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Abstract—High orders of perturbation theory can be calculated by the Lipatov method, whereby they are
determined by saddle-point configurations, or instantons, of the corresponding functional integrals. For most
field theories, the Lipatov asymptotic form has the functional form caNI'(N + b) (N isthe order of perturbation
theory) and the relative corrections to it are series in powers of 1/N. It is shown that this series diverges facto-
rially and its high-order coefficients can be calculated using a procedure similar to the Lipatov one: the Kth
expansion coefficient has the form const[In(S;/S,)1 ™I (K + (r; —ro)/2), where S, and S, are the values of the
action for thefirst and second instantons of this particular field theory, and ry and r, are the corresponding num-
ber of zeroth-order modes; the instantons satisfy the same equation as in the Lipatov method and are assumed
to be renumbered in order of their increasing action. Thisresult is universal and isvalid in any field theory for
which the Lipatov asymptotic form is as specified above. © 2000 MAIK “ Nauka/Interperiodica’” .

1. INTRODUCTION

Lipatov proposed a general method of calculating
high orders of perturbation theory whereby these are
determined by saddle-point configurations, or instan-
tons, of the corresponding functional integrals [1]. On
its appearance, the Lipatov method stimulated major
discussion (see the collection of articles [2]) but was
subsequently cast into doubt because of the possible
existence of additional renormalon contributions[3]. In
a recent work [4], the present author put forward a
detailed discussion of the existing argumentation in
support of renormalons and showed that thisis untena-
ble in the broad philosophical sense and in the mathe-
matical sense: this clears any obstacles from applying
the Lipatov method to awide range of problemsin the-
oretical physics.

The Lipatov method can be used to study any quan-
tities [5] but the starting point is that it can be applied
to functional integrals having the form

I(g) = [Doo™...0"
x exp(—Sp{ 0} —9Sd 0} ),

where ¢@, ..., ¢™ is a certain sample ¢; , ..., ¢;
from the set of integration variables ¢; contained within
the symbol D¢. The expansion coefficients I of the

integral (1) in terms of the coupling constant g are
determined by the Cauchy integral

(D

_ ¢99 1(9)
Ul Dyt ()
<9

in which the saddle-point method can be used for large
N. The functional form of the Lipatov asymptote is
given by

Iy = ca'T(N+b), N— oo, ©)

and the relative correctionsto it have the form of areg-
ular expansion in terms of 1/N:

Iy = ca (N +b)

4
XELL+A—‘1+AZ+...+A—+..E. @
N 2 K
O N N O

Calculation of the corrections to the asymptotic form
provides important information on the expansion coef-
ficients and is an aternative to the direct diagrammatic
calculations of the lower orders: for instance, instead of
calculating the fourth or fifth orders [6, 7], it is more
economical to calculate A, or A,. So far, thefirst correc-
tions to the asymptotic form have only been calculated
in ¢4 theory [8] and in afew quantum-mechanical prob-
lems[9, 10].

In the present paper, we study the behavior of the
coefficients A« for large K. Thistopic has not been stud-
ied theoretically and the only available data has been
obtained by numerical methods: for a perturbation the-
ory series in the problem of an anharmonic oscillator,
Bender and Wu [9] determined the first ten coeffi-
cients A¢:

Ay
A

—1.3194444, A,
—1.9385609, A,

—7.0142876,
—40.118943,
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Fig. 1. (a) Saddle points and integration contour in integral
(11). (b) In calculations of the asymptotic form of Ay the

contour must be deformed since the point t = O corresponds
to asingularity not a saddle point.

~365x10°, (5)

&
1

—305.5223, A,

As = —2808.09, A, = —4.4x10°,

A, = —299%5x 10, A, = -1x10°.

The rapid growth of these coefficients indicates that the
seriesin (4) diverges.
Another example which can easily be studied is the

zero-dimensional limit of ¢* theory. In this case, the
functional integral in fact reducesto asingle one

I(9) = [doo"exp(~9"-go"), (6)
0
and its expansion coefficients can be calculated in the
explicit form:
M+ 3 M+1
oM/2 rg\l + 4 %_E\I * - N
In = -4)". ()

2./21 F(N+1)

By isolating the asymptotic form for N — o and
expressing the result in the form (4), we obtain the fol-
lowing expression for the coefficients A for K — o

(see Appendix)

2(1+emM)
(2 |)K+l

whose functional form issimilar to the Lipatov asymp-
totic form (3) but with the complex parametersa and c.

In the present study, we shall show that factorial
divergence of the seriesin (4) also occursin the genera
case and a universal result [see formula (47)] valid for
any field theory using the Lipatov asymptotic form (3)
can be obtained for the asymptotic form Ay.

Ac = Re=——=7"T(K), (8)

2. SIMPLE EXAMPLE
AND QUALITATIVE PICTURE

The qualitative aspectsinvolved in the cal cul ation of
the asymptotic form of A can be conveniently demon-
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strated by cal culating the correctionsto the Stirling for-
mula:

F(N+1) = ./2iNe "N

9
x%l+él+i2+...+ﬁ+...g ®)
N 2 K
O N N O

The result is well known for the logarithmic form of
expression (9): in this case it is possible to find a gen-
eral term of the series known asthe Stirling series[11].
By calculating the exponential function of the Stirling
series using factorial series algebra [5], we can easily

find the asymptotic form of Ay:
2l (K)
A = -Re =, —> 0 (20
“ (2m)K !

We shall subsequently show how thisresult isobtained.

Using the definition of a gamma function and mak-
ing the substitutions x — Nx and t = Inx, we have

00

F(N+1) = J’dxx”e‘x = Ne"N"

00

 [dxexp{ ~N[x~1~Inx]} (12)

(=)

= Ne’NNNIdtetexp{—N[et—1—t]}.

For large N, the saddle-point condition has the form
€' —1=0sothat thereisaset of saddle pointst, = 211s,
s=0, %1, £2, ..., lying on an imaginary axis (Fig. 1a).
The integration contour in (11) passes through the sad-
dle point t = 0 and satisfies all the conditions for valid-
ity of the saddle-point method [12]. Thus, its deforma-
tion is not required and the other saddle points can be
neglected. Calculating the integral in the saddle-point
approximation yields the Stirling's formula.

Formally isolating the asymptotic form, we identi-
cally set

F(N+1) = /2riNe "N"F(1/N) (12)
and making the substitution
e = 1/N, (13)
we have for the function F(e) introduced by us
U e 1-t0
F(e) = O (14
O
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Expanding (14) as a series in terms of e gives the
required coefficients Ax which are calculated by anal-
ogy with (2):

= gde 1
-1 IZT“ /2]'[6
(15)
oo De_1-t 0
X J'dte exp+ —Klney
J O O

This is an exact expression which for large K can be
calculated using the saddle-point approximation. The
saddle-point conditions yield the set of solutions
t

t, = 2ms, € = _RS’ S = integer, (16)
so that in the complex planet the saddle points are for-
mally the same as those in the calculations of the lead-
ing asymptotic term. However, for the integrand at the
sth saddle point we can easily obtain the estimate

~exp{ —K —KIneg} Ot;*K!, (17)

from which it is clear that the solution with s = 0 does
not in fact correspond to a saddle point but to a singu-
larity.! Hence, the integration contour over t cannot
pass through the point t = 0 but must be deformed and
pass through one of the neighboring saddle points, 21t
or =2t (Fig. 1b) which, because of (17), gives the
required asymptotic form of A, ~ (2m)~K! [see (10)].2

A similar situation is encountered in the general
case. When the coefficients A, are calculated in the sad-
dle-point approximation, the instanton equation is the
same as that used to calculate the Lipatov asymptotic
form. However, using the same solution as in the last
case yields a singularity rather than a saddle point
(because of the additional integration over €). Thereis
thus a need to consider other solutions of the instanton
equation which can be numbered in order of increasing
action corresponding to them. If the Lipatov asymp-
totic form is determined by the first instanton, having
the smallest action, the principal contribution to the
asymptotic form of A, is made by the second instanton.

3. GENERAL CASE

Calculations of the Lipatov asymptotic form (3) are
fairly cumbersomeif theaimistofind all its parameters
a, b, and c. However, if the analysisis confined to deter-

1 The solutions (16) are written assuming e # 0 which does not hold
for s=0. A similar observation must be made with reference to
formula (38) below.

2The integration contour over e in (15) is conveniently drawn
slightly to the right of theimaginary axis, enveloping the left half-
plane over an infinitely distant contour; in this case for Ime < 0
the integration contour over t is shifted upward and passes
through the point 2ri whereas for Ime > 0 it is shifted downward
and passes through the point —211.
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mining the parameters a and b, it is possible to have
simple structural calculations which reduce to aformal
expansion near the saddle point and isolate the depen-
dence on N. We shall demonstrate these cal cul ations for
the case of ¢* theory; however, we do not need the
explicit form of the action and we shall only use its
characteristic properties of homogeneity

S(AP) = M'S(9), Sm(Ad) = 'S (9). (18)

Similar properties of homogeneity are encountered in
other field theories and, with slight modifications, the
scheme put forward subsequently also holds for the
general case.

