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Singularities in spherically symmetric black holes in the Einstein—
Yang—Mills and the Einstein—Yang—Mills with dilaton theories for the
SU(2) group are investigated. Analytical formulas describing the ex-
ponentially oscillating and power-law behavior of the metric near a
space-like singularity in a solution of the general form are
presented. ©1997 American Institute of Physics.
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Black holes in theories that include massless non-Abelian vector ffieldsibit
properties which are unusual compared with “classical” vacuum and electrovacuum
black holes. Besides violating the no-hair and uniqueness theorems, they exhibit a sub-
stantially new type of internal structufeln Ref. 3 it was shown that the space—time
inside a static black hole of general form in t8&J(2) Einstein—Yang—Mills theory
(EYM) has no Cauchy horizons, and the metric oscillates with an amplitude that grows
infinitely as the singularity is approached. Although some special solutions can still have
a Schwarzschild or Reissner—NordsirgdRN) type singularity’ these configurations
form only a set of measure zero in the space of all solutions. Inside an EYM black hole
of general form the mass function goes through a sequence of exponential jumps and
drops. The amplitude of the peaks grows exponentially as the singularity is approached,
while the period of the cycles approaches zero. The behavior of the system near a
singularity is described well by a two-dimensional dynamical systéram which the
infinite oscillatory character of the solution is evident. These results were confirmed in
Ref. 4, and a proof of the existence of RN-type solutions was claimed in Ref. 5. Our
objective in the present letter is to clarify the structure of the singularity inside static
spherical black holes of general form in the EYM and EYM with dilat@&yYMD)
theories(see Ref. 6 and the references cited therein

We choose the “string” value of the dilaton coupling constant and, with no loss of
generality, fix the unit of measurement and scale of distances at which the Planck con-
stant and the gauge coupling constant equal 1:

895 0021-3640/97/120895-07$10.00 © 1997 American Institute of Physics 895



1
S= Ef {—R+2(V$)?—e 29F2—gd’x, (6h)

whereF is the SU(2) field corresponding to the connection
ASTdx#=(W(r)—1)(T4d6—T, sin 6d¢),

andT, andT, are the spherical projections of tisdJ(2) generators.
It is convenient to represent the space—time interval in the form

Ao? r2 )
d32=—2dt2— Kdrz—rz(d62+sm26d¢2), 2)
r

where the functiom\ =r?—2rm(r) is negative inside a black hole of general form.

The equations of motion foW, A, and ¢ separate from the equation for, and in
the general case of the EYMD system they can be represented in the form

AU’ —2AU ¢ =WV/r— FW', )
(Alr)' +A¢'?=F—-2AU% ¢ (4)
(Ag') +Ar¢"=F-2A(¢'r+1)U% 271, )

where

W’ V2e72¢
U=—, F=l-—737, V=W2-1.

r
The remaining equation far has the form
(In o)' =r(¢'2+2U% 2%), (6)

Solutions of the black-hole type are engendered by initial data on the event horizon
rn, Wo=W(ry), and ¢,,= ¢(ry,) which satisfy the conditior#,>0. They can be char-
acterized by the values of the Arnowitt—Deser—Misner mdsand the dilaton charge
D=—lim(r2¢’) asr—o. It is convenient to fix the units of measurement for these
quantities by requiring thatp(2)=0. Then the asymptotic-flatness condition has the
effect that both quantitiesV, and ¢, assume a discrete series of values. For physical
solutions of the black-hole typ! >D.

Let us first study the structure of the singularity of the interior space of the expo-
nentially oscillating type for black holes of general form in the EYM theory. In this case
the system of equations assumes the form

V2 WV
AU +{ 1= — |W =—, (7
r r
A\’ V2
—| +2aU02=1-—, ®
r r2
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FIG. 1. Region of the first oscillation for EYM. Bottom half plane: the functibrfor EYM (solid line) and
EYMD (dashed ling top half plane: the mass functiong(r) (similarly) and the functiorlJ for EYM (dotted
line). The values of all functions are raised to the power 1f16:4; W,= —0.283993 for the EYM system,
W,,= —0.298357 ¢,=0.05623 for EYMD(asymptotically flat solutions with one zero of the functMhin the
exterior regiop.

U o=u? )
—Iin o=U".
dr?

When this system is integrated numerically from the event horizon in the direction of
decreasing radial coordinate, in the general qagth the exception of some discrete
values of the initial data on the event horizptihe functionA starts to oscillate. Once the
oscillations have developed, the right-hand side of &.becomes negligibly small
compared with the terms on the left-hand side and the following approximate first inte-
gral of the system can be obtained:

Z=AUg/r=const, (10

which relates the oscillations of the mass function and the funetiddumerical experi-
ments also show that while the YM functia® exhibits very small variations right down

to r=0, its derivative is still different from zero and changes very rapidly in some very
small intervals of . The functionU exhibits close to step-like behavior: It is constant, to

a high degree of accuracy, during almost the entire oscillation cycle ct{bggnl) and

then changes abruptly to a higher absolute value corresponding to the next cycle. It is
obvious from Eq.(9) that o falls off exponentially with decreasing, as long asU
~const, whileo hardly changes on very small intervals during the jumps iTherefore

o approaches zero through an infinite sequence of exponential drops with increasing
exponents on intervals of exponentially decreasing length. In combination wittl&q.

and the above-indicated propertiesldf this makes it possible to obtain a quite detailed
description of the behavior of the metric.

We denote by, the value of the radial coordinate for whidhreaches th&th local
maximum. Soon after this point is crossed, the functibstabilizes at some valud,,
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approximately equal to twice the value at the point of the maxintimilarly, as a local
maximum is approached) approximately doubles whild is almost stationany Then,
in accordance with Eq9), o equals

o(r)=o(rexgUi(r2—rd)].
From Eq.(10) we find that as long a&l,~ const

_A(ry)

A==

r exqUZ(rz—r?)]. 11

This function decreases withto a local minimum at the point
no L VIAmIL
2lud 2Vl

Further, since the YM functioW changes very little during the oscillations of the
function A, we shall assume that= const.

(12

Therefore, at the stage of exponential growtH &fthe mass function grows expo-
nentially asr decreases from, to Ry. After the pointR, is crossed, the exponential in
Eqg.(11) becomes close to 1 in order of magnitude, and therefoséarts to grow linearly
and the mass functiom(r) remains at the valum,=m(R,). This behavior remains up
to the moment\/r? reaches its local maximum, which occurs fior= —V? at the point

VZ
rf~———rexg — (U2l 13
k |A(I’k)|k F[ ( kk)] ( )
Then|A| drops rapidly, giving rise to rapid growth ¢B)|. The term 2U2 in Eq. (8)
becomes negligibly small, as a result of which at this stage

UA=~—V2U,, (14)

the coordinater changing very little. This has the effect that the functidénrapidly
reaches the next local maximum at the poipt,~ry and m(r) drops rapidly to
M. 1. In Eq.(8) |A|<V? at the point of a local maximum df, and since is small, we
find
U(ry]~
V2IA(r)]ry
To obtain order of magnitude estimates we shall neglect the numerical coefficients
everywhere except in the exponents of the exponentials. Specifically, we set

U(r,) =U, and drop thdquasiconstantfactorsV. To this accuracy, we obtain from Egs.
(1D—(15)

(15

RY re
Ne1=Mg ', M 1=RRei 1, Mk:E ex Z_RE
R\Z Meer T
A(r)z(—) , =— exg —
Aol Mk 'k RZ
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Hence, introducing the variablg= (r/R,)%(>1), we obtain the recurrence equation
Xir 1= % €%,

whence it is seen thag, is an exponentially diverging sequence. In terms,pfve have
Fea 1 /T =X X2,

This ratio can be understood as the ratio of neighboring periods of the oscillations, since

rery. 1. The values of the functiopA| at the points, rapidly approach zero
[A(rol=x*,

so that we are dealing with an infinite sequence of “almost” Cauchy horizons as
r—0. At the same time, the values (| at the pointsR, grow rapidly as

|A(Rk)| =X|:3/26Xk/2,
and, correspondingly, the values of the mass function grow as
M /M1 =X, e,

As shown in Ref. 3, in this regime the systdi@) and (8) can be reduced to a
two-dimensional dynamical system, one of whose singular points is an unstable focus
with an infinitely untwisting phase trajectory.

As r decreases fronr, to Ry, the functiono decreases rapidly to the value
o= o(Ry) and then remains practically constant upr Q. In the direction toward the
singularity the sequence, decreases according to the law

0'k+1/0'k: e_xklz.

Let us now examine the structure of the singularity for black holes of general type in
the EYMD theory. In this case, starting the numerical integration at the horizon, we do
not encounter giant oscillations of the metric in the interior region. The general solution
does not exhibit Cauchy horizons, so thAt remains negative definite for all
0<r<ry. For sufficiently smallr the right-hand sides of Eq$3)—(5) become small
compared with the terms on the left-hand side, and we obtain the simplified system of
equations

(INU)' —2¢'=0, [In(A/r)]'=[In(Ag")]'=—r¢'? (16
Integrating this system gives the following five-parametbat is, of general formso-
lution

W=Wo+br?@N,  A=—2ur02) g=c+In(r ) (17

with the constant§V,, b, ¢, u, and\. The validity of the truncated equatiofi6) can
now be checked by substituting the asymptotic solutibf) into the complete system
(3)—(5). For consistency, it is sufficient tha2— 1<\ <1, which is in agreement with
the numerical data.

It follows from Eq.(17) that the mass function diverges according to a power law as
r—o0
m(r)=pr .
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FIG. 2. Second oscillation of the mass function for the EYM system. The numbers indicate the order in which
the curve is traversed as—0. The parameters of the solution are the same as in Fig.1.

The dilaton diverges logarithmically, while the YM functi®i possesses a finite limit.
The corresponding functioor approaches zero as

2
o(r)=ayr'’,
whereog,= const.

The regimes described above correspond to the expectation that the singularity in-
side black holes of general form should be space-like. The mé&lyién the interior
region of a black hole corresponds to the anisotropic cosmological Kantov—Sax solution.
It can be shown that the corresponding deformation pararpetdetermining the defor-
mation tensow;; =(2,—1,— 1)a/3, grows infinitely as the singularity is approached. For
the oscillating EYM solution the values of at the pointsR, are of the order of

pet rknaXN M &/2/ R3/2,

while the values at the pointg are of the order of
T " ~Mi 1 /Ry

Both sequences are infinitely growing. For the EYMD solutierdiverges as a power
law.

In summary, spherical non-Abelian black holesgaeral typecorrespond to the
strong principle of cosmic censufthe singularity is space-likeln the case of the EYM
theory, however, there is an infinite sequence of “almost” Cauchy horizons near which
the mass function starts to grow exponentially, stabilizing at a value corresponding to the
next cycle; the sequence of these values diverges exponentially as the singularity is
approached. In the theory with a dilaton the mass function approaches infinity monotoni-
cally (in a power-law fashion In the cosmological interpretation, this behavior of the
matrix corresponds to an infinite growth of the anisotropy.
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Does the Unruh effect exist?

V. A. Belinskii®
INFN and ICRA, Rome University “La Sapienza,” 00185 Rome, ltaly

B. M. Karnakov, V. D. Mur, and N. B. Narozhnyi®
Moscow State Engineering-Physics Institute, 115409 Moscow, Russia

(Submitted 23 March 1997; resubmitted 23 May 1997
Pis’'ma Zh. Kksp. Teor. Fiz65, No. 12, 861-86625 June 1997

It is shown that quantization on the Fulling modes presupposes that the
field vanishes on the spatial boundaries of the Rindler manifold. For
this reason, Rindler space is physically unrelated with Minkowski
space and the state of a Rindler observer cannot be described by the
equilibrium density matrix with the Fulling—Unruh temperature. There-
fore it is pointless to talk about an Unruh effect. The question of the
behavior of an accelerated detector in the physical formulation of the
problem remains open. @997 American Institute of Physics.
[S0021-364(07)00212-0

PACS numbers: 03.78k, 04.60—m

1. According to Unruht a detector moving with uniform acceleration in a flat space-
time detects particles even in vacuum. More precisely, the Unruh effect means that a
Rindler (uniformly acceleratedobserver is located in a heat bath with the Fulling—Unruh
temperature

=" @

where g is the constant acceleration measured in a comoving reference frame
(h=c=1). It is also assertéd® that for a Rindler observer the vacuum state in
Minkowski space(MS) is described by a density matrix with the temperat(ke By
analogy to the Hawking effeétthis is a fundamental problem. For brevity, this letter
discusses the problem for the example of a massive scalar field in two-dimensional
space-time. The extension to the four-dimensional case is made directly by introducing
transversdwith respect to the direction of motion of a Rindler obsep@mponents of

the momentuny and making the substitutiom— (m?+ q?) %2 (see, for example, § 12.1

in Ref. 5.

