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The problem of storing ultracold neutrons over a plane magnetic mirror in the presence of gravity is considered.
For neutrons with a definite polarization, the sum of the magnetic and gravitational potentials can have a min-
imum and, hence, form a magnetic gravitational trap. For low energies of vertical motion, the neutron state in
this well is quantized. The possibility of accomplishing the corresponding quantum gravitational experiment is
analyzed. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.75.Be
Ultracold neutrons and a quantum gravitational
experiment. Shortly after the discovery of ultracold
neutrons (UCNs), it has become possible to operate
with neutrons whose energies are so low that the quan-
tum effects become significant even in the interaction
of UCNs with macroscopic objects. In particular, it was
illustrated in [1], where the problem of storing UCNs
on a horizontal mirror in the presence of the gravita-
tional force was considered. The classical analysis of
this problem is, obviously, correct only if Ez @ "ωr,
where Ez is the energy of vertical motion and ωr is the
cyclic frequency of neutron reflections from the mirror.
For low energies, this condition is not satisfied and the
quantum approach is necessary.

The potential in the corresponding quantum prob-
lem has the shape of a triangular well bounded by the
effective mirror potential Uef > E at z < 0 and by the
gravitational potential Vg = mgz at z > 0. The energy of
vertical motion is quantized, and the spatial distribution
of neutrons is determined by the Airy-type wave func-
tions. The solution is characterized by the energy εg ≈
0.6 × 10–12 eV and length lg ≈ 5.9 × 10–4 cm constants.
The energy quantization for UCNs stored on a plane
was observed experimentally in [2].

Since the main parameters of the problem are deter-
mined by the gravitational acceleration, one can believe
that the measurement of this effect can be quite suitable
for studying the gravitational interaction of a neutron.
In particular, Abele and Westphal [3] obtained an upper
estimate for the hypothetical gravitational-like interac-
tion between a neutron and a mirror, which was
obtained from the comparison of experimental data [2]
with theory.
0021-3640/04/7907- $26.00 © 20313
In this paper, we discuss one more possibility of
observing neutron quantum states in the gravitational
field of the Earth.

UCN magnetic gravitational trap. Our proposal is
that the Vladimirskiœ magnetic mirror [4] can be used
instead of a material mirror. Let the mirror magnetic
system be placed in the Z = 0 plane and present a set of
strip alternating currents flowing along the Y axis with
spatial period d. It is known that, even at comparatively
small distances from the conductors, magnetic field has
the form [4]

(1)

where γ = 2π/d. Such a field could be created over the
entire half-space z > 0 by a current flowing in the z = 0
plane with the density distribution j = (c/2π)Bmsin(γx).

If the neutron motion in a magnetic field is adiabat-
ically slow [4], the spin vector remains parallel or anti-
parallel to the field. Therefore, the magnetic interaction
potential of neutron has the form

(2)

where µ is the neutron magnetic moment. With allow-
ance for the gravitational force, the total potential is 

(3)

For one of the spin components, this potential has a
minimum and forms a potential well (Fig. 1). At the
minimum point, we have

(4)

Bz Bme γz– γx( ),cos=

Bx Bme γz– γx( ),sin=
e

2γz–
 ! 1, z 0,>

um µ B , B z( )± Bme γz– ,= =

U z( ) µBme γz–± mgz.+=

um +µ B , γµBme γz– mg z 0>( ),= =
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and the total force is zero. Equality (4) is the condition
for the “magnetic suspender” at the point z = L > 0.
Equation (4) can be rewritten as

(5)

where B0 = Bme–γL is the field magnitude in the equilib-
rium plane z = L.

The presence of a potential well implies that a neu-
tron with a sufficiently low vertical velocity can be
trapped in it and oscillate near the equilibrium plane.
For small values of the variable

, (6)

we obtain

(7)

to the second-order terms inclusively. The variable part
of the potential

(8)

determines the elastic constant C of the corresponding
oscillator

(9)

The oscillation frequency near the equilibrium point is
given by the formula

(10)

and the amplitude η0 is determined by the energy Ez of
vertical motion:

(11)

γ mg/µB0,=

η z L–=

U mgL µB0
1
2
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Fig. 1. Potential over the magnetic mirror for two spin com-
ponents.
The harmonic approximation adopted in these expres-
sions is valid under the condition

(12)

The classical description of motion is valid if

(13)

For lower neutron energies, the quantum description
is necessary, and the problem reduces to the well-
known problem of a linear oscillator (see, e.g., [5]). The
energy spectrum and wave functions have the form

(14)

(15)

respectively, where Hn are Hermitian polynomials.

Figure 2 shows the neutron spatial distributions near
the equilibrium plane, as calculated by formula (15) for
the first five levels (n = 0–4). The integral distribution
obtained by summing up the densities from n = 0 to n =
N (N = 3–7) is shown in Fig. 3. The horizontal axis is
the dimensionless coordinate ξ = κη , where κ =

.

Numerical estimates and possible realizations.
All parameters of the problem are not fixed and depend
strongly on the magnitude and geometry of a magnetic
field. This is the main distinction from the case of UCN
storage on the plane, where the effective potential is
a priori specified. Let us take the magnetic-field mag-
nitude B0 as the parameter of the problem. The expo-
nential decrease of the field and the equality of the mag-
netic and gravitational forces determine the exponent γ

η0 ! γ 1–  or Ez ! µB0.

Ez @ "ω ε, ε "
mg2

µB0
---------.= =

En n
1
2
---+ 

  ε,=

ψn η( ) mω
π"
-------- 

 
1/4 1

2nn!
---------------e

mω
2"
--------η2–

Hn η mω
"

-------- 
  ,=

mω/"

Fig. 2. Square of the absolute value of wave function for
several lower states in a trap.
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given by Eq. (5). Thus, the potential shape proves to be
determined.

Let us make some estimates. Let the magnetic field
B0 = 0.5 G, which corresponds to γ–1 = 3 × 10–3 cm. To
create field with such damping, a current structure with
a period of 0.2 mm is required. In this case, the fre-
quency is ω = 576 s–1, which corresponds to the charac-
teristic energy ε ≈ 3.8 × 10–13 eV. This energy is lower
than the magnetic energy µB0 = 3 × 10–12 eV by an order
of magnitude, so that the harmonicity condition is well
fulfilled for lower levels. In order for the width of levels
to be much less than the distance between them, the
neutron residence time in the system must be t @ "/ε.
For the longitudinal neutron velocity V ≈ 5 m/s, typical
for UCNs, this relation is valid for a mirror length of
several centimeters. The spectrum of states is given by
Eq. (14), and the constant κ ≈ 9.6 × 102 cm–1 determines
the scale of spatial distribution. The distribution is
given by Eq. (15), and the scale unit in Figs. 2 and 3
corresponds to κ–1 = 10 µm.

Finally, the distance L from the magnetic mirror to
the equilibrium point can be chosen arbitrarily. As is
seen in Fig. 3, the first ten states are localized in the
region ±50 µm from the equilibrium plane. Taking L =
100 µm (Lγ ≈ 3.3), we find from Eq. (5) that the mag-
netic field on the mirror surface must be on the order of
15 G. The experimental parameters presented above are
quite realistic.

Knowing Lγ, one can estimate the accuracy of
Eq. (1) for field distribution. If the sign of strip current
reverses after a half of the period, the contribution from
the higher harmonics to the magnitude of magnetic
field with the aforementioned mirror parameters will be
about 1%.

A neutron moving along the Y axis near the equilib-
rium plane is in a constant uniform magnetic field. For
the other velocity direction, the neutron passes through
regions with different field directions. Thus, in the neu-
tron-fixed coordinate system, there is a magnetic field
that rotates with frequency Ω = 2πVx/d, where Vx is the
velocity X component. Therefore, the condition for the
adiabatically slow motion [4] is formulated as

(16)

where ωL is the Larmor frequency and θ is the angle
between the velocity and the Y axis.

For the velocity V = 5 m/s, typical of UCNs, and the
chosen B0 value, condition (15) requires a quite good
beam collimation θ ! 0.05. We note that the ratio ωL/Ω
is proportional to , because the structure period d =
2π/λ is proportional to B0 according to Eq. (5).

The possibility of observing the quantum properties
of the magnetic gravitational trap was demonstrated in
[2], where the spatial distribution of neutrons stored on
a material mirror was measured. The possibility of

ωL @ Ω, ωL

2µB0

"
-------------, Ω 2πV θsin

d
----------------------,= =

B0
2
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observing the transitions between levels in an alternat-
ing magnetic field also seems to be promising.

In conclusion, we note that the illumination condi-
tions in the experiment on the observation of gravita-
tional levels in the magnetic gravitational trap are
worse than those in the experiment discussed in [1, 2],
which is caused both by a lower energy of the state and
by the requirements on the beam collimation. However,
this disadvantage is completely compensated by a
much higher sensitivity of the spatial position of a
trapped neutron to the gravitational acceleration. This
sensitivity is due to the fact that the characteristic
length constant lgm = γ–1 is inversely proportional to g,
whereas lg ∝  g–1/3 [1]. Moreover, the length constant
lgm [µm] = 60 × B0 [G] is much larger than lg.

A.I.F. is grateful to V.I. Furman for stimulating dis-
cussions. This work was supported by the Russian
Foundation for Basic Research (project no. 04-02-
16929) and INTAS (grant no. 00-00043).
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Fig. 3. Total neutron-density distribution on several lower
levels.
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A new method for analyzing chaotic synchronization is proposed. It is based on the introduction of the family
of phases for a chaotic signal using a continuous wavelet transform. The method is used to study the synchro-
nization of two chaotic dynamical systems with ill-defined phases. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 05.45.Xt; 02.30.Uu
Phase synchronization [1, 2] of systems in the cha-
otic dynamical regime is one of the most important phe-
nomena in the modern theory of nonlinear oscillations.
Phase synchronization was experimentally observed
for radio generators [3], lasers [4], electrochemical
oscillators [5], heart rate [6], gas discharge [7], etc. (see
also reviews [2, 8, 9]). It is quite important to study the
chaotic synchronization in the information transmis-
sion by the deterministic chaotic oscillations [10].

When describing and analyzing phase synchroniza-
tion, one usually introduces the phase φ(t) of a chaotic
signal [1, 2, 8, 9]. Phase synchronization means that the
phases of chaotic signals are locked, whereas their
amplitudes remain uncorrelated and chaotic. Phase
locking leads to the coincidence of the signal frequen-
cies. The frequency of a chaotic signal is defined as the

average rate of phase variation .

At present, no universal method of introduction of
the phase of chaotic signal exists that would be suitable
for any dynamical systems. There are several methods
of phase introduction that are suited to “good” systems
with a simple topology of chaotic attractor. First, the
phase φ(t) of a chaotic signal is introduced as the angle
in the polar coordinate system on the (x, y) plane [11]:

(1)

In this case, all trajectories of the projection of chaotic
attractor on the (x, y) plane must rotate about the origin
of coordinates.

Second, to define the phase for a chaotic dynamical
system, the analytical signal [1, 8]

(2)

φ̇ t( )〈 〉

φ t( ) y t( )
x t( )
---------.arctan=

ζ t( ) x t( ) j x̃ t( )+ A t( )e jφ t( )= =
0021-3640/04/7907- $26.00 © 20316
is introduced, where the function  is the Hilbert
transform of the time realization x(t):

(3)

Correspondingly, the phase φ(t) of chaotic signal x(t) is
determined from Eqs. (2) and (3).

Third, to define the phase of a chaotic signal, the
surface of the Poincaré section [1, 2, 8] is used, and the
phase is defined as

(4)

where tn is the time corresponding to the nth intersec-
tion of the phase trajectory and the surface of Poincaré
section.

All these approaches give similar results for good
systems [1, 2, 8, 9]. At the same time, they give contra-
dictory results for systems with ill-defined phase (see,
e.g., [2, 12, 13]). The traditional methods, as a rule, fail
to reveal the presence of phase synchronization. For
this reason, phase synchronization in such systems can
be revealed by indirect measurements [12], in particu-
lar, by the calculation of Lyapunov exponents [2, 8, 14].

In this work, we consider a new method of revealing
phase synchronization in dynamical systems with ill-
defined phase. The behavior of such systems can be
characterized by a continuous phase set defined on the
basis of the following continuous wavelet transform
[15] of the chaotic signal x(t):

(5)

x̃ t( )

x̃ t( ) 1
π
--- x τ( )

t τ–
---------- τ .d

∞–

+∞

∫=

φ t( ) 2π
t tn–

tn 1+ tn–
------------------- 2πn, tn t tn 1+ ,≤ ≤+=

W s t0,( ) x t( )ψs t0,* t( ) t,d

∞–

+∞

∫=
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where the asterisk means the complex conjugation and

(6)

is the wavelet function obtained from the mother wave-
let . The time scale s determines the width of
the wavelet ψ0(t), where t0 is the time shift of the wave-
let function. We note that the notion of the time scale is
used in the wavelet analysis instead of the notion of fre-
quency in the Fourier analysis.

As the mother wavelet, we use the Morlet wavelet
[15, 16]

(7)

The wavelet parameter ω0 = 2π ensures the relation s .
1/f between the time scale s and frequency f of the Fou-
rier transform.

The wavelet surface

(8)

characterizes the behavior of the system for every time
scale s at any time t0. The quantity |W(s, t0)| character-
izes the presence and the intensity of the corresponding
time scale s at time t0. It is also convenient to introduce
the integral energy distribution over the time scales in
the wavelet spectrum:

(9)

The phase φs(t) = (s, t) also proves to be natu-
rally defined for every time scale s. In other words, the
behavior of each time scale s can be characterized using
the associated phase φs(t).

Let us consider the behavior of two different cou-
pled chaotic oscillators. If these oscillators are not in
the phase-synchronization regime, their behaviors are
asynchronous on all time scales s. As soon as the
dynamical systems under consideration are synchro-
nized on some time scales (e.g., upon an increase in the
coupling parameter between the systems), the phase-
synchronization regime arises. The time scales
accounting for the greatest fraction of the wavelet-spec-
trum energy E(s) are, obviously, synchronized first. The
other time scales remain unsynchronized. In this case,
phase synchronization leads to phase locking on the
synchronized time scales s:

(10)

Here, φs1, 2(t) are the continuous phases of the first and
second oscillators, respectively, corresponding to the
synchronized time scales s.

The approach based on the continuous wavelet
transform can successfully be applied to any dynamical
systems, including systems with ill-defined phase. As

ψs t0, t( ) 1

s
------ψ0

t t0–
s

----------- 
 =

ψs t0, t( )

ψ0 η( ) 1

π4
------- jω0η( ) η2/2–( ).expexp=

W s t0,( ) W s t0,( ) e
jφs t0( )

=

E s( ) W s t0,( ) 2 t0.d∫=

Warg

φs1 t( ) φs2 t( )– const.<
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an example, we consider the behavior of two different
coupled Rössler systems [17] in the spiral-chaos
regime:

(11)

where ε is the coupling parameter, ω1 = 0.98, ω2 = 1.03,
a = 0.22, p = 0.1, and c = 8.5.

Figure 1 illustrates the behavior of two coupled
Rössler systems for a small coupling parameter ε =
0.025. The energy spectra E(s) of the wavelet transform
for the first and second systems are different (Fig. 1).
However, the maximum energy occurs at approxi-
mately the same time scale s for both cases. According
to Fig. 1, the phase difference φs1(t) – φs2(t) increases
infinitely for all time scales. This means that the sys-

ẋ1 2, ω1 2, y1 2,– z1 2,– ε x2 1, x1 2,–( ),+=

ẏ1 2, ω1 2, x1 2, ay1 2, ε y2 1, y1 2,–( ),+ +=

ż1 2, p z1 2, x1 2, c–( ),+=

Fig. 1. Normalized energy spectrum E(s) of the wavelet
transform for the (1) first and (2) second Rössler systems,
and the phase difference φs1(t) – φs2(t) between two coupled
Rössler systems with the coupling parameter ε = 0.025. The
synchronization regime is absent.



318 KORONOVSKIŒ, HRAMOV
tems under consideration do not involve synchronized
time scales. Therefore, the systems are unsynchronized.

As the coupling parameter increases, the systems
are brought to the phase-synchronization regime (see,
e.g., [11]). In particular, indirect measurements [12]
show that two coupled Rössler systems with the cou-
pling parameter ε = 0.05 are in the phase-synchroniza-
tion regime. Figure 2 shows the phase difference
φs1(t) – φs2(t) for this case. It is seen that phase locking
occurs at the time scale s = 5.25 corresponding to the
maximum energy in the wavelet spectrum E(s) (Fig. 2).
Thus, two Rössler systems are synchronized with each
other at the time scale s = 5.25 and, simultaneously, at
close time scales. It is significant that strongly differing
time scales (e.g., s = 4.5, 6.0, etc.) remain unsynchro-
nized, and phase locking is not observed for these
scales (see Fig. 2 and cf. Fig. 1).

Fig. 2. The same as in Fig. 1 but for the coupling parameter
ε = 0.05. Both systems are synchronized with each other on
the time scales s = 5.25, and phase-synchronization regime
prevails in the systems.
With a further increase in the coupling parameter,
the hitherto unsynchronized time scales become syn-
chronized. The number of time scales for which the
phase locking occurs increases. At the same time, some
time scales remain unsynchronized. With a further
increase in the coupling parameter e, the number of
synchronized time scales increases, and, when all time
scales are synchronized, the lag synchronization
regime prevails in the system [18].

The above qualitative picture of time-scale synchro-
nization is illustrated in Fig. 3a, in which the upper sb

and lower sm boundaries of the scale range where syn-
chronization condition (10) is met are shown as func-
tions of the coupling parameter ε. The chaotic phase
synchronization arises at ε = 0.039, when phase locking
occurs in a certain scale range ∆s = (sb – sm). Further,
with an increase in ε, the range ∆s of synchronized
scales expands until all scales become synchronized
(lag synchronization regime).

It is convenient to characterize the degree of chaotic
synchronization of two chaotic subsystems by the

Fig. 3. (a) The upper sb and lower sm boundaries of the
region of synchronized scales, and (b) the energy fraction γ
falling on the synchronized scales for the Rössler system vs.
the coupling parameter ε.
JETP LETTERS      Vol. 79      No. 7      2004
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energy fraction falling on the synchronized scales in the
wavelet spectrum:

(12)

where E(s) is the integral energy distribution over scales
(9) for the wavelet spectrum. The corresponding γ(ε)
dependence is shown in Fig. 3b. As is seen, the energy
fraction falling on the synchronized scales of the chaotic
oscillatory process increases with an increase in the cou-
pling parameter. For the coupling parameter ε = 0.039
corresponding to the appearance of the phase synchroni-
zation regime, the energy fraction falling on the synchro-
nized scales is γ = 0.21. For large coupling parameters
(ε > 0.2), γ tends to unity, which means that the whole
energy of chaotic oscillations falls on the synchronized
scales, and, as was mentioned above, the lag synchroni-
zation regime prevails in the system.

