KV, (5.6.7)

and hence, by using the V, component of K, i.e., K(l)g, we can choose a gauge A,| =0

or

V. =0, . (5.6.8)

We have thus determined V,|. We can proceed to find the higher-order terms in a

straightforward manner. Thus to find V,V| we start with
6(VoVy) = [iK ,V, V] . (5.6.9)
Then
6(VoVp)|l = —i0,05K + --- . (5.6.10)

Since {0, ,05} =0 we can gauge away [V, , V] but not {V,,V;}. However, the latter
is covariant: It can be expressed in terms of torsions and curvatures. Hence in this

gauge we find the V, component of V:
1 1 1
VoVsl = 5{Va, Vs} = §TQQCV0\ + 5 Rap' M, (5.6.11)
In the same way, we find the V ¢ component of Vgt

S 1l = 1 1
VQ'VQ‘ = 5 {VQ'HVQH = 5TQ'[[_7)CVC‘ + 5RQ.[_7)L‘ML . (5612)

Similarly, we find the next component of V,; we first observe that because

V.| = 0,, we have

Vil =Dy + 9,7V, | + 7V (5.6.13)
Then we compute
VoVl = [Va, Vil + V,V,|
= [Vg ) VQH + Dévg‘ + wélvzvd + Jéjvjvg‘ : (5'6'14)

Using (5.6.8,11,12) we obtain
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C
ngby = ng vC’ + RQQL’ML + (bQL[ML ) VQH

1 1 -2
+ 50 [T Vel + Roo'IM] + 50,7 [T5, Vel + Ry, [M ] (5.6.15)

ol

Thus we have found V,Vp|. We can find higher components, but what we have is suffi-
cient for the applications we give below. We have obtained these formulae without

imposing any constraints.

The procedure we have described uses all the higher components (projections with
more V’s) of K to eliminate the noncovariant pieces of V, and V and defines the Wess-
Zumino gauge. The remaining gauge transformations, determined by the 6 independent
term K|, are just the usual component transformations. Coordinate transformations are

determined by

(or equivalently covariant translations iKgp|=— A (z)D, =— \"9,, — X\*(¢,'M,)).

Tangent space gauge transformations are determined by
iKpg| =— MN(z) M, , (5.6.17)

and supersymmetry transformations are determined by

iKo| = — e*(2)d, — ()0,

= —€*(2)V,| — e‘—’(m)V (5.6.18)

al -

However, to stay in the Wess-Zumino gauge, the K transformations must be
restricted: the higher components are expressed in terms of K|. For example, V,| =0,
implies:

00, =0=[iK,V,]|, (5.6.19a)

so that

0=— [KBVB7V(_¥H - [KLMl,vvg”

== KB[VB 7vg}‘ + [vgvKB}vB‘ o KL[Ml,ang + [vgvKLHML ) (5619b>

and hence
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VoK?| = KT0,"| + K*|(M,),"

o

V. K" = K°R¢,'| . (5.6.20)

Similarly, we can find the higher components of K from the higher components of V,
and the requirement that the Wess-Zumino gauge is maintained. It turns out that in the
Wess-Zumino gauge (5.6.16) holds to all orders in € i.e., K¢ has no higher components,
whereas both K;¢ and K have higher components depending on the component fields,

the gauge parameters, and in general, the gradients of the parameters. Thus, in the

local case, we cannot write —iK, = €*Q, + € QQQ for some operator (),. The higher
order terms in iKpg are always proportional to the matrices (M),2, (M) (_;@; hence for
internal symmetries as compared to tangent space symmetries, 1K r¢ has no higher com-

ponents and (5.6.17) is exact.

c. Commutator algebra

As another application of the use of the Wess-Zumino gauge supersymmetry gen-
erator, we derive the commutator algebra of local component supersymmetry. In this
gauge we use the differential operator iK; as the local supersymmetry generator for the
component formulation of supergravity. Since the supersymmetry generator is field
dependent, we can indicate this by writing iK ;(€;1)) where ¢ denotes all of the z-space
fields contained in iK ;. This means that care must be taken in defining the commutator
of two such transformations. Let us imagine performing sequentially on n two supersym-
metry transformations with parameters ¢, and ¢;. The first transformation is obtained
from iK ;(€y;1)n, where we have dropped the commutator notation, keeping in mind
that K, is an operator. The second transformation is implemented by
iK (€13 + 6910)iK o (€2;90)n. Therefore, the correct way to compute the commutator

algebra is from the definition

However, by looking at the form of the supersymmetry generator in (5.6.18) we note
that iK ;| has no field dependent terms. This implies [iK ,iK ]| corresponds to the
usual commutator [iK (e, 1), iK (€, )], and this is all we need to find the component

commutator algebra. Taking the expression for iK from (5.6.18) and using the Wess-
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Zumino gauge-preserving condition [iK ,V,]| =0 (see (5.6.19)), we obtain

[iKczl ,iKQQ] = 61g€2g{vg avg} + E_légzg{vé 7v[}} + (€1g€_2g + €1§€2g){v¢_x ,VBH :
(5.6.22)
Comparing the right hand side of the above equation to iK ;¢|, iK 15| and iK ;| we find

iK1y = iKgo(A") + iKpg(A*) + iK g (e) ,

c ap T ap e
e =— [(61‘6_2[2 + E_1g€2g)(Tuﬁé + Tg,égwgé)
+ GIQEQQ(TQQQ + ng£¢£§) + e—lngQ(T&ﬂ.é + T&é£¢£é) ] . (5.6.23)

These results show how the commutator algebra of local supersymmetry is com-
pletely determined by superspace geometry. In particular the field dependence of the
local algebra is a consequence of only considering component fields which are present in

the WZ gauge. The full result for (5.6.21), to all orders in 6 is given by

[iK g, ,iKq,) = iKqo(A") + iKpg(A59") + iKg(e97)

W=+ S — 0,0 . (5.6.24)

d. Local supersymmetry and component gauge fields

We now derive the supersymmetry variation of the component gauge fields. We

obtain these by evaluating a superfield equation at § = 0
OV,| =[iKy,V,]|. (5.6.25)

From (5.6.13) we have
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[iK,V,]| = iKV,| — V,iK]|

= — (V;+ €V )V, | - DiK| — v, VK| — ,°V jiK| . (5.6.26)
Using the Wess-Zumino gauge condition (5.6.19a,17), we rewrite this as

K, V)| = — (Y, + &V )Vl = Dyik]| = /iKY, - ) iKY 5
= — <EQVQVQ’ + e_événg + DQ(EQVQ + E_évé,')’

+ wgé‘(elvl + E_ivj>v,§‘ + Jgé(elvl + e—’lvl)vﬁ‘ . (5.6.27)

Expanding over 0,,, V,| and M, and using (5.6.10,11,15) we find:

6Q¢QL == eé(RﬂaL + Tﬂag(bgb) - e_é)(R,éQL + 7, g(bgL)

vy + Ty
— 2, Ry, + T, 0,") — €° }(R:if + Téi,%;) . (5.6.28)
These results can be specialized to N =1, n = — % superspace, and using the solution to

constraints and Bianchi identities we can deduce the transformation law for e¢,* and v,”:
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Sqe, = — i("p,” + e—%gﬁ)eﬂf , (5.6.29a)

S, = Dye’ +ie356," — ie A’

— (7, + P, " (5.6.29b)

The transformation law of the gravitino can be simplified somewhat by considering the
supersymmetry variation of 1,,”. (The last term in (5.6.29b) is absent as a consequence
of (5.6.29a).) The auxiliary fields S and A, are defined as R| and G,| respectively; con-
sequently, their transformations can be found directly because R and G, are covariant
(see below). These covariant definitions of the minimal auxiliary fields are the general-

izations of the linearized expressions of (5.2.8) and (5.2.73).
We should point out that the results for dy¢," are valid for gauged internal sym-

metries (such as U(1), SU(2), etc.) also. In this case (M,),” =0, (ML)QQ = 0 and the
quantities R,z are the field strengths for the internal symmetry gauge superfield.
Therefore the formulae in (5.6.28) contains part of the tensor calculus for a matter vec-
tor multiplet. The covariant components of such a multiplet are treated just like those

of any covariant multiplet, e.g., a chiral scalar multiplet.

e. Superspace field strengths

To simplify calculations with component gauge fields it is convenient to define
supercovariant field strengths (quantities which transform without derivatives of the

local supersymmetry parameter). We begin by computing

[vg‘ ?VQH = [Dg s DQ] + (D[Qwé]l)aj + (D[Qﬁé]i)a_i

+ (Sup )05 + ((ﬁ_[g@é@mj)gé : (5.6.30)
The ordinary spacetime torsions and curvatures are defined by (see (5.1.17))
D, . D] = t,°D, + 1" M, | (5.6.31a)
where

ta® = cup” + O (My)y*~ (5.6.31b)
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6g ) (5631C)

szb = 6[@¢Q]L - CQQ£¢£L + gbgbl%bz lebzb ) (5'6'31d)

and [M, ,M, ]= f,,,"M,. We define a curvature for wgé by

t? = Dby — ey’

= eyt — eyt — Ypioat - (5.6.32)

We now have all the z-space field strengths. From the fact that e,”, ¥,?, and ¢,* are
gauge fields, ¢,°, t,2, and r," are the appropriate field strengths. The field strength

associated with M_; (and M .:), 7, .5 = =T, .z is the Riemann curvature tensor. With
o 7/5 ) aby @7'}/6

these definitions we can express the superspace torsion and curvatures at 0 = 0 as

TQQC = t@bc + w[géTtLb]C + J[géTg_b]C + ¢[QQJQ]ET5_EC

+ 0 Tl + D0 T, C (5.6.33)

+ SR + U 0 Rs + DR (5.6.34)
We have used
Vo, Vill = [Vl Vill + 912V, V| + 9,7V V| (5.6.35)

and (5.6.15). We see these tensors differ from their z-space analogs (5.1.17,18) by addi-
tional gravitino terms. The superspace field strengths are covariant: Therefore the

6 = 0 projections of (5.6.33,34) are the supercovariant z-space field strengths.

For the gauge fields of internal symmetries, covariant field strengths are also neces-
sary. These field strengths are defined by exactly the same formulae as the curvatures

above.
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f. Supercovariant supergravity field strengths

We now use the explicit solution of the n = — % Bianchi identities to obtain from

(5.6.33,34) the component field strengths. The solution of the Bianchi identities contains
all of the necessary information about the torsions and curvatures. For the torsions and
curvatures with at least one lower spinorial index, we substitute from (5.2.81) into the

left hand side of (5.6.33).
Considering first T',,” we find

T@’}’ — t@’y —|- Z(¢MG75 - wQaG’Y&> - ’t-(’(zgééﬁ’y — &Q&éoﬂ ) R . (5636)

This equation is correct to #-independent order and thus a supercovariant gravitino field

strength, f,,", is defined by
f@ry - T@ry‘ . (5637)
For T,,¢ we use (5.6.33) in a slightly different way. Along with the torsions with

at least one lower spinorial index, we also substitute for 7', on the right side. This

yields
tan” + iy = 1(Capds G5 = C36,7G47) (5.6.38)

Now we can take this result, use it to solve for the component spin-connection, and thus

obtain a second order formalism. Before doing this it is convenient to observe that

Z( CO‘BC‘;";Gqﬂ. - C&BC‘WGﬁi) = — Eabchi y (5639)

so that ¢,;,. can be expressed as

.1 - - - 1
Gape = P(€)gpe + 1 3 (w[galbg]& + wwwdé - w[ml@gﬁ) —3 €meaA . (5.6.40)

where ¢(e),. is defined in (5.1.19).

Finally the supercovariantized Riemann curvature tensor is treated analogously to
T,". We begin by substituting from (5.2.81) for the curvatures with at least one spino-

rial index.

R@’WS = r@ryd + EQ%(%%&) + Z{ [QZ&@.’W/@)’Y(S
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Yo (CosVi, Gy + (Vﬂ-}?)cmcw)] —(a«1D)}. (5.6.41)

N | —

However, we must carry out one further step before we have an expression which can be

evaluated in terms of component fields. We must eliminate V.G ., V ﬂ-E, and Wg,s from

Y530
this expression. This can be done by considering the coefficients of V. on both sides of

(5.2.81). On the left hand side we find f,”, while on the right hand side W V&Gvé’

afys
and V,R appear. We can therefore solve for these quantities in terms of f,” which is

expressed in terms of component fields in (5.6.36).

1 &
Wapy = 1 f(a&.ﬂ 3 (5.6.42a)
1, 4 1 - 3
V.G, = — B} [fao:,ﬁ 573 C'a,gf%é’w’g] , (5.6.42b)
Vol =~ %faﬁ;ﬂ,ﬂ'” : (5.6.42¢)

These expressions can now be substituted into (5.6.41) which results in a well defined (at

the component level) supercovariantized Riemann curvature tensor.

As a by-product of this process we have also derived the component supersymme-
try transformation law of the auxiliary fields A, and S where S = R| and A4, =G|

These are supercovariants and hence their supersymmetry variations are given by,

. —_ . 1 = .
Ay = iKgG, = = S[f 5 7o+ geafg(;,ﬁ(;d] +h.c (5.6.43a)

1
2 VB &

68 = iKoR| =~ 1€ f, mﬂ'ﬂ . (5.6.43b)

g. Tensor calculus

The component rules for the manipulation of locally supersymmetric quantities
are called the tensor calculus for supergravity theories. These rules give a component by
component description of supersymmetric theories. Superfields on the other hand pro-
vide a concise description of these theories in much the same way that vector notation
provides a more concise description of Maxwell’s equations. Superfields can always be
reduced to their component field content in the case of global supersymmetry and in this

section we discuss the analogous procedure in the locally supersymmetric case.
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As an example, let us consider for N =1 supergravity a local scalar multiplet

described by a covariantly chiral superfield n, Vi n =0. The component fields of this
multiplet are defined by projection

A=nql
Yo =Van|
F =V . (5.6.44)

The infinitesimal supersymmetry transformations of all quantities are obtained by com-

mutation with iK(e). Thus, using (5.6.18)

6QA = ZKQ(E)H‘ = - eava"ﬂ = - e%ﬂa ’
Sqa = — (€'V5+ &V 5)V 1

= — [ AVa. Va} + CusV?) + €14V, V30l - (5.6.45)

At this point, no specific choice of auxiliary fields for supergravity has been made. The
only constraints on the superspace torsions necessary are those which follow as consis-
tency requirements for the existence of chiral superfields, i.e., the representation-preserv-

ing constraints. Using the solution to the Bianchi identities for the case of N =1,

n=— % supergravity we obtain
Sq¥a = € F — ie_ﬂ(vaénﬂ . (5.6.46)
Using (5.6.6), we have

Sqta = €uF — i€ (D s A +1,5"0.) (5.6.47)

The last expression illustrates the concept of a supercovariant derivative at the compo-
nent level. The combination [D,A 4+ ,7.], which generalizes the ordinary covariant
derivative D, A, transforms without a term proportional to D,e”. Thus, this combina-
tion of fields is covariant with respect to a local component supersymmetry transforma-

tion. Finally, for the transformation law for the auxiliary field we find
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SoF = — (e°V, + &9V 4) V2|
= - e_a[iDﬂo'cw,B - Aﬁo‘ﬂb,@ - Z¢ﬂ&ﬁF - wﬁ(;ﬂ(Dﬂ/éA + Q%ﬂﬂww)] + geawoz
= —&iD%; — A%y, + S, (5.6.48)

(Analogous transformations for a chiral scalar multiplet can be found for n # —% by

using the appropriate solution to the Bianchi identities.) On the second line above we

have introduced the notation D, for the supercovariant derivative of the spinor mat-
ter field.

We can also find the components of the product of two different multiplets in
terms of the components of the original multiplets. Thus, for example, a product of two
chiral scalar multiplets described by chiral superfields 7;, n, is the scalar multiplet

described by the chiral superfield 13 = nn5:

As = mn,| = 414,
(w?))a = va(ﬁl”?)‘ = ([Vam]?h + nQ[vanQ])‘ = (¢1>(¥A2 + Al(wQ)a 9
Fy =V (mmo)| = ([V?mlne + V0]V sna) + m[Vi0,))]

= F Ay + (1) (¥a)5 + A Fy (5.6.49)

The components of ®; transform according to (5.6.45,47,48). This multiplication law is
just like in the global case (3.6.11).

Another possible product of two scalar multiplets is found by taking the product of
a chiral superfield 7; and an antichiral superfield 7,; this gives the complex general

scalar superfield ¥ = n;7,:

‘1’| = Alsz )
Va\ll| = wla ILTQ )

VQ\I!‘ - FlfTQ ,
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[va ?vo.c]\ll| = 21#10477520'4 9

(VZ + R)V, Y| = Fyihy, + i, (D 541)
VT2 4 RV, U] = — 91, (iD + A)f,, + 3 (—iD 5 +24 )9,

L oF,F, — (QQMQ)(QW.AQ . (5.6.50)

where we have used (V?+ R)V,n = 0 which can be obtained from (5.4.16). Note the

appearance of the supercovariant derivative D,,.

We can also give the components of a chiral superfield made out of an antichiral
one 1, = (V? + R)77. This is sometimes called the kinetic multiplet. Its components

are:

Ay =(V*+ R =F+ 54,

— (s . . ﬁ_l .fm_
()0 =— (D s+ A ) — 2 f  FA

Fy=((D*+i34%D, — 2 R," ;" —488)A—48F — 2 F .2.707 . (5.6.51)

where we have made use of the result

aw, g

VIR 4 2RR =~ cR,;",% (5.6.52)
The z-space supercovariant curvature R,;“ ﬂ-&é in (5.6.51) is given by (5.6.41). The
computation of these results is straightforward but tedious. All of the above results have

made extensive use of the commutator algebra in (5.2.82).

As a further example of component tensor calculus, we consider the vector multi-
plet. The local components are defined in the same way as in the global case (4.3.5),

but with V , replaced by V4, the supergravity and Yang-Mills covariant derivative. The

field strengths and Bianchi identities for the vector multiplet take the forms

FYM o

YM _
aﬂ_F aﬂ._o’
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FYMQ-,Q = C&ﬁ'fuﬂ + Caﬂf&ﬂ' )
VWM =vew M+ WM =0 (5.6.53)

The quantity JN”aﬂ is a supercovariant field strength (see below). The local components of

the multiplet are thus defined by

vy =Ty s A=W, D= —i W, (5.6.54)

The supersymmetry variations of the covariant components ,\, and D’, are obtained as

with the components of the chiral multiplet (see (5.6.46)).

504Q)\ = — Eﬂ?aﬁ + ’éﬁaD/ y

6D’ = 5 (¢D N — D A7) (5.6.55)

1
2
where ]Qa ﬂ.Xf’ is the supercovariant derivative of A,

D P . (TR oy
D N =D N ¢ .(J7—ic’D) . (5.6.56)

~aQ

This follows from (5.6.13) and the Bianchi identities of the vector multiplet (4.2.90)
which are valid in a curved superspace. The quantity faﬁ (and its conjugate ;‘Ld 5) can be

calculated in the same way as (5.6.41) from ( 5.6.34,53)

~

fas = [fYMao'z,ﬁ& + i(¢(ad,g)x&) + i(&(a&,&)‘ﬂ)” ) (5.6.57)

N |

where fYM .p 18 the ordinary z-space Yang-Mills field strength. For the transformation

law of v,, we use (5.6.28). (Even though the derivation of that result was for the gauge
fields for tangent space symmetries, it also applies to the gauge fields for internal sym-

metries. )

Sva = i €hs + Taha) — i("D,7 + 0,7

v (5.6.58)

Just as for the gravitino tansformation law in (5.6.29b), the last two terms above are
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absent if we consider the transformation law of v,,.

We have presented the above results for N =1, n = — % supergravity; they can be

generalized to all n by using the appropriate set of Bianchi identities (5.4.16-17).

In our discussion of global supermultiplets we found a large number of gauge mul-
tiplets where the component gauge field was not a spin-one field (for example the tensor
multiplet). Since we gave a completely geometrical treatment of these multiplets using
p-forms within global supersymmetry, their extension to the locally supersymmetric case
(i.e., transformation laws, supercovariant field strengths, etc.) is obtained by the
straightforward generalization of the methods which we used to treat the spin-one case.
The only complication that can occur is that the existence of the unconstrained prepo-
tential must be consistent with the set of constraints that describe the supergravity
background. An example of an N =1 multiplet for which the superfield extension to
local supersymmetry is not known is the matter gravitino multiplet. This is not surpris-
ing since a second supersymmetry (i.e., N = 2 supersymmetry) is required for the consis-

tency of the equations of motion for the matter gravitino.

h. Component actions

Finally we give formulae to obtain component actions from the N =1 n = —%

superspace actions

S, = / d*c d*0 ¢ L0 (5.6.59a)

S, = / d'zd*0 E™" Lyperar - (5.6.59b)
We first have
Sl = /d4$ eil[VQ + “Zad&va + 3§ + %&a(&\&aﬁé)é]ﬂjchiml’ .

(5.6.60)

To derive (5.6.60) there are several steps. First, using (5.5.9) and choosing IL = R™!, we
see that ¢> = D*E'R™'. This is a density under z-space coordinate transformations.

But in z-space, a density is e ' multiplied possibly by a dimensionless z-space scalar.
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No such dimensionless scalars can be constructed in the minimal theory. Therefore ¢ at
lowest order in # must be proportional to e . (It should be noted that there are no
explicit factors of k anywhere except that multiplying the supergravity action.) This sit-
uation is not true for the nonminimal theories, in which it is possible to construct a
dimensionless scalar from some of the additional auxiliary fields. This is precisely what
happens for the F-type density for the nonminimal theory, and is responsible for the

nonpolynomiality discussed in subsec. 5.5.f.3.

Once we know that the lowest component of ¢* is e™!, we derive (5.6.60) by multi-
plying e! by the highest component F of a chiral superfield and performing a supersym-

metry transformation. This generates a term proportional to F times the gravitino,

which we can cancel by adding to e 'F a term proportional to Jad 3¥o- This new term

generates supersymmetry variations proportional to DA times the gravitino. These can

be canceled by adding a term proportional to 1*A to the starting point. Finally, we
determine the contribution of the SA term by canceling variations proportional to ,S.
By dimensional analysis, there can be no other contributions, and we have obtained the

density formula of (5.6.60).

To find the corresponding expression for S,, we use
S, = /d4x 4?0 ¢* (V* + R)Lyeperal (5.6.61)

and the formula (5.6.60) for the chiral case. The covariant derivatives act on the super-

fields in the Lagrangian and project out the components.

As a simple example, we compute the mass term for a chiral superfield 7:

S:%m/d4xd20¢3n2

= %m / d4$ eil[QFA + wawa + ZQ?ZO‘&M% A

+ (35 + 5 Dua 0 5 A (5.6.62)
As a second example we compute the N =1, n = —% component supergravity action

and cosmological term.
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From (5.5.4,34) we have

1 17l a &8 abed [ 7-
SSG:E/dZLxe 1[57“0(&7 [;)7 B—de QﬁDﬁwi-ﬂ_iﬂSF] . (5663)

This is the component form of the supergravity action with the improved spin connec-
tion. The axial vector auxiliary field is present implicitly in the first term since the spin
connection, as defined in (5.6.40), depends on A,. If we separate out from ¢(e),,. the
contribution of A, it appears only quadratically in the action. In particular, there is a
cancellation among terms of the form AQ;/JM;EM which come from the first two terms in

the action.

For the cosmological term from (5.5.42) and using (5.6.60), we have

S cosmo = A/{‘Q/d% d*0 ¢ + h.c.

— k2 / d'z ¢ [38 + L G0 00T+ hoc] (5.6.64)

The cosmological term contains at the component level an apparent mass term for the
gravitino. However, in the deSitter background geometry the gravitino is actually mass-

less, since it is still a gauge field.

In closing we make two observations: Although (5.6.61) was computed after the
constraints were imposed on the covariant derivatives, in principle one can compute such
an action formula without imposing any constraints at all. This follows because the
transformation laws for the components of the totally unconstrained superspace are
directly obtainable from (5.6.28) and, for matter multiplets, from equations analogous to
(5.6.45-48). A large number of auxiliary fields defined as the # = 0 value of the various
superspace torsions will enter such a construction. Among these occurs an auxiliary field

which is a Lagrange multiplier that multiplies e .

(The variation of this Lagrange mul-
tiplier will constrain the geometry of z-space.) Clearly this is unacceptable, and we have
seen how, for N = 1 supergravity, this can be avoided. However, understanding the role

of such fields may be necessary to understand N > 4 off-shell theories.

The second point is that we lack at present a direct method for computing density
formulae analogous to (5.6.60). We can always compute such a formula by hand: We

start with e™! x V*W (where ¥ is an arbitrary superfield) and perform supersymmetry
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variations to obtain an entire density multiplet. What is lacking is a way to obtain this

result without laborious calculation.
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5.7. DeSitter supersymmetry

In sec. 3.2.f, we discussed the super-deSitter algebra (3.2.14). Here we describe
how supersymmetric deSitter covariant derivatives can be obtained from supergravity
covariant derivatives. We first discuss the nonsupersymmetric analog. Nonsupersym-
metric deSitter covariant derivatives can be obtained from gravitational covariant deriva-
tives by eliminating all field components except the (density) compensating field (i.e.,
the determinant of the metric or vierbein). This follows from the fact that in deSitter
space the Weyl tensor vanishes, which says that there is no conformal (spin 2) part to
the metric: It is “conformally flat”.  On the other hand, the scalar curvature tensor is

a nonzero constant r = 2)\? (this is the gravity field equation).

We can write e, = qﬁ_lélm where ¢ is the compensator of (5.1.33). After setting
the other components to zero, the action for deSitter gravity (Poincaré plus cosmological
term) is just the action for a massless scalar field with a quartic self-interaction term.
(The rest of gravity, the conformal part, is simply the locally conformal coupling of grav-
ity to this scalar.) The equation of motion corresponding to the covariant equation

r=2\2
O¢ = 2)\%¢° (5.7.1)
has the solution, with appropriate boundary conditions,
¢ =1-XNa" . (5.7.2)
The deSitter covariant derivatives are now obtained from the gravity covariant deriva-
tives of sec. 5.1 by substituting e,” = ¢~ '6,™, with ¢~' given by (5.7.2).

In the supersymmetric case, we start with the supergravity action and a cosmologi-
cal term (5.5.16). We set H to zero, and solve for the chiral density compensator ¢: In

super-deSitter space W5, vanishes (as does G,), while R = A.

afy
The action for the compensator is the massless Wess-Zumino action (again a con-
formal action, whose superconformal coupling to H gives the deSitter supergravity

action). The field equations in the chiral representation
D*¢p = \¢p? (5.7.3)

have the solution
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¢t =1— Az + N* . (5.7.4)

The (real part of the) § = 0 component of ¢ is thus the gravity compensator of (5.7.1,2).
The super-deSitter covariant derivatives are obtained by substituting this solution for ¢
(with H = 0) into the expressions for the supergravity covariant derivatives given in sec.

5.2.

The preceding discussion involved the n = —% compensator ¢. For other n, we
find strange pathologies: deSitter space cannot be described for n # —% in a globally

(deSitter) supersymmetric way. For n = —%, empty deSitter space is described by
R=X G, =W

T.,~M0,. This follows from the fact that the commutators of covariant derivatives must

=0, but for nonminimal n we would require G, = W3, =0 with

afy aBy

take the following form to describe deSitter superspace

{va ) vﬁ} == 2)‘Ma,8 ) {va 77&} =1V [va 7v9] =1 )‘Caﬁvé )

ad

(Ve Vil =20 (CopM i + C s M) (5.7.5)

This requires spontaneous breakdown of N =1 supersymmetry, since T, is a tensor:
T, =0 would imply T, =0 if global (deSitter or other) supersymmetry were main-
tained. (T, must be nonzero for R to be nonzero in the nonminimal theory. See

(5.2.80b)). For n =0, G,=W .3, =0 already implies Minkowski space.

afy
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6. QUANTUM GLOBAL SUPERFIELDS

6.1. Introduction to supergraphs

As we have seen in previous chapters, at the component level supersymmetric
models are described by ordinary field theory Lagrangians, and their quantization and
renormalization uses conventional methods. Evidently the quantum theory should be
renormalized in a manner that preserves supersymmetry. Unless a manifestly supersym-
metric regularization method is used, this requires applying the Ward-Takahashi identi-

ties of supersymmetry at each order of perturbation theory.

Supersymmetric models are in general less divergent than naive component power
counting indicates, and this can be traced to the equality of numbers of bosonic and
fermionic degrees of freedom, together with relations between coupling constants that
are imposed by supersymmetry. We find that the vacuum energy (or, when (super)grav-
ity is present, the cosmological term) receives no radiative corrections, and that, in
renormalizable models, a common wave-function renormalization constant is sufficient to
renormalize terms involving only scalar multiplet fields (the no renormalization theo-
rem). A related result is a theorem that if the classical potential has a supersymmetric
minimum (no spontaneous supersymmetry breaking), so does the effective potential to

all orders of perturbation theory (no Coleman-Weinberg mechanism: see sec. 8.3.b).

Improved convergence due to supersymmetry is also evident in supergravity. For
all N, the S-matrix of (extended) supergravity is finite at the first two loops; we argue
in sec.7.7 that it is also finite at less than N — 1 loops. In suitable supersymmetric

gauges this finiteness also holds for the off-shell Green functions.

In supersymmetric theories the one-loop superconformal anomalies (trace of the
energy-momentum tensor, y-trace of the component supersymmetry current, and the
divergence of the axial current) form a supersymmetric multiplet, the “supertrace”, so

that their coefficients are equal. There exist other anomalies as well. We show in sec.
7.10 that in nonminimal N = 1 supergravity (n # — %)7 anomalies may be present in the

Ward identities of local supersymmetry. Thus, in general, only minimal N =1 super-
gravity is consistent at the quantum level (but extended theories that have nonminimal

N =1 supergravity as a submultiplet are consistent because of anomaly cancellation
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mechanisms).

Superfields greatly simplify classical calculations: Supersymmetric actions can be
easily constructed, and the tensor calculus of supersymmetry becomes trivial. However,
the greatest advantages of superfields appear at the quantum level. There are algebraic
simplifications in supersymmetric Feynman graph (“supergraph”) calculations for a
number of reasons: (1) compactness of notation, (2) decrease in the number of indices
(e.g., the vector field A, is hidden inside the scalar superfield V'), and (3) automatic can-
cellation of component graphs related by supersymmetry (which would require separate
calculation in component formulations). Furthermore, the use of superfields leads to
power-counting rules which explain many component results and can be used to derive
additional finiteness predictions, especially when combined with supersymmetric back-

ground-field methods.

Renormalization is much simpler in the superfield formalism. Supersymmetry is
manifest and, as we discuss later, any regularization method that preserves translational
invariance in superspace will maintain it. For gauge theories we can use supersymmetric
gauge-fixing terms. By contrast component Wess-Zumino gauge calculations explicitly
break supersymmetry and have the disadvantage that the Ward-Takahashi identities for

global supersymmetry cannot be directly applied due to their nonlinearity.

In this chapter and the next one we discuss the quantization of N = 1 superfield
theories. We consider classical superfield actions S(V¥) and use functional methods to
construct the generating functional Z(J) and the effective action I'(¥). If ¥ is a gauge
field we quantize covariantly, introducing gauge-fixing terms, gauge averaging, and
superfield Faddeev-Popov ghosts. We then derive Feynman rules for supergraphs using
superspace propagators A(z,z’,0,0"). The methods are completely analogous to those
for component fields, but some new features are present: We must deal with constrained
(chiral) superfields, and we encounter not only id, = p, operators, but also spinor
derivatives D, acting on the arguments of propagators or external lines. We show how
these operators are manipulated and how, for any graph, the f-integrals at each vertex
can be done, leaving us with one overall f-integral for the whole graph (the effective
action is local in @), and ordinary loop-momentum integrals. At all steps of the calcula-

tions manifest supersymmetry is maintained.
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We discuss next the background field method for supersymmetric Yang-Mills theo-
ries. This is similar to that for component theories, with one significant difference: The
quantum-background splitting is nonlinear, reflecting the nonlinearities of the gauge
transformations of the superfield V. The method simplifies many calculations and can

be used to study higher-loop finiteness questions.

For supergraphs the simplest regularization procedure is to use dimensional regu-
larization of momentum integrals after the contribution from a graph has been reduced
to a single 6 integral. The resulting effective action, which is a (local in #) functional of
the external superfields, is manifestly supersymmetric. However, this regularization
method corresponds to (component) regularization by dimensional reduction, which is
known to be inconsistent. The superfield results, although supersymmetric, may reflect
this inconsistency by exhibiting ambiguities associated with the order in which some of
the f-integrations have been carried out. We also discuss alternative regularization pro-
cedures. Besides giving power counting rules we do not discuss the details of the renor-
malization of superfield theories. We work with Wick-rotated time coordinates:
d'z —id'z, so e — e°. (The metric 7, has signature (—+ ++) — (++ ++), so
0 — + 0O, etc. Note that in our conventions, 7 is opposite in sign from usual conven-
tions: Thus positive-energy states are described by e“" and propagators are
(p®> +m? +ie)"!. We further warn the reader that the gauge coupling constant g is v/2
times the usual g (see page 55).)



340 6. QUANTUM GLOBAL SUPERFIELDS

6.2. Gauge fixing and ghosts

The quantization of supersymmetric gauge theories is similar to that of ordinary
gauge theories. There are two related aspects of the situation: (a) The action is invari-
ant under gauge transformations and therefore the functional integration should be
restricted to the subset of gauge inequivalent fields. (b) The kinetic operator is not
invertible over the space of all field configurations so that the propagator, needed for
doing perturbation theory, cannot be defined unless the set of fields is restricted. In
component gauge theories, imposing an algebraic restriction explicitly in the functional
integral leads to an axial gauge which breaks manifest Lorentz invariance. Alternatively,
we can quantize covariantly using the Faddeev-Popov procedure: We introduce gauge
fixing function(s), weighted gauges and Faddeev-Popov ghosts. In supersymmetric gauge
theories the analog of the axial gauge is the Wess-Zumino gauge. In this gauge, quanti-
zation breaks manifest supersymmetry. In contrast, covariant superfield quantization

maintains manifest supersymmetry.

a. Ordinary Yang-Mills theory

For orientation we briefly recall the quantization method for ordinary Yang-Mills

theory. The Yang-Mills gauge action is

1 1 :

with gauge invariance under the transformation

A, =AY =e“[A, +id,)e ™ (6.2.2a)
or, infinitesimally,

A, =Vw=0,w+iw,A,] . (6.2.2b)

Here w is an element of the gauge algebra. Both A and w are matrices in the adjoint
representation. We observe that the kinetic (quadratic) part of the Lagrangian can be
written (after rescaling A — gA) in the form %ADHTA where (II"), = 1, — %GQGQDA

is a transverse projection operator (see (3.11.2)).

We start with the normalized functional integral
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7 = N’/lDAa edim (6.2.3)

where we have included in S;,, possible terms with sources coupled to gauge invariant

operators. We define the gauge invariant integral over the group manifold

Ap(A,) = / Dw §[F(A,*) - f(z)] (6.2.4)

where f(z) is an arbitrary field-independent function, and F' is a gauge-variant function
such that F' = f for some value of w. It is important to verify that this is the case. We

introduce a factor of 1 in the functional integral, in the form Ap'Aj:

7 = N’/]DAa Apl(Aa)/]Dw S[F(A~) — fleSm

= N’/ZDAa AF—l(Aa)/JDw 5[F(AQ)—f]eSW’ : (6.2.5)

where the last form follows from a change of variables that is a gauge transformation,
and the gauge invariance of Ay and S. The w integral now gives a constant infinite fac-

tor that we absorb into the normalization N’, leading to the form
7 - N’/ZDAQ Ap'(4,) SIF(A,) — fleSm . (6.2.6)

By construction Z is independent of F' and f, and hence we can average over f with an

arbitrary (normalized) weighting factor. In particular, if we introduce a factor
1= N”/ZDf exp(— g%tr/d% f?), the 6(F(A)— f) factor can be used to carry out

the integration and leads to the form

Z = N’/]DAQ Ayt ePmtSer

Ser = — g%tr/d“x [F(A,)] . (6.2.7)

where we have absorbed N’/ into N'.

We can parametrize the gauge group by a gauge parameter w(z) such that
F(A,”) = f(z) for w =0. Then
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Br(a) = [ Do b4 - 1) = [ D[] o)

SF /w’é—Fwdx
= /ZDw 5[5‘*}] :/lDw IDW' el bw , (6.2.8)

where we have written an integral representation for the functional J-function. In the
second line of (6.2.8), and in the equations below, (;—F 1s evaluated at w = 0. To obtain
w

Ap~! we replace w and w’ by real anticommuting (Faddeev-Popov ghost) fields ¢(z) and

c(z) (see sec. 3.7). Finally, we can choose for the gauge fixing function the form

OF
F(A,) = %GQAQ. Then oYW= %éﬁvaw, and we have
a o a

Z = N’/ZDAQ]DCZDC’ e

1

Seff - ? tr/d% [Lz"rw(Ag> - F(A>2 + Z'c/(s_F C]

ow

1
o

_ i 4 , . L a 2 . ,l a
= tr/d T Ly, (A,) ™ (0*A,)" + ic 5 0*V,c] . (6.2.9)

(The i is for hermiticity.) The gauge-fixing term can be written in the form ZL AOII* A
(%

where IT" =1 —1I" is the longitudinal projection operator (II*),, = %%%D_l. The

total kinetic operator becomes [1(1 + (é — 1)IT*), which is invertible: Minus its inverse

(the propagator) is —[07'(1+ (o — 1)II*). In the Fermi-Feynman gauge, o =1, the
propagator is —[J7'.

The gauge-fixed Lagrangian, including ghosts, is invariant under the global BRST

transformations:

0A, = 1V,c
;2 1 @
5C_E£F_556@A )

Sc=—¢&c (6.2.10)

with constant Grassmann parameter £. These transformations are nilpotent: % on any
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field vanishes (when the antighost equations of motion are imposed). The Ward identi-

ties for this global invariance are the Slavnov-Taylor identities of the gauge theory.

b. Supersymmetric Yang-Mills theory

For supersymmetric Yang-Mills theory we quantize following the same procedure.
We start with the functional integral for a gauge real scalar superfield V = VAT, , where

T, are the generators of the gauge group:
7 = /ZDV eSim(V) (6.2.11)

Note that in supersymmetric theories the normalization factor of (6.2.3) N’/ =1 (see sec.

3.8.b). The action is

S. =Ly / diz d20 W2

92

- L tr/d4x d*0 (" D*e")D*(e"V D,e")

= zl?tr/d% d*0 [VD*D*D,V + higher — order terms] . (6.2.12)
It is invariant under the gauge transformations

v _ 62‘7\ eV efz'A

¢ = , (6.2.13a)

or, for infinitesimal A (see (4.2.28)),
OV = Ly [=i(A+ A) + coth L, i(A = A)] , Ly Y =[X,Y] . (6.2.13b)

In the abelian case, this is §V = i(A — A). The kinetic operator is [III: with the super-

spin % projection operator H% = —-0O7'D*D?D,, , and is not invertible because it annihi-
lates the chiral and antichiral superspin Zero parts of V:
V=1,V =0"D*D* + D*D*)V.

We must now choose gauge-fixing functions. Corresponding to the chiral gauge

parameter A we need a gauge-variant function that can be made to vanish by a suitable

gauge transformation. Therefore it must have the same spin and superspin as the gauge



344 6. QUANTUM GLOBAL SUPERFIELDS

parameter and hence should be chosen a chiral scalar. The gauge-variant quantity
F = D?V is a suitable gauge-fixing function. For any chiral function f(z,6), we verify
that gauge transformations can be found to make F = f. For example, in the abelian
case, under a gauge transformation F(V)— F(VY) = D?V +iD?A; if we choose
iA =0O"'D*(f — D*V), we find F* = f.

We define the functional determinant

A(V) :/ZDAIDJ_\ SIF(V, A K) — f] S[F(V,A,K) — 7] . (6.2.14)
We first write (cf. (6.2.5))
7 = /ZDV ANV) 8DV — f]5[D*V — f] eSm . (6.2.15)

As in (6.2.7), we average over f and f with a weighting factor

/ZDf]Dfexp(— g% tr / d*zd*0 f f), and obtain the form

7 = /lDV AL (V)eSm+Ser (6.2.16)
where
Sap = — aig,ztr/d% d'0 (D*V) (D*V) . (6.2.17)
We write
AV = / DA DI DA D o] LT N (SEa+ SX) ¢ [ dto K’(?—fA " %x) |

(6.2.18)
where we have replaced the J-functions involving (anti)chiral quantities by integral rep-
resentations involving (anti)chiral parameters and integration measures. The variational
derivatives of F, F, are evaluated at A=A =0. In the functional integral, where
A~ (V) appears, we replace the parameters A, A’ by anticommuting chiral ghost fields

/

¢, c’. Finally, we find
7 = /zpv IDe D¢ De IDe e+ Ser 5w (6.2.19)

where
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Spp = itr/d4x d*0 ¢'D*(5V) + itr/d4x d*0 e©D*(§V)

_ i / d'z d*0 (¢ + )L, [(c + &) + coth L1, (c — 7)) . (6.2.20)
2 2

Integrating by parts, we can write (D*V) (D*V) = %V(DQE2 + D*D*)V = %VDHOV.

The quadratic part of the gauge field action has now the form
— VO + a7 )V = — VO + (07! = DIV, (6.2.21)

and the operator is invertible. To avoid [07? terms in the propagator and thus bad
infrared behavior, we choose the supersymmetric Fermi-Feynman gauge « = 1, which

leads to a simple 1 propagator. (The — sign in (6.2.21) leads to the usual kinetic

term for the component gauge field: — / a'ovav ~ A,[04%)

The quadratic part of the ghost action has the form
S L, = tr/d4x d*0 (¢ +7c)(c—¢) = tr/d4x d*o (¢c — c'e) . (6.2.22)

The chiral and antichiral ¢’c and ¢ terms vanish when integrated with d'6 and have
been dropped. (Such terms cannot be dropped in the presence of supergravity fields:

see, for example, (5.5.16)).

The total action is invariant under superfield BRST transformations. These take

the form

OV = 05V |rziee = ELy[(c +T) + coth Ly, (c —¢)]

6 = ~¢D*F = —¢D*D*V , 00 = _£DF = —(D*DPV

(67

Sc=—¢&? ,  de=—¢&E (6.2.23)
and the invariance can be used to derive the Slavnov-Taylor identities of the theory.

Before performing perturbation expansions, we rescale V — ¢gV. Then all
quadratic terms are O(g"), cubic terms are O(g), etc. We rescale back gV — V in the

effective action I. Alternatively, we simply provide each graph with a factor (¢)“*,
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where L is the number of loops.

c. Other gauge multiplets

We give two other examples of the gauge-fixing procedure: For a chiral superfield

®, the solution of the chirality constraint, ® = D>V, gives the kinetic action
S = /d% d*9 VD?*D*U | (6.2.24)
and introduces the gauge invariance

§U = D&s , 60 =D, |, (6.2.25)

for an arbitrary spinor parameter w, (see (4.5.1-4)). Suitable gauge fixing functions are

the linear spinor superfields
F:=D;¥ . (6.2.26)
To obtain a convenient gauge fixing term we average with f‘;M aaf”, where

M .=D.Ds+ EE&DQ : (6.2.27)
This leads to

Sim + Scap = /d% dtovOdvw (6.2.28)

and a standard p~2 propagator.

A second example is for the action of the chiral spinor superfield ®, that describes

the tensor multiplet (4.4.46):
S = — %/d“x d*0 G* = — é / d*z d'0 (D*®, + D®;)? | (6.2.29)

with gauge invariance under
6, =iD*D,.K , K=K . (6.2.30)
A suitable gauge fixing function is

F=—i % (D°®, — D°By) | (6.2.31)
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where F is linear. The gauge-fixed action

Siw + Scr = %/d% d*o [- G* + éFQ]

(1 - K))®, + h.c.

o=
N | —

— _i/d%d?e@aﬂ[% (1+K)+

/d% 4'0 [~ 5 (1 +a)(; " D*®, + h.c.) +

DO | —
N | —

(with K as in sec 3.11) takes two convenient forms:

For a =1,
S. 4 Sep = — i / d'z d*0 (2°D*®, + B D*B;) ;
fora=—1,
S.o 4 Sap = % / Az 0 349D,

(cf. (3.8.36)).

