
  

Acoustical Physics, Vol. 50, No. 1, 2004, pp. 1–8. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 50, No. 1, 2004, pp. 5–13.
Original Russian Text Copyright © 2004 by Bo

 

œ

 

ko, Tyutekin.

                                                                               
A Planar Active Sound Control System Using Two-Dimensional 
Spatial Harmonics

A. I. Boœko and V. V. Tyutekin
Andreev Acoustics Institute, Russian Academy of Sciences, ul. Shvernika 4, Moscow, 117036 Russia

e-mail: Tytekin@akin.ru
Received April 4, 2003

Abstract—An active sound control system based on the extraction of orthogonal spatial harmonics is consid-
ered. The system comprises two parallel planar rectangular receiving arrays consisting of small monopole
receivers and two planar rectangular transmitting arrays (installed parallel to the receiving arrays) consisting of
small monopole transmitters. The field received by the receiving arrays is approximated by a finite number of
propagating plane waves with the help of the Fourier transform. The transmitting arrays excite the same set of
plane waves outside the system, their amplitudes being chosen so as to cancel the incident external field in a
certain region near the system behind the transmitting arrays. The performance of the system is considered for
both continuous and discrete distributions of transmitters and receivers. Allowance is made for random errors
in the transmitters and receivers, individual to each device. © 2004 MAIK “Nauka/Interperiodica”.
This paper presents a further development of meth-
ods for designing active sound control systems based
on the so-called Huygens surfaces, which exhibit the
property of being unidirectional in both transmitting
and receiving. Therefore, the system has no acoustic
feedback and, consequently, is resistant to self-excita-
tion. Another feature of the active systems considered
here is that they apply, where possible, expansions of
the acoustic fields in orthogonal spatial harmonics,
which is extremely convenient for processing the pri-
mary (received by the system) and secondary (reradi-
ated by the system) signals. Fundamentals of the devel-
opment of such active sound control systems are
described in detail in [1–3].

Planar active systems [4–7] give a sufficiently sim-
ple and illustrative example of the cancellation of plane
wave fields in a given region in space. These systems
are also convenient in practical realization. On the other
hand, planar systems can be used as an instrument that
reveals the main properties of more complex sound
control systems depending on their wave dimensions,
positions of transmitting and receiving elements, num-
ber of spatial harmonics used, and other factors.

The active field control systems are capable of oper-
ating at low frequencies, at which passive noise cancel-
lation systems show a low efficiency, and this fact
determines the considerable theoretical and practical
interest in active systems. The latter statement is con-
firmed by the great number of publications devoted to
this problem [8–12].

The sound control system considered in this paper
can be treated as one of identical modules constituting
a planar active system of sufficiently large dimensions
(compared to the module dimensions).

The structure of an individual module is schemati-
cally shown in Fig. 1. It can be described mathemati-
1063-7710/04/5001- $26.00 © 20001
cally as follows. Let the plane wave

(1)

be incident on the receiving side of a sound control sys-
tem consisting of four identical parallel planar anten-
nas. In formula (1), P0 is the amplitude of the wave, k =
ω/c is the wave number, ω is the circular frequency, c is
the velocity of sound in the medium, and the angles α
and β describe the direction of incidence. The antennas
occupy the area –Dx ≤ x ≤ Dx, −Dy ≤ y ≤ Dy, are perpen-
dicular to the z axis of the Cartesian coordinate system,
and lie at z = 0 and l (receiving antennas) and at z = L – l
and L (transmiting antennas).

First, we consider the case when the antennas are con-
tinuously filled with monopole transmitters or receivers
and are transparent to the fields incident on them.

Let us apply the Fourier transform to the field inci-
dent on the surface of the first receiving antenna (at z = 0)
using the exponential harmonics

(2)

where m and n are integers. As a result, we obtain

(3)

where
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Here, a0 is the receiver sensitivity, λ is the wavelength,

sinc(X) = , cosαn = , and sinαm = .

The goal of transformation (3) is to represent an
arbitrary field (in our case, the plane wave) incident on
the system as a superposition of a finite number of nor-
mal harmonics of the system. It is clear that these har-
monics are mutually orthogonal and do not interact
with each other at the transmitting and receiving ele-
ments. Owing to this fact, we can represent the active
sound control system as a parallel arrangement of inde-
pendent channels, the number of the channels being
equal to the number of propagating normal modes.

The number of harmonics that affect the perfor-
mance of the system is given by the expressions
|cosαn| ≤ 1 and |sinαm| ≤ 1, which yield N = integer part

of max  and M = integer part of max . The

quantities 2Dx and 2Dy, which determine the dimen-
sions of the antennas should be further chosen from the
required performance of the system.

A similar procedure applied to the field at the second
receiving antenna with the use of Eqs. (1)–(3) yields

. (4)

Thus, the functions c1nm(α, β) and c2nm(α, β) are
amplitudes of the Fourier harmonics of the fields at the
receiving antennas. Transformations (3) and (4) are
performed electronically by spatial harmonics analyz-
ers 1 of the active sound control system.

Below, we describe the operation principle of a
channel that processes a normal wave of number (n, m).
The number of such channels is equal to the number of
normal waves propagating at this frequency. All of

Ym α β,( )
2Dy

λ
--------- α βsinsin αmsin+( )π.=

Xsin
X

------------ nλ
2Dx
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2Dy
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λ
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Fig. 1. Flow chart of a planar active sound control system:
(1) analyzers of spatial harmonics; (2) unidirectional
receiver; (3) intermediate unit; (4) unidirectional transmit-
ter; (5) synthesizers of spatial harmonics.
these channels of the sound control system work simul-
taneously and in parallel.

Let us introduce the designations

and consider the quantity

(5)

Linear transformation (5) is performed by the unidi-
rectional receiving unit 2 whose output voltage is

(6)

As follows from formulas (5) and (6), for the inverse
wave incidence at the angle β = π – βnm, we have Vnm(α,
β) = 0.

In accordance with the processing algorithm, the
voltage Vnm(α, β) is applied to the intermediate unit 3
characterized by the complex transfer coefficient Wnm.

This unit links the receiving and transmitting anten-
nas in the (n, m)th channel. The complex transfer coef-
ficient Wnm will be determined later. The quantity
unm(α, β) = Vnm(α, β)Wnm is further fed to the transmit-
ting antennas according to the linear transformation,
which provides the unidirectional radiation of the
(n, m)th harmonic. This procedure is realized by the
unidirectional transmitting unit 4 as follows. The trans-
mitting units 5 form traveling waves of the form of
Eq. (2) on the surfaces of the transmitting antennas,
each wave with its individual amplitude. These ampli-
tudes are specified for each (n, m)th normal wave by the
unidirectional transmitter 4. The amplitude of the
(n, m)th wave for the first antenna located at z = L – l is
unm(α, β)exp(iklcosβnm); for the second antenna
located at z = L, it equals –unm(α, β). Then, the sound
pressure amplitude of the (n, m)th harmonic for ––Dx ≤
x ≤ Dx, –Dy ≤ y ≤ Dy, and z = L is

(7)

Here, b0 is the radiator sensitivity and the sound pres-
sure depends on x and y according to Eq. (2). For z ≤ L – l,
the amplitude of the (n, m)th harmonic is zero.

The quantity Wnm can be evaluated from the funda-
mental principle of the method of spatial harmonics: a
plane wave incident on the system at the angle βnm must
be completely canceled. With Eqs. (1) and (7), this con-
dition can be written as

(8)

By substituting all quantities involved in pnm(α, β)
into Eq. (8), we obtain the expression for Wnm:

(9)

where Φnm(βnm) = exp(2iklcosβnm) – 1.
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Thus, when the active sound control system oper-
ates, the total acoustic pressure is distributed over the
aperture of the second transmitting antenna (z = L, |x| ≤
Dx, and |y| ≤ Dy) as follows:

(10)

where Φnm(β) = exp[ikl(cosβ + cosβnm)] – 1.

To describe the efficiency of a planar active sound
control system, we use the amplitude of the sound pres-
sure (10) transmitted in the direction of incidence of the
plane wave (1). This amplitude has the form

From this expression, by using formula (10) and
expanding all quantities that enter into it, we ultimately
obtain the following expression for the system’s effi-
ciency:

(11)

Calculations by Eq. (11) will be presented below.

Now, let us consider the antennas composed of dis-
crete transmitters and receivers. Without a loss of gen-
erality, we can assume that each antenna contains the
same number of transmitters or receivers located at
points with the coordinates (xq, yt, Z), where

and Z = 0, l, L – l, or L depending on which antenna is
considered. Thus, each antenna contains a total of QT
elements uniformly spaced in the x and y directions, the
step size being individual for each direction.

For the first receiving antenna (z = 0), the analyzers

F x y z L α β, , , , ,( )
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∑
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∫ ∆ 1
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∫
Dx–

Dx

∫

× ik x αcos y αsin+( ) βsin–[ ] dxdyexp .

∫ ∆ P0= ikL βcos( )exp

– ikL βnmcos( )exp
Φnm β( )

Φnm βnm( )
-----------------------

m M–=

M

∑
n N–=

N

∑

∫ × sinc Xn α β,( )[ ] sinc Ym α β,( )[ ]{ }
2

.

xq Dx 1– 2 q 1–( )
Q 1–

--------------------+ , yt Dy 1– 2 t 1–( )
T
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of spatial harmonics perform the following procedure:

(12)

Here,

the functions v (x, y, z) and Ψnm(x, y) are defined by
Eqs. (1) and (2), respectively; and the random functions
a1qt determine the measurement error for each receiver.
If this error is zero, we have a1qt ≡ 1. Here and below,
we omit both receiver sensitivity a0 and transmitter sen-
sitivity b0, because they do not enter into the final for-
mula for the system’s efficiency.

A similar procedure applied to the second receiving
antenna yields

(13)

In Eq. (13), a2qt is also a random quantity, which
equals unity when measurements on the second receiv-
ing antenna are error-free.

From Eqs. (12) and (13), we compose the quantity

(14)

Procedure (14) is performed in the (n, m)th channel by
the unidirectional receiver. As in the continuous case,
the transfer coefficient of the intermediate unit in the
(n, m)th channel has the form of Eq. (9). Thus, the
quantity (α, β) = (α, β)  applied to the
inputs of the unidirectional transmitter is given by the
expression

(15)

Here, the functions Φnm(βnm) and Φnm(β) are defined by
Eqs. (9) and (10), respectively.
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Fig. 2. (a, c) Amplitudes of spatial harmonics and (b, d) and the degree of sound suppression versus the angles of incidence (in
degrees) of the plane wave at Qx = Qy = 1 and F = 2: (a, b) harmonic (0, 0) and (c, d) harmonic (0, 1).
As in the continuous case, from the outputs of the
unidirectional transmitters, the quantities (α, β) ×
exp(iklcosβnm) and – (α, β), are supplied to the
transmitting antennas, which consist of discrete radia-
tors, so that the amplitude of the (q, t)th radiator in the
(n, m)th channel on the first transmitting antenna is

(16)

unm*

unm*

f 1nm xq yt L l–, ,( )

=  b1qtunm* α β,( ) ikl βnmcos( )Ψnm xq yt,( )exp

=  b1qtunm* α β,( ) ikl βnmcos( )exp

× 2πi
λ
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Q 1–
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

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exp

+ Dy 1– 2 t 1–( )
T 1–

------------------+ αmsin




,

for the second antenna, the corresponding amplitudes is

(17)

Here, b1qt and b2qt determine the random measurement
error for the (q, t)th radiator of each antenna. In the
absence of error, b1qt = b2qt = 1.

Thus, Eqs. (16) and (17) yield the following expres-
sion for the efficiency of the discrete monopole active

f 2nm xq yt L, ,( )

=  b2qtunm* α β,( )Ψnm xq yt,( )– b2qt– unm* α β,( )=

× 2πi
λ

-------- Dx 1– 2 q 1–( )
Q 1–

--------------------+ αncos




exp

+ Dy 1– 2 t 1–( )
T 1–

------------------+ αmsin




.
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Fig. 3. System’s efficiency versus the angles of incidence at Qx = Qy = 1: (a) F = 2, the total number of harmonics is 13; (b) F = 4,
the total number of harmonics is 49.
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Fig. 4. System’s efficiency versus the frequency and angle of incidence at Qx = Qy = (a) 1 and (b) 2.
sound control system:

(18)

∆* α β,( ) P0=  exp ikl βcos( ) + unm* α β,( )
m M–=
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∑
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Q

∑ .
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From Eq. (18) it follows that, when the number of
transmitters and receivers grows, i.e., when passing to
the continuous case with no transmitting and receiving
errors, the function ∆*(α, β) transforms to the function
∆(α, β).

The efficiency of the control system calculated from
Eqs. (11) and (18) is considered to be good if ∆(α, β) or
∆*(α, β) normalized by the amplitude of the plane wave
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P0 is below a specified threshold in a given range of
angles of incidence α and β. This fact agrees with the
results obtained in [13], where the silent zone condi-
tions are fulfilled for large values of the parameter R of
the spherical coordinate system, i.e., in the far-field
zone.

The analytical formulas obtained above were used
to calculate the efficiency of the active sound control
system. The effects of the system’s parameters (wave
dimensions, number of two-dimensional spatial har-
monics, frequency range, distance l between transmit-
ters and receivers, system’s size L, etc.), parameters of
the incident plane wave (frequency and incidence
angles), and number of transmitters and receivers and
the difference in their sensitivities (in the discrete case)
on the system’s efficiency were investigated.

The figures below use the following designations:

Qx =  is the wave dimension along the x axis; Qy =

 is the wave dimension along the y axis; F =  is

the dimensionless frequency;  f0 and λ0 are the lower
frequency limit of the frequency range and the acoustic
wavelength at this frequency, respectively; and Tx and
Tz are the angles of incidence of the primary plane wave
in the horizontal and vertical planes, where 0° ≤ Tx ≤
360° and 0° ≤ Tz ≤ 90°. Each harmonic is described by
two numbers (m, n). All results refer to L = 0.15 and l =
0.05 (Fig. 1) and are normalized by the amplitude P0 of
the incident plane wave.

Figure 2 illustrates the structure of several harmon-
ics and the efficiency of the system operating at each of
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--------- f

f 0
-----

0
1.0
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F
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Fig. 5. Number of harmonics versus frequency range at
Qx = Qy = (1) 1 and (2) 2.

1.5 2.5 3.5 4.5
them. Figures 2a and 2c show the amplitudes of har-
monics versus the angles of incidence Tx and Tz, and
Figs. 2b and 2d show the efficiency of the system for
these harmonics. The parameters of the system are
given in the figure caption. As can be seen from Fig. 2,
the amplitudes of the normal waves have maxima equal
to unity, at which the efficiency of the system is maxi-
mal (the field transmitted through the system is zero).
Therefore, it becomes clear that, to attain a high effi-
ciency at various incidence angles, the system should
use a sufficiently high number of spatial harmonics.

This conclusion is illustrated by calculations of the
system’s efficiency shown in Fig. 3a (Qx = Qy = 1, F = 2)
and in Fig. 3b (Qx = Qy = 1, F = 4). In Fig. 3a, the sys-
tem uses 13 normal waves to cancel the external field.
These are the waves numbers (–2, 0), (–1, –1), (−1, 0),
(–1, 1), (0, –2), (0, –1), (0, 0), (0, 1), (0, 2), (1, −1),
(1, 0), (1, 1), and (2,0). For the case illustrated in
Fig. 3b, the number of normal waves and, conse-
quently, of independent channels that take part in the
field cancellation is 49. Consider the quantities px =
QxF and py = QyF, which describe the wave dimensions
of the system along the x and y axes, respectively. As we
noted above, N = E(px) and M = E(py), where E is the
integral part of a number. Then, for the current maxi-
mum number max(m) on the y axis, the following for-
mula is valid:

where n is the current number of the harmonic on the x
axis, which varies within –N ≤ n ≤ N.

As seen from Fig. 3, the dependence of the system
efficiency on the angle Tx is weak. Therefore, it is rea-
sonable to average this quantity over the Tx angle (from
0° to 360°) at each frequency used in the calculations to
obtain the dependences of the efficiency on the dimen-
sionless frequency F and the angle Tz. These depen-
dences are shown in Fig. 4 for various Qx = Qy. As we
can see from Figs. 4a and 4b, new normal waves taking
part in the sound control appear with increasing fre-
quency, which increases the number of system’s chan-
nels and, hence, enhances the efficiency in a wider
range of the Tz angle. The frequency dependence of the
number of normal waves R for cases illustrated in
Figs. 4a and 4b is given in Fig. 5. The plots show that,
for square antennas, an n-fold increase in their linear
wave dimension leads to an increase in the number of
normal waves by a factor of approximately n2.

The data presented above refer to the continuous
distributions of transmitters and receivers over the
respective antennas. Practically, discrete distributions
are important. The case of a discrete structure is illus-
trated in Fig. 6, which presents the efficiency calculated
for different (sufficiently small) numbers of receivers
(transmitters) with Q = T = 10 (Fig. 6a) and Q = T = 8
(Fig. 6b). At the lower frequency F = 1, the number of

max m( ) E
px
py
------ N2 n2– 

  ,=
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Fig. 6. Efficiency of a discrete system versus the frequency and angle of incidence at Qx = Qy = 1 and Q = T = (a) 10 and (b) 8.
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Fig. 7. System’s efficiency versus the angles of incidence at Qx = 5, Qy = 1, and F = 2.
antenna elements per wavelength is 10 in the first case
and 8 in the second case. As the frequency increases,
this number decreases to 2 and 1.6, respectively, at the
highest frequency F = 5. Therefore, the smaller the
number of receivers per wavelength is, the greater the
loss in the system’s efficiency (compare with Fig. 4a).

Thus far, only square antennas were considered. If
sound should be canceled in a small range of angles Tx,
the efficiency can be increased using rectangular anten-
nas with a relatively large side ratio. Our calculations
ACOUSTICAL PHYSICS      Vol. 50      No. 1      2004
showed that when, for example, Qx = 5, Qy = 1, and F = 2,
the system’s efficiency at Tx = 0° and 180° remains high
in the angular range of 0° ≤ Tz ≤ 70° (Fig. 7). At the
same time, for any other angles of incidence, a high
efficiency remains only at Tz ≈ ±10°. In this case, all the
necessary harmonics on the x axis, whose number was
N = 21, and only one zero harmonic on the y axis were
employed, so that the total number of harmonics was
R = 21.
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Abstract—A systematic description of a new approach to determining the flow rates of liquids or gases trans-
ported through pipelines of circular cross sections is presented. The approach is based on multipath ultrasonic
time-of-flight measurements. A mathematical technique for processing pulsed acoustic signals recorded in sev-
eral measuring planes is developed. The technique provides precision estimates of flow rates owing to the use
of quadrature integration methods. Several variants of realizing the multipath measurements are suggested.
Tables of nodes and weights of the corresponding quadrature formulas, including both known values and values
calculated for the first time, are presented. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Determination of the characteristics of liquids or
gases pumped through pipelines of different (in partic-
ular, circular) cross sections is an urgent theoretical,
computational, and engineering problem of consider-
able practical interest [1–6]. The most important char-
acteristic of such flows is the flow rate, i.e., the volume
of liquid or gas passing through a pipe cross section per
unit time. The efforts of individual researchers and
companies manufacturing the measuring equipment are
aimed at reducing the measurement errors, which are
determined primarily by the spatial inhomogeneity of
the flows under measurement. One of the most promis-
ing approaches to solving this problem is based on the
so-called multipath measurements. In this case, for esti-
mating the flow characteristics, a number of measure-
ments are performed in several measuring planes paral-
lel to the longitudinal axis of the pipe. In addition to the
evident gain in accuracy due to the increase in the vol-
ume of the input data, this approach makes it possible
to apply the quadrature integration formulas, which
provide a considerable increase in the accuracy of the
final estimates of the flow rate. Moreover, multipath
measurements allow one to formulate and solve the
problem of reconstructing the symmetric distribution of
the axial component of flow velocity on the basis of the
Abel transform [7]. A further advancement of the mul-
tipath approach is connected with the development of
instruments and algorithms for a complete reconstruc-
tion of an arbitrary two-dimensional distribution of the
axial component of flow velocity in a pipe cross section
by using the Radon transform [8].
1063-7710/04/5001- $26.00 © 200100
1. THE MULTIPATH APPROACH 
TO ULTRASONIC FLOW MEASUREMENTS

In the general case, for determining the flow rate Q,
it is necessary to calculate the two-dimensional integral

(1)

where v z(x, y, z) is the axial (along the tube) component
of the flow velocity, S(z) is the cross section of tube by
a plane perpendicular to the tube axis, and (x, y, z) are
the Cartesian coordinates: z is along the tube axis and x
and y are in the plane of the cross section S(z).

To determine the flow rate, it is possible to use the
measurement of the time of flight of ultrasonic pulses in
several measuring planes perpendicular to the tube
cross section and parallel to the tube axis (Fig. 1). Here,
it is assumed that, within the length L, the flow velocity
does not change, i.e., v z(x, y, z) = v z(x, y).

We consider the relation of the upstream and down-
stream times of flight of the signal to the distribution of
the flow velocity over the tube cross section. We
assume that the line of the signal passage makes an
angle α with the tube axis (Fig. 2). Then, the time tAB of
the signal passage from point A to point B and the time
tBA of the signal passage from point B to point A are

Q v z x y z, ,( ) Sd

S z( )
∫=

=  v z x y z, ,( ) yd

R
2

x
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+ R
2

x
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∫ x,d

R–
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∫
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Fig. 1. A measuring plane lying at a distance ξ from the tube axis for measuring the time of flight of an ultrasonic pulse between
the transmitting–receiving elements A1 and A2 located (a) on one side of the tube and (b) on different sides of the tube; B is a reflect-
ing element and L is the distance between the transmitting–receiving elements A1 and A2 along the tube axis.
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Fig. 2. Geometry of measuring the time of flight of an ultrasonic pulse between the transmitting–receiving elements A and B: (a) in
the measuring plane and (b) in the projection on the tube cross section.
expressed as

(2)

(3)

where v z(lm) = v z(x(lm), y(lm)), c0 is the sound velocity
in the stationary medium, and m is the index character-
izing the measuring trajectory. The difference in the
times of flight is

(4)

Here, the smallness of the ratio  is taken into

account.

We emphasize that, traditionally [9–12], flow mea-
surements are performed with the use of the mean
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velocity (x) ≈ , which is determined

by the measured values of ∆t:

(5)

The design of the majority of instruments is intended
for measuring the mean flow velocities along one or
several directions. Then, the flow rate is determined by
multiplication of the mean velocity by the tube cross
section with a correction factor introduced in the case
of one measuring plane or with integration of the mean
velocity estimates for several measuring planes. How-
ever, in general, obtaining the mean velocity estimates
is not necessary when one deals with high-precision
flow rate measurements. By contrast, it is sufficient to
apply only the integration of the data of the time of
flight measurements for ultrasonic pulses.

Expression (4) relates the integral over the spatial
distribution of the axial flow velocity component,
which is directed along the line connecting the trans-
mitting–receiving elements (transducers), to the mea-
sured values of the times of flight of ultrasonic pulses.
Similarly, by using the sum of these values, it is possi-

v z
1

AB
---------- v z l( ) ld

B

A∫

v z x( )
c0

2

2 AB αcos
---------------------------∆t.=
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ble to determine the sound velocity c0 in the stationary
medium as a moving characteristic of the flow:

(6)

Changing to the coordinates in the plane of the cross
section S(z) (Fig. 2b), we obtain

(7)

Then, the flow rate will be determined by one of the fol-
lowing expressions, depending on the quantities taken
as input data. If the input data are ∆t and c0 , the flow
rate is determined as

(8a)

if the quantity (x) is preset, we have

(8b)

and if ∆t and σt are used as initial data, the flow rate is

(8Ò)

Formula (1) is valid for an arbitrary function v z(x, y).
At the same time, in the flow measurements and flow
monitoring, some additional conditions are imposed on
the velocity v z(x, y), which restrict the class of admissi-
ble functions. Naturally, if the accepted assumption
does not fit the real flow, an additional error is intro-
duced in the results of calculations based on the mea-
sured data. The following classes of functions can be
distinguished according to the significance of the
imposed conditions:
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(i) the velocity v z(x, y) is described by a given ana-
lytical dependence;

(ii) the velocity v z(x, y) is axially symmetric,

v z(x, y) = v z  = v z(r);

(iii) the velocity v z(x, y) is an arbitrary function of
the coordinates.

In the first case, for calculating the flow rate, only
one measurement in the diametrical measuring plane
(ξ = 0) may be sufficient. For example, for a velocity
that does not vary over a cross section, v z(x, y) = v 0 =
const, we have

(9)

For a Poiseuille flow v z(x, y) = v 0 , we

have

(10)

More complicated velocity profiles, such as the Sal-
ami profiles [13], are used mainly for testing the accu-
racy of various methods.

In the second case, for a numerical calculation of
integral (1), it is necessary to make several measure-
ments in various measuring planes (Fig. 3). Note that
the measurements in a plane lying at a distance x from
the tube axis do not depend on the orientation of the
measuring plane relative to the tube: for instance, a par-
allel geometry of measurements is identical to a fan
geometry (Fig. 4).

In this case, a diversity of methods of multipath
measurements can be used, including the methods
of  quadrature integration. In addition, it becomes
possible to solve the problem of reconstructing the
complete velocity profile v z(r) on the basis of the Abel
transform [7].

The last case is the most complex and most interest-
ing one. Although the methods of quadrature integra-
tion are suitable for calculating the flow rate, all mea-
suring planes should be parallel to each other. A fan
geometry does not admit an accurate application of
quadrature formulas. However, it is possible to pose the
problem of reconstructing an arbitrary velocity profile
v z(r) on the basis of the Radon transform [8].

2. QUADRATURE INTEGRATION

For calculating integrals (8a)–(8c), it is possible to
use the formulas of numerical integration, such as the
rectangle rule or Simpson’s rule [14]. However, for a
limited number of the integrand samples, quadrature
formulas of higher orders give much more accurate
estimates.

x2 y2+( )

Q v 0πR2 v z 0( )πR2.= =

1 x2 y2+

R2
----------------– 

 

Q
1
2
---v 0πR2 3

4
---v z 0( )πR2.= =
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Fig. 3. Multipath ultrasonic measurements: (a) parallel measuring planes and (b) the tube cross section.
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Fig. 4. (a) Parallel and (b) fan geometries of measurements.
The theory of quadrature integration considers the
most efficient methods of calculating the integrals of
the following form on a standard interval ξ ∈ [–1, +1]:

(11)

where p(ξ) > 0 is an arbitrary weight function.

It is evident that, after the substitution ξ = x/R, for-
mulas (8a)–(8c) are reduced to the form of Eq. (11)

with p(ξ) = 1, p(ξ) = , and p(ξ) = 1 – ξ2 and with

f(ξ) = ∆t(ξ), f(ξ) = 2R2 (ξ), and f(ξ) =

, respectively. For a fixed number of dis-

creet measurements n, integral (11) transforms to the
sum

(12)

where λj are the quadrature weights and ξj are the nodes
(abscissas) of the quadrature formula.
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In the framework of the theory of quadrature formu-
las, three variants of the problem statement are possi-
ble.

Newton’s problem. For a given arrangement of
nodes ξj find the best values of the coefficients λj. The
best known problem of this kind is the problem with
equidistant nodes ξj, i.e., the Newton–Cotes quadrature
integration formulas.

Chebyshev’s problem. For given values of the
coefficients λj find the best arrangement of nodes ξj.
The best known problem of this kind is the problem

with equal constant coefficients λj = , i.e., the Cheby-

shev approach to quadrature integration.

Gauss’ problem. Find the best arrangement of
nodes ξj and the corresponding values of the coeffi-
cients λj. This problem corresponds to the Gaussian
quadrature formulas.

Obviously, the best accuracy is achieved with Gaus-
sian formulas. Nevertheless, Newton’s problem is the
most flexible, because for an arbitrary arrangement of
nodes it allows one to find the optimum values of
quadrature coefficients. When a statistical error occurs
in the results of measurements, Chebyshev’s formulas
are the most stable ones.

2
n
---
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Table 1.  Nodes and coefficients of the quadrature formula for the weight function p(ξ) = 1

n
Newton’s problem Chebyshev’s problem Gauss’ problem

ξj λj ξj λj ξj λj

3 –0.6667 0.7500 –0.7071 0.6667 –0.7746 0.5556

+0.0000 0.5000 0.0000 0.6667 0.0000 0.8889

+0.6667 0.7500 0.7071 0.6667 0.7746 0.5556

4 –0.7500 0.5417 –0.7947 0.5000 –0.8611 0.3479

–0.2500 0.4583 –0.1876 0.5000 –0.3400 0.6521

+0.2500 0.4583 0.1876 0.5000 0.3400 0.6521

+0.7500 0.5417 0.7947 0.5000 0.8611 0.3479

5 –0.8000 0.4774 –0.8325 0.4000 –0.9062 0.2369

–0.4000 0.1736 –0.3745 0.4000 –0.5385 0.4786

+0.0000 0.6979 0.0000 0.4000 0.0000 0.5689

+0.4000 0.1736 0.3745 0.4000 0.5385 0.4786

+0.8000 0.4774 0.8325 0.4000 0.9062 0.2369
For any weight function p0(ξ), it is possible to use
the formulas for another weight function p1(ξ) by mul-

tiplying the integrand by , because the following

equality is valid:

(13)

Therefore, in particular, for calculating integral (11),
it is possible to use the coefficients λj of the quadrature
formula for p(ξ) = 1. Then, formula (12) can be writ-
ten as

(14)

The solution to Newton’s problem for an arbitrary
arrangement of nodes has the form

(15)

Chebyshev’s problem is less studied. Solutions for
the case of p(ξ) = 1 and n = 2, 3, 4, 5, 6, 7, and 9 are

known. It is interesting that, for p(ξ) = , Cheby-

shev’s and Gaussian formulas coincide, while for other
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weight functions, in particular for p(ξ) = , they
are different.

The solution to Gauss’ problem for p(ξ) = 1 corre-
sponds to the positions of the nodes ξj of quadrature
formulas at the zero points of the Legendre polynomi-

als Pn(ξj) = 0 and to λj = .

For p(ξ) = 1, the solutions to Newton’s (for equidis-
tant positions of nodes), Chebyshev’s, and Gauss’ prob-
lems [15] are given in Table 1. Note that this case cor-
responds to the processing of the differences in the
times of flight of ultrasonic pulses, ∆t, rather than of the
mean velocity (x).

For other weight functions, the corresponding coef-
ficients can be calculated by formula (14). However, the
solutions obtained directly from the corresponding
weight functions will be more accurate. Although not
all these solutions can be found in reference sources,
the methods of their derivation are well known [14] and
can be used in every specific case. For instance, the cal-
culation of the coefficients of quadrature formula λj

(Eq. (15)) in Newton’s problem for the weight function

p(ξ) =  amounts to calculating the integrals of
the form

(16)

1 ξ2–
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In particular, I0 = π; I2 = π; I4 = π; I6 = π;

I8 = π, and I10 = π.

Let us consider n measuring planes in a Newtonial
measuring module based on the solution of Newton’s
problem (Fig. 5). Equidistant arrangement requires that
∆ξ1 = ∆ξ2 =…= ∆ξn = ∆ξ. The length of the extreme
segments ∆ξ0 and ∆ξn + 1 remains an open question.
Assuming that they are equal, we set ∆ξ0 = ∆ξn + 1 =
α∆ξ . The two limiting cases are ∆ξ0 = ∆ξn + 1 = 0 (α = 0)
and ∆ξ0 = ∆ξn + 1 = ∆ξ (α = 1). In addition, intermediate
variants are possible, and the preferable case is appar-
ently α = 0.5.

The solutions to Newton’s problem for p(ξ) =

 and α = 0.0, 0.5, and 1.0 were calculated for
the first time, and they are given in Table 2.

The solution to Chebyshev’s problem can be
obtained in a similar way. The solution to Gauss’ prob-

lem for the case of p(ξ) =  (i.e., when the quan-
tity (x) is taken as the measured input data) is known
(see, e.g., [17]). The nodes of quadrature formula are

ξj = cos , and the corresponding coefficients are

λj = sin2 .

Multipath measurements make it possible to use a
variety of realizations of the measuring modules. Tak-
ing that a measuring scheme is determined by a set of
distances between the measuring planes and the tube
axis together with a set of coefficients of quadrature

1
2
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8
--- 1

16
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1 ξ2–

1 ξ2–
v z

π
n 1+
------------ 
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π
n 1+
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n 1+
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formulas used for calculating the flow rate, at least three
variants of measuring modules may be suggested,
depending on the type of the problem on which they are
based: a Newtonian module with an equidistant
arrangement of measuring planes, a Chebyshev mod-
ule, and a Gaussian module. Any of these types of mea-
suring modules can be based on the solution to the cor-
responding problem with three weight functions for
each of Eqs. (8a)–(8c). In addition, Newtonian mod-
ules, as indicated earlier, may have modifications with
different extreme segments.

Further improvements are possible through increas-
ing the order of quadrature formula with the same num-
ber of measuring planes, as well as through introducing
the so-called skew measuring planes [16]. Thus, the
choice of the optimal structure of a measuring module
is a nontrivial scientific and engineering problem, a
successful solution of which is determined by the spe-

x

y

ξ1 ξ2 ξn

∆ξ0 ∆ξ1 ∆ξn+1

Fig. 5. Arrangement of the measuring planes in a Newto-
nian module.
Table 2.  Nodes and coefficients of the quadrature formula for Newton’s problem, for the weight function p(ξ) = 

n
α = 0.0 α = 0.5 α = 1.0

ξj λj ξj λj ξj λj

3 –1.0000 0.1963 –0.6667 0.4418 –0.5000 0.7854

+0.0000 1.1781 +0.0000 0.6872 +0.0000 0.0000

+1.0000 0.1963 +0.6667 0.4418 +0.5000 0.7854

4 –1.0000 0.1227 –0.7500 0.2945 –0.6000 0.5154

–0.3333 0.6627 –0.2500 0.4909 –0.2000 0.2700

+0.3333 0.6627 +0.2500 0.4909 +0.2000 0.2700

+1.0000 0.1227 +0.7500 0.2945 +0.6000 0.5154

5 –1.0000 0.0654 –0.8000 0.2173 –0.6667 0.5154

–0.5000 0.5236 –0.4000 0.3579 –0.3333 0.2945

+0.0000 0.3927 +0.0000 0.4203 +0.0000 1.1290

+0.5000 0.5236 +0.4000 0.3579 +0.3333 0.2945

+1.0000 0.0654 +0.8000 0.2173 +0.6667 0.5154

1 ξ2–
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cific conditions of manufacturing such a module and by
the requirements imposed on the data processing unit.
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Abstract—A method for calculating the resulting field of an opaque radiator and the field scattered by an inho-
mogeneous inclusion in a planar layered waveguide is described. The inclusion is assumed to be located in the
Fraunhofer zone of an external radiator, and the scattering amplitude of the inclusion is assumed to be known.
© 2004 MAIK “Nauka/Interperiodica”.
The literature concerning the problems of scattering
by inhomogeneities in the presence of boundaries,
including the case when the radiator itself represents a
scatterer, is quite extensive. A number of recent publi-
cations are given in the list of references for illustration
[1–16]. In this area of research, the problems of scatter-
ing by inhomogeneities in the presence of a surface and
a bottom are of practical significance [1, 4, 5, 10–14].
Papers [1, 4, 5, 10] assume that the boundaries and the
inhomogeneities of a medium have no effect on the
scattering amplitude of an inclusion. Papers [13, 14],
which extend the results of paper [12] and consider the
problem of sound scattering by an inclusion located in
a planar layered waveguide in the zero approximation,
i.e., without allowance for multiple reflections between
the inclusion and the waveguide boundaries and under
the assumption that the inclusion is located in a locally
homogeneous layer. Paper [14] formulates the condi-
tions under which this solution is correct. Paper [16]
takes into account the effect of the waveguide bound-
aries on the resulting scattering amplitude of an opaque
radiator and the effect of multiple reflections between
the radiator and the boundaries; however, it assumes
that the medium is homogeneous.

The present paper describes a method that allows
one to calculate the resulting field of an opaque radiator
with allowance for the scattering of the primary field by
this radiator. The method is shown to be applicable for
calculating the field scattered by an inhomogeneous
inclusion located in the Fraunhofer zone of an external
radiator in a planar layered waveguide with allowance
for multiple reflections of the scattered field from the
waveguide boundaries. The only restriction used in the
method is the assumption that the waveguide layer of
minimum thickness enclosing the scatterer (either an
opaque radiator or a passive scatterer) can be consid-
ered locally homogeneous in the sense of paper [14]
(this paper also gives the conditions of applicability of
1063-7710/04/5001- $26.00 © 20107
this assumption); in other words, it is assumed that nor-
mal waves in this layer are quasi-plane waves.

Let us formulate the problem. Let an opaque radia-
tor scattering its own waves or a scatterer scattering
incident waves be located in a planar layered
waveguide. Let the liquid layer of minimum thickness
∆z = 2h enclosing the scatterer be homogeneous. Along
the whole of the waveguide thickness outside this layer,
the properties of the liquid can arbitrarily vary with
depth. We need to find the total field of radiation in the
first case and the scattered field in the second case. We
assume that the directional pattern (DP) of the radiator
and the scattering amplitudes of the radiator and the
inclusion are known.

To solve the first problem, we use expressions of
paper [15] that relate the combined scattering ampli-
tude to the DP of the source of primary waves. Remem-
ber the problem formulation used in that paper. An

opaque radiator with the DP of the primary field (x),
i = 1, 2, is located in a homogeneous half-space with the
boundary z = 0 (the z axis is directed downwards) and a
reflection coefficient V1(0, x) (the first argument equal
to zero means that the function V1 refers to z = 0). Here,

(x) are the weighting factors of the integral expan-
sions of the primary field in plane waves with the wave
vectors ki = (x, (–1)iα), k = |ki| = (|x|2 + α2)1/2, in the
homogeneous boundless spaces lying above (i = 1) and
below (i = 2) the horizontal layer of minimum thickness
enclosing the scatterer (see, e.g., [17]). The radiator
considered as a scatterer, in turn, is characterized by the

scattering amplitude (xp, xs), where l, m = 1, 2. The
physical meaning of this function is as follows. A scat-

tered wave of amplitude (xp, xs) appears when a
plane wave with a wave vector kp = (xp, αm), a unit

Di
0

Di
0

Tm
l

Tm
l
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amplitude, and a zero-valued phase is incident from
above (m = 1) or from below (m = 2) on a scatterer
whose geometrical center is located at the point (x0, y0, z0)
in a boundless homogeneous space. The scattered field
is considered above or below the scatterer for l = 1 and
l = 2, respectively. Here, ks = (xs, αl) is the wave vector
of the scattered field; |kp| = |ks| = k = ω/c is the wave
number; al(m) = (–1)l(m)(k2 – ξ2)1/2, where l, m = 1, 2; and

ξ = |x| = (  + )1/2 are the vertical and horizontal
components of the wave vectors of the incident and
scattered fields, respectively. In this case, expressions
(19) and (21) of paper [15] are applicable.

For a homogeneous half-space, the following obvi-
ous identity is valid:

(1)

Here, V1(z, ξ) is the reflection coefficient at a depth z.
By virtue of Eq. (1), expressions (19) and (21) of paper
[15] can be rewritten in the form

(2)

(3)

Here, z0 is the z coordinate of the geometrical center of
the radiator also serving as a scatterer. As it was shown
in papers [15, 16], the effect of a boundary can be
described by the following equivalent scheme: the ini-
tial opaque radiator is replaced with the sound-trans-
parent radiator that generates the same primary field

with DP (x), i = 1, 2, and the scattered field caused
by the boundary is created by some secondary radiator.

The DPs (x) (here and below, the lower indices of

all DPs have the same meaning as in the case of (ξ))

of this radiator depend on the functions (x) obtained
as the solutions to the system of equations (2) and (3)
and are related to them as follows:

(a)

The overbar in the functions (x) and (x) means
that these quantities follow from the effect of the upper

boundary; the upper index 1 of the functions (ξ)
means that the boundary takes part only once in the for-
mation of these functions.

Expressions for the half-space z ∈ (–∞, H], H > z0 > 0,
in which case the boundary z = H with a reflection coef-

kx
2

ky
2

V1 z ξ,( ) 2 jα ξ( )z( )exp V1 0 ξ,( ).=

T1 xs( )

– T2
1 xp xs,( )V1 z0 ξ p,( )

T1 xp( )
α ξ p( )
---------------- ξ pd

R
2

∫ D1
0 xs( ),=

T2 xs( ) T2
2 xp xs,( )V1 z0 ξ p,( )

T1 ξ p( )
α ξ p( )
----------------

R
2

∫ ξ p.d=

Di
0

Di
1

Di
0

Ti

D1
1 x( ) T1 x( ) D1

0 x( ), D2
1 x( )– T2 x( ).= =

Di
1

Ti

Di
1

ficient V2(H, ξ) lies below the scatterer radiator, can be
obtained in a manner similar to that used in [15]:

(4)

(5)

The DPs (x), i = 1, 2, of the secondary radiator
whose action is governed by only the lower boundary
are determined by the functions (x) obtained as the
solutions to the system of equations (4) and (5) and
have the form similar to expressions (a):

(b)

The underline of these functions means that they
depend on the lower boundary.

Thus, assuming that the DP of the radiator generat-
ing the primary field D0 , the scattering amplitude of the

scatterer (xp, xs), and the geometry and reflection
properties of the planar boundary are known, the DPs of
the secondary radiator D1 determining the field caused
by the boundary can be found from integral equations
(2)–(5) and expressions (a) and (b). We note that the
domain of definition of the functions appearing in the
integral equations (2)–(5) is x = (kx, ky) ∈ R2 .

Consider now the situation in which the scatterer
radiator is located in a planar layered waveguide of
depth H and assume that the wave number varies with
depth according to the formula

(6)

Here, 2h is the parameter that exceeds or is equal to the
vertical size of the scatterer radiator whose geometrical
center is located at the point (0, 0, z0).

