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Abstract—We investigate the nature of bright radio sources with known radio spectra in the direction
of the nearby cluster of galaxies A569 (z = 0.0193). The optical identifications of the sources show that
45% of these radio sources are associated with compact galaxies. A substantial fraction of these galaxies
have active nuclei, with the radio emission concentrated toward the galactic center. Some of the cluster
galaxies have radio halos, with appreciably weaker radio powers and spectral indices α = 0.95 ± 0.2. We
compute the magnetic fields in the nuclei and halos of the galaxies for the adopted distance to A569.
As expected, the magnetic fields in the galactic halos make a smooth transition to the intergalactic
field, while the magnetic fields in the central regions of the galaxies rise sharply toward the nucleus.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It has been established [1] that galaxies in the
region of the cluster A569 (z = 0.0193) are most
likely gravitationally bound with three high-velocity
subclusters andmake up a “final” relaxed system. Ve-
locities were computed for 41 members of this system
by Beers et al. [1].

In 1994, we investigated a region more than
40 square degrees in size in the vicinity of A569
and obtained a catalog of 212 galaxies concentrated
toward the cluster A569 and the three nearest sub-
clusters [2]. It turned out that 9% of these have weak
radio emission, emitted predominantly by their nuclei.

A multi-faceted study of the character of the radio
emission of sources in the vicinity of A569 revealed
a group of powerful radio sources with nonthermal
spectra. These objects are not associated with the
galaxies in our catalog [2], making a study of their
nature of considerable interest. We discovered more
than 100 such powerful radio sources near A569 and
the three nearest subclusters, for which we have de-
termined radio spectra and obtained optical identifi-
cations with relatively weak, predominantly optically
compact galaxies.

In this paper, we investigate this population of
objects. In Section 2, we present the results of optical
identifications and of our estimates of spectral indices
and magnetic-field strengths. The distance to the
radio sources was taken to be 60 Mpc during the
calculation of themagnetic fields. Section 3 discusses
the characteristics of these objects and analyzes the
distribution of their radio brightness in the optical
galaxies.
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2. RADIO PROPERTIES OF THE OBJECTS
AND THEIR OPTICAL IDENTIFICATIONS

We identified a group of bright radio sources in
the studied region (RA(1950.0) = 06h57m− 07h40m,
Dec(1950.0) = +45◦ ... +51◦), for which we con-
structed spectra in the frequency interval 151–
4850 MHz using the data of the three catalogs [3–5].
The range of spectral indices for these objects is fairly
broad: from α = 0.18 to α = 1.3. The objects fell into
two populations, depending on their spectral indices
and the size of the radio-emitting region relative to the
optical galaxy.We propose that these two populations
reflect different evolutionary stages, as is suggested
by the differences in their properties. The histogram
of radio spectral indices (figure) contains two groups
of objects, which, as we will show below, also have
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Distribution of spectral indices for galaxies with (a) radio
nuclei and (b) radio halos.
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Table 1

No. RA (1950) DEC (1950) P , mJy θ1 θ2 Т ε, % H , µOe α R θ 1 − b/a

1 6h56m35s.3 +48◦4′42
′′
.8 81.3 2

′′
.74 1

′′
.55 p 8.1 0.82 21m. 21 3

′′
.1 0.18

2 6 57 36.4 +49 25 12.8 22.4 3.33 2.49 h 64 2.8 1.05 18.12 7.1 0.10
3 6 58 4.9 +50 35 3.6 22.3 9.53 7.90 h 56 0.7 1.3 19.87 3.5 0.21
4 6 58 3.6 +50 35 59.9 8.7 7.61 3.39 p 84 2.8 0.69 15.02 10.8 0.06
5 6 58 11.0 +50 50 19.3 495.5 1.46 0.82 n 30. 0.74 18.16 6.7 0.11
6 6 58 57.0 +50 6 36.4 197.3 17.68 6.94 h 100 2.7 0.76 19.59 4.4 0.29
7 7 0 10.6 +48 28 23.8 81.3 6.22 2.16 h 50 3.7 0.87 18.80 5.3 0.18
8 7 0 26.6 +47 5 25.3 823.0 1.04 0.65 n 25. 0.43 19.85 4.7 0.55
9 7 0 29.6 +50 34 55.2 681.0 2.32 1.36 n 50. 0.49 14.46 11.8 0.04

10 7 0 30.4 +50 34 38.6 2.5 9.10 3.32 p 1.5 0.76 17.82 6.6 0.05
11 7 0 56.7 +46 34 45.2 84.1 1.09 0.94 n 10. 0.91 14.06 11.9 0.04
12 7 2 22.2 +47 31 58.9 109.9 5.26 2.33 n 5.8 0.78 15.66 14.9 0.52
13 7 2 38.6 +46 7 40.0 18.5 6.28 3.11 p 4.1 0.67 19.13 4.5 0.07
14 7 3 5.9 +46 52 36.6 1589.9 0.86 0.58 n 70. 0.70 14.00 11.8 0.03
15 7 3 45.8 +50 5 54.6 598.7 1.91 0.52 n 20. 0.82 17.77 6.8 0.15
16 7 5 5.9 +47 25 55.8 175.4 2.02 0.00 n 20. 0.62 21.26 2.6 0.04
17 7 5 21.5 +48 41 46.0 220.0 4.74 3.1 n 40 30. 0.28 8.75 46.8 0.07
18 7 5 44.2 +46 18 35.2 42.1 4.37 3.08 p 40 2.4 1.1 19.52 4.3 0.20
19 7 5 46.0 +46 18 25.9 18.2 4.34 3.06 n 1.9 1.1 16.96 7.7 0.11
20 7 6 2.7 +48 1 39.9 136.7 2.67 1.58 n 7.4 0.92 19.06 4.8 0.14
21 7 6 13.3 +50 8 2.1 2.1 6.66 4.51 h 96 0.8 1.1 16.46 8.6 0.04
22 7 6 15.3 +50 8 1.5 10.9 2.93 1.42 h 81 2.3 1.1 16.12 10.3 0.04
23 7 7 7.0 +49 29 1.5 289.5 1.11 0.59 n 150. 0.27 19.19 4.5 0.10
24 7 8 46.7 +48 11 16.1 186.9 4.36 1.17 h 56 5.6 0.91 16.93 7.8 0.03
25 7 9 13.8 +49 46 57.1 14.0 4.20 0.68 h 66 2.5 0.98 19.45 4.1 0.16
26 7 9 20.6 +50 58 50.6 153.5 6.44 1.09 n 5.3 0.79 13.95 16.0 0.02
27 7 9 40.9 +48 54 41.8 224.6 9.45 5.33 h 49 2.9 0.95 15.96 9.0 0.04
28 7 10 48.0 +49 32 48.4 99.4 1.31 0.90 n 20. 0.81 19.54 4.6 0.27
29 7 1217.5 +48 57 56.4 286.2 1.67 0.97 n 30. 0.69 19.69 3.8 0.05
30 7 14 22.9 +46 30 55.6 18.7 7.04 3.10 h 57 2.1 0.93 17.55 11.1 0.17
31 7 14 43.3 +47 13 49.1 4.4 10.63 6.18 h 94 1.4 0.79 19.97 3.3 0.16
32 7 14 42.5 +47 13 27.3 30.1 3.57 1.87 n 6.2 0.75 19.09 5.5 0.05
33 7 15 2.5 +46 25 6.3 53.2 2.30 1.92 n 20. 0.47 17.67 10.6 0.27
34 7 15 46.6 +47 24 40.6 145.1 2.95 1.21 p 5.1 1.04 19.72 2.9 0.07
35 7 16 38.6 +47 43 20.7 234.9 2.14 1.20 n 90. 0.18 17.85 7.3 0.05
36 7 17 11.8 +46 20 16.2 131.3 3.91 2.05 h 47 3.9 1.05 20.60 6.0 0.32
37 717 14.6 +46 58 1.1 260.6 1.71 1.04 n 10. 0.91 18.87 6.4 0.21
38 7 18 .5 +45 28 28.7 59.3 2.11 1.23 n 8.7 0.84 19.87 3.2 0.11
39 7 20 53.8 +45 4 24.9 111.6 1.15 0.52 n 30. 0.66 19.27 5.5 0.23
40 7 20 59.9 +47 17 14.1 42.9 0.65 0.00 n 10. 0.96 19.63 4.0 0.11
41 7 21 11.7 +49 4 2.5 35.8 6.55 2.44 h 2.9 0.88 19.67 3.7 0.09
42 7 21 13.1 +49 4 38.1 77.8 6.34 4.92 h 1.7 1.19 19.99 2.9 0.07
43 7 23 18.3 +48 50 14.0 412.6 0.94 0.71 n 150. 0.32 19.36 4.5 0.15
44 7 23 49.8 +47 48 8.8 161.2 4.49 2.16 h 23 4.9 0.94 19.09 4.7 0.014
45 7 24 57.4 +46 46 35.8 106.3 4.04 1.52 h 69 5.5 0.88 18.38 6.4 0.147
46 7 28 38.5 +45 21 19.4 53.0 4.71 1.12 h 1.4 1.34 21.59 3.9 0.43
47 7 31 17.3 +45 14 56.5 65.0 6.85 1.87 n 4.7 0.73 17.62 8.7 0.112
48 7 36 53.8 +47 52 49.5 78.1 1.05 0.82 n 20. 0.70 17.49 8.2 0.064
49 7 37 23.9 +46 25 26.6 60.9 4.72 2.70 n 3.2 1.0 17.09 8.6 0.049
50 7 37 24.9 +46 25 50.2 95.5 13.05 6.02 h 2. 0.92 21.59 3.6 0.33
51 7 39 4.5 +49 0 18.0 45.7 9.02 6.10 h 1.9 0.97 19.49 4.6 0.169
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different optical characteristics, such as their optical
size and magnitude.

The optical identifications were carried out us-
ing the APM maps [6]; a high fraction of identi-
fications was obtained (45%). However, there is a
group of objects (10%) requiring additional study,
since high-resolution observations [5] show a two-
component structure, giving rise to difficulties in their
optical identification. The unidentified radio sources
are predominantly objects with nonthermal spectra
(α = 0.87 ± 0.14) and mean fluxes Ð(1400 MHz) =
170 mJy. It is probable that the radio emission of
these objects is associated with galactic halos and
that it was not possible to obtain optical identifica-
tions for them either due to inaccuracy in their radio
coordinates or because the optical brightness of the
corresponding galaxy is weaker than 22m.

Table 1 presents the coordinates and radio prop-
erties of those radio sources for which we obtained
optical identifications with good accuracy in terms
of coordinate agreement. The columns of this ta-
ble contain (1) an ordinal number for each source;
(2), (3) equatorial coordinates of the radio source at
epoch 1950.0 from [5]; (4) the flux density in mJy
at 1400 MHz [5]; (5), (6) the radio dimensions of
the object in arcseconds [5]; (7) the region of the
galaxy from which the radio emission is radiated: n—
nucleus, p—plane, and h—halo; (8) the fraction ε of
the radio emission in an outer, more extended halo
[4]; (9) the calculated magnetic field in µOe; (10)
the spectral index calculated using the data of [3–5];
(11) the magnitude of the object in the red [6]; (12) the
optical dimensions in arcseconds [16]; and (13) the
ellipticity of the galaxy (1 − b/a) [6], where b/a is the
ratio of the minor and major axes of the ellipse.

The radio observations of the galaxies with various
resolutions and the optical data provide information
about that part of the galaxy predominantly giving rise
to the radio emission (the nucleus, disk, or halo), as
indicated in columns (7) and (8) in Table 1.

The mean spectral index for our sample, α =
0.89 ± 0.2, shows that the radio emission of these
objects is nonthermal and thus could be synchrotron
radiation by relativistic electrons in a uniform mag-
netic field. We calculated the value of the magnetic
field under the natural assumption that the energy
density of the magnetic field cannot exceed the energy
density in cosmic rays [7]. The distance to the radio
galaxies was taken to be 60 Mpc, which corresponds
to the recessional velocity of the cluster A569 and its
three neighboring subclusters. We calculated a mag-
netic field for each radio source, taking into account
its size (Table 1, columns 5, 6) and spectral index
(column 10). The resulting magnetic-field values are
presented in column 9 of Table 1. The magnetic fields
in the galactic halos and intergalactic space of A569
ASTRONOMY REPORTS Vol. 46 No. 11 2002
Table 2

Region H , µOe θrel α

Nucleus-1 81 <0.19 <0.5

Nucleus-2 22 <0.25 0.81

Plane 3.58 1. 0.85

Halo-1 2.28 3. 0.95

Halo-2 1.2 6. 0.98

are similar to estimates obtained for our own Galaxy
[8], in the intergalactic space of the local system
dominated by the Milky Way and the Magellanic
Clouds.

3. CHARACTERISTICS OF THE OBJECTS

As we can see from the results, the fraction of
optical identifications is high. The mean character-
istics of the identified objects also argue in favor of
the identifications obtained. The identified objects are
primarily compact galaxies that are weaker than 15m,
with average sizes of 5

′′ ± 2.5
′′
. As noted above, the

corresponding radio objects can be divided into two
groups:

(1) Powerful radio galaxies in which the radio
emission is concentrated in the nucleus of the opti-
cal galaxy. The more compact the radio nucleus, the
more powerful the radio emission and the steeper the
radio spectrum. The figure presents the distribution of
spectral indices for this group of galaxies.

(2) Objects with spectral indices α > 0.8 in which
the radio emission is associated with either the
galactic disk or a weak halo. The objects with radio-
emitting disks are much less powerful in the radio
than objects in the first group. The spectra of these
objects are steeper than those of objects in the first
group. The objects with radio halos are somewhat
weaker in the radio. The figure presents the distribu-
tion of spectral indices for the population of objects
with radio-emitting disks or halos.

For convenience, we present in Table 2 the mean
values of some characteristics of the objects in these
two groups. The columns of the table give (1) the
region of the radio emission, (2) the calculated mean
magnetic field averaged over the objects in that sub-
group, (3) the relative mean size of the radio-emitting
region (the ratio of the radio to the optical size) θrel,
and (4) the mean radio spectral index.

We subdivided galaxies with radio-emitting nuclei
into two groups according to their spectral indices
(nucleus-1, nucleus-2). The radio emission in galax-
ies with flatter spectra (nucleus-1) is more concen-
trated toward the center of the galaxy. Our analysis of
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the radio sources with steep spectra indicated that, for
some of these radio objects, high-angular-resolution
observations [5] provide information about compact
regions of radio emission, while observations with
lower resolution [4] add to our information about the
halo radio emission. We distinguished the halo-1 and
halo-2 subgroups in this way.

The question of whether the halo is a restricted
region with a closed field or the magnetic field makes
a smooth transition into intergalactic space remains
topical [7]. We can see from the calculated magnetic-
field strengths and the distribution of the field in the
galactic halos that the magnetic field makes a smooth
transition to the intergalactic field in this cluster of
galaxies and also rises sharply toward the nuclei of
the galaxies (Table 2, nucleus-1 and nucleus-2). The
radio flux densities in the galactic nuclei exceed those
in the halos by a factor of 102–104. The concentration
of the most powerful radio emission in the galactic
nuclei suggests that the galaxies in our sample are
active.

The mean spectral index for the unidentified ra-
dio objects is α = 0.89 ± 0.17, with θmean = 3.8

′′ ±
1.75

′′
. Judging from the mean sizes of these ob-

jects, they appear to be in an earlier stage of de-
velopment and have optical brightnesses appreciably
weaker than 20m, impeding their detection in the
APM maps [6]. However, we also cannot exclude the
possibility that some of these sources have inaccurate
radio coordinates, hindering their identification with
the corresponding optical objects.

High-resolution studies of galaxies with active
nuclei may reveal small-scale radio structure, possi-
bly in the form of jets. A number of the galaxies with
compact radio-emitting nuclei may be candidates for
active galactic nuclei.

A number of the galaxies (subgroup nucleus-1)
have spectral indices α < 0.5 and are predominantly
galaxies with compact nuclei. It is reasonable to sup-
pose that a substantial fraction of the radio emission
in the nuclei of these galaxies is radiated by ther-
mal electrons. For example, the spectrum of object
no. 8 (Table 1) shows evidence for self-absorption at
1400 MHz. Based on the frequency at which self-
absorption of radio synchrotron radiation in an ion-
ized gas becomes important, we estimated the density
of thermal electrons in the nucleus of this galaxy to
be Ne = 104 cm−3. Lower limits for the densities of
free electrons in the nuclei of galaxies nos. 17, 23, 33,
35, and 43 also proved to be close to this value, 103–
104 cm−3.

4. CONCLUSION

We have investigated a group of bright radio
sources in the direction of the galactic cluster A569.
We constructed radio spectra and obtained optical
identifications for more than 100 objects. Strong
radio sources with nonthermal spectra are identified
with compact, optically weak galaxies. The data
presented in Table 1 indicate that the magnetic fields
in the galactic halos make a gradual transition to the
intergalactic magnetic field in the cluster A569, which
is< 10−6 Oe.

The objects whose radio emission originates in the
nuclei of the optical galaxies have flatter radio spectra
and more powerful radio emission than objects whose
radio emission is associated with the galactic halos.
Some fraction of this nuclear radio emission may be
thermal emission by ionized hydrogen with a number
density of 104 cm−3.

Further high-resolution studies of the catalog
of radio galaxies presented in Table 1 at millimeter
wavelengths are of interest, since such observations
could distinguish the thermal component of the radio
emission in the galactic nuclei, as well as aid in the
identification of active galactic nuclei.
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Original Russian Text Copyright c© 2002 by Sokoloff.
Modeling the Generation of the Magnetic Field in NGC 5775

D. D. Sokoloff
Moscow State University, Moscow, Russia
Received January 15, 2002; revised May 23, 2002

Abstract—A model for the generation of large-scale magnetic fields is constructed for the galaxy
NGC 5775, in which the magnetic field has the form of a dipolar dynamo wave propagating along the
galactic disk. The excitation of such a mode, which is unusual for galactic dynamos, can be explained by
the strong variation of the galactic rotation with height above the plane of symmetry of the galactic disk.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

As a rule, the magnetic fields observed in the disks
of spiral galaxies are almost completely confined to
the galactic planes. According to current concepts,
these fields are generated by a galactic dynamo based
on the joint effect of the helicity of turbulent flows
and differential rotation (see, for example, [1]). This
mechanism is very stable to variations in its parame-
ters. It excites the quadrupolar mode of the magnetic
field, with the azimuthal component dominating and
reaching its maximum in the galactic plane of sym-
metry.
The additional generation of dipolar magnetic

fields is possible in the quasi-spherical gaseous halos
of galaxies [2–4]. These fields can be transverse to the
galactic disks, and numerical modeling of their high
angles of inclination to the plane of the galactic disk
becomes difficult. As a rule, the magnetic field of the
disk can be clearly distinguished from the halo field.
In the case of M51, the fields of the disk and halo can
be distinguished even though the galaxy is viewed
face-on [5].
In spite of the structural similarity of galactic dy-

namo models, it is probable that some spiral galaxies
do not follow this behavior. Studying such galaxies
can help us understand which properties are most
important for standard galactic dynamo models.
Recent observations [6] of the magnetic field in the

galaxy NGC 5775 appear to provide such an example.
We propose here a model for the generation of the
magnetic field in NGC 5775 that can explain the
observations.

2. MAGNETIC FIELD AND
HYDRODYNAMICS OF NGC 5775

FROM OBSERVATIONS
The galaxy NGC 5775 is observed edge-on, and

radio polarization observations are not subject to
1063-7729/02/4611-0871$22.00 c©
Faraday depolarization at heights |z| > 1 kpc above
the central plane of the galaxy. In this region, the
magnetic-field vectors are directed at a significant
angle to the disk plane, although this angle decreases
with height, as usual. Tüllmann et al. [6] suggest
the observed behavior could be associated with the
effect of a strong galactic wind (in accordance with
[4]). However, they prefer another explanation: the
generation of a dipolar magnetic field in the thick disk.
We adopt this point of view, though we are aware

of the ambiguities typical for galaxies viewed edge-
on. Figure 5 from [6] appears to provide additional
support for this interpretation. This figure shows a
strongly filtered representation of the distribution of
total intensity at 1.49 GHz together with the B vec-
tors of NGC 5775. This distribution does not occupy
the disk uniformly and resembles a wave propagating
along the disk, with the distance between antinodes
being about 2 kpc. This magnetic-field configuration
clearly differs from that proposed by the standard
galactic-dynamo model. However, we note that oscil-
lating dipolar solutions can be found among numeri-
cal models of galactic dynamos for certain choices of
parameters (see, for example, [7]). They demonstrate
some morphological similarity with the regions with a
single maximum of the total intensity in the figure in
question.

For an extended range of galactic radii, the rota-
tion of NGC 5775 is almost identical to that of a rigid
body, and the galaxy displays a large scale height for
the vertical distribution of ionized gas [8]. Tüllmann
et al. [6] emphasized that the rotation depends con-
siderably on the height z above the plane of the disk
(see Fig. 3 from [6]).

In galactic-dynamo models, one usually assumes
that the velocity Ω of the differential rotation of the
disk depends only on the radius r, neglecting the
dependence on the height z above the central plane
2002 MAIK “Nauka/Interperiodica”
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of the disk, at least inside the disk itself; i.e., it is as-
sumed that ∂Ω/∂r � ∂Ω/∂z. It appears that we have
the opposite case in NGC 5775, where we must take
into account the vertical gradients of Ω and neglect
radial gradients. Below, we shall show that, in this
case, the dynamo excites a magnetic configuration
similar to that observed in NGC 5775.

3. THE DYNAMO IN NGC 5775

We will use the mean-field electrodynamic equa-
tions (see, for example, [9]) for an axially symmetric
magnetic field and neglect the radial gradient ofΩ and
the α effect responsible for the generation of toroidal
magnetic field at the expense of poloidal field (the αω
approximation). We will model solely those regions
of the disk that are fairly distant from its center, ne-
glecting terms containing the reciprocal radius (the
local disk-dynamo problem). Let us introduce the
dimensionless numbers

Rα =
α0h

β
, Rω =

Ω′h3

β
, (1)

where α0 is the maximum of α(r, z), which is propor-
tional to the average helicity of the turbulent motions;
β is the turbulent diffusion coefficient, assumed to be
constant; Ω′ is the maximum gradient of the angular
velocity; and h is the half-thickness of the disk in
which the magnetic-field self-excitation occurs. We
use the azimuthal field component B and A = Â/Rα,
where Â is the azimuthal component of the vector po-
tential, as scalar parameters describing the magnetic
field. Upon standard transformations (see, for exam-
ple, [10]), we obtain the following set of equations:

∂A

∂t
= α(z, r)B +

∂2A

∂z2
+
∂2A

∂r2
, (2)

∂B

∂t
= −DF (z)

∂A

∂r
+
∂2B

∂z2
+
∂2B

∂r2
. (3)

Here, D = RαRω is the dynamo number, the time is
measured in units of h2/β, and F = ∂Ω/∂z is mea-
sured in units of its maximum value and is assumed to
be independent of r. Distances are measured in units
of h; that is, r varies from 0 to R/h, where R is the
radius of the galaxy (there is some arbitrariness in the
definitions of R and h that it outside the framework of
this discussion). For simplicity, we restrict our prob-
lem to self-excitation of the magnetic field (the so-
called kinematic dynamo) taking the flow and helicity
to be given a priori.
We supplement (2) and (3) with the standard vac-

uum boundary conditions (see, for example, [11, 12])

B(±1) = 0,
∂A

∂z |z=±1

= 0. (4)
Instead of formulating boundary conditions in terms
of r (which are likely unknown), in accordance with
the treatment of Parker [13], we search for solutions
periodic in r.
Equations (2) and (3) differ from the standard

equations for the local galactic dynamo in that (3)
contains a term with ∂A/∂r instead of ∂A/∂z. On
the other hand, (2) and (3) are similar to the Parker
dynamo equations [13], which describe the propaga-
tion of a dynamo wave in the solar convective zone
and lead to the 11-year cycle of solar activity. The
differences between these sets of equations are of only
minor importance.
First, the Parker equations contain derivatives of

the latitude θ instead of r, while the D term is mul-
tiplied by cos θ and becomes zero at the pole. Parker
initially analyzed the behavior of a dynamo wave at a
given latitude θ = θ0 [13], with the factor cos θ being
contained in the dynamo number. The role of this
factor was studied in [14] and [15]; it is important for
the solar dynamo but not for our problem.
Second, as a rule, the Parker equations (in [13])

are integrated over a variable perpendicular to the
layer, i.e., over z. However, this integration can be
omitted (see [16] for details).
The most important difference is that α is anti-

symmetric in z, and the dynamo wave propagates
in two parallel layers with opposite α values. It is
evident that F is also antisymmetric in z. In this case,
a dipolar configuration involves an antisymmetric B
and symmetric A (dipole and quadrupole modes are
defined in another way for the solar dynamo [17]).
Let the solution of (2) and (3) take the form

B(z, r) = b exp(γt+ ikr) sinπz, (5)

A(z, r) = a exp(γt+ ikr),

where a and b are constant amplitudes. This takes
into account the boundary conditions. Substituting
(5) into (2) and (3) and retaining only the first Fourier
harmonics, we obtain the equations for a and b (ne-
glecting the subsequent harmonics is similar to in-
tegrating over the convective zone in the Parker dy-
namo):

γa = b− k2a, (6)

γb = − iDka
2

− k2b− π2b. (7)

The compatibility of (6) and (7) implies the dispersion
relation

(γ + k2)(γ + k2 + π2) = − iDk
2
, (8)

which differs from that for the Parker dynamo in an
unimportant renormalization of D and in including
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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the contribution of the diffusion losses across the
dynamo wave in only one of the co-factors containing
γ + k2. To simplify the calculations, we assume, in
agreement with the observations, that the scale of the
magnetic field is smaller in the r direction than in
the z direction. Then, π2 can be considered a small
correction; that is,

γ(k) = γP (D/2)(k) −
π2

2
, (9)

where γP (D) is the growth rate of the Parker dynamo
calculated forD = D without diffusion in z. The func-
tion γP (D)(k)was thoroughly analyzed by Parker [13].
The maximum growth rate Reγ = 3|D/2|2/3/(8 ×
21/3) − π2/2 is reached at k = |D/2|1/3/(2 × 22/3).
This means that the radial size of the leading dy-
namo wave is ∆r = 2 × 22/3h/|D/2|2/3 . The self-
excitation condition Reγ > 0 gives the estimate
|D|cr = 29/2π3/33/2 ≈ 60 for the critical dynamo
number. Standard estimates for D in spiral galaxies
yield D ≈ −10. Since D depends strongly on h,
increasing the disk thickness by a factor of a few is
sufficient to obtain |D| > |D|cr. For |D| = |D|cr, the
dynamo wavelength is approximately one-third of its
vertical size h, in good agreement with observations
of NGC 5775 and the assumptions used for (9). Zero
divergence provides an estimate of the inclination of
the magnetic field lines to the disk plane, which gives
Bz/Br ∼ hk; i.e., for |D| = |D|cr, Bz/Br ≈ 3, in full
agreement with the observations.
The period of the dynamo wave is determined by

the typical time for the turbulent diffusion across the
disk and is equal to 108 yrs. Usually, α is positive and
F is negative above the plane of the galactic disk, and
the dynamo wave propagates to larger radii r.
The symmetry of (2) and (3) also admits quad-

rupolar solutions of the form B(z, r) = b exp(γt+
ikr) cos πz, but, in this case, the αB term makes no
contribution to the equations for the first Fourier har-
monics. Therefore, we assume that the dipolar mode
is preferentially excited.

4. DISCUSSION

We have constructed a model for the generation
of magnetic field that unites the magnetic-field dis-
tribution and hydrodynamics of NGC 5775 in a self-
consistent way. We have used asymptotic and semi-
quantitative techniques of dynamo theory, and our
conclusions are semi-quantitative as well. Similar
quantitative models based on numerical solutions
of the mean-field electrodynamic equations remain
within the framework of a standard galactic-dynamo
ASTRONOMY REPORTS Vol. 46 No. 11 2002
approach but require more detailed information on the
galaxy, which is limited by observational capabilities.
It would be of great interest to find a galaxy similar to
NGC 5775 but observed face-on.
Our analysis has shown that the most important

parameters determining the magnetic field usually
excited by the galactic dynamo are small vertical gra-
dients of the angular velocity and the thin galaxy disk.
Of course, these parameters are interrelated.

ACKNOWLEDGMENTS

The author is grateful to M. Urbanik for drawing
his attention to the magnetic field of NGC 5775. This
work was supported by the Russian Foundation for
Basic Research, project no. 01-02-16158.

REFERENCES
1. R. Beck, A. Brandenburg, D. Moss, et al., Ann. Rev.
Astron. Astrophys. 34, 155 (1996).

2. S. Sokolov and A. Shukurov, Nature 347, 51 (1990).
3. A. Brandenburg, K.-J. Donner, D. Moss, et al., As-
tron. Astrophys. 259, 453 (1992).

4. A. Brandenburg, K.-J. Donner, D. Moss, et al., As-
tron. Astrophys. 271, 36 (1993).

5. E. Berkhuijsen, C. Horellou, M. Krause, et al., As-
tron. Astrophys. 318, 700 (1997).
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Abstract—The chemical compositions of the atmospheres of six metal-poor stars are analyzed. Spectra
with signal-to-noise ratios of no less than 100 and a resolution of R ≈ 17 000were obtained using the 6-m
telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. The abundances
of Li, O, α-process elements (Mg, Si, Ca, Ti), Na, K, Sc, iron-peak elements (Cr, Mn, Fe, Ni, Cu,
Zn), and s-process elements (Y, Ba) are derived. The star G251-54 ([Fe/H] = −1.55, Teff = 5541 K,
log g = 3.58) is deficient in some elements compared to both stars with similar metallicities and the
Sun. The atmosphere of G251-54 has the following elemental abundances relative to iron: [O/Fe] =
+0.47, [α/Fe] ≈ −0.3, [Na/Fe] = −0.60, [Sc/Fe] = −0.57, [Cr, Ni, Fe] ≈ 0, [Zn/Fe] = +0.16, [Cu/Fe] =
−0.66, [Y/Fe] = −0.70, and [Ba/Fe] = −1.35. The remaining five stars have metallicities in the range
−1.6 < [Fe/H] < −1.3 and normal abundances for this metallicity interval and are used as reference
stars for comparison with the chemical composition of G251-54. Possible explanations for deviations
of the abundances of some elements from the mean relations established for halo objects are discussed.
c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The emphasis adopted in studies of the scatter in
the chemical compositions of stars of different popu-
lation types has evolved with the development of ob-
servational techniques. In the 1970s, the main source
of information was determinations of large numbers
of metallicities in the Strömgren photometric system,
with the corresponding index calibrated primarily us-
ing curves of growth based on photographic spectra.
The dispersion of metallicities in the disk population
was due largely to the methods used [1]. Metallicity
estimates based on photoelectric measurements were
reasonable owing to the large number of measure-
ments obtained, but a number of issues remained
unresolved: the metallicity of the Hyades, the re-
lationship between photoelectric, spectroscopic, and
other determinations of globular-cluster metallicities,
etc. Initially, when chemical compositions had low
accuracy, a hypothesis suggesting the synthesis of
all heavy elements in a single act was even put for-
ward [2]. As techniques for numerical simulations of
chemical evolution in the Milky Way were begin-
ning to be developed, the importance of analyzing
the abundances of other elements along with those
of metals was pointed out [3]. In the middle and late
1980s, it was shown for a number of disk clusters
and field stars [4–8] and some globular clusters [9]
1063-7729/02/4611-0874$22.00 c©
that the dispersion of elemental abundances with-
in a cluster exceeded the scatter introduced by the
methods used (errors in line measurements, oscillator
strengths, and model approximations). The develop-
ment of CCD spectroscopic chemical-composition
studies left no doubt that the observed variations in
the abundance curves for the atmospheres of “nor-
mal” stars are real. In the 1990s, models for the evolu-
tion of the halo began to take into account dispersions
in the abundances of coeval stars (see, e.g., [10, 11]).

The abundances of most elements decrease with
decreasing iron abundance and, for virtually all ele-
ments, coefficients for the corresponding abundance
variations applicable within certain metallicity inter-
vals are known [12]. However, these relations have
increasingly large amounts of scatter or even dis-
appear when there is a strong deficit of iron. This
breakdown of “element–element” correlations is be-
lieved to reflect real inhomogeneity of the pre-stellar
chemical composition during the early stages of the
Milky Way’s formation. In other words, when looking
at very metal-deficient stars, we are actually seeing
chemically inhomogeneous matter that was not suf-
ficiently mixed prior to the formation of the first halo
stars.

It is already evident that the chemical compo-
sitions of some halo stars do not obey the overall
metallicity dependences shown by the abundances of
2002 MAIK “Nauka/Interperiodica”
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Table 1. Parameters of model atmospheres and parallaxes of stars studied

Star Teff, K log g [Fe/H] ξt, km/s V π, mas σ(π), mas

G13-35 6030 4.10 –1.50 1.9 9.66 10.95 1.29

G23-14 4939 2.70 –1.46 1.7 10.76 8.11 6.21

G126-62 6067 4.14 –1.52 2.8 9.46 8.43 1.42

G147-30 6129 3.95 –1.49 2.0 9.77 8.11 1.43

G251-54 5541 3.58 –1.55 2.1 10.01 3.91 1.22

BD+ 23◦3912 5753 3.91 -1.36 1.4 8.89 9.38 1.24
α-process elements. For example, Fuhrmann et al.
[13] found [Mg/Fe] = −0.28 for BD+ 3◦740, and
McWilliam et al. [14, 15] found CS22968-014 and
CS22952-015 to have [Mg/Fe] < 0 in the presence
of a metallicity of [Fe/H] = −3.4. Carney et al.
[16] found [α/Fe] = −0.29 and [Ba/Fe] = −1.8 for
a metallicity of [Fe/H] = −1.86 for BD+ 80◦245.
Similar results were obtained by Brown et al. [17] for
a number of globular clusters. The underabundance
of α-process elements compared to other halo stars
indicates that these stars should have formed from
matter that was unusually strongly enriched in the
nucleosynthesis products of type-Ia supernovae. This
can be explained if star formation in the parent
regions of these stars continued until type-Ia su-
pernovae began to explode, bypassing the stage of
type-II supernova explosions. Since massive stars
form much more rarely than low-mass stars, some
clouds could have bypassed the stage of enrichment
in matter processed in the interiors of massive stars.
This hypothesis is supported by the fact that only
low-mass stars are forming in the Taurus molecular
cloud [18]. Another possible explanation is that stars
and globular clusters with anomalous abundances
of α-process elements have been captured from
companion galaxies (e.g., the LMC).

