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Calorimeter event selection for small-angle Bhabha
scattering at LEP1

N. P. Merenkova)

Kharkov Institute of Physics and Technology National Science Center, 310108 Khark
Ukraine
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An analytical method is applied for description of calorimeter event
selection in small-angle electron-positron scattering at LEP1. The se-
lections CALO1 and CALO2 are investigated specifically. The first-
order correction to the Born cross section is given in the case of wide-
narrow angular acceptance. ©1997 American Institute of Physics.
@S0021-3640~97!00103-5#

PACS numbers: 13.65.1i, 29.40.Vj, 12.15.2y

The small-angle Bhabha scattering~SABS! process is used to measure the lumino
ity of electron–positron colliders. Accurate theoretical determination of the SABS c
section therefore has a direct bearing on the physical values measured in
experiments.1 In recent years considerable attention has been devoted to the Bh
scattering process~see Refs. 2–5 and references therein!.

There are two methods of theoretical investigation of the SABS cross sectio
LEP1: an approach based on Monte Carlo calculations and an analytical approac
latter is used to check different Monte Carlo programs forideal experimental conditions
In this letter I give for the first time an analytical result for the two calorimeter ev
selections~CES! labeled in Ref. 3 as CALO1 and CALO2 in the case of wide–narr
angular acceptance. Discussion is restricted to the first-order correction. The secon
third-order leading corrections can be written with the help of the electron struc
function, but the second-order next-to-leading correction requires considerable add
effort.

Before studying CES it is helpful to clarify the inclusive event selection~IES!, when
only the final electron and positron energies are recorded by means of wide–n
circular detectors. The result will be widely applicable for the description of CES.

1. We introduce the dimensionless quantity

S5
1

4pa2 Q1
2sexp, ~1!

whereQ1
25«2u1

2 ~« is the beam energy andu1 is the minimum angle of the wide
detector!. The ‘‘experimentally’’ measurable cross sectionsexp is defined as

sexp5E dx1dx2Qd2q1
'd2q2

'Q1
cQ2

c ds~e11e2→e11e21X!

dx1dx2d
2q1

'd2q2
' , ~2!
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whereX represents undetected final particles, andx1(x2) and q1
'(q2

') are the energy
fraction and the transverse component of the momentum of the electron~positron! in the
final state. The functionsQ i

c take into account the angular cuts, while the functionQ
takes into account the cutoff on the invariant mass of detected electron and positr

Q1
c5u~u32u2!u~u22u1!, Q2

c5u~u42u1!u~u12u2!, Q5u~x1x22xc!,

u25
uq1

'u
x1«

, u15
uq2

'u
x2«

. ~3!

For the wide–narrow case

u3.u4.u2.u1 , r i5u i /u1.1.

The first-order correctionS1 , which includes the contributions of virtual and re
soft and hard photon emission processes, is given by

S15
a

2p H E
1

r3
2 dz

z2 F2D42d~12x!1E
xc

1 S ~L21!P1~x!~D421D42
~x!!1

11x2

12x
K̄ DdxG

1E
r2
2

r4
2 dz

z2 F2d~12x!1E
xc

1 S ~L21!P1~x!~11u3
~x!!1

11x2

12x
K DdxG J , ~4!

where

P1~x!5
11x2

12x
u~12x2D!1S 2 ln D1

3

2D d~12x!, D→0,

K̄~x,z;r4,r2!5
~12x!2

11x2
~D421D42

~x!!1D42L̄11D42
~x!L̄2

1~ ū4
~x!2u2

~x!!L̄31~ ū42u2!L̄4,

K~x,z;r3,1!5
~12x!2

11x2
~11u3

~x!!1L11u3
~x!L21 ū3

~x!L3,

L̄15 lnU ~z2r2
2!~r4

22z!x2

~xr4
22z!~xr2

22z!
U, L̄25 lnU ~z2x2r2

2!~x2r4
22z!

x2~xr4
22z!~xr2

22z!
U,

L̄35 lnU~z2x2r2
2!~xr4

22z!

~x2r4
22z!~xr2

22z!
U, L̄45 lnU~z2r2

2!~xr4
22z!

~r4
22z!~xr2

22z!
U, ~5!

D42
~x!5u4

~x!2u2
~x!, D421u42u2 , u i

~x!5u~x2r i
22z!,

u i5u~r i
22z!, ū i

~x!512u i
~x!, ū i512u i ,

u3
~x!5u~x2r3

22z!, ū3
~x!512u3

~x!5u~z2x2r3
2!,

and Li can be obtained fromL̄ i by the substitutionr4→r3, r2→1. See Ref. 4 for a
definition of the variables used.
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The term in the first~second! set of square brackets in Eq.~4! is the contribution due
to real virtual photon emission by the positron~electron!. The terms containing
x-dependentu functions under the integral sign correspond to initial-state correcti
while the rest correspond to final-state corrections.

2. The CALO1 cluster is a cone with angular radiusd50.01 around the final electron
~or positron! momentum direction. If a photon belongs to a cluster, then the whole clu
energy is measured by the detector, and the electron can have any energy. There
limits of integration ofsexp overx are expanded to the interval 0 to 1 in this case. If
photon escapes from the cluster, the event looks the same as in the IES. The
restrictions on the limits of integration overx can be written symbolically as follows:

E
xc

1

dx1E
0

xc
~ i f ur u,u0!dx[E

0

1

dx2E
0

xc
~ i f ur u.u0!dx, ~6!

where r5k/v2q1 /«1 , and v(k) is the energy~transverse momentum! of the hard
photon. It is convenient to separate the contributions due to electron and positron
sion:

S15Sg1Sg , Sg5S i1S f1S i
c1S f

c , Sg5S̃i1S̃f1S̃i
c1S̃f

c . ~7!

The contributions in Eq.~7! labeled with a superscriptc depend on both the shape an
size of the cluster, while the rest are universal and are suitable for any cluster.

For calculation of the initial-state corrections, labeled by a subscripti , we use the
left-hand side of relation~6!, while for the final-state corrections, labeled with a subsc
f , we use the right-hand side of this relation.

The quantityS i coincides exactly with the case of IES~see Eq.~4! and the com-
ments following it!, while S f looks like the contribution due to final-state electron em
sion in IES except for expanded limits of integration overx.

It may be written in the following simple form:

S f5
a

2p E
r2
2

r4
2 dz

z2 H 2
1

2
1E

0

1F12x1
11x2

12x
L1GdxJ . ~8!

To find the additional~cluster-shape-dependent! contributions it is sufficient to use th
simplified form of the differential cross section for single photon emission suitable
semi-collinear kinematics. The additional contribution for the initial-state electron e
sion reads

S i
c5

a

2p E
0

xc 11x2

12x
dxE dz

z2 E dz1CF~z1 ,z;l,x!, l5d/u1 . ~9!

The quantityF specifies the limits of integration, and

C5@a2,a0
2#~x2z1 ,x2!1@b2,a2#~x2z1 ,x2z2!1@b0

2,b2#~x2r3
2,x2z2!,

z65~Az6l~12x!!2,

where the pairs in the square brackets and parentheses give the upper and lower li
integration overz andz1 , respectively. For wide–narrow angular acceptance
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as

with
a05r2 , b05r4 , a5max~r2,11l~12x!!, b5min~r4 ,r32l~12x!!.

The functionF under the integral sign in the right-hand side of Eq.~9! is given by

F5
2

p S 1

z12xz
1

1

z2z1
DarctanH z2z1

~Az2Az1!2
RJ ,

~10!

R5Al2x2~12x!22~Az12xAz!2

~Az11xAz!22l2x2~12x!2
.

The additional contribution due to final-state electron emission may be written

S f
c5

a

2p E
0

xc 11x2

12x
dxF E

a0
2

b2 dz

z2 S lnUxr3
22z

r3
22z U1 l1D 1E

a2

b0
2 dz

z2 S lnUx2z

12zU1 l2D
1E dz

z2 E dz1CF~z1 ,z;l,x!G , l65 ln
l@2Az6l~12x!#

z72xlAz2l2x~12x!
,

~11!

F5
2

p S 1

z12xz
2

1

z12x2zDarctanH ~Az12xAz!2

z12x2z
R21J .

As to the contribution due to the positron emission, the quantityS̃i is equal to the
part in the first square brackets in Eq.~4! which is multiplied by thex-dependentu
functions. To obtainS̃f it is sufficient to expand the limits of integration overx to the
interval 0 to 1 for the rest of this part of Eq.~4!. The result is

S̃f5
a

2p E
1

r3
2 dz

z2 F2
1

2
D421E

0

1S (12x1
11x2

12x
L̃1)D421

11x2

12x

3~ ū42u2!L̃4DdxG . ~12!

The cluster-shape-dependent contribution due to initial positron emission coincides
the right-hand side of Eq.~9! except for the limits of integration overz andz1 and can be
derived by usingC̃ instead ofC:

C̃5@ b̃ 2,ã 2#~x2z1 ,x2r2
2!1@ c̃ 2,b̃ 2#~x2z1 ,x2z2!1@ d̃ 2,c̃ 2#~x2r4

2,x2z2!, ~13!

where

ã5max~1,r22l~12x!!, b̃5r21l~12x!,

c̃5r42l~12x!, d̃5min~r41l~12x!,r3!.

Finally, the quantityS̃f
c may be written as
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S̃f
c5

a

2p E
0

xc 11x2

12x
dxF E

ã2

c̃2 dz

z2 S lnUxr4
22z

r4
22z U1 l1D 1E

b̃2

d̃2 dz

z2 S lnUxr2
22z

r2
22z U1 l2D

1E
1

r3
2 dz

z2
@u~ ã 22z!2u~z2d̃ 2!#L̃41E dz

z2 E dz1C̃F~z1 ,z;l,x!G . ~14!

For symmetrical angular acceptance one must suppose thatr251, r45r35r. In this
case, of course,Sg5Sg .

3. The CALO2 event selection differs from CALO1 in the shape of the cluster~see
Ref. 3!. Only the cluster-dependent contributions toS1 will change in this case. The
analytical formulas are very cumbersome, and we give the result only for the symme
wide–wide case (Sg5Sg):

S i
c5

a

2p E
0

xc 11x2

12x
dxE dz

z2 E dz1
2

p S 1

z12xz
1

1

z2z1
D

3@C1F11C2F21C3F3#, ~15!

F15arctanQi
~2 !2arctanh, F25arctanh21, F35arctan

1

Qi
~1 ! ,

h5r i cot
F2d

2
, r i5

~Az2Az1!2

z2z1
,

Qi
65r iAx2~Az1Az1!22~12x!2~Az16xl̄!2

~12x!2~Az16xl̄!22x2~Az2Az1!2
,

C15@z3
~2 !,1#~x2J1

2 ,x2z1!1@~r32~12x!l̄!2,z3
~2 !#~x2r3

2,x2z1!,

C25@z1
~1 !,1#~x2z1 ,x2!1@~r32~12x!l̄!2,z1

~1 !#~x2z1 ,x2J2
2 !

1@r3
2,~r32~12x!l̄!2#~x2r3

2,x2J2
2 !,

C35@z1
~1 ! ,~11~12x!l̄!2#~x2J1

2 ,x2!1@r3
2,~11~12x!l̄!2#~x2J2

2 ,x2z2!. ~16!

The corresponding formula for the contribution due to the final-electron emission r

S f
c5

a

2p E
0

xc 11x2

12x
dxF E dz

z2 E dz1
2

p S 1

z12xz
2

1

z12x2zD @C1F11C̄2F2

1C3F3#1E
1

z3
~2 ! dz

z2
lnU~xr3

22z!~J1
2 2z!

~r3
22z!~xJ1

2 2z!
U1E

~11~12x!l̄ !2

r3
2 dz

z2

3S lnUx2z

12zU1 l̄2D G ; ~17!
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F15arctan
1

Qf
~2 ! , F25arctanz, F35arctanQf

~1 ! , z5r f cot
F2d

2
,

r f5
~Az12xAz!2

z12x2z
, l̄25 l2~l→l̄!, Qf

~6 !5
r f
r i
Qi

~6 ! , sin d5Az1
z
sin F,

C̄25@z1
~1 !,1#~x2J1x

2!1@z3
~2 ! ,z1

~1 !#~x2J1
2 ,x2J2

2 !1@r3
2,z3

~2 !#~x2r3
2,x2J2

2 !. ~18!

The quantitiesF and l̄ in Eqs.~15!–~18! specify the shape and size of the CALO
cluster, namely

F5
3p

32
, l̄5

u0
u1
, u05

0.051

16
.

Finally, the functionsJ6 andzi
(6) are defined as follows:

J~6 !5
1

b FAzb2x2~12x!2l̄2 sin2 F6~12x!l̄S 122x sin2
F

2 D G ,
b5124x~12x!sin2

F

2
, zi

~6 !5~r i6~12x!l̄!224x~12x!r i~r i6l̄!sin2
F

2
.

The results of calculations of the QED correction with the vacuum polariza
switched off are shown in Table I for three different angular acceptances: symme
wide–wide and narrow–narrow and asymmetrical wide–narrow. For comparison we
also the corresponding numbers obtained using the Monte Carlo~MC! program
BHLUMI 3 for the symmetrical wide–wide case.

As one can see from Table I, there is an approximately constant difference, at a
of 0.3 per thousand, between our analytical results and the MC results within the
order correction. A possible cause of this effect is as follows. In our calculation

TABLE I. The SABS cross section at LEP1 with the first-order QED correction.

xc BHLUMI ww ww nn wn

CALO1

0.1 166.329 166.285 131.032 134.270
0.3 166.049 166.006 130.833 134.036
0.5 165.287 165.244 130.416 133.466
0.7 161.794 161.749 128.044 130.542
0.9 149.925 149.866 118.822 120.038

CALO2

0.1 131.032 130.997 94.666 98.354
0.3 130.739 130.705 94.491 98.127
0.5 130.176 130.141 94.177 97.720
0.7 127.528 127.491 92.981 95.874
0.9 117.541 117.491 86.303 87.696
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systematically ignore terms containingu2.utu/s as compared with unity. But it is wel
known that terms of this kind have double-logarithmic asymptotic behavior and
parametrically equal to (autu/ps)ln2(utu/s), which is 0.1 per thousand for the conditions
LEP1. We note that the MC program BHLUMI takes into account all the first-or
contributions.5
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Effect of time reversal in the magnetization of an atom
by a resonant light pulse

A. I. Alekseev
Moscow State Engineering-Physics Institute, 115409 Moscow, Russia

~Submitted 2 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 3, 231–236~10 February 1997!

It is shown that the even dependence of the light-induced magnetic
moment on the detuningv2vba from resonance in the case of a cir-
cularly polarized pulse and an isotropic initial state of the atom and the
odd dependence onv2vba in the case of a linearly polarized pulse and
an anisotropic initial state in the form of alignment of the atom are
consequences of the symmetry under time reversalt→2t and of the
initial conditions at timet50. In a number of cases, this fundamental
law makes it possible to determine the vector properties of a light-
induced magnetic moment and its dependence on the timet and
v2vba without solving the equation for the density matrix in detail
and without calculating the sum over the projections of the angular
momenta in the formula for the magnetization of an atom by light.
© 1997 American Institute of Physics.@S0021-3640~97!00203-X#

PACS numbers: 32.10.Dk, 32.90.1a

1. For an atom in an electromagnetic field described by the vector potentialA(r ,
t! with a zero scalar potential, symmetry under time reversal holds if when

t→2t, A~r ,2t !→2A~r ,t !, ~1!

which leaves the electric fieldE(r , t) unchanged and changes the sign of the magn
field H(r ,t). This symmetry is expressed in the fact that after the transformation~1! is
carried out and the wave functionC is replaced by its complex conjugateC* , the
Schrödinger equation remains unchanged in the absence of a static magnetic field1 The
electric current density in the atom, taking account of electron spin, changes sign. T
fore the magnetic moment of the atom also changes sign but remains constant in m
tude.

2. Let the atom interact over the time interval 0<t<t with the electric field of a
resonant circularly polarized pulse

E~r ,t !5 lkla~ t8!exp@ i ~k–r2vt !#1c.c., ~2!

where

lkl• lkl8
* 5dll8, l2kl5 lkl* , t85t2k–r /v,

lkl is a right-hand circular polarization vector ifl51 and a left-hand circular polariza
tion vector if l521, a(t8) is a real amplitude, which is a slowly varying functio
compared with exp@i(k–r2vt)#, andt50 is the moment at which the leading edge of t
242 2420021-3640/97/030242-06$10.00 © 1997 American Institute of Physics
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pulse~2! arrives at the locationr50 of the center of mass of the atom~nucleus!. The
frequencyv is close to the dipole transition frequencyvba5(Eb2Ea)\

21, whereEa

andEb are the energies of the ground and excited states of the atom, respectively. B
the energies, the ground state of an atom with zero nuclear spin is characterized
quantum numbersJa and Jb of the angular momentumJ and its projectionsMa and
Mb on the quantization axis. The durationt of the pulse (2) is short compared with t
radiative lifetime of the excited state, so that relaxation can be neglected. In the c
of-mass frame the evolution of the atom is described by the density m
r5C* (q8,t)C(q,t), whereq is a set of variables describing the state of the atom. In
dipole approximation the density matrixr5r(q8,q,t) satisfies the equation

]r

]t
5

i

\
@H082d8•E~0,t !2H01d–E~0,t !#r, ~3!

whereH0 is the Hamiltonian andd is the dipole moment operator of the free ato
Initially, at t50, prior to the arrival of the pulse~2!, the atom is in an isotropic state
which in theJM representation is described by the density matrixr5r(t) at t50 with
the components

rMbMa
~0!5rMbMb8

~0!50, rMaMa8
~0!5~2Ja11!21dMaMa8

. ~4!

The magnetic moment of the atom in theJM representation is calculated accordin
to the formula

mW ~ t !52mBTr~grJ!, ~5!

wheremB the Bohr magneton andg is the gyromagnetic factor.

If the amplitudea(t) is an even function of time,a(2t)5a(t), then giving it in the
region 0<t<` in the forma(t) for 0<t<t anda(t)50 for t,t<` is equivalent to
giving this amplitude on the entire time axis2`<t<`. Then the fieldE(0,t) in Eq. ~3!
is also defined in the region2`<t<` and remains unchanged under the simultane
operations

t→2t, k→2k. ~6!

If a(t) in the given interval 0<t<t depends ont arbitrarily and if a(t)50 for
t,t<`, then formally we define the amplitudea(t) on the negative time axis
2`<t<0 asa(t)5a(2t) for 2t<t<0 anda(t)50 for 2`<t<2t. For an atom in
the field Eq.~2! with r50, symmetry with respect to time reversal holds, just as in
case of Eq.~1!. Then the Schro¨dinger equation with the HamiltonianH02d•E(0,t)
remains unchanged after the operations~6! andC→C* . Equation~3! is also unaffected
by the operations~6! and r→r* . However, the magnetic moment of the atom~5!

changes sign:mW (2t)52mW (t). This property of the magnetic moment was obtain
without using the initial conditions~4!. At the same time, in the present problem the tim
t50 is the initial moment at which the atom first interacts with the field~2! in the interval
0<t<t. Therefore, here, in the presence of symmetry under time reversal the refe
point t50 on the time axis in Eq.~6! is a physically distinguished moment in time. If th
magnetic moment~5! is calculated in the nonstationary regime with the aid of E
243 243JETP Lett., Vol. 65, No. 3, 10 Feb. 1997 A. I. Alekseev



cs

he time

y
.

nance

m

tics of

from
~3!–~5!, then besides the propertymW (2t)52mW (t) mentioned above, other characteristi
of mW (t), which are due to symmetry under time reversal~6! and the initial conditions at
t50, can be found.

