
STATE UNIVERSITY OF NEW YORK AT

STONY BROOK

CRAS TECHNICALREPOR~

Fast Decomposable Solution for a Class of Non-Product Form
Queueing Networks

R.-X. Ni and T.G. Robertazzi

August 7, 1991



Fast Decomposable Solution fora Classof

Non-Product Form Queueing Networks

RONG-XIANG NI and THOAfAS G. ROBERTAZZI

Department of Electrical Engineering

SUNY at Stony Brook

Stony Brook, NY 11794

ABSTRACT

This paper considers two different solution methods for a non-product form

solution decomposable queueing network. The first method is to solve for all the

equilibrium state probabilities simultaneously. The second method is to partition

the state transition diagram into several subsets and solve each subset of states

for the equilibrium state probabilities one at a time. In this paper, we compare

these two methods in terms of the actual CPU time.



- 2 -

1 Introduction

For an open network of N queues with Poisson arrival processes and

exponential service time distributions, Jackson showed that the equilibrium state

probability of the system can be written as a product of the equilibrium state

probabilities of each queue:

P(nl,n2,'" ,nN)=P(ndP(n2) ... P(nN) (1-1)

Equation (1-1) is referred to as the product form solution. The i21troduction of

the product form solution makes the queueing model analysis easier. However,

not every queueing network has the product form solution.

In this paper, we will discuss such a queueing network, which has no product

form solution but can be decomposed to produce an efficient mean of solution.

This model is shown in figure 1. The system contains two queues, the primary

queue Q 1 and the secondary queue Q 2' Whenever a customer arrives at this sys-

tern, it always tries to go to the primary queue first, which can hold up to K 1

customers. Q 1 has an exponential service rate Jl. In the case that the primary

queue is full, the customer, then, is sent to the secondary queue ("overflow

pool"), which can hold up to K 2 customers. Each customer in the secondary

queue will try to reenter the primary queue after an exponential delay of 'I in the

secondary queue. The state transition diagram is shown in figure 2.

In section 2, we investigate two solution methods to solve the equilibrium

state probabilities of the system. In section 3, we compare these two different



- 3 -

".-- -,.,.-

solutions in terms of the actual CPU time needed to solve different size problems.

2 Two solution methods -

From figure 2, it is clear that this protocol has no product form solution

since its state transition diagram does not possess the usual complete building

block structure [LAZA & ROBE 1984]. For this protocol, we have two different

ways to solve the equilibrium state probabilities of the system. The first solution

method is to solve (K1+1)X(K2+1) linear equations simultaneously. There are

(K 1+1)X(K2+1) states in figure 2. Each state has a global balance equation but

one of them is redundant. This is replaced by the equation of probability normal-

ization to solve for (K1+1)X(K2+1) equilibrium state probabilities of the sys-

tern. These equations are shown as follows:

For the lower left corner state, we have:

- >'P(0,0) + /lP (1,0) = 0

From the left edge, we obtain:

- (>' + jj)P(O,j) + /lP(I,j) = 0, 1< j< K2

From the bottom edge, we obtain:

- (>'+/l)P(i ,0) + >'P(i -1,0) + jP (i -1,1) + /lP (i +1,0) = 0

1< i < K 1-1

For the states in the middle of the state transition diagram, we have:

- (>'+Jl+j,)P(i,j) + >'P(i-l,j) + U+lhP(i-l,j+l)

+ J.lP (i + 1.j) = 0, 1< i < K 1-1, 1< j < K 2-1



- 4 -

From the upper boundary, we obtain:

- (A+p+K 2i)P (i,K 2) + AP (i -1,K 2) + pP (i +1,K 2) = 0

1< i < K 1-1

From the right boundary, we obtain:

- (A+p)P (K 1,j) + AP (K 1-l.j) + (j +1)JP (K 1-1,j+l) = 0

1< j < K2-1

From the probability normalization, we obtain:

Kl Kz

~ ~P(i,j)=l
i =0 j =0

The second solution method is based on a decomposition of the state transi-

tion diagram which is possible for a class of non-product form queueing diagrams i

possessing certain common structure [ROBE 19891. One of two possible common

structures is referred to as type A structure and is illustrated in figure 3. Here

each circular subset represents a state or a group of states. For the i th subset the

rule is that there must be only one state external to the subset, with unknown

probability, from which a transition(s) entering the subset originates. The subsets

are solved sequentially, starting from the first subset to the second and so on.

There is no restriction on the number of transitions which may leave the i th sub-

set for destinations in the j =i +1, i +2, . .. subsets.

This decomposition allows one to solve for the unnormalized equilibrium

state probabilities of a sub-set of states one at a time. In terms of the model in

question, in the context of this technique, one first solves the equilibrium state



- 5 -

probabilities of the same row and the right most state in the next row, at a time,

from top to bottom. At the end, one sums up all the unnormalized state proba-

bilities, and uses this sum as the normalization factor. In this method, we select

state P (K I,K 2) as the reference state, that is, we initially set P (K I,K 2)=1.

