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Abstract

Negative customers and signals in open queueing networks were originally
introduced by Gelenbe, and Chao and Pinedo. Open networks of queues with
positive customers and negative customers have been shown to have product
form solutions for the state probabilities in equilibrium. The goal of this paper
is to demonstrate that an algebraic topological interpretation can be applied
to networks of queues with positive and negative customers to explain the
existence of such product form solutions. In particular it is shown that this
is true for certain fundamental queueing networks.
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1 Introduction

Networks of queues have been the subject of much research in the past. A simple
analytical result for the state probabilities of networks of queues in equilibrium is
the product form solution. In the product form solution, the joint state probability
of the states of a network of queues is simply expressed as a product of functions
of the individual queues of the network. This was first demonstrated by Jackson [5]
for an open network of state independent queues. The functions of the individual
queues are just the marginal state probabilities. This result was generalized by
Jackson [6] and extended by Gordon and Newell [4] to closed networks. Baskett,
Chandy, Muntz and Palacios 1] then generalized the families of queueing networks
with product form solutions.

However, a product form solution for most networks is more often the exception
rather than the rule. Quite often, no closed form solution can be found and only
an iterative or recursive solution exists. The question that arises then is why do
product form solutions exist for some networks and do not exist for others. To
answer this, Lazar and Robertazzi [8] and Lazar 7] discussed a method through
which it is possible to distinguish between a network with a product form solution
and one without. Their method involves the state transition diagram (lattice) of the
network. Basically, a product form solution for a network of queues exists when a
certain algebraic topological structure called a building block which is defined below,
can be isolated from the state transition diagram. Using building blocks, the state
probabilities relative to a state probability of a reference state can be easily found.
The state probability of a specific state is obtained by tracing a “path” from the
specific state back to the reference state. The concept of building blocks provides an
elegant tool through which it can be determined whether a product form solution
exists. It also provides a method to decide what modifications need to be made

to a queueing network protocol so that the modified network has a product form



solution. Building blocks can also be used to explain why certain queueing models
have product form solutions and why others do not.

In recent years Gelenbe [3] introduced a new type of customer called a negative
customer. There are two possible ways that a negative customer can be created. The
first instance is an external arrival from outside the system. The other case occurs
when a normal customer leaves a queue and where there is a certain probability that
upon departure it may become a negative customer. When a negative customer
arrives at a queue, it does not act like a normal customer. Instead, it instantly
removes a normal customer (if there are any present) from the queue and vanishes
from the system. Chao and Pinedo [2] refined this idea by defining a type of customer
called a signal. When a signal arrives at a queue, there is a fixed probability that one
of the customers in the queue will complete its service and leave the queue. Which
customer is chosen to complete its service depends on the number of customers in the
queue and their respective classes. The probability that the chosen customer finishes
its service would also depend on the number of customers in the queue and the class
of the customer chosen. From here on, a normal customer will be referred to as a
positive customer and the term negative customer will include signals as defined by
Chao and Pinedo. One subtle difference between the two models is that Gelenbe’s
negative customer just reduces the queue length. On the other hand the signal as
defined by Chao and Pinedo causes a positive customer to complete service, thus
contributing to the throughput of the system. In both cases though, if a negative
customer or signal arrives at an empty queue, it just vanishes and nothing happens.
Another consequence of the above difference between negative customers and signals
is that the traffic equations for Gelenbe’s model are non-linear but in Chao’s model,
they are linear.

Negative customers can be used to model several situations in communication

networks. One example would be in buffer management where negative customers



can be used to model congestion control schemes implementing Quality of Service
(QOS) constraints. In a typical QOS implementation, packets in a queue that have
exceeded a QOS delay threshold should be removed to allow more recent packets
to enter the queue. Negative customers can be used to represent the mechanism
through which packets can be removed. Another example would be a packet network
with a priority scheme where some classes of packets have a higher priority than
others. The arrival of negative customers and the resultant departure of a customer
can be used to model the activity of higher priority packets. Negative customer
networks have also been proposed for neural network modeling by Gelenbe [3].

The most important common characteristic of the above two models is that
they both have product form solutions. One question that naturally arises is can
an algebraic topological interpretation be applied to a network of queues of both
negative and positive customers to find building blocks and hence a product form
solution? In this paper we find that, in at least certain fundamental cases, it can
be.

