## ASSESSMENTS OF THE FISH COMMUNITY OF THE

 LOWER HUDSON-RARITAN ESTUARY COMPLEXP. M. J. Woodhead<br>S. S. McCafferty Fishery Resource Assessment Marine Sciences Research Center State University of New York at Stony Brook

MASIC
$\times$
GC
1
.565
no. 81

## Table of Contents

## Page

ABSTRACT ..... i
INTRODUCTION ..... 1
REPORT OBJECTIVES ..... 1
GENERAL FEATURES OF LOWER BAY COMPLEX ..... 2
BORROW PITS ..... 4
TRAWL SURVEY STATIONS ..... 4
SURVEY METHODS ..... 10
COMMUNITY COMPOSITION ..... 13
Species ..... 13
Numbers of Fish ..... 13
Weight of Fish ..... 18
Exclusion of Bay Anchovy from the Analysis ..... 18
AREA USE BY FISH POPULATIONS ..... 21
Classification of Stations by Clustering ..... 21
Results ..... 22
SEASONALITY IN THE FISH COMMUNITY ..... 22
Analysis for Seasonality ..... 22
Changes in Numbers ..... 25
Residents ..... 25
Change in Species by Season for Cruise 5-16 ..... 32
Fall-winter community, November to March ..... 32
Spring-summer community, April to October ..... 32
Migrants ..... 34
Migrant Species ..... 34
NURSERY GROUNDS ..... 34
DISTRIBUTION PATTERNS ..... 37
Community Parameters ..... 37
Indices of Species Diversity ..... 37
Annual Cycle, Cruises 5 to 16 ..... 39
Surveys 2 and 3 Combined ..... 49
AREAS OF LOW DIVERSITY AND USE BY FISH ..... 49
Annual Survey Series, Cruises 5-6 (February '85 to March '86) ..... 49
Description of Low Use Areas ..... 59
Area 1, "East Bank" ..... 59
Area 2, "South Romer" ..... 62
Area 3, "East Raritan Bay" ..... 62
Area 4, "North Belford" ..... 64
Area 5, "Inner Raritan Bay" ..... 64
Seasonal Changes in Selected Species at Low Use Sites ..... 65
Supplementary Surveys, Cruises 2 and 3 (September-October 1984) ..... 70
Conclusions and Prioritization of Low Use Areas ..... 71
COMMENT ON PICG PROPOSED PIT SITES ..... 75
THE FISH POPULATIONS OF THE BORROW PITS ..... 78
Comparison of Populations between Pits ..... 78
Comparisonms of Pit Populations with Populations on Shoals ..... 83
First set of shoal stations compared with pits ..... 83
Alternate set of shoal stations compared with the pits ..... 89
Conclusions concerning shoal areas ..... 96
Comparisons of Populations between Pits and Shipping Channels ..... 96
Conclusions from comparison with Channel Stations ..... 102
Figure Page
1 Bottom topography of Lower Bay Complex ..... 3
Borrow pit sites (from "PICG Update, January 1986) ..... 5
Station Locations - Cruises 5-16 ..... 6
Station Codes - Cruises 5-16 ..... 7
Station Locations - Cruises 2-3 ..... 8
Station Codes - Cruises 2-3 ..... 9
Depth Strata - Cruises 5-16 ..... 11
Depth Strata - Cruises 2-3 ..... 12
Grouping of stations by fish usage ..... 23
Annual Cluster Map - without Bay Anchovies ..... 24
Cluster diagram showing grouping of cruises by seasons. ..... 26
Annual - Total catch ..... 40
Annual - Number of species ..... 41
Annual - Shannon-Weaver Index (H) ..... 42
Annual - Simpson Diversity Index (D) ..... 43
Annual - Margalef's Species Richness Index (d) ..... 44
Annual - Hurlburt's Pie Index (PIE) ..... 45
Annual - Bay Anchovy Catch ..... 46
Annual - Total Blue Claw Crab Catch ..... 47
Annual - Total Lobster Catch ..... 48
Cruises 2-3 - Total Catch ..... 50
Cruises 2-3 - Number of Fish Species ..... 51
Cruises 2-3 - Shannon-Weaver Index (H) ..... 52
Cruises 2-3 - Simpson Diversity Index (D) ..... 53
Cruises 2-3 - Margalef's Species Richness (d) ..... 54
Cruises 2-3 - Hurlburt's Pie Index (PIE) ..... 55
Cruises 2-3 - Bay Anchovy Catch ..... 56
Cruises 2-3 - Total Blue Claw Crab Catch ..... 57
Cruises 2-3 - Total Lobster Catch ..... 58
Station Locations - Cruises 5-16 ..... 61
Station Locations - Cruises 2-3 ..... 73
Station Locations - Cruises 5-16 ..... 76
Station Locations - Cruises 2-3 ..... 77
Table Page
1 Finfish community, names and species codes ..... 14
2 Total and mean annual catch abundance, Surveys 5-16 ..... 16
3 Total and mean annual catch biomass, Surveys 5-16 ..... 19
4 Seasonal average catch abundance ..... 27
Seasonal abundance ranking ..... 29
Seasonally caught common fishes ..... 33
6
Fishes using the Lower Bay Complex as Nursery Grounds ..... 35
7Stations with low value annual community parameters,Surveys 5 to 1660
Annual catch in selected low diversity areas ..... 63
9
Spring catch in the selected low diversity areas
Spring catch in the selected low diversity areas ..... 66 ..... 66
10
10
Summer catch in the selected low diversity areas ..... 67
Fall catch in the selected low diversity areas ..... 68 ..... 12
Winter catch in the selected low diversity areas ..... 69
Stations with low value community parameters, Surveys 2-3 ..... 72
Fish abundance at Borrow Pit stations, totals for annual survey (numbers per hectare fished) ..... 79
Fish abundance at Borrow Pit stations, by rank, totals for annual survey ..... 81
Diversity parameters for Borrow Pit stations ..... 84 ..... 17Fish abundance at Borrow Pit stations compared withfirst set shoal stations (numbers per hectare fished)85
19 ..... 87
Fish abundance at Borrow Pit stations compared with first set shoal stations, by rank
set of shoal stations ..... 90
Diversity parameters for Borrow Pit stations and first91
22 ..... 93
alternate set shoal stations, by rank23Fish abundance at Borrow Pit stations compared withalternate set shoal stations (numbers per hectare fished)
Diversity parameters for Borrow Pit stations and alternate set of shoal stations ..... 95
Fish abundance at Borrow Pit stations compared with channel stations (numbers per hectare fished) ..... 97
Fish abundance at Borrow Pit stations compared with channel stations, by rank ..... 99
Diversity parameters for Borrow Pit stations and for channel stations ..... 101

## ABSTRACT

The site selection process to implement a program for disposal of dredged material in existing or new subaqueous borrow pits in Lower New York Harbor requires preparation of a Federal Supplemental Environmental Impact Statement which will review and synthesize recent studies in this area. This Report utilizes an extensive fishery data base from recent ground trawl surveys (September 1984 to March 1986) in the Lower Bay Complex of the Hudson-Raritan Estuary, to describe the fishery resources, it goes on to evaluate borrow pit sites in terms of this resource.

The finfish community of the Lower Bay Complex, its species composition, abundance and biomass are described, including distributions through the area. Seasonal changes in the community composition are described. Resident, transient, and migratory species are identified. Utilization of the area by juvenile stages of species of interest is also described. Two important shellfish, lobsters and blueclaw crabs, are described separately in terms of abundance and distribution.

The data from the fishery analysis was used to develop criteria for identification within the Lower Bay Complex of areas which were of relatively low diversity and low use by the fish community. Criteria are given for the selection of five sites for potential disposal of dredged material. These five sites are allocated priorities according to their use by fishes and shellfish, and then discussed in terms of recently proposed disposal sites in the Lower Bay Complex.

## REPORT ON THE FISH COMMUNITY OF LOWER NEW YORK HARBOR IN RELATION TO BORROW PIT SITES

INTRODUCTION

The New York District USCOE proposes to implement an operational program to dispose of dredged material in existing and/or new subaqueous borrow pits. Disposal in borrow pits is an option that is part of the Dredged Material Disposal Management Plan for the Port of New York and New Jersey. As part of the regulatory requirements needed for the authorization of the project, a Federal Supplemental Environmental Impact Statement (SEIS) is being prepared. The first objective of the work will be to review and synthesize the results of recent research studies related to subaqueous borrow pit disposal. These results will be integrated to produce an assessment of the site selection process for the implementation of the operational program for borrow pit disposal.

This is the first of two Reports which will be made using an extensive data base from recent ground trawl surveys by the Marine Sciences Research Center to describe the fishery resources of the Lower New York Harbor and to evaluate potential new pit sites. The trawl data was collected from September 1984 to March 1986. Separate analyses will be made for finfish (except anchovies) and for lobsters and blueclaw crabs which are important in the region.

## REPORT OBJECTIVES

In the present Report the fishery resources of Lower Bay Complex (including Raritan Bay) will be described, using standard techniques to analyze the trawl survey data. The principal analyses will use data from stations which were trawled consistently throughout one year. These data will be supplemented with additional information from trawl stations to the south of the area, which were sampled over periods shorter than a year.

The trawl fishery data analysis used to describe the fish community of the Lower Bay-Raritan Bay area will address:

1. species composition and abundance of the finfish community and its general use of the subject area
2. overall distribution patterns
3. seasonal trends
4. resident populations
5. migratory/transient patterns
6. nursery/spawning usage
7. particular attention is given to two commercially important shellfish (lobsters and blueclaw crabs).

Data derived from the fishery analysis of the fish species and their distribution, diversity and abundance over the Lower New York Harbor have been inspected to identify five (5) areas of relatively low diversity and low use by the fish community, and also by lobsters and blueclaw crabs; the criteria for selection of the five sites are discussed. The fish population at each of the five sites is evaluated in terms of the average population densities of the community throughout the area surveyed.

GENERAL FEATURES OF LOWER BAY COMPLEX

The Lower Bay Complex of New York Harbor is estuarine consisting of the Lower, Raritan and Sandy Hook Bays at the mouths of the Hudson and Raritan Rivers. The waters of the Lower Bay Complex exchange and mix with the Upper Bay of New York Harbor through the Verranzo Narrows, and with the sea to the south through the relatively wide opening between Sandy Hook, N.J. and Rockaway Point, N.Y. (often referred to as the Sandy Hook-Rockaway Transect).

The Lower Bay Complex is shallow (5 to 20 m ) and has an irregular bottom topography composed of numerous banks, shoals, ship channels and pits, figure 1. The Ambrose Channel separates the Complex into eastern and western sections. The east side is dominated by the East Bank shoal lying between the Channel and Rockaway, which was a bottom type that is predominantly sandy with patches of shell. The western side of the Channel is bordered by the West Bank

to the north and by Romer Shoal. To the south-west of Romer Shoal is another large bank, Flynn's Knoll. All of these banks are sandy, although some mud patches occur on Flynn's Knoll. Flynn's Knoll is bordered to the south by the Sandy Hook Channel and to the west by Chapel Hill Channel, which runs north-south. Raritan Bay covers the largest area of the Lower Bay Complex. It is shallow, with greatest depths about 8 m in the west-central areas, and is bounded to the north by Staten Island and to the south by Mommouth County, N.J. The bottom of Raritan Bay is largely soft and muddy in the areas deeper than 6 $m$ and in the inner western shoals of the Bay, but off the northern and southern shores at depths shallower than about 5 m , sand and hard sand bottoms predominate with patches of shell. Sandy Hook Bay, sheltered by the Hook, has a soft mud bottom with sand bottoms close to shore.

## BORROW PITS

The sites of the borrow pits in the Lower New York Harbor, together with potential new sites which have been proposed are shown in Figure 2 (from "PICG Update", January, 1986). The figure includes brief descriptions of the borrow pit sites.

## TRAWL SURVEY STATIONS

A total of 16 bottom trawl surveys were made in the Lower Bay-Raritan Bay area. The first survey was principally a reconnaissance and the data have not been used here. On the next two surveys 31 stations were sampled in the eastern part of the Complex, but did not extend into inner Raritan Bay. The third survey was reduced to only 17 stations. From January 1985 until the end of the survey series, survey 5 through 16, all 38 stations shown in Figure 3 were sampled. These surveys ( $5-16$ ) provided most of the data used in the assessments and site selections reported here, they are referred to in figures as the "annual" series. The codes used for the stations on surveys 5 through 16 are given in Figure 4; the station positions, and their codes for surveys 2 and 3 are given in Figures 5 and 6.

gure 2. Borrow Pit Sites (from "PICG Update", January 1986).

## isting Pits

the existing borrow pits that e been surveyed. five sites ear to be the most promising an operational disposal program. estigations will be done on se sites; they are the CAC pit. "Large Pit", the Large East $k$ Pit, the Gravesend Bay Fit the "Hoffman-Swinburne" pits se Mad, above). Of these five. CAC pit and the Large Pit have largest available volumes.

The Large Pit is located north of the CAC pit and south of the Hoffmen-Swinburne pits. it is large but it is not as deep as some of the other pits. If this pit is selected. it may have to undergo some physical modification.

The CAC or West Bank borrow pit was originally selected as the best location for the demonstration project; the objectives of the project were achieved through other research efforts. It is located close to the Chapel Hill Channel and it is relatively large and deep.

The Gravesend Bay pit is relatively small and shallow, as are the Hoffman Swinburne pits. The Large East Bank Pit is part of the proposed Office of General Services sand mining area; it covers a large area and is adjacent to Ambrose Channel. In addition to these five, there are small pits near Coney island and in Rockaway. The Jamaica say pits may be the largest and deepest of all existing pits, but they are adjacent to Gateway National Recreation Area and may not be available for use as disposal site.





The trawl samples of fishes were taken over a range of depths in the region from about 4 m to 15 m and included the shipping channels. These depths variable were grouped into three dedpth strata for the analyses:

Stratum 1: Shallow to 6 m
Stratum 2: $\quad 7 \mathrm{~m}$ to 10 m
Stratum 3: Deeper than 10 m

The distribution of stations by depth strata are shown for surveys 5 through 16, and for surveys 2 and 3 in Figures 7 and 8 respectively.

## SURVEY METHODS

The survey vessels were R/V ONRUST, a 17 m steel hull trawler, and R/V CHALLENGER, a 20 m wooden trawler; R/V CHALLENGER was only used for survey 10 , September 1985. The bottom trawl used throughout the survey series was a high-rise otter trawl with a 9 m footrope, and it was fished with 9 m legs to the trawl doors. The footrope was fitted throughout its length with neoprene 15 cm and 25 cm "cookie" discs. The trawl nets were 76 mm polypropylene stretch mesh, the cod-end was made of 38 mm mesh, and it fitted with a 15 mm nylon small-mesh liner.

Standard traw hauls were of 8 minutes duration at a towing speed of about $4.5 \mathrm{~km} / \mathrm{hr}$. An onboard computerized Loran navigator system gave precise position fixing and measured the distance covered and bearing of all trawl hauls. From the distance covered over the sea-bed and known dimensions of the trawl, the area of estuary bottom trawled was computed.

Fish collections were processed onboard immediately following each trawl tow. At each station, fish were sorted by species, the fish were counted and the total weight of each species was measured. Fish were returned to the sea as soon as the catch had been enumerated and processed.



