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The complicated peregrinations of a liquid droplet when sup-
ported over a heated plate by its own vapor are notorious. As a
prelude to more detailed analysis it appears advisable to isolate

the simplest component of the motion - rigid body oscillation - and .
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by simple linear theory to predict small amplitude vibrational fre-

quency as a function of the thermal parameters. To achieve this we

here analyse a subliming solid disk of large radius which is con-

s bt = 4B

strained to move only in the vertical direction. On the expecta-
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tion, checked a posteriori, that the Reynolds number based on film

thickness will be small we assume that viscous forces dominate and
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calculate the steady state film thickness, resonant frequency of

small amplitude oscillation and the damping characteristics.

Analysis

anSidér a disk of weight W and radius a suspended over a hot
plate. If the disk is of subliming material an equilibrium situa-
tion will arise in which the disk will assume a mean position
slightly above the plate. The assumption is made, based on the ex-
pectation of a narrow vapor gap and low velocities that viscous
forces dominate the momentum equation and are responsible for main-
taining the disk in position. By linearizing the analysis we remove

the obvious ‘asymmetry that finite amplitude motion of the disk must
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display and it will be the task of further experimentation and analysis
to define carefully the practical limitation of the model. It is ex-
pected however that at least frequency may be usefully predicted since
this property is generally insensitive to subtle forces and of course
the mean film thickness should also be reasonably well accounted for.
The damping characteristics are generally quite sensitive to detailed
force balances and there is no reason to assume that they will be
adequately described by the linear theory.

In polar coordinates with the origin at the center of the surface
of the heated plate and the z coordinate normal to and positive upward
from the plate we describe the disk position by E(z, t). Under the
assumptions of no dependence on angle and z-velocity a function only

of z, say H(z) , the radial momentum equation takes the form

2

2 B - |
E%E = 3¢ YHA- 3 - WHT = x(z, 1) (1)

where use has been made of the continuity equation to obtain

u, = -3rH’'(2)
From (1) we obtain
, (z,t)
p = BEE=2e2 L a2

and remarking that from the z momentum balance %B is at most a
z

function only of z and t we can conclude that ¥ = y(t) . Conse-

quently we now write

B’ v oaye? L UHY = ety = 2o 3D (2)
3¢ T - Y - vHY = x(t) = 5T 3T |
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A force balance on the disk reveals
.a 2m

-mg + J jT prdrds
o 0

i

mg
or
mg = -my - %Ea4x(t)

and (2) can be written

Hl ;i 2 nr . <3)
%; 4+ HH* - 3H' - vH" = = g 4C(mE + W)
, prra”

with the boundary conditions

at z =0, H= 0

at z = 0 and z =€, H' = 0

atz =8, H=8 + V
where W is the fluid particle velocity at the solid wvapour

interface.

Infinitesimal oscillations

The probable narrowness of the vapour layer thickness leads to

the boundary layer type postulates

3 u. = 0(e®
or _ X S
3" 0Ce”) u, = 0Ce*)
dz

= 0(e®)
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Then the term 3 Yr = 0(e=2) dominates the left hand side
3z2
of Equation 3. This postulate will have to be examined a posteriori
by comparing the unsteady term and the inertia terms with the com-
puted viscous contribution and this will be taken up subsequently.
With the above approximation Equation (3) reduces to
H/i/‘ = -8- W o+ m‘] (4)
v prra4 - 5 .
and the boundary conditions enumerated previously. A straight-

forward solution yields

8 23 22 .
H=n—ﬁ-a—4[6--§zJ[W+m§] (5)

where the condition H, _ g = g% + V(E) is still to be applied.
Its use reduces Equation (5) to a description of the motion of

the surface
(X 3 A
-2 [W-l-mg]%:g-k\f(g) (6)

To obtain information from Equation (6) we need an estimate of the
behavior of the final term of the eqﬁafion. Using the approximate

result from the energy equation
LoV = k2%
Y4

and employing a linear temperature profile through the gap we obtain

where L is the latent heat of sublimation, AT is the temperature drop
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across the gap and k is the thermal conductivity of the vapor.

A reasonable form for (6) may then be

SG e

W§3 + m§§3 = oy mad

2 AT pma® (7)
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linearizing we assume & = go(l + ¢(t)) where o is the steady

state solution given by, from (7),
3kATumrat s
€4 & -3E§%¥13 ) (8)
0 < p

Thus the first order equation becomes

‘é+§u,1@4e'+ig_e=o (9)

or in terms of thermodynamic quantities

€ + Lp%?%é + %ﬁe =0 (10)

0

The damped harmonic nature of Equation (10) is evident and
information about natural frequency and damping ratio can imme=-
diately be calculated. If we define a Reynolds number and a Froude

number in the following wavy;

R = gogo
F = V2
€08

where V, is the velocity of evaporation from the solid surface when
it is at the steady state position g, then Equation (10) can be

rewritten in non dimensional form as
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T2 +(%>%‘f?r+ e =0 (11)

whére T = f(féﬂ)% .
‘ 0

In other words (11) describes the motion in terms of a time scale
based on the oscillatory period of an undamped motion, a period which
is not too sensitive to moderate damping. The coefficient of the
damping term in (11) is a ratio between the gravitational forces on
the platé and the inertia forces and there is no guarantee that it
will be small compared to unity. In fact one can expect that to
obtain a coefficient of 0(1l) severe restrictions will have to be

placed on the disk weight per unit area. A larger coefficient will

produce strong damping and make experimental observation of the motion

much more difficult.

It is pertinent to examine the two basic assumptions which lead
to Equation (11). 1In the first place we need an a posteriori check
on the smallness of R. Naturally the thermodynamic parameters which
specify the problem such as the temperature drop across the gap, the
latent heat of sublimation and the material properties are the‘sig-
nificant data in which to express the Reynolds number.

We have R = E,Vp
v

_ kAT - kAT _ 1 C, AT _ AH
and therefore R Lot Lo T p

r —r P

Thus given the properties P, and L of a subliming substance an
adjustment of AT can in principle be made to reduce R to as small a

value as necessary. In practice we find for carbon dioxide that AT
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should be less than 350°C.

In the second place ignoring the unsteady momentum terms is
equivalent to assuming instantaneous readjustment of velocity and
temperature profile. 1In other words the time scale for vorticity
diffusion across the gap is to be significantly less than the time

scale of the period predicted by Equation (10).

2
For diffusion ‘I'D = O(E_g ),
. Y

Thus the ratio Tp = 2R , . The small Reynolds

number assumption and the achievement of a low damping coefficient

assures that Tb < Tb .

Acknowledgement

This work was supported by the National Science Foundation

under Grant No., G20191.

S L TN S 3

e e ——————— i g e i e i e e PR




