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Singularities in spherically symmetric black holes in the Einstein–
Yang–Mills and the Einstein–Yang–Mills with dilaton theories for the
SU(2) group are investigated. Analytical formulas describing the ex-
ponentially oscillating and power-law behavior of the metric near a
space-like singularity in a solution of the general form are
presented. ©1997 American Institute of Physics.
@S0021-3640~97!00112-6#

PACS numbers: 04.70.Dy, 04.20.Dw

Black holes in theories that include massless non-Abelian vector fields1 exhibit
properties which are unusual compared with ‘‘classical’’ vacuum and electrovac
black holes. Besides violating the no-hair and uniqueness theorems, they exhibit
stantially new type of internal structure.2 In Ref. 3 it was shown that the space–tim
inside a static black hole of general form in theSU(2) Einstein–Yang–Mills theory
~EYM! has no Cauchy horizons, and the metric oscillates with an amplitude that g
infinitely as the singularity is approached. Although some special solutions can still
a Schwarzschild or Reissner–Nordstro¨m ~RN! type singularity,3 these configurations
form only a set of measure zero in the space of all solutions. Inside an EYM black
of general form the mass function goes through a sequence of exponential jump
drops. The amplitude of the peaks grows exponentially as the singularity is approa
while the period of the cycles approaches zero. The behavior of the system n
singularity is described well by a two-dimensional dynamical system,3 from which the
infinite oscillatory character of the solution is evident. These results were confirm
Ref. 4, and a proof of the existence of RN-type solutions was claimed in Ref. 5.
objective in the present letter is to clarify the structure of the singularity inside s
spherical black holes of general form in the EYM and EYM with dilaton~EYMD!
theories~see Ref. 6 and the references cited therein!.

We choose the ‘‘string’’ value of the dilaton coupling constant and, with no los
generality, fix the unit of measurement and scale of distances at which the Planck
stant and the gauge coupling constant equal 1:
895 8950021-3640/97/120895-07$10.00 © 1997 American Institute of Physics
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16pE $2R12~¹f!22e22fF2%A2gd4x, ~1!

whereF is theSU(2) field corresponding to the connection

Am
a Tadxm5~W~r !21!~Tfdu2Tu sin udf!,

andTf andTu are the spherical projections of theSU(2) generators.

It is convenient to represent the space–time interval in the form

ds25
Ds2

r 2
dt22

r 2

D
dr22r 2~du21sin2udf2!, ~2!

where the functionD5r 222rm(r ) is negative inside a black hole of general form.

The equations of motion forW, D, andf separate from the equation fors, and in
the general case of the EYMD system they can be represented in the form

DU822DUf85WV/r 2FW8, ~3!

~D/r !81Df825F22DU2e22f ~4!

~Df8!81Drf835F22D~f8r 11!U2e22f21, ~5!

where

U5
W8

r
, F512

V2e22f

r 2
, V5W221.

The remaining equation fors has the form

~ ln s!85r ~f8212U2e22f!. ~6!

Solutions of the black-hole type are engendered by initial data on the event ho
r h , Wh5W(r h), andfh5f(r h) which satisfy the conditionFh.0. They can be char-
acterized by the values of the Arnowitt–Deser–Misner massM and the dilaton charge
D52 lim( r 2f8) as r→`. It is convenient to fix the units of measurement for the
quantities by requiring thatf(`)50. Then the asymptotic-flatness condition has
effect that both quantitiesWh and fh assume a discrete series of values. For phys
solutions of the black-hole typeM.D.

Let us first study the structure of the singularity of the interior space of the e
nentially oscillating type for black holes of general form in the EYM theory. In this c
the system of equations assumes the form

DU81S 12
V2

r 2 D W85
WV

r
, ~7!

S D

r D 8
12DU2512

V2

r 2
, ~8!
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ln s5U2. ~9!

When this system is integrated numerically from the event horizon in the directio
decreasing radial coordinate, in the general case~with the exception of some discret
values of the initial data on the event horizon!, the functionD starts to oscillate. Once th
oscillations have developed, the right-hand side of Eq.~7! becomes negligibly smal
compared with the terms on the left-hand side and the following approximate first
gral of the system can be obtained:

Z5DUs/r 5const, ~10!

which relates the oscillations of the mass function and the functions. Numerical experi-
ments also show that while the YM functionW exhibits very small variations right down
to r 50, its derivative is still different from zero and changes very rapidly in some v
small intervals ofr . The functionU exhibits close to step-like behavior: It is constant,
a high degree of accuracy, during almost the entire oscillation cycle chosen~Fig. 1! and
then changes abruptly to a higher absolute value corresponding to the next cycle
obvious from Eq.~9! that s falls off exponentially with decreasingr , as long asU
'const, whiles hardly changes on very small intervals during the jumps inU. Therefore
s approaches zero through an infinite sequence of exponential drops with incre
exponents on intervals of exponentially decreasing length. In combination with Eq.~10!
and the above-indicated properties ofU, this makes it possible to obtain a quite detail
description of the behavior of the metric.

We denote byr k the value of the radial coordinate for whichD reaches thekth local
maximum. Soon after this point is crossed, the functionU stabilizes at some valueUk ,

FIG. 1. Region of the first oscillation for EYM. Bottom half plane: the functionD for EYM ~solid line! and
EYMD ~dashed line!; top half plane: the mass functionsm(r ) ~similarly! and the functionU for EYM ~dotted
line!. The values of all functions are raised to the power 1/10.r h54; Wh520.283993 for the EYM system,
Wh520.298357,fh50.05623 for EYMD~asymptotically flat solutions with one zero of the functionW in the
exterior region!.
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approximately equal to twice the value at the point of the maximum~similarly, as a local
maximum is approached,U approximately doubles whileD is almost stationary!. Then,
in accordance with Eq.~9!, s equals

s~r !5s~r k!exp@Uk
2~r 22r k

2!#.

From Eq.~10! we find that as long asUk' const

D~r !5
D~r k!

r k
r exp@Uk

2~r k
22r 2!#. ~11!

This function decreases withr to a local minimum at the point

Rk5
1

A2uUku
'

AuD~r k!u
2uV~r k!u

r k . ~12!

Further, since the YM functionW changes very little during the oscillations of th
function D, we shall assume thatV5 const.

Therefore, at the stage of exponential growth ofuDuthe mass function grows expo
nentially asr decreases fromr k to Rk . After the pointRk is crossed, the exponential i
Eq. ~11! becomes close to 1 in order of magnitude, and thereforeD starts to grow linearly
and the mass functionm(r ) remains at the valueMk5m(Rk). This behavior remains up
to the momentD/r 2 reaches its local maximum, which occurs forD'2V2 at the point

r k* '
V2

uD~r k!u
r k exp@2~Ukr k!

2#. ~13!

Then uDu drops rapidly, giving rise to rapid growth ofuUu. The term 2DU2 in Eq. ~8!
becomes negligibly small, as a result of which at this stage

UD'2V2Uk , ~14!

the coordinater changing very little. This has the effect that the functionD rapidly
reaches the next local maximum at the pointr k11'r k* and m(r ) drops rapidly to
mk11. In Eq. ~8! uDu!V2 at the point of a local maximum ofD, and sincer is small, we
find

uU~r k!u'
uVu

A2uD~r k!ur k

. ~15!

To obtain order of magnitude estimates we shall neglect the numerical coeffic
everywhere except in the exponents of the exponentials. Specifically, we
U(r k)5Uk and drop the~quasiconstant! factorsV. To this accuracy, we obtain from Eqs
~11!–~15!

r k115Mk
21 , r k11

2 5RkRk11 , Mk5
Rk

2

r k
3

expS r k
2

2Rk
2D ,

uD~r k!u5S Rk

r k
D 2

,
r k11

r k
5

r k
2

Rk
2

expF2S r k
2

2Rk
2D G .
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Hence, introducing the variablexk5(r k /Rk)
2(@1), we obtain the recurrence equation

xk115xk
23exk,

whence it is seen thatxk is an exponentially diverging sequence. In terms ofxk we have

r k11 /r k5xke
2xk/2.

This ratio can be understood as the ratio of neighboring periods of the oscillations,
r k@r k11. The values of the functionuDu at the pointsr k rapidly approach zero

uD~r k!u5xk
21 ,

so that we are dealing with an infinite sequence of ‘‘almost’’ Cauchy horizons
r→0. At the same time, the values ofuDu at the pointsRk grow rapidly as

uD~Rk!u5xk
23/2exk/2,

and, correspondingly, the values of the mass function grow as

Mk /Mk215xk
21exk/2.

As shown in Ref. 3, in this regime the system~7! and ~8! can be reduced to a
two-dimensional dynamical system, one of whose singular points is an unstable
with an infinitely untwisting phase trajectory.

As r decreases fromr k to Rk , the function s decreases rapidly to the valu
sk5s(Rk) and then remains practically constant up tor k11. In the direction toward the
singularity the sequencesk decreases according to the law

sk11 /sk5e2xk/2.

Let us now examine the structure of the singularity for black holes of general ty
the EYMD theory. In this case, starting the numerical integration at the horizon, w
not encounter giant oscillations of the metric in the interior region. The general sol
does not exhibit Cauchy horizons, so thatD remains negative definite for a
0,r ,r h . For sufficiently smallr the right-hand sides of Eqs.~3!–~5! become small
compared with the terms on the left-hand side, and we obtain the simplified syste
equations

~ ln U !822f850, @ ln~D/r !#85@ ln~Df8!#852rf82. ~16!

Integrating this system gives the following five-parameter~that is, of general form! so-
lution

W5W01br2~12l!, D522mr ~12l2!, f5c1 ln~r 2l! ~17!

with the constantsW0 , b, c, m, andl. The validity of the truncated equations~16! can
now be checked by substituting the asymptotic solution~17! into the complete system
~3!–~5!. For consistency, it is sufficient thatA221,l,1, which is in agreement with
the numerical data.

It follows from Eq.~17! that the mass function diverges according to a power law
r→0

m~r !5mr 2l2
.
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The dilaton diverges logarithmically, while the YM functionW possesses a finite limit
The corresponding functions approaches zero as

s~r !5s1r l2
,

wheres15 const.

The regimes described above correspond to the expectation that the singular
side black holes of general form should be space-like. The metric~2! in the interior
region of a black hole corresponds to the anisotropic cosmological Kantov–Sax sol
It can be shown that the corresponding deformation parameters̃ , determining the defor-
mation tensors i j 5(2,21,21)s̃ /3, grows infinitely as the singularity is approached. F
the oscillating EYM solution the values ofs̃ at the pointsRk are of the order of

s̃ k
max;Mk

1/2/Rk
3/2,

while the values at the pointsr k are of the order of

s̃ k
min;Mk21 /Rk21 .

Both sequences are infinitely growing. For the EYMD solutions̃ diverges as a powe
law.

In summary, spherical non-Abelian black holes ofgeneral typecorrespond to the
strong principle of cosmic censure~the singularity is space-like!. In the case of the EYM
theory, however, there is an infinite sequence of ‘‘almost’’ Cauchy horizons near w
the mass function starts to grow exponentially, stabilizing at a value corresponding
next cycle; the sequence of these values diverges exponentially as the singula
approached. In the theory with a dilaton the mass function approaches infinity mon
cally ~in a power-law fashion!. In the cosmological interpretation, this behavior of t
matrix corresponds to an infinite growth of the anisotropy.

FIG. 2. Second oscillation of the mass function for the EYM system. The numbers indicate the order in
the curve is traversed asr→0. The parameters of the solution are the same as in Fig.1.
900 900JETP Lett., Vol. 65, No. 12, 25 June 1997 Gal’tsov et al.
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Does the Unruh effect exist?
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Pis’ma Zh. Éksp. Teor. Fiz.65, No. 12, 861–866~25 June 1997!

It is shown that quantization on the Fulling modes presupposes that the
field vanishes on the spatial boundaries of the Rindler manifold. For
this reason, Rindler space is physically unrelated with Minkowski
space and the state of a Rindler observer cannot be described by the
equilibrium density matrix with the Fulling–Unruh temperature. There-
fore it is pointless to talk about an Unruh effect. The question of the
behavior of an accelerated detector in the physical formulation of the
problem remains open. ©1997 American Institute of Physics.
@S0021-3640~97!00212-0#

PACS numbers: 03.70.1k, 04.60.2m

1. According to Unruh,1 a detector moving with uniform acceleration in a flat spa
time detects particles even in vacuum. More precisely, the Unruh effect means
Rindler~uniformly accelerated! observer is located in a heat bath with the Fulling–Unr
temperature

T5
g

2p
, ~1!

where g is the constant acceleration measured in a comoving reference f
(\5c51). It is also asserted1–6 that for a Rindler observer the vacuum state
Minkowski space~MS! is described by a density matrix with the temperature~1!. By
analogy to the Hawking effect,7 this is a fundamental problem. For brevity, this lett
discusses the problem for the example of a massive scalar field in two-dimens
space-time. The extension to the four-dimensional case is made directly by introd
transverse~with respect to the direction of motion of a Rindler observer! components of
the momentumq and making the substitutionm→(m21q2)1/2 ~see, for example, § 12.1
in Ref. 5!.

2. The geometry of Rindler space~RS! is described by the metric
ds25r2dh22dr2, 2`,h,`, r>0. The variables in the Klein–Fock–Gordon~KFG!
equation

S ]2

]h2
1G~r!D fR~x!50, G~r!52r

]

]r
r

]

]r
1m2r2, x5$h,r%, ~2!
902 9020021-3640/97/120902-07$10.00 © 1997 American Institute of Physics
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separate, and for the positive-frequency~with respect to the time coordinateh) solutions
Fm(x), the Fulling modes,8 we have

Fm~x!5p21~sinh ~pm!!1/2Kim~mr!e2 imh, m.0, ~3!

whereKn(y) is a Macdonald~modified Bessel! function. These modes are orthogon
relative to the scalar product in RS:

~Fm ,Fm8!R[ i E
0

` dr

r
Fm* ~x!