To solve the problem, we must consider two hypo-
thetical half-spaces. The first of them has a boundary at
z = 0, a reflection coefficient V1 , and a depth depen-
dence of the wave number k(z) =

. The second half-space has a

boundary at z = H, a reflection coefficient V2 , and a
depth dependence of the wave number k(z) =

T2 xs( )

– T1
2 xp xs,( )V2 z0 ξ p,( )

T2 xp( )
α ξ p( )
----------------

R
2

∫ ξ pd D2
0 xs( ),=

T1 xs( ) T1
1 xp xs,( )V2 z0 ξ p,( )

T2 xp( )
α ξ p( )
----------------

R
2

∫ ξ p.d=

Di
1

Ti

D1
1 x( ) T1 x( ), D2

1 x( ) T2 x( ) D2
0 x( ).–= =

Tm
l

k z( ) ω
c z( )
----------

k1 z( ), z 0 z0 h–,[ ] ,∈
k2 z( ), z z0 h H,+[ ] ,∈
k0 k1 z0 h–( ) k2 z0 h+( )= = ,

z z0 h– z0 h+,( ).∈







= =

k1 z( ), z 0 z0 h–,[ ]∈
k0, z z0 h ∞,–( )∈



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. In this case, Eqs. (2) and (3)

remain valid for the first half-space and Eqs. (4) and (5)
remain valid for the second half-space. It is known [18]
that the reflection coefficients V1(z0, ξ) and V2(z0, ξ)
appearing in these equations can be expressed in terms
of the functions Zi(z, ξ), i = 1, 2, that are the solutions
to the following problem:

where Z1(z, ξ) satisfies the boundary condition at z = 0
and Z2(z, ξ) satisfies the boundary condition at z = H.
The corresponding expressions have the form

, (7)

where α(z0, ξ) = (k2(z0) – ξ2)1/2.

Substituting V1 and V2 given by Eq. (7) into systems
(2), (3) and (4), (5), respectively, one can obtain the

DPs of secondary sources  and , i = 1, 2, deter-
mined by the single effects of the upper and lower
boundaries of waveguide (6), respectively. Then, to
obtain the combined directional pattern of the scatterer
radiator, which is the sum of the initial DP of the radia-

tor  and the combined scattering amplitude of the

opaque radiator , i = 1, 2, formed due to a multiple
action of inhomogeneities (boundaries and inclusions),
we must use the procedure described in paper [16]. This
procedure is as follows. The secondary radiator formed

by a single action of the upper boundary with DP 
(the lower index i is omitted for convenience) will
cause the scattering by the real radiator; the scattered
field will include the action of the lower boundary,

which will create the secondary radiator with DP 
(the index 2 means that boundaries acted two times in
the formation of this secondary radiator, and the under-
line means that this secondary radiator was caused by

the action of the lower boundary). The DP  can be
obtained using Eqs. (4), (5), and (7). In this process, the
right-hand side of integral equation (4) must be

replaced with the function . In a similar way, the DP

 of the secondary radiator accounting for the effect
of the upper boundary and the presence of the second-

ary radiator with DP  can be calculated using Eqs. (2),

(3), and (7) with the function  on the right-hand side
of Eq. (2). The DPs of all secondary sources of higher

k0, z ∞– z0 h+,( )∈
k2 z( ), z z0 h H,+[ ]∈




∂2/∂ξ2
k2 z( ) ξ2

–+( )Zi z ξ,( ) 0, i 1 2,,= =

Vi z0 ξ,( )

=  
α z0 ξ,( )Zi z0 ξ,( ) 1–( )i j∂Zi z0 ξ,( )/∂z+

α z0 ξ,( )Zi z0 ξ,( ) 1–( )i 1– j∂Zi z0 ξ,( )/∂z+
---------------------------------------------------------------------------------------------------

i 1 2,,=
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1
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orders can be found by a recurrent procedure. Schemat-
ically, the chains of successive secondary sources can
be represented as follows:

As was shown in paper [16], here, we deal with the for-
malism of accounting for all plane waves multiply
reflected in the homogeneous layer Ω0, including the
waves generated by the primary field of the radiator and
by all plane waves scattered by the source and multiply
reflected from the boundaries of the layer Ω0 . Note that,
geometrically, all secondary sources coincide with the
initial radiator and generate the same field as the real
radiator; the difference consists in the fact that they are
transparent to sound.

Thus, the combined DP of the primary and scattered
fields is given by the sum [16]

(8)

Here, the terms D1 =  + , D2 =  + , and so
on can be found recursively from integral equations (2)–
(5) and expressions (a) and (b). By physical consider-
ations, series (8) always converges; however, one must
estimate the error of replacing the series with a finite
sum for each particular waveguide, scatterer radiator,
frequency, and geometry of the problem. Paper [16]
gives such estimators for the case of an ideal waveguide
and a spherical scatterer.

In the case of a simple scatterer, i.e., when the pri-
mary wave is radiated by an external source, the prob-
lem is also reduced to the above scheme if the scatterer
is located in the Fraunhofer zone of the source and nor-
mal waves existing in the layer where the scatterer
resides can be represented as a set of quasi-plane
waves. In this case, near the position of the scatterer, the
primary field of homogeneous normal waves u0 has the
following asymptotic behavior

(9)

where ψn(z) and  are the eigenfunctions and eigen-
values of the problem (∂2/∂ξ2 + k2(z) – ξ2)ψ(z, ξ) = 0
with the corresponding boundary conditions at z = 0
and z = H, and cn are the known coefficients depending
on the depth and the DP of the source of primary waves.
Let (r, ϕ, zs) and (0, z0) be the coordinates of the geo-
metrical centers of the scatterer and the source of pri-
mary field, respectively. By virtue of the assumption on
the local homogeneity of the layer Ω0 = {x, y ∈ R2, z ∈
[zs – h, zs + h]}, where 2h is the vertical size of the scat-
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terer, we can write [14]

(10)

where

(11)

and αn(z) = (k2(z) – )1/2. Assuming that the factor
exp(jξnr) adequately describes the horizontal compo-
nent of the plane wave in the Fraunhofer zone near the
scatterer and substituting Eqs. (10) and (11) into
Eq. (9), we obtain

(12)

where  = cn ;  = (ξn, ϕ, ± α(zs)) are the wave vec-

tors of the field (9) incident on the scatterer, R = (x, y, z)
is the position of the current point, Rs is the position of
the geometrical center of the scatterer, and the coeffi-
cients cn are determined in Eq. (9).

ψn z( ) an
+ jαn zs( ) z zs–( )( )exp=

+ an
– jαn zs( ) z zs–( )–( )exp ,

z zs h– zs h+,[ ] ,∈

an
± 1

2 jαn zs( )
--------------------- jαn zs( )ψn zs( ) ψnz' zs( )±( ),=

ξn
2

u0
jξnr( )exp

r1/2
------------------------

n 1=

N

∑ bn
+ j kn

+ R Rs–( )( )( )exp[≈

+ bn
– j kn

– R Rs–( )( )( )exp ] , Rs Ω0,∈

bn
± an

± kn
±

The sum of plane waves (12) causes a primarily
scattered field with the scattering amplitude

(13)

Here, xn = (ξn, ϕ) is the horizontal component of the
wave vector of the incident wave, xs = (ξs, ϕs) is the hor-
izontal component of the wave vector of the scattered
wave (the angle ϕs is measured relative to the geomet-
rical center of the scatterer), the quantities with the
index s are related to the scattered field, and the argu-

ment k0 in the functions (xn, xs, k0), m = 1, 2, means
that these functions must be calculated for the homoge-
neous space with the wave vector k0. We adhere to the
notation used in the first problem for DPs in view of the
fact that these problems are equivalent.

After determining the primary scattering amplitude
(13), we can calculate the total scattering field by using
the procedure described in the first part of the paper, in

which the function (xs) given by Eq. (13) should

replace the DP of the primary field .

After we obtain either the resulting DP of the scat-
terer radiator Di or the scattering amplitude of the pas-
sive scatterer Dsi, we can calculate the field in the
waveguide under consideration. For example, the field
of normal waves has the form [17]

D
s

i
0 xs( )
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r1/2
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n 1=

N
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× bn
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i xn xs k0, ,( ) bn
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Tm
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i
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Di
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(14)u' r ϕ z, ,( ) 2π
r
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D1 ξn ϕ,( )A+ z' ξn,( ) D2 ξn ϕ,( )A– z' ξn,( )+

αn z'( )Nn

---------------------------------------------------------------------------------------------------
n 1=

N

∑ ψn z( ) j ξnr π/4–( )( )ξn
1/2,exp≈
where

and g(ξ) is the input admittance of the lower boundary.
Expression (14) describes both the case of a scatterer
radiator and the case of a passive scatterer. In the first
case, the field u' in Eq. (14) is the primary field and Di,
i = 1, 2, is the combined DP, while in the second case,
these quantities represent the scattered field and the
combined scattering amplitude Di = Dsi, respectively.
The parameter z' is the z coordinate of the geometrical
center of the corresponding scatterer, and r is measured
from this center. Note that the DP appearing in Eq. (14)
is defined on a discrete set of points ξn, because this for-
mula deals with the corresponding field of normal
waves, and, consequently, the waveguide filtering prop-
erties manifest themselves.

A± z ξn,( ) ψn z( ) jαn z( ) ψnz' z( );±=

Nn ψn H( ) ∂
∂ξ
------ ψz' H ξ,( ) g ξ( )ψ H ξ,( )+( )

ξ ξ n=
;=
It should be also noted that expression (14) is
reduced to expressions derived earlier in papers [11, 13,
14] if we consider only the zero approximation for the
scattering amplitude in the form of Eq. (13).

Remark. According to expressions (a) and (b), the
calculation of the DPs for the secondary sources of
scattered fields requires that the Fredholm integral
equations of the second kind, i.e., Eqs. (2)–(5), be
solved sequentially. The kernels of these integral equa-
tions remain the same for all iterations. As was shown
in papers [15, 16], in the particular case of ideal bound-
aries and a spherical scatterer, these equations can be
solved exactly, and the rate of convergence of series (8)
can be estimated. However, in the general case of arbi-
trary waveguides and scatterers, these calculations
require approximate methods, such as the methods
described, for example, in paper [20]. For each particu-
lar waveguide, scatterer, and geometry of the scatterer
location relative to the boundaries, this problem
requires an independent study of possible assumptions
ACOUSTICAL PHYSICS      Vol. 50      No. 1      2004
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to simplify the solution, the choice of an approximate
method of solution, and the estimation of errors appear-
ing in such a solution.

Thus, this paper suggests a method for estimating
both the field of normal waves of an opaque radiator
and the field scattered by an inhomogeneous inclusion
located in the Fraunhofer zone of external sources on
the basis of a unified approach. The decision about
replacing series (8) by a finite sum requires estimating
the residual sum of this series. An example of such an
estimator was given earlier in paper [16]. Other exam-
ples of this type will be considered in the following
papers.
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In a previous paper [1], we considered the possibil-
ity of producing a short electric pulse across a receiving
piezoelectric plate through its excitation by a pulse of
particle velocity when an electric L–R circuit is con-
nected in parallel with the piezoelectric plate.

It is of interest to study the possibility of reducing
the duration of an acoustic pulse radiated by a piezo-
electric plate also by way of connecting an L–R circuit.

A schematic representation of the problem is shown
in Fig. 1. An electric circuit consisting of L and R ele-
ments connected in series is, in its turn, connected in
series with a piezoceramic plate. An electric pulse in
the form of a half-period of a sinusoid at the antireso-
nant frequency of the piezoelectric plate is fed to the
input of the circuit. The material of the plate is
TsTSNV-1 ceramics. On one side, the plate borders air,
and on the other side, it is loaded with a liquid (water).

This system can be characterized by the following
parameters:

Ω =  n = Ω/ω0; and Q = ω0L/R, where C0
is the electric capacitance of the repressed piezoelectric
plate and ω0 is the angular antiresonant frequency of the
piezoelectric plate. The problem consists in determin-
ing the optimum values of the parameters Q and n at
which the duration of the resulting pulse of particle
velocity is minimum. The pulse duration is taken as the
time interval from the beginning of the pulse to the

1/ LC0;

R L

Fig. 1. 
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moment the signal level is reduced by 20 dB from the
maximum amplitude, i.e., to 0.1 of the latter. For con-
venience, we measure the time in relative units T =
2t/T0 , where T0 is the period of oscillations at the fre-
quency ω0. The procedure used for calculating the form
of the particle velocity pulse is similar that used for a
piezoelectric receiver. It is based on the use of an equiv-
alent electric circuit and a Fourier transform. The calcu-
lation of the pulsed processes was carried out by a PC.
The results of the calculations are as follows.

Figure 2 shows the dependences of the duration of
the particle velocity pulse on the parameter n for differ-
ent values of parameter Q: Q = (1) 3, (2) 2, (3) 1.5, and
(4) 1. One can see that the optimum values are Q = 1.5
and n = 1.15, The corresponding pulse duration is
τp = 5.5.

Figure 3 presents the dependences of the maximum
amplitude of the particle velocity pulse vmax (in relative
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units) on the parameter n. The dependences correspond
to the values of maximum amplitudes of particle veloc-
ity in the pulse within a constant factor. The numbering
of curves is the same as in Fig. 2. From these data it fol-
lows that, for the optimal values of Q and n, the signal
amplitude versus n practically reaches its maximum
(curve 3).

Figure 4 displays the form of the pulse of particle
velocity normalized to unity, v /vmax, for the optimal
values of parameters Q and n.

For comparison, one should note that the duration of
a pulse produced by a plate without electric load
exceeds 20 half-periods with a maximum signal ampli-
tude of vmax = 0.164. In the presence of an optimal elec-
tric load, the pulse duration is 5.5 half-periods, which is
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about four times smaller. The corresponding pulse
amplitude is vmax = 0.108, i.e., it decreases by a factor
of 1.5.

Thus, by means of calculation, the optimal values
are determined for the parameters of the electric load,
the use of which allows one to considerably reduce the
duration of the acoustic pulse radiated by the piezoelec-
tric plate.
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Abstract—The ray method of calculating the mode amplitudes is used to analyze the sound fields in deep-water
acoustic waveguides with two types of inhomogeneities of the refractive index: (i) weak inhomogeneities that
cause small perturbations of ray trajectories and (ii) strong inhomogeneities with large spatial scales. Simple
analytical relations are derived for describing the variations of the mode structure of the sound field in the pres-
ence of the aforementioned inhomogeneities. A new criterion defining the validity of the adiabatic approxima-
tion is formulated. To illustrate and test the results obtained, a numerical simulation of the sound fields is per-
formed on the basis of the parabolic equation method. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the factors that restricts the application of the
normal-wave method to analyzing the sound fields in
range-dependent waveguides is the complexity of the
equations describing the dynamics of mode amplitudes
[1–5]. In spite of the existence of high-accuracy and
high-speed computer codes for sound field calculations
by the coupled mode method (see, e.g., [6–8]), the
development of approximate analytic approaches,
which allow one to find the relation between the varia-
tions of the mode structure of a sound field and the
changes in the parameters of the medium that cause
such variations, is still topical. Earlier [9], we showed
that, in the high-frequency approximation, the mode
amplitudes can be surprisingly simply expressed in
terms of the solutions of ray equations (similar results
can be found in [10–14]). In other words, an analog of
geometrical optics exists for the modes.

In this paper, the results of the previous study [9] are
applied to the analysis of mode interaction, that is, to
the energy redistribution between the modes in an inho-
mogeneous waveguide. Here, we consider two prob-
lems that often arise in practical applications. In both
cases, to simplify the consideration, we restrict it to
analyzing the waves in a range-dependent refractive
waveguide. However, the results obtained can be
extended to a waveguide with a rough boundary.

The first problem is concerned with the effect of
weak inhomogeneities of the refractive index. In geo-
metrical optics, this effect is taken into account by
introducing corrections to the ray phases (eikonals)
[1, 15, 16]. Thereby, the complex amplitude of a ray
acquires an additional phase factor. Similar phase fac-
1063-7710/04/5001- $26.00 © 20020
tors also appear in our “ray” equations for the mode
amplitudes. It appears that even weak inhomogeneities
can lead to a substantial redistribution of energy
between the modes.

The second problem considered here is that of
describing the field in a waveguide in terms of an
approximation close to adiabatic. In such a waveguide,
the longitudinal scale of the refractive index variations
are comparable with the length of the ray cycle. The
main result of considering this problem is a relatively
simple formula expressing the validity criterion for the
adiabatic approximation. The criterion obtained agrees
with the well-known requirement of the smallness of
variations in the parameters of the medium within the
ray cycle and with the statement that the accuracy of the
adiabatic approximation improves as the frequency
becomes lower [2]. At the same time, our formula
allows one to take into account the accumulation of
errors with distance and to estimate the ultimate dis-
tances at which the adiabatic approximation is still
valid.

All the results are obtained in the parabolic equation
approximation, although they can be easily generalized
to the case when the field is defined by the Helmholtz
equation. The use of the parabolic equation is caused by
the fact that, unlike the Helmholtz equation, it can be
readily solved numerically, even for a range-dependent
waveguide. A number of efficient computer codes
exists to solve the parabolic equation. We uses one of
these codes (called MMPE [17]) for a numerical simu-
lation. The objective of the simulation was to illustrate
the results obtained and to test the accuracy of our for-
mulas.
004 MAIK “Nauka/Interperiodica”



        

VARIATIONS OF MODE AMPLITUDES IN A RANGE-DEPENDENT WAVEGUIDE 21

                                                                                                                        
2. RAY AND MODE REPRESENTATIONS 
OF THE FIELD IN A RANGE-DEPENDENT 

WAVEGUIDE

Let us neglect the horizontal refraction and consider
a model medium in which sound speed depends on
nothing but depth z and distance r. In the small-angle
approximation, the complex amplitude u(r, z) of a
monochromatic wave field is defined by the parabolic
equation [1, 18]

(1)

(2)

where n(r, z) = c0/c(r, z) is the refractive index, c0 is a
constant, k = 2πf/c0 is the wave number, and f is the car-
rier frequency.

2.1. Ray Representation of the Field

In the approximation of geometrical optics, the solu-
tion to Eq. (1) is represented in the form [1, 19, 20]

(3)

where A and S are the amplitude and eikonal of the ray,
respectively, and µ is the number of caustics touched by
the ray. To describe the ray structure of the field, let us
use the Hamiltonian formalism in which the ray trajec-
tory is similar to the trajectory of a particle in classical
mechanics and the longitudinal coordinate r is the ana-
log of time. The analog of the mechanical momentum
is the quantity p = dz/dr = , where χ is the grazing
angle. The Hamiltonian is defined by the expression
[20]

(4)

The Hamilton equations

(5)

that govern the motion of a mechanical particle [21] are
ray equations in our case. The eikonal S, which is an
analog of the mechanical action, is expressed as

(6)

where integration is performed along the ray trajectory
(Eq. (6) expresses the solution to the system of equa-
tions (5)).

The analysis of the relation between rays and modes
is considerably simplified if one uses canonical action–
angle variables (I, θ), which can be defined in accor-
dance with [21]. The action variable is expressed by the

2ik
∂u
∂r
------ ∂2u

∂z2
-------- 2k2U r z,( )u–+ 0,=

U r z,( ) 1
2
--- 1 n2 r z,( )–( ),=

u Aνe
ikSν iµνπ/2–

,
ν
∑=

χtan

H
p2

2
----- U r z,( ).+=

dz
dr
-----

∂H
∂p
-------,

d p
dr
------ ∂H

∂z
-------,–= =

S pdz Hdx–( ),∫=
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integral

(7)

over the cycle of ray oscillations in the so-called refer-
ence waveguide, that is, in a conceptional range-inde-
pendent waveguide whose cross section at the given
distance r coincides with that of the actual waveguide
(for each distance, there is an individual reference
waveguide). The quantities zmin and zmax are the roots of
the equation U(r, z) = H that define the turning horizons
of the ray trajectory in the reference waveguide. Actu-
ally, Eq. (7) defines H as a function of I and r. The
canonical transformation that relates the momentum–
coordinate (p, z) and action–angle (I, θ) variables are
determined by the relation [21]

(8)

with a generating function G(I, z, r) of the form

(9)

where

(10)

Relation (8) yields two equations that define the rela-
tion between (p, z) and (I, θ),

(11)

along with the expression for the Hamiltonian in
action–angle coordinates

(12)

where

(13)

Now, the Hamilton equations take the form

(14)

where

(15)

is the angular frequency of the spatial oscillations for
the ray with the action variable I in the reference
waveguide.

According to Eqs. (9)–(11), the angular variable θ
falls into the interval from 0 to 2π. Performing the inte-
gration in Eq. (8), in view of the fact that the combina-

I
1

2π
------ pdz∫°

1
π
--- z 2 H U r z,( )–( )d

zmin

zmax

∫= =

dS pdz Hdr– dG θdI H1dr––= =

G I z r, ,( )
g I z r, ,( ), p 0>
2πI g I z r, ,( ), p 0,<–




=

g I z r, ,( ) dz 2 H I r,( ) U z r,( )–[ ] .

zmin

z

∫=

p
∂G
∂z
-------, θ ∂G

∂I
-------= =

H1 I θ r, ,( ) H I r,( ) Λ I θ r, ,( ),+=

Λ I θ r, ,( ) ∂G I z r, ,( )
∂r

-------------------------=
z z I θ r, ,( )=

.

dI
dr
-----

∂Λ
∂θ
-------,

dθ
dr
------– ω I r,( ) ∂Λ

∂I
-------,+= =

ω I r,( ) ∂H I r,( )
∂I

--------------------=



22 VIROVLYANSKY et al.
tion G – Iθ goes to zero at the points where θ abruptly
changes from 0 to 2π, we obtain

(16)

Here and below, the subscripts s and e denote the ray
parameters at the beginning and the end of the trajec-
tory, respectively.

To make the quantity θ continuous, we, as usual,
increase its value by 2π at the beginning of each new
cycle. In accordance with the generating function
accepted, each cycle of the trajectory joints its two
sequential minima. Then, the quantities p, z, Λ, and G
will become periodic functions of the continuous vari-
able θ with a period of 2π. Expression (16) for the
eikonal will still be valid, but θe will be equal to the res-
idue of the division of θ by 2π at the end of the trajec-
tory.

2.2. Mode Representation for the Field

Let us represent the field in the form of expansion
[1, 2]

(17)

where ϕm (z, r) is the eigenfunction of the mth mode of
the reference waveguide (the local mode) at a point r. In
the WKB approximation, this function, between its
turning points, is equal to

(18)

where

(19)

(20)

Hm = H(Im, r), and Dm = 2π/ω(Im, r). The quantity Im

denotes the action variable corresponding to the mth
mode. Its value is determined by the quantization rule

(21)

In [9] (see also [12–14]), it is shown that the mode
amplitude can be approximately expressed through the
so-called mode rays that obey the equation

(22)

Condition (22) defines the rays whose action variables
are equal to the action variable Im of the mode at a dis-
tance r. The contribution of a single mode ray is given

S Idθ Hdr– Λdr–( )∫=

– G zs Is 0, ,( ) G ze Ie r, ,( ) θsIs θeIe.–+ +

u r z,( ) Bm r( )ϕm r z,( ),
m

∑=

ϕm ϕm
+ ϕm

– ,+=

ϕm
± z r,( )

Hm

pmDm

--------------e
ik σg Im z r, ,( ) π/4–( )

,=

pm 2 H Im r,( ) U r z,( )–( )= ,

kIm m
1
2
---.+=

I Im.=
by the expression

(23)

where

(24)

Here, the functions S and g are defined by Eqs. (6) and
(10) and calculated for the mode ray;

ps and pe are the initial and terminal values of the
momentum of the mode ray, respectively; and µ is the
number of points at which the mode ray touches the
caustics. The function  determines the sign of
the corresponding argument. The calculation of the
mode amplitude is completed by summing the contri-
butions of all mode rays.

Note that the derivative appearing in the denomina-
tor of Eq. (23) can go to zero. At the corresponding
points of the waveguide, the formula obtained fails. The
set of such points is the analog of the ray caustic for
modes (this fact was analyzed in [14] in more detail).

3. ANALYTICAL DESCRIPTION OF MODE 
INTERACTION

In a range-independent waveguide, the energy of
each mode is conserved, and the mode amplitudes, to
the accuracy of a phase factor, are independent of the
distance. For a point source at the depth zs, we have

(25)

In an inhomogeneous waveguide, the modes interact,
that is, the sound energy is transferred from one mode
to another. Such an energy redistribution makes both
phases and amplitudes of factors Bm functions of the
distance.

3.1. Weak Inhomogeneities

Let the refractive index be equal to

(26)

where n0(z) is the unperturbed profile and δn is the per-
turbation. The smallness of δn allows one to develop a
very simple perturbation theory for rays. In the first
approximation, the change in the ray trajectory can be
neglected, and the eikonal variations are described by
the well-known simple formula [1, 15, 16]:

(27)

where the integration is performed along the unper-
turbed ray. By applying this formula to mode rays, we

δBm
1

2πi ∂I
∂ ps

--------

------------------------ iΦ[ ] ,exp=

Φ k S σg+( ) γ 2µ σ––( )π/4.+=

σ pe( ), γsgn– σ I ps
( ) zps

( ),sgnsgn–= =

x( )sgn

Bm r( ) ϕm zs( )e
ikH Im( )r–

.=

n z r,( ) n0 z( ) δn z r,( ),+=

δS δndr,∫=
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arrive at the following expression for the mode ampli-
tude:

(28)

where the additional term for the mode rays,

(29)

is calculated by integrating along the unperturbed ray

trajectories  and . The superscripts “+” and “–”
indicate the signs of the launch angles at the sound
source. In [10, 11], Eq. (28) was obtained in another
way. At δn = 0, this formula takes the form of Eq. (25).

The validity conditions for Eq. (28) actually coin-
cide with those for the analogous ray formulas [9–11].
Therefore, here we only note that, in spite of the
requirement of smallness of δn, Eq. (28) can describe

the situation in which the value of  is greater than
π. With such phase shifts, the fluctuations of the mode
amplitudes can be substantial (the example is presented
in Section 4.1).

3.2. Adiabatic Approximation

In a so-called adiabatic waveguide, where the sound
speed varies so smoothly that the action variable is con-
served along each ray, no energy redistribution occurs
between the modes [1, 2]. In such a waveguide, the
mode amplitude can be described by Eq. (25) in a gen-
eralized form

. (30)

Of course, this well-known result can be also obtained
from Eq. (23). Omitting simple but somewhat tedious
calculations, we emphasize the only fact that, just as in
the range-independent waveguide, a mode of the adia-
batic waveguide is formed by the contributions of two
mode rays with launch angles that are equal in their
absolute values and opposite in their signs.

3.3. Perturbation Theory for the Eikonal 
of a Mode Ray

Let us consider a smoothly varying inhomogeneous
waveguide in which the action variable does not remain
strictly constant but weakly varies with distance. To
estimate the effect of the nonadiabaticity on the mode
amplitudes, let us compare the actual eikonal of the
mode ray with the eikonal calculated in the adiabatic
approximation, that is, with neglecting the summand Λ
in Hamiltonian (12) and in all subsequent formulas. We
consider an adiabatic mode ray (calculated in the adia-
batic approximation) and an actual mode ray that corre-
spond to the mth mode. The trajectories of these rays

Bm r( ) ϕm
– zs( )e

iδΦm
+

ϕm
+ zs( )e

iδΦm
–

+( )e
ikH Im( )r–

,=

δΦm
± k δndr

Γm
±

∫=

Γm
+ Γm

–

δΦm
±

Bm r( ) ϕm zs( ) –ik H Im r',( )dr'

0

r

∫exp=
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are assumed to be close to each other, and the values of
integer constants σ, γ, and µ, which are determined by
the topology of the trajectories, are supposed to be the
same for both rays. According to Eq. (24), our problem
is reduced to the comparison of the quantities S + σg for
the adiabatic and actual rays. In view of Eqs. (14)–(24),
for the nonadiabatic ray we obtain

(31)

where

(32)

(33)

(34)

In the latter expression, we used the fact that, in the
nonadiabatic waveguide, the action variable of the
mode ray is equal to Im at the trajectory end in accor-
dance with Eq. (22). The closeness to the adiabatic
approximation is caused by the smallness of the pertur-
bation of the quantity Λ. Formally, let us assume that
this quantity is proportional to a small dimensionless
parameter ε. In the adiabatic approximation, ε = 0 (and,
hence, S2 = 0), and Is and I should be replaced by Im in
Eqs. (32) and (34).

By expressing I in the form of Im + δI, where δI =
O(ε), to an accuracy of O(ε2), we obtain the following
expression for the deviation S1 from its adiabatic value:

(35)

The prime in ω denotes the derivative with respect to I,
and the subscript m means that the corresponding deriv-
ative is taken at I = Im. Let us use the relation

(36)

where N is the number of cycles in the trajectory. In
view of the second equation of Eqs. (14), we replace dθ
by (ω(I, r) + ∂Λ/∂I)dr. Then, we obtain

(37)

where δθs and δθe are the differences in the initial and
terminal values of the angular variables for the rays
being compared. Using Eq. (11), we estimate the differ-
ence in the values of S3:

(38)

From Eqs. (31)–(38), it follows that

(39)
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By retaining only the terms of the order of O(ε), we
arrive at the estimate for the difference in the eikonals
of the adiabatic and actual mode rays:

(40)

3.4. Validity Criterion for the Adiabatic 
Approximation

We assume that the value of Λ is so small that |δI| ! Im.
In this case, the dependence of the action variable on
the initial instant of time must be nearly the same as in
the adiabatic approximation. Therefore, the deviations
from the adiabatic approximation manifest themselves
primarily in “nonadiabatic” variations of the eikonals
of mode rays. The validity condition for the adiabatic
approximation is the inequality

(41)

To simplify the use of this criterion, let us transform
the integral appearing in Eqs. (40) and (41). In view of
Eqs. (9) and (10), the derivative determining the quan-
tity Λ (see Eq. (13)) can be represented in the form

(42)

By using Eq. (7), one can easily show that

(43)

Let us introduce the function

(44)

It expresses the length of the trajectory fraction at
which p > 0 in the reference waveguide; this trajectory
connects the point of the minimum with the nearest
point of the ray, which has the coordinate z. By combin-
ing Eqs. (42)–(44), we obtain

(45)
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The right-hand side of this expression, which defines Λ,
can be formally treated as a sum of two integrals along
the ray with a given action variable I and with p > 0 in
the reference waveguide. The factor

dz/  represents the element of
distance in this conceptional waveguide. Because we
consider a waveguide that is close to the adiabatic one,
its parameters weakly vary within a single ray cycle,
and the integration over the ray cycle in the reference
waveguide can be approximately substituted by inte-
gration along the actual ray.

Let us consider the ith cycle of the trajectory that
begins at the distance ri. On the first half-cycle, where
p > 0, Eq. (45) can be represented as

(46)

where z(r) is the trajectory of the mode ray and

(47)

Expression (46) representing Λ at the corresponding
point of the mode ray can be integrated over this half-
cycle to yield

(48)

This result can be obviously modified for the half-cycle
with p < 0. As a result, we find that integral (40) over
the ith ray cycle is approximately equal to

(49)

In integrating over the incomplete first and last cycles
of the trajectory, the integration limits in Eq. (49)
should be changed in an evident way. To find the value
of δΦ, one should combine the contributions of all
cycles.

Formula (49) is useful to analyze the validity of the
adiabatic approximation in specific applications. The
integrals appearing in this formula can be easily calcu-
lated by using an ordinary ray computer code. In this
case, it is unnecessary to find the rays exactly obeying
condition (22). Actually, we speak of smoothly varying
waveguides in which ray trajectories exhibit a regular
behavior, and, if condition (41) is met for some ray, it
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will be also met for other rays with close launch angles
at the sound source. Therefore, it is sufficient to con-
sider a set of rays with the launch angles within the
angular interval that is determined by the spread of
launch angles of the mode rays. For the mth mode, the
validity of the adiabatic approximation will be deter-
mined by the values of δΦ for the rays whose action
variables are close to Im at the end point of the trajec-
tory.

3.5. Comparison with Other Criteria

The validity condition for the adiabatic approxima-
tion is usually formulated as the inequality [1]

(50)

which expresses the requirement of smallness of the
cycle length D relative to the horizontal scale L of vari-
ations in the parameters of the medium. More accurate
criteria are presented in monograph [5] (see also [24])
for waveguides of different types. In particular, in this
monograph, the following inequality is given as a con-
dition taking into account the frequency dependence:

(51)

Conditions (50) and (51), along with similar ones, are
obtained by estimating the terms of equations for mode
amplitudes [1, 5], which are rejected when passing to
the adiabatic approximation. Being necessary, these
conditions, however, do not allow one to estimate the
validity limits of the approximation in distance. It is
obvious that, at very long ranges, the adiabatic approx-
imation will sooner or later become invalid, even if con-
ditions (50) and (51) are met.

Our method of estimating the validity limits for the
adiabatic approximation is based on the available
(though approximate) solution to the mode coupling
equation. This allows one to look at the problem from a
new point of view, and, particularly, to obtain an esti-
mate that takes into account the accumulation of errors
with distance. Our criterion is somewhat more compli-
cated than conditions (50) and (51). However, the inte-
grals in Eq. (49) can be easily calculated with a stan-
dard ray computer code. The action–angle variables
used in the derivation of our formulas could require
additional effort for their calculation, but they do not
appear in the final expressions.

Note that conditions (50) and (51) agree well with
our requirement |δΦ| ! 1, where δΦ is defined by
Eq. (49). If we consider the increment δΦ in a single
cycle of oscillations, we can see that, according to
Eq. (49), this increment will be equal to zero if the
quantity ∂U/∂r is constant, and, hence, it is determined
by the variations of ∂U/∂r along the ray. For distances
0 ≤ ρ ≤ D/2, we can roughly approximate the half-cycle
of the ray trajectory by a straight-line segment: z =
4∆z(ρ – D/4)/D, where ∆z is the amplitude of trajectory
oscillations. The range-dependent part of the derivative

D/L ! 1,

kD2/L ! 1.
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∂U(r, z)/∂r can be estimated as U1z/(Lh), where U1 and
h are the characteristic value of U and the vertical scale
of variations of this function, respectively. According to
Eq. (49), we obtain δΦ ~ (U1∆z/h)kD2/L. If the number
of the trajectory cycles is not large, this relation leads to
a less strict version of inequality (51): U1∆z/h ! 1 in
practice.

4. NUMERICAL SIMULATION

To illustrate and test the results obtained, we per-
formed the calculation of the sound field of a tone
source in a miltimode waveguide. We used the MMPE
computer code [17] developed to solve a wide-angle
parabolic equation. For solving our standard parabolic
equation (1), this code was slightly modified. The
sound field was expanded into normal waves calculated
with the use of the WAN code [22]. The sound speed
field was represented by an unperturbed profile c(z) to
which a perturbation δc(r, z) associated with the mode
interaction was added. As c(z), we chose Munk’s profile
[1, 16]

(52)

where c0 = 1.5 km/s, B = 1 km, za = –1 km, and ε =
0.0058. In the examples presented below, the sound
source is at a point (0, za), that is, on the axis of the
unperturbed waveguide, and the frequency is 200 Hz.
We restricted our simulation to studying the amplitudes
of 100 initial propagating modes. Their turning points
lie in the water bulk.

4.1. Mode Scattering by Small Inhomogeneities

Figure 1 shows the mode rays for every fifth mode
of 100 initial ones. As was mentioned above, for each
mode there are two rays whose launch angles are equal
in their absolute values and opposite in sign. The abso-
lute values of the launch angles are greater for modes of
higher numbers.

Let us consider a small inhomogeneity of the sound
speed field in the form

(53)

where c1 = –0.001 km/s, δr = 2 km, and δz = 0.1 km.
The isograms of δc(r, z) are ellipses with centers at
points (r1, z1). Let us consider two positions of the given
inhomogeneity in the waveguide; they are indicated by
numbers 1 (r1 = 35 km, z1 = –2.4 km) and 2 (r1 = 22 km,
z1 = –0.6 km) in Fig. 1. In both cases, the area occupied
by the inhomogeneity is shown as an ellipse corre-
sponding to the value of δ that is e times smaller than c1.

Let us begin with the situation when the inhomoge-
neity is in position 1. According to Eqs. (28) and (29),
the effect of the inhomogeneity on the mode amplitudes

c z( ) c0 1 ε e
2 z za–( )/B

2 z za–( )/B– 1–( )+( ),=

δc r z,( ) c1
r r1–( )2

δr2
-------------------–

z z1–( )2

δz2
-------------------–

 
 
 

,exp=



26 VIROVLYANSKY et al.
–2

0 20

Z, km

r, km

–1

0

2

1

–3
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Fig. 1. Trajectories of the mode rays in a waveguide with the canonical sound speed profile (Munk’s profile) for each fifth mode of
the 100 initial ones. Ellipses 1 and 2 indicate the waveguide regions where the refractive index inhomogeneities were placed.
is determined by the additional phase shifts along the

mode rays, . In the example at hand,  ! π
for most mode rays. The exceptions are the rays that
either cross the aforementioned ellipse or pass in the
vicinity of it. All these rays have negative launch angles

at the source. Therefore, all  = 0, and the addi-
tional phase factor appearing in Eq. (28) can differ from

unity for only one of the terms in parentheses. If 
is of the order of π, one can expect a considerable
increase in the amplitude of the mth mode. At the top of
Fig. 2, the variations in mode amplitudes are shown in
the presence of the inhomogeneity (on average, the
unperturbed values of |Bm| are about 1 km–1/2). At the

bottom of Fig. 2, the dependence of  on the mode
number is shown. It can be seen that both the values of

 and the amplitude variations are especially high
for the modes whose numbers fall in the interval 50 <
m < 70. The corresponding mode rays pass in the clos-
est vicinity of the inhomogeneity center.

If the inhomogeneity is in position 2, none of the
mode rays shown in Fig. 2 crosses it. In this case, the
inhomogeneity is in the shadow zone, and, according to
Eqs. (28) and (29), it cannot influence the amplitudes of
the 100 initial modes. This statement is confirmed by
the results of calculations.

δΦm
± δΦm

±

δΦm
±

δΦm
–

δΦm
–

δΦm
–

In the examples considered, an interesting effect can
be observed: a mode can “ignore” the inhomogenety,
even in the case if it is between the turning points. A
qualitative explanation of this effect is offered in [11].
Here, we only note that the effect at hand can only

0
50

0.5

1.0

1.5

60 70 80 90 m

δφ, rad

0

0.5
|δBm|, km–1/2

Fig. 2. Variations in the mode amplitudes due to the scatter-
ing by the inhomogeneity of the refractive index at point 1
(the upper plot) and the variations in the phase of a mode ray
under the effect of the inhomogeneity (the lower plot).
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Fig. 3. Sound speed field modeling a synoptic eddy.
occur in the situation when a great number of modes
propagate simultaneously. At the scattering by the inho-
mogeneity, a mode looses part of its energy through the
energy transfer to other modes. However, in certain
cases, which are defined by the requirement for the
mode rays not to cross the inhomogeneity, the mode
can regain its energy from other modes. In the situation
when only one mode is incident on the inhomogeneity,
its energy can only decrease due to scattering.

Note that the mode amplitudes obtained with the
three calculation methods, namely, by Eqs. (23) and
(28) and by the parabolic equation method, are close to
each other.

4.2. Sound Propagation through a Synoptic Eddy

Let us consider a much stronger inhomogeneity of a
large spatial scale, which models the effect of a synop-
tic eddy [23]:

(54)

where

(55)

Let us specify the following values of the parameters:
c2 = –0.01 km/s, r2 = 300 km, z2 = –1 km, ∆r = 80 km,
∆zc = 0.5 km, ∆zv = 0.25 km, rv = 320 km, and ∆rv =
20 km. The isograms of the total sound speed field,
c(z) + δc(r, z), are shown in Fig. 3.

δc r z,( ) c2
r r2–( )2

∆r2
-------------------–

z z2–( )2

∆z r( )2
-------------------–

 
 
 

,exp=

∆z r( ) ∆zc ∆zv

r rv–( )2

∆rv

--------------------– 
  .exp–=
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In Fig. 4, the squares indicate the mode amplitudes
at a distance of 600 km. These amplitudes were calcu-
lated with the use of our main formula (23) (the value
|B0| = 2.47 km–1/2 is outside the range of Fig. 4). The
solid curve shows the deviations from the mode ampli-
tudes found by numerically solving the parabolic equa-
tion. According to the data presented, the accuracy of
Eq. (23) is rather high for the majority of the modes.
However, the solid curve exhibits three high peaks, A,
B, and C, with midpoints at the numbers m = 27, 32, and

0

0.5

1.0

20 40 60 80 100

A B C

|Bm|, km–1/2

m

0

Fig. 4. Mode amplitudes predicted by Eq. (23) (squares)
and their deviations from the corresponding amplitude val-
ues predicted by the parabolic equation method (solid
curves).
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48, respectively. For these and neighboring modes, Eq.
(23) leads to a noticeable error.

The origin of this error can be understood from
Fig. 5, which shows the action variable I of the ray as a
function of the ray launch angle χ0 for the disturbed
(solid curve) and unperturbed (dashed curve)
waveguides at a distance of 600 km. The launch angles
of the mode rays can be found from the points at which
the curves I(χ0) cross the horizontal straight lines I = Im.
At the intervals A, B, and C, the solid curve has horizon-
tal tangents at which the derivative ∂I/∂ps appearing in
the denominator of Eq. (23) goes to zero. Here, we face
the analog of caustics for modes, i.e., the effect men-
tioned at the end of Section 2.2. For the modes whose
action variables are close to the values of the function
I(χ0), Eq. (23) fails at the intervals A, B, and C. These
are precisely the modes to which the peaks A, B, and C
of Fig. 4 correspond. At |χ0| > 8°, both branches of the
function I(χ0) monotonically increase and no analogs of
caustics occur for modes with m > 50.