In conclusion, several important comments are note-
worthy. First, the traditional approaches (1)–(4) of
revealing the phase-synchronization regime through
the introduction of a phase of the chaotic signal can be
used for the analysis of time series characterized by the
Fourier spectrum with a pronounced main frequency f0.
In this case, the phase φs0 introduced for the time scale
s0 . 1/f0 approximately coincides with the phase φ(t)
introduced for the chaotic signal by the traditional
method given by Eqs. (1)–(4). Indeed, since the other
frequencies (or other time scales) do not make a tangible
contribution to the Fourier spectrum, the phase φ(t) of
the chaotic signal is close to the phase φs0(t) of the main
frequency component f0 (and, correspondingly, of the
main time scale s0). In this case, the average frequencies

 =  and  =  must coincide with each
other and with the main Fourier frequency f0 (see [13]):

(13)

If the chaotic time realization is characterized by the
Fourier spectrum without a pronounced main spectral
component, the traditional approaches given by
Eqs. (1)–(4) do not apply. In this case, the behavior of
the system must be considered at various time scales.
However, such a consideration is impossible with the
use of instantaneous phase φ(t) introduced for the cha-
otic signal by Eqs. (1)–(4). In contrast, the approach pro-
posed above on the basis of continuous wavelet trans-
form with the introduction of a continuous phase set can
be successfully used for any type of chaotic signal.

This approach can also be used to analyze the exper-
imental data, because it does not require any a priori
information on the system under study. Moreover, the
wavelet transform can reduce the noise effect in some
cases [15, 19]. The above method can likely be useful
and efficient for analyzing the time series generated by
physical, biological, physiological, and other systems.

γ E s( ) s/ E s( ) s,d

0

∞

∫d

sm

sb

∫=

f φ̇ t( )〈 〉 f s0 φ̇s0 t( )〈 〉

f f s0 f 0.= =
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Thus, a new method for describing the chaotic syn-
chronization is proposed. It is based on the continuous
wavelet transform and analysis of the system dynamics
on various time scales. This approach applies to any
chaotic systems and experimental time series.

This work was supported by the Russian Foundation
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Stimulated Smith–Purcell Radiation
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The design of free-electron lasers (FELs) based on submillimeter-range undulators involves difficulties associ-
ated with the fabrication of undulators with a very small period. To do this also requires accelerators with high-
energy electron beams (>50 MeV). It should also be taken into account that these facilities use precision and
expensive magnetic systems. In some works, an alternative FEL mechanism based on the use of the Smith–Pur-
cell radiation (SPR) was considered. To realize the feedback in such an FEL, one must use a basically different
cavity scheme. This work reports the results of experimental study on the stimulated SPR in a “transverse” cav-
ity. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 41.60.-m; 41.75.Fr
Free-electron lasers (FELs) based on the undulator
radiation generated upon the electron-beam passage
through a periodic magnetic structure [1, 2] have
gained wide acceptance [3, 4]. The design of submilli-
meter FELs based on a compact electron amplifier and
undulator involves problems associated with the fabri-
cation of a small-period undulator, complexity and
expensiveness of its magnetic system, and the necessity
of using an amplifier with a low electron-beam emit-
tance. For this reason, a search for the alternative mech-
anisms in engineering FELs becomes evident. For
instance, the possibility of using the Smith–Purcell
radiation (SPR) in FELs was considered in [5–7]. The
SPR [8] is a diffraction radiation of electrons flying in
vacuum near a periodic structure. Such a device with a
continuous electron beam (orotron) is less expensive
and more compact than traditional FELs [9]. When
using the SPR, it is necessary to use a “transverse” cav-
ity, because the radiation is generated at large angles to
the electron beam.

The idea of using a preliminary bunched electron
beam for the fabrication of so-called broadband milli-
meter FEL evolved several years ago and was experi-
mentally tested in [10], where a coherent continuous
synchrotron radiation of a bunched electron beam was
accumulated in a conventional (“longitudinal”) optical
cavity to stimulate radiation from the subsequent
bunches. A broadband stimulated transient far-IR radi-
ation was also observed in [11].

In [12], an FEL based on the SPR generated by elec-
trons with energy  = 10 keV flying near the standard

“bulk” grating was studied experimentally. The feed-
back was effected by a transverse cavity that included
the target and reflecting gratings. As was demonstrated
in [13, 14], the use of a “plane” grating consisting of

E
e

–
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periodically arranged conducting strips separated by
nonconducting spacers noticeably improves the gener-
ation efficiency. Moreover, the SPR from a plane grat-
ing is maximal in the plane perpendicular to its surface,
in contrast to the SPR from a bulk grating, where the
radiation has a two-mode azimuthal distribution. This
allows the use of a comparatively simple scheme for the
cavity.

In our experiment, the SPR was generated on a
plane periodic target consisting of conducting strips
applied to a dielectric. To a first approximation, one can
assume that the target consists of ideally conducting
strips separated by vacuum gaps. This allows the esti-
mation of the radiation energy per electron for our
geometry [13]:

where Wss is the intensity of diffraction radiation from
a semi-infinite plane,

 γ is the Lorentz factor,
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Here, α = 1/137 is the fine structure constant, a is the
strip width, d is the grating period, λ is the SPR wave-
length, β is the electron velocity, and θ is the observa-
tion angle.

The dependence of the SPR wavelength on the
observation angle (Fig. 1) was calculated for the fol-
lowing geometry: θ = 90°, γ = 12, d = 12.7 mm, and
a = d/2; k = 1, 3 is the diffraction order. This figure
demonstrates that the radiation wavelength strongly
depends on the observation angle. In the experiment,
we chose θ = π/2, which corresponds to λ = d. For sev-
eral strips (in our case, Ns = 12), the SPR line broadens
to ∆λ/λ ≈ 0.17 [15].

If the radiation wavelength λ of the bunched relativ-
istic electron beam is comparable to or larger than the
bunch length Lb, all bunch electrons radiate coherently.
In this case, the radiation intensity is proportional to

 (Ne is the number of electrons in the bunch).

If the electron-beam cross-sectional size σx satisfies
the condition σx ! γλ, the intensity of the coherent SPR
(CSPR) can be expressed through the longitudinal
formfactor as

where fz is the longitudinal geometric factor [10, 11].

For example, one has |fz|2 > 0.5 for the Gaussian lon-
gitudinal distribution with σz/λ < 0.13 (σz is the bunch
longitudinal size taken equal to triple standard devia-
tion). Therefore, the estimate for the CSPR power from
a single macropulse of duration 2–6 µs is ~0.6 W for
our accelerator [15].

A periodic target consisting of 0.35 × 50 × 0.03-mm
copper strips applied with the period d = 12.7 mm to a
glass textolite substrate can be used simultaneously as
a radiation oscillator and a cavity mirror. In our experi-
ment, the SPR with a wavelength coinciding with the
grating period is generated in the direction perpendicu-
lar to the electron beam (θ = 90°). Thus, the feedback
cavity should be arranged perpendicular to the electron
beam. If the strip width is equal to one-half of the grat-
ing period, the reflection coefficient of the grating will
be close to unity for the wavelengths λ ≈ d [16]. Conse-
quently, one can use the grating as a cavity mirror. The
resonance condition for this cavity is the following:
2L = kλ, where L is the cavity length and k is an integer.
For the resonance between bunches to occur, it is nec-
essary that the condition λRF = m × 2L be met, where
λRF is the wavelength of the high-frequency system
(i.e., the distance between bunches) and m is an integer.
Taking into account the Smith–Purcell condition λ = d
for θ = π/2, we can obtain the system of equations for
the target and cavity parameters:

Ne
2

Wcoh Ne
2 f z

2πσz

λβ
------------ 

 
2

WSP,=

2L kλ , λRF m 2× L, λ d .= = =
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Experiment (Fig. 2) was conducted on the microtron
of the Research Institute of Nuclear Physics, Tomsk
Polytechnical University. The microtron parameters are
described in [15, 17]. A microtron beam with an energy
of 6.1 MeV consists of macrobunches following with a
repetition rate of 8 Hz. Each macrobunch consists of
104 microbunches of length Lb ≈ 6 mm and contains
108 electrons. The distance λRF = 114 mm between the
bunches is determined by the microtron high-frequency
system.

The cavity was placed in a vacuum chamber. The
cavity mirror had two degrees of freedom for measur-
ing the parameter L and tuning the overlap between the
target and mirror. The following cavity parameters
were chosen: m = 1 and k = 9, so that d = 12.7 mm and
L = 57 mm. The lower mirror had a hole with a diameter
of 10 mm for feeding the stimulated radiation into a

Fig. 1. Dependence of the SPR wavelength on the observa-
tion angle; θ = 90°, γ = 12, d = 12.7 mm, and a = d/2; k = 1, 3
is the diffraction order.

Fig. 2. Geometry of the experiment.
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detector. The distance from the cavity mirror to the
detector window was 60 cm. Estimates showed that the
influence of the near zone can be ignored under the con-
ditions of our experiment. To measure the background
at each point, a controlled “shutter” was used. The sta-
tistical error of measurements was less than 5%.

The spectral range of the CSPR is determined by the
length of an electron bunch (~6 mm). The radiation was
recorded by a detector based on a broadband antenna
with a preamplifier of the output signal. The sensitivity
band of the detector lies in the range λ = (1–20) mm, its
sensitivity is ≈1.3 V/W, and the diameter of its entrance
window is 10 mm.

Measurements were made using six wave filters
with diameters Dc = 5, 6, 7, 8, 10, and 15 mm. The crit-
ical wavelength of a filter is related to its diameter by
λc = 1.7Dc [18].

The stimulated CSPR (the coherence was confirmed
by the current dependence; see [17]) into the aperture of
a 1/2γ detector was studied experimentally for different
filters (different λc) and different distances L between
the mirror and the target. The radiation output,

was determined under the assumption that the filter
transmission capacity ε can be approximated by the
theta function θ(λc – λ), where λmin is the detector
detection limit (λmin < λc). This formula can be used to
reproduce the dependence of the stimulated SPR inten-
sity on the wavelength and the parameter L:

In Fig. 3, the experimentally determined Y(L) func-
tions are shown for different values of parameter λc.

Y λ c L,( ) W λ L,( ) λ ,d

λmin

λc

∫=

W λ L,( ) ∂Y λ L,( )
∂λ

---------------------.=

Fig. 3. Dependence of the stimulated CSPR on the cavity
length L.
One can see that the CSPR output markedly (by at least
a factor of six) increases for the wavelengths λ >
10.48 mm under the resonance conditions. Estimates
show that the CSPR linewidth is equal to approximately
17 mm, and, hence, the minimal radiation wavelength
is λmin ≈ 11.6 mm, in good agreement with the experi-
ment. The three peaks on the curves for the L depen-
dence correspond to the resonances of different orders.
The separation ∆L = 3 mm ≈ λ/4 between the peaks (in
contrast to the experiment [10], where ∆L ≈ λ/2) is
caused by the fact that the phase does not change upon
the reflection from the grating (see [16]). The measure-
ment results are evidence of recording the stimulated
CSPR. The function W(λ, L) is shown in Fig. 4. The
peak in the curve for the λ dependence corresponds to
the peak in the CSPR spectrum and arises, as expected,
at the point coinciding with the lattice parameter.

Note in conclusion that we have used a strict depen-
dence of the radiation wavelength on the CSPR obser-
vation angle in our experiment. The grating period and
the cavity length were chosen so that the resonance
conditions were met. The CSPR output was measured
using wave filters. Contrary to the experiment in [10],
where a 30-fold enhancement of the output radiation
intensity was detected for the stimulated coherent syn-
chrotron radiation under the resonance conditions, we
have obtained an approximately sixfold enhancement,
probably because the background could not be fully
excluded and due to a low Q factor of the “grating–mir-
ror” cavity. Contrary to the experiments in [10, 11], the
stimulated CSPR provides a monochromatic output
radiation with a wavelength determined by the grating
period, cavity geometry, and bunch length.
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The proton and deuteron yields from thin targets irradiated by a picosecond laser pulse with an average radia-
tion intensity of ≤4 × 1018 W/cm2 at the target were measured in the megaelectron-volt energy range. A ring
structure was observed for the outgoing ions, and the angular ion-beam divergence was found to be extremely
small (0.5°). The fast-ion generation mechanism allowing for the appearance of ring structure is discussed, and
the characteristic energies and spatioangular ion-beam distribution are estimated. © 2004 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 52.50.Lp
Laser plasma produced by ultrashort laser pulses
with an intensity of IL ≥ 1018 W/cm2 is a source of
intense ion flows in the megaelectron-volt energy range
[1–6]. The study of the expansion parameters for such
ions would be helpful in gaining information about the
ion acceleration mechanisms and the ways of control-
ling the energetic and spatial parameters of ions, which
will allow, hence, the implementation of the idea of
designing laser-plasma ion accelerators. Moreover,
these ions can be used in various applications, includ-
ing radiography and initiation of a “fast ignition” by
light ions in laser thermonuclear synthesis.

The generation of high-energy protons by a pulse of
duration tL = 130 fs and IL ≈ 1018 W/cm2 was studied in
[7]. The maximal energy of the forward-emitted pro-
tons was found to be εi max = 2.2 MeV. For IL ≈ 2 ×
1018 W/cm2 and tL ≈ 2–4 ps, εi max = 4.2 MeV [6], and
εi max ≈ 18 MeV for IL ≈ 5 × 1019 W/cm2 [8] and a rela-
tively long (0.4 ns) laser pulse. Common to these works
was that the experiments were carried out with a com-
paratively high heating-pulse contrast and, correspond-
ingly, for a small scale of plasma-density inhomo-
geneity.

In this work, the spectra of protons emitted from the
face side of a Be target were measured and the spatial
distribution of ions emitted from its rear side was stud-
ied for an average laser intensity at the target surface of
(1–4) × 1018 W/cm2.
0021-3640/04/7907- $26.00 © 200324
The experiments were carried out on a PROGRESS-P
picosecond laser [9, 10] with a radiation wavelength of
1.054 µm, energy εL ≤ 8 J, and a pulse duration of 1.2–
2 ps. The radiation was focused by an off-axis parabolic
mirror with f/1.4 (the laser beam diameter was
145 mm). The target was set at an angle of ~30° with
the focused p-polarized beam. In the experiments, the
power contrast of the amplified luminescence pulse did
not exceed 10–8, and the prepulse intensity measured by
a single-pulse autocorrelator 10–100 ps before the main
pulse showed that its intensity was lower than the detec-
tion threshold of the technique used (≤10–3). The
scheme of the experiment is shown in Fig. 1.

Calibrated CR-39 track detectors were used to
detect charged particles. The ion energy spectra were
measured using cassettes with a set of holes covered by
Ta, Al, and Cu filters of different thickness (1.6–
300 µm) to span the proton energy interval of 0.2–
35 MeV. Some of the detectors were placed on the side
of the irradiated surface near the normal to the target at
angles ϕ = 0° and 30° at a distance of 15–25 cm from
the focal point. The detectors were arranged in this way
because the fast ions with energies above 100 keV were
mainly emitted within a comparatively narrow cone
(±20°) near the normal at both face and rear target sides
[11]. One of the detectors was placed at a distance of
3 cm behind the target. Be (12 µm), Ti, and TiDx

(30 µm) foils were user as targets.
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Analysis of the experimental data shows that the
main fraction of protons emitted from the target rear
side have energies within 0.7–2.3 MeV. At the same
time, the energy of the main particle flow from the tar-
get face side, i.e., in the direction of focusing optics, is
0.3–1.5 MeV. The presence of protons in the targets that
initially did not contain hydrogen was caused by the
deposition of water vapor and hydrocarbon compounds
on them. In the experiments with the Be target, a ring
structure was observed for emitted ions behind the tar-
get (Fig. 3).

Let us now discuss the experimental results in more
detail. In the course of interaction between an intense
laser pulse and the target, most of the fast electrons pen-
etrate through the thin target and fly out from its rear
side. The electric field arising on the rear side of the foil
upon electron escape accelerates ions. The electric field
also arises on the face side of the foil, but it is caused by
the ponderomotive pressure that forces electrons
through ions in a skin layer. Therefore, ions are accel-
erated on both sides of the target. It is shown in [12]
that, if the foil thickness is much smaller than the mean
free path of fast electrons, the ion flow behind the target
is mainly formed by the ions accelerated at the rear side
of the target, so that the ion acceleration essentially
depends on the coefficient Ke of laser-energy conver-
sion into the fast-electron energy and on the electron
energy εeh. The number of fast electrons can be esti-
mated as Neh = KeεL/εeh, where εL is the pulse energy
and Ke ≈ 0.03 + ηI18/(30 + I18) (IL ≤ 1018 W/cm2, tL ≤
1 ps [4]), where η ≈ 0.2 + (0.1 + 0.06L/λL)I18/(15 +
I18)0.8 is the absorption coefficient [11], I18 is the laser
intensity in units of 1018 W/cm2, and L is the plasma-
density inhomogeneity scale determined by the
prepulse. The mean energy of fast electrons is [13] εeh

≈ mec2(  – 1). These formulas are
valid in the intensity interval 1018–1020 W/cm2 and for
the pulse durations tL ≤ 1 ps. For the maximal experi-
mental intensity IL = 4 × 1018 W/cm2 and L = 8 µm, one
has Ke ≈ 0.08, εeh ≈ 0.5 MeV, and Neh ≈ 8 × 1012. The
energy spectrum of hot electrons at the face side of the
target (30 µm) is shown in Fig. 2. The mean energy is
Teh ≈ 0.4 MeV, which corresponds to the above estimate
for energy εeh. The ordinate in Fig. 2 is the electron-
flow density in a detector with an entrance hole of
diameter 30 µm; the detector is placed at a distance of
3 cm from the target at an angle of 80° to its face side.
Assuming that the electron angular distribution is uni-
form, we find that the number of electrons emitted from
the face side of the target is ~1010. A more detailed
numerical simulation [17] of electron escape from the
face side showed the presence of weak maxima at the
take-off angles of 50°–80°; this does not affect, by the
order of magnitude, our estimate of the total number of
emitted electrons.

1 I18 λL/1.2µm( )2+
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Inasmuch as the foil thickness is smaller than the
electron mean free path, electrons propagate inside the
target within a cone with angle ≤10°, so that the elec-
tron-beam radius can be estimated as ~RL. The beam
self-magnetic field has a substantial effect on the elec-
tron flow in target plasma, because the beam current far
exceeds the Alfvén current, ~eNeh/tL @ mec3/e. Such a
beam can propagate only in the presence of a backward
current that compensates its self-magnetic field [12].

The spatial electron-charge distribution in vacuum
on the rear side of the foil plays the key part in the
explanation of the experimental ion-beam characteris-
tics. After the electron flow passes through the foil

Fig. 1. Scheme of the experiment.

Fig. 2. Energy dependence of the number of fast electrons
per detector unit area. A detector with an entrance hole of
diameter 30 µm is situated at a distance of 3 cm at an angle
of 80° to the face side of a Ti (30 µm) target.

Off-axis
parabola
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boundary, its propagation in vacuum in the form of a
flow becomes impossible. Indeed, the maximal dis-
tance h at which the electron beam of radius R can
move away from the foil surface can be estimated by

equating the electrostatic energy e2 /2R (  =
πR2hneh) of a beam segment outside the foil and its

kinetic energy εeh, to obtain h ≈ εehRctL/e2Neh. One
also has neh ≈ Neh/πR2ctL. The beams self-magnetic field
Hmax ≈ 2πenehRv eh/c is not compensated in vacuum by
the back current, and, hence, it prevents the Coulomb
expansion. However, the Lorentz factor is γe ≈ 1 for
εeh = 0.5 MeV, so that the corresponding decrease in

forces by a factor of  can be ignored. The quantity
h can be regarded as the largest distance for which one
may apply the term “electron beam” to electrons mov-
ing away from the surface. In actuality, due to the
attraction by surface ions, the mean distance at which
electrons can move away is equal to the Debye radius
rd ≤ h of fast electrons (rd = v eh/ωph, where v eh ~ c and
ωph ≈ (4πe2nehc2/εeh)1/2). Therefore, due to the presence
of radial repulsive forces and the inflow of new elec-
trons from the target, the electron cloud and the positive
charge at the back surface of the target will spread.

