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Abstract—For the simplest underwater sound channel modeled by a bilinear depth dependence of the
squared refractive index, the main features of the spatial domains of the sound field diffraction focusing
are determined in the framework of the WKB approximation. The optimum conditions for the observation
of the diffraction focusing of mode beams in natural ocean waveguides are formulated. A numerical sim-
ulation of the spatial diffraction focusing of sound field in a sound channel with the canonic sound speed
profile is performed. The results of the numerical simulation agree well with those of the approximate
analysis. © 2000 MAIK “Nauka/Interperiodica”.
It is well known [1–5] that the spatial interference
structure of the sound field periodically varies along the
ocean waveguide. These variations are characterized by
the minimum and maximum periods, Rmin and Rmax, and
manifest themselves in a partial repetition of the fea-
tures of the spatial intensity distribution observed at 0 ≤
r < Rmin. The repetition leads to the diffraction focusing
of the sound field at certain ranges [3, 4]:

(1)

where

(2)

Here the term

(3)

corresponds to the period of the rearrangement of the
interference structure of the sound field formed by a
pair of adjacent modes with the characteristic interfer-
ence periods

(4)

The frequency dependence of the horizontal wave num-
ber kl of the lth mode is determined by the dispersion
relation corresponding to the specific waveguide.

Note that, as in our earlier works [3, 4], by analogy
with the diffraction imaging of periodic structures in
optics [6], the diffraction focusing of a guided sound
field means the formation of zones of enhanced insoni-
fication. In ordinary refraction focusing [7], the spatial

mRmin r mRmax    m 1 2 …, , = ( ) , ≤ ≤

Rmin min Rg l l 1; l 1+ + l 2+, ,( )[ ] ,=

Rmax max Rg l l 1; l 1+ + l 2+, ,( )[ ] .=

Rg l l 1; l 1+ + l 2+, ,( )
=  Rl l 1+, Rl 1+ l 2+, / Rl l 1+, Rl 1+ l 2+,–

Rl l 1+, 2π/ kl kl 1+–( ),=

Rl 1+ l 2+, 2π/ kl 1+ kl 2+–( ).=
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period only weakly depends on the wavelength through
a small diffraction correction to the ray approximation
[8–11]. In contrast, a significant dependence of the
period on the wavelength is characteristic of the diffrac-
tion focusing [3, 4].

In ocean waveguides, under some conditions, the
spatial (in depth 

 

z

 

 and horizontal range 
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) distribution
of the sound field intensity 

 
J
 
(
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z
 

)
 

 exhibits a beam-like
structure that is most pronounced in the presence of the
underwater sound channel [5]. Hence, according to the
results of our theoretical study [4], the diffraction
focusing of the beams should occur within the spatial
domains (1).

The objective of this paper is the quantitative
description of the diffraction focusing of the sound field
and the associated diffraction focusing of the mode
beams in a deep-water ocean waveguide with the
underwater sound channel that is open to the surface
and has an acoustically transparent bottom.

To solve the problem, namely, to pre-estimate the
boundaries of the domains (1), it is advantageous to
obtain explicit dependences of 
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min

 

 and 
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 (2) (even
approximate ones) on the parameters governing the
phenomenon under study. To begin with, we consider a
model deep-water waveguide with a bilinear depen-
dence of the squared refractive index 
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Here a1 > 0 and a2 > 0 are the parameters determining
the gradients of the quantity n2(z) above and below the
channel axis, respectively; z0 is the channel axis
depth; H is the thickness of the water layer; and a1z0 <
a2(H – z0).

We assume that the multi-mode propagation of the
sound waves takes place (the diffraction focusing being
most pronounced in this case [4]), and the WKB
approximation is valid. Then, we use the expressions
derived in [4] to determine the quantities Rmin and Rmax:

(6)

(7)

Here,

(8)

is the cycle length for the associated Brillouin ray hav-
ing the grazing angle χl and the ray parameter βl = cosχl

at the channel axis; z' = , where zl U, and zl L are the

upper and lower turning horizons of this ray; βl = βc

corresponds to the extremum of the function Dl(βl); and
k = ω/c0, where c0 = min[c(z)] = c(z0) is the minimum
sound speed, c(z) = c0/n(z), ω = 2πf, and f is the fre-
quency of the transmitted cw signal. The values of βl

are determined by the dispersion equation of the WKB
approximation [7]:

(9)

where

(10)

With this model of the underwater sound channel
(5), in view of (8) and (9), we derive the following rela-
tions for the cycle length and the ray parameter of the
refracted rays (1 ≤ l ≤ Lr) and the rays interacting with
the ocean surface (1 + Lr ≤ l ≤ L):
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(13)

(14)

Here,

(15)

and the numbers Lr and L of the modes are determined
by expressions that follow from (12) at βl = βr and (14)
at βl = βs:

(16)

(17)

Because the function Dl(βl) (11) has no extrema
within the allowable range of the ray parameter, expres-
sions (6) and (7) take the following forms for the
refracted modes:

(18)

(19)

where

(20)

By substituting (12) and (15) into (18)–(20), we find
the approximate expressions for the characteristic peri-
ods of the diffraction-focused refracted modes of the
sound field:
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where

(23)

is the characteristic thickness of the underwater sound
channel (5). The values of this thickness are the solu-
tions of the equation n(0) = n(Hr).

According to (21) and (22), Rr min decreases and
Rr max increases as k increases. Then, the length of each
spatial domain of the diffraction focusing of the acous-
tic field formed solely by the refracted modes can be
expressed as

(24)

where

(25)

and this length sharply increases as the emitted fre-
quency grows.

However, the situation is most interesting when the
source is located at the depth zs that is far away from
both the free surface and the channel axis, 2π/k < zs !
z0. In this case, the beam-like structure of the guided
sound field is most pronounced [5]. Under such condi-
tions, for the refracted Brillouin rays, the range of vari-
ations of the ray parameter has the lower bound

(26)

Here we use the fact that modes of numbers l < lp,

(27)

whose turning horizons are deeper than the source hori-
zon (zs < zlU) are virtually not excited. The latter means

that the actual dependence Rmin =  will have the
form similar to (22):

(28)

where

(29)

is the depth “conjugated” to that of the source. Its value
(29) is obtained as the solution of the equation n(zs) =
n(Hp).

By using expressions (22) and (28), we find the
dependence

(30)

which leads to a conclusion that, in the case at hand, the
length of each spatial domain of the diffraction focus-
ing of the sound field, which is formed solely by the
refracted modes, will decrease as the source depth and
the emitted frequency decrease. In view of the fact that
the domains (1) become closer to the source as the
emitted frequency decreases (see (22) and (28)),
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expression (30) means that the diffraction focusing of
sound beams formed by the refracted modes is best
observed when the emitted frequency is relatively low
and the source is located near the ocean surface (zs/z0 !
1). Note that, in the case of multi-mode propagation
(kHr @ 1), the values of zs and ω are related to each
other by the expression that follows from the condition
of the efficient excitation of a large number of refracted
modes:

Lr – lp @ 1. (31)

The latter condition is that of the formation of a pro-
nounced beam-like structure of the sound field by the
refracted modes. Actually, in view of (16) and (27), at
zs/z0 ! 1, we obtain from (31):

(32)

which is the lower bound for the frequency range.

In the allowable range of the ray parameter, the
dependence Dl(βl) (13) that corresponds to the modes
interacting with the ocean surface has a minimum at

some βl = βc [12]. Let us introduce a quantity  = 1 –

 = sin2χl. To determine the corresponding value of

 = 1 – , we use the condition

(33)

and expression (13) to obtain the equation

(34)

At low grazing angles χl ! 1 (  ! 1), this equation
has the following approximate solution:

(35)

where αr = .

In view of the mentioned extremum (33) in the
dependence Dl(βl) (13), for the surface-interacting
modes, we reduce expressions (6) and (7) to the form
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where

(38)

(39)

Here, the value α l = αg corresponds to the minimum of
the function Φ(α l) (38) for the allowable range of this

quantity: αr < α l ≤ αs = . According to
(38), αg must differ from αr by the limiting allowable
small value

(40)

To determine this value, we use (14) at l = ls = Lr + 1
(  = αg) to obtain the following equation:

(41)

Because ka/4k  ! 1 in the situation at hand, the first
approximation of (41) yields the following solution:

(42)

Then, with the use of (36)–(39) in view of (35) and
(42), simple approximate expressions are obtained for
the characteristic spatial periods:

(43)

(44)

According to (43) and (44), the length of each spa-
tial domain of the focused sound field (24) formed
solely by the surface-interacting modes increases with
increasing emitted frequency much more rapidly than
the corresponding quantity (24) for the refracted
modes. In this case, the evident relation Rrmax/Rsmax ! 1
is valid.

However, one should keep in mind that the afore-
mentioned features of the dependence Dl(βl) (13) man-
ifest themselves in the corresponding dependence
Rl, l + 1(l) only at relatively high emitted frequencies
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when a sufficiently large number of surface-interacting
modes are excited, L – Lr @ 1 [5, 12]. With the use of
(16) and (17), one can determine the frequency band
that corresponds to the latter condition:

(45)

Within this band, expressions (43) and (44) are valid
along with their corollaries.

The following points should be mentioned. First, the
quantity Rs max (44) significantly predominates over
Rr max (22), because, when condition (45) is met, the
weakly divergent acoustic beams formed by the sur-
face-interacting modes can be excited [5]. These beams
exhibit a minimum geometrical spread of the wavefront
and noticeably shift the outer boundary of each spatial
diffraction-focusing domain of the sound field (1) in the
direction away from the source. At certain emitted fre-
quencies and source depths, these beams can form the
narrowest far convergence zones [12] in deep-water
waveguides with sound channels that are open to the
surface. Second, in contrast to an erroneous conclusion
of Caruthers et al. [13], a weakly divergent beam is also
excited in the model sound channel (5), this beam being
formed by the refracted modes in the vicinity of the sin-
gular (caustic) geometric-acoustic ray which leaves the
source in the horizontal direction [14–16]. Because the
condition similar to (33) at k  ∞ is violated for this
ray (see [14, 15]), condition (33) itself is also not valid
for the beam-forming refracted Brillouin rays at βl 
βp (26). The latter means that the outer boundary of
each diffraction-focusing domain of the corresponding
modes (1) is governed by the maximum period Rrmax
(22) of the rearrangment of the spatial interference
structure of an ordinary beam of modes.

Thus, for the model underwater sound channel (5),
the approximate analysis of the dependences Rmin (6)
and Rmax (7) leads to the following conclusion. For the
observation of the diffraction focusing of the acoustic
field in the sound channel similar to the model one (5),
it is preferable to use the emitted frequencies and the
source depths at which the refracted modes are pre-
dominantly excited. To obtain the most pronounced dif-
fraction focusing of the beams at ranges that are allow-
able for deep-water ocean waveguides, one should
select the aforementioned parameters in such a way that
a single mode beam is excited, and this beam is not a
weakly divergent one.

In view of the above conclusions, let us proceed
with a precise quantitative description of the diffrac-
tion-focusing of the sound field in the ocean waveguide
with an acoustically transparent bottom at z ≥ H and
with the canonic underwater sound channel [17] that is
open to the surface:

(46)

k @ 
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Fig. 1. Spatial periods of (a) the interference of adjacent modes, Rl, l + 1, and (b) the rearrangement of the interference structure of
the sound field formed by adjacent mode pairs, Rg(l, l + 1; l + 1, l + 2), versus the mode number l at f = 20 Hz.
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Fig. 2. Normalized product of the amplitudes of adjacent modes Al = Bl, l + 1/max [Bl, l + 1] versus the mode number l for the source
depth z = zs = 200 m at f = 20 Hz.
where

(47)

The parameters of expressions (46) and (47) are speci-
fied as follows: c0 = 1.48 km/s, z0 = 0.9 km, Hg = 0.8 km,
γ = 1.14 × 10−2 km–1, and the thickness of the water
layer H = 5 km. These parameters are chosen to coin-
cide with those used in our previous paper [5].

To obtain the spatial distribution of the acoustic
intensity J(r, z) over the horizontal distance and in the
depth of the water layer, we use the rigorous mode the-
ory [18]. In numerical computations, we choose the
emitted frequency f = 20 Hz at which no extremum
occurs in the dependence of Rl, l + 1 (4) on l (Fig. 1a).
Then, we obtain adequate values for the quantity

η 2 z0 z–( )/Hg,  ε γHg/2.= =
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
Rg(l, l + 1; l + 1, l + 2) (3) (Fig. 1b). In addition, we
specify the source depth zs = 200 m in order to satisfy
the condition of the excitation of a single mode beam
that is not a weakly divergent one. If the product of the
amplitudes of adjacent modes Bl, l + 1 is plotted versus
their number l for this beam, there appears a pro-
nounced maximum at z = zs (Fig. 2).

From the numerical calculations illustrated by
Figs. 1b and 2, the following preliminary conclusions
can be drawn. First, for the mode beam that is formed
by the refracted and surface-interacting modes (1 ≤ l ≤
22) and predominates in its intensity, one can expect the
most pronounced diffraction focusing with the values
of the spatial period within a relatively narrow interval:

4 × 103 ≤ Rg(l, l +1; l + 1, l + 2) < 4.2 × 103 km.
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Fig. 3. Spatial distribution of the normalized sound field intensity J0(r, z) in the horizontal distance r and depth z. Density-type
record with the dynamic range 26 dB. Spatial domains: (a) 0 ≤ r ≤ 3 × 103 km, (b) 3 × 103 ≤ r ≤ 6 × 103 km, (c) 6 × 103 ≤ r ≤ 9 ×
103 km, and (d) 9 × 103 ≤ r ≤ 12 × 103 km; zs = 200 m; f = 20 Hz.
These values correspond to pairs of the adjacent modes
with the numbers 12 ≤ l ≤ 16. Second, for the mode beam
formed by the surface-interacting modes (23 ≤ l ≤ 28),
the diffraction focusing should be most pronounced with
the spatial period Rg(l, l + 1; l + 1, l + 2) ≈ 620 km that
corresponds to the adjacent pairs of modes with l = 27.

The above considerations are confirmed by Fig. 3
that presents the numerically computed spatial distribu-
tions of the sound field intensity J0(r, z) = rJ(r, z) nor-
malized to the cylindrical spread of the wave front.
According to the figure, the diffraction focusing of the
intensity-predominant mode beam gives rise to zones of
acoustic shadow at the distances r ≈ (4–4.2) × 103 km in
the first domain (m = 1) and r ≈ (8–8.4) × 103 km in
the second one (m = 2). These zones are rather narrow
(∆r ≈ 5 km) near the surface (0 ≤ z ≤ zs) and relatively
wide (∆r ≈ 20 km) at the depths 3 km < z < 4 km. Nat-
urally, the width ∆r of the shadow zones decreases as
the number m of the focusing domain increases, and
they become nearly undetectable already starting from
m = 2.

To conclude, we formulate the main results of this
study; these results seem to be important for modeling
the super-long-range sound transmission in the ocean
[19, 21].

1. For the simplest model of a deep-water oceanic
waveguide with the underwater sound channel that is
open to the surface, has an acoustically transparent bot-
tom, and is approximated by a bilinear depth depen-
dence of the squared refractive index, the WKB
approximation is used to determine the main features of
the spatial domains of the sound field focusing. On this
basis, the optimum conditions for the observation of the
diffraction focusing of the mode beams are formulated.

2. In view of the conclusions drawn from the
approximate analysis, by using the exact mode theory,
the numerical simulation is carried out for the process
of the formation of the spatial distribution of the sound
field intensity in both the depth and the horizontal dis-
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
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tance within a deep-ocean waveguide with the canonic
sound speed profile. In an illustrative form, it is shown
that the periodic rearrangment of the interference struc-
ture of the sound field along the path leads to a periodic
diffraction focusing of the mode beams at certain dis-
tances.
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Abstract—The algorithms of pitch extraction are widely used in the studies of signals and, specifically, speech
signals for the determination of the fundamental frequency. From the previous studies performed by Galembo and
the calculations and experiments described in this paper, it follows that these methods can be adapted for the anal-
ysis and evaluation of the factors which form the sound property called “pitch strength,” “pitch salience,” or “into-
nation clarity.” Although this property plays an important role in music, it is quite poorly investigated. One of the
aforementioned factors is represented by the distributed spectral inharmonicity which is typical of sounds pro-
duced, e.g., by strings. This paper presents a method of visualization, evaluation, and measurement of the inhar-
monicity of the spectrum of a musical sound with the help of the well-known algorithms of pitch extraction,
namely, the cepstrum and the harmonic product spectrum. © 2000 MAIK “Nauka/Interperiodica”.
TERMS AND NOTIONS

Intonation Clarity and Spectral Inharmonicity

The pitch of sound is of great importance in the per-
ception and discrimination of acoustic signals and
images. In speech, the main distinction of vowels from
consonants is their periodicity and pitch. An ordered
pitch variation forms the basis of music.

The interpretation of the phenomenon of pitch—
acoustical, psychological, physiological, and even
esthetical—is the subject of many scientific papers and
books.

Much less attention is paid to the fact that real
sounds can be classified not only into those with defi-
nite pitch and those without pitch; there are also many
intermediate sound categories with the pitch feature
being to one or another extent depressed by the pres-
ence of noise, inharmonic relations in the line spec-
trum, or transient processes that hinder the perception
of pitch. Different authors characterize these sounds by
“pitchiness” [1], “pitch strength” [2], “pitch salience,”
“pitch prominence” [3], “intonation clarity,” or “pitch
definiteness” [4].

By the standards of acoustics, the corresponding
sound feature should be attributed to timbre; on the
other hand, it is directly related to the perception of
pitch. This sound feature has not been adequately stud-
ied, described, and terminologically defined in the liter-
ature; even less progress is observed in the develop-
ment of methods for its evaluation and measurement.

However, the intonation clarity of sound plays an
important role in music. Volodin [4] even proposed
1063-7710/00/4602- $20.00 © 20121
some kind of an “indeterminacy principle” in the per-
ception of music; he argued that almost every enhance-
ment in the character of a musical sound is achieved at
the expense of a reduction in its pitch definiteness.

An insufficient intonation clarity of sound produced
by a musical instrument may lead to such defects of
sound as “metal” bass tones of “glass” treble tones of a
piano.

The latter instrument designed for universal musical
applications always “tended” to cover the maximum
possible pitch range. An obstacle for its extension was
the deficiency of the intonation clarity in the extreme
registers. The technical history of the piano—from five
octaves at the time of Mozart to the modern eight
octaves—was the history of overcoming this defi-
ciency. This was possible, on the one hand, at the
expense of the improvements in the materials and the
instrument design and, on the other hand, at the
expense of the development of music and its percep-
tion. The process continues to this day: for example, in
the Imperial concert pianos produced by the Bösendor-
fer company, the bass register is extended by nine notes
as compared to the conventional version. However, the
obvious deficiency of the pitch feature in the additional
sounds makes this novelty to be more a commercial
success than a musical one.

Today, when we buy a piano, the intonation clarity
of sounds in its extreme registers is one of the main cri-
teria used to decide upon the quality of sound produced
by the instrument.

Being a subjective parameter, the intonation clarity
of sound depends on the characteristics of hearing and
000 MAIK “Nauka/Interperiodica”
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the conditions of perception; at the same time, it is also
determined by objective parameters of the sound sig-
nal. For example, in the treble sounds of a piano, the
main factor causing the reduction in the intonation clar-
ity is the accompanying noise, while, in the bass sounds
whose spectrum may contain up to hundred and more
overtones, the corresponding factor is their spectral
inharmonicity.

The inharmonicity of the overtones of the strings of
musical instruments has been much studied by physi-
cists. The mechanism of this phenomenon is as follows:
the presence of the flexural rigidity, which determines
the difference between a real string and an ideal one,
leads to a dispersion; as a result, transverse waves of
different length propagate along the string with differ-
ent velocities. Therefore, the overtones of higher orders
have frequencies which progressively exceed those of a
harmonic series.
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Fig. 1. Measured values of the inharmonicity coefficient for
the strings of a Noktyurn upright piano [28].
The theory describing the inharmonicity of piano
strings was developed by a number of authors [5–10].
The corresponding experimental measurements
revealed the important role of spectral inharmonicity in
the tuning of musical intervals [11, 12].

In several studies considering the inharmonicity of
the sound spectrum from the viewpoint of the timbre
perception [13–16], it was found that the inharmonicity
not only affects the perception of the pseudostationary
(attenuating) part of sound but also gives rise to the
“slip of frequency” in the perception of its attack. The
spectral inharmonicity is not an a priori detrimental
feature of a piano sound; to an optimum degree, it is
necessary, because it makes the sound variable and
lively [13]. However, a too high inharmonicity unfavor-
ably affects the bass sounds of a musical instrument.

Therefore, in the modern manuals describing the
calculation of the string scales of a piano, it is recom-
mended to take into account and optimize the spectral
inharmonicity of strings [17].

According to the results of the aforementioned stud-
ies (both theoretical and experimental ones), the dis-
tributed spectral inharmonicity (subsequently referred
to as inharmonicity) of string vibrations is adequately
described by the formula

(1)

Here, fn is the frequency of the nth mode of natural
vibrations, f0 is the fundamental frequency of an ideally
flexible string, and B is the inharmonicity coefficient.
For a plain string, the latter quantity depends on the
parameters of the string wire: B = π3Yr3/64TL2, where
Y is Young’s modulus of the wire material, r is the
radius of its cross-section, T is the string tension, and L
is the string length.

The minimum value of the inharmonicity coefficient
characterizing the vibration spectrum of a piano string
falls in the middle of the piano scale, and the inharmo-
nicity increases toward the scale ends (Fig. 1). The
maximum value of the inharmonicity coefficient occurs
in the treble (shortest) strings. However, the inharmo-
nicity plays no significant role in the treble sounds,
because the spectra of these sounds are poor in over-
tones. The maximum effect of inharmonicity on the
timbre is observed in the bass sounds.

Although the sounds with harmonic and inharmonic
spectra can be clearly distinguished by ear, the inhar-
monicity that occurs within the limits characteristic of
real strings of musical instruments cannot be revealed
and estimated by a spectrogram or oscillogram of a real
sound of a musical instrument: the inharmonicity is a
hidden parameter. In real musical sounds, the inharmo-
nicity is usually detected and measured by a compli-
cated procedure that includes a manual study of the
spectrum, namely, the intuitive detection of overtones
among the partial tones of other origin; the measure-
ment and comparison of frequencies in several pairs of
overtones; the calculation of the inharmonicity coeffi-

f n n f 0 1 n2B+( )0.5
.=
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cient in each pair by formula (1); and the averaging of
the results [18].

Despite the important role of inharmonicity in the
formation of the timbres of musical sounds (the inhar-
monicity of spectra is characteristic of not only string
instruments but also other types of instruments) and the
frequent use of this parameter by researchers, the pro-
cedure of the detection and measurement of the inhar-
monicity of spectra remained for years at the same level
as it was at the beginning of the studies of this phenom-
enon.

Pitch Extraction: Cepstrum
and Harmonic Product Spectrum

A considerable part of algorithms developed in the
last few decades for digital processing of sound signals
is represented by the algorithms of pitch extraction, i.e.,
the algorithms for the determination of the fundamental
frequency and the dynamics of its variation. Today,
these algorithms are improved and adapted by
researchers for different specific applications: they are
widely used in echo sounding, technical diagnostics of
machines, and analysis of speech signals, i.e., in all
cases that require an automatic selection of a periodic
signal from the sound flow and the determination of its
fundamental frequency. Digital methods are most
extensively used in the analysis of speech signals. The
exact determination of the fundamental frequency is
important for such purposes as speech synthesis,
speech discrimination, and speaker identification [19].

The methods of pitch extraction from nonstationary
signals are based on the analysis of the temporal or
spectral functions of short-time signal segments. To
make the solution of the problem more efficient, special
operations of signal transformation are introduced in
the algorithms. These transformations, e.g., frequency
or amplitude limitations or scale transformations, make
the signal periodicity more pronounced.

Earlier, the methods of pitch extraction were not
used for studying and evaluating musical sounds. Prim-
itive methods of the determination of the sound posi-
tion in the musical scale can be found only in the pub-
lications on automatic music notation [20, 21].

In this paper, we use the modifications of two well-
known algorithms of pitch extraction. The physical
foundations of these algorithms are briefly described
below.

Cepstrum is one of the most popular algorithms of
pitch extraction based on the analysis of the periodicity
of the sound spectrum envelope. The cepstral analysis
developed in the 1960s for echo sounding has found a
wide utility in the analysis of speech signals. The cep-
strum is determined as the power spectrum of the loga-
rithm of the power spectrum. Its mathematical formu-
lation is as follows:

C τ( ) F F ω( ) 2log[ ] 2
,=
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
where F is the Fourier transform.
The term cepstrum is formed by a free inversion of

the word spectrum. Similarly, the periodicity of the
spectral envelope in the frequency domain is character-
ized by a “repiod,” and small repiods correspond to
large “quefrencies” (the quefrency is the independent
variable of the cepstrum, and this variable is measured
in time units) [22].

Figure 2 illustrates the foregoing definitions; it sche-
matically depicts the spectrum and the cepstrum of the
sound A of a piano (to denote the sounds, we use the
European notation). Both characteristics were obtained
by a Bruel & Kjer 3348 spectrum analyzer.

The algorithm named “the harmonic product spec-
trum” (HPS) was developed in the 1960s on the basis of
the ideas put forward by Miller [23], Schroeder [24],
and Noll [25]. However, judging from the literature, it
was not used for the pitch extraction.

The idea underlying the HPS algorithm is based on
the fact that, since the frequencies of the harmonics of
a periodic signal are multiples of its fundamental fre-
quency, the information on the fundamental frequency
can be amplified by compressing the sound spectrum
along the frequency axis by a factor of 1, 2, 3, 4, …, m
and then combining the obtained versions as shown in
Fig. 3 (in a simplified form). The resulting function will
contain an increased (compared with the component

dB
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(b)
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Fig. 2. (a) Spectrum envelope and (b) cepstrum of the sound
A of a piano [28].
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versions) peak at the fundamental frequency of sound.
Mathematically, this kind of signal processing is
described by the formula

. (2)

Taking an antilogarithm of this formula, we obtain the
expression that explains why this transformation was
called the harmonic product spectrum:

The quantity m is called the order of the HPS, and it is
equal to the number of the spectrum compressions or,
which is the same, the number of harmonics involved in
the formation of the pitch peak of the HPS.

π ω( )log F kω( ) 2log
k 1=

m

∑=

πHPS F kω( ) 2.
ė̇ 1=

u̇̇

∏=

log |F(ω)|2

log |F(2ω)|2

log|F(3ω)|2

log F kω( ) 2

k 1=

m

∑

ω

ω

ω

ωω1

Fig. 3. Schematic diagram of the formation of the harmonic
product spectrum after A.M. Noll [25].
JUSTIFICATION OF THE METHOD

The method of analyzing the spectral inharmonicity
of sound is developed on the basis of the general idea
of applying the algorithms of pitch extraction to the
studies of the intonation clarity of musical instruments.
This idea was experimentally justified by Galembo in
analyzing the intonation clarity of treble sounds of a
piano in the late 1970s [26–28]. The idea originates
from the assumption that, because the algorithms of
pitch extraction are directed at the elimination of the
objective noise suppressing the pitch feature, the results
of pitch extraction must contain the information on the
eliminated noise, and, hence, they can be adapted for
the evaluation of the factors affecting the intonation
clarity of sound.

This explains why in this paper we use the term
pitch extraction instead of the term commonly used in
the Russian scientific literature, “selection of the funda-
mental tone.” The inharmonicity is a spectrum parame-
ter determining the timbre; hence, the evaluation of the
inharmonicity is a more general problem than the deter-
mination of the fundamental tone, and therefore it
requires a more general term.1

Let us show that the cepstrum and the harmonic
product spectrum of a musical sound must contain the
information on the degree of its spectral inharmonicity.

Since the envelope of the spectrum of a complex
periodic sound is also periodic, the theoretical result of
the cepstral analysis of a periodic (harmonic) sound is
a delta-function whose coordinate on the quefrency
axis is equal to the period of the fundamental tone of
this sound.

Thus, the cepstral analysis allows one to classify the
sounds into periodic ones (e.g., vowels) forming such a
delta-function and aperiodic ones (e.g., consonants)
forming no delta-function.

According to formula (1), an inharmonic spectrum
of sound is characterized by a progressive increase in
the frequency shift between the neighboring overtones.
In the cepstral analysis of periodic signals, this shift is
called the repiod (it is convenient to retain this term also
for an inharmonic sound, although in this case the
repiod is no more a constant value: it varies in some
range of values). The increase in the repiod occurs from
its minimum value at the beginning of the spectrum

(4)

1 An interesting way to this idea, almost at the level of a play on
words, can be found from the well-known scientific definition
according to which the timbre of sound includes all sound charac-
teristics unrelated to its loudness, duration, and pitch. This means
that if the pitch is extracted from two sounds of equal loudness
and duration, these sounds will differ only by their timbres.

f L f 1 f 0 1 B+( )0.5= =
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to its maximum value attained between the last two par-
tial tones

(5)

Then, the relative (normalized to the fundamental fre-
quency f0 of an ideal string) range of this quantity is
expressed as

(6)

This result suggests that the degree of periodicity of
the spectrum of such a sound will be represented in the
cepstrum by a broad peak or a set of peaks rather than
by a delta-function, and these peaks will occupy the
pitch region from the lower quefrency τL = 1/fH to the
higher one τH = 1/fL.

The relative (normalized to the period of an ideal
string, τ0 = 1/f0) width of this region should have the
form

We note that this width depends on both the inhar-
monicity coefficient and the number of tone compo-
nents of the spectrum subjected to the cepstral analysis.
One of the curves in Fig. 4 shows this calculated width
as a function of the inharmonicity coefficient for a
thirty-component sound. The curve demonstrates that
the width of the pitch peak-region of the cepstrum
increases steadily with increasing inharmonicity coeffi-
cient.

The intuitive idea to use the HPS for the evaluation
of the degree of inharmonicity of a musical sound is
based on the logical conclusion that the incoherence of
the overtones in the combined compressed spectrum
versions must lead to the formation of a pitch peak-
region of the HPS, and the width of this region will be
uniquely related to the inharmonicity coefficient of
sound: the greater the inharmonicity coefficient B and
the number m of the spectrum tone components
involved in the calculation of the HPS, the greater the
width of the pitch peak-region. If we proceed from for-
mulas (1) and (2), the lower (fL) and higher (fH) bound-
aries of the pitch peak-region of the HPS will be calcu-
lated as follows:

(7)

(8)

f H f n f n 1––=

=  f 0 n 1 n2B+( )0.5
n 1–( ) 1 n 1–( )2B+[ ]0.5
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This dependence for 
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 = 30 is also presented in
Fig. 4.

SOUND MATERIAL

We studied the bass sounds 
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, and 

 

A

 

(we use the European notation where 

 

a

 

1

 

 corresponds
to 440 Hz) of five pianos of different structure and, hence,
with different degrees of inharmonicity of overtones.
The pianos were a Steinway D concert piano of length
274 cm, a Steinway C salon piano of length 229 cm, two
modern Nordiska upright pianos of height 110 cm, and
one Straud upright piano of height 130 cm made in the
early twentieth century.

The inharmonicity of all listed sounds was prelimi-
narily measured by the following procedure based on
the conventional principles:

—The sound under study was represented by its
digital record on a professional Sony DAT TCD D10
tape recorder.

—We studied the power spectrum of the sound by
means of an HP 356-2A dynamical signal analyzer.

—The spectral components representing the over-
tones of the fundamental tone of transverse string
vibrations were subjectively identified by the distance
between the spectral components on the linear fre-
quency scale.

WHPS 1 m2B+( )0.5
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 Dependence of the relative width of the pitch peak-
region on the inharmonicity coefficient for a thirty-compo-
nent musical sound.
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Table 1.  Sound parameters measured by the conventional procedure for different pianos

Fundamental frequency (Hz)

Note Stein. D Stein. C Nord. 1 Nord. 2 Straud

A2 27.25 26.92 26.99 27.4 26.54
E1 40.97 40.65 41 41.1 40.54
A1 54.75 54.14 54.67 55.02 54.16
E 82.31 81.55 82.2 82.39 81.41
A 109.55 108.52 109.83 110.27 108.8

Inharmonicity coefficient

Note Stein. D Stein. C Nord. 1 Nord. 2 Straud

A2 0.00016 0.00019 0.000345 0.000346 0.000568
E1 0.0000654 0.0000906 0.000207 0.000202 0.000263
A1 0.0000568 0.0000923 0.00016 0.000153 0.000214
E 0.0000684 0.0001144 0.000142 0.000133 0.000235
A 0.0000849 0.0001306 0.000154 0.000141 0.000202

Table 2. Notation and parameters of synthesized musical sounds

No. of sound File name f0 (Hz) B No. of sound File name f0 (Hz) B

1 b00f27 27 0 21 b22f54 54.5 0.00022
2 b10f27 27 0.0001 22 b30f54 54.5 0.0003
3 b16f27 27 0.00016 23 b40f54 54.5 0.0004
4 b20f27 27 0.0002 24 b50f54 54.5 0.0005
5 b30f27 27 0.0003 25 b00f82 82.2 0
6 b40f27 27 0.0004 26 b07f82 82.2 0.00007
7 b50f27 27 0.0005 27 b10f82 82.2 0.0001
8 b58f27 27 0.00058 28 b20f82 82.2 0.0002
9 b00f41 41 0 29 b22f82 82.2 0.00022

10 b07f41 41 0.000067 30 b30f82 82.2 0.0003
11 b10f41 41 0.0001 31 b40f82 82.2 0.0004
12 b20f41 41 0.0002 32 b50f82 82.2 0.0005
13 b26f41 41 0.00026 33 b00f110 110 0
14 b30f41 41 0.0003 34 b05f110 110 0.00005
15 b40f41 41 0.0004 35 b08f109 109.6 0.000085
16 b50f41 41 0.0005 36 b10f110 110 0.0001
17 b00f54 54.5 0 37 b15f110 110 0.00015
18 b06f54 54.5 0.000059 38 b20f110 110 0.0002
19 b10f54 54.5 0.0001 39 b22f108 108.6 0.00022
20 b20f54 54.5 0.0002
—We measured the frequencies ϕn of the spectral
components visually determined as the fundamental
tone of the sound and its overtones.

—Using formula (1), we determined the approxi-
mate value of the inharmonicity coefficient

—We calculated the sum of the square devia-
tions of all measured values of ϕn from the corre-

Bapprox ϕn/ϕ1n2( ) 1–[ ] /n2.=
sponding values of fn obtained by formula (1) at f0 ≡ ϕ1

and B ≡ Bapprox:

Varying the parameters f0 and B, we determined
their values minimizing the function Φ. These values
were considered as the result of the measurements; they
are presented in Table 1.

Φ n f 0 1 n2B+( )0.5 ϕn–[ ]
2
.∑=
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We decided that these results obtained for real
sounds with spectral compositions depending on many
neglected factors are too rough to serve as a basis for
estimating the accuracy of the new methods of mea-
surement.

Therefore, we synthesized musical sounds with the
spectra exactly corresponding to formula (1) with dif-
ferent pitch and inharmonicity.

These sounds were composed of thirty frequency
components of equal amplitude, and their fundamental
frequencies and inharmonicity coefficients were
selected so as to uniformly cover the range characteris-
tic of the piano bass register (Table 2).

CEPSTRAL ANALYSIS OF MUSICAL SOUNDS

The preliminary series of experiments showed that
some parameters of the algorithm of the cepstral trans-
formation should be optimized in order to increase the
efficiency of the cepstrum as a graphic representation
of inharmonicity.

First, to obtain maximum amplitudes and well-
defined boundaries of the pitch peak-region of the cep-
strum, it is necessary to achieve the maximum possible
resolution in frequency for the spectrum. Second, the
width of the spectrum involved in the second Fourier
transform should be not too large in order to restrict (as
far as possible) the effect of the specific features of the
spectral envelope (especially, its decline at high fre-
quencies) on the formation of the contour of the pitch
peak-region of the cepstrum.

Figure 5 displays the result of the cepstral analysis
of synthesized thirty-component sounds A2 with differ-
ent degrees of inharmonicity. The dashed vertical lines
show the calculated positions of the boundaries of the
pitch peak-region according to formulas (4) and (5).

The cepstra of real bass sounds A2 of five aforemen-
tioned pianos are shown in Fig. 6. The shaded regions
in the upper parts of the graphs, near the line of the cal-
culated upper quefrency, indicate the limits within
which the fundamental frequency of the sound under
study was subjectively identified by experienced tuners
relative to the harmonic sound produced by a signal
generator. We note that, for each sound with a distrib-
uted spectral inharmonicity, the pitch was subjectively
attributed to a frequency band. The illustrations pre-
sented above show that the cepstral representation of a
sound signal contains the information on the degree of
the spectral inharmonicity of sound. The information is
contained in the value of the width of the pitch peak-
region, and this value is in a quantitative agreement
with the theoretical calculations.

HARMONIC PRODUCT SPECTRUM

The incoherence of the combined compressed spec-
trum versions provides the basis for the theoretical esti-
mate of the inharmonicity through the HPS; on the
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
other hand, it contributes to the suppression of the
sought-for information in the resulting spectrum. This
effect is illustrated by Fig. 7 showing the theoretical
frequency filling of the pitch peak-region of the HPS
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Fig. 5. Cepstra of synthesized sounds A2 (f0 = 27.5 Hz) of
different inharmonicity.



128 ASKENFELT, GALEMBO
for sounds with zero, low, and high spectral inharmo-
nicities.

Each plot shows the values of the relative (normal-
ized to f0) central frequencies of overtones in the com-
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Fig. 6. Cepstra of sounds A2 (f0 ≈ 27.5 Hz) of different
pianos.
pressed spectrum versions for different values of the
spectrum compression coefficient k. In the HPS of
order m, components of all frequencies below the ordi-
nate k = m will be present. The frequency band of the
pitch peak-region is enclosed in a rectangle. The plot
also shows the effect of the total number n of pitch
components (the fundamental tone and the overtones)
of the signal under study up to the value n = 30 on the
“prominence” of the pitch peak-region.

First, with increasing inharmonicity of the signal,
the peak-regions of the HPS expand, their boundaries
approach those of other regions, and finally the peak-
regions overlap. This behavior is illustrated by Figs. 7b
and 7c corresponding to sounds with different degrees
of inharmonicity. The overlapping can be eliminated by
restricting the number of combined versions that form
the HPS. For example, from Fig. 7c, one can see that,
for the given inharmonicity coefficient, the pitch peak-
region does not overlap with the neighboring ones at
m = 15–20. However, the value of m should not be too
small, because at small m the inharmonicity will be rep-
resented with a low resolution.

Second, the incoherence of the combined versions
of inharmonic spectra reduces the efficiency of the
summation of the spectral densities. Theoretically,
ideal inharmonic line spectra are unsuitable for the
evaluation of the fundamental frequency and the inhar-
monicity from the HPS. In reality, such estimates are
possible, because the fundamental tone and the over-
tones are represented as spectral bands of finite width
rather than ideal lines. Hence, in this case, a reasonable
reduction of the resolution in frequency may be appro-
priate in the spectral analysis of sound.

An example of the application of the HPS algorithm
to synthesized bass sounds of different inharmonicity
with m = 18 is shown in Fig. 8.

For comparison, Fig. 9 presents the HPS of the
sound A produced by the Steinway concert piano (B =
0.0001) and the Straud upright piano (B = 0.00016).

The boundaries of the pitch peak-region of the HPS
were calculated for each sound by formulas (7) and (8).
These boundaries are shown by vertical lines at the top
of the graph.

The results presented above testify that the HPS car-
ries the information on the inharmonicity of a musical
sound; this information is contained in the width of the
pitch peak-region, and the value of this width well
agrees with the theoretical calculations.

COMPARISON OF THE METHODS
AND THE PROSPECTS

FOR THEIR IMPROVEMENT

The analysis of the results of our measurements
allows us to make the following conclusions concern-
ing the comparison of the two proposed methods for the
evaluation of the inharmonicity of a musical sound:
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
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peak-region of the HPS for signals with (a) a harmonic spec-
trum (B = 0), (b) a low inharmonicity (B = 0.0001), and (c)
a high inharmonicity (B = 0.0006).
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(1) From the viewpoint of the resolution in the
inharmonicity coefficient, the most promising method
is the representation of the inharmonicity by a cepstrum
inverted into the repiod scale. In this representation, the
dependence of the width of the pitch peak-region on the
inharmonicity coefficient is close to a linear one (see
Fig. 4).
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m

∑
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Fig. 8. Harmonic product spectrum of synthesized sounds A
(f0 = 110 Hz) of different inharmonicity.
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(2) An obstacle to a successful application of the
cepstral analysis of inharmonicity, as well as to the
analysis based on the HPS, is the effect of the envelope
of the signal spectrum on the envelope of the pitch
peak-region. Since the envelope of the spectrum of a
real musical sound may vary in wide limits, the relief of
the lower boundary of the pitch quefrency zone of the
cepstrum, as well as the relief of the upper boundary of
the pitch peak-region of the HPS, may be quite unpre-
dictable. This fact hinders the determination of the
exact position of the corresponding boundary and,
hence, reduces the accuracy of the inharmonicity esti-
mate. The effect of this disadvantage can be reduced by
introducing a special normalization or a limitation of
the amplitudes of spectral components in the algorithm
of sound signal processing. In this case, the application
of a modified cepstrum—a clipstrum—seems to be
promising.

(3) The disadvantage of the cepstral analysis of
inharmonicity lies in the fact that equal widths of the
spectra involved in the measurement of the cepstra of
sounds of different inharmonicity do not automatically
mean the presence of equal numbers of overtones.
Therefore, although this difference usually does not
exceed two overtones, the discrimination between large
values of inharmonicity coefficients may be inaccurate.
The HPS algorithm is free of this disadvantage. In this
algorithm, the number of the combined spectrum ver-
sions is automatically equal to the number of spectral
components participating in the formation of the pitch
peak-region; this fact provides a fundamental possibil-
ity to directly transform the frequency scale of the HPS
to the inharmonicity coefficient scale.

INHARMONICITY MEASUREMENTS USING 
THE CEPSTRUM AND THE HPS

We have shown that the cepstrum and the HPS are
convenient means for the illustration and comparative

90 100 110 120 130
Hz

log F kω( ) 2

k 1=

m

∑

Fig. 9. Harmonic product spectrum of sounds A (f0 = 110 Hz)
of the concert piano (thick line) and the Straud upright piano
(thin line). The horizontal bars at the top correspond to the
calculations by formula (6).
visual evaluation of the inharmonicity of musical
sounds.

Since the width of the pitch zone of both the cep-
strum and the HPS fits well into the calculated bound-
aries of this zone, the most simple method of measure-
ment should consist of measuring this width and calcu-
lating the quantity B by using formulas (6) and (9).
However, with the aforementioned limitations of the
methods and the complexity of the spectral envelopes
of real musical sounds, it is difficult to achieve a high
degree of accuracy in measuring the inharmonicity
coefficient, especially, in the region of its large values,
by applying such a simple method.

Therefore, we developed an algorithm of digital sig-
nal processing which allowed us to directly calculate
the inharmonicity coefficient through the cepstrum or
the HPS by using the method of the search for the extre-
mum of a function by the parameter variation.

In our case, the method consists of the search for the
maximum of the level of the pitch peak-region of the
cepstrum or the HPS by varying the inharmonicity of
the signal. In this procedure, we use the fact that the
maximum height of the pitch peak-region of both the
cepstrum and the HPS is maximal when the signal
spectrum is a harmonic one.