2. The geometry of Rindler spacdRS is described by the metric
ds?=p2dn?—dp?, —oc< <o, p=0. The variables in the Klein—Fock—Gord@tFG)
equation

(92

PR
a_7]2+G(p))¢R(X):Oa G(p)Z—p%p%erzpz, x={n.p}, )
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separate, and for the positive-frequeriayth respect to the time coordinaig solutions
® ,(x), the Fulling mode§,we have

() =7 X(sinh () K, (Mp)e 7, >0, 3

whereK ,(y) is a Macdonaldmodified Besselfunction. These modes are orthogonal
relative to the scalar product in RS:

_(=dp_, @ B ,
(@ @)= [ EORO0 T 0,0 00= ) @

and form (together withd)}j(x)) a complete system of solutions of the KFG equation.
They can be used as a basis for quantizing the ffgjd

000 | " anle,®,00+ G ®E),  [0,.001= =), )

and to determine the vacuum in Rindler space by the relatjgfz) =0, u=0:

dp

P = IPr(7,p)
c,=(®,, dr)r= (smh(q-r,u))l’zfo 7Km(mp) I¢r(m.p)

s —iudr(n,p)

n=0

(6)
The differential operato&(p), whose eigenfunctions are solutions of E8), operates in
the Hilbert space of the single-particle states with scalar prod{efy)
=[5 (dplp) x* ¢. It is easily verified that the hermiticity of this operator, ensuring com-
pleteness and orthogonality of the mod8s presumes that the boundary condition

¢r(7,00=0 Y

is satisfied. When this condition holds, the integral in E).converges absolutely and
the quantitiesc; andc,, are particle creation and annihilation operators. When the con-
dition (7) does not hold, the integral in E¢6) can still be given a formal meaning, but
in this case the,, become singular gg— 0. This leads to divergences in the expressions
for physical quantities, so th&rt; andc, cannot be interpreted as particle creation and
annihilation operators. Specifically, #g(7,0)= const+#0, then the Rindler-quantum
number operatoNR=f§c; c,du does not exist.

|
™

We note that the change of variables e, mapping the poinp=0 into u= —oo,
reduces the requiremefif) to the standard condition for vanishing of the fielg; at
spatial infinity.

3. The change of variables
t=p sinh%, z=p coshy (8

leads to the Minkowski metrids?=dt?>—dz%. Global coordinate$,z} are defined in all
MS, while the Rindler coordinatesy,p} cover only one sector of M&Rindler wedgg
We note that the Jacobian of the transformati®nl= p vanishes at the boundary of this
wedge(in the two-dimensional case — on the light carfe-t2=0).
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Since the world linez?—t2=g~2 of a uniformly accelerated observer in MS is also

an orbit of Lorentzian rotations, we shall examine the eigenfunctions of the boost gen-
erator which have the integral representation o< xk<«):

‘I’K(x)=2*3’2w*1ﬁo d6 exp{—i[m(t cosh#—z sinh )+ x6]}. 9)

It is easy to verify that these modes are ortho normalized with respect to the standard
scalar product ¢,#)y in MS, they form a complete system of solutions of the KFG
equation, and they can be used as a basis for second quantfation:

d(x)= fjwdk[bK‘IfK(x)+b:\I’ﬁ(x)], [b, ,b:,]= o(k—«k"). (10

The operatord, are in a one-to-one relation with the operatagsdetermined in a
plane-wave basisy ,= (4me) Y2 exp(-iet+ip2), e=(p?+m?)*2 and

a,, P+=€xp. (12

_ |- —12 L
b= fﬁmdp(Zwe) exp<| 5 In .

Hence one can see that the solutidhg x) correspond to positive frequencies relative to
global timet, and for the Minkowski vacuum we hawg,|0y)=0, —w< k<o,

Introducing the null coordinates. =t+z, we can represent the modé3 in the
form

W, (X)=0(x4) O(—X_)PR+ 0(x ) (X )WFE+ 6(—x ) O(x_ )WL
+0(—x,)0(—x_ )P, (12

corresponding to separation of Minkowski space into right-haRy €uture (F), left-
hand (), and past P) sectors. For the functiorﬂrf we have

‘Iffz2‘1’2w‘1KiK(m(—x_x+)1’2)ex;{—i%(In_x—;ﬂw } (13
The remaining functions are obtained hence via the substitutisn—e'"x. . More
accurately, the modd8) are analytical continuations of the functiofis), and traversing
a circuit about the branch pointsx.=0 we have (x_)—x_eT,
Xy—(—xy)e '™, x_—(—x_)e"'", and (—x,)—x,€e™ with the transitionsR—F,
F—L, L—P and P—R, respectively. The substitutior x.—x.e '™ gives a second
independent choice of the solutioHs; .

The branch points merge &t 0. Therefore, to express the operatbgsin terms of
the values of the fields) and its derivatives on the Cauchy surfaece0 they must be
calculated at#0 and the limitt— 0 taken. Finally, we have

ie‘ITK/Z s ie*ﬁK/Z 0
b.=(V¥,, =——| Fr(z,k)dz+ —— FL(z,k)dz, 14
= Vb= | Frzmdze —o| Fuzndz 14

where
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b _dd

mz tikad)
— _
Jt o9z

+F(_iK)<i7) 9z

Fri(z,k)=K; (= mz)(

t=0 t=0

+m

1 *+ik—1
KiK:1(imZ)_§F(1IiK)(i7) }(ﬁ(o,z)

(the upper(lower) signs correspond to the indic&(L)). Here it is assumed that the
field ¢ decreases quite rapidly at spatial infinity, but in contrast to(Bgthe condition
#(0,2)=0 need not be satisfied at=0.

4. Instead of the solution@®), Unruh proposed using right-hai®),(x) and left-hand
L ,(x) modes such thaR,(x) =0 in theL sector and. ,(x)=0 in theR sector. In the
case at hand these are the functions

R,(X)=(2sinh(7w))” Ye™2¥ (x)—e ™2¥* (x)], wu>0, 15
L.(x)=(2sinh(mu)) Y{e™W* (x)—e "W, (x)], w>0,

satisfying the KFG equation and ortho normalized with respect to the scalar product in
MS: (R, Ry )Im=—(Ly.Ly)m=6(u—nu"), (R,,L,)m=0. Inverting the relations
(15) and substituting the result into the expansi@f), we obtai=®

b= f:dﬂ[rMRM(x)+r;RZ(x)+IML;(X)+I;LM(X)], (16)
where

r,=(2 sinh(mw)) Y{e™%, +e ™2 1, u>0, an

1,=(2 sint(mp)) " Yqe™?_ ,+e ™2 "], u>0,
and[r#,r;,]:[lﬂ,lz,]z5(,u—,u’). Hence follows

(Ol /1, Om) = (2= 1) 18 u—p). (18)

The operators , are expressed as a scalar product in M3+ (R, ,¢)y . If here
the surfacet=0 is taken as the surface of integration and the fact that the modes
R,=0 for z<0 and are functionally the same as the Fulling mo@sdor z>0 is taken
into account, then after making the change of variad®sit can be shown that
(Ry,9)m=(®,,¢)r. Then the operators, are identified withc,, after which the
equality(18) is converted to the part of the particle number which refers to the interval of
the proper timer= 7/g of a Rindler observer

dN_Jw do 27wlg 1 -1 _ 19
ar s >.Le 175 w=gu, (19
and interpreted as an Unruh effect, i.e., the presdifrcen the point of view of the
Rindler observerof particles with a Bose thermal spectral at temperatdjein the
Minkowski vacuum. However, such an interpretafictis inadmissable. Indeed, substi-
tuting relation(14) into the first of the equationd7) and making the change of variables
(8), we obtain the relation

905 JETP Lett., Vol. 65, No. 12, 25 June 1997 Belinskil et al. 905



|

(20

r,LzE,ﬁ;—W<sinh<wu>>l’2’}igwo[¢<o,p>[r(—m>(¥) ”—mﬂ)(?) ’

WhereE# is determined by Eq6) after the substitutiomr(Xx) — ¢(x) has been made in
it. It would make sense to separate the operafonto two terms in accordance with the
equation(20) only if the field ¢ vanishes at the origin of the MS. This requirement,
necessary for the existence of the limit on the right-hand side of the eq(@0itycould

be a consequence of the fact that the figldsatisfies some boundary condition on a
space-like surface intersecting the Cauchy surtac® atz=0, and¢(0,0)=0. How-

ever, such a boundary condition leads to the problem of quantizing thedielith a
HamiltonianH, which is different from the problem of quantizing the free figldn MS.

If dr(7n,p) and ¢(t,z) are identified with one another fa=p>0 andt= =0,

then the Schidinger operatorEM is identical to the operatoc, determined by the
equation(6). This identity is the basis of the proof of the Unruh “effect™® However, it

is not legitimate to identify these operators with one another, since they refer to problems
with different Hamiltonians. In contrast to the Hamiltonibty in RS, the Hamiltonian

H does not diagonalize even in terms of the operatgrandl , . Moreover, the operators
H andHR are generators of evolution in global tirhand in Rindler timey, respectively.

There are especially no grounds for identifying the operatgrgiven by the rela-
tions (17) in MS and the operators, determined in the problem with the boundary
condition (7). This condition corresponds to the presence of an impenetrable wall at
p=0, —o<p<m, i.e., at the boundary of the Rindler manifold, so that RS is in no way
physically related with MS. In consequence, the union of the two Cauchy surfaces
7n=0 in the left- and right-hand Rindler spaces, i.e., the surfac® in MS with the
point z=0 excluded, is not a Cauchy surface in this space.

As an example for elucidating this assertion we give the function
D(t,2)=[#(X),#(0)]_, for whichD(0,2)=0 and @/dt)D(t,2)|i~o= &(2). This func-
tion is different from zero inside the light cone, though it possesses zero Cauchy data in
both theR and L sectors. In four dimensions the well-known Pauli—Jordan function,
which satisfies the KFG equation and the Cauchy initial d&xé0r)=0 and
(alat)D(t,r)|;=o=8(r) and vanishes only outside the light cone, possesses similar prop-
erties. Therefore the assertion made above about the properties of the Cauchy surface is
not specific to two dimensions.

Returning to relatiori18), we underscore the fact that sinee=gu is not the energy
in MS, since the average on the left-hand side is calculated over the Minkowski vacuum,
and since the operators, are defined in terms of the scalar product in MS, the expres-
sion[e?™*/9— 1] has nothing in common with a Bose distribution. Therefgi2w is
not the temperature, and the Unruh effect in the s€¢h8edoes not exist. The appearance
of a Bose factor in Eq(19) is entirely due to the specific properties of the Bogolyubov
transformation(15) and is encountered in different physical problems where in no way
does the question of temperature arise. An example is a two-dimensional oscillator.
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The relation(18) is sometimes interpreted in terms of a density matrix. This inter-
pretation is based on the forméifa

<OM|R(rp.1r;/)|OM>:TrR(pRR)1

pr=po XN —Kgr/T), Kgr= fo pr it du.

However, the development of the operators in Minkowski time is determined by the
complete Hamiltonian and not by the operakog. Therefore the matripg does not
satisfy the dynamical Bloch equation and cannot be interpreted as a density matrix.

5. So, the problem of quantizing free fields is entirely different in Rindler and
Minkowski spaces. Therefore analysis of these problems cannot serve as a basis for any
conclusions about the behavior of an uniformly accelerated detector. The question of an
accelerated detector is a very difficult fundamental problem and, in our opinion, does not
have a satisfactory solution at present. Here we confine our attention only to brief re-
marks concerning it.

First, the problem of a Rindler observer and therefore a uniformly accelerated de-
tector, discussed in Unruh’s papeis to oidealized. Even in classical field theory, where
the question of preparing a quantum state in which a measurement is performed does not
arise, well-known paradoxes arise in the problem of hyperbolic motion of a chafge.
Second, the use of composite systéms a detector raises numerous questions, since at
present a systematic relativistic theory of bound states does not exist. At the same time,
the problem of the interaction of accelerated particles with quantized fields is urgent and
has interesting physical applications; see, for example, Refs. 9 and 13. Specifically, it is
shown in Ref. 9 that elementary particles used as detectors do not manifest the universal
response of the Unruh type. The question of an accelerated detector must be discussed in
a physically correct formulation with acceleration switched on and off and remains open
at present. However, it is difficult for us to believe that the behavior of the detector will
be universal and will follow Unruh’s formula.

