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Abstract—The interaction of atwo-level atom with two light pulses which have different carrier frequencies
and propagate in opposite directions is studied in the adiabatic approximation. It is shown that when thereisa
delay between the light pul ses, the momentum of the atom changes, as aresult of the interaction with the laser
field, by adefinite amount that depends on the amplitude of the light pulses and on the difference of their carrier
frequencies. It is predicted that the momentum transfer to the atom is a step function of the amplitude of the

light pulses. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The mechanical action of light fields on atoms has
been under study, theoretically and experimentally, for
many years. An important example is the scattering of
atoms by a standing wave [1-4], which an atom inci-
dent on a laser beam in a direction normal to the beam
“sees’ as two oppositely propagating light pulses with
the same carrier frequency and the same amplitude,
interacting simultaneously with the atom. During the
period of time when the energy of the trandational
motion of the atom in the direction of propagation of
the pulses can be neglected compared with the atom—
field interaction energy (Raman—Nata approximation),
the rms momentum transfer to the atom grows linearly
with time, and the average momentum transfer to the
atom is zero. The introduction of atime delay between
the pul ses causes the scattering of the atoms to become
asymmetric dueto the formation of acoherent superpo-
sition of the ground and excited states by the field of
one of the traveling waves and subsequent scattering of
atoms with simultaneous interaction with the field of
the two oppositely propagating waves [5-7]. The aver-
age momentum transfer isno longer zero and isdirectly
proportional to the interaction time. The rms deviation
of the momentum transfer to the atom from the average
value also increases linearly. On the other hand, the
effect of the radiation spectrum on the interaction of an
atom with afield has been studied for along time for
bichromatic fields [8-12]. Specifically, it has been
shown that the force acting on an atom in abichromatic
field of two standing waves, which can be treated as
two oppositely propagating bichromatic waveswith the
same amplitude, can be much greater than the force due
to the light pressure acting on an atom in asingle trav-
eling wave [13-19].

In the present paper, the characteristic features of
the scattering of atomsin the field of oppositely propa-

gating light pulses with atime delay between the onset
of their interaction with the atom are studied for the
case where the carrier frequencies of the pulses are dif-
ferent. The delay together with the difference of the
carrier frequencies of the pulses qualitatively change
the picture of the scattering. The parameters of the laser
radiation can be chosen so that for a certain interaction
time of the atom interacting with abichromatic field the
average momentum transferred to the atom is essen-
tially independent of the duration of the light pulses,
and the rms deviation of the momentum transferred to
the atom from the average value approaches zero. In
this case, varying the parameters of the laser radiation
over quite wide limits has no effect on the result of the
interaction of an atom with the field.

2. BASIC EQUATIONS

We shall assume that the light pulses are so short
that the spontaneous radiation during the interaction of
an atom with the light can be neglected. The
Schrédinger equation describing in this case the inter-
action of a two-level atom with an electromagnetic
wave has the form

oy

ihZe = (H,—d [E)Y, 1)

where

~2

=P
p is the momentum operator of the atom, Ay, is the
eigenvalue of the Hamiltonian of a stationary atom in

the absence of the light fields and corresponding to the
excited state |e[lof the atom (we assume the eigenvalue

corresponding to the ground state |gLis zero), d isthe
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dipole-moment operator, and E is the total intensity of
the electric field due to the light pulses. For the present
case of light pulses propagating in opposite directions

E = E,(t)e,cos(wt—k,z+ ¢,)
+ E,(t)e,cos(w,t + Kz + ¢5,),

©)
where g are unit vectors in the direction of the field
intensities of the light pulses, E;(t) describe the time
dependences of the envelopes of the intensities of the
light fields of the pulses, wy and k; are the carrier fre-
guencies and wave vectorsof thelight pulses, and ¢; are
their initial phases. Both initial phases can be reduced

where M is the mass of an atom, n; = wyt — Wt — kyz,
N, = wt — wt — kyz, and the matrix elements of the
operator corresponding to the interaction of the atom
with the field of each of the light pulses are determined
by the relations

AV,
AV,

—[9|d Ce, |elE,,
—[g|d [, |e[E,.

(6)

Asusual, we assume the matrix elements of the dipole
moment to bereal. In equation (5) and below, the argu-
ments denoting the dependence of the quantities on the
timet and on zare omitted in order to simplify the equa-
tions.

It iswell known [3] that the observation of the scat-
tering of an atomic beam cannot give information about
the degree of coherence of the plane waves describing
the atomic ensemble. The quantities observed in the
scattering of an atomic beam can be obtained by solv-
ing the problem of scattering of a plane wave and then
averaging the result obtained over the angular distribu-
tion of the plane waves. For this reason, we shall
assume in what follows that the atomic beam prior to
the interaction with the light is a plane wave. Without
loss of generality, on the basis of the approximation
employed we shall also assume that the velocity of the
atoms before the interaction with light is directed per-
pendicular to the z axis. In addition, since |y, — w,| <
wy,, we shall neglect the difference between k; and k,,
and we shall set k; = k, = k.
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to zero by choosing an appropriate reference point for
time and the coordinates, and in what follows we shall

set ¢, =¢,=0.
We represent the wave function in the coordinate
representation in the form
W = ¢z t)exp(—iwgt) el cy(z t) gl (@]

Substituting expressions (3) and (4) into equation (1), we
find in the rotating-wave approximation equations for
Cy(z 1) and c.(z t) whichinthelimit M — o areiden-
tical to the equations ordinarily used for anayzing the
interaction of atwo-level atom with abichromaticfield [8]:

o
Ce

We now represent ¢, and ¢, in the form

Viexp(ing) + V,exp(iny)

Z by, nexp %(At - n6t)%2|nD
o (7

z b, nexp —(At + n6t)%j|nD

where [Zn[= exp(inkz) is an eigenfunction in the coor-
dinate representation of the z component of the
momentum of the atom, a multiple of n#k,

d=w—-w, A= %(001‘*'002)—000- 8)
The time-dependent phases in equation (7), which are
not important for determining the probabilities |b, |2
and |b,, [ of finding the atom in the states |g, nC= [gCT] |nO
and |e, nC= [e[d0 |nC]are introduced so that the follow-
ing equatl ons obtained for b, , and b, ,, by substituting
expressions (7) into equati on (5)

6

at by n = (2n Orec + A—NO)by

+ _(Vlbe,n+l + V2be,n—l)’

2, (9)

at en - (2n 6rec

A-nd)b,
+ é(vlbg, n-1t V2bg, n+ 1)1
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where 9, = %ik?/(2M), would contain on the right-hand
sides only coefficients that vary slowly with time.

It follows from equation (9) that by , with even values
of n are coupled with b, , with odd values of n and vice
versa. Since the initial conditions are b, , = d,, and
e n = O (we assume that before interacting with the
field the atom is in the ground state), we can see that
only b, , with even n and b, , with odd n can be differ-
ent from zero. Thus, the wave function in the momen-
tum representation can be given by aquantity B,,, which
has only one index, that isthe same as b, , if nis even
and b , if nis odd. In this notation the Schrédinger
equation (9) hasthe form

iﬁa%Bn = 3 Ha By (10)

The nonzero matrix elements of the Hamiltonian H are

Hon = S[2078,00 + (A —13)],

h

Hn,n+s(n) = Evl! (11)
h

Hn,n—s(n) = §V21

where s(n) = (-1)".

In what follows, we shall consider the case 6 > 0,
and neglect, almost everywhere, the term describing the
kinetic energy in the Hamiltonian (the Raman—Nata
approximation).

3. EXAMPLE OF THE NUMERICAL SOLUTION
OF THE EQUATIONS

Equations (10) couple al probability amplitudesfor
finding an atom in the states |g, 2jJand |e, (2n + 1)[)
where | and n are arbitrary integers, and it is natural to
expect that after interacting with both light pulses the
atom will be in a superposition of states with different
Z components of the momentum. An example of the
numerical solution of these equations which is pre-
sented in Fig. 1 showsthat thisisnot dways so. Thefig-
ure shows the time dependences of the average z com-
ponent of the momentum of the atom

p = kY n[B,/%, (12)

the rms deviation of the zcomponent of the momentum
of the atom from the average value,

Ap = %k /Z n’|B,|* - p’,

(13)
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Fig. 1. Time dependences of (a) the average value of the z
component of the momentum p of the atom (solid curves),
the rms deviation of the momentum from the average value
Ap (dotted curves) in units of zk and (b) the populations of
the ground state n,, for the interaction of atoms with light
pulseswith the shape (15) for &t =25 (curves 1, 2), dt=200
(curves 3, 4). The delay between the pulsesisty = 0.351, the

maximum value of the Rabi frequencies of the light pulses
iSVOl = VOZ =245,A=0, 6rec =0.

and the populations of the states |gCand |el]

ng = Z |Boml®, Mo = z 1Boms /%, (14)
m= —oo

m=—o0

for an atom interacting with oppositely propagating
light pulses for short and long atom-field interaction
times. The time dependences of the envelopes of the
electric-field intensities of the pulses are described by
the expressions

Vl VOle _td/ZD

o O
P (15)
+1
V, = vong—Td 3
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wheret isthe pulse duration, tyisthe delay between the
pulses, and

Elcos (x), -1/2<x<1/2

F(X) =
[D, x<-=1/2, x=1/2.

(16)

The fact that after a prolonged interaction with thefield
(0t > 1) the quantity Ap approaches zero indicates
almost complete transfer of the population from theini-
tial state |g, OCof the atom into a state with a precisely
determined z component of the momentum, in this case
|g, 401 The time dependences of the population of the
state [gCfor various values of o1 also indicate that as &t
increases, the solutions of equations (10) approach a
limit. Numerical calculationsfor large 8t give virtually
the same dependences p(t), Ap(t), and ny(t) as for o1 =
200. This shows that the description of the atom—field
interaction by means of an adiabatic basis is useful. It
can be expected that for large o1 the atom will reside,
during a substantial fraction of the time for which it
interacts with the field, in a superposition of |g, 2nCland
le, 2j + 1[states (generally speaking, the integers n and
J run through all values from —o to +co).

We note that the time dependence of the populations
with the interaction switched on and off adiabatically
(0t > 1) isqualitatively different from the time depen-
dence in the case when the interaction is switched on
instantaneously [8], so that the populations of the levels
vary periodically from 0to 1 (for V,(t) = V,(t) = const).
Evidently, the initial value ny = 1 in the latter case cor-
respondsto the atom residing in a superposition of sev-
eral adiabatic states. Asaresult, the time dependence of
the population of the lower state is determined by the
interference of these states, and this results in oscilla
tions of the populations.

4. ADIABATIC BASIS

We represent B, in the form

Z ct™ exp[-l—lj'w(m)(t)dt[n)(m)

m= —oo

(17)

where ®™ and #w™ are the components of the

eigenvectors (adiabatic states) and the eigenvalues of
the Hamiltonian H:

[H(t) -am™t)]o™ = 0. (18)

The matrix elements of this Hamiltonian in the momen-

tum representation are given by the expressions (11).
Substituting the expression (17) into equation (10)

and keeping in mind (18) and the orthogonality of ®M,
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we obtain the following equations for Ct™:

tc(m) _ Z z C(')cp(m)* acp“)

j=—con=—0

t

|:'| (M) 7ev (J) g ID
xexp[lI(w (t)—w(t))dt'D
O O

d
(19)

According to equation (17), the wave function at an
arbitrary time is a superposition of adiabatic states, the
contribution of each of which is determined by the
quantity C(M,

Let the atom be in the state |g, OCbefore its interac-
tion with the light fields. We shall enumerate the adia-
batic states in a manner so that before the interaction
with thefield the number of the state coincides with the
z component of the momentum of the atom in units of
#ik. Then, initially we have C™ = g_,,. Correspondingly,
wO(1) = A/2 (this is easy to see from equation (11),
since in the absence of the fields the Hamiltonian is
diagonal). If

l@™(t) - )| > 1/1, (20)

the terms with j # m make virtually no contribution to
the right-hand side of equation (19) because of the
rapid oscillation of the exponential factors, and the
term with j = mleads only to a change in the phase of
CM, As a result, when condition (20) is satisfied, the
atom isin the same adiabatic state throughout the entire
time over which it interacts with the field. However, it
should be noted that when the interaction with the field
terminates, the energy #m©(t) corresponding to this
state is not necessarily AA/2. From the form of the
Hamiltonian (11) it can be concluded only that the
energy is#[2n2d, + A(-1)"—nd]/2, wherenisan inte-
ger. Ultimately, the atom acquires a momentum n#k,
directed along the z axis, and depending on whether n
iseven or odd it remainsin the ground state or transfers
into the excited state.

In order that a single adiabatic state couple the state
of the atom with different zcomponents of the momen-
tum, a time shift must be present between the light
pulses. Evidently, for t; = 0, because of the symmetry
of the problem, the internal state of the atom and the z
component of the momentum of the atom before and
after the interaction with the field are the same for long
light pulses of the same shape. Specificaly, for a sym-
metric offset of the carrier frequencies of the light
pulses A = O, for pulses of the same shape and ampli-
tude, the problem can be solved exactly, and following
[8] it can be shown that in the adiabatic approximation
the atom remainsin the state |g, OChfter interacting with
thefield.

The changesin the state of the atom during the inter-
action with the field can be thought of as follows. At
first, the atom isin the state |g, OL For definiteness, we
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assume that first the pulse E,(t) interacts with the atom
(step 1), then both pulses interact with the atom (step 11),
and at the end of the interaction the pulse E4(t) interacts
with the atom (step 111). Evidently, at the first step the
field E,(t) gives rise to transitions between the states of
the atom |g, OCand |e, =101 In this case, p cannot exceed
the value ik, and Ap does not exceed 0.5%k (see Fig. 1).
Further, at the second step the equations (10) couple all
states of the atom |g, jCand |e, n[jwhere j are even and
n are odd numbers. At this step Ap reaches its maxi-
mum value, and then it once again decreases approxi-
mately to 0.5%k. If the envelopes of the electric-field
intensities change slowly enough, then at the third step
of the atom-field interaction only the pair of states
lg, 2n;Oand |e, 2n; + 10 where ny is an integer, will be
populated. After thefield E;(t) is switched off, the atom
occupies one of these two states.

If the criterion (20) is not satisfied for a short time
interval (as compared with the pulse duration 1) and the
energies of the adiabatic states #m™ and #w? are so
close to one another that Landau—Zener transitions are
possible between the corresponding adiabatic states
with probability close to one, the atom after each of
thesetransitionsisin one adiabatic state. Asaresult, the
atom is in the ground or excited state with a definite
value of the z component of the momentum. However,
if the Landau—Zener transition probabilities are sub-
stantially different from 1 and O, for example, if the
curves describing the time dependences of the energies
of the adiabatic statestouch, states with different values
of the z components of the momentum could be occu-
pied after the interaction with the field is completed.

Figure 2 illustrates the time dependence of the ener-
gies of the adiabatic states for two values of the param-
eters of the pulses corresponding to Fig. 1. The heavy
line showsthe energy of the adiabatic state occupied by
the atom. It is evident that before the arrival of the first
light pulse the z component of the momentum is zero,
and after the interaction with both pulses it is equal to
4hk.

5. NUMERICAL RESULTS

We shall now examine the dependence of the
momentum transfer to the atom on various parameters
characterizing the light pulses [15]. Evidently, the
result of theinteraction of an atom with light should not
depend on the changes in the delay between the pulses,
their amplitudes, and the values of the offsets & and A
as long as the deformation introduced into the curves
describing the time dependences of the energies of the
adiabatic states by a variation of these parameters does
not change qualitatively the relative arrangement of the
curves. A further change in these parameters after pas-
sage through a transitional region should result in a
transition of the atom into anew final state correspond-
ing to a different value of p. On this basis, it can be
expected that the dependence of the momentum trans-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

411

3 (a)

-04 -02 O 02 04 0.6

(b)

-0.2 0 0.2 04 0.6
tt

O 1 1
-06 -04

Fig. 2. Time dependences of (a) the energies of the adiabatic

states @™ in the units #3 (b) the Rabi frequencies of the
light pulses. The heavy line showsthe energy corresponding
to a zeroth z component of the initial momentum of the
atom. The pulse parameters are the same asin Fig. 1.

fer to the atom on the parameters describing the light
pulses should be a step function.

For the case of equal amplitudes, V, = Vy; = Vg, and
symmetric, with respect to the frequency wy, offset of
the carrier frequencies of the light pulses, Fig. 3 shows
the quantities p and Ap and the populations of the
ground and excited states as functions of V, obtained
both in the Raman—Nata approximation and with the
Hamiltonian including the kinetic energy. As a result
of the interaction with the light, for values of V, lying
in the region of the steps, the atom is in the ground
state, and population transfer between the atomic
states does not occur. Equalization of the populations
of the states |gCand |elds observed at the center of the
transitional regions between the steps, i.e., the effect of
two light pulses with different frequencies on the atom
is similar to the effect of a 172 pulse resonant with an
atomic transition, the difference being that the momen-
tum transfer can be much larger. The value of p for a
given value of V, can be estimated from simple consid-
erations. For A = 0 with [t| < T (at the midpoint of the
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Fig. 3. (@) The average value of the z component of the
momentum p of an atom (curve 1 for & = O, dotted curve

for &, = 0.002), the rms deviation of the component from
the average value Ap (curve 2 for &, = 0) in units of 7k, and
(b) the populations of the ground and excited states (3¢ =
0) as functions of V/d. The pulse parameters are 8t = 200,
A=0,ty=0.351.

interaction time with the field) |[a®| ~ V/2. Keeping in
mind the dependence @O(t) (see Fig. 2), it can be
assumed that when the interaction with the field termi-
nates, |@Y| ~ V,. Since a change in @@ by & corre-
sponds to a change in the momentum by 2%k, we find
p ~ 2ikVy/d, which agrees well with the computational
results. Taking account of the kinetic energy in the
Hamiltonian changes the spacing between the energies
of the adiabatic statesam(), and the position of the steps
in the function p(V,) changes. Even if the kinetic
energy K = A,.(p/%K)? which the atom acquires after
interacting with the field is small (on the right-hand
side of the plot it is less than 1/10 the atom-field inter-
action energy), this energy can still make a substantial
contribution if it is comparable to the spacing between
the eigenvalues of the Hamiltonian (11), which is ~4d
in the absence of afield (on the right-hand side of the
plot it is equal to approximately 1/2 of this value, and
near the third step, where the kinetic energy essentially
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pihk, Dp/hk
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Fig. 4. (a) The average value of the z component of the
momentum p of an atom (solid curve), therms deviation of
the component from the average value Ap (dotted curve) in
units of 7ik, and (b) the populations of the ground state ng

(solid curve) and the excited state n, (dotted curve) as
functions of A/3. The pulse parametersare Vg = Vo = 2.4,
ty = 0.35T, 8o = 0.

does not change the result obtained in the Raman-Nata
approximation, K/4d = 0.07).

The dependences of p, Ap, ny, and n, on A for light
pulses with the same amplitudes V, = Vy = Vg, and
0, = 0 areshowninFig. 4. In contrast tothecase A= 0,
here population transfer between the states |e[and |gCls
possible when the transfer of the momentum of the
atom by an odd amount 7k occurs, i.e., the effect of two
light pulses with different frequenciesand A # 0 on the
atom issimilar to the effect of asingle 1t pul se resonant
with the atomic transition, or a pulse with slowly vary-
ing frequency w from w — wy <€ -V, 10 W — wy >V,
Choosing the ratio A/ in the region between the steps,
it is possible to abtain as aresult a coherent superposi-
tion of |elland |gUstates of the atom. In the figure one
can see that the equality n. = n, is attained for severa
values of the ratio A/, specificaly, for A = £8/2. For
these two values of A, the carrier frequency of one light
pulse is in resonance with the frequency of the atomic

No. 3 2000



SCATTERING OF ATOMS IN A BICHROMATIC FIELD

transition, and the eigenvalues in the absence of the
field are doubly degenerate, so that from the very onset
of theinteraction with the field the atom is described by
asuperposition of two adiabatic states, one of which for
V, = 0 corresponds to the atom in the ground state and
the other in the excited state. It is natural to expect that
after interacting with the field, the atom will be
described by a superposition of two states |g, 2jCJand
le, (2n + 1)Jwhere j and n are integers. For A = +0/2,
the carrier frequency of the pulse E,(t), which interacts
first with the atom, is in resonance with the frequency
of the atomic transition. The average momentum trans-
fer to the atom is—0.5%k, Ap = 4.5hk. From this it can
be concluded (as is confirmed also by a calculation of
the momentum distribution function of the atom) that
after interacting with the field the atom is in a superpo-
sition of the ground state with momentum 4%k and the
excited state with momentum 57k, both states having
the same population. For A = -0/2, the carrier fre-
guency of the pulse E;(t), which interacts last with the
atom, is in resonance with the atomic transition fre-
guency. The average momentum transfer to the atomis
4.5k, Ap = 0.5%k. It follows that after interacting with
the field, the atom is in a superposition of identically
populated ground state with momentum 44k and
excited state with momentum 57k.

Figure 5 shows p, Ap, ng, and n, as functions of Vo,
in the case A = — &/2. For small pulse amplitudes, only
the pulse E4(t), whose carrier frequency isin resonance
with the frequency of the atomic transition, mainly acts
on the atom, and oscillating dependences on its ampli-
tude are observed (essentially dependences on the area
of the pulse). Asthe pulse amplitudesincrease, the pop-
ulations of both atomic states after the interaction with
thefield becomethe same. Thisequality of theresulting
populations also occurs for strong fields, when states
with z component greater than 7k are populated. In this
case, the atom is described by a superposition of sev-
eral, generally speaking, greater than two, states with
different momenta. For example, for Vg, /6 = 0.7 and
V/0 = 1.1 (the values of the other parameters are indi-
cated in the caption under Fig. 5) states with the zcom-
ponent of the momentum O, #k, 2kk, and 3%k are
equally populated.

6. CONCLUSIONS

For an adiabatic interaction of the atoms with two
oppositely propagating light pulses which have differ-
ent carrier frequencies (VT > 1, 81 > 1) and are sepa-
rated in time, the momentum of the atom changes by
nfk, wherenisaninteger. There exist quite wide ranges
of values of the parameters of the light pulses (ampli-
tude, offset of the carrier frequencies from the transi-
tion frequency between the ground and excited states of
the atom, and time delay between the pulses) where
varying the values of the parameters has virtually no
effect on the final state of the atom and the momentum
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Fig. 5. (a) The average value of the z component of the
momentum p of an atom (curve 1), the rms deviation of the
component from the average value Ap (curve 2) in units of
fik, and (b) the populations of the ground state ng (curve 1)

and excited state ng (curve 2) as functions of Vg;/. The
pulse parameters are 8T = 200, A = -0.53, Vgp = 3V tg =
0.35T, J = 0.

transfer to it. A characteristic feature is that in most
cases the dispersion of the momentum transfer to the
atom is small compared with the photon momentum
and approaches zero as the atom-field interaction time
increases. Thus, if before interacting with the field the
atom is described by a plane wave, then the atom will
also be described by a plane wave after interacting with
the field.

The characteristic features of the scattering of an
atom by a bichromatic field of oppositely propagating
light pulses can be most simply observed in an experi-
ment on the scattering of a monochromatic atomic
beam by afield of two monochromatic oppositely prop-
agating Gaussian beams, shifted in amanner so that the
lighting atom “sees’ first only one beam, then both
beams, and at the end of the interaction only the other
beam. The carrier frequencies of both beams should
differ by an amount of the order of the amplitude of the
fields (in frequency units). Then a single diffraction
peak, whose order should vary with the amplitude

No. 3 2000



414

of the fields, will be observed in the scattering of the
atoms. When the carrier frequencies of the fieldsarein
resonance with the transition frequency, the time of
flight of the atom through the interaction region should
be much shorter than the spontaneous emission time of
the atom from the upper level.
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Abstract—The probabilities of the emission of a photon by an electron and e*e™-pair photoproductionin afield
which is asuperposition of two electromagnetic plane waves with different frequencies and propagating in the
same direction are obtained. The case where the frequencies of the two modes are commensurate is studied in
detail. Thiscaseisinteresting primarily because of the existence of effects dueto theinterference of amplitudes,
corresponding to a different number of photons absorbed from different modes but having the same total
4-momentum. It is shown that the optimal field for observing interference effectsis afield such that the ratio
of the mode frequenciesis 3. The probabilities of radiation and pair-photoproduction processesin thefield of a
monochromatic plane wave and in atwo-mode field, obtained by splitting the initial wave into two waves, are
compared. It is shown that the total probability of the emission of aphoton by an electron in atwo-mode field
is lower than and the probability of pair photoproduction is higher than the probabilities of the same processes
intheinitial wave. The increase in the pair-photoproduction probability is explained by the fact that additional
channels for reactions which are forbidden in the initial monochromatic field open up in a two-mode field.

© 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The emission of a photon by an electron and pair
photoproduction in a strong unimodal laser field have
been studied in detail theoretically [1] (seedso[2, 3]).
These effects were recently investigated experimen-
tally by MacDonald's group at SLAC [4, 5]. In the
present paper we shall examine the probabilities of the
same processes in atwo-mode plane-wave field.

We define a two-mode field as a superposition of
two monochromatic plane waves with frequencies w,
and w,, propagating in the same direction. A two-mode
field with commensurate frequenciesis of special inter-
est, since in such afield interference of the amplitudes,
corresponding to a different number of photons which
are absorbed from different modes but having the same
total 4-momentum, can be manifested in the probabili-
ties of quantum processes. This interference is respon-
siblefor the so-called “tunable asymmetry” in the spatial
distribution of the radiation from an electron encounter-
ing atwo-mode laser field consisting of a strong mono-
chromatic component and a weak component with
twice the frequency. It was first discussed by Puntgjer
and Leubner [6] on the basis of classical electrodynam-
ics. Similar interference effects arising when light
waves interact with a continuous medium in the pres-
ence of a resonance between multiple frequencies of
the light waves and the frequencies of electromag-
netic transitions of the medium were predicted theo-
retically in [7, 8] and subsequently observed experi-
mentally in [9].

A quantum-electrodynamic analysis of theradiation
from an electron and pair photoproduction in a two-
mode field with circularly polarized components was
madein [10]. Unfortunately, thiswork contains serious
errors, a detailed analysis of which, as well as the cor-
rect answer for the probabilities of the processes exam-
ined, are contained in [11].

In the present paper we consider a two-mode field
produced by two linearly polarized waves with an arbi-
trary angle between the polarization planes and with an
arbitrary phase shift. The 4-potential of such afield can
be written in the form

A = AL + A6,

Al = aicosd,, ¢, = kX, M
A, = aycos(h,+0), 0, = kX, ¢ = congt,
Ki=ki=0, ka =k,a, =0.
The wave 4-vectors of the modes differ by afactor of v:
k, = vk, ()]

which can be rational (commensurate frequencies) or
irrational. We introduce the dimensionless parameters
of the mode intensiti

2.2 2, 2

e a
== =l
m

1 We use the system of unitswhere# = ¢ = 1.
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In what follows, we shall also require the quantity

n® =n:+n; = ni(1+2%, (4)

which can be called a dimensionless parameter of the
intensity of the two-mode field.

In practice, atwo-mode field of the form (1) can be
obtained by first splitting a monochromatic laser beam
into two beams and then merging the two separate
beams, after passing one beam through a frequency
converter. Such ascheme with v =3 will be used in the
next series of experiments at SLAC.2If thelossesinthe

converter are neglected, then the intensity r]é of theini-

tial wave is related, as one can easily see, with the
intensities of the modes by the relation

No = NI+Vn;. (5)
Equality (5) isimportant for making quantitative com-
parisons of the probabilities of processesin atwo-mode
field and in the field in an initial monochromatic wave.
We note that such a scheme makesit possibleto achieve

a constant phase difference between the modes of the
laser field.

We shall calculate the probabilities of the quantum
processes in a two-mode plane-wave field using the
conventional method [1] in which the interaction of
charged particles with a radiation field is studied by
means of perturbation theory, and their interaction with
the external field is taken into account exactly (using
the Furry picture). The latter is achieved by taking asthe
bass for caculating the transition amplitudes the exact
solutions of the Dirac equation inthefield of aplanewave,
the so-called Volkov solutions. For afield described by the
4-potentid (1), the Volkov solutions can be written in the
form (compare, for example, with [12])

e(yky)(ya,)

W(x) = [1+ ook

+ &(yky)(ya,)
2pk,

cosd,

cos(, + ¢)] (6)

E-exp{—i(gx + Ry + Ryp + Ry + Ryp)}

u
X
240

where
e(aip) “a;
Rip = pkl sing, — 8pk. sn2d,,
e(a:p) ’a;
Rop = ok, ——sin(¢, + <I>)— 9n2(¢2+¢)

()

€ (alaz)

Rsp = Wsn(¢l+¢2+¢)

2 Private communication from professor K.T. MacDonald.
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Rip = e esin(b, ~0,—4).

We shall call the 4-vector

. _ pu_ezmiqku_ezmggku
2pk, ' 2pk, *?

(8)

. €l €a
Capk, T Apk,

in equation (6) the average kinetic 4-momentum of the
electron. We note that the averaging for each of the
squared 4-potentials A; and A, in equation (8) is per-
formed over the period of each potential. In a periodic
two-mode field with commensurate frequencies, the
4-vector g isaquasimomentum. We shall call the quan-
tity mgiven by

m = o’ = m’ ”25 )

the effective mass of an electron in a two-mode field
irrespective of whether or not thisfield is periodic.

2. EMISSION OF A PHOTON BY AN ELECTRON

The S'matrix element corresponding to the emission
of aphoton with 4-momentum k' = (w', k') and polariza-
tion 4-vector € is given by the formula

ﬁelkx
/\/_

It is easy to see, using equations (6) and (7), that the
integrand in equation (10) isalinear combination of the
guantities consisting of the following factors:

S = —|e.rLIJp(ye*)LIJ (20

cos'p, ep{—(cusing, ~BiSn200}, )y
n=2012;
cos'(¢,+¢)
x exp{—i[a,sin($, + ¢) —B,sin2(d, + )]}, (12)
n=201,2;
cos'(¢, + &, + d)exp{izssin(d, + ¢, + $)}, (13)
n=201;
cos'(¢,—d,—d)exp{iz,sin(d, — o, —9)}, (14)
n=201.
Here, we have used the notation
_ JRP_app ‘iaizgi 10
%= hp TkpD P T T8 Oop kel (15)
i =1,2;
No. 3 2000



QUANTUM PROCESSES IN A TWO-MODE LASER FIELD

_ ez(alaz)D 1 1

%4~ J1xv)kp kpC

(16)

Each factor in equations (11)—(14) can be expanded in
aFourier seriesas

COS”¢1eXp{_i(G15in¢1_Blsinzq)l)}
® _ a7
Z An(s:0,B,) exp(—is;94),
cos"(¢, + )
x exp{—i[a,sn(d,+ ) —B,sin2(d, + )]}
. (18)
= z An(S:0,B,) exp[—isy (b, + d)],
= oo
cos"(¢, + d,+d) x exp{izgsin(h, + o, + )}
0 n (19)
= Y BHeemlis@: o+ o))
8 = o0
cos"(¢;—d,— ) x exp{izsin(¢,—d,—9)}
3 (20)
z E?DJ Lz explisd:—0,-9)],
where
_ 1 " n
A (sap) = fﬁqu) cos ¢ 21)

xexp(ishp —iasing +iBsin2¢)

are functions which have been studied in detail by
Nikishov and Ritusin connection with processes occur-
ring in the field of alinearly polarized monochromatic
wave[1], and Jy(2) are Bessal functions. Using therela
tions (17)—(20), the expression (10) for the matrix ele-
ment S; can be put into the form

S = M i(S1, S, Ss, Su)
fi = e
Su% s A 80odow

x 8P (q+ (5, - S3—Sy)ky + (S, =83 + S, )k — 4 —K),

(2m)*
(22)

where

Mi(S1, S, Spy Sg) = —ieJATO 0(S,, S5, S5, S)U

. " (23)
x exp[—i(s;—S3+5,)0],
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O(sy, S, S5, S) = Js(Z3) Is(20)

e( 12))
~ 2(ky P) (K, P)

ﬁ(v
X Ag(S101B1) Ag(S0,3,)

[[(veib(vkl)(val) (ya))(yk)(yeDp
°0 2(kyp) 2(k,p) U

e’ai(k,eD
2(k; p)(ky p)
X Ag(S0,,) + Ag(S,01 )

y [eg(vefb(vkz)(vaz) L (Ya)(vk)(yeD
U 2(kyp) 2(kp) M

Sy (eeD vk 2+ 2

(24)

x Ay(,0,B) - (vkl)Az(slalsl)}

2 gkz ;
X A(S0,87) - %(Ea(vkzmz(szazsz)}

OO

Introducing the numbers
$3=S84 Ny = $,=53+5,,
the expression (22) can be represented in the form

nl = Sl_ (25)

00

S exp(-ing) 2

Ny, Ny = —©

M fi(Ny, Ny)

A/ 800w
x (21)*3(q + nik, + nyk, — g —K),

where

Si =
(26)

exp(—in®)Mi(ny, ny)

c (27)

= z Mi(ny + S5+ 54, N, + 53-8, S5, Sy).

S3, Sy = —®

The structure of the conservation law in equation
(26) makes it possible to interpret Msi(ny, n,) as the
partial amplitude for the emission of a photon with
momentum k' as aresult of the absorption of n, photons
with momentum k; from the first mode and n, photons
with momentum k, from the second mode of the exter-
nal field. Since the dependence on the phase difference

¢ between the modes of the field on the right-hand side
of equation (27) is completely determined by the factor

exp(-iny$), the amplitude Mi+i(n,, n,) describes the
emission processin afield with ¢ = 0.

It is easy to see that all kinematic relations for the
emission of aphoton by an electron in atwo-modefield
retain the same form as in the case of amonochromatic

field (see [1]), if in the corresponding formulas the
number of absorbed photons sis replaced by n; + vn,,
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the frequency w, of the first harmonic is taken for the
frequency w, and the expression (9) is used for the
effective mass mpy Specifically, in the sum over n; and

n, in equation (26) only termsfor whichn, +vn, >0are
different from zero.

The sguared modulus of the matrix element (26) is

ISul

Vil z 8(n, +vn,)B(n; +vny)

Ny, Ny, n'l, I’l'2

 Mii(ns, n) Mii(ny, )
800w’

exp[i(nz—n,) 9]
(28)
2"

o0+ (ny+ vk, — g —K]

x3%[q+ (ny + vk, — g =K].
It is obvious that the product of the delta functions on
the right-hand side of the expression (28) satisfies the
relation

3“[q+ (ny+vny)k; —q —K]

x 89+ (n, +vip)k, - —K] = (;:)4 29)
s LA+ (N3 + Vi)~ =K,
where
n,n;On,n, fOF irrational v,
Pouns i, = d for rational v, (30

Ny +vn, Ny +vn,

Using the relation (29), we obtain for the differential
probability of emission per unit time, summed over
polarizations of thefinal particlesand averaged over the
polarizations of the initial electron, after standard but
guite cumbersome calculations,

We = Z B(n, + vny)A

x exp[i (M, = N,) W (ny, ny; Ny, ny) (31)

dkdq

* 80 A ko= - K)o
0
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where
w(ny, n,; Ny, Ny)
= Z I5(22) I (23) J5 (24) I (24)
S350 83 84 (32)
ﬂ-]l + S3 + S4¢ n2 + 53 34, 53, S4|:|
x v !
My +S;+S, Ny +S;—S,, S5 S0

All summationsin equations (31) and (32) extend from
—o0 {0 00 and

L 2 Se S4D ) 0
veD -2+ cos +——2 U
3, S S, SO [ Ml (p%L 2(1+u)l
+s; S+
(GBS ls }Ao(sl) NDINSINE

il E(IUTJ)% 2(5) Ad(S) ~ A5 A(S)

— Ay(S) Ad(SD) 1A(S) Ag(Sh)
+ 2 Ao(S) Ag(SD[2A(S) As(S)) — Ao(S) Ax(S))
— Ay(S5) Ag(SH) ] + 22 cos@] Ag(S) Ay(SD) Ar(S,) Ag(S))

(33)

+ A5 ALS) AdS) Ad(S)] E;

The following notation is used in equation (33):

An(S) = An(SiaiBi)i An(sil) = An(silaiBi)i
kK (34)
k"
the angle @is determined by the relation
e’a,a, = -m’N5L cose, (35)

and, if the gauge in which the zeroth components of the
vectors g vanish is chosen, it is the angle between the
amplitudes of the electric vectors of the two modes.
Itiseasy to seefrom equations (32) and (33) that the
guantities wé(ny, n,; Ny, n,) are symmetric under the

permutation (n, n,) =—— (N}, N5):

w(ny, ny; Ny, Ny) = wW(ny, ny; Ny, ny). (36)

Carrying out the integration in equation (31) over
the momenta of the final particles, just asin [1], and
switching to the invariant variablesu and i, where s is
the angle between the (k4, ') and (k4, &;) planesin the
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coordinate system where k; and g are oppositely
directed, we obtain for the total probability of emission

per unit time
2 2
we = &M (N, + VYA
4T[qOnl n;l . (ny DN, i,
US(\)) d 21 (37)
H 1 u 1 1
x exp[i(n; —ny)¢] I ZquJWe(nla Ny; Ny, Ny).
2 (1+u) 0
Here,
ufv) = 2s 1q, S = n,+vn,, (38)

*

and the parameters of the functions A, and the argu-
ments of the Bessel functions are expressed in terms of
uand Y asfollows:

al = ZlCOSlIJ’ aZ = ZZCOS(l'IJ+(p)1

2sn; u u g 14
7, = / - z, = 27,
! 1+n2/2 us(V)%L uw)d = v

, (39)
___sm u _C
- 2 ’ BZ - _Bll
4(1+n%/2)uv) v
Z, = 4%(:05@ z, = Blz 1, C0s0.

For incommensurate frequencies as one can see
from equation (30), n, = N, N, = n;,, and expression (37)
can be regarded, in complete agreement with the inter-
pretation of amplitude (27), as the sum of partia prob-
abilities of emission as a result of the absorption of n;
photons from the first mode and n, photons from the
second mode.

If the frequencies are commensurate, the partia
probabilities with fixed n, and n, contain, besides the
squared moduli of the corresponding amplitudes, an
infinite number of termswhich are due to the appearance
of the interference of the amplitudes corresponding to a

different number of absorbed photons n;, n, and n}, n,
from each mode, but the same total 4-momentum

(ny+vny)ky = (ng+vny)k,.

We note that the dependence of the differential and
total emission probabilities on the phase difference ¢
between the two modes is completely determined by

the factor exp[i(n, —n,)¢$] in equations (31) and (37).
For this reason, for incommensurate frequencies, when
n, = n;, the dependence on ¢ vanishes. When the fre-

guencies are commensurate, the emission probabilities
(31) and (37) due to the presence of the interference
terms depend on the phase difference between the two
modes of the external field. The dependence of thetotal
probability on the phase shift strongly distinguishesthe
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field of linearly polarized modes from a circularly
polarized two-mode field [11]. In the latter case,
because there is no preferred direction in a plane per-
pendicular to the direction of propagation of the wave,
the dependence on the angular variable ) becomestriv-
ial [11] and integration over it results in vanishing of
the interference terms and, together with them, the
dependence on the phase shift ¢.

3. PHOTON EMISSION:
COMMENSURATE FREQUENCIES

In this section we examine the probability of photon
emission (37) for commensurate frequencies. For defi-
niteness, we assume that v is an integer greater than
unity. If the frequencies are commensurate, then the
emission processes due to the absorption of n; and n,
photons from the first and second modes, respec-
tively, with n; + vn, = s = congt, i.e., with the same
4-momentum sk;, absorbed from the field, are indistin-
guishable. For this reason, it is convenient to rewrite
equation (37) for commensurate frequencies intheform

0 s(v)

4TE%Z I (1+u) I
(40)

X z cos[(n, —Ny)dJW(S—vn,, Ny S—Vny, Ny).

n,, n'2 = —00

VV‘EZV\/e

We used here the fact that the quantities we are real and
the symmetry property (36).

In the weak-fild limit, n; ~ n, < 1, the amplitudes
M ri(n,, N,) and thequantities w(s—vn,, N,; S—vny, Ny)
can be calculated on the basis of a diagram technique
[1] (seealso [11], where the application of the diagram

technique to the case of a two-mode field with circu-
larly polarized components is discussed in detail). For

example, the amplitude |\7Ifi(1, 1) corresponds to the
diagrams shown in Fig. 1 where the dots indicate dia-

grams differing from the diagrams presented by all pos-
sible permutations of the vertices.

It is obvious that in the perturbation theory the
amplitudes Mri(n,, n,) can be rewritten in the form

Ms(ng, ny) = z M (g, ny),

where M (fi correspondsto diagramswith absorption of
n, photons from the first mode and n, photons from the

second mode, and M(fﬁn) with m = 1 describe the same
diagrams with the addition of m pairs of photons from
any mode, one photon from this pair being absorbed
from the wave and the other being emitted into the
wave. For example, the diagrams (a) shown in Fig. 1

No. 3 2000
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ki ky k'

NLNDINLE

Fig. 1. Diagrams corresponding to the amplitude M (1, 1)
of emission of a photon by an electron in atwo-mode field.

k' ky k' ky
. ; 2 L R M +
a b
k' ky k;, k' ki ky

Vf a./ E Zﬂ,'
. . 2 +... ’+...
d

c

Fig. 2. Diagrams determining the partial probability Wi of
emission of the first harmonic in atwo-mode field.

correspond to the amplitude M (f?)(l, 1), and the sum of
diagrams (b) and (c) in Figs. 1 describes the amplitude

M(f.l)(l 1). Itisobviousthat for the amplitude Mﬂ

have

My, ny) Ol 2,

and correspondingly the field dependences of the quan-
tities w(s—vn,, N,; S—vny, Ny in equation (40) will
be determined, on the basis of the perturbation theory,
by the expression

we(s—vnz, Ny, S—VNy, Ny)

Z Wmlmz g1;+2m1+2m2, (41)
m;, m, =0
g = |s—vny| +|n] +|s—vny +|ny. (42)

The coefficients Wrenlmz in equation (41) do not depend
on the field, and the numbers m; and m, can be inter-
preted as the numbers of pairs of photons with zero
total 4-momentum, which belong, respectively, to the
first and second modes.

Inthefield of the monochromatic wave[1] the struc-
ture of the probability isidentical to equation (40), if in

the latter the double sum over n,, n, is replaced by a

single term with n, = n, = 0. The number sin this case

determines the 4-momentum sk; absorbed by an elec-
tron from the field and the number of absorbed photons.

The partial probability WS in a wesk field is of the
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order of n%, and the radiation at the first harmonic
makes the maximum contribution to the total probabil-

ity Wi ~ n2 The situation is different in a two-mode
field. The quantity W5 depends on the number s non-
monotonically. Here, the two partial probabilities W

and W, are of the same order of magnitude n; . Thisis
very easy to understand, if it isrecalled that the number s
determines only the 4-momentum absorbed from thefield
and not the number of absorbed photons. Thus, W is

determined mainly by the diagrams with the absorption of
one photon from the second moden, =1, n; =s—v =0,
while the contribution of diagrams with absorption of v
photons from the first mode n, = s=v, n, = 0 in accor-

dance with equation (41) is of the order of r]fV and gives

asmall correction of corresponding order to W, .

We determine now the minimum order in which inter-
ference effects appear in the perturbation theory. This
means [see (41)] that we need to determine the minimum

value of the number g (42) withn, # n;.
Let g = 4. Then the following equality must be sat-
isfied:

4 = |s—vn2|+|n2|+|s—vn'2|+|n‘2|. (43)

It is easy to show that this equality is possible only if,
inthefirst place, n,, n, =0 (werecal thats>1,v = 2)
and, in the second place, |n,| + [n,| =1, i.e, for n, =0,

n, =1orn,=1, n, =0. For such values of n, and n,,
the equality (43) becomes

3 = s+|s—V, (44)

which holds only for s<v and only for v = 3.

Thus, the frequency multiplev = 3isadistinguished
value. In aweak field, interference effects are present
even in fourth order of perturbation theory only for v = 3.
For v # 3they first appear, asaminimum, in sixth order,

i.e., they are much weaker. In what follows, we perform
al calculationsfor v = 3.

The first four harmonics contribute to the emission
probability in a weak field, calculated up to terms of

fourth order r]‘l1 inclusively. For example, the first-har-

monic emission probability W] determined by the dia-
gram shown in Fig. 2 is given by

e
_em du
' 4m -I (1+u)?
N (45)
x J’dljJ{We(l, 0; 1, 0) + 2cosdw(1, 0; -2, 1)},
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where

w1, 0; 1,0) = wi(1, 0; 1,0) +w5(L, 0; 1,0), (46)

%cos W
u’ 2
mECOS U]

(47)

l\)

D 2
wi(1,0; 1,0) = 1z2+—“————
D +

Uy

2

N1 U[DU
- +———+
4 1[2 1+u 8%]' [Ty,

_34

U

[l
gcos w}%

wy(1,0; 1,0) =

~Hoosi(y + ) + 8 ooy

sliigeer

- 16 Ecos Y cos (qJ + (p)} (48)

——[%1 2 %coscp

u
- a—lgcoscpcosm cos(y + (p)}

Oodada

U

f]lluD u’ 0
= + D —_
w1, 0;-2,1) = 7 uFHﬂ 21+uD

x [ a- Hcosw =bos cos@— COS(UJ + CP)E ng(p}
(49)

—24 %l %cosw [coqu cos@ + w

Uy

x %]_ + 4% - uﬂlgcosztpg} E;

Thefirst term on theright-hand side of equation (46)

wi(1,0; 1,0) reproduces the result obtained by

Nikishov and Ritus[1] for the case of amonochromatic
wave, the difference being that the quantity u, (38) is
now determined by the electron effective massin atwo-
mode field (9) and not in the field of a monochromatic
wave (following [1], we determine u, by the exact for-
mula (38), which is necessary in order to describe the
kinematic features of the process correctly). This term is
determined by the sum of diagrams (a) and (b) and one of
the diagrams (c) in Fig. 2 that leads to “renormalization”
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Fig. 3. Contribution of the quantitiesm/e(4)(1, 0;1,0) (1) and
2w5(1, 0; -2, 1) (2) with the parametersn=0.5,{ = 1.2, and
¢ = 0 to the total emission probability in a weak field as a
function of u,.

of the effective mass. The second term wi(1, 0; 1, 0) is
determined by the interference of the diagrams (a) and
(c) inFig. 2 and, naturaly, it is absent for a monochro-
matic wave. For thisreason, it contains the factor {2 and
depends on the angle @ between the polarization planes
of the two modes.

The interference term (49) is determined by the
interference of the diagrams(a) and (d) in Fig. 2. It con-
tains the parameter ¢ to the first power, since the dia-
grams(d) in Fig. 2 contain only oneline, corresponding
to the absorption of a photon from the second mode,
and it also depends on the angle @. For ¢ =172, i.e, if
the two modes are polarized in mutually perpendicular
planes, the interference term does not contribute to the
total probability. We note that this circumstanceis com-
pletely unrelated with perturbation theory. Here, we
have a situation similar to the case of circularly polar-
ized modes [11].

Interference effects can strongly influence the emis-
sion probability. Plots of the u, dependences of the con-

tributions of the quantity We(4)(l, 0; 1,0), whichisa
term of order 7 inwe(1, 0; 1, 0) (46) and 2w&(L, O; -2, 1)

(49), to the total probability are presentedin Fig. 3. Itis
evident from the plots that the difference between these

two quantities changes sign at avalue u; = u; closeto
unity. This means, specificaly, that for the phase differ-
ence ¢ = Trthe sign of the correction of order n; to the
total emission probability of the first harmonic

changes, and for u; = uj this correction vanishes. We

note, however, that this effect occurs not for arbitrary
values of the parameter ¢, but only for > {» = 0.852.

For { < C«, the plotsin Fig. 3 do not intersect and the

fourth-order correction to Wj is always negative.
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dW¥¢/dy, arb. units

(@)

0.2F

0.1

(b)

0.1

02 ©

0.1

0.10 0.15 0.2
y = W/4y*w

Il
0 0.05

Fig. 4. Spectral distribution of the probability of emission of
aphoton by an electron for variousratios of the mode inten-
sities{ = (a) 0, (b) 0.36, and (c) 1 for the same intensity of

theinitial monochromatic wave r]g = 1 and the parameters
mP/kyp = 0.4, =0, and ¢ = 0.

Forn = 1, i.e, in the absence of asmall parameter,
the representation (40) for the emission probability is
no longer convenient for numerical calculations, since
if it isused, the contribution of alarge number of terms
of the same order of magnitude in the six-fold sum for
the partial probabilities must be taken into account [see
(40) and (32)].

A formula for the probability that is more conve-
nient for numerical calculations can be obtained for a
field whose modes have commensurate frequencies.
Then the integrand in equation (10) for the emission
matrix element is a periodic function and can be
expanded in asingle Fourier series. Next, the same sce-
nario asthe one used in [1] gives for the probability

2 2 [ US(V) d
We - em u
2TIQ()821 -([ (1+ u)2

2n
0 2 v o0
x dy [ |Axp(s)| + =L+

x [N3(|Ap(9)]” — Re(Ax(9) Ax(9)) (50)
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+N52(Aa(9)” - Re(An(S) A(S)

+ 2177 c0SPRE( Ase( AL (S) — Aol AL (9)] E

where the functions A,(s) are given by the relation
1 1
Aa(®) = 5[ 061005°9,008(v 9, + 6)
—Tt

x exp(isp,—ia,sing, +iB;sin2¢,
—i0,sn(Ve, + ) +iBsin2(ve, + )

+izgsin(¢, + v, + ) +izSn(d,—vd, - 9)),

and the definitions of al parameters are the same. In
what follows, we employ the representation (50) for all
numerical calculationswith n, or n, ~ 1.

Figure 4 shows the curves of the spectral distribu-
tion of the radiation for various ratios of the mode
intensities, i.e., for various values of the parameter { =
n./n., which correspond to the same intensity of the
initial monochromatic wave. The curve in Fig. 4a cor-
respondsto the value { = 0, i.e., the case of the field of
amonochromatic wave with frequency w,; and intensity
No. It isassumed that a “head on collision” of an elec-
tron with the laser field occurs, i.e., the momentum q of
the initial electron and the wave vector k, of the field
are antiparallel to one another. The radiation spectrum
corresponding to the sth harmonic has a sharp bound-

ary at the frequency wﬁO(O) [2],i.e, at the frequency of

a photon emitted in the direction of the momentum of
theinitial electron. This frequency can be easily found
from the conservation laws and is determined by the
expression

(51)

2
swa”

w; (0) = (52)

mf + Zsooq_’

where mx isthe e ectron effective massin the field of a

monochromatic wave. Figures 4b and 4c show the
spectral distributions of the radiation in a two-mode
field for the values { = 0.36 and 1, respectively. These
curves have two important features.

In thefirst place, the boundaries of all harmonicsin
Fig. 4b and 4c are shifted rightward compared with the
corresponding boundaries in the monochromatic wave.
This effect has a simple explanation. Indeed, since the
form of the conservation laws in the two-mode field is
the same asin amonochromatic field, equation (52) for
the limiting frequency remains of the same form. How-
ever, now, mk isthe effective mass (9) of an electronin

a two-mode field, which, being expressed in terms of
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theintensity n, of theinitial wave[see (5)], can be writ-
ten in the form

2
1+ (53)
V)

1+ ZZZ

Oofaa

D 2
rnfc = m2|:ﬂ_+r]—0
o 2

The value of the parameter { = 0 corresponds to the
field of theinitial monochromatic wave with frequency
Wy, and { = oo corresponds to the case where the initial
wave is completely transformed into a monochromatic
wave with frequency w, = vw;. It is easy to see from
equation (53) that, effectively, an electron in a two-
mode field (¢ > 0) islighter than an electron in the ini-
tial monochromatic wave. This is the explanation, in
correspondence with equation (52), of the shift in the
harmonic boundaries. Evidently, this effect can be used
to make a direct measurement of the electron effective
mass as a function of the intensity of the external field.

Another important feature of the curvesin Fig. 4 is
the change in the relative contribution of various partial

probabilities W to the total probability W®as a func-
tion of the parameter ¢. Specifically, for (=1andny,=1
the intensity parameters n; and r), are equa to each
other, and it isevident from Fig. 4c that the partial prob-

ability W5 makes in this case the main contribution to

thetotal probability. We note, however, that the redistri-
bution of the contributions of the partial probabilities

W] and W; to the total probability with increasing €

occurs against the background of a decreasing total
probability. Thisis graphicaly illustrated by the curves
in Fig. 5 and is explained by the fact that the intensity
parameter n (4) of the two-maode field is smaller than
theintensity parameter n, (5) of theinitial unsplit wave.

The spectral distributions of the radiation in a two-
mode field are presented in Fig. 6 as a function of the
phase shift ¢ between the modes. As one can see from
the plots in Figs. 6a, 6b, and 6¢, this dependence is
strongest for the second harmonic. In the perturbation
theory thisis explained by the fact that the interference
and noninterference terms for the second-harmonic
radiation, which is determined by the diagrams shown
in Fig. 7, are of the same order of magnitude. As one
can see, thisratio between these terms remains even for
not too small values of n; and n,, when perturbation
theory isno longer applicable.

4. PAIR PHOTOPRODUCTION

The differentia probability of pair photoproduction
by an unpolarized photon can be obtained by making in
equations (31)—(33) the changes of variablesp — —,
K — —K, and d®*k' — d®q and changing the overall
sign of the expression (31) (compare with [1]). Inte-
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Fig. 5. Total emission probability We (1) and the contribu-
tions of the partia probabilities Wi (2) and W5 (3) to it as

functions of the distribution of the intensity between the
modes of the field for fixed intensity of the initial mono-

chromatic wave r]g = 1 and the parameters m2/k1p =04,
@=0,and ¢ =0.

dW¢[dy, arb. units
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Fig. 6. Spectral distribution of the emission probability for
various phase shifts ¢ between the modes of the field: ¢ =
(& 0, (b) T2, and (c) Ttfor the parametersng = 1, mZ/klp =
04,(=07,and @=0.
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Fig. 7. Diagrams corresponding to the contribution of the
second harmonic s = 2 to the probability of the emission of
aphoton by an electron in atwo-mode field.

grating the expression so obtained over the momenta of
the final electron and positron, just asin [1], we obtain

2 2
e‘m
v — %n 2 BN -V =S,
ug(v) q
. u
x exp[i(n, —n - (54)
pli(n;—n,)¢] ‘1[ U/\/U(T_l)
21
x f dgw'(ny, ny; Ny, ),
where
(kik)® s
= =, UdV) = —,
kot Y T s -
2 (55)
2mg
S=n1+Vn2, SOZT(—]-E,
and | is the angle between the (k;, ) and (k;, a;)

planes in a system where k and k; are directed oppo-
sitely. An expression for w¥(ny, n,; n;, n,) can be
obtained from we(n,, n,; N}, n,) by making the change
of variablesin equations (32) and (33)
2
u
+ E(-I'T'-U—) —1-2u

and changing the overall sign. The parameters of the
functions A,, and the arguments of the Bessel functions
retain their form (39).

In the expressions for the corresponding pair-photo-
production probabilities, the argument of the 8 function
must be changed compared with equations (31) and (37).
Thisis due to the existence of athreshold for the pair-
photoproduction reaction

n,+vn, =

>s,.

We are interested in the case of commensurate fre-
guencies, for which it makes sense to rewrite the prob-
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ability (54), just asin theradiation problem, intheform
[compare with (40)]

22°°

- ~ 8nw Z 8(s—)

S=—

S B(s—s)W

S= —

US(V) 21

XIU u(u 1I U] Z cos[(n,—n)¢]

N =

(56)

wW/(s—vn,, n,; s—vny, ny).

For the same reasons as in the radiation problem, for
numerical calculationsin the case where at |east one of
theintensity parameters of the modesis not small com-
pared to unity, it is convenient to represent the probabil -
ity of pair photoproduction asasingle sum over s. It has
the form [compare with (50)]

o uv)

> (—so)ju —u(u 5

S= -

w =
4T[OJ

2mn

x J’dL]JHAOO(s)|2 +(2u-1)[n3(AgE)
) O (57)

—Re(An(9) Ax(9))) N30 A0u(9)]* — Re(Age(9) Anx(9))

+ 2122 cosPRE( A9 A(S) — A9 AL(S)] Ex

where the functions A.(s) are determined by equa-
tion (51), and all parameters are determined by equa-
tions (55) and (39).

It is evident from equation (56) that pair photopro-
duction by a photon in atwo-mode field with commen-
surate frequenciesis characterized by the sameinterfer-
ence effects as in the problem of emission of a photon
by an electron. Since the representation (41) holds for
the quantitiesw¥(n,, n,; n;, n,) when perturbation the-
ory is applicable, we can conclude that even in this
problem the frequency ratio v = w,/w; equal to three,
which we used in all further calculations, is optimal for
observing interference effects. However, the threshold
character of the pair-photoproduction reaction leads to
anumber of interesting features of this process.

Let us consider the dependences, shown in Figs. 8
and 9, of the total pair-photoproduction probability on
the parameter n,. The parameters for the curve shown
in Fig. 8 were chosen so that the threshold value of the
number sinthefield of theinitial monochromatic wave
satisfies the condition 2 < 5, < 3. Thismeansthat in the
field of a monochromatic wave with n, < 1 the partial

probability WY, which is formed primarily by the pro-
cess with absorption of three photons of the wave,
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makes the dominant contribution to the probability. If
an admixture of the second mode has appeared in the
field for afixed value of the parameter n, [see (5)], a
channel with absorption of a single photon of the sec-

ond mode starts to contribute to W5. In addition, as ¢
(or n,) increases, the contribution of this channel grows

more rapidly than the contribution of the channel with
the absorption of three photons of the first mode

decreases. Theincrease in the partial probability W) as
aresult of the opened channel with the absorption of
one photon with frequency w, and one photon with fre-
quency w, = 3w, fromthefield isalso added to this.3 As
aresult, in contrast to the emission problem, the total
pair-photoproduction probability increases when the
initial monochromatic wave is split into two compo-
nents with frequencies w, and w, = 3wy.

We underscore that this increase occurs against the
background of the already mentioned decrease in the
intensity parameter n of the two-mode field compared
with the intensity parameter n, of theinitial monochro-
matic wave. The reason isthat anew channel, whichis
forbidden by the conservation laws in the case of the
monochromatic initial wave, opens up when the wave
is split into two waves.

We call attention to the jump, clearly seenin Fig. 8,
in the derivative of the total probability. This jump is
explained by the fact that because the dectron and
positron effective masses decrease with increasing ¢
(or n,) another reaction channel opensup for somevalue
( = {,. The value of the parameter {, is determined by
the equation sy({g) = 2, and for { = {, the partial prob-

ability W) startsto contribute to the total probability.

Figure 9 showsthe dependence of thetotal pair-pho-
toproduction probability for the case where the thresh-
old value s, of the number sis greater than three in the
initial monochromatic field. Here, for small { (or n,)
we observe a completely explainable decrease of the
total probability, since the decrease in the intensity
parameter n as compared with ng is not accompanied
by the opening of anew channel making alarge contribu-

tion to the fundamental harmonic W} . The increase starts
only at value ), corresponding to { = (g3, $(Cg3) = 3, for
which a pair-photoproduction channel due to the
absorption of the 4-momentum 3k; from the external
field opens up. Of course, for { = {y; we observe ajump
in the derivative of the total probahility.

The spectral distributions of the probability of pair
photoproduction by a photon are shown in Fig. 10 for
variousdistributions of theintensity between the modes
of the field. The intensity of the initial monochromatic

waveisthe samefor all distributions r]g = 1.Justasin

3 The remaining harmonics make a negligibly small contribution to
the total probability.
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Fig. 8. Total pair-photoproduction probability WY (1) in a
two-modefield asafunction of the distribution of theinten-
sity between the modes of the field for fixed intensity of the
initial monochromatic wave n, = 0.5 with the parameters

mz/klk' =0.9, ¢ =0, and @= 0. The contribution of the par-
tial probabilities WY (2) and W} (3) is shown.

WY, arb. units

0.004

0.002

Fig. 9. Total pair-photoproduction probability WY (1) in a
two-mode field and the contribution of the partial probabil-
ities WY (2) and W} (3) to it as a function of the distribu-
tion of the intensity between the modes of the field for fixed
intensity of the initial monochromatic wave n, = 1.5 and the

parameters mP/k,K = 0.9, ¢ = 0, and @ = 0.

the radiation spectrum, as ¢ increases, the relative con-
tribution of the harmonics with s being a multiple of
three increases. However, in the radiation problem this
growth occurs against the background of a decreasein
the fundamental harmonic with s= 1, and asaresult the
total probability decreases. For pair photoproduction,
however, because of the existence of a reaction thresh-
old, the third harmonic is the fundamental harmonic for
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Fig. 10. Spectra distribution of the pair-photoproduction
probability for various ratios between the intensities of the
modes: ¢ = (@) 0, (b) 0.36, and (c) 1 and the parameters

No= 1.5, mPlkk' = 0.9, ¢ =0, and @ =0.

the values chosen for the parameters, and its growth
with € resultsin a higher total probability. We note that
the appearance of anew local plateau in Fig. 10c isdue
to the opening for > {,, of a channel for pair photo-
production due to the absorption of two photons.

We note that as { increases, the €electron and
positron effective masses decrease, and s, decreases
with them. As aresult, as { increases, the widths of the
harmonics, which are determined by the relation [3]

P )

increase. This effect can also be used for direct mea-
surement of the electron effective massin aplane-wave
field as afunction of the intensity of the field.

Finaly, Fig. 11 illustrates the influence of interfer-
ence effects on the spectral distribution of the pair-pho-
toproduction probability, expressed as a dependence of
the distribution on the phase difference ¢ between the
modes. We note that for n; = n, < 1 the interference
effects should be weak. Thus, if ng=1, 2 <5 < 3, the
value = 1isreached if n; = n, = 0.316. Interference
effects for the principal harmonic s = 3 are determined
by theinterference of channelswith absorption of three

(58)
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Fig. 11. Spectra distribution of the pair-photoproduction
probability for various phase shifts ¢ between the modes of
thefield: ¢ = (a) O, (b) 172, and (c) Ttand the parameters s, =

2.4, mPlk; K = 0.9, 7 =0.25, and ¢ = 0.

photons from the mode with frequency w, and one pho-
ton from the mode with frequency w, = 3w,. The corre-

sponding interference term is of the order of N3, while

the maintermisof the order of ~r]f . In other words, the

interference term is approximately 10% of the main
term. The situation changesif the mode with thetripled
frequency is weak. For example, the parameters corre-
sponding to the spectral distributions shown in Fig. 11
are such that n; = 0.8 and n, = 0.2. In this case, the
channel with absorption of one photon with frequency
w, makes a small contribution to the total probability,

since it is determined by the small factor ni = 0.04,
while the contribution of the channel with the absorp-
tion of three photons from the mode with frequency w,
can be roughly estimated as being proportional to nf =
0.26. The interference term, however, can be estimated
as r]"fr]2 =0.1, i.e, itisapproximately 40% of the main
term. We note that similar estimates can be made also
for the radiation problem. However, in that problem the
first harmonic W5, which, for the mode intensity

parameters considered here, is determining, also con-
tributes to the total probability, and its contribution of
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about n f is appreciably greater than the order of mag-
nitude of the leading interference term. In the pair-pho-
toproduction problem, the channel corresponding to
absorption of one photon with frequency wy is forbid-
den because of the presence of areaction threshold, and
this is what makes the interference effects noticeable,
as one can see from Fig. 11.
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Abstract—Exact single-soliton solutions of the modified system of Maxwell-Bloch equations, in which the
dipole—dipole interactions of the atoms of a dense resonant medium are taken into account, are obtained. Two
propagation regimes are analyzed: “coherent,” where the pulse duration is much shorter than both relaxation
times (T, < Ty, Ty), and “incoherent,” where the pulse duration falls between the relaxation times (T, < T, <
Ty). Itis predlcted for thefirst time, that soliton propagation of an ultrashort pulseis possible in a dense r@o

nant absorbing medium in an incoherent interaction regime. The differences between the amplitude and phase
characteristics of the solitons considered and the corresponding characteristics of the solitonsfor McCall-Hahn
self-induced transparency are noted. © 2000 MAIK “ Nauka/Interperiodica”

1. INTRODUCTION

It iswell known [1] that in dense resonant media a
spectral shift appears in the absorption line as a result
of the short-range dipole—dipole interaction between
the atoms. The spectroscopic data confirm reliably that
the short-range dipole—dipole interaction—the local
field in a dense resonant medium—influence the con-
tour of the resonance absorption line [2]. The most
complete theoretical approach to the problem of the
local field in a dense resonant medium has been ele-
gantly demonstrated in [3], where a strict justification is
given for the generalization of the Maxwell-Bloch equa-
tions taking account of the short-range dipole-dipole
interaction. Besides purely spectroscopic effects, this
qualitative modification made it possible to predict cer-
tain other effects. Specifically, internal optical bistabil-
ity due to a first-order phase transition, can appear in
the stationary interaction regime under certain condi-
tions [4].