## Species

Sixty-nine species of finfish were collected in the course of the twelve surveys covering the annual cycle of the whole area. However, fifteen species were only found at a single station (usually as single fish) during the year. The mean number of species caught annually at a station was twenty-four. Fourteen species were common year-round residents in the survey area.

A list of the common names of the fishes in the community and of their scientific, taxonomic, names is given in Table 1 . Resident species status is indicated by "R" in the table; species which were caught at only one-station (singletons) are indicated by given " $S$ " in the Status column.

Numbers of Fish

The numerical abundance of the fishes in the community is given in Table 2, their abundance at each station was calculated as numbers per hectare $\left(m^{2} \times 10^{4}\right)$. The total catch of each species for the year (surveys 5-16 inclusive) is given in the Table, together with the average catch of each species per station and its standard error. The fish species are also ranked by their abundance, in the Table 2.

The bay anchovy was by far the most abundant species, comprising $67 \%$ of the total catch. The three river herrings, blueback herring, alewife and American shad (Alosa aestivalis, $\underline{A}$. pseudoharengus and $\underline{A}$. sapidissima) were also dominant in catches and together were $13 \%$ of the total. The ten most abundant species accounted for $95 \%$ of the catch, in addition to the anchovy and herrings they included winter flounder, windowpane flounder, butterfish, weakfish, scup and American sandlance.

The average number of fish at a station (mixed species) during the surveys was 575 fish per hectare, which consisted of 388 bay anchovies and 187 fish of the remaining species.

Table 1. Finfish community, names and species codes.

| CODE | COMMON NAME | SCIENTIFIC NAME | STATUS* |
| :---: | :---: | :---: | :---: |
| LAMPREY | lamprey | Petromyzon marinus | S |
| SM ḊGGF | smooth dogfish | Mustelus canis |  |
| SP DOGF | spiny dogfish | Squalus acanthias |  |
| LI SKATE | little skate | Raja erinacea |  |
| RS SKATE | rosette skate | Raja garmani | S |
| W SKATE | winter skate | Raja sp. |  |
| TH SKATE | thorny skate | Raja sp. |  |
| AT Sturg | Atlantic sturgeon | Acipenser oxyrhinchus |  |
| AMER EEL | American eel | Anguilla rostrata | R |
| CON EEL | conger eel | Conger oceanicus | R |
| BB HERRG | blueback herring | Alosa aestivalis |  |
| ALEWIFE | alewife | Alosa pseudoharengus |  |
| AM SHAD | American shad | Alosa sapidissima |  |
| AT MENHD | Atlantic menhadden | Brevoortia tyrannus |  |
| AT HERRG | Atlantic herring | Clupea harengus |  |
| RND HERR | round herring | Etrumeus teres |  |
| BAY ANCH | bay anchovy | Anchoa mitchilli |  |
| STR ANCH | striped anchovy | Anchoa hepsetus |  |
| TOADFISH | oyster toadfish | Opsanus tau |  |
| GOOSEF | goosefish | Lophius americanus | S |
| 4 ROCKLG | fourbeard rockling | Enchelyopus climbrius | S |
| SL HAKE | sliver hake | Merluccius bilinearis |  |
| TOMCOD | tomcod | Microgadus tomcod |  |
| POLLOCK | pollock | Pollachius virens | S |
| SPT HAKE | spotted hake | Urophycis regius | R |
| W/R HAKE | white/red hake | Urophycis tenius/chuss | R |
| JUV. GAD | juvenile cod |  | S |
| CUSKEEL | cuskeel | Lepophidium cervinum |  |
| CORNETF | cornetfish | Fistularia tabacaria | S |
| A SILVER | Atlantic silverside | Menidia menidia |  |
| 3 STICKL | 3 spine stickleback | Gasterosteus aculeatus |  |
| SEAHORSE | lined seahorse | Hippocampus erectus | R |
| PIPEFISH | northern pipefish | Syngnathus fuscus | R |
| SEA RAVN | sea raven | Hemipterus americanus |  |
| GRUBBY | grubby | Myoxocephalus aenus | R |
| LN SCULP | longhorn sculpin | M. octodecemspinosus |  |
| SH SCULP | shorthorn sculpin | Myoxocephalus scopios | S |
| UN SCULP | unident sculpin |  |  |
| BL SEABS | black seabass | Centropristis striata |  |
| GRY SNAP | grey snapper |  | S |
| MSC SERR | unident snapper |  |  |
| STR BASS | striped bass | Morone saxatilis |  |
| LEPOMIS | unident Lepomid |  | S |
| BLUEFISH | bluefish | Pomatomus saltatrix |  |
| CREV JCK | crevelle jack | Caranx hippos | S |
| LOOKDOWN | lookdown | Selene vomer |  |
| RH SCAD | rough scad | Trachurus trachurus |  |
| SLPERCH | silverperch | Bairdiella chrysura | S |
| WEAKFISH | weakfish | Cynoscion regalis |  |
| SPOT | spot | Leiostomus xanthurus |  |
| SCUP | scup | Stenotomus chrysops |  |

Table 1. Continued.

| CODE | COMMON NAME | SCIENTIFIC NAME | STATUS* |
| :---: | :---: | :---: | :---: |
| SP BUTFL | spotfin butterflyfish | Chaetodon ocellatus | S |
| ST M8LL | striped mullet | Mugil cephalus |  |
| N BARRAC | northern barracuda | Sphyraena borealis |  |
| BLACKF | blackfish | Tautoga onitus | R |
| CUNNER | cunner | Tautogolabrus adspersus | R |
| RCK GUNN | rock gunnel | Pholis gunnellus | R |
| AM SANDL | American sandlance | Ammodytes americanus | R |
| BUTTERF | butterfish | Peprilus triacanthus |  |
| AT MACKR | Atlantic mackerel | Scomber scombrus |  |
| N SEARBN | Northern searobin | Prionotus carolinus |  |
| ST SEARB | striped searobin | Prionotus evolans |  |
| SMM FLND | smallmouth flounder | Etropus microstomus |  |
| FLUKE | summer flounder | Paralichthys dentatus |  |
| 4SP FLND | 4 spot flounder | Paralichthys oblongus |  |
| WINDOWPN | windowpane | Scophthalamus aquosus | R |
| WN FLND | winterflounder | p. americanus | R |
| HOGCHOKR | hogchoker | Trinectes maculatus | S |
| PL FILEF | planehead filefish | Monocanthus hispidus |  |
| N PUFFER | northern puffer | Sphaeroides maculatus | S |
| BLU CLAW | blueclaw crab | Callinectes sapidus |  |
| LOBSTER | American lobster | Homarus americanus |  |

[^0]Table 2. Total and mean annual catch abundance, surveys 5 to 16.

| Name Code | Total | Average | $\pm$ s.e. | Rank |
| :---: | :---: | :---: | :---: | :---: |
| LAMPREY | 1.56 | . 04 | . 04 | 70 |
| SM DOGF | 93.34 | 2.46 | . 62 | 27 |
| SP DOGF | 5.74 | . 15 | . 11 | 50 |
| LI SKATE | 28.54 | . 75 | . 43 | 39 |
| RS SKATE | 2.34 | . 06 | . 06 | 59 |
| W SKATE | 30.21 | . 80 | . 38 | 37 |
| TH SKATE | 11.13 | . 29 | . 17 | 43 |
| AT STURG | 18.32 | . 48 | . 33 | 41 |
| AMER EEL | 41.69 | 1.10 | . 60 | 35 |
| CON EEL | 39.09 | 1.03 | . 58 | 36 |
| BB HERRG | 13065.91 | 343.84 | 124.30 | 2 |
| ALEWIFE | 12654.32 | 333.01 | 113.86 | 3 |
| AM SHAD | 3785.65 | 99.62 | 26.52 | 8 |
| AT MENHD | 315.94 | 8.31 | 4.78 | 19 |
| AT HERRG | 92.22 | 2.43 | 1.17 | 28 |
| RND HERR | 51.51 | 1.36 | 1.08 | 33 |
| BAY ANCH | 153731.70 | 4045.57 | 647.42 | 1 |
| STR ANCH | 77.73 | 2.05 | . 70 | 29 |
| TOADFISH | 5.59 | . 15 | . 08 | 51 |
| GOOSEF | 3.95 | . 10 | . 10 | 54 |
| 4 ROCKLG | 1.73 | . 04 | . 04 | 67 |
| SL HAKE | 843.25 | 22.19 | 6.16 | 16 |
| TOMCOO | 74.80 | 1.97 | 1.93 | 30 |
| POLLOCK | 1.68 | . 04 | . 04 | 68 |
| SPT HAKE | 1156.93 | 30.45 | 13.78 | 13 |
| W/R HAKE | 1522.31 | 40.06 | 23.19 | 11 |
| JUV GAD | 1.77 | . 05 | . 05 | 65 |
| CUSKEEL | 10.46 | . 28 | . 16 | 44 |
| CORNETF | 1.99 | . 05 | . 05 | 63 |
| A SILVER | 376.34 | 9.90 | 2.53 | 17 |
| 3 STICKL | 4.97 | . 13 | . 07 | 53 |
| SEAHORSE | 43.62 | 1.15 | . 32 | 34 |
| PIPEFISH | 141.75 | 3.73 | . 84 | 24 |
| SEA RAVN | 6.44 | . 17 | . 10 | 49 |
| GRUBBY | 323.90 | 8.52 | 2.40 | 18 |
| LN SCULP | 29.88 | . 79 | . 27 | 38 |
| SH SCULP | 3.55 | . 09 | . 09 | 57 |
| UN SCULP | 1.60 | . 04 | . 04 | 69 |
| BL SEABS | 122.40 | 3.22 | 1.38 | 25 |
| GRY SNAP | 2.05 | . 05 | . 05 | 62 |
| MSC SERR | 3.70 | . 10 | . 07 | 55 |
| STR BASS | 53.36 | 1.40 | . 59 | 32 |
| LEPOMIS | 1.82 | . 05 | . 05 | 64 |
| BLUEFISH | 283.61 | 7.46 | 4.86 | 20 |
| CREV JCK | 1.77 | . 05 | . 05 | 65 |
| LOOKDOWN | 146.34 | 3.85 | 1.53 | 23 |

Table 2. Continued.

| Name Code | Total | Average | $\pm$.e. | Rank |
| :---: | :---: | :---: | :---: | :---: |
| RH SCAD | 23.37 | . 61 | . 24 | 40 |
| ŠLPERCH | 4.69 | . 12 | . 12 | 52 |
| WEAKFISH | 5280.41 | 138.96 | 71.74 | 6 |
| SPOT | 9.35 | . 25 | . 20 | 47 |
| SCUP | 2435.84 | 64.10 | 13.98 | 10 |
| SP BUTFL | 2.26 | . 06 | . 06 | 61 |
| ST MULL | 9.82 | . 26 | . 18 | 45 |
| N BARRAC | 8.09 | . 21 | . 10 | 48 |
| BLACKF | 904.36 | 23.80 | 3.80 | 15 |
| CUNNER | 271.68 | 7.51 | 2.06 | 21 |
| RCK GUNN | 60.73 | 1.60 | . 45 | 31 |
| AM SANDL | 5086.93 | 133.87 | 66.01 | 7 |
| BUTTERF | 7359.30 | 193.67 | 69.02 | 5 |
| AT MACKR | 3.64 | . 10 | . 07 | 56 |
| N SEARBN | 12.33 | . 32 | . 15 | 42 |
| ST SEARB | 1136.52 | 29.91 | 15.51 | 14 |
| SMM FLND | 100.77 | 2.65 | . 75 | 26 |
| FLUKE | 1454.91 | 38.29 | 5.11 | 12 |
| 4SP FLND | 181.15 | 4.77 | 1.84 | 22 |
| WINDOWPN | 2978.01 | 78.37 | 18.75 | 9 |
| WN FLND | 11111.43 | 292.41 | 45.76 | 4 |
| HOGCHOKR | 2.34 | . 06 | . 06 | 59 |
| PL FILEF | 9.39 | . 25 | . 15 | 46 |
| N PUFFER | 2.34 | . 06 | . 06 | 59 |

Weight of Fish

The abundance of the fishes in the community expressed as their total weight (biomass, lbs) is given in Table 3, again their weight at each station was calculated from the catch data as weight per hectare ( $m^{2} \times 104$ ). The catch of each species summed for survey 5-16 combined is given in the Table, together with the average weight of each species caught per station and its standard error.

Measured by weight, the winter flounder was the dominant species, comprising $35 \%$ of the catch. The second most abundant species was the blackfish, Tautoga onitis, at $16 \%$ of the total weight. The three flounders winter flounder, fluke and windowpane flounder (Pseudopleurnectes americanus, Paralichthys dentatus and Scophthalamus aquosus) accounted for $56 \%$ of the total weight of fishes. The ten species with greatest total weights accounted for $87 \%$ of the biomass, in addition to these flounders and blackfish, the groundfish included red hake, scup, butterfish and smooth dogfish.

The numerically dominant pelagic fishes, the bay anchovy and herrings, were of reduced importance when measured by weight. The bay anchovy amounted to only $3.4 \%$ of the total biomass and the three river herrings (A. aestivalis, A. pseudoharengus and A. sapidissima), together with the Atlantic herring Clupea harengus, in combination comprised only $5.5 \%$ of the total biomass.

The average weight of fish at a station (all species) during the surveys was 12.7 lbs fish per hectare, of which 7.1 lbs were flounder species.

Exclusion of Bay Anchovy from the Analysis

The very large numbers of the dominant bay anchovy and the erratic distribution of the anchovy in the survey area strongly biased analyses of the data for the community. The anchovy is of no interest to the recreational and commercial fisheries of the Lower Harbor; it was excluded from further analyses at the request of USCOE.

