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The idesa of a time-varying Banach
system, 'which was defined and analyzed in a presvious work [17,

L L S T P . s 4 o ; PO T ;
led Uo & study ol composition operstora acting on spaces of

- S e ok it 1 il 3 S -
wnlch wag ealled "componlitlion o, makes use of Schwartz'a

kernsal thecorsm [2], [2] and 1ts extensicon to Banach-space-veal ued
distributions. 1t prcvides an explielt reorecsentaticn for

L

every continucus linesr mapping /M of D(A) into [D; Bl. Here,

A and B are complex Banach spaces,; DiA) is the spsce of

infinltely differentiable (1,e,, smooth) A-va
of ecvmpact support on the real line supplied with itas

customary topology, D = D(C), C being the complex plans, and

the topology of uniform convergencs on the bounded zate of D,

ge
A shorveoming of this rerresentation for N is that it can be
extended only onto certain spacss of suitabvly restricted
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"composition o in [11, is an exisnsiou to Banach-space-valued

dlstributions of a cowrcsliion product developed by Cristescufll,
Cristescu and Marinasscu {81, Sabae [6]1, Vexler {71,

Cleransseu [Rl, Pondsiizek 1931, and Deolezul [101. In centrasi

b vopmpesition =2, not ail linear wmaprings of D{a)
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into [D; B] can be reprerented by & compesiticn o operator.

$te

However, compesitlon o has the virctbue that, when it dees ex

4
it can be applied €o singular dlstributions,

g

ins pressnt work is aslmed at this zep betwsen comncsi

H‘

en e and
composition ¢, A technigue 13 developed for extendingz composition e
it

winichi we nenceforth refer to aimply as

- L

o # 2 1" % n
composition”, onteo singulapr

Banach~space~vel ued distributions in an explieit fashion, This is

accomplished not I¢r all but rather for cerbain sultably restricted
comzosition operaters. The regulting reprecsentation hag a form

similar to that for composition ¢. In certain cases the corclusions
of the present work are stronger than those of [11. For instance,
some of the compeosition orerators studied hereln sre definaed on
certain finite-order Banach-space-valued distributions, but not on
infinite-crder distributicns. In eddition, our results lwmply an
estimate on the crder cf the resulting comrvosition product, The
composition o operstors studled in [1] were required to be dcfined on
infinite~crder, as well as finite-order, Banach-srace~-valued
distributicns,and no estimate cn the order cf any compesition ¢ preduct
wag acheived. Ancther generalizaticn is that distributions on
multidimensional euclldean spaces ars now g}lcasd, whereas [11 was
reatricted to distributions on the real linse.

The principal conclusicns of this work arvear in Secs I, 5, 6,
end 7. Sec. 2 conteins an explanstion of ocur nctations angd e

discuasion of certaln results pertaining to Banach-space-valued

distributicns. Sec 3 is devcted to some lemmas we shsll need.

M) R

Finally, two examrles of cur extended compositlon product aprear

of lemps
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Z. Some
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WCIr¥ ave
¢f any symbols

works; see primarily

work m =
or 2 nomsgati

& triplet,

we will alwavys have the

or T = «, the notation

are egusel to 1. For

ineguality g £ r means

in R 1s a2 set

o

gare fixed. K

If U ang V are

uaad but not

LA tﬂ

N 4
teger in K7

q S r

of the form ft: ¢ £ ¢

two tovpologi

The rictations of thia

{131, and{321. The definitions

defined herein can be found in those

[11; Secs 2 and 3.

respectrre fy’

tha

' H.H
Wi, and I

R™ is

mekFmy

spaces,

&4

with

complex Banach s=dimensional

7]

the comrlex plane., Ye denote any t € F°

1, the t, being the components of t. [tl

~ 1 l'f)
nitude [Zy;@}[ﬁ]‘/“ of £t. Throughout this

an s~tuple each of whose components is =

for example, m = {2, «, 0} is such
The set of all such s=tunles is dencted by Ee“. Similarly,
o o e W 1
symhol j denote an n-tuple in R If 1T e R

[T]) derotes that s-tuple 211 of whote components
8
{r,} in R

v=1, 2,

{q,1 and r = (or in Res) the

for 8. A compact interval

LA B

¥ ¥

dt where ¢ € R® &nd @ ¢ R®

denotes the interiocr of K.

cal lirear spaces, the gsymbol [U: V]

denotes the lineer space of all continucus linear mevoings of U
into V., Uniess the ovnposite 18 explicltly indicated, we slways

asgign to [U; V] the

sets of U, which we
£ w x o A P | N
for instance, [A; B]

alsc call the "
is

make use of the topolopy cof poin

topology of uniferm convergence on the bounded

hounded townolcpy™. Thus
, g 3

assigned 1ts cperstor-norm topolcgy. At

2w

1

twise convergence

twise topology") for the svace [U; VI, but
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always denote thig space by [U: V17, (In

=
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o
e
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Let ¢ be a function from K- into some. Banach svace. Fhen we

say that ¢ is continuous or has a derivative, it will slways be
understocd thst the continuity and derivative are with respect to the
norm topology of the Bapnach space. Thus, for example, if the Banach
space happens to be [A; B], the said continuity is with resvec
to the operator-norm topology of [A; Bl. Let k = {kl, e -

a ponnegativeinteger In R

integer). Any (psrtial)derivstive

) i} =1{1 R — +ks
of ¢ will be denoted by Dk¢ = ¢(k). We will also write Dtké{t)
= ¢(k)(t)e We shall refer to k (snd not lk|) as the osrder of the
differential operator Dk. The notation k| should not be confused
with the magnitude notation for the members of R¥. ¢ is ssid to be
smooth on an open set . ( or compact interval XK) if 1t has continuous
derivativee of 81l orders at 811 points of 4 (réspectivsly, at all
peints of ¥ and these derivatives have continuous extensions onto the
boundary of X),

The suvport of any function or distributicn f on R® 1s denocted
by supp T,

: < . m . -
Let K be a compect interval in R°, D, (4) denotes the linear

“K
srace of all functions & from R™ into A suck that supp ¢ = K and,

(k)
¢

cs
for every integer k in R with 0 S k S m, is continucus on R™.

DFm{A) is eguipped with the tcpology gencrated by the collection
LY

fv..: 0 F k = m] of seminorms where
i - . '.J \ K
i?.1 ) ‘ Ybfﬁj = 8up i (t}
4% -

, s el
D, (A) 18 a Frechel epace.

b . : e S ety Z Cor g
Now, chocse any sequence (K |
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Iy c - £1i¢ ;Jp:_'1 K, =R. Uhﬁkn) is the strict inductive 1limit
A

Y g 41 5 o ~ - 1 -

of the I, (A}, v=1, 2, .es 3 1t is Independert of the cholice of
J‘p
- 3R : P o . - . My, m

{‘piyzl' We will use the simpler notation D (A) = D S(A) vhernever

ki L] s 8 .~ 8 3
there 1s no need to specify the euclideen space R™ on which the testing

functions & sre defined, Moreover, when m = [«1, we drop the

tation ard write D (A) = D{(A). The seme convention

(:)

surersceript n
is feollowed for all the other testing=function sraces used in this

papers that is, the lack of a superscript notation implies that

[D"(a); BR] 18 & space of vector-valucd distributions on R® of
order m. Some results we shall need ccncerning such distributions
are stated in the next two lemmas,

Tesmz 2.1: Let £ e [D™(A); B] (or £ ¢ [D™; 41), and let K be

B . L S
a comract interval In RS, Then, there exist a (finite) intezer p € R

with 0 S p S m and a continucus [A; Bl~velued (respectively, A-valued)

w+[2] (

function h on K such that, for all ¢ € bﬁ A) (respectively,

p+[2]}(t) dt

r.f- -1
Proof:; Let £ ¢ [D"; Al and let J be & compact interval
containing & nelghborhoed of K, It is a known result (see, for example,

[13; theorem L.17]) that this lemrma heolds true for all ¢ ¢ Dy when
~mr 2]

K is replaced by J. So, glven any ¢ € DF , we chocse 8 sequence
[ . - mt (2 4
{é 1 ) gsuch thsat ¢, e Dy and ¢ = ¢ in “J t21 and therefore In DJ,

Thies allows us to write

(ﬁ#[M_}( ()=L?]] "

b} dt — F hit) ¢ (+)

¥ . Yy
¥ K
. . . y - ! - v, = . PR T R
snd establish thereby (2,2)., The same kind of argunent nlso astablf
5 " - N e (T P
shes this lewma for the ease where £ e [DP(a); B



o
that {v 1 _. converges to
pop=l |
and the fact
two caszes

then,

set in [Dm; Al. Now,
one componsent on I ig =,
of [11; lewma 3.17, we ccnclude
constant M

such that, for all ¢ ¢ o sb

K?#

SUD ”<VH’ e>l, S M

m
zero in [D";

5%,

arise,

[ilhs p.