The nonstationary interaction of alight pulse with a
dense resonant medium likewise can be strongly influ-
enced by the local fidld. In this connection, it is interest-
ing to study the soliton propagation of ultrashort pulses
in such media. More precisaly, we are talking about the
possihility of the propagation of pulsesof asolitary wave
packet type, which, for brevity, we shall in what follows
call asoliton. Asfar aswe know, this problem has been
studied only in [5, 6], which where the first works to
call attention to the fact that the short-range dipole-
dipole interaction affects the modulation of the enve-
lope and phase of solitonsin a dense resonant medium.
However, phase modulation was neglected in [5], and
an insufficiently general approach wasused in [6] (see,
for example, the condition (8) imposed on the fre-
guency offset).

In the present paper , we consider two aspects of the
problem touched upon. First, we consider the purely

coherent process of the propagation of a light pulse.
Our analysis is more genera than the theory proposed
in [6], since no interrelation between the Lorentzian
frequency and frequency offset from resonance is
assumed. Thisfeature makesit possibleto perform cor-
rectly the transition to a McCall-Hahn soliton with a
constant offset from resonance.

Second, we shall give thefirst formulation and solu-
tion of the problem of the formation of an incoherent
soliton in a dense resonant medium. This situation is
interesting because an essentialy incoherent interac-
tion with the absorbing resonant medium is assumed
and soliton formation is nonetheless possible under
definite conditions. In both cases, the amplitude and
phase characteristics of the soliton differ qualitatively
from those of the solitons discovered by McCall and
Hahn [7].

2. BASIC EQUATIONS
The truncated system of Maxwell-Bloch equations
for the complex amplitudes of the electric field E =

a

Eexp[-i(wT — kZ)] + cc. and polarization p =
pexp[—i(wT —kZ)] + c.c., aswell asthe difference n of
the popul ations of the resonant atom has the form

0E | 10E _ 2nk

op _ M _P

3T |hEn+|(Q+Q n)p T, 2
?_r] = Z.E *n_ p*
57 = 17 (E"P-P*E). (3

Here, V = ¢/n, is the phase velocity of light in the
medium, n, is the nonresonant part of the refractive
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index of the medium, k = wny/c is the wave number in
the medium,  is the dipole moment of the resonance
transition, Q = w — wy, is the offset of the frequency w
of the field relative to the center wy, of the absorption
line, Q, = 4mPNy/3% is the Lorentzian frequency,
determining the frequency shift as a result of short-
range dipole-dipole interactions [1], T, is the trans-
verse relaxation time, and N, is the density of resonant
atoms. The effect of the relaxation term in equation (2)
istaken into account only when the incoherent interac-
tion is studied. In equation (3) we neglected the relax-
ation term because of the assumption T, < T, where T,
is the pulse duration and T, is the longitudinal relax-
ation time.

To simplify the equations, it is convenient to intro-
duce the following dimensionless quantities:

= — = P =
é o, VZ, t = w,T,
_Q _Q _
6 - Q_), wL - w y t2 - prZ! (4)

In accordance with the scaling procedure (4), the sys-
tem (1)—(3) assumes a completely dimensionless form

0€  0€ _ .
FER T ®)
0P _ jen+] _p
3 - i€n+i(d+wn)p £ (6)
N _ o icon
5T = 2(Ep-pe). (7)

3. COHERENT SOLITONS
IN A DENSE RESONANT MEDIUM

In this section the propagation of optical pulses of
duration T, < T, in adense resonant medium is studied
on the basis of the system of equations (5)—(7). Under
this condition, the relaxation term in equation (6) can
be neglected. To solve the system of equations (5)—7)
we assume that

€ =%(1), p=p(1), n=n), )

where the autowave variable 1 = t — Z/v, is introduced
and v, = Vy/V is the dimensionless velocity of the soli-
ton.

We shall seek the analytic solution of the system of
equations (5)—7) that depends only on the variable 1
under the following physical assumptions. the ampli-
tude and first derivative of the field vanish at infinity,
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the derivative of the phase at infinity is a constant, and
n(xo) = 1. We find from equations (5) and (7) that

n = 1-2y[¢[, ©)
wherey = 1/v,— 1. Using equations (5), (6), and (9), we
obtain for € the resulting equation

d’e . o, d€
——i[0+w (1-2y|€ —
Vo —il @ (1-2y €]y g 10

= €(1-2y[€]?).

Following the standard procedure, we represent the
amplitude € of the propagating pulse in the form

(1) = A(t)exp[ig()].

Substituting the expression (11) into equation (6)
and using equations (5) and (9), we obtain the follow-
ing equations for the envelope A and phase ¢ of the
pulse:

(11)

NLAAT _ a2 Lat_pa
Dﬁdrﬂ gA 2A (AN (12
dp _ d+w WY .
dat =~ 2 7 A (13)
where
§=2-yw (d+wy),
_4-y(3+w)’
a AYE (14)
G
48 -

The solution of equations (12) and (13) can be rep-
resented in the form

2./q

A(T) = , (15)
J1+ J1+ 16rqcosh(2./Zqt)
(p(T) _ o +2(A)|__[
(16)

- arctanh[—-————————“lJrAfl«/G_m_ltanh(A/E_qr)]
rq

Next, we can introduce a parameter that represents the
pulse duration T, = w, T}

1 1

"V 1_@“*’@2.
s 0 2 0O

2000

T a7
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Hence, it follows arelation between the soliton vel ocity
and duration:

2

Voo Ty
—_1 = -
Vo 1+[(8+0)T1,/2]

It is easy to see that the soliton studied here differs
from the McCall-Hahn soliton [7] by the Lorentzian
frequency. The presence of w, # 0 in equation (16)
leads to the appearance of a honlinear phase modula-
tion, and, in addition, w, appears additively in the
term describing the linear modulation. The soliton
velocity determined by equation (18) depends para-
metrically on thetotal offset & + w, . Finally, asaresult
of the presence of w, the area of the pulse becomes
less than 21t Indeed, the area of a coherent soliton is,
up to the first term in the expansion in terms of the

small parameter o, ,

(18)

00

2
S= 2IA(T)dT=2T[Ea— 301 a
0

2 D
32[1+(31,/2)°] 0

(19)

Even though varying the constant w, within possible
limits does not greatly change the profile of a coherent
soliton in a dense resonant medium, the short-range
dipole—dipoleinteractions can have alarge effect on the
propagation velocity of the soliton for certain pulse
durations. Moreover, for propagation of acoherent soli-
ton in a dense resonant medium, the derivative of the
phase of the soliton undergoes qualitative changes, asa
result of which for wy # O chirping of the pulse is
always present, which the conclusion drawnin [6] con-
firms. In contrast to [6], in our case the parameters &
and w, are in no way related by any condition, and in
the limit g, — O the offset d remains unchanged,
which ensures the correct limit to the McCall-Hahn
soliton for & #0.

Here it is useful to indicate well-known analogies.
Inthelimit t, — oo the system (5)—(7) issimilar to the
system that is used to describe self-induced transpar-
ency in molecular crystals in the excitonic range of the
spectrum [8], where, in a certain approximation, taking
account of the intermolecular interaction is equivalent
to taking account of the short-range dipole-dipole
interaction which we are studying. Of course, the soli-
ton solutions obtained for different physical situations
are also similar. Nonetheless, we thought it useful to
examine the formation of a coherent soliton from a
somewhat general standpoint, admitting the applicabil-
ity of the system (5)—(7), under the indicated, assump-
tion for describing the interaction of optical pulses not
only with solid-state (ensembles of two-level impurity
atoms) but also with gaseous dense resonant media. It
was also important to underscore the nonthreshold
character of the effect of the short-range dipole-dipole
interaction on the formation of solitons, when coher-
ence is ensured by pulse durations much shorter than
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the transverse relaxation time. In what follows we shall
be talking about a different possible self-induced trans-
parency regime in dense resonant media (quite unex-
pected compared with the one just described), where
the conventionally understood coherence condition
breaks down.

4. INCOHERENT SOLITONS
IN A DENSE RESONANT MEDIUM

In this section we present the first investigation of
the propagation of light pulses with duration T, satisfy-
ing the condition T, < T, < T, in a dense resonant
medium. Such propagation is essentially “quasistation-
ary,” since under such conditions the polarization p of
an atom, in contrast to the difference n of itslevel pop-
ulations, can follow the changein the field of the prop-
agating pulse and it can be assumed in equation (2) that
|op/ot| < [p/T,).

Then, for p =0, it follows from equation (6) that

a t,Né
P =115+ bn)y

where A = 1,0, b = W t, = 4N, T,/(34) is the short-
range dipole—dipole interaction constant of the atoms
[5]. Taking into consideration equation (20) and assum-
ing the existence of the dependences (8), we transform
equation (7) to theform

(20)

dn _ 4t,n|€l®
dt 1+ (A+bn)®

Separating variables, equation (21) under the condition
n(t = —0) = 1 can be integrated as

(21)

2
Inn + 2Ab2n+ b _ 2
1+4%  2(1+4%)
(22
_4ba+b® 4t

= |€|?dr.
2(1+A%) 1+A2_J;

Next, it is assumed that the difference of the popula

tions changes negligibly during the passage of the

pulse, i.e, n=1—¢, e < 1. Taking this into account,

equation (22) can be reduced to the form

at, |

n=1-€= 1——2J'|%(T')|2dT‘,

23
W (23)

00

which corresponds to the cubic approximation. Here,
A=1—i(A + b). Correspondingly, the polarization
amplitude (20) is now determined by the expression

p= {xo +X Il%(r')lzdr}%, (24)
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where

t, _At5(1-iD)
X=d—=—=
A

Taking account of equations (8) and (24), equation (5)
becomes

_ i T NE
9 . V[XO+X1|%(T)| dT}%.

The desired solution, once again, can be put into the
form (11), and substituting it into equation (26) we
arrive at the following equations for the envelope and
phase:

(25

(26)

1dA> T

o 2(11—2|31J'A2('[)d'[, (27)
d ST
d—‘T" = GZ—BZIAz(T)dT. (28)

Here, we have introduced the parameters
[ : [ .
O = —=Xo= 0, +id,, = =X =B, +iBy,
yXo 1 » B yX B +ipB;

where a; and [B; are real quantities. The solution of
equation (27) is

A = Agsech[t/t,], (29)
where the soliton duration is defined as
_ 1y
T, = N al (30)

and the amplitude (the peak value) is given by the
expression

1 :NJ 1
B 2 N1 t(1+A%-b%)

We find from equation (28), using equation (29),

(31)

@(1) = (0, + BT, AN T =B, ASIn[ cosh(T/T,)]. (32)

In order for the cubic approximation introduced earlier
to be valid, as follows from equations (23), (29), and
(31) the inequality

A2<£

0 8T pt2 (33)
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Fig. 1. Theregion (inthevariablesb and A) of vaidity of the
cubic approximation (23) for studying an incoherent soliton
(inside the distinguished range of parameters, the changein
the population difference as a result of the passage of the
pulseislessthan 1/5).

must be satisfied. This condition and the regquirement
that the radicand in equation (31) be positive lead to the
inequalities
2
g2 2Le @D g
1+A"-b
1+ A% —b*>0,

to satisfy which it is possible to find an optimal ratio

between the parameters b and A, minimizing the func-
tion u,

(34)

Aopt = _(b+ 1)- (35)
where
_ 2
U(Aopt) - 1+b (36)

It is remarkable that the formation of a soliton is non-
trivialy ensured by finite values of b and A, and the
necessary conditionsare b > 1, |A| > 1, and A < 0.
These requirements reflect the unique properties of the
soliton under study, which can exist only in dense res-
onant media for parameters determined by the inequal-
ities (34) (see Fig. 1). Actually, they attest to the thresh-
old character of theinfluence of the short-range dipole—
dipole interaction on soliton formation.

The dependence of the soliton velocity on the dura-
tion of the soliton is obtained in an obvious way from
equation (30):

Uvo—1 = t1,/A% (37)

Although this formula superficialy resembles the one
obtained by McCall and Hahn [7], there nonetheless
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Fig. 2. The squared amplitude A% of an incoherent soliton
versusthe variables T and short-range dipol e—dipol einterac-

tion constant b for T, = 10 s, T,= 1010s and A = -16.

VoV, 1075
25

20
15
10

5

11 12 13 14 15

Fig. 3. Thedimensionless velocity v = Vp/V of an incoher-
ent soliton versus the short-range dipole-dipole interaction
constant b for T, = 10 s, T, = 10795, and A = -16.

existsafundamental difference, dueto the decisiverole
of t, and |A]? (and hence of the offset also).

The phase (32), just asin the case of a coherent soli-
ton, contains linear and nonlinear parts. It isinteresting
that the area of the soliton now depends explicitly not
only on the parameters b and A but also on the duration
of the soliton T,

21T 2 T
S= = =\ |——
JB. Ntp(1+ 02 —b?)

Evidently, the area of the incoherent soliton can be sub-
stantialy different from 21t

Figure 2 shows the dependence of the envelope of
the incoherent soliton (29) on the parameter b of the
short-range dipole—dipole interactions. Figure 3 illus-

(38)
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trates the dependence of the velocity of an incoherent
soliton on the short-range dipole—dipole interaction
constants.

The analytic study, performed above, of the forma-
tion of anincoherent soliton agreeswell with theresults
of anumerical simulation.

5. CONCLUSIONS

Solitary wave packets (solitons) in dense resonant
media possess very specific properties. This is due to
the existence of a short-range dipole-dipoleinteraction
between the resonant atoms, which resultsin a charac-
teristic (linear and nonlinear) phase modulation
(chirping). The very possibility of coherent and inco-
herent soliton pulse propagation regimes is a specific
feature. The coherent soliton studied above is a natu-
ral generalization of a standard self-induced transpar-
ency soliton, and the difference in their properties,
though small, is quite fundamental and therefore mer-
its attention. The question of the possibility of inco-
herent soliton pulse propagation seems to be more
fundamental. We predicted the possibility of the for-
mation of an incoherent soliton whose amplitude—
phase characteristics are qualitatively different from
those of an ordinary self-induced transparency soliton.
The intensity of interatomic interactions (the parame-
ter b) and negative frequency offsets of the acting field
A <0, which ensure the very existence of asoliton, play
the decisiverole here.

Undoubtedly, the search for dense resonant media
withb > lisdifficult andis, in some sense, an indepen-
dent problem. Here, the prospects are, to alarge degree,
the same as in the long-standing search for dense reso-
nant media for experimental realization of afirst-order
phase transition and the associated internal optical
bistabilization (the necessary condition for observing
them with respect to bistable reflection or transmission
isb > 41[9], and it is fundamentally unrealizable in
gases). For this reason, we can focus on those consider-
ationsin this respect which have appeared in the litera-
ture in the last few years. For example, in [10] ensem-
bles of impurity ions O, in KCI crystals and bound I,
excitons in CdF crystals were suggested in [10] as
media with alarge value of b. However, the authors of
[11] believe that molecular crystals at low temperatures
aretoday more promising mediaof thistype. Their param-
eters do indeed favor achieving a large value of b in the
excitonic range of the spectrum (for p? > 106 CGSE and
excitonic density of states N, > 10 cm3). Asfar asthe
formation of an incoherent soliton is concerned, such
mediacould makeit possibleto obtain not only the con-
dition b > 1, but also to choose the required intermedi-
ate duration of theinjected optical pulses, since herethe
transverse rel axation time (due to scattering by acoustic
phonons) T, is approximately 1071*-101° s, and the
longitudinal relaxation time (the excitonic lifetime) T,
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is of the order of 10°-102s[12], i.e., the requirement
T, < T,<T,iseasly satisfied for pulse durationsin the
nanosecond range.

Thus, an incoherent soliton pulse propagation
regime, in principle, can be realized only in solid-state
dense resonant media, for which thereisa possibility of
choosing suitable values of the parametersb, T,, and T,.
The term “incoherent soliton” in this case is, as
expected, somewhat arbitrary. In our opinion, such a
soliton isformed as aresult of competition between an
incoherent dephasing process with characteristic time
T, (T, > T,) and an intrinsically coherent short-range
dipole—dipole interaction, which leads to a collective
local-field effect. Such a qualitative explanation seems
to be admissable when the interaction with the nonlin-
ear medium is postulated to be coherent for any type of
soliton.

It should be noted that the formation of an incoher-
ent soliton has also been studied in [13], but for acom-
bined medium consisting of amplifying resonant (with-
out the short-range dipole—dipole interaction) and non-
resonant (cubic) components, the presence of a
nonresonant component being mandatory. The differ-
ence in our case is that the nonlinear medium can be a
single-component absorbing resonant medium charac-
terized by the required high density of atoms, which
ensures a sufficiently strong short-range dipole—dipole
interaction, a negative frequency offset of the applied
field being mandatory.
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Abstract—Classical and quantum theories of polarization bremsstrahlung in a statistical (Thomas—Fermi)
potential of complex atoms and ions are devel oped. The basic assumptions of the theories correspond to the
approximations employed earlier in classical and quantum calculations of ordinary bremsstrahlung in a static
potential. This makes it possible to study on a unified basis the contribution of both channels in the radiation
taking account of their interference. The classical model makes it possible to obtain simple universal formulas
for the spectral characteristics of the radiation. The theory is applied to electrons with moderate energies, which
are characteristic for plasma applications, specificaly, radiation from electrons on the argon-likeion Kl at fre-
guencies close to its ionization potential. The computational results show the importance of taking account of
the polarization channel of the radiation for plasmawith heavy ions. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The process of polarization bremsstrahlung (PB) in
collisions of charged particles with heavy atoms and
ions has been under intensive investigation for the last
ten years [1-7]. As is well known [1], the crux of this
process reduces to the dynamical polarization of the
atomic core by theincident charged particle (ordinarily,
an electron) followed by radiation of the core and
energy loss by the particle. Thus, polarization
bremsstrahlung is an additional (together with the ordi-
nary bremsstrahlung in a static potential) channel for
radiation losses of a particlein collisions.

Here we are dealing, essentially, with the radiation
of the compound system “atom + incident particle,” the
radiation being due to the total dipole moment of the
system. This approach to bremsstrahlung was first for-
mulated by M. Born (see [8]) and was subsequently
applied to anumber of different effects.

Many calculations of PB have been performed by
quantum methods and pertain primarily to high inci-
dent-particle energies (see the review [4]). At the same
time, it isrelevant to pose the question of the contribu-
tion of the polarization channel to the radiation of a
plasmawith heavy ions. The range of electron energies
in this case is of the order of the plasmatemperature T
and islessthan (or comparable to) the ionization potential
of ions. Calculations of ordinary (static) bremsstrahl-
ung show that the methods of classical electrodynamics
work well here, making it possible to obtain quite sim-
ple analytic results for the bremsstrahlung spectra (see
[9]). The basisfor the applicability of classical methods
isthe acceleration of theincident particlein thefield of

an atomic potential, as a result of which the electron
“forgets’ its initial energy, and all radiation effects
depend on its kinetic energy at the point of greatest
acceleration. Thisiswhy the criterion for the processto
be classical isthe condition that the energy of the pho-
ton 2w be small compared not with the initial energy of
the incident particle E (fw < E) but rather compared
with the much higher energy of the electron accelerated
in the atomic potential. Thus, the classical anaysisis
applicable even for describing strongly inelastic pro-
cesses iw > E. This circumstance serves as a basis for
the so-called Kramers electrodynamics (see [9] for a
more detailed discussion).

For many plasma applications, the average spectral
characteristics corresponding to the motion of an elec-
tron in an average statistical potential of the Thomas—
Fermi type play the main role. Such spectraare in good
agreement with the more accurate calculations per-
formed using the Hartree—Fock method, as was shown
by the calculations performed with a statistical poten-
tial [11]. For this reason, to obtain universal resultsitis
appropriate to use statistical modelsfor the polarization
radiation also.

Thus, our objective in the present work is to calcu-
late PB effects for the motion of an electron in a statis-
tical atomic potential of atomsor ions. The calculations
are performed for the classical and quantum motions of
an electron in the same approximations which were
used previoudy for ordinary bremsstrahlung [9-14].
The computational results make it possible to obtain
simple universal formulas for the radiation in both
channels, taking account of interference effects. The
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approximations used are justified for el ectrons of mod-
erate energies, characteristic for plasma systems[9].

To calculate the contribution of the polarization
channel to the total cross section for collisional-radia-
tion processes, it is necessary to know the generalized
(nondipole) polarizability a(w, q) of the target. As is
well known, the calculation of this quantity isacompli-
cated quantum-mechanical problem, which can be
solved exactly only for a hydrogen-like ion [2]. In all
other cases, an exact calculation isimpossible even in
the dipole approximation.

For situations when one outer valence electron
makes the main contribution to the process, the approx-
imate methods of the quantum-defect and model-
potential type[15], which giveasolutionin termsof the
Coulomb wave functions with nonintegral parameters,
can be used.

If, however, amultielectron subshell plays the main
role, then it is found that interelectron correlation
effects must also be taken into account in the radiation
process. The calculation of the atomic radiative charac-
teristics in the single-electron approximation gives a
strongly distorted result. This latter circumstance is
well known from the theory of the photoeffect for mul-
tielectron atoms near the photoi onization threshold of d
and f subshells [16], knowledge of which in the entire
frequency range is sufficient for determining the
dynamical (dipole) polarizability of an atom (ion).

The main characteristics of the cross section for the
photoeffect and the polarizability for atoms with closed
shells can be described well on the basis of the so-
caled random-phase approximation with exchange.
The basic idea of this method consists in the fact that
the interelectron correlation effects are expressed in
terms of the dynamica polarizability of the atomic
core.

Such calculations for the problem of calculating the
cross section for polarization bremsstrahlung by an
atom in a wide frequency range have been performed
recently [5] for kilovolt-range electrons scattered by a
krypton atom. It should be noted that such calculations
present a very complicated computational problem,
since the wave functions of the atomic electronsin the
zeroth approximation are solutions of the Hartree—Fock
integrodifferential equations.

2. BASIC RELATIONS

As already mentioned above, our objective in this
paper isto develop universal semiquantitative methods
for describing polarization effects in radiative pro-
cesses in collisons of electrons with multielectron
atoms in a wide frequency range and to analyze using
these methods the genera characteristics of the indi-
cated processes on the basis of the local electron den-
sity for the polarizability of the target.

The main advantage of the approach employed isits
computational simplicity, universality with respect to
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applicability to different targets, and physical clarity.
Without pretending to give an exact quantitative
description of the phenomenon, the method employed
can be regarded as an approximate method for describ-
ing polarization-interference effects on multielectron
systems, which is applicable in awide range of plasma
parameters.

In what follows we shall employ the so-called local
approximation for the density or for the related plasma
frequency, previously developed by Brandt and Lun-
dqvist for calculating the photoionization of multielec-
tron atoms [17] as an alternative to the single-electron
approximation. In the Brandt—Lundqvist approxima-
tion an atom is regarded as a nonuniform plasma cloud
with a fixed electron density distribution n(r). To each
point in the space inside the atom there corresponds a
unique plasma frequency

w, = J4mn(r).

(Unless otherwise stated, atomic units are used every-
where.) According to the classical picture, which is
used in this model, the absorption of radiation with fre-
guency w occurs when the resonance condition w =
wy(r) is satisfied, which determines the characteristic
distances r,(w) of the process.

The expression for the polarizability a(w) in this
model has the form

Ro 2 2
BL _ wy(r)redr
T Iw,ﬁ(r)-oﬁ-ia

0

Here, Ry istheradius of the atom (ion) and disan infin-
itesimal positive quantity.

The formula (1) gives a representation of the
dynamic polarizability as an integral of a certain func-
tion 3(r, w), whichitisnatural to call the spatial density
of dynamic polarizability, over the spatial coordinate.
In the local approximation under study, this quantity
establishes a relation between the induced polarization
of an atom at frequency w(P(r, w)) and the intensity of
the externa electric field (E(r, w)) giving rise to this
polarization. Both quantities are taken at the same point
in space (local approximation):

P(r, w) = B(r, w)E(r, w). 2

We note that the expression (1) can be rewritten as
an integral over the frequency, if the spectral density of
the oscillator strength is introduced in an appropriate
manner according to the following formula (here Gaus-
sian units are employed):

= IBBL(r, wdr. (1)

dr ,(w)
dw ’

df _ mow’ »
% - e2 rp(w)

©)

where the function r(w) is determined by solving the
equation

W = Wyr). (@]
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Fig. 1. Frequency dependences of the real and imaginary
parts of the dynamical polarizability of an FeVI ion,
obtained in a local Brandt—Lundqvist plasma model [17]:

-w?Re{ 0B (w)} solid curve and wlm{aB(w)} dashed
curve (values given in au).

In Table 1 the static polarizabilities (in atomic units)
of atoms and ions with closed electron shells, calcu-
lated by different methods on the basis of a statistical
description of an atom, are compared with the experi-

mental data (ag”).

It follows from thetabl e presented that in most cases
the Brandt—L undqvist method, being very simple, gives
for the static polarizability satisfactory agreement with
experiment for atoms (ions) with filled shells.

We note that the static polarizability calculated in
the more general nonloca plasma approach [20, 21] is
strongly overestimated.

The frequency dependences of the quantities
-w?Re{ a(w)} and w?’lm{a(w)} for the FeVI ion, which
were calculated in the Brandt—Lundqvist approxima
tion in awide frequency range, are presented in Fig. 1.
Comparing with analogous dependences calculatedina

guantum-mechanical description of the target for a
multiel ectron atom [5] shows that the calculation in the
Brandt—Lundqvist model describes qualitatively cor-
rectly the smoothed functions —w?Re{a(w)} and
w?Im{ a(w)} without taking account of the characteris-
tic features due to the shell structure of the atom (max-
ima and minima near the ionization thresholds of the
subshells). It follows (in accordance with the physical
picture) from Fig. 1, specifically, that as the frequency
w increases, the function —w?Re{a(w)} (in atomic
units) approachesthe total number N of electronsin the
ion, and the function «?Im{ a(w)} decreases rapidly to
zero in the high-frequency limit.

Thus, it can be expected from an analysis of the low-
and high-frequency limits that the Brandt—Lundqvist
model gives, to a first approximation, a reasonable
approximation for the dynamical polarizability of an
atom (ion).

To calculate the cross section of polarization
bremsstrahlung, we introduce the polarization potential
for the interaction with an ion in a uniform external
electromagnetic field E(w) with frequency o

Vi(R, ) = for F o, ‘*l)) 5)

Here, op(r, w) isthe spatial density of the perturbation
of the electron charge, induced in the ion core by the
external field, and R is the radius vector of the incident
particle. We note that the proposed approach is aso
suitable for calculating spontaneous processes: in this
case E(w) isthe field due to quantum fluctuations. The
perturbation dp(r, w) of the electron chargeisdueto the
polarization P(r, w) induced in theion core:

op(r, w) = divP(r, w). (6)

Inthelocal approximation, the quantity P(r, w) isgiven
by equation (2)

In what follows, we shall assume everywhere that

the electron-density distribution in an atom (ion) is
spherically symmetric.

Bringing together the formulas written out, expand-
ing the reciprocal of the distance |r — Rf™ in spherical

Table 1. Static polarizabilities of atoms and ions cal culated using various models (the values are given in au)

Atom (ion) Arl Krl Xel KII Pbll Csll Sl Balll
ag 11 17 27 75 12 16.3 6.6 11.4
ag? 19.3 26.8 30.9 9.1 14.3 17.8 8.7 11.4
ag > 211 25.5 6.6 11.9 15.3 75 9.7
ag 22 24 27 8.6 116 135 7 8.4

Note: a\éar —calculation by a variational method [18]; agSh

—calculation in the statistical model [19]; and ag ™ =

RY/3 —calculation

in the Brandt—L undqgvist model for a Thomas—Fermi—Dirac atom (ion).
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harmonics, performing simple agebraic transforma-
tions, and integrating over the angular variables, we
obtain for the polarization potential in thelocal approx-
imation the expression

R E(w)

V(R @) = J’B(r w)4Tr 2dr. @)

Itisimportant that thisformula describes the nondipole
interaction potential of an incident particle interacting
with a perturbed ion core. Thisis expressed in the pres-
ence of the modulus R of the radius vector of this parti-
clein the upper limit of integration. This circumstance
has a simple electrostatic interpretation: the external
chargeinteracts only with the part of the electron cloud
located inside a sphere of radius R, if the process pro-
ceeds without excitation of the bound electrons in the
target.

Figures 2a and 2b display the computational results
for the real and imaginary parts of the polarization
potential, normalized to the amplitude of the external
electric field, for a KIl ion. The calculation was per-
formed in the local plasma-frequency approximation
using the electron density of the ion core in the Tho-
mas—Fermi—Dirac model [18] for two frequencies of
the electromagnetic field w = 0.9 (a) and 3 au (b) using
equation (7). In both cases, the real part of the polariza-
tion potential has a maximum at a distance determined
by equation (4). At this distance, the local permittivity
of thetarget vanishes and at the sametime an imaginary
correction appears to the polarization potential (for
shorter distancesit is zero).

We note that similar forms of the potential were
obtained in [20] for a nonuniform plasma particlein an
electromagnetic field by solving a differential equation
with appropriate boundary conditions.

Using the expression for the polarization potential,
a formula can be derived for the dipole moment
induced intheion core by the scattered particle. Indeed,
using

VpoI(Rv (*)) = _E(w)DpoI(Rv (*))1 (8)

wefind

R

Dyo(R, @) = ——F%J’B(r, w) 4Tt dr ©
0

The dipole moment Dy (R, w) induced in the atomic
(ion) coreisafunction of the frequency of the external
field and the radius vector of the incident particle:

VPJ’

p(r)r “dr

Re{ D" (w, R} = =
p( )_

(%)
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Fig. 2. Real (solid curves) and imaginary (dashed curves)
parts of the polarization potential, normalized to the
amplitude of the electromagnetic field, at the frequency
w=0.9 au (a) and 3 au (b) asafunction of the distancefrom
the nucleus of the KII ion. Calculation in the Brandt—Lun-
dqvist approximation using the Thomas—Fermi—Dirac elec-
tron density.

Im{D®"(w, R)} = —iw
” (9b)
w

|dwp?rp)/dr|e(R_rp(m))’

where 6 is the Heaviside function. The total (including
the static) radiating dipole moment of the system inci-
dent particle + atom (ion) is

R

DR, @) = R— R% J;B(r, warr’dr.  (10)

The formula (10) isthe initial formulafor perform-
ing calculations of polarization effects in the local
approximation. It corresponds to taking account of two
channels of the radiative collision process. static (first
term in equation (10)) and polarization (second term).
Since these terms appear in the expression for the total
radiating dipole moment of the system target + incident
particle, the expression (10), substituted into the stan-
dard formulafor the cross section of the process or the
corresponding intensity, will also describe interference
effects associated with the interaction of the channels.
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3. CLASSICAL THEORY OF THE POLARIZATION
BREMSSTRAHLUNG OF AN ELECTRON
ON A MULTIELECTRON ION

The Born parameter ), characterizing the motion of
plasma electrons under the conditions of a thermody-
namically equilibrium plasma, is greater than or of the
order of unity:

Zé
d hv 2

(here ordinary units of measurement are used).

Theinequality (11) isthe inverse of the Born condi-
tion and corresponds (in the limit of astrong inequality)
to the semiclassical approximation with respect to the
motion of theincident particle. Itisin the semiclassica
approach [9, 11, 14] that V.I. Kogan et al. performed a
detailed analysis of the static channel for bremsstrahl-
ung, specifically, they developed the so-called rota
tional approximation, which makesit possible to calcu-
late very simply the spectral cross sectionsfor themain
radiation processes, including recombination.

Comparing with the quantum-mechanical numeri-
cal calculation [10] demonstrated the high accuracy of
the semiclassical approach and, specifically, the rota-
tional approximation in the theory of static
bremsstrahlung [12, 13]. For thisreason, it is natural to
use the semiclassical approach to investigate the polar-
ization bremsstrahlung on a multielectron ion and to
construct on the basis of this approach a generalization
of the rotational approximation, including a description
of the polarization channel.

Asiswell known [22], in the classical analysis of a
radiative collision process, a quantity k, called the
effective emission,

0

K = J‘AE(p)ZTrpdp
0

1 (11)

(12)

isintroduced. Here, AE(p) isthetotal emission from a
singleincident particle with afixed impact parameter p.
In what follows, we also be interested in the spectral
effective emission dk(w)/dw, the expression for which
in the dipole approximation with respect to the interac-
tion with the electromagnetic field in the emitted wave
for a spontaneous process has the form

d(w) _ 4w’ )
o 3 J’ ID(w, p)|“pdp.
0

Here, D(w, p) isthe Fourier transform of the radiating
dipole moment of the system at frequency w, calculated
along the tragjectory of the incident particle, character-
ized by the impact parameter p.

There isasimple relation between the quantity dik/dw
and the spectral cross section for bremsstrahlung:

d_K = ﬁwd_o-
dw dw

(13)
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(ordinary units are used).

To take account of the interference-polarization
effects, in what follows we shall use for D(w, p) the
time Fourier transform of the total dipole moment:

00

Dio®.P) = [DioR(E P, V1), wed,  (14)

where the function D (R, w) isgiven by the expression
(20). Thus, in the classical anaysis, to calculate the
spectral effective emission one must know the law of
motion of the incident particle

R = R(, p, vy), (15)

where v; istheinitial velocity of the particle.

To investigate strongly inel astic scattering processes
it is convenient to express the temporal Fourier trans-
form of the dipole moment of theincident particle (first
termin equation (10)) in terms of the Fourier transform
of the force exerted by the target on the particle. Then
the following expression for the Fourier transform of
the total radiating dipole moment of the system (equa-
tion (14)) can be obtained from equation (10):

1RAURD

Diol(w, p) =
tot R dR 0,,

o (16)
- S%Iﬁ(r, w) 4Tt *dr .
RS o

Here, the braces denote a Fourier transform taking
account of the dependence (15).

Thus, the expressions (12), (13), and (16) give afor-
mal solution of the problem under study. It isimpossi-
ble to simplify these formulas further, since the depen-
dence (15) for the motion of the incident particlein a
Thomas—ermi potential (and its modifications) cannot
be expressed in analytic form (in contrast to motion in
a Coulomb field).

For numerical calculations, it is convenient to
switch from the independent time variablet to an inde-
pendent variable R, the distance from the incident par-
ticle to the nucleus. For this, we employ the standard
representation of the trgjectory time and turning angle
of the radius vector of the incident particle in terms of
R and the parameters p and v;:

R
drR

t(Rp, vy = _[ TRV (17)

I'min(pv Vi) ' ’ , I

i drR
R p, V) = pv; _— 18
¢( p ) p Vr(Rl p! Vi) R2 ( )

rmin(pv Vi)
No. 3 2000



CLASSICAL AND QUANTUM THEORIES OF THE POLARIZATION BREMSSTRAHLUNG

Here, v, (R, p, v;) istheradial velocity

ViR p,v) = JVi+2UR)I-VvIpIR,  (19)
rmin(P, V;) isthe distance of closest approach of theinci-
dent particleto the center of the scattering potential and
is determined by the solution of the equation

V(R p,vi) = 0. (20)
Using equations (16)—(19), the Cartesian projections
(on the focal coordinate axes) of the Fourier transform
of the radiating dipole moment of the system can be
calculated as

=)

(Dpo)x(@, p) = 2J' cos(9(R, p)) cos(wt(R, p))
imin (21)

XDy R (dFI?p)

where D,(w, R) is determined by the modulus of the
vector (10). An expression for the component (D,q)y
can be obtained by replacing the cosines in equation (21)
by sines.

As is well known, the statistical approximation
describes well the properties of an atom in the region
where most of the atomic electrons are localized. Near
the nucleus and at the boundary of the ion, where sin-
gle-electron effects become substantial, the accuracy of
the statistical approximation decreases appreciably.
Specifically, at the boundary of anion the electron den-
sity and the local plasma frequency vanish completely
in the statistical model. Here, single-electron excita
tions make a large contribution to the polarizability.
They must be taken into account in a frequency range
of the order of the ionization potential of the core,
where the dimensions of the electron orbit become
greater than the dimensions of theion corein the statis-
tical model. Actually, together with the collective
plasma frequency of the oscillations of the electron
density, characteristic oscillati ons of an electron in the
field of the core appear herel This effect can be
approximately taken into account by shifting the fre-
guency winthe formulafor the polarizability of thetar-
get by an amount Aw, so that the maximum of photoab-
sorption would occur on the single-electron ionization
potential.

We present the computational resultsfor the spectral
effective emission for scattering of an electron by aKl|
ion for the following values of the parameters: v; =
1.4 au and w = 0.9 au. The choice of these quantitiesis
determined by the fact that under the conditions of a
thermodynamically equilibrium plasmathe emission of
photons with energy close to the initial energy of the

L Wethank 1. I. Sobel’ man for calling our attention to this fact.
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incident particle (the ionization potential of the K1l ion
is 1.16 au) by electrons with thermal energies (of the
order of theionization potential of anion) is of greatest
interest.

We use the polarizability density of the target in the
Brandt—Lundqvist approximation (equation (1)),
shifted in frequency by the amount Aw = 0.6 au in the
direction of high frequencies, to calculate the dipole
moment induced in the ion core. Then the frequency
dependence of the dynamical polarizability of the ion
corewill correspond to its quantum-mechanical anal og.

The electron density of theion core, determining the
local plasma frequency, was calculated on the basis of
a numerical integration of the Thomas—Fermi-Dirac
eguation (with exchange and correlation corrections)
using the reduced ion radius X, = 8.91 arb. units. We
recall that the reduced ion radius is the ratio of the ion

radius R, to the ThomasFermi radius a =
0.8852/Z13,

In this case the “loca plasma radius’ [see (4)] is
rp(w) = 2.77 au.

We now introduce the characteristic emission radius
in the Kramerslimit r 4(w, v;) (see[9, 14]). Thisradius
determines the revolution frequency of an electron in
its orbit and is the solution of the equation

2 2.2
Vi wr
— 4+ = —,

This quantity determines the effective emission dis-
tance with respect to the static channel. It is important
that in the Kramers limit the quantity re(w, Vi)
increases with the initial velocity.

We now consider the emission of a photon with
energy 0.9 au in the case when an electron with near-
threshold energy (1 au) is scattered by a Kll ion. The
dependences of the projections of the dipole moment
induced in the ion core at the frequency of the emitted
photon on the impact parameter p, which were obtained
on the basis of the model considered, are presented in
Table 2.

The calculation in a statistical Thomas—Fermi—
Dirac potential shows that for impact parameters less
than 1.4 au, the scattering angle is greater than 180°,
which correspondsto onset of the revol ution of theinci-
dent particle around the target.

On the other hand, the condition for the semiclassi-
cal picture breaks down for these impact parameters.
Nonetheless, this is immaterial for calculating the
polarization channel, since short distances from the
nucleus make only asmall contribution to it.

The computational results obtained with equations
(13)—(21) for the values of the effective emission (in
atomic units) for the polarization channel with subdivi-
sion into the contributions of x and y projections are
presented in Table 3.

(22)
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Table 2. Components of the induced dipole moment in aKlI ion as afunction of the impact parameter (values given in au)

P 1 15 2 25 3 4 5 6
F i 0.163 0.8 1.58 22 2.74 3.76 475 5.7

ReDp, -0.1 1.48 1.0 1.48 2.4 0.73 0.36 0.16
ReDp, -1.59 21 2.9 2.4 17 0.86 0.33 0.17
ImDp, -0.37 1.15 -0.03 —0.22 1.05 0.88 0.29 0.13
ImDp, -1 0.54 1.1 1.25 133 0.68 03 0.14

Table 3. Contribution of different projections of the dipole moment induced in the K1 to the effective emission in the polar-

ization channel (values presented in au)

X projection y projection
Projections Total
Real Imaginary Real Imaginary
Polarization channel 53x10° 15x10°° 5.4 %10 24x10° 1.46 x 10

We now introduce the R factor characterizing the
relative contribution of the polarization channel to
bremsstrahlung as

deoI(w)

RO = )

(23)

For obtaining a comparative assessment of the relative
strength of the polarization channel, we shall use the com-
putationa result for the contribution of the static channel
in the rotational approximation (see[9, 14]).

A calculation in the Thomas—Fermi—Dirac model
for the effective spectral emission in the static channel
gives

dk' 0 .
Dd—StD (KIl, w=09ae) = 546x10° ae.
Odw FD

Hence, it follows that the R factor in the rotationa
approximation is

(RIS To(KI,w=09au) = 267.  (24)
Thus, a classical estimate for the parameter values
presented above gives the following lower limit for the
R factor at afrequency close to the ionization potential
of the KII ion for an incident particle with threshold
energies (T isthe energy of the incident particle):
RKII, w=1,=T)22, (25)

and, therefore, the contribution of the polarization

channel to the effective bremsstrahlung is much greater
than that of the static channel.
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4. DESCRIPTION OF POLARIZATION EFFECTS
IN THE GENERALIZED ROTATIONAL
APPROXIMATION

In the theory of static bremsstrahlung there exists a
very effective method for cal culating approximately the
intensity of radiation from a semiclassical particle (the
so-called rotational approximation [9, 14]) that was
found to be more justified effectively than the system-
atic classical analysis. The physical substantiation of
this approach lies in the spatial finiteness of the region
responsible for the emission of quite high-frequency
photons by the incident particle.

The high-frequency limit, corresponding to the so-
called Kramers electrodynamicsrange, isunderstood in
the sense of the inequality

Coul

wZ
W> Wy = Zeff

3
i

(26)

We note that quantitatively the rotational approxima-

tion also gives a reasonable result when w = wes-.

For the bremsstrahlung cross section integrated over
theimpact parameter, the effective distancer 4 depends
only on the frequency of the emitted radiation and the
target potential and is determined by equation (22).

Formally, the rotational approximation corresponds
to substituting into the equation for the total effective
static bremsstrahlung a delta function of the difference
of the frequencies w and the rotational frequency of the
incident particle at the distancer g :

vi+2U(r)

wrot(r) -

r @7
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Thus, we arrive a the following formula for the effective
spectral emission in the rotational approximation [9]:

(K (w) O 8n .rdu(nc?
DD dw 38y J0dr O
|:|Jot '0 (28)

x [1- %6(w—wrm(r))r2dr.

Information about the vector character of the radiat-
ing dipole moment of the incident particle is lost in
equation (28). This is because in the high-frequency
approximation (26) the x component of the dipole
moment of the incident particle makes the main contri-
bution to the cross section of the process. The situation
is different for the polarization channel: for the param-
eters presented in Table 3, the contributions of both pro-
jections are approximately the same. For thisreason, to
generalize the rotational approximation so as to take
account of the polarization channel, the features of spa-
tial formation of both Cartesian projections of the
dipole moment of the ion core on the axis of the focal
system of coordinates must be taken into consideration.

Analysis shows that the Fourier component of they
projection of the radiating dipole moment of the target
core is determined by distances of the order of ry(w),
while the x component is determined by the distances
of closest approach r;,, of the incident particle to the
target.

For this reason, it is natural to make the following
generalization of the rotational approximation for the
polarization channel:

rot rot
(K o (W) O (0K po (@) O CdK () O
et Il e s e
O O O O O 0
where
(K (W) O
dw
O
- (299)
_ sn [|[I@RI’v(Rp=0)
32 |dw/dR .
and
[k oy (@) O
g U
o 9@ g
(29b)
_ sn [[#@RI’v(Rp=0)
3C3Vi2 |dwr0t/dR| R=ry(w)
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The projection of the frequency-dependent polarization
forceis given by

R
2
fEO; = F\;X' yJ'B(r, w)4Tr2dr. (30)
R 0
We note that equation (30) can be rewritten as
R
Ry = 25Neri(R. ). (300)
Here,
R
(31)

Ngs(R o) = ooZJ’B(r, w) 4Tt dr
0

is the effective electron charge that depends on the fre-
guency and distance from the nucleus and determines
the bremsstrahlung cross section in the polarization
channel.

The formulas (29)—31) correspond to a simple
physical interpretation of the polarization bremsstrahl-
ung in the spirit of classical electrodynamics as radia-
tion arising as a result of the acceleration of the effec-
tive electron charge of the target under the action of the
force exerted by the incident scattered particle.

In accordance with the decomposition of the effec-
tive spectral emission in the polarization channel into a
sum of contributions from two projections of the
induced dipole moment of the target, the spectral Rfac-
tor can be written in the generalized rotational approx-
imation as

I 1 (g I
R(@) = 5(R7(0) + R7(®). (32)
The numerical factor 1/2 in equation (32) arose as a
result of the approximate replacement of the squared

sine and cosine of the rotation angle of the incident par-
ticle by their average value.

Figure 3a showsthe frequency dependences of three
types of R factors appearing in equation (32) for aKll
ion and the threshold energies of the incident particle.
It is important that the values of the R factors become
equal to one another far from the ionization threshold
of the target. Near threshold (for the incident particle
energies considered) the contribution of the y compo-
nent prevails.

Analysis on the basis of the approximation consid-
ered shows that as the incident particle energy
increases, the relative contribution of the x component
increases and reaches its maximum value at the energy

(T = v7/2) determined by the equality

reff(Ti 0‘)) = rp((-"))- (33)

The physical meaning of equation (33) isclear: thegen-
eralized rotational approximation predicts the optimal
value of the initial energy of the incident particle for
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Fig. 3. (a) Frequency dependence of the R factor in various
variants of the generalized rotational approximation, where
the following are distinguished in the PB cross section:
(1) the effective radius of the static channel, (2) the
“plasma’ radius, and (3) their half-sum. (b) Comparison of
the R factor calculated in the generalized rotational approx-
imation (solid curve) with the high-frequency R factor
(dashed curve) for threshold energies of a particle incident
onakKll ion.

which the effective emission radiusin the static channel
equalsthe “plasma’ radius, corresponding to the maxi-
mum of the spatial polarizability density of thetarget at
the given frequency .

For iwv=24.5 eV the energy of theincident particle,
satisfying equation (33), is Ty, = 75 €V for scattering
by aKiIl ion.

Thismodel permits answering animportant question:
at what frequencies does the high-frequency approxima-
tion for the polarization channel of bremsstrahlung first
“work”? The computational results obtained in the gen-
eralized rotational approximation with the high-fre-
guency spectral R factor are compared in Fig. 3b. It is
evident from this figure that the high-frequency
approximation for the scattering of an incident particle
with threshold energy by aKll ionisvalid for w> o =
20 au. As the energy of the incident particle increases,
the quantity w increases.

The following important consegquences of calcula-
tions on the basis of the generalized rotational approx-
imation follow from Fig. 3. The contributions of the
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Fig. 4. Generalized-rotational-approximation calculations
of the R factor as afunction of theion charge at afixed fre-
quency, which is a multiple of the ionization frequency of

the target in the Thomas—Fermi model w = kI;F: (@ asa
function of the ion charge a various frequencies. k = (1) 1,

(2) 2, (3) 3; and (b) asafunction of theion charge (k= 2) for
various nuclear charges: Z = (1) 30, (2) 60, (3) 90.

polarization and static channels to the spectra
bremsstrahlung cross section on aKll ion for electrons
with threshold energies become equal to one another
(R=1) at frequency w* = 10 au. The R factor reaches
its maximum value for frequencies of the order of the
ionization potential of the target. The generalized rota
tional approximation gives the following value for the

R factor: RS, = 3. We note that this value is a lower

estimate, since the Brandt—L undqgvist model underesti-
mates the polarizability. On the other hand, a quantum
calculation gives asomewhat lower value of R, and a
much lower value of the frequency w*.

Figure 4 displays the dependences of the spectral R
factor on the ion charge for different bremsstrahlung
frequencies (a) and nuclear charges (b), calculated for
incident particles with threshold energies. This figure
demonstrates the presence (on the basis of the general-
ized rotational approximation used here) of an optimal

ion charge Z™™, for which the R factor (at the fre-
guency characteristic for this ion) has its maximum
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value. It follows from Fig. 4a that the optimal charge

Z>" increases as the radiation frequency decreases,

and the maximum value of the R factor decreases some-
what. Asthe nuclear charge of theion increases (Fig. 4b),

the quantity Z™™ shifts into the range of high values,
and the R factor increases appreciably. At the same
time, for low nuclear charges the R factors calculated at
the corresponding (different!) characteristic frequen-

cies do not depend on the nuclear charge.

5. QUANTUM CALCULATION
OF BREMSSTRAHLUNG
BY A MULTIELECTRON ATOM (ION)

We shall calculate the effective radiation in the pres-
ence of strongly inelastic scattering of an incident par-
ticle by a multielectron atom taking account of the
polarization channel for the quantum motion of the
incident electron.

We note that aquantum calculation of the bremsstrahl-
ung in the gatic channel for a Thomas—Fermi ion wasfirst
performed in [12]. The results agreed well with the sys-
tematic quantum-mechanica caculations performed for
a Hartree—Fock core of the target and, moreover, con-
firmed that the accuracy of the semiclassical rotational
approximation is high.

The spherical symmetry of the scattering potential
substantially simplifiesthe quantum calculation. In this
case, the standard method [23] of expanding the wave
function of the incident particle in spherical harmonics
or in the orbital angular momentum | can be used. The
wave-function component corresponding to a fixed
value of | is a product of the radial and angular parts.
The angular part, as is well known, is a spherical func-
tion, and the radid part u(r, |, p) satisfies the Schrodinger
equation with the following boundary condition at infin-
ity:

U(r —co,1, p) — 2
(34)

x sinfpr + %In(Zpr)—gl +3(, p2

Here, p isthe momentum of the incident particle, o(1, p) =
dCu(l, p) + Ad(l, p) isthe total phase shift, equal to the
sum of the Coulomb phase shift (1, p) and the non-
Coulomb phase shift Ad(l, p), which can be calculated
according to the formula[24]

00

sin(ad(, p)) = % = - umir -

x u(r, 1, ppu(r, I, p)ridr.

Here, u®(r, |, p) is the solution of the radial
Schrédinger equation with the Coulomb potential of
theion.
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For numerical calculationsit isconvenient to switch
to an auxiliary radial wave function v(r, I, p) = r=u(r, I,
p) satisfying the Schrédinger equation

v+ 2'*71\1' +(p2=2U(M)v = 0 (36)
(the prime signifies differentiation with respect to the
radius) with the boundary conditions

Z
[+1

Here, Z is the nuclear charge of the ion. To satisfy the
asymptotic behavior (34), we introduce the normaliza-
tion factor N according to the formula

vO) =1 v(©0 = - (36a)

N = Er'” v+ [p v (37)
Finally, we have for the wave function
uriop) = B e ). (39)

Using the functions (38), we obtain the following
expression for the spectral intensity of bremsstrahlung:

dw _
dw

Z(|+1)[|M||+1| +|MI+1I|] (39)

3¢’ p,

Here, we have mtroduced the radial matrix elements
M, |+1 and M, , 1 | between the wave functions (38) of
the modulus of the force acting on the incident particle
and giving rise to bremsstrahlung in a definite channel.

For the static channel, the expression for the corre-
sponding force is given by the derivative of the poten-
tial. Thisis the usual force determining the motion of
the incident particle in the static field of the target ion.
The modulus of the force leading to emission in the
polarization channel can be obtained from equation (30).
It is determined by the nondipole dynamical polariz-
ability of theion core and is given by

fPol = I B(r, w)4Tr’dr. (40)

Since the expression for the spatial density of the polar-
izability has, generally speaking, an imaginary part, the
polarization force (40) and the corresponding radial
matrix element M, . contains, together with areal com-
ponent, an imaginary component. The radial matrix
element of the static forceis, naturally, purely real.

The total matrix element appearing in equation (39)
isasum of the static and polarization terms. Their redl
parts givetheinterference term in the expression for the
bremsstrahlung intensity, while the imaginary part of
the polarization matrix element does not contribute to
the interference of the channels.
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Table 4. Frequency dependences of the bremsstrahlung intensity in the static and polarization channels for aKll ion, calcu-
|ated in the generalized rotational approximation and for quantum motion of the incident electron (values given in au)

) 0.6 0.9 2 3 4 5.4 9 18 36
Wy 6.4(-6) | 75(-6) | 3.6(-6) | 6.9(-6) | 1(-5) 13(-5) | 16(-5) | 14(-5) | 1(-5)
W 3.6(-6) | 55(-6) | 8.6(-6) | 9.4(-6) | 9.7(-6) | 9.6(-6) | 9(-6) 7.4(-6) | 5.4(-6)
W, 37(-6) | 1.1(-5) | 7.9(-6) | 65(-6) | 58(-6) | 4.4(-6) | 2.6(-6) | 1.6(-6) | 8.2(-7)
W 8.6(-6) | 14(-5) | 1.2(-5) | 1(-5) 11(-5) | 1(-5) 1(-5) 29(-6) | 9.3(-7)

Formally, the infinite series in terms of the orbital
angular momentum | in the expression for the
bremsstrahlung intensity (39) converges rapidly for
strongly inelastic processes, in which we are interested
here. For example, for /T = 0.7-0.9 (scattering of an
incident particle by a KlIl ion) the first three or four
terms of this series make the main contribution to the
bremsstrahlung intensity. We note that the situation is
directly opposite for weakly inelastic processes, where
the seriesin | converges very slowly.

R
3

100

(b)

~100 I I I ]
0 2 4 6 8

W, au

Fig. 5. Results of a quantum (with respect to the motion of
the incident particle) calculation of (a) the spectral R factor
and (b) contribution of interference to the intensity of
bremsstrahlung for two values of the inelasticity parameter
w/T =0.9 (solid curve) and 0.6 (dashed curve) for scattering
of anincident particle by aKll ion.
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The computational results for the spectral intensity
of bremsstrahlung obtained using equation (39) taking
account of the contribution of the polarization channel
with strongly inelastic scattering of theincident particle
(/T =0.9) by aKIl ion are presented in Table 4. For
comparison, similar quantities calculated in the gener-
alized rotational approximation are also given in the
table. All values are given in atomic units. The expo-
nent of the factor of 10 by which the number in front of
the parentheses is multiplied is given in parentheses.

It follows from Table 4, specificaly, that the best
agreement between the quantum calculation and the
generalized rotational approximation obtains for low
frequencies near the ionization potential of the target
ion. The worst agreement obtains for frequencies of the
order of 9 au, where the spectral intensity of
bremsstrahlung in the static channel, calculated in the
guantum approach, reaches its maximum value. The
calculation shows that for this frequency the imaginary
part of the dipole moment induced in the core and the
orbital angular momentum | = 2 make the main contri-
bution to the radiation in the polarization channel. The
maximum contribution of the polarization channel
occurs at a frequency near the ionization potential of
the target.

Analysis of the computational data shows that at
low and high frequencies the real part of the dipole
moment induced in the target core makes the main con-
tribution to bremsstrahlung in the polarization channel.
At “moderate” frequencies (I, < w < Z), however, the
imaginary part of the dipole moment of the core pre-
vails in the polarization channel. This result also fol-
lows from calculations of PB in the random-phase
approximation with exchange for the polarizability of
the core [5].

The results of a quantum calculation of, respec-
tively, the spectral R factor and the relative contribution
of the interference term to the bremsstrahlung intensity
for scattering of an incident particle by a Kl ion are
presented in Figs. 5a and 5b for two values of the ratio
W/T. It is evident that the spectral R factor has a maxi-
mum near the ionization potential of the target. The
width of this maximum decreases as the degree of
indlasticity of the process (the ratio w/T) decreases,
while the value of the R factor at the maximum
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increases somewhat. The main difference from the
results of the generalized rotational approximation is
that the spectral R factor calculated for the quantum
motion of the incident particle decreases more rapidly
with increasing frequency in the “middle” frequency
rangel, <w<Z

Figure 5b demonstrates the magnitude and character
of the interchannel interference as a function of the
bremsstrahlung frequency. Inthe frequency range w< 1,
interference is destructive (it decreases the total inten-
sity of the process) and substantial in magnitude. In the
rangel, < w<Z, theinterference term changes sign and
increases the total intensity (constructive interference),
remaining very large. The interchannel interference is
negligibly small for low frequencies. At high frequen-
ciesitscontribution is 10-20% and decreases asthe fre-
guency increases.

As the degree of indasticity of the bremsstrahlung
decreases, the role of interference decreases, since the
overlapping of the spatial regions where the static and
polarization channels are formed issmaller. Thisisevi-
dent from Fig. 5b, whence it also follows that for aless
inlastic process, the frequency range of destructive
interference is somewhat extended in the direction of
high frequencies. For w < 1, the character and magni-
tude of the interchannel interference are essentialy
independent of the degree of inelasticity of the process.

The main conclusion of the quantum analysis
reduces to the fact that the contribution of the polariza-
tion channel to the intensity of strongly inelastic
bremsstrahlung, increasing from zero at low frequen-
ciesin apower-law fashion [6], is greatest near theion-
ization frequency of the target ion and decreases rap-
idly with increasing frequency asaresult of penetration
of the incident particle into the target core. The width
of the frequency maximum of the R factor increases
with increasing inelasticity of the process.

6. CONCLUSIONS

In the present paper, a universal approach was
developed for describing the polarization effects in
bremsstrahlung of thermal-energy electrons on amulti-
electron ion in a wide spectral range using the local-
density approximation for electrons for the polarizabil-
ity of the target. The contribution of the polarization
channel to the spectral cross section of bremsstrahlung
was analyzed for semiclassical and guantum motions of
the incident particle, taking account of the penetration
of the particle into the target core and various degrees
of inelagticity of the process. A generalized rotational
approximation, making it possible to estimate easily
the PB cross section on the basis of a statistical model
of the target ion in the unified manner for all nuclear
charges and degrees of ionization, was constructed.

It was determined that the contribution of the polar-
ization channel to the bremsstrahlung cross section of
thermal-energy electrons is maximum near the ioniza-
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tion frequency of the target ion. The value of the R fac-
tor (the ratio of the contribution of the channels) is
approximately two. After reaching its extremal value,
the spectral R factor, which increases in a power-law
fashion at low frequencies, decreases rapidly asaresult
of the penetration of the incident particle into the target
core. The width of the corresponding maximum
increases with the inelasticity of the process. For char-
acteristic frequencies of the order of the ion charge (in
atomic units) the R factor is 10-15%.

Interchannel interferencein the spectral dependence
of the intensity of the bremsstrahlung is greatest near
the ionization potential of the target, comprising at the
extremamore than 60% of thetotal intensity of the pro-
cess. For frequencies below the ionization threshold,
interferenceis destructive, and for higher frequenciesit
is constructive. The role of interchannel interference
decreases with decreasing inelasticity of scattering of
the incident particle, since in this case the spatial
regions where the bremsstrahlung channels formed are
more strongly separated.

It was shown on the basis of the generalized rota-
tional approximation developed in this paper that there

exists an optimal ion charge (Z™) for which the mag-
nitude of the spectral R factor at afrequency whichisa
multiple of the characteristic ionization frequency of
a Thomas-Fermi ion is maximum. This value
decreases with increasing bremsstrahlung frequency
and increases with increasing ion charge.

In summary, it can be concluded that polarization
and interference effects are important in bremsstrahl-
ung by multielectronionsfor characteristic plasmaval-
ues of the parameters.
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Abstract—An expression for the pondermoative force acting on a classical electron in a weakly nonuniform
field of arbitrary intensity is derived by the method of averaging over the characteristic time of the guiding cen-
ter of the electron. It is shown that in superstrong (relativistic) fields this force acquires arotational character
and depends on the polarization of the field. Fundamentally new types of systems for accelerating or confining
charged particles can be developed on the basis of this effect. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The problem of the interaction of free (quasifree)
electrons with high-intensity laser field has become of
great importance in recent years in connection with the
development of laser sourceswith peak intensity | ~ 10—
102 W/cm?. An electron in fields with such intensity
acquires velocities comparable to the velocity of light,
and relativistic effects become fundamentally impor-
tant. It is aso important that such fields are attained
when generating ultrashort laser pulses and in hard
focusing of radiation, where besides the oscillator com-
ponent of the motion, drift of an electron as a result of
the tempora and spatial nonuniformities of the field
becomes very important. This drift is described by
means of ponderomotiveforcesF, . Inthe present paper
new features of these forces in superstrong laser fields
acting on 1) free electrons (in the general case, on any
charged particles) entering the laser beam from outside
the beam and 2) photoelectrons which appear inside a
laser beam during “multiphoton” ionization of atoms
are discussed.

In relatively weak fields the average (over rapid
oscillations) motion of an electron (ponderomotive
drift) is described by the Gaponov—Miller force [1],
which isagradient force,

F. = -0U,, D
where
_ ezEgo
Up - 2
4Amw

is the ponderomotive potential of the field and isa sca
lar function which completely determines the vector F|
(Ego and w are the amplitude and frequency of thefield
and e and m are the electron charge and mass). Relativ-
istic effects in the calculation of ponderomotive forces
have been taken into account in anumber of works. The

case of an electron entering with high (relativistic)
velocity into a field was investigated in [2]. However,
the field itself was assumed to be quite weak. In [3]
averaging of the relativistic equations of motion over
the phase

n = wt—Kkr

(tisthetime, r are the coordinates of the electron, and
k isthe wave vector of the radiation) was performed to
calculate the ponderomotive forces in strong fields. In
[4] the Lagrangian was averaged over the same param-
eter.

In the present work the force F, was found (follow-
ing the Gaponov-Miller procedure [1]) by averaging
the equations of motion over thetimet in the laboratory
coordinate system (L system) or over the timet' in a
comoving coordinate system (C system), where the
electron is at rest on the average. Thisis the most sys-
tematic averaging procedure, making it possible to find
for the first time new properties of ponderomotive
forces in superstrong fields. The calculation is per-
formed for a quite weak spatial (temporal) nonunifor-
mity of the laser radiation without any restrictions on
its intensity. It is shown that the ponderomotive force
acting on an electron in the C system is not, in general,
a gradient force (athough, once again, it can be
described by asingle scalar function, the el ectron effec-
tive mass in the field). It is also found that this force
depends on the polarization of the laser field; this is
important for producing new systems for accelerating
or confining charged particles in superstrong fields.

2. COMPUTATIONAL PROCEDURE

We shall assume the spatial (temporal) nonunifor-
mity of the field to be weak, so that the following rela
tions hold:

Are >\, At > W, 2
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where A isthe wavelength, and Ar; and At; are the char-
acteristic spatial and temporal scales of variation of the
intensity of the laser radiation. Since the electron dis-
placement &r, over one optical cycle in any fields and
for any initial velocitiesislessthan A, the conditions (2)
make it possible to assume that the changesin the ampli-
tude of thefield (at distances ~dr, or in time ~w™) to be
small compared with the changes in its phase. Using
the conditions (2), we shall represent the electric com-
ponent of the field in the form

E(r,t) = Eo(r,t)cos[n +¢(r,t)] =E°+AE, (3)

where E° = Eq,cosn describes a plane wave and, in
general, AE takes account of the difference of the real
field from E° with respect to amplitude, phase, and
polarization:

AE = OE, +OE, + OE..

In paraxial beamswith radiusr, the changein the polar-
ization of the field (over distances ~ry) is

5E

B4 pl<
Ewo

max Fo

(see[9]). Here

J oo

oE,
Ew Crol

for electron displacements or. < A, and we shall neglect
the contribution of a polarization change to AE. The
magnetic field can be calculated exactly from E(r, t)
using Maxwell equations:

B = B +AB,

where B corresponds to a plane wave.

In accordance with the assumption made above, we
shall assume that in the zeroth approximation the field
is a plane wave (in any coordinate system). Then the
total momentum of the electronis

p=p’+Ap

and the following eguations hold (bremsstrahlung is
neglected):

0
dp. _ g0y e[v’x B, )
dt
_d_dA_tE — eAE+e[V0xAB] +e[AV>< BO], (5)

wherev = V0 + Av isthe electron velocity, VO isthe elec-
tron velocity in a plane wave (a system of units where
the velocity of light ¢ = 1 is used and the Coulomb
gauge is used for the potential divA = 0). Averaging
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equation (5) over time in the C system (symbolically
denoted by the operator T) yields the expression

T[dAp/dt] — F¢ (6)
for the ponderomotive force. The force F: can be

expressed in terms of the parameters of the field in the
L system, and the relation

_ Fe+ [(y=1)/Vol (Fc DV,) IV,
y ’ @
y=(2-v)

F

establishes arelation between the ponderomotive force
Fc inthe C system (moving with velacity V, relative to
the L system) and the ponderomotive force F in the
L system. It is assumed that the electron drift velocity
V, is known from the initial conditions and the solu-
tions of the equations of motion of the guiding center of
an electron (in the L system) at the preceding stage

ym— = F —(V,F)Vo. (8)

If the drift velocity is nonrelativistic, then F| = F.

3. PONDEROMOTIVE FORCES
IN A PLANE-WAVE PULSE

We shall examine first the action of ponderomotive
forces on theleading and trailing edges of aplane-wave
pulse. In this case, there exists a strict solution [6] for
the evolution of an electron, its coordinates r(n) and
momentum p(n), in the L system. However, this solu-
tion isimplicit, and the averaging procedure leading to
an explicit form for the ponderomotive force is helpful
(for example, to describe new effects such as gradient
stabilization of ions relative to tunneling ionization in
superstrong laser fields[7]).