In section 2, some terms that are needed to explain algebraic topological in-
terpretations are defined. The system description is given in section 3 followed by
examples of different queue topologies in sections 4, 5 and 6. Some concluding

remarks will be made in section 7.

2 Algebraic Topological Interpretation

The main goal in an algebraic topological interpretation of the product form solution
is to determine the existence of building blocks. The reason is that the existence of
building blocks implies the existence of a product form solution. In order to do this
several terms are first defined. A detailed introduction to these terms and examples
illustrating them can be found in Robertazzi [9]. Another useful concept called local

balance will also be explained. Note that this paper deals with queues in equilibrium
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only.

Definition 1: Probability Flux: In equilibrium, the probability flux of a tran-
sitton s the average number of times per second that the transition is transited by
the system state. It is equal to the rate of the transition multiplied by the state
probability of the state that the transition originates from.

This definition of probability flux allows the phenomenon of local balance to be
explained. Local balance in equilibrium occurs when the sum of probability flux
on a set of transitions entering a state equals the sum of probability flux on a set
of transitions leaving the state. Note that this differs from the concept of global
balance which states that the probability flux due to all transitions incident on a
state is equal to the probability flux due to all transitions leaving the state. The
existence of local balance will be used later to determine the existence of building
blocks.

Definition 2: Circulatory Structure: The pattern of probability flur in a
state transition diagram is called the circulatory structure of the state transition
diagram.

Definition 3: Isolated Circulation: An isolated circulation is the probability
fluz of a subset of transition edges which is conserved if the subset of transitions is
embedded into the overall state transition diagram.

There is a very useful property that can be directly attributed to an isolated
circulation. When an isolated circulation occurs in a state transition diagram, the
relative state equilibrium properties of the states adjacent to the isolated circulation
can be solved without having to take into consideration the rest of the states in the
state transition diagram.

Definition 4: Cyclic Flow: If the probability fluz for the isolated circulation
forms a closed loop, it is then called a cyclic flow.

A cyclic flow along L edges or transitions is simply a cyclic flow of length L. A



“closed loop” in the above definition refers to a set of disjoint transitions that begin
and end on the same node.

Definition 5: Building Block: A building block is a set of transition edges
and associated nodes that form a closed system such that the flux on the building
block edges is conserved at the building block nodes if the building block is embedded
in the overall state transition diagram.

Put another way, building blocks and the isolated circulations that flow through
~ them can be removed from the state transition diagram without affecting the rest of
the state transition diagram and circulatory structure except for a renormalization.
They can then be solved to find the relative state probabilities.

If a state transition diagram can be decomposed (aggregated) into (from) a
collection of building blocks the implication is that a product form solution exists.
This is because for each building block the adjacent states can be solved in relation
to each other for the equilibrium state probabilities. Any state probability can be
calculated by solving building blocks for their relative state probabilities along a
path from the state of interest to a reference state (usually an empty queues state).
The solutions generate a multiplicative recursion that is in fact the product form
solution.

In order to find the building blocks of a system, the matching transition “pairs”
at a node should first be found. They can usually be found by finding local balance
among the transitions. A transition “pair” is a set of transitions that can be paired
together to obtain local balance. These transitions are not necessarily a proper pair
but could instead consist of several disjoint transitions. Once the transition pairs can
be found, then the building blocks can be “constructed” from these transition pairs.
The building block is found by identifying the probability flux flow that forms the
edges of the building blocks. The flow can be found by tracing transitions through

the adjacent states where the probability flux is conserved.



Consider the example in Figure 1. Here only the transitions of interest entering
or leaving the state (i,j) are shown. There would be other transitions that are not
shown. The probability flux due to transition a is found to be equal to the sum of
the probability fluxes due to transitions b, ¢, and d. Thus, there is local balance
along the boundary labeled A in Figure 1 and a and (b, ¢, d) form a transition “pair”.
Transition a can now be decomposed into subtransitions a, a. and a4 so as to form
one to one matching transition pairs as shown in Figure 2.