¢that D" is complete, 1t follows that fvu]is & hounded

I

2¢;

by the argument used in the nrocf

thet there exists &

max. gup \é(%)(t)\a

> 0 and an integer p € R° with O <

m

Pirst assume thet at lesst

6

Le Let the secuence {v“}gml tend to zerc in [D"; 417,
TRITE a4
& 1 : : ] 5 , &
and let K be a compact interval in R, Then, there exlist a (finite)
integer p ¢ k° with 0 S p S m, which does not derend on p, and_
o
seaquence {“fgv=l of ccentinuous A-valued functions on K such that
g (t) 0 as y— = uniformly on K and in edditiocn, for each
o ! : _
+i2]
(243) <v , 8> = g (t‘ g(p+i21) (L) 4%
b K
i [ J
for all 6 € D 2
: Is
Proor: dhis lemma was estsblished in [1; theorem L.lf] for the
B X ‘
case where m = [=1, R” = R™, and {vpi cenverges with respect to the
bounded topology of Dy A1, The extension of that result to the case
3 i 8
where 8 > 1 is straightfcrward, Now, for the given m € Re assume

corollary

ncw

i 0=k<p ter?

On the other hand, if all the components of m are finite, then
both D‘h end A& ere Banach sraces., Since the bounded topolopy of
[Dm; A] 15 now the operator-norm topolegy, we have that the operator
norm of cach vu is bounded by some ccnostent M that dces roat depend
on e <This implies the same Ineguality as &bnﬁa, where now we set
D= m,

The zaid tnecuality 18 the asme as [1: inequallity (L.9)]. Ve

1]
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procesd exactly aa in the proof of [1: thecrem lLi.li] to obtain

x T 5 T » ) 5 j !
Next, £ (A) = T"_(A) is the space of 21l functions ¢ from R®

R "
into A such that, for every integer k in R® with 0 S x S m, ¢(H)

s g, 1 ‘
coentinuous on R, E (4) possesses the topology generated by the

2 R o | o Oy ~ f LYy 22 30 i =~ ~ T o 3
collection of seminocrms ?Yﬁy,k}v,k where O = k fhy@pzl 1= &
sequence of ccmpact intervals with K < Ky+1 for every » and
u R® & i

—_— o) o T
ol K, as before, and

g k(0 = o, e o 4.

[E™(A); B] turns ocut to be that subspace of [DT(A); B] consisting

of the distributions of bounded support; 1t has a topology stronger

than that induced on it by [D™(4): Bl. With {K 1“: defined as always

3
let [E"{A); B], be the linear space of all f € [¥"(A); Bl with
_l‘y
supp £ C K, , Assign to [Em(ﬂ}; EJK: the topology induced on it by

» - 5
[E7(A); Blv A sequence ccnverges in [ET(A); Bl if end only

1t is contained and convergent in [ (A): for some vy

JK
the proof of this is the same ass that for scalar distributions,

3
Glven any 1\':r»rm:)su‘;‘r inquva7 K R, CK

functione $ from K Into A such that, for every integer k € B- with

¢(h}

12 continvous on ¥, We azmsipgn te C}..) the topology

gencrated by the collecticn [y, : 0 £k S ml of seminorms where Ty
ik

1s defined by (2.1). This makes C{4) 2 Fréchet space,
L
' B R .
For the next set of spaces, namely, U {A) and N+(A); we vequlre

that s = 1. Hence, m ig either » or a nennegative integer in b7,



and we will be dealing with test'ng functions and distributions

: ) o o - 1 1
defined on the reel iine R™, Let T e R™ and m € He be fixed,

D T(ﬁ) is the space of all A=-valued functions ¢ on R 1nte A such
2
that supp ¢ 1Is contained Iin the closed interval (==, T] and, for

P ; 1 3 s sir”
every integer k € R™ with 0 Sk S m \( ) is continuous. We equij
s ¢ qulp

_m
L (& 1th 7 SS100Y gen ¥ i
- ) v he topclogy generated by the collection {Yy,k}y,k

where 0 = k S m, v=1, 2, ..., and

118

a2, Bl

Yp,k(¢)

Ncw censider the sgequence of spaces obtained by setting
19 DO ; h Y (A 7
b @5 www 1A D r.‘{A). It-can be scen that D_ T(n) is a closed
? ¥
subspace of U T+1(ﬁ) for every T, and the tcpology of DT T(A)
¥
o : T ™/,
is the same as the topclegy induced on it by D_ T+1(A)' DM(A)
p

1s defined s the strict inductive limit of the D T(A),
r

[DT(A); B] turns cut to be the subspace of [D(A); B] consisting

of the distributlions whose supperts are boundéd on the left.

Its topology is stronger than that induced on it by [Dm(é); Bl.

Let T be any negative integer in Rl. [Df’ )3 ] enotes the

linear subspacs of [Df(ﬂ); B] consisting of the distributions

vhose supports are hcunded on the lelft at T and supplied with

the tovology induced by [L (o); Bl. A sequence converges in

[D7(a); B] 1f and only if 1t is ccntaincd and convergent in .

[DT(A); B], for some T,

‘ bis iy 10 .
The snaces L' _{A), b, (a), and 11:%{;1}, B} sre defined in a
T @
£
similar way and bhave ginmilsr properties. HNew,however, the supports

e

of the testing functiona are bounded on the lelft, and the surports
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of the distributions are bounded on the right,
_ and Caﬂl'f’}':r‘if Iegquences
All the assertions msde sc far concerning the topclorles, of
& ! /

o 4 "3 I .\I'?.'i 5 B s
(AY; B, and [D (A); B] remain valid when these topo-

“".r*.,—n
tOjﬁO.ﬁ.wEﬁ-‘,S.
- J e 1 e +in A der £y, o ] + 4 Ty
Now, let I (&) denote anvone of the fellowing spaces: Dﬁ_{\.ﬁ’k),
.hﬁ'f,v.\ «TT‘.; m FORL '-,r 1 F LY i
T A 5 . UL s
o\, B Ry, - {,(‘a;, By Yoo “d g =';._iAJ’o A8 \.1314&,3.; Ve
Fid }

m ""‘- - - \“'1 : -
vhere ¢ ¢ I' and a ¢ A, If m' 2 m, then 1 (&) is & subspace of
1 ; _ o 3 % - P ) my,
I"(A) and has a tepelogy strenper than that induced on 1t by I (4).
k
We define generallzed differentiation D of order k on any

£f e [T7(a); Bl in the usual way:

Ex i

Liae oK -11-?}-_
(2.4) <or, > & <, B> o € (),

o lr k.o k . ¥ o
where B™ = ("1){ D', It follows thet is a centinuous linear
i ki . -1 -
mdpoin; of [I™(4): Bl into [1I (A); Bl, as well as of [T{A); 19
el T . % :-\,‘-.{M... - (}' }
into [T7 F(A); 219, We also use the notetion D°f = f .

tncther fact we shall make use of i1s the feollowines: lor

f € [Jm(

}: Bl and ¢ ¢ J”fﬂ} <f, ¢ depends only on the velues
that ¢ assumes on & neipghborhicod of supp I, Thus, for example,
1f aupr £ iIs contalned in the Interior L of a cempact Iinterval L,
then <, &> i3 uniquely defined for cvery ¢ ¢ Ci{ﬁ). |