The sound speed field shown in Fig. 3 varies rather
smoothly, and one can expect that at least part of the
modes can be described in an adiabatic approximation.
For such modes, the value of |Bm| is retained along the
path. At the top of Fig. 6, the difference between the ini-
tial and terminal values of the mode amplitude is pre-
sented. The amplitudes were calculated by the para-

0
–8

0.02

0.04

0.06

–6 –4 –2 0 2 4 6 8

m = 50

m = 30

m = 10

A

B

C

I, km

χ0, deg

Fig. 5. Action variable at a distance of 600 km versus the
launch angle in an unperturbed waveguide (dashed curve)
and in the presence of a synoptic eddy (solid curve). The
straight lines show the values of the action variables Im for
m = 10. 20, 30, 40, and 50. The symbols A, B, and C indicate
the intervals where the derivative of the action with respect
to the ray launch angle is small.
bolic equation. The difference shown is normalized to
the average initial amplitude:

(56)

The lower plot of Fig. 6 shows the deviations of the
eikonals of the mode rays from the values calculated in
the adiabatic approximation (these deviations are
divided by π):

(57)

The values of δΦ are calculated according to Eq. (49)
for the mode rays that leave the source upwards (solid
curve) and downwards (dashed curve). According to
our criterion established in Section 3.4, the adiabatic
approximation can be used for the mode at hand if the
following condition is met for both its mode rays: |δ2| ! 1.
By comparing the upper and lower plots of Fig. 6, one
can see that this condition is valid for the same
15−17 initial modes, for which |δ1| ! 1. The smallness
of δ1 means that the mode amplitude remains nearly
constant, just as one would expect in an adiabatic
approximation.

5. CONCLUSIONS
The consideration described above is based on the

ray approach proposed in [9] for describing mode
amplitudes. This method is used here to analyze the
field of a point source in two situations, which both

δ1
Bm r( ) Bm 0( )–

B
-----------------------------------------= , B

1
100
--------- Bm 0( ) .

m 0=

99

∑=

δ2
δΦ
π

-------= .

–1

0 20 40 60 80 100

0

1

m

δ2

δ1

–1

0

1

Fig. 6. Relative changes in the mode amplitudes in the pres-
ence of the eddy (the upper plot) and the deviations (nor-
malized to π) of the phases of mode rays from their values
calculated in the adiabatic approximation (the lower plot).
The solid and dashed curves correspond to the rays with
positive and negative launch angles, respectively.
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often occur in applications and presume rather simple
analytical representations.

It was shown that even very weak inhomogeneities
of the refractive index may cause a noticeable redistri-
bution of energy between modes. In the case of weak
inhomogeneities, our main formula (23) can be simpli-
fied and reduced to Eq. (28). In another way, Eq. (23)
was obtained in [10, 11]. The conclusion of [10, 11]
about the selective nature of the scattering by the inho-
mogeneities that are small relative to the waveguide
depth but large relative to the sound wavelength was
confirmed (in particular, by direct numerical calcula-
tions): a mode amplitude is considerably influenced by
only those inhomogeneties that occur in the vicinities
of the mode rays, i.e., the two geometric-optical rays
leaving the source at the grazing angles equal to the
angles of the Brillouin waves forming this mode. A
qualitative explanation of this effect is given in [11].

Rather simple analytical relations were also
obtained for another particular case when the longitudi-
nal scale of fluctuations of the refractive index are com-
parable with the length of the ray cycle. The importance
of these results is that they yield a new validity criterion
for the adiabatic approximation. This criterion takes
into account the accumulation of the approximation
errors with distance. The generality of the criterion is
limited by the fact that it is obtained by assuming the
validity of geometrical optics.

An important part of this paper is the numerical sim-
ulation of the sound fields in inhomogeneous
waveguides. This simulation confirmed the validity of
both the initial formula (23) and its consequences.
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Abstract—Results of an experimental study of the spatial correlation of signals from underwater explosions
are presented for vertically and horizontally (across the path) separated reception points. The measurements
were carried out on two propagation paths about 200 and 110 km long in the Barents Sea for frequencies below
500 Hz. The vertical correlation radius is found to increase with the distance to the source, which is primarily
caused by the decrease in the sector of arrival angles of energy carrying signals. The transverse correlation
radius weakly depends on the path length for frequencies below 300 Hz, while for higher frequencies, it
decreases beginning from a distance of about 40 km, which can be attributed to the effect of short-period inter-
nal waves. © 2004 MAIK “Nauka/Interperiodica”.
The Barents Sea is a shallow ocean region whose
characteristic feature is the signal propagation with
multiple reflections from the boundaries of the water
layer, which causes a strong attenuation of signals. For
this reason, the habitual problem that arises in monitor-
ing the water areas consisting of the detection of weak
signals against the background of strong interference
becomes critical in these regions. To overcome this dif-
ficulty, it is expedient to use large-aperture receiving
antennas. However, the efficiency of this method is
determined by the coherence ratio of sound signals (at
least within the antenna aperture) and by the possible
dependence of this ratio on the distance to the source of
sound.

Note that the number of publications in this field of
research is fairly large (see, e.g., [1–5]). Among them,
we select the work by Urick and Lund [2] who studied
the vertical coherence of shallow-water reverberation
using explosive sources of sound. They found that the
interval of arrival angles of reverberation signals nar-
rows with time. The rays along which the signals travel
become less steep. As a result, the vertical correlation
radius of the sound field increases with time. We also
should mention the paper [6] concerned with measur-
ing the parameters of the vertical correlation of the
reverberation field in the coastal slope conditions. They
discovered a considerable anisotropy of the field in the
azimuth plane. Our previous papers [7, 8] investigated
the vertical and horizontal transverse (across the path of
sound propagation) correlations of sound fields over the
coastal slope of the Pacific shore of Kamchatka. It was
found that the correlation parameters vary widely
depending on the hydrophone positions, the relief and
structure of the bottom, the source azimuth, the dis-
tance to the source, and the hydrographic conditions.
1063-7710/04/5001- $26.00 © 20030
Below, we describe the results of experimental stud-
ies of the spatial correlation of sound fields produced by
underwater explosions with receiving hydrophones
spaced in the vertical and horizontal directions and
placed at different distances from the points of explo-
sion. The measurements were carried out in the Barents
Sea for the hydrographic conditions characteristic of
summer and autumn. Figure 1 shows the region of mea-
surements and the two paths, one of which (path I) was
used for studying the vertical correlation and the other
(path II), for studying the transverse correlation.

The length of path I was equal to ~200 km. The
receiving vessel lay to at point ‡. From its board, a ver-
tical chain of six hydrophones was lowered into water.
The length of the chain was 19 m. The distances
between adjacent hydrophones were different. Starting
from the deepest receiver and going in the upward
direction, the successive distances between adjacent
hydrophones were 5, 1, 2, 7, and 4 m. The chain center
was located at a depth of ~100 m. The deviation of the
center from this depth was traced with a depth gauge
and was no greater then ±1 m. The vessel that produced
the explosions of 2.5-kg trinitrotoluene charges at a
depth of 100 ± 3 m moved away in a given direction
with a velocity of 12 knots. The charges were dropped
from the vessel in motion at preset time intervals. The
distance between the vessels was determined approxi-
mately from the difference between the instant of
explosion (transmitted via a radio channel) and the
instant of the signal arrival at the hydrophones.

Figure 2a shows the sound velocity as a function of
depth for eight points of the path (approximately, at
every 30 km). Figure 2b shows the profile of the bottom
along the path. The bottom relief was gradually hilly,
the slopes were gentle and did not exceed 15'. The
004 MAIK “Nauka/Interperiodica”
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depth along the path varied from 230 to 330 m. The bot-
tom was formed of sediments consisting of coarsely
grained sand, gravel, and pebble. During the measure-
ments, the wind force and the sea state corresponded to
Beaufort 3 and 2, respectively.

Analysis of signals that arrived at the hydrophones
made it possible to study the vertical coherence of
sound fields in shallow water and its dependence on the
distance to the source.

It is common practice to use the correlation function
(or, after normalization, the correlation coefficient) as a
measure of the spatial coherence of the sound field of a
broadband signal (including the case of receivers

200

b

a

I

II

d

c

Fig. 1. Region of the experiment and the two paths used for
studying the sound propagation.
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spaced in both the vertical and horizontal directions).
However, actual measurements use the quantity

(1)

where x(t) and y(t) are the signals received at two spa-
tially separated points, T is the time of averaging (it
usually coincides with the duration of the signal real-
ization), and τ is the time shift. The function Φ(τ) coin-
cides with the correlation function only if the signals
form a stationary ergodic process on the interval of
averaging. The appropriateness of this assumption in
the case under consideration is questionable. For this
reason, we can deal here only with an estimate of the
signal coherence.

In the measurements described in this paper, we
used the concept of the short-term correlation function
(the corresponding correlation coefficient is denoted as
Rsh). In this case, the time of averaging is less than the
lifetime of the multipath pulsed signal (or the so-called
signal spread time Tsp) but greater than the period of the
mean frequency of analysis Tm, which is required for
the measurements of Rsh to be sufficiently precise [2].
In other words, the time T must satisfy the condition

Tm < T < Tsp. (2)

Figure 3 shows the curves obtained from the mea-
surements of vertical correlation. They illustrate varia-
tions of Rsh with time within the spread time Tsp, i.e.,
between the time of the first arrival (in a shallow sea
this signal usually travels along the flattest ray) and the
time of the last arrival of the signal (along the steepest
ray). The curves are parameterized by the quantity ∆z,
which is the vertical spacing of hydrophones.
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Fig. 2. Sound velocities as (a) functions of depth and (b) the bottom profile along path I.
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Note that a rigorous analysis of the variation of Rsh
with ∆z requires the use of a single reference signal.
Here, this condition is satisfied only for the curves cor-
responding to ∆z = 1, 3, 5, 10, and 14 m; in these cases,
we used the signal received by the second (from the
lower end of the chain) hydrophone as the reference
signal. For other values of ∆z, the curves were obtained
with the use of other reference signals. However, since
the whole chain was located in the region of a small and
slowly varying sound velocity gradient, we can neglect
the variations of the field structure within the chain
length of 19 m and assume that this (combined) pattern
of variation of Rsh with ∆z is sufficiently correct.

The signals were analyzed in a frequency band of
240–340 Hz for T = 0.1 s. Figure 3 shows three families
of curves for distances to the sound source equal to ~20,
~100, and ~196 km.

To interpret the data obtained, we first note that sim-
ple geometrical considerations lead to the equality
(with the wave front curvature being neglected)

where ∆ti is the difference in the times of signal propa-
gation along the ith ray in the depth range ∆z, χi is the
angle of the signal arrival along this ray at the reception
points (the sign depends on the direction of signal
arrival in the vertical plane), and c is the sound velocity
at these reception points. From this formula, it becomes
clear that the signal segment formed by the reception of
multipath signal components arriving along the flattest
rays will have the temporal structure most stable to
variations of the vertical coordinate. For shallow-water
ocean regions, this segment adjoins the leading edge of
the signal (as was mentioned earlier). The curves in
Fig. 3 support this statement. An increase in ∆z affects
primarily the tails of arriving signals. As ∆z increases,
the correlation first decreases in the region of these tails
and then changes its sign. With further increase in ∆z,
this region of negative correlation moves toward the
signal’s leading edge; in the tail region, the second pos-
itive correlation peak appears, and so on.

Comparing the curves Rsh(t) for three distances r to
the source and the same ∆z, one can observe that the
time-dependent variation of the function Rsh becomes
slower as the distance r increases, i.e., the correlation
coefficient changes its sign at a noticeably greater dif-
ference in the reception depths ∆z. A similar result fol-
lows from the sound field characteristics calculated
along the path. The behavior of the received explosion
signals points to the fact that the spread time only
slightly depends on the path length r and measures ~2 s
(this time hardly can be determined with high accuracy,
because the received signal has no apparent trailing
edge exceeding the background of interference). Calcu-
lations show that the interval of the vertical arrival
angles of energy carrying signals received within the

∆ti

∆z
-------

χ isin
c

------------,±=
first second of the multipath signal lifetime narrows
with increasing distance. Earlier, we noted that the cor-
relation of signals received along flat rays depends
much less on the spacing between the reception points
than the signals traveling along steep rays. This
explains the behavior of the experimental curves in
Fig. 3. Thus, the vertical correlation radius increases
with the distance to the sound source.

This inference becomes more evident if we consider
the case when the transmitted pulse duration δ notice-
ably exceeds the spread time Tsp (this case is of frequent
occurrence in practice). Then, separate arrivals of the
multipath signal are unresolved in time, and the spatial
correlation of the sound field at the reception points is
determined by the signal arrivals along the whole set of
rays. If an underwater explosion is used as the sound
source, the aforementioned case can be simulated by
choosing the time of averaging in Eq. (1) to be some-
what greater (by the duration of the short sound pulse
of the explosion) than the spread time of the arriving
signal. Figure 4 shows the values of R obtained in this
way for ∆z = 7 m in the frequency range ∆f = 240–
340 Hz as a function of the distance to the sound source
r (note that the values of R are calculated with the
r-dependent correction for the signal-to-noise ratio). As
seen from the curve, the vertical correlation radius of
the sound field in a shallow sea increases with distance
r (despite the decrease in the signal-to-noise ratio).
Note that, when the sea roughness and the measured
sound velocity profile are taken into account, the slope
of the curve approximating the experimental points in
Fig. 4 can be used as a path-averaged characteristic of
acoustical and geological parameters of the bottom.

One can adequately interpret the above experimen-
tal results on the basis of two points supported by cal-
culations. First, the parameters of the vertical correla-
tion of sound fields in a shallow sea are mainly gov-
erned by the characteristics of the multipath sound
propagation with multiple reflections of the signal from
the waveguide boundaries. Second, the contribution of
the signals multiply reflected from the waveguide
boundaries to the total field steadily decreases with
increasing distance; for this reason, in the region of the
trailing edge, the signal level that must exceed the inter-
ference level is determined by the signals arriving along
increasingly flatter rays.

Now, we consider the results obtained on path II
used for investigating the transverse correlation of
sound fields of underwater explosions. The path length
slightly exceeded 100 km. Figure 5 shows the depth-
dependent sound velocity for seven points of the path
and the bottom profile along the path. The experiment
duration was ~48 h, the sea state corresponded to Beau-
fort 3–4 during the experiment (the wind force was
Beaufort 4–6). The sound signals were received at the
southern end of the path using two hydrophones located
at the bottom at a depth of ~110 m and spaced in the lat-
itude direction (across the path) at a distance of ~2 km.
ACOUSTICAL PHYSICS      Vol. 50      No. 1      2004
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Fig. 3. Variation of the short-term correlation function with time within the spread time of the received signal for three distances to
the source.
The signals received by the hydrophones were trans-
mitted via radio channels to the vessel anchored at a
distance of ~9 km from the hydrophones. Trinitrotolu-
ACOUSTICAL PHYSICS      Vol. 50      No. 1      2004
ene charges of 0.27 kg were used as explosive sound
sources; they were blown up at a depth of 90 ± 3 m.
Charges were dropped from the second vessel that
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moved away from the center of the reception base in the
northern direction with a velocity of 12.5 knots.
Charges were dropped at intervals of 1 min, so that the
distance between the adjacent drop points were equal to
~375 m. The signals received were computer processed
to calculate the cross correlation coefficient. The time
of averaging always coincided with the spread time of
the signal.

Figure 6 shows the correlation coefficient R of
explosion signals received with two bottom-moored
hydrophones in different frequency bands. It can be
seen that, for frequencies below ~300 Hz, the correla-
tion coefficient R only slightly varies as the distance to
the signal source increases from 10 to ~110 km. How-
ever, for higher frequencies, the correlation coefficient
R appreciably decreases. (Note that the reasons of scat-
ter in the values of R for distances between 50 and
70 km are not yet completely understood.)

In most cases, the destruction of the spatial correla-
tion of sound fields in oceanic waveguides is mainly
caused by the variations in the temporal structure of the
signal (related to the multipath nature of sound propa-
gation) that occur when the reception or radiation

1.0

50

|R|

r, km
100 150 200

0.5

Fig. 4. Vertical correlation coefficient as a function of the
distance to the source (the frequency band used in the anal-
ysis was 240–340 Hz).
points change their positions. This was precisely the
case in the experimental study of the vertical correla-
tion of sound field. However, when the reception base
is oriented across the propagation path (i.e., when the
path is normal to the base connecting the reception
points and passed through the base center), the statisti-
cal processes in the water medium and the spatial vari-
ability of acoustical and geological characteristics of
the sea bottom may significantly contribute to the
destruction of the signal correlation in a shallow sea.
Our approximate estimates showed that small-scale
inhomogeneities of the sea medium contribute negligi-
bly to the destruction of the spatial correlation of the
sound field. Indeed, for small-scale inhomogeneities,
the fluctuation of the travel time can be estimated by the

formula τ =  [10], where 〈µ2〉  is the aver-

age squared fluctuation of the refractive index of the
medium, c is the sound velocity, a is the average size of
random inhomogeneities in the medium, and r is the
distance. For distances r ~ 100 km, the fluctuation of
travel time τ does not exceed 0.01 ms (a = 1.5–1.9 m,
〈µ2〉  = (16–22) × 10–10 [11]). On the other hand, even an
approximate consideration of the effect of the short-
period internal waves shows that their contribution to
the formation of the sound field is considerable.
According to [12] (with the remark that the conditions
analyzed in [12] differ from the conditions of our
experiment), the transverse correlation interval in the
presence of the short-period internal waves can be
approximately (with an error of about 30%) estimated

by the relationship dh ≈ , where Φ is the parameter

characterizing the inhomogeneities of the medium,
which is equal to 15–17 for frequencies close to 400 Hz
and distances of about 400–450 km, and l ≅ 3.7 km is

π
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c2

-----------ar 
 

1
2
---

6l
Φ

---------
0.1

0 20

z, km

r, km

0
1.46

z, km

c, km/s

0.30

0.25

0.20

0.15

0.10

0.05

1.47 1.481.45

0 km

110 km

0.2

0.3

40 60 80 100

Fig. 5. Sound velocities as (a) functions of depth and (b) the bottom profile along path II.
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Fig. 6. Transverse correlation coefficient of explosion signals for different frequency bands used in the analysis.
the parameter obtained experimentally. With this rough
(±30%) and simplified estimate, the spatial correlation
radius determined from the decrease in the correlation
coefficient by a factor of e appears, at a distance of
100 km, shorter than the 2-km distance between the
hydrophones used in the experiment. With a decrease in
the path length (the frequency of sound being intact),
this radius increases and, for distances r ≅ 10–15 km, it
appears to be longer than the distance between the
hydrophones. Taking into account the approximate
nature of these theoretical estimates, one can see that
they do not contradict the experimental data given in
Fig. 6. Thus, the variations of the spatial correlation
radius with distance in different frequency bands can be
related to the effect of internal waves, whose character-
istics are worthy of measuring during the experiments.

On the basis of the results described above and the
analysis of the data obtained, we can make the follow-
ing conclusions.

For frequencies below 500 Hz, the vertical correla-
tion radius of sound fields in the Barents Sea increases
with the distance to the sound source and, presumably,
can be as large as 10 m. Such a behavior of the vertical
correlation radius with distance is primarily related to a
narrowing of the angular spectrum of arriving signals
that make the major contribution to the total sound field
intensity. This feature of the field structure is character-
istic of a shallow sea and is caused by the bottom and
surface reflections.

For frequencies below 300 Hz, the transverse (in the
horizontal plane) correlation radius of sound fields in
the region of experiment in the Barents Sea, under the
OUSTICAL PHYSICS      Vol. 50      No. 1      2004
condition that the source is located abeam of the receiv-
ing base, measures no less than 2 km and only slightly
depends on the distance to the sound source. For higher
frequencies (350–500 Hz), the correlation radius grad-
ually decreases with increasing distance beginning
from ~40 km. Such variations of the spatial correlation
may be caused by the effect of short-period internal
waves.
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Abstract—A phenomenological model of long-range reverberation in a shallow sea is developed to describe
the statistical characteristics and interference of the sound field scattered by bottom inhomogeneities. Experi-
mental data on the scattering of low-frequency sound by the sea bottom are presented for a shallow-water region
of the Barents Sea. The results of a numerical simulation of the low-frequency bottom reverberation in a mul-
timode waveguide are described. The simulation is based on experimentally measured values of backscattering
strength. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The phenomenon of the backscattering of sound by
the inhomogeneities of the ocean bottom had been the
subject of intense theoretical and experimental studies
for several decades. The urgency of these studies is
caused by both basic problems of sound propagation in
the ocean and the need to develop methods of remote
sensing of oceanic waveguides. The theoretical funda-
mentals of the backscattering of sound by the ocean
bottom (bottom reverberation) were initially developed
in [1, 2]. The results of these studies refer to the case of
relatively short waves and short paths, when ray consid-
erations are valid for describing the sound field. For
shallow-water waveguides at low frequencies, the ray
theory fails, and the mode theory of bottom reverbera-
tion should be used (see, e.g., [3–6]). However, the
authors of the cited papers restricted their consider-
ations to the intensity approach, in which the average
intensity of the scattered field is determined by the
incoherent (intensity) summation of normal waves.
With this approach, one actually neglects the stochastic
nature of the scattered field and the interference phe-
nomena caused by the propagation of both direct and
scattered waves. The role of these effects is especially
important in the comparative analysis of reverberation
signals received with the use of single omnidirectional
hydrophones (or sound sources) and with vertical
antenna arrays that cover the majority of the waveguide
and are tuned to receive (or to excite) individual normal
waves.

Experimental data on the sound scattering by the
bottom can be found, for example, in reviews [7–9].
They include the experimental dependences of the
backscattering coefficient (backscattering strength) on
1063-7710/04/5001- $26.00 © 20037
the frequency (f) and the grazing angle (θ) of the inci-
dent and scattered sound beams, for both deep and shal-
low regions of the ocean. However, the data presented
in the literature mainly apply to high frequencies (f ≥
500 Hz) and large grazing angles (θ ≥ 15°). This fact
hampers the use of the corresponding backscattering
strength values for estimating the intensity of long-
range low-frequency reverberation, because, in a shal-
low sea, such a reverberation is formed by sound beams
that are incident and reflected by the bottom at low
grazing angles.

This paper extends the results of [3–6]. A simple
phenomenological model of the bottom reverberation is
developed with allowance for the interference structure
of the random scattered sound field. The model is based
on the representation of the scattering surface of the sea
bottom in the form of a set of randomly distributed
independent point sources with given statistical distri-
butions of their strengths and sizes. An expression is
obtained for the scattering diagram of a bounded bot-
tom area. The scattered field is calculated by combining
the sound fields of all point sources with a subsequent
statistical averaging. The relation between the back-
scattering coefficient and the scattering diagram is
determined. An experimental technique is proposed for
estimating the backscattering coefficient at low fre-
quencies and small grazing angles. The results of its
application in a region of the Barents Sea are presented.
The results of a numerical simulation of the low-fre-
quency bottom reverberation in a multimode
waveguide are described. The simulation is based on
the experimental data on the backscattering strength.
The calculations are performed for the cases when the
transmission and reception are carried out with omnidi-
004 MAIK “Nauka/Interperiodica”
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rectional point source and receiver (multimode rever-
beration) and with linear vertical arrays matched to
excite and receive a single mode (single-mode rever-
beration).

MODEL OF THE BOTTOM 
REVERBERATION

Suppose that, at the carrier frequency f0, a narrow-
band pulsed signal is transmitted with acoustic power
W0, duration τ, and spectral bandwidth ∆f ! f0 , the
modulus of the signal spectrum being approximately
constant within this bandwidth. Let us introduce a
cylindrical coordinate system (r, z, ϕ) and consider an
ocean waveguide whose water layer is bounded by a
free surface from above, z ≥ zsur, and by the bottom from
below, z ≤ zb. We restrict our consideration to the cylin-
drically symmetric problem with density ρ(r, z) and
speed of sound c(r, z) being independent of the azimuth
angle ϕ.

As to the waveguide boundaries, we admit the fol-
lowing assumptions. The upper boundary is assumed to
be perfectly flat and smooth, zsur(r, ϕ) = 0, with no scat-
tering from it. Such an assumption is justified by the
fact that, in a shallow sea, the bottom reverberation is
often an order of magnitude higher than the surface
one. The lower boundary, zb(r, ϕ), is represented by a
multiscale relief, h(r, ϕ), superimposed on a large-scale
bottom roughness H(r): zb(r, ϕ) = H(r) + h(r, ϕ). We
assume that the characteristic length rc of spatial corre-
lation of the random field h(r, ϕ) is much smaller than
the characteristic scale of spatial variations of H(r) and
does not exceed 10 m. We also assume that the value of
h(r, ϕ) is small enough, so that the factor Vmµ =

dz that governs the interaction of

normal waves due to the roughness h(r, ϕ) obeys rela-
tion [10]

. (1)

Here, ψm(r, z) and ξm(r) are the eigenfunctions and
eigenvalues of the transverse Sturm–Liouville problem
with the boundary conditions at the bottom and surface
(ξm = qm + iγm/2). The aforementioned assumption
means that we neglect the transformation of modes in
the course of the sound propagation over the randomly
rough bottom; i.e., the forward-scattered sound field is
assumed to be negligibly small in comparison with the
coherent field propagating in the waveguide.

On the other hand, we assume that this random
roughness h(r, ϕ) is precisely the factor responsible for
the sound backscattering that determines the bottom
reverberation. However, low-frequency bottom back-
scattering is governed not only by the aforementioned
roughness but also by random inhomogeneities of the
upper sediment layer (see, e.g., [9]). For such inhomo-

ψµ r z,( )
∂ψm r z,( )

∂r
-----------------------

0

∞∫

Vmµ

ξm ξµ–
-------------------- ! 1
geneities, the assumption of their weak influence on the
sound propagation is also valid. Let us combine the ran-
dom roughness of the relief and the inhomogeneities of
the upper sediment layer by accepting the general term:
“sea-floor inhomogeneities.” These inhomogeneities
are assumed to be uniform and isotropic. Actually, the
backscattering of sound by such inhomogeneities is
accompanied by intermode transformations.

The scattering area is in the far-field zone relative to
the transmitting–receiving system [11]. The size of this
area is assumed to be sufficiently small for the changes
in attenuation of the incident waves to be neglected
within the area. At the same time, the area size must be
large enough to take into account the statistical proper-
ties of the scattering bottom. In particular, the accepted
assumptions mean that the approximation of single
backscattering is valid and this process has little effect
on the intensity of the forward-propagating sound field.

To simplify the subsequent calculations, we also
assume that the density ρ(r, z) of the water layer, the
sound speed c(r, z) in it, and the general bottom relief
H(r) smoothly vary with distance r, so that inequality
(1) is valid. Thus, we neglect the transformation of
modes in the sound propagation through the
waveguide.1

To begin, let us consider long-range reverberation
with a point source and a point receiver of sound. In this
case, the signals transmitted and received correspond to
all normal waves of the waveguide at hand (multimode
reverberation). Then, on the basis of the model devel-
oped, we will consider the situation when vertical trans-
mitting and receiving antenna arrays are tuned to excite
and receive a single normal wave (single-mode rever-
beration). In the latter case, the transmitting–receiving
system is supposed to lie on a single vertical line at the
origin of coordinates, r = 0.

A. Multimode Reverberation Regime

Assume that the sound source and the receiver are at
depths zs and zr, respectively. Neglecting the frequency
dispersion of modes within the band ∆f, represent the
complex amplitude of the sound field at a long horizon-
tal range r from the source as a sum of the discrete-
spectrum noninteracting modes at the carrier frequency
[10]:

(2)

1 The latter assumption is not crucial, and the theory presented here
can be developed for a waveguide with a mode interaction caused
by variations in the density, sound speed, and bottom relief.

ws r z,( ) wm r z,( ),
m 1=

M

∑=
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where

(3)

Here, ρs = ρ(0, zs) and cs = c(0, zs) are the water density
and sound speed at the depth zs and M is the number of
efficiently interacting propagating modes.

Let us consider an elementary scattering bottom
area located in the far-field zone at depth zb and distance
r from the source and assume that this area represents a
localized inhomogeneity with some directivity pattern.
Then, in the approximation of single backscattering,
the field scattered by this inhomogeneity has the fol-
lowing form [12] at the reception horizon zr:

(4)

where

(5)

Here,

(6)

is the excitation factor of the µth scattered mode and
Tµm(r, zb) is an element of the matrix of mode transfor-
mation (the scattering diagram of the bottom area); this
matrix describes the transformation of the forward-
propagating mth normal wave into the backward-travel-
ing µth normal wave. As a result, the problem consists
in determining the scattering diagram, which has the
dimensionality of length. Here and below, we use
Greek subscripts (µ, ν, …) to indicate normal waves of
the scattered field and Latin subscripts (m, n, …) to
indicate the modes of the initial (incident) field. In the
most general case, the scattering diagram Tµm can be
written as

(7)

Here, ζµm(r) is a stochastic process that describes the
relative fluctuations of the field scattered from mth to
µth modes, F(θµ, θm) is a deterministic function charac-
terizing the angular redistribution of the scattered field,
dSµm is the area of the elementary insonified surface
portion, θm is the grazing angle of the mode-producing
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8π
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∫ .exp

bµ r zb,( ) ψµ r zb,( ) Tµm r zb,( )wm r zb,( )
m 1=

M

∑=

Tµm r zb,( ) ζµm r( )F θµ θm,( ) dSµm.=
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(Brillouin) ray corresponding to the mth mode, and
cosθm = ξm(r)c(r, zb)/2πf0. The statistical properties of
the scattering diagram are symmetric with respect to
the mode number interchange: Tµm = Tmµ [13].

According to the assumption on the uniformity and
isotropy of the bottom roughness, the field ζµm(r) is also
uniform and isotropic. Because this field independently
characterizes the scattering of the sound wave by differ-
ent bottom areas, it can be represented as

(8)

where ϑµm and φµm are statistically independent, the
phase φµm is uniformly distributed in the interval (0, 2π)
(with the probability density function η(φµm) = 1/2π),
and the amplitude ϑµm obeys the Rayleigh distribution

(9)

Here,  = σµm,  = 2 , and the overbar
denotes averaging over the statistical ensemble of scat-
terers.

There is great variety [6] of the experimental angu-
lar dependences F(θµ, θm) of the backscattering strength
in shallow-water ocean regions, and this variety is
determined by the wave size of the bottom scatterers
and by the physical properties of the sediments. The
dependences that fit the majority of experimental data
are those of Lambert and Lommel–Zeeliger [7–9]. In
further considerations, we use the Lambert scattering
diagram corresponding to equal scattering strengths in
all directions, i.e., to the isotropy of scattering in the
vertical plane. The angular distribution of the scattered
field is given by the expression

(10)

In this case, the stochastic field of Eq. (8) does not
depend on the mode number: ζµm(r) = ϑ(r)exp[iφ(r)]
and σµm = σ = const. The first theoretical explanation of
this simple angular dependence of bottom scattering
was given in [14].

The insonified surface is an annular element with
area2

(11)

where ∆rac is the effective width of the ring, ∆rac =
cacτ/2 ! r, cac is some effective value of the sound
speed, and τ is the duration of the received pulse (or, for
complex signals, the duration of the correlation
response after its matched processing, which is applied
in the reception channel). Note that, because of the
intermode dispersion, the duration of the correlation

2 Strictly speaking, the area of the ring depends on the group veloc-
ities of normal waves [4, 5], but here we neglect this dependence.
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response is several seconds in the case of multimode
transmission and reception and can be much longer
than the duration of the emitted signal. It is essential
that this duration weakly depends on the distance r
between the sound source (receiver) and the scattering
area. This weak dependence is the consequence of two
concurrent effects that influence the response duration
in different ways [10]. First, as the distance grows, the
intermode dispersion causes an increase in the interval
between the pulses corresponding to individual normal
waves, which leads to an increase in the total effective
duration. Second, the highest modes decay because of
attenuation, and the number of the pulses correspond-
ing to intense normal waves decreases. To illustrate this
effect, the envelopes of the correlation responses are
presented in Fig. 1 for different distances. The signals
were recorded by one of the authors of this paper in a
shallow-water region of the Barents Sea. This experi-
ment was carried out to study the propagation of the
direct (without scattering) narrowband frequency-mod-
ulated pulses on a path between a spaced point source
and point receiver. The carrier frequency was 240 Hz.
Thus, in the low-frequency sensing of the ocean with
omnidirectional sources and receivers, the width ∆rac of
the ring was about 1 km. This value is comparable with
the period of interference-caused beats of the sound
field in the waveguide, D = 2π/|ξm, µ – ξn, ν|, and, in
accordance with our assumption, is much greater than
the length rc of spatial correlation: rc ! ∆rac ~ D.
Hence, in modeling the reverberation signals, one
should break down the insonified surface into individ-
ual rings (elementary areas) of small width rc, within
which incident and scattered sound fields are constant.
Let us denote the radius of such a ring as rβ and the
number of rings as B (B = ∆rac/rc, β = 1, 2, …, B, r –
∆rac/2 ≤ rβ ≤ r + ∆rac/2).

Using Eqs. (7)–(11), one can express the excitation
factor (6) of the mode scattered by the βth ring as

(12)

Then, according to Eqs. (4) and (5), the complex ampli-
tude of the scattered field at the reception point takes
the form

(13)

Thus, Eq. (13) explicitly describes the total sound field
scattered by the bottom inhomogeneities. With this
expression, one can easily obtain the well-known for-

bµ rβ zb,( ) 2πrβrcϑ rβ( ) iφ rβ( )[ ]exp=

× ψµ rβ zb,( ) θµsin θmsin wm rβ zb,( ).
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∑
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8π
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ξµ 0( )rβ

-------------------------------------------- i ξµ r'( ) r'd

0

rβ

∫ .exp
µ 1=

M

∑
β 1=

B

∑

mula [4, 5] for the averaged intensity Isc = |P(r)|2/ρrcr of
the sound field at the reception point:

(14)

Here and below, the angular brackets mean averag-
ing over a spatial interval that is greater than the period
D of the interference beats and, consequently, much
greater than the length rc of spatial correlation. In
Eq. (14), ρr = ρ(0, zr) and cr = c(0, zr) are the water den-
sity and the sound speed at depth zr.

B. Single-Mode Reverberation Regime

Let us now consider the reverberation in the case of
linear vertical arrays with signal transmission and
reception matched to a single normal wave, for
instance, the first one. This situation is especially inter-
esting in connection with the development of the mode
tomography in oceanic waveguides [15]. The technique
of tuning the arrays to emit (receive) individual normal
waves can be found in [16].

Suppose that the sources are at depths zj, j = 1, 2, …, J,
where J is the number of individual sound sources.
According to [16], we specify the particle velocity at
the surface of the jth source to be proportional to the
complex-conjugate eigenfunction (0, zj) of the first
mode. The associated emitted power is

(15)

where W0 is the total power emitted by the vertical array
with noninteracting array elements. From the normal-
ization condition  = W0, in view of Eq. (15),
the following expression for the proportionality factor
κj can be obtained:

(16)

Let us summarize the fields of the point sources.
Then, in view of Eqs. (15) and (16), the field par(r, z) of
the array at a large horizontal distance r can be
expressed as

(17)

Isc〈 〉
σ2ρscsW0τcac

4rρrcr
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M

∑
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M

∑=

×
ψµ 0 zr,( ) 2 ψµ r zb,( ) 2

ξµ 0( ) ξm r( )
----------------------------------------------------- ψm 0 zs,( ) 2

× ψm r zb,( ) 2 γµ r'( ) γm r'( )+[ ] r'd

0

r

∫–
 
 
 

.exp

ψ1*

W j κ j ψ1 0 z j,( ) 2W0,=

W jj 1=
J∑

κ j κ0 ψ1 0 z j,( ) 2
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J

∑
1–

.= =

par r z,( ) pm r z,( ),
m 1=

M

∑=
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Fig. 1. Signal envelope at the output of the correlation receiver: the distance from the source is (a) 1 m, (b) 23.5 km, (c) 31.1 km,
and (d) 39.6 km.

0.2

0 5

(d)

Time, s

0.4

0.6

0.8

1.0

10 15 20 25 30 35 40

0.2

(c)

0.4

0.6

0.8

1.0

0

0.2

(b)

0.4

0.6

0.8

1.0

0

0.2

(a)

0.4

0.6

0.8

1.0

0

where

(18)

Here,

(19)
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is the excitation factor of the mth mode.
Suppose that the elements of the receiving array are

at depths zi, i = 1, 2, …, I, where I is the number of
reception channels. Let the transfer ratio of the ith
channel be qi = υi (0, zi). The quantity υi can be
found from the condition that the sum of the transfer
ratios over all channels equals unity:

(20)

ψ1*

υ i υ0 ψ1 0 zi,( )
i 1=

I

∑
1–

.= =
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With the approach accepted above, let us find the
scattered field at the output of each receiver of the array.
By combining these fields with the weighting factors qi

and using Eq. (20), the array response uar(r, zb) (the sig-
nal at the array output) can be written as

(21)

where

(22)

Note that, because of the orthogonality of the eigen-
functions [10], the weighting factor a1, Eq. (22), is
much greater than the factors of other modes if the
transmitting and receiving arrays are large enough to
cover the most part of the waveguide. Thus, the trans-
mission and reception of a single mode (the first one in
our case) take place. Accordingly, there is nearly no
increase in the duration of the sound pulse under the
effect of the intermode dispersion. In practice, the pulse
duration is limited by the frequency band of the sound
sources (τ ≅ 1/∆f) used in the acoustic sensing of the
medium. Usually, at low frequencies, the value of τ is
0.025–0.1 s, and the effective width of the ring is ∆rac ≅
20–70 m.

With the appropriate spatial averaging, one can
obtain the following expression for the mean intensity
of the scattered sound field received by the vertical

array:  = |uar(r, zb|2/ . As a result, we have

(23)

Here,  and  are the density and sound speed aver-
aged over the array aperture.

uar r zb,( )
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.exp
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C. Random Field ζµm(r) and the Bottom Backscattering 
Coefficient

To model the bottom reverberation determined by
Eqs. (13), (14), (21), and (23), one should establish the
relation between the statistical characteristics of the
field ζµm(r) and the backscattering coefficient g, which is
a common and measurable parameter characterizing the
sound scattering by the ocean bottom. Let us assume that
the transmission–reception regime corresponds to the
aforementioned multimode reverberation. The average
backscattering coefficient g is defined [7] as follows:

(24)

where Wsc is the power scattered by the bottom area ∆S
(11) given by Eq. (11) into a unit solid angle, Ii is the
intensity of the incident wave in the vicinity of the scat-
tering bottom area,  is the rms sound pressure of the

scattered field near the scattering area,  is the rms
sound pressure of the acoustic field incident on this
area, and r0 = 1 m. In the waveguide conditions of

sound propagation, we have  = , and,
according to Eq. (2), the mean value of the intensity Ii =
|ws(r, zb)|2/ρbcb has the form

(25)

where ρb = ρ(r, zb) and cb = c(r, zb). Considering the
insonified bottom area as the sound source, we can rep-
resent the average intensity of the scattered field at the
reception point as

(26)

By comparing Eqs. (14) and (26), we obtain
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The substitution of Eqs. (11), (25), and (27) into Eq. (24) leads to the desired relation between the quantities σ and 〈g〉:

(28)σ2 4π g〈 〉
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To obtain the backscattering coefficient at low fre-
quencies (f ≅ 200 Hz), several experiments were per-
formed in a shallow-water region of the Barents Sea.
With the omnidirectional sound source and receiver
positioned on a drifting vessel, the bottom-scattered
signals that arrived from distances of about r ≅ 10 km
were recorded (r ≅ cact/2, where t is the time elapsed
from the beginning of transmission to the moment of
reception of the scattered signals). The duration of the
pulses was τ = 3 s. The average backscattering coeffi-
cient was estimated as

(29)

where  is the backscattering strength,  is the rms
pressure of the scattered sound field at the reception
point, and  is the rms pressure of the emitted field at
a distance of 1 m from the source. The second sum-
mand on the right-hand side of Eq. (29) is the doubled
propagation loss in the waveguide at a distance r. The
loss was measured separately, with the use of two ves-
sels. From one of them, a pilot hydrophone was
deployed to a depth close to the depth of the waveguide.
The second vessel, which went off the first one, towed
a calibrated sound source. The measurements of the
propagation loss were repeated several times along dif-
ferent directions. The data obtained were subsequently
averaged.

The experimental data on the backscattering

strength (r), Eq. (29), are presented in Fig. 2 for three
pulsed transmissions. In spite of averaging over a dis-
tance exceeding the period of interference beats, a
small difference can be seen in the curves correspond-
ing to different pulses. This difference is caused by the
vessel drift. The scattering bottom areas changed from
pulse to pulse, and averaging incompletely smoothed
out the variations of the reverberation signals. Averag-
ing over all pulses and directions showed that the scat-

tering strength was  = 37–47 dB for the regions of
experiments in the Barents Sea. The confidence interval
was no higher than 4 dB for a given sea region.

The estimate obtained the backscattering coefficient
is a mean value corresponding to small grazing angles
of the incident and scattered sound waves. In the shal-
low-water regions at hand, for the first ten most intense

S̃ 10 g〈 〉log≡ = 20
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P0

---------log 40
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-----log– 10
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r0
2

-------,log–

S̃ Psc0

P0

S̃

S̃
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modes, the calculations yielded values of 3°–16° for the
grazing angles θm of the mode-forming rays. It is worth
mentioning that the backscattering coefficient deter-
mined by the aforementioned technique in a waveguide
proves to depend on the distance r. In fact, as the dis-
tance increases, the number of most intense modes
decreases, and, hence, the effective grazing angle also
decreases. At the same time, it is well known [9] that
the backscattering coefficient does depend on this
angle. For typical propagation conditions of shallow
seas, the numerical calculations based on Eq. (28) show
that the value of 〈g〉  noticeably changes at distances of
about several tens of kilometers.

NUMERICAL SIMULATION OF BOTTOM 
SCATTERING

Figure 3 shows the reverberation signals calculated
according to Eqs. (13) (multimode regime) and (21)
(single-mode regime). The letters in the plots denote
different realizations of the scattered field, that is, dif-
ferent scattering areas with different values of ζµm(r).