(1 - a)3%0":®,]

347

(6.2.32)

(6.2.33)

(6.2.34)
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6.3. Supergraph rules

Given an action S(V), we define the generating functional for Green functions

2(J) :/szp S [ 10 , (6.3.1)

where J is a source of the same type as the field ¥ (general if ¥ is general, chiral if ¥ is

chiral, etc.). The generating functional of connected Green functions is
W(J)=InZ(J) . (6.3.2)

The expectation value of the field ¥ or the “classical field” U in the presence of the

source is

1

V() = 5 (6.3.3)

A A

This relation can be inverted to give J(¥). The effective action I'(V), the generating
functional of one particle irreducible graphs, is defined by a functional Legendre trans-

form

A

() = W[J(D)] —/J(\if)\lf : (6.3.4)

In this section we derive the Feynman rules for the pertubative expansion of the
effective action. The derivation of the Feynman rules for unconstrained superfields pre-
sents few surprises. Instead of having d'z integrals we have d'zd'6 integrals. Propaga-
tors are obtained from the inverses of the kinetic operators, and vertices can be read
directly from the interaction terms. However, for chiral superfields the Feynman rules

reflect the chirality constraints.

a. Derivation of Feynman rules

We begin by deriving the rules for the real scalar gauge superfield. The gauge

fixed action (in the Fermi-Feynman gauge, o = 1) reads
Sy = tr/d4x d*o [— % vav + %[V, (DV(D*D, V) + -] . (6.3.5)

The Feynman rules can be read directly from this expression: The propagator is minus
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the inverse of the kinetic operator, 07'6*(z — 2/)6*(6 — @) or, in momentum space,
—p 26*(0 — ¢'). Since the spinor derivatives D contain explicit ’s, we do not Fourier
transform with respect to the 6 variables. (If one does Fourier transform with respect to

0, there is little change in the Feynman rules.) Vertices can be read from the interaction
terms. Thus, the cubic term %tr[V, (D*V)](D*D,V) leads to a three-point vertex with
factors of D® and DD, acting on two of the lines, and a group theory factor. In addi-

tion we integrate over x’s and #’s at each vertex or, equivalently, over loop momenta and

over 0’s at each vertex.

These rules can also be obtained by starting with the functional integral:

Z(J) = /ZDV e/ [~5VOV + Li(V) + JV]
= e/ i <667> /ZDV o[ =5vav + V]

5 .
_ of T (57) o3 /707 , (6.3.6)

where in the last step we have performed the Gaussian integral over V. The Feynman

rules can be obtained using ;j(x,e)

Y IC)] = 6*(z — 2)6*(0 — ') and expanding the exponen-

1) . .
mt(ﬁ) corresponding to vertices, and

tials in power series. Thus, we obtain factors of IL
the % operators, when acting on the factors of JI'J remove the J’s and produce

propagators (17! connecting the vertices. The result is exactly as for ordinary field the-
ory, with the additional feature of d*f integrals at each vertex, and additional §*(0 — ')

factors in each propagator.

Chiral scalar superfields usually have a kinetic action (with chiral sources j, j7) of

the form

SO — /d% 4'0 b — %/d% 420 m®® — %/d% 420 md>

+ /d% d*0 j® + /d% d*0 7o . (6.3.7)

To perform the Gaussian integration, we rewrite chiral integrals as integrals over full
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superspace. A chiral integral

I, = /d% d’0 FG | (6.3.8)
where F' and G are arbitrary chiral expressions, can be rewritten as

I, = /d% d*‘0 FO°'D*G (6.3.9)

using 'D?’D*G = G (3.4.10) and /d4x a0 = /d4x d’0 D*. The Gaussian integral

can be rewritten as

e/Voly) E/]DCI) D3 exp/d%- a'o [ (@ 5)0( ¢ ) + (@ @)( D‘”ff;)] (6.3.10)

where

B mD? 1
0= [ . (6.3.11)
) _mD?
O
The inverse of O is
m D> - m? D*D?
_ O — m? O — m?)
1 _
O = . M2 D2 D : (6.3.12)
O — m?) O —m?
Performing the integral we obtain
-~ 1 1 mD?
Wo(j)= [ d'zd0|-] =7 =(j =—=——-7 + h.c)] . 6.3.13
i) = [dads (-5 gz = 1 g i b (6:313)

For a general interaction Lagrangian IL;,, (®, ®) we can write

"drd oI (95 )
Z(5) = e-/ dwd’6 mt(cﬁ’«h‘) eWoli) , (6.3.14)
and the Feynman rules can be obtained from this expression. Since

6j(x,0)
j(«,0)

= D*5*(0 — 0)6*(z — 2') (3.8.10), there is an operator D* acting on each chiral
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field line leaving a vertex. Similarly, there is an operator D? acting on each antichiral
line leaving a vertex. However, at a purely chiral vertex, e.g. / d*0d", we use one of

these factors to convert the d° integral to a d'6 integral. Therefore at such vertices we

omit one factor of D?.
We now summarize the Feynman rules for interacting gauge and chiral superfields.

(a) Propagators:

1
VV: — 5O -0 (6.3.15a)
— 1
mD? " ,
B b mEQ 4 !

In the massive case, the p~? factors in the ® ® and ® & propagators are always canceled
by numerator factors (e.g., for ®® the vertices give D? factors and, as we discuss later,

we obtain D?*D?D? = — p®>D?). In the massless case these propagators are absent.

(b) Vertices: These are read directly from the interaction Lagrangian, with the
additional feature that for each chiral or antichiral line leaving a vertex there is a factor
D? or D? acting on the corresponding propagator, and the rule that at purely chiral or
antichiral vertices we omit one D? or D? factor from among the ones acting on the prop-

agators.

(c) We integrate over d*f at each vertex, and in momentum space we have loop-

momentum integrals /d4p(27r)_4 for each loop, and an overall factor (27r)46(z ko).

(d) To obtain the effective action I', we compute one-particle-irreducible graphs.

For each external line with outgoing momentum £k;, we multiply by a factor

/ d*k;(2m)"* W (k;) where ¥ stands for any of the fields in the effective action. For each
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external chiral or antichiral line, we have a ® or ® factor, but no D? or D? factors.
(e) Finally, there may be symmetry factors associated with certain graphs.

An alternative derivation of the Feynman rules for chiral superfields can be
obtained by solving the chirality constraints in terms of an unconstrained field (see sec.

4.5a):
®=D" , &=DV |, (6.3.16)

where W is a general, complex scalar superfield. The action, including source terms,

becomes

g = /d% d'0 [(D*)(D*V) + IL,,(D*¥ , D*T)]

+ /d% d*0 (D*)(— %mD_Q\If +37)+ hoc . (6.3.17)

Chiral integrals can be rewritten as full integrals by using up a D? factor. We recall

that in terms of ¥ we have an abelian gauge invariance, ¥ — U + D_OO‘CU(; (4.5.4). Conse-
quently, the kinetic operator appearing in the action, W D?D?W, is not invertible. As dis-
cussed in sec. 6.2, we can fix the gauge and arrive at an invertible quadratic action (the

ghosts decouple)

S — /d4x 440 % (\If \I!) (—n&'D2 _Eﬁ) (§) ) (6.3.18)

The Feynman rules are now the naive ones and are identical to the ones we have
obtained before (after using the D? D? factors at the vertices to simplify the propaga-
tors, obtained from (6.3.12)). In particular, from IL,,(D*¥, D*¥), we again find factors
of D?, D? acting on the propagators, except that one such factor is missing at purely

(anti)chiral vertices, since we convert everywhere to full d*6 integrals.

It is simple to obtain the supergraph rules for the tensor multiplet, with gauge-

invariant action
§ = /d4xd40 1(Q) L @)=t (6.3.19)

with ®® propagator —2p~*6,°D?6*( — #") (and the hermitian conjugate for ®®) from
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(6.2.33). However, there is a much simpler form of the rules which resembles the rules
for the scalar multiplet (to which the tensor multiplet is on-shell equivalent by a duality
transformation: see sec. 4.4.c.2). We first note that the vertex at either end of a ®®
propagator has a D at the vertex (from f(G) with G = D® + D®), and next to it a D”
(as occurs at the end of any chiral propagator, rule (b) above; this kills the D® part of
the vertex). Also note that the spinor index at the vertex contracts directly with the

corresponding spinor index of the propagator (because the vertex is a function of only
G = %DQCD“ + h.c.). Contracting these spinor indices, and integrating by parts all D’s
from the vertices onto the propagators, we obtain the same expression for the ®® and
®P propagators (with the same vertices), which can now be added together (i.e., the
total contribution from graphs with both types of propagators is the same as that from
only one type, but with an overall factor of 2 for each propagator). The rules are thus
cast into the following form: All vertices are now simply constants, read from the expan-
sion of f(G) in G. There is only one type of propagator, with no spinor indices, which is

1 _
— 3 D“D*D,6*(0 — 0) = — H%54(9 -0 . (6.3.20)

(The algebra from the various contributing factors is DD?*D*D?*D = DD*D[].) Each
external line gets a factor of G. If we were to perform the same rearrangement of vertex
factors for the supergraphs of the dual scalar-multiplet theory, we would obtain II,

instead of II., the external line factors would be ® + ®, and the constants at the vertices
2

would be obtained from f(® + ®) in terms of the function f dual to f (see again sec.
4.4.c.2). The on-shell equivalence then follows from the fact that the combinatorics

resulting from using IT: = 1 — II;, with a propagator 1 collapsing to a point (in 6 and z),
2

performs the duality, where for the external lines G = ® + ® on shell.

b. A sample calculation

We now give an example in a theory of a massless chiral superfield ® interacting
with a gauge superfield V. We compute the one-loop contribution from the chiral super-
field to the V two-point function. The relevant interaction is obtained from
Pe"d = PP + PVO +---. We find a contribution to the effective action, according to
our rules and Fig. 6.3.1,
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k+p

Fig. 6.5.1

d*k
/ 2 d*0, d*0, V(—k,0,)V (+k,0,)

N | —

d'p D%5"0; — 0,)D 5 D,2540, — 6,)D
/ P4 17676, _ 2)D 270" (0, 21) 1 (6.3.21)
(2m) P (p + k)
Note that in the above expression
0 154 N 0 1)a
Dla - 8010‘ + 591 pad ) Dlo.z - 89_1& - 591 (k + p)ad )
a 15 a ) o a 1 «
D2a = 6920‘ + 592 (k’ + p)()(,(,.! s DQ& = @ - 592 Pog - (6322)

Although we do not indicate the momentum dependence explicitly, it is implicit that the
momentum is that leaving the vertex through the propagator on which the operators act.
(From the ®V*® interaction term we also obtain a tadpole-type diagram; its contribu-
tion cancels a similar contribution from the diagram we are considering, or vanishes if we

use dimensional regularization).

The D’s can be manipulated like ordinary derivatives. They obey a Leibnitz rule,

and a “transfer” rule

540, — 02)D y(p) = — D 4y (—p)6' (6, — 6,) (6.3.23)

which can be checked by examining the explicit form of the operators. Another example

of the transfer rule is
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D1254(91 - 92)5 22 - D1251264(91 - 02) # 512D1264(91 - 02) . (6.3.24)

Inside integrals the D’s can be integrated by parts (see sec. 3.7). Thus
[ 400, 10.0)lg(6.~) =~ [ 4070.5)Du(~p)g(0.~1) - (6.3.25)

This can be most easily understood in z-space. Since D, =30, + %w_&aaé we are doing

integration by parts in 9, and in 0.

Armed with these facts we return to the evaluation of the expression in (6.3.21).

We concentrate on the # dependence and write the relevant part as
/ d'0, d*0, V(—k,0,)[D*Dy*515)[Dy* Dy *61,]V (k,6) - (6.3.26)

We have abbreviated 6*(6, — 6,) = §,,. We now integrate by parts and find first of all

[D*D?*8][D*D?*8|V = D*§D*[(D*D?*5)V]
= 0D*[(D*D*D?*5)V + (D“D*D?*5)D,V + (D*D?*5)D*V]

= §D*[—p*(D*8)V + p*4(D3D*6)D,V + (D*D*6)D*V] (6.3.27)

where we have used (D)® =0 and the anticommutation relations {D,, D3} = p,s when

acting on the propagator with momentum p.

Before proceeding we make the following important observation: Since
§*(0) = 6?0%, multiplying two identical é-functions together, or multiplying one by @

gives zero. We have therefore the following relations:
091 091 =091 012 =0
0y D%y =0
9o D2521 =0,

621 Da5&621 - 0 5

621 Da52621 - 0 5
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— — 1 —
521 D2D2521 = 521 D2D2521 = 521 §DQD2D¢X521 = 521 )

621 DQD_QDﬂ(521 — Cﬁa(521 . (6328)

In these relations, we obtain a nonzero result only if all the 8’s in the second §-function
are removed by differentiation. Hence two D’s and two D’s are needed and only their
momentum independent parts contribute. Expressions of this kind, but with more D’s,
can be reduced to one of the above forms by using the anticommutation relations. In
the expressions with four D’s the order is irrelevant (except for producing some minus
signs).

Returning to our calculation (6.3.27), and letting D* act on the factors to its right,

we see that out of the a priori possible six terms, only three survive:
S[~p*(D*D*6)V — p*s(D° D3 D) DD,V + (D*D*)(D*D*V)] . (6.3.29)
Finally, using D_dD_ﬂ' = (5/3";D_2 we find
540, — 0,)[—p* — p**DgD, + D*D*|V (k,0,) . (6.3.30)

Inserting this result into the original integral (6.3.21), we use the remaining J-function to

do the 6, integral, and finally obtain

1 d4k A / d4p _p2 o pa&-ldia + EQDQ
- a0Vv(—k,0 V(k,0). 6.3.31
| e vekol | g ke, (eaa

The result consists of an ordinary loop momentum integral, with usual propagators and
some momentum factors in the numerator, and operators D,D, acting on the external
superfields (i.e., D and D depend on k, not p). The p® term is canceled by the tadpole
diagram mentioned above, (or gives zero in dimensional regularization) so that the final
contribution to the one-loop self-energy is logarithmically divergent. This is a conse-

quence of gauge invariance. The remaining terms in the numerator, in a gauge-invariant
. . . . . 1 = ..
regularization (such as dimensional), combine to form 3 D*D*D,,, giving a result propor-

tional to W?2.
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c. The effective action

In the example above, the d-function has reduced the expression to one which
involves a single 6. This is a general and important result of superfield perturbation the-
ory. The effective action is a sum of terms involving products of fields evaluated at dif-

ferent points, and a Green function which is a nonlocal function of its arguments:
r:Z/d4x1---d4xn a6, ---d*0, G(z,---x,;0,---0,) ®(x,,0,)---DV(z;,6,)---

(6.3.32)

It turns out, however, that by manipulation of the contributions from any graph, we can

reduce it to an expression that is local in 6, i.e.

F:Z/d4x1---d4xn 40 Gz, 2,) B(21,0) DV(2,0) - . (6.3.33)

We do this as follows: Consider an arbitrary L-loop contribution to the effective
action. It comsists of propagators, with factors 6*(6; — 6,,,) and D operators acting on
them, external superfield factors, and d'6, integrals. We choose any propagator from a
particular vertex v to another vertex v’, and integrate by parts to remove all the D’s
from its d-function. The original contribution now becomes a sum of terms. If there are
other propagators, each of which connects v and v’, we use the relations (6.3.28): The
terms vanish unless each of the other §-functions has exactly two D’s and two D’s acting
on it, in which case they can be replaced by 1. We now use the free §-function to do the
f-integral at v’ and shrink all the propagators between the two vertices to a point in
f-space. We repeat the procedure, choosing a propagator leading to a new vertex v”,
until we have removed all J-functions and performed all #-integrals except the original
one at v. Whenever we have more than two D’s and two D’s on a line we use the anti-
commutation relations to replace D,D pairs by momenta. We are left with a sum of
terms, all with a single 6 integral, and various factors of loop-momenta coming from the
anticommutators of D’s, as well as D factors acting on the external superfields, coming

from the integration by parts.

In the course of evaluating Feynman diagrams, we may encounter loop-momentum
ultraviolet divergences, and a suitable regularization procedure is needed to handle

them. We discuss regularization issues later on. For the time being we assume that
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there exists a procedure that allows us to carry out the manipulations we have described

above inside momentum integrals.

The expression for the effective action in (6.3.33) reveals one important fact: We
have ended up with a d'@ integral, even though in the original classical action we may
have had d?# integrals. This is a consequence of our Feynman rules: All our vertices
carry d' integrals, and nowhere in our manipulations does a d*# appear. In particular,
if the original action had purely chiral d?§ mass or cubic interaction terms ®* or &3,
radiative corrections do not induce finite or infinite modifications of these terms. This is
the no-renormalization theorem for chiral superfields. Masses and coupling constants are
renormalized, but only as a consequence of wave function renormalization. (Any d*@
integral can be written as a d*6 integral and a D’ operator acting on the integrand;
however, this will not produce the above terms.) This theorem is valid in perturbation
theory. So far no one has succeeded in giving examples, in four dimensions, where it
might fail nonperturbatively, but a proof of its general validity does not exist. Even
within perturbation theory there exists the possibility of a pathological infrared-type

behavior which might invalidate it. For example, if in the course of evaluating the effec-

D? _
tive action a term / d*0®? — & were produced, the D? operator which comes from con-

O

verting the integral to chiral form, when acting on the chiral field, would give
D?’D?’O7'® = & and we would end up with a contribution to the chiral cubic vertex.
Whether such pathological behavior can be obtained in any calculation with a sensible

infrared regularization is doubtful.

d. Divergences

We now discuss the divergence structure of the effective action. There are two
issues involved: We must determine which terms in the effective action are divergent
(power counting), and which terms in the classical action lead only to divergences that
can be absorbed in a renormalization of the parameters (renormalizable interactions).
We restrict our discussion to interacting gauge and chiral scalar superfields (with no neg-

ative-dimension coupling constants).

The possible divergences of the effective action can be understood by straight
power counting (see sec. 6.6) or simply by a dimensional argument: The divergent parts

of graphs that contain no subdivergences give rise to local terms in the effective action of
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the form
r, = /d% d*o IP(®,®,V,D,®,...) , (6.3.34)

where IP is a polynomial in the fields and their derivatives. Since the effective action

must be dimensionless, and d*@ has dimension 2, IP must also have dimension 2. ® has
dimension 1, D, has dimension %, and V is dimensionless. Therefore, graphs with more

than two external ®’s are convergent. A ®® or ®® propagator produces a numerator
factor of m which contributes to the dimension of IP and therefore reduces the degree of
divergence. If IP is made up of only chiral superfields the 6 integration will give zero
unless some D’s (at least two of them, to contract indices ) are present to make the inte-
grand nonchiral, and again the D’s contribute to the dimension of IP reducing the
number of fields that can appear. Finally, if gauge invariance requires V to appear
through its field strength W, = iD?D,V (or its nonabelian generalization), this limits
the possible divergences involving V fields. (This is an oversimplification: We must use
the full machinery of Slavnov-Taylor identities, at least in the nonabelian case, or use
the background-field method (see sec. 6.5) to analyze the divergences involving gauge

superfields.)

The net result of the analysis is to establish that the only local divergent terms
contain at most one ® and one ® and, while they contain an arbitrary number of V fac-
tors, these enter in a manner which is controlled by the Slavnov-Taylor identities. For a
renormalizable theory of chiral scalar multiplets interacting with a vector multiplet (we

omit the ghost terms) the renormalized classical action has the form

/d4$ d40 [éRengRq)R + t?“I/RVR — tTOéRil(EZVR)(DZVR”

+ 91_2/61496 4?0 trw * + [/ d'z d*0 IP(®p) + h.c.] | (6.3.35)
R

where the subscript R labels renormalized quantities. (In the exponential we have writ-

ten explicitly the gauge coupling constant g that we normally absorb into V.)

Since V is dimensionless, V p is in general a nonlinear function of V, i.e., the wave-
function renormalization factor may be a function of V: We can have functional renor-

malizations Vi = f(V), where each coefficient in the Taylor expansion of f is a
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renormalization constant. Since all such renormalizations are proportional to the field

equations (4S5 = %M/), they vanish on shell. (Such noncovariant renormalizations

are avoided in the background field gauges that we discuss below.)

Ghosts are described by chiral superfields which follow the same rules. The diver-
gences of the theory are all logarithmic, except that of the Fayet-Iliopoulos term, which
is quadratic. (However, as we shall discuss in sec. 6.5, this term is not produced by

radiative corrections.)

In general, renormalizable interactions are associated with dimensionless (or posi-
tive dimension) coupling constants. For Feynman graphs, since at each vertex we have a
d'0 integral with dimension 2 and a d'z integral with dimension —4, we may allow up to
the equivalent of four D’s at each vertex. This is indeed the case with the gauge field
self-couplings, and also the usual vertices involving chiral superfields, where the D fac-
tors come from our Feynman rules. On the other hand a term such as ®*® , or ®*,

would lead to an excess of D’s at the vertices and a nonrenormalizable theory.

e. D-algebra

In the next section we give a number of examples of evaluation of supergraphs.
As preparation we discuss several simplifications that we use in performing the manipu-
lation of the D’s and the 6 integration. The numerous integrations by parts that have to
be performed can lead to long intermediate expressions, and a lot of effort (and paper)

can be saved by doing the manipulations directly on the graphs.

We draw the supergraph and indicate on it, adjacent to the vertices, the D factors
acting on the propagators in the order in which they act. We ignore signs having to do

with the ordering of the D’s: These will be determined later. Thus, an expression such
as D*D,6*(0 — 9’)55555 with the last three D’s acting backwards on the ¢’ argu-

ment of the d-function (and thus in the order Dj first, then 5[; next, etc.), would be

Yo

represented on the graph as shown in fig. 6.3.2:
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DD, D,D.D.

Fig. 6.3.2

The transfer rule can be implemented by “sliding” the D’s to the left, keeping the order.
This corresponds to writing —D?D,D;D;D.6*(0 —¢') with D, acting first on the 6
argument of the J-function. We must keep track of the — sign coming from transferring
an odd number of D’s. (Note the order in these expressions, e.g.,
D1‘¥5125 2/6 = D1(¥D26512 = —D1(¥D16512~)

We use the commutation relations to replace the rightmost D, D by p by (Since p
is hermitian p =P but we maintain the distinction to keep track of the order in
which the D’s appeared.) When we encounter expressions such as D*D*D? we replace
them with —p*D?.

The integration by parts can also be carried out directly on the graphs. For exam-
ple, we show in fig. 6.3.3 the integration by parts on a vertex coming from the ®V®

interaction:

52

Fig. 6.3.3

Starting from a given graph in general we obtain several, because integration by
parts gives several contributions. We remove the D’s from any given line and use the
d-function to do one of the 6 integrals, thus contracting the line to a point in 6 space.
We need not indicate explicitly this contraction: A line without any operators on it is
understood to be contracted. Whenever several lines connect the same pair of vertices,
if all the lines (other than the one we have cleared of D’s) have exactly two D’s and two
D’s each, we use (6.3.28) to replace them by 1. If any line has fewer D’s or D’s, the

contribution vanishes. If any line has more D’s or D’s, we use the anticommutation
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relations to reduce their number. In the end we have a sum of graphs, with momentum

factors from the anticommutators, and D’s acting on the external lines only.

To make this procedure clear, we redo the example considered above (fig. 6.3.1,

(6.3.21-31)), working directly on the graph, as shown in fig. 6.3.4:

D _D? D? D’ D? D, D’D? ) D?>__D?
D® D
w@ . @ + @ +
D? D? D2 D2 D2
2792 — N2 _
5 DD D2 D. DD p2 D2 D2
—> +
D D?D?

Fig. 6.3.4

In the last step we have only indicated nonzero contributions (the others vanish trivially

because of (6.3.28).)

In the course of the manipulations on the graphs, we must keep track of — signs
coming from transfers and from integration by parts. However, we need not keep track
of — signs that come from passing a D past another D, nor from signs that come from
raising or lowering indices. (On the graphs, we do not indicate the relative order of D’s
on different lines, nor which indices are up or down). These signs can be determined at

the end of the computation in the following manner: On the original graph, we have fac-

tors such as D*D? = iD“Daﬁ‘;ﬁ& , and also, from a vertex such as V(D“V)(D*D,V),

adjacent factors D and l5‘;5&Da where we determine the initial sign by requiring that
2
in any contracted pair, the first D or D has the upper index. These various factors may

end up in a different order in the final expression, e.g., D* - -- DY... D, ---Dg, possibly
acting on different superfields; however, we still write a contracted pair with the first
index raised. To determine the final overall sign, we count the number of transpositions
needed in the final expression to bring the D’s back to the original order. This is true

even if some of the D’s have been replaced by momenta: An expression such as p b will
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correctly keep track of the transpositions. We do not count transpositions of contracted
pairs, since the convention for raising and lowering indices cancels such signs:
XY,=4YX,. A quick way to count the transpositions is to draw lines connecting
all contracted pairs with lines, and count the number of intersections: an odd number
means an odd number of transpositions, and hence a — sign, whereas an even number

means no — sign.

There are many other tricks that one can use to simplify the manipulations. We

give the following “twingling” rule which is often useful:

\-
/—-

|
.

- /

Fig. 6.5.5

We are now ready to consider further examples of graph evaluation.
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6.4. Examples

In this section we give a number of examples of supergraph calculations. Most of
the examples were encountered in various calculations that have been performed. For
more complicated ones we refer the reader to the calculations of the 3-loop (-function in

N = 4 Yang-Mills, and the 3- and 4-loop (-function in the Wess-Zumino model.

We do our manipulations directly on the graphs until only an ordinary momentum
integral remains. For notational convenience we sometimes indicate a factor p* multiply-
ing a propagator with the same momentum by a [1 drawn on the corresponding line. In
the case of a line with no D’s acting on it, we sometimes leave it in the graph, while at
other times, when we draw 6-space graphs, we contract it out. To establish the proce-

dure we begin with some simple examples.
For the massive Wess-Zumino model we consider first some self energy graphs:

(1)
D? D?

S
°-

Fig. 6.4.1

P d*k 1
—>/d 9@(—]),0)@(]9,0)/ or) B mkt ) Tl (6.4.1)
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mD?
p2 mD?
D? D?
¢ ¢

' ot

mD? mD?
(k +p)? (k +p)?
Fig. 6.4.2

We have used D?D?D? = — p?D?. At a chiral vertex the D? factors can be put on either

line by integration by parts. The result is / d*zd*@ ®® = 0 because the integrand is chi-

ral. We consider next a triangle diagram with ®* and ®* vertices:

A=A

D? mD2 02 mD?
pQ

Fig. 6.4.3

Thus, the one-loop contributions to this three-point function are zero in the massless

case and nonlocal in the massive case.
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(4) For m = 0, with ®* and ®* vertices,

DQ D_2

Fig. 6.4.4

In the second graph, the small loop is contracted to a point in #-space, after which the
D?D? operators can be transferred across it and all act on the same line. The final

graph shows the actual momentum-space diagram one would have to evaluate. A propa-

gator has been canceled by [].

(5) Again in the massless case,

Fig. 6.4.5a

We have placed the D’s and D’s on certain two of the three lines for convenience, and
have labeled the vertices. In the second graph we have transferred D?, D? from C,B, to

E,F, respectively. We now integrate by parts the D? factor at E. This will generate

three terms.
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Fig. 6.4.5b

By examining the #-space loops AECBA and EFBCE, it is clear that in each graph the
D?*s on AB and BF, respectively, must give a single term when integrated by parts at

their respective vertices (A and F). We obtain

Fig. 6.4.5¢

We have used
SDD?*D*D§ = k*6D 4 D2 D6 = — k%6 . (6.4.2)

Our next example has ®e” ® interactions:
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<

Fig. 6.4.6a

In the loop BCF we have just a D?D? factor, so we contract it to a point. Similarly, we
contract the AE line to a point. For clarity we draw a #-space graph where ¢ and h are

the momenta of the AB and EF lines:

Fig. 6.4.6b

We integrate the D? factor off the middle line. It cannot go on ® so it must go on either
the top or bottom line, or split. Because of (6.3.28) the D? factor must follow it. This
is the same as computing D?D*[n(q)n(h)] where the n’s are chiral. The result is simply
—(q+ h)*n(g)n(h). Therefore, the D manipulation is finished and we obtain
—®(—p,0)®(p,0)(q + k)* multiplying a standard momentum integral with the propaga-

tors of the original diagram.

We give now an example in nonabelian Yang-Mills theory:
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CACA

D% D2D’D. & D% p’Dp°D,D, D¢
Fig. 6.4.7
. dik k_ .
— V(=p—1p') D*®(p) D*P(p’) ad ) (6.4.3)
(2m)* k2(k — p)2(k + p')?

(8) N =4 Yang-Mills theory.

In sec. 4.6.b we have given the classical action of this theory in terms of N =1

superfields. Here we discuss some of its quantum properties.

The theory is described by superfields V,®' (i = 1,2,3), all in the adjoint repre-
sentation of an arbitrary group, and with interactions governed by a common coupling
constant ¢g. It is classically scale invariant, and both component and superfield calcula-
tions have established that its S-function vanishes to three loops, so that, perturbatively,
the scale invariance survives quantization. Proofs exist that extend this conclusion to all
orders of perturbation theory. Here we discuss some of the explicit supergraph calcula-

tions for establishing 3(g) = 0, and leave the general arguments to sec. 7.7.

We add to the classical action (4.6.38) the gauge fixing and ghost terms
(6.2.17,20-22) with gauge parameter a =1+ O(g*). To O(g") this choice gives the
Fermi-Feynman gauge and a propagator [1°' that avoids serious infrared problems.
However, the transverse part of the self-energy receives (local) radiative corrections,
whereas the longitudinal part does not (as follows from the Ward identities). To stay in
the Fermi-Feynman gauge, we must maintain the equality of the longitudinal and trans-
verse parts, and we do this by adjusting the O(g?) parts of a in each order of perturba-

tion theory (actually, the radiative corrections vanish at one loop, and only arise at

0(g"))-
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At the classical level the O(4) invariance of the theory requires the equality of the
gauge and ®,P,P; coupling constants. Although the gauge fixing procedure breaks the
O(4) symmetry (this could be avoided if we had an N = 4 superfield formalism), gauge
invariance should insure that the coupling constants receive a common renormalization.
Therefore, the theory has only one (-function, which we can compute, for example, by
comparing the renormalization of the Czjkq)@j@k vertex function and the ®,®' wave
function renormalization. However, the vertex being chiral, receives no radiative correc-
tions (see sec. 6.3), so that to establish 8(g) = 0 it is sufficient to show that the ®;®’
self-energy is finite. (We observe that if O(4) invariance of the quantum effective action
were not spoiled by the gauge fixing procedure, finiteness to all orders would follow
immediately: The finiteness of the C’ijk@i@j@k vertex would imply the finiteness of all
other local terms in the effective action. In principle, the desired result should still fol-
low from the O(4) Ward identities, but in practice the nonlinearity of the transforma-

tions (4.6.39,40) makes them difficult to apply.)

To low orders in V (sufficient for the three-loop calculation) the action is
S = tr/d4x d'0 {(8,0' — JVOV +c — cc
+g[®,. VI + L gV{DV, D*D V) + Lg(c + )V, + @
+ 3 ¢*[@, V], V@' + L ¢*lV, D°VID[V, D, V]
+ £ (DD VIV, [V, DoV + 35 6°(c + D)V, [V, e — 2]

o+

+ tr{ / d*z d*0 ig % C @' [®7, @" + h.c.} (6.4.4)

with

V=V*Tr, 6 ® =0T, c=cT,

[TA s TB] =1 fABCTC ) fABC fDCB = - k(SAD . (645>
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Using the Feynman rules it is trivial to see that at the one-loop level, in the Fermi-
Feynman gauge defined above, the ®® self energy is identically zero. The contributions

from the two graphs below cancel:

Fig. 6.4.8a

It is easy to verify that the one-loop corrections to the ghost and vector self-energies also
completely vanish. For the former, this is true in any theory, but for the latter it is due
to the multiplicity (3) of the chiral multiplets, which leads to cancellations among the
three graphs below:

277 TS
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Fig. 6.4.8b

This result is trivially true in the background field method: (see sec. 6.5). Then
the field V' does not contribute and the three chiral fields exactly cancel contributions
from three chiral ghosts. This also occurs for the V three-point function, and is suffi-
cient to establish in an independent way that G(one-loop) = 0. We refer the reader to
the literature for other one- and higher-loop calculations and summarize the supergraph
results: (a) One-loop three-point functions are finite. The V-field four- and higher-point
functions have a divergence that can be removed by a nonlinear V-field renormalization.
(The divergence never arises in the background field method.) (b) At the two-loop level
the ghost self-energies are still zero, whereas those for V and ®; are only finite. (Conse-
quently, the higher-order contributions to the gauge parameter are O(g*).) (c) At the
three-loop level the ®° self-energy is finite, thus ensuring the vanishing of the S-function.

We present arguments for proving the results to all orders in sec. 7.7.
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The vanishing of the (-function to all orders of perturbation theory leads to the
conclusion that N =4 Yang-Mills is a finite four-dimensional field theory (up to gauge
artifacts; e.g., except in supersymmetric background or light-cone gauges, divergences

are present, but only in gauge-dependent quantities).

Another theory with interesting finiteness properties is N = 2 Yang-Mills theory.
It has one-loop divergences, but is finite to all higher orders of perturbation theory (as
explicitly verified at two and three loops), making it superrenormalizable. By coupling
an appropriate number of N = 2 hypermultiplets to N =2 Yang-Mills theory, one can
arrange for the one-loop divergences to cancel, and thus construct a completely finite
theory (in perturbation theory). (In the special case of one adjoint-representation

hypermultiplet, we obtain N = 4 Yang-Mills theory.)
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6.5. The background field method

a. Ordinary Yang-Mills

The background field method is extremely useful in supersymmetric Yang-Mills
theory, and essential in the quantum theory of supergravity. In this section we review
the background field method for ordinary Yang-Mills, and then extend it to the super-
symmetric case. The extension involves some subtleties, primarily because of the nonlin-

earity of the gauge transformations.

In gauge theories we start with the gauge-fixed functional integral (6.2.9) and

introduce sources coupled to the fields, defining
Z(J) = /ZDA IDc IDc e 774 JA = /d% J A, . (6.5.1)

We introduce W (J) = In Z(J) and define the effective action by a Legendre transform

T(A)=W(J)—JA | Agzgz :

(6.5.2)

This quantity is not gauge invariant in general. Physical quantities computed from it
are gauge invariant, and the Green functions satisfy Slavnov-Taylor identities that
express the underlying gauge invariance, but manifest gauge invariance is lost because of
the gauge fixing procedure. On the other hand, the effective action computed in the
background field method is manifestly gauge invariant. It is equivalent to the usual one,

but is more convenient to handle.

In the background field quantization of Yang-Mills theories we follow a procedure
similar to that of sec. 6.2a. We start with the gauge-invariant Lagrangian IL;,,(A,)
(other fields may be present but we do not indicate them explicitly) and split the field
into a background and quantum part: IL;,,(A , + 4,). The action is invariant under two

kinds of transformations that give the same §(A , + 4,):

Quantum:

SA,=0 , G6A, =V A+i[\A] | (6.5.3)

a

VA=0A+i[NA,]
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Background:

0A, =V, \ , A4, =i\NA] . (6.5.4)
We consider now the functional
Z(A) = /lDAa of TunlAat &) (6.5.5)

and quantize as before to fix the quantum gauge invariance except that, to maintain
manifest invariance with respect to the background gauge transformations, we choose the
gauge-fixing function so that it transforms covariantly under these transformations.
This requires in particular that we covariantize the derivatives that appear there with
respect to the background field: 04, — V*4, = 0*4, —i[A*, A,]. The remainder of
the quantization procedure is the same. We require the Faddeev-Popov ghosts to trans-

form covariantly under background gauge transformations, and we choose the weighting

function exp(— % tr / f?) to be invariant. We thus obtain the following expression :
ag

1
(A + A) — ./WtT(V'A)Q_"SFP

S
Z(A) = /]DAach De' e (6.5.6)

Z is manifestly invariant under background gauge transformations but its significance is
not obvious. To elucidate its meaning we consider an object defined exactly like Z

except that we also couple the quantum field to a source:
Z(J,A) = /ZDAQ De De! e5erAnha) +J4 (6.5.7)

We can now pass from Z(J,A) to I'(A, A) by a Legendre transformation in the presence

of the fixed field A. On the other hand, returning to Z itself, we can make a change of
variables A— > A — A which gives

~

Z(J A):e‘jA/ﬂ)A IDc IDc' 6/[‘lLim/(Ag)+-lLGF+.ZLFP+JA]

=e 2 Z(J,A) . (6.5.8)

It contains the usual IL,,,(A4,) but unusual gauge fixing and ghost terms that have addi-

tional dependence on A ,. Therefore, Z(J, A) is the usual generating functional but
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with A-dependent gauge fixing and ghost terms. Now we have

W, A)=InZ(J,A) = Z(J,A) — JA=W(J,A) — JA , (6.5.9)
and
T(A,A)=W(J,A) - JA=[W(J,A)— JA] — JA
W(J,A)— J(A+ A A W _ ow A 6.5.10
_(7>_(+)7 —W—W— . ()
Therefore
[(A,A)=T(A+ A A) , (6.5.11)

~

is the usual effective action I'(4), evaluated in an unusual A-dependent gauge, and at
A=A+ A. In particular, if in the evaluation of f(ﬁ, A) we restrict ourselves to
graphs with no external A lines (“vacuum” graphs), i.e., set A =0, we will obtain I'(A),
the usual effective action. But these “A-vacuum” graphs are simply the one-particle-

irreducible subset of the graphs obtained from Z(0,A) = Z(A). (Actually, this is an
oversimplification. What one obtains is not exactly the effective action, because A lines
from the gauge-fixing term give additional contributions. However, because of gauge
invariance, it can be shown that these have no effect on S-matrix elements so that the
identification, though strictly speaking not correct, can be used when computing physi-

cal quantities.)

Our conclusion is that the effective action is obtained from Z(A) by evaluating in
perturbation theory one-particle-irreducible graphs with only internal A, lines and exter-
nal A, lines (as well as ghost, and other non-gauge field lines). In particular, if we
expand IL;,, (A + A) = IL(A) + I/(A)A + IL"(A)A* + - - -, the first term does not con-
tribute to loop graphs (it is the classical contribution to I'), and the second can be
dropped because it does not contribute to one-particle-irreducible graphs with no exter-
nal A lines. The A? term gives the complete contribution (from the gauge field) to one-
loop graphs. For higher-loop graphs, internal vertices are read from the higher order

expansion, and all the terms contribute to vertices that involve the external A lines.
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There is an additional feature of the background-field quantization that is not usu-
ally encountered in the Yang-Mills case but that is important. This is the appearance of
the Nielsen-Kallosh ghost. In the gauge-averaging procedure we used the simplest expo-

nential factor to produce the gauge-fixing term in the effective Lagrangian. However, a
more complicated averaging function could be used, e.g., exp / (fMf) where M is any

operator (matrix). To properly normalize the averaging procedure, we must divide by
det M. If M is field independent, this is a trivial factor. However, if M is a function of
the background field, we normalize the gauge averaging by introducing into the func-

tional integral a factor
/lDf Db ™M M (6.5.12)

where b is a ghost field, with opposite statistics to f. When we carry out the f integra-

tion using the d-function of sec. 6.2.a, we are left with the b field. Thus, the final form is

Z(A,) = /]DA IDe IDE Db 6/ [Liny (A + A) + Lgp(AA) + ILpp(c,c,A,A) + ILyk (b,A)]

(6.5.13)
where ILygz = bMb. If M is independent of the background field, the additional ghost

gives trivial contributions and can be dropped; otherwise, since the ghost field b has no
interactions with other quantum fields and since it enters quadratically, it only con-

tributes at the one-loop level.

To motivate the procedure we use in the background field quantization of super-
symmetric Yang-Mills theory, we point out two aspects of the background-quantum
splitting A, — A, + A, of ordinary Yang-Mills. This splitting has the virtue that the
transformations 0(A ,+ A4,) = (O,w — i[A ,,w]) + (—i[4,,w]), which leave the action
invariant, can be interpreted as ordinary gauge transformations of the background field
accompanied by covariant gauge rotations (linear and homogeneous) of the quantum

field. Furthermore, in an expansion
LA+ A) =) [L"(A)]A)" (6.5.14)

each term in the power series is separately invariant under these transformations, since

A, transforms linearly and homogeneously, as do the functional derivatives of IL(A).
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Thus, if we truncate the series, as we do in a perturbative loop-by-loop evaluation of the
effective action, we maintain the background gauge invariance. This would not be true if

the transformation of the quantum field were nonlinear.

b. Supersymmetric Yang-Mills

In supersymmetric Yang-Mills theory the classical action is invariant under non-
linear gauge transformations e — e = e"xeve_“‘, and the splitting V — V +V s
unsuitable. To motivate the subsequent procedure, we first reexamine the background-
quantum splitting of ordinary Yang-Mills theory from a different point of view. We start
with the original gauge and matter action, invariant under the local transformations
0A, = 0,w — i[A,,w] and, for some matter field, 61) = i[w,®]. Under global transforma-
tions with constant w we still have invariance, with the gauge fields rotating like the
matter fields. For local w, we can introduce a new invariance by keeping the covariant
transformations i[w, A,] and i{w,] for all fields, and introducing a separate gauge field,
the background field A, to covariantize the derivatives. Since in the original action all

derivatives entered in the form V, =0, — i[A,, |, this covariantization amounts to the

replacement

V, =0, —i[d,, | =V, —ilA, |=08,—i[A, + 4, ] , (6.5.15)

which is equivalent to the ordinary quantum-background splitting. We now have two
invariances: the original one where the background field is inert, and the new one, under
which all the fields transform. We obtain a linear splitting A — A+ A because the
gauge field enters linearly in the covariant derivative. In supersymmetric Yang-Mills
theory this is so in the abelian case, but not in the nonabelian case. However, the phi-
losophy is the same. We start with the locally invariant gauge theory, observe that it is
invariant for global transformations (with A = A = A a constant matrix, not a super-
field), under which the gauge fields transform covariantly (linearly and homogeneously,
since e — e”eVe™™ implies V — e*Ve ) and now gauge this transformation by
covariantizing with the aid of a background field. This amounts to the replacement
D, — V, where V, is a background covariant derivative. We also have to treat the

covariantly chiral superfields properly.

We recall that supersymmetric Yang-Mills theory can be formulated in terms of

constrained covariant derivatives. The reason for solving the constraints and introducing
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the gauge prepotentials is that only these unconstrained objects are suitable for quanti-
zation. In solving the constraints we have the choice of working in the vector represen-
tation or in the chiral representation. The latter is more convenient for quantization,
expressing the theory in terms of the real superfield V, rather than superfields €2, Q with
a redundant gauge invariance. We want to maintain this advantage in the background
field method and work with a quantum V. On the other hand, when we introduce the
background covariant derivatives, it is useful to think of them in the vector representa-
tion. In fact it is possible to express all our results in terms of the (constrained) back-
ground covariant derivatives themselves, without ever introducing explicitly the back-
ground gauge superfields, i.e. without solving the constraints, and in that case the only
representation that is available is the vector representation. The advantage of working
with the background derivatives directly is that background covariance is manifest and
we obtain significant simplifications and improvement in the power counting rules for

Feynman graphs.

We also express covariantly chiral superfields in terms of the quantum field V' and
background-covariantly chiral superfields. The latter therefore depend implicitly on the
background fields and would seem not to be suitable for quantization. However, this is
not always the case: At more than one loop, and even at one loop for real representa-
tions of the gauge group, we formulate covariant Feynman rules directly for covariantly

chiral superfields that lead to considerable improvement over the ordinary ones.

Starting with the ordinary covariant derivatives we perform the splitting by writ-

ing them, in the quantum-chiral but background-vector representation, as
Vy,=e"V, " , Vg=V: , V,=- i{V.,Vgs} ; (6.5.16)

where V, and V; are background covariant derivatives satisfying the usual constraints.
The V’s transform covariantly under two sets of transformations:
(a) Quantum:

€V N 62A 6V 67“\ ,

VA — VA 5 (6517)

with background covariantly chiral parameters V,A = V;A =0, i.e.,
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Va— etVye ™ | (6.5.18)

(b) Background:

Vv KV —iK

V,i—e®Ve ™ | (6.5.19)
with a real parameter K = K | i.e.,
V,— efV e (6.5.20)
The background field transformations of V' can be rewritten as
V—efve ™ | (6.5.21)

i.e., V transforms covariantly.