We obtained spectra for a sample of high-proper-
motion stars as part of a program to study halo
stars carried out on the 6-m telescope of the Special
Astrophysical Observatory [19–21]. We report here
the atmospheric chemical compositions of six stars.
The observational program was based on the catalog
of high-proper-motion stars [22] and included stars
kinematically belonging primarily to the halo with
metallicities from –0.5 to –3.5 (according to the
catalog data). The basic parameters of the stars
studied are listed in Table 1.

2. OBSERVATIONS AND DATA REDUCTION

The spectra were obtained with the prime-focus
echelle spectrometer [23] of the 6-m telescope of
ASTRONOMY REPORTS Vol. 46 No. 11 2002
the Special Astrophysical Observatory of the Rus-
sian Academy of Sciences. The detector was a cam-
era equipped with a 1040 × 1170 CCD with a pixel
size of 16× 16 µm. The spectra covered the wave-
length interval 4500–8200 Å with a spectral reso-
lution of R = 17000 and a signal-to-noise ratio of
S/N > 100. The reduction of the two-dimensional
echelle frames (dark-current subtraction, cosmic-ray
removal, wavelength calibration, and extraction of
the one-dimensional spectra) was carried out using
the ESO MIDAS package. We used the program
DECH20 [24] to determine the continuum level and
measure the equivalent widths, which were deter-
mined by fitting Gaussians to the line profiles. Fig-
ure 1 compares our measured equivalent widths for
the star BD+ 23◦3912 with earlier measurements

 

0
E.W.

 

this work

 

, m

 

Å

 
E.W.

 

publ.

 
, m

 
Å

 

20 40 60 80 100

20

40

60

80

100

Tomkin 

 

et al

 

. [25]
King 

 

et al

 

. [26]

 

Klochkova 

 

et al

 

. [27]

Fig. 1. Comparison of our equivalent-width measure-
ments in the spectrum of BD + 23◦3912 with published
data [25–27].
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3. PARAMETERS OF THE MODEL
ATMOSPHERES

We determined the parameters of the model at-
mospheres as follows. We derived the effective tem-
perature Teff from the Strömgren photometric indices
(b− y, c1) and the metallicities [Fe/H] from calibra-
tions based on the infrared flux method [28]. The
metallicities required for the first iteration of the Teff
computation were initially taken from the literature,
but spectroscopic metallicities derived from the iron
abundance were used in subsequent iterations. Our
model allowed for about one hundred FeI lines for
each star. The error in the resulting Teff values is about
100 K. In addition, we used two more methods to
verify the effective temperatures we obtained: (a) a
method based on a spectral analysis of the FeI lines
(the abundance should be independent of the excita-
tion potential) and (b) a synthetic-spectrum analysis
of the wings of the Hα line (the wings of the Hα lines
are virtually unaffected by either the surface gravity
log g or metallicity [Fe/H] in the effective temperature
interval considered [29]). These three methods yield
effective temperatures in good agreement with each
other. Table 1 gives the Teff values and other pa-
rameters used when deriving the model atmospheres.
Figure 2 uses the star BD+ 23◦3912 as an example
to show that the iron abundance derived from the
FeI lines is independent of the excitation potential
(for Teff = 5753K, log g = 3.91, [Fe/H] = −1.36). We
computed the synthetic spectra using the STARSP
program [30].

In most studies, the surface gravity is determined
from the condition of ionization balance: FeI and
FeII lines should yield the same iron abundances.
However, this method can be subject to a number of
errors, due to errors in the adopted system of oscillator
strengths, non-LTE effects for the FeI and FeII lines,
and uncertainties in the structure of the model atmo-
spheres. We therefore used the following relations to
determine the surface gravity:

g
g

g�
= log

M
M�

+ 4 log
Teff

Teff�
+ 0.4(Mbol −Mbol,�)

and
Mbol = V +BC + 5 log π + 5,

whereM is the mass of the star,Mbol is its bolometric
absolute magnitude, BC is the bolometric correction,
and π is the parallax.

We used HIPPARCOS parallaxes [31], and deter-
mined the stars’ masses using the grid of evolutionary
tracks of van den Berg et al. [32], which are given in
metallicity steps of∼ 0.1 dex. The bolometric correc-
tions were computed from the calibrating formula of
Balona [33]. For three stars in our sample, the log g
values determined in this way agree very closely with
the spectroscopic gravity estimates, and the FeI and
FeII abundances computed with these log g values
agree to within the abundance errors. We therefore
adopted the spectroscopic log g values for the three
remaining stars with low-accuracy parallaxes.
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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Table 2. Computed abundance errors for BD+ 23◦3912 (Teff = 5753 K, log(g) = 3.91, [Fe/H] = −1.36 dex,
ξt = 1.4 km/s). The last column gives the combined error assuming individual errors are uncorrelated

Estimated
parameter

σEW√
N

∆Teff = +100 K ∆log g = +0.2 ∆ξt = +0.3 km/s σtot

∆[FeI/H] 0.012 0.068 −0.004 −0.029 0.075

∆[FeII/H] 0.037 −0.004 0.069 −0.022 0.081

∆[Li/H] 0.051 0.079 0.001 −0.010 0.095

∆[O/Fe] 0.019 −0.070 0.046 −0.010 0.087

∆[Na/Fe] 0.020 0.075 −0.055 −0.030 0.100

∆[Mg/Fe] 0.098 0.047 −0.005 −0.013 0.110

∆[Si/Fe] 0.021 0.031 0.006 −0.005 0.038

∆[K/Fe] 0.078 0.085 −0.040 −0.100 0.158

∆[Ca/Fe] 0.017 0.058 −0.020 −0.037 0.074

∆[Sc/Fe] 0.047 0.032 0.072 −0.023 0.095

∆[TiI/Fe] 0.019 0.094 −0.004 −0.032 0.101

∆[TiII/Fe] 0.042 0.032 0.070 −0.032 0.093

∆[CrI/Fe] 0.033 0.094 0.000 −0.020 0.102

∆[CrII/Fe] 0.060 −0.004 0.073 −0.010 0.095

∆[Mn/Fe] 0.018 0.060 0.000 −0.004 0.063

∆[Ni/Fe] 0.031 0.060 0.007 −0.014 0.069

∆[Cu/Fe] 0.150 0.089 0.006 −0.010 0.175

∆[Zn/Fe] 0.035 0.040 0.030 −0.035 0.071

∆[Y/Fe] 0.015 0.040 0.070 −0.015 0.084

∆[Ba/Fe] 0.055 0.063 0.053 −0.117 0.153
We computed the microturbulence velocities ξt
based on the condition that the iron abundances in-
ferred from individual iron lines should be independent
of equivalent width (Fig. 2b). We used the WIDTH9
code [34, 35] and Kurucz’s grid of model atmospheres
[34, 35] for the abundance computations.

4. OSCILLATOR STRENGTHS
We compiled a list of unblended lines used to

determine the metallicities and elemental abundances
based on the list of lines in the solar spectrum
of Prieto and López [36]. We selected lines whose
equivalent widths were less than 100 mÅ for stars in
the metallicity interval considered (−1.6 < [Fe/H] <
−1.3), since stronger lines are too sensitive to the
choice of microturbulence velocity. We measured
the initially selected lines in the spectrum of BD+
23◦3912, which we used as a standard and whose
chemical composition has been determined multiple
times in the past (see, e.g., [25–27]). Lines that
yielded systematic deviations in the abundances were
not used in the subsequent analysis.

We used several lists to choose the system of
oscillator strengths for the FeI and FeII lines that
ASTRONOMY REPORTS Vol. 46 No. 11 2002
we employed to determine the microturbulence ve-
locities and metallicities and to verify the correctness
of the derived effective temperatures. We determined
the equivalent widths of FeI and FeII lines in spectra
obtained with the prime-focus echelle spectrometer
[23] for three stars with well-known parameters (the
Sun, Procyon, and BD+ 23◦3912). We then used
the knownmodel-atmosphere parameters to compute
the iron abundances for each of the three stars us-
ing all the lines. In the end, we adopted the system
[27], which yielded the lowest scatter of the abun-
dances for individual lines and was most consistent
with the adopted model-atmosphere parameters for
all three stars. We adopted the oscillator strengths for
other elements from the following sources: LiI—[38],
OI—[39], NaI—[40], MgI— [41], SiI—[42], KI—
[43], CaI—[44, 45], ScII—[46] and the NBS data [38,
47, 48], TiI—[49], TiII—[50, 51], CrI—[52], CrII—
the NBS data [38, 47, 48] and [53], MnI—[49], NiI—
[52], [54], and the NBS data [38, 47, 48], CuI—[38,
55], ZnI—[49], YII—[38, 55], BaII—[56]. The oscil-
lator strengths for most of the elements were taken
from the VALD database [57–59].
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5. ERRORS OF THE ABUNDANCES

The accuracy of the elemental abundances de-
pends on several factors, which can be (arbitrarily)
subdivided into the following two groups. The first
errors are those affecting individual lines, such as
errors in the measured equivalent widths, the adopted
oscillator strengths, and the damping constants. The
second group of errors are associated with factors
affecting the abundance determinations based on line
groups and, first and foremost, uncertainties in the
parameters of the models used to compute the chem-
ical compositions.

A comparison of our measurements with previ-
ously published data (Fig. 1) shows that the mean
deviation of the single-line equivalent widths is 3–
4 mÅ, which translates into in an abundance error
of about 0.06 dex for a line with an equivalent width
of 50 mÅ. The error decreases by a factor of

√
N

if the abundance is determined from N lines. It is
thus possible to estimate the errors due to equivalent-
width measurements for elements represented by one
or several lines. For elements with many spectral lines
(e.g., FeI, for which about one hundred lines were
measured), the scatter of the abundances based on
individual lines is about 0.1 dex, which corresponds
to an error of about 0.01 dex. Errors due to uncertain-
ties in the atomic data are more difficult to estimate;
however, errors due to uncertainties in the oscillator-
strength scale largely cancel each other out in the
case of differential determinations of the chemical
composition.

The errors due to uncertainties in the model-
atmosphere parameters can be estimated by com-
puting the abundances of individual elements using
atmospheric parameters that differ from the corre-
sponding values. Table 2 lists the results of such
computations for BD+ 23◦3912. We adopted the
deviations from optimal model parameters ∆Teff =
100 K, ∆ log g = 0.2, and ∆ξt = 0.3 km/s. The re-
sulting rms error in the abundances does not usually
exceed 0.1 dex for most elements.

6. DERIVED ELEMENTAL ABUNDANCES

Lithium

We used the 6707 Å line to measure the lithium
abundance. The abundance error was estimated by
assuming that the mean error of the equivalent-width
measurements was 5 mÅ. Figure 3 compares our
results with those of Thorburn [60] and Pilachowski
et al. [61]. The stars G251-54 and G23-14, which
have low effective temperatures (5541 and 4939 K,
respectively), are underabundant in lithium. The
remaining stars, which fall in the so-called Spite
plateau, exhibit normal lithium abundances for their
temperatures and metallicities. BD+ 23◦3912 is
overabundant in Li by about 0.15 dex compared to
the other stars, in agreement with previous analyses
for this star (see, e.g., [26, 61]).
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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Table 3. Atmospheric abundances for the stars studied

Element G13-35 G23-14 G126-62 G147-30 G251-54 BD+ 23◦3912

logε(FeI/H) −6.00 −5.96 −6.02 −5.99 −6.05 −5.86

logε(FeII/H) −5.97 −5.95 −5.94 −5.98 −6.01 −5.79

[Li/H] 2.33 1.07 2.31 2.35 1.85 2.63

[O/Fe] – 0.84 0.78 – 0.47 0.81

[Na/Fe] 0.05 0.05 0.09 0.05 −0.60 0.04

[Mg/Fe] 0.25 0.27 0.24 0.25 −0.30 0.25

[Si/Fe] 0.34 0.38 0.35 0.31 −0.33 0.40

[K/Fe] 0.36 – 0.30 0.32 – –

[Ca/Fe] 0.37 0.37 0.38 0.39 −0.31 0.36

[Sc/Fe] −0.04 −0.03 0.11 −0.04 −0.57 0.02

[Ti/Fe] 0.28 −0.03 0.30 0.26 −0.29 0.24

[Cr/Fe] 0.06 −0.01 0.06 0.02 0.03 0.01

[Mn/Fe] −0.30 −0.35 −0.26 −0.32 −0.52 −0.32

[Ni/Fe] 0.02 0.01 −0.06 −0.06 −0.04 −0.04

[Cu/Fe] −0.20 −0.84 −0.28 −0.27 −0.66 −0.20

[Zn/Fe] 0.14 0.15 – 0.18 0.16 –

[Y/Fe] 0.11 −0.07 0.11 0.06 −0.70 0.05

[Ba/Fe] 0.09 −0.11 0.14 0.07 −1.35 0.17
Oxygen

To determine the oxygen abundance, we used the
infrared triplet near 7770 Å. The IR triplet is known to
overestimate the oxygen abundance compared to the
values derived from the [OI] 6300, 6363 Å forbidden
lines or from OH rotational bands [25, 62]. We de-
tected the IR triplet in only four of the stars, the cor-
responding spectral region being beyond the echelle
frame in the remaining cases. The results are listed
in Table 3 and shown in Fig. 4a. Our analysis yielded
very similar results for three stars, whose mean abun-
dance is [O/Fe] = +0.81 with the maximum devia-
tion for individual stars not exceeding 0.03 dex.

Stars in the metallicity interval occupied by our six
stars exhibit overabundances of oxygen, correspond-
ing to the oxygen abundances in metal-poor halo
stars. The constancy of the oxygen overabundance for
metallicities from –3 to –1 is usually attributed to the
fact that the synthesis of oxygen occurs in massive
stars that end their evolution as type II, Ib, and Ic
supernovae. Stars of this type exploded primarily dur-
ing the early stages of the evolution of the Milky Way.
We found G251-54 to have a relative abundance of
[O/Fe] = +0.47, which cannot be explained by the
ASTRONOMY REPORTS Vol. 46 No. 11 2002
errors in the equivalent widths and/or the model-
atmosphere parameters. This result is in good agree-
ment with the value [O/Fe] = +0.37 published by
Carney et al. [16].

α-Process Elements

The variations of the abundances of α-process
elements (Mg, Si, Ca, Ti) as a function of metallicity
are expected to mainly follow the oxygen abundance
variations. However, in contrast to oxygen and mag-
nesium, which are synthesized only in the final stages
of the evolution of massive stars, elements such as Si,
Ca, and Ti can also be partly synthesized in type-Ia
supernovae (see, e.g., [63]).

We determined the abundance of Ti by averaging
the abundances obtained from lines of neutral and
ionized titanium. For all stars except G251-54, our
abundances are in good agreement with each other
and are characteristic of the metallicity interval con-
sidered (see Figs. 4c, 4d, 4f, 4g). The mean abun-
dances of individual elements are [Mg/Fe] = +0.25,
[Si/Fe] = +0.37, [Ca/Fe] = +0.37, and [Ti/Fe] =
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Fig. 4. Abundances of various elements in the atmospheres of the six stars as a function of metallicity [Fe/H]. The asterisk
denotes G251-54.
+0.27. These values agree quite well with abun-

dances obtained by other authors for other metal-

poor stars (see, e.g., [14, 64]). G251-54 is deficient
in α-process elements relative to both halo stars and
the Sun.

The differences between the abundance for
G251-54 and the mean abundance for the remaining
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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stars are δ[O/Fe] = 0.34, δ[Mg/Fe] = 0.55,
δ[Si/Fe] = 0.70, δ[Ca/Fe] = 0.68, and δ[Ti/Fe] =
0.56. In the case of G23-14, our abundances for all
α-process elements except Ti agree well with those
of the other stars; we found a small deficit of Ti com-
pared to the other stars, [Ti/Fe] = −0.03. Figure 5
shows examples of the spectra from 5180–5210 Å of
G251-54 and BD+ 23◦3912, which have similar
metallicities but very different α-process element
abundances.

Sodium
Sodium, an element with an odd number of pro-

tons, is generally believed to be synthesized in mas-
sive stars during the stage of neon and carbon burn-
ing [65]. In this case, the quantity of synthesized Na
depends on the neutron flux, which, in turn, depends
on the metallicity and, first and foremost, the oxygen
abundance.

The mean sodium abundance for our six stars is
close to the solar value and is equal to [Na/Fe] =
+0.06 with a maximum scatter of 0.03 dex (Fig. 4b).
G251-54, whose atmosphere is strongly deficient in
α-process elements, is also very deficient in Na: the
relative abundance is [Na/Fe] = −0.6 and differs from
the relative abundances of “normal” stars with similar
metallicities by δ[Na/Fe] = 0.66.

Potassium
In the available spectral interval, the potassium

abundance can be measured only from the 7699-Å
ASTRONOMY REPORTS Vol. 46 No. 11 2002
resonance line. According to Chen et al. [44] and
Gratton and Sneden [66], who analyzed the chemical
compositions of disk stars, potassium is overabun-
dant relative to the Sun and the variation of the potas-
sium abundance as a function of metallicity is similar
to that of α-process elements—the [K/Fe] ratio de-
creases with increasing [Fe/H] for metallicities from
−1.2 to 0. Samland [67] was able to reproduce the
observed dependence well with a theoretical model
assuming that potassium is synthesized in massive
stars during the oxygen-burning stage. The compu-
tations of Timmes et al. [68] predict that [K/Fe] < 0 at
[Fe/H] < –0.6, which is clearly inconsistent with the
observations. However, the computations of Takeda
et al. [69] showed that non-LTE corrections for the
7699-Å line for the Sun and Procyon are –0.4 dex and
–0.7 dex. Although no non-LTE corrections were
computed for metal-poor stars, the large corrections
obtained for the Sun and Procyon suggest that the
corresponding non-LTE corrections should also sub-
stantially affect the relations obtained for metal-poor
stars.

We were able to measure the 7699-Å line for only
three of our six stars (in the other spectra, this line
was either strongly blended with telluric lines or fell
outside the recorded wavelength interval). The mean
relative potassium abundance compared to the solar
value was [K/Fe] = +0.33, with only a small scatter
about the mean. Unfortunately, the 7699-Å line in
the spectrum of G251-54 lies beyond the wavelength
interval considered.
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Chromium and Nickel

The abundances of these elements, which belong
to the iron group and have even numbers of protons in
their nuclei, closely follow that of iron. The chromium
lines in the spectra of stars with the metallicities
considered are weak. Therefore, the scatter of the
chromium abundances obtained for stars with similar
metallicities is not interpreted as reflecting real differ-
ences in chemical composition but instead as being
due to errors in the measured equivalent widths.

We determined the chromium abundance using
both lines of neutral and ionized chromium, reducing
the abundance errors. We obtained the abundance
ratios [Cr/Fe] = +0.03 and [Ni/Fe] = −0.03. It is
interesting that the abundances of these elements for
G251-54 in no way stand out among those for stars
of similar metallicity (Figs. 4h, 4j).

Scandium and Manganese

Scandium, which is intermediate between the α-
process and iron-group elements, is of greatest inter-
est from the viewpoint of nucleosynthesis in theMilky

Table 4. Relative contribution of the s and r processes to
the synthesis of Y and Ba in the solar system

Element smain s weak r

Y 0.81 0.15 0.04

Ba 0.89 0.01 0.10
Way. However, until recently only a few analyses of
scandium abundances had been published, especially
for metal-poor stars. According to the results of Pe-
terson [70], Luck and Bond [71], andGilroy et al. [72],
who neglected the hyperfine structure of the Sc lines,
the abundance of this element is approximately solar
for the entire range of observed metallicities, albeit
with a fairly large scatter from star to star. The analy-
sis of Gratton and Sneden [73], who took into account
hyperfine structure, yielded approximately the same
result. In their analysis of 90 disk stars taking into
account hyperfine structure, Chen et al. [44] found
the metallicity dependence of the Sc abundance to be
similar to that forα-process elements: the [Sc/Fe] ra-
tio increases to +0.2 dex as the metallicity decreases
to –1.0. The scatter of the Sc abundances increases
with decreasing metallicity and is equal to 0.5 dex for
the most metal-poor stars.

In our analysis of the Sc abundance, we neglected
the effects of hyperfine structure. The mean Sc
abundance for five stars of our sample was equal
to the solar value—[Sc/Fe] = 0.00 (Fig. 4f)—with
a small scatter about the mean. However, when
derived taking into account the hyperfine-structure
corrections of Chen et al. [44], which range from+0.1
to +0.3 dex depending on the equivalent width of the
line considered, our mean Sc abundance increases
to about +0.2 dex. The Sc abundance of G251-54 is
[Sc/Fe] = −0.57 dex; i.e., like α-process elements,
Sc is strongly underabundant relative to the other
stars.

Like scandium, manganese contains an odd num-
ber of protons. Although the mechanisms for the
synthesis of this element are not entirely clear, there
is general agreement that Mn should be primarily
produced in type-Ia and, possibly, to a lesser degree,
in type-II supernovae (see, e.g., [67, 68]). Further-
more, it seems evident that the synthesis of man-
ganese should depend very strongly on metallicity,
and its abundance should decrease toward metal-
poorer stars. Analyses of the abundance of this el-
ement are difficult in metal-poor stars due to the
weakness of the few Mn lines that can be measured
in the accessible wavelength interval. In his analysis
of the Mn abundances in 25 stars with metallici-
ties of −2.4 < [Fe/H] < −0.1 allowing for the hy-
perfine structure of the MnI lines, Gratton [74] con-
cluded that the Mn abundance is constant and equal
to −0.34 dex when [Fe/H] < −1, and increases to
the solar value at higher metallicities. McWilliam
et al. [14] and Ryan et al. [75] report Mn deficits
of −0.8 to −1.2 dex in extremely metal-poor stars.
However, the results of a number of studies [44, 73]
suggest the presence of constant Mn abundances in
intermediate-metallicity halo stars.
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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The Mn abundance for five of our six stars varies
from −0.26 to −0.35 dex, with an average value
of [Mn/Fe] = −0.31; G251-54 has a stronger Mn
deficit of [Mn/Fe] = −0.52 (Fig. 4i).

Copper and Zinc

The analyses of the Cu and Zn abundances as
functions of metallicity in the atmospheres of metal-
poor stars performed by Sneden and Crocker [76]
and Sneden et al. [77] showed that the [Cu/Fe] ratio
decreases linearly with decreasing [Fe/H], where-
as [Zn/Fe] remains constant at a value of +0.04
throughout the matallicity interval studied, down to
[Fe/H] = −3 (individual values range from −0.15 to
+0.3 dex). Sneden et al. [77] suppose that copper is
synthesized primarily via the weak s process in the
cores of massive stars, with a small contribution from
explosive burning during type II supernovae. How-
ever, Matteucci et al. [78] suggested that type-Ia
supernovae are the main source of Zn and Cu in
the Milky Way and that this, in turn, may imply
that type-Ia supernovae took place at metallicities
[Fe/H] < −1.

The mean Cu abundance for four of our stars was
[Cu/Fe] = −0.24, with a scatter of 0.04 dex (Fig. 4k).
We obtained abundance ratios of [Cu/Fe] = −0.66
and −0.84 for G251-54 and G23-14, respectively.
The Zn abundance in four stars including G251-54
was higher than the solar value (Fig. 4l). Our mean
zinc abundance was [Zn/Fe] = +0.16, with a small
scatter about the mean.

Yttrium and Barium

Heavy (с Z > 37), neutron-rich elements are syn-
thesized in processes involving successive neutron
captures by target nuclei. Two types of such process
are distinguished, depending on the associated neu-
tron flux: the s process (if the neutron flux is low and
there is enough time for a beta decay to occur be-
tween successive neutron captures) and the r process
(if the neutron density is high enough for the beta-
decay rate to bemuch lower than the neutron-capture
rate). The latter process is not as well understood
as the former. Although there is general agreement
that the r process takes place mainly in supernova
explosions of massive stars (see, e.g., [79]), at least
ten possible mechanisms have been suggested to ex-
plain the production of r-process elements [79, 80].
A considerable fraction (up to ≈20%) of the lighter
elements in this group (including yttrium) that are
classified as s-process elements are produced via the
so-called weak component of the s process. This is
believed to be activated in the cores of massive stars in
ASTRONOMY REPORTS Vol. 46 No. 11 2002
the helium-burning stage [81–83]. Heavier s-process
elements, including barium, are synthesized primar-
ily via the main component of the s process, which
is now believed to act during thermal pulsations of
intermediate- and low-mass stars on the asymptotic
giant branch [84–87]. Cameron [88] and Kappeler
et al. [87, 89, 90] computed the relative contribu-
tions of the s and r processes to the abundance of
heavy elements in the solar system. Table 4 gives the
corresponding results for yttrium and barium adopted
from Gratton and Sneden [91]. Table 3 lists the abun-
dances of these elements that we obtained for the
stars in our sample, and Figs. 6a and 6b compare
these data to the results of Gratton and Sneden [91]
and Zhao and Magain [92] for Y and of Gratton and
Sneden [91] for Ba.

The mean abundances for five of the stars are
[Y/Fe] = +0.05 dex and [Ba/Fe] = +0.07 and, as
is evident from the figure, agree well with earlier
published data. As was the case with other elements,
we found G251-54 to be significantly deficient in
Y and Ba—[Y/Fe] = −0.7 and [Ba/Fe] = −1.35.
Carney et al. [16] report a relative abundance of
[Ba/Fe] = −1.84 for G251-54, which is 0.5 dex lower
than our result. This discrepancy is probably due to
the fact that Carney et al. [16] determined the Ba
abundance from the BaII resonance line at 4554 Å,
which can underestimate the abundance by up to
−0.5 dex compared to those derived from other Ba
lines (see [16] for a discussion of this effect).

7. RESULTS AND DISCUSSION

In this paper, we have reported the chemical com-
positions of six metal-poor stars including G251-54,
which has anomalous chemical composition com-
pared to stars of similar metallicity. The remaining five
stars, which have metallicities of −1.6 < [Fe/H] <
−1.3, have relative elemental abundances typical of
this metallicity interval (Table 3, Figs. 3, 4, 6), and
we used these abundances as reference values when
considering the results for G251-54.

The atmospheric chemical composition of G251-
54 was first investigated by Carney et al. [16], who
reported the star’s abundances of oxygen, α-process
elements (Mg, Ca, Ti), and Ba and Li. We have pre-
sented here results for these and a number of other
elements, including Na and Si, iron-group elements
(Sc, Cr, Mn, Ni, Cu, Zn), and Y. Consideration of
a larger number of elements should aid in the inter-
pretation of the measured abundances. Our results
confirm those of Carney et al. [16]—most elements
are significantly underabundant relative both to stars
of similar metallicity and to the Sun. In particular,
the oxygen underabundance relative to other metal-
poor stars is δ[O/Fe] = −0.34. This deficit is even
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more pronounced for α-process elements: δ[α/Fe] =
−0.62. About the same deficits are found for Na
and Sc—so-called intermediate elements with odd
numbers of protons in their nuclei. An even larger
deficit is observed for s-process elements, especially
Ba, whose abundance is 1.42 dex lower than in other
metal-poor stars; the deficit for Y is –0.75 dex.

Interestingly, different α-process elements appear
to have different deficits; the underabundance of Mg
and Ti is−0.56 dex but is even greater for Si and Ca:
−0.69 dex. This may indicate that these elements are
synthesized via different mechanisms from different
sources and, in particular, with different contributions
from type-Ia supernovae.

Another result of at least equal importance is that
we found no deficits for a number of iron-peak el-
ements (Cr, Ni, Zn), whose abundances are in full
agreement with those found for the other stars stud-
ied. At the same time, deficits are observed forMn and
Cu, which are also classified as iron-peak elements,
but have odd numbers of protons in their nuclei. We
derived the abundances of these two elements using
fairly weak lines, so that the accuracy of these re-
sults is lower than for the other elements. However,
since measuring very weak lines in noisy spectra can
only overestimate the equivalent widths, we should
effectively obtain upper limits for the abundances of
these two elements; i.e., the conclusion that there
are deficits for Mn and Cu stands. Interestingly, like
G251-54, the star G23-14 exhibited some deficit of
these two elements compared to the other stars. Fi-
nally, the lithium abundance for G251-54 is in full
agreement with the typical value for stars with similar
parameters.

The nucleosynthesis history during the formation
of a star with a chemical composition similar to that
of G251-54 should differ from the usual scenario for
the vast majority of stars studied earlier. The nucle-
osynthesis history of G251-54 may have common
features with those of the young globular clusters
Palomar 12 and Ruprecht 106 [16]. Brown et al.
[17, 93] found [O/Fe] = +0.05 and [α/Fe] = −0.2
for Ruprecht 106 and [α/Fe] = −0.6 for Palomar 12,
which are significantly different from the abundances
of α-process elements in “normal” metal-poor stars.
On the other hand, the abundance of Ba in these
globular clusters is normal [17]. Carney et al. [16]
investigated the question of whether the chemical
compositions of these globular clusters and G251-
54 were related to their Galactocentric distances (and
thus to the region of their formation). The Galacto-
centric distances of Palomar 12 and Ruprecht 106 are
14 and 17 kpc, respectively. A maximum Galacto-
centric distance of 22 kpc was derived for G251-54
based on its space velocity. Thus, in all three cases,
we find anomalous chemical compositions combined
with large apogalactic distances.

In this regard, it is interesting to compare the
abundances for G251-54 with those for stars that
formed in the outer regions of the Galactic halo but
then ended up in the solar neighborhood. Carney
et al. [22] identified about one hundred such stars
with apogalactic distances exceeding 15 kpc. How-
ever, an analysis of the published results for ten of
these stars revealed no anomalies: only one (BD—
6◦855) is deficient in silicon [94]. It follows that the
anomalous chemical composition observed in G251-
54 is uncharacteristic even for stars brought into the
solar neighborhood from the outer halo.

The origin of stars with anomalous chemical com-
positions similar to that observed for G251-54 and
the two globular clusters noted above could possi-
bly be explained if there was a strong enrichment of
their parent gaseous clouds in products of Galactic
nucleosythesis, but this enrichment took place after
the formation of the halo, when the abundances of
α-process elements reached their solar values. This
process could have resulted in an underabundance
of metals (due to mixing with the initial unenriched
matter) but should have no effect on the relative
abundances of various elements with respect to iron.
If such a scenario were possible, we could observe
metal-poor stars with solar abundances of α-process
elements. This explanation may be relevant for Palo-
mar 12, but it is not appropriate for G251-54 or
Ruprecht 106, since these objects show substantially
stronger deficits ofα-process elements. Furthermore,
this interpretation cannot explain the observed very
strong underabundance of s-process and other ele-
ments.

In our opinion, a more likely scenario is the capture
by the Milky Way of small satellite galaxies in which,
owing to the low mass of the initial gaseous clouds,
star formation followed a significantly different pat-
tern. In particular, the star-formation process in such
low-mass clouds could have bypassed the stage of
enrichment with the products of type-II superno-
va explosions and continued until the onset of the
phase of type-Ia supernovae. In this case, the atmo-
spheres of stars formed in such clouds should be ex-
tremely underabundant in elements synthesized dur-
ing the evolution of single, massive stars. These ele-
ments include oxygen, α-process elements, sodium,
r-process elements and, partly, s-process elements.
Because precisely these elements are underabundant
in G251-24 relative to other metal-poor stars, a sce-
nario in which the star formed in an isolated, low-
mass cloud seems plausible. The underabundance
of elements with odd numbers of protons (Na, Sc,
Mn, Cu), whose synthesis depends strongly on the
metallicity of the region inwhich the nuclear reactions
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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take place, and the normal abundances of such iron-
peak elements as Cr, Ni, and Zn also fit into this
scenario. We can also take into account the fact that
Ba is synthesized primarily in low-mass stars on the
asymptotic giant branch and that such stars reach
this stage after the onset of the phase of type-Ia
supernovae. In this case, the overderabundance of Ba
in the atmosphere of G251-54 can also be explained
in this scheme.

Stars like G251-54 are of special interest from
the viewpoint of the chemical evolution of the Milky
Way, since they reveal a chemical-enrichment his-
tory different from that shown by other metal-poor
stars. In addition, large apogalactic distances and
unusual atmospheric chemical compositions may be
indicative of an extragalactic origin for these stars and
their subsequent capture by the Milky Way. Combin-
ing kinematic and chemical analyses of such stars
enables us to analyse, not only the history of the
chemical evolution of the Milky Way and its nearest
neighborhood, but also the processes of mergers with
small satellites.
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Suppl. Ser. 131, 431 (1998).
37. R. E. Luck and H. E. Bond, Astrophys. J. 244, 919

(1981).
38. R. L. Kurucz, CD-ROM18 (SAO, Cambridge, 1993).
39. W. L. Wiese, M. W. Smith, and B. M. Glennon,

Atomic Transition Probabilities, Vol. 1, NSRDS-
NBS 4.

40. P. E. Nissen and W. J. Shuster, Astron. Astrophys.
326, 751 (1997).

41. T. N. Chang, Phys. Rev. A 41, 4922 (1990).
42. T. Garz, Astron. Astrophys. 26, 471 (1973).
43. D. L. Lambert and B. Warner, Mon. Not. R. Astron.

Soc. 138, 181 (1968).
44. Y. Q. Chen, P. E. Nissen, G. Zhao, et al., Astron.

Astrophys., Suppl. Ser. 141, 491 (2000).
45. G. Smith and D. St. J. Raggett, J. Phys. B 14, 4015

(1981).



886 ERMAKOV et al.
46. J. E. Lawler and J. T. Dakin, J. Opt. Soc. Am. B 6,
1457 (1989).

47. G. A. Martin, J. R. Fuhr, and W. L. Wiese, J. Phys.
Chem. Ref. Data 17, Suppl. 3 (1988).

48. J. R. Fuhr, G. A. Martin, and W. L. Wiese, J. Phys.
Chem. Ref. Data 17, Suppl. 4 (1988).

49. E. A. Gurtovenko and R. I. Kostyk, in Fraunho-
fer Spectra and a System of Solar Oscillator
Strengths, Ed. by M. Ya. Orlov [in Russian] (Nau-
kova Dumka, Kiev, 1989).