From the symmetry of the atom in the field of a circularly polarized pulse~2! it
follows, with allowance for Eq.~4!, that the light-induced magnetic moment~5! is pro-
portional to the only axial vector in this case,

i lkl3 lkl* 5~k/k!lb, ~7!

whereb is a unit pseudoscalar, equal tob51 in a right-handed and21 in a left-handed
coordinate system. Furthermore, solving the operator equation~3!, taking account of Eq.
~4! according to second-order perturbation theory inE(0,t), we show that for 0<t<t the
density matrices in the ground and excited states exhibit the same dependence on t
t and the detuningD5v2vba , as described by the integralI (t) in the form

rMaMa8
~ t !5RMaMa8

I ~ t !1h.c., rMbMb8
~ t !5RMbMb8

I ~ t !1h.c., ~8!

where

I ~ t !5E
0

t

dt2E
0

t2
dt1a* ~t2!a~t1!exp@ iD~t22t1!#,

RMaMa8
andRMbMb8

are matrices. If the matrices~8! are substituted into Eq.~5!, then the

magnetic momentmW (t) separates into a sum of terms which are proportional toI (t) or
I * (t). These terms must containI (t) and I * (t) in a combination so that the equalit
mW (2t)52mW (t) holds after the operations~6!. Hence it follows that, on account of Eq
~7!, the desired vectormW (t) is proportional to the sumI (t)1I * (t). Therefore, taking
account of Eqs.~7! and ~8!, the magnetic moment~5! can be represented in the form

mW ~ t !52~k/k!lbM0X0~ t,D!, ~9!

where

X0~ t,D!5~ta0!
22@ I ~ t !1I * ~ t !#, ~10!

a0 is the maximum value ofua(t)u in the prescribed interval 0<t<t, M0 is a constant
with dimensions of magnetic moment and depends on the characteristics of the reso
transition, andX0(t,D) is a universal function of the timet and the detuning
D5v2vba and does not depend on the atomic characteristics.

The vector properties ofmW (t) in Eq. ~9! are determined by the symmetry of the ato
in the field of the circularly polarized pulse~2! with the initial conditions~4!; this leads
to the axial vector~7!. At the same time,mW (t) is an even function ofD because of the
symmetry under time reversal~6! in the presence of the axial vector~7!. The constant
M0 is determined by a detailed calculation of the density matrices~8! in solving Eq.~3!
together with Eq.~4! and the subsequent summation in Eq.~5! over the projections of the
angular momenta of the atom in the ground and excited states. The characteris
mW (t) obtained with a more complicated dependence ont andD remain valid outside of
perturbation theory for an ultrashort, square, circularly polarized pulse; this follows
an exact solution of the problem in the absence of relaxation.2
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3. We shall now consider the magnetization of an atom by a resonant lin
polarized pulse:

E~r ,t !5 lka~ t8!exp@ i ~k–r2vt !#1c.c., ~11!

wherelk is a unit polarization vector, which is not affected by reversal of the wave ve
k→2k. The other physical quantities in Eq.~11! are the same as in Eq.~2!. Since the
pulse~11! does not magnetize an atom in the isotropic initial state~4!, let us assume tha
prior to the interaction with the pulse~11! the atom was optically polarized by a stron
linearly polarized, resonant pulse with vectork0, which is collinear tok, and unit polar-
ization vector l0, which is not affected by the operationk0→2k0 . Then the initial
conditions for Eq.~3! in the JM representation have the form

rMbMa
~0!5rMbMb8

~0!50, rMaMa8
~0!5rMaMa8

al
, ~12!

where the density matrixrMaMa8
al

describes the initial optical polarization of the atom

called alignment~see, for example, Ref. 3!. Here the alignment of the atom is characte
ized by two orthogonal symmetry axes, the first of which is directed alongl0 and the
second is collinear tok0. In this case, when the atom interacts with the pulse~11!, there
exists a unique axial vector which corresponds to the given symmetry and determin
direction of the magnetic moment~5!. This vector has the form

l03 lk5~k/k!sin wk , ~13!

where the positive direction of the anglewk is from the unit vectorl0 to the unit vector
lk ~clockwise when viewed alongk). Therefore, under the operationk→2k, we have
w2k52wk , so that the anglewk is a pseudoscalar. Furthermore, only one of the t
orthogonal symmetry axes possesses the prescribed directionl0; the direction of the
second axis is not fixed~all orientations are equally good!. The direction of the third axis
which is orthogonal to the two axes indicated above, is also not fixed and all direc
are equally good. Hence it follows that for a prealigned atom the magnetic mome~5!
should not change whenlk is chosen to be parallel or antiparallel to the third axis. T
rotation angleswk5p/2 andwk52p/2 correspond to these two directions oflk . Invari-
ance of the magnetic moment~5! under such rotations under the conditions of the pres
symmetry is attained after the axial vector~13! is multiplied by coswk . Therefore the
desired magnetic moment~5! in the case at hand is proportional to the following ax
vector:

~k/k!sin~2wk!. ~14!

For the initial conditions~12!, the dependence of the density matrices~8! on t and
D remains in force for other values ofRMaMa8

andRMbMb8
than those in Eq.~4!. We also

take account of the fact that for a prealigned atom in the field of a linearly polarized p
~11! symmetry under time reversal~6! holds and leads to the equalitymW (2t)52mW (t).
This equality is possible only if, after the density matrices~8! are substituted into Eq.~5!,
the quantitiesI (t) and I * (t) appear inmW (t) in the form of the real combination
i @ I * (t)2I (t)#. Finally, the magnetic moment~5! for a prealigned atom has the form

mW ~ t !52~k/k!sin~2wk!M2X2~ t,D!, ~15!
245 245JETP Lett., Vol. 65, No. 3, 10 Feb. 1997 A. I. Alekseev
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where

X2~ t,D!5 i ~ta0!
22@ I * ~ t !2I ~ t !#.

Here the constantM2, which has dimensions of a magnetic moment, is calculated
summing in Eq.~5! over the projections of the angular momenta. The subscript 2 on
constantM2 and on the universal functionX2(t,D) was chosen so as to coincide with th
rank of the polarization multipole moment characterizing the alignment of the ato
Eq. ~12!. The vector properties of the magnetic moment in Eq.~15! are determined by the
symmetry of the interaction of a prealigned atom with the linearly polarized pulse~11!.
At the same time, the odd dependence onD in Eq. ~15! is due to the symmetry under tim
reversal~6! in the presence of the initial conditions~12!, which lead to the axial vecto
~14!.

4. The following general law follows from what has been said above. If the magn
momentmW (t) induced by the resonant light pulse is proportional to the axial vector~7!,
then it is an even function of the detuningD with a maximum atD50. If mW (t) is
proportional to an axial vector, which is invariant under the operationk→2k, then
mW (t) is an odd function ofD with a maximum at 0,uDu. This law is fundamental, since
it is a consequence of the symmetry of the atom in the field of a resonant light puls~2!
or ~11! as well as the symmetry under time reversal~6! with allowance for the initial
conditions att50. In many cases this law makes it possible to determine the ve
properties of the magnetic moment~5! and its dependence ont and D to within a
common factor with dimensions of magnetic moment, without performing deta
perturbation-theory calculations.

If the amplitudea(t) is an odd function of timea(2t)52a(t), then specifying it in
the region 0<t<` is equivalent to specifying its amplitude on the entire time a
2`<t<`. However, it must enter in Eqs.~2! and ~11! in the form a(t)exp(ip/2) or
a(t)exp(2ip/2) in order that the operations~6! not change the electric fields~2! and~11!.
In this case the foregoing arguments and Eqs.~9! and~15! with the integralI (t) remain
in force after the operationsa(t)→a(t)exp(6ip/2).

5. Let the center of mass of the atom in the laboratory coordinate system be lo
at timet at the pointr in some volume. The leading edge of the circularly polarized pu
~2! crosses the boundary pointr0 of this volume at timet0 and reaches the locationr of
the atom at timet. The propagation of a circularly polarized pulse~2! in this volume is
described by the formula

E~r ,t !5 lkla~ t8!exp~2 ivt8!1c.c., ~16!

where

t85t2t02k–~r2r0!. ~17!

Here the amplitudea(t8) is given for 0<t8<t and a(t8)50 for t,t8<` and it is
defined on the entire time axis2`<t8<` in analogy with the discussion in Sec. 2. Th
leading edge of the pulse~16! crosses the center of mass of the atom with zero argum
of the ampltudea(t8) and zero phase2 ivt850, just as in the case~2!. If the atom at the
point r possesses a velocityv at time t, then its state is described by the equation
246 246JETP Lett., Vol. 65, No. 3, 10 Feb. 1997 A. I. Alekseev
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@H082d8•E~r ,t !2H01d–E~r ,t !#r, ~18!

which remains unchanged under the simultaneous operations

t→2t, t0→2t0 , k→2k, r→r* , v→2v. ~19!

Therefore, for an atom moving with velocityv, there exists a symmetry with respect
time reversal~19! accompanied by the operationt8→2t8. In accordance with Eqs.~16!
and~17!, the density matrixr is a function oft8, and the leading edge of the pulse~16!
crosses the center of mass of the atom at timet5t01k•(r2r0) or t850. In addition, the
initial value r5r(t8) at t850 has the form~4!. Repeating the arguments leading up
Eqs.~7!–~10!, we find, taking account of the Doppler shiftk–v of the frequencyv, that
the magnetic moment~5! of a moving atom is given by expression~9! with the operations

t→t8, D→D2k–v. ~20!

The linearly polarized pulse~11! in the given volume has the form~16! after the opera-
tion lkl→ lk . It induces in the moving atom a magnetic moment given by Eq.~15! with
the operations~20!.

Let us now apply the above results to a gas of identical atoms located in the
cated volume. Then we find that the magnetizationmW q(t8) induced in the gas by circu
larly or linearly polarized pulses is given by

mW q~ t8!52LqNMqE f ~v !Xq~ t8,D2k–v!dv, ~21!

where

q50,2, L05~k/k!lb, L25~k/k!sin~2wk!,

N is the density of atoms,f (v) is Maxwell’s distribution, andt8 is the time with allow-
ance for the delay of the wave, as defined in Eq.~17!. Under the time reversal~19! the
equalitymW q(2t8)52mW q(t8) holds, and the quantitymW q(t8) is an even~for q50) or odd
~for q52) function of the detuningD, just as in the case~9! and ~15!.

In the experiments with a gas4 and a solid5 the light-induced magnetization wa
measured in relative units. If the experimental method of those studies4,5 is used, then the
constantsM0 andM2, which were not calculated, do not affect the investigation of
vector properties of the light-induced magnetization~21! and its dependence ont8 and
D in the time interval 0<t8<t.

1L. D. Landau and E. M. Lifshitz,Quantum Mechanics: Non-Relativistic Theory, 3rd edition, Pergamon Press
New York, 1977@Russian original, Nauka, Moscow, 1974#.

2A. I. Alekseev, Opt. Spektrosk.75, 842 ~1993! @Opt. Spectrosc.75, 499 ~1993!#.
3A. I. Alekseev, Zh. E´ksp. Teor. Fiz.106, 1319~1994! @JETP79, 714 ~1994!#.
4A. A. Dabagyan, M. E. Movsesyan, and R. E. Movsesyan,JETP Lett.29, 534 ~1979!.
5R. G. Usmanov and E. P. Kha�movich, Opt. Spektrosk.79, 378 ~1995! @Opt. Spectrosc.79, 348 ~1995!#.

Translated by M. E. Alferieff
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Nonlinear effects in a two-dimensional electron gas with
a periodic lattice of scatterers

G. M. Gusev, Z. D. Kvon, A. G. Pogosov, and M. M. Voronin
Institute of Semiconductor Physics, 630090 Novosibirsk, Russia

~Submitted 3 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 3, 237–241~10 February 1997!

The magnetoresistance of two-dimensional~2D! electrons in a periodic
lattice of antidots is found to be substantially influenced by an applied
electric field. The non-Ohmic behavior of the resistance in the region of
commensurability oscillations originates from the electric-field-induced
breakdown of the trajectories skipping along the lattice arrays. In the
region of magnetic fields where the cyclotron diameter is less than the
distance between antidots the breakdown of the orbits skipping around
antidots is responsible for the nonlinear behavior of the magnetoresis-
tance. ©1997 American Institute of Physics.
@S0021-3640~97!00303-4#

PACS numbers: 73.61.Ey, 72.20.My

The transport of a 2D electron gas in a periodic lattice of antidots has been ac
investigated in the last few years. One of the most interesting features of this syst
the commensurability oscillations of the magnetoresistance, which have been ob
and studied in a number of works.1–4 In Ref. 2 a ‘‘pinball’’ model was proposed, which
explained these oscillations as being due to the existence of electron cyclotron
which do not collide with antidots at certain magnetic fields. It was later shown4,5 that
this model cannot explain all of the features of the magnetoresistance. In Ref.
diffusion coefficient in a magnetic field was calculated by means of numerical sim
tions of chaotic dynamics of electron in the lattice of antidots. These calculations
able to account for all the features of the commensurability oscillations of the ma
toresistance. Moreover, it was shown in Ref. 3 that the cause of these oscillations
appearance of electron trajectories which skip along the lattice arrays. In addition
model of dynamical chaos predicts some other interesting effects—for example,
Ohmic behavior of magnetoresistance. In the present work the influence of high el
fields on the electron transport in a periodic lattice of antidots is investigated.

The test samples were Hall bars based on the 2D electron gas in a GaAs/Al
heterojunction~m52•105 cm2/V•s, ns54.5•1011 cm22!. The distance between potenti
probes was 500mm, and the width of the device was 200mm. The part of the sample
between the potential probes was covered by a lattice of antidots created by el
beam lithography and reactive ion etching. Samples with different lattice periodd
50.6, 0.7, 0.8, 0.9 and 1.3mm, were investigated. The antidot diameter was abouta
50.15–0.2mm. The magnetoresistance was measured by the four-terminal metho
ing an ac bridge operating at 70–700 Hz in magnetic fields up to 0.8 T at tempera
1.3–4.2 K. In order to measure nonlinear effects a dc electric fieldE up to 7 V/cm was
248 2480021-3640/97/030248-05$10.00 © 1997 American Institute of Physics
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applied. The amplitude of the ac electric field on which the signal was measured wa
than 0.03 V/cm. Thus, the differential magnetoresistance of the samples was me
experimentally as a function of applied electric fieldE.

The magnetoresistance traces for the sample with the lattice periodd51.3mm at
different lattice temperatures and applied electric fields are shown in Fig. 1. Compa
of curves a and b in Fig. 1 shows that at low values ofE the amplitude of the
Shubnikov–de Haas~SdH! oscillations decreases with temperature, while the amplit
of the commensurability oscillations remains unchanged. This result is consisten
Ref. 2, where it was shown that the commensurability oscillations do not depen
temperature up to 50 K. As the applied electric field is increased to 0.8 V/cm
amplitude of the SdH oscillations falls to a value corresponding to a temperature o
K, and the amplitude of the commensurability oscillations falls by a factor of two~curve
c!. In a stronger applied electric field the commensurability oscillations disappear, a
the region of magnetic fields where 2Rc,d the resistance increases~curve d in Fig. 1!,
and an additional small maximum~marked by an arrow on the curve! appears, which was
not present at lower electric fields.

It should be noted that an applied electric field increases the electron tempe
Te above the lattice temperatureTL ~the overheating of the lattice is negligible!. The
electron temperature can be determined from the SdH oscillations, and for the cur~c!
in Fig. 1 it is aboutTe54.2 K, as is seen from a comparison of the SdH oscillatio

FIG. 1. The magnetoresistance of the sample withd51.3mm as a function of magnetic field for differen
values of applied dc electric fieldE and lattice temperatureTL : a—TL51.3 K, E50 V/cm; b—TL54.2 K,
E50 V/cm; c—TL51.3 K, E50.76 V/cm; d—TL51.3 K, E52.4 V/cm.
249 249JETP Lett., Vol. 65, No. 3, 10 Feb. 1997 Gusev et al.
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However the commensurability oscillations on curve c in Fig. 1 are strongly suppre
in comparison with curve b. This leads to the conclusion that the suppression of
mensurability oscillations is not due to heating effects.

The sample resistance as a function ofE is presented in Fig. 2 for two differen
values of the magnetic field. One can see that for magnetic fields satisfying the com
surability condition 2Rc5d ~curve a! the resistance decreases withE, whereas for stron-
ger magnetic fields it increases withE ~curve b!. It is also seen that at low and hig
electric field both curves reach saturation. The same behavior was observed for all
samples tested. From the dependence of the magnetoresistance onE we determine the
electric fieldE1/2 at which the commensurability oscillations are suppressed to half
magnitude. The values ofE1/2 for the magnetoresistance maximum at 2Rc5d are shown
in Fig. 3a for the samples with different lattice periods. One can see thatE1/2 falls off
with increasingd roughly according toE1/2}d

22.

As was mentioned above, there are two models explaining the magnetoresi
maxima in Fig. 1. One of them is based on the presence of ‘‘running trajectories’’
skip along the lattice arrays and which are responsible for the maximum in the diffu
coefficient and, consequently, in the resistance~for the magnetic fields under conside
ation we havesxy.sxx , and the maximum insxx therefore corresponds to a maximu
in rxx!. The other explanation involves pinned orbits which do not collide with antid
It is important that the running trajectories are substantially more sensitive to the i
conditions and to possible distortion of the electron orbit. An applied electric field l
to drift of the cyclotron orbit. For the running trajectories a relatively small drift
sufficient to shift them off the region of stability and therefore break the stable run
motion. The critical drift distancel d during the time between two successive collisio
with antidots is in any case considerably smaller than the antidot radiusa. Precise
estimation of the drift distancel d necessary for breaking the running trajectories and
the dependence ofl d on the lattice periodd requires more-detailed theoretical study
the region of stability of the running trajectories. On the other hand, in order to brea
pinned orbit with 2Rc5d ~corresponding to the main commensurability maximum! the

FIG. 2. The resistance of the sample withd51.3mm as a function of applied electric fieldE for two different
values of the magnetic fieldB: a—B50.17 T (2Rc5d)—commensurability maximum; b—B50.27 T (2Rc

,d22a)—corresponds to rosette-like orbits.
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average drift over the timet;2p/vc (vc5eH/mc) should be of the orderl d;d/2
2a.

One can estimatel d from the experimentally measured value of the critical field
E1/2: l d5pvd /vc ~vd5cE1/2/H is the drift velocity!. At a lattice periodd51.3mm,
l d is 0.003mm. This value is significantly smaller than the radius of an antidot. Ther
fore, taking into account the above discussion, one can conclude that the model base
the running trajectories more likely explains the main commensurability maximum
2Rc'd, and the breaking of these trajectories by an applied electric field leads to
experimentally observed suppression of the commensurability oscillations.

At higher magnetic field when 2Rc,d22a the magnetoresistance also exhibits
nonlinear dependence on the electric field. This dependence has the opposite sign
that in the region of commensurability oscillations described above. This behavior of
magnetoresistance can be explained on the assumption that in this region of mag
fields the electrons move on rosette-like orbits skipping around antidots. These elect
are localized and do not contribute to the conductivity. But a high electric field~above a
certain critical valueEc* ! results in breakdown of the localized motion due to the drift o
the cyclotron orbit by analogy with the trajectories that skip along the arrays. It leads
an increase in the conductivity and resistance of the samples and thus affects the ex
mental dependence of the magnetoresistance on the electric field~Fig. 1!.