The signal processing based on this method can be
interpreted as the transformation of the frequency scale
of the signal spectrum by the introduced inharmonicity,
which modifies formula (3) as follows:

(10)

Unlike formula (3), the algorithm corresponding to
expression (10) is called the inharmonic product spec-
trum (IPS). According to its content, the procedure of
signal processing for the HPS (i.e., the procedure
described by Noll [25]) is modified and supplemented;
namely, the signal spectrum is compressed along the
frequency axis not by a factor of k = 1, 2, …, m but by
a factor of k (1 + bk2)0.5, where k = 1, 2, …, m and b is
the introduced inharmonicity coefficient subjected to
variation. As the equality b = B is achieved, the quantity
π(ω) reaches its maximum; i.e., the pitch peak-region is
transformed to a narrow peak of maximum height.

Thus, in the three-dimensional space where the IPS
is realized (frequency–introduced inharmonicity coeffi-
cient–level of the pitch peak-region), the maximum
level of the pitch peak-region will occur at the point
with the coordinates equal to the fundamental fre-
quency f0 of the signal under study and the coefficient
B of its spectral inharmonicity.

A similar approach to the cepstrum yields

. (11)

However, while the formula for the IPS contains no
additional parameters as compared to the formula for
the HPS, the cepstrum variation requires the knowledge
of the quantity k. Let us explain this statement.

πIPS ω( ) F kω 1 k2b+( )0.5[ ]
2
.∏=

C ω( ) |F |F 1 k2b+( )0.5ω[ ] |2log{ } |2=
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As it was mentioned above, the proposed method of
a direct measurement of the inharmonicity coefficient
is virtually analogous to a controlled change of the
scale of the original inharmonic spectrum with the aim
to convert it to a harmonic one. In this procedure, the
frequency coordinate of each overtone is corrected
depending on the deviation of this frequency from the
harmonic series. According to formula (1), the afore-
mentioned deviation depends on two parameters,
namely, the inharmonicity coefficient and the number
of the overtone.

The procedure of changing the scale of the IPS is
performed automatically without specifying the num-
ber of the overtone under transformation, because,
according to the algorithm, each overtone is automati-
cally involved in the pitch peak-region only with the
compression coefficient (which characterizes the com-
pression of the original spectrum) corresponding to its
number. Thus, the change in the scale of the spectrum
fits conveniently into the procedure of the IPS calcula-
tion.

In the case of the cepstrum, such a convenience is
absent, and it is necessary to change the scale of the sig-
nal spectrum before calculating the cepstrum. For this
purpose, it is necessary to know or determine the num-
ber of every overtone in the sound spectrum.

This problem has no algorithm for an instrumental
solution (here, it should be remembered that it is the
identification of overtones that is performed subjec-
tively in the conventional procedure and, hence, may
cause considerable errors).

A simple algorithm can be proposed for this pur-
pose. If the fundamental frequency of the sound under
study is f0 and the frequency of some component of its
spectrum is f, the number n of the harmonic relative to
which this overtone is shifted in frequency may be cal-
culated according to formula (1) by the relation

. (12)

This formula2 is valid only for the overtones with
numbers not high enough for the error to reach unity,
i.e., to yield n = k + 1 where the true number is n = k.

Therefore, the maximum value of n below which
formula (12) can be considered as valid is calculated as
follows:

n = floor(u) at n ≠ u,

n = [floor(u) – 1] at n = u,

where u is determined from the equation

This dependence is plotted in Fig. 10. The spectrum
region where formula (12) is applicable lies below the
limiting curve shown in the plot. Since the inharmonic-
ity coefficient characterizing the spectral inharmonicity

2 The operation Y = floor(X) means the determination of the nearest
integer less than or equal to X [29, 30].

n floor f / f 0( )=

u 1 u2B+( )0.5
u 1.+=
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of sounds of the bass and intermediate registers of a
piano (in these registers and, especially, in the bass one,
the inharmonicity plays the crucial role in the forma-
tion of the quality of sound) does not usually exceed the
value 0.0007, we can conclude from Fig. 10 that for-
mula (12) is valid up to n = 14. Such a number of over-
tones is sufficient for the determination of the spectral
inharmonicity coefficient of a musical sound by the
cepstral analysis.

In addition to the frequencies of transverse vibra-
tions of strings, the spectra of real musical sounds con-
tain spectral components of other origin. These compo-
nents will be erroneously estimated by formula (12) as
overtones of the fundamental frequency of transverse
vibrations. However, being not “supported” by a con-
siderable overtone series, they will have no significant
effect on the formation of the cepstral pitch peak-
region.

Evidently, the spectral inharmonicity coefficient of
a musical sound cannot be determined independently of
its fundamental frequency (or some other quantity pro-
portional to it). Hence, the practical problems of mea-
suring the inharmonicity coefficient can be subdivided
into those with the known fundamental frequency
(which can be, e.g., previously measured or determined
by the position of the note on the piano scale) and more
complicated problems that require the measurements of
both parameters.

Thus, we can conclude that, if the fundamental fre-
quency of a sound is known, the inharmonicity of its
spectrum can be easily measured by varying the intro-
duced inharmonicity with the use of either the cepstral
transformation or the IPS.

If the fundamental frequency of the signal under
study is unknown, this frequency and the inharmonicity
coefficient are more conveniently measured by varying
the inharmonicity introduced in the IPS algorithm.
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SUMMARY
The experiments confirm the assumption that the

cepstrum and the harmonic product spectrum yield an
informative graphic representation of the degree of
inharmonicity of musical sounds. Hence, these algo-
rithms can be used for the illustration, evaluation, and
comparison of the inharmonicity of sounds in the
course of their analysis. Applying the procedure of the
search for the maximum of the pitch peak by varying
the introduced inharmonicity, these methods of pitch
extraction can be adapted for a direct measurement of
the fundamental frequency and the inharmonicity coef-
ficient of a musical sound. The algorithm that is most
convenient for this purpose is the inharmonic product
spectrum.

The results of our studies once again confirm that
the principles of pitch extraction can be efficiently used
for analyzing the objective factors of the intonation
clarity of sounds.
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Abstract—Experimental data on the amplitude variation coefficient and the rms value of phase fluctuations of
a tone signal are presented in the form of dependences on the vertical arrival angle of the signal. The data are
obtained for a tone signal of frequency 800 Hz propagating along a 210-km track and received by a vertical
array located in a coastal wedge. The values of the amplitude and phase fluctuations reach their minimum at the
arrival angles close to 0° and increase with an increasing angle. However, even at grazing angles of ±15°, the
amplitude ratio of the coherent and incoherent components of the arriving signal is ~1.6. The roles of the rough
sea surface, internal waves, and drift and rolling of the transmitting ship in the formation of fluctuations are
estimated. © 2000 MAIK “Nauka/Interperiodica”.
The solution of many problems of fundamental
hydroacoustics (for example, acoustic tomography of
large areas) and applied hydroacoustics (for example,
sea economic zone protection or estimation of the tsu-
namigenic potential of underwater earthquakes) is
associated with the necessity of detecting weak signals
against the ambient sea noise. To do this, one needs
arrays with rather large apertures and high concentra-
tion coefficients. The efficiency of such arrays is deter-
mined by the intervals of the spatial and temporal cor-
relation of sound fields at the site of the array location.
The sound field coherence is subjected to the influence
of many factors, and the key factor is the multipath
sound propagation in an oceanic waveguide. The
receiving arrays are often located in shelf zones of the
ocean. Because of this, the sound field structure is com-
plicated by the bottom–surface bounces, which are spe-
cific for the most of signals entering into a coastal
wedge, and by the high spatial-temporal variability of
hydrological conditions near the coastline. From some
publications (see, e.g., [1]), it follows that for a signifi-
cant increase in the array efficiency, it is necessary to
achieve the maximum possible spatial resolution of
separate rays or mode groups arriving at close angles.
To this end, the arrays extended in depth with a fan of
directional patterns in the vertical plane are used. In this
case, the spatial correlation radii of signals significantly
increase in the separate patterns. This allows one to
considerably increase the horizontal dimensions and
enhance the efficiency of planar arrays. In this case, a
combined correlation processing of information from
the arrays separated by large distances is possible,
1063-7710/00/4602- $20.00 © 20133
which allows a more reliable determination of coordi-
nates of the sound sources and their identification.

However, the multipath propagation is not a single
reason of the violation of the sound field coherence.
The amplitude and phase fluctuations of signals propa-
gating along separate rays play a certain role in this pro-
cess.

This paper is devoted to studying the amplitude
variation coefficients and the rms values of phase fluc-
tuations of a tone signal in various partial lobes of the
vertical fan of directional patterns and to revealing the
relative roles of processes leading to such fluctuations.

The experiment was carried out on a 210-km track
near the Pacific coast of the Kamchatka peninsula. Fig-
ure 1a shows the operation region and the disposition of
the test track, whereas Fig. 1b presents the bottom pro-
file obtained by echo sounding. Figure 2 exhibits the
sound velocity profiles measured at the point of recep-
tion and at distances of 40 and 210 km from this point.
The receiving ship was secured to an anchorage buoy at
the site with a sea depth of 210 m. From the board of
the ship, a 24-m vertical array was lowered, which
allowed one to form the fan of main lobes of the direc-
tional patterns in the range of angles ±15° (the plus sign
denotes the upward direction). The width of each par-
tial pattern at the radiation frequency (800 Hz) was ~4°.
The phase center of the array was located at a depth of
100 m, i.e., near the sound channel axis. The bottom
slope near the point of reception was no more than 0.5°;
at a range of 25 km, the continental slope began with
the bottom inclination up to ~5°.
000 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Track of the propagation of a tone signal; (b) bottom profile along the track.
A tone signal of frequency 800 Hz was radiated con-
tinuously during 70 min from a ship drifting in the deep
ocean. The transmitter was also lowered to a depth of
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Fig. 2. Sound velocity c versus the depth z at the points of
reception and at distances of 40 and 210 km from the array.
100 m. The drift speed along the test track was deter-
mined by a satellite navigation system and was no more
than 0.25 m/s. During the measurements, the wind
speed was about 7–8 m/s (wind-generated waves were
Beaufort 3–4).

In general, to carry out correct measurements of
amplitude-phase fluctuations, a stationary track is nec-
essary. However, using a drifting transmitting ship, it is
also possible to obtain a number of useful estimates [2].

Calculations (in the ray approximation) of sound
propagation along the track were performed, and they
showed that rays with small grazing angles (with the
launch angles α at the radiator no greater than ±5.5°)
arrive into the coastal wedge to the site of the receiving
array without any boundary reflections. The rays with
angles α in the range from ±5.5° to ±11.5° arrive at the
point of reception with bottom reflections, whereas the
rays with angles α > ±11.5° undergo both bottom and
surface reflections. Thus, one should expect that the
water layer boundaries will differently influence the
signals received by different patterns of the fan.

From the output of the partial patterns, the signals
were sent to a computer for processing. Figure 3 pre-
sents a specific segment of the record of a received fluc-
tuating signal. It is easy to distinguish two noticeably
different periods of fluctuations (“fast” and “slow”
ones), which was observed previously many times (see,
e.g., [3]).

Figure 4 shows the dependence of the amplitude
variation coefficient η of signals on the vertical angle ϕ
at which individual main lobes of the fan are located
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
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Fig. 3. Typical segment of the record of a fluctuating signal.
(the positive values of ϕ refer to the patterns directed
toward the sea surface, and the negative values refer to
the patterns directed to the bottom):

where A is the received signal amplitude and the over
bar means time averaging. The data for fast and slow
fluctuations are shown by empty and full circles,
respectively.

Figure 5 shows the variation of the rms values of the

phase fluctuations S = | | with the angle ϕ, where σ
is the rms deviation of the phase. It should be noted that
the scales on the ordinate axis for fast (the left scale)
and slow (the right scale) fluctuations differ by approx-
imately one and a half orders of magnitude.

Consider now the behavior of fast fluctuations. It is
easy to note that for the main lobes of the directional
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Fig. 4. Dependence of the amplitude variation coefficient η
on the vertical angle ϕ of the tone signal arrival: fast fluctu-
ations (empty circles) and slow fluctuations (full circles).
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patterns, which are close to the horizontal direction,
both parameters η and S are minimum. Such small val-
ues of these parameters η = 0.22–0.23 and S = 0.5 rad
can be caused by the influence of inhomogeneities of
the sea medium. In fact, for a tone signal that covered
the distance r in a statistically inhomogeneous medium,
the upper bound of the rms values of its phase fluctua-
tions is given by a known expression [4]

where  is the mean size of random inhomogeneities,
〈µ2〉  is the mean square of fluctuations of the refractive
index, and k is the wave number of sound.

Because of the vertical refraction, signals usually
propagate in both upper and deep ocean layers on their
path from the radiator to the receiving system. There-
fore, the size of inhomogeneities which are encoun-
tered in this path can vary from 1 to 100 m. However,
in the considered case, the rays with angles α ~ ±5.5°

S σ2 π1/2
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Fig. 5. Dependence of the rms value of the phase fluctua-
tions S on the arrival angle ϕ for a tone signal: fast fluctua-
tions (empty circles) and slow fluctuations (full circles). Two
scales are used on the ordinate axis: for slow fluctuations (at
the right of the axis) and for fast fluctuations (at the left).
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penetrate no deeper than 200 m and, therefore, the
dimensions of inhomogeneities do not exceed 30–40 m.
Hence, we can deem that the mean size of inhomogene-
ities of an equivalent stratified medium is  ≈ 20 m [5].
Setting 〈µ2〉  ≈ 5 × 10–9 [6], r = 210 km, and k = 3.35, we
obtain S = 0.46 rad, which is close to the value observed
for α = 0°.

As the slope angle ϕ increases, the values of η and
S also increase (somewhat more rapidly with a devia-
tion from the horizontal plane toward the surface)
reaching the values 0.39 and 0.65 rad, respectively, at
ϕ = +15°. Such a behavior of the signal parameters can
be related to the fact that signals propagating over such
rays undergo bottom–surface reflections, and the rough
boundaries make a progressively increasing contribu-
tion to fast fluctuations. Furthermore, the receiving
ship’s motion, which changes the depth of the receiving
array, as well as the transmitting ship drift along the
acoustic track, can play a certain role. Consider now
these factors in more detail.

For the phase difference of signals arriving over rays
within any directional pattern of the fan to be changed
by π because of the ship’s rolling, the vertical displace-
ments of the array transducers must reach ~10 m.
Because real displacements of hydrophones did not
exceed several meters, the rolling almost did not affect
the results.

The situation with the influence of the transmitting
ship drift is much more complicated. The point is that
the major part of the test track lies in the coastal wedge
whose slope angle noticeably varies with distance (see
Fig. 1b). For this reason, the change in distance to the
receiver leads to changes in the conditions of the multi-
ray signal entrance into the shallow-water part of the
track and to nonmonotone changes in the angular struc-
ture of the sound field with distance. Detailed calcula-
tions of the temporal structure of the arriving signals
(with a step of 25 m in distance) showed that for signals
propagating over almost horizontal rays without
reflections from the waveguide boundaries, a drift-
induced change in the phase by π can take place
within 30–40 min. For steeper rays and, therefore,
main lobes of the fan of the directional patterns with
large angles ϕ, the arriving signals undergo bottom
reflections (or bottom–surface reflections) whose num-
ber can change with distance. The change in the num-
ber of reflections leads to jump-like changes in the tem-
poral structure and the phase of the received signals.
Therefore, as the inclination angle ϕ of the directional
patterns increases, the influence of the drift on the max-
imum phase difference of the received signals is also
enhanced. For ϕ = ±15°, the phase difference can
change by π only within 3–5 min at certain distances.

The origin of the fast fluctuations of the signals is
related to their reflection from the waveguide bound-
aries and, first of all, from the rough sea surface. Many
publications (see, e.g., [7–9]) are devoted to the inves-
tigation of the influence of the rough surface on the

a

parameters of reflected and scattered signals. Starting
from these results, one can relate the fluctuation char-
acteristics of the surface-reflected signals to the rms
height σδ of the surface. The rough surface effect on the
signal characteristics is described by the Rayleigh
parameter P = 2kσδsinχ, where k is the wave number
and χ is the grazing angle of a ray relative to the flat
ocean surface. It is known that for small values of the
Rayleigh parameter squared (P2 ! 1), one can deem
that [10]

. (1)

From Fig. 4, it follows that the maximum value of
the quantity η is approximately equal to 0.39 and cor-
responds to the angle ϕ = +15°. From expression (1),
we find P ≈ 0.55. Although P2 ≈ 0.3 and, therefore, this
value does not satisfy, in general, the condition P2 ! 1,
we may compare the calculated value of P with the
experimental value of the Rayleigh parameter for the
wind speed (7–8 m/s) measured during the experiment.
To this end, we calculated the propagation paths of sig-
nals that travelled over the 210-km distance from the
source and arrived at the point of reception at the angles
+15° ± 2°. It was found that the rays launched from the
source at the angles ~±(7°–9°) are not reflected from
the water layer boundaries as long as they enter the
coastal wedge. On entering into the wedge, they suffer
the bottom–surface reflections, and each bottom reflec-
tion increases the bottom grazing angle χb by the dou-
ble angle of the bottom slope. After four reflections
from the surface at angles χ sequentially equal to 1.8°,
6.5°, 9.4°, and 11.8°, the signals arrive at the array. In
spite of the fact that the Rayleigh parameter varies with
every surface reflection, one can estimate the efficient
Rayleigh parameter

where σδ is the rms displacement of the rough surface,
which is determined from the expression σδ = 0.53 ×
10–2v2 (v is the wind speed in m/s); χi (i = 1–4) is the
grazing angle near the surface at the first, second, third,
and fourth reflection, respectively. For the mean wind
speed, 7.5 m/s, σδ = 0.30, whence it follows that Peff ≈
0.58, which almost coincides with the experimental
value of the Rayleigh parameter. This fact confirms our
assumption about the key role of the rough surface in
the angular variability of fast fluctuation parameters of
the received signals.

In the case under study, the surface reflection coef-
ficient V is close to unity (V = 0.92) even for the maxi-
mum angle χ = 11.8°. Therefore, the intensity of the
coherent component of the reflected signal can be writ-

ten as exp[– ]. The ratio of the coherent and inco-

herent intensities of the signal equals exp( ) – 1.

Using the foregoing estimates of Peff, we obtain the
value of this ratio ~0.4. Thus, in any pattern of the fan

η P/ 2≈

Peff 2kσδ χ1sin
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even with a main lobe directed at the maximum angle
ϕ = ±15°, the coherent intensity is 2.5 times as large as
the incoherent intensity with allowance for only fast
fluctuations. In most virtually important cases, the
duration of the received signal realization does not
exceed several tens of seconds. Therefore, the fast fluc-
tuations of signal parameters, which have a close tem-
poral scale, will play the key role in the processing.
Based on this fact, we emphasize the importance of the
feasibility to predict the characteristics of the fast fluc-
tuations of a tone signal received in the shelf from the
known parameters of the wind waves in this region.
Choosing a place for setting up the array in natural con-
ditions (for studying the fast fluctuations), we need to
carry out the comparative analysis of the influence of
the rough sea surface for the cases of a sloping wedge
with a large number of reflections and a steep wedge
with a small number of reflections. It should be remem-
bered that the results of such a comparison depend on
the distance to the source and its depth. Note that in the
conditions of the experiment described, the influence of
the rough sea surface was insignificant.

Consider now the slow signal fluctuations. Figures 4
and 5 exhibit the data obtained from a 70-min realiza-
tion. In general terms, the fast and slow fluctuations
have similar dependences on the vertical angle of the
signal arrivals. However, if the measured values of the
coefficient η for the fast and slow fluctuations are close
each another, then the scales of the phase fluctuations
of S differ by more than an order of magnitude. The
curves η(ϕ) and S(ϕ) are fairly smooth for the fast fluc-
tuations but have a more complicated form for the
slow fluctuations. The curves representing the func-
tion η(ϕ) are irregular, while the function S(ϕ) exhib-
its well-defined local maxima for the partial patterns
with ϕ = ±6°.

The interpretation of the obtained data is a compli-
cated problem mainly because of many factors which
can affect the characteristics of fluctuations with the
temporal scales of several minutes and tens of minutes.
Such fluctuations can be produced by the drift of the
transmitting ship, internal waves, motion of mesoscale
inhomogeneities, etc. As mentioned above, the radiator
drift changes the conditions of the signal entry into the
coastal wedge and thus changes the bottom sites from
which sound is reflected. These sites can differ by
acoustic and geological characteristics. As a result, the
interference pattern of the sound field changes in every
directional pattern of the fan, and the amplitude and
phase of the received signal fluctuate. In measuring the
received signal phase, the drift effect can be apprecia-
bly reduced (assuming that the drift speed is constant,
we can filter out the constant component of the phase
derivative). However, to take into account the contribu-
tion of the drift to the amplitude variations presents dif-
ficulties.

Estimate now the possible influence of internal
waves. In recent years, this problem received much
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
consideration (see, e.g., [11–13]). As is shown in the
book [14], the characteristics of sound signal fluctua-
tions in a medium with internal waves are related to
environmental parameters: the diffraction parameter Λ
connecting the spatial scale of the sound velocity fluc-
tuations to diffraction effects and the parameter of the
medium inhomogeneity Φ. In the region of geometric
approximation validity where Λ ! 1, the parameter Φ
characterizes the rms value of phase fluctuations at the
point of reception. Rough estimates of the internal
wave influence can be obtained for the Garrett–Munk
spectrum, the canonical sound velocity profile, and the
so-called approximation of the upper turning point of
rays [14] (it is assumed that the main contribution to
fluctuations is made by the vicinity of the upper turning
point of rays). For steep rays, the parameters Λ and Φ
can be calculated from the following expressions [14]:

Here, r is the track length; k is the wave number of
sound; Rv and Rsp are the vertical and spatial (along a
ray) correlation intervals of signal fluctuations, which
were obtained by the numerical integration in [14];

〈∆ 〉  = 2.5 × 107 is the mean square of sound velocity
fluctuations near the ocean surface; C(χ0) is the coeffi-
cient depending on the angle χ0 at which a ray crosses
the channel axis in the deep ocean; and za is the depth
of the upper turning point.

Because for our case r = 210 km, k = 3.35 1/m, Rv ≈
0.1 km, Rsp ≈ 12.7 km, C(χ0) = 0.025 (for a ray which
crosses the channel axis at an angle of ~8° and arrives at
the point of reception at an angle of 15°), and za ~ 15 m,
we obtain Λ = 0.02 and Φ = 14. Thus, the condition
Λ ! 1 is satisfied, the diffraction effects are weak, and,
therefore, we can deem that the rms value of the phase
fluctuation S = Φ = 14 rad. According to [14], the value
Φ = 14 rad is close to the limiting value. The local
peaks in Figs. 4 and 5 for the slow fluctuations may be
related to the fact that the upper turning points of rays
arriving at the point of reception at the angles ϕ = ±6°
are located at a depth of the layer with a sharp sound
velocity gradient where the influence of internal waves
is maximum. Thus, although the noticeable contribu-
tion of internal waves to the slow fluctuations of a tone
signal is beyond question, the measured values of S are
twice as large as those predicted by calculation. There-
fore, the role of other factors, in particular, the interfer-
ence pattern variations caused by the transmitting ship
drift is substantial.

In summarizing the results of the experiments car-
ried out in a coastal region with the use of a tone source
(800 Hz) on a 210-km track, we make the following
conclusions:
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(a) Fluctuations of the received signals are charac-
terized by noticeably different periods: from several
seconds (“fast”) to several minutes (“slow”), not only
for omnidirectional reception [3] but even for the recep-
tion by a vertical array with relatively narrow direc-
tional patterns.

(b) The parameters of the amplitude and phase fluc-
tuations of the signal depend on the vertical angle of the
ray arrivals at the point of reception in a similar way for
both fast and slow fluctuations: they are minimum for
the angles close to zero and increase with the arrival
angle.

(c) The ratio of intensities of the coherent and inco-
herent components of a signal reflected from the rough
ocean surface is maximum, with allowance for only the
fast fluctuations, for the partial patterns of the fan,
which are close to the horizontal direction; even for the
extreme directional patterns of the fan with ϕ = ±15°,
this ratio equals 2.5.

(d) In choosing a site for setting up the vertical array
in a coastal wedge (for achieving the maximum ratio of
the coherent component to the incoherent one) with
allowance for only fast fluctuations, one should rely on
the comparative analysis of the effect of the number of
reflections—a large number in the case of a sloping
bottom and a small number in the case of a steep bot-
tom—on the amplitude and phase variation coeffi-
cients.
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Abstract—Analytical expressions for the transverse displacement of a membrane mounted on an elastic base
and subjected to a uniformly moving load are derived. Two cases are considered: a subcritical motion when the
load velocity V is less than the wave propagation velocity in the membrane c and a supercritical motion when
V > c. A general expression for the work provided by a source maintaining the uniform motion of a concentrated
load along the membrane is obtained. In the absence of the energy loss in the membrane, this work is equal to
zero for the subcritical motion and tends to infinity for the supercritical motion. The latter result is a conse-
quence of the discontinuity of the solution obtained for the membrane displacement. With the introduction of
the internal friction in the membrane, it is possible to eliminate this discontinuity. On the basis of the numerical
solution to the problem with internal friction, the dependence of the work of the external source on the load
velocity is analyzed. © 2000 MAIK “Nauka/Interperiodica”.
With all the progress that has been made in the high-
speed surface electric transport, it has become neces-
sary to take into account the wave processes taking
place in a railroad track and in the ground under the
track. In papers [1–3] it is shown that a railroad track is
mainly affected by surface waves whose velocity in a
soft ground (peat) may be of the order of 200 km/h.
Since the velocity of today’s high-speed trains may
exceed 200 km/h, it is clear that the study of the surface
elastic waves generated by a moving load is urgent.

In this paper we investigate one aspect of this prob-
lem, namely, we analyze the work of a source providing
the motion of a load with constant velocity. Since in the
mechanics of elastic systems this problem is practically
ignored, we consider one of the simplest models with a
two-dimensional wave field represented by a mem-
brane mounted on an elastic base. The load is modeled
by a point object moving along the membrane uni-
formly and linearly.

Based on the law of change of energy, we derived a
relationship for the work of a source maintaining a uni-
form motion of the load. Neglecting the energy loss, we
have shown that, for the load velocity V not exceeding
the velocity of transverse waves c in the membrane, this
work is equal to zero, and, in the opposite case (V > c),
it is infinite. The latter result is a consequence of a jump
discontinuity, which occurs in the membrane displace-
ment at the boundary of the two-dimensional analog of
the Mach cone formed in the membrane at V > c.
1063-7710/00/4602- $20.00 © 20139
The effect of the internal friction in the membrane
(according to the Voigt rheological model [4]) on the
load-generated field and the work of the source main-
taining the uniform motion of the load had been stud-
ied. It was found that the internal friction eliminates all
singularities of the field generated by the load. With an
increase in friction, the source work grows at V < c and
drops at V > c.

We consider the oscillations of a membrane
mounted on an elastic base and excited by a point
object moving uniformly and linearly along the mem-
brane. We assume that the friction in the contact is
absent, and the vertical component of the object’s reac-
tion to the membrane is constant and equal to P (Fig. 1).
In this case, the equation for small vertical oscillations
of the membrane has the form

(1)

Here, u is the vertical displacement of the membrane, ρ
and N are its surface density and tension, k is the mod-
ulus of elasticity of the base underlying the membrane,
and V is the velocity of the object.

We determine the work per unit time of the force F
with which the object acts on the membrane, i.e., the
power transferred from the object to the membrane.
This power determines the work of the source main-
taining the uniform motion of the load. To do this, we
multiply both sides of equation (1) by ut, which yields

ρutt N uxx uyy+( )– ku+ Pδ x Vt–( )δ y( ).–=
000 MAIK “Nauka/Interperiodica”
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the law of change of the generalized energy of a mem-
brane element

(2)

where h = (ρ  + N(  + ) + ku2) is the energy

density (the Hamiltonian of a distributed system), S =
–Nut∇ u is the energy flux (the analog of the Poynting
vector), and –Putδ(x – Vt)δ(y) is the surface power den-
sity of the external source of the force F acting on the
membrane.

Integrating (2) with respect to x and y gives a global
law of change of energy of a membrane on an elastic
base. The right-hand side of the expression obtained
after the integration describes the power transferred to
the membrane from the object

(3)

We note that in a steady state, the point of contact
moves strictly horizontally, and, therefore, the work is
done only by the horizontal component R of the force
F, R = Q/V.

For calculating the quantity Q, we need to know the
membrane displacement u(x, y, t). In a steady state, the
field of the membrane displacement is stationary in the
coordinate system ξ = x – Vt moving with the load. In
this coordinate system, we have ux = uξ and ut = –Vuξ,
and equation (1) has the form

(4)

Here, c =  is the velocity of the wave propaga-

tion in the membrane and h =  is the cut-off fre-
quency. We apply an integral Fourier transform to (4)

∂h
∂t
------ div S+ Putδ x Vt–( )δ y( ),–=

1
2
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2 uy

2
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Fig. 1. Membrane on an elastic base with a constant load
moving along it.
with respect to coordinates ξ and y:

(5)

In the form of transforms, we obtain

(6)

where β2 = V2 – c2. Making an inverse transformation
of (6), we obtain the expression for u(ξ, y):

(7)

For its computation, we first consider the integral

(8)

which can be calculated by the contour integration.
According to the Jordan lemma, for ξ > 0 the contour
of integration should be closed in the lower half-plane
of the complex variable k1, and for ξ < 0 it should be
closed in the upper half-plane.

When the load velocity is less than the wave velo-
city in the membrane, i.e., β2 < 0, the integrand function
has two simple poles located on the imaginary axis
symmetrically about the real axis. Calculating (8) by
using the residue theorem and substituting the result of
integration into expression (7), we obtain

(9)

The integral in (9) is a tabular one [5]:

(10)

where Reb > 0, Reν > 0, and K0 is the modified Bessel
function of the second kind. Consequently, the dis-
placement of the membrane at V < c is described by the
expression

(11)

When the load velocity exceeds the wave velocity in
the membrane, the poles of the integrand function in (8)

W k1 k2,( ) u ξ y,( )e
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lie on the integration path, i.e., on the real axis. In this
case, for a correct integration, it is necessary to choose
the appropriate path of bypassing the poles. For this
purpose, we introduce a low loss in the equation
describing the membrane dynamics, for example, a loss
due to the viscosity of the elastic base. Then, the term
2δut, where 0 < δ ! 1, appears in the left-hand side of
equation (1), and integral (8) takes the form

(12)

The poles of the integrand in formula (12) lie in the
upper half-plane symmetrically about the imaginary
axis. Hence, the value of the integral (12) is nonzero
only at ξ < 0. Performing the contour integration, pass-
ing to the limit δ  0 in the expression obtained for
I, and substituting the result into (7), we arrive at the
expression

(13)

where H is Heaviside function. The integral in equation
(13) is a tabular one [5]:

(14)

where J0 is the Bessel function of the first kind. Finally,
we have

(15)

From the obtained solutions (11) and (15) it follows
that, for V < c. the transverse displacement of the mem-
brane is localized near the point of the load application
and tends to infinity at the very point of contact. At
V > c, the transverse displacement of the membrane is
concentrated within the angle |y | < |ξ|(c/β), (ξ < 0),
which is analogous to the Mach cone formed in the
course of a supersonic motion of an object in atmo-
sphere. At the sides of this angle, the membrane dis-
placement has a discontinuity equal to P/2ρβc.

Thus, we have determined the membrane displace-
ment. Now, we return to the calculation of the power
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given to the membrane by the load. For calculating
integral (3), we represent the δ-functions as the limit

(16)

Then, the expression for Q at V < c can be written as

(17)

The integrand in (17) is an odd function of the vari-
able ξ; hence, the integral taken with respect to ξ within
symmetric limits is equal to zero. Therefore, the work
required for maintaining a uniform motion of a con-
stant load along a membrane on an elastic base also
equals zero in the subcritical case (V < c).

For the supercritical case (V > c), taking into
account that J0(0) = 1 and (0) = J1(0) = 0, we obtain

(18)

As is seen from (18), the relation for Q consists of
two terms. We designate the first term by Q1 and calcu-
late it:

(19)

The second term in (18), like the first one, is nonne-
gative; consequently, it cannot change the judgment
regarding the convergence of (18). This allows us to
conclude that Q equals infinity. Hence, an infinite
power is needed for maintaining the uniform motion of
a load in the supercritical case.

This result is a consequence of the physically unre-
alizable discontinuity of the membrane displacement at
the sides of the “Mach angle.” This discontinuity, as
well as the infinite displacement of the membrane
under the load in the subcritical case, may be elimi-
nated by introducing an internal friction in the mem-
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brane. To prove it, we introduce an internal friction
according to the Voigt rheological model by adding to

the left-hand side of (1) the term N1 (uxx + uyy):

(20)

Here, N1 is the coefficient characterizing the internal
friction in the membrane. Introducing the dimension-
less variables τ = ht and {xn, yn} = {x, y}(h/c) and pass-
ing to the “current” coordinate ξ = xn – ατ , where a =

∂
∂t
-----

ρutt N N1
∂
∂t
-----+ 

  uxx uyy+( )– ku+

=  Pδ x Vt–( )δ y( ).–

y
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Fig. 2. Characteristic profile of the transverse displacements
of the membrane for V < c.
(V/c), we obtain from (20):

(21)

Applying an integral Fourier transform (5) to equation
(21), finding the solution in the space of transforms,
and then making an inverse transformation with respect
to k2 by using the contour integration, we obtain the fol-
lowing expression for u:
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Fig. 3. Smoothed “Mach angle” formed in the membrane
at V > c.
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where A = (N1hα/N). The results of the numerical inte-
gration of equation (21) are presented in Figs. 2 and 3
displaying the characteristic profiles of the transverse
displacement of the membrane under the load. For the
subcritical case, as is seen from Fig. 2, the membrane
displacement is localized near the load, as before. But
the displacement at the point of contact is limited. Fig-
ure 3 shows that, with allowance for the internal fric-
tion, the field of the membrane displacement remains
localized within the “Mach angle.” The behavior of the
displacement changes qualitatively only at the sides of
the angle where the membrane displacement becomes
a continuous function tending smoothly to zero outside
this angle.

The work of the external source can be found
numerically from relation (3) that remains valid with
allowance for the internal friction. Figure 4 displays the
dependence of the work normalized to (P2Vh/4πρc3) on
the load velocity normalized to c for two values of the
internal friction in the membrane. As is seen from the
figure, with a decrease in friction, the power required
for maintaining the uniform motion of the load
decreases in the subcritical case and increases in the
supercritical case. The maximum work shifts toward
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
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the load velocity V = c, i.e., the velocity of transverse
waves in the membrane.

CONCLUSIONS

The discussed problem of the work provided by a
moving source of disturbances and associated with the
wave generation may be of great practical importance.
This is connected with the fact that modern high-speed
trains may move at velocities close to the velocity of
surface waves propagating in the ground underlying the
railroad track. Obviously, the part of the power of loco-
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Fig. 4. Dependence of the work normalized to P2Vh/4πρc3

on the load velocity.
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motive’s engine that is spent for the wave generation
may be quite substantial. For evaluating the order of the
radiation loss, it is necessary to consider realistic mod-
els of a railroad track. However, before analyzing com-
plex models, one must evaluate the difficulties that may
be encountered in this study. One of these, connected
with the discontinuity of the displacement field gener-
ated by a moving point object, is discussed in this
paper. It is shown that one of the ways of eliminating
the discontinuity of the displacement field may be the
introduction of internal friction in the elastic system
model, which makes it possible to obtain smooth solu-
tions while remaining in the framework of a linear
model. It seems that in this way it will be possible to
correctly analyze the loss connected with the motion of
a load in a half-space where the problem of discontinu-
ity of the solution is even more acute. As is shown in
[6], the field of displacements of a half-space surface
excited by a point load moving at a speed exceeding the
Rayleigh wave velocity has a discontinuity of the sec-
ond kind at the sides of the angle within which the sur-
face waves are radiated.
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Abstract—The design and the results of the experimental evaluation of a 70-element linear phased ultrasonic
array intended for endocavitary (transrectal) surgical treatment of chronic prostatic disease are presented. The
array consists of elements of width 1 mm and length 15 mm, and its operating frequency is 1 MHz. The array
performs electronic scanning of the focus within 30–60 mm along the acoustic axis and ±20 mm in the perpen-
dicular direction (which corresponds to the maximum prostate dimensions). In the course of the scanning, an
acceptable level of secondary intensity peaks is maintained, and the acoustic power generated by the array is
no less than 200 W. The results suggest that the array can be useful for prostate surgery. However, a widespread
clinical application of this ultrasound method depends on the development of combined systems providing both
the ultrasound ablation of prostate tissue and the control over the location of the focal region in the prostate
before ablation. © 2000 MAIK “Nauka/Interperiodica”.
Chronic prostatitis, i.e., prostate gland inflamma-
tion, is one of the most widely spread diseases among
men. According to statistics [1, 2], in the USA every
year 800000 men undergo surgery associated with
benign prostate diseases and 200000 men have malig-
nant prostate tumors. The death rate caused by prostate
cancer (38000 men annually) makes this type of cancer
the second deadliest type of men’s cancer in the USA.
So there is an interest in minimum-damaging prostate
surgery methods, which in future could compete with
routine surgery. In the recent years, a number of labo-
ratories launched research projects aimed at studying
the possibility of using focused ultrasound for this pur-
pose. This approach is based on the fact that the values
of the main physical parameters characterizing the
propagation of ultrasound in soft tissues (wavelength,
attenuation, and absorption) in the frequency range
from fractions to units of MHz are highly favorable for
performing local ablations of specified dimensions in
deep tissues. The wavelength of ultrasound in soft tis-
sue (1.5 mm at 1 MHz) is sufficiently small to ensure
effective focusing of the ultrasonic energy at a distance
of several centimeters and, thus, to realize an endocav-
itary, transrectal, focused ultrasonic system. It should
be noted that the range of distances from the rectum
wall to the ablation zone is no greater than 2–5 cm, and
the transverse dimension of prostate usually does not
exceed 4 cm. Besides, the attenuation coefficient of
ultrasound in soft tissue (usually 5–10 Np m–1 MHz–1

[3]) is not too great, and the absorption coefficient (of
the same order of magnitude) is not too small, so there
1063-7710/00/4602- $20.00 © 20144
is a possibility of making thermal ablations of specified
dimensions at the mentioned distances.

The objective of this paper is the development and
experimental investigation of a focused ultrasonic sys-
tem for endocavitary prostate surgery. At present, there
are two approaches to designing such systems. The first
is based on the use of a transrectal single focused trans-
ducer having the form of a part of a sphere with contin-
uous distribution of the normal particle velocity and
being moved mechanically along the rectum wall.
Another approach uses an endocavitary linear phased
array that electronically scans in two perpendicular
directions. The first approach was realized in the Son-
ablate instrument (Focal Surgery Inc., Milpitas, Calif.,
USA) [4, 5] intended for ablating prostate tissue with
several interchangeable single transducers with the
operating frequency 4 MHz and various focal lengths
(30, 35, and 40 mm); the transducers can be moved
within a distance of 45 mm. The prostate imaging is
provided by the same transducer having a maximum
dimension of 30 mm. Another instrument is the Ablath-
erm (TechnoMed, France) [6] with a single focused
radiator having the diameter 35 mm, the focal length 35
mm, and the operating frequency 2.25 MHz. In this
case, for visualizing the prostate, a separate built-in
transducer with the operating frequency 7.5 MHz is
used. The second approach, based on the use of an
endocavitary linear phased array with electronic scan-
ning in perpendicular directions, was first discussed in
a theoretical paper [7] and later realized independently
by different researchers [1, 2, 8–10].
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Calculated distribution of the relative intensity of ultrasound in the field of a linear array operating at the frequency 585 kHz
and consisting of 35 elements of width 2 mm, length 16 mm, and with the distance between the centers of the elements 2.5 mm;
focusing on the point (0, 0, 60 mm); x is the coordinate along the array aperture and z is the coordinate along the acoustic axis.
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Both aforementioned approaches to the design of
focused ultrasonic systems for intracavitary prostate
surgery have advantages and shortcomings. The instru-
ments based on the use of single focused radiators are
relatively simple and inexpensive, but their fundamen-
tal shortcoming is their fixed focal length. When it is
necessary to change the depth of action upon the tissue,
the radiator has to be changed for the one with another
focal length, and this fact imposes certain limitations
on the use of these systems. The advantage of phased
arrays lies in the possibility of scanning over the pros-
tate with a high speed, as well as of synthesizing, if nec-
essary, several focuses. The disadvantages of arrays
with the distances between elements greater than a
half-wavelength are the relative complexity and the
higher cost of the instrument, as well as the possibility
of the appearance of the secondary intensity peaks
located in the tissue at considerable distances from the
focus.

Figure 1 illustrates the possible role of these second-
ary peaks of ultrasound intensity. Here, we present the
results of the calculation of the acoustic field of a 35-ele-
ment linear phased array with the operating frequency
585 kHz and the distance between the centers of ele-
ments 2.5 mm (≈1λ, where λ is the wavelength). The
focusing is performed along the acoustic axis of the
array at a depth of 60 mm (0, 0, 60 mm). The calcula-
tion is based on the methods described in [11, 12] for
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
the case of the propagation of ultrasound in a biologi-
cal tissue with the sound velocity 1500 m s–1, the tis-
sue density 1000 kg m–3, and the attenuation coefficient
10 Np m–1 MHz–1 [3], which approximately corre-
sponds to the acoustic parameters of prostate tissue.
(The technique of such calculations is described in
detail in [9].) The intensity was normalized to the max-
imum intensity at the center of focal region. It is seen
that, along with the main intensity peak, there is a sec-
ondary peak of intensity whose amplitude at a distance
of 40–50 mm from the array surface may be up to 20%
of the intensity at the focus. The physical nature of
these secondary intensity peaks is related to the pres-
ence of discrete elements in the array. Below, by the
term “a secondary intensity peak” we imply the peaks
of this physical nature, not the local intensity peaks that
exist in the field of a single focused transducer. The
comparison of the theoretical and experimental distri-
butions of intensity produced by arrays shows that, in
practice, the level of the secondary intensity peaks
exceeds the calculated one, in particular, due to the
acoustic interaction between the array elements [9].
Thus, the reduction in the level of secondary intensity
peaks in the array field is of prime importance for safety
in the ultrasound surgery of prostate.

The known methods of reducing the level of side
lobes of the array radiation pattern, which are based on
the reduction of the oscillation amplitude from the cen-
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Fig. 2. Schematic sketch of a linear array operating at the frequency 1 MHz and consisting of 70 elements of dimensions 1 × 15 mm:
(1) case of array, (2) space filled with degassed cold water, (3) coil of the receiving NMR antenna, (4) membrane made of thin rubber,
(5) 70-element array, (6) hole for feeding water, (7) hole for draining water, (8) cable connected to the receiving coil, (9) seal, and
(10) cable for feeding the array elements.
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tral part of the array to its periphery [13–15], are prac-
tically unacceptable in our case because of the require-
ments imposed on the level of the acoustic power of the
array. Another method of decreasing the influence of
secondary intensity peaks is based on the use of arrays
with unequal distances between their elements [13, 14].
This method was evaluated by Hutchinson et al. [1, 2].
They described a linear phased array for prostate sur-
gery that operated at 0.83 MHz and consisted of 57 ele-
ments of equal length (15 mm) and different widths
(1.6 and 1.2 mm). The elements were randomly
arranged and spaced at intervals of 0.13 mm. (Thus, the
distance between the centers of the elements changed
from 0.74 to 0.96λ.) The calculations performed by the
authors showed that the expected reduction in the level
of the secondary intensity peaks due to the aperiodicity
of the elements may be up to 30–45% [1].

