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Abstract

In most multitarget tracking approaches based on Joint Probabilistic Data Association (JPDA), it is difficult to apply the

solutions to problems (due to the dimensionality curse of heavy complexity) where the number of target varies dramatically. In

this paper, we introduce an Algorithm for Detection of Multitargets in Wireless Acoustic Sensor Networks (ADMAN); we localize

detected targets byparticle filtering after ADMAN. The purpose of ADMAN is detecting any number of targets (We know the

approximate locations of targets during the detection algorithm.) in the field of interest. The advantage of ADMAN is its ability to

cope with varying number of targets in time. ADMAN does not have any restrictions on the varying pattern of the target number.

I. I NTRODUCTION

We use measurement or information to estimate the state of a target of which process is called tracking. Many kinds of

physical quantities related with the state of the target can be used for the measurement in localization problem such as estimate

of position, range and/or bearing, time of arrival difference, frequency of narrow band signal emitted by target, frequency

difference due to Doppler shift sensed by two sensors, and signal strength which we employ as the measurement in this paper.

Among them,Received Signal Strength(RSS) can be classified in the lowest level and does not need any signal processing to

be measurement. In RSS model [1], the measured power at a sensor is expressed as follows,

yn,t = 10 log10

(
K∑

k=1

Ψkdα
0

|rn − lk,t|α
)

+ vn,t, n = 1, 2, . . . , N (1)

where l is the location of a source target,n is sensor index,t is time instant,K is the number of targets,Ψk is the received

power from the source at the reference distanced0, r is the sensor location,α is the attenuation factor (α ≥ 1), v is background

zero-mean Gaussian noise andN is the total number of sensors used in the field.

Tracking targets, of which number is varying, by acoustic sensors is very challenging due to the dimensionality curse.

Many approaches such as Joint Probabilistic Data Association (JPDA) [2], Multiple Hypothesis Tracking (MHT) [3], Finite

Set Statistics (FISST) [4] and Probability Hypothesis Density (PHD) [5] have huge size of state space for the joint distribution

over target states because all these approaches are associated with JPDA (Joint Probabilistic Data Association) [2]; by using

solutions based on JPDA, we can not avoid huge complexity, which makes it very impractical. Consequently, it is very difficult

to apply most solutions to the problems where the number of target varies dramatically; usually the varying pattern of the

target number is limited such as−1, 0, or 1 [6], [7].

In this paper, we introduce an Algorithm for Detection of Multitargets in Wireless Acoustic Sensor Networks (ADMAN) in

addition to a localization method based on particle filtering. After detection is accomplished by ADMAN, we adoptparticle

filtering [8] to estimate the locations of detected targets. The phenomenal advantage of ADMAN is its ability to cope with

any time variation in the number of targets without being affected by the dimensional curse. On the other hand the possibility
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of the dimensionality curse still remains due to the inherent property of the Bayesian sequential Monte Carlo method in the

estimation part.

The rest of paper is composed as follows. We introduce general algorithm of ADMAN in section II. In section III, we show

the steps ofGeneralized Likelihood Ratio Test(GLRT) that is the solution ofComposite Hypothesis Testing(CHT); we use

CHT to apply ADMAN to detection of multitargets .MLMC method is combined with ADMAN to complete the tracking

procedure of the varying multiple number of targets in section IV. We present an simulation as an example of the algorithm

in section V.

II. D ETECTION ALGORITHM

We explain about general algorithm of ADMAN in this section. We begin with defining two important terms used in the

algorithm.

A. Range and Threshold

Sensor

In-between 

area

Range of the 

sensor

Fig. 1. Uniformly deployed sensors.

1) Range:Sensors are deployed uniformly and cover the whole area of interest according to a specific range of the sensors

as in Fig. 1. The range is the half of the distance between any two neighboring (horizontally or perpendicularly) sensors. We

also define the range of a sensor as the distance between the “sensor” and the “boundary” of the region such that the power

received by the sensor from a single target within the region is greater than a predefined threshold. We can regard the range of

the sensor as the capability to resolve two targets because ADMAN will fail if there are more than one target exist within the

boundary of the sensor range. The smaller the range, the better the resolution is; this implies we need more sensors to have

finer resolution.