Table 3. Total and mean annual catch biomass, surveys 5 to 16.

| Name Code | Total | Average | $\pm 5 . \mathrm{e}$. |
| :---: | :---: | :---: | :---: |
| LAMPREY | . 00 | . 00 | . 00 |
| SM DOGF | 115.79 | 3.05 | . 85 |
| SP DOGF | 7.42 | . 20 | . 14 |
| LI SKATE | 16.15 | . 42 | . 25 |
| RS SKATE | 1.59 | . 04 | . 04 |
| W SKATE | 59.83 | 1.57 | . 83 |
| TH SKATE | 4.40 | . 12 | . 06 |
| AT STURG | 49.48 | 1.30 | . 78 |
| AMER EEL | 7.94 | . 21 | . 11 |
| CON EEL | . 86 | . 02 | . 01 |
| BB HERRG | 92.83 | 2.44 | . 63 |
| ALEWIFE | 148.71 | 3.91 | 1.28 |
| AM SHAD | 44.74 | 1.18 | . 24 |
| AT MENHD | 15.44 | . 41 | . 14 |
| AT HERRG | 31.02 | . 82 | . 42 |
| RND HERR | . 45 | . 01 | . 01 |
| BAY ANCH | 198.43 | 5.22 | . 90 |
| STR ANCH | 1.08 | . 03 | . 01 |
| TOADFISH | 1.74 | . 05 | . 04 |
| GOOSEF | 1.25 | . 03 | . 03 |
| 4 ROCKLG | . 04 | . 00 | . 00 |
| SL HAKE | 54.74 | 1.44 | . 52 |
| TOMCOO | 5.96 | . 16 | . 15 |
| POLLOCK | . 00 | . 00 | . 00 |
| SPT HAKE | 67.26 | 1.77 | . 69 |
| W/R HAKE | 199.23 | 5.24 | 4.09 |
| JUV GAD | . 00 | . 00 | . 00 |
| CUSKEEL | . 24 | . 01 | . 00 |
| CORNETF | . 05 | . 00 | . 00 |
| A SILVER | 2.70 | . 07 | . 02 |
| 3 STICKL | . 00 | . 00 | . 00 |
| SEAHORSE | . 51 | . 01 | . 00 |
| PIPEFISH | . 33 | . 01 | . 00 |
| SEA RAVN | 4.25 | . 11 | . 06 |
| GRUBBY | 5.72 | . 15 | . 04 |
| LN SCULP | 9.17 | . 24 | . 08 |
| SH SCULP | . 04 | . 00 | . 00 |
| UN SCULP | . 00 | . 00 | . 00 |
| BL SEABS | 12.30 | . 32 | . 18 |
| GRY SNAP | . 00 | . 00 | . 00 |
| MSC SERR | . 00 | . 00 | . 00 |
| STR BASS | 30.24 | . 80 | . 34 |
| LEPOMIS | . 04 | . 00 | . 00 |
| BLUEFISH | 45.54 | 1.20 | . 45 |
| CREV JCK | . 00 | . 00 | . 00 |
| LOOKDOWN | . 64 | . 02 | . 01 |

Table 3. Continued.

|  |  |  |  |
| :--- | ---: | ---: | ---: |
| Name Code | Total | Average | $\pm 5 . e$. |
| RH SCAD | .10 |  |  |
| SLPERCH | . .42 | .00 | .00 |
| WEAKFISH | 53.61 | .01 | .01 |
| SPOT | .46 | 1.41 | .80 |
| SCUP | 109.95 | .01 | .01 |
| SP BUTFL | .00 | 2.89 | .57 |
| ST MULL | 1.41 | .00 | .00 |
| N BARRAC | .00 | .04 | .03 |
| BLACKF | 922.16 | .00 | .00 |
| CUNNER | 26.48 | 24.27 | 8.50 |
| RCK GUNN | .84 | .70 | .29 |
| AM SANDL | 23.78 | .02 | .01 |
| BUTTERF | 78.04 | .63 | .29 |
| AT MACKR | .00 | 2.05 | .60 |
| N SEARBN: | 1.82 | .00 | .00 |
| ST SEARB | 63.14 | .05 | .02 |
| SMM FLND | .47 | 1.66 | 1.22 |
| FLUKE | 712.29 | 18.01 | .00 |
| 4SP FLND | 5.95 | 2.74 | 2.12 |
| WINDOWPN | 488.50 | 12.85 | .08 |
| WN FLND | 2046.96 | 53.87 | 2.93 |
| HOGCHOKR | .05 | 6.70 |  |
| PL FILEF | .32 | .00 | .00 |
| N PUFFER | .05 | .01 | .01 |
|  |  | .00 | .00 |

AREA USE BY FISH POPULATIONS

The total data set for each of the continually sampled stations, surveys 5 through 16 inclusive, was analyzed in order to group together stations of similar catch composition. In this way subareas of similar usage by the fish community could be identified within the Lower Bay-Raritan Bay Complex. The method of analysis used, classification by clustering together similar stations, is a method routinely used for ecological studies of communities.

Classification of Stations by Clustering

The community data are bulky and complex, and the composition of the fish community is seen to change through the survey region, which is spatially heterogeneous. Classification is a form of community analysis which sets out to reduce the number entities (samples) to relatively few categories, the analysis should enhance the clarity of major patterns but will obscure minor variation. The objectives of our analysis were to identify the station samples with a similar faunal composition and to define boundaries between groups.

A variety of measures of distance are available to summarize the overall similarity between the community samples caught at different stations, taking all species into consideration. A simple measure of distance is the coefficient of similarity which gives equal weight to all species. Bray and Curtis applied a quantitative version of the coefficient of similarity to bring the abundance of each species into consideration, the Bray-Curtis Index of Similarity has been widely used in analysis of marine ecological data. The application of the similarity measures to the data and their classification, results in a matrix comparing samples with every other sample. The matrix could be arranged as a trellis diagram but is more conveniently summarized in a cluster diagram which combines similar station samples to form distinct small classes, clusters, then combine the clusters into large classes and so on. Cut-off levels of similarity can be applied to the stations clustered in groups of similar use, the groups may be coded and the codes plotted on charts to pictorially divide the survey area into similar station groups. We have applied these methods of classification to the fish community data. The Bray-Curtis Index of Similarity was used, following transformation of the abundance data to natural logarithms.

Results

The results of the cluster analysis of the total data set for surveys 5 through 16, using the Bray-Curtis Index as the distance measure of similarity, are shown as a dendrogram in Figure 9 in which the survey stations have been placed in 9 groups. Four of the groups contain only a single station, although Groups 7 (LWO4) and 9 (LEO3) are associated with Group 8, and Group 6 (LEO7) is associated with Group 5, Figure 9.

The groups identified by the cluster analysis have been plotted for the survey area to divide it into areas of similar station groupings, Figure 10. The groupings of stations divide the Lower Bay-Raritan Bay into fish usage areas. The deep stations in the shipping channels, together with the Borrow Pits (LW08, LW1O and LE11), all fall into Group 2 (with the single exception of ANO5 at the Verranzano Narrows). Raritan Bay is characterized by two groups of stations, 11 stations falling into Group 4 and four shallower stations falling in Group 3; it is notable that no other station in these two groups occurs outside the Raritan Bay. East of Raritan Bay, the shallow stations on Flynns Knoll and Romer Shoal Bank are in Group 5. The outer shallow stations to the south east of Lower Bay fall in three associated groups, Lw04 in Group 7, LWO4 and 06 in Group 8 and LE03 in Group 9. The division of Lower Bay/Raritan Bay into fish usage areas by this method is rather clear-cut, providing a satisfactory summarization of the survey results.

SEASONALITY IN THE FISH COMMUNITY

Analysis for Seasonality

The data from the entire series of cruises was examined for seasonality. The data from each complete cruise was compared with data for other cruises for their similarity by the technique of classification. Classification sets out to identify all the samples (cruises) of similar faunal composition, grouping them together in clusters and defining boundaries between clusters. The results of classification are more conveniently presented diagrammatically as a dendrogram which shows how similar cruises cluster together. To carry out classification a measure of similarity must be used, we used one of the most common marine ecological measures, the Bray Curtis Index of Similarity, which gives more weight to abundant species than to rare ones, to compare the cruises.

## PERCENT SIMILARITY



Figure 9. Grouping of stations by fish usage.


Using the Bray Curtis index to measure similarity between the cruises classification was used cluster similar cruises, Figure ll. There were two principal subsets of the data according to the time of year, cruises between November and March clustering separately from cruises between April and October. Within each of these groups two further sub-sets were formed, to give four distinct clusters of cruises. The four clusters approximated in timing to the four seasons, with some lag as the year progressed; the four groups were therefore named as the four seasons.

| January - March | "Winter" | Cruises 5, 6, 15, 16 |
| :---: | :--- | :--- |
| Apri1 - July | "Spring" | Cruises 7, 8, 9 |
| August - October | "Summer" | Cruises 10, 11, 12 |
| November - December | "Fal1" | Cruises 13, 14 |

The cruise catch data were combined for each of these four seasonal clusters and the four sets of combined data were then analyzed to examine seasonal changes in the fish community of the area.

## Changes in Numbers

The station average catch in numbers per hectare, for each of the four combined seasonal survey groupings is given in Table 4 for each species. There was considerable change in numerical abundance and dominance in the community from season to season. This is summarized more simply by ranking species by their abundance in Table 5.

Residents
There are fourteen resident species, which varied in abundance from dominant to fairly common, listed below. Lobsters and blueclaw crabs are also resident although showing marked changes in catches due to seasonal changes in activity, or hibernation.

## Resident Fish Species

| American eel | cunner |
| :--- | :--- |
| conger eel | rock gunnel |
| spotted hake | grubby sculpin |
| red hake | windowpane flounder |
| lined seahorse | winter flounder |
| northern pipefish | American sandlance |
| blackfish | small mouth flounder |



Figure 11. Cluster diagram showing grouping of cruises by the seasons.

Table 4. Seasonal average catch abundance

| Name Code | Winter, $\pm$ se |  | Spring, $\pm$ se |  | Summer, | , $\pm 5 \mathrm{~s}$ | Fall, | $\pm$ se |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LAMPREY | - |  | - |  | - |  | 0.04 | 0.04 |
| SM DOGF | - |  | 0.48 | 0.15 | 1.98 | 0.61 | - |  |
| SP DOGF | - |  | - |  | - |  | 0.15 | 0.11 |
| LI SKATE | 0.36 | 0.36 | 0.39 | 0.25 | - |  | - |  |
| RS SKATE | 0.06 | 0.06 | - |  | - |  | - |  |
| W SKATE | 0.52 | 0.23 | - |  | - |  | 0.28 | 0.28 |
| TH SKATE | 0.40 | 0.40 | - |  | - |  | 0.25 | 0.16 |
| AT STURG | - |  | 0.18 | 0.10 | 0.24 | 0.19 | 0.06 | 0.06 |
| AMER EEL | 0.14 | 0.10 | 0.72 | 0.48 | 0.18 | 0.18 | 0.05 | 0.05 |
| CON EEL | - |  | - |  | 0.69 | 0.51 | 0.33 | 0.17 |
| BB HERRG | 42.98 | 9.85 | 4.46 | 1.47 | - |  | 296.40 | 120.92 |
| ALEWIFE | 170.20 | 68.74 | 2.55 | 1.36 | 0.10 | 0.07 | 160.15 | 84.80 |
| AM SHAD | 13.87 | 3.91 | 3.86 | 1.29 | 0.05 | 0.05 | 81.84 | 24.97 |
| AT MENHD | 5.53 | 4.43 | 0.26 | 0.12 | 0.06 | 0.06 | 2.46 | 1.64 |
| AT HERRG | 2.29 | 1.17 |  |  | - |  | 0.14 | 0.10 |
| RND HERR | - |  | 1.26 | 1.08 | 1.10 | 0.07 | . |  |
| BAY ANCH | 0.75 | 0.38 | 459.00 | 136.27 | 3561.53 | 596.73 | 24.29 | 6.50 |
| STR ANCH | - |  | 0.56 | 0.27 | 1.48 | 0.56 | - |  |
| TOADFISH | 0.05 | 0.05 | - |  | 0.05 | 0.05 | 0.05 | 0.05 |
| GOOSEF | - |  | - |  | - |  | 0.10 | 0.10 |
| 4 ROCKLG | 0.04 | 0.04 | - |  | - |  | - |  |
| SL HAKE | 1.56 | 1.16 | 9.94 | 2.72 | 0.16 | 0.11 | 10.53 | 3.57 |
| TOMCOO | 1.91 | 1.87 | 0.06 | 0.06 | . |  | - |  |
| POLLOCK | - |  | 0.44 | 0.44 | - |  | - |  |
| SPT HAKE | 4.91 | 1.69 | 19.13 | 12.18 | 0.58 | 0.41 | 5.82 | 2.04 |
| W/R HAKE | 10.90 | 8.97 | 11.58 | 5.21 | 0.51 | 0.40 | 17.11 | 12.67 |
| JUV GAD | - |  | 0.05 | 0.05 | - |  | - |  |
| CUSKEEL | 0.08 | 0.08 | 0.19 | 0.14 | - |  | - |  |
| CORNETF | - |  | - |  | 0.05 | 0.05 | - |  |
| A SILVER | 2.85 | 1.73 | - |  | - |  | 7.05 | 1.95 |
| 3 STICKL | 0.13 | 0.07 | - |  | - |  | - |  |
| SEAHORSE | 0.20 | 0.09 | 0.13 | 0.09 | 0.24 | 0.12 | 0.58 | 0.20 |
| PIPEFISH | 0.22 | 0.09 | 1.26 | 0.51 | 0.69 | 0.22 | 1.58 | 0.61 |
| SEA RAVN | 0.09 | 0.06 | 0.08 | 0.08 | - |  | - |  |
| GRUBBY | 4.27 | 1.74 | 3.74 | 1.38 | 0.15 | 0.11 | 0.36 | 0.22 |
| LN SCULP | 0.72 | 0.26 | - |  | 0.06 | 0.06 | - |  |
| SH SCULP | - |  | - |  | - |  | 0.09 | 0.09 |
| UN SCULP | 0.04 | 0.04 | - |  | - |  | - |  |
| BL SEABS | - |  | 0.10 | 0.07 | 3.00 | 1.39 | 0.15 | 0.09 |
| GRY SNAP | - |  | - |  | - |  | 0.05 | 0.05 |
| MSC SERR | 0.10 | 0.07 | - |  | - |  | - |  |
| STR BASS | 0.15 | 0.11 | 0.08 | 0.06 | 0.11 | 011 | 1.06 | 0.55 |
| LEPDMIS | - |  | - |  | - |  | 0.05 | 0.05 |
| BLUEFISH | - |  | 1.38 | 0.50 | 6.20 | 4.45 | 0.06 | 0.06 |
| CREV JCK | - |  | 0.05 | 0.05 | - |  | - |  |
| LOOKDOWN | - |  | 0.04 | 0.04 | 3.81 | 1.53 | - |  |

Table 4. Continued

| Name Code | Winter, $\pm$ se |  | Spring, $\pm$ se |  | Surmer | , $\pm$ se | Fall, | $\pm$ se |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RH SCAD | - |  | 0.32 | 0.19 | 0.30 | 0.17 | - |  |
| SLPERCH | - |  | - |  | - |  | 0.12 | 0.12 |
| WEAKFISH | - |  | 0.49 | 0.24 | 133.63 | 70.55 | 4.84 | 1.87 |
| SPOT | - |  | - |  | 0.10 | 0.10 | 0.15 | 0.11 |
| SCUP | - |  | 36.56 | 9.88 | 27.54 | 6.43 | - |  |
| SP BUTFL | - |  | - |  | 0.06 | 0.06 | - |  |
| ST MULL | 0.90 | 0.06 | - |  | - |  | 0.17 | 0.13 |
| N BARRAC | - |  | - |  | 0.21 | 0.21 | - |  |
| BLACKF | 0.29 | 0.11 | 15.54 | 3.23 | 6.31 | 1.73 | 1.66 | 0.60 |
| CUNNER | 0.40 | 0.16 | 3.71 | 1.96 | 1.50 | 0.56 | - |  |
| RCK GUNN | 0.72 | 0.22 | 0.49 | 0.31 | 0.21 | 0.10 | 1.55 | 0.71 |
| AM SANDL | 37.40 | 13.43 | 90.79 | 57.36 | 0.06 | 0.06 | 0.18 | 0.13 |
| BUTTERF | - |  | 42.80 | 11.00 | 147.83 | 62.60 | 5.62 | 2.98 |
| AT MACKR | - |  | 0.10 | 0.07 | - |  | - |  |
| N SEARBN | - |  | 0.23 | 0.11 | 0.09 | 0.07 | - |  |
| ST SEARB | - |  | 5.31 | 4.50 | 24.40 | 14.91 | 0.20 | 0.16 |
| SMM FLND | 0.49 | 0.29 | 0.05 | 0.05 | 0.52 | 0.21 | 1.59 | 0.49 |
| FLUKE | 0.10 | 0.07 | 19.93 | 3.11 | 17.95 | 3.39 | 0.30 | 0.14 |
| 4SP FLND | - |  | 0.51 | 0.32 | 2.54 | 1.14 | 1.72 | 0.67 |
| WINDOWPN | 16.63 | 4.80 | 39.57 | 9.79 | 8.88 | 3.11 | 13.29 | 3.79 |
| WN FLND | 102.40 | 32.03 | 101.30 | 21.31 | 12.27 | 2.65 | 76.44 | 18.96 |
| HOGCHOKR | - |  | - |  | 0.06 | 0.06 | - |  |
| PL FILEF | - |  | - |  | 0.25 | 0.15 | - |  |
| N PUFFER | - |  | - |  | 0.06 | 0.06 | - |  |

## Change in Species by Seasons for Cruises 5-16

Fall-winter community, November to March

During the fall and winter the bottom fish community is dominated by resident species, the winter flounder, windowpane flounder, spotted hake, red hake, grubby sculpin; Atlantic silversides and silver hake also migrate into the region in the fall. There is a large community of pelagic fishes in the region at this time; it is dominated by the river herrings (alewife, blueback herring and American shad) and Atlantic menhaden, but also during winter (January-March) included American sandlance and Atlantic herring.