Differentiating the expression for the momentum
p(n) [6] with respect to the “laboratory” time t, we
obtain an expression for the force acting on an electron.
Averaging the fast phase of this force over t gives an
expression for the ponderomotive force (compare with
equation (1))

dU*
F, = R0 anp = —Ou, 9)

where U} is the ponderomotive potential taking
account of the electron effective massm* in afield and
X isthe unit vector in the direction of the wave vector
k. The force (9) formally is of a gradient form, though

only its component in the direction of k is different
from zero.
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4. PONDEROMOTIVE FORCES
IN A STATIONARY LASER BEAM

We assume that the field at the location of an elec-
tron at a given moment is, in the zeroth approximation,
a plane wave, specifically, in the C system, where an
electronisat rest on the average, and whose velocity V|,
relative to the L system is assumed to known from the
solution of equation (8) at the preceding step. We shall
examine first a linearly polarized field. We direct the
unit vectors § aong E° 2 along BY, and X along k.
The parametric solution of equation (4) for the coordi-
nates of an electron in the C system is[6]

(10)

where m#2 = n? + €2E5, /202, and the relation between

the timet' (the proper time of the guiding center of the
electron: dt' = dt/y) and the phase n isgiven by therela-
tion

2 =2

t':ﬂ eEOO

(11)

To find the force F¢ (6) it is necessary to determine the
increments AE, AB, and Av (see equation (5)) due to the
nonuniformity of the field. Expanding the expression (3)
inaseriesinr, we obtain in the first approximation

AE = cosn (or, [T Eq(ro)
—Egsinn(dr L) $(ro),

Av = (8r, [O)V°(E),

(12)

(13)

where or, and v° = 9(dr.)/dt' are the displacement and
velocity of the electron, calculated in the zeroth
approximation (10) using equation (11); thefield (3)

Eow — Eo(r), n—n+o(r)

is used as the argument of v,; AB is calculated from
Maxwell equations.

A laser beam that is stationary inthe L systemisno
longer stationary in the C system, and the increments
(12) and (13) must also contain terms with time deriva
tives of the amplitude and phase of the field E, which
take into account the nonuniformity of the field on
scales or, ~ Vy/w, which an electron experiences as a
result of drift. If dr, < &r, (the drift velocity isless than
the velocity of the oscillations of the electron or the
nonuniformity of thefield in thedirectionV,isnegligi-
ble), then nonstationarity can be neglected and the
expressions (12) and (13) can be used. In the opposite
case, the nonstationarity of the field will makethemain
contribution to the ponderomative force F.. We note
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Fig. 1. The functions ®, y(B), determining the dependence

of the rotational part of the ponderomotive force in the
C system and the intensity of the linearly polarized field.
The dashed lines show the approximate dependences of
®, , on the parameter 3 (see text).

that in real situations an electron possesses a high drift
velocity, as arule, in regions of relatively weak fields
(for example, on entering or leaving alaser beam), and
in the region of a strong field the velocity V, is quite
low (on account of retardation of the electron by pon-
deromotive forces after entering the beam or as aresult
of “zero” initial velocities of photoelectrons in mul-
tiphoton ionization of atoms (ions) in strong fields [8]).
The case of relativistic velocities V, and relatively
weak fieldsis studied in [2]. Here we shall investigate
the opposite case, where the nonstationarity (in the
C system) does not play afundamental role.

Using equations (12) and (13) in egquation (5) and
averaging equation (6) over thetimet' we obtain

I
Fo = -4 90, xd)xg(%n*, (14)

where

_2(1-2p)(1 +B)(1-By)
’ BR:

o = B L.(1-2B)(1-B) _BEI-p)
X7 2 B 2

B, = (1-p)"", B =Ui/m

(the functions @, (B) are shown in Fig. 1, the dashed
lines show the approximate dependences @, ,(B)). Itis
evident that the force (14) isnot agradient forcein gen-
eral: its rotational part contains components along the
wave vector and polarization of the electric field. Inthe
ultrarelativistic case @, > ®, = 0. Therotationa part of
the force F¢ contains all even powers of the amplitude
of the vector potential of the field and approaches zero
as A — 0, and in addition ®,,, = 0.125, while
®, o = 0.168 (we note that the possible dependence of

the force F, ~ Eg, has been discussed in [9]).

@ =B(1+B)(1-2p),
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Fig. 2. The change in the drift energy of a charge for one
pass of alaser beam with combined polarization of thefield
versus the amplitude of the field on the axis of the beam

(mgy = Jm’+€°ES, 12w°).

A similar calculation for acircularly polarized field
leads to the expression (14) with @, , =0, i.e,, in this
case the ponderomotive force remains a gradient force
in the C system. We also note that for any polarization
of the field the gradient [ (r) of the phase (just asin
the case of weak fields) does not contribute to the pon-
deromotive force. This property of ponderomotive
forces breaks down for high drift velocities V.

For applications, the force F- (14) must be
expressed in terms of the parameters of the field in the
L system. Since the Lorentz transformation preserves
theratio Ey/w ~ |A|], only the characteristic spatial scales
of thefield change in equation (14). These changes (cor-
responding to Lorentzian contraction of linear dimen-
sions) are, in general, different along the different coor-
dinate axes and are determined by the direction of the
drift velocity V. Therefore the substitutions

0 0 0 0

3= — Yx3o» —Y
0x ax,’ oy Yoy,
L y v (15)
a 0
0z VzazL

wherey: = (1- V2, )2,i =X, y, z, must be madein equa-
tion (14) (the index L denotes coordinatesin the L sys-
tem). These substitutions, generally speaking, destroy
the gradient nature of theforce F¢, evenfor @, wy=0.An
additional breakdown of this gradient nature of the
force occurs under the transformation (7). However, for
sufficiently low velocities V,, the terms ®, |, make the
main contribution to the rotational part of the force F.
(see equation (14)).

Thus equations (7) and (14) (or (9)) determine the
ponderomotive forcesin alaser field of arbitrary inten-
sity. This makes it possible to describe the evolution of
an electron in such fields using equation (8). The struc-
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ture of these forces is much more complicated than in
the nonrelativistic case (1), and in the general caseitis
determined by all even powers of the amplitude of the
laser field. Combining equations (7) and (8) we obtain
finally an equation for the drift velocity of an electron
inafield of arbitrary intensity:

dav -1
my2_at_0 = FC_L\;Z—(VO [(Fc)Vo,

YVo

(16)

where theforce F¢ (14) must be expressed in terms of the
parametersof thefieldinthe L system (see equation (15)).

The rotational character of the ponderomotive
forces in strong fields means that it is possible to per-
form work on achargein aclosed cycle, i.e, thereisa
possibility of developing fundamentaly new systems
for accelerating or retarding (confining) charged parti-
cles. The difference found in the ponderomotive forces
for linearly and circularly polarized fields makesit pos-
sible to develop such systems by combining super-
strong fields with different polarization. We shall illus-
trate this possibility for a very simple example of an
electron entering with nonrelativistic velocity V into a
strong laser field which possesses a characteristic spa-
tial nonuniformity only along a single coordinate, for
example, y. In this case only the y component V,, of the
drift velocity of the electron will change. Then we
obtain from equation (16)

dVoy om*

mdt = —(1+ CD)ay a7)

whence we find for the change in the kinetic energy of
an electron due to its drift motion

6m

__I(1+CD ydy (18)

wherey, istheinitial coordinate of the charge. Let the
laser beam be organized so that from the periphery of
the beam (whence the el ectron enters) to the axis of the
beam thefield is, for example, circularly polarized, and
from the axis of the beam in the other direction thefield
is linearly polarized. Such beams can be produced in
laser pulses with time-varying polarization [10] by
combining two orthogonal fields with different fre-
quencies. In this case, ®, = 0 for an electron entering
the beam (Yo <y <V,), Wherey,, is a coordinate corre-
sponding to the axis of the beam, i.e., the maximum
amplitude of the field), and on exiting the beam ®, # O:

4 2 %

®,= :0’9__‘1%_;"_1, q=" (19)
4a m

The expression (19) corresponds to an approximate

function ®(B) (see Fig. 1). After passing through such
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a beam, an electron acquires an additional kinetic
energy

ms o
Ae _ Ladmr
m o chy(m ) m chy(a)da
m 1
~f_g3 1 ,.10¢ (20)
15 Han 303 200
m'k
C(m - ﬁoﬂ mg = m*(ym)

The dependence of this energy on the effective mass
m§ (on the amplitude E,, of thefield on the axis of the
laser beam) isshown in Fig. 2. It isevident that even for
mg /m = 10 the increment to the energy is substantial:
Ae = 0.4m. The maximum increment to the kinetic
energy of the charge in one pass (as m§ — ) is
Ag/m=7/15.

In summary, a fundamentally new mechanism for
accelerating charged particles (either effective “cool-
ing” of the particles or confinement in a definite vol-
ume), based on the use of the new properties of ponder-

omotive forces in relativistically strong laser fields, is
possible.
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Abstract—The possibility of using multilevel quantum systems with adiscrete nonequidistant spectrum for the
physical implementation of auniversal collection of quantum gates, which is required for constructing an arbi-
trary algorithm for a quantum computer, is studied on the basis of the proposed virtual-spin formalism. It is
shown that such a set of gates, including two-qubit gates, can be constructed on a single spin-3/2 nucleus.
The assertion that three-qubit gates can also be realized on a single spin-7/2 quantum particle is substanti-

ated. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

One direction in the problem of developing a quan-
tum computer, which being intensively studied now, is
the search for new physical systemsthat are suitablefor
an information medium for gquantum computations.
Spin-1/2 nuclear magnetic resonance is one of the basic
examples of physical systems of thiskind [1]. The two
possible stationary states of a 1/2 spin represent in a
natural manner one bit of information (in the present
case, a quantum hit or qubit). Thus, in the currently
used model of a quantum computer a single particle
corresponds to one qubit. In the present paper the pos-
sibility of using spins higher than 1/2, which have a
large number of stationary states and, in general, non-
equidistant corresponding energy levels, is examined.
A brief exposition of these results has been published in
[2]. Such a physical system gives more diverse possi-
bilities for external action on quantum processes. Spin-
3/2 nuclel will be considered as a specific example.

A spin | possesses 2| + 1 energy levels, which can
be nonequidistant, equidistant, or degenerate. Choos-
ing in an appropriate manner the frequency, polariza-
tion, duration, and shape of the rf pulses, spins can be
excited by very diverse methods, and the required evo-
lution and form of the response can be attained. For
example, in nonequidistant three-level spectra of a
spin-1 nuclear quadrupole resonance it is possible to
excite three resonance transitions, which is done using
three mutually perpendicular rf fieldswith different fre-
quencies. Even greater variety can be achieved by using
pul se sequencesthat are constructed as combinations of
diverse pulses and intervals of free evolution of the spin
system.

In order to propose a new physical object as an
information medium for a quantum computer, the fol-
lowing must be done.

1. A physical description of the object must be
given, and a subset of the admissible stationary states of

the system that is to be put into correspondence with
one or several information bits must be singled out. For
the problem examined in the present paper, this makes
it necessary to show that four suitable states of amulti-
level discrete spectrum can be represented as a direct
product of the Hilbert spaces of two two-level systems
(two qubits).

2. Methods of performing a physical action on the
system that produce transitions between the stationary
states of the system, thereby realizing logical opera-
tions, must be indicated. To do this it is sufficient to
show that in this system it is possible to perform a one-
bit rotation operation for each qubit as well as the two-
gubit operation “controlled negation”—CNOT, since it
iswell known [9] that these two gates are sufficient to
construct an algorithm of arbitrary complexity.

3. Methods for establishing the initial state |OC)
required for calculations, and reading the final state of
each qubit must be given.

We shall examine systematically the realization of
these requirements on a four-level spin-3/2 nucleus.

2. PHYSICAL SYSTEM
2.1 Basic Hamiltonian

The energy levels of aquadrupole spin in the gradi-
ent of the electric field of a lattice and in a constant
magnetic field are determined by the Hamiltonian

Hy = H,+Hyg, 1)

where H, is the Hamiltonian describing the interaction
with the constant external magnetic field and Hq isthe
Hamiltonian of the electric quadrupole interaction. In
the specific case where the constant magnetic field is
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parallel to the principal axis of the gradient of the crys-
tal electric field, these operators have the form [1]

H, = —Awyl,,
1 (2
3

where wy, is the quadrupole interaction constant, o, is
the Zeeman freguency, and n) is a dimensionless quan-
tity (In| < 1) describing the deviation of the gradient of
the electric field from axial symmetry. For spin 3/2 the
eigenvalues of the Hamiltonian (1), (2) are

h€.s, = hwg(B: ¥C),
ey, = hwg(-B, = C),

2
B, = [ax2cy+1L, C:Z)—)Q.
Q

We note that the frequency of a purely (w, = 0) quadru-

pole resonance is
2
20 [1+ 1.
Wg 3

The energy levels (3) correspond to the eigenfunctions

Ho = 2Awg[312=1(1 + 1) +n(12=12)],

3

where

|W2go00= cos(a. ) [Xza2lH SIN(Q L) [X 1120
|¥.10= cos(a. )[X.120- SN0, ) [Xzz/20

where |x,,[0s the eigenfunction of the operator |, corre-
sponding to the eigenvalue m, and

(4)

tana, = %J’[Bi +(1£2C)].

The spin energy levels and the resonance transitions
required for realizing quantum logical operations are
presented in Fig. 1. The formulas (1)—<4) presented
above are vaid for any value of theratio R= wy/wq. In
what follows, for definiteness, we shal examine in
detail the case of a magnetic resonance spectrum split
by aquadrupol e interaction (wy, > wg), under the condi-
tion that wq is much greater than the width of the spin
levels. Then, the spin spectrum consists of four well-
resolved resonance lines, where g, > €, > €3> €.

2.2. Hamiltonian of the Interaction with an Ac Field

Assuming the relaxational processes to be negligi-
bly small, the complete nuclear spin Hamiltonian can
be represented in the form

H=Ho+Hy, ©)

where H; is an operator describing the interaction with
the ac field. In the case where the ac magnetic field is
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+1/ +12 |
+3/2 4

Fig. 1. Energy levels of spin 3/2 in the following cases:
(a) zero external magnetic field (purely quadrupole reso-
nance), the energy levels are doubly degenerate; (b) no qua-
drupole interaction (the external field determines the equi-
distant structure of the spectrum); (c) quadrupol einteraction
much weaker than the external field. The types of resonance
transitions are shown: ordinary arrows—transition with
Am = +1, double arrows—trangitions with Am = +2. All indi-
cated transitions can be excited by specia pulse sequences.

directed along they axis, this operator is
H{(t) = 2hyH 1 cos(Qt), (6)

where H,; and Q are the amplitude and frequency of the
ac field and y is the gyromagnetic ratio of the nucleus.

Inwhat follows, we shall require expressionsfor the
operators H,(t) in the interaction representation:

Hi(t) = D7 (t—to)H () D(t —to),

D(t—ty) = exp[—iHy(t—ty)/A].
The form of the operator D corresponds to the case
where the main Hamiltonian H, of the system isinde-
pendent of time.

To simply the equations and the subsequent calcula-
tions, we shall use arepresentation of the spin operators
in terms of projection operators P, which are 4 x 4
matrices all of whose al matrix elements p, are zero
except p,, = 1. The projection operators have ssimple
properties:

(7)

I:)klpmn = 6Impkm
Pmn = P;mv (8)
PmnlekD: 6nkILIJmD

Likewise to simplify the equations, instead of indices
=3/2,-1/2, +1/2, and +3/2 we shall usetheindices 1, 2,
3, and 4, respectively. The spin components can be
expressed as follows in terms of the projection opera-
tors:

ch = Z |EIJm“ alq',nl]amn-
m,n

Specifically, the main Hamiltonian in the projec-
tion-operator representation has the form

HO = zhsmpmmi (9)
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and the transformation into the interaction representa
tion will be determined by the operator

D(t—-t,) = zpmmexp[_ism(t_to)]- (10)

When the frequency Q of the external ac field isthe
same as one of the spin eigenfrequencies, for example,
Q. = |em— &4, theinteraction operator with the ac mag-
netic field (6) can be represented in the interaction rep-
resentation in the form

H (1) = Hf erf + ZleeXp[i(Ek—5|)t]a (11)
K

where Gy and H; « are time-independent, and
|le| |:||Hrf,eff| |:||Hrf|'

The terms which oscillate at the eigenfrequencies
Qy # Q,,, and have amplitudes ~|G,| have a negligible
effect on the evolution of the spin compared with the
constant term |H ¢ «|. This is because in NMR experi-
ments the duration of the rf pulses is ordinarily much
longer than the period ~#i/|H,| of the oscillations and
because Hy > H;. Thus, the interaction (6) effectively
excitesresonance transitions only between the spin lev-
elsfor which aresonance condition of thetype Q = Q.
issatisfied. Therefore, in the interaction representation,
the operator (6) at times greater than several periods of
the characteristic oscillations (Qyt = 1) reduces to the
effective operator

H?/f,eff = iﬁyHrflmlJm“yILIJnI:]](an_Pmn)- (123)

When the ac field is directed along the x axis, the effec-
tive interaction operator is

H;(f,eff = ﬁvHrf“——U‘Pmll xlwnm(an + I:)mn)- (le)

Since the basis (4) of the eigenfunctions was chosen to
bereal, the matrix elements of the operator |, are purely
imaginary, and the matrix elements of the operator |,
are real. In addition, we note that although in the basis
|X[the operators |, and |, possess matrix elements only
with selection rules m —n = £1, in the basis |W[these
operators have nonzero matrix elements with

m-n==1, £2, (13)
2.3. Evolution of the Spin System
under the Influence of rf Pulses
The evolution of the state vector
[W(O)O= U(t, t)|¥(te)D (14

of a physical system can be determined in terms of a
unitary evolution operator [3]:

U(t, to) = D(t—-to) V(L to),
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V(t, t) = Tepo J’Hff(t')dt}, (15)
Hi(®) = D (t—to)H () D(t—to),

where T is the Dyson chronological operator, and the
operator V is the evolution operator in the interaction
representation.

Under conditions where the rapidly oscillating

terms in Hi(t) can be neglected, the chronological

exponential becomes an ordinary exponential function.
Then, the operator V(t, t,) reducesto

t

P .
Vx(ta 1:0) = exp|:_EJ-H rf,effdt:|
to

= P12 (Par + Pon) | 2V, Qm ),

t
i '
Vit to) = eXp{_;JH Xf, effdt:|

= exp[q—z)(an - Pmn)} =Vy( Qo 0y),

where
¢a = 2(1:_tO)yHrfllzpn"otll'l',ml:| a=Xxy é&n > &n.

Expanding the exponentials in a series and using the
multiplication rules (8) for projection operators, we
obtain

Vx(ana ¢x) = F)kk + I:)II + (Pnn + F)mm) Cosljb([l

L2 O
(164)
i(Po + Py sin 20
nm mn DZD
V.(Q =P.,+P,+(P. +P U_I)_VD
y( mns ¢y) kk I ( nn mm)COSD2D
(16b)

+ (an_ Pmn)gng%/%

Heretheindicesk, | #m, n.

In addition, to construct quantum logical elementsit
is necessary to excite the spin on two transitions simul-
taneoudly. It is shown below that for thisit is sufficient
to excite transitions that do not have energy levels in
common. Then, the evolution operator is a product of
commuting evolution operators for individual transi-
tions. Under two-frequency excitation at frequencies

No. 3 2000



VIRTUAL QUBITS: MULTILEVELS INSTEAD OF MULTIPARTICLES

455

Q,, and Qg,, direct calculations give the following which will be used in the calculations, in the spaces

expression for the evolution operator:

V(Qi2 dys Qas, ¢y) = (Pyy+Py) COS%%’E

+(Pa — Plz)smmbym"' (Pss + Pyy) COS@QD

020 020 (17)

+ (P43—P34)Sing%’%

Under two-frequency irradiation at frequencies Q,5 and
Q,, the evolution operator is

Vy(Qus by; Q2 0) = (P2 + Pas) COS%%E

+(Ps— PZA)SingYD"' (Pss+P11) COSDbyD

070 o (19

+ (P31_P13)Sing%'y%

3. VIRTUAL-SPIN FORMALISM

In the currently adopted NMR model of a quantum
computer [4—7], tworeal spinsR=1/2 and S=1/2, cou-
pled by an exchange interaction, are being considered
asabasisfor constructing quantum logical elements. In
the formalism of quantum mechanics, the states of such
a system and the operations on them can be written in
an abstract four-dimensional space, which is a direct
product 'y O I's of two-dimensional spaces of the
eigenstates of thereal spinsRand S. In our case, to clar-
ify the information aspect of the proposed logical oper-
ations, it is convenient to reverse the procedure: the
four-dimensional space I'; corresponding to areal spin
3/2 is represented as a direct product g O I'g of two
abstract two-dimensional spaces of states of the virtual
spins Rand S Then, any operator P in the four-dimen-
sional basis can be expressed as alinear combination of
thedirect products R [0 S of the components of the vec-
tor spin operators given in the subspaceslzand g, The
following isomorphic correspondence exists between
the basis |W,,Cof the space I', and the basis |¢,,,[1] |{,0
of thedirect product M'r O I'g

W, 0= [&,000 |¢,LF [110) [WslI= [&,11 [¢,[E |01519)
|W,00=[&,[11 |¢,LE [100) [W,0= [&,L1 [(,LE IOOES

where theindices 1 and 2 are used for the indices —1/2
and +1/2, respectively, of the virtual spins. Here |110]
and so on are the notations used in information theory
to represent the states of two qubits. The following
helpful relations exist between the projection operators,
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under study:
RkI D Smn = P2k—2+m,2|—2+na
I:\)kIRmn 0 1S = 6ImRkn 0 1S1

RkI O 1S|quzn|:|: 6Im|£k|:]zn|:]
1R 0 SkISmn = 6ImlR U Skn!

1R D SkI |Em|:lZnD= 6In|Em|:l]ZkD
(R 0 Sap) (Rmn 0 Sea) = OymbpcRin U Sag-

Herethe operators R,,,, and S,,,, are projection operators
of the two-dimensional spacesl'g and I', while 1; and
15 are unit operators in the spaces. Specificaly, the
components R,, Ry, and R, and the components §,, S,
and S, of the virtual spins can be expressed as follows
in terms of the projection operators:

(20)

R, = R12‘£R21,
g, - (Ra=Re)
R - Rn;Rﬂ’
s, = i(5122—521)1

It should be noted that in the four-dimensional space
I, two qubits can be introduced differently, in a differ-
ent manner so that the top pair of levels comprises one
qubit and the bottom pair comprises the second qubit.
At magnetic resonance this manner of singling out two-
level subsystemsiswidely known as the “formalism of
virtual (or effective) spins 1/2.” In this case, the space
I isadirect sum g I ¢ of the spaces of the virtual
spins. In this approach the realization of one-hit rota-
tion gates does not present any difficulties, but difficul-
ties do arise in realizing a two-qubit CNOT gate. In
addition, the virtual spinsintroduced above correspond
well with the representations used in quantum informa-
tion science.

4. PREPARATION OF THE INITIAL STATE

Asiswell known, theinitial state for quantum algo-
rithmsimplemented in an abstract quantum computer is
the state |00LI

To emulate abstract quantum computaters in real
NMR experiments it is necessary to take account of at
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least the following features of an NMR quantum com-
puter. In NMR a macroscopic humber of identical
guantum processors are used—molecules, computa-
tions on which are performed simultaneously, and the
output signal is the sum of the signals from all mole-
cules. An adequate language for NMR experiments is
the density matrix formalism. The state |000is the
equivalent of a density matrix of the form o;,; =
CONstPy,.

In asample of macroscopic dimensions, acollection
of identical nuclei formsan ensemblewhaose spinlevels
at equilibrium are occupied according to the Boltzmann
density matrix

Peg = Zexp(—BH),
Z = Sp[exp(-BH)],
B = 1/KT.

NMR experiments are conducted primarily at room
temperature, where the modulus of the quantity BH in
the argument of the exponential is much less than 1
(~107°-107%). Under these conditions the initial density
matrix for quantum algorithms implemented on an
NMR computer is

peq = Z_1|:1I + Z)\mpmm:|1
m

(21)

(22)

hen,
A =T
where 1, isaunit matrix in the spacer,.

The density matrix pe, can be obtained directly in
the form o;,,; by cooling the spin system to ultralow
temperatures. Besides enormous technological difficul-
ties, this will inevitably affect the speed of the entire
computational cycle. It will be shown below how the
density matrix

Pinit = const[1, + constP ] (23)

can be obtained in real NMR experiments as the input
for quantum agorithms. In the operator sense, the den-
sity matrix p;; differsfrom o;,;; by aterm proportional
to the matrix 1;, which is not influenced by unitary
transformations and does not contribute to the observed
signal. For this reason, any pulse sequences, including
those which implement logical operations, do not affect
thematrix 1, and, for thisreason, in describing the evo-
lution the initial density matrices p;,; and o;,; give
identical results.

To obtain p;;; it is expedient to use the procedure of
spatial [5] or temporal [6] dynamical (using additional
pulsed action on the spins) reduction of the density
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matrix pe, to the form p;y,;.. We shall examine the proce-
dure for temporal reduction of the density matrix pe, to
Pinic for amultiqubit spin, leaving other methods for a
future study.

The following procedure, the idea for which goes
back to [6], is proposed. Let the required calculation
consist of performing a transformation V ¢, With the
initial density matrix in the form p;;, while the spin
system is in a state given by the equilibrium density
matrix (22). We shall show that the average

1 t vt
é[vcomppeqvcomp + Vcompvlpeqvlvcomp

+ Vcompv2pqu;VIomp]
_1 t vyt
- évcomp(peq + leeqvl + Vzpequ)vcomp
of the results of three calculations V .y, Starting with
three different initia states—pe, VipeVi, and
VzpquZ—is equivalent to the transformation V gy, of
the state pj:

Vcomppinitvzomp- (24)

For this, we choose the transformationsV, and V, in the
form of two successive single-frequency pulses

Vi=V(Qu MV (Qp3 T) = Pyy+ Py + Py + P32<25)
Vo =V Q3 MV (Q1p, ) = Py —Pyp + Py — Pps.

Then, using the expressions (16a) and (16b) and the
multiplication rules (8), we obtain

Peqt ViPeqVi+ VopegVs
3

= Z[al+ BPy] O pinits
(26)

@ = 1+ 5D+ Ao+ A, B = A= 3[As+ Ao+ Al

This confirms that a logical operation on p;,; can be

reduced to an operation on p., by means of appropriate
pul se sequences.

5. ONE-BIT ROTATION OPERATION

Theoperator Vi(Qq, §,; Qas, §y) (17) Withdy =y = ¢
has the form

VQi2 05 Qa4 @) = (Pyy+ Py + Py + Pyy) COS%E

(27)
+ (P =P+ Py — PM)QH%%
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Expressing by means of equations (20) the operators P
in terms of the operators R and S, it can be shown that
the operator

Vy(lea ¢ Qz 0)

= (Ru+Ryp) 0 [(511 +Sy) COSBED

o0 (28)

+(Su-Sp)sn B = (91,08

isidentical to the operator (27). The latter equality on
the right-hand side of the operator (28) shows that the
transformation V,(Qy,, ¢; Qa4 ¢) is a rotation by an
angle ¢ in the space I's under the condition that the
space g is invariant. Using the expressions (16a) and
(16b) to calculate expressions of type (17) and (27), it
is possible to obtain an operator, having the same form
as the operator (28), for the rotation of avirtua spin S
around they axis.

It can be shown similarly that the operator V,(Q;s3,
bys Qo4 9y) (18) with ¢, = ¢, = ¢ isequal to the oper-
ator

V(Qiz 5 Qo4 §)
= [(Rn +Ry) COS%%RZl - RlZ)Sin%E} (29)
O (S +Sp) = exp{idR, 0 1g}.

The last equality on the right-hand side of the expres-
sion (29) shows that the propagator V(Qi3, §; Qu4, ¢)
is arotation by an angle ¢ relative to the x axisin the
spin space ', with constant I,

6. “CONTROLLED NEGATION”
OPERATION, CNOT

The transformation V,(Q1,, ¢,) (16a) on the transi-
tion 1 —— 2 with ¢, = 11, defined as

Vi(Qu, ) = [Paz+ Py] =[Py + Pyy], (30)

performs the two-bit operation “controlled negation”
CNOT—the NOT operation on aspin Sif the spin Ris
in the state |§;0and leaves the spin S unchanged if the
spin Ris in the state |€,L] Indeed, it is easy to check,
using the definition of the projection operators, that

V(Qqo MW, 0E - |W,0 V (Qrp, M|W0E W,
V(Qyp M) W3LE (Wl V(Qyp M |W,CE [W,0
or in information-theory notation
V. (Q4,, M[11E—i|200 V (Q4,, ™|100E —i|110)
V,(Q,, |01E [010 V (Q,,, ™)|00CE |00

Thisis (to within a phase factor exp(iTv2)) atruth table
for the CNOT operation defined above, in which the
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spin R controls the state of the spin S. In the projection
operators of the basis ' [ I, we represent the evolu-
tion operator V,(Q1,, ) in the form

Vi QM = IR O (Sp+Sy)+ R, 01 (31)

It can be shown similarly that the transformation
V(Qy3, $,) onthetransition 1 —— 3 for ¢, = 11, equal to

Vi(Qu3, ) = [P+ Py] —i[Py3+ Py, (32

performs the CNOT operation in which the spin S con-
trols the state of the spin R:

Vil Qs MW LR [W30) V(Qus, TO|W,LE [W,L
Vol Qus, MWL W10 V(Qus, TO W, W,
This gives the truth table
V (Q43, M[110=1]010 V (Q,5, T |100= |100)
V., (Q45 M[010=i|110 V,(Q,5, ™) |00C= |00

In the projection operators of thebasis g [0 ', werep-
resent the evolution operator V,(Q43, T) in the form

Vi Qi3 = 1g0S,—i(Rp+Ry) O Sy (33)

Thus, pulsed excitation of spin | = 3/2, corresponding
to the evolution operators V,(Q;,, T) and V,(Q;3, T,
realizes the logical operation CNOT on virtual spins
such that the spin R controls the dynamics of the spin S
and vice versa.

7. READOUT
OF THE COMPUTATIONAL RESULT

To find the computational result, it is necessary to
read the state of the final density matrix py,. NMR
methods make it possibleto measure all elements of the
density matrix by means of the tomography of states
[7]. On account of the complexity of this method, for
purposes of illustration we shall discuss here the read-
out in the case where the computational result p,,. has
the diagonal form:

Pout = Hol+ [Py + HpPop + HgPas + WP,

and the computational result is one of the states (19),
i.e., only one of the quantities ; can be different from
zero. It is proposed that a two-frequency electromag-
netic pulse, which rotates the density matrix elements
by the angle ¢, = 172, be used to act on the spin 3/2
under study. As aresult, afree-precession signal arises
at the resonance frequencies Q,, and Q,,. Theevolution
operator (27) corresponding to such apulseis

Vs = V,(Qu 02; Qg T02)
= (1/«/2)[]4 + Py =P+ Pz — Py,

(34)

(35)
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After the pulse (35) the density matrix (34) evolves
under the action of the Hamiltonian (9) and acquiresin
the Schrodinger representation the form

p() = S{IMy * [Py + Py

+ Mg+ Uyl [Pag + Pad]
+ My — o] [P exp{—itQy} + Ppexp{itQy,}]
+[Hs— Kol [PaseXp{ —itQsz} + Py exp{itQa}]},

where time is measured from the end of the pulse (35).
In a state described by the density matrix (36), oscillat-
ing quantum mechanical averages of the experimen-
tally observed transverse components of the spin |

appear:
O,()0= O, +il,0= 0/3(Pgg+ Py) + P30

= Sp{p® (I +il,)} = +/3[ s — K] exp{ -1t Qsy} (37)

+ «/é[lll — Mo exp{—-itQ,} .

Thus, in the situation described above, precession of
the nuclear spin, inducing in the detecting coil a peri-
odic voltage on at two resonance frequencies with Fou-

rier components /3[Hs — M) and /3[py — W], will
arise in a plane perpendicular to the constant magnetic
field. We note that the same pul se acting on the equilib-
rium density matrix (22) would lead to asimilar preces-

sion but with the Fourier components /3 Z[A\;—A,] and
J3Z[\; —\,]. Measurement of the sign of the ratios

b. = M3 —H4 M1—Ho
of the corresponding Fourier components, following
after and before the computational procedure, makes it
possible to determine the final states of the two virtual
spins.
if by, <0and b, =0, the computational result is |00
if by, > 0and b, =0, the computational result is|01[]
if by, =0and b, <0, the computational result is|100)
and,
if by, = 0and by, > 0, the computational result is|110]

If the operator p,, contains, together with-diagonal
projection operators, hondiagonal projection operators
Pmn (M # n) also, an rf pulse similar to one considered
in this section generates not only free-precession sig-
nals but also spin-echo signals. The specia role of the
latter in logical quantum operations requires additional

study.

(36)

by, =

8. CONCLUSIONS

For definiteness, we examined above a four-level
energy spectrum of spin-3/2 nuclel in a constant mag-
netic field. A nuclear 3/2 spin isnot ararity; nuclei with
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such spin ("Li, "Be, %Na, *Cl, 8Cu, %Cu, "Br, &Br, ...)
appear in the most diverse and easily available sub-
stances. It was assumed that as a result of the interac-
tion of the electric quadrupole moment of a nucleus
with the gradient of the crystal field, the spin resonance
absorption spectrum splits into several lines, the split-
ting between which is much greater than their widths.
The scheme described pertains to quantum systems of
any physical nature. In principle, large nuclear spins
can be used for this purpose, choosing four appropriate
energy levels, aswell as EPR spectrawith effective spin
S = 3/2, optical energy levels, and so on. Only the
expression for the resonance frequencies and matrix
elements of the operators of physical quantities will
change. Specifically, the nuclear quadrupole resonance
spectrum, split by the interaction with a constant mag-
netic field (0 < wy), is completely suitable. This case
differs from the case studied in this paper only by the
relative arrangement of the spin energy levels, whilethe
expressions (1)—(10) for the operators and eigenfunc-
tionsremain valid.

The use of four or more discrete energy levels gives,
generally speaking, additional possibilities. In previ-
ously proposed schemes [4, 5] for quantum two-qubit
gates of an NMR guantum compuiter, it was suggested
that two 1/2 spins coupled by an exchange interaction
be used. In order for them to function as a two-qubit
gate, it must be possible experimentally to switch on an
exchange interaction between different particles for a
precisely fixed time and, which is even more difficult,
to switch off thisinteraction for the time when the gate
under consideration is not functioning. Thesetimes are
determined by the magnitude of the exchange interac-
tion in the material and could be so long that they are
longer than the coherency period. In addition, in order
to switch off the exchange interaction it is necessary to
use complicated pul se sequences, which could increase
the computational time substantially, expend additional
energy on heating, and so on.

It was shown in the present paper that the above-
indicated difficulties can be overcome by using spins
greater than or equal to 3/2 for memory elements and
logical elements of a quantum computer. This is
expressed in the fact that two-qubit gates can be imple-
mented on a single quantum particle, and for this rea
son there is no need to expend time on actuating the
interaction between spatialy separated particles. The
required logical operations, including also the opera-
tions which previously required the presence of an
exchange interaction, in the case at hand are achieved
by using short rf pulses whose duration is determined
by the amplitude of the rf field and is under the control
of the experimenter. Actually, in our scheme the rf
pul ses assume the function of two-particle interactions.

Another advantage of implementing gates on asin-
gle particleisthat analogs of three-particle interactions
can be constructed using virtual spins. The problem is
that a reversible computer operating on the principles
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of classical physics requires the presence of a universal
set of reversible gates, including three-bit gates. The
study of waysto materialize theideaof aquantum com-
puter, initially advanced by Feynman [8], has shown
that physical systems with three-particle interactions
are required in order to redlize three-bit reversible
gates. Such interactions do not occur in nature. This
problem was circumvented in [9], where it was shown
that specially designed two-qubit gates, constructed on
two-particle physical interactions, are sufficient to real-
ize an arbitrary quantum algorithm. At the same time,
three-bit gates could be helpful in the future for produc-
ing compact algorithms or for other purposes. For this
reason, it is of interest to propose an aternative way to
produce information analogs of three-particle interac-
tions, amethod based on the idea of the present work—
multilevels instead of multiparticles. The Hilbert space
I, of nuclei with spin | = 7/2 can be treated as a direct
product of three Hilbert spaces of virtua spins 1/2.
Therefore, the Hilbert space I, of one such particle fits
three qubits of information (spin 7/2 is encountered, for
example, in the nuclei “Ca, 4°Sc, 4°Ti, 51V, 121Sh, 1239,
133Cs, ...). Another variant of this method is to use
physical systemswith an exchange interaction between
two spins one of which is greater than or equal to 3/2.
Thiswill also makeit possible to obtain aphysical sys-
tem in a natural manner, which, even though it has a
pair interaction, nonetheless contains three qubits. An
example of such systems are crystalsin which adouble
electron-nuclear resonance is observed, as well as mol-
ecules with a spin Hamiltonian of the form

1
310[315 —Li(li+ 1)+ (15 =15)]

+ Wepl 2+ Il 4l 2,

Wopl 1 +
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where |, is any spin, and the spin |, = 3/2 and J is the
exchange interaction constant. However, these ques-
tions require a separate analysis.
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Abstract—The nonlinear collision integral for the Green’s function averaged over arandom magnetic field is
transformed using an iteration procedure taking account of the strong random scattering of particles on the cor-
relation length of the random magnetic field. Under this transformation the regular magnetic field is assumed
to be uniform at distances of the order of the correlation length. The single-particle Green's functions of the
scattered particlesin the presence of aregular magnetic field are investigated. The transport coefficients are cal-
culated taking account of the broadening of the cyclotron and Cherenkov resonances as a result of strong ran-
dom scattering. The mean-free path lengths parallel and perpendicular to the regular magnetic field are found
for a power-law spectrum of the random field. The analytical results obtained are compared with the experi-
mental data on the transport ranges of solar and galactic cosmic rays in the interplanetary magnetic field. Asa
result, the conditions for the propagation of cosmic raysin the interplanetary space and a more accurate idea of
the structure of the interplanetary magnetic field are determined. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The investigation of the diffusion of high-energy
charged particles with low density in a regular mag-
netic field and in a strong random magnetic field is a
topical problem for the physics of cosmic rays in the
interplanetary and interstellar medium [1-6], high-tem-
perature laboratory plasma [7—10], and ionospheric
plasma[11, 12]. The propagation of cosmic raysin the
interplanetary and interstellar media for sufficiently
low particle energies is usualy investigated in the
approximation of large-scale random scattering by
MHD waves taking account of al cyclotron harmonics
in aregular magnetic field [1-6, 13-15].

Large-scale scattering of cosmic raysin amagnetic
field isusually described in the weak random scattering
approximation, which consists in the fact that the scat-
tering by cyclotron and Cherenkov resonances is
slightly broadened by viscosity and the finite conduc-
tivity of the plasma. Broadening as a result of random
scattering is either neglected or introduced phenome-
nologically [1-6], since it is assumed that it is quite
weak.

Likewise, the strong regular magnetic field approx-
imation [1-6, 13], where Ry < L, and R, is the Larmor
radius of aparticlein aregular magnetic fieldand L is
the correlation length of the random magnetic field, is
used for large-scale random scattering. The momentum
dependence, obtained in so doing, for the transport
range /\; in the direction of the regular magnetic field
for a power-law spectrum of the random field has a
power-law character, A 0 p2~V, where p isthe momen-

tum of the particle and v isthe spectral index of the cor-
relation function of the random magnetic field.

The existence of awide spectrum of magnetic irreg-
ularities, which scatter particles by large angles, in the
interplanetary and interstellar mediamakesit necessary
to take account of strong random scattering processes
in the interaction of particles with the large-scale ran-
dom magnetic field. In addition, to take Cherenkov res-
onance into account correctly its broadening due to
strong random scattering must be taken into account
[1, 4-6].

In [14-16] the nonlinear kinetic equationsareinves-
tigated and, correspondingly, the broadening of reso-
nances as a result of scattering of particles by a strong
random magnetic field, produced by a set of Alfvén
waves, is taken into account. These works employ an
approximation similar to the diffusion approximation.
General relations for the broadening of resonances are
obtained in these works, but the final formulas for the
transport ranges taking account of the spectral and
other characteristics of therandom magnetic field are not
obtained. In [4] the diffusion coefficients of particlesin
the presence of a small-scale random, large-scale ran-
dom, and regular magnetic fields were obtained, i.e.,
taking account of the broadening of the resonances, but
the power-law spectrum of the random magnetic field
was not taken into account.

In the present paper the kinetic equation obtained in
a systematic theory of diffusion of cosmic rays that
takes account of strong scattering of particles by large-
scale irregularities of the random magnetic field, using a
nonlinear collison integra, i.e., taking account of the
broadening of cyclotron resonances [1, 6, 17-19], is
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used. The collision integral is linearized using single-
particle Green’s functions in random and regular mag-
netic fields. The transport ranges parallel and perpen-
dicular to the regular magnetic field are calculated for a
power-law spectrum of the random field. The condi-
tions under which the single-particle Green’s function,
obtained in various approximations, are used for linear-
izing the nonlinear collision integral are determined.
The inflection in the momentum dependence of the
transport ranges accompanying a transition from weak
to strong random scattering isinvestigated. Thetheoret-
ical results are compared with the experimental results
on the transport ranges of cosmic raysin the interplan-
etary magnetic field. As aresult, the characteristics of
the regular and random components of the interplane-
tary magnetic field are determined more accurately.

2. GREEN’'S FUNCTION
OF THE LINEAR KINETIC EQUATION
FOR A WEAK REGULAR FIELD

We shall study particles in a wide range of kinetic
energies, including kinetic energies for which the Lar-
mor radius in a regular magnetic field is somewhat
greater than the size of the nonuniformity. In this case,
we shall employ in the nonlinear collision integral the
Green’'sfunction for the small-scale random field [1, 2,
17-19]. For this, we shall find first the Green’sfunction
in a small-scale random and weak regular magnetic
fields.

For substitution into the nonlinear collision integral
of the kinetic equation, we shall use for the digtribution
function averaged over the random magnetic field [17-19]
the solution of the linear kinetic equation for the aver-
age Green's function G;(X, Xo):

ar —H D[Gl(x Xo) = StG;+8(X=Xo), (1)

[pt

wherex=r, p,t; Xg=rg, Po, to; ', v, and p arethe particle
coordinates, velocity, and momentum, respectively; tis
thetime; H(r, t) istheintensity of the regular magnetic
field; u is the velocity of the magnetic field; and,
D = (e/0)[(v — u) x d/dp). The callision integral StG,
has the form [18, 19]

StG, = DGJ’dxlBuB(r,t; ry,t)
X Go(X, X)) D1G1(Xy, Xo),

)

where

3(x—Xg) = d(t—1t)d(r —rg)3(p —Po),
and
Go(r —rg, t—=ty) = 6(t—ty)d(r —Ar(t—ty) —ry)

3)
xd(p—Ap(t—ty) —po)
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isthe Green’'sfunction of a particle moving in aregular
magnetic field H, in the absence of arandom field, and
Ar (t—tg) and Ap(t —t,) are, respectively, the change in
the coordinates and momentum of aparticlein aregular
magnetic field over a time t — t,. Summation over
repeated tensor indices is performed.

We shall investigate the case u < v, so that we shall
set u=0. We shall consider the case of an isotropic ran-
dom magnetic field, produced, for example, by a set of
Alfvén waves with random phases and amplitudes. This
field is described by the corrdlation tensors[1, 5, 6]

kK
Bup( 1, tai T tp) = jolkB(k)Bsaps e

x exp{ikx —iw,t},

(4)

where
A K

(k(z)_kz)2+v/2’
F(2+v/2)ky ' HO
3T ((v-1)/2)

Bk) =

Av_

F=(r + )2, X =T =T Tt —ty, ko= Lo, Hy(r, 1)
isthe intensity of the random magnetic field, and ' (n)
is the gamma function. In the present case, w, = VK,

k= Ho(Hok)/H3, and v, < v, where v, is the vel ocity
of Alfvén wavesin the interplanetary magnetic field. In
what follows, we neglect w,, i.e., we switch to the “fro-
zen” turbulence approximation.

In the nonlinear collision integral StG [17-19], the
Green's function G(x, x,) is integrated over r, and t;
with the correlation tensor Byg(r, t; ry, t;), so that the
Green'sfunction for short timest —t, < L /v will make
the main contribution to thisintegral.

We shall determine the Green’s function for high-
energy particlesin aweak regular magnetic field for the
following values of the parameters: R, > L., R; > L.,
andt—t, < LJv, where R, isthe Larmor radiusinaran-
dom magnetic field. We shall switch to the Fourier
transform of the Green’s function G, (k, t —ty):

Gyr —rg t—tg) = (2m)~°
XIdel(k,t—to)exp{ ik(r—rgo)}.

Then, equation (1) for the Fourier transform of G,(k,
t—t) at short timesin uniform regular and random mag-
netic fields can be written approximately in the form [18]

Eﬁ+ ikv—iQ(h,L) Eﬁl(k, t—to)
ot O (5)

1 ~
= —30i(t—to) L Gk, t—t)) +8(t—16)3(p — o),

No. 3 2000



462

where v, = eEHfﬁ/Z/mc isthe Larmor frequency in a
random magnetic field,

ai| Q:e_HO'
op mc

_ro97 . _Hg
d = [Vx%}, ho = 1

Here the correlation tensor, normalized to 1, of the ran-
dom field is chosen as follows:

L = [px

10 X Xg
bap(x) = égb(x)éasﬂlll(x);—f%l

and the correlation function of the random magnetic
field hasthe form [1]

v =2 TSR] 2

« [Z(v +3)/2

(6)
Ko -122],

where K,(2) is the Macdonald function. We introduce
the function g,(k, t —ty) given by

gu(k, t—tg) = exp{ikv(t—to) —iQ(t—to)(hol )}
x G, (k, t—tp).

In the equation obtained for g,;(k) we neglect the term
describing the decrease in the average velocity of the
scattered particles, making the assumption that the
squared average angle of random scattering at the cor-
relation length is sufficiently small. We also neglect
terms describing the correlation of the position of a par-
ticleinr space and the direction of the momentum p of
the particle [17-19]. We factorize the solution obtained
into factorsrelated with scattering inther and p spaces.
Asaresult, we obtain

Gi(k, t—tg) = exp{—ikv(t—t,) +iQ(t—to)(hoL)}

(7)

x eXpD— S Wt —to) [y xk)?

O0om

8)
X exp Ekéwi(t o)Ly (K, t — ).
0 U

The operator
exp{—ikv(t—ty) +iQ(t—t,)(hoL)}

acting on the function g,(k, t —tg), changes the coordi-
nates and momentum in accordance with the law of
motion of a particle in aregular magnetic field H, over
timet —t,[20]. Thus, we obtain finally

Gy(k, t—t;) = exp{—ikAr (t—to)}
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X s (t~1) (v - Av(t 1)) X K]’
O

oo™

)
U 0
X ex Ap(t—t))=—

[

01 ~2[]
x exp[p—éooi(t —t))’L Gy (K, t — t,).
0 0

We shall assume that cylindrical symmetry existsin
adirection of the regular magnetic field. Then the expo-
nential factors associated with the change in the coordi-
nates and momentum of aparticleinther and p spaces
can be averaged over the angle ¢ in the plane of cyclo-
tron rotation of the particle in aregular magnetic field.
After averaging over the angle ¢, the Green's function
assumes the form

Gy(k, t—tg) = exp{—ikAr (t—ty)}

O O
x expE—Ilémi(t —to)"[vﬁkzD + vk + %véké} E
(10

(.

x expzrﬁwl(t to) L2D

(] o
x exp-Ap(t _tO)a_Ec"l(ka t—tp),
0 PO

where v| = hg(hoVv), v = v =V, K| = ho(hok), and k; =
k — Kk, and Ar, and Ap, are the functions Ar and Ap
averaged over the cyclotron rotation angle ¢, and the

operator L% isaso averaged over ¢. It isclear from the
Green's function obtained that under the action of a
random magnetic field the momentum vector of a par-
ticle and the coordinate of a particle undergo “ broaden-
ing” relative to its direction and trgjectory of motion
only in the regular magnetic field. The term propor-

tiond to v k% in the argument of the exponential

makes the main contribution to the “ broadening” factor
in the collision integral.

3. GREEN’'S FUNCTION AT SHORT TIMES
IN A STRONG REGULAR MAGNETIC FIELD

We shall now find the Green’s function of a particle
in strong regular and weak random magnetic fields. For
this, we shall find the change in the momentum and
coordinate of a particle in a weak random magnetic
field in the presence of a strong regular magnetic field.
We introduce the unit vector of the total magnetic field:

h(r) = ho+Ah(r), Ah = Hy/Hg, |h+AR()| = 1,
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where An(r) is the relative vector of the random mag-
netic field. Thus, the random component of the mag-
netic field isdirected for small Ah almost perpendicular
to h,. We shall assume that the random magnetic field
is quite weak, and we shall find the solution of the
dynamical equation taking into account only the first
order in Ahy/h,. Then, the relative vector of the random
magnetic field can be represented as

Ah = Ath+AhD2, Ath+AhD2,

where Ah;; and Ahg, are independent random compo-
nents of Ah, which lie in a plane perpendicular to hy.
We shall neglect the random change in the modulus of
the magnetic field H and the random change in the
momentum of aparticle parallel to the regular magnetic
field H,. In this case, the iteration solution of the equa-
tion of motion of a particle can be written in the form

p = py+ Q(t—1t5)pg x Ah, (11)
where
P1 = Po* Pon(cosQ(t—tp) —1)
+po x hosinQ(t—t,).
This solution neglects particles trapped in a magnetic
bottle and takes account of only the scattered transmit-
ted particles [1, 6]. The solution (11) is found at dis-

tances of the order of R,, at which we assume for the
large-scale field Ah = const.

The coordinates of the particle change as follows:
f—ry = r1+%Q(t—t0)2vo”xAh, (12)
where

Voo
ry = vo(t=to) + =

0 2sinQ(t—t,)

hO(cosQ(t—tO) —-1).

Va X
XO

Neglecting in the Green’s function obtained the fac-
tors related with the correlation terms between the r
and p spaces, we represent the Green's function of the
particle in a strong regular magnetic field in the form

Gy(X, Xp) = B(t—ty)
x B(r —ro—ry—(1/2)Q(t—to)’vg X A)L,  (13)

x [B(p — Py — Q(t —to) *Poy X AN) G,

where [.. [}, signifies averaging over the components
of the random magnetic field Ah; and Ah,, which are
assumed to be independent.

We now switch in the coordinate space to the Fou-
rier transform of the average Green’s function in k
space. After averaging over the direction of the relative
vector Ah of the random magnetic field and performing
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transformations, the Green’s function (13) can be writ-
tenintheform

Gs(xv XO) = e(t _tO) Gsr(t _tO)Gsp(t _to), (14)
where
Gy() = (2m)°[ck
x exp D‘leiT4VS||(km + kmz) D
(15)
X expDk%L —ro— VOHT— Q 2sinQt
ODZ(COSQT 1)DD
O
Gg(T) = (2m) qu
01 O
X eXpL7WiT Poy(G5 + A0) O (16)
O O

x exp{iq(p —pPo—Pon1(CoSQT —1) — Py, SINQT) },

and gy, 0y, and k5, K, are the projections of the vec-
tors g and k in the plane perpendicular to h,. The
Green's function G4(x, Xo) (14) obtained for the case of
astrong regular magnetic field isessentially identical to
the Green’s function G,(x, X,) (10) for a weak regular
field. Only the rate of random scattering decreases
somewhat. This rate is related in the argument of the
exponential with the factors

1
1600iT4p(2)||(q o1t q DZ)

16005T4Vc2)||(km + kmz)

For thisreason, we shall employ theformulasfor the
transport ranges of particleswith energiesfor which the
condition of magnetization will hold for all practical
purposes.

4. TRANSPORT COEFFICIENTS TAKING
ACCOUNT OF STRONG RANDOM SCATTERING

We shall now find the transport coefficients appear-
ing in the collision integral for the large-scale random
magnetic field. We employ the kinetic equation for the
distribution function F(x, X,) [17—19]

B—+Var H,DF(x, x) = StF (17)
ot 0
No. 3 2000



464
with the nonlinear collision integral in the form
StF = DaJ’dxlB(,B(r,t; M, 1) Go(X, X1) D1gF(X, Xo),

where the function (14) for astrong regular field is cho-
sen as the Green’s function in the integrand. The equa-
tion (17) takes into account small-angle random scat-
tering microprocesses and simple strong random scat-
tering microprocesses [18-20]:

O~ 070

Averaging equation (17) over the Larmor rotation of
particles in a regular magnetic field, taking account of
the condition H; < H, [1-6], we obtain

Da 0
[ﬁt vua —2vd|vh smﬁ [fD [BtFG, (18)
where ® = [F[J, 9 is the angle between the vectors p
and hy, | = cosd, ¢ isthe azimuthal angle of the vector
p in aplane perpendicular to h,, and zisthe coordinate
inthedirection h,. Inthisequation the average collision
integral is
[BtFL (29

_ 0 2 0
- w(l —u )b(u)wdD(r, p, K1),

where

b(w) = (dt [ckB(K)
I
k2
x cosQr+l—(%sin¢sin(QT—¢)}

U U
X exp D—iléooir“vﬁké 0
O O

x cos{ikyv T + kRy[SIN(QT—9) + sind]},

and R; = v/Q, ¢ isthe angle between k; and vy,

In the derivation of the formula for b(u) it was
assumed that the collision integral averaged over the
Larmor rotation of particles in a regular field can be
written as a product of the average scattering operator
and the average distribution function. Likewise, we
neglect the additional random scattering in p space,
given by the function G¢(x, x,) in theintegrand. In these
approximations, the terms which are not taken into
account in the final expression for the transport range

(19) are of the order of [H/HZ < 1.

Intheformulafor b() (19) we expand the exponen-
tial with imaginary argument in aseriesin Bessel func-
tions. The series of products of Bessel functions so
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obtained can be summed exactly using the addition for-
mulas for Bessel functions [21, 22]:

0 pO
Jn(p)exp%l n%g
(20)

k =+

= Z Jn+ (2 (2 exp{ikB},
K= —o

where p = 2zsin{3/2} and J,(p) isaBessal function of
order n. After summation, the expression for the trans-
port coefficient b(u) can be written in the form

b(k) = by() + by(W), (21)
where
b,(n) = >, ZI dTJ’dk
” kok? 2.4 2
x Idku—zﬂ,,z o(pm)eXpD‘]_G(*)lT V||kDD (22)
(ko +K)

x [exp{i(kv,+Q)t} + exp{i(kVv,—Q)1}],

4 [ee] ()
e A
b = > (dt [dk
2(“‘) 4m2c2.! { 0

x [ dky———=5 cos{ kv t}
_[ ”(k§+ kz)z 2 vl
(23)
2_4 2k 0
xexp[)—16wlt Vi DE
x [Jx(pp) c0s2QT — Jy(p) cosQT],
Py = 2k RDsmBgD
02 0
Integrating over the inner variables, we obtain
2 -1V + 10
we’A v rg=1
by(u) = ~ =
\Y
Am’CPQ T HL + 50
(24)
y dzexp[4]
I oo (v+1)/2°
o Wz f 2 V||
%L+ 0 k R,
4ako| v | vi

We do not present the expr on for by(u), since for
vy = v the function b,(u) is much less than b, (u), and
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in what follows we shall neglect b,(l1). Taking account
of the expression for by(u) (24) for kv < wy,
ks RA v \/_52 <1, andkoV;= oy, and also for kov > wy,
the approximate expression for the transport coefficient
b(u) can be written finally in the form

v+1 v-1
A, 0 2 v
o) = 54 .
mcC zr%[_'_é%)v
(25)
+ ZA/;T_leXpE W O

The expression obtained for b(u) takes account of al
cyclotron harmonics, including the zeroth harmonic
corresponding to a Cherenkov resonance. It is obvious
from thisformulathat the dependence of the coefficient
b(d) on the angle @ for R, > L, is qualitatively of the
same form as the dependence b(d) displayed graphi-
cally in[1]. It aso follows from equation (25) that the
ratio of the maximum value of b(J) to its minimum

value was of the order of QLY ™" /w, R} ™. For this rea-

son, the Cherenkov resonance can be observed only if
the random field is sufficiently weak. The width of the
Cherenkov resonanceisinversely proportional to R;.

5. TRANSPORT RANGE IN THE DIRECTION
OF THE REGULAR MAGNETIC FIELD

We shall use the diffusion approximation to calcu-
late the transport range [1, 2, 5, 6]. We shall represent
the distribution function @®(r, p, W, t) in the form

®(r, p, K, t) = N(r, p, t)/411+ dD(r, p, Y, t).

We substitute this expansion into the kinetic equation (17)
and, taking account of the transport coefficient (25), the
integration over the angle, and the symmetry properties
of the terms appearing in this equation, as well as the
smallness of d®, we obtain the following formula for
the transport range in the direction of the regular mag-
netic field:

1

6RILY "
Ay = " fan-1)
«/ﬁ%.*‘z%V—l)RX)O
-1 (26)
v v-1
2 /mEER L
ﬁEEEhl © 0 4R,p0
x| 1+ exp O
rY*tiny 0 L g
02
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It follows from this formula that for sufficiently
large particle momenta and weak random magnetic
fields, for which

IN(R/Ry) + (v —1)In(LJRy) < 3"°R,/L.—1,
the transport range is

Ay = 8RILyB(v—1)(1+V/2)Ry.  (27)
Here the numerical factor is somewhat greater than the
value obtained in [1]. It is clear from the expression
(27) that for weak random magnetic fieldsand v = 2 the
transport range does not depend on the particle energy
and is proportional to the size L. of the magnetic non-

uniformity multiplied by the ratio H3/ [H301

Using the expression (26), we shall estimate the par-
alle transport range for cosmic rays of moderate ener-
gieswith E=0.1 GeV, propagating in theinterplanetary
space. Taking Ry=3x10°m, R, =10°m, L, =6 x 10° m,
andv = 2[23, 24], weobtain A= 2 x 10" m. Thevalue
obtained for the transport range is essentially indepen-
dent of the energy and the type of scattered particles,
and it agrees with most experimental results presented
in[1, 25-27] for cosmic rayswith energies 0.05-0.5 GeV.

For sufficiently low particle energies, R, < L., the
expression for the transport range (26) becomes
_2r((v-1)/2)R,
™ (v/2)(1+v/2)

(28)

Such or a close momentum dependence of the trans-
port range is often observed for galactic cosmic rays
with energies 2-20 GeV propagating in the interplane-
tary space [27-30]. The sector structure and other
large-scale irregularities of the interplanetary magnetic
field make the main contribution to the scattering. The
valuesof A calculated using the expression (26) will be
closeto the experimentally observed valuesin theinter-
planetary space for random magnetic field intensities
approximately ten times lower than the intensity of the
regular magnetic field, but for large values of the corre-
lation length, L, = 10° m.

6. DIFFUSION OF PARTICLES PERPENDICULAR
TO A REGULAR MAGNETIC FIELD
TAKING ACCOUNT OF STRONG
RANDOM SCATTERING

6.1. Diffusion of Particles
in a Moderate Random Magnetic Field

We shall use the method proposed in [1] to determine
the transverse diffusion coefficient in a large-scale ran-
dom magnetic field. Assuming the large-scale random
field to be sufficiently weak and neglecting the accel er-
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ation of the particles, we obtain for the transverse dif-
fusion coefficient Kqp [1]

o _ 1 . . '
B = H_f,[dq Gy(a, d) v vy,

X [Hyg(r, )Hee(r', 1)H

whereq=r, y, t;q =r', W, t'; and, Hy (r, YHg (r', )0
is the correlation tensor of the perpendicular compo-
nents of the random magnetic field H,, and v = vy
The Green’sfunction G4(q, q') isasolution of the equa-
tion

(29)

Ua og &4 .
E?Tt + V”%Oa_rﬂ_ S%Gq(q, qQ) (30)

= J(t—t)d(r —r)d(H—p),

where S isthe large-scal e scattering operator [1, 5, 6],

_ 0 2 0
= ﬁ(l - )b(u)m (31)

The expression obtained for the transverse diffusion
coefficient KEB must be averaged over the angle 5.

We shall first analyze the case of moderate random
scattering. In this case, the Green's function with aver-
age angles of random scattering of the order of 1 and
short times makes the main contribution to the integral
(29). The spatia part of the Green’s function makes the
main contribution to the transverse diffusion coeffi-
cient. For thisreason, we shall choose the Green’sfunc-
tion in the integrand in the short-time approximation in
the form (15)

Gq(@,q) = 6(t—t)Gg (r, t; r', t)d(H—p). (32

Substituting the correlation tensor of the perpendic-
ular components of the random magnetic field and the
Green’'sfunction (32) into the integral (29), we obtain

v D—I D
Kap = gHol 01(3a g — NogNog)

(33)

v 2H Cix xh 0
I 1D¢ XB ( O) hOahOBD
3H0 D X2 O

where the function ¢, has the form

:J'dTIde';—:_‘[sexp{ik(x—v”T)}
° (34)

242

1 20 X
x expg—lewlr vi k5 Ew%?
C
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and the operator ¢, can be written in the form

(Xho) O

X
. ———hoq hoa 0
O

¢2Da_2
X

- dk
= .([ dTIdXI(ZT[)3

X exp[p—lswlT v”kDD

XaXp _ X0
x [ 2 Noq hOB}“ELCD

Let usconsider thefunction ¢,. Performing in equation
(34) the integration over the inner variable and assum-
ing perpendicular diffusion to be sufficiently weak, we
represent ¢, intheform [1, 6]

Jrr(vi2)L,
2r((v-1)72)|v|

/RlL
i
Using the expression obtained for ¢4, we shall calculate

the first term in the perpendicular diffusion coefficient
(33) and averageit over theangle . Next, we shall find

the second term, proportional to ¢, , appearing in the

exp{ik(x—-v|1)}
(35)

(Xho)

for [W/R, > L,

o, = (36)

for |u R, = L..

perpendicular diffusion coefficient KEB (33). As a
result, it turns out that the second term is much smaller
than the first term, so that it can be neglected. The final
expressions for the transverse diffusion coefficient and
the transverse transport range in a moderate random
magnetic field have the form

NgVv
Kap = —3—(Bup = oahop).

2
Jar(vi2) Hi, for R > L.,
20 ((v —1)/2)H}
Ao =

8TH20
= JRiL.

5H3

The expressions aobtained for the diffusion coeffi-
cient and the transport range for a weak random mag-
netic field R, > L are identical to the results obtained
in [1, 6]. For a moderate random magnetic field and
low particle energies, R, < L., the transport range is
/\ O p1/2

We shall now compare the computational results
and the experimental data. The experimenta results
obtained, by various methods, for the transverse diffu-

(37)

for R, = L..

No. 3 2000



DIFFUSION OF CHARGED PARTICLES IN STRONG LARGE-SCALE RANDOM

sion coefficient of cosmic rays in the interplanetary
magnetic field are reviewed in [26]. As aresult, it was
agreed that the transverse transport length of solar cos-
mic rays with energy of the order of 100 MeV is about
10° m and essentially independent of the particle
energy. Setting the particle energy equal to 100 MeV,
L.= 0.5 x 10° m, R, = 10° m, and using the relation
[H2YHZ = 0.1, the transport range Ay, calculated
from equation (37), for R; > L.is 0.5 x 108 m, and for
moderate random scattering Rl = L.itisequal to 0.3 x
10° m and essentially independent of particle energy,
Ag O pY2 Thus, the estimates for moderate random
scattering are more suitable.

The ratio of the transverse to the longitudinal trans-
port range is also determined in the experiments [26].
We shall find this ratio using the expressions obtained
for A and A\, equations (26) and (37). As aresult, we
obtain

i (v/2)(1+v/2)(v-1)Ry*?

— for R, > L,
N _ | ABT(v-12RIL T (;8)
A 4101+ v/2) (v —1)Ry*?
5J§R7/2 v-3/2 for Ry = L..

The expression (27), which is applicable for R, some-
what lessthan L., is used for Ny in the second value of
the ratio Ap//\;. Substituting into equation (38) L. =
05x10°m, R, =10°m, R;=0.3x10°m, and v = 2 for

particle energies 100 MeV weobtain A/A, = CH{I2Hg =

0.005 for R, > L, and Ag/A; =5Ry? THZTHA LY? =
0.14for R, = L.

According to experiments [26], the ratio Ap//| of
the transverse to the longitudinal transport range liesin
the range 0.01-0.2, and the average value is 0.1. It fol-
lows from the expression (38) that for weak random
scattering the ratio Ap//\; depends primarily on the

ratio CH3J Hy and is of the order of 0.01. Such avalue
of the ratio An//\ is observed experimentally, but it is
much less than the average value 0.1 adopted [26]. For
moderate random scattering, the ratio Ap/A deter-
mined from eguation (38) is close to the average value
adopted.

It is also clear from equation (38) that the ratio
Apl/\jincreases asthe average deflection angleinasin-
gle random scattering microprocess increases.

6.2. Diffusion of Cosmic Raysin the Case
of Strong Random Scattering

We shall determine the transverse diffusion coeffi-
cient in the extreme case of very strong random scatter-
ing for R, < L.. In this approximation the particles are
strongly scattered at the correlation length, and the dif-
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fusion approximation can be used to determine the
Green'sfunction [1, 6]:

G(H) = Yo+ dG(),

+1

Iduécg(u) = 0.

|6(g| < (gOJ
(39)

In this case the diffusion coefficient K, is deter-
mined by the formula

t
o _ K” ] ' [ Gg

Kap = — [dt'fdr' TH,(r, )Ha(r' t Ja— 40

B HSJ- I D( ) DB( ) ot ( )

where

+1

_3, g 1l
M = Vfd“ b’

A4
=
and the Green's function G(r, t; r', t') is the solution of
the equation

[ﬁt k,@oarm [Gg(r trt) = 8(t— t)6(r—r)(41)

Substituting Gy(r, t; ', t) into equation (40), we obtain
an expression for the transverse diffusion coefficient

KEB and the transverse transport range A\. The trans-

port range A in the approximation R, < L, taking
account of the strong random scattering [18], can be
written in the form

4T ((v = 1)/2) R, TH3?