To describe the structure neh(r, t) of electron cloud
over the surface (z > 0), we use the system of hydrody-
namical equations for electrons. We assume that ions
are fixed, i.e., ni(z) = n0θ(–z) and the geometry of the
system is cylindrical, and the presence of an electron
source with radius RL and current density j = ecneh(0) at
the surface (z = 0) will be taken as a boundary condi-
tion. The electric field and the velocity have the radial
and z components. We estimate the fields assuming that

Neh
1( )2

Neh
1( )

Neh
1( )

2γe
2

0.5 mm

Fig. 3. Spatial distribution of ions emitted from the target
rear surface. The pattern is recorded on a film screen situ-
ated 3 cm behind the target.
rd and RL are the characteristic scales along the z and
radial coordinates, respectively. Then, Ez ≈ εeh/erd and
Er ≈ εeh/eRL. The magnetic field has only the azimuthal
component that is created not only by the axial (along z)
but also by the radial current. Evidently, Hϕ and Er are
zero at the center of the spot, reach maximum at r ≈ RL,
and then decrease. The vortex electric-field component
can be ignored compared to the ambipolar component,

because  ≈ (RL/ctL)Hϕ ! Hϕ, Ez. Let us consider elec-
tron dynamics in the given fields. The field Ez deceler-
ates electrons, while the field Er spreads them over the
surface. When spreading, electrons are brought into the
region where the magnetic field Hϕ is maximal. Since
rH = v rmec/eHϕ ≈ rd, the electron will be “captured” by
the magnetic field, and its radial motion will slow
down. The Lorentz-force component Fz = ev rHϕ/c in a
magnetic field Hϕ tends to pull electrons away from the
surface, while the component Fr = –ev zHϕ/c brings
them back to the center. According to numerical calcu-
lations [12, 14], an electron ring should then arise,
under which the ions are accelerated by the field Ez +
v rHϕ/c with a maximum at r ≈ RL, to reproduce the ring
structure if the electron-ring lifetime is comparable
with the ion acceleration time. When moved to vacuum,
ions are brought to the region of radial forces from the
electron cloud disposed over the surface. The typical
ion-emission angles can be estimated from the elec-
tron-density distribution. A well-defined ion ring struc-
ture in the detector (Fig. 3) is evidence that the electron-
ring radius does not change appreciably during the ion
acceleration. For this reason, the radial force acting on
an electron in the region of maximal magnetic field

maxHϕ =  ≈ –(4πe/c) RLv z can be set zero; i.e.,
Fr = –ev zHϕ/c + eEr ≈ 0. The electron concentration

 in the region of maximal magnetic and electric
fields can now be estimated as

(1)

For v z ≈ 0.3c (taken from [14]) and our parameters,

 ≈ neh. The radial force from the electron cloud with
concentration neh at the center of the ring tightens the
ion ring into a beam. By contrast, electrons with con-

centration  situated in the region of the ring stretch
the ion ring and, hence, defocus the ion beam. The
resulting angular divergence depends on the total radial
force. The corresponding equation of motion for fast
ions in the transverse direction can be written as

(2)
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(Rb ~ RL is the ion-ring radius). The typical ion-emis-
sion angle estimated from Eq. (2) is

(3)

In the experiments with a Be target, we observed an
ion ring with a radius of 0.2 mm. The distance between
the target and detector was equal to 3 cm (Fig. 3). This
restricted the exit angle to θi ≤ 1°. Thus, the radial
forces acting on the ions during the acceleration were

compensated (  ≈ neh). This explains the extremely
low angular divergence of ions in our experiments.

Note that the ring structure of emitted ions was
observed in [15] for a 1-ps pulse with an intensity of
5 × 1019 W/cm2 incident on a 125-µm Al foil. In that
work, the ion ring structure was explained by the
deflection of ions accelerated at the face side of the foil
and passed through it interacting with the electron-
beam self-magnetic field. In our case of a lower inten-
sity, this explanation cannot be considered satisfactory.
Indeed, the gyroradius ratio of proton and electron is
mic2v i/meεehv e ≈ 102 for a 0.5-MeV electron and a
2-MeV proton. Even if the electron deflection angle in
a magnetic field is ∝ 60°, the proton deflection will not
exceed 0.6°. Let us now estimate the characteristic scat-
tering angle for a proton in a 12-µm Be foil. The tracks
of 5000 3-MeV protons counted by the Monte Carlo
method are presented in Fig. 4. Protons flew out from a
fixed point at the face side of the target and passed, with
scattering, through the foil, after which their tracks
were traced up to a distance of 3 cm behind the target.
With allowance for the scale in Fig. 4, the proton-beam
width at the detector was equal to 1.5 mm. It is practi-
cally impossible to distinguish the rings with a width of
~0.1 mm (Fig. 3) for this scattering. Thus, we can assert
that the ion ring structure is formed at the rear side of
the foil. In [12], a similar conclusion was drawn on the
basis of three-dimensional numerical PIC simulation.
Note that such an explanation for the ring structure of
escaping ions is absent in [12]. The inhomogeneous
hydrogen distribution at the target surface is an alterna-
tive but, in our opinion, less probable cause for the for-
mation of ring structures. In this case, it is necessary
that the maximum of initial distribution lie at the center
of the laser spot and that the inhomogeneity scale be
much smaller than the spot diameter [19]. Note also
that a narrow-directed (one-dimensional) fast-ion
expansion was observed upon the incidence of a relativ-
istic electron beam from an accelerator [20]. In our
case, laser pulse plays the role of accelerator.

The transverse inhomogeneity in the electron-
charge distribution and the transverse component of the
ambipolar field exist only during the laser pulse. After
the pulse, the electron density is leveled off. However,
the ion acceleration in the longitudinal direction is con-
tinued, because the longitudinal-field relaxation time
(ion acceleration time) exceeds the pulse duration, by
estimates, at least twofold. To estimate the maximal

θi v l/v i Ze2πrd Rb neh
m( ) neh–( )/εi.≈=

neh
m( )
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energy of a fast ion, we use the well-known solution
[16, 18]

(4)

The relation εi ~  that follows from Eq. (4) is corrob-
orated by the numerical calculations and the experi-
mental data [13]. The ions with energy exceeding (4)
are few in number, so that the ion spectrum sharply
breaks at energy (4) (so-called cutoff). Expression (4)
for Z = 1 yields an estimate of 2.5 MeV, which corre-
sponds to the maximal proton energy (2.3 MeV) at the
rear side of the foil. The experimental energy spectrum
of light ions at the face side of the target is shown in
Fig. 5. The energy cutoff is clearly seen at 1.5 MeV. The
fact that the ion energy at the face side is lower than
energy (4) can be explained by the plasma-boundary
smearing due to the prepulse, as a result of which the
ambipolar field and the ion acceleration time decrease.

εi  max 2 Z ε eh 2 ω pi t L ( ) ln ( ) 
2

 . ≈

I18
0.5

 

Fig. 4.

 

 Tracks of 5000 3-MeV protons incident on a 12-
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m
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entrance point at the target to the end point at the screen sit-
uated 3 cm behind the target.
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At times t @ Rb/v i after charge relaxation, an
extended plasma bunch is formed. On the way from the
target to the detector, the angular distribution of emitted
ions changes because of the plasma-cloud expansion by
virtue of the Coulomb and thermal repulsion. The ion-
beam emittance εµ(x) = R(x)dR/dx at distance x is given
by the formula [14]

(5)

where J = ZeJi(1 – K)/mi , dR/dx|x = 0 ≈ v ⊥ i/v ||i ≈ θi,
γi ≈ 1 is the ion Lorentz factor, K = neh/Zni ≤ 1, cs =

, Ji = Zeniv iπ , and R(0) = Rb. Experimen-
tally, the distribution of a fast-ion beam with a diameter
of ≤0.6 mm was detected at a distance of 3 cm from the
foil, which corresponds to the emittance of ≤0.1π mm
mrad. Then, assuming that the beam charge is compen-
sated (K ≈ 1) and the initial exit angle is θi = 0, one finds
from Eq. (5) that the transverse ion temperature is
restricted by T⊥  ≤ 200 eV.

It is seen from the experimental results presented in
this work that, under the action of an intense (≥2 ×
1018 W/cm2) laser pulse on the foil, light ions are accel-
erated to energies of ~2 MeV. The ion flow with an
energy of ~2 MeV behind the target was much greater
than the backflow of the same particles from the target.
A high-intensity proton beam with an energy of
≥1.2 MeV and a very small divergence θi < 1° have
been observed. This is likely caused by the fact that the
interior part of a tubular ion beam is enriched with elec-
trons and also that hydrogen is distributed inhomoge-
neously at the target surface. The theoretical estimates
of ion energies and exit angles are close to their exper-
imental values, suggesting that the ions are generated at
the rear side of the foil.

This work was supported by the Russian Foundation
for Basic Research, project no. 03-02-17722.
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The correlation between the density ρs(T  0) of superconducting condensate and the superconducting tran-
sition temperature Tc in underdoped HTSC systems is considered. It is shown that the linear relation between
ρs(0) and Tc observed in some experiments can easily be interpreted in the framework of the conventional
Bardeen–Cooper–Schrieffer (BCS) model without invoking any exotic superconductivity models. © 2004
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Although high-temperature superconductivity in
cuprates was discovered by Bednorz and Müller over
17 years ago [1], a consistent and generally accepted
theory of this phenomenon has not been developed as
yet. A considerable number of researchers involved in
the theoretical studies consider cuprate compounds as
systems with properties radically differing in every
respect from those of traditional superconducting mate-
rials [2]. A critical analysis of the actual difference
between the properties of cuprates and ordinary metals
was given by one of the authors in the review [3], where
it was rather convincingly proved that the properties of
the normal state of optimally doped cuprates differ, if at
all, from the properties of conventional metals quanti-
tatively rather than qualitatively. In that review, the
behavior of underdoped compounds was practically not
considered, although it was noted that, at first glance, it
could differ strongly from the properties of ordinary
metals.

One such property of underdoped compounds,
which is often treated as the clearest evidence of their
substantial difference from standard metals [4], is the
linear relation discovered by Uemura et al. [5, 6]
between the density ρs(T  0) of the superconducting
condensate and the superconducting transition temper-
ature Tc:

(1)

where A is a certain quantity exhibiting a weak depen-
dence on the doping level x. Relation (1), often referred
to as the Uemura diagram in the literature, led to a large
number of assumptions concerning the physical nature
of this phenomenon. Among these assumptions, we can
mention the existence of Bose–Einstein condensation
of real electron pairs in underdoped compounds [6, 7],

ρs 0( ) ATc,=
0021-3640/04/7907- $26.00 © 20329
the presence of strong superconducting fluctuations [8,
9], holon condensation in the model of spin and charge
separation [8, 10], and so on.

In this brief communication, we will prove that rela-
tions analogous to the Uemura diagram may hold not
only in the models of exotic superconducting systems
but also in superconductors described by the Bardeen–
Cooper–Schrieffer (BCS) model. The necessary condi-
tion for this is the existence of a mechanism destroying
the superconductivity. For superconductors with s pair-
ing, such a mechanism has been well known for a long
time [11] and is associated with the addition of mag-
netic impurities. In BCS superconductors with d pair-
ing, the potential scattering from ordinary nonmagnetic
impurities plays the same role [12]. The density ρs of
superconducting electrons is usually determined in
terms of λ (inverse square of the magnetic-field pene-
tration depth), because

(2)

In the BCS model, the quantity λ–2(T) can be written for
both types of pairing in the form [12]

(3)

(4)

where ωpl is the plasma frequency. Functions (ω)
(superconducting order parameter) and  (fre-
quency renormalized due to the interaction with impu-
rities) satisfy the BCS equations with impurities; the

ρs T( ) λ 2– T( ).∼

λ 2– T( )
ωpl
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angular brackets stand for the averaging over the angle ϕ.
In pure superconductors, we have

(5)

 for s and d pairing. (6)

(In expression (6), the simplest form of (ω) is used
for d pairing in a quasi-two-dimensional BCS super-
conductor with a cylindrical Fermi surface.)

Let us first consider the correlation between ρs(0)
and Tc in a superconductor with magnetic impurities in
the BCS model. For a BCS superconductor with ordi-
nary s pairing in the presence of magnetic and nonmag-

netic impurities, functions (ω) and (ω) satisfy
the equations [11]

(7)

(8)

while quantity ∆ is self-consistently defined by the
standard BCS equation,

(9)

where V is the BCS s interaction, N(0) is the density of
states at the Fermi surface, 1/τ1 is the reciprocal relax-
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Fig. 1. The density ρs(τ1, τ2, 0) = λ–2(τ1, τ2, 0)/λ–2(τ0, 0) of
superconducting condensate at zero temperature versus the
superconducting transition temperature Tc(τ2)/Tc(0) in a
BCS superconductor with magnetic impurities.
ation time associated with the potential scattering from
ordinary impurities, and 1/τ2 is the reciprocal relaxation
time associated with the exchange scattering from mag-
netic impurities with spin flip. The system of Eqs. (7),

(8) with the substitution  = ( /ω)  can be reduced
to the Abrikosov–Gor’kov algebraic equations [11]

(10)

(11)

where ∆ is defined as

(12)

It follows from these equations that the elastic scatter-
ing from impurities does not affect ∆ and Tc.

Figure 1 shows the calculated curves describing the
correlation between the quantities λ–2 and Tc in this
model. The middle curve in the figure corresponds to
the case of an initially “dirty” superconductor, for
which the reciprocal time 1/τ0 of electron relaxation at
impurities satisfies the condition

(13)

where ∆0(0) is the energy gap in a pure superconductor
at zero temperature. In this case, in the “gap” concen-
tration region of magnetic impurities [τ2∆(τ2, 0)]–1 ≤ 1
(which constitutes practically the entire range of their
concentrations), a linear correlation takes place,
because magnetic impurities in a dirty superconductor
(13) do not directly affect its kinetic properties. In this
case, the quantity λ–2 can be written as [13]

(14)

while both quantities Tc(τ2) and ∆(τ2, 0) in the gap
region [τ2∆(τ2, 0)]–1 ≤ 1, as is known [11], are linear
functions of 1/τ2. It is clearly seen from Fig. 1 that the
deviation from the linear dependence of λ–2(τ1, τ2)/λ–2(τ0)
on Tc(τ2)/Tc(0) in a dirty superconductor is observed
only in the “gapless” region at a high concentration of
magnetic impurities (i.e., at small values of
Tc(τ2)/Tc(0)). The upper curve describes the dependence
of λ–2(τ2)/λ–2 on Tc(τ2)/Tc(0) for a “clean” superconduc-
tor (i.e., in the absence of nonmagnetic scattering). The
lower curve corresponds to the originally clean (1/τ0 = 0)
superconductor with magnetic impurities, for which
the ratio of potential- and exchange-scattering ampli-
tudes is

(15)
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Thus, we see that various types of relations between the
density of superconducting electrons and the supercon-
ducting transition temperature (including the Uemura
diagram) are possible even in the simplest BCS model
with s pairing.

Let us now consider a BCS d superconductor with

impurities. The equations for functions (ω) and
(ω) appear in this case in a more complicated form

[12], as compared to Eqs. (6) and (7),

(16)

(17)

where

(18)

(19)

In Eqs. (16) and (17), 1/τn is the reciprocal relaxation
time on impurities in the normal state,

(20)

where nimp is the impurity concentration, Vimp is the
impurity scattering potential, and δn =

N(0)Vimp] is the scattering phase. The self-
consistent equation has the form

(21)

In our calculations, we used the simplest expression for
the electron–electron interaction resulting in the d pair-
ing:

(22)

In this case, we can seek the solution in the form

(ω) = ∆cos2ϕ; in this case, 〈g1〉  = 0 and Eqs. (15)
and (16) have the form
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(24)

The results of our calculations for this model are
illustrated in Fig. 2. The upper curve in this figure is
obtained in the Born approximation. The lower curve
corresponds to the unitary strong-scattering limit (δn =
π/2), while the middle curve describes the intermediate
case. The correlation between λ–2(τ) and Tc(τ) in a BCS
superconductor with d pairing, in which superconduc-
tivity is suppressed by the ordinary nonmagnetic impu-
rities, resembles, to a considerable extent, the situation
in a conventional BCS s superconductor with magnetic
impurities. In this case, various types of the dependence
of λ–2(τ) on Tc (including a near-linear dependence) are
possible. Thus, the Uemura-type dependence of the
density of superconducting condensate on Tc takes
place in the simplest BCS systems and there is no need
to invoke any exotic superconductivity mechanisms for
its explanation.

Turning back to the discussion of the density of
superconducting condensate in underdoped HTSC
compounds, we can make the following remarks. First,
the rather convincing experimental data obtained
recently in [13, 14] indicate that the quasiparticle exci-
tations in the HTSC systems can be described by the
Bogoliubov combination of electron–hole pairs [15].
This, in turn, means that the superconducting state of
cuprates differs only slightly from the state described
by the BCS model. Second, there is convincing evi-
dence, obtained by tunneling measurements [16], that
the ratio 2∆/Tc remains virtually unchanged over a wide
range of doping from underdoped to overdoped states.
This may imply that the superconductivity mechanism

ω̃ ω i
1
τn

----
g0 ϕ ω,( )〈 〉

δncos
2 δn g0 ϕ ω,( )〈 〉 2sin

2
+
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Fig. 2. The density ρs(τ, 0) = λ–2(τ, 0)/λ–2(0) of supercon-
ducting condensate at zero temperature vs. the supercon-
ducting transition temperature Tc(τ)/Tc(0) in a BCS super-
conductor with d pairing.
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depends weakly on the doping level, but certain super-
conductivity suppression mechanisms arise or intensify
in the system upon the deviation from the optimal dop-
ing level. We proved above, by the example of the effect
of various impurities, that the processes of supercon-
ductivity destruction not affecting the pairing mecha-
nism can lead to the Tc dependence of the density of
superconducting condensate. This dependence can both
coincide with the Uemura diagram and substantially
differ from it. In recent publication [17], doubts were
cast upon the experimental observation of the Uemura
rule (i.e., a linear dependence of ρs(0) on Tc) in under-
doped systems. A similar conclusion was drawn
recently in [18] on the basis of the direct measurements
of the magnetic-field penetration depth in the HTSC
systems over a wide doping range. The dependence of
ρs(0) on Tc obtained in [17] (see Fig. 1 in that paper) is
similar, to a considerable extent, to the dependence
obtained by us for the unitary limit of scattering from
individual impurities.

Although the HTSC (in particular, underdoped)
compounds belong to defect structures, we do not state
that the Uemura diagram or any other dependence of
ρs(0) on Tc (see [17, 18]) is due to the destruction of
superconductivity in HTSC systems as a result of the
scattering from isolated impurities. Rather, as was
emphasized in [14], the mechanism (or mechanisms) of
pair breaking in such materials differs from the action
of individual impurities and has a more complicated
character associated with some nanoscale disorder.
According to [17, 18], the Tc dependence of ρs(0) can
also be due to the superconductivity destruction upon a
decrease in the doping level and appearance of a
pseudogap in the system. It remains unclear whether
the appearance of the pseudogap is associated with the
nanoscale disordering observed in [14] or not.