2) Threshold Power:An acoustic sensor sends the signal to the fusion center that there is a target around itself, (It does

not have exact information of the target location, but certainly inside of boundary of the range.) after it makes a decision of

detection according to the decision rules. We need threshold power to apply hypothesis test to the decision rules. Threshold
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power (∆1) is defined as the received power from a single target which is located on the range boundary while no noise power

is considered. This constructs the first step of the ADMAN. As long as a sensor receives the power greater than the threshold,

it exclusively detects a target within the boundary of the range. More complicated situation forms another step of the algorithm

with introduction of another threshold power (∆2). As shown in Fig. 2,∆2 is defined as the received power from a single

sensor

2 r0

In-between 

area

r0

Fig. 2. Neighboring four sensor ranges

target which is located on the circle of radius
√

2r0 distance. When a target is located in “in-between” area (‘In-between’ area

is defined as the area that does not belong to any circle-region of the range.), this other threshold is necessary to resolve the

location of target. No more than one sensor is supposed to receive power signal greater than∆1, but more than one sensor

may receive power signal between∆1 and ∆2. So if the strength of the received power is between∆1 and ∆2, a target is

most probably located in “in-between area” of several neighboring sensors. In this case a target is attached to the sensor that

has the maximum received power among those sensors. Finally the sensors do not pay attention to any received power that is

less than∆2.

B. Algorithm

Now, we are ready to design the ADMAN. Then, how should we design the ADMAN to detect many targets at the same

time? First of all, we have to decide the maximum number of targets that the sensor network will be designed for. Nonetheless,

the exact number of targets in the field is not known. The key of ADMAN is attachment of each target to the most closest

single sensor without redundancy.

If we assume that there is always only one target or none in the field of interest, it is easy to attach a target to a sensor

which is the closest to the target. Regardless of the size of the range (r0), the threshold is set to be the received power from

a target at a distancer0 from the sensor. So the sensor which has the received power signal greater than threshold will be

attached to the target at any time instant. We show an example of attaching target when the maximum number is one in Fig.

3. At each time instant, the target is detected and attached to the closest sensor which received the highest power. However, a

complicated situation will arise when trying to track more than one target at the same time.
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TargetSensor Sensor that detected target

Fig. 3. Attaching a single target. Along with the target track, attached sensor is distinguished by brighter color.

Suppose that the maximum number of targets we want to track at the same time is 3, and we may want the range of the

sensor to ber1 (not r0). If we consider the extreme situation that a sensor receives possible strongest power without detection;

in this situation all three targets are located at the distance ofr1 from the sensor as (a) in Fig. 4. Intuitively, we could take this

r1 r1 r1

(a) (b) (c)

Target

Sensor

r1

r0 r0

r1

(d) (e)

Fig. 4. Choosing the threshold. (a) Threshold power when maximum number of targets are 3. (b) No detection of targets within the range (error). (c) No

detection of targets within the range (error). (d) Detection of targets outside of the new range (error). (e) Detection of targets outside of the new range (error)

received power as the threshold, and if a sensor receives power greater than this threshold, it decides that there is a “single”

target within the range of the sensor. However, we can find out obvious errors which are shown in Fig. 4 if we do not modify

the range. With the ranger1 and threshold chosen previously, as shown in Fig. 4(b) and (c), even if the received power is

less than threshold it makes the decision that a single target exists within the circle of the range. So we need to find another

solution for these errors. With respect to each of the errors in Fig. 4, we can find the solution or adjustment as follows:

1) In order to avoid errors as in Fig. 4 (b) or (c):we adopt a new range “r0” which is shorter than the “r1”. Nevertheless,

the threshold power remains the same, so in the case of Fig. 4(b) or (c), the sensor does not make the decision of detection;

it becomes true with the ranger0 because targets will be located outside of the range boundary and received power is also

less than the threshold power. These targets will be attached to the neighboring sensors. We find the ranger0 according to (1)

such that the strength of the signal from a single target atr0 and the strength of the signal from all 3 targets atr1 received at

a sensor must be the same as shown in Fig. 5. We callr1 reference range from here on. Ifd0 = 1, α = 2, andN = 3, then
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the following condition must be satisfied according to (1).