According to (1) and (2), the expansion coefficients
are given by

G
meI 000 (19
X exp(—So{¢} -9gSn{ ¢} —NIng).
We introduce the new variable
®= 0.9 (20)
and set
o} = SH{o} + S {9} (21)

In terms of the new variable ¢, the saddle-point condi-
tions have the form

S{e} =0, g =
and expanding the expression in the exponential func-
tion (19) as far as quadratic terms in d¢@ = @ — @. and
09 = g—g.gives

NEe S{0I80) N (5o
2¢;

S
il (@)

(23)

We use a symbolic notation, denoting the first and sec-
ond functional derivatives by single and double primes
and taking these to be a vector and a linear operator,
respectively; the variables of integration ¢; contained
within D¢ are taken to be components of the vector ¢.
Bearing in mind that because of (20)

50 = 3P+ 5203 50 = 0-b. (24
and shifting the origin 6¢, we have
_ N _-N+1-M/2 (1) (M)
In-1 = € Q¢ IZI‘JDq) .
(25

N
x exp5(50, S} 50) + S5
where we have set 0g = ig .
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We make the linear substitution 6¢ — §6¢ with

detS = 1, which diagonalizes the matrix of the operator
SY{ ¢} and we set

Do = D'o[]db, (26)

where we have isolated r variables of integration
(denoted by the tilde) which correspond to zero eigen-
values of the operator S'{@.} and do not in fact appear
in the exponential function (25). In order to ensure cor-

rect integration over zero-order modes, the following
partition of unit isintroduced below in theintegrand (25)

= |_|J’d?\i5(7\i—fi{¢}), (27)

where A, are collective variables. An example of such a
variable is the instanton center X, defined as

JaXOO (x=x5) = 0, (28)
for which integration of the type (27) has the form
0 [dxe(x)"x0
1= I d’x 6 I— (29)

J'd X (x)|* 0

By introducing collective variables (which can also be
the instanton “orientation,” its radius, and so on [5]),
we can confine ourselves to homogeneous functions
fi{$} [comparewith (29)] where the degree of homoge-
neity can be considered to be zero without limiting the
generality: if fi{p¢} = pPi{ ¢}, the substitution A; —
HPA; eliminates the factor pP from (27). Welinearize the
arguments of the &-functions in (27) near the saddle-
point configuration

= |_|J'd7\i5()\i —fi{o} - (fi{dc}. 59))
i=1 (30)

= |‘|J’d7\i50\i—fi{¢c} —Jo:(fi{ e}, 59)),

and select theinstanton such that A; —f{ ¢} =0 (in (28)
this corresponds to a choice of solution symmetric rel-
ative to the point x = 0); then @, becomes a function of
Ai. Substituting (26) and (30) into (25) and eliminating
the &-functions by integrating over 3¢, , we have

Inog = € ge M 2het £ { @} ],

j rJD o Iﬂ dh e ). @)

(31)
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« expH21(50, S'{ @) 56) ~ Nt'1]

wheref'{@.} isan operator whose matrix consists of the

columns f;{@} and[...]pisitsprojection onto the sub-

space of the zero-order modes. The integral over D'¢
and dt is determined by the determinant of the quadratic
form in brackets in the exponential function (31) given
by (N)det[S'{@.}]p, athough caution must be exer-
cised when reducing this to a sum of sgquares [13]; the
subscript P' indicates a projection on a subspace com-
plementary to the subspace of the zero-order modes.
Performing elementary transformations in (31), we
obtain aresult having the form (3) where

__1 _M+r
S} 2’
¢ = (S{cp})—<M+r)/z(2n)‘”‘“2)’2det[f'{cpc}lp
- —[STedle o
[T Mo - o (h),

and N is the number of variables of integration con-
tained within D¢ [this disappears from the answer on
going over to aratio of integrals of the type (1)].

Similar structural calculations can be made for the
asymptotic form of the coefficients Ac. Making the sub-
gtitution in (19)

g— %g (33)

and isolating the dependence on N corresponding to
the asymptotic form (3), we have

Ino1 = (S{@}) " "exp(= N+ NInN)

34)
m+r-3y2- 10O (
x N F[ND
where
[|1|j “(M+r-1)2 CHIPN(Y
Feno = N fsz oo ...
(35)
><expD S{q)} +N-— Nlnga :
(¢} = ¢/ ota/N
Setting € = 1/N and expanding F(e) as aseries
Fle) = Ao+ Aje+ Ase’+ ...+ Ace“+ ..., (36)
No. 4 2000
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we have by analogy with (2)
~ _ de (M+r-1)2 @ M
A1 = 2T[I f2n|I LA
(37)
pD [S{q)} —1+Ing}—KInea .
S{e:}g ®=0/geS{ @}

The coefficients Ax are s mply related to the unknown
coefficients A¢ but differ from them (see below).

For large K in (37) we can use the saddle-point
method, for which the conditions have the form

ot . - Ing
o} ¢ K

and the function in the integrand for the saddle-point
configuration is determined by the factor

S{¢} =0, g = (38)

exp(—K —Klneg) O(Ing,) “K!. (39)

Taking into account the substitution (33), the first two
equations (38) coincide with (22) but using the solution

0=@, g =1 (40)

leads to a singularity not to a saddle point because of
(39). Thus, other solutions of the system of the first two
eguations (38) must be sought for which two possibili-
tiesexist.

1. Using other branches of the logarithm. In
accordance with (38), €. is determined by the logarithm
of g. and thus the substitution g, with integer g. —
g.exp(2ris) is not an identity transformation: in this
case we have Ing. — Ing. + 2ris. For 9 = @, 9. =
exp(2ris) we have e, = 2mig/K and the contribution to
the asymptotic form of A, is determined by the saddle
pointswith s=+1:

A O(2m) “K!. (41)

Thisis exactly the same mechanism as that used to cal-
culate the corrections to the Stirling formula: the g
dependence of the function in the integrand of (19) is
similar to the x dependencein (11).

2. Using other instantons. Let usassumethat Y. is
asolution of the equation S{ ¢} = 0 which differsfrom
@.; then on account of (38) and (39) we have the contri-
bution to the asymptotic form

Aq DKI[lnz{{wﬂ_K,

whichislarger the smaller S }. The principal contri-
bution comes from the second instanton (see end of
Section 2) and has the lower estimate

A = (In2) ™ K!.

(42)

(43)
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If @.(X) isalocalized solution of the equation S{ ¢} =0,
we know that there also exists a solution Y(X) corre-
sponding to two infinitely distant instantons @.(x) for
which St = 25 @}; in general a solution Y. can
exist such that S} < Y} < 25 @} which yields
(43). Since the contribution (43) is larger than (41), in
any real field theory the second of these mechanismsis
the principal one; the first mechanism is only important
in various nondegenerate cases such as zero-dimen-
sional theory [see (8)] when the solution of the instan-
ton equation is unique.

Expanding the expression in the exponential func-
tion (37) near the second instanton as far as quadratic
terms in 8¢, 8g, and de and making the substitutions
0g = igd, 0e = ie T, we have

AK L= gee —K+(r+1)/2(s{ W )—M/2e—K

J‘ZT[J'ZTJ q)lIJ(l) (M)

2

01 . t 210
x eXpLy) (50, Sy 80) - - - KT’

c

(44)

The number of zero-order modes r' for the second
instanton generally differs fromr; these are isolated as
before by introducing a partition of unit of the type
(27), giving a dependence on K having the form

A O(Ing.) *r e+ =13 (45)

In order to find the relationship between Ak and A, we
substitute (36) with e = 1/N into (34), make the substi-
tution N — N + 1, and use the series reexpansion rule
given in the Appendix. As aresult, we obtain

~

K
J2meg,

where cisacoefficient appearing in the Lipatov asymp-
totic form (3) and determined by formula (32). Taking
into account (46) and performing trivia transforma-
tionsin (44), we obtain

A = (46)

A = CanS{ w:}}g rk+—1 (47)
where
, r—r/2
c: = (S{y) ey
5 (N—r'—4)/2det £
2 {9 ]e )

c./det[S{Wc}]p
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x Ih dAW ) Wl ().
i=1

In these structural calculations, we used the form of
the functional integral (1) and the homogeneity rela-
tions (18) typical of ¢* theory; thus, the parameter M
appearing in theresult (32) for b was determined by the
number of cofactorsin the preexponential function (1).
In other field theories, severa fields of various types
generally occur and the homogeneity relations differ
from (18); nevertheless, for a wide range of problems
the result for b has the previous form (32) but the
parameter M has a different meaning. However, the
parameter M does not appear in the asymptotic formula
(47), indicating that its validity is not confined to ¢*
theory: thisis confirmed by the reasoning put forward
in the following section.

4. HEURISTIC DERIVATION
OF FORMULA (47)

In general, factorial series have an asymptotic form
with complex parameters [see (8) and (10)] and the
expansion coefficients Iy are determined by the real
part of some complex expression. We shall specify this
for large N,

Iy = Re{ca T (N+b)(1+A,)
+EaAM(N+Db) + ...},

taking into account the Lipatov asymptotic form
ca (N + b), the unknown power corrections to it
denoted by Ay, and the contribution of the next instan-

ton ¢a"' (N + b); the corrections to the latter and the
contribution of higher order instantons are shown by
the ellipses. Removing the Lipatov asymptotic form
from the brackets, we have

(49)

Iy = ReEpaNF(N +b)
0
(50)

crar] \b-b 0
x[lJ’AN“LcEaD N~ "+ ...}%

Assuming € = 1/N, we can see that the last term has an
intrinsic singularity for e = 0 which may be attributed
to the imaginary part of some factorial series[5]

ePelc = o%BImZF(K+B)%+iOd<, (51)

whose substitution into (50) leads to an expansion in
reciprocal powers of N. It is natural to assume that the
expression in brackets (50) is an analytic function
whose imaginary and real parts can only appear in a
strictly determined combination. The rea part of the

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

SUSLOV

series (51) is much larger than the imaginary one and
should originate from contributions which are higher in
the hierarchy than thelast term in (50); only Ay can ful-
fill thisrole. Combiningsthe second and third termsin
brackets (50), we obtain

Iy = Re caNF(N+b)Ea+constDZI'(K+5—b)
O
) (52)

.0l
N 0

The singularity on theleft-hand side of (51) is associated
with high-order terms of the series [see the discussion of
formula (4.10) in [5]] and the form of the general term
givenin (52) isin fact only valid for large K. Bearing in
mind that the parameters a and b of the instanton contri-
bution have the form (32) for awide range of field the-
ories, we return to the result (47) where, however, the
coefficient ¢, no longer has the specific form (48).