The experimental dependence ofEc* onRc is shown in Fig. 3b. One can see that the
critical fieldEc* does not depend on the cyclotron radius. Theoretical support for this fa
as well as the numerical estimation ofEc* requires further theoretical consideration.

It should be noted that the electron orbits corresponding to the condition 2Rc5d
22a show a threshold behavior for the applied electric field. For higherB a delocaliza-
tion of the electrons by the electric field is observed, but for lowerB the electron
trajectories become diffusive. Thus a new maximum in the resistance at high elec
fields is observed, as indicated above~Fig. 1!. The corresponding value of the antidot

FIG. 3. a: The electric fieldE1/2 resulting in the suppression of the main commensurability oscillation~in a
magnetic field satisfying the condition 2Rc5d! to half its value, measured for the samples with differentd as
a function ofd22. The solid line is drawn as a guide to the eye. b: The experimental dependence of the crit
field Ec* corresponding to breakdown of the trajectories skipping around antidots on the cyclotron radiusRc for
the sample with lattice periodd51.3mm.
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radiusa is consistent with the measurement ofa by other methods.5

Thus in the present work the magnetoresistance of 2D periodic lattices of an
with a wide variety of periods has been found to exhibit nonlinear behavior in the ap
electric field. Analysis of the results within the framework of dynamical chaos the
shows that the model of runaway electron trajectories can explain the suppression
main commensurability maximum by the applied electric field for all of the sam
tested. In higher magnetic fields the nonlinear effects are connected with breaking
localized rosette motion. More-detailed comparison of some of our findings~such as the
values of the critical electric fields for breaking of the regular motion and their de
dence on the lattice period! with the theory requires further theoretical study of the reg
of stability of the runaway and rosette-like orbits.

We thank E. M. Baskin and M. V. Entin for helpful discussions. This study w
supported by the Russian Fund for Fundamental Research~Grants 95-02-04583a, 96-02
19377a!.
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Interplay between fermion condensation and density-
wave instability

V. A. Khodela)

Kurchatov Institute Russian Research Center, 123182 Moscow, Russia

V. R. Shaginyanb)

St. Petersburg Nuclear Physics Institute, Russian Academy of Sciences, 188350 Gat
Russia

M. V. Zverevc)

Moscow Engineering Physics Institute, 115409 Moscow, Russia

~Submitted 15 December 1996; resubmitted 9 January 1997!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 3, 242–247~10 February 1997!

It is shown that the phase transition of density-wave origin in homoge-
neous liquids is preceded by fermion condensation. Thus fermion con-
densation may be observed in low-density electron liquids, neutron
stars, and liquid He3. Three-dimensional~3D! and two-dimensional
~2D! liquids are considered. ©1997 American Institute of Physics.
@S0021-3640~97!00403-9#

PACS numbers: 71.45.Gm, 73.20.Dx, 73.40.Lq

Several years ago an extremely powerful method was developed1 for measuring the
electronic structure close to the Fermi level: angle-resolved photoemission spectro
~ARPES!. ARPES measurements of electronic spectra in the vicinity of the Fermi l
exhibit a dispersionless sharp peak, i.e., an extended Van Hove singularity~VHS!. Re-
cently measured ARPES data from single-crystal Sr2RuO4 reveal a VHS with extension
in both directions, in contrast to the usual case, where the saddle point extends i
one direction.2,3 Thus, it turns out that there is a broad plateau in the spect
«(px ,py), which lies at or within 17 meV of the Fermi level. It is noteworthy that t
observed Fermi surface differs from the LDA calculations.1,2 We submit that the above
described behavior of the electronic spectra«(p) can be understood within the frame
work of the theory of fermion condensation, based on the Landau theory of the F
liquid.4 Landau postulated that the entropyS, which, like the other thermodynamic func
tions, is a functional of the quasiparticle distributionn(p), has the form

S52E @n~p,T!ln~n~p,T!!1~12n~p,T!!ln~12n~p,T!!#
d3p

~2p!3
.

Then, the variational condition for the free energyF5E02TS yields the relation

d~F2mN!

dn~p!
5«~p,T!2m~T!2T ln

12n~p,T!

n~p,T!
50, ~1!

where T is the temperature andm is the chemical potential. Equation~1! is usually
rewritten in the Gibbs form,
253 2530021-3640/97/030253-06$10.00 © 1997 American Institute of Physics
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n~p!5
1

11e~«~p,T!2m!/T , ~2!

with «(p) given by4

dE0

dn~p,T!
5«~p,T!, ~3!

whereE0 is the ground state energy functional. Equation~2! is a compact form of Eq.~1!
rather then its solution, since the quasiparticle energy«(p) appearing in Eq.~2! is a
nontrivial functional ofn(p).

Landau’s suggestion that the derivatived«(p)/dp is positive and finite at the Ferm
level immediately implies that the functionn(p,T50) coincides with the Fermi step
function. But this solution of Eq.~1! is not the only one. There exist ‘‘anomalous
solutions5–10 of Eq. ~1! involving the so-called fermion condensation.5 Being continuous
within a regionV in p, such a solutionn(p) admits a finite limit for the logarithm in Eq
~1! at T→0, yielding8

«~p!5
dE0

dn~p!
5m,pi<p<pf . ~4!

Thus, within the regionpi , pfPV the solutionn(p) deviates from the Fermi ste
function nF(p) in such a way that the energy«(p) stays constant, while, outside th
region, n(p) coincides withnF(p). Therefore, the occupation numbersn(p) serve as
variational parameters, since the energyE0 can be reduced by varying them. Since t
single-particle energy«(p) remains constant at exactly the chemical potential~Eq. ~4!!,
one can conclude thatpi,pF,pf , wherepF is the Fermi momentum. When the con
densation is just starting, the momenta obeypi5pf5pF . This fact means that the effec
tive massM* , given by the formula

1

M*
5

1

pF

d

dp
«~p!up5pF

, ~5!

has a valueM*→`. So we can conclude that the beginning of the fermion-condensa
phase transition manifests itself in the absolute growth of the effective mass.

In this letter we show that the onset of the density-wave instability in a hom
neous Fermi liquid must be preceded by unlimited growth of the effective mass.
fermion condensation can be thought of as a widespread effect rather than as an u
mon and ‘‘anomalous’’ solution of Eq.~2!.

Let us briefly outline the main points of calculations of the effective mass.9,11 The
energyE0 is given by the equation

E05T2E F ImS x0~q,v!

12R~q,v,g!x0~q,v! D12prd~v!Gv~q!
d3q dv dg

~2p!4
, ~6!

where T is the kinetic energy of noninteracting particles andx0(q,v) is the linear
response function of noninteracting particles as a function of the momentumq and
frequencyv. The effective interactionR tends to the bare interparticle interactio
gv(q) as the coupling constantg→0. The integration over frequencyv goes along the
254 254JETP Lett., Vol. 65, No. 3, 10 Feb. 1997 Khodel et al.



et

inte-

s

ll
r
l sin-

ated in
the

in,

first
e the
real axis from 0 to1`, while the integration overg goes from 0 to a real valueg0 .
Substituting Eq.~6! into Eq. ~3!, using Eq.~5!, and doing some tedious algebra, we g

1

M*
5

1

M
2

d

2pF dp
E F dx0~q,v!

dn~p!

~12R~q,v,g!x0~q,v!!2
G v~q!

d3q dv dg

~2p!4i

2
d

2pF dp
E F dR~q,v,g!

dn~p!
x0
2~q,v!

~12R~q,v,g!x0~q,v!!2
G v~q!

d3q dv dg

~2p!4i
. ~7!

HereM is the bare mass of a particle of the system under consideration, and the
gration overv goes along the imaginary axis. We recall that the derivatived/dp is taken
at p5pF . One can calculate the function

I 0~pF ,q,v!5
d

dp

d

dnp
x0~q,v!up5pF

,

taking into account the explicit form ofx0 ~Ref. 12!,

x0~q,v!52(
k
nk~12nk1q!

2vkq

v21vkq
2 . ~8!

Here vkq5(k1q)2/(2M )2k2/(2M ). Now the calculation of the derivatives i
performed directly,

d

dp

d

dnp
x0~q,v!up→pF

.I 0~pF ,q,v!52
4p

pF
2 d~pF2up1qu!d~v!p~p1q!up5pF

.

~9!

It is seen from Eq.~9! that I 0 is a singular function. But this singular function wi
make a major contribution to the effective massM* only if it meets another singula
function. Otherwise, the four-dimensional integration removes the two-dimensiona
gularity, and the first term on the right-hand side of Eq.~7! will be finite and quite
comparable to the second one. Let us consider a homogeneous Fermi system loc
the vicinity of the density-wave instability, i.e., close to the phase transition, when
system in question possesses a density wave characterized by the momentumqc . The
instability threshold is reached when the linear response function

x~q,v!5
x0~q,v!

12R~q,v,g!x0~q,v!
~10!

of the system possesses a pole at

q5qc ; pF5pFc5~3p2rc!
1/3,

and at frequencyv50, or the denominator of the terms on the right-hand side of Eq.~7!
vanishes.12 Here rc is the critical density at which the density-wave instability sets
while pFc is the corresponding Fermi momentum.

Thus the desired singular function can be conveyed by the denominator of the
term in the integrand, provided that the system is close to instability. In that cas
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integrand of the second term on the right-hand side of Eq.~7! has only a two-dimensiona
singularity, and so its contribution to the effective mass can be omitted. Now we
simplify Eq. ~7!, keeping the main contribution, which comes from the functionI 0 given
by Eq. ~9!,

1

M*
5

1

M
1

pF
4p2 E

21

1 E
0

g0 v~pFA2~12x!!x dx dg

@12R~pFA2~12x!,v50,g!x0~pFA2~12x!,v50!#2
.

~11!

It should be noted thatpFA2(12x) is the momentum transferq. Below we adopt the
shorthand notationpFA2(12x)5q(x). It is seen from Eq.~11! that the integral, which
is negative, is logarithmically divergent in the limitp→pFc . Of course, we suppose tha
qc.2pFc , since there is no other vector butpF . On the other hand, in the case of a
electron gas, direct calculations of the effective interactionR ~Ref. 9!, including ones
based on Monte Carlo calculations,13–15 have shown thatR becomes negative atq
.2pF . Sincex0(q,v50) is negative,R(q,v50) must be negative in order to produc
a pole in the linear response function~10!. Fermion condensation occurs when the effe
tive mass becomes infinite, i.e., the condensation starts as soon as the integral
right-hand side of Eq.~11! cancels the term 1/M . It is clear that it must take place lon
before the density-wave instability manifests itself.

Now let us consider a 2D liquid. The path from a 3D to a 2D liquid is clear, si
the form of the singular functionI 0 is preserved because the dimension is not taken
account in the calculation of this function. We arrive at the final result, bearing in m
that instead ofdx we have to writedx/A12x2:

1

M*
5

1

M
1

1

4p2 E
21

1 E
0

g0 v~q~x!!

@12R~q~x!,v50,g!x0~q~x!,v50!#2
x dx dg

A12x2
. ~12!

The fermion condensation occurs more ‘‘easily’’ in a 2D liquid than in the 3D case
see this, we note that the integrand of Eq.~12! is multiplied by a factor 1/A12x2>1. On
the other hand, the density-wave instability is also expected to take place more ea
the 2D case than in the 3D case~see below!.

Consider a particular kind of liquid which is a 2D and 3D electron gas. In the
of the 3D electron gas the bare interactiongv(q) is of the form

gv~q!5
4p2e2

q2
, ~13!

and the effective massM* , when the system under consideration is not far from
instability point, can be obtained directly by putting Eq.~13! into Eq. ~11!:

1

M*
5

1

M
1

e2

pFp E
21

1 E
0

1 x dx dg

~12x!@12R~q~x!,v50,g!x0~q~x!,v50!#2
. ~14!

One can get the well-known Gell-Mann result for the effective mass of a dense ele
gas16 by puttingR54pe2/q2, as should be the case in the weak-coupling limit. It h
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been shown that the charge-density-wave instability takes place in a 3D gas atr s.30,
andqc.2pF ~Ref. 17, 14, 18!. At the same time, Wigner crystallization is predicted
the Monte Carlo calculations atr s;100 ~Ref. 19!.

In the case of a 2D electron gas one gets

1

M*
5

1

M
1

e2

pFp E
21

1 E
0

1 x dx dg

~12x!A2~11x!@12R~q~x!,v50,g!x0~q~x!,v50!#2
.

~15!

Here we putgv(q)52pe2/q. We stress that the effective interactionR of both 2D and
3D electron systems tends to the Coulomb interaction asq→0, and the integrands of Eqs
~14! and~15! have no singularities atx51. Monte Carlo calculations of the ground sta
properties of an electron gas predict Wigner crystallization at a densityr s.37 in the 2D
electron gas.20 However, density waves should arise before crystallization takes plac
is indeed found to be the case: the charge-density-wave instability has been sho
occur at r s55–10! and qc.2pF in parallel electron layers separated by poten
barriers.13,15Thus, as we have shown above, fermion condensation will inevitably aris
a result of the possibility of the charge-density-wave instability. Our calculations pr
fermion condensation in a 3D electron gas atr s.21 ~Ref. 11!, while calculations in the
2D case give the valuer s.8 ~these will be published elsewhere!. Wigner crystallization
has also been predicted to occur for dense neutron matter.21 Different calculations yield
varying values for the solidification density of neutron matter in the interior of neu
stars.22 One can imagine that before forming crystal structures a liquid becomes uns
against small-amplitude density fluctuations, i.e., that the linear response function
pole atqc ~Ref. 12 and 17!. We suppose that the same is true for the solidification
liquid 3He. Therefore, we can conclude that such liquids should exhibit fermion con
sation.

In summary, we have shown that fermion condensation could take place in
Fermi liquid ~electron gas, nuclear matter, neutron matter, or liquid3He! which under-
goes a density-wave instability under some conditions.
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Energy and number of particles in skyrmion excitations
with odd filling of the Landau levels of a two-
dimensional electron gas

S. V. Iordanski  and S. G. Plyasunov
Landau Institute of Theoretical Physics, Russian Academy of Sciences, 117334 Mosc
Russia

~Submitted 25 December 1996; resubmitted 5 January 1997!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 3, 248–252~10 February 1997!

It is shown that approximations employing projections of wave func-
tions onto a single Landau level are inadequate for describing
skyrmion-type excitations. Nonprojected functions give a clear physical
picture and calculations are greatly simplified by their use. The expres-
sion for the energy of skyrmion excitations differs substantially from
the expressions obtained in the approximation of globally projected
functions by a series of terms which have a very simple meaning.
© 1997 American Institute of Physics.@S0021-3640~97!00503-3#

PACS numbers: 73.20.Mf, 71.70.Di, 12.39.Dc

The question of the existence of skyrmion-type excitations for oddly filled Lan
levels of two-dimensional electrons arose a comparatively long time ago,1,2 but a specific
calculation of their energies was made only recently. In Ref. 3 the phenomenolo
approach of the Chern–Simons theory was used, and it was shown that skyrmion
exist in this case and their energy was calculated. Next, the skyrmion energies
determined numerically in Ref. 4 by the Hartree–Fock method on the basis of
functions projected onto the lowest Landau level. In Ref. 5 the gradient-expan
method was used and the number of particles and the energy were calculated
lowest approximation in the gradients. The results of Ref. 5 were refined in Ref. 6, w
a technique was also developed for performing calculations in any order of the gra
expansion. The gradient-expansion technique is very unwieldy and the final resul
pear only after tedious calculations, even in the lowest order. The projected-fun
approximation is ordinarily justified by the large value of the cyclotron energy\vc

compared with the Coulomb energy, which is of ordere2/k l H , wherel H
2 5c\/eH and

k is the dielectric constant.

In the present letter we show that this assertion is incorrect and that taking ac
of other Landau levels leads to corrections in the energy in zeroth order in 1/\vc and to
terms of order\vc in the skrymion energy. At the same time, the calculations simp
substantially and have a simple physical interpretation.

Skrymions correspond to a nonuniform rotation of the second-quantization s
operators with the aid of the rotation matrixU(r ). This corresponds to the transformatio
C(r )5U(r )x(r ), wherex(r ) are new spinors. The matrixU(r ) is parameterized by
three Euler angles:
259 2590021-3640/97/030259-05$10.00 © 1997 American Institute of Physics
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U~r !5U~g~r !!U~b~r !!U~a~r !!,

U~a!5cos
a

2
1 isz sin

a

2
; U~b!5cos

b

2
1 isy sin

b

2
;

U~g!5cos
g

2
1 isz sin

g

2
.

For the energy to be finite with a finiteg-factor, the angleb corresponding to a
deviation of the spin direction away from thez axis, along which the spin is directed i
the limit r→`, must go to zero at large distances. It is assumed that the matrixU(r ) has
no singularities anywhere. This corresponds to the absence of singularities in the

Am52 iU †]mU5Vm
i s i ,

wheres i are the Pauli matrices,i5x, y, z andm5x, y. The expressions forVx, Vy, and
Vz can be easily obtained by direct differentiation:

Vm
z 5

1

2
~]ma1cosb]mg!,

Vm
x 5

1

2
~]mg sin b cosa2]mb sin a!,

Vm
y 5

1

2
~]mb cosa1]mg sin b sin a!.

The nontrivial topology of the matrixU is due to the properties of the mappingsg(r ) and
a(r ), where r runs over a circle of large radius. The degree of the mapping of
two-dimensional plane onto a sphere, parameterized by the anglesg andb, is equal to
the degree of the mapping of a circle onto a circle, i.e., a vortex singularity ofg(r ). For
V i to be nonsingular, the singularity ofg(r ) must coincide with the correspondin
singularity ofa(r ), located at the point where cosb521. Therefore, the rotation matrix
U(r ) must be determined by all three Euler angles, and the corresponding spinC
possesses an integral quantization of the circulation integral at large distances.

Therefore, it would be more accurate to talk about nonsingular vortices whose
is given by a skrymion~by analogy to3He-A ~Ref. 7!!. The vortex numbers can b
arbitrary integers, in contrast to3He-A, where they are even. The Hamiltonian of t
electronic system in a magnetic field is

H5E 1

2m
C†~r ,t !S 2 i

]

]rm
2AmD 2C~r ,t !d2r

1
1

2E E V~r2r 8!C†~r ,t !C†~r 8,t !C~r 8,t !C~r ,t !d2rd2r 8, ~1!

whereV(r ) is the Coulomb potential. After the substitutionC5U(r )x the Hamiltonian
assumes the form~without any approximations!
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H5E 1

2m
x†~r ,t !S 2 i

]

]rm
2Am2 iU †]mU D 2x~r ,t !d2r

1
1

2E E V~r2r 8!x†~r ,t !x†~r 8,t !x~r 8,t !x~r ,t !d2rd2r 8, ~2!

i.e., for new spinors a spin-dependent vector potential appears in the kinetic energ
purposes of simplification, the Zeeman energy is not included in this Hamiltonian;
will be done later.

It is easy to show that the representation of a spinorx in the form of a spinor
projected onto a single Landau level is inadequate, since after expansion in pow
U†]mU which induce transfers to higher and lower Landau levels are present in Eq~2!,
and they give corrections of the same and lower order of magnitude as the terms
were taken into account in Refs. 4 and 5.