1
r1

2
+

1
r1

2
+

1
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r0

2
, r0 =

r1√
3

(2)

TARGET

SENSOR

r1
r0

Fig. 5. Range of a sensor

2) Once we have new ranger0: we encounter other types of error as in Fig. 4(d) or (e). Fig. 4(d) shows that even though

two targets are outside of the range, the sensor makes decision of detection because it receives power greater than the threshold,

which is an error. In Fig. 4(e), a sensor falsely makes decision of the detection too because it receives power greater than

threshold as in the case of Fig. 4(d). If we relate it to the resolution of the sensor, we can avoid errors as in 4(d) and (e)

because we assume that no more than one target can exist within the reference range,r1; but if there are more than one target

together within the ranger1 we can not resolve it and make a detection error. That is why we also call the “reference range

r1” “resolution” of the sensor. We can not resolve more than one target within the ranger1. The resolution is directly related

with threshold power when the maximum number of targets is set to a constant. The resolution of a sensor does not directly

rely on the range of a sensorr0. The reference ranger1 increases when the maximum number of targets increases under the

condition of the constantr0, which means the resolving capability of a sensor decreases as the maximum number of targets

increases. The threshold increases when the maximum number of targets increases under the constant resolution of a sensor.

Generally, when we apply ADMAN, detecting more number of targets does not make the problem proportionally more

difficult, but the resolution decreases if all other conditions remain the same. The advantage of the ADMAN is that it can

cope with any variation in the number of targets. ADMAN shows superiority when the number of targets vary dramatically.

The ADMAN without any decision rule is summarized in the Table I.

III. G ENERALIZED L IKELIHOOD RATIO TEST (GLRT)

We apply CHT [9], where the PDFs under the hypotheses are not completely known, to every sensor to decide if each sensor

will be attached to a target or not. The CHT problem is solved using GLRT in this paper. There are a number of solutions

for the CHT problem, e.g., Bayesian approach, Wald test, Rao test, locally most powerful test, and so on; Bayesian approach,
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TABLE I

SUMMARY OF ADMAN

Field of interest is full of deployed sensors as in Fig. 1, and each sensor is identified with number from the left bottom to the right top. Each measurement of

the sensors is scanned from 1 toN (Total number of sensors in the field of interest). Givenr0, r1, ∆1, ∆2, N , andX wherer0 is the range of the sensor,

r1 is the reference range of the sensor,∆1 and∆2 are the thresholds (∆1 > ∆2), andX is the number of sensors in one row. At any time instantt,

1) For n = 1, 2, . . . , N ,

• If yn,t > ∆1, attach a target to the sensorn which means sensorn believes there is a target within its range ofr0.

• If ∆2 ≤ yn,t ≤ ∆1, check whetheryn,t is from already attached target or not. If so, we attach a target to the sensor that has greatest power

among the neighboring sensors, otherwise we attach a target to the sensorn.

2) After scanning and target attaching is completed, find out all attachment redundantly in both “inside range” and “in-between area”, and remove

attachment in “in-between area.”

which considers the unknown parameter as arandom variable with prior density function, and GLRT method (It estimates the

parameter by the maximum likelihood method and applies it to the likelihood ratio test.) are two major approaches to CHT.

GLRT is the most pertinent approach because, in ADMAN, we have to estimate parameters in both hypotheses as opposed

to other solutions which require parameter estimation only in one hypothesis, and Bayesian method requires the knowledge

of prior and more assumptions and multidimensional integrations. In this section GLRT related to ADMAN is explained as a

solution for the CHT problem in the detection part. We estimate parameters first by ML method for the multiple hypotheses

test in ADMAN algorithm.