While this procedure has given us a correct quantum-background splitting, in con-
trast to the component Yang-Mills case it results in different transformations of V4
under quantum and background transformations. However, the transformation of the
unsplit gauge field is the same. To understand the splitting of the gauge field we solve

the constraints on the background covariant derivatives:
V.=¢D,e® | V;=eDge® . (6.5.22)

Hence the splitting of the full derivatives is

Vo=e"e D e’ | Vi=eDge ™ . (6.5.23)

We transform to a background chiral representation by pre- and post-multiplying all
quantities by e and eﬁ, respectively. Then

V,—e P Ve D, e®Ve® | V.- D, |, (6.5.24)
and the splitting is equivalent to replacing e' by
eV split) — RV 2 (6.5.25)

In other words, we split the full V into a quantum V and background © and Q in a



380 6. QUANTUM GLOBAL SUPERFIELDS

particular, nonlinear fashion. (In the abelian case this reduces to V — V + @ + Q which

is just the ordinary splitting since by (4.2.72) @ + Q = V)

The usual chiral representation transformations of (6.5.25)
(e®e ey = Mo (e M) (6.5.26)
(where A, is ordinary chiral, D;A, = 0), can be written in two ways:

(a)

(6961/69)/ — eﬂ[(679617\069)61/(eﬁeﬂ'AUef(T)]eﬁ

Q(eiheV il (6.5.27a)

=e
i.e., the quantum transformations (6.5.17), with background covariantly chiral A, or
(b)

(eneveﬂ) (e z‘Koene—zK) (62'K€V€—2’K) (ez'Keﬁe—iAn) , (6.5.27D)

i.e., the background transformations (6.5.19) (cf. (4.2.70-71); recall that the A, part of
the transformation of € does not affect the transformation of the background covariant

derivatives). This is very similar to the situation in component Yang-Mills.

The gauge Lagrangian has the form
trw? = — tr(% VAV V)2 . (6.5.28)

When we substitute (6.5.16) into (6.5.28), we obtain a splitting of the action into
explicit quantum V’s and background covariant derivatives. Since the V’s transform
covariantly, the Lagrangian will be invariant under both background and quantum trans-
formations. Furthermore, since V' transforms homogeneously, expanding the Lagrangian
in powers of V' will maintain the background invariance term-by-term, which is one of

the required properties of a good splitting.
When covariantly chiral superfields ®, V;® = 0 are present, we first express them
in terms of background covariantly chiral superfields by & = &, d=de" (in the quan-

tum chiral representation) V:® = V,® = 0, and then linearly split them into a sum of

background and quantum fields. The quantum fields transform under
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(a)Quantum transformations:

o =eto

P =Pt . (6.5.29)
(b)Background transformations:

P =eld |

P =Pe K . (6.5.30)

The chiral field action is invariant under both quantum and background transformations.

We examine now the background field quantization. We proceed as in the conven-

tional approach, but compute
7 — /ZDV IDeIDd DEIDE §(V2V — £)§(V2V — fle®m 5w (6.5.31)

We have chosen background-covariantly chiral gauge fixing functions, and this means
that the Faddeev-Popov ghosts, introduced as in sec. 6.2, are also background covari-

antly chiral. Finally, we gauge average with

/ZDf DF Dby e | PrIOUTs0 (6.5.32)

where the background covariantly chiral Nielsen-Kallosh ghosts b, b have been intro-

duced to normalize to 1 the averaging over f, f. This leads to the final form

7 — /]DV IDe IDC IDe IDE Db IDb e

Seff = Sin'u + SGF + SFP + /b_b ; (6533)

which, except for the Nielsen-Kallosh ghosts, is like (6.2.19), but with background
covariant derivatives and covariantly chiral superfields. The N.-K. ghosts interact with

the background field, and only give one-loop contributions. If we couple external sources

to the quantum fields, e.g., /d4xd40JV, the generating functional Z(J, Q) will still be

invariant under background transformations, provided we require the sources to



382 6. QUANTUM GLOBAL SUPERFIELDS

transform covariantly, 6J = i[K, J].

What we must do now is argue that the background field functional, obtained by
setting sources to zero and computing one-particle-irreducible graphs with only internal
quantum lines and external background lines, is equivalent to the usual effective action,
except for being computed in a different gauge. This is less direct than in the ordinary

case because the splitting is highly nonlinear. We present the following argument:

The splitting (6.5.25) is

V =V + Q + Q + nonlinear terms . (6.5.34)

In a gauge for the background fields where Q = Q = %V we write this as V — f(V,V)
where f(0, V)=V and f(V,0)=V. If now in the original functional integral we add a
source term /d4xd40J[f(V, V) — (0, V)] to define a Z(J, V) we will have a JV cou-

pling, and coupling to higher order terms in V' and V (which are irrelevant when com-
puting the S-matrix), but no linear coupling JV. When we set V =0 we obtain the
conventional Z(J). As in (6.5.8) we make a change of variables of integration which
involves the inverse of the function f. Under this transformation the invariant gauge
action goes to its usual form in terms of V, the gauge fixing and ghost terms change in a
complicated, but physically irrelevant manner, and the coupling to the source becomes
simply JV — JV. Furthermore, the Jacobian of the transformation is 1 (see sec. 3.8.b).
We now have the same form as in ordinary Yang-Mills theory, and we conclude that the
background field functional computed by setting J = 0, i.e., evaluating graphs with only
internal quantum lines, does give the usual effective action as a function of the back-
ground field, albeit in an unconventional gauge. Therefore all physically relevant quan-
tum corrections can be obtained from the background field functional. We now discuss

how to evaluate it in perturbation theory.

c. Covariant Feynman rules
We consider first contributions from only the quantum gauge field V. The effec-

tive Lagrangian is

B 21?tr[(e*VVO‘eV)Vz(e’VVaeV) +V(VV2+ VVA)V] (6.5.35)

All the dependence on the background fields is through the connection coefficients and
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never through the gauge fields themselves.

The quadratic action has the form
- 21? V] = VUV, — iW'V, + Ji(V, W) + V2V2 + V2V . (6.5.36)
Using the commutation relations

ViV ;] =C. W, (6.5.37)

af af

this can be rewritten as
- ;?trV[El — WOV, — WSV V (6.5.38)

where 1 = %VQVQ is the background covariant d’Alembertian and W, is the back-

ground field strength. Introducing connection coefficients (depending on the background
fields) by V4, = D, —iI"4, we can separate out a free kinetic term, and interactions with

the background:

- ;?trV[DO — %9, — Li(°T,) — Lrom

a

N | —

2

— iW*(D, — i) — iW%(Dg — iT)|V . (6.5.39)

This expression is sufficient for doing one-loop calculations using conventional propaga-
tors for real scalar superfields and the usual D-manipulations. Since the interaction
with the background fields is at most linear in D’s, and at least four D’s are needed in a
loop, the first nonvanishing one-loop contribution from V is in the four-point function.
Self-interactions for computing higher-loop contributions can be obtained from the

higher-order in V' terms in the Lagrangian (6.5.35).

We now turn to contributions from (fully) covariantly chiral physical superfields
and background covariantly chiral ghost superfields. In principle we have to solve the
chirality constraint V ;® = 0 (by writing ® = eﬁq)o in terms of an ordinary chiral super-
field), but this introduces explicit dependence on the background gauge prepotentials
which we wish to avoid if possible. Instead, we reexamine the derivation of the Feynman

rules for chiral superfields.
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We consider the generating functional of the form

_ _ " 14, 120
Z(j,j):/chb]D@ ¢S ([ d'wd®0 i@+ he) (6.5.40)

where ® and j are covariantly chiral V;® = V5 = 0. For the time being we need not

specify whether these are full covariant derivatives or just background covariant deriva-

tives. In principle we define / ID® as the integral over the corresponding chiral-repre-

sentation field ®, (antichiral for ® integration), but in practice we simply define it by

the Gaussian integral
4,201 52
/ﬂ)@e/d T _ (6.5.41)

Additional fields may be present but we need not indicate them explicitly.

We define covariant functional differentiation by

0P (z)
P (2)

=V (2 — 2) . (6.5.42)

This form can be derived from (3.8.3), or by writing ® = V?¥, in terms of a general
superfield, and covariantizing (3.8.13). Manifestly covariant rules for chiral superfields
can now be found by a direct covariantization of the usual method. The covariantiza-
tion of the identity D?D?*® = [1,® (where [J, denotes now the free d’Alembertian)

becomes

ViV =0,9 ,

O, =0 - W'V, — ;i(VW,) , (6.5.43)

with the covariant []. We consider first the massless case.

We carry out the functional integration over ® by separating out the interaction

terms and doing the Gaussian integral, and obtain

R A TR TV = R
Z=A. G [ e d0in (6.5.44)

where A is the functional determinant

A= /JDq) Do e | S, = /d”zx d'o oo . (6.5.45)
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In general the above expression must still be integrated over other quantum fields that

may be present.

Before we evaluate A, which will give a separate, one-loop contribution to the
effective action from the ® field, we examine the rest of the contributions. The expres-
sion for Z is identical to the one in (6.3.14), except for the presence of covariant deriva-
tives and covariantly chiral sources, and the factor A. The perturbation expansion takes
the same form, except that from the functional differentiation we get factors of V2 or V>
acting on chiral and antichiral lines. The propagators are given by —[1, ', but in a per-
turbative calculation we separate 1, into a free part, which leads to p~? propagators,
and the remainder, which gives additional interaction vertices. However, at no stage do
we encounter explicit gauge fields, only connections and field strengths. (The explicit
dependence on the quantum gauge fields will be needed only when we functionally inte-

grate over them.)

We now evaluate A. It gives the complete one-loop contribution of the chiral
superfield to graphs with only external V lines and could be evaluated by using standard
Feynman rules, but this we wish to avoid. This turns out to be possible only for real
representations of the Yang-Mills group. Of course, real representations are frequently
the ones of interest: e.g., the Yang-Mills ghosts are in the adjoint representation, which
is always real. We therefore consider first the case of real representations, and return
later to the complications caused by complex representations. We are still considering

the massless case.

The action S leads to the equations of motion (in the presence of sources)

o(§)+(§>:o : OE(VO2 VOQ) . (6.5.46)

We define an action whose equations of motion are

P . 7272
02(_)—(‘7,_)20 , 02:<vv 20_2) , (6.5.47)
® J 0 vV

in terms of the square of Q. This action is given by S’ + ', where
Sy = /d% a*0 5 o0, = /d% LA (6.5.48)

In terms of it we can write the functional integral
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A? = /ZD<I> IDP 5o+ 50 = \/1Dc1> e5? = (/ Dd %)% . (6.5.49)

We have used the fact that S, and its hermitian conjugate contribute equally to A, as
can be seen, for example, by examining the resulting Feynman rules below. (This proce-

dure is analogous to the “doubling” trick in QED, where the analogue of O is V., 5 and
of O, is C,s0 + f,5, with f,5 the electromagnetic field strength. )

We now integrate S, by separating out D?D? from V?V? and treating

(V?*V? — D?D?) as an interaction term. The result is

S aa 12010 /w2 _ P22 0 4 1901 -1
:el/dxdom[vv DD](Sje_/dxdeﬂDo j

A (6.5.50)

(Writing instead V?V? = D?e¢”" D?e" in the chiral representation gives the rules for the
one-loop expression in the usual noncovariant formalism.) Therefore, a calculation of the
one-loop contribution consists in evaluating graphs with propagators p 26*(6 — ') and

vertices V2V? — D?D? giving rise to a string
VPV — DPD,5N(6; - 0,,) VOV = DD, (6.5.51)

with / d*0, integrals at each vertex and one loop-momentum integral. We carry out the

evaluation in the chiral representation, so that Vg = Ds . We concentrate on the 4 ver-
tex, and from the next vertex we temporarily transfer the D? = V? factor across the
S-function. We now use the identity (V>V? — D*D?*)D? = (O, — O,)D?* (in the chiral
representation). Having performed this maneuver we return the D? to its original place,
and proceed to manipulate the next vertex in the same way. This procedure can be car-
ried out at all vertices but one, which retains its original form. The resulting rules for

the evaluation of A are, with the usual propagator,

one vertex:

D*(V* - D?) (6.5.52)

other vertices:
O, — O, , (6.5.53)

with the covariant derivatives in chiral representation. Now only one vertex contributes

any D’s and as a consequence the evaluation of one-loop graph contributions from chiral
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superfields is considerably simplified. Higher loops are given by the rest of the expres-
sion in (6.5.44).

Up to now we have not specified whether the V’s are full or background covariant
derivatives. If both quantum and background gauge fields are present, it is more con-
venient to carry out the above procedure at an early stage, before we write d = e,
i.e., work with fully covariantly chiral superfields (but not for the ghosts, which are only
background covariantly chiral). The result of the calculation is expressible in terms of
the full covariant derivatives, and only at that stage, having integrated out the chiral

superfields, do we need to make the background quantum splitting on the gauge fields.

The “doubling” trick cannot be applied covariantly when the scalar multiplet is in
a complex representation of the Yang-Mills group. If we write the covariantly chiral ® in

terms of ordinary chiral ®, (D;®, = 0) in the vector representation

o =P, | (6.5.54)
we have
=", | (6.5.55)
and
V20 = e VD%, | (6.5.56)

is not in the same representation as ® (does not satisfy the same chirality condition)
except when the representation is real (in which case Q* = — Q). Therefore, the opera-
tor O in (6.5.46) cannot be squared, since it is not representation-preserving. As a
result, we must use rules at one loop which are not expressed manifestly in terms of con-

nections I' 4, but involve explicit gauge fields.

In (6.5.45) we express ® in terms of ®;, and introduce ordinary chiral sources j,

(Dsjo =0). We have instead of (6.5.46) the following equations of motion in the pres-

ence of external super-Yang-Mills:

P, o 0 D"
o) + =0, O= . (6.5.57)
P, 7o D*Y 0
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The noncovariant object O can be squared, since it preserves (D z-)chirality:

D2V D% 0
0’ = : (6.5.58)
0 D2V D%

The action 5’0’ obtained from O’ again gives a contribution equal to that of its hermi-

tian conjugate. As in (6.5.50) we separate a D? from e” D%¢" and treat the rest as an

interaction. The propagator is as before, but the vertex is now
D*(e""D%" — D?) . (6.5.59)

Note that, for real representations, V * = — V = — V, so this vertex is just D*(V? — D?),
and the rules of (6.5.52,53) can be obtained. In general, for a group containing factors

for which ® is in a real representation, we can write V =V, + V,, where V;* = -V,

but Vo, * £ —V, ([V,V,] =0), and write the vertex as
D*e"*'v,2e"> - D% | V,,=e¢ "D, =D, +T,, . (6.5.60)
Then V| appears in the rules only as I';; while V', appears explicitly.

The net result is that the effective action is expressed manifestly in terms of V4
for Yang-Mills factors that occur coupled only to real representations, and always for
higher-loop contributions. However, at one loop, and only for Yang-Mills factors coupled
to complex representations, the contribution must be calculated in a way where the

covariance is not manifest.

Our methods can also be applied to massive chiral superfields. In that case the

term j1,7'j of (6.5.44) is replaced with

- 1 +1[ va
i R I ()

Jj+hoc] (6.5.61)

a direct covariantization of the result (6.3.13). In performing the doubling trick, we use
A(m) = A(—m). We replace the kinetic operator
m V’
O(m) = (6.5.62)
Vi om
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ViV —m® 0
O(—m)O(m) = . (6.5.63)
0 ViV? — m?
After making the corresponding replacements in (6.5.50), we obtain —([J, — m?)™" for

the propagator, while the vertices are the same as before.

We summarize the procedure for evaluating the effective action in the background
field formalism: One-loop graphs with only external gauge field lines are obtained from
the quadratic Lagrangian for V in (6.5.39), and by evaluating A for each chiral super-
field. Higher loops are obtained with vertices involving interactions of the quantum
fields, either from the higher-order expansion of the V' Lagrangian, or from the perturba-
tive evaluation of (6.5.44). The rules for loops with (some) external chiral lines follow

from (6.5.44) and are the usual ones but with covariant propagators and vertices.

d. Examples

We now present some results. We begin by investigating the radiative generation
of a Fayet-Iliopoulos term (4.3.3) for an abelian gauge field, and consider first the one-

loop tadpole graph with a chiral field inside (Fig. 6.5.1).

Fig. 6.5.1

If the chiral field is massless, we can drop it when using dimensional regularization. In
the massive case, according to the usual rules, it would seem to contribute but gauge
invariance requires that there be two chiral fields of opposite charges, and their contribu-
tions cancel. Therefore, gauge-invariant Pauli-Villars regulators cannot contribute to
this graph either. As a result, the graph must be defined to vanish in the massless case

in any gauge-invariant supersymmetric regularization procedure, dimensional or Pauli-

Villars.

However, in the case of real representations, with the covariant rules, there is no

need for such an argument. At the vertex we have a contribution (see (6.5.52); to
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linearized order we need not distinguish between full and background derivatives )
D¥(V* - D?) = D*[~iT"D, — i(; D°T,)] (6.5.64)

(to linearized order), and we do not have two D’s in the loop. Thus, for real representa-

tions, the graph vanishes just by D algebra.

Actually, even this calculation is unnecessary, because we can give a simple proof
that the Fayet-Iliopoulos term is never generated in perturbation theory for real repre-

sentations: This term corresponds to a contribution to the effective action of the form

/ d*zd*0V. However, according to our covariant Feynman rules, a V never appears at a

vertex, only connections and field strengths, so that no such term can be produced.

We next calculate the one-loop contribution to the V self-energy from a massive
chiral superfield in a real representation. If we use the ordinary non-background rules
there are three graphs to compute (because we have massive ®® propagators), and they
have to be combined to exhibit the gauge invariance of the final result. Also, there are
some D manipulations to be performed. Here, there is essentially nothing to do. We

consider again the relevant graph, shown in Fig. 6.5.2.

Fig. 6.5.2

One vertex is given by (6.5.64), while at the other vertex we have (again to linear order)

0. — O = [-iT%0, — i(; 0°T,)] + [iW"D, —i(; D°W,)] .  (65.65)

Since we require two D’s and two D’s in the loop, there is a unique term with contribu-

tions —iD*T'*D,, from one vertex, and —iWD,, from the other. The answer is

PP d*k 1
iktr/d % (p)Fa(—p)/ R (6.5.66)

(The factor & was defined in (6.4.5).) We observe that with the covariant rules there is

no seagull-tadpole contribution. This would have to come from the nonlinear part of the
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one-vertex formula (6.5.64), but it does not have enough D’s to contribute.

We can obtain the V self energy in nonabelian Yang-Mills theory without any cal-
culation. According to the discussion following (6.5.39), if we look at graphs with two
external lines, there are not enough D’s in the loop. The only source of D’s are the W-
terms, and each factor of W brings with it just one D. Thus the whole contribution to
the self energy comes from the three chiral ghosts, and therefore we obtain an answer
which is just —3 times that from the chiral field we considered above (with the fields
now being background). This is a general feature: As already mentioned, V’s start con-
tributing at one loop only beginning with the four-point function. To see the implica-
tions of this remark, we give now a computation of the one-loop, four-particle S-matrix

in N =4 Yang-Mills theory.

The one-loop contributions with external V lines come from a V loop, from the
three chiral fields, or from the three chiral ghosts. Because of the statistics of the ghosts
the chiral contributions cancel exactly. This is true for a graph with an arbitrary number
of external vector lines. In particular, it implies that the two- and three-point functions
are identically zero at the one-loop level. Therefore, we need only compute the V-loop
contribution. We have just a box diagram, with factors —i(W*D, + WO.‘D_(;) at each
vertex, and we must keep terms with two D’s and two D’s. The D-algebra is trivial,
and we obtain for the four-V amplitude

1 d*p,...d*p, " 4
I = §t’l"/wd 0 (27'(') 5(Zpl)Go(p1p4)

X [W(p)) W o (p3) W (p3) W4 (py)

N %Wa(pl)Wo;(pQ)th(p?))W&(pO] ) (6.5.67)

where G, is the contribution from the four-point scalar box diagram

d'k 1
GO B / (271')4 k'Q(k - pl)Q(k‘ — P — pZ)Q(k, + p4)2 . (6568)

The trace is over internal symmetry indices, and all the superfields have the same 6

argument.
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This result is valid off-shell and is ultraviolet finite. On-shell it gives the one-loop
S-matrix, but it is infrared divergent. (To obtain the S-matrix we drop the p; integrals
and sum over p; permutations. The W’s give kinematical factors proportional to
momenta and polarizations). The simplicity of the calculation is due in large part to the
absence of chiral superfield contributions. In the particular gauge we are using there are
no self-energy or triangle graphs to consider, and the whole S-matrix is given by the box

graph. We will encounter a similar situation in supergravity (see sec. 7.8).
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6.6. Regularization

a. General

The perturbative renormalization of superfield theories is in principle no different
from that of ordinary field theories. We need a procedure for regularizing divergent inte-
grals, and a prescription for subtracting ultraviolet divergences. We must deal with
renormalizable non-polynomial Lagrangians (e.g., supersymmetric Yang-Mills in a super-
symmetric gauge), and use the supersymmetry Ward identities in the course of renor-
malization or, alternatively, use a regularization scheme that manifestly preserves super-
symmetry. We do not have much to say about renormalization. For renormalizable
models, we introduce renormalization constants in the classical action and use them to

cancel, order by order in perturbation theory, the divergences we encounter.

As we have already mentioned, in supersymmetric theories there are fewer diver-
gences present than in nonsupersymmetric ones. In general, the degree of divergence of
any supergraph can be determined by the dimensional argument of sec. 6.3 or by the fol-
lowing power counting rules: In renormalizable theories all supersymmetric vertices have
four D’s (either from the D? and D? of chiral superfields, or the D* DD, of gauge
superfields). In nonrenormalizable theories there are additional factors, but we first con-

sider the renormalizable case. All vertices have a d*@ factor.

We consider an L-loop graph with V vertices, P propagators of which C are ®® or
®® massive chiral propagators, and E external lines of which E, are chiral or antichiral.
From the vertices there are V factors of D*D*~¢*. The propagators produce ¢~ factors,
but ®® or &P propagators give an additional D?q ?~qg~' factor. Each loop produces a
d*g~q* and uses up a D?D?*~¢® factor from §D?’D?§ =6. Each external chiral line
accounts for one D?~¢ missing at the corresponding vertex. The superficial degree of

divergence is (using L — P +V =1)
D, =4L —2L 2P +2V - C - E,=2—C — E,

Therefore, for graphs with only external V’s the superficial degree of divergence is two
(but gauge invariance improves this), and zero if there are two external chiral lines. Fur-

thermore, if the external lines are all chiral an additional D? must come out of the loop:

/ d*0d" = 0 so one must have at least / d*0®" ' D?® for a nonzero result. Therefore the



394 6. QUANTUM GLOBAL SUPERFIELDS

convergence is improved and only graphs with one ® and one ® line may be divergent.
For renormalizable theories we obtain the results of sec. 6.3. In supergravity on the
other hand, where at each vertex we have the equivalent of six factors of D, the degree
of divergence of a graph is 2 —- C — E,+ V. This result can also be obtained by a

dimensional argument (see sec. 7.7).

Regularization is an important part of any renormalization scheme. Although in
principle any regularization may be used, in practice it is preferable to use a scheme that
is computationally simple and maintains as many properties of the classical theory as
possible. This simplifies the renormalization procedure, which must not only make the
quantum theory finite by subtraction of divergences, but also must maintain unitarity by
possible subtraction of additional finite quantities. For theories with (global or local)
symmetries, such additional subtractions are determined by the requirement that renor-
malized Green functions satisfy Ward-Takahashi identities, and in the case of nonabelian
gauge theories, Slavnov-Taylor identities. However, it is preferable to employ a regular-
ization scheme that manifestly preserves all symmetries; this allows a renormalization
scheme that requires the subtraction of only the divergent parts, so the application of

Ward-Takahashi-Slavnov-Taylor identities is unnecessary.

b. Dimensional reduction

Dimensional regularization has proven to be the most practical method of regu-
larization in component field theories because it has three properties: (1) It manifestly
preserves (almost) all symmetries, thus bypassing the Ward-Takahashi or Slavnov-Taylor
identities; (2) the regularized graphs are no harder to calculate than the unregularized
ones and require only one regulator, the dimensionality of spacetime; (3) renormalization
is a simple procedure, requiring only minimal subtraction. The prescription for dimen-
sional regularization is: (1) Write the action in a form which is valid for any dimension
D of spacetime; (2) calculate Feynman graphs formally in arbitrary spacetime dimen-
sions, integrating over D components of each loop momentum, giving fields of any
Lorentz representation the number of components appropriate to that value of D, and
performing any algebraic manipulations that would be valid for finite integrals (i.e., per-
forming the integral in dimensions D for which it is finite and analytically continuing in

D); (3) renormalize by subtracting from divergent contributions (as D— 4) only their
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pole parts (proportional to ﬁ), and no additional finite parts, first in subdivergences

and then for the superficial divergence (in amputated one-particle-irreducible graphs,

i.e., the effective action).

This procedure has two drawbacks: (1) It must be supplemented by a prescription
for handling symmetries which do not commute with parity, i.e., involving 75 or €,;.4,
and in particular for correctly obtaining chiral anomalies for those cases where they are
present. (2) It does not maintain supersymmetry: The prescription for giving fields of
any Lorentz representation the number of components appropriate to D dimensions does
not keep Fermi and Bose degrees of freedom balanced. A modification of the prescrip-
tion, which would continue a four-dimensional theory to a theory supersymmetric in D
dimensions, is not possible either. For example, if D is increased past 10, a globally
supersymmetric theory would have to be continued to a locally supersymmetric one. We
would have spins > 2 because the number of supersymmetry generators increases with
increasing D. We now describe a modification of dimensional regularization intended to

preserve supersymmetry, and return later to the first difficulty.

Since the change in structure of supersymmetric theories as the number of super-
symmetry generators (4N) is increased is not uniform, we consider keeping this number
fixed. For regularizing ultraviolet divergences it is only necessary to continue to lower
dimensions, and it is then possible to keep the number of supersymmetry generators
fixed at their four-dimensional value. In general, our prescription for continuing to lower
dimensions is to continue only the dimensionality of spacetime, but keep the range of all
Lorentz indices the same, as if they were internal symmetry indices. As we reduce D, an
N-extended supersymmetry can be reinterpreted as an N'-extended supersymmetry,
N’ > N. For example, N =1 in D=4 dimensions can be regarded as N =2 in D=3
dimensions. In this way, the number of bosonic and fermionic variables stay equal. Such
a continuation is called “dimensional reduction”. Here we consider continuation only

from D=4 to D<A4.

Our rules for applying dimensional reduction to regularize component Feynman
graphs are: (1) All indices on the fields, and corresponding matrices, coming from the
action are treated as 4-dimensional indices; (2) as in ordinary dimensional regularization,
all momentum integrals are integrated over D-component momenta, and all resulting

Kronecker §’s are D-dimensional; (3) since D<4 always, any 4-dimensional Kronecker ¢
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contracted with a momentum equals that momentum 55199 = p,, and any 4-dimensional
0 contracted with a D-dimensional one gives the D-dimensional one (555 o= ) . Where
the “ ™ indicates D-dimensional quantities. The first rule is necessary to preserve super-
symmetry, since it keeps the number of components the same; the second rule preserves
all the useful properties of dimensional regularization (e.g., gauge invariance); the last

rule defines the regularization as dimensional reduction.

Unlike in ordinary dimensional regularization, both 4-dimensional and D-dimen-
sional quantities occur. Therefore, when applied to components, dimensional reduction
requires handling more types of fields: e.g., a 4-dimensional vector becomes a D-dimen-
sional vector and 4-D scalars. This can cause difficulties in nonsupersymmetric theories,
since a larger variety of divergences can occur, but in supersymmetric theories supersym-
metry allows only divergences containing the full set of 4-dimensional fields. For exam-
ple, ([Ag A4 — Z2([Ap A + Z4Z,([A0 67 + 2,261 9,))% but in supersym-
metric theories the D-dimensional extended supersymmetry that results from reducing
4-dimensional supersymmetry ensures that Z, = Z,. (In theories with only scalars and
spinors, the only difference from usual dimensional regularization is in the normalization

of the spinor trace, and hence these problems do not arise.)

When applied to superfields, dimensional reduction is the unique form of dimen-
sional regularization that allows the naive algebraic manipulation of the 4-dimensional
spinor derivatives D, in divergent as well as convergent supergraphs. This requirement
leads to the following definition of regularization by dimensional reduction on super-
graphs: (1) Perform all algebra as in D=4, obtaining a form where all f-integration has
been performed i.e., the graph is expressed as an integral over a single d*V6 of products
of superfields of various momenta times an ordinary momentum integral and is therefore

manifestly supersymmetric; (2) perform the remaining momentum integral in D-dimen-
sions. In step (1), we use the 4-dimensional identity paépﬂﬁ =6,"p* (recall p* = %pgpg

(3.1.16,18)). No D-dimensional Kronecker deltas arise at this stage. In step (2), sym-

metric integrations generate D-dimensional Kronecker deltas, e.g.,
. 9 o . o
pao’zpﬁﬂ - Bp26a&/6/8 ’ (661)

where § 77 =§ QQ has the properties

[e7e7
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A

504&/3/5.’(%}04: 6'5 9 5 'ﬂﬂog 'WW.ZS 'ryr; 9 (662)

« oo B3 aa

D
2

and spinor indices are still manipulated as in 4 dimensions.

On the other hand, a dimensional regularization scheme, which like ordinary
dimensional regularizations continued spinor indices (including the one on 6%) to D-
dimensional ones with k= 2%*1 components, would have problems: e.g.,
/ d*9d*6 = D*D* would no longer have well defined statistics, and would introduce

higher derivatives (for k£ > 2) into the action, requiring some nonminimal subtraction

scheme (such as analytic regularization).

Unfortunately, although it preserves supersymmetry, regularization by dimensional

reduction leads to ambiguities. For example, let us consider the expression
0 pya.rasy =0 (6.6.3)

which vanishes in D<5 because it is totally antisymmetric in 5 indices which take less

than 5 values. (This also follows if we write the vector indices in terms of spinor indices

and use 4-dimensional spinor manipulations.) If we now contract with ) s+ we obtain
(D = 4)pugsresy =0 (6.6.4)

Since pi,q;7.S4 does not vanish in D=4, and we must require it not to vanish in D#4 to
avoid generating arbitrary coefficients for such terms upon continuation, we have an
inconsistency. This can also be viewed as an ambiguity: By evaluating a supergraph in
two different ways, we may obtain results that differ by the left hand side of (6.6.4). If
the supergraph is convergent, this ambiguity disappears in the limit D—4. However, if
it is divergent, a finite difference between the two ways of evaluating the graph may

result.

The same ambiguity is present in component theories (supersymmetric or other-

wise) that have chiral anomalies, where the corresponding expression is

0= 0 /2 [tr(vs7v v, BaF) + tr(vsva PF470)]

= (D — 4)tr(vs pgr#) (6.6.5)

To derive this result, we have used the identities
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{’}/Q?’yb}:26@ ) {7577@}20 ’ (SAQQ:D ) (666)

which are equivalent to the prescription (6.6.2) combined with the 4-dimensional spinor

algebra.

This problem arises because we have required that our regularization respects local
gauge invariance: When we consider theories with axial couplings, we must use a pre-
scription such as (6.6.6) that respects chiral invariance. This makes it impossible to cal-
culate (unambiguously) anomalies that should be there. Modifications of (6.6.6) exist
that give the correct anomalies, but unfortunately, these also give spurious anomalies
that must be eliminated by using Ward-Takahashi-Slavnov-Taylor identities, which is

just what we were trying to avoid.

c. Other methods

There do exist alternative schemes for supersymmetric regularization, at least for
special systems. For theories that allow the introduction of mass terms, we can use
supersymmetric Pauli-Villars regularization. This is the case, for example, in the Wess-
Zumino model (or models with several chiral scalar superfields) where one can work with

the regularized Lagrangian

IL, = /dgz (PP + Z c;®,®,)

+ /d% [% (m®* + Z M, ®%) + %/\(cp + Zcbz-)?’] +h.c. (6.6.7)

or in models of chiral multiplets coupled to a Yang-Mills multiplet, for reqularizing chiral

loops,

L= /dSz @'+ c,Die" P,

1
+ 5/dﬁz (m®*+> M%) + h.c. . (6.6.8)

Here the ®, are chiral regulator fields, and the limit M; — oo is to be taken at the end

of the calculations.
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For supersymmetric Yang-Mills theories we can use higher derivative regulariza-

tion. For example, the usual covariant action can be modified to read
tr/d4x 0 WL+ 00w, (6.6.9)

and similar modifications can be made in the gauge fixing and ghost terms to produce
propagators with k~* behavior for large k. As in ordinary Yang-Mills, all multiloop dia-
grams are superficially convergent. However this procedure must be supplemented by a

different one-loop regularization.

Straightforward Pauli-Villars regularization cannot be used for Yang-Mills theories
because it destroys gauge invariance. However, in the background field method it seems
perfectly acceptable. In this method the effective action is manifestly covariant, and
since the quantum fields transform covariantly (rotate like tensors), one can add a mass
term, and therefore massive regulators, without destroying the gauge invariance. What
is not entirely clear is that this can be done in general in a manifestly BRS invariant
way, i.e., without destroying the unitarity of the S-matrix. But there seem to be no
problems at the one-loop level, so that a combination of higher-derivative and one-loop
Pauli-Villars regularization is a perfectly acceptable procedure for maintaining manifest
supersymmetry in the background field formalism. A related procedure for one-loop

graphs can be used even in a non-background formalism.

Another regularization procedure, which has been used for one-loop graphs, is
point splitting. We first consider the nonsupersymmetric case. The regularization is
applied to one-loop graphs by expressing them as traces of propagators in external fields,

and separating the coincident end points of the propagator:

/d% G(z,7) —>/d4x G(z,z+e) , (6.6.10)

where € is an infinitesimal regulator. Writing the Green function G as a functional aver-

age of fields,

Gz, y) = < p(a)d(y) > = / DY Op(a)p(y) | (6.6.11)

we can express the point splitting in the following form in terms of an explicit operator:

Gz, +e€) = <p(x)ePP(z) > . (6.6.12))
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This procedure must be modified in order to preserve gauge invariances. However, for
the form (6.6.12), gauge covariantization is trivial: We replace the partial derivative 0

with a covariant one V=0 — i4:

< (z)eVy(z) > . (6.6.13)
This is equivalent to the form:
< (z)IP{exp|— z/ de'- A(z")|}p(z+¢€) > (6.6.14)

x

where the line integral is along a straight line and IP means path ordering. The equiva-
lence can be proven, even for finite €, by writing the exponential in (6.6.13) as a product
of exponentials of infinitesimals, and then reordering all the O’s to the right (which
translates the A’s). In calculations, it is more convenient to have the manifestly covari-

ant form (6.6.13) in terms of V'’s.

The supersymmetric generalization is straightforward: For V, use the superspace
covariant derivative. (In principle one could also translate in § with V,, but the 6 inte-
gration is already finite and doesn’t need regularization.) The above equivalence to the

path-ordered expression also holds in superspace.

While such regularization methods maintain supersymmetry, they are cumbersome.
Some form of dimensional regularization is preferable, for all the reasons we gave earlier.
As we have already discussed, at the supergraph level this amounts to doing first all the
D-algebra in four dimensions, and then dimensionally continuing the momentum inte-
grals. The results are manifestly supersymmetric, but presumably the inconsistencies we

have discussed earlier will give rise to some ambiguities in the results.
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6.7. Anomalies in Yang-Mills currents

As an example of our rules for chiral superfields and regularization methods, we
calculate the supersymmetric version of the Adler-Bell-Jackiw anomaly. We consider a
chiral multiplet coupled to both polar and axial vector gauge multiplets. The only phys-
ical component in the anomaly multiplet is the anomaly in the chiral symmetry current
corresponding to phase transformations of the chiral superfields. This symmetry com-
mutes with supersymmetry transformations and should be distinguished from R-symme-
try, which does not commute with supersymmetry. The R-symmetry chiral anomaly
appears in the multiplet of superconformal anomalies, which also includes the trace and

supersymmetry current anomalies. We will discuss this in sec. 7.10.

We consider the action for scalar multiplets coupled to vector multiplets:
S = /d4xd49 D' . (6.7.1)

For simplicity, we assume an even number of scalar multiplets, in pairs of opposite
charge with respect to polar vector gauge fields. The two Weyl spinors in such a pair
form a Dirac spinor, with the usual transformation under parity. The column vector ®
is thus in a real representation of the symmetries which the polar vectors gauge. We can
also consider the coupling of axial vector gauge fields, with respect to which the two
members of a pair have the same charge. The Dirac spinors of the pairs couple to these
axial vectors with a v5. To indicate these two types of vectors, and the corresponding

two types of vector multiplets, we separate V into polar and axial parts:
V=V,4V_ ;, V,==-V,* V. =V * . (6.7.2)

The * refers to complex conjugation in the sense of (3.1.9) (V *=V", since V =VT), but
can refer to matrix complex conjugation if an appropriate representation is chosen. This
is a special case of the situation discussed after (6.5.59). Since ® is in a real representa-
tion of the group of V., the polar vector multiplet, we can use improved rules with
respect to it, but must use the unimproved form (at one loop) for V _, the axial vector

multiplet.

We consider the one-loop graphs with two external polar vectors and one external
axial vector. Depending on the group structure, the anomaly in the line of the axial vec-

tor may or may not cancel. If the axial anomaly is nonvanishing, axial gauge invariance
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is lost, and the axial vector cannot be considered physical. To be general, we consider
the axial vector as merely a device for defining the appropriate axial current. We then
evaluate the divergence of that current in terms of the polar vector fields appearing at

the other two legs.

Varying the action with respect to any of the axial vector multiplets V', we obtain

the axial current superfields
J, =T, ® , (6.7.3)

where we have written V.=V *T,. Gauge invariance of the action requires the on-
shell conservation law V2J, =0 (as follows from substituting the transformation law
eV AV i

= e"e¢" e 7™ into the action and varying with respect to the chiral gauge parame-

ter). Therefore we define the anomaly A, by

Vi, =4, . (6.7.4)

We will find that the anomaly V*.J is proportional to W?. The component (axial)
current is given by j .= % Vs, V,]J|. Tts divergence is therefore given by

Vo‘&ja& ~ [V V| ~ (VPW? = V2W?)| ~ e f .4, which is the familiar component

result.

The anomaly can be calculated by evaluating the matrix element
V2<oT, ® > | (6.7.5)

where ® is now covariantly chiral with respect to V,. In the calculations below we omit
the group theory factor. We compute the matrix element < ®® > and at the end we

must take the trace of its product with T, .

We will evaluate the anomaly by three methods: (1) the Adler-Rosenberg method,
(2) with a Pauli-Villars regulator, and (3) with point-splitting regularization.

In the Adler-Rosenberg method we need only compute a triangle graph with one
axial and two polar vectors at the vertices. Other, self-energy-type graphs, with one vec-
tor at one vertex and two at the other also contribute. However, their contribution
merely covariantizes that from the triangle graph and therefore, by imposing gauge
invariance, the full result can be extracted from this graph. We use the background-field

formalism of sec. 6.5. At the axial vertex we have, from < ®® > itself,
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D*D?* | (6.7.6)

while at the other two we use the linearized expression (6.5.65) with on-shell, Landau-

gauge polar vectors (0", = D*W, = 0):
—i(T“0, + W°D,) . (6.7.7)

The supergraph is shown in fig. 6.7.1:

Fig. 6.7.1

It is easy to check, by integration by parts, that the WD, W° Dj terms do not
contribute on shell. Therefore the D manipulation is trivial and we must evaluate an
ordinary graph, as in scalar QED, with 1 at one vertex, and —iI'*0, at the others. The

Feynman integral is

d4p Doy a b
/ Gn) P — 0t 1 g L W) (6.7.8)

This directly gives the contribution to the matrix element < ®® >. (If considered as an
ordinary triangle graph, with external vectors attached afterwards, the factor of 2 from

functionally differentiating the two I'*’s corresponds to this graph plus that with crossed

vector lines.)

According to our supersymmetric dimensional regularization prescription the rest
of the evaluation should be carried in D dimensions and the other graphs should be
included. However, gauge invariance requires that I',(¢) enter the result in the form
F = —iq,I'y, and a term of this form can only be obtained from the triangle graph, by
extracting from the integral the (finite) part proportional to ¢',q,. After introducing

Feynman parameters and shifting the loop momentum this part can be easily extracted,
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and we obtain for the complete contribution to < ®® >

11 1 “ /
1 (g gr (9)Fa(q) (6.7.9)

or, in x-space

_ _ 1 E ab
< PP > = 1@ O (F F_b) . (6.7.10)
Here
1 = 1
Fab 8[,11’@] = 5 Caﬁv(&WB) -+ 5 C&BV(QW@ (6711)
and hence

= —AVW? + h.c. | (6.7.12)

where we have used the field equations V,W* = VW = 0.

The anomaly is given by

1 1 _
L pepl=— L =

1 2
1 @ O ab @ O @)y w= . (6.7.13)

This must be multiplied by the group generator T, and a trace taken (with
W.,=W.,"Ty).

In the Pauli-Villars regularization method we compute

lim V(< ®® > — < ®,,®,, >) (6.7.14)

m—0o0

where ®,, is a massive regulator field. In this regularized expression we can use the

equations of motion
Ve =0, V20, = md,, (6.7.15)
so that the relevant quantity to compute is

— lim m < ®,9, > (6.7.16)

m m
m—00
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Using (6.5.44,61) we have

56
B, P, > = — ~W(j
< m m > 6] 6] W(])
o2 o T2
=V VT gro VT (6.7.17)

OO, — m?) O, — m?

We must therefore compute a loop graph, with V? replaced by D? (this is the only
source of D’s), and (0, — m?)~! expanded in powers of the background field (we need

at least two D’s):

1 1

~
D+ — m2 D(] — m2

1

DO — m2

(—iW"D,) —iW’Dy) +-- (6.7.18)

o
D(] — m2

The only nonzero contribution in the m — oo limit comes from the term explicitly

written. In momentum space it corresponds to a triangle graph with D? at one vertex

and WD, W" D at the other two. The anomaly is therefore given by

dp 1
— lim m? 212
A ey A e — 0P+ o+ ] )
1 2
= — ) W (6.7.19)
as before.
In the point-splitting method we compute
D? < ®e VP > =< oV VD >
= <de V(e VVeV)2P > . (6.7.20)

Using the commutation relations (4.2.90) of the covariant derivatives, we find

e VV eV =V — W, + %eadeﬂé(vﬁéwu) +0(€) . (6.7.21)

v

We then expand the remaining e = 66'8[1 —ide-T + O(e?)], express everything in

terms of < @(x)ee'a&)(x) > = < ®(z)®(z + €) >, and take the limit ¢ — 0.
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However, we can limit the number of terms we need consider by evaluating

< ®(z)®(z + €) > first. The only terms which are divergent in the limit € — 0 (from
power counting) are given by the tadpole and propagator graphs, as shown in fig. 6.7.2:

DQ

Fig. 6.7.2

(As before, we have two factors D? and D? from & and &, and
O, - 0Oy~-i(IT*0, + W*D,).) The WD, term does not contribute. The graphs are

evaluated as

/ d'p ., 1 11
e — = -
(2m)! p* (4m) e

d'p . P 1 1
-+ Tep = = —e- T 6.7.22
| e e s (6.7.22)
so that
_ 11 , ,
<P(x)P(x+€)>=-——5—=[1+ie-I'+ 0()] . (6.7.23)
(4m)? €

We thus keep factors multiplying < ®® > only to O(e?), and also drop factors O(e?)
which have a D; acting on < ®® >. The result is

D* < @e€'v&) > (_eadwaﬁ& - éeadwaeﬂdwﬂ> < (pee.a&) >

1 1
— (1+ie-T)

~ (=W, Dy + EW?

1 . . _
s ao BB . . 2
(1)’ (—1 Fee WDl s+ W ) . (6.7.24)

0

(Note in particular that only the €Y part of the remaining eV contributes, and only
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up to O(e) in e_€'vv&e€'v.)
Using the chiral representation relation

DT

we obtain the same result as by the previous two methods. (Note that in ordinary QED

the calculation is slightly simpler because the point-split propagator goes only as ¢ *.)

At higher loops, and also at one loop for real representations, our covariant Feyn-
man rules apply. Consequently the triangle graph contribution to the effective action
depends on the connections and field strengths and not on the gauge fields themselves
and, by simple power counting, it is therefore superficially convergent. We draw two
conclusions: There are no one-loop chiral anomalies for the Yang-Mills multiplet itself
(the chiral ghosts are in a real representation of the group), and there are no higher-loop
chiral anomalies for any multiplet: For the chiral current defined by (6.7.3) the Adler-

Bardeen theorem holds.