The smooth curves indicate the levels Psc = 

and  =  of the reverberation signals calcu-
lated by Eqs. (14) and (23). In the simulation, we chose
a regular waveguide with depth zb = 120 m and the
sound speed profile c(z) presented in Fig. 4. The follow-

ρrcr Isc〈 〉

Psc
ar ρc Isc

ar〈 〉
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Fig. 2. Range dependence of the backscattering strength.
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correspond to a point sound source and a point receiver, and the solid lines to vertical transmitting and receiving arrays. The abscissa
represents the distance from the source (receiver) to the scattering area.
ing parameters of the homogeneous fluid bottom were
specified: the sound speed c1 = 1750 m/s, the density
ρ1 = 1.9 g/cm3, and the absorption coefficient α = 0.01
[11]. The correlation length of the bottom inhomogene-
ities was rc = 10 m. The carrier frequency of the signals
was f0 = 230 Hz, with the bandwidth ∆f = 10 Hz. The
power of emitted signals was W0 = 2 kW, and the back-

scattering strength was  = 37 dB (for the distance
10 km from the scattering area). In miltimode calcula-
tions, the point sound source and the point receiver

S̃
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were placed at the bottom with zs = zr = 120 m. In sin-
gle-mode calculations, the transmitting and receiving
arrays were assumed to coincide in space. The array
length was 87 m. The arrays consisted of 30 equidistant
elements each, with the lowest elements positioned at
the bottom.

The data presented show that the reverberation sig-
nals change considerably when the pulsed transmis-
sions vary. However, in general, the single-mode array
response to the scattered signals is much lower that to
the signal received by a single receiver in the multi-
mode regime. It is worth mentioning that the difference
in the mean levels decreases as the distance to the scat-
tering area increases. This fact can be attributed to the
decrease in the number of the intense normal waves that
govern the multimode reverberation.

CONCLUSION

Thus, a model of the bottom reverberation in shal-
low-water ocean regions is developed in the adiabatic
approximation. The model describes the statistical
characteristics and the interference of the scattered
sound field on the basis of the measured values of the
bottom backscattering coefficient. The experimental
data on the backscattering strength in the waveguide
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Fig. 4. Vertical sound speed profile.
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propagation conditions are presented. A numerical sim-
ulation of the low-frequency bottom reverberation is
carried out for the case of a monostatic monitoring lay-
out. The difference in the long-range reverberation sig-
nals is estimated for the cases of transmission and
reception by omnidirectional sources and receivers and
by long vertical arrays matched to excitation and recep-
tion of the first normal wave.
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Abstract—Scattering of high-frequency transverse and longitudinal plane waves incident on a spherical cavity
located at a small depth under the surface of a half-space is considered. The cavity oscillates as a whole in the
field of a low-frequency Rayleigh surface wave, the oscillation vectors of the longitudinal, transverse, and sur-
face waves being coplanar. The cavity radius is assumed to be small compared to the wavelengths of the sound-
ing wave and the pumping surface wave. The scattered compression and shear waves at the combination fre-
quencies ω ± Ω are calculated in the dipole approximation. Expressions obtained describe the qualitative behav-
ior of the combination-frequency signal levels produced at the outputs of horizontally and vertically oriented
geophones moving over the free surface of the elastic half-space. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

This paper presents the results of calculating the
characteristics of elastic waves generated at combina-
tion frequencies due to the parametric scattering of lon-
gitudinal (first version) or transverse (second version)
waves (P or SV waves) incident on a hollow spherical
cavity at a certain depth under the free surface of an
elastic half-space (Fig. 1). The elastic half-space, in its
turn, is excited by an intense low-frequency vibrator,
which generates a pumping Rayleigh surface wave at a
low frequency Ω . The latter wave travels near the sur-
face and causes the cavity to oscillate as a whole. In
addition, a high-frequency vibrator positioned on the
surface of the half-space produces a directional beam of
plane longitudinal waves at frequency ω. The beam is
incident on the spherical cavity, which represents a
small inhomogeneity for the bulk waves; i.e., its linear
dimension is noticeably smaller than the shortest wave-
length of the high-frequency transverse wave, so that
the inequalities 2πcR/Ω @ 2πcl, t/ω @ a are valid under
the conditions of the problem. Another configuration
considered in this paper is with a high-frequency vibra-
tor placed at a certain depth under the surface, such that
it produces a directional sounding beam of plane trans-
verse waves at a frequency ω, which covers the depth of
the inhomogeneity. Both the above statements of the
problem are of interest for estimating the parameters of
the desired signals when they are received in the pres-
ence of signals caused by the linear scattering from
inhomogeneities located, for example, at a small depth
under the earth’s surface. The desired signals are the
signals at combination frequencies associated with the
parametric scattering from the oscillating inhomogene-
1063-7710/04/5001- $26.00 © 20046
ity. On the whole, this analysis is performed to predict
the possibility of solving various problems of nonde-
structive testing and monitoring of media and structural
units, nondestructive testing of machines, and medical
diagnostics [1]. Note, for example, a similar effect of
combination scattering of high-frequency acoustic
waves, which produces Doppler shifted frequency
components that can be used to check a liquid jet for the
presence of gas bubbles and to estimate their properties
[2]. This class of problems also includes such applied
geophysical problems as sounding of shallow engineer-
ing structures, which is the main area of application of
the approach developed in this paper. At present, exper-
iments on the seismic sounding of inhomogeneities in
the ground are performed in a variety of configurations
[3, 4]. However, the application of the parametric scat-

Surface wave (Ω) Primary P wave (ω)

Scattered
P and SV waves
(ω ±  Ω)

Primary
SV wave
(ω)

h

a

l z

θ

x

Fig. 1. Schematic diagram of the parametric scattering of
high-frequency elastic waves from an inhomogeneity.
004 MAIK “Nauka/Interperiodica”
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tering of plane waves for these purposes requires spe-
cial consideration.

THEORY AND ESTIMATES

Let a low-frequency Rayleigh surface wave travel in
the positive x direction along the boundary z = 0. The
wave is described by two displacement components
(the exp(–iΩt) factor is omitted) [5]:

(1)

(2)

where cR, cl, and ct are the velocities of the Rayleigh
wave, the longitudinal bulk wave, and the transverse
bulk wave, respectively, and kR = Ω/cR.

We assume that the hollow cavity oscillates exactly
as does its center corresponding to a certain point of the
medium, which in turn oscillates in the Rayleigh wave
unperturbed by the inhomogeneity. The main condition
for this situation to take place is the inequality a ! h ≈
λR; i.e., the wavelength of the surface wave must be
approximately equal to the depth of the inhomogeneity
and much greater than the radius of the cavity [5].

Consider the first version of the problem. It assumes
that the inhomogeneity oscillates in the field of the pri-
mary high-frequency longitudinal wave produced by a
piston vibrating at the surface. The oscillating inhomo-
geneity creates an alternating dipole moment, which is
equivalent to the alternating force that acts on the
medium at the high frequency ω [6], these oscillations
being phase modulated by the oscillations at the low
frequency Ω . The vertical Rayleigh wave component
creates an alternating phase delay, so that the dipole
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strength can be written as

(3)

where z0 is the unit vector of the vertical axis,  is
the z component of the high-frequency plane compres-
sion wave in the region occupied by the inhomogeneity

and covered by the directional beam, and (h) is
the z component of the low-frequency surface Rayleigh
wave given by formula (2) at z = h.

The expression for F assumes that the inequality

 @  holds and the cavity is hollow, which allows
us to write it in form (3) without any significant loss of
generality. This formula with the periodic function in
the exponent can be expanded in the series in terms of
harmonics of frequency Ω [7]:

with the Bessel functions as the coefficients. Truncating
the series beyond its first term under the condition

(ω/cl)  ! 1 and replacing the function

2J1((ω/cl) ) with its argument yields the formula
for the first Stokes and anti-Stokes harmonics of the
dipole moment:

(4)

For all subsequent terms Fnz, n = 2, 3…, a similar for-
mula is valid. The combination-frequency waves,
P(ω ± Ω) and S(ω ± Ω), scattered by the oscillating
inhomogeneity can easily be calculated using expres-
sion (4) for the dipole strength as secondary fields pro-
duced by the dipole moment.

Finally, the vertical and horizontal components of
the seismic signals received by geophones on the
earth’s surface can be calculated, which is of practical
interest. For simplicity, the field is calculated below
only on the x axis, which lies in the same vertical plane
as the inhomogeneity (Fig. 1). To reflect the real situa-
tion, it will be necessary to allow for the attenuation of
the primary sounding wave incident on the inhomoge-
neity and the attenuation of the scattered waves at the
combination frequencies within the distance from the
scatterer to the geophones on the earth’s surface. In

F z04πρct
2auz

P ω( )≅

× iωt– i
ω
cl

----Uz
R Ω( ) h( ) Ωt( )cos– 

  ,exp

uz
P ω( )

Uz
R Ω( )

cl
2 ct

2

i ω/cl( )Uz
R Ω( ) Ωt( )cos–( )exp J0 ω/cl( )Uz

R Ω( )( )=

+ 2 1–( )nJ2n ω/cl( )Uz
R Ω( )( ) 2nΩtcos

1

∞

∑

– 2i 1–( )nJ2n 1+ ω/cl( )Uz
R Ω( )( ) 2n 1+( )cos Ωt,

0

∞

∑

Uz
R Ω( )

Uz
R Ω( )

F1z 2πρct
2a

ω
cl

----uz
P ω( )Uz

R Ω( ) h( )=

× i ω Ω+( )t– i ω Ω–( )t–exp+exp( ).



48 ZASLAVSKIŒ
addition, the scattered longitudinal and transverse
waves will be transformed into one another at the
reflection from the free surface. This effect should also
be taken into account in the estimates of the resultant
seismic response recorded by the geophones.

The longitudinal r component of the compression
wave received at an arbitrary distance r from the source
is given by the expression

(5)

where θ is the polar angle measured relative to the
dipole axis (z axis) and Θl is the damping decrement of
the longitudinal waves in the ground [8].

A similar formula describes the transverse θ compo-
nent of the shear wave excited by this source at the
same distance:

(6)

where Θt is the damping decrement of the transverse
wave in the ground.

In formulas (5) and (6), we should use Eq. (4) for the
dipole strength with an allowance for the loss due to the
attenuation of the sounding wave on its path from the
high-frequency source placed at the surface to the inho-
mogeneity located at depth h. The mutual P  S
wave transformation on the free surface can be taken
into account by the assumption that the waves are
locally planed, so that the well-know formulas [9] for
acoustic waves scattered by a planar solid body–free
space interface can be used.

The longitudinal and transverse waves scattered
from the oscillating sphere at the combination frequen-
cies can be represented as
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where  is the amplitude of the sounding wave in
the immediate vicinity of the vibrating piston. Below,
we use the relationship 
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of the scattered waves:
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(13)

(14)

(15)

Figure 2 shows the amplitudes of the ω ± Ω spectral
components at the outputs of both geophones versus
their position on a 10λR-long portion of the axis for dif-
ferent inhomogeneity depths ωh/ct = (a) 4, (b) 8, (c) 12,
(d) 16, and (e) 20. The curves were calculated with the
parameters cl/ct = 1.73, Θl = 0.03, Θt = 0.06, and ω/Ω =
10 using the Mathcad 2001 software package. It can
easily be seen that the typical maximum of the curves
representing the level of the seismic response versus the
distance to the inhomogeneity epicenter moves right-
wards with increasing inhomogeneity depth, the behav-
ior being somewhat different for the x and z geophones,
which should be taken into account in realizing the non-
destructive testing technique or in monitoring real
media. When the parameters, such as both frequencies
ω and Ω and both propagation velocities cl and ct, are
known, the inhomogeneity depth h can be determined
from the position of the maximum and from other typ-
ical features of the plots.

In the second version of the problem, the sounding
field is a high-frequency beam of transverse plane
waves launched along the free earth’s surface (see
Fig. 1). This situation is analyzed in a similar way with
the natural assumption that the source has the form of a
vertically oriented piston inserted into the medium, it
vibrates tangentially to the working surface and is at a
certain distance l from the center of the hollow spheri-
cal cavity, which lies at depth h under the free bound-
ary. Unlike the first version, this configuration uses the
z component of the high-frequency shear wave and the
x component of the low-frequency Rayleigh wave to
produce a phase modulation of the sounding shear
wave. Here, the dipole strength is given by a similar for-
mula:
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where (h) is the x component of the Rayleigh
wave at z = h (see Eq. (1)), and the amplitudes of the
first combination (Stokes’s and anti-Stokes’s) harmon-
ics are

(17)

In this case, the scattered longitudinal and trans-
verse combination waves are represented by expres-
sions similar to Eqs. (7) and (8):

(18)

(19)

Now, we use the same relationships (9) and (10)

with expressions (18) and (19) for (ω ± Ω) and

(ω ± Ω) substituted into them to evaluate the
response to the total seismic signal at the outputs of the
horizontally and vertically (x, z) oriented geophones,
i.e., Ux and Uz. Similar calculations of the ω ± Ω spec-
tral component at the outputs of both geophones at l = h
for the same parameters as in the previous case have
shown that, as the inhomogeneity goes deeper under the
surface, a minimum of the signal level is observed at
depth hΩ/cR = 1.2, because the x component of the low-
frequency surface wave passes through zero at this
depth (h ≈ 0.2λR). This minimum is illustrated in Fig. 3.
In the previous sounding configuration, the signal level
decreased with increasing inhomogeneity depth in a
more monotonic manner. This behavior can serve as an
additional indication of the presence of the inhomoge-
neity and as a measure of its depth. However, the signal
amplitudes observed in this sounding scheme are an
order of magnitude lower than those in the first sound-
ing configuration. Therefore, the second scheme may
apparently be regarded as an additional refining option.

Finally, note that the estimates of the signals scat-
tered by the inhomogeneity in a linear way and of those
scattered parametrically show that the first ones are
ωUR(Ω)/cl, t times greater, which amounts to 70–80 dB
for soft ground (cl ~ 300 m/s, ct ~ 170 m/s, UR(Ω) ~
10 µm, ω ~ 2π300 s–1, and Ω ~ 2π(20 to 30) s–1), and is
even greater for rigid ground, because the surface wave
amplitude in it is much lower under the action of the
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phones versus the distance along the x axis for the first sounding scheme at h = (a) 0.2λR/π, (b) 0.4λR/π, (c) 0.6λR/π, (d) 0.8λR/π,
and (e) λR/π.
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same pumping source. This estimate shows how high
should be the sensitivity of a system to provide the
reception of parametrically scattered elastic waves
under even the most favorable geophysical conditions.
It is also important to note that the case considered, in
which the inhomogeneity has the form of a small hol-
low spherical cavity, is the most simple for calculations
and analysis from the viewpoint of the method used. It
can however be assumed that, if the experimental con-
ditions only slightly go beyond the above limitations or
the cavity is filled with a material that slightly differs in
its density and rigidity from the surrounding medium,
the expected level of the parametrically scattered signal
will only slightly deviate quantitatively from the above
result towards, presumably, lower values. This observa-
tion shows that the possibilities and the area of applica-
tion of the approach used in this study are fairly wide.
As for the practical side of the problem, it should be
noted that it is the parametric scattering that can be
regarded as an efficient countermeasure against sound-
ing interferences due to the backscatter of the primary
wave from numerous interfaces in the subsurface lay-
ered structure in the upper part of the section, because
the oscillations of interfaces in the field of the surface
wave noticeably differ from the oscillations of local
inhomogeneities.

CONCLUSIONS
A qualitative analysis of the parametric scattering of

high-frequency longitudinal and transverse waves from
ACOUSTICAL PHYSICS      Vol. 50      No. 1      2004
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a spherical cavity of small wave dimensions, which lies
at a small depth under the earth’s surface and oscillates
under the action of a low-frequency Rayleigh surface
wave, is performed. Formulas for estimating the level
and the angular distribution of the parametrically scat-
tered compression and shear waves at combination fre-
quencies are obtained. Theoretical results are presented
in the form of plots for a number of depths at a given
pumping frequency. They can however be referred to a
number of pumping frequencies at a given inhomoge-
neity depth. In applications, the second representation
is more important. Note that variations in the pumping
frequency can be incorporated into particular tech-
niques and algorithms implemented in the reconnais-
sance systems. It is shown that the extraction and anal-
ysis of seismic signals at the combination frequencies
produced by the parametric scattering of waves can
basically be used to detect small cavities in the ground
and to determine their depth. A practical system must
use the data collected by vertically and horizontally ori-
ented geophones changing their positions on the sur-
face in a discrete manner. The recording equipment
must be sensitive enough to extract signals 70 to 80 dB
lower than the signals produced by the linear acoustic
scattering from small inhomogeneities.
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Abstract—A method is proposed for obtaining images through a layer of an inhomogeneous medium by using
an antenna array scanning in angle or space. The method is based on the wave front inversion, which allows one
to form an undisturbed sound field on the object of location in an inhomogeneous medium. This property makes
it possible to suppress the effect of the thin inhomogeneous layer on the signals observed at the array output.
The technique consists in a mutual processing of two received signals, one of which is obtained by locating the
objects through the inhomogeneous medium and the other is obtained by locating the same objects, in the same
medium, by the front-inverted wave. The mutual processing procedure consists in using the first received signal
to form a filter for the second signal. The method is tested by a numerical simulation. © 2004 MAIK
“Nauka/Interperiodica”.
Many media in which electromagnetic waves do not
propagate at all or produce no reflections from the
objects to be detected prove to be transparent for sound
waves. However, a drawback of the latter consists in
that, when propagating in these media, they are often
subject to strong disturbances, which cause consider-
able problems in obtaining high-quality images. Meth-
ods for obtaining images of scattering objects in the
presence of inhomogeneities considerably distorting
the wave fields were proposed in a number of recent
publications [1–3]. Method considered in [1] is based
on the separation of the fluctuations of radiation
(instead of their usual suppression) for the visualization
of acoustic objects moving under a layer of inhomoge-
neities. Method considered in [2] determines the coor-
dinates of point scatterers by means of analyzing the
radiation produced by a chain of sources and received
by a chain of receivers. To eliminate the effect of inho-
mogeneities on the result of observation, a time reversal
of waves is used. The latter technique is described in
detail in a review [3]. As shown in this review by many
examples, the method of wave front inversion provides
good images of acoustic objects in bad media. How-
ever, in all the numerous cases considered in [3], good
images are obtained by scanning the sound field in
close vicinity of the object of interest. Such a technique
can serve to illustrate the advantages of applying the
WFI method in acoustics but cannot be used to obtain
an image in practice without inserting the probe into the
medium to be studied.

The objective of the present study is to show that it
is possible to obtain a good WFI image through a thin
layer of strong inhomogeneities by appropriately pro-
cessing the disturbed signals. The proposed method of
1063-7710/04/5001- $26.00 © 20052
imaging is based on the following idea. The distortions
produced by the inhomogeneities of the medium in the
signal propagating through it are precisely the same
when one observes the array response through the given
inhomogeneous layer by sending an ordinary probing
signal and by sending a WFI signal from the same
array. However, the signals received after sending the
ordinary probing signal and the WFI signal will have
different intensity distributions. The difference is
caused by the fact that, in advance (before being
reflected by the object), the WFI signal reproduces the
spatial intensity distribution which the ordinary signal
acquires after its reflection by the object. As a result, we
have two relations. The first relates the distorted signal
to that of interest in the ordinary location process. The
second relates the distorted signal obtained in the WFI
process to the corresponding image. There is one more
relation between these images. One of them, which cor-
responds to a thin inhomogeneous layer close to the
array, is the square of the other. The aforementioned
relations are independent and, in principle, can serve to
find both unknown quantities, one of which is the
undisturbed signal of interest in the vicinity of the
object to be detected.

Below, the problem stated is solved in application to
a linear antenna array with scanning in angle and space.
The array can be placed both in the far-field zone rela-
tive to the object of interest and in the near-field zone (a
focused array). The problem is not solved completely.
The solution found yields the distribution of the objects
in the coordinates of scanning; these coordinates are
measured with respect to their values corresponding to
the strongest object. The coordinates of this object
remain unknown. The solution consists in that, based
004 MAIK “Nauka/Interperiodica”
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on the first disturbed signal, a filter is formed for the
second signal.

The sound field received by the array in an inhomo-
geneous medium is modulated by a certain function
E(x) and can be represented as

(1)

where x is the coordinate along the linear array and A(x)
is the sound field along the same line in the absence of
inhomogeneities. The inhomogeneous layer is assumed
to be sufficiently thin and to be located so close to the
array that the quantity E(x) does not depend on the
angle at which the wave arrives at the array. Suppose
that there is only one strong signal at the array input,
while other signals are much weaker. Then, we can
write

(2)

where A0(x) is the strong signal and m(x) is the weak
one (it is sufficient to consider one such signal). Let us
normalize Eq. (2) by factoring out the quantity A0(x):

(3)

Relations (1), (2), and (3) are also valid for the sig-
nal received by the array in response to the probing
WFI signal. In the corresponding relations for the
reception of the WFI wave, the function E(x) will be the
same as in Eq. (1) but the function A(x) will be differ-
ent. This occurs because the WFI wave insonifies the
objects with amplitudes proportional to those of the
scattered signals. As a result, the amplitudes of the
inverse wave will be multiplied by themselves. The
relations between the signals will change: the strong
signal will become stronger and the weak signal will
become weaker. To make considerations simpler, let us
assume that, in the inverted wave, all signals but the
strongest one can be neglected. In fact, for this assump-
tion to be true, a number of sendings and receptions of
the iterations of the inverted signals can be required [3].
In view of these considerations, one can write the fol-
lowing relation for the received WFI signal:

(4)

From the comparison of Eqs. (4) and (3), the follow-
ing algorithm of signal processing can be proposed to
suppress the effect of the inhomogeneous layer: Eq. (3)
should be divided by Eq. (4). The result is as follows:

(5)

To obtain the images of the objects, it is sufficient to
process the function P(x) determined by Eq. (5) by
applying the same algorithm as for the “pure” signal
taken from the array aperture [4]. According to Eq. (5),
the signal images will be normalized to the strong sig-
nal as a reference one. The information on the position
of the signal A0(x) itself will be lost. The advantage of
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the proposed procedure (and the reason for accepting it)
is that, by processing the signals in this way, one can
fully eliminate the mutiplicative noise E(x).

Thus, the mutual processing procedure for the sig-
nals received by the array hydrophones is reduced to
obtaining their ratios. One can guess that here we deal
with a nonlinear signal processing. To establish what
kind of signal processing is actually used, let us apply
the spectral approach to solving the same problem.

It is known (see, for example, [4]) that the signals at
the input and output of the array with scanning in angle
are related to each other by the convolution procedure:

(6)

Here, p(ξ) is the signal at the array input, k = , λ is

the wavelength, r is the distance, α is the angle of scan-
ning, and H(ξ, α) is the array directivity pattern [4].

In a spectral form, Eq. (6) can be represented as

(7)

where Gz is the Fourier spectrum of the function z (z is

an arbitrary function) and u =  is the spatial fre-

quency.
The function GH(u) coincides with the function E(x)

introduced by Eq. (1); it describes the distortions of the
sound field at the array (see, e.g., [4]). This function
characterizes the effect of the inhomogeneous layer
through which the wave propagates.

Both aforementioned relations between the input
and output signals have the form of Eq. (7) for the spe-
cific case of angle-scanning arrays. In these relations,
the same functions GH(u) appear that describe the
medium of wave propagation. The distortions will van-
ish if the functions GW(u), one of which is obtained by
a simple location procedure and the other by the WFI,
are divided by each other. This division yields the fol-
lowing ratio of the spectra Gk(u):

(8)

where G0(u) is the spatial spectrum of the signal
observed at the array output when locating the object
with the WFI wave.

To clear up the result of applying Eq. (8), let us fol-
low the approach described in [5]. The spectra Gp(u)
and G0(u) take the forms

(9)

(10)
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By neglecting the term with  in comparison with

unity, from Eq. (8) in view of Eqs. (9) and (10), we
obtain the same result as that given by Eq. (5).

The aforementioned procedure of dividing the spec-
tra can be treated as a linear filtration, in which the first
signal is used to form the linear filter for the second
one. The examples of such a filtration are presented in
[6–9].

The solution of the problem can be illustrated by
numerical modeling according to [4]. Suppose that two
reflectors exist in the medium and their reflectivities
differ by 10 dB from each other. By insonifying these
reflectors with a wave produced by a relatively distant
sound source, we obtain two spherical waves. Let us
assume that the insonification is monochromatic.

With an array located in the far-field zone relative to
the reflectors [4], we obtain the array response in the
homogeneous medium. Figure 1 shows the absolute
value of such a response. In the same figure, the abso-
lute value of the response of the same array is presented
for the medium in which a layer with random inhomo-
geneities of the refractive index exists. With such inho-
mogeneities, no traces of the initial response can be
noticed. The inhomogeneities of the refractive index
were modeled by using a generator of random
sequences. Such a pseudorandom sequence was intro-
duced into the exponent of the imaginary argument [10].

Now, let us perform the inversion of the wave front.
This is done by sending the complex-conjugated array

m2

A0
2

------

Sound level, dB

–40

–50

–30

–20

–10

0
(‡)

–40

–50
–400

Angular coordinate, units of sampling
–200 0 200 400

–30

–20

–10

0
(b)

Fig. 1. Images obtained with the array in the (a) absence and
(b) presence of the inhomogeneous layer.
response disturbed by the layer into the medium. In the
medium, the undisturbed wave field will exist. The
magnitude of this field is shown in Fig. 2 (fortunately,
the numerical methods allow one to obtain such infor-
mation).

As results of the ordinary location and the location
with the WFI wave, we obtain the medium-disturbed
wave fields at the array receivers. The real part of one
of these fields and their difference are shown in Fig. 3.
The non-zero difference of the fields is caused by the
aforementioned nonuniformity of the angular intensity
distribution in the inverted probing wave.

The result of mutual processing of the two reflected
signals (ordinary and WFI ones) is illustrated by Fig. 4.
The image obtained is actually free from the effect of
inhomogeneities, yields the true ratio of the amplitudes
corresponding to the objects, and correctly character-
izes their relative positions. The response to the stron-
gest object corresponds to the initial angle.

In the numerical modeling, Eqs. (4), (5) and (8)
were not simplified. In the wave field received by the
array with the WFI probing signal, all terms were
retained. This fact does not manifest itself in Fig. 4,

–40

–50
–400

Angular coordinate, units of sampling
–200 0 200 400

–30

–20

–10

0
Sound level, dB

Fig. 2. The WFI result in the medium.

0

0 20

Real part of the field

Coordinate along the array aperture

0.05

–0.05
40 60

Fig. 3. Real part of the sound field at the array aperture with
the ordinary location method (thin curve) and the difference
in the real parts of the fields at the aperture with the ordinary
and WFI location (thick curve).
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–400

Angular coordinate, units of sampling
–200 0 200 400

Sound level, dB

0
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Fig. 4. Result of mutual processing of the signals of ordi-
nary and WFI location.
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–400

Angular coordinate, units of sampling
–200 0 200 400

Sound level, dB
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–40
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–20

Fig. 5. Result of mutual processing of the signals of ordi-
nary and WFI location with the strongest signal filtered out.
–10 0 10

(d)

40 50 60
0
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20

30

(c)

(b)

0

10

20

30

(a)

Fig. 6. Results of the location with a focused array. The vertical and horizontal coordinates are the distance and the azimuth, respec-
tively. Images (a) and (b) correspond to the homogeneous medium. Images (c) and (d) correspond to locating through the inhomo-
geneous layer. Images (a) and (c) are obtained by the ordinary location method. Images (b) and (d) are obtained by mutual process-
ing of the signals of ordinary and WFI location.
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because the side lobes of the strong signal mask the
additional signals obtained from the processing proce-
dure. To make visible all additional terms of the image,
the signal shown in Fig. 4 was additionally processed.
The processing procedure consisted in eliminating the
strongest signal with the use of the dark-field method
[6, 11]. This method of filtering allows one to filter out
a narrowband signal along with its side lobes. The
result is shown in Fig. 5. Here, additional low-level
images can be noticed at some distance from the main
image. The additional images occur because the WFI
result does not include just the strongest signal. Further
iterations with the WFI signal can lead to smaller dis-
tortions of this kind. Thus, in our case, the additional
signals of Fig. 5 will not manifest themselves, if one
uses the signal of the next iteration rather than that of
the initial one in the processing procedure. To make the
additional signals noticeable, one should filter out the
strongest signal remaining in Fig. 5 with the use of the
dark-field method. The presence of additional signals
as a result of filtering indicates that the procedure used
is not purely linear and can be treated as approximately
linear, to an accuracy within the additional signals.

A focused array can be considered in the same way.
Equations (1)–(5) are also valid for such an array. The
only difference is that the final processing procedure
for the function P(x) of Eq. (5) should include the Fou-
rier–Fresnel transform with a parameter that depends
on the distance to the object. Figure 6 shows the results
of numerical modeling for the focused array. The sum
of three signals was modeled:

(11)

where the numbers enclosed in parentheses and sepa-
rated by semicolons denote the amplitude, azimuth, and
range, respectively. The amplitude is presented in arbi-
trary units, and the coordinates are measured in the
units of sampling. Two upper images of Fig. 6 are
obtained in the absence of the inhomogeneous layer.
Figure 6a corresponds to the ordinary location proce-
dure. Figure 6b illustrates the mutual processing proce-
dure according to Eq. (5), with the subsequent Fourier–
Fresnel transformation. The lower images of Fig. 6 are
obtained with the inhomogeneous layer.

The figures show that the images obtained by using
the proposed technique of processing two received sig-
nals are the same for the cases of free space and an
inhomogeneous layer. At the same time, this layer
strongly distorts the signals obtained in ordinary loca-
tion.

The illustration presented is obtained by using com-
puter code similar to that proposed in [6], which, in
turn, is based on [10]. The code used for obtaining the
results of Fig. 6 differs from its original version in that
our random signal modulating the sound field at the
array has an extremely broad band of spatial frequen-

S S1 1; 50; 16( ) S2 0.3; 70; 22( )+=

+ S3 0.25; 30; 14( ),
cies. Therefore, the filtering algorithm used in [10] can-
not suppress the noise, and the WFI method should be
used to extract the signal from the noise background.

In conclusion, let us consider some conditions for
the proposed method of imaging through the inhomo-
geneous layer to be feasible. The layer should be sta-
tionary and should not change its properties within the
time of location and all subsequent iterations with the
WFI sendings. Also, the layer should be sufficiently
thin for Eq. (1) to adequately describe all distortions
produced by it. The objects of location should be point
objects for the frequencies and scattering angles used in
the location procedure. The latter condition should be
met for the object to reradiate a spherical wave inde-
pendently of the form of the insonifying field. Other-
wise, the consideration significantly thickens. For the
first probing signal, it is advantageous to use the field
emitted by a single array element rather than by the
entire array [3] for the maximal smoothing of the spa-
tial structure of the insonifying field.
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Abstract—The three-dimensional problem of the active suppression of sound behind an aperture in a perfectly
rigid screen is formulated and solved. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

This paper extends the results reported in [1] to the
three-dimensional case and contributes to the develop-
ment of the active noise control technique [2–6]. At
first, it is necessary to formulate the conditions that
must be satisfied by a transmitting–receiving device to
realize the solution of the active noise control problem.
The device must be an antenna array with small but not
zero-size elements of the simplest type: the auxiliary
sources must be monopoles or dipoles. Consider the
following problem. Let an external field UF character-
ized by the wave number k and the volume velocity
density f be incident on a perfectly rigid screen É from
the half-space z > 0. Let the screen be in the plane z = 0
and have a circular aperture S0 of radius a0 centered at
the origin of coordinates. We study the case when the
wave dimension ka0 is about unity. Centers of spherical
receivers of radius a are located in the half-space z > 0
on half-spheres of radii Rj (j = 1, 2; R1 < R2), each of the
half-spheres accommodating Nj receivers, which aver-
age the field over their surfaces. Centers of hemispher-
ical auxilliary radiators Fjm (j = 0, 1, …, J; m = 1, 2, …,
Mj) of radius a1 reside in the plane z = 0 on circles of
radii rj (R0 < ri < rj < R1 for i < j). Consider a bounded
region F lying outside the sphere of radius R2 + a.
Assume that the function f is unknown, but the integral

QF = dx and the distance  between the origin

and the region F are known. The total field U in the
half-spaces z > 0 and z < 0 outside the receivers and
auxilliary radiators satisfies the inhomogeneous Helm-
holtz equation

(∆ + k2)U = –4πf, (1)

where k = ω/c and suppf ⊂ F, and the boundary condi-
tions: (i) ∂U/∂n = 0 at z = 0 outside the aperture S0 and
hemispheres Fjm; (ii) ∂U/∂n = fjm on the hemispheres
Fjm (j = 0, 1, …, J; m = 1, 2, …, Mj); (iii) ∂U/∂n = 0 on
the receivers Sjn (j = 1, 2; n = 1, 2, …, Nj); (iv) the edge

f
F∫∫ rF*
1063-7710/04/5001- $26.00 © 20057
condition; and (v) the ultimate attenuation condition at
infinity, sup|U| < ∞ at Imk > 0. Let us require that only
the zeroth and first spherical harmonics of the function
fjm are nonzero on the hemispheres Fjm. The aim is to
determine the numbers Nj of the auxilliary radiators, the
positions of their centers, the wave dimension ka1 , and
the functions fjm such that the condition

sup|U| < ε QF/ (2)

be met for the field U in the half-space z < 0 behind the
screen outside a hemisphere of a given radius R. Here,
ε is a small positive number. Since the wave dimensions
of the receivers and auxilliary radiators are small in
terms of wavelength, we can assume that k is nonreso-
nant for the regions bounded by the surfaces Sjn and Fjm.

1. SOLUTION OF THE PROBLEM OF THE FIELD 
MEASUREMENT AND SEPARATION

Since the field cannot be measured at a point in the
process of the field measurement and separation in the
region and only a finite number of measurements can be
performed, the measured field must be represented as a
finite Fourier series in a complete set of functions,
where the Fourier amplitudes are functionals of the
field distributions over the receiver surfaces. Let UF be
the incident field produced by extraneous sources. To
solve the problem defined by expressions (1) and (2), it
is necessary to formulate an auxilliary problem of field
measurement and separation [7]. Specifically, it is nec-
essary to find the numbers Mj (j = 1, 2), the wave dimen-
sion ka, and the positions of the receivers Sjn so that the
field UF inside the sphere of radius R1 and the field dif-
fracted by the aperture plus the field Ud produced by the
auxilliary radiators outside the sphere of radius R2 can
be retrieved to a given accuracy from the measured
amplitude of the average density of the velocity poten-
tial induced on the receiver surfaces by the total field.
We additionally assume that, on the surface of the aux-

rF*
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58 IVANOV
illiary radiator Fjn, the density of the potential associ-
ated with the field produced by the radiator itself and
with the fields of the first and second diffraction is con-
stant. Earlier [6], it was shown that this choice of the
density of the potential solves the sound suppression
problem with the minimum power of the auxilliary
radiators.

Since the wave number is nonresonant, we represent
the unknown total field U as

(3)

for z > 0 and

for z < 0, where

Here, α is one of the indices of integrands on the right
side of Eq. (3); R0, RF, Rjn, and Rjm are the distances
from the observation point to a point on the aperture S0 ,
in the region F, and on the surfaces Sjm and Fjn, respec-
tively; the asterisk indicates the distances from the
observation point to the corresponding points of mirror
reflections of the region F and surfaces Sjn and Fjm with
respect to the plane z = 0; νjm is the density of the poten-
tial of radiation produced by the body Fjn and by dif-
fraction from its surface; µjn is the density of the poten-
tial induced on the surfaces Sjm; and µ0 is the normal
velocity of the medium in the aperture S0. Let us substi-
tute the representation of the field U for z > 0 into the
boundary condition on the surface Sqp and take into
account the fact that the receiver averages the field over
its surface. Next, we integrate the relationship obtained
with the above procedure over the surface Sqp. As a
result, we obtain a finite system of algebraic equations
for an infinite number of amplitudes of the spherical
harmonics of the field diffracted from the aperture, the
field of the auxilliary radiators Fjn, and the incident field
of the extraneous sources. The right-hand side of the
system is proportional to the zeroth harmonic of the
velocity potential on the receiver surfaces Sqp (q = 1, 2;

U f GF Fd

F

∫ µ jnG jn s jnd

S jn

∫
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N j

∑
j 1=

2

∑+=
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Gα
ikRα( )exp
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Rα*
--------------------------.+
p = 1, 2, …, Nq):

(4)

In Eq. (4), 

g1nm = l1nm + l2nm, bqp = dsqp,

bqp are the quantities measured directly,

l1nm = (–1)n + m(2n + 1) ψn(kρ0) (0) 

× exp(–imϕ0)ds0,

Here, δqp is the error of the measurement method due to
the discrete structure of the receiving antenna and due
to the field measurement technique, (ρ0, ϕ0) are the
coordinates of the integration point on the surface S0 ,
(rF, ϑF, ϕF) are the spherical coordinates of the integra-

tion point in the region F, (rj, ) are the coordinates

of the center of the Fjp auxilliary radiator, (Rq, ,

) are the coordinates of the center of the qpth
receiver in the main coordinate system connected with

the center of the aperture S0 , ψn(x) and (x) are the

Bessel and Hankel spherical functions, and (x) are
the associated Legendre polynomials. If the incident
field is a plane wave Aexp(–ikrcosΩ), the coefficients

g1nmhn
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g2nm are obtained from the formulas

g2nm = (–i)n + 1 [1 

+ (–1)n + m(2n + 1) (cosϑF)exp(–imϕF), 

where cosΩ = cosϑ cosϑF + sinϑ sinϑFcos(ϕ – ϕF).
When ka ! 1 and the centers of the receivers are uni-
formly distributed on the hemisphere of radius Rq, the
error δqp can be estimated as

(5)

where N = max(N1, N2), and aN < R1 . Note that the
numbers N1 and N2 are unknown and will be deter-
mined in the process of solving the problem. If the
numbers N1 and N2 are known and the measurement
error δ = maxδqp is specified, condition (5) readily
yields the estimate

(6)

for the admissible wave dimension of the receivers uni-
formly distributed over the hemispheres of radii Rq (q =
1, 2) to obtain the specified small measurement error.

The field measurement process will be physically
feasible if the inequality

(7)

is satisfied, where ka* is a fixed number characterizing
the sensitivity of the receivers employed. If the param-
eter ka satisfies condition (6) and the inequality ka ≥
ka* holds, the measurement problem is physically fea-
sible. Thus the wave dimension of the receivers must
not be too large, so that the field diffracted from the
antenna introduces no considerable error into the mea-
surement process.

Let us rewrite system (4) by omitting the terms
equal to zero:

(8)

The solution of system (8) can be reduced to solving
two systems for q = 1 and 2. Both systems have an infi-

A
k
---

n m–( )!
n m+( )!

-------------------- Pn
m

δqp
b*
bqp

---------- ψ0' ka( )3 2

ψ0 ka( )h0
1( )' ka( )

--------------------------------------≤

× N N 3+( ) N 2+( )ln[ ] 1 aN
R1
-------– 

  ,

b* max bqp ,=

ka
δ

2N N 3+( ) N 2+( ) 1 aN /R1–( )ln
-------------------------------------------------------------------------------------

1/3
≤

ka ka*≥

g1n 2n m–, hn
1( ) kRq( ) g2n 2m n–, ψn kRq( )+[ ]

m 0=

n

∑
n 0=

∞

∑
× Pn

2m n– ϑ qp
0cos( ) 2m n–( )ϕqp

0[ ]exp cqp,=
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nite numbers of solutions. At low frequencies, the field
is primarily determined by the first spatial harmonics.
Therefore, we set N1 = N2 = (M + 1)(2M + 3) and con-
struct a reduced system for the first (M + 1)(2M + 3)
spatial harmonics:

(9)

Let us introduce new unknown variables

and let Wn = ψn(kR1) (kR2) – (kR1)ψn(kR2). If
Wn ≠ 0, which means that k is not a resonant wave num-
ber for the layer R1 < r < R2 with perfectly soft bound-
aries, the amplitudes  of the incident field are
given by the expression

(10)

Let us place the centers of the receivers Sqp on the hemi-
sphere of radius Rq as follows. We select the latitudes

 (j = 0, 1, …, M) and place 4/+ 3 receiver centers at

the longitudes  = 2πl/(4j + 3) (l = 0, 1, …, 4j + 2).
Let us renumber the right-hand side of system (9), i.e.,
we set cqp = cqjl if j(2j + 1) ≤ p ≤ (j + 1)(2j + 3) and p =
j(2j + 1)+/+1. Consider the elements

where Ln = 2(M – n) for even n and Ln = 2(M – n) + 1
for odd n and   

When the conditions
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are met, the determinant of system (9) is nonzero. The
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physical meaning of conditions (11) can easily be seen
at s = 0: the receiver centers must not lie at the points
where the field vanishes. Let ∆M – s be the Vandermonde
determinant of the dimension 4(M – s) + 3:
(12)∆M s– χ 2πim
4 M s–( ) 3+
------------------------------ 

 exp ,
2 M s–( ) 1 χ 2 M s–( ) 1+≤ ≤––

0 m 4 M s–( ) 2+≤ ≤ 
 
 

.=
Then, the solution to system (9) can be written for
an arbitrary M in the explicit form

(13)

where q =E , q = 1, 2, n = 0, 1, …, 2M + 1,

m = 0, 1, …, n, σj = M – i – g + j + 2m – n, and S(g) = 2g
for even 2m − n and σj = M – i – g + j + 2m – n + 1 and
S(g) = 2g + 1 for odd 2m – n; 

and E(x) is the integral part of x. In Eqs. (13), ∆M − i(ρj)
is the determinant of the matrix, in which the column
number χ = ρj is replaced with part of the column of
free terms cqil that belong to rows of number i. The coef-

ficients  and  are defined by recurrent formulas
given in the Appendix. Thus, approximate values of the
amplitudes of spherical harmonics of the incident field,

, are calculated from the total field measured on
the receiver surfaces.