Mo = SR vi2) g

(42)

Thus, in the limit of very strong random scattering the
transverse transport range (42) A = Ry CH3Y2/H,, and
its numerical value for the parameters of the interplan-
etary medium [H2[M?/H,=0.3and R,= 0.3 x 10° mis
of the order of 108 m. Thisvalue of the transversetrans-
port range A\ is an order of magnitude less than the
experimental average value, but it is sometimes observed
in experiments [26]. The ratio Ap/A\ calculated using
equations (28) and (42) isfor very strong random scat-
tering

Ao/, = 2[H3U3Hg = 0.067, (43)

i.e., it falls within the range of the numerical values of
the experimental data[26]. Thisresult also confirmsthe
conclusion that as the average deflection anglein asin-
gle random scattering microprocess increases, the ratio
Ap//\jincreases.
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7. DISCUSSION AND CONCLUSIONS

The results obtained above and the approximations
used make it possible to draw the following conclu-
sions. The use of the nonlinear kinetic equation for
describing strong random large-scale scattering makes
it possible to obtain final formulas for the average col-
lision integral and transport range parallel and perpen-
dicular to the regular magnetic field which are close to
the formulas obtained in [1-6], in the weak random
field limit. In contrast to the preceding works, in the
present work exact summation of all cyclotron reso-
nances was performed, taking account of the broaden-
ing of the resonances, using a summation theorem for
Bessel functions. It was aso shown that the additional
functional factors in the nonlinear collision integral
which are related with the broadening of resonances as
aresult of the strong small-scale and strong large-scale
random scattering are quantitatively close to one
another.

The computed parallel transport range is A =

L' 'R} Ry’ in the weak random scattering limit, and
A= Ry inthe strong random scattering limit. Thisresult
is due to the fact that as the energy of the particles
decreases, the strong, random, small-scale scattering
makes the main contribution [17-19]. The perpendicu-
lar transport range in the weak random scattering limit

is Ay = L. [H2JH}, for moderate random scattering

Ay= LY?*RY? tH/H2, and for strong random scat-

tering A, = Ry TH;2/H,. The ratio A/, computed in
thiswork in the weak random scattering limit (for v = 2)
is of the order of [H3JHg, for moderate random scat-

tering Ao/ =5Ry > TH3/H5 Ly >, and for strong
random scattering Ap/A; = 2 (HIO3H;.

The experimentd results on the longitudinal transport
range of solar cosmic rays with energies 0.05-1 GeV in
the interplanetary space [25-30] can be described well
by the results of the present work, obtained in Sec. 5, in
the weak and moderate random scattering limits (26),
(27). The experimental data on the transverse transport
range can be described well by the results of thiswork in
the moderate random scattering limit; see equation (37).
The ratio An//\, obtained in the present paper agrees
better with the experimental results for moderate and
strong random scattering; see equations (38) and (43).

In summary, the results obtained here agree with the
model of a filamentary structure of the interplanetary
magnetic field with transverse size of the “filaments’ of
the order of 10° m, which agrees with the experimental
results [27-32]. It can be assumed on the basis of the
results of this work that a particle moving along a “fil-
ament” undergoes weak random scattering associated
with the entanglement of the “filaments,” and when a
particle transfers from one “filament” to another in the
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process of transverse drift, it undergoes moderate ran-
dom scattering, associated with the difference of the
magnetic fields in neighboring “filaments.”

The experimental results on the longitudinal trans-
port range of cosmic rays with energies 2-20 GeV can
be described by the results of the present work in the
strong random scattering limit (see equation (28)), for
random magnetic field intensity less than the intensity
of the regular magnetic field, but for large values of the
correlation length.
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Diffraction of Optical Radiation on Spatially Ordered Structures
of Macroparticlesin a Strongly Nonideal Thermal Plasma
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Abstract—The first observation of the diffraction of optical radiation on ordered structures of macroparticles
in alow-temperature thermal plasma was reported. The experiments were conducted in an air thermal plasma
at atmospheric pressure with CeO, particles at temperatures 1800-2200 K. The parameters of the plasma
medium were determined using probe and optical diagnostics methods. The binary correlation function of the
system of macroparticles was reconstructed from measurements of the structure factor. Simulation of nonideal
plasma with the parameters corresponding to experiment was performed by the molecular dynamic method.
The computed and experimental correlation functions were compared, and it was noted that they are in good
agreement with one another. © 2000 MAIK “ Nauka/Interperiodica” .

The recently observed ordered structures of macro-
scopic charged (dust) particles in various types of
plasma [1-8] possess a variety of unique properties
which make it possible to use them for studying phase
trangitions in a strongly nonideal plasma and as model
systems for studying the properties of solids. It should
be noted that the characteristic distances in plasma—
dust structures are of the order of fractions of a milli-
meter, which makes it possible to use such a structure
asanatural three-dimensional diffraction grating in the
visiblerange and to study the diffraction of optical radi-
ation. In the optical wavelength range, diffraction by
natural three-dimensional structures was previously
observed only for cholesteric and colloidal liquid crys-
tals[9, 10].

In the present work we investigated the diffraction
of optical radiation by ordered structures of macropar-
ticlesin alow-temperature thermal plasma. We present
here the method used for determining the binary corre-
lation function of the system of particlesfrom measure-
ments of the structure factor, analogous to the methods
of X-ray crystallographic analysis for investigating the
atomic structure of matter.

The kinematic approximation is used to describe the
diffraction of radiation by amorphous and liquid struc-
tures. The correctness of this approximation for deter-
mining the binary correlation function g(r) from mea-
surements of the diffraction of optical radiation has
been checked in [11], using model masks simulating
the structure of macroparticles in a thermal dust
plasma. The radiation intensity 1,(0) scattered at the
angle 6 with respect to the direction of the incident
radiation is given by the expression [9]

14(6) = 1o(B)[1 + 41, [(g(r) —1)rsin(rQ)ar/QY. (1)

where Q = 4rm,sin(6/2)A, my is the refractive index of
the medium, n, is the particle density, A is the wave-
length, and 1,(0) is the intensity of the radiation scat-
tered by adisordered cluster of particles. The structure
factor is introduced as the intensity ratio §0) =
1(0)/14(6). Measurements of the angular dependence of
the structure factor make it possible to find the correla-
tion function g(r) as the inverse Fourier transform of
the function §Q) [12].

For observing a diffraction pattern the spatial dis-
persion V = A/[H[is determined by the condition for the
existence of diffraction peaks of nonzero order and
should not exceed 1 (V < 1) [12]. The lower limit (V >
sing) is fixed by the finite dimensions of the probe
beam and the parameters of the optical detector, which
do not make it possible to detect the scattered radiation
at angleslessthan 6, . Thelimiting particle densitiesfor
observing a diffraction pattern can be estimated taking
into account the limits on the value of V ~ 0.005-1.0.
Thus, for the wavelength of the Ar*-laser radiation (A =
0.489 um), the admissible particle density lies in the
range 5 x 10°—4 x 10'2 cm3,

The experiments were performed in a thermal air
plasma at atmospheric pressure in temperature range
18002200 K on the automated experimental stand
described in detail in [13]. A two-flame propane—air
Mekker burner was used as the plasma generator.
Cerium oxide CeO, particles were introduced into the
inner flame of the burner. The diagnostics complex made
it possible to perform measurements of the diffraction
of the optical radiation and to determine simulta-
neously the plasma parameters, such as, the tempera-
ture of the gas phase T,, the density of alkali-metal
atoms n,, the electron density n., the average Sauter
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diameter D3, the particle density n,, and the particle
temperature Tp,.

In the experiment the sizes of the particles investi-
gated wereintherange D4, = 1-1.5 um, and the average
distance between the particles was = (4mm,/3)™2 =
20-60 pum, which corresponds to the density n, =
(1-30) x 108 cm3. The particle temperature was close
to the gas temperature T, = 1700-2200 K, the charge
and screening length of the particles were determined
from the density of the electronic component n, = 10°-
10% cmr3, and they werein therange Z, = (0.5-1) x 10°
and rp = (0.3-1) [0 respectively.

Using the results of diagnostics measurements as a
basis, we shall examine the possibility of the formation
of an ordered structure of CeO, particles in a thermal
plasma. In the single component plasma approximation,
the state of the system of charged particles is deter-

mined by the nonideality parameter y = Zﬁ e’/mKT,.
Thevaluey = 170 is taken as the condition for crystal-
lization (gas-iquid phase transition) [14]. The screen-
ing of the charges of the macroparticles by plasmaelec-
trons and ions is taken into account in the Yukawa
model. The effect of the screening is determined by the
ratio K = [Alry, and the parameter I' = yexp(—MlUrp) is
also used. Short-range order is established in such a
system for I' > 1 [15]. Figure 1 shows the dependence
of I" on the particle temperature T, calculated from
measurements of the parameters of a plasmawith CeO,
particles. The nonmonotonic behavior of the function
I'(Tp) is determined by two competing processes:
charging of particles by thermionic emission and
screening of particles by the electronic component
formed by the ionization of alkali-metal atoms, usually
present in the form of anatural impurity in the particle
material. It isevident from the plot presented that in the
temperature range 1700-2100 K, ordered structures of the
liquid type can form in athermal plasma. Such structures
have been observed previoudy in an experimental study of
athermal plasma with CeO, particles [13]. The particle
density was~10" cm3, and the plasmatemperature was
about 1700 K.

The arrangement used to measure scattering (I and 1)
by CeO, particles is shown in Fig. 2a. The argon-ion
laser radiation (A = 0.489 um) scattered by the macro-
particles was collected by an objective in the range of
angles 0.3° < 0 < 3.5° and directed onto a CCD array
consisting of 700 x 1000 elements each with the dimen-
sions 10 x 10 um?. Since the dynamic range of the array
is comparatively small (8 digits), the transmitted laser
beam was extracted outside the limits of the light-sen-
sitivefield of the array (see Fig. 2b). An inference filter
placed in front of the objective was used to select the
scattered radiation. A portion of the diffraction pattern
was screened for measurements of the structure factor
on the CCD array (see Fig. 2b). A video image of the
scattering pattern was recorded with a video tape
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Fig. 1. Temperature dependence of the parameter I': (1) ny =
10° cm3, (2) n, = 10" em,

recorder and digitized using a computer program. The
data array 1(n;) obtained, where | is the signal ampli-
tude and nj; is the pixel number, was used to construct
the angular dependence 1(0) of the scattered radiation.

Figure 3 shows the characteristic angular depen-
dences of the scattered radiation for an experiment with
particles at temperatures 2200 and 1800 K. According
to the analysis presented above, at T= 1800 K aliquid-
type structure should be formed in the system of parti-
cles. A peak corresponding to the first diffraction ring
is clearly seen in the angular dependence measured at
T=1800K (curvel, Fig. 3). Subsequent peaks areless
pronounced because of the absence of long-range order
in the system. As temperature increases to 2200 K, the
parameter I decreasesto 0.5 (Fig. 1), the system of par-
ticles becomes weakly interacting, and the angular
dependence of the scattered radiation is determined by
the characteristics (size and refractive index) of indi-
vidual particles (curve 2 in Fig. 3).

The structure factor of the system can be found by
measuring the angular dependence of the scattered
radiation. Figure 4 shows the dependence of the struc-
ture factor §(8) for an experiment with CeO, at 1800 K.
The time-averaged angular dependences of the scat-
tered radiation for a system of particles at temperature
1800 K, 1(6), was used to calculate §(0). We used for
1,(8) the dependence measured at T = 2200 K for the

same particle density (n, = 7.5 x 10° cm3).

The correlation function g(r) was reconstructed
from the obtained dependence §6), using the inverse
Fourier transform. Since the effect of the characteristic
laser radiation on the detection of scattering makes it
difficult to determine §0) accurately at small angles,
the quantity §0) for 6 < 0.4°was set equa to O, which
could distort the initid form of g(r). The reconstructed
function g(x), wherex =r/Il]lisshownin Fig. 5 (curve 1).
The model correlation functions calculate by the molecu-
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Fig. 2. Diagram of the optical measurements of the diffraction of radiation: (a) overall view, (b) combined arrangement of the pho-
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Fig. 3. Measurements of the intensity 1(8) of the radia-
tion scattered by a system of CeO, particles: T = (1) 1800,
(2) 2200 K.

lar dynamic method for various formation times of the
structure are also presented there.

The following data obtained from measurements of
aplasmawith CeO, particleswere used for anumerical
simulation of adust system: D3, = 2R, = 1 um, rp/=
1.3,n,=75x10°cm=, v, =4 x10*s™, T= 1800 K,
y= 73, and ' = 30. The calculation was performed by
the molecular-dynamic method for 512 particles using
periodic boundary conditions along thex, y, and z axes.
A three-dimensiona equation of mation, in which the
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Fig. 4. Angular dependence of the structure factor Sfor a
plasma with CeO, particles at T = 1800 K, n, = 7.5 x
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interparticle interaction F;, friction due to the neutral
component, and random Brownian force Fy,, arising as
a result of the impacts due to molecules of the sur-
rounding gas, was solved for each macroparticle:

2

dr, re—r
m— = Y Fir :
pdt2 Z |nt( )|r:‘rk_rj‘|rk_rj|
j @)
dry
_mpvfra + For,
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Fig. 5. Pair correlation functions obtained from measure-
ments of the structure factor (1) and computed with Dg, =

1um, rp/iE 1.3, ny = 7.5x 108 cm™>, vg, =4 x 10* s,
T=1800K,y=73,andI" = 30 for thetimest = (2) 5 ms,
(3) 35ms, (4) 35s.

where my, is the particle mass, vy, is the friction fre-
guency, and F;(r) was determined assuming a Debye
interaction between the macroparticles:

2 2
Z.e
Fint(r) = :2

1+f]endtE @

The quantity v, was calculated in the free-molecular
regime approximation [16]

2
' 3m, \ T,

and for our conditions v, = 4 x 10* s*. Here m, is the
mass of the neutral component and P is the gas pres-
sure.

The temporal evolution of the function g(r), illus-
trating the dynamics of the formation of a plasma—dust
structure from a disordered cluster of particles, is
showninFig. 5for thetimest=5ms, 35 ms,and 3.5s.
The calculations showed that the system reaches equi-
libriumint~ 1s, whenthe binary correlation function no
longer depends on the time. For thisreason, fort<l1sa
correct comparison of the experimental and computed
functions can be made only at the corresponding
moments in time. In our experiment the measurements
were performed at a height of 40 mm with flow velocity
1.2 m/s, which corresponds to a formation time of the
structure t = 33 ms. Comparing the measured and com-
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puted at t = 35 ms correlation functions (Fig. 5) shows
that they are in good agreement with one another.

In summary, in the present work the diffraction of
optical radiation on ordered plasma—dust structures
was observed for the first time. The binary correlation
function, which agrees well with the correlation func-
tion calculated for this system by the molecular-
dynamic method, was obtained from measurements of
the structure factor.
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SOLIDS

Structure

New L ow-Frequency Magnetic Excitations
iIn LaMnO; Single Crystals
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Abstract—Microwave magnetic resonance of closeto stoichiometric antiferromagnetic LaMnO;_s wasinves-
tigated. LaMnO; _ 5 single crystals were grown and a series of samples with a small oxygen excess and defi-
ciency was prepared. Residual magnetization was observed for all samplesin the series. The maximum value
of the residual magnetic moment in the series of samples obtained was 2.5% of the maximum possible value
(4, for each Mnion). An absorption line, whose angular and frequency dependences cannot be explained on
the basis of a previously proposed [S. Mitsudo, et al., J. Magn. Magn. Mater. 177-181, 877 (1998)] model of
two-sublattice antiferromagnet with “easy axis’ magnetic anisotropy (|| b) and canting of the magnetic sublat-
tices due to the Dzyal oshinskii—-M oriya interaction, was observed in the experiments performed on all samples
inaseriesaswell ason specially prepared ceramic samples with the same composition. It wasinferred that the
low-frequency excitationsin a system of ferromagnetic drops observed in [M. Hennion, et al., Phys. Rev. Lett.
81, 1957 (1998)] are observed in the experiment. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

One of the rapidly developing areas of solid-state
physicsis the investigation of the properties of materi-
als containing ions with variable valence. The great
interest in these objects is due primarily to the discov-
ery of high-temperature superconductivity and the phe-
nomenon of giant magnetoresistance in them. One such
compound isLaMnO,, whose magnetic and conducting
properties depend strongly on the presence of quadriva
lent manganese ions in it. The presence of a quadriva-
lent manganeseionisusually achieved either by substi-
tuting divalent ions, for example, Ca or Sr, for lantha-
num or by means of excess oxygen. There are many
publications on magnetic systems based on LaMnO,
(see, for example, [2, 3, 5]).

In the present work the magnetic properties of
LaMnO; were investigated by the magnetic resonance
method. A manganese ion in an LaMnO; matrix pos-
sesses a 3d* configuration, in which the three electrons
occupy the bottom t,, orbitals and one occupies the upper
g orbital. On account of the half-filled outer orhital,
LaMnO; isa Mott-type antiferromagnetic insulator.

According to neutron-diffraction data[11], the crys-
tal structure of LaMnQ; is orthorhombic with Pbnm
symmetry. Below the antiferromagnetic transition tem-
perature Ty = 140 K the compound LaMnO; becomes
antiferromagnetic with a type-A layered structure: the
ferromagnetic ab planes become ordered antiferromag-

netically. In the absence of a magnetic field the antifer-
romagnetic vector isdirected along the b axis. LaMnO,
crystals consist of twins, and all six types of twins pos-
sible for the given structure are realized in the growth
process [11].

The magnetic properties of LaMnO,_; are strongly
associated with the deviation from oxygen stoichiome-
try or, in other words, with the number of Mn*ions.
According to the first works, whose results entered in
[6], stoichiometric LaMnO; (d = 0) is an antiferromag-
net. Away from stoichiometry a wesk ferromagnetic
moment, which is usualy associated with the canting of
the magnetic sublattices, appears. The appearance of a
magnetic moment is ordinarily explained by the interac-
tion of magnetic sublattices and charge carriers. This
explanation was proposed by Zener [4] and de Gennes|[3].

In the last few years the validity of this model for
LaMnO;_5with asmall deviation from oxygen stoichi-
ometry has been questioned. In the first place, accord-
ing to [9] aweak ferromagnetic moment also remains
in samples with & = 0. In the second place, severa the-
oretical works have appeared [7, 8] inwhich it has been
shown that for a small value of & a uniform canting of
the sublattices should not occur, and a stratification of
the sample into regions with different values of the fer-
romagnetic moment is energetically preferable.

Magnetic stratification has been reported in the
experimental works [12, 13]. According to neutron-
scattering experiments [12], the diameter of the region
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with alarge magnetic moment is=18 A, and the differ-
ence of the magnetic moment inside these regions and
in the bulk of the crystal is 0.6p5.

In the present work we investigated electron spin
resonance in LaMnO;_ 5 with a small deviation from a
stoichiometric composition in the microwave range at
temperatures below T,.

2. SAMPLES AND PROCEDURE

In the present work LaMnO;_5 samples grown by
zone melting were investigated. Theinitial polycrystal-
line rods were prepared using the standard solid-phase
method and La,05; and Mn,O; reagents. Taking account
of the tendency of La,O; to absorb water and carbon
dioxide from air, the initial material was heated at
900°C. The mass losses (4.25%) were monitored by a
thermogravimetric method. The initial substances,
taken in the required proportion, were pulverized and
mixed in a ball mill. The charge was anneadled at
1200°C for 10 h. The cake formed was pulverized in an
agate mortar and then molded into 12-mm rods. Polyvi-
nyl acohol in amounts of three or four drops per 100 g of
material was added as a binder. The rods were annealed
at 1400°C for 20 h. A 3000-W xenon lamp, whose rays
were focused by two ellipsoidal mirrors, was used as a
heater for zone melting. The growth rate was 8 mm/h.
The 0.5 cmin diameter and 2 cm long sampl es obtained
by such a method were investigated by powder X-ray
diffraction analysis and X-ray topography. Figure 1
shows a characteristic topogram of a section of a sam-
ple. Many twinning boundaries can be seen in the topo-
gram. Using the neutron diffraction data from [11], we
infer that all six types of twins which are possible for
the structure of LaMnO;_5 are present in the crystal.
The characteristic size of atwinisd =0.01 mm.

The data obtained show that the volume of the
twins, whose b axes are collinear, in the samples inves-
tigated is approximately an order of magnitude greater
than the volume of twins with other orientations. In
what follows we shal indicate the orientation of the
static magnetic field relative to the b axis of the twins
with the predominant orientation in the sample.

In the present work we endeavored to investigate
compositions as close as possibl e to stoichiometry. The
data from [14], where the dependence of the lattice
parameters on the stoichiometric composition was
investigated, were used to estimate the oxygen content.
This method makesit possible to determine o to within
+0.03. We note that the samples obtained in the growth
process were stoichiometric to within the indicated
accuracy. The crystalswere cut into =1 mm thick plates
and annealed in oxygen (1300°C, 250 h) and nitrogen
(700°C, 48 h). By varying the annealing conditions we
obtained a series of five samples with almost identical
lattice parameters (a=5.535nm, b=5.736 nm, and c =
7.707 £ 0.003nm). The change in oxygen composition
as a result of annealing could be judged according to
the changein the residual magnetic moment of the sam-
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| 1 mm |

Fig. 1. X-ray topogram of aLaMnOj; crystal plate, cut per-
pendicular to the growth axis corresponding to the [101]
direction.

ple. The magnetic moment of the sample was measured
with a vibrating coil magnetometer at liquid-nitrogen
temperature. The residual magnetic moment increased
with saturation and with depletion of oxygen in the
LaMnO; sample. We classified the samples with the min-
imum residua magnetic moment as being closest to sto-
ichiometry. The minimum residual magnetic moment in
the series of samples obtained was 2.5% of the maximum
possible value (4 for each Mn ion). The magnetiza-
tion curvesin weak fields showed hysteresis. The pres-
ence of aresidual magnetic moment for al samplesin
the series agrees with [9], where ceramic samples were
studied.

Electron spin resonance was investigated on a pass-
through microwave spectrometer. A 1 x 1 x 0.5 mm3
sample was placed in a rectangular resonator, where
different modes were excited in the frequency range
18-78 GHz. The construction made it possible to rotate
the sample in the course of the experiment. A magnetic
field from 0 to 40 kOe was produced with a supercon-
ducting solenoid. The measuring cell was placed into a
vacuum jacket, which madeit possibleto perform mea-
surements in the temperature range 1.2—200 K.

3. EXPERIMENTAL RESULTS

Figure 2 shows a trace of the microwave power at
36 GHz which has passed through the resonator as a
function of the magnetic field for different values of the
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Fig. 2. Characteristic traces of the microwave power at 36 GHz
passing through the resonator as a function of the magnetic
field for various values of the temperature for samples clos-
est to stoichiometry. At temperatures close to Ty the inten-
sity of the line decreases sharply and the line splitsfirst into
two and then, at even lower temperatures, into threelines. At
low temperatures the absorption is observed in awide range
of fields, less than the EPR field. The static field H liesin a
plane perpendicular to the predominant direction of the b
axis.

temperature. At temperatures close to Ty the intensity of
the el ectron paramagnetic resonance (EPR) line decreases
and splitsfirst into two and then threelines astemperature
decreases. The resonance field of each line decreaseswith
temperature. At low temperatures absorption is observed
inawide range of fidds, lessthan the EPR field (H,). At
temperatures below 15 K (the measurements were per-
formed down to 1.7 K) the intensity and form of the
trace of the transmitted microwave power remained
unchanged. The data presented in Fig. 2 were obtained
on the samples closest to stoichiometry. The static field
H isdirected in aplane perpendicular to the b axis. The
traces obtained at other frequencies were similar to the
traces presented in the figure. We note that at all fre-
guencies investigated, just asin Fig. 2, in the tempera-
ture range below 15 K absorption of microwave power
is observed in the entire range of fields0 < H < H,,.

Figure 3 shows traces of the absorption lines for
three samples with different compositionat T = 4.2 K,
v = 36 GHz, and H O b. The first sample (a) is closest
to stoichiometry. The residual magnetic moment of the
second sample was =5%. The composition of the third
sample LaMnOg , 04 (Fig. 3, curvec) deviated strongly
from stoichiometry, and for this reason it could be
determined by measuring the lattice parameters. It is evi-
dent that for samples with an gppreciable deviation from
oxygen stoichiometry ashift of the absorption lineintothe
region of weaker fields at temperatures T < T was also
observed, while the splitting of the lines disappeared,
possibly as aresult of their being broadened.
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Fig. 3. Traces of absorption linesfor three sampleswith dif-
ferent compositionat T=4.2K, v =36 GHz, H Ob; Hyisthe
EPR field measured at T > Ty. (&) Trace corresponding to a
sample closest to stoichiometry. Its residual magnetic moment
was 2.5% of the maximum possible vaue; (b) the trace corre-
sponding to the sample whose residual magnetic moment
was =5%; (c) the trace corresponding to LaMnO3 , g gu. The
composition was determined according to the parameters of
the crystal lattice and the data from [14].
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Fig. 4. Temperature dependences of the resonance fields for
samplesclosest to stoichiometry. v =36 GHz, H Ob, HgisEPR
field measured at T > Ty.

Figure 4 shows the temperature dependences of the
resonance fields. The smooth decrease of the resonance
fields, occurring in awide temperaturerange T < Ty, is
interesting. Besides the temperature-dependent absorp-
tion lines, there is present an absorption line whose
position is almost temperature-independent and which
corresponds to the position of the electron paramag-
netic resonancelineat T > Ty.

Figure 5 shows measurements of the resonance
fields for various values of the frequency. The value of
the resonance field is plotted along the x axis, and the
frequency at which the measurement was performed is
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plotted along they axis (H Ub, T =4.2 K). Itisevident
in the figure that the field of each resonance depends
linearly on the frequency, the slope angle corresponds
to the g factor of 2, and the gap width A depends on the
temperature (v = yH + A—solid linesin Fig. 5). Similar
linear dependences were obtained for al samplesin a
series.

Figure 6 shows the dependence of the resonance
field on the angle between H and b. Anisotropy was not
observed in the ac plane (T = 4.2 K, v = 54.2 GHz).

4. DISCUSSION

Antiferromagnetic resonance (AFMR) was previ-
ously investigated in the submillimeter frequency range
[10]. The results of the investigation were interpreted
by the authors of thiswork on the basis of the model of
a two-sublattice antiferromagnet with “easy axis’ (|| b)
magnetic anisotropy and canting of the magnetic sub-
lattices due to the Dzyal oshinskii-Moriya interaction.
In the notations adopted in Turov’s monographs[1], the
values of the magnetic constants (T < T,) obtained by
the authors of this work from the AFMR spectrum are
asfollows: H,=33.9T,H,=5.3T,and H,=0.2T. The
strong uniaxial anisotropy gives rise to a large gap in
the AFMR spectrum, signifying that in the frequency
range 10-100 GHz and weak fields, as compared with
the spin-flop field, H < H, = 20 T, AFMR lines should
not be expected to appear. The presence of a large
energy gap in the magnetic excitation spectrum is aso
confirmed by neutron-scattering experiments [11].

In summary, the low-frequency absorption lines
observed in the present work are probably not an anti-
ferromagnetic resonance of LaMnO;.

We notethat atrace at 135 GHz is presented in [10].
Aside from absorption corresponding to an antiferro-
magnetic resonance, the trace contains a line whose
position agrees well with the extrapolation of the fre-
quency dependence obtained in the present work (Fig. 4).
We also observed a low-frequency absorption line in
ceramic LaMnO; samples synthesized by the standard
solid-phase technique. Thus, the observed low-fre-
guency absorption line is present in samples obtained
by different methods.

The intensities of the absorption linesat T < 15 K
does not depend on the temperature. This fact shows
that the observed absorption lines are not related with
the electron paramagnetic resonance of impurity mag-
netic ions.

The absorption lines observed in the present work
could be associated with low-frequency excitations in a
system of ferromagnetic drops, which was observed in
[12]. Unfortunately, we know of no theoretical investi-
gations of the magnetic excitation spectrum of asystem
of such drops in an antiferromagnetic matrix. It can be
expected that the spectrum of magnetic excitations of
such drops will be similar to the spectrum of abulk fer-
romagnet. In magnetic fields much greater than the

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

477
v, GHz
80~
60
40
20
1 1 ]
0 10 20 30
H, kOe

Fig. 5. Frequency dependences of the resonance fields
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effective crystal anisotropy field, the ferromagnetic res-
onance frequency is proportional to H [1] with propor-
tionality coefficient corresponding to the g factor of 2,
which is observed in the present experiments. It can be
expected that the nonuniform distribution of the mag-
netic moment over the volume of the sample will lead
to an effective excitation of the nonuniform magnetic
oscillations by a uniform microwave magnetic field.
The absorption of microwave power in weak magnetic
fields seems to be associated with the excitation of non-
uniform oscillations (Figs. 2, 3). The presence of fine
structurein the absorption line attests to the presence of
periodicity in the distribution of the magnetic moment
over the volume of the sample, and the gapsin the spec-
trum of each of the two sharp fine-structure lines (Fig. 5)
are of an exchange nature.

The model discussed is a working hypothesis. It
cannot be asserted unequivocally on the basis of our
experiments that the observed absorption lines are
related with magnetic excitations in a system of ferro-

No. 3 2000



478

magnetic drops. It ispossiblethat these absorption lines
are associated with magnetic excitations from domain
walls arising because of, specifically, the presence of
twins in the crystal. The character of the magnetic
anisotropy near awall of atwin can differ substantially
from the anisotropy in the volume of the crystal and,
correspondingly, the gap in the excitation spectrum can
be lower than in the bulk.

It isimportant to investigate the EPR spectrum in a
LaMnQO; single crystal with no twins. Obtaining such a
single crystal isacomplicated, but technically solvable
problem.
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Abstract—The nature of the stability of incommensurate long-period structuresin alloys of the system Cu-Au
isinvestigated on the basis of first-principles cal cul ations of the el ectronic structure. It isshown that many struc-
tural properties of such formations can be explained only if the latter are treated as superstructures with respect
to ordinary superstructures (L1, or L1p): the electron spectrum of the superstructure and not that of the initial
disordered alloy must serve astheinitial spectrum. The observed dependence of thelong period N on the degree
n of the “short” long-range order is explained. The reasons why two-dimensional long-period superstructures
frominthe aloy AusCu are found. Arguments supporting the fact that among quasi crystalline substanceslong-
period superstructures fall between incommensurate systems and quasicrystals are presented. © 2000 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

As is well known, very unusua ordered phases—
one- or two-dimensional long-period superstructures—
form in alloys based on the precious metals, CuAu,
CusAu, AusCu, CusPd, CusPt, AusMn, and others (see,
for example, [1-7]). The periods of these superstruc-
tures are on the nanometer scale: up to 100 interplanar
distances fit within their length. In contrast to the artifi-
cialy produced metalic and semiconductor superlat-
tices, long-period superstructures are thermodynami-
cally equilibrium structures. In the phase diagram they
correspond to a completely determined region.

The aloys Cu-Au are classic aloys for studying
order—disorder phase transitions [1, 4, 7]. In these
alloys, depending on the composition, both one-dimen-
sionad (CusAu and CuAu) and two-dimensional
(CuAuz) incommensurate long-period superstructures
are formed. They are characterized by a quasiperiodic
arrangement of the antiphase boundaries—flat defects
on which the sign of the phase of the long-range order
parameter n, describing transitions from a disordered
solid solution into ordinary (short-period) superstruc-
tures L1, or L1, changes sign. In one-dimensional
long-period superstructures the antiphase boundaries
are perpendicular to the[100] direction, and in the two-
dimensional superstructures they are paralel to the
[100] and [010] directions of the initial fcc lattice.
Characteristically, the regions between the nearest
antiphase boundaries are fragments of commensurate
structures with a whole but random period: stochastic
alternation of antiphase domains of different length
occurs along the long quasiperiod. As the composition

or temperature varies, the average (over a chaotic
ensemble) half-period N varies continuously, assuming
irrational values as well.

The first attempts to explain the formation of long-
period superstructures were made back in the 1950s by
Slater [8] and Nicolas [9]. They assumed that such
superstructures are stabilized asaresult of adecrease of
the energy of the valence electrons because of the
appearance of gaps in the electron spectrum near the
Fermi level. This point of view goes back to the well-
known ideaof Mott and Jones[10] that phases are espe-
cialy stable under conditions where the Fermi surface
isin contact with the faces of the Brillouin zone. The
works[8, 9] were experimentally confirmed in the clas-
sic works of Sato and Toth [11-13], who discovered a
clear correlation between the average period N and the
number of valence electrons per atom, €/a, in Cu-Au
aloys doped with various elements. Significantly, in[8, 9,
11-13] no specia attention was given to the deviation
of the shape of the Fermi surface from a sphere; for
example, in [11-13] the long half-period N of the sys-
tem was estimated from the condition that the Fermi
sphere touches new faces of the Brillouin zone (the fact
that in reality the Fermi surface is nonspherical was
taken into account only via the renormalization of the
diameter 2k- of the sphere by introducing a so-called
correction factor).

Tachiki and Teramoto [14] were the first to advance
the idea that flat sections of the Fermi surface in the
[110] direction could be responsible for the appearance
of long-period superstructuresin the fcc alloys Cu-Au.
Their calculations for an aloy with equiatomic compo-
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sition CuAu showed that such sections lead to a dis-
placement of the minimat in the electronic polarizabil-
ity x(q) (or the Fourier transform of the ordering poten-
tial V(q)) from the Lifshits point X((2rva)[001]) into a
point on the line X-W. Since L1, type ordering occurs
along the star of the point X, while the displacement
vector of the minimum Ak || [100], this explained the
appearance of the modulated superstructure of the type
CuAull with half-period N ~ 17|]Ak| along [100] (we
note that in [14] pure copper served as a prototype of
the disordered alloy CuAu).

The idea of [14] that long-period superstructures
appear because of the presence of flat sections of the
Fermi surface was elaborated in [15-20]. As aresult, by
the mid-1980s, the idea developed that long-period
superstructures are formed as aresult of transitions sim-
ilar to aPeierlstransition [21] in one-dimensional metal-
lic systems. The quasi-one-dimensiondlity of three-
dimensional systems is due to the presence of flat sec-
tions of the Fermi surface in the [110] direction. When
a long period arises, a gap opens up in the electron
spectrum on the entire area of these sections, and the
energy gain is sufficient to destabilize the initial short-
period structure.

Despite the progress made, the problem of the sta-
bility of long-period superstructures in the alloys con-
sidered still contains a number of fundamental points
that are unclear.

(1) The reasons why only one-dimensional super-
structures form for some compositions (for example,
CuAu and CusAu) while two-dimensional long-period
superstructures with substantially different periods 2N,
and 2N, form for others (for example, AusCu) are
unclear.

(2) The reasons for the quite strong dependence of
thelong period 2N on the “ short” order parameter n are
not understood (in AusCu and CusAu, for example, N
increases together with n [4]). According to existing
ideas, the period 2N is fixed by the nesting vector 2k
of the disordered alloy, which is completely indepen-
dent of . The strong dependence of 2N on the alloy
composition is likewise not understood [4, 7], since the
number e/a of valence electrons per atom remains
unchanged and the ratio k/G (G isareciprocal lattice
vector), one would think, also should not change appre-
ciably.

(3) The question of why long-period superstructures
exist only in a narrow temperature range, while at suf-
ficiently low temperatures the ordinary superstructures
L1, or L1,, which do not contain antiphase boundaries,
become energetically favorable has not been answered.

The answersto these questions cannot be found on the
basis of the standard approach [14-20], which derivesthe
structure and properties of long-period superstructures

L1t should be noted that in [14] the polarizability was defined as a
negative quantity. In what follows, we shall define it, as usual, as
apositive quantity.
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from aninitia electron spectrum g, (k) of theinitial dis-
ordered state. Thisapproach isbased on the assumption
that the renormalization of the initial spectrum as a
result of the short-period ordering is small and can be
neglected (see, for example, [18]). This assumption,
however, isinvalid already on the basis of the following
simple considerations. In the first place, in the aloys
under discussion the initial flat sections of the Fermi
surface lie near the superstructure vectors of the type
(21a)[110], and for this reason they will inevitably be
transformed in the process of short-period ordering. In
the second case, long-period superstructures always
coexigt with ahigh degree of order ), arising asaresult of
sharp first-order transitions with atypica jump |An| ~ 0.6
[4]; such ajump and afurther increase of ) should lead
to an appreciable change of the spectrum ¢, (k) of the
disordered state.

In the present paper, we shall investigate the ques-
tions formulated above, proceeding from the fact that
the structure of the long-period formations must be
derived from theinitia electronic spectrum g, (k) of the
basic superstructures (L1,, L1g), corresponding to a
given degree of short-range order ). Actually, we con-
sider only two extreme situations, complete order and
complete disorder, in order to estimate qualitatively the
region between n = 0 and n = 1. The investigation is
based on first-principle calculations of the electronic
structure of the electron-energy spectrum ¢,(k), the
generalized susceptibility x(q), various sections of the
Fermi surface of pure metals and ordered dloys. In Sec-
tion 2 the required information about the basic super-
structures and the details of numerical calculations are
presented. Section 3 is devoted to a detailed discussion
of the characteristic features of the Fermi surfacein the
pure Cu and Au metals as prototypes of the disordered
alloys Cu-Au; the computational results for the polar-
izability x(q) for Cu are compared with the above-men-
tioned results obtained by Tachiki and Teramoto [14].
In Section 4, the change in the geometric features of the
Fermi surface accompanying a transition from disor-
dered to ordered aloys is examined; the observed
dependences N(n) and the fact that N changes substan-
tially from one alloy to another are explained. Section5is
devoted to an analysis of the nature of two-dimensional
long-period superstructures in AusCu. Finaly, in Sec-
tion 6 the results are summarized and discussed in the
light of the questions raised above; the question of the
place of long-period superstructures among quasicrys-
talline substances is touched upon.

2. STRUCTURE OF SHORT-PERIOD PHASES.
COMPUTATIONAL PROCEDURE

The ordering of an fcc solid solution according to
types L1, (CusAul) and L1, (CuAul) isdone[22] onthe
basis of the star of the vector ks = (217a)[001]. The tran-
sition into the L1, phase proceed along athree-ray chan-
nel: al three vectors of astar, (21/a)[100], (217a)[010],
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and (2rva)[001], contribute to the density function. As
aresult, theinitial cubic symmetry ispreserved, and the
number of atoms in a unit cell increases from 1 to 4.
The Brillouin zone of the L1, structure is identical to
that in a simple cubic lattice and is obtained from the
Brillouin zone of the fcc lattice by “folding” the latter
along (100) type planes. The transition into the L1,
phase proceeds only along one ray, (217a)[001]. Such
ordering is accompanied by period doubling along
[001] and the appearance of atetragonal distortion c/a;
for the alloy CuAul c/a reaches the value 0.93.

In what follows, we shall use the following formal
device to make it convenient to compare the electronic
structure of fcc solutions and the superstructures L1,
and L1,. We shall assume that they all have four atoms
per unit cell (just asL1,). Then the Brillouin zone of the
fcc lattice will be identical to that of the superstructure
L1,, and the Brillouin zone of the L1, phase will differ
from it only by a weak tetragonal distortion (we note
that the natural Brillouin zone of the L1, structure is
also tetragonal, but it has twice the volume [23]).

The “full-potential” LMTO method based on the
local electron density approximation was used in the
calculation [24]. The Barth—Hedin exchange-correla-
tion potential was used [25]. The integration over occu-
pied states was performed by the tetrahedon method
[26], using 120-165 reference pointsin the self-consis-
tent calculation of the spectrum ¢, (k) and 1053 (Cu,
Au) points, 1771 (L1, structure) and 4851 (L1, struc-
ture) pointsin the irreducible part of the Brillouin zone
for calculating x(q). To calculate the polarizability of
the noninteracting electrons,

_ 20 ) < fE ()= Tk - )]
O = 2 T im0

only the energy bands A intersecting the Fermi level
and determining the behavior of this quantity were
taken into account: the sixth band in Cu and Au and
22nd-24th bandsin CuzAu, CuAu, and AusCu. Thefol-
lowing lattice parameterswere used (ina.u.): a=6.805
(Cu),a=7.675(Au),a=7.079 (CusAu), a=7.467 and
€ =6.956 (CuAu) and a = 7.476 (AusCu).

3. GEOMETRY OF THE FERMI SURFACE
AND THE BEHAVIOR OF X(q) IN Cu AND Au

In this section we shall be interested in the nesting
features of the Fermi surface in pure Cu and Au metals
as prototypes of disordered Cu—Au aloys. The assump-
tion that the Fermi surface in the Cu-Au alloysis sim-
ilar tothat in pure metalsis completely justified. Cu and
Au are isoelectronic analogs, so that the electronic
structure of their alloys is described well in the “aver-
age” crystal approximation [4, 15-17, 27].

We note first that the computed Fermi surfaces of
Cu and Au agree very well with the experimental sur-
faces[28, 29]. For example, in Cu the theoretical small-
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Fig. 1. Electronic polarizability x(q), measured in elec-
trons/(Ry cell), in Cu and Au in the X-W direction. The
arrows correspond to the vectors Q.

Fig. 2. Fragments of sections of the Fermi surface in copper
inthe planes (a) z=0and (b) x + y = 21Wa.

est and largest radii of the necks of the Fermi surface
areidentical to the experimental values [28] (expressed
in units of the radius of the Fermi sphere of free elec-
trons, they are 0.16 and 0.21, respectively).

The electronic polarizabilities, calculated in the
directions X-W, of the metals under discussion are
shown in Fig. 1. Away from the point X they remain
essentially unchanged, but then they decrease sharply,
so that a characteristic kink forms on their curves. The
coordinates Q of the kinks, evidently, can be repre-
sented as Ak + Kk, where kg = (217a)[001] is a super-
structural vector (or the point X of the Brillouin zone),
while the vectors Ak are equal to 0.08(21va)[100] and
0.075(21va)[100], respectively, for Cu and Au. As the
analysis showed, these coordinates are identical to the
points Q of the Kohn anomalies, determined by the
condition

Q+Gyy = 2Kk, 1

where G,1; = (217a)[111] is areciprocal lattice vector,
the vector 2k connects the cylindrical sections of the
Fermi surfacein the [110] or K direction (Fig. 2). To
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Fig. 3. Electronic polarizabilities x(q) of a univalent fcc
metal with different Fermi surfaces: (1) sphere with radius
2KE; (2) with cylindrical sectionsalong [110], characterized
by radius 2k and height 0.5(21va); (3, 4) with cylindrical
sections of large radius.

show more clearly the role of such sections in the for-
mation of the features in the function x(q), we per-
formed calculations of this quantity with artificial
Fermi surfaces, which were obtained from a sphere by
replacing spherical segmentsonitinthe[110] direction
by cylindrical sections with different radii of curvature
R but the same height 0.5(2rva). Curve 1 in Fig. 3
shows the behavior of x(q) for a spherical Fermi sur-
face; it is characterized by alogarithmic singularity at
g = Q, satisfying the condition (1) (the value of 2k was
chosen to be 0.94 - 217a). The curve 2 corresponds to
the introduction of cylindrical sections with radius of
curvature R equal to ke. Finally, the curves 3 and 4 cor-
respond to the addition of cylindrical segments with
even larger radii (the sections of the Fermi surface in
the [110] direction become increasingly flatter). It is
evident that for a sufficiently large radius R a step
appearsin the curve x(q), just asin Fig. 1.

The form which we have obtained for x(q), is sub-
stantialy different from the form presented in [14]: the
Kohn singularity appears not in the form of a sharp
peak but rather only as a step. This difference in the
resultsis explained by the low accuracy of the calcula
tions performed in [14]. An investigation of the conver-
gence of x(q) as afunction of the number of reference
pointsin the irreducible part of the Brillouin zone leads
to this conclusion. It turned out that for a small number
of reference points (=490) the susceptibility possesses
a peak whose character is close to that of the peak pre-
sented in [14]. As the number of reference points
increases, the peak gradualy transforms into the step
described above (the step remains practically unchanged
when the number of pointsisincreased to 1053).

We shdl now determine the long period of hypotheti-
ca long-period superstructures, which would appear in
the metals under consideration when a gap opensin the
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cylindrical sections of the Fermi surface. Using the for-
mula N = 17|Ak|, we obtain the values 6.25 and 6.67,
respectively, for copper and gold (in units of the lattice
parameter a). These values will be used below to esti-
mate the quantity N(n = 0) in the alloys Cu-Au.

For clarity in the exposition below, it isimportant to
verify that the character of the featuresin x(q) and the
values of N found in pure metal remain the same as
before, if their crystal structure is treated not as fcc but
rather as L1, (four atoms per cell). On switching from
an fcc lattice to the L1, phase the Brillouin zone trans-
formsin amanner so that the X—W direction transforms
into the T—=X direction, and the flat sections of the Fermi
surface along [110] are close to the points M. Compar-
ing the curves x(q) for copper along the directions
X-W and M'-X (Figs. 1, 4a), we verify that they both
possess the same stepped form. The distances from the
initial points (I, X) to the kinks in the curves are iden-
tical (they are equal to 0.08(21va)). Whereas previously
the kink was determined by 6-6 transitions (the diame-
ter of the Fermi surface in the sixth band), now they are
determined by all possible transitions with the partici-
pation of the 23rd and 24th bands: these are the bands
into which the sixth band transforms on switching to a
new representation of the structure.

4. GEOMETRY OF THE FERMI SURFACE
AND BEHAVIOR OF x(q) IN ORDERED ALLOYS.
THE FUNCTION N(n)

Figure 4 shows the curves x(q), calculated for the
aloys CusAu, CuAuand AusCuinthedirection F'—X on
itsinitial section. On the whole, they are similar to the
corresponding curve for Cu (Fig. 4a), but they differ
from it by the absence of an initial horizontal plateau
and the appearance of additional kinks (in the case of
CuAu and AusCu). The kinks are much less pro-
nounced than in pure metals.

To understand these results we shall examine how
the spectrum ¢, (k) transforms on switching from an fcc
lattice to the structures L1, and L1, It is evident from
Fig. 5 that in pure copper (and disordered aloys) the
electronic term is four-fold degenerate at the point M.
Such a high degree of degeneracy is due, of course, to
the artificial representation of the electronic spectrum
of the fcc metal in the Brillouin zone of the structure
L1,. In true superstructures L1,, the term under study
splits, as should happen, into a doubly degenerate level

My and singlet levels M; and M. Significantly, therel-
ative arrangement of the split levels can be arbitrary.
This is easy to show, using the four-wave approxima-
tion of the pseudopotential method [27]. In this approx-
imation the values of the terms M5, M;, and M5 can be
found explicitly; they areequal to T—Avyy0, T+ AV +
20V, aNd T + AV — 20V, respectively, where Tis
the kinetic energy in the “empty” lattice, and Av,,, and
Av,y, are the differences of the pseudopotentials of the
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Fig. 4. Electronic polarizability x(q) [electrons/(Ry - cell)] and its partial contributions to (a) CuzAu, (b) CuAu, and (c) AuzCuin

the direction M'-X([1000. The dashed curve in Fig. 4a corresponds to pure copper.
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Fig. 6. Fragments of sections of the Fermi surfacein (a, b)
AuzCu and (c, d) CuAu in the planes z = 0 (g, c—on an
enlarged scale) and x = 0.5 - 217a (b, d).

components at the superstructural sites of thereciprocal
lattice (21va)[110] and (217a)[100]. Sincethe signsand
absolute values of the form factors Avy;o and Av, g can
be arbitrary, the relative arrangement of the levelsisnot

completely determined. For example, the level My in

Au;Cu lies above the other two levels, while in CusAu
it lies below them.

On switching from an fcc lattice to the superstruc-
ture L1, (with four atoms per unit cell), the flat sections
of the Fermi surface are close to the points M and R of
the new (tetragonal) Brillouin zone. The dispersion
curves €,(k) = g¢ near these points are presented in Fig. 5.
It isevident from thefigure that at each point theinitial
four-fold degenerate term (characteristic for an fcc
solution) splits in a manner so that two doubly degen-
erate levelsarise. Here, at the point M, in contrast to the
case of the superstructure L1,, the levels M, and M; are
“stuck to one another”: now the matrix elements Avy,o
and Av,y (but not Avyy,!) are zero, and the terms

mentioned above My, M;, and M; acquire the values
T—AVy, T+ AV, @and T + Avy,g, respectively.

In the alloy CusAu, near the point M, there exists
only one electronic section of the Fermi surface, corre-
sponding to the 23rd band. The kink in the polarizabil-
ity at g = Q = 0.06(2rva)[100] (it corresponds to the
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half-period N = 8.3) is associated with the diameter of
this section or 23-23 transitions. In AusCu, in contrast
to CusAu, two electronic sections (23rd and 24th
bands) are realized near the point M, so that the total
electronic polarizability of this alloy is determined by
transitions occurring with the participation of these two
bands. Only the interband transitions 23-24 and 24-23
are responsible for the kink in the function x(q) at q =
Q; = 0.065(217a)[100] (N, = 7.7) (Fig. 4c). The kink is
also seen in the partial contribution of 24-24 with a very
small vector Q, = 0.0275(21va)[100] (seeinset in Fig. 4c):
thisfeature, whichis essentialy not manifested in the total
electronic polarizability, will be discussed below.

In CuAu one kink in the curve x(q) at g = Q; =
0.105(21va)[ 100] is dueto an interband nesting (transi-
tions 23-24 and 24-23) near the point M (Figs. 6¢, 6d);
it corresponds to the long-period superstructure with
N, =4.8. The second kink at q = Q, = 0.065(217a)[ 100]
isdueto theintraband transitions 23-23 near the points
M and R; it corresponds to a superstructure with aver-
age haf-period N, = 7.7. Thus, for an alloy with the
equivalent composition the calculations predict two
different possiblevaluesof N: 4.8and 7.7. Only thefirst
of these two possibilities is realized: the experimental
valuesof N inthisalloy arecloseto 5[1, 4, 11-13]. In
this connection, in what follows, to construct the qual-
itative dependences N(n) in CuAu we shall proceed
from the fact that N(n = 1) = 4.8.

Enough data has now be obtained to judge the
dependence of the antiphase domain N on the degree of
long-range order n. In completely ordered dloys (n = 1)
we have N = 8.3 (Cu;Au), N=4.8 (CuAu),andN=7.7
(AuzCu). In disordered alloys (n = 0) the quantity N can
be easily estimated on the basis of the values found
above for pure Cu (6.25) and Au (6.67) and using Veg-
ard’s law. Having the “reference points’ N(n = 1) and
N(n = 0) and assuming the functions N(n) to be linear,
we shall construct the latter for each alloy. It is evident
from Fig. 7 that the theoretical curves N(n) agree well
with the experimental curves, not only qualitatively but
also quantitatively. It isinteresting that the theory inthe
case of CuAu predicts the “anomalous’ behavior of
N(n)—adecrease of the size N of the antiphase domain
with increasing n. Unfortunately, we know of no exper-
imental measurements of the function N(n) in this
aloy.

5. NATURE OF THE TWO-DIMENSIONAL
LONG-PERIOD SUPERSTRUCTURE
IN THE ALLOY AusCu

In this aloy, as we have aready mentioned, two-
dimensional long-period superstructures with substan-
tially different periods 2N, and 2N, along two mutually
orthogonal directions (N; =7.2and N, = 17-19[4]) are
realized. In the discussion above we associated one of the
periods with the feature in the susceptibility at q = Q, =
0.065(21a)[100]. The superperiod N, = 17|Q,| = 7.7 cor-
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responding to this feature correlates well with the
experimental value N; = 7.2 [4]. The second period
must be associated with the feature of the partial contri-
bution of 24-24 at q = Q, = 0.0275(21a)[100]: N, ~
17|Q,| = 18, which agrees very well with the second
observed value N, = 17-19 [4]. We shall verify that the
vectors Q, and Q. do indeed separate sections of the
Fermi surface which have the same shape, i.e., they cor-
respond to the positions of Kohn anomalies.

In AusCu, as we have underscored (Figs. 6a, 6b),
two electronic sections of the Fermi surface (23rd and
24th bands), genetically related with the splitting of the
level M at atransitionin the k point of the general posi-
tion, arise near the point M; . Inthe section z=0 (Fig. 6a)
they have the shape of acrossand acircle of very small
radius, respectively, and in the section x = 0.5 they have
the shape of thin rectilinear strips, strongly elongated
along the line M-R and centered on it (Fig. 6b); the lat-
ter fact is partially dueto the circumstance that the level

M; does not split on theline M—Ritself. On the whole,

the el ectronic section of the 24th band isathin cylindri-
cal rod, which coincides with itself under atranslation
by a small vector Q, = 0.0275(2rva)[100] (Figs. 6a,
6b). Thisiswhy the electronic polarization (due only to
24-24 transitions) at the point Q, undergoes a charac-
teristic kink (seeinset in Fig. 4c). The rod under study
also fits well with the electronic section of the 23rd
band when the rod is transported by the vector Q; =
0.065(21va)[100]; this gives rise to a kink, studied
above, in the dependence x(q) at this wave vector.

Thefollowing simple mechanism leading to the for-
mation of two-dimensional long-period superstructures
follows from what we have said above. Each of the two
systems of coinciding sections of the Fermi surface
induces the formation of its superperiod along one of
two mutually orthogonal directions. If, for example, the
coinciding sections, separated by the vector Q,, induce
aperiod along [100], then the sections corresponding to
the vector Q, induce a period along the orthogonal
direction ([010] or [001]).

As shown in our recent work [30], these same argu-
ments explain the formation of two-dimensional long-
period superstructures in the alloy CugPd also.

6. DISCUSSION

As one can see from the preceding sections, “short”
ordering results in splitting and deformations of the
electronic states that determine nesting on the Fermi
surface (and, therefore, the stability of the long-period
superstructures). Significantly, such “renormalization”
of the spectrum ¢, (k) is of a different character for the
compositions CuzAu, CuAu, and AusCu; thisgivesrise
to the specific nature of the superstructures in each of
these alloys.
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N

Fig. 7. Size N of an antiphase domain as a function of the
degree n of long-range order in the aloys Cu-Au: theory
(solid lines) and experiment [4] (dashed lines).

In the ordered alloy CusAu, just as in a disordered
state, only a single pair of coinciding sections, sepa
rated by the nesting vector Q ||[100], arises. A different
situation occurs in the alloys CuAu and AusCu, where
two pairs of such sections, corresponding to the vectors
Q, and Q,, arerealized in this direction. In Au,;Cu, the
latter circumstance leadsto a very nontrivia result: the
formation of a two-dimensional long-period super-
structure with substantially different periods N, and N,
along perpendicular directions. It isinteresting that in the
experiments atwo-dimensional superstructureisformed
only with very prolonged annealing, which puts the sys-
tem into complete thermodynamic equilibrium [4]. In
the absence of complete equilibrium in Au,Cu, just as
in alloys with other compositions, a one-dimensional
long-period superstructure arises.

In this case, only one of two pairs of coinciding sec-
tions, corresponding to along period N,, is “actuated”
in AusCu. Conversely, in CuAu only a pair correspond-
ing to the smaller period N; is realized. This explains
why the periods of the superstructures in these two
alloys are substantially different. Hence there also fol-
lows the conclusion that in these alloys the dependence
N(n) should be inverse: the quantity N should increase
with n in AusCu and decrease in CuAu. Indeed, to the
extent of the ordering, the splitting of the electronic
spectrum at the point M of the Brillouin zone increases
and the value of N(n) should deviate increasingly from
theinitial value N(n = 0) (Fig. 7).

The different character of the splitting of €, (k) near
the point M on switching from one alloy to another also
explains the quite strong dependence of the half-period
N on the composition x. Let us assume that as the com-
position varies continuously, we move from the alloy
CuAu to AusCu. Then a transition should occur from
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the “branch” with the shorter half-period (N,) in CuAu
tothe“branch” with thelong half-period (N,) in AusCu.
It is obvious that such “boundary conditions’ will give
not only a strong dependence of N on x, but a so, possi-
bly, a nonlinear dependence.

On account of the splitting examined above and the
deformation of the “critical” electronic states, the “qual-
ity” of nesting decreases when we switch from pure met-
als (disordered alloys) to the superstructures L1,. It is
evident from Figs. 1 and 4athat in pure metals and gold
the polarizability has a more pronounced feature (step)
than in ordered alloys. Hence follows the following
unexpected conclusion: at a definite stage short-period
ordering can begin to destabilize the long-period super-
structure. This circumstance is fundamental for explain-
ing why inthe aloys studied long-period superstructures
exist only in asmall temperature range, becoming ener-
getically unfavorable compared with ordinary super-
structures (L1, and L1,) at sufficiently low tempera-
tures.

The behavior of the electronic polarizability in pure
metals, Cu and Au (and disordered solutions Cu-Au),
near the point Xisdifferent from that in the calculations
in [14]: a step with an extended horizontal plateau
arises instead of a peak. This means, essentially, that
the appearance of the long-period superstructures can-
not be explained on the basis of an analysis of the
potential V(q) or the Fourier transform of the pair
potential Va(r) + Vgg(r) — 2V,g(r), calculated in sec-
ond-order perturbation theory with respect to the elec-
tronion interaction. Indeed, such an explanation pre-
supposes [14] that the minimum of the potential V(q),
proportional to the polarizability, shifts from the Lif-
shits point k, precisely as a result of the peak in the
dependence x(q). In reality, however, there are no such
peaks on the curve x(q), and the reasons for the appear-
ance of long-period superstructures must be sought out-
side the perturbation theory and pair interatomic inter-
action approximation.

Thisresult agrees with the results of [17, 18], where
asimple, exactly solvable model (Kronig—Penney type)
was solved. It was shown there that stabilization of the
long-period superstructures is possible not only in sys-
tems with flat or cylindrical sections of the Fermi sur-
face but also with ellipsoidal sections, leading to arel-
atively weak (logarithmic) singularity in x(q). Of
course, flat, nearly cylidnrical, sections of the Fermi
surface also promote the appearance of long-period
superstructures in the alloys studied.

The cylindrical sections of the Fermi surface lead only
to a square-root singularity in the dependence x(q) U

+./|0 -2k, and therefore they cannot be a source of
strong Kohn anomalies in the phonon spectrum. Thisis
actually observed. Inelastic neutron scattering experi-
ments [31, 32] in disordered aloys based on copper
Cug Al 16 @nd Cug 715Pdg g5 did not show any appre-
ciable Kohn anomalies. Even in pure copper at low

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

VELIKOKHATNYI et al.

temperatures (i.e., under conditions when “aloy” and
temperature broadening of the Fermi surface are
absent) the Kohn anomalies at the phonon frequencies
are very weak: only a change in slope and not adip in
the dispersion curves w(k) is observed [28]. As far as
strong “ Kohn singularities’ in diffuse scattering of x-rays,
I(q), by the disordered alloys Cu—-Au, Cu-Al, Cu—Pd, and
others[20, 33] are concerned, here, asKrivoglaz under-
scores in [20], a unique mechanism that intensifies the
effect is realized. This mechanism consists of the fol-
lowing. In these aloys, an extremely nonuniform short-
range order characterized by the presence of local
regions (microdomains) 10-20 A in size is formed.
These sizes are close to the periods N = 17|Ak] of the
future long-period superstructures and therefore they
giveriseto peaksin the intensity I(q) on the surfaces of
thereciprocal space, whereq or g + G coincidewith the
diameter 2k in the[110] direction. Theintensity 1(q) is
especialy high at the points of intersection of these sur-
faces, and this is what explains the appearance of the
“cross’ consisting of four Kohn spots near positions of
the type 21/a[110] (see[20, 33)).

In conclusion, we shall discuss the question of the
place of long-period structures among other quasicrys-
talline substances. Having an incommensurate period,
the superstructures studied above are undoubtedly sim-
ilar in some respects to ordinary incommensurate crys-
tals (systems with charge-density waves, helicoidal
magnetic structures, and so on). Thus, asthe concentra-
tion varies, they can undergo atransition into commen-
surate long-period superstructures, whose average
period can be expressed as a rational fraction m/n (m
and n are integers). For example, in the system Cu—Pd
such alock-in transition occurs as the Pd concentration
increases (at the point 21.3 at %Pd) [5]. As the compo-
sition varies above this point, the values of nv/n start to
vary in a discrete manner [5]: a “devil’s staircase” of
commensurate transitions arises.

Despite their well-known similarity to ordinary
incommensurate crystals [34-36], long-period super-
structures till fit poorly within the standard picture of the
behavior of incommensurate systems. In the first case, as
we have aready mentioned, they form asaresult of sharp
firg-order trangitions, immediately acquiring a domain
(soliton) character and bypassing the initia stage, corre-
sponding to their modulation by a single plane wave. As
temperature decreases, the density of the domain walls
changes very little; usually it increases slightly. On fur-
ther cooling, long-period superstructures undergo a
sharp first-order transition into Lifshits superstructures
L1, or L1, [4, 7]. In ordinary incommensurate struc-
tures, however, asiswell known [34, 35], a soliton lat-
tice evolves differently: the density of solitons decreases
rapidly with temperature and vanishes at point of the
lock-in transition (a second-order or nearly second-
order transition).

The fundamental difference between long-period
superstructures and ordinary incommensurate systems
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is that the average size 2N of domains in them cannot
assume arbitrary values, but rather it is fixed by the
diameters 2k of the initial Fermi surface. But this
relates them to quasicrystals, whose stability is based
essentially on the same factors: the “interaction” of the
Fermi surface with Bragg planes[37]. Asiswell known
[38], quasicrystals can be represented as a quasiperi-
odic packing of two (or more) unit cells with different
shapes. This packing is organized in amanner so that the
Fermi surface isin contact with a Brillouin pseudozone,
due to icosahedra symmetry of the quasicrystal [37].
It is easy to see that domains of different length in long-
period superstructures and different unit cellsin quasic-
rystals essentidly play the same role: by their specific
aternation they give the quasiperiod N ~ 1|2k | required
to lower the electronic energy. Thus, the long-period
superstructures studied here have a unique place among
quasicrystalline substances. they fall between incom-
mensurate systems and quasicrystals.
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Abstract—The critical dynamics of models of the real antiferromagnet Cr,O; is investigated by the Monte
Carlo method. The relaxation times of systems with N = 256, 500, 864, 2048, and 2916 spins are determined
using the autocorrelation functions formalism. The values of the dynamic critical index z are calculated based

on them. © 2000 MAIK “ Nauka/Interperiodica” .

The investigation of the dynamic critical properties
of spin systemsis one of the important problems of sta-
tistical physics. In the last few years, substantial
progress has been made in investigations and the under-
standing of static critical phenomena, whereas the
study of the critical dynamics by conventional methods
encounters great difficulties [1-4]. As aresult, the crit-
ical dynamics is at the present time being investigated
intensively by the methods of computational physics,
specifically, Monte Carlo methods [5-10]. In the last
few years, careful investigations of the critical dynam-
ics of the Ising model [5] and the classical Heisenberg
model [6] have been performed on a simple cubic lat-
tice with calculation of the dynamical critical exponent
z The values obtained for the dynamic critical expo-
nent z are close to 2 for both the Ising and Heisenberg
models. For the Ising model this value agrees with the
theoretically predicted values [1], but this cannot be
said of the Heisenberg model, since for isotropic fer-
romagnets (J mode [1]) the theory predicts the value
z=(d+2-n)/2= 2.5 (disthe dimension of the space,
n is Fisher's exponent).

On thislevel, thereis great interest in the investiga-
tion of the critical dynamics of antiferromagnets and
the degree to which it isinfluenced by weak relativistic
interactions (anisotropy) that perturb the initial behav-
ior.

In the present work we have made the first investi-
gation of the critical dynamics of models of a real
Heisenberg antiferromagnet Cr,O; with complicated
rhombohedral structure. The Hamiltonian of Cr,O5 can
be represented in the form [11-13]

H = —%ZJl(HiHj)—%;Jz(UkM)—Doz(Uf)za (1)
i j ] !

| =1,
where, according to the experimental data of [11], J;

and J, are the parameters of the interaction of each spin
with one nearest neighbor and three nearest neighbors,

respectively (J, = 0.45J,, J,<0, J,<0). Thevariousrel-
ativistic interactions were fixed by the effective single-
ion anisotropy D, > 0.

From our standpoint the following ratios between
the anisotropy D, and exchange J; need to be consid-
ered:

l. Do/|34| = 2.5 x 1074,
corresponding to real Cr,O5; samples, and
[1. Do/, = 2.5 x 1072,

characteristic for small magnetic systems with uniaxial
anisotropy and dimensions of several tens of ang-
stroms [14].

We call the first case model | and the second case |1.
All crystallographic, exchange, and other data employed
for modd | correspond to real Cr,O; samples. Inmodd 1,
avalue characteristic for small magnetic systems (parti-
cles) isused for the anisotropy constant D, since, despite
the presence of periodic boundary conditions, the sys-
tems modeled by the Monte Carlo method have finite
linear dimensions (L<< o, L [0 N¥3), and as aresult cer-
tain properties characteristic for small systems could be
manifested.