The proportion of probability flux from transition @ matching the probability
flux from transition d is associated with the transition a4. This is the first step in
finding the building block, i.e. finding a possible starting transition of the flow. The
proportion of the probability flux due to transition d is now known and the process
of tracing the rest of the building block can begin by tracing the transition a to
(i+1,j) and finding the transition or subtransition that gives the same probability
flux. The process continues to the next node until a return is made to the starting
node. At each step, local balance must be satisfied. To carry out the preceding
procedure all the state probabilities must be known in advance. This can be done
by using Chao’s product form equatioris or Gelenbe’s product form equations. The
complete process of finding a building block for a system of queues will be illustrated

later.

3 Systems of Queues Description

The systems of queues under investigation have the following characteristics: pos-
itive customers arrive at queue ¢ at the rate A; and negative customers arrive at
queue ¢ at the rate A;. The arrival processes are assumed to be Poisson in nature.
Each queue follows a First In First Out (FIFO) discipline and the ¢th queue has an
exponential server with a service rate y;. The characteristics of negative customers

are chosen to conform to the signals as defined by Chao and Pinedo. There is no
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differentiation as to whether a customer leaves a system due to a service comple-
tion or a negative customer arrival. The service completion time of a customer is
independent of the amount of service that it has already received since the service
times are assumed to be negative exponential random variables. When a negative
customer arrives at a queue, one customer that is already present in the queue is
selected randomly to leave. The probability that the chosen customer leaves due to
the arrival of a negative customer is chosen to be one. When a customer leaves a
queue ¢ for another queue j, it may change its type. The probability of it remaining
a positive customer is p?; and the probability of it changing to a negative customer

is p;;. Thus,

Z p; =1 (3.1)
z=—+

Three queueing systems will be examined. The first system consists of two queues
in series or in tandem. All external arrivals enter the first queue only and all positive
and negative departing customers leaving queue Q1 enter queue Q2. Customers can
only depart from the system through queue Q2. There is no feedback from queue
Q2 to queue Q1.

The second system has two queues in parallel. Customers leaving each queue
can either exit the system with the probability d; (where i refers to queue 2) or go
to queue j with the probability p;g Only positive customers will be fed back due to
the existence of a phenomenon called the “ping-pong” effect which will be discussed
in detail in the section 5.

The third and final system is a single queue with multiple class customers entering
the system. For simplicity, a positive customer system with only two classes and
negative customer arrivals will be examined. The state variables are more complex
since the queueing discipline is FIFO and thus there is a need to keep track of the

order in which customers arrive into the system.



4 Topology One: Series Queues

The first system of queues to be examined is a series combination of two queues
with the output of queue Q1 connected to the input of queue Q2. The queueing
system is illustrated in Figure 3. Positive and negative customers arrive to Q1
with mean Poisson rates A; and )y, respectively. Customers leaving Q1 enter Q2 as
either positive or negative customers with probability p* and p~, respectively. There
are no external arrivals into queue Q2. The type of customer leaving queue Q2 is
unimportant since it leaves the system. The state transition diagram is illustrated
in Figure 4.

The z coordinates in the state transition diagram are the number of customers
in Q1 and the y coordinates are the number of customers in Q2. The bottom-most
row states in the state transition diagram have transitions moving horizontally from
right to left. That is, from a state ¢ to a state ¢ — 1 the service rate is (u1 + A1)p~.
These transitions represent a customer leaving queue Q1 for Q2. This could be
either through a service completion or an arrival of a negative customer in queue
Q1. Since Q2 is empty when the state is in the bottom-most row, the net effect is
of a customer leaving the system. On the other hand for the other rows, when a
customer leaves Q1 and becomes a negative customer arriving at a non-empty Q2,
then the net effect is of two customers leaving the system, hence the transition from
state (1,j) to state (i-1,j-1) at a rate p~ (A1 + ;). The other transition of interest is
from a state (i,j) to a state (i-1,j+1) which occurs when a positive customer moves

from Q1 to Q2 at a rate of p*(A; + ).
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4.1 Local Balance

Using the product form equations of Chao and Pinedo [2], the probability distribu-
tion of the number of customers in queue Q1 is given by:

Ay \( Ay
pr+ A+ A

I(n;) = (1 - ™ (4.1)

The probability distribution of the number of customers in queue Q2 is given by:

All’+
t2 + Ap~

AlP+
g2+ Ap~

M(n;) = (1 ) ) (4.2)

Consider the state (i,0) in the bottom-most row. There are three incoming
transitions and one outgoing transition (Figure 5). Local balance conditions are
satisfied across boundary A and boundary B (Figure 5).