50. T. A. Ryabchikova, G.M.Hill, J. D. Landstreet, et al.,
Mon. Not. R. Astron. Soc. 267, 697 (1994).

51. A. Bizzarri, M. C. E. Huber, A. Noels, et al., Astron.
Astrophys. 273, 707 (1993).

52. P. S. Barklem,N. Piskunov, and B. J.O’Mara, Astron.
Astrophys., Suppl. Ser. 142, 467 (2000).

53. R. L. Kurucz, CD-ROM 20-22 (SAO, Cambridge,
1994).

54. M. E.Wickliffe and J. E. Lawler, Astrophys. J., Suppl.
Ser. 110, 163 (1997).

55. J. Reader and C. J. Sansonetti, Phys. Rev. A 33, 1440
(1986).

56. W. L. Wiese and G. A. Martin, Wavelengths and
Transition Probabilities for Atoms and Atomic
Ions (National Bureau of Standards, Washington,
DC, 1980), NSRDS-NBS, no. 68.

57. F. Kupka, N. E. Piskunov, T. A. Ryabchikova, et al.,
Astron. Astrophys., Suppl. Ser. 138, 119 (1999).

58. T. A. Ryabchikova, N. E. Piskunov, H. C. Stempels,
et al., in Atomic Spectra and Oscillator Strengths,
Phys. Scr. 83, 162 (1999).

59. N. E. Piskunov, F. Kupka, T. A. Ryabchikova, et al.,
Astron. Astrophys., Suppl. Ser. 112, 525 (1995).

60. J. A. Thorburn, Astrophys. J. 421, 318 (1994).
61. C. A. Pilachowski, C. Sneden, and J. Booth, Astro-

phys. J. 407, 699 (1993).
62. T. V. Mishenina, S. A. Korotin, V. G. Klochkova, and

V. E. Panchuk, Astron. Astrophys. 353, 978 (2000).
63. T. Tsujimoto, K. Nomoto, Y. Yoshii, et al., Mon. Not.

R. Astron. Soc. 277, 945 (1995).
64. R. G. Gratton and C. Sneden, Astron. Astrophys.

204, 193 (1988).
65. K. Nomoto, Y. Tsujimoto, and H. Yamaoka, in Ele-

ments and the Cosmos,Ed. byM.G. Emunds and R.
Terlevich (Cambridge Univ. Press, Cambridge, 1992),
p. 55.

66. R. G. Gratton and C. Sneden, Astron. Astrophys.
178, 179 (1987).

67. M. Samland, Astrophys. J. 496, 155 (1998).
68. F. X. Timmes, S. E. Woosley, and T. A. Weaver, As-

trophys. J., Suppl. Ser. 98, 617 (1995).
69. Y. Takeda, K.-I. Kato, Y. Watanabe, and K. Sadakane,
Publ. Astron. Soc. Jpn. 48, 511 (1996).

70. R. C. Peterson, Astrophys. J. 244, 989 (1981).
71. R. E. Luck and H. E. Bond, Astrophys. J. 271, L75

(1983).
72. K. K. Gilroy, C. Sneden, C. A. Pilachowski, and

J. J. Cowan, Astrophys. J. 327, 298 (1988).
73. R. G. Gratton and C. Sneden, Astron. Astrophys.

241, 501 (1991).
74. R. G. Gratton, Astron. Astrophys. 208, 171 (1989).
75. S. G. Ryan, J. E. Norris, and T. C. Beers, Astrophys.

J. 471, 254 (1996).
76. C. Sneden and D. A. Crocker, Astrophys. J. 335, 406

(1988).
77. C. Sneden, R. G. Gratton, and D. A. Crocker, Astron.

Astrophys. 246, 354 (1991).
78. F. Matteucci, C. M. Raiteri, M. Busso, et al., Astron.

Astrophys. 272, 421 (1993).
79. G. J. Mathews, G. Bazan, and J. J. Cowan, Astro-

phys. J. 391, 719 (1992).
80. G. J. Mathews and J. J. Cowan, Nature 345, 491

(1990).
81. S. Lamb,W.M. Howard, J.W. Truran, and I. Iben, Jr.,

Astrophys. J. 217, 213 (1977).
82. R. A.Malaney and A. I. Boothroyd, Astrophys. J. 320,

866 (1987).
83. C.M. Raiteri,M. Busso, R. Gallino, et al., Astrophys.

J. 371, 665 (1991).
84. I. Jr. Iben and A. Renzini, Astrophys. J. 259, L79

(1982).
85. D. E. Hollowell and I. Iben, Jr., Astrophys. J. 340, 966

(1989).
86. R. Gallino, M. Busso, G. Picchio, et al., Astrophys.

J. 334, L45 (1988).
87. F. Kappeler, R. Gallino, M. Busso, et al., Astrophys.

J. 354, 630 (1990).
88. A. G. W. Cameron, Astrophys. Space Sci. 82, 123

(1982).
89. F. Kappeler, H. Beer, and K. Wisshak, Rep. Prog.

Phys. 52, 945 (1989).
90. F. Kappeler, W. R. Zhao, H. Beer, and U. Ratzel,

Astrophys. J. 355, 348 (1990).
91. R. G. Gratton and C. Sneden, Astron. Astrophys.

287, 927 (1994).
92. G. Zhao and P. Magain, Astron. Astrophys. 244, 425

(1991).
93. J. A. Brown, G.Wallerstein, and D. Zucker, Bull. Am.

Astron. Soc. 27, 1404 (1995).
94. B. W. Carney and D. W. Latham, Astrophys. J. 298,

803 (1985).
Translated by A. Dambis
ASTRONOMY REPORTS Vol. 46 No. 11 2002



Astronomy Reports, Vol. 46, No. 11, 2002, pp. 887–899. Translated from Astronomicheskĭı Zhurnal, Vol. 79, No. 11, 2002, pp. 986–998.
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Abstract—Fluxes of stars in models of open clusters that are nonstationary in the regular field of the cluster
are analyzed. An equilibrium distribution function describes the state of these models from the beginning
of their dynamical evolution. Violent relaxation in the open-cluster models proceeds under equilibrium
conditions in phase space and does not result in virial equilibrium. The cluster relaxation times in the
one-dimensional spaces of a number of stellar-motion parameters are estimated. The stellar fluxes are
anisotropic in some two-dimensional parameter spaces. Such open-cluster models exhibit a number of
manifestations of self-organization (an energy flux toward the center of the cluster and a transfer of energy
from large-scale to small-scale motions, periodic decreases in the entropies of the cluster models with a pe-
riod equal to that of oscillations of the regular field of the cluster, etc.). It is concluded that violent relaxation
represents one form of self-organization in such systems. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The dynamical evolution of open-cluster models
that are nonstationary in the regular field of the clus-
ter [1, 2] by the end of the first violent-relaxation time
τvr [3] are characterized by an equilibrium distribution
of stars over the three parameters of stellar motion ε,
l, and εζ (the energy, angular momentum, and energy
of the star perpendicular to the Galactic plane, all
per unit mass of the star). These open-cluster mod-
els [1, 2] attain neither virial nor thermodynamical
equilibrium as t increases, and the virial coefficient
for the cluster models at t > τvr continues to oscillate
with nearly constant amplitude and the period Pr. The
equilibrium of open-cluster models pointed out in [1,
2] is not complete, since the distribution of stars in
the coordinate and velocity spaces and the potential
of the regular forces of the cluster model vary with
the period Pr, and the phase-space density function
(PSDF) remains well conserved on time scales on the
order of Pr .

Variations in the number density of stars in any
region of the phase space are due to differences in the
incoming and outgoing fluxes of stars. Therefore, to
understand the dynamics of the processes that lead
to the state of incomplete equilibrium in the open-
cluster models of [1, 2], it is of interest to analyze
the properties of stellar fluxes in the phase space, in
spaces of the variables ε, l, and εζ , and in a number of
other spaces describing the cluster models.

The dispersions of the increments of ε, l, and εζ
derived from the distributions of the stellar fluxes in ε,
l, and εζ provide insight into the relaxation times of
the open-cluster models in these spaces. According
1063-7729/02/4611-0887$22.00 c©
to El-Zant [4], for a number of reasons, the relax-
ation time of a system of N gravitating bodies can
differ substantially from the time scale for the de-
velopment of instabilities in the trajectories of these
bodies in phase space. Danilov [1, 5] estimated the
local violent-relaxation times tr from data on the in-
stability of the PSDFs of open-cluster models against
small initial perturbations of the phase-space coordi-
nates of the stars (the instability of the PSDF is due
to instability of the stellar trajectories in the cluster
models). Estimates of the relaxation rates of open-
cluster mosels based on the properties of stellar fluxes
in spaces of ε, l, and εζ have not previously been
made, but they are of considerable interest for studies
of the diffusion of stars in the cluster-model phase
space.

Studies of stellar fluxes in open-cluster models
indicate a number of manifestations of self-organiza-
tion. Consideration of the entropy of the open-cluster
models in connection with self-organization effects is
of interest.

In the current paper, we analyze the behavior of
fluxes of stars in open-cluster models, investigate the
characteristic features of violent relaxation and the
incomplete equilibrium in these systems, and develop
a method for the computation and analysis of the
properties of the stellar fluxes.

2. DESCRIPTION OF MODELS

Following [1, 2], let us consider a cluster contain-
ing N = 500 stars moving in the Galactic plane in a
circular orbit of radius 8200 pc around the Galactic
center. At the initial time t = 0, the cluster is modeled
2002 MAIK “Nauka/Interperiodica”
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Parameters of OC models

No. R1/R2 N1/N2 N1
Use of

formula (1) R2/Rt 〈R〉/Rt tr,h τε τl τεζ
σv/σr

1 0.24 0.25 100 + 0.9 0.57 1.5 5.2 2.2 1.2 2.8

2 0.24 0.25 100 + 0.7 0.45 1.2 4.4 3.2 0.9 2.3

3 0.634 4.00 400 + 0.8 0.42 1.9 2.7 3.2 1.1 1.3

4 0.24 0.25 100 − 0.7 0.45 3.9 2.9 0.7 2.4

5 0.4 4.00 400 + 0.9 0.35 2.7 2.5 0.6 1.7
as a system of two gravitating spheres with coincident
centers of mass, imitating the halo and core. We an-
alyzed five such open-cluster models, whose param-
eters are summarized in the Table. The first column
gives a sequence of numbers identifying the models.
The initial parametersR1/R2 andN1/N2 (columns 2,
3) of the first four models satisfy the relationR1/R2 �
0.39 × (N1/N2)0.35, based on observational data [6].
Here, R1 and R2 are the radii of the cluster core and
halo, respectively, andN1 andN2 the numbers of stars
in the core and halo, respectively (the initial N1 is
given in column 4). The fifth model does not obey this
relation between R1/R2 and N1/N2. The masses of
the stars in the models are equal to 1M�.

We used the equations of stellar motion (5.517)–
(5.519) from [7] and analyzed the motions of the
cluster stars in a rotating coordinate system (ξ, η, ζ)
fixed to the cluster center of mass. The ξ, η, and
ζ axes are directed from the cluster center of mass
toward the Galactic center, along the motion of the
cluster in the Galactic plane, and perpendicular to the
Galactic plane, respectively. We adopted the Galactic
potential in the form suggested in [8]. We specified
the initial positions and velocities of the stars in the
models using a random-number generator, in accor-
dance with the technique described in [1] for cluster
model 2 (model 1 of the current paper coincides with
model 2 of [1] at t = 0). At t = 0, the cluster model
does not rotate relative to external galaxies, and the
initial stellar number densities at various points of the
halo and core subsystems are approximately constant
in (ξ, η, ζ).

At t = 0, cluster models 1–3 and 5 obey the con-
ditions of virial equilibrium for isolated clusters, and
the absolute values of the velocities of the stars of
subsystem i can be computed using the formula

vi =
√
CiU(r), i = 1, 2, (1)

where r = |r|, r = (ξ, η, ζ) is the radius vector of the
star in the cluster, U(r) is the gravitational poten-
tial of the cluster, and the subscripts i = 1, 2 corre-
spond to the cluster core and halo, respectively. The
constants Ci are chosen so that the cluster and its
subsystems obey the conditions of virial equilibrium
at t = 0, neglecting the effect of the gravitational field
of the Galaxy [9]. The use of (1) when setting the
initial phase-space density functions in models 1–3
and 5 is indicated by a plus sign in column 5 of the
table. In model 4, the absolute values of all the stellar
velocities are assumed to be the same at t = 0 and to
correspond to virial equilibrium for an isolated clus-
ter. Therefore, models 1–5 do not obey the condition
of virial equilibrium in the gravitational field of the
Galaxy at t = 0.

We smoothed the force functions on the right-
hand sides of the stellar equations of motions (see [10]
for a description of the smoothing technique and
smoothing parameter used).

The stellar equations of motion were integrated
using eighth- and ninth-order Runge–Kutta meth-
ods and grid functions adopted from [11], with a pre-
cision of 15–16 decimal digits. The maximum relative
errors in the computed “energy” E [see (5.522) in [7]]
did not exceed 2.8 × 10−13, 9.0 × 10−14, 1.1 × 10−13,
8.0 × 10−14, and 1.3 × 10−12 in cluster models 1, 2,
3, 4, and 5, respectively. The statistical criterion for
the accuracy of the computations of the phase-space
density functions [12] remained satisfied for evolu-
tionary time intervals of t0/τvr = 2.7, 3.1, 3.6, 2.45,
and 1.8 for models 1, 2, 3, 4, and 5, respectively (here,
as in [1, 2], we take the initial violent-relaxation times
for the cluster models to be τvr = 2.6tcr, where tcr is
the mean initial crossing time for a star in the cluster).

Let Rt be the tidal stability radius of the cluster in
the Galactic field computed in accordance with [13],
〈R〉 the mean distance of the star from the cluster
center, and 〈ρ〉i the cluster-averaged mean initial
density for model i (i = 1, . . . , 5). The initial values
of R2/Rt and 〈R〉/Rt for our models are listed in
columns 6 and 7 of the table. We can see that cluster
models 1 and 5 have the lowest and highest initial

densities 〈ρ〉1, with 〈ρ〉5
〈ρ〉1 � 4.34.
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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The degree of nonstationarity of the models in the
regular field is determined by the amplitude of oscil-
lations of the virial coefficient δα, where α = 2Ec/W ,
Ec = T +W , and T and W are the kinetic and po-
tential energies of the cluster, including the effect of
the gravitational field of the Galaxy (as in [1, 2, 5]).
The mean ratios δα of the amplitudes of the oscil-
lations of the virial coefficient α to the value α = αv
averaged over the period Pr of oscillations of the
regular field are 0.53 ± 0.09, 0.14 ± 0.02, 0.06 ± 0.03,
0.09 ± 0.05, and 0.08 ± 0.02 for models 1, 2, 3, 4, and
5, respectively. Such degrees of nonstationarity are
also typical of real open clusters [6].

3. MAIN FORMULAS AND NOTATION

Let us consider fluxes of stars in the space of
the energy ε. We will number the ε values for the
cluster stars in order of increasing ε (in this case,
the ordinal numbers p of the stars whose phase-
space coordinates are used when computing ε do
not coincide with the ordinal numbers for the ε val-
ues). Following [1], we subdivide all the cluster stars
(500 objects) into groups of 50 stars in order of in-
creasing ε at some time t. Then, the stars with ener-
gies ε′ ∈ (ε50×(i−1)+1, ε50×i] ≡ Ei(t) specify the in-
terval ∆εi = ε50×i − ε50×(i−1)+1 in ε space, where
i = 2, . . . , 10. When i = 1, we must consider the in-
terval ε′ ∈ [ε50×(i−1)+1, ε50×i] ≡ E1(t) such that the
star with the minimum energy ε1 is also included.
Let the number of stars in the ith ε interval at time
t be n(ε)

i (t). Let n(ε)(i, j) denote the number of stars
passing from the ith to the jth interval in the ε space
during the time ∆t. This number can be obtained from
the stellar phase-space coordinates for the cluster
model at times t and t+ ∆t:

n(ε)(i, j) =
500∑
p=1

δp, where (2)

δp =

{
1, if εp(t)∈Ei(t), εp(t+∆t)∈ Ej(t+∆t)
0, in all other cases.

Note that, generally speaking, the ∆εi values at
times t and t+ ∆t are not equal for any i = 1, . . . , 10.
The quantity n(ε)(i, j)/∆t is equal to the flux of stars
emerging from the interval Ei(t) into the interval
Ej(t+ ∆t) in ε space. In the framework of the method
adopted to specify the ∆εj values, we have for the
total number of stellar transitions into the interval
∆εj during the time ∆t

10∑
i=1

n(ε)(i, j) = 50, j = 1, . . . , 10. (3)
ASTRONOMY REPORTS Vol. 46 No. 11 2002
After equilibrium is established in the ε space for
the open-cluster models, the stellar-transition matrix
n(ε)(i, j) should become symmetric (or close to sym-
metric).

The average number of stellar transitions by j
intervals in ε during the time ∆t is

ν(ε)(j) (4)

=




1
10+j

10∑
i=1−j

n(ε)(i, i + j), j = −9, . . . ,−1

1
10−j

10−j∑
i=1

n(ε)(i, i+ j), j = 0, 1, . . . , 9.

In (4), we have averaged the numbers of all possi-
ble stellar transitions by j intervals in ε. The values
j > 0 (< 0) correspond to an increase (decrease) of
the star’s energy ε as a result of such a transition.
The function ν(ε) = ν(ε)(j) is the j distribution of the
mean numbers of stellar transitions in ε during the
time ∆t. If this distribution is symmetric about j = 0,
there is a balance of stellar transitions in ε space.

The degree of asymmetry of the matrix n(ε)(i, j)
can be expressed by the single quantity

ψ(ε) =

10∑
j=1

10∑
i=1

|n(ε)(i, j) − n(ε)(j, i)|

1
2

10∑
j=1

10∑
i=1

(n(ε)(i, j) + n(ε)(j, i))
. (5)

It is convenient to use ψ(ε) to analyze the time depen-
dence of disruptions of the balance of the correspond-
ing stellar transitions between intervals in ε.

Let us now consider stellar transitions in the two-
dimensional (r, v) space of the cluster models (here, v
is the absolute value of the star’s velocity in the clus-
ter). We subdivide the region in (r, v) occupied by the
cluster-model stars as we did for the ε space. How-

ever, we now assume that the number of stars n(r,v)
ij (t)

located in the cell (∆ri,∆vj) at time t is equal to five,
i, j = 1, . . . , 10. For brevity, we have used the term
“cell (∆ri,∆vj)” to denote the region of (r, v) space
with the coordinates r′ ∈ [r50×(i−1)+1, r50×(i−1)+1 +
∆ri] ≡ Li(t), v′ ∈ [v50×(j−1)+1, v50×(j−1)+1 + ∆vj] ≡
Vj(t) at i, j = 2, . . . , 10. In the case i, j = 1, r′ ∈
L1(t) ≡ [r1, r1 + ∆r1], v′ ∈ V1(t) ≡ [v1, v1 + ∆v1].
Here, r and v are numbered in increasing order
(the numbers p for the stars whose phase-space
coordinates are used to compute r and v do not
coincide with the numbers for r and v). With this
partition of (r, v) space into cells, the number of
stars in the interval r′ ∈ Li(t) is equal to 50 (for
any i = 1, . . . , 10). In the notation used, we have
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r50×i = r50×(i−1)+1 + ∆ri. A similar relation can be
written for the quantities v.

Let n(r,v)(i, j, k,m) be the number of stars in (r, v)
space that move from the cell (∆ri,∆vj) defined at
time t to the cell (∆rk,∆vm) defined at time t+ ∆t.
We obtain from the stellar phase-space coordinates
for the cluster model at times t and t+ ∆t

n(r,v)(i, j, k,m) =
500∑
p=1

δp, where δp (6)

=




1, if rp(t)∈ Li(t), rp(t+ ∆t)∈ Lk(t+ ∆t),
vp(t)∈ Vj(t), vp(t+ ∆t)∈ Vm(t+ ∆t)

0, in all other cases.

The total number of stellar transitions to the cell
(∆rk,∆vm) during the time ∆t is

10∑
i=1

10∑
j=1

n(r,v)(i, j, k,m) = 5, k,m = 1, . . . , 10. (7)
Relations (3) and (7) can be used to monitor the accu-
racy of the computation ofn(ε)(i, j) and n(r,v)(i, j, k,m).

Let us specify the i = i0 and k = k0 values in the
matrix n(r,v)(i, j, k,m). The mean number of stellar

transitions ν(r,v)
i0,k0

(J) by J = m− j intervals in v ac-
companied by transitions of these stars in r from the
intervalLi0(t) to the intervalLk0(t+ ∆t) can be com-
puted using formulas like (4), with n(ε)(i, j) replaced
by the matrix n(r,v)(i0, j, k0, j + J) and the summa-
tion performed over j. We can similarly compute the
mean number of stellar transitions by I = k − i inter-
vals in r for specified values j = j0 andm = m0 in the
case of stellar transitions in v from the interval Vj0(t)
to the interval Vm0(t+ ∆t). Generalizing (4) to the
case of stellar transitions in a two-dimensional space
yields expressions of the form
ν(r,v)(I, J) =




1
(10+I)(10+J)

10∑
j=1−J

10∑
i=1−I

n(r,v)(i, j, i + I, j + J), I, J = −9, . . . ,−1

1
(10−I)(10+J)

10∑
j=1−J

10−I∑
i=1

n(r,v)(i, j, i + I, j + J), I = 0, 1, . . . , 9;J = −9, . . . ,−1

1
(10+I)(10−J)

10−J∑
j=1

10∑
i=1−I

n(r,v)(i, j, i + I, j + J), I = −9, . . . ,−1;J = 0, 1, . . . , 9

1
(10−I)(10−J)

10−J∑
j=1

10−I∑
i=1

n(r,v)(i, j, i + I, j + J), I, J = 0, 1, . . . , 9.

(8)
In our case, the numbers of stars n(r,v)
i,j (t) are small

(equal to five). Therefore, the quantities ν(r,v)(I, J)
should also be small and exhibit random fluctua-
tions. In this situation, it is useful to analyze not only
the distribution ν(r,v) = ν(r,v)(I, J), but also the total
(“synthetic”) distribution ν(r,v)(I, J) over all times in
the time interval t0 for the given open-cluster model.

The degree of symmetry of the matrix n(r,v)(i, j,
k,m) can be expressed by the single quantity
ψ(r,v) =

10∑
k=1

10∑
i=1

10∑
m=1

10∑
j=1

|n(r,v)(i, j, k,m) − n(r,v)(k,m, i, j)|

1
2

10∑
k=1

10∑
i=1

10∑
m=1

10∑
j=1

(n(r,v)(i, j, k,m) + n(r,v)(k,m, i, j))
. (9)
The fluxes of stars between intervals and cells
in one-and two-dimensional spaces of the stellar-
motion parameters in the open-cluster models can
be analyzed using (2)–(9), without using data on the
time variations of the sizes of the intervals and cells in
the spaces considered. The number of stars located in
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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each such interval or cell is fixed at any time t, so that
these time dependences also contain important infor-
mation about the dynamics of the stellar system and
the time evolution of the stellar density distribution in
these spaces.

Let s2v = s2
ζ̇
/(s2

ξ̇
+ s2η̇ + s2

ζ̇
) and ζ̇ = dζ

dt and the

quantities η̇ and ξ̇ be defined in a similar way. Here,
s2
ξ̇
, s2η̇, and s2

ζ̇
are the dispersions of the deviations

of the ξ̇, η̇, and ζ̇ coordinates of the stars from their
mean values, computed for stars with clustercentric
distances r ≤ R−

t , where R−
t is the tidal radius of the

cluster for stars with “retrograde” orbits [1] (see [10]
for the technique used to compute R−

t ). In the evolu-
tion of cluster models 1–5, the relations s2v � 0.3–0.4
and sζ̇/sξ̇ � sζ̇/sη̇ � 1.1–1.3 are, on average, satis-
fied on long time intervals t0, indicating that the stel-
lar distributions in these models are nearly spherically
symmetric. Let s2r = s2ζ/(s

2
ξ + s2η + s2ζ), where s2ξ , s2η,

and s2ζ are determined from the ξ, η, ζ coordinates
of the stars in the same way as we determined s2

ξ̇
,

s2η̇, and s2
ζ̇

from the coordinates ξ̇, η̇, and ζ̇ when

computing s2v. In the evolution of models 1–5, the
relations s2r � 0.3–0.4 and sζ/sξ � sζ/sη � 0.9–1.0
are, on average, satisfied on long time intervals t0,
showing that the distribution of 70–90% of the stars
in models 1–5 in (ξ, η, ζ) space can be considered
close to spherically symmetric.

Let us now estimate the phase-space volume Qij

occupied by the stars of the cell (∆ri,∆vj) at time t.
We will assume that the distributions of stars in the
coordinate and velocity spaces for the models are
spherically symmetric. We obtain in this case

Qij =
(

4
3
π

)2

(r350×i − r350×(i−1)+1) (10)

× (v350×j − v350×(j−1)+1), i, j = 1, . . . , 10.

In the framework of the method used to specify ∆ri
and ∆vj , the phase-space density of the stars in
the cell (∆ri,∆vj) of (r, v) space at time t is fij =
n

(r,v)
ij (t)/Qij , i, j = 1, . . . , 10. Using the adopted

notation and formula (10.23) of [14], the entropy of the
system for the six-dimensional phase space can be
written in the form S = −

∑10
i=1

∑10
j=1(fij ln fij)Qij .

We then substitute the values n(r,v)
ij (t) = 5 and fij =

5/Qij into the expression for S to obtain after simple
manipulation S = −500 ln 5 + 5

∑10
i=1

∑10
j=1 lnQij .

The dependences Qij = Qij(t) (i, j = 1, . . . , 10) fully
determine the time variations ofS. We therefore define
ASTRONOMY REPORTS Vol. 46 No. 11 2002
the entropy S of the cluster model to within a constant
term and a constant factor as follows:

S =
10∑
i=1

10∑
j=1

lnQij. (11)

4. COMPUTATION RESULTS
AND DISCUSSION

By time t � (0.30–0.43)τvr , the open-cluster
models cease to contract (mainly perpendicular to the
Galactic plane), and, at t > (0.3 –0.6)τvr , oscillations
in the regular field are established, with periods of
Pr � 0.6τvr for models 1 and 5 and Pr � 0.74τvr for
model 2. The period of the oscillations in ζ is Pζ �
0.6τvr , while the periods of the oscillations in ξ and
η are Pξ,η � Pξ � Pη � 1.2τvr in models 3 and 4 (in
these models, the phases of the cluster oscillations are
approximately the same in ξ and η, and the period of
the cluster oscillations in the (ξ, η) plane is twice the
period in ζ : this period doubling is especially conspic-
uous in model 3). If we adopt as the beginning of the
period Pξ,η the time of the strongest contraction of the
cluster along the ξ, η, and ζ coordinates, the middle
of the period Pξ,η corresponds to the time when the
cluster undergoes the strongest contraction in ζ and
the strongest expansion in ξ and η, whereas, at the
end of Pξ,η, the cluster synchronously experiences its
strongest contraction in ξ, η, ζ, etc. Figure 1 shows
the time dependences of the virial coefficient α(t)
for the stars with clustercentric distances r ≤ Rt for
models 1 and 3. All the open-cluster models exhibit
a weak decrease of the amplitude of oscillations of α
with time. The small, irregular perturbations in the
α(t) curves at large t/τvr are probably due to errors
accumulated during the computation of the stellar
trajectories.

We determined the Jeans wavelength λJ for mod-
els 1–5 using formula (15.42) from [14] and the tech-
nique described in [2]. The resulting λJ estimates
range from λJ = 2D (for model 1) to λJ = 2.6D (for
model 5). Here,D = 2R−

t is the diameter of the clus-
ter. According to [15], in this situation, small, random
density fluctuations (due to stellar encounters) can
easily excite large-scale density oscillations, since the
systems considered are close to gravitational insta-
bility. This enhancement of small density oscillations
should be more active in model 1 (this model is closer
to gravitational instability than the other models, and
has the lowest λJ/D).

We will analyze fluxes of stars in spaces of the
quantities ε, l, εζ , Γ(ε), r, v, (r, v), and (r, ε) in cluster
models 1–5. Formulas for ε, l, and εζ can be found
in [1]. Here, Γ(ε) is the phase-space volume occupied
by cluster stars with energies ε′ ≤ ε. A description
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Fig. 1. Time dependences of α(t) in cluster models 1 (solid line) and 3 (dashed line).
of the technique used to compute Γ(ε) can be found
in [2]. We used formulas (3) and (7) to monitor the
accuracy of the computations of the rates of stellar
transitions in the various spaces.

In all the open-cluster models, for time intervals
of the stellar transitions ∆t = 0.1τvr , the matrices
describing the numbers of stellar transitions in spaces
of ε, l, εζ , Γ(ε), and r are banded for all the t values
considered (i.e., n(xk)(i, j) = 0 for |i− j| > ∆k, i, j =
1, . . . , 10, where k = 1, . . . , 5, x = (ε, l, εζ ,Γ(ε), r)).
∆k = 1 for k = 1, 4, ∆2 = 2, ∆3 = 3–5, and ∆5 =
3. The diagonal elements of the matrices n(xk)(i, j)
substantially exceed the other elements. The number
of stellar transitions between well-separated intervals
increases on long time intervals ∆t = (0.3–0.6)τvr .
In all the open-cluster models, the rates of stellar
transitions between intervals in the quantities xk,
(k = 1, . . . , 5) are balanced from the very beginning
of the evolution until the end of the computations
(the distributions ν(xk)(j) are quite symmetric about
j = 0 at all times considered).

Figure 2 shows the distributions ν(ym)(j), and
m = 1, . . . , 6 for model 1 for y = (x1, . . . , x5, v)
and ∆t = 0.1τvr (the corresponding distributions for
other models are similar to these). The equilibrium
distributions of the stars in ε, l, εζ ,Γ(ε), and r exist
from the very beginning of their evolution. Accord-
ing to [2], the equilibrium distribution of stars in ε
corresponds to the equilibrium PSDF F0(r,v). This
form of the equilibrium in the phase space is due to the
balance of stellar fluxes in Γ(ε), which is a result of the
balance of fluxes in ε. Figure 2 shows that the stellar
transitions are not balanced in v. The distributions of
stars in r and v are related via the equilibrium PSDF.
The equilibrium distribution of stars in r over the
periodPr evolves such that the numbers of stars in the
intervals Li(t) are approximately conserved, in spite
of the periodic variations of the sizes of ∆ri. There
is no such equilibrium in v space. The transitions of
stars in (r, v) space are not balanced, since the cluster
is not in virial equilibrium.

The origins of the equilibrium distribution F0(r,v)
in the open-cluster models at small t have nothing
to do with the magnitude of the initial deviations
of the cluster models from virial equilibrium, since
these models have very different degrees of nonsta-
tionarity in the regular field, and there is a balance of
stellar transitions in Γ(ε) throughout their evolution
(including at small t). The phase-space equilibrium
corresponding to F0(r,v) is likewise not due to our
use of the initial relationR1/R2 ∼ (N1/N2)0.35 in the
cluster models (since model 5 does not satisfy this
relation at t = 0), or our use of the initial relation (1)
(since model 4 does not obey this relation at t = 0).
Note that ε, l, and εζ , with the properties indicated
in [1], appear as arguments of the equilibrium distri-
bution function f(ε, l, εζ) in [1] due to the condition
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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of maximum entropy of the system, as a consequence
of the conservation of the integrals of the “energy” E
from [7], angular momentum of the cluster Aζ [7,
(5.530)], and the energy Eζ of the motion of the
cluster stars in the ζ direction in the Galaxy. The
conservation ofAζ andEζ in the open-cluster models
is due to the existence of various symmetries in the
distributions of the stars in ξ, η, ζ. These symmetries,
in turn, are due to the axial symmetry of the potential
adopted for the regular forces in the Galaxy and the
motion of the open-cluster models in circular orbits
in the Galactic plane. The phase-space equilibrium
corresponding to F0(r,v) at small t is probably also
a result of these same factors.

The quantities ψ(zi) and the dispersions σzi of j
for stellar transitions in the spaces zi, i = 1, 2, 3, z =
(ε, l, εζ ) remain small (and vary little) from t = 0 until
the end of the computations (for model 1, see Fig. 3).
This also indicates that the equilibrium distributions
of stars f(ε, l, εζ) and F0(r,v) exist in all the open-
cluster models from the very beginning of their evo-
lution. Thus, in these cluster models, violent relax-
ation proceeds under the conditions of the equilibrium
distribution F0(r,v). Therefore, tr is not the time
ASTRONOMY REPORTS Vol. 46 No. 11 2002
for the relaxation of the open-cluster models to the
phase-space equilibrium described by the function
F0(r,v). This relaxation leads to the spontaneous
establishment of a single frequency of synchronous
oscillations in models 1, 2, and 5, and the develop-
ment of oscillations with two characteristic frequen-
cies and the corresponding amplitudes of the large-
scale oscillations in models 3 and 4. The parameters
of the established (“equilibrium”) oscillation process
in models 1–5 vary little with time (see Fig. 1 for
models 1 and 3). Thus, it would be more correct to
refer to tr in models 1–5 as the time for the estab-
lishment of an “equilibrium” oscillatory process that
is close to an autowave process [16, 2].

According to Fig. 2, the number of intervals ∆ε
that a star passes through in model 1 in the direc-
tion of increasing (decreasing) ε is, on average, vε =
0.5σε/∆t. The greater vε, the faster the motion of
the stars and the relaxation of the system in ε space.
Because the size of the cluster in ε space is equal to
ten intervals ∆ε [see discussion of (2)], the relaxation
time of the cluster in ε space is τε = 10/vε = 2τvr/σε

(here, we use the fact that ∆t = 0.1τvr). Thus, τε is
the mean time it takes a star to change its energy ε by
an amount on the order of the size of the cluster in ε
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Fig. 3. Time dependences of ψ(x)(t) for cluster model 1.
space under the action of all forces and mechanisms
operating in the cluster. We can similarly determine
the cluster relaxation times τl and τεζ

in the spaces of
l and εζ .