In conclusion, it should be emphasized that the
Uemura diagram (i.e., linear Tc dependence of ρs(0)) is
not at all an indication of the existence of some exotic
superconductivity mechanisms in the HTSC systems. A
similar behavior can also be observed in the traditional
superconductors described by the BCS model with s
and d pairing. In our opinion, further detailed experi-
mental investigation of this problem in various HTSC
systems is highly important for establishing the possi-
ble similarity or difference in the behavior of ρs(0) and
Tc in these systems. This will give a clearer idea of the
superconductivity destruction mechanisms in such sys-
tems upon a deviation from the optimal doping level
and, probably, of the nature of high-temperature super-
conductivity itself.
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Multilayer silicon structures with built-in layers of Ge nanoclusters were studied experimentally by Raman
light scattering. The built-in layers were formed by the pulsed action of a low-energy beam of intrinsic ions
during molecular-beam epitaxy. It is found that the ion-stimulated nucleation and the subsequent growth make
it possible to obtain Ge nanoclusters almost free of Si. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 81.15.Hi; 68.55.-a; 61.80.Jh; 81.07.-b
At present, the most promising method of quantum-
dot (QD) array formation is based on the effects of self-
organization of semiconductor nanostructures in hete-
roepitaxial systems [1–4]. The deposition of a material
with a lattice constant differing substantially from the
substrate lattice parameter induces elastic strains in the
epitaxial film and in the islands on its surface. These
strains are the key factor in both the morphological
transition from a flat to the islanding film (Stranski–
Krastanov mechanism) and the subsequent changes in
sizes, shape, and spatial distribution of islands, provid-
ing, under certain conditions, the formation of an array
of coherently strained nanometer-sized islands.

The problem of the controlled formation of QD
arrays is associated with the necessity of creating new
promising devices such as quantum transistors, high-
speed memory elements, narrow-band light-emitting
diodes, heterolasers with radiation of a required color,
and infrared photodetectors. In order to realize the
unique characteristics of new devices in practice, it is
necessary to maintain a high density of QDs. In combi-
nation with the requirement for small QD sizes
(<10 nm), the layer density must be on the order of
1012 cm–2 (at higher densities, QDs of the indicated size
are joined together into a continuous layer).

The authors of [4] developed a method for the low-
temperature molecular-beam epitaxy (MBE) of Ge on
Si(100) that provides the formation of nanosized
islands with a surface density of (3–5) × 1011 cm–2. The
average size of pyramidal Ge clusters was 15 nm (pyr-
amid base), the pyramid height was 1.5 nm, and the size
inhomogeneity was no worse than 17%. The typical
conditions for the formation of Ge/Si structures
included the processes of homoepitaxy on Si(100) at
700°C with a rate of 1–2 monolayers (MLs) per second,
0021-3640/04/7907- $26.00 © 20333
Ge heteroepitaxy at 300°C (0.2 ML/s), and Si epitaxy
over the Ge islands at 500°C. A sufficiently low temper-
ature in the deposition of Ge and in the subsequent
overgrowth of the Si layer ensured the suppression of
the process of mixing between two materials; as a
result, the Ge nanoclusters practically did not contain
Si [5].

The method proposed by us for the controlled for-
mation of a QD array consists in the pulsed irradiation
by low-energy (~100 eV) intrinsic ions during the het-
eroepitaxy at certain instants of time according to the
degree of monolayer filling [6–8]. We found that the
irradiation with low-energy Ge ions during Ge hete-
roepitaxy on silicon led to the stimulated nucleation of
Ge islands and to a decrease in the critical thickness of
the pseudomorphic Ge film, at which a transition from
two-dimensional layer-by-layer growth to three-dimen-
sional growth takes place. In this case, the average size
of three-dimensional (3D) Ge islands decreases, their
density increases, and the mean-square deviation from
the average value decreases as compared with the cor-
responding values for molecular-beam epitaxy (the
effect of self-organization of an ensemble of Ge nano-
clusters upon pulsed irradiation with low-energy ions
during heteroepitaxy).

Because the ion irradiation can stimulate the mixing
process for dissimilar materials [9], the final elemental
composition of QDs in the formed Ge/Si nanostruc-
tures remained unclear.

This work is devoted to determining the elemental
composition of QDs using Raman scattering in the
structures formed as a result of the effect of self-orga-
nization of an ensemble of nanoclusters upon pulsed
irradiation by low-energy ions during Ge heteroepitaxy
on Si(100).
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Diffraction patterns obtained during (a) and (c) conventional Ge/Si(100) heteroepitaxy without ion irradiation and (b) and
(d) heteroepitaxy with pulsed (0.5 s) irradiation by low-energy (≈100 eV) Ge+ ions; the substrate temperature was 350°C; two effec-
tive thicknesses of the deposited Ge were used: (a) and (b) 5 ML and (c) and (d) 7 ML.
The samples to be studied were grown in an MBE
system with a built-in ion-molecular source of germa-
nium (for more detail, see [6, 7]). The Ge/Si structures
were formed by two methods: (1) Ge MBE on Si and
(2) pulsed (with a duration of 0.5 s) irradiation with Ge+

ions with an energy of about 100 eV during Ge MBE on
Si. The pulses were supplied at instants of time corre-
sponding to the deposition of each Ge monolayer. The
Ge deposition rate was 0.1 ML/s (1 ML = 6.8 ×
1014 atom/cm2), the Si deposition rate was 1.2 ML/s,
and the substrate temperature was 350°C.

Each method was used to grow structures of two
types differing in the amount of the deposited germa-
nium (5 and 7 ML). A Si layer 50-nm thick was grown
over the deposited Ge film, and this procedure of
sequential Ge/Si growth was repeated ten times. The
final capping Si layer was grown to a thickness of
100 nm at a temperature of 500°C.

The thickness and morphology of the deposited
films was controlled by reflection high-energy electron
diffraction (RHEED). The selection of the two values
of the deposited Ge amount (5 and 7 ML) was based on
the RHEED data. When 5 ML of Ge were deposited by
MBE, three-dimensional Ge islands were not yet
formed (Fig. 1a). Under the same growth conditions,
pulsed ion irradiation leads to the formation of 3D
islands on the Ge/Si surface (Fig. 1b). For thicker layers
of deposited Ge (7 ML), the islands form even in the
conventional MBE. Therefore, the diffraction patterns
from Ge films formed by both methods show virtually
no difference, and, according to the RHEED data, a
transition from the growth of 3D islands in the form of
hut clusters to the growth of islands in the form of dome
clusters is observed (Figs. 1c, 1d).

The samples were studied using Raman spectros-
copy. The multilayer character of the Ge/Si structure
provided a sufficient intensity of the Raman signal. The
spectra were recorded at room temperature using an
automated setup based on a DFS-52 spectrometer. An
Ar+ laser (λ = 514.5 nm) was used as the source of exci-
tation. The Raman experiments were carried out in the
quasi-backscattering geometry. The following polariza-
tion geometry was used in the scattering experiments:
the polarization vector of the incident radiation was
directed along the crystallographic 〈100〉  direction of
the structures, and the scattered light was detected in
the 〈010〉  polarization. This allowed us to avoid the
complications in the interpretation of Raman spectra
considered in [10].

The experimental Raman spectra are presented in
Fig. 2. Each spectrum shows a peak positioned in the
range from 307 to 315 cm–1, which corresponds to the
Raman scattering by the optical vibrations of the Ge–
Ge bonds. A decrease in the thickness of the Ge layer
JETP LETTERS      Vol. 79      No. 7      2004
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shifts this peak toward lower frequencies, whereas the
mechanical compressions lead to a shift of the peak
toward higher frequencies. All peaks exhibit a low-fre-
quency wing due to the contributions from both the
higher-order localized modes and the wetting Ge layer.
The peaks observed in the range from 370 to 430 cm–1

correspond to the Raman scattering by the optical
vibrations of the Ge–Si bonds [10, 11].

The characteristics of the Ge–Si nanostructures
were determined on the basis of the Raman data using
numerical calculations of the fundamental frequencies
and modes in the Born–von Karman approximation.
The Ge–Ge elastic constants were determined by com-
paring the experimental data with the calculated
phonon dispersions in bulk germanium [12]. The
Raman spectra were calculated from these data using
the Wolkenstein model of additive bond polarizabilities
[13]. The calculation was performed within the frame-
work of a one-dimensional approximation, because the
lateral sizes of three-dimensional islands formed during
Ge/Si(100) heteroepitaxy are usually much larger than
their height. It follows from the calculations that the
Raman-active Ge–Ge frequencies decrease with
decreasing thickness of the germanium layer. In the
case of a flat (unstrained) Ge layer, the frequency of the
main Ge–Ge peak is 290 cm–1 for a thickness of 5 ML,
294 cm–1 for a thickness of 7 ML, and 298 cm–1 for a
thickness of 10 ML.

Mechanical strains were not considered in the calcu-
lation, but their effect can be taken into account by
shifting all frequencies by a value proportional to the
strains, as was done in [14, 15]. According to our esti-
mates, the shift of the Ge–Ge Raman peak as a result of
the mechanical strains in Ge islands elastically strained
in Si (because of a difference of 4.2% in lattice con-
stants) reaches 17 cm–1 with respect to the frequency of
the optical phonon in the unstrained bulk Ge (302 cm–1).
In the structures with an effective Ge thickness of 5 ML
grown by the conventional MBE, the peak is located at
307.5 cm–1 (Fig. 2). The vibrational frequency calcu-
lated for an unstrained Ge film uniform in depth equals
290 cm–1 for a thickness of 5 ML. The high-frequency
shift of 17.5 cm–1 is in good agreement with the esti-
mates given for a strained structure and with the
RHEED data, which point to the absence of 3D Ge
islands.

In the spectra of the samples with the same average
thickness of the deposited germanium grown by MBE
with pulsed ion irradiation, the peak of the Raman sig-
nal of the Ge–Ge bonds is located at 315 cm–1. In this
case, the difference between the experimental and cal-
culated peak positions is 25 cm–1. This is considerably
larger than the highest possible shift caused by the
effects of compression strains (17 cm–1). Such a shift
cannot be interpreted as the effect of mechanical
strains. Evidently, the germanium layer in this case is
not two-dimensional but contains 3D islands in which
JETP LETTERS      Vol. 79      No. 7      2004
the thickness of germanium is much larger than the
average thickness, in agreement with the RHEED data.
The variation of the position and shape of diffraction
reflections under conditions of growth with pulsed ion
irradiation corresponds to the appearance of three-
dimensional islands shaped as hut clusters (Fig. 1b).

In this case, according to the STM and RHEED data
[8], the overall height of the 3D islands and the wetting
Ge underlayer makes up about 10 ML. For the island
structure of such sizes, the calculated peak position
equals 298 cm–1. The difference between the calculated
and experimental peak positions is 17 cm–1, which is
close to the maximum possible shift due to mechanical
strains. This result indicates that the plastic relaxation
of mechanical strains is absent in the 3D islands
obtained under the ion-irradiation conditions.

As the average thickness of the deposited germa-
nium increases to 7 ML, the Raman spectral differences
between the samples grown under conditions of pulsed
irradiation by Ge+ ions and by the conventional MBE
virtually disappear (Fig. 2), which agrees with the
RHEED data (Figs. 1c, 1d). The small displacement of

Fig. 2. Raman spectra of multilayer Ge/Si heterostructures
for two thicknesses of the deposited Ge: 5 and 7 ML. The
solid line corresponds to the structures obtained by the con-
ventional MBE, and the dashed line corresponds to the
structures obtained by the MBE with pulsed ion irradiation.

7 ML Ge

5 ML Ge

Ge–Ge

Ge–Si
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the Raman peak from the Ge–Ge bonds toward the
value corresponding to the bulk material, as compared
to the Raman peak in the structures with a thickness of
5 ML grown under pulsed action, is, evidently, associ-
ated with a partial relaxation of strains by approxi-
mately 10–20% (Fig. 2).

The amounts of germanium in the structures under
study were estimated from the ratio of peak intensities
for the Si–Ge and Ge–Ge bonds. In the samples with an
effective thickness of 5 ML grown by the conventional
molecular-beam epitaxy, the ratio of integral peak
intensities (ISiGe/IGeGe) equals 0.43. For the structures
with the same average thickness of the deposited ger-
manium obtained under pulsed ion-irradiation condi-
tions, the ISiGe/IGeGe ratio decreases to 0.2. As the effec-
tive film thickness increases to 7 ML, the Raman inten-
sities for the optical Si–Ge vibrations further decrease,
compared to the peak intensities for the Ge–Ge bonds
(Fig. 2). Based on the ratio of the Si–Ge and Ge–Ge
peak intensities, the ratio of the amounts of the silicon
and germanium bonds (NSiGe/NGeGe) in the layers is esti-
mated as

(1)

where B ≈ 3.2 (see [11, 16]).
In the structures with an effective thickness of 5 ML

grown under pulsed ion-irradiation conditions, the
NSiGe/NGeGe ratio equals 0.64. In the structures with an
effective thickness of 7 ML, this ratio decreases to 0.5.
The fractional Ge content χ was estimated from the
ratio of the number of bonds. For the structures grown
from an ion-molecular beam, χ > 0.75. The Ge islands
reside in the Si environment, and the Si–Ge bonds at the
phase boundary can contribute to NSiGe; therefore, the
above estimate is the lower limit of the Ge content. The
obtained value of NSiGe/NGeGe can be compared with the
ratio of the number of bonds in a model structure con-
taining Ge islands (χ = 1) shaped as hut clusters built-
in in a silicon matrix. The lateral size of the islands was
chosen equal to 10 nm, the height was 1 nm, the effec-
tive thickness of the Ge layer was 5 ML, the thickness
of the wetting layer was 3 ML, and the island density
was 1012 cm–2. In this case, the NSiGe/NGeGe ratio equals
0.52. The obtained value for the chosen model structure
proved to be rather close to the experimental values.
Thus, the comparison of the experimental and calcu-
lated results allows the suggestion that the Ge nano-
clusters in the heterostructures obtained by ion-molec-
ular beam epitaxy contain almost no Si.

An important conclusion from the results obtained
in this work is that the pulsed ion irradiation during the

ISiGe

IGeGe
-----------  . B

NSiGe

NGeGe
-------------,
growth of Ge/Si structures does not lead to a significant
mixing of the Ge and Si layers. The germanium content
in the three-dimensional islands obtained by the con-
ventional epitaxy and epitaxy with ion irradiation prac-
tically proved to be similar.

This work was supported by the Russian Foundation
for Basic Research (project no. 02-02-16020), INTAS
(project no. 2001-0615), and the Federal Research and
Technical Program (contract no. 40.012.1.1.1153).
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Temperature- and magnetic-field-dependent measurements of the resistance of ultrathin superconducting TiN
films are presented. The analysis of the temperature dependence of the zero-field resistance indicates an under-
lying insulating behavior, when the contribution of Aslamazov–Larkin fluctuations is taken into account. This
demonstrates the possibility of the coexistence of the superconducting and insulating phases and of a direct
transition from the one to the other. The scaling behavior of magnetic field data is in accordance with a super-
conductor–insulator transition (SIT) driven by quantum phase fluctuations in two-dimensional superconductor.
The temperature dependence of the isomagnetic resistance data on the high-field side of the SIT has been ana-
lyzed, and the presence of an insulating phase is confirmed. A transition from the insulating to a metallic phase
is found at high magnetic fields, where the zero-temperature asymptotic value of the resistance is equal to h/e2.
© 2004 MAIK “Nauka/Interperiodica”.
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The interplay between superconductivity and local-
ization is a phenomenon of fundamental interest, and
the question of the nature of superconductivity and its
evolution in two-dimensional disordered systems and a
perpendicular magnetic field continues to receive a
great deal of theoretical and experimental attention.
Two-dimensional systems are of special interest as two
is the lower critical dimensions for both localization
and superconductivity. Two ground states are expected
to exist for bosons at T = 0: a superconductor with long-
range phase coherence and an insulator in which the
quantum-mechanical correlated phase is disjointed.
The zero-temperature superconductor–insulator transi-
tion (SIT) is driven purely by quantum fluctuations and
is an example of a quantum phase transition [1]. The
superconducting phase is considered to be a condensate
of Cooper pairs with localized vortices, and the insulat-
ing phase is a condensate of vortices with localized
Cooper pairs. Between these two states, there is only
the metallic phase point, and this metal has a bosonic
nature as well. The theoretical description based on this
assumption was suggested in [2]. At finite tempera-
tures, a quantum phase transition is influenced by the
thermal fluctuations, and according to the theory, (i) the
film resistance R near the magnetic-field-induced SIT
at low temperature T in the vicinity of the critical field
Bc is a function of one scaling variable δ = (B – Bc)/T1/νz,

¶ This article was submitted by the authors in English.
0021-3640/04/7907- $26.00 © 20337
with the critical exponents ν and z being constants of
order of unity, and (ii) at the transition point, the film
resistance is of the order h/(2e)2 ≈ 6.5 kΩ (the quantum
resistance for Cooper pairs). Although much work has
been done, and in many systems the scaling relations
hold [3–8], the magnetic-field-induced SIT in disor-
dered films remains a controversial subject, especially
concerning the insulating phase and the bosonic con-
duction at B > Bc. There is experimental evidence [7]
that, despite the magnetoresistance being nonmono-
tonic, and in the magnetic fields above the critical one,
the derivative of resistance dR/dT is negative, the phase
can be insulating as well as metallic. The behavior of
the resistance in this region discussed in [5, 6] in terms
of the magnetic-field-induced SIT (which is essentially
bosonic in nature) can actually be explained on the
basis of a fermionic approach, namely, in the frames of
the theory of the quantum corrections to the conductiv-
ity in disordered metals. The possibility of such inter-
pretation is shown in [9] based on the recent calculation
of the quantum corrections due to superconducting
fluctuations [10]. As a usual thermodynamic supercon-
ductor–normal metal transition, provided that the
behavior of this metal is controlled, to a considerable
degree, by the quantum corrections and a superconduc-
tor–insulator transition may have very similar experi-
mental manifestations, some clear criteria are needed to
enable one to tell which of the two underlies the behav-
ior observed experimentally. Supposing the SIT to be
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Temperature dependence of the resistance per square
for sample 1 (solid line). Curves depicted by symbols cor-
respond to R*(Tc) (see text) and are obtained after subtrac-
tion of the Aslamasov–Larkin correction (1) with different
Tc, which are listed in the inset. These curves are presented

as G* = 1/R* vs. T1/3 in the inset.

Fig. 2. (a) Temperature dependence of the resistance per
square for four samples (symbols) and corresponding calcu-
lated curves RAA + AL (dashed lines) at optimally fitted val-

ues of a and b (4) and Tc. (b) G* = 1/R* vs. T1/3 for the same
samples at optimally fitted values of the critical temperature
Tc listed in the figure.
the cause (e.g., the temperature dependence is found to
be of an activated type), the question is then what effect
the magnetic field may have on the bosonic insulator.

In this paper, we present the results of measure-
ments and detailed analysis of temperature and mag-
netic field dependence of the resistance of TiN films,
devoting attention to a careful examination of the pres-
ence of the insulating phase and its alteration on the
high-field side of the SIT.

A TiN film with a thickness of 5 nm was formed on
100 nm of SiO2 grown on top of 〈100〉Si substrate by
atomic layer chemical vapor deposition at 350°C [11].
Structural analysis shows that the formed TiN films are
polycrystalline. The films exhibit low surface rough-
ness and consist of a dense packing of the crystallites,
with a rather narrow distribution of size and an average
size of roughly 30 nm. The samples for the transport
measurements were fabricated into Hall bridges using
conventional UV lithography and subsequent plasma
etching. Four terminal transport measurements were
performed using standard low-frequency techniques.
The resistance data were taken at a measurement fre-
quency of 10 Hz with an ac current of 0.04–1 nA. The
magnetic field was applied perpendicular to the film.