The Adler-Bardeen theorem is not in conflict with the existence of higher-order
contributions to the (-function. As we mentioned at the beginning of this section, the
chiral current that is in the same multiplet with the energy-momentum tensor is not the
one we have discussed here, but the R-symmetry axial current. It is a member of the
supercurrent defined by coupling to supergravity, and in general its anomaly does receive

higher-order radiative corrections as do the anomalies of its supersymmetric partners.
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7. QUANTUM N=1 SUPERGRAVITY

7.1. Introduction

The quantization of superfield supergravity presents a number of new features
and complications that we discuss in this chapter. Once the gauge-fixing procedure and
ghost structure have been determined Feynman rules can be obtained. Useful as super-
graphs are in global supersymmetry, their power is awesome when it comes to doing per-
turbation theory calculations in supergravity. Much of the simplicity of superfield calcu-
lations in supergravity, as compared with component calculations, occurs because, as in
global supersymmetry, we deal with objects having fewer Lorentz indices. The super-
gravity superfield is a Lorentz vector, as compared to the Lorentz second-rank tensor
and vector-spinor of component supergravity. Consequently the interaction Lagrangians
have fewer terms, and the tensor algebra is much simpler. For example, the three-gravi-
ton vertex contains 171 terms, while the corresponding three-vertex in supergravity con-
sists of only 27. As a result, it is possible to do calculations in superfield supergravity
that have not even been attempted in ordinary quantum gravity or component super-

gravity.

The investigation of the divergence structure of quantum supergravity is also very
much facilitated by the use of superfields. Many cancellations due to supersymmetry
happen automatically, and it is much easier to list and understand the possible countert-
erms. In component calculations, with non-supersymmetric gauge-fixing terms for the
graviton and gravitino, the corresponding cancellations do not occur automatically, and

it is much more difficult to determine what infinities might be present or absent.

Background field methods play a crucial role here. Since the calculations are never
very easy, and the algebra does get complicated, it is essential to keep some control of
the gauge invariance of the theory, and this is best accomplished by working in the man-
ifestly gauge-invariant background field formalism. In particular, we have the usual
property that all divergences are gauge invariant: The formalism avoids the noncovari-
ant divergences of gravitational theories quantized in nonbackground gauges. We shall
see that, just as in Yang-Mills theory, the background field quantization has the further
virtue of simplifying some of the vertices. It also allows us to work with only back-

ground covariant derivatives rather than prepotentials, and consequently leads to some
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improvement in the power counting rules for the theory.

The new feature of the quantization procedure is the appearance of large numbers
and new types of ghosts, besides the Faddeev-Popov and Nielsen-Kallosh ghosts. They
arise either because of certain constraints that the gauge-fixing functions satisfy, or are
introduced to remove certain nonlocalities that have been produced by the gauge-fixing

procedure. In addition, we find numerous ghosts-for-ghosts.

We discuss first the background field quantization procedure. Ordinary quantiza-
tion Feynman rules can easily be obtained from the ones we derive by setting the back-
ground fields to zero, but in pure supergravity there is little advantage to using them:
In general, L-loop calculations in ordinary field theory present about the same level of
difficulty as L + 1-loop calculations in the background field method. In the following
sections we discuss the background-quantum splitting, which we pattern after the one in
Yang-Mills theory, the number and kinds of ghosts one may encounter, and the choice of
gauge-fixing function. Once we have the Lagrangian, we can discuss general properties

of the effective action, derive supergraph rules, and do loop calculations.

We consider only n = — % supergravity. In sec. 7.10.e we shall argue that N =1,

n;«é—% theories are inconsistent at the quantum level due to anomalies in the Ward

identities of local supersymmetry (except when part of an extended theory).
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7.2. Background-quantum splitting

We divide the discussion in two parts: the splitting itself, and the expansion of
the action. As in the Yang-Mills case, the splitting into quantum and background fields
is nonlinear and done in terms of exponentials. The simplest way to understand it is as
an expansion of the (constrained) covariant derivatives in terms of unconstrained quan-
tum prepotentials (needed for quantization) and constrained background derivatives;
the simplest way to obtain it is by re-solving the constraints, as in sec. 5.3., but using
background covariant instead of flat superspace derivatives. Except for some small mod-

ifications explained below, the results can be written almost immediately.

The expansion of the action is algebraically lengthy, but straightforward. We give
the part quadratic in the quantum fields, but the procedure can be extended for finding

higher order terms.

a. Formalism

The quantum-background splitting in supergravity follows a pattern very similar
to that of Yang-Mills, and we simply repeat it here, referring the reader back to sec. 6.5
for motivation and an explanation of the procedure. We start with the conventional

derivatives (with degauged U(1); see sec. 5.3.b.8)

V,=E,MD,+ (@A@MWM@MH’MW.K’) :

[Va, Vit =TapVeo+ (Rap, " Ms" + RABV’JM;) ; (7.2.1)
covariant under the (vector-representation) transformations:

Vi/=e"Vye™ K=K ;

K = KMiDy + (K,/iM g + K il %) (7.2.2)

The solution to the constraints expresses the derivatives in terms of the unconstrained
prepotentials H . and ¢ and ordinary flat-space derivatives D), in the chiral representa-
tion, as in sec. 5.3. For the time being we use a chiral density compensator. We achieve
our quantum-background splitting by substituting into the solution background covari-

ant derivatives for the flat derivatives. The fields H

and ¢ are the quantum fields,
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while the background fields appear implicitly in the background derivatives.

We take the background covariant derivatives V, in the vector representation,
V= (VQ)T, iV, = (z'VQ)T, and require them to satisfy the same constraints as V4.

This immediately allows us to solve the representation preserving constraints:
{v()( Y vﬂ} = T(,yﬂ’}/vfy + R(yﬂ(M) (7-2.3)

and its hermitian conjugate are obviously satisfied by (cf. sec. 5.3.b.2)

v& = \I!(v& + ('U&,BW M'yﬁ + J&éiﬂiﬁ) ) (724&)

Vo= e "V, +w, "M, +w T8 (7.2.4b)

where H = H4iV ; introduces the quantum field H* which also appears in ¥ and the
quantum connection w. We have written the derivatives in a chiral representation with

e2e? and multiplying all quantities by e from the left

respect to H4. Replacing e =
and e ? from the right would take us to a quantum vector representation. However, for

quantization, it is simpler to work with H.

It is also convenient to define background covariant hatted objects as in (5.2.23),

but from background covariant derivatives and H:

Va= BV 4 (8,7 M+ 8 I = — (<) B (T ) (7.2.6)

and define T 15 and R 4p in terms of them. We also define the superdeterminants, with

their appropriate hermiticity conditions:

E =sdet E, |, E=sdetEM | E:sdetEAB ;

A

E'=(EY e | EV=(®YH , E'E'=(EYE e . (7.27)
We have used the identity, for any function f,
FE'HE = Hf + fi(—1)*V H* (7.2.8)

(dropping the term iHA(E_1€AE):—iHA(—l)BTABBzo (see (5.3.42)). The
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background covariantization of the operator e ¥ is thus e BHE — Ele TR, It results

in the hermiticity conditions (from (5.3.51b) and (7.2.9))

A

(L-e BBy L o H (1. BB pol (Bl B (7.2.9)

We use a conventional constraint to determine the vector covariant derivative

V=-1{Ve,Vs} , (7.2.10)

. —
[e7e%

) — B
0) and T&(Bﬁ 0 to

. . 5 .
and conventional constraints 7', 5 = 0 (or equivalently T, 804

determine the spinor connections:

) .’; — .(’;_ . = v T
a8 504 Vﬁ)lan - (waﬂ ) )
e R b ) P N R
Gay' = = 3 Td,(ﬁa = (waﬁ LI (7.2.11)
(compare to (5.3.55) and (5.3.25) after degauging).
Finally, we impose the n = — % conformal-breaking constraint, which determines ¥
by a procedure similar to that of sec 5.3:
V=g (e Pl ® BN (7.2.12)

where ¢ is background covariantly chiral: V ;¢ = V6 = 0. For quantum calculations,
we have to either express ¢ explicitly in terms of an ordinary chiral superfield and the
background gauge field or, what is preferable in general, derive covariant Feynman rules

that allow us to work with it directly.

The full derivatives V , transform covariantly under two sets of transformations:
(a) Background transformations:
VA/ — ez'KVAe—z'K ,
H' = eiKHefiK , (b/ — eiK(befiK , WI(M) — ein(M)efiK ,
VAI — 62’KVA€72'K ,

K=K =K'V + (K, iMs*+ Edﬁiﬂﬁ-&) . (7.2.13)
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These transformations follow from the requirement that the full derivative V , transform
covariantly and ¢ be background covariantly chiral: From (7.2.4a) or (7.2.6,12) it fol-
lows that ¥ and w transform covariantly, and therefore, from (7.2.4b) H transforms

covariantly.

(b) Quantum transformations:

Vi =V, (7.2.14a)

iA — LV, A2 — VA — G AL)

o =e" 73 b (7.2.14b)
Vi =L,(N)eVge ™ ; (7.2.14c)

where
A=AV, #N , [Vs,Aln=0; (7.2.14d)

for any background covariantly chiral n (Vg n =0). We have taken the standard chiral
representation transformations (5.2.16,67) for the quantum superfields H and ¢ except
for certain modifications required because of the V ,’s in H and A. Since

[H,A] = (HA* — AHAYiV , — APHA(T 5OV + Ryp(M)) ,  (7.2.15)
eiletl g~ generates Lorentz transformation terms. We introduce

X(A)=X,"Mg*+ X (;[;) M ﬁ'o.‘ to cancel them. Similarly, the usual transformation law of
¢ has the additional G,A* term because we require ¢’ to be background chiral and
V;(V, A= VA" —iG,A%) =0. The transformation (7.2.14c) of V, follows from
(7.2.14a,b). The A-dependent Lorentz transformation L,”(A) corresponds to the w,”
term in (5.2.21) with additional contributions from X (A).

In practice, we never need to compute X explicitly. Using (7.2.15) and the Baker-

Hausdorff theorem,
o oH p=ih _ JH'+Y(M) (7.2.16)

for some Lorentz transformation Y (M). Since H' is a scalar operator,
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H',)Y(M)|=Y'(M) (7.2.17a)
for some Lorentz rotation Y’ and hence
e +Y = efl'g=X (7.2.17Db)

thus defining X. Introducing X into (7.2.14b) is equivalent to the prescription of drop-
ping at any stage of the calculation Lorentz terms other than those implicit in V4. For
convenience, we introduce the operation < > that removes explicit Lorentz generators as

follows: For any
A=AV, + (A M+ AT (7.2.184)
we define
<A>=A'V,, <el>=et . (7.2.18b)
The transformation law for H can be rewritten
' = < ebefle ™ > (7.2.19)

The quantum-background splitting we have described is equivalent to the following

splitting of the prepotential in terms of a quantum chiral H and background vector €2:

eH(spl’z?t) = < eﬂeH Q >, (7220)

which is analogous to the Yang-Mills case (6.5.25). The usual chiral representation

transformation law

< el > 1= gl < (Rl ® 5 il (7.2.21)

can be rewritten as either background (7.2.13) or quantum (7.2.14) transformations

analogous to those of (6.5.27).

As in the nonbackground case, the quantum transformations must preserve chiral-
ity (7.2.14d). Therefore, A takes the following form, expressing it in terms of the uncon-

strained supergravity gauge parameter L (cf. (5.2.14)):

Ay=—iVs0 L, , A, =V?¢07°L, . (7.2.22)

ad -
(We have made the redefinition L, — ¢ °L, to simplify quantization, as will be

explained in sec. 7.4.) Furthermore, we choose the (quantum) Aj-gauge H® = H =0
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(see (5.2.18)), which determines A in terms of L, :

Ay =e "V L, + OR,G, W) . (7.2.23)

«
This supersymmetric gauge choice does not introduce any ghosts.

We now take the classical supergravity action (5.2.48) in terms of full superfields
and express it in terms of the quantum gauge fields and the background covariant

derivatives, using (7.2.4-12):

Sp=— 2 [ dzdto B

K2

E'=E (1 e B TRy ige g (7.2.24)

This expression is the direct background covariantization of (5.2.72), including a factor
of E™! to make it a density. The quantum fields appear explicitly and in E, while the

background fields appear implicitly in covariant derivatives and E.

b. Expanding the action

Our next task is to expand the action in powers of the quantum fields. This is a
tedious but healthy exercise and we outline the steps needed to get the quadratic part,
which we need for discussing gauge-fixing, and for doing one-loop calculations. Cubic
and higher-order terms are needed for higher-loop calculations, but we do not derive

them here.

A~ 1
We must expand the exponentials and the determinant E 3 in (7.2.24) in powers

of H. We first define A, by

A

EA:</V\A>:EABVBE(5AB+AAB)VB:VA—|—AA . (7225)

A~ 1
The expansion of E ™3 is then, to quadratic order in A (and H):

=

E7i = [sdet(1 + A)] "3 = exp(— % strin(l + A))

—1-1 L 241 2
=1-3 strA + = (strA)” + 5 str(A?)
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1

1
=1 DDA L DA LAt L (1.226)

W =

To find the explicit form of A,”, we return to (7.2.5,6) and write A, explicitly. Since
< /V\o; > :/V\o; = VC;,

=0 . (7.2.27a)

<V,>=<e Ve >=V,+<[V,, H >+%< ([V.,H],H >+ < O(H?) >
(7.2.27D)

we obtain A,” (+ 6,7 ) from the coefficient of V on the right hand side of (7.2.27b).
Since H is a scalar operator, we can drop Lorentz rotation terms produced by the com-
mutators at each stage, because they can produce only more Lorentz terms (see

(7.2.17a)). We obtain A,” from the right hand side of

<$Q>=—z’<{$a,$o;}>

=V, —i<{Vs[V, H}>— z% < (Vs [V, H,H}> . (7.2.27)

Again we can drop Lorentz terms at intermediate stages of the calculation: They con-

tribute only to A,”, and since A;” =0 (to all orders), they do not contribute to the

determinant E. We first find A,” to lowest order in H:

Vo, H] = [V, H"V,] = i[V,, HV, + il [V, V]

=i(V,HY)V, — Hj(ﬁ% — G";V,) + Lorentz terms
and hence
AS=-H.G" | A'=ivV,H' . (7.2.28)
(Again we can ignore Aaﬁ..)

Proceeding in this manner we then find, to the order in H ad necessary for the

quadratic action (H -V = HV _,):



7.2. Background-quantum splitting 417

8 _ L. I
A == (1 - il -V)H,;,G"

(V. H)H

N | —

X7 : .. € 1 €
6 C[_ 0,V ;G + 5;4(W, 7 — 26 VIR)]

b

1 5 e 1 ¢ snm
+ 5 H ;G"H ,G" — ~5,"RRH

Al =iV, H"

Y

Alﬂ = - i(_vd‘HUze’Gﬂg + Rva‘Hﬂd) )

AL =V V HE + 85507 (7.2.29)

We have used the fact that, for the part of the action quadratic in H, we need only the

linear parts of A,”” and Aa&ﬁ , and we can also drop any total derivatives of quadratic
terms (but not if we were to compute higher-order terms in the action). After substi-

tuting (7.2.29) into (7.2.26) we find, again dropping irrelevant terms,

5L l (= o 1.
Es=1-{V;V 0" — (1 - il - V)G - H

(VL H)H [0,V ;G + 6 2W, " — 6, VIR)]

] =

(G- H)? - 2G*H? — RRH2}+ (V5V HY — G- H)?

l\Dl»—l

+ % {(vﬁVQHvé _ 5ﬂ5HaeG%)(V5V7H"B _ 55/3H_Y<Gu<)

~2(V;H ,G¥* - RV, H';)V,H — (G- H) — 2G°H’]} . (7.2.30)

We also have the relevant terms of ( using (7.2.10), and expanding ¢ = 1 + x):

ol =

(1 . 67E*1}7E> ,

=1 2iV H+ (V. H)

pe g =1+ (x+%) +x¥—iH-VY . (7.2.31)

Finally, we obtain the quadratic part of the Lagrangian by multiplying together the
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various contributions, to obtain :

EE—1:1+(X+>Z+%G-H)+XY—%i(X—Y)V'H+%(X+Y)G'H

loppr2 1 g Lo .ome Lo afy2
+§RRH +E(G H) +12(V H) 36([V5,VQ]H )
1 X7 . 04/3.’ 1 a 7By
- E(G-H)[Vﬁ,VQ]H + gR(V H7)(VsH )

1 5 A v a. .. (e « €
+ (vumé)HEE[a7 VG Ot 5 2W S — 5 “VIR)]
émﬂ' (V. V;ViV, + V. V;V;V, ) HY (7.2.32)

By using the identity (with L1 = VO‘O‘VM)

V.V;V;V, + V. V;V;V,

v L poe¢ ¢ ¢ X7 17 C T
= Oy C (- +{V*,V*} - S [-RV' + GV + (V'G") M, + WM, V)

+ QRRMM,]V[BS - (V(QR)VV)M% : (7.2.33)

we can rewrite (7.2.32) as

_ _ 1 ’ _ 1.,
EE 1:]‘+{X+X+gHa()(Gao.c}+{XX—}_gZ(X_X)VOzO.cH(/w(—}_E-HQ(XI:IHOCQ

(V24 SR H) (V2 + S R)H )}

W~

1
4+ -

a2 1 g a2
12 (VadH ) - % ([Vo'n Vu]H ) -

+{ 5 (X +HOH G g + 1 (HG, ;)" + ZRRHH

()((X

+11—2(V2R+V2R)HWH + 2 HW(RV2+RV2>

1 ad 31T 1 ad N vz Ly 3
— 5 H "GPV V,H = H (V.G )V H s + (V(dGﬁﬂ'))VﬁHuﬁ]

1 ad X7 3 1 ad ~ T
= (HG )V, Vo H” + - H (WamVﬁHW,O;—I—WdB’VBHM-)} . (7.2.34)
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where we have also used the Bianchi identities (5.4.16,17,18). The expression in the
first set of braces is linear in the quantum fields. If sources are coupled to them, varia-
tion with respect to H and x gives R = J and G_4 = J;, using

/d% d'OE 'y = /d% 4’0 ¢ ®¢*(V? + R)y = /d% d*0 e Ry (7.2.35)

(see sec. 5.5.e; we are in the background vector representation). The expression in the
second set of braces is the direct covariantization of the free Lagrangian, which is

obtained by setting all background fields to zero:

— P = x4 3 (0~ )0, H + L HOYO — DD — DDA,

[e7e%

)

4 %(a )2 31_6([5. D, |H%? . (7.2.36)
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7.3. Ghosts

In the next section we shall discuss in detail the quantization of superfield super-
gravity. The procedure is not entirely straightforward and runs into a number of sub-
tleties not normally encountered in simpler theories, so it is desirable to know ahead of
time the general ghost structure of the quantized theory. This is the topic of the present
section. We discuss the following subjects: (a) how the linearized ghost structure can be
easily determined before performing the quantization; (b) the modifications to the Fad-
deev-Popov procedure necessary when using constrained gauge-fixing functions in the
presence of background fields; (c) how to obtain only propagators that go as p2, and
avoid infrared difficulties, while still keeping the action local, by the introduction of
additional fields; and (d) the necessity for appropriate parametrization of the gauge
transformations (for which (density) compensators are crucial) so that the Faddeev-
Popov procedure is applicable, and so that we only use the types of superfields allowed

in an arbitrary supergravity background.

a. Ghost counting

We first give a simple rule for counting all the ghosts in any gauge theory. In
ordinary gauges some of these ghosts may decouple, but in background field gauges all
the ghosts couple to the background. We begin by deriving the rules for a general com-
ponent-field gauge theory. To streamline notation, we drop all indices and indicate
abnormal-statistics fields by primes. The general quadratic Lagrangian for any gauge

field can be written in the form A[J"ITIA, where II is a projection operator and n is an
1

integer (when A is a tensor ) or half-integer (when A is a spinor : [12 = ﬁ ). For physical

fields n =1 or % ( The operators [, ﬁ, etc. may be covariant with respect to back-

ground fields, and may include “nonminimal” couplings to the background.) The gauge
invariance is expressed as 04 = 9\ , with I[IOA = 0. After gauge fixing, the Lagrangian
becomes A[]"A but, in order to cancel the A = O\ mode, which did not occur in the
original Lagrangian, we must introduce a ghost B’. Its Lagrangian is obtained through

the substitution A— > A’ = 0B’ in the gauge-fixed Lagrangian. We thus obtain
IL=AO"A+ (0B)O"(0B") = AO"A+ 'O 1I'B’ (7.3.1)

where II' is a new projection operator. In the simplest cases II'=1 (e.g., if A is the
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photon field) and we are through. More generally (e.g., if A is an antisymmetric tensor
gauge field) B’ has a gauge invariance, and we must continue the procedure until no
gauge invariance remains. (This is a finite procedure, since each ghost has one less vector

index than its predecessor).

The final Lagrangian thus has the form
IL=A0O0"A+p OB +0c0O""?C +--- . (7.3.2)

For tensor fields, a field with kinetic operator (1™ represents m fields of that type with
kinetic operator [1; for spinors, (1™ represents 2m fields with a . (If [0 includes back-
ground  interactions  their contribution  to  the  effective action s
Indet 0" =mindet d=2mindetd .) Thus, for physical tensor fields A (n = 1), the
number of successive fields goes as 1,—2,3,—4,..., while for physical spinor fields
1
2
These numbers represent the net number of normal-statistics minus abnormal-statistics

(n = =), they go as 1,—3,5,—7,..., where the minus signs indicate abnormal statistics.
quantum fields in the linearized Lagrangian, all coupling to the background fields. Fur-
thermore, as we will see below, all the fields in this counting decouple at higher loops
(and at one loop when one is quantizing in ordinary gauges rather than background field
gauges) except for the physical fields and (for nonabelian theories) the Faddeev-Popov
ghosts of the physical fields. There may also be additional compensating fields coming
in pairs of opposite statistics (“catalysts”: see below) which cancel in this counting, and
which also cancel in one-loop background field calculations (but may contribute for
higher loops). Examples where this counting includes more than just the physical and
Faddeev-Popov fields are: (1) the gravitino, which has 1, —3 instead of 1, —2, due to the
appearance of the Nielsen-Kallosh ghost (see below); (2) p-forms, which have
1,-2,3,...,(=1)"(p+1) instead of 1,—-2,4,...,(—1)"2”, due to Nielsen-Kallosh ghosts

and “hidden” ghosts (see also below).

Generalization of the counting rules to superfields is straightforward, though each
case has to be treated separately because of the greater variety of superfield gauge trans-
formations. We first generalize to superfields the result of the previous paragraph for
obtaining the number of superfields with standard kinetic term corresponding to one
with a higher-derivative kinetic term. When [1™ is the kinetic operator for general

unconstrained superfields, it is equivalent to m general tensor superfields with kinetic
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operator [, or 2m general spinor superfields with kinetic operator ﬁ (Note that, as dis-
cussed in sec. 3.8, sdet[] = 1 unless [] has nontrivial f-dependence.) However, for chiral

superfields the situation is slightly more subtle (see (3.8.28-36)):
m 2m
/d% 2?0 o0"® «— Z/d% 4’0 ,00, «— Z/d% d'0 3,3, , (7.3.3a)
i=1 i=1

2m—+1

/d% do o0"d «— Z /d% d'6 o,®, | (7.3.3b)
i=1
4 4y [arm: o QR 1 4 2 «
d'z d'0 ®°O™i0° 3 ®, HZ[g diz d*0 o0, + h.c.] . (7.3.3¢c)
=1

The ®® form of (7.3.3a) gives the result for chiral scalar superfields, whereas the ®[]®
form is applicable to chiral (undotted) spinor superfields. This latter result can also be
related to (7.3.3c) by noting that (7.3.3a) for m =1 and (7.3.3c) for m = 0 are merely
different gauge choices for the gauge-fixed action for the tensor multiplet (cf.

(6.2.32-34)).

We now consider some examples of superfield ghost counting. The simplest is the

vector multiplet. The classical Lagrangian is VOILV |, with §V = i(A — A) , where A is

chiral and II: is the superspin % projection operator. After gauge fixing (which removes
2

I1:) and the substitution V— > i(®’' — &) with chiral ghost ® to cancel the gauge

2

modes, we obtain
L=vOv+o09 . (7.3.4)

(With d*@ integration the ®'[1®' and ®'[09’ terms give zero, modulo nonminimal cou-

plings which we incorporate into the definition of ®[J1®".) The ghost Lagrangian is

equivalent to three of the usual terms ®'®’ (see (7.3.3b)). We thus expect three chiral

ghosts, which agrees with our results from explicit quantization in sec. 6.5.

A second example is that of the tensor multiplet, with classical action
/d4xd29 gb“l:lH%Jrgba and gauge invariance §¢, = iD*D, K, K = K. After gauge fixing
(which removes the projector H% .), substitution leads to a first generation ghost

Lagrangian V/0’IL V', and its gauge invariance 6V’ =i(A —A) leads to a second
2
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generation ghost Lagrangian ¢[1*¢. (The gauge invariance of V' is the same as the
gauge invariance of the variation of ¢,: ¢, (K) = d¢,(K + iA — iA).) We end up with
one ¢*O¢,, term, two V'OV’ terms, and five ¢¢ terms.

A third example is that of the general spinor superfield v, which together with a
compensating chiral scalar describes the (; , 1) multiplet (see sec. 4.6; we are using the

second form of (4.6.42), but with the compensator V gauged to zero). The Lagrangian

has the form

IL = \I!‘;ia‘xc;fl\lfa + h.c. — 20® + crossterms (7.3.5)

N | —

~

where II is a sum of projection operators and IL has the gauge invariance
o0, =A,+iD,K, 6®=—D?K, with chiral A and real K. In the gauge fixed
Lagrangian II is absent and we have a chiral spinor ghost ¢, and a real scalar ghost V'’
(corresponding to A, and K, respectively) without any further gauge invariance (the

variation 61, d¢, is not invariant under any changes of A® or K):
IL=T%9°0, + 3P + ¢3¢, + V'OV’ (7.3.6)
()¢ cross terms can be eliminated by a suitable choice of gauge fixing function).

The other form of the theory has the Lagrangian %\Tf&iﬁo‘&ﬁlﬂa + h.c.+ --- with a

different f[, and gauge invariance 0V, = iD*D_ K, + iD,K,. After including ghosts, it

becomes
L =%, +V,OV, + VOV, + d0% . (7.3.7)

The chiral scalar field ® is a second-generation ghost, arising from the invariance
V', =i(A — A) (due to the invariance of §¥, under K, — K, + i(A — A)). We thus
obtain the equivalent of three real scalar ghosts and five chiral scalar second-generation

(normal statistics) ghosts.

We consider now n = —% supergravity itself, with kinetic Lagrangian

HOIH + Xx (+ Hx cross terms), where Il is a sum of projection operators. We have
the (linearized) gauge invariance 5Haé = Dafg—ﬁgLa, dx = D*D_L*, with general
spinor gauge parameter L,. After gauge fixing we have a Lagrangian

HOH + xx + ;E‘;’ Di@a&ﬁ’;b‘”, where the ghost term is obtained by substitution in the
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gauge-fixed Lagrangian with the gauge parameter L, replaced by the ghost ,. We
have a new gauge invariance, ¢,/ = A, where A is chiral. (This reflects the invariance
of the original gauge transformations under §L, = A,.) We thus introduce a second gen-

eration chiral ghost ¢, and are finally led to the form
IL = HOH + xx +¢'0OM + o0pe (7.3.8)

We obtain the equivalent of three first-generation general spinor ghosts, with Lagrangian
QZW, and two second-generation chiral spinor ghosts. In the next section we will derive

these results from the gauge fixing procedure, and give the results for a variant form of

the n = — % compensator which leads to a different set of ghosts.

b. Hidden ghosts

In addition to the Nielsen-Kallosh ghost, which emerges from a careful applica-
tion of the gauge-averaging procedure (see (6.5.12,13)), there is a second subtlety that
may occur, and which must be handled correctly in order to arrive at the correct set of
ghosts. This has to do with the occurrence of gauge-fixing functions which satisfy con-
straints. In the nonsupersymmetric case the simplest example is given by the 2-form A,

in a background gravitational field. The naive 't Hooft gauge averaging

[ D187 Ay~ f)en(~ [t g ) = el - [ s g (VAL (7.39)

would give an incorrect result, since the constraint in the J functional implies V - f =0,
and introduces extraneous dependence on the external gravitational field. We would

therefore like to put just the transverse part of f in the ¢ functional, and in the gauge-

averaging function as f* — %f@(éﬂ— %Vgl:lflvg)fé. However, since then only the

transverse part of f appears in the functional integral, the integrand has a gauge invari-
ance 6 f, = V, A, so we must introduce appropriate gauge-fixing and (Faddeev-Popov and
Nielsen-Kallosh) ghost terms. The intermediate steps vary depending on the choice of
gauge-fixing function (e.g., V- f vs. 0°'V - f), but the net result is that one obtains —1
additional scalar fields, (a hidden ghost) and thus the total set of fields consists of 1
2-form, —2 1-forms, and +3 scalars (vs. the +4 expected from considering just the Fad-
deev-Popov ghosts of the vector ghosts of the 2-form), in agreement with our general

counting argument given above. Similar arguments apply to higher-rank forms.
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A simpler form of the argument for the necessity of these “hidden” ghosts can be
given in supersymmetric theories. Consider again the chiral spinor gauge superfield ®,,,
with gauge invariance §®, =1iD*D K and gauge-fixing function
F=F= %z’(DatIJO‘ — D_(;tfo.‘). Because of the chirality of ®, F satisfies the constraint
D?F =0, so that F is a linear superfield. The usual gauge-fixing procedure involves
introducing in the functional integral §(F — f); however, the linear nature of F' would
imply that f is also linear, an unfortunate feature since it is impossible to functionally

integrate or differentiate with respect to linear superfields.

This difficulty can be avoided by “completing” F' to a general superfield, by the
addition of chiral and antichiral pieces to it. We do this by replacing F' in the § func-

tional with the expression
F=F+(D*0'n+ DO ') . (7.3.10)

and functionally integrating over n as well. The chiral superfield 7 is the hidden ghost.

Now D?F =1 is unconstrained, and so f is also.

To understand the procedure we examine its component form. The J-function
§(F — f) is a product of d-functions for the individual components of F — f (see

(3.8.17a)). Since F' is the II: part of F and the rest is the IT, part, the components of

the two terms in (7.3.10) appear in different component §-functions. The D*f|, D,D*f]|

and D?D?f| components are set equal to components of 1 without spacetime derivatives
(which is why we included the D*[0~' factor), and without any F = %z’(Dana — 5&5‘;)
contributions. Averaging with exp / d*z d'0 f? produces an action for these n compo-

nents that does not contribute to the functional integral upon 7 integration (trivial
kinetic terms). The f|, D,f| components produce standard gauge-fixing terms for the
gauge components of &, which are absent in the Wess-Zumino gauge (namely x, and B
(4.5.30)), and whose contribution is therefore canceled by corresponding ghosts. Finally,
the [Dg,D,]f| component gives the gauge-fixing function 9"A4,, + 8,0°'G, where
G = Im D*n| and A, is the antisymmetric tensor component of ®,. Averaging of this
component of f gives a term (GQAM)2 — GO'G: the usual A, gauge-fixing term as in
(7.3.9) plus the hidden component ghost (+1 scalar with (07!, counting as —1 scalar

with [), in agreement with the above discussion in the component theory.
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A similar situation occurs in supergravity due to the appearance of the gauge-fix-

ing function F, = DiH ¢ satisfying D*F,=0. This will be discussed in more detail in

the next section.

Note that these hidden ghosts couple only to background fields, and thus con-
tribute only at one loop. It would be desirable to have a general derivation of these
ghosts based on BRST invariance of the gauge-fixed action, from which Slavnov-Taylor
identities could be derived. The appropriate BRST transformations would be those
whose Slavnov-Taylor identities implied gauge-independence of the effective action. At

present this approach has not been worked out.

c. More compensators

Unwanted terms in the Lagrangian, such as those leading to p~* terms in the
propagator or nonlocal vertices, can sometimes be canceled by introducing additional
fields and gauge-fixing them conveniently. Since only the ghosts discussed in the preced-
ing sections are needed to preserve unitarity, contributions of these “catalyst” fields must
themselves be canceled by their own ghosts, and indeed this happens at the one-loop
level. The catalysts may in general interact with the other quantum fields, and hence
contribute at higher loops, whereas their ghosts don’t. If one were to integrate out the
catalysts, their higher-loop contributions would simply reproduce the unwanted terms

that the catalysts eliminated in the first place.

Catalysts are just a type of (tensor) compensator. For example, the compensator
in the Stueckelberg formalism (sec. 3.10.a) is introduced simply to improve ultraviolet
behavior of the propagator, and decouples due to gauge invariance of the interaction
term. In our case, these compensators improve infrared behavior, and do not decouple.
Furthermore, catalysts generally are introduced by ghost fields, whereas previously we

discussed compensators related to only classical fields.

As an example, consider the linearized Lagrangian IL = AC[(1 — II) + oII] A, with
II>=1I and a #0,1. If II were a differential operator, e.g., [17'00, the above
Lagrangian would lead to p~*! propagators. To obtain the simpler Lagrangian
IL = AJA one could make a field redefinition A’ = [(1 — II) —|—oa_%H]A, but if II were

nonlocal this would introduce nonlocalities in the interaction terms.
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Instead we introduce a catalyst field B in the Lagrangian, either with a trivial
kinetic term or together with a ghost which cancels it. We then make shifts
A— A+ OB, B— B+ O'A that cancel the unwanted terms, and give no AB cross
terms. For instance, in the example above, if II is a matrix, we choose B so that
IIB = B (and introduce also a ghost field with opposite statistics and IIB’ = B’ ) and we
add it to the Lagrangian to obtain II' = IL 4+ (1 — o) BB 4+ B'1B’. First making the
shift B — B +1IIA, then the shift A4 — A — (1 —«)B, we obtain L= AOA
+(1 —a)aBOB + B'L0B'. For background interactions B and B’ will cancel at one
loop, but clearly the A shift can lead to quantum interactions of B (but not B’). An
equivalent procedure consists of making the substitution A — A+ B in the original
Lagrangian, and going through the gauge fixing procedure for the new gauge invariance
that has been introduced, namely 64 = A, dB = —X ( IIA = X ). In general, this is the

simplest procedure.

As a superfield example, we consider a real scalar V in the presence of an on-shell

background supergravity field, with Lagrangian
ILy =V (-V°V?V, +a{V*,VHV (7.3.11)

with @ # 0,1 . The superfield V has p~* terms in its propagator and complicated ver-
tices (coupling to the background gravitational field), but it can be shown that the result
for the effective action is independent of a. To show this using catalyst fields we intro-

duce them, for example, by making the shift

V-V+4+Mn+n) , Vean=0 . (7.3.12)

We have now the gauge invariance §V = A + A, dn = —A, with a chiral parameter. We

choose the gauge fixing function F =V?*(V — 1 ¢ 7) and gauge fixing term
—a
2(1 — a)FF, and are led to the Lagrangian
IL= VDV+21L77|:|77 . (7.3.13)
—a

The n Lagrangian is equivalent to that for three ordinary chiral fields n;, : = 1,2,3. The
gauge-fixing procedure also introduces three chiral ghosts, just as for the usual V' super-
field (two Faddeev-Popov and a Nielsen- Kallosh ghost). They exactly cancel the three
ordinary chiral fields at the one-loop level, and leave us with VOV .
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If we had considered a system similar to the above, but where V had quantum
interactions, the n’s would also have such interactions. Then the effect of the 7’s would
be to reproduce, if integrated out, the nonlocalities that would have been introduced if,
instead of following the above procedure, we had made a nonlocal redefinition of V to
cast the original Lagrangian in the VOV form. In this case, the (off-shell) Green func-

tions have genuine a-dependence.

The general procedure is the following: Consider the Lagrangian of an arbitrary

superfield 1 of the form

SOy + > e )y (7.3.14)

where II, —|—ZH¢ =1 and Il is a particular superspin chosen for convenience, e.g., the
i

highest superspin in 1 or the superspin that occurs most frequently in interaction terms.

If some of the constants c; are equal, we may combine the corresponding projection

operators II; into a single one (including II,, which is merely a IT with ¢,=1). Also,

some ¢; may vanish, which implies a corresponding gauge invariance. We now introduce

catalysts by the shifts

where O; are operators that may be nonlocal, but only to the extent that all nonlocali-
ties in the interaction terms can eventually be removed. Then we fix the corresponding

gauge invariances

o = Z O\ , hy=—X\ , (7.3.16)

in such a way that the Lagrangian for 1 becomes simply ", and all crossterms

between v and 1/31 are canceled: The gauge-fixing functions

C,; ~

0;v,) (7.3.17)
1—c

F; = O«zT(w—

with gauge-fixing terms

(1—¢,)F,0"(0,70,)7'F; (7.3.18)
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give the Lagrangian

- JiOzTDnOﬂ&z . (7.3.19)

&D”wzl_c

(0,10, is invertible on F;. Also, it can be shown that 0,(0,0,)7'0," =1I,.) Note that
this procedure includes fixing of the ordinary gauge invariance. We then add the Fad-
deev-Popov and Nielsen-Kallosh ghosts as

Z[J’zi(OiTOz)Wu +¢50"(0,10) "Wy +hoc.] . (7.3.20)

7

In the interacting case, O; must be chosen so that any background dependence comes
out local, including extra terms which may result from manipulations of the background
dependent [1 and O,. It may be necessary to choose O, such that zﬁL has its own gauge
invariance independent of 1, or to combine several II;, in such a way that the above
Lagrangian for ¥ also needs fixing, in which case the entire procedure must be repeated
for those ;/;’s. However, the ;/;’s always have fewer components than their ¢’s (at least

for N =0 or 1 supersymmetry), so the series must eventually terminate.

d. Choice of gauge parameters

In any gauge theory, some care is required to ensure that the Faddeev-Popov
quantization procedure will lead to correct, unitary results. One way to check unitarity
is to compare results with those obtained in a ghost-free (e.g., axial) gauge. In super-
symmetric theories such a gauge is the Wess-Zumino gauge, and one way to insure uni-
tarity is by making certain that one can pass smoothly from covariant gauges to the
physical gauge without introducing any extra unphysical degrees of freedom. This will
certainly be the case if the superfield gauge transformations are such that they allow the
gauging to zero of the unphysical components by algebraic, non-derivative transforma-
tions (0A=AX and not, e.g., L\ or 0,\%). For example, in ordinary component Yang-
Mills theory the gauge transformation can be written either as 04, = V,\ or as
0A, = V,0ON. However, the latter choice would give a Faddeev-Popov ghost Lagrangian
c'0 - V0Lec (instead of just 0 - Vc), and the extra [1 would give a nontrivial contribution
which would destroy unitarity. It is possible to modify the Faddeev-Popov prescription
to correctly handle the situation, but the simplest procedure is to choose the gauge

parameters in such a way as to avoid the problem.
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In the case of supergravity, it can be verified by the procedure just described (cf.
5.2.10) that the L, parametrization is the only correct one. As we saw in sec. 5.2.c this
parametrization can be used only if we also have the compensator(s) in the theory.
Elimination of the compensator would introduce constraints on the gauge parameter, the
solution of which would express L, in terms of derivatives of other superfield parameters.
However, as in the example above, this would introduce spurious extra ghosts in the

naive Faddeev-Popov procedure and unitarity would be lost, unless the procedure were
modified.

There is one more restriction which must be observed in choosing gauge
parametrizations (and thus ghosts): In general, not all superfields which are representa-

tions of global supersymmetry are also representations of local supersymmetry. In par-
ticular, for n = — % the only type of chiral superfields allowed are ones with only undot-

ted spinor indices: The existence of a dotted chiral spinor would imply

e Vb, = — 2RM s®; = — RCy;® 5 #0 . (7.3.21)

v

Generally, the choice of gauge parameters must be restricted to those which can exist in

an arbitrary background.
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7.4. Quantization

In this section we present the details of the quantization procedure for supergrav-
ity. This involves choosing gauge-fixing functions which allow all kinetic terms to take
simple forms, and finding the resulting ghosts (Faddeev-Popov, Nielsen-Kallosh, and hid-
den). Such simplifications often require the use of appropriate compensators and/or cat-
alysts. This procedure is first applied to the physical fields, then to the resulting ghosts,
the ghosts’ ghosts, etc. (The ghosts reduce in size at each step, so the procedure quickly
terminates.) For now we work with on-shell background fields (R =G =0), so the part
of the action quadratic in the quantum fields becomes (see (7.2.24,34)), in units x =1

(or making the usual rescaling (H,x) — k(H, X)),

(V-H)

1=

S = /d4xd49 E ' [-3xx+ilx — V)V -H — %H -OH -
+ L (v v a4 (v (v

1 oz. V.V .'._
— 5 H ﬁ(wﬂvwﬂdé + W5VsH o) . (7.4.1)

The quantization with on-shell background fields is sufficient for computing physical
quantities (S-matrix elements) in pure N =1 and extended supergravity. We will dis-

cuss the general situation later.

We have the following (off-shell) gauge invariance under the quantum transforma-

tions (from (7.2.14) and (7.2.22,23)):

0H ;= (V.Lj—V;L,)+ O(H) + O(x) ,

§¢p =—(V*+R)p LV, — = [(VP+R)V9 7 L,]o . (7.4.2a)

w| =

Note that the second equation can be rewritten as
§¢* = (V2 +R)V, L* . (7.4.2b)
(On shell we can set R = 0.)

To cancel the Hy crossterms, we choose the following gauge-fixing function:

F,=VH ,+iav_ 05 (7.4.3)
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(for some constant a to be determined below). This is the most convenient gauge choice.

It corresponds to a modification of the transverse gauge V’H of = 0 (see sec. 7.5.b). We

have defined the chiral d’Alembertians

0, -0+wW,v,M’ | O =0+Wvird | (7.4.42)

on arbitrary chiral superfields (i.e., with any number of undotted spinor indices) by

O.6..5=V'V¢,,; . D¢, ;=VVi, . . (7.4.4D)

We have used ¢ = (1+ x)* in (7.4.3) instead of just ¥ so that the Faddeev-Popov pro-
cedure will contribute nonlocal terms to only the kinetic terms of the ghosts, and not to
their quantum interactions, due to the form of (7.4.2b). (This is the reason for our
introduction of ¢~ into the transformation laws (7.2.22).) Nonlocal kinetic terms can
be made local by use of catalyst ghosts, so this is a harmless nonlocality, whereas nonlo-

cal interaction terms would be a problem.

We fix the gauge by first completing the linear superfield gauge fixing function F,
to a general superfield, thereby introducing hidden ghosts ¢,, and subsequently averag-
ing over gauges by using a weighting function that leads to some of the desired simplifi-
cations: We wish to cancel all H terms in the Lagrangian which would contribute to
propagators except for HOIH, including the Hy cross terms. This gauge is chosen by

introducing in the functional integral the factor

/lDCa ID{; D¢, D 5(F o+ VO, ¢, — C)(Fs+ VO ¢ — ()
xexp{/d% d'OE!

(V¢ — VG = 5 (V¢ + V) + (V)Y iC)) (7.4.5)

x[—

] =

and carrying out the integrals over (,. This gives the gauge-fixing terms and the hidden

ghost action

Sor = [aato BHL V0 - L9V HY - (920 (V)
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[ 3i(V-D)(ad’ — a8) = 3 (06" + TF) + 3 01’7

+ 3V 0L e} (7.4.6a)

Upon linearization (and using the on-shell condition R =0), the ¢ terms become

—5i(V - H)(ax — ax) + 30aaxy, so we choose

(7.4.6b)

1
a=-
5

to cancel the Hy crossterms in (7.4.1).

We can show, however, that the hidden ghost Lagrangian gives no contributions.
(Note that it has no quantum interactions and contributes at most at the one-loop

level.) We perform two successive “rotations” (with unit Jacobian)

(1) b — bu+ 0V VIS G5 b5 (7.4.72)

(2) o= ba » G5 — bi+icV VLG (7.4.7b)

choose b and ¢ to cancel the ¢,p, crossterms, and rewrite the hidden-ghost action in chi-

ral form

S = /429 e o, + h.c. | (7.4.8a)

(recall that the background is in vector representation) or, with the field redefinition

Go — &2 ba

S = /d29 e R + h.c.= /d29 ¢%p, + h.c. | (7.4.8D)

in terms of an ordinary chiral superfield <5 o =€e %%, . Thus the hidden ghost decouples
from the background field and gives no contribution to the effective action. (This is just

the covariantization of (7.3.3c) for m = — 1.)