The calculations were performed by the Monte
Carlo method using the standard Metropolis algorithm,
for which systems with periodic boundary conditions
and N = 256, 500, 864, 2048, and 2916 spins, located
and interacting in astrict correspondence with the crys-
tallographic and exchange characteristics of rea Cr,0O4
crystals, were formed.

According to the dynamic finite-dimensional scal-

ing [6, 15], the relaxation time T in the critical region
scalesas

T(E, L t) = LF(E/L, t/LY), @)

where € isthe correlation length, and f(x, g) is the scal-
ing function. At the critical point the characteristic cor-
relation length is determined by the dimensionsL of the
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Fig. 1. Time dependences of the autocorrelation functions F for systems with different numbers of spinsN (model 11): N = (1) 256;
(2) 500; (3) 864; (4) 1372; (5) 2048; (6) 2916. Thetimet is measured in Monte Carlo steps and is normalized per spin.

system, and therefore the relaxation time is deter-
mined as

T0L? (©)]

for asymptotically large L. To determine z it is neces-
sary to find the relaxation times of the system with dif-
ferent values of L. For this, we employed the apparatus
of autocorrelation functions. The autocorrelation func-
tions

MOMOD-MOIMO)D 0
M (0)M (0)C— M (0)CIM (0)L]

where M(t) is the value of the order parameter at the
time t, were calculated for the order parameter of the
antiferromagnetism vector. The autocorrelation func-
tions for each system were followed until the value of
F(t) decreased to 0.1. The values obtained for F(t) were
approximated by the exponentia function F(t) =
Aexp(-t/Tt), from which the relaxation times T were
determined by a nonlinear leastsquares method.

After the equilibrium state was reached, a sequence
of configurations, where one configuration was sepa-
rated from another by atime greater than T for each sys-
tem, was generated in order to perform the averaging in
the expression (4). Thus, manner, successive configura-

F(t) =

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

tions were independent. For al systems, n = 30000
averages were made for each system with a necessary
minimum of 22000. After the system reached equilib-
rium, an additional section of aMarkov chain of length
5t was cut off. A series of checking experiments with
al control numbers increased by a factor of 2 was also
performed. A substantial improvement in the results
was not observed. Binder’'s cumulant method was used
to determine the critical temperatures of the systems
studied [16].

Figure 1 shows the characteristic dependences of
the autocorrelation functions F(t) for systems with dif-
ferent numbers of spins for model I1. Similar depen-
dences were also studied for model I. Using the values
of T determined using the schemeindicated above, dou-
ble-logarithmic dependences of the relaxation times T
on the linear dimensions L were constructed. Figure 2
illustrates such a dependence for model |. In thisfigure
the slope angle of the straight line determines the value
of the index z. The values obtained in this manner for
the dynamic critical index z are z = 2.54 + 0.08 for
model | and z=2.33 £ 0.08 for model I1. We note that
the value z = 2.54 + 0.08 disagrees with the theoretical
estimatesfor isotropic (z= d/2, G-modéd [1]) and aniso-
tropic (z = 2.0 [4]) antiferromagnets, but agrees well
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Fig. 2. Relaxation time T [Monte Carlo step/spin] versusthe
linear size of the system L (moddl |, z=2.54 + 0.08).

with the values predicted for isotropic ferromagnets
(z= 2.5, I-model [1]). Similarly, the quantity z=2.33 £
0.08 obtained for model 1l also differs substantially
from the theoretical estimates for antiferromagnets and
falls between the values predicted for isotropic ferro-
magnets (z = 2.5 [1]) and anisotropic magnets (z = 2,
A-model [1]). It isobviousthat such achangein zfrom
model | to model 11 is due to a substantial intensifica-
tion of the term describing the single-ion anisotropy.
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Abstract—The effect of aphase transition between structuresin alarge cluster with a pair interatomic interac-
tion on the thermodynamic parameters of the cluster isanalyzed. The statistical parameters of a cluster consist-
ing of 923 atoms are determined for an icosahedron and a face-centered cubic (fcc) structure. The specific heat
and entropy of this cluster are calculated in the case when the transition between the icosahedron and fcc struc-
tures has the greatest effect on these parameters, so that at zero temperature this cluster has the structure of an
icosahedron, and as the temperature increases to the melting point it assumes an fcc structure. Even with this,
the contribution of the excitations of the atomic configurations to the thermodynamic parameters of acluster is
small compared with the excitation of vibrationsin the cluster. The contribution of a configurational excitation
in the thermodynamic parameters of a cluster becomes substantial for the liquid state of clusters. © 2000 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

We are studying a phase trangition between structures
for a large cluster with a pair interatomic interaction,
where the interaction between nearest neighbors, i.e, a
short-range interaction, makes an appreciable contribu-
tion to the energy of the cluster. This transition influ-
ences the thermodynamic parameters of the cluster,
specifically, its specific heat and entropy. Finding these
parameters is the subject of the present paper. It would
appear that the type of interaction under study, which
pertainsto systems of inert-gas atoms, isthe simplest of
the possible interactions. Nonetheless, it has its pecu-
liarities. At zero temperature the macroscopic system
of atoms under study forms a close-packed crystal lat-
tice, where each inner atom has twelve nearest neigh-
bors. The crystalline hexagonal and fcc lattices are
close-packed structures. For a Lennard-Jones inter-
atomic interaction potential a hexagonal lattice is more
advantageous [1, 2], while all solid inert gases (except
helium) have an fcc crystal lattice [2—4], though under
specia conditions the hexagonal structure of solid inert
gases is observed in thin films [5-7]. Competition
between these structures is possible in systems of cou-
pled atoms with a pair interaction. Clusters, which are
systems with afinite number of bound atoms, can aso
form an icosahedral structure [8], which is character-
ized by central symmetry and two types of distances
between nearest neighbors, differing by 5%. This struc-
ture is preferable for small clusters and competes with
the fcc structure right up to sizes of the order of athou-
sand atoms in a cluster [9-14]. Thus, despite its sim-
plicity, the character of the interaction under study per-
mits systems of bound atoms to exist in various forms.

We note that a cluster with a pair interaction
between the atoms is a convenient object for computer
simulation, which has shown that melting of clustersis
fundamentally different from the melting of macro-
scopic systems of bound atoms [15-23]. In the first
place, in a macroscopic system a phase transition
between asolid and aliquid occurs at a certain temper-
ature, while for a cluster there exists a temperature
range where the solid and liquid phases coexist. In the
second place, computer simulation of melting of clus-
terswith closed shells makesit possibleto identify sev-
eral phase transitions corresponding to melting of indi-
vidual shells[22, 23]. Thus, a cluster is amore compli-
cated system than a macroscopic system of atoms, and
the featuresindicated above must be taken into account
when analyzing the properties of acluster.

Evidently, a phase transition influences the thermo-
dynamic properties of acluster. Thisisinvestigated in
the present paper. The greatest effect is observed when
a cluster possesses one structure at zero temperature,
while heating changesthe structure, i.e., different struc-
tures correspond to zero and nonzero temperatures of a
cluster. In what follows, we shall examine such a case
for a cluster containing 923 atoms, so that the icosahe-
dral structure of this cluster is characterized by closed
shells, while the fcc structure is characterized by open
shells. Let the ground state of this cluster correspond to
the structure of an icosahedron and the excitation
energy of the fcc structure be relatively small. The
energy gap between the structures can be controlled by
varying the parameter in the interatomic interaction
potential, specifically, the Morse parameter for aMorse
potential [24, 25]. The ground state for an fcc structure
of acluster ischaracterized by alarge statistical weight,
since the last shell of a cluster is unfilled. For this rea-
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son, if the energy gap between the structures is small,
heating the cluster makes the fcc structure thermody-
namically favorable, i.e., heating changes the structure
of the cluster. This affects the thermodynamic parame-
ters of acluster, and in what follows we shall calculate
the specific heat and entropy of asolid cluster asafunc-
tion of the temperature and energy gap between the
icosahedral and fcc structures. These quantities corre-
spond to a configurational excitation of a cluster. The
role of transitions between structures in the thermody-
namics of acluster can be determined by comparing the
values of these quantities with the corresponding values
dueto vibrational excitation of acluster. Thisistheaim
of the present paper.

2. STATISTICAL PARAMETERS
OF AN EXCITED SOLID CLUSTER

To determine the statistical and thermodynamic
parameters of asolid cluster consisting of atomswith a
pair interaction, we shall divide the energy of a cluster
into three parts [26]: the first part is determined by the
interaction between nearest neighbors, the second part
is determined by the interaction between atoms which
are not nearest neighbors, and the third part refersto the
stress energy. We shall consider the case where the
interaction between the nearest neighbors makes an
appreciable or the main contribution to the energy of a
cluster. Thisisacommon case, specifically, the popular
Lennard—Jones interaction potential pertains to this
case. Under these conditions, to afirst approximation,
we construct a cluster on the basis of a short-range
interaction of atoms, so that the state of the cluster is
characterized by the number of bonds between nearest
neighbors. In the second approximation we include in
the analysistheinteraction of nonnearest neighborsand
the stress energy in a cluster, which is related with the
displacement of the equilibrium distances between
nearest neighbors as a result of a long-range interaction.
This scheme is convenient for analyzing the competition
between fcc and icosahedrd structures [24, 25]. In this
scheme, the long-range interaction of atoms is impor-
tant for the competition between structures, since the
number of bonds between the nearest neighbors for
these structures is close. Conversely, the long-range
interaction is not important for the excitation of a clus-
ter. Indeed, the excitations considered are related with
a change in the positions of one or several atoms, so
that the long-range interaction in acluster changeslittle
with such transitions, and the excitation can be charac-
terized by the change in the number of bonds between
the nearest neighbors.

Thus, in the present scheme the excitation of aclus-
ter is characterized by the number of broken bonds
between the nearest neighbors, i.e, the excitation
energy, measured from the energy of the ground state of
acluster with a given structure, is expressed in units of
the energy required to break one bond and is an integer.
The statistical weight g; of the excited state of a cluster
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with agiven structure is equal to the number of config-
urations of atoms in the cluster that correspond to the
number i of broken bonds with respect to the ground
state of this structure. As one can see, in this case we
assume that the vibrational and configurational excita-
tions separate, since the configurational excitation is
relatively weak.

We shall determine the statistical parameters of our
cluster with an icosahedral structure. A cluster consist-
ing of 923 atoms possesses filled shells. It is character-
ized by 2172 bonds between nearest neighbors, belong-
ing to neighboring layers, and 2730 bonds between
nearest neighbors in the same layer [15]. This cluster
has 561 inner atoms, and the surface layer of this cluster
includes 12 vertex atoms, 150 edge atoms, and 200 atoms
insde surface triangles. Each vertex atom possesses Six
nearest neighbors, each edge atom possesses seven
nearest neighbors, and each atom on the inner surface
of a cluster possesses nine nearest neighbors. If a new
atom is placed on the surface of this cluster in a cavity
between the surface atoms, the atom will have three
nearest neighbors. There are 720 such positions, which
is equal to the number of triangles that can be formed
from the surface atoms.

The excitation of the configurations of atoms in a
cluster corresponds to transferring surface atoms into
the centers of the surface triangles. In what follows,
transitions with the participation of a small humber of
atoms, which determine the thermodynamic parame-
tersof acluster at low temperatures, will be considered.
The minimum excitation energy of our cluster with an
icosahedral structureis/Ae = 3 and correspondsto trans-
ferring a vertex atom to the surface of the cluster. The
statistical weight for such an excitationisg; =12 x 715 =
8580 and is much greater than the statistical weight for
the ground state g, = 1. We shall take account of the fact
that five positions on the surface of a cluster lie next to
the vertex atom undergoing a transition, and in what
follows we shall neglect this compared with the total
number of surface cavities. Further, the excitation
energy Ae = 4 of acluster correspondsto atransition of
one edge atom, and A€ = 6 correspondsto the excitation
of one surface atom or two vertex atoms. We have

g, = 150 % 720 = 1.08 x 10°,

12x 11 _ 720°
Os = Ty X5 *200%720 = 1.7x10".

Thus, the partial statistical weight for the excitation of
v atoms from vertices, e atomsfrom edges, and satoms
from the surfaceis

150°200°720"

g = CXZC(iSOC;wC;ZO = CIz??T’ D
wherek = v + e + sisthe tota number of excited atoms
and the energy of this excitation is g; = 3v + 4e + 6s.
This formula is valid for a small number k of excited

No. 3 2000



STRUCTURAL PHASE TRANSITION IN A LARGE CLUSTER

atoms. We shall neglect the following circumstances.
First, the displaced atoms cannot occupy a vertex of a
surface triangle in which one of the vertex atoms has
been removed. Second, two displaced atoms cannot be
placed at the center of neighboring triangles, since the

distance between these centersis a/./3, where a is the
distance between the nearest neighbors. Third, we
neglect the possible bonds between the displaced
atoms, since the number of such atoms is relatively
small. Thus, the expression (1) isvalid for weak excita-
tions and makes it possible to determine the statistical
properties of acluster at low temperatures. The statisti-
cal weights of thefirst few excitations of our cluster are
presented in Table 1.

We note that if the excitation corresponds to a tran-
sition of several atoms, the excitation of edge atoms
makes the main contribution to the statistical weight of
the cluster. For example, the statistical weight for the
excitation Ae = 12 is ¢' = 3.5 x 10'3 for edge atoms,
g" =5.2 x 10° for surface atoms, and g"" = 5.5 x 10** for
vertex atoms.

The method for analyzing clusters with a Morse
interatomic interaction potential [24, 25] makes it pos-
sible to determine the statistical weight of the lower
states of a solid cluster consisting of 923 atoms and
possessing an fcc structure. The optimal figure for a
cluster with fcc structure is aregular truncated octahe-
dron, whose surface includes eight hexagons and six
squares [27]. We shall present the ground state of a
cluster with an fcc structure consisting of 923 atoms.
The basisfor it is a cluster-octahedron with filled shells,
which consists of 891 atoms and has 4620 bonds
between nearest neighbors. Its surface consists of eight
regular triangles, and each of the 12 edges contains
11 atoms (including vertex atoms). Cutting off six pyra
mids near each vertex, we obtain atruncated regular octa-
hedron, containing 861 atoms with 4476 bonds between
nearest neighbors [28]. Each of the removed pyramids
contains five atoms and possesses edges consisting of
two atoms. The surface of the cluster formed consists of
eight irregular hexagons and six sguares, containing
nine atoms each. Thelong edge of the hexagon contains
seven atoms (including vertex atoms). Using the stan-
dard designations [5], the squares have {100} direc-
tions, and the hexagons have { 111} directions.

Growth of a given cluster occurs by filling of its
faces with direction {111}. A new layer on one face
contains 46 atoms and increases the number of bonds
between the nearest neighbors by 252. To construct a
cluster consisting of n=923 atoms, we start with aclus-
ter consisting of 926 atoms, which contains anew layer
on one face, and the other face contains aregular hexa-
gon consisting of 19 atoms. This configuration of the
surface atoms is shown in Fig. 1. The addition of a
hexagon consisting of 19 atoms increases the number
of bonds between the nearest neighbors by 99. Thus, an
fcc cluster consisting of 926 atoms possesses in the
ground state 4827 bonds between nearest neighbors. To
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Table 1. Statistical weight of the excited states of a cluster
with 923 atoms and an icosahedral structure

& Oi & Gi & Oi

0 1 6 | 1.7x10" || 10 | 3.9x10°
3 | 86x10° 7 | 93x108 || 11 | 8.4 x10%
4 | 11x10° 8 | 52x10° | 12 | 40x 108

find the statistical weight of this state, we note that the
faces which we are considering can befilled in 7 x 8 =
56 ways. Further, a regular hexagon can be placed on
the surface of aface in 10 different ways, which gives
astatistical weight g =560 for the ground state of anfcc
cluster containing 926 atoms.

To cornvert this cluster into a cluster consisting of
923 atoms, three atoms must be removed from it. This
operation can be performed with both filled and par-
tidly filled faces. As aresult, 17 bonds between nearest
neighbors will be logt, i.e., 4810 bonds correspond to
the ground state of an fcc cluster containing 923 atoms.
The statistical weight of thiscluster isequal to the prod-
uct of the number of operations required to form aclus-
ter consisting of 926 atoms by the number of operations
to remove three atoms from it:

Op = 8x7%x(3x10+3x10+3x13) = 5544. (2)

The first term in parentheses corresponds to the
removal of three atoms from the filled face, the second
term corresponds to the removal of the top edge or two
bottom side edges of a regular hexagon of the face
being filled, and the third term describes the removal of
the bottom edge or two top side edges of aregular hexa-
gon. As one can see, the statistical weight of an fcc
cluster is much greater than for an icosahedral cluster
with filled shells.

We shall now formulate the general properties of the
our cluster on the basis of our approach. The total num-
ber of bonds between nearest neighbors in the case of

Fig. 1. Filling of the{ 111} faces of acluster of an fcc struc-
ture, containing 926 atoms, in the ground state. The posi-
tions of the atoms on thefilled layers areindicated by filled
circles, and the positions of the atoms on the layers being
filled are marked by open squares. The number of bonds
between the nearest neighbors of a cluster is 4827 (for an
icosahedral cluster with n = 926 the number of bonds is
4914).
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Table 2. Statistical weights for the lower states of an fcc
cluster with 923 atoms

[ 9/9% [ 9/9

1 100 5 9.3 x 10°
2 500 6 1.4 x 107
3 8000 9 5.6 x 1010
4 1600 12 4.1 %1018

an fcc structure is 4810, while for a cluster with icosa-
hedral structure, where the distances between the near-
est neighbors are suboptimal, it is 4902. As a result of
the closeness of these quantities, the crossing of the
energy levels for different structures is determined by
the interaction of the non-nearest neighbors. Specifi-
cally, for aMorse interatomic interaction potential the
energies of clusters for our structures are identical for
the Morse parameter in the pair interaction potential
o =7.1[24, 25]. Thus, the cluster energy is determined
mainly by the interaction between the nearest neigh-
bors, but the competition between the structures and the
parameters of the crossing of the energy levels are sen-
sitive to the form of the interatomic interaction poten-
tial [10-15]. Specifically, the greater the contribution of
the interaction of non-nearest neighbors to the cluster
energy is, the larger the clusters for which crossing of
energies occurs for fcc and icosahedral structures.
However, in analyzing the lower excited states of a
cluster, the interaction of non-nearest neighbors can be
neglected, as was done above.

The statistical weight of the bottom excited states of
an fcc cluster containing 923 atoms can be found by the
same method as for the ground state. This method
becomes more complicated as the excitation increases
(Table 2 contains the values of the statistical weights of
acluster for g; < 6). For subsequent excitation of aclus-
ter, we obtain a statistical weight that is al the larger,
the larger the number of atomsthat move on its surface.
Specifically, for g, = 9 the transfer of three vertex atoms
on its surface, where there are 552 free positions, so
that the statistical weight of this excitationis

O DC§4C§5290 [15.6 x 1010901

makes the main contribution. Similarly, we find the sta-
tistical weight of the excitation when 12 bonds are bro-
ken. These results are included in Table 2, where the data
make it possible to determine the thermodynamic param-
eters of fce clusters up to temperatures T = 0.3-0.35.

The partial partition function Z; for a given excita-
tion energy ¢; and statistical weight g; of this excitation
and the total partition function Z can be calculated on
the basis of the parameters obtained:

Zi = giexp TD Z = ZZi. (3)
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Here and below we express the temperature T in energy
units. Introducing the separate partition functions Z,,
and Z;. for the icosahedral structure and the fcc struc-
ture, we have Z = Z,., + Z;.. Then the probahility n of
anicosahedral structure being realized followsfromthe
formula

Z
=77
ico fcc

We note that the partition function can be divided into
configurational and vibrational parts. Since we are
dealing with weak excitations, the vibrational part of
the partition function does not depend on the excitation
of configurations and can be separated from it. Corre-
spondingly, we shall analyze below only the configura-
tiona part of the partition function. The specific heat C
and S of a cluster which correspond to the configura-
tional excitations are

(4)

OEerc

_ _ 0 0
€= T GT%Z siZE

27 _ E? £ ?
zl ! %Z D} B T__D_IE

'EI': nZZ +TZZsZ (6)

Here E,. is the configurational excitation energy of a

()

N

cluster, and E and E* arethe average and mean-square
values of the excitation energy of acluster. At low pres-
suresthe difference between the specific heats of aclus-
ter at constant pressure and volume is relatively small,
so that we shall assume that they are the same and
denotethem by C. The energiese; of the configurational
excitation and temperature of acluster can be expressed
in reduced units, i.e., in terms of the energies required
to break one bond.

3. STRUCTURAL TRANSITIONS
AND THERMODYNAMIC PARAMETERS
OF A SOLID CLUSTER

We shall use the general formulas presented above
to determine the thermodynamic parameters of our
cluster. The ground state of the cluster possesses an
icosahedral structure and is separated from the ground
state of the fcc structure by an energy gap, which we
denote as A. The excited states contribute to the parti-
tion function, starting at the temperatures T = 0.2, and
the statistical weights presented in Tables 1 and 2 make
it possible to determine the thermodynamic parame-
ters of acluster up to T = 0.3-0.35, while the melting
temperature is T,,, = 0.44 [29] for a cluster containing
n =923 atoms. A phase transition between icosahedral
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and fcc structuresispossibleif the cluster in the ground
state possesses an icosahedral structure and the energy
gap A is small. We note that the energy gap can be reg-
ulated by varying the parameter of the interatomic
interaction potential, specifically, for the Morse poten-
tial the gap is zero for a cluster when the Morse param-
eter a =7.1[24, 25].

We shall now determine the temperature T,, of a
trangition between structures using the rdation Zi,(T,,) =
Z(T,), and for A ~ 1, when atransition occurs at low
temperatures, we have T,, = Allng, = 0.116A, where the
statistical weight g, of the ground for the fcc structure
is determined by equation (2). A structural transition
leads to resonance in the specific heat of a cluster, and
its maximum value is C,, = (Ingy/2)? = 19. But this
valueissmall compared with the specific heat of aclus-
ter due to the vibrations of the atoms, specifically,
according to the Dulong—Petit formul a, the latter isC =
3n = 3000 (n is the number of atomsin a cluster). The
relative width of a resonance in the temperature depen-
dence of the specific heat of a cluster is smal, and for
smal Aitis

AT = 20 = ZU = 0237, ©)

i.e., thisresonanceis not sharp.

For astructural transition it is convenient to separate
in equation (5) the terms referring to the icosahedral
and fcc structures. We have

Z Z
C = IZCOCic0+ écccfcc
®
Z 7
+T%—'°;2f°°m—s?c—m2.

Here Z,., and Z are the partition functions for the cor-
responding structure of acluster, Z = Z,., + Z., Ci,, and
C; are the specific heats for each structure of the clus-

ter in the absence of the other structure, and €., and

€. are the average energies of the configurational

excitation for a given structure, if zero energy corre-
sponds to the ground state of this structure. Figure 2
shows the temperature dependence of the specific heat
of a cluster for different values of the energy gap A
between the ground states of the icosahedral and fcc
structures. The resonance character of these curves is
due to the effect of a structural phase transition on the
specific heat of a cluster. Figure 3 displays the caloric
curvesfor the states of the cluster under study. We note
that a change in the energy gap shifts the energy of the
fcc structure, and near the melting temperature of a
cluster the contributions of the icosahedral and fcc
structures to the excitation energy of a cluster from the
ground state of the given structure are comparable.
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Fig. 2. Temperature dependences of the specific heat of a
solid cluster consisting of n = 923 atoms, which is associ-
ated with the configurational excitation, for the following
values of the energy gap width A between the ground states
of the icosahedral and fcc cluster: A = (1) 1, (2) 2, (3) 3,
and (4) 4.
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Fig. 3. Caloric curvesfor icosahedral and fcc structures of a
cluster with 923 atoms. The arrows on the curves indicate
the positions of a phase transition between the icosahedral
and fcc structures.

The expression (8) shows the character of the reso-
nance of the specific heat of a cluster that occurs when
both structures make the same contribution to the spe-

cific heat. Indeed, let us take in this expression €., <A

and €. < A, s0that the maximum correspondsto Z,., =
Zi. = Z/12. This gives for the maximum specific heat

1 A
Cmax = Z(Cico + Cfcc) + EQ_Tg’ (9)

where T is the temperature of the structural phase tran-
sition. In the limit of small A, when C,., = Ci. = 0 and
T =T, = Alng,, we have C,, = (Ingy2)? as was
obtained above.

Since the entropy, according to equation (6), is
determined by the excited configurations of the atoms
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Table 3. Entropy of acluster in the limit of small and large
widths of the energy gap between the icosahedral and fcc
structures of a cluster

T A—0 A—> o0
0.2 11.3 0.05
0.25 12.8 0.88
0.3 14.0 5.85
0.35 16.5 156

inacluster, itiszero at zero temperature, sincethe clus-
ter is in the ground state of the filled structure of an
icosahedron. A temperature increase and phase transi-
tion increase the entropy, which increases monotoni-
cally with increasing temperature and with decreasing
energy gap A between the ground states of the struc-
tures studied. This can be demonstrated in the limit of
small values of A, when the phase transition occurs at
low temperature in accordance with equation (7). In
this case, only the ground configurational states of
atoms for these structures determine the parameters of

acluster Z and E near the phase-transition temperature,
and the entropy in this temperature range is

S=In(1+ goe_m) + =

] (10)
d_S _ A_Z goe AT
T Ta+ge)
It follows from the last equation that dSdT >0, i.e,, the
entropy is a monotonic function of temperature. The
derivative of the entropy itself has a maximum at the
phase-transition point T,, = A/ln gy, where the derivative
is
A®  Ingy’

ds _
dT(Ttr) - 4_|_?r - AN .

(11)

This givesfor the entropy at the phase-transition points

NP S 5
ST,) = In2+2Ttr Inﬁ 4.0.

Far from a phase transition, where gyexp(-A/T) > 1,
the entropy is

(12)

A
S= Ingo—ﬁ.

Thus, inthe limit of small values of A and high temper-
atures, the entropy approaches the limit S=1ng, = 9.6.
This limit corresponds to the entropy of the ground
state of the fcc structure.

It is possible to determine the dependence of the
entropy of a cluster on the width A of the energy gap
between the structures. Then, in thelimit of small A the
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entropy is determined by the fcc structure of the cluster,
whileits statistical weight isrelatively large, and in the
limit of large A the entropy corresponds to the icosahe-
dra structure. The values of the entropy at different tem-
peratures for these limiting cases are given in Table 3.

L et us compare the contribution of excitations of the
configurations of atoms in a cluster and excitations of
vibrations of a cluster to the thermodynamic parame-
ters of asolid cluster. The contribution of excitations of
configurationsto the entropy isrelatively small. Specif-
icaly, inthe classical limit the entropy of a cluster due
to excitation of its vibrations is determined by the
expression [30]

_ T 40
S, = 3anﬁ—wD ~15 T > hay, (13)
where wy, is the Debye frequency and n is the number
of atoms in a cluster. For the cluster under study, this
formula gives S, ~ 1000, which is much greater than
the entropy due to the configurational excitation of a
cluster. For example, using the approximate method,
described above, for determining the partition function
for a cluster with an icosahedral structure, when only
transitions of atoms from an edge of this figure are
taken into account, we obtain for the configurational
part of the entropy at the melting temperature of the
cluster T,,= 0.44[29] the partition function Z = 165, spe-
cific heat C = 141, and entropy S = 32. These values
attest to a small contribution from configurational exci-
tation to the parameters, under study, of the solid cluster.

This conclusion isincorrect for melting of a cluster,
and we shall analyze it for condensed inert gases. The
liquid stete is characterized by the formation of voids
inside the system [31], and condensed inert gases can
be viewed as a macroscopic system of atoms with
short-rangeinteratomic interaction [32], i.e., when only
nearest neighborsinteract. Thismakesit possibleto use
the parameters presented above for condensed inert
gasesto analyzethe melting in asystem of bound atoms
with a short-range interaction. Specifically, in the units
employed, the melting energy per atom for condensed
inert gases is AH;,s = 0.98 [32], so that the change in
entropy on melting of acluster is

AE _ NAHy,s
T T

Here AE isthe changein theinternal energy of acluster
as a result of melting, T,, is the melting temperature,
and n = 923 isthe number of atomsin the cluster. It was
assumed that the specific energy of melting isthe same
for acluster and a macroscopic system. As one can see,
the entropy jump on melting of a cluster is comparable
to the entropy due to vibrations of atoms in a cluster.
Thus, the configurational part of the entropy is substan-
tial for theliquid state of a cluster and negligible for its
solid state. We note that the melting temperature for con-
densed inert gases T,,, = 0.58 [32] isgreater than the melt-

AS = = 2060. (14)
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ing temperaturefor our cluster T,,=0.44[29]. Therefore,
we shall employ the overestimated values for the spe-
cific melting energy of a cluster. The estimates made
and the conclusions drawn are nonetheless valid.

This conclusion also pertains to the specific heat of
acluster. Indeed, we shall employ the relation between
the partition functions for liquid (Z;,) and solid (Z,)
states

Zyq D AE
—_ = + A
ZsoI %

Assuming the internal energy E,;, of a cluster due to
excitation of the vibrations of the cluster to be a smooth
function of the temperature, we represent the total
internal energy of acluster in the form

E = Eip + AEW,,

where Wy, = Zjig/(Zs + Z;i) isthe probability of finding
acluster intheliquid state. Hence we obtain for the spe-
cific heat C = 0E/0T of acluster near aphase transition,
by analogy to equation (8),

(15)

C = CO+E§—TEDzexp[ a(T-T,)1,
(16)

_ OAE?

- Dhp2l

where the specific heat C, is related with the vibrations
of the cluster. For the cluster parameters employed, we
obtain for the maximum specific heat (C)ma = 1.1 x 10°
anda =5.5x 10K, i.e.,, thewidth AT of thetransition
regionis~10= K. Asonecan see, in thisregion the spe-
cific heat dueto the configurational excitation of aclus-
ter is two orders of magnitude greater than the contri-
bution due to vibrations in a cluster.

The fundamental difference between the excitation
of the configurations of a cluster at a structural phase
transition and accompanying melting liesin the charac-
ter of this excitation. In the case of a structural phase
transition, the configurational excitation correspondsto
achangein the positionsfor one or several atoms, while
all atoms participate in a vibrational excitation. On
melting the number of voids formed is comparable to
the number of atoms in acluster, so that this transition
is stronger and changes the thermodynamic parameters
of the cluster.

4. CONCLUSIONS

The method used for clusterswith apair interatomic
interaction, where the interaction between nearest
neighbors makes an appreciable contribution to the
energy of a cluster, makes it possible to determine the
thermodynamic parameters of a cluster taking account
of the phase transition between structures. The effect of
a phase transition is strongest for a cluster with 923
atoms, in which the shells are filled for the icosahedral
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structure and unfilled for the fcc structure, for two rea-
sons. First, the energy gap between the ground and first
excited states is larger in an icosahedral cluster with
filled shells than in an fcc cluster with an unfilled shell.
Second, the statistical weights for the ground and first
excited states of an fcc cluster are appreciably larger
than for an icosahedral cluster. On account of this dif-
ference between the structures, the phase transition is
reflected in the thermodynamic parameters of this clus-
ter much more strongly than for clusters with other
sizes. A phase transition between structures leads to a
resonant temperature dependence of the specific heat of
a cluster, and a phase transition between the solid and
liquid has a much stronger effect on the properties of
the cluster.

The contribution of a configurational excitation to
the specific heat and entropy of a solid cluster is small
compared with the contribution of the vibrations of the
atomsin acluster, even in the presence of aphase tran-
sition between the structures. For this reason, a config-
urational excitation has only a negligible effect on the
thermodynamic parameters of a solid cluster. Con-
versely, the configurational part of the excitation in the
liquid state of a cluster is has alarge effect.
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Electron Properties

M odification of the Domain Wall Structure and Generation
of Submicron Magnetic Formations by Local Optical Irradiation
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Abstract—Experimental and theoretical investigations are made of the generation of vertical Bloch linesin a
magnetic iron garnet film exposed to pulsed optical radiation. High-speed photography and anisotropic dark-
field microscopy are used to study characteristic features of the generation of Bloch lines and domain structure
relaxation processes after the local action of alaser pulse. Optimum optical irradiation parametersto ensurethe
controlled generation of Bloch lines are established. A theoretical model is devel oped which links the genera-
tion of Bloch linesto the migration of domain wallsinduced by local changesin the distribution of the degauss-
ing fields caused by a reduction in magnetization with temperature at the optical radiation focusing point. The
experimental results indicate that the controlled formation of magnetic structures smaller than or of the order
of 0.1 um by local optical irradiation is quite feasible. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The miniaturization of magnetic memory devices,
reductionin “bit size”, and increasein datastorage den-
sity have created a need to search for new physica
mechanisms and methods of writing and reading out
information in a magnetic medium and require a
detailed understanding of the magnetization behavior
on scales of the order of tens and hundreds of nanome-
ters[1]. Among the various approaches to the detection,
modification, and study of the magnetic structure of
matter on the submicron level, optical methods are of
particular interest. Thisis because of the interest shown
in fundamental aspects of the interaction of matter with
electromagnetic radiation and because of the practical
requirements for the development of new generations
of devices with opticad and thermomagnetic data
recording.

Inthis context new physical effects described for the
first timein[2], involving the generation and migration
of vertical Bloch linesin thedomainwall inaniron gar-
net film under the action of focused laser radiation are
of particular interest. The Bloch lines are stable mag-
netic vortices separating sections of the domain wall of
opposite polarity [3]. The characteristic sizes of these
vertical Bloch lines are tenths and hundredths of
micron.

The essence of these effects is that, as its energy
increases, the action of a single laser pulse (having a
duration of =10 ns and focused to the center of a stripe
domainin aregion around 3—4 um in diameter) induces
(1) the displacement of vertical Bloch lines in the
domain wall; (2) the generation of a pair of vertical
Bloch lines at walls initially free from these lines;

(3) an irreversible change in the shape of the domain
wall and the overall domain structure.

Unlike conventional thermomagnetic recording
technology (in which a magnetic domain is recorded
and its size is generally determined by the effective
diameter of the focused laser beam or an artificially cre-
ated potential relief [4, 5]), the effects observed in [2]
show that it is possibleto create astable structure inside
the domain wall (having dimensions of <0.1 um) asa
result of the action of alaser beam focused in aregion
of afew micron.

The present paper is a further development of [2]
and is devoted to determining the optical irradiation
parameters and refining the physical mechanism
responsible for the controlled formation of Bloch lines
and also gives a more detailed description of the origi-
nal experimental method developed for this purpose.

2. EXPERIMENTAL METHOD

We used a sample of iron garnet film grown on a
(111Horiented substrate having the composition
(BiTm);(FeGa)s0;,. The sample had the following
parameters. saturation magnetization 4riM, = 173 G,
collapse field Hy, = 126 Oe, period of equilibrium
stripe structure 8.5 pm, film thickness 7.5 um, and
quality factor Q = 3.8.

The experiment was carried out using acombination
of high-speed photography and polarized anisotropic
dark-field observation (PADO).

High-speed photography allows us to study the fast
dynamic transformations of the domain structures in
real time[6, 7]. In order to visualize the magnetization
structure, at fixed times after the beginning of a partic-
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Fig. 1. Schematic of experimental apparatus for high-speed photography and anisotropic dark-field illumination: (1, 14) LGI-21
pulsed nitrogen lasers; (2, 15) quartz lenses; (3, 16) quartz cells containing rhodamine and oxazine dyes, respectively; (4, 6) crystal
polarizers; (5, 17, 18) mirrors; (7, 19) focusing objectives; (8) sample; (9, 10) polarizing microscope; (11) image converter with
image intensifier; (12) video camerawith CCD matrix; (13) computer. The inset shows a schematic of one-sided dark-field illumi-
nation; (A) incident beam; (B) sample; (C) diffracted beam; (D) direct beam; (E) objective.

ular dynamic processinitiated by some external action,
the sample is illuminated by a short pulse of polarized
light. The duration of theilluminating pulseis selected
to be much shorter than the characteristic time of the
process being studied. The magnetooptic image thus
obtained isthe “instantaneous’ distribution of the mag-
netization perturbed by the external action. By varying
the time delay between the beginning of the action and
the illuminating pulse, we can study the evolution of
this perturbation.

In order to monitor the internal structure of the
domain wall and visualize the vertical Bloch lines
whose size lies below the spatial resolution limit of
standard “light-field” magnetooptic microscopy, we
used anisotropic dark-field observation. In this method
the illuminating beam in the microscope is incident on
the sample at a certain angle and bypasses the objec-
tive, while the image is only formed by light scattered
at the domain wall as aresult of magnetooptic diffrac-
tion and carries information on small-scale inhomoge-
neities of the magnetization (see inset to Fig. 1) [8, 9].
The plane of incidence of the light is perpendicular to
the plane of the domain wall. In this case the wall
resembles a light band against a dark background and
local changes in the brightness of the domain wall
image are treated as siteswhere vertical Bloch linesare
localized (see Fig. 2, the contrast of the image is
inverted, and the Bloch lines are indicated by arrows).

The apparatusis shown schematically in Fig. 1. The
source of optical radiation modifying the domain wall
structure is an LGI-21 nitrogen laser (1) having the
wavelength A = 337 nm and pulse duration T = 10 ns.
The laser radiation is focused by a quartz lens 2 into a
cell 3 containing a rhodamine 6G solution and is ree-
mitted at A = 540 nm. The instant of emission and its
intensity are monitored by an avalanche photodiode.
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The dye radiation is passed through a system of polar-
izers4, 6 and focused by an objective 7 having anumer-
ical aperture of 0.2 onto asample 8. The diameter of the
focused beam is around 4 um. The diameter of the
focused beam can be reduced or increased by placing
additional lenses ahead of the objective. The focused
beam is positioned on the sample by means of the pre-
cison movement mechanisms of the objective. The
light pulse reemitted by the dye and incident on the
sample (“writing” pulse) has a maximum energy
Wi, ox ~ 1078 J (with an instability of around 15%). The
amplitude (energy) of the light pulseis varied continu-
ously by changing the relative angular position of the
system of polarizers 4, 6 (see Fig. 1).

In order to visualize the structural changes in the
magnetization caused by the action of the writing laser
pulse 1, optical illumination is again used provided by
a second LGI-21 pulsed laser (14) whose radiation
(after wavelength conversion by the oxazine dye) is
split into two channels by a semitransmitting mirror 18
(see Fig. 1). One channdl is fed to the optic axis which
coincides the with the axis of the first LGI-21 laser and
isused for direct (light-field) illumination of the sample
and to record the domain structure in the geometry of
the magnetooptic Faraday effect. The radiation in the
second channel is directed onto the sample at an angle
in order to achieve one-sided dark-field illumination.
Thisarrangement of the optical system meansthat both
light-field and dark-field geometries can be used to
observe the same section of the sample and to visualize
magnetic structures on different spatial scales. By using
high-speed photography and changing the time delay
between the writing pulse and the illuminating pulse,
we can study the dynamic processes in the domain
structure and the change in the internal structure of the
domain wall.
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These domain structures are observed using apolar-
izing microscope 9, 10 and recorded using an image
converter 11 with an image intensifier and avideo cam-
era 12 with a CCD matrix connected to a computer 13.

Before the beginning of the experiment the sample
was demagnetized from the single-domain state in the
presence of astatic magnetic field (directed in the plane
of the magnetic film) to produce an equilibrium array of
stripe domains whose walls were free from vertical
Bloch lines.

The experiments were carried out as follows. The
video camera connected to the computer produced an
initial image of the domain walls on the monitor screen
obtained by one-sided dark-field illumination. A single
writing laser pulse of given energy was then generated
and the dynamic transformations in the domain struc-
ture or the internal structure of the domain wall were
then identified by means of light-field or dark-field
observations.

3. EXPERIMENTAL RESULTS

3.1 Influence of Optical Radiation Parameters
on the Generation of Bloch Lines

Under the experimental conditions [2] the genera-
tion of Bloch lines did not exhibit regular behavior. For
constant irradiation parameters, not every laser pulse
resulted in the formation of vertical Bloch lines. In the
present study we establish some dependences which
link the reproducibility of the results with the degree of
focusing of the optical radiation, the relative position of
the focusing region and the domain walls, and the
energy of the focused radiation.

3.1.1. Influence of the degree of focusing of opti-
cal radiation localized at the center of a stripe
domain on the probability of creating vertical Bloch
lines. The action of a4 um diameter laser beam having
apulse energy W = 0.2W,,,,, focused at the center of a
domain induces the generation of a pair of vertical
Bloch lines at wallsinitially free from these lines. Fig-
ure 2 showstypica dark-field images obtained after asin-
gle pulse (the beam focusing point isindicated by ). We
can seethat regions of modified contrast corresponding
to pairs of Bloch lines form at the walls. In terms of
their form in the one-sided dark field and the dynamic
response to the field pulsesin the plane of the magnetic
film and the biasfield, these lines are identical to those
generated in domain walls by the “traditional” method,
asaresult of the migration of thewalls at above-critical
velocity [3].

Convergence of the generated pairs (for example,
using field pulses directed in the plane of the magnetic
film along the wall) leads to their annihilation from
which it follows that the pairs are untwisted [3]. After a
single laser pulse a maximum of four vertica Bloch
lines are generated (two pairs). Their number and posi-
tion on the domain wall relative to the laser beam focus-
ing point cannot be predicted.
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Fig. 2. Typical images of Bloch lines generated in domain
walls after the action of awriting laser pulse. The O symbol
indicates the beam focusing site and the vertical Bloch lines
are indicated by arrows. The photographs were obtained in
aone-sided dark field and the contrast is inverted.

The probability of pairsof vertical Bloch linesbeing
created increases as the amplitude (energy) of the opti-
cal pulsesincreases, although above a certain level any
further increase in energy results in the formation of
magnetic film defects while the generation of lines
remainsirregular as before.

As the degree of focusing of the beam increases, or
the spot size decreasesto 2—2.5 um, the energy rangein
which vertical Bloch lines are generated but irrevers-
ible structural changes do not yet occur [2], is signifi-
cantly reduced. Defect formation is observed even at
comparatively low optical pulse energies (W < 0.2W,,...)
and no reproducible generation of vertical Bloch lines
can be achieved.

An increase in the diameter of the focused spot to
4.5-5 um leads to changesin the generation of vertical
Bloch lines. As the diameter increases, the light spot
begins to cover the adjacent domain walls and as a
result of the action of a single laser pulse Bloch lines
form predominantly at adjacent walls rather than at the
walls closest to the beam site (see Fig. 3d). In this
geometry the generation of vertical Bloch linesis aso
irregular and takes place with a probability of lessthan
one.

3.1.2. Influence of the position of the optical
beam relative to the domain walls on the generation
of vertical Bloch lines. Figure 4 shows a histogram of
the probability of vertical Bloch lines being generated
under the action of an optical pulse for various posi-
tions of the beam relative to the domain wall. The
movement of the beam is perpendicular to the domain
wall and the origin of the x axis on the figure corre-
sponds to the center of the domain wall. In these exper-
iments the diameter of the beam at the focusis around
3 um and the pulse power W= 0.2W,,.,. We can see that
Bloch lines are created when the center of the beam is
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Fig. 3. Generation of Bloch lines as aresult of the action of alaser beam focused in aregion 4.5 pm in diameter. The photographs
show: the initial image of the domain structure (), instantaneous dynamic configurations of the domain structure 100 ns (b) and
300 ns (c) after the application of awriting laser pulse, and the resulting pairs of vertical Bloch lines (d). The symbol [ indicates
the laser beam focusing site. Photographs (&) and (d) were obtained in a one-sided dark field with inverted contrast.

displaced by 1.5-2 um relative to the center of the
domain wall and in a certain position the probability of
generating vertical Bloch lines reaches one. This was
determined over 50-75 redlizations. Figure 51 shows
typical photographs illustrating the relative position of
the domain wall and the laser beam for the reliable gen-
eration of Bloch lines and aso the resultant pair of
these lines. Note that the laser beam is dightly dis-
placed from the center of the domain toward the
domain wall but does not cover it.

3.1.3. Influence of laser beam power on the gen-
eration of vertical Bloch lines. We considered the
probability of generating Bloch lines as a function of
the laser pulse power for a fixed position of the beam
near the point at which vertical Bloch lines are reliably
generated, which was determined above. At powers
W< 0.13W,,, We observe no change in the internal
structure of the wall. From W = 0.15W,,,,, we observe
some generation of Bloch linesand at W > 0.16W,;5
the generation probability increases substantially (see

L, m/s
12+
8_
4k 04
0.1 HO.I
0 | (| m - |
1.0 1.5 2.0 2.5 3.0~_%3.5
IS . R, pm \+

Fig. 4. Histogram showing the probability of Bloch line
generation and the domain wall velocity v at the kink for
various positions R of the center of the focused laser beam
relative to the domain wall. Laser pulse energy W =
0.2Wpax-
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histogramin Fig. 6). At the sametime, Fig. 6 showsthat
the generation probability is only exactly one for asin-
glevalue of W. Thisis because the line generation effect
depends strongly on the position of the beam relative to
the domain wall (Fig. 4 showsthat systematic displace-
ments of the beam center at intervals of approximately
0.15 um initially causes the line generation probability
to increase from 0.1 to 1 and then drop to 0.4). In these
experiments, the only possible method of continuously
varying the pulse energy involves changing the relative
angular position of the polarizers (see Fig. 1). Even
with the optical system carefully aligned, rotation of
the polarizer leads to unavoidable displacement of the
center of the focused beam on the sample and departure
from the optimum conditions for the generation of ver-
tical Bloch lines. For points on the histogram (Fig. 6)
with W> 0.16W,,,,, and a probability of line generation
less then one, systematic fine correction of the beam
position using precision positioners alows us to
observe the generation of aBloch line pair with a prob-
ability of one.

3.2. Dynamic Processes in the Domain Structure
and the Domain Wall after a Laser Pulse

The high-speed photographic method used in the
present study allows us to investigate in real time the
characteristics of Bloch line generation and the
dynamic processes taking placein the domain structure
and the domain wall after the action of alaser pulse.

Figure 5 shows typical series of photographs dem-
onstrating the processes in the domain wall and the
generation of a pair of vertical Bloch lines at this wall
asaresult of the action of alaser pulse under conditions
where these lines are generated with a probability of
one (the focused beam is displaced toward one of the
domain walls relative to the center of the domain, see
Section 3.1.2). Figures 5a-5f show “instantaneous’
domain structure configurations obtained using a direct
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Fig. 5. Instantaneous dynamic configurations of the domain structure at various times after the application of awriting laser pulse.
The symbol O shows the laser focusing point. The images were obtained: before the pulse (a, g), with delays of 100 ns (b, h),
300 ns(c, i), 700 ns(d, j), and 1000 ns (e, k) relative to the pulse application time, and after the end of the dynamic processes (f, I).
The Bloch lines are indicated by arrows. Photographs (a—f) were obtained using a direct light-field illumination geometry with
crossed polarizers while (g-1) were obtained using the dark field method (the image contrast is inverted).

light-field illumination geometry with crossed polariz-
ers. The photographs show that at the focusing point of
the optical pulse indicated by a cross, there is a dark
region and the domain wall nearest to the beam is dis-
placed, forming akink. (When the beam islocalized at
the center of the domain, a similar pattern is observed
with both walls deflected symmetrically, see [2].) The
kink grows for the first 200 ns after the action of the
laser pulse. It then relaxes slowly to theinitial state over
1500-2000 ns and at the same time the dark region dis-
appears. Photographs 5g-5l show the same section of
the sample and the same process observed by the dark-
field method which alows us to visuaize the Bloch
lines. Inthiscase, thekink inthe domain wall lookslike
a local change in the brightness of the wall image,
which makesit difficult to observe the exact siteand the
instant at which apair of Bloch linesisgenerated. How-
ever, Fig. 5 shows that the Bloch lines are displaced
from their postulated generation site (in the immediate
vicinity of the site of localization of the optical beam)
toward a steady-state position. On the photographs the
Bloch lines become noticeable at the edges of the
domain-wall kink approximately 300 ns after the appli-
cation of the laser pulse. The Bloch lines then continue
to migrate at gradually decreasing velocity and reach
their final position 15002000 ns after the action of the
writing pulse. At the initial stages of their motion, the
velocity of the Bloch linesis approximately 30 m/s.
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By recording the kink in the domain wall at various
times after the application of the laser pulse, we can
construct agraph of thewall displacement asafunction
of time and determine its velocity. Typical time depen-
dences of the domain wall displacement at the center of
the kink are plotted in Fig. 7. The graphs correspond to
beam focusing regimes at the center of the domain (1)
and near the domain wall (2). The curves clearly show
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Fig. 6. Histogram showing the probability of Bloch line
generation and the domain wall velocity v at the kink as a
function of laser pulse energy W for afixed position of the
beam relative to the domain wall.
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Fig. 7. Time dependence of thedomain wall displacement at
the center of the kink when the laser beam is focused at the
center of the domain (1) and near the domain wall (2) at
laser pulse energy W = 0.2W, o
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Fig. 8. Changein the domain wall propagation regime asthe
laser beam isgradually displaced perpendicular to thewalls.
The displacement of the beam is shown schematically in the
insets above the photographs. Dynamic images of the walls
were obtained by high-speed photography with an 80 ns
delay after the laser pulse.

sections of initia linear displacement of the wall, a
guasi-stable position, and finally slow relaxation to the
initial position. On comparing curves 1 and 2, we note
that when the beam isfocused near the domain wall, the
wall migrates further (being displaced over alarger dis-
tance) whereas the overall character of the wall motion
and its velocity at theinitial stage are the same in both
Cases.

Time dependences of the domain wall displacement
for various pul se energieswere used to plot curvesof its
velocity as a function of energy W. The velocity was
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determined at the initia linear section of the move-
ment. Figure 6 shows atypical dependence for the case
where the beam is localized near the wall. (When the
laser beam is positioned symmetrically relative to the
domain wall, its velocity graph is the same as that
shown in Fig. 6 to within measurement error). For a
given energy W we determined the wall velocity as a
function of the position of the focused spot relative to
the wall (see Fig. 4). The histogramsin Figs. 4 and 6
show the probabilities of the generation of vertica
Bloch lines corresponding to the experimental points.

Figure 4 showsthat depending on the localization of
the beam center relative to the domain wall, its velocity
has positive or negative values. This corresponds to dif-
ferent types of distortion of the particular wall after the
application of the laser pulse and a change in the direc-
tion of motion depending on the coordinate of the
focused beam. In this case the origin coincides with the
static position of thewall. Maotion of the domainwall to
the left (with the beam positioned to the right of the
wall) correspondsto apositive vel ocity while motion to
the left corresponds to negative velocity. The solid
curve in Fig. 4 obtained by a least-squares fit to an
approximately Gaussian function reflects the funda-
mental trends of the wall velocity. Figure 8 shows typ-
ica dynamic configurations of domain walls which
illustrate how their motion changes asthe laser beamis
gradually displaced perpendicular to the wall (the dis-
placement of the beam is shown schematicaly in the
insets above the photographs). Figure 8ashowsthe cen-
ter of the focused beam positioned exactly at the
domain wall which in this case is displaced negligibly.
As the beam moves to the right so that its center is
located in the domain and its edge covers the domain
wall, thewall isdisplaced, being “drawn” into the over-
heated region (Fig. 8b). In this case, the velocity of the
domainwall islow (Fig. 4, R=0.9-1.3 um). Assoon as
the left edge of the beam goes beyond the domain wall
(Fig. 8c), the direction of displacement of the wall
changes and the velocity reaches maximum values
(Fig. 4, R=1.5-2.0 um). Figure 8d shows the shape of
the kink in the domain walls when the laser beam is
approximately equidistant from the walls. In this case,
the domain wall velocity remains constant to within
measurement error (Fig. 4, R = 2.0-2.2 um). As the
focused spot is shifted further, the displacement of the
left wall decreases and changes sign (Figs. 8e and 8f).
The corresponding change in the wall velocity and the
reversd of itsdirectionisshowninFig. 4, R=25-3.5um.
Figure 8f shows a typica wave-shaped kink in the
domain wall which corresponds to the regime when the
edge of the laser beam only begins to cover the wall
region.

A study of the domain wall dynamics after the appli-
cation of aradiation pulse focused in regions of differ-
ent diameter (see Section 3.1.1) showsthat if the focus-
ing region begins to cover the domain walls, these are
drawn into the exposed region, as in Figs. 3b and 3c.
Figure 3 shows the motion of the next pair of domain
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walls toward the beam focusing region. As we have
already noted, in this experimental geometry vertical
Bloch lines may be generated not at the walls closest to
the focused beam but at neighboring ones (see Fig. 3).

4. DISCUSSION OF THE RESULTS

The illustrations shows that the local action of opti-
cal radiation on an iron garnet film leads to some dis-
placement of parts of the domain wall and (under cer-
tain conditions) results in the generation of Bloch lines
at these walls. According to the hypothesis put forward
in[2], themotion of thewallsis caused by thelocal per-
turbation of the degaussing field of the sample. The
dark area visible in Figs. 3b and 3c,. 5b-5f, and 8
occurs in a part of the sample with reduced Faraday
rotation caused by a local reduction in the saturation
magnetization of the film (and possibly a transition to
the paramagnetic phase) as aresult of the laser heating.
A local change in the magnetization during heating and
subsequent cooling significantly changes the distribu-
tion of the degaussing fields in this region, which
induces displacement of the nearest domain wall. A
graph of the domain wall displacement as a function of
time (Fig. 7) confirms the thermal hypothesis on the
nature of thismotion: theinitial stage of the motion cor-
responds to rapid heating of the magnetic film whichis
followed by cooling and spreading of the hot spot
accompanied by sow relaxation of the domain wall to
itsinitial position. Calculations of the domainwall con-
figuration of a stripe domain in the presence of acylin-
drical local nonmagnetic region showed good qualita-
tive agreement with the proposed physical model and
the experimental results (see below) [10].

The graphs plotted in Figs. 4 and 6 can be used to
analyze characteristic features of Bloch line generation
as a function of the nature of the domain wall motion
and its velocity. It can be seen that in al optical irradi-
ation regimes leading to the generation of Bloch lines,
this generation is associated with motion of domain
walls. In[2] Logginov et al. put forward the hypothesis
that the domain wall velocity after optical irradiation
may exceed the critical value at which, accordingto[3],
loops of horizontal Bloch lines are generated and bro-
ken to form a pair of vertica Bloch lines. In our
dynamic experiments, the domain wall velocity at
which vertical Bloch lines are created is 10-12 m/s.
Bearing in mind that the domain wall motion after |aser
irradiation takes place under variable temperature con-
ditions, this value completely correlates with the criti-
cal wall velocity of approximately 30 m/s measured for
agiven sample during domain wall motion in auniform
pulsed bias field at 20°C. Note that the reproducible
generation of Bloch lines not only requires domain wall
motion at a certain critical velocity but the diameter of
the focused laser beam and its position relative to the
domain wall must also be optimized. This may be
because in the hypothesis involving the breaking of
horizontal Bloch lines to create vertical ones [3] the
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formation of a horizontal Bloch line and its migration
from one surface of the magnetic film to the other occu-
pies afinite time. The measurements showed (see Fig. 7)
that when the beam isfocused near the domain wall, the
motion of the wall takes longer than when the beam is
positioned symmetrically. This may well be responsi-
blefor better reproducibility in the breaking of horizon-
tal Bloch lines and the generation of vertical ones.
There is also the possibility that thermostatic stresses
may be generated at the laser pulse irradiation site and
the elastic wave may influence the generation and
breaking of a horizontal Bloch line depending on the
distance between the domain wall and the center of the
laser focusing [11].

Observations of the generation of vertical Bloch
lines (Fig. 5) showed that a pair of Bloch lines may
migrate along the domain wall at a velocity of around
30 m/s (see Section 3.2) which istypical of the motion
of vertical Bloch lines under the influence of a field
applied in the plane of the sample [12]. The mechanism
for the motion of the vertical Bloch linesshown in Fig. 5
may resemble ballistic aftermotion accompanied by
dissipation of the energy stored in the horizontal Bloch
line.

Figure 5 a'so reveals a change in the dark-field con-
trast of the domain wall near its kink. According to a
model for the formation of the domain-wall image
under conditions of anisotropic dark-field illumination
[13], the change in the contrast of the wall may be
caused by a change in the angle between the plane of
the domain wall and the light incidence plane or by dis-
tortion of the wall profile over the sample thickness. In
the first case, the brightness of the image decreases
monotonically from a certain value |, to zero as the
angle between the light incidence plane and the plane
of the domain wall decreases from 90° to 0°, respec-
tively. As aresult of distortion of the vertical profile of
the wall, the brightness of its image may be higher or
lower than I, and changes substantially at short dis-
tances along the wall. The change in the contrast of the
dark-field image of the domain wall in Fig. 5 indicates
some complex deviation of its profile from the normal
to the plane of the magnetic film near the laser focusing
region. Further confirmation of this assumption is pro-
vided by the visible blurring of the wall at the kink
which can be seen from the instantaneous dynamic
photographs obtained by high-speed photography
using a Faraday geometry with crossed polarizers.

The hypothesis on the thermal nature of the domain
wall displacement after the action of awriting pulse[2]
was checked by calculating the domain wall configura-
tion in the presence of a nonmagnetic region [10].

In order to construct a model of the domain wall
motion, for ssimplicity we confine ourselves to an iso-
lated stripe domain stabilized by a bias field. We shall
assumethat under the action of an optical beam focused
in a small region inside the domain, the domain is
heated resulting in the formation of a nonmagnetic
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Fig. 9. Calculated configuration of domain wall profile in
the presence of alocal cylindrical nonmagnetic region (a)
and instantaneous dynamic image of the stripe domain
obtained experimentally 100 ns after application of the laser
pulse (b).

cylindrical region. This region generates an additional
magnetostatic field which distorts the domain walls. In
order to calculate the quasi-equilibrium domain profile
under conditions where a nonmagnetic region exists,
we calculate the magnetostatic energy and then deter-
mine the domain configuration for which this energy
will have a minimum.

The functional of the magnetostatic energy has a
complex structure determined by the distribution of the
magnetization vector in a self-consistent magnetic field
which is a function of the magnetization distribution.
The quasi-equilibrium distribution of the magnetiza-
tion vector minimizes the functional of the total energy.
This functional problem can only be solved approxi-
mately, for example, by using the method of Ritz trial
functions. As afirst approximation we take the magne-
tization distribution determined by varying the bias
field consistent with the influence of anonuniform field
on the nonmagnetic cylindrical region at the center of
the domain. In this case, the distortion of the domain
wall shape of the stripe domain will be determined by
the following transcendental equation:

Hy _ 2(ro/h)°
ATIM. 2 2,32
s 8(x/h)” + (w/h
[8(x/h)” + (w/h)~] R
+= EQarctanD———In{1+EhNE}

where H, is the bias field which stabilizes an isolated
stripe domain, M is the saturation magnetization, h is
the thickness of the magnetic film, w is the domain
width at a certain point on the x axis directed along the
stripe domain and having its origin at the center of the
nonmagnetic cylindrical region, and r is the radius of
the nonmagnetic region. Formula (1) gives the implicit
dependence of the stripe-domain width w on the x coor-
dinate.

Figure 9a shows the profile of the stripe domain
obtained in accordance with (1). Figure 9b illustrates
the experimentally observed expansion of the stripe
domain after the action of the laser radiation, which
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leads to the generation of Bloch lines. The centra
region in the figure can be identified as the nonmag-
netic region formed asaresult of thelocal laser heating.
The figures reveal qualitative agreement between the-
ory and experiment which indicates that the thermal
mechanism for domain wall motion as a result of laser
irradiation isvalid.

Further confirmation of the key role played by the
thermally induced change in the degaussing fields dur-
ing the domain wall motion is provided by the experi-
mentally observed change in the displacement behavior
of the domain wallsasafunction of therelative position
of the focused spot and the domain wall (see Fig. 8 and
also Figs. 3 and 5). Quite clearly the configuration of
the additional degaussing field changes substantially
for different positions of the nonmagnetic region
(Figs. 8a-8c), which leads to different types of domain
wall displacement.

5. CONCLUSIONS

We have made an experimental investigation of the
generation of Bloch lines by local optical irradiation
which changes the magnetization state of aniron garnet
magnetic film. We determined the influence of the opti-
cal radiation parameters (intensity, diameter of focused
beam, and its position relative to the domain wall) on
the generation of vertical Bloch lines. We established
the optimum irradiation parameters to achieve the con-
trolled generation of Bloch lines. Using a combination
of high-speed photography and anisotropic dark-field
observation, we studied the characteristics of Bloch
line generation and the dynamic processes taking place
in the domain structure and the domain wall after the
action of thelaser pulse. We observed that near the laser
focusing zone the shape of the domain wall undergoes
areversible local distortion which depends on its posi-
tion relative to the laser beam. Vertical Bloch lines are
generated on the moving section of the domain wall
when thisis displaced at above-critical velocity. How-
ever, thiscondition is not sufficient for the reproducible
generation of vertical Bloch lines. The diameter of the
focused beam and its position relative to the domain
wall must also be optimized.

We analyzed atheoretical model of Bloch line gen-
eration which relates the motion of the domain wallsto
the local heating of the magnetic film and a change in
the distribution of the degaussing fields as the magneti-
zation decreases at the laser focusing site. The actual
mechanism for the generation of vertical Bloch linesis
determined by the generation and breaking of loops of
horizontal Bloch lines as the domain walls migrate at
above-critical velocity. Calculations of the domain wall
configuration in the presence of alocal cylindrical non-
magnetic region give good qualitative agreement
between theory and experiment.

The controlled generation of vertical Bloch lines by
local optical irradiation can be considered as the basis
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for a new approach to the recording of information in
superdense magnetic memory devices with optical
access. The approaches developed so far are based on
reducing the wavelength of the recording laser radia-
tion, using specia high-aperture optics, and also vari-
ous buffer structures and substrates which artificialy
limit the size of the recorded bit. Unlike these tech-
niques, the effect of Bloch line generation described
here demonstrates the fundamental possibility of
achieved controlled and reproducible optical recording
of asubmicron magnetic information bit (in the form of
vertical Bloch lines) using a laser beam focused in a
substantialy larger region. In this case, the hit size is
determined by its physical nature as a low-dimension
formation inside the domain wall and not by the char-
acteristic scale of the recording instrument or the buffer
structures.
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Abstract—Parametric excitation of magnetoel astic waves was investigated in the easy-plane antiferromagnet
0-Fe,03 by paralel and perpendicular microwave pumping over awide range of frequencies, magnetic fields,
and temperatures, and the parametric resonance threshol ds were measured. The frequencies of the natural mag-
netoelastic vibrations of the sample were investigated as a function of the magnetic field and temperature. The
results of the measurementswere used to cal cul ate the parameters of the magnetoel astic wave spectrum and the
rate of relaxation of the excited quasi-phonons. Possible mechanismsfor quasi-phonon damping were analyzed.
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1. INTRODUCTION

One of the fundamental problemsin the experimen-
tal physics of dielectricsis the study of the spectra and
relaxation rate of elementary elastic and magnetic exci-
tations, i.e., phonons and magnons. Phonons are usu-
ally excited and recorded using transducers attached to
the sample, while the most powerful means of investi-
gating the relaxation rate of electron and nuclear mag-
nons is by their parametric excitation under microwave
pumping (see the reviews [1-3]). As a result of the
strong magnetoel astic interaction in easy-plane antifer-
romagnets, parametric phonons can also be excited by
amicrowave magnetic field. This method opens up the
possibility of studying phonon relaxation in a sample
which is not loaded acoustically with transducers.

Increasing the microwave magnetic field hcosuwyt
above athreshold value h, induces parametric instabil-
ity in the sample involving the decay of a pump quan-
tum into a pair of phonons having equal and oppositely
directed wave vectors (k and —k) and the frequency
sum wy,. We shall only consider the case of degenerate
pumping, when waves are generated in one branch of
the spectrum at the half frequency (w= w,/2). Themain
advantages of the parametric resonance method are that
anarrow wave packet (Ak < K) isexcited and the relax-
ation rates y, of the parametric waves can be deter-
mined from the threshold field h, at which instability
develops. For degenerate pumping we have

h, = min(y,/V). (D)
HereV = (dw/0H)/2 is the coefficient of wave coupling

with the microwave field which is determined by the
effective magnetic moment of the excited wave. w =

w(k, H) isthe dispersion law for the excited waves, and
H isthe static magnetic field.