We shall assume that because of the smallness of theg factor, which determines the
size of the region where the spins possess an unfavorable orientation from the stan
of the Zeeman energy, the matrixU changes little over distances of the order ofl H . As
usual, on account of the gradient invariance, only the vector¹3VW i is important. The
main assumption of the further conclusions is that locally we have a filling of a Lan
level with a definite projection of the spin in a local magnetic field, just as in the cas
a matrixU which is uniform in all space. This assumption makes it possible to use
Hartree–Fock expression for the energy density of a filled level to termsVint /\vc . Then
the energy is diagonalized locally by the spinor componentsx↓ andx↑ , which makes it
possible to retain in the additional vector potential only the diagonal partA8'VW zsz . The
effective magnetic field for the up spins is

Heff
1 5H02¹3VW z . ~3!

The magnetic field for the down spins is

Heff
2 5H01¹3VW z . ~4!

All local Landau levels are filled in the fieldHeff
1 ~3!, and the electron spins are oriente

according to a local average spin. The density of electrons filling a local Landau le

r5
1

2p l Heff

2 5
1

2p

eHeff
1

c\
5

1

2p

e

c\
~H02¹3Vz!. ~5!

We can choose a system of units such thateH0 /\c51 andH051. Then

r5
1

2p
1

1

2p
¹3Vz . ~6!

The same result is obtained in the approximation of a global projection on one La
level.4,5 Therefore, the nonzero average magnetic flux of the additional magnetic
changes the total number of electrons on the lower Landau level. The qua
Q5 (1/2p) *¹3Vzd

2r is a topological invariant~the degree of the mapping of th
plane onto a sphereS2→S2), which assumes integer values. In the case when the num
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of particles is given, all particles cannot fit on the lowest Landau level, s
(1/2p) *(12¹3Vz)d

2r5N02Q, andQ particles must occupy a state on the seco
spin sublevel~we assume that the spin splitting is much less than\vc andQ.0). If,
however, the chemical potentialm is given, then the number of particles should simp
decrease byQ, since the states on the second spin sublevel lie above the che
potential. Similarly, the caseQ,0 leads to the appearance of a hole in the local filling
the lower spin sublevel.

We shall assume below that the case of a fixed chemical potential is realized a
zeroth Landau level~LL ! is filled. The Hartree–Fock energy is an integral of the lo
Hartree–Fock energy density, calculated for a completely filled Landau level in the
effective magnetic field. For a fixed interaction, this energy depends only on the mag
field, which according to Eq.~4! is uniquely related with the densityr and has the form

H~r !5
\vc

2
r1

Ẽ~r!

2
r22

E~r!

2
S2r21

E1~r!

2
r2~¹W •S!21gH–Sr1Ec~r!. ~7!

The expressions for the coefficientsE, Ẽ, andE1 are of order ofe2/k l H and are
presented in Ref. 6;S is the average spin. We confine our attention to the first two te
of the expansion in¹3Vz :

H~r !'
1

2p

\vc

2
1

Ẽ~r0!

2~2p!2
2

E~r0!

2~2p!2
S21

\vc

2p
¹3VW z1

S Ẽ~r0!1
1

2

]Ẽ

]r0
r0D

~2p!2
¹3VW z

2

SE~r0!1
1

2

]E

]r0
r0D

~2p!2
S2¹3VW z1

1

2p
gH–S1

E1~r0!

2~2p!2
~¹W S!21Ec~r!. ~8!

Herer051/2p is the electron density in the completely filled Landau level in an exte
magnetic field; in the Zeeman term, we neglected the change in the density. The c
in the total free energy of the electrons on the lower spin sublevel accompanyin
appearance of a nonsingular skrymion vortex with vortex numberQ is expressed by the
formula

V5E d2r ~H~r !2mr~r !!5
\vc

0

2
Q1S Ẽ8~r0!

2p
2
E8~r0!

2p
DQ1gE d2r

2p
H–S~r !

1
E1~0!

4p E ~¹W •S!2d2r1E Ecd
2r , ~9!

where

E8~r0!5E~r0!1
1

2

]E

]r0
r0 , Ẽ8~r0!5Ẽ~r0!1

1

2

]Ẽ

]r0
r0 .

We can see that additional terms, which are proportional toQ and are absent in the
expressions obtained previously in Refs. 5 and 6, appear in the total energy.5,6 We
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assumed that the chemical potential corresponds to half the spin-splitting gap. The
gies of the single-particle excitations correspond to the variational derivative ofH with
respect to the densitiesn↑(r ) andn↓(r ) and have the form

e152
E~0!

2p
1\vc¹3Vz1S Ẽ8

2p
2

E8

2p
D¹3Vz1gH–S1

E~0!

2p
~nS!•~U†sWU !,

~10!

e25
E~0!

2p
2\vc¹3Vz2S Ẽ8

2p
2

E8

2p
D¹3Vz2gH–S2

E~0!

2p
~nS!•~U†sWU ! ~108!

~the chemical potential was subtracted from the values of the energies!.

We can see that a skyrmion possesses many attributes of a composite fermi
integral charge and an integral number of magnetic-flux quanta. In our approxim
there is one flux quantum per charge. This could be due to the fact that we employ
small-gradient approximation and the change in the magnetic fieldH12H0 was assumed
to be small, so that the following Landau levels in the fieldH1 are located at a distanc
\vc . The real magnitude of the additional field depends on its region of localiza
since the flux is a topological characteristic. For a small localization region, the addit
field increases andH1 decreases. Moreover, the additional field increases withQ. Also,
the value of theg factor itself is not too small, so that the eigenvaluee1 for negative
Q can drop below the chemical potential not only for the first but also for the sec
Landau level. If this were to occur for a vortex withQ522, then the flux would equa
two quanta per unit charge, as happens in composite fermions. Of course, to expla
fact it is necessary to go beyond the framework of our analysis, since in this cas
‘‘local’’ approximation is invalid and numerical methods must be used.
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Current filamentation and macroturbulence in
superconductors in rotating magnetic fields

V. Vlasko-Vlasov,a) V. Kabanov, and V. Nikitenko
Institute of Solid-State Physics, Russian Academy of Sciences, 142432 Chernogolovk
Moscow District, Russia

U. Welp and G. Crabtree
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA

~Submitted 27 December 1996!
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The onset of specific magnetic structures associated with the formation
of extended current filaments is observed in YBCO single crystals in a
rotating magnetic field. Like current filaments in a plasma, they are
unstable and decay into current macrovortices. The appearance of fila-
ments is explained by the formation of closed flux rings along
magnetization-reversal fronts and collapse of these rings with forma-
tion of Meissner cylinders. The total current along the surface and in
the vortex shell of the cylinder~the latter current dominates in high-
Tc superconductors! exceeds the critical current in the same volume
located far from a filament. ©1997 American Institute of Physics.
@S0021-3640~97!00603-8#

PACS numbers: 74.60.2w, 74.72.Yg, 74.25.Ha, 74.25.Fy

Magnetization reversal in type-II superconductors is ordinarily studied on the b
of critical-state models1,2 developed for finite samples~plates and cylinders! in a longi-
tudinal field. In this case, the magnetization-reversal front is a two-dimensional su
oriented parallel to the field and the straight flux lines are oriented along the front. In
samples edge effects cause a strong curvature of the flux lines and give rise to s
current structures and instabilities.3 In the present work, we observed the formation
current filaments and decay of these filaments into macrovortex formations in higTc
superconducting plates with the field rotating in the plane of the plates. The charact
features observed make it possible to explain the magnetization instability in supe
ductors in rotating fields, which has been observed in macroscopic measurement
the last twenty years.4

The structure of the magnetic flux in YBCO single crystals~20–110mm thick, with
dimensions of 0.5–1 mm in the plane, and with width-to-thickness ratios from 5 to!
was investigated with the aid of magnetooptic indicator films consisting of bism
containing iron garnets, which made it possible to visualize and measure the n
component of the induction at the superconductor surface.5,6 The field rotated slowly in
the developed planeab of the crystal, normal to the optic axis. In the process, only
deviation of the magnetic flux from the direction of the field in a direction perpendic
to the surface of the sample was revealed. In slightly crossed polarizers of a micros
264 2640021-3640/97/030264-06$10.00 © 1997 American Institute of Physics
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the oppositely directed normal components of the induction gave rise to a decrea
increase in the background intensity and to the appearance of black–white contra

In the initial state, with a field imposed on a cooled sample, the standard ma
tooptic contrast3,5,6due to partial bending of the flux lines around the superconductor
observed at the edges of the plates which were oriented in a direction normal t
applied planar field. The contrast at these edges changed substantially in a rotatin
This is due to a change in the character of the bending of the flux lines near the
~when a field is applied the flux lines bend around the corners of the sample, and
the field rotates, the curvature of the lines of the previously trapped flux changes sig!. At
the same time, contrast appears at the edges which are oriented in a direction no
the new direction of the field, where the newly entering flux lines bend around the c
of the crystal. The flux distribution remains practically unchanged in the central regio
the sample, and periodic narrow stripes of brighter contrast appear at the bou
between the central region and the periphery, where the bending of the flux lines ch
They correspond to deflections of the flux lines out of the plane of the sample at
locations. Such periodic deflections can be attributed to helicoidal disturbances of th
lines. As the field rotates, currents perpendicular to the currents induced in the initia
H, i.e., parallel to the previously penetrating flux lines, appear in the peripheral zon
this case, the trapped flux lines are unstable with respect to helicoidal disturbanc
their shape,7,8 which produces a modulation of the normal component of the inductio
the surface of the sample. We note that the period of the observed stripes is close
helicoid spacing estimated according to the theory of Ref. 8.

When the field is rotated by;90°, new features arise at the edges oriented al
H ~normal to the direction of the initial field!. Here lines of bright contrast with edges o
a different color~Fig. 1a!, corresponding to opposite normal components of the induc
at the edges, appear. This picture is characteristic for a field around a current-ca
wire and corresponds to the current density on these lines. In short narrow sa
contrast arises along one continuous line. Lines with steps~as in Fig. 1a! making an angle
with the edge of the sample appear in crystals with quite long sides. As the field is fu
rotated, they merge into a continuous structure~Fig. 1b!. The profile of the normal
componentBn of the induction, measured across the lines, givesBn>680 Oe at the
edges of the line~with an;1.5 kOe in-plane field andT;50 K!. Fitting of the profile
with model current distributions showed that the profile is best described by three pa
current filaments in the plate carrying a current of some average density. The c
along the central filament is maximum and flows in the direction of the critical curre
the surrounding volume. In the satellite filaments the current is;3 times weaker and is
oppositely directed. This corresponds to an increase of the current along the center
observed bright lines and a decrease of the current on the edges of the lines.

The formation of lines of current can be explained by taking account of flux-
bending accompanying a rotation of the field. When a field is applied, the ends of th
lines drop downward~toward the central plane! at the edges of the sample~Fig. 2a!. As
H rotates, the magnitude of the field component giving rise to their appearance dec
~right down to zero! and the flux lines start to move in the opposite direction — tow
the surface of the crystal. In the process, half-loops~Fig. 2b! or closed loops form nea
the surface. This occurs along fronts which make an angle with the edge. Subseq
265 265JETP Lett., Vol. 65, No. 3, 10 Feb. 1997 Vlasko-Vlasov et al.
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FIG. 1. Magnetooptic contrast due to lines of current arising and decaying in a YBCO plate with cloc
rotation of an external magnetic field in the plane of the plate.T543 K,H51 kOe. The light and dark contrast
correspond to normal components of induction of opposite polarity. The solid arrows show the corresp
field directions. The dashed arrow indicates the initial direction of the field.
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the half-loops and loops of small radius collapse as a result of the linear tension
flux lines when this force exceeds the pinning force opposing this process. As a r
flux-free cylinders are obtained. A high magnetization currenti M flows along their sur-
face separating the Meissner and the mixed state, and it can exceed the losses
critical current2 i c inside a cylinder. The appearance of such ‘‘Meissner holes’’ was
discussed in Refs. 9 and 10. Numerical estimates show that in high-Tc superconductors a
large contribution to the total current along a ‘‘Meissner hole’’ is associated with
increase of the critical current in the cylinder shell. At locations where the segmen
flux loops lie in the basal plane the critical current density is higher than the ave
critical currentJc in the surrounding volume. Conversely, however, the current densi
less thanJc on the sides of the cylinder, where the flux lines are oriented along thec axis.
As a result, an excess positive current appears at the center of a ‘‘Meissner hole
negative satellites form along the sides. Such a three-current model makes gives
fit of the induction profiles measured across the lines of strong contrast.

As H turns further, the lines of bright contrast decompose into small regions
flux lines perpendicular to the surface~Fig. 1c!. They correspond to the formation o
closed current loops~macrovortices!, which then move through the crystal, change sha
and sign, and partially annihilate. Furthermore, the new lines on which current is
centrated appear at neighboring edges of the sample~Fig. 1c! and the process repeats. A

FIG. 2. Diagrams of the flux distribution in the central transverse section of the high-Tc plate: a — with an
external magnetic field imposed parallel to the plate surface, b — after the field rotates by 90°~flux lines
perpendicular to the plate section are not shown!.
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a result, complicated distributions of the induction form. These distributions charact
the dynamic structure of the flux in a rotating field.

When the field rotates in the opposite direction, the direction of the current
changes symmetrically~Fig. 3!. In other respects, the details of the process recur.
note that this picture was observed in all the experimental samples, all the way
plates with a width-to-thickness ratio of;40, where it would appear that the on
dimensional Bean picture of magnetization reversal1 could have been realized.

It is obvious that the formation and decay of current filaments as well as the s
quent motion of macrovortices should give rise to local electric-field spikes, which
often been observed in superconductors in rotating fields.4 It appears that the characte
istic formation and transformation times of the observed structures, together wit
helicoidal disturbances, determine the experimentally observed periodic changes
local potential~see citations in Ref. 4!.

The authors from the Institute of Solid-State Physics are grateful to the Internat
Science Foundation~Grants RF1000 and RF1300! and the Fund of the Russian Sta
Scientific and Technical Program ‘‘Topical Problems in Condensed-Matter Phys
~Program ‘‘Superconductivity’’! for support. This work was also supported by US DO
BES-MS, contract No. W-31-109-ENG-38.
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FIG. 3. Magnetooptic contrast due to lines of current arising in a YBCO plate with counterclockwise ro
of the magnetic field in the plane of the plate.
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Disordering effects in superconductors with anisotropic
pairing: from Cooper pairs to compact bosons

M. V. Sadovski a) and A. I. Posazhennikova
Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, 620049
Ekaterinburg, Russia

~Submitted 27 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 3, 258–262~10 February 1997!

In the weak-coupling BCS-theory approximation, normal impurities do
not influence the superconducting transition temperatureTc in the case
of isotropic s pairing. In the case ofd pairing they result in a rapid
destruction of the superconducting state. This is at variance with many
experiments on the disordering of high-Tc superconductors, assuming
thatd pairing is realized in them. As the interelectronic attraction in a
Cooper pair increases, the system transforms continuously from a BCS-
type superconductor with ‘‘loose’’ pairs to a picture of superconduc-
tivity of ‘‘compact,’’ strongly coupled bosons. Near such a transition
substantial deviations can be expected from the universal disorder de-
pendence ofTc , as determined by the Abrikosov–Gor’kov equation,
andTc becomes more stable against disordering. Since high-Tc super-
conducting systems fall into the transitional region from BCS-type
pairs to compact bosons, these results can explain their relative stability
against disordering. ©1997 American Institute of Physics.
@S0021-3640~97!00703-2#

PACS numbers: 74.722h, 74.20.Fg, 74.20.Mn

It is well known that in the standard weak-coupling BCS-theory approximat
normal impurities do not strongly influence the superconducting transition temper
Tc in the case of isotropics pairing ~Anderson’s theorem!.1 The suppression ofTc by
disorder is also quite weak in the case of so-called anisotropics pairing.2,3 At the same
time, for d pairing normal impurities destroy superconductivity very rapidly,2–4 and the
disorder dependence ofTc is determined by the universal Abrikosov–Gor’kov equati

lnS Tc0Tc D5FCS 121
g

2pTc
D2CS 12D G , ~1!

whereC(x) is the digamma function,g5pnimpv
2N(EF) is the standard rate of scatte

ing of electrons by point defects with potentialv which are distributed randomly with
some densitynimp in space, andN(EF) is the density of states at the Fermi levelEF . It
follows directly from Eq.~1! thatTc is suppressed completely at some critical scatter
rate g50.88Tc0, which determines the corresponding critical impurity density and
residual normal-state resistance:
270 2700021-3640/97/030270-06$10.00 © 1997 American Institute of Physics
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wheren andm are, respectively, the electron density and mass andvp is the plasma
frequency.4

It is now becoming increasingly more certain thatd-type pairing occurs in copper
oxide high-Tc superconductors.

5 However, the characteristic scale of the critical scatt
ing frequencygc;Tc0 is at serious variance with a large number of experimental dat
Tc suppression by disorder for these systems.6 These data apparently indicate that t
superconducting state persists all the way up to the disorder-induced metal–ins
transition, i.e., up tog;EF@Tc0. The purpose of this letter is to give a qualitativ
explanation for this discrepancy.

Let us consider the limit of a very strong pairing interaction~opposite to the standar
BCS approximation!, leading to the formation of compact bosons.7 In this caseTc is
determined by the Bose condensation temperature of free bosons. In the case of a
with impurities, the Bose condensation point is determined by the equation:8

mp2( ~0!50, ~3!

wheremp is the chemical potential of the pairs andS(0) is the zero-frequency limit of
the self-energy of a boson in the field of the impurities. In the case of weak scatterin
self-energy is determined by the diagram displayed in Fig. 1:

( ~en!5nimpv
2E d3p

~2p!3
1

i en2p2/2m*1mp
, ~4!

whereen52pnT are the even Matsubara frequencies,m*52m is the mass of a pair, and
we assume thatT.Tc . In what follows we shall confine our attention to thre
dimensional systems. Direct calculations give

( ~0!5Re S̃~0!1E0c , ~5!

whereE0c52(m* /p2)nimpv
2p0 is the impurity scattering induced shift in the ban

edge9 (p0 is the momentum cutoff parameter of the order of the reciprocala21 of the
lattice constant!, and

Re S̃~0!5
1

A2p
nimpv

2m* 3/2Aumpu. ~6!

FIG. 1. Boson self-energy due to impurity scattering.
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The quantity E0c results in a simple renormalization of the chemical poten
m̃5mp2E0c , so that Eq.~3! in the renormalized form reduces to

m̃S 12
1

A2um̃up
nimpv

2m* 3/2signm̃ D 50 ~7!

with only one root of importance for us (m̃,0 for bosons at temperatureT.Tc):
m̃50, i.e.,mp2E0c50. Accordingly, the Bose condensation temperature in an imp
system is determined by the standard equation

n

2
5gE

2`

`

deN~e!
1

ee/Tc21
, ~8!

whereg52s11 ~for bosons with spins) andN(e) is the impurity-averaged density o
states, which in the simplest approximation~4! reduces toN(E2E0c) — the density of
states of free particles with energye, measured from the shifted band edge. It is obvio
that this gives the standard expression forTc :

10

Tc5
3.31

g2/3
~n/2!2/3

m*
, ~9!

which is independent of the disorder.Disorder could only have an effect due to th
exponentially small ‘‘Lifshitz tail’’ in the density of states in Eq.~8!; this tail is due to
localization11 and does not arise in our very simple approximation~4!. We therefore
conclude that in the approximation of a very strong pairing interaction~compact-pair
superconductivity!, Tc is virtually independent of disorder foranyvalue of the spin of a
Cooper pair, i.e., for pairs of thes-, d-, etc., types.