Before terminating this secticn; we state the extended form

‘\'.-"}

2¢c, 1., In the
1

of the Schwoertz kernel theoresm referred o in

following n and s are boith nonnerative Intepers tn R
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Theorem 2.1t N is 8 sequentially continuous linear mspoing
- 4 & = 1 0 . = - b ] > -
of D g{A} into [0 wh B]" 1f and only if there exists an fe[D ﬂ.N(A); E]
—= ! - 2 i : - L0 -
R R R
auch that Nv = f v oy LT ¥ B A ) At i = 3 107 «
such that Nv = Tev for every v e D (A), Here, f 1s uniouely
' > - '
determined by N and conversely. The composition product fev is
jr ined by
0 4
(2.5) <fev, ¢> = (L, x), ¢(t)vix)>

o

D
t eV and x € R,

where &t
A development of this result is given in [1; Sec. Ii]1. That
dlscussion is restricted tec the case where t and x are beth in
1 »
Ry however, 1its extensicn to the present slituaticn does not
Involve any d4ifflcultlies., Morsover, we have merely assumed

sequential continulity for § in theorem 2.1 instead of continuity

as in [1: Sec. li] because, for any linear operator on D _{A), these

3
R
two properties are egqulvalent, 't 13 the composition operator
; 5 m -
virfev that we snall extend onto certalin spaces such as [E‘; AL,
[D"; 41, ana [D7; A]
P s 20 et °
3, Some lewmes In this section we present some results needed

in our dilscussion of composition cperators,

# y S
Lemna 3,1t Let K and N be compaet Intervals In K~ such that

‘.';'} % 7 o
Kc X, Glven any Y € Dy(ﬁ), there exista a sequencefHLiL_‘ snch
FiVen any c : o7 : AT

f @A end, as -~ w, ‘f’ﬁ'-*‘{" in l’“(h,,

Procf: By & regulesvizatlcn precedure we can choose 8 seouence

- s £
o 3 Ay ‘3- - -
{XI"} sl such that X € DIJ(A. by Sapp xk € Ny &nd; ag K —=r =, )f‘lr . 1

. Then, by virtue of [11l; lemma 6.}], for each % we cun

" o SrTie {? 1 okl o d = i Ty « abe
chooge 8 geouence 3 1ig=1 such that Bk,i e Dﬁﬁbﬁ and, as 1 @
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T¢c sce that v Vv is linear, let « ¢ C, B € C, v e [Dm; Al,

FO> = Fduv + Bu, 8> = Ji<v, 6> + pF<, 6>

§
¥
A
-
1]
oD
A
+
o)
A

(-A‘? 4+ Bu},\ == ,U? + F:'(?a

i A = R
It remeinsg to prove that v v 13 sequentially continuous,.

" oo mtl2]
Let ¥ be a bounded set in D ([As B1), Conscquently, ¥ is a
. T o T T i s
bounded set in L, L ([a; B1) for some sufficiently large ¥ > 1,
- L3 e ki - -~
Let {vk},“1 converge to zero In (D A A], and let {vk]ba the
He—

m+ [2]

corresponding sequence in [ D (L4; B1): Bl. We now invoke

lemma 2.2, Witn resvect to the interval N , there exist a

. . i g | = o
finite integer p, * 0 in K and a seguence {gv P}P“l of continucus
- 19 S

»

A-valued functions cn K, such that g, k—#—O as k— = unifornmly
8

on N” and

(3‘05) <v. 9> = J' 9-), ) (t) o) (t) % 6 € 1,‘?—,'-(’_-2]‘

M ik

N 2’ v

Y€ 1@"""[2]([&; B1).

)
_G
\
it
L
e
N
ct
e
o
R
jol)
<r
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% e Ao i ey - e A - 11k £l . @
Mereover, the restriction of ¥v. te Yy {(fa: B1) is by definitior

equal to the restriction of ¥_ ., , .. . . .
v,k o that spece, In view of these

resuits,; we may write

sup <@, , v>ll, = sup |I<¥ L o
HL’(“:T‘_‘} al i "}"‘6 l}:f v ’.i{ et
i (g, +127)
=  sup H( v (¢) g, () dt! N
b e had EHU,K i
Y e T §
( N, (e +l21) ]
< Y lu H o _ v k| 2 o i =
sup v (lra; gy 9t sue g, o (8D,

Jag i H [ ; ;
ved VN, o tell, o

The right~hand side tends to zero as k—> », This establishes
F B 3 . 5 [ 113 oy
the seguential continuity of v > ¢ row [0 &1 into

1u+[2]{

alenients,

[
]

1
r

[

e
=

[D [A; Bl); Bl. By restricting ¥ to sets of s

we arrive at the same concluslon with recspect to the topologies

-

of pointwise convergence. 7This completes the procf of lemma 3.3,
The next two lemmas sre asctuzlly ccrollsries to lemma 3.3.

Lemma 3.4: Given any v € [E"; A1, define q by (3.1).

. ,.r+ -~y .
2 unique Vv e [E" [d([A; B1)s Bl whese

Then, there exist

Lo

restriction to the elewents of D([A; B1) of the form F6, F € [A; BI,
e € D, ceincides with q . Morecover, supp v = supp V. In

& goouuentially contlnucus linear injection

Proof: [E"; ATl is & subspace of [ ; A and has a tcpolegy

- 1 b

stronger than that induced cn it by [D7; Al. So, upon defining ¥

[} 0 - 23 - o — g P S r
as in the proor of lesmma 3.3, we seée that vee>v is a sequenticlly
s 2 ‘ " o g . r-I 5 w21 S s
conblnucus linear injection of LE ; Al into [D (CA; B1); B,

u o " - s
Mereover, V coincides with o on P. Thus, we have



(3.5) <v, F&> = <qv, Fg F<V, G> F e [A; Bl, ¢ € D.
How, 1ot K be & compact Interval in the null set A of v.
Since A is open, there exists ancther compact interval N < A with
K <N, Then, for every B € Dy <V, 2> = 0, Hence, for every

F e A B,
£%, F6> = F&, 8> = 0,
But then, fcr eve Y € *h(fﬂ; Bl}, we can choose a sequence
?fk1;:1 with elements in Dqﬁbfhg Bl and convergent to ¥ in
o i - i
‘I{‘['{'; B1) E,."E,\F:‘;'_iihgf to lemma 3.1. Consequently,

0

<9, o == <V, ¥

Hence <¥,¥> = 0, 8ince K can be any compact

k-)u—m

intervel in A,

a 1 [
we conclude that supp v C supp v,
) . 5 N - : A -
Onn the other hand, let N be the null set of v. Then,
F<v, 8 =<3, ¥8> = 0
for every Fe[A; B] and every € € D with supp 8 cn. By the
Hahn-Banach theorem, <v, €5 for every such 6, iHence,
~ s ~
Supp Vv C supp V. dhus, sSupp Vv = 3upp V.
o . N
In view of the results oblained so far, we heve that viv
3 4ot . sl me s
{8 a sequentially centinuons linear injection ¢f [E"; &1 Into
I 15 8 0% i m+[21 . g
[D L ](Eh, Bl); B] with range in [E “(LA; B1); Bl, We now
invoke that fact that, :
L] Y <@ -~ # ‘-:T]
if a sequence “‘y}‘f“l tends to zero in [® A,
A+ Yot
then therc exlats & comnact interval K such that sugp v © 1 for
5 ~ . T ;2! 5 - 5 _ A
all k. Henes, v, — CinlD {{ag B1); Bl witn supp v, © K
g 7 A Smel e &
for a1l k. Whence, v, — 0 in l LA b'J) Bl. 4his
14
. . . m. . oq 0
argument leads to the same conclusion in regard to [E 3 Al



17

no

+[2] o

to
{ I |

and [¥7 ([h; }; Bl

In the next lemma it 1ls understosd that B = R,

- -t 5] . } :
Lenma 3.5: Given any v € [DT; Al, define q_ by (3.1).

x“,
m+
. LL]([H; Bl)s B1 whose restriction

T N ~
then, there exis unique v € [D7

| bk

ts &

b

to the elements of D([A; Bl) of the form FO, Fe [A; Bl, @ € D,

% g i A . -
coincides with q . Moreover; supp v = supp v. In addition,

v
- - 5 o . g
v ¥ is a sequentially corntinuous liresr injection of [DV; Al
Nuay (21 i g : g Y A Pl 2 C . .
nto [ ([A; B1); B}, as well as of [D; Al™ into