Columns 9–12 of the table give estimates of τε, τl,
τεζ

(all in fractions of τvr), and σv/σr in models 1–5
taking into account the mean σε, σl, σεζ

, σv, and σr

values over the evolution time intervals considered
for these models. The errors in τε, τl, and τεζ

due to
the dispersions of the corresponding mean quantities
ν(j) from (4) in models 1–5 are 1.5–4% of τε, τl,
and τεζ

(the dispersions of ν(j) in (4) are usually
three to four orders of magnitude smaller than those
of j obtained taking into account the distributions
ν(j)). Column 8 of the table gives estimates of the
local violent-relaxation time tr,h in the phase space
for the cluster halo (in fractions of τvr) obtained in [1,
2] for cluster model 1 and in [11] for models 2 and
3). We can see that τε > tr,h > τεζ

in models 1–3.
In all the models except for model 3, τε > τl > τεζ

.
In model 3, τl > τε > τεζ

. Note that clusters with
parameters for their core–halo structure close to the
initial parameters of model 3 are rarely found among
observed open clusters (see the (ξ, µ) diagram for
103 open clusters in [6]). Therefore, the inequalities
τε > τl > τεζ

obtained for models 1, 2, and 4 are more
characteristic of observed open clusters. Thus, the
fastest violent relaxation in these cluster models is
found in the space of εζ . The rate of violent relaxation
in the phase space, ∼ 1/tr,h, is somewhat lower in
models 1–3 than 1/τεζ

. The small values of τεζ
in

models 1–5 are probably due to the fact that they
contract mainly along the ζ axis, and their subse-
quent oscillations along this axis also have higher
amplitudes (in models 1, 2, and 5) and frequencies (in
models 3 and 4) than the oscillations along the ξ and η
axes. Lower values of τε are achieved in denser cluster
models with a lower degree of nonstationarity in the
regular field. The quantities τεζ

exhibit the same, al-
beit less prominent, dependence. The largest τl values
are typical of cluster models with intermediate mean
densities. The table shows that the difference between
the largest (τε or τl) and smallest (τεζ

) relaxation
times decreases with decreasing nonstationarity of
the open-cluster models.

The open-cluster models considered here may de-
velop phase-space barriers [4; 17, p. 155], through
which the diffusion of stars is slow, which has various
effects on the rates of change of ε, l, and εζ for these
stars. The number of stochastic stellar trajectories
and their influence probably grow in denser cluster
models with lower degrees of nonstationarity in the
regular field, decreasing the role of phase barriers and
leading to their disappearance in such systems [17]. In
this case, the differences between the relaxation times
for open-cluster models in the spaces of ε, l, and εζ ,
which increase with increasing nonstationarity of the
cluster models, can also be considered to reflect self-
organization of such systems.
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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Fig. 4. Distribution of the number of stellar transitions in (r, ε) space in cluster model 1 during time interval t2 − t1 = 0.1τvr

for (a) various times (t1/τvr = 0.1, 0.7, 1.3, 1.9) during the stage of contraction of the cluster and (b) for various times
(t1/τvr = 0.3,1.0, 1.5) during the stage of expansion.
The table shows that σv/σr > 1 in the cluster
models considered, and the value of σv/σr averaged
over models 1–5 is 〈σv/σr〉 � 2.1, with the maximum
and minimum values being σv/σr = 2.8 and σv/σr =
1.3, respectively. Thus, in models 1–5, the rate of
cluster relaxation is, on average, a factor of 2.1 higher
in v space than in r space. This is due to the broader
“wings” of the distributions ν(v)(j) compared to those
of ν(r)(j).
ASTRONOMY REPORTS Vol. 46 No. 11 2002
The quantities ψ(r,v) and ψ(r,ε) exceed the quanti-
ties ψ(r), ψ(v) by a factor of a few and slowly decrease
with time for all models considered (see Fig. 3 for
the case of model 1). This indicates that the fluxes
of stars in the spaces (r, v), (r, ε) are not balanced
and that the models undergo slow evolution toward
the establishment of balances of the stellar fluxes in
these two spaces. The lack of balance of the fluxes
of stars in (r, v) space is due to the cluster energy
being transferred from kinetic to potential and back
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to kinetic energy (because the cluster models are
not in virial equilibrium). Figure 4 shows the dis-

tributions ν(r,ε)
1,2 (J) and ν(r,ε)

2,1 (J) for several times in
the evolution of model 1 during periods of cluster
expansion and contraction. We can easily see that
these distributions are antisymmetric about J = 0.
The asymmetry of these distributions increases for
stellar transitions in r by a greater number of inter-

vals. The distributions ν(r,ε)
1,2 (J) and ν(r,ε)

2,1 (J) become
symmetric about J = 0 only near the times of max-
imum contraction or expansion of the cluster, when
the regular force field of the cluster does not change.
These distributions are also nearly symmetric about
J = 0, independent of t for fluxes of stars in ε space
accompanied by transitions of these stars in r at the
cluster periphery (between L7 and L10). Thus, as the
regular field of the cluster changes over a period Pr ,
the stars moving along r toward the cluster center
increase their energies ε, while those moving away
from the center decrease their energies. This effect
disappears near times of maximum contraction and
expansion of the cluster. Because the distribution
ν(r)(j) is always symmetric about j = 0 in the open-
cluster models, for each star moving along r toward
the cluster center, there is a star moving away from
the center. This leads to the development of a flux
of stellar energy ε directed toward the center of the
cluster. This flux is due to the “heating” of the clus-
ter by the time-dependent regular force field of the
cluster. The energies ε of stars in the cluster core
are, on average, lower than the stellar energies at the
periphery (the fraction of halo stars is usually small in
the cluster core). The orbits of halo stars are usually
larger than the orbits of stars of the cluster core. The
flux of energy toward the cluster center considered
here is therefore a manifestation of energy transfer
from large-scale motions to small-scale motions and
also a manifestation of self-organization of such sys-
tems.

Figures 5a and 5b show families of equal-density
contours for the “synthetic” distributions ν(r,v)(I, J)
and ν(r,ε)(I, J) obtained for model 1 using (8). The
distributions ν(r,v)(I, J) and ν(r,ε)(I, J) obtained for
individual pairs of times t and t+ ∆t agree well with
the corresponding synthetic distributions; however,
the contours of the synthetic distributions are less
distorted by random fluctuations of these distribu-
tions (i.e., they are smoother). The directions of the
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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Fig. 6. Time dependences of Si(t) and S−(t) in cluster model 1.
largest extent of the distributions ν(r,v)(I, J) and
ν(r,ε)(I, J) in the (I, J) plane do not coincide with
the I and J axes. For fluxes of stars in (r, v) space,
this is due to the increase of a star’s velocity in the
regular field when it moves toward the cluster center
(and to the decrease of a star’s velocity as it moves
away from the cluster center). The degree of extension
of the distribution ν(r,v)(I, J) along the indicated
direction in (I, J) space is also due to the lack of a
virial equilibrium in the system (synchronous radial
motions of stars dominate).

For fluxes of stars in (r, ε) space, the slope of the
direction of maximum extension of the distribution
ν(r,ε)(I, J) with respect to the I and J axes is due
to “heating” of the cluster by the periodically varying
regular force field of the cluster [the energies ε of stars
moving toward the cluster center (I < 0) increase and
those moving away from the cluster center (I > 0)
decrease]. Judging from the ticks indicating the num-
bers of stars in the fluxes on the contours showing the
relation r = r(ε) in Fig. 5b, a net energy flux toward
the cluster center is ensured by the somewhat smaller
number of stellar transitions in (r, ε) space compared
to the number of transitions producing the similar
dependence r = r(v) in (r, v) space. The relaxation
of the stellar motions is fastest in the direction of the
maximum extension of the distributions ν(r,v)(I, J)
and ν(r,ε)(I, J) in the (I, J) plane (and in the cor-
responding (r, v) and (r, ε) planes) and is slowest
perpendicular to these directions for the (r, v) and
(r, ε) planes. Although the flux of energy ε from large-
scale to small-scale stellar motions is relatively small,
it is sufficient to bring about self-organization of the
NOMY REPORTS Vol. 46 No. 11 2002
system and to synchronize all density oscillations on
various scales developing in the cluster (Fig. 1). The
energy coming into the cluster phase-space element
∆Γ due to this flux is apparently redistributed in the
cluster via the diffusion of stars in the phase space due
to stellar encounters. This redistribution of the stellar
energies should result in a gradual decay of the large-
scale oscillations in the cluster, as we can see in the
time dependences of the virial coefficient α = α(t) for
cluster models 1 and 3 in Fig. 1.

Figure 6 shows the plots of the dependences
Sk(t) =

∑k
i=1

∑10
j=1 lnQij for model 1. The quantities

Sk(t) show how the entropy of the system of cluster
stars with clustercentric distances r ≤ r50×k varies
with time (the ri increase with i). The broken line
with dots in Fig. 6 shows the dependence S−(t),
where S−(t) is the entropy of the system of stars
with clustercentric distances r ≤ R−

t at time t.
Here, we determined S−(t) approximately using the
formula S−(t) = 1

2(Sk−1(t) + Sk(t)) if R−
t ∈ Lk(t).

The errors of the S−(t) values determined in this
way do not exceed ∼ (0.56–0.71)∆Sk(t), where
∆Sk(t) = Sk(t) − Sk−1(t). The errors in R−

t at t ≥
τvr do not exceed ∼ (0.25–0.5)∆rk . The R−

t values
in model 1 could be determined only at t ≥ 0.6τvr

(due to specific features of the technique used to
estimate R−

t [10]). The entropy S = S10(t) increases
during the evolution of model 1 (due to the increase
of the phase-space volume occupied by the cluster
stars), and this dependence is superimposed by the
oscillations of S with the period Pr. The maximum
S values are attained approximately at the times of
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maximum contraction of the cluster in the radius r
(due to the increase of the size of the cluster in
the v space). The production of entropy in such
systems usually increases or decreases when the
mean density increases or decreases. The quantities
∆Si(t) also exhibit systematic increases and periodic
oscillations, which are most important at the cluster
periphery. The increase of ∆S10(t) with time is due
to the fact that stars with cluster-centric distances
r ∈ L10(t) at t > (0.4− 0.5) · τvr satisfy the condition
r > R−

t . These stars gradually leave the cluster, and
their velocities are increased in the Galactic force
field. According to Fig. 6, S−(t) also undergoes
(apparently random) variations and slight decreases
at t > 0.9τvr due to the decrease in the number of
stars with r ≤ R−

t .

The periodic variations of the entropy S with time
are due to the lack of virial equilibrium in the system
and the fact that the fluxes of stars in (r, v) space are
not balanced. The decrease in the entropy S over a
time ∆t = 1

2Pr after the maximum contractions of the
clusters is a sign of self-organization of such systems
and is due to the synchronization of the radial motions
of the stars under the action of the regular force
field during the preceding contraction of the cluster.
A more detailed study of the manifestations of self-
organization in open-cluster models requires analysis
of the stellar trajectories in such systems.

5. CONCLUSIONS

(1) The open-cluster models considered here dis-
play a balance of the fluxes of stars in the spaces of ε, l,
εζ , Γ(ε), and r from the beginning of the evolution un-
til the end of the computations. Therefore, equilibrium
distributions of the stars in these spaces are present
throughout the dynamical evolution of these models.
The equilibrium distribution of stars in r space during
periodic oscillations of the regular field of the cluster
evolves such that the numbers of stars in the inter-
vals Li(t) are approximately conserved, despite the
periodic variations of the sizes ∆ri. The equilibrium
PSDF F0(r,v) corresponding to a balance of the
fluxes of stars in the spaces Γ(ε) and ε is present from
the beginning of the evolution of the open-cluster
models. In these models, violent relaxation proceeds
under the conditions of this equilibrium distribution
F0(r,v), and results in the development of an “equi-
librium” oscillatory process over a time tr, whose
parameters vary little with time. Violent relaxation in
these models is a form of self-organization, and tr is
the time for self-organization of the cluster to a level
close to an auto-wave process.
(2) The presence of the equilibrium distribution
F0(r,v) in the open-cluster models from the begin-
ning of their evolution until the end of the computa-
tions is most likely due to the axial symmetry of the
adopted model for the Galactic potential, the circu-
lar orbits of the open-cluster models in the Galactic
plane, and symmetries in the distributions of stars in
the models.

(3) In these open-cluster models, the fluxes of
stars in the spaces of v, (r, v), and (r, ε) remain
unbalanced throughout their evolution. The cluster
models exhibit a slow evolution toward the establish-
ment of balances of the stellar fluxes in these spaces.
The lack of an equilibrium in the v and (r, v) spaces
is due to the lack of a virial equilibrium in the open-
cluster models.

(4) During the variations of the regular field of the
cluster over the period of its oscillations, stars moving
in the r direction toward the cluster center increase
their energy ε, while those moving away from the cen-
ter decrease their energy. This effect is most important
in the central regions of the cluster, decreases at the
periphery, and is absent near the times of maximum
contraction and expansion of the cluster. During the
variations of the regular field of the cluster over the
period of its oscillations, an energy flux develops to-
ward the center of the cluster (due to the “heating” of
the cluster by its variable regular field), and energy ε
is transferred from large-scale to small-scale stellar
motions. This energy flux leads to self-organization of
the cluster models. The clearest manifestation of this
self-organization is the spontaneous establishment of
an “equilibrium” oscillatory process.

(5) We estimated the relaxation times of the open-
cluster models in the spaces of ε, l, and εζ . The relax-
ation of the cluster models is fastest in εζ space. The
relaxation times most often satisfy the inequalities
τε > τl > τεζ

. The difference between the maximum
and minimum relaxation times in the spaces of ε, l,
and εζ increases with increasing nonstationarity of
the open-cluster models. On average, the relaxation
in v space proceeds a factor of 2.1 faster than in r
space.

(6) We found anisotropy in the fluxes of stars in
the (r, v) and (r, ε) spaces. The direction and degree
of the extension of the distribution of stellar fluxes in
(r, v) space are due to the lack of a virial equilibrium
in the open-cluster models and the acceleration of
stars by the force field of the cluster. The direction and
degree of extension of the distribution of stellar fluxes
in (r, ε) space are due to the flux of stellar energies ε
directed along the radius r toward the cluster center.

(7) The entropy S of the cluster models increases
systematically with time, with the periodic oscilla-
tions of the density and regular field of the cluster
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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superimposed on this increase. The entropy oscilla-
tions are in antiphase with the oscillations of the radial
(r) sizes of the clusters. The entropy S−(t) of the
system of stars in cluster model 1 with clustercentric
distances r ≤ R−

t decreases during the evolution at
t > 0.9τvr , due to the decrease in the number of such
stars in the cluster.
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Abstract—We derive the parameters of the hot, massive close binary system UU Cas from earlier and
recent photoelectric UBVR observations: M1 = 34.5M�, M2 = 25.7M�, A = 69R�, and i = 68◦; the
components’ limb darkening coefficients are close to 1. Our fitting of the light curves provides evidence
for a high degree of over-contact: the components fill their inner critical surfaces by 132% and 100%.
It is possible that the appearance of the light curve is determined not only by the distorted shapes of the
components and their eclipses but, to a considerable extent, by screening by a complex envelope and the
envelope’s contribution to the system’s total luminosity. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Four-color photoelectric observations of the eclips-
ing variable star UU Cas were carried out in 1984–
1989 in the framework of studies of massive close
binary systems at the Astronomical Observatory of
Ural State University. Before this observing pro-
gram, there was no photoelectric photometry for this
star in the literature. Published photographic light
curves have appeared fairly regularly and are relatively
numerous; we know of ten such publications. It
is striking that no two of these light curves are
very similar. There are differences in the heights
of the maxima, and the variations in the depths of
the primary and secondary minima are extremely
large. The variations in the secondary minimum are
especially strong (Table 1). Differences of 0.3m (with
the maximum depth of the secondary minimum being
II0.42m) are difficult to attribute to uncertainties in
the photographic photometry. Spectroscopic obser-
vations of the star are very sparse. Only one radial-
velocity curve has been published, in 1934 [11], and
the most recent estimates of its spectral type, B0.5III,
were made in 1972 [12].

2. OBSERVATIONS

Our observations of UU Cas (BD+60◦2629,
mmax = 10.4m(p), mmin = 10.8m(p), P = 8.51929d ,
Sp = B0.5III) were obtained with the single-channel
photometer of the 45-cm telescope of Ural State
University in four bands close to the standard UBV R
photometric bands. We acquired 190 differential mea-
surements of the star’s brightness in each of the fil-
ters, with good phase coverage of the variability period
(σU = ±0.028m, σB = ±0.020m, σV = ±0.018m,
1063-7729/02/4611-0900$22.00 c©
σR = ±0.016m) [10]. The normal light curves of
UU Cas are presented in Table 2, which contains the
phases of the period and the corresponding brightness
differences between the variable and comparison
star together with their errors. The light curves are
displayed in Fig. 1.

Antokhina and Kumsiashvili [9] present mean
photoelectric UBV light curves for UU Cas obtained
in 1975–1984. A comparison of the star’s variabil-
ity in two adjacent time intervals based on high-
accuracy observing material confirms variability in
the heights of the maximum and the depths of the
minima, as well as a brightness excess on the ascend-
ing branches of the secondary minimum. However,
the earlier of the two light curves shows distortions
of the primary minimum in all bands, as well as
deformations in the maximum of the order of 0.04m

(Fig. 1).
It is interesting that, in the presence of such large

variations in the shape of the light curve over long
time intervals, with the amplitudes of these variations
being comparable to the variability amplitude (∆m =
0.45m in V ), no significant variations in the period of
the variations have been detected over the 90 years
the system has been studied [10].

3. FITTING OF THE LIGHT CURVES

We used our own light curve to determine the
physical and geometrical characteristics of the sys-
tem. We computed the system’s relative orbital el-
ements in a Russell–Merrill model (homothetic tri-
axial ellipsoids) using the code of Lavrov [13] and
applying a rectification procedure. Since there was
no solution for this light curve, we constructed a
2002 MAIK “Nauka/Interperiodica”
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Table 1. Variations in the light curve of UU Cas

Authors Years N Method ∆ Max Min I Min II Comments References

M. Beyer 1932–1935 120 рg 0.00m 0.22m 0.16m The amplitude
varied during the
observations

[1]

S.M. Selivanov 1934 63 vis [2]

P.P. Parenago, B.V. Kukarkin 1896–1939 396 pg–vis 0.00 0.35 0.20 [3]

G. Tolmar 1934–1939 118 pg 0.00 0.44 0.42 Very large scatter [4]

S. Gaposchkin 1334 pg–vis 0.02 0.40 0.26 [5]

W. Zonn 1955–1957 130 pg [6]

J. Semeniuk, G. Romano 1942 163 pg 0.00 0.3 0.2 [7]

K. Haussler 1941–1967 499 pg 0.05 0.39 0.11 [8]

M.I. Kumsiashvili 1975–1984 850 pe U 0.01 0.45 0.32 [9]

Â 0.02 0.43 0.31

V 0.00 0.44 0.32

T.S. Polushina 1984–1989 190 pe U 0.00 0.48 0.32 [10]

B 0.01 0.43 0.33

V 0.03 0.45 0.35

R 0.02 0.45 0.35
sort of “smoothed light curve” taking into account all
available photoelectric observations with correspond-
ing weights and introducing several assumptions fol-
lowing from the geometry of the model: the minima
should be symmetrical, there should be no depres-
sions in the branches of the minima, and the maxima
should be smooth. Each point of the light curve con-
structed in this manner was assigned a weight. The
results of our fitting of this light curve are displayed in
Fig. 2 and presented in Table 3, where k is the ratio of
the mean radii of the components, R2 is the relative
radius of the secondary, i is the orbital inclination,
X is the limb-darkening coefficient, L1 is the relative
luminosity of the secondary, and ε is the eccentricity
of the meridional section of the components, derived
from the geometrical ellipticity factor.

We derived the absolute parameters of the system
applying the method described by Svechnikov [14]
and the empirical mass–luminosity relation for the
main-sequence components of close binary sys-
tems [15], since only lines of the primary are visible in
the spectra, and the component mass ratio cannot be
determined directly from spectroscopic observations.
ASTRONOMY REPORTS Vol. 46 No. 11 2002
We specified the mass of the primary using the
mass-function value f(m) = 3.693M� derived by
Sanford [11] from observations of the radial-velocity
curve:

A(R�) = 68.97 ± 0.70, q = 0.75 ± 0.3,
R1(R�) = 38.5 ± 3.1, R2(R�) = 24.0 ± 3.7,

M1(M�) = 34.5 ± 1.5, M2(M�) = 25.7 ± 0.6.

The rms errors given here indicate the level of band-
to-band deviations for the photoelectric light curves
used.

The formal fitting solution for the smoothed light
curves of UU Cas gave the following results.

(1) The system was found to be in an over-contact
configuration, with the primary overfilling its inner
critical surface (ICS) by, on average, 32%, reaching a
surface containing the second Lagrangian point, and
the secondary filling or nearly filling its inner critical
surface. The apparent size of the secondary depends
appreciably on the wavelength: while the secondary
overfills its inner critical surface by 10% in the U
band, its size in the V band corresponds to 84% of
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Table 2. Normal light curve of UU Cas

FR R σR FV V σV FB B σB FU U σU

0.0140 0m. 371 ±0m. 009 0.0146 0m. 852 ±0m. 009 0.0147 1m. 297 ±0m. 010 0.0141 0m. 754 ±0m. 019
0.0253 0.325 0.009 0.0307 0.828 0.009 0.0297 1.239 0.010 0.0253 0.736 0.019
0.0337 0.341 0.009 0.0401 0.753 0.013 0.0369 1.244 0.014 0.0353 0.715 0.014
0.0413 0.307 0.013 0.0501 0.742 0.013 0.0453 1.212 0.014 0.0482 0.683 0.019
0.0511 0.274 0.013 0.0775 0.673 0.013 0.0636 1.135 0.014 0.0788 0.533 0.020
0.0788 0.177 0.013 0.0911 0.638 0.013 0.0850 1.071 0.014 0.0949 0.503 0.014
0.0911 0.142 0.013 0.0972 0.643 0.013 0 0949 1.081 0.014 0.1126 0.435 0.014
0.1034 0.132 0.009 0.1115 0.589 0.009 0.1075 1.020 0.010 0.1222 0.407 0.020
0.1148 0.051 0.013 0.1209 0.583 0.013 0.1180 0.964 0.014 0.1615 0.305 0.019
0.1222 0.041 0.013 0.1560 0.515 0.013 0.1384 0.982 0.014 0.1790 0.325 0.019
0.1573 –0.001 0.013 0.1700 0.480 0.013 0.1633 0.919 0.014 0.1984 0.317 0.013
0.1707 –0.020 0.013 0.1817 0.489 0.013 0.1755 0.919 0.014 0.2199 0.302 0.013
0.1884 –0.043 0.009 0.1929 0.472 0.013 0.1875 0.923 0.014 0.2383 0.284 0.013
0.2015 –0.037 0.009 0.2009 0.471 0.009 0.1991 0.861 0.010 0.2499 0.300 0.013
0.2126 –0.029 0.013 0.2228 0.467 0.009 0.2155 0.889 0.010 0.2602 0.306 0.014
0.2353 –0.064 0.009 0.2368 0.438 0.009 0.2358 0.874 0.010 0.2748 0.304 0.014
0.2395 –0.067 0.009 0.2398 0.439 0.013 0.2394 0.876 0.014 0.3287 0.323 0.020
0.2505 –0.057 0.009 0.2507 0.443 0.009 0.2473 0.880 0.010 0.3533 0.374 0.011
0.2573 –0.066 0.009 0.2575 0.448 0.010 0.2566 0.902 0.012 0.3706 0.410 0.011
0.2601 –0.052 0.009 0.2602 0.458 0.010 0.2568 0.887 0.012 0.3813 0.392 0.014
0.2738 –0.054 0.009 0.2730 0.447 0.010 0.2696 0.881 0.012 0.3914 0.427 0.013
0.3243 –0.055 0.009 0.2792 0.433 0.013 0.2765 0.882 0.014 0.3976 0.462 0.019
0.3531 0.037 0.007 0.3188 0.438 0.013 0.3005 0.882 0.014 0.4086 0.469 0.020
0.3693 0.044 0.008 0.3356 0.485 0.018 0.3210 0.888 0.020 0.4193 0.504 0.019
0.3786 0.064 0.009 0.3523 0.531 0.007 0.3494 0.953 0.008 0.4718 0.626 0.014
0.3864 0.080 0.009 0.3697 0.550 0.007 0.3664 0.959 0.009 0.4893 0.613 0.014
0.3955 0.093 0.007 0.3789 0.557 0.008 0.3769 0.991 0.009 0.4989 0.637 0.013
0.4086 0.105 0.013 0.3894 0.568 0.009 0.3873 1.080 0.010 0.5138 0.584 0.013
0.4184 0.161 0.009 0.3955 0.587 0.009 0.3941 1.018 0.010 0.5304 0.580 0.020
0.4715 0.266 0.009 0.4107 0.619 0.010 0.4043 1.021 0.012 0.5820 0.501 0.019
0.4890 0.299 0.009 0.4190 0.673 0.010 0.4191 1.082 0.010 0.5914 0.463 0.014
0.4949 0.273 0.009 0.4702 0.777 0.008 0.4693 1.140 0.010 0.6035 0.429 0.013
0.5030 0.272 0.009 0.4888 0.796 0.008 0.4853 1.204 0.009 0.6135 0.421 0.013
0.5127 0.267 0.009 0.4988 0.769 0.008 0.4954 1.205 0.009 0.6468 0.382 0.020
0.5164 0.287 0.013 0.5111 0.761 0.009 0.5098 1.196 0.010 0.6875 0.347 0.013
0.5295 0.216 0.013 0.5156 0.753 0.010 0.5149 1.185 0.012 0.7063 0.343 0.014
0.5765 0.108 0.018 0.5296 0.705 0.013 0.5226 1.180 0.014 0.7162 0.325 0.014
0.5859 0.129 0.009 0.5825 0.612 0.009 0.5693 1.064 0.010 0.7279 0.316 0.014
0.5935 0.124 0.013 0.5918 0.619 0.010 0.5894 1.041 0.012 0.7417 0.332 0.014
0.6019 0.075 0.009 0.6015 0.577 0.009 0.5998 0.998 0.010 0.8713 0.424 0.014
0.6093 0.086 0.009 0.6088 0.578 0.009 0.6072 1.011 0.010 0.9046 0.504 0.020
0.6171 0.085 0.013 0.6312 0.541 0.009 0.6229 1.001 0.010 0.9241 0.554 0.013
0.6468 0.028 0.013 0.6855 0.455 0.008 0.6769 0.927 0.009 0.9376 0.583 0.020
0.6855 –0.012 0.008 0.7022 0.470 0.008 0.6948 0.920 0.009 0.9554 0.706 0.011
0.6980 –0.036 0.009 0.7152 0.478 0.009 0.7108 0.902 0.010 0.9737 0.713 0.019
0.7128 –0.044 0.008 0.7278 0.461 0.008 0.7230 0.916 0.009 0.9905 0.712 0.014
0.7229 –0.042 0.009 0.7873 0.489 0.008 0.7594 0.900 0.009 0.9980 0.799 0.014
0.7303 –0.046 0.009 0.8957 0.605 0.009 0.8832 1.031 0.010
0.7448 –0.049 0.009 0.9222 0.675 0.009 0.9172 1.105 0.010
0.8713 0.076 0.013 0.9322 0.661 0.009 0.9266 1.132 0.010
0.8991 0.117 0.009 0.9520 0.802 0.009 0.9489 1.237 0.010
0.9238 0.188 0.008 0.9596 0.776 0.013 0.9568 1.228 0.014
0.9343 0.227 0.009 0.9729 0.785 0.009 0.9702 1.242 0.010
0.9520 0.307 0.009 0.9896 0.874 0.009 0.9853 1.277 0.010
0.9656 0.269 0.009 0.9969 0.887 0.009 0.9964 1.309 0.009
0.9738 0.317 0.013
0.9858 0.347 0.013
0.9948 0.378 0.009
0.9988 0.398 0.009
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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Table 3. Photometric elements of the UU Cas system

k R2 i X L1 ε2 R1/ICS1, % R2/ICS2, %

U
0.730 0.382 66.6◦

1
0.787

0.103 131 110

±0.104 ±0.035 ±0.3 ±0.081

B(1)
0.770 0.403 64.1

1
0.747

0.110 132 114

.049 .015 .3 .026

B(2)
0.568 0.344 67.1

1
0.857

0.173 151 99

.202 .060 .3 .109

V
0.519 0.291 69.9

0.9
0.835

0.104 139 84

.018 .007 .4 .091

R
0.559 0.327 69.3

1
0.837

0.143 129 106

.040 .010 .2 .024
the inner critical surface. The size of the primary is
in agreement in all the bands within the errors in the
fitting.

(2) The limb-darkening coefficient X is very high,
corresponding to the value expected for red giants.
Using lower X values resulted in poorer convergence
or the absence of a solution.

(3) The B light curve gave two solutions with
equally good convergence, presented in Table 3 as
B(1) and B(2).

(4) The derived inclination of the orbit to the plane
of the sky is different for different bands, with the
differences greatly exceeding 3σ.

4. VARIABILITY OF UU CAS NOT COVERED
BY THE MODEL

In the next stage of our analysis, we plotted devia-
tions of the observed light curves for each time inter-
val from the obtained model light curves for the cor-
responding bands, based on the 95% confidence in-

Table 4. Sample correlation coefficients between the devi-
ation curves for the UBV observations of 1975–1984

B tBi V tvi

U 0.638 5.106 0.654 5.331

B 0.799 8.185

Note: tcrit = 2.028.
tervals. The (O–C) curves for 1975–1984 and 1984–
1989 are presented in Figs. 3 and 4. We can see the
following in these figures.

(1) The deviations from the theoretical curve reach
large values at some phases of the period; for example,
0.1m in the R band at phase 0.96 during 1984–1989
or 0.08m in the B band at phase 0.56 in 1975–1984.

(2) These deviations are significant and consider-
ably exceed 2σ.

(3) The deviations are repeated in different bands,
especially in the 1975–1984 observations, and some
persist in 1984–1989. (The degree of correlation be-
tween the curves is demonstrated by Tables 4–6,
which contain the sample correlation coefficients and
corresponding statistical parameters, t, which enable
us to test the null hypothesis for a significance level
α = 0.05; tcrit can be used to judge the significance
level of a correlation coefficient).

(4) Many features present in all bands and even
for both seasons are visible only in very narrow phase
intervals, 0.02–0.05P .

5. DISCUSSION

We interpreted these results using the results of
the computations of a model binary system consist-
ing of two ellipsoidal components embedded in a
semi-transparent common envelope carried out by
Pustyl’nik and Einasto [16, 17]. These studies simul-
taneously took into account the main effects of inter-
action in the close binary system and of eclipses, as
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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Fig. 3. Deviations of the 1975–1984 observations of UU Cas from the model light curve.
well as the periodic screening by the envelope, which
influences the shape of the light curve. We also took
into consideration the results of the hydrodynamical
computations of the structure of matter flows in semi-
detached binary systems of Bisikalo et al. [18, 19].

The presence of circumstellar gas can readily ex-
plain the high limb-darkening coefficients of the com-
ponents [16, 17]. The common envelope should also
contribute additional light, L3 [16, 17]. However, we
were not successful in estimating this contribution
and taking it into account in our solution. The large
deviations in the orbital inclination angles, i, for dif-
ferent bands could be due to this additional light,
which may be different in different bands. In this case,
the effect of the common envelope (which is also dif-
ferent in different bands) requires as a lower limit that

Table 5. Sample correlation coefficients between the devi-
ation curves for the UBV R observations of 1984–1989

B tBi V tvi R tRi

U 0.018 0.127 0.010 0.074 0.153 1.103

B 0.238 1.750 0.306 2.298

V 0.491 4.026

Note: tcrit = 2.007.
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L3 = 0.1 of the combined brightness of the system
in the U band. Taking into account the contribution
of the envelope using values up to L3 = 0.1 does not
influence the derived parameters of the system, except
for the orbital inclination angle i. However, the sum
of squared deviations of the observed curve from the
theoretical curve grows linearly. Table 3 shows that
the contribution of the third light is largest in the
U band.

The very large contribution of the third light, the
limb-darkening coefficients X = 1, characteristic of
cool stars, and deviations from the model curve reach-
ing 0.1m testify to a very large contribution of gaseous
structures in the system, comparable to that of the
component stars.

Table 6. Sample correlation coefficients between the devi-
ation curves for corresponding bands in 1975–1984 (rows)
and 1984–1989 (columns)

U tcrit B tcrit V tcrit R tcrit

U –0.073 –0.453 0.344 2.258 0.064 0.376 0.143 0.889

B –0.092 –0.568 0.366 2.423 0.169 1.057 –0.073 –0.450

V –0.157 –0.983 0.441 3.031 0.259 1.904 0.101 0.628

Note: tcrit = 2.02.
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Fig. 4. Deviations of the 1984–1989 observations of UU Cas from the model light curve.
We believe the overfilling of the inner critical sur-
face of the primary obtained for a model consisting
of two triaxial ellipsoids can be explained using the
model of Bisikalo et al. [18, 19]. It follows from [20,
21] that the flows of matter in semi-detached systems
lead to the formation of a common envelope. The
influence of the common envelope on the morphology
of the flows was first considered in [22], where the
common envelope was taken to be gas filling the
space between the components of the system and
not participating in the accretion process. Bisikalo
et al. [22] showed that the presence of a common
envelope in a system significantly influences the flow
of matter near the Roche lobe of the component from
which the flow originates. In the stationary regime, a
large fraction of the surface of the donor star accretes
gas from the common envelope, preventing gas from
flowing along the Roche lobe to the point L1. The
illustrations in [22] show a significant increase in the
gas density near the donor star, depending on the
parameters considered.
This model suggests that a large amount of gas
may have been accumulated near the primary of
UU Cas, forming a “cocoon” whose size coincides
with the second critical Roche surface. This cocoon
is optically thick in all the UBVR bands, so that the
apparent radii of the primary derived in all these bands
are in good agreement.

Cases of components overfilling their inner criti-
cal surfaces are encountered in light-curve analyses
based on both direct and inverse solution methods.
The following systems can be noted among massive
close binary systems with early spectral types on the
main sequence:

(1) SV Cen (B1V+B6III), in which the second
critical Roche lobe is filled [23];

(2) UW CMa (O7f+O8f), in which the body of
the primary in the UV is considerably larger than the
inner critical surface [24];

(3) V599 Aql (B3.5+B3.5), in which the primary
overfills its Roche lobe by 26% and the secondary by
12% [25];
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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(4) Y Cyg (BOIV+BOIV), in which the secondary
fills its inner critical surface by 111% [26];

(5) V701 Sco (B1.5+B1.5), in which the observed
sizes of the components exceed the inner critical sur-
face by 11–13% [27].

The spectroscopic mass of the primary of UU Cas
corresponds approximately to an O7 star. However,
Martin [1] estimates the spectral type of UU Cas
to be В0.5. It appears that the stellar radiation is
reprocessed from O7 to B0.5 in the cocoon.

It is likely that the secondary does not fill its in-
ner critical surface but, because of the flow from the
primary, has an envelope that fills this surface, whose
optical depth depends on the wavelength and exceeds
unity in the U band. The radii of the secondary are
probably overestimated because of the effect of the
variable screening by the common-envelope gas [16,
17], which is the strongest in the U band, as noted
above.

The differences of the heights of the maxima of the
light curves in different bands could can be due to
anisotropy of the common-envelope gas.