The first set of the linear equations is as follows:

From the left most state, we have:

- (A+K 2'/)P (O,K2) + JlP (I,K 2) = 0

From the middle states, we have:

- (>'+K 2,/+Jl)P(i ,K 2) + >'P(i -I,K 2) + JlP (i +I,K 2) = 0

1< i < K 1-1

From the right most state, we have:

- JlP (K I,K 2) + >'P(K I-I,K 2) + AP (K I,K 2-1) = 0

From the reference state, we have:

P(KI,K2) = 1

The middle sets of the linear equations are similar to the first set. They are as

follows:

From the left most state, we have:

- (>'+j ,/)P (O,j) + JlP (I,j) = 0,

From the middle states, we have:

- (>-+Jl+j,/)p(i,j) +- '\P(!-l,j) + U+lbP(i-l,j+l)



- 6 -

+ JlP(i+I,j) = 0, 1<i<KI-1

From the right most state, we have:

- ()..+Jl)P(K I,j) + )"P(K I-I,j) + (j +lhP (i -I,j +1)

+ )"P(Kbj-I) = °

The right most state probability has been solved in the previous equation set. Let

it be tj, then we have:

P(KI,j) = tj

In all of these, j is initially set to be K 2-1. Each time when a middle set is

solved j decreases by 1. At the time j reaches zero, the last set of the linear

equations will be solved. The last set of the linear equations is somewhat different

from the previous equation sets since this is the last row and there is no next

row. Therefore only K 1+1 linear equations are needed. They are as the follows:

From the left most state, we have:

- )..P(O,O) + JlP(I,O)= °

From the middle states, we have:

- ()..+Jl)P(i ,0) + )"P(i -1,0) + JlP (i +1,0) + "P (i -1,1) = °

1< i< KI-1

The right most state has been solved by previous equation set. Let it be to, then

we have:

P(Kl'O) = to



- 7-

3 Performanceresults of these two solution methods

For the first method, we need to solve (K 1+1)X(K2+1) linear equations.

When both K 1 and K 2 are very large, the time needed is proportional to

K 13K l. For the second method, we need to solve K 1+2 linear equations K 2

times and K 1+1 linear equations once. When both K 1 and K 2 are very large, the

time needed is proportional to K pK 2' It is clear that the second method is far

more efficient.

We have compared these two methods by using different sizes of K 1 and K 2'

The result is shown in table 1. In this table, we call the first method "whole"

and call the second method "partial". Comparing the data in the table, when

K I=K 2=5, the time needed is 0.9 second for the first method and 0.2 seconds

for the second method. The efficiency is only 4.5 times. As K 1 and K 2 increase,

say K I=K 2=20, the time needed is 333.5 seconds for the first method and 3.9

seconds for the second method. The efficiency has increased to 85.5 times.

In table 1, we only finish up to 20X 20 for the first method since it will be

too time consuming for K 1 and K 2 beyond this value. For the second method,

we finish up to lOOX100. It is interesting that when K 1 and K 2 are very large,

i.e. K I=K 2=60, the last set of the linear equations is too singular to solve.

Therefore, for the value beyond this, we solve for the equilibrium state probabili-

ties of the last row recursively.

4 Conclusion

,-

J-.



- 8 -

In this paper we have introduced two different solution methods for a class

of non-product form decomposable queueing network. We have also compared

their performances in the terms of the actual CPU time needed. We feel that the

first method is simple in terms of procedure while the second method is efficient

in practice.

Acknowledgements

We will like to thank Miss S. Pareek for lending us figure 1 & figure 2. The

research in this paper was supported in part by the National Science Foundation

under Grant no. NCR-8703689 and by the SDIOjIST and managed by the U.S.

Office of Naval Research under Grant no. NOOOI4-85-K0610.

References

1. Lazar, A. A. and Robertazzi, T. G., "The Geometry of Lattices for Multi-

class Markovian Queueing Network", Proceedings of the 1984 Conference on

Information Sciences and Systems, Princeton, March 1984, pp. 164-168.

2. Jackson, J. R., "Networks of Waiting Lines", Operations Research, 5, 1957,

pp. 518-521.

3. Robertazzi, T. G., "Recursive Solution of a Class of Non-Product Form Pro-

tocol Models", Proceedings of IEEE INFOCOM'89, Ottawa, Canada, April

1989, pp. 38-46.



>-'

"::I
!-!
(j)
=
~
~

~



~
1-1

C')

c::
~
t::I

1:

1:

N

~ '"
"<

r~'



'=2

!-oj

~.

c::

I=':'
t:j

\,/J



P' ...,

./

-

TABLE 1

Actual CPU time (second)
K1XK2

Whole Partial

5X5 0.9 0.2

10 X 10 14.1 0.9

15XIS 86.7 2.0

20 X 20 333.5 3.9

30 X 30 11.0

40 X 40 23.6
I

50 X 50 44.6

60 X 60 72.6

70 X 70 111.7

80 X 80 162.6

90 X 90 226.9

100 X 100 292.5