Now consider the states in the left-most column of the state transition diagram
(Figure 6). Since state (0,0) is accounted for by the bottom most row, only states
starting from state (0,1) and above need to be considered.

Consider state (0,j). There are three transitions from (0,j+1), (1,j+1) and (1,j-1)
that end on this state. It can easily be shown that the probability flux of the three
incoming transitions and one single outgoing transition from (0,j) to (1,j) show local
balance across boundary A (Figure 6) and thus form transition pairs. Note that
Figure 6 does not show the transition A; from state (0,j) to (1,j). Instead it shows
how the transition should be decomposed in order to illustrate the building blocks
which will be discussed in the next subsection. In a similar manner local balance

can be shown to exist at every node in the state transition diagram.

4.2 Formulation of building blocks

The building blocks for the bottom-most row will be determined first. A possible
building block with a cyclic length two labeled a in Figure 5 goes from (i,0) to
(i+1,0) and then back to (i,0). Another possible building block of length three
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labeled b starts from (i,0) goes to (i+1,0) then to state (i,1) and then back to (i,0).
Finally another suspected building block labeled ¢ and of length four has the path
(1,0), (i+1,0), (i,1), (i+1,1) and back to (i,0). Now it remains to verify that these
potential building blocks contain truly cyclic flows by checking that the probability
flux is conserved along all the edges. Conservation will first be established for the

probability flux from (3,0) to (i+1,0). The probability flux due to flow a is:

Ay )1_ A1P+ )( Ay
b+ A P2+ Ap~ T+ M

Since the probability flux of the returning transition can be show to be equal to

(1- ) (py + Ai)p” (4.3)

this, the suspected building block is indeed a building block. The probability flux

due to the cyclic flow b is

_ A 1 — A1P+ Ay i A1P+
t1+ X\ pr+Ap~ i+ A7 pe+ Ap~

(1 )2 (4.4)

and this is conserved along the edges of the cyclic flow indicating that this is a

building block. Finally the probability flux due to the cyclic flow ¢ is

M i, At
w1+ N fo + Ap~

Ay ] Aypt

(1 - [ +A1 - L2 +A1p")( )(aul +/\1)p_ (45)

Summing up thesé three probability fluxes yields a flux of:

A1 1 A1p+ A1
B+ A pz +Ap~ "+ A
This is the probability flux from (i,0) to (i+1,0), indicating that all the building

(- Yy (46)

blocks associated with the transition rate of A, from (i,0) to (i+1,0) have been
accounted for. The transition from (i,0) to (i-1,0) and (i-1,1) are part of the building
blocks for the node (i-1,0). The above results are applicable to any states along the
bottom-most row since the relative differences rather than the absolute numbering

of the states are significant.
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A portion of the two left-most columns of states is shown in Figure 6. There are
two suspected building blocks, one of length three and one of length four which are
denoted a and b respectively in Figure 6. The other building block is labeled ¢ but
it is associated with state (0,j-1). To verify that a is indeed a building block, the
cyclic flow from (0,j) to (1,j) and to (0,j+1) must be checked. The edges do form
a cyclic flow and thus the suspected building block is indeed one. Using a similar
method, b is also proven to be a building block. Summing up all the contributions
from (0,j) to (1,j), results in a probability flux that is equivalent to a probability
flux from (0,j) to (1,j) at a rate of A;. There is local balance across boundary A.
Thus all the relevant transitions have been accounted for.

This result is applicable to all states in the left-most columns. It can be extended
to the succeeding columns in a straight forward manner. Thus it is possible to use
this result to decompose a state transition diagram for two queues with a tandem
structure and positive and negative customers into elementary building blocks. As
discussed previously, a consequence of this building block structure is the existence

of a product form solution for the equilibrium state probabilities [9).