The Faddeev-Popov ghosts 1,1’ are obtained in standard fashion from the gauge-
fixing functions. For the time being we write only the kinetic terms (arising from the H
and y independent part of the gauge transformation; the remainder gives rise to ghost-

quantum field interactions). After some algebra we obtain
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_(Vﬂ¢/o¢ - Vaﬁlﬂ)(véwa - Va&[;)

—%[(VQVWQ)D:I(VQW%)+(Vﬁ%@;)ﬂ;l(ﬁvwan . (7.4.9)

We now wish to simplify the ghost Lagrangian by putting it in the standard form

&’&Vadwo‘. We therefore introduce catalysts with the shifts
woz - woz + V(X(Vl + ZVQ) ) w/a - wla + Vu(vll + iv’?) : (741())

In addition to the invariance due to these shifts, the Lagrangian has also the invariance
due to the fact that the fields appear only as V1, Vav',. We thus have the gauge

transformations

0o =Aa + VoL, S(Vi4+iVy) ==L, VA =0;

5w,o¢ = A/oz + V(XLI ) 5(‘//1 + iVIQ) =—-L ) v/éA/a =0 3 (7411)

with the chiral spinor parameters A,, A’,. These parameters will introduce second gen-
eration chiral spinor ghosts ¢,, ¢',, and we also have the real scalar ghosts V''/; 53, asso-
ciated with the invariances parametrized by the complex L, L’. After gauge fixing and
some changes of variables the kinetic Lagrangian can be put in standard form (see
(7.4.14a)). The one-loop contribution of V;, V’; cancels that of V';, but V; and V’;
have quantum interactions (because 1, and ', do, and V,; and V', enter through the

shifts in (7.4.10)).

The averaging in (7.4.5) has to be normalized by introducing a Nielsen-Kallosh

ghost U,,, to compensate the contributions from the (, fields. Its Lagrangian is

(Valbzm - vdzzgd)Q - 11_2 (Va¢3a + VO;,(Z?)&)? + (VQJSK;)(v,éwSa) . (7412>

| =

We can now apply the usual procedure (as described in sec. 7.3) of the catalysts to place
the Lagrangian in the standard form: We shift 5, by the representations whose coeffi-
cients in (7.4.12) are not 1, and then fix the gauge to make them 1 (see (7.3.11-13) for

an example). In this case, we make the shift
w?)a - 77Z}3a + VQVCW?, + Va¢3 9 V&(ng =0 . (7413)

This allows us to fix the superspin 0 (¢3) and two of the (four) superspin % (13) parts of
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¥s3,’s kinetic term. We then choose the most general gauge-fixing functions and weight-
ings for the new invariances (corresponding to arbitrary variations of ¢; and 15, and the
corresponding variations of 15,), introduce the appropriate new ghosts, make shifts, etc.
The net result is that all the catalysts cancel as in the example (7.3.11), leaving us with
just the Nielsen-Kallosh ghost with conventional Lagrangian. (This ghost has no quan-

tum interactions.)

In fact, the form of the (quantum-quadratic) Lagrangian was predictable for all
fields except H, since by dimensional analysis and Lorentz invariance (and, when rele-
vant, chirality) only it could have nonminimal terms not resulting from direct back-

ground covariantization (i.e., W 3. terms).

aBy
The final result of the quantization procedure is the following: We write the whole

effective Lagrangian as a sum of a quadratic part and the rest, with the quadratic part

being
S = /d% d'9OE[— % gYOH, , — gxi
+ (V3o + VIV + 935V g10s,)
- 1 2 1
+@VAOV, + VAOV,) + ) SV AV Y+ (56 Vi, + hoc)]
=1 =1
(7.4.14a)
where
O=0+W,V,M %+ WiV (7.4.14b)

In these formulae %, ', 3%, V, and V', have abnormal statistics. This expression is
sufficient for one-loop calculations. Note that at one-loop the contributions from the

various V'’s cancel due to statistics.

The higher-loop contributions come from quantum interaction terms originating in
three places: (a) the higher order (cubic, quartic, etc.) terms in the expansion of the
classical action (7.2.24); (b) the gauge-fixing term; (c) the higher order terms in the Fad-
deev-Popov Lagrangian. The latter has the symbolic form

(antighost)d ,.s (gauge fizing function), where the variation is the full nonlinear
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variation (7.2.19,22,23), with the gauge parameter L, replaced by the ghost 1,. Since
we have made the shifts (7.4.10) for the ghosts, the fields V;, V’; will also appear. Thus,
the quantum vertices are obtained from the higher order terms (beyond quadratic) in

the expansion of (see (7.2.24,7.4.6))
Sc+ Sar = VD" + VAV L =iV )] = VA" 4+ (V' 4V )}

XOH j5(vo + VoV, +iVy)) (7.4.15)

where dH _.(L,) is the expression obtained by substituting (7.2.22,23) into (7.2.19). We
have performed an integration by parts in the second term. We note that while both

terms in the gauge fixing function (7.4.3) lead to interactions of the ghosts with the

background fields, only the first term V¢H o leads to (local) interactions between the

ghosts and the quantum fields. This is the end of the quantization process.

We have discussed the quantization procedure in the formulation with the chiral
compensator ¢. As discussed in sec. 5.2.d, another possible choice for compensator is a
real scalar superfield V introduced through a variant representation. The treatment of

the corresponding formulation can be obtained by making the substitution (even off
shell)

=1+ (V2+R)WV , V=V . (7.4.16)

V' has the transformation laws

Background:
V'i=efy |
Quantum:
V'=V + (V,L*+ VLY | (7.4.17)
We use now the gauge fixing function
F,=V°H . - %Vav . (7.4.18)

The shifts (7.4.10) are again made, and by a procedure similar to the one described
above we obtain the following results: The higher-order terms in the action are again

given by (7.4.15), with the substitution (7.4.16) (but now Sz does not contribute).
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However, the quadratic terms are now

S — /d4x 0B - BT - VAV
+ (J’OZZ'VO‘&?% + ¢/aivad7;& + 1;3022'V01(;w3a)

7 7
1 _
+@VAOV, + VAOV,) + Y VAV i+ Y ] (7.4.19)
1=1

i=1
Here ¥, ¥, ', V3., Vi, V', and x; have abnormal statistics, and y; are chiral.

In general, the total field content is the following: (a) physical fields H and x (or
V'), which contribute at all loops; (b) the first-generation Faddeev-Popov ghosts 1, and
¥’,,, which contribute at all loops; (c) the first-generation Nielsen-Kallosh ghost 15, and
all higher-generation ghosts, which contribute only at one loop; (d) the catalyst ghosts
V; and V', which contribute at only more than one loop (being canceled at the one-loop
level by the contribution from the V' '"’s). We will discuss in sec. 7.10 some of the differ-

ences between the formulations (7.4.14) and (7.4.19).
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7.5. Supergravity supergraphs

a. Feynman rules

In the next section we shall consider further the background field quantization
and discuss its applications. In this section we consider ordinary quantization and dis-
cuss the Feynman rules for supergravity-matter systems. There is no need to go again
through the gauge-fixing procedure. We simply take the results of the previous section
and set the background fields to zero. Therefore the supergravity quantum action is
given by (7.4.14,15), where E = 1, all the derivatives are flat space derivatives, and all
chiral fields ordinary chiral. Furthermore, the fields v5,, V" and ¢,, can be dropped
since they have no interactions (but the Faddeev-Popov fields ¢, ©',, and the catalysts
Vi, V'i do). Equivalently, we can work with (7.4.15,19), dropping 5., V,;’, and ;.

Matter actions, covariantized with respect to H . and ¢, can be added.

From the flat space form of (7.4.14a) we obtain ordinary propagators. In particu-

lar we have

585 N
HH propagator : — aan 540 — 0" (7.5.1)
A pa& /
Y 1) propagator : o 5O -0 (7.5.2)

and the usual propagators for xy and V. Vertices are obtained from the expansion of
(7.4.15), as well as from matter actions. For example, consider the kinetic action of a

scalar multiplet 7,,,:

5= / d'z 0 B,y T,

:/d% di9 (B)5 (1-e M yinge Mg . (7.5.3)

We have expressed 7,,, in terms of a flat space chiral superfield n and we are working in
the chiral representation. We must expand now the various factors in powers of H
and y = ¢ — 1. However, the expansions were carried out in (7.2.30-32). Replacing

background covariant derivatives with flat space derivatives, we find the cubic
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interactions

5 = / d'z d*9 {(x + )07 + [~ H*0, — 5 (D;D,H*) — £ (10" H,))i7}

1
3

o ol = 1 _
= /d4$ d'0 [(x + X7 + H* (570 ,n — 5 [Ds. Dolim)] - (7.5.4)

The same expansions can be used to find the supergravity vertices, but with back-

grounds set to zero the algebra is much simpler. Thus, from V, = e 7D e, V= D,

we obtain

A(;B = Aaﬂ = Ao/;) = Agﬂ - Agé =0 )

Y

A= —iDsAt (7.5.5)
where A, is obtained as the coefficient of 9, in (7.2.27b):

Aaé = i(DaHQ> - [(D(XHQ)GQHQ - HQ(GQDQHQ)] + (756>

N | —

(To find the cubic interactions we do not need the third order term in A,” since it only

contributes a total (D) derivative.) Therefore

1

E75 = [det(5,2 + ADb)] 5

1 _IAe TAbAa 1 a2 1 Aapncp b
=1— A+ S AN+ (A0 - S ASASA,
g e T Te g Ve ' -

We also expand (7.2.31) one order higher which gives, again dropping a term which only

contributes a total derivative,

(Le ™)y =1 2i(0-H) = (0 H)* = L H-0(0- H) + 1 H) ,(T.5.8)

de G =1+ x+ X+ XV~ iH 0¥ — xiHl -0 — 5 H-0(H-0%) . (7.5.8b)

The cubic supergravity action is obtained from the product of (7.5.7) and (7.5.8).
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We obtain the cubic ghost-antighost-quantum field vertices from (7.4.15) and
(7.2.19,22,23). We need dH , to first order in H _; and x:

6Hao'¢ = (Daf& - E&La) + B(XE&La - )ZDQEO.()

S [-i(D°T + D170 1, + (D*L’)D,H,

+ (D*IP)DH, + il - 9(D Ly + DsL,)] . (7.5.9)

The cubic ghost action is obtained by substituting L, =1, + V (V| +iVy) (cf.
(7.4.15)). These vertices are sufficient for doing some one-loop calculations. However, as
we have already mentioned, at least for on-shell fields, the background field method is
much simpler. In this method, the above (covariantized) vertices would be needed only

for two-loop calculations.

b. The transverse gauge

The Feynman rules we have discussed above use the particular (weighted) gauge
of (7.4.3), which is the most convenient for internal lines. However, when computing
gauge invariant quantities, we can use any gauge for the external lines (this is true in
both ordinary and background field methods). We discuss here the choice of a globally
supersymmetric gauge that is convenient for most calculations.

The superfields H 4, ¢ contain several irreducible representations of supersymme-
try. According to (3.9.40) the superspin content of H 4 is (g @1 % ® % ®0), while ¢ has
superspin 0. According to (3.9.36,37), the spinor gauge parameters L,®L; contain
superspins (16 % EB%GB%GB % ®0). (The extra superspin % representations in the gauge
parameter correspond to second-generation ghosts.) Therefore, we should be able to find
a gauge where we have eliminated all superspins but g and 0. We have two choices, cor-
responding to eliminating the superspin 0 in ¢ (gauging ¢ to 1), or in H_; (in which
case ¢ must be kept). The second choice is much more useful, and can be achieved by

imposing the transverse gauge condition D“H . = 0. Note that this condition (and its

complex conjugate) implies 8- H = [D,, Dg|H** = D*H*¢ = 0.
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c. Linearized expressions

For some computations, we need the explicit expressions for the geometrical
quantities in terms of the prepotentials H_;, ¢. Here we outline the procedure for
obtaining the linearized expressions; higher orders can be obtained in similar fashion. We
work in the chiral representation, and in the Lorentz gauge N " =4,". After we obtain

the results we will consider other Lorentz gauges.

We begin with the linearized expressions of (5.2.78a) (cf. also (7.5.5))
E; =Dy

~

E,=D,+[D,,H =D, +i(D,H™)d, (7.5.10)

We set ¢ = 1 + x and, using for example (7.5.5-7), we have at the linearized level
E=1+ D;D,H" (7.5.11)
From the form of ¥ in (5.2.78c) we obtain
U=14+X (7.5.12)

where

X (2DsD, + D,Ds)H . (7.5.13)

N |
[

X—X—

In the particular Lorentz gauge we are using we need not distinguish between flat and

curved indices. We obtain then

E,=E,=D,+ XD, +i(D,HY0,

E; = E'(; = D_(; + XE(; . (7.5.14)
To find F, we write (again using N, = 6,")

E,=E,+i:C,,:""Es+i

Q,

(7.5.15)

N | =

where E,=— i{E,, Ez}. Therefore
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+ [D_&D(XHQ+ ( [D(S?E(S.]Hd -

: (x+ 03,410, (7.5.16)

N | —

The linearized expressions for the C’s can be worked out from their definition. We find

finally
11 = = = b 1 0= . R
B, =0, +il; D*D H" 3 — (D3 X)3,"]1D., + i[— 5 D’DzH," - (D, X)é;"|D;
+ [(DgD H") + (X + X)8,"0, . (7.5.17)

To find the connections we evaluate first the C 43¢, and use the torsion constraints.

We find

Doy = = CaDyX
—pp.H .. —_Lpp.H
oy T 2 B red) ay T T 3 e o
Pyyy =i % DOCEQD(ﬂH'y)d + ica(ﬂE&Dy)X . (7.5.18)

The independent field strengths are

R=D}x—iy0,H)

Go= — 2 D'D*DyH, — ¢ ewead[D7, DIH! — 2 0,0,H + i0,(x - X)

[ N
W~

W = ¢ D*DiidgiH.)" (7.5.19)

The remaining field strengths can be read from the solution of the Bianchi identities

(5.4.16).

As we have mentioned several times, it is sometimes useful to choose a Lorentz

gauge N,"#0," in which ®,," = 0 so that, in the chiral representation, when acting on

a field with undotted indices, V31,4,.. = U N &lzﬁg%m---- (That such a gauge is possible
follows from R, 5 % =0, which implies that the above connection is pure gauge.) We

apy

reach this gauge by the Lorentz transformation

Va=[LV,] , L=w,"Ms*+ h.c. (7.5.20)
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so that, in particular,

5c1>a57' = %5@657’ — Bwji . (7.5.21)

At the linearized level, setting (I)/aéi = CI)(IBVO + 6<I>QBW. = 0, we find
wyl = 1 DD
i =35s

Nl
GH (7.5.22)

and wy” = (w;7). In this gauge Nah =628 4+ wah.

In this gauge, the various quantities of (7.5.19) are shifted according to their index

structure. In particular, we find that now

— 1 _ [3
gy = — CoDyX + 5D, DiDH.)" . (7.5.23)

d. Examples

In this subsection we assume that a regularization scheme exists that preserves
local supersymmetry. Such a scheme will be discussed in sec. 7.9. We first compute a
massless chiral loop contribution to the supergravity self-energy. The relevant interac-

tion is given by (7.5.4), and the supergraph is given in Fig. 7.5.1.

kE+p

Fig. 7.5.1

We note the following simplifications: (a) The (x + X)n7 vertex leads to only a tadpole
contribution to the xx or xH self-energy diagram, and we set this to zero in dimensional
regularization for massless n’s. Equivalently, we observe that in the original action
(7.5.3) the compensator ¢ can be absorbed into 7 by a field redefinition. (b) With suit-

able regularization the result should be gauge invariant, and we can work in the
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transverse gauge where two of the three terms in the ni7H vertex do not contribute. The
—H*nid, 7 vertex is the same as in the Yang-Mills case, if we replace VAT, by H%i0,.
The result can then be read from (6.3.31) (with the additional momentum factors from

i0,)

L / d'p —p* —p*D;D, + D*D’
- d*0 He(—k. 0 ] k HY(k,0) . (7.5.24
2 / (271')4 ( ’ ) (271')4 pQ(k + p>2 p&( + p)é ( ) ) ( )

Using the gauge condition this can be reduced to

1 'k 4, - )
T 8D -1 / (2m)! d*0 H*(—k,0) k°k“DsD, H,(k,0) I(k~) , (7.5.25)

where in dimensional regularization

. [P 1y Te-gDIGP-1P
T+ = / 2m)P p2(k +p)?  (4m):P I -2) s
_ ! (l — In k* 4 const.) . (7.5.26)

(4m)? " e
When acting on H,(k,0), again using the gauge condition, we can rewrite

kQD_W-D7 = k© % {57- D} = k*. The fully covariant result can be written as a contribu-

tion to the effective action of the form [c; / d*O(W ,5,)° + h.c. + ¢ / d*0(G* + 2RR)]1.

However, the coefficients ¢;, ¢, cannot be determined from just a two-point calculation
(except in the background field method: see sec. 7.8). On shell only the first term sur-
vives. Although the result is independent of ¢, the compensator reappears in the course

of separating out the divergent part (see sec. 7.10).

As a second example we compute supergravity corrections to the chiral self-energy.

The graphs are those of Fig. 7.5.2:
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(k) n(k) m " 7 "

Fig. 7.5.2

The first graph gives no contribution (after D-algebra it is a tadpole) while the others

add up to
Ik g 7(—k, 0) d'p L 25D 4ty k= 2 — k)0, 0)
@n T @yt k0 of F T IR

(7.5.27)

(The — g for the x propagator follows from its normalization in (7.4.14).) In the inte-

gral we can replace p - k = — k? and p* = 0. Thus the total result vanishes.
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7.6. Covariant Feynman rules

To the quantized supergravity action of sec. 7.4 we can add covariantized super-
symmetric matter actions and consider general matter-supergravity systems. If the mat-
ter actions contain covariant derivatives, these must be split as in sec. 7.2. For con-

strained superfields we must first extract explicit quantum field dependence (e.g., ¢ — <bA,

p—e gbA , Where gg, gbA , are background covariantly chiral). In principle we can also split
matter superfields into quantum and background parts and consider a general quantum
system in a background of matter and supergravity. However, in general the procedure
of sec. 7.4 is not applicable. We cannot impose the on-shell conditions R = G_; = 0.
These conditions must be replaced by the equations R = J(matter), G, = J ,z(matter)
and the quantization must be carried out with the supergravity fields off-shell. This is a
straightforward but algebraically cumbersome procedure. Therefore in this section we
will consider only pure on-shell supergravity backgrounds (no external matter). General

systems can be handled by an extension of our quantization methods or by the ordinary

(nonbackground) quantization of the preceding section.

Given the background field Lagrangian with quantum matter or supergravity
fields, the Feynman rules can be derived in exactly the same way as for global supersym-
metry. In general, for unconstrained quantum superfields, we can read the rules directly
from the Lagrangian. We have two types of vertices: those arising from quantum self-
interactions, and those containing also (or only) interactions with the background fields.
The background fields appear only through field strengths and background covariant
derivatives V, =B, D, +®, , with the flat superspace D,;. Therefore, we will
encounter vertices with all quantum lines, or with a mixture of (at least two) quantum
lines and background lines. For constrained, i.e., background covariantly chiral super-
fields, we must first of all solve the chirality constraints, i.e., write ® = eﬁq)o in terms of
an ordinary chiral superfield. This will introduce interactions involving explicitly the
background potentials. We shall discuss below how to avoid this, but at any rate we end
up with an action to which the methods of chapter 6 can be applied, with ordinary prop-

agators and rules for calculation.

We observe that at the one-loop level, the contribution from the general spinors
can also be obtained by squaring their kinetic operator and taking half of the resulting

contribution to the effective action. We have
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. SN/ 1 . N /gy 1., s
(Zva’Y)(ZvﬁW’) = 9 6aﬂ(zvv’})(zv’}i) + 9 [Zva'y ) Zvﬂi]

=6,/ +{V,, W’ M;"} | (7.6.1)

where we have used (5.4.16). The spinor action in (7.4.14a) thus becomes

3
JEETE0 00 SENRIC = BR L AN A TR IR
i=1

— /d%- dOE) %maﬁ% + h.c. (7.6.2)

and we observe that all the unconstrained superfields (H,V 1)) are described by similar

actions, with the same operator ﬁ given by (7.4.14b ). We shall discuss later applica-

tions of this result.

We now describe a modification of the Feynman rules for covariantly chiral super-
fields, analogous to the modification for the Yang-Mills case in sec. 6.5. The conse-
quences of the modification are: It guarantees that the Feynman rules for chiral super-
fields will not introduce explicit background gauge potentials, but only the vielbein and
connections, and it actually simplifies some of the D-algebra. We follow a procedure
that is identical to that of sec. 6.5. We first define covariant functional differentiation

for a general superfield = by

L =F8 (2 — 2) (7.6.3)

) oL
which gives (—) / d®2 E~'L = —. We then define covariant functional differentiation

(= (=
—

for a covariantly chiral superfield n (which could carry additional undotted spinor

indices, but we do not indicate these explicitly) by

=(V 4+ R)ES (2 — 2) = ¢ *D*6® (2 — 2) (7.6.4)

where the second form is obtained by using the identity (5.3.66b) and the chiral repre-

sentation (E3 = UN (;‘25 ) with the particular Lorentz gauge where N W2 #6,° such that

Egt =By" =0, =0 . (7.6.5)
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In this representation covariantly chiral superfields are chiral in the usual sense:
Vgn.. =0 implies Dgn.. = 0. Just as in the Yang-Mills case, at this point we need not
be explicit as to whether the chiral covariance is with respect to full derivatives (contain-
ing both background and quantum fields) or just background fields, and the objects
appearing in (7.6.4) can be functions of both, or just background fields (except when the
chiral superfields are supergravity superfields, in which case the covariant derivatives can

only be background). We can stay off-shell.

The covariantization of the usual expression D?D*n = [ becomes now

(VQ + R)(V2 + E)naﬂ = I:lJrna---ﬁ ’

0. =0 w9+ i,

— JiGYY . — RV? — L(V'R)V, + RR + (V*R) (7.6.6)

generalizing (7.4.4) off shell. We observe that on shell (recalling that chiral superfields

can only have undotted indices) [, = [, where the latter quantity was defined in

(7.4.14b), a result which we shall use later.

As in sec. 6.5¢ we start with the action
S =Syt Swlnm . Sy= [dado B | (7.6.7)

S, also contains the other quantum fields but we have indicated explicitly only the
dependence on 7. We concentrate on the functional integral over n which gives, using

(7.6.3,4),

Z(J,J) :/ﬂ)nﬂ)ﬁexp[5+ (/d4xd29 #*Jn + h.c.)]

9

:A X [expsmt(&],

)][6fcp(—/d4x o E-1g0O,. )] (7.6.8)

&|| B

where A is the functional determinant
A= /]Dn Dy e . (7.6.9)

In general the above expression for Z depends on, and is to be integrated over, the other
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quantum fields. We are considering the massless case, but the results for the massive
case can be obtained easily. Except for A, the other factors, which contain quantum
field self-interactions, contribute only beyond one loop, or to diagrams containing exter-

nal chiral lines.

The determinant A gives the complete one-loop contribution from chiral super-
fields of diagrams with only external supergravity lines, and could be evaluated by using
standard superfield Feynman rules, but we wish to avoid this. Instead, we shall use the
“doubling” trick as in sec.6.5c. (In supergravity we are always dealing with real repre-

sentations). We now have

02<z_)—(§)=0, oz<(VQ+R)O(V2+E) (v2+E)O(VQ+R)) , (7.6.11)

corresponds to an action

0 V2+R
=0 0= _ . 7.6.10
) ’ (V2+R 0 ) ( )

~

Sy = /d% d*0 ¢ %m:lm = /d% d*0 B! %n(VQ + R)n (7.6.12)
and in terms of it we can write the functional integral
/]Dn D7y exp[S'y(n) + h.c. /ZDn e : (7.6.13)

We integrate S, by separating out ¢’D*? from E'(V?+ R), treating

%n[E_l(V2 + R) — ¢’ D% as an interaction term. The result is

A:/]Dn 5

_ 4 31 0 2 2 A2 12 i
—{exp/dxd0¢25J[(V F RV 4 R) - DD )
[exp — /d4x d*0 (bg%JDO’lJHJ:O : (7.6.14)

(Note that writing instead (V2 + R)(V?>+ R) — D*E'¢ e " D*E ¢ 3" would give
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the usual rules, except for the extra ¢*’s from the definition (7.6.4)). Therefore, a calcu-
lation of the one-loop contribution of 1 to the effective action (i.e., In A) consists in eval-

uating graphs with propagators p 26*(6 — ') and vertices [(V?- -] giving rise to a string
- [(V2+R)(V*+ R) — D*D?;6*(0; — 0:11) (V> + R)(V2+ R) — D’D?], - -

(7.6.15)

with / d*g; integrals at each vertex. We concentrate on a given vertex and at the next

one we rewrite (V> + R) = D’¢*E~! . We temporarily transfer the D? factor across

the d-function and use the identity
[(V?+ R)(V®>+ R) - D*D?*|D*> = (0O, — O,)D* . (7.6.16)

We further simplify the expression by using the anticommutation relations to move the

D’s in [, to the right until they are annihilated by the D?. The resulting expression,

which we call 1., contains no D’s. We now return the D? factor to its original place,
reexpress the vertex in its original form, and proceed to manipulate it in the same way.
We can continue around the loop and treat in this way all vertices but the last, and we

are led to the following rules:
one verter: D*[¢p*E'(V?+ R) — D?]

A~

other vertices: 0O, — O, . (7.6.17)

The massive case is obtained simply by adding a mass term in the denominator of the

propagator.

These rules lead to a simpler evaluation of the one-loop contribution, since there
are no D’s in the loop except the one D?, but more importantly the contribution is
manifestly expressible only in terms of objects which appear in the covariant derivatives,
and not the gauge prepotentials. This is evidently true of the higher-loop contributions
as well. From S,,, and the definition of the covariant functional derivative in (7.6.4), the

expression (7.6.8) leads to higher-loop Feynman rules which do not explicitly depend on
the background prepotentials. We obtain propagators /Ij . ! for chiral lines, where the

full ﬁ . can be expressed in terms of the quantum H ., ¢, and the background covariant
o 0

57 ﬁ) we obtain vertices with factors (V? + R)E or (V? + R)E

derivatives. From S, (
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operating on each chiral or antichiral line leaving the vertices. (These generalize the
ordinary flat space rules.) Again we can express these quantities in terms of the quan-
tum H_; and ¢, and the background covariant derivatives. For an actual momentum
space calculation these have to be further expressed in terms of ordinary derivatives and
background vielbein and connections. We now have the result that for all superfields,
when calculations are carried out in the background field method, the contributions to
the effective action from individual graphs do not involve the background supergravity
prepotentials themselves, but only vielbein and connections, which depend on
(multi)derivatives of the prepotentials. Consequently there is some improvement in the

power counting rules for potentially divergent graphs.
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7.7. General properties of the effective action

We analyze in this section the general form of the effective action (background
field functional) I', as constrained by the requirement of background field invariance.
This analysis is particularly important for determining the divergence structure of super-
gravity. Divergences, which could be canceled by counterterms in the Lagrangian, corre-
spond to local terms in the effective action, and their form is limited by gauge invariance
and dimensionality. In some cases we obtain stronger results by restricting ourselves to
on-shell background fields. The on-shell restriction is not serious: The theory is not per-
turbatively renormalizable, Green’s functions are gauge-dependent and divergent, and at
best we can hope that gauge-independent, on-shell quantities (e.g., the S-matrix) are
finite. Therefore, only the divergences which do not vanish on-shell are significant
(divergences which are proportional to the field equations can be removed by a field

redefinition which does not affect the S-matrix).

We will discuss first the situation in N = 1 supergravity. The discussion is appli-
cable then to extended supergravity expressed in terms of N = 1 superfields. However,
stronger statements can be made if the extended theories can be expressed in terms of
extended superfields. Since the discussion does not depend on details of the extended
superfield constructions, but only on properties that generalize our N =1 background

quantization methods, we devote a subsection to this case.

a. N=1

Our background fields are supergravity fields, while the quantum fields can be
supergravity or matter superfields or both. Since in the background field formalism the
effective action is gauge invariant, it can be constructed from the field strengths R, G

W and covariant derivatives (with an overall factor of E™', or ¢* for chiral inte-

aBy
grands). Furthermore, on shell R = G_; = 0. (We consider only vanishing cosmological
term: Otherwise, R is a nonvanishing dimensional constant, and the dimensional analy-
sis is changed.) Thus, only the chiral field strength W, (and its complex conjugate)
and covariant derivatives can appear. We also have the on-shell conditions
VW 5, = VIW

the form of the effective action we can also use the following facts: (a) The effective

apy = 0 as well as the corresponding equations for W. In determining

action is dimensionless. The dimensions of the various quantities which can appear are
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=3
=3
tions, for an L-loop contribution we have a factor 2>~V with dimension —2(L — 1). (b)

V.| = % In addition, with only supergravity interac-

[d4$] = _47 [d20] = 17 [W]
Functions G(xy,....) arise from loop integrals after all the D-algebra has been carried
out and, if they have odd dimension, must contain an odd number of space-time deriva-

tives (momentum factors) which have an index structure 0 5 (c) Integrals with the chi-

ral measure d*f must have chiral integrands, i.e., factors of W or V*(W?) (V*W =0
on shell), etc. (but in the latter case they can be rewritten as full integrals anyway). (d)

Dotted and undotted indices must be separately saturated.

Another important feature is the fact that all the d'@ terms in T' have an equal
number of (spinor-) undifferentiated W’s and W’s. This is a consequence of the global
chiral R-invariance of the theory (cf. (5.3.10); the Y transformations are global invari-
ances; in terms of prepotentials, they are simply phase transformations of ¢, leaving H
invariant). We should also remark that, a priori, as discussed in the previous section,
perturbation theory does not lead to a form involving only the W’s and their covariant
derivatives, but rather the quantities which appear in the background covariant deriva-
tives, i.e., background vielbein and connection coefficients, with a d*@ integral. However,
because of background invariance, these quantities must arrange themselves into a form
that is manifestly covariant or contains one noncovariant factor times a covariant object
that satisfies a Bianchi identity. (The noncovariant term, when varied, produces a

derivative which, when integrated by parts, gives zero upon use of the Bianchi identity.)

Thus, the term / d*zd*0 ¢*W? really arises from an expression (in the gauge (7.6.5))

v, Which can then be rewritten as a chiral integral.

/ d'zd' 0 E'®*"W
We first discuss all local terms in I', i.e., all possible on-shell local divergences of

the theory. A generic local term will have the structure
(VH(WW)" (VW) (VW) (7.7.1)

with V,W =V ,Wj ; and the indices contracted in various ways, and the space-time
derivatives distributed in various ways. We have used the invariance under R-transfor-
mations to write only terms with equal powers of W and W. We note that unless some
space-time derivatives act on them, W and W cannot be raised to a power higher than
4, because they are symmetric in their three spinor indices and hence contain only four

independent Lorentz components. The dimensionality of the above term is
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I+ 3m +2n+2r. If it appears at L loops it is multiplied by (x*)*~' with dimension
—2(L —1). The  overall dimension of the action must be  zero:
d=14+3m+2n+2r —2(L—1)—2=0. The only purely chiral term, involving just

W, is the quadratic expression
/d4xd29¢3wo‘ﬂ7wam +h.c.=— / d'z e’lwam‘swam(g + h.c. (7.7.2)

where w is the Weyl tensor. On dimensional grounds it can only appear at the one-loop
level (with no k factor, as follows from our discussion above), and the integrand is a
total derivative on shell. It is, in fact, on dimensional grounds, the only local term (i.e.,
possible divergence) which can occur at the one-loop level, on shell. However, due to
the Gauss-Bonnet theorem, it is just a topological constant, and vanishes in topologi-

cally trivial spaces. (For a further discussion, see sec. 7.10.)

At the two-loop level no local terms are possible. We have a factor x? of dimen-
sion —2, and it is easy to check that there is no way, from among the generic expression
above, to find either a chiral expression (to be integrated with d*zd?@), or a general
expression (to be integrated with d*zd*#), which can lead to a term with dimension zero.

Thus, at the two-loop level no on-shell divergences can arise in supergravity.

At higher loops the number and variety of local terms increases. For example, at
three loops, the combination W?W? is a possible local term and therefore a potentially
divergent one (the only on-shell one, in fact). At any given loop there are of course limi-
tations due to dimensionality, chirality, and index contraction. In particular it is easy to
verify that, on dimensional grounds and in order to saturate indices, all higher loop
terms must have factors of both W and W and therefore vanish when either W = 0 or
W = (0. This situation describes background field configurations which are self-dual or

antiself-dual. We conclude that such configurations receive no radiative corrections.

The nonlocal part of the effective action has a structure as in (7.7.1), including
however a nonlocal function G(z,,z,,....) and with fields evaluated at different points
(z1,0), (z5,0), ... . We find, using superspace perturbation theory and dimensional anal-

ysis that, if no massive fields are present, the on-shell effective action has the form

FN/d4$1d4x2d29¢3waﬂry(l’1,Q)G(xl,xQ)Waﬂ,y(xQ,g) + h.c.
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- / d%l---d4x4d4ew<¥m(x1,e)wam(xg,Q)W&ﬂ'i(xg,e)w&ﬁ. (z,,0)

o

XG(zy ) + (7.7.3)

where the terms not explicitly written contain more than four W’s and their covariant
derivatives. The nonlocal functions G(z,,z,,...) can be thought of as polynomials in
the space-time covariant derivatives acting on the fields, and functions of the covariant
d’Alembertian (e.g., its inverse), corresponding to the result of doing various loop inte-
grals in momentum space. The important point is that other, a priori possible terms
with two, three, or four W’s are not present. (For example, d*0W W W cannot have its
indices saturated even if derivatives are included while d’0(W)* has the wrong dimen-

sion, etc.) In secs. 7.8,10 we shall discuss in more detail the form of the G functions.

b. General N

We shall assume in this section that unconstrained superfield formalisms exist for
all supersymmetric systems of interest. Such formalisms have not yet been developed
except for N = 2, and there are indications that if they exist they have an unfamiliar
form. We shall only assume that there exist constraints on the covariant derivatives
that allow them, and the action, to be expressed in terms of ordinary derivatives and
unconstrained prepotentials. We can then mimic the N =1 background-quantum split-
ting for general N. We replace the unconstrained prepotentials by quantum prepoten-
tials, and the ordinary derivatives by background covariant derivatives. Furthermore, if
covariantly constrained (e.g., chiral) superfields are present, we can derive covariant rules
for them as we did in N = 1; the procedure is general. We will not restrict ourselves to

on-shell backgrounds.

By an extension of our fully covariant background field method of sec. 7.6, we
obtain improved power-counting rules for discussing local divergences. These rules sim-
ply follow from the fact that all quantum terms in the effective action are automatically
expressed directly in terms of the constrained background covariant derivatives (and their
field strengths) and an explicit expansion in terms of unconstrained background prepo-
tentials is unnecessary. (One might also expect to need the superspace generalization of
antisymmetric tensor gauge fields, e.g., the three-form of D = 11 supergravity, but the

background-quantum split action can always be written in a form where such
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background fields appear only as their field strengths, and these field strengths already
appear among the field strengths of the background covariant derivatives.) This implies
that all divergent terms must be expressible as local functions of the covariant deriva-
tives. Thus, for supersymmetric Yang-Mills, where the same ideas apply, all countert-
erms must be local functions of I',, and for supergravity of I', and also E(_XM . (Conven-
tional constraints determine all of V, from I'yand E,".) Furthermore, because in the

derivation of the Feynman rules vertices are always integrated over full superspace, they

will carry a full / d*zd*V @ for N-extended supersymmetry.

For the case of extended supersymmetry, treated with extended superfields, there
is a technical difficulty in the background field method because of the appearance of an
infinite number of generations of ghost superfields with progressively increasing super-
spin. For example, N = 2 Yang-Mills theory is described by a real isovector superfield
V,! with gauge invariance §V," = Dcax(abc)“ + ﬁcd_(acb)&. This transformation implies
that the corresponding ghost has a gauge invariance (@9 = Ddﬂx(“bc‘”(“m, which in

abed)(aff) (“Me)(“m), etc. The gauge super-

turn implies a ghost with invariance 5y =D, x
fields unavoidably contain fields of spin higher than those (physical and auxiliary) occur-
ring in the gauge-invariant action. To gauge these away the gauge superparameters (and
therefore the corresponding ghosts) must contain higher spins than the gauge superfields.
However, only a finite number of ghosts (i.e., the usual Faddeev-Popov ghosts, plus per-
haps certain catalyst ghosts) contribute at more than one loop. Therefore, the higher-
loop contributions to the effective action can be calculated in a manifestly background
covariant form and will obey the power-counting rules that we derive below, whereas the
one-loop contribution may have to be treated separately. (For example, we could choose
background noncovariant gauges for some of the ghosts which contribute only at one
loop in such a way that all but a finite number of these ghosts decouple. The effect of
such a choice would be to produce a one-loop effective action which is noncovariant, but
this would have no effect on physical quantities). We discuss now the implications of

these remarks and the improved power-counting rules to which they lead. For complete-

ness we discuss first the situation in global theories.

The first example of the improved power counting was already given in sec. 6.5 for
the Fayet-Iliopoulos D-term in NV =1 Yang-Mills theory. Background covariance imme-

diately implies the vanishing of such a term beyond one loop. For N > 1 we obtain
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stronger results:

Since Yang-Mills theory is renormalizable, the only allowed divergence in the back-

ground field method is proportional to the classical action. However, beyond one loop it

must have the form / d*zd'V g *Qr, at the lineared level because of the covariant Feyn-
man rules. Here I', has dimension % and € is a local operator (nonnegative dimension).

Since the action is dimensionless, we obtain the inequality —4 + 2N + % + % < 0, which

implies that only N =0 or 1 can have divergences beyond one loop. Thus N =2 and
N = 4 supersymmetric Yang-Mills theory must be finite beyond one loop. Furthermore,
we know from explicit one-loop calculations using N = 1 superfields (see sec. 6.4) that
N =4 is one-loop finite as well. On the other hand, N = 2 does have one-loop diver-
gences. (Also, as for N =1, loop corrections to the N = 2 Fayet-Iliopoulos term van-
ish.) We emphasize that we had to make a separate one-loop argument because of the

problem with infinite numbers of ghosts.

We can apply similar arguments to N-extended supergravity. The local (diver-
gent) part of the effective action consists of the integral of E~' times a (covariant) prod-
uct of factors of vielbein and connections. At L loops the lowest dimensional such term

is
Ty, ~ k2D / d*zd* VO E71 | (7.7.4)

multiplied perhaps by some function of a dimensionless scalar field strength for N > 4;
such a function may however be forbidden by global on-shell invariance (other additional
factors would have positive dimension). Requiring this expression, possibly multiplied
by a polynomial in the fields (with nonnegative dimension), to be dimensionless, we
obtain the inequality —2(L — 1) — 4 4+ 2N <0, which implies L> N — 1. (Similar argu-
ments for Yang-Mills give the improved —4 + 2N +2<0 instead of the above
—4 +2N +1<0.) Thus, from these arguments alone, we find that in N-extended
supergravity the effective action can have local terms, and therefore possible divergences,
only at N — 1 loops and beyond. (This is so even though possible lower-loop invariants
can be constructed. The important point is that our Feynman rules imply integration
over full superspace with integrands that involve covariant objects.) Note that the

divergences excluded by these rules are absent both on and off shell.
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A similar analysis in higher dimensions gives the result that higher-loop diver-

gences are absent is supersymmetric Yang-Mills theory for L <2 %, and in supergrav-

N -1
D-2

value, i.e. the number of anticommuting coordinates is 4N). For lower dimensions

ity for L <2 (for L loops in D-dimensions, where N refers to the four-dimensional

(super-)Yang-Mills is renormalizable anyway; for supergravity the above inequality holds

for D = 3 while for D = 2 we find higher-loop finiteness for N > 1.

Our background field approach leads to a further result which is not apparent in
ordinary quantization or nonsupersymmetric gauge fixing: At the one-loop level, in
N =1 language and using the background field formalism, the only contributions to the
(on-shell, “topological”) divergences are proportional to (Wuﬂ’y>2 and come from chiral
superfields. To understand this we observe that the divergence is just a covariantization
of the divergence in the two-point function, and its coefficient can be determined by cal-
culating a self-energy diagram. However, in our gauge, examination of the quadratic
action in (7.4.14) (which gives the general form for any type of superfield in an on-shell
supergravity background), reveals that only chiral superfield vertices have enough D’s
and D’s to give nonzero contributions. Therefore in a theory with a net zero number
(physical minus ghost) of chiral superfields (any N >3 theory with appropriate choice of
auxiliary fields (compensating multiplets)) there are no (topological) one-loop diver-

gences. At the two-loop level no supergravity theory has on-shell divergences.

We summarize our results in Table 7.7.1, which lists all cases where divergences
must be absent in pure supersymmetric gauge theories. The results can be classified
into three types: (A) absence of divergences due to one-loop cancellations in N >3
supersymmetry of contributions of N =1 chiral superfields; (B) absence of two-loop
supergravity counterterms because invariants of appropriate dimension do not exist; (C)

absence of divergences at higher loops which is established by our arguments above.

The absence of higher-loop divergences cannot be established rigorously until the
corresponding supergraph rules are explicitly constructed. Possible difficulties with car-
rying out the program are infrared problems due to large negative powers of momenta in
the superfield propagators, and the explicit construction of the classical action (whose
form may surprise us, if the properties of extended superspace are not a simple extension

of those for N =1 superspace). However, we emphasize that once the action has been
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loops

N || 1 2 314|516 | >7
Yang-Mills 0

1

2 C c|C|]C|C C

4 A C c|C|]C|C C
supergravity | 0

1 B

2 B

3 A B

4 A | B,C

5) A | BC | C

6 A | BC| C|C

8 A|BC|C|C|C]|C

Table 7.7.1. Absence of divergences in supersymmetric theories

written, the power counting rules and our conclusions immediately follow. We note that
in the N =4 Yang-Mills case the finiteness can already be proven when the theory is
written in terms of N = 2 superfields, i.e., N = 2 Yang-Mills coupled to an N = 2 scalar

multiplet; the N = 2 power counting rules can then be applied.
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7.8. Examples

In this section we shall give some examples and applications of our covariant for-
malism for computing supergraphs in supergravity. We restrict ourselves to one-loop
calculations. Higher-loop calculations are possible, but the algebra is complicated if
there are internal supergravity superfields. We shall consider first some one-loop calcula-
tions with matter fields inside the loop and background supergravity superfields. The

algebra simplifies considerably in the on-shell situation.

We begin by finding one-loop chiral-field contributions to the (covariantized) on-
shell two-point function, corresponding to the first term in the on-shell effective action
(7.7.3). In contrast to the calculation of sec. 7.5.d, the separate coefficients of the W?
and G*> + 2RR terms in the effective action can be determined from the two-point func-
tion alone when the covariant rules are used (although here we find only the former term
since the latter term vanishes in our on-shell calculation). However, we must use dimen-
sional regularization to keep track of terms that are total derivatives only in four dimen-
sions, since in a four-dimensional momentum-space Feynman-graph calculation they van-
ish by momentum conservation. We shall use the on-shell conditions on the background
superfields, but keep the external momentum k off shell (k*#0) in the loop integral.
Also, we shall write our expressions in four dimensions. However, the calculation should
be carried out in D dimensions, both to avoid ultraviolet divergences, and to circumvent

the fact that, when D=4, the linearized result is a total divergence.

We consider a chiral superfield Mgt with 24 undotted and 2B dotted indices,
and action %/d% d*0 ¢*n.n + h.c.. (If B # 0 such fields can exist only in on-shell
backgrounds.) From (7.6.17), and in the Lorentz gauge ®;,” = 0, the linearized vertices

are (on shell E™' = ¢ = 1)

One vertes : D*(V? — D?)~ D*[E*0,D, + + (0,E")D, +®";'M,"D,] , (7.8.1a)

Other vertex : /lj+ - 0y~E*“0,D, + %(GQEQQ)DQ + WQBW’MWK’)D(X . (7.8.1Db)

!

The propagator is p~26,% - - -57'7./ - 0N0 — 0.