In a quite old paper by Nozie`res and Schmitt-Rink,7 devoted to ideal superconduc
tors with no impurities, it was shown that as the pairing interaction increases, a con
ous transition occurs from expressions forTc in the weak-coupling BCS theory approx
mation to expressions determined by the picture of Bose condensation of compact
A corresponding analysis forTc in a system with impurities can be performed by solvi
a system of coupled equations which generalizes the analogous equations of Ref. 7 — the
standard equation for BCS instability

12x~0,0!50 ~10!

and an equation for the fermion density~chemical potentialm of the electrons!

1

2
~n2nf !5E d3q

~2p!3
E dv

p

1

exp~v/Tc!21

]

]m
d~q,v!, ~11!

wherenf (m, Tc) is the free-fermion density,

d~q,v!5arctan
Imx~q,v!

12Rex~q,v!
, ~12!

and the Cooper susceptibilityx(q, v) is determined by the diagrams shown in Fig. 2.
this figure the corresponding symmetry factors for different types of pairing stand i
vertices. For example, for a cubic lattice12
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cs~p!51~ isotropics-pairing!,

cs8~p!5cospxa1cospya1cospza~ anisotropic s-pairing!,

cdx22y2
~p!5cospxa2cospya~d-pairing!,

cd3z22r2
~p!52cospza2cospxa2cospya, and so on, ~13!

and the following model expression can be used for a pairing interaction:

Vi~p,p8!5Vpp8c i~p!c i~p8!, ~14!

wherec i(p) were determined above, and the potential

Vpp852
V0

A~11p2/p0
2!~11p82/p0

2!
~15!

is analogous to that employed in Ref. 7, wherep0;a21.

The system of equations~10! and~11! is very time-consuming to solve numerically
even for systems with no impurities.7 At the same time, it is perfectly obvious that eve
in the impurity case these equations will give a continuous transition from disorder
function of Tc , interpolating between the limiting cases of weak coupling and
compact-boson picture which were discussed above. In the case of isotropics-pairing
Tc remains virtually disorder-independent, i.e., Anderson’s theorem holds even i
strong-coupling case. In thed-pairing case, however, the universal disorder depende
of Tc determined by Eq.~1! will no longer hold in the region of the transition from
Cooper pairs to compact bosons. The physical reason for this phenomenon is
obvious — the mechanism ofTc suppression by ‘‘depairing’’ no longer works as th
attraction in pairs increases and in the very strong coupling regimeTc will be determined
by the Bose condensation temperature of pairs in the impure system. The qual
behavior ofTc as a function of the disorder is shown in Fig. 3. This figure illustrates
continuous transition in the normal-state resistance dependence ofTc given by the uni-
versal Abrikosov–Gor’kov relation~curved! to disorder-independentTc ~curves!. The

FIG. 2. a! Diagrammatic representation of the Cooper susceptibilityx(q, v), V— pairing interaction potential,
G — vertex part of impurity scattering in the Cooper channel, as determined in the ‘‘ladder’’ approximatio~b!.
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dashed curves correspond tod pairing in the transitional region~the coupling constan
V0 increases from curve1 to curve2!. Therefore, for ad-pairing system in the transi
tional region it is easy to obtain a superconducting state with quite strong diso
corresponding tor.rAG .

The transitional region is determined qualitatively by a simple inequality introdu
in Ref. 13:p21,pFj,2p, wherepF is the Fermi momentum andj is the coherence
length of the superconductor. In the so-called Uemura plot14 the high-Tc superconductors
lie near the ‘‘instability’’ line pFj52p.13 This fact can easily explain the deviatio
observed in high-Tc superconducting systems away from the universal disor
dependence ofTc and the relative stability of such systems with respect to disord6

despite the fact thatd pairing is realized in them.

We thank A. V. Mirmel’shte�n who insisted that these simple considerations
published. This work was partially supported by Russian Fund for Fundamenta
search, Grant 96-02-16065 and Grant IKh.1 of the program ‘‘Statistical Physics’’ o
Russian State Committee on Science and Technology.

a!e-mail: sadovski@ief.intec.ru

1P. G. de Gennes,Superconductivity of Metals and Alloys, Benjamin, New York, 1966@Russian translation,
Mir, Moscow, 1968#.

2L. S. Borkovski and P. J. Hirschfeld, Phys. Rev. B49, 15404~1994!.
3R. Fehrenbacher and M. R. Norman, Phys. Rev. B50, 3495~1994!.
4R. J. Radtke, K. Levin, H. B. Schuttler, and M. R. Norman, Phys. Rev. B48, 653 ~1993!.
5D. J. Van Harlingen, Rev. Mod. Phys.67, 515 ~1995!.
6M. V. Sadovski�, SFKhT8, 337 ~1995!; Phys. Rep.~1996!.
7P. Nozieres and S. Schmitt-Rink, J. Low Temp. Phys.59, 195 ~1985!.
8A. Z. Patashinski� and V. L. Pokrovski�, Fluctuation Theory of Phase Transitions, Pergamon Press, New
York, 1979@Russian original, Nauka, Moscow, 1982#.
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Self-cooling of weak solutions of 3He in 4He during
adiabatic melting

A. P. Sebedasha)

P. L. Kapitsa Institute of Physics Problems, Russian Academy of Sciences, 117334
Moscow, Russia; P. N. Lebedev Physics Institute, Russian Academy of Sciences, 11
Moscow, Russia

~Submitted 27 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 3, 263–267~10 February 1997!

A new method of pressure regularization in the measuring cell is pro-
posed for experiments on self-cooling of weak solutions. Preliminary
results are presented for solutions with concentrations of 2% and 7%.
Cooling by a factor of 1.5–2 was observed in the starting-temperature
range 40–140 mK. ©1997 American Institute of Physics.
@S0021-3640~97!00803-7#

PACS numbers: 67.602g, 67.80.Gb

The possibility of cooling of solutions of3He in 4He during adiabatic melting wa
predicted in Refs. 1 and 2 on the basis of a number of assumptions about the cha
istic features of the crystal–liquid phase equilibrium below 0.1 K, later confirme
measurements3,4 and calculations5 of the phase diagrams. The most important feature
that the equilibrium concentration of3He in the solid phase (xs) is negligibly small at
these temperatures.6,7 Therefore, in the process of crystallization of a solution the c
centration of the liquid phase continuously increases up to;8%, when a second liquid
phase — virtually pure3He — appears. At this point the system emerges onto the tr
line and the concentrations of all three phases and the pressure depend only
temperature. Further growth of the4He crystal results in complete vanishing of the dilu
solution, and only spatially separated4He ~crystal! and3He ~liquid! remain in the cell.
When solid4He melts, the only important thermal process in the system is dissolutio
3He in 4He, since the phonon entropies of4He in both the liquid and solid phases as w
as the entropy of3He in the solid phase (S35xsR ln 2) are negligibly small. Thermody
namically, this process is similar to one-time dissolution at zero pressure, studied in
8 in the temperature range 100–5.7 mK. When3He was diluted with liquid4He through
a superfluid filter to a final concentration of 6.6%, degrees of coolingh equal to 3.6 with
a theoretically maximum value of 4.56 were obtained (h5Ti /Tf , whereTi andTf are
the initial and final temperatures of the process!. In the case of adiabatic melting of
solution with an initial concentration of 2% it is possible to obtain~as in Ref. 8! a degree
of cooling h5TF(100%)/TF(2%)57.3, whereTF(x) is the Fermi temperature for
solution with concentrationx ~for pure3He — TF(100%)51.2 K atP52.5 MPa!.

Both methods are most promising for cooling solutions to extremely low temp
tures, which is important in connection with the search for a superfluid transition o
impurity component of the solutions. Indeed, ifTi,Tc , whereTc is the superfluid tran-
sition temperature in3He ~equal to 2.4 mK at a pressure of 2.5 MPa!, the degree of
276 2760021-3640/97/030276-06$10.00 © 1997 American Institute of Physics
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cooling increases substantially. According to estimates, in the case of adiabatic mel
a 1% solution from the starting temperatureTi51 mK the degree of coolingh'70 and
the final temperatureTf'15 mK. The source of the cold is the solution itself, while th
efficiency of cooling by nuclear demagnetization decreases rapidly because of the
Kapitsa jump. The minimum solution temperature achieved to date is approxim
100mK.9,10

The practical observation of adiabatic melting of solutions is limited to the
attempts made in Ref. 3. For the initial temperatures of 57 and 217 mK the final
peratures were equal to 55 and 184 mK, and after repeated crystallization these te
tures increased to 80 and 221 mK, respectively. The authors concluded that as th
perature decreases, the refrigeration capacity, which decreases asT2, rapidly drops below
the heat release due to irreversible processes. Indeed, in n the case of solutio
Pomeranchuk cells ordinarily employed11 for crystallizing3He result in dissipation due to
plastic deformation and friction of the crystals against one another, since even at th
of the process the fraction of the solid phase is close to 1 and the cell volume
increase by 10% for complete melting of the crystal. In the present work we were a
employ a cell with a constant geometry for crystallization and melting of solutions at
temperatures. This was made possible by an additional line, equipped with a sup
filter ~SF!, for filling the cell. At pressures for which the conventional filling line w
blocked by the solid phase, the SF made it possible to transport liquid4He into and out
of the chamber.b! The4He crystallization pressure in the pores of the SF was much hig
than in the volume of the liquid~see, for example, Ref. 12 —DP;0.2–0.3 MPa for
d;1 mm!. The use of a cell with a SF instead of a Pomeranchuk cell not only simp
the construction of the low-temperature part of the apparatus, but it also eliminate
problem of heat release accompanying a change in geometry.

The experiments were performed in a 3.3 cm3 cell ~Fig. 1!. The superfluid filter
consisted of a Melchior capillary tightly plugged with a fine Fe2O3 powder ~crocus!.
Special experiments showed that the SF is not plugged with solid4He at least up to 2.8
MPa. One end of the SF was located in the experimental cell and contained a pa
(sp) consisting of sintered silver powder in order to increase the geometrical
through which pressure is transmitted to the chamber. The temperature at the seco
of the SF at the location where it connects with the capillary tube running to the valv
the Dewar cup was maintained in the rangeTm,T,Tl , whereTm and Tl are the
crystallization temperature andl-point temperature of4He at the working pressure. Th
first condition is that solid4He is not formed in the capillary and the second condition
that He II is present in the powder. The heat exchangers~he!, consisting of ultradisperse
silver powder baked onto copper foil, had an effective area~computed! of the order of
1 m2. The temperature was measured according the susceptibility of the pow
cerium–magnesium nitrate, diluted to 50% with lanthanum~LCMN!, pressed into the
shape of a cylinder (D55.5 mm,H55.5 mm! with a filling factor of 90%. The working
frequency of the oscillator equalled approximately 227 kHz. The sensitivity atT50.1 K
was equal todT/d f50.5 mK/Hz. The thermometerLCMNwas calibrated acccording t
a 100-V rated Speer thermometer~t! placed in the mixing cell~mc! and serving as a
sensitive element of an electronic temperature stabilizer. The measuring coil~c!, which is
in resonance with the oscillator circuit, was secured to the cell on three thin Stycas
277 277JETP Lett., Vol. 65, No. 3, 10 Feb. 1997 A. P. Sebedash
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~b!. To remove the heat released in the coil, copper insulated wires~50 mm! ~cw! were
glued onto it. The pressure in the cell was measured through the filling tube~ft! with the
aid of a capacitive pressure gauge~pg! with a sensitivity of 2.9 kHz/atm, placed on th
mixing cell. The superconducting thermal switch consisted of a cadmium rod~Cd!
(D51.5 mm,L59 mm! placed in the field of a superconducting solenoid~s!. After
condensation of the mixture through the filling tube this line was cut off from exte
connections by a valve on the cap and the pressure in the cell was increased with
of a 4He high-pressure tank through the SF. The concentration of the experimenta
ture was calculated according to molar-volume data13 and according to the known con
centration of the initial mixture, the cell volumes, and the filling and SF lines. After
starting temperature was reached a crystal was grown in the cell over a time of the
of 30 min. The heat released in the process was removed into the mixing chamber
the thermal switch open, the pressure was lowered with the aid of a fine-regulation
The excess4He ~approximately 0.3 cm3 of liquid! was collected into a bottle with a
volumeV51.50 liters, and the amount of melted crystal was monitored according to
pressure in the bottle.

The results of several coolings for 2% and 7% solutions with different rate
melting and different starting temperatures are presented in Table I (x3 — solution

FIG. 1. Low-temperature part of the apparatus: Cu — copper,tl — textolite,St— Stycast,cc— cold conduit,
ft — filling tube , cs— copper screen,tc— vise for thermal contact of SF on the mixing cell. The rest of t
designations are explained in the text.
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concentration,n3 — number of3He moles in the cell,ṅL — rate of formation of the
liquid solution,dt — melting time of the crystal,Ti — initial temperature,Tf — final
temperature,he — experimental degree of cooling, andh t — theoretical degree o
cooling!.

The data are of a strongly preliminary character, since in the first experime
strong thermal coupling was found between the experimental and mixing cells. Ac
ing to data obtained from special measurements, the thermal resistance betwee
with the thermal switch open was two orders of magnitude lower than the comp
value. This is due, in all probability, to an incomplete transition of the cadmium into
superconducting state. Nonetheless, the cooling effect was much stronger than th
served in Ref. 3: The degree of cooling in the range 40–140 mK was equal to 1
According to the data in Table I, forx52% the value ofh clearly tends to decrease a
the initial temperature decreases. The relation ofh with the rate of melting of the crysta
is not as strict: For a 2% solution~second and third rows in Table I! a tenfold decrease o
ṅL resulted only in a small decrease inh ~from 1.9 to 1.6!, and forx57% an increase in
ṅL by a factor of 1.4 had no effect at all on the value ofh. These qualitative feature
cannot be explained by the effect of a heat inflow which is constant in time~or one which
depends uniquely on the temperatures of the mixing and experimental cells!; it is pos-
sible, that the heat inflow changed randomly from one measurement to another
possibility that adiabatic conditions break down as a result of the melting itself o
crystal also cannot be ruled out. The characteristic time dependences of the temp
are shown in Fig. 2 for two coolings with a starting temperature of the order of 0.
The first arrow corresponds to opening of the thermal switch. The sharp jump in
temperature derivative corresponds to melting onset. The second arrow indicat
moment when the third phase~pure liquid3He! vanished in the cell. This corresponds
melting of the crystal in one-fourth of the cell volume. It is evident in the curves tha
this moment the rate of cooling decreases~Fig. 2a! or even that cooling is replaced b
heating~Fig. 2b!. This is qualitatively explained by the fact that the refrigeration e
ciency in a three-phase system does not depend on the concentration, while in
phase system the refrigeration efficiency decreases asq̇;xL

1/3T2 ~Ref. 14!, wherexL is the
3He concentration in the diluted phase. When the entire crystal has melted~third arrow!,

TABLE I.

x3, TF(x), n3, ṅL , dt, Ti , Tf ,

% K mmole mmole/s min mK mK he h t

1.1 ;2 142 70 2
0.56 4 95 50.3 1.9

2 0.16 3.4 0.056 41 100 61 1.6 7.
0.39 6 56 43 1.3
— — 42 29 1.4

0.36 6.5 57 39 1.5
7 0.37 12 0.51 4.6 55 36 1.5 3.1
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which can be judged according to the indications of the pressure gauge, the system
to heat up as a result of parasitic heat inflow.

In closing, we note that the SF makes it possible to perform experiments
solutions at temperatures below the minimum on the crystallization curves. Further
this structure is technically much simpler than the Pomeranchuk cells customarily
At this stage it is impossible to say anything about the presence of internal dissip
sources characteristic of the melting process itself. Nonetheless, it can be expect
under adiabatic conditions the method employed makes it possible to approach the
retical degrees of cooling.

I wish to thank the directors of the Institute of Physics Problems of the Rus
Academy of Sciences and K. N. Zinov’eva for making it possible to perform this w
Yu. D. Anufriev for formulating the problem, and S. T. Boldarev for helpful discussi
and suggestions.

a!e-mail: sebedash@kapitza.ras.ru
b!This possibility was pointed out to me by Yu. D. Anufriev.
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Two-dimensional microclusters of vortices: shell
structure and melting

Yu. E. Lozovika) and E. A. Rakoch
Institute of Spectroscopy, Russian Academy of Sciences, 142092 Troitsk, Moscow R
Russia

~Submitted 20 December 1996; resubmitted 30 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 3, 268–273~10 February 1997!

The melting of two-dimensional microclusters of ‘‘particles’’ which
repel one another according to a logarithmic law and are confined by an
external quadratic potential is investigated. The model describes Abri-
kosov vortices in a superconducting island of vortices in a rotating
superfluid liquid and electrons in a semiconductor nanostructure sur-
rounded by a low-permittivity medium. The structure of clusters and its
dependence on temperature and melting are investigated.The melting
of microclusters of vorticesproceeds intwo stages: 1. A transition from
a frozen phase into a state corresponding torotational reorientation of
crystal shellsrelative to one another. 2. At a higher temperature, the
radial order vanishes. This is connected with the fact that the barrier for
rotation of the shells is much lower than the barrier for radial breakup
of the shells. ©1997 American Institute of Physics.
@S0021-3640~97!00903-1#

PACS numbers: 74.60.2w, 64.70.Dv, 47.32.2y, 47.37.1q

INTRODUCTION

A magnetic fieldH.Hc1
penetrates into a type-II superconductor in the form

Abrikosov vortices, which at low temperatures form an ideal triangular lattice~in the
absence of pinning centers!.1 As the temperature increases, melting of this lattice a
formation of a liquid phase from vortices can occur, as has been observed in hiTc
superconductors~see the review in Ref. 2!.

The question of the structure of a mesoscopic system consisting of asmallnumber
of Abrikosov vortices confined in islands of a superconducting phase is of great int
The system is equivalent to the problem of thetwo-dimensional analog~compare Ref. 3!
of a classical Thompson atom4 with ‘‘charges’’ which satisfy the laws of two-
dimensional electrostatics and compensated by an incompressible background
model also describes vortices in a rotating superfluid liquid as well as electrons
semiconductor quantum dot embedded in a medium with a much lower permittivity~see
below!. A small system of vortices should behave like amicrocluster. This means that the
shell structure of the cluster can change sharply when only a single ‘‘particle’’ is a
~structural sensitivity! right up to some numberN of ‘‘particles’’ when a region with the
structure of a ‘‘volume’’ phase — a region with a triangular lattice — appears inside t
282 2820021-3640/97/030282-07$10.00 © 1997 American Institute of Physics
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cluster and melting of the microcluster can exhibit interesting specific features com
with melting of a volume phase.3,5

In the present work we studied the temperature dependence of the structu
microclusters of vortices. We have shown that themelting of a two-dimensional micro
cluster of vortices proceeds in two stages: First, intershell~‘‘orientational’’! melting
occurs and at a much higher temperature the shells dissipate. We have also show
this is due to the fact that the energy barrier for reorientation of the shells is much h
than the barrier for radial hops of the particles.