5 Topology Two: Parallel Queues

The case of the two parallel queues shown in Figure 7 will now be investigated. A
queue ()¢ has external positive customer arrivals at a rate A; and negative customer
arrivals at a rate \;. Positive customers are now allowed to move between the
two queues. Negative customer feedback is disallowed due to the existence of a
phenomenon called the “ping-pong” effect. The “ping-pong” effect occurs when a
service completion results in the creation of a negative customer. This negative
customer is then fed back to the other queue in turn possibly creating another
negative customer. This negative customer can be fed back to the other queue in

turn again possibly creating yet another negative customer. This may go on until
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one queue is empty. All this occurs in zero time. The resulting state transition
diagram has transitions that make it unclear whether building blocks can be found.
Note that these ping-pong transitions “jump” over substantial parts of the state
transition diagram. It is an open problem as to whether such a state transition
diagram has a building block structure.

Let d; be the probability that a customer leaves the system from queue Qi. The
z ordinates of the state transition diagram represent the number of customers in
queue Q1 and the y ordinates represent the number of customers in queue Q2. From
Figure 8, it can be seen that the state transition diagram is symmetrical, unlike that
of topology one. Thus there is no need to differentiate the bottom-most row from the
other rows. Consider the horizontal transitions from (i,j) to (i-1,j). The transition
rate is (Ay + p1)d; which is simply the total rate of service of the queue consisting
of u1, the queue service rate and the “secondary”service rate A; multiplied by the
probability that the customer leaves the system, d;. A similar expression can be
obtained for queue Q2. The two diagonal transitions represent the movement of

positive customers between the two queues.

5.1 Local Balance

Once again from Chao and Pinedo (2], the probability distribution of the number of

customers in queue Q1:

_ A1+ Aypy A1+ Agpsy
(A + ﬂl)(l - Pi'-zpfjl) (A1 + l‘l)(1 - P;fzp_zi'l)

O(r) = (1 ()

and the probability distribution of the number of customers in queue Q2 is:

Az + Aipfy Ag + Aipf,
(A2 + p2)(1 ~ phpd) " (A2 + p2)(1 — plaphh)

Consider the three nodes (0,0), (1,0) and (0,1) and transitions between them as

M(n;) = (1~

It )y (5.2)

shown in Figure 9. Local balance can be found for each of the boundaries A, B and
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C. For example the probability flux entering and leaving node (0,0) across boundary
C can be shown to be:

Ay + Aoply Az + Aipiy
- I- Ar+A). (5.3
S (v L v T e VS e L

Similarly the probability flux leaving and entering (0,1) across boundary A can

(1

be found to be after simplification:

(1 _ Al + A2P;1 )(1 _ A2 + Alpi’-2 )(A2 + AIPB
(A + m)(1 — piapd) (A2 + p2)(1 — pizpd) " 1 — phophy

The flux leaving and entering (1,0) across boundary B can be found to be after

(5.4)

some simplification:

(1- A+ A2P2+1 )(1 = A, + A1P1+2 )(Al + Azpi"l
(A + l‘l)(l - Pi"ng'l) (A2 + NZ)(l - Pszjl) 1- PT2P2+1

The existence of the local balances indicate that the search for building blocks should

). (55)

begin at boundaries A, B and C.

5.2 Formulation of building blocks

The formulation of building blocks is done more easily when split into 2 separate
cases: 1) symmetrical and 2) asymmetrical flow. The symmetrical case arises when
Ay = Az, My = A; and p}; = p3,. Then the probability flux from (0,0) to (1,0) and
from (1,0) to (0,0) is equal implying then that the two transitions form a building
block of cyclic length two. This is very easily demonstrated by first noting that the
probability flux from (1,0) to (0,0) is proportional to:

Ay + Agpdy
(A + p)(1 - plap)
which after including the probability of state (0,0) and some manipulation becomes:

(A + pa)ds. (5.6)

Ay + Aapd, — Avpt, — Aaphiph)
1-—- PTng—l

A1 + Aophy Az + Aipf,

(1—(/\1 + p)(1 — szp;l))( (e + pa)(1 - phopky

))( )-

(5.7)

15



Then if the symmetrical conditions are met, the previous expression just reduces

to
_ Ay + Aypd, )1 — Az + Aipty
(’\1 + Nl)(l - Pi"ngx) (A2 + #2)(1 - PBP&)

which is just simply the left to right flow from (0,0) to (1,0) thus verifying the

)As. (5.8)

existence of the building block. Similarly, other building blocks between (0,0) and
(0,1) and between (0,1) and (1,0) can be found. Thus all the building blocks are of

cyclic length two. In the asymmetrical case, it is first assumed that:

