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An analytical method is applied for description of calorimeter event
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The small-angle Bhabha scatteri(®ABS) process is used to measure the luminos-
ity of electron—positron colliders. Accurate theoretical determination of the SABS cross
section therefore has a direct bearing on the physical values measured in LEP1
experimentg. In recent years considerable attention has been devoted to the Bhabha
scattering processee Refs. 2—5 and references therein

There are two methods of theoretical investigation of the SABS cross section at
LEP1: an approach based on Monte Carlo calculations and an analytical approach. The
latter is used to check different Monte Carlo programsideal experimental conditions.

In this letter | give for the first time an analytical result for the two calorimeter event
selections(CES labeled in Ref. 3 as CALO1 and CALQO?2 in the case of wide—narrow
angular acceptance. Discussion is restricted to the first-order correction. The second- and
third-order leading corrections can be written with the help of the electron structure
function, but the second-order next-to-leading correction requires considerable additional
effort.

Before studying CES it is helpful to clarify the inclusive event selecti&®), when
only the final electron and positron energies are recorded by means of wide—narrow
circular detectors. The result will be widely applicable for the description of CES.

1. We introduce the dimensionless quantity

1 2
2= 4— Qla-expv (1)

7TC!2

where Qf=3265 (e is the beam energy and,; is the minimum angle of the wide
detectoy. The “experimentally” measurable cross sectiop,, is defined as

do(et+e —et+e +X)
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where X represents undetected final particles, an(x,) and g;(q;) are the energy
fraction and the transverse component of the momentum of the eldpisitron in the
final state. The function®{ take into account the angular cuts, while the funct®n
takes into account the cutoff on the invariant mass of detected electron and positron:

OI=0(0:—0_)60(6_—01), ©3=0(0,—0,)0(0,—063), O=0(XXa—Xc),
ol -, e 5
__X]_S ' +_X28 ’

For the wide—narrow case
03> 04> 02> 01, pizai/01> 1.

The first-order correctiorx,;, which includes the contributions of virtual and real
soft and hard photon emission processes, is given by
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and L; can be obtained fronll_i by the substitutiorp,— p3, p,—1. See Ref. 4 for a
definition of the variables used.
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The term in the firstsecondl set of square brackets in E@) is the contribution due
to real virtual photon emission by the positrgelectron. The terms containing
x-dependenty functions under the integral sign correspond to initial-state corrections,
while the rest correspond to final-state corrections.

2. The CALOL1 cluster is a cone with angular radiss0.01 around the final electron
(or positron momentum direction. If a photon belongs to a cluster, then the whole cluster
energy is measured by the detector, and the electron can have any energy. Therefore the
limits of integration ofo,,, overx are expanded to the interval O to 1 in this case. If the
photon escapes from the cluster, the event looks the same as in the IES. The above
restrictions on the limits of integration ov&rcan be written symbolically as follows:

1 X¢ 1 Xe
j dx+f (if|r|<00)dxzf dx—f (if|r|>6g)dx, (6)
X¢ 0 0 0

wherer=k/w—q;/e,, and w(k) is the energy(transverse momentuynof the hard
photon. It is convenient to separate the contributions due to electron and positron emis-
sion:

3,=37+3, S7=3+3+30+38, 3 =5+ +30+3°¢ 7)

The contributions in Eq(7) labeled with a superscrimt depend on both the shape and
size of the cluster, while the rest are universal and are suitable for any cluster.

For calculation of the initial-state corrections, labeled by a substripte use the
left-hand side of relatiol6), while for the final-state corrections, labeled with a subscript
f, we use the right-hand side of this relation.

The quantity2,; coincides exactly with the case of IHSee Eq.(4) and the com-
ments following i}, while 3¢ looks like the contribution due to final-state electron emis-
sion in IES except for expanded limits of integration oxer

It may be written in the following simple form:

1 1
— =+

2 Jo
To find the additionalcluster-shape-dependgmontributions it is sufficient to use the
simplified form of the differential cross section for single photon emission suitable for

semi-collinear kinematics. The additional contribution for the initial-state electron emis-
sion reads

2
a (p2dz X

=5 -7
2 pg z

1—x

d x] . 6]

o Xc 1+X2
_27T o 1—X

dz
37 dxf Z—z—fdzl\lfd)(zl,z;)\,x), N=05/0,. 9)

The quantity® specifies the limits of integration, and
¥ =[a?ad](x’z, ,x?) +[b?,a%](x?z, ,x*z_) +[bd,b?](x?p3,x?Z_),

z.=(z=N(1-X))?,

where the pairs in the square brackets and parentheses give the upper and lower limits of
integration overz andz,, respectively. For wide—narrow angular acceptance
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a=p2, bo=ps, a=maxpyl+A(1-X)), b=min(ps,pz—A(1-X)).

The function® under the integral sign in the right-hand side of E®).is given by

arctar{( \/_ \/_)2 ]

- \/x2x2<1—x)2—<Jz_l—xﬁ)2
-V (Vzrb 22833102

The additional contribution due to final-state electron emission may be written as
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As to the contribution due to the positron emission, the quadtitis equal to the
part in the first square brackets in E@) which is multiplied by thex-dependentd
functions. To obtair®; it is sufficient to expand the limits of integration overto the
interval 0 to 1 for the rest of this part of E¢4). The result is

5. p2 dz 1, fl 1 2[ A 1+x2
=om ), 22| 28" (I=x+ 3 LAt T

X(0,— 92)E4) dx|. (12)

The cluster-shape-dependent contribution due to initial positron emission coincides with
the right-hand side of Eq9) except for the limits of integration overandz, and can be
derived by using¥ instead ofW:

=[b 23 2(x’z, ,X?p3) +[C 2,b 21(x%z, x?z_)+[d 2T 2)(x?p3 x?2_), (13
where

A=max1lp,—A(1—X)), b=py+A(1—Xx),

T=ps—N(1—X%), d=min(ps+N(1—X),p3).

Finally, the quantityg? may be written as
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(14

For symmetrical angular acceptance one must supposepihat, p,=ps=p. In this
case, of course. =% .

3. The CALO2 event selection differs from CALOL in the shape of the clysts
Ref. 3. Only the cluster-dependent contributionsX@ will change in this case. The
analytical formulas are very cumbersome, and we give the result only for the symmetrical
wide—wide caseX?=

Ec—a fxc1+x jdzjd 1
T2 Jo a z—zl

X[V 1P+ V,0,+W,dDs], (15

1
®,= arctanQi(’)— arctany, ®,=arctany™ !, ®5z= arctan—Q( )
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+[p3.(pa— (1=X)N)2](x2p3,x232),
Wa=[Z" (1+(1-x)0)2](x2I% X3 +[p3,(1+ (1-x)N)2](x2D2 X?z).  (16)

The corresponding formula for the contribution due to the final-electron emission reads

o @ [X1+x? dz 2/ 1 1 —
Ef:_ f dX f ? f le ; - 2 [\PlFl—’_\I}ZFZ
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TABLE I. The SABS cross section at LEP1 with the first-order QED correction.

Xc BHLUMI ww ww nn wn
CALO1
0.1 166.329 166.285 131.032 134.270
0.3 166.049 166.006 130.833 134.036
0.5 165.287 165.244 130.416 133.466
0.7 161.794 161.749 128.044 130.542
0.9 149.925 149.866 118.822 120.038
CALO2
0.1 131.032 130.997 94.666 98.354
0.3 130.739 130.705 94.491 98.127
0.5 130.176 130.141 94.177 97.720
0.7 127.528 127.491 92.981 95.874
0.9 117.541 117.491 86.303 87.696

1
FlzarctanF, F,=arctan{, F3=arctanQ<f+>, {=r; cot
f

5
Z,—xy2)2 — — r z
rf:—z—(g Xf), =1 =N, QFY=2Qf), sins=1/ sin®,

Wo=[20" 1013 25,2103 X20%) + 05,25 103p330%). (19)

The quantitiesb and\ in Egs.(15—(18) specify the shape and size of the CALO2
cluster, namely
320 Te O 16

Finally, the functions). andz*) are defined as follows:

J<+):% VzB—x2(1—x)2\2 sir? q)i(l—x)f(l—zx sir? %H

B=1—4x(1—Xx)sir? % 2= (pi = (1= X)N)2— 4xX(1—X) pi(p; = N Sir? %

The results of calculations of the QED correction with the vacuum polarization
switched off are shown in Table | for three different angular acceptances: symmetrical
wide—wide and narrow—narrow and asymmetrical wide—narrow. For comparison we give
also the corresponding numbers obtained using the Monte GaMIG) program
BHLUMI 3 for the symmetrical wide—wide case.

As one can see from Table I, there is an approximately constant difference, at a level
of 0.3 per thousand, between our analytical results and the MC results within the first-
order correction. A possible cause of this effect is as follows. In our calculation we
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systematically ignore terms containimg=|t|/s as compared with unity. But it is well
known that terms of this kind have double-logarithmic asymptotic behavior and are
parametrically equal toc(|t|/7s)In?(|t|/s), which is 0.1 per thousand for the conditions at
LEP1. We note that the MC program BHLUMI takes into account all the first-order
contributions>

The author thanks E. Kuraev and A. Arbuzov for discussions and for critical re-
marks and V. Yu. Gontchar for help in the numerical calculation. This study was sup-
ported by INTAS Grant 93-1867.
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Effect of time reversal in the magnetization of an atom
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It is shown that the even dependence of the light-induced magnetic
moment on the detuning — wy, from resonance in the case of a cir-
cularly polarized pulse and an isotropic initial state of the atom and the
odd dependence an— w, in the case of a linearly polarized pulse and
an anisotropic initial state in the form of alignment of the atom are
consequences of the symmetry under time revdrsal-t and of the
initial conditions at timet=0. In a number of cases, this fundamental
law makes it possible to determine the vector properties of a light-
induced magnetic moment and its dependence on the tinaad

w— wp, Without solving the equation for the density matrix in detail
and without calculating the sum over the projections of the angular
momenta in the formula for the magnetization of an atom by light.
© 1997 American Institute of Physids0021-364(107)00203-X

PACS numbers: 32.10.Dk, 32.96a

1. For an atom in an electromagnetic field described by the vector potéxitial
t) with a zero scalar potential, symmetry under time reversal holds if when

t——t, A(r,—t)——A(r,1), (1)

which leaves the electric fielH(r, t) unchanged and changes the sign of the magnetic
field H(r,t). This symmetry is expressed in the fact that after the transformétiois

carried out and the wave functioWr is replaced by its complex conjugate*, the
Schralinger equation remains unchanged in the absence of a static magneticTiedd.
electric current density in the atom, taking account of electron spin, changes sign. There-
fore the magnetic moment of the atom also changes sign but remains constant in magni-
tude.

2. Let the atom interact over the time intervak®< 7 with the electric field of a
resonant circularly polarized pulse

E(r,t)=Il,a(t")exdi(k-r—wt)]+c.c., (2
where
|k)\'|:)\/:6)\}\’1 I,k)\:”:)\, t’=t—k-l’/w,

I\ is @ right-hand circular polarization vectorf=1 and a left-hand circular polariza-
tion vector if A\=—1, a(t') is a real amplitude, which is a slowly varying function
compared with exjp(k -r — wt) ], andt =0 is the moment at which the leading edge of the
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pulse(2) arrives at the locatiom=0 of the center of mass of the atofmucleus. The
frequencyw is close to the dipole transition frequeney,,=(E,—E )% 1, whereE,

andE,, are the energies of the ground and excited states of the atom, respectively. Besides
the energies, the ground state of an atom with zero nuclear spin is characterized by the
guantum numberd, and J, of the angular momenturd and its projectiondM, and

M, on the quantization axis. The duratierof the pulse (2) is short compared with the
radiative lifetime of the excited state, so that relaxation can be neglected. In the center-
of-mass frame the evolution of the atom is described by the density matrix
p=V¥*(q',t)¥(q,t), whereq is a set of variables describing the state of the atom. In the
dipole approximation the density matrix=p(q’,q,t) satisfies the equation

d i

= [Hy—d-E(0) ~ Ho+ d-E(0) ]p, 3
where H, is the Hamiltonian andl is the dipole moment operator of the free atom.
Initially, at t=0, prior to the arrival of the puls€), the atom is in an isotropic state,
which in theJM representation is described by the density mairixp(t) att=0 with
the components

P (0)=pmom:(0)=0,  py m:(0)=(235+1) oy . 4

The magnetic moment of the atom in th® representation is calculated according
to the formula

p(t)=—ugTr(gpd), 5
where ug the Bohr magneton angl is the gyromagnetic factor.

If the amplitudea(t) is an even function of timeg(—t)=a(t), then giving it in the
region O<t<w® in the forma(t) for 0<t<r7 anda(t)=0 for r<t<oo is equivalent to
giving this amplitude on the entire time axise<t<o~. Then the fielde(0,t) in Eg. (3)
is also defined in the regior o<t=<o< and remains unchanged under the simultaneous
operations

t——t, k——k. (6)

If a(t) in the given interval &t<rs depends ont arbitrarily and if a(t)=0 for
7<t=<oo, then formally we define the amplitude(t) on the negative time axis
—o=<t=<0 asa(t)=a(—t) for — r<t<0 anda(t) =0 for —cc<t=<— 7. For an atom in
the field Eq.(2) with r=0, symmetry with respect to time reversal holds, just as in the
case of Eq.(1). Then the Schringer equation with the Hamiltoniakl,—d-E(0}t)
remains unchanged after the operati¢@sand¥ —W¥*. Equation(3) is also unaffected

by the operationg6) and p—p*. However, the magnetic moment of the atdf)
changes signu(—t)=— x(t). This property of the magnetic moment was obtained
without using the initial condition&4). At the same time, in the present problem the time
t=0 is the initial moment at which the atom first interacts with the fi@hdn the interval
O0=<t=r. Therefore, here, in the presence of symmetry under time reversal the reference
pointt=0 on the time axis in E(6) is a physically distinguished moment in time. If the
magnetic moment5) is calculated in the nonstationary regime with the aid of Egs.
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(3)—(5), then besides the properiy —t) = — u(t) mentioned above, other characteristics
of x(t), which are due to symmetry under time rever@land the initial conditions at
t=0, can be found.

From the symmetry of the atom in the field of a circularly polarized puBet
follows, with allowance for Eq(4), that the light-induced magnetic mome#) is pro-
portional to the only axial vector in this case,

il XI5 = (K/IK\B, (7)

whereg is a unit pseudoscalar, equal =1 in a right-handed and- 1 in a left-handed
coordinate system. Furthermore, solving the operator equéjotaking account of Eq.

(4) according to second-order perturbation theorf({0.t), we show that for &t< 7 the

density matrices in the ground and excited states exhibit the same dependence on the time
t and the detuningh = w— wy,, as described by the integrgt) in the form

pmm/ (O =Ry m () +h.c., pym (=R w1 (t)+h.c, (8)

where

t T
l(t):fodefo dTla*(Tz)a(Tl)eXF[iA(Tz_Tl)],

Ry m! and Ry, m; are matrices. If the matrice8) are substituted into Ed5), then the

magnetic momenj.(t) separates into a sum of terms which are proportiona(tp or
I*(t). These terms must contalft) and|*(t) in a combination so that the equality
,&(—t)z —,&(t) holds after the operation®). Hence it follows that, on account of Eq.

(7), the desired vectop(t) is proportional to the sunh(t)+1*(t). Therefore, taking
account of Egs(7) and(8), the magnetic momen®) can be represented in the form

p(t)=—(k/Ik)\ BMXo(t,A), (9)
where
Xo(t,A)=(rag) " I1(t)+1*(1)], (10)

a, is the maximum value ofa(t)| in the prescribed interval@t<r, Mg is a constant

with dimensions of magnetic moment and depends on the characteristics of the resonance
transition, andXgy(t,A) is a universal function of the time& and the detuning
A=w— wy, and does not depend on the atomic characteristics.