S'
=
in
ctr
g
o

The proef of this lemma same 88 that of lemma 3.l.
We now censicer certain regular distributicns and some of
My, e
their preperties. Let v e (&), 4hen, v generates a unicue member

0. 5 o " —
of [D”; A1, which we also denote by v, through the definition:

v, ¢> = F v(x)o(x) dx ¢ € oY,

\.’R.)
. O .
(lere, the superscript 0 in D7 denctes the s-tuple [0].) DMorecver,

=
v defines an [[A; Bl; Bl-valued functiocn v! on k” by the definitlion:

vi(x)F = Fv(x) F € [Ay Bl, x € The

b

By the Hahn-Bsnach theorem, supp v' = supp v and, for each x,
v(x) - v'(x) is injective,
" . ) 8 Y o k_,
Moreover, for every integer k¥ In R™ with 0 = k S m, Dv

1

from R® into [[A; Bl; Bl, For example,

t.f'
s
:‘;
o
0
¢
ta

exlsts and is cont

i
5
(4]
ct
o if
)
ctr
=
el
!—-lu
m

& - 3 L _é, A} ,
fi% % & R”,; &% such thav éy = 5/5xy is of order

less than or equal to m, &nd let x + AXL} denote that element ol

- ~ LIS l
K® obtalned from x € R® by edding sx, € R™ to the vth ccmponent of



pet

v)t{x)

e EY

] V'{X+&XL,) - ot {ae) h
sup |} | = = (4, v)‘(x}l £
Pl = 0] %, 4 B
{ w4 -
o a e[rleer) - v 1l
= sup hf[ = )(?)Fr
P =1 L AX,, 4B
”v(x+£n|v} - v(x) i
= F S - (ayv){x}ﬁ = ax, — 0,
i AY i A
;Y]
Se¢ truly, for each x € R° d,vt(x) exists and Is equal to (4,
€ [[A; Bl; Bl. Hence, 3, v'(x)F = (3, v)'(x)F = Fo,v(x)., To
show the continuity of épv‘, we need merely write, for any x
and ax € ?i,

! 1
ﬁlnl‘]fé vt(x+ax) = 3yv'(x}]Fﬁ5 = Ieym uF[éyv(X+Ax) = d,vix)] |
h.h"' ht""

1
v o o o o
”avv(x+an) akaX}hA —= 0 AX —= O,

Continuing

obtain our

- e
DXy 1 (x)F = FO%v(x).
Next,
~0 <y
[p¥([A; BI): B,

definition:

&

Lty ¥ v (x}¥(x)

Thie &llows us

v, FG> = X L v (x)Fe(x) dx
R
Since F 1s continuous
integral sipgn to get

—— . kK,
assertion concerning D v!,

tc write, for any F € [Ag

a8 well as

k5]

o]

]

12
it

in this fashlon to the higher-order derivetives, we

the equallty

which we 2lso dencote by v!, through the

we note that v' generates & (regular) member of

v e p%a: BY).

and 9 € D

0
’

f g Fv(x)s(x) dx.

and linear on A, w2 may take it out

ide the

o



H

<v', FS> F j . Vixle(x) ax = F<v, 6,
7S

Let us now compare the last result with lemma 3.3 and invoke the

facts that v ¢ B(a) « (D% A7 and v' ¢ {DO(EA; B1); Bl <«

i

a9
- L2l " - .
[D " ([A; B1)s Bl. We conelude that v! ¢ in the sense of

o
-["j{iA; Bl); Bl. Consequently, supp v! = supp V.

We sunmmarize these results ez follows.

Lemma 3.6: Let v € E'(A), Define v! rom v as above and let

- i i

v correspond tc v in accordance with lemma 3.3. Then, for every
: ol : ) k

integer k € R~ wlth O Zk = m, vwe have that D'v' exists, is

. " 8 .
continuous from R into [[A; Bl1;8], and therefors senerstes a

o . - "
regular merbsr of [D7([A; Bl): Bl. MNoreover,

Dot (xIF =  FD%% (%)

for every F € [A; Bl, Finally, v' = ¥ in the sense of equality in

[D[aj([&; E1); Bl, and supp ¥ = supp v' = supp v,
Lemns 3.7: Let I and L be compact intervals in R© snd R

8

_Assume that h(t, x) is_a cont’nucus [A; Bl-valued

respectively.

nt+ts

function on the compact intervel IXL in R and is such that

" 8 . 0.5 ¢ T
there exist anm e K , & j € K_, and an integer 1 € R

0 1 % J for which

i

. (1), ~ oD )
(3,70 xg & Jonte, e at € & (ia; BY)

-

Then, ¢ +— x, is 8 continuocus linear mapping of
-_— ” q’ - . —— - — - - ——— PP U 3

pd tnto Cfra; 31).

for all ¢ € DJ.

Here, as well sc elsewhere, the notsticn h(t, °) denotes the
member of CT{Eéz B1) defined by the mapping x - h(t, x) and
¥ ]

dependins upon the chelee of t.
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Proof: We shall make use of the closed graph theorem,
We first note that every £ ¢ Cgf[ﬁ; B1) defines an f ¢ {CE(A); B]

by means of the definition

{F, 8> = IL f(x) 6{x) dx 6 € CO(A}.

in fact, it readlily follows that f f 1s a continuous linear
injection of Cf'([4; BI) into [¢D(2); B]®, Upon replscing f by
}(¢, we cbtain
<X,, 0y = j j hit, x) ¢(i)(t} dt e(x) dx.
¢ L T

This inmplies that ¢ H~x¢ iz a continuous linear mapping of
pd tnte [0 (a); 51°,

Now, choose & séquence {Qﬁ such thsat ¢, — ¢ in D% and

M, ~ . . ¢ (o]
Xy = ¥ in Cy([A; Bl)s Ve have that Xo = X¢ in [c (4); B]

A prl
7 is

r N(‘ A & | 3 *
a&s well. But, since [bi{ﬁ); Bl separated and since

C?([A; Bl) can be identified with a subspace of [Cg(ﬂ)- B]°

®

as above, we have that ¥ = Xge This implies that the linear

operator ¢*4”X¢ is closed because both D% and C%(EA; Bl) are

Fréchet speces. The closed graph theorem [15; p. 173] completes

the proof,
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S . -1l " P ;
L. Composition operators on [E_; Al inte [qu; Bl. Let

b B \
t R
e [D MG(A}; Bl. Choose any two compact intervals I < ;o

et

it
s e 4 % . .
and I, < R, Upcn sppealing to lemra 2,1, we see that there exist

n Q

a j e ", not depending on I, an h € C;yL([A; B1), and two
N 2 '
nonnegative Integers 1 € I anéd 1 € R” with 1 £ j such thst,
for 811 & € D3 and v ¢ D, (4)
i L <
A}
fev, ¢> = (b, %), ¢(t)vix)

We may now convert the integsral on the right-hand side into a

repeated intepgral:

(] n, =) o) at] v (x) ax.
L

Azsume now that the inncer integral has continuous derivatives on
L of at least order 1 + [2], Then, we wmay integrate by pasrts |1l

times %o obtain

f

(The last twe steps can be justified In just the same way as for

L[i’:i 3[; h(t, x) ¢(i)<t)dt1 va) ax "-bi s (--1)’“}33;e

scalar Riemann integrals.) Let us now eassume in sddition that
o

supp v «¢ L. By virtue of lemma 3,6 snd its nctation, we

may write

j vt(x) 31 J hit, x) ¢(i)(t) dt dx
L I |

L,

<f 2V, ¢>

n(t, =) ¢ (e) ar)d

This result wotivates the following assumntion and definition,



]
o~

Fal

which provide & means of extending the definition (2.5) of the
composition operstor fe: vi> f e v onto the space [Emﬂ; &

R® T
Agsumption L.,1: Assume thet corvesponding to a given

. _ ; n
relb .. (a); B] there is a J ¢ R, #nd an m € R for which the
B N -
followinz conditicns are satisfied, For every choice of ths
- N v . & L — et
compact intervels I € R and L ¢ R, there exist an h € ]X*‘[ﬁ Bl)

: %o ~8
and two nonnegatlive integers 1 € R and 1 € R™ with 1 & j such

that, for all ¢ € Dy &nd all v e D

d a1 L&),

(L.2)  <ole, x), oedv@> = [ | nee, x o) v x) at ax
5

[ v s
(4.3) [ nee, o) %) av e IR, B,
o I =
Definition h.1l: Let r e [D g W § Bl satisfy sssumption l.1.
Hl [
Given a ¢ € pJ and a ve [E" ;s Al, choose I and L such that
— e i o Hn Rs

o i e
supp ¢ © I end supp v <« L, Fipally, chooge h, 1, and 1 in

accordance with assumption_h@;,mmﬁ;ugigig“<:f§nv, ¢> by

(ht) <rov, ¢ & G, B [ nie,m o®in) dt:),

I
. MFLEY p
where ¥ is that member of [® S[ (La; B1); B] corresponding
Rt
to v in asccordance with lemms 3.l.
Theorem li.1: Under assumption li.1 and definitien 4.1,

<fev, ¢ Ls Independent of the cholces of the pergmeters I, .