A1p(0,0) > (k1 + M )dip(1,0) (5.9)

Ay + Aophy
(M + I‘l)(l - szp&)

In other words, the “excess” probability flux flows in a counter clockwise direction

from (0,0) to (1,0). Then the value of this flow is simply:

A1 > (g1 + A)do(

(5.10)

A1p(0,0) = (g1 + A1)dip(1,0) (5.11)

Al + A2P-2'.1
(A1 + p)(1 = pizpih)

)= Aall—dy) - PiaphiAs — diphi Ag (5.12)

Ay — (1 + A )da( (1 — piapd)

Similarly the “excess” probability flux flows in a counter-clockwise direction from

(0,1) to (0,0) and is:

— A2p(0,0) + (p2 + A2)d2p(0,1) (5.13)
As + Asp?
(43 + Ag)dy (2T 20P ) g, (5.14)

(A2 + p2)(1 = piop31)
This is also equal to the above expression. Thus the “excess” probability flux

from (0,0) to (1,0) is also equal to the “excess” probability flux from (0,1) to (0,0).
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It then remains to show that there is an equal “excess” probability flux from (1,0) to
(0,1) and this is easily done. This result implies that for the symmetrical case, there
are again three building blocks of cyclic length two. However there is also a larger
building block of length three that covers the “excess” probability flux. This result
also applies when the “excess” probability flux is clockwise. The results above have
been obtained for the nodes (0,0), (1,0) and (0,1). However, the most significant
consideration is the relative difference between the node positions rather than the
absolute positions of the nodes themselves. From the state transition diagram, it can
be immediately seen that the results can be also applied to any trio of nodes with
the same relative differences in coordinates among them. The building blocks for
the state transition diagram have been determined since the entire state transition

diagram can be replicated starting from these three nodes and associated edges.

6 Topology Three: A multiclass queue

There is only a single queue in this system. There are two classes of positive cus-
tomers and a single negative customer class that can enter the queue. The queue
discipline is First In First Out (FIFO). When a negative customer enters the queue,
one of the customers is selected to leave randomly and the class of the customer is
not considered when making this choice. The probability that the chosen customer
does leave is one. The two classes of positive traffic enter at a rate of A; and A, and
the negative customers at a rate A. The queue has a single exponential server that
operates at an identical rate y for both positive classes of customers. There is no
feedback and all customers that leave the queue also leave the system. The queue
is illustrated in Figure 10 and the state transition diagram is shown in Figure 11.
Due to the FIFO service discipline, there is a need to retain the order in which
customers enter the queue. Consequently this leads to a complex state transition

diagram. This state transition diagram is in the form of a tree and the maximum
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number of levels ¢ in this tree would be the maximum number of customers in the
queue plus one. The number of states in the ith level would be 2' so that the
number of states increase exponentially. For example, level three is associated with
two customers in the queue and there are four states in this level. Some of the
transitions are bidirectional. The states are labeled from left to right in the order
that the customers have entered the queue. For example, in state 221, the order
of customer arrival has been a class two customer followed by another class two
customer and finally a class one customer.

Consider the state 12 in Figure 12. It can be reached from five states. First of
all, state 12 can be reached from state 1 with the arrival of a class two customer.
Hence the transition rate is A;. It can be reached from state 112 with a service
completion of the first customer or a negative customer arrival causing any one of
the class one customers to leave. Thus the transition rate from state 112 to state
12is p + 2—3’\- From state 121, the only way that the system can reach state 12 is a
negative customer arriving and causing the third customer, the class one customer,
to leave. Thus the transition rate is just g\- State 12 can also be reached from 122
at a transition rate of % and at a rate of u + % from state 212. A customer can
also depart when the system is in state 12 and there are four possible states that a

departing customer can cause the system state to move to.

6.1 Local Balance

Let the number of class one customers in the queue be n; and the number of class
two customers be ny. The probability distribution of the number of customers in
the queue is given by:

Ay
Adp

Rpcenad (61)

H(C):b{( o

Here b is given by:
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=3 S G (6.2)

n1=0n,=0

-1 _ = (A + Ay

Using methods that are similar to those used for topology one and topology two it

n=0

can easily be shown that there is local balance across the boundaries named A, B,
C, D, E, F and G by equating the probability flux across the boundaries (Fig. 12).
Since the bottom half of the state transition is identical except for a relabeling of
the states, any results obtained for the top half also apply to the bottom half of the

state transition diagram, due to considerations of symmetry.