For a considerable decrease in the level of side lobes
of the array radiation pattern, the distance between the
array elements should be less than λ/2 [13–15], i.e., for
example, less than 0.75 mm at 1 MHz. However, to cre-

1
2

345

6 7

Fig. 3. Block diagram of a device for feeding the elements
of the array: (1) PC, (2) interface, (3) buffer, (4) digital cir-
cuit controlling the frequency, amplitudes, and phases of the
signals fed to the array elements, (5) 64-channel power
amplifier with a short-circuit protection, (6) circuit for
matching the impedances of the power amplifiers and ele-
ments, and (7) phased array.
ate an array with such small elements and a sufficiently
large aperture and, in addition, to provide the required
acoustic power (for instance, 200 W), it is necessary to
use a considerable number of elements and electronic
channels, which complicates the system and increases
its cost. Besides, the “dead zone” formed by the spaces
between the elements grows. However, the transverse
dimensions of the array should not exceed the physio-
logical limits (the maximum transverse dimension of
the array case should not exceed 25–28 mm). Thus, the
choice of the parameters and characteristics of real
arrays intended for prostate surgery is a compromise
between a number of contradictory requirements.

The designed linear array for transrectal surgery of
prostate is shown schematically in Fig. 2. The array
consists of 70 elements of 1 mm wide, 15 mm long, and
with a thickness corresponding to the operating fre-
quency of 1 MHz (1.72 mm). Out of 70 elements, only
62 were simultaneously active. For electrical and
acoustic insulation of the elements, we used a tape of
thickness about 0.1 mm covered by adhesive substance
on both sides. The length of the array 5 was 77 mm, and
the distance between the centers of the elements corre-
sponded to 0.73λ (i.e., it was considerably less than in
the aforementioned array, Fig. 1). The array was housed
in a case 1 made of plastic; the maximum dimension in
the widest part of the case did not exceed 26 mm, and
the minimum transverse dimension was 14–16 mm.
The case was enclosed in a rubber membrane 4, the dis-
tance between the array surface and membrane being
about 10 mm. The acoustic contact between the array
and the biological tissue was provided through
degassed cold (for cooling both the array and the adja-
cent tissue) water fed into the space 2 between the case
and the membrane through the hole 6 and drained
through the hole 7. The leads of a multiple-conductor
shielded cable 10 serving for feeding the elements of
the array were soldered to the elements.

A block diagram of an electronic device for control-
ling the array is shown in Fig. 3. The device operation
is controlled by a computer 1 with the appropriate soft-
ware; the computer is connected to the device through
the interface 2 and a buffer 3. The frequency, ampli-
tude, and phase of the signals at the elements of the
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
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Table 1.  Influence of the number of active elements of the array on the level of the main and secondary intensity peaks; focu-
sing on the point (0, 0, 30 mm)

Order numbers of active elements/Total number of active elements 1–62/62 6–57/52 11–52/42 16–47/32
Maximum relative intensity at the focus 1.0 1.0 0.98 0.9
Maximum relative intensity of the secondary peaks in the focal plane 0.06 0.03 0.02 0.01
Maximum relative intensity of the highest secondary peak at a
distance of 10 mm from the array

0.11 0.11 0.11 0.12

Length of the active part of the array (mm) 62 52 42 32
Reduction in the radiated ultrasonic energy (%) 0 16 32 48
array were controlled by a 8-bit digital circuit 4. The
unit 5 is a 64-channel power amplifier with short-circuit
protection. The output power of each amplifier in unit 5
is 10 W in the frequency range 0.1–1.5 MHz. The cir-
cuits 2–5 were developed at University of Michigan
(USA). The impedance matching of the power amplifi-
ers and the elements of the array 7 is carried out by the
circuit 6. Each channel of this circuit contains an induc-
tance coil and a matching transformer.

The acoustic field generated by the array was mea-
sured in a water-filled tank with sound-absorbing walls.
For measuring the spatial distribution of acoustic pres-
sure, we used a piezoceramic hydrophone, which was
0.6 mm in diameter and had a uniform angular sensitiv-
ity within 1 dB in the range of at least ±30°, and a wide-
band amplifier. The hydrophone was mounted on a
positioner that made it possible to change and monitor
the position of the hydrophone relative to the array in
three mutually perpendicular directions. The measure-
ments of acoustic pressure were carried out at 1-mm
intervals in planes parallel to the array surface and at
5-mm intervals in planes perpendicular to the array.

In the development and subsequent use of the array,
attention was given to the reduction in the secondary
intensity peaks of the generated acoustic field. In the
previous attempts of developing such arrays [9, 10], we
employed a simple but efficient method based on the
use of not all array elements for the ultrasound radia-
tion but a certain part of them, which was determined
by the required conditions of focusing. This approach is
based on the fact that an inevitable acoustic interaction
between the elements. The extent of this interaction
depends on the dimensions of the elements, the way of
their acoustic insulation, and other parameters and
design features of the array. One of the consequences
of the acoustic interaction between the elements is
that the “effective” width of the elements may be con-
siderably greater than their real geometric dimensions
(e.g., 1.5 times greater for the array described in [9]).
The real radiation pattern of each element correspond-
ingly gets narrower. If the distance from the array to the
focus is relatively small, the contribution of the ele-
ments located at the periphery of the array may become
insignificant or become reduced to zero, and the energy
radiated by these elements may be not only useless but
even harmful from the point of view of safety of the
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
method. In the previous studies [9], it was found that
the aperture of the active part of the array and the focal
length should be related to each other in a certain way.
If the real aperture is greater than needed, the “excess”
elements should be switched off. If the focus is shifted
relative to the acoustic axis, it turns out to be useful to
switch off some elements on the side of the array oppo-
site to the direction of the focus shift, so that the total
length of the switched-off elements be equal to the
value of the focus shift. The advantage of this approach
lies in the fact that switching off the elements practi-
cally does not lead to a reduction in intensity at the
focus but considerably reduces the level of secondary
intensity peaks and the part of acoustic energy unnec-
essarily introduced in the tissues by the elements
located at the array periphery.

Another approach is based on the introduction of cer-
tain irregularity (randomization) in the array operation.
Since the physical nature of the discussed side lobes is
connected with the regular structure of the array, one can
expect that this method should result in a reduction in the
level of the side lobes at the expense of some broadening
of the main diffraction peak. It is clear that, in a labora-
tory-made array, its surface cannot be made ideally flat,
and there is some difference in the element’s height, and,
consequently, some phase shift. Naturally, the mentioned
error in the determination of the phase values at each ele-
ment may be compensated by measuring the phase shifts
with a hydrophone placed at the focus and by introduc-
ing appropriate corrections. We deliberately did not use
this method, which had been employed in [1], because
the resulting “natural” randomization of the phase deter-
mination is more likely to lead to positive rather than
negative consequences.

Both mentioned approaches were used for exciting
the elements of the array described in this paper. The
amplitude of signals at all active elements was constant
to meet the requirements on the acoustic power of the
array. Table 1 characterizes the dependence of the rela-
tive intensity measured at the focus and at secondary
intensity peaks in the focal plane and nearby the array
(at a distance of 10 mm from its surface) on the number
of active elements when the array was focused at a dis-
tance of 30 mm along its acoustic axis (0, 0, 30 mm),
which corresponds to the depth of focus in tissues 20 mm.
The table also gives the length of the active part of the
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Fig. 4. Experimental spatial distribution of the relative intensity of the array field: (a) for focusing on the point (0, 0, 30 mm) with
the use of 42 active elements out of 62 and with 10 elements at each end of the array being switched off; (b) for focusing on the point
(20, 0, 30 mm) with the use of 42 active elements and with 20 elements on the side of the array opposite to the direction of the focus
shift being switched off; x is the coordinate along the array aperture and z is the coordinate along the acoustic axis.
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array and the extent of the reduction in the radiated
ultrasonic energy.

Figure 4a shows the experimentally obtained distri-
bution of intensity for the mentioned location of focus,
for the case of using 42 active elements out of 62. From
Table 1 and Fig. 4a, it follows that the reduction in the
number of active elements resulted in an acceptable
distribution of intensity, with a decrease in the maxi-
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
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Table 2.  Influence of the number of active elements of the array on the level of the main and secondary intensity peaks; fo-
cusing on the point (20, 0, 30 mm)

Order numbers of active elements/Total number of active elements 1–62/62 21–62/42

Maximum relative intensity at the focus 1.0 1.0

Maximum relative intensity of the secondary peak in the focal plane 0.19 0.07

Maximum relative intensity of the highest secondary peak at a distance of 10 mm from the array 0.12 0.12

Reduction in the radiated ultrasonic energy (%) 0 32
mum intensity at the focus by only 2%. Simulta-
neously, the total radiated power was reduced by 32%,
and the level of the secondary peaks in the focal plane
dropped by a factor of 3 (down to 2% of the maximum
intensity at the focus). The level of the maximum inten-
sity of the highest secondary peak observed at a dis-
tance of 10 mm from the array remained the same.
Under these conditions of focusing, the ratio between
the length of the active part of the array (42 mm) and
the focal length (30 mm) was 1.4.

Similar data for the case of the array being focused
at the same distance, but with a shift of 20 mm from
acoustic axis (20, 0, 30 mm), are presented in Table 2.

Figure 4b illustrates the intensity distribution
obtained in the experiment for the mentioned location
of the focus when 20 elements of the array on the side
opposite to the direction of the focus shift were
switched off. From Table 2 and Fig. 4b, it follows that
the reduction in the number of active elements from 62
to 42 resulted in an acceptable distribution of intensity
without a decrease in the maximum intensity at the
focus. The total radiated power was reduced by 32%,
and the level of the secondary peak in focal plane
dropped from 19% of the maximum intensity at the
focus to 7% of this value. The level of the maximum
intensity of the highest secondary peak located at a dis-
tance of 10 mm from the array remained invariable.
However, when the focus was shifted by 30 mm from
the acoustic axis (the spatial distribution of intensity for
this case is not presented), then, for the number of
active elements being equal to 62, 42, and 32, the max-
imum intensity at the focus practically did not change;
the maximum relative intensity of the secondary peak
in the focal plane was 0.7, 0.3, and 0.1, respectively;
and the maximum relative intensity of the highest sec-
ondary peak at a distance of 10 mm from the array was
0.65, 0.5, and 0.45. It is clear that such a high level of
secondary peaks observed for this focus shift is unac-
ceptable from the point of view of safety.

Similar field measurements were performed for
focusing at a distance of 60 mm from the array (which
corresponds to the focus depth in tissue 50 mm), both
without a shift of the focus relative to the acoustic axis
of the array (0, 0, 60 mm) and with a shift of 20 mm
from the axis (20, 0, 60 mm). In the first case for the
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
number of active elements 62, 56, 52, and 42, the max-
imum relative intensities at the focus were 1, 0.97, 0.94,
and 0.76, respectively, which means that in this specific
case it is better to use all 62 elements. Figure 5a dis-
plays the measured spatial distribution of intensity for
this case. The ratio of the active part of the array aper-
ture to the focal length for these conditions of focusing
was 1.03. Figure 5b shows a similar distribution with
the focus shifted by 20 mm from the acoustic axis (20,
0, 60 mm). In this case, the use of 42 active elements
(20 elements on the side opposite to the direction of the
focus shift were switched off) resulted in a reduction of
the maximum intensity at the focus by only 2.5%,
whereas the radiated acoustic power decreased by 32%,
and the maximum relative intensity of the highest sec-
ondary peak in the focal plane dropped to 2% of the
maximum intensity at the focus, compared to 5% for
62 active elements. However, when the focus was
shifted by 30 mm from the acoustic axis (the spatial dis-
tribution of intensity is not presented), the maximum
relative intensity at the focus for the number of active
elements 62, 52, and 42 was 1.0, 0.97, and 0.72, respec-
tively; the maximum relative intensity of the secondary
peak in the focal plane was 0.15, 0.08, and 0.06; and the
maximum relative intensity of the highest secondary
peak at a distance of 10 mm from the array was 0.35,
0.2, and 0.2. These data are much better than for the
similar focus shift in the case of the 30-mm focal length
(see above), but the level of the secondary peaks for this
shift is also excessively high.

The measurements of the acoustic power radiated
by the array were performed with the use of a specially
made 18-element array with the same elements and
design as the 70-element array. The aperture of this
array was about 20 mm (instead of the 77-mm aperture
of the main array). The power was determined by mea-
suring the radiation force with a target in the form of an
absorber of sufficiently large dimensions (90 × 180 mm)
to span the whole ultrasonic beam. The basic error of
measurement was about ±10%. The acoustic power of
the array was 55 W in a continuous mode of operation
within 5 s; the limiting near-destructive operation mode
of the array was not investigated because of the risk of
damaging the circuits feeding the array. Another reason
for not exceeding the mentioned power level was that,
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Fig. 5. Experimental spatial distribution of the relative intensity of the array field: (a) for focusing on the point (0, 0, 60 mm) with
the use of 62 active elements; (b) for focusing on the point (20, 0, 60 mm) with the use of 42 active elements and with 20 elements
on the side of the array opposite to the direction of the focus shift being switched off. Coordinates are the same as in Fig. 4.
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according to [1], the acoustic power of about 28 W per
cm of linear array is more than sufficient for thermo-
therapy and thermosurgery of prostate tissue. Arrays
with such level of power, on evidence of [2], as well as
According to the literature data [2] and to our experi-
ments, arrays with such a power level can easily cause
local thermal ablations in specimens of biological tis-
sues (liver, beef). The results of the measurements with
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
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the additional array allowed us to conclude that the
maximum acoustic power of the main array was no less
than 200 W.

Evidently, the wide clinical use of the ultrasonic
method of prostate ablation depends on the develop-
ment of means for monitoring the location of the focal
region in prostate both before and after the ablation.
The use of conventional ultrasonic diagnostic equip-
ment intended for imaging the prostate tissue does not
allow one to reliably monitor the location of the focus,
since even a slight error in the rotation of the array
about its axis may result in a considerable departure of
the focus location from the required zone of ablation.
The known ultrasonic diagnostic transducers mounted
on the instruments for prostate surgery with single
focused radiators [4–6] were intended for imaging the
prostate tissue subjected to ablation but not for moni-
toring the location of the focus before ablation. The
ultrasonic methods proposed recently for solving this
problem [16, 17] are at the initial stage of development
and make it possible to take measurements only in sta-
tionary specimens of tissue or in phantoms with prede-
termined properties. At the same time, a number of
papers (e.g., [18–20]) point to the possibility of imag-
ing not only the ablations at the focus but also minor,
leading to no irreversible destruction of tissue, temper-
ature increments by using methods based on the phe-
nomenon of the nuclear magnetic resonance (NMR).

The development of an NMR imaging system of
under- and overthreshold ultrasonic destruction of tis-
sues was not the objective of this study. However, the
design of our array was made compatible with the sys-
tems of NMR imaging of tissues. Moreover, in the
array case 1 (Fig. 2), we mounted a removable receiv-
ing antenna 3 for NMR imaging, which was similar to
the antenna described in [21] and consisting of a rect-
angular coil of dimensions 86.5 × 24 mm. Such an
NMR antenna has been used at the Hammersmith Hos-
pital (London) for imaging the temperature increments
of nonultrasonic nature. The measurements of the main
parameters of this antenna (the Q-factor, the frequency
shift, etc.) showed that the magnitudes of the parame-
ters changed only slightly when the ultrasound array
was brought near the antenna. All the above, as well as
the encouraging literature data [18–20], allows us to
anticipate the possibility of the NMR imaging of under-
and overthreshold ultrasonic destruction produced in
the prostate tissue by the designed (or similar) array.

Thus, the results of the laboratory evaluation of the
ultrasonic part of the developed instrument show that the
use of a linear array with the parameters specified above
makes it possible to scan the focus within 30–60 mm in
the axial direction and ±20 mm in the perpendicular
direction (which corresponds to the dimensions of
prostate) with a practically acceptable level of second-
ary intensity peaks in the focal plane (considerably less
than 10% of the maximum intensity at the focus) and
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
near the surface of the array (no greater than 10%). The
measurements of the acoustic power radiated by the
array show that it is quite sufficient for the thermal abla-
tion of prostate tissue. The spatial distributions of inten-
sity created by the array are not only much better than
those obtained with other arrays developed earlier by us
[9], but also no worse than the distributions obtained
with the arrays developed in other laboratories [1, 2].
The designed array is a promising instrument for pros-
tate surgery; however, the possibility of extensive clin-
ical use of the ultrasound method depends on the sub-
sequent development of combined systems that allow
one to produce ultrasonic ablation and to monitor the
location of the focal region in prostate before the abla-
tion.
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Abstract—A new method is proposed for recording the complex amplitude (i.e., the amplitude and phase) of sig-
nals generated by a nonlinear sound radiator in a low-mode oceanic waveguide. Results of model experimental
studies of acoustic fields in Pekeris shallow-water waveguides are presented. Using the Fourier analysis of the
complex amplitude of the acoustic signal detected by a receiver uniformly moving along the sound propagation
track, specific features of the mode composition of the low-frequency field formed in a laboratory waveguide are
revealed. The feasibility of the selective excitation of modes by varying the orientation angle of the parametric
radiator in the vertical plane is demonstrated experimentally. © 2000 MAIK “Nauka/Interperiodica”.
The unique abilities of the parametric radiators (PR)
of relatively small dimensions to generate highly direc-
tional low-frequency radiation allow their efficient
application for the remote diagnostics of bounded and
inhomogeneous media [1], as well as for the investiga-
tion of sound scattering by discrete inhomogeneities in
water in a wide frequency band [2]. These properties of
the PR, as well as the virtual absence of side lobes in
their directional patterns, make them indispensable, in
particular, for the acoustic waveguide excitation at
given modes without using expensive and cumbersome
phased arrays [3]. This fact extends the possibilities of
such remote investigations as the long-range low-fre-
quency acoustic diagnostics of discrete and smooth
inhomogeneities located both in the water column and
in the surface layers of the ocean bottom, the determi-
nation of statistical characteristics of wind waves on the
sea surface, and the studies of the sea sediment param-
eters for [4]. The use of PR carried by ships offers con-
siderable promise for acoustic ocean tomography [5].

The formation of the PR fields in shallow sea has
been much studied theoretically (see, e.g., [6–8]). The
experimental investigations carried out in this area of
research are mainly limited to studying the amplitude-
time characteristics of acoustic signals [1, 9], which
restricts the variety of data available to the researchers.
By using composite signals, e.g., frequency modulated
ones, as well as more complicated techniques for
recording and processing the received signals, it is pos-
sible to obtain new results, which makes the experi-
mental data more valuable. Applying the correlation
processing of a received pulsed PR signal by its convo-
lution with the radiated reference signal, Donskoœ et al.
1063-7710/00/4602- $20.00 © 20153
[10] managed to single out a number of short pulses
corresponding to signal arrivals over different rays or
groups of modes.

The determination of the modal composition of an
acoustic field from its horizontal structure recorded by
a receiver uniformly moving along the sound propaga-
tion track is widely used in experiments [11–14]. In this
case, not only the amplitude of the signal transmitted
through a medium is continuously recorded, but its
phase as well.

In this paper, a similar method was used for record-
ing and processing the complex amplitude of a received
signal in laboratory experimental investigations of the
modal composition of a low-frequency field generated
by a nonlinear source in a shallow-water acoustic
waveguide. The fields of a difference-frequency wave
were experimentally studied in the region of the intense
interaction of high-frequency pump waves under vari-
ous conditions of the mode excitation. The spatial spec-
tra of signals were compared for various orientation
angles of the pump wave radiator in the vertical plane.
A comparative analysis of the horizontal interference
structures of acoustic waveguide fields was also per-
formed when the waveguide was excited by both para-
metric and omnidirectional sound sources operating in
a nonlinear regime at a frequency of ω0.

Discuss now this signal processing method in more
detail [12]. Assume that sound propagates in a homoge-
neous water layer overlying a homogeneous liquid
halfspace (the simplest ocean model with an absorbing
bottom, i.e., the so-called the Pekeris model). The layer
of thickness h is bounded by the free water surface from
000 MAIK “Nauka/Interperiodica”
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above and by a plane horizontal bottom from below.
The velocity of longitudinal waves in the layer is c, the
medium density is ρ, and the corresponding bottom
parameters are c1 and ρ1.

Consider the sound pressure field P of a point source
located at a point r = 0, z = z0 with the singularity P ∝

 at r  0. Such a field is described by the Helmholtz

equation

(1)

with the boundary conditions

(2)

where k2 = , [P] and [Vz] denote the jumps of P and

Vz at the boundary z = h, and δ(r) and δ(z – z0) are the
delta functions of the respective arguments.

The solution to inhomogeneous equation (1) is rep-
resented as a sum of normal waves [15]

(3)

where (ξmr) is the zero-order Hankel function of
the first kind, ψm(z) satisfies the equation

(4)

and ξm is the horizontal wave number of the mth mode,
the imaginary part of this number being nonzero
because of the sound absorption in the bottom.

The sound absorption is taken into account by intro-

ducing the imaginary part of the wave number: k = (1 +

iα), where  = . Using the asymptotic expression for

the Hankel function for large values of the argument
and representing ξm as ξm =  + iβm , where βm is the
attenuation coefficient of the respective mode, expres-
sion (3) can be written as

(5)

Denoting ϕm(z0)ϕm(z) = Q(z0, z) and restoring

the temporal factor previously omitted, we obtain the
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following expression for the complex amplitude of the
field excited by a harmonic point source operating at
the frequency f0:

(6)

where ω0 = 2πf0. In the experiment, the recorded signal
coincides with the real component of expression (6)
and, therefore, can be written as

(7)

where the constant C depends on the radiator power.
Note that the product Qm(z0, z)exp[–βmr] specifies the
amplitude of the mth mode at the point of reception (r, z).

In order to single out the complex envelope of the
recorded signal, the latter is multiplied by reference
harmonic signals of frequency ω0 shifted in phase by
π/2 relative to each other; then, the signal is subjected
to low-frequency filtering. According to (7), the
quadrature components obtained as a result of the
described operations are expressed as follows:

(8)

(9)

where a1 and a2 are the constants determined by the
amplification coefficient of the recording equipment (in
the experiments, by varying the amplification coeffi-
cient, we achieved the equality of these constants).

Assume that the receiving hydrophone moves away
from the radiator with a constant speed v starting from
a point with the coordinates (R0, z). In this case, the
dependence of the quadrature components on time will
be determined by expressions (8) and (9), where r is
replaced by R0 + vt.

The resulting quadrature components are used to
form the complex envelope of the recorded signal, and
then its Fourier transform is calculated. The latter pre-
sents the spatial spectrum of the horizontal section of
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the sound field along the line z = const, where z is the
vertical coordinate of the receiver

(10)

Here, L denotes the length of the path covered by the
receiver. This quantity determines the resolution in the
spatial frequency ξ.

For a small variation of the quantity exp[–βmr]

on the interval L, we have

(11)
where R* is the distance from the source to the middle
of the waveguide part through which the receiver trav-
els in the process of recording.

If the conditions of the resolution of individual nor-
mal waves are satisfied [11]

L @ ,  m ≠ n, (12)

the maximum spectral components will be those for
which ξ coincides with the longitudinal wave number
ξm of some mode. In this case, the amplitude of the
spectral component (correct to a constant factor com-
mon for all modes) coincides with the amplitude of the
corresponding mode (clearly, if condition (12) is met).
Thus, the difference in the horizontal wave numbers
allows one to select the modes of the spectrum G(ξ, R0).

The proposed algorithm for analyzing the received
signal in investigating the field of a PR provides the
information not only on the amplitude, but on the phase
of the received signal as well, which allows one to
study the specific features of the modal composition of
the low-frequency sound field in a model acoustic
waveguide.

It should be noted that the use of the described
method in the parametric excitation of waveguides
requires highly stable sources of harmonic signals, with
a relative frequency stability no worse than 10–9.

The concept of the method of recording the complex
amplitude of the PR field is as follows. The received
low-frequency signal of the difference-frequency wave
(DFW), which is formed as the result of the nonlinear
interaction of two primary pump waves of frequencies
ω1 and ω2, has the frequency ω0 = ω1 – ω2. The phase
of the difference-frequency electric signal obtained by
multiplying two oscillations with frequencies ω1 and
ω2 of the same generators that are used in the radiation
channel is obviously related to the phase of the radiated
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signal. This fact allows one to use this electric signal as
a reference one. In this case, the phase difference
between this signal and the received signal transmitted
through the waveguide under study is uniquely deter-
mined by the radiator–receiver distance. Such a phase
dependence of these signals considerably loosens the
requirements on the stability of the oscillators generat-
ing the primary pump waves of the PR, since only their
short-time stability is important during the wave prop-
agation from the source to the receiver.

The application of this method allowed us to per-
form the selection of the modes forming the PR field in
a waveguide, to determine the phase and group veloci-
ties and the sound pressure distribution in depth for
individual normal waves.

The experimental investigations of the modal com-
position of the field generated by the PR were carried
out in a model hydroacoustic waveguide in a laboratory
tank (500 cm in length, 65 cm in width, and 55 cm in
depth). The tank had a suspended bottom with a rubber
coating. With the use of screws, the upper boundary of
the rubber layer (4 cm thick) could be fixed relatively to
the water surface with the accuracy of ∆h = 2 mm in
depth. The rubber layer thickness variations were of
the order of δhmax = 0.5 mm. The waveguide was mod-
eled by a plane homogeneous water layer of thickness
h = 38 ± 1 mm with the sound velocity c = 1468 m/s.
The water layer overlied a thick rubber layer with the
density ρ1 = 1.13g/cm3, the longitudinal wave velocity
c1 = 1778 m/s, and the loss tangent α = 0.28. The com-
parison of the previous experimental results obtained
using the same setup (see, e.g., [12, 16]) with numerical
calculations shows that our two-layer waveguide is
adequately described in the framework of the Pekeris
model. In mathematical modeling, the layered rubber
bottom is replaced by an effective liquid halfspace
where the sound velocity equals the longitudinal sound
velocity in rubber, and the presence of shear waves in
rubber is taken into account by introducing an addition
to the attenuation coefficient.

Figure 1 shows a simplified schematic diagram of
the setup operating in the parametric regime and the
relative positions of the radiator and receiver during the
experiment.

A piezoceramic pump transducer (S) represented a
circular piston radiator of the diameter 2a = 1.8 cm. The
center of its aperture was located in the waveguide at a
depth z0. The radiator was mounted on a cross-bar
which allowed us to change the radiator depth (with an
error no more than 1 mm) and orient the axis of the PR
radiation in the vertical plane (the angle θ in Fig. 1)
with an accuracy no worse than 1°.

Biharmonic signals with the frequencies f1 = 3.2 and

f2 = 3.0 MHz, where fi = , i = 1, 2, were fed to the

radiator. For determining the regime of the pump trans-
ducer operation, some preliminary experiments were

ωi

2π
------
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Fig. 1. Schematic diagram of the experimental setup.
carried out in an unbounded space. The attenuation
length experimentally found was equal to l0 = 1.47 m.
As is known [1], the PR operation regime is determined

by the parameter η = , where Rf is the length of

the diffraction divergence at the high frequency (the
near zone). For conditions of our experiment, this
parameter equals η = 0.135, i.e., the regime of the PR
operation was close to the Westervelt regime.

For generating high-frequency oscillations, we used
two powerful amplifiers (x1 and x2). To their inputs,
two continuous sinusoidal signals of frequencies ω1
and ω2 were supplied from a block of reference fre-
quencies (≈). For reducing the level of the reverberation
noise associated with the finite size of the object tested,
the impulse regime of radiation was used. The duration
of the radiated pulses τ0 satisfied the condition ω0τ0 @
2π, and thus a quasimonochomatic regime of the radia-
tion was provided.

As a generator of modulation pulses (T1), we used a
generator of video pulses of a rectangular form with the
controlled duration τ0 and the repetition frequency F =
64 Hz. These pulses arrived at the modulation inputs of
the amplifiers (x1 and x2) where radio pulses were
formed and amplified. The signal thus formed arrived at
the pump wave transducer (S).

l0

R f

------
ω0

ω1
------ 

 
For synchronizing the operation of the total setup,
we used a synchro pulse produced by the pulse genera-
tor (T1).

Having passed through the medium under study, the
signal arrived at an omnidirectional piezoceramic
receiver (R), which was mounted on a rod capable of
uniformly moving along the laboratory tank (B) at a
fixed depth z. In all experiments, the speed of the
receiver motion along the hydroacoustic tank was v =
1.8 cm/s. The uncontrollable speed fluctuations did not
exceed ±0.005 cm/s. After a two-stage amplification
and filtering performed in an amplifier (x3), the
received pulsed signal arrived to a strobe-bloc (M2)
controlled by an impulse strobe generator (T2). This
generator produced pulses of duration τ1 with a con-
trolled time delay relative to the radiated pulse onset.
These pulses allow one, first, to suppress pulsed rever-
beration noise and, second, to record the amplitude at
any point within the signal. The strobe signal arrived at
one of the multiplier (×2) inputs. The other input of this
multiplier was fed with a continuous reference signal
obtained by multiplying the signals of frequencies ω1
and ω2 in the multiplier (×1). As a result, at the multi-
plier output (×2), video pulses were formed with the
duration τ1 and amplitude depending on both the
received signal amplitude and the difference in phase
between the reference and received signals. The trans-
formed signal proceeded to an integrator (Σ), which
was controlled by the impulse of the strobe generator
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
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Fig. 2. Horizontal interference structure of the PR field in the waveguide (z = 10 mm, θ = 10°).
(T2). After the integrator, the constant voltage whose
level was proportional to the pulsed signal amplitude at
the input of the integrator, proceeded to the input of the
ten-bit analog-to-digital converter (AD) and was stored
in the computer memory (PC) for further processing. In
all experiments, the quantization frequency in analog-
to-digital conversions was 50 Hz.

The second quadrature component of the complex
amplitude of the sound field (see (9)) is obtained in a
similar way, but, as a reference signal, we used the sig-
nal from the multiplier (×1), which was out of phase by

 relative to the first signal.

The normal waves were separated from the spatial
spectra using the fast Fourier transform. The spectral
component amplitudes characterize the mode ampli-
tudes averaged over the analysis window L for a fixed
depth of reception. If we record the complex amplitude
of the acoustic field at different reception depths and
perform the spectral processing, we will be able to
restore experimentally the vertical structure of the
sound pressure in each of the modes forming the field
at the given distance from the radiator.

Figure 2 exhibits the horizontal interference struc-
ture of the acoustic field of the PR in the waveguide at
a depth of z = 10 mm. In this and all subsequent exper-
iments, the center of the radiator aperture was at a depth
of z0 = 19 mm, i.e., in the middle of the water layer. The
axis of the directional pattern of the radiator was
directed toward the bottom at the angle θ = 10°. This
angle coincides with the angle β2 = 10.5° of the Bril-
louin wave of the second mode of this waveguide. For
the first, third, and fourth modes, these angles were β1 =
5.3°, β3 = 16°, and β4 = 21.5°, respectively. Because the
directional pattern width γ is about 8°, it is evident that,

π
2
---
AL PHYSICS      Vol. 46      No. 2      2000
for such a geometry of radiation, the first and second
modes of the waveguide are excited in the best way,
which can be seen in Fig. 2. The contribution of the
third mode to the total field is significant only at dis-
tances of about 60 cm from the radiator. For this case,
the modal spectrum is presented in Fig. 3. The abscissa
axis represents the horizontal wave numbers, and the
ordinate axis represents the amplitudes of the spectral
components (in relative units). The vertical lines mark
the calculated values of the horizontal wave numbers of
the first four propagating modes. As seen in Fig. 3, the
experimental values of the wave numbers agree well

6000

3000

0
0.75 0.80 0.85 0.90

ξ, mm–1

Ä, relative units

Fig. 3. Spatial spectrum of the received signal of the differ-
ence-frequency wave (z = 10 mm, θ = 10°).
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Fig. 4. Horizontal interference structure of the PR field in the waveguide (z = 20 mm, θ = 0°).
with the calculated ones for the first three modes. In all
experiments, the initial distance between the source and
the receiver was not varied and was equal to R0 = 5 cm.
The spectral analysis was performed with the algorithm
of fast Fourier transform over the aperture L = 300 cm.
To reduce the levels of the side outliers in the received
signal spectrum, we used the Blackman temporal
weight window.

As the orientation angle θ of the axis of the PR
directional pattern varies, the mode composition of the
sound field significantly changes. Figure 4 presents the
horizontal interference structure of the field of the dif-
ference-frequency wave at a depth of z = 20 mm for the
horizontal orientation of the radiator θ = 0°. The spatial

6000

3000

0
0.75 0.80 0.85 0.90

ξ, mm–1

Ä, relative units

Fig. 5. Spatial spectrum of the received signal of the differ-
ence-frequency wave (z = 20 mm, θ = 0°).
spectrum of this realization is shown in Fig. 5. In this
case, the analysis shows that, along with the spectral
components corresponding to the first and third prop-
agating modes of this waveguide (ξ1 = 0.85 mm–1 and
ξ3 = 0.82 mm–1), the spectrum of the received signals
has a maximum whose horizontal wave number is
equal to ξ0 = 0.86 mm–1. Because the sound velocity in

the water layer is c = 1468 m/s, we obtain that k = 

equals 0.856 mm–1, which almost coincides with ξ0.
The presence of the spectral component corresponding
to signal propagation in the free space is related to the
fact that the interaction of the low-frequency wave with
the waveguide boundaries begins at some distance from
the radiator. Near the parametric transducer, the pump
wave propagates as an almost nondivergent beam (the

diffraction length is Rf =  = 65 cm, where a is the

radius of the radiator aperture and λ1 is the wavelength
at the pump frequency). As a result, the difference-fre-
quency wave propagates without any significant inter-
action with the boundaries, i.e., almost in the same
manner as in free space. The analysis of the interfer-
ence structures and modal spectra of the waveguide
fields excited by an omnidirectional linear source
shows that such a component is absent in the received
signal. In this case, the interaction of the radiated wave
with the waveguide boundaries begins in the immediate
vicinity of the source. For comparison, Fig. 6 presents
the horizontal interference structure of the complex
amplitude of the field at a frequency of 200 kHz when
the waveguide is excited by a linear point source. The
source and the receiver were located in the middle of
the water layer (z0 = z = 20 mm). The sound field at this
depth is mainly formed by the first and third modes, while
the contribution of the second mode is insignificant.

ω0

c
------

4a
2

λ1
--------
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Fig. 6. Horizontal interference structure of a point source operating in the linear regime in the waveguide (z = 20 mm).
With the variation of the angle of the axis of the PR
radiation in the vertical plane, the excitation of the
waveguide modes occurs mainly for such angles of
the Brillouin waves, which are close to θ, the number
of the excited waves being determined by the low-fre-
quency directional pattern width [8–10]. In particular,
the variation in the spectrum of the received modes
with varying excitation conditions can be seen from
the comparison of Figs. 3 and 5.

Thus, the model experiments aimed at studying the
acoustic fields of the difference-frequency waves in
the shallow-water Pekeris waveguides with the use of
the new method of the determination of the modal com-
position allowed us to determine the phase and group
velocities and the sound pressure distributions in the
waveguide depth for individual normal waves, as well
as to reveal a component specific for the free space in
the received signal spectrum. The analysis of the inter-
ference structures and modal spectra of the waveguide
fields generated by an omnidirectional linear sound
source shows that such a component is absent in the
received signal. A possibility of the selective mode
excitation by varying the orientation angle of the para-
metric radiator in the vertical plane was experimentally
demostrated.
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Abstract—The scattering of sound by small compact inhomogeneities of density, sound velocity, and internal
boundaries in the sea bottom is considered from the viewpoint of the redistribution of the acoustic energy
between waveguide modes. Formulas are derived for the coefficients of intermode interaction; these formulas
generalize the previous ones presented in the literature and are convenient for solving direct and inverse prob-
lems. The results are illustrated by the corresponding calculations. © 2000 MAIK “Nauka/Interperiodica”.
An approach to the problem of sound scattering by
small compact inhomogeneities of the density, the
sound velocity, and the internal boundaries of the sea
bottom from the viewpoint of the redistribution of the
acoustic energy between waveguide modes was suc-
cessfully used in a number of works as a fairly conve-
nient method for handling three-dimensional problems.
We note only some of them: Ingenito [1] considered the
scattering from a closed body, Wetton and Fawcett [2]
studied the scattering by inhomogeneities of the sea
bottom, and Fawcett [3] considered the scattering by a
cylindrical centrally symmetric inhomogeneity of the
density and the sound velocity. The results of paper [2]
were used in [4] for setting and solving some direct and
inverse problems.

In this paper, we derive new formulas for the coeffi-
cients of the intermode scattering of sound generated
by a point source from small compact inhomogeneities;
these formulas generalize the previous results obtained
in [2, 3]. The use of the Fourier series expansion of
inhomogeneities in the angular variable and the Fou-
rier–Bessel series expansion in the radial variable
allowed us to obtain simple formulas that are conve-
nient for computation. The assumption that the source
is far from the scatterer is not used in these formulas,
which is important for some applications.

We consider a stationary sound field in the region
defined by the condition –H ≤ z ≤ 0, H = const, where
the field is described by the Helmholtz equation and the
boundary conditions

(1)

ρdiv
1
ρ
---grad u 

  ω2

c2
------u+ f ,=

u z 0= 0, ∂u
∂z
------

z H–=

0.= =
1063-7710/00/4602- $20.00 © 20160
Here, u is the complex sound pressure, ρ is the density,
c is the sound velocity, ω is the circular frequency, and
f is the source function.

We assume that the density and the sound velocity
are piecewise continuous functions with discontinuities
at the surfaces z = h(l)(x, y), l = 1, …, N. In this case,
problem (1) has piecewise smooth solutions with the
conventional conditions of continuity for the sound pres-
sure and the normal velocities at z = h(l)(x, y), l = 1, …, N
(section 1.1 in [5]).

In a plane-layered medium, separate modes propa-
gate independently of one another. We will study the
mode conversion caused by small perturbations of the
internal boundaries, density, and sound velocity on the
background of the plane-layered medium. We intro-
duce a small parameter e and assume that the sound
velocity, the density, and the internal boundaries can be
represented as c = c0(z) + ec1(x, y, z) + …, ρ = ρ0(z) +

eρ1(x, y, z) + …, and h(l)(x, y) =  + e (x, y) + … (l =

1, …, N), respectively, where  are constants and ρ1,

c1, and  equal zero everywhere outside some
bounded region Ω. In this paper, we will restrict our
consideration of this problem to the approximation of a
single scattering (the Born approximation) and assume
that the sound field is represented as u = u0 + eu1 + …,
where u0 is the source field or the incident field and u1
is the principal term of the scattering field.

Substituting these expansions in equation (1) and
separating the terms multiplying different powers of e,
we obtain a sequence of boundary problems. In the
order O(1), we obtain problem (1) with u, ρ, and c being
replaced by u0, ρ0, and c0, respectively. It is known [5]
that the solution to this problem with a point source rep-
resented as f = δ(z – z0)δ(x – x0)δ(y – y0) has the form

h0
l( ) h1

l( )

h0
l( )

h1
l( )
000 MAIK “Nauka/Interperiodica”
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u0(x, y, z) = (knξ)φn(z)φn(z0), where ξ =

 and φn is the mode with the
spectral parameter (the wave number) kn. The latter
mode is the solution to the ordinary spectral problem
for a layered medium with the conditions of continuity

for φn and (1/ρ0)dφn/dz at z = ; the function φn with
the weighting function 1/ρ0 is normalized within the
segment [–H, 0]. Because our concern is only with the
interrelation of the modal composition of incident and
scattered fields, we will assume that the incident field

consists only of the jth mode, u0 = (kjξ)φj(z).

In the order O(e), we obtain

(2)

with the conditions at z = h(l)(x, y) (l = 1, …, N)

(3)

where the plus sign marks the limits of the variables at
the point under study z = z0 from above, i.e., at z > z0,
and the minus sign marks the corresponding limits
from below. We will seek the scattered field in the form

u1 = (x, y)φn and call the functions Cjn(x, y) the
scattering coefficients from the jth mode into the nth
mode. Substitute now expressions for u0 and u1 in (2),
multiply both parts of this equation by φn/ρ0, and inte-
grate this expression with respect to z from –H to 0.
Using the conditions of the mode normalization and
conditions (3), we obtain the equation for the coeffi-
cients Cjn

(4)

H0
1( )

n∑
x x0–( )2 y y0–( )2+

h0
l( )

H0
1( )

ρ0div
1
ρ0
-----grad u1 

  ω2

c0
2

------u1+

=  
1
ρ0
-----

∂ρ1

∂x
--------

∂u0

∂x
-------- 1

ρ0
-----

∂ρ1

∂y
--------

∂u0

∂y
--------+

+
∂
∂z
-----

ρ1

ρ0
----- 

  ∂u0

∂z
-------- 2

ω2

c0
2

------
c1

c0
----u0+

1
ρ0
-----

∂u1

∂z
-------- 

 
+

1
ρ0
-----

∂u1

∂z
-------- 

 
–

–

=  h1
l( )ω2u0

1
c0+ρ0+
--------------- 1

c0–ρ0–
--------------– 

 

+
∂h1

l( )

∂x
----------

∂u0

∂x
-------- 1

ρ0+
------- 1

ρ0–
-------– 

  ∂h1
l( )

∂y
----------

∂u0

∂y
-------- 1

ρ0+
------- 1

ρ0–
-------– 

  ,+

u1+ u1–– h1
l( ) ∂u0

∂z
-------- 

 
–

∂u0

∂z
-------- 

 
+

– ,=

C jnn∑

∂2C jn

∂x2
-------------

∂2C jn

∂y2
------------- kn

2C jn+ +

=  F0H0
1( ) k jξ( ) F1H1

1( ) k jξ( ),+
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where

The solution to equation (4) is written as the
convolution of the fundamental solution

(i/4) (kn ) of the Helmholtz operator with

a right-hand member [6]. Introduce now a polar system
of coordinates x = rcosα, y = rsinα and denote the
coordinates of the point of reception and the source by
(rr, αr) and (r0, α0), respectively. Using the addition the-
orem for the Bessel functions [7], we express the func-

tions (kjξ) and (kn )

(i = 0, 1) in terms of the Hankel functions (kjr0) and

(knrr) (µ = –∞, …, +∞). Assuming that the dis-

tance rr from the inhomogeneous area to the point of
reception is rather long, we replace the Hankel func-

tions (knrr) by the principal terms of their asymptot-

ics at rr  ∞. Expand ρ1(r, α), c1(r, α), and (r, α)

(l = 1, …, N) as functions of α in Fourier series and
expand the corresponding radial Fourier coefficients

ρ1m(r), c1m(r), and (r) within the segment [0, L]

where they do not vanish in the Fourier–Bessel series in
the functions Jm(rγp /L) (see, [7], γp are the positive
roots of the equation Jm(r) = 0). Denoting the expansion

F0
∂
∂z
-----

ρ1

ρ0
----- 

  φn

ρ0
-----

∂φj

∂z
-------- 2

ω2

c0
2

------
c1

c0
----

φnφj

ρ0
----------+

 
 
 

zd

H–

0

∫=

+ h1
l( ) φnφj k j

2 1
ρ0+
------- 1

ρ0–
-------– 

 




l 1=

N

∑

– ω2 1

ρ0+c0+
2

--------------- 1

ρ0–c0–
2

--------------– 
  ∂φn

∂z
--------

∂φj

∂z
--------

ρ0– ρ0+–( )
ρ0+

2
--------------------------+





z h0
l( )=

,

F1

∂ρ1

∂x
--------

k j x x0–( )
ξ

-----------------------–
∂ρ1

∂y
--------

k j y y0–( )
ξ

-----------------------– 
  φnφj

ρ0
2

---------- zd

H–

0

∫=

+ φnφj
1

ρ0+
------- 1

ρ0–
-------– 

 
l 1=

N

∑

×
k j x x0–( )

ξ
-----------------------

∂h1
l( )

∂x
----------

k j y y0–( )
ξ

-----------------------
∂h1

l( )

∂y
----------+ 

 
z h0

l( )=
.