]J

]h
Fm8~x!5d~m2m8! ~4!

and form~together withFm* (x)) a complete system of solutions of the KFG equatio
They can be used as a basis for quantizing the fieldfR

fR~x!5E
0

`

dm~cmFm~x!1cm
1Fm* ~x!!, @cm ,cm8

1
#5d~m2m8!, ~5!

and to determine the vacuum in Rindler space by the relationcmu0R&50, m>0:

cm5~Fm ,fR!R5
i

p
~sinh ~pm!!1/2E

0

` dr

r
Kim~mr!F]fR~h,r!

]h
2 imfR~h,r!G

h50

.

~6!

The differential operatorG(r), whose eigenfunctions are solutions of Eq.~3!, operates in
the Hilbert space of the single-particle states with scalar product^x,c&
5*0

` (dr/r) x* c. It is easily verified that the hermiticity of this operator, ensuring co
pleteness and orthogonality of the modes~3!, presumes that the boundary condition

fR~h,0!50 ~7!

is satisfied. When this condition holds, the integral in Eq.~6! converges absolutely an
the quantitiescm

1 andcm are particle creation and annihilation operators. When the c
dition ~7! does not hold, the integral in Eq.~6! can still be given a formal meaning, bu
in this case thecm become singular asm→0. This leads to divergences in the expressio
for physical quantities, so thatcm

1 andcm cannot be interpreted as particle creation a
annihilation operators. Specifically, iffR(h,0)5 constÞ0, then the Rindler-quantum
number operatorNR5*0

`cm
1cmdm does not exist.

We note that the change of variablesr5eu, mapping the pointr50 into u52`,
reduces the requirement~7! to the standard condition for vanishing of the fieldfR at
spatial infinity.

3. The change of variables

t5r sinh h, z5r coshh ~8!

leads to the Minkowski metricds25dt22dz2. Global coordinates$t,z% are defined in all
MS, while the Rindler coordinates$h,r% cover only one sector of MS~Rindler wedge!.
We note that the Jacobian of the transformation~8! J5r vanishes at the boundary of th
wedge~in the two-dimensional case — on the light conez22t250).
903 903JETP Lett., Vol. 65, No. 12, 25 June 1997 Belinski  et al.
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Since the world linez22t25g22 of a uniformly accelerated observer in MS is al
an orbit of Lorentzian rotations, we shall examine the eigenfunctions of the boost
erator which have the integral representation9 (2`,k,`):

Ck~x!5223/2p21E
2`

`

du exp$2 i @m~ t coshu2z sinh u!1ku#%. ~9!

It is easy to verify that these modes are ortho normalized with respect to the sta
scalar product (f,c)M in MS, they form a complete system of solutions of the KF
equation, and they can be used as a basis for second quantization:c!

f~x!5E
2`

`

dk@bkCk~x!1bk
1Ck* ~x!#, @bk ,bk8

1
#5d~k2k8!. ~10!

The operatorsbk are in a one-to-one relation with the operatorsap determined in a
plane-wave basis,Cp5(4pe)21/2 exp(2iet1ipz), e5(p21m2)1/2, and

bk5E
2`

`

dp~2pe!21/2 expS i
k

2
ln

p1

p2
Dap , p65e6p. ~11!

Hence one can see that the solutionsCk(x) correspond to positive frequencies relative
global timet, and for the Minkowski vacuum we havebku0M&50, 2`,k,`.

Introducing the null coordinatesx65t6z, we can represent the modes~9! in the
form

Ck~x!5u~x1!u~2x2!Ck
R1u~x1!u~x2!Ck

F1u~2x1!u~x2!Ck
L

1u~2x1!u~2x2!Ck
P , ~12!

corresponding to separation of Minkowski space into right-hand (R), future (F), left-
hand (L), and past (P) sectors. For the functionsCk

R we have

Ck
R5221/2p21Kik~m~2x2x1!1/2!expF2 i

k

2S ln
x1

2x2
1 ip D G . ~13!

The remaining functions are obtained hence via the substitution2x6→eipx6 . More
accurately, the modes~9! are analytical continuations of the functions~13!, and traversing
a circuit about the branch points x650 we have (2x2)→x2eip,
x1→(2x1)e2 ip, x2→(2x2)e2 ip, and (2x1)→x1eip with the transitionsR→F,
F→L, L→P and P→R, respectively. The substitution2x6→x6e2 ip gives a second
independent choice of the solutionsCk* .

The branch points merge att50. Therefore, to express the operatorsbk in terms of
the values of the fieldf and its derivatives on the Cauchy surfacet50 they must be
calculated attÞ0 and the limitt→0 taken. Finally, we have

bk5~Ck ,f!M5
iepk/2

pA2
E

0

`

FR~z,k!dz1
ie2pk/2

pA2
E

2`

0

FL~z,k!dz, ~14!

where
904 904JETP Lett., Vol. 65, No. 12, 25 June 1997 Belinski  et al.
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FR,L~z,k!5Kik~6mz!S ]f

]t
7

]f

]z D
t50

1G~2 ik!S 6
mz

2 D 6 ik ]f

]z U
t50

1mFKik71~6mz!2
1

2
G~17 ik!S 6

mz

2 D 6 ik21Gf~0,z!

~the upper~lower! signs correspond to the indicesR (L)). Here it is assumed that th
field f decreases quite rapidly at spatial infinity, but in contrast to Eq.~6! the condition
f(0,z)50 need not be satisfied atz50.

4. Instead of the solutions~9!, Unruh proposed using right-handRm(x) and left-hand
Lm(x) modes such thatRm(x)50 in theL sector andLm(x)50 in the R sector. In the
case at hand these are the functions

Rm~x!5~2 sinh~pm!!21/2@epm/2Cm~x!2e2pm/2C2m* ~x!#, m.0,
~15!

Lm~x!5~2 sinh~pm!!21/2@epm/2C2m* ~x!2e2pm/2Cm~x!#, m.0,

satisfying the KFG equation and ortho normalized with respect to the scalar produ
MS: (Rm ,Rm8)M52(Lm ,Lm8)M5d(m2m8), (Rm ,Lm8)M50. Inverting the relations
~15! and substituting the result into the expansion~10!, we obtain1–6

f5E
0

`

dm@r mRm~x!1r m
1Rm* ~x!1 l mLm* ~x!1 l m

1Lm~x!#, ~16!

where

r m5~2 sinh~pm!!21/2@epm/2bm1e2pm/2b2m
1 #, m.0,

~17!
l m5~2 sinh~pm!!21/2@epm/2b2m1e2pm/2bm

1#, m.0,

and @r m ,r m8
1

#5@ l m ,l m8
1

#5d(m2m8). Hence follows

^0Mur m8
1 r mu0M&5~e2pm21!21d~m2m8!. ~18!

The operatorsr m are expressed as a scalar product in MS:r m5(Rm ,f)M . If here
the surfacet50 is taken as the surface of integration and the fact that the m
Rm50 for z,0 and are functionally the same as the Fulling modes~3! for z.0 is taken
into account, then after making the change of variables~8! it can be shown that
(Rm ,f)M5(Fm ,f)R . Then the operatorsr m are identified withcm , after which the
equality~18! is converted to the part of the particle number which refers to the interva
the proper timet5h/g of a Rindler observer

dN

dt
5E

0

` dv

2p
@e2pv/g21#21, v5gm, ~19!

and interpreted as an Unruh effect, i.e., the presence~from the point of view of the
Rindler observer! of particles with a Bose thermal spectral at temperature~1! in the
Minkowski vacuum. However, such an interpretation1–6 is inadmissable. Indeed, subst
tuting relation~14! into the first of the equations~17! and making the change of variable
~8!, we obtain the relation
905 905JETP Lett., Vol. 65, No. 12, 25 June 1997 Belinski  et al.
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r m5 c̃m1
i

2p
~sinh ~pm!!1/2lim

r→0
H f~0,r!FG~2 im!S mr

2 D im

2G~ im!S mr

2 D 2 imG J ,

~20!

where c̃m is determined by Eq.~6! after the substitutionfR(x)→f(x) has been made in
it. It would make sense to separate the operatorr m into two terms in accordance with th
equation~20! only if the field f vanishes at the origin of the MS. This requireme
necessary for the existence of the limit on the right-hand side of the equality~20!, could
be a consequence of the fact that the fieldf satisfies some boundary condition on
space-like surface intersecting the Cauchy surfacet50 at z50, andf(0,0)50. How-

ever, such a boundary condition leads to the problem of quantizing the fieldf̃ with a

HamiltonianH̃, which is different from the problem of quantizing the free fieldf in MS.

If fR(h,r) and f(t,z) are identified with one another forz5r.0 and t5h50,

then the Schro¨dinger operatorc̃m is identical to the operatorcm determined by the
equation~6!. This identity is the basis of the proof of the Unruh ‘‘effect.’’1–6 However, it
is not legitimate to identify these operators with one another, since they refer to prob
with different Hamiltonians. In contrast to the HamiltonianHR in RS, the Hamiltonian

H̃ does not diagonalize even in terms of the operatorsr m andl m . Moreover, the operators

H̃ andHR are generators of evolution in global timet and in Rindler timeh, respectively.

There are especially no grounds for identifying the operatorsr m given by the rela-
tions ~17! in MS and the operatorscm determined in the problem with the bounda
condition ~7!. This condition corresponds to the presence of an impenetrable wa
r50, 2`,h,`, i.e., at the boundary of the Rindler manifold, so that RS is in no w
physically related with MS. In consequence, the union of the two Cauchy surf
h50 in the left- and right-hand Rindler spaces, i.e., the surfacet50 in MS with the
point z50 excluded, is not a Cauchy surface in this space.

As an example for elucidating this assertion we give the funct
D(t,z)5@f(x),f(0)#2 , for which D(0,z)50 and (]/]t)D(t,z)u t505d(z). This func-
tion is different from zero inside the light cone, though it possesses zero Cauchy d
both theR and L sectors. In four dimensions the well-known Pauli–Jordan funct
which satisfies the KFG equation and the Cauchy initial dataD(0,r )50 and
(]/]t)D(t,r )u t505d(r ) and vanishes only outside the light cone, possesses similar p
erties. Therefore the assertion made above about the properties of the Cauchy su
not specific to two dimensions.

Returning to relation~18!, we underscore the fact that sincev5gm is not the energy
in MS, since the average on the left-hand side is calculated over the Minkowski vac
and since the operatorsr m are defined in terms of the scalar product in MS, the exp
sion @e2pv/g21#21 has nothing in common with a Bose distribution. Thereforeg/2p is
not the temperature, and the Unruh effect in the sense~19! does not exist. The appearanc
of a Bose factor in Eq.~19! is entirely due to the specific properties of the Bogolyub
transformation~15! and is encountered in different physical problems where in no w
does the question of temperature arise. An example is a two-dimensional oscillato
906 906JETP Lett., Vol. 65, No. 12, 25 June 1997 Belinski  et al.
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The relation~18! is sometimes interpreted in terms of a density matrix. This in
pretation is based on the formula3,5

^0MuR~r m ,r m8
1

!u0M&5TrR~rRR!,

rR5r0 exp~2KR /T!, KR5E
0

`

mr m
1r mdm.

However, the development of the operators in Minkowski time is determined by
complete Hamiltonian and not by the operatorKR . Therefore the matrixrR does not
satisfy the dynamical Bloch equation and cannot be interpreted as a density matri

5. So, the problem of quantizing free fields is entirely different in Rindler a
Minkowski spaces. Therefore analysis of these problems cannot serve as a basis
conclusions about the behavior of an uniformly accelerated detector. The question
accelerated detector is a very difficult fundamental problem and, in our opinion, doe
have a satisfactory solution at present. Here we confine our attention only to brie
marks concerning it.

First, the problem of a Rindler observer and therefore a uniformly accelerate
tector, discussed in Unruh’s paper,1 is to oidealized. Even in classical field theory, whe
the question of preparing a quantum state in which a measurement is performed do
arise, well-known paradoxes arise in the problem of hyperbolic motion of a charge11,12

Second, the use of composite systems1 as a detector raises numerous questions, sinc
present a systematic relativistic theory of bound states does not exist. At the same
the problem of the interaction of accelerated particles with quantized fields is urgen
has interesting physical applications; see, for example, Refs. 9 and 13. Specifically
shown in Ref. 9 that elementary particles used as detectors do not manifest the un
response of the Unruh type. The question of an accelerated detector must be discu
a physically correct formulation with acceleration switched on and off and remains
at present. However, it is difficult for us to believe that the behavior of the detector
be universal and will follow Unruh’s formula.

We thank S. E. Murav’ev for a discussion. We are especially grateful to A
Starobinski�, who read through the manuscript and made many helpful remarks. O
us ~N. B. N.! thanks Professor R. Ruffini for hospitality at Rome University. This wo
was supported in part by the Russian Fund for Fundamental Research under Projec
95-02-05417a and 95-02-06056a.
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b!e-mail:narozhny@theor.mephi.msk.su
c!The quantization of the scalar field performed previously in Ref. 10 by means of analytical continuation
Green’s functions is equivalent to quantization on the modes~9!.
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Optical orientation in p-doped semiconductor structures
with a split valence band

E. P. German and A. V. Subashieva)

State Technical University, 195251 St. Petersburg, Russia

~Submitted 16 May 1997!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 12, 867–871~25 June 1997!