We thank S. E. Murav'ev for a discussion. We are especially grateful to A.A.
Starobinski, who read through the manuscript and made many helpful remarks. One of
us (N. B. N.) thanks Professor R. Ruffini for hospitality at Rome University. This work
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Optical orientation in  p-doped semiconductor structures
with a split valence band

E. P. German and A. V. Subashiev®
State Technical University, 195251 St. Petersburg, Russia

(Submitted 16 May 1997
Pis'ma Zh. Kksp. Teor. Fiz65, No. 12, 867—-87125 June 1997

The optical orientation of electron spins in heavily doped semiconduc-
tor structures with a valence band that is split as a result of size quan-
tization or uniaxial deformation is investigated theoretically. It is
shown that lowering the Fermi level by doping and by lowering the
temperature should lead to sharp changes in the photon-energy-
dependence of the average spin of the excited electrons in structures
excited by circularly polarized light. This effect is due to an inter-
change of the dominant contribution of transitions from a light-hole
subband and transitions from the heavy-hole subband in
absorption. ©1997 American Institute of Physics.
[S0021-364(®7)00312-3

PACS numbers: 78.20.Bh, 73.20.Dx

Optical orientation in semiconductor structures is actively used both for studying the
kinetics of non equilibrium states of electrdri@nd for producing efficient photoemitters
with a high degree of polarization of the electron belim strained semiconductor films
(compressed in the plane of the hetero boundand in semiconductor structures with
guantum wells, the degenerafg state of the valence-band edge is split into doubly
degenerate states willy (heavy holesandI'; (light holeg symmetry, the heavy-hole
subband having the higher energee Fig. 1 In the case when the electrons are excited
by circularly polarized light near the absorption edge, the average projection of the
electron spin on a direction opposite to that of the angular momentum of the exciting
photon(which is oriented in the direction of the outer normal to the surface of the film
is found to beS,=1/2 and the polarization of the excited electron®is 1.

The spin orientation observed according to the luminescence polarization and the
emission of polarized electrons reacties 0.9 for p-doped strained filnfsas well as in
structures with quantum weflsand in superlattice$.For excitation energy above the
threshold for excitation of transitions from light-hole states, the polariz&Ridecreases
rapidly, since electrons with opposite spin direction are produced in the case of excitation
from the light-hole subband.

This letter analyzes of the optical orientation of electron spins in heavily doped
p-type structures with a split valence band. At low temperatures the filling of the top hole
subband with holegsdownward displacement of the Fermi leyalesulting in a shift of
the absorption edge into the region of high energies, for sufficiently high hole density
should lead to a change in the dominant mechanism of absorption, specifically, the edge
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FIG. 1. Band structure scheme of H00) GaAs film compressed in tkE00) plane. The vertical lines show the
thresholds of direct optical transitions from split light-hoke,§ and heavy-hole&,,E;) states in the valence
band into states of the conduction baig; — Fermi level.

absorption should be determined by transitions from the split-off light-hole subband and
not the heavy-hole subband. The edge-absorption mechanism changes when
Er(1+my,, /m)>A. HereEg is the heavy-hole Fermi energg. is the conduction-

band effective massny, , is the transverséwith respect to the axis of the structire
effective mass in the heavy-hole subband, ands the deformation splitting of the
valence band. As the excitation energy increases, the contribution of heavy holes once
again predominates in absorption.

This letter shows that in the case when the structure is excited by circularly polar-
ized light a change of the dominant absorption mechanism should be accompanied by a
sharp change in the average spin of the excited electrons, and this should be manifested
as sharp changes in the polarization in the excitation spectra of the polarized lumines-
cence and in the polarized-electron emission spectra. As the temperature increases, an
upward shift of the Fermi level and broadening of the Fermi distribution cause the heavy
holes to predominate in absorption and the standard spectral dependence of the electronic
polarization is restored.

A similar “inversion” occurring in the spectral dependence of the electron polar-
ization upon doping and lowering of the temperature should also be observed in struc-
tures with quantum wells and in superlattices as well as in heavily doped extended layers.

Let us consider the absorption of circularly polarized light in a straip&shAs
layer oriented along thgL0Q] axis. The number of electrons with “upwardi.e., in a
direction along the normal to the filmand“downward” spin which are excited by light
into the conduction band per unit time is determitiedwithin a factoy by the quantities

2
(F9)= V] ; Fi'n(E;(k)) 8(Ec(k) —Ej(k) —fw), a=T,]| (1)
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Here F*=3|(c,a|eD|i,m)|?, i=h andl, the indexm enumerates the states of thg
multiplet of the valence band (k) are the energies of states with wave vedtor
n(E;(k)) is the Fermi distribution function of valence-band electrddsis the dipole-
moment operatore is the polarization vector of the light, and is the volume of the
crystal. Calculations of the quantiti€s’ (similar to the calculations performed in Rej. 7
give

1 1
F;J:Edz(liR), F},’,ZEdZ(lIR), )

whered=(S|D,|X) is an interband transition matrix element,

A+2y,(3k2—Kk?)
R: — — I} (3)
\/A2+ 29,(3K2— kA A+ 495k + 12 y5— v5) (KiK + KEkS +K2k2)

A=myA/%?, andy, and y, are the Luttinger parameters.

The absorption coefficier and the degree of polarizatidd of the electrons are
given by the equations

 27ho _(FNYy—(FY)
K=———(FH+(F)), P-—<FT>+<F¢> (4)

or

P=py " p
TUPK K, K K,

®

Here K;, and K, are partial absorption coefficients amj, and P, are the degree of
polarization with excitation of electrons from the light- and heavy-hole subbands, respec-
tively. It follows from Eqgs(2)—(5) that R decreases monotonically with increasing elec-
tron energy, as a result of whidP, changes from 1 to 1/2 anld, changes from-1 to

1/2. The resulting electronic polarization is determined by the relative contribution of
transitions from the light- and heavy-hole subbands.

For optical excitation energ, measured from the interband absorption threshold
(E=fhiw—Ey, Eg is the band gap in the strained layeE<(m;, , /my)A, the effect of
the fluting of the hole spectrum is smatk (y3— y2)/ v,E/(m;,/m.A)) and in the region
E<A,,, whereAg, is the spin-orbit splitting of the valence band, the dependences
K(E) andP(E) in the strained GaAs layer can be found analytically. The computational
results forK (E) are displayed in Fig. 2 for several values of the hole deriliey splitting
is assumed to bA =30 me\). One can see from Fig. 2 that as the hole density increases
for densitiesp=3x 10" cm~3, the absorption threshold shifts appreciably into the re-
gion of high energies.

We call attention to the square-root dependefaee to the anisotropy of the heavy-
hole subband in the strained materiaf the one-band absorption coefficients near the
thresholds and the rapid growttiue to the relatively high density of states of the heavy
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FIG. 2. Spectral dependence of the absorption coefficient in a doped strained GaAs layes &: @ —
p=10"cm 3 x — p=3%x10"cm 3,0 — p=10%¥cm 3, O — p=3x10¥cm 3. The dashed lines show the
partial contributions of the light-hole and heavy-hole subbands to absorption at low densify.and

holes and the large optical matrix elemeoft the absorption at the edge of the transitions
from the heavy-hole subband in the doped material. This increase becomese specially
clear forEg>0.4A.

The dependence of the electronic polarization on the excitation energy attemperature
T=4 Kis shown in Fig. 3 for a series of hole densities. At low hole density the electronic
polarization is high and positive right up to excitation energy equal to the deformation-

Ll
N

-1.0 Frrrrtof
0 005 010 045 020 0.25

E, eV

FIG. 3. Spectral dependence of the electron polarizal¢B). The symbols have the same meaning as in
Fig. 2.
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FIG. 4. Spectral dependence of the electron polarizafi¢g) in adoped structure wita 5 nmwide GaAs
quantum well af =4 K; @ — p=10tcm 2, 0 — p=102cm 2, O— p=1.5x102cm 2. The dashed lines
show the partial contributions of transitions from thkel, Ih1, andhh2 subbands.

splitting energy. Fop>5x 10" cm™3 anomalously large changes arise in the electronic
polarization in the region of low excitation energies and the width of the anomalous-
polarization band increases with the hole density.

The calculations of the electronic polarization for smaller valence-band splitting and
higher temperatures show that for strained GaAs films wiffy , /m.>1 and typical
values A=20 meV, the anomalous behavior of the electronic polarization remains
strongly expressed even fai<77 K andp=10® cm 3 .

The splitting of the spectrum in superlattices and structures with quantum wells is
due to the formation of a collection of size-quantization subbands of hole states, and
sharp changes in the electronic polarization are observed at the thresholds of interband
transitions from the size-quantization hole subbaiftis this case also the calculation of
the spectral dependence of the electronic polarization reduces to the calculation of the
number of electrons which are excited into a state with the opposite spin orientation in
the conduction banésee Ref. & However, this requires a numerical calculation of the
size-quantization spectra of the electrons and holes and a calculation of the interband
transition matrix elements and the density of final states. The computational results for
the degree of electronic polarization of the electrons for a GaAs#8g.As structure
with 5-nm wide GaAs wellgin the model described in detail in Ref)l@re displayed in
Fig. 4. For this structure the splitting between the first heavy-hiolel§ and light-hole
(Ih1) subbands equals 40 meV, thel subband having an anomalously large mass,
which is also manifested in the form of a dip in the polarization spectrum. The
anomalous-polarization band arises with two-dimensional hole demsitx 10

cm

In contrast to the spectra of strained films, the spectral dependence of the polariza-
tion for quantum wells is very sensitive to the parameters of the structcoesposition
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and width of the layeps which change both the ratio between the partial absorption
coefficients near the thresholds of the transitions between the size-quantization subbands
hhl—el,lIh1—el, andhh2—el and the order of the hole minibands.

The electron spin orientation is manifested in the circular polarization of the recom-
bination radiation as well as in the polarization of the electrons emitted from a surface
activated to negative electron affinity. In both cases the effects due to the spin relaxation

processes can be eliminated by using time-resolved measurement techréaaietsimi-
nescence measurements with photon energy close to the excitation*8rierdyy inves-
tigating energy-resolved emissfThis makes it possible to observe the predicted effect
directly.

In view of its rapid variation, the above-predicted excitation-energy dependence of
the electron polarization is very sensitive to the position of the Fermi level, Coulomb
interaction effects, and fluctuation broadening of the absorption edge, all of which modify
the carrier spectrum and the optical properties of doped structtiFes. this reason, the
observation of anomalous polarization and the determination of the energies correspond-
ing to a change in the sign of the polarization can be used to obtain independent infor-
mation about these effects.

This work was sponsored by CRDF under Grant RPI-351, INTAS under Grant No.
94-1561, and by the Russian Fund for Fundamental Research.
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Cluster structure and superlattices in Co and Fe films

S. M. Zharkov, V. S. Zhigalov, L. I. Kveglis, Yu. V. Lisitsa,
K. V. Renskaya, and G. |. Frolov

L. V. Kirenski Institute of Physics, Siberian Branch of the Russian Academy of Sciences,
660036 Krasnoyarsk, Russia

(Submitted 29 April 199y
Pis'ma Zh. Ksp. Teor. Fiz65, No. 12, 872-87%25 June 1997

The process of dendritic crystallization of Co and Fe films is investi-
gated. Electron-diffraction methods show that fractal growth of
dendrites in Co and Fe films proceeds by multiple twinning of the
elements of a nanostructure consisting of different clusters with close-
packing. The formation of superstructures is explained by a shell model
of a cluster structure forming nanocrystallites. 197 American In-
stitute of Physicg.S0021-364(107)00412-X]

PACS numbers: 61.46w, 68.70+w

In a previous work we presented electron-diffraction photographs obtained from iron
films after explosive crystallizatioEC) from an initial amorphous state. The electron-
diffraction photographs did not correspond to either éher y phase of Fe, though they
did contain a series of reflections from both phases. The hyperfine structure of ise Mo
bauer spectra of such films indicated the appearance of a new phasé lof/Estigations
of the ferromagnetic characteristics of the Co and Fe films showed that in the course of
dendritic growth the saturation magnetization decreases and the resistivity indréases.

In the present work we investigated Co and Fe films obtained by means of the same
technology. The initial state of the films was x-ray amorphous. The films deposited on
different substrategliFe, MgO, NaCl, glasswere subjected to multistep annealing in
the temperature range from 50 t0700 °C in & 1@rr vacuum. Explosive crystallization
was observed under the action of an electron beam on films annealed at temperatures
from 100 to 400 °C. The microstructure of the films consisted of a network of dendrites
growing from centers of crystallization.