Spring-summer community, April to October

The groundfish community is dominated by flounders, resident winter flounder and windowpane flounder and small mouth flounder being joined by large adult fluke and four-spot flounder. Butterfish and striped searobin are abundant, and bluefish, lookdown, black seabass and weakfish all appear in spring and increase in numbers during summer. Large blackfish and scup are caught on shell grounds and are especially associated with mussel-beds.

The pelagic community changes radically with increasing temperatures, in spring and summer the ubiquitous bay anchovies are the most numerous fish in catches, they are accompanied by small numbers of striped anchovy and round herring. The three river herrings decrease in numbers markedly in spring and few are caught in summer. American sandlance are caught commonly in spring but not during summer, when they aestivate in the seabed.

The seasonal change in species in the community is summarized in Table 6 in which commonly caught fishes have been characterized as occurring in the Lower Bay Complex during cold or warm water periods of the year.

Table 6. Seasonally caught common fishes.

| Warm water species | Cold water species |
| :--- | :--- |
| smooth dogfish | little skate |
| Atlantic sturgeon | winter skate |
| round herring | blueback herring |
| bay anchovy | alewife |
| stripped anchovy | American shad |
| black seabass | Atlantic herring |
| bluefish | silver hake |
| lookdown | tomcod |
| rough scad | Atlantic silverside |
| weakfish |  |
| scup |  |
| butterfish |  |
| striped searobin |  |

Migrants

Several of the more abundant species taken in the surveys were seasonal migrants through the lower estuary and are listed below.

## Migrant Species

| Atlantic sturgeon | Atlantic silverside |
| :--- | :--- |
| blueback herring | striped bass |
| alewife | weakfish |
| American shad | American eel |

In spring adult weakfish and Atlantic silversides passed quickly through the region on their way to spawn in shallows and wetlands of the estuary and associated rivers. Atlantic sturgeon were caught during summer in their passage to areas of the river upstream of the Tappan Zee.

The three river herrings (American shad, alewife and blueback herring) all arrived in large numbers in the fall during their upstream migration. Many of the herrings, especially juveniles, persisted through winter in the lower estuary. Adult striped bass also migrated upstream in good numbers during October, November and December en route to their spawning areas.

NURSERY GROUNDS

Juveniles of many species of finfish occurred commonly in the region. It is well known that the estuary and the associated wetlands have an important nursery function - juvenile fishes feed and grow rapidly in various parts of the estuary system. Species living and growing in the estuary as juveniles have been listed in Table 7.

Resident species spawned within the estuary or nearby in the nearshore New York Bight. Juveniles of these fishes usually settled and grew within the shallows of the system but some were more widespread and juvenile red hake, spotted hake and windowpane flounder were incidentally caught in small numbers throughout the region.

Table 7. Fishes using the Lower Bay Complex as Nursery Grounds.

## Resident species

winter flounder
windowpane flounder rock gunnel
cunner
blackfish lined seahorse

- northern pipefish red hake
spotted hake
grubby sculpin
Immigrants
weakfish
bluefish
striped searobin
scup
butterfish
lookdown
silver hake
bay anchovy
blueback herring
alewife
American shad

The very abundant bay anchovies spawned through the summer and large numbers of newly metamorphosed juveniles were taken. Their distribution was patchy, high catches being taken at a few stations on a cruise. Juvenile anchovy were caught most frequently within Raritan Bay, rather than the Lower Bay.

Juveniles of sea spawning fishes, which moved into the estuary to feed were taken mainly during the warm summer-fall period. They included butterfish, scup, and lookdown; "snappers", (juvenile bluefish) occurred in small numbers throughout the lower estuary during summer. During August and early September large numbers of small striped searobin, Prionotus evolans, apparently newly metamorphosed, were caught at 10 to 11 m in the shipping channels of Raritan Bay. During the fall juvenile silver hake, Merluccius bilinearis, appear throughout the lower estuary and remain there into the winter. The three river herrings (alewife, blueback herring and American shad) are dominant estuarine spawners. All three species enter the lower estuary in the fall both as adults and large numbers of juveniles; they all remain through the winter. In May adult weakfish, Cynoscion regalis, enter the estuary to spawn in shallow areas; during spring-summer, the juveniles feed in the system and grow rapidly to achieve lengths of 10 to 16 cm . In September and October juvenile weakfish migrate from the estuary to the sea, moving through the Lower Bay Complex; they were principally taken in the Lower Bay in the shipping channels and in holes below 10 m .

## DISTRIBUTION PATTERNS

## Community Parameters

The data for the trawl surveys were combined for each station and the summed station data for each station were processed to provide seven simple community parameters for that station. These station data were plotted as a series of seven distribution charts, the summed community parameters for each station used in the charts were:

Total number of finfishes (excluding anchovy), N.
Total number of species (excluding anchovy), S.
Four indices of species diversity,

1. Shannon-Weaver function, $H^{\prime}$.
2. Simpson's index, D.
3. Margalef's species richness, d.
4. Probability of interspecific encounter, PIE.

Indices of Species Diversity

Measures of diversity, as used in this report, are dependent not only on the number of species but also on the relative abundance of each. A community with all species in about equal population numbers is more diverse than another community of the same number of species but with some species common and others rare. A variety of indices of diversity have been devised to express both the number of species and their relative abundances as a single numerical measure. We use these measures to express the relative diversities of communities, so that we can try to assess diversity differences.

It is well known that the number of species in a community ( $S$ ) is related to the logarithm of the total number of individuals ( $N$ ) so that the simplest diversity index could be expressed as:

$$
\frac{S}{\log N}
$$

Margalef derived a related expression (species richness, d) which reduces to 0 when all individuals are from the same species. We use this species richness index, $d$, in assessing the trawl survey data.

$$
\text { Margalef's species richness, } d=\frac{S-1}{\log N}
$$

The Shannon Weaver index, $H^{\prime}$, measured the uncertainty of predicting the species of an individual drawn from the community of species. $H^{\prime}$ expresses the evenness of the abundances of all the species,

$$
H^{\prime}=-\sum_{i=1}^{s} p_{i} \log _{e} p_{i}^{2}
$$

Based on probability theory, the Simpson index, $D$, describes probability that the second individual drawn from a community will be the same species as the first. D expresses the dominance, or concentration of abundance into the commonest species in the community

$$
\text { Simpson index, } D=1-\sum_{i=1}^{s} p_{i}^{2}
$$

The fourth index is the probability of interspecific encounter, PIE,

$$
\operatorname{PIE}=\sum_{i=1}^{s}\left(\frac{n_{i}}{N}\right)\left(\frac{N-n_{i}}{N-1}\right)
$$

For these formulae $S$ is the total number of species in the collection, $N$ is the total number of individuals in the collection, $n_{i}$ is the number of individuals in the $i-t h$ species and $p_{i}$ is the proportion of individuals in the $i$-th $\left(p_{i}=n_{i} / N\right)$.

For each index used, its value increases with higher diversities.

Annual Cycle, Cruises 5 to 16

The community parameters derived for the combined data set for the surveys 5 through 16, made from February ' 85 to March ' 86 , have been set out as a series of 6 distribution charts;

Figure 12. Total catch, numbers of fish (except bay anchovy)
Figure 13. Number of species
Figure 14. Shannon Weaver index, $H^{\prime}$
Figure 15. Simpson's index, D
Figure 16. Margalef's index, d
Figure 17. Probability of interspecific encounter, PIE.

Bay anchovy were excluded from the analysis, but for reference, the total catch of anchovy is shown in Figure 18. The numbers of fishes caught, Figure 12, were consistently larger in the deeper parts of the region, in the ship channels and in borrow pits, Stratum 3 of Figure 7. Equally, the numbers of species, the diversity of the catches, figure 13 were also greatest in the deeper channels, pits and holes of Stratum 3.

The catches of blueclaw crabs and of lobsters are given in Figures 19 and 20, respectively. The catches of blueclaw crabs were made principally in the northern areas of the Ambrose Channel and in Raritan Bay. Within these areas, the largest catches were made at deeper stations usually in the shipping channels. Like the crabs, lobsters were also distributed principally in the northern areas associated with the Ambrose Channel and throughout Raritan Bay, the largest catches were taken in the deep channels.










Surveys 2 and 3 Combined

For the combined surveys 2 and 3, made in September-October 1984, an equivalent set of charts shows the distribution of community parameters, as follows:

Figure 21. Total catch
Figure 22. Number of species
Figure 23. Shannon-Weaver Index $\mathrm{H}^{\prime}$
Figure 24. Simpson's Index, D
Figure 25. Margalef's Index, d
Figure 26. Probability of interspecific encounter, PIE.

The total catch of bay anchovy, excluded from this analysis is shown for reference in Figure 27.

As had been seen for the annual cycle of surveys, the largest numbers of fishes of surveys 2 and 3 caught were principally in the deep ship channels, Figure 20, Statum 3, Figure 8. The more diverse catches of different species were morewidely distributed, in this area, Figure 22 , but again they tended to be larger in the deeper trawl hauls, Figure 8.

Catches of blueclaw crabs and of lobsters taken on surveys 2-3 are given in Figures 28 and 29, respectively. Very few blueclaw crabs were caught at this time and no comment could be made. Lobsters were principally taken in the northern part of the Ambrose Channel and in Raritan Bay, as had been the case for the annual cycle of surveys.

AREAS OF LOW DIVERSITY AND USE BY FISH

Annual Survey Series, Cruises 5 to 16 (February ' 85 to March '86)

The series of charts for distributions of the different community parameters derived from the combined data of the annual surveys, were inspected to identify areas of low diversity and low use by the fish community of the Lower Bay/Raritan Bay region; use by lobsters and by blueclaw crabs was also included on two additional charts.










For each single community parameter, the values recorded for all of the stations surveyed were ranked numerically and the bounding value for the lowest $30 \%$ of these ranks was noted. The method used to find areas of relatively low use in the region was to delimit with contours on each of the distribution charts the stations with values falling below this $30 \%$ bound. After examining the charts, a list was drawn up of stations within the contoured areas of low values for each parameter, Table 8.

The list in Table 8 was reviewed for coincidence of the positions (traw) stations) with low values as determined from the different parameters, greater importance was given to the values for total fish abundance and number of species than was given to individual diversity indices.

The process of reviewing the low value stations for all of the separate community parameters, identified five (5) sites within the Lower Bay Complex which were of relatively low diversity and use by the fish. The five areas were identified solely by reference to trawl catch data, no consideration was given th physical properties at the sites nor to conflicting usage. The five sites contained the following stations:

| Area 1 | LE 04, 06, 07 | "East Bank" |
| :--- | :--- | :--- |
| Area 2 | LW 04 | "South Romer" |
| Area 3 | RB 04, 10 | "East Raritan Bay" |
| Area 4 | RB 02, 05 | "North Belford" |
| Area 5 | IR 01, 02, 03 | "Inner Raritan Bay" |

Three of the low diversity areas are in Raritan Bay and there is also one low diversity area each on the banks to the east and west of the Ambrose Channel, the five areas identified are shown on a separate chart, Figure 30.

Description of Low Use Areas

Area 1, "East Bank"

This is a large area extending over LE $04,06,07$ on the eastern banks of the Ambrose Channel at depths of 4 to 6 m . It is covered by sand, with some patches of shells.
e 8. Stations with low value annual community parameters, Surveys 5 to 16.

## SUBAREAS

| ameter | Inner Raritan Sta. Code, IR | East Raritan <br> Sta. Code, RB | West Bank Sta. Code, LW | East Bank <br> Sta. Code, LE |
| :---: | :---: | :---: | :---: | :---: |
| al Catch | 01, 02, 05 | 02, 03, 04, 09, 11 | 06 | 04, 06 |
| al Biomass | 01, 02, 03 | 02, 04, 05, 08, 11 | 04, 06, 11 | 03, 04, 06 |
| per Species | 01, 02, 03, 04 | 02, 04, 10 | 05, 06, 07 | 04, 06, 07 |
| ersity Indices |  |  |  |  |
| nnon Weaver, $\mathrm{H}^{\prime}$ | 03, 05 | 05, 10 | 04, 07, 10 | 04, 07, 08 |
| pson, D | 03, 05, 08 | 05, 10 | 04, 07 | 04, 07, 08 |
| galef, d | 01, 03, 04 | 10 | 04, 05, 06, 07 | 04, 06, 07 |
| 7burt, PIE | 03, 08 | 05, 07, 10 | 04, 07 | 04, 07, 08 |

tion numbers which have been underlined have the lowest values.


The annual catches of finfish are dominated by bay anchovy and blueback herrings; American sandlance are also abundant. The dominant groundfish is the winter flounder although the numbers caught were only $44 \%$ of the average for the entire survey per station. The average annual fish catch per hectare for Area 1 is compared with the average for the region in Table 9. Only fifteen species were caught, compared with the survey average of 24 species per station. Catches of fishes of recreational or commercial significance were low in numbers and did not exceed half of their catch for average survey stations. There were no catches of blueclaw crabs and only a single lobster catch.

## Area 2, "South Romer"

This area is represented by a single station LW 04 on hard sand ground at about 6 m . The site is exposed to seas from the south and east. A pipeline area passes east-west through this area and a shipping anchorage also lies to the south of the area.

Fish catches are dominated by American sandlance and anchovys, the most abundant groundfish is the butterfish. The annual catch for this stations is compared with the survey average catches in Table 9 . Only thirteen species were caught compared with a station average of 24 species for the entire survey. Only six fishes of commercial or recreational interest were caught, and all in numbers less than the survey average. No lobsters or blueclaw crabs were taken.