2. SOLUTION OF THE SOUND SUPPRESSION 
PROBLEM

Using representation (3) at z > 0 and the summation
theorem for spherical functions [8], let us write the field U
inside the hemisphere of radius R*, R* < r0 – a1 , z > 0,
in the form

(14)

Xqn 2m n–,*

=  
1–( )

σ j∆M i– ρ j( )DM g– 1– S g 1–( ),
ρ j γg( )

∆M i– S m i–( ), γi( )BM g– S g( ),
2m n– γg( )

----------------------------------------------------------------------------------,
j ν1 i( )=

ν2 i( )

∑
i g=

M

∑

2m n–
2

---------------- 
 

ρ j 2m n– j 4i 3+( ),+=

ν1 = E
2i 1 2m n–+ +

4i 1+
------------------------------------- 

  , ν2 = E
2i 1 2m– n+ +

4i 1+
------------------------------------- 

  ,

Bkl
j Dkl

j

g2nm*

U ik g2n2m n– ∫
m 0=

∞

∑
n 0=

∞

∑=

+ hn
1( ) kr j( )Pn

2m n– 0( ) i 2m n–( )ϕqp
0–[ ] d jpexp

p 0=

M j

∑
j 0=

J

∑
× ψn kr( )Pn

2m n– ϑcos( ) i 2m n–( )ϕ[ ]exp V ,+

V
ikR0( )exp

R0
------------------------- s0, + µ jnG jn s jn.d

S jn

∫
n 1=

N j

∑
j 1=

2

∑d

S0

∫–=
To make the following calculations more clear, let us
consider the physical basis of solving the sound sup-
pression problem. The constants djp, which characterize
the field produced by the auxilliary radiators, are cho-
sen from the condition that the first (M + 1)(2M + 3)
spatial harmonics in the sum on the right-hand side of
Eq. (14) be zero; i.e., the field produced by the auxil-
liary radiators is in antiphase with the first (M +
1)(2M + 3) harmonics of the incident field of the pri-
mary source. Therefore, as a result of the superposition
of the fields produced by the primary source and by the
auxilliary radiators, the field incident on the aperture in
the screen will be small. The field diffracted by the
receivers, which is a component of V, can be made
small by choosing a sufficiently small wave dimension
ka*, i.e., by choosing receivers of an appropriate class.
Then, the diffracted field behind the aperture will be
small, because the magnitude of the field incident on
the aperture is small. Let us place centers of the auxil-
liary hemispherical radiators on M + 1 circles of radius

rj at the points  = π/2,  = 2πp/(4j + 3) (p = 0, 1,
…, 4j + 2), i.e., we set J = M and Mj = 4j + 2. Let us
require that the equalities

(15)

n = 0, 1, …, 2M + 1, m = 0, 1, …, n be met, where βnm

are the constants calculated from the measurements.
Owing to the special choice of the radiator coordinates,
the solution to the system can be written in the explicit
form for an arbitrary M:

(16)

ϑ jp
0 ϕ jp

0

d jphn
1( ) kr j( ) i n 2m–( )ϕ jp

0[ ]exp
p 0=

4 j 2+

∑
j 0=

M

∑
=  g2n 2m n–,* / 2n 1+( )Pn

n 2m– 0( )– βnm,=

d jp β2km∆ jp2km/∆
m 0=

2k

∑
k 0=

j

∑=

+ β2km∆ jp2km/∆
m k j–=

k j+

∑
k j 1+=

M

∑

+ β2k 1+ m, ∆ jp2k 1+ m, /∆
m 0=

2k 1+

∑
k 0=

j 1–

∑

+ β2k 1+ m, ∆ jp2k 1+ m, /∆,
m k j–=

k j+

∑
k j=

M

∑
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where

Qn – 2m = 2g for even n; Qn – 2m = 2g + 1 for odd n; Q(j,
L) = 2j for even L; Q(j, L) = 2j + 1 for odd L; g =
E(|(2m – n)/2|); L = n – 2m + l(4g + 3); ∆M – j, ν1(j), and
ν2(j) are defined by formulas (11) and (12); and
∆M − j(L) is the determinant ∆M – j with the column of
number χ = L replaced by a column containing zeros

except for unity in the pth row. The coefficients  and

 are defined by recurrent formulas given in the
Appendix. Formulas (10), (13), and (16) and the right-
hand side of Eq. (15) analytically relate the measured
quantities cqjl to the amplitudes of the potentials at the
auxilliary radiators, djp. The explicit dependence of the
solution on M allows us to find M from relation (2). The
field continuity condition on the aperture readily gives
an integral equation for the normal velocity µ0. The
right-hand side of this equation, f0 , is an uncompen-
sated portion of the total field incident on the aperture.
Let us estimate the function f0:

∆ jpnm

∆
------------ 1–( ) j g L Q j L,( )+ + +

l ν1 j( )–=

ν2 j( )

∑ ∆M j–

∆
------------=

×
KM g– Q n 2m–( ),

n 2m– krg( )
FM g– Q n 2m–( ),

n 2m– krg( )FM j– Q jL( ),
L

---------------------------------------------------------------------,

Kkl
j

Fkl
j
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(17)

where 

In formula (17),  is the distance from the origin of
coordinates to region F. By estimating the solution to
the integral equation, we obtain the expression

f 0

QF

2M 2+
-----------------

a0

rF a0–*
------------

r0
2

rM r0–( )2
-----------------------

a0

r0
----- 

 
2M 2+

≤

+
1
M
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a0

r0
----- 

 
2 a0

rM
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 

2M 1+ 3r0

2 rM r0–( )
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r0
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 
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+

+
π2

4 M 2+( )A1
-----------------------------

a0

Rq

----- 
 

2M 1+ 1
a0/Rq( )ln

-------------------------- f 0*,=

QF f F,d

F

∫=

A1 k n n 1+( ) ψn kRq( )hn
1( ) krF*( ) 2QF

n 0=

∞

∑=

+
QF r0 a0–( )

rF* a0–
---------------------------

4r0
2M2

rM r0–( )2
-----------------------

∫ ×
rM/R1( )n

n 2+
---------------------

rM

r0
----- 

 
2 rn/R1( )n

n 1+
-------------------

rM

r0
----- 

 +

1–

.

rF*
.µ0

f 0* M( )µ0*

a0η
------------------------, µ0*≤

Smn
1( ) ika0– η,( ) ηd ηSmn

1( ) ika0– η,( )
1–

1

∫
8πka0 Nmn ika0–( )R m n,

1( ) ika0– 0,( )R m n,
3( ) ika0– 0,( )

-------------------------------------------------------------------------------------------------------------------------
m n–=

n

∑
n 0=

∞

∑
q

max=
The functions (–ika0, η), (–ika0, iξ), and

Nmn(–ika0) are defined in [8]. For small ka0, |µ0| ≤

. For the field diffracted by the aperture

S0 , the following estimate is valid in the lower half-
space outside the sphere of radius R at an arbitrary ka0:

(18)

For small ka0, we have

(19)

To find the number M, let us use condition (2), in which
the field U is given by Eq. (3). As follows from expres-
sions (2), (18), and (19), for an arbitrary ka0 , the fol-

Smn
1( ) R m n,

i( )

f 0* M( )

π2 a0
2 ρ0

2–( )
1/2

---------------------------------

U 2πf 0* M( )µ0*
a0

R a0–
--------------.≤

ka0 U
2 f 0*

π
---------

a0

R3 a0–
-----------------.≤
lowing relationships hold:

(20)

For small ka0 , we obtain

(21)

The right-hand side of relationships (20) and (21) have
the form of a nonlinear equation for M. A solution to
this equation exists, because the left-hand side of the
equalities in formulas (20) and (21) tends to zero with
increasing M, and ε1 is a sufficiently small positive
number. After M is determined, we calculate the densi-
ties djp of the velocity potentials from Eqs. (16) and use
formula (6) to find the wave dimension ka of the
receiver and refine the number M by taking into account
the field diffracted by the receivers’ antenna, which is a
small quantity compared to the field of extraneous
sources and auxilliary radiators.

U 2πµ0* f 0* M( )
a0

R a0–
--------------≤ ε1QF/rF*,=

0 ε1 ε.< <

U
2 f 0*

π
---------

a0

R a0–
--------------≤ ε1QF/rF*.=
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Because the type of the radiator is determined by the
distribution of the normal velocity of the surface Fjp

rather than by the distribution of the potential, to calcu-
late the amplitudes of monopoles and dipoles, we sub-
stitute the field U given by formula (3) into the bound-
ary condition at the surface of the radiator Fjp. Our cal-
culations show that the function fqp contains harmonics
of an arbitrary order; i.e., the suppression problem is
solved with radiators of a complex structure containing
arbitrary K-poles. This could be expected, because the
radiators themselves are bodies, which diffract the
acoustic field, and the normal velocity of their surface
will therefore contain arbitrary harmonics. Let us
require that the radiator’s wave dimension be suffi-
ciently small. In this case, the function fqp can be repre-

sented as its principal part  and a residual whose

magnitude is no greater than ε2 . The wave dimension of
the radiator can be determined from ε2 by a procedure
similar to the one used for the receiver. If we require
that ε = ε1 + ε2 , the suppression problem will be solved

completely. The functions  (q = 0, 1, …, M, p = 0,

1, …, 4q + 2) that solve the suppression problem are
given by the formulas

(22)

f qp*

f qp*

f qp*
dqp

a1
2ψ0 ka1( )

------------------------- 1 i ka1( )2ψ0' ka1( )h0
1 ka1( )+[ ]=

+ ik2d jm 2n 1+( )
n 0=

∞

∑
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∑
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× 1–( )21 n– Q00 n 21– n, ,
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× Qs1 n 21– n, ,
1( ) rq θqp

0, π
2
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0, 
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3
-------------------

s 1–=

1

∑

× P1
s θqpcos( ) isϕqp( )exp

+ ik2d jm 2n 1+( )
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∞
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4 j 2+

∑
j q 1+=
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0,=( )

l 0=
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× Qs1 n 21– n, ,
1( ) rq θqp

0 π
2
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0,=, 
  ψ0 ka1( )

3
-------------------

s 1–=

1

∑
× P1

s θqpcos( ) isϕqp( )exp
where  are the conversion factors between differ-
ent coordinate systems defined in [8]. The physical
meaning of formula (22) is as follows. The field pro-
duced by the auxilliary radiators consists of their own
radiation generated by the zeroth and first harmonics of
the normal velocity fqp plus the field due to diffraction
of the uncompensated portion of the extraneous field by
the elements of the transmitting antenna and the sec-
ondary diffraction components from the receiver anten-
nas, the aperture, and the adjacent radiators. This
allows us to relax the limitation imposed on the radia-
tor’s wave dimension from above. For the auxilliary
radiators, we can introduce the physical feasibility con-
dition in the form max|fqp| ≤ f*(ka1). The constant f*
characterizes the maximum power density admissible
for the chosen class of radiators at a particular ka1.
Thus, the radiator must be small enough for the sup-
pression to be accomplished by monopoles and dipoles
and large enough to suppress the field of a given inten-
sity. 

As an example, consider the suppression of the
plane wave

incident on the aperture S0 of radius a0 = 1 m in the
direction (θF, ϕF). For a sound pressure of 100 dB at
20 Hz, the amplitude is A = 0.013 m2/s. Let us set c =
340 m/s, rj = (2.7 + 0.2j) m, and a1 = 0.1 m. If we choose
M = 1, the suppression level is 10 dB within 1 m behind
the screen. Assume that the amplitudes of the plane
wave harmonics near the aperture S0 are measured
exactly and are expressed as

+ ik2 1–( )l

m 0=

l

∑ 2l 1+( )
l 0=

∞

∑
n 1=

M 1+( ) 2M 3+( )

∑
j 1=

2
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3
-------------------P1
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Qtsln
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The amplitudes (in meters per second) of the velocity
potential density at the radiators that solve the field sup-
pression problem at θF = π/3 and ϕF = 0 are shown in
the table:

ν00 = –0.324 +i0.911, ν01 = –0.058 – i0.28, 

ν02 = –0.437 + i0.683, ν10 = 0.015 – i0.015,

ν11 = –0.026 – i0.022, ν12 = –0.02 + i0.037,

ν13 = –0.0002 + i0.02, ν14 = –0.027 + i0.046,

ν15 = –0.008 + i0.008, ν16 = 0.05 + i0.04.

To improve the degree of suppression, the number
of auxilliary radiators must be increased and a greater
number of spatial harmonics must be canceled. For
example, to suppress the field by 30 dB, the first 36 spa-
tial modes (M = 3) must be canceled.

APPENDIX

The coefficients  are determined by the recurrent
formulas

i ≤ j; s and p are integers,

Bkl
j

BN s s,–
j γs( ) AN s– s,

j γs( ), γs ϑ qs
0 ,cos==

0 s N , s j s, j m,≠≤ ≤–≤ ≤

BN s s,–
m γs( ) AN s– s,

m γs( ), 0 s m 1,–≤ ≤=

m 1 s N ;≤ ≤+

B1 n,
m γs( ) A0 m,

m γs( ) A0 m,
m γN( )A0 N,

m γs( )/A0 N,
m γN( ),–=

0 s N 1;–≤ ≤

BN j– n,
m γs( ) BN j– 1– n,

m γs( )=

–
BN j– 1– n,

m γ j 1+( )BN j– 1– j 1+,
m γs( )

BN j– 1– j 1+,
m γ j 1+( )

--------------------------------------------------------------------------,

n j N 2, s j;≤–≤ ≤

BN n– 1+ p,
m γi( ) AN n– p,

m γi( )
AN n– p,

m γn( )BN n– n,
m γi( )

BN n– n,
m γn( )

-----------------------------------------------------,–=

m 1 p n 1, i n 1;–≤–≤ ≤+

BN n– j+ p,
m γi( ) BN n j 1–+– p,
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-------------------------------------------------------------------------------------------------,
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m γi( )=

–
BN j– 1– j 1+,
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----------------------------------------------------------------------------,
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The coefficients  are calculated by the recurrent for-
mulas

s and q are integers,

In the system of rows (|j| – s):

where E(x) is the integral part of x and

The coefficients  and  are determined by
the recurrent formulas
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Q(n – 2l) = 2(t – s + 1) for even n; Q(n – 2l) = 2(t – s +
1) + 1 for odd n; 

S(k) = 2q for even βj; S(k) = 2q + 1 for odd βj,

The coefficients  and  are determined by the
recurrent formulas given below.

Consider the auxilliary coefficients (kri) and

(kri) 

where j is an integer, (x) is the Hankel spherical func-
tion,
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1 ≤ s ≤ M, 0 ≤ i ≤ M – s, 0 ≤ p ≤ M – s, s is the iteration
number.

Let us define the  coefficients by the formulas

for even n,

for odd n, g ≤ p ≤ 2t – 1, 0 ≤ i ≤ 2t – 1;

for even n,

2 ≤ l ≤ t – g, 0 ≤ i ≤ 2t – l, p ≤ 2t – l,

for odd n, where l is an integer.

The coefficients  are calculated as follows:

n = 2k, i ≤ j – 2,

n = 2k, 3 ≤ q ≤ j – g, i ≤ j – q, q is an integer,
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–
FM t l 1–+– 2 p 1+,

n 2m– krt l– 1+( )FM t l 1–+– 2 t l– 1+( ),
n 2m– kri( )

FM t l 1–+– 2 t l– 1+( ),
n 2m– krt l– 1+( )

----------------------------------------------------------------------------------------------------------------,

Kkl
j

KM j– 2 2 j 2–( ),+
2k 2m– kri( ) FM j– 2 j 1–( ),

2k 2m– kri( )=

–
FM j– 2 j 1–( ),

2k 2m– kr j 1–( )FM j 1+– 2 j 1–( ),
2k 2m– kri( )

FM j– 1+ 2 j 1–( ),
2k 2m– kr j 1–( )

------------------------------------------------------------------------------------------,

KM j– 2 2 j 2–( ) 1+,+
2k 1 2m–+ kri( ) FM j– 2 j 1–( ) 1+,

2k 1 2m–+ kri( )=

–
FM j– 1+ 2 j 1–( ) 1+,

2k 1 2m–+ kr j 1–( )FM j 1+– 2 j 1–( ) 1+,
2k 1 2m–+ kri( )

FM j– 1+ 2 j 1–( ) 1+,
2k 1 2m–+

-----------------------------------------------------------------------------------------------------------,

n 2k 1,+=

KM j– 1 2 j q–( ),+
2k 2m– kri( ) KM j q 1–+– 2 j q– 1+( ),

2k 2m– kri( )=

–
KM j– q 1–+ 2 j q– 1+( ),

2k 2m– kr j q– 1+( )FM j q 1–+– 2 j q– 1+( ),
2k 2m– kri( )

FM j– q 1–+ 2 j q– 1+( ),
2k 2m– kr j q– 1+( )

---------------------------------------------------------------------------------------------------------------------------,
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KM j– q 2 j q–( ) 1+,+
2k 1 2m–+ kri( ) FM j q 1–+– 2 j q– 1+( ) 1+,

2k 1 2m–+ kri( )=

–
KM j– q 1–+ 2 j q– 1+( ) 1+,

2k 1 2m–+ kr j q– 1+( )FM j q 1–+– 2 j q– 1+( ) 1+,
2k 1 2m–+ kri( )

FM j– q 1–+ 2 j q– 1+( ) 1+,
2k 1 2m–+ kr j q– 1+( )

-----------------------------------------------------------------------------------------------------------------------------------------, n 2k 1.+=
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Abstract—An experimental verification is presented for the new theoretical model of a vortex mechanism that
explains the formation of two-dimensional domains in planar layers of cholesteric liquid crystals under the
effect of ultrasound in the range of frequencies not exceeding the inverse relaxation time of the orientational
order parameter. The limits of applicability of this model are determined. © 2004 MAIK “Nauka/Interperiod-
ica”.
One of the most remarkable physical phenomena
proper to liquid crystals is the formation of ordered
one- and two-dimensional spatially modulated struc-
tures (domains) under external actions of different
kinds (acoustic, electrical, magnetic, etc.). The condi-
tion for the existence of such structures is of a threshold
character and depends on the equilibrium of volumetric
and dissipative forces proper to a specific kind of action
[1–3].

This paper presents the results of an experimental
study of the conditions for the formation of two-dimen-
sional domains in planar layers of cholesteric liquid
crystals, with a cholesteric helical pitch P0 much
smaller than the layer thickness d, under the effect of
ultrasound when the viscous and elastic wavelengths λv

and λ satisfy the inequalities

Analysis of experimental data on the threshold char-
acteristics of domains (the amplitude of the particle

velocity  in the wave incident upon a layer, which
corresponds to the domain formation, and the spatial
period of domains at the threshold of the effect Λth) is
performed in the framework of the model of a vortex
mechanism for the destabilization of the planar macro-
structure of the mesophase layer, which was proposed
in [4] and postulates a new approach to describing this
phenomenon.

It is well known that cholesteric liquid crystals have
a layered structure and helical ordering: in passing from
one cholesteric plane to another, the director n charac-
terizing the local orientation of molecules rotates uni-
formly in space with respect to the helix axis h (the z
axis in Fig. 1a). The nominal “free” helical pitch P0 of
this structure is equal to 2π/q0 (q0 is the helical wave

λv  ! d , λ  @ d .

V0
th
1063-7710/04/5001- $26.00 © 20066
number). However, since the states n and –n are indis-
tinguishable, the interval of periodicity along the z axis
is equal to P0/2 = π/q0 . Creating tangential boundary
conditions on both sides of a thin mesophase layer, it is
possible to obtain a single crystal of a cholesteric liquid
crystal with a so-called planar texture [2]. If the layer
thickness satisfies the condition d = 0.5mP0 (m = 1, 2,
3, …), the spectral conformation preserves the equilib-
rium state and has a free helical pitch of P0 (Fig. 1b). In
the case when d is smaller or greater than 0.5mP0 , the
helix is forced to slightly change its pitch to be com-
pletely consistent with these boundary conditions. In
this case, a nonequilibrium conformation arises with a
forced helical pitch P, which is smaller or greater than
P0 depending on the compression or extension of the
helix.

Experiments on observation of domain formation in
planar layers of cholesteric liquid crystals and determi-
nation of their threshold characteristics were carried
out in the conditions schematically represented in
Fig. 1c. Here, (1) a liquid crystal fills a plane capillary
formed by (2) a thin glass plate and (3) a substrate. The
inner surfaces of the plate and the substrate are treated
according to a technique conventional for the formation
of tangential boundary conditions and production of a
planar texture.1 The thickness of the layer of a choles-
teric liquid crystal in the cell was set either with the
help of thoriated mylar spacers (10, 40, 80, and 100 µm)
or by changing the distance between plates 2 and 3
within the range 5–240 µm by shifting plate 2. Utiliza-
tion of a cell with a variable layer thickness provided an
opportunity in the process of observation not only to

1 To form a planar arrangement of molecules of a cholesteric liquid
crystal, a coating of polyvinyl alcohol was applied to the cell sur-
faces bounding the crystal. After that, the surfaces were polished
in one of the directions determining the orientation of the director n.
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Analysis of ultrasonic action on the planar texture of a cholesteric liquid crystal. Molecule arrangement in the cholesteric
mesophase. (a) Sequential cholesteric planes. (b) A schematic diagram of the planar structure of a cholesteric liquid crystal between
two (1) surfaces with tangential boundary conditions formed by (2) polishing these surfaces in a preset direction; the helix is
directed along the z axis and the director lies in the horizontal plane everywhere. (c) Geometry of the problem and a simplified exper-
imental setup: (1) a cholesteric liquid crystal, (2) an optically transparent plate (glass), (3) a substrate with a light-reflecting coating,
(4) a longitudinal ultrasonic wave, and (5) a light beam of intensity I0 incident upon the liquid crystal layer.
evaluate the degree of extension or compression of a
cholesteric structure with a forced helical pitch P but
also to realize the equilibrium states of this structure,
which correspond to the condition d = 0.5mP0 . A longi-
tudinal ultrasonic wave was incident upon a layer of a
cholesteric liquid crystal in the direction of the helix
axis. The ultrasonic frequency was measured within the
range 0.35–15 MHz. To control the level of the effect,
the voltage fed to the ultrasonic transducers was mea-
sured by a voltmeter. The voltage was recalculated
either to the oscillation amplitude at the transducer–liq-
uid crystal boundary according to the method of ana-
lyzing multilayer oscillatory systems [6] or to the
acoustic intensity of the wave incident upon the layer
according to the data (initial) of transducer calibration
performed by the method of acoustic radiometer.
Observation on the orientation state of liquid crystals in
cells with constant and variable layer thickness was
conducted using the polarization-optical technique in
reflected light according to the known schemes
described earlier [2, 5, 7].

Diluted solutions of cholesteric liquid crystals (cho-
lesteryl chloride, cholesteryl nonanoate, and choles-
teryl propienate) in a nematic liquid crystal (ZhK404),
ACOUSTICAL PHYSICS      Vol. 50      No. 1      2004
whose helical pitch P0 was large in comparison with the
light wavelength λ0 and equal to 2, 4, 10, and 30 µm,
were studied.2 The pitch value was measured by the
Cano–Grandjean method [8].

Experiments were set up as follows: the voltage
across the transducer was increased and changes in the
orientation state of three planar layers of liquid crystals
in three solutions under study were observed by a polar-
ization microscope in the conditions of homogeneous
(frequencies of 0.9–15 MHz) and quasi-homogeneous
(frequencies of 0.35–3.65 MHz) wave fields. These
observations show that when the threshold voltage Uth

is reached, an inhomogeneous distribution of orienta-
tion of the director n is formed, which manifests itself
optically as a two-dimensional system of equidistant
bright fringes parallel and perpendicular to the director
position in the initial unperturbed orientation state of
the layer. This is a so-called square grid with spatial
periods Λx and Λy and with the sides parallel and per-
pendicular to the direction of polishing of the boundary
surfaces of the cell (Figs. 2a, 2a').

2 It is known that, when the light wavelength is comparable with
the helical pitch, the optical properties of cholesteric liquid crys-
tals change radically [8].
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Fig. 2. Analysis of relationships determining the spatial period of domains. (a, a') Optical patterns of planar texture distortions in
an ultrasonic field in samples without and with disclinations, which force the square grid to slightly change its orientation with
respect to the direction (shown by the symbol ) of the substrate polishing lines (top view; microscope magnification is different
in two images); the layer thickness is 40 µm, the helical pitch is 4 µm, the ultrasonic frequency is 0.375 MHz, and the spatial period
of the grid is ~19.5 × 19.5 µm. (b) Dependence of domain period on the level of action for a layer with a thickness of 80 µm in (1)
homogeneous and (2) quasi-homogeneous wave fields; the helical pitch is 4 µm and the frequency is 2.95 MHz. (c) Relation of the
domain period at the threshold of the effect to the layer thickness and the helical pitch in (1) cholesteryl chloride–ZhK404 and (2)
cholesteryl nonanoate–ZhK404 solutions under ultrasonic action (a frequency of 2.95 MHz) and in a (3) cholesteryl chloride–
MBBA solution under static extension. (d) Influence of ultrasonic frequency on the relative domain period at a layer thickness of
22 µm and a helical pitch of 4 µm; curves 1–3 correspond to the theoretical dependences of the period for the values of the extension
parameter δ equal to 0.01, 0.5, and 0.9; experimental values of the period in the cholesteryl chloride–ZhK404 solution for layers
(1) with and (2) without disclinations.

     
To describe this effect quantitatively, we conducted
experimental studies of the dynamics of the develop-
ment of structures, determination of their period and
threshold level of external action in the conditions of
varying parameters of the wave field, and determination
of the layer thickness of liquid crystals and the choles-
teric helical pitch.

Figure 2b presents a typical dependence of the cur-
rent values of the spatial period Λ = Λx ≅ Λ y on the
action level for a sample with a thickness of 80 µm of
the cholesteryl chloride–ZhK404 solution with a heli-
cal pitch of 4 µm. Here, U and Uth are the current and
threshold values of the voltage at the ultrasonic trans-
ducer, respectively. Notations 1 and 2 refer to the values
of Λ observed in homogeneous and inhomogeneous
wave fields at a frequency ~2.95 MHz, respectively.
One can see that, near the threshold, the structure
period has the value greater than that in the over-thresh-
ACOUSTICAL PHYSICS      Vol. 50      No. 1      2004
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old mode, and at 
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U

 

th

 

 it reaches a constant value. It
is essential that the degree of homogeneity of the wave
field does not influence the dynamics of the process.

The behavior described above takes place within the
whole frequency range considered, in samples with a
thickness of 10–240 

 

µ

 

m. The results of these observa-
tions are generalized in Fig. 2c. Here, we give the
threshold values obtained in these experiments for the
spatial period 

 

Λ

 

th

 

 of the two-dimensional domains that
are formed in the cholesteryl chloride–ZhK404 and
cholesteryl nonanoate–ZhK404 solutions (notations 

 

1

 

and

 

 2, respectively) with the equilibrium values of the
helical pitch P0 equal to 2, 4, 10, and 30 µm at a fre-
quency of ~2.95 MHz. Analysis of these data provides
an opportunity to draw a conclusion that, at a constant
ultrasonic frequency at the threshold of the effect, the
relation of the spatial period to the thickness of the liq-
uid crystal layer and the helical pitch is approximated
by a functional dependence of the form Λth ~ (P0d)1/2.

The threshold values of the period  of domains
formed in planar layers of a cholesteryl nonanoate–
MBBA solution with a helical pitch of 12 µm in the
conditions of static extension (notation 3), which were
obtained in [9], are given in the same figure for compar-
ison. One can see that the dependence characteristic of
the ultrasonic field persists, but in these conditions the
angular coefficient of the plot approximating it is

higher. These values of  will be used below as a nor-
malizing parameter for representing the experimental
values of Λth, which will allow us to simplify the com-
parison of experimental and theoretical data. It is nec-

essary to note that the values of  given above are
obtained for the solution containing a classical nematic
liquid crystal, N–(n-methoxybenzylidene)–n-butyla-
niline (MBBA), which is one of the components of the
nematic mixture of ZhK404 used in our experiments.

The connection of the spatial period of domains
with ultrasonic frequency is represented by the family

of experimental values of Λth/  given in Fig. 2d.
They are obtained for a layer with a thickness of 22 µm
of the cholesteryl chloride–ZhK404 solution with a
helical pitch of 4 µm. Notations 1 and 2 refer to the sys-
tems of domains formed in the layer regions bounded
by paired disclinations (see Fig. 2a), where the choles-
teric structure is extended [2], and in the conditions of
the absence of these disclinations (an equilibrium cho-
lesteric structure).3 According to these data, the ultra-
sonic frequency almost does not influence the spatial
period of domains.

Let us examine the basic rules characterizing the
magnitude of action at the threshold of the effect. The

3 It was impossible to obtain homogeneous liquid crystal layers
free of disclinations in these experiments because of the design
peculiarities of the cells used in the lowest frequency range of
0.3–0.9 MHz.

Λs
th

Λs
th

Λs
th

Λs
th
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results of experiments on the influence of the thickness
of a liquid crystal layer and the helical pitch on the
threshold Mach number 

 

M

 

th

 

 = 

 

V

 

th

 

/

 

c

 

 for cholesteryl
chloride–ZhK404 solutions at a frequency of 2.95 MHz
are generalized by the plot given in Fig. 3a. A descrip-
tion of the adopted notations is given in the figure cap-
tion. It follows from these data that, in the region of val-
ues 

 

P

 

0

 

/

 

d

 

 

 

!

 

 1

 

, the connection of the threshold Mach
number with the layer thickness and helical pitch is
determined by a relation of the form 

 

M

 

th

 

 ~ (

 

P

 

0

 

/

 

d

 

)

 

1/2

 

.

Experimental data illustrating the connection of the
threshold Mach number with the ultrasonic frequency
at fixed values of 

 

P

 

0

 

 and 

 

d

 

 are given in Fig. 3b. They
belong to a cholesteryl chloride–ZhK404 layer with a
thickness of 22 

 

µ

 

m and a helical pitch of 4 

 

µ

 

m. It is nec-
essary to note the difference of the values of 

 

M

 

th

 

obtained in experiments with the samples containing
disclinations (frequencies of 0.3, 0.5, 0.6, 0.8, and
0.9 MHz) from those corresponding to the samples
without disclinations (frequencies of 1.2–14.5 MHz)
(notations 

 

1 and 2). This fact needs to be analyzed. It is
essential that, in each of these regions, a change in
ultrasonic frequency almost does not influence the
threshold Mach number.

Let us discuss the experimental data given above for
the behavior of the threshold characteristics of two-
dimensional domains in cholesteric liquid crystals from
the point of view of the theoretical model described in
[4]. Traditionally, a theoretical analysis of structural
transformations in liquid crystals is performed within
the framework of a macroscopic approach [1–3], which
was formulated as far back as the 1870s by Leslie and
Ericksen and is based on the classical linear hydrody-
namics, that takes into account only the anisotropy of
viscous properties of liquid crystals. This concept is
still valid. However, certain difficulties arose in analyz-
ing acoustically induced domains. It turned out that a
common approach provides a description adequate to
experimental data only in the sonic frequency range
[10, 11]. Experiments by Gurov and Kapustina [5] with
cholesteric liquid crystals proved that, in the ultrasonic
range, the theoretical model [12, 13] based on the equa-
tions of linear hydrodynamics fails even if one takes
into account the existence of regions with an extended
cholesteric structure in a planar layer. Later, it was
found [14] that, for nematic liquid crystals only the
inclusion of nonequilibrium thermodynamics with
allowance for relaxation phenomena in the mesophase,
which lead to anisotropy of dynamic elasticity, provide
an opportunity to match the results of calculating the
threshold characteristics of domains in the framework
of classical hydrodynamics and the experimental data
for this type of liquid crystals in the frequency range 1–
10 MHz. Extension of this approach to the analysis of
structural transformations in planar layers of choles-
teric liquid crystals in an ultrasonic field led to the
development of a theoretical model of a “vortex” mech-
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Fig. 3. Basic relationships determining the behavior of the threshold of the effect. (a) Influence of the layer thickness and helical
pitch on the threshold Mach number in the cholesteryl chloride–ZhK404 solution at a frequency of 2.95 MHz. The values of P0 and
d are given using the following notations: (1) 2 and 10 µm; (2) 4 and 10 µm; (3) 2 and 22 µm; (4) 4 and 22 µm; (5) 10 and 22 µm;
(6) 2 and 40 µm; (7) 4 and 40 µm; (8) 10 and 40 µm; (9) 4 and 80 µm; (10) 10 and 80 µm; (11) 2 and 90 µm; (12) 30 and 90 µm;
(13) 2 and 100 µm; (14) 4 and 100 µm; (15) 10 and 100 µm; (16) 2 and 240 µm; (17) 4 and 240 µm; (18) 10 and 240 µm; and (19) 30
and 240 µm. (b) Relation of the threshold Mach number to ultrasonic frequency for a layer thickness of 22 µm and a helical pitch
of 4 µm. Curves 1–4 correspond to theoretical frequency dependences for the values of the extension parameter equal to 0, 0.5, 0.7,
and 0.9. Experimental threshold values in the frequency range of 0.3–6 MHz are presented for layers (1) with and (2) without dis-
clinations. The inset shows theoretical and experimental threshold values in the high-frequency range for layers without disclina-
tions.
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anism of domain formation [4], which we discuss
below.

The vortex model is based on the solutions of clas-
sical equations of hydrodynamics, where the universal
property of a medium, i.e., a capability to restore ther-
modynamic equilibrium perturbed by compression and
expansion in an ultrasonic wave, is taken into account.
According to [4], relaxation processes change the char-
acter of motion of a cholesteric liquid and lead to
anisotropy of the dynamic modulus of elasticity ∆E =
DE(ωτ)2/[1 + (ωτ)2]. Here, ω = 2πf, f is the ultrasonic
frequency, τ is the relaxation time of the orientational

order parameter, and 2DE = (E|| –  is the dis-

persion jump of anisotropy of the elastic modulus of the
medium under compression in an ultrasonic wave along
the crystal axis (E||) and in the direction perpendicular
to it (E⊥ ). A general scheme of formation of two-dimen-
sional domains that is based on the vortex model is as
follows: a random, periodic along a cholesteric layer,
deviation of the director from the equilibrium orienta-
tion causes shear stress and moments, which give rise
to oscillating vortex flows of the cholesteric liquid with
the same periodicity. Displacement of particles in these
flows lags in phase with respect to the compression ε of
the medium in an ultrasonic wave, which causes non-

linear stationary moments of the form , and these
moments increase the initial random rotation of the
director. At the threshold of the effect, the action of
these rotational moments is compensated by Frank’s
elastic moments, which tend to retain the initial
arrangement of cholesteric layers. However, as ultra-
sonic intensity increases, this balance is violated and, as
a compromise, a distortion periodic in the x and y axes
is formed in the director field, which can be described
by two angular variables [4] θ, ϕ ~ exp(iqxx +
iqyy)sinqzz. Here and above, θ and ϕ are the angles
determining the deviation of molecules from the unper-
turbed cholesteric plane and from the initial orientation
in this plane, respectively; qx, qy, and qz are the wave
numbers of distortion along the x, y, and z axes; qz =
2π/d; and γ is the rotational viscosity of the liquid crys-
tal. According to [4], for the physical situation adequate
to the conditions of the experiments described above
and the cholesteric structure extended along the helix
axis (the z axis),4 the threshold Mach number in the
wave incident on the layer is represented in the most
general form by the relation

(1)

4 It is known that such an extension of a cholesteric structure along
the helix axis can be caused by a lack of parallelism of the layer
boundaries near the Grandjean lines or by the presence of paired
disclinations, at which the number of cholesteric layers changes
in a layer with parallel boundaries [2].

E⊥ )
ω 0=

ω ∞=

γθε̇

M th ω qi,( )

=  ηK33 3 β+( )qs
4/32γq0

2DE[ ] 1/2
F ω qi,( ),
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where K = K11 = K33 and K22 are the Frank’s elastic con-
stants, β = K22/K, qs = 2π[2β/(3 + β)]1/4/(P0d)1/2, η =
0.5(α4 + 0.5α6), and α4 and α6 are the Leslie coeffi-
cients of viscosity. The wave number of domains at the
threshold of the effect is determined from the condition
for the minimum of the function F(ω, qi) with respect
to the quantities qi. The expression for F(ω, qi) is omit-
ted here because of its awkwardness. For qualitative
estimation, we use analytical representations of thresh-
old characteristics at low and high frequencies, which
follow from Eq. (1). According to [4], we have

for ω @ ω1, Mth ~ ω1/2

(2)

and for ω ! ω1, Mth ~ ω–1/2

(3)

Here,  =  = (P0d)1/2[(3 + β)/8β]1/4 is the thresh-

old value of the period of two-dimensional domains
arising according to the theory [14] in a planar layer of
a cholesteric liquid crystal under the conditions of static
extension of cholesteric layers along the helix axis, if
the value of this extension δz reaches the critical value
equal to

In a range of frequencies determined by the inequality
ω1 < ω < ω2 , the effect of the vortex mechanism is most
efficient, and the relation of the threshold characteris-
tics to the layer thickness, helical pitch, and ultrasonic
frequency is described by the following expressions:

(4)

(5)

The estimates following from Eqs. (2)–(4) demon-
strate that the relation of the domain spatial period to
the layer thickness and helical pitch is determined as
Λth ~ (P0d)1/2, and the influence of ultrasonic frequency
can manifest itself only within the range ω ! ω1.

5

These theoretical predictions correlate with the experi-
mental data presented in Figs. 2c and 2d. The relation
of the threshold Mach number to the helical pitch and

5 Estimates demonstrate that, in the range of the values of P0 and d
considered above, the frequency f1 = ω1/2π does not exceed
0.5 MHz.

Λ th Λs
th a 2δ+( )/ 1 1 a2 2aδ+ +( )1/2

+[ ]{ }
1/2

=

∼ P0d( )1/2

Λ th Λs
th / 2aωτ P0d( )1/2ω 1– .∼≈

Λs
th π 2

qs

----------

δc P0 2β 3 β+( )[ ] 1/2/2d , δ δz/δc,= =

a ρP0d/4π2ητ( ) 3 β+( )/2β[ ] 1/2,=

ω1 2πη/ρP0d( ) 2β/ 3 β+( )[ ] 1/2.=

Λ th Λs
th 2π/qs P0d( )1/2,∼= =

M th qs/q0( ) ρK3 3 β+( ) 1 δ–( )/16γτDE{ } 1/2≈

∼ P0d( )1/2, ω2 1/τ .=
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layer thickness within the range P0/d ! 1 also coincides
with the experimental dependence of the form Mth ~
(P0/d)1/2 (see Fig. 3a). The theoretical conclusion that
the frequency dependence of the threshold of domain
formation in the region ω1 < ω < ω2 is weak agrees
qualitatively with the results of measurements (see
Fig. 3b). The peculiarities of the threshold behavior at
the frequencies ω < ω1 and ω > ω2 and the behavior of
the anomaly observed in the values of Mth in samples
with disclinations can be explained by comparing quan-
titatively the experimental and theoretical values of the
threshold characteristics of domains.

Figure 4 presents the theoretical dependence of the

relative period of domains, Λth/ , on the theoretical
parameter a characterizing the influence of the layer
thickness and helical pitch. The dependence is given for
several values of relative extension of cholesteric struc-
ture, namely, 0.01, 0.2, 0.5, and 0.9 (curves 1–4), in the
frequency range of ω @ ω1. In the calculation, the fol-
lowing values of the material constants of liquid crys-
tals were adopted: η = 0.05 Pa, ρ = 103 kg/m3, τ = 3 ×
10–8 s, and β = 2.8 × 10–2. The experimental values of

Λth/  given in the figure belong to cholesteryl chlo-
ride–ZhK404 solutions with a helical pitch of 2 and 4 µm
(notations 1 and 2) for the values of layer thickness
equal to 10, 40, 80, 100, and 240 µm and 10, 22, 40, 80,
and 100 µm, respectively, at a frequency of 2.95 MHz.
They were obtained by processing the data given in
Fig. 2c. One can see that the experimental values of the
relative period lie near theoretical curve 1 correspond-
ing to the relative extension δ = 0.01, which corre-
sponds to the conditions of this series of experiments:
observations were conducted using samples with the
values of P0 and d satisfying the condition d = mP0/2,
so that the cholesteric helix could “fit” into the capillary
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Fig. 4. Comparison of experimental and theoretical depen-
dences of the relative period of domains at the threshold of
the effect on the parameter a. The ultrasonic frequency is
2.95 MHz. The calculation is conducted for the relative
extension of the layer equal to 0.01, 0.2, 0.5, and 0.9
(plots 1–4). The experimental threshold values refer to cho-
lesteryl chloride–ZhK404 solutions with a helical pitch of
(1) 2 and (2) 4 µm.
formed by the cell plates almost without changing the
equilibrium value of the pitch. One should note the fol-
lowing fact that follows from the theory and is con-
firmed by experimental data: in the range of P0 and d
corresponding to the condition a @ 1 the relative
domain period almost does not depend on the extension
of the cholesteric structure.

The family of plots in Fig. 2d presents the depen-
dence of the relative domain period on ultrasonic fre-
quency that was calculated by Eq. (3) in the range of
0.3–4.5 MHz at constant values of layer thickness and
helical pitch (d = 22 µm, P0 = 4 µm, and a ≈ 10) [4]. The
relative extension of the helical structure is a parameter,
which takes the values of 0.01, 0.5, and 0.9 (curves 1–
3, respectively). One can see that the experimental val-
ues of the relative period of the domains that were
observed in the samples without disclinations at the fre-
quencies not exceeding f1 lie near curve 1. Oppositely,
the values of the relative period of domains formed in
liquid crystal layers with disclinations in the frequency
range close to f1 correlate with curves 2 and 3, which
correspond to higher values of δ. The experimental
setup provides an opportunity to evaluate the relative
extension δ only in order of magnitude. Therefore, it is
possible to note only the quantitative coincidence of
experimental and theoretical data, which confirms the
fact of influence of the local extension of a cholesteric
structure on the domain period and its relation to ultra-
sonic frequency. According to Eq. (5), which represents
the behavior of the threshold Mach number in the fre-
quency range satisfying the condition ω1 < ω < ω2 , the
connection of Mth with the layer thickness and helical
pitch is approximated by a relation of the form Mth ~
(P0/d)1/2, which is confirmed by experimental data
(Fig. 3a). The deviation from this relation at the values of
P0 close to d is connected with the violation of the restric-
tion P0 ! d introduced in constructing the model [4].