PHYSICAL MODEL

Let us now consider an island of a type-II superconductor in a transverse mag
field. If the thicknessd of the island in the temperature range studied is less than
coherence lengthj(T) of the superconductor, then from the standpoint of the super
ducting properties the island can be viewed as beingtwo-dimensional.The magnetic field
penetrates into the system in the form of two-dimensional~2D! vortices. The interaction
potential between the 2D vortices has the form~see Ref. 6!

U~r !52q2 ln
r

a
, a!r!l' ; U~r !5q2

l'

r
1const, r@l' ,

whereq is the ‘‘charge,’’ which is proportional to the density of the superfluid com
nent; r is the distance between vortices;a is the radius of the core of a vortex
a;j(T); l'5l2/d is the penetration depth of the perpendicular magnetic field into a
superconductor; and,l is the London penetration depth of the magnetic field in a thr
dimensional superconductor. For example, for films of thicknessd.100 Å and
l.2000 Å we havel'.4 mm.

Let j!R!l' . Then vortices in the island can be regarded as point-like ‘‘particl
repelling one another according to a logarithmic law. Stabilization of the densit
vortices in superconductors in an external magnetic field is taken into account in
model by introducing an effective confinement potentialUeff5ar 2 corresponding to a
uniform compensating background. The image forces for vortices do not qualitat
change the properties of the system~the problem of taking account of the image forc
will be discussed in a more detailed paper!.

Therefore we arrive at a model of a 2D cluster consisting ofN classical particles
(N51250) repelling one another according to the lawU(r i j )5q2 ln(rij /a) and confined
by an external potentialUext(r i)5ar i

2 .

After the scaling transformations

r→~a1/2/q!r , T→~kB /q
2!T, U→~1/q2!U

the potential energy of the system assumes the form, to within the con
CN
2 ln(q/a1/2a),

U52(
i. j

ln r i j1(
i
r i
2 . ~1!
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The cluster properties studied here do not change qualitatively even for a small a
ropy of Ueff(r ).

A system of classical particles with the indicated potential energy~2! is equivalent
to the 2D analog~compare with Ref. 3! of a classical Thomson atom.4 This model
describes not only vortices in a superconducting island, but alsovortices in a rotating
vesselwith superfluid helium~see Refs. 7–11!. It is also describes anelectronic clusterin
a semiconductor nanostructure~2D quantum dot!, surrounded by a medium with a muc
lower permittivity e!eqdot ~if the interelectronic distancesr are such thatD!r!D/k;
D is the thickness of the nanostructure andk5e/eqdot; like charges of the images of th
electrons ‘‘are aligned’’ in charged lines, which results in an effective logarithmic in
action between the particles.

EQUILIBRIUM CLUSTER CONFIGURATIONS

To find the equilibrium particle configurations a random search for the minimum
the potential energy of the system with random motion of all other shells as a whol
random motion of the particles was employed.

The local and global minima of the potential energy were found. At low temp
tures small logarithmic clusters~just as Coulomb clusters, see Refs. 3, 5, 12, and!
have a shell structure. When the number of particles is sufficiently large, a region w
triangular structure nucleates inside a cluster~see Refs. 3, 5, and 7–11!.

The occupation numbers of the shells and the corresponding potential en
~measured fromCN

2 ln(q/a1/2a), see above! for global minima of 2D logarithmic clusters
are presented in Table I. The sequential filling of the shells is reminiscent of the ‘‘
odic table’’ of the elements~compare the filling of shells in the 2D classical system
particles with thethree-dimensionalCoulomb interaction3!. Each shell can contain no
more than a definite number of particles.

We employ the following concept of a shell~different from the previously employed
definitions, which are not universal for a different number of particles; see, for exam
Ref. 9!. We define a shell as a convex polygon consisting of the maximum pos
number of particles~and it contains the preceding shell! that satisfies the following rule
The maximum distance from the center of the system to a particle belonging to a
shell must be less than the minimum distance from the center of the system to a p
belonging to a shell which is external with respect to the first shell. The filling r
which we obtained for shells in clusters from our calculations using the above-ment
definition are similar to the filling rule for shells in the periodic system of the elemen3,5

Specifically, in contrast to Ref. 9, the number of shells cannotdecreaseas the number of
particlesincreases. Correspondingly, the distribution of the particles over the shells
our work is different from that obtained in Ref. 9.

Since the confining quadratic potential is centrosymmetric, one would think tha
shells in a cluster must be regular polygons inscribed in a circle. However, this is
only for clusters consisting of one or two shells, the inner shell consisting only of
particle. As the number of particles in clusters with smallN increases further, spontane
ous breaking of the symmetry occurs. This effect is strongest forN510 andN524. In
284 284JETP Lett., Vol. 65, No. 3, 10 Feb. 1997 Yu. E. Lozovik and E. A. Rakoch
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these cases, since the first shell~counting from the center! consists of two particles, it is
advantageous for the second shell to assume the shape of an ellipse.

MELTING AND PHASE TRANSITIONS

We used the Monte Carlo method~MC! to study the dependence of the physic
quantities on the temperature and melting of the system. After the equilibrium con
rations were found, the system was heated by the amountDT (DT) ranging from
(1•1024 to 5•1023), after which the system was held at the new temperature
2•104 Monte Carlo steps until it reached equilibrium. Next, the statistical characteri
were calculated by averaging over 1•106 Monte Carlo steps. After this, a further heatin
using the described procedure was performed. The following quantities were calcu

1. Total potential energyUpot.

2. Mean-square radial displacements~MSRD! — total

^dR2&5
1

N (
i51

N
^r i

2&2^r i&
2

a2
~2!

TABLE I. Shell structure and potential energy of vortex microclusters.

Number of Shell filling Potential Number of Shell filling Potential
particles numbers energy particles numbers energy

1 1 0.000000•100 26 3,9,14 21.940569•102

2 2 5.000000•1021 27 3,9,15 22.156137•102

3 3 8.918023•1021 28 4,9,15 22.384294•102

4 4 1.090457•100 29 4,10,15 22.625912•102

5 5 9.764052•1021 30 4,10,16 22.881028•102

6 1,5 4.354169•1021 31 4,10,17 23.149268•102

7 1,6 27.512442•1021 32 4,11,17 23.431329•102

8 1,7 22.514746•100 33 5,11,17 23.727473•102

9 1,8 24.914510•100 34 1,5,11,17 24.037308•102

10 2,8 28.100414•100 35 1,6,11,17 24.361606•102

11 3,8 21.209333•101 36 1,6,12,17 24.700331•102

12 3,9 21.697858•101 37 1,6,12,18 25.053534•102

13 4,9 22.271610•101 38 1,6,12,19 25.420929•102

14 4,10 22.942793•101 39 1,7,13,18 25.803155•102

15 4,11 23.706118•101 40 1,7,13,19 26.200430•102

16 5,11 24.573707•101 41 1,7,13,20 26.612310•102

17 1,5,11 25.541308•101 42 1,7,14,20 27.039416•102

18 1,6,11 26.620692•101 43 2,8,14,19 27.481666•102

19 1,6,12 27.811655•101 44 2,8,14,20 27.939606•102

20 1,6,13 29.110199•101 45 2,8,14,21 28.412619•102

21 1,7,13 21.052696•102 46 3,9,14,20 28.901514•102

22 1,7,14 21.205683•102 47 3,9,15,20 29.406122•102

23 1,8,14 21.370647•102 48 3,9,15,21 29.926554•102

24 2,8,14 21.548203•102 49 3,9,15,22 21.046250•103

25 3,8,14 21.737968•102 50 4,10,15,21 21.101460•103
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^dr 2&5
1

NR
(
i51

NR ^r i
2&2^r i&

2

a2
, ~3!

whereNR is the number of particles in a shell and the averaging^ . . . & is performed over
different Monte Carlo configurations.

3. The mean-square angular displacements~MSAD! relative to the nearest particle
in the same shell

^df1
2&5

1

NR
(
i51

NR ^~f i2f i1
!2&2^~f i2f i1

!&2

f0
2 ~4!

and the MSAD relative to the closest particles of a neighboring shell

^df2
2&5

1

NR
(
i51

NR ^~f i2f i2
!2&2^~f i2f i2

!&2

f0
2 , ~5!

where i 1 and i 2 refer to the closest particle from the same and neighboring sh
respectively; 2f052p/NR is the average angular separation between neighboring
ticles in a given shell.

The temperature dependence of the total MSRD for a cluster withN537 is shown
in Fig. 1. The MSRD for all shells have a kink at the same temperatureTc58•1023. One
can see from Fig. 2 that for all shells the MSAD relative to the nearest particles in
same shell have a kink at the same temperature. Therefore a phase transition oc
temperatureTc58•1023 in a cluster withN537 particles: The system becomes diso
dered. AtT.Tc the number of particles in the shells starts to change; the shells exch
particles and dissipate. It is impossible to distinguish any shells at temperaturesT@Tc .
Particles move about chaotically. The characteristic dimensionless para

FIG. 1. Total mean-square radial displacement^dr 2& as a function of temperature for a 2D logarithmic clust
with N537 particles.
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G5q2/kBTc for which a system withN537 melts equalsG5125, which is almost
identical to the value ofG at which a system with a relatively large number of vortic
melts (G5Gc.130).

It is found, however, that the MSAD of relatively close particles inneighboring
shells possess a kink atmuch lowertemperatures. For a cluster with 37 particles t
MSAD of the outer shell relative to the closest particles in the middle shell start to g

FIG. 2. MSAD ^df1
2& as a function of temperature for a 2D logarithmic cluster withN537 particles relative to

the closest particles from a given shell:1— MSAD of the outer shell relative to the closet particles from t
given shell.2— MSAD of the middle shell relative to the closest particles from the given shell.3— MSAD
of the inner shell relative to the closest particles from the given shell.

FIG. 3. MSAD ^df2
2& as a function of temperature for a 2D logarithmic cluster withN537 particles with

respect to the closest particles from the neighboring shell: a — MSAD of the middle shell relative to the close
particles from the outer shell; b — MSAD of the inner shell relative to the closest particles from the mid
shell.
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rapidly at Tc158•1024 (G51/Tc151250, see Fig. 3a!, and the MSAD of the middle
shell relative to the closest particles of the inner shell start to grow rapidly
Tc253•1023 (G51/Tc25333, see Fig. 3b!. This means that a specificorientational
melting, characteristic for clusters with shell structure, occurs at these temperature
in 2D clusters at some moment in time the shells the shells,retaining their crystallinity,
start to rotate relative to one another.

We found the potential barrierU1 for rotation and the potential barrierU2 for a
particle to hop from one shell to another. It turned out that the orientational barri
much lower than the radial barrier. Together with the jump in the MSAD, this is ano
strong proof of the occurrence of orientational melting in 2D clusters of vortices~for
example, forN511,U152.32•1026!U253.71•1022).

It would be very interesting to observe experimentally the new orientational me
in a microcluster of vortices, for example, by observing the vortices using as a sub
a magnetooptic material whose local magnetization is studied with the aid of a pola
tion microscope~in this case, the reorientations of shells of vortices can be observe
real-time! or a scanning tunneling microscope or by means of decoration.

We thank S. A. Brazovski� for a helpful discussion. This work was supported
Russian Fund for Fundamental Research grants, ‘‘Physics of Solid-State Nanostruc
and ‘‘Surface Atomic Structures.’’

a!e-mail: lozovik@isan.msk.su
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solutions

A. A. Klochikhin
Institute of Nuclear Physics, Russian Academy of Sciences, 188350 Gatchina,
St. Petersburg, Russia

S. A. Permogorova) and A. N. Reznitski 
A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 193021
St. Petersburg, Russia

~Submitted 5 January 1997!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 3, 274–279~10 February 1997!

The form of the stationary luminescence spectra of excitons, localized
by composition fluctuations, in disordered solid solutions under weak
excitation is calculated. The tail states for which there are no nonradia-
tive transition channels are distinguished by means of continuum per-
colation theory. Such states are responsible for the ‘‘zero-phonon’’ lu-
minescence band. The shape of the short-wavelength luminescence
band edge is determined mainly by the number of isolated localizing
clusters and their smallest complexes, which decreases rapidly near the
mobility threshold. The real luminescence spectrum is due to the simul-
taneous emission of phonons. The phonon emission determines the
form of the long-wavelength wing of the emission band. The computed
shape of the emission spectrum is compared with the experimental
luminescence spectra of the solid solution CdS(12c)Sec . © 1997
American Institute of Physics.@S0021-3640~97!01003-7#

PACS numbers: 78.60.2b, 64.60.Ak, 64.60.Cn

The characteristic luminescence of many disordered systems1 and, specifically,
II–VI solid solutions,2–6 is due to the recombination of excitons localized in the wells
the potential relief. A general feature of such systems is a large red shift of the lum
cence relative to the excitonic absorption maximum, so that the main emission ban
into the region of low absorption coefficients and small values of the density of fluc
tion states.

The origin of the red shift of the luminescence band and the ratio of the lumi
cence and absorption spectra are problems which are important for understandi
physical processes in disordered systems.

In this letter we report the results of a theoretical description of the position o
characteristic luminescence band contour relative to the absorption spectrum of fl
tion states, we give a qualitative justification of the approach to this problem with th
of a classical continuum percolation theory, and we compare the theoretical and e
mental results for II–VI solutions.

The density of states in the energy range where the tail states in the zeroth ap
289 2890021-3640/97/030289-06$10.00 © 1997 American Institute of Physics
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mation can be regarded as isolated from one another was calculated by a varia
method which is a modification of the method described in Refs. 7 and 8. Next, a m
which is not associated with a variational procedure and gives a normalization o
density of fluctuation states was used to calculate the total number of localized state
calculation of the number of states was based on the assumption that localized ex
states arise in fluctuations~clusters! which have the character of simply connected p
tential wells.

The results of the calculations of the densityr(v) and the integral densityN(v) of
states for CdS(12c)Sec with c50.2 are displayed in Fig. 1a. The values obtained for
density of tail states lead to the zero wave vector spectral density presented in F
The banda1s

0 (v) obtained consists of the excitonic absorption spectrum in the regio
the fluctuation states neglecting the interaction with lattice vibrations.

In the approach employed, the possibility of optical recombination is limited by
exciton lifetime with respect to a nonradiative transition into lower-lying tail states wh
is accompanied by phonon emission.2–4 To calculate the zero-phonon luminescence ba
shapes it is necessary to find the energy distribution of states for which there a
nonradiative loss channels or such channels are strongly limited. In other words
necessary to know the distribution of spatially isolated localized states. In the ge
case this problem can be solved in the quantum theory of percolation.9–16

Isolated states in lattice models were studied in Refs. 9–11. As shown in Re

FIG. 1. a! Computed density of statesr(v) — 1 and integral densityN(v) — 2 of the fluctuational tails of the
ground state of an exciton in the solid solution CdS(12c)Sec with c50.2. b! Spectral densitya1s

0 (v) of an
excitonic ground state in the solid solution CdS(12c)Sec with c50.2 neglecting the interaction with phonons
290 290JETP Lett., Vol. 65, No. 3, 10 Feb. 1997 Klochikhin et al.
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two types of isolated localized states arise in the quantum percolation theory. Th
type includes states belonging to isolated atoms9–11 ~in our case potential wells or clus
ters! and relatively small complexes~superclusters! which are formed with a random
distribution of potential wells. Superclusters play an increasingly larger role as the
bility threshold is approached.

Isolated localized states of the other type are due to quantum interfer
effects.11,13 In the presence of on-diagonal disorder, which in the problem at hand d
mines the energy distribution of the states, substantial suppression of interference
should be expected. In the absence of interference effects the problem reduces to
the distribution of tail states over superclusters in the continuous model, i.e., a pro
which is substantially analogous to the problem of percolation along overlap
spheres.17–20

The relations which follow from the classical theory of percolation along over
ping spheres make it possible to find the distribution of states over supercluster
distinguish the fluctuation states which possess the maximum lifetime and form a
phonon luminescence band. This approach makes it possible to determine the pos
the zero-phonon luminescence band relative to the maximum of the zero-phonon a
tion band of the ground state of an exciton and the mobility threshold for clas
percolation. We shall assume that for every localized state there exists a sphere of
Rint such that if at a given density of localized states more than one potential w
present, on the average, in the volume 4pRint

3 /3, then a transition with phonon participa
tion is possible between states in these wells. The quantityRint cannot exceed the distanc
between two wells for which the exciton–phonon transition time between them e
the radiative lifetime of an exciton.

The stationary densityP(v) of occupied states with continuous and quite we
interband excitation is proportional to the density of states for given energy and life
Taking account of the fact that for occupied states the emission probability is desc
by zero-phonon absorption coefficienta1s

0 (v) in the 1s state of an exciton, we can
represent the zero-phonon luminescence band in the form

I 1s
0 ~v!;a1s

0 ~v!P~v!, ~1!

whereP(v) is the total relative population of states with localization energyv which
belong to superclusters of different size. The main contribution of isolated wells an
ground states of pairs toP(v) can be represented as

I 0~v!;a1s
0 ~v!t rad@exp$22P~v!%1P~v!exp$23.073P~v!%#, ~2!

where

P~v!5
1

2
@Rint /r ~v!#3, r ~v!5S 3

4p

1

N~v! D
~1/3!

.

The integral density of statesN(v) gives a density of potential wells with localizatio
energy limited by the quantityv on one side and by Lifshitz’s limit on the other.21 The
functionP(v) is the density of localized excitons in units of the first virial coefficient.
the classical theory of percolation the data obtained by different authors for the cr
density for percolation along spheres20 fall in the range 1.17>Pcrcl<1.40. In our calcula-
291 291JETP Lett., Vol. 65, No. 3, 10 Feb. 1997 Klochikhin et al.
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tions we employed for the density of excitonic states at the percolation threshol
valueP(vME)51.40. Isolated potential wells and the smallest superclusters mak
main contributions in all cases, while the higher-order terms give only small correc
both at low densitiesN(v)/N(vME)!1, as a result of the fact that their number
proportional to powers of the density20P(v) which increase with the supercluster size,
well as near the mobility threshold on account of additional exponentially small fac
The computational results for the zero-phonon luminescence band contour for the g
state of an exciton are presented in Fig. 2. The position of the percolation thre
corresponds to the point where the values of the curve2 equal1.

The interaction with optical and acoustic phonons is taken into account on the
of two models of localized excitons~models I and II!. In the first model it is assumed tha
the electron can follow adiabatically the motion of the hole, and in the second mode
electron interacts with a hole density distribution averaged over a fluctuation well.
limits, as well as intermediate variants, are realized in the solid solution CdS(12c)Sec .

Figure 3 displays the computational results and the experimental spectrum a
centrationc50.2, when model II makes the determining contribution. Satisfactory ag
ment with the experimental curves is achieved when up to fourLA-phonon repetitions are
taken into account. The maximum of the distribution of emitting states is red-shifted
respect to the absorption maximum, even when the interaction with the lattice vibra
is neglected; this agrees qualitatively well with existing experimental data for all d
dered systems.1 The interaction with phonons results in additional Stokes shifts of
emission and absorption bands in opposite directions.

Our model gives a good quantitative description of the experimental situation
low the mobility threshold the form of the zero-phonon luminescence band is determ
by an universal exponential dependence of the density of states and the occupanc

FIG. 2. Curve1 — spectral densitya1s
0 (v) of the excitonic ground state in the solid solution CdS(12c)Sec

neglecting the interaction with phonons; curve2— relative integrated density of statesN(v)/N(vME); curve
3— relative occupancyP(v) of the states;4— zero-phonon luminescence bandI 1s

0 (v); the arrow marks the
position of the mobility thresholdvME , c50.2.
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tion P(v), calculated on the basis of the fundamental relations of the classical theo
percolation. This energy range makes the main contribution of the order of 80–90
the integral luminescence intensity.