Four samples with the same thickness (5 nm) but
different degrees of disorder were studied in the present
work. We begin by showing the temperature depen-
dence of the resistance R(T, 0) at zero magnetic field.
R(T, 0) data are presented in Fig. 1 for sample 1 and in
Fig. 2 for all samples studied in this work. The resis-
tance is a nonmonotonic function of the temperature, as
is seen more clearly in Fig. 2a. With a decrease of T, the
increase of the resistance, which is observed from T =
300 K, is followed by a drop to the superconducting
state. The transitions are significantly broadened. To
explore the reasons for such behavior and to determine
the main sample parameters, we apply an approach
similar to the one used previously in [12]. As films
under study are high-resistive, it should be expected
that the dependence R(T) is strongly affected by the
contribution of superconducting fluctuations (the
Aslamazov–Larkin correction [13]) even at tempera-
tures far from the transition temperature Tc:

(1)

After extraction of this correction, with Tc being the
only free parameter, we obtain the temperature depen-
dence R*(Tc) = (1/Rh – ∆GAL(Tc))–1, which is depicted
by symbols in Fig. 1. The curves R*(Tc) obtained with
Tc < 0.6 K are nonmonotonic, whereas the ones corre-
sponding to Tc > 0.6 K give too strong a growth of the
resistance. The choice of Tc = 0.6 K is confirmed by the
further analysis of R*, which is carried out for a start in
terms of 3D “bad” metal in the vicinity of the metal–
insulator transition (MIT) [14]. In the critical region of
the MIT, the behavior of the system is governed by
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electron–electron interaction and the temperature
dependence of the conductivity is controlled by only

temperature-dependent scale LT = :

. (2)

Using Einstein’s relation σ = e2D(∂N/∂µ), the conduc-
tivity can be rewritten as

(3)

The representation of (3) in the form of

(4)

is usually used to discriminate between a metal and an
insulator by means of determination of the sign of the
parameter a upon extrapolation to T = 0 (see, as an
example, [15]). A positive value of a indicates the
metallic state, whereas a negative value of a points to
activated conductance at lower temperatures.

The inset of Fig. 1 shows the conductance G* = 1/R*
versus T1/3. The dependence G*(T1/3) at Tc = 0.6 K is
monotonic, and the temperature, to which the linear
character of G* is endured, is the lowest one. Determin-
ing in this way the values of a and b in (4) and Tc, we
can fully describe the temperature dependence of the
resistance film studied (RAA + AL = [GAA(a, b) +
∆GAL(Tc)]–1). The outcome of the above procedure
applied to all samples under study is illustrated in
Fig. 2. At T > Tc, RAA + AL closely follows the experimen-
tal data, justifying the validity of the above procedure
and indicating that, with the deduction of the direct
contribution of the superconducting fluctuations, the
conductance of the film is reasonably described by
Eq. (4). It is interesting to note that the slope of the
dependences G*(T1/3) plotted in Fig. 2b (or the param-
eter b in Eq. (4)) is approximately the same for all sam-
ples studied, whereas the values a ≡ G*(0) differ signif-
icantly.

Additional information which can been extracted
from the analysis is the estimation of parameters like
the compressibility

(5)

the diffusion coefficient

(6)

and kFl = 3Dm/". Here, the value of b is determined
from the linear approximation of G* versus T1/3

(Eq. (4)) and d is the thickness of the film. The follow-
ing numbers are obtained: ∂N/∂µ = 3.6 × 1021 eV–1 cm–3,
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D = 0.29 cm2/s (T/K)1/3, and kFl = 0.74(T/K)1/3, that is,
kFl < 1 at T < 2.4 K.

It should be noted that, in order to take into account
the superconducting fluctuations, we have used Eq. (1),
which is valid for the two-dimensional case. The condi-
tion under which a film may be considered two-dimen-
sional with respect to superconducting fluctuations is

(7)

Physically, this inequality denotes that the time of dif-
fusive motion across the film is less than the fluctuation
Cooper pair lifetime (or Ginzburg–Landau time)

(8)

Condition (7) can be rewritten as d2 ! DτGL = .
Using the estimation of the diffusion coefficient, we
find that lGL is larger than the film thickness at all tem-
peratures under study.

One more relevant information can been received
from the above analysis. Let us add Eqs. (3) and (1) and
rewrite total conductance as follows:

(9)

Then, the temperature corresponding to the minimal
value of G is determined by the condition

(10)

and, accordingly, the maximum of R(T) (Rmax in
Fig. 2a) results from the condition LT ≈ lGL. Thus, the
nonmonotonic temperature dependence of the resis-
tance is the consequence of a competition of two length
scales: lGL being responsible for Cooper pairing and LT

defining the electron–electron interaction. It should be
stressed that the above estimations are rough, since the
application of Eq. (3) implies that a = 0 in (4). There is
nothing like this in our case, and, moreover, for the
films under study, we get a < 0. It says that the underly-
ing state is insulating.

We now turn to the evolution of the resistance with
temperature for various magnetic fields. Figure 3a
shows the isomagnetic temperature dependences of the
resistance of sample 4. Not too high magnetic field
(B < 2 T) destroys the long-phase coherence and
reveals the underlying insulating state. The high-field
data appear to be more metallic in character: the mag-
netic field results in a significant suppression of the
insulating phase above 2 T. This is seen more clearly on
a typical set of Rh(B) traces measured on sample 1 (see
Fig. 3b). The main feature of this graph is the presence
of an intersection point at Bc, Rc. Using the Bc, we plot
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the same data against the scaling variable |B – Bc|/T1/νz

and adjust the product of the critical exponents νz to
obtain the best scaling of the data (inset of Fig. 3b).
However, such behavior, previously regarded as the
main evidence of the existence of SIT, is actually not
incontestable proof of the presence of the insulating
phase at B > Bc [9]. In order to ascertain the type of
phase, we have analyzed the temperature dependence
of the high-field conductance at different magnetic
fields. In this regime, G(T) is well described by Eq. (4),
as indicated in Fig. 4a. As G(0) is negative in fields
higher than the critical field, we can conclude that this
phase is insulating. With further increase of B, the sign
of G(0) changes, which points towards the transition to

Fig. 3. (a) Dependences R(T) at different B of sample 4.
(b) Low-temperature isotherms of sample 1 in the (B, R)
plane. Different curves represent different temperatures:
0.35, 0.38, 0.42, 0.51, 0.61, and 0.76 K. The point of inter-
section, Bc = 1.52 T, is the critical magnetic field, and Rc =
10.9 kΩ is the critical resistance. The inset shows a scaled
plot of the same data with y = νz = 1.05 ± 0.05.
the metallic state. The extrapolation to T = 0 allows us
to determine not only the field of the insulator–metal
transition (BIM) but also the magnetic field dependence
of the zero-temperature conductance. The result of this
procedure is presented in Fig. 4b. Analysis of the zero-
temperature conductance at B > BIM reveals that it is
well described by the empirical expression

(11)

shown by the solid line in Fig. 4b. The magnetic-field-
induced insulator–metal transition on the high-field
side of SIT was earlier observed in works of Gantma-
kher et al. on InOx [7, 8]. Applying the same procedure
to their data (see left panel of Fig. 1 of [8]), we find that
the dependence G(T = 0, B) is also well described by
Eq. (11) (see Fig. 4c). The exponential dependence of
G(T = 0, B) may result from a broad dispersion of the
binding energies of localized Cooper pairs. The most
important result is the zero-temperature asymptotic
value of the resistance, which is equal to the quantum
resistance RQ = h/e2. The saturation of the low-temper-
ature magnetoresistance to the quantum resistance was
demonstrated on beryllium films [16]. Although the
authors of [16] consider their films to be deep within
the insulating phase, it is not improbable that they are
superconducting at lower temperature, i.e., that the cor-
related insulating phase consists of localized Cooper
pairs. We believe that observed behavior, namely, the

G T 0 B,=( ) e2

h
---- 1

BIM B–
B*

------------------exp– 
 =

Fig. 4. (a) Conductance G = 1/R vs. T1/3 at different mag-
netic fields on the high-field side of the SIT for sample 1.
The magnetic field dependence of the zero temperature con-
ductance determined from extrapolations in accordance
with Eq. (4) are shown by symbols along with the depen-
dences calculated from an empirical expression (11):
(b) sample 1 (this work) and (c) InOx [8].
JETP LETTERS      Vol. 79      No. 7      2004



SUPERCONDUCTIVITY ON THE LOCALIZATION THRESHOLD 341
gradual approach of the low-temperature magnetoresis-
tance towards the quantum resistance, is a very general
feature of a bosonic insulator on the high-field side of
the magnetic-field-tuned SIT.

In conclusion, we have studied the temperature and
magnetic field dependence of the resistance of TiN
films. We have demonstrated that the nonmonotonic
temperature dependence of the resistance at zero mag-
netic field results from the concurrence of supercon-
ducting correlations and localization, with presumably
the underlying insulating state having a bosonic nature.
The destruction of the long-range phase coherence by a
magnetic field highlights this insulating state. The fur-
ther evolution of the system towards very high mag-
netic fields is in accordance with the breakup of such
localized Cooper pairs and drives the system eventually
into a metallic regime. The saturation of the low-tem-
perature magnetoresistance near the quantum resis-
tance seems to be a very general feature, occurring in
several different materials. The nature of the insulating
state and high-field metallic state requires further inves-
tigation.

We gratefully acknowledge discussions with
V.F. Gantmakher, A.I. Larkin, and A.M. Goldman. We
also thank V.F. Gantmakher for having given us access
to his raw experimental data on InOx.

This work was supported by the programs “Super-
conductivity of Mesoscopic and Strongly Correlated
Systems” of the Russian Ministry of Industry, Science,
and Technology, “Low-Dimensional and Mesoscopic
Condensed Systems” and “Quantum Macrophysics” of
the Russian Academy of Sciences, and by the Russian
Foundation for Basic Research (grant no. 03-02-
16368).

REFERENCES
1. S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar,

Rev. Mod. Phys. 69, 315 (1997).
JETP LETTERS      Vol. 79      No. 7      2004
2. M. P. A. Fisher, Phys. Rev. Lett. 65, 923 (1990).
3. A. F. Hebard and M. A. Paalanen, Phys. Rev. Lett. 65,

927 (1990).
4. N. Marcovic, C. Christiansen, A. M. Mack, et al., Phys.

Rev. B 60, 4320 (1999).
5. A. Yazdani and A. Kapitulnik, Phys. Rev. Lett. 74, 3037

(1995).
6. S. Okuma, T. Terashima, and N. Kokubo, Solid State

Commun. 106, 529 (1998); S. Okuma, T. Terashima, and
N. Kokubo, Phys. Rev. B 58, 2816 (1998).

7. V. F. Gantmakher, M. V. Golubkov, V. T. Dolgopolov,
et al., Pis’ma Zh. Éksp. Teor. Fiz. 68, 337 (1998) [JETP
Lett. 68, 363 (1998)].

8. V. F. Gantmakher, M. V. Golubkov, V. T. Dolgopolov,
et al., Pis’ma Zh. Éksp. Teor. Fiz. 71, 693 (2000) [JETP
Lett. 71, 473 (2000)].

9. V. F. Gantmakher, S. N. Ermolov, G. E. Tsydynzhapov,
et al., Pis’ma Zh. Éksp. Teor. Fiz. 77, 498 (2003) [JETP
Lett. 77, 424 (2003)].

10. V. M. Galitski and A. I. Larkin, Phys. Rev. B 63, 174506
(2001).

11. A. Satta, G. Beyer, K. Maex, et al., Mater. Res. Soc.
Symp. Proc. 612, D6.5.1 (2000).

12. V. F. Gantmakher and M. V. Golubkov, Pis’ma Zh. Éksp.
Teor. Fiz. 73, 148 (2001) [JETP Lett. 73, 131 (2001)].

13. L. G. Aslamazov and A. I. Larkin, Fiz. Tverd. Tela (Len-
ingrad) 10, 1104 (1968) [Sov. Phys. Solid State 10, 875
(1968)]; B. L. Al’tshuler, A. A. Varlamov, and
M. Yu. Reizer, Zh. Éksp. Teor. Fiz. 84, 2280 (1983)
[Sov. Phys. JETP 57, 1329 (1983)].

14. B. L. Al’tshuler and A. G. Aronov, Pis’ma Zh. Éksp.
Teor. Fiz. 37, 349 (1983) [JETP Lett. 37, 410 (1983)];
B. L. Al’tshuler and A. G. Aronov, in Electron–Electron
Interactions in Disordered Systems, Ed. by A. L. Efros
and M. Pollak (North-Holland, Amsterdam, 1985).

15. M. C. Maliepaard, M. Pepper, R. Newbury, and G. Hill,
Phys. Rev. Lett. 61, 369 (1988); M. C. Maliepaard, M.
Pepper, R. Newbury, et al., Phys. Rev. B 39, 1430
(1989).

16. V. Yu. Butko and P. W. Adams, Nature 409, 161 (2001).



  

JETP Letters, Vol. 79, No. 7, 2004, pp. 342–345. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 79, No. 7, 2004, pp. 421–424.
Original Russian Text Copyright © 2004 by Barabanenkov, Ivanov, Taranov, Khazanov, Yagi, Yanagitani, Takaichi, Lu, Bisson, Shirakawa, Ueda, Kaminskii.

                                                                                                                                                                           
Nonequilibrium Acoustic Phonons
in Y3Al5O12-Based Nanocrystalline Ceramics

Yu. N. Barabanenkov1, S. N. Ivanov1, A. V. Taranov1, E. N. Khazanov1, *, H. Yagi2, 
T. Yanagitani2, K. Takaichi3, J. Lu3, J. F. Bisson3, A. Shirakawa3,

K. Ueda3, and A. A. Kaminskii4

1 Institute of Radio Engineering and Electronics, Russian Academy of Sciences, ul. Mokhovaya 18, Moscow, 125009 Russia
*e-mail: khazanov@nep.cplire.ru

2 Konoshima Chemical Co., Takuma Works, 769-1103 Kagawa, Japan
3 Institute for Laser Science, University of Electro-Communications, 182-8585 Tokyo, Japan

4 Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskiœ pr. 59, Moscow, 119333 Russia
Received March 3, 2004

The phonon transport processes in high-transparency nanocrystalline laser ceramics based on cubic Y3Al5O12
garnet oxide were investigated by the heat-pulse technique. The propagation kinetics of nonequilibrium acous-
tic phonons was studied in the range of helium temperatures (1.7–3.8 K). The structural model is suggested for
the intergrain layers, and their thickness is estimated. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 63.20.-e; 81.07.Bc
Today, many divisions of modern fundamental
physics, including laser physics and quantum electron-
ics, cannot be imagined without the use of nanocrystal-
line materials.

The first ceramics capable of generating stimulated
radiation (SR) were synthesized on the basis of
CaF2:Dy2+ flourite (5I7  5I8 generation channel) in
the mid-1960s [1] and Y2O3-ThO2:Nd3+ (4F3/2 
4I11/2) in the early 1970s [2]. In 1995, Y3Al5O12:Nd3+-
based ceramics were obtained [3] and used to fabricate
a disk-shaped active element 8 mm in diameter and 2
mm in thickness. Its optical quality was sufficiently
high for engineering a micron laser (4F3/2  4I11/2)
with diode-laser (DL) excitation. Laser ceramics
Y3Al5O12:Nd3+ synthesized by the modified, though
traditional technologies [4] were used to fabricate only
millimeter-sized active elements, and their generation
parameters were at a considerable disadvantage in rela-
tion to the corresponding laser-crystal parameters.

In the last few years, size-unrestricted high-trans-
parency Y3Al5O12:Nd3+ laser ceramics have been syn-
thesized using the newest nanotechnology and vacuum
caking in the absence of an external pressure [5] (see,
e.g., [6, 7] and references cited therein). They were
used to fabricate Nd3+:Y3Al5O12 lasers with DL pump-
ing and an output power on the kilowatt level (from
≈370 mW in the year 2000 [8] to ≈1.5 kW in 2001 [9]).
A high optical perfection of the new Y3Al5O12 and
Y3Al5O12:Nd3+ ceramics was confirmed by the excita-
tion of high-order stimulated Raman scattering in them
[10]. Even at the early stage of investigations, the gen-
0021-3640/04/7907- $26.00 © 20342
eration parameters of lasers based on the large-sized
nanocrystalline Y3Al5O12:Nd3+ ceramics [7] outper-
formed their crystal analogues [6]. The same technique
was used to synthesize nanocrystalline laser ceramics
based on cubic oxides Y2O3, Sc2O3, YGdO3, and Lu2O3

activated with the Nd3+ and Yb3+ ions [11]. Due to the
combination of the generation and some other physical
properties, these ceramics are promising for use in fem-
tosecond lasers [12] and powerful laser drivers in the
experiments on controlled thermonuclear fusion [13].

Our studies have shown that the optical and lasing
characteristics of all the aforementioned nanocrystal-
line ceramics cannot be improved without the knowl-
edge of the properties and structure of the intergrain
boundaries, their thickness, composition, etc., because
the intergrain boundaries and pores in a ceramic mate-
rial are responsible for the laser losses in it.

The analysis of the character and structure of the
intergrain boundaries is a rather complicated problem.
Within a limited volume, it is solved by the method of
high-resolution transmission electron microscopy. The
corresponding studies have confirmed the existence of
nanometer-thick continuous intergrain layers in a
ceramic material [14]. At the same time, the volume
analyzed by an electron microscope is exceedingly
small and does not allow any conclusion to be drawn
about the practically important averaged or macro-
scopic properties of the intergrain material [15].

In this work, the heat-pulse technique was used as
the main method for studying the propagation kinetics
of nonequilibrium thermal phonons and their scattering
efficiency at temperatures of 1.7–3.8 K in Y3Al5O12-
004 MAIK “Nauka/Interperiodica”
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and Y3Al5O12:Nd3+-based ceramics. At helium temper-
atures, the wavelength of phonons injected into the
sample becomes comparable not only to the sizes of
material-forming fragments (grains) but also to the
sizes (thickness) of the intergrain boundaries, pores,
etc. The diffusion data on the nonequilibrium phonons
can be used to estimate, within the framework of certain
models, the transparency of the boundaries between the
fragments to predict the thermal and mechanical char-
acteristics of material. A detailed description of the
method can be found in [16–18].

The surface (cleavage) microstructure was exam-
ined for each sample using a JSM-840 (Jeol) scanning
electron microscope. The photographs were processed
on the basis of the Soft Imaging System program for the
determination of the mean grain size R in ceramics and
the standard deviation σ from the mean value.

An example of a microphotograph of the cleavage
surface in a ceramic sample is shown in Fig. 1. The
grains are close-packed crystallites (or single crystals),
evidencing their high structural perfection. The mean
grain sizes R and the standard deviations σ for the sam-
ples studied are given in the table.

0801 25 kV ×1.200 10 µm WD12

Fig. 1. Microstructure of the cleavage surface for sample 4.
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Examples of heat-pulse propagation curves are pre-
sented in Fig. 2 for several temperatures. The bell-
shaped bolometer signal has a well-defined maximum,
typical of the diffusional propagation of injected non-
equilibrium phonons. The time tmax at which the signal
is maximal increases with the temperature of injected
phonons. According to [18], the expression for the
arrival time tmax of the maximal signal from the phonon-
radiation pulse in the case of diffusional phonon prop-
agation in a ceramic sample of thickness L @ R has the
form (plane source):

(1)

The diffusion coefficients Deff at T = 3.8 K for the sam-
ples studied are given in the table.