We can judge on the frequency dependence of the
threshold Mach number from analyzing the family of
curves for a cholesteric liquid crystal with a helical
pitch of 4 µm at a layer thickness of 22 µm (see Fig. 3b).
The value of the extension δ of the cholesteric structure
is a parameter of the curves, and it is equal to 0, 0.5, 0.7,
and 0.9 (curves 1–4). One can see that, in the frequency
range of 0.3–6 MHz, at all values of δ, the theoretical
threshold demonstrates a weak dependence on ultra-
sonic frequency. As the experiment showed, only the
values of Mth obtained for samples without disclina-
tions lie near theoretical curve 1, which corresponds to
the equilibrium state of the helix (δ = 0), while the val-
ues of Mth for samples with disclinations are grouped
near theoretical curves 3 and 4, which determine the
frequency dependence of the thresholds for liquid crys-
tal layers with an extended cholesteric structure. These
data allowed us to reveal the origin of the anomaly in
the behavior of the threshold Mach number as a func-
tion of ultrasonic frequency, which was observed in
ACOUSTICAL PHYSICS      Vol. 50      No. 1      2004
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experiments, and to confirm the hypothesis postulated
in the model [4] concerning the role of local changes of
the cholesteric pitch in the mechanism of domain for-
mation. According to the theory, Eq. (5), which is rep-
resented graphically by the family of curves 1–4 in
Fig. 3b, describes the change in the domain threshold
within the range ω1 < ω < ω2 , where the values of Mth

do not depend on frequency. According to theoretical
concepts, outside this frequency interval the threshold
must grow with both decreasing and increasing fre-
quency. Such a behavior of the threshold at the frequen-
cies exceeding f2 = ω2/2π = 5.2 MHz is confirmed by
the plot in the inset in Fig. 3b (courtesy of E.N. Ko-
zhevnikov; the calculation is performed for d = 100 µm,
P0 = 10 µm, and δ = 0.8).6 However, according to the
experimental data given in the inset, which were
obtained at frequencies greater than f2, the threshold
Mth does not depend on frequency and has almost the
same value as at the frequencies smaller than f2. This
suggests that the ultrasonically initiated structural tran-
sition in liquid crystals is a complex phenomenon
determined apparently by the influence of various com-
peting mechanisms [16], and, therefore, it cannot be
explained within the framework of a single universal
model of a vortex mechanism. At the same time, the
comparative analysis of experimental and theoretical
data characterizing the behavior of the threshold char-
acteristics of domains in liquid crystals as a function of
varying layer thickness, helical pitch, and ultrasonic
frequency confirms good prospects for the new
approach to form an explanation of orientation phe-
nomena on the basis of the traditional equations of lin-
ear dynamics with allowance for not only the anisot-
ropy of the viscous properties of cholesteric liquid crys-
tals but also the connection of the elastic properties of
mesophase with the relaxation of the orientational
order parameter.

In conclusion, it is necessary to note that the model
of the vortex mechanism underlying the formation of
two-dimensional domains under the effect of ultra-
sound in a planar layer of a liquid crystal with a helical
pitch much smaller than the layer thickness provides an
adequate description of the phenomenon observed in
the experiment in the frequency range satisfying the
condition f < f2 . The aforementioned deviation of
experimental data obtained for the influence of ultra-
sonic frequency on the threshold of the effect from the
predictions of the model [4], which occurs at frequen-
cies exceeding the inverse relaxation time, points to the
necessity for considering additional factors that may
lead to orientational instability of a planar structure of
a cholesteric liquid crystal in an ultrasonic field in the

6 The frequency f2 by definition is the quantity inverse of the relax-
ation time τ of the orientational order parameter. Adopting as τ
the value of 3 × 10–8 s typical of nematic liquid crystals [15], we
arrive at f2 = ω2/2π = 5.2 MHz.
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indicated frequency range. It should be noted that the
results reported in this paper are important from the
point of view of substantiation of the necessity to
involve new ideas and approaches in the analysis of ori-
entation phenomena at ultrasonic frequencies and their
verification using different types of liquid crystals, as
well as the development of the applied aspects of the
problem that are connected with designing new active
acoustooptic elements based on liquid crystals, which
provide an opportunity to control the parameters of a
light beam [17].
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Abstract—The three-dimensional problem of the scattering of a harmonic sound wave by an elastic cylindrical
shell is solved using Debye potentials. All potentials are represented in the form of integrals depending on the
axial component of the wave vector. © 2004 MAIK “Nauka/Interperiodica”.
Let a harmonic wave of angular frequency ω be pro-
duced by a point source Q and assume that this wave is
incident on an infinite elastic cylindrical shell whose
axis (the Z axis) lies at a distance r0 from the source.
The shell is immersed in an external fluid medium with
density ρ0 and sound velocity c0.

The potential Φi of the harmonic point source is
determined by the series [1–3]

(1)

where kγ = (k2 – γ2)1/2; k = ω/c0; γ and kγ are the axial
and radial components of the wave vector, respectively;
ϕ0 = 0; z0 = 0 (see Fig. 1); and

Potential Φs(r, ϕ, z) of the wave scattered by the
shell, can be represented by analogy with Φi(r, ϕ, z):

(2)

where an and A(γ) are unknown coefficients and func-
tions of γ, which are determined from boundary condi-
tions.

The cylindrical components of the displacement
vector U(Ur, Uϕ, Uz) can be expressed in terms of the
potential Φ and the cylindrical components of the func-
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tion A(Ar, Aϕ, Az) [4–6]:

(3)

In their turn, the cylindrical components Ar, Aϕ, and
Az of the function A can be expressed in terms of the
Debye potentials U and V [4–9]:

(4)

(5)

(6)

where k2 is the wave number of the transverse wave in
the shell material.

The vector function A is expressed in terms of the
Debye potentials U and V as [5, 6]

(7)

where R is the radius vector of a point belonging to the
shell.

The efficiency of this representation becomes appar-
ent if one takes into account that the functions U and V
obey the scalar Helmholtz equation, which is separable
in circular cylindrical coordinates:

(8)
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Representations of the vector function A in Carte-
sian and circular cylindrical coordinate systems are
given in [10–12], and its representation in a spherical
coordinate system is given in [9].

The potentials Φ, U, and V can also be expanded in
series in eigenfunctions of the Helmholtz equation [6,
8, 9]:

(10)

(11)

(12)

where hγ = (  – γ2)1/2; k1 = ω/c1 is the wave number of
the longitudinal wave in the shell material; c1 is the lon-
gitudinal wave velocity in the material; Nn(κγr) is the

Neumann cylindrical function; κγ = (  – γ2)1/2; bn, ,

cn, , dn,  and B(γ), B'(γ), C(γ), C '(γ), D(γ), D'(γ) are
unknown coefficients and functions, which are deter-
mined from the following boundary conditions at the
outer and inner surfaces of the elastic shell:

(i) the normal component of the displacement vec-
tor, Ur, is continuous at the outer boundary of the shell;

(ii) the sound pressure in the liquid is equal to the
normal stress at the outer boundary of the shell;

(iii) the normal stress at the inner boundary of the
shell is equal to zero; and 

(iv) the tangential stresses at the shell boundaries are
equal to zero.

In an analytical form, these boundary conditions are
written as

(13)
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(14)

(15)

(16)

(17)

The substitution of series (1), (2), and (10)–(12) into
boundary conditions (13)–(17) gives an infinite set of
equations for the unknown coefficients and functions
anA(γ), bnB(γ), B'(γ), cnC(γ), C '(γ), dnD(γ), and

D'(γ). Because of orthogonality of trigonometrical
functions cos(nϕ) and sin(nϕ), the infinite set of equa-
tions falls into seven equations with a fixed index n for
determining seven combinations of unknown coeffi-
cients and functions.

The product anA(γ) for the potential Φs of the scat-
tered wave is calculated by Cramer’s rule from the ratio
of two determinants of the seventh order:

(18)

where ∆ and ∆' are the determinant of the set of equa-
tions and the minor, which have the form

The values of the elements of both determinant and
minor can be found in [9]. In the presence of a liquid
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filler in the shell, the rank of the determinant and the
minor increases by unity.

Let us find the asymptotics of the field scattered by
the elastic shell according to formula (2) with the use of
relationship (18). Let us assume that the radial coordi-
nate r0 of the source Q tends to infinity and the ampli-
tude of the spherical wave radiated by this source is
equal to unity at a point O. Then, the near scattered field
of the shell at a distance of several radii a from its sur-
face will coincide with the scattered field from a source
of a plane harmonic wave of unit amplitude. The solu-
tion to this problem is well understood [13].

On the other hand, for evaluating the correctness
and accuracy of the proposed method, it is possible to
compare the results of calculation with an experiment

X

Y

Z
a

b

0

ϕ

Q (r0; 0; 0)

P (r; ϕ; z)
R

Fig. 1. Cylindrical shell insonified by a wave produced by a
point source.

1

0

1

2

3

1

2

3

4

5

1.4 1.8 2.2 2.6 3.0 3.41.0

|pΣ|

kr

ΨΣ, Ψi, rad

Fig. 2. Calculated and experimental distributions of |pΣ| and
ψΣ along the OQ direction near a hollow cylindrical shell.
performed with a steel (hollow) cylindrical shell inson-
ified by a near-point sound source. The experimental
procedure allowing one to measure the amplitudes and
phases of the scattered ps or diffracted pΣ (pΣ = pi + ps,
where pi is the pressure in the incident wave) sound
fields is described in [14–16]. Figure 2 shows the
results of the experiment for a steel cylindrical shell 8.0
cm in diameter and 0.4 mm in thickness. The source Q
was located at a distance of 4.5 m from the shell axis Z
(Fig. 1). The amplitude |pΣ| and phase ψΣ of diffracted
pressure pΣ were measured along the OQ direction
(Fig. 1). The distance from the shell surface was mea-
sured in kr units, where k is the wave number in the liq-
uid and r is the distance from the shell surface. The
wave dimension of the shell ka was chosen to be equal
to 1.0. The experimental values of |pΣ| and ψΣ were
compared with the computed values of |pΣ| and ψΣ for
an ideal acoustically soft cylinder (curve 1 and line 2 in
Fig. 2, respectively). Curve 3 shows the phase ψi of the
incident wave; |pi | was taken equal to 1. Curve 4 char-
acterizes |pΣ|, and line 5 characterizes ψΣ for the shell.
These experimental and numerical results serve as a test
for calculations by the proposed method.
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Abstract—For flexural waves in a rod, a simplest resonator responding not only displacements but also to the
inclination (the derivative of the displacement) of the rod axis is studied. The resonator consists of two spring–
mass systems attached through a rigid (nonbending) bar to the elastic rod in which a flexural wave propagates.
One of the springs is oriented perpendicularly to the rod, and the other is parallel to it. It is shown that, at a
certain friction, the single monopole–dipole resonator under consideration completely absorbs the incident res-
onance-frequency flexural wave, which propagates in the elastic rod. © 2004 MAIK “Nauka/Interperiodica”.
In practice, the absorption of flexural waves in rods
and plates is achieved with the use of resonators [1–4].
A simplest resonator is a spring–mass system [5–7].
Such a resonator oriented in the direction perpendicular
to the rod and attached to it through a spring represents
a monopole-type resonator, which responds to the dis-
placements of the rod axis. At the resonance frequency,
the incident flexural wave is totally reflected from a
lossless monopole resonator, and no traveling wave is
observed behind it. The presence of friction in the res-
onator reduces its efficiency as a wave reflector. A res-
onator with friction absorbs flexural waves. Previous
studies show that a single monopole resonator with
optimal friction absorbs no more than half the energy of
the incident wave. A complete absorption of the reso-
nance-frequency flexural wave can be achieved by
using a combination of a lossless resonator and a reso-
nator with a certain loss when the distance between the
resonators is equal to an odd number of quarter-wave-
lengths [8].

This paper considers a single resonator of the mono-
pole–dipole type. The simplest version of this resonator
is a structure consisting of two spring–mass systems,
which are attached through a common rigid (nonbend-
ing) bar to an elastic rod with flexural waves propagat-
ing in it. One of the spring–mass systems is perpendic-
ular to the rod and represents a monopole resonator
responding to the rod displacements. The other spring–
mass system is parallel to the rod and represents a
dipole resonator responding to the inclination (the
derivative of the displacement) of the rod axis.
Figure 1a shows the monopole–dipole resonator under
study. It contains (1) a spring with an elastic coefficient
κ1(1 – iε1), (2) a spring with an elastic coefficient κ2(1 –
iε2), (3) a rigid connecting bar of length L, and (4) an
elastic rod with a flexural wave propagating in it. One
can expect that, at a certain friction, such a resonator
will completely absorb the resonance-frequency flex-
ural wave propagating in a thin elastic rod.
1063-7710/04/5001- $26.00 © 20077
Consider a Cartesian coordinate system with the x
axis directed along the axis of the unperturbed rod and
assume that the rod vibrates in the xy plane. Let the
monopole–dipole resonator be attached to the rod at the
point x = 0. Assume that a harmonic flexural wave is
incident on the resonator from the left, so that the par-
ticle displacement in this wave is described by the
expression

(1)

where k is the wave number of the flexural wave. Under
the effect of this wave, the resonator vibrates and pro-
duces a normal point force F(t) and a bending moment
M(t) acting on the rod. For the rod connected with the
resonator, the equation of motion can be represented in
the form

(2)

where ρ is the linear density of the rod, D is its flexural
rigidity, and δ(x) and δ'(x) are the delta-function and its
derivative.

Let us introduce the following notations: ξ1(t) is the
displacement of the mass m1 from its equilibrium posi-
tion along the y axis and ξ2(t) is the displacement of the
mass m2 from its equilibrium position along the x axis.
Then, the equations of motion of the resonator can be
represented in the form

(3)

where the forces F(t) and f(t) are determined by the
expressions

(4)

w0 x t,( ) i kx ωt–( )[ ] ,exp=

ρ w2∂
t2∂

-------- D
w4∂
x4∂

--------+ F t( )δ x( ) M t( )δ' x( ),–=

m1 ξ̇̇1 t( ) F t( ) m2 ξ̇̇2 t( ),– f t( ),–= =

F t( ) κ1 1 iε1–( ) ξ1 t( ) w 0 t,( )–[ ] ,=
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Fig. 1. A monopole–dipole resonator.
(5)

Here, w(x, t) is the total field in the rod, i.e., the sum of
the incident and scattered fields, and ε1 and ε2 are the
dissipation factors.

In the case of the harmonic incident wave given by
Eq. (1), the normal force and the bending moment can
be represented as F(t) = F0exp(–iωt) and M(t) =
M0exp(–iωt), where F0 and M0 are the complex ampli-
tudes of the force and the moment, respectively.
According to Eq. (2), the scattered field in the rod is
equal to the sum of the monopole and dipole fields
determined by the formulas

(6)

(7)

where k4 = ρω2/D,  = +1 for x > 0, and  = –1
for x < 0. At x = 0, the following relationships are valid:

Let us choose the amplitudes F0 and M0 so as to sat-
isfy Eqs. (4) and (5). According to Eqs. (3), the dis-
placements of the masses can be expressed as

(8)

f t( ) κ2 1 iε2–( ) ξ2 t( ) L
w∂
x∂

------ 
 

x 0=

+=

=  M t( ) L⁄ .–

w1 x t,( )
iF0
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+ i k x–( )}exp iωt–( ),exp

w2 x t,( )  sgnx
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4k2D
-------------{ ik x( )exp

– k x–( )} iωt–( ),expexp

sgnx sgnx

w1

iF0
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m1ω
2
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ξ2 t( )
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Lm2ω
2

---------------- iωt–( ).exp–=
Substituting Eqs. (1) and (6)–(8) into Eqs. (4) and (5),
we obtain the desired force and moment amplitudes:

(9)

(10)

where Y =  =  is the compliance

of an infinite rod under a point force.
The scattered fields of the monopole and dipole

types can be obtained from Eqs. (6) and (7), respec-
tively, by substituting the amplitudes F0 and M0 into
them. The monopole scattering resonance occurs at fre-
quency ω1, determined as the solution to the equation

(11)

The dipole scattering resonance occurs at frequency ω2,
satisfying the equation

(12)

The total field in the rod is expressed as

(13)

where the force and moment amplitudes are determined
by Eqs. (9) and (10).
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Let us consider the structure of the total field given
by Eq. (13) for certain values of the parameters. Let
m2 = 0 and ε1 = 0. In this case, the vibratory system is a
monopole resonator without friction. Then, at the fre-
quency ω1 , the incident wave is totally reflected from
the resonator:

Now, let m1 = 0 and ε2 = 0. In this case, the vibratory
system is a dipole resonator without friction, and, at fre-
quency ω2 , the incident wave is also totally reflected
from the resonator:

Let ε1 = ε2 = 0 and ω1 = ω2 . This means that the fric-
tion in the vibratory system is absent and the natural
frequencies ω1 and ω2 coincide. Then, at ω = ω1 = ω2 ,
the incident wave is not reflected from the resonator but
only changes its phase as it passes the resonator:

Let ε1 = , ε2 = , and ω1 = ω2 . In this case,

in both the monopole and dipole resonators, the dissi-
pative loss is equal to the radiation loss, and the natural
frequencies ω1 and ω2 coincide. Then, at ω = ω1 = ω2,
we have the field

Hence, with these values of the parameters, a single
monopole–dipole resonator completely absorbs the
incident homogeneous wave propagating in the thin
rod, and only an inhomogeneous (exponentially decay-
ing) wave remains behind the resonator. Note that by
using two identical, symmetrically positioned (y > 0
and y < 0) monopole–dipole resonators, it is possible to
absorb a flexural wave in a relatively thick rod as well.
When the incident wave has the form of Eq. (1), no
scattered longitudinal wave is generated in a rod with
symmetric resonators.

Now, let us consider a more complicated resonator
model (Fig. 1b). A cylindrical elastic bar of radius a and
length L (e.g., a rubber bar) is loaded from above with
a mass m uniformly distributed over a ring b < r < a,
while no load is applied from above within the circle

w x 0 t,<( ) 2i kx( ) i kx( )exp–sin{ } iωt–( ),exp=

w x 0 t,>( ) i kx– iωt–( ).exp–=
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w x 0 t,<( ) { ikx( )exp=

– 1 i+( ) kx( )} iωt–( ),expexp

w x 0 t,>( ) { ikx( )exp–=

+ 1 i–( ) kx–( )} iωt–( ).expexp

κ1

4k3D
-------------

κ2L2

4kD
-----------
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=  ikx( ) 1
2
--- 1 i+( ) kx( )exp–exp

 
 
 

iωt–( ),exp

w x 0 t,>( ) 1
2
--- 1 i–( ) kx– iωt–( ).exp=
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r < b. The linear dimensions of the bar are small com-
pared to the longitudinal and flexural wavelengths in it.
Denote the Young modulus and the dissipation factor of
the elastic material as E1 and ε. The flexural rigidity of

the bar is equal to D1 = E1 , where r0 = a/2 and S =
πa2 are the radius of inertia and the area of the circle of
radius a, respectively. The bar is cut through along the
cylindrical surface r = b, so that the elastic medium
within the region r < b does not affect the vibrations of
the mass m along the bar axis. Let the resonator (the bar
with the mass) be attached to an elastic rod at the point
x = 0 and let flexural wave (1) be incident on this reso-
nator. Under the effect of the wave, the resonator
vibrates and produces a normal point force F(t) =
F0exp(–iωt) and a bending moment M(t) = M0 exp(–iωt),
which act on the rod. The scattered field in the rod is
equal to the sum of the monopole and dipole fields
determined by Eqs. (6) and (7), respectively. The ampli-
tudes F0 and M0 are obtained from the relations that
express the equality of the displacements and inclina-
tions of the rod and bar axes at the point of their junc-
tion. Denoting the displacements in the bar along the y
and (–x) axes as u(y, t) and v(y, t), we represent the
boundary conditions in the form

(14)

The displacements u and v  are produced in the bar by
the force –F(t) and the bending moment –M(t), respec-
tively, and can be calculated by the standard method
[9]. If the length of the bar is small compared to the lon-
gitudinal and flexural wavelengths, we obtain the
expressions

(15)

where κ1 = , κ2 = , and S1 = π(a2 – b2). The

quantities κ1 and κ2 are the effective elastic coefficients
of the “perpendicular” and “parallel” springs. Substi-
tuting Eqs. (1), (6), (7), and (15) into Eqs. (14), we
obtain the desired force and moment amplitudes. They
are determined from Eqs. (9) and (10), where m1 = m2 = m
and ε1 = ε2 = ε. The total field in the rod is obtained from
Eq. (13) by substituting the amplitudes F0 and M0 into
it. The resonance frequencies of the monopole and
dipole scattering are determined from the dispersion
relations (11) and (12), respectively, with the use of the
relations m1 = m2 = m, κ1 = E1S1/L, and κ2 = 3D1/L3.

Sr0
2
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mω
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E1S1

L
-----------

3D1

L3
---------



80 LAPIN
When the conditions ω = ω1 = ω2 and ε =  = 

are satisfied, the resonator completely absorbs the inci-
dent flexural wave of frequency ω. The second of these
two conditions, which expresses the equality of the dis-
sipative loss and the radiation loss, is reduced to the

form (ka)2 = . For a thin (compared to the flexural

wavelength) bar, this condition can be satisfied only
when S1 ! S.
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Abstract—Relations between the amplitudes of acoustic waves excited by a thin elastic plate under the effect
of external forces and the amplitudes of waves scattered by this plate are obtained. Two cases are considered:
when the plate separates acoustic media filling two half-spaces and when it separates acoustic media filling an
acoustic waveguide. The energy conservation law is used to derive the identities that determine the relations
between the amplitudes of acoustic waves radiated by a thin elastic plate under the action of forces. © 2004
MAIK “Nauka/Interperiodica”.
When solving diffraction problems for different
kinds of waves, it is expedient to have some relations
that allow one to test (at least indirectly) the final ana-
lytical and, especially, numerical results. In quantum
mechanics, results obtained in the framework of the
scattering theory are tested by the so-called optical the-
orem, which states that, in the case of scattering by a
certain potential, the total effective scattering cross sec-
tion is proportional to the imaginary part of the scatter-
ing amplitude at zero angle [1]. In solving scattering
problems for waves of different nature, the correspond-
ing relations, for which the term “optical theorem” is
retained, are derived from the energy conservation law.
As applied to the problems of scattering by passive
objects, this law reads that, in the absence of absorp-
tion, the energy supplied to a scatterer is equal to the
energy scattered by it. Different forms and generaliza-
tions of the optical theorem in acoustics can be found in
[2–11].

In acoustics, along with the scattering problems, it is
often necessary to solve the problems of acoustic wave
excitation. The latter deal with the situation when a
body vibrating under the action of forces excites pres-
sure waves in the surrounding medium. For these prob-
lems, it is useful to have a formula that relates the
parameters of the excited acoustic field as a conse-
quence of the energy conservation law, by analogy with
the optical theorem in the scattering problems.

This paper presents such formulas for two-dimen-
sional problems of acoustic wave excitation by a thin
elastic plate: the formulas relate the parameters of the
force acting on the plate and exciting its vibrations to
the parameters of the acoustic field generated by the
plate. The theoretical consideration is performed for the
case of a flexurally vibrating plate which separates dif-
ferent acoustic media (ideal compressible liquids or
gases) filling an acoustic waveguide. To obtain identi-
1063-7710/04/5001- $26.00 © 20081
ties, the problem of wave radiation is replaced by an
equivalent problem of reflection and transmission of
specially selected waves. The incident, reflected, and
transmitted waves are chosen so as to obtain identical
vibrations of the plate in the excitation and reflection
problems. In addition, relations between the wave
amplitudes in these two problems are derived, i.e., for-
mulas that relate the sound radiation from the plate to
its acoustic transparency.

It is necessary to note a certain relation of the prob-
lems under consideration to the reciprocity principle
established for linear equations of acoustics in the case
of sound scattering by elastic bodies [12]. In particular
(for example, in [13]), the reciprocity principle serves
as the basis for determining the symmetry properties of
the scattering matrix. According to the reciprocity prin-
ciple, it is possible to relate the sound field scattered by
an elastic body to the acoustic field produced by this
body under the action of some forces. This approach
was used in [14] to derive the formulas for the sound
fields generated by elastic plates and shells. Based on
the reciprocity principle, the relation between the sound
radiation and the acoustic transparency of an infinite
plate separating different media was investigated in
[15, 16]. In the cited publications, asymptotic methods
were used to study the sound radiation from a plate
under the effect of a point force with the observation
point positioned at a distance far exceeding the wave-
length. However, it should be noted that the application
of the reciprocity principle requires a complete solution
of a certain auxiliary problem of wave excitation, while
the solution to another problem is expressed through
the auxiliary one. Below, only the energy relations are
determined, and, therefore, no complete solution of the
auxiliary problem is necessary.

Let us consider a planar acoustic waveguide of con-
stant width H, which occupies the region (–∞ < x < +∞,
004 MAIK “Nauka/Interperiodica”



 

82

        

LUK’YANOV

                                                                                                                                                 
0 ≤ y ≤ H). A thin elastic plate separating two ideal
compressible liquids is positioned in the waveguide
cross section (x = 0, 0 ≤ y ≤ H). Consider the problem
of a stationary wave radiation from this plate under the
action of some forces. The dependence of the force and
the wave processes on time t is assumed to be harmonic
with a circular frequency ω and is determined by the
factor exp(–iωt), which is omitted in the following cal-
culations.

The acoustic pressures that occur in the right-hand
(x > 0) and left-hand (x < 0) parts of the waveguide are
denoted as P1(x, y) and P2(x, y), respectively. These
pressures satisfy the homogeneous Helmholtz equa-
tions

where ks is the wave number in liquid, ks = ω/cs, cs is the
speed of sound in the medium, and the index s takes the
values s = 1 or 2 depending on which half-space is char-
acterized by the given quantity.

At the waveguide walls, the acoustic pressure obeys
some boundary conditions describing the mechanical
behavior of the walls. Without specifying these condi-
tions, we assume that the spectrum of normal modes of
the waveguide is known and the boundary conditions
are such that, for the normal modes of number n to the
right and to the left of the plate, the pressure distribu-
tions throughout the waveguide cross section are iden-
tical and have the form ϕn(y), where n = 1, 2, …. These
functions are normalized according to the relation

(1)

where Φ is a constant.

The pressure (x, y) corresponding to the normal
mode of number n is given by the expression

(2)

where s = 1 for the waves to the right of the plate and
s = 2 for the waves to the left of the plate, and λsn is the
wave number of the nth normal mode. In the absence of
absorption in the acoustic medium, the normal modes
of the waveguide are separated into propagating ones,
whose wave numbers λsn are real, and inhomogeneous
ones, whose wave numbers λsn are purely imaginary.
The waves (x, y) propagate (Reλsn > 0, Imλsn = 0)
and attenuate (Reλsn = 0, Imλsn > 0) in the positive

direction of the Ox axis, and the waves (x, y), in the
negative direction.

The flexural displacement of the plate U = U(y)
obeys the inhomogeneous Kirchhoff equation, which,

∂2Ps x y,( )
∂x2

------------------------
∂2Ps x y,( )

∂y2
------------------------ ks

2Ps x y,( )+ + 0,=

ϕn
2 y( ) yd

0
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∫ Φ,=
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±

psn
± x y,( ) ϕn y( ) iλ snx±( ),exp=

psn
+
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–

with allowance for the contact with the acoustic
medium, has the following form for 0 < y < H:

(3)

Here, g is the flexural rigidity of the plate and m is its
surface density; the density of forces acting on the plate
is chosen in the form

(4)

where fj is the force amplitude and j = 1, 2, ….

The condition that the plate displacement be equal
to the normal displacement of the liquid on the plate is
expressed as

(5)

where ρ1 and ρ2 are the densities of the acoustic media
to the right and to the left of the plate, respectively.

The ends of the plate are restrained in some way at
the waveguide walls. In the general case, the plate per-
forms complex vibrations with all plate modes being
excited, which leads to the excitation of the whole spec-
trum of normal modes in the waveguide.

In certain particular cases of the plate end restraint,
the plate only performs the vibrations described by
ϕj(y). Then, only the normal modes (x, y) are exited
in the waveguide part corresponding to x > 0 and (x,
y), in the waveguide part x < 0. Such a situation occurs,
e.g., when the waveguide walls are fixed and the sliding
restraint conditions are satisfied at the plate ends.

Let the plate vibrations excite all normal modes in
the waveguide. The pressure field excited in the
waveguide can be expanded in the normal modes as

(6)

(7)

where the expansion coefficients An and Bn are the
desired amplitudes of normal modes excited in the
waveguide.

In addition, let us also consider the reflection prob-
lem for normal modes that are incident on the plate
from the right-hand part of the waveguide:

(8)

When reflected from the plate, these waves excite the
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ACOUSTICAL PHYSICS      Vol. 50      No. 1      2004



RELATION FOR THE AMPLITUDES OF ACOUSTIC WAVES 83
field

(9)

and when transmitted through the plate, they excite the
field

(10)

Let us choose the wave amplitudes an, bn, and cn in
Eqs. (8)–(10) so as to satisfy the following conditions:
the pressure produced on the plate by the waves should
be equal to the pressure produced by the external force
given by Eq. (4) together with the pressure of liquids in
the problem of wave radiation by the plate, i.e.,

(11)

and the displacement of the liquid near the plate along
the plate normal should be equal to the displacement in
the case of the wave excitation under the action of the
external force, i.e.,

(12)

(13)

When Eqs. (11)–(13) are satisfied, the plate vibrates in
the same way in the problem of radiation under the
action of a force and in the problem of reflection of a
plane wave.

From Eqs. (11)–(13) and condition (5) with allow-
ance for representations (6)–(10), we obtain a system of
linear algebraic equations in the desired quantities:

(14)

Here, δjn is the Kronecker delta: δjj = 1 and δjn = 0 for
n ≠ j; Zsn is the radiation impedance for the nth normal
mode of the waveguide to the right (s = 1) and to the left
(s = 2) of the plate: Zsn = ρscs ks/λsn.

Solving the system of equations (14) for the quanti-
ties an, bn, and cn, we obtain relations between the nor-
mal mode amplitudes in the problem of scattering by
the plate and in the problem of radiation from the plate
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under the action of forces:

(15)

Let us assume that, in the waveguide under consid-
eration, at some frequency ω, we have N1 propagating
first normal modes to the right of the plate and N2 prop-
agating first normal modes to the left of the plate. First,
we consider the case when a normal wave wj(x, y) =

aj (x, y) that is incident on the end of the waveguide
is a propagating one (j ≤ N1). This wave carries a power
flux

The normal waves reflected from the plate carry away

the power flux Π1 = , and the waves

transmitted through the plate transfer the power flux

Π2 = , where the constant Φ is deter-

mined by normalization (1). From the power conserva-
tion law expressed as

(16)

we obtain the equality

From this equality with allowance for expressions (15),
we derive the desired relation between the amplitudes
of normal modes excited in the waveguide, this relation
being valid for any j ≤ N1:

(17)

(the overbar above Aj means complex conjugation).

Correct to the dimensional factors on both sides of
identity (17), the latter expresses the equality of the
work of the forces acting on the plate and the vibration
energy carried by plane waves propagating away from
the plate. In the particular case when, owing to the spe-
cial choice of restraint conditions for the plate ends at
the waveguide walls, the plate excites only one propa-
gating normal mode of number j, and only one term of
the same number remains on the right-hand side of
identity (17).
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Taking into account the third equation in system
(14), identity (17) can be represented in the form

(18)

In the particular case, when the acoustic medium is
present on only one side of the plate, namely, at x > 0,
we can formally set Z2n = 0 in Eq. (18). As a result, we
obtain the identity

(19)

Now, let the density of forces in Eq. (19) contain the
pressure distribution of an inhomogeneous normal
mode (j > N1). It is well known that an inhomogeneous

wave aj (x, y) alone causes no energy transfer. How-
ever, according to [17, 18], in the presence of an inho-

mogeneous normal mode bj (x, y) reflected from an
obstacle, i.e., from the plate in our case, a nonzero
power flux Πj carried toward the plate by the acoustic
pressure is present:

With allowance for Eqs. (15), we have

(20)

Using expression (20), from equality (16) of the
power fluxes for j > N1 , we derive an identity similar to
identity (17), in which the impedance Z1j appearing on
its left-hand side is replaced by |Z1j|.

In the special case when a single inhomogeneous
normal mode of number s > N is excited in the
waveguide, the right-hand side of identity (17) is equal
to zero, and, hence, the quantity fj  is purely imagi-
nary.

Changing to normalized normal modes in Eq. (2),

and replacing the force in representation (4) by fj(y) =
|Z1j|−1/2 fjϕj(y), we reduce identity (17) to the form

A similar consideration can be performed for the
excitation of plane waves by an infinite plate extending
along the straight line (x = 0, –∞ < y < +∞) and separat-
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ing two acoustic media that fill the half-spaces x < 0 and
x > 0 with –∞ < y < +∞. Under the action of forces with
density f(y) = f0exp(ikyy), where f0 is the force ampli-
tude and the inequalities ky < k1 and ky < k2 are assumed
to be satisfied, the plate excites plane pressure waves in
the two half-spaces:

(21)

(22)

Here, A and B are the amplitudes of plane waves and

ksx = .

As in the case of the waveguide, let us now consider
the problem of reflection from the plate for a plane

wave. When a plane wave (x, y) = aexp(ik1xx – ikyy)
is incident on the plate at x > 0, it gives rise to a reflected

wave (x, y) = bexp(ik1xx + kyy) at x > 0 and a trans-

mitted wave (x, y) = cexp(ik2xx + ikyy) at x < 0. For
the amplitudes of plane waves, we obtain a system of
linear equations, which differs from system (14) only
by the absence of subscripts in the amplitude notations
and by the substitution of f0 for fj. Therefore, the desired
identity, which follows from the comparison of the
power fluxes, has the form

(23)

where Zs represents the impedances of the acoustic

media: Zs = ρscs , s = 1, 2.

As in the derivation of identity (18), with allowance
for the relation between the amplitudes of waves gener-
ated by the plate, from Eq. (23) we obtain

(24)

For the case of a plate separating identical liquids, iden-
tity (24) takes the form Re(f0 ) = 2|A|2.

If in the lower half-plane the medium is absent, this
case can be formally described by setting the density of
the acoustic medium in it equal to zero. Then, we have
Z2 = 0 and, from identity (24), we obtain Re(f0 ) = |A|2
for the problem of the plane wave reflection from a
plate whose one side is in contact with an acoustic
medium.

When passing to normalized plane waves, we
replace the factor exp(iksxx ± ikyy) involved in the

expression for the waves by exp(iksxx ± ikyy), and
the factor exp(ikyx) in the expression for the density of
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external forces by exp(ikyx). In terms of this nor-

malization, the waves Ps(x, y) and (x, y) transfer
equal powers through a unit area in the direction normal
to the plate. Identity (23) takes the form Re(f0 ) =
|A|2 + |B|2.

Identities (23) and (17), which were obtained with-
out determining the plate displacement and the ampli-
tude of the waves radiated by the plate, can be directly
verified. For this purpose, we determine the complete
solution to the radiation problem. We seek the displace-
ment of the plate in the form

(25)

where u is the desired amplitude of the plate displace-
ment.

For the quantities A, B, and u, from conditions (3)
and (5) with allowance for representations (21), (22),
and (25), we obtain a system of linear algebraic equa-
tions

(26)

Here, Zp is the impedance of flexural vibrations of the
plate, which is equal to the ratio of the total pressure onto
the plate, f(y) + P2(0, y) – P1(0, y), to the vibration veloc-

ity of the plate v  = –iωu, Zp = –imω .

From system (26), we determine the expression for
the quantity A:

(27)

To verify identity (23), we substitute expression (27)
for the amplitude A into this identity. As a result, on
both right-hand and left-hand sides of the identity, we

obtain the same quantity .
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Abstract—Methods based on the discrete wavelet transform are used to study ultrasonic pulses in aluminum
single crystals. Longitudinal elastic waves propagating in the [111] crystallographic direction were generated
at 5 MHz. Methods for filtering images of an acoustic field on the basis of wavelet transform are developed.
Recommendations on the choice of filtering parameters are given. © 2004 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The wavelet transform has presently become one of
the most reliable, convenient, and mathematically rig-
orous methods for analyzing functional dependences.
This method can be used to determine instantaneous
dominating periods of oscillations and reveal the mod-
ulation type, latent periodicity, and correlation between
oscillations of different periods. The method shows a
great promise for the analysis of pulsed and noise-like
signals. There are two main types of wavelet transform:
continuous and discrete ones [1, 2]. The continuous
transform is mostly used to analyze functions. The dis-
crete transform is the basic means in interference com-
pression algorithms and filtering procedures. The
results of the wavelet transform are the wavelet spec-
trum and the scalogram, which serve as a source of both
local and general information on the properties of the
function analyzed. A wavelet spectrum is a diagram,
which uses colors or shades of grey to map the values
of the wavelet transform coefficients. The abscissa axis
represents the time, and the ordinate axis represents the
period of signal oscillations. A scalogram is a general-
ized characteristic of the time function under analysis.
It shows the distribution of oscillation power in oscilla-
tion period. The maxima of the scalogram show which
periods predominate.

The processing algorithms do not as yet fully take
into account specific features of acoustic signals.
Therefore, advantages of the wavelet analysis in this
field have not been realized in full measure.

Ultrasonic laser interferometry is one of the modern
techniques for detecting acoustic signals and visualiz-
ing the wave fields. It provides high-selectivity broad-
band local measurements. The Doppler interferometry,
which is widely used at present, provides calibrated
measurements. Existing software is capable of repre-
senting the information on acoustic fields in various
forms, including visualization of wave fronts and elas-
1063-7710/04/5001- $26.00 © 20086
tic energy distribution over the beam at a particular
time. The broadband character of the technique and the
effect of surface roughness are the sources of noise and
interference. Therefore, it is worthwhile to develop
general-purpose algorithms for filtering signals pro-
duced by ultrasonic laser interferometers. It has been
shown in [3, 4] that the wavelet transform is a promis-
ing means for solving this problem. However, the goal
of these studies was to apply the wavelet transform in a
limited field of ultrasonic nondestructive testing. It is
therefore necessary to examine the signals produced by
ultrasonic interferometers in detail by the wavelet
transform method.

In this paper, we use the discrete wavelet transform
to analyze longitudinal acoustic waves in aluminum
single crystals. We consider an algorithm developed for
filtering two-dimensional images of acoustic fields on
the basis of the discrete wavelet transform.

EXPERIMENTAL TECHNIQUE

The experimental portion of this work was con-
ducted with the use of an OFV-3001 ultrasonic laser
interferometer belonging to Fraunhofer Institute of
Nondestructive Testing (Dresden, Germany). A coher-
ent optical beam produced by a helium–neon laser was
split into two parts. One part was passed through an
acoustooptical modulator (Bragg cell); the second was
guided to the object under study through a system of
optical lenses. The beam reflected from the object was
applied to a photodetector, where interference with the
reference beam, which had passed through the Bragg
cell, was observed.

If the reflecting surface of the object is illuminated
by an ultrasonic wave, components shifted in frequency
due to the Doppler effect appear in the spectrum of the
reflected signal. A 1-m/s velocity of the object produces
a 3.17-MHz Doppler shift. In a harmonic elastic wave,
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Amplitude distribution of elastic displacements in a beam of longitudinal waves that has traveled through the aluminium
single crystal in the [111] direction for an unpolished reflecting surface at 5 MHz: (a) first and (b) second pulses.
the particle velocity is proportional to the amplitude of
the displacement. Therefore, the amplitude distribution
of the elastic displacement can be obtained by scanning
the object’s surface and measuring the particle velocity.

The output signal of the interferometer was
recorded and converted into a code by a digital oscillo-
scope. A personal computer was used to analyze and
store the information. A scanner moved the sample in
the vertical and horizontal directions. The typical scan-
ner increment was 0.125 or 0.25 mm. The equipment
was capable of accumulating the signal in order to
improve the signal-to-noise ratio. At each point, the sig-
nal was averaged over 50 to 300 measurements. Longi-
tudinal elastic waves were excited by a piezoelectric
transducer with a resonance frequency of 5 MHz. The
transducer plate was 13 mm in diameter. The pattern of
damped ultrasonic echo-signals was observed by a
USIP12 flaw detector. Each sample had two flat sur-
faces. On one of them, the piezoelectric transducer was
placed; on the other, the laser beam was incident, and
the elastic field was detected at this surface.

Results of measurements were stored by a computer
program based on the LabView 5.0 software. The time
dependence of the response amplitude at each point of
the scanned field, i.e., the type A scan, contained 1000
discrete signal samples. The scanned area was 14 ×
14 mm. After the scanning, the following characteris-
tics of the elastic displacement field can be visualized:
(i) a type A scan at each point of scanning; (ii) a type B
scan, i.e., a diagram that combines type A scans along
a particular direction; and (iii) a type C scan, i.e., the
very elastic displacement amplitude distribution over
the scanned area. To construct a type C scan, it is nec-
ACOUSTICAL PHYSICS      Vol. 50      No. 1      2004
essary to choose a time interval on the type A scan over
which the maximum (or minimum) amplitude value
distribution will be analyzed. This feature provides a
separate observation of the acoustic fields produced by
pulsed excitation due to, for example, pulses that have
passed through the sample different numbers of times.

An aluminum single crystal in the form of a 16- to
20-mm long cylinder was used as a sample. It had two
parallel faces, one of which was perpendicular to the
[111] axis and polished so that the roughness height
was no greater than 8 µm. The second face was not pol-
ished, and its roughness height was 30 to 40 µm and
roughness width was about 100 µm.