The D-algebra is trivial. The M Wﬂ terms give a contribution proportional to the

number of undotted indices, and we have a factor from a trace over all spinor indices.
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We find a contribution to the effective action

r :(—2)2<A+B>/ d'k  d'p 1
? (2m)4 (2m)* p*(k + p)?

x i/dQG [(p + %k)@(p + %k)QEQO‘(—k)E@(k) + AW (—k)W o5, (k)] + h. c.

(7.8.2)

We have used the linearized, on-shell relations W 3., = D_2<I>am, E, = D’E,,, and con-

afy g

verted the d'6 integral to a d?6 integral. Finally, doing the momentum integral and

using the linearized relation
a&EQW - GQEQ’Y = C&E;Waﬂ’y ) (783)
we obtain the result

Ly = (2P0 = )] [ a0 L Wy, (0 ) I-T)W™ + e (T8.42)

with the logarithmically divergent integral I of (7.5.26). After covariantization I'y also
contains some contributions from graphs with 3, 4, etc. external lines. The chiral inte-

gral above, after covariantization, also contains a ¢* factor.

Separating out the divergent part, we have

T U N (VST ORPS| 1 [ P—
Iy==k @7 2 / d*x d°0 ¢ 3 Wam[; —In E]W T+ h.c. (7.8.4Db)
where p is a renormalization mass and
ky = (=228 (L _ g (7.8.5)

For a chiral scalar n, £k, = 21—4 (We have included a factor of % to cancel the 2 due to

our using the action /nl:ln + h.c. instead of /7777.) For a chiral spinor n,, k, = % If

the chiral spinor superfield is the gauge field of the tensor multiplet, there will be an
additional contribution Ak, = 25—4 from the five second generation chiral scalar ghosts
discussed in sec. 7.3.a. (The V ghosts do not contribute: see below.)

The next calculation we could imagine performing is that of a triangle diagram.

However, since no WWW or WWW term is present in the effective action (cf. our
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discussion following (7.7.3)), the contribution from such a diagram must be completely

contained in the third order (in H,; or ¢) terms in the expansion of I'y.

We observe that, once the self-energy contribution from a chiral superfield has
been computed, that from a vector multiplet V is trivial, because the whole contribution

comes from the three chiral ghosts. Indeed, the V-background interactions are extracted
from the covariant VIV quadratic action. However, just as in the background Yang-

Mills calculation, each D or D contained in the O operator of (7.4.14b) brings with it
one factor of the external field, and for graphs with less than four external lines we do
not have enough D’s. This is an important feature of the background-field method: In
off-shell Yang-Mills or on-shell supergravity background, general (nonchiral) superfields
do not contribute to one-loop two- and three-point functions; only their chiral ghosts do.
Thus, in this case the contribution to the supergravity self-energy from a vector multi-
plet is —3 times that from a physical chiral scalar superfield (3 ghosts with wrong statis-

tics).

The calculation of the on-shell one-loop self-energy contributions in self-interacting
(quantum and background) supergravity is now trivial. No new calculations need to be
performed because, from the action in (7.4.14a) or (7.4.19), we see again that only chiral
superfields contribute. In the form with V' compensators (5.2.75a), the result is simply

—7 times that from a physical chiral field (7 chiral scalar ghosts with wrong statistics):

k,=— % In the form with a chiral compensator, we have the contribution from the

physical x field, and contributions from two chiral spinors with the action

% / d*zd*0¢“NV>¢, + h.c.. The final answer is 41 times the contribution from a physical
chiral scalar: k; = % Finally, if we used the spinor compensator (5.2.75b) we would

obtain k; = — %

The calculation of a chiral- or general-field box diagram contributing to the
WWWW term in (7.7.4) is in principle no more difficult. For a chiral field we have
one vertex (7.8.1a) and three vertices (7.8.1b) with one D? and four D’s in the loop, two

of which have to be integrated by parts onto external lines. For a real field we have one

factor of D or D at each vertex (coming from the linearization of /lj), so the D-algebra

is trivial. What is left then is a Feynman integral for a box diagram, with some
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momentum factors in the numerator.

Our next example is that of the calculation of some one-loop, four-particle S-
matrix elements, similar to the calculation we carried out for N =4 Yang-Mills. There
we saw that there were cancellations and the whole contribution came from the V-loop.
The corresponding situation that we will find here is that a similar cancellation between
ghosts, physical fields, and certain other contributions takes place in N = 8 supergravity
so that in that case the result is essentially identical to the Yang-Mills case, and can be

obtained without further calculation. We now discuss the situation in detail.

For N-extended supergravity described by N = 1 superfields, to calculate contribu-
tions to background N = 1 supergravity, one simply adds contributions from superfields
representing all the N = 1 multiplets. The superfields which enter in addition to H are
of the same type as above, namely V’s, 1’s, and x’s, and their Lagrangians have the
same form (up to choices of compensating fields and duality transformations, which may
change the values of contributions to topological invariants and the corresponding super-
conformal anomalies (see sec. 7.10) but do not affect the S-matrix). In Table 7.8.1 we
give the number of fields of each type (the minus signs indicate abnormal statistics) for

each value of N.

N I x V. % Hug
1| -7 4 -3 1
2 | -2 1 -2 1
3 o -1 -1 1
4 0 -2 0 1
5 0 -2 1 1
6 0 2 1
8 0 4 4 1

Table 7.8.1. Number of fields of each type contributing to the one-loop effective action

We use the form of N =1 supergravity with V' compensators. The (% , 1) multiplet is

described by a general spinor superfield (see sec. 4.5.e) and its quadratic Lagrangian,
including ghosts (which is all that is needed) is given by the background covariantization

of (7.3.7).
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The four-particle S-matrix is obtained from the diagrams in Fig. 7.8.1.

gt O, JOK,
<. =

Fig. 7.8.1

The external wavy lines correspond to N =1 supergravity fields, while the solid line
loop corresponds to various N = 1 multiplets. All but the last diagram correspond to
the first term I'y of (7.7.3). However, by covariance the S-matrix must contain four fac-
tors of W, and by dimensionality the complete contribution must come from the second
term I'; of (7.7.3), and therefore can be obtained from the box diagram. (Only the box

diagram has enough denominator factors to balance the dimensions of four factors of

We write the contribution from the relevant part of I'; as

d'p,---d'p,
r:%/%dﬂ(zm))

X[ W (1) W, (p2) W (p3) W5 (p0)(C G+ Co Go + Co Go ) (1)

1 o _o?.' ! /
-5 W (p) W (py) W, ( p3) Wdﬁ;{,(m)( CyG'y+Cy Gy +Cy Gy )(p;)]-(7.8.6)

Here G, is the Feynman integral for a scalar box diagram (6.5.68), while G5(G) ,
G,(G'y) are similar contributions eztracted from box diagrams with two and four momen-
tum factors in the numerator. Unlike N =4 Yang-Mills, the above expression is valid
only on-shell, whereas off-shell the effective action diverges. (Because of covariantization

the expression above contains terms with more than four fields, but it does not give the
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complete contribution to more-than-four-particle amplitudes.)

The coefficients C; are different for each value of N. To determine C; we must
compute contributions from each of the superfields listed in Table 7.8.1. The only diffi-
cult calculation is of the contribution from the chiral superfields ;. We shall therefore

restrict ourselves here to discussing results for N >3 where no chiral superfields appear.

As we discussed in sec. 7.6, it is useful to square the kinetic operator for the
spinors (and take one half of the corresponding contribution to the effective action) in

order to make it similar to the other kinetic terms. The kinetic operator for V', ¢*, and

H then takes the universal form

O=-0+W,'V, M+ WiV, i1, (7.8.7)
The relative coefficient of the LI and W terms is independent of the choice of field.
Therefore, in performing one-loop calculations we need only keep track of the index

structure. In particular, there is always a factor from a trace over the Lorentz index: 1

for V, —1 for ¢*, —1 for J‘* and 4 for H®. (¢ and J‘* each count as —1 - % 2=—1

due to a —1 for Fermi statistics, a % to cancel the effect of having squared the kinetic

operator V, and 2 for the trace over «.)

Looking at the kinetic operator and again requiring that each loop contain at least
two D,’s and two Dg’s, we discover two sources for such terms: The explicit
W'V, M 7/3 (to this order we can replace V., by flat superspace D.) and those con-

tained in the covariant d’Alembertian:

O=_-vev

a

N —

(E“20,, + E“D, +E“D; +&*(M))(E,*d, +E,”D, +E,"D; +®,(M)) |,

N | —

(7.8.8)

where E,” —6,” and all other quantities contain at least one factor of the external
fields. (The connection terms ® can be dropped: They cannot contribute to any graph

with at most four external lines because they do not bring with them any D’s.)

We now make the following observations:
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(1) Since connection terms can be dropped, [l acts in the same way on all fields.

(2) Since we need two D’s and two D’s, and each one brings with it an E or a W

and an E or a W, our result will contain four such factors, two barred and two
unbarred. The E vertices have the form E4’ 0,D s or EY 9,D 3

(3) Since 0, By, ~ W and the vector indices on the two E’s in a term with

only two such factors must be contracted (and therefore also the spinor indices) in order

afys

to produce a covariant contribution, there are E?>W? and E?>W? terms but no

EE W W terms. (Similarly there are no E>’ E W terms or E W W? terms.)

(4) Due to the algebra of the Lorentz generators, the W M W M factors in either
the E* W? or W? W? produce an extra numerical factor of a (and b from W M W M)

related to the number of spinor indices.

Therefore, there are three types of terms to consider:
() (E-0)*(E-0)*,(2) (E-0)* (W M)?* (and h.c.), (3) (W M)* (W M)?. Each term
takes the same form for all N, but with a coefficient determined by summing over
V1,4, and H the product (number of such fields) - (Lorentz trace factor) - (M-factor).
The number of fields is given in Table 7.8.1, the trace factor was discussed earlier, and
the “M-factor” is, for each of the three types of terms, respectively: (1) 1, (2) b (a for
the h.c.), (3) a-b. The values of the overall numerical coefficient are presented in Table
7.8.2. These coefficients are labeled (1) Cy, (2) Cy, (3) Cy, and appear in eq.(7.8.6).
(Note that only H contributes to the last column, since only H has both a dotted and
an undotted index, and so has both W and W terms in its kinetic operator.) Our
result is thus that: (1) N = 1,2 contain all types of terms, including contributions from
chiral superfields, which we have not discussed; (2) N = 3,4 receive no contributions
from chiral superfields; (3) N = 5,6 lack also the E* E* type term; (4) N = 8 receives a
contribution from only the W? W? term, in analogy to the N = 4 supersymmetric Yang-

Mills calculation.
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N
3
4
)
6
8

S O O N Ot
S N W = Ot
[T N

Table 7.8.2. Multiplicity of contributions of each type to the one-loop effective action

The calculation of the effective action proceeds as follows: For N = 8 supergravity
there is nothing more to do. One has a box graph, with two factors of W and two fac-
tors of W and a scalar loop integral to perform. We obtain the G terms in eq.(7.8.6)
with a factor €y =4, while 'y, = Cy, =0. For N = 5,6 one has a box graph with two
vertices of the form E - 0 and two with W'’s, as well as a triangle graph with one vertex
containing two E-factors. The loop integral for the box graph contains now two loop-
momentum factors, but gauge (local supersymmetry) invariance can be used to split off
a part which gives 0, E; so as to produce W’s, while the rest must cancel the triangle
graph contribution. (They actually may contribute to I'y, which is zero by momentum
conservation.) Finally, for N = 3,4 one has a box graph with one E -0 factor at each
vertex, a triangle graph with one vertex containing two E -0 factors, and also a self-
energy type graph with both vertices containing two E - 0 factors. Again gauge invari-
ance can be used to extract the complete contribution from the box graph, the remain-

der adding up to zero.

The S-matrix can be obtained from the effective action by dropping the p, inte-
grals and taking a sum of G terms over permutations of the Mandelstam invariants
s=(p +p2)% t=(p, +p1)% u=(p, +p3;)° (Inthe Yang-Mills case this also involves

interchange of internal symmetry indices). Thus, for N = 8 supergravity we have
S(sitou) = (2053 (p1) [ d's
X Waﬂry(ph 0 ) Waﬁ'y(p27 0 ) W&ﬂi(p?)a 0 )Wdé,;(péb 0 )

X[Go(s,t,u) + Go(s,u,t) + Go(u,t,5)] . (7.8.9)



468 7. QUANTUM N=1 SUPERGRAVITY

The #-integration splits up the product of the superfields W into a sum of terms involv-
ing products of Weyl tensors and gravitino field strengths which can be replaced with
momenta and polarization vectors for the various processes. The actual value of G is

w (D(=)’T()

Gols, t,u) = (27 )4 . '(—2e)

X [87276 F(l, 1, 1-— € - %) + t7276 F(L 17 1- € — %)]’ (7810>

where € = 2 — % and F' is a hypergeometric function. It is ultraviolet finite but infrared

divergent for both Yang-Mills and supergravity, but in the latter case the divergence is
milder because of cancellations in the s, ¢, v permutations. The expressions for G, , G’ ,

G4, and G’; are somewhat more complicated and will not be given here.

So far our results are with only N =1 supergravity external particles (gravitons
and gravitini). However, the S-matrix can be extended immediately to the other parti-

cles of an N > 1 multiplet either by direct global supersymmetry transformations on the
S-matrix or by realizing that the /d40 (W) (W 43:)* can be extended to a similar

expression involving products of four on-shell field strengths for extended supergravity.
We also note that the W2 W? form of the result implies the helicity conservation prop-

erties of the supersymmetric S-matrix.

The remarkable simplicity of the calculations and results is due in part to the sur-
prising decrease in number of diagrams one has to consider as one proceeds from N =1
to N = 8. In particular, the absence of chiral superfields for N > 3 produces the crucial
simplification, and the ensuing cancellations between various fields culminates in the
absolute triviality of the calculation for N = 8 supergravity. At the other extreme, the
N = 0 theory (ordinary Einstein gravity) would seem to require a major computer calcu-

lation.
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7.9. Locally supersymmetric dimensional regularization

If the only interesting supergravity theories are those that are finite, the con-
struction of a regularization which manifestly preserves local supersymmetry is some-
what of an academic exercise. Nevertheless, we shall discuss the procedure here for com-
pleteness, and because the general method is useful for discussion of dimensional reduc-

tion to integral dimensions.

It is possible to extend the supersymmetric dimensional regularization method of
sec. 6.6 for application to supergravity. Some modifications are required because, unlike
matter (scalar or vector) multiplets, supergravity is no longer on-shell irreducible after
dimensional reduction. The dimensional reduction must therefore be performed in a
manner that picks out the irreducible part. In superfield language, the difference occurs
because (N =1) matter multiplets are described by scalar superfields, whereas super-
gravity is described by a vector superfield. Upon naive dimensional reduction to D-
dimensions, this vector superfield reduces to a superfield which is a D-dimensional vec-
tor, describing pure supergravity, plus 4-D scalar superfields, describing vector multi-
plets. The dimensional reduction must therefore be redefined so that only the D-dimen-
sional-vector superfield appears. We therefore need a superfield formulation that
describes pure supergravity for arbitrary D<4. For simplicity we will describe the con-
struction for N =1, but the method can be easily generalized to any four-dimensional
superfield theory. For integral dimensions, the N =1 theory reduces to pure N =2
supergravity for D=3 or 2, and pure N =4 supergravity for D=1.

We begin by constructing covariant derivatives. Since upon dimensional reduction
the Lorentz group SO(3,1) is broken down to SO(D —1,1)®S0(4 — D), our covariant

derivatives take the form

vV, = E,+ % D, M+ %(I)A,,CM L (7.9.1)

C

where the supervector index A=(a,d,a), and we have reduced a 4-dimensional vector

13 bbb W

index “aq” into a D-dimensional vector index “a” plus an internal symmetry

(SO(4 — D)) index “a”. The field strengths are defined as usual:
1 e 1 ¢
[V, V) =T Ve+ 3 Rap M4~ + 3 Rup'M,° . (7.9.2)

The derivatives contained in E,=E,”D, range over D (commuting) + 4
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(anticommuting) coordinates. The fact that the spacetime coordinates have been
reduced from 4 to D automatically takes care of reducing the fundamental superfield H*
to a D-component vector, as discussed above (H = H“i0,). However, as compared to
the usual 4-dimensional covariant derivatives, we have less gauge freedom due to the
absence of a Lorentz generator of the mixed type M, so that an additional constraint is
needed to account for this lost invariance. Specifically, this means that the object N’
which appears upon solving the constraints, and which is gauged away by local Lorentz
transformations in D=4, must have the components which are not gauged away in D<4

constrained away. We therefore impose the following set of constraints for arbitrary

D< 4 (for simplicity, we choose the case n = — %)

Conventional: T ,;" = Ta[f] =7 .= ago‘ﬁRaécd =0,R .4=0

af o Vabe ’
0, T E=idf (7.9.3a)
Chirality preserving: T ,5° = T(w”’ =0 ; (7.9.3b)
Conformal breaking: T@Q — Taé/é =0 ; (7.9.3¢)
Additional conventional: Ja“’éTQBQ =0 ; (7.9.3d)

where the additional conventional constraint is the one that constrains the extra compo-
nents of N,”. (agaﬂ is the D-dimensional Pauli matrix, which projects out the D-compo-

nent vector index a from the 4-dimensional aﬁ.; similarly, o,*” projects out the 4-D-com-

ponent index a. Our normalization here is aaaﬁabaézéab, aaaﬂabaézéab,

o, Vot ;T o, Yo" ;= 57“555 .) The conventional constraints as written are somewhat
= Y Y

redundant, but it can be shown that, in conjunction with the remaining constraints, they
serve to determine V , in terms of F, as usual. The chirality-preserving and conformal-
breaking constraints have a solution similar to that of D=4, except that HY in

H=HMiD,,; is now a D+4 component supervector. The solution to the constraints is

(cf. sec. 5.3):

Eoz = \T]NaﬂE,B )
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w2 [(1-e )1 ) PVEIN? 00 | B p=0 . (7.9.4)
The matrix Nadﬂé is determined by (7.9.3d) to take the form

(1+ATA) 2 —(1+ATA) AT

. Nab Nab

T\—+ T\~
(1+AA") 24 (14 AA") 2
in an appropriate Lorentz ® internal gauge, where double spinor indices are converted
into vector indices and back again with ¢’s (of the appropriate type), and the last equa-

tion is written in matrix notation with A= A2 N_” is determined from this expression

for Na&ﬂﬂ by using the relation

N ’ﬂ[;) = (eX)ao'zﬂB ) Xao'zﬁ[;) = 50’15Yaﬂ + 5aﬁyo'/;)

ax

— N, = ("), . (7.9.6)

o

Since N M-fw is orthogonal, X is antisymmetric, and therefore can be expressed in terms
of the traceless Y. We have not given the explicit expression for f,* in (7.9.4), nor the
solutions for the connections, but they can be obtained as in D=4 without further com-

plications, and will not be needed here.

The supergravity action is

_ _oD-1 _» D dp -1
S = 2—D_2/£ /d xd*0 F
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— PR -1 Y s . (0=2
=255 / dPwd'0 B0 [det (8,2 + A, AL T I[(1- e ) (1 )0 164

(7.9.7)

Projection operator methods can be used to show that the linearized action contains

only the usual superspins 2690. Coupling to matter can now be performed as in D=4,

2(D-1)

(
with chiral Lagrangians integrated by / d°zd*§ ¢ > . Supergraph calculations can be

performed with the usual four-dimensional D-algebra. We do momentum integration as

in conventional dimensional regularization, and minimally subtract the divergent part

1

using — times a local, covariant, D-dimensional counterterm constructed from the D-
€

dimensional covariants.

The same inconsistencies that occurred in globally supersymmetric dimensional
regularization of course remain in the local case. Nevertheless, as in the global case, in
actual computations the inconsistencies seem to disappear after taking D— 4. After
minimal subtraction, the remaining finite quantity satisfies the 4-dimensional local
supersymmetry Ward-Takahashi identities (after taking D— 4). Furthermore, the
method is perfectly consistent for reduction to integral dimensions, and can be used for
describing extended supergravity in lower dimensions. However, we observe that the
above superfield description in nonintegral dimensions defies understanding in terms of
components. (E.g., since the “D-bein” in H% has no e,’ part, what field gauges the

internal M," symmetry?)

Since the subtraction procedure preserves local scale invariance when the compen-
sator ¢ is included, the renormalized effective action will be superconformally invariant.
However, D= 4 superconformal anomalies are in general present precisely because the

renormalized effective action depends on ¢. We discuss this in the next section.



7.10 Anomalies 473

7.10 Anomalies

a. Introduction

Anomalies in local conservation laws are harmless as long as no fields couple to
the corresponding current. In divergent component theories there is always at least one
such anomaly: the scale anomaly. This anomaly, which can be expressed as an addi-
tional contribution to the trace of the energy-momentum tensor, occurs because a new
mass scale is introduced at the quantum level, the renormalization mass parameter. For
example, a theory that is classically conformally invariant, and thus has a classical
energy-momentum tensor with vanishing trace, gets quantum contributions to the trace.
When Einstein gravity is coupled to the quantum system, this anomaly is harmless, as
general coordinate invariance merely requires conservation of the energy-momentum ten-
sor (i.e., the vanishing of its covariant divergence). However, it would be harmful in

conformal gravity, since local (Weyl) scale invariance does require vanishing of the trace.

Quantum corrections to the energy-momentum tensor are most conveniently

defined by coupling the quantum system to background gravity and defining

ATl'p

TR —
Agpy,

(7.10.1)

where I' is the renormalized effective action and A is a suitably defined variation (see

below). Its trace is given by

AT},

(7.10.2)

Alternatively, it can be obtained by first introducing a compensating scalar into the the-
ory (5.1.34). For conformal theories the compensator decouples from the classical
action, but in general it enters in the renormalized action where it couples to the trace.
Therefore, varying I'p with respect to the compensator determines T',,*.

In supersymmetry, the energy-momentum tensor is the 00 component of a super-
field, the supercurrent J_ .. (More precisely, % Dy, D(X]Jﬁﬂ-] +a—b=T, — %na_ngg.)
The trace of the energy-momentum tensor is a component of a related superfield, the

1
2
defined from the coupling to gravity, the supercurrent .J_. can be defined from the

supertrace J (= (D*J|+h.c.) = %TQ@). Just as the energy-momentum tensor can be
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coupling to the supergravity superfield H ad,

AT
J .= . (7.10.3)

aa AHad

As we will discuss below, the supertrace can be defined by functional differentiation with
respect to the compensating superfield. In classical locally superscale invariant theories
the compensator decouples and therefore the supertrace vanishes. In general, its pres-

ence is a measure of the breaking of local superscale invariance.

The supercurrent also contains the supersymmetry current (at linear order in 0)
and the R-symmetry axial current (at @ = 0); the supertrace also contains the 7-trace of
the supersymmetry current (at linear order in #) and the divergence of the axial current
(the imaginary part of the #* component). Thus, in a supersymmetric theory where
scale invariance is broken, the axial current has a chiral anomaly and the supersymmetry
current has an S-supersymmetry anomaly, and the coefficients of all three anomalies are
equal. However, just as translational invariance is not violated (the trace of the energy-
momentum tensor is anomalous, not its divergence), neither is ordinary Q-supersymme-

try (the y-trace of the supersymmetry current is anomalous, not its divergence).

In locally supersymmetric theories, in addition to the superconformal anomalies
described by the supertrace, there may exist anomalies in the Ward identities of local

(Poincaré) supersymmetry. For the cases that have been studied they do not occur in
N =1 theory for n = — % (the minimal set of auxiliary fields) because we can regularize
in a manner consistent with local supersymmetry; they do occur in general for nonmini-
mal (and new minimal) N =1, n# — % theories. We will use the existence of supercon-
formal anomalies to infer the existence of these “auxiliary-field” anomalies and conclude

that in general only n = — % theory is quantum consistent.

b. Conformal anomalies

We first review one-loop “on-shell” scale anomalies in component theories. We
are interested in quantum corrections to matrix elements of the energy-momentum ten-
sor between the vacuum and a state containing two or more gravitons. (We could con-
sider other external particles, and also “off-shell” anomalies, but when gravity is quan-

tized only the on-shell ones are unambiguous.) Equivalently, we compute the one-loop
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effective action for a system in a gravitational background, functionally differentiate with
respect to g, and then set the background field on shell. At the level of Feynman dia-
grams, because of covariance, we need only consider the two-point function (graviton
propagator correction), which determines all the one-loop divergences, and the three-
point function (“triangle graph”), which determines the trace of the energy-momentum
tensor. In fact, if the classical theory for the field in the loop is conformally invariant,

all the relevant information can be extracted from the two-point function.

In classical theories conformal invariance is broken in two ways: (a) by mass terms
that break it softly and whose effect can be separated out, as they can be for the diver-
gence of the axial current, and: (b) by hard terms, e.g., derivatives of fields, as for
Yang-Mills in D+# 4 dimensions, and for antisymmetric tensor fields. In the subsequent
discussion, when we refer to nonconformal theories we mean classical theories where the

breaking is hard.

We consider first a classically conformally invariant theory so that the trace of the
classical energy-momentum tensor is zero. When coupled to gravity, the classical theory
is locally scale invariant. By introducing appropriate D-dependence the theory can be
dimensionally regularized so that this invariance is preserved in the regularized effective
action near D= 4. (The invariance is broken only to order (D — 4)* and thus has no
effect even in (D —4) " divergent terms.) However, the coefficient of the (D — 4)~' fac-
tor is not separately locally scale invariant except at D = 4, and there is no local finite
term that can be added to it to make it so. Therefore, the renormalized effective action,
defined by subtracting this D-dimensional, local, covariant divergent term from the regu-
larized effective action (i.e., by adding a counterterm S ) is not locally scale invariant.
Consequently, when we compute the trace of T™" defined in terms of the renormalized
effective action we find a nonzero result. Since the regularized, unrenormalized effective
action I'; was scale invariant, the scale anomaly of the renormalized effective action I'p

is just the trace computed from the D-dimensional counterterm S .

We have defined T™" in (7.10.1). The variation A is defined in terms of § by

Af 1 Of

= —_— 7.10.4
Agy, 7 OGumn ( )

(9 =det(g,,,)), or directly by
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Agmﬂ(x)
Ag,, (')

= %(5@2(5@)%7%64@ —x') . (7.10.5)

The local scale (trace) anomaly is then

The last equality holds only because we are considering classically conformal theories.
Otherwise, the former two expressions, the total trace, do not equal the last expression,
the trace anomaly. (In general, the anomaly is understood to be a contribution to the

trace due to the divergences of the theory.)

Since in classically conformal theories I';; is locally scale invariant near D =4, S
takes the form of (D —4)"! times a local (general coordinate) invariant that is the
dimensional continuation of a 4-dimensional object that is locally scale invariant. From
dimensional and covariance considerations we find two independent four-dimensional
objects of this form: In terms of the irreducible parts of the curvature of (5.1.21), they

are the FEuler number

1 1 4 L1, 8 WBas )
X = e §/d xg2[§ (w*™ Wopys + hoc.) — 1 A ﬂr<x5&5+3r] , (7.10.7)

a topological invariant whose functional variation vanishes and which itself vanishes in
topologically trivial spacetime for D =4, and the integral of just the Weyl tensor

(w® + @?). The difference between the two vanishes on shell (r r=0).

aBaf

In quantum gravity the coefficient of any term that vanishes on shell is in general
gauge-dependent, and in fact can be made to vanish by an appropriate gauge choice, or
can be eliminated by a local field redefinition of the metric (since such redefinitions of

the action are proportional to the field equations). Therefore, we consider only the on-
shell part of the trace anomaly, which we write in terms of w* = %w“m‘swamé. We note

that w? has the simple scaling property for arbitrary D
1 1 1
(Gmn F)(fv)(WwQ)(fv’) =5 (D—4)(g2w’)8' (z — ') . (7.10.8)

In D-dimensions the relevant part of I';; is given by a covariantization of a graviton

self-energy graph and has the form
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\\D//
2 )2_211) + h.c., (7.10.9)

| =

1 1

where *"[0°" means [J + curvature terms necessary to make I';; locally scale invariant
in arbitrary D, and p is a renormalization mass. (I'; also contains finite locally scale

invariant terms, and divergent terms that vanish on shell.) We then have

S~ — ﬁ/d% g+ hec. | (7.10.10)

Iy~ /d4x géiw ln(gz)w +h.oc. . (7.10.11)
i

By integration by parts (dropping finite terms proportional to the Euler number, which
can be considered part of the corresponding infinite term (7.10.10)), I'y can be rewritten

at D =4

L'p~ /d4$ 9%{%7”@5 Z”(EQ)T saf — %rln(%)r
M apa

+ (w* + @?) In[1 — (7.10.12)

1
r
+r I}
plus more finite terms that are locally scale invariant, and terms of third or higher order

in r and r Since [1 — (OO + r)"'r] satisfies the scale covariant equation

aﬁdé'
(O + r)¢ = 0 (with our conventions of sec. 5.1, [1 + r is the kinetic operator of a locally

scale-covariant scalar), it can be shown that

A 1 n — 1 ¢4 —
(Gmn an)(ﬂ?) In[l— Orr r](z') = 55 (z ), (7.10.13)

Therefore, using (7.10.8), we see that (7.10.12) gives the same (on-shell) trace (from the
last term) as I'p in (7.10.11) (or as S, in (7.10.10)):

G T™" ~ = %(w2 + @) . (7.10.14)

We find (7.10.12) a more convenient form of representing I'p. The first two terms are
covariantized self-energy contributions unambiguously expressed in terms of the curva-
ture scalar and Ricci tensor, and are of no interest for on-shell traces since their varia-

tion vanishes on shell. The last term, when the [n is expanded in powers of r, has the
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form
/d4 fw? = + —/d4 . 2 + (7.10.15)
Tgrw —7r 4+ = T g2r — W .10.
9 O g O ’

so that it receives contributions only from diagrams with at least three external lines.
This term is a covariantized triangle graph contribution and could be computed using,

for example, the Adler-Rosenberg method with r at the “top” vertex (cf. also
4] —

(6.7.10-13). The trace operation g 50 acting on r in (7.10.15) is analogous to the V?* in
g

(6.7.13)).
In the more general case when the quantized theory is not classically conformally

4]
invariant, or gravity is also quantized so that g 5o 'y #0, local scale invariance cannot
9

be used to determine g,,,7™"" from S.. It is then necessary to calculate the total trace
from I'j directly from a triangle graph. (In the case of quantum gravity we use a back-
ground field gauge to maintain covariance of I'p.) The general form of the unrenormal-

ized effective action near D =4 is

1 1 too1 1 D R
Iy =k 2 Xp + W/d4$92[7€2§r(2 — In( 12 T
1 N (/.Y. 1 \\D//
+ k5T s ﬂ(z — ZH(T))TO‘M‘;
— ky(w® + @°)In(1 — ! 7] (7.10.16)
O+

D
where € =2 — 3 and yp is the dimensional continuation of the Euler number of (7.10.7):

1 1 D, Y1, gy apdf 2
Xp = = §/d xgz[§ (W w55 + hoc.) — 7 T osas T T ] . (7.10.17)

', is obtained by subtracting out the ¢! terms.

The relevant term for the on-shell trace is again the last one in (7.10.16), although
now its coefficient is not related to those of the preceding terms. The on-shell trace
computed from I'p is not equal to the trace computed from S, . It receives additional

contributions from the classically nonconformal part of the theory. As mentioned above,
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we will refer to the part attributable to S, as the trace anomaly, while calling the entire

contribution from I', the total trace.

The number k; has been computed in a variety of ways, and determines the on-

shell trace anomaly of fields in the loop. This quantity is usually written

(T ™) amomatons = k1 @ 7 [0 + h.c.] (7.10.18)
with 360k, = 4,7, — 52, — 233, 848, 364, for a scalar, Majorana spinor, vector, Rarita-
Schwinger field, graviton, and second-rank antisymmetric tensor gauge field, respectively,
including their ghosts. We note that although the first and last fields both describe the
same spin zero particle (if the scalar has no improvement term), their trace anomalies
are different. On the other hand, it can be argued that they have the same total trace,
which is the physically relevant quantity, determined by I'p. (For the improved scalar
field (T'," )0t = (T'u™)anom, but for the antisymmetric tensor or unimproved scalar they
are different: The latter theories are not classically conformally invariant.) In like fash-
ion, third- and fourth-rank antisymmetric tensor fields, which have no physical degrees
of freedom, have zero total trace (in fact, zero renormalized effective action), although
because of the quantization procedure, they have a nonzero divergent contribution to I'y;

and therefore a nonzero trace anomaly.

A useful method for making scale-breaking properties manifest is to introduce a

compensating scalar as in (5.1.34). We then have

A 1

) 1 A
Agmﬂ f)((ng@):g(b P — AN L

5 _2A¢f , (7.10.19)

(9mn
so the existence of a nonzero trace is equivalent to having dependence on ¢. For exam-

ple, (7.10.10,11) becomes

1 SRR
S~ — D1 d°x gz¢pp2w* + h.c. (7.10.20)

Ly~ /d4x g% i w ln(%)w + h.c. ; (7.10.21)

(note that we have absorbed pu into ¢) and the last term in (7.10.12) becomes

/d4x g%(w2 + w?) {In[1 — D:—r r] —in¢} . (7.10.22)
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If the classical theory is conformally invariant, ¢ decouples from the classical
action, and thus does not appear in the Feynman rules or in I';;: Its only appearance in
['p is through S. It must be introduced in §, to make this term scale invariant in D-
dimensions, and to compensate for this it must also appear in I'p, since I';; is indepen-
dent of ¢. On the other hand, if the classical theory is not conformally invariant, ¢ is
present in I';;, and will enter in I' in a manner which is not related to the way it enters

in 5.

c. Classical supercurrents

In this subsection we derive the classical supercurrents for various multiplets.
These are the superfields that contain the superconformal component currents. They
can be obtained in principle from the classical actions by means of Noether’s theorem, or
can be calculated as the variational derivatives of the covariantized actions with respect
to the supergravity prepotentials. In general we do not immediately obtain the same
results, unless we perform some field redefinitions. These redefinitions have no physical
effect since they only change the currents by terms proportional to the field equations.

We consider minimal supergravity with the chiral compensator.

The action for a scalar multiplet in the presence of (background) supergravity is

(in the chiral representation)
S = /d4x d*0 E"'ne g+ [/ d*z d*0 (bg(%an + %)\773) + h.c.] .

(7.10.23)

If we make the field redefinition 7 — ¢~ 'n and use the linearized equation (see (7.5.4))

E¢ e Hg) =1~ éﬁ&paﬂa& - %@H@ (7.10.24)
we obtain the supercurrent
= 08 1= _ J
Jao'z = Jao'z - (SH"“;‘ - 6 [Don Da]nn + 577@80[0'477
1, = _ 1_.5
— L (D (D) + L (7.10.25)

The 6@-independent component of J, . is the (R-transformation) axial current
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J

aal = %E@'(';Q&A — %J&wa, the linear #-component is the supersymmetry current, and

at the 0 level we find the (improved) energy-momentum tensor.

We define the supertrace

) _
95 _ Lo . DaT=0 (7.10.26)

J= 55

We can verify, using the equations of motion, the conservation equation
DJ. .=D,J . (7.10.27)

Quite generally, this equation is a direct consequence of the invariance of the

action under L,-transformations (5.2.7,7.4.2b), 6H .+ = D,L; — DsL,, §¢* = D*D,L*:

a~—~o

65 . 65
S, HY + (—=06;0°+ h.c.)=0 . .10.2
sped L +(5¢3 1#° + hoc.)=0 (7.10.28)

(SLS:

If the classical theory is conformally invariant the covariantized action is superscale
invariant (independent of ¢, possibly after field redefinitions, e.g., in the case above if

m = 0), the supertrace vanishes, and

DYJ. .=0 . (7.10.29)

ac T
This equation expresses the conservation of the axial current, and the vanishing of the

supersymmetry current y-trace, and of the energy-momentum tensor trace.

For the vector multiplet the flat superspace component currents are contained in
the supercurrent J . = WsW,, where W, is the flat superfield strength. However, to
obtain this expression from coupling to supergravity requires some field redefinitions

which we now describe. For simplicity we consider the abelian case.

In the supergravity chiral representation we have the reality condition V' = efV.

Introducing V' = sV we have now V' = V/ and
W, =i(V?+ R)V,(e V) = iD*W2TIN Pe D yes"V

_ i(b_gﬁzE—%NaﬁefHDﬂe%Hv . (71030)

It is convenient to calculate in the gauge (7.6.5) where N,”#4§,” so that spinor chiral

fields are chiral in the usual sense. In this gauge, at the linearized level (see sec. 7.5.c)
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E:N, =6, —D:D,H" . (7.10.31)

However, if we calculate the supercurrent by

J

.
[e7e%

= /d4x 420 6 LW, (7.10.32)
Haa

it will not be (Yang-Mills) gauge invariant because the gauge transformation of V' (or

V') depends on H ;:
o g+ 1y
V' '=i(e2"A—e"A) , DsA=0 . (7.10.33)

We remedy this by making a further field redefinition

1 smth 1 .
V'=(cosh > H+ —2— - H*[Dg, D))V, . (7.10.34)
2 Ty 2
2

Thus V, has the H-independent transformation law 6V, = i(A — A), which indicates
that the component vector field in V; has a curved vector index, in contrast to the flat

index on that in V. At the linearized level, we find
GW, =Wy — D2H W5 | (7.10.35)
where
W, = iD?*D,V, (7.10.36)

is the gauge-invariant field strength of V', (containing the component field strength with

curved indices). From the action (7.10.32) we find then

Jog =WeiWoo , J=0;

DiJ,s=0 . (7.10.37)

If the (covariantized) supersymmetric gauge-fixing term (6.2.17) is present, we

have additional contributions (for v = 1)

[e7e%

J oo == £ [Ds, DA[Vo{D?, D}V + (D*V,)(D?V)]

+ 2 (D*V)id ,4(D*Vy) — V4id,[D?, DV,

1
2
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([Ds, Da]Vo){D*, D*}Vy (7.10.38a)

(e

DN | =

JOF = %EQ(VO[D_Q, DV,) . (7.10.38b)

For the tensor multiplet (chiral spinor superfield) there are analogous complica-

tions due to the transformation law
. = (V2 + R)V,(e " K) . (7.10.39)

We have introduced K’ by analogy to V'. However, if we redefine K’ in terms of K,

and 7, in terms of 7,, by analogy to (7.10.34,35), we find that the covariant field

strength
G' = %e%Hvana + h.c.=— %e%HE(E’lno‘Ea) + h.c.
1L 3o Al Te i
= — 5€2HE(¢277 E 2NaﬂeHDﬁ6 H) + h.c. (7.10.40)

can be expressed as

ali D) ad 1 adr M
¢¢G :Go— ([Dd’Da]H )Go_gH [Dd,Da]Go

W =

+ (D H**)Dg — (DgH**)D, )G, (7.10.41)
where G, = %Dano‘x + h.c..

From the action

S =— %/d% di9 E-le " Gn (7.10.42)
we obtain
Jos = — 11—2 [Dg, D,)Gy* + %Go[ﬁda D,]G,
1, = 1 —
=3 (DsGo)(D,Gy) + 3 Go[Ds,D,)G,y (7.10.43a)
J = DG (7.10.43b)

We note that the substitution G, — n + 77 (cf. sec 4.4.c.2) gives the supercurrent J 4 for
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the nonconformal scalar multiplet with Lagrangian %(77 + 7)?. This Lagrangian for the
scalar multiplet, identical in flat space to the usual one, gives disimprovement terms to

J.,s and J because the extra terms %(n2 +7°) lead to nonminimal couplings

/d4x d*0 ¢*R %nQ + h.c.. On the other hand, the improved tensor multiplet (4.4.46)

with action — / d*z d*0 G In G does have J = 0.

From the gauge fixing term

DN | =

Ser = — /d4x a'o E*l(% Van® — h.c.)? (7.10.44)

we obtain additional contributions. The combined current from (7.10.42,44) can be writ-

ten
1 . 1 .
‘]a& = 6 (DQHQ)Zaﬂ&nﬂ 6 (D’ynv)zaﬂ&D(anﬂ)
1 . 2 8 1 _
— Enazaﬂ&D n’ + 577a|:|m; + h.c. (7.10.45a)
J =2 D(Dn®)? + h.c.] (7.10.45b)

12

As mentioned earlier, the field redefinitions we have performed change the form of
the supercurrents, but only by adding terms proportional to the field equations. Such

terms have no physical consequences.

The supercurrent for the supergravity multiplet itself can be obtained from the
background-quantum splitting of sec. 7.2, by functional differentiation with respect to

the background field. We will not give it here.

d. Superconformal anomalies

The discussion of sec. 7.10.b can be taken over directly to the N =1 supersym-

metric case. We consider quantum corrections to the supercurrent J_., and in particular

ad?
to its supertrace J. For classically conformally invariant systems the supertrace can be
obtained from the one-loop counterterm, and we will generally refer to this contribution
as the superanomaly. If the classical theory is not conformally invariant the supertrace,

computed from the renormalized effective action, does not equal the superanomaly. We
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discuss in this section the minimal n = — % theory with a chiral compensator.

We define the renormalized currents

AT
v = (7.10.46)
AHo«x
olp
== 7.10.47
o (7.10.47)
(In the version of the theory with variant multiplet compensators we have AA—I;/R =J+J
or iiﬁ =V,J.) We will assume for the time being that the minimal theory has no

local supersymmetry anomalies. Invariance of the effective action under local supersym-

metry transformations gives then
VI 0 =Val . (7.10.48)

The supertrace is zero only if I'j is independent of ¢. (The A operation is defined in

(5.5.44).)

The superanomaly is given by

58
= o 10.4
55 (7.10.49)

J = J* only if the classical theory is superconformal.

JaTL

The relevant one-loop expressions corresponding to (7.10.9,10,17) are

2(D-1) O

1 ID—211,a
Ty~ 57— dDﬂf9¢D41ymh(u;)J’2wfﬁ7+h.a : (7.10.50a)
2 D, 12 220 9 2 D, Lo 9
Sor~— [ d°zd°0p 2> W*+h.c.= — —— [ d°x g2(w” + @w") , (7.10.50b)
D1 D—4
I D, 2n 200 o D, g4y —1/2 ]
w=" Y[5 dPed®0 ¢ W? 4 hoc. + | dPxd9 EN(G? + 2RR)] , (7.10.51)
47)2°

where W? = %WQMW“M, [ is a supercovariantized d’Alembertian, and yp is the super-

symmetric form of the Euler number of (7.10.7). The expression corresponding to

(7.10.16) is
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1 1 - 15,1 O
Ty :k1;XD+ W/d4xd49E (ks — k3)§R(; —In M—;)R
L ~ad 1 [
— ks 5G (; —In E)Gad]
1 — 1 —
—ky e {/d4x d’0 ¢*W?*In[l — (V? + R) 0 Rl 4+ h.c.} (7.10.52)

and represents an unambiguous way of organizing the off-shell covariantized contribu-
tions from supergraphs with two or three external lines. Other terms, with more factors
of Wuﬂ*y?

n (7.4.4).

do not contribute to on-shell supertraces. The d’Alembertian [1_ was defined

If the classical theory is superconformal k; = k,. Otherwise, they have to be com-
puted separately, e.g., from a self-energy and from a triangle supergraph, respectively.

For example, the last term in (7.10.52) can be expanded as

1 _ J
k4w/d4xd40E1W2D—_R+h.c.+--- : (7.10.53)

and gives, at the linearized level,

J 5= k4( g T = (D2W2 D*W?) . (7.10.54)

This corresponds to the contribution from a triangle graph with two legs on shell. Its

form is uniquely determined by covariance and power counting, and the actual value of

k, can be determined, for example, by the Adler-Rosenberg method.

The supertrace and superanomaly are given by

_ 1 1 2
/= 374 (4m)2 W=,
an 1 1 2
J" = §k1 et W= . (7.10.55)

The superanomaly can be read from the results contained in (7.8.5) which give the on-

shell value of the first term in (7.10.52). For a scalar multiplet &k, = 21—4, while for a ten-

sor multiplet, including ghosts, it is k; = % In a background covariant gauge for the

vector multiplet the contribution to S, comes entirely from the three chiral ghosts since,
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as discussed in sec. 7.8, general superfields do not contribute to the two-point function.

Thus, for the Yang-Mills multiplet we have k; = — % For the gravitino matter multi-

plet, with the effective Lagrangian of (7.3.6) or (7.3.7) we find, by adding contributions

. 19 )
from the chiral ghosts, &k, = — 31 OF 5
pensators.  Finally, for the supergravity multiplet we obtain the values
41 7
kl - ﬂ s ﬂ y
numbers can also be obtained from a component analysis of the theories, using the val-

respectively, for the two different sets of com-

- % depending on whether we use a ¢, V, or v, compensator. These

ues k; of (7.10.18) for the component trace anomaly. (Changing from one compensator
to another corresponds to replacing some of the spin zero auxiliary fields with diver-
gences of vector auxiliary fields.)