The vector properties qf(t) in Eq. (9) are determined by the symmetry of the atom
in the field of the circularly polarized pulg@) with the initial conditions(4); this leads
to the axial vector7). At the same timeg(t) is an even function oA because of the
symmetry under time revers@) in the presence of the axial vectff). The constant
M, is determined by a detailed calculation of the density matri8es solving Eq.(3)
together with Eq(4) and the subsequent summation in E5).over the projections of the
angular momenta of the atom in the ground and excited states. The characteristics of
,J(t) obtained with a more complicated dependence and A remain valid outside of
perturbation theory for an ultrashort, square, circularly polarized pulse; this follows from
an exact solution of the problem in the absence of relax&tion.
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3. We shall now consider the magnetization of an atom by a resonant linearly
polarized pulse:

E(r,t)=la(t")exdi(k-r—wt)]+c.c., (11

wherely is a unit polarization vector, which is not affected by reversal of the wave vector
k— —k. The other physical quantities in EQL1) are the same as in EQ). Since the
pulse(11) does not magnetize an atom in the isotropic initial stdielet us assume that
prior to the interaction with the pulgd 1) the atom was optically polarized by a strong,
linearly polarized, resonant pulse with veclgy, which is collinear tdk, and unit polar-
ization vectorly, which is not affected by the operatidgy— —ky. Then the initial
conditions for Eq.(3) in the JM representation have the form

Py, (0) =Py (=0, pu w1 (0)=pfy . (12

where the density matri;oEll , describes the initial optical polarization of the atom,
M_M
aa

called alignmentsee, for example, Ref)3Here the alignment of the atom is character-
ized by two orthogonal symmetry axes, the first of which is directed algrand the
second is collinear t&. In this case, when the atom interacts with the pylsk, there

exists a unique axial vector which corresponds to the given symmetry and determines the
direction of the magnetic momei#). This vector has the form

loX 1= (k/K)sin @y, (13

where the positive direction of the anglg is from the unit vectol, to the unit vector

I, (clockwise when viewed alonf). Therefore, under the operatid— —k, we have
¢_x=— ¢y, So that the angle, is a pseudoscalar. Furthermore, only one of the two
orthogonal symmetry axes possesses the prescribed dirdgtithe direction of the
second axis is not fixe@ll orientations are equally gondrhe direction of the third axis,
which is orthogonal to the two axes indicated above, is also not fixed and all directions
are equally good. Hence it follows that for a prealigned atom the magnetic mdB)ent
should not change whep is chosen to be parallel or antiparallel to the third axis. The
rotation anglesp,= w/2 and¢,= — 7/2 correspond to these two directionslgf Invari-
ance of the magnetic momef® under such rotations under the conditions of the present
symmetry is attained after the axial vectd@3) is multiplied by cosp,. Therefore the
desired magnetic momef®) in the case at hand is proportional to the following axial
vector:

(k/k)sin(2¢y). (14)
For the initial conditiong12), the dependence of the density matri¢@sont and
A remains in force for other values HMaM; and RMka’) than those in Eq4). We also

take account of the fact that for a prealigned atom in the field of a linearly polarized pulse

(12) symmetry under time reverséh) holds and leads to the equali@(—t)= —ﬁ(t).
This equality is possible only if, after the density matri¢@sare substituted into E@5),

the quantitiesl(t) and I*(t) appear in,&(t) in the form of the real combination
i[1*(t)—1(t)]. Finally, the magnetic momeltb) for a prealigned atom has the form

w(t)=—(k/Ik)Sin( 2@, )M X,(t,A), (15)
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where
Xa(t,A)=i(7a0) A 1* ()~ I(t)].

Here the constari¥l ,, which has dimensions of a magnetic moment, is calculated by
summing in Eq(5) over the projections of the angular momenta. The subscript 2 on the
constantM, and on the universal functiad,(t,A) was chosen so as to coincide with the
rank of the polarization multipole moment characterizing the alignment of the atom in
Eqg.(12). The vector properties of the magnetic moment in @§) are determined by the
symmetry of the interaction of a prealigned atom with the linearly polarized glilge
At the same time, the odd dependencedoim Eq. (15) is due to the symmetry under time
reversal(6) in the presence of the initial conditiori$2), which lead to the axial vector
(14).

4. The following general law follows from what has been said above. If the magnetic
moment/l(t) induced by the resonant light pulse is proportional to the axial vé@or

then it is an even function of the detunidg with a maximum atA=0. If ,&(t) is
proportional to an axial vector, which is invariant under the operakien—k, then

«(t) is an odd function oA with a maximum at & |A|. This law is fundamental, since

it is a consequence of the symmetry of the atom in the field of a resonant light(@ulse
or (11) as well as the symmetry under time rever&l with allowance for the initial
conditions att=0. In many cases this law makes it possible to determine the vector
properties of the magnetic mome(#) and its dependence agnand A to within a
common factor with dimensions of magnetic moment, without performing detailed
perturbation-theory calculations.

If the amplitudea(t) is an odd function of tima(—t) = —a(t), then specifying it in
the region B<t<wx is equivalent to specifying its amplitude on the entire time axis
—oo=<t<o, However, it must enter in Eq$2) and (11) in the forma(t)exp(n/2) or
a(t)exp(—i#/2) in order that the operatiori6) not change the electric field®) and(11).

In this case the foregoing arguments and E§sand(15) with the integrall (t) remain
in force after the operatiore(t) — a(t)exp(in/2).

5. Let the center of mass of the atom in the laboratory coordinate system be located
at timet at the point in some volume. The leading edge of the circularly polarized pulse
(2) crosses the boundary poiry of this volume at time, and reaches the locatignof
the atom at time. The propagation of a circularly polarized pulg in this volume is
described by the formula

E(r,t)=Il,a(t’)exp(—iwt')+c.c., (16)
where
t,:t_to_k‘(r_ro). (17)

Here the amplitudea(t’) is given for O<t’<r anda(t’)=0 for 7<t’<w and it is
defined on the entire time axiso<t’ << in analogy with the discussion in Sec. 2. The
leading edge of the puldd6) crosses the center of mass of the atom with zero argument
of the ampltude(t’) and zero phase iwt’ =0, just as in the cas®). If the atom at the
pointr possesses a velocityat timet, then its state is described by the equation
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(i+v-V p=%[Hé—d’-E(r,t)—H0+d-E(r,t)]p, (18

ot

which remains unchanged under the simultaneous operations
t——t, tog——ty, k——k, p—p*, v——w. (19

Therefore, for an atom moving with velocity there exists a symmetry with respect to
time reversal19) accompanied by the operatibh— —t’. In accordance with Eq%16)
and(17), the density matrix is a function oft’, and the leading edge of the pulckb)
crosses the center of mass of the atom at timé&,+ k- (r—rg) ort’=0. In addition, the
initial value p=p(t’) att’=0 has the form4). Repeating the arguments leading up to
Egs.(7)—(10), we find, taking account of the Doppler shiftv of the frequencyw, that
the magnetic momertb) of a moving atom is given by expressi(®) with the operations

t—t', A—A-—-Kk-v. (20

The linearly polarized pulséll) in the given volume has the ford6) after the opera-
tion I\ —ly. It induces in the moving atom a magnetic moment given by (E§). with
the operationg20).

Let us now apply the above results to a gas of identical atoms located in the indi-

cated volume. Then we find that the magnetizatﬁ:aﬁt’) induced in the gas by circu-
larly or linearly polarized pulses is given by

ﬁq(t')z—LqNqu f(v)Xq(t',A—k-V)dv, (21)

where
d=0,2, Lo=(kIK)AB, Ly=(k/k)sin(2¢y),

N is the density of atomd,(v) is Maxwell’s distribution, and’ is the time with allow-
ance for the delay of the wave, as defined in Bdg). Under the time reversdll9) the
equalityq(—t") = — uq(t") holds, and the quantity,(t’) is an ever(for g=0) or odd
(for g=2) function of the detuning\, just as in the cas€) and (15).

In the experiments with a gasnd a solid the light-induced magnetization was
measured in relative units. If the experimental method of those sfirdessed, then the
constantaM and M5, which were not calculated, do not affect the investigation of the
vector properties of the light-induced magnetizati@d) and its dependence dn and
A in the time interval Gt' <.
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Nonlinear effects in a two-dimensional electron gas with
a periodic lattice of scatterers

G. M. Gusev, Z. D. Kvon, A. G. Pogosov, and M. M. Voronin
Institute of Semiconductor Physics, 630090 Novosibirsk, Russia

(Submitted 3 December 1996
Pis'ma Zh. Kksp. Teor. Fiz65, No. 3, 237—-24110 February 1997

The magnetoresistance of two-dimensio{d) electrons in a periodic
lattice of antidots is found to be substantially influenced by an applied
electric field. The non-Ohmic behavior of the resistance in the region of
commensurability oscillations originates from the electric-field-induced
breakdown of the trajectories skipping along the lattice arrays. In the
region of magnetic fields where the cyclotron diameter is less than the
distance between antidots the breakdown of the orbits skipping around
antidots is responsible for the nonlinear behavior of the magnetoresis-
tance. ©1997 American Institute of Physics.

[S0021-364(®7)00303-4

PACS numbers: 73.61.Ey, 72.20.My

The transport of a 2D electron gas in a periodic lattice of antidots has been actively
investigated in the last few years. One of the most interesting features of this system is
the commensurability oscillations of the magnetoresistance, which have been observed
and studied in a number of works? In Ref. 2 a “pinball” model was proposed, which
explained these oscillations as being due to the existence of electron cyclotron orbits
which do not collide with antidots at certain magnetic fields. It was later showrat
this model cannot explain all of the features of the magnetoresistance. In Ref. 3 the
diffusion coefficient in a magnetic field was calculated by means of numerical simula-
tions of chaotic dynamics of electron in the lattice of antidots. These calculations were
able to account for all the features of the commensurability oscillations of the magne-
toresistance. Moreover, it was shown in Ref. 3 that the cause of these oscillations is the
appearance of electron trajectories which skip along the lattice arrays. In addition, the
model of dynamical chaos predicts some other interesting effects—for example, non-
Ohmic behavior of magnetoresistance. In the present work the influence of high electric
fields on the electron transport in a periodic lattice of antidots is investigated.

The test samples were Hall bars based on the 2D electron gas in a GaAs/AlGaAs
heterojunction(u=2-10° cn?/V s, ng=4.5-10'* cm™2). The distance between potential
probes was 50«m, and the width of the device was 2@0n. The part of the sample
between the potential probes was covered by a lattice of antidots created by electron
beam lithography and reactive ion etching. Samples with different lattice peribds,
=0.6, 0.7, 0.8, 0.9 and 1.8m, were investigated. The antidot diameter was abaut 2
=0.15-0.2um. The magnetoresistance was measured by the four-terminal method us-
ing an ac bridge operating at 70—700 Hz in magnetic fields up to 0.8 T at temperatures
1.3—-4.2 K. In order to measure nonlinear effects a dc electric Eelgh to 7 V/cm was
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FIG. 1. The magnetoresistance of the sample wlith1.3 um as a function of magnetic field for different
values of applied dc electric field and lattice temperaturg, : a—T,=1.3 K, E=0V/cm; b—T =4.2 K,
E=0V/cm; c—T =13 K, E=0.76 V/cm; d—,=1.3 K, E=2.4 V/cm.

applied. The amplitude of the ac electric field on which the signal was measured was less
than 0.03 V/cm. Thus, the differential magnetoresistance of the samples was measured
experimentally as a function of applied electric fiéld

The magnetoresistance traces for the sample with the lattice pgrdd3 um at
different lattice temperatures and applied electric fields are shown in Fig. 1. Comparison
of curvesa and b in Fig. 1 shows that at low values & the amplitude of the
Shubnikov—de Haa&SdH) oscillations decreases with temperature, while the amplitude
of the commensurability oscillations remains unchanged. This result is consistent with
Ref. 2, where it was shown that the commensurability oscillations do not depend on
temperature up to 50 K. As the applied electric field is increased to 0.8 V/cm, the
amplitude of the SdH oscillations falls to a value corresponding to a temperature of 4.2
K, and the amplitude of the commensurability oscillations falls by a factor of(tmove
¢). In a stronger applied electric field the commensurability oscillations disappear, and in
the region of magnetic fields wherdrg<<d the resistance increasésurve d in Fig. 1},
and an additional small maximutmarked by an arrow on the curvappears, which was
not present at lower electric fields.

It should be noted that an applied electric field increases the electron temperature
T. above the lattice temperatuiig (the overheating of the lattice is negligilbleThe
electron temperature can be determined from the SdH oscillations, and for the(curve
in Fig. 1 it is aboutT,=4.2 K, as is seen from a comparison of the SdH oscillations.
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FIG. 2. The resistance of the sample witk 1.3 «m as a function of applied electric fiel for two different
values of the magnetic fielB: a—B=0.17 T (2R.=d)—commensurability maximum; bB=0.27 T (R,
<d-—2a)—corresponds to rosette-like orbits.

However the commensurability oscillations on curve ¢ in Fig. 1 are strongly suppressed
in comparison with curve b. This leads to the conclusion that the suppression of com-
mensurability oscillations is not due to heating effects.

The sample resistance as a functionkofs presented in Fig. 2 for two different
values of the magnetic field. One can see that for magnetic fields satisfying the commen-
surability condition R.=d (curve 3 the resistance decreases withwhereas for stron-
ger magnetic fields it increases with (curve . It is also seen that at low and high
electric field both curves reach saturation. The same behavior was observed for all of the
samples tested. From the dependence of the magnetoresistaiceverdetermine the
electric fieldE,, at which the commensurability oscillations are suppressed to half their
magnitude. The values &, for the magnetoresistance maximum &2 d are shown
in Fig. 3a for the samples with different lattice periods. One can seeEthafalls off
with increasingd roughly according td,>d 2.

As was mentioned above, there are two models explaining the magnetoresistance
maxima in Fig. 1. One of them is based on the presence of “running trajectories” that
skip along the lattice arrays and which are responsible for the maximum in the diffusion
coefficient and, consequently, in the resistatfoe the magnetic fields under consider-
ation we haver,,> oy, and the maximum iwr,, therefore corresponds to a maximum
in py,). The other explanation involves pinned orbits which do not collide with antidots.
It is important that the running trajectories are substantially more sensitive to the initial
conditions and to possible distortion of the electron orbit. An applied electric field leads
to drift of the cyclotron orbit. For the running trajectories a relatively small drift is
sufficient to shift them off the region of stability and therefore break the stable running
motion. The critical drift distancé, during the time between two successive collisions
with antidots is in any case considerably smaller than the antidot radiuBrecise
estimation of the drift distanck necessary for breaking the running trajectories and of
the dependence df; on the lattice period requires more-detailed theoretical study of
the region of stability of the running trajectories. On the other hand, in order to break the
pinned orbit with R.=d (corresponding to the main commensurability maximuhe

250 JETP Lett., Vol. 65, No. 3, 10 Feb. 1997 Gusev et al. 250



4
a 7
J /. °
~~ / o0 0
B e ~ 0® o o
L2 5 E as
N ° ~
< / S
HEI / * *‘“g'
0 7 2 3 0 02 0.4 06
a7 2(10%cm™?) R (eem)

FIG. 3. a: The electric fieldE,,, resulting in the suppression of the main commensurability oscillgiioa
magnetic field satisfying the conditiorRR=d) to half its value, measured for the samples with differérmts

a function ofd 2. The solid line is drawn as a guide to the eye. b: The experimental dependence of the critical
field EZ corresponding to breakdown of the trajectories skipping around antidots on the cyclotronRatbus

the sample with lattice period=1.3 um.

average drift over the time~2mw/w; (w.=eH/mc) should be of the ordery~d/2
—a.

One can estimaté; from the experimentally measured value of the critical field
Eqip: lg=mvgl/we (g=CE;/H is the drift velocity. At a lattice periodd=1.3 um,
l4 is 0.003um. This value is significantly smaller than the radius of an antidot. There-
fore, taking into account the above discussion, one can conclude that the model based on
the running trajectories more likely explains the main commensurability maximum at
2R.~d, and the breaking of these trajectories by an applied electric field leads to the
experimentally observed suppression of the commensurability oscillations.

At higher magnetic field when R.<d—2a the magnetoresistance also exhibits
nonlinear dependence on the electric field. This dependence has the opposite sign from
that in the region of commensurability oscillations described above. This behavior of the
magnetoresistance can be explained on the assumption that in this region of magnetic
fields the electrons move on rosette-like orbits skipping around antidots. These electrons
are localized and do not contribute to the conductivity. But a high electric @@ddve a
certain critical valueEy ) results in breakdown of the localized motion due to the drift of
the cyclotron orbit by analogy with the trajectories that skip along the arrays. It leads to
an increase in the conductivity and resistance of the samples and thus affects the experi-
mental dependence of the magnetoresistance on the electri¢Higldl).

The experimental dependencekf on R is shown in Fig. 3b. One can see that the
critical field E} does not depend on the cyclotron radius. Theoretical support for this fact
as well as the numerical estimation Bf requires further theoretical consideration.

It should be noted that the electron orbits corresponding to the condifar-d
—2a show a threshold behavior for the applied electric field. For highardelocaliza-
tion of the electrons by the electric field is observed, but for loBethe electron
trajectories become diffusive. Thus a new maximum in the resistance at high electric
fields is observed, as indicated aba¥ag. 1). The corresponding value of the antidot
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radiusa is consistent with the measurementaoby other methods.

Thus in the present work the magnetoresistance of 2D periodic lattices of antidots
with a wide variety of periods has been found to exhibit nonlinear behavior in the applied
electric field. Analysis of the results within the framework of dynamical chaos theory
shows that the model of runaway electron trajectories can explain the suppression of the
main commensurability maximum by the applied electric field for all of the samples
tested. In higher magnetic fields the nonlinear effects are connected with breaking of the
localized rosette motion. More-detailed comparison of some of our findswgh as the
values of the critical electric fields for breaking of the regular motion and their depen-
dence on the lattice peripavith the theory requires further theoretical study of the region
of stability of the runaway and rosette-like orbits.