RECORDING OF THE ACOUSTIC FIELD: 
IMAGE FILTERING

Acoustic fields in aluminum single crystals detected
by the laser interferometry technique were studied in
[5], where the analysis was mostly focused on the
response of the interferometer to elastic displacements
in transverse waves. Below, we examine the efficiency
of the wavelet filtering procedure and address the ques-
tion of how to choose the filtering parameters. Figure 1
shows the type C scans of an unpolished [111] surface
of the sample. The maximum amplitude of the interfer-
ometer’s response is shown in white. The X and Y axes
represent the distances from the scan origin (0, 0) in
millimeters. The longitudinal acoustic waves were
excited by a piezoelectric transducer at 5 MHz in the
pulsed mode. The amplitude was measured for a 1-µs-
long interval, which corresponded to the length of the
ultrasonic pulse. The delay was chosen such that Fig. 1a
shows the amplitude distribution of elastic displace-
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Fig. 2. Amplitude distribution of elastic displacements in the pulse shown in Fig. 1a after filtering with four expansion levels and a
fixed threshold using (a, c) Sym8 and (b) Sym4 wavelet functions and (a, b) soft and (c) hard thresholdings. Figure 2d refers to the
second pulse in Fig. 1b filtered with the Sym8 function, four expansion levels, and soft thresholding.
ments in the pulse that has traveled through the sample
once in the forward direction. Figure 1b shows the dis-
tribution for the second pulse, which has traveled three
times through the sample length. At each point of the
scanned area, the measurements used a 200-fold accu-
mulation. Both these distributions obtained from a
rough surface contain an intense noise component.

A result of the wavelet transform of these distribu-
tions is shown in Fig. 2. A detailed description of the fil-
tering algorithm can be found in [4]. Here, we only
describe it briefly.

The wavelet filtering procedure relies on the recur-
rent fast wavelet transform (FWT) algorithm proposed
by Mallat [2]. The FWT principle consists in separating
the frequency domain, on which the analyzed signal is
defined, into two equal parts with a pair of low-pass and
high-pass filters referred to as quadrature mirror filters
(QMFs). As a result, at the first level of the expansion,
the original vector of length N generates two new vec-
tors, each of which consists of N/2 elements. One of
them is the low-frequency portion of the original signal,
it is referred to as the set of approximation coefficients
or as the approximation of the signal. The other vector
is the high-frequency portion of the original signal, it is
referred to as the set of detailing coefficients or as sig-
nal details. Further, this separation procedure can again
be applied to the approximation of the original signal.
The number of times this procedure is applied is called
the number of expansion levels of the FVT algorithm.
Note that the procedure is completely reversible; i.e.,
with the approximation and detail vectors being known,
the original signal can be reconstructed exactly with the
help of the inverse fast wavelet transform (IFWT).
ACOUSTICAL PHYSICS      Vol. 50      No. 1      2004
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Two-dimensional images can be processed in a sim-
ilar manner with the help of the two-dimensional FWT,
which is performed in two stages. At first, the QMFs are
applied to rows of the analyzed matrix and the columns
at the filter outputs are decimated by a factor of two.
Then, all columns of each of the two new matrices are
processed by the QMFs once more and the rows of the
four arrays obtained are decimated by a factor of two.
As a result, at the first level of the expansion, the origi-
nal M × N matrix generates four M/2 × N/2 matrices:
the approximation and horizontal, vertical, and diago-
nal details. Note that, as in the one-dimensional case,
the two-dimensional IFWT exists.

The wavelet filtering procedure itself is as follows.
For all vectors or matrices of the detailing coefficients
obtained at all expansion levels of the FWT algorithm,
thresholds symmetric about the zero level are adjusted,
their values being chosen in accordance with a certain
strategy. The elements of the vectors or matrices that
are above the thresholds are kept unchanged, while the
others are zeroed. This procedure is called the hard
thresholding. When the array elements that remain non-
zero after the threshold limiting are additionally shifted
towards zero by the corresponding threshold levels, the
procedure is called the soft thresholding [6].

Figures 2a–2c show images obtained by filtering the
image presented in Fig. 1a. As the basis functions, the
procedure used wavelets of the Sym family, or symlets.
Wavelets belonging to this family are denoted as
SymM, where M is the wavelet order. It is known that
[2], among other features, parameter M characterizes
locality of the wavelet. In particular, the SymM wavelet
consists of 2M – 1 nonzero samples. Detailed informa-
tion about symlets and other compactly supported
wavelets used with the FWT algorithm can be found in
[2]. Figure 2a is obtained with the Sym8 function and
four expansion levels; Fig. 2b, with the Sym4 function
and the same number of levels. Both cases employ the
strategy with a fixed threshold and soft thresholding.
The threshold levels are determined as [6]

(1)

where i is the index of the expansion level, si =
med(|wi|)/0.6745, and med(·) stands for median of the
matrix. Thresholds for the one-dimensional case can
also be specified by formula (1) with the product of row
and column numbers replaced with the length of the
corresponding vector.

The same image was filtered with the use of the hard
thresholding. The result obtained with the Sym8 func-
tion and four expansion levels is illustrated in Fig. 2c.
The image shown in Fig. 2d is the amplitude distribu-
tion of the second pulse from Fig. 1b after filtering with
the use of the Sym8 function, four expansion levels, and
the soft thresholding strategy. By comparing these
results, we can conclude that the soft thresholding strat-
egy is preferable, because the hard thresholding pro-
duces a large number of clearly outlined local artefacts

Ti si 2 NMln ,±=
ACOUSTICAL PHYSICS      Vol. 50      No. 1      2004
(Fig. 2c), which affect the visual perception of the fil-
tered image. It is also reasonable to employ a higher
order wavelet function, say Sym8. It has been shown that,
to efficiently filter pulsed ultrasonic signals, it is sufficient
to use four expansion levels [7].
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Fig. 3. Type B scans for the same excitation conditions as in
Fig. 1: (a) original image constructed for the cross section
X = 8 mm and (b) image filtered with the Sym8 wavelet
function and four expansion levels.
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Type B scans can be used to visualize the shape of
the wave front. It can also be useful to optimally choose
the time interval for the type C scan. Figure 3a shows a
type B scan created under the same excitation condi-
tions as that in Fig. 1 for Y = 8 mm = const, whose value
is chosen from the type C scan in Fig. 1a. The abscissa
in Fig. 3a represents time in microseconds (10 µs) dur-
ing which the interferometer response was recorded.
The Y axis represents the distance along the chosen ver-
tical or horizontal line in millimeters. The cross section
shown in Fig. 3a passes through the central part of the
beam. The vertical lines near 2.5–3.5 µs and 7.5–8.5 µs
correspond to wave fronts of the first and second pulses.
Less clear-cut oblique lines are produced by the beams
reflected from the lateral surfaces of the sample.

The image in Fig. 3a is contaminated with noise.
This image was also filtered with the use of the Sym8
function and four expansion levels. The result is shown
in Fig. 3b. It is clearly seen that the signal-to-noise ratio
has improved. After filtering, even a heavily contami-
nated image gives information about the acoustic
parameters, in particular, about the shape of the wave
front.

CONCLUSIONS

Thus, ultrasonic pulse fields in aluminium single
crystals are studied. Measurements using an ultrasonic
laser interferometer are performed. The amplitude dis-
tributions of elastic displacements in ultrasonic pulse
beams are obtained, and the shape of the wave front is
determined.

Filtering algorithms for the time response of the
laser interferometer (pulsed ultrasonic signals) and for
two-dimensional images are developed. It is shown
that, in filtering two-dimensional images, good results
are obtained by using symlet wavelet functions of a suf-
ficiently large order, for example, Sym8. The number of
expansion levels can be limited to four without a sacri-
fice of precision. Filtering with a constant threshold and
soft thresholding gives the best results.

A practically important convenience of the wavelet
filtering algorithms is that they do not need to be spe-
cially tuned to a specific function to be analyzed.
Advantages of the wavelet filtering are realized without
manual intervention. On the whole, the algorithms of
filtering two-dimensional acoustic signals on the basis
of the discrete wavelet transform are a reliable and ver-
satile tool, which is capable of filtering noise of diverse
spectral contents out of two-dimensional acoustic field
images.
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Abstract—A statistical problem of estimating the shape and maximum possible width of the spatial energy
spectrum of secondary sources is formulated and solved. The secondary sources under consideration are char-
acteristic of the class of scatterers with preset statistical mean parameters. This estimation is important for ana-
lyzing the possibility of solving inverse scattering problems, including the question of the uniqueness and sta-
bility of the solution and also the correct organization of a tomographic experiment. Results of a computer sim-
ulation are presented, and the expected statistical mean spectrum is compared with a particular realization of
the spectrum. In the case of a strongly pronounced rescattering, the statistical mean width of the spectrum is
mainly determined by the effective velocity contrast in the ensemble of scatterers and depends only weakly on
the scale of spatial fluctuations of the scatterers’ characteristics. © 2004 MAIK “Nauka/Interperiodica”.
1. PRACTICAL IMPORTANCE 
OF THE ESTIMATION PROBLEM

In this paper, we formulate the problem of a statisti-
cal estimation of the effective width of the spatial spec-
trum of secondary sources for scatterers belonging to a
preset class. The practical need for such an estimation
is connected with solving the inverse scattering prob-
lem, namely, the nonlinear and ill-defined problem of
reconstructing the internal structure of an object (scat-
terer) studied by remote sensing with wave fields.
Knowing the size of the localization region of the spa-
tial spectrum of secondary sources, it is possible to esti-
mate the number of the degrees of freedom of these
sources. In this way, first, it is possible to analyze the
fundamental possibility of obtaining a unique and sta-
ble reconstruction of a scatterer of a given strength and
to determine the minimal amount of discrete experi-
mental scattering data necessary for this reconstruction
[1, 2]. Second, it is possible to choose and set up the
most appropriate tomographic system that provides the
optimal (among available) amount of data in mono-
chromatic and pulsed modes. For this purpose, in par-
ticular, it is necessary to estimate the maximal admissi-
ble angular interval of discretization in the data acqui-
sition. For example, in the case of a ring circuit of data
acquisition in a two-dimensional monochromatic sys-
tem, this interval is [3] ∆ϕmax ≅ 2π/(χIL), where L is the
linear dimension of the scattering region R and χI is the
linear half-width of the localization region of the spatial
spectrum of secondary sources at a fixed incident field.
It is well known that an excess of the angular interval
over the maximum one leads to a loss of information on
the scatterer (irreplaceable at the stage of the numerical
reconstruction of the scatterer) and to the inadequacy of
1063-7710/04/5001- $26.00 © 20009
the reconstructed image [4]. Finally, proceeding from
the available amount of data, it is possible to select the
most appropriate techniques for solving the inverse
problem, some of which are mentioned in [1].

2. STATISTICAL APPROACH 
TO ESTIMATION

It is necessary to start by mentioning the effect of
broadening of the spatial spectrum of secondary
sources of a distributed scatterer by repeating several
phrases from [1], where this effect is considered in
more detail.

An acoustic scatterer formed in the general case by
inhomogeneities of the sound phase velocity, absorp-
tion coefficient, and density of a medium is described
by the function ε(r). To reconstruct this function, the
scatterer is irradiated by an incident field U0(r, α) with
the parameters (including the field configuration, direc-
tion of incidence, and frequency) described by a single
generalized index α. The secondary sources I(r, α)
arise in the scattering region R as the result of interac-
tion of U0 with the scatterer:

(1)

where U(r, α) is the total field obeying in the mono-
chromatic case the Lippmann–Schwinger equation [5]

(2)

and G(r, k0) is the Green function of a homogeneous
infinite nonabsorbing background medium with a wave
number k0 corresponding to the given index α. From

I r α,( ) ε r( )U r α,( ),≡

U r α,( ) U0 r α,( )=

+ G r r'– k0,( )ε r'( )U r' α,( ) r' r;∀d∫
004 MAIK “Nauka/Interperiodica”
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Eqs. (1) and (2) it follows that secondary sources pro-
duce a scattered field usc(r, α) ≡ U(r, α) – U0(r, α). An
equation for I(r, α) is obtained by multiplying Eq. (2)
by ε(r):

(3)

In the single scattering approximation (which is also
called the Born approximation), it is assumed that U(r,
α) ≈ U0(r, α) at r ∈  R. Then, I(r, α) ≈ Iborn(r, α), where
Iborn(r, α) ≡ ε(r)U0(r, α) are the secondary sources in
the Born approximation. The Fourier transformation of
Eq. (3) with respect to the coordinate r leads to an
expression of the Lippmann–Schwinger type, which

connects the spatial spectra of a scatterer  ≡

exp(–i r)dr and its secondary sources ( , α):

(4)

where p is the space dimension; the spatial spectrum of

the Green function is ( , k0) = (| |, k0). In the Born

approximation, ( , α) ≈ ( , α), where

(5)

and ( , α) is the spatial spectrum of the incident
field.

In the case of a spatially distributed scatterer, the
function ε(r) is considered for a continuum set of val-
ues r ∈ R. If the scatterer is sufficiently strong (so that
the rescattering of wave fields within R is essential),
the localization region for the basic part of the spatial

spectrum of secondary sources ( , α) is broader than

that for the scattering spectrum . The stronger the
scatterer, the stronger the broadening is. It is necessary
to keep in mind the aforementioned effect for the ade-
quacy of the discrete mathematical description of the
scattering process and its physical essence.

Precisely in connection with the broadening effect,
the problem of statistical estimation of the width of the
spatial spectrum of secondary sources arises. This
problem was formulated and partially investigated in
[6]. A statistical approach is connected with the fact
that only the average characteristics of an object under
investigation (a scatterer) can be known a priori in
tomographic problems. Moreover in the case of taking

into account the rescattering, the spectrum ( , α)
depends on the scatterer function’s nonlinearly, which

I r α,( ) Iborn r α,( ) ε r( ) G r r'– k0,( )I r' α,( ) r'.d∫+=

ε̃ x( )

ε r( )∫ x Ĩ x

Ĩ x α,( ) Ĩborn x α,( )=

+
1

2π( )p
------------- ε̃ x x'–( )G̃ x' k0,( ) Ĩ x' α,( ) x',d∫

G̃ x G̃ x

Ĩ x Ĩborn x

Ĩborn x α,( ) 1

2π( )p
------------- ε̃ x x'–( )Ũ0 x' α,( ) x',d∫=

Ũ0 x

Ĩ x

ε̃ x( )

Ĩ x
makes the problem of the exact determination of ( ,
α) very difficult. The nonlinear character can be seen
directly in the expansion of Eq. (4), with allowance for
Eq. (5), into a power series with respect to the function

.
Consider an ensemble of scatterers {ε(r)} of a cer-

tain class. We make the following assumptions (the sign
〈•〉ε denotes averaging over all scatterers):

—〈ε(r)〉ε = 0 ∀ r ∈  R and, therefore, 

 = 0 ∀ ; (6)

—the mean spectral “energy density” of a scatterer,

ε(| |) ≡ , is known;

—the components  are correlated only within
the volume ∆ξ ≈ (β)p, where β ≈ 2π/L:

(7)

—the probability density of the deviation of the

function  from its zero average value is distributed

according to the normal law at each fixed .
Each fixed scatterer from the ensemble is irradiated

simultaneously from all directions by the monochro-
matic fields U0(r, α), where α is the index of the inci-
dence direction of a field. The field phase is random and
uncorrelated with respect to directions, which yields

(8)

(the sign 〈•〉α denotes averaging over all directions and,
correspondingly, over the phases of incident fields). It
is necessary to estimate the average spectral energy

density of secondary sources J(| |) ≡ , if
the estimate of this density in the Born approximation

Jborn(| |) ≡  is known. Averaging
〈•〉ε, α has a twofold character: over all scatterers and all
directions α. This corresponds to statistically maximal
broadening of the spatial spectrum of secondary
sources.

An equation for J(| |) is obtained from Eq. (4):

(9)

where the term

(10)

Ĩ x

ε̃ x( )

ε̃ x( )〈 〉 ε x

x ε̃ x( )
2

〈 〉 ε

ε̃ x( )

ε̃ x1( )ε̃* x2( )〈 〉 ε x1( ), when x2 x1– β;<

0, in all other cases;



≈

ε̃ x( )

x

U0 r α,( )〈 〉 α 0 r and, therefore,∀=

Ũ0 x α,( )〈 〉 α 0 x∀=

x Ĩ x α,( )
2

〈 〉 ε α,

x Ĩborn x α,( )
2

〈 〉 ε α,

x

Ĩ x α,( ) Ĩsc x α,( )– Ĩborn x α,( ),=

Ĩsc x α,( ) 1

2π( )p
------------- ε̃ x x'–( )G̃ x' k0,( ) Ĩ x' α,( ) x'd∫=
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(in the operator form  = ) describes the part
ε(r)usc(r, α) of secondary sources that is produced by
the scattered field. The multiplication of the left-hand
and right-hand sides of Eq. (9) by the complex conju-
gate quantities and the application of the averaging
operation 〈•〉ε, α leads to the equation

(11)

According to Eq. (10), the expression for ( , α)

involves the spectral components ( ', α) at different
spatial frequencies. Therefore, in the general case, a
rigorous solution of a nonlinear equation (11) seems
difficult, and a simplification of the problem requires a
transition to approximate estimates. The point is that,
strictly speaking, the probability density for the random

quantity ( , α) does not have the form of a normal

distribution at each fixed . Only the quantity ( , α)
has a normal distribution by virtue of definition of
Eq. (5), the assumption on the normal distribution of
the quantity , and the cross-independence of the func-
tions ε and U0 . If we also take into account the effect of

rescattering, the distribution for  becomes different
from the normal law. This follows from the expansion
of Eq. (4) into the Born–Neumann series in powers of

the functions . In this case,  is formed by the sum of
terms, for each of which a distribution law is, generally
speaking, different from the normal law. Moreover,
these terms are not statistically independent, i.e., each
two terms whose product contains an even number of
functions  correlate with each other. Therefore, even
in the case of a strongly pronounced rescattering, when
the number of effective terms is large, the distribution

for  does not tend to a normal one. In this connection,
the first approximation in the process of solving
Eq. (11) is the following estimate of the term

, which will be rigorous only in the case of a

normal distribution of both quantities  and :

(12)

Ĩsc ε̂̃Ĝ̃ Ĩ

Ĩ x α,( )
2

〈 〉 ε α, Ĩsc x α,( )
2

〈 〉 ε α,+

– 2Re Ĩ x α,( ) Ĩsc* x α,( )〈 〉 ε α, Ĩborn x α,( )
2

〈 〉 ε α, .=

Ĩsc x

Ĩ x

Ĩ x

x Ĩborn x

ε̃

Ĩ

ε̃ Ĩ

ε̃

Ĩ

Ĩsc
2〈 〉 ε α,

ε̃ Ĩ

Ĩsc
2〈 〉 ε α, ε̂̃Ĝ̃ Ĩ ε̂̃Ĝ̃ Ĩ( )*〈 〉 ε α,≡

≅ ε̃̂ Ĝ̃ Ĩ〈 〉 ε α, Ĩ*Ĝ̃* ε̂̃*〈 〉 ε α, ε̂̃ε̂̃*〈 〉 ε Ĝ̃ Ĩ Ĩ*Ĝ̃*〈 〉 ε α,+

+ ε̂̃ Ĩ*Ĝ̃*〈 〉 ε α, Ĝ̃ Ĩ ε̂̃*〈 〉 ε α, ε̂̃ε̂̃*〈 〉 ε Ĝ̃ Ĩ Ĩ*Ĝ̃*〈 〉 ε α,=

=  ε̂̃ ε̂̃*〈 〉 εĜ̃ Ĩ Ĩ*〈 〉 ε α, Ĝ̃*.
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Here, we use the fact that

(13)

since , , and  are linear functions of the field
and condition (8) is valid. Therefore, Eq. (12) takes into

account that both  (see Eq. (6)) and  have zero aver-

age values and the cofactors of the type of  =

 are equal to zero due to Eq. (13).
The second approximation in the process of solving

Eq. (11) consists of ignoring the term

2Re ; i.e., we approximately
assume that

(14)

Condition (14) is valid in the case of weak scatterers.
Indeed, for them, we have |usc(r, α)| ! |U0(r, α)| (∀ r ∈

R, ∀α ), and, therefore,  !  ∀ . In

this case,  ≈  = ,  ≈  =  (in

the operator form), and  ≈ 0 as a third order

moment with respect to . For an ensemble of stronger
scatterers, condition (14) is admittedly not valid at high

spatial frequencies , at which the components are

almost absent in the Born spectrum ( , α) but are

present in ( , α) due to the effects of rescattering. At

these frequencies, ( , α) ≡  –  ≈ ( , α) and

 ≈  ≠ 0. In the case of a rigorous con-
sideration, we cannot ignore the term

2Re  or any other pairwise corre-

lation of the spatial spectra , , and , because all
three spectra are correlated with each other.

Finally, rigorous equation (11) with allowance for
Eqs. (12), (14), and (7) is reduced to an approximate

equation with respect to J(| |):

(15)

Ĩ x α,( )〈 〉 α 0, Ĩborn x α,( )〈 〉 α 0,= =

Ĩsc x α,( )〈 〉 0 x,∀=

Ĩ Ĩborn Ĩsc

ε̃ Ĩ

ε̂̃Ĝ̃ Ĩ〈 〉 ε α,

Ĝ̃ ε̂̃ Ĩ〈 〉 α〈 〉 ε

Ĩ x α,( ) Ĩsc* x α,( )〈 〉 ε α,

Ĩ x α,( ) Ĩsc* x α,( )〈 〉 ε α, Ĩ ε̂̃Ĝ̃ Ĩ( )*〈 〉 ε α,≡

≡ 1

2π( )p
------------- G̃* x' k0,( )∫

× Ĩ x α,( ) Ĩ* x' α,( )ε̃* x x'–( )〈 〉 ε α, x'd 0.≈

Ĩsc x α,( ) Ĩ x α,( ) x

Ĩ Ĩborn ε̂̃Ũ0 Ĩsc ε̂̃Ĝ̃ Ĩborn ε̂̃Ĝ̃ ε̂̃Ũ0

Ĩ Ĩsc*〈 〉 ε

ε̂̃

x

Ĩborn x

Ĩ x

Ĩsc x Ĩ Ĩborn Ĩ x
Ĩ Ĩsc*〈 〉 ε α, Ĩ Ĩ*〈 〉 ε α,

Ĩ x α,( ) Ĩsc* x α,( )〈 〉 ε α,

Ĩ Ĩborn Ĩsc

x

J x( ) 1

2π( )2 p
---------------- ε0 x x'–( ) G̃ x' k0,( )

2

∫+

× J x'( )dx' Jborn x( ),=
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where

(16)

W(| |) ≡  is the average spectral energy

density of the incident field; and ε0(| |) ≡ ε(| |)∆ξ is the
average spectral energy of a scatterer within the volume

∆ξ with the center at the point .

The approximate character of Eq. (15) is reflected in
the solution obtained from it. In particular, if the com-

ponents at some high spatial frequencies  are absent in

Jborn(| |), the components at the same frequencies 

cannot appear in the estimate J(| |) obtained from

Eq. (15) (since, according to Eq. (15), J(| |) is the dif-

ference of Jborn(| |) and the knowingly positive integral
term). This error is a consequence of the aforemen-

tioned increasing violation of condition (14) for such .
Nevertheless, the results of the numerical simulation
given below demonstrate that, for the range of spatial

frequencies that is reflected in Jborn(| |) at least weakly,
Eq. (15) gives estimates that are quite acceptable for the
practical purposes indicated above.

A major advantage of Eq. (15) is its linearity with

respect to the unknown function J(| |). Moreover, due
to the omnidirectional irradiation of a scatterer, the

functions ε(| |), J(| |), and W(| |) depend only on | |.

Hence, the integration over the whole -space in
Eq. (15) is rediced to a one-dimensional integral with

respect to d| '|. In this case, the quantities characteriz-
ing the average spectral energy density of secondary
sources, which, in a two-dimensional case, is contained

in a ring with radius | | and thickness β and, in a three-

dimensional case, in a spherical layer with radius | |
and thickness β, are informative:

(17)

Jborn x( ) 1

2π( )2 p
---------------- ε0 x x'–( )W x'( )dx';∫≅

x Ũ0 x α,( )
2

〈 〉 α

x x

x

x

x x

x

x

x

x

x

x

x x x x

x

x

x

x

Jborn' x( ) 2π x βJborn x( ),≡

J ' x( ) 2π x βJ x( ), x R2;∈≡

Jborn' x( ) 4π x
2
βJborn x( ),≡

J ' x( ) 4π x
2
βJ x( ), x R3.∈≡
However, in the problem statement under examination,

the width of spectrum J(| |) can be estimated only in

the radial direction | |. In the angular direction (along a

circle or sphere with a fixed radius | |), averaging over
all directions of incident fields occurs. Therefore, a
spectrum broadening in the angular direction in the
case of one-directional irradiation is the subject of a dif-
ferent problem statement and needs additional consid-
eration.

Setting of the average linear dimension L of the scat-
tering region R and the maximal accountable value

| | = ξmax can be treated as an a priori physical limita-
tion in solving Eq. (15). These parameters determine
the steps of discretization of continuous quantities, the
number of discrete samples, and the selection of the
cutoff radius RG of the Green function G(r, k0) in the
coordinate space. The cutoff assumes the utilization of
the function (r, k0) = {G(r, k0) at |r| < RG; 0 at |r| ≥
RG} (the coordinate origin is positioned at the center of
the region R). Indeed, since the supports of the func-
tions ε(r) and I(r', α) in Eq. (3) are strictly finite and
coincide with the scattering region R, the integrand is
nonzero only for r, r' ∈ R, i.e., when |r – r'| < L. There-
fore, in the case of using the Green function with any
cutoff radius RG ≥ L, the deterministic equation (3)
stays rigorous. However, in contrast to Eq. (3), in the

case of transition to -space and subsequent statistical
averaging of quantities, the explicit information on the
linear dimension L is lost, because scatterers with dif-
ferent support dimensions L can have equal spectral
energy characteristics. Therefore, it is necessary to take
into account the dimension L in solving Eq. (15) by
assuming RG = L and calculating from (r, k0) the

values of  that are used as  in
Eq. (15). In this case, the maximal admissible step of

discretization in -space must not exceed 2π/(2RG) =
π/L. Therefore, in the case of a fixed maximal value

ξmax of the quantities | | and | '|, the dimension of the
discrete set of equations to be solved (an analog of
Eq. (15)) grows proportionally to the increase in L.

Numerical simulation of Eq. (15) was performed for
an ensemble, where each random realization of a scat-
terer ε(r) is represented in the form of a manifold of M
inhomogeneities of phase velocity, which uniformly fill
the region R and do not overlap. Each fixed inhomoge-
neity has a certain sign of velocity contrast and a char-
acteristic spatial dimension ≅ l, which is the same for all
inhomogeneities. In this case, the spatial spectrum of a
scatterer has a width ≅ 2π/l and an amplitude propor-

tional to . The average linear dimension of the

x

x

x

x

GRG

x

GRG L=

G̃L x' k0,( )
2

G̃ x' k0,( )
2

x

x x

M
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region R of spatial localization of a scatterer is L ≅
l, where  is the average number of inhomoge-

neities along one axis. For different random realiza-
tions, inhomogeneities are shifted in their positions
with respect to each other by a distance no greater than
≅ l, and the satisfaction of condition (6) presumes the
presence of inhomogeneities with different signs of
contrast in the ensemble. This model of an ensemble of
scatterers {ε(r)} can be considered as a spatially homo-
geneous normal random process within the region R.

The average (effective) volume v eff occupied by a
single inhomogeneity and the linear dimension of an
inhomogeneity l are estimated as v eff ≅

, l ≅ . The

rms value of the scatterer amplitude  can be deter-
mined through the contrast ∆c/c0 ≡ (c – c0)/c0 of an
effective scatterer (c0 is the velocity in the background
medium and c is the characteristic velocity within the
effective scatterer):

where [5]

In this case, the average phase shift at a scatterer is

It is necessary to note that the possible range of values
of A0 has asymmetric limits: A0 ∈ (–∞, 1]. For example,
A0  –∞ at c  0 (i.e., ∆c/c0  –1), A0  1 at
c  ∞ (i.e., ∆c/c0  ∞), and A0 = –1 at ∆c/c0 ≈
−0.2929. Therefore, we can consider condition (6),
from which Eq. (15) was derived, as satisfied in the fol-
lowing cases. If the effective contrast ∆c/c0 is such that
A0 ∈ [−1; 1], condition (6) can be satisfied in the case
of equality of the average number of inhomogeneities
with a fixed sign of their contrast and an average num-
ber of inhomogeneities with another sign of contrast. If
A0 ∈ (–∞; 1], condition (6) can be valid only on account
of the dominance of the average number of inhomoge-
neities with positive contrast over the average number
of inhomogeneities with negative contrast.

In practice, the average spectral energy density

ε(| |) can be obtained from experiment. The character-
istic width of this function is close to the value ≅ 2π/l,

and the amplitude is proportional to M . The quantity
ε0 ≡ ε∆ξ in Eq. (15) does not depend on M, since ε ~ M
but ∆ξ ≈ (2π/L)p ~ 1/M. Therefore, in the numerical sim-
ulation, it was estimated as the spectral energy of an

Mp Mp

1
M
----- ε r( ) 2 rd

R∫( )/
1
2
--- ε r( ) 2

r
max 

 
ε

v eff
p

ε

ε ε r( ) 2

r
max〈 〉

ε
k0

2 A0 ,≅ ≅

A0 1 c0
2/c2–≅ ∆ c/c0( ) 2 ∆c/c0+( )/ 1 ∆c/c0+( )2.=

σphase M2 p lk0 1 c0/c–≅

=  M2 p lk0 ∆c /c0( )/ 1 ∆c/c0+ .

x

ε2
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effective scatterer in the form of a single inhomogene-

ity (r) = exp(–r2/D2). In this case, by virtue of
average statistical spatial homogeneity of the medium
at the distances of the order of magnitude of l, we have

ε0(| |) ≅  (2π)p /v eff.

In the case of a two-dimensional space (p = 2), for
which the results of numerical simulation are given
below, we have

Equation (15) takes on the form

(18)

where I0 is the Infeld function of the zero order.
Initially, Eq. (15) in the form of Eq. (18) was inves-

tigated for eigenvectors and eigenvalues. In this case,
we assume that, on the right-hand side of Eq. (15), we
have

(19)

and Eq. (15) transforms to the equation

(20)

or, in the operator form, (  + )J = νJ, where 

is a unit matrix and  is the Hermitian conjugate
operator. The physical meaning of the substitution of
Eq. (19) is as follows. It is assumed that a scatterer is
irradiated from all directions by various incoherent
monochromatic incident fields, including inhomoge-
neous ones. This is a limiting case corresponding to the
statistically maximum possible broadening of the spa-
tial spectrum of secondary sources in comparison with
the spectrum of the scatterer. In this case, it is appropri-
ate to consider stationary spatial energy spectra, when
the average energy spectra of secondary sources and
irradiation fields are self-consistent. Namely, the prob-
lem is reduced to searching for configurations of sec-
ondary sources that have self-sustained spatial energy
spectra, i.e., that do not change their shapes and widths
“sustaining” (repeating) themselves at each new act of
rescattering.

ε1
eff ε

x ε̃1
eff x( )

2

v eff πD2, l πD,≅≅

ε0 x E0 x
2
D2/2–( ), where E0exp≅ 2π( )2ε2πD2.=

J x( )
E0

2π( )3
------------- x'

1
2
--- x

2
x'

2
+( )D2–exp⋅∫+

× I0 x x' D2⋅ ⋅( ) G̃ x' k0,( )
2
J x'( )d x'⋅

=  
E0

2π( )3
------------- x'

1
2
--- x

2
x'

2
+( )D2–exp⋅∫

× I0 x x' D2⋅ ⋅( )W x'( )d x' ,

Jborn x( ) νJ x( ),≈

J x( ) 1

2π( )2 p
---------------- ε0 x x'–( ) G̃ x' k0,( )

2
⋅∫+

 J x'( ) x' νJ x( ),=d×

Ê ε̂0Ĝ̃Ĝ̃
+

Ê

Ĝ̃
+
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Only the limitations ν > 0 and J(| |) ≥ 0 ∀  are
imposed on the solution to Eq. (20) by virtue of the

physical meaning of the quantity J(| |). Numerical sim-
ulation of Eq. (20) demonstrated that all its eigenvalues

ν are positive and all eigenvectors J(| |) are real quan-
tities. However, the solution turned out to be very unsta-
ble with respect to insignificant changes in the preset
parameters of the problem (L, ξmax, and the discretiza-

tion step in the -space). The instability is connected

with the structure of the matrix  +  at the
unknowns J in Eq. (20). The matrix basis is the unit

matrix , for which all vectors are eigenvectors. There-
fore, the degeneracy is eliminated only on account of

the operator additive . The maximum value of
the additive can be different depending on the effective
contrast in the ensemble of scatterers under consider-

ation. However, since  has a structure close to
the structure of a diagonal matrix, with the diagonal
values decreasing considerably at the diagonal “edges,”

the conditionality of the matrix  is poor.

In connection with instability of the problem with
respect to eigenvectors, further investigation of the
solution to Eq. (15) in the form of Eq. (18) was con-
nected with presetting a specific model for the average

spectral energy density W(| |) of the incident field, the

calculation of Jborn(| |) from Eq. (16), and a further esti-
mation of the spectrum width for the given model. In

the case of a fixed width of the function , the width

and shape of the spatial spectrum ( , α) depend on

the form of U0(r, α), and, therefore,  depends on
the type of incident fields. On the other hand, it is nec-

x x

x

x

x

Ê ε̂0Ĝ̃Ĝ̃
+
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ε̂0Ĝ̃Ĝ̃
+
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+
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ℜ
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Scattering
region

Fig. 1. Geometry of the scatterer irradiation.
essary to estimate the increase (due to the effect of res-
cattering) in the number of the degrees of freedom of
secondary sources in comparison with the number of
degrees of freedom of a scatterer. Therefore, it is con-
venient for comparison to form, additionally, the Born’s
secondary sources in such a way that the role of the
degrees of freedom of the field U0 be reduced to its min-

imum. The model W(| |) = W0(| |) corresponding to
cylindrically isotropic noise incident omnidirectionally
upon a scatterer meets this requirement:

(21)

for which Jborn(| |) = (| |) is determined from

Eq. (16) and (| |) ≡ 2π| |β (| |) is calculated

at p = 2 according to Eq. (17). The function (| |)
has approximately the same half-width as the function

2π| |βε(| |), since the number of degrees of freedom
describing each of these functions are equal. In this
case, it is possible to judge on the increase of the num-
ber of degrees of freedom of secondary sources in the
radial direction by comparing the widths of the func-

tions J'(| |) and (| |). It is necessary to point out

that J ' is obtained from Eq. (15) for its model W(| |)

other than W0(| |) with the corresponding Jborn(| |). The
use of W0 in solving Eq. (15) leads (if the processes of
rescattering are not negligible) to a nonphysical solu-
tion oscillating near zero. This result can be explained
by the fact that the integral term responsible for taking
into account the rescattering processes on the left-hand

side of Eq. (15) contains the function | (| |, k0)|2 =

| (| |, k0)|2 , where the cutoff radius RG = L of the
Green function in the coordinate space is taken into
account. The model W0 does not take into account the
finite dimension L of the scattering region, and, there-

fore, it serves only to form  for further comparison
but cannot be used directly to solve Eq. (15).

The indicated inconsistency of model (21) is elimi-
nated by matching the right-hand and left-hand sides of
Eq. (15) through taking into account the finite dimen-
sion L in them. A model of a real tomographic experi-
ment, where point sources of the incident field are
located at the points {rα}, corresponds to the purpose of
matching. In this case, the size L is taken into account
by the fact that a ring with thickness L, which contains
the scattering region R, is cut out for each U0(r, α). The
ring center is located at the point rα and its external and
internal radii are equal to R1 and R2, and R1 – R2 = L
(Fig. 1). Since U0 is scattered only within R, U0(r, α)

x x

W0 x( ) dx( ) Mδ x k0–( ) dx( ),≅

x Jborn
0 x

Jborn'0 x x Jborn
0 x

Jborn'0 x

x x

x Jborn'0 x
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x x
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Fig. 2. Average spatial energy spectrum of secondary sources: (| |) and (| |) correspond to the single scattering approx-

imation without and with allowance for the finite spatial dimensions of the scattering region; J '(| |) is the estimate with allowance

for rescattering. The average spatial energy spectrum of an ensemble of scatterers ε(| |) is preset for the effective contrast ∆c/c0 =
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of (a, c) a single inhomogeneity and (b, d) a manifold of 100 inhomogeneities.
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x

is assumed to be different from zero only within the
ring and is formed as the difference of the Green func-
tions with cutoff radii R1 and R2, respectively:

(22)

The factor  is introduced to take into account the

finite linear size L (proportional to ) of the region
R in the direction perpendicular to the direction toward
the incident field source (i.e., perpendicular to rα). The
finiteness of the size L of the region R in the direction
rα is already taken into account by the introduction of
the cutoff radii R1 and R2.

A numerical simulation of Eq. (15) demonstrated
that the choice of various values of {R1, R2} at fixed
R1 – R2 = L almost does not influence the solution. Var-
ious cases were examined, starting from the case of
positioning the sources of the incident field near the
surface of the region R to the case of the local plane
wave approximation, when the deviation of the wave

U0 r α,( ) GR1
r rα– k0,( ) GR2

r rα– k0,( );–∼

W x( ) Mp G̃R1
x k0,( ) G̃R2

x k0,( )–
2
.≅

Mp

Mp
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front from a plane within region R can be ignored.

Moreover, the function W(| |) of the form of Eq. (22)
was averaged at a fixed L over different pairs {R1, R2}.
Finally, even a “nonphysical” setting of the experiment,
i.e., the consideration of all possible positions of point
sources of primary fields with a random phase within
the region R, little affected the result. Thus, the model
under consideration is valid for a rather arbitrary (but
omnidirectional) positioning of the sources of the inci-
dent field with respect to the scattering region. There-
fore, we assume further that R1 = L + 6λ0, R2 = R1 – L =
6λ0 , and |rα| = R0 = L/2 + 6λ0 ∀α (Fig. 1). Figures 2a–
2d present the normalized (to their maximum values)

functions ε, , and  and the solution J ' (ξmax =
6k0) for various ensembles of scatterers, which have the
same effective contrasts ∆c/c0 = –0.6. The normalized

function  is close to the normalized function ε
shifted from the center | | = 0 to the distance | | = k0 .
Figure 2a corresponds to an ensemble of scatterers,

x

Jborn'0 Jborn'

Jborn'0

x x
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where each scatterer is represented by a single small-
scale inhomogeneity with the characteristic spatial

half-width D: D/λ0 = 0.2, M = 1, L = l = D, and
σphase ≈ 1.2π. As compared to , a shift of the max-

imum of the function J ' towards greater | | is observed,
evidence of a considerable effect of rescattering. Figure 2b
corresponds to an ensemble of scatterers, where each
scatterer is represented in the form of M = 100 small-
scale inhomogeneities (on the average, ten inhomoge-
neities along each direction): D/λ0 = 0.2; L = 10l, and

σphase ≈ 3.8π, which is ≈  times greater than for a

single inhomogeneity. Here,  and  almost
coincide, since the size L ≈ 3.5λ0 is sufficiently large.

Figures 2c and 2d are analogous to Fig. 2a and 2b,
but the inhomogeneities are large-scale, i.e., D/λ0 = 2.
Figure 2c corresponds to M = 1, L = l, and σphase ≈ 12π

(oscillations of the function J '(| |) not affecting the esti-
mate of its width are connected with the sharp cutoff of
the Green function at the given specific parameters).
Figure 2d corresponds to M = 100, L = 10l, and σphase ≈
38π. It is necessary to note that the widths of the func-
tions J ' in Figs. 2a and 2c are almost equal, although the
mechanisms of the broadening of the spatial spectra are
different. For example, small-scale inhomogeneities
have a wide spatial spectrum of secondary sources
already in the Born approximation, while the number of
rescattering events is small. On the contrary, large-scale
inhomogeneities have a narrow spatial spectrum, and
the strong broadening of the spectrum of secondary
sources in comparison with the Born approximation is
caused by a great number of rescattering events.

3. ESTIMATION BY WEIGHTED SUMMATION 
OF DETERMINISTIC SOLUTIONS

In connection with the approximate character of
Eq. (15), the estimates obtained by the described statis-
tical method were compared with the result of weighted
summation of deterministic solutions to the direct prob-
lem. In particular, a model sample of 14 scatterers,
which approximately simulated the ensemble statistics,
was considered. The scatterers were grouped into seven
pairs for convenience. Each scatterer was preset in the
form of a single inhomogeneity of Gaussian shape with
the half-width D/λ0 ≈ 0.82 at the level of 1/e. The
amplitude of the function ε(r) for one inhomogeneity in

each pair of scatterers is equal to A0 and corresponds
to the contrast ∆c/c0 of a certain sign. For another inho-

mogeneity, the amplitude is equal to – A0 and corre-
sponds to the contrast of the opposite sign. For each
fixed ε(r), the direct problem is solved rigorously: the

spatial spectrum of secondary sources ( , α) is deter-

π
Jborn'

x

10

Jborn' Jborn'0

x

k0
2

k0
2

Ĩ x
mined from Eq. (4). The simplest iteration technique
used for solving Eq. (4) imposes certain restrictions
upon the limiting contrast, since it is convergent (at the
indicated D/λ0) only in the case ∆c/c0 ≥ –0.28. There-
fore, it was assumed that the contrast of the first pair
was ∆c/c0 = –0.28 and 2.75, which leads to the ampli-

tudes |A0|, where |A0|/  = 2. The contrast of each
next pair corresponds to a decrease in |A0| by a factor of

. The quantity  is the rms amplitude of scatterers
of a given model sample, which is set by the effective
contrast ∆c/c0 = –0.174.