– H0
1( ) x2 y2+

Hi
1( ) Hi

1( ) rr
2 r2 2rrr α α r–( )cos–+

Hµ
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Hµ
1( )

Hµ
1( )

h1
l( )

h1m
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coefficients by , , and , respectively, we
finally obtain

(5)

where

This formula allows a further reduction when the
source is far from the inhomogeneous area and the
Hankel functions Hν(kjr0) and Hν + 1(kjr0) can be
replaced by their asymptotics. Introducing the sum over
ν under the integral sign and transforming the integrand
with the use of the addition theorem for the Bessel
functions, we obtain

(6)

ρ̃1mp c̃1mp h̃1mp
l( )

C jn
i 2π

2π
------------

iknrr iπ 4⁄–( )exp

knrr

-------------------------------------------–=

× e
iν α0 π/2–( )

i( )me
i m ν+( )α r–

m ∞–=

∞

∑
ν ∞–=

∞

∑

× Fmp
0 Hν

1( ) k jr0( )(
p 1=

∞

∑

+ ik jknFmp
1 Hν 1+

1( ) k jr0( ) α0 α r–( ) )Imν
p ,cos

Fmp
0 ρ̃1mp

ρ0
2

---------- ω2

c0
2

------φnφj

∂φn

∂z
--------

∂φj

∂z
--------–

 
 
 

2
ω2

c0
2
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c̃1mp

c0
----------

φnφj

ρ0
----------+ zd

H–

0

∫=

+ h̃1mp
l( ) ∂φn

∂z
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∂φj

∂z
--------

ρ0– ρ0+–( )
ρ0+

2
--------------------------


l 1=

N

∑

+ ω2 1

ρ0+c0+
2

--------------- 1

ρ0–c0–
2

--------------– 
  φnφj


z h0

l( )=

,

Fmp
1 ρ̃1mp

ρ0
----------

φnφj

ρ0
---------- z h̃1mp

l( ) φnφj
1

ρ0+
------- 1

ρ0–
-------– 

 
z h0

l( ),=l 1=

N

∑+d

H–

0

∫=

Imν
p Jm

γp

L
-----r 

  Jν k jr( )Jm ν– knr( )r r.d

0

L

∫=

C jn
1–

2π k jkn

--------------------e
i k jr0 knrr+( )

r0rr

----------------------- e
im α r π/2–( )

e
imψ2

m ∞–=

∞

∑=

× Fmp
0 k jknFmp

1 α0 α r–( )cos+( )
p 1=

∞

∑

×
γpL2

γp
2 L2κ2–

----------------------Jm 1+ γp( )Jm κL( ).
Here, κ =  and  =

(kj – kn )/κ. The formula obtained in [2] is
derived from (6) at  =  = 0 and N = 1.

When the dimensions of the inhomogeneous area
are much less than the sound wavelength, the numerical

estimate of the integrals  in (5) can be obtained with
the use of the asymptotic expansions of the Bessel
function in the vicinity of zero without any limitations
for the distance between the source and the scatterer.
Below, we present the results of the model calculations
illustrating this case.

The calculations were performed for a two-layer
medium (water and bottom) with the sound velocities
and densities being constant within each of the two
layers and equal to 1470 m/s and 1000 kg/m3, respec-
tively, in water, and 2000 m/s and ρ = 1150 kg/m3 in
the sea bottom. The thickness of the water layer was
200 m, and the thickness of the bottom layer was
1000 m. All functions describing the inhomogene-

ities, except those that describe the bottom relief, ,
were assumed to be zero; following [2], we assumed

that  = exp(–r2/(2σ2)), where σ is a parameter. Such
a choice of the inhomogeneity function allows one to
perform an analytical summation of the Fourier–Bessel
series (the Fourier series in the angular variable contain
only the zero harmonic) and to use the resulting expres-
sion for testing formula (5). Note that now seven terms
of the Fourier–Bessel series well agree with the analyt-
ical sum. In calculations, we assumed that σ = 2 m and,
in this case, the effective radius of the inhomogeneous
area (the radius was used in expanding in the Fourier–
Bessel series) was equal to 10 m. The sound frequency
was 10 Hz.

The results of calculations by formula (5) and by the
Wetton and Fawcett formula from [2] are presented in
Figure 1, which exhibits the angular dependence of the
modulus of the scattering coefficient |C11(rr, αr)| of the
first mode to the first mode on αr for rr = 5000 m and
different distances of the source from the center of the
inhomogeneity. The origin of coordinates coincides
with the center of the ihnomogeneity, and the angular
coordinate of the source is 180°. These results show
that the Wetton and Fawcett formula from [2] does not
describe even qualitatively the specific features of the
scattered field when the source is located close to the
inhomogeneity.

In conclusion, we note that the formulas obtained
using the Fourier series expansions of the inhomogene-
ities in the angular variable and the Fourier–Bessel
series expansions in the radial variable provide a good
basis for setting and solving the inverse problems.

k j
2 kn

2 2k jkn α0 α r–( )cos–+ e
iψ2–

e
i α0 α r–( )

ρ̃1mp c̃1mp

Imν
p

h1
l( )

h1
l( )
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Fig. 1. Angular dependence of the modulus of the intermode scattering coefficient: calculations by formula (5) (solid curves) and by
formula taken from [2] (dotted curves) for the distances from the source to the center of the inhomogeneous area (a) 150, (b) 100,
(c) 50, and (d) 25 m.
These problems will be discussed in the following pub-
lications.
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Abstract—The results of the investigation of an acoustooptic transducer using a nematic liquid crystal and
operating under the conditions of two-wave acoustic effect on its sensitive element are presented. © 2000
MAIK “Nauka/Interperiodica”.
An integral part of all systems of acoustic visualiza-
tion is an image detector. The first reports on designing
image detectors in the form of thin layers of liquid crys-
tals capable of direct transformation of acoustic images
into optical ones appeared in the 1970s [1–3]. Two
types of liquid crystals that may be used for this pur-
pose are known. These are cholesteric and nematic liq-
uid crystals [4]. The first of them changes its color due
to the change in the medium temperature in the process
of absorption of ultrasound, while the second type of
liquid crystals has the property of changing the polar-
ization of light transmitted through its thin layer or the
polarization of light scattered due to the change in the
orientation of molecules under the impact of ultrasound
[5]. The major part of the studies was devoted to
designing image detectors of the polarization type.
These studies were initiated by Greguss [1] and Kapus-
tina and Lupanov [2]. The analysis of the latest data on
the operational characteristics of such acoustooptic
transducers with the sensitive element in the form of a
homeotropic layer of a nematic liquid crystal and the
mechanism of the ultrasonic effect on its macrostruc-
ture is given in the Handbook of Liquid Crystals [6]. It
turned out that the potential capabilities of these
devices are limited because of the properties inherent in
the orientation transition induced in nematic liquid
crystals by ultrasound. First of all, the optical response
of a nematic liquid crystal to an ultrasonic impact is
connected with its intensity J by the dependence of the
type Jn with the power index n = 4. Therefore, the
dynamical range of the transducer is not wide (~5–6 dB).
The fact that the optical pattern corresponding to the
acoustic image has an inhomogeneous structure is also
important. This limits the transducer resolution. Finally,
the device has a low sensitivity (several milliwatts or sev-
eral tens of milliwatts per square centimeter).

The search for ways to overcome these natural dis-
advantages of polarization acoustooptic transducers
[6–11] has led to the idea [11] of additionally introduc-
ing coherent acoustic radiation into a nematic liquid
1063-7710/00/4602- $20.00 © 20164
crystal and create the conditions for a more intense gen-
eration of steady-state flows due to the interference of
oscillatory processes. According to modern concepts
[5], these flows determine the mechanism of the effect
of ultrasound on the orientation of a liquid crystal. This
idea was tested successfully in the case of visualization
of surface acoustic waves (SAW) [11]. A coherent vis-
cous wave was introduced into a nematic liquid crystal
with the help of an external source (a shear-wave
source). This wave amplified the tangential component
of one of the normal modes of the layer (the second
fast-attenuating and slower mode).1 The cross-interac-
tion of the normal component v1z of the first mode of
the layer with the amplified tangential component v2x
of the second mode produced an inhomogeneous
acoustic flow in the layer with higher velocities, which
led to an increase in the deviation angle of molecules
and provided an opportunity to observe the optical
effect at those parts of the layer where it had been
impossible in the absence of additional excitation. This
idea was also discussed in the application of the control
over the mode of generation of acoustic flows in a layer
of a nematic liquid crystal under the conditions of inter-
action of bulk waves. It was established that interfer-
ence of coherent ultrasonic waves with mutually per-
pendicular polarizations also leads to an amplification
of the expected optical effect [6, 12].

1 The number of natural modes exited by SAW in a liquid layer
confined between two solid halfspaces depends on its thickness
and the wavelengths (of surface and bulk waves). If these wave-
lengths are considerably greater than the layer thickness, we can
assume that the wave field within the layer is the superposition of
two modes with the tangential and normal components of the par-
ticle velocities v1x and v1z (the fast mode) and v2x and v2z (the
slow mode). According to the general scheme of the formation of
an inhomogeneous flow [5], these modes cross-interact: v1x with
v2z and v1z with v2x, the optical effect in the case of interference
of v1x and v2z being an order of magnitude less than in the case of
the interaction of v1z and v2x. It is essential that the interactions
of v1x with v1z and v2x with v2z cause a weak homogeneous flow
of the nematic liquid, which does not influence the orientation of
molecules.
000 MAIK “Nauka/Interperiodica”
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This paper presents the results of the first tests of a
polarization acoustooptic transducer that is designed by
taking into account the published data [6, 11, 12] and
can operate both in the conventional mode of a single-
wave impact [1–3] and under the conditions of a simul-
taneous effect of a longitudinal (signal) and shear (ref-
erence) waves on the nematic liquid crystal. The partic-
ular features of the optical response of the transducer in
the two-wave mode are studied, and the main character-
istics of the transducer are determined and compared to
those obtained in the conventional mode.

In the course of these tests, the transducer operated
within the system of acoustic visualization, which had
been designed according to the scheme given in Fig. 1a.
This scheme shows the next basic devices: an acous-
tooptic transducer (1) incorporating a source of shear
(reference) waves (2), which is located at the end of a
dish (3) filled with water; a source of longitudinal (sig-
nal) waves (4) is located in the same dish. The distance
between the source of longitudinal waves and the
acoustooptic transducer can be varied within the range
2–20 cm.

The design of the cell with a nematic liquid crys-
tal in the acoustooptic transducer corresponds to the
new mode of its operation: one of the support plates
of the cell is made of quartz (Y-cut) and the other is
a polymer film coated with a thin aluminum layer depos-
ited by evaporation. An eutectic liquid-crystal mixture
of MBBA (4-methoxibenziledene-4'-butylaniline) and
EBBA (4-ethoxibenzilidene-4'-butylaniline) (type H 8)
fills this cell in such way that two opposite edges (5) of
the layer are open. Two spacers (6) are introduced into
the cell in order to set the layer thickness. Positioning
of the spacers in the layer plane is pictured schemati-
cally in Fig. 1b (view from above). The arrow indicates
the direction (7) of shear vibrations produced by the
reference source (2).

In order to provide the coherence of waves radiated
by the sources (2) and (4), which is necessary for a sta-
tionary interference pattern, they were excited by a sin-
gle oscillator (8) through an amplifier (9) with two out-
puts. This allowed us to control the intensities Jl and Js
of longitudinal and shear waves in the course of the
experiment. The intensity of the signal longitudinal
wave incident on the layer was measured by an acoustic
radiometer. The values of intensity in the shear wave
were estimated according to the effective electric volt-
age fed to the source (2) using a well-known technique
developed for multi-layer oscillating systems (see
[12]). The system of the dish temperature stabilization
provided an opportunity to maintain a constant temper-
ature of water in the dish (25°ë) with the precision up
to ±0.5°ë.

The monitoring of the orientation state of the liquid-
crystal layer in the cell of the acoustooptic transducer
and the detection of its optical response was performed
in polarized reflected light according to the scheme
with the basic elements shown in Fig. 1a. A collimated
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
beam of polarized light with the intensity I0 incident
from the source (10) through a beam splitter (11) on the
layer (12) in the cell is reflected from a flat mirror to the
surface of the polymer film (a thin layer of aluminum).
After that, it is again transmitted through the beam split-
ter, and, after the analyzer (13), it arrives at the eye-piece
of a microscope (14) and a photomultiplier tube (15).

Two series of experiments were conducted at a fre-
quency of ~15 MHz.2 In one of them the reference radi-
ator (2) was not excited, and the acoustooptic trans-
ducer operated in the mode of the conventional single-
wave action. In the other series, two radiators operated
simultaneously. In this case, the ratio of the intensities
Jl and Js was varied. The intensity of the light flux I

2 The radiator of signal waves was excited at the fifth harmonic,
and the radiator of shear waves was excited at the main resonance
frequency.
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Fig. 1. Schematic diagram of the experiment and the geom-
etry of the cell with a nematic liquid crystal. (a): (1) An
acoustooptic transducer, (2) a source of reference waves,
(3) a dish, (4) a source of signal waves, (5) open edges of the
layer, (6) spacers, (7) the direction of shear oscillations,
(8) an oscillator, (9) an amplifier, (10) a light source, (11) a
beam splitter, (12) a layer of a nematic liquid crystal, (13) a
polarizer-analyzer, (14) the eye-piece of a microscope,
(15) a photomultiplier tube, and (16) a polarizer. (b) The view
on the cell from above and positions of the spacers in it.
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Fig. 2. Clarification patterns in a layer of a nematic liquid crystal observed in parallel beams of light in the zones A, B, and C (cell
view from above): single-wave action (Js = 0) for d = 10 µm, in (a) zone A and (b) zone C, and for (c) d = 100 µm in zone B; two-
wave action (Js ≠ 0) for d = 10 µm in (d) zone A and (e) zone C. (f) The layer geometry.
transmitted through the nematic liquid crystal–analyzer
system was recorded in the process of measurements
under the conditions when the polarizers were crossed
and the angle between the polarization plane of light
incident upon the nematic layer and the plane where the
rotation of molecules occurred under the effect of ultra-
sound was π/4. The thickness of the nematic layer was
varied within the interval 10–100 µm. The orientation
of molecules of the nematic liquid crystal in the cell
was homeotropic. The inner surfaces of the cell were
preliminarily cleaned and then treated with lecithin in
order to produce such an orientation [4].

It is known that, in the case of the homeotropic
alignment of molecules of nematic liquid crystals in a
plane capillary, the mesophase layer is similar from the
point of view of crystal optics to a plate of a uniaxial
crystal cut perpendicularly to the optical axis. Such a
layer looks dark in distortion-free light in the case of
crossed polarizers. The change of molecule orientation
under the effect of ultrasound leads to the layer clarifi-
cation. According to the known data [6], the character
of the clarification is determined by the experiment
geometry and the frequency, intensity, and type of the
wave.

The observations conducted in the first series of
experiments (the conventional mode of operation of the
acoustooptic transducer) demonstrated that under these
conditions the pattern of clarification of the homeotropic
layer of a nematic liquid crystal depends on its thickness
and the observation zone (zones A–C in Fig. 1b). In thin
layers (10 and 40 µm), the clarification pattern near the
open edge of the layer (zone A) has the form of a sys-
tem of light and dark stripes parallel to it. The bright-
ness of these stripes decreases with distance from this
edge (Fig. 2a; d = 10 µm), and the viewing field in the
central part of the layer plane (zone C) stays dark
(Fig. 2b; d = 10 µm). In the thick layer (100 µm), the
stripes are visible over the whole plane, their brightness
being slightly varied in the area of transition from the
zone A to the zone C. The micrograph of the clarifica-
tion pattern of the layer in the zone B (the intermediate
zone between the zones A and C) is given in Fig. 2c as
an example. It is found that the spatial period of the
stripes is Λ ~ λ/2, where λ is the longitudinal wave-
length in the nematic liquid crystal, and does not
depend on the layer thickness. The mechanism of the
formation of this system of stripes is as follows: the
periodic motion of the open edges of the layer, which is
caused by its compression in the longitudinal wave
incident on the layer, generates liquid oscillations along
the layer, i.e., the secondary longitudinal waves propa-
gating from the open edges to the layer center. Nonlin-
ear stresses arising because of the considerable (with
respect to thickness) gradient of the motion velocity in
the tangential direction lead to the formation of a
steady-state flow of nematic liquid. The scale of the
flow is determined by the ultrasonic wavelength in the
nematic liquid crystal. The velocity gradients in this
flow across the layer thickness cause the rotation of the
molecules of the nematic liquid crystal. According to
Gus’kov and Kozhevnikov [13], the distribution of the
rotation angle along the layer of a nematic liquid crystal
within the ultrasonic beam depends on the attenuation
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
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coefficient β = kδ/d of the secondary longitudinal
waves. Here, δ is the thickness of the viscous boundary
layer and k is the wave number of the ultrasonic wave
in the nematic liquid crystal. If the layer thickness is
increased from 10 to 100 µm, the value of the coeffi-
cient β decreases by an order of magnitude. The atten-
uation of these waves in the thin layer can be so strong
that they attenuate before arriving at the cell center. On
the contrary, in the thick layer, the longitudinal waves
propagating from its edges attenuate weakly. There-
fore, the optical effect can manifest itself over the
whole layer plane or its major part. Just these patterns
caused by the influence of the open edges of the layer
were observed in the experiments. The results are given
in Figs. 2a–2c. Thus, in this series of experiments with
the acoustooptic transducer operating in the conven-
tional mode, the spatially-inhomogeneous optical
response of a homeotropic layer of a nematic liquid
crystal to a longitudinal signal wave reflects the influ-
ence of the edge effects. The response is determined by
the interaction of the longitudinal signal wave incident
on the layer with the secondary longitudinal waves
propagating from its open edges.

In the second series of experiments, the acoustoop-
tic transducer operated under the conditions of the
combined action of the signal and reference waves on
the nematic liquid crystal. Observations showed that in
such situations, the character of the orientation distor-
tion of the layer macrostructure varied to some extent:
the system of stripes described above and created by the
interaction of the signal and secondary longitudinal
waves was still visible in thin layers near the open edge,
while a clarification homogeneous over the sample
plane occurred close to the center of the layer. This
effect manifests itself most clearly in the layer of thick-
ness 10 µm (Figs. 2d, 2e). It is essential that the bright-
ness of the zone of homogeneous clarification of the
layer, as well as the brightness of the stripes, depends
on the intensity of not only the signal wave, but the ref-
erence wave as well. By increasing the intensity of the
reference wave, it is possible to obtain the same optical
response to the combined action but at a lower value of
intensity of the signal wave.

The most interesting property of the homeotropic
structure of nonlinear liquid crystals, which manifests
itself under the conditions of two-wave action, is its
ability to demonstrate a spatially-homogeneous
response to this action in certain situations (thin layers
and weak edge effects). The intensity I of the light flux
transmitted through the layer in the zone of homoge-
neous clarification under the combined action of the
signal and reference waves was measured in order to
describe this effect. Plots 1–6 in Fig. 3 present the
dependence of the optical response I/I0 on the intensity
Jl in the longitudinal signal wave for the following val-
ues of the intensity Js in the reference wave: 0.07, 0.16,
0.3, 0.7, 0.9, and 1.3 W/cm2. The layer thickness was
40 µm and the frequency was ~15 MHz. This depen-
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
dence is described by the exponential function of the

form I/I0 ~ . The values of the minimum intensity

 corresponding to the level of clarification I/I0 =
0.01, which is usually considered as a conditional
threshold in the observation of the effect with a polar-
ization-optical technique, are 2.4, 0.9, 0.55, 0.2, 0.17,
and 0.1 mW/cm2, respectively. Plot 7 is given in Fig. 3
for comparison. This plot presents the dependence of
the optical response of a nematic liquid crystal to the
action of signal waves on their intensity Jl at Js = 0.
This dependence is described by the function of the form

I/I0 ~ , where n = 3.8. The value of the minimum

intensity  in this situation is 3 mW/cm2.3

The relation of the optical signal I/I0 to the intensity
Js in the reference wave at a fixed value of intensity in the
signal wave is illustrated by the plot given in Fig. 4a. It

follows from these data that I/I0 ~ , where n = 1.8.
The plot in Fig. 4b demonstrates the experimental val-

ues of the minimum intensity in the signal wave 
for a nematic layer of thickness 40 µm at different val-

3 Plot 7 approximates the values of I/I0 pertaining to the central part
of the first light stripes at the open edge of the layer. The bright-
ness of this part is not yet affected by the attenuation of secondary
longitudinal waves.
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Fig. 3. Optical response of an acoustooptic transducer to the
action of the signal wave (Js = 0, plot 7) and the combined
action of the signal and reference waves for the following
values of the intensity of the reference wave: Js = (1) 0.08,
(2) 0.16, (3) 0.3, (4) 0.7, (5) 0.9, and (6) 1.3 W/cm3; the
layer thickness is 40 µm and the frequency ~15 MHz.
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ues of intensity in the reference wave. This dependence

is described by the function of the form  ~ 1/Js.

It is a priori clear that, in the conditions of two-wave
effect on a nematic liquid crystal, the effect of the
“flow” mechanism of the orientation distortion of the
homeotropic structure of a nematic in an ultrasonic
field, which had been discussed earlier (see [5, 6, 11–
13]), is retained independently of the type of the inter-
acting waves. In the geometry of experiments, which is
given in Fig. 1, oscillations in the viscous wave gener-
ated in a nematic liquid by a shear wave occur in the
same direction as the oscillatory motion of the liquid in
the layer plane due to the presence of the open ends of
the layer and causes an amplification of this motion.
The interaction of the amplified tangential component
of the motion with the normal component (the signal
wave) increases the efficiency of the flow generation. If

J l
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Fig. 4. Main features of an acoustooptic transducer in the
two-wave mode. (a) Relation between the optical response
of an acoustooptic transducer and the intensity Js of the ref-
erence wave at Jl = const and (b) the relation between the
minimum intensity of the signal wave and the intensity in
the reference wave.
we accept such an interpretation of the phenomenon,
we can quantitatively estimate the expected optical
response by using the results by Anikeev, Bocharov,
and Vuzva [11] who analyzed the interaction of a vis-
cous wave with the normal component of one of the
layer modes excited by SAW. According to these

researchers [11], we have I/I0 ~ , and this ratio
corresponds to the experimental data given in Fig. 3.
Here, ξ0l and ξ0s are the amplitudes of longitudinal and
shear oscillations. The formation of a spatially-homo-
geneous pattern of clarification at the center of a thin
layer of a nematic liquid crystal is apparently related to
the fact that secondary longitudinal waves do not reach
this part of the layer because of the high attenuation,
and the viscous wave interacts here with a single elastic
wave, i.e., the longitudinal signal wave from the source
(4). The normal components of the oscillatory motion
in this wave are homogeneous over the section of the
ultrasonic beam (correct to the homogeneity of the
radiation field of the source (4)). The analysis of the
interference processes in the nematic liquid crystal at
the open edges of the layer where the viscous wave
interacts with two elastic waves, as well as their con-
nection with the orientation state of the layer, lies
beyond the scope of this paper. Some data on this
aspect of the problem can be found in the handbook [6]
and a paper by Kini [14].

The above consideration of the operation of an
acoustooptic transducer using a nematic liquid crystal
in the mode of two-wave action provides an opportu-
nity to formulate the following main conclusions about
its properties:

(a) An optical response of a nematic liquid crystal to
a two-wave action (I/I0)ls is determined by the combina-
tion of the intensities of interacting waves, i.e., (I/I0)ls ~

. In the case of the conventional mode of operation

of the acoustooptic transducer, we have (I/I0)l ~ .

(b) The exponent in the function describing the rela-
tion between the optical response of the acoustooptic
transducer and the intensity of the signal wave
decreases from 4 to 2, which means an expansion of
its dynamical range. It follows from the data given in
Fig. 3 that, in the conditions of these experiments, the
dynamical range increases by approximately a factor
of two.

(c) In the case of a two-wave action on a nematic liq-
uid crystal, it is possible to reduce the intensity of the
signal wave by increasing the intensity of the reference
wave up to the values providing an opportunity to
observe the image. This fact can be essential for design-
ing the systems of acoustic visualization intended for
medical diagnostics.

(d) In the conditions of two-wave action, it is neces-
sary to select a certain relationship between the intensi-
ties of the interacting waves. On the one hand, the clar-
ification effect produced in a nematic liquid crystal by

ξ0l
4 ξ0s

4

J l
2Js

2

J l
4
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each source ((I/I0)l and (I/I0)s) must not mask the results
of their combined action (I/I0)ls. In order to satisfy this
condition, it is necessary to limit the intensities of the
signal and reference waves by the values close to the

conditional thresholds of clarification  and 
when the levels of clarification (I/I0)l and (I/I0)s are
lower than 0.01. On the other hand, the interaction of
the signal and reference waves must be sufficiently
effective for the optical response of a nematic liquid
crystal to exceed the level 0.01.

(e) The minimum intensity of the signal wave 
corresponding to the clarification level (I/I0)ls = 0.01
under two-wave action decreases with respect to its
value providing the same clarification level in the case
of the action of only the signal wave. From the data given
above, it follows that, at the frequency ~15 MHz and the
thickness of the layer of a nematic liquid crystal in the
cell of the acoustooptic transducer equal to 40 µm, the
conditional levels of clarification are equal to 3 mW/cm2

(at Js = 0) and 0.17 mW/cm2 (at Js = 0.9 mW/cm2); i.e.,
the sensitivity of the acoustooptic transducer increases
by more than one order of magnitude.

(f) An acoustooptic transducer operating according
to the two-wave scheme opens some additional oppor-
tunities relating to the spatial structure of the image.

Based on these conclusions, we can assume that the
use of an acoustooptic transducer capable of operating
in the two-wave mode opens up an opportunity to
design a system of acoustic visualization with a wider
dynamical range and a new quality of the spatial char-
acteristics of the optical response to ultrasonic action.
This could not be achieved using conventional acous-
tooptic transducers [2, 3, 8–10]. An attractive feature of
such a system is also its higher (by one order of magni-
tude) sensitivity and the possibility of controlling it by
varying the intensity in the reference wave.

These new operational features provide an opportu-
nity to expand the field of application of acoustooptic
transducers using nematic liquid crystals and proceed
from the regular problems of nondestructive testing to
the problems of medical diagnostics [15]. High power
ultrasound is not permissible in this field. Evidently, the
problems of technology and design are also essential
while developing such systems. In particular, such
problems are the utilization of modern electronics and
promising techniques applied now to designing liquid
crystal displays [16] and the selection of multi-compo-
nent liquid-crystal mixtures [17] with a desired set of

J l
min Js

min

J l
min
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physical-chemical parameters (viscosity, elasticity,
birefringence, and temperature of phase transitions)
that determine the corresponding characteristics of a
specific acoustooptical device.

ACKNOWLEDGMENTS

I am grateful to S. Garin for his assistance in the fab-
rication of an acoustooptic transducer using a nematic
liquid crystal.

REFERENCES
1. P. Greguss, Acustica 29, 52 (1973).
2. O. A. Kapustina and V. N. Lupanov, Akust. Zh. 23, 390

(1977) [Sov. Phys. Acoust. 23, 218 (1977)].
3. O. A. Kapustina, V. N. Lupanov, and G. S. Chilaya,

Akust. Zh. 24, 136 (1978) [Sov. Phys. Acoust. 24, 76
(1978)].

4. P. De Gennes, The Physics of Liquid Crystals (Claren-
don, Oxford, 1974; Mir, Moscow, 1977).

5. A. P. Kapustin and O. A. Kapustina, Acoustics of Liquid
Crystals (Nauka, Moscow, 1985).

6. Handbook of Liquid Crystals, Ed. by D. Demus,
J. Goodby, G. W. Gray, et al. (Wiley, 1998), Chap. VII,
pp. 549–568.

7. R. S. Akopyan, B. Ya. Zel’dovich, and N. V. Tabiryan,
Akust. Zh. 34, 583 (1988) [Sov. Phys. Acoust. 34, 337
(1988)].

8. J. N. Perbet, M. Hareng, and S. Le Berre, Rev. Phys.
Appl. 14, 569 (1979).

9. Y. Kagawa, T. Hatakeyama, and Y. Tanaka, J. Sound
Vibr. 36, 407 (1974).

10. A. Strigazzi and G. Berbero, Mol. Cryst. Liquid Cryst.
103, 193 (1983).

11. D. Anikeev, Yu. V. Bocharov, and A. D. Vuzhva, Liquid
Cryst. 6, 593 (1989).

12. Yu. V. Bocharov and O. A. Kapustina, Akust. Zh. 44, 166
(1998) [(Acoust. Phys. 44, 128 (1998)].

13. N. K. Gus’kov and E. N. Kozhevnikov, Akust. Zh. 29, 38
(1983) [Sov. Phys. Acoust. 29, 21 (1983)].

14. U. D. Kini, Mol. Cryst. Liquid Cryst. Comm. 1 (2), 1
(1997).

15. D. De Rossi and P. Dario, in Proceedings of 1 Scuola
Nationale del GNCL (Rende, Italy, 1996), p. 807.

16. Lin Chern-Sheng et al., Optik 109, 133 (1998).
17. V. Bezborodov and R. Dabrowski, Mol. Cryst. Liquid

Cryst. Comm. 1 (2), 7 (1997).

Translated by M. L. Lyamshev



  

Acoustical Physics, Vol. 46, No. 2, 2000, pp. 170–177. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 46, No. 2, 2000, pp. 211–219.
Original Russian Text Copyright © 2000 by Kashcheeva, Sapozhnikov, Khokhlova, Averkiou, Crum.

                                           
Nonlinear Distortion and Attenuation of Intense Acoustic Waves 
in Lossy Media Obeying a Frequency Power Law

S. S. Kashcheeva*, O. A. Sapozhnikov*, V. A. Khokhlova*, 
M. A. Averkiou**, and L. A. Crum***

* Moscow State University, Vorob’evy gory, Moscow, 119899 Russia
e-mail: oleg@acs366b.phys.msu.su

** ATL Ultrasound, 22100 Bothell Everett Hwy, P.O.Box 3003, Bothell, WA 98041-3003, USA
*** Applied Physics Laboratory, 1013 NE 40th Street, University of Washington, Seattle, WA 98105, USA

Received February 15, 1999

Abstract—Nonlinear propagation of a periodic wave and a single pulse with a shock front through a lossy
medium is studied theoretically. The medium is characterized by the frequency dependence of the attenuation
coefficient obeying a power law and by a corresponding dispersion law. The numerical modeling of the problem
is performed on the basis of the modified spectral approach. It is found that the exponent of the aforementioned
power law essentially affects the efficiency of nonlinear interactions, the distortion of the wave profile, and the
absorption of acoustic energy in the nonlinear mode. The stability of the discontinuous structure of a shock front
is investigated for different power laws close to a linear one. The possibility of pulsed diagnostics of the param-
eters of the frequency power law governing the attenuation in the medium by the shape of a single pulse with
a shock front after its passage through the medium is considered. © 2000 MAIK “Nauka/Interperiodica”.
The nonlinear effects that accompany the propaga-
tion of intense acoustic waves in lossy media have been
studied in detail for the case of a classical fluid with a
square-law frequency dependence of the attenuation
coefficient and for a medium with a single relaxation
time [1, 2]. However, in many acoustic media, e.g., bio-
logical tissues [3] or sea sediments [4], the frequency
dependence of the attenuation coefficient deviates from
a square-law one. The theoretical description of nonlin-
ear interactions in such media requires the solution of
fairly complicated integro-differential equations, and,
therefore, the problems related to this phenomenon
have been little investigated. However, these problems
are important for many practical applications of intense
ultrasound and, specifically, for medical acoustics
including hyperthermia, acoustical surgery [3, 5], and
extracorporeal lithotripsy [6]. The fundamental aspect
of the problem is also of interest, especially, in relation
to the study of severely distorted nonlinear distur-
bances containing steep segments, i.e., shock fronts.

This paper presents a theoretical study of the spe-
cific features of the nonlinear propagation of periodic
and pulsed disturbances in such media; namely, the
effect of the parameters of the power law, which gov-
erns the attenuation in the medium, on the evolution of
the wave profile, the structure of the shock front, and
the wave attenuation. The mathematical model devel-
oped below allows for the nonlinear effects, the attenu-
ation, and the sound velocity dispersion. The numerical
calculations are based on the modified spectral
approach [7, 8] that allows one to describe severely dis-
1063-7710/00/4602- $20.00 © 20170
torted waves containing discontinuities by a small num-
ber of harmonics. We select the characteristic parame-
ters of the medium and the initial signals to be close to
those used in ultrasound therapy. We also discuss the
possibility of a pulsed diagnostics of the parameters of
the power law, which governs the frequency depen-
dence of attenuation, by single intense pulses with
shock fronts.

To describe the propagation of an acoustic wave of
finite amplitude in a medium with an arbitrary attenua-
tion law and an arbitrary dispersion, we use a Burgers-
type equation

(1)

Here, p is the acoustic pressure, x is the coordinate of
the propagating wave, τ = t – x/c0 is the time in the mov-
ing coordinate system, c0 is the phase velocity of sound
at the characteristic frequency ω0, ε is the coefficient
characterizing the acoustic nonlinearity of the medium,
and L(p) is the linear operator responsible for the atten-
uation and dispersion.

We assume that the frequency dependence of the
attenuation coefficient is described by the power law

(2)

In this case, it is impossible to rearrange the right-hand
member L(p) of equation (1) in a unique way with the
causality principle being met. The reason is that the
power law (2) cannot be obeyed in the entire infinite
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frequency range; in particular, at high frequencies, the
dependence α(ω) tends to saturation [9]. The ambiguity
of the selection of the operator L(p), which should cor-
respond to attenuation law (2) and meet the causality
principle, is related to the possibility of using different
models of attenuation at high frequencies. Several dif-
ferent integral forms of L(p) can be found in the litera-
ture [4, 10–13]. The solution of the aforementioned
integro-differential equations describing the propaga-
tion of severely distorted nonlinear waves presents an
extremely complicated problem. Even in numerical
modeling, the integral form of equations makes it nec-
essary to perform a convolution at every step of the
computational scheme, which considerably compli-
cates and slows down the calculations [14]. Approxi-
mate analytical solutions can only be obtained for some
particular cases [13].

In our study, for describing nonlinear waves in
media where the frequency dependence of attenuation
is governed by a power law, we use the spectral
approach. We consider a system of coupled equations
for an infinite number of harmonics; for each harmonic,
the corresponding attenuation and dispersion are taken
into account.

We assume that, in a broad frequency band, the
attenuation obeys the power law (2). According to the
causality principle, we can write the Kramers–Kronig-
type integral dispersion relations between the attenua-
tion law and the sound velocity dispersion [9, 15]. In
the case of a smooth frequency dependence of the
attenuation coefficient, we can determine the approxi-
mate relationship between the attenuation and disper-
sion by using the so-called local dispersion relations
[15]. From the given attenuation law and the depen-
dences obtained for the sound velocity, we can calcu-
late the characteristics of the nonlinear propagation of
waves without any rearrangement of the evolution
equation (1).

Now, in equation (1), we pass to dimensionless vari-
ables:

(3)

where V = p/p0 is the acoustic pressure normalized to
the characteristic amplitude value p0; θ = ω0τ is time in
the moving coordinate system; z = x/xat is the wave
propagation coordinate normalized to the attenuation
length xat = 1/α0; α0 is the attenuation coefficient at the
frequency ω0; ω0 is the characteristic frequency of the
acoustic signal, where, for a pulse disturbance of dura-

tion t0, the frequency is ω0 = 1/t0; xnl = ρ0/εp0ω0 is the
length of the discontinuity formation for a harmonic
wave in the absence of attenuation; N = xat/xnl is the
dimensionless parameter of nonlinearity; and the oper-
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ator L'(V) corresponds to the initial operator L(p)
expressed through the new variables.

We represent the solution to equation (3) in the form
of a Fourier series expansion

(4)

Then, substituting solution (4) into equation (3), we
obtain a system of an infinite number of coupled equa-
tions for the Fourier components:

(5)

Here, K ' and K '' are the real and imaginary parts of the
dimensionless wave number K(n) = K ' + iK ''. They
describe the dispersion (K ') and the attenuation (K'') of
sound, and, in the moving coordinate system, they have
the form:

(6)

The frequency dependence of the attenuation coeffi-
cient K '' was selected according to the experimental
data for biological tissues [3, 16], and the sound veloc-
ity dispersion K ' was calculated using the local disper-
sion relations [15]

(7)

(8)

For the attenuation obeying the power law (2), the
sound velocity dispersion calculated by formula (8) has
the form

(9)

We select the parameters of the power law (2) to be
close to the parameters of biological media or the bio-
logical tissue phantom 1.3 butanediol [16]. Figure 1a
shows the frequency dependences of the attenuation
coefficient normalized to its value α0 at 1 MHz. The
curves presented in the figure refer to blood (η = 1.42,
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α0 = 0.025 cm–1, and c0 = 1570 m/s), liver (η = 1.2,
α0 = 0.082 cm–1, and c0 = 1600 m/s) [3], water (η = 2,
α0 = 0.0003 cm–1, and c0 = 1500 m/s), and butanediol
(η = 1, α0 = 0.038 cm–1, and c0 = 1546 m/s). The sound
velocity calculated by formula (9) with these data is
shown in Fig. 1b. From this figure, one can see that the
dispersion characteristics of butanediol and blood are
close to each other. The theoretical dispersion curves
shown in the figure agree well with the experimental
data [3], which testify that the values of the sound
velocity dispersion in biological tissues do not exceed
1% in the frequency range 1–10 MHz.

To perform a numerical integration of the system of
equations (5), we use a modified spectral approach
based on the a priori data on the high-frequency
asymptotics of the shock-wave spectrum. The main
idea of the approach developed in our previous publica-
tion [7] lies in the replacement of the exact system of an
infinite number of equations (5) by an approximate sys-
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Fig. 1. Frequency dependences of (a) the attenuation coeffi-
cient and (b) the sound velocity dispersion for different
exponents of the frequency power law governing the atten-
uation in the medium: η = 2 (water), 1.42 (blood), 1.2 (liver),
and 1 (butanediol).
tem of equations for the amplitudes of the first Nmax har-
monics:

(10)

On the right-hand side of equations (10), the ampli-
tudes of harmonics with the numbers n > Nmax are
approximated by their asymptotic values

(11)

which correspond to the spectrum of a sawtooth wave
with the amplitude As and the discontinuity at the point
θs. Such a replacement allows one to analytically calcu-
late the infinite sums on the right-hand side of equa-
tions (5). The quantities As and θs are determined from
the values of the two last spectral components of the
system,  and , on the assumption that, at
n ≈ Nmax, the form of the spectrum differs little from its
high-frequency asymptotics

. (12)

The proposed method allows a fairly accurate modeling
of the propagation of waves with narrow shock fronts
by using a limited number of harmonics Nmax = 30–50.

Equations (10) were numerically integrated by the
Runge-Kutta scheme with a fourth-order precision at
Nmax = 50. For each subsequent step of calculation in z,
the values of As(z) and θs(z) were reconstructed by for-
mulas (12) from the values of the coefficients 

and  calculated at the preceding step.

The important characteristics that determine the
thermal or cavitation effect on the tissue are the tempo-
ral wave profile, the behavior of the wave intensity in
the medium, and the structure and width of the shock
front. The wave profile can be reconstructed as a sum of
the smooth and sawtooth components from the numer-
ically calculated amplitudes of the first Nmax harmonics:

(13)
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The mean wave intensity was also calculated: I(z) =

(z, θ)dθ = Cn(z)|2. With allowance for

the asymptotic behavior of harmonics at high frequen-
cies (i.e., at n > Nmax) (11), the wave intensity can be
represented as a finite sum

(14)

From the point of view of medical applications, the
study of the propagation of intense harmonic waves
(ultrasound therapy) and intense single pulses with
shock fronts (extracorporeal lithotripsy) are of most
interest. Therefore, we consider an initial acoustic sig-
nal in the form of a harmonic wave

(15)

of frequency 1 MHz and amplitude 0.5–7 MPa, which
corresponds to the pressure range used in ultrasound
therapy, and a shock pulse with an exponential profile
behind a shock front

(16)

Here, τs is the time of the formation of the pulse shock
front; the initial amplitude p0 = 3 MPa and the duration
t0 = 300 ns of the pulse were set to be close to the
parameters of the pulses used in lithotripters (at the
focuser output, away from the focus [17]) or to the
parameters of the pulses generated by the photoacous-
tic method in the plane-wave mode [18].

As was mentioned above, the sound velocity disper-
sion is relatively small. However, it noticeably affects
the profile of the acoustic disturbance. Figure 2a pre-
sents the numerically calculated evolution of the profile
V = p/p0 of an initially harmonic wave (15) in a medium
with a linear frequency dependence of attenuation, η = 1,
which corresponds to the parameters of butanediol
(Fig. 1). Curve 1 represents the initial wave profile, and
curve 2 represents the wave profile at the distance z =
0.3 (8 cm) in the case of linear propagation, N = 0. Pro-
files 3 and 4 are calculated for the same distance in the
case of a nonlinear propagation N = 10 (p0 = 4.5 MPa)
in the absence and presence of the sound velocity dis-
persion, respectively. One can see that the effect of dis-
persion manifests itself as an asymmetric distortion of
the wave profile: the negative semiperiod becomes
sharper, while the positive semiperiod is “protracted”
so that the position of the peak of the wave increasingly
lags behind the wavefront. Such an asymmetry of the
profile is characteristic for media with dispersion, e.g.,
a relaxing medium [1, 18, 19]. In a dispersion medium,
the shock front is shifted at the expense of the faster
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propagation of higher frequencies forming the discon-
tinuity.