The phonon transport mean free path ltr was deter-
mined from the usual relation

(2)

where v s is the mean sound velocity in the grain at T =
3.8 K, and ltr/R @ 1 (see table). In all samples, the ratio
ltr/R increased with decreasing temperature. This result

tmax L2/2Deff.=

Deff 1/3v sltr,=

Fig. 2. Time dependence of the amplitude of nonequilib-
rium phonon-radiation signal for ceramic sample 2.
Parameters of the Y3Al5O12 samples studied in this work

Sample 
no. Composition

Sample 
length L 

(mm)

Mean grain 
size R (µm)

Standard devia-
tion σ from the 
mean size (µm)

Diffusion coefficient 
Deff at 3.8 K (cm2/s) ltr/R ratio Ψ = 0.6 R/ltr qlgb lgb [Å]

1 Y3Al5O12 1.45 13.5 4.85 0.85 × 103 3.4 0.176 0.175 3.6

2 Y3Al5O12 1.60 11.0 5.3 0.55 × 103 2.7 0.222 0.22 4.6

3 Y3Al5 9.0 7.0 – 2 × 103 15.3 0.04 0.082 1.7

4 Y3Al5 3.1 6.5 3.25 1.45 × 103 12.0 0.05 0.09 1.85

5 Y3Al5 5.7 11.4 5.85 2.6 × 103 12.2 0.05 0.09 1.85

a Activated with Nd3+ ions (CNd ≈ 1 at. %).
b Activated with Nd3+ ions (CNd ≈ 2 at. %).

O12
a

O12
a

O12
b
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allows the conclusion to be drawn that Y3Al5O12 and
Y3Al5O12:Nd3+ ceramics are perfect from the stand-
point of low-temperature phonon kinetics and that
phonons are scattered only by the grain boundaries,
with the probability of phonon transition from grain to
grain being close to unity.

Let us turn to the quantitative analysis of the
obtained results. Earlier, the relation ltr/R > 1 was
observed in the experiments with high-density α-Al2O3
ceramics [19]. The authors of that work explained these
results on the assumption that phonons are scattered by
the orientationally disordered grains, while the inter-
layers between them are absent. It was assumed that

(3)

where l ~ R is the mean free path before the scattering
event at the grain boundary, and that the mean cosine
〈cosϕ〉  of single-scattering angle corresponds to the
wave elastic scattering at the grain boundaries with dif-
ferent crystallographic orientations.

In our case of a highly isotropic material, the scat-
tering is determined by the grain-boundary thickness lgb
and structure. A simplified model of this mechanism
was considered in [17], where, following the method of
acoustic matching of media [20], phonon scattering
upon the transition through a plane boundary layer was
estimated with allowance for all possible incidence and
transition angles. The computational results for a num-

ltr
l

1 ϕcos〈 〉–
---------------------------,=

Fig. 3. The probability fω of phonon transition from grain to
grain through a plane boundary layer of thickness lgb, cal-
culated as a function of q2lgb, where q2 = ω/v2 is the phonon
wave vector in the boundary level. The parameters for the
grain material are ρ = 4.55 and v  = 5.6 × 105 cm/s (data for
Y3Al5O12). Curve 1: ρ2 = 2.65 and v2 = 4.7 × 105 cm/s
(data for crystalline SiO2). Curve 2: ρ2 = 2.2 and v2 =

4.05 × 105 cm/s (data for SiO2 in glassy phase). Points on
curve 2 are experimental; (o) sample 2 and (+) sample 4.

q2lgb
ber of sets of structural parameters and a thin grain
boundary q2lgb < 1 are presented in Fig. 3. First of all,
one can see from the curves in Fig. 3 that the probability
fω of phonon transition from grain to grain is close to
unity and decreases with a rise in temperature (i.e., fre-
quency of injected phonons), in line with our experi-
mental results. This suggests that the quantity fω is anal-
ogous to 〈cosϕ〉  in Eq. 3. Using the curves in Fig. 3 and
the experimental values of ltr and l ≈ 0.6R [19], one can
determine fω and estimate the thickness of intergrain
layers for our samples. The results are presented in the
table for the intergrain parameters corresponding to
fused quartz. Such a choice of interlayer material is dic-
tated by the fact that SiO2 is used as an additive in the
synthesis of Y3Al5O12 ceramics [21]. Using the value of
lgb at temperature T = 3.8 K and the experimental data,
one can construct fω as a function of q2lgb, i.e., of tem-
perature. These curves are presented in Fig. 3 for two
samples with the maximal (sample 4) and minimal
(sample 2) diffusion coefficients. The calculations
agree well with the experiment. For the intergrain trans-
parency corresponding to the crystalline quartz (Fig. 3,
curve 1), the values of lgb are approximately a factor of
2 larger, though smaller than the quartz lattice parame-
ters, which, considering the complex structure of
quartz, renders this model unrealistic. Note also that
curve 1 in Fig. 3 does not take into account the loss
caused by the orientational disorder of grains and SiO2
interlayers in Y3Al5O12; otherwise, curves 1 and 2 in
Fig. 3 would be closer to each other.

The main result of this work is that the grain-bound-
ary thickness lgb is smaller than the estimates made in
[13] and the lattice parameter of Y3Al5O12. The grain
boundary is formed from the additive materials used in
synthesis, and among them fused quartz is the most
probable.

We now turn to the results obtained for the YAlG
samples with Nd additives, where the diffusion coeffi-
cients are appreciably greater. With the above model of
phonon flow through the intergrain layer, one should
expect that fω (i.e., diffusion coefficient) increases with
an increase in the layer density due to the implantation
of the Nd3+ ions. It is conceivable that this occurs
because of the “drain” of the excess Nd3+ ions into this
layer, whose chemical and physical structures are far
from those of the ideal model used in this work.

In summary, the approach applied in this work to the
propagation of nonequilibrium phonons in ceramic
samples has made it possible to draw the conclusion
about a high perfection of the grains in Y3Al5O12 ceram-
ics, estimate the thickness of intergrain boundaries, and
make the suggestion as to the material of intergrain
layer and the influence of Nd doping on the structure of
this layer. The model suggested for the structure of
boundary layer is clearly inconclusive, and its develop-
ment is the subject of our further experiments with
Y3Al5O12:Nd3+-based ceramics with a broad set of
JETP LETTERS      Vol. 79      No. 7      2004
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neodymium contents, grain sizes, and other technolog-
ical parameters.
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Electrical resistivity of two crystal phases of shock-compressed calcium and its melt was measured in a range
of high pressures (10–50 GPa) and temperatures (800–1600 K). The thermodynamic equilibrium curves were
constructed for different calcium phases and the shape of Hugoniot adiabat was determined in the region where
it intersects the equilibrium curves. It is shown that sharp kinks observed earlier in the Hugoniot adiabat in
shock experiments were caused not by the jumplike electronic transitions but by the intersections of the adiabat
and the phase-equilibrium and melting curves. The electronic spectra of the calcium crystal phases were calcu-
lated using the electron-density functional method; the computational results are used to explain the observed
behavior of the Ca resistivity under compression. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 62.50.+p; 64.30.+t; 64.70.-p; 71.30.+h; 81.40.Vw
In the last years, the attention of experimenters and
theorists has been drawn to the properties of elementary
metals, in particular, alkali and alkaline-earth metals at
high pressures. This is caused by some factors, e.g., by
the fact that, under pressure, many polymorphic transi-
tions in elementary metals are accompanied by the
unexpected symmetry reduction and a decrease in
packing density upon compression [1, 2]. Interest in
these inquiries has quickened in connection with Ash-
croft’s assumption [3] about the possible lithium metal
transition to the semiconducting state with the low-
symmetry crystal structure oC8 at pressures above
100 GPa. The subsequent experimental and theoretical
studies [4] did not confirm this assumption. As was
shown in [6], the increase in the resistivity of shock-
compressed Li [5, 6] can be explained by the sequential
structural transformations observed in [4]. A dramatic
increase in the resistivity was also observed for the
shock-compressed bismuth [7] and sodium [8].

The behavior of alkaline-earth metals Ba, Sr, and Ca
under pressure has drawn attention of researchers
beginning in the 1960s (see, e.g., [9–11]). The study of
the electronic structure of these metals within the
framework of the pseudopotential theory has shown
[10] that, at certain pressures, metals in the FCC phase
become insulators or, more precisely, narrow-gap semi-
conductors. The experimental studies of the calcium
resistivity ρ [12, 13] have shown that ρ is maximal at
pressures on the order of 18 GPa. Moreover, it was
found that the temperature resistivity coefficient near
0021-3640/04/7907- $26.00 © 20346
this maximum is negative; i.e., Ca in this pressure range
behaves like a semiconductor.

The room-temperature phase diagram of Ca was
studied in detail in [14] up to pressures of ≈80 GPa. At
normal conditions, Ca crystallizes in the FCC phase
and undergoes transition to the BCC phase at P =
19.5 GPa with a change of ∆V/V ≈ 2% in specific vol-
ume. Upon further compression, Ca undergoes transi-
tion at P = 32 GPa to the simple cubic (SC) structure
with a volume jump of ∆V/V ≈ 8%. The SC phase
remains stable at least up to the pressures P ≈ 80 GPa.
In a more recent theoretical work [15], the total Ca
energy at T = 0 was analyzed in detail on the basis of ab
initio calculations of various crystal structures, and the
pressures of the FCC–BCC–SC transition sequence
were estimated. The theoretical value Pcalc ≈ 15 GPa
calculated for the FCC–BCC transition proved to be
underestimated, as compared to its experimental value,
whereas the pressure Pcalc ≈ 33 GPa calculated for the
BCC–SC transition coincided, to a good accuracy, with
the experiment. In that work, gradual filling of the elec-
tron d band upon compression was considered as a
physical reason causing the sequential structural transi-
tions, especially the Ca BCC–SC transition.

In some experimental works [16, 17] on the shock
compression of alkaline-earth, rare-earth, and transi-
tion metals, a jumplike increase in the slopes of Hugo-
niot adiabat was observed in the pressure range P ≈ 20–
100 GPa. For the particular case of Ca adiabats, these
changes were assigned in [16, 17] to the electronic s–d
transitions that result in low-compressible structures
004 MAIK “Nauka/Interperiodica”
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under pressure. It should, however, be noted that the
theoretical calculations of the Ca electronic structure
(see, e.g., [11, 15]) show that no jumplike change in the
character of electron wave functions (in other words,
sharp electronic s–d transitions) occurs in calcium at
any pressure. At zero pressure, Ca is a simple metal
with valence s electrons and an almost empty d band,
which lies above the Fermi level EF though in close
proximity to it, allowing calcium to be classified as a
“pre-transition” metal. Upon compression, the d-band
energy gradually goes down relative to EF and the s
band. Roughly speaking, the reason is that the high-
pressure effect on the low-compressible d functions is
weaker than on the spherical (and, hence, more com-
pressible) s function and on EF, whose position is deter-
mined by all valence electrons. Accordingly, the empty
d states start to gradually fill (in the literature, this pro-
cess is sometimes called “continuous s–d transition”
[11]). It follows from the calculations that, upon com-
pression to V = 0.2V0, which, due to a high Ca com-
pressibility, corresponds to a comparatively low pres-
sure of ≈170 GPa, calcium has an electronic configura-
tion close to 4sp13d1 and displays the properties of a
transition metal. The scenario described above allows
the conclusion to be drawn that the kinks in the adiabats
observed in [16, 17] have a different nature.

The purpose of this work was to study, both experi-
mentally and theoretically, the behavior of shock-com-
pressed calcium in the range of temperatures T ~ 1000 K
and pressures P ≈ 10–70 GPa. The diagnostics of phase
transitions was carried out on the basis of conductivity
measurements, and the temperature was calculated by
the method of thermodynamic potentials.

Samples were calcium foils 0.1 × 2 × 8 mm in size.
Calcium was initially in the stable FCC phase. The
shock compression and heating of the samples were
accomplished by the impact of a metallic striker accel-
erated by detonation products to velocities of 2–
3.5 km/s. The electrical resistivity and pressure in the
shock-compressed sample were recorded simulta-
neously in the experimental arrangement described in
[5–7]. The Ca sample and a manganin shock-compres-
sion pressure gauge were placed in the same plane
between metallic screens in Teflon, which served as an
insulator. Teflon also played the role of a material
whose acoustic stiffness is lower than that of screens.
Therefore, sample compression was performed by a
sequence of one-dimensional plane shock waves [18, 19].

The Ca specific resistivity ρ was calculated as ρ =
ρ0(R/R0)(V/V0), where R is the measured resistance of
the sample and V is its specific volume calculated by the
method of thermodynamic potentials (see below). The
reference data on ρ0, R0, and V0 at atmospheric pressure
and room temperature were taken as their initial values.
The initial density of calcium was 1/V0 = 1.55 g/cm3.

To interpret the compression-induced changes in the
electric properties of Ca, ab initio microscopic calcula-
JETP LETTERS      Vol. 79      No. 7      2004
tions of the electronic structure and plasma frequency
were carried out for various values of specific volume.
Calculations were performed within the framework of
the density functional theory by the full-potential lin-
earized augmented plane wave (FP-LAPW) method
using the WIEN2k program package [20]. It was shown
that, in accordance with previous calculations [10, 11],
calcium in the FCC phase undergoes transition to the
semiconducting state in the range of compressions
0.75 ≥ V/V0 ≥ 0.6. It is significant, however, that the
electron density of states N(EF) at the Fermi surface and
the plasma frequency ωpl decrease in the FCC phase in
a much broader pressure range; i.e., metallic properties
of Ca deteriorate and, correspondingly, the electrical

resistivity increases (as known, ρ ~ 1/ ). These
results are in compliance with the experimental data
obtained in [12, 13] for the Ca resistivity under pres-
sure. It should be noted that Ca in the BCC phase
remains a good metal under any compression. Our cal-
culations showed that a very narrow range, 0.55 ≥
V/V0 ≥ 0.53, of volumes where the Ca electronic struc-
ture has the semiconducting character also occurs in the
SC phase. However, at T = 0, the BCC Ca is the stable
phase in this region. Nevertheless, at a pressure corre-
sponding to the BCC–SC transition, the metallic prop-
erties of Ca drastically deteriorate because of a
decrease in N(EF) and ωpl and, hence, in the number of
charge carriers in the SC phase. Upon further compres-
sion, ωpl increases in the SC phase, but it becomes equal
to the BCC plasma frequency only at V/V0 ≈ 0.3.

We calculated the total crystal energy Etot for all
three phases and various values of specific volume V.
The resulting Etot(V) dependence was used to construct
the equation of state for T = 0 in the form P(V) =
−∂Etot(V)/∂V. In our calculations, as almost in all theo-
retical works on calcium (see, e.g., aforementioned
work [15]), the FCC–BCC transition pressure Ptr =
17 GPa proved to be underestimated. The reason for
such an understatement of Ptr remains to be clarified. To
calculate the calcium temperature in shock waves and
the phase-equilibrium curves at T ≠ 0, the method of
thermodynamic potentials was used. The Helmholtz
free energy F(V, T) served as the main thermodynamic
potential. The expression for F(V, T) was taken in the
semiempirical form [21, 22]

(1)

In Eq. (1), the standard notation is used. The fitting
parameter as is zero for a solid body and nonzero for a
melt. The parameter Em specifies the reference level for
the total energy Etot(V) of each phase. It is introduced to
eliminate the aforementioned understatement of the
FCC–BCC transition pressure in the ab initio calcula-
tions. The computational procedure for determining the
thermal contribution to the Helmholtz free energy and

ωpl
2

F V T,( ) Ex V( )=

+ 3R θ/2 T 1 θ/T–( )exp–( )ln+( ) asRT– Em.+
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Fig. 1. Hugoniot adiabat for calcium in the “shock-wave
velocity (D)–mass velocity (u)” coordinates. Points are for
the experiment [8, 18]. Solid lines are the Hugoniot adiabats
calculated in this work for (1) the FCC phase, (2) a mixture
of the FCC and BCC phases, (3) the BCC phase on the basis
of the ab initio calculations of the total energy Etot(V), (4) a
mixture of the BCC phase and Ca melt, and (5) the Ca melt.

Fig. 2. Pressure P(t) (solid lines) and resistance R(t)
(dashes) profiles in the case of the step shock-wave loading
of the calcium sample: (a) shock-compressed solid Ca and
(b) calcium melted upon shock compression. The vertical
arrows indicate the instants of time t1, t2, and t3 at which the
quantities suffer jumplike changes under the action of
sequential shock waves and the times tr of the onset of a
smooth increase in resistance. The skew arrows indicate the
instants of time at which pressure starts to decrease due to
the arrival of a rarefaction wave from the striker rear side.
the method of constructing the potential energy Ex(V)
and characteristic temperature θ(V) as functions of V
are described in detail by one of us in [21]. The free
parameters (excepting Em) in Eq. (1) were determined
from the Hugoniot adiabats obtained in [17, 23] and
from the reference data on thermal properties of mate-
rials.

The Hugoniot curves were set off from the common
array of experimental data for different calcium phases
[17, 23] using the fact that, at low (compared to P =
−∂Etot /∂V) thermal pressures, the location of the calcu-
lated adiabat in the “shock-wave velocity (D)–mass
velocity (u)” coordinates is virtually independent of the
constant term Em in Eq. (1). In this approximation, the
Hugoniot curve of the BCC Ca can be calculated using
only the ab initio total energy of this phase and expres-
sion (1) with key functions θ(V) and Ex(V) = Etot(V)
taken in the form proposed in [21]. The results of this
calculation are shown in Fig. 1 (straight line 3).

One can see in Fig. 1 that straight line 3 coincides
with only a part of the experimental points [17, 23].
Consequently, the remaining points belong to the other
calcium phases and their mixtures: (1) FCC, (2) FCC +
BCC mixture, (4) BCC + melt, and (5) melt. This sub-
division allowed us to construct the thermodynamic
potentials for the cited phases and calculate the equilib-
rium curves between these phases together with their
Hugoniot adiabat in the vicinity of the equilibrium
curves and to identify the calcium thermodynamic
states obtained in our experiment on measuring the cal-
cium electrical resistivity at high pressures and tem-
peratures.

The typical experimental profiles with jumps (time
dependences) in calcium resistance R(t) were of two
types. Figure 2a shows the first type, characterized by a
nonmonotonic increase in the resistance with pressure.
The first jumplike increase in R at t1 accompanies the
pressure jump in the first shock wave. The second
increase in R at t2 occurs in the second shock. There is
no surprise in the very fact that the sample resistance
increases under the action of a shock wave, because it
results in the rise of both the sample temperature and
the number of various defects in the sample. However,
the sample resistance drops jumpwise at the instant of
time t3. This drop in R in the third shock seems to be
nontrivial. Because of the limited number of experi-
mental data on electrical resistance, a detailed quantita-
tive analysis of the temperature and pressure depen-
dences of R cannot be carried out. However, based on
the theoretical calculations and experimental data on
the static Ca compression (at T = 300 K) and heating of
Ca to the temperatures T on the order of melting tem-
perature (at P = 0), one can suggest some scenarios for
the explanation of the obtained experimental results.