We shall explain the meaning of these manipula-
tions. Aswe know, the expansion of thefunction f (¢) as
apower seriesin e has aradius of convergence equal to
the distance between the origin and the nearest singular
point f(e) on the complex plane. For a factorial series
the radius of convergence is zero and a singularity
should be found for e = 0. Characteristic singularities
generating factorial series have the form of branch cuts
at which the discontinuity decays exponentialy for
le| —= 0[214] [see (51)]. It isdeduced from the qualita-
tive pattern established above that (a) Ay has the form
of afactorial seriesin UN; (b) the divergence of this
series is determined by the second instanton; (c) the
contribution of the latter in (50) contains a characteris-
tic singularity generating these series. From this it is
logical to conclude that the second and third termsin
brackets (50) form a single entity, being related to the
real and imaginary parts of the same analytic function.

This reasoning is merely based on the fact that the
instanton contribution to the asymptotic form has the
functional form (3). Thus, the result (47) isuniversal: it
is not related to the specific field theory nor to the form
of the quantity being studied (for example, single-par-
ticle or two-particle Green’s function).

(LIn(a/a) +i0]* D}

5. QUANTITATIVE RESULTS

We shall apply these results to the problem of an
anharmonic oscillator [9]. This can be reduced to one-
dimensional ¢* theory [15] in which the instantons can
easily beinvestigated (in particular, by using amechan-
ical analogy [16]); the localized solution of the instan-
ton equation is unique and all other solutions are
exhausted by multi-instanton configurations containing

3The term Ay aso contains similar contributions from higher
instantons which are small compared with those contained in
(52).
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severd infinitely distant instantons. Thus, as . in (47)
we need to take the two-instanton solution for which
Yt =25 @}, r' =r + 1 (an extraneous zero mode
appears corresponding to the motion of two instantons
relative to each other). Consequently, for an anhar-
monic oscillator we have

1 1
A= k3

The dependence (53) can be compared with the results
of Bender and Wu (5) using ¢, as the fitting parameter;
results are plotted in Fig. 2 for ¢, = —-1.4.

Higher order instantons have been little studied in
multidimensional ¢* theory. An exception is the four-
dimensional case for which an infinite series of instan-
ton solutions was obtained analytically by Ushveridze
[17]. The second instanton in this series, following the
Lipatov one (S @} = 161%/3) has the action J Y} =

9r® which givestheresult for the asymptotic form of A¢

_ 2707 3
AK"Cla”iéD rek+38

(we assumed that r' = r + 3 because in view of the
absence of spherical symmetry for the second instan-
ton, three zero modes are added corresponding to its
rotations in four-dimensional space). Unfortunately,
thereis no evidence that the Ushveridze series exhausts
all the solutions; thus, the result (54) should be under-
stood as a preliminary or lower estimate.

A method of determining the complete series of
higher order instantons numerically was proposed in
[18]. It would be desirable to use this method to check
the result (54) and to find the second instantons in all
existing field theories.

(53)

(54)

6. CONCLUSIONS

Expression (4) can be used to interpolate the coeffi-
cient function, by truncating the series at a finite num-
ber of terms and selecting the parameters A, to ensure
agreement with the lowest orders of perturbation theory
known from direct diagrammatic calculations. This
procedure is highly accurate and can reliably estimate
the error but nevertheless is unsatisfactory in many
respects. This is because when diverging series are
summed, the analytic properties of the coefficient func-
tion [19] are significant and these are reproduced quite
incorrectly in this procedure: the coefficient functionis
assigned a multiple pole at N = 0 but the intrinsic sin-
gularity islost at N = o because of the factorial diver-
gence of the seriesin (4) [see formula (51)]. Qualitative
allowance for the functional form of the asymptotic A¢

in the form clafl'(K + b,) enables us to select basis

functions exhibiting correct behavior for N —» oo
which should give a positive effect even when the num-
ber of fitting parametersis constant. Quantitative calcu-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

577
log [Ax0

8+

[ ]
Il
0 2 4 6 8 10
K

Fig. 2. Comparison between the asymptotic formula(53) for
¢1 =—1.4 and the coefficients A determined numerically in

[9]. Thevalueof |Aglisgivenin[9] with asinglesignificant
digit (1 x 10%) and the error corresponding to the range
(0.5-1.5) x 108 isindicated in the figure.

lations of the asymptotic form can be used to determine
three parameters a;, b;, and ¢, characterizing the coef-
ficient function which is equivalent in efficiency to cal-
culating the next three orders of perturbation theory.
The calculations of a; and b; do not require functional
integrals and can be reduced to solving nonlinear dif-
ferential equations: the calculations of ¢, are of approx-
imately the same complexity as the calculations of the
leading Lipatov asymptotic form. Thisisincomparably
easi er than calculating the successive terms of a pertur-
bation theory serieswhere progression to the next order
takes, on average, ten years
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APPENDIX
Derivation of Formula (8)
L et us assume that two expansions exist:

A A A
Fy = I+ o+ =+ v+, (A.1)
N N N
B, B, Bk

Fy= +

(»2

+ + S
N+p (N+p) (N+p)
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If the second seriesisfactoridl,

Bx = Re{ca“l(K+b)}, K —o, (A.3)
it is easy to show by direct reexpansion that
Ac = Ree™ca“T(K+b), K—>o. (A.4)

Making the substitution N — N + 3 — 1 in (9) and
using (A.3) and (A.4), we obtain the result

F(N+B) = N**/2mNe N
(A.5)

—2T0 3
X Eﬂ+ —ZF(E)RC € el %
O N (2mi) O
and, applying it to relation (7) and using factorial series
algebra[5], derive formula (8).
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Abstract—An analysisis made of the transition radiation of arelativistic electron in athin metal target in the
infrared wavelength range. It is shown that in this case, the spatial transverse dimensions responsible for form-
ing the radiation may have macroscopic dimensions comparable with the size of the target and allowance for
this effect may lead to significant distortion of the transition-radiation spectrum compared with atarget having
infinitely large transverse dimensions. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

When ultrashort bunches of relativistic electrons
propagate through a thin layer of material, a coherent
effect may occur in the transition radiation where all
the bunch particles emit as a single particle having an
effective total charge [1-3]. This effect is similar to
coherent synchrotron radiation [4, 5] and occurs if the
longitudinal dimension of the bunch is smaller than the
length of the emitted wave. Experimental investiga-
tions of this effect were recently carried out using elec-
tron beams having energies of the order € ~ 100 MeV
inthefar infrared (A ~ 0.1 cm) [1-3]. The experimental
results were analyzed using formulas from transition-
radiation theory for targets having infinite transverse
dimensions [6-8].

Studies[9, 10] of the diffraction radiation accompa-
nying the passage of charges through an aperture and
near screens have shown that for relativistic particles
the order-of-magnitude transverse dimensions respon-
sible for the formation of diffraction radiation at wave-
length A are determined by

Perr LA (L1

and may have macroscopic dimensions (y is the elec-
tron Lorentz factor). This is because the transverse
component of the Fourier component of the particle
field is spatially bounded and nonzero in a circle of
radius pg ~ Ay. In this case, a particle will only effec-
tively emit electromagnetic waves at wavelength A
when Ay > a, where a is the distance between the parti-
cle and the edge of the screen (see 8 31in [9)]).

The situation where large transverse distances are
important in the interaction processes of high-energy
particles is encountered in problems involving
bremsstrahlung and the formation of electron—positron
pairs in colliding beams at high energies. In [11-17]
attention was drawn to the fact that for high-energy col-
liding e*e~, ep, and yp beams, impact parameters much

larger than the transverse dimensions of the beams may
play an important role in bremsstrahlung processes and
the formation of e*e~ pairs. This may lead to a decrease
or an increase in the number of observable events com-
pared with standard calculations in which this effect is
not taken into account.

In [18] the present authors noted that a similar situ-
ation may arisefor thetransition radiation of an ultrarel-
ativistic electron in targets of finite transverse dimensions.
Specifically, for ultrardlaivigtic particles the order-of-
magnitude transverse dimensions responsible for the tran-
gtion radiation are determined by pg ~ Ay and may
exceed the transverse dimension of the target itself.
This situation in particular has been observed experi-
mentally [1, 3]. It was shown in [18] that allowance for
the finite macroscopic dimensions of the target appre-
ciably distorts the spectrum of the transition radiation
compared with the case when the transverse dimension
of the target is infinite. The effect occurs not only for
coherent transition radiation but also for the transition
radiation of an isolated electron in a thin target. The
analysis made in [18] referred to the simplest case
when an electron passes through athin layer of trans-
parent material. The radiation was considered in the
wave zone, i.e., a large distances from the target.

In the present study, we consider the transition radi-
ation accompanying the propagation of a relativistic
electron through a thin layer of material which com-
pletely reflects the particle field. We show that alowance
for the transverse dimensions of the target appreciably
distorts the radiation spectrum of the fast electrons in
the wavelength range of the emitted photons A = aly,
where a is the characteristic transverse dimension of
the target, compared with the case where the transverse
dimension is infinite (a — ). This effect occurs for
both the“forward” and “backward” radiation. Theradi-
ation is analyzed by placing a detector at various dis-
tances from the target (both smaller and larger than the
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formation length of the radiation |, ~ 2y [19]). We
show that in this particular case the radiation consists of
trangition and diffraction radiation and aso various forms
of interference between these types of radiation. We con-
Sider the smplest case of the perpendicular propagation of
arelativigtic dectron through the center of athin disk of
radius a.