Area 3, "East Raritan Bay"

Area 3 lies to the north of the Raritan Bay East Reach ship channel on mud bottoms about 7 m deep, to the north of the area some patches of sand may occur. It contains stations RB 04 and RB 10 , and it can be extended north in the vicinity of 01d Orchard Shoal, toward RB 11. The area is clear of obstructions or anchorages for shipping.

The fish catch for the East Raritan Bay stations was dominated by bay anchovy and by winter flounders, scup and blackfish were common. Table 9 gives the average catch for Area 3 and compares it with the average annual catch for

Table 9. Annual catch in selected low diversity areas

| Fish Species | Area 1 Avg | \% Survey Average* | Area 2 Avg | \% Survey Average* | Area 3 Avg | \% Survey Average* | Area 4 Avg | \% Survey Average* | Area 5 Avg | \% Survey Average* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Smooth Dogfish | 0.8 | 33 | 2.3 | 96 |  |  |  |  |  |  |
| Winter Skate | 2.0 | 250 |  |  |  |  | 2.7 | 340 |  |  |
| Alewife |  |  |  |  | 9.7 | 3 |  |  | 10.7 | 3 |
| Blueback Herring | 736.1 | 214 | 6.3 | 2 | 30.1 | 9 | 28.0 | 2 | 832.2 | 242 |
| American Shad | 59.5 | 59 |  |  | 31.6 | 32 | 11.0 | 11 | 14.1 | 14 |
| Atlantic Herring |  |  | 3.6 | 150 |  |  |  |  |  |  |
| Bay Anchovy | 1727.4 | 43 | 403.6 | 10 | 4039.3 | 99 | 3021.8 | 75 | 1835.0 | 45 |
| Stripe Anchovy | 2.7 | 13 | 12.7 | 635 |  |  |  |  | 2.8 | 14 |
| Silver Hake | 2.7 | 12 |  |  |  |  |  |  |  |  |
| Bluefish |  |  | 6.6 | 88 |  |  |  |  |  |  |
| Lookdown | 1.5 | 39 | 10.6 | 279 |  |  |  |  |  |  |
| Weakfish | 0.8 | 1 |  |  |  |  | 5.3 | 4 |  |  |
| Scup | 7.3 | 11 | 5.3 | 8 | 83.3 | 130 |  |  | 21.2 | 33 |
| American Sandlance | 192.2 | 143 | 717.7 | 536 | 6.8 | 5 |  |  |  |  |
| Butterfish | 16.4 | 8 | 108.3 | 56 | 29.6 | 15 | 31.6 | 16 | 20.0 | 10 |
| Fluke | 14.0 | 36 | 10.7 | 27 | 9.8 | 26 | 62.2 | 162 | 27.7 | 72 |
| Windowpane | 7.5 | 9 | 14.6 | 19 | 31.4 | 40 | 51.5 | 66 | 24.1 | 31 |
| Winter Flounder | 130.2 | 44 | 1.7 | 1 | 408.8 | 140 | 253.9 | 86 | 86.5 | 29 |
| Atlantic Silverside |  |  |  |  | 15.7 | 158 |  |  | 9.1 | 92 |
| Seahorse |  |  |  |  | 4.3 | 388 |  |  |  |  |
| Blackfish |  |  |  |  | 42.0 | 176 |  |  | 13.6 | 57 |
| Cunner |  |  |  |  | 6.5 | 91 |  |  |  |  |
| Pipefish |  |  |  |  |  |  |  |  | 8.0 | 216 |
| Spotted Hake |  |  |  |  |  |  |  |  | 45.8 | 151 |
| Rock Gunnel |  |  |  |  |  |  | 5.3 | 331 | 2.4 | 150 |
| Red/White Hake |  |  |  |  |  |  | 3.2 | 8 |  |  |
| Grubby Sculpin |  |  |  |  |  |  | 28.2 | 331 |  |  |
| 4 Spot Flounder |  |  |  |  |  |  | 1.3 | 27 |  |  |
| Conger eel |  |  |  |  |  |  | 1.0 | 97 |  |  |
| Atlantic menhaden |  |  |  |  |  |  | 1.5 | 18 |  |  |
| Blueclaw Crabs |  | 0 |  | 0 | 9.2 | 40 | 25.3 | 109 | 9.3 | 40 |
| Lobster | 0.7 | 1 |  | 0 | 31.5 | 45 | 68.0 | 97 | 8.5 | 12 |

[^1]the survey. Fourteen species of fish were taken compared with a station average of 24 species for the whole survey. The catches of three species, the winter flounder, blackfish and scup (species of importance to the recreational fishery in the area) exceeded the average catches for the region. Catches of blueclaw crabs and lobsters were at $40 \%$ and $45 \%$ of the catch for the survey region.

Area 4, "North Belford"

Area 4 is to the south of the Raritan Bay East Reach ship channel, north-west of the U.S. Navy Leonardo ship terminal. The area contains stations RB 02 and RB 05, it is 6 to 7 m deep with a mud bottom. It includes a part of the New Jersey fish trap area in the south and a pipeline area passes east-west through the middle of the site.

The catches of fish at the site were dominated by bay anchovy and by flounders; Table 9 compares these catches with the average catch for the region. Fifteen finfish species were caught compared with a station average of 24 species for the overall surveys. The only species of recreational importance occurring in the catches is significant numbers were flounders, winter flounder and windowpane flounder were taken at $86 \%$ and $66 \%$ of the survey average respectively, only fluke exceeded the average at $162 \%$.

In Area 4 the catches of blueclaw crabs and of lobsters were the largest at any of the low use sites, being $109 \%$ and $97 \%$ of the survey averages. Both species of shellfish are important to the commercial fisheries and it is significant that they were each caught in relatively high numbers.

Area 5, "Inner Raritan Bay"

This is a large sheltered area in western Raritan Bay extending over IR 01, 02, 03, with a soft mud bottom at depths of 5 to 7 m . A pipeline area passes east-west through the southern part of the area, between stations IR 01 and IR 02. The New Jersey fish trap area also extends north over the southern part of the area, however the northern half of the area is clear for use.

Fish catches are dominated by bay anchovy and blueback herrings, the dominant ground fish is the winter flounder although the flounder catch is only $29 \%$ of the average for the whole survey area. Only 15 species of finfish were taken compared with the survey average of 24 species per station. The average annual fish catch per hectare for Area 5 is compared with the annual average for the region, Table 9. None of the commercially finfishes of commercial or recreational importance was taken in numbers exceeding the survey averages. Although lobsters and blueclaw crabs were caught, their numbers were less than half those of the survey averages.

Seasonal Changes in Selected Species at Low Use Sites

To review the use of the selected sites in more detail, ten target species were selected which are of significance to the recreational or the commercial fishery and their importance in catches was considered by seasons. The target species were:

| Fluke | Blueclaw crabs |
| :--- | :--- |
| Winter Flounder | Lobsters |
| Windowpane |  |
| Weakfish |  |
| Scup |  |
| Bluefish |  |
| Blackfish |  |
| Butterfish |  |

To consider seasonal changes in catch at the five sites identified as being of low use, cruises were combined into seasons in accordance with the groups earlier selected by classification, Figure ll. The average catches taken at each of the five sites, compared with the catch averages for the entire survey area are given in four tables, one for each season: spring, Table 10; summer, Table 1l; fall, Table 12; winter, Table 13.

In spring catches of all species in Area 1 were below survey averages, in Area 2 only bluefish catches were above average, as they were also in Area 5, Table 10. In Area 3 catches of both scup and blackfish were about twice the

Table 10. Spring catch in the selected low diversity areas

| Fish Species | Area 1 Avg | \% Survey Average* | Area 2 Avg | \% Survey Average* | Area 3 Avg | \% Survey Average* | Area 4 Avg | \% Survey Average* | Area 5 Avg | \% Survey Average* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bluefish | 1.07 | 77 | 4.25 | 308 | 0 | 0 | 0 | 0 | 1.72 | 124 |
| Weakfish | 0 | 0 | 0 | 0 | 0 | 0 | 0.96 | 195 | 0 | 0 |
| Scup | 2.81 | 8 | 5.32 | 14 | 72.80 | 198 | 34.19 | 93 | 15.61 | 43 |
| Butterfish | 4.92 | 11 | 9.69 | 23 | 13.00 | 30 | 24.20 | 56 | 5.52 | 13 |
| Fluke | 8.82 | 44 | 6.71 | 34 | 5.32 | 27 | 39.04 | 196 | 18.71 | 91 |
| Windowpane | 0 | 0 | 0 | 0 | 27.57 | 70 | 45.79 | 116 | 21.41 | 54 |
| Winter Flounder | 57.38 | 57 | 1.80 | 2 | 342.79 | 34 | 204.97 | 201 | 36.31 | 36 |
| Blackfish | 0 | 0 | 0 | 0 | 37.94 | 244 | 10.00 | 64 | 10.74 | 69 |
| Blueclaw Crabs | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Lobster | 0.71 | 2 | 0 | 0 | 21.53 | 49 | 49.19 | 111 | 8.57 | 19 |

* Percent Average Survey $=\frac{\text { Annual average catch per station in selected low use areas } \times 100}{\text { Annual average catch per station for entire survey area }}$

Table 11. Summer catch in the selected low diversity areas

| Fish Species | Area 1 Avg | \% Survey Average* | Area 2 Avg | \% Survey Average* | Area 3 Avg | \% Survey Average* | Area 4 Avg | \% Survey Average* | Area 5 Avg | \% Survey Average* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bluefish | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Weakfish | 0.81 | 1 | 0 | 0 | 2.26 | 2 | 43.50 | 32 | 1.99 | 1 |
| Scup | 4.05 | 15 | 0 | 0 | 10.53 | 38 | 18.52 | 67 | 5.66 | 20 |
| Butterfish | 9.56 | 6 | 98.63 | 67 | 16.66 | 11 | 7.42 | 5 | 4.38 | 3 |
| Fluke | 5.17 | 29 | 4.04 | 22 | 4.52 | 25 | 23.20 | 128 | 9.53 | 53 |
| Windowpane | 0 | 0 | 4.17 | 47 | 0 | 0 | 0 | 0 | 0.68 | 8 |
| Winter Flounder | 2.43 | 20 | 0 | 0 | 4.13 | 34 | 10.47 | 85 | 1.90 | 15 |
| Blackfish | 0 | 0 | 0 | 0 | 2.15 | 34 | 0.93 | 15 | 1.63 | 26 |
| Blueclaw Crabs | 0 | 0 | 0 | 0 | 8.39 | 116 | 11.11 | 153 | 7.38 | 102 |
| Lobster | 0 | 0 | 0 | 0 | 5.59 | 40 | 10.47 | 75 | 0 | 0 |

* Percent Average Survey $=$ Annual average catch per station in selected low use areas $\times 100$ Annual average catch per station for entire survey area

Table 12. Fall catch in the selected low diversity areas

| Fish Species | Area 1 Avg | \% Survey Average* | Area 2 Avg | \% Survey Average* | Area 3 Avg | \% Survey Average* | Area 4 Avg | \% Survey Average* | Area 5 Avg | \% Survey Average* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bluefish | 0 | 0 | 2.12 | 3785 | 0 | 0 | 0 | 0 | 0 | 0 |
| Weakfish | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Scup | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Butterfish | 2.02 | 66 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Fluke | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Windowpane | 5.13 | 37 | 7.29 | 55 | 3.12 | 23 | 4.90 | 37 | 1.42 | 11 |
| Winter Flounder | 15.00 | 20 | 0 | 0 | 30.33 | 40 | 13.00 | 17 | 30.23 | 39 |
| Blackfish | 0 | 0 | 0 | 0 | 2.00 | 120 | 0 | 0 | 0.67 | 40 |
| Blueclaw Crabs | 0 | 0 | 0 | 0 | 0 | 0 | 1.77 | 13 | 0.75 | 5 |
| Lobster | 0 | 0 | 0 | 0 | 1.00 | 14 | 2.77 | 38 | 0 | 0 |

* Percent Average Survey $=\frac{\text { Annual average catch per station in selected low use areas } \times 100}{\text { Annual average catch per station for entire survey area }}$

Table 13. Winter catch in the selected low diversity areas

| Fish Species | Area 1 Avg | \% Survey Average* | Area 2 Avg | \% Survey Average* | Area 3 Avg | \% Survey Average* | Area 4 Avg | \% Survey Average* | Area 5 Avg | \% Survey Average* |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Bluefish | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Weakfish | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Scup | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Butterfish | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Fluke | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Windowpane | 3.90 | 23 | 3.12 | 19 | 0.73 | 4 | 0.86 | 5 | 0.56 | 3 |
| Winter Flounder | 55.40 | 54 | 0 | 0 | 31.62 | 31 | 25.53 | 25 | 18.12 | 18 |
| Blackfish | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.55 | 192 |
| Blueclaw Crabs | 0 | 0 | 0 | 0 | 0.91 | 49 | 0 | 0 | 1.13 | 61 |
| Lobster | 0 | 0 | 0 | 0 | 3.40 | 68 | 5.59 | 112 | 0 | 0 |

* Percent Average Survey $=\frac{\text { Annual average catch per station in selected low use areas } \times 100}{\text { Annual average catch per station for entire survey area }}$
survey averages. However in Area 4 catches of four fish species exceeded their survey averages, weakfish, fluke, windowpane and winter flounder, lobster catches were also equal to average at this site.

During summer catches of all fishes were low, or very low, at all five sites, Table 1l; only the catch of fluke in Area 4 slightly exceeded the survey average catch. Blueclaw crab catches in Areas 3, 4 and 5 were equal to, or greater than survey average catches; no crabs or lobsters were caught in Areas 1 and 2.

The fall catches of target fishes were reduced to only 2 or 3 species in each Area, Table 12. A high catch of juvenile bluefish in Area was based on only a single station; blackfish exceeded the survey average catch in Area 3. Other catches were all below average, - this included the catches of blueclaw crabs and lobsters which were very low.

Winter, like fall, was a season with catches reduced to only 2 or 3 target fish species, Table 13. Only the catch of blackfish in Area 5 exceeded the survey averages. Catches of lobsters and blueclaw crabs had increased in Areas 3,4 and 5, but were below survey average, except for lobsters in Area 4.

The summary review of seasonal catches for target species at the five sites confirmed their selection as being areas of low use. Catches of fishes were consistently lowest in Areas 1 and 2 and few lobsters and no blueclaw crabs were caught. Catches in Area 5 were almost always below survey averages for each season. Of the 4 Areas, Area 4 had relatively higher fish catches and included significant catches of lobsters and blueclaw crabs, this Area was awarded the lowest priority in ranking the five sites. These rankings are in close agreement with the priorities allocated to the five sites in the preceding section of this Report.

Supplementary Surveys, Cruises 2 and 3 (September, October 1984)

On cruises 2 and 3 thirty trawl survey stations were sampled in the eastern half of the region. These surveys were especially important because the outer stations were in positions further south and east than were included
in the annual series (cruises 5 to 16 , above), and provided unique information on additional areas which had been identified by PICG as potential new pit sites.

To find areas of low diversity and use by fish, the same method was applied in analysis of the annual survey data. Individual community parameter values were ranked numerically to determine the bound of the lowest $30 \%$ of ranks. The stations with parameter values falling below the $30 \%$ lower bound , were limited with contours around low value areas on the distribution charts. A list of stations falling within low value areas for each parameter is given in Table 14. The list was reviewed for coincidence of stations with low values for different parameters, as was done for the annual survey series.