The optical orientation of electron spins in heavily doped semiconduc-
tor structures with a valence band that is split as a result of size quan-
tization or uniaxial deformation is investigated theoretically. It is
shown that lowering the Fermi level by doping and by lowering the
temperature should lead to sharp changes in the photon-energy-
dependence of the average spin of the excited electrons in structures
excited by circularly polarized light. This effect is due to an inter-
change of the dominant contribution of transitions from a light-hole
subband and transitions from the heavy-hole subband in
absorption. ©1997 American Institute of Physics.
@S0021-3640~97!00312-5#

PACS numbers: 78.20.Bh, 73.20.Dx

Optical orientation in semiconductor structures is actively used both for studyin
kinetics of non equilibrium states of electrons1,2 and for producing efficient photoemitter
with a high degree of polarization of the electron beam.3 In strained semiconductor film
~compressed in the plane of the hetero boundary! and in semiconductor structures wit
quantum wells, the degenerateG8 state of the valence-band edge is split into dou
degenerate states withG6 ~heavy holes! andG7 ~light holes! symmetry, the heavy-hole
subband having the higher energy~see Fig. 1!. In the case when the electrons are exci
by circularly polarized light near the absorption edge, the average projection o
electron spin on a direction opposite to that of the angular momentum of the exc
photon~which is oriented in the direction of the outer normal to the surface of the fi!
is found to beSz51/2 and the polarization of the excited electrons isP51.

The spin orientation observed according to the luminescence polarization an
emission of polarized electrons reachesP50.9 for p-doped strained films4 as well as in
structures with quantum wells5 and in superlattices.6 For excitation energy above th
threshold for excitation of transitions from light-hole states, the polarizationP decreases
rapidly, since electrons with opposite spin direction are produced in the case of exci
from the light-hole subband.

This letter analyzes of the optical orientation of electron spins in heavily do
p-type structures with a split valence band. At low temperatures the filling of the top
subband with holes~downward displacement of the Fermi level!, resulting in a shift of
the absorption edge into the region of high energies, for sufficiently high hole de
should lead to a change in the dominant mechanism of absorption, specifically, the
909 9090021-3640/97/120909-06$10.00 © 1997 American Institute of Physics
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absorption should be determined by transitions from the split-off light-hole subband
not the heavy-hole subband. The edge-absorption mechanism changes
EF(11mhh,' /mc).D. HereEF is the heavy-hole Fermi energy,mc is the conduction-
band effective mass,mhh,' is the transverse~with respect to the axis of the structure!
effective mass in the heavy-hole subband, andD is the deformation splitting of the
valence band. As the excitation energy increases, the contribution of heavy holes
again predominates in absorption.

This letter shows that in the case when the structure is excited by circularly p
ized light a change of the dominant absorption mechanism should be accompanie
sharp change in the average spin of the excited electrons, and this should be man
as sharp changes in the polarization in the excitation spectra of the polarized lum
cence and in the polarized-electron emission spectra. As the temperature increa
upward shift of the Fermi level and broadening of the Fermi distribution cause the h
holes to predominate in absorption and the standard spectral dependence of the ele
polarization is restored.

A similar ‘‘inversion’’ occurring in the spectral dependence of the electron po
ization upon doping and lowering of the temperature should also be observed in
tures with quantum wells and in superlattices as well as in heavily doped extended l

Let us consider the absorption of circularly polarized light in a strainedp-GaAs
layer oriented along the@100# axis. The number of electrons with ‘‘upward’’~i.e., in a
direction along the normal to the film! and‘‘downward’’ spin which are excited by ligh
into the conduction band per unit time is determined~to within a factor! by the quantities7

^Fa&5
2p

\V (
k,i

Fi
an~Ei~k!!d~Ec~k!2Ei~k!2\v!, a5↑,↓ ~1!

FIG. 1. Band structure scheme of a~100! GaAs film compressed in the~100! plane. The vertical lines show the
thresholds of direct optical transitions from split light-hole (E1) and heavy-hole (E2,E28) states in the valence
band into states of the conduction band;EF — Fermi level.
910 910JETP Lett., Vol. 65, No. 12, 25 June 1997 E. P. German and A. V. Subashiev
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a5(mu^c,aueD̂u i ,m&u2, i 5h and l , the indexm enumerates the states of theG8

multiplet of the valence band,Ec,i(k) are the energies of states with wave vectork,
n(Ei(k)) is the Fermi distribution function of valence-band electrons,D̂ is the dipole-
moment operator,e is the polarization vector of the light, andV is the volume of the
crystal. Calculations of the quantitiesFi

a ~similar to the calculations performed in Ref. 7!
give

Fh,l
↑ 5

1

2
d2~16R!, Fh,l

↓ 5
1

6
d2~17R!, ~2!

whered5^SuD̂xuX& is an interband transition matrix element,

R5
D̃12g2~3kz

22k2!

AD̃212g2~3kz
22k2!D̃14g2

2k4112~g3
22g2

2!~kx
2ky

21kx
2kz

21ky
2kz

2!
, ~3!

D̃5m0D/\2, andg2 andg3 are the Luttinger parameters.

The absorption coefficientK and the degree of polarizationP of the electrons are
given by the equations

K5
2p\v

cn
~^F↑&1^F↓&!, P5

^F↑&2^F↓&

^F↑&1^F↓&
~4!

or

P5Ph

Kh

Kl1Kh
1Pl

Kl

Kl1Kh
~5!

Here Kh and Kl are partial absorption coefficients andPh and Pl are the degree o
polarization with excitation of electrons from the light- and heavy-hole subbands, re
tively. It follows from Eqs.~2!–~5! that R decreases monotonically with increasing ele
tron energy, as a result of whichPh changes from 1 to 1/2 andPl changes from21 to
1/2. The resulting electronic polarization is determined by the relative contributio
transitions from the light- and heavy-hole subbands.

For optical excitation energyE, measured from the interband absorption thresh
(E5\v2Eg , Eg is the band gap in the strained layer!, E<(mh,' /me)D, the effect of
the fluting of the hole spectrum is small (}(g32g2)/g2E/(mh /meD)) and in the region
E,Dso , where Dso is the spin-orbit splitting of the valence band, the dependen
K(E) andP(E) in the strained GaAs layer can be found analytically. The computati
results forK(E) are displayed in Fig. 2 for several values of the hole density~the splitting
is assumed to beD530 meV!. One can see from Fig. 2 that as the hole density increa
for densitiesp>331017 cm23, the absorption threshold shifts appreciably into the
gion of high energies.

We call attention to the square-root dependence~due to the anisotropy of the heavy
hole subband in the strained material! of the one-band absorption coefficients near
thresholds and the rapid growth~due to the relatively high density of states of the hea
911 911JETP Lett., Vol. 65, No. 12, 25 June 1997 E. P. German and A. V. Subashiev
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holes and the large optical matrix element! of the absorption at the edge of the transitio
from the heavy-hole subband in the doped material. This increase becomese sp
clear forEF.0.4D.

The dependence of the electronic polarization on the excitation energy attempe
T54 K is shown in Fig. 3 for a series of hole densities. At low hole density the electr
polarization is high and positive right up to excitation energy equal to the deforma

FIG. 2. Spectral dependence of the absorption coefficient in a doped strained GaAs layer atT54 K: d —
p51017 cm23,! — p5331017 cm23, h — p51018cm23, s — p5331018 cm23. The dashed lines show th
partial contributions of the light-hole and heavy-hole subbands to absorption at low density ands.

FIG. 3. Spectral dependence of the electron polarizationP(E). The symbols have the same meaning as
Fig. 2.
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splitting energy. Forp.531017 cm23 anomalously large changes arise in the electro
polarization in the region of low excitation energies and the width of the anomal
polarization band increases with the hole density.

The calculations of the electronic polarization for smaller valence-band splitting
higher temperatures show that for strained GaAs films withmhh,' /mc.1 and typical
values D>20 meV, the anomalous behavior of the electronic polarization rem
strongly expressed even forT<77 K andp>1018 cm23 .

The splitting of the spectrum in superlattices and structures with quantum we
due to the formation of a collection of size-quantization subbands of hole states
sharp changes in the electronic polarization are observed at the thresholds of inte
transitions from the size-quantization hole subbands.5,8 In this case also the calculation o
the spectral dependence of the electronic polarization reduces to the calculation
number of electrons which are excited into a state with the opposite spin orientati
the conduction band~see Ref. 9!. However, this requires a numerical calculation of t
size-quantization spectra of the electrons and holes and a calculation of the inte
transition matrix elements and the density of final states. The computational resu
the degree of electronic polarization of the electrons for a GaAs/Ga0.7Al0.3As structure
with 5-nm wide GaAs wells~in the model described in detail in Ref.10! are displayed in
Fig. 4. For this structure the splitting between the first heavy-hole (hh1) and light-hole
( lh1) subbands equals 40 meV, thelh1 subband having an anomalously large ma
which is also manifested in the form of a dip in the polarization spectrum.
anomalous-polarization band arises with two-dimensional hole densityp.631011

cm22.

In contrast to the spectra of strained films, the spectral dependence of the po
tion for quantum wells is very sensitive to the parameters of the structures~composition

FIG. 4. Spectral dependence of the electron polarizationP(E) in adoped structure with a 5 nmwide GaAs
quantum well atT54 K; d— p51011 cm22, h — p51012 cm22, s— p51.531012 cm22. The dashed lines
show the partial contributions of transitions from thehh1, lh1, andhh2 subbands.
913 913JETP Lett., Vol. 65, No. 12, 25 June 1997 E. P. German and A. V. Subashiev



tion
bands

om-
rface
xation

ect

ce of
omb
odify

pond-
infor-

No.

duc-
975.

he
96,
and width of the layers!, which change both the ratio between the partial absorp
coefficients near the thresholds of the transitions between the size-quantization sub
hh12e1, lh12e1, andhh22e1 and the order of the hole minibands.

The electron spin orientation is manifested in the circular polarization of the rec
bination radiation as well as in the polarization of the electrons emitted from a su
activated to negative electron affinity. In both cases the effects due to the spin rela
processes can be eliminated by using time-resolved measurement techniques11 and lumi-
nescence measurements with photon energy close to the excitation energy12 ~or by inves-
tigating energy-resolved emission2!.This makes it possible to observe the predicted eff
directly.

In view of its rapid variation, the above-predicted excitation-energy dependen
the electron polarization is very sensitive to the position of the Fermi level, Coul
interaction effects, and fluctuation broadening of the absorption edge, all of which m
the carrier spectrum and the optical properties of doped structures.13 For this reason, the
observation of anomalous polarization and the determination of the energies corres
ing to a change in the sign of the polarization can be used to obtain independent
mation about these effects.

This work was sponsored by CRDF under Grant RPI-351, INTAS under Grant
94-1561, and by the Russian Fund for Fundamental Research.

a!e-mail: arsen@tuexph.stu.neva.ru
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Cluster structure and superlattices in Co and Fe films

S. M. Zharkov, V. S. Zhigalov, L. I. Kveglis, Yu. V. Lisitsa,
K. V. Renskaya, and G. I. Frolov
L. V. Kirenski� Institute of Physics, Siberian Branch of the Russian Academy of Scienc
660036 Krasnoyarsk, Russia

~Submitted 29 April 1997!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 12, 872–875~25 June 1997!

The process of dendritic crystallization of Co and Fe films is investi-
gated. Electron-diffraction methods show that fractal growth of
dendrites in Co and Fe films proceeds by multiple twinning of the
elements of a nanostructure consisting of different clusters with close-
packing. The formation of superstructures is explained by a shell model
of a cluster structure forming nanocrystallites. ©1997 American In-
stitute of Physics.@S0021-3640~97!00412-X#

PACS numbers: 61.46.1w, 68.70.1w

In a previous work we presented electron-diffraction photographs obtained from
films after explosive crystallization~EC! from an initial amorphous state. The electro
diffraction photographs did not correspond to either thea or g phase of Fe, though the
did contain a series of reflections from both phases. The hyperfine structure of the¨ss-
bauer spectra of such films indicated the appearance of a new phase of Fe.1 Investigations
of the ferromagnetic characteristics of the Co and Fe films showed that in the cou
dendritic growth the saturation magnetization decreases and the resistivity increas1,2

In the present work we investigated Co and Fe films obtained by means of the
technology. The initial state of the films was x-ray amorphous. The films deposite
different substrates~LiFe, MgO, NaCl, glass! were subjected to multistep annealing
the temperature range from 50 to700 °C in a 1025 torr vacuum. Explosive crystallization
was observed under the action of an electron beam on films annealed at tempe
from 100 to 400 °C. The microstructure of the films consisted of a network of dend
growing from centers of crystallization.

An electron-diffraction photograph of the dendritic section of a Co film is displa
in Fig. 1a. The main reflections in this photograph, taking account of twins, correspo
hcp-Co with a@110# zone axis.3 Superstructural reflections, attesting to period doubl
in the @002# and@012# directions, are also revealed in the electron-diffraction photogra

Electron-diffraction photographs of three types of superlattices observed in
films after explosive crystallization are displayed in Figs.1b, c, and d. An elect
diffraction photograph with two superstructural reflections between 0 and~211! a-Fe is
displayed in Fig. 1b. These reflections can be attributed to multiple twinning along
~211! plane ina-Fe.4 Figure 1c shows an electron-diffraction photograph containing
two but four and Fig. 1d shows six superstructural reflections between the central
and the~211! a-Fe reflection. No correlation was found between the annealing temp
915 9150021-3640/97/120915-04$10.00 © 1997 American Institute of Physics
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ture, the choice of substrate, and the type of superlattice; annealing only initiate
electron crystallization process. Relaxation of the structure and the physical proper
the films to the values characteristic for the bulk state started at anannealing tempe
above 450 °C.