2. FIELD FORMED AFTER PROPAGATION
OF A RELATIVISTIC ELECTRON THROUGH
A THIN DISK

We shall analyze the radiation formed when arela-
tivistic electron propagates through the center of athin
disk of radius a consisting of a material which com-
pletely reflects the particle field (ideal conductor). We
shall assume that the disk is perpendicular to the vector
of the electron velocity. The disk isassumed to befairly
thin, i.e, a, < A, where @, is the thickness of the disk
and A is the length of the emitted wave. It can be
assumed that the field not incident on the target is dif-
fracted at an infinitely thin disk of radius a positioned
inthe plane z= 0[20]. After the electron haseft the tar-
get, the electric field surrounding it may be written in
the form

E(r,t) = EQ®r, 1) + E'(r, 1), (2.1)

where E'(r, t) is the radiation field, and EC(r, t) isthe
self-induced (Coulomb) field of an electron propagat-
ing uniformly at velocity v in vacuum. The Fourier
component of the field EC©(r, t) with respect to time is
determined by

@y = [PEW [wp0
= ey 22
.V e DO)ZD '
—-i=—=2K X
VVV ODVV%e PO

where e isthe electron charge, p is the transverse coor-
dinate, and K, and K; are the zeroth- and first-order
Macdonald functions [21].

The sdlf-induced field for arelativistic electron can
be considered to be transverse relative to the vel acity to
within afactor of 1/y:

€ ew (0vY4
EDD =5 22K e arts

Sincethedectronfield (2.3) incident on thedisk wascom-
pletely reflected by the target, immediately after the elec-
tron has|eft thetarget thefield E'(r, w) should completely
screen its self-induced (Coulomb) field, i.e.,

(2.3)

Ei (1) +Ey(r) = 8(p-a)EQ(r), z=0, (24)
where 0(X) is the Heaviside step function:
B(x) =1, if x=0 and O(x) =0, if x<O.
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Thefield E'(r, t) can be represented as a superposi-
tion of plane electromagnetic waves of frequency w and
wave vector k:

1
E'(r,t) = y
(2m (2.5)
K5

2
W
X Ek, (.06|:|§ -

where 3(w?/c? — k?) is the Dirac delta function, c is the
velocity of light, and E, ,, are the expansion coefficients
which are determined from the condition for screening
of thefield E@(r, t) by thefield E'(r, t) at z=0:

E'(r,w) = -08(a-p)E?(r,w), z=0. (26)

Taking into account this condition, after integrating
over k, in (2.5), we obtain the following expression for

theradiation field E. (r, t) (the“+” sign corresponds to

the forward radiation and the “—" sign to the backward
radiation):

EL(r. 1) = —@ &Id xdwexp(i (k Tp —wt))

F ot _
><)(2+((u/vy) p%lz el XD

(2.7)

where

F=H

% isthetransverse component of the wave vector k (k =
x + ek,), and J; is a first-order Bessel function [21].
Therelationship E, ,, = E*, _,, wasused to derive (2.7)
[6,9].

ofio rwpr
* By00yx JO’ PdpL(xP)Kion  (28)

3. INTENSITY OF ELECTRON TRANSITION
RADIATION AT A DISK OF FINITE DIMENSIONS

We shall now consider an energy flux passing across
a certain plane (detector) perpendicular to the particle
trajectory and separated from the target (disk) by the
distance z. We shall calculate this energy flux over
the entire observation time. To this end we determine
the projection of the Poynting vector (E x H), on the
z-axisand calculate theintegral of thisquantity over the
surface xy and timet [6, 9]:

S, = 4£TJ(E x H),dxdudt. (31)
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Here, we assumethat the xy planeisinfinite. Expanding
thefieldsin (3.1) into Fourier integralsover t and r and
expressing H,, , interms of E, ,, we obtain

s, = S J'dooj'dzx|Exyw(z)|2. (3.2)

4
(2m) 2o

Now using the relationship
_ W
X = Csmﬁ

to convert from the variable x to the angle 9 which
determines the direction of emission, and noting that

2
d*x = £do,
C

where dQ = sindddd¢ isthe solid-angle element in the
direction of emission, we obtain the following expres-
sion for the spectral—angular density of the electromag-
netic energy flux across the xy plane:

d’s, 1
dwdQ (2m)‘c

W|E, (2>, w>0. (33

Thus, in order to find the spectral—angular density of
the radiation (3.3), we need to know the Fourier com-
ponent of the electric field E, (2) in terms of the vari-
ables x and w for a fixed value of the coordinate z
Using formulas (2.7) and (2.1), we find that, after an
electron has propagated through the disk,

_ 4mie
Eapal® = 5 —2 o
X +[WD

(3.4)
X Eexpa—o—oz%— Fexp Y 9zcos{)DE;
0 "4 iy C DD
Substituting this relationship into (3.3), we obtain

d°S, & sn’9cos’s

dwdQ E(sinzﬁ +v—2)2

(3.59)
x J(1—F)?+ 4Fsin2[w—z(y_2 ¥ snza)}g
0 av 0

d’s, _ € sn"9cos’s F2
dwdQ T[ZV(Sinzﬁ +y—2)2

The formulas (3.5) determine the spectral—-angular
distribution of the density of the electromagnetic
energy flux across the plane (detector) positioned at a
distance z from the target after propagation of arelativ-
istic electron through a thin disk having finite trans-
verse dimensions. The distance z can be either smaller
or larger than the coherence length of the emission pro-

(3.5b)
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cess |, ~ 2y?\. These formulas determine the intensity
of the forward and backward radiation relative to the
direction of the particle velocity vector. For the forward
radiation, interference between the self-induced elec-
tron field and the radiation field is an important factor.
The backward radiation is determined by the self-
induced field of the impinging electron reflected from
the surface of the target.

Note that a similar result for the spectral—angular
density of the forward radiation was obtained in [22].
However, the function F obtained in [22] must be
replaced by the function (2.8) in the present study. This
is because in [22] the spectra—angular density of the
radiation was cal culated in terms of the vector potential
of the electromagnetic field whereas for a target with
sharp edges we need to use congtraints at the target
boundary for the electric field and induction vectors.

Thefunction F appearing in (3.5) has simple asymp-
totic forms at low and high frequencies:

1, x=1
F(y, x) = 2 3.6
(y, X) (xy), <1, (3.6)
8
where
x=2 o= = ysind
oy 0 2’ Y=Y

(it isassumed that y = 1).

In the frequency range w > cy/a according to (3.6)
wefind F — 1 and the spectral—angular density of the
radiation at the disk isthe same asthe result for an infi-
nite plate (a — ). In this case, the influence of the
transverse boundaries of the target on the transition
radiation isinsignificant and

das: ~d3$oo)
dwdQ ~ dwdQ

4sin2[£(;)—\f(y_2 + sinza)] (3.7)

Here, d3S§°°) /dwdQ is the spectral—-angular density of
the trandgition radiation of a fast electron propagating
through a thin meta plate having infinite transverse
dimensions when the detector is positioned at alarge dis-
tance from the target [6, 9]:

d’s™ _ & sn’9cos’d
dwdQ leV(sinzf) +y—2)2'
In accordance with (3.7), the characteristic angles of

emission 94 ~ 2./c/wz for z< cy?’/w are much larger
than the characteristic angles of emission 0 = 1y for
z> cy/w [3]. In the range z < cy?/w, the argument of
the sinein (3.7) is small compared with unity and for-
mula (3.7) acquires the form [3, 23]

s &S rwz, 2 .o
dwdQ~dwdQ[E(V *sn ‘9)}

(3.8)

2

(3.9)
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In this case, the density of the energy flux across the
detector is much lower than the energy flux density
associated with the self-induced electron field. This
effect is attributed to interference between the self-
induced €electron field and the radiation field following
the emission of an electron from a completely absorbing
material.

For z — oo, i.e., when the detector is positioned
outside theradiation formation zone, the square of thesine
in (3.58) may be replaced by its average value of 1/2 and
formula (3.5a) becomes

d’s,  d’s”
dwdQ dwdQ
The first term in this expression determines the
spectral—angular density of the energy flux across the
detector surface (infinite plane) produced by the self-
induced (Coulomb) electron field. The second term
determinesthe spectral—angular density of the radiation
produced when an electron has propagated through a
disk of radius a. If w < cy/q, then F = 1 and the value
of (3.10) is twice the spectral-angular density of the
energy flux across the detector for the self-induced
electron field. In this case, the boundaries of the disk
are not important for the radiation and this is the same
as that for a target with a — . The characteristic
angles of emission in this frequency range are 9 4 ~ y .
In the frequency range w <€ cy/a, in accordance with
(3.6), theintensity of the transition radiation at the disk
[second term in (3.10)] is appreciably suppressed com-
pared with the case w > cy/a. For the backward radia-
tion it can be seen from (3.5b) and (3.6) that the inten-
sity of the transition radiation is also suppressed in the

frequency range w < cy/a.
For the case of forward radiation, formula (3.4) can

be rewritten in the form

{1+F%. (3.10)

_ 4dme x 0 W_
Eupa(d) = == L
X +E\/_VD

(3.11)

O
- expﬁ%)zcosﬁg +(1-F) exp%%)zcosﬁgg

The first term in this expression is the self-induced
electron Coulomb field, the second term is the transi-
tion-radiation field, and the third term is the field
formed as a result of the diffraction of the impinging
electron Coulomb field at a disk of finite dimensions.
The last term in this expression can also be obtained
from the Huygens principle if we consider the diffrac-
tion of an impinging electron field at an infinitely thin
disk/screen having finite transverse dimensions.