From the review of the low value stations for all of the parameters for this limited September-October survey, three (3) areas were identified which were of relatively low use by the fish, they are shown on a separate chart, Figure 31. It must be noted that the positions identified from these two surveys at one time of year, are altogether more tentative than those identified through the analysis of the twelve surveys included in the annual cycle. East of the Ambrose Channel the low diversity area identified around LE 04, 06 and 07 from the annual data review, Figure 30 , was expanded considerably to also include LE 02, 03, and 05. The low area, LW 04, to the west of the Ambrose Channel which was also identified from the annual survey series, was increased to include LW 03, Figure 31. North of Sandy Hook a third area of low diversity was identified on the Flynn's Knoll bank, LW 05 and 06, although this third area was not identified as being of consistently low diversity by the analysis of the comprehensive annual survey series.

Conclusions and Prioritization of Low Use Areas

The very large data set for cruises 5 through 16 , covering the annual cycle of the region was used to identify five (5) areas of relatively low fish diversity and density, Figure 30. The areas have been allotted priorities.

Table 14. Stations with low value community parameters, Surveys 2 and 3.

| Parameter | SUBAREAS |  |
| :---: | :---: | :---: |
|  | West Bank <br> Station Code, LW | East Bank <br> Station Code, LE |
| Total Catch | 03, 04, 05, 06 | 02, 03, 04, 05 |
| Total Biomass | 03, 04, 05, 06 | 02, 03, 04, 05 |
| Number Species | 03, 05, 06 | 02, 03, 04, 05, 07 |
| Diversity Indices |  |  |
| Shannon Weaver, H' | 05, 06, 07 | 03, 04, 07, 08 |
| Simpson, D | 01, 05, 06, 07 | 01, 03, 08 |
| Margalef, d | 02, 05, 06, 07 | 03, 04, 07 |
| Hurlburt, PIE | 05, 06, 07 | 01, 03, 08 |

Station numbers which have been underlined have the lowest values.


1. Area 1 is the largest area and has no obstructions nor shipping anchorages. It has little use by fishes of importance to the recreational or commercial fisheries, and no catch of lobsters or crabs, - it is given first priority.
2. Area 2 is small, but it may be expanded to the south, no fishes of interest are taken in large numbers nor are lobsters or crabs caught. On the basis of fish diversity alone, this site is given second priority. However there are obstructions at the site which may effect its usefulness.
3. Area 5, Inner Raritan Bay, is a large area in which catches of fishes of interest to the recreational fishery are small; blueclaw crabs and lobsters are taken in Area 5 but are relatively low in numbers. It is given third priority on its use by fishes, there are some obstructions in the southern part of this site but significant areas remain clear for use. This site is far from the likely areas of interest for potential development.
4. Area 3 is the second largest site, it is unobstructed and there are no anchorages. Area 3 has higher than average catches of three species of interest, scup, winter flounder and blackfish. Blueclaw crabs and lobsters are taken in Area 3 but are relatively low catches, being less than half the regional average.
5. Area 4, North Belford is a small site. Although catches of fish of interest are relatively low, the catches of crabs and of lobsters are as high as the average for region. The site has considerable obstruction from pipelines and lies partly in the New Jersey fish trap area. It is given lowest priority.

The additional information derived from the separate surveys 2 and 3 is valuable. In particular it suggests that the low diversity areas identified to both the east and to the west of the Ambrose Channel may be expanded in size. The western area in the vicinity of LW 04 may extend as far as LW 03, a pipeline area passes through this large area and there is also a general anchorage marked, but the greatest part of this area is clear. The low diversity area to the east of the Channel in the vicinity of LE 04, 06, and 07 may extend further to include LE 02, 03, and 05, which would make it by far the largest area of all the five identified. A pipeline area is marked passing'
from north to south-east through this eastern low use area, but the major parts of the area are quite clear.

## COMMENT ON PICG PROPOSED PIT SITES

The Public Involvement Coordination Group (PICG) for the dredged material disposal management plan for the Port of New York and New Jersey has suggested four areas where new pits could be dug and used as dredged material disposal sites. The four sites are shown on a separate chart, and labelled A, B, C, and D, Figure 32 for cruises 5 to 16, and Figure 33 for cruises 2 and 3. They are named as follows:
A. Raritan Reach Pit
B. East Bank Pit Area
C. Ambrose Channel Pit
D. Sandy Hook Channe1 Pit

Our survey stations RB 04 and RB 10 fall in the vicinity of site $A$ and this is also an area which we have identified as of low use, Area 3, "East Raritan Bay", in our survey. The East Bank Pit, site B, contains station LE 05 and is in the vicinity of LE O4, LE 06, all of which lie in a large area of low density, Area 1, "East Bank" in our survey. The Sandy Hook Channel Pit, site D, contains a low use station, LW 03; to the north of site D, LW 04 is also a low use station, Area 2, "South Romer" in our survey. There are none of our survey stations sufficiently close to PICG site C, Ambrose Channel Pit to comment usefully.

Thus three of the new sites suggested by PICG, - sites A, B, and D, fall approximately within areas which we have independently identified from our. survey data as being of low diversity and low use by the fish community of the Lower New York Harbor.



Comparison of Populations between Pits

The Borrow Pits named "Large West Bank", "CAC" and "East Bank" are shown in Figure 2; the trawl stations worked in these three pits during the annual cycle of surveys are LW08, LWIO and LE11, respectively, are shown in Figure 4. In making comparisons with trawl catches taken in the Borrow Pits, the anchovys have been omitted from all of the analyses.

The total number of fish of different species caught at each Borrow Pit station during the annual survey series, cruises 5 through 16 , is given in Table 15 (the catches are expressed as numbers per hectare). The catches for the three stations have also been combined and are expressed as averages. These species catches have been ranked and listed in Table 16, in this Table the average species catches for the three combined stations have also been ranked and listed as mean ranks.

The average total catch in the Pits was 5,205 fish (with a standard error of 1,215 fish), the highest catch was in the CAC Pit (LW1O), the catches in the two other Pits (LW08 and LE11) were similar. Twenty-six species were caught in the Large West Bank Pit (LWO8), twenty-eight in the CAC Pit and twenty-nine species in the East Bank Pit (LEll). The ten most abundant species taken in the individual Borrow Pits were considered to be the dominants and comparisons between these dominant assemblages taken in the different Pits revealed similarities in their communities, Table 16 . The three river herrings, American shad, blueback herring and alewife and three flounders, fluke, winter flounder and windowpane were dominant (or near dominant) in all of the Pits. Butterfish and weakfish were dominant in all three Pits. Scup were dominant in the Large West Bank and East Bank Pits and of fifteenth rank in the CAC Pit; silver hake were dominant in CAC and East Bank Pits and of fourteenth rank in the Large West Bank Pit. Bluefish and lookdown were present in all Pits but only dominant in the Large West Bank Pit; similarly red hake were present but were only dominant in the CAC Pit. It was concluded that although there were some differences in numerical dominance of species between individual Pits, the same assemblage of fish occurred in all three Pits.

Table 15. Fish abundance at Borrow Pit stations, totals for annual survey (numbers per hectare fished).

| LW08 | L*10 | LE19 \| | mean | SE | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 |  |  | II |



Table 15. Continued

|  | 1408 | LW90 | LE19 \| <br> 1 | MEAN | SE | $\begin{aligned} & 11 \\ & 11 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LN SCULP |  |  | 2.5241 | .849 | . 841 | 11 |
|  |  |  | 1 |  |  | 11 |
| Bl SEAbs | 1.600 | 2.625 | 1 | 1.408 | . 764 | II |
|  |  |  | 1 |  |  | 11 |
| GRY SNAP |  |  | 1 |  |  | 11 |
|  |  |  | 1 |  |  | 11 |
| STR BASS |  |  | I |  |  | 11 |
|  |  |  | 1 |  |  | 11 |
| BLUEFISH | 186.615 | 1.562 | 12.269 1 | 66.806 | 59.984 | 11 |
|  |  |  | I |  |  | 11 |
| Crev jck |  | 1.773 | 1 | . 591 | . 591 | 11 |
|  |  |  | 1 |  |  | 11 |
| L00K00w | 53.109 | 11.895 | 4.0391 | 23.012 | 15.215 | 11 |
|  |  |  | \\| |  |  | 11 |
| RH SCAD |  |  | 1 |  |  | 11 |
|  |  |  | 1 |  |  | 11 |
| weakfish | 181.050 | 816.035 | 138.355 \| | 378.480 | 219.124 | 11 |
|  |  |  | 1 |  |  | 11 |
| scup | 50.286 | 8.937 | 145.952 | 68.125 | 40.321 | 11 |
|  |  |  | 1 |  |  | II |
| St mull |  |  | I |  |  | 11 |
|  |  |  | 1 |  |  | 11 |
| n barrac | 1.773 | 2.197 | , | 1.297 | . 656 | 11 |
|  |  |  | , |  |  | 11 |
| BLACKF | 6.959 | 19.523 | 8.9431 | 11.807 | 3.909 | 11 |
|  |  |  | 1 |  |  | II |
| CUWMER | 1.773 | 2.117 | 17.895 \| | 7.262 | 5.318 | 11 |
|  |  |  | 1 |  |  | 11 |
| RCK Cunn |  |  | 1 |  |  | 11 |
|  |  |  | 1 |  |  | 11 |
| am SANDL |  |  | 6.8981 | 2.299 | 2.299 | 11 |
|  |  |  | , |  |  | II |
| EUTERF | 1900.779 | 540.019 | 529.728 | 990.175 | 455.312 | II |
|  |  |  | I |  |  | 11 |
| M Searbn |  |  | 1 |  |  | 11 |
|  |  |  | 1 |  |  | 11 |
| St searb | 83.749 | 9.473 | 17.398 \| | 13.549 | 2.290 | 11 |
|  |  |  | 1 |  |  | 11 |
| EMM FLND | 1.727 | 1.312 | 1.5261 | 1.522 | . 120 | 11 |
|  |  |  | I |  |  | 11 |
| fluke | 81.572 | 95.576 | 44.4661 | 73.879 | 15.268 | II |
|  |  |  | I |  |  | II |
| 4SP FLND | 17.268 | 6.350 | 4.971 | 9.530 | 3.890 | II |
|  |  |  | I |  |  | II |
| HIMDOAPM | 38.730 | 164.301 | 88.393 \| | 97.168 | 36.507 | 11 |
|  |  |  | 1 |  |  | 11 |
| We FLINO | 13.195 | 224:429 | 551.878 | 263.167 | 156.706 | 11 |
|  |  |  | 1 |  |  | 11 |
| M PUFFER |  |  | I |  |  | 11 |

Table 16. Fish abundance at Borrow Pit stations, by rank, totals for annual survey.

|  | Lnos | Lw10 | LE19 | $\left.\right\|^{\text {Mean }}$ |
| :---: | :---: | :---: | :---: | :---: |
| SNAOGF | 15 | 19 | 18 | 120 |
|  |  |  |  | 1 |
| ll skate |  |  |  | 1 |
|  |  |  |  | I |
| $\checkmark$ Skate |  |  | 24 | \| 29.5 |
|  |  |  |  | I |
| th skate |  |  | 26.5 | 133 |
|  |  |  |  | 1 |
| at sturg |  | 25.5 |  | \| 31.5 |
|  |  |  |  | 1 |
| amer eel |  |  |  | I |
|  |  |  |  | 1 |
| COW EEL |  |  |  | I |
|  |  |  |  | 1 |
| bs herrg | 2 | 1 | 4 | 11 |
|  |  |  |  | 1 |
| alewife | 3 | 2 | 1 | 2 |
|  |  |  |  | 1 |
| AM SHAD | 4 | 5 | 7 | 6 |
|  |  |  |  | 1 |
| At MENHD | 19 | 18 | 24 | 121 |
|  |  |  |  | 1 |
| at herrg | 24 | 24 | 28.5 | 126 |
|  |  |  |  | 1 |
| RND MERR |  |  |  | I |
|  |  |  |  | 1 |
| C00sEF |  |  |  | 1 |
|  |  |  |  | 1 |
| SL MaKE | 14 | 10 | 8 | 111 |
|  |  |  |  | 1 |
| SPI maxe | 17 | 11 | 15 | 113 |
|  |  |  |  | , |
| y/r make | 26 | 8 | 12 | \| 12 |
|  |  |  |  | I |
| cornetf |  |  |  | 1 |
|  |  |  |  | I |
| a silver | 19 | 16 | 10 | 114 |
|  |  |  |  | I |
| 3 stickt |  |  |  | 1 |
|  |  |  |  | I |
| beamorse |  |  |  | 1 |
|  |  |  |  | I |
| PIPEFISM | 19 |  | 22 | 123 |
|  |  |  |  | 1 |
| cenaby |  | 23 | 28.5 | 128 |

Table 16. Continued

|  | LWOB | LW10 | LE11 | $1$ | mean | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LN SCULP |  |  | 24 | 1 | 29.5 | 11 |
|  |  |  |  | 1 |  | 11 |
| bl seabs | 25 | 20 |  | 1 | 26 | 11 |
|  |  |  |  | I |  | 11 |
| Gry smap |  |  |  | I |  | 11 |
|  |  |  |  | 1 |  | 11 |
| Str bass |  |  |  | 1 |  | 11 |
|  |  |  |  | 1 |  | 11 |
| Bluefish | 5 | 27 | 16 | 1 | 10 | 11 |
|  |  |  |  | I |  | 11 |
| crev jck |  | 25.5 |  | 1 | 31.5 | 11 |
|  |  |  |  | 1 |  | 11 |
| LOOKDOWN | 8 | 13 | 21 | 1 | 15 | 11 |
|  |  |  |  | 1 |  | 11 |
| re SCAD |  |  |  | I |  | 11 |
|  |  |  |  | I |  | 11 |
| meakfish | 6 | 3 | 6 | 1 | 4 | 11 |
|  |  |  |  | 1 |  | 11 |
| scup | 9 | 15 | 5 | 1 | 9 | 11 |
|  |  |  |  | 1 |  | 11 |
| St MULL |  |  |  | 1 |  | 11 |
|  |  |  |  | 1 |  | 11 |
| - barrac | 21.5 | 21.5 |  | 1 | 27 | 11 |
|  |  |  |  | 1 |  | 11 |
| blackf | 16 | 12 | 97 | 1 | 17 | 11 |
|  |  |  |  | 1 |  | 11 |
| CUNMER | 21.5 | 21.5 | 13 | 1 | 19 | 11 |
|  |  |  |  | 1 |  | 11 |
| RCK Cum |  |  |  | 1 |  | 11 |
|  |  |  |  | 1 |  | 11 |
| an sandl |  |  | 19 | 1 | 22 | 11 |
|  |  |  |  | 1 |  | 11 |
| entterf | 1 | 4 | 3 | 1 | 3 | 11 |
|  |  |  |  | 1 |  | 11 |
| ( Searbs |  |  |  | I |  | 11 |
|  |  |  |  | 1 |  | 11 |
| st searb | 12 | 14 | 14 | 1 | 16 | 11 |
|  |  |  |  | 1 |  | 11 |
| Sen flw | 23 | 28 | 26.5 | 1 | 25 | 11 |
|  |  |  |  | 1 |  | 11 |
| fluke | 7 | 9 | 11 | 1 | 8 | 11 |
|  |  |  |  | 1 |  | 11 |
| 4 4P FLND | 11 | 17 | 20 | I | 18 | 11 |
|  |  |  |  | 1 |  | 11 |
| MIMOOXP | 10 | 7 | $\bigcirc$ | 1 | 7 | 11 |
|  |  |  |  | 1 |  | 11 |
| U FLMD | 13 | 6 | 2 | 1 | 5 | 11 |
|  |  |  |  | , |  | 11 |
| - muffer |  |  |  | 1 |  | 11 |

Diversity parameters for the catches in each Pit station, together with average parameter values are summarized in Table 17. Diversity indices were all largest for LEll, the East Bank Pit, this is because the greatest number of species were taken at that station, although the catch numbers were relatively low. These parameters will be used below to make comparison between the populations within the Pits and populations on associated shoals, as well as with populations in the shipping channels.