A comparison of observations from different inter-
vals differing by more than 200 orbital periods testifies
to the presence of both stable and short-lived (less
than 80 periods) gaseous structures in the system.

The residual deviations between the observations
acquired during the two time intervals considered and
the model light curves (Figs. 3, 4) suggest a more
complex distribution of gas in the binary system. The
figures demonstrate the presence of strong “flicker-
ing” whose amplitude depends on the wavelength.
The presence of such flickering even at phases with
additional strong and prolonged absorption suggests
that it originates in the outer regions of the system
(two stars in a multi-component envelope).

6. CONCLUSIONS

The results of our photometry and analysis of the
observations show that UU Cas has an over-contact
configuration, with the primary overfilling its inner
critical surface by, on average, 32% and the sec-
ondary’s apparent size depending significantly on the
wavelength.

We explain the primary’s overfilling of its inner
critical surface using the model suggested in [18, 19,
22]. Gas located near the primary probably forms an
optically thick “envelope,” observed in the continuum
of all the optical spectral bands.

The secondary probably does not fill its inner crit-
ical surface but possesses an envelope whose optical
depth depends on the wavelength and exceeds unity
in the U band.
ASTRONOMY REPORTS Vol. 46 No. 11 2002
The circum-system gas in UU Cas has a multi-
component structure.
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Abstract—A supernova explosion in a close binary system in which one of the components is a compact
magnetized object (neutron star or white dwarf) can form a narrow “tail” with length lt ∼ 109 cm,
width ht ∼ 108 cm, and magnetic field Bt ∼ 106, due to the resulting shock wave flowing around the
magnetosphere of the compact object. The energy released by the reconnection of magnetic field lines
in this tail can accelerate electrons to relativistic speeds (γ ≈ 104), creating the conditions required for
powerful synchrotron radiation at energies from hundreds of keV to several MeV, i.e., for a gamma-ray
burst (GRB). The duration of this radiation will depend on the power of the shock that forms during the
supernova. If the shock is not sufficiently powerful to tear off the magnetosphere tail from the compact
object, the duration of the GRBwill not exceed lt/VA ≤ 1 s, and the conditions necessary for an “afterglow”
at softer energies will not arise. If the shock is more powerful, the tail can be torn from the magnetosphere,
forming a narrow ejection, which is perceived in its relativistic motion toward the observer (Γ ∼ 104) as an
afterglow whose duration grows from tens of seconds at gamma-ray energies to tens of days in the optical.
This may explain why afterglows are observed only in association with long GRBs (T90 > 10 s). Very short
GRBs (T90 < 0.1 s) may be local, i.e., low-power, phenomena occurring in close pairs containing compact,
magnetized objects, in which there is again an interaction between the magnetosphere of the compact
object and a shock wave, but the shock is initiated by a flare on the companion, which is a red-dwarf
cataclysmic variable, rather than by a supernova. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

During the nine years of operation of the Amer-
ican space-borne Compton Gamma-Ray Observa-
tory, BATSE registered more than 2000 triggered
cosmic gamma-ray bursts (GRBs) [1]. However, due
to the poor angular resolution attainable at γ ener-
gies (degrees), it proved difficult to accurately identify
GRBs with objects in other wave bands when the
burst was observed with only one spacecraft. After
the launch of the Italian-Dutch Beppo SAX space-
craft in 1996, whose X-ray (2–30 keV) counters had
angular resolutions < 6′, it became possible for X-
ray telescopes working at 0.5–10 keV to determine
the position of the source of the X-ray afterglow with
accuracies to ∼ 1′ some six hours after the onset of
the GRB. In turn, this made it possible to identify
optical transients associated with GRBs. At present,
optical identifications of about two dozen GRBs with
T90 > 1 s have been obtained using large ground-
based telescopes and the Hubble Space Telescope [2].
It has been possible to obtain spectra for many of
these, though only several days after the GRB (with
1063-7729/02/4611-0908$22.00 c©
the exception of GRB 990123, whose optical tran-
sient was very bright at the time of the GRB itself,
reaching 9m [3]). In other cases, the optical transients
have been much weaker due to the rapid decrease
in their luminosities, so that their spectra must be
“dragged out” of objects much weaker than 19–20m.

Narrow absorption lines of various metallic ions
have been observed in the spectra of some optical
transients, which could be used to derive Zabs values,
which suggested that these objects were at cosmo-
logical distances. Firm conclusions about the cosmo-
logical nature of GRBs (or at least GRBs with optical
transients) became possible on the basis of spectra of
the weak (24–25m) optical “bases” that remained af-
ter the optical transients had disappeared, which have
been interpreted as the radiation of stars in the host
galaxies. These spectra revealed lines characteristic
of galaxies undergoing bursts of star formation. The
colors of the optical “bases” were also consistent with
the idea that they corresponded to galactic radiation.
The coincidence of Zabs and Zemis in the spectra
of the optical transients and X-ray/γ-ray emission
of GRB 970508, GRB 980703, GRB 990712, and
2002 MAIK “Nauka/Interperiodica”
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GRB 991208 [4] provided conclusive evidence that
they were at cosmological distances. Since the range
of redshifts for identified GRBs extends from 0.0085
(GRB 980425) toZ = 3.4 (GRB 971214) and the ob-
served γ-ray fluxes range from 10−8 to 10−5 erg/cm2,
the luminosity function of GRBs turns out to be fairly
broad. (For more detail about the properties of GRBs,
see the review [5].)

The question of the nature of short GRBs (T90 <
0.1 s) remains open. Based on certain properties
of their angular distribution and the form of their
logN– log S dependence, a number of authors (for
example, [6]–[8]) have preferred to interpret them as
local (Galactic) phenomena.

In any case, the cosmological distances to some
prolonged GRBs made the question of their energy
source acute: if the radiation is isotropic, the energies
are estimated to be 1053–54 erg at hundreds of keV,
comparable to the total energy released by massive
supernovas, 90% of which is believed to be emit-
ted in the form of neutrinos (see, for example, [9]).
This comparison between the phenomena of GRBs
and supernovas seems to be supported by the tem-
poral and spatial coincidence of the “compact” su-
pernova SN 1998 bw (E = 1048 erg, type SNIb/c)
with GRB 980425, identified with a nearby galaxy
with Z = 0.0085 (see, for example, [10]). In addition,
“hills” are observed in the light curves of some optical
transients several tens of days after the GRB, which
can be interpreted as a contribution from a weak
X-ray/γ-ray type-Ib/c supernova that was simulta-
neous with the GRB (see, for example, [5, 11, 12]).

Another piece of evidence supporting a connection
between GRBs and supernovas is the XMM-Newton
detection of narrow X-ray lines of ions characteristic
of supernova shells (Mg, Si, S, Al, Ca, Ni) in the
spectrum of the afterglow of GRB 011211. The ve-
locity of the line-emitting material several hours after
the GRB reached 0.1 s [13].

To remove the “energy crisis” that arises in at-
tempts to relate GRBs to supernovas, it has been
suggested that GRBs are associated with relativistic
ejections that are strongly collimated within a small
angle∆ϕ and radiate for some time at γ-ray energies.
In principle, this makes it possible to decrease the
luminosity required by the observed fluxes fromGRBs
at cosmological distances by a factor of (∆ϕ/4)2,
which, for ∆ϕ ≈ 10−2rad (∼ 1◦) yields a factor of
∼ 105. Of course, in this case, we must increase the
spatial rate of GRBs by this same factor, since only
a small fraction of the total number of bursts will be
observed. However, this difficulty can be easily cir-
cumvented by increasing the volume from which it is
possible to observe γ-ray fluxes from GRBs at a level
of 10−8–10−5 erg/cm2. In fact, to obtain agreement
ASTRONOMY REPORTS Vol. 46 No. 11 2002
between the observed rate of GRBs and the superno-
va rate, it is sufficient to suppose that either GRBs
accompany only a rare type of supernova or that each
supernova gives rise to a GRB in a narrow relativistic
ejection. According to the estimates of [14], we have

nGRB < 2 × 10−8 yr−1 per galaxy withL ∼ L∗,

nSN ∼ 2 × 10−2 yr−1

per galaxy with L ∼ L∗ (at Z ∼ 1)

where L∗ is the luminosity of a galaxy located near the
break in the galaxy luminosity function. Hence, we
have nGRB/nSN < 10−6; i.e., oneGRB occurs per 106

supernovas, or each supernova is associated with a
GRB if ∆ϕ ∼ 1◦ ≈ 4(nGRB/nSN)1/2 ∼ 10−2 rad (see
also [10, 15]).

The mechanism for generating the γ radiation in
a narrow cone remains unclear, though various pos-
sibilities have been proposed. For example, Paczyn-
ski [16] once expressed the view that an object with
special properties (a “hypernova”) will form during
the coalescence of two neutron stars. However, Blin-
nikov et al. [17] noted that the energy of a hypernova
explosion could not exceed 10−3

ÌNS ñ
2 = 1051 erg,

which is insufficient to explain the energies of cosmo-
logical GRBs if their radiation is isotropic. In addition,
the link between long GRBs and supernovas in star-
burst galaxies suggests a connection with explosions
of massive stars, i.e., with type I supernovas. It is
also not ruled out that the supernova precursors could
be Wolf–Rayet stars [18]. This led Paczynski [19] to
propose a connection between GRBs and strongly
anisotropic supernova explosions of massive stars. He
suggested that these ejections lose energy with time
and become isotropic via their interaction with the in-
terstellar medium. Thus, the remnant of a GRB could
be observed in the radio as compact double struc-
tures (not unlike so-called “microquasars”). In [20],
SN 1987a in the LMC is suggested as an example
of a remnant of a GRB whose relativistic jet did not
coincide with the line of sight toward the Earth.

The idea of a possible connection between GRBs
and very anisotropic supernova explosions has been
extensively discussed in the literature (see, for exam-
ple, [21]). Initially, anisotropic supernova explosions
were invoked to explain the high peculiar velocities
(∼400 km/s) of both single and double radio pulsars
(see, for example, [22]). The much lower peculiar
velocities of millisecond pulsars (< 100 km/s) [23]
could be explained if they were not produced by the
disruption of close pairs in which their companions
exploded but were in close pairs in the central regions
of globular clusters that were disrupted during inter-
actions with background stars [24]. It is not difficult
to obtain a modest amount of anisotropy during a
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Fig. 1. Development of a magnetosphere tail during the
interaction between a shock (with velocity U) from a su-
pernova and its companion (neutron star or white dwarf)
in a close pair. The energy of the shock is not enough to
tear off part of the tail (the case TGRB < 1 s, without an
afterglow).

supernova, especially inmagnetorotational models for
the explosions (see, for example, [25, 26]). However,
it is not easy to obtain the high degree of anisotropy
needed to reconcile the energetics of cosmological
GRBs with the observed fluxes (see the review [27]).

Other possible explanations for the strong direc-
tivity of the γ radiation in GRBs and their relationship
to supernovas are also encountered in the literature.
For example, Milgrom and Usov [28] consider the
action of a GRB on a white dwarf with which it
forms a close pair, and suggest this could lead to
the explosion of the white dwarf, which is observed
as a supernova such as SN 1998 bw (see also [29]).
Protheroe and Bednarek [30] propose that GRBs are
produced in the interaction of the shock wave from a
type Ib/c supernova with a companion. In this case,
electrons can be accelerated to very high energies,
leading to the radiation of γ rays in a narrow cone. Dar
and De R’yula [31] consider a “mortar” GRB model
in which a narrow ejection of individual relativistic
plasma blobs develops during the formation of a thick
disk around a neutron star, made up of the accreting
products of a supernova. Finally, Umeda [32] sug-
gests a scenario in which the GRB is associated with
the interaction of a relativistic ejection that arises in
a very asymmetrical supernova explosion with a thick
envelope that was ejected by the supernova precursor.

Thus, current concepts about the nature of GRBs
require a combination of two conditions: a supernova
explosion (possibly of a special type) and the forma-
tion of a narrow (opening angle less than a degree)
beam of relativistic particles radiating from X-ray to
γ-ray energies. Since strongly anisotropic supernova
explosions seem unlikely to us, we propose a model
in which a massive supernova precursor is in a close
binary system with a neutron star; the GRB arises
during the interaction of the fast shock wave gener-
ated during the supernova with the magnetosphere
of the neutron star. A narrow magnetosphere tail can
form, in which stored magnetic energy is dissipated
in the process of magnetic reconnection, and can ac-
celerate charged particles to relativistic speeds (γ =
104). (This is essentially an analog of magnetospheric
flares during the interaction of the solar wind with the
magnetosphere of the Earth.) Synchrotron radiation
by these particles in the magnetic “tail” (Bt ∼ 106 G)
concentrated in a narrow cone (∆ϕ ∼ 1/γ ∼ 10−4)
could be perceived by an observer as a burst of γ
radiation if the line of sight to the Earth coincides with
the direction of the “tail.”

To our knowledge, there is no treatment of this
problem in the framework of three-dimensional mag-
netohydrodynamics in the literature. However, the
results of Morietta et al. [33], who present two-
dimensional numerical simulations of the hydrody-
namical interaction of a shock from a type Ia super-
nova with a subgiant, red giant, or main-sequence
companion, suggest that a narrow ejection in the
direction of propagation of the shock will also form if
the shock compresses the magnetosphere of a neu-
tron star. Therefore, it is of interest to obtain prelimi-
nary estimates of the characteristic parameters of this
process, to qualitatively investigate its relevance to
GRBs.

2. FORMATION OF THE MAGNETOSPHERE
TAIL

(1) As an example, we present estimates for a
not-very-close pair (a = 1013 cm, Vorb = 200 km/s,
Porb = 30d) consisting of a blue supergiant (M =
20M�,R∗ = 50R�) and a neutron star (M = 1.4M�,
RNS = 106 cm, B0 = 1012 G). The blue supergiant
loses its extended envelope in the presupernova
stage and can explode as a “compact” supernova
(SN I b/c). According to the review [9], the parame-
ters of the shock associated with the “recoil” will be

E0
kin = 1047 erg, ∆M = 2 × 1027 g,

ρsh = 10−8 g/cm3 = 1016 protons/cm3
,

hsh = 109 cm, Vsh = 4 × 109 cm/s

and Tsh ≈ 3 × 106K.

Applying simplifying assumptions, let us consider the
consequences of an interaction between the shock
and the magnetosphere of the neutron star or white
dwarf companion (Fig. 1). The shock arising during
the supernova interacts with the dipole magnetic field
of the neutron star (B = B0(R3/r3)). At a distance
r∗ = R(B2

0/4πρshV
2
sh)

1/6 from the neutron star, the
kinetic energy of the shock is comparable to the pres-
sure of the magnetic field. The surface r = r∗ can
be considered the Alfvén surface, since the velocity
of the plasma flow Vsh is comparable to the Alfvén
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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velocity VA = (B2/4πρ)1/2. In the region r > r∗, the
velocity of the shock U begins to depend on r, U2 =
V 2
sh[1 − (r∗)6/r6], leading to its focusing behind the

“target” of radius r∗. The condition for this focusing
can be written

V 2
sh[1 − (r∗)6/r6] = (r2 + l2)/τ2,

where l is the distance from the neutron star to the re-
gion of focusing (the length along the magnetosphere
tail) and τ is the time required for the focusing.

It follows from the form of the dependences of the
left-hand and right-hand sides of this equation on the
distance r that the cumulative effect of the energy
of the shock propagating at different r values occurs
near the point r = rc. Thus, due to the cumulative
effect, the energy of the shock is focused from the
surface with radius

rc = r∗[3(V 2
shτ

2/(r∗)2)]1/8.

For r > r∗, we have V 2
shτ

2 = l2, so that

rc = 31/8r∗(l/r∗)1/4.

As a result, we find that a shock from the region r =
rc is focused in the magnetosphere tail at a distance

l = 3−1/2r∗(rc/r
∗)4.

Due to our assumption that the magnetic field is
frozen in the plasma flow carried along by the shock, a
magnetosphere tail will form in the direction of prop-
agation of the shock, as occurs during the interaction
of the magnetosphere of the Earth and the solar wind.

If the width of the tail is d(l) and the magnetic field
in the tail is Bt(l), we have by virtue of conservation
of the magnetic flux

Btd
2 = B1d

2
1,

where the subscript 1 corresponds to the field and
width at the base of the tail. It follows from the condi-
tion that the magnetic field be frozen that 1

Bt = (ρt/ρsh)(dl/drc)[B∗(r∗3/r3
c )],

where B∗ is the magnetic field at the Alfvén surface,
B∗ = (4πρV 2

sh)
1/2, and dl/drc = 4l/rc is the coeffi-

cient of tensile stress of an element of the “fluid.”
The density in the tail ρt can be estimated from the

continuity equation

2πrcdrcVshρsh = 2πd(l)dlVrρt,

where Vr = Vshrc/l is the radial velocity of the plasma
flow in the tail. Hence, we have

ρt =
1
4
(ρsh)rc/d(l)

1This condition is that B/ρ be proportional to the fluid ele-
ment in which the magnetic field is frozen.
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and

Bt = B∗(l/d(l))(r∗/rc)3.

On the other hand, Bt = Bt1d
2
1/d

2(l) and, assuming
Bt1d

2
1 = B∗r∗2, we can write

d(l) = r∗(l/r∗)−1/4,

Bt(l) = B∗(l/r∗)1/2.

We can see that the cumulative effect leads
to an increase in the magnetic field in the tail as
B2

t ∼ l1/2. 2

It would be natural if the length of the tail L were
not very different from the width of the shock hsh. In
fact, the kinetic energy of the shock is collected start-
ing from the radius rc ≈ r∗(l/r∗)1/4 and goes into
amplifying the magnetic field in the tail. Therefore, we
can write the magnetic energy in the form

εB =

L∫
r∗

(B2
t /8π)πd2(l)dl

or

εB = (B∗2/12)r∗3(L/r∗)3/2.

On the other hand, the kinetic energy of the shock
intercepted at the radius rc is

εk = (ρsh/2)V 2
shhshπr

2
c = (B∗2/8)hshr∗2(L/r∗)1/2.

Equating εB = εk, we obtain L ≈ hsh. It follows that
the energy contained in themagnetic field of the mag-
netosphere tail will be

εB = (1/8)B1/2
0 (4πρshV 2

sh)
3/4(RNShsh)3/2

= (1/8)B1/2
0 B∗ 3/2(RNShsh)3/2.

Substituting our adopted values for the neutron star
and shock,

B0 = 1012 G, RNS = 106 cm,

Vsh = 4 × 109 cm/s, ρsh = 10−8 g/cm3

and hsh = 109 cm,

we finally obtain

B∗ = (4πρshV 2
sh)

1/2

= 1.4 × 106(ρsh/10−8)1/2(Vsh/4 × 109) G,

r∗ = RNS(B0/B
∗)1/3

= 108(RNS/106)(B0/1012)1/3(B∗/106)−1/3 cm,

2This is analogous to the amplification of the magnetic field
during the explosive compression of a conductingmedium—
a mechanism proposed by Sakharov [34] to produce very
strong magnetic fields.
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εB = 4 × 1036(B0/1012)1/2

× (B∗/106)3/2(RNS/106)3/2(hsh/109)3/2 erg.

For white dwarfs with B0 = 109 G and RWD =
109 cm, the intercepted shock energy that is trans-
formed into energy of the magnetic field is even
greater than for the neutron-star case:

εB = 4 × 1039(B0/109)1/2(B∗/106)3/2

× (RWD/109)3/2(hsh/109)3/2 erg.

Recall that we adopted parameters for the shock
“recoil” corresponding to a “compact” type Ib/c su-
pernova. For other types of supernovas, the velocity
and thickness of the shock, and therefore its kinetic
energy, could be higher. This should lead to an in-
crease in the value of εB in our model (see, for ex-
ample, [35]).

(2) Let us now consider the situation that arises in
a magnetosphere tail with length L, radius d ≈ r∗ and
magnetic field Bt(l) = B∗(l/r∗)1/2 in which the con-
ditions for development of a neutral current layer are
realized. Charged particles accelerated in the shock
front can appear in the tail when it is compressed by
the shock. In addition, reconnection of the magnetic-
field lines can also lead to particle acceleration (see,
for example, [36–39]). We can estimate the charac-
teristic energy the particles can obtain over the time
required for the development of the magnetosphere
tail to be τ+ ≈ L/Vsh = hsh/Vsh, which is approx-
imately equal to the time for its destruction τ− ≈
hsh/VA ≈ hsh/Vsh. The electric field E accelerating
the particles perpendicular to the current layer can
reach the fairly substantial magnitude

E = (d/cτ)Bt ≈ (r∗Vsh/hshc)Bt

= 10−2B∗ ∼ 300 × 104 V/cm.

The characteristic energy of the particles acceler-
ated by this field will be determined by the balance
between their acceleration and energy losses to syn-
chrotron radiation in the field Bt ≈ B∗:

dε/dt = ecE − (2/3)(e4B2)(m2c3)γ2.

We can then estimate the Lorentz factor of the radi-
ating particles:

γ2 = (3/2)(m2c4E)/(e3B2)
= (3/2)(c/reωc)(E/B)
≈ (3/2)(r∗Vsh)/reωchsh,

where the cyclotron frequency ωc = eB/mc and re =
e2/mc2. We obtain forB ≈ Bt ≈ B∗

γ = 104(r∗/108 cm)1/2(Vsh/4 × 109 cm/s)1/2

× (hsh/109 cm)−1/2(B∗/106 G)−1/2.
We see that the mean energy of the accelerated
electrons is εe ≈ mec

2γ ≈ 5 GeV, which enables
them to emit synchrotron radiation in the magnetic
field of the tail at the frequency νs ∼ ωcγ

2, corre-
sponding to the mean energy εph ≈ 500 keV. This
value is close to themaximum γ spectral flux densities
of GRBs.

The degree of directivity of the nonthermal hard
radiation emitted by the magnetosphere tail is deter-
mined, not only by the radiation of individual par-
ticles, but also by the overall geometry of the radi-
ating region. It is well known that the directivity of
synchrotron radiation is ∆ϕ ∼ γ−1; i.e., for our case,
∆ϕ ≈ 10−4. Due to this factor, the energy radiated in
the neutron-star magnetosphere tail will be enhanced
by a factor of ∼ (4/∆ϕ)2 compared to the spherically
symmetrical case.

We already noted above that the decrease in the
opening angle for the radiation cone of the γ rays
∆ϕ makes it possible to decrease the inferred energy
released by the GRB by a factor of (∆ϕ)2 (compared
to the energy required if the radiation is isotropic).
However, in this case, the real number of GRBs must
exceed the observed number by a factor of (∆ϕ)−2.
Therefore, we must address the question of whether
the value ∆ϕ ∼ 10−4 in our model is consistent with
the observed rate of supernovas taken to be respon-
sible for GRBs at cosmological distances. It is not
difficult to demonstrate that, if we assume that it is
possible to observe GRBs right to the boundary of
the visible Universe, reasonable consistency is ob-
tained. If we have∼ 300 GRB/yr occurring in∼ 1011

galaxies within the observable Universe, we obtain
∼ 3 × 10−9 GRB/yr per galaxy. The mean supernova
rate per galaxy can be taken to be∼ 0.3 supernova/yr
(taking into account that the star-formation rate was
higher at earlier cosmological epochs than today).
Thus, we can immediately conclude that either only
∼ 1 supernova of 108 supernovas in the Universe
generates a GRB or each supernova is associated
with a GRB, but its γ radiation is concentrated in a
narrow cone with opening angle ∆ϕ = 10−4.

Thus, we have for neutron stars εeff =
16(∆ϕ)−2εB ≈ 1045 erg. According to our assump-
tions, the energy stored in the tail magnetic field is
radiated in the form of electromagnetic radiation by
accelerated particles (in the annihilation of magnetic
fields during the passage of the shock) on characteris-
tic times τ ≈ L/VA ≈ hsh/Vsh ≈ 0.25 s, as is typical
of “short” GRBs (see, for example, [40]).

We already noted that a number of researchers
have suggested that short GRBs (T90 < 1 s) may
belong to a “local” population (r < 10 kpc), in which
case energetic problems are removed. However, if
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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GRBs are directly associated with supernovas, a
local character for GRBs is excluded on statistical
grounds. Due to the high degree of collimation of
the γ radiation in our model (∆ϕ ∼ 10−4), the real
number of short GRBs should exceed the observed
number (∼10/yr) by a factor of ∼ (1/∆ϕ)2. Since
each GRB should be accompanied by a supernova,
there is no way to reconcile this value with the
supernova rate in the Galaxy without invoking strong
anisotropy for the radiation of the supernovas them-
selves (which we have rejected in our model).

(3) There remains one possibility to realize a local
population of short GRBs, associated with the pos-
sibility that the development of a magnetosphere tail
(and subsequent magnetosphere flare) could occur
in association with much more common manifesta-
tions of stellar magnetic activity in close binaries with
compact components. Magnetoactive stellar systems
include cataclysmic variables, RS CVn stars, and
“inter-binary flares” [41–43]. Although the energy
released in the flares in such systems does not exceed
1035–1038 erg, due to the magnetic connection be-
tween the components, it is possible that all this en-
ergy could be channeled to the compact component.
Then, the action of the flare on the magnetosphere
of the neutron star or white dwarf becomes compa-
rable to the action of a supernova shock wave, given
the small cross section for the shock interception at
the Alfvén radius (∼ 10−11). Taking into account the
rate of flares in such systems (1/10 yr), their spatial
density could reach ∼ 10−7–10−8 pc−3 yr−1, which
could plausibly be consistent with the observed and
real frequencies of short GRBs if we suppose that the
associated γ-ray flares can be observed to distances
∼20 kpc, but the optical flares initiating the GRBs
only to distances < 20 pc. In this case, the ratio of the
real number of bursts in a volume with r = 20 kpc to
the observed number in a volume with r = 20 pc will
be (20 kpc/20 pc)3 ≈ 109 (∼10/yr).

We should note here that the possibility of a con-
nection between GRBs and flare stars has been dis-
cussed in the literature for a long time (e.g., [44–
46]). These studies have cited similarities between
the profiles of stellar flares and GRBs, as well as
the plausible consistency in the GRB detection rate
and the spatial density of flare stars (if both are local
phenomena and have the same ratio FγR/Fopt). Of
course, early studies did not separate GRBs into short
and long bursts, and did not consider the hypothesis
that the GRB radiation was strongly collimated. A
number of authors subsequently turned to this possi-
bility [47–49], especially in connection with flare stars
displaying magnetic activity.

Thus, we conclude that, in our model, Galactic
(local) GRBs with T90 < 1 s could be associated with
ASTRONOMY REPORTS Vol. 46 No. 11 2002
close binaries consisting of a magnetically active flare
star and a compact object (neutron star or white
dwarf). At the same time, extragalactic GRBs with
T > 1 s are associated with close binaries in which
the compact object is subject to the action of a shock
generated by the explosion of its companion as a
supernova.

Since the shock kinetic energy intercepted at
the Alfvén radius of the compact object is ∼ a−3/2,
more powerful GRBs will arise in more compact
systems. In addition, since the duration of a GRB
is τ ≈ L/VA ∼ hsh/B

∗ ∼ a−1, longer GRBs will be
generated in closer systems. It is possible that this
brings about the distinction between long (cosmolog-
ical) and short (local) GRBs: the former arise in closer
systems, while the latter arise in systems with larger
separations. This makes it possible to understand
the two-peaked nature of the distribution of GRB
durations, with one maximum at T90 ≈ 0.3 s (local
GRBs) and the second at T90 ≈ 30 s (cosmological
GRBs) (see, for example, [50]).

In concluding this section, we note that, varying
the input parameters of our model (the kinetic en-
ergy of the shock from the supernova E0

kin, magnetic
field at the surface of the compact object B0, major
axis of the stellar system à), taking into account the
very narrow (∼ 1′) cone for the synchrotron radiation
by the relativistic particles (γ = 104), we can obtain
agreement with the energy released by cosmologi-
cal GRBs (EGRB = 1053 erg recalculated in terms
of spherically symmetric radiation (see, for example,
[5])). It is easier to obtain larger values of EGRB for
systems with white dwarfs than for those with neu-
tron stars. However, attempts to solve the “energy
catastrophe” for cosmological GRBs by decreasing
the opening angle for the γ radiation cone lead to
statistical difficulties in comparisons of the observed
rates of supernovas and GRBs. We noted above that
the solution to this discrepancy may be associated
with the fact that the supernova rate was much higher
in the early epochs of evolution of galaxies (i.e., it
increases with Z). This may be especially relevant for
the central regions of the host galaxies, where, ac-
cording to [51], bright GRBs are most often observed.

3. RELATIVISTIC EJECTION

There is no question that our model of a GRB as
a magnetospheric flare (or flares) on a neutron star
(or white dwarf) requires numerical simulations if we
wish to obtain trustworthy information about the pos-
sible natures of long and short GRBs in the context of
our model. However, even without such simulations,
we can see that our “magnetospheric” model can give
rise to a number of interesting and possibly verifiable
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Fig. 2. Case when the shock energy is sufficient to tear
off part of the tail as a result of global reconnection of
magnetic force lines (the tearing instability). In this case,
TGRB > 1 s, and the evolution of the relativistic blob of
plasma (with Lorentz factor Γ ∼ 104) flying toward the
observer can explain the properties of the afterglows.

consequences and also that it poses a whole series
of questions which we would like to answer. The
main question is the nature of the X-ray and optical
afterglows (for properties of the afterglows, see, for
example, [5]). Let us consider this question in more
detail in the context of our model.

In our view, the afterglows could be associated
with the fact that, in some cases, the magnetosphere
tail formed by the shock during its interaction with
its magnetized companion could be torn as a result
of the global reconnection of magnetic-field lines in
the tail (the tearing instability; Fig. 2). This type
of phenomenon is observed in strong chromospheric
flares on the Sun [52, 53]. As a result, part of the
tail could be torn off and acquire an appreciable bulk
kinetic energy characterized by a Lorentz factor Γ
whose magnitude will be comparable to that esti-
mated earlier for the electrons accelerated in the tail
current layer, γ ≈ 104. Thus, a narrow (l > d), mag-
netized (B∗ ≈ B) relativistic ejection could be ob-
served, with a stored internal energy ε ≈ εB. If a close
binary consisting of a neutron star/white dwarf and a
supernova is oriented “edge-on” to an observer and
the ejection occurs roughly along the line of sight, we
can estimate the power of the radiation of the ejected
magnetized blob.

Let the magnetic field in a coordinate systemmov-
ing with the ejected magnetized blob be B and the
density of particles with mean Lorentz factor γ be
n. The Lorentz factor γ will decrease with time as
a result of the synchrotron radiation emitted by the
charged particles. Within the blob, an equipartition
regime, B2 = 8πmc2γn, will be supported due to the
continuous “micro-reconnection” of field lines. At
the same time, since the particles are frozen in the
magnetic field, their density will be n ∼ B, so that
n = n0B/B0 (the subscript 0 refers to initial values).
It follows that

B = 8πmc2(n0/B0)γ.
We have in the case of adiabatic expansion of the blob
conserving magnetic flux d = d0(B0/B)1/2, and n
and B will decrease with time. Since, for our parame-
ter values (n0 ∼ 1013 cm−3,L0 = 109 cm), the optical
depth of the blob to Thomson scattering is small (τ =
n0L0σТ � 1), we can consider the emitted radiation
to freely escape. Therefore, the cooling is determined
by the synchrotron losses:

mc2(dγ/dt) = eEc− (2/3)(e4B2/m2c3)γ2,

where E is the induced electric field perpendicular to
the ejection direction, which arises due to the time
variation of the magnetic field E = −(r∗/c)(dB/dt).
We can now easily obtain an expression for the evolu-
tion of the mean energy of the particles:

dγ/dt[1 + (8πr∗en0/B0)]

= −(2/3)(e4/m3c5)(8πmc2(n0/B0))2γ4.

The term in square brackets describes the betatron
cooling of the particles as the magnetic field is de-
creased:

(8πr∗en0)/B0 = 2r∗ω2
po/cωco,

where ωpo is the plasma frequency of the particles
in the ejected blob and ωco is the cyclotron fre-
quency at the initial time t0. For our case, with
ω2
po = 3 × 1022 s−2 and ωco = 2 × 1013 s−1, we have

r∗ = 108 cm, r∗ω2
po/cω

2
po � 1, and we can write

γ−3 − γ−3
0 = t/τ,

where τ = r∗ωco/4ω2
pore ≈ 2 × 104 yr. If the times

considered are not too small, we have in the coor-
dinate system moving with the blob (t > τγ−3

0 ) γ =
(t/τ)−1/3 and B = (t/τ)−1/3.

The characteristic frequency ω = ωcγ
2 at which

the relativistic particles emit synchrotron radiation
will change with time:

ω = (2ω2
po/ωco)(t/τ)−1 ∼ 1/t.

With this ω(t) dependence, the observed frequency
ω′ = Γω and time in the observer’s rest frame t′ = t/Γ
will be related by the expression

t′ = 2τ(ω2
po/ωcoω

′) ≡ (1/2)(r∗/re)(1/ω′) ∼ 1/ω′.

We can see that the radiative cooling time in the
observer’s frame at a given frequency will be t′[s] =
2 × 105/(hω′) [eV]. For the photon energy hω′ ≈
0.3 MeV characteristic for GRBs, the cooling time
is approximately 10 s. This corresponds to the max-
imum in the distribution of durations of long GRBs
corresponding to a decrease to 90% of their peak
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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luminosity (T90). Observations indicate that it is pre-
cisely long GRBs (T90 > 10 s) that are sometimes
accompanied by afterglows in the X-ray and/or opti-
cal. In our model, the X-ray emission (hω′ = 100 eV)
will have a duration on the order of several days, while
the duration of the optical emission (hω′ ≈ 1 eV) will
be several months, consistent with the observational
data.

It is not difficult to estimate the rate of variation of
the afterglow intensity for our assumptions: I(ω′) ∼
(ω′)4/3 ∼ (t′)−1.33. The observations (see, for exam-
ple, [5]) show the dependence I ∼ (t′)−1.2, consistent
with our estimates. In addition, the colors of the op-
tical afterglows show little time variability [54], also
consistent with our estimates for the time variations
expected for the intensity and characteristic frequency
of the afterglows: ω′ ∼ (t′)−1 and I ∼ (t′)−1.33.

It is likely that, in many cases, the energy of the
shock turns out to be insufficient to tear off the mag-
netosphere tail from the magnetic companion to the
supernova, in which case the GRB will not display
an afterglow. This situation is most probable for less
energetic GRBs, which will also be shorter GRBs
(T90 < 1 s). It is possible that this is precisely why
afterglows have not been observed for short GRBs.