An electron-diffraction photograph of the dendritic section of a Co film is displayed
in Fig. 1a. The main reflections in this photograph, taking account of twins, correspond to
hcp-Co with a[110] zone axis’ Superstructural reflections, attesting to period doubling
in the[002] and[012] directions, are also revealed in the electron-diffraction photograph.

Electron-diffraction photographs of three types of superlattices observed in iron
films after explosive crystallization are displayed in Figs.1lb, c, and d. An electron-
diffraction photograph with two superstructural reflections between 0(2ht) «-Fe is
displayed in Fig. 1b. These reflections can be attributed to multiple twinning along the
(211) plane ina-Fe? Figure 1c shows an electron-diffraction photograph containing not
two but four and Fig. 1d shows six superstructural reflections between the central beam
and the(211) a-Fe reflection. No correlation was found between the annealing tempera-
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FIG. 1. Electron-diffraction photographs of Ga) and Fe(b, c, d films after explosive crystallization.

ture, the choice of substrate, and the type of superlattice; annealing only initiated the

electron crystallization process. Relaxation of the structure and the physical properties of
the films to the values characteristic for the bulk state started at anannealing temperature
above 450 °C.

On the basis of the interpretation of electron-diffraction photographs, we can assume
that multiple twinning leads to the appearance of superstructural reflections in Co and Fe
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FIG. 2. Diagram of nanostructure formation. The thick lines distinguish the projections of a cubo-octahedron,
when it is inscribed in a system of (8), 11 (b), and 15(c) (211)-type atomic planes. The numbered vertical
lines show the traces @211)-type planes.

films. Such twinning could result from the merging of nanocrystalline-size cubo-
octahedron-shaped clusters. The appearance of superstructural reflections of the type

(001) and(0%1), associated with doubling of the corresponding periods in hcp-Co, is
understandable if it is assumed that the clusters possess a close-packed ABAC-type
structure characteristic for hcp-Co. An ABAC-type structure is an element of a
cubo-octahedron®

The dendritic growth process in iron films is identical to that in cobalt films. Figure
2 shows a diagram illustrating the appearance ofsuperstructural reflections in the
electron-diffraction photographs of Fe films. The cubo-octahedral clusters increase in size
during the annealing process. The initial equilateral cubo-octahedron is found to be
inscribed in a system of seven parali2Ll)-type planegsee Fig. 2a Such a system of
interatomic planes can form in an electron-diffraction photograph two superstructural
reflections between the 0 an@11) reflections. If the cubo-octahedron inscribed in a
system of 11 parallel planes of the ty(#l1) (see Fig. 2pbis considered, then the reason
why four superstructural reflections appear in the electron-diffraction photograph be-
comes understandable. The superstructure of a Fe film containing six superstructural
reflections can be explained similarly if it is assumed that the cubo-octahedron is in-
scribed in asystem of 15 parall?11)-type planeqsee Fig. 2t

It is well known that nanostructures can form in metal films obtained under ultra fast
condensation conditions. In Ref. 7 the stability of clusters with different nanostructures
(icosahedron, tetrahedron, octahedron, cubo-octahgpdminvestigated theoretically as
a function of the sizes of these clusters. It has been proved theoretically and
experimentally® that the octahedra and cubo-octahedra are the most stable structures
with dimensions exceeding 35 A.

The well-known jellium model or shell model gives a quite accurate description of
the stable structure of some elementary metal cluStémsthe jellium model, metal
clusters are treated as giant macro atoms with electronic energy levels that manifest a
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shell structure. The shell structure is similar to that determined for nuclei. The similarity
to the nuclear model is observed experimentally. We suppose that the shell model can
explain the discreteness of the volumes of the Co and Fe clusters.

According to the jellium model, an octahedron is the structural unit that possesses a
closed resultant electronic shell consisting of six atoms. If it is assumed that the octahe-
dron is the smallest unit in acubo-octahedron, then the decrease in the saturation magne-
tization in Co filmg and Fe film$ becomes understandable. When the structure of the
film relaxes to an equilibrium structure on annealing, the saturation magnetization in-
creases to a value characteristic of the bulk material.

The observed superlattices are a consequence of ordered intergrowth of clusters in
the process of dendritic growth and illustrate the phenomenon of self-organization. On
this basis, we consider it admissable to apply the cluster-structure model to explain the
characteristic features of the physical properties of Co and Fe films.
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Shift of the dip in the ultralow-frequency electric
excitation spectrum of the Bridgman effect
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The previously predicted frequency shift of the deep dip in the ultra
low-frequency(ULF) electric spectrum of the excitation threshold of
the Bridgman effect in crystal hydrates has been observed. The appear-
ance of this shift, which is caused by an increase in the temperature, is
demonstrated for the example of magnesium hydroxide. The magnitude
of the shift estimated qualitatively for two temperature — 20 °C and
180 °C — in a model with ULF-selective breakdowns of gas located in
microcracks is virtually identical to the experimentally obtained value.
This agreement attests to the possibility that micro breakdowns are
excited in crystal hydrates under the conditions of a giant increase in
their ULF permittivity in the process of strongly nonuniform quasistatic
compression in relatively weak ac fieldE€2kV/cm). © 1997
American Institute of Physic§S0021-364(®7)00512-4

PACS numbers: 62.58p, 77.22.Ch

1. INTRODUCTION

The Bridgman effe¢t3is an explosive instability arising in almost all solid dielec-
trics and many semiconductors under strong uniaxial quasistatic compression
(dP/dt~10 2—1 GPa/$ at high pressureR<10 GPa. This phenomenon is accompa-
nied by the ejection of some of the sample material out from the anvils in a microdisperse
fractured form with velocities ~0.5— 2km/s, the excitation of shock waves in the com-
pression system, an energetic pulse of electromagnetic radiation in a wide spectrum right
up to the x-ray rangé,as well as the emission of electrérand possibly neutrorfs’
Radical structural changes occur in solids under Bridgman effect conditiSrend
intense interactions occur in mixtures of chemical reagesas, for example, Ref. 11t
is known that the thresholB. (or the average critical pressure in the body at which the
Bridgman effect occurs in a given matejidrops with increasing temperature and com-
pression raté? it is correlated with the thermodynamic parameters of materials, and it
exhibits a dimensional dependeriée.

It has recently been discovered in experiments with crystal hydfatéshat quite
weak ultralow-frequency (ULF) (10<w;<100 H2 and low-frequency (LF)
(10P<w,<10° Hz) electric fields(with intensity E<2 kV/cm) strongly influence the
excitation thresholdP of the Bridgman effect. This phenomenon is of interest because of
the global prevalence of crystal hydrates in the lithosptareler high pressures and
temperaturesand the possibility that only ULF electromagnetic waves penetrate into the
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lithosphere. It has turned out that the frequency spectRyfw) for crystal hydrates
possesses a single narrow deep @imlecrease of the threshold by a factor of 1.6#2
the frequency range 20w, <40 Hz and a second wider dip neas~ 10* Hz. It has been
shown that the deptAP(U)=P.(U=0)—P.(U) of the dip in the threshold as a func-
tion of the amplitudeJ of the ULF and LF voltage pulses increases\d(U)=U?2. For
U~65 V and sample thicknesses0.3— 0.8 mm the ratioAP/P.~0.5 are common.

A special experiment performed in Ref. 14 made it possible to attribute the appear-
ance of dips in the spectru.(w) in the LF region to heating due to dielectric losses.
The dip in the spectr® (w) at ULF frequencies is explained less trivialfylt follows
from two, not mutually exclusive, models for these effects that the dips in the region
20< w,<40 Hz are caused by frequency-selective input of electric energy into break-
down; this input of energy is a consequence of a giant increase in the dielectric permit-
tivity at ULF frequencie¥!” in crystal hydrates which become partially dehydrated
under strongly nonuniform compression. There exist definite methodological difficulties,
which are described in Ref. 16, that make it impossible to record directly such ULF
selective breakdowns, which evidently can be excited-ih0® times weaker external
fields than are ordinarily required for breakdown of crystal hydrités.consequence,
the models proposed in Ref. 16 for the effect being described must be treated with
caution. However, it follows from the models that the minimum in the ULF spectrum
P.(w) can shift to the left or right along the frequency axis, depending on various factors
that can affect crystal hydrates. This letter presents for the example of natural magnesium
hydroxide(brucite Mg(OH), experimental evidence of the existence of a shift of the dip
in the ULF spectrunP.(w) accompanying a change in the sample temperature.

2. EXPERIMENTAL ARRANGEMENT AND RESULTS

The ULF electric spectrun? () for brucite was found by the same procedure as
the one used for the model compounds J0,X H,O and HC,0,X 2H,0O (Refs.
14-16. The only difference was that the brucite samples were placed between Bridgman
anvils (with VK-8 super hard alloy inserts with 5 mm in diameter working surfaces
in the form of powder but rather in the form of smad,1 mm thick, monolithicingots,
just as in Ref. 17. The temperature of the samples was changed right up to 180 °C
through the Bridgman anvils, heated with special disk-shaped heating ele(@emts
thick) with the same diameter as the anvils. The samples compressed between the anvils
up to average pressur®s~0.1P. were heated up td ~ 180 °C after which they were
subjected to strong quasistatic compresgatrthe rated P/dt~10"1 GPa/$ up to exci-
tation of the Bridgman effect. The temperature was monitored with a thermocouple, the
junction of which was brought directly to the working face of the ultrahand anvil case
near the sample. Each point in the spectrum was the result of 10—15 explosions. Brucite
was chosen for the present investigation because of the fortunate combination of some of
its physical properties. For example, in contrast to the model compounds, in brucite the
second elastic stage under uniaxial compresé&i@cessary condition for the appearance
of the Bridgman effegtexists in the entire required temperature range from 20 °C up to
200 °C. A reliable spectrurR.(w) from brucite for 20 °C can be obtained even for the
high pressure®=<5.5 GPa which are accessible for such experiméhts.

As a result of these experiments, a deep dip, whose bottom was found to lie near
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FIG. 1. Ultralow-frequency electric spectid.(w) of the excitation threshold of the Bridgman effect in
Mg(OH), crystal hydratel) =65 V) at temperatures 20 °CX) and 180 °C @). The arrows mark the location
of the bottom of the dips in the spectPa(w) on the frequency axis for two temperatures.

]~ 36— 37 Hz, as shown in Fig. 1, was found in the ULF spectipiw) for brucite

at the temperatur&~ 180 °C. The same figure shows for comparison a similar spectrum
with a deep dip, found in Ref. 17, neay ~ 31— 32 Hz for brucite afl ~20 °C. We note

that in both cases the samples were prepared from the same batch of natural brucite.
Furthermore, an additional check of the form of the ULF spectRyfw) was made for

this crystal hydrate af~ 20 °C in the region 3€& w;<35 Hz. This check led to the same
results as in Ref. 17. Therefore, when the temperature of the brucite samples is changed
to T~ 180 °C, the bottom of the minimum in the ULF spectrity(») shifts rightward

by Aw~5 Hz along the frequency axis and the stability thresh®lddecreases by a
factor of 2 at all ultralow frequencies. However, the latter circumstance for solids in the
second elastic stage under strong uniaxial compreSsiam be easily explained on the
basis of the thermal fluctuation theory of strentfth.

In addition, the ULF dispersion of the permittivigf w) of brucite was investigated
in order to elucidate the nature of the appearance of the shift of the dip in the ULF
spectrumP.(w) under uniaxial compression conditions in bruciteTat 180 °C (the
measurement procedure is described in Refs. 16 andThié frequency dependence
e(w) obtained in this experiment is shown for comparison with a similar cdrae
T~20°C in Fig. 2. We note here that the giant values in the ULF dispersi@fwf in
brucite under uniaxial compression conditions are maintained for tens of seconds
At=10-50 s, while in the model compounds they occur only in the form of a brief
splash forAt<1-2 s16%7

3. DISCUSSION AND CONCLUSIONS

Since in the first model of ULF dips with percolation intergrowth of breakdGwn
the giant splash in the ULF permittivity{ ) under strong compression was assumed to
be of short durationAt=<<1-—2 s, it is more correct to use the second model to describe
the results obtained withht=10—50 s. In accordance with the model of dips in the
spectraP.(w) with breakdown of the gas in microcracks, the effective density of the
electrical energy fed into plasma breakdown is found to have the frequency
dependendé?’
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FIG. 2. Ultralow-frequency dispersion of the permittivigfw) at the moment of maximum growth under
strong uniaxial compression of the hydrate crystal(®lg), (for U=65 V) at temperatures 20 °GX) and
180 °C @).