For the scalar multiplet, which 1is classically superconformally invariant,
ky =k = 21—4, and for the same reason, for the vector multiplet k£, = — 23—4 Since the
tensor multiplet is physically equivalent to the scalar multiplet, it has the same value
ky = 21—4 (# k, since the classical theory is not superconformal). This result has been
checked by an explicit calculation.

For the supergravity multiplet the explicit calculations have not been completely
carried out. If we conjecture that the contributions to the supertrace again come com-
pletely from the chiral fields in the quantum action, we can determine the coefficients k,.

Since we are discussing the supertrace, chiral spinors are equivalent to chiral scalars or,
what amounts to the same thing, the result is independent of the type of compensator
we use. This gives the value k; = — 2—74 for the supergravity multiplet and, by a similar
reasoning, k, = 25—4 for the (% , 1) gravitino matter multiplet. (For example, in the (2, ;)
multiplet, replacing the chiral compensator with a V' compensator replaces two ¢,’s and
two ¢.’s with eight y’s with opposite statistics. For the (; , 1) multiplet the equivalent
of one ¢, and one ¢ in (7.3.6) is four more x’s, as in (7.3.7).)

For the scalar and vector multiplets, the supertrace results are also consistent with
the calculated values of the component axial current anomalies (provided we assign the
correct R-weights %, —1 for the fermions of the scalar and vector multiplet, respectively).

However, the conventionally quoted value for the gravitino axial anomaly

(05" = %(47)’27"*7") does not match the energy-momentum trace for either the
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N | Spax total trace (k)
0 0 8/360*
1/2 7/360
1 -52/360 | = (—1)*wt(15s,,.% — 2)/90
3/2 | 127/360
2 | -232/360
1| 1/2 1/24
! 3/24 = (—1)%wt (45, + 1)/24
3/2 5/24
2 -7/24
2 | 1/2 1/12
1 -1/12 (1)1
3/2 1/12
2 -1/12
>3 all 0

Table 7.10.1. Values of the total trace coefficients (*Complex conformal scalar)

(2, %) or (% , 1) multiplet. This is a consequence of the fact that the component anomaly

was calculated for a classically conserved gravitino axial current, whereas the component
current contained in J, is not classically conserved: It contains additional terms which
give nonvanishing contributions to 9,, §°™. (Its energy-momentum partner is not trace-
less: e.g., the trace of the quadratic part of the Einstein tensor, representing the energy-
momentum tensor of the graviton field, is classically nonvanishing even on shell. This is

due to the conformal noninvariance of Einstein gravity.)

The values of the k, coefficients calculated on the basis of our conjecture are pre-
sented in Table 7.10.1, which gives the supertrace in N =0, N =1, and extended super-
symmetry. That k, =0 for N >3 reflects again the absence of a net number of chiral

superfields.

The verification of our statements awaits an explicit calculation of the relevant tri-

angle supergravity supergraph, and a better understanding of some of the component
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calculations. If our conjecture is correct, it is rather curious, and not understood, that
the supergravity theory with the V' compensator behaves as if it were superconformal
(k; = k,) or, equivalently, that the superanomaly and supertrace differ only if chiral

spinors are present.

e. Local supersymmetry anomalies
We can use the existence of superconformal anomalies to infer the existence of
anomalies in the Ward identities of local supersymmetry for n # — % We demonstrate

this explicitly for the case of quantum matter multiplets coupled to background super-
gravity, but expect similar results when supergravity itself is quantized. We first con-

sider N = 1 supergravity.

At the linearized level, the Ward identities reflect the invariance of the effective

action under the (linearized) local supersymmetry transformations (L* = L*®)

5Hozo'4 = Doclj& - 5(;[104 ) (71056)
§¢° = D*D,L" |

n=0: 0¢"° =—2D*"+iD?D°K |,

_l . oz_~_l_2 o l_. a o ln""l
n # 3,0. OH =i 3DL +3DQDL+2—3n+1

DYDyL% + Dy . (7.10.57)
We have used the gauge H* =0 for n = — %; the gauge H” = — iﬁ&H“& (—1- 0 = 0,
l-e? =1, see sec. 52b) for n=0, so that E' can be linearized as
1+ % (D,o" + D_&&d); and the gauge Y =1 for other n. For n%—%,O we have made

the shift H* — H* — %z’D_dH 2 5o that J .4 1s the superconformal current (coupling to

conformal supergravity’s axial vector, and not the other auxiliary axial vector). We have
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p

/ d*zd?*0 (6¢*)J + h. c.

0=0ly = /d4xd49 (6H ) J o + /d4xd20 (0¢™)x, + h.c. (7.10.58)

/d4xd40 (SiH)\, + h.c.

\

where
JadE 5FR.
5Hozo¢
T 5 T 5 5T
= =— A, = 7.10.59
5¢3 ) X(X 6¢(¥ ) o 6(2Hu) ( )

n=—z: D,=D,J , Dgl=0 ;
n=0: Edjad:_QXa ) EdX(x:DaXa_EdXd:O ;
. pd _ 1 & 1man v 1 ntl e
other n: D*J . = 3D )\a—f—gD Da)\&+273n+1DaD Ao
D Agy =0 . (7.10.60)

The invariances used to derive these conservation laws are those of Poincaré super-
gravity, and their violation would imply that the multiplet contributing to I'y cannot be

coupled consistently to the corresponding form of supergravity. On the other hand, the

violation of the superconformal conservation law D%J we = 0 implies only that the multi-

plet cannot be coupled consistently to conformal supergravity.

We evaluate matrix elements of the conservation equations (7.10.60) between the
vacuum and an on-shell supergravity state. In particular, if we consider one-loop “trian-
gle” graphs we know the precise form of the left-hand side. As discussed in the previous
subsection, power counting and covariance determines uniquely the matrix element of

the supercurrent:
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1 R
< U(H)|J 4]0 > ~id, 4 g [D*(W 5,)% — DQ(W(W-W.)Q] : (7.10.61)

Then we have for the matrix element of D%.J od
< D% o> ~DW? . (7.10.62)

It is not zero (except when the supertrace vanishes), and is independent of the form of

the compensator.

We now examine the matrix element of the right hand side of (7.10.60). We begin
by considering contributions to the one-loop effective action from a classically supercon-
formal multiplet. Its (locally supersymmetric, covariantized) action is independent of
the compensator. However, as discussed in the previous subsection, the compensator
enters the (one-loop) renormalized effective action after the divergences have been sub-
tracted out. We can ask now if the form (7.10.62) is compatible with the right hand side
of (7.10.60). Since the compensator enters I'p only because we have subtracted out the

covariant, local, counterterm S (H, compensator), the corresponding current must also be
local. For n = —% a solution of (7.10.60) is J ~ W?, but for n#—% there exists no

local x, or A\, that satisfies the conservation equation. We conclude that any supercon-

formal N =1 multiplet that has a nonzero one-loop supertrace gives a contribution to
I', that violates the Poincaré supergravity conservation laws for n # — %, i.e. has a local
supersymmetry anomaly. Therefore, in general, superconformal multiplets can be cou-
pled consistently only to n = —% supergravity. (The analysis above is inconclusive,
however, if the supertrace vanishes, e.g. for a system of one vector and three scalar mul-
tiplets, which has no one-loop divergence or supertrace.)

In the case where the classical theory is nonsuperconformal, the compensators may

couple to nonlocal terms in the effective action. Thus, for n # — %,O,

1 — —
<\, >~D, & D*W? (7.10.63)

can satisfy (7.10.60) and we cannot conclude, without further analysis, that Poincaré
supergravity anomalies are present. However, we can still conclude that an anomaly is
present for n =0 since (7.10.60) implies D>J, . = 8**J . =0, whereas D%J _s~D, W?
implies D?.J s ~id ,W? and 8°J s ~i(D*W? — D*W?), neither of which vanish even
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on shell. This occurs because the supertrace is an irreducible multiplet of superspin 0

(W? is a chiral scalar), whereas the compensator multiplet for n = 0 has superspin %

For nonminimal supergravity (n;é—%,O) we will see below that anomalies are

absent only under very special circumstances. In general, their presence is related to the
nonexistence of a chiral measure. An interesting way to understand the origin of the
anomaly is to use the fact that (in appropriate supersymmetric gauges) only (physical or
ghost) chiral superfields contribute to the divergences and require regularization. In par-

ticular, we can ask if Pauli-Villars regularization is possible for chiral scalar superfields
with the various nonconformal couplings of sec. 5.5. Since only n = —% has a chiral

measure that allows mass terms for chiral superfields with conformal kinetic terms, it is
the only n that allows Pauli-Villars regularization for those superfields. (In other regu-
larization schemes, the same difficulty with chiral measures shows up in other ways: e.g.,
in dimensional regularization, finding analogs to the chiral integrands in the last term of
(7.10.52).) In fact, we will show below that the only quantum-consistent couplings to
supergravity are those which: (1) allow Pauli-Villars regularization, (2) have vanishing

supertrace, or (3) have couplings that correspond to extended supersymmetry. For
n = —% all chiral superfields can have mass terms, so all couplings are possible. For

other n coupling to the vector multiplet alone is impossible (it is classically superconfor-
mal and has classically superconformal chiral ghosts), coupling to a scalar multiplet
alone is possible only for the nonconformal coupling that allows mass (but not self-inter-
action) terms, and coupling to the combination of the two requires a cancellation that
occurs in extended multiplets (and probably nowhere else, if the cancellation is to be

exactly maintained at higher loops).

To discuss the situation quantitatively, we perform an explicit verification of the
conservation law (7.10.60) for contributions from chiral scalars with nonsuperconformal
couplings. From the actions of sec. 5.5 (with the definitions in (7.10.59)) we find the

classical currents

—%[5&,Da]ﬁn+%m5mn for n#0 |

- — 2”;1 [5& , D,Jim + % ﬁiéa&n forn=0
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' p2g _ 1
J = 3 D*nmm , n= 3
Yo = 3”2“ DD, , n=0 (7.10.64)
A, = 3”; ! D.,nm , othern

We now imagine computing renormalized one-loop matrix elements of these currents
between the vacuum and an on-shell background supergravity state. The matrix ele-
ment of J_; must have the form (7.10.61) and, in particular, its # = 0 component has
the form i, 40" (w? — @*). We observe that 772'82&71 gives no contribution to this com-
ponent and therefore no contribution at all, since any covariant superfield that vanishes
at 6 = 0 vanishes identically. (The “top” vertex of the graph contains only crossterms
AOB of n| = A + iB, whereas the gravitational couplings are proportional to AA and
BB.) Therefore, to compute matrix elements of any of the currents in (7.10.63) it is suf-
ficient to compute matrix elements < W(H)|7m|0 > for two-particle on-shell graviton

states U(H), and then apply appropriate operators (e.g.,
< Jozo'c >~ < [Ed,Da]ﬁT/ > = [50'“ Da] <nm >, etC.).

By power counting and covariance arguments, the renormalized matrix element has

the unique form

1 S
<im>=cq (D*W?* + D*W?) (7.10.65)

where ¢ is a numerical factor. We now substitute the corresponding expressions of

(7.10.64) into the conservation laws (7.3.59). Since

<Xo>=-f+1)D’D, <im>=0 (7.10.66)

DN | =

always, we find that the conservation laws are never satisfied for n =0 (unless ¢ = 0).

For n # 0 substituting (7.10.64) into (7.10.60) gives

o l =9 _ _3n+1 =9 _
5 D,D* <im>= — D,D* <im> | (7.10.67a)
which is satisfied only for
i=—g(n+1) . (7.10.67b)

For n = — %, this is the only value of 7 defined, even classically (see sec. 5.5.£.2). For
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other n, this value is exactly the one that allows a mass term.

To investigate anomaly canceling mechanisms, we consider contributions from one
vector multiplet and [ identical scalar multiplets with arbitrary weight n. The contribu-
tion of the vector multiplet to the nonlocal part of <y, > and < A, > must vanish

because of classical superconformal invariance (furthermore, the ghosts must have

~

Mghost = — %) The contribution to < D%.J wg > is —3 times that of a physical scalar mul-

tiplet. The [ scalar multiplets contribute to both the left and right hand sides of

(7.10.60). The conservation law now becomes

3n +1
3n +1

_ % DD <> (1—3) = DD <im>1, (7.10.68a)

which gives the condition

1,3 1,1
m=5G-Unt3(;

—-1) . (7.10.68b)
In particular, for [ = 3, which corresponds to the N = 4 vector multiplet, where diver-
gences cancel, the superconformal coupling n = —% is required. For [ =1, the N =2

vector multiplet, we find n; = n. Recall that for n = 0 the conservation laws require the

supertrace D4 wa to vanish identically even though the theory may still have divergences

(i.e., the superanomaly may be nonzero). We thus have
- 2”;1 [Dg, D) <im>1-— %[D_&, D, <mm>(—-3) =0, agreeing with (7.10.68) for
n =20

We have thus found that for N =1 only n = — % is generally quantum consistent,

while for other n only very special nonsuperconformal couplings are allowed. These
arguments can be applied to extended supergravity. In particular, the standard N = 2
theory, which (in terms of N = 2 superfields) has an isovector compensator V,b, is quan-
tum consistent, basically because it has chiral measure. Thus an N = 2 vector multi-

plet will give contributions to the effective action which are anomaly-free. When ana-
lyzed in terms of N = 1 superfields, N = 2 supergravity decomposes into a (; , 1) multi-

plet coupled to N =1, n = —1 supergravity. The N = 2 vector multiplet decomposes

into a N =1 vector multiplet and a nonconformal scalar multiplet, but with

n =n = — 1 which is consistent with the no anomaly condition we derived above. It is
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likely that this extended supersymmetry is necessary for n # — % for this cancellation of

the anomalies in the supergravitational conservation law to occur at higher loops.

f. Not the Adler-Bardeen theorem

In sec. 6.7 we considered the anomaly in the (axial) Yang-Mills current and, on
the basis of the covariant rules, concluded that it (and its component axial current) sat-
isfies the Adler-Bardeen theorem. On the other hand, the supertrace (anomaly) in gen-
eral receives higher-order corrections (the S-function is not zero), and therefore the com-
ponent R-current does not satisfy the Adler-Bardeen theorem. (We are considering here
matrix elements of the current between the vacuum and on-shell Yang-Mills states,
rather than supergravity states.) Although the currents look the same classically (for a
scalar multiplet in an external vector multiplet or supergravity background the AalfT
term does not contribute), the difference arises because of different renormalization pre-

scriptions.

In the first case, when the axial-vector gauge superfield is external (otherwise, in
the presence of one-loop anomalies the quantum theory makes no sense), it is possible to
renormalize the higher-loop effective action I'(V,,V _(ext)) and define J™"™ so that it
is not anomalous. On the other hand, if V _(ext) is replaced with H_;(ext), the higher-
loop effective action I'(V ., H ,(ext)) is usually renormalized in a manner which is con-
sistent with Poincaré supergravity gauge invariance. In that case, we do not have the

renorm
.

freedom to redefine J so as to remove its higher-loop supertrace (anomaly). If we

ive up super-Poincaré invariance, we can renormalize so that 9%*J .""™ = 0 at higher
) [e70%

N renorm
loops. However, this J g

will not contain a conserved (symmetric) energy-momen-
tum tensor at the 60 level. Therefore, the renormalized chiral R-current which is in the
same multiplet with the renormalized conserved energy-momentum tensor does not sat-

isfy the Adler-Bardeen theorem.
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8.1. Introduction

The most striking feature of the relation between supersymmetry and the
observed world is the absence of any experimental evidence for the former in the latter.
The particles we see do not fall into supersymmetric multiplets, nor do they show even
an approximate mass equality that would indicate they were in multiplets before symme-
try breaking. Thus if supersymmetry is an underlying symmetry of the physical world,

it must be badly broken, or otherwise hidden from direct experimental verification.

At a fundamental level, it is difficult to accept the idea of a global supersymmetry
without believing that there exists an underlying local supersymmetry: Since we believe

that gravity must be quantized, and since even global supersymmetry implies that the
graviton requires a spin % gravitino partner, then the gravitino must be the gauge parti-

cle of local supersymmetry, however badly broken global supersymmetry may be. Then,
as in any gauge theory, the supersymmetry breaking must be spontaneous (i.e., by the
vacuum) and not explicit (i.e., in the action itself). If we believe in local supersymmetry
with symmetry breaking, we must understand mechanisms for this breaking. It can be
through the Higgs mechanism, or due to cosmological factors such as boundary condi-
tions or high temperature effects in the early universe, or nonperturbative dynamical
effects, or via dimensional compactification. It is also reasonable to believe that the
breaking happens at a large energy scale. If this is so, we may hope that the dynamical
effects of the supergravity fields can be ignored at a lower energy scale, and that the
effective low energy theory is a broken globally supersymmetric theory. We can start
with an exact globally supersymmetric theory, at some scale where supergravity fields
have decoupled, and investigate its spontaneous breaking ab initio, or we can put the
breaking in by hand, as an explicit manifestation of the original local breaking. (In gen-
eral, if we start with a locally supersymmetric theory that exhibits symmetry breaking

and set gravitational fields and couplings to zero, soft breaking terms are induced).

Unlike other symmetries, there are some interesting and unexpected restrictions on
the possible breaking of global supersymmetry. Some of these have their origin in the
supersymmetry algebra itself, while others are most easily obtainable in the context of

superfield perturbation theory. The first restriction, which follows from the algebra, is
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the following theorem:

If supersymmetry is not spontaneously broken, i.e., if the vacuum is invariant
under supersymmetry transformations, then its energy is zero; conversely, if there
exists a state for which the expectation value of the Hamiltonian is zero, supersym-
metry is not spontaneously broken. Furthermore, if supersymmetry is sponta-
neously broken without an attendant modification of the supersymmetry algebra,

then the vacuum energy is positive.

As discussed in sec. 3.2, this result follows directly from the commutation relations
{Q,Q} = P, which give in particular
B =~ 50" < 0/{Q Q“’}IO>=LZ<0HQ %10 > (8.1.1)
vac 2N aod ﬁ 2N a .

ax

Thus:

If all the components of the supersymmetry charge (generators) annihilate the vac-
uum, its energy is zero. If any one of them does not annihilate the vacuum, then

its energy is positive.

We emphasize that this theorem assumes that the supersymmetry algebra is not
changed. With an appropriate interpretation of the total energy and charge, the theo-
rem also holds in supergravity. On the other hand, explicit breaking does change the

algebra and then negative or zero energy is possible.

The second important result, proved for a fairly large class of renormalizable mod-
els, is that in spontaneously broken global theories, there are mass sum rules relating
fermion and boson masses, which take the form

d ompg® =) mpt=0 . (8.1.2)

states states

These sum rules are extremely restrictive, and make the construction of realistic models
difficult; however, for locally supersymmetric and explicitly (softly) broken globally
supersymmetric theories, the generalizations of this formula are phenomenologically

acceptable.

A third result is the following theorem, which can be proven in perturbation the-

ory for four-dimensional theories:
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If supersymmetry is not spontaneously broken at the tree level, then it is not bro-

ken by radiative corrections. A Coleman-Weinberg mechanism is not possible.
This theorem is not valid in two-dimensional supersymmetry.

If supersymmetry is spontaneously broken, a massless Goldstone fermion must be
present. Therefore, if one can prove that no massless fermion states can exist, supersym-
metry cannot be broken spontaneously. Using this fact, Witten has given certain criteria
(index theorems) that allow one to rule out in a simple manner, in certain cases, the

possibility of spontaneous supersymmetry breaking. In a locally supersymmetric theory,
the Goldstone fermion is absorbed by the spin % gravitino via a conventional Higgs

mechanism. Index theorems have not been investigated in supergravity.

Global supersymmetry breaking is most easily discussed in superfield language as a
breaking of ()-translational invariance in superspace. This can happen either because
the vacuum is not @Q-translationally invariant (spontaneous breaking), or because one
has explicit #-dependence in the effective action (either at the tree level or nonperturba-
tively, for example via instanton effects, which could introduce such explicit depen-
dence). If the breaking is spontaneous, it means in general that some superfield has a
nonzero vacuum expectation value (if Lorentz and internal symmetry invariance are not
to be broken, it has to be a neutral scalar superfield). Furthermore, the nonzero expec-
tation value must reside in other than the #-independent component of the field, so that
some explicit f-dependence is introduced. For N = 1 matter superfields, it means that
one of the auxiliary fields must have a nonzero vacuum expectation value. (Unless gauge
invariance is broken, vacuum expectation values for the gauge components cannot be

physically relevant.)

Supersymmetry breaking in a local context and the superHiggs mechanism can
also be described directly in superspace. All the standard methods, such as the theory
of nonlinear realizations, can be applied and all the standard results, such as the conver-
sion of the Goldstino into helicity modes of a massive gravitino and the existence of U-
gauge, can be generalized to the superfield discussion of spontaneously broken supersym-
metry; the resulting formalism is considerably simpler than a component approach.
However, some issues (at the present time) can be settled only by considering compo-
nents directly, e.g., what are component field masses, what are the conditions for sponta-

neous breaking to occur, what is the Witten index, etc. Therefore, although most of the



8.1. Introduction 499

material in this chapter is at the superfield level, we cannot avoid some component cal-
culations, and we also omit some topics that have not, as yet, received an adequate

superspace treatment.

We first discuss soft explicit breaking of global supersymmetry (sec. 8.2). Our cri-
terion for softness is the analog of Symanzik’s criterion in ordinary field theory: In
renormalizable globally supersymmetric theories, the only relevant divergences are loga-
rithmic. We ask what nonsupersymmetric terms can be added to the classical action
without spoiling the delicate cancellations between boson and fermion contributions that
are responsible for the absence of quadratic divergences. Since we can cast the problem
in superfield language, we are able to take advantage of the superfield power counting

rules of chapter 6.

We next treat spontaneous breaking of global supersymmetry for both renormaliz-
able and nonrenormalizable theories (sec. 8.3). (Nonrenormalizable theories are relevant
to our discussion of breaking in the context of local supersymmetry.) We do not discuss
Witten’s index theorem, or breaking of supersymmetry by instantons; as noted above,
with our present techniques these issues can be handled only at the component level.
We do, however, give a superspace derivation of the supertrace mass formulae (sec. 8.4).
This derivation is much simpler than the component calculation (which we also give,
partly for comparison, but also because it provides some extra information, e.g., the

masses of the individual components).

Finally, we discuss the superHiggs effect. We show how the Goldstino can be
described by a nonlinear (superfield) realization of supersymmetry, and how standard
“radial” and “angle” variables can be introduced in models with spontaneously broken
supersymmetry (sec. 8.5). We exhibit the superHiggs mechanism (sec. 8.6) and give a
detailed discussion of the case of arbitrary supersymmetric “matter” systems coupled to

supergravity (sec. 8.7).
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8.2. Explicit breaking of global supersymmetry

One of the important features of supersymmetric theories is the perturbative no-
renormalization theorem (sec. 6.3.c): The superspace potential P(®) for chiral super-
fields receives no radiative corrections, so that scalar multiplet masses and coupling con-
stants are not renormalized (aside from the effect of wave function renormalizations).
Furthermore, for renormalizable models, only logarithmic divergences are present (as dis-
cussed in sec. 6.5, quadratically divergent D’-terms are not generated if gauge invariant
regularization is used). When supersymmetry is explicitly broken this is no longer the
case, and, in general, quadratically divergent corrections can be induced. Equivalently,
the parameters of an effective low energy theory can depend quadratically on masses
associated with the theory defined at high energies, and some of the “naturalness” of
supersymmetric theories is destroyed. However, there exists a set of supersymmetry
breaking terms whose effect is soft : When added to a supersymmetric Lagrangian, any
new divergences that these terms generate are logarithmic. More precisely, if we intro-
duce counterterms in the classical Lagrangian to cancel the new divergences, after renor-
malization their dependence on the renormalization mass (or high energy cutoff) is only
logarithmic. In this section, we describe the set of soft breaking terms, and the addi-

tional terms that they induce.

Breaking supersymmetry is breaking ()-translational invariance. This is done by
introducing explicit #-dependence into the Lagrangian. Equivalently, we can introduce a
superfield ¥(z, #) with a fixed -dependent value. This suggests the following procedure:
Given a supersymmetric action, we generate new terms by coupling, in a manifestly
supersymmetric fashion, some external (“spurion”) superfield(s) to the quantum fields.
Supersymmetry breaking is achieved by giving these fields suitable (#-dependent) fixed
values. At the component level, this introduces some nonsupersymmetric terms. Soft
breaking is achieved by only allowing new couplings that are consistent with the (power
counting) renormalizability criteria of superfield perturbation theory, so that no diver-
gences worse than logarithmic are introduced. The induced infinities correspond to con-
ventional divergent terms in the effective action involving products of the quantum and
spurion fields. When the spurion fields are given their fixed values we can determine the
corresponding new component infinities. Generally, we will find that in a component

language symmetry breaking terms of dimension two are soft, but terms of dimension
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three are not (with some exceptions). These terms correspond to splitting the masses of
particles in multiplets by hand, or adding some new, nonsupersymmetric interactions of
a very special form. We will find that there are essentially five distinct types of soft
breaking terms that can occur singly, or in combinations. In general, one such term
induces the others, so that we should discuss them all at the same time. However, since

their physical significance is different, we prefer to treat them one at a time.

We consider conventional renormalizable Lagrangians (cf. sec. 4.3) of the form
S = /d% d'0 (@' @' + virV] + /d% d*0 [% WeW, + P(®)] + h.c. (8.2.1)

where P is a polynomial of degree three or less. By power counting we know that the

only divergences of the theory correspond to terms in the effective action of the form

/d4x d*o o® /d4x d'o dV"d

/d% d*0 V(D)*(D)*V" /d% a0 v (8.2.2)

where the D-derivatives are suitably distributed and terms with n > 1 are related to
terms with n =1 by gauge invariance (we include ghosts among the chiral fields in
(8.2.2)). We break supersymmetry softly by coupling additional external superfields in a
manner consistent with the power counting criteria (see sec. 6.3): No more than four
D’s acting on the internal lines should appear at any vertex where the external spurion
field is inserted. In addition to the original divergences of the theory, we may generate
new ones, involving the spurion fields as well, and they are the ones that interest us. In
this section we do not consider divergences involving spurion fields only, which corre-
spond to insertions into vacuum diagrams and contribute only to the vacuum energy

(cosmological constant); see, however, sec. 8.4.

Since the spurion fields can never introduce any additional spinor derivatives into a
loop, if in any soft breaking term the spurion field is set to 1 the resulting term must be
either a conventional renormalizable supersymmetric term or a total (spinor) derivative.
The possible additional couplings that introduce explicit #-dependence into the action
correspond to multiplying a spurion factor into ®®, ®*, W?* &3 or D*(®W,). In detail,

we have:
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Shreak = /d4x d*0 Udd N/d4x uAA (8.2.3)

where U = ;i*6?0? is a neutral dimension-zero fixed general scalar superfield. At the

classical level, when added to (8.2.1), such a term breaks the equality of the boson and
fermion masses of a scalar multiplet by adding —u? to the masses of A = 9"3Re A and

B=2":ImA. To investigate the divergences it introduces, we consider loops with ordi-
nary vertices and external U vertices. We look for local terms in the effective action,
involving a d*f integral and factors of U and the quantum fields, of dimension no greater
than 2. (This is our standard power counting of sec. 6.3.) Since U is dimensionless,
such terms are: U®®, corresponding to a logarithmic renormalization of (8.2.3), i.e., of
p?; U(® + @) (but only if some chiral field is massive); and UD*D?D,V (but only if the
gauge group has a U(1) factor; the D-factors are required by gauge invariance). There-

fore, the action may receive additional logarithmically divergent corrections:

AT ~ /d% d*OUD + /d% d'9 UD“W , + h.c.

~ /d4x [1*mA + p*D] (8.2.4)

Sear = /d% d*0 x®* + h.c. ~/d4x p?(A? — B?) (8.2.5)

where y = p*6?

is a neutral dimension-one chiral superfield. This addition corresponds
to another way of splitting the masses of scalars and pseudoscalars away from the mass

of a spinor in a chiral multiplet. New, logarithmically divergent terms are given by
AT ~ /d4x d*0 X® + h.c. ~ /d4x F (8.2.6)

where F = Re F. Since Y is neutral under whatever internal symmetry groups may be
present, no infinities involving gauge fields (as might arise from a ye"y term) can be

induced.
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Spreas = %/d% 40 gWoW,, + h.c.~ %/d% UXN, + h.c. (8.2.7)

where 1 = u6” is a neutral, dimension-zero chiral superfield. Again this involves vertices
with only four D’s and is therefore soft, and provides a mechanism for giving masses to
fermions in gauge multiplets. The following divergent terms may be generated in addi-

tion to corrections to S, itself:

AFN/d4xd40ﬁ<I>+h.c.~/d4xF
AFN/d4xd40 (nﬁ@+h.c.)~/d4xA
AFN/d4xd49n&>q>+h.c.~/d4x [FA — GB]

AT ~ /d4x d*0 mdd ~ /d4x [A? + B?] (8.2.8)

For a given theory, not all of these terms need appear; for example, the third term will

only be generated at the two loop level, and only if a massive chiral superfield is present.
(d)

Sireak = /d4x d* n®* + h. c.w/dA‘x pRe (A® — 3AB?) (8.2.9)
with 7 as in (¢). Unlike the previous cases, this introduces an allowed nonsupersymmet-

ric interaction term. In general we induce the same divergences as in case (c).

The breaking term / d*0(n+7)®® can be reduced by a field redefinition
® — (1+ n)® to the previous cases.

Another possibility, which gives a gauge invariant mass mixing between the

fermions of a gauge multiplet and of a scalar multiplet in the adjoint representation, is
()

Sreak = /d% d'0 D°UdW,, + h.c.



504 8. BREAKDOWN
= /d% d*¢ D*D°U ® D,V + h. c.~/d4x pRe [1h* N, + AD']

(8.2.10)

with a dimension —1 field U = u#%6?, or, equivalently, with a dimension % chiral spinor

superfield x* = D*D*U~uf*. Logarithmic corrections are induced for S, itself and

for:
AF~/d4x d*0 x*x.,® + h.c.~/d4x 75 O (8.2.11)

The above possibilities for soft breaking are flexible enough to cover all interesting physi-
cal situations without introducing a large number of arbitrary parameters. (With sev-

eral multiplets, because cancellations are possible, other types of terms can be soft, e.g.,

/d4x d40 DU(U@lﬁa(p2 ~ /d4x (F1A2 - F2A1).)

It is also interesting to examine some cases of breaking that are not soft. We men-

tion two:
(a’)
S prear = /d% d'0 U(D*®)(D,®) + h.c. (8.2.12)

with U as in (e), shifts the mass of the spinor in a scalar multiplet. But it leads to ver-

tices with six D’s, as does
(b7)

S ear = /d% d*o U(® + @)%/d% pA? . (8.2.13)
Both will produce quadratically divergent terms, for example

AT ~ /d% d*0 U® + h.c. ~ /d% A (8.2.14)

We can understand the difference between cases (a) and (b) on one hand, and (a’)
on the other as follows: They both lead to fermion-boson mass splittings for the scalar
multiplet. However, the former, in addition to splitting masses, also affects some of the

component interaction terms, and it is the delicate balance of mass terms and
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interactions that keeps the divergences under control. On the other hand, there is no
difficulty giving mass to the fermion of a vector multiplet, or introducing mass mixing

between the fermions of the two multiplets.

It is a useful and simple exercise to check some of the above conclusions by exam-
ining supergraphs involving the spurion fields. We note that some of the induced terms
we have listed may be missing because of group theory restrictions, or, in some cases,
because of the absence of masses, e.g., the third term in case (¢). In certain cases possi-
ble terms are missing because the corresponding graphs require ®® or ®® propagators
and these bring with them numerator mass factors that reduce the degree of divergence
of the diagrams. For example, in cases (c) and (d) a term 7®* cannot be produced
because the corresponding diagrams must contain two mass factors and hence are con-

vergent.
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8.3. Spontaneous breaking of global supersymmetry

If global supersymmetry is spontaneously broken, a massless (Goldstone) fermion
must be present. This can be established by the usual reasoning that proves the Gold-
stone theorem: If the supersymmetry charge does not annihilate the vacuum, there exist
operators whose (anti)commutator with the supersymmetry charge has nonzero vacuum
expectation value, and, in particular, we can write

< 0{Qa, Sup}0 > = /d% % < 0|T(8%,(2)8,5(0))[0 > (8.3.1)

where S, is the supersymmetry current, satisfying 0*S,, = 0, and @, = / dngQa. The

left hand side not being zero (it is actually proportional to the vacuum energy density
(8.1.1)) implies that the right hand side receives a contribution from a surface term; this
is the case only if the matrix element vanishes at infinity not faster than |z|~*, which is

possible only if a massless fermion intermediate state is present.

The spontaneous breaking of supersymmetry in globally supersymmetric theories
can be investigated by examining the effective potential at its minimum, where it equals
the vacuum energy. The effective potential U is obtained from minus the effective action
by setting all momenta and all component fields that are not scalars to zero. We must
then minimize U with respect to all the remaining component fields and ask if it van-

ishes at the minimum.
a. Renormalizable theories

a.l. Classical effects

We first consider a system with only chiral scalar superfields, and a renormaliz-

able classical action given by (4.1.11):
S = /d% d'0 ®,0" + /d% d*0 P(®") + h. c. (8.3.2)

where P is a polynomial of degree no higher than three. To investigate the classical vac-

uum we set all momenta and fermion fields to =zero; we then have effectively

® = A — #*F, and since each  integration requires a #*0* factor, we obtain the classical

potential
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U=—F,F' —[F'P;(A)+h.c.] (8.3.3)

where P, = —— as in (4.1.13). The classical vacuum is described by the constant (z-

0A
independent) classical (expectation) values of the scalar fields obtained by solving the
classical field equations for constant fields, i.e., by extremizing the classical potential.
Extremizing with respect to the F' first, we find F;, = —P,(A); substituting into U we

obtain
U=> [P(A)P . (8.3.4)

We require

ou P A _
9T Pi(A)P,(A) =0 . (8.3.5)

The potential will vanish at the extremum and supersymmetry will not be broken only if
the simultaneous equations P;(A) = 0 have a solution. This requirement is equivalent to
that of requiring that all the F’s have zero vacuum expectation value. We can work
directly in superspace, by defining P(®) as the superspace potential. The condition for

supersymmetry not to be broken is formally that the superspace potential have an
extremum with respect to the superfields: % = 0.
We consider two examples:

(a) The Wess-Zumino model, with action
/d% 419 36 + /d% 40 [a® + L m®? + 2P + h.c. (8.3.6)

The superspace potential, when differentiated with respect to ® gives a + m® + %)@2

and setting this to zero always gives us a solution. Hence the vacuum energy is zero and
there is no supersymmetry breaking. This is the case even if we consider an arbitrary

(nonrenormalizable) polynomial potential.

(b) On the other hand we can consider the O’Raiferteaigh model, given by
/d% d*0 [®y®@, + DD, + P, P,y) + /d% d*0 [®y®,% + m®, Py + £®y] + h. c. (8.3.7)

for which we obtain the equations
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7’ +£6=0
2@0@1 + m@Z - O

mP, =0 (8.3.8)
which have no solution. In this case supersymmetry is broken at the classical level.

In the general case, the situation depends on the topological structure of P. In
particular the presence of an extremum, and its stability under variations of parameters
in P, can be studied in rigorous fashion and gives rise to index theorems to determine
whether supersymmetry can or cannot be spontaneously broken. We remark that super-
symmetry breaking in the sense above implies that the fermion mass matrix, which is

given by the matrix of second derivatives P

; evaluated at the minimum of U (see

(4.1.12)), has a zero eigenvalue corresponding to the zero mass of the Goldstone fermion.

Indeed, if (8.3.5) is satisfied with P; # 0, P;; must be singular.

Including gauge invariant interactions with a real gauge superfield does not funda-

mentally change the discussion. Gauge invariant terms that can be added to (8.3.2)

have the general form /d49[&>ev@ + vV] (the last term only if V is a U(1) gauge field),

and the only component of V' that can have a nonzero expectation value is the auxiliary
field D’; this leads to additional terms in the classical potential of the form
1

3 (D)2 — vD' — AAD'. Extremizing with respect to D’ and then eliminating it gives

an additional contribution %‘V + AAJ* to the classical potential, which must be sepa-
rately zero for supersymmetry not to be broken. The expression for the classical poten-
tial can be read from (4.3.7). We note that if v # 0, if it can be arranged for v + A4 to
equal zero, then some (charged) scalar field must acquire a (nonvanishing) vacuum
expectation value, and the gauge group will be spontaneously broken. Thus, to have

both gauge invariance and supersymmetry, it is necessary that v = 0.

We observe that if some expectation value of an auxiliary field is nonzero, i.e.,
f=<F > or d =<D’>, the supersymmetry transformation of the spinor field of the
multiplet becomes (see (3.6.5,6))

5wa:f€a+”'

or
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SN, = ide, + -+ | (8.3.9)

which is typical behavior for a spontaneously broken symmetry. The spinor field

describes the Goldstino, and f or d sets the scale of supersymmetry breaking.

a.2. Loop corrections

We now establish the following result: In four dimensions, if supersymmetry is not
spontaneously broken at the classical level, it is not broken by radiative corrections.
This theorem can be proven most readily by using results of superfield perturbation the-
ory, and it might be violated by nonperturbative effects, although no example is known

in four dimensions. We first consider the situation with only chiral superfields.

A basic feature of perturbation theory is that the effective action is obtained with
a d'0 integral. If we consider classical constant fields of the form ® = A — 6?F , D,, act-
ing on them is simply %, so that the derivatives do not introduce any 6 factors; conse-

quently, in the d*@ integration, we must get 6 and 6 factors from the ®’s, and these are
accompanied by an F and an F factor. Therefore, adding the classical potential to the

quantum corrections, we have a total potential of the form

Uy =—Y [FiF'+FP(A)+FP(A)]+> FFG(AAFF) (8310

i 1j

Differentiating with respect to A’ and F; we obtain

oU , — 0 :
T Al =Py +FijWGk] (8.3.11a)
oU A S ) ,
—om =P AP FG B Gy (8.3.11b)

Now, if at the classical level there exist values of the A’s such that P, =0, so that
F' = 0 satisfy the extremum equations and make the classical U vanish, it is clear from
the above form that this result is not changed by the quantum corrections since the
additional terms also vanishes for F* = 0. The important ingredient is that the quantum

corrections are bilinear in the auziliary fields.

Therefore the classical minimum of the classical potential is still an extremum of

the quantum corrected potential, and it is still such that the total potential vanishes
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there. Furthermore, if the supersymmetry algebra still holds, it must be an absolute
minimum (no negative energy) and therefore supersymmetry cannot be broken. Con-
versely, if supersymmetry is broken at the classical level (some P; # 0 for any A’s), the
above equation has no F' = 0 solutions, and hence radiative corrections cannot restore

the symmetry.

We remark that in lower dimensions the situation is slightly different. There the
superspace integrations are d*6, while superfields still have the form A — #*F. There-
fore, the quantum corrections to the effective potential can have terms of the form
FG(A, F) with a single F. When taking derivatives with respect to F, the factor in
front can disappear, and we find that the classical extremum no longer need be an

extremum of the quantum potential.

In the presence of gauge superfields we can have additional contributions to the
effective potential. Terms proportional to D”? or D'F are quadratic in auxiliary fields
and do not change our conclusions: If F'=D’=0 are solutions of the classical equa-
tions, they will also be solutions of the quantum corrected equations. However, it is pos-
sible to generate terms of the form D’f(A, A), and such terms, no longer quadratic in
the auxiliary fields, could change our conclusions (recall that a pure D’ term is not gen-
erated). Nevertheless, as long as gauge invariance and supersymmetry are unbroken at
the tree level (which implies that the theory does not have a Fayet-Iliopoulos term), even

a term linear in D’ is harmless. This is because such a term arises only from the covari-

antization of terms in the effective action of the form /d4x d*0 g(®,®) —

/d4x d*0 g(de” /d4 A A) : thus this term is at least bilinear in the D', A

fields, and hence we can use the same arguments as above to conclude that the classical
solution D’ = A = 0 (which must be the case if gauge invariance and supersymmetry are
unbroken classically) is still a solution at the quantum level. (A linear A term would

spoil this argument, but such a term cannot be written as a d*6 integral.)

If classical gauge invariance is broken, and a D’f(A, A) is generated, it has been
shown that for a specific class of models a supersymmetric solution (F =D’ = 0) of the
quantum corrected equations exists with the A’s shifted from their classical values; thus,
even in this case, supersymmetry is not broken by radiative corrections. However, the

general situation is in need of further clarification. All of these results hold for the



8.3. Spontaneous breaking of global supersymmetry 511

nonrenormalizable systems that we discuss below.

b. Nonrenormalizable theories

We now consider more general situations. For global models coupled to super-
gravity (see sec. 5.5.h) the renormalizability criterion is too restrictive: The combined
systems are not power-counting renormalizable, and since we can make field dependent
Weyl rescalings, there is no reason to insist on polynomiality of the matter actions.
However, nonderivative superfield dependent rescalings do not change the number of
derivatives in the action and therefore we restrict ourselves to actions that lead to com-
ponent Lagrangians with no more than two spacetime derivatives in the purely bosonic
terms of the action, and no more than one spacetime derivative in the terms containing
fermions; this is preserved by superfield dependent rescalings that do not involve spinor
derivatives. In this subsection we discuss interacting chiral scalar superfields; we extend
the discussion to gauge systems in the following subsection. The reader should review

our discussion of Kahler manifolds in sec. 4.1.b.

We consider a system of N chiral superfields ®' described by the superspace action
S:/Q%meﬁw§»+/ﬁ%famﬂy+ha,

®=3d(2,0,0) , D;®=0, d=(®) , DI=0 . (8.3.12)

«Q

As discussed in sec. 4.1.b, the first term of the action S can be given a geometrical inter-
pretation: @, <T>j can be thought of as coordinates of a complex manifold with Kéahler

potential IK.

We recall that the (complex) component fields of ®' are defined by projection
A'=9d'| , ,)=D,| , F =D . (8.3.13)
We denote vacuum expectation values of the component fields by
a'=<A"> | fl=<F'>, <¢Y'>=0 . (8.3.14)

The vacuum expectation values are obtained by solving the classical field equations for

z-independent fields.
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The action S leads to the superfield equations
D’IK, +P, =0 (8.3.15)

and their hermitian conjugates (we use the notation of (4.1.13,25a)). Taking vacuum
expectation values and evaluating at § = 0 using the definitions (8.3.13,14), we obtain in

particular
IK/(a)f; + Pi(a) =0 . (8.3.16)

As in the renormalizable case (sec. 8.3.a), spontaneous supersymmetry breaking occurs if
f" =0 is not a solution to these equations. Further component equations are obtained

by differentiating (8.3.15) with D? and evaluating at # = 0. We find
(K" (a)fy + Py(a)lff =0 . (8.3.17)

After finding the vacuum solution(s), we can choose to work in normal gauge (4.1.27) at

the vacuum point. In that case the vacuum equations (8.3.16,17) reduce to
fi+Pi=0, Pyfl=0 . (8.3.18)

If P;(a) is nonsingular all f/ =0 and supersymmetry is not broken. Conversely, if
f7 =0 is not a solution of (8.3.16,17) then supersymmetry is broken and P;(a) must be

singular.

Returning to the action (8.3.12), we shift the fields ® — &' + < ®' > and investi-
gate fluctuations about the vacuum state. In particular we can read off the masses of
the various particles from the resulting action; alternatively, we can find the mass matri-
ces of the component fields by expanding the superfield equations (8.3.15) to linearized

order in the fluctuations:
D<K/ >®, +<IK;>®]+<P;>® =0 . (8.3.19)
Applying D, and D? and evaluating at § = 0 as in (4.1.21), we find
iaa&Ji& + Ptjwja — O

OA, + Ky fif* A, + Py fP A7 + Py F7 =0 (8.3.20)
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where we have dropped the <> on P and IK =~ and assumed that we are in normal

gauge. Eliminating the auxiliary fields we identify the fermion and boson mass matrices:

E{ikﬂflfk - Pikpkj Pijkfk
Mg? = — : (8.3.21)
pijk .fk 7l ka fl sz

Again, as above, if supersymmetry is broken P, has at least one zero eigenvalue and one
of the corresponding massless fermions is the Goldstino.