L, h, 1, and 1 snd is consistent with (2.5). Moreover, the

operstor fe: vef ev is a sequentially continusus linear mapping
» [™ o AT into fDY : B . : o v . @10
of [---Fg, aj into i.»_in, B], as well as of [ Al” into [L‘} ~3 Bl .
i1 i i



Procf: Thec consistency of the definition L.l with that of

(2.5) 1s established by the manipulations leading up to (l.1).

- . : < a1 .
Now, fix I and L for the moment. Upon applying D~ to the

$ mtia R
integral in (l.3), we get 8 member of C = }([A, B1). Since

-]
supp ¥ = gupp v € L, the right-hand side of (4.l)) has a meaning
and 1s & member of B. Therefore, fe v maps ug into B, Thise
4]
Th 2. T4+ T - + Sy e i
napping 12 linear. 7To see 1lis continuity, let {¢v}y=1 converge to

zero in Dét By assumption 4.1, lemms 3,7, and the continulty of

ﬁl a3 & mapplng of €E+1 [(3({A' B1l) into L§+E2](EA; B1), we have
that
% ,
p1 [ one, o) oPe) a6 — o y
I
, +[21 5 . & L :
in A8y lemme 3,4 and the faet thaet supp v < f, the

right-hand side of (li.lt) tends to zeroc in B, YThus, we conclude
fia] + 4‘ b

-

thal e v € LDJ Bi.

Now, let J be any compact intervel in R® with J e £, By
wvnat we heve shown so far, the mapping v s v carries [=" s Al
into [DY; B]l., That i1t is linear follows from the linearity
of the mapping v — ¥ (see lemma 3,L). To show its sequentisl

1
continuity, let & be a bounded set in Uge By lemma 3.7 agaln,
we have that, as ¢ traverses §,
B2 [ ne, o) o (e) as
¢ v
I
= 4 = : = 8 . Ca;‘!"[gl [A' ) N ‘

traverses = boundsd sel, say, Y in C- (ta; B1). ext, let
A e DL be such that A =1 on a neighborhood of J. Extend A9,
where 8¢ 8, outside J as the zero function, Then, A8 traverses

.

m+[2], ¢,
a bounded set in M"s[i]([A; Bl) as 6 traverses 8. By (L.l),

R
] ] - - ~
(L.5)  su H fev, o>, = supl<?, D, aup [[<%, Aedl,.
i Besd peé



" 2 » X ; L2 . m
Now, let V denote the 1mage in [fhs ([As B1): B]J of [T'qi ]
under the linear mapping v+ ¥V, V is a lincar subspace, and we

]

equip it with the induced topology. Equation (4.5) shows thst
the linear mapping vV f e v is continuocus from V into [JJ B] .
In view of lemma 3.l again, we can conclude that the compecsite
mevping vi- ¥ fev is 2 sequentlially continuous linear mapping

of [1" ; Al; into [p); B], where J may be any compact intarval in

- 2 g 5 &
R” with Jd ¢ L. A sgimilar argument wherein ¢ is restricted to se

o

&

that the same conclusion holds with

: B]°,

of single clements cghow:

i )
-t

4T 10 - Bk
respect to [T _; &]J and [D
i-i [

We will now show that given any v € [T:S; A]j and ¢ € Dj
the delinition of <fev, ¢ 1s independent éf the cholices of
I, L, h, 1, end 1, where 1%t is understood that J < L. Let <fev, ¢>1
and <fev, 67, be two definitions corresponding to two different
c¢holces of the set of parameters I, L, h, i, and 1. Also, let N
be a compact interval in 5% conteined in the 1nteriore of both
choices of L and containing a neighborhood of J, Choose a

1 “ ® PR 183
sequence {v, 1”7 . such that all L DH(A) and v, — v in [T _; A].

v =1 L8) My
R
(lemma 3,2). By the manipulations leading up to (L.1), we have,

for each v, ,

(1.6) <fow,, ¢dy = LIt x), ¢ltly, (x)y = <fev,, &),

by

But, the last sentence of the preceding paragraph, the lefi-hend
I\

side (right-hand side) of (L.6) tends to {fe v, ¢y (respectively,

{fev, ¢>,) in B. Thls shows that {fev, ¢ = <Lev, ¢>,.

- s 1) L3 LY o =
Next, with v € [E"_; A] remaining fixed but ¢ allowed to vary
: R"—"
througheut Djr, we have from the last paragraph that fev is

R
uniquely defined on all of lj ,» Moreover, it is linear on
I



R
fev e [D " Bl.
R i
Finelly, let v be arbitrary in [E“S; Al. By what we have
R
Just shown, the operator fe is uniquely defined on all of [Ems; A1,
“ R
Moreover, it follows from lemma 3.4 cnce again thst fe is linsar
i , " oo
on [F s A]o To show 1ts continuity, let the sequence {vv}y*l
R —
. m
tend to zeroc in [ I g Al.
R

Henece , v, — 0 in [EES; A]J for some J.
Therefore, fe v, — 0 in [Dj; B] for every I. But, any bounded
set 1n Djn i{s contained and bounded in D% for some I. This

3
: : o
implies that foe W, 0 in [b“n; Ble A similar argument shows

n
that, when v, — 0 in [£" ; A]%,fev, =0 tn [pJ ; B]Y. mis

a ]
i T
completes the proof of theorem L.1l.
We now relate our definlition of fe v to the composition ¢ product
discussed in [1: Sec. 41. 1In accordance with definition 4.1, let

f, v, and . ¢ be given &nd choose the parameters I, L, h, 1, and 1

appropriately. In view of (4.li), we may write

(Le7) ' Lfev, ¢> = <V, Uf"¢>

where

(4.8) Y, = Bl Ix n(s, «) ¢1(t) av e 22 (ma; B1)
by virtue of (h.3). Let us set

(1.9) <yer 0> & ¥, (0) pend, xedk.

4 ) . i
For esach x € L, this defines y,_ as & linear mapping of D% into
£
[4; B, That y_ is contiruous on Dy follows from lemma 3.7,

¢ TN
Thus, for each x e L, y_ € [
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Now assume that v e D _(A). By virtue of (4.7) and lemma
RS
3.6, we may write

(Lo10) <fev, ¢> = <K¥, ¥> = j vi{x) Y:.(x) dx
) £ ¢

= V ¥ ix) vix) dx.
by, ¢

We heve shown Iin the proof of thecrem L.1 that (};.10) deces

net depend on the chcice of the parameters, Moreover, because of

the continuity of ¥, as a function of x ¢ L and because of our

¢

freedom to choose L as large as we wlsh, a krowledge of the

right-hand side of (.10} for every v € D (ﬂ) and any fixed ¢
R®
unigquely determines ?& (x) € [&; Bl for every x ¢ o Since

.m+
(L.B8) is true for every L, ?’ € Lmstz]{[A Bl). 'Thus, for any
R

fixed x € R”, . 1s a unicguely determined mapping of D; Into
[A; B]l, and, since its restriction to each Dj ts linear and continuous,
we hsve that y_ € [Dj ;s [A; B1l. Thus, we heve shown that y

X Rﬁ X
satisfies the following conditions, wvhich are the same as those

in [13 Sec. 4] except that in [17 it was assumed that n = s = 1,

Gl. For each x € R°, y_¢ [Djn; [a; B11.
R

G2, ¢ h+%% is a mappipg of Din intolE:;[zl([A; B1),
We summarize these conclusions as follows:
Corollary L.1: Let I satisfy sssumption L.1 and define {fev, ¢
in accordaence with definition .1, Also, define yy frem I
through (4.8) and (4.9)._ _Then, yx_is i{ndependent of the cholce

of the parameters 1, L, h, i, and 1, fulfills conditions G, and

gatieflies



(4.12) Lev, 6 = <3, ¥,>, Y& 2 G, o
for every ¢ € DY and v € (B" s al,
i R°

The right-hand side of (4.11) is the definitten of

<vey,, ¢> given in [1; equation (4.18)].