Werl(@)<(U/d)2€3(w)[ 1 - expl( — tsA e(w))], 1)

where tgx e(w) 1 is the characteristic formation time of a spark dischatdeis the
amplitude of the voltage pulses, adds the thickness of the sample. For definite values

of the parameteAxngeu, reflecting the characteristics of the ionized gas in a microc-
rack (ng is the densityu is the mobility, ance is the charge of the particleghe relation

(1) has a maximum at ULF frequencies. It is assumed that the input of the maximum
energy into the plasma discharge produces the strongest shock waves in microcracks,
which is the main reason why the mechanical stability of crystal hydrates decreases and
a deep dip appears in the ULF spectru®.(w). The Debye equation
e(w)=€,+(es—€,)[1+(w7)?]" ! is sufficient to find the qualitative behavior of
Wei(w). Hereeg is the maximum ULF permittivitye., is the high-frequency permittivity,

and 7 is the relaxation time of the bound charges. In dispersed systems with electrical
double layergaccording to the models of Refs.15-17, crystal hydrates are in such a state
during the partial-dehydration procgsshe relaxation time with dispersed particles of
characteristic sizea and volume diffusion coefficienD of the ions in the layers is
determined from the relation=a?/2D (Ref. 20. SettingD =D, exp(—Q/kT), we find

from the relation(1) that as the temperature increases, the sharp peak in the spectrum
Wei(w) shifts rightward(Fig. 3). Here Q is the activation energyk is Boltzmann’s
constant, and is a constant. The values @, Dy, anda (see caption to Fig.)3
employed for the calculation are typical for disperse syst&hihe values ofU, d,

€., and e; were taken from experiments. The parametewas obtained by matching,
since it cannot be determined directly. If polynomials approximating the experimental
curvese(w) for two temperatures 20 °C and 180 %Eig. 2) are used instead of the
Debye equation, then a shift of the maximum in the spectigpiw) to higher frequency

also follows from the relatiornl).
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FIG. 3. Ultralow-frequency spectra of the effective energy densjgy ») that can be put into ULF selective
breakdown, as follows from the relatig), for temperatures 20 °@olid line) and 180 °C(dotted ling. The
spectra were found for the following values of the paramet&rs10~ 1% Dy=3x 107 m¥/s; Q<10 % J;
a=10"*m; e,=6; e,=500 at 293 K;ex =1500 at 453 K.

Therefore it definitely follows from the present work that the deep dip of the thresh-
old of excitation of the Bridgman effect in crystal hydrates in a quite weak ULF electric
field could be due to frequency-selective input of energy into breakdown of gas located in
microcracks. Such breakdowns can evidently be excited by local breakdown fields which
appear in the crystal hydrates as a result of the giant increase in the ULF dielectric

permittivity accompanying the partial dehydration induced in the crystals by strongly
nonuniform compression.
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A contribution to the theory of ferromagnetism in the
Hubbard model with degeneracy
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The possibility of ferromagnetic ordering in a generalized Hubbard
model taking account of degeneracy is studied for an infinite Hubbard
energy. The existence region of ferromagnetism for electron density
greater than 1 is determined. €997 American Institute of Physics.
[S0021-364(97)00612-9

PACS numbers: 75.10.Jm

The ferromagnetic properties of transition metals are best described by the Hubbard
model with a strong repulsion ofl electrons in the same unit cell. The long-range part
of the Coulomb interaction is assumed to be very small, since its role is compensated by
the screening effect of the electrons. The Hubbard energy is assumed to be the largest
energy parametgisee, for example, Ref.) and infinite at the outset. E—d hybridiza-
tion is neglected, then the magnetic properties of transition elements are determined
mainly by thed-electron subband, whose width is expressed in terms of hopping inte-
grals. For simplicity and clarity, in the case of cubic crystals, which is of interest to us,
we shall employ a model with zero off-diagonal and the same diagonal hopping integrals

A=— X t0-rai,anm— 2 [utoHlal, a0 (1)
rr’ o r#Er r.o,\

Here u is the chemical potentiakyr= = is the spin indexH is the external magnetic

field; the crystal index takes on three values Exy, yz, zx) when thet,q shell is filled

or two values § =3z%—r?,x?—y?) when thee, shell is filled.

It can be shown that for density less than ferromagnetism exists only in special
cases, when the Fermi surface passes near van Hove-type singularities. This makes it
possible to explain the existence of ferromagnetism in Ni; see, for example, Refs. 3
and 4.

This letter studies the conditionmot associated with the existence of van Hove
singularitie$ under which ferromagnetism appears. The calculations are performed in a
one-loop approximation for electron or hole density greater than 1.

1. E, ELECTRONS. DENSITY RANGE FROM 1 TO 2.

Let us consider a situation when the system resonates between one- and two-particle
states. It is convenient to introduce a new chemical poteptiall — . and assume that
there are no empty states at all.
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The four single-particle states, |0) and b|0) possess spin 1/2. The lowest-
energy two-particle state¥\, possess spis=1:

S+t s
a, bi +a| b

a;brlo) (s,=o==x1); TW@ (S,=0). )

All higher-energy state$E and'A; are neglected for simplicity.

A small change in the external magnetic field produces a change in the so-called
terminal factordf (k") (Ref. 5, each of which equals the sum of the average filling numbers
of the initial and final states. Taking account of the symmetry of the system relative to a
transposition of the andb states, we have

;o stP=on+onl; 17 =n{P+n({";

6f\) = 6n{"=—6n(”. ()

Therefore, in contrast to the ordinary “one-particle” case, independent equations are
required in order to find the variations of both the one-and two-particle filling numbers.
To obtain these equations we shall examine the important part of the expansion of the

annihilation operator in terms of the Hubbaﬁ(doperators:
é—raz 2r = glkio’{rl(r'(r) + 925(£0’0-|A0) )

whereg, =1 andg,=1/\/2 are genealogical coefficients. We now multiply this part by
an arbitrary linear combination of conjugaﬁ(eoperators

Y= 71 X109 4y, X IO,

Averaging the separaf€ products over states with a given temperature and chemical
potential in the one-loop approximation, we find a relation between the two-particle
filling numbersn,, , the Fourier components of the virtual one-particle Green’s function

G, (p), and the terminal factorf, :

Guyniy + g2 vnP=T 2 2 GGl ss. (@)

1=<k,s

The inverse one-particle Green’s function matrix is in turn expressed interms of the

terminal factorsf, and also in terms of the self-energy mathix which in the one-loop
approximation does not depend on either the frequency or the momentum and in our
model is assumed to be reduced to the diagonal form

GhS(p) =[S slio—Z s+ u+ oH) = Fgit,gs] L (5)

In the zeroth approximation in the external field we obtain two identical terminal factors
fe as well as an equation of state forxh.<2.

-1 2 2+ng
fp:befetp_ﬂ; fe= 12 (6)

ne
Ko=2 ne(gp) =45 -,
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To a first approximation in the applied magnetic field, we find an equation for the
susceptibility under the conditiof,= g,:

onl) =557+ 5f (7 = 5R,= K02k g2st )+ feD0§k: 0263 (o)

+feb§DlEk 926t ") — fb2Dgor6H, @)
whereg?=1, g3=1/2, andb?=g?+g3=3/2. We flnd an equation that is independent of
the applied field under the cond|t|cg1y1+ O2vs=
on{7(1—Ko) —2Koon({” = 8f17(1—Ko) + 5f<2">(1+ Ko)
=A(p)[021(0) = 625(0)], 8
where

[Ne(&p) —Ne(— )]
bit,

Dn=§ NE(Ey),  Alp)= E , ©)
and the quantitie$,, &,, andK, are determined in EJ6).

To study the one-loop self-energy diagrals,, it is sufficient to calculate the
individual loops and then sum the loops taking account of the commutation rules that
determine the nonzero vertex parts of the kinematic interaétidn.the simplest model
with no hybridization we have only the diagonal self-energy parts

SPP=-AY+B”; SP=—A7+BY +AY +BY;

SPP=—BY+A; SP7=—B+AT+BY +AY; (10)

A(O’)_T 2 tk nGn k(p)

n,o,p

is the sum of the products of the matrix elements of the transition mgtpix by the
elements of the virtual Green'’s function matrix, obtained from the reldBpand refer-
ring to a fixed spin projection and prescribed stateNote that in a cubic crystal the
variation of the self-energy part does not depend on the number of the ataroich)
state but changes sign when the spin projection changes sign:

s3I = 63 =55(0); ISPV =52 =055,(0). (11)

We obtain two equations faf3, (o) from their definition(10) in terms of the integrals
of the Green’s functions — the so-called one-loop approximation:

83\ == 65 =—[FO-DN165+b2D2 54— o SHD, Q. (12

Here the matrice® (™ =D,U differ by the temperature factof3, from Eq.(9) and are
proportional to the same matrlbd nm= Qngm/bz, where Q=(3/2,1/2). The operator
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FO=[Ko—ng(—u)]V/fb2 is proportional to the matri%/, where in the first row the
elements V,,=V;,=0 and the elements in the second row sum to zero:
V2’1= _V2’2= - 2/3

A consequence of the equatio0)—(12) is a relation that does not depend on
either the external field or the terminal factdis

95(831(0)+ 8% 5(0) = (92 + Q()) (82 1(0) — 835(0)), (13

whereQ(,u)z[KO—nF(—,u,)]/[febg]. The two relationg3), which relate the variations

of the filling numbers and the terminal factors, must be added to this equation. The result
is a system of four equationd), (8), (12) and(13) which are linearized in the external
field H. The condition for this equation to be solvable is that the determinant of the
following matrix must not vanish:

1-g%(Ko+feb2D;) 1-g5(Ko+febiDs) —feDog?  —feDog3

1-Ko 1+Kp —A(w) A(p) 14
_Dzbggf _Dzbggg 1_D19% _Dlgg
0 0 93-92-Q gi+g3+Q

The vanishing of the determinant of this matrix signifies the appearance of ferromagnetic
instability.

A calculation of the determinant 8t=0 gives the equation:
Ko(1~Ko)(Q+bZ) =~ A(1)D2g3+ D[ f(Q+bg) (97— g5+ bKo)

+Ko(1-Ko)(Qb2+g7+29795—-93)]. (15)

All coefficients depend on the position of the Fermi level. For a semielliptic band model
the results can be expressed in terms of the angular parameterthe limit T=0 we
have a unique solutiony=2.67, which corresponds to the existence of a density range
1<n.<1.26 where ferromagnetic instability arises.

2. T,y ELECTRONS. DENSITY RANGE FROM 1 TO 2

The results of an analysis of this case are qualitatively the same as in the preceding
case. For the semielliptic band model the existence region of the ferromagnetic instability
corresponds to the intervakin,<1.4.

3. T,4, ELECTRONS. DENSITY RANGE GREATER THAN 2 BUT LESS
THAN 3.

The experimental data indicate that in pure if@® the electronic states fall be-
tween the configurationsd34 (sp)® and 31%4(sp)°. In this case the saturation magnetic
moment equals 2425 . Therefore we shall examine in detail the most interesting case of
electronic states resonating between two- and three-particle states.

The lowest three-particle state has s 3/2 and is four fold degenerate with
respect to the spin projection:
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arb’cl]), S,=30/2;

oo lT

1

V3
The X-operator expansion of the transition between three triplet two-particle states of the
type (2) and three-particle lowest-energy stat&6) is determined by three genealogical

coefficientsgz =1, g,=\/2/3, andgs= \/1/3:

(a,b, ¢, +a,b, ¢, ) +a,b,c,),  S=ol2 16)

ér(r:kf‘o,o,a\So'/Z)_i_ \/g XEA(yZ,XZ)|0l2)+ i 5(|(f0'0'0.|0/2) ) (17)
V3

The equations for the variations of the three-particle filling numbém§“® and
on{7=— sn(;, 7’ can be obtained from the general equation for the average value of
theT products of the annihilation operatdr7) by alinear combination of three conjugate
operators with arbitrary coefficientg;:

933N 7P +gayani]? +9575”§|TU/2):T3<;1< Ep 9 GE"(p) by (18

In the one-loop approximation the matrix elements of the one-particle Green’s function
are determined by the general relatic@).