We thank E. M. Baskin and M. V. Entin for helpful discussions. This study was
supported by the Russian Fund for Fundamental Resé@nents 95-02-04583a, 96-02-
19377a.
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Interplay between fermion condensation and density-
wave instability
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It is shown that the phase transition of density-wave origin in homoge-
neous liquids is preceded by fermion condensation. Thus fermion con-
densation may be observed in low-density electron liquids, neutron
stars, and liquid H& Three-dimensiona(3D) and two-dimensional
(2D) liquids are considered. €997 American Institute of Physics.
[S0021-364(®7)00403-9

PACS numbers: 71.45.Gm, 73.20.Dx, 73.40.Lq

Several years ago an extremely powerful method was deveéldpetheasuring the
electronic structure close to the Fermi level: angle-resolved photoemission spectroscopy
(ARPES. ARPES measurements of electronic spectra in the vicinity of the Fermi level
exhibit a dispersionless sharp peak, i.e., an extended Van Hove sing@\&r§). Re-
cently measured ARPES data from single-crystaR860, reveal a VHS with extension
in both directions, in contrast to the usual case, where the saddle point extends in only
one directior?’® Thus, it turns out that there is a broad plateau in the spectrum
£(Px,Py), which lies at or within 17 meV of the Fermi level. It is noteworthy that the
observed Fermi surface differs from the LDA calculatidisVe submit that the above-
described behavior of the electronic speat(@) can be understood within the frame-
work of the theory of fermion condensation, based on the Landau theory of the Fermi
liquid.* Landau postulated that the entroBywhich, like the other thermodynamic func-

tions, is a functional of the quasiparticle distributinfp), has the form
dp
5= [ (n(p,TN(n(p.T) + (1-N(p,THINA=n(p.TH] 505

Then, the variational condition for the free eneffgy Eq— TS yields the relation

S(F— uN) 1-n(p,T)
Tp)=s(p,T)—,u(T)—T In WZO,

where T is the temperature ang is the chemical potential. Equatiof) is usually
rewritten in the Gibbs form,

@
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N(P)= T g —wrT (]

with e(p) given by

5By
anp,T) cPT) o

whereE, is the ground state energy functional. Equati@nis a compact form of Eq.1)
rather then its solution, since the quasiparticle enerfy) appearing in Eq(2) is a
nontrivial functional ofn(p).

Landau’s suggestion that the derivative(p)/dp is positive and finite at the Fermi
level immediately implies that the functiom(p,T=0) coincides with the Fermi step
function. But this solution of Eq(1) is not the only one. There exist “anomalous”
solution§~° of Eq. (1) involving the so-called fermion condensatidBeing continuous
within a region(} in p, such a solutiom(p) admits a finite limit for the logarithm in Eq.
(1) at T—0, yieldind®

OE,

8(]0)—W—,u.pi$p<pf- 4

Thus, within the regiormp;, pse ) the solutionn(p) deviates from the Fermi step
function ng(p) in such a way that the energyp) stays constant, while, outside this
region, n(p) coincides withng(p). Therefore, the occupation numberép) serve as
variational parameters, since the enekgycan be reduced by varying them. Since the
single-particle energy(p) remains constant at exactly the chemical poteriiaj. (4)),
one can conclude that;<pg<ps, wherepg is the Fermi momentum. When the con-
densation is just starting, the momenta olpey ps=pge . This fact means that the effec-
tive massM*, given by the formula

1 _ 1 d
W—Ed—p%?(pﬂpﬂ;p 5

has a valudM* —. So we can conclude that the beginning of the fermion-condensation
phase transition manifests itself in the absolute growth of the effective mass.

In this letter we show that the onset of the density-wave instability in a homoge-
neous Fermi liquid must be preceded by unlimited growth of the effective mass. Thus
fermion condensation can be thought of as a widespread effect rather than as an uncom-
mon and “anomalous” solution of Eq2).

Let us briefly outline the main points of calculations of the effective mas3he
energyE, is given by the equation

, d%q do d
Eo=T—f | ( Xo(q,®) q de dg

v(q) Tt (6)

+2mpd(w
1_R(q1wvg)XO(q1w) p ( )
where T is the kinetic energy of noninteracting particles agglq,») is the linear
response function of noninteracting particles as a function of the momeqtand
frequency w. The effective interactiorR tends to the bare interparticle interaction
gv(q) as the coupling constagt— 0. The integration over frequenay goes along the
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real axis from O to+ o, while the integration oveg goes from 0 to a real valugg.
Substituting Eq(6) into Eq. (3), using Eq.(5), and doing some tedious algebra, we get

6x0(q, )
1 1 d on(p) d3q dw dg
M¥ M 2depf I-R@ o0 xo@eon?) " Y ~2n
SR(Q,0,9) ,
d TD)XO(q’w) d%q do dg
_2depf 1-R@.0.9x0@0)2 'Y ~2n) @)

Here M is the bare mass of a particle of the system under consideration, and the inte-
gration overw goes along the imaginary axis. We recall that the derivatiip is taken
at p=pge. One can calculate the function

d ¢
lo(PF.0, @)= dp an. Xo(d, ®)|p=p.
p

taking into account the explicit form of, (Ref. 12,

2wkq
X0l0,0)= =20 1= Ng) Lo ®

Here wyq=(k+0q)%/(2M)—k?(2M). Now the calculation of the derivatives is
performed directly,

d ¢ A7
dp an, Xo(0,@)[p—p.=1o(PF,q,0) == oz S(pe—|[p+al) s(w)p(p+a)|p=p,-
9

It is seen from EQq(9) thatl, is a singular function. But this singular function will
make a major contribution to the effective mads$ only if it meets another singular
function. Otherwise, the four-dimensional integration removes the two-dimensional sin-
gularity, and the first term on the right-hand side of Ed). will be finite and quite
comparable to the second one. Let us consider a homogeneous Fermi system located in
the vicinity of the density-wave instability, i.e., close to the phase transition, when the
system in question possesses a density wave characterized by the momggntiihe
instability threshold is reached when the linear response function

Xo(d, )

0,®,9)xo(0, )

of the system possesses a pole at
9=dc; Pr=Prc=(372pc)"?,

and at frequencw =0, or the denominator of the terms on the right-hand side of Bq.
vanishes? Here p, is the critical density at which the density-wave instability sets in,
while pg. is the corresponding Fermi momentum.

¥0.0)= g (10

Thus the desired singular function can be conveyed by the denominator of the first
term in the integrand, provided that the system is close to instability. In that case the
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integrand of the second term on the right-hand side of(Bdhas only a two-dimensional
singularity, and so its contribution to the effective mass can be omitted. Now we can
simplify Eq. (7), keeping the main contribution, which comes from the functiggiven

by Eq.(9),

M*

l f fgo v(pev2(1—x))x dx dg
M 47T [1-R(pe

V2(1-x),0=09) xo(PrV2(1~X), 0= 0)%;)

It should be noted thap:/2(1—x) is the momentum transfey. Below we adopt the
shorthand notatiopsv2(1—x)=q(x). It is seen from Eq(11) that the integral, which

is negative, is logarithmically divergent in the lingt— pg.. Of course, we suppose that
dc.=2pPgc, Since there is no other vector bpt . On the other hand, in the case of an
electron gas, direct calculations of the effective interacBo(Ref. 9, including ones
based on Monte Carlo calculatiofs?® have shown thaR becomes negative aj
=2pe . Sinceyq(q,w=0) is negativeR(g,w=0) must be negative in order to produce
a pole in the linear response functi@@0). Fermion condensation occurs when the effec-
tive mass becomes infinite, i.e., the condensation starts as soon as the integral on the
right-hand side of Eq(11) cancels the term M. It is clear that it must take place long
before the density-wave instability manifests itself.

Now let us consider a 2D liquid. The path from a 3D to a 2D liquid is clear, since
the form of the singular functioty is preserved because the dimension is not taken into
account in the calculation of this function. We arrive at the final result, bearing in mind
that instead ofix we have to writedx/ 1 —x?:

_ J J v(q(x)) x dx dg
'Vl* M 4 [1-R(q(x),0=09) xo(A(X),0=0)]* 1—x2"

(12

The fermion condensation occurs more “easily” in a 2D liquid than in the 3D case. To
see this, we note that the integrand of Etp) is multiplied by a factor 1y1—x?=1. On

the other hand, the density-wave instability is also expected to take place more easily in
the 2D case than in the 3D ca&ze below.

Consider a particular kind of liquid which is a 2D and 3D electron gas. In the case
of the 3D electron gas the bare interactgwy(q) is of the form

47%€?
guv(q)= B 13
and the effective mashl*, when the system under consideration is not far from the
instability point, can be obtained directly by putting Ef3) into Eq. (11):

1

_ +_f f x dx dg
M* M pem Jo1Jo (1-x)[1-R(q(x),0=09)xo(q(X),0=0)]*"

(14)

One can get the well-known Gell-Mann result for the effective mass of a dense electron
gas® by puttingR=4me?/g?, as should be the case in the weak-coupling limit. It has
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been shown that the charge-density-wave instability takes place in a 3D gas 30,
andq.=2pg (Ref. 17, 14, 18 At the same time, Wigner crystallization is predicted by
the Monte Carlo calculations ag~ 100 (Ref. 19.

In the case of a 2D electron gas one gets

1 1

+e_2f1 fl x dx dg
M* M pem Jo1do (1-x)V2(1+X)[1-R(q(x),0=09)xo(q(X),0=0)]2
(15)

Here we putgv(q) =2me?/q. We stress that the effective interactiBnof both 2D and

3D electron systems tends to the Coulomb interactiom-a$), and the integrands of Egs.

(14) and(15) have no singularities at=1. Monte Carlo calculations of the ground state
properties of an electron gas predict Wigner crystallization at a dengi$7 in the 2D
electron gag® However, density waves should arise before crystallization takes place, as
is indeed found to be the case: the charge-density-wave instability has been shown to
occur atrg=5-10 and g.=2pr in parallel electron layers separated by potential
barrierst*'°Thus, as we have shown above, fermion condensation will inevitably arise as
a result of the possibility of the charge-density-wave instability. Our calculations predict
fermion condensation in a 3D electron gas at21 (Ref. 11, while calculations in the

2D case give the value,=8 (these will be published elsewher&Vigner crystallization

has also been predicted to occur for dense neutron nfatiéfferent calculations yield
varying values for the solidification density of neutron matter in the interior of neutron
stars®? One can imagine that before forming crystal structures a liquid becomes unstable
against small-amplitude density fluctuations, i.e., that the linear response function has a
pole atg. (Ref. 12 and 1Y We suppose that the same is true for the solidification of
liquid 3He. Therefore, we can conclude that such liquids should exhibit fermion conden-
sation.

In summary, we have shown that fermion condensation could take place in any
Fermi liquid (electron gas, nuclear matter, neutron matter, or liciidd) which under-
goes a density-wave instability under some conditions.
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Energy and number of particles in skyrmion excitations
with odd filling of the Landau levels of a two-
dimensional electron gas

S. V. lordanskii and S. G. Plyasunov

Landau Institute of Theoretical Physics, Russian Academy of Sciences, 117334 Moscow,
Russia

(Submitted 25 December 1996; resubmitted 5 January)1997
Pis'ma Zh. Ksp. Teor. Fiz65, No. 3, 248—25210 February 1997

It is shown that approximations employing projections of wave func-
tions onto a single Landau level are inadequate for describing
skyrmion-type excitations. Nonprojected functions give a clear physical
picture and calculations are greatly simplified by their use. The expres-
sion for the energy of skyrmion excitations differs substantially from
the expressions obtained in the approximation of globally projected
functions by a series of terms which have a very simple meaning.
© 1997 American Institute of Physids$0021-364(®7)00503-3

PACS numbers: 73.20.Mf, 71.70.Di, 12.39.Dc

The question of the existence of skyrmion-type excitations for oddly filled Landau
levels of two-dimensional electrons arose a comparatively long timé-agot a specific
calculation of their energies was made only recently. In Ref. 3 the phenomenological
approach of the Chern—Simons theory was used, and it was shown that skyrmions must
exist in this case and their energy was calculated. Next, the skyrmion energies were
determined numerically in Ref. 4 by the Hartree—Fock method on the basis of wave
functions projected onto the lowest Landau level. In Ref. 5 the gradient-expansion
method was used and the number of particles and the energy were calculated in the
lowest approximation in the gradients. The results of Ref. 5 were refined in Ref. 6, where
a technique was also developed for performing calculations in any order of the gradient
expansion. The gradient-expansion technique is very unwieldy and the final results ap-
pear only after tedious calculations, even in the lowest order. The projected-function
approximation is ordinarily justified by the large value of the cyclotron endirgy
compared with the Coulomb energy, which is of orééfxl,, Wherelﬁzcﬁ/eH and
k is the dielectric constant.

In the present letter we show that this assertion is incorrect and that taking account
of other Landau levels leads to corrections in the energy in zeroth ordet i, BHnd to
terms of orderi w. in the skrymion energy. At the same time, the calculations simplify
substantially and have a simple physical interpretation.

Skrymions correspond to a nonuniform rotation of the second-quantization spinor
operators with the aid of the rotation mattiir). This corresponds to the transformation
W (r)=U(r)x(r), where x(r) are new spinors. The matrid(r) is parameterized by
three Euler angles:
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U(r)=U(y(r)U(B(r)u(a(r)),
o

2

a
5

5 U(,B)zc:osEJriay sin

U(a)=cos 5

+io, sin 5;

Y . 4
U(’y)ZCOSE-HO'Z smz.

For the energy to be finite with a finitg-factor, the angle8 corresponding to a
deviation of the spin direction away from tlzeaxis, along which the spin is directed in

the limitr—o, must go to zero at large distances. It is assumed that the nuiirixhas
no singularities anywhere. This corresponds to the absence of singularities in the matrix

—_int -0
A,=-iUto,u=0! 0,

wherego; are the Pauli matrices=x, y, zandu=x, y. The expressions fd2*, Y, and
Q7 can be easily obtained by direct differentiation:

1
O =5(d,a+cosBd,y),

mo2

« 1 : .
Qu_i(‘?ﬂ sin B cosa—4,B sin a),
, 1 o
QM=§((9M,8 cosa+d,y sin B sin a).

The nontrivial topology of the matrik is due to the properties of the mappings) and
a(r), wherer runs over a circle of large radius. The degree of the mapping of the
two-dimensional plane onto a sphere, parameterized by the apgles 3, is equal to

the degree of the mapping of a circle onto a circle, i.e., a vortex singulargfr)f For

Q; to be nonsingular, the singularity of(r) must coincide with the corresponding
singularity of«(r), located at the point where c@s=—1. Therefore, the rotation matrix
U(r) must be determined by all three Euler angles, and the corresponding apinor
possesses an integral quantization of the circulation integral at large distances.

Therefore, it would be more accurate to talk about nonsingular vortices whose core
is given by a skrymionby analogy to®He-A (Ref. 7)). The vortex numbers can be
arbitrary integers, in contrast ttHe-A, where they are even. The Hamiltonian of the
electronic system in a magnetic field is

1
H=f§5WWnU

a 2
i 2
|(?r# AM) W (r,t)d“r

+ ;j f V(r_r,)\I’T(r't)\lﬁ(r',t)‘lf(r’,t)‘If(r,t)dzrdzr’, 1)

whereV(r) is the Coulomb potential. After the substitutidn=U(r) y the Hamiltonian
assumes the forrfwithout any approximations
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H—fth i A 'UTU2 t)d?
- ﬁ)( (rv ) IT L I ap. X(rr ) r

w

1
+ Ef J Vr—r" ) xT(r,xtr’ Oxr’ 0 x(r,t)d?rd?r’, 2

i.e., for new spinors a spin-dependent vector potential appears in the kinetic energy. For
purposes of simplification, the Zeeman energy is not included in this Hamiltonian; this
will be done later.

It is easy to show that the representation of a spigan the form of a spinor
projected onto a single Landau level is inadequate, since after expansion in powers of
UT&MU which induce transfers to higher and lower Landau levels are present i2)Eq.
and they give corrections of the same and lower order of magnitude as the terms which
were taken into account in Refs. 4 and 5.

We shall assume that because of the smallness af thetor, which determines the
size of the region where the spins possess an unfavorable orientation from the standpoint
of the Zeeman energy, the mattik changes little over distances of the ordel of As
usual, on account of the gradient invariance, only the vettar)' is important. The
main assumption of the further conclusions is that locally we have a filling of a Landau
level with a definite projection of the spin in a local magnetic field, just as in the case of
a matrixU which is uniform in all space. This assumption makes it possible to use the
Hartree—Fock expression for the energy density of a filled level to t8tpsi w.. Then
the energy is diagonalized locally by the spinor compongntand x; , which makes it
possible to retain in the additional vector potential only the diagonalfpast(,o,. The
effective magnetic field for the up spins is

H;ﬁ:HO_VXQZ. (3)
The magnetic field for the down spins is
Hogr=Ho+V xQ,. (4)

All local Landau levels are filled in the fielkslgff (3), and the electron spins are oriented
according to a local average spin. The density of electrons filling a local Landau level is
1 1 eHy 1 e

P=2ml?_ 2 oh 2mon oV <0 ©

We can choose a system of units such @t /Ac=1 andHy=1. Then

_ ! VXxQ 6
p=5-+5 VX, (6)
The same result is obtained in the approximation of a global projection on one Landau
level*® Therefore, the nonzero average magnetic flux of the additional magnetic field
changes the total number of electrons on the lower Landau level. The quantity
Q= (1/27) f[VxQ,d?r is a topological invariantthe degree of the mapping of the
plane onto a spheti®— S?), which assumes integer values. In the case when the number
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of particles is given, all particles cannot fit on the lowest Landau level, since
(1/2m) [(1-VXQ,)d’r=Ny—Q, andQ particles must occupy a state on the second
spin sublevellwe assume that the spin splitting is much less than and Q>0). If,
however, the chemical potential is given, then the number of particles should simply
decrease byQ, since the states on the second spin sublevel lie above the chemical
potential. Similarly, the cas® <0 leads to the appearance of a hole in the local filling of
the lower spin sublevel.