X

5, Composition operators on.[Dms; Al into [Bjn; BEl. The
composition operator can be extended onto the space [E“q; Al 1r,
7 =

in addition to assumption 4.1, a condition is placed upon supp f.

Assumption 5.1: f € [D (A); B)] satisfies esswumption L,1

o
1
ICL
* Y
o
g
=
DJ
e
fa
o
I
s/
v
5
1D
iy
Q
!.—.J
bnd
o
e
e 1

condition on its support. For

. A gty . n
every choice of the compact _interval I ¢ R, the set

E & (IxR%)N supp T

R Lnts
is bounded in K 3

Since both IXR? and aupp f are closed, EI 1s alsc closed
x&'r&";

and therelore cowpacit. As before, we let t € R" ,Aand (ty 2)

e R®x r® = P{n+$. In the following, PX'-:ZI denotes the prcjection

of =1 onto the x=-space, P}C =7 is & compact set.

Definition S.1: Let f satisfy assumption 5.1. UGiven a_

¢ € Djn,_ghggﬁﬁ_&wcompﬁct_interval I in R® such that supp ¢ < I.
R

8 s o
Then, chcose &8 compect intervel L in R” sueh that P. =. < L,
iy MRl Uat &8 = | i 3 LA L. % e . Aedl ) % I

P, = ;. Taen, for eny v € [D" ; Al, define <fe v, ¢> by

R
. Y ~ Y . ?’1 ! - (i} B

(5.1) <fev, o> = <V(x), Mx) D : hit, « & (t) dt

where h, i, and 1, are chosen to setisfy assumption L.l and ¥V is

L -.I'Tﬁ' f2 Y . S
the member of [L7_ ° ](f.ﬂ&; B1); Bl ecorresponding tc v in accordance
R” '



with lemma 3.3. It 1s understood here that the testing function
in the right-hand side of (5.1) has been extended outside the
intervel L es the zero function,

Theorem 5,13 Under assumption 5.1 and definition 5.1,

&Eev, ¢) 1s independent of the choices of the parameters I,
L, A, h, i, and X and 1ls consistent with (2.5). Moreover, the

operator e ¢ vi>-fov is guéequ#ntia;}v continaou% 1inoa mapping

of [Dgs; Al into [u%ﬁ; Bl, as well as of {DHS; Al % 1nto [B;?; B1°.

Proof: We flrst fix upon appropriate choices of the
parsmeters I, L, A, h, 1, and 1 for the given f and ¢, By

lemma 3,7 and assumption l.l,

(5.2) 6+ A=) B j" hit, *) ¢ 1)t at

. j ~m+i2]

is & continucus linear mappling of DI into D Uy LA Bl

(The"dots" in the right-hand side of (5.2} indicate the places where
21

the independaent variable for that function in D ([CA; B1) isto

L
be insertcd.) It now follows from lemma 3.2 and the definition (5

that fev is a continuous linear mapplng of D% into B whatever be

the choice of v € [qu; Al.
R”
Thus, fe maps [Dm s Al into [D I’ Bl. Moreover, it follous
At R
cagily from the linearity cf the mapping v+ ¥ that fe is linear

on [Dms; A7, To show its sequential continuity, let ® be a
R
bounded set in D%. In view of our assertion cencerning (5.2),

as ¢ traverses @, the right-hand side of (5.2) traverses a
bounded set, say, © D§+[‘“(EA; Bl). Thus, 6 is also a bounded
set in DF+[2J( &; B]). DMorecover, we may write
}"J
Il £ A i!
(5.3) sup L(fe v, ¢>hr = supg!(v, 8>ﬁﬁ.

¢e d ceb

1)



m+[27]

Now, let V denote the image in [D 4
RL

(fa; B1); B of [v™ 5 4]
R
under the mapping vi—~¥%. V 1s a& linesar subspace, which we
equip with the induced topology. By virtue of (5.3), the
lineer mapping ¥ L ev is continuous from V into ij; B1,
Thus, by the sequentiel continuity of v+ ¥, we conclude that the

composite mapping v V¥ i~ f e v iz s sequentielly continucus linear

mapping of [Dmg; Al into [Dé; B]a A glight modificaticn of tais

- J—
R
argunent showg that the same conclusion holds with respect to
1 . i o
the spaces [D‘F; 41°% and [uf; B1".

R

We now argue that, for the given [ e_[D (L) B], for

O+
R 8

and for a1l ve[D™ ; Al, the definltion of

any given ¢ € DJ 2
RS

I
(f:‘v, ¢> does not depend cn the choices of the parameters

n’

I, L, X, h, 1, and 1 so long as the conditions of definition 5.1
ere satisfied, We first observe that, if v e E B(A) and ¢ € Djp,

R ' R™
then, by lemma 3.6, some integrations by pertes, end the use of &

- Pubini~type relation for cur Riemann integrals, we may write

Kfev, ¢ £ <i‘r(x), (x) 1‘3}{ fI s, x) o1 (t) dt>
- I viix) Mx) B} j hit, x) ¢ 1 (¢) at ax
L I
= | [ﬁi E‘ h(t, x) ¢(i)(t) dtl v(x) M=x) dx

nit, x) ¢(“ft) at .Di‘t[v(x) Mx)] ax

il

4
ey Cmmmry [
I
L €y
by

ht, x) qi‘“(t} Di[u(x) Mx)] dat ax

i
>
'-;

L
5

, olt) vix) ,\{x)>

= <<f(t, x), ¢(t) v{x)> y



The last equality is justified by assumption 5.1 and the fact

&

that <, 8> depends only on the values that © assumes on an
arbitrarily small neighborhood of supp f. Since the right-hand
side does not depend upon the aforementioned parameters, our

sssertion is established at least for all v € E S(A.). It also
R
shows that the definition 5.1 is consistent with (2.5),.

‘Next, for f and ¢ aa sbove, make two different choices of
the paremeters. Also, fix upcn an arbitrarily chosen v € [Dms; Bl
Lot <fe v, ¢)l and <fewv, ¢>2 denote the two resulting defin?tiona
of {fe v, ¢>e Now, chcose a sequence {vukal such that v, ¢ E‘S(A)
and v, — v in [Dms; A1° (lemma 3.2). In view of the precadingh

R
parasgreph and the seguentlial continulty of vi>fe v on [p™ ~ A]c,

Tk

we have thet, as v —+ =,

<i‘: T ¢>1 < <i‘:‘ v, , ¢->l = <f’g\vy, ¢>2 — <i‘:ﬂv, ¢>2.
Sc truly, the definitionj?f: v, ¢ is independent of the.
(appropriate) choices cf ihe parameters I, L,;\, h; 1; and 1.
The last result implles that fe v 1s uniquely defined as &

menmper of [Djn; B]. It has already been noted that the opersator

R
fe is linear on [Dms; A], We now invoke the fact that a set bounded
' . R
in DJn is contained and bcunded 1in D% for some I, In view cof the

R _
definition of the bounded topolegy of LDJn; B] and the sequentisl

: v s m .

continuity of fe from [D"_; Al into YDj; Bl for every I, we can
o R

conclude that fe is a seguentially continuous linear mapping of

Ems; Al into [Djn; B]. The same conclusion holds for [Dmo; K]U
g R R™
and [Dfn; B]O, This completes the proof.