A. Hypotheses

At each time step we have three hypotheses,H0, H1, andH3. We combineH0 andH1 asH2; so the first hypothesis test

is composed ofH2 andH3. If H2 is selected, then we go to the next hypothesis test to decide ifH1 or H0. UnderH3, we

have target within the boundary circle of the sensor range, underH1, we have a target in “in-between” area, and underH0,

some other sensor will be related and attached to the target. This two stage hypothesis testing procedure can be summarized

as in Fig. 6. So themultiple hypotheses testingis modified to two steps of single hypothesis testing. Referring to (1), we can

rewrite the received power of sensorn at time instantt as follows,

yn,t = θn,t + vn,t, n = 1, 2, . . . , N (3)

whereθn,t = 10 log10

(∑K
k=1

Ψkdα
0

|rn−lk,t|α
)

. All the hypotheses are described as follows,

H3 : θn,t = θ3
n,t > ∆1
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Fig. 6. Procedure of decision of detection in hypotheses testing performed with respect to every sensor.

H2 : θn,t = θ2
n,t ≤ ∆1

H1 : θn,t = θ1
n,t, ∆2 < θ1

n,t < ∆1

H0 : θn,t = θ0
n,t ≤ ∆2

where∆1 and∆2 are threshold powers as defined previously. The decision regions and probabilities are shown in Fig.s 7 and

8. The decisions are performed by two steps as in the Table II and III. IfH2 is decided in the first test, we will go to the
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Fig. 8. Second hypothesis testing.

second test to complete decision.
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TABLE II

FIRST HYPOTHESISTESTING

To perform GLRT we have to find the estimates of parameters by the maximum likelihood estimate (MLE) method as,

θ̂3 = yn,t, but if yn,t ≤ ∆1, take θ̂3 = ∆1. (4)

θ̂2 = yn,t, but if yn,t > ∆1, take θ̂2 = ∆1. (5)

next, GLRT decidesH3 if

LG(yn,t) =
p(yn,t; θ̂3,H3)

p(yn,t; θ̂2,H2)
> γ32 (6)

where with the variance of noise,σ ,

p(yn,t; θ̂3,H3) =
1√

2πσ2
exp

[
− 1

2σ2
(yn,t − σ̂3)2

]

p(yn,t; θ̂2,H3) =
1√

2πσ2
exp

[
− 1

2σ2
(yn,t − σ̂2)2

]

Then (6) also can be easily shown as,

ln LG(yn,t) =
1

2σ2
(2θ̂3yn,t − 2θ̂2yn,t − θ̂2

3 + θ̂2
2) > ln γ32 (7)

Given certain probability of false alarm,P 32
FA, it is defined and related with threshold,γ32 as follows,

P 32
FA = P (H3|H2) = Pr{yn,t > γ32;H2}

=

∫ ∞

γ32

1√
2πσ2

exp

[
1

2σ2
(t− θ̂2)dt

]

= Q

(
γ32 − θ̂2

σ

)
(8)

IV. L OCALIZATION FOR DETECTEDTARGETS

This section is devoted to the localization of the targets which are already detected by ADMAN. In the model, targets are

dynamically moving according to the state space equation as follows [10],

xt = Gxxt−1 + Guut (14)

wherext = [ẍ1,t ẍ2,t ẋ1,t ẋ2,t x1,t x2,t]> is the state vector which indicates the acceleration, velocity, and position of the

target in a two-dimensional Cartesian coordinate system;Gx andGu are known matrices defined by
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TABLE III

SECOND HYPOTHESISTESTING

After finding MLEs of θ1 andθ0 as following,

θ̂1 = yn,t, but if yn,t ≤ ∆2, take θ̂1 = ∆2 (9)