We shall assume below that the case of a fixed chemical potential is realized and the
zeroth Landau levelLL) is filled. The Hartree—Fock energy is an integral of the local
Hartree—Fock energy density, calculated for a completely filled Landau level in the local
effective magnetic field. For a fixed interaction, this energy depends only on the magnetic
field, which according to Eq4) is uniquely related with the densigy and has the form

hoo  E) o E() g, Eip)

2/ 2

H(r)=
The expressions for the coefficierts E, andE; are of order ofe?/«l,, and are
presented in Ref. 6 is the average spin. We confine our attention to the first two terms

of the expansion iV X, :

£ )+1 9E
1 fiwe Elpy)  Elpo) PO 29"
HN~52 22m? 22075t 2 (2m)2 Vx4,
(o)t =2 )
702 o PVUXG, 4 gH-+ 1P G2 g () )
(2m)? xS o2 m)?

Herepo=1/27 is the electron density in the completely filled Landau level in an external
magnetic field; in the Zeeman term, we neglected the change in the density. The change
in the total free energy of the electrons on the lower spin sublevel accompanying the
appearance of a nonsingular skrymion vortex with vortex nunib& expressed by the
formula

hol (E E’
Q:fdzr(H(r)—,up(r)): ;o Q+( 2(;)-0) (PO)) J' H- S(I')

)2d%r + J E.d?r, 9)
where

SN JE ~ = 1 9E
(po)=E(po) 2 7pP0 E'(po)=E(po)+ 2 7pgPo

We can see that additional terms, which are proportionaDtand are absent in the
expressions obtained previously in Refs. 5 and 6, appear in the total erfewye.
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assumed that the chemical potential corresponds to half the spin-splitting gap. The ener-
gies of the single-particle excitations correspond to the variational derivatit# with
respect to the densities (r) andn (r) and have the form

! ’

+——@+h VXQ,+| =——=—|VxQ,+gH s+@(AS)-(UT*U)

€ T T on @e 2 \27% 2w 279 2 o
(10

-_EO hoVXQ E ’ VXQ,—gH-S E© AS)-(UTeU) (10

€ = o w¢ 7\ 5" o0 z—9gnR- 2 (AS)-(UTaU) (10)

(the chemical potential was subtracted from the values of the engrgies

We can see that a skyrmion possesses many attributes of a composite fermion: an
integral charge and an integral number of magnetic-flux quanta. In our approximation
there is one flux quantum per charge. This could be due to the fact that we employed the
small-gradient approximation and the change in the magneticHiéld H, was assumed
to be small, so that the following Landau levels in the field are located at a distance
hw.. The real magnitude of the additional field depends on its region of localization,
since the flux is a topological characteristic. For a small localization region, the additional
field increases anHl* decreases. Moreover, the additional field increases @itAlso,
the value of theg factor itself is not too small, so that the eigenvakie for negative
Q can drop below the chemical potential not only for the first but also for the second
Landau level. If this were to occur for a vortex wigh= — 2, then the flux would equal
two quanta per unit charge, as happens in composite fermions. Of course, to explain this
fact it is necessary to go beyond the framework of our analysis, since in this case the
“local” approximation is invalid and numerical methods must be used.

We thank G. E. Volovik for many discussions of a number of questions touched
upon in this work. We also thank Yu. A. Bychkov for familiarizing us with his work prior
to publication. This work was supported by the Russian Fund for Fundamental Research
Grant 95-02-05883 and CRDF Grant No. 452.

ID. H. Lee, and C. L. Kane, Phys. Rev. Leftl, 1313(1990.

2Yu. A. Bychkov, JETP Lett55, 170(1992.

3S. L. Sondhi, A. Kalrede, S. A. Kivelson, and E. H. Rezai, Phys. Re47B16418(1993.
4H. A. Fertig, L. Brey, R. Cote, and A. H. MacDonald, Phys. Rev5® 11018(1994).

5K. Moon, H. Mori, Kun Yanget al, Phys. Rev. B51, 5138(1995.

6Yu. A. Bychkov, T. Maniv, and I. Vagner, Phys. Rev.53, 10148(1996.

M. M. Salomaa and G. E. Volovik, Rev. Mod. Phy&9, 533(1987.

Translated by M. E. Alferieff

263 JETP Lett., Vol. 65, No. 3, 10 Feb. 1997 S. V. lordanskil and S. G. Plyasunov 263



Current filamentation and macroturbulence in
superconductors in rotating magnetic fields
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The onset of specific magnetic structures associated with the formation
of extended current filaments is observed in YBCO single crystals in a
rotating magnetic field. Like current filaments in a plasma, they are
unstable and decay into current macrovortices. The appearance of fila-
ments is explained by the formation of closed flux rings along
magnetization-reversal fronts and collapse of these rings with forma-
tion of Meissner cylinders. The total current along the surface and in
the vortex shell of the cylindefthe latter current dominates in high-

T. superconductojsexceeds the critical current in the same volume
located far from a filament. €1997 American Institute of Physics.
[S0021-364(97)00603-9

PACS numbers: 74.68w, 74.72.Yg, 74.25.Ha, 74.25.Fy

Magnetization reversal in type-1l superconductors is ordinarily studied on the basis
of critical-state models? developed for finite sampleglates and cylindejsin a longi-
tudinal field. In this case, the magnetization-reversal front is a two-dimensional surface
oriented parallel to the field and the straight flux lines are oriented along the front. In real
samples edge effects cause a strong curvature of the flux lines and give rise to specific
current structures and instabilitiédn the present work, we observed the formation of
current filaments and decay of these filaments into macrovortex formations irfThigh-
superconducting plates with the field rotating in the plane of the plates. The characteristic
features observed make it possible to explain the magnetization instability in supercon-
ductors in rotating fields, which has been observed in macroscopic measurements over
the last twenty years.

The structure of the magnetic flux in YBCO single cryst@8—110m thick, with
dimensions of 0.5—1 mm in the plane, and with width-to-thickness ratios from 5)to 40
was investigated with the aid of magnetooptic indicator films consisting of bismuth-
containing iron garnets, which made it possible to visualize and measure the normal
component of the induction at the superconductor surficghe field rotated slowly in
the developed planab of the crystal, normal to the optic axis. In the process, only the
deviation of the magnetic flux from the direction of the field in a direction perpendicular
to the surface of the sample was revealed. In slightly crossed polarizers of a microscope,
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the oppositely directed normal components of the induction gave rise to a decrease or
increase in the background intensity and to the appearance of black—white contrast.

In the initial state, with a field imposed on a cooled sample, the standard magne-
tooptic contrast>®due to partial bending of the flux lines around the superconductor was
observed at the edges of the plates which were oriented in a direction normal to the
applied planar field. The contrast at these edges changed substantially in a rotating field.
This is due to a change in the character of the bending of the flux lines near the edges
(when a field is applied the flux lines bend around the corners of the sample, and when
the field rotates, the curvature of the lines of the previously trapped flux changgsAgign
the same time, contrast appears at the edges which are oriented in a direction normal to
the new direction of the field, where the newly entering flux lines bend around the center
of the crystal. The flux distribution remains practically unchanged in the central region of
the sample, and periodic narrow stripes of brighter contrast appear at the boundary
between the central region and the periphery, where the bending of the flux lines changes.
They correspond to deflections of the flux lines out of the plane of the sample at these
locations. Such periodic deflections can be attributed to helicoidal disturbances of the flux
lines. As the field rotates, currents perpendicular to the currents induced in the initial field
H, i.e., parallel to the previously penetrating flux lines, appear in the peripheral zone. In
this case, the trapped flux lines are unstable with respect to helicoidal disturbances of
their shap€;® which produces a modulation of the normal component of the induction at
the surface of the sample. We note that the period of the observed stripes is close to the
helicoid spacing estimated according to the theory of Ref. 8.

When the field is rotated by-90°, new features arise at the edges oriented along
H (normal to the direction of the initial fiejJdHere lines of bright contrast with edges of
a different color(Fig. 1a, corresponding to opposite normal components of the induction
at the edges, appear. This picture is characteristic for a field around a current-carrying
wire and corresponds to the current density on these lines. In short narrow samples
contrast arises along one continuous line. Lines with f@pm Fig. 1lamaking an angle
with the edge of the sample appear in crystals with quite long sides. As the field is further
rotated, they merge into a continuous structdfgy. 1b. The profile of the normal
componentB,, of the induction, measured across the lines, giBgss =80 Oe at the
edges of the lindwith an ~1.5 kOe in-plane field an@~50 K). Fitting of the profile
with model current distributions showed that the profile is best described by three parallel
current filaments in the plate carrying a current of some average density. The current
along the central filament is maximum and flows in the direction of the critical current in
the surrounding volume. In the satellite filaments the current3stimes weaker and is
oppositely directed. This corresponds to an increase of the current along the center of the
observed bright lines and a decrease of the current on the edges of the lines.

The formation of lines of current can be explained by taking account of flux-line
bending accompanying a rotation of the field. When a field is applied, the ends of the flux
lines drop downwardtoward the central planeat the edges of the samp(Eig. 23. As
H rotates, the magnitude of the field component giving rise to their appearance decreases
(right down to zerp and the flux lines start to move in the opposite direction — toward
the surface of the crystal. In the process, half-loggg. 2b or closed loops form near
the surface. This occurs along fronts which make an angle with the edge. Subsequently,
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FIG. 1. Magnetooptic contrast due to lines of current arising and decaying in a YBCO plate with clockwise
rotation of an external magnetic field in the plane of the plate43 K, H=1 kOe. The light and dark contrasts
correspond to normal components of induction of opposite polarity. The solid arrows show the corresponding
field directions. The dashed arrow indicates the initial direction of the field.
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FIG. 2. Diagrams of the flux distribution in the central transverse section of theThigilate a — with an
external magnetic field imposed parallel to the plate surface- after the field rotates by 90flux lines
perpendicular to the plate section are not shown

the half-loops and loops of small radius collapse as a result of the linear tension in the
flux lines when this force exceeds the pinning force opposing this process. As a result,
flux-free cylinders are obtained. A high magnetization curignflows along their sur-

face separating the Meissner and the mixed state, and it can exceed the losses of the
critical current—i. inside a cylinder. The appearance of such “Meissner holes” was first
discussed in Refs. 9 and 10. Numerical estimates show that inThighperconductors a

large contribution to the total current along a “Meissner hole” is associated with an
increase of the critical current in the cylinder shell. At locations where the segments of
flux loops lie in the basal plane the critical current density is higher than the average
critical currentJ, in the surrounding volume. Conversely, however, the current density is
less than].. on the sides of the cylinder, where the flux lines are oriented along &xés.

As a result, an excess positive current appears at the center of a “Meissner hole” and
negative satellites form along the sides. Such a three-current model makes gives a good
fit of the induction profiles measured across the lines of strong contrast.

As H turns further, the lines of bright contrast decompose into small regions with
flux lines perpendicular to the surfa¢Eig. 19. They correspond to the formation of
closed current loopgnacrovortices which then move through the crystal, change shape
and sign, and partially annihilate. Furthermore, the new lines on which current is con-
centrated appear at neighboring edges of the saffjde 10 and the process repeats. As
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FIG. 3. Magnetooptic contrast due to lines of current arising in a YBCO plate with counterclockwise rotation
of the magnetic field in the plane of the plate.

a result, complicated distributions of the induction form. These distributions characterize
the dynamic structure of the flux in a rotating field.

When the field rotates in the opposite direction, the direction of the current lines
changes symmetricallgFig. 3). In other respects, the details of the process recur. We
note that this picture was observed in all the experimental samples, all the way up to
plates with a width-to-thickness ratio of 40, where it would appear that the one-
dimensional Bean picture of magnetization reversalld have been realized.

It is obvious that the formation and decay of current filaments as well as the subse-
quent motion of macrovortices should give rise to local electric-field spikes, which have
often been observed in superconductors in rotating fleldsppears that the character-
istic formation and transformation times of the observed structures, together with the
helicoidal disturbances, determine the experimentally observed periodic changes in the
local potential(see citations in Ref. )4
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In the weak-coupling BCS-theory approximation, normal impurities do
not influence the superconducting transition temperafyrm the case

of isotropic s pairing. In the case ofl pairing they result in a rapid
destruction of the superconducting state. This is at variance with many
experiments on the disordering of high-superconductors, assuming
thatd pairing is realized in them. As the interelectronic attraction in a
Cooper pair increases, the system transforms continuously from a BCS-
type superconductor with “loose” pairs to a picture of superconduc-
tivity of “compact,” strongly coupled bosons. Near such a transition
substantial deviations can be expected from the universal disorder de-
pendence ofl ., as determined by the Abrikosov—Gor'kov equation,
andT. becomes more stable against disordering. Since hijgbuper-
conducting systems fall into the transitional region from BCS-type
pairs to compact bosons, these results can explain their relative stability
against disordering. €997 American Institute of Physics.
[S0021-364(®7)00703-2

PACS numbers: 74.72h, 74.20.Fg, 74.20.Mn

It is well known that in the standard weak-coupling BCS-theory approximation,
normal impurities do not strongly influence the superconducting transition temperature
T. in the case of isotropis pairing (Anderson’s theorejtt The suppression of; by
disorder is also quite weak in the case of so-called anisot®pigiring?* At the same
time, ford pairing normal impurities destroy superconductivity very rapfdfyand the
disorder dependence df. is determined by the universal Abrikosov—Gor’kov equation

NN

whereW (x) is the digamma functiony= wnimpuzN(EF) is the standard rate of scatter-
ing of electrons by point defects with potentialwhich are distributed randomly with
some densityn;,, in space, andN(Eg) is the density of states at the Fermi leg . It
follows directly from Eq.(1) that T, is suppressed completely at some critical scattering
rate y=0.88T .y, which determines the corresponding critical impurity density and the
residual normal-state resistance:
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FIG. 1. Boson self-energy due to impurity scattering.

_2m'yc_ 87yc o
PAG—n—eT——wpr. (2

wheren and m are, respectively, the electron density and mass @pds the plasma
frequency’

It is now becoming increasingly more certain tliatype pairing occurs in copper-
oxide highT. superconductorsHowever, the characteristic scale of the critical scatter-
ing frequencyy.~ T is at serious variance with a large number of experimental data on
T. suppression by disorder for these systérifiese data apparently indicate that the
superconducting state persists all the way up to the disorder-induced metal—insulator
transition, i.e., up toy~E>T.,. The purpose of this letter is to give a qualitative
explanation for this discrepancy.

Let us consider the limit of a very strong pairing interactiopposite to the standard
BCS approximatio)) leading to the formation of compact bosdnk this caseT, is
determined by the Bose condensation temperature of free bosons. In the case of a system
with impurities, the Bose condensation point is determined by the equfation:

pp— 2 (0)=0, 3)

where u, is the chemical potential of the pairs akdO0) is the zero-frequency limit of
the self-energy of a boson in the field of the impurities. In the case of weak scattering the
self-energy is determined by the diagram displayed in Fig. 1:

dp 1

2
2 (En)_nlmpv (271_)3 ien—p2/2m* +/“p’

(4)

wheree,=2#7nT are the even Matsubara frequenci®$,= 2m is the mass of a pair, and
we assume thal>T.. In what follows we shall confine our attention to three-
dimensional systems. Direct calculations give

> (0)=Re3(0)+Eqc, (5)

where Eqc= — (M*/ %) nimpu?py is the impurity scattering induced shift in the band
edgé€ (p, is the momentum cutoff parameter of the order of the recipracal of the
lattice constant and

~ 1
Rez(o):Enimpvzm*3/2V|/va|- (6)
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The quantity E,. results in a simple renormalization of the chemical potential
1= pmp—Eqc, so that Eq(3) in the renormalized form reduces to

1
2k 32N
——— Njpp ™M %si =0 (7)
2|M|7T imp! gnu
with only one root of importance for usu<0 for bosons at temperature>T,):
u=0, i.e., up—Eqc=0. Accordingly, the Bose condensation temperature in an impure
system is determined by the standard equation

Ml 1=

n © 1
Ezgfiwdi(f)m, )

whereg=2s+1 (for bosons with spirs) andN(e) is the impurity-averaged density of
states, which in the simplest approximati@h reduces tdN(E—Ey.) — the density of
states of free particles with energy measured from the shifted band edge. It is obvious
that this gives the standard expression Tor°

3.31(n/2)%3
Tc=?§ e 9

which is independent of the disordebisorder could only have an effect due to the
exponentially small “Lifshitz tail” in the density of states in E¢B); this tail is due to
localizatiort! and does not arise in our very simple approximatiéh We therefore
conclude that in the approximation of a very strong pairing interactcmmpact-pair
superconductivity, T, is virtually independent of disorder f@ny value of the spin of a
Cooper pair, i.e., for pairs of the, d-, etc., types.