Comparisons of Pits Populations with Populations on Shoals

To compare the populations of fish in the Pits with the fish in associated shoal areas, two alternate data sets for shoal stations were examined. The shoal stations chosen were those most close to each Borrow Pit, the two sets of stations were: a) RB08 (c.f. LW10) RB11 (c.f. LW08) and LE07 (c.f. LE11); b) RB04 (c.f. LW10), RB11 (c.f. LW08) and LEO6 (c.f. LE11). It is noted that RBll occurs in each set because there was no second alternate station sufficiently close to the Large West Bank Pit (LW08).

There was considerable similarity in the fish fauna in both sets of shoal stations, the ten dominant fishes were the same ten species in both sets although their ordering changed to some extent. A total of 19 species was caught in the first set of shoal stations and 17 species were caught at the second set.

First set of shoal stations compared with Pits

The fish taken over the annual surveys in the shoal stations RB08, RB11 and LEO6 are given in Table 18. For ease of comparisons the catches of fish in the three Borrow Pits are also given in the Table. A total of 404 fish belonging to 19 species were caught at these three shallow stations. These species catches have also been ranked by abundance and are listed in Table 19, again the species caught in the Pit stations have been ranked in for comparison. The catches of fish were larger and more diverse on average in the Pits than on the shoals, more than ten times as many fish, belonging to 28 species, were taken in the Pits.

Table 17. Diversity parameters for Borrow Pit stations.

*TOT CPUE $=$ Total number fish caught (as number per hectare fished)
NUM SP = Total number of fish species caught
$H^{*}=$ Shannon Weaver index
SIMP D = Simpson's index of diversity
MSR = Margalef's species richness index PIE = Probability of interspecific encounter

Table 18. Fish abundance at Borrow Pit stations compared with first set shoal stations (numbers per hectare fished).

| LW08 | 1*10 | LE11 | MEAN | SE | LE06 | mean | SE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |



|  | LW08 | LW90 | LEY 1 <br> \| | MEAN | SE | $\begin{aligned} & 11 \\ & 11 \end{aligned}$ | RB08 | RB11 | LE06 | 1 | MEAN | SE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| fulp |  |  | 2.524 \| | . 849 | . 849 | 11 |  |  |  | 1 |  |  |
|  |  |  | 1 |  |  | 11 |  |  |  | 1 |  |  |
| EABS | 1.600 | 2.625 | 1 | 1.408 | . 764 | 11 | 1.988 |  |  | \| | . 663 | . 663 |
|  |  |  | 1 |  |  | 11 |  |  |  | , |  |  |
| SNAP |  |  | 1 |  |  | 11 |  |  |  | 1 |  |  |
|  |  |  | \| |  |  | 11 |  |  |  | 1 |  |  |
| BASS |  |  | 1 |  |  | 11 |  | 1.562 | 1.339 | , | . 967 | . 488 |
|  |  |  | 1 |  |  | 11 |  |  |  | 1 |  |  |
| FISH | 186.615 | 1.562 | 12.2411 | 66.806 | 59.984 | 11 | 3.355 | 2.117 | 3.201 | 1 | 2.891 | . 390 |
|  |  |  | \| |  |  | 11 |  |  |  | 1 |  |  |
| JCK |  | 1.773 | 1 | . 591 | . 591 | 11 |  |  |  | I |  |  |
|  |  |  | , |  |  | \\| |  |  |  | 1 |  |  |
| Oown | 53.101 | 11.895 | 4.0391 | 23.012 | 15.215 | \|| |  | 1.600 | 2.117 | 1 | 1.239 | . 637 |
|  |  |  | \| |  |  | 11 |  |  |  | 1 |  |  |
| CAD |  |  | 1 |  |  | 11 | 1.773 |  | 3.201 | I | 1.658 | . 926 |
|  |  |  | \| |  |  | \\| |  |  |  | 1 |  |  |
| FISH | 181.050 | 816.035 | 138.355 | 378.480 | 219.124 | 11 |  | 2.117 |  | 1 | . 706 | . 706 |
|  |  |  |  |  |  | 11 |  |  |  | 1 |  |  |
|  | 50.286 | 8.937 | 145.152 | 68.125 | 40.321 | 11 | 83.342 | 23.851 | 4.233 | 1 | 37.142 | 23.784 |
|  |  |  |  |  |  | 11 |  |  |  | , |  |  |
| ULL |  |  | \| |  |  | 11 |  | 1.682 |  | , | . 561 | . 561 |
|  |  |  |  |  |  | 11 |  |  |  | I |  |  |
| RRAC | 1.773 | 2.117 | \| | 9.297 | . 656 | II |  |  |  | 1 |  |  |
|  |  |  |  |  |  | 11 |  |  |  | I |  |  |
| KF | 6.951 | 19.523 | 8.948 | 11.807 | 3.901 | 11 | 27.553 | 20.011 |  | 1 | 15.855 | 8.221 |
|  |  |  |  |  |  | 11 |  |  |  | \| |  |  |
| HER | 1.773 | 2.117 | 17.895 | 7.262 | 5.318 | \|| | 7.954 |  |  | I | 2.659 | 2.651 |
|  |  |  | \| |  |  | 11 |  |  |  | I |  |  |
| GUNN |  |  | I |  |  | I\| |  | 9.426 |  | \| | .475 | . 475 |
|  |  |  |  |  |  | 11 |  |  |  | I |  |  |
| SANDL |  |  | 6.898 \| | 2.299 | 2.299 | \|| |  |  | 119.938 | 1 | 39.979 | 39.979 |
|  |  |  |  |  |  | 11 |  |  |  | I |  |  |
| ERF | 1900.779 | 540.019 | 529.728 | 990.175 | 455.312 | I\| | 179.220 | 43.769 | 33.936 | 1 | 85.642 | 46.875 |
|  |  |  |  |  |  | 11 |  |  |  | 1 |  |  |
| EARBN |  |  | I |  |  | 11 |  |  | 1.600 | 1 | . 533 | . 533 |
|  |  |  |  |  |  | 11 |  |  |  | 1 |  |  |
| SEARB | 13.749 | 9.475 | 17.398 | 13.541 | 2.290 | 11 | 3.547 |  |  | I | 1.182 | 1.182 |
|  |  |  |  |  |  | 11 |  |  |  | I |  |  |
| FLND | 9.727 | 1.312 | 1.526 | 1.522 | . 120 | 11 |  | 1.426 |  | I | . 475 | . 475 |
|  |  |  | 1 |  |  | 11 |  |  |  |  |  |  |
| K | 81.572 | 95.576 | 44.4661 | 73.871 | 15.248 | \|| | 41.253 | 30.698 | 95.830 | 1 | 29.260 | 7.374 |
|  |  |  | \| |  |  | 11 |  |  |  | I |  |  |
| FLND | 17.268 | 6.350 | 4.971 \| | 9.530 | 3.890 | 11 |  |  |  | 1 |  |  |
|  | . |  | I |  |  | 11 |  |  |  | 1 |  |  |
| OUPN | 38.750 | 164.301 | 88.393 | 97.148 | 36.507 | 11 | 19.263 | 6.390 | 14.144 | 1 | 13.266 | 3.742 |
|  |  |  | 1 |  |  | 11 |  |  |  | 1 |  |  |
| LIND | 13.195 | 224.429 | 551.878 | 263.167 | 156.706 | 11 | 215.011 | 44.777 | 30.669 | 1 | 96.819 | 59.236 |
|  |  |  | 1 |  |  | 11 |  |  |  | I |  |  |
| Jf FER |  |  | 1 |  |  | II | 2.343 |  |  | 1 | . 781 | . 781 |

Table 19. Fish abundance at Borrow Pit stations compared with first set shoal stations, by rank.

|  | LW08 | 1w10 | LE11 | mean | $\begin{aligned} & 11 \\ & 11 \end{aligned}$ | RB08 | RB19 | LEO6 | MEANS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| bof | 15 | 19 | 18 | 20 | 11 |  |  |  |  |
|  |  |  |  |  | 11 |  |  |  |  |
| Kate |  |  |  |  | 11 |  |  |  |  |
|  |  |  |  |  | 11 |  |  |  |  |
| RTE |  |  | 24 | 29.5 | 11 |  |  | 7 | 17 |
|  |  |  |  |  | 11 |  |  |  |  |
| KATE |  |  | 26.5 | 33 | 11 |  |  |  |  |
|  |  |  |  |  | 11 |  |  |  |  |
| furg |  | 25.5 |  | 31.5 | 11 |  |  |  |  |
|  |  |  |  |  | 11 |  |  |  |  |
| EEL |  |  |  |  | 11 |  |  |  |  |
|  |  |  |  |  | 11 |  |  |  |  |
| EEL |  |  |  |  | 11 |  |  |  |  |
|  |  |  |  |  | 11 |  |  |  |  |
| ERRG | 2 | 1 | 4 | 1 | 11 | 9 | 1 | 9 | 7 |
|  |  |  |  |  | 11 |  |  |  |  |
| 1 FE | 3 | 2 | 1 | 2 | 11 | 20 | 15.5 |  | 19 |
|  |  |  |  |  | 11 |  |  |  |  |
| HAD | 4 | 5 | 7 | 6 | 11 | 4 | 7 | 8 | 6 |
|  |  |  |  |  | 11 |  |  |  |  |
| ENHD | 19 | 18 | 24 | 21 | 11 | 20 |  |  | 27.5 |
|  |  |  |  |  | 11 |  |  |  |  |
| IERRG | 24 | 24 | 28.5 | 24 | 11 |  |  |  |  |
|  |  |  |  |  | 11 |  |  |  |  |
| HERR |  |  |  |  | 11 |  |  |  |  |
|  |  |  |  |  | 11 |  |  |  |  |
| SEF |  |  |  |  | \| 1 |  |  |  |  |
|  |  |  |  |  | I\| |  |  |  |  |
| TAKE | 14 | 10 | 8 | 11 | 11 | 10 |  | 12 | 11 |
|  |  |  |  |  | 11 |  |  |  |  |
| HAKE | 17 | 11 | 15 | 13 | 11 | 16 | 10 |  | 14 |
|  |  |  |  |  | 11 |  |  |  |  |
| HAXE | 26 | 8 | 12 | 12 | 11 | 20 |  |  | 27.5 |
|  |  |  |  |  | II |  |  |  |  |
| IET 7 |  |  |  |  | 11 | 17.5 |  |  | 25.5 |
|  |  |  |  |  | II |  |  |  |  |
| IVER | 19 | 16 | 10 | 14 | 11 | 8 | 8 |  | 10 |
|  |  |  |  |  | 11 |  |  |  |  |
| 1 CKL |  |  |  |  | 11 | 23 |  |  | 31 |
|  |  |  |  |  | 11 |  |  |  |  |
| IORSE | - |  |  |  | 11 |  | 11 |  | 22 |
|  |  |  |  |  | 11 |  |  |  |  |
| F1SH | 19 |  | 22 | 23 | 11 |  |  |  |  |
|  |  |  |  |  | 11 |  |  |  |  |
| BY |  | 23 | 28.5 | 28 | II | 14 | 14 |  | 16 |

Table 19. Continued.


Of the ten dominant species in the Pits, seven species were also dominant at the shoal stations and included blueback herring, American shad, winter flounder and windowpane flounders, fluke, butterfish and scup. Alewives ranked second by abundance in the Pits, but very few were caught in the shallows. Likewise juvenile weakfish and bluefish migrating from the estuary through deeper areas in late summer were abundant in the Pits, but few in the shoals. Conversely, American sandlance and Atlantic silversides were dominant at the shallow stations but few were caught in the deeper Pits; blackfish were also dominants in the shoals, often being associated with shellfish beds.

The diversity parameters for the catches at the Pit and shoal stations together with average parameter values, are summarized in Table 20. From examination of the Table it is obvious that the populations in the Pits are several times more abundant and contain one-third more species than at the shoal stations, - usage of the Pits by the fish populations is clearly much greater, per unit area of the seabed.

Alternate set of shoal stations compared with the Pits

The alternate set of shoal stations associated with the Borrow Pits were RB04, RB11 and LE07 and the catches made in them are given in Table 20. For ease of comparisons the catches of fish in the three Borrow Pits are again given in Table 21. A total of 1,117 fish belonging to 17 species were caught at the three alternate shoal stations. The species catches have also been ranked by their abundance and ranks are listed in Table 22, which also include for comparison the ranked catches in the Pits. The same species comprised the ten dominants at both sets of shoal stations and so the same comments apply as for the first set of shoal stations, above.

The diversity parameters for the catches in the Pits and at the alternate set of shoal stations, together with average parameter values are summarized in Table 23. Examination of the Table again shows that the catches in the Pits were several times abundant and contained more than $50 \%$ more species than the second set of associated shoal stations. The same conclusion must be drawn, that usage by fish populations of seabed in the Pits is clearly greater than usage of the associated shoal areas.

Table 20. Diversity parameters for Borrow Pit stations and first set of shoal stations.