θ̂0 = yn,t, but if yn,t > ∆2, take θ̂0 = ∆2 (10)

the GLRT decidesH1 if

LG(yn,t) =
p(yn,t; θ̂1,H1)

p(yn,t; θ̂0,H0)
> γ10 (11)

where with the variance of noise,σ ,

p(yn,t; θ̂1,H1) =
1√

2πσ2
exp

[
− 1

2σ2
(yn,t − σ̂1)2

]

p(yn,t; θ̂0,H0) =
1√

2πσ2
exp

[
− 1

2σ2
(yn,t − σ̂0)2

]

Then (11) also can be easily shown as,

ln LG(yn,t) =
1

2σ2
(2θ̂1yn,t − 2θ̂0yn,t − θ̂2

1 + θ̂2
0) > ln γ10 (12)

Given certain probability of false alarm,P 10
FA, it is defined and related with threshold,γ10 as follows,

P 10
FA = P (H1|H0) = Pr{yn,t > γ10;H0}

=

∫ ∞

γ10

1√
2πσ2

exp

[
1

2σ2
(t− θ̂0)dt

]

= Q

(
γ10 − θ̂0

σ

)
(13)

Gx =




1 0 0 0 0 0

0 1 0 0 0 0

Ts 0 1 0 0 0

0 Ts 0 1 0 0

T 2
s

2 0 Ts 0 1 0

0 T 2
s

2 0 Ts 0 1




and Guut = ut =
[

ω1 ω2 0 0 0 0

]>
.

Ts is the sampling period time (s),ωi is uniformly distributed in[−Wmax Wmax] (m/s2). We are interested in the location

of the targets, so only the location part of state will form the measurement as shown in (1). Our goal is to estimatex1,t,k and

x2,t,k given n̂1:K,t, the estimated identities of sensors attached to theK targets from the ADMAN. We estimate the states of

the detected targets by usingparticle filter. If a new target appears in any sampled time instant, we generate uniform particles
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Fig. 9. Number of targets detected in Time.

on the area which is decided by ADMAN. Continuing targets are estimated by sequentially generated particles. The localization

by the particle filtering is summarized in the Table IV.

V. SIMULATION

We present an example of tracking variable number of targets by ADMAN and particle filtering. All independent targets are

dynamically moving according to Markov Chain dynamic state model specified in the previous section. The maximum number

of targets is 3 and initially two targets are moving in the filed of interest. The other target appears spontaneously in 4 sampling

time instants later. The first target lasts 50 time steps and disappears, the second target lasts 46 time steps and disappears, the

last one lasts 4 time steps more after first target disappears and 8 time steps more after the second target disappears.

The sensors are uniformly deployed on two dimensional rectangular area of interest. The reference range, ther1 = 30 (m),

therefore the range,r0 = r1√
3

= 17.3205 (m). The threshold powers,∆1 = 10000/r0
2 = 33.33 (J/s)=15.2288(dB) and

∆2 = 10000/(
√

2r0)2 = 16.6667 (J/s)=12.2185(dB). Wmax is equal to 0.4(m/s2), Ψ1 = Ψ2 = Ψ3 = 4 (dB), d0 = 1

(m), α = 2, vn,t is Gaussian noise with zero mean and variance of 0.03(J/s), P 32
FA = P 10

FA = 10−3 and the number of

particles is 1500. The starting points of each targets are (200,200), (0,100) and (200,50). After deploying the sensors, we give

identifications to all sensors with numbers from the left bottom to the right top. According to ADMAN, any detected targets

will be attached to a specific sensors identified by its number exclusively. The simulation shows the result of detection of

targets with time in Fig. 9 and the estimation of the tracked locations of the targets in Fig. 10.



12

0 100 200 300 400 500
0

50

100

150

200

250

300

X Coordinate (m)

Y
 C

o
o
rd

in
a
te

 (
m

)

Real target track
Estimated target track

Target 1 

Target 2 

Target 3 

Fig. 10. Localization of detected targets on the 2 dimensional rectangular region.