In a similar way, the dispersion affects the profile of
a shock pulse. Figure 2b presents the profile of the ini-
tial pulse (16) (curve 1) and the profiles of the pulse at
the distance z = 0.23 (6 cm) at which pronounced
effects of both nonlinearity and dissipation can be
observed. In the case of linear propagation (curve 2),
the shock front broadens because of the attenuation of
the high-frequency components. In the case of a nonlin-
ear propagation (curve 3), the front of the pulse propa-
gates faster, and the front width is less than in the case
of linear propagation. Such a manifestation of nonlin-
ear effects is well known. The aforementioned curves 2
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Fig. 2. Effect of nonlinearity, dissipation, and dispersion on
the evolution of a wave profile in a medium with η = 1.
(a) Harmonic initial wave (curve 1); curves 2–4 correspond
to z = 0.3: (2) profile calculated with allowance for only the
attenuation (N = 0); (3) profile in the presence of attenuation
and nonlinearity (N = 10); and (4) profile in the presence of
attenuation, nonlinearity (N = 10), and dispersion.
(b) Initial pulse with a shock front (curve 1); curves 2–4 cor-
respond to z = 0.23: (2) profile in a linear medium (N = 0)
with attenuation and dispersion; (3) profile in a nonlinear
medium (N = 3.3) with attenuation and dispersion; and
(4) profile in a nonlinear medium (N = 3.3) with attenuation
only.
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linear medium with different frequency power laws governing the attenuation: η = 1 and 2 (numbers near the curves). The nonlinear
parameter is N = 10.
and 3 are calculated with allowances made for the
sound velocity dispersion. To illustrate the role of dis-
persion, we also present a nonlinear pulse profile calcu-
lated with allowance for the presence of attenuation but
in the absence of dispersion (curve 4). Correlating pro-
files 3 and 4, one can see that the neglect of dispersion
leads to the appearance of a lengthy precursor propa-
gating faster than the shock front, which is a result of
the violation of the causality principle. Besides, in the
model without dispersion, the peak pressure of the sig-
nal is slightly overestimated, and the velocity of the
shock front propagation is reduced.

In biological tissues, the frequency dependences of
the attenuation coefficient vary from a linear law to an
almost square one. The exponent of this power law is
one of the parameters that affect the nonlinear evolution
of the acoustic signal profile. This effect is illustrated in
Fig. 3, which compares the wave profiles formed at dif-
ferent distances in media with linear (η = 1) and a
square-law (η = 2) frequency dependences of the atten-
uation coefficient. The profiles are obtained for an ini-
tially harmonic wave. In the medium with the linear law
(η = 1), the shock front is formed earlier, it is narrower,
and it lasts longer than in the medium with the square
law (η = 2). This occurs because in the medium with
the square law, the high-frequency harmonics of the
spectrum experience a stronger attenuation.

At large distances x @ xat (Fig. 3d) where the wave
reverts to the harmonic form, the peak pressure ampli-
tude in the medium with η = 1 is less than in the
medium with η = 2. This result may seem unexpected
at first glance, because, in the medium with η = 2, all
higher harmonics propagate with higher attenuation
coefficients than in the medium with η = 1. The effect
is caused by the less intense generation of high-fre-
quency spectrum components in the more dissipative
medium, and, hence, by a lower attenuation at the aris-
ing shock fronts. Such an effect, which consists of the
limitation of the efficiency of the wave energy redistri-
bution toward the high-frequency spectrum region with
increasing attenuation of the harmonics of the initial
signal, can be used for controlling nonlinear wave inter-
actions. This phenomenon should be most pronounced
in a medium with resonance absorption at the second
harmonic: in such a medium, the energy transfer to
higher frequencies of the spectrum is limited, and the
wave propagates almost without distortion [20].

For an initially harmonic wave, the change in the
frequency dependence of attenuation from linear to a
square-law one leads to some broadening of the shock
front, which is illustrated in Fig. 4a. This figure pre-
sents the wave profiles calculated for the distance z =
0.5 at N = 15, for media with different exponents η (the
numbers near the curves) and the sound velocity disper-
sion corresponding to these media. One can see that an
increase in η has practically no effect on the wave
amplitudes, while a noticeable broadening of the shock
front is observed. The front width increases several
times as the frequency power law governing the atten-
uation changes from linear to a square one.

The exponent of the frequency power law also
noticeably affects the absorption of the total wave
energy in a nonlinear medium. Figure 4b shows the
variation of the effective normalized attenuation coef-
ficient αeff with distance, where the normalization of
the coefficient is performed with respect to its value in
the case of a linear wave propagation, and the quantity
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000



NONLINEAR DISTORTION AND ATTENUATION OF INTENSE ACOUSTIC WAVES 175
αeff is calculated from the variation in the wave inten-
sity (14):

(17)

Different curves correspond to media with equal values
of the attenuation coefficient α0 at the fundamental fre-
quency, but with different exponents of the frequency
power law: η = 1, 1.5, and 2. One can see that, at small
distances, the effective attenuation coefficient is higher
for the square law because of the stronger dissipation at
high frequencies. However, after the formation of steep
segments in the wave profile, the attenuation coefficient
is higher in the medium with the linear law as a result
of the more efficient nonlinear attenuation mode. The
curves shown in Fig. 4b were calculated with allow-
ances made for the dispersion. However, the corre-
sponding dependences calculated by neglecting the dis-
persion proved to be virtually identical to those shown
in Fig. 4b. Hence, although the dispersion affects the
wave profile, it has no noticeable effect on the absorp-
tion of the wave energy.

The power law (2) is characterized by two parame-
ters, α0 and η, which play different roles in the evolu-
tion of the acoustic signal. Figure 5a shows the profiles
of pulse (16) at the distance x = 6 cm for media with dif-
ferent exponents of the power law (2) and a fixed
parameter α0 corresponding to the attenuation in
butanediol at a frequency of 1 MHz. From this figure,
one can see that an increase in the exponent leads to a
noticeable broadening of the shock front, which can be
explained by a stronger attenuation of the high-fre-
quency spectrum components. At the same time, the
variation in the exponent has no noticeable effect on the
peak pressure value. By contrast, a change in the
parameter α0 leads to a change in the pulse amplitude.
As the attenuation coefficient α0 increases, the peak
pressure decreases, while the width and the position of
the shock front vary insignificantly (Fig. 5b). Figure 5b
shows the pulse profiles corresponding to the same dis-
tance x = 6 cm for media with a linear frequency depen-
dence of the attenuation coefficient and different values
of α0 (numbers near the curves).

Thus, nonlinear interactions that occur in both peri-
odic waves and pulsed fields depend on the parameters
of the power law governing the frequency dependence
of attenuation, especially for strongly nonlinear waves
with discontinuities. Even a weak dispersion of sound
velocity leads to noticeable distortions of the wave pro-
file as compared to the case of a square-law frequency
dependence of attenuation in the absence of dispersion.
At the same time, the dispersion has virtually no effect
on the dissipation of the energy of a nonlinear wave.
The parameters of the power law governing the fre-
quency dependence of attenuation affect the distortion
of the profile of a propagating signal in different ways,
especially in the case of a shock pulse: the exponent
variations mainly affect the width of the pulse shock

α eff
dI dx⁄
2α0I

---------------.–=
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front, while the variations in the attenuation coefficient
mainly affect the peak pressure value. This result
allows one to discuss a fundamental possibility of the
diagnostics of the parameters of attenuation in the
medium by the form of a shock-wave pulse transmitted
through it.

In closing, we discuss the problem of stability of a
discontinuous wavefront propagating in a lossy
medium obeying a frequency power law α(ω) ~ ωη. It
has been found that the shock front of a wave propagat-
ing in a medium obeying a square law with η = 2 is no
mathematical discontinuity but has a finite width deter-
mined by the viscosity of the medium and the ampli-
tude of the wave [1]. On the other hand, in all media
with constant attenuation (η = 0), the dissipation does
not preclude discontinuities in the wave profile [21].
Discontinuities are also stable in relaxing media. Such
media are characterized by a constant value of the
attenuation coefficient at high frequencies [19]. As far
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as we know, for the case of an arbitrary power law (2),
the problem of the stability of a discontinuity had never
been studied. Below, we demonstrate that the exponent
η = 1 is a critical value for a discontinuity, i.e., a discon-
tinuity is unstable at η ≥ 1.

Let a plane wave with a discontinuous wave profile
be set at the medium input. Without loss of generality,
we can assume that the wave is a periodic one. The dis-
sipation of the wave energy is described by the expres-
sion

(18)

where In ~ |Cn |2 and αn = α(nω0) ~ nη are the intensity
of the nth harmonic and the corresponding attenuation
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Fig. 5. Effect of the parameters of the power law (2), α0 and
η, on the profile of the shock pulse transmitted through a
layer of a nonlinear lossy medium. The input parameters of
the pulse are p0 = 30 atm and t0 = 0.3 µs; the distance in the
medium is x = 6 cm.
(a) Pulse profiles in media with equal attenuation coeffi-
cients α0 = α(1 MHz) = 0.038 cm–1 and different exponents
η = 1, 1.5, and 2.
(b) Pulse profiles in media with equal exponents η = 1 and
different values of the attenuation coefficient α0 = 0.025,
0.038, and 0.05 cm–1.
coefficient, respectively. At high frequencies, the spec-
trum of a discontinuous wave always has the asymp-
totic form (11), i.e., |Cn | ~ n–1. Hence, the decrease in
the wave energy with distance is determined by a series
whose terms at large n behave as nη – 2. At η ≥ 1, series
(18) diverges, i.e., the quantity dI/dx is infinite. If we
assume that the high-frequency asymptotics (11) of the
spectrum exists in an arbitrarily small interval of dis-
tances, we obtain an infinite value of the absorbed
energy, which is impossible because of the finiteness of
the intensity of the initial wave. Thus, in this case, the
discontinuity is unstable. At η < 1, series (18) con-
verges, and, hence, the existence of the discontinuity is
possible.

As an illustration, Fig. 6 presents (a) the numeri-
cally calculated dependences of the intensity of an ini-
tially discontinuous wave on the distance z and (b) the
profile of the wave in the shock region formed at z =
0.005 in a nonlinear medium (N = 10) for different
exponents of the frequency power law governing the
attenuation: η = 0.5, 0.9, 1.5, and 2. The initial wave
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Fig. 6. Stability of the shock front of an initially sawtooth
wave in media with different exponents η of the power
law (2). (a) Dependence of the normalized intensity  =
I(z)/I(z = 0) on the distance z; (b) wave profile in the shock
region at z = 0.005.
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was taken to be a sawtooth one with the discontinuity
amplitude As = 1, and the intensity was normalized to
its initial value at z = 0. One can see that, at η < 1, the
derivative dI/dz at z = 0 is finite, and the wave profile
remains discontinuous in the course of the wave propa-
gation. At η > 1, the intensity at z = 0 decreases infi-
nitely fast, and the initial discontinuity is smoothed out.
As the exponent η increases, the effect of smoothing
out is enhanced.
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Abstract—A computer model is developed for describing the diffraction of a nonlinear acoustic impulse signal by
the irregularities of a perfectly rigid boundary. The model is based on the finite-difference method with the use of
the MacCormack explicit scheme for solving the initial boundary-value problem formulated for a system of non-
linear equations of gas dynamics. The accuracy of the numerical calculations is estimated. The calculations are per-
formed for the diffraction of the signal by ledges that occur at the irregular boundary. The results of the calculations
are correlated with the estimates made by the Maekawa empirical theory. © 2000 MAIK “Nauka/Interperiodica”.
Most studies of the diffraction of acoustic impulse
signals use the linear empirical diffraction theories [1, 2],
which are based on the expansion of the signal into a
Fourier series and take into account the ratio of the geo-
metric dimensions of the obstacle to the wavelength of
the corresponding spectral component of the signal.
Although these theories are approximate, a great body
of experimental data on the diffraction of impulses by
vertical obstacles agree well with these theories [3].

The purpose of our study is the development of a
finite-difference numerical model for the calculation of
the signal diffraction by obstacles of different shape.
The model is based on the numerical solution of a non-
stationary initial boundary-value problem for gas
dynamics equations in a semibounded region with an
irregular, perfectly rigid lower boundary containing
various kinds of ledges and grooves. In this paper, we
use the MacCormack finite-difference scheme [4] the
application of which to nonlinear acoustic impulses
provides a sufficient rate of calculation and a fair accu-
racy of the results. This scheme was tested in the calcu-
lation of the interaction of acoustic impulses with ther-
mics (hot gas regions) [5], where the region of calcula-
tion was a regular one with smooth uniform
boundaries.

In this paper, we propose and justify the method of
modeling for an irregular region of calculation with
nonuniform boundaries of arbitrary configuration.

Let us consider a two-dimensional semibounded
region Ω filled with a homogeneous air medium (Fig. 1).
We introduce the Cartesian coordinates Oxy. Figure 1
schematically represents the irregular lower boundary
with breakpoints at x = x2, x = x3, and x = x4. The impulse
occupies the interval (x0, x1) at the instant t0 = 0. To
describe the propagation of the impulse of a given form
in a two-dimensional homogeneous air medium, we
1063-7710/00/4602- $20.00 © 20178
use the system of nonlinear equations for an incom-
pressible fluid [4]:

(1)

where ρ, p, Vx , and Vy are the physical parameters of the
medium, namely, the density, the pressure, and the pro-
jections of the velocity onto the Ox and Oy axes,

respectively; ε =  + (  + ) is the total

energy; and γ is the specific-heat ratio.
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Fig. 1. Schematic diagram of the irregular region of calcu-
lation.
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To specify the travelling wave problem, it is neces-
sary to determine the initial conditions at the instant t0 =
0. We assume that, at t0 = 0, we have Vy(x, y) = 0 and
Vx(x, y) = u1(x), where x ∈  [x0, x1], i.e., we have a wave
with a plane wavefront travelling toward the obstacle.
We set the values of p and ρ at the instant x0 = 0 in the
form of the solution for an ordinary travelling wave in
a polytropic gas [6]:

(2)

where ρ0, p0, Vx0, and Vy0 are the parameters of the
medium in an unperturbed gas and a0 is the sound
velocity in an unperturbed gas.

Boundary conditions. The calculations are per-
formed in an inhomogeneous, piecewise uniform region.
At the irregular lower boundary, the impermeability con-

ditions are set:  = 0, where V = (Vx · i, Vy · j) and n is

the unit vector normal to the lower boundary.

At the left and right boundaries of the region of cal-
culation, as well as at the upper boundary, the condi-
tions of the absence of the backward wave reflection are
set.

Let us pass to the dimensionless parameters ρ', p',

, , x', y', and z' by determining their values rela-

tive to the values of the physical parameters of an
unperturbed medium:

(3)

where ρ0, p0, and a0 are the density, pressure, and sound
velocity in an unperturbed medium and L is some char-
acteristic linear dimension.

Using expressions (3) and the equality ρ0  = γp0,

we represent the system of equations (1) in a compact
vectorial form:

(4)
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where

(5)

We introduce a regular rectangular grid in the entire
region of calculation, Ωj, i = (xj = xj – 1 + ∆x; yi = yi – 1 +
∆y), and define the discretization of the process in time,
t n = t n – 1 + ∆t, where ∆x, ∆y, and ∆t are the intervals of
discretization in the spatial coordinates and in time,
respectively. To obtain a numerical solution to the
hyperbolic system of equations (4) with the initial and
boundary conditions, we use the MacCormack explicit
finite-difference scheme [4]:

(6)
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For this scheme, a limitation must be imposed on the
mesh width of the grid ∆t' according to the Courant
condition:

(7)

where a is the local sound velocity.

In the finite-difference interpretation, the condi-
tions, which are set at the free boundaries of the region
where “inverse” waves are absent, are reduced to the
equality of the gradients of the corresponding parame-
ters at the adjacent meshes of the grid [7]. For each of
the physical parameters at the vertical left and right
boundaries and at the horizontal upper boundary, these
conditions have the form:

(8)

where ϕ is any of the physical parameters: ρ, p, Vx , or
Vy . At the lower boundary consisting of vertical and
horizontal segments, the impermeability conditions
are set for the corresponding velocity components:
Vxj, i = –Vxj + 2, i for a horizontal boundary segment and
Vyj, i = –Vyj, i+2 for a vertical boundary segment.

Taking into account that, in the presence of stepped
profiles of nonlinear impulses, the difference approxi-
mation of differential equations (4) may give rise to a
strong diffusion that will smooth out the stepped
impulse profile, we apply the method of flow correction
developed by Boris and Book [8]. The method is based
on the idea that the introduction of a special antidiffu-
sion limitation does not lead to the appearance of new
minima and maxima in the numerical solution, as well
as to an enhancement of the existing extrema. We note
that the method of flow correction requires the use of a
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Fig. 2. Velocity profile of the initial nonlinear impulse.
stronger condition of the scheme stability as compared
to expression (7):

(9)

On the basis of the aforementioned method, a com-
puter code was developed in the FORTRAN-90 lan-
guage in an HP-UX, X11 medium for a working station
of the HP-715 type and in Power Fortran for the Win-
dows 95 medium for IBM-PC compatible computers.

To estimate the accuracy of calculations, we consid-
ered the case of an impulse travelling along an ideal,
perfectly rigid plane in a semibounded region. The ini-
tial distribution of the component  of the impulse
velocity at the instant t0 was given in the form of a
stepped function with the trailing edge descending
along the Ox axis by the parabolic law  = A(x – xs)2 –
αx at x < x1 (Fig. 2), where A and α are some given
coefficients.

At the initial instant of time t0, the leading edge of
the impulse was set in the region of calculation at the
distance x1, and the trailing edge was set at the distance
x0. The spherical impulse was considered in the far
zone of the source, so that the leading edge was set as a
plane one in the region of calculation. The density and
pressure in the impulse were calculated through the val-
ues of the relative velocity  by formula (2).

The parameters of the region of calculation were
ymax = 20 m and xmax = 60 m. The mesh width of the
rectangular finite-difference grid was 0.2 m. The time

step used in the calculations ∆t' = , where l = 100 m

and a = 330 m/s, was selected automatically based on
condition (9). From the numerical calculations, we
obtained the variation of the maximum signal ampli-
tude with distance (Fig. 3). According to curve 1 in
Fig. 3a, the maximum signal amplitude decreases by
the law that is well approximated by the asymptotic for-
mula [2]

p ≈  (curve 2 in Fig. 3a),

where α = 9.31 (a constant), r is the distance from the
source to the point of signal reception, and p0 is the
maximum amplitude of the signal at some characteris-
tic distance from the source.

The corresponding profiles of the impulse propagat-
ing along a smooth rigid surface were calculated by
finite-difference formulas (6). The results of these cal-
culations are shown in Fig. 3b, where curve 1 repre-
sents the profile of the signal at the first step of calcula-
tion with the leading edge located at a distance of 30 m
from the left boundary of the region of calculation, and
curve 2 shows the signal profile at the 320th step of cal-
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culation, which corresponds to the position of the lead-
ing edge at a distance of 58 m from the left boundary of
the same region. The relative pulse length l slightly
increases at this distance and reaches the value 1.1,
which agrees well with the estimates made by the for-

mula l ≈ , where ∆r = r1 – r is the difference

between the distances traveled by the impulse [6].
Thus, both the fulfillment of the conditions of stabil-

ity for the numerical scheme and the example of
numerical calculation for the propagation of a spherical
impulse in the far zone of the source over a perfectly
rigid surface point to the fair accuracy of the numerical
model.

Using the computer model described above, we
studied the diffraction of a nonlinear impulse propagat-
ing over a plane surface by a rectangular ledge of height
1.6 m and width 0.4 m rising above this surface; we also
studied the diffraction of a similar impulse by the com-
bination of a groove 1.4 m wide and 1 m deep with an
adjacent rectangular ledge of the same geometry. First,
we present the results of the comparison of the wave-
form and spectrum obtained for the signal behind the
ledge from the calculations by the finite-difference
model and the Maekawa empirical theory. The calcula-
tions by the Maekawa theory were performed with the
use of the diffraction formula for a rectangular obstacle
of finite dimensions [1]:

(10)

where N1 = 2  and N2 = 2  are the Fresnel numbers

calculated for δ1 and δ2, respectively; here, δ1 and δ2 are
the differences between the path of the direct signal and
the paths of the signals diffracted by the left and right
corners of the ledge, respectively. In the calculations,
the impulse was preliminarily represented in the form
of a sum of spectral components with the help of the
Fourier transform. Then, formula (10) was applied to
each spectral component. For the spectral components
of the diffraction signal pd, the signal formed behind the
obstacle was calculated by the inverse Fourier trans-
form.

Figure 4a presents the results obtained by calculat-
ing the variations in the relative pressure levels at a
fixed observation point behind the obstacle with the use
of the finite-difference model (curve 1) and the
Maekawa model (curve 2). Figure 4b shows the levels
of the spectral densities of signals: the calculations by
the finite-difference model (curve 1) and the Maekawa
theory (curve 2). The observation point was set at a dis-
tance of 1 m from the ledge, at a height of 1 m above
the rigid surface. Figure 4a demonstrates a fair agree-
ment between the signal levels in the impulse compres-

∆r
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sion zone where the relative pressures are equal to 1.35
in both cases. In the rarefaction zone of the impulse, the
Maekawa theory yields somewhat higher values of the
relative pressure as compared to the finite-difference
model: 0.89 and 0.85, respectively. We note that,
behind the barrier, the shape of the impulse calculated
by the finite-difference model is characterized by two
local maxima in the compression zone, which is a result
of the superposition of the direct diffraction wave and
the wave reflected from the lower boundary. For corre-
spondingly selected observation points, this fact is sup-
ported by numerous experimental data [3, 9]. The spec-
tral compositions of the impulses calculated by the two
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1.40
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1 2

Fig. 3. Comparison of the accuracy of calculations for a par-
ticular case of a smooth rigid surface. (a) Variation of the
relative pressure with distance: (1) finite-difference solu-
tion; (2) asymptotic solution by the Landau formula [6].
(b) Variation of the shape of the impulse with distance:
(1) impulse profile at the first step of calculation; (2) impulse
profile at the 320th step of calculation.
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different models are close to each other, and the relative
frequencies of the spectral maxima coincide (Fig. 4b).

The advantage of the finite-difference model is that
it allows one to represent the diffraction process at suc-
cessive instants in the entire region of calculation,
rather than at a single point of observation.

The computer model is developed in the form of an
interactive shell that allows a visual observation of the
process. The monitor screen shows the distribution of
the relative pressure p/p0 in the entire region of calcula-
tion at successive instants of time. The relative pressure
is represented in the form of a color palette or isolines.
Figures 5 and 6 show the isolines of relative pressure at
successive instants of relative time l' = 0.09 and 0.14.
Each of these figures, which represent the hard copies
of the monitor screen, contains the following elements.
The main window shows the isolines of the relative
pressure of the impulse in the region of calculation for
the pressure values varying from 0.6 to 1.7. The lower
boundary of the region of calculation is marked by gray
color. In the window on the lower right of the figure, the
instant of relative time, for which the corresponding
pressure distribution is obtained, is indicated against
the dark background.

Signal behind the barrierp/p0
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12
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1
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1000

Spectral density
behind the barrier

Fig. 4. Comparison of the numerical calculations per-
formed for the diffraction of an acoustic impulse by a rect-
angular ledge with the calculations by the Maekawa theory
[1]: (1) finite-difference solution; (2) Maekawa theory.
Now, we consider the results of calculations. Figure 5
shows the isoline patterns representing the process of
the diffraction of a nonlinear impulse by a rectangular
ledge. At the instant of relative time t' = 0.09, the lead-
ing edge of the oncoming impulse reaches the right
boundary of the rectangular ledge, while, at the left
boundary of the ledge, a reflected wave is formed,
which propagates in the backward direction (Fig. 5a).
The maximum relative pressure of the leading edge
above the ledge is 1.539, and, in the reflected wave, the
maximum relative pressure is 1.651. The following dif-
fraction process can be seen in Fig. 5b that shows the
pressure distribution at the instant t' = 0.14. Here, the
wavefronts of the two diffraction waves, i.e., the wave
reflected from the left boundary of the ledge and the
wave propagating from the upper right corner of the
obstacle, are clearly defined by dense isolines. The
maximum pressure in the reflected wave is observed
near the bottom, where the pressure is about 1.3. We
note that the reflected wave travels through the rarefac-
tion zone of the direct impulse, and, therefore, the
intensity of this wave rapidly decreases. The shape of
the pressure impulse in the reflected wave is mainly the
same as the shape of the impulse of the direct wave but
with a slight extension of the leading edge, which is
related to the dimensions of the obstacle. Above the
ledge, a rarefaction zone with a pressure of 1.03 is
formed. In the initial impulse, the maximum pressure
above the obstacle is 1.49. The pressure at the wave-
front of the wave leaving the obstacle is 1.32. In the
course of the propagation, the initial impulse passes the
obstacle and “separates” from it. The wave leaving the
obstacle is reflected from the rigid lower boundary and
forms a new wave, which can be identified in Fig. 5b as
a region of dense isolines behind the ledge, near the
bottom. The pressure in the new wave is 1.36. After
some time, the reflected wave catches up with the initial
impulse so that its wavefront will coincide with the
leading edge of the impulse. Before the ledge, a rar-
efaction zone is formed with a pressure of 0.88.

Figure 6 presents the isoline patterns for the process
of the diffraction of a nonlinear impulse by a rectangu-
lar ledge positioned behind a groove. At t' = 0.09, the
leading edge of the oncoming impulse reaches the right
boundary of the rectangular ledge, while at the left
boundary a reflected wave is formed, and this wave
interacts with the groove (Fig. 6a). The maximum rela-
tive pressure in the groove before the ledge is 1.65. At
the instant t' = 0.14 (Fig. 6b), the maximum pressure in
the reflected wave is also observed near the bottom, but
in this case the pressure is 1.19. The pressure in the
groove remains equal to 1.54, and an upward propaga-
tion of the wave reflected from the groove bottom is
observed. In the rarefaction zone above the ledge, the
pressure is 0.99. The maximum pressure above the
ledge in the initial impulse is 1.49. The pressure at the
wavefront of the wave leaving the ledge is 1.26, which
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
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is somewhat lower than in the case shown in Fig. 5b.
Behind the ledge, near the rigid boundary, the pressure
is 1.25. On the whole, the presence of a groove leads to
a decrease in the intensity of the diffraction wave
formed by the ledge.

Thus, the proposed computer model based on the
direct finite-difference solution of the system of gas-
dynamics equations allows one to study the diffraction
of a nonlinear impulse by an obstacle of an arbitrary
shape. The numerical simulation described above
reveals the mechanism of the formation of diffraction
waves and makes it possible to determine the character-
istic points of elevated and reduced pressures and the
dynamics of their variation with time.
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Abstract—Results of experimental and theoretical studies of the nonlinear loss and the resonance frequency
shift in rod-type resonators made of annealed and unannealed zinc are presented. The experimental depen-
dences are described in terms of the phenomenological equations of state allowing for the elastic nonlinearity.
From the comparison of the theoretical dependences with the experimental results, the parameters of the hys-
teretic nonlinearity are determined. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The main defects that determine the elastic and
inelastic properties of crystalline solids are disloca-
tions. Their behavior in the field of an elastic wave,
namely, their motion and interaction with vacancies
and interstitial or impurity atoms and with each other,
determines the propagation velocity of the wave and its
attenuation. The whole variety of the dislocation-
caused effects that accompany the elastic wave propa-
gation in crystals are called dislocation internal fric-
tion. To explain this phenomenon, a theory of mechan-
ical damping due to dislocation was developed by
Granato and Lucke [1–4] on the basis of a string model
of a dislocation. The theory describes two types of the
elastic energy loss. The loss of the first type occurs at
low dynamical stresses and is called the amplitude-
independent (linear) loss. This loss depends on fre-
quency and is a consequence of the inelastic motion of
dislocations in a viscous medium. The loss of the sec-
ond type is called the amplitude-dependent (nonlinear)
loss and is related to the difference in the behavior of a
dislocation loop at the stages of loading and unloading
of the crystal. This difference gives rise to a hysteretic
form of the corresponding equation of state, i.e., of the
dependence σ = σ(e, ), where σ is the stress, e is the
strain, and  is the strain rate. The area of the hysteresis
loop determines the nonlinear loss, and the average
(over the wave period) value of the derivative (e, )
determines the variation in the velocity of the wave
propagation (or the defect of the elastic modulus). The
damping decrement and the velocity variation exhibit
similar dependences on the strain amplitude εm of the
wave, and their ratio is a constant value independent of
εm. In the theory developed by Granato and Lucke, the
amplitude-dependent loss is assumed to be frequency
independent.

The dislocation theory describing the amplitude-
dependent internal friction provides an adequate quali-

ė
ė

σe' ė
1063-7710/00/4602- $20.00 © 20186
tative (and in many cases quantitative) description of
the experimental amplitude dependences of both the
elastic modulus and the damping decrement in rela-
tively pure crystals. However, for crystals containing
impurities, the amplitude and frequency dependences
observed in the experiment in most cases widely devi-
ate from the theoretical predictions [2, 5–9]. Hence, for
the development of the theory of amplitude-dependent
internal friction, it is necessary to carry out experimen-
tal measurements of the amplitude and frequency
dependences of nonlinear acoustic effects in different
solids. Such experiments will also be useful for finding
new media with strong acoustic nonlinearity, the deter-
mination of the mechanisms of their nonlinearity, and
the development of the models and equations of state of
these media.

To study the nonlinear effects in solids, it is neces-
sary to use intense elastic waves, which can be easily
obtained by the excitation of resonance oscillations in
an acoustic resonator [10]. Such experiments were car-
ried out with resonators made of polycrystalline copper
and zinc subjected to heat treatment (annealing) [11,
12], as well as with resonators made of rock (granite
and marble) [13]. In these materials, high acoustic non-
linearity was observed; the nonlinear effects were ana-
lytically described in terms of the phenomenological
equations of state with allowances made for the elastic
hysteresis.

This paper presents the results of an experimental
study of the amplitude and frequency dependences of
the effects caused by the amplitude-dependent internal
friction (the nonlinear loss and the resonance frequency
shift) in rod-type resonators made of polycrystalline
zinc (99.95% Zn). In the experiments, two rods of
length L = 35 cm with square cross-sections 8 mm on a
side were used. The rods were cut out of the same plate
of material. The first rod (rod 1) was used as a reference
one and was not subjected to annealing. The second rod
(rod 2) was annealed during 50 h at a temperature of
000 MAIK “Nauka/Interperiodica”
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350°C. The measurements were performed at room
temperature.

EXPERIMENTAL TECHNIQUE

The block diagram of the experiment is shown in
Fig. 1. A pumping piezoceramic transducer 1 served for
the excitation of the resonator 2, which was fixed to a
massive metal load 3 so that the boundary condition at
one end of the rod was close to the condition at a per-
fectly rigid boundary. An accelerometer 4 was fixed at
the other (free) end of the rod for measuring the pump
wave amplitude. The mass of the accelerometer was
sufficiently small to consider this rod boundary as an
acoustically soft one. The pumping transducer excited
low-frequency resonance vibrations in the rods at the
frequencies of the first three longitudinal modes: F1 .
2750 Hz, F2 . 8250 Hz, and F3 . 13550 Hz. These fre-
quencies correspond to a resonator with a hard bound-
ary and a soft boundary, and the eigenfrequencies Fp of
such a resonator are determined by the equation

Fp = F1(2p – 1),  F1 = c0/4L, p = 1, 2, 3, …, (1)

where c0 is the velocity of longitudinal waves in the rod
and p is the number of a longitudinal mode. From this
expression, we can estimate the velocity of a low-fre-
quency longitudinal wave in the zinc rods used in the
experiment: c0 . 3.85 × 105 cm/s.

At a low amplitude of excitation (in the absence of
nonlinear loss), the Q-factors of the resonators Qp were
as follows: for the unannealed rod, Q1 = 546, Q2 = 339,
and Q3 = 139; for the annealed rod, Q1 = 395, Q2 = 159,
and Q3 = 133.

EXPERIMENTAL RESULTS

Figure 2 shows the dependences of the strain ampli-
tude εm (at resonance) on the amplitude u0 of the volt-
age across the pumping transducer for rods 1 and 2 at
different frequencies of the resonator excitation. From
the figure, one can see that the dependences εm = εm(u0)
are essentially nonlinear; this testifies to the presence of
the amplitude-dependent loss in both unannealed and
annealed zinc. For unannealed zinc, the nonlinear loss
clearly manifests itself in the range 10–6 ≤ εm ≤ 10–5,
while at εm ≥ 10–5, it becomes saturated: beginning from
these amplitudes, the dependence is εm ~ u0, i.e., the
loss becomes amplitude-independent (as at low ampli-
tudes εm ≤ 10–6), but it is greater than at εm ≤ 10–6. Sim-
ilar dependences εm = εm(u0) are observed for annealed
zinc, except that in this case no saturation of nonlinear
loss takes place.

Figure 3 shows the dependences of the resonance
frequency shift ∆Fp on the strain amplitude εm for rods 1
and 2 at different frequencies of the resonator excita-
tion.

From Fig. 3, it follows that, in an unannealed rod,

at εm ≤  we have ∆Fp ~ , and at εm ≥  we haveεp* εm
2 εp*
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∆Fp ~ εm. Here,  is the strain amplitude observed for
the rod excited at the frequency Fp at which the depen-
dence of the resonance frequency shift on the strain

amplitude changes from quadratic to linear:  . 2.5 ×
10–6,  . 3.2 × 10–6, and  . 5 × 10–6.

εp*

ε1*

ε2* ε3*

2

4

3

1

Fig. 1. Block diagram of the experimental setup: (1) pump-
ing piezoceramic transducer; (2) rod-type resonator;
(3) massive load; and (4) accelerometer.

120 140 u0, dB

10–7

10–6

10–5

εm

p = 1
p = 2
p = 3

A

B

Fig. 2. Dependences of the strain amplitude εm (at reso-
nance) on the voltage amplitude u0 across the pumping
transducer (in dB relative to 1 µV) for rods (A) 1 and (B) 2
at different frequencies of the resonator excitation. The
straight lines correspond to the dependence εm ~ u0.
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From Fig. 3, it also follows that, in the annealed rod,

the dependence ∆Fp ~  is observed in almost the

entire strain range (except for the small region εm ≥  .
(3–5) × 10–6.

The effects observed in the experiment cannot be
described by the five-constant (or nine-constant) elas-
ticity theory [14], because this theory does not allow for
the nonlinear loss. The latter also cannot be explained
by a decrease in the pump wave energy due to the gen-
eration of higher harmonics, because in the experiment
their level was far below the amplitude of the funda-
mental wave.

In the theory of amplitude-dependent internal fric-
tion, the presence of the nonlinear loss and the defect
of the elastic modulus are explained by the fact that
the equation of state of the crystal is described by a
hysteretic function; its analytical expression has the
form [13, 15]

(2)

(3)

εm
2

εp*

σ e ė,( ) E e f e ė,( )–[ ] αρė,+=

f e ė,( )

=      

γ1e
n/n, e 0, ė 0>>

γ1 γ2+( )%n 1–
e γ2e

n–[ ] /n, e 0, ė 0<>

γ3e
n/n, e 0, ė 0<<–

1–( )n γ3 γ4+( )%n 1–
e γ4e

n+[ ] /n, e 0, ė 0,><

10–7 εm

20

40

20log∆Fp, Hz

10–6 10–5

A

1

2

B

p = 1
p = 2
p = 3

Fig. 3. Dependences of the resonance frequency shift ∆Fp on
the strain amplitude εm for rods (A) 1 and (B) 2 at different
frequencies of the resonator excitation. The straight lines cor-

respond to the dependences (1) ∆Fp ~  and (2) ∆Fp ~ εm.εm
2

where σ, e, and  are the longitudinal stress, the strain,
and the strain rate, respectively; E is Young’s modulus

(E = ρ ); ρ is the density; α is the linear loss coeffi-
cient; f(e, ) is the nonlinear part of the equation of
state; % = %(x) is the local strain amplitude; γi are the

nonlinearity parameters;  ! 1; and n > 1. (For a
resonator with a hard boundary and a soft boundary, the
local amplitude %(x) is determined by the expression
%(x) = εm |cosKpx |, where Kp = π[2p – 1]/2L = 2πFp/c0.)

The values of the nonlinearity parameters γi and the
exponent n can be determined (for both annealed and
unannealed zinc) from the comparison of the theoreti-
cal calculations with the experimental results. From the
analysis of the nonlinear function f(e, ) involved in the
equation of state (2), we obtain [15]:

for unannealed zinc, n = 3 at εm ≤  and n = 2 at

εm > ;

for annealed zinc, n = 3 (at εm ≤ ).

In combination with the equation of motion [14, 16]

(4)

and the boundary conditions at the resonator ends

(5)

(here, U is the displacement, e = Ux , and A0 and Ω are
the amplitude and the frequency of the wave produced
by the pumping transducer), the equations of state (2)
and (3) provide an adequate description of the ampli-
tude dependences of the nonlinear loss and the reso-
nance frequency shift for both annealed and unan-
nealed rods.

The method of solving equations (2)–(5) was
described in our previous publications [11, 15], and,
below, we use the results presented in those papers.

For a rod, the strain amplitude is determined by the
expression

(6)

where δ = Ω – Ωp , µp = (ΩpQp)–1, δh = 2π∆Fp, and µh is
the nonlinear loss coefficient; in addition:

for unannealed zinc at εm ≤  and for annealed zinc,
we have

(7)

(8)

ė

c0
2

ė

γiεm
n 1–

ė

εp*

εp*

εp*

ρUtt σx' e ė,( )=

U x 0 t,=( ) A0 Ωt,cos=

Ux' x L t,=( ) 0=

εm

A0Ωp/L

δ δh+( )2 µp µh+( )2Ωp
4 /4+[ ]1/2

---------------------------------------------------------------------------,=

εp*

δh a1εm
2 Ωp, µh– b1εm

2 /Ωp,= =

a1 γ1 γ2 γ3 γ4––+( )/32=

+ γ1 γ2 γ3 γ4+––( )/128,

b1 γ1 γ2 γ3 γ4––+( )/16π,=
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Coefficients a1 and b1

Mode number, p
1 2 3

a1 b1 a1 b1 a1 b1

Unannealed zinc

εm ≤ 2 × 108 2 × 108 1.9 × 108 1.6 × 108 7.5 × 107 5.9 × 107

εm ≥ 5.1 × 102 4.6 × 102 4.9 × 102 4.6 × 102 4.2 × 102 2.7 × 102

Annealed zinc

εm ≤ 2.6 × 109 3.4 × 109 1.3 × 109 2 × 109 5.3 × 108 7.5 × 108

εp
*

εp
*

εp
*

and for unannealed zinc at εm ≥ , we have

(9)

(10)

From equations (7) and (9), it follows that, as in the

Granato–Lucke theory, the ratio δh/µh  does not

depend on εm: δh/(µh ) = –a1/b1.

For both rods, the values of the coefficients a1 at dif-
ferent excitation frequencies can be found from the
measured shifts of resonance frequencies.

To determine the coefficients b1 responsible for the
nonlinear loss, we proceed as follows. Assuming that
the amplitude A0 of the resonator excitation varies in
direct proportion to the voltage amplitude u0 across the
transducer, we use equation (6) (at δ = –δh) to obtain
the expression

(11)

Here, A01 and εm1 are the amplitude of the transducer
vibrations and the corresponding strain amplitude of
the rod when the nonlinear loss in the resonator is small
and cannot be observed; εm is the strain amplitude of
the rod (εm > εm1) excited by the transducer with the
excitation amplitude A0 > A01 when the nonlinear loss is
substantial. Expression (11) determines the depen-
dence of the nonlinear loss µh(εm) on the strain ampli-
tude εm:

(12)

Using the data presented in Fig. 3, we can plot the
dependences µh(εm)/µp on εm for the two rods under
study (Fig. 4). From Fig. 4, one can see that the behav-
ior of these dependences is as follows: for unannealed

zinc, initially (at εm ≤ ² ) µh(εm) ~ , then (at εm ≥
) a linear dependence µh(εm) ~ εm takes place, and at

even greater strains the linear loss tends to saturation,

εp*

δh a1εmΩp, µh– b1εm/Ωp,= =

a1 4 γ1 γ2 γ3 γ4–+–( )/9π2=

+ γ1 γ2 γ3 γ4+ + +( )/6π,

b1 2 γ1 γ2 γ3 γ4+ + +( )/9π2.=

Ωp
2

Ωp
2

εm1/εm A01/A0 1 µh εm( )/µp+( ).=

µh εm( )/µp εm1/εm( ) A0/A01( ) 1.–=

εp* εm
2

εp*
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i.e., µh(εm) = const.; for annealed zinc, in almost the
entire strain range (except for the small interval εm ≥

 . (3–5) × 10–6 where the dependence of µh(εm)/µp

on εm is close to a linear one), the dependence µh(εm) ~

 corresponding to the analytical dependence (7) is
observed.

The table presents the values of the coefficients a1

and b1 determined for annealed and unannealed zinc
from the comparison of expressions (7) and (12) with
the experimental results shown in Figs. 3 and 4. (How-
ever, it should be noted that the estimates obtained for
the parameters a1 and b1 for unannealed zinc at εm ≥ 
are approximate, because in this case the nonlinear
loss and the resonance frequency shift are determined

εp*

εm
2

εp*

10–7 εm

–20

20

20logµh(εm)/µp

10–6 10–5

A

1

2

B

0

p = 1
p = 2
p = 3

Fig. 4. Dependences of µh(εm)/µp on the strain amplitude εm
for rods (A) 1 and (B) 2 at different frequencies of the reso-
nator excitation. The straight lines correspond to the depen-

dences (1) µh(εm) ~  and (2) 2 – µh(εm) ~ εm.εm
2
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by the combined effect of nonlinearities that occur at
both εm ≤  and εm ≥ .)

From the table, one can see that, with increasing
mode number, i.e., with increasing frequency of the
resonator excitation, the values of the coefficients a1

and b1 (and, consequently, the values of the nonlinear-
ity parameters γ1–4) noticeably decrease for both
annealed and unannealed zinc, while their ratio remains
virtually constant. As the frequency increases by a fac-
tor of five, the values of the coefficients a1 and b1

decrease: for unannealed zinc, by a factor of three at
εm ≤  or by a factor of nearly two at εm ≥ ; for
annealed zinc, by a factor of four. From the comparison
between the first and the third rows of the table (at εm ≤

 when n = 3 for both annealed and unannealed zinc),
it also follows that the annealing of zinc at 350°C dur-
ing 50 h leads to an increase in its hysteretic nonlinear-
ity almost by a factor of ten.

SUMMARY

The amplitude and frequency dependences of the
nonlinear loss and the resonance frequency shift in rod-
type resonators made of annealed and unannealed zinc
were studied experimentally. The amplitude depen-
dences observed in the experiment were described in
terms of the phenomenological equations of state with
their nonlinear parts incorporating a hysteresis with the
exponents: n = 3 (at εm ≤  . (2.5–5) × 10–6) and n = 2

(at εm ≥ ) for unannealed zinc; n = 3 for annealed

zinc (at εm ≤ ²  . (3–5) × 10–6). The comparison of the
analytical calculations with the experimental results
showed that the annealing of zinc leads to an increase
in its hysteretic nonlinearity, and the latter is frequency-
dependent decreasing with increasing frequency. This
conclusion will be used for the interpretation of the
results of our next experiments with the same rods.

εp* εp*

εp* εp*

εp*

εp*

εp*

εp*
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Abstract—The conditions of the resonance excitation and energy dissipation are considered for magnetoacoustic
oscillations generated in a conducting cylinder by a travelling current wave coaxial with the cylinder. Expressions
are obtained for the distributions of the power density of the sources of Joule and viscous heating. On the basis of
these expressions, a numerical solution is obtained to the heat-transfer equation with the boundary conditions of
the third kind. It is shown that, under such conditions, the temperature field formed in the cylinder has nearly zero
gradients, and both the time required for the magnetothermoacoustic treatment of the sample and the correspond-
ing power consumption are considerably reduced. © 2000 MAIK “Nauka/Interperiodica”.
The study of acoustic waves propagating in a solid
in the presence of a strong constant magnetic field has
become of special importance in relation to the devel-
opment of new technologies of materials treatment and
nondestructive testing, as well as to the improvement of
the elements of measuring equipment [1–5]. In particu-
lar, the treatment of materials under the aforementioned
conditions considerably improves their physical-
mechanical properties and reduces the time of the pro-
cesses and the power consumption [3]. In this connec-
tion, the theoretical studies concerned with the formu-
lation and solution of two-dimensional problems of
magnetoelasticity seem to be fairly topical [6].