In a quite old paper by Nozies and Schmitt-Rink,devoted to ideal superconduc-
tors with no impurities, it was shown that as the pairing interaction increases, a continu-
ous transition occurs from expressions Tqrin the weak-coupling BCS theory approxi-
mation to expressions determined by the picture of Bose condensation of compact pairs.
A corresponding analysis fdr. in a system with impurities can be performed by solving
a system of coupled equations which generalizes the analogous equations ©fR#ie
standard equation for BCS instability

1-x(0,0=0 (10
and an equation for the fermion densighemical potentiak of the electrons

1 [ d% fdw 1 d 5 "

2= | @) 7 expelTo -1 ap 2% @) D

wheren; (u, T.) is the free-fermion density,

Imx(q, )
1-Rex(q,w)’
and the Cooper susceptibiliff(q, w) is determined by the diagrams shown in Fig. 2. In

this figure the corresponding symmetry factors for different types of pairing stand in the
vertices. For example, for a cubic lattiée

(g, w)=arctan (12
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FIG. 2. g Diagrammatic representation of the Cooper susceptibjlfty, »), V — pairing interaction potential,
I' — vertex part of impurity scattering in the Cooper channel, as determined in the “ladder” approxirttation

¥(p) = L(isotropics-pairing),

s (p) =Ccosp,a+cosp,a+cosp,a( anisotropic s-pairing),

¢dxz_yz( p) = cos pya— cos pya(d-pairing),

$d3227r2(p) =2cosp,a—cosp,a—cospya, and so on, (13
and the following model expression can be used for a pairing interaction:

Vi(P.p") =V #hi(P) i (P'), (14)
where ¢;(p) were determined above, and the potential

Vipr=— 2V > 2 (19

V(L+p?pg)(1+p'?/pg)

is analogous to that employed in Ref. 7, whege-a 1.

The system of equatior(40) and(11) is very time-consuming to solve numerically,
even for systems with no impuriti€sit the same time, it is perfectly obvious that even
in the impurity case these equations will give a continuous transition from disorder as a
function of T, interpolating between the limiting cases of weak coupling and the
compact-boson picture which were discussed above. In the case of isadfppitng
T. remains virtually disorder-independent, i.e., Anderson’s theorem holds even in the
strong-coupling case. In thépairing case, however, the universal disorder dependence
of T, determined by Eq(1) will no longer hold in the region of the transition from
Cooper pairs to compact bosons. The physical reason for this phenomenon is quite
obvious — the mechanism df. suppression by “depairing” no longer works as the
attraction in pairs increases and in the very strong coupling re@iwell be determined
by the Bose condensation temperature of pairs in the impure system. The qualitative
behavior ofT. as a function of the disorder is shown in Fig. 3. This figure illustrates the
continuous transition in the normal-state resistance dependeritegiven by the uni-
versal Abrikosov—Gor’kov relatioficurved) to disorder-independefit; (curves). The
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FIG. 3. Qualitative disorder dependence of the transition temperatuteesidual normal-state resistivify).
Curved — universal Abrikosov—Gorkov relation determined by Ef. Curves — isotropics-pairing. Dashed
curves —d-pairing in the transitional region from BCS theory pairs to compact bosons.

dashed curves corresponddopairing in the transitional regiofthe coupling constant

V, increases from curvé to curve?2). Therefore, for ad-pairing system in the transi-
tional region it is easy to obtain a superconducting state with quite strong disorder,
corresponding tp>pag -

The transitional region is determined qualitatively by a simple inequality introduced
in Ref. 13: 7~ 1<ppé<2, wherepg is the Fermi momentum and is the coherence
length of the superconductor. In the so-called Uemurabtbe highT, superconductors
lie near the “instability” line pré=2=.12 This fact can easily explain the deviation
observed in highF, superconducting systems away from the universal disorder-
dependence of, and the relative stability of such systems with respect to disSrder,
despite the fact thad pairing is realized in them.

We thank A. V. Mirmel’'shtén who insisted that these simple considerations be
published. This work was partially supported by Russian Fund for Fundamental Re-
search, Grant 96-02-16065 and Grant IKh.1 of the program “Statistical Physics” of the
Russian State Committee on Science and Technology.
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Self-cooling of weak solutions of ~ 3He in “He during
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A new method of pressure regularization in the measuring cell is pro-
posed for experiments on self-cooling of weak solutions. Preliminary
results are presented for solutions with concentrations of 2% and 7%.
Cooling by a factor of 1.5—-2 was observed in the starting-temperature
range 40-140 mK. €1997 American Institute of Physics.
[S0021-364(®7)00803-7

PACS numbers: 67.60g, 67.80.Gb

The possibility of cooling of solutions ofHe in “He during adiabatic melting was
predicted in Refs. 1 and 2 on the basis of a number of assumptions about the character-
istic features of the crystal-liquid phase equilibrium below 0.1 K, later confirmed in
measurement$ and calculatiorsof the phase diagrams. The most important feature is
that the equilibrium concentration 8He in the solid phasex() is negligibly small at
these temperaturd<. Therefore, in the process of crystallization of a solution the con-
centration of the liquid phase continuously increases up &, when a second liquid
phase — virtually puréHe — appears. At this point the system emerges onto the triple
line and the concentrations of all three phases and the pressure depend only on the
temperature. Further growth of tfiele crystal results in complete vanishing of the dilute
solution, and only spatially separatéde (crysta) and3He (liquid) remain in the cell.
When solid*He melts, the only important thermal process in the system is dissolution of
3He in“He, since the phonon entropies‘fe in both the liquid and solid phases as well
as the entropy ofHe in the solid phaseS;=x.R In 2) are negligibly small. Thermody-
namically, this process is similar to one-time dissolution at zero pressure, studied in Ref.
8 in the temperature range 100-5.7 mK. WHete was diluted with liquid*He through
a superfluid filter to a final concentration of 6.6%, degrees of coajimgjual to 3.6 with
a theoretically maximum value of 4.56 were obtaineg=(T;/T;, whereT; andT; are
the initial and final temperatures of the progedn the case of adiabatic melting of a
solution with an initial concentration of 2% it is possible to obt@s in Ref. § a degree
of cooling »=Tg(100%)/T(2%)=7.3, where Tg(x) is the Fermi temperature for a
solution with concentratiox (for pure*He — T¢(100%)=1.2 K atP=2.5 MP3.

Both methods are most promising for cooling solutions to extremely low tempera-
tures, which is important in connection with the search for a superfluid transition of the
impurity component of the solutions. Indeed;Ti<T., whereT, is the superfluid tran-
sition temperature ifHe (equal to 2.4 mK at a pressure of 2.5 MPthe degree of
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cooling increases substantially. According to estimates, in the case of adiabatic melting of
a 1% solution from the starting temperatdre=1 mK the degree of coolingg=70 and

the final temperatur@;~15 uK. The source of the cold is the solution itself, while the
efficiency of cooling by nuclear demagnetization decreases rapidly because of the large
Kapitsagjugnp. The minimum solution temperature achieved to date is approximately
100 K .21

The practical observation of adiabatic melting of solutions is limited to the two
attempts made in Ref. 3. For the initial temperatures of 57 and 217 mK the final tem-
peratures were equal to 55 and 184 mK, and after repeated crystallization these tempera-
tures increased to 80 and 221 mK, respectively. The authors concluded that as the tem-
perature decreases, the refrigeration capacity, which decrea§ésrapidly drops below
the heat release due to irreversible processes. Indeed, in n the case of solutions the
Pomeranchuk cells ordinarily employeédor crystallizing®He result in dissipation due to
plastic deformation and friction of the crystals against one another, since even at the start
of the process the fraction of the solid phase is close to 1 and the cell volume must
increase by 10% for complete melting of the crystal. In the present work we were able to
employ a cell with a constant geometry for crystallization and melting of solutions at low
temperatures. This was made possible by an additional line, equipped with a superfluid
filter (SP), for filling the cell. At pressures for which the conventional filling line was
blocked by the solid phase, the SF made it possible to transport fftlédnto and out
of the chambef), The*He crystallization pressure in the pores of the SF was much higher
than in the volume of the liquidsee, for example, Ref. 12 -AP~0.2-0.3 MPa for
d~1 wm). The use of a cell with a SF instead of a Pomeranchuk cell not only simplifies
the construction of the low-temperature part of the apparatus, but it also eliminates the
problem of heat release accompanying a change in geometry.

The experiments were performed in a 3.3%coell (Fig. 1). The superfluid filter
consisted of a Melchior capillary tightly plugged with a fine,©g powder (crocus.
Special experiments showed that the SF is not plugged with &dkdat least up to 2.8
MPa. One end of the SF was located in the experimental cell and contained a packing
(sp) consisting of sintered silver powder in order to increase the geometrical area
through which pressure is transmitted to the chamber. The temperature at the second end
of the SF at the location where it connects with the capillary tube running to the valve on
the Dewar cup was maintained in the rangg<T<T,, whereT,, and T, are the
crystallization temperature andpoint temperature ofHe at the working pressure. The
first condition is that solidHe is not formed in the capillary and the second condition is
that He Il is present in the powder. The heat exchan@e®s consisting of ultradisperse
silver powder baked onto copper foil, had an effective doeemputed of the order of
1 n?. The temperature was measured according the susceptibility of the powdered
cerium—magnesium nitrate, diluted to 50% with lanthan(w@MN), pressed into the
shape of a cylinderld =5.5 mm,H=5.5 mm) with a filling factor of 90%. The working
frequency of the oscillator equalled approximately 227 kHz. The sensitivity=dd.1 K
was equal taT/df=0.5 mK/Hz. The thermometdrCMN was calibrated acccording to
a 100{) rated Speer thermometér) placed in the mixing cellmo and serving as a
sensitive element of an electronic temperature stabilizer. The measuririg)¢caihich is
in resonance with the oscillator circuit, was secured to the cell on three thin Stycast rods
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FIG. 1. Low-temperature part of the apparatus: Cu — copper; textolite, St— Stycast,cc — cold conduit,
ft — filling tube , cs— copper screertc — vise for thermal contact of SF on the mixing cell. The rest of the
designations are explained in the text.

(b). To remove the heat released in the coil, copper insulated WsGgm) (cw) were

glued onto it. The pressure in the cell was measured through the fillingfijlveith the

aid of a capacitive pressure gau@m) with a sensitivity of 2.9 kHz/atm, placed on the
mixing cell. The superconducting thermal switch consisted of a cadmium(Cail
(D=1.5 mm,L=9 mm) placed in the field of a superconducting solen¢sjl After
condensation of the mixture through the filling tube this line was cut off from external
connections by a valve on the cap and the pressure in the cell was increased with the aid
of a“*He high-pressure tank through the SF. The concentration of the experimental mix-
ture was calculated according to molar-volume tfgmd according to the known con-
centration of the initial mixture, the cell volumes, and the filling and SF lines. After the
starting temperature was reached a crystal was grown in the cell over a time of the order
of 30 min. The heat released in the process was removed into the mixing chamber. With
the thermal switch open, the pressure was lowered with the aid of a fine-regulation valve.
The exces$'He (approximately 0.3 chof liquid) was collected into a bottle with a
volumeV=1.50 liters, and the amount of melted crystal was monitored according to the
pressure in the bottle.

The results of several coolings for 2% and 7% solutions with different rates of
melting and different starting temperatures are presented in Tabkg +{ solution
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TABLE 1.

X3, Te(x), N3, n, o, Ti, T,
% K mmole mmole/s min mK mK Ne M
1.1 ~2 142 70 2
0.56 4 95 50.3 1.9
2 0.16 34 0.056 41 100 61 1.6 7.3
0.39 6 56 43 1.3
— — 42 29 14
0.36 6.5 57 39 15
7 0.37 12 0.51 4.6 55 36 1.5 3.1

concentrationn; — number of°He moles in the celln, — rate of formation of the
liquid solution, &t — melting time of the crystalT; — initial temperature;T; — final
temperature, 5. — experimental degree of cooling, ang — theoretical degree of
cooling).

The data are of a strongly preliminary character, since in the first experiments a
strong thermal coupling was found between the experimental and mixing cells. Accord-
ing to data obtained from special measurements, the thermal resistance between them
with the thermal switch open was two orders of magnitude lower than the computed
value. This is due, in all probability, to an incomplete transition of the cadmium into the
superconducting state. Nonetheless, the cooling effect was much stronger than that ob-
served in Ref. 3: The degree of cooling in the range 40—-140 mK was equal to 1.3-2.
According to the data in Table I, for=2% the value ofy clearly tends to decrease as
the initial temperature decreases. The relatiom afith the rate of melting of the crystal
is not as strict: For a 2% solutidsecond and third rows in Tablg¢ d tenfold decrease of
n, resulted only in a small decreasesn(from 1.9 to 1., and forx=7% an increase in

n_ by a factor of 1.4 had no effect at all on the valuepfThese qualitative features
cannot be explained by the effect of a heat inflow which is constant in(tmene which
depends uniquely on the temperatures of the mixing and experimentg} deléspos-

sible, that the heat inflow changed randomly from one measurement to another. The
possibility that adiabatic conditions break down as a result of the melting itself of the
crystal also cannot be ruled out. The characteristic time dependences of the temperature
are shown in Fig. 2 for two coolings with a starting temperature of the order of 0.1 K.
The first arrow corresponds to opening of the thermal switch. The sharp jump in the
temperature derivative corresponds to melting onset. The second arrow indicates the
moment when the third phagpure liquid®He) vanished in the cell. This corresponds to
melting of the crystal in one-fourth of the cell volume. It is evident in the curves that at
this moment the rate of cooling decreasE®y. 29 or even that cooling is replaced by
heating(Fig. 2b). This is qualitatively explained by the fact that the refrigeration effi-
ciency in a three-phase system does not depend on the concentration, while in a two-
phase system the refrigeration efficiency decreaséJSan""T 2 (Ref. 14, wherex_ is the

3He concentration in the diluted phase. When the entire crystal has niédbetarrow,
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FIG. 2. Time dependence of the temperature during adiabatic melting with concengat#b: g T;=100
mK, b) T;=95 mK.

which can be judged according to the indications of the pressure gauge, the system starts
to heat up as a result of parasitic heat inflow.

In closing, we note that the SF makes it possible to perform experiments with
solutions at temperatures below the minimum on the crystallization curves. Furthermore,
this structure is technically much simpler than the Pomeranchuk cells customarily used.
At this stage it is impossible to say anything about the presence of internal dissipation
sources characteristic of the melting process itself. Nonetheless, it can be expected that
under adiabatic conditions the method employed makes it possible to approach the theo-
retical degrees of cooling.

I wish to thank the directors of the Institute of Physics Problems of the Russian
Academy of Sciences and K. N. Zinov'eva for making it possible to perform this work,
Yu. D. Anufriev for formulating the problem, and S. T. Boldarev for helpful discussions
and suggestions.
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Two-dimensional microclusters of vortices: shell
structure and melting
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The melting of two-dimensional microclusters of “particles” which
repel one another according to a logarithmic law and are confined by an
external quadratic potential is investigated. The model describes Abri-
kosov vortices in a superconducting island of vortices in a rotating
superfluid liquid and electrons in a semiconductor nanostructure sur-
rounded by a low-permittivity medium. The structure of clusters and its
dependence on temperature and melting are investig@teximelting

of microclusters of vorticegroceeds inwo stagesl. A transition from

a frozen phase into a state correspondingotational reorientation of
crystal shellsrelative to one another. 2. At a higher temperature, the
radial order vanishes. This is connected with the fact that the barrier for
rotation of the shells is much lower than the barrier for radial breakup
of the shells. ©1997 American Institute of Physics.
[S0021-364(®7)00903-1

PACS numbers: 74.66.w, 64.70.Dv, 47.32-y, 47.37+q

INTRODUCTION

A magnetic fieIdH>Hcl penetrates into a type-Il superconductor in the form of
Abrikosov vortices, which at low temperatures form an ideal triangular latticehe
absence of pinning centeérsAs the temperature increases, melting of this lattice and
formation of a liquid phase from vortices can occur, as has been observed i high-
superconductorésee the review in Ref.)2

The question of the structure of a mesoscopic system consistingrmBdnumber
of Abrikosov vortices confined in islands of a superconducting phase is of great interest.
The system is equivalent to the problem of th@-dimensional analogcompare Ref. B
of a classical Thompson atdmwith “charges” which satisfy the laws of two-
dimensional electrostatics and compensated by an incompressible background. This
model also describes vortices in a rotating superfluid liquid as well as electrons in a
semiconductor quantum dot embedded in a medium with a much lower permitgeiy
below). A small system of vortices should behave likmerocluster This means that the
shell structure of the cluster can change sharply when only a single “particle” is added
(structural sensitivityright up to some numbeX of “particles” when a region with the
structure of a “volume” phas — a region with a triangular lattice — appears inside this
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cluster and melting of the microcluster can exhibit interesting specific features compared
with melting of a volume phas&>

In the present work we studied the temperature dependence of the structure of
microclusters of vortices. We have shown that thelting of a two-dimensional micro-
cluster of vortices proceeds in two stagésrst, intershell(“orientational”) melting
occurs and at a much higher temperature the shells dissipate. We have also shown that
this is due to the fact that the energy barrier for reorientation of the shells is much higher
than the barrier for radial hops of the particles.

PHYSICAL MODEL

Let us now consider an island of a type-Il superconductor in a transverse magnetic
field. If the thicknesdd of the island in the temperature range studied is less than the
coherence lengtl§(T) of the superconductor, then from the standpoint of the supercon-
ducting properties the island can be viewed as beimdimensionalThe magnetic field
penetrates into the system in the form of two-dimensidB) vortices. The interaction
potential between the 2D vortices has the fagee Ref. §

2, T oM
U(r)=—q Ina, a<<r<\,; U(r)=q T+Const, rs>,,

whereq is the “charge,” which is proportional to the density of the superfluid compo-
nent; r is the distance between vorticesg; is the radius of the core of a vortex,
a~£&(T); A, =\?/d is the penetration depth of the perpendicular magnetic field into a 2D
superconductor; and, is the London penetration depth of the magnetic field in a three-
dimensional superconductor. For example, for films of thickndss100 A and
A=2000 A we haver, =4 um.