2. PARAMETRIC PHONONS
IN ANTIFERROMAGNETS

A distinguishing feature of easy-plane antiferro-
magnets is the existence of alow-activation, quasi-fer-
romagnetic (f), branch of the spin wave spectrum and
the so-called exchange amplification of magnetoelastic
interactions (see, for example, the review [4]). The
magnetoelastic interaction leads to strong mixing of
initially pure quasi-ferromagnetic and elastic modes as
a result of which the vibrations of the new quasi-
phonon branch acquire a magnetic moment and conse-
guently a nonzero coupling coefficient with the micro-
wave magnetic pump field V. The spectra of the coupled
quasi-magnon and quasi-phonon branches of the vibra-
tions have the form

Wy = [GPH(H + Hp) +9(Hy,)* + v ™2, (29)

1/2 ~
Wpn = Cc[1—(gHa/wy)] k = Ck. (2b)

Here Hy, is the Dzyaloshinskii field, g is the gyromag-
netic constant, H,, is the magnetoelastic interaction
constant, gH,, is the magnetostrictive gap in the spin
wave spectrum, v isthe spin wave velocity, and cisthe
nonrenormalized velocity of sound. Usualy, in the fre-
quency range studied by us, wyy/2m ~ 10° Hz the term
vk in (2b) can be neglected, i.e., we can assume that
the renormalized velocity of sound ¢ = ¢(H, k) does
not depend on the wave vector. However, hematite is
the highest-temperature antiferromagnet, with record
values of the exchange field and the spin wave veloc-
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ity. Asaresult the term v2k? is already significant for
k ~ 10* cnrt which makes all the formulas and the treat-
ment of the experimental results extremely complex.

The two methods of parametric excitation (two pump
geometries) differ as afunction of the relative orienta
tion of the static H and microwave h(t) magnetic fields
inthe basal plane of the crystal: perpendicular pumping
H O h and parallel pumping H || h. These two methods
differ fundamentaly in terms of the mechanism for
coupling the microwave field with the excited phonons.
In the case of perpendicular pumping, the aternating
field linearly excites uniform vibrations of the quasi-
ferromagnetic branch of the spectrum at the line wing.
As aresult of the nonlinear magnetoel astic interaction,
these vibrations generate phonons in a threshold pro-
cess. In the case of parallel pumping the microwave
field energy is transferred to the magnetic (and then to
the elastic) subsystem both asaresult of the linear exci-
tation of uniform vibrations at the line wing of the anti-
ferromagnetic branch and by modulating the spectrum
of quasi-ferromagnons and quasi-phonons. In other
words, the coupling coefficients V; and V,, are formed
by different interactions of the pump field with the
magnetic and magnetoel astic subsystems of the crystal.
This is why it is interesting to study the parametric
excitation of phononsfor both perpendicular and paral-
lel relative orientations of the magnetic fields.

Under conditions of perpendicular pumping para-
metric excitation of phonons in CoCO; (at frequency
wy/2m = 50 GHz) was first observed by Borovik-
Romanov, Zhotikov, and Kreines [5] and in FeBO; (at
wy/21 = 10 GHz) by Wettling, Jantz, and Patton [6]. It
was established that transverse phonons having the fre-
quency wy, = w,/2 are excited by athreshold processin
both antiferromagnets when h O H (i.e,, the case of
degenerate pumping is achieved) athough the depen-
dences of the threshold field on the experimenta
parameters were not studied in detail by these authors.
Later Kotyuzhanskii and Prozorova [7] measured the
temperature and field dependences for the threshold
field hyin FeBO; at wy/2mm= 35 GHz and estimated the
relaxation rate of phonons excited parametrically by
transverse pumping.

Parallel pumping of phonons in antiferromagnets
has been observed in FeBO;, CoCO;3, and a-Fe,O; sin-
gle crystals at frequencies w,/2m = (600-1400) MHz
[8-11]. The most detailed study was made of iron
borate in which transverse phonons at frequency wy, =
wy/2 are excited by parallel pumping, detailed measure-
ments were made of the threshold field h,, and of the
linear and nonlinear phonon relaxation rates, and the
relationship between the amplitude of the threshold
field and the phonon relaxation rate was determined
experimentally.

The present paper is devoted to a detailed study of
the parametric excitation processes and the rate of
phonon relaxation in hematite single crystals over wide

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

509

ranges of experimental parametersfor various pumping
geometries.

3. SAMPLES AND EXPERIMENTAL METHOD
Hematite crystals possess rhombohedral symmetry

(ng) with the plane of easy magnetization and the

growth plane coinciding with the basal plane of the
crystal. The temperature of magnetic ordering in the
easy-plane phase is Ty = 960 K. Dzyaloshinskii—
Moriya interaction leads to spin canting which results
in the appearance of a weak ferromagnetic moment
lying in the basal plane. When the temperature falls
below the Morin point T, = 260 K, the hematite under-
goes an orientational phase transition to the easy-axis
antiferromagnetic phase.

Measurements of the parametric phonon resonance
threshold were made for two single crystals of antifer-
romagnetic a-FeO;. The samples comprising 0.35 and
0.39 mm thick plates with clearly visible growth steps,
were grown by V.N. Seleznev at Simferopol University.
Thelinear dimensions of the samplesin the basal plane
were 2—6 mm.

The parametric phonon excitation was investigated
using a decimeter-range spectrometer [3]. The resonant
absorbing cell was an open copper resonator in the
form of a cylindrical spiral 0.5 cm in diameter with
loaded Q factor Q ~ 500. The sample was attached to a
Teflon holder using a Teflon tape so that the resonator
axis and therefore the field h lay in the plane of easy
magnetization of the sample. The resonator together
with the sample was placed in a copper container with
a heating coil wound on it. The entire structure was
placed in a cryostat filled with nitrogen gas. The elec-
tromagnet was rotated so that the static field H was
always parallel to the plane of easy magnetization. In
order to excite the natural vibration mode of the sample
we used an additional coil consisting of several turns of
copper wire wound coaxially with the resonator. The
diameter of the modulation coil was 2 cm.

The measurements were made in static magnetic
fields H = 0-2 kOe at temperatures T = 250480 K in
the range of pump frequencies w,/2m= 0.5-2 GHz.

The parametric phonon excitation was recorded in a
pulsed microwave generation regime from the appear-
ance of characteristic distortion of the pulse profile
after passing through the resonator. We used pulses
having durations of 50-300 s at repetition frequency
50 Hz. The relative accuracy of the measurements of
the threshold field h, at fixed pump frequency was 5%
and the absol ute measurement accuracy was 25%.

4. EXPERIMENTAL RESULTS
OF MEASUREMENTS OF THE PARAMETRIC
INSTABILITY THRESHOLDS

Parametric phonon excitation was observed for any
geometry of the static and magnetic microwave fields
lying in the basal plane of the crystal. Figures 1 and 2
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Fig. 1. Dependences of the threshold parallel (0) and per-
pendicular (@) pump fields on the magnetic field at T =
20°C, oop/2n: 1364 MHz.

show typical dependences of the threshold fields on the
magnetic field for various frequencies, temperatures,
and pump geometries. It is easy to see that these depen-
dences are nonmonotonic: numerous dips are observed,
these being particularly strong for h O H and low pump
frequencies. Similar threshold minima were observed
earlier as a result of phonon pumping in iron borate
[8, 10] and were attributed to the excitation of a stand-
ing magnetoelastic wave at frequency w,/2 over the
thickness of the plate. Under perpendicular pumping
conditions these dips (resonances) were considerably
greater because, in addition to parametric phonons at
frequency wy, = w,/2, sound at frequency w,, = @, is
also excited linearly. It will be shown subsequently that
as the frequency and temperature increase, and also as
the amplitude of the static magnetic field decreases, the
range of the parametric phonons decreases, with the
result that the boundaries of the sample have a weaker
influence on the parametric instability threshold and the
dips on the threshold curve gradually disappear. We also
note that in hematite the threshold fields h; and hy have
approximately the same dependence on the magnetic
field unlike FeBO; and CoCO; for which the depen-
dences h.5(H) and hy(H) differ substantially [10].

Figure 3 shows atypical dependence of the instabil-
ity threshold on the magnetic field geometry. The per-
pendicular pumping condition correspondsto @=0°. It
can be seen that in hematite the highest threshold is
obtained for parallel pumping whereas for FeBO; the
converseistrue, hy; > hy [10].

Figure 4 shows the temperature behavior of h.; and
h, for fixed values of the pump frequency and the mag-
netic field. Both fields have the same dependenceon T:
an amost linear increasein h.(T) is observed except for
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Fig. 2. Dependences of the threshold pardld (0) and perpen-
dicular (@) pumpfieldson H at T=197°C, w/2r= 584 MHz.

a narrow region of temperature near the Morin point
where the pump threshold increases steeply. At temper-
atures below T,, no parametric phonon excitation was
observed.

Figure 5 shows dependences of thethresholds on the
microwave pump frequency. It is easy to see that the
threshold fields h,; and hy have different frequency
dependences and in the range w,/2m > 750 MHz the
field hy isamost proportional to frequency. At w,/2m<
750 MHz the threshold fields hy; and hy are almost
equal and then increase with decreasing frequency.

. Oe
14

12 - o

150
@, deg

1
100

Fig. 3. Angular dependence of the parametric instability
threshold at T = 172.5°C, H = 361 Oe, w,/211= 1363 MHz;
= 0 corresponds to the perpendicular pumping condition.
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Note that in FeBO; the threshold field hy did not
depend on the pump frequency at al [9].

5. MEASUREMENT OF THE MAGNETOELASTIC
PARAMETERS OF HEMATITE

In order to cal cul ate the phonon rel axation rate from
the threshold amplitude of the paramagnetic resonance,
we need to know the magnetic, dlagtic, and magnetoel astic
parameters of hematite. Numerous studies have been
devoted to such measurements (see, for example,
[4, 12-15]). Particular attention has been paid to study-
ing the spin wave and antiferromagnetic resonance
spectra, and also the vel ocity of sound which for conve-
nience of analyzing the experimental resultswewritein
theform

& = c[1-AJ(H+H¥H,+A,+K) (3

Here the parameters A, = (Hp;)%Hp and A, = (Ha,)%/Hp
describe the magnetoelastic interaction, and the term
K = (vk)?/g?Hp, gives the dependence of the velocity of
sound on the wave vector (at low frequencies w,, this
term can be neglected). The Dzyaloshinskii field for
hematite at room temperatureisHp = 22 kOe[13] and the
spin wave velocity along the C; axisis v = 24 x 10° cm/s
[12]. Measurements of the velocity of sound and the
antiferromagnetic resonance frequency show that the
parameter A; = 400-500 Oe obtained by various
authors for different hematite samples is the same
within measurement error while the value of the con-
stant A, varies from one sample to another and at room
temperatureis A, = 500-1000 Oe. Since A, iscaused by
spontaneous magnetostriction, the value of A, = 500 Oeis
evidently observed in samples having the fewest
defects. The corresponding gap in the spin wave spec-
trumis 9.3 GHz.

Estimates of the parameter K show that in our exper-
iments this is K = 15-500 Oe, i.e., in most cases this
term cannot be neglected compared with H and A. From
the formulas (2) we express K in terms of the parame-
ters which can be measured experimentally:

|~
El

0
HyO0g O CcO

A fairly accurate method of measuring the magne-
toelastic parameters involves measuring the frequency
of the natural vibrations of the sample. Calculations
[14] show that for an acoustic resonator in the form of
adisk in which the field H is directed along the binary
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Fig. 4. Temperature dependences of the threshold parallel (0)
and perpendicular (@) pump fields at H = 425 Oe, wy/2rt=
1370 MHz.
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Fig. 5. Dependences of the threshold parallel (0) and per-
pendicular (@) pump fields on the frequency of the exciting
microwave field at T = 20°C, H = 425 Oe.

crystallographic axis X, the frequency of the natural
vibrations of the a-Fe,O; sampleis given by

Dy —A 2
5 2 1 i| ) (5)
H+ HYHp + A, A,

F = Fo[l—

Results of measurements of F for fieldsH > 100 Oe are
givenin [14] and these are accurately described by for-
mula (5). The value of (A, —A,;) = 100 Oe obtained in
these measurements at T = 293 K agrees with the best
values of A,.
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Fig. 6. Dependences of the frequency of the natural elastic
vibrations of the sample on the magnetic field at T = 20°C (0)
and T = 189°C (4). The solid curves give the calculations
using formula(5) for the following values of the parameters:
Fo = 590.32 kHz, d; = 85.75 Og, 6, = 11029 Oe a T =
20°C; Fg = 582.08 kHz, 5, = 45.75 Oe, &, = 56.53 Oe at
T=189°C.
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Fig. 7. Temperature dependences of the magnetoelastic
parameters 8, (2) and &, (0). The straight lines gives the
calculations using the empirical formula (7).

Since the parameters of the phonon spectrum differ
for different samples, in order to calculate the phonon
relaxation rate we need to measure the values of the
magnetoelastic parameters in the same crystal as that
used to measure the pump thresholds. We measured
these parameters using both the formulas (3) and (5)
given above to some extent.
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The first method used by us to measure the magne-
toelastic parameters was based on the suppression of
parametric phonon instability by low-frequency modu-
lation of their spectrum [8]. When studying the influ-
ence of thefield H,,,cosw,t on the pump thresholds, we
observed that when the modulation frequency was
equal to the natural vibration frequency of the sample,
the dependence h,(w,) had a sharp peak. This effect
occurs because when the modulation frequency is the
same asthefrequency F of the natural elastic vibrations
of the sample, these elastic vibrations are excited. The
elastic vibrations of the crystal create an effective modu-
lating magnetic fiedld which actudly intengifies the influ-
ence of thefield H,,, on the magnon and phonon spectrum
and hence on the parametric ingtability threshold. By mea-
suring the position of this pesk as a function of the mag-
netic field, we obtained the field dependence of the natural
vibration frequency of the sample. These measurements
were made over awide range of temperature. The results
of measurements of F for two temperatures are plotted in
Fig. 6. According to the cdculations [14], these depen-
dences for a disk should be described by expression (5).
However, in our sample the frequency F was accurately
described by the formula

F = Fo[1=3,/(H +HHp +3,)]", (6)

which is similar to (5) but the values of §, = 85.75 Oe
and &, = 110.29 Oe (at T = 20°C) differ, although they
are close to the value of (A, —4A;) = 100 Oe obtained in
[14]. The fact that &, # d, is clearly attributable to the
irregular shape of our sample and to the random direc-
tion of the magnetic field relative to the second-order
crystallographic axes.

Temperature dependences of the parameters o, and
0, are plotted in Fig. 7. We can see that over the entire
temperature range the parameters &, and &, are reason-
ably well described by linear functions of temperature
and their ratio remains constant at 6,/0, = 1.29 £ 0.02.
The empirical expressions for the temperature depen-
dences of §; have the form

8 = &;o[ 1 — (T —293)/330]. ()

Here T is the temperature and 9,y is the value of the
parameter at T = 293 K. Since 9, are linear combina-
tions of the magnetoel astic constants A, and A, and all
these constants decrease smoothly with increasing T,
we can postul ate that the behavior of A, and A, will be
described by the same function of temperature. We
used formula (7) to calculate A, and A in our calcula
tions of the temperature dependence of the phonon
relaxation rate.

The second method used by us to determine the
magnetoel astic constants was based on observing the
size effect of the parametric waves over the crysta
thickness. If the magnetic field isvaried at fixed phonon
frequency, the velocity of sound and the magnetoel astic
wavelength A vary. For particular values of H the con-
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dition d = n(A/2) is satisfied, i.e., an integer number of
half-waves fall within the sample thickness (n is an
integer). For these values of the field the pump thresh-
old has minima. The spacing AH between these minima
is determined by the field dependence of the velocity of
sound (3). Using formulas (2) and (3) and assuming
n > 1, we obtain the following expression:

AH = 2Tic(H + A, + K) ¥

- ®)
><(H +A2_Al+ K) /(Alwphd)

In expression (8) the parameter K isafunction of the
magnetic field and the pump frequency. However, at the
lower edge of our frequency range itsvdueis small, K =
20 Oe, and in addition, in fields of 500 < H < 1100 OCethe
value of K only varies by 20% so that its field depen-
dence at low freguencies can be neglected in (8).
Unfortunately, at low frequencies the phonon wave-
length increases so that the condition n > 1 is satisfied
less accurately. Experimental results of detailed mea-
surements of the spacing between the threshold minima
for paralel pumping are plotted in Fig. 8. Since the
number of experimenta pointsis small, an analysis of
these results by the least squares method with two inde-
pendent parameters gives alarge error. Thus, we used the
result obtained previoudy (A, —A;) = 100 Oe, retaining a
singlefitting parameter A, in formula (8). The solid curve
inFig. 8wascalculated by theleast squares method using
formula(8) into which we subgtituted the vdue K = 25 Oe
averaged over the range of fields. The magnetoelastic
constants for our sasmple are A; = 480 Oe, A, = 580 Oe,
which agrees with the values obtained previously for
higher-quality single crystals. The corresponding mag-
netogtrictive gap in the spin wave spectrum is gHa,/ 21T =
10 GHz. This estimate is indirectly confirmed by our
attempts to observe the antiferromagnetic resonance
signa at 9.37 GHz. In weak fields intensive absorption
of microwave power began to occur, but this did not
reach a maximum even at H = 0, which indicates that
the antiferromagnetic resonance frequency is close to
9.37 GHz a H = 0 dthough, quite obvioudy, the antifer-
romagnetic resonance frequency isdightly higher thanthe
oscillator frequency, i.e., of the order of 10 GHz.

6. CALCULATIONS OF PHONON RELAXATION.
DISCUSSION OF RESULTS

Using formulas (1)—«3), we abtain the following
expression for the phonon relaxation parameter n =y /21t

n
H, 40
hov A, 4 1
PPIH, O 9)

H? H? 0
884+H—D+A2+K%—|+H—D+A2—A1+KD
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Fig. 8. Spacing between neighboring minima of the thresh-
old field hy as afunction of the static magnetic field H for

2n=574.6 MHz, T=20°C. Thesolid curvegivesthecal-
culations using formula (8) for the following values of the
parameters: ¢ = 4.1 x 10° cm/s[15], A, = 480 Oe, A, = 580 Oe,
d=0.39 mm, K=25Oe.
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Fig. 9. Dependences of the phonon relaxation rate on the
magnetic field at T = 20°C and various pump frequencies:
(4) wyf2m= 1761 MHz, (O) w,/21t= 1364 MHz, (0) wy/2m=
1081 MHz. The solid curve givesthe calculations using for-
mula (11).

Here v, = w,/2mtis the microwave pump frequency and
the parameter K is given by expression (4). Note that
this formula is usually reduced to a simplified form,
i.e., it isassumed that A, = A, and theterms H%/H, and
K are neglected. Formula (9) was checked experimen-
tally for thecaseh ||H in [8] (the coefficient of phonon
coupling with the threshold field was measured under
parallel pumping conditions). No such investigations
were made for the case of perpendicular pumping. In
addition, under perpendicular pumping, before-thresh-
old excitation of phonons occurs at frequency @y, = w,
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Fig. 10. Dependences of the phonon relaxation rate on the
magnetic field at T = 197°C, 21 = 584 MHz. The solid
curve was obtained using formula (11).

which may influence the parametric excitation thresh-
old particularly when a standing wave of these phonons
forms over the sample thickness. Thus, for our calcula-
tions of the phonon relaxation rate we only used the
threshold value of the parallel pump field.

Figure 9 gives field dependences of the phonon
relaxation rate at three pump frequencies. Quite clearly,
these have approximately the same dependence on H: the
relaxation rate increaseswith decreasing H infilds of less
than 400 Oe and then tends toward a constant value with
increasing field. It can be seen from Fig. 10 that asimilar
dependence is observed at high temperature.

Figure 11 shows the temperature dependence of the
phonon relaxation rate. Over almost the entire range of
temperature n(T) is described by the function n O T2,
The only exception is a narrow range of temperature
near the orientational phase transition temperature. The
relaxation mechanisms making the major contribution
to n will be discussed below.

Figure 12 gives the phonon relaxation parameter as
afunction of the pump frequency. For w,/21> 750 MHz
amonotonic, almost linear increasein relaxation rateis
observed. When wy/2m < 750 MHz the phonon relax-
ation rate departs from this dependence and becomes
almost constant at n = 0.15 MHz. The change in the
phonon relaxation behavior at this point can be seen
most clearly in Fig. 5 from the frequency dependence of
the paralel pumping threshold. The value n = 0.15 MHz
corresponds to the phonon mean free path | = 1.6 mm.
This value is four times the sample thickness d =
0.39 mm. We can postulate that after severa reflections
from the crystal boundary, the parametric phonons cease
to be coupled with the pump field, i.e., a low frequencies
phonon scattering at the crystal boundaries beginsto have
a strong influence on the parametric ingtability threshold.
This influence of the sample boundaries on the pump
threshold can aso be seen clearly from the large number
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Fig. 11. Temperature dependence of the phonon relaxation
rate at H = 425 Og, u)p/2n 1370 MHz. The solid curve
gives the dependencen O 192

of dips on the threshold curves at low frequencies (see,
for example, Fig. 2). We recall that this jaggedness of
the threshold curves diminishes as the pump frequency
increases and the amplitude of the magnetic field
decreases. Thisis clearly caused by an increase in the
phonon relaxation rate and a decrease in the vel ocity of
sound in weak fields, which has the result that many
parametric phonons no longer reach the sample boundary
and theinfluence of thefinite dimensions of the sampleon
the threshold becomes weaker. It would be interesting to
mesasure the threshold in larger samplesfor which the ten-
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Fig. 12. Dependence of the phonon relaxation rate on fre-
quency at T = 20°C, H = 425 Oe. The solid curve gives the
calculations using formula (11).
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dency of ) to become constant would most likely not be
observed at these frequencies. Unfortunately, no paramet-
ric excitation occurred at al in the large hematite crystals
grown in other laboratories which were available to us.
(The quality of these crystals was apparently poorer and
the threshold pump amplitude was very high.) Hence, as
yet we cannot categoricaly confirm that the kink on the
experimenta curve is attributable to the influence of the
crystal boundaries.

It is interesting to note that although the frequency
dependences of the pump thresholds in hematite and
FeBO; (see [9]) differ substantially, this is not associ-
ated with differences in the phonon relaxation behavior
but arises because the parameter K in the threshold for-
mula (9) plays an important role for hematite, whereas
itisnegligiblefor iron borate. Asaresult, the frequency
dependences of the phonon damping in these two mate-
rials were very similar: the phonon relaxation is
approximately proportional to their frequency, i.e., the
phonon Q factor is almost independent of frequency,
except that in FeBO; it was twice as high.

An analysis of possible mechanisms for the damp-
ing of sound in hematite must take into account that the
field and temperature dependence of the relaxation
parameter are amost the same for al phonons in the
frequency range wy,,/21m > 380-950 MHz. Assuming
that severa factors make major contributions to the
relaxation, inthiscase all these contributions must have
the same (similar) dependences on all the experimental
parameters T, H, and wy,. This evidently implies that
there is a single fundamental relaxation mechanism
whose influence on the phonon scattering is signifi-
cantly greater than all the other contributionsto n. Con-
sequently, the main contribution to the phonon relax-
ation in hematite is approximately proportional to wy,,
increases with increasing temperature as T¥2, increases
rapidly with decreasing H in fields H < 400 Oe, and is
amost independent of H in strong fields.

The most well-known mechanism for the relaxation
of sound in high-quality nonmagnetic dielectric single
crystals at high temperatures is the Akhiezer mecha-
nism, involving the damping of sound at thermal
phonons (see, for example, the review [16]). When
Wprt < 1, where T is the thermal phonon lifetime, the
elastic wave does not interact with an individual ther-
mal phonon but with an overall ensemble of thermal
phonons. This elastic wave may be considered asafield
which modulates the frequency and therefore the distri-
bution function of the thermal phonons. Redistribution
of phonons over the spectrum is accompanied by
phonon—phonon collisions which lead to relaxation of
the elastic wave energy. This contribution to the relax-
ation of the elastic wave has the form [16]

ya= G oTwh,/pec’. (10)

Here G isthe Gruneisen constant, o isthe thermal con-
ductivity, p isthe density, and T isthe mean velocity of
the thermal phonons which, unlike ¢, is amost inde-
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pendent of the magnetic field. Having in mind that
(a) the thermal conductivity of dielectrics at high tem-
perature is approximately described by the dependence
o 0T, (b) the Gruneisen constant at T ~ Ty, is amost
independent of temperature (the Debye temperature for
hematiteis Ty = 400 K [17]), and (c) the velocity of the
sound excited by us depends on the magnetic field, fre-
quency, and temperature in accordance with formulas (3)
and (4), we obtain the following dependence for the
Akhiezer mechanism in hematite

Ya O (Mo /S (H, T, wpp).- (11)

Here f(T) is aweak function of temperature. The solid
curvesin Figs. 9, 10, and 12 give the dependences of
the relaxation rate y, on the magnetic field and fre-
guency corresponding to expression (11). Quite clearly,
expression (11) describes the frequency and field func-
tional dependences of the relaxation parameter reason-
ably well. However, the temperature dependence (11)
differs significantly from the experimental one. As T
increases, the value of ¢ increases dightly for a fixed
field H = 425 Oe which should lead to an approxi-
mately 25% reduction in relaxation in the temperature
range under study. However, an increase in relaxation
by a factor of ~2.3 is observed experimentally which
may be obtained by assuming that f(T) O T¥2. In addi-
tion, an estimate of the absolute value of the phonon
relaxation parameter in hematite using formula (10)
gives Ny ~ 10 kHz at wy,y/2rm = 500 MHz, T = 300 K
whereas the experimental value of the relaxation under
the same conditionsisn = 250 kHz. Thus, both formula
(10) and formula (11), which alows for the role of
magnetoel astic interaction in the renormalization of the
velocity of sound, describe by no means all the facets
of the phonon damping behavior in hematite.

The influence of the magnon system on the sound
damping efficiency in antiferromagnets with easy-
plane anisotropy was examined in the greatest detail in
[18]. It was shown that athough the effective anharmo-
nicity may exceed the elastic by two orders of magni-
tude in the long-wavelength part of the spectrum, it
makes only a negligible contribution to the interaction
of sound with thermal phonons, i.e., to the Akhiezer
mechanism. On the other hand, asubstantial increaseis
observed in the efficiency of the phonon—phonon inter-
action of sound with long-wavelength quasi-phonons
having the wave vector k ~ (wx,/C), where wx, is the
antiferromagnetic resonance frequency. The corre-
sponding sound relaxation parameter has the form [18]

yo= By 8°T8O,

h — ~& h" = 5 3’
T2 Twpg(me?y’
where 3 ~ 1 isanumerical coefficient which depends
on the direction and polarization of the acoustic wave,
0 is the magnetoelastic interaction energy, 6y is the
Neel temperature, and m is the unit-cell mass. At first
glance, this formula predicts an increase with tempera-
ture y,, O T but taking into account the temperature

(12)
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dependences of 8 and wx, we find that as T increases
from 260 to 470 K, the parameter Y, decreases by more
than an order of magnitude. In addition, expression (12)
does not give the required dependence of the relaxation
rate on the frequency and magnetic field (in strong
fieldsit follows from (12) that y,, 0 H™?) whereas an
estimate of the relaxation parameter at room tempera-
ture gives an absolute value ng, ~ 1-10 kHz, which
does not exceed the contribution of the Akhiezer mech-
anism. Thus, the sound damping mechanisms consid-
ered in [18] intensified by magnetoelastic interactions
also cannot explain our experimental results.

In [10] we suggested another phonon relaxation
mechanism. The physical meaning of this mechanism is
that [19] as a result of the interaction of coupled vibra
tions, not only do their frequencies change but aso the
relaxation parameters become renormalized. For instance,
if one branch of these vibrations (magnons) was initially
damped, as a result of interacting with it, a second
branch of coupled vibrations receives an additional
contribution to the relaxation. This influence of mag-
non relaxation on the damping time of vibrations cou-
pled with them was first observed in studies of nuclear
spin waves in antiferromagnetic CsMnF; [19]. A simi-
lar contribution of the magnon branch to the phonon
damping has the form

v = (doogy/dwg) i (13)

Using the experimenta results on the relaxation of
magnons in FeEBO; we were able to describe the main
contribution to phonon relaxation at high temperatures
using amodel inwhich the width of the magnon branch
is “renormalized” to the coupled phonon branch. This
conclusion from [8] was later confirmed in studies of the
Q factor of the natural elastic vibrations of an FeBO; Sin-
gle crystal [20]. This mechanism may well be responsible
for the phonon damping in hematite. In order to estimate
this contribution to the phonon relaxation, we require
experimental data on the relaxation of magnons coupled
to them. Unfortunately, at present we do not have any such
results on magnon relaxation in hematite. However, we
can put forward the following reasoning.

Using expressions (2) and (13), we obtain for fixed
Hand T

¥ O 0opnyfic-

Under the same conditions, the experiment gives a
dependence closeto y, [ . Thus, in order to describe
the experimental results, we impose the constraint that
a fixed magnon frequency, their rate of relaxation in
hematite should not depend on the wave vector. This
behavior of the damping parameter of magnons with
k~10* cm™ at high temperatures is predicted by the
theory of magnon—phonon relaxation [21] and has also
been observed in various low-temperature antiferro-
magnets [3, 19] where it has usually been attributed to
inhomogeneous broadening of the spin wave spectrum.
By renormalizing these relaxation parameters to the
phonon branch we obtain the dependence yy [ ..

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

ANDRIENKO

ACKNOWLEDGMENTS

The author is grateful to S.V. Kapd' nitskii, V.. Ozho-
gin, V.L. Safonov, and A.Yu. Yakubovskii for discussions
of the results. This work was supported by the Russian
Foundation for Basic Research (projects nos. 97-02-
17586 and 96-15-96738).

REFERENCES

1. V. E. Zakharov, V. S. L'vov, and S. S. Starobinets, Usp.
Fiz. Nauk 114, 609 (1974) [Sov. Phys. Usp. 17, 896
(1974)].

2. A. S. Borovik-Romanov, V. G. Zhatikov, N. M. Kreines,
et al., Phys. Rev. A 1, 247 (1979).

3. A. V. Andrienko, V. I. Ozhogin, V. L. Safonov, and
A. Yu. Yakubovskii, Usp. Fiz. Nauk 161, 1 (1991).

4. V. 1. Ozhogin and V. L. Preobrazhenskii, Usp. Fiz. Nauk
155, 593 (1988) [Sov. Phys. Usp. 31, 713 (1988)].

5. A. S Borovik-Romanov, V. G. Zhotikov, and
N. M. Kreines, in Light Scattering in Solids, Ed. by
J L.Birman, H. Z. Cummins, and K. K. Rebane (Ple-
num, New York, 1979), p. 175.

6. W. Wettling, W. Jantz, and C. E. Patton, J. Appl. Phys.
50, 2030 (1979).

7. B. Ya Kotyuzhanskii and L. A. Prozorova, Zh. Eksp.
Teor. Fiz. 83, 1567 (1982) [Sov. Phys. JETP 56, 903
(1982)].

8. A. V. Andrienko and L. V. Podd’yakov, Zh. Eksp. Teor.
Fiz. 95, 2117 (1989) [Sov. Phys. JETP 68, 1224 (1989)].

9. A.V.Andrienko and L. V. Podd’yakov, Zh. Eksp. Teor.
Fiz. 99, 313 (1991) [Sov. Phys. JETP 72, 176 (1991)].

10. A. V, Andrienko, L. V. Podd' yakov, and V. L. Safonov,
Zh. Eksp. Teor. Fiz. 101, 1083 (1992) [Sov. Phys. JETP
74,579 (1992)].

11. A. V. Andrienko and L. V. Podd' yakov, J. Magn. Magn.
Mater. 123, L27 (1993).

12. E. J. Samuelsen and G. Shirane, Phys. Status Solidi 42,
241 (1970).

13. M. H. Seavey, Solid State Commun. 10, 219 (1972).

14. E. A. Andrushchak, N. N. Evtikhiev, S. A. Pogozhev,
etal., Akust. Zh. 27, 170 (1981) [Sov. Phys. Acoust. 27,
93 (1981)].

15. A.Yu. Lebedev, B. S. Abdurakhmanov, and A. M. Bal-
bashov, Zh. Tekh. Fiz. 59, 165(2) (1989) [Sov. Phys.
Tech. Phys. 34, 231 (1989)].

16. V. V. Lemanov and G. A. Smolenskii, Usp. Fiz. Nauk
108, 465 (1972).

17. F. van der Woude, Phys. Status Solidi 17, 417 (1966).

18. V. S. Lutovinov, V. L. Preobrazhenskii, and S. P. Semin,
Zh. Eksp. Teor. Fiz. 74, 1159 (1978) [Sov. Phys. JETP
47, 609 (1978)].

19. A. V. Andrienko, V. I. Ozhogin, V. L. Safonov, and
A.Yu. Yakubovskii, Zh. Eksp. Teor. Fiz. 89, 1371
(1985) [Sov. Phys. JETP 62, 794 (1985)].

20. V. L. Safonov, P. M. Loaiza, and L. E. Svistov, J. Magn.
Magn. Mater. 173, 43 (1997).

21. S A. Breus, V. L. Sobalev, and B. |. Khudik, Fiz. Nizk.
Temp. 4, 1167 (1978) [Sov. J. Low Temp. Phys. 4, 550
(1978)].

Trandation was provided by AlIP

No. 3 2000



Journal of Experimental and Theoretical Physics, Vol. 90, No. 3, 2000, pp. 517-526.

Translated from Zhurnal Eksperimental’ noi i Teoreticheskor Fiziki, Vol. 117, No. 3, 2000, pp. 593-603.

SOLIDS

Original Russian Text Copyright © 2000 by Galkin, Geyler, Margulis.

Electron Properties

Electron Transport Acrossa Microconstriction
in an Arbitrarily Oriented Homogeneous M agnetic Field

N. G. Galkin, V. A. Geyler*, and V. A. Margulis
Mordovian Sate University, Saransk, 430000 Russia
*e-mail: geyler@nmrsu.ru
Received July 14, 1999

Abstract—An analysisis made of ballistic electron transport in three-dimensional microconstrictions of ellip-
tic crosssection located in an arbitrarily oriented magnetic field. The model of aparabolic confinement potential
is used to obtain and analyze the dependence of hybrid frequencies on the magnitude and direction of the mag-
netic field. An expansion of the conductance as a Fourier seriesis obtained and used to study Aharonov—Bohm
and Shubnikov—de Haas oscillations as a function of the field and the stepped quantization structure of the con-
ductance. A possible explanation is given for the experimentally observed effect of conductance quantization
at fairly high temperatures. © 2000 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

Balligic electron transport in three-dimensiona
microcongtrictions (point contacts) has recently attracted
growing interest [1-9] following the experimenta obser-
vation of conductance quantization effects in these sys-
tems, even at room temperature. The properties of
three-dimensional (3D) microcongtrictions differ substan-
tially from those of the two-dimensiona (2D) microcon-
grictions[10, 11] in which conductance quantization was
first observed. The character of the conductance quantiza-
tion in 3D microconstrictions depends strongly on the
profile of the cross-section and also on the length of the
contact [7]. In particular, in a symmetric constriction
(circular cross section) the height of the conductance
guantization step measured in conductance quantum
units G, = 2e?/h, is proportional to the degree of degen-
eracy of the transverse energy levels [7]. An applied
magnetic field B changes the transport regime of the
constriction. Thisis because the field changes the elec-
tron confinement and may enhance (for an elliptic cross
section) or induce (for acircular cross section) effective
anisotropy of the constriction cross section. In [7] the
generalized Buttiker—Landauer formula was used to
study the conductance (mainly by numerical methods)
of a3D microconstriction for cases of longitudinal and
transverse magnetic fields and also in the particular
case of atilted magnetic field [the field lies in the yz
plane, i.e., B = (0, By, B,). The numerical results show
that changes in the cross-sectional profile, magnitude,
and direction of the field B lead to changes in the elec-
tron transport regime. Graphs of the conductance G as
afunction of the field B plotted in [7] show that Aha-
ronov-Bohm and Shubnikov—de Haas oscillations may
occur in a longitudinal magnetic field. The nature of
these oscillations depends strongly on the magnitude of

the magnetic field. It was noted in [ 7] that the length of
the microconstriction also strongly influencesthetrans-
port regime. In particular, the results of a numerical
analysis indicate that the conductance quantization
effect (stepped structure) and the Aharonov—-Bohm
oscillations may disappear in short microconstrictions.

We note that a convenient model of the geometric
confinement potential which can allow for the role of
the microconstriction shape and the influence of the
magnitude and direction of the magnetic fidd is the “ soft
wall” potentia. This potential was used in[10, 11] for 2D
constrictionsand in[7] for 3D condtrictions. Thispotential
characterizes the cross-sectiond profile of the constric-
tion and its length. This factor is extremely important
because in the ballistic regime the geometry of the
microconstriction is a source of resistance.

Near the constriction bottleneck, the arbitrary smooth
geometric-confinement potential in second order with
respect to the coordinates (X, v, 2) is expressed in the
form

1
V(X,Y,2) = V0+§m*(w§x2+w§y2—w§zz). (1)

Here V, is the potential at the saddle point of the con-
striction, m* is the effective electron mass, and zisthe

coordinate along the constriction axis. The frequency
w, is determined by the microconstriction length |: w, =

A/m*12. The microconstriction cross section is approxi-
mated to within second-order terms by an €llipse hav-
ing the semiaxes

_1[A 1)
T 2 mre, °=3 m* w,”
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The Hamiltonian of the one-e€lectron states in an
applied static, uniform magnetic field B = (B,, By, B,)
has the form

1

H=2m*

—§A§+V(x, Yy, 2), 2

whereA isthe vector potential of thefield B. For A we
select the following gauge:

A = %Byz— B.yH + By - %Bny« 3)

By rotating the axes in phase space, we can reduce
the quadratic Hamiltonian (2) to the diagona form.
This Hamiltonian then has the same form as that in the
absence of the magnetic field but with different fre-
quencies of the effective potential:

1 m*
H = 5P+ S (0iQi+ w3Q5-0°Q%), ()
where P and Q are the new phase variables. The new
characteristic frequencies w;, w,, and Q are functions

of the magnitude and direction of the magnetic field B.

The probability of propagating from a mode having
the quantum numbers (m, n) to the (M, n") mode is
determined by the generalized Buttiker formula [12]
and hastheform

Tm, nmn = 6mn'6nn‘[1 + exp(—Znsmn)]‘l, (5)

where €, = (E — V, — E)/2Q, the quantum numbers
of theoscillatorsaremandn=0, 1, 2, ..., the energy of
the electron motion in the plane Q;Q, iSE,,, = vy (M +
1/2) + Awy(n + 1/2), and E isthe total electron energy.

Effects of electron tunneling through the effective
potential

Ve (2) = Vo + E,,—m* Q°Z/2

lead to smearing of the threshold energy Vg (0) which
then has the result that the probability of propagating
through channelswith E < V4 (0) becomes nonzero [7].
A comparison between the factor in bracketsin (5) and
the Fermi distribution fo(E) shows that the value of
hQ/2m plays the same role as the temperature in the
Fermi distribution, i.e., smears the threshold electron
energy.

The conductance of a 3D constriction for T # 0 is
given by

G(T) = J’dE%—%Eb(T = 0), (6)
0
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where G(T = 0) is given by the Landauer expression:

G(T=0) _

G, Y [1+ep(-2me)]”  (7)

mn=0

On the basis of the above reasoning on the smearing of
the threshold energy, the upper limit in the sums (7)
over mand nisinfinity.

Since (7) contains a double sum over the quantum
numbers m, n and (6) has an integral over energy, it is
difficult to use these expressions directly to analyze the
conductance of a 3D constriction (unlike the case of a
nanowire of constant cross section where no smearing
of the threshold energy occursin (7) and the sums are
eadly caculated). This is evidently why in [7] further
investigation of the conductance using (6) and (7) was
made by numerical methods. Moreover, the generd case
when B = (B,, B, B) wasnot considered at all in[7].

We make another important observation. Formula
(7) is similar to the magnetic response of a degenerate
gas of two-dimensional oscillators having the tempera-
ture T = 4Q/2m and the chemical potentia p = E -V,
The magnetic response of this type of gas was studied
in [13] where the corresponding series were summed
over a single index and (6) and (7) were reduced to a
one-dimensional Fourier series.

The present articleis constructed asfollows. In Sec-
tion 2, for the genera case of an arbitrary magnetic
field B = (B,, By, B,) we determine the frequencies w,
w,, and Q in terms of the roots of a cubic equation and
we construct the dependences of these frequencies on
the magnitude and direction of the field. In Section 3
we obtain an expansion of the conductance of a3D con-
striction as a one-dimensional Fourier series, by isolat-
ing the monotonic and oscillating components of the con-
ductance, i.e., we obtain for the conductance an analog of
the Landau formulafor the magnetic response of adegen-
erate gas. In Section 4 we study the oscillating component
of the conductance and demonstrate analytically that
Aharonov-Bohm and Shubnikov—de Haas oscillations
exist in a longitudinal field. In this section we also
investigate the case of atransverse field and study the
stepped structure of the conductance as a function of
the orientation of the field.

2. DIAGONALIZATION
OF THE HAMILTONIAN

We shal analyze the Hamiltonian (2) with the
potential (1) and themagneticfield B = (B,, B,, B,) arbi-
trarily oriented relative to the axes x, y, z, where the z
axis is directed along the microconstriction, and the x
and y axes are directed along the minor and major axes
of the lliptic cross section of the constriction, respec-
tively. In phase space (py, py, P, X, ¥, 2) the Hamiltonian (2)

No. 3 2000
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defines aquadratic form with the sixth-order symmetric
matrix

M= 2;1*
100 0 2B, -B,
010 0 0 0
001 B -2B, O (8)
*I 0 o B, kK -2BB, 0 |
2B, 0 -2B, —2B,B, ki -2B,B,
-B,0 0 0 -B,B; K

Here the following notation is introduced

e e e
Bl = Z:BX, BZ = Z—CBy, 83 = z:

B,,

kl = m*2w2+ BZ’ (9)
k3 = m*%w’ + 4B} + 48B3,

ks = —m"’w; + B3.

The canonical form (4) of the Hamiltonian (2) is deter-
mined by the eignevalues of the matrix IM, where | is
the symplectic unit [14]:

100
0 -E
| . , E=lo10]|- (10)
001

The eignevalues A of the matrix M are obtained from
the following sixth-order equation

(N2 + @) (A% + 00f) (N — ) + A2 (A® + wp) i,
(11)
N+ @)Wy + NPV - @), = 0,
where wy = eB/nmc,j =X, Y,
To be specific, we assume that w, > w, and weinves-

tigate the cubic equation obtained for & = A%, We denote
by P(&) the third-degree polynomial of & on the right-
hand side of (11). Then it is quite clear that

P(=w) = —», P(-w})>0,
P(0)<0, P(w’)>0.
Thus the equation P(§) = 0 has three different roots:
&0 (=0, ), &0 (-w,0), &0 (0 ).

Consequently by means of a symplectic transformation
of phase space, the Hamiltonian (2) is reduced to the

canonical form (4) in which ooi , =812, Q2=85[14].

Note that by making the substitution (.oz2 — —ooz2 the
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equation P(&) = 0 yields a cubic equation for the effec-
tive frequencies of a particle in a three-dimensional
parabolic quantum well in a magnetic field [15]. The
hybrid frequencies wy and Q were determined in [7] in
the extremely specific case wherethefield B liesin one
of the coordinate planes. Graphs of the hybrid frequen-
cies oy as afunction of the magnitude and direction of
the field B (the direction is defined by the angles 6 and
¢ of orientation of the field relative to the coordinates
(%, ¥, 2) related to the microconstriction) are plotted in
Fig. 1 where one of the anglesisfixed (¢ = ¢, or 6 =6,).
It can be seen that the frequencies w, depend on the
magnitude and direction of the field so that the conduc-
tance of the microconstriction will aso depend on
these.

3. EXPANSION OF THE CONDUCTANCE
AS A FOURIER SERIES

We shall first consider the conductance of a micro-
constriction at zero temperature. We shall use expres-
sion (7) and introduce the notation B = 21/4Q and
E —V, = €. We then have

G(T=0) _

G Y [1+exp(-Be-Em)] . (12)

mn=0

As we show in the Appendix, the following formula
holds

1 ) _a+|oo _px
Trot 21 I sinnp dp, O<a<l1l. (13)
Assuming in (13) x = B(E,,, — €), we obtain
G(T=0) _1
G, 2i
a+ic (14)
“ T Z exp[ € (Epn—£)B.
Using the relationship
- O O
Z expg—z[ﬁwlﬁn ZD+hw281+2D}E
mn=0 (15)

[4smhtﬁwlz% h[ﬁwzzm}

and introducing ¢ = 3§, we obtain from (14) and (15)

G(T=0) _ 1

G,  8ip
deZ (16)
,[sm(nz/[s)snh(hwlzlz)gnh(hwzzlz)'
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Fig. 1. Dependences of the frequencies wy, w,, and Q on the magnitude B and direction (6 and ¢) of the magnetic field: w, =

1.61 x 10" s, wy, = 0.61 x 102 57, wy/w, = 20, ¢, 6 = TV5.578.
The function in the integrand in (16) has a third-order
pole at zero and for incommensurable frequencies it has
simple poles at the points z = { 2rmi/Aw,, 2rmi/fuw, KB},

Theintegral in (16) can be cal culated using the contour
nm=0,+1,+2, ..., k=-1,-2, ....
After smple but fairly cumbersome cal culations we

Go

closed in the left half-plane. Summing the residues

inside the contour, we obtain
G(T=0) _ m )
. - 4_5 find
1
0 gr=0_ 1 3(E-V,)", Q°—wi-wy,
Zk} Go 6w, W, #? 4
No. 3 2000
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" i(_ )k4gr?:1(?r[r;i):[/kc(§; n\ﬁ?)éﬁﬁj/g)
. (18)
cos[2Tn(E —V,)/hw,]

n+1
3 Zl(_l) [colsin(nnoozlcol)sinh(an/wl)
n=

1 cos[2TN(E —V,)/hw,]
W, sin(Tnw,/w,) s nh(an/wz)} '

Expression (18) becomes meaningless for commensu-
rable values of the hybrid frequencies (in this case,
some of the poles lying on the imaginary axis have a
multiplicity greater than one). However, since a redl
number with aprobability of oneisirrational, we shall
subsequently assume that the frequencies w, and w,
are incommensurable. Note that even for incommen-
surabl e frequencies the question of the convergence of
the Fourier seriesin (18) should be studied separately
since the factors sin(Tnw,/w;) and sin(Tnw;,/w,) in the
denominator may be small. Thisproblemissimilar tothe
problem of small denominators in celestial mechan-
ics[13].

Using an approach based on the Kolmogoroff—
Arnol’d-Moser theory [13] we can show that the series
in (18) converge uniformly if the Diophantine condition of
incommensurability is satisfied for the frequencies (this
condition is satisfied with a probability of one).

In order to find the temperature dependence of the
microconstriction conductance we use formulas (6) and
(18). After simple calculations we obtain

G(M)

GO - Gmon + GOSC, (19)
Here we have
oo 1 [ -wi-w) 3viD
6001002 |:| 4 ﬁz D

Te 0, 6T° (MO
OETI'D ﬁ 1|:T|'D

N Z (- )k 'exp[—2T[k(u —'Vo)/hQ]
£ 4sinh(1kw,/Q) sinh(Ttkw,/Q)

<O 21'k* T’
3 420U

z (_1)n+ 1

Gosc _
- 2
hw; ot
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N ncos[2rn(p — V) /Ao, ]
sinh(21°nT/%w,) sin(Tnw,/w,) sinh(TnQ/w, )

+ i )
wssinh (218NT/Aw,) Sin(TNw,/0,) sSinh(TNQ/w,)

w ncos[ 2mn(p — V) /7w, }

where F, and F, are Fermi integrals.

Formula (19) gives an expansion of the constriction
conductance as a Fourier series. The Fourier series in
(19) givesthe oscillating component of the conductance
and the first term gives the monotonic component of the
conductance. Thisformulaisin acertain sense an analog
of the Landau formula for the magnetic response of an
electron gas, which describes the de Haas—van Alphen
effect. Graphs constructed using formula (19) for vari-
ous angles ¢ and 8 are plotted in Figs. 2 and 3.

Unlike the starting formulas (6) and (7) used for the
numerical analysisin[7], formula(19) issuitablefor an
analytic investigation of the conductance. In particular,
it can be seen from this formula that the role of the
effective length of the constriction in the magnetic field
(defined in terms of the frequency Q) is exactly the
same as the role of temperature. As the effective length
of the congtriction decreases (with increasing Q), the
degrees of quantization become more strongly smeared
and may ultimately disappear completely.

It follows from (19) that the oscillating component
of the conductance G°* has maxima at points where
K — Vo = Ay ,(n + 1/2). These maxima are attributable
to crossing of levels E,,, with the energy p -V, and are
a manifestation of the analog of the Shubnikov—de
Haas effect in the conductance.

4. ANALYTIC INVESTIGATION
OF THE CONDUCTANCE CURVE

It follows from (18) and (19) that the monotonic
component of the conductance G™" has an amost par-
abolic profile (for T # 0). The oscillating component
consists of almost three triangular peaks smoothed as a
result of the temperature and the finite length of the
constriction. Summation of these two curves gives the
stepped structure of the curve G(). It isinteresting to note
that the smoothing of G for T # 0 is determined by the
product of two factors, sinh(2rénT/ziw)sinh(TNQ/w),
each influencing the profile of the oscillations. How-
ever, if the length of the constriction is fairly large, an
increase in the first factor with temperature may be
compensated by the smallness of the second factor to
such an extent that quantization of the conductance
may also be observed at fairly high temperatures. Thus,
formula (19) can apparently explain why quantization
of the conductance may well be observed in 3D con-
gtrictions even at fairly high temperatures, as was
reportedin[5, 6, §].
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Fig. 2. Dependences of the conductance on the chemical Fig. 3. Dependences of the conductance on the magnitude B
potential 1 = E and on the direction of the magnetic field and direction of the magnetic field defined by the polar ¢ and
defined by the polar ¢ and azimuthal 6 angles: w, = 1.61 x azimuthal 8 angles: w, = 1.61 x 1013572, w,=1x 1083 ¢
10574, =061 x 108 s, w/w,=20,B=25T, Vo = W, =20, p = 1.05 x 103 erg, V= 0.5 x 103 erg, ¢,
0.6 x 1072 erg, ¢, 6y = W5.578, T= 0.5K. B8y = 105578, T=05K.

4.1. Longitudinal Field these frequencies can be represented to within terms of

the order O(wJ/wy) in the form w; , ~ Wy + wWJ/2. We

In this case, the hybrid frequencies « have the introduce the effective cross-section radius using the
form [7] formula

1
Wz = IO+ (00,4 0)" £ )60l + (0,- )] 0,00, Ry

'(20) L—V, = >

(21)
Q= w,

In the simplest case when the cross-section is symmet- The magnetic field flux across a cross-section having
ric and the magnetic field isweak, w, < W, = w, = wy, thisradiusisgiven by ® = TBRY; . In consequence we
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find u —Vy = (Aw,00,/w0,) D/P,, where P, = 21Hac/eisthe G(D/Dy)/G,
magnetic flux quantum. Henc;a sea1sh (@)
H—Vo _ MRyt _ @ i
o, 2k T (22) 56416
Substituting (22) into (19) and discarding terms of 64141
higher order of smallness in w,/wy,: (bearing in mind sea12l
that W/, = 1 + wlwy, w/w; = 1 — wlwy), we abtain
the following expression for the oscillating component 564101
of the conductance of a 3D constriction ! ' ! ' '
0 10 20 30 40 50
G* 2rQT P/,
G, 2 b
° fi (23 641335 ®)
y nsin(mw, Ry /%) sin(Tn®/d,)
nZlsin(nnwclwo)sinh(ZT[znT/ﬁwo) sinh(TQ/wy)’
It can be seen from (23) that in this case, the conduc- 64132.5
tance undergoes Aharonov—Bohm oscillations. Neglect-
ing the weak dependence of the Fourier coefficients on
the magnetic field (the oscill ations are almost periodic),
the period will be equal to two flux quanta (Fig. 4a). 64131.5 ! ! !
For the case of a strong field (w, > ) and asym- 1247 1257 1267 1277
metric structure, (20) yields the estimate w; = W, W, = /Py

ooé/ooc < . Inthis case, the second term in the oscillat-
ing component (19) becomes appreciably smaller than the
first because of the high value of sinh(2renT/Aw,)
and can be neglected. The main contribution to G is
then made by the first term with the numerator
Ocog 2rm(u — Vp)/fiw . This term gives Shubnikov—de
Haas oscillations in the conductance at high frequency,
periodic in terms of the inverse magnetic field A(1/B) =
en/m*c(U — Vp). In order to demonstrate the existence

Fig. 4. Dependences of the conductance on the magnetic
flux /Py for (a) weak and (b) strong longitudinally oriented

magnetic fields: wy = 0.161 x 108 s, @, = 0161 x 108 572,
W/w,=20,1=6.2x 102 erg, Vy=05x 10 B erg, T= 0.6 K.

of Aharonov—Bohm oscillations in the region of strong
(0w, > W) magnetic fields, we introduce the number of
flux quantan = ®/d, in the formulafor the oscillating
component of the conductance (19). We then obtain

osc @
G™ _ nZQZT 3 -1)""n
Go fiw, &
” g cos(21iNN W,/ wy,) N 9_)f cos(21nn w,/w,) r{24)

0 O
sin(Tinw,/ w;) sinh(annT/hwl)sinh(TmQ/wl) w§sinh(nnwllwz)sinh(ZT[znT/hwz) sinh(tnQ/w,) O

The hyperbolic sines in the denominators in this for-
mula only give broadening of the oscillation peaks, so
we shall subsequently confine our anaysis to the
behavior of two functions:

cos( 21N w,/ w,)

fln) = sin(tnw,/w,) ’
o/ Wy (25)

(M) = cos(21nnw,/wy)

gty = sn(mnw,/w,)

We shall subsequently show that these factors give
oscillations of each terminthe seriesin (24). We equate
to zero the derivative of these factors with respect to the
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number of flux quanta n and find equations for the
extremum points of the functions f (n) and g(n), bear-
ing in mind that the frequencies are incommensurable,
sin(tnw,/w,) # 0 and sin(tnw,/w,) # 0, and then

sin(2rmnnw,/w.) sin(Tinw,/w,)
= (—w./Nw,) cos(21mn w,/ W) cos(Tw,/ w;,),
. . (26)
sin(21mnn w,/w,) SiN(Tinw,/ w,)
= (—w./Nw,) cos(21Nn w;/w.) cos(Tmnw;,/w,).
We shall assume that w./nw, = Aw,/u — V, and
w./Nw, = Aw/n — V,, from which it follows that
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sin(2mnw,, ,/w) < linformula(26). Wethen havethe
estimate for the extremum points;

sin(2rmnw,/w,) =0,

(27)

sin(2mmnn + 2rmnw,/w.) = 0.

These relations (27) were derived assuming that w; =
w, + W, and that the frequencies w, and w, are incom-
mensurable. The first of the relations (27) gives at the
extremum points

K=V

=N N =
hw, ’

12, .. (28)
Sincein regions of strong fields w; = w,, these extrema
correspond to Shubnikov—de Haas oscillations in the
conductance. These oscillations are attributed to the

second term in braces (24).

We shall analyze the second of the relations (27)
near the extrema of the Shubnikov—de Haas oscilla-
tions, w,n/w, = N. From this it follows that for integer
values of n extrema also exist, corresponding to oscil-
lations of the small first term in the oscillating compo-
nent (24). The distance between the neighboring max-
imain this case is equal to the flux quantum (An = 1).
These oscillations also occur far from the extrema of
the Shubnikov—de Haas oscillations but their periodic-
ity with respect to the flux is destroyed. Hence, thefirst
seriesin (24) gives Aharonov—Bohm oscillationsin the
conductance. We note that, as follows from (24), the

amplitude of these oscillationsis w: /w5 times smaller

than the amplitude of the Shubnikov—de Haas oscilla-
tions so that asthe field increases, the amplitudes of the
Aharonov—Bohm oscillations decreases as B2 and for
fairly strong fields these oscillations are completely
smeared by temperature. The Aharonov—Bohm oscilla
tions are thus superposed on the Shubnikov—de Haas
oscillations and yield the fine structure of the maxima
(Fig. 4b).

4.2. Transverse Field

For the case of atransverse field we find w, = w, SO
that the second seriesin the general expression (19) for
the conductance gives no oscillations with respect to
the magnetic field. If the magnetic field B is weak
(0, << uy) then, aswas shownin [7], the frequencies v,
and Q satisfy the equalities

0 o O
(‘01 = Q)0+OB——2——__2|:L
[bop + ;00

(29)
0 « O
Q = w,+005——0
Lo, + w, U

Since w; = wy, the oscillations with respect to the
field of the first series in (19) are very small and are
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smeared by temperature. In a strong magnetic field we
find w, = W, Q = WwWyw, [7] so that no Aharonov—
Bohm oscillations occur in this case and the Shubni-
kov—de Haas oscillations are weak (their amplitudes

are w/w: times smaller than those in a longitudinal

field) and are al'so smeared by temperature. Notethat as
the field increases, the value of Q decreases and conse-

guently the effective length | = /A/m* Q of the con-
strictionisincreased [7]. It followsfrom (19) that asthe
field increases, the factors sinh(TnQ/w), j =1, 2, ...,
decrease and consequently the smoothing of the oscil-
lating component of the conductance in (19) caused by
the finite length of the constriction also decreases.
Thus, a strong transverse magnetic field improves the
stepped structure of the conductance quantization
curve G(W)/G,,.

Note that in aweak field the curve G(L)/G, is very
similar to that in the absence of a field when the fre-
quencies w, and w, are similar but different. This is
because, as we noted in the Introduction, when w, =
w, = wy, the height of the conductance quantization
stepsis proportional to the degree of degeneracy of the
levels but aweak magnetic field leads to some effective
asymmetry of the constriction and removes this degen-
eracy (the step height becomes equal to the conduc-
tance quantum).

4.3. Effects Caused by a Change
in the Direction of the Field

It can be seen from the graphs plotted in Fig. 1 that
the frequencies wy, w,, and Q depend on the orientation
of the field B relative to the axes of symmetry of the
microconstriction (the angles 8 and ¢). It is clear from
the reasoning put forward above that when the angles 6
and ¢ change (for constant |B|), the nature of the elec-
tron transport regime in the constriction changes.

Figures 2 and 3 show the dependences G(¢)/G, and
G(B)/G, which reveal the stepped structure of the con-
ductance.

For weak magnetic fields (w; < w;, }, w?) the
frequencies w, , and Q show aclear dependence on the
angles © and ¢. For this, in equation (11) we set &; , =
~wi, + & ,and & = Wl + g5 Using the known rela-

tionship between the coefficients and the roots of the
cubic equation and neglecting small terms of the order

e’ and €, we obtain a system of linear equations to
find €. Note that terms of the order € cannot be
neglected if w, = w,.
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The system of equations to find g; has the form
£, +E+E; = W,
£10500) + £, 0 — E4wiw; = O, (30)
(00— w)e; + (w; — e, — (Wi —wh)e; = 4,

2 2 2 2 2 2 -
where a = W, W, + Wy, — W,w,. The solution of

thissystemise = Aj/A,j =1, 2, 3, where
= — (W} + 0h) w, — (W + w3)wy — (W] + 007wy,

_ 2 2 2 2 2
Al - _wx(wy + wz)(wcwx + a)’

2 2 2 2 2 (31)
AZ = wy((*)x + (*)z)(wcwy + a')v
By = wi(wy —wp) (Wiw; +a).
The above reasoning yields the estimate
W, = ooz—ﬁ
LT N T 24
— 2 Az
w, = floy =541, (32

A
Q= /0022—2—2-

Note that A does not depend on the angles 8 and ¢ but
the dependence on the anglesin 4; is determined by the
value of awhich depends on the angles according to the
formula

a = (wicos'dsin’®
2 . 2 .2 2 2 2 (33)
+w,Sin"psin"6 — w, cos B)w;.

For astrong field (wf, wj, oof < oocz) equation (11)
can be conveniently written in the form

£+as?+bE = ¢, (34)
where
_ 2 2 2 2 _ 2.2 2
a= W tw, tw—W, £ = WWw,0y;,
2 2 2 2 2 2
b = wiw],— 0w, —ww, (39)

+ ngwi + (*)(Z:y(*)i - (*)izwiv

and a> b > ¢. A solution of equation (34) may be found
by asymptotic methods using a Burman-Lagrange series.
We then have

W, = la—g+0(a), w, = %+O(s),
_ € 2
Q-A/%“O(e).

(36)
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In formula (36) only b depends on the angles.

b = wiw; — Wows —wew? + (wecos ¢ sin’e @
+wlsin’gsin’® — w; cos’8)wy;,
Note that the numerical solutions of equation (11)

show good agreement with (32) for weak fields and
with (36) for strong fields.

5. CONCLUSIONS

An analytic investigation of the conductance of a
microcongtriction located in an arbitrarily directed mag-
netic field reported in the present paper has explained var-
ious transport regimes of the microcongriction. For any
orientation of the field the dependence G(n) has a
stepped structure. The height of each step isequal to the
conductance quantum. The temperature and finite
length of the microconstriction lead to smearing of the
step thresholds. In this case, as follows from (19) the
value of 21Q/2T1tplays exactly the same role as the tem-
perature.

In fairly long constrictions (low frequency Q) the
factors characterizing the smearing of the step thresh-
olds as a result of temperature and the finite length of
the constriction may be compensated. This effect may
giveriseto astepped structure of the conductance even
a relatively high temperatures. The stepped structure
of the conductance curve G(L) is produced by the sum-
mation of the aimost parabolic monotonic component
G™"() and the oscillating component of the conduc-
tance G°(u) consisting of almost triangular peaks.

In an arbitrarily oriented magnetic field the hybrid
frequencies wy, w,, and Q depend on the angles of ori-
entation of the field B relative to the axes of symmetry
of the system. The explicit form of these dependences
is determined in Section 4 for cases of weak and strong
fields. These dependences lead to a conductance quan-
tization effect (Fig. 3).

For alongitudinal magnetic field the dependence of
the conductance on the field exhibits oscillating behav-
ior. In this case, the transport regimes for weak and
strong magnetic fields differ. In aweak field Aharonov—
Bohm oscillations occur with aperiod equal to two flux
quanta. These oscillations are clearly manifested in
long constrictions (Fig. 4a). Aharonov—Bohm oscilla-
tionsalso occur in astrong field but their period isequal
to a single flux quantum. Shubnikov—de Haas oscilla-
tionsare also observed in astrong field and are periodic
interms of thereciprocal field A(1/B) = ef/m* c(u — Vo).
The Shubnikov—de Haas oscillations have an amplitude

/w5 times larger than the Aharonov—Bohm oscilla-
tions. As the field increases, the amplitude of the Aha
ronov—Bohm oscillations decreases as B? and in fairly
strong fields they are completely smeared by temperature.
In strong fidlds the Aharonov-Bohm oscillations are
superposed on the Shubnikov—de Haas oscillations and
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produce afine structure at the maximaof these oscillations
(Fig. 4b).

In aweak transverse field, the oscillations over the
magnetic field are very small and are easily smeared by
temperature and scattering, which is determined by the
effective length of the microconstriction. In a strong
transverse field no Aharonov—-Bohm oscillations occur
and the Shubnikov—de Haas oscillations are weak since

their amplitude is w’/w5 times smaller than that in a

longitudinal field. In this case, asthefield increases the
effective length of the microconstriction increases and
consequently the stepped structure of the curve G(L)
deteriorates.
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APPENDIX

We shall analyze the Fourier transform of the func-
tion ¢(t) = f(t)e:

[ 00

_ 1 iE(t-n)
o(t) = 2HJ’dE'[tb(n)e dn. (A1)
We substitute (A.1) in the form
Xt _ lm iztoo (x—iE)n
f(t)e" = 2nIdEe J’f(n)e dn. (A.2
We introduce p = x —i& and then
Xt _ iw iEtw pn
f(t)e" = 2T[J'dE If(n)e dn. (A.3)
We introduce the notation
J’f(n)ep”dn = F(p). (A.4)
We then have
f(1) = o= [dEe ™ F(p)
21'[,[
x+_io:o (AS)
_ 1 —pt
=5 I dpe " F(p).
It follows from (A.5) that
1 X+ i .
() = 5= I e "'F(p)dp, (A.6)

X—ioo
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where the function F(p) is determined by formula
(A.4). Expression (A.6) is an analog of the Méellin
transformation. Using the relation [16]

, O0<Rep<l1 (A.7)

e”dx . m
[17e = s

and formulas (A.4) and (A.6), we obtain formula (13)
from Section 3:

a+ico
1 _ i T _px
1+ 2 I sinnpe dp, (A8)
o—ic
where o = Rep.
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Abstract—Quantum oscillations of de Haas—van Alphen and Shubnikov—de Haas and semiclassical angular
oscillations of the magnetoresistance have been observed in the quasi-two-dimensional organic metal
a-(BETS),TIHg(SeCN),. The quantum oscillations are connected with the cylindrical part of the Fermi surface.
The angular oscillations are associated with the carrier motion on both the cylindrical part and quasi-planar
sheets of the Fermi surface. The values of the Dingle temperature, Tp = 2-3 K, and the effective mass, m* =
1.03my, have been defined. The possibility of the weakening of multibody interactions has been shown in this

compound. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Charge-transfer salts with alpha-type crystal struc-
ture a-(ET),MHg(XCN),, where (ET) = (BEDT-TTF)
(bis(ethyleneditio)-tetrathiofulvalene) and M = K, TI,
Rb, NH,, X =S, Se, are among the most popul ar objects
inthe physics of organic conductors. Their studies have
provided important results in the fermiology of low-
dimensional metals. There are some reasons for this.
The specific shape of the Fermi surface (FS) in these
compounds was shown to include both a cylindrical
part characteristic of quasi-two-dimensiona electron
systems and corrugated planar sheets characteristic of
guasi-one-dimensional electron systems [1]. Alpha
metals with M = K, Tl, Rb and X = S undergo the
Peierls-type phase transition at T, < 10 K associated
with the nesting of the one-dimensional part of the FS
[2-4]. Such a transition leads to considerable recon-
struction of FS[5]. The other known metal s of thisfam-
ily retain their high-temperature structure down to the
lowest temperatures [6, 7]. Only one of them,
(ET),NH,HgQ(SCN),, undergoes a superconducting
(SC) transition [8]. The reasons for the presence or
absence of phase transformations in these isostructural
alpha-type metals are not yet clear. All these com-
pounds can be investigated by different techniques of
fermiology, such as Shubnikov—de Haas (SdH) quan-
tum oscillations of magnetoresistance, de Haas—van
Alphen (dHvA) quantum oscillations of magnetization,

This article was submitted by the authorsin English.

and semiclassical angle-dependent magnetoresistance
oscillations (AMRO) in high magnetic fields [1]. These
effects are easlly observed both in the apha salts that
undergo phase trandtions and those that maintain their
electron gtructures at low temperatures. Therefore, one
can study in detail the effect of dight changesin the chem-
ical compositions of organic conductors upon radica
changesin their electron structure. Such invetigationsare
anecessary condition for directed chemical syntheses.