It is therefore important to allow for the finite trans-
verse dimensions of the target when analyzing the
emission process of relativistic electrons in the fre-
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guency range w < cy/a sincethisleadsto an appreciable
difference between the spectral—-angular density of the
transition radiation compared with theresult for atarget
having infinite transverse dimensions. The effect
occursfor both the forward and the backward radiation.
In experiments [1-3] wherey ~ 200 and a ~ 5 cm this
constraint yields the following characteristic wave-
lengths of the emitted photons: A= 1/w= 2.5 x 102 cm
for which the transverse dimensions of the target have
a significant influence on the radiation.

We d so note that we have considered the case where
the entire energy flux produced by the electron emis-
sion in the target passes through the detector. In other
words we assumed that the transverse dimensions of
the detector areinfinite. If this detector hasfinite trans-
verse dimensions, this factor must aso be taken into
account when analyzing the emission process. Thisis
because the transverse distances responsiblefor thefor-
mation of radiation at wavelength A are of the order of
magnitude of yA. Aswe have seen, these distances may
have a macroscopic scale comparable to the size of the
target. If pg ~ YA is comparable to the transverse
dimension of thedetector, only part of the electromagnetic
energy flux will enter the detector. For example, if the
transverse dimension of the detector is small compared
with the size of the target and the detector is positioned on
the electron beam axis at the distance z < cy%/w, some of
the radiation produced by diffraction of the particle
field at the disk will not enter the detector. In this case,
the detector will only record the energy flux produced
by the formation of the particle field after the electron
has | eft the target and the influence of the target bound-
aries on the radiation will be suppressed.

ACKNOWLEDGMENTS

This work was supported in part by the Ukrainian
Foundation for Basic Research (project LPM effect)
and by the MNOP (project QSU 082231).

REFERENCES

1. Y. Shibata, K. Ishi, T. Takahashi, et al., Phys. Rev. A 44,
R3449 (1991).

2. U. Happek, A. J. Sievers, and E. B. Blum, Phys. Rev.
Lett. 67, 2962 (1991).

3. Y. Shibataet al., Phys. Rev. E 49, 785 (1994).

4. J. S. Nodvick and D. S. Saxon, Phys. Rev. 96, 180
(1954).

5. F. C. Michel, Phys. Rev. Lett. 48, 580 (1982).

6. G. M. Garibyan and Yan Shi, Transient X-ray Radiation
(Izd. Akad. Nauk Arm. SSR, Yerevan, 1983).

7. V.L.Ginzburg and V. N. Tsytovich, Transient Radiation
and Transient Scattering (Nauka, Moscow, 1984).

8. F. G.BassandV. M. Yakovenko, Usp. Fiz. Nauk 86, 189
(1965) [Sov. Phys. Usp. 8, 420 (1965)].

9. M. L. Ter-Mikaelyan, Medium Effects in High-Energy
Electromagnetic Processes (I1zd. Akad. Nauk Arm. SSR,
Yerevan, 1969) [Sov. Phys. Usp. 9, 73 (1966)].

No. 4 2000



10

11.

12.

13.

14.

15.

16.

THEORY OF RELATIVISTIC-ELECTRON TRANSITION RADIATION

. B. M. Bolotovskii and G. V. Voskresenskii, Usp. Fiz.
Nauk 88, 209 (1966).

V. N. Baier, V. M. Katkov, and V. M. Strakhovenko, Yad.
Fiz. 36, 163 (1982) [Sov. J. Nucl. Phys. 36, 95 (1982)].

A. V. Burov and Ya. S. Derbenev, Preprint No. 82-07,
Institute of Nuclear Physics, Siberian Division of USSR
Academy of Sciences (Novosibirsk, 1982).

G.L.Kaotkin, S. 1. Polityko, and V. G. Serbo, Yad. Fiz. 42,
692 (1985) [Sov. J. Nucl. Phys. 42, 440 (1985)].

G. L. Kotkin, S.1. Polityko, and V. G. Serbo, Yad. Fiz. 42,
925 (1985) [Sov. J. Nucl. Phys. 42, 587 (1985)].

I. F. Ginzburg, G. L. Kotkin, S. 1. Polityko, and V. G. Serbo,
Pis'ma Zh. Eksp. Teor. Fiz. 55, 614 (1992) [JETP Lett.
55, 637 (1992)].

I. F. Ginzburg, G. L. Kotkin, S. |. Polityko, and V. G. Serbo,
Yad. Fiz. 55, 3310 (1992) [Sov. J. Nucl. Phys. 55, 1847
(1992)].

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

17.

18.

19.

20.

21.

22.

23.

583

I. F. Ginzburg, G. L. Kotkin, S. I. Polityko, and V. G.
Serbo, Yad. Fiz. 55, 3324 (1992) [Sov. J. Nucl. Phys. 55,
1855 (1992)].

N. F. Shul’'gaand S. N. Dobrovol’skii, Pis ma Zh. Eksp.
Teor. Fiz. 65, 581 (1997) [JETP Lett. 65, 611 (1997)].
A. . Akhiezer and N. F. Shul’ ga, High-Energy Electro-
dynamicsin Matter (Nauka, Moscow, 1993).

L. D. Landau and E. M. Lifshitz, The Classical Theory
of Fields (Nauka, Moscow, 1973, 6th ed.; Pergamon
Press, Oxford, 1975, 4th ed.).

H. B. Dwight, Tables of Integrals and Other Mathemat-
ical Data (Macmillan, London, 1961, 4th ed.; Nauka,
Moscow, 1973).

N. F. Shul’ga and S. N. Dobrovol’sky, Nucl. Instrum.
Methods Phys. Res., Sect. B 145, 180 (1998).

Luke C. L. Yuan, C. L. Wang, and H. Uto, Phys. Rev.
Lett. 25, 1513 (1970).

Trandation was provided by AlIP

No. 4 2000



Journal of Experimental and Theoretical Physics, Vol. 90, No. 4, 2000, pp. 584-591.

Trangated from Zhurnal Eksperimental’ nor i Teoreticheskor Fiziki, Vol. 117, No. 4, 2000, pp. 673-681.

Original Russian Text Copyright © 2000 by Karimov.

ATOMS, SPECTRA,
RADIATION

Stochastic Correlation Tomography

M. G. Karimov
Dagestan Sate University, Makhachkala, 367025 Dagestan, Russia
e-mail: karmaggas@mail.ru
Received June 7, 1999

Abstract—An analysisis made of the possibility of using stochastic generation of correlated quanta (random
in time) to obtain rapid volume information on the state of a medium and to develop the physical principles of
a real-time tomograph. Flux theory and mathematical modeling with a computer experiment are successfully
used for these investigations. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The application of recent developments in laser
physics and, in particular, the application of nonlinear
optical diagnostic methods[1] giving the highest possi-
ble spatial and temporal resolution, determined by the
diffraction limit of the focusing and the ultrashort
(<10fs) pulse duration [2, 3], to problems in tomogra-
phy [4] quite clearly leads to a qualitatively new level
of development of laser chronotomography. Increased
interest in laser diagnostic methodsis aso being shown
in the solution of problemsin quantum tomography [5],
i.e., inverse quantum-mechanics problems such as opti-
cal tomography and simplectic tomography [6-8].
Despite the various different schemes, problems of
guantum tomography can be reduced to determining
the density matrix (or Wigner function) for a marginal
probability density distribution. In particular, the
reconstruction of even and odd coherent states for an
ioninatrap, achieved experimentally in [9], is of major
importance for organizing the quantum calculationsin
the quantum computers currently being postulated. It is
important to note that in quantum tomography the
guantum state is determined using reversible integral
transformations of the density matrix of the measurable
probability distribution function (marginal distribution)
by analogy with the inverse Radon problem. The meth-
odology of quantum tomography will evidently be used
to solve reconstructive problems in quantum electron-
ics and laser physics. However, actua nonlinear pro-
cesses in quantum electronics are only used to solve
some problems in classical tomography [10-12]. As
will be shown below, the phenomenon of correlated
guantum generation, which occurs in many-quantum
processes such as two-photon luminescence, paramet-
ric processes, and so on, can be used for reconstructive
systems. Ultimately, the problem of determining the
guantum flux parameter of a spatial point from mea-
surements of the distribution in integral quantum fluxes
needs to be solved. This semiclassical problem is
solved using flux theory [13]. The scheme being dis-
cussed is called stochastic correlation tomography,

since it is based on the property that the correlated-
guantum generation events are random in time and with
respect to the coordinate, i.e., the randomness of the
events. Theoretical analyses and computer modeling
show that this scheme is effective in positron tomogra-
phy [14] if the generation of gamma quanta accompa-
nying electron—positron annihilation is considered as a
stochastic process of correlated-quantum generation.
The correspondence between stochastic correlation
tomography and the inverse Radon problem, and, in
particular, chronotomography, is discussed.

2. FLUX THEORY AS THE BASIS
FOR DESCRIBING EMITTING MEDIA

It is assumed that any point in an emitting medium
having the coordinater isasource of correlated quanta
generated as a result of many-photon processes which
are random in time and propagate in al possible direc-
tions. Assuming that the process of quantum generation
intimeat point r isa sequence d(r, t) of random events
of the same type and the generation number at this point
is denoted by N(r, t), this process is determined by the
analytic expressions

o(r,t) = Y 8(t-1(r)),
|
oy

ty

N(r, ty) = I¢(r,t)dt+1,

wheret(r) are the times of quantum generation at point
r. The time interval between successive events, T(r) =
t, .+ 1(r) — t,(r) is a random continuous flux variable. In
particular, if the flux of random quantum generationsis
steady-state, with no aftereffect (Markov) and ordinary,
this flux is the simplest flux [13, 15] having the expo-
nential distribution

W(r, t) = A(r)exp[—tA(r)], )
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wheret istheinstantaneous variable of the random con-
tinuous interval T(r) and the intensity of the generation
flux at point r is determined using the average interval
between quantum generations, i.e., A(r) = /T (r). In
particular, we note that the flux formed asaresult of the
superposition of the ssimplest fluxes generated by vari-
ous isolated generation sources and propagating in the
same direction, will aso be the smplest flux and the
intensity of this quantum flux is determined by the
intensities of the fluxes created by all isolated sources
distributed on the straight lineL, i.e.,

L/2

A= I)\(r)dr.