On the basis of the interpretation of electron-diffraction photographs, we can as
that multiple twinning leads to the appearance of superstructural reflections in Co a

FIG. 1. Electron-diffraction photographs of Co~a! and Fe~b, c, d! films after explosive crystallization.
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films. Such twinning could result from the merging of nanocrystalline-size cu
octahedron-shaped clusters. The appearance of superstructural reflections of th

~001! and(01
21), associated with doubling of the corresponding periods in hcp-Co

understandable if it is assumed that the clusters possess a close-packed ABA
structure characteristic for hcp-Co. An ABAC-type structure is an element o
cubo-octahedron.5,6

The dendritic growth process in iron films is identical to that in cobalt films. Fig
2 shows a diagram illustrating the appearance ofsuperstructural reflections i
electron-diffraction photographs of Fe films. The cubo-octahedral clusters increase i
during the annealing process. The initial equilateral cubo-octahedron is found
inscribed in a system of seven parallel~211!-type planes~see Fig. 2a!. Such a system of
interatomic planes can form in an electron-diffraction photograph two superstruc
reflections between the 0 and~211! reflections. If the cubo-octahedron inscribed in
system of 11 parallel planes of the type~211! ~see Fig. 2b! is considered, then the reaso
why four superstructural reflections appear in the electron-diffraction photograph
comes understandable. The superstructure of a Fe film containing six superstru
reflections can be explained similarly if it is assumed that the cubo-octahedron
scribed in asystem of 15 parallel~211!-type planes~see Fig. 2c!.

It is well known that nanostructures can form in metal films obtained under ultra
condensation conditions. In Ref. 7 the stability of clusters with different nanostruc
~icosahedron, tetrahedron, octahedron, cubo-octahedron! was investigated theoretically a
a function of the sizes of these clusters. It has been proved theoretically
experimentally7,8 that the octahedra and cubo-octahedra are the most stable stru
with dimensions exceeding 35 Å.

The well-known jellium model or shell model gives a quite accurate descriptio
the stable structure of some elementary metal clusters.9 In the jellium model, metal
clusters are treated as giant macro atoms with electronic energy levels that man

FIG. 2. Diagram of nanostructure formation. The thick lines distinguish the projections of a cubo-octah
when it is inscribed in a system of 7~a!, 11 ~b!, and 15~c! ~211!-type atomic planes. The numbered vertic
lines show the traces of~211!-type planes.
917 917JETP Lett., Vol. 65, No. 12, 25 June 1997 Zharkov et al.
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shell structure. The shell structure is similar to that determined for nuclei. The simil
to the nuclear model is observed experimentally. We suppose that the shell mod
explain the discreteness of the volumes of the Co and Fe clusters.

According to the jellium model, an octahedron is the structural unit that posses
closed resultant electronic shell consisting of six atoms. If it is assumed that the oc
dron is the smallest unit in acubo-octahedron, then the decrease in the saturation m
tization in Co films2 and Fe films1 becomes understandable. When the structure of
film relaxes to an equilibrium structure on annealing, the saturation magnetizatio
creases to a value characteristic of the bulk material.

The observed superlattices are a consequence of ordered intergrowth of clus
the process of dendritic growth and illustrate the phenomenon of self-organization
this basis, we consider it admissable to apply the cluster-structure model to expla
characteristic features of the physical properties of Co and Fe films.

1G. I. Frolov, O. A. Bayukov, V. S. Zhigalovet al., JETP Lett.61, 63 ~1995!.
2L. I. Kveglis and Yu. V. Lisitsa, Poverkhnost’8, 5 ~1996!.
3P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan@Eds.#, Electron Microscopy of
Thin Crystals, Plenum Press, New York, 1965@Russian translation, Mir, Moscow, 1968#.

4L. M. Utevski�, Diffraction Electron Microscopy in Materials Science, @in Russian#, Metallurgiya, Moscow,
1973.

5B. M. Smirnov, Usp. Fiz. Nauk162~12!, 97 ~1992! @Sov. Phys. Usp.35, 1052~1992!#.
6A. R. Verma and P. Krishna,Polymorphism and Polytropism in Crystals, Wiley, New York, 1966@Russian
translation, Mir, Moscow, 1969#.

7Sh. Ino, J. Phys. Soc. Jpn.27, 941 ~1969!.
8Ch. Hayashi, Phys. Today40~12!, 44 ~1987!.
9M. L. Cohen and W. D. Knight, Phys. Today43~12!, 42 ~1990!.
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Shift of the dip in the ultralow-frequency electric
excitation spectrum of the Bridgman effect

E. G. Fateeva)

Institute of Applied Mechanics, Ural Branch of the Russian Academy of Sciences, 42
Izhevsk, Russia

~Submitted 9 April 1997; resubmitted 14 May 1997!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 12, 876–880~25 June 1997!

The previously predicted frequency shift of the deep dip in the ultra
low-frequency~ULF! electric spectrum of the excitation threshold of
the Bridgman effect in crystal hydrates has been observed. The appear-
ance of this shift, which is caused by an increase in the temperature, is
demonstrated for the example of magnesium hydroxide. The magnitude
of the shift estimated qualitatively for two temperature — 20 °C and
180 °C — in a model with ULF-selective breakdowns of gas located in
microcracks is virtually identical to the experimentally obtained value.
This agreement attests to the possibility that micro breakdowns are
excited in crystal hydrates under the conditions of a giant increase in
their ULF permittivity in the process of strongly nonuniform quasistatic
compression in relatively weak ac fields (E,2kV/cm!. © 1997
American Institute of Physics.@S0021-3640~97!00512-4#

PACS numbers: 62.50.1p, 77.22.Ch

1. INTRODUCTION

The Bridgman effect1–3 is an explosive instability arising in almost all solid diele
trics and many semiconductors under strong uniaxial quasistatic compre
(dP/dt;102221 GPa/s! at high pressure (P,10 GPa!. This phenomenon is accompa
nied by the ejection of some of the sample material out from the anvils in a microdis
fractured form with velocitiesv;0.522km/s, the excitation of shock waves in the com
pression system, an energetic pulse of electromagnetic radiation in a wide spectrum
up to the x-ray range,4 as well as the emission of electrons5 and possibly neutrons.6,7

Radical structural changes occur in solids under Bridgman effect conditions8–10 and
intense interactions occur in mixtures of chemical reagents~see, for example, Ref. 11!. It
is known that the thresholdPc ~or the average critical pressure in the body at which
Bridgman effect occurs in a given material! drops with increasing temperature and co
pression rate,12 it is correlated with the thermodynamic parameters of materials, an
exhibits a dimensional dependence.13

It has recently been discovered in experiments with crystal hydrates14–17 that quite
weak ultralow-frequency ~ULF! (10,v1,100 Hz! and low-frequency ~LF!
(102,v2,106 Hz! electric fields~with intensity E,2 kV/cm! strongly influence the
excitation thresholdPc of the Bridgman effect. This phenomenon is of interest becaus
the global prevalence of crystal hydrates in the lithosphere~under high pressures an
temperatures! and the possibility that only ULF electromagnetic waves penetrate into
919 9190021-3640/97/120919-06$10.00 © 1997 American Institute of Physics
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lithosphere. It has turned out that the frequency spectrumPc(v) for crystal hydrates
possesses a single narrow deep dip~a decrease of the threshold by a factor of 1.5–2! in
the frequency range 20,v1,40 Hz and a second wider dip nearv2;104 Hz. It has been
shown that the depthDP(U)5Pc(U50)2Pc(U) of the dip in the threshold as a func
tion of the amplitudeU of the ULF and LF voltage pulses increases asDP(U)}U2. For
U'65 V and sample thicknesses;0.320.8 mm the ratiosDP/Pc;0.5 are common.

A special experiment performed in Ref. 14 made it possible to attribute the ap
ance of dips in the spectrumPc(v) in the LF region to heating due to dielectric losse
The dip in the spectraPc(v) at ULF frequencies is explained less trivially.16 It follows
from two, not mutually exclusive, models for these effects that the dips in the re
20,v1,40 Hz are caused by frequency-selective input of electric energy into br
down; this input of energy is a consequence of a giant increase in the dielectric pe
tivity at ULF frequencies16,17 in crystal hydrates which become partially dehydrat
under strongly nonuniform compression. There exist definite methodological difficu
which are described in Ref. 16, that make it impossible to record directly such
selective breakdowns, which evidently can be excited in;103 times weaker externa
fields than are ordinarily required for breakdown of crystal hydrates.18 In consequence
the models proposed in Ref. 16 for the effect being described must be treated
caution. However, it follows from the models that the minimum in the ULF spect
Pc(v) can shift to the left or right along the frequency axis, depending on various fa
that can affect crystal hydrates. This letter presents for the example of natural magn
hydroxide~brucite! Mg~OH!2 experimental evidence of the existence of a shift of the
in the ULF spectrumPc(v) accompanying a change in the sample temperature.

2. EXPERIMENTAL ARRANGEMENT AND RESULTS

The ULF electric spectrumPc(v) for brucite was found by the same procedure
the one used for the model compounds NH4C2O43 H2O and H2C2O43 2H2O ~Refs.
14–16!. The only difference was that the brucite samples were placed between Brid
anvils ~with VK-8 super hard alloy inserts with 5 mm in diameter working surfaces! not
in the form of powder but rather in the form of small,'1 mm thick, monolithicingots,
just as in Ref. 17. The temperature of the samples was changed right up to 1
through the Bridgman anvils, heated with special disk-shaped heating elements~3 mm
thick! with the same diameter as the anvils. The samples compressed between the
up to average pressuresP;0.1Pc were heated up toT;180 °C after which they were
subjected to strong quasistatic compression~at the ratedP/dt'1021 GPa/s! up to exci-
tation of the Bridgman effect. The temperature was monitored with a thermocouple
junction of which was brought directly to the working face of the ultrahand anvil c
near the sample. Each point in the spectrum was the result of 10–15 explosions. B
was chosen for the present investigation because of the fortunate combination of so
its physical properties. For example, in contrast to the model compounds, in bruci
second elastic stage under uniaxial compression~necessary condition for the appearan
of the Bridgman effect! exists in the entire required temperature range from 20 °C u
200 °C. A reliable spectrumPc(v) from brucite for 20 °C can be obtained even for t
high pressuresP<5.5 GPa which are accessible for such experiments.16

As a result of these experiments, a deep dip, whose bottom was found to lie
920 920JETP Lett., Vol. 65, No. 12, 25 June 1997 E. G. Fateev
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!;36237 Hz, as shown in Fig. 1, was found in the ULF spectrumPc(v) for brucite

at the temperatureT;180 °C. The same figure shows for comparison a similar spect
with a deep dip, found in Ref. 17, nearv1;31232 Hz for brucite atT;20 °C. We note
that in both cases the samples were prepared from the same batch of natural b
Furthermore, an additional check of the form of the ULF spectrumPc(v) was made for
this crystal hydrate atT;20 °C in the region 30,v1,35 Hz. This check led to the sam
results as in Ref. 17. Therefore, when the temperature of the brucite samples is ch
to T;180 °C, the bottom of the minimum in the ULF spectrumPc(v) shifts rightward
by Dv;5 Hz along the frequency axis and the stability thresholdPc decreases by a
factor of 2 at all ultralow frequencies. However, the latter circumstance for solids in
second elastic stage under strong uniaxial compression19 can be easily explained on th
basis of the thermal fluctuation theory of strength.14

In addition, the ULF dispersion of the permittivitye(v) of brucite was investigated
in order to elucidate the nature of the appearance of the shift of the dip in the
spectrumPc(v) under uniaxial compression conditions in brucite atT;180 °C ~the
measurement procedure is described in Refs. 16 and 17!. The frequency dependenc
e(v) obtained in this experiment is shown for comparison with a similar curve17 at
T;20 °C in Fig. 2. We note here that the giant values in the ULF dispersion ofe(v) in
brucite under uniaxial compression conditions are maintained for tens of sec
Dt>10250 s, while in the model compounds they occur only in the form of a b
splash forDt<122 s.16,17

3. DISCUSSION AND CONCLUSIONS

Since in the first model of ULF dips with percolation intergrowth of breakdow16

the giant splash in the ULF permittivitye(v) under strong compression was assumed
be of short duration,Dt<122 s, it is more correct to use the second model to desc
the results obtained withDt>10250 s. In accordance with the model of dips in th
spectraPc(v) with breakdown of the gas in microcracks, the effective density of
electrical energy fed into plasma breakdown is found to have the frequ
dependence16,17

FIG. 1. Ultralow-frequency electric spectraPc(v) of the excitation threshold of the Bridgman effect
Mg~OH!2 crystal hydrate(U565 V) at temperatures 20 °C (s) and 180 °C (d). The arrows mark the location
of the bottom of the dips in the spectraPc(v) on the frequency axis for two temperatures.
921 921JETP Lett., Vol. 65, No. 12, 25 June 1997 E. G. Fateev
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weff~v!}~U/d!2e3~v!@12exp~2tspA/e~v!!#, ~1!

where tsp}e(v)21 is the characteristic formation time of a spark discharge,U is the
amplitude of the voltage pulses, andd is the thickness of the sample. For definite valu
of the parameterA}n0em, reflecting the characteristics of the ionized gas in a micr
rack (n0 is the density,m is the mobility, ande is the charge of the particles!, the relation
~1! has a maximum at ULF frequencies. It is assumed that the input of the maxi
energy into the plasma discharge produces the strongest shock waves in micro
which is the main reason why the mechanical stability of crystal hydrates decrease
a deep dip appears in the ULF spectrumPc(v). The Debye equation
e(v)5e`1(es2e`)@11(vt)2#21 is sufficient to find the qualitative behavior o
weff(v). Herees is the maximum ULF permittivity,e` is the high-frequency permittivity,
and t is the relaxation time of the bound charges. In dispersed systems with elec
double layers~according to the models of Refs.15–17, crystal hydrates are in such a
during the partial-dehydration process!, the relaxation time with dispersed particles
characteristic sizea and volume diffusion coefficientD of the ions in the layers is
determined from the relationt5a2/2D ~Ref. 20!. SettingD5D0 exp(2Q/kT), we find
from the relation~1! that as the temperature increases, the sharp peak in the spe
weff(v) shifts rightward~Fig. 3!. Here Q is the activation energy,k is Boltzmann’s
constant, andD0 is a constant. The values ofQ, D0 , and a ~see caption to Fig. 3!
employed for the calculation are typical for disperse systems.20 The values ofU, d,
e` , andes were taken from experiments. The parameterA was obtained by matching
since it cannot be determined directly. If polynomials approximating the experim
curvese(v) for two temperatures 20 °C and 180 °C~Fig. 2! are used instead of th
Debye equation, then a shift of the maximum in the spectrumweff(v) to higher frequency
also follows from the relation~1!.