In concluding this section, we note that X-
ray emission features have recently been detected
in the afterglows of four GRBs (GRB 970828,
GRB 991216, GRB 060214, and GRB 970508), as
well as a transient absorption feature in the case
of GRB 990705, which have been interpreted as
the Kα (6.4 keV) line of highly ionized iron [55–
57]. These lines have large widths (> 10 000 km/s)
and intensities corresponding toMFe ≥ 0.1M�. They
appear ∼ 105 s after the γ-ray burst, indicating
distances to the region in which they are formed of
∼ 1015–1016 cm.

The nature of these lines remains unclear (see
[58–60]), but one has the impression that their
appearance requires the explosion of a supernova
that has ejected a massive expanding envelope in
the precursor stage, which has moved to distances of
∼ 1015–1016 cm over 105 s. The interaction of this
envelope with the supernova shock could provide the
degree of ionization of iron required to give rise to
emission in the Kα line (an analog of Lyα in the
hydrogen-like ion of Fe). It is possible in the case
of a narrow γ-ray burst that some contribution to the
iron-line radiation could be made by the iron crust of
the neutron star, which is heated to high temperatures
during the passage of the very hot shock and the
raining of high-energy charged particles from the
magnetosphere tail onto the surface of the neutron
star (an “inverse” γ-ray burst). It is interesting that a
broad Кα line was observed during a soft γ-ray flare
ASTRONOMY REPORTS Vol. 46 No. 11 2002
in the object SGR 1900+14, which is a soft γ-ray
repeater [61] (for a discussion of the nature of such
sources, see, for example, [62] and [63]).

4. CONCLUSION

To remove the “energetic catastrophe” associ-
ated with cosmological GRBs, a number of studies
have suggested that the γ-ray radiation is very
strongly collimated (with radiation-cone opening
angles ∆ϕ ≈ 1◦), which boosts the observed radia-
tion by a factor of (∆ϕ)2 > 103 compared to models
in which the γ radiation is isotropic. In most of
these studies, this strong collimation is associated
with analogous anisotropy in a supernova explosion,
which, in turn, gives rise to the observed GRB
energetics.

We have considered another mechanism for the
formation of a narrow beam of γ radiation during a
GRB. We associate this phenomenon with a magne-
tospheric flare in the narrow magnetospheric tail of a
neutron star or white dwarf, which develops under the
action of a shock wave from an isotropic supernova
whose precursor was in a binary pair with the com-
pact magnetized star.

As an example, we have considered a binary with
major axis a ∼ 1013 cm consisting of a blue super-
giant (M∗ = 20M�, R∗ = 50R�) and a neutron star
(B0 = 1012 G) or white dwarf (B0 = 109 G) in which
the supergiant explodes as a “compact” type Ib/c
supernova (such as SN 1987a). During this explo-
sion, the “recoil” shock wave from the supernova will
interact with the dipolar magnetic field of the compact
companion, forming a narrow magnetosphere tail in
the direction of its propagation (L = 109 cm, Bt =
106 G). The magnetic energy stored in this tail can
be liberated over a time of about hsh/VA ∼ 1 s, ε ≈
4 × 1036 erg/s for a neutron star or 4 × 1039 erg/s
for a white dwarf. This energy release εB shows the
following dependence on the parameters of the prob-

lem: ε = f(E◦
kin, B

1/2
0 , B3/2

t , R∗3/2, h3/2
sh , a−3/2). The

strong electric field in the tail E ≈ 3 × 106 V/cm can
accelerate electrons to energies E ≈ 5 GeV, corre-
sponding to Lorentz factors γ = 104. These electrons
can lose energy via synchrotron radiation with char-
acteristic photon energies ∼ 0.5 MeV in a narrow
cone with opening angle ∆ϕ ∼ 10−4 (∼ 1′). Thus,
taking into account Doppler beaming of the radiation,
it is possible to provide the observed energies for
GRBs εGRB = εBγ2 ≈ 4 × 1044 erg/s for a neutron
star or 4 × 1047 erg/s for a white dwarf.

Varying E◦
kin and a, it is possible to bring the cal-

culated value εGRB into agreement with the observed
energies of cosmological GRBs (to 1050–1053 erg).
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If short GRBs (T < 0.1 s) prove to be local phe-
nomena, they can be explained in our model simply by
supposing that the companion of the neutron star or
white dwarf is not a supernova precursor but instead
is a flaring dwarf (such as a cataclysmic variable). In
this case, short GRBs could have a recurrent charac-
ter.

In some cases, the magnetosphere tail formed by
the shock wave during its interaction with the mag-
netized compact companion may be torn off as a re-
sult of global reconnection of the magnetic-field lines
(tearing instability), with a local release of magnetic
energy in the region of the separation. As a result,
the outer part of the tail acquires an appreciable bulk
kinetic energy (Γ ≈ 104) and forms a narrow, magne-
tized blob moving with relativistic speed. With time,
the size of the ejected blob of plasma will increase,
conserving magnetic flux: d = d0(B0/B)1/2, and the
particle density and magnetic field in the blob will
decrease. Since the optical depth to Thomson scat-
tering for the adopted parameters (n0 = 1013 cm−3,
l = 109 cm) is much less than unity, the radiation
emitted by the relativistic particles can freely escape
over a time on the order of 10 s for γ rays with energies
∼ 0.3 MeV, several days for X rays (hundreds of eV),
several months for optical photons (eV), and several
years for radio photons. Thus, the expanding rela-
tivistic blob can give rise to the observed properties
of the GRB itself and also of the afterglow, whose
duration should depend on the energy of the radiated
photons. Our estimate of the rate of fading of the
afterglow yielded the dependence ∼ t−1.33, which is
close to the observed behavior. The spectral index of
the afterglow radiation will vary little with time, since
I(ω′) ∼ (ω1.33). One possibility is that the energies of
the shocks associated with short GRBs are insuffi-
cient to tear off the magnetosphere tail, so that they
do not display the phenomenon of afterglows.

We also note that, given the synchrotron nature
of the radiation of both the GRB itself and its after-
glow (at softer energies, including the radio) in our
model, the appearance of a modest amount of circular
polarization due to the alignment of the spins of the
radiating electrons along the magnetic field in the
magnetized relativistic blob cannot be ruled out (see,
for example, [64]). In addition, we cannot exclude the
possible manifestation of “superluminal” motions in
radio images of the expanding plasma blobs mov-
ing nearly along the line of sight with relativistic
speeds obtained with Very Long Baseline Interfer-
ometry (as is observed for “microquasars;” see, for
example, [65]). The ejection will be one-sided, and
its speed must be measured relative to the position of
some compact radio source that is nearby on the sky
(via so-called phase-referencing observations).
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Abstract—We have studied four 10 to 40 minute sets of Hα spectropolarimetric observations of five Eller-
man bombs (a total of 241 spectropolarimetric recordings) selected from data for more than 200 Ellerman
bombs obtained with the Large Solar Vacuum Telescope at the Baı̆kal Astrophysical Observatory. The
degree of polarization P and azimuth of the plane of polarization were derived from quasi-simultaneous
observations of the Stokes parametersQ/I andU/I.We interpret the observed linear polarization as impact
polarization. A method for comparing the polarization parameters of Ellerman bombs observed at different
times and distances from the center of the solar disk is suggested, which can be used to relate variations of
the polarimetric parameters with the lifetimes of Ellerman bombs. A comparison between the observations
and theoretical calculations indicates that the observed Ellerman bombs were due to electron beams with
energies of several hundred keV. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Ellerman bombs (EBs) or “moustaches,” are
short-lived emission objects whose sizes range from
the diffraction limit of modern 1-m-class telescopes
to 5′′. They are observed as extended and very narrow
emission wings around strong absorption lines; no
substantial perturbations in the cores of the lines
are visible. The morphology, evolution, and dynamics
of EBs have been studied in detail [1–5]; however,
the nature of these objects remains unclear. In one
recent study of the morphology of EBs [6], the
observed objects were divided into two classes: those
not corresponding to moving magnetic-field features
(class I, around 64% of all EBs) and those associated
with such structures (class II). The sizes, lifetimes,
and brightnesses of EBs belonging to the two classes
are not appreciably different.

Several mechanisms for the formation of EBs have
been suggested. One hypothesis [7] is that Eller-
man bombs originate in laminar flows deep in the
chromosphere, where the plasma is divided into at
least two layers, with the denser material situated in
lower layers. Hydrodynamical instabilities can raise
the lower layer into the upper, less dense, layer. As
a result, a vortical layer develops, which mixes the
fluxes and forms a magnetic-flux “bubble” or “drop”
that is heated by ohmic dissipation. Qiu et al. [8]
studied Ellerman bombs in the blue wing of the Hα
line and in the ultraviolet (UV). The optical obser-
vations were obtained at a wavelength of Hα-1.3 Å,
for which the radiation formed slightly below 400 km
above the boundary of the photosphere, while the
UV observations were carried out in a narrow sec-
tion of the UV continuum at 1600 Å, formed in the
1063-7729/02/4611-0918$22.00 c©
region of the temperature minimum region. It was
first shown that the processes observed at optical and
UV wavelengths are well correlated dynamically for
most Ellerman bombs that are bright in the blue Hα
wing. Based on this fact, Qiu et al. [8] suggested that
the source of heating of some EBs is located near
the temperature minimum region, while the source of
heating for others is even deeper, in the photosphere.
The bombardment of the chromosphere by beams of
energetic particles is considered as a mechanism for
exciting EBs in [9, 10]. One advantage of thismodel is
that it can explain the observed linear polarization of
Ellerman bombs, along with their brightness. How-
ever, Nindos and Zirin [6] restrict the suitability of this
mechanism and conclude that impact polarization is
not important for EBs, at least those identified as
belonging to class II.

The impact polarization in the Hα line arising in
a solar flare due to the effect of electron beams on the
chromosphere was calculated in the recent study [11].
Zharkova and Syniavskii [11] concluded that the Hα
profiles display 2 to 25% linear polarization only in the
core of the line, while the line wings are completely
depolarized by thermal collisions. In the absence of
electron beams, the linear polarization is due to the
chromospheric radiation and reaches 2–3%. Thus,
the observed polarization of Ellerman bombs must
be explained and can also make an important con-
tribution to our overall understanding of the origin of
the linear polarization of the solar atmosphere. The
degree of polarization, the azimuth of the plane of
polarization, the presence of polarization in the center
and/or wings of the line, and the polarization vari-
ations during the lifetime of the objects are all very
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Spectrograms of Ellerman bombs obtained on (a) July 4, (b) July 5, (c) July 14, and (d) August 7, 1999.
useful pieces of information for our understanding
of the mechanism exciting the EBs. However, the
polarization of EBs has not been studied as actively
as have their structure and motions.

The first studies of the polarization of EBs are
those of Babin and Koval’ [12–16], based on both
spectral observations and observations with a bire-
fringent filter in the region of the Hα line, with pho-
tographic recording in both cases. In all cases, linear
polarization was detected in the wings of the EBs,
with the degree of polarization being 3–10%. In close
pairs of EBs (when the total size of the region did
not exceed 4′′), stronger polarization was observed for
the weaker EB. According to these observations, the
plane of polarization of EBs is predominantly parallel
to the AFS fibers. Babin and Koval’ also noted that
the azimuth of the polarization plane is different even
for spatially close EBs and can vary substantially
during their lifetimes.

Firstova [17] presented spectropolarimetric obser-
vations of EBs in the Hα and Hβ lines. Polarization
was detected at the line centers and did not exceed
7%. Firstova [17] suggested that substantial polar-
ization is observed only in the first minutes of an EB’s
lifetime. Based on these results, she suggested that
the observed polarization was impact polarization.

Rust and Keil [18] obtained observations of EBs
with a Fabry–Perot interferometer (with width 6 Å)
centered on the Hα line. A digital video system was
used to record the images. The integration time was
2–120 s, with the polarizer axis fixed. The azimuth
of the polarization plane was not determined from
these observations; in a total of 32 objects studied, the
polarization did not exceed 8%.

We have also carried out studies of Ellerman
bombs [19, 20]; polarization was observed primarily
ASTRONOMY REPORTS Vol. 46 No. 11 2002
at the line center and did not exceed 13% in [19] and
9.5% in [20]. In most cases, the polarization plane
was radial. However, we also detected time variations
of the polarization plane.

Here, we analyze the intensities and polarizations
of long-lived EBs with high spatial and temporal
resolution, to study processes occurring during the
lifetimes of these objects.

2. OBSERVATIONS

Spectropolarimetric Hα observations of EBs were
carried out in the Summer of 1999 with the Large
Solar VacuumTelescope [21]. The polarizer consisted
of a Wollaston prism after the spectral slit and two
half-wave plates. One of these, located behind the
Wollaston prism, was used to equalize the intensities
of two spectral bands, decreasing the effect of instru-
mental polarization originating in the grooves of the
grating. The second half-wave plate was installed in
front of the slit. During the observations, it sequen-
tially occupied two positions relative to the slit, offset
by 0◦ and 22.5◦. In this way, we were able to derive
the Stokes parameters Q/I and U/I. The detector

Table 1. Parameters of the spectropolarimetric observa-
tions

Slit width 100 micron ≈ 0.5′′

Spectral order II (left)

Spatial resolution 0.175′′/pix.

Spectral dispersion 0.013 Å/pix.

Exposure time 0.05 s
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Table 2.Observational parameters of EBs

Set Date
Number

of
frames

Beginning of
observations, UT Duration NOAA Nearby objects

A July 4, 1999 99 08h45m52s 40m08s 8614 (N14E47) Pores

B July 5, 1999 30 06 10 08 09 49 8611 (S25W35) Penumbra of the spot

C July 14, 1999 45 07 10 43 17 51 8627 (S14E06) Pore

D Aug. 7, 1999 67 08 30 19 27 01 8656 (N18W33)
was a TE/CCD-512TK CCD camera produced by
Princeton Instruments, Inc.

Due to their small size, the observed properties of
Ellerman bombs are very sensitive to the spatial res-
olution, which varied from 0.5′′ to 1.2′′, depending on
the atmospheric conditions during the observations.
To decrease the effect of tremor, all time series were
obtained with the minimum exposure possible for the
CCD camera. A total of more than 200 time series for
the Ellerman bombs were obtained.

To address the problem at hand, our observations
of Ellerman bombs had to satisfy two important re-
quirements: that the duration of the time series be
comparable with the average lifetime of an Ellerman
bomb and that the series have high temporal reso-
lution. Various studies have suggested lifetimes for
EBs ranging from several minutes to an hour [1].
Bruzek [2] observed several EBs with lifetimes of
several hours. Payne [3] and Nindos and Zirin [6] give
average lifetimes of about 14 min. According to the
observations of [6], only 6–7% of EBs have lifetimes
< 7 min, while 15–17% have lifetimes > 20 min.
Thus, if an EB was observed for longer than 7 min,
we can assume that the observation spanned the
majority of its lifetime. Taking these requirements
into account, we selected four of more than 200 time
series of observations of EBs made up of from 33
to 99 consecutive frames. Table 1 presents the pa-
rameters of the observations and Fig. 1 the observed
spectra. The dates of the observations, number of
frames in a series, beginning times and durations of
the observations (UT), number and coordinates of
the groups of selected EBs, and the names of objects
observed simultaneously with the EBs are presented
in Table 2. All the EBs were observed in actively
developing groups. In series B, a pair of Ellerman
bombs were observed in a single active region, one
of which disappeared 6 min after the beginning of the
observations.

3. DATA REDUCTION

After the standard preliminary reduction of the
CCD spectra, a cross section of each EB along the
dispersion was extracted in both orthogonal strips of
the spectrum. The resulting line profile was corrected
for the continuum level. Matching the Hα profile with
the continuum in each strip appreciably decreased
the effect of instrumental polarization [17]. The pa-
rameters Q/I and U/I were calculated using the
formula (I‖ − I⊥)/(I‖ + I⊥), where I‖ and I⊥ are the
intensities of the ordinary and extraordinary rays. The
intensity I was calculated as I = (I‖ + I⊥)/2. Fig-
ure 2 presents the line profiles with the corresponding
parametersQ/I and U/I along the dispersion for two
EBs.

Consecutive observations of Q/I and U/I can be
considered quasi-simultaneous, since the time be-
tween the exposures was small (< 10 s). In this case,
we can calculate the degree of polarization P and the
angle χ between the plane of polarization and the slit:

P =
√

(Q/I)2 + (U/I)2,

χ =
1
2
× arctan

(
U/I

Q/I

)
.

In this way, P and χ were calculated for the “quasi-
times” of the observations, i.e., for average times be-
tween the times at whichQ/I andU/I were obtained.

For each series of observations, the angle γ0 be-
tween the direction toward the center of the solar disk
and the spectral slit was acquired. We used γ0 to de-
termine the angle γ—the azimuth of the polarization
plane relative to the direction toward the center of the
solar disk. The rms error of the relative intensity in
the spectral region studied did not exceed 0.008. The
accuracy of the EB measurements was shown to be
the same. The rms errors in the degree of polarization
P and the angle χ (and, hence, in γ) did not exceed
0.8% and 2◦, respectively. We can see from Fig. 2
that the Stokes parameters in the quiescent region are
close to zero in the entire observed spectral interval,
indicating that the instrumental polarization did not
exceed the measurement errors. According to the re-
sults of previous observations [17, 20] and theoretical
calculations [11, 22, 23], this accuracy is sufficient
for deriving evidence for impact linear polarization in
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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Fig. 2. Variations along the dispersion for the Stokes parameters, the relative intensity, and the difference between the
intensities in a quiet region and an Ellerman bomb. In middle and lower panels, the grey curve corresponds to the quiet region
and the black curve to the Ellerman bomb.
EBs. Thus, this procedure can be used to study linear
polarization in EBs.

4. RESULTS

The profile intensities, Stokes parametersQ/I and
U/I, and the degree of polarization and azimuth of
the polarization plane were obtained for five EBs. To
study temporal variations in the brightness of the
EBs, we used the difference of the intensity in the EB
and in the quiescent region I − I0 for the red and blue
wings. The Stokes parameters Q and U for each time
were determined at the line center, since, in all cases,
polarization was detected only at the center of the Hα
line. Figure 3 presents the time dependences of the
degree of polarization and azimuth of the polarization
plane for each EB. The results of the simultaneous
observations of the two EBs in seriesB are presented
in one graph.

The high-time-resolution data made it possible to
follow variations of the intensity in the wings of the
EBs. The observed profiles were asymmetrical for es-
sentially all five EBs. The asymmetry was maintained
during the entire lifetime of the EB in series D, where
the blue wing was brighter, and in series A, where
the red wing was slightly brighter than the blue wing.
An asymmetry toward the blue is also noted for both
EBs in series B at the beginning of the observations;
however, the red wing becomes brighter at the end
of the observations. A similar pattern was also ob-
served for the EB in series C: in the first minutes
of the observations, an asymmetry toward the red
was noted, which then shifted to the blue side, with
ASTRONOMY REPORTS Vol. 46 No. 11 2002
the red wing becoming brighter again approximately
8 min later. We can see from Fig. 3 that there is no
apparent relationship between the asymmetry of the
Hα intensity profiles in the EBs and their degree of
polarization or the azimuth of the polarization plane.

In two series (A and D), there were objects along
the line of sight that were projected onto the EBs.
The Hα line in these objects was in absorption and
was bent in the form of an arch with radial velocities
from −30 to +50 km/s, with the matter above the
Ellerman bombmoving upwards. At the initial obser-
vation times in series B, the centers of the Hα lines
in both EBs shifted toward the red with a velocity
of about 30 km/s, which does not coincide with the
velocity of about 8 km/s for the upward motion of
matter observed in most EBs [4].

The highest degree of polarization was about 10%,
detected for the EB in series D; the maximum polar-
izations in the EBs in series A and C were 6–7%. As
a rule, the maximum polarization for all the EBs was
detected at the beginning of the observation. During
most of the EB’s lifetime, the degree of polarization
was 2–5%, consistent with both the observations of
Firstova [17] and the results of Rust and Keil [18].
Note that, in the close pair of EBs in series B, the
brighter EB displays a lower degree of polarization
than the weaker EB; a similar effect was described by
Babin and Koval [13].

For all the EBs, the azimuth of the polarization
plane when the degree of polarization was maximum
was close to 60◦–70◦.
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All the Ellerman bombs displayed a rotation of

the polarization plane during their lifetimes. This ef-

fect was noted before by Firstova [17] and Babin

and Koval’ [15]. Figure 3 presents a larger amount
of observational material demonstrating this effect,
confirming its reality.

A comparison between the data and theoretical
calculations for impact polarization [11, 22] suggest
that themost likely explanation for the observed linear
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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polarization is impact polarization due to beams of
energetic particles. The main evidence for this is the
presence of polarization in the core of the Hα line and
the depolarization of the wings (Fig. 2). Based on this
idea, we suggest a method for comparing polarization
data for solar objects obtained at different distances
from the center of the solar disk.

Knowing the angle γ and the degree of polarization
P , we can determine the projection of the polarization
vector onto the direction from the EB to the disk
center by calculating the parameter

Q◦(θ) = P cos 2γ.

Further, knowing the angle θ between the radius vec-
tor of the Sun and the line of sight, or the direction
of the motion of the radiated photon, we can calculate
the polarization observed at right angles to the inci-
dent beam using the formula [24]

P(90◦) = Q◦(θ)/(Q◦(θ) cos2 θ + sin2 θ).

This is essentially the polarization that can be ob-
served if the object is at the limb and the beam falls
vertically from the corona. According to the theory of
impact polarization, this is the maximum polarization
that can be detected. Although these transformations
are somewhat artificial, they make it possible to com-
pare the polarimetric parameters of EBs located at
different distances from the center of the disk with
both those of other EBs and with theoretical calcu-
lations. Figure 3 presents the time dependences of
P(90◦) for all four EB series.
NOMY REPORTS Vol. 46 No. 11 2002
5. DISCUSSION AND CONCLUSIONS

Our observations of five Ellerman bombs did not
reveal any relationship between the intensity, degree
of polarization, and azimuth of the polarization plane.
This may provide indirect evidence that the EBs orig-
inate due to the bombardment of the chromosphere by
energetic particle beams. For example, it was shown
in [25] based on the example of protons that, in the
process of the bombardment, the Hα line intensity in-
creases simultaneously with the density of the back-
ground protons and electrons, resulting in partial de-
polarization.

According to our data, the azimuth of the polar-
ization plane was about 60◦–70◦ in the first minutes
of the EBs’ lifetimes. As was shown in [22], the ori-
entation of the azimuth of the polarization plane close
to the tangential direction corresponds to the bom-
bardment of the chromosphere by an electron beam.
Thus, our results suggest that the beams that excited
the observed EBs consisted primarily of electrons.

The time dependence of P(90◦) for all the EBs in-
dicates that it varies from negative to positive values.
According to [22, 23], negative values correspond to
higher energy particles than positive values (the sign
changes for energies near 200 KeV). Comparing the
resulting dependences for P(90◦) for all the EBs, we
see that the values for this parameter at the initial
times vary from −3% to 20% (Fig. 3). The best fit
for the time dependences for P(90◦) is given by a
natural logarithmic function. These functions were
extrapolated for the initial time of the observations for
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all the EBs (Fig. 4), when P(90◦) can be estimated
to be 15–20%. When the results of theoretical calcu-
lations and laboratory experiments presented in [22]
are applied to the P(90◦) values obtained, the energy
of the electron beam can be estimated to be several
hundreds of keV and appears to decrease with time.

Comparing the time dependences for all five cases
(Fig. 4), we see that the energy of all the EBs de-
creases dramatically within the first 5min, after which
the variations become smoother. However, the shapes
of the different curves are somewhat different. The
smoothest variation is observed in series A, which
is the longest-lived. The steepest increase is seen in
series B. Of the two EBs in series B, the first to die
out was the one whose curve increased more steeply.
It is quite possible that the velocity and the type of
variation of the polarization and, accordingly, of the
particle energy, affects the lifetime of the EB: the
smoother the variations, the longer the lifetime. Note
also that the shortest lifetime was observed for an EB
located near the penumbra of a large spot.

In conclusion, although our proposed interpreta-
tion requires magnetic-field reconnection and there-
fore cannot be unconditionally adopted as an explana-
tion for the origin of all Ellerman bombs, our results
provide evidence that at least some EBs may be the
result of impact polarization. Spectropolarimetric ob-
servations can be used to identify EBs of this type and
to study the processes occurring in them.

6. ACKNOWLEDGMENTS

The author thanks N.M. Firstova for assistance
in the observations and useful discussions. This work
was supported by the Russian Foundation for Basic
Research (project nos. 00-02-16068 and 02-02-
06211), the Program for State Support of Leading
Scientific Schools (grant 00-15-96659), and the
State Science and Technology Project in Astronomy.

REFERENCES
1. A. B. Severny, The Solar Spectrum, Ed. by

C. de Jager (Reidel, Dordrecht, 1965), p. 21.
2. A. Bruzek, Sol. Phys. 26, 94 (1972).
3. T. E. W. Payne, in American Astronomical Society
Meeting, 1993, Vol. 183, 68.01.

4. H. Kurokawa, I. Kawaguchi, Y. Funakoshi, and
Y. Nakai, Sol. Phys. 79, 77 (1982).

5. A. N. Koval’, Izv. Krym. Astrofiz. Obs. 44, 94 (1972).
6. A. Nindos and H. Zirin, Sol. Phys. 182, 381 (1998).
7. D. A. Diver, J. C. Brown, and D. M. Rust, Sol. Phys.

168, 105 (1996).
8. J. Qiu, M. D. Ding, H. Wang, et al., Astrophys. J.

544, L157 (2000).
9. M. D. Ding, J. C. Hénoux, and C. Fang, Astron.

Astrophys. 332, 761 (1998).
10. J. C. Hénoux, C. Fang, and M. D. Ding, Astron.

Astrophys. 337, 294 (1998).
11. V. V. Zharkova and D. V. Syniavskii, Astron. Astro-

phys. 354, 714 (2000).
12. A. N. Babin and A. N. Koval’, Izv. Krym. Astrofiz.

Obs. 73, 3 (1985).
13. A. N. Babin and A. N. Koval, Sol. Phys. 98, 159

(1985).
14. A. N. Babin and A. N. Koval’, Izv. Krym. Astrofiz.

Obs. 75, 52 (1986).
15. A. N. Babin and A. N. Koval’, Izv. Krym. Astrofiz.

Obs. 77, 9 (1987).
16. A. N. Babin and A. N. Koval’, Izv. Krym. Astrofiz.

Obs. 80, 110 (1988).
17. N. M. Firstova, Sol. Phys. 103, 11 (1986).
18. D. M. Rust and S. L. Keil, Sol. Phys. 140, 55 (1992).
19. S. A. Kazantsev, N. M. Firstova, L. K. Kashapova,

et al., Astron. Zh. 75, 792 (1998) [Astron. Rep. 42,
702 (1998)].

20. N. M. Firstova, A. V. Boulatov, and L. K. Kashapova,
in Solar Polarization, Ed. by K. N. Nagendera and
J. O. Stenflo (Kluwer, Dordrecht, 1999), p. 451.

21. V. I. Skomorovsky and N. M. Firstova, Sol. Phys.
163, 209 (1996).

22. J. C. Hénoux and G. Chambe, J. Quant. Spectrosc.
Radiat. Transf. 44, 193 (1990).

23. L. Fletcher and J. C. Brown, Astron. Astrophys. 294,
260 (1995).

24. J. C. Hénoux, D. Heristchi, G. Chambe, et al., As-
tron. Astrophys. 119, 233 (1983).

25. E. Vogt, S. Sahal-Brechot, and J.-C. Hénoux, As-
tron. Astrophys. 324, 1211 (1997).

Translated by K. Maslennikov
ASTRONOMY REPORTS Vol. 46 No. 11 2002



Astronomy Reports, Vol. 46, No. 11, 2002, pp. 925–931. Translated from Astronomicheskĭı Zhurnal, Vol. 79, No. 11, 2002, pp. 1027–1033.
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Abstract—The fine structure of the FeI λ 532.4185-nm line of neutral iron is studied with high spatial
(0.5′′) and temporal (9.3 s) resolution using observations of a quiet region at the center of the solar disk.
The character of the line asymmetry depends strongly on the nature of the velocity field, i.e., on whether it is
due to convective or wave motions. The magnitude of the asymmetry due to acoustic waves is comparable
to that due to convective motions. The propagation of acoustic waves in moving granules and intergranular
lanes is studied by solving a system of hydrodynamical equations in a three-dimensional model for the solar
atmosphere. The temporal variations in the bisector of the line synthesized in a non-LTE approximation
agree well with the observational data. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The idea that nonthermal broadening of spectral
lines, including line asymmetries, could be interpreted
as an effect of acoustic waves was expressed as early
as 1948 byBierman [1]. However, the profile of the ab-
sorption coefficient for the uniform medium in which
the acoustic waves propagated was calculated only
20 years later, by Eriksen and Maltby [2] and Babiı̆
and Al’tman [3]. They considered the case when the
velocity of the absorbing particles, gas pressure, and
temperature vary in phase; i.e., the acoustic wave
propagation was assumed to be adiabatic. Later, after
taking into account radiation damping when calcu-
lating the profiles of spectral lines in the solar at-
mosphere, Teplitskaja [4] and Kostik and Orlova [5]
concluded that thewave motions result in only a small
asymmetry of the absorption lines compared to the
observed lines. However, in our view, the comparison
of the results of the numerical modeling with the ob-
servations was not carried out entirely correctly, since
the observed line asymmetries could be due to both
waves and convective motions. This same drawback
is inherent in numerous subsequent studies concern-
ing the asymmetries of Fraunhofer lines, especially
those based on observations with high spatial and
temporal resolution. Only Hanslmeier et al. [6, 7]
have presented the average bisectors of lines observed
in granules and intergranular lanes filtered from the
wave motions, enabling them to show that the waves
in intergranular lanes affect the line bisector shape
more strongly. Unfortunately, Hanslmeier et al. [6, 7]

*E-mail:kostik@mao.kiev.ua
1063-7729/02/4611-0925$22.00 c©
turned their attention primarily to convective mo-
tions, whereas the line bisectors due to wave motions
were not studied in detail.

The aim of the present work is to study the effect
of a propagating wave on the line bisectors and to
compare this effect with the influence of convective
motions. The observational data will be compared
with the results of numerical modeling, and, in con-
trast to previous studies, the wave propagation in a
moving medium will be considered.

2. OBSERVATIONAL RESULTS

The observations were carried out by N. Shchu-
kina in August 1996 on the 70-cm German vac-
uum tower telescope (VTT), installed at the Obser-
vatorio del Teide of the Instituto de Astrofisica de
Canarias (Tenerife). The design of the telescope is
described in detail by Schröter et al. [8]. The FeI
λ 532.4185-nm line of neutral iron was observed. The
spectral studies were conducted near the solar-disk
center outside of active regions, and were accompa-
nied by video recordings in the Нα hydrogen line and
KСаII ionized-calcium line. The detector was a CCD
camera composed of 1024 × 1024 pixels (2 × 2 cm)
joined in pairs. The size of the spectral region detected
by this array is 0.2 nm near a wavelength of 600 nm.
The size of a double pixel corresponds to 0.174′′ at
the solar surface. The width of the entrance slit of
the spectrograph was 80 µm, or 0.38′′ at the solar
disk. Therefore, the field of view of the telescope was
0.38′′ × 89′′. The line was measured for 31 min in
intervals of about 9.3 s. The jitter of the solar surface
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Time variations in the velocity (left) and intensity (right) of the FeI λ 532.4185-nm line for a fixed position on the solar
disk. The solid curve corresponds toH = 500 km, the dashed curve toH = 300 km, and the dot–dash curve to H = 10 km.
The observational data are presented in the top panels, the convective components of the intensity and velocity in the central
panels, and the wave components in the bottom panels.
at the spectrograph entrance slit during the observa-
tions was less than 0.35′′.

The FeI λ 532.4185-nm line is strong. Its central
residual intensity in the spectrum of the atmosphere of
the quiet solar-disk center relative to the local contin-
uum is r = 0.139. The calculations of Shchukina and
Trujillo Bueno [9], which take into account deviations
from local thermodynamic equilibrium, indicate that
the region of formation of this line covers heights from
H = 10 km (the continuum) to H = 500 km (the
central intensity). Thus, the emission at the center
of this line is formed near the temperature minimum,
where considerable variations in brightness and ve-
locity due to wave motions are expected.
Following the standard procedure, all 200 im-
ages of this line were corrected for the dark current,
changes in the Earth’s atmospheric transparency in
the course of the observations, and variable sensitivi-
ties of individual pixels.

Variations in the intensity δIk(i, j) and velocity
δVk(i, j) with respect to their mean values were mea-
sured for each individual image (j = 1–200), each
spectral track (i = 1–512), and several levels of the
line profile (k = 1–11, which correspond to 11 dif-
ferent heights in the solar atmosphere from 10 to
500 km). The spatial and temporal variations in these
parameters are due to both convective and wave mo-
tions. To separate these components of the intensity
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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and velocity fields, we constructed a k–ω diagnostic
diagram, in which power is presented as a function of
the temporal (ω) and spatial (k) frequencies. In accor-
dance with this diagram, we restricted wave motions
to the temporal frequencies ω = 1.8–5.7 mHz and
convective motions to frequencies below 2.2 mHz. In
terms of the spatial frequencies, the division between
wave and convective motions was at k = 0.18. The
reduction of the observations and the (k–ω) diag-
nostic diagram are presented in more detail in our
previous papers [10, 11].

Examples of temporal variations in the velocity
and intensity of the FeI λ 532.4185-nm line at one
position on the solar disk (i = 97) are shown in
the left and right columns of Fig. 1. The solid curve
corresponds to a height of H = 500 km (k = 1); the
dashed curve, to H = 300 km (k = 5); and the dot–
dash curve, toH = 10 km (k = 11). The observed de-
pendences are shown in the two top panels, while the
convective and wave components of the intensity and
velocity are shown in the middle and bottom panels,
respectively. The amplitude of the wave component of
the velocity increases with height, while this tendency
is less evident for the intensity.