Let £<R<\ | . Then vortices in the island can be regarded as point-like “particles”
repelling one another according to a logarithmic law. Stabilization of the density of
vortices in superconductors in an external magnetic field is taken into account in this
model by introducing an effective confinement potentiak= ar? corresponding to a
uniform compensating background. The image forces for vortices do not qualitatively
change the properties of the systétine problem of taking account of the image forces
will be discussed in a more detailed paper

Therefore we arrive at a model of a 2D cluster consistingNatlassical particles
(N=1-50) repelling one another according to the lehfr ;) =02 In(r;; /@) and confined
by an external potentiauex((ri)zariz.

After the scaling transformations

r—(a¥q)yr, T—(kg/g)T, U—(lig>)U
the potential energy of the system assumes the form, to within the constant
CZ In(g/a"%a),

U=-> In rij+2iri2. (1)

i>]
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The cluster properties studied here do not change qualitatively even for a small anisot-
ropy of Ugx(r).

A system of classical particles with the indicated potential en€2yys equivalent
to the 2D analog(compare with Ref. Bof a classical Thomson atofnThis model
describes not only vortices in a superconducting island, but\astices in a rotating
vesselvith superfluid heliun{see Refs. 7—111t is also describes aglectronic clustein
a semiconductor nanostructuiD quantum dagt surrounded by a medium with a much
lower permittivity < 4o (if the interelectronic distances are such thaD <r <D/k;
D is the thickness of the nanostructure dnde/ eyqq; like charges of the images of the
electrons “are aligned” in charged lines, which results in an effective logarithmic inter-
action between the patrticles.

EQUILIBRIUM CLUSTER CONFIGURATIONS

To find the equilibrium particle configurations a random search for the minimum of
the potential energy of the system with random motion of all other shells as a whole and
random motion of the particles was employed.

The local and global minima of the potential energy were found. At low tempera-
tures small logarithmic clustergust as Coulomb clusters, see Refs. 3, 5, 12, and 13
have a shell structure. When the number of particles is sufficiently large, a region with a
triangular structure nucleates inside a clugtse Refs. 3, 5, and 7-111

The occupation numbers of the shells and the corresponding potential energies
(measured fronﬁ:,%l In(o/a*?a), see abovefor global minima of 2D logarithmic clusters
are presented in Table I. The sequential filling of the shells is reminiscent of the “peri-
odic table” of the elementgscompare the filling of shells in the 2D classical system of
particles with thethree-dimensionaCoulomb interactio®). Each shell can contain no
more than a definite number of particles.

We employ the following concept of a shélifferent from the previously employed
definitions, which are not universal for a different number of particles; see, for example,
Ref. 9. We define a shell as a convex polygon consisting of the maximum possible
number of particlegsand it contains the preceding sheliat satisfies the following rule:

The maximum distance from the center of the system to a particle belonging to a given
shell must be less than the minimum distance from the center of the system to a particle
belonging to a shell which is external with respect to the first shell. The filling rules
which we obtained for shells in clusters from our calculations using the above-mentioned
definition are similar to the filling rule for shells in the periodic system of the elentents.
Specifically, in contrast to Ref. 9, the number of shells candlecteases the number of
particlesincreases Correspondingly, the distribution of the particles over the shells in
our work is different from that obtained in Ref. 9.

Since the confining quadratic potential is centrosymmetric, one would think that the
shells in a cluster must be regular polygons inscribed in a circle. However, this is true
only for clusters consisting of one or two shells, the inner shell consisting only of one
particle. As the number of particles in clusters with smilincreases further, spontane-
ous breaking of the symmetry occurs. This effect is strongesifed 0 andN=24. In
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TABLE I. Shell structure and potential energy of vortex microclusters.

Number of Shell filling Potential Number of Shell filling Potential

particles numbers energy particles numbers energy
1 1 0.00000010° 26 3,9,14 —1.94056910
2 2 5.00000010°*1 27 3,9,15 —2.15613710
3 3 8.91802310° 1 28 4,915 —2.384294107
4 4 1.09045710° 29 4,10,15 —2.62591210
5 5 9.76405210°* 30 4,10,16 —2.881028107
6 1,5 4.35416910 1 31 4,10,17 —3.14926810°
7 1,6 —7.5124421071 32 411,17 —3.43132910°
8 1,7 —2.51474610° 33 511,17 —3.727473107
9 1,8 —4.91451010° 34 1,5,11,17  —4.037308107
10 2,8 —8.10041410° 35 1,6,11,17 —4.36160610°
11 3,8 —1.20933310" 36 1,6,12,17  —4.70033110°
12 3,9 —1.69785810" 37 1,6,12,18  —5.0535341(°
13 49 —2.27161010 38 1,6,12,19  —5.42092910°
14 4,10 —2.94279310" 39 1,7,13,18  —5.8031551(°
15 4,11 —3.70611810" 40 1,7,13,19  —6.200430107
16 5,11 — 457370710 41 1,7,13,20 —6.61231010°
17 1,511 —5.54130810" 42 1,7,1420 —7.03941610°
18 1,6,11 —6.62069210" 43 2,8,14,19  —7.4816661C7
19 1,6,12 —7.81165510 44 2,8,14,20  —7.9396061C7
20 1,6,13 —9.11019910" 45 2,8,14,21 —8.412619107
21 1,7,13 —1.052696107 46 3,9,14,20 —8.9015141(?
22 1,7,14 —1.205683107 47 3,9,1520  —9.4061221C?
23 1,8,14 —1.370647107 48 3,9,1521  —9.9265541(C7
24 2,8,14 —1.548203107 49 3,9,1522  —1.04625010°
25 3,8,14 —1.737968107 50 4,10,15,21 —1.10146010°

these cases, since the first sHethunting from the centgiconsists of two particles, it is
advantageous for the second shell to assume the shape of an ellipse.

MELTING AND PHASE TRANSITIONS

We used the Monte Carlo methdIC) to study the dependence of the physical
quantities on the temperature and melting of the system. After the equilibrium configu-
rations were found, the system was heated by the amAdnt(AT) ranging from
(1-10 % to 5-10 %), after which the system was held at the new temperature for
2-10* Monte Carlo steps until it reached equilibrium. Next, the statistical characteristics
were calculated by averaging overT® Monte Carlo steps. After this, a further heating
using the described procedure was performed. The following quantities were calculated.

1. Total potential energy .
2. Mean-square radial displaceme(i4SRD) — total

18 (r)y—(ri)?
PRy e
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FIG. 1. Total mean-square radial displacem@ht’) as a function of temperature for a 2D logarithmic cluster
with N= 37 particles.

and for each shell separately

1 W (r)—(r)?
(o) = 2, ®

whereNy, is the number of particles in a shell and the averaging ) is performed over
different Monte Carlo configurations.

3. The mean-square angular displacem¢kSAD) relative to the nearest particles
in the same shell

, 1 & ((di=¢i)2)—((di—i))?
<6¢1>:N_Ri21 2 4

and the MSAD relative to the closest particles of a neighboring shell

N 2 2
1 JRA(Di—di))—((di— i)
(063)= 1 2 — —, (5)
Ri=1 d’o
wherei; andi, refer to the closest particle from the same and neighboring shells,
respectively; 2,=2m/Ng is the average angular separation between neighboring par-
ticles in a given shell.

The temperature dependence of the total MSRD for a cluster Matf87 is shown
in Fig. 1. The MSRD for all shells have a kink at the same temperaiue8- 10~ 3. One
can see from Fig. 2 that for all shells the MSAD relative to the nearest particles in the
same shell have a kink at the same temperature. Therefore a phase transition occurs at
temperaturel ,=8-10"2 in a cluster withN=37 particles: The system becomes disor-
dered. AtT>T, the number of particles in the shells starts to change; the shells exchange
particles and dissipate. It is impossible to distinguish any shells at temperatarEs.
Particles move about chaotically. The characteristic dimensionless parameter
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FIG. 2. MSAD(&;;E) as a function of temperature for a 2D logarithmic cluster Wtk 37 particles relative to
the closest particles from a given shell:— MSAD of the outer shell relative to the closet particles from the
given shell.2 — MSAD of the middle shell relative to the closest particles from the given sBel: MSAD

of the inner shell relative to the closest particles from the given shell.

I'=q%/kgT, for which a system withN=37 melts equald’ =125, which is almost
identical to the value of at which a system with a relatively large number of vortices
melts "=T".=130).

It is found, however, that the MSAD of relatively close particlesnieighboring
shells possess a kink atuch lowertemperatures. For a cluster with 37 particles the
MSAD of the outer shell relative to the closest particles in the middle shell start to grow

25- a b
0.6
2.0
1.5_ 0.4"
< 2y, < 2y
bexts2 SPext2s
1.0
0.2
0.5-
0.0 pelelee e 0.0, — T
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T 10° T 10°

FIG. 3. MSAD (5¢§> as a function of temperature for a 2D logarithmic cluster Witk 37 particles with
respect to the closest particles from the neighboring shelt MSAD of the middle shell relative to the closest
particles from the outer shelb — MSAD of the inner shell relative to the closest particles from the middle
shell.
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rapidly atTcl=8-10‘4 (1“=1/T01=1250, see Fig. 3aand the MSAD of the middle

shell relative to the closest particles of the inner shell start to grow rapidly at
TCZ=3-1O‘3 (F=1NCZ=333, see Fig. 3b This means that a specifigrientational
melting, characteristic for clusters with shell structure, occurs at these temperatures, i.e.,
in 2D clusters at some moment in time the shells the shtajning their crystallinity,

start to rotate relative to one another.

We found the potential barridd, for rotation and the potential barriés, for a
particle to hop from one shell to another. It turned out that the orientational barrier is
much lower than the radial barrier. Together with the jump in the MSAD, this is another
strong proof of the occurrence of orientational melting in 2D clusters of vorties
example, foN=11, U;=2.3210 <U,=3.71.10 ?).

It would be very interesting to observe experimentally the new orientational melting
in a microcluster of vortices, for example, by observing the vortices using as a substrate
a magnetooptic material whose local magnetization is studied with the aid of a polariza-
tion microscopdin this case, the reorientations of shells of vortices can be observed in
real-time or a scanning tunneling microscope or by means of decoration.

We thank S. A. Brazovskifor a helpful discussion. This work was supported by
Russian Fund for Fundamental Research grants, “Physics of Solid-State Nanostructures”
and “Surface Atomic Structures.”
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Luminescence of fluctuation tails of disordered solid
solutions
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The form of the stationary luminescence spectra of excitons, localized
by composition fluctuations, in disordered solid solutions under weak
excitation is calculated. The tail states for which there are no nonradia-
tive transition channels are distinguished by means of continuum per-
colation theory. Such states are responsible for the “zero-phonon” lu-
minescence band. The shape of the short-wavelength luminescence
band edge is determined mainly by the number of isolated localizing
clusters and their smallest complexes, which decreases rapidly near the
mobility threshold. The real luminescence spectrum is due to the simul-
taneous emission of phonons. The phonon emission determines the
form of the long-wavelength wing of the emission band. The computed
shape of the emission spectrum is compared with the experimental
luminescence spectra of the solid solution Gd§Se.. © 1997
American Institute of Physic§S0021-364(17)01003-7

PACS numbers: 78.68b, 64.60.Ak, 64.60.Cn

The characteristic luminescence of many disordered syStemd, specifically,
11-VI solid solutions?~®is due to the recombination of excitons localized in the wells of
the potential relief. A general feature of such systems is a large red shift of the lumines-
cence relative to the excitonic absorption maximum, so that the main emission band falls
into the region of low absorption coefficients and small values of the density of fluctua-
tion states.

The origin of the red shift of the luminescence band and the ratio of the lumines-
cence and absorption spectra are problems which are important for understanding the
physical processes in disordered systems.

In this letter we report the results of a theoretical description of the position of the
characteristic luminescence band contour relative to the absorption spectrum of fluctua-
tion states, we give a qualitative justification of the approach to this problem with the aid
of a classical continuum percolation theory, and we compare the theoretical and experi-
mental results for 11-VI solutions.

The density of states in the energy range where the tail states in the zeroth approxi-
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FIG. 1. 3 Computed density of stategw) — 1 and integral densitpV{ w) — 2 of the fluctuational tails of the
ground state of an exciton in the solid solution ¢d$)Se with c=0.2. b Spectral densityy‘{s(w) of an
excitonic ground state in the solid solution GgS,Se, with c=0.2 neglecting the interaction with phonons.

mation can be regarded as isolated from one another was calculated by a variational
method which is a modification of the method described in Refs. 7 and 8. Next, a method
which is not associated with a variational procedure and gives a normalization of the
density of fluctuation states was used to calculate the total number of localized states. The
calculation of the number of states was based on the assumption that localized excitonic
states arise in fluctuatior(glusterg which have the character of simply connected po-
tential wells.

The results of the calculations of the dengifyw) and the integral densiti%{ ) of
states for Cd§ ) Se with c=0.2 are displayed in Fig. 1a. The values obtained for the
density of tail states lead to the zero wave vector spectral density presented in Fig. 1b.
The banda(l’s(w) obtained consists of the excitonic absorption spectrum in the region of
the fluctuation states neglecting the interaction with lattice vibrations.

In the approach employed, the possibility of optical recombination is limited by the
exciton lifetime with respect to a nonradiative transition into lower-lying tail states which
is accompanied by phonon emissioft.To calculate the zero-phonon luminescence band
shapes it is necessary to find the energy distribution of states for which there are no
nonradiative loss channels or such channels are strongly limited. In other words, it is
necessary to know the distribution of spatially isolated localized states. In the general
case this problem can be solved in the quantum theory of percofatibn.

Isolated states in lattice models were studied in Refs. 9-11. As shown in Ref. 11,
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two types of isolated localized states arise in the quantum percolation theory. The first
type includes states belonging to isolated atbriigin our case potential wells or clus-
ters and relatively small complexesuperclustepswhich are formed with a random
distribution of potential wells. Superclusters play an increasingly larger role as the mo-
bility threshold is approached.

Isolated localized states of the other type are due to quantum interference
effects’13In the presence of on-diagonal disorder, which in the problem at hand deter-
mines the energy distribution of the states, substantial suppression of interference effects
should be expected. In the absence of interference effects the problem reduces to finding
the distribution of tail states over superclusters in the continuous model, i.e., a problem
which is substantially analogous to the problem of percolation along overlapping
sphereg’~20

The relations which follow from the classical theory of percolation along overlap-
ping spheres make it possible to find the distribution of states over superclusters and
distinguish the fluctuation states which possess the maximum lifetime and form a zero-
phonon luminescence band. This approach makes it possible to determine the position of
the zero-phonon luminescence band relative to the maximum of the zero-phonon absorp-
tion band of the ground state of an exciton and the mobility threshold for classical
percolation. We shall assume that for every localized state there exists a sphere of radius
Ri: such that if at a given density of localized states more than one potential well is
present, on the average, in the vqumeRﬁn/& then a transition with phonon participa-
tion is possible between states in these wells. The quaRtjtgannot exceed the distance
between two wells for which the exciton—phonon transition time between them equals
the radiative lifetime of an exciton.

The stationary density?(w) of occupied states with continuous and quite weak
interband excitation is proportional to the density of states for given energy and lifetime.
Taking account of the fact that for occupied states the emission probability is described
by zero-phonon absorption coefficieaﬁs(w) in the 1s state of an exciton, we can
represent the zero-phonon luminescence band in the form

(@)~ ady(w)P(w), (1)

where P(w) is the total relative population of states with localization eneggyhich
belong to superclusters of different size. The main contribution of isolated wells and the
ground states of pairs tB(w) can be represented as

1%(w)~ ags(w) Trad X — 2P(w) } + P(w)exy —3.073P(w) }], (2
where

1 (1/3)
47 M w))

The integral density of state¥{w) gives a density of potential wells with localization
energy limited by the quantity on one side and by Lifshitz’s limit on the oth&The
functionP(w) is the density of localized excitons in units of the first virial coefficient. In

the classical theory of percolation the data obtained by different authors for the critical
density for percolation along sphef@all in the range 1.1%7>§'rs 1.40. In our calcula-

1 - -
P(w)=5[Ru/r(), r(w)=(
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FIG. 2. Curvel — spectral densityxfs(w) of the excitonic ground state in the solid solution ¢dS$Se.
neglecting the interaction with phonons; cue— relative integrated density of statd§ w)/N{wye); curve
3 — relative occupanc{P(w) of the states4 — zero-phonon luminescence batfg(w); the arrow marks the
position of the mobility threshold g, c=0.2.

tions we employed for the density of excitonic states at the percolation threshold the
value P(wyg) =1.40. Isolated potential wells and the smallest superclusters make the
main contributions in all cases, while the higher-order terms give only small corrections
both at low densities\V{w)/Mwpyg)<1, as a result of the fact that their number is
proportional to powers of the densiyP(w) which increase with the supercluster size, as
well as near the mobility threshold on account of additional exponentially small factors.
The computational results for the zero-phonon luminescence band contour for the ground
state of an exciton are presented in Fig. 2. The position of the percolation threshold
corresponds to the point where the values of the c@regquall.

The interaction with optical and acoustic phonons is taken into account on the basis
of two models of localized excitorsnodels | and ). In the first model it is assumed that
the electron can follow adiabatically the motion of the hole, and in the second model the
electron interacts with a hole density distribution averaged over a fluctuation well. Both
limits, as well as intermediate variants, are realized in the solid solution; CgSe. .