i

. . m P i | n .
6.  Composition Operators on [D_; A] into [Dﬂ; Al, Jdnroughout

a 1 . l
this scction it is understccd that n = g =1 so that t € I,
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1 : .
x € R7, and j and m are either nonnegative integers in Hl o

OQur objective is to extend the composition operator fe in an
- . 1 i 23 \)TZ 8 - =
explicit way onto the space [D_; A]l. In the following, (-=, T]

and [X, =) represent semiinfinite closed intervals in R with

right~hand and respectively left~hand endpoints T € Rl and X € Rl

Similarly, (X, =) is a semiinfinite open interval.

satisfles assumption l.1

Assurption 6,1: £ e [D -(4); B] s
R

end _in addition the following conditicn on its support. For.

every T € Rl ang X € Rl

H>

{('“, ™ x[X, =)} 0 suppf
2

(6.1) =

is a bounded and therefore compact set in R

Definition 6.1: Let f satisfy assumption 6.l. Given a
1

such tiat

¢ ¢ D} end a v e [D7; 4], choose T € K eng X € K
supp ¢ c (==, T] and supp v < (X, «). Define = by (6.1) and select
two_compact intervals I and L in R such_that I XL contains a
nelghberhood of =, Finally, choose 3 € Dy apnd X € Dy such _that
3(t)A(x) = 1 on a neighborhood of =. Define <fev, ¢ by

(6,2) <fev, ¢> = <6{x), Mx) D id.rI h(t, x) Di[;it) ¢(t)] dt/\
where h, i, and 1 are chosen to satisfy assumption L.l and ¥ is
the member of [ Drf”ﬂ(iﬂ; B1); B] corresponding to v in accordance
with lemma 3.5. Here again, it is understood that the testing
function in the right-hand side of (6.2) has bscn extended outside
the interval L as the zero function.

Theorem 6.1: Under assumption 6,1 &nd definition 6.1,
<if:\v, ¢> is Independent of the chcices of the parameters
T, X, I, L, 3, A, h, 1, and 1 and is consistent with (2.5).

Moreover, thc operator fe: vi>fev is a sequentially continucus



linear mapping of [D7; A7 into [BJ; B], as well as of [D7; 41°
into [pd; B]°,

Proof: With respect to the given.f, v, and ¢, meke an
appropriate choice of the afcrementioned nine parameters, By

lemma 3.7 and assumption b.l1,

(6.3) ¢ = X+) B gI h(t, +) Dy [3(t) ¢(t)] at

3 :
is a continuous linear mapping of DI 4 into D%+[2]([A; Bl
¥

Conseguently, by lemma 3,5 and definition 6.1, fe v ¢ [DE’T; Bl.
In other words, fs maps [D°; A}, into [DE,T; Bl for every T € RE
with T > X, That fe is linear on [DV; A]T'follows easily from
lemma 3.5, To establish the sequential continuity of fe, let

3 2 i ; p ;
$® be a bounded set in DY lhen, as ¢ traverses §, the right-hand

T.
E
side of (6.3) traverses a bounded set, say, 6 In D§+{£j([A; 21l

Thus, upon invoking (6.2), we may write

(6.14) sup [[<fev, ¢dll; = supl<é, 6.
¢ed geb

New, 1ot V be the imsge in [P L2 (fa: B1): B]. of [DT; A]_

under the mapping v V. V is a linear subspace, which we equip

with the Induced tépolegy. The mepping ¥+ fev is easily seen

to be linear from V intoc [Df oS B], and its continulty follows

¥

frem (6.4). It now follows frem the lincarity and sequential cen-

tinuity of v v>7¥ that the composite mapping Vkﬂ ?*““f:‘V iz a

sequentially continuous linear mapping of [D; A]T into [DE s Bl
£

for every © > X, A somewdat similar argument lzads to the same

conciusion in regard to the spaces [DT; k]g and [Dz s B]G,

' 9

Wa now show that the definition (£.2) does not depernd on

the (appropriate) cholces of the nine parameters. In the speciael
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case where v € D+{A), we mgy Iinvoke lemma 3.6 to rewrite (6.2)

asg

<teov, o> = [ vite) Mx) B | nee, x) dI{xt) 6467 at ax

at
G x

1]

cr =

{82 | nee, 0o

[oeey sl del el wind am,
L I : o .

We now integrate by parts |1| times end then convert the repeated

integral Intoa doubls integral,
= (. .i‘z | 1
<fev, ¢> \ h(t, x) Dt[‘(t) o(t)] Do Mx) v(x)] 4t ax.
. I L &

In view of (l4.2), we finally get

i

(6.5)  <fev, ¢ = <£(t, x), 3t)6(t) Mx)v(x)>

r(e, x); p(t)vix)> .

The second éguallty in (6.5) 1s justified by assumption 6.1 and
the fact that {f, &> depends.only on the values that 6 &ssumes on
en arbitrarily small nelghborhood of supp f. Since the right-hand
side of (6.5) does not depend on the aforementioned parameters,
our assertion is certainly true when v € D _(A)., This also shows
that definition 6,1 1s consistent with (2,5).

Next, assume thet v ¢ [DT; Al., Maks two different choices
of the set of nine parameters and denote the two resulting

1

dsfinitions by {fev, ¢>1 and <fe v, ¢>2. Choose T € R~ and

t ¢ R

such that T < ¥, T 1s greater than both choices of X, and
supp v ¢ (¥, =), By lemma 3.2, there exists a sequence {vv}rzl

with v, e D+’T(ﬁ) which converges to v in [p™, A]z, By virtue

of the preceding parsgraph and the sequential continulty of visfev

-~
a
on [D_; 15, we have that, as v —e,
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<f~o“V, ¢>l e <f/9hvv, ¢>1 = <f,ﬁ‘fys ¢>2 gt <f_’?_1v, ¢>2.

So truly, definition 6.1 does not depend upon the cholces of the
parameters so long as these psrameters are chossn to satiasfy
the conditions of assumption l,1 and definition 6.1,

The last result Impllies that fe v 1s uniquely defined on all
of Di. Since Dg 1s the strict Inductive 1limit of the sequence of
spaces DE,T’ T=1, 2, esos,end slnce £fo v is linear and continuous
on each DE’T,it follows that fev ¢ [Dg; B].

The penultimate paragraph also lmplles that s 1s uniquely
defined on all of [D™; Al., The 1linearity of fa follows sasily
from lemma 3,5.- In regard to its sequential coninutliy, assume

that the sequence {z)lrzl tends to zero in [D7; A1,

Hence, {v,] tends
to zero in [D"; A]T for some T, Therefore, by what has alrsady
been shown, feo v, —0 in [Dg’T ; B whatever be the cholce of T,
But, in view of the definlition of the bounded topology of [DE; B,
we can concluda that fg‘g,w+ 0O in [Di; B] because each bounded set
in Dg 1s contained and bounded in DE,T Tor éome T. 7This argument
also leads to the same conclusion for [D™; A1° and [Di; 819,

The proof of theorem 6.1 is therefore complete,
7

some results concerning a few other types of composition

_Some Other Composition Operators, In this section we state

operators, Thetr proofs, being so similar to the arguments

alrecady presented, are omitted,

For the next two theorems we allow n and s to be grester
nts

T

than or equal to 1. The notation t € Rn, X € Rs, and (t, x) € R



is again used. Theorem 7.1 13 concerned with a class of
_ o & i 3
composition operatrs that map [E _; Alinto [E P B].
& :

Assumption 7.1: f€[DRﬁ+g
and in addition the following conditlion on its support. For

every compact interval L C Rs, the set.
— A - i
By B (R"xL) N supp f

1is bounded(and therefore compact) in R™'°,

In the following definitlion, Pt?fL denotes the projection
of EZL onto the t-space,

Definition 7.1: Let f gatisfy assumption 7.1. Given a

v e [E®; 4], choose a compact interval L © R® such that
R

2
supp v < L, ‘Then, choose & compect Interval I C?Rn_gughwﬁﬁgﬁ

(A); B] satisfies assumption l.1

39

P, =y, < I. Finally, choose a 7 ¢ Dysuch that 7 =1 on a pelrhborhsod

of P, = Then, for eny ¢ ¢ Ejn, define {fe v, ¢ by
R

Keov, 65 = <¥x), BL § mes, x) DiLue) ¢(6)] at

I
where h, 1, and 1 are chosen to satisfy assumption L.l and ¥
y O m L
1s the member of [E"} &)

R

accordance with lemma 3.l.