-L/2

The general system used for the measurements, as
shown in Fig. 1, assumes that an emitting medium
bounded in space with the linear dimension L is the
object being studied, where the intensity A(r) of the
generation flux is proportional to the density p(x, y) of
the actively emitting medium. In the present study, we
merely note that correlated quanta are generated and do
not consider the reason for this generation. The impor-
tant thing is that fluxes of correlated quanta are gener-
ated and these can be located in a moving coordinate
system (s, r) for various angles of rotation ¢.

3. INVERSE PROBLEM, METHOD
OF CORRELATED QUANTUM COINCIDENCE

Of practical interest is the problem of determining
the distribution laws of a quantum flux created by iso-
lated sources under conditions where the initial quan-
tum source is a sum flux and its distribution laws are
known. This is the inverse problem of tomography
using flux theory, which should ultimately determine
the distribution density of the emission activity p(x, y).
The solution of this problem can be simplified appre-
ciably, although thisis not of fundamental importance,
if it is assumed that the correlated quanta propagate in
opposite directions at the vel ocity c. In order to separate
the flux of anisolated point having the coordinater, we
use the principle of correlated quantum coincidence
where one of the two fluxesis rarefied assuming that its
distribution density W(t) is known. For this case, the
expressions for the sum fluxes as given by (1) have the
following form:

o7(t) = Y §(t-t),
©)
o (t+21) = Za(t—(t?—zr)),
j=1

wheret U [-1y/2, +1/2] isthe delay time variable, 15 =
L/c, and tie and th are the quantum fixing times to the
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Fig. 1. Schematic diagram of experiment to study the corre-
|ated quantum-coincidence method for the two-dimensional
case: a; arethe angles between the directions of emission of
quanta at frequencies wy, L are the linear dimensions of the
operative field of measurement, ¢ isthe angle of rotation of
the coordinates (s, r) relative to the fixed coordinates (x, y),
and ®° (t) isthe sum quantum flux generated by all pointsin
the emitting medium having the density p(x, y) positioned
on alinein the direction of measurement.

left and right of the operative space, respectively. This
is equivalent to the formation of a new flux d(t) con-

sisting of quanta extracted from the fluxes ®°(t) and
®®(t) for which the condition t” —t] = 21 is satisfied,
as shown in Fig. 2. Using probability theory [13], we

can establish that the average period of thisflux isequal
to the average period of the flux created by the point
having the coordinater, i.e., Tx = T (r) = L/A(r). How-
ever, establishing the distribution laws for a synthe-
sized flux for the general case may be represented asthe
problem of determining the total probability of all pos-
sible coincidences of the moments of the two principal
initial fluxes ®°(t) and ®®(t). The flux thus synthesized
isthe set of event coincidences obtained when compar-
ing an infinite number of Erlang fluxes [13, 16]
obtained from aninitial flux and the distribution density
of the new flux is given by

Wy() = S Pa Wy(h), @

s=1

where P = P(r) = A(r)/A, g = 1 — P, and the coefficient
Pgs—? defines the contribution of the sth-order Erlang
flux having the distribution density W(t) to the distribu-
tion density of the synthesized flux ®y(t). Hence, the
problem of determining the distribution density of the
synthesized flux Wi(t) can be reduced to determining
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Fig. 2. Principle of theformation of the flux ®y(t) from the two fixed fluxes (De(t) and qJ@(t) by the correlated quantum-coincidence

method. The duration of the random time interval Ty = ty ..
and ty

the first by exactly 2t, where T = r/c, and the points tie and tfB

the distribution densities of the Erlang fluxes W(t). The
distribution density of the Erlang fluxesisrelated to the
distribution density of the initial fluxes by the recur-
rence formula[16]

t

W) = Sffeat-Dwod, )

wherefy(t) = 1 and f(t) = f(t) isthe distribution function
of theinitial flux. Determining the distribution density
can be ssimplified by using Hartley transformations [17]
(symmetric and real-valued), i.e.,

00

o) = 7;_; [ Wocas(vt)at
N (6)
W(t) = %T l O(v)cas(vt)dv,
where the function cas(vt) = cos(vt) + sin(vt). In accor-

dance with (5) and (6), we can obtain another recur-
rence formula corresponding to expression (5):

Ov) = O, y(VE(W) +O,_(-v)OW),  (7)
where

E(v) = 310(v) +O(-v)],

O(v) = 3[0(v) -O(-v)],

and ©4(v) is the Hartley transform of the distribution
density of the sth-order Erlang flux. Taking into
account expressions (7) and (4), after simple mathemat-
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-t x, 1s defined as the difference between the successive times ty

. Thetimes '[XI are selected from pointsin the sequence { tie} for which points exist in the sequence { t? } separated from

are the quantum fixing times at the ends of the observation line.

ical transformations we can easily obtain an expression
for the Hartley transform of the synthesized flux:

_ - s—1
Ox(V) = Szlpq ®)

*[O5_1(V)E(V) + O5_1(-V)O(V)].

When calculating ©4V), it is convenient to use various
properties of the function cas(vt) such as

[

|

—co

dW(t)cas(vt)dt =

—VO(-v),
)

O
gW(t)tht:as(vt)dt - o),
0 \
which allows us to calculate the sum (8) and obtain the
simpler expression:
Ox(v) = P

O(v) - 3[O°(v) + O°(-v)] (10

X

1-q[O(v) + O(-V)] + %Ztez(v) +0°(~)]

which establishes the relationship between the initial
and synthesized fluxes. Using this expression (10), we
can directly calculate the Hartley transform ©y(v) of
the flux obtained by the correlated quantum-coinci-
dence method if the Hartley transform ©(v) of theinitia
flux is known. For the density of aPoisson digtribution, in
accordance with expression (2) and the definition (6) of
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the Hartley transformation, the corresponding Hartley
transform is given by

AN +V)
Ay
Then, in accordance with (10) and (11), the expression

for the Hartley transform of the synthesized flux will
have the following form:

PA(PA + V)

O(v) = (11)

Ox(v) = , (12)
X (PA)2 +V°
which corresponds to the distribution density
Wy (t) = PAexp(—PAt) (13)

based on the property of single-valued correspondence
between the direct and inverse Hartley transformations.
Assuming that the parameter is P = P(r) = A(r)/A,
expression (13) may be given as follows:

W, (1) = A(r)exp[-A(r)t] = W(r,1), (14)

which shows that the density of the flux synthesized by
the correlated quantum-coincidence method corre-
sponds to the distribution density of the flux created by
a source of quantum generation positioned at a point
having the coordinater and that thisflux isthe simplest.
Consequently, by sweeping the delay time 1 of the ini-
tial fluxes ®°(t)relative to one another in the range
—Ty/2101y/2, we can organizeflux filtering for all points
in the operative space L. The proposed algorithm can
form a completely different and new basis for solving
the reconstructive problem and specifically for the sto-
chastic reconstructive problem of tomography. Thus, in
accordance with theresult (14), the analytic formulafor
the flux synthesized by the correlated quantum-coinci-
dence method regardless of the type of distribution of
the stochastic fluxes ®°(t) may be represented as the
logical product of the sum fluxes (3):

Dy (t) = D(r, t) = D7(1)&PP(t + 21),
Py = P(r).

However, this formula holds theoretically, i.e., only for
stochastic (continuous) fluxes and only for the case of
fixing with infinitely high accuracy.

4. CORRELATED QUANTUM-COINCIDENCE
METHOD FOR REAL (DISCRETE) FLUXES

For real measurements using the principle of corre-
lated quantum coincidence we must bear in mind that
the fixing of quantain fluxes does not take place instan-
taneously but with finite accuracy and over a specific
observation time. Assuming that the observation time
(A1) is equal to the resolution of the time measure-
ments, in accordance with the definition of the general
probability P° [16, 18] of n independent incompatible
generation sources each having the probability P(r,),
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the probahility of fixing quanta (events) in asum flux at
an arbitrary discretetimeis given by

P? = 1-[][1-P(ry],
k=1

where n = L/cAt is the number of discrete points or
sources on the line L. In this case, the intensity of the
steady-state flux created by a discrete point having the
coordinate r, is given by

re+Atc/2

J' A(r)dr.

r,—Atc/2

Consequently, the parameter of the flux created by a
discrete point will be

a'(r,) = A'(rpAT.