FIG. 2. Ultralow-frequency dispersion of the permittivitye(v) at the moment of maximum growth unde
strong uniaxial compression of the hydrate crystal Mg~OH!2 ~for U565 V) at temperatures 20 °C (s) and
180 °C (d).
922 922JETP Lett., Vol. 65, No. 12, 25 June 1997 E. G. Fateev
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Therefore it definitely follows from the present work that the deep dip of the thr
old of excitation of the Bridgman effect in crystal hydrates in a quite weak ULF elec
field could be due to frequency-selective input of energy into breakdown of gas loca
microcracks. Such breakdowns can evidently be excited by local breakdown fields
appear in the crystal hydrates as a result of the giant increase in the ULF diel
permittivity accompanying the partial dehydration induced in the crystals by stro
nonuniform compression.

I am grateful to V. A. Aleksandrov for fabricating the components of the instrum
tation, V. N. Avdonin for kindly providing the samples, and G. M. Mikheev for help
discussions. This work was sponsored by the Russian Fund for Fundamental Re
under Project No. 95-05-14488.
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A contribution to the theory of ferromagnetism in the
Hubbard model with degeneracy

R. O. Za tsev
Kurchatov Institute Russian Science Center, 123182 Moscow, Russia

~Submitted 15 May 1997!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 12, 881–886~25 June 1997!

The possibility of ferromagnetic ordering in a generalized Hubbard
model taking account of degeneracy is studied for an infinite Hubbard
energy. The existence region of ferromagnetism for electron density
greater than 1 is determined. ©1997 American Institute of Physics.
@S0021-3640~97!00612-9#

PACS numbers: 75.10.Jm

The ferromagnetic properties of transition metals are best described by the Hu
model1 with a strong repulsion ofd electrons in the same unit cell. The long-range p
of the Coulomb interaction is assumed to be very small, since its role is compensa
the screening effect of thes electrons. The Hubbard energy is assumed to be the lar
energy parameter~see, for example, Ref. 2! and infinite at the outset. Ifs2d hybridiza-
tion is neglected, then the magnetic properties of transition elements are deter
mainly by thed-electron subband, whose width is expressed in terms of hopping
grals. For simplicity and clarity, in the case of cubic crystals, which is of interest to
we shall employ a model with zero off-diagonal and the same diagonal hopping inte

Ĥ52 (
r ,r8,s,l;rÞr8

tl~r2r 8!âr ,s,l
1 âr ,8s,l2 (

r ,s,l
@m1sH#âr ,s,l

1 âr ,s,l. ~1!

Here m is the chemical potential;s56 is the spin index;H is the external magnetic
field; the crystal indexl takes on three values (l5xy, yz, zx) when thet2g shell is filled
or two values (l53z22r 2,x22y2) when theeg shell is filled.

It can be shown that for density less than ferromagnetism exists only in sp
cases, when the Fermi surface passes near van Hove-type singularities. This m
possible to explain the existence of ferromagnetism in Ni; see, for example, Re
and 4.

This letter studies the conditions~not associated with the existence of van Ho
singularities! under which ferromagnetism appears. The calculations are performed
one-loop approximation for electron or hole density greater than 1.

1. Eg ELECTRONS. DENSITY RANGE FROM 1 TO 2.

Let us consider a situation when the system resonates between one- and two-p
states. It is convenient to introduce a new chemical potentialm2U→m and assume tha
there are no empty states at all.
925 9250021-3640/97/120925-07$10.00 © 1997 American Institute of Physics
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The four single-particle statesâs
1 u0& and b̂s

1u0& possess spin 1/2. The lowes
energy two-particle states3A2 possess spinS51:

âs
1b̂s

1u0& ~Sz5s561!;
â↑

1b̂↓
11â↓

1b̂↑
1

A2
u0& ~Sz50!. ~2!

All higher-energy states1E and1A1 are neglected for simplicity.

A small change in the external magnetic field produces a change in the so-c
terminal factorsf k

(s) ~Ref. 5!, each of which equals the sum of the average filling numb
of the initial and final states. Taking account of the symmetry of the system relative
transposition of thea andb states, we have

f 1
~s!5nII

~s!1nI
~s! ; d f 1

~s!5dnII
~s!1dnI

~s! ; f 2
~s!5nII

~0!1nI
~ s̄ ! ;

d f 2
~s!5dnI

~ s̄ !52dnI
~s! . ~3!

Therefore, in contrast to the ordinary ‘‘one-particle’’ case, independent equation
required in order to find the variations of both the one-and two-particle filling numb
To obtain these equations we shall examine the important part of the expansion
annihilation operator in terms of the HubbardX̂ operators:

ârs5Ẑr5g1X̂r
~0,sus,s!1g2X̂r

~0,s̄ uA0! ,

whereg1 51 andg251/A2 are genealogical coefficients. We now multiply this part
an arbitrary linear combination of conjugateX̂ operators

Ŷr5g1X̂r
~s,su0,s!1g2X̂r

~A0u0,s̄ !.

Averaging the separateT products over states with a given temperature and chem
potential in the one-loop approximation, we find a relation between the two-pa
filling numbersnII , the Fourier components of the virtual one-particle Green’s func
Ĝv(p), and the terminal factorsf k :

g1g1nII
~s!1g2g2nII

~0!5T (
1<k,s<2

(
vp

gkGv
k,s~p!gsf s . ~4!

The inverse one-particle Green’s function matrix is in turn expressed interms o

terminal factorsf k and also in terms of the self-energy matrixŜ, which in the one-loop
approximation does not depend on either the frequency or the momentum and
model is assumed to be reduced to the diagonal form

Ĝv
k,s~p!5@dk,s~ iv2Ss1m1sH !2 f kgktpgs#

21. ~5!

In the zeroth approximation in the external field we obtain two identical terminal fac
f e as well as an equation of state for 1,ne,2.

K05(
p

nF~jp!54
ne21

21ne
, jp5be

2f etp2m; f e5
21ne

12
. ~6!
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To a first approximation in the applied magnetic field, we find an equation for
susceptibility under the conditiongk5gk:

dnII
~s!5d f 2

~s!1d f 1
~s!5dR25K0(

k
gk

2d f k
~s!1 f eD0(

k
gk

2dSk~s!

1 f ebe
2D1(

k
gk

2d f k
~s!2 f ebe

2D0sdH, ~7!

whereg1
251, g2

251/2, andbe
25g1

21g2
253/2. We find an equation that is independent

the applied field under the conditiong1g11g2g250:

dnII
~s!~12K0!22K0dnI

~s!5d f 1
~s!~12K0!1d f 2

~s!~11K0!

5A~m!@dS1~s!2dS2~s!#, ~8!

where

Dn5(
p

tp
nnF8 ~jp!, A~m!5(

p

@nF~jp!2nF~2m!#

be
2tp

, ~9!

and the quantitiesf e , jp , andK0 are determined in Eq.~6!.

To study the one-loop self-energy diagramsS1,2, it is sufficient to calculate the
individual loops and then sum the loops taking account of the commutation rules
determine the nonzero vertex parts of the kinematic interaction.6,7 In the simplest model
with no hybridization we have only the diagonal self-energy parts

S1
~a,s!52A2

~ s̄ !1B1
~s! ; S2

~a,s!52A1
~ s̄ !1B2

~ s̄ !1A2
~ s̄ !1B2

~s! ;

S1
~b,s!52B2

~ s̄ !1A1
~s! ; S2

~b,s!52B1
~ s̄ !1A2

~ s̄ !1B2
~ s̄ !1A2

~s! ; ~10!

Ak
~s!5T (

n,v,p
tp
k,nGv

n,k~p!

is the sum of the products of the matrix elements of the transition matrixt̂ (p) by the
elements of the virtual Green’s function matrix, obtained from the relation~5! and refer-
ring to a fixed spin projection and prescribed statea. Note that in a cubic crystal the
variation of the self-energy part does not depend on the number of the atomic (a or b)
state but changes sign when the spin projection changes sign:

dS1
~a,s!5dS1

~b,s!5dS1~s!; dS2
~a,s!5dS2

~b,s!5dS2~s!. ~11!

We obtain two equations fordSk(s) from their definition~10! in terms of the integrals
of the Green’s functions — the so-called one-loop approximation:

dSk
~s!52dSk

~2s!52@Fk,n
~0!2Dk,n

~1!#dSn
~s!1be

2Dk,n
~2!dfn

~s!2sdHD1Qk . ~12!

Here the matricesD̂ (n)5DnÛ differ by the temperature factorsDn from Eq. ~9! and are
proportional to the same matrixÛn,m5Qngm

2 /be
2 , where Q5(3/2,1/2). The operator
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F̂ (0)5@K02nF(2m)#V̂/ f ebe
2 is proportional to the matrixV̂, where in the first row the

elements V1,15V1,250 and the elements in the second row sum to ze
V2,152V2,2522/3.

A consequence of the equations~10!–~12! is a relation that does not depend o
either the external field or the terminal factorsf k :

g2
2~dS1~s!1dS2~s!!5~g1

21Q~m!!~dS1~s!2dS2~s!!, ~13!

whereQ(m)5@K02nF(2m)#/@ f ebe
2#. The two relations~3!, which relate the variations

of the filling numbers and the terminal factors, must be added to this equation. The
is a system of four equations~7!, ~8!, ~12! and ~13! which are linearized in the externa
field H. The condition for this equation to be solvable is that the determinant of
following matrix must not vanish:

S 12g1
2~K01 f ebe

2D1! 12g2
2~K01 f ebe

2D1! 2 f eD0g1
2 2 f eD0g2

2

12K0 11K0 2A~m! A~m!

2D2be
2g1

2 2D2be
2g2

2 12D1g1
2 2D1g2

2

0 0 g2
22g1

22Q g1
21g2

21Q

D . ~14!

The vanishing of the determinant of this matrix signifies the appearance of ferromag
instability.

A calculation of the determinant atT50 gives the equation:

K0~12K0!~Q1be
2!52A~m!D2g2

21D1@ f ~Q1be
2!~g1

22g2
21be

2K0!

1K0~12K0!~Qbe
21g1

412g1
2g2

22g2
4!#. ~15!

All coefficients depend on the position of the Fermi level. For a semielliptic band m
the results can be expressed in terms of the angular parametera. In the limit T50 we
have a unique solutiona052.67, which corresponds to the existence of a density ra
1,ne,1.26 where ferromagnetic instability arises.

2. T2g ELECTRONS. DENSITY RANGE FROM 1 TO 2

The results of an analysis of this case are qualitatively the same as in the prec
case. For the semielliptic band model the existence region of the ferromagnetic inst
corresponds to the interval 1,nt,1.4.

3. T2g ELECTRONS. DENSITY RANGE GREATER THAN 2 BUT LESS
THAN 3.

The experimental data indicate that in pure iron~Fe! the electronic states fall be
tween the configurations 3d24(sp)6 and 3d34(sp)5. In this case the saturation magnet
moment equals 2.2mB . Therefore we shall examine in detail the most interesting cas
electronic states resonating between two- and three-particle states.

The lowest three-particle state has spinS53/2 and is four fold degenerate wit
respect to the spin projection:
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âs
1b̂s

1ĉs
1u&, Sz53s/2;

1

A3
~ âs̄

1
b̂s

1ĉs
1u&1âs

1b̂s̄
1

ĉs
1u&1âs

1b̂s
1ĉs̄

1u&), Sz5s/2. ~16!

TheX-operator expansion of the transition between three triplet two-particle states o
type ~2! and three-particle lowest-energy states~16! is determined by three genealogic
coefficientsg351, g45A2/3, andg55A1/3:

ârs5X̂r
~0,s,su3s/2!1A2

3
X̂r

~A~yz,xz!us/2!1
1

A3
X̂r

~0,s̄ ,s̄ u s̄ /2! . ~17!

The equations for the variations of the three-particle filling numbersdnIII
(3s/2) and

dnIII
(s/2)52dnIII

(2s/2) can be obtained from the general equation for the average valu
theT products of the annihilation operator~17! by alinear combination of three conjuga
operators with arbitrary coefficientsgs :

g3g3nIII
~3s/2!1g4g4nIII

~s/2!1g5g5nIII
~2s/2!5T (

3<k,n<5
(
vp

gkGv
k,n~p!gnf n . ~18!

In the one-loop approximation the matrix elements of the one-particle Green’s fun
are determined by the general relation~5!.

The terminal factorsf k
(s) can be expressed in terms of the filling numbers

f 3
~s!5nIII

~3s/2!1nII
~s! , f 4

~s!5nIII
~s/2!1nII

~0! , f 5
~s!5nIII

~2s/2!1nII
~2s! . ~19!

In a zero field all three terminal factors are identical,f k5 f t , and can be expressed i
terms of the electron densitynt , which is related with the chemical potential via th
equation of state:

f t5
5nt26

36
; K05(

p,
nF~jp!59

nt22

5nt26
. ~20!

In the case of a finite magnetic field, we employ the obvious relati
dnIII

(2s/2)52dnIII
(s/2) , dnII

(0)50, anddnII
(2s)52dnII

(s) . Then we find the relation betwee
the variations of the terminal factors and the filling numbers:

dnIII
~3s/2!5d f 3

~s!1d f 4
~s!1d f 5

~s! , dnIII
~s/2!5d f 4

~s! ; dnII
~s!52d f 4

~s!2d f 5
~s! . ~21!