The calcium phase diagram and the thermodynamic
states arisen upon multiple shock compression are
shown in Fig. 3. The calculations of the FCC–BCC
equilibrium curve with allowance for temperature
JETP LETTERS      Vol. 79      No. 7      2004
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(curve 2) indicate that none of the thermodynamic
states attained in the experiment fall within the FCC
stability region. The thermodynamic state in the first
shock wave is most likely in the BCC stability region.
This state is depicted in Fig. 3 by the black square, and
the temperature and the reciprocal specific volume 1/V
calculated for this state are presented in the table.

The situation with the identification of the thermo-
dynamic states in the second shock is much more com-
plicated. As is seen in Fig. 3, the experimentally mea-
sured pressure P = 28 GPa lies to the left of the BCC–
SC equilibrium curve (dashed curve 4), i.e., in the sta-
bility region of the BCC phase. It should be noted that
this equilibrium curve (taken from [24]) has only one
experimental point measured at room temperature and
pressure P = 32 GPa [14]. Because of the lack of ther-
mal data, it is difficult to calculate this curve using the
approach suggested in [21], as was done above for the
FCC–BCC transition. It is only clear that the equilib-
rium curve should bend leftwards with increasing tem-
perature, i.e., to the region of lower pressures. The cor-
responding behavior is clearly seen in the calculated
equilibrium curve 2. Of course, the bending of the
BCC–SC curve may be appreciably smaller than for the
FCC–BCC curve. On this basis, and also making allow-
ance for the experimental uncertainties in measured
pressure, we cannot state with certainty that the ther-
modynamic state in the second shock lies in the stabil-
ity region of the BCC phase.

As to the calcium thermodynamic state in the third
shock wave, the corresponding pressure P = 36 GPa is
evidence that this phase is in the SC stability region. To
estimate the temperatures in the second and third shock
waves, we used the BCC free energy. Clearly, the kink
caused by the heat of polymorphic transition at the
BCC–SC equilibrium curve is not taken into account in
this calculation. We assume that the ensuing overstate-
ment of temperature is no less than the change (~150 K)
in temperature in the interval where the Hugoniot curve
coincides with the FCC–BCC equilibrium curve
(Fig. 3). The thermodynamic states thus determined
with a temperature error of ~150 K are given in the
table and shown in Fig. 3. The state in the second shock
is indicated in Fig. 3 by the centered square, and the SC
states are indicated by the white squares. The data on
ρ(T, P) obtained for the BCC phase at P = 18 GPa in a
separate experiment with a single wave are also pre-
sented in the table. The linear approximation of three ρ
values corresponding to pressures of 14, 28, and
18 GPa

(2)

yields A = –6.20 × 10–10 Ω cm/K, B = 7.05 ×
10−7 Ω cm/GPa, and C = 2.17 × 10–5 Ω cm.

Due to the uncertainty in the results of measure-
ments and the lack of experimental points, one cannot
confidently assert that ρ(T, P) is described by linear
dependence (2). However, despite the large error, one

ρ T P,( ) A T T0–( ) B P P0–( ) C++=
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can state with certainty that the calcium temperature
resistivity coefficient (TRC) σ = (1/ρ)(∂ρ/∂T) = A/ρ at
T ≈ 1000 K is an order of magnitude lower than at nor-
mal conditions. This fact is not at all surprising. The
matter is that, contrary to the majority of other simple
metals, the TRC of alkaline-earth metals in the molten
state is close to zero or is even negative [25]. Consider-

Fig. 3. Calcium phase diagram and thermodynamic states
upon multiple shock compression: (∆) experimental data
[9] for the FCC–BCC equilibrium curve; (x) experimental
data [9] for the melting curve of the BCC phase; (+) exper-
imental data [24] for the Ca melting curve; and (e) phase-
transition pressures for calcium at room temperature [14].
Curve (1) is the Hugoniot adiabat calculated in this work for
a one-shot compression of monolithic Ca; (2) calculated
section of the FCC–BCC equilibrium curve; (3) calculated
section of the BCC–melt equilibrium curve; (dashed lines)
adiabats calculated for the step shock loading; (4) BCC–SC
equilibrium curve from [24]; (j) thermodynamic state of
BCC Ca in the first shock; ()) thermodynamic state in the
vicinity of the BCC–SC equilibrium curve, where the crys-
tal phase was not identified with certainty (see text); (h)
estimates for the thermodynamic states in the SC phase; and
(d) thermodynamic state of Ca melt in the first shock wave.

Resistivity ρ(P, T) of various calcium phases at high pres-
sures P and temperatures T

Ca phase ρ, 10–5 Ω cm 
(±5%)

P, GPa 
(±8%) T, K 1/V, g/cm3

BCC 1.20 14 810 2.346

1.45 18 1325 2.476

? 2.17 28 1080 2.821

SC 1.66 36 1165

1.78* 41* 1210*

Melt 1.18 32 1580 3.057

Note: A change in the specific volume V upon the BCC–SC phase
transition was not taken into account in the calculation of ρ(P,
T) for SC Ca. Asterisked are the values of ρ, P, and T at time
tr corresponding to the onset of a smooth increase in resistiv-
ity. The question mark in the first column corresponds to a
state in the vicinity of the BCC–SC equilibrium curve, where
the crystal phase was not identified with certainty (see text).
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ing that, apart from heating, crystal becomes strongly
disordered in the shock wave, the low TRC values in the
shock-compressed Ca seem to be quite admissible at
high temperatures. A small or even negative TRC value
at high temperatures is typical of many transition met-
als in the amorphous or disordered state [26]. Our
ab initio calculations of the Ca electronic structure at
high pressures, as also earlier calculations in [11, 15],
suggest that d electrons in Ca play an important role in
the pressure range studied and that Ca is very close to
transition metals in its properties.

As was pointed out above, the resistance R of Ca
samples changes nonmomotonically with the buildup
of pressure (see oscillograms in Fig. 2a); the jump in
pressure in the third shock at the instant t3 is accompa-
nied by a jumplike decrease rather than increase in R. If
one assumes that the Ca thermodynamic states in the
second and third shocks correspond to the BCC and SC
phases, respectively, then it would be highly difficult to
explain the jumplike decrease in resistance in the third
shock wave. As was already noted, at pressures above
the FCC–BCC transition pressure, the metallic proper-
ties of Ca in the SC phase are worse than in the BCC
phase. However, if one assumes that the Ca thermody-
namic state in the second shock also belongs to the SC
phase, then the subsequent decrease in resistance in the
third shock can be explained in a simple and natural
way. As was pointed out above, the metallic properties
of Ca in the SC phase improve with the buildup of pres-
sure, so that the resistance in the third shock wave
should decrease. Considering the uncertainties in the
calculated temperatures and the experimental errors in
measuring pressure and determining the BCC–SC
phase boundary, one can believe that this may indeed be
the case.

The experimental R(t) profiles of the second type are
presented in Fig. 2b. These profiles are characterized by
a monotonic pressure dependence of the resistance.
Calculations show that the Ca thermodynamic state
behind the front of the first shock wave corresponds to
a calcium melt. The value of resistivity ρ obtained at
time t1 for the Ca melt in the first shock wave is given
in the table together with the calculated temperature.
The melt thermodynamic state is indicated in Fig. 3 by
the black circle. The calculations of the calcium ther-
modynamic states in the second and subsequent shock
waves were not carried out for the case shown in
Fig. 2b.

The unusual thermal properties of the calcium melt
are noteworthy. One can see in Fig. 1 that its Hugoniot
adiabat (line 5) lies to the right of the BCC adiabat
(line 3). This is evidence that the Ca specific volume
decreases upon melting in the shock wave. This exper-
imental fact correlates with the negative slope of the
calculated equilibrium curve 3 in Fig. 3. The negative
curve signifies that the calcium melt in this range of
pressures and temperatures is more dense than the Ca
crystal.
Note also that, according to our calculations, a jum-
plike increase in the adiabat slope at u ≈ 3–4 km/s
(Fig. 1) is due to a kink appearing in the adiabat upon
its intersection with the equilibrium and melting curves
(curves 2, 3 in Fig. 3, respectively) rather than to the
electronic transition, as was assumed in [16, 17].

Let us now comment the common property of the
resistance profiles of calcium samples. One can see in
Fig. 2 that, in the region of maximal pressures begin-
ning at tr, the R(t) profiles of both types contain a sec-
tion with a smooth increase in R. It is worth noting that
this increase occurs at a constant pressure P(t). Conse-
quently, starting at tr , the resistance of the Ca sample
depends not only on pressure but also on time.

In summary, the resistivities of the calcium BCC
and SC structures at pressures of 10–40 GPa and tem-
peratures of 800–1400 K and the resistivity of the cal-
cium melt at a pressure of 32 GPa and a temperature of
1580 K have been measured in this work. In the pres-
sure range 10–30 GPa, the portions of equilibrium
curves between the Ca BCC and SC phases and
between the melt and the BCC phase have been calcu-
lated. The shape of Ca Hugoniot adiabat has been
revealed in the region of its intersection with the equi-
librium curves obtained for three phases. It has been
found that the specific volume of calcium decreases
upon melting in the shock wave.

The Ca resistivity ρ(T, P) has been estimated as a
function of temperature and pressure in the pressure
and temperature ranges 15–40 GPa and 800–1400 K,
respectively. It has been shown that the temperature
resistivity coefficient is much smaller than its value at
normal conditions. The observed small (down to nega-
tive) values of this coefficient in the shock-compressed
calcium is treated as the result of shock-induced defect
formation and crystal disordering.

It is worth noting that the stability region of the FCC
phase proved to be inaccessible to the step shock-load-
ing technique used in this work. To explore this region,
the amplitudes of the sequential shock waves should be
reduced by several times or a quasi-isentropic compres-
sion without shock waves should be used. In this case,
the region of calcium semiconducting state in the FCC
structure can be attained due to a comparatively low
quasi-isentropic compression temperature.

This work was supported by the program “Thermal
Physics and Mechanics of Extreme Energy Actions” of
the Presidium of the Russian Academy of Sciences, the
Russian Foundation for Basic Research (project
nos. 03-02-16322, 02-02-16658, and 04-02-16061), the
scientific programs of the Ministry of Industry and Sci-
ence, and the joint Dutch–Russian grant no.
047.016.005. The ab initio calculations of the calcium
electronic structure and properties were carried out on
the computer machinery of the Interdepartmental
Supercomputer Center.
JETP LETTERS      Vol. 79      No. 7      2004



ELECTROPHYSICAL PROPERTIES OF CALCIUM 351
REFERENCES
1. T. N. Kolobyanina, Usp. Fiz. Nauk 172, 1361 (2002)

[Phys. Usp. 45, 1203 (2002)].
2. K. Syassen, in Proceedings of International School of

Physics “Enrico Fermi” on High Pressure Phenomena,
Varenna, Italy, 2001, Ed. by L. Ulivi et al. (IOS Press,
Amsterdam, 2002), Vol. 147.

3. J. B. Neaton and N. W. Ashcroft, Nature 400, 141 (1999).
4. M. Hanfland, K. Syassen, N. E. Christensen, and

D. L. Novikov, Nature 408, 174 (2000).
5. V. E. Fortov, V. V. Yakushev, K. L. Kagan, et al., Pis’ma

Zh. Éksp. Teor. Fiz. 70, 620 (1999) [JETP Lett. 70, 628
(1999)].

6. V. E. Fortov, V. V. Yakushev, K. L. Kagan, et al., J. Phys.:
Condens. Matter 14, 10809 (2002).

7. V. I. Postnov, S. S. Nabatov, A. A. Shcherban’, et al., Zh.
Tekh. Fiz. 57, 1181 (1987) [Sov. Phys. Tech. Phys. 32,
694 (1987)].

8. V. I. Postnov, V. V. Yakushev, T. I. Yakusheva, et al., in
Abstracts of XVII International Conference on Equa-
tions of State of Substance (Elbrus, 2002), p. 50.

9. A. Jayaraman, W. Klement, J. Kennedy, et al., Phys. Rev.
132, 1620 (1963).

10. B. Vasvari and V. Heine, Philos. Mag. 15, 731 (1967).
11. H. L. Skriver, Phys. Rev. Lett. 49, 1768 (1982).
12. R. A. Stager and H. G. Drickamer, Phys. Rev. 131, 2524

(1963).
13. K. J. Dunn and F. P. Bundy, Phys. Rev. B 24, 1643

(1981).
14. H. Olijnyk and W. B. Holzapfel, Phys. Lett. A 100, 191

(1984); N. Winzenick and W. B. Holzaphel, in High
Pressure Science and Technology, Ed. by W. Trzecia-
kowski (World Sci., Singapore, 1996).
JETP LETTERS      Vol. 79      No. 7      2004
15. R. Ahuja, O. Eriksson, J. M. Wills, and B. Johansson,
Phys. Rev. Lett. 75, 3473 (1995).

16. L. V. Al’tshuler, A. A. Bakanova, and I. P. Dudoladov,
Pis’ma Zh. Éksp. Teor. Fiz. 3, 483 (1966) [JETP Lett. 3,
315 (1966)]; A. A. Bakanova and I. P. Dudoladov, Pis’ma
Zh. Éksp. Teor. Fiz. 5, 322 (1967) [JETP Lett. 5, 265
(1967)].

17. L. V. Al’tshuler, A. A. Bakanova, and I. P. Dudoladov,
Zh. Éksp. Teor. Fiz. 53, 1967 (1967) [Sov. Phys. JETP
26, 1115 (1968)].

18. S. S. Nabatov, A. N. Dremin, V. I. Postnov, et al., Pis’ma
Zh. Éksp. Teor. Fiz. 29, 407 (1979) [JETP Lett. 29, 369
(1979)].

19. V. I. Postnov, A. N. Dremin, S. S. Nabatov, et al., Fiz.
Goreniya Vzryva 19, 160 (1983).

20. P. Blaha, K. Schwarz, G. K. H. Madsen, et al., WIEN2k.
An Augmented Plane Wave + Local Orbitals Program
for Calculating Crystal Properties (Univ. of Technology,
Vienna, 2001).

21. A. M. Molodets, Fiz. Goreniya Vzryva 34, 94 (1998).

22. A. M. Molodets, M. A. Molodets, and S. S. Nabatov,
Khim. Fiz. 18, 67 (1999).

23. LASL Shock Hugoniot Data, Ed. by S. P. Marsh (Univ. of
California Press, Berkeley, 1980).

24. D. Errandonea, R. Boehler, and M. Ross, Phys. Rev. B
65, 012108 (2002).

25. A. R. Regel’ and V. M. Glazov, Physical Properties of
Electronic Melts (Nauka, Moscow, 1980), p. 296.

26. J. H. Mooij, Phys. Status Solidi A 17, 521 (1973).

Translated by V. Sakun



  

JETP Letters, Vol. 79, No. 7, 2004, pp. 352–354. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 79, No. 7, 2004, pp. 432–435.
Original Russian Text Copyright © 2004 by Lisovski

 

œ

 

, Lukashenko, Mansvetova.

                                                                                                         
Thermodynamically Stable Fractal-Like Domain Structures
in Magnetic Films

F. V. Lisovskiœ*, L. I. Lukashenko, and E. G. Mansvetova
Institute of Radio Engineering and Electronics, Russian Academy of Sciences (Fryazino Branch), 

pl. Vvedenskogo 1, Fryazino, Moscow region, 141120 Russia
*e-mail: lisf@dataforce.net

Received March 4, 2004

A fractal-like structure of the domain boundaries was revealed in “overcritical” uniaxial Permalloy magnetic
films. The fractal dimension of domain boundaries at the film surfaces was determined as a function of the film
thickness. It is shown that the phase transition between the two possible types of fractal-like structures is accom-
panied by a jump in fractal dimension. © 2004 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.70.Kw
In various fields of modern science and technology
(mathematics, physics, radiophysics, astronomy,
acoustics, chemistry, biology, computer engineering,
radar, etc. [1–7]), an approach based on the use of the
notion of fractals is finding increasing application in the
study and modeling of various processes and phenom-
ena. Fractals are hierarchically organized self-similar
topological sets with the fractional dimension Df
defined as

(1)

where Ne is the minimal number of hypercubes with
edge length e that are necessary for the fractal set to be
completely covered. Although the priority of initiating
this approach is unconditionally given to mathemati-
cians [8], it is not undeniably so: the idea of the fractal
nature of the critical state in condensed media was pro-
posed almost simultaneously and independently by
physicists [9] and subsequently has become the starting
point for developing the renormalization group method
[10]. This unjustice has arisen because one may make
no mention of fractals in the practical use of the renor-
malization group theory.1 

For good reasons, the experimental evidence for the
fractal nature of critical fluctuations has an exclusively
indirect character. Meanwhile, there are fractal objects
in magnetism that are more accessible for observation
and study. For instance, the familiar labyrinth domain
structures (DSs) with multiple side laterals at the
domain boundaries (DBs) in uniaxial magnetic films
with a large positive anisotropy constant Ku @ 2πM2 (M
is the saturation magnetization) and easy magnetic axis

1 The relation between the renormalization group theory and the
fractal geometry becomes evident when the state diagrams of
magnets are represented in the complex plane; see, e.g., the sec-
tion “Magnetism and Complex Boundaries” in [4].

D f

Nelog
1/e( )log

---------------------,
e 0→
lim=
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oriented along the normal n to the surface (henceforth
z axis) are the direct material analogues of the Peano–
Gosper “winding snakes” [11]. An even more glowing
example of the fractal objects is provided by the
domain structures observed in the films with Ku ≤ 2πM2

(Fig. 1) that are discussed below.

Permalloy films (83% Ni, 17% Fe) of thickness L
ranging from 1 to 170 µm were prepared by vacuum
deposition (10–4 torr) on a polished duralumin substrate
and studied. The uniaxial anisotropy constant Ku and
the saturation magnetization M in the films were 5 ×
104 erg/cm3 and 800 G, respectively; i.e., the ratio
Ku/2πM2 was equal to 0.0124. The DS was visualized
by the Akulov–Bitter method using a magnetic sus-
pension prepared by the Elmor recipe.2 

The photographs in Fig. 1 illustrate the DS evolution
in the Permalloy films as their thickness increases from
(a) 20 to (g) 170 µm. In thin films (L < 3 µm), simple
(monoperiodic) stripe DSs (the corresponding photo-
graphs are not given) with the period d are present; at
L > 3 µm, near-surface zigzag distortions with the
period Λ appear in the DB profile; i.e., the structures
become biperiodic (Fig. 1a). As the thickness increases,
the amplitude of zigzag distortions increases, and the
DB branching starts at L > 50 µm via the sequential
splitting of zigzag tips or via the formation of laterals.3

This process evolves in the interval of thicknesses from
50 to 130 µm (Figs. 1b–1e). Near the upper boundary
of this interval (Fig. 1e), the contour of each serration

2 For a detailed description of the film growth method and the pro-
cedures for measuring the film magnetic parameters and thick-
ness, see [12].

3 The black and white areas in Fig. 1 corresponding to the domains
with Mz > 0 and Mz < 0, respectively, are asymmetric (with asym-
metry of the Asher type). The appearance of an outward excur-
sion at the boundary of black domain implies that an inward
excursion appears at the boundary of white domain.
004 MAIK “Nauka/Interperiodica”
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resembles the shape of an individual ray of Mandel-
brot’s square snow flake [1, 11] having the fractal
dimension Df = 1.5. In thicker films (L > 130 µm), the
DB topology qualitatively changes as a result of the for-
mation of the chains of oval DBs corresponding to the
isolated near-surface cone-shaped domains penetrating
into the film bulk at a depth not exceeding L/2 and hav-
ing an Mz component with sign opposite to the band
domains inside which these cones are situated (Figs. 1f,
1g).