In this paper, we consider the mechanism of the Cer-
enkov-type excitation of magnetoacoustic waves and
the dissipation of their energy in a homogeneous non-
magnetic (µ = 1) infinite cylinder of radius R; the con-
ductivity of the cylinder material is σ, and the cylinder is
placed in a constant uniform magnetic field B = (0, 0, B).
The source of perturbation is a travelling wave with the
current density

(1)

We use the cylindrical coordinates r, ϕ, z. We assume
that the phase velocity of the wave v = ω/k0 exceeds the
propagation velocity of purely transverse c⊥  or purely
longitudinal c|| waves.

A similar problem of the generation of magnetoa-
coustic waves in a halfspace was considered by Sobo-
lev [4] without regard for the dissipation.

The only nonzero component of the vector potential
A = {0, A(r)exp[i(k0z – ωt)]) of the electromagnetic

j 0 j i k0z ωt–( )[ ]δ r R0–( ) 0,exp,{ } , R0 R,>=

j const, Im j 0.= =
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field induced by the current wave (1) satisfies the Pois-
son equation

and can be expressed through the modified Bessel func-
tions I1(k0r) and K1(k0r):

(2)

The vector potential of the field “reflected” from the
cylinder surface is described by the expression

(3)

In expressions (2) and (3), as well as in all expressions
below, the factor exp[i(k0z – ωt)] is omitted.

The initial system of equations describing the mag-
netoacoustic oscillations of the cylinder medium has
the form [1]

(4)

Here, u = (ur , 0, uz) is the vector of particle displace-
ments in the medium, ca is the Alfphen velocity, b is the
perturbation of the magnetic field, and the coefficients
γ⊥  and γ|| are expressed through the bulk ς and shear η
viscosities according to the formulas γ⊥ = η/ρ and γ|| =
(ς + 4η/3)/ρ. Taking into account that in solids, even at
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B ~ 10 T, the condition ca ! c⊥  < c|| is satisfied and intro-
ducing the “transverse” u⊥  and “longitudinal” u|| com-
ponents of the displacement vector u = u⊥  + u|| so that
the conditions divu⊥  = 0 and rotu|| = 0 are satisfied, we
obtain a system of equations that is equivalent to sys-
tem (4):

(5)

(6)

(7)

We assume that the skin depth is small compared with
the cylinder radius R. Then, at the cylinder surface, the
vector potential satisfies the following boundary condi-
tions:

(8)

where j0 is the effective surface current density to be
determined.

The two other boundary conditions necessary for
obtaining a unique solution to the problem express the
condition of the continuity of the momentum flux at r =
R and have the form

(9)

From equations (5) and (6), it follows that at v > c||
both oscillation branches, i.e., the modified transverse
and longitudinal ones, are excited with the wave num-
bers κ⊥, || = k⊥ , || + iω3γ⊥, ||/2k⊥, ||  where k⊥, || =

k0[(v/c⊥, ||)2 – 1]1/2. In this case, we have

(10)

Here, α1, 2 are constants determined from the boundary
conditions (8) and (9), and J0, 1(κ⊥, ||r) are the Bessel
functions of the first kind. If the phase velocity of the
current wave satisfies the inequality Ò⊥  < v < c||, oscil-
lations with the wave number κ⊥  are excited in the cyl-
inder bulk. The second branch of oscillations with the
wave number k|| represents a modified Rayleigh surface
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wave exponentially decaying with distance from the
cylinder surface toward its axis.

Substituting expressions (10) into the right-hand
member of equation (7), we determine the vector
potential of the electromagnetic field in the cylinder
material. Using this vector potential and the known for-
mulas 
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, we determine the compo-
nents of the perturbations of the electric and magnetic
field:
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The cylinder is heated at the expense of the viscous
and Joule dissipation of the energy of coupled acoustic
and electromagnetic oscillations. The heating of the
cylinder is most efficient at resonance conditions [3].
The distributions of the oscillation-period average pow-
ers of the viscous and Joule heat sources along the cyl-
inder radius, 
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, have the form
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In expressions (11), the dimensionless factors are deter-
mined by the formulas

As an example, we consider the resonance oscillations
of a cylinder of radius 

 

R

 

 = 0.25 m made of material with
the properties of aluminum [7]. We assume that the
velocity of the current wave is 
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 = 8000 m/s. The values
of 

 

k

 

0

 

, which correspond to the maximum amplitudes of
mechanical and electromagnetic oscillations, are deter-
mined from the condition of the minimum value of the
principal determinant of the system of boundary condi-
tions (8) and (9). The distributions (11) corresponding
to the first resonance value 

 

k

 

0

 

 = 11.8 are shown in Figs. 1
and 2. One can see that, in contrast to the case of a
purely induction heating, the distribution of the heat
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sources extends into the cylinder volume, and the main
contribution to heating is made by internal friction.

The radial distribution of the temperature T that
occurs in the cylinder at any given moment can be
determined by solving the axially symmetric heat-
transfer equation, which has the following dimension-
less form:

(12)

with the initial

(13)

and boundary

(14)

conditions.

Here, Fo = at/R2 is the Fourier number, ξ = r/R is the
dimensionless coordinate, Bi = HR is the Bio criterion,
a is the thermal diffusivity, Ò is the specific heat, ρ is the
density of the cylinder material, and H is the heat-trans-
fer coefficient characterizing the heat transfer to the
surrounding medium.

Figure 3 presents the solution to problem (11)–(15)
for the Fourier numbers from 0.2 to 2.0 and the Bio cri-
terion taken equal to 0.1. The solution was obtained by
the grid method [8]. From the curves, one can see that
the temperature field in the cylinder proves to be a low-
gradient one, which in its turn has a beneficial effect on
the structure of the heated material of the body under
consideration. Such a behavior of the temperature field
is caused by the fact that the power density of the vis-
cous heat sources varies only weakly over the major
part of the cylinder cross-section (0.2–1)R (Fig. 1). The
increase in the power density near the cylinder axis is
compensated by an intense heat flow due to the high
thermal conductivity of the metal. As a result, only a
weak slope of the temperature curves is observed.

Thus, the excitation of high-frequency electromag-
netic oscillations in electrically conducting bodies by
external sources in the presence of a strong constant
magnetic field leads to the generation of magnetoa-
coustic oscillations in the bulk of the body. At reso-
nance conditions, the magnetic field promotes a virtu-
ally unobstructed energy transfer from the source to the
bulk of the body under treatment, while the energy dis-
sipation due to the Joule loss and the internal friction
provides a uniform heating of the body and makes it
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possible to considerably reduce the treatment time and
the power consumption.
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Abstract—A dynamical model of a cloud of air bubbles produced by breaking wind waves is developed on the
basis of experimental data. For moderate wind speeds, the bubble cloud is represented by a hemisphere with its
plane surface being coincident with the water surface and with new radiating bubbles emerging at its center.
The frequency spectra of noise generated by bubbles at different stages of the cloud development are calculated
with allowance for the multiple scattering of sound in the cases of a soft surface and an absorbing surface. The
computational results are found to agree well with the experimental data. The angular spectrum of noise is esti-
mated on the basis of a simplified model, and this estimate is found to quantitatively agree with the spectrum
observed in the experiment. © 2000 MAIK “Nauka/Interperiodica”.
Currently, one can state with assurance that the
dynamical (i.e., depending on the local wind speed)
component of ocean noise observed at relatively high
frequencies is caused by damped oscillations of excited
air bubbles, which are formed as a result of the interac-
tion of wind with the ocean surface. The main process
that leads to the formation of bubbles in water is the
breaking of wind waves. There exists no theoretical
model for describing the dynamics of collective bubble
motion in this process. Therefore, to calculate the char-
acteristics of noise produced by breaking waves, one
has to use a model based on the experimental data.

The characteristics of bubbles and the noise they
produce were studied in many laboratory-scale and
full-scale experiments (e.g., [1–4]). In some publica-
tions, the frequency and angular spectra of ocean noise
were calculated on the basis of simple models. For
example, Kennedy and Szlyk [5] calculated the spectra
for a homogeneous ocean model with a horizontally
uniform layer of radiating bubbles. Mendus and Post-
nov [6] performed a similar calculation for a more real-
istic ocean model with allowance for multiple scatter-
ing from the surface and the passive bubble layer.
Norton et al. [7] took into account the presence of ran-
dom bubble clouds near the ocean surface. In these
publications, the calculations were performed on the
basis of the ray approach. Other theoretical studies [8–
11] were based on mode calculations. In papers [5–10],
the sources of radiation were uniformly distributed over
the surface layer. In the model considered by Oguz
[11], the noise sources were uniformly distributed over
the plane surfaces of hemispherical clouds of passive
bubbles; the sound velocity in these clouds was con-
stant but different from the sound velocity in water, and
the hemispheres themselves were randomly distributed
1063-7710/00/4602- $20.00 © 20195
under the surface of a homogeneous ocean. However,
the experimental data show that the structure and shape
of bubble clouds strongly depends on the conditions of
wave breaking [12, 13]. The common disadvantage of
all known models is the unduly simplified representa-
tion of the noise generation by a local source. The use
of a more adequate model of a local source may lead to
a considerable refinement of its radiation characteris-
tics, as well as to an improvement of the overall picture
of the noise field in the ocean. This paper presents an
attempt to construct a model of the noise generation by
a single breaking wave.

The direct observations of breaking wind waves in
the ocean allow one to distinguish between the follow-
ing typical conditions of wave breaking:

(a) formation of local cusps on the peaks of swell or
wind waves; the breaking of these cusps produces more
or less round spots of foam; such conditions are
observed when the wind speed is v = 4–7 m/s,

(b) formation of elongated ridges of swell or wind
waves; the ridges break on the lee slopes of waves; such
conditions occur at v = 8–12 m/s,

(c) separation of wind wave ridges by wind with
their subsequent incidence on the wave slope; the con-
ditions occur at v ≥ 12 m/s.

According to Kolaini [2], the aforementioned condi-
tions are called as follows: (a) weak spilling, (b) spill-
ing, and (c) plunging. However, it seems more adequate
to use the term “rolling” for (a) and (b) and the term
“turnover” for (c).

For conditions (a) (weak rolling), we can use a
model that describes the space-time structure of bubble
clouds on the basis of experimental data. We consider
the propagation of the radiation generated by a single
000 MAIK “Nauka/Interperiodica”
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bubble with a given spectrum and given coordinates
through a cloud of passive bubbles. The total noise level
away from the cloud is determined by the sum of noise
intensities produced by all radiating bubbles.

The primary source of noise in the ocean is taken to
be an air bubble immediately after its formation (an
active bubble). One can assume that the bubble oscilla-
tions that lead to sound radiation are caused either by
the difference between the air pressure in the bubble
and the pressure in the surrounding medium or by the
deviation of the initial bubble shape (at the instant of its
capture) from a sphere. In the first case, the bubble is
expected to perform radial oscillations, while in the
second case multipole oscillations can be excited [14].
Another possible mechanism of bubble excitation is the
resonance excitation by a turbulent flow of water [15].
According to the experimental data [1], more than 65%
of all bubbles perform radial oscillations, and the radi-
ation intensity of these bubbles is much higher than that
produced by the rest of the bubbles. Hence, we can
assume that an active bubble of radius a0 radiates as a
monopole with the resonance frequency fa = 3/a0,
where a0 is in meters and fa is in hertz. In the experi-
ments, it was also found that, for most of the bubbles,
the time dependence of the pressure generated by a
bubble at a distance r has the form

(1)

where b = πfaδ and δ is the damping factor, for which
the expression can be found in the literature (e.g., in
[16]); the latter quantity can be approximated by the

expression δ ≈ 0.014(1 + 0.03 ). From formula (1),
it follows that, within a time interval about 2/b, the radi-
ation intensity of a bubble becomes negligible and the
bubble transforms to the passive state. For subsequent
calculations, we need to know the spectrum S of the
radiation of a single bubble. The spectrum can be
determined by applying the Fourier transform to for-
mula (1). The expression for the spectrum has the form

(2)

According to the experiment [1], the pressure ampli-
tude P0a0/r at r = 1 m does not depend on a0 (at least for
a0 > 0.0001 m) and lies within 0.2–1 Pa.

Formula (2) refers to the case of a bubble located at
a constant depth. It is well known that the resonance
frequency of bubble oscillations depends on the exter-
nal pressure and, hence, on the bubble depth z. This fact
was confirmed experimentally [1]. In addition, if the
velocity of the bubble motion relative to the surface is
sufficiently high, the resonance peak of the spectrum S
may broaden. However, according to the experimental
data [1], most of the bubbles exhibit no variations of
their resonance frequency within the time of radiation;
therefore, the calculations described below are per-
formed on the basis of spectrum (2).
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.=
Detailed quantitative estimates for the process of air
bubble formation by breaking waves were obtained by
Lamarre and Melville [12]. These estimates were based
on a laboratory experiment with waves generated by
mechanical devices. Below, we use the data obtained
from these experiments. It was found that, within the
first 0.5 s after wave breaking, the shape of the bubble
cloud is akin to a hemisphere with its plane surface
being coincident with the water surface. Then, the cap-
ture of new bubbles terminates, the bubble cloud moves
to deeper water layers, and its shape becomes almost
spherical. Based on these data, we select the model of a
bubble cloud in the form of a hemisphere with its plane
surface coincident with the water surface. Approximat-
ing the experimental data [12], we can represent the rel-
ative air content in water V(r, t) (where r is the distance
from the center of the plane surface of the hemisphere
and t is the time that elapsed from the onset of break-
ing) in the form

(3)

where the parameters can be approximated by the
expressions

Unfortunately, no data on the dependence of the cap-
tured air volume on the wind speed can be found in the
literature.

If we know the solution to the problem of the radia-
tion intensity i(r0, f, ϕ, θ) in the far zone in the direction
with the angular coordinates ϕ, θ for a sound source
positioned at the distance r0 from the cloud center, the
radiation intensity of an active bubble of radius a0 will
have the form

.

For a great number of active bubbles with the spec-
tra of type (2), random amplitudes, and the times of for-
mation described by a Poisson process, the mean spec-
trum of their noise intensity can be expressed by the
Campbell formula

(4)

where 〈 〉  means averaging over all coordinates r0. Here,
qda0 is the number of bubbles formed in a unit time
with the radii from a0 to a0 + da0. This quantity can be
estimated by the formula

q ≈ n(a0)  ∆t, 

where ∆t is the characteristic time of bubble radiation,

∆t ≅ 0.3a0/(πδ), and  is the rate of change of the air

volume in the cloud; the latter can be estimated using
the experimental data (e.g., from [12]). In what follows,
we will assume that the distribution of active bubbles in
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size n(a0) coincides with the distribution n(a) for pas-
sive bubbles. This assumption is based on the fact that
the processes of rising to the surface for large bubbles
and the dissolution of small bubbles, i.e., the processes
that lead to changes in the aforementioned distribution
with time, are sufficiently slow.

The relationship between the quantity V and the
function n(a) is determined by the formula

(5)

and the relationship between v0 and V for approxima-
tion (3) is determined by the formula

(6)

In the general case, the calculation of i(r0, f, ϕ, θ) is
extremely complicated. For an arbitrary geometry of
the problem, the solution is possible only by the meth-
ods of the geometric diffraction theory, whereas, for
clouds with large values of V, these methods lead to
considerable errors [18]. Hence, we try to find the solu-
tion with allowance for the multiple scattering in the
Twersky approximation [17]. In addition, we assume
that the capture of bubbles occurs at the center of the
hemisphere at the water surface, at r = 0. The average
distance l between active bubbles and this point can be
estimated as l = 〈|r0|〉 ≈ s/b, where s is the mean rate of
cloud expansion. With allowance for the experimental
data [12], the latter quantity can be set equal to 1 m/s.
Then, we can conclude that l is relatively small, and, in
calculating the scattered field, we can assume that the
source is located at r = r0 = 0.

Another difficulty is caused by the absence of data
on the characteristics of the water surface in the process
of bubble capture. It is expedient to perform the calcu-
lations for two limiting cases: a perfectly soft plane sur-
face and an absorbing surface. The comparison of the
computational results with the experimental frequency
spectra of noise produced by breaking waves will allow
us to judge the validity of these models.

For a hemispherical cloud with a source at the center
of its plane surface, the pressure p will be a function of
the distance r and the angle θ. This fact considerably
complicates the solution of the Twersky integral equa-
tion. For the sake of simplification, we seek the field in
the direction θ = π (i.e., in the downward direction nor-
mal to the water surface).

If the dimensions of the scatterers are much less
than the distance between them, i.e., the scattering
characteristics are independent of the position of the
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bubble in the cloud [17], the equation for the mean
(coherent) acoustic field has the form

(7)

where p0 = exp(ik0r)/r and u is the scattering operator.
According to the data reported in the literature [3], we
set n = n0(a)exp(–γr'), where n0 is the density of bubble
distribution in the vicinity of the point r = 0, this quan-
tity being determined by formula (5) at V = V0. For an
absorbing surface in the far-zone approximation, the
operator u has the form u = σexp(ik0ρ)/ρ, where ρ =
(r2 + r'2 – 2rr'y)1/2, k0 is the wave number for water
without bubbles, σ is the scattering amplitude (for free
space, σ = a/L, L = (300af)–2 – 1 – iδ, and y is the cosine
of the angle between the vectors r and r'. Then, in the
spherical coordinate system, expression (7) can be rep-
resented in the form

where J0 = da.

Integrating with respect to y at r @ r' (virtually, at r @
1/γ) and neglecting the finite size of the radiating bub-
ble, we obtain a degenerate Fredholm equation

(8)

where V = 2πJ0/ik0. The solution to this equation has the
form

(9)

For the model of a hemispherical cloud with a per-
fectly soft plane surface, the source located at the center
of the surface will be considered as a dipole with the
base 2z, where z is a random variable with the average
value 〈z〉  = 2l/π. In the equation for the mean acoustic
field (7), the operator u for θ = π can be represented as

u = σ  − , where ρ± = (r2 +

r'2 = 2rr'y)1/2 and σ = a/  (for a

bubble at the distance z = r'y from the surface) [18].
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The solution of equation (7) is fairly difficult. A sim-
plification is possible in the case of a factorable func-
tion p(r' y). It is easy to verify that at small k0z the rela-
tion p(r', y) ≈ p(r')2ik0r'y is valid. To reduce equation
(7) to a degenerate one, we replace the quantity σ by its
upper bound, which has the form σ = a/L', where L' =
(300af)2 – 1 + i0.0007a–1/2. Performing these substitu-
tions in (7) and integrating with respect to a and y, we
obtain for r @ 1/γ:

(10)

where M' = da and p0 = exp(ik0r)(1 –

exp(2ikz)). This degenerate equation can be solved by a
conventional method, but since its solution is cumber-
some, we do not present it here. In the expression for p0,
we have k ≠ k0 in the general case, because, between the
radiating bubble and the surface, other bubbles that
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Fig. 1. Frequency spectra of noise produced by a single
breaking wind wave: (a) κ = 3, amax = 0.003 m; (b) κ = 3,
a ≤ 0.001 m and κ = 5, a > 0.001 m. (1) An absorbing sur-
face and (2) a soft surface; t = (solid lines) 0.1 and (dashed
lines) 0.5 s; the thick line shows the experimental data.
affect the sound velocity may be present. If we replace

z by its average value 〈z〉 ≈ , the number

of such bubbles will be small, and the quantity k can be
estimated using the approximation of a quasi-homoge-
neous medium. We note that 〈z〉 may be underesti-
mated, because most of the bubbles begin radiating at
z > 6a0 [2]. On the other hand, the experiments
described by Medwin and Beaky [1] refer to another
mechanism of bubble capture than that considered in
this paper. Hence, the parameters l and k of the model
should be corrected according to the results of the com-
parison of the calculated noise spectra with the experi-
mental ones.

Similarly, we can find the approximate solutions of
the Twersky equation for the incoherent component of the
scattered intensity. These equations have the form [17]

where p is the solution to equation (8) or (10) and v sat-
isfies the integral equation

Without dwelling on the details of computations, we
present the expression for i(r0 = 0, a0, f, θ = π) used in
the calculations:

(11)

where J1 = da, E1 is an integral exponential

function and β0 is the coefficient of wave attenuation in
a bubble cloud with the concentration V = V0'. This
coefficient is calculated in the approximation of a
quasi-homogeneous medium, and the expression for it
can be found in, e.g., [16].

Figure 1 presents the calculated frequency spectra
of noise generated by breaking waves; the spectra were
calculated by formula (4) with the intensities i(r0 = 0,
a0, f, θ = π) calculated by formula (11). For a reflecting
surface, the averaging over z was performed on the
assumption that the distribution has the form w(z) =
exp(–z/〈z〉); the term |p|2 involved in expression (11)
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was multiplied by (2k〈z〉)2/(1 + 2(k〈z〉)2). In the calcula-
tions, we used the conventional approximation

(12)

The value of κ may vary widely; according to [11],
it should fall within the interval from 1 to 8, but its most
probable values are 3–5. Figure 1a shows the spectra
for κ = 3. In the formulas that were used for calculating
the spectrum in the case of a reflecting surface, we took
k = k0. In Fig. 1b, the thick line shows the smoothed
experimental spectrum of noise observed for the weak
rolling conditions by Kolaini [2]. We selected the spec-
trum obtained in laboratory conditions instead of the
full-scale ones for the following reasons:

(1) The structure of the bubble density in the cloud
was also determined in the laboratory experiment [12].
Therefore, it seems to be more correct to test the valid-
ity of the model by the comparison with the experiment
for which the parameters of the cloud are known.

(2) In the publications describing the noise of break-
ing waves in the sea (e.g., [3]), unsmoothed spectra of
the sum of the wave breaking noise and background
noise are presented. If we subtract the background
spectrum and perform the smoothing procedure, we
obtain a result close to that presented in [2]. We note
that the experimental spectrum of noise presented in
[20] for the turnover conditions in the surf zone is also
quite close to the laboratory spectrum.

The comparison of the experimental spectrum with
the calculated curves suggests the following conclu-
sions:

(a) At frequencies above 1 kHz, the calculated and
experimental curves agree well with each other. The
presence of a sharp peak in the calculated curves near
f = 1 kHz is explained by the choice of the function n(a),
which terminates at the resonance frequency 1 kHz. We
can assume that the real distribution n(a) has no discon-
tinuities at large a. This assumption is confirmed by the
experimental data [20]. The result of the calculation of
I(f) performed for the approximation κ = 3 at a <
0.001 m and κ = 5 at a > 0.001 m (which is close to
the approximation obtained in [20]) is presented in
Fig. 1b. One can see that the aforementioned broken-
line approximation of n(a) provides a better agree-
ment with the experiment than the discontinuous
approximation (12).

(b) At the frequencies below 1 kHz, the curves
obtained for the absorbing surface are closer to the
experimental data than the curves for the reflecting sur-
face. In addition to the assumption that the surface
should possess absorbing properties, there exists
another mechanism that could provide a better agree-
ment between the calculations and the experiment: a
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decrease in the sound velocity in the surface layer.
According to Lamarre and Melville [12], the sound
velocity measured at the center of the cloud may be as
low as 20 m/s.

To chose between the aforementioned factors, it is
necessary to consider additional experimental data. For
example, we could compare the calculated and experi-
mental angular spectra of noise produced by breaking
waves. Unfortunately, a rigorous calculation of angular
spectra with allowance for multiple scattering is quite
complicated, while the only known experimental angu-
lar spectrum obtained for a single breaking wave [19]
covers only a limited range of angles. However, such a
comparison would be useful for our study. We proceed
from the assumption that the angular dependence of the
intensity is mainly determined by the interference of
the direct and surface-reflected coherent components of
the signal generated by a point source at the frequency
f at the distance l from the surface. The effect of the
cloud on the complex sound velocity can be taken into
account by using the approximation of a quasi-homo-
geneous medium. The aforementioned assumption is
based on the fact that l is small, the number of passive
bubbles within this distance is also small, and one can
expect that the effect of multiple scattering on a wave
propagating from the source to the surface is negligible.
We can show that, in a bubble cloud with the concentra-
tion V, the complex sound velocity is determined by the
expression

Then, the attenuation coefficient is β = 2πf Im(1/c(r)).
Setting β = β0exp(–γr) for the cloud and taking into
account that l ! 1/γ, we obtain (here, we neglect the
factor independent of θ):

(13)

The surface is assumed to be smooth and totally reflect-
ing. The presence of a surface roughness can be
described by an additional term in the expression for ξ.
However, since no information on the statistical charac-
teristics of the surface in the wave breaking area is
available, the inclusion of this factor makes no sense.

Figure 2 shows the angular spectra calculated by
formula (13) for the cloud parameters at t = 0.5 s, for
the frequencies 0.5 and 1 kHz with the quantity β
approximated as described in [16]. The calculated dia-
grams qualitatively agree with the experimental data
[19]. Therefore, we can conclude that, in calculating
the radiation of active bubbles near the water surface, it
is necessary to take into account the decrease in the
sound velocity even when the distance between the
bubble and the surface is small. Evidently, the problem
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of calculating the angular spectra of noise produced by
breaking waves requires further investigation.

The current knowledge of the processes of noise
generation by air bubbles in the ocean allows us to out-
line the future model of a local noise source. The inten-
sity of noise should be determined by the summation of
the intensities of at least the following processes:

rolling (at frequencies > 0.1 kHz),
turnover (at frequencies < 1 kHz),
and formation of a turbulent vertical flow in the

wave breaking area, this flow causing the excitation of
the “old” passive bubbles (at frequencies > 1 kHz).

The relative contributions of these processes to
noise depend on the wind speed v, and they should be
determined experimentally.

The model of noise at v < 7 m/s is described in this
paper. The model of rolling noise at v > 7 m/s is fairly
complicated; presumably, the rolling process can be
considered in the first approximation as a random
sequence of several processes described above, because
a long wave never simultaneously breaks along its full
length. The model of noise produced by the turnover
processes is not developed in detail; however, accord-
ing to Kolaini et al. [13], the simplest model of a spher-
ical quasi-homogeneous cloud adequately describes
the turnover noise spectrum near the resonance. Here,
we should mention the study concerned with the forma-
tion of the noise field in a coastal zone where the turn-
over of waves has its specific features related to the
effect of the bottom [20]. Special approaches to esti-
mating the noise of bubbles excited by turbulence are
described by Kolaini and Goumilewski [21].

1.0

1.0

0.5

0.5
cosθ

I

1

2

Fig. 2. Angular spectra of noise produced by a single break-
ing wave: f = (1) 0.5 and (2) 1 kHz.
In closing, it should be noted that the progress in the
development of the model of a local source of ocean
noise essentially depends on the progress in obtaining
the data on the dynamics of the water bulk in the pres-
ence of breaking waves.

ACKNOWLEDGMENTS
This work was supported in part by the Russian

Foundation for Basic Research (project no. 96-15-
98367).

REFERENCES
1. H. Medwin and M. Beaky, J. Acoust. Soc. Am. 86, 1124

(1989).
2. A. Kolaini, J. Acoust. Soc. Am. 103, 300 (1998).
3. D. Farmer and Li Ding, J. Acoust. Soc. Am. 92, 397

(1992).
4. S. Stolte, in Proceedings of Conference on Oceans,

1994, Vol. 2, p. 17.
5. R. Kennedy and T. Szlyk, J. Acoust. Soc. Am. 89, 673

(1991).
6. V. I. Mendus and G. A. Postnov, Akust. Zh. 39, 1107

(1993) [Acoust. Phys. 39, 582 (1993)].
7. G. Norton et al., J. Acoust. Soc. Am. 103, 3256 (1998).
8. V. I. Mendus and G. A. Postnov, Akust. Zh. 40, 316

(1994) [Acoust. Phys. 40, 288 (1994)].
9. Z. Ye, J. Acoust. Soc. Am. 102, 788 (1997).

10. T. Yang and K. Yoo, J. Acoust. Soc. Am. 101, 2541
(1997).

11. H. Oguz, J. Acoust. Soc. Am. 93, 2417 (1993).
12. T. Lamarre and W. Melville, J. Acoust. Soc. Am. 95,

1317 (1994).
13. A. Kolaini et al., J. Acoust. Soc. Am. 94, 2809 (1993).
14. M. Longuet-Higgins, J. Acoust. Soc. Am. 87, 652 (1990).
15. H. Pumphrey and J. Williams, IEEE Trans. OE-15 (4),

268 (1990).
16. C. Clay and H. Medwin, Acoustical Oceanography.

Principles and Applications (Wiley, New York, 1977;
Mir, Moscow, 1985).

17. A. Ishimaru, Wave Propagation and Scattering in Ran-
dom Media (Academic, New York, 1978; Mir, Moscow,
1982), Vol. 2.

18. Z. Ye and C. Feuillade, J. Acoust. Soc. Am. 102, 798
(1997).

19. G. A. Postnov, Akust. Zh. 44, 527 (1998) [Acoust. Phys.
44, 452 (1998)].

20. G. Deane, J. Acoust. Soc. Am. 102, 2671 (1997).
21. A. Kolaini and A. Goumilevski, J. Acoust. Soc. Am. 101,

218 (1997).

Translated by E. M. Golyamina
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000



  

Acoustical Physics, Vol. 46, No. 2, 2000, pp. 201–206. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 46, No. 2, 2000, pp. 245–251.
Original Russian Text Copyright © 2000 by Prokhorov.

                                                                                                            
Sound Scattering by Density Discontinuities in Media
with Temperature or Salinity Stratification

V. E. Prokhorov
Institute of Problems of Mechanics, Russian Academy of Sciences,

pr. Vernadskogo 101 (1), Moscow, 117526 Russia
e-mail: prohorov@ipmnet.ru

Received December 27, 1998

Abstract—In a stratified liquid flow about an obstacle, acoustically contrasting thin layers whose scattering
properties considerably depend on the stratification type are formed. High initial scattering levels and short life-
times are characteristic of layers with temperature stratification. On the contrary, relatively low initial levels
characterize the scattering from layers with salinity stratification, while their lifetimes are two orders of mag-
nitude longer. The experimental envelopes obtained for the decay of scattering from a layer in the wake behind
a two-dimensional circular cylinder agree well with the theoretical predictions. The values of the reflection
coefficient calculated using the hydrodynamic similarity principle for a single concentration level in real sea
conditions fit well into the range of experimental scattering levels. © 2000 MAIK “Nauka/Interperiodica”.
The scattering of ultrasound by thin high-gradient
interlayers was investigated in laboratory experiments
[1, 2]. In these experiments, the interlayers were
formed as outer shells of the wake behind a two-dimen-
sional circular cylinder in a liquid with the salinity
stratification. From the simultaneous analysis of the
schlieren patterns and vertical backscattering profiles,
it follows that almost all scattering power was reflected
from the interlayers, and only a small portion (a few
percent) was reflected from the three-dimensional
microstructural inhomogeneities of the wake [2]. The
backscattering coefficients measured for different flow
modes were recalculated into equivalent (in power)
dimensionless cross-sections of volume scattering, and
these values were found to be of the same order of mag-
nitude as the corresponding data of full-scale experi-
ments [3]. Exhaustive investigations [4] showed that,
even at a relatively early stage of flow, the shells of a two-
dimensional wake are transformed under the buoyancy
forces to flat, nearly horizontal layers sufficiently thin in
comparison with the sound wavelength (λ = 0.15 cm in
[4]). The experimental vertical backscattering coeffi-
cient was found close to the theoretical value calculated
from contact measurements of the density drop and the
shell thickness by using the formulas of geometric
acoustics [5]. In the experiments on oblique sounding,
it was found that, at the stage of a well-developed wake,
only the specular component of the scattering is
observed [4, 5]. This fact testifies to the smallness of the
Rayleigh parameter 2khsinϕ (k = 2π/λ, ϕ is the grazing
angle relative to the boundary, and h is the characteristic
height of roughness); this means that the characteristic
height of roughness of the reflecting boundary is small in
comparison with the wavelength [6].
1063-7710/00/4602- $20.00 © 20201
An acoustical contrast appears due to the formation
of density discontinuities when the flow interacts with
a solid body. This interaction causes some portion of
liquid in the region before the body to acquire a vertical
component of velocity w that is sufficient for this por-
tion of liquid to rise to a height z0 and to flow into the
wake. In this case, the density differential between the
raised particle of density ρ and the surrounding liquid
will be δρ = γz0, where γ = dρ/dz is the density gradient
in the surrounding liquid. To estimate the maximum
value of z0, we set w equal to the flow velocity u. Then,
equating the work of the particle against the buoyancy

forces  to its kinetic energy ρu2/2, we obtain

z0 = u/N, where N = (gγ/ρ)1/2 is the buoyancy frequency.
Substituting z0 into the expression for δρ, we find the
relative density differential in the form

(1)

In the laboratory experiments [4, 5], the velocity u var-
ied in a range 0.1–0.2 cm/s, and the buoyancy fre-
quency remained intact and equal to N = 1.1 s–1. Substi-
tuting these values in (1), we obtain ρ' = 1.1 × 10–4–2.2 ×
10–4, which is in a good agreement with the direct mea-
surements that yield the values 1 × 10–4–2 × 10–4.

The processes generating the density-type bound-
aries are universal, and the hydrodynamic similarity
makes it possible to extend the data of the laboratory
studies of flows around obstacles [1, 2, 4, 5] to similar
processes in the ocean, in the currents behind elevated
regions near the bottom, in shallow waters, and in the
shelf zone, especially if the currents are well developed
and the piknocline is sharp.
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To satisfy the similarity condition, one should
require that the product uN (and, correspondingly, ρ')
varies only slightly when the model conditions are
changed to the full-scale conditions. For the ocean, we
estimate the average buoyancy frequency at about 5 ×
10–3 s–1, which is less than the corresponding laboratory
value by a factor of about 200. Then, as follows from
(1), one obtains the full-scale value of ρ' the same as in
laboratory experiments for the velocities between 0.2
and 0.4 m/s, which are typical of the ocean. Conse-
quently, for the buoyancy frequency and the flow veloc-
ity characteristic of the ocean, the layers with the den-
sity differentials of the order of magnitude same as in
the laboratory basin will be formed in the wake behind
an elevation of height H > z0 = u/N. Additionally, taking
into account the fact that the laboratory salt solution
and seawater have nearly equal coefficients of molecu-
lar exchange (the thermal diffusivity kT and the salt dif-
fusion coefficient kS), we deduce that the thickness of
the transition region in full-scale conditions will be of
the same order of magnitude as in the laboratory basin.

Taking into account the fact that sea sonars use
wavelengths far exceeding the above value of 0.15
cm, it would appear reasonable that the reflectivity of
these layers will be as efficient as the reflectivity of
their laboratory analogs. Here, we deal with the coher-
ent specular reflection from a smooth solid layer
rather than with the scattering from a biological or
other-type suspension that also can cause coherent
scattering, especially if such a suspension is concen-
trated in a layer that is thin in comparison with the
wavelength. The most essential difference is that a
suspension scatters coherently not only in the specular
direction, but also in all other directions, including
backwards. Another difference lies in the relationship
between the coherent and incoherent components; for
a layer of discrete particles, this relationship depends
on the total particle number [7].

In a particular case of vertical sounding, the specu-
lar reflection from a solid layer is similar to the scatter-
ing from a layer with suspended particles, and both
types of scattering can be described by the same equa-
tion of underwater sounding [8]:

(2)

where Ir and I0 are the scattered and transmitted inten-

sities at the point of reception, J = 10 , n = (Is /Ii)0.5

is the scattering coefficient of the surface, Ii and Is are
the intensities of the incident and scattered waves at a
distance of 1 m, r is the distance of the scattering sur-
face from the sonar, A = 0.5cτΨr, c is the velocity of
sound, τ is the duration of the signal sample, 10  =
10  + 6.9, and θ is the angular halfwidth of
the directivity pattern.

In sea measurements, it is common practice to con-
sider that the scattering is caused by volume inhomoge-
neities whose dimension far exceeds the wavelength. For

10 Ir/I0( )log J 10 A 40 r,log–log+=

n
2

log

Ψlog
2θ/π( )log
this reason, the processing is performed according to
another algorithm that coincides with (2) only in the form

but where V = 0.5cτψr2 and 10  = 20  +
7.7 [8]. Thus, the scattering intensity Ir/I0 recorded at
the point of reception can be transformed into the vol-

ume (JV = 10 ) or surface (J) backscattering
strength, depending on the accepted model of scatter-
ing. These quantities are related through an obvious
relationship

(3)

which will be used below to transform the volume scat-
tering measure into surface scattering measure.

Thus, the data obtained in the laboratory conditions
point to the fact that the interaction of sea currents with
obstacles can form density discontinuities (boundaries)
contrasting in the field of sound scattering. The ques-
tion arises of what the contribution of these discontinu-
ities to the total scattering recorded by the sonar is.

In this connection, a topical problem is to theoreti-
cally investigate the scattering properties of a thin den-
sity-discontinuity layer formed in a stratified liquid and
developing according to the diffusion law. Because the
ocean is stratified in temperature and salinity, it appears
reasonable to investigate and compare the scattering
properties of both types of stratification.

We will consider a flat stationary layer whose strat-
ification parameter (temperature T or salinity S) is
described by a linear function of depth at the initial
moment and is deformed with time under the action of
diffusion. We will investigate the evolution of the layer
in the most general form, by using the equation of dif-
fusion ∂S/∂t = kS∆S, and formally change S and kS for T
and kT, respectively, to consider the temperature strati-
fication. This approach is applicable for sufficiently
thin layers of temperature and salinity discontinuity;
namely, for the layers whose width is below the mini-
mum internal scale of turbulence [9]. Below, we will
deal only with the type of layers that are smoothed out
according to laws of molecular diffusion.

We will assume that the gradient within the layer far
exceeds its values outside the layer, so that the liquid on
both sides of the layer can be considered as a homoge-
neous liquid with a constant salinity ±s (or temperature
±T) without loss of essential features. Then, the initial
distribution (at t = 0) for an interlayer of thickness δ
located at z = 0 in a medium occupying the depth inter-
val –∞ < z < ∞ can be given in the form:

(4)

10 Ir/I0( )log JV 10 V 40 r,log–log+=

ψlog 2θ/π( )log

nV
2

log

J JV– 10 n/nV( )2
log=

=  10 2θ/π( )log 10 r 1.2,+log+

S0

s,– ∞ z δ/2–< <–

z2s/δ, δ/2 z δ/2< <–

s, δ/2 z ∞.< <





=

ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000



SOUND SCATTERING BY DENSITY DISCONTINUITIES IN MEDIA 203
The current distribution at moment t is determined
by the known solution of the Fourier equation [10]

Substituting (4) in this equation and introducing the
quantities

(5)

we represent it as a sum whose terms are the canonic

expressions like the error function erf(x) = 2(π)–0.5 dx

and exponents. Omitting intermediate transformations,
we finally obtain the current distribution of salinity in
the form

(6)

The diffusion smoothes out and broadens the transi-
tion region with retaining the amplitude of the differen-
tial approximately constant and equal to 2s (see Fig. 1).
We specify the current dimensionless thickness as the
thickness corresponding to the threshold value of the
property under study 0.98. It can be shown that, for any
curve in Fig. 1, this thickness is achieved at the point
with the coordinate

(7)

which is the abscissa of the point of intersection of two
straight lines: the secant y = xerf(0.5/xc) and the asymp-
tote y = 1. In this case, the amplitude of the salinity drop
across the transition region will be δS = 1.96s ≈ 2s, and,
according to (5), the absolute width of the transition
region will be

(8)

For normal incidence of a plane sound wave, the
reflection coefficient of the smooth transition region
shown in Fig. 1 can be specified in the form [11, 12]

where ζ = (B2 – 0.25)0.5, B = kd/η, k = 2π/λ is the sound
wave number, and η = δR/R is the relative differential
of the acoustic impedance R = ρc (this differential is
determined by the corresponding drops in density δρ and
sound velocity δc through the relationship η = δρ/ρ +
δc/c). In liquid solutions, the absolute differentials of
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the properties are normally less than the corresponding
mean values by several orders of magnitude. Because
of this, we have ln(1 + η) ≈ η and B @ 1, which makes
it possible to reduce the formula for n to the form

(9)

The quantities δρ and δc involved in the expression
for η are expressed in terms of the differentials of tem-
perature δT or salinity δS. In the latter case,

where βρ = 0.8 × 10–3(‰)–1 and βc = 0.7 × 10–3(‰)–1.
In the case of a layer with temperature stratification,

one should replace βρ and βc by αρ = –0.2 × 10–3 deg–1

and αc = 2 × 10–3 deg–1, respectively.
Because interlayers are formed in the field of mass

forces, it is convenient to measure the amplitude of the
drop in the density units common for both types of
stratification. These units offer us a possibility of com-
paring the scattering levels of temperature and salinity
layers characterized by equal density differentials. Sub-
stituting δS = δρ/(ρβρ) and δT = δρ/(ραρ) in (9), we
obtain for the salinity and temperature layers, respec-
tively:

(10)

(11)

The current thicknesses dT and dS of the temperature
and salinity layers, respectively, are determined from
(8) taking into account (7) and (5).

Structurally identical formulas (10) and (11) are
given separately to emphasize the essential differences
in the dynamics of the scattering by temperature and

n 0.5η kd( )sin /kd .=

δρ/ρ βρδS,  δc/c βcδS,= =

nS 0.5 1 βc/βρ+( ) δρ/ρ( ) kdS( )sin /kdS,=

nT 0.5 1 α c/αρ+( ) δρ/ρ( ) kdT( )sin /kdT .=
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Fig. 1. Current distributions of salinity (S, curves 1 and 2)
and temperature (T, curves 3 and 4) calculated according to
expression (5) for δ = 0.1 cm. The time is 10 (curves 1 and
3) and 100 s (curves 2 and 4). Curve 5 is the secant y =
xerf(0.5/xc).
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salinity layers, which is evidenced by the behavior of
the time dependent scattering coefficient n(t) shown in
Fig. 2. For the initial parameters to agree with the
experimental data, their particular values—the wave-
length λ = 0.15 cm, the density differential δρ/ρ = 2 ×
10–4, and the layer thickness δ = 0.1 and 0.01 cm—were
taken from the laboratory experiments [4, 5].

As may be seen, appreciable scattering levels for
temperature and salinity layers correspond to radically
different temporal regions. The ratio of the scattering
amplitudes of temperature and salinity layers is nT/nS =
(1 + αc/αρ)/(1 + βc/βρ) ≈ 4.7 at the initial instant of time
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1.5

2.0

101 102 t, s10–1

1

2

3

4

1
3

1

0
50
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t, s100

2

1
23

Fig. 2. Scattering coefficient calculated for the wavelength
λ = 0.15 cm for salinity (curves 1 and 3) and temperature
layers (curves 2 and 4). The initial layer thickness is δ = 0.01
(curves 1 and 2) and 0.1 cm (curves 3 and 4).

Fig. 3. Scattering by the lower (curve 1) and upper (curve 2)
shells of the wake behind a two-dimensional cylinder.
Curve 3 presents the envelope of the amplitudes AS obtained
from formula (10).
(see (10) and (11)); this ratio becomes less than unity
already at the initial stage, and at the final stage (t > 50 s),
the scattering from the salinity layer predominates.