The terminal factoré(‘f) can be expressed in terms of the filling numbers

30/2 /2 0 —al2 -
f“” n< “ )+n(”>, f( ) = nfﬁ )+n§|), fg">=n§|,” >+n§, o, (19
In a zero field all three terminal factors are identidgl=f,, and can be expressed in
terms of the electron density,, which is related with the chemical potential via the
equation of state:

5n,—6 n—2
=g Ko= Enp(ép) 56" (20)

In the case of a finite magnetic field, we employ the obvious relations
onf; 7@ =—6n{7?, on{V=0, andsn{ = — sn{" . Then we find the relation between
the variations of the terminal factors and the filling numbers:

5nfﬁ"/z)=5f(3")+ 51:510)_’_ 51:%0), 5n|(|z|r/2)=5f£10); 5n§,")=—5f£;’>—5f£5‘7). (21)

The variation of the main equatidi8) with y,=g, is actually the result of varying the
equation of state in a fixed field:

g5anif”? +bianii + gganiy " —Ko 2 giofi”—f, 3 ge3y7Do

—b%f >, g6t ”'Dy=—b2f0SHD,. (22)
k=3,4,5

Here we have used the same notation as in(Bgbut nowb?=g3+g2+g2=2.
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If the vectory is directed perpendicular to the vectyri.e., 23 <579k=0, then
two relations can be obtained which do not depend explicitly on the magnetic field. We
find the first equation under the conditiogsys=g3ys; andgsy,= —2937s.

(1= Ko)(8ni7@ —38n((?) — A1) (833(0) — 285 4(0) + 85 5(0)) =0. (23
Setting y,=0 andgsys= —g3v3, we obtain the second equation:
(1—Ko)(8n{37 + sn(#) — 2K o607 — A( ) (82 5( o) — 625(0)) =0. (24)

Here the coefficienK, is determined by the equation of std®#0) and the coefficient
A(w) is determined by a relation of the ty®) but with the substitutionb§—> bf and
fe—>ff .

It is evident that in the absence of a field all self-energy parts are equal and give a
small correction to the chemical potential.

Our next problem is to calculate the correctiaf, which are proportional to the
first power of the magnetic field. We obtain three equation$y from their definitions
(25 in terms of integrals of the product of the Green’'s functi@h by the hopping
integralt:

83\ =—65 =~ [FO-DN165 V) +b?D25f ) — 0 SHRD, (25)
5(”)22') tng(£,) 0.
Here the operators differ by the temperature factor and are proportional to the same

matrix Uy n=Rg%/b?, where R=(7/3,1—1/3). The operatof(®=Q(u)W, where
Q(M)=[KO—nF(—M)]/ftbt2. The elements of each row in the matkix sum to zero:

, 5 7 , 1

U3,3_293=_€§ Usa=g: Uss—95=75

. 1 , 5 , 7
W= Uss=3: Usa=302= -3 Usst 39525 : (26)

, , 17 , 13

Uss—bs=—5: Usat302=5: Uss=295=— 75

Ferromagnetic instability is due to the appearance of an infinite magnetic suscepti-
bility. This condition is equivalent to the possibility of solving a system of six homoge-
neous equations corresponding to Ed%), (16), (18), and(25). The direct calculation of
the sixth-order determinant gives the equation:

[3Ko(1—Kg)—2f,D1(2+3K,)][18+52Q+9Q%— D, (26+ 68Q—35Q?)]
=2D,[ f{Do(2+ 3K)(14+40Q— 11Q?%) — 2A( ) (14+40Q+9Q?)]. (27

A calculation of the coefficients in Eq27) for the semielliptic band model and at
T=0 shows that ferromagnetic instability exists in a quite narrow density interval:
2<n;<2.16.
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4. CONCLUSIONS

The main result of this letter is the discovery of magnetic ordering when with a
small number of excitations for each cell the ground state is a high-spin, disordered state
and is determined according to Hund's rule. This result corresponds qualitatively to
ferromagnetism in cobalt and-iron, which possess a nonintegral number of unpaired
spinsn,=1.6 andn,=2.2, respectively.
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Instability of the two-dimensional metallic phase to a
parallel magnetic field
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Magnetotransport studies of the unusual two-dimensional metallic
phase in high-mobility Si-MOS structures are reported. It is found that
a magnetic field applied in the 2D plane suppresses the metallic state,
causing the resistivity to increase dramatically more than 30 times

The total existence range of the metallic state is found to contain three
distinct types of magnetoresistance, related to the corresponding quan-
tum corrections to the conductivity. The data suggest that the unusual
metallic state is a consequence of both spin and Coulomb interaction
effects. © 1997 American Institute of Physics.

[S0021-364(07)00712-3

PACS numbers: 73.40.Hm, 71.3¢h

Recently, convincing evidence for the existence of a 2D metallic state in Si-MOS
structures at zero magnetic field has been obtained in studies of the quantum Hall effect
at insulator transitiorfsand of the Global Phase Diagrérithe extended states, which in
high magnetic fieldH are centered in the corresponding Landau bands, were found
experimentally to merge and remain in a finite energy rangél approaches 0, thus
providing direct transitions from the high-order quantum Hall effect states to the
insulator® This behavior could not be expected in the framework of the one-parameter
scaling theoryfOPST),® where the extended states are anticipated to “float up” in energy
asH—0 (Ref. 4. The experimental findings thus prove the existence of a mobility edge,
whereas the predicted floating would evidently correspond to complete localization. In
subsequent direct studiésthe conductivity in high-mobility Si—-MOS structures in zero
magnetic field was found to scale with temperature and electric field, and the scaling
parameter exhibited a pronounced critical behavior appropriate for a metal—insulator
transition.

The observations of the metal—insulator transition at zero magnetic field in two
dimensional system raised two major questiginswhat is the origin of this unforeseen
transition, andii) whether or not the one-parameter scaling the@correct in predict-
ing the absence of the metallic state in two dimensions. The majority of experimental
data on 2D systems in fact support the results of calculations of the “quantum correc-
tions” to the classical diffusioft® rather than the scaling theory in total.
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Recently a strong influence of the in-plane magnetic field on the resistivity has been
found in Si/SiGe super latticEas well as in high-mobility Si—-MOS structurésin the
current work we report some new experimental evidence for the origin of the metal—
insulator transition in Si structures and test the applicability of the weak localization
corrections. We have observed that the magnetic field applied in the 2D plane destroys
the metallic state and restores the weakly or strongly localized regimes. Over the exist-
ence range of the metallic state we have fothmge distinct typesf magnetoresistance,
related to the corresponding quantum corrections due to interference and interagtions.

The magnetotransport measurements were performed by a 4-terminal dc technique.
Four Si—-MOS structures were studied: Si-15A with peak mobilipt 0.3 K
w=41,000 crd/V-s, Si-2Ni with x=38,000, Si-22 withu=26,000, and Si-39 with
w=5,000. While the first three samples exhibited the metal—insulator tran<itom a
sharp drop in resistance a<2-3 K, the latter low-mobility sample does not show a
substantial decrease in resistance.

Figure 1 shows a set of resistivity curves at different temperatures, typical for
high-mobility samples.At carrier density higher than the critical density (indicated by
an arrow the resistancencreaseswith temperature, while at lower densitieslgcreases
The intercept is slightly dependent on temperature. The corresponding separatrix between
the metallic and insulating sets p{T) curves in Fig. 2 is rising a$ decreases.

Figure 2a represents the “metalliqor high-density part of thep(T,ng) plot and
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FIG. 2. Resistivity versus temperature for the metallic range of densities, measured on sample Si-15A at zero
field. Different curves correspond to electron densities between 0.83 antk B0¥2cm 2. (b) Resistivity

versus parallel magnetic field, measured &t0.29 K on sample Si-15 A. Different symbols correspond to gate

voltages from 1.55 to 2.6 V, or, equivalently, to densities from 1.01 toX2 1! cm™2.

shows a strong drofby 5X) in the resistivity below~2 K. As T approaches p(T)
saturates and does not show a tendency to increase, at least down to 14 mK. The lowest
mobility sample Si-39 does not display a decreasp mpart from a few percent in the
range 4 to 0.02 K; the latter behavior agrees completely with the OPST.

EFFECT OF THE MAGNETIC FIELD PARALLEL TO THE 2D PLANE

The application of an in-plane magnetic field results in a dramatic increase of the
resistance, more than 2 orders of magnitude, as seen in Fig. 2b. At high fields, the
resistance saturates. This behavior was found in all three high-mobility samples, in agree-
ment with the results of Ref. 11.

At high electron densities, the saturation legé&(H=12.5 T,T—0) seems similar
to the saturation level at high temperatures and zero figldii=0,T=6 K), i.e., to the
resistivity anticipated in the OPST-like behavior. Thus, the magnetic field simply de-
stroys the metallic state. Comparison of the two plfigs. 2a and 2breveals a remark-
able similarity between the effects of temperature and magnetic field on the resistivity at
high densities. Both factors destroy the metallic state and restore the weakly or strongly
localized regimes. At densities lower tharx 20! and closer to the critical density,, a
magnetic field also gives rise to an additional ten times larger positive magnetoresistance.

It has been noticed earlférthat the temperature dependence of the resistivity of the
2D metalic phase may be well described by an empirical law
p(T)=p1+ p, exp(=T*/T), wherep; is due to scattering &= 0, while the second term
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shifted relative to each other vertically by 0.01.

is associated with an energy gap=kT*. Since a parallel field does not affect orbital
electron motion, the magnetic field may couple to the 2D electrons only via their spins.
Our results therefore point to a spin-related origin of the unusual metallic state and of the

energy gap.

WEAK LOCALIZATION CORRECTIONS

In a weak perpendicular magnetic field<<0.1 T, all three high-mobility samples
exhibited weak magnetoresistance, similar to the earlier reported data Ref. 12. The nar-
row peak inp(H) seen in Fig. 3 is sensitive to the normal component of the field and is
missing when the field is aligned with the 2D plane withiry min. Its amplitude does
not vary much with density in the range £4.00)x 10'%m™ 2. These features allow us to
attribute the narrow peak to the orbital single-particle quantum interference correction. At
higher fields,H>0.2 T, and at high densityy>4x 10'* cm™~2, the positive parabolic
magneto resistance dominates in both the parallel and perpendicular field orientation.
This indicates a spin-related origin of the positive magnetoresistance component. In a
perpendicular field the negative magnetoresistance with decreasing density, overcomes
the positive magnetoresistance, and eventually becomes so large that it prevents the
observation of the quantum interference peak. The negative magnetoresistance persists to
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the insulating range of densities, where it has been explained in terms of a field effect on
the tunneling conductancéThe negative magnetoresistance is not seen in a parallel field
and is therefore related to the orbital electron motion.

The positive parabolic magnetoresistance is usually considered as a quantum cor-
rection due to the interaction associated with the Zeeman splitting, while the negative
magneto resistance is associated with a correction due to electron—electron
correlations’® The transition from the spin-dominated to the Coulomb-dominated inter-
action occurs at a density* ~2.8x 10 for Si-15A and Si-2Ni, anch* =1.7x 10 for
Si-22. These values are noticeably higher than the critical density at the mobility edge,
which is n;=9.0x 10 for Si-15A and Si-2Ni and ah.=10.2x 10'° for Si-22. There-
fore, the spin effects and, partly, the Coulomb effects govern the resistivity over the
existence range of the metallic phase.

The persistence of the quantum corrections to the conductivity over the total range
of existence of the metallic statsee Fig. 3 seems to justify the applicability of the
quantum corrections approach to the unusual 2D metal. On the quantitative side, if we
attribute the positive magnetoresistarishown in Fig. 2b to the Zeeman interaction
term in the quantum corrections, than we come up with the conclusion that the
interaction-related quantum corrections are “blowing up” in the vicinity of the metal—
insulator transition, giving rise to an enhancement factor of up to abotittd@he
Ap(H)/p values. This is not surprising, since the relevant theoretical calculations were
done in the limitkgl>1, where thecorrections are small, whereas in the vicinity of the
metal—insulator transition, &1~ 1, the quantum corrections may become large.

DISCUSSION

Considering the possible features in which the high-mobility Si-MOS structures
differ from other systems, like GaAs/&ba)As where the mobility edge was not found
Ref. 15, we would like to note the following(i) the Coulomb interaction energy
E.e=€?/ kr is higher in Si—-MOS structures than in GaAs samgé&she same interelec-
tron distancer) by a factor of 1.7 due to the smaller dielectric constant7.7 at the
Si/SiO, interface! (i) the Si/SiQ interface is characterized by a very strong asymmetry
of the confining potential in the direction. The latter results in a large effective Loren-
zian fieldH* seen by electrons; the corresponding spin—orbit gap at zero field was found
to be equal to=~4 K (Ref. 12. These effects associated with the broken reflection
symmetry of the confining potential are much less pronounced in Ga@&&#Ms het-
erojunctions and are apparently absent in rectangular potential wells.