For real measurements using the correlated quantum-
coincidence method the process of reconstruction can
be represented as a probabilistic process consisting of
two independent random effects having the probabili-
ties (P92 and P(r,) which are compatible. In this case,
in accordance with [18], the probability of the smulta-
neous manifestation of an event at the ends of the line
of observation is given by

A(ry) =

PY(r) = (P°)?+[1-(P°)’IP(ry), (15)

where P(r)) is the probability of the generation of cor-
related quanta at the point r,, propagating in opposite
directions, and P° is the total probability of quantum
generation at al points located on the line of observa-
tion. Formula (15) shows that a constant pedestal (P°)?2
is present for all the reconstructed points, it is deter-
mined by all the sourceslocated on the line, and thefol-
lowing inequality holds:

P(r) —P(r) = [1-P(r)1(P)°20,  (16)

which indicates that the reconstruction process is mul-
tivalued since the condition P%(r,) — P(r,) = 0 is only
satisfied when P° = 0 and/or P(r,) = 1. However, this
impliesthat atotal flux is absent and/or the flux created
by the point having the coordinate r, is a regular flux.
However, both these regimes are “unworkable” since
the fluxes do not possess stochastic properties, i.e., the
fluxes are regular or completely absent. Assuming that
the generated fluxes are the simplest, the generation
probability is given by

P(r) = 1—exp(=a'(ry), (17)

i.e., the probability P = P(r,) = P(a'(r,)) isonly afunc-
tion of a'(r,) and P° = P%a) = 1 — exp(-a) is only a
function of thetotal flux parameter a. Thus, on thebasis
of (15) and (17), the reconstruction probability

P¥(r) = P¥(@'(r)), a)
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Fig. 3. Dependence of the probability PS‘(rk) of the coinci-

dence of quanta fixed by the correlated quantum-coinci-
dence method on the parameters of the simplest fluxesa(ry)

for various val ues of the summarized parameter a. For clar-
ity graphs are also plotted for the generation probability
P(r,) for the paint r on the line of investigation and for the

probability of the total quantum flux PO along thisline.

is a function of two variables. Figure 3 shows how the
probability depends on the flux parameters (a'(r,), a).
It should be noted that each curve of the reconstruction
probability P%(r,) has a bounded range of determina-
tion [0, a] and the state reconstructed “in front of” the
point r, depends on the “surroundings’ of this point,
i.e, on a, and the constant component is also entirely
and completely determined by the summarized param-
eter a. It can be seen from (15) and (17) that for the
pointsr, = r°for which a'(r,) = 0 and thus P(r, =r% =0
the equality (P%)? = P%(r?) isvalid. Then, using this fact
to modify formula (15) and also expression (17) which
establishes a single-valued correlation between the
generation probability and the flux parameter, we
obtain an expression for the true flux parameter of the
point having the coordinater,:

1-P(r%)

a(r) = Inl—PSt(rk)’

(18)

which is the basic formula for stochastic tomography,
the formula for image reconstruction using the corre-
lated quantum-coincidence method. Note that points
specialy selected as “instrumental” and known to be
not positioned on the object may be taken as pointswith
zero flux parameters or so-called reference points.
Thus, the reconstructed image of the object is entirely
and completely determined only by the stochastic
tomographic image. Bearing in mind that the quantity
which can directly be measured experimentally by the
correlated gquantum-coincidence method is the number
of coincidences N%(r,, 1) (coincident photon counting
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regime) during the experiment, these data are used to
calculate a new parameter

1-N¥(r° )/

st
a(r,l) =1In ,
(e ) 1—N(r,, 1)/l

(19)

which is the parameter determined by the correlated
guantum-coincidence method for real quantum fluxes
and will depend on the duration of the experiment (1). It
isreadily observed that the parameters calculated using
formulas (18) and (19) are interrelated by a'(ry) =
lim, _ ., a¥(ry, 1) provided that the limit exists:

PY(r,) = lI[rrzo[NSt(rk, /1. (20)

It should be noted that the parameter a¥(r,, |) is calculated
using the number of quantum coincidences N%(r,, 1) using
formula (19) and corresponds to itstime delay T.

5. COMPUTER MODELING

We can make a purely theoretical analysis of the
correlated quantum-coincidence method and establish
the system parameters for which the measurable flux
parameter a%(r,, I) will correspond to the flux parameter
a'(r,) or the true parameter a(r,). However, this prob-
lem is of independent interest. In particular, this prob-
lem was investigated by computer modeling at all
stages, beginning with the generation of correlated
guanta as far visualizing the measurable parameter
a¥(r,, 1). For the computational experiment, we devel-
oped a computer multichannel analyzer system with
facilities for input and output of on-line two-dimen-
sional information. The ideology behind the construc-
tion of multichannel systems is to visuaize images
obtained at all stages of the experiment with relevant
reference information on the operating conditions of
the program at a particular stage. Information on the
experimental data is imaged using a specialy devel-
oped operating protocol. Figure 4 gives the results of
mathematical modeling and a computer experiment to
reconstruct volume information at various stages using
the correlated quantum-coincidence method. A micro-
scopic section of the lungs (cross section) with various
pathologies is taken as an example. The results are
given as two-dimensional normalized “images’ of the
actively emitting medium and it is shown how these
change as we systematically go through all (four)
stages of modeling. Results of three experiments are
given for various parameters of the total flux. At the
first stage of the computer experiment Fig. 4 shows an
anatomical atlas of the cross section (true image) while
the second stage shows an image of the statistical activ-
ity of the cross section which is determined only by the
number of generations N9 = N9(r, |) at each point over
the duration of the experiment I. In fact, thisimage cor-
responds to the statistica manifestation of the cross
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a(ry)

N(re D) [

N(r, 1)

at(r, 1)

Fig. 4. Results of mathematical modeling and computer experiment using the coincidence method to reconstruct atwo-dimensional
“image” of an actively emitting medium for various parameters of the total flux. N9(r,) isthe number of generations, Ns‘(rk) isthe
number of coincidences for measurements by the correl ated quantum-coincidence method, 1 isthe similarity parameter, as‘(rk, l)is
the flux parameter estimated using formula (19): (a) a= 1/512, | = 106, T = 0.3440; (b) a= 1/10, | = 10%, M = 0.3560; (c) a= 1,

| =1.5x 105 M = 0.2000.

section. The image formed at the third stage of model-
ing isobtained directly by the correl ated quantum-coin-
cidence method and is determined by the number of
quantum coincidencesN¥(r, I). In particul ar, for values
of the total flux parameter of 0.1 and 1, the images
obtained at the third stage are saturated, which confirms
formula (15) and Fig. 3. The experiment shows that for
values of the total flux parameter less than 1/n, where
n =512 isthe number of divisions, the image obtained
at this stage corresponds to the true one and for values
of 0.1 and 1 these are far from similar. Finaly, the
images a* = a%(r, |) obtained at the fourth stage are
formed entirely and completely from the image data
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obtained at the second stage using expression (19). The
results of the computer experiment show that the agree-
ment between the images obtained at this stage and the
initial image is maintained for all three values of the
total flux parameter. Then the similarity parameter N =
M(NYI, a%) is estimated for al cases where a® = a¥(ry, |)
which is one of the main measurable characteristics in
classical tomography.

6. RECONSTRUCTIVE FORMULA
FOR CHRONOTOMOGRAPHY

The results of this investigation of the correlated
guantum-coincidence method, including the computer

2000
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modeling, suggest that the proposed method isinturn a
method of chronometry which can be used for mea
surements along the longitudinal (volume) coordinate,
i.e., according to the time-of-flight principle. Thus, it
can be used as a chronometric method in tomography
and in particular, the results of the modeling can be
used to form the technical basisfor developing themain
components of a chronotomograph. In this case, the
theory of chronotomography is constructed on the basis
of thefact that the most common physical characteristic
for chronometric systems, in particular for nonlinear
optical diagnostic systems, is the instrumental function
which is determined by a single and fundamental phys-
ical parameter and by the parameter of the measure-
ment accuracy. Assuming that this system has a Gauss-
ian instrumental function

1 0 TZD
h(t) = —expr—
ofn  HeH
where
= 2o AT
c’ In2’

and At is the accuracy of the time measurements, this
(by definition) establishes the interrelation between the
true and measured parameters using the contraction
integral:

a'(s 1) = Ia(x', y)h(t—T')dr'. (21)

In fact, the solution of thisintegral egquation isthe solu-
tion of the chronotomography problem which was
obtained using the Hartley transformation. After smple
mathematical operations we can obtain an expression
for the true value of the flux parameter a(x, y) in terms
of the measurable quantitiesa’(s, T, ¢):

s o0

a(x, y) = Id¢Ids'aT(s', 1,9)Q(s=s), (22
0 —o0

which isthereconstructive formulafor chronotomogra-
phy where

Q(s) = Idwﬁcas(Zmos), W = %T

00

H(w) = J’drh(T)cas(anr).

This expression shows good agreement with the result
of solving the reconstructive problem alowing for the
finite rate of propagation of the volume information
signal which was obtained directly in [19]. Formula
(21) may be transformed to give a more convenient
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form without using the Hartley transform of the instru-
mental function H(w):

a(x, y) = mo’

I )

. (23)
[ [ dsa’(s, T, §)h(s-$)Qu(s-<),
0 -

where

Qu(s) = I dw|w| cas(2mws).

Thisformulais common to all laser chronotomographs
for which the characteristic accuracy of the time mea-
surementsis At, including tomographs using nonlinear
optical diagnostic methods. Formulas (21) and (22) are
the reconstructive formulas for chronotomography
which can be successfully used for computer chronoto-
mographs since the method of calculating the contrac-
tion integrals in these formulas for computer tomogra-
phy has been fairly well developed and studied [14].