Using the data of Fig. 1, we drew bisectors of the
lines, presented in Fig. 2. The curves correspond to
various times. The data before separation into com-
ponents are shown in the top panel, and the bisec-
tors due only to convective and wave motions are
shown in the middle and bottom panels, respectively.
The line bisectors are drawn with intervals of 9.3 s.
The shifts for different levels of the line profile were
measured with respect to their mean shift at k = 1,
i.e., relative to the central intensity. The difference
between the line-bisector variations before separating
the velocity field into components and the variations
due only to convective motions is very clear. The
scatter of the shifts in the latter case is considerably
less. As expected, the scatter of the shifts due to
convective motions decreases from the wings to the
core of the line, since the speed of the convective
motion decreases with height in the solar atmosphere.
The characteristic behavior of the line bisectors due
only to acoustic waves (Fig. 2c) differs considerably
from that in Fig. 2b: shifts in the line core are almost
twice as large as in the wings, in accordance with the
increase in the amplitude of the wave motions with
increasing height in the solar atmosphere. Thus, the
effect of the wave motions on the bisector shape turns
out to be appreciable and cannot be ignored in obser-
vations with high spatial and temporal resolution.

Figure 3a presents the shifts of the center of the
FeI λ 532.4185-nm line (H = 500 km, k = 1) due to
convective motions, averaged over all spectral tracks
(i = 1–512) and the entire observation time (j =
1–200), as functions of the intensity in the continuum
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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(k = 11). We can see that the central intensity above
granules is shifted toward the violet, and the central
intensity above intergranular lanes shifted toward
the red. The greater the contrast of the granule (or
intergranular lane) in the continuum, the larger the
shift at height H = 500 km. Thus, even in the region
of the temperature minimum, the field of the convec-
tive motion is not disrupted: material rises above the
granules and descends between them. The velocity
of descending turbulent elements at H = 500 km
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is, on average, greater than the velocity of rising
elements, as is the case at the level of formation of the
continuum. In the case of the wave motions, the shifts
of the line center averaged over space and time are not
equal to zero, as would be expected based on general
considerations, and depend weakly (within the errors)
on the continuum intensity (Fig. 3b), with the shifts
being greater above the dark intergranular lanes than
above bright granules. This is a consequence of the
different characters of the propagation of acoustic
waves over granules and intergranular lanes found
in our previous work [11]. First, the amplitudes of
oscillatory motions are greater above intergranular
lanes than above the granules, and second, waves
above granules are approximately standing waves.
3. MODELING THE OSCILLATIONS

We shall not discuss line asymmetries due to con-
vective motions here. Both two-dimensional [12, 13]
and three-dimensional [14, 15] hydrodynamical mod-
els of the solar granulation can describe thesemotions
quite satisfactorily. Our aim is to consider wave prop-
agation in the corresponding models, to calculate the
profile of the FeI λ532.4185-nm line, and to compare
the calculated asymmetry with the observational data.

The hydrodynamical equations of conservation of
momentum, mass, and energy can be written

ρ
dV
dt

= −∇P + gρ, (1)

∂ρ

∂t
= −∇(ρV), (2)

dQ

dt
= cv

dT

dt
− RT

ρ

dρ

dt
, (3)

where the usual notation has been used. In addition,
we have assumed that the atmosphere is vertically
stratified and uniform in the horizontal direction; there
is no magnetic field; and the effects of viscosity, heat
transfer, and rotation can be neglected.

Let us calculate the temperature and density dis-
tributions and the velocity variations in the solar at-
mosphere due to wave motions under the following
assumptions: the waves propagate only in the vertical
(z) direction, deviations from adiabatic wave propa-
gation are due to radiative damping, and the equation
of state has the form

T1

T0
=
P1

P0
− ρ 1

ρ 0
. (4)

To solve the above system of differential equa-
tions, we will separate the entire photosphere into
a series of isothermal layers moving with constant
velocities. The equations will be linearized in each
layer, assuming that the velocity is composed of a
convective component V0 (which is constant in time)
and a perturbation produced by the wave:

T = T0 + T1, P = P0 + P1, (5)

ρ = ρ0 + ρ1, V = V0 + V1.

Substituting (5) into (1)–(3) and neglecting
second-order terms in the perturbations, we obtain
the system of dimensionless equations

∂W1

∂t
+W0

∂W1

∂z
= − ∂

∂z
(R + Θ) + 2Θ, (6)

∂R

∂t
+W0

∂R

∂z
= 2W0R− ∂W1

∂z
+ 2W1, (7)

∂Θ
∂t

+W0
∂Θ
∂z

= − 1
τr

Θ − (γ − 1)
∂W1

∂z
. (8)
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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The vertical velocity of the particle oscillations
W is measured in (6)–(8) in units of the isother-
mal sound speed (W0,1 = V0,1/Cs); the distance z, in
units of twice the pressure scale height. The values
of Θ and R are Θ = T1/T0 and R = ρ1/ρ0, and τr is
the characteristic relaxation time for thermal inhomo-
geneities [16]. We will seek a solution of the system of
equations (6)–(8) in the form

W1,Θ, R ∼ ez(1−ki)e−ikr(t Vph−t W0−z), (9)

where Vph = ω/kr is the phase velocity of the wave
and kr and ki are the real and imaginary parts of
the vertical wavenumber kz . As a result, the system
of differential equations (6)–(8) will be reduced to a
system of algebraic equations for kz . The accuracy of
the approximate method described above was tested
by Mihalas and Toomre [17] for the particular case
when the exact solution is known. It was shown
that the resulting kz(z) agrees well with the exact
dependence if the temperature gradient is linear and
the oscillations are adiabatic.

Substituting (9) into (6)–(8) and using (4), we
find the speed of the particle oscillations in the vertical
directionW1 and the temperature and density fluctu-
ations due to the wave:

W1 = V0W ez(1−ki) sin((ω −W0kr) t− krz), (10)

T1/T0 = |Θ| ez(1−ki) (11)

× sin((ω −W0kr) t− kr z + ϕTV ),

ρ1/ρ0 = |R| ez(1−ki) (12)

× sin((ω −W0kr) t− kr z + ϕρ V ).

The expression ϕTV in (11) denotes the phase
shift between oscillations of the temperature and ve-
locity; and the expression ϕρV in (12), the phase shift
between oscillations of the density and velocity. The
corresponding expressions are very cumbersome, and
we do not present them here.

Recall that the solution of (6)–(9) for V0 = const
(i.e., when the convective velocity is not taken into
account) was first derived by Noyes and Leighton [18]
(see also [19–22]).

We introduced the variations in velocity, temper-
ature, and density described by (10)–(12) into the
three-dimensional hydrodynamical model for the so-
lar atmosphere of [15], kindly provided byM.Asplund.
The simulated region of the solar surface covers 6.0 ×
6.0 × 3.8 Mm with a spatial resolution of 30 × 30 ×
46 km. The variations in the thermodynamic parame-
ters were taken for a single time. We arbitrarily chose
one horizontal cross section containing five granules
and five intergranular lanes for our subsequent com-
putations. Further, this two-dimensional model was
ASTRONOMY REPORTS Vol. 46 No. 11 2002
transformed into 50 one-dimensional models for the
granules and intergranular lanes with various con-
trasts. We obtained mean models for a granule and
intergranular lane by averaging these models. Finally,
we used (10)–(12) to calculate the temporal varia-
tions in the thermodynamic quantities (over 31 min)
for each of these two one-dimensional models and
for the standard spatially-averaged model MACKKL
[23]. The temporal step was 9.3 s, as in the actual ob-
servations. Oscillations for eight different frequencies
in the range 2–5.5 mHz were computed. These fre-
quencies were chosen in accordance with the spectral
resolution of the observational time series, whose du-
ration was 31min. The initial velocity and phase of the
oscillations at heightH = 10 km over the continuum
level were taken from the observations for the corre-
sponding frequencies. Finally, we calculated the pro-
file of the observed FeI λ 532.4185-nm line for each
model and each time (a total of 200 combinations).
Since the core of this line is formed at a large height
in the solar atmosphere, deviations from local ther-
modynamic equilibrium had to be taken into account
[24]. We used the NATAJA software package, kindly
provided by N. Shchukina. This software includes a
realistic model for the iron atom (containing 250 lev-
els and 500 radiative transitions) [25] and is based on
efficient iterative numerical methods for solving the
equations of multilevel transfer in multidimensional
media [26].

The bisectors of the spectral line synthesized us-
ing this method are presented in Fig. 4 for various
times. These bisectors were calculated with respect to
those for unperturbed models. The wave component
of the observed bisectors is reproduced in Fig. 4a.
The bisectors for the mean granule model are shown
in Fig. 4b, for the mean intergranular-lane model
in Fig. 4c, and for the MACKKL model in Fig. 4d.
There are some differences in the behavior of the
bisectors for these three models. First, the bisector
curve in the granule model is smoother, whereas there
is a sharp increase in the scatter of the bisectors
at small intensities in the intergranular-lane model.
Second, the average scatter is slightly greater in the
intergranular-lane model due to the larger amplitudes
of the oscillations in intergranular lanes. The observed
values of the bisectors were drawn for a fixed track
with a duration of 31 min. Since the mean lifetime
of a granule is ∼8 min, they cannot correspond to
oscillations above a granule or intergranular lane.
On the whole, there is satisfactory agreement with
the modeling results: the asymmetry of the observed
and synthesized line profiles depends on time and
increases from the line wing to its core, while the
scatter of the shifts of the line center is within±10mÅ
in both cases.
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Fig. 4. Bisectors of the FeI λ 532.4185-nm line as (a) observed and calculated for (b) a granule, (c) an intergranular lane, and
(d) the spatially averaged solar surface at various times.
Thus, acoustic waves appreciably deform the line
profiles. In observations with high spatial and tempo-
ral resolution, the magnitude of the asymmetry due to
acoustic waves is comparable to that due to convec-
tive motions.

4. CONCLUSION

We have studied the fine structure of the FeI
λ 532.4185-nm neutral-iron line using observations
of the quiet solar-disk center with high spatial and
temporal resolution. The character of asymmetries
in the line profile depends strongly on their origin:
whether they are produced by convective or wave
motions. The central intensity of this line (which is
formed at a height of H = 500 km above the level of
formation of the continuum in the solar atmosphere)
is shifted toward the violet above granules and toward
the red above intergranular lanes. In other words,
the convective motions penetrate high into the at-
mosphere, all the way to the temperature minimum.

We investigated the propagation of acoustic waves
in moving granules and intergranular lanes by solving
a system of hydrodynamical equations and using a
three-dimensional model for the solar atmosphere.
The profile of the FeI λ 532.4185-nm neutral-iron line
was synthesized using a non-LTE approximation.
The character of the time variations in the bisector
of the synthesized line is in good agreement with the
observational data.
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Abstract—The paper considers triple encounters in the linear three-body problem for the case of equal
masses. Triple encounters are described using two parameters: the virial coefficient k and the angle ϕ such
that tanϕ = ṙ/ρ̇, where ṙ and ρ̇ are the velocities of the “central” body relative to each of the “outer”
bodies. The equations of motion are integrated numerically up to one of the following times: the time
for a receding body to turn, the time for this body to reach some critical distance, the time for some
escape criterion to be fulfilled, or to some critical time. Evolutionary scenarios for the triple system are
determined as a function of the initial conditions. The dependences of the ejection length on k and ϕ̇
are derived. The initial conditions corresponding to escape form a continuous region with k > 0.5. The
regions into which the right and left bodies depart alternate and are symmetrical about the lines of triple
close encounters (ϕ = 45◦, 225◦). Regions of stable motions in the vicinity of the central periodic orbit
of Schubart (k � 0.206;ϕ = 135◦, 315◦) are identified. Linear structures emanate from the peak of the
region of stability, which divide the region for the initial conditions into alternating zones with identical
evolutionary scenarios. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The three-body problem is a classical problem
of analytical dynamics. Appreciable progress in our
understanding of the qualitative behavior of the solu-
tions has been achieved thanks to numerical model-
ing. For example, using the results of numerical sim-
ulations, Szebehely [1] proposed the following classi-
fication for the states in the general three-body prob-
lem with negative total energy:

(1) simple interaction;
(2) ejection with return;
(3) escape;
(4) stable revolution;
(5) Lagrangian equilibrium solutions;
(6) close encounters and periodic orbits.
Agekyan and Martynova [2] proposed to supple-

ment this classification with another state: (0) triple
close encounters. This state occurs when all three
bodies are located inside a sphere such that, for any
positions inside this sphere, the system components
approach more closely than when the conditions for
the virial theorem are satisfied. The center of this
sphere coincides with the center of mass of the triple
system. Numerical simulations have shown that pre-
cisely this state can lead to the escape of one of the
bodies from the triple system [3–5].

A number of papers have concentrated on studies
of triple encounters (see, for example, [5–10] and
1063-7729/02/4611-0932$22.00 c©
references therein). These works separate triple en-
counters into two main types:
—fly-bys, when one of the components flies near the
center of mass of a transient double formed by the
other two bodies;
—exchanges, when there is a series of double en-
counters by the bodies.

Whether or not a escape occurs after a given triple
encounter depends strongly on the closeness of the
encounter. The closer a triple encounter, the more
likely that it will lead to the disruption of the triple
system (see, for example, [11]). However, even very
close triple encounters do not always lead to escapes.
On the other hand, fairly wide triple encounters can
sometimes result in escapes [5]. Therefore, the prob-
lem of searching for some additional parameters asso-
ciated with triple encounters that are correlated with
the distance of an ejection following a triple encounter
is of interest.

In triple systems with equal-mass components,
“fly-by” close triple encounters more often lead to
escapes than “exchange” encounters [5]. Agekyan
and Anosova [8] and Orlov et al. [10] considered fly-
by triple-encounter states for given sets of encounter
parameters and found a region of parameter values
corresponding to the escape of the body flying by after
the triple encounter.

In the current paper, we consider the linear three-
body problem for the case of equal masses, in which
2002 MAIK “Nauka/Interperiodica”
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only exchange triple encounters are realized. The lin-
ear three-body problem corresponds to the simplest
one-dimensional case, when the three bodies always
lie along a single line and move along this line. An
analytical treatment of the final motions in this prob-
lem is presented by Yoshida [12]. Extensive numerical
studies of orbit types have been carried out by Hi-
etarinta and Mikkola [13] (see also references there-
in), who identified regions of initial conditions cor-
responding to rapid disruption of the triple system,
prolonged evolution ending in disruption (so-called
resonance scattering), and quasi-periodic motions
near resonance. They note the important role of the
central Schubart [14] periodic orbit in the formation
of the total phase portrait of the system. In this orbit,
the central body undergoes successive double close
encounters with the outer bodies separated by equal
time intervals.

Here, we consider the result of a single exchange
triple encounter in the linear three-body problem. In
this case, the triple encounter is a series of double
close encounters of the central body with each of the
outer bodies. This series ends in the ejection or escape
of one of these outer bodies.

2. METHOD OF INVESTIGATION

We consider triple encounters in the linear three-
body problem for the case of equal masses. We denote
the distance between the left outer body and the cen-
tral body r; and the distance between the right outer
body and the central body, ρ. Let the gravitational
constant and the masses of the bodies be equal to
unity. Then, the equations of motion take the form

r̈ = − 2
r2

+
1
ρ2

− 1
(r + ρ)2

(1)

and

ρ̈ = − 2
ρ2

+
1
r2

− 1
(r + ρ)2

. (2)

The system of equations of motion has the total en-
ergy

1
3
(ṙ2 + ṙρ̇+ ρ̇2) − r2 + 3rρ+ ρ2

rρ(r + ρ)
= h . (3)

For a system with negative total energy, we can adopt
h = −1 without loss of generality.

In a linear treatment, a triple encounter is a series
of successive double encounters of the central body
and each of the outer bodies. Therefore, there will
inevitably come a time in a “triple encounter” state
when the central body passes through the center of
mass of the triple system. At this time, we have, by
virtue of the equality of the masses of the bodies,
ASTRONOMY REPORTS Vol. 46 No. 11 2002
r = ρ. We will specify initial conditions precisely at
this time.

In this case, the problem has two parameters. One
is the closeness of the encounter and the second is
the relationship between the velocities ṙ and ρ̇. We
adopt the virial coefficient k of the triple system—the
ratio of the kinetic energy to the absolute magnitude
of the potential energy—as a closeness parameter.
According to (3),

k =
1
3

(ṙ2 + ṙρ̇+ ρ̇2)[rρ(r + ρ)]
r2 + 3rρ+ ρ2

. (4)

When h < 0, the parameter k ∈ [0, 1). When k = 0,
the components are stationary at the initial time. In
this case, there will be a triple close encounter of the
bodies.

As a second parameter characterizing the ratio of
the velocities ṙ and ρ̇, we adopt the quantity ϕ, such
that

tanϕ =
ṙ

ρ̇
. (5)

This parameter lies in the range ϕ ∈ [0, 2π].
The initial distances r and ρ between the com-

ponents for the chosen initial positions of the bodies
depend only on k:

r = ρ =
5
2
(1 − k). (6)

We express the velocities ṙ and ρ̇ in terms of k
and ϕ:

ṙ = q sinϕ (7)

and
ρ̇ = q cosϕ, (8)

where

q =

√
3k

(1 − k)(1 + sinϕ cosϕ)
. (9)

The values of k and ϕ were varied as follows:

k = 0.01(0.01)0.99, (10)

ϕ = 1◦(1◦)360◦. (11)

For each set of initial conditions, the computations
were continued either until the ejected outer body
turned (Ṙ < 0), where

R = max
(
r +

ρ

2
, ρ+

r

2

)
, (12)

until the condition for escape of the body from the
triple system was satisfied, until the critical distance
Rc = 30 (conditional escape), or until the critical time
tc = 100. We used the criterion of Marchal [15] and
Yoshida [16] for the escape criterion. In this case, the
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Fig. 1. Periodic Schubart orbit for k = 0.206, ϕ = 135◦.

escape criteria in our notation with h = −1 take the
form

R >
1
2
, Ṙ > 0, Ṙ2 >

96R
16R2 − 1

. (13)

We fixed the length of the ejection to be R when
the turning criterion was satisfied, and we fixed the
energy of the hyperbolic motion for the case of escape
to be

E =
1
3
Ṙ2 − 2

R
. (14)

We applied a smoothing transform to eliminate
singular points arising during the double close en-
counters in the equations of motion (1) and (2). In
addition, we applied elastic recoil in a small vicinity
of each double close encounter. The error introduced
by this recoil did not exceed the errors associated with
one step of integration of the equations of motion.

The numerical integration of the equations of mo-
tion was carried out using a fourth-order Runge–
Kutta method. The maximum relative error of the
energy integral at the end of the computations did not
exceed 10−4. The errors in the computed values of R
and E did not exceed 10−3.

3. RESULTS

3.1. Triple Close Encounters

We can see from the symmetry of (1) and (2) that,
when ϕ = 45◦ and 225◦, the motion in the (r, ρ) plane
is along the line r = ρ, and there is a triple close
encounter some time after the onset of the evolution.
In this case, the equation of motion has the form

r̈ = − 5
4r2

. (15)
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Fig. 2. Nearly periodic stable orbit for k = 0.18,
ϕ = 135◦.

The solution of this equation can be written

±t = −
√
r

(
5
2
− r

)
+

5
2

√
k(1 − k) (16)

+
5
4

[
arcsin

4r − 5
5

− arcsin(1 − 2k)
]
.

The evolution ends in a triple close encounter. If ϕ =
225◦, the triple close encounter occurs at the time

t =
5π
8

− 5
2

√
k(1 − k) +

5
4

arcsin(1 − 2k). (17)

If k = 0 and r0 = 5/2, then t = 5π/4; if k = 1 and
r0 = 0, then t = 0 (the triple system is in a triple-
close-encounter state at the initial time). If ϕ = 45◦,
the outer bodies initially separate, reach a maximum
distance when r = 5/2, and then approach until en-
counter. The corresponding total time is equal to

t =
15π
8

+
5
2

√
k(1 − k) − 5

4
arcsin(1 − 2k). (18)

3.2. Stable Orbits

The central, stable periodic orbit of Schubart [14]
corresponds to the initial conditions tanϕ = −1 (ϕ =
135◦ and 315◦) and k = 0.206 (Fig. 1). In the vicinity
of this orbit is a region of stable Lagrange trajectories.
Themotion forms a series of oscillations in the vicinity
of the Schubart orbit (Fig. 2).
ASTRONOMY REPORTS Vol. 46 No. 11 2002



TRIPLE ENCOUNTERS 935

 

0.2

0 360°

 

ϕ

 

3152702251801359045

0.4

0.6

0.8

1.0

 
k

Fig. 3. Dependence of the evolutionary scenario on the initial conditions. Departures are hollow circles, distant ejections
(R > 30) are squares, and undisrupted systems are filled circles. The vertical lines at ϕ = 45◦ and ϕ = 225◦ correspond to
triple close encounters.
3.3. Classification of States

In the region of the initial conditions (ϕ, k), pre-
sented in Fig. 3, there are sets of points corresponding
to different evolutionary scenarios:

(1) ejection of one of the outer bodies with its
return;

(2) escape or a distant ejection (R > 30);
(3) stable systems;

(4) triple close encounters.
As noted above, triple close encounters in the region
of the initial conditions correspond to the lines ϕ =
45◦ and 225◦, i.e., to a set of zero measure.

The largest fraction of the region of initial condi-
tions is occupied by points corresponding to ejections
with returns of the ejected body. The fraction of es-
capes and conditional escapes increases with the pa-
rameter k (the closeness of the triple encounter). De-
partures form somewhat complex zones in the upper
ASTRONOMY REPORTS Vol. 46 No. 11 2002
part of the region of initial conditions, which are adja-
cent to each other. The zones of conditional escapes
border on the zones of escapes. Some escape regions
are located along the triple-close-encounter lines.
The regions of undisrupted trajectories form quadran-
gles with elongated lines emanating from their peaks
and dividing the region of escapes.

Table 1 presents the fractions of various evolu-
tionary scenarios. The fraction of ejections occupies
about 60%, while that of escapes occupies about 35%
of the region of initial conditions. The fractions of
ejections of the right and left bodies are approximately
the same.

3.4. Dependence of the Ejection Length on the Initial
Conditions

Let us consider the dependence of the ejection
length R on the initial conditions determined by the
parameters (ϕ, k), presented in Figs. 4a, 4b, and 5.
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Table 1. Fractions of various types of evolution

Type Fraction

Ejections: 0.599

left body 0.308

right body 0.291

Departures: 0.370

conditional 0.015

precise 0.355

Undisrupted systems 0.026

Triple close encounters 0.005

Figure 4 shows R(ϕ) for all the k values considered,
while Fig. 5 shows R(k) for all ϕ for ejections of the
left body; the R(k) diagram for the right body has the
same appearance and is not presented. The ejection
length is mainly confined to the interval from one to
ten. Departures of bodies occur in the vicinity of triple
close encounters when ϕ = 225◦. In some places, we
observe regular elongated structures, which will be
discussed below.

The R(k) dependence in Fig. 5 shows a region
with a low density of points to the left of the bounding
curve, which grows from k ≈ 0.15 and R ≈ 2 to k ≈
0.55 and R = 30.

Figures 6a–6c and 7a–7c present as an example
several R(ϕ) diagrams for specified values of k and
several R(k) diagrams for specified values of ϕ. We
can see regions of continuous variations of the ejec-
tion lengthsR(ϕ) andR(k) and a zone in which these
functions behave stochastically. In these stochastic
zones, there is an alternation of ejections of the left
(plus signs) and right (squares) bodies in the presence
of small variations of the initial conditions (Fig. 6).

In Fig. 6, we observe symmetrical behavior relative
to the points corresponding to triple close encoun-
ters at ϕ = 45◦ and ϕ = 225◦. There are ejections of
different bodies at these symmetry points—right and
left, respectively. The region of escapes in the vicinity
of the triple close encounter at ϕ = 225◦ is bounded
by regular curves.

For regular trajectories, the maxima of the contin-
uous R(ϕ) curves grow with k. The regular depen-
dences form single-peaked structures that are sym-
metric about the lines corresponding to triple close
encounters. The characteristics of these structures
(their positions ϕmax and the heights Rmax of the
maxima, as well as the length of the zone of regu-
lar behavior ∆ϕ) are presented in Table 2. The last
column of this table presents the total relative length
δ of these zones of regular behavior. We can see
that, as k grows, the regular zones become wider, the
maximum ejection length in these zones grows, and,
in the end, the ejections are replaced by escapes in
the central regions of these zones (associated with the
decrease in δ for k = 0.7). For stochastic trajectories,
the ejection length is mainly confined to the interval
R ∈ (2, 10). Note that no stochastic trajectories are
visible for k = 0.7.

Figure 7 presents R(k) for angles ϕ in different
quarters with a step of ∆ϕ = 120◦. The values of ϕ
are indicated in the panels. We can see both regular
structures and regions where the points are scattered
irregularly. Two families can be distinguished among
the regular structures:

(1) growing curves with inflection points atR ≈ 6;
(2) curves that originate from the horizontal axis

(k = 0).
If there are curves of both families for some fixed
value ofϕ, the points between themwill be distributed
irregularly. If only one regular structure is observed,
the stochastic points are distributed on one side of it.
The irregularly distributed points are primarily con-
centrated in the band R ∈ (1, 10).

The data on the regular structures are presented
in Table 3 for steps in ϕ of 10◦. The table presents
the values of ϕ, k1 and k2, corresponding to the be-
ginning and end of the zone of regular behavior, and
the values of (kb, Rb) for the inflection points. The
inflection points have roughly the same value Rb ≈
5. Systematic shifts in the regular curves R(k) are
observed as ϕ is varied.

3.5. Departures and Conditional Escapes

The regions of initial conditions corresponding to
escapes form continuous sets of points and sets of
isolated points. The latter are located along the region
of stable orbits (Fig. 3). The continuous sets of points
are joined at the values

ϕ = {45◦, 120◦, 150◦, 200◦, 245◦, 300◦, 320◦}.

Minima in the continuous regions of escapes are
reached at the values k = {0.55, 0.6, 0.72}. These re-
gions are abutted from below by narrow zones of
conditional escapes.

It is of interest to consider the dependence of the
escape energy E (14) on the angle ϕ (Figs. 8a, 8b).
In Fig. 8, we can see curves along which the energy
varies in a regular fashion. Each of these curves cor-
responds to a specific value of the virial coefficient
k, with their maxima shifting upward with growth in
k. These curves are symmetric about the triple close
encounters at ϕ = 45◦ and 225◦. The escape curves
for the left body have maxima at ϕ = 90◦, 180◦, and
315◦, while the curves for the right body have maxima
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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Fig. 4. Dependence of the ejection length on the angle ϕ for ejections of the (a) left body and (b) right body. The vertical lines
correspond to triple close encounters.
at ϕ = 0◦, 135◦, and 270◦. The energy grows without
bound as the curve for the triple close encounter ϕ =
225◦ is approached.

Figures 9a–9c present the dependence of the en-
ergy E on the initial value of the virial coefficient k
for various intervals of the angle ϕ. Departures of the
left and right bodies are shown by plus signs and
squares, respectively. Regular, elongated structures
are observed when the virial coefficient is k > 0.5.
In the vicinity of the triple close encounter at ϕ =
225◦ (Fig. 9b), regular structures also appear for
small k, beginning with k = 0. At the same time,
randomly scattered points are observed only when
k > 0.2. These structures correspond to the contin-
uous regions of escapes in Fig. 3. Overall, there is an
increase in the energy with growth in the closeness of
the triple encounter. The region of growth in E has a
smooth envelope on its left side. Randomly scattered
points are observed to the left of this envelope, while
primarily regular structures are observed to its right.
The zones of regular behavior for different intervals of
ϕ join each other.

3.6. Undisrupted Trajectories

Near the stable Schubart orbit (Fig. 1), there is a
region of trajectories that do not become disrupted
over times t > 100. The initial conditions (ϕ, k) for
these trajectories are shown in Fig. 10. They form two
elongated continuous regions symmetrically placed
about the line for the triple close encounters at ϕ =
ASTRONOMY REPORTS Vol. 46 No. 11 2002
225◦. Elongated “tentacles” emerge from the four
extremities of these regions. Their discontinuous na-
ture may be associated with the discreteness of the
specified initial conditions. These structures separate
alternating regions containing and not containing
sets of “scattered” points. Two elongated structures
are located symmetrically about the ϕ = 45◦ triple-
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Fig. 5. Dependence of the ejection length of the left body
on the virial coefficient k.
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Fig. 6. R(ϕ) diagrams for specified values of k. The plus
signs and squares correspond to ejections of the left and
right bodies, respectively.
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Table 2. Characteristics of regular structures in the R(ϕ)
dependences

k ϕmax Rmax ∆ϕ δ

0.1 110◦; 340◦ 4.8 25◦ 0.14

0.3 90◦; 360◦ 5.0 60◦ 0.44

160◦; 290◦ 3.0 20◦

0.5 93◦; 357◦ 12 70◦ 0.56

165◦; 300◦ 7.0 30◦

0.7 135◦; 315◦ 15 25◦ 0.14

close-encounter line. Undisrupted trajectories having
initial conditions that do not correspond to the regular
structures appear to move to states of ejection or
escape over long times.

4. DISCUSSION

We investigated the evolution of 35 640 cases of
the one-dimensional three-body problem with equal
masses in our numerical simulations. Regions of ini-
tial conditions corresponding to the ejection of one of
the outer bodies with its return, escapes, and undis-
rupted trajectories associated with the central peri-
odic orbit of Schubart can be distinguished. We have
investigated the dependences between the ejection
length and the parameters (k, ϕ) specified by the ini-
tial conditions.

The dependence of the ejection length R on the
closeness of the triple close encounter (Fig. 5) shows
three populations of points:

(1) an approximately horizontal band of points
near the line R = 5;

(2) a population to the right of the smooth en-
velope, beginning from k ≈ 0.15 and asymptotically
approaching the vertical line k ≈ 0.6;

(3) a set of scattered points to the left of the enve-
lope, above the band.

The degree of regularity in the dependence of the
ejection length on the initial conditions increases with
the closeness of the encounter (Fig. 6). The horizontal
band corresponding to the first population is primarily
determined by small values k ≤ 0.3.

Continuous and stochastic structures are visible in
the R(k) diagrams for fixed values of ϕ (Fig. 7). Usu-
ally, stochastic structures correspond to small values
of k and short ejection lengths. Regular structures are
more often associated with large k values and extend
upward without bound. Within each 45◦ interval of
width, there is a shift of the regular structures toward
larger k values. The function R(k) shows periodic
ASTRONOMY REPORTS Vol. 46 No. 11 2002
Table 3. Characteristics of regular structures in the R(k)
dependences

ϕ k1 k2 kb Rb

10◦; 80◦ 0.20 0.56 0.33 5.2

20◦; 70◦ 0.22 0.61 0.39 5.1

30◦; 60◦ 0.30 0.68 0.46 5.0

40◦; 50◦ 0.0 0.20 0.08 5.7

0.50 0.77 0.66 5.0

100◦; 350◦ 0.16 0.55 0.30 5.0

110◦; 340◦ 0.18 0.63 0.36 5.0

120◦; 330◦ 0.18 0.30 0.23 4.6

0.30 0.88 0.56 4.6

130◦; 320◦ 0.50 0.73 0.58 5.0

140◦; 310◦ 0.58 0.76 0.64 5.0

150◦; 300◦ 0.30 0.77 0.50 5.0

160◦; 290◦ 0.28 0.62 0.41 5.0

170◦; 280◦ 0.30 0.60 0.43 5.1

190◦; 260◦ 0.0 0.32 0.15 4.8

0.50 0.70 0.57 4.9

200◦; 250◦ 0.0 0.65 0.33 6.0

0.72 0.82 – –

210◦; 240◦ 0.0 0.49 – –

220◦; 230◦ – – – –

behavior with a period of 45◦ (see also Fig. 3) and an
alternation of the component being ejected.

In the vicinity of the triple close encounter with
ϕ = 225◦ (Fig. 7b), we observe continuous structures
and, at small k, structures emanating from k = 0.
The upper left boundary of these curves approximately
corresponds to the upper value of the ejection length
for “torn” structures.

There are also two populations of points in the
E(k) diagrams for the dependence of the energy of the
departing body on the initial virial coefficient: discrete
sets at small k and continuous sets primarily at k >
0.5. The envelopes of the continuous sets can be ap-
proximated by chain curves. In the region of the triple
close encounter at 180◦ < ϕ < 270◦, there are two
continuous structures (Fig. 9b): one begins at k = 0
and continues to k = 1, while the second begins at
k = 0.65. There are about twice as many points in the
first of these structures than in the second.

The stable trajectories associated with the Schu-
bart orbit determine to a significant degree the evolu-
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Fig. 8. Dependence of the energy E for the final hyper-
bolic motion on the angleϕ for escapes of the (а) left body
and (b) right body.

tionary scenario as a function of the initial conditions
(Fig. 10). The discrete sets are concentrated along
elongated structures emanating from the peaks of
the solid region of stable motions. The “tentacles”
extending upward in the stable region separate the set
of initial conditions into eight parts and give rise to the
repetition of the evolutionary scenarios with a period
of 45◦ in ϕ, with alternating ejections and escapes of
the right and left bodies.

We conclude that, to a large degree, stochastic
discrete sets of points are characteristic of wide sys-
tems (k < 0.5), while continuous sets of points are
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Fig. 10. Region of initial conditions for undisrupted sys-
tems.

associated with close systems (k > 0.5 for escapes
and k > 0.2 for ejections). Note that k ≈ 0.2 corre-
sponds to the central, periodic orbit.

Thus, in the linear three-body problem with equal
masses, the result of “exchange” triple encounters
depends in a complex way on the initial parameters of
the encounter: together with the zones of continuous
behavior, there are appreciable regions of stochastic-
ity.

The results we have obtained here, in particular
the dependences of the ejection length on the pa-
rameters of the triple encounter, can be extended
to “exchange” triple encounters that are close to
the linear case, including systems with components
ASTRONOMY REPORTS Vol. 46 No. 11 2002
with unequal masses, to which we will dedicate a
separate paper. Similar situations can be realized in
the dynamical evolution of hierarchical triple stars
and in cases when there are no encounters between
components. Therefore, the results obtained are of
general interest for studies of the dynamics of triple-
star systems.
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Abstract—We have modeled the dynamical evolution of small groups ofN = 3–18 stars in the framework
of the gravitational N-body problem, taking into account possible coalescences of stars and the ejection of
single and binary stars from the system. The distribution of states is analyzed for a time equal to 300 initial
crossing times of the system. The parameters of the binaries and stable triple systems formed, as well as
those of ejected single stars, are studied. In most cases, the evolution of the group results in the formation
of a binary or stable triple system. The orbital eccentricities of the binaries formed are distributed according
to the law f(e) = 2e. As a rule, stable triple systems display pronounced hierarchy (the mean ratio of
the semimajor axes of the outer and inner binaries is about 20 : 1). Stars are ejected with velocities from
several km/s to several tens of km/s. The results of the modeling are compared with the parameters of
observed wide binaries and triple systems. c© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the late 1960s, van Albada [1] suggested that
wide binary and multiple stars result from the decay of
low-multiplicity systems. According to this hypoth-
esis, these systems have characteristic sizes of 100
to 1000 AU and can contain from several to several
tens of stars. Recent modeling of the fragmentation
of molecular-cloud cores [2, 3] indicates that this
process can, indeed, result in the formation of non-
hierarchical multiple systems with these parameters.
The dynamical evolution of such systems could lead
to the formation of both binary stars and stable sys-
tems of higher multiplicity.