Above the mobility threshold the theory predicts a close-to-exponential decay o
luminescence intensity; this agrees qualitatively with a wide class of experiments
computed value of the slope$@ ln(I1s

0 (v))#v8%21 can be easily compared with the expe
mentally measured slope within 4 to 5 orders of the intensity.

As one can see from Fig. 3, the exciton–phonon interaction has practically no e
on the form of the long-wavelength absorption band edge and the short-wavelength
of the luminescence spectrum. Therefore the experimentally measured exponential
of these sections of the spectra yield information about the zero-phonon lumines
band that can be used to determine the parameters characterizing disordered syste
also interesting that the ratio of the slope of the long-wavelength absorption band
«U(c) to the slope$@ ln(I1s

0 (v))#v8%21 of the short-wavelength edge of the luminescen
spectrum remains, to a good degree of accuracy, constant in the entire investigated
of concentrations.

In summary, the data presented in this letter show that new information abou
states of excitons in disordered solid solutions can be obtained from a detailed anal
the luminescence spectra.

FIG. 3. Computed absorption and luminescence spectra taking account of the interaction with phon
c50.20. Curve1— zero-phonon absorption banda1s

0 (v) of the excitonic ground state;2— absorption band
a1s(v) taking account of the interaction with phonons;3 — zero-phonon luminescence bandI 1s

0 (v); 4 —
luminescence bandI 1s(v) calculated taking account of the interaction with phonons. Dots — experime
luminescence spectrum of CdS(12c)Sec with band–band excitation.
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On the detection of finite-frequency current fluctuations

G. B. Lesovik
Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovk
Moscow Region, Russia

R. Loosen
Bayer AG, 51368 Leverkusen, Germany

~Submitted 16 December 1996; resubmitted 16 January 1997!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 3, 280–284~10 February 1997!

We consider a measurement of finite-frequency current fluctuations,
using a resonance circuit as a model for the detector. We arrive at an
expression for the measurable response in terms of the current–current
correlators which differs from the standard~symmetrized! formula. The
possibility of detection of vacuum fluctuations is discussed. ©1997
American Institute of Physics.@S0021-3640~97!01103-1#

PACS numbers: 05.40.1j, 07.50.Hp, 72.70.1m

Finite-frequency~FF! current fluctuations at zero temperature~vacuum fluctuations,
VFs! have been discussed for a long time1 in connection with the analogous question
electromagnetic vacuum fluctuations. Recently there has been renewed interest
noise at finite frequency in connection with the supposed possibility of observing
Fermi edge singularity in noninteracting1,2 and interacting3 systems.

In the present letter we consider a realistic model for an FF measurement and
that, in a very close analogy with the electromagnetic vacuum fluctuations, a ce
measurability limitation appears.

There are different practical and theoretical approaches to FF measurements

1. Making repeated measurements of the instantaneous values of the current
long time interval and later Fourier transforming the data obtained.

2. Making a single measurement of the charge transmitted during a given
interval. In that case the information about the FF fluctuation appears through an in
over all frequencies. Ideally that can be done by making two measurements of the c
in the reservoir, the initial~during system preparation! and final. An alternative measure
ment can be made with a ‘‘Larmor clock’’~the spin rotating in the magnetic field pro
duced by the current!; this method, which is described in Ref. 4, can perhaps be im
mented.

3. Making a time-averaged measurement of the response of a resonance c
which can be an ordinaryLC element, i.e., an inductive element coupled to the quan
wire, a capacitor whose charge is the quantity to be measured as a response, a
resistance of the circuit.

The last approach, we believe, is the most relevant for FF measurements.

We model our detector~the resonator, which we will refer to asLC) by an oscillator
295 2950021-3640/97/030295-05$10.00 © 1997 American Institute of Physics



con-

uch a
t–

ned in

ula

essity
opera-
close

tral

ations
ctua-

rs do
m the

inary
and consider the response in the first nonvanishing order in the inductive coupling
stant~we will outline the calculation at the end!.

Finally, we arrive at the practical conclusion that the measurable response of s
model detector at a certain frequencyV can be written in terms of the usual curren
current correlators as follows:

Smeas5K$S1~V!1NV@S1~V!2S2~V!#%, ~1!

with the definitions

S1~V!5E dt^I ~0!I ~ t !&exp~ iVt !,

and

S2~V!5E dt^I ~ t !I ~0!&exp~ iVt !.

The frequencyV in all the expressions is strictly positive.NV stands for the Bose
occupation number of the oscillator, i.e.,NV5@exp(\V/kBTLC)21#21, K is the effective
coupling constant of the quantum wire with the resonator,^A&5TrrA, wherer is the
density matrix of the electrons, and the time-dependent current operators are defi
the standard way:I (t)5exp(iHt)I exp(2iHt).

The expression obtained here should be contrasted with the widely used form5

S~v!5E dt exp ~ ivt !K 12 $I ~0!I ~ t !1I ~ t !I ~0!%L . ~2!

Note that this formula contains the symmetrized current–current correlator. The nec
of such a symmetrization comes from the fact that in the general case the current
tors at different times do not commute with each other, and it is motivated by the
correspondence with the classical expression.5

Using the definition~2!, one arrives at the well-known expression for the spec
density of the current–current correlator for a conductor in equilibrium:6

S~v!52G\VF121
1

exp~\V/kBT!21G . ~3!

This expression tells us that at zero temperature one should expect fluctu
proportional to the frequency, which are interpreted as an analog of the vacuum flu
tions of the electromagnetic field.

Nevertheless, as is known from optical measurements, ordinary photodetecto
not react to the vacuum fluctuations, because it is not possible to take energy fro
vacuum to excite atoms in the detector.7

Yet the vacuum fluctuations are observable, though less directly than are ord
fluctuations, via the Lamb shift8 or the Casimir effect9 or by using a so-called quantum
photocounter,10 which is prepared in an excited state and can thus react to VFs.
296 296JETP Lett., Vol. 65, No. 3, 10 Feb. 1997 G. B. Lesovik and R. Loosen



a
ever

to
.

ession
m the

or,

solely

ctua-
er in

-

As we will now show by analyzing Eq.~1!, an LC detector may operate as
photodetector without any reaction to VFs or as an optical detector for VFs, but it n
gives the standard Nyquist expression for FF noise~3!, as one might naively expect.

If the detected frequency is higher than theLC temperature, the occupationNV is
exponentially small, and the only nonvanishing term in~1! is the ‘‘positive part’’ of the
spectral densityS1(V), which describes the ‘‘emission’’ of energy by the conductor
theLC circuit, and in that case theLC circuit functions as an ordinary photodetector

As an example, forS1(V) in a coherent conductor with transmissionD at zero
temperature and a finite bias voltage one has

S1~V!5
2e2

h
D~12D !~eV2\V! ~4!

if \V,eV andS1(V)50 otherwise.

We have neglected the energy dependence of the transmission in the expr
above, as well as an additional frequency dependence which has to come fro
averaging over the coordinates~see below!. Equation~4! coincides with theexcessspec-
tral density calculated in Ref. 1 using the symmetrized correlator~2!.

If the frequency is much lower than the detector temperature,\V!kBTLC , one may
replace the Bose occupation numberNV by kBTLC /\V.

The differenceS1(V)2S2(V) is negative, and in the case of a quantum conduct
provided that the transmissionsDn depend only weakly on the energy we find

S12S2522\VG, ~5!

whereG52e2/h(nDn is the conductance.11

Note that the singular behavior of the spectral density at\V5eVwhich was found
in Ref. 2 for the symmetrized expressionS11S2 is not present inS12S2 , and we
conclude that the measurable singularity at zero temperature and finite bias is due
to the cutoff of the frequency by the voltage inS1(V) ~4!.

Altogether, for\V!kBTLC we have

Smeas5K$S1~V!22GkBTLC%. ~6!

The meaning of the negative part is clear—theLC circuit is ‘‘cooled down’’ by
emitting energy into the conductor. So, in some sense, in this limit the vacuum flu
tions, represented byS2 , are detectable; note, however, that they appear in the answ
a way which is quite different from the Nyquist expression~3!.

If the conductor is in equilibrium~aside from the weak interaction with theLC
circuit!, for low frequencies we find

Smeas}2G~Te2TLC!. ~7!

This expression vanishes if the electron temperatureTe is equal to theLC tempera-
tureTLC , as is expected for overall equilibrium.

At intermediate frequencies, wherekBTe ,eVbias!\V!kBTLC the measurable re
sponse is negative:
297 297JETP Lett., Vol. 65, No. 3, 10 Feb. 1997 G. B. Lesovik and R. Loosen
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Smeas522GkBTLC . ~8!

Let us now outline briefly the derivation of Eq.~1!. Our chosen detector can b
regarded as a harmonic oscillator coupled linearly to the time derivative of the curre
be measured:

Mẍ~ t !52Dx~ t !2a İ ~ t !. ~9!

In terms of the physical parameters of the counter~inductanceL, inductive coupling,
and capacitanceC), we may write: M5L, D51/C, resonance frequenc
V5AD/M5A1/LC, while a is the inductive coupling itself.

Our goal is to calculate the change inx2 due to current fluctuations in the firs
nonvanishing order of perturbation theory.

We must evaluate the expression:

^x2~0!&5~2 ia!2E
2`

0

dt1E
2`

t1
dt2e

h~ t11t2!^@@x2~0!,x~ t1! İ ~ t1!#,x~ t2! İ ~ t2!##&. ~10!

The angle brackets here stand for averaging over the unperturbed density ma
the electrons and the oscillator. Evaluating the expression above, we get

^x2~0!&5S a

2MV D 2E
2`

1`

dt exp~2hutu1 iVt !F 1h 2
1

h2 i sign~ t !VG
3$^ İ ~0! İ ~ t !&~11NV!2^ İ ~ t ! İ ~0!&NV%. ~11!

The derivation of Eq.~1! from this equation is not a straightforward procedure,
main problem being that the integral over frequenciesv of the Lorenzian
h/h21(v2V)2, which is supposed to serve as a delta function, contains a facto
v2 and does not converge well. If we neglect that problem and replace the Lorenzi
a delta function,h/h21(v2V)25pd(v2V), we end up with Eq.~1! with the coeffi-
cientK in it given by

K5S a

2L D 2 1

2h
. ~12!

The coefficient diverges as the width of the resonanceh goes to zero, so we keep th
latter small but finite.

The shapeF(v2V) of the resonance in theLC circuit, when calculated more
exactly, is in fact not a Lorenzian, and without specifying it we may write instead of
~1!

Smeas5E dv

2p
F~v2V!$S1~v!1NV@S1~v!2S2~v!#%. ~13!

The functionF(Dv) can in principle be measured independently, by applying an a
nating current. Afterwards the measured expression can be substituted into the fo
above.
298 298JETP Lett., Vol. 65, No. 3, 10 Feb. 1997 G. B. Lesovik and R. Loosen
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In general the current operator and its average over the density-matrix correlat
different times depends on the coordinates. The operatorsI (t) used in this paper are in
fact the total current operators averaged, in addition, over the lengthl of the inductive-
coupling region,

I ~ t ![1/l E
X2 l /2

X1 l /2

I ~r ,t !dr.

Because of this symmetry with respect to the coordinates, the current operators
as I (r 1 ,t)1I (r 2 ,t), although we keep a certain order in time.

Apart from the symmetrization with respect to the coordinates, the problem o
ordering of the current operators stems from the presence of the vacuum fluctuatio
If discussion is limited to the low-frequency limit\V!eVbias,kBT, then it does not
matter whether one usesS1(V), S2(V), or the Fourier-transformed symmetrized equ
tion ~2!, the result will be the same up to small corrections of the order
\V/eV, kBT.
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Zürich, Switzerland and was supported by SFB 341 in Germany, the Swiss Nat
Foundation, and in part by the Russian Academy of Sciences, RFFR Grant No. 9
19568.

1!J. Hajdu, private communication.

1G. B. Lesovik and L. S. Levitov, Phys. Rev. Lett.72, 538 ~1994!.
2S.-R. Eric Yang, Solid State Commun.81, 375 ~1992!.
3C. de C. Chamon, D. E. Freed, and X. G. Wen, Phys. Rev. B51, 2363~1995!.
4L. S. Levitov, H. Lee, and G. B. Lesovik, J. Math. Phys.37, 4845~1996!.
5L. D. Landau and E. M. Lifshitz,Statistical Physics, Pergamon Press, London, 1958.
6H. Nyquist, Phys. Rev.32, 110 ~1928!.
7See, for example: J. Perina,Coherence of Light, D. Reidel Publishing Co., Dordrecht, 1985.
8W. E. Lamb and R. C. Retherford, Phys. Rev.72, 339 ~1947!.
9H. B. G. Casimir, Proc. Kon. Ned. Akad. Wet.51, 793 ~1948!.
10L. Mandel, Phys. Rev.152, 438 ~1966!.
11R. Landauer, IBM J. Res. Dev.32, 306 ~1988!; D. S. Fisher and P. A. Lee, Phys. Rev.23, 6851~1981!.

Published in English in the original Russian journal. Edited by Steve Torstveit.
299 299JETP Lett., Vol. 65, No. 3, 10 Feb. 1997 G. B. Lesovik and R. Loosen



pment
nce of
on
d by

tions

odel
tion is

the
al
e are

the

d in
On a class of exactly solvable models of autowaves in
active media with diffusion

V. M. Zhuravleva)

Ul’yanovsk State University, 432700 Ul’yanovsk, Russia

~Submitted 9 December 1996!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 3, 285–290~10 February 1997!

A class of autowave models in the form of nonlinear diffusion equa-
tions, closely related with the Liouville equation and two-
dimensionalized Toda chains, is investigated. Exact solutions of these
equations are constructed and analyzed. ©1997 American Institute of
Physics.@S0021-3640~97!01203-6#

PACS numbers: 66.10.2x, 66.30.2h, 66.90.1r

The investigation of autowave processes is an essential direction in the develo
of the theory of nonlinear wave processes in application to problems of the appeara
ordered structures in different types of physical, chemical, biological, and so
systems.1–5 The standard model for such systems is an excitable medium describe
equations of the ‘‘reaction–diffusion’’ type~RD!

dU

dt
5F~U!1DDU, ~1!

whereU is the state vector of an element of the medium, for example, the concentra
of chemical substances entering into a reaction;F(U) is a nonlinear function; and,D is a
matrix of the diffusion coefficients of the components of the medium. The simplest m
of this type that reproduces the main characteristic features of autowave propaga
the two-component ‘‘activator–inhibitor’’~AI ! system

]u

]t
5F~u,v !1D1Du,

]v
]t

5G~u,v !1D2Dv ~2!

for the case of a two-dimensional medium:D5]x
21]y

2 . Conventionally,u is the activator
concentration andv is the inhibitor concentration; this is determined by the form of
zero isoclineF(u, v)50 andG(u, v)50 and is related with the possible practic
realization of such systems in chemical reactions. As a rule, models of this typ
investigated with the aid of approximate analytical methods6,7,4,5 or by numerical mod-
eling.

This letter investigates systems of the type~2! with functionsF(u, v) andG(u,
v), which have a type of nonlinearity that is similar to the Liouville equation or
two-dimensionalized Toda chain~TDTC! ~see, for example, Ref. 8!, and multicomponent
RD systems with a nonlinearity of a similar form. Two systems will be investigate
greatest detail. The first one has the form
300 3000021-3640/97/030300-08$10.00 © 1997 American Institute of Physics
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F~u,v !5m1
n1e

u1v2l1

e22u , G~u,v !52m2
n2e

u1v1l2

e22v , ~3!

wherel1 , l2 , m, n1 , andn2 are constants. In what follows we shall refer to this syst
as the Toda type-V activator–inhibitor system~TVAI !. The second system is close
related with the first one and has a similar form:

F~u,v !52m1n1e
2u2n2e

u2l1e
2u2v2l2

D1

D2
eu2v, ~4!

G~u,v !5n1e
2u1n2e

u1l2e
u2v2l1

D2

D1
e2u2v,

wherel1 , l2 , m1, m2, n1 , andn2 are the same constants as in Eq.~3!. We shall refere
to this system as the Toda type-N activator–inhibitor system~TNAI !. The type of system
is determined from the standpoint of the general classification given for excited sys
in Ref. 5. For example, the TVAI system belongs to systems of the typeV or L. This is
determined by the three main types of asymptotic behavior of the zero-isocline c
F(u, v)50:

v5 lnH l1

n1
e2u2

m1

n1
euJ .

In the casel1 /n1.0, m1 /n1,0 the system~3! is a type-V system, in the case
l1 /n1.0, m1 /n1.0 andl1 /n1,0, m1 /n1,0 it is a type-L system, and in the cas
l1 /n1,0, m1 /n1.0 the zero isocline is complex and the system has no real poin
equilibrium. Similar curves also obtain for the equationG(u, v)50 with the axes rotated
by 90°. The equation for the stationary points of the system has the form

m~m22n1n2!U
41@l1~n1n222m2!1l2n1

2#U21ml1
250, V5l1U

212mU, ~5!

whereU5eu andV5ev. The TNAI system is a type-N or -I system depending on th
parameters. This is also determined by the form of the zero isoclineF(u, v)50:

v5 ln

l1e
2u1l2

D1

D2
eu

n1e
2u2n2e

u12m
.

In Ref. 9 a simple method was proposed for constructing the solutions of the L
ville equation with the aid of quadratic forms. In the present letter this method is ca
over to the system~2!. This approach makes it possible to find an entire class of
solutions and to investigate their characteristic behavior. It is then applied in a ge
form to more general multicomponent systems whose functionsF(U… have the form

Fi~u1 ,u2 , . . . ,un!5e22uiS l i1eui(
k51

n

m ike
ukD ~6!

or linear combinations of such functions, wherel i andm i j are constant parameters of th
model. We shall refer to such systems as Toda reaction–diffusion chains~TRDCs!.
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Systems of the types~3!, ~4!, or ~6! with an exponential nonlinearity have apparen
not been studied in an explicit form in the theory of autowaves. This is because
examples of model equations for autowaves, for example, the Zhabotinski� equations10,3,5

~describing the Belousov–Zhabotinski� reaction! or the Brusselator11,2,3,5 and similar
models~see Refs. 3 and 5!, include a power-law nonlinearity. However, models of t
type ~6! can have a direct bearing on models of autowaves with thermal diffusion, w
the diffusion coefficient of the material and the thermal conductivity become nonli
functions of the parameters of the systems, i.e.,ui ~Ref. 3 and 5!. Indeed, the equation
~2! with the relations~3! and~4! for the functionsC5eu andF5ev can be written in the
following form:

C t2D1C (
a51

2

]aS 1C ]aC D5mC1
n1CF2l1

C
,

F t2D2F (
a51

2

]aS 1F ]aF D52mF2
n2CF1l2

F
,

which corresponds to a system of equations describing diffusion of matter and
conduction with a special choice of the dependence of the diffusion coefficient
thermal conductivity on the unknown functions of the model. On the other hand
functionsF(v,u) andG(u,v) in the regions where the model functionsu andv are close
to the equilibrium valuesU0 andV0 do not differ much from the first few terms in th
expansion of these functions in a Taylor series aroundU0 andV0. For this reason, their
solutions can serve as a quite good approximation to the exact solutions for system
power-law nonlinearity in these regions. Therefore the TVAI, TNAI, and TRDC syst
can serve as possible variants of basic models~in the terminology of Ref. 3! for inves-
tigating autowaves in excitable media and they are examples for which it is conveni
study some general features of the behavior of autowaves, irrespective of whether
an exact justification of these models can be found for some reaction–diffusion sy
For example, it is easy to verify that the TVAI and TNAI systems can have one or
stationary states~the TNAI system can have four stationary states!, depending on the
parameters, or they may not have any stationary states at all. Therefore such s
make it possible to study different variants of the asymptotic behavior of autowav
the presence or absence of stationary states and different types of stability of these

By analogy to Ref. 9 we seek the solution of the system~2!–~3! in the form

u5 ln C~z,z̄,t !, v5 ln F~z,z̄,t !,

C5ug~z!u2$a1~ t !uc1u21b1~ t !uc2u21c1~ t !c1~z!c2* ~ z̄!1c1* ~ t !c2~z!c1* ~ z̄!%, ~7!