Note that the effect of the initial layer thickness on
the amplitude and phase of scattering gradually disap-
pears, so that, at later stages, the scattered field “for-
gets” the initial dimensions of the interlayers.

Figure 3 shows the experimental coefficient of the
vertical backscattering from the upper and lower
boundaries of the wake behind a two-dimensional cyl-
inder in water with salinity stratification. The curves
were obtained from the data of the laboratory experi-
ments [4, 5] by special processing. The following
parameters of echo sounding were maintained during
the experiments: λ = 0.15 cm; the pulse duration and
pulse repetition period were τ = 40 µs and 0.16 s,
respectively. The measured interlayer thickness (about
0.1 cm) nearly coincided with the resolution limit of the
electric conductivity sensor. An appreciable difference
between curves 1 and 2 in the high-frequency compo-
nents is caused by nonstationary oscillations of the
scattering direction due to the wave and weak vortex
motions of shells. It is clear that the selection of the
characteristic oscillations caused by the resonance val-
ues of thickness, which periodically occur in the pro-
cess of the diffusion expansion of the layer, presents a
difficult problem against this background. Neverthe-
less, the amplitudes and the general behavior of the
decay satisfactorily agree with the theoretical envelope
AS = 0.5(1 + βc/βρ)(δρ/ρ)/kdS (curve 3) of the reflection
coefficient of the salinity layer (curve 1 in Fig. 2),
which is evidence in favor of the diffusion mechanism
of the scattering evolution.

The theoretical curves in Fig. 2 clearly show the
temporal boundary τS separating the region where the
scattering by temperature layers predominates from the
regions where the scattering by salinity layers predom-
inates, the latter case corresponding to greater times.
From (10) and (11), it follows that, for equal density
differentials δρ/ρ, the ratio of the scattering amplitudes
for the salinity (AS) and the temperature (AT) layers ξ =
AS/AT = (1 + βc/βρ)dT/[(1 + αc/αρ)dS] can be repre-
sented as a function of a single argument χ = t/δ2 whose
dimension is inversely proportional to the diffusion
coefficient. Figure 4 shows the ratio ξ as a function of
χ. From this curve, it follows that τS/δ2 = 1236 s/cm2.
For the considered cases, i.e., δ = 0.01 and 0.1 cm, the
threshold time is 0.14 and 14 s, respectively; this quan-
tity rapidly increases with the initial thickness, which
could be considered as evidence in favor of the predom-
inant role of the scattering by sufficiently thick temper-
ature layers. However, because of the large values of kT,
the temperature layer soon reaches a certain thickness
l0 starting from which turbulent diffusion comes into
play [9]; as a result, the layer is smoothed out much
faster and finally looses its scattering properties.

It is reasonable to specify l0 as the internal scale of
turbulence l0 = {(–B(0)/2B''(0)}1/2 where B(r) is the
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
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correlation function of the flow velocities [13]. Accord-
ing to full-scale measurements [13], the scale l0 for the
ocean lies between 0.8 and 1.8 cm, and we can use l0 =
1 cm as a rough estimate. Figure 5 shows the layer
thickness d(t) versus time (in hours) for several values
of the initial thickness δ. One can see that for all δ < 1 cm,
the times required for the temperature and salinity lay-
ers to achieve the limiting thickness d = l0 = 1 cm are
about tT ≈ 0.02 and tS ≈ 2 h, respectively.

According to these considerations, we constructed
two curves n(t) for the characteristic frequencies 24 and
5 kHz (λ = 6.25 and 30 cm) commonly used in echo
sounding (Fig. 6). In constructing, we used the initial
density differential δρ/ρ = 2 × 10–4 and the initial thick-
ness 0.1 cm. Similar to Fig. 5, the temporal scale is
given in hours for the purpose of correlating them with
the actual observation times. The solid portions of
curves correspond to a region where the molecular the-
ory is applicable. Their analytical extensions corre-
sponding to the zone of turbulent diffusion are shown
by dotted curves. The temperature layer rapidly reaches
the zone of turbulent diffusion, where it is smoothed
out and looses the acoustical contrast. At the same time
frame a singular salinity interlayer is developed accord-
ing to the molecular diffusion law within a much longer
time and provides a considerably higher backscattering
coefficient.

Above, we mentioned that the equation of underwa-
ter sounding (2) does not describe the specular reflec-
tion excluding the particular case of vertical backscat-
tering. For this particular case, we can compare the the-
oretical scattering coefficients with the data of full-
scale measurements. To realize this comparison, one
should use formulas (3) to preliminarily transform the
full-scale data (generally given in terms of volume scat-
tering) to the coefficients of surface scattering. For the
case of vertical sounding, this transformation is equiv-
alent to replacing the layer of volume inhomogeneities
with a single reflecting surface that creates the scatter-
ing intensity at the point of reception Ir/I0 coincident
with the intensity of the scattering by volume inhomo-
geneities.

The horizontal dashed lines in Fig. 6 show the upper
and lower boundaries of the surface backscattering
(reflection) coefficient equivalent (in Ir/I0) to the vol-
ume scattering strength JV ranging from –90 to –80 dB;
these strengths correspond to those measured in certain
regions of the ocean at a depth of about 200 m at fre-
quencies of 24 and 5 kHz [8]. As may be seen, the scat-
tering level of the salinity transition region remains
within these boundaries during the time tS nearly coin-
cident with the actual duration of echo sounding.
Although the scattering from the temperature disconti-
nuity layer appreciably exceeds the upper boundary, its
duration tT is very short.

A consequence of this difference in the lifetimes
must be an appreciable difference of salinity and tem-
perature layers in the horizontal dimensions of the
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
acoustically contrasting zones. As an example, we con-
sider the case of a flow about a single extended obstacle
oriented across the flow.Such a configuration is analo-
gous to the laboratory flow behind a two-dimensional
cylinder (more precisely, to its upper half). In this case,
a sole surface of density discontinuity will be formed in
the wake, and its thickness will increase with the dis-
tance from the obstacle. The reflectivity of the surface
will be substantial only within the temporal interval of
the molecular diffusion, tS or tT, depending on the strat-
ification type. For the average velocity u = 0.4 m/s, the
size (along the stream) of the acoustically contrasting
zone will be utS ≈ 2900 m or utT ≈ 29 m for the salinity
and temperature stratification, respectively. The second
value is comparable with the transverse dimension of
the spot insonified by the sonar, while the first value far
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Fig. 4. Ratio ξ of the envelopes of the scattering levels of the
temperature and salinity layers with equal density drops ver-
sus χ = t/δ2. The abscissas of asterisks 1 and 2 are equal to
threshold times (in seconds) for the layers of thickness 0.01
and 0.1 cm, respectively.

Fig. 5. Current thickness of salinity (S) and temperature
(T) layers with the initial thickness δ = (1) 0.1, (2) 0.5, and
(3) 0.7 cm.
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Fig. 6. Scattering coefficients (10) and (11) of (1) salinity and (2) temperature layers for δρ/ρ = 2 × 10–4, δ = 0.1 cm, and λ = (a) 6.25
and (b) 30 cm. The dotted lines are out of the scope of the molecular diffusion approximation. The dashed horizontal lines show the
range of the reflection coefficient equivalent to JV from –90 to –80 dB.
exceeds this dimension. This fact can be essential in an
actual search for such inhomogeneities in the ocean.

To conclude, we list the main results.
A mechanism of the reflection from the density

boundaries that appear in the bulk of a stratified liquid
and develop according to the molecular diffusion laws
is proposed. The amplitude and dynamical characteris-
tics of scattering strongly depend on the type of strati-
fication. For the same initial parameters (the density
differential and the thickness), the initial backscattering
level of the temperature layer is 4.7 times higher than
the corresponding level of the salinity layer; however,
the salinity layers are characterized by a longer dura-
tion of scattering, which exceeds the corresponding
duration for the temperature layers by an order of mag-
nitude. For a salinity layer, the evolution dependences
and the amplitudes of scattering calculated in accor-
dance with the theory agree well with the results of the
laboratory experiments.

Theoretical results are extended to the full-scale
conditions with allowance for the turbulence of the
ocean. Because of the turbulence, the effect of the tem-
perature discontinuity on the scattering is significant
only at the initial stage. By contrast, the salinity layer
develops to its limiting thickness within a considerably
longer time interval, owing to which the duration of the
scattering appears to be about the actual duration of
measurements in the ocean, and the scattering ampli-
tude falls into the interval of the possible levels of sur-
face scattering.
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Abstract—In-sea studies are discussed on the effect of internal waves on the frequency interference structure of
the sound field propagating along a fixed path in the shelf zone of the Sea of Japan. The studies are based on the
continuous transmission of a sound signal frequency-modulated by a sinusoid in the frequency band 306–328 Hz.
The experiment includes synchronous measurements of the sound field and the water temperature at different
depths with the use of a vertical acoustical-hydrophysical measuring system installed 260 m away from the
source, at a point with a 38-m depth of water. It is shown that the intensity of sound signals with frequencies
differing by as little as 4% vary with different amplitudes, sometimes even in opposite phases, because of the
effect of internal waves. These differences are maximum at the depths corresponding to the interference minima
in the vertical distribution of the received sound field. © 2000 MAIK “Nauka/Interperiodica”.
In the propagation of sound waves generated by a
point source, an intricate space-frequency distribution
of the acoustic energy is formed in the sea waveguide.
This distribution is known as the fine interference
structure. The structure is stable if only coherent waves
participate in the superposition, and the methods of
acoustic interferometry [1] can be successfully applied
to monitor the dynamics of the water bulk and the
acoustic parameters of the bottom. In natural media,
the coherence may be destroyed by the fluctuations of
the refractive index, which affect the amplitude and
phase of the interfering waves. The experimental and
theoretical studies [2–7] showed that internal waves
(IW) significantly affect the sound propagation in the
irregular shallow-water waveguides which are typical
for shelf zones of tidy seas with a water density strati-
fication. The sound refraction and scattering due to the
sound speed inhomogeneities produced by IW lead to
the interaction of the propagating acoustic modes, and
this process may have a resonant nature [3]. The inter-
action causes an energy transport from lower to higher
modes and results in the “washing out” or disappear-
ance of the regular interference structure, and in a
more uniform insonification of the entire water col-
umn [4].

The effect of a nonlinear IW (a soliton) moving in
the waveguide on the propagation of pulsed sound sig-
nals linearly frequency-modulated within the band
1063-7710/00/4602- $20.00 © 20207
728–885 Hz was experimentally and theoretically stud-
ied by Konyaev et al. [5]. They showed that, in shallow
sea regions, even weak disturbances of the sound chan-
nel can lead to significant changes in the amplitudes of
the received signals. These changes can be caused by
the intermode interaction induced by the medium inho-
mogeneities, the amplitude variations in the received
sound signals depending on the distance to the inhomo-
geneity and increasing at most “sensitive” points on the
path.

The aforementioned facts show the importance of
special studies of the effect of IW on the propagation of
wide-band sound signals. Such studies are reported in
this paper.

The measurements were carried out at the shelf of
the Sea of Japan, on a fixed path 260 m in length [6],
with the sound transmitter installed at the depth 26 m
and a MOLLUSK-96 vertical acoustical-hydrophysical
measuring system placed at a point with the 38-m sea
depth. With this system, the acoustic pressure was mea-
sured simultaneuosly at eight horizons within the fre-
quency band 20–600 Hz, the hydrophones P.1, …, P.8
of the system being vertically spaced at 4.5 m from
each other. The measuring system was equipped with
five point temperature sensors to measure the water
temperature and with a 20-m-long resistor-type distrib-
uted temperature sensor (DTS) to monitor the varia-
tions in the mean temperature of the water layer. The
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Measured IW profiles ηin (DTS) and the variations of the intensity I and phase ϕ of sound signals at frequencies of 310 HZ
(solid curves) and 324 Hz (dashed curves).
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sound signal frequency-modulated within the band
306–328 Hz was continuously generated by the trans-
mitter. The modulation signal was a sinusoid of the fre-
quency 0.6 Hz. Autumn-like water stratification existed
along the path. The measurements illustrate the effect
of the internal tide and short IW on the frequency inter-
ference structure of the received sound signals at differ-
ent depths.

Figure 1 shows the experimental results obtained
on October 21–22, 1998. The synchronous sequences of
the acoustic data were entered into a computer, upon dig-
itizing with the sampling frequency fD = 1250 Hz. The
same procedure was performed with the temperature
data, the sampling frequency being fD = 78.125 Hz in
this case. After collecting 4096 samples from each
acoustic channel, the data input was terminated, and
the periodograms G(ω) and mean temperatures were
calculated with the use of the FFT algorithm. Com-
plex values of the periodograms were stored for the
chosen frequency band. These values were subse-

quently used to estimate the power spectra (ω), the
intensities I, and the phases ϕ of the acoustic signals
at the specified frequencies (see [7]). Then a new
cycle of data input began. In such a way, at time inter-
vals ∆t ≈ 7 s, the synchronous sequences for the fol-
lowing quantities were obtained: the water tempera-
ture measured with the integrating DTS instrument,
the intensity I and phase ϕ of the sound signals
received by the hydrophones P.1, …, P.8 at the chosen
frequencies, and the files of the values of G(ω) for the
frequency band 306–328 Hz.

In Fig. 1, plots of the IW profiles ηin(t) obtained
with the DTS are presented. According to these plots,
the wave of internal tide has filled the path with rela-
tively cold near-bottom water. The temperature differ-
ence between the surface and near-bottom water layers
increased up to 9°C (the temperatures measured by the
point sensors are not shown). Accordingly, the temper-
ature gradient in the thermocline also increased: it
became equal to about 1°C/m. The changes in the tem-
perature field significantly affected the propagation of
the sound waves. In Fig. 1, the variations of I and ϕ are
plotted for the sound signals with frequencies of 310

and 324 Hz. Figure 2 shows the sonograms (ω) for
the frequency-modulated sound signals received by the
vertical hydrophone array. These sonograms illustrate
the effect of IW on the frequency interference structure
of the sound field at different depths. Figure 1 shows
that the values of I measured for the signals whose fre-
quencies differ by as little as 14 Hz (4%) vary with dif-
ferent amplitudes, even in opposite phases (plots P.4 in
Fig. 1), and these differences are maximum for the
horizons that correspond to the interference minima in
the vertical distribution of the received sound field.
According to Fig. 1, the frequency dependence of the
signal phase of the IW-induced variations is much
weaker than that of the intensity.

Ĝ

Ĝ
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The effect of IW on the acoustic field is illustrated
by Fig. 2 for the frequency band 307–327 Hz. The

changes in (ω) are smallest near the bottom (P.1)
and near the sea surface (P.8, the depth 6 m). This phe-
nomenon is related to the features of the vertical inter-
ference stricture of the sound field. To prove this state-
ment, we present Fig. 3, which shows the results of the
vertical profiling of the cw sound field at a frequency
of 315 Hz. The profiling was carried out at two points
of the path, with the use of the BURUN-96 probe that
performs synchronous measurements of the sound
pressure, sound speed, and hydrostatic pressure [6].
These measurements were carried out on October 21,
1996, at 150 m from the sound source, at a point with
a 28-m sea depth (plots 1), and near MOLLUSK-96
(plots 2). During the measurements, nearly two-lay-
ered stratification existed on the path with the near-
bottom pycnocline, this situation being close to the
water stratification for the experiment at hand for the
time interval from 22.00, October 21 to 01.00, Octo-
ber 22, 1998 (see Fig. 1). According to the plot of I(z)
(the solid curve in Fig. 3), the interference maxima are
near the sea surface and bottom, while a deep mini-
mum exists in the pycnocline layer (see plot of C(z),
the solid curve). It is natural to expect that maximum
intensity variations of the sound field, which are
caused by IW propagating along the path, occur at the
horizons of the interference minima in the vertical dis-
tribution I, because these minima are significantly
narrower than the maxima, and the vertical displace-
ments of the pycnocline can lead to wider variations
of I(z) at these depths as compared to the depths cor-
responding to the relatively smooth interference max-
ima in I(z). The plots of ϕ(z) in Fig. 3 also agree with
the measurements illustrated by Fig. 1. The phase of
the sound signal decreases as the pycnocline rises to
the sea surface.

Let us consider the effect of a sole nonlinear IW on
the sound field in more detail. Figure 4 presents the
plots of ηin and variations of I and ϕ in the sound field
at frequencies of 307, 317, and 327 Hz. This data were
obtained at different horizons during the passage of a
sole internal wave (IW.1) along the path. The plots
show that the effect of IW.1 on the sound field exhibits
both frequency and vertical selectivity. The variations
of I are maximum for the interference minima in the
distributions I(z, ω) (see plot I(t) for the 317-Hz signal
received by the hydrophone P.2). The frequency depen-
dence of the signal phase variations is less pronounced
than that of the intensity variations. One can note that
the variations of ϕ are nearly in phase at different
depths, in agreement with the vertical profiles ϕ (see
Fig. 3).

The acoustic path was oriented along the typical
propagation direction for short IW in this shelf region
of the Sea of Japan [8]. According to Fig. 4, the crest of
IW.1 came to the acoustic path at 3.32 a. m. and, as the
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ϕ(z) plots show (in view of the fact that the signal phase
decreases as the IW cause the thermocline rise), passed
over the sound source at 3.32 a.m. It means that the
mean propagation velocity of IW.1 was about 0.22 m/s,
which, in view of the sea depth change from 38 m at the
observation point to 26 m at transmission one, agrees
both with the theory of IW and with the in-sea measure-
ments [8, 9]. Thus, the plots of Fig. 4 quantitatively and
qualitatively characterize the changes in the sound
field, which are caused by a sole IW propagating along
the acoustic path. From the profile ηin of IW.1, a spatial
scale can be estimated for the sound speed field inho-
mogeneity that propagates with the phase velocity of
the IW: ∆x ≈ 140 m, ∆z ≈ 4 m. The strong influence of
IW.1 on the propagation of the sound waves may be
explained by their resonant interaction with the “acous-
tic inhomogeneity” induced by the IW. The table sum-
marizes the results of a numerical experiment carried
out with the MOATL [10] computer code for the acous-
tic path that was similar to that of the in-sea experiment
in its geometry and water stratification. The wave num-

bers kn and the group velocities  =  were calcu-

lated for eight modes of the sound field with the fre-
quency 315 Hz. The calculations were carried out for
two cases: without any IW on the path and, with a dis-
turbance with spatial parameters of IW.1 formed in the
dependence C(x, z) of the water layer on the path near
the reception point.

The parameters of the propagating sound waves
were calculated in the adiabatic approximation,
neglecting the mode interaction. Nevertheless, the cal-
culations allow one to obtain quantitative estimates, to
explain the variations of the signal phase, which were
experimentally observed during the passage of the IW.1
soliton along the path (Fig. 4), and to estimate the pos-
sibility for the resonant interaction of the modes [3].
According to the calculations and measurements, we
have: hin ≈ λ, kin ≅  k1 – k3 ≅  k2 – k5. Here, hin is the height
of IW.1, λ is the acoustic wavelength, kin is the wave
number of IW.1, and kn is the wave number for the nth
acoustic mode. Hence, IW.1 could lead to the resonant
interaction of the first acoustic mode with the third one,
this interaction being accompanied by the transport of
the acoustic energy and changes in the space-frequency
interference structure of the sound field at the reception
point. The plots of I shown in Fig. 4 confirm the fre-
quency selectivity (resonance) in the interaction of the
sound waves with IW.1. According to the plots P.2 of
Fig. 4, the level of the 317-Hz signal decreased on aver-
age by 12 dB during the passage of IW.1 over the path,
the level of the 307-Hz signal decreased by 4 dB, and
that of the 327-Hz signal remained nearly unchanged.
The propagation of IW.1 along the acoustic path caused
variations of ϕ (see plots P.1, P.6, and P.8 of Fig. 4
within the time interval bounded by the two vertical

Vg
n( ) ∆ω

∆kn

--------
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lines). These variations corresponded to a more rapid
spread of the acoustic energy, though, on average,
more cold water came to the path (see the IW.1 profile
in Fig. 4). After IW.1 had passed over the sound
source, the signal phases measured at different depths
became nearly equal to those observed prior to the
passage of IW.1.
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36

23
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1503
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1477

1464
5 10 15 20 25 30 35
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2

1

Fig. 3. Vertical profiles of the sound speed C, intensity
I, and phase ϕ of the acoustic field at the frequency
315 Hz. The measurements of October 21, 1996, with the
BURUN-96 probe, at 150 m from the sound source
(dashed curves) and near the MOLLUSK-96 (solid
curves).
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Fig. 4. Profile of the IW.1 soliton (curve ηin) propagating along the acoustic path and the variations of the intensity I and phase ϕ of
the sound field at frequencies of 307, 317, and 327 Hz. The measurements with the MOLLUSK-96 system.
The numerically obtained results summarized in the
table agree with the in-sea experiment: Vg increased for
most acoustic modes propagating over the path where

IW.1 existed. Note that the maximum velocity  =Vg
2( )
1486 m/s corresponds to the second mode propagating
over the path without IW, while, in the presence of

IW.1, the third mode is the fastest (  = 1485 m/s) to

transport the acoustic energy, and its amplitude could

Vg
3( )
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become higher at the expense of the first mode owing
to their resonant interaction with IW.1.
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Table

Mode no. k, m–1
Vg, m/s

without IW with IW.1

1 1.31 1468 1468

2 1.28 1486 1484

3 1.27 1481 1485

4 1.26 1464 1466

5 1.24 1438 1440

6 1.21 1411 1413

7 1.18 1378 1379

8 1.14 1339 1339
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Abstract—The efficiency of a noise-reduction coating [1] consisting of passive oscillators arranged on a vibrat-
ing surface is studied in relation to the surface dimensions and curvature. Model calculations performed for
plane, cylindrical, and spherical surfaces show that, in the frequency range where the wave dimensions of oscil-
lators do not exceed the half-wavelength of sound in air, the efficiency of the coating remains the same as in the
case of a boundless plane surface performing pistonlike vibrations. © 2000 MAIK “Nauka/Interperiodica”.
Earlier, a noise-reduction coating consisting of
plane passive oscillators arranged on a radiating surface
in a checkerboard pattern was proposed [1]. The period
of the pattern D was less than the sound wavelength in
air. Owing to such an arrangement, in the frequency
range where the phase shift between the oscillator sur-

faces and the neighboring free areas is  ≤ θ ≤ π, the

initial surface distribution of vibration is transformed to
a periodic one (with the period D), which results in a
considerable reduction in sound radiation. According to
the results of both calculation and experiment, a coat-
ing consisting of oscillators of size d = D/2 = 0.025 m
on a plane surface of dimensions 0.7 × 0.45 m2 reduces
the radiated power in a given frequency range on aver-
age by 6–8 dB in a frequency band of 1.5–2 octaves.
This result offers strong possibilities for the practical
application of such coatings. In view of the interest
taken by many researchers and engineers in the devel-
opment of new types of sound-absorbing coatings and
methods of noise reduction in different structures [2–6],
it is worthwhile to study in more detail the efficiency of
the proposed coating [1] and to determine its depen-
dence on the dimensions and curvature of the radiating
surface.

The sound power was determined by the numerical
integration of the intensity I = P2/ρ0c0 over the surface
S1 of an imaginary hemisphere of radius r1 with the
origin at the center of the radiating surface S (r1 @ λ0,
r1 @ A2/λ0, where λ0 is the sound wavelength in air and
A is the maximum dimension of the surface S). The
pressure P at the surface S1 was calculated by the Helm-
holtz–Huygens formula [7]. For some specific cases of
this problem, numerical estimates were performed with
the use of the Green’s function taking into account the
diffraction and reflection of sound waves at the curved
surface of the radiating body. These estimates showed
that, owing to the integral nature of the sought-for radi-

π
2
--- 3

2
---
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ation power, the necessary calculations can be per-
formed in the high-frequency approximation by the
Kirchhoff formula:

(1)

Here, VS is the distribution of the normal component of
the particle velocity over the integration surface S. This
distribution is determined by the particle velocity of the
main surface within the free areas between the oscilla-
tors and by the particle velocity of the surfaces of the
radiating oscillators. The latter velocity is determined
from relation (12) of the cited paper [1]:

(2)

where VS0 is the particle velocity of the main surface at
the point corresponding to the geometric center of the
oscillator,  = ωh1/  is the wave thickness of the

elastic element of the oscillator,  = c1 (1 – jη1/2) is the
complex velocity of the longitudinal wave, m1 = ρ1h1 is
the surface mass of the elastic element, and m2 = ρ2h2 is
the surface mass of the undeformable plate attached to
the element and emitting sound from its outer surface.
It was assumed that the elastic element was made of
rubber of thickness h1 = 5 × 10–3 m (ρ1 = 750 kg/m3,
c1 = 46 m/s, and η1 = 0.2), and the relative mass of the
plate (ρ2 = 2.7 × 103 kg/m3 and h2 = 2 × 10–3 m) was
m2/m1 = 1.43. In plan, the oscillators and the free areas
between them have the form of squares of side d.

First, we determined the dependences of the coating
efficiency on the transverse wave dimension of a single
oscillator ξ0d (ξ0 = ω/c0 is the wave number in air) and
on the dimensions of the radiating surface. The geomet-
ric conditions of an efficient suppression of radiation

P M( ) 1
4π
------ e

jξ0rM

r1
------------VS jωρ0 n rM,ˆ( ) 1–cos( )[ ] S.d

S

∫=

VS1 VS0/ ϕ̃1
m2

m1
------ϕ̃1 ϕ̃1sin–cos 

  ,=

ϕ̃1 c̃1

c̃1
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were obtained analytically in the previous paper [1],
and they have the form: ξ0d ≤ π for a boundless plane
surface performing pistonlike vibrations and ξ0d ! I for
a surface of limited dimensions. In the first case, the
calculation was performed for an oscillating plane pis-
ton the dimensions of which, 1.4 × 1.0 m2, far exceeded
(by a factor of ten or more) the size d of the oscillator.
Figure 1 shows the frequency characteristics of the
coating efficiency expressed in terms of the reduction
in the total radiation power of the aforementioned pis-
ton for different oscillator dimensions d (curves 1–3).
For comparison, curve 4 shows the efficiency of the
coating (d = 0.025 m) mounted on a boundless surface
performing pistonlike vibrations. From the behavior
of the curves, one can conclude that, if the condition
ξ0d & 2.8–3.0 is satisfied, the efficiency of the coating
is in all cases the same as that obtained for a boundless
piston.

Figure 2 presents the dependence of the efficiency
of a coating consisting of oscillators with d = 0.025 m
on the wave dimension of the oscillator for different
values of the side A of the square oscillating piston.
Even in the case A/d = 2 (curve 3), when only one coat-
ing link including an oscillator and an adjacent free
area fits into the piston surface along its length and
width, the efficiency of the coating for all reasonable
values of the oscillator dimensions, ξ0d < 3.0, only
slightly (by 1–2 dB) differs from the efficiency at A/d =
56 (curve 1) that is fully coincident with the efficiency
of the coating on a boundless piston. The fact that at
ξ0d < 3.0 the effect of coating does not depend on the
dimensions of the radiating surface means that the
acoustic interaction between the oscillators and the free

1000 2000 3000 4000 5000 f, Hz

1, 4

2

3

15

10

5

0

–5

–10

∆L, dB

Fig. 1. Dependence of the reduction in the radiation power
of an oscillating piston of dimensions 1.4 × 1.0 m2 on fre-
quency for different transverse dimensions d of the oscilla-
tors applied to its surface. Curves 1, 2, and 3 correspond to
d = 0.025, 0.05, and 0.1 m, respectively. Curve 4 (coincident
with curve 1) corresponds to the efficiency of a coating con-
sisting of oscillators with d = 0.025 m on a boundless piston.
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surface areas, i.e., the interaction responsible for the
suppression of sound radiation, occurs to the same
extent within every pair containing an oscillator and an
adjacent free area. This testifies to the pointlike nature
of such a pair, which allows a local compensation of
the volume velocity of the free area vibration by the
antiphase component of the volume velocity of the
adjacent oscillator.

Next, we studied the efficiency of the coating in the
presence of one-dimensional and two-dimensional
radiating distributions of the particle velocity on a
plane surface of dimensions 1.4 × 1.0 m2. The one-
dimensional and two-dimensional distributions were
set in the form: Vs0 = V0sinξxxe–jωt (ξx < ξ0) and Vs0 =

V0sinξxxsinξyye–jωt (  + < ), respectively. In the
one-dimensional case, the calculations showed that at
ξ0d < 3 the periodic behavior of the velocity distribu-
tion and variations in its scale do not affect the coating
efficiency, which is coincident with that obtained for
pistonlike surface vibrations. This fact is explained by
the constancy of the amplitude and phase of the particle
velocity of the surface along the y axis. Owing to this
constancy, the acoustic interaction that occurs in the
oscillator–free area pairs oriented in a given direction is
of the same magnitude as in the case of the pistonlike
surface vibration. In the case of a two-dimensional
velocity distribution, a drop in the amplitude of the par-
ticle velocity of the main surface occurs at the shoulder
d of every interacting pair, and the magnitude of this
drop is different for different pairs. The deviation of the
drop for each specific pair from the average drop value
obtained for the entire surface determines the differ-
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Fig. 2. Dependence of the reduction in the radiation power
on the wave dimensions of oscillators for different values of
the side A of a square oscillating piston. Curves 1, 2, and 3
correspond to A = 1.4, 0.1, and 0.05 m, respectively. The
transverse dimension of the oscillators is in all cases d =
0.025 m; ξ0 is the wave number in air.
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ence in the coating effects at the surfaces with a con-
stant (piston) and sinusoidal spatial distributions of the
velocity amplitude. The maximum estimate of this dif-
ference has the form

(3)

where the value of ∆L does not exceed 2 dB for the
oscillator wave dimensions varying within the range
ξx, yd ≤ π/4. The results of calculations well agree with
this estimate. For example, for ξ0d < 3 and ξx, yd ≤ π/4,
the coating efficiency is practically the same as in the
case of the piston, and it decreases by 1–1.5 dB only
when ξx, yd approaches π/4. For the radiating compo-

nents of the velocity distribution, the relation  +  <

 is valid. Then, with allowance for the range of rea-
sonable values of the parameters ξ0d and ξx, yd, we can
expect a result similar to that mentioned above for the
case of a surface with an arbitrary spatial distribution of
the particle velocity. The experiment described in the
previous paper [1] demonstrated a high efficiency of the
coating on a flexurally vibrating plate excited in one-
third-octave bands of “white noise.”

The dependence of the coating efficiency on the cur-
vature of the radiating surface was determined for a
fluctuating cylinder (with nonradiating end-walls) and
a sphere. To make the comparison of the results more

∆L 20log
1

π2

8
----- ξ xd ξ ydsinsin+

ξ x ξ y+( )d ξ xd ξ ydsin–sin+cos
------------------------------------------------------------------------------,=

ξx
2 ξ y

2
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2
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Fig. 3. Dependence of the reduction in the radiation power
on frequency for the lateral surface of a fluctuating cylinder
of height 1 m and radius R = 0.22 m, and for an oscillating
flat piston of equal area (1.4 × 1.0 m2). Curve 1 corresponds
to the cylinder and the piston with the oscillators of size d =
0.025 m, and curve 2 corresponds to the same cylinder with
d = 0.05 m.
convenient, the surface areas of these bodies were taken
to be equal to the surface area of a flat piston of dimen-
sions 1.4 × 1.0 m2. Therefore, the 1 m-high cylinder had
the radius R = 0.22 m, and the sphere had the radius
R = 0.33 m. In the first case, the oscillators had the form
of squares of side d, and in the second case, they were
spherical quadrangles having the same area and formed
by intersecting parallels and meridians. Figure 3 illus-
trates the relative efficiency of the coating on the cylinder
for the oscillator size d = 0.025 and 0.05 m (R/d . 9
and 4.4, respectively). In the frequency range under
study, 0–6000 Hz (ξ0d & 3), the efficiency of the coat-
ing consisting of oscillators with d = 0.025 (curve 2) is
equal to that of the coating on a boundless piston
(curve 1). In the case d = 0.05 m, no difference in the
effects of coating is observed up to the frequency
3000 Hz, which also corresponds to the wave dimen-
sion of oscillators ξ0d & 3. In addition, despite the cur-
vature of the cylinder surface, which adversely affects
the conditions of the medium flow around a circle, the
coating efficiency close to the limiting one is also
retained for the cylinder at ξ0d > 3 up to almost 4000
instead of 3000 Hz observed in the case of the piston
(curves 2 in Figs. 3 and 1, respectively). This result is
explained by the fact that at ξ0d > 3 the interacting pair
consisting of an oscillator and an adjacent free area
cannot be considered as a point. Now, the previous
degree of compensation of the volume velocity of free
area vibrations can be achieved only when every free
area is surrounded by oscillators on all sides, and each
oscillator interacts with the free area only through the
adjacent part of its surface. In this case, partially uncom-
pensated sources of volume velocity appear along the
perimeter of the radiating surface, which leads to a
reduction in the coating efficiency. In the case of a piston,
the number of such uncompensated sources is greater
than in the case of a cylinder, because of the closure of
the cylindrical surface in the angular coordinate. Finally,
with the same dimensions of oscillators, the efficiency of
the coating on a sphere is coincident with that on a
boundless piston up to ξ0d . 4, which can be explained
by the absence of uncompensated vibrating areas owing
to the complete closure of the spherical surface.

Thus, the results of this study allow us to conclude
that up to the values ξ0d . 3, ξx, yd . π/4, the efficiency
of the noise-reduction coating in all cases considered
above is the same as in the case of a boundless plane
surface performing pistonlike vibrations. Then, to cal-
culate the reduction in the noise radiation power after
the application of the proposed coating, it is possible to
use formula (4) from the previous paper [1]:

(4)

Here, VS1/VS0 is the relative particle velocity of the
oscillator surface, and this quantity is determined by
relation (2).

∆L 10log
4

1
VS1
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2
----------------------.=
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Abstract—The paper discusses in situ indirect methods of fish target strength (TS) estimation in terms of pos-
sible improvements in the existing so-called “conventional” methods. In this context, the novel inverse tech-
niques (both iterative and direct)—most recently applied to the problem in question—were not analyzed but
only shortly reviewed along with the other indirect techniques. Instead, the emphasis was given to the newly
developed extensions of conventional methods. © 2000 MAIK “Nauka/Interperiodica”.
1 The solution of the problem of TS-estimation
requires finding the unknown probability density
function (PDF) of target strength from acoustic ech-
oes, which can be estimated by solving so-called “sin-
gle-beam single target integral equation,” relating
PDF’s of echo variable, target strength and beam pat-
tern of the echo sounder transducer. Depending on the
domain (logarithmic or absolute values) the equation
takes the form of the convolution or Fredholm equa-
tion of the first kind which, as was shown, can be rep-
resented by so called “Mellin convolution.” Two pos-
sible approaches, constituting the extensions in ques-
tion, were proposed for each domain, viz.: the
Characteristic Function Ratio method and the Dis-
crete Mellin Transform method. The target strength
PDF’s estimates derived from both methods using
simulations were also presented.

1. INTRODUCTION

To assess fish population estimates from echo inte-
grator surveys the reliable estimates of the average tar-
get strength (TS) or back-scattering cross-section (σbs)
of individual fish must be known to properly scale an
echo integration data to absolute estimates of fish den-
sity and hence biomass estimates [6, 8, 24]. Also, these
TS-estimates are required to calculate sampled volume
of echosounder when using the echo counting tech-
nique [13]. Additionally, variations in mean target
strength are thought to be among the dominant sources
of non-survey errors in acoustic population estimates
derived from echo integration [15].

There are three principal approaches to fish target
strength estimation [9]:

theoretical,

1 This article was submitted by the author in English.
1063-7710/00/4602- $20.00 © 20218
ex situ measures on dead or alive fish under con-
trolled (experimental) conditions,

in situ measures on free-swimming fish in their nat-
ural habitat.

As it is known [9, 10, 15], TS-data obtained from the
theoretical and ex situ methods are often not reliable
and consistent with in situ results as many factors are
likely to influence fish target strength (migration, aspect,
behaviors, physiological state) and may differ with
respect to time and place. Therefore, the measurement of
fish target strength in situ, is thought to be the most reli-
able and recommended estimation strategy [6, 12].

Figure 1 shows, that in situ methods of TS measure-
ment require removing the effect of unknown random
location of fish in the acoustic beam b(θ, ϕ) - i.e., beam
pattern factor, that can be achieved either directly from
each individual echo, or indirectly by processing col-
lections of echoes.

Direct methods are generally more complex and
costly than indirect techniques because they require a
special configuration of the echo sounder transducer pro-
viding multiple beam (dual-, split-, or quasi-ideal-beam)
and multi-channel echo sounder receiver [6, 15, 23].

Indirect methods are attractive because they use
the same single-beam echo sounder as used for rou-
tine echo integration surveys, but they require knowl-
edge of the transducer’s beam pattern and assume uni-
form distribution of fish in sampled volume of water
that might be often not the case [6, 9]. Indirect meth-
ods can be either parametric with respect to the target
strength probability density function (PDF), or non-
parametric [2, 7].

Graphical presentation of the relations between
PDF’s of three variables in question (i.e., echo value,
beam pattern and target strength) is shown in Fig. 2. In
logarithmic domain the measured echo level PDF pE(E)
000 MAIK “Nauka/Interperiodica”
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Fig. 1. The concept of in situ fish target strength estimation by direct and indirect methods in the context of removing of the beam
pattern factor.
results from the convolution of pB(B) and pTS(TS)
PDF’s.

(1)

In absolute domain the echo amplitude PDF pe(e)is
related with beam pattern pb(b) and backscattering
cross section pσ(σbs) PDF’s by a “single-beam” integral
equation:

(2)

Therefore, estimation of target strength PDF from
fish echoes requires deconvolution of (1), whereas esti-
mation of the PDF σBS from fish echoes requires solv-
ing of the integral equation (2).

pE E( ) pTS TS( ) pB E B–( ) TS.d

0

∞

∫=

pe e( ) pb b( ) p σ e b⁄( ) b b.⁄d

0

∞

∫=
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2. REVIEW OF EXISTING INDIRECT IN SITU
TS-ESTIMATION METHODS

2.1. Conventional Methods

According to common opinion indirect TS-estima-
tion methods had been introduced by Craig and Forbes
[3] who applied statistical correction of the measured
echo level PDF to the target strength PDF, using direc-
tivity PDF represented by circular areas covered by
cross-sections of the beam pattern. Matrix inversion
of the set of linear equations obtained in this way
leads to the solutions—the TS histogram, often unre-
liable and strongly dependent on the actual target
strength PDF [6, 15].

Ehrenberg was the next who formulated the inverse
problem of TS estimation in terms of a Volterra integral
equation of the first kind and used an nth-degree poly-
nomial approximation to solve it for the unknown σbs
PDF [6]. The unknown polynomial coefficients were
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Fig. 2. Typical form of beam pattern PDF, target strength PDF and echo PDF in (a, b, c) absolute and (d, e, f). Logarithmic domain.
evaluated simultaneously by a least square fit. The
drawback of the method is its ability to generate ill-
conditioned simultaneous equations for the higher
degree polynomials.

This method was modified by Robinson [21] by
subdividing the p(σbs) estimate space into a number of
sub-intervals and fits low order polynomials (of n < 3)
to the unknown σbs PDF. For the actual PDF’s with a
larger standard deviation (>2.5 dB) the simultaneous
equations to be solved may become ill-conditioned, as
in the Ehrenberg method, which may result in underes-
timating the mean target strength [21]. Robinson also
found that within his method, modal artifacts are possi-
ble due to fitting multiple cubics.

Petersen and Clay [2] introduced parametric
method, further modified by Ehrenberg, by using the
Rayleigh distribution to model the unknown p(σbs)
PDF. The technique adjusts the unknown parameter in
the Rayleigh distribution until this theoretical echo
amplitude PDF and measured histogram show closest
possible agreement. However, these techniques should
only be employed when the Rayleigh-distributed on-
axis amplitude holds. Ehrenberg [7] derived a general
expression for the beam pattern factor PDF, further
developed by Moszynski [19], and noted that the Ray-
leigh model is valid only for fish length to a wavelength
ratio greater than 25. Clay and Heist [2] found that two-
parameter Rice PDF was justified and that both fish
activity and length condition the Rice parameters.

Lindem [14] modified Craig and Forbes’ method by
setting all negative estimates to zero. He also correlated
fish length with modes in the indirect estimates.

Clay [1] formulated Craig and Forbes’ method in
terms of deconvolution of PDF’s. The “single-beam”
integral equation was first formulated in terms of volt-
ages and converted to a convolution integral by a
change of variables. The numerical deconvolution has
been implemented using the Z-transform polynomial
long division. However, the deconvolution of actual
data demonstrates oscillations and drifts in the results,
especially for small echo amplitudes and low signal-to-
noise ratio.

Miinalainen and Eronen [17] used a least-squares
method, but concluded that the use of non-negative least
squares for deconvolution was too time consuming and
subject to noise. Therefore, they used a modified singular
value decomposition (SVD) routine in which all negative
values in the solution were converted to zeros.

Rudstam et al. [22] used Clay’s deconvolution with
Rice PDFs fitted a posteriori to estimate fish target
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
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strength and density. The use of Rician PDF is ques-
tionable because bumpiness in deconvolved data could
be artifactual, but not the result of a combination of
Ricians (fitted for fish size groups).

Although deconvolution and related conventional
techniques often suffer from modal artifacts, (which
may be treated as a result of data undersampling) if
large sample sizes are provided, they offer better esti-
mates as negative values of estimates are then largely
avoided. On the other hand, a posteriori techniques and
parametric techniques presume knowledge of the fish
scattering model, which may not be available. There-
fore, they can be over-constrained by the target strength
PDF model and thus are not robust.

2.2. Novel Inverse Techniques Applied
to Target Strength Estimation

A class of inverse techniques, both iterative and
direct, recently applied for fish target strength estima-
tion is partly avoid of the problems of ill-conditioned
equations and matrix inversion, which deconvolution
and other conventional methods reviewed so far suffer
from. These techniques have been initiated by
Hedgepeth [12], who introduced the so-called Expec-
tation, Maximization and Smoothing–EMS methods.
Some other techniques introduced recently are: Regu-
larization [18, 28], Windowed Singular Value Decom-
position (WSVD) [11, 18], and Wavelet Decomposi-
tion [5, 26].

Expectation, Maximization and Smoothing
(EMS) performs its three-step iterative procedure on
the “single-beam” integral equation (1) transformed to
a linear matrix equation: z = Kx. In the first step the sta-
tistics of z(x) is estimated as a conditional expectation.
Second step calculates the maximum likelihood esti-
mates. The last, third step in every iteration, smoothes
solution x using Gaussian kernel with locally weighted
end points. The EMS constrains estimates to be positive
and reduces the time needed to converge by smoothing
groups of estimates per iteration [12].

Regularization method deals with the considered
linear inverse problems in terms of the reconstruction
of an unknown function f(·) (target strength PDF) out
of the observed function z(·) (echo PDF). Thus, the
“single-beam” integral equation can be transformed
to a linear operator equation: z(u) = (Kf)(u) + n(u),
where K is the linear operator (beam pattern PDF
matrix).