Figure 3 displays the computational results and the experimental spectrum at con-
centrationc=0.2, when model Il makes the determining contribution. Satisfactory agree-
ment with the experimental curves is achieved when up tolfddphonon repetitions are
taken into account. The maximum of the distribution of emitting states is red-shifted with
respect to the absorption maximum, even when the interaction with the lattice vibrations
is neglected; this agrees qualitatively well with existing experimental data for all disor-
dered system5The interaction with phonons results in additional Stokes shifts of the
emission and absorption bands in opposite directions.

Our model gives a good quantitative description of the experimental situation. Be-
low the mobility threshold the form of the zero-phonon luminescence band is determined
by an universal exponential dependence of the density of states and the occupancy func-
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luminescence spectrum of CdS,Se with band—band excitation.

tion P(w), calculated on the basis of the fundamental relations of the classical theory of
percolation. This energy range makes the main contribution of the order of 80—90% of
the integral luminescence intensity.

Above the mobility threshold the theory predicts a close-to-exponential decay of the
luminescence intensity; this agrees qualitatively with a wide class of experiments. The
computed value of the slop{éIn(Igs(cu))],’u}*l can be easily compared with the experi-
mentally measured slope within 4 to 5 orders of the intensity.

As one can see from Fig. 3, the exciton—phonon interaction has practically no effect
on the form of the long-wavelength absorption band edge and the short-wavelength edge
of the luminescence spectrum. Therefore the experimentally measured exponential slopes
of these sections of the spectra yield information about the zero-phonon luminescence
band that can be used to determine the parameters characterizing disordered systems. It is
also interesting that the ratio of the slope of the long-wavelength absorption band edge
ey(c) to the slope{[In(I(l’S(w))](’u}*l of the short-wavelength edge of the luminescence
spectrum remains, to a good degree of accuracy, constant in the entire investigated range
of concentrations.

In summary, the data presented in this letter show that new information about the
states of excitons in disordered solid solutions can be obtained from a detailed analysis of
the luminescence spectra.
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We consider a measurement of finite-frequency current fluctuations,
using a resonance circuit as a model for the detector. We arrive at an
expression for the measurable response in terms of the current—current
correlators which differs from the standagymmetrizeglformula. The
possibility of detection of vacuum fluctuations is discussed. 1997
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PACS numbers: 05.4&j, 07.50.Hp, 72.70tm

Finite-frequency(FF) current fluctuations at zero temperat@vacuum fluctuations,
VFs) have been discussed for a long tihire connection with the analogous question of
electromagnetic vacuum fluctuations. Recently there has been renewed interest in the
noise at finite frequency in connection with the supposed possibility of observing the
Fermi edge singularity in noninteractihfjand interacting systems.

In the present letter we consider a realistic model for an FF measurement and show
that, in a very close analogy with the electromagnetic vacuum fluctuations, a certain
measurability limitation appears.

There are different practical and theoretical approaches to FF measurements:

1. Making repeated measurements of the instantaneous values of the current over a
long time interval and later Fourier transforming the data obtained.

2. Making a single measurement of the charge transmitted during a given time
interval. In that case the information about the FF fluctuation appears through an integral
over all frequencies. Ideally that can be done by making two measurements of the charge
in the reservaoir, the initia{during system preparatipand final. An alternative measure-
ment can be made with a “Larmor clock(the spin rotating in the magnetic field pro-
duced by the currejitthis method, which is described in Ref. 4, can perhaps be imple-
mented.

3. Making a time-averaged measurement of the response of a resonance circuit,
which can be an ordinaryC element, i.e., an inductive element coupled to the quantum
wire, a capacitor whose charge is the quantity to be measured as a response, and the
resistance of the circuit.

The last approach, we believe, is the most relevant for FF measurements.
We model our detectdthe resonator, which we will refer to &) by an oscillator
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and consider the response in the first nonvanishing order in the inductive coupling con-
stant(we will outline the calculation at the end

Finally, we arrive at the practical conclusion that the measurable response of such a
model detector at a certain frequen@ycan be written in terms of the usual current—
current correlators as follows:

Seas™ K{S+ () +No[ S, (2) = S_(D) ]}, D)

with the definitions

s+(Q)=J dt(1(0)1(t))expiQt),

and

s_(Q)zf dt(1(t)1(0))exp(iQt).

The frequency) in all the expressions is strictly positivil, stands for the Bose
occupation number of the oscillator, i.&,=[exp@Q/ksT, o)—1]%, K is the effective
coupling constant of the quantum wire with the resonaté),=TrpA, wherep is the
density matrix of the electrons, and the time-dependent current operators are defined in
the standard wayk(t) = exp(Ht)l exp(—iHt).

The expression obtained here should be contrasted with the widely used formula

1
S(w)=fdt exp(iwt)<§{l(0)l(t)+I(t)I(O)} : 2

Note that this formula contains the symmetrized current—current correlator. The necessity
of such a symmetrization comes from the fact that in the general case the current opera-
tors at different times do not commute with each other, and it is motivated by the close
correspondence with the classical expression.

Using the definition(2), one arrives at the well-known expression for the spectral
density of the current—current correlator for a conductor in equilibfum:

1
exphQ/kgT)— 1]

1
S(w)=2Gh) §+ 3
This expression tells us that at zero temperature one should expect fluctuations
proportional to the frequency, which are interpreted as an analog of the vacuum fluctua-
tions of the electromagnetic field.

Nevertheless, as is known from optical measurements, ordinary photodetectors do
not react to the vacuum fluctuations, because it is not possible to take energy from the
vacuum to excite atoms in the detector.

Yet the vacuum fluctuations are observable, though less directly than are ordinary
fluctuations, via the Lamb shifor the Casimir effeCtor by using a so-called quantum
photocountet? which is prepared in an excited state and can thus react to VFs.
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As we will now show by analyzing Eq(l), an LC detector may operate as a
photodetector without any reaction to VFs or as an optical detector for VFs, but it never
gives the standard Nyquist expression for FF ng&eas one might naively expect.

If the detected frequency is higher than th€ temperature, the occupatidt, is
exponentially small, and the only nonvanishing tern{ipis the “positive part” of the
spectral densitys, (€1), which describes the “emission” of energy by the conductor to
the LC circuit, and in that case theC circuit functions as an ordinary photodetector.

As an example, foiS, (2) in a coherent conductor with transmissibnat zero
temperature and a finite bias voltage one has

2¢e?
S.(Q)="-D(1-D)(eV-1Q) ()

if 1Q<eV andS,()=0 otherwise.

We have neglected the energy dependence of the transmission in the expression
above, as well as an additional frequency dependence which has to come from the
averaging over the coordinatésee beloyw. Equation(4) coincides with theexcesspec-
tral density calculated in Ref. 1 using the symmetrized correl@or

If the frequency is much lower than the detector temperafiflegkgT, -, one may
replace the Bose occupation numidés by kgT, /A €).

The differences, (1) — S_(Q) is negative and in the case of a quantum conductor,
provided that the transmissioiis, depend only weakly on the energy we find

S, —S_=-240G, 5
whereG=2e%h3 D, is the conductanck.

Note that the singular behavior of the spectral density@t= eV which was found
in Ref. 2 for the symmetrized expressi®& +S_ is not present irS, —S_, and we
conclude that the measurable singularity at zero temperature and finite bias is due solely
to the cutoff of the frequency by the voltage $1(Q2) (4).

Altogether, forh Q<kgT, c we have

Sieas™ K{S:(Q) —2GkgT\c}- (6)

The meaning of the negative part is clear—th€ circuit is “cooled down” by
emitting energy into the conductor. So, in some sense, in this limit the vacuum fluctua-
tions, represented by_ , are detectable; note, however, that they appear in the answer in
a way which is quite different from the Nyquist expressi@n

If the conductor is in equilibrium(aside from the weak interaction with theC
circuit), for low frequencies we find
Smeas 2G(Te—Tic)- ()

This expression vanishes if the electron temperafiyris equal to the. C tempera-
ture T, ¢, as is expected for overall equilibrium.

At intermediate frequencies, whekgT.,eVi,s<h Q) <<kgT ¢ the measurable re-
sponse is negative:
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Smeas= —2GkgT - 8

Let us now outline briefly the derivation of E¢l). Our chosen detector can be
regarded as a harmonic oscillator coupled linearly to the time derivative of the current to
be measured:

MX(t)=—Dx(t)— al (t). 9)

In terms of the physical parameters of the coufitatuctance., inductive coupling,
and capacitanceC), we may write: M=L, D=1/C, resonance frequency
QO =+D/M=+1/LC, while « is the inductive coupling itself.

Our goal is to calculate the change x4 due to current fluctuations in the first
nonvanishing order of perturbation theory.

We must evaluate the expression:

0 t . .
() =(=ie0? [ dty [ dter s D) Xt (W X)) (10

The angle brackets here stand for averaging over the unperturbed density matrix of
the electrons and the oscillator. Evaluating the expression above, we get

1
7 n—isignQ

X{(1(0)1(1))(1+Ng)— (1 ()1 (0))Ng}. (11)

The derivation of Eq(1) from this equation is not a straightforward procedure, the
main problem being that the integral over frequencies of the Lorenzian
7l p?+ (w—Q)?, which is supposed to serve as a delta function, contains a factor of
w? and does not converge well. If we neglect that problem and replace the Lorenzian by
a delta functiony/ 7°+ (0 — Q)%= m6(w—Q), we end up with Eq(1) with the coeffi-
cientK in it given by

(2] 2 12
=\2t) 2 (12
The coefficient diverges as the width of the resonancgoes to zero, so we keep the
latter small but finite.

2 e
(x%(0))= ﬁ) f_m dt exp( — p|t| +i01)

The shapeF(w—) of the resonance in theC circuit, when calculated more
exactly, is in fact not a Lorenzian, and without specifying it we may write instead of Eq.

)

dw
Smeas™ f 5 F(@=Q){S;(0)+Ng[S; (@) =S_(o)]. 13
The functionF(Aw) can in principle be measured independently, by applying an alter-
nating current. Afterwards the measured expression can be substituted into the formula
above.
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In general the current operator and its average over the density-matrix correlators at
different times depends on the coordinates. The operafbysused in this paper are in
fact the total current operators averaged, in addition, over the léngithhe inductive-
coupling region,

X+1/2
I(t)y=11 fxwzl(r,t)dr.

Because of this symmetry with respect to the coordinates, the current operators stand
asl(rq,t)+1(r,,t), although we keep a certain order in time.

Apart from the symmetrization with respect to the coordinates, the problem of the
ordering of the current operators stems from the presence of the vacuum fluctuation part.
If discussion is limited to the low-frequency limitQ)<<eV,,s, KgT, then it does not
matter whether one us&s (1), S_({), or the Fourier-transformed symmetrized equa-
tion (2), the result will be the same up to small corrections of the order of
hQleV, kgT.
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A class of autowave models in the form of nonlinear diffusion equa-
tions, closely related with the Liouville equation and two-
dimensionalized Toda chains, is investigated. Exact solutions of these
equations are constructed and analyzed.1997 American Institute of
Physics[S0021-364(107)01203-4
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The investigation of autowave processes is an essential direction in the development
of the theory of nonlinear wave processes in application to problems of the appearance of
ordered structures in different types of physical, chemical, biological, and so on
systems: The standard model for such systems is an excitable medium described by
equations of the “reaction—diffusion” typéRD)

du
H—F(U)'f’DAU, (1

whereU is the state vector of an element of the medium, for example, the concentrations
of chemical substances entering into a reacttofi)) is a nonlinear function; and is a

matrix of the diffusion coefficients of the components of the medium. The simplest model
of this type that reproduces the main characteristic features of autowave propagation is
the two-component “activator—inhibitor’(Al) system

Ju Jdv
—=F(Up)+DiAu,  —-=G(u,v)+DAu &)

for the case of a two-dimensional mediuf= 37+ J; . Conventionallyy is the activator
concentration and is the inhibitor concentration; this is determined by the form of the
zero isoclineF(u, v)=0 and G(u, v)=0 and is related with the possible practical
realization of such systems in chemical reactions. As a rule, models of this type are
investigated with the aid of approximate analytical metfidds or by numerical mod-
eling.

This letter investigates systems of the ty(@ with functionsF(u, v) and G(u,
v), which have a type of nonlinearity that is similar to the Liouville equation or the
two-dimensionalized Toda cha{iDTC) (see, for example, Ref)8and multicomponent
RD systems with a nonlinearity of a similar form. Two systems will be investigated in
greatest detail. The first one has the form
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Vleu+v_)\1 Vzeu+u+)\2
F(uv)=u+ e m Guv)=—u- e

; ()

whereh, \», u, v, andv, are constants. In what follows we shall refer to this system
as the Toda typ&* activator—inhibitor systenfTVAI). The second system is closely
related with the first one and has a similar form:

D
F(u,v)=2p«+vle’”—v2e”—x1e*U*v—>\zD_ze”*”, 4

G(u,v)=ve "+ vze“+)\2e”*”—)\1%e*”*”,
1

wherehq, Ny, wq, mo, v1, andv, are the same constants as in E8). We shall refere
to this system as the Toda typeactivator—inhibitor systeriTNAI). The type of system
is determined from the standpoint of the general classification given for excited systems
in Ref. 5. For example, the TVAI system belongs to systems of theWypeA. This is
determined by the three main types of asymptotic behavior of the zero-isocline curves
F(u, v)=0:

U=In|ﬂe“— ﬂe“].

L4} [}

In the case\;/v{>0, u,/v;<0 the system(3) is a typeV system, in the cases
N/vi>0, ui/vy>0 andh/v1<0, u,/v,<0 it is a typeA system, and in the case

N /v1<0, u1/v,>0 the zero isocline is complex and the system has no real points of
equilibrium. Similar curves also obtain for the equat®(u, v) =0 with the axes rotated

by 90°. The equation for the stationary points of the system has the form

w(w?—viv) U4+ Ny (vivy— 2M2)+)\2V%]U2+ ,u,)\i:o, V=NU"1—pnU, (5
whereU=¢" andV=¢e". The TNAI system is a typ& or -| system depending on the
parameters. This is also determined by the form of the zero isoEljne v) =0:

Ale*“+)\zﬁeu
D>

Vleiu_ Vzeu+2,u, ’

v=In

In Ref. 9 a simple method was proposed for constructing the solutions of the Liou-
ville equation with the aid of quadratic forms. In the present letter this method is carried
over to the systen2). This approach makes it possible to find an entire class of TAI
solutions and to investigate their characteristic behavior. It is then applied in a general
form to more general multicomponent systems whose functighh have the form

n

)\i+euik§_:l ,uike”k (6)

Fi(ul,UZ, P ,un)=efzui

or linear combinations of such functions, whareandu;; are constant parameters of the
model. We shall refer to such systems as Toda reaction—diffusion cfiRBCS.
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Systems of the type@®), (4), or (6) with an exponential nonlinearity have apparently
not been studied in an explicit form in the theory of autowaves. This is because most
examples of model equations for autowaves, for example, the Zhabogngkitiont*>>
(describing the Belousov—Zhabotinskieaction or the Brusselatdt>>® and similar
models(see Refs. 3 and)binclude a power-law nonlinearity. However, models of the
type (6) can have a direct bearing on models of autowaves with thermal diffusion, when
the diffusion coefficient of the material and the thermal conductivity become nonlinear
functions of the parameters of the systems, ug(Ref. 3 and 5. Indeed, the equations
(2) with the relationg3) and(4) for the functions¥ =e" and® =e” can be written in the
following form:

2
1 Vl\lfq)_)\l
\Ift—Dlllfaz,l aa&aaw) —uV+ =,

2
1 v, WD+ N\
®,—D,d > aa(—aacb) =—pub- 22
a=1 q) (D

which corresponds to a system of equations describing diffusion of matter and heat
conduction with a special choice of the dependence of the diffusion coefficient and
thermal conductivity on the unknown functions of the model. On the other hand, the
functionsF(v,u) andG(u,v) in the regions where the model functiomsndv are close

to the equilibrium value&J, andV, do not differ much from the first few terms in the
expansion of these functions in a Taylor series arodgdand V. For this reason, their
solutions can serve as a quite good approximation to the exact solutions for systems with
power-law nonlinearity in these regions. Therefore the TVAI, TNAI, and TRDC systems
can serve as possible variants of basic modelshe terminology of Ref. Bfor inves-
tigating autowaves in excitable media and they are examples for which it is convenient to
study some general features of the behavior of autowaves, irrespective of whether or not
an exact justification of these models can be found for some reaction—diffusion system.
For example, it is easy to verify that the TVAI and TNAI systems can have one or two
stationary stategthe TNAI system can have four stationary statefepending on the
parameters, or they may not have any stationary states at all. Therefore such systems
make it possible to study different variants of the asymptotic behavior of autowaves in
the presence or absence of stationary states and different types of stability of these states.