It was shown earlier [6, 7] that the substitution of S
atoms by Se ones in the anions of (ET),TIHg(SCN),
and (ET),KHg(SCN), giving (ET),TIHg(SeCN),(here-
inafter, ET-TI-Se) and (ET),KHg(SeCN), (hereinafter,
ET-K-Se) resultsin the suppression of the phase transi-
tions. The complex with Tl shows such an effect even
upon substituting half of the sulphur atomsin the anion
by selenium ones [9]. One observes an increase of the
effective mass in selenium complexes as compared to
sulphur analogs and a significant role of multibody
interactions[7, 10].

Recently, the family of metallic apha salts has been
essentially widened by substituting the ET molecule by
BETS, which includes four central selenium atoms
instead of the four sulphur onesin ET [11]. In ET-met-
als, the overlapping of sulphur orbitals provides metal-
lic conductivity in ET layers. Therefore, one could
expect that the substitution of a portion of sulphur
atomswould result in significant changesin conducting
properties of metals synthesized on the base of BETS
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as compared with ET analogs. Indeed, on cooling the
new organic metals, a-(BETS),KHg(SCN), (hereinaf-
ter, BETS-K-S) and a-(BETS),NH,Hg(SCN), (herein-
after, BETS-NH-S) do not demonstrate the phase tran-
sitions characteristic of the ET anaogs [12]. Besides,
the parameters of electronic structures of new metas
change significantly as compared to the ET analogs;
namely, the effective mass decreases, the width of the
conductivity band increases, and the Coulomb repul-
sion becomes weaker [12].

The present paper reports the study of magnetic
field properties of the new metallic alpha-phase com-
pound, (BETS),TIHg(SeCN), (hereinafter, BETS-TI-Se),
isostructura to a-(ET),MHg(XCN), [13]. This com-
pound was found to show quantum oscillations (dHVA
and SdH) and semiclassical angle-dependent magne-
toresistance oscillations. The studies enabled us to
determine the shape and size of the FS, evaluate the
parameters of the electronic structure, and analyze the
low-temperature state in comparison with ET-TI-Se
and other alpha salts.

2. EXPERIMENTAL PROCEDURE

The BETS-TI-Se samples grow as parallel epipeds
with an average size of 1 x 0.5 x 0.05 mmq. The proce-
dure of chemica synthesis of the samples and their
crystal structure are described in detail in [13]. Con-
ducting layers of BETS parallel to the ac-plane alter-
nate along the b direction with the anion layers. The
longest size of samples corresponds to the a direction
and the shortest one corresponds to the b* direction.
The averaged conductivity of the samples in the con-
ducting plane amountsto =50 Q! cm™ at room temper-
ature.

DHvA oscillations were observed by a contilever
torquemeter in magnetic fields up to 14.4 T [14]. The
temperature could be lowered to 0.45 K. The magnetic
field orientation was varied by rotating the sample with
respect to the field direction in the ab*-plane.

The magnetoresi stance was measured by a standard
four-probe technique using 330 Hz ac applied mainly
perpendicularly to the plane of the highest conductivity
ac. This direction provides the best conditions for the
observation of AMRO [1]. The maxima magnetic field
valuewas 14 T in AMRO experiments, and the minimal
temperature was 1.45 K. The sample orientations were
changed by using atwo-axes-rotation insert with which
the sample could be rotated with respect to the field
direction in different planes perpendicular to the
ac-plane. This portion of the SdH experiments was car-
ried out using magnetic fields up to 20 T with the tem-
perature reduced to 1.3 K, and at the current direction
along a.
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3. RESULTS

All the BETS-TI-Se samples showed a metal-like
dependence of resistance on temperature with no pecu-
liarities. The residual resistance ratio at 1.4 K is about
200. Inthe magnetic field perpendicul ar to the conduct-
ing plane and at the current direction along b*, the
resistance grows amost without saturation and
increases approximately fivetimes at 14 T [13]. At the
current direction along a (Fig. 1), the magnetoresis-
tance is more than two times less and saturation is
present.

In magnetic fields higher than 10 T, SdH and dHVA
quantum oscillations are observed (Figs. 1, 2). At the
field direction perpendicular to the conducting plane,
guantum oscillations contain only the fundamental fre-
quency F = 640 T. The angular dependence of this fre-
quency from the dHVA experiment isdepictedin Fig. 3
and is described by the relationship

F(6) = 640[ T]/cosb, )

where 8 isthe angle between b* and thefield direction. In
magnetic fields tilted from the b* direction, one observes
the beat of the fundamenta frequency (Figs. 1, 2). The
beat is absent only at the angles closeto8 =0and 6 =
+20°. The angular dependence of the beat frequency in
the rotation plane ab* from the dHvA and SdH experi-
ments is presented in Fig. 4. It can be described by the
expression:

Foeat = AF =30[T]/cosb 2

(Fpest 18 the difference between frequencies on the FFT
spectrum: seeinsertsin Figs. 1 and 2).

The angular dependence of the dHVA oscillation
amplitudeis presented in Fig. 5. At field directions cor-
responding to 6 = £45°, the oscillation amplitude van-
ishes. Most probably, this vanishing is due to so-called
“gpin zeros’ associated with the spin reduction factor
Rs from the Lifshitz—Kosevich (LK) formula[15]

Rs = cos(mrpg/2), (©)]

wherer =1, 2, 3, ... isthe harmonic index, 4 = m*/m,
isthe relative effective mass (m, is the mass of the free
electron), and g isthe g-factor. Factor Rg vanishes under
conditionpg=2n+ 1, wheren=0,1, 2, ....

The effective mass of the samples under study
(which does not always coincide with m* from (3)) was
estimated from the changes in the amplitudes of dHVA
oscillations with temperature. Such changes are
described by the temperature reduction factor R; in the
LK formulafor the oscillation amplitude [10]:

arpT 1
H sinh(arpT/H)’ “)

where o = 2mkgmy/eh = 14.7 T/K. The dHVA results
for the effective mass at different field directions are
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Fig. 1. Magnetoresistance showing Shubnikov—de Haas oscillations; T=13 K, 8 =5°, | || a. Insert: FFT of these oscillations.
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Fig. 2. Magnetization with de Haas—van Alphen oscillations; T = 0.45 K, 8 = -50°. Insert: FFT of these oscillations.

shownin Fig. 6. The angular dependence of the massis i.e., the value of the effective mass in the conducting

quite well fitted by the expression: plane constitutes m* (0) = 1.03m,.
The Dingle temperature was evaluated from the
m* = 1.03my/ cos6, (5 field dependencies of the dHVA oscillation amplitude
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Fig. 3. Angular dependence of the fundamental frequency of
dHVA oscillations. The solid line corresponds to (1).
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Fig. 5. Angular dependence of the dHVA oscillation ampli-
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Fig. 7. Angular dependencies of the magnetoresistance; H =
14T, T=145K, | ||b*. The solid line corresponds to the
rotation plane b*c; the dashed line corresponds to the rota-
tion plane close to b*a.
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Fig. 4. Angular dependence of the beat frequency of dHVA
and SdH oscillations. The solid line correspondsto (2).
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Fig. 6. Angular dependence of the effective mass. The solid
line correspondsto (5).
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Fig. 8. AMRO maxima positions in the tan® scale plotted
in polar coordinates. The polar angle corresponds to the azi-
muthal anglein the ac-plane. Arrows show the directions of
the reciprocal lattice. Insert: the FS cross section recon-
structed from these data.
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using the expression for the Dingle reduction factor
Rp [15]:

Ry = exp(—arpuTp/H).

To minimize the undesirable effect of the beat on the
field dependence of the amplitude, the Dingle plots
were made for 6 = 0°, at which no beating was
observed. Such an evaluation yields T = 2-3 K.

The angular dependencies of the magnetoresistance
were measured using the two-axes-rotation insert in the
following way. At first, at theinitia position of the sam-
plerotator b* [0 H, ascrew for manual ¢-rotation (¢ is
an azimuthal angle lying in the ac-plane) around the b*
axiswas connected with the rotator, and a definite plane
of B-rotation was set. An angular coordinate 6 of this
rotation was measured from the c axis. After that, the
screw was disconnected and the sample was rotated
with a stepper motor around the axis perpendicular to
the field direction. The angular coordinate of the
recorded magnetoresistance corresponded to the angle
0 between H and the b* axis. The measurements were
done for aset of ¢ in the range 0°-180° with a 4° step.
Examples of recorded dependenciesfor ¢ =0°and ¢ =
88° are presented in Fig. 7. Angular magnetoresistance
oscillations (AMRO) are well pronounced. The results
of the AMRO observations at all rotations are summa-
rized in Fig. 8 and Fig. 9 by plotting the minima and
maximaof the magnetoresi stance, respectively, in polar
coordinates where the angle ¢ acts asapolar angle and
the length of aradius-vector of every point corresponds
to the tangent of angle 6, at which the extremum of
AMRO was observed. Arrows indicate the directions
corresponding to vectors of the reciprocal lattice. In
Fig. 9, only positive values of tanBsing are taken in to
account.

4. DISCUSSION

On decreasing the temperature from 295 K to 1.45 K,
the resistance of the samples falls monotonically with-
out any anomaly [13]. No sign of a SC transition, as
observed in (ET),NH,HgQ(SCN), [8], or of a Peierls-
type transition, realized in a series of other alpha-sats
[2-4], could be detected. The field dependence of the
resistance in BETS-TI-Se appears as a regular curve
with amost no saturation [13]. Thus, both the new
alpha-phase metal and its ET analog [ 10] have no phase
transitions within the 1.45-295 K temperature range.
The residual resistance ratio in BETS-TI-Se, RRR =
200, thevalue of the classical magnetoresistanceat H || b*
and H =14 T, isdmost an order of magnitude higher
than the same averaged values of the ET analog [6, 10].
Such a difference is unlikely caused by the increase of
the relaxation time in the new metal, since the Dingle
temperature is two to three times higher than in the ET
salt. The amplitude of the SdH oscillations is signifi-
cantly lower in the new metal than that in the ET salt
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Fig. 9. AMRO minima positions in the tan® scale plotted

in polar coordinates. The polar angle correspondsto the azi-
muthal one in the ac-plane. Arrows show directions of the
reciprocal lattice.

and is in accordance with the higher values of the Din-
gletemperatures[10]. Thelarge value of classical mag-
netoresi stance seems to be most probably caused by an
essentially higher contribution of carriers associated
with the quasi-one-dimensional FS sheetsin the BETS
salt as compared with the ET one. The current direction
along open Fermi sheets| || b* provides the best condi-
tions for the maximal value of this contribution. The
weak saturation of the magnetoresistance, which is
characteristic of open orbits, supports this supposition.
Indeed, changing the current directionto | ||a decreases
the value of the magetoresistance almost 2.5 times, and
noticeabl e saturation can aso be observed (Fig. 1).

Quantum oscillations SdH and dHVA demonstrate,
in the samples under study, the only fundamental fre-
quency F=640T at H || b*. Thisvalueis close to that
found in the quantum oscillations of the ET analog
[10]. As expected for quasi-two-dimensional metals,
the behavior of the angular dependence of the funda-
mental frequency is described by the relationship (1)
and corresponds to the cylindrical shape of FS with the
axis along the b* direction.

AMRO presented in Fig. 7 are characteristic fea-
tures of many low-dimensional organic metals [1].
They may be associated with carrier motion on the
cylindrical part of FSif this cylinder is slightly corru-
gated along the b* axis[16]. In this case, the maxima
of AMRO are periodic in tan® and their positions are
described by the relationship [17]:

mi(n—1/4) = (k"™(6) ()
ki (¢)d

2000

tanB,(9) =

(6)
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where k™ (¢) is the in-plane ac Fermi wave vector

component whose projection k™ to the field rotation
plane defined by an angle ¢ is maximal; u is the in-
plane ac component of the electron hopping vector; dis
an interlayer distance; and n = £1, £2, ... isan integer.
Thesign “+” correspondsto positive or negative values
of the angle 6,. Knowing the value of the period of

AMRO A(tan8,,), one could determine the value k™

at afixed azimuthal angle ¢, and, knowing aset of kyy

at different angles ¢, one could determine in detail the
shape of the FS cross section in the conducting plane
[17]. If @l the values of tan®, are drawn in the polar
coordinate system with the azimuthal angle ¢ asapolar
one, they form a set of concentric closed curves. At
fixed angles ¢, the distances between the curves are
equidistant and equa to the period of AMRO in this
rotation plane. Figure 8 shows the maximaof AMRO in
polar coordinates. They form a set of closed curves.
The period of AMRO variesfrom A = 0.9 at the sample
rotating in the ab*-plane to A = 1.2 at the sample rotat-
ing in the cb*-plane. According to [17], the reconstruc-
tion of the FS yields the cross section of the cylindrical
FS in the conducting plane as a figure resembling an
elipsewith half-axes kg, = 1.2 x 10’ cv™* and kg, = 1.6 x
107 cm™ (see insert in Fig. 8). The area of such an
elipse, S~ 1k ke, isin agood agreement with the fre-
guency of quantum oscillations.

The second possible mechanism for the appearance
of AMRO in low-dimensional metals is the motion of
carriers along the planar FS sheets characteristic of
guasi-one-dimensional electron systems. In this case,
the FS sheets must be corrugated in two directions[18].
Now the minima of magnetoresistance oscillations are

periodic in tan® and follow the relationship [19]:
tan6,(d)cosd = cotP + nK,/K,sinf, )

where ¢ isthe azimuthal angle counted from the direc-
tion parallel to the FS plane; K; and K, are the lengths
of thetranglation vectors of thereciprocal latticethat lie
inthe FS plane; B isthe angle between them; and n =0,
1, +2, ... isaninteger. In polar coordinates (wherethe
angle ¢ actsasapolar angle), all valuesof tan@, form
a set of straight lines parald to the one-dimensiona
axis of the crystal under study. The distance between
these straight lines constitutes K,/K,sinf. Figure 9
depicts the minima of AMRO in polar coordinates. A
set of straight linesparallel to K ,iswell pronounced. In
this case, the vectors K, and K . of the reciprocal lattice
act as vectors K; and K, respectively. The distance
between the straight lines constitutes 0.45 = K,/K.sinp,
which isin good agreement with the parameters of the
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crystal lattice [13]. Therefore, the results presented in
Fig. 9 indicate open FS sheets perpendicular to the K,
direction.

It should be noted that these results appear as the
first simultaneous observation of quasi-one-dimen-
sional and quasi-two-dimensional AMRO in the al pha-
type crystals. For example, only AMRO associated
with the cylindrical FS sheet were observed in ET-TI-
Se [10]. The observation of quasi-one-dimensional
AMRO in BETS-TI-Se is most probably associated
with alarger degree of corrugation of the open FS sheets
aong the c direction. In the isostructural BETS-K-S and
BETS-NH-S sdlts, the increase of corrugation in this
direction was predicted theoreticaly [20]; therefore,
this assumption seems to be right. Such an enhance-
ment of corrugation may be one of the reasons for the
suppression of the Peierls-type transition in the alpha-
BETS sdts. (The smultaneous presence of AMRO
associated with closed and open FS parts results in the
appearance of “wrong” points in Figs. 8 and 9. For
example, a minimum with no physical origin aways
exists between two maxima of magnetoresi stance asso-
ciated with the cylindrical FS.) Thus, it is shown exper-
imentally that FS in BETS-TI-Se consists of a quasi-
one-dimensional part (two corrugated planes parallel to
the K Ky-plane) and a quasi-two-dimensional part (cor-
rugated cylinder with the axis along b*).

The corrugation of the cylindrical part of the FS
may be reflected in the beating behavior of the quantum
oscillations, since the corrugated cylinder contains at
least two close extremal cross sections. In this case, at
the magnetic field direction approaching the directions
described by (6), the frequency of the beat tendsto zero
[1] and the amplitude of oscillations with the funda-
mental frequency sharply increases [16, 17]. The
BETS-TI-Se samples show the beat of the fundamental
frequency (Figs. 1, 2); however, its behavior differs
from that described above. The observed beat disappear
at field directions corresponding to 6 = 0° and 6 = £20°;
however: (1) the angular dependence of magnetoresis-
tance shows no AMRO with the maximaat these angles
(see Fig. 7); and (2) at angles approaching 6 = 0° and
0 = +£20°, the frequency of the beat remains amost
unchanged (Fig. 4) and the oscillation amplitude in the
nodes increases in such way that the nodes fully disap-
pear at these angles. Therefore, the observed beat can-
not be explained by the corrugation of the FS cylinder.
Another explanation could be crystal imperfections
(twinning, bicrystal), but the X-ray analysis of the crys-
tal structure does not support this possibility. The mag-
netic interaction seems hardly to be the reason for the
beat [15], since the amplitude and the dHVA oscillation
frequency arerather small. Thus, the reason for the beat
observed has not yet been clarified and requires further
investigations.

The angular dependence of the effective mass fol-
lows (5) as expected for a cylindrical FS. The value of
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the effective mass in the conducting plane m* = 1.03m,
is two times lower than that in the ET salt and is close
to the value of the effective mass observed in BETS-K-S
and BETS-NH-S [12]. The decrease of the effective
mass seems to be characteristic of al apha-phase met-
als with the BETS cation. The angular dependence of
the dHVA oscillation amplitude exhibits “ spin zeros” at
0 = +45°. Using the condition for the “spin zeros’” ug =
2n + 1 and the angular dependence of the effective mass
as (8) = u(0)/ cosb and assuming n = 1, one could esti-
mate the value of the spin-splitting factor [15]:

S= _g — gSmC(1+a):
2 2my(1+a')

1.05, (8)
where gg is the g-factor taken from the ESR measure-
ments and approximately equal to 2 for most organic
metals[1], m.isaband mass, a isacorrection constant
to the band mass which includes electron-electron cou-
pling, and a' is a correction constant to the g-factor
which includes electron—€lectron coupling. If electron-
electron coupling is neglected, (8) yields: m, = 1.05m,.
(Taking into account that only the “spin zero” a 6 = #45°
is observed, the choice of the value n = 1 needs expla-
nation. If we assume n = 2, then the value of the band
mass m, = 0.6my, is too small in comparison, for exam-
ple, with the theoretically calculated band mass for
BETSK-S and (BETS),TIHg(SeCN),, m. ~ 0.6m,
[12]. If we assume n = 2, then the value of the band
mass m* = 1.8my, is too large in comparison with the
effective mass m* = 1.03m, mentioned above.) Thus,
the band mass coincides with the effective mass deter-
mined from the temperature dependencies of the quan-
tum oscillations amplitude. The band mass m. is gener-
aly renormalized not only by the electron—electron but
aso by the electron—phonon coupling:

m* = my(1+a)(1+A), 9)

where A is the electron—photon coupling correction
constant. This would be in agreement with the experi-
mental dataif we suppose the full absence of multibody
interactions (o =a'=A =0) in BETS-TI-Se. Thiscould
explain the absence of any phase transitions in this
compound. Considering that such transitions were
observed neither in BETS-K-Snor in BETS-NH-S and
that the value of the effective massin these compounds
isalso closeto m, [12], one could suggest the weaken-
ing of multibody interactionsin these saltsaswell, and,
therefore, the absence of the SC transition in BETS-
NH-Sis easily explained. In this case, one should sug-
gest that all a-BETS metals are not promising for real-
ization to the SC state.

However, the above conclusions have a few objec-
tions. (1) The band mass eval uated from theoretical cal-
culations differs aimost two times from the effective
mass determined experimentaly in BETS-K-S and
BETS-NH-S [12], in contrast to the experimental
results for BETS-TI-Se; (2) The contribution of elec-
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tron—electron coupling may be sufficiently large in
organic low-dimensional metals due to a low carrier
concentration [21]. Therefore, the problem of multi-
body interactions in a-BETS metals requires new,
detailed experiments.

5. SUMMARY

The SdH and dHvVA quantum oscillations and
AMRO have been studied in the new organic metal
(BETS),TIHg(SeCN),. The AMRO associated with the
carrier motion both on cylindrica and quasi-planar
parts of the FS were for the first time simultaneously
observed in aphatype metals. The detailed study of
AMRO enabled us to determine the shape and size of
the FS. The quantum oscillations show the only funda-
mental frequency, F(0) = 640 T, connected with the car-
rier motion on the cylindrical part of the FS. The beat
of the fundamental frequency is observed. The beat
behavior cannot be explained by effectswhich are pres-
ently known. The evaluation of the parameters of carri-
ers associated with the cylindrical FS, namely, the Din-
gle temperature Ty = 2-3 K and the effective mass in
the conducting plane m* ~ 1.03m, was carried out. The
angular dependence of the dHVA oscillation amplitude
showed “spin zeros” The analysis of the positions of
“gpin zeros’ considering the values of the effective
mass allowed one to suggest the weakening of multi-
body interactionsin the a-(BETS),TIHg(SeCN),.
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Abstract—An analysisis made of characteristics of the superconducting state (s- and d-pairing) using asimple,
exactly solvable model of the pseudogap state produced by fluctuations of the short-range order (such as anti-
ferromagnetic) based on a Fermi surface model with “hot” sections. It is shown that the superconducting gap
averaged over these fluctuationsis nonzero at temperatures higher than the mean-field superconducting transi-
tion temperature T, over the entire sample. At temperatures T > T, superconductivity evidently existsinisolated
sections (“drops’). Studies are made of the spectral density and the density of states in which superconducting
characteristicsexist in therange T > T, however, in this sense the temperature T = T, itself is no different in any
way. These anomalies show qualitative agreement with various experiments using underdoped high-tempera-
ture superconducting cuprates. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Among the numerous anomalies in the electronic
properties of high-temperature superconductors partic-
ular interest is being directed toward the pseudogap
state observed mainly at below-optimum carrier con-
centrations [1, 2]. These anomalies appear in many
experiments such as optical conductivity measure-
ments, NMR, inelastic neutron scattering, angle-
resolved photoemission spectroscopy (ARPES), and so
on (see the review [1]). Particularly clear evidence of
the existence of this state is observed in ARPES exper-
iments[1, 3] which demonstrate essentially anisotropic
changes in the spectral density of the carriers over a
wide range of temperature in the normal and supercon-
ducting phases of these systems. The maximum of
these anomalies is observed near the point (11, 0) in the
Brillouin zone, while they are amost completely
absent in the direction of the zone diagonal [near the
point (1T, 10). Qualitatively these anomalies can be con-
sidered as the complete “destruction” of the Fermi sur-
face near the point (11, 0), with Fermi-liquid behavior
conserved in the direction of the diagonal. In this sense
itisusual to talk of the “d-symmetry” of the pseudogap
matching the symmetry of the superconducting gap in
these compounds [1-3]. However, the fact that
pseudogap anomalies are observed up to temperatures
T~T*, appreciably higher than T, may indicate that the
nature of these anomaliesis completely different and is
not directly related to superconducting pairing. This
conclusion is also supported by the fact that the
pseudogap state is mainly observed for nonoptimum
compositions close to the antiferromagnetic phase of
high-temperature superconducting cuprates.

In the theoretical context, attempts to construct
models of the pseudogap state of high-temperature

superconductors follow two main approaches. One is
based on the very popular model of the formation of
Cooper pairs above the superconducting transition tem-
perature[2, 4—7]. The other assumesthat the pseudogap
state is caused by fluctuations of the antiferromagnetic
short-range order (see, for example, [8-12]).

Most theoretical studies have been made of the
pseudogap statein the normal phaseaT > T.. In arecent
study [13] Posazhennikova and Sadovskii proposed a
very simple, exactly solvable model of the pseudogap
state, based on the concept that the Fermi surface has
“hot” (planar) sections, and this model was used to con-
struct a Ginzburg—Landau expansion for various types
of Cooper pairing and to study the qualitative effects of
the pseudogap (caused by fluctuations of the antiferro-
magnetic short-range order) on the fundamental prop-
erties of superconductors near T.. The present paper is
devoted to the further development of this simplified
model and analyzes the characteristic features of the
superconducting state over the entire temperature range
T<T.

2. MODEL OF THE PSEUDOGAP STATE

We shall analyze an extremely simplified model of
the pseudogap state [13] based on a pattern of well-
devel oped fluctuations of the short-range antiferromag-
netic order, similar to the model of “hot spots’ on the
Fermi surface [11].! We shall assume that the Fermi
surface of a two-dimensional electron system has the
form shownin Fig. 1. Thistype of Fermi surface hasin
fact been observed in ARPES experiments on high-

1 We note that our analysis can essentially also be applied to the
case of short-range order fluctuations of the charge density wave
type and other similar models.
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Fig. 1. Fermi surface of atwo-dimensional system. The hot
sections, of width ~&~L, are shown by the heavy lines.

temperature superconducting cuprates (see, for exam-
ple, the very recent studies [14, 15]). We shall assume
that the fluctuations of the short-range order are static
and Gaussian, determining their correlation functionin
the following form (see [8]):

&t E‘l
S(q) - 5 ) 2! (1)
nz(qx Q) +E7(q—-Q,)*+E

where ¢ isthe correlation length of the fluctuations and
the scattering vector is taken in the form Q, = +2k,
Q =00rQ,==*2kg Q,=0. We postulate that only elec-
trons from the planar (“hot™) parts of the Fermi surface
shown in Fig. 1 interact with these fluctuations and this
scattering is in fact one-dimensional. The effective
electron interaction with these fluctuations will be
described by (2m2W2Y(q) where the parameter W has
the dimensions of energy and determlnes the energy
scale (width) of the pseudogap.? The choice of scatter-
ing vector Q = (£ 2K, 0) or Q = (0, +2k;) implies a pat-
tern of incommensurate fluctuations (it is possible to
generalize to the commensurate case [13] but we do not
consider thishere). Inthelimit & — oo, thismodel can
have an exact solution using methods proposed for the
one-dimensional casein [16]. For finite { we can con-
struct an “almost” exact solution [11, 12] using a gen-
eralization of the one-dimensional approach developed
in [17, 18]. In the present study we only consider the
simplest variant of the model with § —» o, when the
effective interaction with the fluctuations (1) has the
very simple form:®

(2m)* W 8(ql + 2P£)8(ql,) +3(ay £ 2pe)3(a)} - (2)

In this case we can easily sum al the perturbation the-
ory seriesfor an electron scattered at these fluctuations

2Wecan say that we are introducing the effective interaction “ con-
stant” with fluctuations of the type W, = W[6( pg —pY6( pg +p) +

a(py —Pe(p; + py)].

3 We stress that because of the Gaussian nature of the fluctuations
the limit & —— 0 does not imply the establishment of any long-
range order.
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[16] and for the single-electron Green's function we
obtain [13]

00

G(e,, p) = J’dDQP(D) 5

(ien)’ —zp D(9)*
—pe) (vg isthe velocity at the Fermi

©)

where &, = VF(lpl

surface), €, = (2n + 1)TT, and the fluctuating dielectric
gap D(¢)) isonly nonzero in the hot sections:
0 n_ n
DD’ O<g<a, 5 GS([)SZ,
D(g) = O - (4)
%b, as@s< E —-a,

wherea = arctan( pg /pe) and @isthe polar angle deter-
mining the direction of the vector p in the plane p,p,.
For other values of ¢ the value of D(¢) is obviously
determined by analogy with (4) from symmetry con-
cepts.

The amplitude of the dielectric gap D is random and
obeys a Rayleigh digtribution [17] (its phase is then also
random and uniformly distributed on theinterva (0, 2m)):

D?
—exp% WzEf (5)

Thus, at the hot sections the Green’s function has the
form of a“normal” Gor’ kov Green's function averaged
over the fluctuations of the dielectric gap D distributed
in accordance with (5). The “anomalous’ Gor’kov
functions at these “dielectrified” sections are zero
(because of the random phases of the dielectric gap D),
which corresponds to the absence of any long-range
order but their pair averages are nonzero and make
some contribution to the two-particle Green’s function
[13, 16]. By varying the parameter a in (4) intherange
0 < a < 174, we can change the size of the hot sections
on the Fermi surface for which the nesting conditions
{p—q = —<p Is sdtisfied. In particular o = 174 corre-
sponds to a square Fermi surface. Outside the hot sec-
tions [the second inequality in (4)] the Green’s func-
tion (3) is smply the same as the Green’s function of
the free electrons.

Results of calculations of the electron density of
states and the spectral density corresponding to (3) are
presented in [13] and demonstrate the formation of a
pseudogap (having the characteristic width ~2W) and
non-Fermi-liquid behavior at the hot sections. In the
model having a finite correlation length & the Green's
function for these sections is represented as a continu-
ousfraction [19] (seesimilar resultsin[11, 12, 17, 18]).
Inthis case, the spectral density demonstratesincreasingly
smeared behavior (compared with the case § — o) with
decreasing &, which was described in detail in [11, 12,
18]. In[19] thismodel was used to cal culate the optical
conductivity of a two-dimensional system in the
pseudogap state.

?(D) =
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3. SUPERCONDUCTIVITY
IN THE PSEUDOGAP STATE

We shall now analyze superconductivity using this
model. We shall assume that superconducting pairingis
caused by an attractive potential which has the follow-
ing very simple form [13]:

V(p, p) = V(o ¢) = -Ve(p)e(). (6)

Here @ is the angle which, as before, determines the
direction of the electron momentum p in the plane and
for e(¢) we take the smplest model dependence:

o(q) = (L (s-pairing), @
¥ = Bzcos(29)  (d-pairing).

The attraction constant V is usually assumed to be non-
zeroin acertain layer of width 2w, near the Fermi level
(w, isthe characteristic quantum frequency responsible
for the attraction of electrons). In this case, the super-
conducting gap has the form

A(p) =A(9) = Ae(9). (8)

We shall first consider superconductivity in asystemin
which there is afixed dielectric gap D at the “hot” sec-
tions of the Fermi surface. The problem of supercon-
ductivity in a system with a partially dielectrified spec-
trum at various parts of the Fermi surface has been
addressed in various studies (see, for example [20, 21])
and was analyzed by Bilbro and McMillan [22] using a
model very close to our case, from which we can use
some of the results directly or simply generalize them.

In particular, for s-pairing the equation for the
superconducting gap A in this model has the form

o O tapi& +D°+A%D)

. 2T
1= A[dEm
-[ % JE2+ D%+ AY(D)
©)
e+ A%(D) o
+(1-8) 2t__H
JE+' D) [

where A = VN(0) is the dimensionless pair-interaction
constant [Ny(0) is the density of states of free electrons
at the Fermi level] and the parameter o = 4a/Tt deter-
mines the fraction of hot (planar) sections on the Fermi
surface.

In equation (9) the first term on the right-hand side

corresponds to the contribution of hot (dielectrified)
sections for which the electron spectrum has the form

[22] E, = /&5 + D?+ A% and the second term givesthe
contribution of the “cold” (metal) sections where the
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spectrum has the usual form in BCS theory: E, =

J&2 + A%, Equation (9) determines the superconduct-

ing gap A(D) for afixed dielectric gap D which is non-
zero at the “hot” sections.

For d-pairing the similar equation has the form

W,

-
1=A=-[dé
!

a &+ D2+ 4%(D)€(g)

 Jdoe’ (@ — ——— (10)
5 J& + D*+ 2%(D)e%(g)

e I DY

+ J’d(pez((p) — Al - 0

a JE+a (D)) O

It can be seen from these equations that A(D) decreases
with increasing D and A(O) isthe same as the usual gap
A, in the absence of any dielectrification at the planar
sectionswhich appears at thetemperature T = T, deter-
mined by

(11)

_LedE o E
1 =A[—=tanh
,(I:E 2TcO

both for s- and d-pairing.

For D —» oo the first termsin (9) and (10) vanish
since the corresponding equationsfor A, = A(D — )

have the form
L cdE(A=d), | JE+AL
1—)\I > 2tanh 5T
O/\/E +Aoo
(s-pairing),
1= 22 [ 2012010
el T
(d-pairing).
Equation (12) agrees with the equation for thegap D = 0

with the renormalized coupling constant A = A(1—a)
so that for s-pairing

A, = Ay (A=A1-@)) (14)

and thus a nonzero gap for D —» o appears when
T < Tow

(12)

e 4

(13)

Te = Ty (A= A(1=@)). (15)
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For the case of d-pairing we obtain from equation (13)

Tew = Teo (A= A(1—-0y)), (16)
where
o, = G +%“5‘) (17)

isthe effective fraction of planar sections for d-pairing.
Hence, for T < T, the gap is nonzero for any values of
D and decreasesfrom Ay to A, withincreasing D. When
Te < T< Ty, thegapisonly nonzerowhen D < D,,,.. The
corresponding dependences of A on D are easily
obtained by solving equations (9) and (10) numerically.

In our model of the pseudogap state the dielectric
gap D is not fixed but is arandom quantity with adis-
tribution given by (5). The equations obtained above
must be averaged over all these fluctuations. Then we
can directly calculate the exact superconducting gap
[AJaveraged over the fluctuations of D:

[

[MO= IdD@(D)A(D)
(18)

QA(D)

The dependences A(D) described above have the result
that the average gap (18) is nonzero asfar as T = T,
i.e., as far as the superconducting transition tempera-
ture in the absence of pseudogap anomalies. However,
the superconducting transition temperature T, in a
superconductor with a pseudogap is clearly lower than
Ty [13]. This paradoxical behavior of [AOevidently
implies that local regions with A # O (superconducting
drops) induced by fluctuations of D appear over the
entire temperature range T, < T < T4 and a supercon-
ducting state coherent over the entire sample is only
established intheregion T < T.. Quite clearly, this qual-
itative picture can only be completely substantiated by
analyzing amore realistic model where the fluctuations
of the antlferromagnetl c short-range order have afinite
length £.4 However, the simplicity of the {§ — o
model considered here means that an exact sol ution can
be obtained immediately for (AL

In order to determine the superconducting transition
temperature T, in the entire sample we shall use the
standard procedure of the mean-field approximation
(see, for example, a similar procedure applied to a
superconductor with impurities [24]) which is under
the assumption of self-averaging of the superconduct-
ing gap over the fluctuations of D (i.e., A isindependent

= —J’dDDexp

4 The qualitative situation here resembles the formation of an inho-
mogeneous superconducting state induced by strong fluctuations
of the local density of states near the Anderson metal—insulator
transition [23, 24].
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of the fluctuations of D). The equations for the mean-

field gap A, then have the form
[l
W D
1= )\J’dE[p(—J’dDDexpD DO
D
0
(19)
[22 2 2 2 2
tanh—E * D * Ay tanh—E * Ao ]
X 2T +(1—&)—2T E
JE D+ Ay JE+AL D
D
for s-pairing and
[l
% %Lo 5
_ 1,4 0D O
°
0
e & DAL E(Q)
2T
x [doe’ (@) — === (20)
0 J& + D% + 7€)
s Y S A ()

2T

JE + D% e (@)

+ J’d(pez((p)

o o

for d-pairing.

From equations (19) and (20) we can easily derive
the corresponding equations for T.. For example, for
s-pairing we have

0. 2 0 D’
1 = A[pm—(dDDexp=——
0 WZ_!. Ol WZD
(21)

“EZ+D +(1- O()J'd&tanh 5

2TC 0

UETD

For d-pairing @ in (21) must be replaced by o, from
(17). These equations for T, are the same as those
obtained in the microscopic derivation of the Gin-
zburg-Landau expansion using this model in [13]
where they were studied in detail. In general we always
have Te,, < T.< T
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Thetemperature dependences of the average gap (AL
and the mean-field gap A,y obtained by means of a
numerical solution of the equations from our model for
the case of s-pairing are plotted in Fig. 2°The gap A
vanisheswhen T = T, < T, while [Ais honzero as far
asT =T, and the correspondi ng “tails’ in the temper-
ature dependence of [Allintherange T, < T < Ty are, in
our view, consistent with the existence of supercon-
ducting “drops’ in this region in the absence of super-
conductivity over the entire sample, as was described
above. We note that the temperature dependences
[A(T)Opresented in Fig. 2 are similar to those for the
gap in underdoped high-temperature superconducting
cuprates extracted from ARPES experiments [3, 25]
and from measurements of the specific heat [26]
assuming that the observed temperature T, in these
samples corresponds to our mean-field T, whereas
dropswith [A[ O existintherange T> T, asfar as T,
which is substantially higher than T.. This interpreta-
tion of the data would imply that in the absence of a
pseudogap the underdoped cuprates would have a sig-
nificantly higher superconducting transition tempera-
ture.

Although, in our opinion, superconductivity is not
present over the entire sample when T, < T < T, the
existence of a nonzero average gap [ALin this region
leads to the appearance of various anomalies in the
observable quantities, such as the tunneling density of
states and the spectral density measured in ARPES
experiments, as we shall see subsequently.

4. SPECTRAL DENSITY AND DENSITY
OF STATES

The delayed electron Green's function near the hot
section of the Fermi surface in the superconducting
state has the form

00

GY(E &, = J’dD@(D)

(22)
X E+ Ep ]
(E+i0)*~&;-D*~A%(D)e*(¢)
The corresponding spectral density is.
1
A(E. &) = —ZImMG"(E, &,)
2" D’
- V?IdDDexpE—VVZ%E+ £,) (23)
0

x 8(E5 + D* + A*(D)e’(g) — E).

5 For d-pairing the temperature dependences of [AQand Ay are
qualitatively similar to the corresponding dependences for s-pair-

ing.
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TIT,q

Fig. 2. Temperature dependences of the superconducting
gaps A (dotted curves), [AC(solid curves), and Aq (dashed

curve) for s-pairing: (1) A =0.4, a =2/3, wy/W=3 (TdTn=
0.42),(Q A =04, a =0.2, w/W=1(TJTg = 0.71).

Using the mean-field procedure, in which we assume
that A = A; does not depend on D, we obtain

El + nE
An(E,E,) = llE_jg
W
A7 (@) - EZD
x ex Dp i 24
pD W (24)
x B(E*— &5~ A% e(9)).

In this approximation a gap appearsin the spectral den-
sity at the Fermi surface (¢, = 0) when [E| < A, and dis-
appearswhen T — T.(A,+ — 0). Infact we have seen
that the gap A depends strongly on the dielectric gap D
[see (9) and (10)] so that from (23) we have

E|+&,sgnE 0 DO
MEG) = 3 e
i (25)
x1+80)  eg)
dD? D=D

where D, are the positive roots of the equation D? + Ef, +
A%(D)eX(q) — E? = 0. The energy dependences of the
spectral density for §, =0, i.e., for the electron momen-
tum at the Fermi surface (we shall subsequently confine
our analysisto this case) are plotted in Figs. 3 and 4 for
s and d-pairing respectively.
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0.4

0 0.4 0.8 1.2 1.6 2.0
E/W

Fig. 3. Spectral density at the Fermi surface for s-pairing
and T/Tg = (1) 0.8, (2) 0.4, (3) 0.1: () A = 0.4, a =0.2,
WJW=1(TSTen=0.71, T/T = 0.54); dotted curve—mean-
field spectral density A (E) for T/Teg = 0.4; (b) A = 0.4,
G = 2/3, /W =3 (TdTyy = 042, Teo/Tep = 7 x 1079); the
dotted curve gives the mean-field spectral density A (E) for
TIT=0.1.

For T, < T < Ty, adiscontinuity is observed in the
spectral density at E = D, caused by a discontinuity
in the derivative dA%(D)/dD? at D = D (i.€., the max-
imum value of D at which the gap A(D) is nonzero).
Effects involving the finite correlation length & of the
fluctuations inevitably smooth this discontinuity,
although the characteristic dip after the principal spec-
tral density peak is conserved. A similar dip was
observed in the ARPES experiments [1, 3] athough
this has not yet been fully interpreted.
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(a)
0.4

03} 2
02F7||f
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3 (b)

T

0.6]
0.4
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|
1.2 1.6 2.0
E/W

Fig. 4. Spectral density at the Fermi surface in the direction
@ = 0 for d-pairing when T/Tg = (1) 0.8, (2) 0.6, (3) 0.1:

(@A=04,a =0.2, 0/W=1(TyTy=0.42, Toe/ T =0.2);
(b)A=04, & =2/3, w/W=5 (T Ty = 0.48, Tooo/ Ty ~ 10729).

The dotted curves give the mean-field spectral density
A (E) for T/To=0.1.

For the case of s-pairing the value of D? + A(D)
increases with increasing D so that the equation D? +
A?(D) —E?2 = 0only hasrootsfor |E| > A,. Thus, the gap
in the spectral density is observed when |E| < A, so that
the width of this gap is determined by the value of A,
and not A In addition, the gap in the spectral density
appears when T = T, and the behavior of the spectral
density at the point T = T, does not exhibit qualitative
changes.
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For d-pairing when the pseudogap width Wisfairly
small and the fraction of planar sectionsaissmall, the
value of D? + A%(D)e?() also increases with increasing
D and the width of the gap in the spectral density
becomes equal to Aye(@) as in the case of s-pairing.
However, as the pseudogap width W and the fraction of
planar sections increase, D? + A*(D)e’(¢) decreases
with increasing D for fairly small D with the result that
the width of the gap in the spectral density becomes
smaller than A, and for E = A, a discontinuity appears
in the spectral density (the discontinuity at E = D, iS
also retained).

We shall now analyze the tunneling density of states
N(E). For s-pairing we have

00

N(E) _ IdDDexpD

No(0) ~

DD

o e
0 JE?—D?—A¥(D)

X

0(E°—D’-A%(D)) (26)

|E|
JE?=N*(D)

Under the assumption of self-averaging the gap A is
equal to A,; and does not depend on the fluctuations of
D, and then

+(1-a) G(EZ—AZ(D))El

JE?—nZ,

J’ dDDexpD DZE

Nmf(E)
No(0)

. 2
W2

DD%DD

~ O
S = I N |- =

A/E D*—A% E -2 O

x O(E*=AZ,).

In this approximation when |E| < Ay agap appearsin the
density of statesand disgppearswhen T— T (A — 0)
but in this case a singularity remains (as discussed in
[13]) in the form of a pseudogap caused by the antifer-
romagnetic fluctuations:

(27)

DD
2]

N(E) _

= cx— dDDex L
No(0) I PO

(28)
|El
JE?-D?
In fact A(D) in (26) depends strongly on D in accor-
dance with (9). It can be seen from (26) and the corre-

sponding dependence A(D) that when T< T, agap is
observed in the density of states for E < A,, but when

X

+(1-a).
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T > T.., N0 gap is observed but some contribution to the
pseudogap associated with the superconducting pairing
still remains. For T, < T < Ty, the gap function A(D) is
nonzero when D < D, so that differences from the
pseudogap behavior caused only by antiferromagnetic
fluctuations are observed in the density of states when
T, < T < Ty and the antiferromagnetic pseudogap (28)
isonly retained when T > T,

Figure 5 shows the behavior of the density of states
inthe s-case at various temperatures. A kink on the den-
sity of statesis observed at [E| = Agand when T > T, a
second kink isobserved for [E| = A, > 4 athough this
kink is only appreciable at high temperatures T ~ T,
The density of states only undergoes quditative
changes at T = T, and there are no particular features
at the mean-field temperature T..

For d-pairing the expression for the density of states
has the form

N(E)
No(0)

_42 p 0 D’
0

j I2
x Ofde
Bo[ JE?—D?-%(D)€e¥(g)

x B(E*-A*(D)€’(¢) - D?)

(29)

4

+ [ do [El

JE2—p*(D)eX ()

Under the assumption of self-averaging the gap A is
equal to A,y and does not depend on D. The width of the
superconducting pseudogap in the density of statesis
then of the order A4, the corresponding contribution
disappears when T — T, and only the pseudogap
associated with the antiferromagnetic fluctuations (28)
remains. In reality in (29) A depends on D and is deter-
mined by equation (10).

The behavior of the density of statesinthed caseis
shownin Fig. 6. Asin the case of s-pairing a substantial
difference is observed between the exact density of
states and that obtained in the mean-field approxima-
tion as a result of fluctuations of the superconducting
gap (superconducting drops) caused by antiferromag-
netic fluctuations of the short-range order. The exact
density of states does not in fact sense the supercon-
ducting transition in the entire system which takes
place at T = T,. In this case, the characteristic width of
the superconducting gap (pseudogap) in the density of
states is of the order A and not A, as follows from the
mean-field approximation. The corresponding contri-
butions become observableat T =Ty > T..

8(E*~ AX(D)eX(@) O
|
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Fig. 5. Spectral density for s-pairing: (&) A = 0.4, @ =0.2,
WJW = 1 (T/Teg = 0.71, TSTq = 0.54), T/Tg = 0.8 (1),
0.71(2),0.54 (3), 0.4 (4); dotted curveis mean-field density
of states N ¢(E) for T/ Tg = 0.4; inset shows density of states
for TyTep=04; () A =04, & = 2/3, /W= 3 (T/Tp =042,
Teo/ Tep = 7 % 1079), T/Tn = 0.8 (1), 0.42 (2), 0.2 (3), 0.05 (4);
dotted curve is mean-field density of states N (E) for TdTg =

0.2, dashed curve displays pseudogap behavior of dendty of
satesfor T> Tep.

5. CONCLUSIONS

In this study we have continued our investigation of
characteristic features of the superconducting state
using a highly simplified model of the pseudogap in a
two-dimensional electron system which can have an
exact solution [13]. The main simplifying assumption
of our model (in addition to the condition of static fluc-
tuations) involves using the limit § — o for the corre-
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Fig. 6. Spectral density for d-pairing: (&) A = 0.4, & =0.2,
WdW=1(TJTen=042, TYTn=0.2), T/Ten = 0.8 (1), 0.42 (2),
0.2 (3); dotted curve is mean-field density of states Ny#(E)
for T/T,g = 0.2; inset shows density of statesfor T/Tg=0.2;
() A =04, & =2/3, (/W=5(TdTp=0.48, Toe/Toy ~ 1075),
T/ = 0.8 (1), 0.48 (2), 0.1 (3); dotted curve is mean-field
density of states N,(E) for T/Tg = 0.1, dashed curve dis-
plays pseudogap behavior of density of statesfor T > T.

lation length of the antiferromagnetic fluctuations of
the short-range order, which allows us to obtain funda-
mental equationsin afairly clear form. In particular, in
thislimit we can easily find an exact expression for the
average superconducting gap (18). In principle, this
model of a pseudogap state can be generalized to finite
correlation lengths [11, 12, 19] although it is unclear
how far an analysis of superconductivity outside the
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scope of the mean-field approach can be carried out as
part of this generalization, as we did above for the case
§ — oo. It is qualitatively clear that finite ¢ leads to
some smearing of characteristics such askinks and dis-
continuities, which were obtained in the & — o model
in the dependences of T, and other characteristics of the
superconducting state on €.

The results obtained above indicate that the
pseudogap state induced by antiferromagnetic fluctua-
tions of the short-range order (or similar fluctuations of
charge density waves) not only leadsto important char-
acteristics of thenormal state[11, 12, 19] but also gives
fairly unusual properties of the superconducting state
caused by the partial dielectrification of the electron
spectrum (non-Fermi-liquid behavior) at the hot sec-
tions of the Fermi surface. These characteristics corre-
late with various anomalies observed in the supercon-
ducting state of underdoped high-temperature super-
conducting cuprates. Naturally a more serious
comparison with the experiment can only be made
using a more redlistic approach which particularly
allows for the effects of finite correlation length ¢
which inreal systems are relatively small. At low tem-
peraturesit isa so important to alow for the fluctuation
dynamics.
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Abstract—A new variational method is developed to calculate the ground-state energy of a fermion system
with strong short-range order. Aswell asintrasite correlations, the Gutzwiller trial wave function explicitly con-
tains nearest-neighbor correlations. The Kikuchi pseudo-ensemble method was used to calculate the total
energy of the fermion system. The calculations were made for the paramagnetic and antiferromagnetic phases
of the half-filled Hubbard model. It is shown that for two- and three-dimensional lattices the short-range order
in the paramagnetic phase strongly influences the ground-state energy whereas in the antiferromagnetic phase
it isinsignificant. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Strong short-range order is one of the most important
problems in the theory of strongly correlated fermions.
The main difficulty encountered here involves construct-
ing aground state with strong short-range order and deter-
mining its energy. The fundamenta aspects of the prob-
lem of short-range order may be studied using the base
model of strongly correlated fermions, i.e., the Hub-
bard moddl [1-3]. The smplest variant of this mode,
wherethereisone nondegenerate band and spin 1/2 fermi-
ons can only hop to the nearest lattice Site, can be formu-
lated in the form of the following Hamiltonian:

H =t Z (a8, +hec)+ UZn”n”, (1)

Ojdo i

where a;; (a;,) isthe creation (annihilation) operator of

afermion of spin 0 = 1, | at the ith lattice site. The
angular brackets denote summation only over nearest

neighbors, N, = a5 &

Several exact solutions of the Hamiltonian (1) are
known: a homogeneous one-dimensiona (1D) chain
[4] and several special cases (see, for example [5, 6]).
In the limit of an infinite-dimensional lattice (D = o)
substantial simplifications of the problem are encoun-
tered and a Gutzwiller solution for the ground state of
the system becomes almost exact [2, 7]. However, for
|attices of intermediate dimensions, particularly 2D and
3D which are of important practical value, no exact
solutions exist. Thus, numerous studies have been
devoted to the analytic and numerical investigation of
this problem [8-13]. In particular, the Gutzwiller trial
wave function, which is exact for D = o wasused in a
numerical variational Monte Carlo method [10, 11] and
in an analytical procedure involving expansion in pow-

ers of 1/D + 1/D? in dynamic mean-field theory [8, 12,
13]. Inthislatter case, it was necessary to makethetyp-
ical assumption for perturbation theory methods that
the structure of the wave function at finite-dimensional
lattices does not differ significantly from the structure
in the limit of an infinite-dimensional lattice, i.e., these
solutionsarein fact only valid for weak short-range order.
For thisreason they cannot be used in many cases of prac-
tical interest where the short-range order is known to be
strong: Kondo systems, CuQ, planes in high-temperature
superconductors, and so on [8]. Hence, the main diffi-
culty involved in studying finite-dimensional latticesis
the need to allow for strong small-radius spatial corre-
lations. In the phenomenological theory of an almost
antiferromagnetic Fermi liquid, it was shown [14] that
in many strongly correlated compounds the short-range
order has asignificant influence on the static and dynamic
characteristics of the material. Thus, there is a need to
develop a microscopic theory of systems with strong
short-range order.

In the present paper a variational microscopic
method is devel oped to calculate the ground-state energy
of systems of fermions with strong short-range order and
the ground state of the Hubbard Hamiltonian (1) is cal cu-
lated for various lattices for a half-filled initial band in
the paramagnetic and antiferromagnetic phases.

2. TRIAL WAVE FUNCTION

The Gutzwiller trial wave function can be expressed
inthe form [15]

WO= ggldo0 ®)

where X = %i n,, n,, g is areal parameter lying in
the range [0, 1] for U > 0, |§,Clis the initial N-particle
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wave function of the uncorrelated e ectrons which can
be constructed using Bloch functions

[ & [ a.lo3 ®

k<K, k<K,

wherek isthe fermion wave vector and kg, isthe Fermi
wave vector for fermions of spin o. It is assumed that
the number of particlesin the system islarge but finite.

Themeaning of thetrial wavefunction (2) isthat the
amplitude of the fermion configurations decreases as a
function of the number of doubly occupied sitesin the
configuration [2]. It should be noted that the N-particle
trial function (2) remains antisymmetric. Moreover, since
the operator on the right-hand side of expression (2) is
trandationally invariant, thistrial wave function retains
the tranglational symmetry of theinitial wave function.
In order to allow for small-radius spatia correlationsin
the trial wave function, we generalize the wave func-
tion (2) as[16]

0= [ 9" 160 @
A

where, in addition to the cofactor from expression (2),
the product may contain a set of projection operators

P, on al possible configurations of the state of the lat-
ticesite athe pair of neighboring sites. Thereal param-
eters g; lie in the range [0, o] which means that the
amplitudes of the various configurations of the site pair
can either decrease or increase.

We construct the trial wave function of the paramag-
netic phase of the half-filled band. We have four projec-
tion operatorsisolating the particular state of the lattice
sites:

5\(1 = Z(l_nit)(l_nii)’

5(2 = zniT(l_nil)’
! (5)
X3 = Z(l_nir)niu

Xa = ZniTniu
i

and ten projection operators on states of the pairs of
nearest sites, for example

Y1 = ;(1—nm)(1—nu)(1—nﬁ>(1—njl),
. (6)

Y2 = ZniTnilannjl
Gjo
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Table 1
Operator SiteCionf| guratlosr:te | d[;gegrrﬁ; Egy
J
Y1 1
Y, t T 1
Y3 T 2
Y4 t 2
Ys ! 2
Ys t 1 1
\Z t l 2
Ys t 1 2
Yo 1 ! 2
Y10 l ! 1

and so on (see Table 1).

We shall subsequently confine our analysis to lat-
tices for which the total number of pairs of nearest
neighbors is zL/2, where z is the number of nearest
neighbors of the site and L isthe total number of lattice
sites. We determine the normalized eigenvalues of the
operators (5) and (6) as

X, |®0= L™ Xy |®g
y,|®@0= (zL/2) ™Y |od

The eigenvalues are then coupled normalization condi-
tions[17]

(7)

X, = 1, Baya = 1, )
> >
) )\

where 3, is the degree of degeneracy, and self-consis-
tency conditions [17]

YitYstYatys = X,

Yot YstYgtYo = Xy

YatYstYr1+Ys = X

Yst Y7+ Yot Yo = Xs.

Since the concentrations of fermions of each spin
are assumed to be fixed, as in the Gutzwiller approxi-
mation there is only one independent parameter Xx,.
Seven parameters y, are independent. For a half-filled
band in the paramagnetic phase when the total spin of
the system is zero, additional constraints appear:

Y= Y2 Y6 = Yoo Ya=Ys5 =Yg = Yo

9)

(10)
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and after introducing these, the number of independent
parameters y, was reduced to three. We shall take x =
X1 = X4, V3, Y4 @A Y, asindependent parameters. Then,
taking into account the additional degeneracy formed
as a result of the conditions (10), we obtain the fina
form of the trial wave function for the half-filled para-
magnetic phase

X BsVs 4BYs B,Y7

WO= 9903 94 97 lbo0= 'A:M)OD

We note the main properties of the trial wave func-
tion (11). The operator F is polynomial in n, so that
the trial wave function is antisymmetric with respect to
permutations. In addition, the operator F isinvariant with
respect to operations which transform the lattice into
itself, trangdlations, rotations, and reflections. Hence, al
these symmetries are transferred from the initial wave

functionto thetrial one. Finally, thistrial wave function
can control the structure of the short-range order.

(11)

3. GROUND STATE
OF THE PARAMAGNETIC PHASE

Wefirst need to calculate the norm of the trial wave
function (11). Following [15, 18] we express this as

_ 2Lx 2zLy, 8zLy, 2zLy
IIIJNJD - W{ X, Ya Yar Y7} gO g3 3g4 497 !
{X Y3 Ya Y7} (12)
= Z R{ X, Y3 Yar Y7}
{X Y3 Ya y7}

Here we have omitted the constant factor which is not
important for the following calculations. Summation is
performed over all sets{X, Ys, Y4, Y7}. The same set of
independent variables can correspond to a certain num-

ber of configurations. The quantity W, ., v, isthe

number of configurations corresponding to the fixed set
{X, Y3, Y4, Y7} Or theweight of thisset. We shall calculate
this using the Kikuchi pseudo-ensemble method [17,
19, 20]. Note that this method is exact for Bethe lat-
tices[17]. For lattices having closed pathsit only gives
an approximate solution. According to the Kikuchi
hypothesis, the weight of the set can be expressed in
terms of the product:

W =TQ. (13
Here, for simplicity the subscripts are dropped. The
quantity

(zL/2)!

[i@sL21”
A

Q:

(14)
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is the number of permutations of ten elements corre-
sponding to the pair configurations Y, along zL/2
bonds, and

L! |_| (X,zL)!
- A

r= (15)

(zL)! |_| (X, L)!
A

is the fraction of regular permutations in the pseudo-
ensemble. In expressions (14) and (15) the dependent
parameters x, and y, should be expressed in terms of
the independent ones as

X, = X3 = 12X,
Y1 = Yo = X=Y3—2Y,,
Yo = Yo = U2—-X—-y;-2y,.

In the thermodynamic limit L —» oo, as usual
[2, 17-20], we can confine our summation to those terms
of the series which are close to the maximum, i.e., for
which the condition {X, ¥s, Y, Y7} — {X, Y3, Y4 Y7} max
is satisfied. The remaining terms are exponentially
small. Since the function R is positive, it is convenient
to seek the maximum of its logarithm instead of the
function itself. We now transform al the factorials
appearing in R using the asymptotic Stirling formula.
We then take the logarithm of this expression and only
retain the principal termsin L. It can be shown that this
procedure is equivalent to the substitution (zL/2)! —
(L"?2 used in [17, 19, 20]. After direct calculations we
obtain

(16)

LYW = 2(z=1)[xInx + (1/2 = X)In(1/2=x)]
—Z(y,Iny, + ysIny; + 4y,Iny, + yelnys + y;Iny,),

where y, and yg; are expressed in terms of (16). The
region of determination of the function L7YnR is
bounded by conditions (8) and (9). For nonzero finite
parameters g;, its gradient at the boundariesis directed
into this region so that the global maximum of the
function LlInR isits internal maximum. In this case,
the necessary conditions for the maximum will be
d(InR)/on,, = 0, wheren, =X, Ys, Y4, Y. Using these, we
can express the parameters g; in terms of X, Y3, V4, Y7

17

o - (2o xoyem2y
"0 x 0O M2-x-y,-2y,0°

2 _ Y3

9 X—Y3—2Y,' (18)
g4 _ 4y§
* (U2 —-X=y;=2y)(X=Y3—-2Y,)’

gz _ Y7

T 12-x-y; -2y,
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Attention should be drawn to the fact that the func-
tion L7YUnR is strictly upward convex in terms of the
variables ys, Yy, and y; for fixed x. This means that in
practice we seek the maximum of the function of one
implicitly defined variable rather than four variables.

In order to calculate the ground-state energy of the
Hamiltonian (1), we need to calculate thefirst-order den-
sity matrix for the trial function obtained in Section 2:

EIJ| Z (aiJrcajo + hC)NJD

Ojda
o

Here we encounter a significant complication com-
pared with the Gutzwiller method because when a fer-
mion hops from site i to site j, not only the configura:
tion of thei— pair changes but also that of the adjacent
i—k and j- pairs of lattice sites (Fig. 1). We take a cer-
tain lattice-fragment configuration consisting of an i—
bond and its adjacent bonds (Fig. 1) and we calculate
the function W of the remaining lattice using expres-
sions (13)—(15). Then, thefraction of the configurations
containing the given fragment may be expressed in the
form

p, = L7 (19)

W— o 2t ag
w "”El Sy Bl 1y H

where y ) implies the value of y, corresponding to the
bond configuration af3. Now the contribution to the
density matrix made by the transition from configura-
tion 1 to configuration 2 will have the form

(20)

Ugaw
W

Mo
B

where the first cofactor is the ratio of the amplitude of
configuration 1 to the amplitude of configuration 2, i.e.,
g, corresponds to those bonds in configuration 2 which
were absent in configuration 1 (or the converse for gg).
If configurations 1 and 2 differ by several like bonds,
the parameters g, and gz are written in (21) in the
appropriate powers. The procedureisbroadly similar to
the Gutzwiller method [2] where expression (21) only
contained a single parameter g.

Using expressions (20) and (21), we can perform
direct summation of all the configurations and calculate
the density matrix (19):

(21)

P1 = 4%)/4(313-2)2_1
(22)
+Y3_97ai(z—1)+Y79093 2z-1[]

—al.
JoJs g, - U
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Fig. 1. Fragment of z= 4 lattice. When afermion hops from
site i to site j, the configurations of neighboring pairs also
change.

where
a = Y204+ Y304/05 + Y4(09; + 1)/0,
1 X ’
q = YeOat Y794/97 + Ya(9s + 1)/9,
2 = .

1/2 -x

Here and subsequently we use y, and y; instead of
expressions (16) to shorten the notation. As in the
Gutzwiller method, the density matrix has three terms,
the first describing fermion motion in the Hubbard sub-
band, the second and third describing transitions between
the subbands. We eiminate the parameter g; from formula
(22) using (18) and after direct transformations we
obtain

Pr = 8(Y,+ A/F}’?)
x[ﬁ(«/yﬁ«/yﬁ«/ﬁﬁ«/%)z}

-1 (23)

Finally, the complete energy of the fermion system can
be conveniently represented in the Gutzwiller form [2]:

£ - L0H[YD

= Lo - 9ty

(24)

where q=p,/pJ, p; isthe density matrix of the uncor-
related electrons, i.e., for U = 0, and &, is the average
energy of the uncorrelated electrons. We now deter-
mine the ground-state energy by minimizing the func-
tion (24) in terms of the four variables: X, ys, Y., ;7. The
search for the global minimum was performed numeri-
caly (using arefined Nelder—Mead simplex algorithm)
and presented no difficulties because expression (24) is
a smooth differentiable function without any singulari-
tiesinside the region of determination.

Figure 2agivesresults of calculations of the ground-
state energy of the paramagnetic phase for a linear
homogeneous chain (z= 2) with the dispersion law g, =
—2c0sK,, Fig. 2b givesresults for aplanar square lattice
(z=4), & =—2(cosk, + cosk ), and Fig. 2c gives results
for asimple cubic lattice (z = 6), g = —2(cosk, + cosk, +
cosk,). Figure 3 shows the detailed structure of the
ground state for a planar square lattice. Figure 4 gives
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Fig. 2. Ground-state energies of fermions in the paramagnetic phases. (a) for a one-dimensional chain: Gutzwiller solution [2] (1),
present study (2), exact solution [4] (3); and aso for (b) planar square and (c) smple cubic lattices: Gutzwiller solution (1), VMC method
[10] (2), present study (3). The inset shows an enlarged fragment of the graph near Ug.

the symmetric and antisymmetric correlation functions
of apair of nearest sites for various lattices:

G, = h,n, 00+ [h,n, 0= 2(y, + 2y, +Ye),
G, = [h,n, 0+ [h,n, 0 = 2(y, + 2y, +V,).

(25)

The prime in (25) denotes averaging over nearest
neighbors.

In order to study thelimit D = oo in the paramagnetic
phase, we cal culated the ground-state energy for hyper-
cubic latticesz= 50, 100, 200, 400, 1000. Asthe dimen-
sions of the lattice increased, the ground-state energy
tended toward the Gutzwiller solution which is exact
for D = 0. For z= 1000, both solutions agreed to within
0.1% for U in the range [0, Uc/2] and to within 1% in
the range [U./2, 2.8U], where U = 8¢, is the critical
value of U in the Gutzwiller theory.

4. ANTIFERROMAGNETIC PHASE

In order to ensure that the trial wave function for the
antiferromagnetic phase corresponded to the required
trandational properties, we need to select the initial
wave function so that it possessed these properties.
Thus, as usual [11, 21] we take the wave function

|65 Dof an antiferromagnetic metal (in Hubbard—
Fock theory) [11, 21] as the initial wave function. The
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energy spectrum of the initial wave function and the
magnetic moment of the sublattices then have the
form [21]

&y

1+ (ole)

n= (-2
Jeo + 8

where g, isthe energy spectrum of the uncorrelated fer-
mionsin the paramagnetic phase, d isthe antiferromag-
netic order parameter, and integration is performed over
the reduced Brillouin zone [21], m = ([h, [{ + [0, [§ —
M, [ — [, [)/2. In thislast expression averaging is per-
formed over sitesin sublattices A and B.

&

(26)

In the antiferromagnetic phase the degeneracy of the

operators Y, is partidly lifted and their number
increases (Table 2). The following expressions hold for

the eigenval ues of the operators Xy :

X, = Xp = X3 = 1U2+m/2—x, n
Xy = X5 = X5 = 1/2—m/2—x.
No.3 2000
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Then the normalization conditions (8) still hold. For a
half-filled band we have additional constraints similar
to (10):
Y1 = Y2 ¥Ys = Yo
Y4 = Yan = Ys = Yag = Yoas
Ys = Yag = Ysa = Ysa = Yog-

The self-consistency conditions for the antiferromag-
netic phase are written as

(28)

X1 = Y1t+YztYstYs,
Xg = Yot Y¥YstVYs+Ys,
Xa = 2Y4+ Y5+ Ve,
X3 = 2Y5+ Y5+ Ye.