The fractal dimension of the DBs at the film surface
was determined as follows. At first, the “analog” DS
photographs were digitized with a spatial resolution
that provided the fulfillment of the condition a !
min{Rmin, tmin}, where a is the pixel linear size, Rmin is
the minimal radius of the DB curvature, and tmin is the
minimal domain width at the surface. Then, using the
standard application program, the contours were
detected according to the mean level of black, to obtain
the domain boundary image corresponding to Mz = 0 at
the film surface. Next, the boundary was covered
(within the unit cell of a biperiodic DS of size d × Λ) by
squares with the edge length e decreasing as 2–n, where

(‡) (b)

(c) (d)

(f)(e)

(g)

Fig. 1. Evolution of the domain structure in Permalloy films
upon an increase in their thickness from (a) 20 to (g)
170 µm.
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n is the coverage number. Since the DBs are a real
(physical) fractal with a finite number of hierarchy lev-
els, the fractal dimension can be determined only after
the linear approximation of the experimentally found
dependence  = f( ) to use, instead of
Eq. (1), the following relation [1]:

(2)

where C is a constant depending on the choice of the
unit of measurement e and  is the value of the
approximating linear function at the point correspond-
ing to the value of e used for covering. It follows from
Eq. (2) that the fractal dimension is equal to the slope
of the straight line approximating the function Ne =
f(1/e) in the log–log coordinates.

The typical log–log plot of the experimental depen-
dence Ne = f(1/e) is presented in Fig. 2 for a film of
thickness ≈80 µm (points). An analysis of the analogous
dependences for all the studied films showed that, to
obtain the adequate DB fractal dimension, one should
use the linear approximation for a truncated data set
(dashed line in Fig. 2). The deviation from the linearity
at small 1/e values (large-square covering) is caused by
the deviation of a large-scale distortions of the DB pro-
file from self-similarity (Fig. 1); when covering with too
small squares, the condition e < min{Rmin, tmin} starts to
be met at a rather small ecr value, as a result of which the
number of covering squares for e < ecr increases
inversely proportional to e, and the slope of the curve
approximating the set of these experimental points
becomes equal to unity (line 2 in Fig. 2).

The fractal dimensions Df of the domain boundaries
at the surfaces of films of various thickness are shown
in Fig. 3, where the abscissa is the Λ/d ratio rather than
the thickness L. This was done because the local mea-

Nelog 1/e( )log

D f

Ne*log C–
1/e( )log

-------------------------,=

Ne*

Fig. 2. Log–log plot of the number Ne of squares covering
the fractal domain boundary vs. their reciprocal side length
1/e. ( ) Experimental values; (dashed line) linear approxi-
mation for a truncated set of points; (dotted line) linear
approximation for the points satisfying the condition e <
min{Rmin, tmin}.

.
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surement of L cannot be made with a sufficiently high
accuracy, whereas the value of Λ/d can be determined
with assurance for any film area from the photographs.
In this case, there is also no need to measure the abso-
lute values of the DS periods Λ and d. The Λ/d ratio
increases monotonically with increasing film thickness;
the extreme left point in Fig. 3 corresponds to a thick-
ness of 50 µm, and the extreme right point corresponds
to 170 µm.

It follows from Fig. 3 that the fractal dimension at the
initial stage of DB branching increases rapidly with
increasing film thickness, after which it becomes saturated
at the level Df . 1.2. The appearance of the ring domain
boundaries at Λ/d > 0.75 is accompanied by a drastic
increase in the fractal dimension to a value of .1.35,
which almost does not change afterwards. The jump in the
fractal dimension is caused by a change in the fractal
topology and observed in the interval of film thicknesses
where a phase transition with doubling of the period Λ
occurs between two DS types (cf. Figs. 1e and 1f).

The results of our study testify that DSs in thick
films of uniaxial magnets are fractal-like objects whose
dimension increases monotonically with an increase in
thickness. The domain boundaries at the film surfaces
are plane fractals, whereas the domains themselves are
three-dimensional fractal objects. At the film center
(z = 0), the domains have plane-parallel boundaries.
They branch as the surfaces z = ±L/2 are approached, as
a result of which the domains acquire a tree-like struc-
ture. The lines Mz = 0 in the z = ±l/2 planes, where l <
L, have the same structure as the DBs at the surfaces of
a film with thickness l.

A unique feature of the observed DSs is that they,
first, are thermodynamically stable, i.e., correspond to
the ground state of a magnet, and, second, appear in a
homogeneous defect-free medium. Such structures
were observed not only in Permalloy but also in other
metallic (e.g., cobalt) films, as well as in single-crystal
films and massive single crystals of magnetoplumbite,
barium ferrite, ferrite garnets, and ferrite spinels (see,
e.g., [13] and the bibliography cited therein). This dis-

Fig. 3. The dependence of fractal dimension Df of domain
boundaries at film surface on the Λ/d ratio.
tinguishes the DSs described above from the fractal-like
structures formed in amorphous or granulated magnetic
films in nonstationary magnetic fields [14–18].

Another unique feature of the aforementioned inho-
mogeneous distributions of magnetic moments is that
they represent biperiodic fractal-like structures that are
close to the ideal geometric fractals but exist in real
material media.

The statement about the fractal nature of branched
domain structures was earlier formulated in [19].
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Studying the reduction of type IIB supergravity from ten to three spacetime dimensions, we describe the meta-
morphosis of the Dynkin diagram for gravity line “caterpillar” into a type IIB supergravity “dragonfly” that is
triggered by the inclusion of scalars and antisymmetric tensor fields. The final diagram corresponds to type IIB
string theory E8 global symmetry group, which is the subgroup of the conjectured E11 hidden symmetry group.
Application of the results for getting the type IIA/IIB T-duality rules and for searching for type IIB vacua solu-
tions is considered. © 2004 MAIK “Nauka/Interperiodica”.
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One of the problems which has been actively stud-
ied lately is to identify the underlying superstring/M-
theory symmetry group [1–3]. Knowing the group is
the essential step in passing from higher energies and
dimensions to phenomenologically relevant vacua of M
theory and is the bypass for bringing to light the hidden
but essential ingredients of higher-dimensional theory
that might help uncover its true nonperturbative struc-
ture. The evidence on the possible group-theoretical
ground of M theory comes from studying the coset
symmetries in dimensionally reduced D = 11 super-
gravity as the M-theory low-energy limit. It was real-
ized long ago [4] that the global symmetry groups of
D = 11 supergravity toroidally compactified down to
four spacetime dimensions fall into the class of excep-
tional groups En with n ≤ 7. Subsequent reduction of
D = 11 supergravity to three- [5] and to two-dimen-
sional [6] spacetimes (see also [7]) revealed E8 and E9
global symmetry structure. The role of E10 as the hidden
symmetry group of D = 11 supergravity compactified
onto a ten-dimensional torus was emphasized in [8],
and this conjecture was proved in [7].

The important step in relating the global symmetry
groups of toroidally reduced D = 11 supergravity to the
true but hidden symmetry group of the theory in eleven
dimensions was done made [9]. There, the exceptional
geometry of D = 3 maximal supergravity that made it
possible to reformulate D = 11 supergravity in an E8
invariant way was discovered. Together with the previ-
ously obtained results of [10, 11], this observation gave
strong evidence in favor of searching for the excep-
tional geometry of M theory based on a symmetry
group which will contain as a subgroup the En sequence

¶ This article was submitted by the author in English.
0021-3640/04/7907- $26.00 © 20355
of global low-dimensional symmetries with n ≤ 10. Fol-
lowing previous experience, it could be naively
expected to have, after “compactifying” the time, a hid-
den symmetry group whose algebra is of rank eleven
and includes E9 and E10 as subalgebras. Since E10 is the
hyperbolic Kac–Moody algebra [12] which contains E8

and its affine extension E9 ~  as subalgebras and is

called the overextension of E8, i.e., E10 ~ , an M-
theory hidden symmetry group should also be an exten-
sion of hyperbolic Kac–Moody algebras. Such a gener-
alization studied in [2, 13–15] has been christened the

“very extension” of E8 or E11 ~  (see also [16, 17]).

The relevance of E11 to the nonlinear realization of
supergravities has been demonstrated for the bosonic
subsectors of higher-dimensional maximal supergravi-
ties [1, 18]. A curious result is that the global hidden
symmetry group of type IIB theory turns out to be the
same as for M&A theories related to each other by
dimensional reduction. Since the type IIB theory is not
related to M theory via straightforward dimensional
reduction on a circle, the validity of E11 as the type IIB
theory global symmetry group can be established in
studying the coset structure of dimensionally reduced
type IIB supergravity. Substantial fragments of this
structure were found in [14, 19–22].

The aim of the present paper is to re-collect the frag-
ments in a systematic way during the application of the
“antioxidation” strategy of [23] and to emphasize the
points that were omitted from previous considerations.
We start with the ten-dimensional theory, compactify-
ing it to three spacetime dimensions. The special role of
three-dimensional spacetime in establishing the hidden
symmetries of higher-dimensional supergravities has

E8
+

E8
++

E8
+++
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been emphasized for a long time, since there is no grav-
ity degrees of freedom in D = 3 and, dualizing gauge
fields, we get a theory whose dynamics is completely
determined by scalar degrees of freedom. Depending
on the original higher-dimensional subsectors of fields,
the scalars parametrize different G/H coset spaces.
Identifying the global group G for different subsectors
of type IIB supergravity is our main task.

Let us begin our quest of the hidden symmetry
group of type IIB superstring theory with the following
action describing dynamics of the bosonic subsector of
fields entering the type IIB supergravity multiplet

(1)

The first term of (1) corresponds to the Einstein–Hilbert

term,  * 1 ≡ x , and φ0 and χ0 are the dila-

ton and axion scalars. H(3) and  are the field
strengths of NS and RR gauge fields B(2) and A(2):

(2)

As well as the scalars, they cast the doublet under SL(2,

R) global symmetry group of type IIB theory.  is
the self-dual field strength of the SL(2, R) singlet RR
field A(4):

(3)

The last term, which is not important for the discussion
in what follows, encodes the self-duality condition [24,
25]. Since we have made the choice of differential form
notation, the wedge product between forms has to be
assumed.

The first step in completing our task is to recover the
following structure of action:

(4)

which is obtained from (1) after performing dimen-
sional reduction on T7. Here, f = (φ0, φ1, …, φ7) is the
dilaton vector comprised of the original dilaton φ0 and
those appeared during dimensional reduction. The a
are constant eight-vectors which label additional
(axionic) scalar fields χa. The difference between two
types of scalars consists in sources of their appearance
due to dimensional reduction and the different types of
interactions they possess [26]. The axions come from

S R * 1
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α
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∫=
the nondiagonal part of the Kaluza–Klein metric and
from dualizing the higher-rank tensor fields. They pos-
sess only derivative interactions. On the contrary, the
scalars associated with dilatons come from the diagonal
part of the metric and can have nonderivative interac-
tions as in (4). The form of action (4) is a sign that the
scalars parametrize a G/H coset space if, of course, one
can identify the axion counting vectors as positive roots
of a group G. The global symmetry group G is uniquely
defined by the Cartan matrix constructed out of the sim-
ple roots [26].

To reach action (4), we will use the same strategy as
in [23]. To this end, one has to take into account the
standard rules of step-by-step toroidal reduction [27]:

(5)

with

(6)

and

(7)

The effects of transgression consisting in the appear-

ance of new terms in the reduced field strength  =

 + … and of having the Chern–Simons term in
type IIB supergravity action are denoted by the ellipsis
in (4) and may be safely ignored [23], since they do not
influence the results in what follows.

Let us get started with the pure gravity case. Per-
forming the reduction in step-by-step manner, one can
recover six seven-dimensional simple root vectors ak

having the following structure [23]:

(8)

dDxeR dD 1– xeR
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with α’s from (6), k = 0, …, 5 zeroes on the left and (5 –
k) zeroes on the right. It is easy to verify that

(9)

All other roots coming from this subsector of type IIB
supergravity are not simple and can be expressed as a
linear combination of simple roots with nonnegative
coefficients.

One more simple root vector comes from dualizing
the Kaluza–Klein vector field which appeared in the
first step of reduction from ten to three and has the fol-
lowing form:

(10)

One can check that

(11)

and other roots that come from dualizing the rest of the
Kaluza–Klein vectors are not simple. Denoting d as
a(0), one can construct the Cartan matrix

(12)

which corresponds to the A7 Dynkin diagram. This dia-
gram is that of the SL(8) group and is called the gravity
line.

Let us extend our analysis to include the dilaton–
axion sector of type IIB supergravity. Since we have φ0
from the beginning, we shall extend our simple root
vectors (8), (10) with one additional column with zero
on the left, i.e.,

etc. Hence, we should deal with eight-dimensional sim-
ple root vectors. And since we have axion χ0 from the
beginning, we have also one additional eight-dimen-
sional root vector

(13)

Clearly,

(14)

The Cartan matrix extended by the new root corre-
sponds to the following Dynkin diagram that encodes
the SL(8) ⊗  SL(2, R) group structure of this sector of
fields of type IIB supergravity. In the language of
Dynkin diagrams, the first node on the right corre-
sponds to the SL(2, R) group.

The next step is to extend our system of roots with

the inclusion of H(3) and  tensor fields. One more

ai ak⋅
4, i k=

2, i k–– 1=

0, i k– 2.≥





=

d 16α9 2α s 2α7 … 2α3, ,,,( ).=

d ak⋅
0, k 0≠

2, k– 0,=
d d⋅





4,= =

Aij 2
ai a j⋅
ai ai⋅
---------------, i 0( ) 0 … 5, , ,= =

a 0( ) 0 16α9 2α8 2α7 … 2α3, ,,,,( ),=

e 2 0 … 0, , ,( ).=

e e⋅ 4, e ak⋅ 0, k.∀= =

H̃
3( )
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simple root comes from the reduction of the NS field
kinetic term [23]:

(15)

It is easy to check that

(16)

As such, the root a(0) is not simple anymore, since the
off-diagonal entries of the Cartan matrix are negative
integers or zero. It is merely a technical point to estab-
lish the absence of other simple roots which could pos-
sibly come from the dualization of the NS 2-form gauge
field and the rest of the fields of type IIB multiplet and
their dualization. Therefore, at this stage of our study,
we arrive at the following diagram.

This diagram is topologically equivalent to the E8
Dynkin diagram, and, therefore, the latter is the global
symmetry group of type IIB theory compactified to
three spacetime dimensions.

Let us turn now to applying the results obtained so
far. We will describe first the interpretation of T-duality
rules in the language of Dynkin diagrams (see also [14,
21]). Doing the calculations outlined above, one arrives
at the following diagram that encodes the coset struc-
ture of type IIA supergravity reduced to three spacetime
dimensions. Here, we have chosen a slightly different
notation to indicate the tensor fields from which the
simple roots came.

b 1 12α9 12α s 0 … 0, , ,,,–( ).=

b ak⋅
0, k 1≠

2, k– 1=

+2, k 0( ),=





=

b b⋅ 4, b e⋅ 2.–= =

Fig. 1. Gravity line “caterpillar” of A7.

Fig. 2. Beginning of the “caterpillar’s” metamorphosis.

Fig. 3. End of metamorphosis. “Dragonfly” is fully fledged.
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Comparing Fig. 5 to Fig. 4, one can observe that two
diagrams coincide along the gravity line from nodes 1
to 5. This is just an indication of having the same grav-
ity subsector for two theories in the D = 9 spacetime
dimension. To have the same theories in D = 9, we have
to identify the node corresponding to type IIA NS
2-form B(2) with that of the type IIB gravity node, the type
IIA gravity node with the node of type IIB NS 2-form
field, and the one of the type IIA Kaluza–Klein vector
field with that of the type IIB axion. This identification
corresponds to seminal T-duality rules (cf., e.g., [28]):

(17)

Another important point in playing with Dynkin
diagrams is the possibility of identifying the relevant
AdS × S vacuum configurations [22]. A couple of years
ago, it was a breakthrough in constructing the consis-
tent nonlinear Kaluza–Klein ansätze for spherical
dimensional reduction of supergravities (see [26, 29]
for review). A systematic group-theoretical ground
indicating the possibility of such reductions is still lack-
ing, though the criterion of consistency of the reduction
on Sn based on the possibility of enhancing the global
symmetry group after Tn reduction due to “conspiracy”
of scalars was formulated.

An essential step in searching for the nonlinear
Kaluza–Klein ansätze for spherical reductions is figur-
ing out the possibility of having the AdS × S vacuum
configuration. Recently, a method of examining such a
possibility based on considering the appropriate Kac–
Moody algebras was proposed [22]. In the context of
type IIB supergravity, the evidence of AdS5 × S5 vac-
uum configuration is based on manipulations with the
E7 diagram extended with three additional nodes on the

left, i.e., with the  diagram (cf. Fig. 7).

The origin of the E7 is easy to explain since the latter
corresponds to a “larva” in the metamorphosis of Fig. 1
to Fig. 3. Such a diagram comes from the subsector of
fields consisting of gravity and the self-dual 4-form
gauge field. It is worth mentioning that the root x com-

izBIIA
2( ) iZg( )IIB, izg( )IIA iZBIIB

2( ) , izA
1( ) χ0.≅ ≅≅

E7
+++

Fig. 4. Type IIB E8-like diagram.

Fig. 6. Type IIB E7 diagram.
ing from the reduction of  field strength and the
one coming from its dualization obey the following
relations:

(18)

Hence, it is a matter of taste which one is selected to be

the simple root that is the remnant of the  self-dual-
ity. As soon as the choice is made, the other root is no
longer simple.

Skipping the details of manipulations with the 
diagram that lead to the AdS5 × S5 configuration (we
refer the reader to the original paper [22]), it is worth

mentioning that the subset of fields leading to the 
is precisely the one for which the existence of the non-
linear ansätze for the S5 dimensional reduction [30] was
proved! Another example of having the nonlinear
ansätze for AdSD – 3 × S3 and AdS3 × SD – 3 configurations
was established for the bosonic string theory [31]
which includes a graviton, dilaton, and 2-rank gauge
field in the massless sector. This subsector enters the

type IIB supergravity and corresponds to the 
Kac–Moody group. One can verify following the
approach of [22] that such vacuum solutions are indeed
the case.

To summarize, we have traced the metamorphosis of
Dynkin diagrams representing the symmetries of dif-
ferent subsectors of dimensionally reduced type IIB
supergravity. This provides a link to the results obtained
in the framework of nonlinear realization of type IIB
supergravity [18] and of searching for the M-theory
hidden symmetry group [1–3, 14, 15], as well as to the
results obtained by use of the oxidizing technique [20,
21]. The graphical representation of the coset symme-

H̃
5( )

x ak⋅  = 

0, k 3≠
2, k– 3=

+2, k = 0( ),





x̃ ak⋅  = 

0, k 3≠
2, k– 3=

+2, k = 0( ),





x x⋅ 4, x̃ x̃⋅ 4, x x̃⋅ 4.= = =

H̃
5( )

E7
+++

E7
+++

D8
+++

Fig. 5. Type IIA E8 diagram.

Fig. 7.  diagram.E7
+++
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tries in dimensionally reduced supergravities encodes a
lot of information on the matter field content of a the-
ory, the relevant low-dimensional vacua, and dualities
between different supergravities and is, therefore, a
very useful tool in studying the hidden symmetry struc-
ture of superstring/M theory.
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