One way to solve this problem is to apply square
regularization introduced by Tichonov et al. [28],
according to which the solution estimate (target

strength PDF estimate vector) is obtained as:  =
(K*K + λI)–1K*z, where I identity matrix, K* transpose
of matrix K, λ regularization parameter, z vector of the
echo PDF, [26].

f̂ λ
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Singular Value Decomposition (SVD) as applied
to solution of ill-posed problems substitute a simple
operator inversion K–1 by the so-called “pseudo-
inverse” operator (K*K)–1K*, which leads to obtaining
a pseudo-inverse matrix which guarantees a solution
with a minimum mean-square error [16]. If the product
K*K is a linear operator, and if none of its singular val-
ues approximate zero, which is obtained by adequate
introduction of the weights, so that dividing by ele-
ments close to zero does not impact the stability of the
solution, the so-called Windowed SVD is obtained. The
simplest selection of weights is to assume wv = 1 for
small indexes v and wv = 0 for large v.

Wavelet Decomposition avoids the oscillations in
SVD estimates, which are inherent to sine/cosine
eigenfuntions of linear operators, by using other
orthonormal function sets that guarantee better approx-
imation with a smaller numbers of nonzero coefficients.
Wavelets are dilations and translations of certain func-
tion, called mother wavelet [5]:

ψj, k = 2j/2ψ(2jt – k).

Wavelet expansion of Kf is obtained as [26]: 

,

which leads to the estimate of the unknown function f:

where the product [y, ψj, k] has a sense of estimates 
of wavelets coefficients dj, k .

3. EXTENSION OF THE CONVENTIONAL
TS-ESTIMATION METHODS

3.1. Characteristic Functions Ratio Method

3.1.1. Logarithmic values domain (TS). Charac-
teristic function of random variable x represents the
Fourier transform (with reversed sign) of its PDF p(x):

(3)

The sum of two random variables z = x +  gives the
product:

(4)

Consequently, the unknown PDF of fish target strength
can be expressed by the inverse Fourier transform of the
ratio of characteristic functions of known PDF’s in
question:

(5)

Kf d j k, ψ j k,
k
∑

j
∑ K f ψ j k,,[ ]ψ j k,

k
∑

j
∑= =
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j
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d̂ j k,
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To avoid division by zero, the Fourier-Wiener [20]
method can be used:

(6)

Equation (6) can be also treated as a simple form of the
regularization procedure, where p is the regularization
parameter.

3.1.2. Absolute values domain (sbs). Characteristic
function of the product of two random variables z = xy
can be expressed as:

(7)

After changing the integration order and substituting
the variable, u = t/τ (7) can be rewritten as

(8)

that can be further reduced to the form:

(9)

where px(·) represents PDF of the unknown random
variable (σbs), ϕz and ϕy are characteristic functions of
the known variables, beam pattern (b) and echo (e).

The discrete form of (9) can be written as:

(10)

which leads to the matrix equation:

pTS x K–( ) F 1– ϕE ·( )ϕB
* ·( )

ϕ ·( ) 2 p+
--------------------------

 
 
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, p 10 5– .≈=
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t
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-- 

  τd
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∫ x.d
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ϕ z ω( ) 1
τ
--- px τ( ) e jωτu py u( )τ ud

∞–
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∫ τd

∞–

+∞
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ϕ z ω( ) px τ( )ϕ y ωτ( ) τ ,d

∞–

+∞

∫=

ϕ z i( ) ϕ y ni( ) px n( ),
n

∑=

:

ϕ z 2–( )
ϕ z 1–( )
ϕ z 0( )
ϕ z 1( )
ϕ z 2( )

:

=

(11)

Equation (11) can be reduced to following a form
confined to the part of non-negative indices as the
domain of actual PDF’s of the echo and beam pattern
variables is the non-negative numbers set.

(12)

The unknown PDF estimate can be obtained by the
matrix Φy inversion

(13)

where the Φb matrix is the characteristic function of
beam pattern PDF, and the ϕe vector is the characteris-
tic function of echo PDF.

Φb is the sparse matrix due to decreasing number of
non-zero elements in successive rows. This fact implies
singular features of the matrix and undesirable infor-
mation reduction in the successive elements of the out-
put vector (ϕe). As a remedy the oversampling of data
in characteristic function domain (by substantial zero
padding in PDF domain) can be applied. Figure 3
shows characteristic functions of random variables in
question (b, σbs, e) - corresponding to their PDFs from
Fig. 2.

3.2. Discrete Mellin Transform (DMT) Method

Estimation of the backscattering cross-section σbs

from fish echoes requires solving a “single-beam” inte-
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gral equation (2) which represents the PDF of echo
expressed as the product of two random variables z = x :

(14)

Equation (14) rewritten for acoustic variable (e =

b ) comes down to a pair of equations:

(15a)

or

(15b)

which can be solved with the use of the Mellin trans-
form defined as [18]:

(16a)

(16b)
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In the domain of the Mellin transform, (14) takes the
form of a transforms product:

(17)

which leads to the solution of (14) in the form:

(18)

Due to the analogy with the convolution integral,
which for the Fourier transforms corresponds to the
transforms product, the integral (14) was called the
“Mellin convolution” which in the domain of the
PDF’s can be written as:

(19)

where the asterisk symbol  marks “Mellin convolu-
tion” as defined by (19).

Numerical computations of Mellin transform by
FFT algorithms [18] leads to a non-uniform sampling
of PDF’s. The problem can be avoided if we notice that
the direct Mellin transform resembles the formula for
moments of PDF. Hence, if f(x) represents the PDF of a
random variable taking positive values and the complex
variable s belongs to the set of natural numbers s ∈  {N},

FZ s( ) FX s( )FY s( ),=

f x x( ) } 1– } f z z( ){ } } f y y( ){ }⁄[ ] .=

f z z( ) f x x( )M
* f y t( ) f x x( ) f y z y⁄( ) x x,⁄d

0

∞

∫= =

*
M
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then the Mellin transform represents a series of
moments: of the random variable x:

(20)

In the case of discrete random variables, the system
of equations can be generalized by introducing a dis-
crete Mellin transform (DMT), which on the real posi-
tive semi-axis represents a sampled continuous Mellin
transform. Hence we have:

(21)

On the other hand, the same moments of the random
variable x can be computed with the use of the mean
value estimator for realizing the random variable:

(22)

Considering the formula (18) and treating the
moments as discrete Mellin transforms, we obtain the

F s( ) xs 1– f x( ) xd

0

∞

∫ ms 1– .= =

F n( ) xi
n 1– f xi( ).

i 1=

N

∑=

mn
1
N
---- xi

n.
i 1=

N

∑=
relation, which links the moments of the three variables
in question:

(23)

where mz represents a series of moments of the mea-
sured echo amplitude (“off-axis” voltage), which can
be computed using the estimates given in (22). The
series my represents the moments of the beam pattern
PDF, and can be obtained with the use of the DMT. The
result of dividing the above moments gives the first
solution stage, which is knowledge of moments mx of
the unknown backscattering cross-section (“on-axis”
voltage).

Figure 4 illustrates the described concept of using
the Mellin Transform, along with statistical moments
of random variable σbs as applied to the estimation of its
PDF. The presented 2D plot of Mellin transform on a
complex plane s = α + jβ refers to the Rayleigh PDF of
the parameter σ = 0.5. Note that the zero- and first-
order moments of the considered PDF are represented
by samples of the Mellin Transform plot at α = 1 and
α = 2, respectively.

In the second (inverse transform) stage, the unknown
PDF estimate is reconstructed from moments. Consider-
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Fig. 4. Discrete Mellin Transform of Rayleigh PDF and interpretation of its moments.
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ing the definition of moments of the discrete random
variable:

(24)

this problem requires solving Vandermonde’s matrix
equation:

, (25)

in which mx is the moment estimates of unknown PDF,
xj are the predicted centers of the histogram bins,
Px(xi) – estimates of unknown PDF. The matrix (25) is
ill conditioned because the matrix on the left side of the
equation generally does not have to be a square matrix
and both the Gaussian elimination method and the LU
decomposition give incorrect solutions [18]. One
method of solving this problem is application of the
singular value decomposition SVD that leads to obtain-
ing a pseudo-inverse matrix that guarantees a solution
with a minimum mean-square error. By writing (25) in
the general matrix form:

Xp = m (26)

we can get the solution

p = X#m, (27)
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where matrix X# is a pseudo-inverse matrix computed
numerically using the SVD algorithm:

(28)

in which the matrices U, V are orthonormal, and the
diagonal matrix S represents the singular values of
matrix X. Equation (27) simultaneously represents the
matrix form of an inverse discrete Mellin transform,
optimal in the sense of minimizing the mean-square
error.

4. RESULTS

Due to the singular features of the beam pattern
characteristic function matrix (sparse matrix, see Sec-
tion 3.1.2), the estimates of target strength PDF
obtained from the Characteristic Function Ratio
method can be unreliable and inaccurate [18]. Due to
these reasons the following results are confined only to
the second of the considered methods, viz., the Discrete
Mellin Transform along with SVD.

Figure 5 shows the simulation results of testing the
performance of the DMT as applied to estimation of σbs
PDF. In the experiment, the Rayleigh pseudo-random
generated histogram was used as an estimate of σbs
PDF. Function fz obtained as the result of “Mellin con-
volution” contains visible effects of an inverse Mellin
transform calculated with the use of a pseudo-inverse
matrix. On the other hand, the last plot in Fig. 5, show-
ing a reconstruction of the original PDF, demonstrates
slight artefactual modes or oscillations, which appeared
for a larger estimate values region, but it also demon-
strates the smoothing character of the operation [18],

X USVT U[ ]diag si( ) VT[ ]= =

X# US 1– VT U[ ]diag 1 si⁄( ) VT[ ] ,= =
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Indirect in situ methods

Single-target statistical approaches

A. Non-parametric statistics

i. logarithmic domain (and dB)

a. deconvolution and Craig–Forbes

b. matrix inversion techniques

i. Tikhonov regularization

ii. WSVD (weighted singular value decomposition)

iii. wavelet decompositions

c. iterative techniques

iv. EMS deconvolution

v. maximum entropy regularization (MER)

d. piecewise polynomials

ii. intensity domain

a. matrix inversion techniques

i. Tikhonov regularization

ii. WSVD

b. iterative techniques

i. EMS

ii. MER

 c. piecewise polynomials

a. matrix inversion techniques

b. EMS

c. piecewise polynomials

d. DMT (discrete Mellin transform)

i. Rayleigh PDF

a. incomplete gamma

b. least squares

ii. Rice PDF

a. least squares

 iii. polynomial (i.e., cubic)

a. least squares

B. Parametric statistics

 iii. voltage domain

Fig. 6. Revised classification scheme of indirect in situ target strength estimation methods.
and correct location of the main modal value of the esti-
mated PDF’s.

In the simulation, the approximation of the main-
lobe beam pattern was used as presented in [19]:

(29)b θ( ) 1 1 2 γ––( ) 1 θcos–( )
1 θ3dBcos–
---------------------------– 

 
1
γ
---

.=
The exponential coefficient γ was fitted to be equal
–0.1, which allows one to derive from (29) the follow-
ing approximation of beam pattern PDF:

(30)

where k is the normalization constant.

pb b( ) k

b1 γ–
----------,=
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Equation (30) allows for the construction of the
beam patter PDF matrix to be a kernel of linear equa-
tion (19) in question.

5. CONCLUSIONS
The analysis of the performance of the recently devel-

oped state-of-the-art inverse techniques for fish target
strength estimation as compared to the conventional
methods was carried out by the author of this paper in
[25] and [26], using the TS-PDF’s estimates obtained as
well from the experimental data (acoustic surveys) as
from simulations. This comparison shows the apparent
improvement achieved by introducing the novel methods,
which come, however, at the cost of using much more
sophisticated and complex computational techniques.

On the other hand, as it was shown in this paper,
some improvements in extending the conventional indi-
rect methods of fish TS-estimation, such as the applica-
tion of the Discrete Mellin Transform with SVD or
characteristic function ratio method are still possible.
These, and other potential methods, may result in rela-
tively easy obtaining reliable TS-estimates quite easily,
without having to introduce demanding and elaborated
inverse techniques.

To conclude this paper, some revisions of the target
strength estimation methods classification scheme, as
introduced by Foote [9], is proposed in order to include
the two methods introduced in the paper, along with the
discussed newly developed inverse techniques. The pri-
mary changes included in refer to:

(1) addition of the DMT (Discrete Mellin Trans-
form) method to the voltage domain,

(2) placement of MER (maximum entropy regular-
ization) along with the EMS method, labeled by the
author as iterative methods in a logarithmic domain,

(3) addition of the WSVD (windowed singular value
decomposition) method to matrix inversion as a sub-
class,

(4) addition of the Wavelet Decomposition method
to the same class of matrix inversion. Other changes
generally follow Hedgepeth’s [12] suggestions and
include the addition of the voltage domain, the inclu-
sion of Craig–Forbes and deconvolution in the same
sub-section, and the possibility of fitting the Rice PDF
in parametric estimation (as opposed to a posteriori).
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Abstract—From perturbation theory methods, eigenfunctions of acoustic modes in a layered medium with
a horizontal current are calculated correct to the first order in the Mach number. Formulas are given for the
wave number and for the coefficients of the expansion of the eigenfunctions of a moving medium in the
eigenfunctions of a stationary medium. On the basis of these formulas, an expression for the wave number
is obtained correct to the second order in the Mach number. An example illustrating the resulting formulas
is presented. © 2000 MAIK “Nauka/Interperiodica”.
The calculation of the eigenfunctions and eigenval-
ues of acoustic modes in a moving, vertically stratified
medium is reduced to a not self-adjoint spectral prob-
lem [1]. In the general case, the solution of such a prob-
lem by the known methods requires the use of cumber-
some algorithms (see, e.g., [2]) and high-performance
computers. Meanwhile, in ocean acoustics, the ratio of
the typical current speed to the sound velocity (the
Mach number) is small, which allows one to use the
perturbation theory. However, in spite of the large
amount of results obtained in the approximation of a
small Mach number (see, e.g., reviews in [2, 3]), the
perturbation theory for the above spectral problem was
not constructed. However, it is worth noting Godin’s
paper [4], where the formula for the wave number per-
turbation was obtained in connection with the calcula-
tion of the mode group velocity.

As is shown below, in the first approximation of the
perturbation theory, the initial problem consists only of
solving the spectral problem for a stationary medium
and to numerical integration. Formulas obtained for the
wave number and the vertical eigenfunctions of a mov-
ing medium allow one to derive the formula for the
wave number correct to the second order in the Mach
number. The accuracy reached with this method is quite
sufficient for many specific applications in ocean
acoustics, since it is consistent with the accuracy and
the volume of the usual experimental data for the
medium parameters. As a specific area of application of
our results, we keep in mind the mode tomography [5].
For illustrating the formulas derived, we present a sim-
ple example, where the approximations obtained for the
wave number are compared to the approximation for
the effective sound velocity [6].
1063-7710/00/4602- $20.00 © 20228
We will solve the spectral problem for acoustic
modes in a layer –H ≤ z ≤ 0 of a stratified medium with
a horizontal current [1]

(1)

where ρ = ρ(z) is the density, n(z) = 1/c(z) is the refrac-
tive index, c = c(z) is the sound velocity, k is the wave
number, β = 1 – kv, and v = v(z) is the current speed.
All variables were made dimensionless with the use of
the scales of length  = /ω, time ω–1 (ω is the circular
frequency and  is the typical sound velocity), and den-
sity  (the typical value of the density). We assume that
the parameters ρ, n, and v are piecewise, continuous
functions of z with discontinuities at z = –hj , j = 1, …,
N, and at these points the internal boundary conditions
must be fulfilled:

(2)

Here, the plus sign marks the values of variables at the
point z = z0, from above, i.e., at z > z0, and the minus
sigh marks the corresponding values from below with
respect to the boundary under study.

Let us denote the discrete spectrum of problem (1),
(2) by {jk; j = 0, 1, …} and the corresponding eigen-
functions by {jφ; j = 0, 1, …}. We will consider only
the eigenvalues l k of multiplicity 1, and, for the corre-
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sponding eigenfunctions, we will adopt the normaliza-
tion condition

(3)

This formula is derived from two requirements (see
[7]): the insolvability of the boundary value problem
for associated functions [8] and the coincidence of
expression (3) with the conventional normalization
condition for a stationary medium at β = 1. We note
that, in spite of the inclusion of internal boundary con-
ditions (2) in our case in contrast to [1, 9], the normal-
ization condition obtained above coincides with that
presented in [9].

Let us introduce a small parameter M (the Mach num-
ber) and assume that the following expansions take place

(4)

Substituting these expansions in (1) and (2) and sep-
arating the terms according to the order of M, in the
order O(1), we obtain the spectral problem for the
modes of a stationary medium

(5)

with the internal boundary conditions at z = –hj , j =
1, …, N

(6)

As is known, in the Gilbert space (–H, 0), the
functions {jφ0; j = 0, 1, …} form a complete orthogonal
system of functions square-integrable with the weight-
ing function 1/ρ within the interval [–H, 0], which is
also assumed to be normalized:

(7)

where δij is the Kronecker delta.
Let us fix the number l and assume that lk is the eigen-

value of multiplicity 1. In the order O(M), we obtain

(8)
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with the boundary conditions

(9)

and the internal boundary conditions

(10)

at z = –hj, j = 1, …, N.
We solve problem (8)–(10) for lφ1. Using the com-

pleteness of the system {jφ0; j = 0, 1, …}, we seek the
solution as

(11)

In this case, as usual, we have

In order to determine laj, we multiply (8) by lφ0/ρ and
integrate from –H to 0. Twice integrating by parts the
left-hand side of the equation obtained and transform-
ing its right-hand side with the use of (5) and the inte-
gration by parts, with allowance for (10), we obtain

(12)

Equation (12) allows us to determine laj at j ≠ l. In the
case j = l, this equation is the condition of solvability of
problem (8)–(10) (Chapter XI in [10]) and gives the
expression for lk1.

To determine lal, we expand (3) in powers of M. In
the order O(1), we obtain the normalization condition
from relationships (7), and, in the order O(M), we
obtain the equation

Substituting the expression for lφ1 from (11) in this
equation, we obtain the equation for lal:

(13)

In addition to normalization condition (3), the solu-
tions to problem (1), (2) also satisfy the orthogonality
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Results of calculations for the illustrative example

M l lk0 lk lk(M) lk(M2) lkpade lkeff

0.005 0 9.29296 8.96806 8.93737 8.96855 8.96604 8.96478

0.005 1 8.16210 7.95971 7.96359 7.96074 7.96070 7.95689

0.001 0 9.29296 9.22308 9.22184 9.22309 9.22307 9.22082

0.001 1 8.16210 8.12227 8.12240 8.12228 8.12228 8.12171
condition in the form considered in [1], although our
case differs from that considered in [1] by the presence
of the internal boundary conditions. Note that the
approximate expressions for lφ0 + Mlφ1 satisfy this con-
dition correct to O(M2).

Let us present some results for higher order
approximations. The solvability condition for the
boundary value problem in the order O(M2) yields the
formula for l k2:

(14)

Solving the problem in the order O(M2) in just the same
way as for the first approximation, we can obtain the
formulas for the second-order corrections to the eigen-
functions, but these formulas are too complicated for
practical use.

The second-order approximation in M for lk allows

one to construct the Pade approximation  (Chapter 8
in [11]):

(15)

On the basis of formulas (12)–(14), the calculations
are easily performed without any cumbersome compu-
tations. In this case, most eigenfunctions of problem
(5), (6) can be calculated after applying the Godin
transformation [1, 12] in the WKB approximation [13].

Now, we present an example illustrating the formu-
las obtained above. Let H = 1, ρ(z) =1, and n(z) = Nπ,
where N is a constant,
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=

Then, jk0 = (π/2) , jφ0(z) =

sin((π/2)(2j + 1)z),

where

and the constant Ä is found from the normalization
condition (3).

The eigenvalue lk is found as a root of the transcen-
dental equation

(16)

We compare the approximation for lk with the approx-
imation of the effextive sound velocity lkeff [6], which
is calculated as the wave number for a stationary
medium whose refractive index n is replaced by neff =
n/(1 + Mun). For this example, lkeff is the root of the
transcendental equation

(17)

where c = 0.5  and d = 0.5 . Figure 1
and the table exhibit the calculation results for the first
and second modes for N = 3. In the table, the following
notations are used: lk(M) = lk0 + Mlk1 and lk(M2) = lk0 +
Mlk1 + M2

lk2.
Figure 2 presents the relative errors of various

approximations for the wave number versus the Mach
number. The errors were calculated from the formulas
δ1 = |lk(M) – lk|/lk, δ2 = |lk(M2) – lk|/lk, δpade = |lkpade –
lk |/lk, and δeff = |lkeff – lk |/lk. It is pertinent to call atten-
tion to the behavior of the relative errors of the Pade
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Fig. 1. Results of calculations for the illustrative example. (a) The first mode: 0φ0 (dashed line), 0φ (solid line), and 0φ0 + M0φ1 (dot-
ted line). (b) The second mode: 1φ0 (dashed line), 1φ (solid line), and 1φ0 + M1φ1 (dotted line).
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Fig. 2. Relative errors versus the Mach number M for the illustrative example. (a) The first mode: δ1 (solid line), δ2 (dash line), and
δeff, ‘+’ – δpade (dotted line). (b) The second mode: notations are the same as in (a).
approximation, which points to a poor convergence of
the asymptotic series in this interval of the Mach num-
bers. Therefore, we can assume that higher approxima-
tions will provide no significant improvement in accu-
racy. It is of interest and somewhat unexpected that
even the first approximation of the perturbation theory
for the example under study is more correct than this
approximation in the interval of small but significant
values of the Mach numbers. Equations (16) and (17)
were solved with the use of the MAPLE software
package.

In closing, we briefly summarize the contents of the
paper. By the methods of the perturbation theory, the
eigenfunctions of acoustic modes are calculated in a
layered medium with a horizontal current. Formulas
(12) and (13) are derived; these formulas determine the
wave number and the coefficients of the expansion of
the eigenfunctions of a moving medium in the eigen-
functions of a stationary medium correct to the first
order in the Mach number. On the basis of these results,
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000
expression (14) is obtained for the determination of the
wave number correct to the second order in the Mach
number. For a simple example, the exact and approxi-
mate values (correct to the first and second orders) of
the wave numbers were obtained for two values of the
Mach number M = 0.001 and M = 0. 005 (table), as well
as the eigenfunctions (exact and approximate ones) for
M = 0.005 and the relative errors of various approxima-
tions in the interval 0.0005 ≤ M ≤ 0.01 of the Mach
numbers (Fig. 2). The results of calculations testify to a
fair accuracy of the proposed method.
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The interest taken by researchers in this problem
is connected with the studies of the acoustic proper-
ties of optical fibers. Acoustics of multilayer fibers
(in particular, optical fibers) is still a topical subject,
as it follows from the works by Tchepe et al. and
Noyfeh and Nagy [1, 2]. It is well known that an opti-
cal fiber consists of a glass core and a polymer pro-
tective coating. The radius of the glass core R is usu-
ally about 50–150 µm, and the coating thickness H is
about 50–500 µm.

Two of the most important functional properties of
optical fibers are their reliability and service life. These
properties are determined by the mechanical state of
the fiber core. The polymer coating performs a protec-
tive function increasing the compliance of the whole
design and preventing the formation of cracks in the
core.

According to Lipatov [3], an intermediate layer is
formed at the polymer–glass boundary. The properties
of this layer differ from the bulk properties of the poly-
mer material. The mechanical protection of the core by
the coating must depend on the quality of the contact
between polymer and glass and, hence, on the proper-
ties of the intermediate layer. According to the esti-
mates given in the literature [3], the thickness of such a
layer is about 1–5 µm. The possibility of the existence
of such a boundary layer has not been taken into
account in the previous studies [4]. The purpose of this
paper is to study the effect of the boundary layer on the
acoustic properties of optical fibers.

Our area of interest is the low-frequency range,
namely, the frequencies at which the wavelength of
sound propagating in the fiber far exceeds the trans-
verse dimensions of the fiber. To describe the fiber
dynamics in the low-frequency range, We can use sim-
plified engineering equations. In the case of longitudi-
1063-7710/00/4602- $20.00 © 20233
nal sound waves propagating along the fiber axis, these
equations have the form

(1)

(2)

where ρ' and ρ'' are the densities of materials of the core
and the coating; E' and E'' are the Young’s moduli of the

core and coating materials; and  and  are the par-

ticle displacements in the core and the coating along the
fiber axis; the z axis coincides with the fiber axis;

Fconn is the tangential force acting in the intermediate
layer. The value of Fconn can be calculated approxi-
mately as

(3)

where  is the average value of the ratio of the shear

modulus of the intermediate layer of the fiber to its
thickness.

We seek the solution of equations (1) and (2) in the
form of waves propagating along the fiber axis, i.e., in
the form

(4)
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in both the core and the coating of the fiber. Here, ω is

the oscillation frequency, k =  is the wave number,

and λ is the wavelength.

Substituting expressions (3) and (4) into equations
(1) and (2), we obtain

(5)

(6)

These equations represent a system of homoge-

neous equations for  and . The condition of non-

2π
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Fig. 1. Dispersion curves for three-layer waveguides with
intermediate layers of different elasticity.
triviality of the solutions of this system has the form

(7)

where  = ,  = , and  =

.

Let us use the following notation:

Then, we obtain

(8)

(9)

Substituting expression (9) into expressions (5) and
(6), we obtain:

(10)

where

The results of solving equations (5) and (6) are pre-
sented in Fig. 1 in the form of dispersion curves. The cal-

culations were conducted for the values ρ' = 2520 ,

ρ'' = 1150 , E' = 75 GPa, and E'' = 2.5 GPa taken

from handbooks and the values  = 0.02, 0.11, and

0.36  (Figs. 1a, 1b, and 1c, respectively).

As one can see from the figure, the frequency spec-
trum of a three-layer waveguide in the considered fre-
quency range has two branches corresponding to two
waves, which can propagate in such a waveguide.

ω4 ω2
c1

2
c2

2
+( )k

2 ω0
2

+[ ]–

+ k
22πRµ'''

h
-----------------

c2
2

ρ'S'
--------

c1
2

ρ''S''
----------+ 

  k4c1
2
c2

2
+ 0,=

c1
2 E'

ρ'
---- c2

2 E''
ρ''
----- ω0

2

2πRµ'''
h

----------------- 1
ρ'S'
-------- 1

ρ''S''
----------+ 

 

η ω2
,=

2m c1
2

c2
2

+( )k
2 ω0

2
,+=

q k
22πRµ'''

h
-----------------

c2
2

ρ'S'
--------

c1
2

ρ''S''
----------+ 

  k
4
c1

2
c2

2
.+=

η2
2mη– q+ 0,=

η1 2, m m
2

q– .±=

Uz' 1 2,( )

Uz'' 1 2,( )
---------------------

ρ''S'' c2
2

c1
2

–( )k
2 ω0

2

2
------ SQR±+

ρ'S' c1
2

c2
2

–( )k
2 ω0

2

2
------ SQR±+

--------------------------------------------------------------------,–=

SQR

= c1
2

c2
2

–( )
2k

4

4
----

ω0
4

4
------ c2

2
c1

2
–( )k

2πRµ'''
h

-------------- 1
ρ'S'
-------- 1

ρ''S''
----------– 

 + + .

kg

m
3

------

kg

m
3

------

µ'''
h

------

GPa
m

-----------
ACOUSTICAL PHYSICS      Vol. 46      No. 2      2000



AXISYMMETRIC NORMAL SOUND WAVES 235
We can also obtain a solution for a two-layer
waveguide within the framework of the proposed model

by performing the passage h  0, i.e.,   ∞,

in equation (3), and, as the constraint force cannot
acquire infinitely large values, we have to assume that

 = . Such a model was studied earlier by Dowell
and Tauchert [5].

The dispersion curve obtained as the result of solv-
ing the equations of motion of a two-layer waveguide is
given in Fig. 2 in the same frequency interval and for
the same values of mechanical and elastic parameters
of the waveguide. As one can see from this figure, the
dispersion curve has one branch in this case.

The main result of this paper is the conclusion about
the existence of two types of axisymmetric waves prop-
agating in a three-layer waveguide. This conclusion
seems to be quite logical, because it is well known that
a set of normal waves must exist in an optical
waveguide. In fact, two waves of this set are considered
in this paper.

The first of them is a “zero” wave with a critical fre-
quency equal to zero and a uniform distribution of the
displacements  and  over the cross-section.

The second wave is the normal wave closest to the
zero one with the critical frequency other than zero.
The square of the latter is proportional to the quantity

. Therefore, an increase in this quantity can shift the

frequency branch of the second wave beyond the ultra-
sonic range. This fact must be kept in mind when con-
ducting experiments aimed at testing the theoretical
conclusions of this paper.

µ'''
h

------

Uz' Uz''

Uz' Uz''

µ'''
h

------
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Thus, the calculations described above show that a
single axisymmetric ultrasonic wave propagates in an
optical fiber, while two waves propagate in a fiber with
a boundary layer. This fact may be used for the detec-
tion and investigation of boundary layers in optical
fibers.
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Currently, a variety of devices based on Rayleigh
surface acoustic waves (SAW), such as bandpass and
dispersion filters, resonators, transducers, and delay
lines, are widely used in engineering [1, 2]. A wide
range of environmental conditions in which these
devices are used stimulate researchers to study the
effect of these conditions on the properties of SAW.
This paper studies the propagation of the Rayleigh
SAW, as well as bulk acoustic waves, along the surface
of a rotating sound-transmitting medium from the
viewpoint of an observer moving with the medium. A
solution to this, at a first glance, academic problem
could seemingly be of interest only for developing rota-
tion gauges. However, Hall et al. [3] propose a new
method for evaluating the quality of the paper pulp in
the process of its production on the basis of the sound
velocity measurements in different directions in the
paper pulp rotating on special drums.

In a uniformly rotating elastic medium, the equa-
tions of motion acquire two additional terms, as com-
pared to the inertial coordinate system:

(1)

where ρ is the density of the sound-transmitting
medium, u is the displacement vector, v = ∂u/∂t is the
particle velocity, Ω is the rotation speed of the medium,
r is the position vector of an elementary volume of the
medium in a rotating coordinate system, and λ and µ
are the Lame elastic constants.

The first term on the right-hand side of equation (1)
describes the Coriolis force, and the second term
describes the centrifugal force. In the following calcu-
lations, the centrifugal force will be neglected. This
approximation is valid in two independent and suffi-
ciently important particular cases:

(1) when the rotation speed is much less than the
cyclic frequency of the elastic wave: Ω/ω ! 1;

(2) when the region of the acoustic medium in
which the acoustic wave propagates is located suffi-
ciently far from the rotation axis, so that the position
vectors of all points that take part in the wave motion
can approximately be considered as equal.

ρ∂2u

t2∂
-------- 2ρ v W×( ) ρ W W r×( )×( )+=

+ λ µ+( )graddivu µ∆u,+
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We limit our consideration to acoustic waves polar-
ized in the XY plane of the coordinate system rotating
about the OZ axis (Fig. 1).

Since, in this problem, the form of the equations of
motion is significant and not quite conventional [4], we
briefly explain how they are derived. Expand the dis-
placement vector into the potential and solenoidal
parts:

Apply the rotor and divergence operations to both
sides of equation (1) to obtain

(1a)

(1b)

Then, the first equation of motion follows from
expressions (1a) and (1b), because, if rotor and diver-
gence of a vector are zero in some space region, the
vector itself is also zero [5]:

(2a)

Note that equations (1a) and (1b) were derived using
the following conditions:

(3)

u ul ut, where rotul+ 0, divut 0.= = =

div ρ
∂2ul

t2∂
---------- 2ρ

ut∂
t∂

------- W× 
 +





----+ λ 2µ+( )graddivul




0;=

rot ρ
∂2ul

t2∂
---------- 2ρ

ut∂
t∂

------- W× 
 +





----+ λ 2µ+( )graddivul




0.=

ρ
∂2ul

t2∂
---------- 2ρ

ut∂
t∂

------- W× 
  λ 2µ+( )graddivul.+=

div
ul∂
t∂

------- W× 
  W ∂

t∂
----rotul⋅ 0,= =

rot
ut∂
t∂

------- W× 
  W ∇⋅( )

ut∂
t∂

-------⋅ 0.= =
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The first of conditions (3) is always satisfied, while
the second one essentially uses the fact that the elastic
displacement vector lies in the plane perpendicular to
the rotation axis: u = {ux , uy , 0},  = {0, 0, Ωz}.

The second equation of motion can also be easily
obtained in the same manner:

(2b)

As compared to the equations given in [4], the first
terms on the right-hand side of equations (2) inter-
changed their positions, which made these equations
interdependent. Therefore, we first consider the propa-
gation of bulk acoustic waves in a rotating sound-trans-
mitting medium. We seek a solution for the elastic dis-
placements in the form of homogeneous shear ut and
longitudinal ul bulk waves:

ut = fexp[i(qx – ωt)]

ul = gexp[i(qx – ωt)],

where f || OY and g || OX. We determine the wave num-
bers of the bulk waves by substituting these solutions
into equations of motion (2):

(4)

for Ω/ω  0, ql  kl ≡ , and qt 

kt ≡ .

Thus, the longitudinal and transverse acoustic
waves in a rotating medium have the form of coupled
modes:

Consider expressions (4) in more detail. At Ω = ω/2,
one can see that ql = 0 and fl = igl , i.e., an attempt to
excite a longitudinal wave under these conditions will
cause harmonic oscillations of the sound-transmitting
medium as a whole. As the rotation speed increases, the
wave number ql becomes an imaginary quantity. From
the viewpoint of an observer connected with the inertial
coordinate system, an imaginary value of the wave
number indicates that it is impossible to excite a longi-

W

ρ
∂2ut

t2∂
---------- 2ρ

ul∂
t∂

------- W× 
  λ 2µ+( )graddivut.+=

qt

kt
2 kl

2+
2

----------------
kt

2 kl
2–( )2

4
---------------------- 4

Ω2

ω2
------kt

2kl
2++ ;≡

ql

kt
2 kl

2+
2

----------------
kt

2 kl
2–( )2

4
---------------------- 4

Ω2

ω2
------kt

2kl
2+–≡

ρω2/ λ 2µ+( )

ρω2/µ

ut f t gt+( ) i qtx ωt–( )[ ] ,exp=

gt f t qt
2 kt

2–( )/ 2ikt
2Ω/ω( );–=

ul gl f l+( ) i qlx ωt–( )[ ] ,exp=

f l gl ql
2 kl

2–( )/ 2ikl
2Ω/ω( ).=
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tudinal elastic wave in a rapidly rotating medium,
because a small element of the elastic medium changes
its location due to the rotation faster than due to the
oscillatory motion. With increasing rotation speed, the
transverse wave velocity decreases as (Ω/ω)–1/2.

We seek a solution for the Rayleigh SAW in the
form of a usual two-component wave, which exponen-
tially decays in the medium with depth:

ut = fexp[i(kx – ωt) + ry];

ul = gexp[i(kx – ωt) + ry].

Using the standard procedure [5], determine the
SAW components from equations of motion (2):

(5)

where a and b are arbitrary constants,

By inserting solution (5) into the boundary conditions
that require that the elastic stress on a free surface of a
solid be zero, we obtain the relationship that is some-
what different from the standard form of the Rayleigh
determinant:

(6)

ux rta rty( ) ikb rly( )exp+exp{ }=

× i kx ωt–( )[ ]exp

uy ika rty( ) rlb rly( )exp+exp–{ }=
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
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
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Fig. 1. Problem geometry.
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This equation can be written in a different form using
the notation ξ = kt/k:

(6a)

Familiar expressions for the Rayleigh determinant
can easily be obtained from equations (6) and (6a) for
Ω/ω  0. Equations (6) and (4) were solved numeri-
cally for aluminum (the Poisson ratio σ = 0.345,
Young’s modulus E = 7.03 × 1011 dyn/cm2, and density
ρ = 2.7 g/cm3). The velocities of the bulk and surface
waves as functions of frequency are plotted in Fig. 2.
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Fig. 2. Acoustic wave velocity as a function of the rotation
speed of the medium: (vl) longitudinal wave, (vt) transverse
wave, and (vr) Rayleigh SAW.
No solutions to equation (6) in the form of an
undamped Rayleigh SAW were found for Ω ≥ ω/2. In
fact, since the longitudinal elastic wave cannot be
excited in a sound-transmitting medium rotating at a
sufficiently high speed, the SAW, whose displacement
vector has a longitudinal component, also cannot be gen-
erated. The unlimited increase in the longitudinal wave
velocity (note that it occurs in a noninertial coordinate
system) with increasing speed of rotation is a formal
mathematical consequence of the above-mentioned
degeneration of this wave into longitudinal oscillations
of the whole sound-transmitting medium at Ω = ω/2.

Thus, in this paper, we studied the properties of the
longitudinal and transverse elastic waves and a Ray-
leigh surface acoustic wave in a rotating elastic
medium for the case of the polarization of these waves
being perpendicular to the rotation axis. It is estab-
lished that the longitudinal bulk wave and the surface
wave cannot propagate in such a sound-transmitting
medium when the rotation speed is more than twice as
high as the wave frequency.
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Vitaliœ Anatol’evich Zverev (On His 75th Birthday)
November 3, 1999, marked the 75th birthday of
Corresponding Member of the Russian Academy of
Sciences, Doctor of Physics and Mathematics, Profes-
sor Vitaliœ Anatol’evich Zverev.

Zverev is a prominent specialist in radiophysics and
acoustics. He is the author of more than 150 scientific
works, including three monographs and 30 inventions.
He made a substantial contribution to the development
of acoustics; he was one of the first to lay the founda-
tions of nonlinear acoustics, which later became a rap-
idly developing area of research.

Zverev’s youth fell within the period of the Second
World War. From 1942 to the Day of Victory, he served
in the army, in the air-defense forces. Being a young
soldier, Zverev demonstrated his talent for research and
invention: he successfully fixed and tuned new compli-
cated radar systems that appeared at that time in air
defenses. Zverev’s occupation in the army determined
his civillian profession. In 1945, he left the army and
became a student of the Radiophysical Faculty at
Gor’kiœ State University. In 1950, Zverev graduated
1063-7710/00/4602- $20.00 © 20239
from the university and became a postgraduate student
of Professor G.S. Gorelik.

Zverev’s first research project was based on the idea
put forward by M.A. Isakovich on the dispersion of
acoustic waves in emulsions. To implement this idea,
Zverev studied the specific features of the propagation
of modulated waves in dispersive media. He found that
the propagation of a modulated wave in a dispersive
medium can be described by a single parameter—the
phase invariant. Zverev developed a method for mea-
suring this parameter and designed the corresponding
equipment. This work resulted in his candidate disser-
tation, which he defended in 1953. The further develop-
ment of these studies offered the possibility of using the
same approach and equipment for studying spatial
spectra of random inhomogeneities. This possibility
was realized in acoustics.

In the following years, Zverev’s scientific activity
was related to the formation of images by wave fields.
All three monographs written by Zverev are devoted to
this subject. The last monograph entitled Physical
Foundations of the Formation of Images by Wave
Fields appeared in 1998, and the first monograph pub-
lished in co-authorship with E.F. Orlov in 1971 was
concerned with the optical processing of information.
Zverev was one of the first to propose and develop the
optical methods of spectral and correlation analysis.
Based on these methods, unique instruments for spec-
tral and correlation analysis were designed under his
supervision. The instruments have found applications
in radar, acoustics, and medicine.

The book Radio-optics, published by Zverev in
1975, and his monograph published in 1998 are unique
editions that contain a unified description of all known
specific features of image formation. To consider all
possible cases, it was necessary to combine optics,
acoustics, and radiophysics, because no single area
covers the whole variety of conditions of the image for-
mation.

The simplest and most illustrative example of the
image formation by wave fields is our vision. Waves
arriving at the pupil of the eye are processed so as to
allow us to reconstruct (to see) their sources. In order to
see objects, we do not need to understand the mecha-
nism of the phenomenon. However, to “see” objects
with some other waves, e.g., acoustic ones that cannot
be perceived with our eyes or ears, a corresponding sci-
entific description of the phenomenon is necessary,
with allowances made for the specific conditions of the
image formation. The variety of the conditions of
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image formation can be illustrated by hearing and sight.
We “see” with our ears in a completely different way
than with our eyes. Zverev proposed a mathematical
model describing how we “see” with our ears. The pro-
posed procedure was close to the aperture synthesis
widely used in radio astronomy. The determination of
this procedure allowed Zverev to explain the specific
features of the perception of monophonic and stereo-
phonic sound and to propose an original method of vol-
ume sound reproduction; this method is now success-
fully used in industry.

Zverev’s studies in nonlinear acoustics were also
related to the problems of acoustic vision. Zverev pro-
posed and implemented the parametric reception and
transmission of sound. Parametric antennas possess
some specific features of the image formation. A para-
metric acoustic array has a directional pattern close to
an ideal one without any distortions due to technical
factors. Similar systems were proposed by Westervelt
two years later, and his publications marked the begin-
ning of nonlinear acoustics in the western countries.
For the studies in nonlinear acoustics, Zverev and his
colleagues received a USSR State Award in 1985.

Currently, Zverev is involved in both scientific and
tutorial activities. In the past five years, he has submit-
ted for publication 19 scientific works, including one
monograph; eleven papers were published in the Akus-
ticheskiœ Zhurnal (Acoustical Physics). Zverev contin-
ues working on the problems of vision in acoustic
fields. Many media that are opaque to other types of
waves prove to be transparent to acoustic waves. How-
ever, conventional ways of image formation are not
always appropriate in acoustics. The factors that hinder
image formation and ways to overcome these difficul-
ties are currently studied by Zverev. In his recent pub-
lications, he proposed the so-called acoustic dark-field
method, which allows one to select the objects of inter-
est against intense scattered and direct radiation.

Zverev developed original lecture courses on statis-
tical radiophysics, acoustics, and physical foundations
of the image formation by wave fields (radio-optics).
For years, these lectures were delivered to the students
of Nizhni Novgorod University. Over a period of seven
years, Zverev chaired the department of General Phys-
ics at the Radiophysical faculty of the Nizhni Novgorod
University. Starting in 1956, he headed the department
of Statistical Radiophysics and Acoustics of the Radio-
physical Research Institute, and in 1977, he became
head of the department of Physical Acoustics at the
newly established Institute of Applied Physics of the
Russian Academy of Sciences.

In 1964, Zverev defended his doctoral dissertation,
which included the results of his studies of modulated
waves, optical signal processing, nonlinear acoustics,
and some applications. In 1979, he was elected corre-
sponding member of the Russian Academy of Sciences
for the Division of General Physics and Astronomy. For
his achievements in science, Zverev was awarded an
Order of the Red Banner of Labor and several medals.

While celebrating his 75th birthday, Zverev is
deeply involved in his creative endeavors. He spends
most of his time working with his personal computer
verifying new ideas and algorithms of signal selection
against background noise. In the aforementioned
monograph published in 1998, Zverev considered some
specific features of programming for different wave
problems, described a method of taking into account
the a priori data on the image formation in computer
calculations, and included more than 20 specific com-
puter codes for the image formation in different condi-
tions. He shares his enthusiasm for work with his stu-
dents and colleagues.

Zverev’s hobby is classical music, which he has
loved since childhood. At the age of 23, he started play-
ing piano, and today, he can easily play his favorite
pieces by Liszt, Beethoven, Rachmaninov, Schubert,
and other composers.

The friends, students, and colleagues of Vitaliœ Ana-
tol’evich Zverev wish him good health and further suc-
cess in his creative endeavors.

Translated by E.M. Golyamina
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