The averaging of | ( , α)|2 over α (i.e., over the
directions ϕ0 of the wave vector k0 = {k0, ϕ0} of the
incident plane wave U0) for the sake of estimation was
replaced by equivalent averaging over the directions ϕξ

of the vector  = {| |, ϕξ} at a fixed ϕ0 = 0. The curves

I '(| |) ≡ 2π|x| · (d| |) analogous to
relation (17) are given in Fig. 3a for each inhomogene-
ity (in the numerical simulation, the unit length was
taken to be λ0/8 = 1; a discrete analog of the quantity

d| | was k0/8). Curves 3 in Fig. 3a, which correspond to

a pair of inhomogeneities with amplitudes A0 =

, are shown by thick lines. Inhomogeneities with
∆c/c0 > 0 are “defocusing.” The localization region of
the spatial spectrum of their secondary sources is

shifted (with respect to the value | | = k0) towards low

| | (the dashed lines in Fig. 3a), since the local value of
the wave number in an inhomogeneity is smaller than
k0 . For “focusing” inhomogeneities (∆c/c0 < 0), the

shift occurs towards higher | | (the solid lines in
Fig. 3a).

Finally, the functions I '(| |) are averaged (i.e.,
summed with weight) over the scatterers by taking into
account the normal probability density of the scatterer
distribution in A0 . Figure 3b presents the normalized
result of weighted summation of the curves I '(|x|) in

Fig. 3a, which is an analog of the quantity J '(| |) (the
solid line). In the single scattering approximation, this

result is an analog of the quantity (| |) (the dashed
line). Figure 3c gives, for comparison, the estimates
obtained from the solution of the statistical problem for
an ensemble of scatterers with the same values of  and

D/λ0 as in the model sample. The curves J ' and  in
Figs. 3b and 3c are close in their shape and width. In
both cases, the shift of the maximum of the function J '

towards greater | | is observed. The widths 2χJ and

k0
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2  of the normalized functions J ' and  (respec-

tively) in both cases are 2χJ ≈ 0.8k0 and 2  ≈ 0.45k0

at the level of 0.5 and 2χJ ≈ 1.2k0 and 2  ≈ 0.7k0 at
the level of 0.2. Thus, we obtained a good agreement of
the average deterministic and statistical solutions. A
difference is observed only for the maximum values of

the functions  and J ': it is equal to ≈1.4 in the aver-
age deterministic case and ≈2.7 in the statistical case.
This difference can be explained by both the approxi-
mate character of Eq. (15) and the absence of very
strong scatterers in the model sample.

Thus, as the results of numerical simulation demon-

strated, the elimination of the term 2Re  from
Eq. (11) manifests itself first of all by a slightly reduced
value of the amplitude of the resulting estimate J '.
However, the most interesting applied characteristic,
i.e., the width of the function J ' is estimated to a preci-
sion quite acceptable for applications. This conclusion
is true at least for an ensemble of medium-strength scat-
terers. More rigorous estimates of J ' can be obtained
only taking into account (to a certain precision) the

term 2Re . The results of the attempts to esti-
mate the effect of this term are as follows. An iteration

refinement of the quantity  expressed through

 (see Eq. (14)) on the basis of the approxi-

mate value J ≡  is impossible, since

 is not expressed directly through J. There-

fore, in the first method of estimation, the functions 

and  were expanded on the basis of Eq. (4) into the
Born–Neumann series in powers of the function . In

this case, the correlation  also acquires the
form of a series, which, in the case of real scatterers, is
expressed only through known energy characteristics
ε0 and Jborn. This series converges for the ensembles of
medium-strength scatterers, which allows one to esti-

mate  in this case. However, the convergence
in the case of ensembles where strong scatterers play a
considerable role is not evident and needs a separate
study by numerical simulation. It is impossible to deter-
mine an analytical expression for the sum of this series
and obtain in this way a uniform expression eliminating
the problem of convergence.

The second method studied was based on using
Eq. (9) for constructing (by multiplication of Eq. (9) by
corresponding functions) all possible equations with
respect to seven independent functional unknowns:

, , , ,

, , and , which are
the second-order correlation moments of the quantities
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Fig. 3. Comparison of the statistical estimate of the spatial
energy spectrum of secondary sources with the result of a
weighted summation of deterministic solutions: (a) spectra
of secondary sources that are averaged over the incident
field directions for seven pairs of inhomogeneities (their
half-width is D/λ0 ≈ 0.82) with positive (the dashed line)
and negative (the solid line) sound velocity contrasts. The
pair of curves 1 corresponds to inhomogeneities of equal
strength with contrasts ∆c/c0 = 2.75 and –0.28. Each subse-
quent pair of curves corresponds to a decrease in the inho-

mogeneity amplitude by a factor of . (b) The result of
weighted summation of the curves shown in Fig. 3a (solid
line) in comparison with the result obtained in the single
scattering approximation (dashed line). (c) The statistical
estimate of the spatial spectrum of secondary sources for an
ensemble of scatterers with the effective strength corre-
sponding to the summation of deterministic solutions that is
given in Fig. 3b. Notations are the same as in Fig. 2.
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, , and . The quantity  ≅

 is expressed according to Eqs. (12) and

(7) through , and, therefore, is not treated as a
separate unknown. The known quantities are

 and ε0 . Finally, a linear system of 23 inte-
gral equations with respect to the desired second-order
moments is obtained. However, its rank is equal to five,
i.e., it is smaller than the number of unknowns. Five
independent equations are obtained, for example, by
sequential multiplication of the left-hand side of the

equation ( , α) – ( , α) – ( , α) = 0 by (  –

 – )*, , and  and also by the complex
conjugation of the last two equations. Since the system
of five independent equations is linear, it can be
resolved analytically with respect to the real quantity

 (the parameter most important for practical
purposes). The result coincides with the rigorous
Eq. (11). Since Eq. (11) is a single integral equation

with two functional unknowns  Re ,
the last of which can be of alternating sign, it is possible
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Ĩ
2〈 〉 ε α,
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Ĩ x Ĩborn x Ĩsc x Ĩ
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Fig. 4. Result of weighted summation of the spatial energy
spectra of secondary sources that was obtained analogously
to the result shown in Fig. 3b. The sets of inhomogeneities
producing the spectra differ in their spatial half-width
D/λ0 ≈ (a) 0.82 and (b) 2 while the contrasts are equal. The
width of the curves J ' is seen to be almost the same in both
cases.
to speak only about a solution with the minimal norm.
This solution already obeys the numerically simulated
Eq. (15) with the right-hand side Jborn replaced by
Jborn/2, which does not affect the estimate of the shape

and width of the function J ≡ .
Thus, the question on the method of estimating the

term 2Re  and its influence proves to be non-
trivial and has no answer now.

4. DETERMINING EFFECT OF THE VELOCITY 
CONTRAST ON THE WIDTH OF SPATIAL 
SPECTRUM OF SECONDARY SOURCES

The widths of the functions J ' given in Figs. 2a–2d
for various ensembles with the same value of ∆c/c0 are
almost equal. In this connection, we analyzed the
dependence of this width on the effective contrast in an
ensemble of scatterers ∆c/c0 on the characteristic wave
dimension l/λ0 of a single inhomogeneity and on the
number of inhomogeneities M. It is evident that, for
weak scatterers, the width of the function J ' =  is

inversely proportional to l/λ0 (see  in Figs. 2a, 2c).
If the rescattering from a single inhomogeneity is
strong (estimates showed that the average additional
phase shift of a wave at a single inhomogeneity must
exceed ≈(π–2π)), the width of spectrum J ' is deter-
mined mainly by the value of ∆c/c0 .

To confirm this dependence, we compared the
results of weighted summation of deterministic solu-
tions for two model samples of scatterers. These sam-
ples, analogous to the ones described above, differ in
the characteristic widths of inhomogeneities (D/λ0 ≈
0.82 for the first sample and D/λ0 = 2 for the second
one) at equal effective contrast values ∆c/c0 ≈ –0.12

corresponding to |A0| = . The contrasts of separate
inhomogeneities (equal for both samples) were preset
in the way described above. The result of weighted
summation of deterministic solutions is given in

Figs. 4a and 4b. The dip in the central part of J '(| |) in
Fig. 4b can be explained by the insufficient number of
inhomogeneities with the amplitudes about the value

|A0| =  in the sample. The widths of the normalized

functions J '(| |) in both figures are close in their values:
2χJ ≈ 0.6k0 at the level of 0.5 for D/λ0 ≈ 0.82 and 2χJ ≈
0.5k0 for D/λ0 = 2. At the same time, the widths of the

corresponding Born spectra  inversely propor-
tional to the wave dimension D/λ0 differ by a factor of

more than two: 2  ≈ 0.48k0 for D/λ0 ≈ 0.82 and

2  ≈ 0.2k0 for D/λ0 = 2.

This conclusion is valid only in the case of the
simultaneous satisfaction of the following conditions

Ĩ
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for an ensemble of nonabsorbing scatterers with a zero
average value of ε(r). First, as it was already men-
tioned, the rescattering must be sufficiently strong. Sec-
ond, the effect considered is attained due to the averag-
ing of energy spectra of secondary sources over all
directions of irradiation and inhomogeneities with con-
trasts of opposite signs. Third, we considered a model
of an ensemble of scatterers with equal dimensions l of
spatial fluctuations. In these conditions, the indepen-
dence of the width of the function J ' of l/λ0 can be
explained as follows. The maximum of the spatial spec-
trum of secondary sources for a single strong inhomo-
geneity with a certain sign of contrast is shifted relative

to the value | | = k0 . The shift direction depends on the
contrast sign, and the shift value is determined prima-
rily by the local value of the wave number and almost
does not depend on l. In this case, the spectra of second-
ary sources of two inhomogeneities with opposite signs
of contrast are shifted in different directions (Fig. 3a).
Therefore, if strong inhomogeneities with the shift of
the spectrum of their secondary sources greater than the
width of the spectrum itself, which depends on l, play
an essential role in an ensemble of scatterers, the
dimension l does not influence considerably the total
width of the spectrum of secondary sources J ', and this
width depends mainly on the effective contrast in the
ensemble ∆c/c0.

The fact that the width of the normalized function J '
does not depend on the average number of inhomoge-
neities M also has a physical explanation. For each
fixed scatterer, the low-frequency components of the
spatial spectrum of its secondary sources that corre-

spond to | | < k0 do not radiate at all. The spectral com-

ponents corresponding to | | = k0 and | | > k0 (but near
k0) form plane waves, which differ little from the plane
waves with a random phase that are incident upon a

x

x

x x
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scatterer. The radiation at these spatial frequencies
determines the amplitude of J ', which grows with

increasing M. The high-frequency components at | | @ k0
produce rapidly decaying inhomogeneous waves,
which do not take part in rescattering. In this case, the
parts of region R that are close in their size form sec-
ondary sources almost independently. Therefore, as the
number M of the inhomogeneities of the same type,
which constitute the scatterer, grows, the total power of
secondary sources increases but the shape and width of
their spatial energy spectrum J ' almost does not change
at L > (2–3)λ0 .
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Abstract—The propagation and absorption of high-frequency sound in the isotropic phase of cholesteryl
miristate is studied in a wide frequency range using the data of both Brillouin spectroscopy and acoustooptic
measurements. The parameters of the relaxation process associated with the volume viscosity relaxation are cal-
culated using the experimental data on the velocity and absorption of sound. © 2004 MAIK “Nauka/Interperi-
odica”.
INTRODUCTION

Studies of acoustic characteristics of a medium usu-
ally include the measurements of the relaxation time.
Although not everything is known about the dynamic
behavior of cholesterics on the molecular level, it is
possible to specify the main groups of relaxation pro-
cesses for the isotropic phase of a cholesteric medium.

The first group consists of relaxation processes con-
nected with the relaxation of fully developed fluctua-
tions of the order parameter. In the isotropic phase,
there is no long-range ordering in the direction of dif-
ferent molecular axes, and the tensor of the order
parameter is equal to zero. However, on relatively small
space–time scales, local ordering exists at a certain dis-
tance ξ, which is called the correlation length. In the
Landau–de Gennes approximation [1], the temperature

dependence of ξ has the form ξ(T) ≈ ,
where l is the molecule length, T is the temperature in
kelvins, and T* is the critical temperature. This depen-
dence agrees with experimental data for the light scat-
tering intensity in the isotropic phase of nematics [2]. In
the immediate vicinity of the phase transition, a devia-
tion from the linear temperature dependence is
observed for the reciprocal of the integral intensity of
light scattering because of the fluctuation additions
[3, 4]. A greater deviation from the linear dependence
of this quantity occurs in the isotropic phase of choles-
teryl miristate [5]. The relaxation times of the order
parameter fluctuations in nematics lie within the range
10–8–10–6 s, and they are an order of magnitude greater
in cholesteryl miristate (10–7–10–5 s) [5].

The second group of relaxation processes is con-
nected with molecule rotation around the long axes and
the translational self-diffusion. The relaxation times of
such processes are connected to a large extent with the
viscosity of the medium and depend little on the close-

l T*/ T T*–( )[ ]
1
2
---
1063-7710/04/5001- $26.00 © 20091
ness to the phase transition point (in comparison with
the relaxation processes of the first group). The esti-
mated values of relaxation times for these processes lie
within 10–12–10–11 s.

One more group of relaxation processes in the iso-
tropic phase of liquid crystals consists of the processes
of intramolecular relaxation, which are connected with
the motion of the end molecular groups. These pro-
cesses also have a weak temperature dependence of the
relaxation time, the values of which lie within 10–8–
10−11 s. For example, the intramolecular relaxation time
for MBBA nematics is 10–8 s [6].

We conducted a study of the propagation velocity
and absorption of sound in the isotropic phase of cho-
lesteryl miristate in a wide range of frequencies (from
22 MHz to 7 GHz) and temperatures (from 100 to
82°C) to obtain information on high-frequency relax-
ation processes. We performed ultrasonic experiments
at f = 22 MHz by using a pulsed technique. Sound was
detected using the diffraction of light. In the frequency
band from 1.1 to 7 GHz, the Brillouin spectroscopy was
used. The investigations were conducted using a single
sample of cholesteryl miristate.

EXPERIMENT

To determine the propagation velocity and the coef-
ficient of ultrasonic absorption, we used an acoustoop-
tic technique based on the phenomenon of light diffrac-
tion by ultrasound. The technique was modified for
operation in a pulsed mode. Such a modification is nec-
essary to conduct the measurements near phase transi-
tions, where the susceptibility of liquid crystals is very
high. A detailed description of the technique and the
results of measuring the propagation velocity and the
absorption coefficient at ultrasonic frequencies is given
in our previous paper [7]. The ultrasonic propagation
velocity was determined according to the diffraction
004 MAIK “Nauka/Interperiodica”
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angle, and the ultrasonic absorption, according to the
intensity of the diffracted light pulse, depending on the
distance to the piezoelectric transducer. The precision
of measurements for the propagation velocity and the
ultrasonic absorption was 0.5% and 10%, respectively.
The cell with the sample of cholesteryl miristate was
placed in an electronic thermostat, which stabilized the
temperature within ±0.05°C.

The hypersonic velocity and absorption in the fre-
quency band 1–7 GHz were determined according to

1280
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Fig. 1. Temperature dependence of the sound velocity for
(r) 22 MHz, (s) 1.1–1.04 GHz, (h) 4.9–4.5 GHz, and
(d) 7–6.5 GHz. The solid line shows the result of averaging
for a frequency of 22 MHz, the dashed line corresponds to
V∞ calculated according to [8], and the dash-and-dot line
represents the linear part of the temperature dependence of
sound velocity at a frequency of 1.1 GHz for t > 90°C.
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Fig. 2. Temperature dependence of the quantity αλ for
(s) 1.1–1.04 GHz, (h) 4.9–4.5 GHz, and (d) 7–6.5 GHz.
The solid line is plotted for illustration (as guide line).
the shifts and widths of the Brillouin spectral compo-
nents [8]. The spectra were recorded under the light
scattering angles of 19.6° ± 0.2°, 90° ± 0.2°, and 167° ±
0.2° by a setup with a double-pass Fabry-Perot interfer-
ometer (a detailed description of the setup is given in
[9]). The contrast of the interference pattern was
5 × 104, and the sharpness was 35. The double-pass
mode of operation provided an opportunity to investi-
gate the spectra of the Brillouin scattering near the iso-
tropic liquid–cholesteric liquid crystal phase transition.
The precision of the determination of the sound veloc-
ity and absorption depended on the scattering angle and
varied from 1 to 0.5% for the velocity and from 20 to
10–15% for the absorption coefficient. As the scattering
angle increases, the errors decrease.

The sample of cholesteryl miristate was subjected to
a dust removal procedure by forcing it in vacuum
through a filter with a pore diameter of 0.2 µm and then
sealing it in a cylindrical cell. The cell with the sample
was placed into an electronic thermostat, which stabi-
lized temperature within ±0.01°ë. The sample studied
had the following characteristics: the clearing point tc

on heating the cholesteric phase was 83.1 ± 0.02°ë,
and the mist phase on cooling appeared at 83.6 ±
0.02°ë. The measurements were conducted from
higher to lower temperatures, and with overcooling it
was possible to reach a temperature of ~81°ë.

RESULTS AND DISCUSSION

The results of measuring the temperature depen-
dence of the hypersonic propagation velocity for three
angles of light scattering in cholesteryl miristate are
given in Fig. 1. The results of measuring the ultrasonic
velocity at a frequency of 22 MHz are also presented
here. Figure 2 demonstrates the temperature depen-
dences of the absorption coefficient multiplied by the
sound wavelength for three frequencies corresponding
to three angles of light scattering.

From Fig. 1 one can see that the hypersonic veloci-
ties in the frequency bands 4.5–4.9 GHz and 6.5–7 GHz
increase as the temperature decreases with close tem-
perature coefficients dV/dt ≈ 3 m s–1 deg–1. In the fre-
quency band (1.04–1.1) GHz, the hypersonic velocity
changes with approximately the same temperature
coefficient within the temperature interval from 100 to
90°C. At t < 90°ë, the behavior of the sound velocity in
this frequency band has a more complex character.

In the ultrasonic frequency region, the value of the
velocity for f = 22 MHz coincides with the values of V∞
obtained in [10]. The order of magnitude of the relax-
ation time indicated in [10] assumes that this process is
connected with the motion of the end molecular groups.

The experimental results given in Fig. 1 show that a
considerable dispersion of the velocity of high-fre-
quency sound (about 10%) is observed in cholesteryl
miristate in the temperature range from 100 to 82°C.
This value of dispersion is retained, within the experi-
ACOUSTICAL PHYSICS      Vol. 50      No. 1      2004
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Parameters of the relaxation processes related to the volume viscosity relaxation in the isotropic phase of cholesteryl miristate

t, °C A, cm–1 s2 C, cm–1 s2 V∞, m/s fr, Hz τ, s

100 1448 2.0 × 109 8 × 10–11

95 5 × 10–17 17 × 10–17 1470 1.7 × 109 9 × 10–11

90 1500 2.3 × 109 7 × 10–11

Ultrasound [10]

79 40.5 × 10–14 1.9 × 10–14 1360 5.3 × 106 3.0 × 10–8

90.2 11.3 × 10–14 1.4 × 10–14 1324 7.3 × 106 2.2 × 10–8
mental error, in the whole temperature interval for the
frequencies 1.1, 4.9, and 7 GHz, except the temperature
region t < 90°C for the frequency 1.1 GHz.

This order of magnitude of dispersion and also its
relative independence of temperature are usually
observed in low-viscosity liquids and attributed to a
single relaxation process due to the volume viscosity
relaxation [8]. The analysis of the experimentally
observed dispersion of the velocity and absorption of
high-frequency sound was carried out for t > 90°C, and
this allowed us to assume that the contribution of the
sound energy dissipation through the interaction of ori-
entation and sound modes near the isotropic liquid–
cholesteric liquid crystal transition can be ignored (the
transition temperature for our sample was tc = 83.1°C).
To estimate the parameters of the relaxation process
responsible for the 10% dispersion of sound velocity in
the hypersonic frequency range, we used the expres-
sions describing the dispersion of sound velocity and
the sound absorption that are caused by a single relax-
ation process according to the Mandel’shtam–Leontov-
ich relaxation theory [11]:

(1)

(2)

where α is the coefficient of sound absorption, f is the
sound frequency, ω = 2πf, τ is the relaxation time, V∞ is
the velocity value at ω  ∞, V0 is the velocity value
at ω  0, Vω is the velocity value at the frequency ω,
and A and C are constants for this process.

The values of A, C, τ, V∞, and V0 for the ultrasonic
frequency range are given in [10]. In the hypersonic
interval, we determined these values from experimental
data on the velocity and absorption of hypersound.

Calculation of the parameters of the relaxation pro-
cess observed in the hypersonic frequency range was
conducted at the following conditions: the values of V0
were taken equal to the value of ultrasonic velocity at a
frequency of 22 MHz (note that the values of V∞ for the
ultrasonic relaxation process [10] coincide with our
values for V0). Since we conducted the measurements
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in the hypersonic region at three frequencies, it is pos-
sible to construct a set of equations for the determina-
tion of the parameters V∞ and τ. In view of the fact that
the temperature behavior of the sound velocity at the
frequency of 1.1 GHz has a complex character, for the
calculation we used the velocity values corresponding
to t > 90°C. In addition, from the experimental values
of α/f 2 for three frequencies, it is possible to calculate
τ and the coefficients A and C by Eq. (1). The average
values of the absorption coefficient (which can be esti-
mated from the values of αλ ), velocity V, and frequency
f were used for the calculation.

As the result of calculations using the velocity dis-
persion and the hypersonic absorption, the values of the
relaxation frequencies were obtained for cholesteryl
miristate. These values are given in the table.

Thus two relaxation processes with essentially dif-
ferent relaxation times are observed in the isotropic
phase of cholesteryl miristate. The calculated parame-
ters provide an opportunity to take into account in the
general case the contributions of these processes to
both absorption and dispersion of sound velocity. The
results of calculating V∞ for the hypersonic range are
plotted in Fig. 1 by the dashed line. Our calculations
demonstrate that the total dispersion of hypersonic
velocity has weak temperature dependence: at 100°C, it
is equal to ≈11%, and at 86°C, its value grows up to
≈13%. A small increase in the dispersion of hypersonic
velocity with decreasing temperature apparently
reflects the fact of the interaction of the order parameter
fluctuations with the sound wave.

The calculated values of V∞ correspond to the hyper-
sonic frequency not exceeding 7.5 GHz. Therefore, the
range of the frequencies studied in our experiment
almost completely covered the relaxation process of
interest.

Thus, two relaxation processes are observed in the
frequency interval from 1 MHz to 7 GHz in the isotro-
pic phase of cholesteryl miristate away from the isotro-
pic liquid–cholesteric liquid crystal transition. The low-
frequency intramolecular relaxation process [10] with
relaxation time τ ≈ 3 × 10–8 s is apparently related to the
motion of molecular end groups. The high-frequency
relaxation process with relaxation time τ ≈ 7 × 10–11 s
and the parameters presented in this paper is evidently
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related to the molecular rotation around the long axes
and the translational self-diffusion.

One can see from Fig. 2 that the temperature behav-
ior of the value of αλ at a frequency of 1.1 GHz notice-
ably differs from the one observed at higher frequen-
cies. As seen from Fig. 2, a small peak is observed near
the temperature of ~87°ë, while in the temperature
region t < 85°C, the absorption multiplied by the sound
wavelength increases. The temperature region of the
peak coincides with the region of peculiarity of the
sound velocity behavior at a frequency of 1.1 GHz,
which consists in the deviation from a linear tempera-
ture dependence (see Fig. 1).

The temperature dependences of the absorption
coefficient and the propagation velocity of sound at the
frequency of 1.1 GHz suggests that, on the background
of the relaxation process of volume viscosity with a
large dispersion of sound velocity (about 12%), one
more relaxation process with the parameters depending
on the closeness to the isotropic liquid–cholesteric liq-
uid crystal transition manifests itself. The nature of this
process is apparently connected with the interaction of
the sound mode with the fluctuations of the order
parameter. Since, at the isotropic liquid–cholesteric liq-
uid crystal transition, the fluctuations of the order
parameter are in fact the fluctuations in the distribution
of the axes of anisotropic molecules of cholesteryl
miristate, it is necessary to involve the data on the tem-
perature dynamics of the width of the Rayleigh line
wing [8] and the theory of interacting modes [12, 13] in
the study of the characteristics of this process.
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Abstract—Sound velocity variations in shallow water bodies with gas-saturated water–bottom (ice) interfaces
are investigated. The effect of air inclusions in water and water-like bottoms (ice) on the velocity of longitudinal
sound waves is qualitatively and quantitatively estimated. It is shown that changes in the sound velocity are
mainly governed by the radial resonance, which at low frequencies depends on the quality factor of the zeroth
mode of bubble oscillation. For real concentrations of bubbles, the velocity of longitudinal waves may become
very low. This may lead to considerable distortions of boundary conditions at rough surfaces and, hence, to
enhancement of scattering and absorption of sound waves and additional leakage of acoustic energy into the
bottom (ice), as well as considerable changes in the sound velocity profile in surface layers with a change of
sign of the velocity gradient from negative to positive, which results in the formation of a subsurface channel
or an increase in its power. It is found that water-like bottoms (sediments) and ice (“liquid” ice), which are char-
acterized by shear wave velocities of an order of 15 m/s or less, behave in the kilohertz range almost as a vacuum
(Cl  0) when the air content in them reaches several percent. As a result, the propagation of first normal
modes in shallow water or in subsurface layers of arctic and oceanic waveguides noticeably changes. © 2004
MAIK “Nauka/Interperiodica”.
† This study opens up possibilities for establishing
previously unknown physical criteria for the excitation
of surface and shear waves that lead to abnormally large
absorption and scattering of sound by rough interfaces;
for explaining such paradoxical empirical facts as the
negative steps in sound velocity at interfaces in deep-
water and shallow-water regions; and for estimating the
considerable increase in the critical frequencies of
modes in a waveguide, which affects the channel prop-
agation of low frequencies and leads to other poorly
understood effects.

1. In the problem of sound propagation in shallow
water (rivers, lakes, and shallow seas), the estimate of
real properties of the bottom and the ice cover occupies
a central position. In particular, of special interest are
such objects as porous bottom and ice saturated with
air, which are characterized by low propagation veloci-
ties of longitudinal and shear waves, as well as the
upper ocean layer saturated with air bubbles. The low
velocity (n > 1, where n is the refractive index) shifts
the angle of total internal reflection to the region of
steep grazing angles of modes (water rays). This leads
to the deformation of the processes of sound attenua-

† Deceased.
1063-7710/04/5001- $26.00 © 20095
tion and scattering by rough interfaces (changes in the
boundary conditions), which previously were not taken
into account.

Below, we consider the sound velocity variations for
water-like bottoms and ice with a small shear modulus
(µ/λ ! 1, where µ and λ are the Lame constants) that
occur in the Arctic basin and other water bodies.

2. For studying sound velocity variations in a liquid
dispersive medium, we use the Rytov formula [1]

(1)

where K is the sound wave number in the dispersive
medium, k is the wave number in pure water, N is the
number of particles (bubbles) in 1 cm3, L(ω) is the dif-
fraction scattering amplitude, m is the number of the
mode of oscillation, and ω is the circular frequency.

Formula (1) was obtained for a liquid dispersive
medium, but it is also valid for elastic dispersive media,
since it takes into account multiple scattering of a lon-
gitudinal wave by small spherical particles. As a result
of interference of incident and scattered waves, the
sound velocity changes.

Using formula (1), we estimated the magnitude of a
negative step in the velocity of longitudinal waves in
deep-water regions of the ocean, for which Hamilton
generalized extensive experimental data [2]. It was

n2 1– 4πN /ik3 Lm ω( ) iK /k( )m,∑=
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shown that the negative step in velocity reaches a mag-
nitude of an order of 5–10% (in agreement with the
field data) and is observed for the bottom density ρ ≤
2 g/cm3 [2]. For bottoms (ice) with air bubbles, litera-
ture data are absent, but it is known that, in low-fre-
quency sound propagation in shallow water, the veloc-
ity of longitudinal waves in the bottom drastically
decreases down to the sound velocity in the atmosphere
(a strong negative step). No convincing interpretation
of this phenomenon appeared until now, although it was
qualitatively clear that it may be related to the effect of
air bubbles saturating the shallow-water bottom (the
sea depth was about 4 m). Really, formula (1) allows
the estimation of the magnitude of the negative step at
low frequencies (100 Hz), at which the bubble is not in
resonance because of its small size: in nature, only
small bubbles are observed with resonance frequencies
higher than 0.5–1 kHz (with radii a = 0.15–0.3 cm).
However, fundamental difficulties arise in determining
the number of terms in formula (1) for the oscillation
modes. For a small hard spherical particle, it will suf-
fice to take into account only two terms: the zeroth and
dipole modes of oscillations, if we restrict our consid-
eration to weak emulsions and porous bottoms [1, 2]. In
the case of a dispersive medium containing bubbles
with other boundary conditions at the radially com-
pressible surface, it is necessary to solve the diffraction
problem anew by following the method of [1].

Solving the problem of a plane wave diffraction by
a compressible spherical particle that is small com-
pared to the sound wavelength, we arrive at the follow-
ing result:

, (2)

(3)

where B(γ, ω) is the Kenig function for the velocity of
particle oscillations [2]; γ = ρ/ρ0 (ρ0 is the water den-
sity); κ1 and κ are the compressibilities of the medium
inside and outside the particle, respectively; and a is the
radius of the particle. Formulas (2) and (3) are valid for
small spherical particles of any compressibility. For
κ1/κ  ∞ (absolutely hard particle), Eqs. (2) and (3)
exactly lead to theoretical results obtained in [2, 3] and
are confirmed by experimental data (emulsion of mer-
cury in water, porous bottoms). For gas-saturated bot-
toms at low frequencies (f ! f0 = 330/a Hz), from
Eqs. (2) and (3) we obtain

, (4)

(5)

where f0 is the resonance frequency, f is the operating
frequency, and Q is the quality factor of radial oscilla-
tions.

L0 ka κ /κ1 1–( )– / ka i 1 3κ /κ1–( )/k2a2+( )=

L1 1/3 ka( )3 γ 1–( )B γ ω,( ),=

L0 i ka( )3Q2=

L1 ka( )3,–=
For a radially compressible sphere, the dipole dif-
fraction parameter L1 coincides with a similar parame-
ter for an absolutely incompressible sphere (with a pre-
cision of a factor of 3), because the oscillations occur
without deformation of the shape and, therefore,
depend only on the ratio of densities of particle and
water. In particular, for an air bubble, the velocity of
oscillations is three times greater than that for a hard
particle of the same size. Therefore, sound velocity
oscillations related to dipole oscillations are almost
three times greater than for a heavy particle (this is
reflected in Eq. (5)). From Eqs. (4), (5), and (1) it fol-
lows that the contribution of the dipole term is Q2 times
smaller than that of the radial term (the zeroth mode).
Since the quality factor for real bubbles is very large (in
the frequency range of 1–5 kHz and lower, Q = 80), the
inclusion of the dipole term, as well as higher modes of
oscillation, in Eq. (1) is not obligatory, because the
main contribution to the variations of the sound veloc-
ity is made by the zeroth mode of oscillation (radial
oscillations). In addition, from Eq. (1) it follows that
the effect of the scatterer interactions (by radiation)
manifests itself only in the small dipole term (in con-
trast to the zeroth mode, dipole scattering takes place
into a dispersive medium—see velocity C in Eq. (1)).
Thus, we may conclude that a strong negative step can
be obtained at a rather high concentration of bubbles,
which almost do not interact with one another due to
symmetry (the zeroth mode) but generate a strong scat-
tered field at the surface of any bubble in the dispersive
medium through reradiation of acoustic energy by the
exciting plane wave. According to Eq. (1), we have

, (6)

because 3βQ2 @ 1, where C0 is the sound velocity in
pure water and β is the volume concentration of bub-
bles. From Eq. (6) it follows that, at a moderate volume
concentration of bubbles, we can obtain (because of the
large quality factor) a low sound velocity commensura-
ble with its atmospheric value. For example, setting β =
7 × 10–3 (0.7%) and Q = 80 (resonance frequencies of
1–5 kHz and lower), we obtain C = 150 m/s (for the
atmosphere, C = 340 m/s). For smaller bubbles (f0 >
10 kHz), the quality factor is less than 80 (it is deter-
mined mainly by the incomplete heat exchange with
surrounding water), however, their volume concentra-
tion in natural media is rather low and almost does not
influence the estimate obtained above. Formula (6) is
valid not only for a fixed size but also for any mixture
of bubbles in a dispersive medium (the main contribu-
tion is given by the bubbles with constant quality factor
in the range of resonance frequencies within 1–5 kHz
and lower). In this case, it is necessary to take into
account the total concentration determined in experi-
ments (see Fig. 2).

C C0/ 1 3βQ2+( )1/2
C0/Q 3β( )1/2∼=
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3. The limiting concentration of bubbles β is deter-
mined, as usual, from the condition of probable
approach of the bubbles to one another to a distance of
the order of the effective diameter formed by the bubble
radius and the influence of the added mass of the sur-
rounding medium. As a result, we have β1 = N*V1,
where V1 = 8Veff. The effective volume of the bubble
with allowance for the added mass of water equals
Veff = 3V, where V is the volume of the bubble. Then, we
obtain β1 = 24β. The limiting concentration is deter-
mined from the close packing condition β1 = 1. Finally,
we have

βlim = 1/24 = 0.05 (5%). (7)

For concentration β > βlim = 5%, the initial dispersion
formula (1) is not valid, since it does not take into
account the interaction of particles by the added mass.
In nature, the maximum concentration of bubbles β =
0.1 [4] is recorded in oceanic water at a depth of 0.1 m
(a wind speed of 15 m/s); in arctic ice, β is of the order
of 3% [5] (Fig. 2). Therefore, the above-mentioned
results are quite realistic. If in Eq. (6) we set the limit-
ing possible concentration ~ 5% and Q = 80, we obtain
C = 50 m/s (this result does not change for gas-satu-
rated bottom (ice) with velocity of shear waves Ct <
13.5 m/s).

4. Now, let us take into account the elastic properties
of bottom and ice. Following Sivukhin [7] and Isakov-
ich [8], we conclude that an air bubble (vacuole) intro-
duced in an elastic medium has resonances at the zeroth
and dipole modes. However, these resonances are sig-
nificant for longitudinal waves (a shear wave is not con-
sidered because of its smallness) only for rather small
ratios µ/λ < 10–3, i.e., for water-like bottoms and ice.
The resonance of the zeroth mode (radial oscillations)
is determined by the elastic properties of the surround-
ing medium (mainly by modulus µ) and by the elastic-
ity of air inside the bubble, which depends on the atmo-
spheric pressure. The resonance dipole mode is deter-
mined only by the modulus µ for different boundary
conditions at the surface of the bubble (vacuole): for
vacuoles frozen into ice (bottom) and for sliding vacu-
oles [8]. In both cases, the resonances at the natural fre-
quency are different for the dipole and zeroth modes
(the ratio of frequencies is ~(µ/λ)1/4). For the zeroth
mode, the resonance is determined from the relation

(8)

where kl is the wave number of a longitudinal wave in a
homogeneous bottom (ice). From Eq. (8) it follows that
the resonance frequency of radial oscillations is much
higher than in pure water. Setting, for example, µ/λ =
4 × 10–2 (Cl = 3000 m/s, Ct = 600 m/s), we obtain f0rad =
200 kHz for a = 0.1 cm (f0 =3 kHz in water). For µ/λ =

kla( ) 2 µ/λ( )1/2,=
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4 × 10–4 (Cl =3000 m/s, Ct = 60 m/s), f0rad = 24 kHz, i.e.,
8 times higher than in water.

The resonance of a dipole mode in an elastic
medium is determined by the relation [8]

(9)

where kl is, as before, the wave number of a longitudi-
nal wave. Here, we do not take into account the small
difference between “frozen-in” and “sliding” variants
of boundary conditions. Let us estimate the characteris-
tic frequency of the dipole mode. Setting, as before, a =
0.1 cm, we obtain f0dip = 550 kHz for µ/λ = 4 × 10–2 and
f0dip = 120 kHz for µ/λ = 4 × 10–4. It is seen that the
dipole resonance is much higher than the zeroth (radial)
one. Its role in the sound velocity variation can be more
significant for high elasticity of the medium (µ/λ ~ 1).
However, this case is beyond our consideration,
because the main mechanism (radial resonance) at
µ/λ ~ 1 is strongly damped and does not affect the
velocity of sound waves.

Figure 1 displays the resonance properties, i.e., scat-
tering cross sections (both calculated (µ = 0, a pressure
of P0 = 1 atm) and taken from [7]), of individual vacu-
oles introduced in the bottom (ice) as a function of fre-
quency, size, and ratio µ/λ. These data allow one to esti-
mate the magnitudes of |L0| and |L1| and, therefore, the
relative contribution to the sound velocity variations (in
order of magnitude). From Fig. 1 one can see that the

kla 3 µ/λ( )1/2 1 4 µ/λ( )1/2+( )[ ] 1/2
,=

S/πa2

Kla0
1.3 × 10–2
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Fig. 1. Scattering cross section, σs/πa2, of spherical vacu-
oles (bubbles) introduced into the bottom (ice) as a function
of the parameter Kla. µ/λ = 0.0004 ((1) zeroth and (3) dipole
modes), 0.04 ((2) zeroth and (4) dipole modes), and 0 ((5) a
bubble in water).
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contribution of the dipole resonance is commensurable
with that of the main (radial) resonance already for
µ/λ = 4 × 10–2, i.e., for the velocity of the shear waves
Ct > 300 m/s. As temperature decreases (elastic ice) and
hydrostatic pressure increases (deep-water elastic bot-
tom), the velocity of shear wave grows (µ/λ ~ 1). The
resonances considered above are attenuated (damped),
and the sound dispersion becomes insignificant. The
role of air inclusions is mainly reduced to a decrease in
the density of the medium.

5. Let us estimate the velocity of low-frequency
sound in the ice of the Arctic basin. Figure 2 shows the
empirical data for the concentration of air bubbles fro-
zen into the ice [5]. The ice density changes within
0.917 ± 2.5 × 10–2 g/cm3. The statistical size distribu-
tion was determined from photographs (transmission
geometry) of arctic ice specimens. The volume concen-
tration of air inclusions (bubbles) was about 3%, which
far exceeds (by an order of the magnitude) the air bub-
ble concentrations in oceanic foam at a wind speed of
15 m/s [4]. This concentration value (3%) is quite reli-
able, because measurements on ice specimens (bubbles
are frozen in) are more reliable and accurate than mea-
surements in a breaking wave. We will estimate the true
value of sound velocity for the longitudinal velocity
Cl = 3000 m/s and the shear velocity Ct = 300 m/s
(µ/λ = 4 × 10–2). Such values occur mainly for summer
arctic ice and in a “loose” layer at the water–ice bound-
ary. In this case, the ratio of resonance frequencies of
the zeroth and dipole oscillations equals 1 : 3; i. e., the

ratio of squared decrements is /  = 1/9 ≅  0.1.
Therefore, the change in the sound velocity (at frequen-
cies f ! f0rad ! f0dip) will depend almost exclusively on
the radial mode. According to Eqs. (1) and (3), we have

(10)

Qrad
2 Qdip

2

n2 1– 3βQrad
2 ,=

0.4

0.3

0.2

0.1

2 4 6 8 100

n/N

a × 10–2, cm

Fig. 2. Distribution of the concentration n/N of air bubbles
frozen into ice in a real arctic ice cover. The dashed line rep-
resents the function of bubble size distribution f(R) ~ R–1.
where Qrad = 0.5(µ/λ)–2 is the quality factor of the
zeroth mode (the influence of air inside the vacuole is
neglected).

Substituting the data for arctic ice (Fig. 2): β = 3%
(0.03) and µ/λ = 2 × 10–2, we obtain Cl = 2150 m/s
instead of Cl =3000 m/s for pure ice. For more water-
like ice (bottom), at µ/λ = 4 × 10–4 (Cl =3000 m/s and
Ct = 60 m/s), we obtain Cl = 400 m/s. One can see that,
in contrast to sound velocity variations in pure water,
which are related to the inclusion of air bubbles, the
sound velocity in water-like ice (bottom) changes much
less. This is explained by the “damping” effect of the
elastic medium. Note that, at µ/λ = 4 × 10–5, i.e., for
Ct = 13.5 m/s (Cl = 3000 m/s), the role of the bottom
(ice) elasticity is insignificant compared to the role of
the elasticity of air inside the bubble (vacuole), and the
sound velocity is close to that in the atmosphere [6].
The results obtained agree well with conclusions made
by other authors (see, for example, [9]).

CONCLUSIONS

The influence of air inclusions in water and water-
like bottoms (ice) on the sound velocity of longitudinal
waves is estimated both qualitatively and quantitatively.
It is shown that the main role in sound velocity varia-
tions is played by the radial resonance, which, at low
frequencies, depends on the quality factor of radial
oscillations. For real concentrations of bubbles (vacu-
oles), the velocity of longitudinal waves can reach very
low values. This may considerably affect the boundary
conditions at rough surfaces and, therefore, cause an
enhancement of scattering and absorption of sound
waves (additional leakage of acoustic energy into the
bottom and ice), as well as other effects, such as a
change of sign of the sound velocity gradient in bound-
ary layers, a change in the sound velocity profile, etc. It
is shown that water-like bottoms (sediments) and ice
(“liquid” ice), in which the velocity of shear waves is
about 15 m/s or less, behave almost as a vacuum
(Cl  0) for longitudinal waves of kilohertz frequen-
cies when the concentration of air in these media
increases to several percent. As a result, the propagation
of the first modes in the subsurface layer of the arctic
waveguide becomes more difficult or even completely
absent because of the increase in the critical frequency.
Indeed, from the pole equation [6], we obtain for shal-
low water fcr1/fcr2 = 2, where fcr1 is the critical frequency
of a waveguide with a gas-saturated bottom and fcr2 is
the critical frequency of a waveguide with a conven-
tional bottom. Setting the sea depth h = 5 m and the
sound velocity in water equal to 1500 m/s, we obtain
fcr1 = 150 Hz and fcr2 = 75 Hz; i.e., a channel propaga-
tion in shallow water with a gas-saturated bottom is
possible only at frequencies f > 150 Hz. In this exam-
ple, even the zeroth mode can exist, but we do not con-
ACOUSTICAL PHYSICS      Vol. 50      No. 1      2004
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sider it because of its fast attenuation due to the strong
scattering in the dispersive bottom.
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