The variation of the main equation~18! with gk5gk is actually the result of varying the
equation of state in a fixed fieldH:

g3
2dnIII

~3s/2!1b4
2dnIII

~s/2!1g5
2dnIII

~2s/2!2K0 (
k53,4,5

gk
2d f k

~s!2 f t (
k53,4,5

gk
2dSk

~s!D0

2bt
2f (

k53,4,5
gk

2d f k
~s!D152bt

2f tsdHD0 . ~22!

Here we have used the same notation as in Eq.~5! but nowbt
25g3

21g4
21g5

252.
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If the vectorg is directed perpendicular to the vectorg, i.e., (3<k<5gkgk50, then
two relations can be obtained which do not depend explicitly on the magnetic field
find the first equation under the conditionsg5g55g3g3 andg4g4522g3g3.

~12K0!~dnIII
~3s/2!23dnIII

~s/2!!2A~m!~dS3~s!22dS4~s!1dS5~s!!50. ~23!

Settingg450 andg5g552g3g3, we obtain the second equation:

~12K0!~dnIII
~3s/2!1dnIII

~s/2!!22K0dnII
~s!2A~m!~dS3~s!2dS5~s!!50. ~24!

Here the coefficientK0 is determined by the equation of state~20! and the coefficient
A(m) is determined by a relation of the type~9! but with the substitutionsbe

2→bt
2 and

f e→ f f .

It is evident that in the absence of a field all self-energy parts are equal and g
small correction to the chemical potential.

Our next problem is to calculate the correctionsdSk which are proportional to the
first power of the magnetic field. We obtain three equations fordSk from their definitions
~25! in terms of integrals of the product of the Green’s function~7! by the hopping
integral tp :

dSk
~s!52dSk

~2s!52@Fk,n
~0!2Dk,n

~1!#dSn
~s!1bt

2Dk,n
~2!d f n

~s!2sdHRkD1 , ~25!

D̂ ~n!5(
p

tp
nnF8 ~jp!Û.

Here the operators differ by the temperature factor and are proportional to the
matrix Ûk,m5Rkgm

2 /bt
2 , where R5(7/3,1,21/3). The operatorF̂ (0)5Q(m)Ŵ, where

Q(m)5@K02nF(2m)#/ f tbt
2 . The elements of each row in the matrixŴ sum to zero:

Ŵ5S U3,322g3
252

5

6
; U3,45

7

9
; U3,52g5

25
1

18

U4,35
1

2
; U4,423g4

252
5

3
; U4,513g5

25
7

6

U5,32b3
252

7

6
; U5,413g4

25
17

9
; U5,522g5

252
13

18

D . ~26!

Ferromagnetic instability is due to the appearance of an infinite magnetic sus
bility. This condition is equivalent to the possibility of solving a system of six homo
neous equations corresponding to Eqs.~15!, ~16!, ~18!, and~25!. The direct calculation of
the sixth-order determinant gives the equation:

@3K0~12K0!22 f tD1~213K0!#@18152Q19Q22D1~26168Q235Q2!#

52D2@ f tD0~213K0!~14140Q211Q2!22A~m!~14140Q19Q2!#. ~27!

A calculation of the coefficients in Eq.~27! for the semielliptic band model and a
T50 shows that ferromagnetic instability exists in a quite narrow density inter
2,nt,2.16.
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4. CONCLUSIONS

The main result of this letter is the discovery of magnetic ordering when wi
small number of excitations for each cell the ground state is a high-spin, disordered
and is determined according to Hund’s rule. This result corresponds qualitative
ferromagnetism in cobalt anda-iron, which possess a nonintegral number of unpai
spinsne51.6 andnt52.2, respectively.
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Instability of the two-dimensional metallic phase to a
parallel magnetic field

V. M. Pudalova)

Institut für Halbleiterphysik, Johannes Kepler Universita¨t Linz, A-4040 Linz, Austria;
Institute for High Pressure Physics, 142092 Troitsk, Moscow Region, Russia

G. Brunthaler, A. Prinz, and G. Bauer
Institut für Halbleiterphysik, Johannes Kepler Universita¨t Linz, A-4040 Linz, Austria

~Submitted 20 May, 1997!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 12, 887–892~25 June 1997!

Magnetotransport studies of the unusual two-dimensional metallic
phase in high-mobility Si–MOS structures are reported. It is found that
a magnetic field applied in the 2D plane suppresses the metallic state,
causing the resistivity to increase dramatically~by more than 30 times!.
The total existence range of the metallic state is found to contain three
distinct types of magnetoresistance, related to the corresponding quan-
tum corrections to the conductivity. The data suggest that the unusual
metallic state is a consequence of both spin and Coulomb interaction
effects. © 1997 American Institute of Physics.
@S0021-3640~97!00712-3#

PACS numbers: 73.40.Hm, 71.30.1h

Recently, convincing evidence for the existence of a 2D metallic state in Si–M
structures at zero magnetic field has been obtained in studies of the quantum Hall
at insulator transitions1 and of the Global Phase Diagram.2 The extended states, which i
high magnetic fieldH are centered in the corresponding Landau bands, were fo
experimentally to merge and remain in a finite energy range asH approaches 0, thus
providing direct transitions from the high-order quantum Hall effect states to
insulator.1 This behavior could not be expected in the framework of the one-param
scaling theory~OPST!,3 where the extended states are anticipated to ‘‘float up’’ in ene
asH→0 ~Ref. 4!. The experimental findings thus prove the existence of a mobility e
whereas the predicted floating would evidently correspond to complete localizatio
subsequent direct studies5,6 the conductivity in high-mobility Si–MOS structures in ze
magnetic field was found to scale with temperature and electric field, and the sc
parameter exhibited a pronounced critical behavior appropriate for a metal–ins
transition.

The observations of the metal–insulator transition at zero magnetic field in
dimensional system raised two major questions:~i! what is the origin of this unforesee
transition, and~ii ! whether or not the one-parameter scaling theory3 is correct in predict-
ing the absence of the metallic state in two dimensions. The majority of experim
data on 2D systems in fact support the results of calculations of the ‘‘quantum co
tions’’ to the classical diffusion7–9 rather than the scaling theory in total.
932 9320021-3640/97/120932-06$10.00 © 1997 American Institute of Physics
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Recently a strong influence of the in-plane magnetic field on the resistivity has
found in Si/SiGe super lattices10 as well as in high-mobility Si–MOS structures.11 In the
current work we report some new experimental evidence for the origin of the me
insulator transition in Si structures and test the applicability of the weak localiza
corrections. We have observed that the magnetic field applied in the 2D plane de
the metallic state and restores the weakly or strongly localized regimes. Over the
ence range of the metallic state we have foundthree distinct typesof magnetoresistance
related to the corresponding quantum corrections due to interference and interacti7,8

The magnetotransport measurements were performed by a 4-terminal dc tech
Four Si–MOS structures were studied: Si-15A with peak mobility~at 0.3 K!
m541,000 cm2/V•s, Si-2Ni with m538,000, Si-22 withm526,000, and Si-39 with
m55,000. While the first three samples exhibited the metal–insulator transition5,6 and a
sharp drop in resistance atT,2 –3 K, the latter low-mobility sample does not show
substantial decrease in resistance.

Figure 1 shows a set of resistivity curves at different temperatures, typica
high-mobility samples.5 At carrier density higher than the critical densitync ~indicated by
an arrow! the resistanceincreaseswith temperature, while at lower densities itdecreases.
The intercept is slightly dependent on temperature. The corresponding separatrix be
the metallic and insulating sets ofr(T) curves in Fig. 2 is rising asT decreases.

Figure 2a represents the ‘‘metallic’’~or high-density! part of ther(T,ns) plot and

FIG. 1. Resistivity versus gate voltage measured on sample Si-22. Different symbols correspond to 1
perature values. The electron density is related to the gate voltage byn51.20531011(Vg20.4), wheren is in
cm22 andVg in volts.
933 933JETP Lett., Vol. 65, No. 12, 25 June 1997 Pudalov et al.
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shows a strong drop~by 53) in the resistivity below;2 K. As T approaches 0,r(T)
saturates and does not show a tendency to increase, at least down to 14 mK. The
mobility sample Si-39 does not display a decrease inr apart from a few percent in the
range 4 to 0.02 K; the latter behavior agrees completely with the OPST.

EFFECT OF THE MAGNETIC FIELD PARALLEL TO THE 2D PLANE

The application of an in-plane magnetic field results in a dramatic increase o
resistance, more than 2 orders of magnitude, as seen in Fig. 2b. At high field
resistance saturates. This behavior was found in all three high-mobility samples, in a
ment with the results of Ref. 11.

At high electron densities, the saturation levelr* (H512.5 T,T→0) seems similar
to the saturation level at high temperatures and zero field,r* (H50,T56 K!, i.e., to the
resistivity anticipated in the OPST-like behavior. Thus, the magnetic field simply
stroys the metallic state. Comparison of the two plots~Figs. 2a and 2b! reveals a remark-
able similarity between the effects of temperature and magnetic field on the resistiv
high densities. Both factors destroy the metallic state and restore the weakly or str
localized regimes. At densities lower than 231011 and closer to the critical densitync , a
magnetic field also gives rise to an additional ten times larger positive magnetoresis

It has been noticed earlier12 that the temperature dependence of the resistivity of
2D metallic phase may be well described by an empirical l
r(T)5r11r2 exp(2T* /T), wherer1 is due to scattering atT50, while the second term

FIG. 2. Resistivity versus temperature for the metallic range of densities, measured on sample Si-15A
field. Different curves correspond to electron densities between 0.83 and 3.7231011 cm22. ~b! Resistivity
versus parallel magnetic field, measured atT50.29 K on sample Si-15 A. Different symbols correspond to g
voltages from 1.55 to 2.6 V, or, equivalently, to densities from 1.01 to 2.1731011 cm22.
934 934JETP Lett., Vol. 65, No. 12, 25 June 1997 Pudalov et al.
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is associated with an energy gap,D5kT* . Since a parallel field does not affect orbit
electron motion, the magnetic field may couple to the 2D electrons only via their s
Our results therefore point to a spin-related origin of the unusual metallic state and
energy gapD.

WEAK LOCALIZATION CORRECTIONS

In a weak perpendicular magnetic field,H,0.1 T, all three high-mobility sample
exhibited weak magnetoresistance, similar to the earlier reported data Ref. 12. Th
row peak inr(H) seen in Fig. 3 is sensitive to the normal component of the field an
missing when the field is aligned with the 2D plane within67 min. Its amplitude does
not vary much with density in the range (92100)31010cm22. These features allow us t
attribute the narrow peak to the orbital single-particle quantum interference correctio
higher fields,H.0.2 T, and at high density,n.431011 cm22, the positive parabolic
magneto resistance dominates in both the parallel and perpendicular field orien
This indicates a spin-related origin of the positive magnetoresistance component
perpendicular field the negative magnetoresistance with decreasing density, over
the positive magnetoresistance, and eventually becomes so large that it preven
observation of the quantum interference peak. The negative magnetoresistance pe

FIG. 3. Normalized magnetoresistance (r(H)2r(0))/r(0) versus the perpendicular magnetic field for diffe
ent densities on sample Si-2Ni atT51.48 K. The curves labeled1 to 12 correspond to the density values o
0.90, 0.96, 1.12, 1.34, 1.56, 2.01, 2.12, 2.67, 3.77, 4.88, 5.98, and 7.0931011 cm22. The curves have been
shifted relative to each other vertically by 0.01.
935 935JETP Lett., Vol. 65, No. 12, 25 June 1997 Pudalov et al.



ct on
field

cor-
ative
ctron
ter-

edge,

r the

ange

if we

t the
al–

were
the

ures
d
y
-

try
n-
ound
ion

2D
argu-

above

al

metal–
both
the insulating range of densities, where it has been explained in terms of a field effe
the tunneling conductance.14 The negative magnetoresistance is not seen in a parallel
and is therefore related to the orbital electron motion.

The positive parabolic magnetoresistance is usually considered as a quantum
rection due to the interaction associated with the Zeeman splitting, while the neg
magneto resistance is associated with a correction due to electron–ele
correlations.7,8 The transition from the spin-dominated to the Coulomb-dominated in
action occurs at a densityn* '2.831011 for Si-15A and Si-2Ni, andn* 51.731011 for
Si-22. These values are noticeably higher than the critical density at the mobility
which is nc59.031010 for Si-15A and Si-2Ni and atnc510.231010 for Si-22. There-
fore, the spin effects and, partly, the Coulomb effects govern the resistivity ove
existence range of the metallic phase.

The persistence of the quantum corrections to the conductivity over the total r
of existence of the metallic state~see Fig. 3! seems to justify the applicability of the
quantum corrections approach to the unusual 2D metal. On the quantitative side,
attribute the positive magnetoresistance~shown in Fig. 2b! to the Zeeman interaction
term in the quantum corrections, than we come up with the conclusion tha
interaction-related quantum corrections are ‘‘blowing up’’ in the vicinity of the met
insulator transition, giving rise to an enhancement factor of up to about 102 to the
Dr(H)/r values. This is not surprising, since the relevant theoretical calculations
done in the limitkFl @1, where thecorrections are small, whereas in the vicinity of
metal–insulator transition, atkFl;1, the quantum corrections may become large.