6.2 Building Blocks

By simply checking at the local balance boundaries, it is evident that a building
block with a cyclic length of two exists on all the outer-most transitions of the state
transition diagram. For level two states, Figure 13 shows the building blocks across
the boundary D for the level two states.

The probability flux due to the transition rate of A, from state 1 to state 12 can
be split into two components: one component matches the probability flux due to
the transition rate of % from state 12 to state 1 and the other component matches
the probability flux due to the transition rate of u + % from state 21 back to state
1. Since it already known that there is local balance across the boundary D, then
it can be established that there is a building block of length two from state 1 to
state 12 and back to state 1 again. This suspected building block is labeled a in the
diagram (Figure 13). There is also a building block of length four that starts from
state 1, goes to state 12 then to state 2 and state 21 and finally back to 1. This
building block is labeled b in Figure 13. Both are indeed building blocks. Thus,
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for this level of the tree, state 1 has three building blocks associated with it, two of
cyclic length two and one of cyclic length four.

The building blocks for the two level three states state 11 and state 12 are shown
in Figure 14. For level three states, the determination of the building blocks is more
involved. Considering state 11, building block a is already known to be a building
block since it is on the outer branch of the tree. There are three other transitions
that are incident on state 11 namely transition of rate 3\' from state 112, transition
of rate % from state 121 and transition of rate u+ % from state 211. It can be shown
that the probability flux due to the rightward transition labeled & in Figure 14 is
equal to the probability flux from the three transitions (leftward) b,c and d. Thus
for state 11, in this level of the tree, there are two building blocks of cyclic length
two, one of length four and one of length six. Once again using cyclic flows, these
are proven to be building blocks. Similar sets of correspondences can be shown for
state 12.

The building blocks for the subsequent levels will not be illustrated here due to
increasing complexity of the state transition diagram. However, as the number of
states in a level increases, the cyclic length of the building blocks increase. This is
in contrast to the series and the parallel queues where it is possible to construct the

entire state transition diagram from the same type of building blocks.

7 Conclusion

In this paper, the building blocks for three common topologies of networks of queues
with product form solutions for the equilibrium state probabilities have been deter-
mined. The conclusion that can be drawn is that it is possible, as it is with the case
with queues with only positive customers, that an algebraic topological interpreta-
tion can be applied to certain cases of product form networks of queues with both

positive and negative customers to explain the existence of product form solutions.
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An open question is to determine whether it is possible to always find a building
block structure for all networks of negative and positive customer queues that are

known to have product form solutions.
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Figure Captions for Algebraic Topology of Negative Customer Networks by E. Foo and
T.G. Robertazzi.

Figure 1: Local balance at a node.

Figure 2: Decomposed state transition pairs at a node.

Figure 3: Two queues, Q1 and Q2, in series.

Figure 4: State transition diagram for topology one.

Figure 5: Building blocks for the bottom most row for topology one.
Figure 6: Building blocks for the left most column for topology one.
Figure 7: Two queues, Q1 and Q2, in parallel.

Figure 8: State transition diagram for topology two.

Figure 9: Building block for topology two.

Figure 10: Two positive customer classes and negative customer class queue.
Figure 11: State transition diagram for multiclass customer queue.

Figure 12: Local balance boundaries for two class customer queue showing only 3
levels.

Figure 13: Two building blocks for level two states.
Figure 14: Building blocks for level three.
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A —

g1 Q2

Figure 3: Two queues, Q1 and Q2 in series

O 1O—



33

Hy Hy
7 ] 7 (A +1,
02 v 32
p
K

My E iy
L X AA '
M

P~ (A +4)) P (A +y)) P~ (A +y))

(=]
~ W
*I

Figure 4: State Transition diagram for topology one
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Figﬁre 8: State transition diagram for topology 2



Figure 9: Building block for topology 2



Figure 10: Two positive customer classes and negative customer class queue
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Figure 11: State transition diagram for multiclass customer queue
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Figure " 13: Two building blocks for level two states



Figure 14: Building blocks for level three