It is known that the inclusion of the spin changes the universality class of a 2D
system. The corresponding scaling arguments are is based only on the symmetry argu-
ments and should not depend much on the particular microscopic mechanism. The above
spin-related mechanism may be important if the relevant energywgapuH* is larger
than the spin-level broadenidg=h/r. It appears that tha/I" ratio is ~3 for Si-15A
and Si-2Ni, whileA/T'~1 for the low-mobility sample Si-39, which exhibits normal
scaling behavior and no metal—insulator transition.

Thus, based on the data presented here we suggest that the metallic state and metal—
insulator transition in high-mobility Si—-MOS structures may be a consequence of both
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the spin and the Coulomb interaction effects. The former are enhanced by the broken
reflection symmetry of the confining potential well, while the latter provide the necessary
large relaxation time in the low electron-density range.

Recently some alternative suggestions on the origin of the unusual 2D metallic state
in Si—-MOS structures have been made, namely, that it may be induced by the Coulomb
interaction®® or by spin-triplet pairind,’ or that it might be a manifestation of non-Fermi-
liquid behavior'®
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Characteristic features of the temperature dependence of
the surface impedance of YBa ,Cu;0Og o5 Single
crystals
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The real and imaginary parts of the surface impedaheeR+iX of
YBa,CuyOg o5 Single crystals are measured at a frequeadt®r=9.4
GHz. The quantitieR,(T) andX4(T) are linear functions of tempera-
ture for T<0.3T, (T.=93.5 K). A maximum ofR¢(T) and a plateau

of X4(T) are observed in the interval 35T<<65 K. Our experi-
mental data, just as all recent measurements R{T) in
YBa,Cuz04 o5 Single crystals in the temperature range D<1.3T,

are described well in a two-fluid model which assumes electron—
phonon scattering of quasiparticles. 97 American Institute of
Physics[S0021-364(®7)00812-9

PACS numbers: 74.25.Nf, 74.72.Bk

The linear temperature dependences of the surface residR(iCE and reactance
Xs(T) in the rangeT<T./3 which were observed in microwave measurements of the
impedanceZ = R+ iX, of YBa,CuzOg o YBCO) single crystals provoked a wide dis-
cussion of the symmetry of the order parameter in highsuperconductors. In the mi-
croscopic models, the linear low-temperature variation of the penetration depth
NT)=X4(T)/ wpg of the field is due to the fact that the order parameter vanishes at the
Fermi surface. According to the theory, the dependex{@ «T holds: a in the case of
dy2_y2 symmetry of the order parameteh) for anisotropics-type symmetry, when
scattering by magnetic impurities leads to gapless superconductivity, )andnoodels
with mixed d+s symmetry* The quasiparticle relaxation mechanism is especially im-
portant in calculations of the real p&t(T) of the impedance. For inelastic scattering by
antiferromagnetic spin fluctuations in the casg(Ref. 5 and for the electron—phonon
interaction in the case)liRef. 6 the computed curveR(T) had a wide maximum in the
regionT~T./2; such a maximum has been observed in high-quality YBCO single crys-
tals. However, a linear temperature dependencB6T) at low temperatures was not
obtained in microscopic models. In measurements of the impedance $8aCy0Oq
(Ref. 7 and Bag¢Ky.4BiO; (Ref. 8 single crystals at frequency 10 GHz, a linear
variation of the surface resistance was observed in an even wider temperature interval
0<T=T./2. A phenomenological model describing all above-indicated low-temperature
features of the curveBy(T) in single crystals of highF, superconductors was proposed
in Ref. 8.

Recent experiments'! with YBCO samples have demonstrated that the contribu-
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tion of the CuQ planes and CuO chains to the measured quantities must be taken into
account simultaneously. This imposes definite restrictions on the symmetry of the order
parameter in YBCO. New features &f,(T), which do not agree with the purely
d,2_,2-wave picture of superconducting pairing, have been found in the microwave re-
sponse of single crystdlst intermediate temperatures and at temperatures cloBg. to

In the present work we measured the temperature dependences of the surface im-
pedance of YBCO single crystals. These dependences also demonstrate differences from
existing resultsin the intermediate temperature range. In the two-fluid model all tem-
perature dependencBs(T) which we observed also in Refs. 1 and 9 are described well
assuming an electron—phonon quasiparticle-scattering mechanism. Taking account of the
features of the behavior &f(T), which are common to all experiments, at low and close
to T, temperatures, we have found an equation describing the cNA(@3/\%(T) in the
entire temperature interval.

The YBCO single crystals were grown using the standard yttrium-stabilized zirco-
nium dioxide crucibles. The melt contained 12—15 mole % YBCO and 88—-85% of the
eutectic mixture 28% Ba0:72% CuO. The initial componen}©y, BaO,, and CuO
were 99.95, 99.90, and 99.95% pure, respectively. Our sample preparation method dif-
fered from the methods employed in Ref. {2rO, crucibles and Ref. 13(BazrO;
crucibleg mainly in that the homogenization time of the growth solution and the crystal
growth time were much shorter. The homogenization time of the fluxed melt at
T=1000 °C did not excekl h because of the fact that accelerated—decelerated rotation
of the crucible was used,which made intense mixing of the melt possible. The single
crystals were grown by the temperature-differential method in a time of 2—3 min under
conditions of morphological stability of the crystallization front. The crucible was de-
canted afT=955 °C and cooled down to room temperature at a rate of 30 °C/h. The
single crystals were saturated with oxygenrat500 °C in an oxygen flow, after which
their critical temperature was equal to 92-94 K. The measurements of the dynamic
susceptibility showed that the width of the superconducting transition in the samples did
not exceed 0.2 K.

The surface impedance of single crystals with the characteristic dimensions
1.5X1.5X0.1 mm was measured at a frequency of 9.43 GHz. A sample at the end of a
sapphire rod was placed at the center of a superconducting niobium cavity operating on
theHq;; mode. A microwave magnetic field, oriented parallel to¢hexis of the crystal,
produces circulation of the high-frequency currents ingbglane. The numerical values
of the surface resistand®,(T) and reactanc&(T) were determined by the standard
proceduré!® from the values of) and the shift of the resonance frequency measured as
functions of the temperature.

Figure 1 displays the typical curves BE(T) and X¢(T) in the temperature interval
42<T=<125 K. In accordance with the condition of the normal skin effect
R(T)=X(T) for T=T.=935 K. From the experimental value
Rs(To)=Vouep(T)/2=0.12Q we find the resistivityp(T;) =38 uQ-cm.

The low-temperature behavior 8(T) andA(T) =X(T)/wug is demonstrated in
Fig. 2. Both dependences are linear in the temperature rargg0 K. Continuing the
R4(T) line to T=0, we obtain the residual surface resistaR;€0 K)=R =235 u().
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FIG. 1. Temperature dependences of the surface resisRyaed reactance in a YBCO single crystal.

Similarly, we find the well-known valu& (0)=1400 A for theab plane in YBCO. The
maximum ofRy(T) characteristic for perfect YBCO crystals is observed riead0 K.

In contrast to Ref. 1, we also see a plateau in the cux(d9 or X4(T) in the interval
35<T<65 K. Something similar has been observed in microwave experiments with
high-quality epitaxial film&® and YBCO single crystaSwhere a bump appears near 60

K against the background of a monotonic temperature dependgige

We shall attempt to describe the results of our measurements in terms of a two-fluid
model, according to which the real, and imaginaryo, parts of the complex conduc-
tivity o5 of a highT, superconductor at microwave frequenciesr&l1) are
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FIG. 2. Low-temperature dependencesRyfand the penetration depth=X;/wuq of the field. The dashed
straight-line segments were drawn by eye. The v&ly@® K)=R,.is indicated.
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FIG. 3. Comparison of the computéclurves, from Egs.(1)—(3) and(5), and experimentaldoty temperature
dependences of the surface resistaf€t)/Rs(T.) and the imaginary component of the conductivity
o(t)/o,(0) (inse). The temperature-dependent pRyT) was obtained from the measured valueRafin
Figs. 1 and 2 by subtracting the residual surface resistRpge

o=0,—l0y, 01=—N,, 0y;=—N~nq, (n)

where ng is the density of superconducting carriers amgis the density of normal
carriers, both types of carriers having the same charged massn; 7 is the relaxation
time. The total carrier densityy at any temperaturd=T/T.<1 equals the sum
n,(t) + ng(t). The conductivityo4(t) is related with the surface impedance by the local
relation

Z()=R(t) +iXs(t) = Viwug/og(1). (2

The measured temperature dependené€0)/\?(t)=o,(t)/o,(0)=ng(t)/n is
shown (circles in the inset in Fig. 3. Given the values ofy(t)/n and therefore
n,(t)/n=1—ny(t)/n the functionr(t) is the only remaining function of temperature left
to determine in order to determine the conductivityt) in Eq. (1) and the impedance
Z4(t) in Eq. (2). To describe the experimental dependenRgsl) we employ the ex-
pression

1 1 pB+t°

70 (T THA” ©®

where 8~ 7(T.)/7(0)<1 is a numerical paramet®fThe expressiori3) corresponds to
the low-temperature limit of the Bloch—Qmaisen formula, which can be put into the
form

1 1 B+t3T5(klt) Ts(k) «lt 25e?dz
- i |

() 7(To) 1+8 0 (e7-1)2 @
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wherex=0/T,. and® is the Debye temperature. Fee>1 the relation(3) follows from
Eq. (4).

Setting B=0.2 in Eq. (3 and taking the experimental values
ng(t)/n=o,(t)/o,(0) andw7(T.)=(p(T.)o»(0)) *=0.004, we find from Eqs1) and
(2) the dependencB(t)/Rs(T.) shown by the curve in Fig. 3; this curve is virtually
matches the measured quantitisguaresin the entire temperature interval. Hence we
conclude that the electron—phonon scattering mechanism plays the determining role in
forming the signaRy(T).

We shall now try to describe the dependemcgt)/o,(0) itself. We note that the
linear section of this dependence at low temperatures and the steep slope of the curves in
Fig. 3 nearT. are characteristic of all measurements of the impedance of high-quality
YBCO single crystals. The linear low-temperature variatiol\¢T) and R¢(T) in the
model of Ref. 8 was described well by the functimft)«(1—1t)“, wherea is a numeri-
cal parameter. In the inset in Fig. 3 the derivative(;{0))do,(t)/dt=(1/n)dng(t)/dt at
t=1 equals—4. This value is identical to that obtained from the two-fluid Gorter—
Casimir model (4(t)=(1—t%)) and, as shown in a number workKsgorresponds to an
average electron—phonon interaction greater than 1. For arbitrary températirewe
write a general expression that corresponds to the indicated behava(tdfin both
limits — low and close tdr . temperatures,

ng/n=(1—1t)%(1—8)+ 8(1—t¥%), (5)

where 0<6<1 is a weighting factor. The line representing the functi@ with
a=5.5 andé=0.5 agrees very well with the experimental valuegft)/o,(0).

So, all observed features of the temperature dependence of the impedance of YBCO
are described in the proposed two-fluid model. The equaiibrg5) also describe our
measurements af(T) for other YBCO single crystals grown by a similar method.
Furthermore, we checked the applicability of the model for describing the experimental
results of Refs. 1 and 9 obtained by other authors.

Figure 4 displays the data taken from Ref. 9. The circles correspond to the measure-
ments performed in Ref. 1 on YBCO single crystals grown using,Zn@cibles(YSz).12
The only difference from the measurements in Ref. 1 are that the vallRg DY are too
low in the liquid-nitrogen temperature range: The valudRgf77 K) observed in Ref. 1
was always higher thaRy(4.2 K). The measured value (T.)=0.003. The dashed
curves show the computational results obtained with Efs«(3) and(5) and agree well
with the experimental values wher= 0.8, 3=0.01, and5=0.3.

The squares in Fig. 4 correspond to the new re3wlgained for YBCO crystals
from BazrQ; crucibles(BZO).*® Two distinguishing features are seen: a relatively small
temperature interval @ T<T, of a linear variation ofr,(t), which rapidly converts into
a (quadratic variation with increasing temperature, and an appreciable rise of
R4(t)/Ry(T.) for t>0.5, increasing rapidly very close fb.. Nonetheless, taking the
experimental values af,(t)/o,(0) andw(T.)=0.004 and using for %(t) expression
(4) with 8=0.02 andx= 4, we obtain from Eqs(1) and(2) the temperature dependence
Rs(t)/Rs(T.) shown by the solid curve in Fig. 4 and demonstrating all experimental
features(squareps This confirms once again the conclusion that quasiparticles in YBCO
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FIG. 4. Circles — experimental data for YBOE@SZ) single crystals; squares — data for YBGBZO) taken
from Ref. 9. The dashed and solid lines were computed using(Egg5) of the model.

relax by the electron—phonon mechanism. The transition from the linear to the quadratic
regime ino,(t) for t<1 can be described by introducing an additional factof ¢#) in

the first term forng(t) in Eq. (5). Then the solid line in the inset in Fig. 4 obtains for
a=2.2,n7=2, and5=0.04.