({43 B1); B)] corresponding to v in

Theorem 7.l: Under assumption 7.1 end definition 7.1,
{fe v, ¢ is independent of the choices of the parameters I, L,
3, h, i, and 1 and is consistent with (2.5). Moreover, the
operator fe ; v fev is a sequentially continuous linear

mepoing of [E7 ;3 Al into [£) ; B, es well as or [E7 ;5 41° into
R R

(25 BI°,

Rn



Next, we impose the strongest assumption on f made in ﬁhis
paper and obtain the strongest conclusion concerning fe.

Assumption 7.2: f ¢ {DRH+S(A); Bl satisfies assumption l,1
and has & bounded support.

Definition 7.2: Let f satisfy assumption 7.2. Choose two
compact intervals I € R” and L © R® such that IXL contains

& neighborhood of supp f. Then choose 7 ¢ Dy and A€ D

I
such that 3(t)A(x) = 1 on a neighborhood of supp f. For any

6 € Eén mnd v e [D75 &1, define <fo v, ¢> by

10

(7.1) <fev, > = {¥(x), XNx) b} SI h(s, x) DLI3(E) o(6)] at )

where h, 1, and 1 are chosen to satisfy sssumption k.l and ¥ is
the member of [Dm;[EJ([A; B1); B] corresponding to v in accordanc
R

e

with lemma 3.3. As before, the testing function in the right-hand

Theorem 7.,2: Under assumption 7.2 and definition 7.2,

<{fev, ¢>1is independent of the paremeters I, L, 3, A\, h, 1, and
1 end 1s consistent with (2.5)., Moreover, fe is & sequentially
continuous linear mapping of [D" 3 Al into [EJ ; B], as well as
of [0 419 into [E;n; B1°. )

Finally, we turn to the results of Sec, 6 and indicate what
they become when the supports of v and fe v are bounded either
on the right or on the left, #Actually, four cases arise when
we also allow the situation discussed in Sec., 6. We shall state
our results in terms of the quantities Zj, Ym, Kp, and Hy
indicated in Table 1, thereby dealing with the four cases

simultaneocusly., The first row of that table corresponds to the
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situation of Sec. 6.

Once again we require that n = s = 1 and that j and m be elther
nonnegative integers in Rl or =, The general result can be
stated as follows. Theorem 6.1 remains valid when the following
changes are made in lemma 3,5, assumption 6,1, definition bal;
end theorem 6.1. Dg is replaced by Zj, DT by Ym,-DTf[gl by
Ym+[2], (==, T1 by Ky, [X; =) by Hy, and (X, =) by ﬁx,

8. Examples. In this section we present two illustrations

PR

of our results. We now require that n = g8 2 1 and denote D #
R
by D end E = Dby E.
R

Example 8.,1: Let T be a fixed member of R°, p a nonnegative

integer in R”, and m € Rz. Consider the operator coTDp, where
c € Em+p+[$3([ﬁ; Bl). Also, o, is the shifting operator d&fined

on any v € D(A) by
(ov)(x) = o (x)v(x) = v(x - 1)
and on any v € [D; Al by

<ov, 6> = <v, o_ 0> ¢ € D,

Thus, coTDp denotes the composite operator consisting of first a
pth-order differentiation, then a shift through a displacement =,
and finally a multiplication by ¢. Consequently, ccTDp is a
sequentially continuous linear mapping of D(A) into [D; Bl. It
was indicated in[l; examplesly.l and .21 that, in accordance

with theorem 2.1, this operator has the representation:

(8.1) CGTDPV = fev v € D(A)

TEA s



g

™)

£(t, x} = c(t) o (x) B% 1(¢, x)
ke e
y : 0 v =
and I({t, x} € [D_¢h{Bj; B] 1a defined by
R
f
. b oy
{r(s, x), o(t, x)> 2 | o(t, t) dt € B g e’
It also possesses the representation (L4.2); namely, for
v € DA} and & ¢ l“j, where jJ = m + p + [il, we have that
; . ) (p+121 ;
(8.3) {fev, ¢) = E " j - Blb, x) wik) v+ L ){FJ dt dx,
il
wherse
8 1) ( & £y J_( ) O s
(ngl_a. h\ﬁ’ X) o C(u} f.jott . - - K; e F :-)'q(n.J';: !33}
and Joiﬁ} ie defined by
A O &
T (% 2 1 (t) & ¢ ‘ &
Jolt) t1 (t) til (ty) cee £ 1 (8 ),
0 t, <0
4 - e i
1*({5‘”; = ifc: ty = {
1 £, 0

Indeed, scme Integrations by parts show that the right-hand

side of (8,3) is egual to
Ln elt) 6(t) vPlg = 1) ar = <cc,EDpv, > .

Note that, in this particular example, the parameters h, 1 = 0,
and 1 = p + [2] are independent of the choices of I and L, and
therefore both I and L can be and have been repleced by R%,

Moreover, for ¢ € Dj, where } =m + p + [4],

- % { ey . % 3 L] {‘ 4 - B -
}¢{x] Y-n hit; x) ¢(t) at i oltsx) elbsx) J (k=) dt,

1 .
iH I



s I T - e f 3 o - g 3 - ¢ Ry EOnE e, i
Some differentiations under the integral sipn on the right~hand
i~
g s At - o M o . - - -
gide show that D7y, 18 continucus so long a5 C T k S m + p + [47],

SRR = PN o s 1 3 : o 1
by thecrem 4,1, the operator fo can be extended onto [E": A7
J

snd the lsst integrel is the zsero member of B 1f supp © does

not meet A. This implies that f satisfies assumptions 5.1, 6.1,
and 7.1, as well as the two agsumptions corresponding te rows

1 and 3 of Table 1. Thus, theorems 5.1, 6.1, and 7.1 as well as
the theorems corresponding to rows 1 and 3 of Table 1 &lso epply
to fe.

Exarple 8,2: We now develop a representation such as (L.l)
for the convolution operater fe = yx where y ¢ [D(A); Bl. We
first note that, since y* is a continucus linesr mapping of D(A)
into [D; Bl (see [11; theorem l,1]1), it must possess the
representation (2.5). To obtein it explicitly, we define

y(t = x) as a member of [Di f{,h(A); B] by
\2n

o (A)

{ylt=x), W(t, x)> = <y(t], fﬁn Et+x, x) d.7:> LIJe:}[}H



3 T K Y = i s ’ s B
Upon setting £{t, x) = y(t - x), we cbtain, for everyd e D

7 & . \
= (ylt), | _ él{o+x)v(x) ax/} = <<gs«1, ¢> .
5 o il s
] -

This is the representation (2.5) for yx. "
in R
low, let us choose the compact intervels I and L srbltrarily.
s

G
T 4 - 0y o - ey o T ) & e Lew
Then, there exists a compact interval W < R such that

—
1
et

=

vhere & € DI eand v € BL(A)‘ But then, by virtus of lemrs 2,1,

L]

thereo exizts a continuous [A: Bl-valued function on K and an

- 24 4
integer 1 = 0 in R for which

<y{t}, I (t+x)vix] dx> = JF hit) Df; f ¢(t+x)v(z) dx dt
L I L ¢

b€ Dy, ve DL(A).

Scme differentietions under the integral sign and a change of
variables yleld

(8.8) {rev, ¢ = [ [ nts-x ¢™e) vix) av ax.
- - I°L

HMereover, for x restricted to L,

J

fnen) 6@ @) as = [ nee) 0 (rax) as
I N

is & smooth [A; Bl=velued function of x., This fect and (8.5)
show that £(t, x} = y{t-x) sctisfies assumption l.1 when we set
j=0«), m=[el, and 1 = 0, Hence, theorem Li.1 holds when we
define fe on any v ¢ [E; Al by
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