We evaluate the graded trace of the mass matrix squared. This supertrace gives

the mass relation

str M? = (=1)* (2] + 1)M ;> = tr My* — 2tr M pM
J
= —2IK ;" f,f* (8.3.22)
Since we are in normal gauge we can rewrite this as
str M> = — 2R, f, f* (8.3.23)

where R,' = R,;'," is the Ricci tensor of the manifold evaluated at ®' = < ®' > (see
(4.1.28)). The result is manifestly covariant, and thus (8.3.23) holds in an arbitrary
gauge. In particular, for models with conventional actions ®,®’ the Kéahler manifold is
flat and we obtain the simple mass formula
D (=DYI+ 1M =0 | (8.3.24)
J
We also observe that in contrast to renormalizable models, spontaneous supersymmetry

breaking can occur in a model with a single chiral multiplet, for example with

IK = cos(® + @), P(®) = ®, where —7 < A < .

c. Global gauge systems

In this section, we repeat the previous analysis but include gauge superfields

V =VAT,. Because gauge symmetries are usually described by explicit matrix
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representations (T, )" ; of the generators, we begin with this formulation; we then change
over to a more general formulation where we describe the action of the generators by
Killing vectors. As discussed in sec. 4.1.b, this allows us to choose normal coordinates in
which the computation of the mass matrices simplifies (however, we cannot use normal
gauge). We restrict ourselves to models where the gauged group is unbroken or isotropic
at one or more points of the manifold of scalar fields. (The usual matrix representation
assumes isotropy at the origin, i.e., the origin is kept fixed by gauge transformations.) A
formulation in terms of Killing vectors should allow one to gauge groups that are real-
ized nonlinearly at every point on the manifold of scalar fields, i.e., 6® has a constant
term everywhere (the constant term cannot be eliminated by shifting the scalar fields);

however, the superfield description of the more general case has not been worked out.

We consider the action

S = /d4x d*o []I((q)i,&)j) + virV]

+ /d% 420 [P(@') + § Qua (P)VWA W] + hec. (8.3.25)

with covariantly chiral d:
S, =8, (), WA =iD(e"Dye")t . (8.3.26)

The chiral quantities @, = 0,5 + O(P) can generate masses for the gauge fermions con-

tained in V. We have included the global Fayet-Iliopoulos term virV (4.3.3).

We chose a Kéhler gauge (see (4.1.26)) where IK itself is invariant; we can always
do this if the gauge group is unbroken somewhere on the manifold as discussed above.

Then gauge invariance of S requires

H("(TA)ji(I)i - 5j(TA>jz‘ZK—i =0,

J

P.(T,)® =0 ,

QDEJ(TC)jiéi + (TC)DAQAE + (TC>EAQAD =0 . (8327>

The matrices (T),* form the adjoint representation of the generators, and are, up to an

overall factor, the structure constants; thus they are independent of any special choice of
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coordinates on the scalar manifold.

We begin by deriving the equations for the vacuum expectation values. We define

(Yang-Mills) covariant component fields by covariant projection (see (4.3.4,5))

A =0 | o, =V, , F =V , (8.3.28a)
1
)‘a = Wa| ’ faﬁ = 9 v(aWﬁ)‘ ’ (8328b)
iva&xo; = % [vﬂ 9 {vﬁ 9 Wa}” 3 D/ - - % {voz 5 Wa}‘ 5 (8328C)

where f”,; is the component gauge field strength (see (4.2.85)). We also need the iden-
tity (d* = <D™ >)

<V2V 0, > | =d*a, (T,); . (8.3.29)
The superfield equations that follow from (8.3.25) are:

VK, + Py + 5 Quu WA W, =0

&.(T,), K — %v%chB W) + %W&(QAB W) +vtrT, =0 . (8.3.30)

J

The equations for the vacuum expectation values are obtained by evaluating at 6 =0
the above equations, and the equation obtained by differentiating the first one with V2.

We find

o , ; S
K" if? + @ (T0)"jd K + Py f + 5 Quud*d” =0

@ (Ty) K"+ (Qus + Qup)d® +vir T, =0 (8.3.31)
where IK, Q,,, P are evaluated with ® — a'.

We now generalize to arbitrary coordinates by rewriting the above in terms of
holomorphic Killing vectors k,’. We replace the specific form of the Yang-Mills gauge
transformation (4.1.35)

~

5O = iAMN(T,) &, 6b, = — id,ANT, ), (8.3.32)

J ?
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with the more general form (4.1.31):
50 = Ak, , 6, = Ak,
where ®, is defined by analogy with (4.1.34Db):

~ 0

D, = exp(iV*k,, a?)tf
J

1
The conditions (8.3.27) that ensure gauge invariance of the action become

Kk,'+IK'k,, =0

Pk, =0

3

QDE,ikCi + i(TC)DAQAE + i(TC)EAQAD =0

(8.3.33)

(8.3.34)

(8.3.35)

As discussed above, a formulation in terms of Killing vectors enables us to use nor-

mal coordinates and thus to simplify our computations. Thus, for example, we can com-

pute the mass matrices of the various component fields and find a supertrace relation

that generalizes (8.3.22). We find the linearized field equations for the component fields

by expanding the covariantized form of the superfield equations (8.3.30) around the vac-

uum and applying the operators 1,V,V? to the first and 1,V, [V, V] to the second of

the equations and evaluating at # = 0. The result, in normal coordinates, is

Fi+PA =0
1075 0%+ Ny + Pyt — L Qud XN =0
OA, + [id*ky 7 + K, f* F — Py PY]4,
+ [Py f* + 5 Quo yd* "] A + [Qup 10 + iy D™ =0,
(Qan + Qup)D™ + (Qup d” + ki) A" + (Qan'd® — ik, ) A, =0

. ) a ., \Ba . ai 1 i «
2 (Qun + Qu )0 X 4 (s = 5 Qua @™ + 5 Qua f A" =0,
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Qs + Qus) V25 — (haiky’ + bk YA =0 (8.3.36)

where we have dropped < > on P, IK ~, .5 . In our normalization the vector wave

equation is
Vol foy —mPy A5 =0 . (8.3.37)

Eliminating the auxiliary fields we find the mass matrices from which we obtain the

supertrace (in normal coordinates)

QQQQQ

str M? = — 2[id k" + IK;"f*f, + tr(Q, )fifj

+0(Q + Q)™ (ky Que d® — by Queid®)] (8.3.38)

A covariant formula, valid in any coordinate system, is obtained by replacing k, ;" with

ki and IK ;" with R,

Q’

str M? = — 2[id*k,;" + R,'f¥f, + tr(Q; o Q 050

1
Q+Q

where we have rewritten the last term using the gauge invariance relations (8.3.35). In

it (QF ———= )k id?] (8.3.39)

the coordinate system where the Yang-Mills gauge transformations are given by (8.3.32)

we have k,;" = — i(T,)"; — i(T,)";a;I" (cf. (4.1.29b,31,32d)).
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8.4 Trace formulae from superspace

In the last two sections, we found the supertrace using essentially a component
approach, and not taking advantage of the superfield formalism. There is a much easier
way to evaluate the supertrace expression without ever computing component mass
matrices: If the action is expanded in components and the one-loop effective potential is
evaluated, its quadratically divergent part is proportional to the supertrace str M?;
moreover, we can easily read off this quadratically divergent term from the classical

superfield action if we imagine performing a superfield one-loop calculation.

a. Explicit breaking

We can develop the method (and derive some new mass formulae) by first consid-
ering the case of explicit soft breaking of supersymmetry. For example, we consider a

massless scalar multiplet and add to it the explicit soft breaking term (8.2.3)
Streak = / d*z d'9 UdD. We now calculate the quadratically divergent part of the one-

loop effective potential; the coefficient is the contribution of the term (8.2.3) to the
supertrace. Recall that soft breaking terms are defined by the property that they give at
most logarithmically divergent contributions to the effective action, and yet here we are
calculating quadratic divergences; however, in sec. 8.2 we ignored vacuum diagrams

(which have only spurion fields externally), whereas here that is all we are interested in.

In the calculation, we have to consider the sum of one-loop diagrams with n mass-
less chiral propagators and n U-spurion vertices (U = p*6°0?; although the calculation
simplifies if we use the explicit form of U, we will keep U general, since then the results
can be applied to other cases). At each vertex we have factors D? D? acting on the
propagators; however, each propagator is proportional to p~?, and thus, to get a
quadratic divergence, we must cancel all but one propagator with a numerator factor.
This requires n — 1 factors of D*D*~ — p?; the remaining factor is needed for the 6 loop

(see sec. 6.3, e.g., (6.3.28)). Hence we find

Z/ d40d4 -1 _U>n:/d49m(1+U)/% , (8.4.1)

Therefore the supertrace is
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str M?* = — 2/d401n(1 +U) =—2[D*D*In(1+U)]|

= —2[D*D*U]|

=—2u® . (8.4.2)

Comparing to the component expression in (8.2.3), we see that this is indeed the correct
result: the mass of the scalar 4 has been lowered by u” (the factor of 2 arises because A
is complex). It is clear that no diagram containing chiral self-interactions can change
the result: We needed a factor of D*D? at each vertex, and a chiral vertex comes with
only a factor D?. Such a diagram can be only logarithmically divergent. Also, since
supersymmetric mass terms can be treated as interactions, our results hold in the mas-
sive case. This same argument also implies that explicit breaking terms of the types

considered in (8.2.5,6,9) cannot contribute to the supertrace.

Next we consider explicit breaking terms (8.2.7) for an abelian vector field:
Sprenr = % / Az dOnWeW, + h.c. = % / d'z d*0 (n + MVD*D*D,V. The calculation
is almost identical to the above: Each propagator is still ~p~2, except that a vector
propagator has an extra —1 relative to a chiral propagator, and each n+ 7 vertex

(n = p#*) comes with a factor D*D?D,,, which acts precisely in the same way as a factor

D?D?, except for a —1 that cancels the extra —1 from the propagator. Thus we find

str M?* = —2/d40 [~in(1 +n+n)] =2[D*D*in(1 +n+ )|
= —2[D* D7

=—2u . (8.4.3)

As before, this agrees with the component expression (8.2.7) (the factor 2 comes from
the two helicity components of the fermion). We can combine the explicit breaking

terms (8.2.3-7) with the previous ones and find simply the sum of (8.4.2,3).

Finally, we consider (8.2.10); since this has only a factor D®D? inside the loop at

each vertex, it cannot contribute to the quadratic divergence or the supertrace.
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b. Spontaneous breaking

In the examples of the preceding subsection, we used rather elaborate methods to
derive results that can be found more easily by explicit computation of the masses; here
we will apply these methods to derive results that required the somewhat lengthy calcu-
lations of sec. 8.3. We first consider the action (8.3.12). We expand S to second order
in quantum fields ®', with the coefficients evaluated at the background classical values

< @' >:
S® = /d% d'o @, IK/ @' + /d% d*9 X ;®'® + h.c. (8.4.4)
where

X, =P, + DIK, (8.4.5)

In complete analogy with (8.4.1), the quadratically divergent term in the one-loop effec-

tive action is

o d4p 194 1In Fi
T, = / (2w)4p2d 0 tr [In(IK /)] (8.4.6)

where IK;” — §; plays the role of U and, as above, the chiral vertex (here X ;) does not

contribute. The supertrace is therefore

str M? = — 9 / 40 triin(IK 7)) = — 2 {D*D*[tr n(IK )]}

= —2[tr n(IK)),' f,f* (8.4.7a)

and hence, using (4.1.30b),
str M> = — 2R, f, %, (8.4.7b)

in agreement with (8.3.23).

For the case with gauge interactions (sec. 8.3.c), we again obtain the supertrace by
examining the quadratic divergence in the one-loop effective action. To second order in

quantum fields we have

5@ — / 40 d'0 [IK B,V 8 + L (Quy + Quy) VAD DDV (8.4.8)
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where we have dropped terms that do not contribute to the quadratic divergence (that

is, chiral interactions or terms corresponding to (8.2.10)). Now ("), 1K,/ — &,* plays

the role of U above, and %(Q a8 — Oap) plays the role of . The final result is
str M* = — 2/d40{tr[(VATA)Z-j + n(IK;))] — tr ln(% [Qae + Qus])}

= —2[d*(T,)," + dA(TA)ija_jFi + R fif*

3L fst - (@

1 i— JA
+ tr(Qy 010Y0+0 Ty aid™ ] (8.4.9)

1
Q+Q
where we have replaced /d49 — V*V? and used [V, {Vs,V.}=—2iW*, and
(8.3.29). We thus recover the result (8.3.39). (We have chosen to work in the coordi-
nate system defined by (8.3.32) simply because it is more familiar; the computation is

equally straightforward in terms of Killing vectors.)
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8.5. Nonlinear realizations

Experience with spontaneously broken internal symmetries has shown that much
useful insight can be gained by studying the general theory of nonlinear realizations.
The methods that have been developed can be applied quite successfully to supersymme-

try.

One way to formulate a nonlinear realization of supersymmetry is to consider (non-
linearly) constrained superfields; however, it is far from obvious how to choose such con-
straints, and so we will return to this approach after we have studied nonlinear realiza-

tions directly.

The simplest nonlinear realization is the Volkov-Akulov model. It is found by con-

sidering a covariantly transforming set of hypersurfaces in superspace. Let
w(z) = 6° (8.5.1)

define a hypersurface; it transforms as

() =6 (8.5.2)
where we recall that 2’ = z — % (€0 +€f), 0 =6 + e. This implies
(@) =0+e=w(z)+e=0 (8.5.3)
and hence
Wz — % [fw(z) + e@(z)]) = w(z) + € (8.5.4)
or
b (z) = € + L (FW + 50w (8.5.5)

This gives a nonlinear realization of the algebra carried by the spinor field w®(z); it is by
no means unique, but other nonlinear realizations are related to it by field redefinitions.
Note that dw” (or any other equivalent nonlinear realization) contains a constant term in

its transformation law, and is therefore a suitable field for describing the Goldstino.

To find an invariant action, we recall that the one-form (3.3.31)

s°%(2,0,0) = dz*® + 2 (0B + 0% do") (8.5.6)
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is invariant under supersymmetry transformations. If we constrain this one-form to lie

on the hypersurface w(z) = 60, we find

. . 1 B~ .

s"(z) = dz®“ + 3 (w0 ,@")dz™ = dz™v,* | (8.5.7)

where we have defined an “inverse vierbein” v,*. Since the one-form is invariant, the

vierbein must transform covariantly, i.e., supersymmetry transformations of w must
m

induce coordinate transformations of v,”. Now it is easy to write down an invariant

action in terms of the determinant v = det(v,"):
S, = /d4x d*0 v 640 — w(z)) = /d4x vt (8.5.8)

We note that ¥ = cv'0%(@ — w(z)) is a scalar superfield whose components are
functions of w (¢ is an arbitrary dimensional constant that sets the scale of supersymme-
try breaking; see below). We can also construct a chiral superfield ® = D*¥ out of w.

Since [0*(8)]? = 0 these superfields satisfy the nonlinear constraints

P =02 =0 (8.5.9a)
®=c'®D*® = c "P(D*P)" (8.5.9b)
U = ' DU D = %c’lllfDo‘D_QDa\If (8.5.9¢)

etc. The solution to the constraints (8.5.9a,b) or (8.5.9a,c) is precisely ® or ¥ respec-
tively.

The expectation values < ® >, < ¥ > of &,V that follow from < w® > =0 are
typical of the expectation value of a multiplet with spontaneously broken supersymme-
try (as in sec. 8.3): the auxiliary components (6* or §*6% for ® and ¥ respectively) get
nonvanishing expectation values ¢, and all other components can be taken to have van-
ishing expectation values. The fermion components at one 6 —level lower than the auxil-
iary fields, e.g., , = D,®| or n, = D*D,¥|, have this constant term in their transforma-
tions as dn, = ce, + - - -, confirming our identification of ¢ as the supersymmetry break-

ing scale.

The vierbein v can be used to write down other invariant actions; any expression

covariantized with v is supersymmetric. For example, we can couple w to a scalar field
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A as follows:
/d% v (v,"0,A)? (8.5.10a)
where A transforms as

Alr) = A'(z) = Az — L(Fw+ @) . (8.5.10b)

DO | .

We now discuss the prescription for describing spontaneously broken theories in
terms of w. In a spontaneously broken theory, the Goldstino is one, or in general a
unique linear combination, of the fermionic components of the ordinary superfields. We
introduce “standard” variables by replacing the Goldstino with the Volkov-Akulov field
w, and the superfields by new superfields whose components transform homogeneously as
in (8.5.10b), and in particular, with no mixing of different §-components. We begin by
constructing a homogeneously transforming superfield ¥ out of w and an ordinary super-

field . Consider

U(2,0,0) = V(s + L (@0 +wh),0 —w,0 — o) (8.5.11)

where U(z,0,0) is any superfield. Under supersymmetry transformations ¥'(z’,¢’,0")

=U'(z — % (EO+€h),04+¢€,0 +&) =W(x,0,0), we find for the transformation of ¥:

(Fw +e@),0,0)

\If(x —

N | .

:\If(x—%(?w+e@—@9—w0_),9—w,9_—6)

=0z — L (fw + e — @) — ) = L0 —w)+e(f — )], 0w +e,0 - +);

:
2

(8.5.12a)
using (8.5.4), we have

(Fw +e@),0,0)

\If(x —

DO | .

=U'(1,0,0) . (8.5.12b)



8.5. Nonlinear realizations 525

Thus we see that under supersymmetry transformations ¥ transforms homogeneously
(different #-components do not mix) but nonlinearly with respect to w; the z-coordinate
undergoes a translation. Therefore, the whole supersymmetry group is realized on ¥ by
elements of the Poincaré group. This is a general feature of nonlinear realizations: Given
a group G (here the supersymmetry group) and a linearly realized subgroup H (here the
Poincaré group), the nonlinear realizations on suitably defined fields is performed by ele-
ments of H. Consequently, we can impose any translationally invariant constraint on ¥
without breaking supersymmetry. For example, if we constrain it entirely by setting it
equal to ¢6?07 (or c#* in the chiral case), we express all the components of ¥ in terms of

w and recover the previous result (8.5.9).

We now consider a model with spontaneous breakdown of supersymmetry. We can
describe the model in terms of standard components, i.e., components transforming as in

(8.5.4,10b), as follows:
(1)  For each superfields ¥ we construct the associated .

(2) We identify the fermionic component v of the appropriate linear combination of
U’s that is the Goldstino, and is therefore a suitable candidate to be replaced by w,
and constrain the corresponding component ¢ in the corresponding linear combina-
tion of ¥'s to zero. This gives us the combination of the components of the U’s

that transforms as (8.5.4).

(3) We express the remaining components of the ¥’s in terms of the remaining compo-

nents of the ¥’s.

This procedure is the analog of going to radial and angle variables for nonlinear sigma
models: the remaining components of the W’s correspond to the radial variables,

whereas w corresponds to the angle variable.

As an example, we consider the O’Raiferteaigh model of sec. 8.3.a, with three chi-

ral superfields ®;, i =0,1,2. Using (8.3.18), we find that the auxiliary field F of the

i»
multiplet &, gets a nonvanishing expectation value F; = c. To describe the system in
terms of standard components, we first define homogeneously transforming superfields ®,
by introducing the Volkov-Akulov field w as an extra variable; then we restore the
number of degrees of freedom by constraining ¢, = 0 (the fermionic component of ®)

and eliminating v, (the fermionic component of ®,) in favor of w. We can do this
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because, examining ®,, we find 1), = 1)y — cw + - - -, where ¢ = < F; >. If spontaneous
symmetry breaking did not occur (i.e., if ¢ = 0), we could still define homogeneous com-
ponents, but we could not remove the extra degree of freedom (the change of variables
from 1), to w would be singular). Having eliminated 1, in favor of w (the standard angle
variable, which transforms as (8.5.4)), we can proceed to express the remaining compo-
nents of ®, in terms of w and the components of the homogeneous superfields ®; (the

standard radial variables, which transform as (8.5.10b)).
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8.6. SuperHiggs mechanism

When supersymmetry breaks in a system coupled to supergravity, a superHiggs
mechanism eliminates the Goldstino and gives mass to the gravitino (the Goldstino
becomes its longitudinal component). To examine the superHiggs mechanism in detail,
we study the locally supersymmetric analog of the constrained superfields of the previ-

ous section (8.5.9).

The basic ingredient of the superHiggs mechanism is the transformation law of the
Goldstino, dn, = ce, + -+ (see previous section); when the Goldstino is coupled to

supergravity, the supersymmetry parameter ¢ becomes local:
Ny = ce () + - (8.6.1)

Consequently, the Goldstino can be completely gauged away; since the number of
dynamical modes of the theory should not change, we expect the Goldstino to re-emerge
somehow, and it does so by giving the gravitino a mass and becoming its longitudinal
mode. To see this directly, we describe the Goldstino by a local constrained chiral field

obeying the local superspace version of (8.5.9a-b). Thus we take ®° =0,
® =c'®(V?+ R)® (here we consider only minimal (n = — %) supergravity). These
constraints have a consistent solution in terms of a single fermi component field (the

Goldstino). Because of the constraints on @, any locally supersymmetric action (without

explicit derivatives, see (5.5.15)) reduces to
Shiggs = K / d*z d*0 ¢*(\ + u®) + h.c. (8.6.2)

The constrained superfield ® is a nonlinear function of the Goldstino; however, when we
gauge the Goldstino away (go to U-gauge) it simplifies to become ® = — #%c (alterna-

tively and equivalently, we can eliminate the Goldstino by a redefinition of the gravitino.
1
In superspace, this corresponds to rescaling ¢ by (1 + %@)75; however, it is simpler to

choose U-gauge). The action (8.6.2) becomes, using (5.6.60,64)
S higgs = m_Q/d4x e '[A3S + %&X(&l‘;vﬂam’é) + pe + h.c.] (8.6.3)

where S is the complex scalar auxiliary field of the supergravity multiplet; we also have

the —3k?|S]* term from the supergravity action (5.6.63). Eliminating S by its equation
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of motion, we find a cosmological constant and gravitino “mass” terms:

_ _ 1 - v T 3 —
Shggs = K 2/4% A BT e 4B F e 4 )] (8.64)
As discussed in sec. 5.7, gravitino “mass” terms when accompanied by a cosmological

constant do not in general mean that the gravitino is massive. However, if
ple+7e) = — 3|\ (8.6.5)

then the cosmological term cancels, and we can unambiguously identify the 1 terms as

mass terms.

Since any spontaneously broken theory can be described in terms of standard vari-
ables, and in particular, the Goldstino can be described in terms of ®, in any sponta-
neously broken theory in which the cosmological constant vanishes the gravitino mass is
Re) when the (superspace) kinetic term has the usual normalization —3x 2. It is found
by setting all matter fields to their vacuum expectation values. More generally, when
(8.6.5) is not satisfied, we can still find the apparent ¢ mass Re\ and the cosmological
constant from the transformation of the Goldstino and by comparing to the superspace

action (8.6.2).
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8.7. Supergravity and symmetry breaking

Supersymmetry breaking in a local context can be studied directly, using the
component tools of section 5.6. We can determine conditions for supersymmetry break-
ing and derive a mass formula analogous to (8.3.35). However, it is much more efficient
to recast the problem as a global supersymmetry problem that can be studied using the
techniques of secs. 8.3b-c and 8.4. We consider a general system of interacting scalar
and vector multiplets coupled to N =1 supergravity. The matter multiplets are

described by chiral and (real) gauge scalar superfields ®’, V*, respectively; the super-

gravity multiplet is described by the real axial-vector superfield H" and (for n = — %)

the chiral compensator ¢. However, H™ plays no direct role in the supersymmetry
breaking mechanism or in the derivation of mass formulae. Therefore all the relevant

information can be extracted from a global nonrenormalizable system described by ¢, ®',

and V*.

We begin by reducing the coupled matter-supergravity system. The axial-vector
real gauge superfield of supergravity H® contains the graviton and gravitino physical
degrees of freedom, as well as the axial vector auxiliary field A™ (5.2.8). In the presence
of the compensator ¢ the supergravity gauge group consists of the full superconformal
group, and we have at our disposal all of the component gauge transformations of
(5.2.10). Consequently, we can go to the Wess-Zumino gauge discussed after (5.2.10),
and further, use the remaining superconformal transformations to remove the graviton
trace, the gravitino y-trace, and the longitudinal part of the axial vector auxiliary field.
In this gauge H™ contains only the traceless components of the graviton and the grav-

itino, and the transverse part of A™; the spin zero complex auxiliary field S, the ~-trace

of the (left-handed) gravitino (v -); = Jo.‘w-é, the trace of the vierbein, or equivalently,
its determinant e = det e,” and [17'9,,A™ are contained in ¢ (these last two are the real
and imaginary parts of the f-independent component of ¢). Since only these quantities
are relevant for studying spontaneous supersymmetry breaking (e.g., the spin zero
bosons can get vacuum expectation values and the v-trace can mix with the matter
fermions), we can ignore the H™ dependent terms in the Lagrangian and work entirely
with ¢ and the matter superfields in a global setting. This simplifies the discussion
enormously; however, because Im¢| replaces the divergence of A", there are some sub-

tleties associated with its contribution to the masses of the matter fields (see subsec.
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8.7.a.4). We treat only n = — % supergravity; analogous methods can be used for other

n, but since n = — % allows the most general coupling, it is the most interesting case.

The supergravity multiplet itself (through ¢) affects the pattern of symmetry
breaking. At first sight, this seems strange: In the usual Higgs mechanism, we do not
expect the pattern of symmetry breaking to depend on the couplings to gauge fields (at
the tree level!). However, an analogous situation arises in a nonsupersymmetric context,

when scalar fields are coupled to gravity. We consider the action
S / d'a JGl-37r(g) = L g™ Gy (NI, A 0,40 + 1V (A) + Va(A)] . (8.7.0)

To find the vacuum expectation values of the scalar fields we cannot ignore the gravita-
tional field. In general the Ricci scalar r will have a nonzero expectation value that
affects the masses and scalar potential. However, we need not consider the full Einstein
system; it is sufficient to look for solutions of the form g,,, = 0277,@ﬂ and to treat the sys-
tem of scalar fields o, A; (subject to the condition ¢ # 0 at all points). (This is analo-
gous to keeping ¢ and ignoring H™.) Two possible situations can arise: If <V, > #0

we have a nonzero cosmological constant, o' — 1~ <V, > %xQ, and the vacuum values
and the masses of A, are shifted from their flat space values. If <V, > = 0, the cosmo-
logical constant vanishes and a consistent solution is o = constant. In this case the
gravitational field does not modify flat space results. (This is not the case in supergrav-
ity: Even if the cosmological constant vanishes, the supergravity auxiliary fields modify

global results.)

Returning to the matter-supergravity system, we consider the action (5.5.32)

K2

S = / diz d'0 BV (¢, H) {— 2 e 30V +0)

1
1 (0 Qu W W) + heed) (8.7.2)

where E~! is the superdeterminant of the vielbein and R is the scalar curvature super-
field (see e.g., (5.2.74-6)). The supergravity action is given by the first term in the

expansion of the exponential. Here G (@i,éj) is an arbitrary gauge invariant function of

chiral superfields, with ® defined by (8.3.26), ¢(®) is a chiral function, and W is the

cov
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(supergravity covariant) Yang-Mills field strength. The function G has a natural inter-

pretation as a Kihler potential with gauge transformations G — G + A(®') + A(®;)

compensated by scalings of ¢: ¢ — eazp[% K2 A (D)) .

The exp[—%mQVtrV] factor is the local form of the Fayet-Iliopoulos term (4.3.3).

It is gauge invariant by virtue of a combined gauge transformation of V' and superscale
transformations of E~' (5.3.8-10). Its presence severely restricts the form of the g terms;
they must be R-invariant (see (3.6.14) and (4.1.15)) so that the whole action is invariant
under the superscale transformations of E~' (see below). In the x — 0 limit the action

(8.7.2) becomes (8.3.25), with the identification G~IK, g~P.

As discussed above, we can split off the terms independent of H™. Furthermore,

according to the discussion following (5.5.28) the ¢ dependence of W, can be factored

out (W, — (b_gW ) so that the relevant part of (8.7.2) becomes

S = /d4$ d49 [_(E¢67(VtrV+G)]

n /d% 420 [¢°g + iQABW“W&B] T he (8.7.3)

We have set the gravitational constant %52 = 1. We will restore it when necessary.

Under the gauge transformation trV — tr[V + i(A — A)], G — G, (DsA = 0), the
action is invariant if we rescale ¢ — ¢e ¥"*. Thus the local Fayet-Iliopoulos term acts
as a conventional gauge term for ¢¢. If v # 0, as noted above the form of g(®') is

extremely restricted: ¢*¢g must be gauge invariant.

We now analyze the global system (8.7.3) subject to the condition that the cosmo-
logical constant vanishes. We can then choose Re < ¢ > | = p = constant. With the

identification

_¢€ Vtrnge—G(q)"',(f)]) — IK

¢’g(®") =P (8.7.4)

we have the action of (8.3.25) without a global Fayet-Iliopoulos term. We label compo-

nents of ¢ as
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¢l =pA , D.gl =, , D*¢|=nS (8.7.5)
with expectation values

<A>=1, <8>=s . (8.7.6)

a. Mass matrices

We begin by explicitly computing the mass matrices for the various fields in the
system. This calculation is a little lengthy, so we will simplify it as much as possible

without loss of generality. Thus, we rescale ¢ to remove g from the chiral part of the
action: ¢%g — ¢*>. We also redefine G: G — G + %ln(gﬁe‘%"v). This makes ¢ inert

under gauge transformations, and absorbs the Fayet-Iliopoulos term into G'. In the case
when < g > = 0 we cannot perform this rescaling. However, this case is not interesting,
since then supersymmetry is not broken even in the presence of a Fayet-Iliopoulos term

(if the cosmological constant vanishes).

a.l. Vacuum conditions

The superfield equations (8.3.30) for the action (8.7.3) are:

D*(¢peC) —3¢* =0 (8.7.7a)
bde VG, + 36°G, + § Qua W AW, =0 (8.7.7b)
—pde G+ 5 VI QW) — 5 V@) =0 (8.7.7¢)

where we have used (8.7.7a) to simplify (8.7.7b), and thrown away some terms that lead
to higher order spinor and/or derivative interactions that do not enter below. We have

written (8.7.7) in terms of Killing vectors by making the substitutions
()9 — —ik,", <I;j(TA)-7Z» — tk,,. The vacuum conditions (8.3.31) found by applying

spinor derivatives to (8.7.7) become

5—3,[16G—GLJTZ=0 y
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650° = (Qan + Qup)d*d®
pre CG (iky) + (Qus + Qap)d® =0
BueGyf + Gy Fif! + G (ik,,)d*

+ 9uG e (s — pe?) + %M_QeGQABJ(iAdB =0 . (8.7.8)

The assumption that the cosmological constant vanishes is equivalent to the condition
that these equations have a solution for constant y. We also have the gauge invariance
conditions (8.3.c13) (these hold for general values of the fields, not just at the vacuum

point):

GLkAZ‘f’leAL:O 5

—iko'Qupi + (To)s” Qoa + (To)a" Qo =0 . (8.7.9)
To give the gravitational action the correct normalization (5.2.72), we identify

K* =3u %" . (8.7.10)

a.2. Gravitino mass

As discussed in sec. 8.6, we can find the spin g mass by setting all matter fields to

their vacuum expectation values, and comparing the coefficients of the / d*z d*6 ¢¢ and

/d4x d*0 ¢* terms. From (8.7.3), the kinetic term has a coefficient —pu?e ¢ = —%HQ,

and the chiral term has a coefficient p* (the factors of 4 come from the definitions of the

dynamical fields (8.7.5)); hence, using (8.6.2), we find that the spin % mass is
m = 3ue” (8.7.11)

We simplify our computation further by choosing normal coordinates G,/ = §,7, G,//* =
Glh-
(8.7.8) as

. =0. Using (8.7.10,11), and normal coordinates, we rewrite the vacuum conditions
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fi+mG; =0
6mr2s — (Q + Q) yd*d® =0
3in2kp G+ (Q + Qand® = 0

mGyf’ +ik,,d* + mG(3s —m) + %/-QQQAB,idAdB =0 . (8.7.12)

a.3. Wave equations

We now find the linearized wave equations (8.3.36) that follow from (8.7.7). As in
sec. 8.3, we expand the fields in small fluctuations about their vacuum values. For the

remainder of this subsection, all quantities G~ and Q,, are evaluated at ® = o' and

~

o,

7

a;. We find it useful to introduce shifted variables
A=A-GA |, v'=¢p-G' , =8 -G, F' . (8.7.13)
From (8.7.7a) we have

S’ — A'(s —m) — 2mA’ — 2mG' A, — (Gyf7 +sG)A =0 (8.7.14a)

i0,50" s — koGNS, — 2map’, — 2mG b, =0 . (8.7.14b)
From (8.7.7b), we find
Figp m[24" - ANG' + (3G'G7 + G A, + A'] =0 (8.7.14c)

10,8 + 2mG 'y + m(3G, G + Gy ),

FE N, — %'HQQABJCZAABQ ~-0 . (8.7.14d)
From (8.7.7¢), we find

(Q+Q)asD™ + Qup.d® A" + Q" d" 4,

+ 3ik 2k AT — kA + kG A+ A)] =0 (8.7.14¢)
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(Q + @)ABiatdeB()? + % QAB,i(fi)\Ba —1 dB¢ai)

N | —

+ 35 7k (%, + GYl) =0 (8.7.14f)

We are left with the equations of the physical boson fields. These simplify greatly if we
use (8.7.14a,c,e); we find

OA =0 (8.7.14g)

04 + {3572(Q + Q)" (hy; — 516 Qc 1) (b’ + 5 18 Qg ")

+ ik, dd — m?(GyGY + 3G,GLGY + 3G, GFGT — GG GY)
+ m[(3s —m)d;! +3(3s5 — 2m)GiGj]};4jj

_ =~ _ 1. 1.
+ {3’% 2(@ + Q) tan (kAi —3 ZHQQAc,idC)(kBj + 52K2QBE,jdE>

1 B
+ 5 K2 QA" d® — m*(3GyG" G, + 3G,G;G* + G, G")

+ m(3s —2m)(G; + 3G,G,) }AT =0 (8.7.14h)

(Q+ Q) aa VOB s — 35 2(kaiky' + kyik, ')A 54

+ 3k 2k, G X 44 =0 (8.7.14i)

where X ;s =0, 4ImA — ImG,;V A = 9, ,ImA" + (Gky’ — G'ky;)A® 5. Here V, is

[e7e% ax

the Yang-Mills covariant derivative.

a.4. Bose masses

We now discuss these results. From (8.7.14g) we see that the complex scalar A’ is
massless. For the real part, this is no surprise: ReA’ is the trace of the graviton, which
is massless because the cosmological term was assumed to vanish. However, the imagi-
nary part requires some care. The pseudoscalar Im A = p is not recognizable as one of

the fields of the supergravity multiplet; it stands for [17'0-A where A_. is the
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divergence of the axial vector auxiliary field. Thus the equation
OIm A’ = OIm A — OIm G; A" = 0 should be replaced by

Ay —ImG,V 3A =0 (8.7.15)

For many purposes, it makes little difference whether we use ImA or replace it with

[0 '0-A. By dimensional analysis and Lorentz invariance, A,; can enter the wave

equation of the scalar fields /L only through its divergence:

OA; + ¢G,0° A+ =0 . (8.7.16)
Substituting in (8.7.15), we find
O(A4; + ¢G ImG; A7) +--- =0 . (8.7.17)

When we have A instead of A, ., we get the same result, since instead of (8.7.16) we

.
o)

have
OA, + cG,OImA +--- =0 (8.7.18)

and using the A wave equation, we reobtain (8.7.17).

However, if gauge invariance is broken the gauge field wave equation can get a spu-
rious contribution from ImA that is not present when [17'9 - A is used instead. Indeed,
substituting (8.7.15) into the first form of X . (with 0, ;ImA replaced by A,;) gives a
zero contribution to the spin 1 mass. When gauge invariance is unbroken, we get no
contribution from the form with A as well: 0, ,ImA’ does not affect the spin 1 mass,
and the vacuum expectation value of k,’ is zero. However, if gauge invariance is broken,
the expectation value of kg’ is not zero (equivalently, d,.(G;A") # G,V sA") and X

gives a spurious contribution that must be removed by hand.

a.5. Fermi masses

The component 1’ corresponds to the ~y-trace of the gravitino; we define the Gold-
stino as that combination of matter fields that couples to ¢’ (it makes no essential differ-
ence whether we use ¥ or v¢’, since we are always free to add terms to the gravitino).

Thus we define

n® = G+ % Gik N (8.7.19)
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We also define “transverse” fields that are orthogonal to n:

¢2T = ¢i . Gl’l’]
MT =0 4 Ly (8.7.20)

(These satisfy G;'" + % G'ky AT =0.) In terms of these, the spinor wave equations

become:

i0,°0"s — 2m(y’, +n,) =0 (8.7.21a)
10,575 + 2m (Y’ +1,) =0 (8.7.21b)
iV iha T+ m(Gy + GG ), T
t (kas = ba GG = £ R Qup d™)X,T =0 (8.7.21¢)
IV ST o [6572(Q + Q)™ (ki — ¢ A2 Qe d°) — 20,

— [m(Q+ Q)" Qe G + 7;—th kaGIN =0 . (8.7.21d)

Care must be taken to ensure that the mass operator on ¥’ , AT is restricted to the

“transverse” subspace, i.e., preserves the orthogonality to 7.

Observe that since the trace of the gravitino is a negative norm state, i.e., a ghost,
its kinetic term has a minus sign relative to physical spinors (the same is true for the
trace of the graviton; the whole ¢ multiplet has negative norm, as can be seen from the
action (8.7.3)). Consequently, though the mass matrix in the t-n system (which is
decoupled from the other spinors) does not vanish, both eigenvalues are zero (the mass
matrix is not hermitian). Actually, we did not have to explicitly find the wave equation
to arrive at this result: The condition that the Goldstino can be gauged away (that we
can go to a U-gauge) implies that both the Goldstino n and the ~-trace of the gravitino

1" must have zero mass in the gauge that we use.
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a.6. Supertrace

Having found the wave equations (8.7.14g-i,a8), and understood their significance,
we can evaluate the supertrace. The spin 0 contribution is (recall that we are still in

normal coordinates):

— 2, = 387(Q + Q)7 (ks — 3 182 Qacad®) (b + 3 in° Q' d)

— m(G,GY +3G,G,GY +3G,G'GF — GGG

+ m(3s —m)N + 3(3s — 2m)(m — s)] (8.7.22a)

where N = §," is the number of chiral multiplets. The combined contribution of the spin

0 and spin % fields is:
- 2[9’f_2(Q + Q)_IAB kAikBi + Z(Q + @)_MB dc(kAiQBC - kAiQBC,i)

+ ik 'd 4+ Gy foff — (N +1)m” + (N — 1)3ms

+ir(——=Q, =—=Q)[,f] . (8.7.22b)

The spin 1 contribution, omitting the X _. term is given by the expression

3-3672(Q + Q) " (kyky' + ky;k,') and cancels the first term of (8.7.22b). (The nor-

malization comes from the 3 states of a spin 1 particle and from the form (8.3.37) of the
spin 1 wave equation.) Finally, the spin g contribution is just —4m?. Thus we get

(using the gauge-invariance relations (8.7.9) to simplify some expressions)
SWMQ:—QWM%A+GJWU7—UV—DOM—%&%Q+Q%ﬂFf)

‘ 1
‘Q+Q

- m(ﬁ 0 )knid® + tr(

in normal coordinates, or, in general, using coordinate invariance, we have

Q QN If (8.7.23)

1
Q+Q

str M? = — 2[ik,;"d* + R/ f;f' — (N — 1)(m® — %/{2(@ + Q) g d*d®)

1_Qi ! QN f - (8.7.24)

— it 0+0Yq+0

1 Y A
Q+@QMM1+W(
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We remind the reader that here

3/2
strM? =) (-2 + )M, . (8.7.25)

J=0

b. Superfield computation of the supertrace

If our only interest is the supertrace formula (8.7.71), we can obtain it with far
less work using the technique developed in sec. 8.4.b. (Of course, in general we are

interested in the mass matrices themselves, and not just the supertrace). We start with
Indet(IK ) = — (N + 1) G + Indet(G;’) + N In(—gpe """V ) (8.7.26)

where differentiation is with respect to % = ¢e """ and not ¢.

Before adding contributions from the gravitino mass and correcting for the axial

vector auxiliary field (see below), the supertrace read from (8.4.9) is

str M? = — 2[ik,;"d* — (N + Vvird + R, f, f*
— (N+1)(G/ff +iGk,,d™)

— 1

1 ! 1 Tk [ )
+ tr(Qy 070 Q o Q)flf itr(Q o Q)km] : (8.7.27)
where we use (4.1.29,30):
R = [Indet(G)),! . T'=[indet(G/)] . (8.7.28)

The expression (8.7.27) has not made use of the vacuum conditions (8.7.8) or
(8.7.12), and does not include either the spin % contribution or the axial vector auxiliary
field correction to the spin 1 mass matrix discussed in subsec. 8.7.a.4. As we saw in the
previous section, the spin g contribution must be included separately, since the v-trace

of the gravitino cannot contribute directly: the condition for the superHiggs mechanism
to occur and for the gravitino to absorb the Goldstino in U-gauge requires the Gold-
stino-gravitino v-trace system to be massless. The spin 1 correction, though somewhat
subtle, can also be found without extensive computation. As described in sec. 8.7.a.4,

we simply subtract £ *(Q + Q) "k, ;G (ks;G’ — k' G;) = — 2*(Q + Q),pd*d® (see
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discussion following (8.7.22b) for an explanation of the factors).

One further point deserves comment: When we rescaled ¢ to remove the potential

g (see the beginning of sec. 8.7.a), we lost sight of the contribution of the Fayet-Iliopou-
los term. When we make the shift G — G + %ln(gﬁeg”t’"v), the vird term in equation

(8.7.27) is absorbed into the iG'k,,d* term as a consequence of R-invariance of g; it is
most straightforward to work in the coordinate system where the Killing vectors take the

form of usual gauge transformations:
Svgtr(T,) — g (T,) a; =0 (8.7.29)
and hence

vir(T,) — + [In(gge™" )] (Ty)’a; =0 (8.7.30)

W =

Using the vacuum equations, we can substitute into the supertrace (8.7.27).

Including the gravitino and the spin 1 correction term, we recover (8.7.24).

c. Examples

We can use the supertrace formulae to study many cases of interest. In particu-
lar, in extended supergravity theories we encounter “nonminimal” G and @) terms. For

example, in N = 4 supergravity, which contains one physical chiral multiplet, three vec-

tor multiplets, three (% , 1) multiplets and the supergravity multiplet,

— 1—-—®
~ — 1 — 0P ~N— . .7.31
G~ — In( R (8.7.31)

We cannot treat the actual N =4 theory since a description of the interacting (g 1)

multiplet is not available, but (8.7.31) suggests looking at a system with one scalar mul-

tiplet and n vector multiplets V*, coupled to N = 1 supergravity, with G as above and

1-9

QAB_HT

Oup - (8.7.32)

We find, with

2
O -1t (8.7.33)

= 500 (1 — aa)?
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the supertrace

3/2

D(=D)Y@I+ )M = —2n+2)G"ff= —2n+2)m* . (8.7.34)

J=0
Note that the @ and R terms in  (8.7.17) combine  because
(Q+ Q)= —4(G") '[(1 + ®)(1 + ®)] % Unless a scalar potential g(®) is introduced,
no supersymmetry breaking will occur. However, it is possible to add such a term in
N =1 supergravity, and there exist mechanisms to generate terms that act like a poten-

tial even in N = 4 supergravity.

For N > 4 the analogs of G and () are expressed in terms of an overcomplete set of
fields. We may expect however that ¢ and G are related such that
det(G;7) ~ det(Q + Q)h(®")h(®;) where h(®') is a holomorphic function. In that case

we may also expect a simple result for the supertrace.

We can also construct models with a Fayet-Iliopoulos term and vanishing cosmo-

logical constant. For example, consider

2
G=8"d + % n[@e"®] + x + 1 n[(3 + x)(5 + X)) (8.7.35)

where ® and y are chiral fields, ® transforming under the gauge transformation while x
is inert, and [ is chosen so as to make the cosmological constant vanish (the potential
and the Fayet-Iliopoulos term are included in G as the a-term). We find a solution to
(8.7.8) with d # 0 for some finite range of « (as can be verified by a perturbation expan-

sion about a = 0).
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