We use expressions (28) and (29) to isolate theinde-
pendent parameters in the antiferromagnetic phase of
which there are six. We take the following as indepen-
dent parameters: X = X; = X4, ¥, Y1 Vs Yo @nd m and
express the dependent parameters in terms of them:

(29)

Yo = X=Y3=Y4—Ys5,
= l 1m X— 2

y7 - 2 2 y6 y41 (30)
= 1—1m X— 2

Yu = 575 Y6 —2Ys.

We now express the trial wave function of the antifer-
romagnetic phase in the form

0" ™M0= gyl g gl g talies ™MD (3D)
where
A B
M = %[Z(nn -n;)+ Z(nn —nn)}

is an operator corresponding to the parameter m.

The calculations of the ground-state energy are sim-
ilar to those for the paramagnetic phase. By calculating
the function L-YInR we obtain the following expression
for the weight of the set of independent variables:

L™ nW = (z—1)[2xIn(x + X,Inx, + X5Inx3)]

V4
- E(ZY2|nyz +2yslny; + 4y,lny, + 4ysIn(ys)  (32)

+2ysInyg + y;Iny; + yyIny;, ).

Here and subsequently X, X3, Y», Y5, and y;; are used
as abbreviated notation for expressions (27) and (30).
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Fig. 3. Detailed structure of the ground state for a simple
sguare lattice.

G, G,
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e~ _____ 1
02 : '
0 10 20 U/t

Fig. 4. Symmetric G4 (dashed curves) and antisymmetric G,
(solid curves) correlation functions (25) for a1D chain (1),
planar square (2) and smple cubic (3) lattices.

Differentiating the function L2InR with respect to the
independent parameters yields the conditions

— z-1 5
9o = NXoXsp O Yo |j/
o Ox O DA/Y7Y11D ,
2 _ Y3  2_ Y&

Oz ==, O4 )
Y2 Y7¥2 (33)
g2 _ Y 2 _ Ys
° YaYii' Y7Yir'
92 _ Bi-sdz—l)/zmﬁmm
A E A R E R

We calcul ate the density matrix (19) for the antifer-
romagnetic trial wave function [(AFNCIWe eliminate the
parameters g; using the substitution (33) and express
the density matrix only in terms of independent param-
eters. Then, p; can be represented as a sum of two
terms: P; = Ppang + Pinter» Where the first termis respon-
sible for fermion motion in the Hubbard subbands and
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Table 2
Configuration
Operalor g pjatticesite | sublatticesite d%ge(garrﬁe(rea%fy
A B
2 !
9, 1l 1l 1
s 1" 2
Yan T !
Ve T !
Vs : !
Ve : !
¥ T T !
Via T : !
e : T !
Yo K ! '
Yo T " :
Yon 1) ! 1
o | 1l 1
Y1 : : !

the second is responsible for transitions between sub-
bands. After direct calculations similar to those for the
paramagnetic phase we obtain

Obung = 4|- 1banYaYs| (Y7 DZM 1
an Xz 1 [yll (X2)Z T Nz-12 2

[Vll[]zm gm }
"0 ()

ﬁs

plnter = 2
(34)

(2-2)/4, 714

(2-2)/4, 24|
X[W Y11 1gm+Y11 Y7
=112
(X2X3)

(z+2)14, 2
L0 x
+y

|—29;12

|jz 1)/2
yi/14g$n [(Xz) D
. y(lz+ 2)/4L§gz dz 1)/2}
v E(xa) .
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where the following notation is introduced
-1
Li = (JYo2Yat ofYaYat A/YsYe + A/Y4Y7)Z )

Lo = (JYaYs + /YaYs + AfYaYs + «/ys)/n)z_l

The total fermion energy in the antiferromagnetic
phase can aso be reduced to the Gutzwiller form:

c - l_ﬂpAleleAmez
L mJAFMNJAFMD

AFM

(m)+xU. (35

The average energy of an uncorrelated fermion

e2™ (m) is calculated from the energy spectrum (26)

and is a function of m. This dependence is implicitly
given by the expressions (26). For this reason the value
of the density matrix for the uncorrelated fermions

p‘l’ (m) which appears in the band constriction factor

q=p,/ p(l) (m) also depends on m and should be deter-

mined as the value of p, for U = 0 and some fixed m.
The ground-state energy is calculated by minimizing
the total energy (35) with respect to the variables x, ys;,
Va4 Vs Yer @and m. The function (35), despite being some-
what cumbersome, is a smooth differentiable function
without any singularities inside the region of determi-
nation defined by expressions (27)—(30). Figure 5 gives
results of calculations of the ground-state energy for a
homogeneous chain. For planar and simple cubic lat-
tices the ground-state energy almost agrees with the
results of numerical calculations using the variational
Monte Carlo (VMC) method.

5. DISCUSSIONS AND CONCLUSIONS

It is useful to compare the results of calculations of
the ground-state energy made in the present study with
the results obtained by the VMC method [10, 11] (see
Figs. 2 and 5). In theVMC method the calculations are
based on the Gutzwiller trial function (2), i.e., nonlocal
correlations are virtually neglected. In the present study
the ground-state energy is obtained for atrial function
which explicitly includes nearest-neighbor correla
tions. The larger-radius correlations in our model obey
the superpositiona hypothesis [17]. Thus, the difference
between the ground-state energies obtained by these two
methods is attributed to the short-range correlations
between the fermions in the ground state. For a one-
dimensional chain (Fig. 2a) the difference in the
ground-state energiesis negligible and the results of the
VMC method are not shown in the figure. For planar
square and simple cubic lattices in the paramagnetic
phase (Figs. 2b and 2c) it can be seen that near U the
ground-state energy of the trial wave function (11) is
substantially lower (two or three times) than that
obtained by theVMC method, i.e., in the paramagnetic
phase the short-range order substantially reduces the
ground-state energy. The large difference between our
results for the paramagnetic phase and the expansion
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1/D + 1/D? [12, 13] adso indicates that the nearest cor-
relations for 2D and even for 3D lattices are fairly
strong, i.e., perturbation theory methods are hardly
suitable here. In the antiferromagnetic phase the influ-
ence of the short-range order is weak, and the ground-
state energies obtained by the VMC method and the
method described above are ailmost the same. The dif-
ference is within 1%. It can be said that the antiferro-
magnetic order impedes the establishment of short-
range order.

We obtained the ground-state energy of the fermion
systemin analytic form and only used numerical calcu-
lations to minimize it. Consequently our proposed
method possesses no indeterminacy, which is a charac-
teristic of cluster methods such as Monte Carlo meth-
ods, on going to the limit of alarge number of particles.
It should also be noted that the Kikuchi pseudo-ensem-
ble method can be used to study correlations, not only
of apair of sites, but also higher-order ones such as tri-
ple and so on [17, 20]. Closed paths on the lattice can
then be included in the analysis [17, 20] and ared lat-
tice can gradually be approached.

It can be seen from Fig. 4 that an exchange-correla-
tion hole forms as U increases. For U = 0 no antisym-
metric fermion spin correlations are observed (G, =
0.5) but fermion correlations of the same spin do exist
(Gs < 0.5), i.e, an exchange hole exists for the nonin-
teracting fermions. It should be stressed that in this
method an exchange hole at U = 0 occurs naturally
when the energy is minimized with respect to the
parametersy, . Asthe dimensions of thelatticeincrease
the exchange-correl ation hole around the electron grad-
ually disappears and our solution tends to the
Gutzwiller solution. Note that the correlation functions
(25) do not uniquely describe the ground state of the
Fermi system: this requires a complete set of indepen-
dent parameters (see Fig. 3).

Inthelimit [tj/U < 1 the functions G, and G, tend to
a certain constant value. This behavior occurs because
for large U the half-filled Hubbard model isthe same as
the Heisenberg model for spin 1/2 which contains only
one parameter J(= 4t%/U). If, before calculating the cor-
relation functions the Heisenberg model is reduced to

the dimensionless form (H = DjDSi S), it becomes

obviousthat G, and G, must be constant when |tj/U < 1.
We also note that unlike the well-known Hubbard 111
solution, the antiferromagnetic fermion correlations in
thislimit do not disappear, even in the absence of long-
range order, which is consistent with the results of
studying the ground statein the Heisenberg model [22].

A detailed analysis of the spectrum of elementary
excitations and thermodynamic properties is outside
the scope of the present study. Nevertheless, on the
basis of the conclusions reached in [23], we can postu-
late that for the paramagnetic phase the effective elec-
tron mass will be renormalized by the factor gt and in
the antiferromagnetic phase the quasi particle spectrum
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Fig. 5. Ground-state energy of fermionsinthe antiferromag-
netic phase for a one-dimensional chain: (1) Gutzwiller
solution [2], (2) present study, and (3) exact solution [4].

will be renormalized by this factor and simultaneously
deformed as the sublattice moment m increases as a
result of achange in theinitia spectrum (26).

To conclude, we shall briefly discussthe behavior of
the metal-insulator transition at T = 0 K. In the para-
magnetic phase the ground-state energy as afunction of
U has no singularities whatsoever. As U increases, the
quasi particle band narrows continuously. Similar results
were obtained in the dynamic mean-field theory [8, 12,
13] and by theVMC method [10, 11]. However, this sce-
nario is at variance with the Hubbard 111 solutions where
the ground-state energy has a singular point. Unfortu-
nately, it isfairly difficult to study the change in the state
of the paramagnetic phase experimentally, sincefor large
U these changes are frequently masked by first-order
paramagnetic metal—antiferromagnetic insulator transi-
tions, asoccursina(V, _,Ti),0; solid solutionat T=0K.
It follows from the Lieb theorem on the ground state of
the half-filled Hamiltonian (1) that a first-order transi-
tion is generally impossible at T = 0 K [24]. In other
words, these transitions are not a property of the Hub-
bard model. Recently examples of strongly correlated
compounds of d-metals have appeared where the quasi-
particle band in the paramagnetic phase is extremely
narrow (for example, LiV,0, [25]). This supports the
scenario proposed above. In real materials at finite tem-
peratures ametal—insulator transition may take placein
the paramagnetic phase as aresult of the loss of coher-
ence in the quasiparticle band. Thus, the quasiparticle
lifetime should be T > #/qg,. It can be seen that as the
band becomes narrower, this condition becomes increas-
ingly stringent.

In the calculations made in the present study, the
energy of the antiferromagnetic phase was lower than
the energy of the paramagnetic phasein all cases. How-
ever, in a narrow region U <t the energy difference
between the two phases is small and the numerical
results are not completely reliable. Thus, it is desirable
to make an analytic analysis of the ground-state energy
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in the paramagnetic and antiferromagnetic phases near
the point U = 0.
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Abstract—A study is made of self-similar solutions of an entire family of one-dimensional integrable dynamic
systems of the nonlinear Schrédinger equation type. Thisfamily isreduced to one of three canonical forms cor-
responding to a Toda chain, a Volterra chain, or to the Landau—Lifshitz model, which can also be reduced to
three self-similar systems coupled by Miuratransformations with the fourth Painleve equation. A commutative
representation is constructed for this equation. A relationship is established between the poles of therational solu-
tions of the fourth Painleve equation and the steady-state distribution of the electric chargesin a parabolic poten-
tia. A sdf-similar solution is constructed for the spin dynamics. An exact solution is obtained for the nonlinear
Schrodinger equation with variable dispersion (optical soliton). © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Self-similar solutions are useful for studying vari-
ous physica applications of integrable systems. This
derivesfrom the fact that the asymptotic form of any solu-
tion is sdf-amilar. Since integrable systems are being
studied, self-amilar solutions can be constructed merely
by using their asymptotic form. Thisisaparticular form
of the Painleve test.

In the present study we establish a relationship
between the self-similar solutions of afamily of nonlin-
ear Schrodinger equations and the fourth Painleve
equation.

Despite being studied for many years (see, for
example [1]), the problem of self-similar solutions is
far from complete. In particular, the question of the
necessary set of parameters has not yet been compre-
hensively studied. The aim of the present study is to
construct equations for self-similar solutions of an
entire family of nonlinear Schroédinger equations and
also to obtain some interesting particular solutions.

We shall analyze integrable generalizations of the
nonlinear Schrédinger equation written in the form of
the Lagrange variational problem

ESII(LO +V(p, q,q,))dxdt = 0,

_ D
I—O = qut+ prx-
We are mainly interested in the case (see [2])
V = ep’Z+ap’ + BL+yp’z+dp°, @

Z = Qy,

when the potentia V(p, g, g,) does not depend on g. In
this case, the pair of equationsfor p, z= g, correspond-
ing to (1)

ipt = (Vz+ px)x! iZt = (Vp_zx)xl (3)
has three zeroth-order conservation laws (see [3])
Pitjx =0 (4)

with densities p equal to p, z, and pz, respectively. This
property is characteristic and isolates the system (3)
among systems having the general form

iu—uy, = F(u, v,u,, Vv,
: _ ®)
ivi+tv, = G, v,u,V,).

Thisstudy is constructed asfollows. In Section 2 we
show that by means of tranglation and dilation transfor-
mations, any Lagrangian of the type (1) can be reduced
to one of the canonical forms coupled by Miura trans-
formations. Equationsfor the self-similar solutionswill
be obtained for each of these forms.

In Section 3 we consider various representations of
the fourth Painleve equation and in particular acommu-
tative representation of this equation.

We establish that if electrical charges are positioned
at pointsin acomplex plane corresponding to the posi-
tion of the poles of any rational solution of the fourth
Painleve equation, where the magnitude of these
charges should be equal to the residue at this pole, this
charge configuration is in equilibrium in a parabolic
potential.

We also show that self-similar solutions of the non-
linear Schrédinger equation corresponding to the well-

1063-7761/00/9003-0553%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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known collapsing solution (see, for example [4])
exhibit Z; symmetry like the solution of the fourth
Painleve equation.

Section 4 is devoted to a study of the Landau-Lif-
shitz model. We construct a parametrization of the spin
vector in terms of solutions of the auxiliary spectral
problem and we obtain a polynomial solution for the
spin dynamicsin the self-similar regime.

We aso obtain a particular self-similar solution for
the nonlinear Schrodinger equation with variable dis-
persion, i.e., an optical soliton.

2. CANONICAL FORMS
AND SELF-SIMILAR FORMULATION

Here we give the explicit form of the transformation
of the Lagrangian (1) to one of the canonical forms.

2.1. Landau-Lifshitz Model € # 0.
By Using the Trandations

=p_d = g_YLyx_9%©
P=p 2€’ Q=4 2€X et’
X = x+ My
€
the Lagrangian (1) is reduced to the form
2 2
_ 2.2 Y (0.2 are
L=Ly+tepZ +%—Z€Dp +B3—ZZ%. (6)
Using the dilations p — —ple and t — —t/e and
changing the notation of the constants, we obtain
Ly = Lo—pZ +Vip" + Vi, (7)

Of particular interest is the isotropic Landau-Lif-
shitzmodel (3=0,56=0),i.e,

L = Ly—p°Z. (8)

2.2.\olterraModel (e =0, a #0, y=0).
The Lagrangian (1) is Reduced to the Form

L, = Lo+ pZ' +p’z ©)
by means of the trandations
- P _ g0, %0, 2B3
P - p av Q - q yx 2t o t,
(10)
_ mo ., VB
X = X+2D7 +E%
and the dilations
p .9
p v’ q o
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2.3. TodaModel (e =0, a 20,y #0).
The Lagrangian (1) is Reduced to the Form

Ly = Lo+ pZ° + p2 (11)
by using the sequence of transformations
- p-B o=q_2Pd
P=p-c, Q=q-257 (12)
p .9
5 q 9 (13)

We notethat p~— g, == a —— V. The cother cases
correspond to the linear problem.

In order to avoid confusion, we rewrite the equations
(3) corresponding to the LagrangiansL 4, L,, and L; using
the notation

ip, = [2(v5— D)2+ Py

(14)
iz, = [2(vi-2)Dp-2],
ia, = [2ab+a’+2 a+agl,,
¢ [ 2 9} ] (15)
ib, = [2ab+b“+2ub-b,],,
iz, = (2p+Z-2),, ip = (2zp+p), (16)

The coupling between these equations is given by the
formulas

p=a+ab, z=a+b+y, a7
= Py (pvymi-2),
Vo+ P (18)

b =—p+vy)(z+vy.

In particular, formula (18) couples the solutions of the
equations (15) for p = 2v,v, with the solutions (14). We
also note that the right-hand side p of these transforma-
tion formulas is the density of the zeroth-order conser-
vation law (4):

P = C1PZ+Cop +CyZ+Cy+ 0x0(P, D),

whose form does not depend on the specific choice of
equation (3).

The self-similar solutions of the system of equa-
tions (3) are determined by the smplest choice of self-
similar formulation:

p = K'(tP'E),
& = xk(t),

where the primes denote differentiation with respect to
the corresponding arguments. In this case, the condi-

z = K'(DQ(),

) (19)
kK = 2k’,
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tion of generalized homogeneity is imposed on the
potentia V(p, 2)

V(K™p, k"2 = K™ " V(p, 2), (20)

which alows separation of the variables & and t in the
equations (3). For the self-similar solutions (3) we thus
obtain the determining system of ordinary differential
equations

2imP+c, +EP)—P" = V(P,Q),
2i(MQ+c,+EQ) +Q" = V((P,Q),

wherem, =m-1,n; =n-1, and ¢, and ¢, are integra-
tion constants. The choice of factorsmand nin (21) is
determined by the condition (20). These determining
equations can lower the order and have thefirst integral

20[EP Q'+ (Mm+n-1)R+ ]
= QP"-PQ"+(2V,+ pV,-V)(P, Q),

where R = P'Q'". The existence of thisintegral is asso-
ciated with the additional conservation law (4) having
the density p = pz and the right-hand side of (22) con-
tains the corresponding flux j.

In particular, for the Lagrangian L, with V = pz® +
p?z condition (20) is satisfied for m = n = 1 and the
determining system for the self-similar solutions is
written in the following form:

(21)

(22)

2ab + &%,

2iCa+c,—a

| , (29)
2iEb+c,+b' = 2ab+Db",

wherea=P' and b= Q' It iseasy to confirm that elim-

inating either of the unknown functionsaor byieldsthe

fourth Painleve equation (see [9]):

1,3
Yan = 5¥a+ 35y +any’+2n’~a)y’ +B. (24)

Infact, if y=y(n, a, B) satisfies equation (24), aand b
have the following form:

a = Ky, -1+ |[1:2 ¢ ;cjg
_ 010 (25)
b = KyE(E 1+| CZD 2C1D
K> = .

Quite clearly, the transformation formulas (17) and
(18) and the scaling transformations allow usto express
the self-similar solutions of the entire class of equa-
tions (3) and (2) in terms of the solutions (24) in some
way or another. It is less obvious that any integrable
generalization of the nonlinear Schrédinger equation
(see[2]) reduces to these Lagrange equations.
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3. FOURTH PAINLEVE EQUATION
AND COULOMB GAS

The fourth Painleve transcendent is closely related to
two auxiliary linear problems which may be expressed
in the form

W, = U(x, \)W. (26)
Here the potential U(x, A) isa quadratic or linear func-

tion of the spectral parameter A, respectively.

In the quadratic case the spectral dependence (58)
reduces to (26) with the following parametrization
U(x, A):

AU(x, \) = (z=\)*+ 2z, —4p. (27)
We show that the equations
xx+ z—A x+ )
(Z=A)Uy+ pY 28)

Ay = (A +X+2) Py —

formalLax pair for the fourth Painleve equation. Infact,
substituting

Py = Ay + BY — Yy,
= [Act B+ (A-2)AY, +[B,— pAJY
into

W + (Z=A) Wy + pU, = U,
yields the equations
— A t4UA, +2UA = A -2,
2B, = 1+ (ZA-AA-A)),.

The first of these equations for the case AA = A + y(X)
gives

(29)

ye = 3y*—axy’+ (x*+ 2¢c))y* + ¢y,
y = z+X,

2yyXX - (30)

which apart from trivial dilations of y and x is the same
as equation (24) for the fourth Painleve equation.

Note that in this particular case AA = A + y(X) the
equations (29) may be rewritten in the form

z, = 2p+Z°+ 22X+ Cy,
(Pt 2pz+px),+p =0
and z can be eliminated rather than p. This gives
Vit AY, (Y + €Y, +8) = (Y=xY,)’,
Yy =P

(31)

where ¢, =¢, + 1.
Formulas (61) and (28) clearly define the self-simi-
lar solutions (62).

In addition to equations (28) describing isomono-
dromic deformations coupled with the fourth Painleve
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eguation, an important role in the theory of this equa
tion is played by the linear Schrédinger equation

qux = (U(X) —)\)UJ,

which corresponds to a linear potential U(x, A) with
respect to A in (26). The discrete symmetries (24) then
correspond to Darboux transformations for the
Schrodinger equation and the fourth Painleve equation
itself is replaced by an equivalent system of first-order
equations [6]

(32

01 = 01(95—0o) +
9 = (01— 0a) + 0y, (33)
03 = Gs(92—0) + O3,
with the additional first integral
O:+02+0s = XY, Y =0;+0,+05.  (34)

Taking into account the first integral, we can easily
check [see (23)] that each functiong; =j,j =1, 2, 3 sat-
isfies equation (24):
2yYu—Yx = Y (3Y" —4yxy +y*X* + 2¢)) —af,
Cj = Oj,p—0j,y.

(35

Expressing g, interms of g,, we obtain one of the Back-
lund transformations for (24):

a, -y
y

The function y satisfies equation (24) because of (35)
but with modified parameters a, [3.

One of the applications of (33) isan elegant formula
which refines the relationship between equations (30)
and (31). We introduce the notation

Y = 0:0,0;+0;0,—0,9; — Y = yh,
h = 0,0,
Using thefirst integral xy =g, + g, + g; and the formulas

2y =

—y+yX.

hl ml_lg.{. gld_}_2+1[|

PERCIRY Op 70
Y S R s L S
E_Xy - gZDF_]'D_gll]F-FJ'D

vh =Y,

we can express g; and g, in terms of Y and its deriva-
tives. As a result we obtain a second-order nonlinear
ordinary differential equation

Y = V(Y =xY, )2+ 4y (e, = Y, ) (0, + Y,). (36)
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Itisuseful to notethat inthelimit y — O the functions
hi =00 .1+ W 41,1 0Z;satisfy theequation for dliptic
functions

2+ (- p)h- -y = 0,

where a, = W, — HMn+1- The obvious relationship
between this equation and (36) is used in the theory of
asymptotic integration of the fourth Painleve equation.

The representation (33) significantly simplifies the
construction of known families of particular solutions
of equation (24). In particular, the canonical reduction
0; = a5 = 0 to lower the order of the system (33) yields
a single-parameter family of solutions of (24)
expressed in terms of Hermite functions. In fact, for
0; = 0wefind g; = yx—g,, and thus g, satisfies the Ric-
cati equation

b = YXQ2— 05 + Oy,

Substituting g,(X) = Ay (AX)/y(AX) reducesthe last equa-
tion to the Hermite equation

y'—2xy—2a72y:0. 37)

Finally, as we can easily confirm by differentiating,
the transformation

0.=9, 0.=9 L
1 1 2 2 91’
" a A 38
O = 93"‘_1; a; = -0y, (38)
0

O = O3+0;

converts the solution (33) back into a solution.

3.1. Rational Solutions

It is well-known [7] that equation (24) has rational
solutions for special values of the parametersa, B. Itis
known [8] that for rational solutions (33) the following
relations hold

=Yy v
o =3V V02, (39)
Yi+Y2+Ys =3, ViEY,=y; (mod3).

Formulas (39) imply that & = (a4, a5, 015) are positioned
either at the center or at the vertices of the correspond-
ing triangles. This corresponds to the case

Y1=Y2=Y3=0 (mod 3),
and in particular, for a; = 0 we find [see (37)]:
o = ((m+ 1)y1 —my, 0) — 0 = yX—(IOng)X,
9; = (logPy),, 93 = 0,
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where P,,, is an mth degree polynomial such that
Pm = yXP,—myP,,.

For the following it is important to have in mind the
unigqueness [8] of the rational solution (33) for given a..
In particular, from this uniqueness and the invariance of
(33) relative to the involution g;(X) — —g;(-X), it fol-
lows that the rational solutions correspond to odd func-
tions g; ().

For the general position, replacing g;, j 0 Z3in (33)
with Q;, j O Z5 using the formulas

1
g = 3¥YX+ 0,109(Q;+17/Qj_1),

we arrive at the following equations for the polynomi-
asQy:
(Q] —xQ; + m;Q))Q; .1
+(Qf+ 1+ XQj11—M;11Q;41)Q; = 2Q,Q;. 4,
y =3
Here the normalization y = 3 does not significantly
restrict the generality and my denotes the degrees of the

polynomials Q,. On account of the periodic closure Q;,
j O Z5it follows from (40) that

Q1Q,Q3 + Q;Q5Q5 + Q;Q,Q5
= Q1Q;Q; + Q2Q3Q; + Q3Q;Q,,

which then givesin the principal order with respect to x

(40)

(ml_m2)2+(mz_m3)2+(m3_m1)2 (41)
= 2(m; + m, + my).

Quite clearly, the equations (33) should follow from
(40) and a comparison of the parameters of these equa-
tionsyields

a; = %(1+mj+l+mj_1—2mj)

_’yj+1_yj = 3(rnj_rnj+1)'

In particular, the relations (39) follow from this. The
formulas given above together with (41) can be used to
find my, m,, and m, for given o = (a4, 05, O5):

1 1
m; = 5= D=2 + 5V =V D= V),
. (42)
yj = {IGJ.

We note another useful formula

1
m+my+m; = 1- é(V1V2 +Y,Y3+YaY1),

which is equivalent to (41).
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Thetransform (39) with the mapping (42) generally
goes beyond the set of nonnegative integers my. We can
confirm that this contradiction is removed by the addi-
tional constraint

Yi1=Y,=Ys#0 (mod 3), (43)
which isolates the centers of the triangles (39). This con-
straint evidently also guarantees that the coefficients of
the polynomials Q, determined from (40) are integers.
We give several examples:

a=(-1,22), Q=(x11),

a = (-1,5-1), Q= (X¥*-1,1,x°+1),
= (1,4-2), Q=(x1x+1),
a=(5-42), Q= (xx+2x-1,x*+1).
As we have already noted the rational solutions (33)
correspond to odd functions g;. The polynomials Q,
corresponding to these solutions are even functions of
x if their degrees my are even and are odd functionsin
the opposite case. It can be shown that the polynomi-

als Q; determined from (40) and (43) cannot have com-
mon zeros.

(44)

We note that all possible solutions (40) for which
one of m = 0 are given above. In thiscase, Q; = 1 and
the other two polynomials are Hermite polynomials on
account of (40).

3.2. Coulomb Gas

The generally accepted definition of the fourth Pain-
leve equation correspondsto the casey=-2in (30). We
shall use the property of the fourth Painleve equation
that any singularity of the solution in the finite part of
the complex plane has the form

WDL—E =1 (45)
E-& '
Itisalso well known that the asymptotic behavior of the
functions g; at infinity is defined as

2

g — 3¢,

or

01— _ZE! (47)

We shall seek rationa solutions of the fourth Painleve
equation in the form

ST E £

2000

0,03 —0, & — .

(48)
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where & = 2/3 correspondsto the case of “centers’ (46),
(39) and d =0 or d = 2 leads to the “angles’ of atrian-
gle. Substituting (48) into (45), we obtain

(3-1)E, = Z% G = *1. (49)
i —Gj

IEd

Equation (49) describes an electron gas with Coulomb
interaction with a parabolic potential and also the sta-
tistics of the eigenvalues of arandom Hermitian matrix
since (49) can be obtained by varying the following
functional:

U= 3 5(1-8)c& + Y colog(& ~&). (50

i#]
The particular casewhen all chargesarec; =1 (or all

¢ = —1) yields the well-known solution of the fourth
Painleve equation

H(€)
HA(€)’

where H,(§) are Hermite polynomials (see [9]). Hence,
the roots of the Hermite polynomials H,, describe the
static distribution of like chargesin the potentia (50).

Interestingly, in the case of two unlike charges, no
solution (48) exists, i.e., an electron is annihilated at a
hole. At the same time the solution Q(1, 4, 2) [see (44)]
determines three solutions of equation (49) for & = 2/3
of which two aretrivial (they correspond to roots of the
Hermite polynomials) and one corresponds to a system
of two positive and one negative charges:

&3 = 0,

In general we have three solutions of the system (49)
where al positive charges are positioned at the roots of
the polynomia Q; . ; and all negative charges are posi-
tioned at the roots of the polynomia Q,_,; thus the
number of chargesis N, = degQ), . ;.

w=-28+ (51)

El,Zii! Cl,2 = l, C3 = _l. (52)

4. LANDAU-LIFSHITZ MODEL

In acertain sense, the most general of theintegrable
eguations considered by us is the anisotropic Landau—
Lifshitz model

S = Sx(Sx+J9), S+S$+S =1, (53

where J is a symmetric matrix. By parametrizing the
vector S

S=(5SS)

2 o, _ (54)
=(p(@" -1 +a, ip(@+1)+iq,2pg+1)
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this vector equation is reduced to the Lagrange form (1):

L = igp,+ pa—ap - p’r(a)
sy (55)
—5pr(@) -3,

where
— _[055950
4r() = 52351 (56)
For the case of adiagonal matrix J we have
4r(q) = (J,-J)q"
(@ = (J.—-Jd)q (57)

+2(3,+3,-23)q° + I, - J,.

It should be noted that having replaced the Lagrangian
L, from (7) by (55), where r(q) is an arbitrary fourth-
degree polynomia with respect to the variable g, it could
be confirmed that any integrable generaization of the
nonlinear Schrédinger equation reduces to (1) or (55)
(see, for example, [2, 3]).

In addition to (54), we can use other parametriza-
tions of a complex sphere, such as the stereographic
projection. The most interesting for us is the known
relationship between the parametrization problem and
the spectral problem

lIJxx+ (Z(X)_}\)L'Jx+ p(X)LIJ = 0.
Specifically, if S= S(x) isacurve on the sphere (S, S) =
£+ + =1 then

(S,S) =1—S, = kN,

NX = _kS+XB! BX = _XN,

(58)

(59)

where B = S x N is the binormal. These Frenet equa-
tions are closely linked to (58) and having determined
the coefficients p, zfrom the formulas

K> = 4p, ix+z+(logk), = A, (60)
we can confirm that the pair of solutions Y;(x), j = 1, 2,

of equation (58) can be used to reconstruct the curve
S(x) for given curvature and twist:

WXS; = (Wid,),, WON(S,+iS) = i(Wd),

(61)
WX)(S—1S) = iW),.
Here w = w(x) denotes theVronskian
W= Py =W,y
of these solutions.
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4.1.CaselJ=0

We shall now show that the equations (16) definethe
temporal dynamicsof curvature and twist for theisotro-
pic Landau—Lifshitz model:

S =SxS,, S+S+S =1 (62)

Infact, by differentiating the Frenet equations (59) with
respect to t, we obtain the following equations for the
curvature k and twist X:

_|j<xx 12 ZD
+§k -X0-

Ki+ 2k X +KXx = 0, X = Y

Substituting (60) then converts these equations into (16):
P = (Z+ M) Y—py,

. (63)

W, + W, +2pw = 2Aw,, w, = (A—2)w.

Using the Miuratransformations (18) we can obtain
an equation directly for the projection of the spin onthe
z axisfor the model (62):

e+ W2 ¥s, = (w+28),

W

(64)
Yy =C—-C+2,

where w = w(&, a, B) is an arbitrary solution of the

fourth Painleve equation with the parameters

a= %(cl+c2), b= —%(cl—c2+2)2. (65)

Equation (64) has the particular solution o = +1 if
Wty = FWW+28)— W = &£ =

Y+ (2v+1-Ey = 0,
F(y—1) = 2v+1,

andifv=0,1,2, ..., weagain obtain a set of rationa
solutions of the fourth Painleve equation (51).

Sincec =11+ Cy eiEz , the particular solution (64)
has the form

S, = 21+ CH,(Z). (67)
Using the Z ; symmetry of the fourth Painleve equation,
we can rewrite equation (64) in terms of the functions
g [see (33)], immediately obtaining three self-similar
solutions of the Landau—Lifshitz model (62)

(0 +0—0+1)S = G +Jiur. (68)
For the relationship between the Heisenberg model and
the fourth Painleve equation see also [10].
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5. NONLINEAR SCHRODINGER
EQUATION MODEL

It is interesting to consider various (including non-
integrable ones) generaizations of the nonlinear
Schrédinger equation. For instance, the nonlinear
Schrddinger equation with time-dependent coefficients
has the form

ig + f(H) 0+ g®dl"g = 0. (69)
Changing the notation of the time
t
t— I f(t)dt' (70)
and the coupling constant g(t)
o) — 3. (71)
we rewrite the equation in the form
gy + G+ 9(ldl°g = 0. (72)

This can have a sdlf-similar solution g(t) of the type

g(t) = a4y V2 (73)

where m [0 R and the constant a can be set as £1 (the
choice of sign is important). The self-similar solution
(to within the scaling transformations and t > 0) hasthe
form

g = (g€, g* = 4k®)™ Y (),
_ 1 (74)
n = kt)x, k) = e
where
O(n,t) = 6(n) +Bylogt, 6,0R, (75)

2
|
8(n) = 7 +mfgdn, (76)
and Y satisfies the following equation:
2Y"Y' = Y"? + An°Y? — 4mPY?
(77)

+160Y"°—166,Y” = 0.

The Painlevetest for this equation yields the conclusion
that the solutions (77) have no mobile singular points
for n? = 1. Inthiscase, equation (77) isintegrated asfar
as a second-order equation [using the integrating factor
Y'Y, see (31)]

Yo, +6240nY, -Y)
+20Y,(2Y, —0a8)* + 2ap’Y, = 0,

where p? istheintegration constant. A self-similar solu-
tion of the nonlinear Schrédinger wasfirst obtained in [1]
for the case 6, = 0. In general, the properties of these

(78)
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solutions of the nonlinear Schrédinger equation may be

obtained asin [1]. The solution Y may be written in the
form

_ay = %W(W—r])z

1 1 (79)
2 2
+ é—vv[Wn _2Wﬂ -y +1] + EGO(W—r]),
where W satisfies the equation
_1,p
WW, = SW;—6W* +8nW°
(80)

1
~2(0*~8)W ~5(u-1)’,

which isthe same asthe fourth Painleve equation (apart
from the change of variables). Equation (79) may be con-
sidered as an agebraic quadrature (78) which is quadratic

with respect to Y, .
We note that
(W, +p-1)°
—20Y, = (W=n)*+—"0——" (81)
n 4W2

Thus, for a = -1 and real p and W the condition
Y, = 0 is automatically satisfied. However, for a = 1
and real p and Wwe find that Y, <0, i.e,, there are no
self-similar solutions. We shall discussthe case o = —1.

We can express Win terms of Y:

_ —HYpo * (2, + 80)(2Y +16y) +

W 2 2
(2Y, +8,) + 11

(82)

On the basis of the Bureau derivation [11, p. 210]
equation (78) can be solved by an algebraically differ-
ent method, i.e., Y can be expressed in terms of a differ-

ent function W:

2Y = hn +ﬁ1‘—2\7\/3—4n\7v2
2W

b (83)
y n
+2(n"-a)W+ W
where W satisfies the equation
W, = %wi _6W' + 8nW*
(84)

~2(n*-a-0W + 2,

where
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and the constants a, b, and h are determined as follows:

4a° + 332 —0))a+0,9u°+06) =0,  (85)
3b = —2a°-2(3u%*-0)), (86)
_2
h = é(a—zeo). (87)
The roots of the algebraic equation at a have the form
a, = —0,, (88)
1 3.
62’3 = éeoiélu (89)
Then
by = -2, (90)
_ 1l 2
b, s = E(eo""ll) ) (91)
h, = -26,, (92)
hys = =6 xiH, (93)

and thus the function W may be expressed in terms of Y,
For the case a; = -8, we obtain

o1 1Y oYy
We= N3y 7Y, (54
andinthecasea, 3 = 6y/2 + 3iu/2
~  _ nY,=Y _0_2 Yon
Was = 2Y, + 8ot ipl 22Y,+ 0t ip’ (95)
The values of W are related by
ZZWZ — Z3W3 — Z3W3_Z2W2 (96)
Wo— W,  Wo—W, W,-W,
where
_1 -
(o3 = z(eoim)- (97)

The Backlund transformations for the nonlinear
Schrddinger equation are reduced to the corresponding
transformations for the salf-aimilar solutions Y. We can
obtain a new salf-smilar solution Y which satisfies (78)
for p — 2 —p and has the form

~

Y=Y
L1 (MDY, +8) 1T (%)
2[— WYy, + (2Y, +6,)(2Y +18) + N’
No. 3 2000
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6. NONLINEAR SCHRODINGER EQUATION
WITH VARIABLE DISPERSION.
EXACT SOLUTION

We shall analyze the nonlinear Schrédinger equa-
tion with variable dispersion d(2)

1P, + d@ W, + g Y = 0, (99)

which can be obtained by varying the following
Lagrangian:

L = Idzjdt[iwﬂuz—d(z)w:wx+g(wﬂuf] (100)

Using the canonical transformation (g, *) — (p, ©)
(where | = p¥2€9) the Lagrangian (100) becomes

2
L = IdzJ'dt[— pcpz—dpcpf—d% + gpz}. (101)
The equation of continuity
p,+2do,p@ = 0 (102)
can beintegrated, having selected the self-similar form p:
p = M2 1(2),

¢ = Ay ®(2), & = At (103

4dA ’

The Lagrangian (101) with this choice of self-simi-
lar substitution is transformed to give

fa gy2:2
L= 55 )Idz[ ho.0u(d) -2 + 1 "
104

Dlg)\ O\ f
ﬁﬂmm AEQd)\DDfE'}

By varying the Lagrangian (104) with respect to f and
@, We can obtain equations for the self-similar solu-
tions. If the following conditions are satisfied

A = a, (d)° = ed’+4a’y (105)
the equation for the “density” f has the form

al f* 2

E[T_F} yE2+gf = 0. (106)

If ay > 0, we obtain a periodic solution for d(z) but
f—> oo for & — oo} if ay <0, € > 0, (106) may be
rewritten in the form

d= /40‘ cosh(z./e),

YEy+gy +Ey =0, y = f.

(107)

We shall say that in this case an exact self-similar solu-
tion of equation (99) is obtained since the solutions of
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equation (107) for y arefinitefor & — oo, have no sin-
gular points, and possess known asymptotic forms (the
Schrddinger oscillator equation with cubic nonlinear-
ity). From this point of view, no exact solutions exist for
the case of periodic dispersion. The periodic case is
interesting because equation (99) describes the propa
gation of a signa in optical fibers consisting of
extended sections of different dispersion. A variational
solution of an equation of the type (99) was constructed
in [12]. The conclusion that no exact solutions of (99)
exist in the periodic case does not necessarily imply
that no variational solutions exist, but may indicate that
they are unstable.

The maor part of this work has been devoted to the
study of self-similar solutions of one-dimensiond integra-
ble dynamic systems. A genera Lagrangian approach can
nevertheless also be applied to nonintegrable systems.
Quite clearly, various symmetries such as the Miura
and Backlund transformations are absent. However, in
this case equations for the self-similar solutions are
easily derived by a dynamic method, i.e., with all pos-
sible parameters being conserved. It would be interest-
ing to analyze self-similar solutions of dynamic sys-
temsin the two-dimensional case.
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Abstract—Detailed numerical experiments on the dynamics and statistics of asingle crossing of the separatrix
of anonlinear resonance with a time-varying amplitude are described. The results are compared with asimple
approximate theory first developed by Timofeev and further improved and generalized by Tennyson and
coworkers. The main attention is paid to anew, ballistic, regime of separatrix crossing in which the violation of
adiabaticity is maximal. Some unsolved problems and open questions are also discussed. © 2000 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

Any conservation law, if only approximate, is of
great importance in physics. One of those is the adia
batic invariance that is the conservation of the action
variables (J) under a slow parametric perturbation. In
the simplest case of a single arbitrarily large variation
of the latter, the corresponding change in J is well
known to be exponentially small in an appropriate adi-
abatic parameter (e — 0) provided the perturbationis
an analytic function of time or of any other dynamical
variable.

However, in the theory of dynamical systems, a
much more interesting and important case is a station-
ary variation of the perturbation (e.g., periodic, quasip-
eriodic, or even chaotic). Inthis case, the adiabaticity is
violated for sufficiently long length of time, no matter
how slow the adiabatic perturbation is. Generic mecha-
nism of such a nonadiabaticity are resonances, both
driving and coupling ones, which always determine the
long-term dynamics of Hamiltonian oscillator systems.
This was first discovered and explained in 1928 by
Andronov, Leontovich, and Mandelshtam [1]. Remark-
ably, it was sufficient, for this purpose, to carefully
examine the well-known Mathieu equation and its solu-
tions from the standpoint of physics. Indeed, the insta-
bility zones (“stop bands’) exist for specia but arbi-
trarily small values of the parameter €, where the adia-
baticity is completely destroyed in a sufficiently long
length of time. Thisleads to an additional condition for
the adiabatic invariance: the perturbation must be not
only slow but also nonresonant.

At a separatrix, an asymptotic trgjectory with infi-
nite period of motion, both conditions are violated (see,
e.g0., [2, 3]). Thisisexactly the place where the dynam-

T his article was submitted by the authorsin English.

ical chaos is born, the ultimate origin of chaos. In a
Hamiltonian system, the separatrix is typically associ-
ated with nonlinear resonances. The violation of adia-
baticity results in the formation of a narrow chaotic
layer around the unperturbed separatrix. The set of all
resonances is everywhere dense in phase space and
forms the so-called “Arnold web.” For the number of
freedoms N > 2 (in a conservative system), a united
chaotic component of motion is formed along which a
chaotic (but nonergodic!) trajectory is covering the
whole energy surface. This very intricate process was
termed “Arnold diffusion,” which is an universal insta-
bility of multidimensional nonlinear oscillations [3-5].
However, the rate of this diffusion, as well as the total
measure of the web, istypically exponentialy small in
perturbation parameter €. For large N or for a driving
guasiperiodic perturbation with many frequencies,
these nonadiabatic effects decay with e as a power law
but only within afiniterange e, < € < 1 (the so-called
fast Arnold diffusion [6]). Asymptotically, ase — O,
the decay is always exponential [7], the crossover value
becoming smaller with larger numbers of unperturbed
frequencies.

A more serious violation of adiabaticity was found
for the crossing of the separatrix by atrajectory. In this
case, the change of J is always a power law in €, and,
moreover, the measure of the chaotic component does
not depend on € at all and isalwayslarge. Thisistruefor
the dow resonance crossing [8, 9] as well as for the
crossing of a single separatrix [9-13]. Interestingly,
for the linear oscillator with the frequency value
crossing zero, the change of J may belargely indepen-
dent of € [14].

In this paper, we present the results of numerical
experiments for asingle crossing of a single separatrix.
The present work was stimulated by an interesting

1063-7761/00/9003-0562%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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study of the corresponding quantum adiabaticity [15].
We use the same classical model described in the next
section.

2. MODEL

The model in [15] we use here is determined by the
Hamiltonian

2
H(x, p,t) = % + AySin(wt) cosx
(2.1

2
A
= B 4 Dorgin(x + wot) — sin(x— wt)].
2 2
The first expression describes a single nonlinear reso-
nance in the pendulum approximation (see, e.g., [3, 5])
with atime-varying amplitude

A(t) = Apsin(wt). (2.2)

Alternatively, the model represents the interaction of
two stationary resonances (the second expression in
(2.1)) assuggested in[16, 17]. Inthelatter case, thefor-
mal resonance overlap parameter [5]

— (2.3)

indefinitely increases as w — 0. Here, (Ap), is the
width of each resonance and 2w is the distance between
them. The adiabatic limit w — 0 corresponding to
infinite resonance overlap was suggested in [17] as a
new paradigm of “pure” chaos. However, this chaosis
generally not ergodic.

Below, we keep to the first interpretation of the
model as a single pulsating nonlinear resonance.

The dimensionless adiabaticity parameter is defined
in the usual way as the ratio of perturbation/oscillation
frequencies. Actually, we can introduce two such
parameters:

e= -2 onde= 2 2.4
AT A 24

Here, /A, is a constant frequency of the small reso-
nance oscillation for the maximal amplitude while
JA(t) is the current frequency, particularly at the
instant of separatrix crossing. Correspondingly, we call

e the global parameter of adiabaticity, and € the local
one.

Two branches of the instant, or “frozen,” separatrix
at somet = const is defined by the relation

po(X; 1) = x2./|A(M)[sin(X/2),

Ox, A(t) >0,
Ex -1, A(t) <O0.

. (2.5)
X =
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Following previous studies of the separatrix crossing,
we restrict ourselves to this frozen approximation in
what follows. As we shall see, the latter provides quite
good accuracy of rather simple theoretical relations.

In this approximation, the action variable is defined
in the standard way as

J = Zi]_(fp(x)dx,

where the integral is taken over the whole period for x
rotation (off the resonance) and over ahalf of that for x
oscillation (inside the resonance). This distinction is
necessary to avoid the discontinuity of J at the separa
trix where the action is given by asimple expression

3= 341 = %A/A(t) <J . = %JKO.

At wt = 0 (modT), the action is J = |p| and the conju-
gated phase is 6 = x. Note that, unlike p, the action J = 0
iS never negative.

It is convenient to set A, = 1 and to introduce the
dimensionless action by the transformation J/J,,c — J.
The crossing region is then the unit interval, and J is
simply related to the crossing timet =t by

(2.6)

(2.7

|A(ty)| = 3%, 0<J<1, (2.8)
while the adiabaticity parameters become
e = wand € = €/J. (2.9)

Numerical integration of the equations of motion for
Hamiltonian (2.1) was performed in (x, p) variables
using the so-called bilateral symplectic algorithm sug-
gested in [18] and based on the symplectic fourth-order
Runge—Kutta method in [19]. A typical number of iter-
ations was ~100 per the minimal motion (oscillation)
period 21t This provides the conservation of the Hamil-
tonian in extended phase space [3] better than 1075,

Asiswell known, the variation of J under an adia-
batic perturbation consists of one to two qualitatively
different parts. (i) the average action, which is nearly
constant between the crossings up to exponentially
small corrections and which is of primary interest in
our problem, and (ii) the rapid oscillations with the
motion frequency (see, e.g., Fig. 7cin [20]). Theratio
of thetwo time scalesis~e < 1, which allows the effi-
cient suppression of the second unimportant part of the
J variation by simply averaging J(t) over a long time
interval ~1/e, the suppression factor being ~l/e > 1
(fairly large).

3. DYNAMICS OF SEPARATRIX CROSSING:
DIFFUSIVE REGIME, J = €3

To the best of our knowledge, the first analytical
estimates for the change in J due to separatrix crossing
have been calculated in[11] followed shortly by amore
accurate [12] and, later, by a more general [9] approxi-
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Fig. 1. Normalized deviation of numerical data for separa-
trix crossings from the simple theory (3.1) in model (2.1):
4 crossings x2500 tragjectories; € = 0.001. (a) Deviation
dependence on Jin thewhole availableinterval: 0.2<J<1
(seetext). (b) Same dataasafunction of the crossing param-
eter M inthe best described interval: 0.7 < J < 0.9; accuracy
(36) 0 =0.01.

mate (asymptotic in €) theory. For model (2.1) under
consideration here, these results (see also [21]) can be
represented in the form

AJ(J, M, €) = F(I)D(M). (3.1)

Here, AJ = J;— J; isthe difference between the final and
initial averaged values of J.

e1-J*

FO) = 5 san(AQ)

(3.2)

is the dependence on the averaged action (usually, but
not necessarily, the initial one), and

®(M) = In|2sin(TtM)], (3.3)

where M is the “crossing parameter.” It looks like a
phase canonically conjugated to the action J [21], but it
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isnot. A peculiarity of the separatrix crossing isthat the
conjugated phase 6 cannot even be introduced on the
frozen separatrix, because the motion frequency in this
approximation is zero, and hence 8 = const. Instead, a
different variable, the crossing parameter, is used in the
theory [9, 12] determined by any of the following
approximate relations:

A3/2 A3/2 2@‘(
M= w, = = w, —2 = gn° =0 34
X2Ax P4Ap D4|j ( )
Here,
|OH(t)| |OH(t,)|
w, = , W, = (3.5
ALY P o(tp)

are the closest dimensionless approaches of the trajec-
tory to the unstable fixed point (X = 0 (mod2m), p = 0)
just before or after separatrix crossing a timet, and t,,
respectively (for details, see [9, 12]). The absolute val-
uesareassumed for all quantitieswith subscripts. Inthe
latter expression (3.4), the coordinate X; (t,,) is taken at
the instant t, of separatrix crossing.

The physical meaning of seemingly complicated
(3.4) is actualy very simple: the main change in J
occurs only at the closest approach to the unstable fixed
point wherethemotionisvery sow, allowing for the mov-
ing separatrix to considerably push or pull the trgjectory
aong. The existing theory cannot distinguish between the
three relations (3.4) with respect to their accuracy. How-
ever, our numerica experiments revealed that, taken by
itsdlf, the third relation (M = M) proved to be most accu-
rate. On the other hand, if we make use of thefirst two and
take the minimal one of them (M = M,,;,, < 0.5), the accu-
racy further increases. In this case, it is important to
take al the quantities at the corresponding instants t,
andt, asindicated in (3.4) and (3.5), and not, e.g., at the
crossing timet,,.. All quantitiesin (3.4) and (3.5) were
computed using the linear interpolation over a single
numerical iteration.

A comparison between the numerical resultsand the
simple theory is presented in Fig. 1.

The empirical data (points) represent four separatrix
crossings over one period of the adiabatic perturbation
A(t) in (2.1) for each of the 2500 trajectories with ran-
dominitid conditionsin thefull interva of 8 =x= (0, 2m)
and of J=1p/4=(0, 1) att = 0. The normalized devia-
tion from the theory is presented as afunction of initial
J=J, (prior to a crossing) and of parameter M. In both
cases, the optimal M = M,;, is used. The best accuracy
of the theory roughly corresponds to the interval 0.7 <
J = 0.9 (Fig. 1a). The latter is separately shown in
Fig. 1b. Beyond thisinterval, the deviation increases at
both sides.

For J — 1, the change in J becomes very small
(3.1), which increases the theoretical errors. More
interesting isthe opposite limit (J — 0) wherethe the-
ory becomes singular. It simply means that such a the-
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ory is no longer applicable here. This new and interest-
ing region of maximal nonadiabaticity will be consid-
ered in Section 4 below. Here we notice only that the
absence of any pointsfor J < 0.2 in Fig. 1la has avery
simple explanation: using the best parameter, M = M,
becomes inapplicable in this region, because only one
of the two close approaches remains here while the
other one is never realized. If, instead, one uses a less
accurate parameter M = M;, which isalways applicable,
the deviations exceed 1, which means that the theory
(3.1) has nothing to do with such asmall J.

The highest accuracy achieved in our numerical
experiments o = 0.01 (see (3.6) and Fig. 1b) is compa-
rable with the minimal theoretical errors~elne [9]. Ina
very narrow interval of M, = 0, the accuracy becomes
somewhat worse but is still surprisingly good for such
a simple theoretical relation as (3.1). A few points in
thisregion are clearly seen alsoin Fig. lascattered over
awideinterval in J.

The high numerical accuracy achieved reveds a
complicated structure of the deviations from the theory.
Besides irregular scattering of the points, thereis a clear
regular “splitting” symmetric with respect to zero devia-
tion, which is determined by the sign of A(t). It might bea
result of insufficient J averaging (for discussion see [12]).
Theseregular deviations could be excluded by the explicit
compuitation of thefirst correction to the adiabatic invari-
ant (2.6) asin [10]. However, it would hardly decrease
appreciably the deviations, as they are already of the
order of the terms omitted in the theory. In any event,
we included this “splitting” in the definition of the
accuracy of our numerical datain Fig. 1b for al of the
four successive separatrix crossings:

» _ OAJ-AJy)°0

o = T .

Here, AJisthe empirical and AJ, isthetheoretical (3.1)
value of the J change per crossing.

Another way to demonstrate agreement (or dis-

agreement) of the existing theory with the empirical
dataisto look at the behavior of the transform

AJ— (AJ)" = =AJsgn(A(t)). (3.7)

Asfar astherdation (3.1) holds true, this new quantity
has a strict upper bound

(AJ)" < |F()|P(1/2).
The results are shown in Fig. 2a.

The upper bound of points closely follows the theo-
retical dependence (3.8) down to J; = 0.2 (cf. Fig. 1a).
Remarkably, for small J;, a clear upper bound also
exists even though the unknown underlying dynamics
is apparently completely different here. In particular,
the upper bound in this region does not depend on J and
formsacharacteristic “platean.” The crossover between
the two regionsin Fig. 2aisat J= J,, = 0.1 and scales

(3.6)

(3.8)
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Fig. 2. The set of empirical AJ for the ensemble of trgjecto-
riesasin Fig. Linthefull range J; = (0, 1). (8) Transformed
quantity (AJ)*, (3.7); the solid curve is theory (3.8) shifted
upwards by 20%; the horizontal line is empirical upper
bound 2(AJ)*/e = 150 in the region where there is as yet no
theory; crossover action Ji,o = 0.1. (b) Actual AJ with cor-
rect signs: the oblique straight lineisempirical lower bound
AJ = -J; (seetext).

as Jyo ~ €2 (see (4.5) below). We shall call the well-
understood behavior for J = J,., the diffusive region and
the other domain J < J.,, to be considered in some
detail below, the ballistic region, for reasons explained
in the next section.

4. STATISTICS OF SEPARATRIX CROSSING:
BALLISTIC REGIME, J < €®

For small J < €®, not only is there the complete
absence of any theory, but also constructing the empir-
ical relations seems to us a hard task. Particularly, asis
seen in Fig. 2b, the structure in this region is rather
complicated.
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Fig. 3. Distribution p(M) in number of crossings per bin:
€ =0.01; J.o = 0.215. Top to bottom: (i) M = Mpyip, Ji =
(0.3, 1), the diffusive region, 6928 crossings, 100 bins;
(i) same for M = M3, 7312 crossings; (iii) M = M3, J; =
(0, 0.2), the ballistic region, 1634 crossings, 50 bins.

Surprisingly, statistical properties here turned out to
be fairly smple. To our knowledge, Mirbach was the
first to study this problem numerically in 1998 [22].

Since, in this paper, the properties of the single sep-
aratrix crossings are considered, we need a statistical
ensemble of trgjectories before we turn to statistical
numerical experiments. As the motion driven by sepa-
ratrix crossing is known to be ergodic, or at least very
closeto that, within the crossing domain, it would be nat-
urd to make use of the ergodic ensemble. In this case, the
distribution of the crossing parameter M in (3.1), which
determines all the statistical properties of the single
separatrix crossing, was shown to be homogeneous [9,
23]. Particularly, the two first moments of the M-distri-
bution are

W, = Op(M)0O= 0,

2 (4.1)
12

Both numerical values hold in the diffusive region only.
Moreover, it isinsufficient to fix initia J, even for the full
range of 6, = (0, 2m). For homogeneous M-distribution,
the width of initial distribution AqJ, must exceed some
critica value given by asimple approximate relation

Ny 130 J 0 3, 030
3 >e 3 | % 4|:| croI wTD (42)
0 Jo F 1— J.U JO 0 Jg o0

Mo = CO°(M)O= =

Thisrelation is obtained from the condition that theini-
tial strip J, = (0, 1) is transformed in such a strip near
an unstable fixed point (see (3.1)), which provides the
full range of parameter M = (0.1). In most of our statis-
tical numerical experiments, we used the full range of
Jr=(0, 1).
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In Fig. 3, the M-distribution is shown for both defi-
nitions of this parameter.

Two upper distributions in the diffusive region are
fairly homogeneous within statistical fluctuations. In
contrast, the lower one in the ballistic region shows a
clear dope, whose mechanism remains unclear.

The statistical properties we studied are character-
ized by the two first moments of the distribution func-
tionin AJ (see (3.1)) defined as follows:

2
1
(83)5= 0AY'D= FQu, = 5 E}—lﬁJz,
(AJ) = [A\J= EE(AJ)ZD: |J.2€2 (43)
o dal 2 o F

Both analytical expressons are vdid in the diffusve
region only. Moreover, the second one cannot be deduced
from the existing first-order theory, as [AJ~ € is a sec-
ond-order effect. Instead, one can use the well-known
relation between the two moments (see, eg., [3]),
which generally holds true for a chaotic Hamiltonian
system (for discussion, see[2]). Thisrelation, aswell as
the second-order moment [AJC]which may seem to be
negligible at first glance, are in fact very important for
derivation of the correct diffusion egquation

9f(J,1) _ 9 D(J)af
ot 9J 2 aJ

Particularly, this eguation entails the relaxation to a
homogeneous steady state f(J, 1) — f((J) = const as it
should be for the ergodic system.

In (4.4), T isthe discrete time measured in the num-
ber of separatrix crossings and D(J) = [{AJ)’[denotes a
“diffusion rate” [21, 23]. Actually, thisis not the rea
diffusion rate which includes the correlation between
successive crossings. Thismay be important in the prob-
lem under consideration according to numerical datain
[21] (for further discussion, see Section 5 below).

Theresults of our numerical experiments on the sta-
tistical properties for a single separatrix crossing are
presented in Fig. 4a. We used the same numerical data
asin Fig. 2b, which upon ordering in J were averaged
by the standard method of the moving window of width
of 500 points, or A,J = 0.05. The transition from the
diffusive to the ballistic regime is surprisingly sharp,
especially for (AJ), (lower curve). The crossover value

(4.4

J=1J,,=0ae” a=108, (4.5)
where empirical factor a was found from the plateau
(upper bound) for (AJ), (upper curve). To this end, we

substitute J,, for Jin (4.3) to obtain

/\/_2 1/3

(Ad), < (4.6)
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Remarkably, the empirical data follow with a rea-
sonable accuracy the diffusive theory literally down to
the very crossover. This alowed usto numerically dis-
cernthe very small but important first moment and even
to check its agreement with the theory.

Even though thereisasyet no theory for the ballistic
regime, the underlying physical mechanism of thetran-
sition is rather simple and comprehensible [22]. This
transition is determined by the kinetics parameter

8,

€
DJ—3<1,

which is a reduced dynamical scale in J. The latter
strong inequality is a necessary condition for the diffu-
sion approximation to the exact integro-differentia
kinetic equation to hold; hence, we get the term diffusive
region for J = J,, ~ €%. In the opposite limit (k = 1), the
trajectory jumps over the whole region ~J in one sepa-
ratrix crossing. This is usualy called the ballistic
regime.

Sincethe action J = 0 cannot be negative, the change
AJ is necessarily restricted for any J. In the ballistic
region, the restriction becomes very strong, asthe strict
lower bound in Fig. 2b demonstrates. It ssimply means
that J; = 0, as well as J,. Also, there exists the strict
upper bound J < 1, but it corresponds to a very big AJ
unlessJ —» liscloseto the upper border of separatrix
crossing. Near this border is aso the second ballistic
region, but its width is very small. Again, it is deter-
mined by the kinetics parameter (4.7), which now takes
the form

4.7

«o&zp e
VAN

whence anew crossover J® ~ 2.

In the diffusive normalization used in Fig. 4a, the
quantities 2(AJ), ,/e do not depend on e in the diffusive
region but do so in the ballistic domain. Instead, one
may use a different, ballistic, normalization by intro-

ducing anew variable J = Jle¥3. Theresultis presented
in Fig. 4b for the two values of €. Instead of (4.3), we
now have the relations:

J,=1-1J (4.8)

Hao

~5"

Ho 413[]

T2 _ Mol
(Ad)2 = 4|:54 € q

(Ad), = — 4.9

The second oneisindependent of e inthefull range of J.
Some difference between the two lower curves is
apparently due to fluctuations, especially for the
smaller . The first relation slightly depends on e, but
thisisimportant near the upper border (J = 1) only. The
diffusive theory (4.9) is shown in Fig. 4b for e = 0.01
(upper thin curve).

Even though thereisasyet no theory for the ballistic
region, some statistical properties can be predicted here
from a general consideration. One of those is the sur-
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Fig. 4. Statistics of 10* separatrix crossings, window width
A, J = 0.05. (a) (AJ), (upper thick curve), and (AJ), (lower
curve) vs. J for e = 0.001; two thin solid curves represent
the diffusive theory (4.3); the horizontal line is the empir-
ical upper bound for 2(AJ),/e = 78. (b) Same datafor € =

0.001 and 0.01in ballistic normalization: J = J/e¥3; empir-
ical upper bound 2(A3 )2 =0.78.

vival probability P(t) for atrgjectory to stay in the bal-
listic region during a time >t. Namely, this probability
is expected to decay exponentially

P(1) = exp E—%ﬂ% (4.10)

with some average survival time @0 ~ 1. This is
because, for large jumps of a tragjectory across the
whole ballistic region, thereis a certain probability w ~
1 for atrajectory to remain within thisregion after each
separatrix crossing. Moreover, the successive probabil-
ities are expected, for a chaotic motion, to be equal and
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Fig. 5. Survival probability P(t) in the ballistic region for
e = 0.001 (circles) and e = 0.01 (crosses); 10* trajectories
homogeneously distributed initially over the ballistic
region; the straight lineisthe fit with @0= 4.35, w = 0.79.

statistically independent. This implies the exponential
(4.10) with @O= —1/Inw independent of €. The latter is
especially clear in the balistic normalization (4.9).

The results of numerical experiments are presented
inFig. 5.

Curiously, the diffusion equation (4.4) with constant
D = 0.16 (in ballistic normalization, see Fig. 4b) also
leads to the exponential decay (4.10) with the average
surviva time

2

G <= =5, (4.11)
DK?

where k = 112 isthe parameter of thefirst (main) eigen-

function of the diffusion equation: f;(J) = cos(kJ).
Thisis surprisingly close to the empirical vaue = 4.4
(Fig. 5) in spite of the formal inapplicability of the dif-
fusion approximation in the ballistic region!

5. DISCUSSION

In the present paper, we reported the results of
extensive numerical experiments aimed at the detailed
study of the dynamics and statistics of separatrix cross-
ing in the classical model (2.1). Our work was stimu-
lated by an interesting investigation of the quantum
behavior of this model [15].

First of all, we carefully checked the agreement of
the empirical data with the existing fairly simple first-
order theory [9, 12] and found it surprisingly good,
closein fact to the formal limiting accuracy of the the-
ory (Fig. 1). In addition, we were able to discern one
second-order effect, the behavior of the first moment
[AJI{QI), which is beyond the theory but very important
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Fig. 6. The effect of correlation over four successive separa-
trix crossings. Two thick wiggly curves show statistics of
the single crossing asin Fig. 4a. Thin wiggly curves repre-
sent the effect of fourfold crossings; both moments are nor-
malized (see text).

for the diffusion equation. Our numerical results con-
firm the expected relation between the two moments
(see (4.3) and (Fig. 4)).

On the other hand, we have found that such a nice
agreement crudely breaks down in the ballistic region
J<Jy, = € (Fig. 4), which is quditatively different
from the complementary diffusive region J > J.,. The
new regime of separatrix crossing was first noticed and
partly explained in [22]. It is a peculiarity of model
(2.1) in which a pulsating separatrix crosses zero. In
many other models studied numerically (see, e.g., [10,
11, 20, 21]), the authors tended to avoid the theoretical
singularity at J — 0 (3.2). This is more simple, of
course, but lessinteresting. Particularly, the largest vio-
lation of adiabaticity (AJ ~ €') is reached only in the
ballistic region (Figs. 2 and 4).

Even though the dynamical theory in this region
seems to be a hard task and has not yet developed the
statistical properties of the motion, here it looks rather
simple. Surprisingly, even a simplified diffusion equa-
tion, which may not hold in the ballistic region, till
allows for some reasonably accurate estimates (Fig. 5).

In the present paper, we consider the dynamics and
statistics of asingle separatrix crossing only. Of course,
thisis insufficient for the full-scale statistical descrip-
tion of the separatrix crossing. As is well known (see,
e.g0., [20, 21]), the correlations in multiple crossings are
generally very essential. In conclusion of our discus-
sion, we present in Fig. 6 the commutative effect of four
successive crossings over one period of the perturba
tion.

Both moments are normalized asfollows: (AJ); —
(M) /T; (AJ)5 — (AJ)3 /1 =D(1) wherediscretetime
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T =4 isthe crossing multiplicity in this case (see (4.3)).
In the diffusive region 2, both curves coincide within
fluctuations, which means that the correlations, if any,
are small over four crossings. Thisisin agreement with
theresultsin [21] (for adifferent model). Whether they
will risewith T and why isan interesting and open ques-
tion. According to [21], they do so, but it may depend
on the method of measuring the diffusion rate. In the
ballistic region, the correlation effect is strong from the
beginning, especialy for the second moment. This is
aso in agreement with numerical datain [22]. Accord-
ing to data in Fig. 6, the normalized second moment

(the “diffusion rate”) decreases as D(t) O 1/ /1 . What
is even more important, the size of the ballistic region
grows: J.,(T) O T8, Anintriguing question is whether
this trend will continue and, if so, for how long.
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