Table 21. Fish abundance at Borrow Pit stations compared with alternate set shoal stations (numbers per hectare fished).

|  | Lw08 | 1w10 | LE19 \| | MEAN | SE | $\begin{aligned} & 11 \\ & 11 \end{aligned}$ | RBO4 | RB19 | LE07 | mean | SE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OGF | 8.527 | 3.890 | 8.140 I | 6.852 | 1.485 | $\begin{aligned} & 11 \\ & 11 \end{aligned}$ |  |  | 2.430 | . 810 | . 810 |
|  |  |  |  |  |  | \|| |  |  |  |  |  |
| KATE |  |  | I |  |  | 11 |  |  | 1.727 | . 576 | . 576 |
|  |  |  | 1 |  |  | 11 |  |  |  |  |  |
| ATE |  |  | 2.5241 | . 841 | . 841 | 11 |  |  |  |  |  |
|  |  |  | 1 |  |  | 11 |  |  |  |  |  |
| KATE |  |  | 1.5261 | . 509 | . 509 | 11 |  |  |  |  |  |
|  |  |  | । |  |  | 11 |  |  |  |  |  |
| TURG |  | 1.773 | I | . 591 | . 591 | 11 |  |  |  |  |  |
|  |  |  | 1 |  |  | 11 |  |  |  |  |  |
| EEL |  |  | I |  |  | 11 |  |  |  |  |  |
|  |  |  | I |  |  | 11 |  |  |  |  |  |
| EEL |  |  | \| |  |  | 11 |  |  |  |  |  |
|  |  |  | 1 |  |  | \\| |  |  |  |  |  |
| ERRG | 1069.418 | 3535.891 | 229.198 \| | 1611.502 | 992.295 | 11 | 49.459 | 60.841 | 2193.382 | 767.891 | 712.753 |
|  |  |  | - 1 |  |  | II |  |  |  |  |  |
| IFE | 620.426 | 1537.391 | 1286.832 | 1148.216 | 273.628 | 11 | 1.930 | 1.682 |  | 1.204 | . 606 |
|  |  |  | \| |  |  | II |  |  |  |  |  |
| HAD | 363.010 | 246.491 | 135.849 | 248.447 | 65.585 | 11 | 18.975 | 18.787 | 149.981 | 62.581 | 43.700 |
|  |  |  | \| |  |  | 11 |  |  |  |  |  |
| EENHD | 3.454 | 5.680 | 2.524 | 3.886 | . 936 | 11 |  |  | 1.727 | . 576 | . 576 |
|  |  |  | \| |  |  | 11 |  |  |  |  |  |
| IERRG | 1.682 | 1.823 | 1.396 | 1.634 | . 126 | 11 |  |  |  |  |  |
|  |  |  | \| |  |  | 11 |  |  |  |  |  |
| HERR |  |  | \| |  |  | 11 |  |  |  |  |  |
|  |  |  | \| |  |  | 11 |  |  |  |  |  |
| SEf |  |  | I |  |  | 11 |  |  |  |  |  |
|  |  |  | \| |  |  | 11 |  |  |  |  |  |
| HAKE | 10.804 | 71.782 | 92.361 \| | 58.316 | 24.487 | 11 |  |  |  |  |  |
|  |  |  | 1 |  |  | 11 |  |  |  |  |  |
| HAKE | 6.776 | 69.247 | 12.327 \| | 29.450 | 19.963 | 11 | 1.875 | 3.365 |  | 1.747 | . 974 |
|  |  |  | 1 |  |  | 11 |  |  |  |  |  |
| HAKE | 1.426 | 144.613 | 21.275 | 55.771 | 44.789 | 11 |  |  |  |  |  |
|  |  |  | 1 |  |  | 11 |  |  |  |  |  |
| NETF |  |  | , |  |  | 11 |  |  |  |  |  |
|  |  |  | 1 |  |  | 11 |  |  |  |  |  |
| ILVER | 3.454 | 6.689 | 66.1131 | 25.419 | 20.369 | 11 | 29.144 | 16.965 | 2.343 | 16.159 | 7.747 |
|  | . |  | \| |  |  | 11 |  |  |  |  |  |
| TICXL |  |  | \| |  |  | 11 |  |  |  |  |  |
|  |  |  | 1 |  |  | 11 |  |  |  |  |  |
| HORSE |  |  | 1 |  |  | 11 | 8.705 | 2.853 |  | 3.853 | 2.562 |
|  |  |  | 1 |  |  | 11 |  |  |  |  |  |
| EFISH | 3.454 |  | 2.983 | 2.146 | 1.081 | 11 | 3.977 |  |  | 1.326 | 1.326 |
|  |  |  | 1 |  |  | 11 |  |  |  |  |  |
| BBY |  | 1.930 | 1.396 | 1.109 | . 575 | II | 1.930 | 1.773 | 1.875 | 1.859 | . 046 |

Table 21. Continued.


Table 22. Fish abundance at Borrow Pit stations compared with alternate set shoal stations, by rank.


Table 22. Continued.


Table 23. Diversity parameters for Borrow Pit stations and alternate set of shoal stations.

Lw08
Lw10 LE11 | MEAN
SE \| \|
RB04
RB19
LEOT MEAN
SE

| PUE | 4642.620 | 7535.248 | 3438.848 | \| 5205.572 | 1215.568 | 11 | 280.568 | 287.692 | 2784.127 | 1117.462 | 833.335 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | \| |  | \|| |  |  |  |  |  |
| SP | 26.000 | 28.000 | 29.000 | \| 27.667 | . 882 | 11 | 18.000 | 20.000 | 14.000 | 17.333 | 1.764 |
|  |  |  |  | , |  | 11 |  |  |  |  |  |
|  | 1.772 | 1.710 | 2.065 | 11.849 | . 109 | 11 | 2.410 | 2.336 | . 825 | 1.857 | . 516 |
|  |  |  |  | I |  | 11 |  |  |  |  |  |
| D | 4.027 | 3.549 | 4.982 | 14.186 | . 421 | 11 | 8.786 | 8.269 | 1.577 | 6.211 | 2.322 |
|  |  |  |  | 1 |  | 11 |  |  |  |  |  |
|  | 2.961 | 3.024 | 3.439 | 3.141 | . 150 | 11 | 3.016 | 3.356 | 1.639 | 2.670 | . 525 |
|  |  |  |  | 1 |  | 11 |  |  |  |  |  |
|  | . 752 | . 718 | . 799 | . 756 | . 024 | 11 | . 886 | . 879 | . 366 | . 710 | . 172 |
|  |  |  |  | 1 |  | 11 |  |  |  |  |  |

Conclusion concerning shoal areas

Catches in the shoal areas in the vicinity of the Borrow Pits were much less abundant than in the Pits, less than $25 \%$ of the Pit catches. The shoal stations were less diverse with fewer species and there were some changes in species dominance. Blackfish, American sandlance and Atlantic silversides were important on the shoals although not in the Pits, conversely species important in the Pits but not on the shoals were alewife, juvenile weakfish and juvenile - bluefish.

It is quite clear from the foregoing analysis that the shoal areas in the vicinity of the Borrow Pits are used much less by the fish community of the Lower Bay/Raritan Bay than are the Pits themselves. Indeed inspection of fish catches at all 25 shoal stations ( 30 ft ) deep, in the survey area, Figure 12 , shows that in no case was the catch more abundant than in the Pits. Diversity was greater in the Pits, of the 25 shoal stations only two (LE1O and RBO1) contained as many species, twenty-seven, as the least diverse Pit (LW08), Figure 13.

Comparison of Populations between Pits and the Shipping Channels

The three channel stations which are closest to the Borrow Pits are ANO3 for the Large West Bank Pit (LW08), ANO1 for the East Bank Pit (LE11) and RB07 for the CAC Pit (LW1O), Figure 4. About the same number of fish species was taken in all of the channel stations, 26,24 and 25 species in ANO1, ANO3 and RB07, respectively.

The total catches of different fish species taken over the annual cycle at each of the channel stations are given in Table 24; the catches made in the same period at each of the Pit stations are given in the same Table for easy reference. The catches for the three channel stations have been combined and expressed as averages in Table 24, and the Pit station averages are also given. In a simplified presentation, the species catches have been ranked and listed in Table 25; the catch averages for the three stations combined have also been ranked and listed as mean ranks in the Table. Considering the ten most

Table 24. Fish abundance at Borrow Pit stations compared with channel stations (numbers per hectare fished).

|  | LW08 | LW10 | LE19 \| |  |  | $\begin{aligned} & 11 \\ & 11 \end{aligned}$ | ANO1 | ANO3 | RB07 | MEAN | SE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PGF | 8.527 | 3.890 | 8.1401 | 6.852 | 1.485 | 11 | 2.343 | 5.635 |  | 2.659 | 9.634 |
|  |  |  |  |  |  | 11 |  |  |  | 1 |  |
| ATE |  |  | \| |  |  | 11 |  |  |  | \| |  |
|  |  |  | 1 |  |  | 11 |  |  |  | \| |  |
| TE |  |  | 2.5241 | . 841 | . 841 | 11 | 2.625 |  |  | 1.875 | . 875 |
|  |  |  | \| |  |  | II |  |  |  | 1 |  |
| kATE |  |  | 1.526 \| | . 509 | . 509 | I\| | 1.988 |  |  | 1.633 | . 633 |
|  |  |  | 1 |  |  | II |  |  |  | \| |  |
| furg |  | 1.773 | I | . 591 | . 591 | 11 |  |  |  | 1 |  |
|  |  |  | 1 |  |  | II |  |  |  | \| |  |
| EEL |  |  | I |  |  | 11 |  |  | 1.773 | \| . 591 | . 591 |
|  |  |  | 1 |  |  | 11 |  |  |  | , |  |
| EEL |  |  | \| |  |  | 11 |  |  | 1.988 | 1.663 | . 663 |
|  |  |  | I |  |  | 11 |  |  |  | \| |  |
| ERRG | 1069.418 | 3535.891 | 229.198 \| | 1611.502 | 992.295 | 11 | 60.782 | 108.838 | 566.981 | \| 245.534 | 161.321 |
|  |  |  | \| |  |  | 11 |  |  |  |  |  |
| 1 FE | 620.426 | 1537.391 | 1286.832 | 1148.216 | 273.628 | 11 | 2033.800 | 610.540 | 191.081 | \| 918.474 | 576.000 |
|  |  |  | \| |  |  | 11 |  |  |  |  |  |
| HAD | 363.010 | 246.491 | 135.841 \| | 248.447 | 65.585 | 11 | 18.601 | 55.930 | 69.816 | 48.116 | 15.292 |
|  |  |  | \| |  |  | 11 |  |  |  |  |  |
| ENHD | 3.454 | 5.680 | 2.524 | 3.886 | . 936 | 11 | 172.521 | 16.633 |  | 163.051 | 54.945 |
|  |  |  | \| |  |  | II |  |  |  |  |  |
| ERRG | 1.682 | 1.823 | 1.3961 | 1.634 | . 126 | \|| |  | 2.916 |  | \| . 972 | . 972 |
|  |  |  | \| |  |  | 11 |  |  |  | \| |  |
| HERR |  |  | I |  |  | 11 |  |  |  | 1 |  |
|  |  |  | 1 |  |  | 11 |  |  |  | , |  |
| EF |  |  | 1 |  |  | 11 | 3.947 |  |  | 19.316 | 1.316 |
|  |  |  | I |  |  | 11 |  |  |  | , |  |
| AKE | 10.804 | 71.782 | 92.361 | 58.316 | 24.487 | 11 | 41.004 | 29.427 | 12.414 | 27.615 | 8.303 |
|  |  |  | \| |  |  | 11 |  |  |  | 1 |  |
| Hake | 6.776 | 69.247 | 12.327 \| | 29.450 | 19.963 | 11 | 18.959 | 1.640 | 15.843 | \| 12.147 | 5.330 |
|  |  |  | । |  |  | II |  |  |  | 1 |  |
| HAKE | 1.426 | 144.613 | 21.275 | 55.771 | 44.789 | 11 | 5.965 | . | 24.641 | \| 10.202 | 7.422 |
|  |  |  | \| |  |  | 11 |  |  |  | \| |  |
| UETF |  |  | \| |  |  | II |  |  |  | 1 |  |
|  |  |  | , |  |  | 11 |  |  |  | \| |  |
| LVER | . 3.454 | 6.689 | 66.1131 | 25.419 | 20.369 | 11 | 2.987 | 5.559 |  | \| 2.582 | 1.617 |
|  |  |  | 1 |  |  | I\| |  |  |  | 1 |  |
| IICKL |  |  | I |  |  | 11 |  |  |  | 1 |  |
|  |  |  | 1 |  |  | II |  |  |  | 1 | - |
| 1ORSE |  |  | I |  |  | 11 |  |  | 1.988 | 1.663 | . 663 |
|  |  |  | I |  |  | 11 |  |  |  | 1 |  |
| FISH | 3.454 |  | 2.983 \| | 2.146 | 1.081 | 11 |  |  | 3.863 | 11.288 | 1.288 |
|  |  |  | , |  |  | II |  |  |  | 1 |  |
|  |  | 1.930 | 1.3961 | 1.109 | . 575 | \\| | 2.853 |  | 6.849 | 13.234 | 1.986 |

Table 24. Continued.


Table 25. Fish abundance at Borrow Pit stations compared with channel stations, by rank.

LW08

| LWIO LEM1 | MEAN | $\\|$ |
| :--- | :--- | :--- | :--- |
|  | $\|\mid$ |  |

ANO1
anO3
RB07
MEANS


Table 25. Continued.

LW08 LW10

LE19 | MEAN ||
II ANO1 ANO3 RBO7
MEANS

| 24 |  |
| :---: | :---: |
| 20 |  |
|  |  |
| 27 | 16 |
| 25.5 | 21 |
| 13 | 6 |
| 3 | 5 |



Table 26. Diversity parameters for Borrow Pit stations and for channel stations.


| 4642.620 | 7535.248 | 3438.848 | 5205.572 | 1215.568 | $\\|$ | 3601.902 | 1855.234 | 2076.057 | 2511.064 | 549.131 |
| ---: | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 26.000 | 28.000 | 29.000 | 27.667 | .882 | $\\|$ | 26.000 | 24.000 | 25.000 | 25.000 | .577 |
| 1.772 | 1.710 | 2.065 | 1.849 | .109 | $\\|$ | 1.668 | 1.817 | 2.195 | 1.893 | .157 |
| 4.027 | 3.549 | 4.982 | 4.186 | .421 | $\\|$ | 2.901 | 4.226 | 5.892 | 4.340 | .865 |
| 2.961 | 3.024 | 3.439 | 3.149 | .150 | $\\|$ | 3.053 | 3.056 | 3.142 | 3.218 | .023 |
| .752 | .718 | .799 | .756 | .024 | $\\|$ | .655 | .763 | .830 | .749 | .051 |

abundant species as dominants, seven species are dominants on average in both the Pit and in the channel stations, they include the three river herrings, the flounders, fluke, windowpane and winterflounders, and butterfish. Weakfish and scup which are dominant in the Pits were also near dominants in the channels ranking twelfth and eleventh, respectively, Atlantic menhaden and striped searobin were ranked seventh and eight respectively in the channel average catches but these relatively high catches were due to large catches of juvenile menhaden at ANO1 only and large catches of newly metanorphosed searobin during summer at RBO7 only, otherwise the catches of these species were not high in the channels.

The different diversity parameters for the fish populations caught at the three channel stations, together with the values for the Pit stations are summarized in Table 26. There were twice as many fish caught on average in the Pit stations as in the channels, with about the same numbers of species. The different diversity indices were all very similar for both Pit and channel stations.

Conclusions from comparison with channel stations

The comparisons of catches between the Pit stations and the channel stations closest to them showed close similarities in species composition, dominance and diversity, although fish were about twice as abundant on average in the Pit. This similarity between the fish communities in the Borrow Pits and the communities at all of the channel stations is clearly demonstrated by the results of the classification and cluster analysis (Figures 9 and 10), in which all three Pit stations were included in group 2 together with all of the channel stations. (ANO1, ANO3, ASO1, AS03, RB06, RBO7, IRO6, IRO7) in the survey area.
Barcede in frout

DUE DATE


[^0]:    * $R=$ Resident species $S=$ species only occurs once in surveys.

[^1]:    * Percent Average Survey $=\frac{\text { Annual average catch per station in selected low use areas } x 100}{\text { Annual average catch per station for entire survey area }}$