DISCUSSION

Considering the possible features in which the high-mobility Si–MOS struct
differ from other systems, like GaAs/Al~Ga!As where the mobility edge was not foun
Ref. 15, we would like to note the following:~i! the Coulomb interaction energ
Eee5e2/kr is higher in Si–MOS structures than in GaAs samples~at the same interelec
tron distance,r ) by a factor of 1.7 due to the smaller dielectric constantk57.7 at the
Si/SiO2 interface,1 ~ii ! the Si/SiO2 interface is characterized by a very strong asymme
of the confining potential in thez direction. The latter results in a large effective Lore
zian fieldH* seen by electrons; the corresponding spin–orbit gap at zero field was f
to be equal to'4 K ~Ref. 12!. These effects associated with the broken reflect
symmetry of the confining potential are much less pronounced in GaAs/Al~Ga!As het-
erojunctions and are apparently absent in rectangular potential wells.

It is known that the inclusion of the spin changes the universality class of a
system. The corresponding scaling arguments are is based only on the symmetry
ments and should not depend much on the particular microscopic mechanism. The
spin-related mechanism may be important if the relevant energy gapD5gmH* is larger
than the spin-level broadeningG5h/t. It appears that theD/G ratio is '3 for Si-15A
and Si-2Ni, whileD/G'1 for the low-mobility sample Si-39, which exhibits norm
scaling behavior and no metal–insulator transition.

Thus, based on the data presented here we suggest that the metallic state and
insulator transition in high-mobility Si–MOS structures may be a consequence of
936 936JETP Lett., Vol. 65, No. 12, 25 June 1997 Pudalov et al.
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the spin and the Coulomb interaction effects. The former are enhanced by the b
reflection symmetry of the confining potential well, while the latter provide the neces
large relaxation time in the low electron-density range.

Recently some alternative suggestions on the origin of the unusual 2D metallic
in Si–MOS structures have been made, namely, that it may be induced by the Co
interaction,16 or by spin-triplet pairing,17 or that it might be a manifestation of non-Ferm
liquid behavior.18

One of the authors~V. M. P.! benefited from fruitful discussions with D
Khmelnitskii, V. Kravtzov and I. Suslov. The authors acknowledge support by the
sian Fund for Fundamental Research~Grant 97-02-17387!, by the Russian State Com
mittee for Science and Technology~in the framework of the Programs ‘‘Physics o
Solid-State Nanostructures’’ and ‘‘Statistical Physics’’!, by NWO of The Netherlands
and by FWF of Austria.
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Characteristic features of the temperature dependence of
the surface impedance of YBa 2Cu3O6.95 single
crystals

M. R. Trunin,a) A. A. Zhukov, G. A. Emel’chenko, and I. G. Naumenko
Institute of Solid-State Physics, Russian Academy of Sciences, 142432 Chernogo
Moscow District, Russia

~Submitted 22 May 1997!
Pis’ma Zh. Éksp. Teor. Fiz.65, No. 12, 893–898~25 June 1997!

The real and imaginary parts of the surface impedanceZs5Rs1 iXs of
YBa2Cu3O6.95 single crystals are measured at a frequencyv/2p59.4
GHz. The quantitiesRs(T) andXs(T) are linear functions of tempera-
ture for T,0.3Tc (Tc593.5 K). A maximum ofRs(T) and a plateau
of Xs(T) are observed in the interval 35,T,65 K. Our experi-
mental data, just as all recent measurements ofRs(T) in
YBa2Cu3O6.95 single crystals in the temperature range 0,T,1.3Tc ,
are described well in a two-fluid model which assumes electron–
phonon scattering of quasiparticles. ©1997 American Institute of
Physics.@S0021-3640~97!00812-8#

PACS numbers: 74.25.Nf, 74.72.Bk

The linear temperature dependences of the surface resistanceRs(T) and reactance
Xs(T) in the rangeT,Tc/3 which were observed in microwave measurements of
impedanceZs5Rs1 iXs of YBa2Cu3O6.95~YBCO! single crystals1 provoked a wide dis-
cussion of the symmetry of the order parameter in high-Tc superconductors. In the mi
croscopic models, the linear low-temperature variation of the penetration d
l(T)5Xs(T)/vm0 of the field is due to the fact that the order parameter vanishes a
Fermi surface. According to the theory, the dependencel(T)}T holds: a! in the case of
dx22y2 symmetry of the order parameter,2 b! for anisotropics-type symmetry,3 when
scattering by magnetic impurities leads to gapless superconductivity, and c! in models
with mixed d1s symmetry.4 The quasiparticle relaxation mechanism is especially
portant in calculations of the real partRs(T) of the impedance. For inelastic scattering
antiferromagnetic spin fluctuations in the case a! ~Ref. 5! and for the electron–phono
interaction in the case b! ~Ref. 6! the computed curvesRs(T) had a wide maximum in the
regionT;Tc/2; such a maximum has been observed in high-quality YBCO single c
tals. However, a linear temperature dependence ofRs(T) at low temperatures was no
obtained in microscopic models. In measurements of the impedance of Bi2Sr2CaCu2O8

~Ref. 7! and Ba0.6K0.4BiO3 ~Ref. 8! single crystals at frequency;10 GHz, a linear
variation of the surface resistance was observed in an even wider temperature in
0,T<Tc/2. A phenomenological model describing all above-indicated low-tempera
features of the curvesZs(T) in single crystals of high-Tc superconductors was propose
in Ref. 8.

Recent experiments9–11 with YBCO samples have demonstrated that the contri
938 9380021-3640/97/120938-07$10.00 © 1997 American Institute of Physics
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tion of the CuO2 planes and CuO chains to the measured quantities must be take
account simultaneously. This imposes definite restrictions on the symmetry of the
parameter in YBCO. New features ofZs(T), which do not agree with the purel
dx22y2-wave picture of superconducting pairing, have been found in the microwav
sponse of single crystals9 at intermediate temperatures and at temperatures close toTc .

In the present work we measured the temperature dependences of the surfa
pedance of YBCO single crystals. These dependences also demonstrate difference
existing results1 in the intermediate temperature range. In the two-fluid model all t
perature dependencesRs(T) which we observed also in Refs. 1 and 9 are described
assuming an electron–phonon quasiparticle-scattering mechanism. Taking accoun
features of the behavior ofl(T), which are common to all experiments, at low and clo
to Tc temperatures, we have found an equation describing the curvesl2(0)/l2(T) in the
entire temperature interval.

The YBCO single crystals were grown using the standard yttrium-stabilized z
nium dioxide crucibles. The melt contained 12–15 mole % YBCO and 88–85% o
eutectic mixture 28% BaO:72% CuO. The initial components Y2O3, BaO2, and CuO
were 99.95, 99.90, and 99.95% pure, respectively. Our sample preparation metho
fered from the methods employed in Ref. 12~ZrO2 crucibles! and Ref. 13~BaZrO3

crucibles! mainly in that the homogenization time of the growth solution and the cry
growth time were much shorter. The homogenization time of the fluxed me
T51000 °C did not exceed 1 h because of the fact that accelerated–decelerated rot
of the crucible was used,14 which made intense mixing of the melt possible. The sin
crystals were grown by the temperature-differential method in a time of 2–3 min u
conditions of morphological stability of the crystallization front. The crucible was
canted atT5955 °C and cooled down to room temperature at a rate of 30 °C/h.
single crystals were saturated with oxygen atT5500 °C in an oxygen flow, after which
their critical temperature was equal to 92–94 K. The measurements of the dyn
susceptibility showed that the width of the superconducting transition in the sample
not exceed 0.2 K.

The surface impedance of single crystals with the characteristic dimen
1.531.530.1 mm was measured at a frequency of 9.43 GHz. A sample at the end
sapphire rod was placed at the center of a superconducting niobium cavity operat

theH011 mode. A microwave magnetic field, oriented parallel to theĉ axis of the crystal,
produces circulation of the high-frequency currents in theab plane. The numerical value
of the surface resistanceRs(T) and reactanceXs(T) were determined by the standa
procedure1,15 from the values ofQ and the shift of the resonance frequency measure
functions of the temperature.

Figure 1 displays the typical curves ofRs(T) andXs(T) in the temperature interva
4.2<T<125 K. In accordance with the condition of the normal skin eff
Rs(T)5Xs(T) for T>Tc593.5 K. From the experimental valu
Rs(Tc)5Avm0r(Tc)/2.0.12V we find the resistivityr(Tc).38 mV•cm.

The low-temperature behavior ofRs(T) andl(T) 5Xs(T)/vm0 is demonstrated in
Fig. 2. Both dependences are linear in the temperature rangeT,30 K. Continuing the
Rs(T) line to T50, we obtain the residual surface resistanceRs(0 K)[Rres.235 mV.
939 939JETP Lett., Vol. 65, No. 12, 25 June 1997 Trunin et al.
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Similarly, we find the well-known valuel(0).1400 Å for theab plane in YBCO. The
maximum ofRs(T) characteristic for perfect YBCO crystals is observed nearT.40 K.
In contrast to Ref. 1, we also see a plateau in the curvesl(T) or Xs(T) in the interval
35,T,65 K. Something similar has been observed in microwave experiments
high-quality epitaxial films16 and YBCO single crystals,9 where a bump appears near 6
K against the background of a monotonic temperature dependencel(T).

We shall attempt to describe the results of our measurements in terms of a two
model, according to which the reals1 and imaginarys2 parts of the complex conduc
tivity ss of a high-Tc superconductor at microwave frequencies (vt!1) are

FIG. 1. Temperature dependences of the surface resistanceRs and reactanceXs in a YBCO single crystal.

FIG. 2. Low-temperature dependences ofRs and the penetration depthl5Xs /vm0 of the field. The dashed
straight-line segments were drawn by eye. The valueRs(0 K)[Rres is indicated.
940 940JETP Lett., Vol. 65, No. 12, 25 June 1997 Trunin et al.
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where ns is the density of superconducting carriers andnn is the density of normal
carriers, both types of carriers having the same chargee and massm; t is the relaxation
time. The total carrier densityn at any temperaturet[T/Tc<1 equals the sum
nn(t)1ns(t). The conductivityss(t) is related with the surface impedance by the lo
relation

Zs~ t !5Rs~ t !1 iXs~ t !5Aivm0 /ss~ t !. ~2!

The measured temperature dependencel2(0)/l2(t)5s2(t)/s2(0)5ns(t)/n is
shown ~circles! in the inset in Fig. 3. Given the values ofns(t)/n and therefore
nn(t)/n512ns(t)/n the functiont(t) is the only remaining function of temperature le
to determine in order to determine the conductivityss(t) in Eq. ~1! and the impedance
Zs(t) in Eq. ~2!. To describe the experimental dependencesRs(T) we employ the ex-
pression

1

t~ t !
5

1

t~Tc!

b1t5

11b
, ~3!

whereb't(Tc)/t(0)!1 is a numerical parameter.8 The expression~3! corresponds to
the low-temperature limit of the Bloch–Gru¨neisen formula, which can be put into th
form

1

t~ t !
5

1

t~Tc!

b1t5J5~k/t !/J5~k!

11b
, J5~k/t !5E

0

k/t z5ezdz

~ez21!2
, ~4!

FIG. 3. Comparison of the computed~curves!, from Eqs.~1!–~3! and~5!, and experimental~dots! temperature
dependences of the surface resistanceRs(t)/Rs(Tc) and the imaginary component of the conductivi
s2(t)/s2(0) ~inset!. The temperature-dependent partRs(T) was obtained from the measured value ofRs in
Figs. 1 and 2 by subtracting the residual surface resistanceRres.
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wherek5Q/Tc andQ is the Debye temperature. Fork@1 the relation~3! follows from
Eq. ~4!.

Setting b50.2 in Eq. ~3! and taking the experimental value
ns(t)/n5s2(t)/s2(0) andvt(Tc)5(r(Tc)s2(0))2150.004, we find from Eqs.~1! and
~2! the dependenceRs(t)/Rs(Tc) shown by the curve in Fig. 3; this curve is virtuall
matches the measured quantities~squares! in the entire temperature interval. Hence w
conclude that the electron–phonon scattering mechanism plays the determining r
forming the signalRs(T).

We shall now try to describe the dependences2(t)/s2(0) itself. We note that the
linear section of this dependence at low temperatures and the steep slope of the cu
Fig. 3 nearTc are characteristic of all measurements of the impedance of high-qu
YBCO single crystals. The linear low-temperature variation ofl(T) and Rs(T) in the
model of Ref. 8 was described well by the functionns(t)}(12t)a, wherea is a numeri-
cal parameter. In the inset in Fig. 3 the derivative(1/s2(0))ds2(t)/dt5(1/n)dns(t)/dt at
t51 equals24. This value is identical to that obtained from the two-fluid Gorte
Casimir model (ns(t)}(12t4)) and, as shown in a number works,17 corresponds to an
average electron–phonon interaction greater than 1. For arbitrary temperatureT<Tc we
write a general expression that corresponds to the indicated behavior ofns(t) in both
limits — low and close toTc temperatures,

ns /n5~12t !a~12d!1d~12t4/d!, ~5!

where 0,d,1 is a weighting factor. The line representing the function~5! with
a55.5 andd50.5 agrees very well with the experimental values ofs2(t)/s2(0).

So, all observed features of the temperature dependence of the impedance of
are described in the proposed two-fluid model. The equations~1!–~5! also describe our
measurements ofZs(T) for other YBCO single crystals grown by a similar metho
Furthermore, we checked the applicability of the model for describing the experim
results of Refs. 1 and 9 obtained by other authors.

Figure 4 displays the data taken from Ref. 9. The circles correspond to the mea
ments performed in Ref. 1 on YBCO single crystals grown using ZrO2 crucibles~YSZ!.12

The only difference from the measurements in Ref. 1 are that the values ofRs(T) are too
low in the liquid-nitrogen temperature range: The value ofRs(77 K) observed in Ref. 1
was always higher thanRs(4.2 K). The measured valuevt(Tc)50.003. The dashed
curves show the computational results obtained with Eqs.~1!–~3! and~5! and agree well
with the experimental values whena50.8, b50.01, andd50.3.