F5ug~z!u2$a2~ t !uc1u21b2~ t !uc2u21c2~ t !c1~z!c2* ~ z̄!1c2* ~ t !c2~z!c1* ~ z̄!%,

wherez5x1 iy , z̄5x2 iy , D54(]/]z] z̄), the symbol * denotes complex conjugatio
the functionsa1(t), b1(t), a2(t), and b2(t) are real and functionsc1(t) and c2(t)
complex functions oft, andc1(z), c2(z), andg(z) are analytic functions of the comple
variablez. Substituting expressions~7! into Eq. ~2! we obtain the following identities:
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]u

]t
2D1Du52D1

ug~z!u4~a1b12uc1u2!uW12~z!u2

C2

1
ug~z!u2~$ȧ1uc1~z!u21ḃ1uc2~z!u21 ċ1c1~z!c2* ~ z̄!1 ċ1*c2~z!c1* ~ z̄!%

C
;

~8!

]v
]t

2D2Dv52D2

ug~z!u4~a2b22uc2u2!uW12~z!u2

F2

1
ug~z!u2~$ȧ2uc1~z!u21ȧ2uc2~z!u21 ċ2c1~z!c2* ~ z̄!1 ċ2*c2~z!c1* ~ z̄!%

F
,

~9!

here

W12~z!5c1

d

dz
c22c2

d

dz
c1

is the Wronskian of the two functionsc1(z) andc2(z). The Wronskian is different from
zero when the functionsc1(z) andc2(z) are linearly independent. Therefore we assu
that these functions are linearly independent. In order that the expressions on the
hand sides of the identities~8! be identical to expression~3!, the following conditions
must hold:

a2~ t !5ȧ12m1a1 , b2~ t !5ḃ12m1b1 , c2~ t !5 ċ12m1c1 , ~10!

~a1b12uc1u2!D15l15const, ~a2b22uc2u2!D25l25const, ~11!

uW12u2ugu451, m15const, m25const; ~12!

d

dt
~ ȧ12m1a1!52n1n2a11m2~ ȧ12m1a1!,

d

dt
~ ḃ12m1b1!52n1n2b11m2~ ḃ12m1b1!, ~13!

d

dt
~ ċ12m1c1!52n1n2c11m2~ ċ12m1c1!.

The three equations~13! have the same general form as the equation of damped os
tions

F̈2~m11m2!Ḟ1~m1m21n1n2!F50 ~14!

with damping decrementg5(m11m2)/2 and characteristic oscillation frequenc
V5Am1m21n1n2. Equation~14! has solutions of three basic types:
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ted in
F~ t !5H e2gt~F1 cos~vt !1F2 sin~vt !!, v2.0;

e2gt~F1 cosh~vt !1F2 sinh~vt !!, v2,0;

e2gt~F1t1F2!, v250,

~15!

whereF1 andF2 are integration constants andv22V22g2. In the casev2.0 we can
set

a1~ t !5e2gt~A1 cos~vt !1A2 sin~vt !!,

b1~ t !5e2gt~B1 cos~vt !1B2 sin~vt !!,

c1~ t !5e2gt~C1 cos~vt !1C2 sin~vt !!,

whereA1 , A2 , B1 , andB2 are arbitrary real constants andC1 and C2 are arbitrary
complex constants. Then

a1b12uc1u25e22gt~~A1B21A2B12C1C2*2C2C1* !cos~vt !sin~vt !

1~A1B12uC1u2!cos2~vt !1~A2B22uC2u2!sin2~vt !!.

A similar expression also holds fora2 , b2 , andc2. In order for the parametersl1 and
l2 to be constants, the following relations must be satisfied:

g5~m11m2!/250, A1B21A2B12C1C2*2C2C1*50,

~A1B12uC1u2!5~A2B22uC2u2!. ~16!

Then

v5V, l15D1~A1B12uC1u2!, l25D2~A1B12uC1u2!~V21m2!,

wherem5m152m2 andV25n1n22m2.

The corresponding class of exact solutions of the TVAI model can be represen
the form

u~z,z̄,t !5 ln P1~z,z̄!1 ln cos~Vt2Q1~z,z̄!!,

v~z,z̄,t !5 ln Q1~z,z̄!1 ln cos~Vt1Q2~z,z̄!!, ~17!

P1~z,z̄!5AH1
21H2

2, Q1~z,z̄!5
1

n1
A~VH22mH1!

21~mH21VH1!
2,

tanQ1~z,z̄!5
H1~z,z̄!

H2~z,z̄!
, tanQ2~z,z̄!5

mH21VH1

VH22mH1
,

where

H1~z,z̄!5
A1uc1u21B1uc2u21C1c1c2*1C1*c2c1*

uW12u
, ~18!

H2~z,z̄!5
A2uc1u21B2uc2u21C2c1c2*1C2*c2c1*

uW12u
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and the constantsA1 , A2 , B1 , B2 , C1 , andC2 satisfy the relations~16!. The functions
C andF are related by the simple relation

F5
1

n1
~Ċ2mC!. ~19!

The functionsc1(z) andc2(z) are arbitrary analytic functions.

The solutions obtained for the TVAI system are a more general solution of
Cauchy problem for the system~2!–~3! with an initial distribution of the functions
u5u(z,z̄, 0) andv5v(z, z̄, 0) as quadratic forms that depend on the two arbitr
analytic functionsc1(z) and c2(z). This makes it possible to satisfy a wide class
initial conditions of the problem with some general properties of the solutions at infi
for example,u→ const andv→ const asr5Ax21y2→` — the medium is in equilib-
rium at infinity.

The solutions of the TNAI system~2!–~4! are obtained from the solutions of th
system~17! by means of the very simple transformation

ũ5u2v5 lnH C

F J , ṽ5u1v5 ln$CF%, ~20!

whereũ and ṽ are solutions of the TNAI system andu andv are solutions of the TVAI
system~17!.

Of all types of solutions, the time-periodic solutions of the spiral-wave type ar
special interest. These solutions can be obtained in an explicit form, if the func
c1(z) andc2(z) are chosen in a special manner, for example,

c1~z!5p1z
m, c2~z!5p2z

n,

wherep1 , p2 , andmÞn are arbitrary complex constants. Time-periodic solutions e
if V2.0. As one can easily see, however, after a finite time interval such solutions a
longer bounded anywhere~the functionsC andF change sign!. Nonsingular solutions
exist forV2,0:

u~z,z̄,t !5 ln P2~z,z̄!1 ln $cosh~Vt1Q1~z,z̄!!%,

v~z,z̄,t !5 ln Q2~z,z̄!1 ln $cosh~Vt1Q2~z,z̄!!%, ~21!

P2~z,z̄!5AH1
22H2

2, Q2~z,z̄!5
1

n1
A~VH22mH1!

22~mH22VH1!
2,

tanhQ1~z,z̄!5
H2~z,z̄!

H1~z,z̄!
, tanhQ2~z,z̄!5

VH12mH2

VH22mH1
,

where the functionsH1 andH2 are determined by relations~18!, and the functionsC and
F are related by the relation~19!. The solutions~21! are nonsingular if the functions
H1 , H2 , P

2, andQ2 are nonsingular. They comprise a single solitary wave of a c
plicated form. These results, obtained for TVAI, also holdin toto for TNAI. Therefore, to
search for systems possessing nonsingular time-periodic solutions, it is of inter
investigate the more general models of the type~6!.
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Nonsingular periodic solutions exist in the multicomponent models~6!. This result
can be obtained on the basis of the following general considerations. Let us consid
sequence of functionsUi5 ln Ci , where

C i~z,z̄,t !5ug~z!u2$ai~ t !uc1u21bi~ t !uc2u21ci~ t !c1c2*1ci* ~ t !c2c1* %, i51, . . . ,n.
~22!

These functions satisfy the identities

]Ui

]t
2DiDUi52Di

ug~z!u4~aibi2uci u2!uW12~z!u2

C i
2

1
ug~z!u2~$ȧi uc1~z!u21ḃi uc2~z!u21 ċic1~z!c2* ~ z̄!1 ċi*c2~z!c1* ~ z̄!%

C i
,

i51, . . . ,n. ~23!

We require that the following conditions be satisfied:

ȧi5(
j51

n

m i j aj , ḃi5(
j51

n

m i j bj , ċi5(
j51

n

m i j cj , i51, . . . ,n;

~aibi2uci u2! f i
2Di5l i5const, uW12u2ugu451.

Then the system of identities~23! assumes the form of the TRDC system of equatio
with a nonlinearity of the form~6!. The equations for the functionsai , bi , and ci
comprise a system of ordinary first-order differential equations. In the simplest
when them i j are all constant, the coefficients in these equations are also constan
nonsingular periodic solutions to exist these equations must have solutions of the

Fi~ t !5Ai1Bi cos~Vt1f0!,

whereuAi u.uBi u for all i . These conditions must hold forai , bi , andci . Such require-
ments hold even in the case of a three-component system. The corresponding so
can be easily found. However, because of space limitations, they are not presente

In closing, I thank S. V. Chervon and V. K. Shchigolev for their unflagging inte
in this work.
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Channels in rotating liquids for conducting discharges,
transporting currents and particle and radiation
fluxes, and lowering breakdown thresholds

G. A. Askar’yan and A. V. Yurkin
Institute of General Physics, Russian Academy of Sciences, 117942 Moscow, Russia

~Submitted 21 November 1996; resubmitted 8 January 1997!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 3, 291–294~10 February 1997!

The formation of gas channels in rotating liquids is investigated and the
application of such channels as capillaries for high-power discharges in
x-ray lasers, for transporting particle and radiation fluxes, and lowering
breakdown thresholds~including with the use of metal fillings!, for
structural systems for microwave generation and particle acceleration,
and for photochemical and shock action on a liquid, and so on, is
discussed. It is noted that tubular active elements and samples can be
fabricated by solidification and crystallization during rotation.
© 1997 American Institute of Physics.@S0021-3640~97!01303-0#

PACS numbers: 47.32.2y, 52.80.Wq, 47.60.1i, 77.22.Jp, 52.90.1z

The production of gas channels in liquids is of great interest for a number of a
cations: for experimental and applied physics at high-energy densities, since the ch
make it possible to obtain reusable high-power capillary discharges~for example, x-ray
and other lasers! with self-recovering capillaries, without the ordinarily observed deg
dations of the properties and damage to the surfaces of the walls, especially in the c
surface breakdowns; for transporting particle beams and currents; for lowering b
down thresholds in liquids; for electrohydraulic or ultraviolet action on liquids~pumping
of lasers, treatment of water and oils, photochemistry!; and so on.

We have performed simple experiments on the production of gas channels in
ing liquids and in liquids flowing around different bodies.

A gas bubble with the required composition was introduced into~in the case of low
saturated vapor pressure or low content of dissolved gas! or remained in the liquid~water,
vacuum oils, alcohol!, and the liquid was made to rotate or rotated as it flowed thro
special structures.

1. FORMATION OF A GAS CHANNEL IN A LIQUID IN A ROTATING TUBE

A cylindrical glass tube, filled with a liquid into which a bubble was introduced
remained, was secured on the axis or connected with the axis of an electric moto
rotated with frequencyf550 or 100 Hz. Within fractions of a second the gas bub
became detached, approached the axis, and spread out into a thin channel along th
axis. The diameter of the channel depended on the amount of liquid or gas. In the c
a closed vessel, the volume of the liquid remained practically unchanged~since the
rotational centrifugal pressure hardly changed the volume of the liquid because of th
308 3080021-3640/97/030308-05$10.00 © 1997 American Institute of Physics
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compressibility of the liquid! and the channel volume was determined by the volume
the gas introduced or the incomplete filling with liquid. The diameter of the cha
could be easily increased up to 1 mm. The channel length reached 20 cm. It could a
changed by adjusting the opening on the axis. Under normal rotation~no beats and no
decentering! the channel was stable and even. A photograph of this arrangement
vacuum oil in rotation and a 1 mm indiameter and 4 cm long channel is displayed in F
1. As a result of the high centrifugal accelerations,

a'>~2p f !2r.105r.104cm/s2@g0>103cm/s2 for r.1 mm,

the channel formation was virtually independent of the orientation of the rotation
relative to the direction of gravity. Identical results were obtained with both water
alcohol. The motion of the introduced bubble and extraction of unneeded gas by e
ation from the rotating liquid were much more rapid than in the case when a bu
floated upward under the action of gravity. We call attention to the possible small ch
radii and the smoothness of the channel walls, properties necessary for a uniform
charge, which is so desirable in x-ray lasers.

The maximum admissable channel diameters can be estimated by equating th
stricting surface-tension pressurePsurf>s/r to the centrifugal pressurePcf>rv2D,
wheres is the surface tension,r is the density of the liquid, andD is the thickness of the
liquid layer. Thereforermin;s/rv2D, or rmin.v21As/10r.1022 cm for D.10r and
our rotation frequencies.

FIG. 1. Photograph of a gas channel on the axis of a rotating liquid. The channel diameter equals 1 m
rotation frequency equals 100 Hz. Liquid — vacuum oil. Gas — air.
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2. CHANNEL FORMATION DURING MOTION OF THE LIQUID

The formation of a gas channel during the rotation and motion of a liquid thro
helical elements was investigated. Tap water was passed through an 18 mm in di
tube into which an axial cylinder with a helical finned surface, which caused the wa
rotate as it flowed over the cylinder~see Fig. 2!, was inserted. For 3-mm deep fins th
pitch of the screw was equal to 0.5 turns/cm of cylinder length.

A gas channel formed on the axis at a water flow velocity of only 3–30 cm/s~tube
diameter of 18 mm and water flow rate of 102221021 liters/s!. The radius of the channe
depended on the flow velocity and ranged from one to several millimeters. Appare
this channel became filled with air dissolved in the water and was stable, its le
varying from 0.5 to 5 cm depending on the velocity of the water flow.

The finned rod was also used to hold electrodes for investigating breakdowns
channel. It was observed that an unfinned axial body inserted into the flow also give
channels where electrodes can be inserted and breakdown can be conducted,
length of this channel is small for our flow velocities, though the length can be contr
by placing on the rod ends attachments that change the regime of the flow over th
and the detachment of the flow.

3. ELECTRICAL BREADDOWN ALONG THE LIQUID SURFACE AND IN THE
GAS CHANNEL

Electric breakdown was investigated between two electrodes with a radius of 1
placed on the rotation axis~see Fig. 3!. When a gas channel formed during rotatio
breakdown was observed at the breakdown voltage for air. Breakdown was not obs
without rotation, since the breakdown threshold in water is higher.

The channel withstands high short gas-kinetic and ablation pressure pulses
result of the inertia of the liquid, and it is rapidly restored as a result of the la
centrifugal force.

Breakdowns in water have been observed previously in the presence of meta
pensions and filings, which substantially lower the breakdown threshold. These e
ments suggested the possibility of producing closing suspensions, each suspension
an average density less than that of the liquid — for example, composite metal–die
filings ~a thin layer of metal on a light dielectric!. This was implemented experimentall
Such particles were distributed on the surface of the channel.

FIG. 2. Diagram of the rotation of a moving liquid with a gas channel on the rotation axis:1— axial rod on
which a helix is wound,2— electrode secured on the end of the rod,3— second discharge electrode,4— gas
channel. The arrow indicates the direction of flow of the liquid.
310 310JETP Lett., Vol. 65, No. 3, 10 Feb. 1997 G. A. Askar’yan and A. V. Yurkin



as
the
with
ake
t high-
eak-
nce of
s by

rease
ill be
n the
ating
ke it

more

ls and
from

uency
.5 mm.
Panels — metal fillings impregnated with epoxy resin and slightly polished —
well as electrodes with alternating polarity were also tried. They likewise lowered
breakdown threshold. In these experiments, breakdown voltages from 1 to 3 kV
capacitances of 0.1–10mF were used. Sometimes, in order to peak breakdown and m
the energy release explosive, voltage was applied through a spark gap or a fas
resistance switch. Ultraviolet light, enveloping neighboring electrodes with the br
down, propagated well in the gas channel; this also enabled the use of a seque
electrodes with alternating polarity, making it possible to break down large gap
means of a voltage which was not very high.

Suspensions, which lower the breakdown threshold and make it possible to inc
the length of the breakdown gap, can be produced with the use of filings, which w
distributed over the surface of the channel if their average microdensity is less tha
density of the liquid. Multielectrode panels can be inserted into stationary and rot
liquids. Suspensions not only lower the breakdown threshold, but they will also ma
possible to increase the number of working media for realizing x-ray lasers~vapors of the
metals of the suspensions!. Moreover, under the conditions of a multiple~almost con-
tinuous! and not a streamer discharge on a cylindrical surface, the implosion will be
perfect and the temperatures and pressures will be higher on the cumulation axis.

We note that powerful particle or radiation beams passing through gas channe
liquids can themselves maintain or smooth the channel sections or expand them
small starting sizes.

The production of ripples on the surface of the liquid of the channel walls~for

FIG. 3. Pulsed electric discharge in a gas channel in a rotating tube containing a liquid. The rotation freq
equals 50 Hz. Liquid — water, gas — air. The electrodes are 1 mm in diameter and separated by 1
Voltage — 3 kV, discharge capacitance — 0.6mF.
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example, by exciting surface capillary waves with the aid of ultrasound! will make it
possible to produce restorable, incombustible structures for generating microwav
passing powerful beams or bunches of charged particles almost on/or near the
surfaces.

Such vacuum and gas channels can be used to accelerate charged particles
Coulomb field of an electron cloud formed under the action of an ultrapowerful ultras
light pulse, which pulls out electrons when the light field touches the channel walls.1 This
requires frequent renewal of the channel surface because of the destructive ac
intense light.

This effect can be used in both melts and solutions, which when rotated will
give a channel that will set on solidification, cooling, and crystallization. We dem
strated this in an experiment with paraffin and rosin melt in a tube, which gave a ch
and set together with it on cooling. Such tubular blocks of active elements can be us
efficient pumping and for particle acceleration by a converging light wave on the ax
a laser.2

What we have said suggests that gas channels have tremendous prospects fo
cations in new areas of physics — from x-ray capillary lasers to generation of r
waves and particle acceleration — and in chemical physics — for photochemica
shock action on a liquid, for treatment, purification, and decontamination of water,
and other liquids.

1G. A. Askar’yan, JETP Lett.52, 323 ~1990!.
2K. Shimoda, Appl. Opt.1, 33 ~1962!; Lasers@Russian translation, Inostr. Lit. Press, Moscow, 1963, p. 45#.

Translated by M. E. Alferieff
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