The dynamics of low-multiplicity systems have
been modeled in numerous studies (see, for example,
[4, 5] and references therein). However, most have
been concerned primarily with the dynamical evolu-
tion of triple systems (see, for example, [6–8]). The
dynamics of stellar systems with higher multiplicities
have been considered less frequently. One exception
is the studies [9–11], in which systems of N = 3, 4,
and 5 stars are modeled. A number of authors have
investigated the parameters of single stars ejected
from low-multiplicity systems with N = 3–10 stars
in the course of their dynamical evolution [12, 13].

Here, we analyze the basic characteristics of
the products of the dynamical evolution of low-
multiplicity stellar systems with various numbers of
stars N . We also study the effect of the initial mass
spectrum on the results of the evolution.
1063-7729/02/4611-0942$22.00 c© 2
2. THE MODELING

We modeled the dynamical evolution of low-
multiplicity stellar systems in the framework of the
gravitationalN-body problem by treating the stars as
point masses. The main problems encountered in the
numerical integration of the equations of motion are
related to possible binary and multiple interactions of
the objects. To overcome this difficulty, we used the
method of chain regularization suggested in [14].
In the course of their dynamical evolution, stars

may acquire separations comparable to their radii,
with their subsequent coalescence. To take these
events into account, we used the following coales-
cence criterion based on the results of SPH modeling
[15, 16]. Stars i and j will coalesce if

rij < κ(Ri +Rj), (1)

where rij is the distance between the stars, Ri and
Rj are their radii, and the parameter κ = 3

4 . The mass
of the product of the coalescence is taken to be equal
to the sum of the masses of the colliding stars. We
determined the radii of the stars and the product of
the coalescence using the approximate mass–radius
relation for main-sequence stars{

Ri ≈
√

1.5mi, formi > 1.5M�
Ri ≈ mi, formi ≤ 1.5M�,

(2)

where mi is the mass of star i andM� is the mass of
the Sun.
In the course of the dynamical evolution of a sys-

tem, single and binary stars, as well as subsystems
of higher multiplicity, can be ejected from the sys-
tem or recede to substantial distances from its center
002 MAIK “Nauka/Interperiodica”
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Table 1.Distribution of states as a function ofN at time 300 Tcr

N
Mass

spectrum Binaries Two singles Stable triples Unstable triples Higher
multiplicity n

3 EM 0.70 – 0.01 0.29 – 1000

SM 0.78 – 0.01 0.21 – 1000

6 EM 0.57 0.05 0.15 0.09 0.14 500

SM 0.56 0.01 0.14 0.16 0.13 500

9 EM 0.41 0.09 0.15 0.07 0.28 500

SM 0.55 0.03 0.16 0.14 0.12 500

12 EM 0.37 0.12 0.10 0.06 0.35 500

SM 0.47 0.04 0.17 0.16 0.16 500

15 EM 0.35 0.11 0.07 0.07 0.40 500

SM 0.49 0.06 0.13 0.15 0.17 500

18 EM 0.34 0.10 0.08 0.04 0.44 250

SM 0.51 0.06 0.11 0.14 0.18 250
of mass. In the latter case, such formations can be
ejected from the system via several mechanisms, such
as the effect of the gravitational field of the parent
cloud (for young systems) or of an adjacent stellar
system.

We took such events into account in the numerical
integration as follows. If a single or binary star
receded to a substantial distance from the center
of mass of the system and was simultaneously not
a member of a subsystem of higher multiplicity,
the object was considered to have left the system.
In addition, for binaries, we checked that the total
energy was negative. Possible ejections of higher-
multiplicity subsystems were not considered.

We used the following ejection criteria. The star i
was considered to be ejected from the system if{

ρi > λd

rij > 2ηλd, j �= i,
(3)

where ρi is the distance from the given body to the
center of mass of the other stars, rij is the distance
between bodies i and j, d is the mean current size
of the system, the parameter λ = 30, and η = 1

5 . The
mean current size of the system was calculated ac-
cording to the formula

d =
G

2|E|
∑
i<j

mimj, (4)

where E is the total energy of the system andG is the
gravitational constant.
ASTRONOMY REPORTS Vol. 46 No. 11 2002
The binary formed by stars i and j was assumed to
have left the system if



ρi > λd

ρj > λd

0 < aij < ηλd

rik > 2ηλd, k �= i, j

rjk > 2ηλd, k �= i, j,

(5)

where aij is the semimajor axis of the binary consist-
ing of bodies i and j.
The dynamical evolution of the low-multiplicity

systems was followed to a time equal to 300 Tcr, where

Tcr =
G

(2|E|) 3
2

∑
i<j

mimj

√√√√ N∑
k=1

mk (6)

is the initial mean crossing time of the system. The
integration was also stopped if the initial system de-
cayed into a binary system.
The regularized equations of motion were inte-

grated using a fourth-order Runge–Kutta method
with automatic step selection. The accuracy of the
calculations was verified using the first integrals of
motion. During the calculations, the relative errors of
the area and energy integrals did not exceed 10−5.
The integrals of motion of the center of mass were
maintained with better accuracy.
The initial conditions were specified as follows.We

considered systems initially consisting of N = 3, 6,
9, 12, 15, and 18 stars, assuming that the stars had
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Table 2. Parameters of final binaries

N
Mass

spectrum a/d a 1
2
/d e e 1

2
q q 1

2
n

3 EM 0.42 ± 0.299 0.715 ± 0.765 0.990 ± 1.000 697

± 0.089 ± 0.009 ± 0.003

SM 0.413 ± 0.391 0.665 ± 0.712 0.567 ± 0.575 776

± 0.007 ± 0.008 ± 0.009

6 EM 0.843 ± 0.061 0.698 ± 0.733 0.934 ± 1.000 288

± 0.202 ± 0.014 ± 0.010

SM 0.193 ± 0.116 0.669 ± 0.702 0.567 ± 0.550 282

± 0.024 ± 0.014 ± 0.015

9 EM 2.05 ± 0.036 0.694 ± 0.749 0.851 ± 1.000 204

± 1.02 ± 0.016 ± 0.017

SM 0.490 ± 0.075 0.659 ± 0.714 0.549 ± 0.537 277

± 0.241 ± 0.015 ± 0.016

12 EM 1.52 ± 0.031 0.675 ± 0.701 0.761 ± 1.000 184

± 0.62 ± 0.016 ± 0.020

SM 1.00 ± 0.060 0.660 ± 0.684 0.538 ± 0.539 237

± 0.63 ± 0.015 ± 0.017

15 EM 1.350 ± 0.021 0.673 ± 0.712 0.715 ± 0.500 176

± 0.595 ± 0.017 ± 0.021

SM 0.152 ± 0.049 0.639 ± 0.670 0.546 ± 0.538 243

± 0.040 ± 0.015 ± 0.016

18 EM 0.912 ± 0.019 0.708 ± 0.764 0.660 ± 0.500 85

± 0.698 ± 0.024 ± 0.032

SM 0.239 ± 0.044 0.627 ± 0.680 0.522 ± 0.483 127

± 0.091 ± 0.021 ± 0.022
a random, uniform distribution inside a sphere with
radius r = 100 AU. The velocities of the stars were
specified so that the virial theorem was fulfilled for
the system as a whole. The velocity distribution was
assumed to be isotropic.
We considered two initial mass spectrà for the

system: equal masses (with the mass of each star
taken to be that of the Sun) and a Salpeter mass
spectrum [17]:

f(m) ∼ m−2.35,m/M� ∈ [0.4; 10]. (7)

We studied the dynamical evolution of 1000 sys-
tems withN = 3 and of 250 systems for the caseN =
18 for each initial mass spectrum. For each other set
of parameters, we analyzed 500 versions of the initial
conditions.
3. MODELING RESULTS

3.1. Distribution of States

The dynamical evolution of non-hierarchical mul-
tiple systems is accompanied by the dissipation of
stars from the system, resulting, as a rule, in the for-
mation of stable systems of lowermultiplicity. To clar-
ify which systems can form during the decay of mul-
tiple systems, we derived the distribution of states for
the systems for a time equal to 300 Tcr. The specified
states corresponded to binaries with negative total
energy, binaries with positive total energy (two single
stars), unstable triple systems, stable triple systems,
and systems of higher multiplicity. The stable and
unstable triple systems were distinguished using the
ASTRONOMY REPORTS Vol. 46 No. 11 2002



DYNAMICAL EVOLUTION OF MULTIPLE STARS 945
Table 3. Parameters of escaping binaries

N
Mass

spectrum a/d a 1
2
/d e e 1

2
q q 1

2
n

6 EM 0.439 ± 0.062 0.668 ± 0.710 1.000 ± 1.000 140

± 0.088 ± 0.021 ± 0.000

SM 0.576 ± 0.322 0.682 ± 0.734 0.698 ± 0.749 59

± 0.080 ± 0.030 ± 0.026

9 EM 0.332 ± 0.029 0.682 ± 0.716 0.980 ± 1.000 251

± 0.050 ± 0.014 ± 0.006

SM 0.623 ± 0.133 0.662 ± 0.696 0.656 ± 0.666 95

± 0.096 ± 0.024 ± 0.023

12 EM 0.342 ± 0.024 0.676 ± 0.736 0.935 ± 1.000 325

± 0.040 ± 0.013 ± 0.010

SM 0.794 ± 0.275 0.708 ± 0.763 0.677 ± 0.710 154

± 0.090 ± 0.017 ± 0.017

15 EM 0.424 ± 0.027 0.675 ± 0.699 0.883 ± 1.000 343

± 0.050 ± 0.012 ± 0.012

SM 0.815 ± 0.350 0.665 ± 0.704 0.652 ± 0.648 178

± 0.091 ± 0.016 ± 0.016

18 EM 0.505 ± 0.020 0.645 ± 0.691 0.880 ± 1.000 176

± 0.086 ± 0.018 ± 0.017

SM 0.710 ± 0.183 0.653 ± 0.705 0.627 ± 0.629 82

± 0.127 ± 0.029 ± 0.025
analytical criterion of Golubev [18], which requires the
calculation of the parameter S using the formula

S =
c2|E|
G2M

5 , (8)

where c is the modulus of the angular momentum
vector of the triple system and M is the mean mass
of its components.
A triple system will be stable to the exchange of a

component of an inner binary and a distant compo-
nent if S exceeds the critical value Scr (in the equal
mass case, Scr = 25

4 ); in this case, the system hier-
archy will be maintained for an unlimited time. Oth-
erwise, the hierarchical structure can be disrupted.
However, triple systems can decay without disrupting
the hierarchy. Thus, not all systems stable according
to this criterion will have their motions restricted.
Table 1 presents the modeling results for the case

of an equal mass spectrum (EM) and Salpeter mass
spectrum (SM). Systems initially consisting of N =
ASTRONOMY REPORTS Vol. 46 No. 11 2002
3, 6, 9, 12, 15, and 18 stars and located in a state of
virial equilibrium (k = 0.5) are presented. The last
column contains the number n of sets of initial condi-
tions considered.

The following conclusions can be drawn from Ta-
ble 1. In most cases, the dynamical evolution of mul-
tiple stars results in the formation of a binary system.
In a number of cases, an unstable triple system that
is formed has not been disrupted by the time the
integration is stopped; later, however, such systems
should decay. The probability of a stable triple sys-
tem forming is rather high. Relatively few binaries
with positive total energies are formed because of
the increase of the total energy of the system due to
the coalescence of stars and ejection of binaries. In
many cases (particularly for large N ), the dynamical
evolution of the system has not finished by the end of
the integration time; this can be seen in the second
to last column of Table 1, which indicates higher-
multiplicity systems that will either decay over times
longer than 300 Tcr or, possibly, prove to be stable
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Fig. 1. The distributions of eccentricities for binaries in
the equal-mass case. The solid line represents the law
f(e) = 2e.

systems. The fraction of binary and triple systems
(both stable and unstable) decreases as N increases
due to the increase in the number of systems that have
not evolved. This fact is related to the deceleration of
the dynamical evolution as the number of stars in the
initial system increases.

3.2. Parameters of Binary Systems

Inmany cases, the dynamical evolution of multiple
systems results in the formation of a final binary by
the time 300 Tcr. In addition, some binaries are dissi-
pated from the system; we will call these “escaping”
binaries.
Table 2 presents the basic parameters of the final

binaries: their semimajor axes a, eccentricities e, and
component mass ratios q = m2

m1
, wherem2 is themass

of the less massive component. The table presents the
mean and median values of these parameters along
with their mean errors. The semimajor axes are given
in units of the mean initial size of a system d. The last
column contains the number of final binaries formed.
Table 3 presents the analogous parameters for the
escaping binaries.
As a rule, the semimajor axes of the binaries (both

final and escaping) are equal to within several hun-
dredths of the initial size of the system to several times
this size. If the physical size of a system is about
100 AU, the semimajor axes of the binaries will be
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q
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Fig. 2.Distribution of the parameter q for binaries formed
for the Salpeter mass spectrum. The white and gray
columns of the histogram correspond to final and escap-
ing binaries, respectively.

in the interval 1–1000 AU. As the number of stars
in the initial system increases, on average, the final
binaries become closer to each other. This is due to
the increase in the kinetic energy carried away by
single stars asN increases. The escaping binaries do
not display this trend. On average, the Salpeter initial
mass spectrum gives rise to wider binaries than the
equal mass spectrum, as is apparent from a compar-
ison of the two medians (fourth column in Tables 2
and 3).
The mean and median eccentricities of the binaries

that form are almost independent of the mass spec-
trum and N . Elongated systems dominate, as can
also be seen in Fig. 1, which presents the distributions
of eccentricities of final and escaping binaries formed
for N = 6 and the case of equal masses. The solid
line represents the eccentricity distribution f(e) =
2e, first derived by Ambartsumyan [19] for the equi-
librium distribution of eccentricites of binaries in the
stellar field and also by Monaghan [20] for binaries
formed via the decay of triple systems. The distribu-
tions are consistent both with each other and with the
theoretical law.
As a rule, final binaries contain the most massive

stars of the system. The escaping binaries contain
less massive stars, whose mean mass ratio is close
to 2

3 for the Salpeter initial mass spectrum. The mass
ratio of the binary components q decreases as N
increases, possibly due to the increased number of
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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Fig. 3.Dependence of the semimajor axis on the eccentricity for the Salpetermass spectrum. The circles and pluses correspond
to final and escaping binaries, respectively.
coalescing stars. The number of coalescences may
be indicated by the parameter q in the equal-mass
case. If no coalescences occurred, both the mean and
median values of q would be equal to 1.
Figure 2 presents the distribution of the parameter

q for final and escaping binaries for the case N = 6
and the Salpeter initial mass spectrum. The distri-
bution of component mass ratios for final binaries is
flat for q > 0.2. In the case of escaping binaries, the
distribution increases monotonically with increasing
q. The shape of the distributions remains essentially
the same for other values ofN .
Figure 3 presents the dependence of the eccen-

tricity e on the semimajor axis a for the final and
escaping binaries, derived forN = 6 for systems with
the Salpeter initial mass spectrum. A vertical strip
is visible in the case of the final binaries and is less
distinct for the escaping binaries. Its presence can be
explained as follows. If final binaries are formed only
due to ejections of single stars from the system, there
should be a maximum semimajor axis for the binaries,
ASTRONOMY REPORTS Vol. 46 No. 11 2002
which is reached if the single stars carry away the
minimum energy needed for their ejection from the
system. In this case, the final binary will be at the
right border of the strip in the a–e plot. It can pass
through the border to the right if ejections of binaries
and coalescences occur, increasing the total energy
of the system. As N increases, the strips become
less distinct due to possible ejections of two or more
binaries and also to the increase in the number of coa-
lescences. The strips shift toward smaller a, reflecting
the trend for the binary components to become closer
to one another, due to the reasons discussed above.

3.3. Stable Triple Systems

We studied the orbital parameters of triple systems
that were stable according to the criterion of Golubev.
A triple system was treated as a superposition of
two binaries: an inner binary consisting of the two
closest bodies of the system and an outer binary. The
two components of the outer binary are an object
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Table 4.Orbital parameters of inner and outer binaries in stable triple systems

N
Mass

spectrum ain/d ain 1
2
/d ein ein 1

2
aout/d aout 1

2
/d eout eout 1

2
n

3 EM 0.403 ± 0.403 0.61 ± 0.63 4.65 ± 3.86 0.54 ± 0.52 8

± 0.011 ± 0.09 ± 0.84 ± 0.05

SM 0.412 ± 0.436 0.59 ± 0.60 5.59 ± 4.47 0.60 ± 0.63 12

± 0.043 ± 0.05 ± 0.95 ± 0.06

6 EM 0.084 ± 0.065 0.69 ± 0.72 2.24 ± 1.97 0.47 ± 0.50 73

± 0.011 ± 0.03 ± 0.19 ± 0.02

SM 0.116 ± 0.104 0.63 ± 0.66 2.85 ± 2.29 0.50 ± 0.50 69

± 0.007 ± 0.03 ± 0.23 ± 0.02

9 EM 0.044 ± 0.028 0.67 ± 0.69 1.18 ± 0.92 0.52 ± 0.55 76

± 0.004 ± 0.03 ± 0.15 ± 0.02

SM 0.080 ± 0.068 0.65 ± 0.68 1.86 ± 1.62 0.46 ± 0.45 79

± 0.006 ± 0.03 ± 0.13 ± 0.02

12 EM 0.032 ± 0.021 0.62 ± 0.62 0.98 ± 0.78 0.50 ± 0.56 48

± 0.004 ± 0.03 ± 0.15 ± 0.03

SM 0.074 ± 0.059 0.60 ± 0.63 1.66 ± 1.34 0.45 ± 0.44 85

± 0.007 ± 0.03 ± 0.11 ± 0.02

15 EM 0.038 ± 0.021 0.67 ± 0.70 0.92 ± 0.63 0.48 ± 0.46 37

± 0.008 ± 0.03 ± 0.23 ± 0.03

SM 0.075 ± 0.046 0.68 ± 0.64 2.26 ± 1.17 0.43 ± 0.44 67

± 0.021 ± 0.02 ± 0.96 ± 0.03

18 EM 0.019 ± 0.011 0.63 ± 0.63 0.61 ± 0.31 0.43 ± 0.48 21

± 0.005 ± 0.05 ± 0.21 ± 0.05

SM 0.048 ± 0.039 0.65 ± 0.68 1.19 ± 0.95 0.46 ± 0.44 28

± 0.005 ± 0.04 ± 0.15 ± 0.04
located at the barycenter of the inner binary with a
mass equal to the combined mass of the inner-binary
components, and the distant component of the triple
system.
Table 4 presents the mean and median semimajor

axes of the inner ain and outer aout binaries, as well
as their eccentricities ein and eout and the errors of
the mean values. The semimajor axes are given in
units of the mean initial size of the system. The last
column of the table contains the number of stable
triple systems formed. Results are presented for the
two mass spectra and various numbers of bodiesN .
A distinction should be drawn between stable

triple systems for the case N = 3 and those formed
in the dynamical evolution of systems of higher mul-
tiplicity. The existence of stable triples for N = 3 is
related to the chosen initial conditions, as is confirmed
by the very small contribution of these systems to
the distribution of states (1–2%; Table 1). We were
primarily interested in systems formed as a result of
the dynamical evolution of low-multiplicity systems
and will not consider the parameters of stable triple
systems for the caseN = 3 further here.

We can draw the following conclusions from Ta-
ble 4. The semimajor axes of the inner binaries are
one to two orders of magnitude smaller than the initial
sizes of the systems, while those of the outer binaries
are comparable to the initial sizes to within an or-
der of magnitude. The stable triple systems become
closer as N increases for the same reason as the
final binaries do. Both the inner and outer binaries
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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Fig. 4. Distributions of eccentricities for inner and outer
binaries for the Salpeter mass spectrum. The white and
gray columns correspond to the inner and outer binaries,
respectively. The solid line represents the law f(e) = 2e.

are somewhat wider in the case of the Salpeter initial
mass spectrum than in the equal-mass case.
The orbital eccentricities for the outer binaries are,

on average, smaller than those for the inner bina-
ries. The mean eccentricities (ēin ≈ 0.7, ēout ≈ 0.5)
are essentially independent of the number of stars N
in the system and the initial mass spectrum.
Figure 4 presents the distributions of the orbital

eccentricities for the inner and outer binaries for the
Salpeter initial mass spectrum. We can see that they
differ from the law f(e) = 2e: a deficiency of binaries
with very elongated orbits is observed. The distribu-
tion displays a maximum for the outer binaries at e ≈
0.5. The appearance of the distributions remains the
same asN and the initial mass spectrum are varied.
As a rule, the triple systems that form display

a pronounced hierarchy. The ratio of the semimajor
axes of the inner and outer binaries is virtually in-
dependent of N and the mass spectrum, and is, on
average, 0.04.
Stable triple systems with prograde motions dom-

inate. The mean angle i between the orbital angular-
momentum vectors of the inner and outer binaries is
approximately 75◦ and is essentially independent of
the mass spectrum and number of stars N . Figure 5
presents distributions of the angle i for N = 6 for the
Salpeter initial mass spectrum (solid) and the law
f(i) = 1

2 sin i (dashed), which corresponds to random
orientations of the momentum vectors. The distribu-
tions have the same general shape, but we can see
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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Fig. 5. Distribution of the angle i for the Salpeter mass
spectrum (solid) and the random distribution f(i) =
1
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some asymmetry favoring small values of i, which
increases with N . This asymmetry may be due to
the fact that the stability of a triple system exhibiting
retrograde motion requires stronger isolation of the
distant body from the inner binary than in the case of
prograde motion.
The component mass ratio q for the inner binaries

is about 0.5 for the Salpeter initial mass spectrum
(Table 6). The ratio p of the masses of the distant
component of a triple system and the inner binary is
approximately 0.3 and depends on N only slightly.
These parameters of the final triple systems are, on
average, independent of the number of bodies in the
initial system. We conclude based on the component
mass ratio in the equal-mass case that, when N ≥
12, the inner binary includes the product of a coales-
cence in more than half of the stable triple systems.

4. COMPARISON BETWEEN MODELING
AND OBSERVATIONS

Our modeling indicates that the dynamical evo-
lution of multiple systems results in the formation of
binary and stable triple systems. Below, we compare
calculated parameters of the binary and triple systems
with parameters of observed wide binaries and triple
stars.
The semimajor axes of observed wide binaries

with known orbital elements vary from 1 to 500 AU
[21, 22]. Those of binaries formed via the decay of
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Table 5. Comparison of calculated and observed orbital
parameters of triple systems

Parameter Observations, Pin > 10d Theory, SM

Pin
Pout

0.040± 0.010 0.014 ± 0.002(
Pin
Pout

)
1
2

0.013 0.009

ein 0.37 ± 0.04 0.63 ± 0.03

(ein) 1
2

0.39 0.66

eout 0.38 ± 0.04 0.50 ± 0.02

(eout) 1
2

0.40 0.50

n 38 69

low-multiplicity systems with r = 100 AU occupy
approximately the same interval: a = 1–1000 AU
(Fig. 3). The eccentricity distribution for observed
wide binaries is consistent with the law f(e) = 2e
(see, for example, [21, 23, 24]), as is also true for
binaries formed during the dynamical evolution of
multiple stars (Fig. 1).
The component mass-ratio distribution for ob-

served binaries depends strongly on the spectral type
of the primary (see, for example, [23, 25]). Figure 6
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q

Fig. 6. Distributions of the component mass ratio for bi-
naries with G primaries for observed (solid) and modeled
(dashed) systems.
presents the mass-ratio distributions for binaries in
which the more massive component is aG star. Here,
q = m2

m1
, where m2 is the mass of the less massive

component. The dashed distribution was obtained
from our modeling for the Salpeter initial mass spec-
trum for variousN , while the solid distribution is that
for observed wide binaries [23].
It is apparent that, on the whole, the observed

and modeled distributions are similar. Differences be-
tween them may indicate that the initial mass spec-
trum for real multiple systems may be less steep than
a Salpeter spectrum. The histogram was drawn for
q ≥ 0.4, since our modeling used a Salpeter mass
spectrum with a minimum star mass of 0.4 M�. This
corresponds to q ≈ 0.4 forG0 stars.
We compared the parameters of the model stable

triple systems that formed with those of observed
triples from the list [26], which contains 85 systems.
Table 5 presents the mean and median ratios of the

periods of the outer and inner binaries, as well as their
eccentricities. Table 6 contains the mean and median
component mass ratios q for the inner binaries and
the ratios p of the masses of the distant components
to those of the inner binaries. The results of the mod-
eling for the Salpeter initial mass spectrum (SM) for
N = 6 are shown. The last rows contain the number
of triple systems n whose parameters were used for
the analysis. The orbital eccentricities and component
masses were not known for all the triple stars in [26],
so that the number of observed systems analyzed is
less than 85.
We excluded from our analysis of the inner-binary

eccentricities triple systems in which the periods of
the inner binaries were less than 10 days. Tidal in-
teractions between components can be substantial in
these systems and were not taken into account in the
modeling.
The median values for the period ratio in triples

formed via the decay of multiple systems are in good
agreement with the observations. However, the con-
sistency for the mean values is much worse. This may
be due to the difficulty of detecting triple systems with
large outer-binary periods.
The eccentricities for inner and outer binaries that

are members of observed triples are, on average,
smaller than those derived from the modeling. In ad-
dition, the orbital eccentricities of the binaries in ob-
served triple systems are in better agreement with the
modeling results than those of the inner binaries. The
deficiency of outer and inner binaries with elongated
orbits may be associated with observational selection
effects, which decrease the probability of detecting
triple systems with large orbital eccentricities.
Partial circularization of the orbits of inner binaries

with large eccentricities due to tidal interactions at
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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the orbit pericenters may also decrease the fraction of
observed inner binaries with elongated orbits.
A comparison of the parameters q and p derived

from our modeling of the dynamical evolution of mul-
tiple stars and obtained from observations yields the
following conclusions. The mean and median com-
ponent mass ratios for the inner binaries are consis-
tent with the observed values. However, the observed
mean and median values for p are almost twice those
derived from the modeling for the indicated initial
mass spectra. This may also be due to observational
selection effects, manifest as a decreased probability
of detecting triple systems with low-mass distant
components.
Note that some fraction of the observed wide bi-

naries and triple systems could have formed due to
another mechanism, not related to the dynamical evo-
lution ofmultiple stars (for example, joint formation or
the decay of stellar clusters). This could also lead to
differences between the parameters of observed and
modeled binary and triple systems.

5. EJECTIONS OF STARS

During the dynamical evolution of stellar systems,
they can eject single and binary stars. Tables 7 and 8
present the basic parameters of such escaping stars,
such as their velocity, kinetic energy, and mass. The
kinetic energy is given in units of the initial total
energy of the system. For the escaping binaries, the
kinetic energy of the center of mass of the binary and
the sum of the component masses are presented. The
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Fig. 7. Velocity distribution for single stars for the
Salpeter initial mass spectrum.
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Table 6.Comparison betweenmodeled and observed com-
ponent mass ratios for triple systems

Parameter Observations Theory, SM

q 0.60 ± 0.04 0.49 ± 0.03

q 1
2

0.62 0.45

p 0.64 ± 0.10 0.35 ± 0.04

p 1
2

0.50 0.28

n 58 69

last columns of the tables give the numbers of ejected
single and binary stars.

We can see from Tables 7 and 8 that the average
energies carried away from the systems by single
and binary stars are comparable. The fraction of the
energy lost by the system due to a single ejection
decreases as N increases, independent of the ini-
tial mass spectrum. The velocities of escaping single
stars are, on average, higher than those of the centers
of mass of escaping binaries. The velocities of single
stars are, on average, lower in the equal-mass case
than for the Salpeter initial mass spectrum. The bi-
naries do not display this trend.

As N increases, the mean and median masses of
the single and binary stars ejected from the system in-
crease. This may be due to an increase in the number
of close approaches, which facilitates the accumula-
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Fig. 8. Distribution of the velocities of the binary centers
of mass for the Salpeter initial mass spectrum.
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Table 7. Parameters of escaping single stars

N
Mass

spectrum E/|E0| E 1
2
/|E0| V , km/s V 1

2
, km/s M,M� M 1

2
,M� n

3 EM 0.190 ± 0.110 2.113 ± 1.818 1.001 ± 1.000 685

± 0.010 ± 0.063 ± 0.001

SM 0.169 ± 0.091 2.450 ± 1.919 0.604 ± 0.503 768

± 0.011 ± 0.072 ± 0.015

6 EM 0.120 ± 0.049 3.449 ± 2.763 1.001 ± 1.000 1375

± 0.006 ± 0.070 ± 0.001

SM 0.137 ± 0.052 4.394 ± 3.327 0.645 ± 0.542 1556

± 0.009 ± 0.094 ± 0.008

9 EM 0.081 ± 0.025 4.207 ± 3.148 1.003 ± 1.000 2291

± 0.004 ± 0.077 ± 0.001

SM 0.091 ± 0.026 5.493 ± 3.997 0.687 ± 0.558 2920

± 0.004 ± 0.091 ± 0.008

12 EM 0.059 ± 0.018 4.897 ± 3.598 1.007 ± 1.000 3169

± 0.002 ± 0.075 ± 0.002

SM 0.067 ± 0.019 6.382 ± 4.585 0.713 ± 0.577 4138

± 0.002 ± 0.090 ± 0.007

15 EM 0.047 ± 0.013 5.494 ± 3.905 1.005 ± 1.000 3911

± 0.002 ± 0.081 ± 0.001

SM 0.055 ± 0.015 7.475 ± 5.301 0.735 ± 0.590 5469

± 0.002 ± 0.092 ± 0.006

18 EM 0.042 ± 0.011 6.179 ± 4.413 1.009 ± 1.000 2455

± 0.002 ± 0.115 ± 0.002

SM 0.049 ± 0.011 8.034 ± 5.460 0.753 ± 0.598 3374

± 0.002 ± 0.139 ± 0.007
tion of kinetic energy sufficient for the ejection of a
single star or binary from the system.

Figures 7 and 8 present the velocity distributions
for escaping single stars and the centers of mass of
escaping binaries for the Salpeter initial mass spec-
trum for N = 6. The distributions have maxima near
2–4 km/s and 1–2 km/s, respectively. The range of
velocities for escaping single stars is broader than
that for the centers of mass of the escaping binaries.
The escaping single and binary stars display a smaller
velocity dispersion in the equal-mass case than for
the Salpeter mass spectrum. The shape of the dis-
tributions is retained as N increases, but the interval
of possible velocities becomes broader. The velocity
maxima shift slightly toward larger velocities. The
velocities for the single stars can reach 80–100 km/s,
while those for the centers of mass of the binaries
reach 25 km/s. However, few stars have such high ve-
locities. The shape of the distributions is independent
of variations of the initial system parameters. Note
that the escaping stars are, on average, less massive
than those retained in the systems.

Observations indicate that many young T Tauri
stars are located at substantial distances from star-
forming regions [27–29]. This may be single stars
ejected from youngmultiple systems with velocities of
several tens of km/s [11, 12]. The results of our mod-
eling of the dynamical evolution of low-multiplicity
systems indicate that ejections of single stars with
large velocities occur fairly frequently. Thus, young
ASTRONOMY REPORTS Vol. 46 No. 11 2002
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Table 8. Parameters of escaping binaries

N
Mass

spectrum E/|E0| E 1
2
/|E0| V , km/s V 1

2
, km/s M,M� M 1

2
,M� n

6 EM 0.093 ± 0.055 2.285 ± 2.056 2.000 ± 2.000 140
± 0.010 ± 0.118 ± 0.000

SM 0.085 ± 0.040 2.273 ± 1.542 1.645 ± 1.466 59
± 0.018 ± 0.270 ± 0.085

9 EM 0.073 ± 0.030 3.012 ± 2.423 2.040 ± 2.000 251
± 0.007 ± 0.136 ± 0.012

SM 0.067 ± 0.030 2.898 ± 2.372 2.086 ± 1.789 95
± 0.008 ± 0.211 ± 0.120

12 EM 0.049 ± 0.021 3.360 ± 2.632 2.151 ± 2.000 325
± 0.004 ± 0.127 ± 0.023

SM 0.039 ± 0.018 2.987 ± 2.364 2.226 ± 1.865 154
± 0.006 ± 0.215 ± 0.116

15 EM 0.048 ± 0.017 3.995 ± 3.087 2.262 ± 2.000 343
± 0.005 ± 0.172 ± 0.028

SM 0.041 ± 0.016 3.641 ± 3.210 2.460 ± 1.886 178
± 0.006 ± 0.209 ± 0.118

18 EM 0.038 ± 0.010 4.148 ± 2.831 2.318 ± 2.000 176
± 0.006 ± 0.272 ± 0.047

SM 0.036 ± 0.013 3.753 ± 2.997 2.698 ± 2.006 82
± 0.008 ± 0.335 ± 0.204
“runaway” stars may be single stars ejected during
the dynamical decay of young multiple systems.

6. CONCLUSION

Theoretical studies of star formation and observa-
tions of star-forming regions indicate that a substan-
tial fraction of stars may be formed in low-multiplicity
groups (see, for example, [30]). It appears that, at
some stage in the evolution of such systems, gravi-
tational interactions between stars become dominant,
and the evolution of the system can be studied via nu-
merical integration of the equations of motion for the
gravitational N-body problem, taking into account
possible coalescences of closely approaching stars.
Our modeling of the dynamics of groups of N =

3–18 bodies indicates that, as a rule, the evolution of
a system results in the formation of a final binary or
stable triple system.
For stellar groups, we can identify several dy-

namical properties stable with respect to the initial
conditions and mass spectrum chosen:

(1) formation of a high fraction (10–15%) of stable
final triple systems;
(2) development of the universal eccentricity dis-

tribution f(e) = 2e for the final and escaping binaries;
ASTRONOMY REPORTS Vol. 46 No. 11 2002
(3) pronounced hierarchy of the stable final triple
systems: the mean ratio of the semimajor axes of the
inner and outer binaries is approximately 1 : 20;
(4) the eccentricities of the outer binaries in stable

triple systems are, on average, lower than those of the
inner binaries, with systems with prograde motions
dominating;
(5) on the whole, the orbital parameters of the

binary systems formed are consistent with those of
observed wide binaries.
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