The squares in Fig. 4 correspond to the new results9 obtained for YBCO crystals
from BaZrO3 crucibles~BZO!.13 Two distinguishing features are seen: a relatively sm
temperature interval 0,T!Tc of a linear variation ofs2(t), which rapidly converts into
a quadratic variation with increasing temperature, and an appreciable ris
Rs(t)/Rs(Tc) for t.0.5, increasing rapidly very close toTc . Nonetheless, taking the
experimental values ofs2(t)/s2(0) andvt(Tc)50.004 and using for 1/t(t) expression
~4! with b50.02 andk54, we obtain from Eqs.~1! and~2! the temperature dependenc
Rs(t)/Rs(Tc) shown by the solid curve in Fig. 4 and demonstrating all experime
features~squares!. This confirms once again the conclusion that quasiparticles in YB
942 942JETP Lett., Vol. 65, No. 12, 25 June 1997 Trunin et al.
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relax by the electron–phonon mechanism. The transition from the linear to the qua
regime ins2(t) for t!1 can be described by introducing an additional factor (11ht) in
the first term forns(t) in Eq. ~5!. Then the solid line in the inset in Fig. 4 obtains f
a52.2, h52, andd50.04.

Therefore all features of the measured temperature dependencesZs(T) for YBCO
single crystals are described in the two-fluid model considered above, despite the
ence in the measured temperature dependencesZs(T) in YBCO single crystals prepare
by different methods.

This letter has examined the characteristic features in the temperature depende
the surface impedance of high-quality YBCO single crystals.Our measured curves~Fig.
3! fall between the existing1 and very recent9 results, represented by the circles a
squares, respectively, in Fig. 4. While the overall features at low temperatures a
same, the experimental dependences differ in the intermediate and close toTc tempera-
ture ranges. Lack in a generally accepted microscopic model of the microwave resp
we propose a description of the observed features in the entire temperature interval
basis of a simple phenomenological model. The consequences of this model co
important both in comparing with other experiments and for constructing a microsc
theory of high-Tc superconductivity.

We thank V. F. Gantmakher and G. E´ . Tsydynzhapov for valuable remarks. Th
work was performed as part of Project 97-02-16836 of the Russian Fund for Fundam
Research and Project 96-060 of the Government program ‘‘Superconductivity.’’
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Dynamic solitons in uniaxial and orthorhombic magnets are investi-
gated. It is shown that centrosymmetric solitons can be unstable with
respect to elliptic distortions. ©1997 American Institute of Physics.
@S0021-3640~97!00912-2#

PACS numbers: 75.10.2b

1. Nonlinear excitations — topological solitons~see Ref.1! — play an important role
in the physics of low-dimensional magnets.2,3 For two-dimensional~2D! magnets with
discrete degeneracy, i.e., magnets with easy-axis anisotropy ororthorhombic magn
is important to take account of localized stable~quite long-lived! 2D solitons.2,3 Accord-
ing to experiments,4 they determine the relaxation of magnetic disturbances and
produce peaks in the response functions.5

2. Let us consider an orthorhombic ferromagnet~FM! with energy of the form

W5E d2xH AF S ]u

]xi
D 2

1S ]w

]xi
D 2

uG1K~11e sin2w!sin2 uJ , ~1!

whereu and w determine the magnetization vectorm, m251, mx1 imy5sinu exp(iw),
A and K are the exchange and anisotropy constants, respectively, ande describes the
anisotropy in the basal plane. According to the Hobart–Derrick theorem~see Refs. 1–3!,
stable static 2D solitons do not exist for such a model. However, dynamic sol
~precession solitons for purely uniaxial FM withe50 ~Refs. 1–3! or rotation solitons6,3!
are possible for the model~1!. Their existence is due to the conservation of thez pro-
jection of the orbital angular momentumL of the magnetization field or~for e50) the
z projection of the total spinS. In units of Planck’s constant\ ~heres is the spin of the
atom, a is the lattice constant, and the square brackets denote the vector or ‘‘c
product!

L5~s/a2!E d2x~12cosu!@r ,¹w!], S5~s/a2!E d2x~12cosu!. ~2!

Let us consider rotation solitons, whose existence is due to the exact~even fore
Þ0) symmetry~1! relative to spatial rotations in the (x,y) plane of a 2D magnet. This
soliton corresponds to a dynamic but stationary solution of the formu( x̄ , ȳ ) and
w( x̄ , ȳ ), where x̄ 5x cosvt2y sinvt and ȳ 5x sinvt1y cosvt are coordinates in a
rotating coordinate system, to the Landau–Lifshitz equations.6 For e50 a simple cen-
945 9450021-3640/97/120945-06$10.00 © 1997 American Institute of Physics
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trosymmetric~CS! solution can be chosen:u5u0(r ) and w5nx1w0, where n is the

topological charge, andr 5( x̄ 21 ȳ 2)1/2 andx5tan21( ȳ / x̄ ) are polar coordinates in th
rotating system. The functionu0(r ) can be easily found by solving an ordinary differe
tial equation~see Refs. 1–3!.

The situation is more complicated for noncentrosymmetric solutions~we shall see
that they exist for botheÞ0 ande50). The structure of the soliton is determined by tw
nonlinear partial differential equations for the functionsu(r ,x) andw(r ,x). There is no
general method for analyzing the localized solutions of such equations and the stab
the solutions. Soliton solutions can be constructed numerically by the molec
dynamics method, but this requires large amounts of computer time, even with m
computers.7 For this reason we shall analyze the structure and stability of the soliton
direct variational methods.

3. The equations foru(r ,x) andw(r ,x) can be obtained as a condition of extrem
ality for the auxiliary functionalL$u,w%5W2\vL ~Ref. 6!. A soliton corresponds to a
conditional extremum of the energy for fixedL; \v is a Lagrange multiplier
dE(L)/dL5\v.

For models of FMs in which static solitons exist~see Refs. 2, 3, and 8!, the func-
tionalsL andW are identical and the question of stability is solved simply: A minimu
of the energy corresponds to a stable soliton. For a dynamic soliton the situation is
complicated: A saddle point of the functionalL corresponds to both stable and unsta
solitons~1! ~see below!.

In accordance with Lyapunov’s direct method~see, for example, Ref. 9!, a soliton is

stable if there exists a Lyapunov functionalL̄$u,w% such that~i! the functional is
positive-definite near the soliton solution and~ii ! its time derivative, found taking accoun
of the equations of motion, is negative or zero. Choosing the Lyapunov functional i

form of a combination of integrals of motion,L̄5L1B(L2L0)2, whereL0 is the value
of L in the soliton andB is a constant, the condition~ii ! can be satisfied in the form

dL̄/dt50.

The same Lyapunov functionalL̄ was chosen to analyze the stability of nontop

logical magnetic solitons.9 It was found that ifL̄,0 in some region near a soliton, the
the soliton is unstable. We showed that this condition of instability is also valid
centrosymmetric topological solitons~Chetaev’s functional describing instability is cho

sen in the same form as in Ref. 9!. Therefore solitons are stable ifL̄.0; otherwise, the
solitons~at any rate CS solitons! are unstable.

4. We shall seek a soliton in the class of trial functions which depend onn param-
etersa1, . . . , an . ThenL$u,w%→L(a1 , . . . ,an ,v) and the condition of an extremum
takes the form of a system ofn algebraic equations]L/]ai50 . Once their solution
ai

(0) has been found, the energy of the solitonE(v) andL(v) can be calculated and th
function E5E(L) can be constructed.

To analyze the stability condition~i! we investigateL̄ for small deviations of the
parametersai from ai

(0) . Introducinga i5ai2ai
(0) , we write
946 946JETP Lett., Vol. 65, No. 12, 25 June 1997 A. A. Zhmudski  and B. A. Ivanov
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We now diagonalize the matrixL ik , L ik5diag(l1 , . . . ,ln). The eigenvaluese i of
the quadratic form L̄ are determined by the determinant of the syst
(l i2e)a i1BLi(S jAja j )50. Multiplying the ith equation byLi /B(l i2e), summing
over i , cancelling outS iAia i , and taking the limitB→`, we obtain the dispersion
relation F(e)[S iL i

2/(l i2e)50. Its solutionse i lie betweenl i and l i 11; see Fig. 1.
Therefore if the matrixL ik possesses two or more negative eigenvalues, then one e
valuee i,0, and the soliton is unstable. However, if only onel is negative, then stability
is determined by the sign ofF(0): For F(0).0 the smalleste,0 and forF(0),0 all
e are positive and the soliton is stable. The quantityF(0) can be related with the
derivativedL/dv. Indeed, let us writedL/dv5( iL i(dai /dv). Differentiating the rela-
tion ]E/]ai2\v]L /]ai50 with respect tov, we obtain(kL ik(dak /dv)5\Li , which
implies thatdL/\dv5F(0).

Therefore, just as for nontopological solitons~see Refs. 1, 2, and 9–11!, the condi-
tion of stability of a topological soliton can be written in terms of the integral charac
istics of the soliton. Therefore there is hope that the application of trial functions will
quite accurate results.

5. Concrete calculations were performed with a trial function of the form

tan
u

2
5

R

r
expS 2

r

bD ~11C1 cos 2x!, w5x1w01C2 sin 2x, ~3!

which depends on five trial parametersR, b, C1 , C2 , andw0 and gives a good approxi
mation of the structure of the soliton.8 Indeed, the functionu0(r ) ~3! gives a description
of the Belavin–Polyakov limit, which is adequate forR!D, and exponential decay o

FIG. 1. The form of the functionF(e). The curves1 and2 correspond toF(0),0 andF(0).0.
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u(r ) for r .D, whereD5AA/K is a characteristic length. The angular dependences a
with those obtained forR!D or e!1.8 The equations]L/]ai50 were solved by New-
ton’s iteration method; the initial values of the parametersai were set manually. The
values ofE, L, andS as well as the eigenvalues ofthe matrixL ik were calculated from
the quantitiesai

(0) which were found. The functionsE(L) and S(L) are presented in
Fig. 2.

For all values ofe andv02v!v0, wherev0 is the gap in the magnon spectrum
the soliton radius is small,R!D. As v→v0, the energy of the soliton approach
E058pA, equal to the Belavin–Polyakovenergy; hereL is much smaller than the char
acteristic lengthL052ps(D/a)2, L0@1. The values of the anistropy paramete
C1and C2 for L!L0 remained small even fore;1 (C1and C2,1022 for e50.5 and
v>0.8v0, which corresponds toL<0.03L0). As the frequency decreases, the values
E andL increase, i.e.,dv/dL,0. The parametersC1 andC2 likewise increase for FMs
with eÞ0.

In the isotropic casee50, centrosymmetric solitons withC1 , C2<1026 were easily
obtained for allv<v0. For CS solutionsL(v)52S(v) (L,0 in the soliton, see Refs
1 and 7! and, to within 1024, the functionE(S) was identical to the functionE(S)
obtained previously by integrating the equations foru0(r ).1–3 This demonstrates the
adequacy of the method and of the trial function~3!.

It was found that the solution need not be unique.~The program found one o
another solution depending on the choice of the initial values ofai .) Specifically, for
small e ~the casese50 ande51024 were studied, and the results were virtually iden

FIG. 2. The functionsE(L) andS(L) ~in units of E0 andL0). The curves1 ~with no symbols! and the curves
2 (s) correspond to centrosymmetric and anisotropic solitons in the limite→0; curve3 (d) corresponds to a
soliton with e50.5.
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cally! andv<0.50v0, besides centrosymmetric solutions, anisotropic solutions for wh
C1 andC2 were not small were also found. Significantly, for these solutions the valu
uL(v)u increased with decreasingv much more rapidly than didS(v). For this reason
the functionsE(L) andE(S) were fundamentally different: If solitons with a fixed valu
of S are considered, then CS solitons have a lower energy; however, ifL is fixed, then the
anisotropic solitons have a lower energy. For anisotropic models with values ofe that are
not small, the value ofuL(v)u increased more rapidly than for an anisotropic soliton i
FM with e'0. It was found that although the energy of the soliton in a FM witheÞ0
and fixedv is clearly greater than in the casee50, the energy of a soliton in a FM with
basal-plane anisotropy and fixedL is lower than fore50.

In calculating the eigenvaluesl i of the matrixL ik5]2L/]ai]ak it was found that at
least onel i ,0 and that solitons correspond to a saddle point ofL. For all solitons
considered, the derivativedL/dv,0, which is necessary in order for the solitons to
stable. It was found that the second condition — the fact that only one eigenvaluel1 is
negative — is satisfied only for a soliton whose energy is minimum for fixedL. Specifi-
cally, for a CS soliton in a FM withe'0 the second eigenvaluel2>0 only ifv>0.5v0.
If v<0.5v0, when an anisotropic solution appears,l2 changes sign and the CS solito
becomes unstable~see Fig. 3!. In this case, for an anistropic soliton onlyl1 is negative,
and the soliton is stable in its entire region of existence. For nontopolog

FIG. 3. The three lowest values ofl versusL for e50. The solid and dashed lines correspond to centrosy
metric and anisotropic solitons. The curve marked with the arrow is plotted on a 1/2 scale.
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multidimensional solitons, in a wide class of models the signs ofl are the same for al
soliton parameters~Refs. 10, 9; see also Ref. 11!.

In summary, dynamic rotation solitons with energyE close toE0 are present in FMs
with large basal-plane anisotropy. Centrosymmetric precession solitons exist in un
FMs, but their symmtery is broken spontaneously for not very high ene
(E>1.83E0): They become unstable and the anisotropic soliton is stable. As far a
know, the stability of topological solitons and anisotropic 2D solitons in isotropic mo
has not been previously discussed.

We thank Yu. S. Kivshar’ for a discussion. This work was supported in part by
Ukrainian Fund for Fundamental Research under Grant No. 2.4/27.
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