VI. CONCLUSIONS ANDFUTURE WORK

We proposed ADMAN for detecting unknown and varying number of targets with highly non-linear motion in a two

dimensional rectangular region of acoustic sensor networks. When applying ADMAN, GLRT is adopted for the solution of

composite hypothesis testing. After any target is detected,particle filter is employed to estimate the locations of targets.

Experiments showed the ADMAN is robust and accurate in multitarget tracking problem where unknown number of targets

keep on varying. The algorithm efficiently handles more than 2 targets even though the measurement of acoustic sensor is

almost the same as raw data. In this paper the information of the initial location of any target is not known in accord with

practical situation as opposed to Bayesian models (Even though the particle filter is based on Bayesian frame). The influences

of the changing parameters, e.g., the ranger0, threshold power,∆1, and∆2 will be investigated in the future. The proposed

approaches can alleviate the computational complexity of solving problems of tracking unknown and varying multitargets,

especially in detection problems in acoustic wireless sensor networks. Even if a number of targets are to be tracked, the

increased computational complexity of the ADMAN is not remarkable at all. If we want to resolve multiple targets when they

are very close, we can increase the resolution of the sensor at the expense of the increased number of sensors deployed in the

field of interest. When we have more sensors in the field of interest, the range can be much smaller, which mainly decides the

resolution of the sensors.
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TABLE IV

SUMMARY OF LOCALIZATION BY PARTICLE FILTERING

After detection step is accomplished we have estimated sensors attached ton2 targets asn̂1:n2,t. At any time instantt, if n1 is the number of

targets in previous sampling time instant,ρ is the number of particles,

(1) Comparen1 andn2

• Casen2 = n1

a) Generate sequential particles of locations from the previous sampling time sequence. FORi = 1 : ρ, li1:n2,t ∼ p(l1:n2,t|l1:n1,t−1)

b) Compute weights of particles. FORi = i : ρ, F i
yt

= p(Yt|li1:n2,t) , normalize it toF̄ i
yt

.

• Casen2 < n1

a) GenerateCn2
n1 combinations of tracks of particles. FoRj = 1 : Cn2

n1 , l1:ρ,j
1:n2,t ∼ p(lj1:n2,t|lj1:n2,t−1)

b) Compute likelihood functions. FORj = 1 : Cn2
n1 , F 1:ρ,j

yt = p(Yt|l1:ρ,j
1:n2,t)

c) Choose the best track.

l1:ρ1:n2,t = max
l
1:ρ,j
1:n2,t

F 1:ρ,j
yt

d) Normalize chosen weight tōF i
yt

• Casen2 > n1

a) Generate particles continuously withn1 targets. FORi = 1 : ρ , li1:n1,t ∼ p(l1:n1,t|l1:n1,t−1)

b) Generate new particles with(n2 −n1) targets uniformly distributed according to decision of detection hypothesis test which formsCn2
n2−n1

combinations of tracks combined with continuous targets. FORj = 1 : Cn2
n2−n1

, FOR k = 1 : (n2 − n1)

- CaseH3

l1:ρ,j
k,t ∼ U(rj

k,t, r
j
k,t + r0|n̂1:n2,t)

- CaseH1

l1:ρ,j
k,t ∼ U(rj

k,t + r0, rj
k,t +

√
2r0|n̂1:n2,t)

c) Combine sequential particles and new particles,

l1:ρ,j
1:n2,t = (l1:ρ,j

1:(n2−n1),t
, l1:ρ1:n1,t)

d) Compute likelihood functions. FORj = 1 : Cn2
n2−n1

, F 1:ρ,j
yt = p(Yt|l1:ρ,j

1:n2,t, n̂1:n2,t)

e) Choose the best track.

l1:ρ1:n2,t = max
l
1:ρ,j
1:n2,t

F 1:ρ,j
yt

f) Normalize chosen weight tōF i
yt

(2) Estimate location of targets.̂l1:n2,t =
∑P

i li1:n2,tF̄
i
yt

(3) Resamplel1:ρ1:n2,t