Therefore all features of the measured temperature dependég(@sfor YBCO
single crystals are described in the two-fluid model considered above, despite the differ-
ence in the measured temperature dependefgdd in YBCO single crystals prepared
by different methods.

This letter has examined the characteristic features in the temperature dependence of
the surface impedance of high-quality YBCO single crystals.Our measured cliges
3) fall between the existirfgand very recefitresults, represented by the circles and
squares, respectively, in Fig. 4. While the overall features at low temperatures are the
same, the experimental dependences differ in the intermediate and clbséctmpera-
ture ranges. Lack in a generally accepted microscopic model of the microwave response,
we propose a description of the observed features in the entire temperature interval on the
basis of a simple phenomenological model. The consequences of this model could be
important both in comparing with other experiments and for constructing a microscopic
theory of highT, superconductivity.

We thank V. F. Gantmakher and G. Esydynzhapov for valuable remarks. This
work was performed as part of Project 97-02-16836 of the Russian Fund for Fundamental
Research and Project 96-060 of the Government program “Superconductivity.”
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Dynamic solitons in uniaxial and orthorhombic magnets are investi-
gated. It is shown that centrosymmetric solitons can be unstable with
respect to elliptic distortions. €997 American Institute of Physics.
[S0021-364(®7)00912-3

PACS numbers: 75.168b

1. Nonlinear excitations — topological solitofsee Ref.1— play an important role
in the physics of low-dimensional magnétsFor two-dimensional2D) magnets with
discrete degeneracy, i.e., magnets with easy-axis anisotropy ororthorhombic magnets, it
is important to take account of localized statdeite long-lived 2D solitons® Accord-
ing to experiment$, they determine the relaxation of magnetic disturbances and can
produce peaks in the response functions.

2. Let us consider an orthorhombic ferromag(feM) with energy of the form

W= J dzx[A

where # and ¢ determine the magnetization vector, m?=1, m,+imy=sind exp(¢),

A andK are the exchange and anisotropy constants, respectivelye aedcribes the
anisotropy in the basal plane. According to the Hobart—Derrick the¢sem Refs. 193
stable static 2D solitons do not exist for such a model. However, dynamic solitons
(precession solitons for purely uniaxial FM wigh=0 (Refs. 1-3 or rotation soliton%?)

are possible for the modél). Their existence is due to the conservation of zhgro-
jection of the orbital angular momentuln of the magnetization field offor e=0) the

z projection of the total spirs. In units of Planck’s constarit (heres is the spin of the
atom, a is the lattice constant, and the square brackets denote the vector or “cross”
produc)

2

d
¢ 0

Ix;

2
+

s—f +K(1+ € sirfe)sir? 0, (1)

L=(S/a2)fdZX(l—COSH)[I’,Vgo)], Sz(s/az)fdzx(l—cose). 2)

Let us consider rotation solitons, whose existence is due to the éxaeh fore
#0) symmetry(1) relative to spatial rotations in the(y) plane of a 2D magnet. This

soliton corresponds to a dynamic but stationary solution of the féfm,y) and

¢(X,y), where x=x coswt—Yy sinwt and y_=x sinwt+y coswt are coordinates in a
rotating coordinate system, to the Landau—Lifshitz equafidfst e=0 a simple cen-
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trosymmetric(CS) solution can be chosefx=6,(r) and ¢=vx+ ¢o, Wherev is the
topological charge, and=(x?+ y?)Y2 and y=tan (y/x) are polar coordinates in the
rotating system. The functiof,(r) can be easily found by solving an ordinary differen-

tial equation(see Refs. 1-3

The situation is more complicated for noncentrosymmetric solutia@sshall see
that they exist for botle# 0 ande=0). The structure of the soliton is determined by two
nonlinear partial differential equations for the functiof(s,x) and¢(r,x). There is no
general method for analyzing the localized solutions of such equations and the stability of
the solutions. Soliton solutions can be constructed numerically by the molecular-
dynamics method, but this requires large amounts of computer time, even with modern
computers. For this reason we shall analyze the structure and stability of the solitons by
direct variational methods.

3. The equations foB(r,x) and¢(r,x) can be obtained as a condition of extrem-
ality for the auxiliary functionalA {6, ¢}=W-—#AwL (Ref. 6. A soliton corresponds to a
conditional extremum of the energy for fixed; Aw is a Lagrange multiplier
dE(L)/dL=tw.

For models of FMs in which static solitons exisee Refs. 2, 3, and)8the func-
tionals A andW are identical and the question of stability is solved simply: A minimum
of the energy corresponds to a stable soliton. For a dynamic soliton the situation is more
complicated: A saddle point of the functional corresponds to both stable and unstable
solitons(1) (see below.

In accordance with Lyapunov’s direct meth@e, for example, Ref)9a soliton is
stable if there exists a Lyapunov functionA_I{B,go} such that(i) the functional is
positive-definite near the soliton solution afiid its time derivative, found taking account
of the equations of motion, is negative or zero. Choosing the Lyapunov functional in the
form of a combination of integrals of motion, = A + B(L—Lo)?, wherelL, is the value
of L in the soliton andB is a constant, the conditiofii) can be satisfied in the form
dA/dt=0.

The same Lyapunov functional was chosen to analyze the stability of nontopo-
logical magnetic soliton8It was found that ifA <0 in some region near a soliton, then
the soliton is unstable. We showed that this condition of instability is also valid for
centrosymmetric topological solitof€hetaev’s functional describing instability is cho-
sen in the same form as in Ref.. Therefore solitons are stableAf>0: otherwise, the
solitons(at any rate CS solitonsre unstable.

4. We shall seek a soliton in the class of trial functions which depend param-
etersa;, ...,a,. ThenA{6,¢}—A(ay,...a,,») and the condition of an extremum
takes the form of a system af algebraic equationgA/da;=0. Once their solution
ai(o) has been found, the energy of the solitbfw) andL(w) can be calculated and the
functionE=E(L) can be constructed.

To analyze the stability conditiofi) we investigateA for small deviations of the
parameters; from a{®). Introducinga;=a;—a'®, we write
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We now diagonalize the matriX;,, A; =diag(\q, ... ,\,). The eigenvalues; of
the quadratic form A are determined by the determinant of the system
(Ni—€)a;+BL{(2jA;a;)=0. Multiplying the ith equation byL;/B(\;—€), summing
over i, cancelling out;A;a;, and taking the limitB—«, we obtain the dispersion
relation F(e)EEiL?/(xi—e)zo. Its solutionse; lie between\; and \;, ;; see Fig. 1.
Therefore if the matrix\;, possesses two or more negative eigenvalues, then one eigen-
valuee;<0, and the soliton is unstable. However, if only onés negative, then stability
is determined by the sign ¢f(0): For F(0)>0 the smallest<0 and forF(0)<0 all
e are positive and the soliton is stable. The quanEt{0) can be related with the
derivativedL/dw. Indeed, let us writelL/dw=Z2,L;(da /dw). Differentiating the rela-
tion 9E/da; —fiwdL / 9a; =0 with respect tav, we obtainZ, A;(da,/dw)=7%L;, which
implies thatdL/Zdw=F(0).

Therefore, just as for nontopological solitofsee Refs. 1, 2, and 9-]1the condi-
tion of stability of a topological soliton can be written in terms of the integral character-
istics of the soliton. Therefore there is hope that the application of trial functions will give
quite accurate results.

5. Concrete calculations were performed with a trial function of the form

¢ R r
tanz = T exp — 6
which depends on five trial paramet&tsb, C,, C,, and¢y and gives a good approxi-

mation of the structure of the solit§rindeed, the functior,(r) (3) gives a description
of the Belavin—Polyakov limit, which is adequate fR<A, and exponential decay of

(1+Cy cos ), o=x+@o+C, sin 2y, (©)]
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FIG. 2. The function€(L) andS(L) (in units of Ey andL,). The curvesl (with no symbol$ and the curves
2 (O) correspond to centrosymmetric and anisotropic solitons in the &mi0; curve3 (@) corresponds to a
soliton with e=0.5.

6(r) for r>A, whereA = A/K is a characteristic length. The angular dependences agree
with those obtained foR<A or e<128 The equationg/A/da; =0 were solved by New-
ton’s iteration method; the initial values of the paramei@rsvere set manually. The
values ofE, L, andS as well as the eigenvalues ofthe matiy, were calculated from

the quantitiesai(o) which were found. The functionE(L) and S(L) are presented in
Fig. 2.

For all values ofe and wg— w<<wq, Wherewy is the gap in the magnon spectrum,
the soliton radius is smallR<A. As w— wq, the energy of the soliton approaches
Eo,=8mA, equal to the Belavin—Polyakovenergy; hérés much smaller than the char-
acteristic lengthL,=2ms(A/a)?, L,>1. The values of the anistropy parameters
C,and C, for L<L, remained small even foge~1 (C,and C,<10 2 for ¢=0.5 and
0=0.8wq, which corresponds th<0.03_). As the frequency decreases, the values of
E andL increase, i.edw/dL<0. The parameter§, andC, likewise increase for FMs
with e#0.

In the isotropic case= 0, centrosymmetric solitons witB;, C,<10 ° were easily
obtained for allw< wg. For CS solutiond (w) = — S(w) (L<O0 in the soliton, see Refs.
1 and 7 and, to within 104, the functionE(S) was identical to the functiofE(S)
obtained previously by integrating the equations &(r).1=® This demonstrates the
adequacy of the method and of the trial functi@.

It was found that the solution need not be uniq(Ehe program found one or
another solution depending on the choice of the initial valueg;of Specifically, for
small e (the caseg=0 ande=10 * were studied, and the results were virtually identi-
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FIG. 3. The three lowest values &fversusL for e=0. The solid and dashed lines correspond to centrosym-
metric and anisotropic solitons. The curve marked with the arrow is plotted on a 1/2 scale.

cally) andw=<0.50w,, besides centrosymmetric solutions, anisotropic solutions for which
C, andC, were not small were also found. Significantly, for these solutions the value of
|L(w)| increased with decreasing much more rapidly than di®(w). For this reason

the functionsE(L) andE(S) were fundamentally different: If solitons with a fixed value
of Sare considered, then CS solitons have a lower energy; howe\eis fixed, then the
anisotropic solitons have a lower energy. For anisotropic models with valuethaf are

not small, the value ofl(w)| increased more rapidly than for an anisotropic soliton in a
FM with e~0. It was found that although the energy of the soliton in a FM withO

and fixedw is clearly greater than in the case 0, the energy of a soliton in a FM with
basal-plane anisotropy and fixédis lower than fore=0.

In calculating the eigenvalués of the matrixA ;= 9°A/da; da, it was found that at
least one\; <0 and that solitons correspond to a saddle poinf\ofFor all solitons
considered, the derivativeL/dw<<0, which is necessary in order for the solitons to be
stable. It was found that the second condition — the fact that only one eigenvaise
negative — is satisfied only for a soliton whose energy is minimum for fixe8pecifi-
cally, for a CS soliton in a FM witle~0 the second eigenvalue=0 only ifw=0.5w.

If w=<0.50q, when an anisotropic solution appeaxs,changes sign and the CS soliton
becomes unstabl@ee Fig. 3. In this case, for an anistropic soliton only is negative,
and the soliton is stable in its entire region of existence. For nontopological
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multidimensional solitons, in a wide class of models the signs afe the same for all
soliton parameteréRefs. 10, 9; see also Ref. 11

In summary, dynamic rotation solitons with enetgylose toE, are present in FMs
with large basal-plane anisotropy. Centrosymmetric precession solitons exist in uniaxial
FMs, but their symmtery is broken spontaneously for not very high energy
(E=1.8F,): They become unstable and the anisotropic soliton is stable. As far as we
know, the stability of topological solitons and anisotropic 2D solitons in isotropic models
has not been previously discussed.

We thank Yu. S. Kivshar' for a discussion. This work was supported in part by the
Ukrainian Fund for Fundamental Research under Grant No. 2.4/27.
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