By analogy to Ref. 9 we seek the solution of the syster-(3) in the form
u=In¥(zzt), v=Ind(z,z}),

¥ =|9(2)[Has(O]¢1]*+by(O)] ¢l + ca(D¥a(2) Y3 (D) + eI (VY2 ¥7 (D}, (D)
@ =19(2)|Haz(t) ||+ ba(1)] ol *+ co() y1(2) 93 (2) + €3 (D YD) Y1 (D)},

wherez=x+iy, z=x—iy, A=4(dl9zdz), the symbol * denotes complex conjugation,
the functionsa,(t), b.(t), a,(t), andb,(t) are real and functions(t) and c,(t)
complex functions of, and4(2), ¥,(z), andg(z) are analytic functions of the complex
variablez. Substituting expression) into Eq. (2) we obtain the following identities:
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Ju l9(2)|*(azhy—|cq|?)|WiA(2)[2
1

—f ~D18u=-D 32
. 19(2)({au] ¢1(2)|?+ ba| 2(2) |+ Cr9pa(2) 55 (2) + €F a(2) 4 (2)}
¥ ;
®
J 9(2)|*(azby—[c,|?)|Win(2)|?
a_lt)_DzAv:_D2| | 22q>|22| |Wio2)]|
) 19(2)12({a2] ¥1(2)| 2+ a,| 2 2) |2+ Coypn(2) 5 (2) + €5 Who(2) 43 (2)}
CD :
9
here

d d
Wi(2)= 'ﬂld_zlﬂz_ l/’zd_zlﬂl

is the Wronskian of the two functiong,(z) and,(z). The Wronskian is different from

zero when the functiong;(z) and,(z) are linearly independent. Therefore we assume
that these functions are linearly independent. In order that the expressions on the right-
hand sides of the identitie®) be identical to expressioB), the following conditions

must hold:

ay(t)=a;—pia;, by(t)=by—puiby, co(t)=ci—psCy, (10
(a;b;—|cq|?)Dy=\,;=const, (ayb,—|c,|?)D,=\,=const, (11
|[Wy,?lg|*=1, u,=const, wu,=const; (12)

a(é‘l_ p18y) = — vivas + puo(ag — mady),
d . .
a(bl_ m1b1)=—wvivobs+ uo(by— p4by), (13

a(cl_ #1C1) = —v1V2C1+ uo(Cy— p4Cq).

The three equationd 3) have the same general form as the equation of damped oscilla-
tions

F—(u1+ po)F+ (ot vivp) F=0 (14

with damping decrementy=(u,+ u,)/2 and characteristic oscillation frequency
Q= uuy+vqv,. Equation(14) has solutions of three basic types:
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e "(F, cogwt)+F, sin(wt)), ®?>0;
F(t)=4 e "(F; cosh(wt)+F; sinhwt)), w?<0; (15)
e "(Fit+Fy), w?=0,

whereF; andF, are integration constants amadf— Q2— v2. In the casa»?>0 we can
set

a;(t)=e (A, cogwt) +A, sin(wt)),
b,(t)=e""(B; cogwt)+ B, sin(wt)),
c,(t)=e "(C, cogwt)+C, sin(wt)),

whereA;, A,, B;, andB, are arbitrary real constants aiti and C, are arbitrary
complex constants. Then

albl_ |C1|2: e_2yt((Ale+AzBl_ C:]_szc - CQCI )COS(wt)Sln(wt)
+(A1B1—|Cy[?)cos(wt) + (A;B,—|Cyl?)sirF(wt)).

A similar expression also holds far,, b,, andc,. In order for the parameters; and
N\, to be constants, the following relations must be satisfied:

y=(p1+p2)/2=0, A;By+A;B;—C,C; —C,CT =0,

(A1B1=[C4[%) =(A;B,—|C,[?). (16)
Then

=0, N\=Di(A;B;—[Ci%), N;=Dy(A;B;—|Cq|?)(Q2+u?),
wherepu=u;=—u, andQ?=v,v,— u?

The corresponding class of exact solutions of the TVAI model can be represented in
the form

u(z,z,t)=In P*(z,z)+In cog Qt—0,(z,2)),

v(z,z,H)=In Q¥ (z,2) +In cog Qt+0O4(z,2)), 17
_ __ 1
P*(z,2)= VHi+H;3, Q+(ZyZ):V—\/(QHZ_MH1)2+(MH2+QH1)2,
1
— Hy(z2) — mH+QH,
tan®,(z,2)= —, tan0®,(z,2)= ———,
1(22) Hx(2,2) 422~ OH,
where
__ A 2+B e X+ CHyyt
Hy (27 1l 1l 42| 1145 1‘/’2'/’1, (18
|W1g)
AP Byl | >+ Cotpy g5 + C5 ok
H,(z,2)=
|W1y

304 JETP Lett., Vol. 65, No. 3, 10 Feb. 1997 V. M. Zhuravlev 304



and the constant,, A,, B;, B,, C;, andC, satisfy the relation$16). The functions
¥ and® are related by the simple relation

cp=i(\if—,u1f). (19
V1

The functionsy,(z) and ¥,(z) are arbitrary analytic functions.

The solutions obtained for the TVAI system are a more general solution of the
Cauchy problem for the systerf2)—(3) with an initial distribution of the functions
u=u(zz, 0) andv=uv(z, z, 0) as quadratic forms that depend on the two arbitrary
analytic functionsiy(z) and ,(z). This makes it possible to satisfy a wide class of
initial conditions of the problem with some general properties of the solutions at infinity,
for example,u— const andv — const ag = \x“+y“—o — the medium is in equilib-
rium at infinity.

The solutions of the TNAI systerf2)—(4) are obtained from the solutions of the
system(17) by means of the very simple transformation

—~ v —~
u=u—vz|n[$], v=u+v=In{Vd}, (20
whereu andv are solutions of the TNAI system andandv are solutions of the TVAI
system(17).

Of all types of solutions, the time-periodic solutions of the spiral-wave type are of
special interest. These solutions can be obtained in an explicit form, if the functions
1(2) and ,(z) are chosen in a special manner, for example,

P1(2)=p12",  Po(2)=p,2",

wherep,, p», andm=#n are arbitrary complex constants. Time-periodic solutions exist

if 22>0. As one can easily see, however, after a finite time interval such solutions are no
longer bounded anywhei¢he functions¥ and® change sigh Nonsingular solutions
exist for Q2<0:

u(z,z,t)=In P~ (z,z)+In {coskQt+0,(z,2))},

v(z,z,t)=In Q™ (z,2) +In {coskQt+ O ,(z,2))}, (21
_ __ 1
P~(z,2)= VHi—H3, Q‘(Z.Z)=V—I\/(QHz—MHl)Z—(MHz—QHl)Z,
— H2(Z,Z_) — QH:L_,U,HZ
tanh®(z,2)= Hl(z,z_)’ tanh@z(z,z)—m,

where the functionsi, andH, are determined by relatior{$8), and the function® and

® are related by the relatio(19). The solutions(21) are nonsingular if the functions

H., H,, P7, andQ™ are nonsingular. They comprise a single solitary wave of a com-
plicated form. These results, obtained for TVAI, also hioldoto for TNAI. Therefore, to
search for systems possessing nonsingular time-periodic solutions, it is of interest to
investigate the more general models of the tyfe
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Nonsingular periodic solutions exist in the multicomponent mo@@IsThis result
can be obtained on the basis of the following general considerations. Let us consider the
sequence of functiond;=In ¥;, where

Wi(£,2,1)=19(2)|Hai(t) |2+ by (D) [l >+ Ci(D) by s +CF (Dot} 1=1,...0n

@
These functions satisfy the identities
i DAU.= —D. l9(2)|*(aibi—[ci|*)| WA 2)|?
gt T T v?

) 19(2)|2({ai] ¥1(2) |2+ By a(2) |2+ Cipn (2) 95 (2) + CF o 2) 5 (2)}
v, ’

i=1,...n. (23)

We require that the following conditions be satisfied:
n n n
aizjzl Mija;, bi:z& wijbj, C‘:,Zl wiCi, i=1,...m;

(aib—|ci|?) f2Dj=N;=const, |W,4?g|*=1.

Then the system of identitig23) assumes the form of the TRDC system of equations
with a nonlinearity of the form(6). The equations for the functiors, b;, and c;
comprise a system of ordinary first-order differential equations. In the simplest case,
when theu;; are all constant, the coefficients in these equations are also constant. For
nonsingular periodic solutions to exist these equations must have solutions of the form

Fi(t)=A+B; cogQt+ ¢y),

where|A;|>|B;| for all i. These conditions must hold fa, b;, andc;. Such require-
ments hold even in the case of a three-component system. The corresponding solutions
can be easily found. However, because of space limitations, they are not presented here.

In closing, | thank S. V. Chervon and V. K. Shchigolev for their unflagging interest
in this work.
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Channels in rotating liquids for conducting discharges,
transporting currents and particle and radiation
fluxes, and lowering breakdown thresholds
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The formation of gas channels in rotating liquids is investigated and the
application of such channels as capillaries for high-power discharges in
x-ray lasers, for transporting particle and radiation fluxes, and lowering
breakdown thresholdéincluding with the use of metal fillings for
structural systems for microwave generation and particle acceleration,
and for photochemical and shock action on a liquid, and so on, is
discussed. It is noted that tubular active elements and samples can be
fabricated by solidification and crystallization during rotation.

© 1997 American Institute of Physids$0021-364(1®7)01303-7

PACS numbers: 47.32y, 52.80.W(q, 47.60ri, 77.22.Jp, 52.96:z

The production of gas channels in liquids is of great interest for a number of appli-
cations: for experimental and applied physics at high-energy densities, since the channels
make it possible to obtain reusable high-power capillary dischafgegxample, x-ray
and other lasejawith self-recovering capillaries, without the ordinarily observed degra-
dations of the properties and damage to the surfaces of the walls, especially in the case of
surface breakdowns; for transporting particle beams and currents; for lowering break-
down thresholds in liquids; for electrohydraulic or ultraviolet action on ligqumsnping
of lasers, treatment of water and oils, photochemijstnd so on.

We have performed simple experiments on the production of gas channels in rotat-
ing liquids and in liquids flowing around different bodies.

A gas bubble with the required composition was introduced (imadhe case of low
saturated vapor pressure or low content of dissolvefi@agmained in the liquidwater,
vacuum oils, alcohg] and the liquid was made to rotate or rotated as it flowed through
special structures.

1. FORMATION OF A GAS CHANNEL IN A LIQUID IN A ROTATING TUBE

A cylindrical glass tube, filled with a liquid into which a bubble was introduced or
remained, was secured on the axis or connected with the axis of an electric motor and
rotated with frequency =50 or 100 Hz. Within fractions of a second the gas bubble
became detached, approached the axis, and spread out into a thin channel along the entire
axis. The diameter of the channel depended on the amount of liquid or gas. In the case of
a closed vessel, the volume of the liquid remained practically unchafgjede the
rotational centrifugal pressure hardly changed the volume of the liquid because of the low
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FIG. 1. Photograph of a gas channel on the axis of a rotating liquid. The channel diameter equals 1 mm. The
rotation frequency equals 100 Hz. Liquid — vacuum oil. Gas — air.

compressibility of the liquitland the channel volume was determined by the volume of
the gas introduced or the incomplete filling with liquid. The diameter of the channel
could be easily increased up to 1 mm. The channel length reached 20 cm. It could also be
changed by adjusting the opening on the axis. Under normal rotaimmeats and no
decentering the channel was stable and even. A photograph of this arrangement with
vacuum oil in rotation asha 1 mm indiameter and 4 cm long channel is displayed in Fig.

1. As a result of the high centrifugal accelerations,

a, =(27f)2r>10r>10'cm/g>go=10cm/g for r>1 mm,

the channel formation was virtually independent of the orientation of the rotation axis
relative to the direction of gravity. Identical results were obtained with both water and
alcohol. The motion of the introduced bubble and extraction of unneeded gas by evacu-
ation from the rotating liquid were much more rapid than in the case when a bubble
floated upward under the action of gravity. We call attention to the possible small channel
radii and the smoothness of the channel walls, properties necessary for a uniform dis-
charge, which is so desirable in x-ray lasers.

The maximum admissable channel diameters can be estimated by equating the con-
stricting surface-tension pressuR,,=o/r to the centrifugal pressur®=pw?A,
whereo is the surface tensiom, is the density of the liquid, andl is the thickness of the
liquid layer. Therefore i~ o/pw?A, O I in=o " 1\o/10p=10"2 cm for A=10r and
our rotation frequencies.
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FIG. 2. Diagram of the rotation of a moving liquid with a gas channel on the rotation hxis:axial rod on
which a helix is wound2 — electrode secured on the end of the r8e;- second discharge electrode— gas
channel. The arrow indicates the direction of flow of the liquid.

2. CHANNEL FORMATION DURING MOTION OF THE LIQUID

The formation of a gas channel during the rotation and motion of a liquid through
helical elements was investigated. Tap water was passed through an 18 mm in diameter
tube into which an axial cylinder with a helical finned surface, which caused the water to
rotate as it flowed over the cylindésee Fig. 2, was inserted. For 3-mm deep fins the
pitch of the screw was equal to 0.5 turns/cm of cylinder length.

A gas channel formed on the axis at a water flow velocity of only 3—30 ¢mul®
diameter of 18 mm and water flow rate of 70~ 10" liters/s. The radius of the channel
depended on the flow velocity and ranged from one to several millimeters. Apparently,
this channel became filled with air dissolved in the water and was stable, its length
varying from 0.5 to 5 cm depending on the velocity of the water flow.

The finned rod was also used to hold electrodes for investigating breakdowns in the
channel. It was observed that an unfinned axial body inserted into the flow also gives gas
channels where electrodes can be inserted and breakdown can be conducted, but the
length of this channel is small for our flow velocities, though the length can be controlled
by placing on the rod ends attachments that change the regime of the flow over the rod
and the detachment of the flow.

3. ELECTRICAL BREADDOWN ALONG THE LIQUID SURFACE AND IN THE
GAS CHANNEL

Electric breakdown was investigated between two electrodes with a radius of 1 mm
placed on the rotation axigsee Fig. 3 When a gas channel formed during rotation,
breakdown was observed at the breakdown voltage for air. Breakdown was not observed
without rotation, since the breakdown threshold in water is higher.

The channel withstands high short gas-kinetic and ablation pressure pulses as a
result of the inertia of the liquid, and it is rapidly restored as a result of the large
centrifugal force.

Breakdowns in water have been observed previously in the presence of metal sus-
pensions and filings, which substantially lower the breakdown threshold. These experi-
ments suggested the possibility of producing closing suspensions, each suspension having
an average density less than that of the liquid — for example, composite metal—dielectric
filings (a thin layer of metal on a light dielectjicThis was implemented experimentally.

Such particles were distributed on the surface of the channel.
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FIG. 3. Pulsed electric discharge in a gas channel in a rotating tube containing a liquid. The rotation frequency
equals 50 Hz. Liquid — water, gas — air. The electrodes are 1 mm in diameter and separated by 1.5 mm.
Voltage — 3 kV, discharge capacitance — Quf-.

Panels — metal fillings impregnated with epoxy resin and slightly polished — as
well as electrodes with alternating polarity were also tried. They likewise lowered the
breakdown threshold. In these experiments, breakdown voltages from 1 to 3 kV with
capacitances of 0.1-10F were used. Sometimes, in order to peak breakdown and make
the energy release explosive, voltage was applied through a spark gap or a fast high-
resistance switch. Ultraviolet light, enveloping neighboring electrodes with the break-
down, propagated well in the gas channel; this also enabled the use of a sequence of
electrodes with alternating polarity, making it possible to break down large gaps by
means of a voltage which was not very high.

Suspensions, which lower the breakdown threshold and make it possible to increase
the length of the breakdown gap, can be produced with the use of filings, which will be
distributed over the surface of the channel if their average microdensity is less than the
density of the liquid. Multielectrode panels can be inserted into stationary and rotating
liquids. Suspensions not only lower the breakdown threshold, but they will also make it
possible to increase the number of working media for realizing x-ray lé¢epsrs of the
metals of the suspensigndvoreover, under the conditions of a multiplalmost con-
tinuoug and not a streamer discharge on a cylindrical surface, the implosion will be more
perfect and the temperatures and pressures will be higher on the cumulation axis.

We note that powerful particle or radiation beams passing through gas channels and
liquids can themselves maintain or smooth the channel sections or expand them from
small starting sizes.

The production of ripples on the surface of the liquid of the channel wédis
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example, by exciting surface capillary waves with the aid of ultraspuviti make it
possible to produce restorable, incombustible structures for generating microwaves by
passing powerful beams or bunches of charged particles almost on/or near the riffled
surfaces.

Such vacuum and gas channels can be used to accelerate charged particles by the
Coulomb field of an electron cloud formed under the action of an ultrapowerful ultrashort
light pulse, which pulls out electrons when the light field touches the channel tis.
requires frequent renewal of the channel surface because of the destructive action of
intense light.

This effect can be used in both melts and solutions, which when rotated will also
give a channel that will set on solidification, cooling, and crystallization. We demon-
strated this in an experiment with paraffin and rosin melt in a tube, which gave a channel
and set together with it on cooling. Such tubular blocks of active elements can be used for
efficierr12t pumping and for particle acceleration by a converging light wave on the axis of
a laser:

What we have said suggests that gas channels have tremendous prospects for appli-
cations in new areas of physics — from x-ray capillary lasers to generation of radio
waves and particle acceleration — and in chemical physics — for photochemical and
shock action on a liquid, for treatment, purification, and decontamination of water, oils,
and other liquids.

1G. A. Askar'yan, JETP Lett52, 323(1990.
2K. Shimoda, Appl. Opt1, 33(1962; Lasers[Russian translation, Inostr. Lit. Press, Moscow, 1963, p]458

Translated by M. E. Alferieff
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