7. CONCLUSIONS

By using probabilistic (stochastic) theory or flux
theory to describe actively emitting media, a funda-
mentally new possibility for obtaining volumeinforma:
tion by a coincidence method can be substantiated the-
oretically for continuous correlated fluxes and for real
discrete fluxes. Mathematical modeling and a computer
experiment have shown that this method can be used to
develop a time-of-flight chronotomograph. In particu-
lar, expressions (19) and (22) which establish a rela
tionship between the measured and true parameters,
can be used to describe the volume nonlinear optical
properties of the medium, i.e., for tomography.
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Abstract—We develop a semiclassical method to determine the nonlinear dynamics of dissipative quantum
optical systemsin the limit of large number of photons N; it is based on the 1/N-expansion and the quantum-—
classical correspondence. The method is used to tackle two problems: the study of the dynamics of nonclassical
state generation in higher order anharmonic dissipative oscillators and the establishment of the difference
between the quantum and classical dynamics of the second-harmonic generation in a self-pulsing regime. In
addressing thefirst problem, we obtain an explicit time dependence of the squeezing and the Fano factor for an
arbitrary degree of anharmonism in the short-time approximation. For the second problem, we analytically find
acharacteristic time scale at which the quantum dynamics differsinsignificantly from the classical one. © 2000

MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

The situation when nonlinear interactions involve a
large number of photons, N, is quite typical of many
problems in quantum and nonlinear optics [1-3].
Heidmann et al. suggested [4] the use of the 1/N-expan-
sion method [5] to describe the nonlinear dynamics of
the mean values and second-order cumulants of a quan-
tum system in the N > 1 limit. Following the general
scheme of that method [5], an exact or approximate
solution can be found in terms of the coherent state rep-
resentation in the classical limit as N —» oo and can
then be adjusted by adding the quantum corrections.
The method proves to be particularly convenient when
the dynamics of nonclassical state generation must be
determined [4]. We have recently devel oped the method
further to study the enhanced sgqueezing at the transi-
tion to quantum chaos [6-8].

Papers [4, 6, 7] are concerned with the problems of
nondissipative quantum systems only. In this paper, we
extend the method to dissipative quantum systems. For
guantum systems without dissipation, the lowest order
of the 1/N-expansion is equivalent to the linearization
in terms of the classical solution [6, 7], whereasin dis-
sipative systems, as is demonstrated in what follows,
the solution of the equations of motion for variations
near the classical trgjectory cannot provide complete
information on the dynamics of quantum fluctuations
even in the lowest order of 1/N. We show that the influ-
ence of the reservoir on the dynamics of expectation
values and dispersions, which is different from the

T This article was submitted by authorsin English.

energy dissipation, aways exists: It has the quantum
nature and cannot be neglected even in the semiclassi-
cal limit. However, specific manifestations of the effect
depend on the type of the attractor in the underlying
classical dynamic system. For systems with a simple
attractor in the classical limit, the “ quantum diffusion”
associated with the quantum fluctuations of the reser-
voir do not lead to any new physical effects in the
dynamics of the main system, at least in the short-time
limit. For astable limit cycle, on the other hand, such a
diffusion appears to be the main mechanism responsi-
ble for the difference between the classical and quan-
tum dynamicsfor N > 1.

Along with the presentation of a general formalism,
we consider two typical examples of quantum optical
systems with a simple attractor and a stable limit cycle
inthe classical limit asN —» oo: the dissipative higher
order anharmonic oscillator and the self-pulsing regime
of intracavity second-harmonic generation (SHG). We
show how the 1/N-expansion method can be used to inves-
tigate the dynamics of the nonclassical state generation
and to determine the time scale for a correct classica
description of the dissipative quantum dynamics.

The guantum anharmonic oscillator with a Kerr-
type nonlinearity is one of the simplest and most popu-
lar model s used in the description of quantum stetistical
properties of light interacting with a nonlinear medium
[1, 9]. The Kerr oscillator model with athird-order non-
linearity yields an exact solution in both the nondissi-
pative[10] and dissipative limits[9]. However, because
of the complexity of the solution in the dissipative case,
numerical methods or special approximate analytic
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methods must be used to determine statistical proper-
ties of the radiation in the most relevant experimental
case involving a large number of photons. Moreover,
there are no exact solutions available for the model of
the anharmonic oscillator with a higher order nonlin-
earity.

In this paper, we analytically obtain a simple and
explicit time dependence of the degree of squeezing
and the Fano factor in the anharmonic oscillator model
of an arbitrary order for the most interesting experi-
mental situation featuring higher intensities (N > 1)
and short-time interactions. As another example of
application of the 1/N-expansion, we consider the self-
pulsing in SHG [11]. Such an oscillatory regime corre-
sponding to the limit cycle was observed experimen-
tally in [12]. There are severa papers dealing with the
development of approximate anaytic and numerical
methods with the purpose of describing different
dynamical regimes in SHG in terms of quantum
mechanics [13-17]. In particular, Savage [14] calcu-
lated the Gaussian approximation of the Q distribution
function about the classical limit cycle. He demon-
strated numerically that in the classical limit, theinitia
rapid collapse of the Q distribution in the neighborhood
of the limit cycle is followed by the diffusion around
the limit cycle. However, the author did not offer any
analytical solution of the problem or an explanation of
the physics of the effect observed.

In this paper, we show that the diffusion around the
classical limit cycle can be obtained as a solution of the
equations of motion for low-order cumulants by using
the 1/N-expansion technique. This enables us to find
thetimescalet < t* witht* = 2Ny (whereyisadamp-
ing constant) for a correct classical description of self-
oscillationsin SHG. Theresultant estimateis consistent
with that obtained for t* numerically in [14]. Finally,
we interpret the quantum diffusion around the limit
cycle asadiffusion caused by the effect of the reservoir
vacuum on the SHG dynamics.

This paper is organized as follows. In Section 2, we
describe a general formalism of the 1/N-expansion
applicable to an arbitrary single-mode quantum dissi-
pative system and present the solution of the equations
of motion for mean values and second-order cumulants
obtained in the first order of 1/N. In Sections 3 and 4,
we deal with the nonclassical state generation dynam-
icsin higher order anharmonic oscillators and the quan-
tum—classical correspondence for the self-pulsing
regimein SHG, respectively. The final section contains
asummary and concluding remarks.

2. UN-EXPANSION
AND QUANTUM—-CLASSICAL
CORRESPONDENCE

We begin with generalizing the approach of [7] sys-
tems with dissipation. As an illustrative example, we
consider a quantum anharmonic oscillator with the
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Hamiltonian in the interaction picture
A +
H = ab'b+ (o) ™, [bb] =1, ()

where the operators b and b' describe a single quantum
field mode and the constant A, is proportiona to a (2l + 1)-
order nonlinear susceptibility of a nonlinear medium (|
isaninteger), A isthelight frequency detuning from the
characteristic quantum transition frequency, and # = 1.
Everywhere in this paper, we use the normal ordering
of operators. The oscillator interacts with an infinite
linear reservoir at a finite temperature. The Hamilto-
nians of the reservoir and of the oscillator-reservoir
interaction are defined as

Ho= S gy(djd; + 172),
! 2
Hi = Z(K,.djb*+H.c.),
j

where the Bose operator d; ([d, dl] = g describes an
infinite reservoir with the characteristic frequencies y);
and K; are the coupling constants between reservoir
modes and the oscillator. We introduce new scaled
operators a = b/N¥? and ¢, = d;/N¥? and their Hermitian
conjugates satisfying the commutation relations

[a,a'] = UN, [c,c = 8,/N. ©)

Inthe classical limit asN — oo, we obtain commuting
classical c-numbers instead of operators. The full
Hamiltonian

H = Ho+ H +Hiy
can be rewritten as
H = N%,
where # isasin (1) and (2) but with the replacements
b—a, b'— a,

dl —c/, A —g(N)=AN"

(4)

It can be shown that the photon-number dependent con-
stant g;(N) provides a correct time scale of oscillations
for nonlinear oscillator (1) in the classical limit (for the
Kerr nonlinearity with | = 1, see, e.g., [18]). We note
that 7€ can have an explicit time dependence in the gen-
eral case [7]. Within a standard Heisenberg—L angevin
approach, the equation of motion has the form ([1],
Chap. 7)

az—i%k—i\—z%la+v+L(t), (5)
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where V = 0%(y/0a", y = 21K w)[Pp(w) is the damping
constant, with p(w) being the density function of reser-
voir oscillators whose spectrum is considered to beflat.
The Langevin force operator L(t) isin a standard rela-
tion to the operators {c;} of the reservoir [1]. In our
notation (4), the properties of L(t) [1] can be rewrit-
ten as

()G = ()& = 0,
%D
=
[Lalk+ [ALG, = O.

N'ak+ @'LER =y (6)

Here, the averaging is performed over the reservoir
variables and [my[is a single-mode mean number of the
reservoir quanta (phonons) related to temperature T as

1

w _
Lhy = [eXp%ﬁ-E— 1} ,

where k is the Boltzmann constant and w is the charac-
teristic phonon frequency. From the Heisenberg—L an-
gevin equations for a, a? and the Hermitian conjugated
equations, using (5) and (6), we obtain

d

. d _ Y
Idtl]J(D B/D—IZD}D

idgtt(éo()ZD = 20V8a+ Wiy [{(3a)°0

(7
idgt Ba*dal= —V*8al+ Bo* VD

—iy[Ba*échHyg]N‘-’—D,

where

W = (1/N)av/da’, z= @]
M(d0)’0= @07, Ba*dal= @'al-|z2%

and the averaging is performed over both the reservoir
variables and the coherent state

laO= exp(NO(aT— Na*a)|o0

corresponding to the mean photon number =N. In
deriving (7), we neglect the insignificant additional
detuning introduced to A by theinteraction with theres-
ervoir [1]. In the absence of damping, y = 0, our equa-
tions for the mean values and the second-order cumu-
lants (7) are reduced to the corresponding equations

in[4,7].
The set of equations (7) isnot closed andisbasically

equivalent to the infinite dynamical hierarchy system
for the cumulants of a different order. To truncate the
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system to the second-order cumulants, we make the
substitution a — z + da, where, at least initialy, the
mean valueis z = 1 and the quantum correction are

15a(t=0) = N < 1.

Using the Taylor expansion of the functions V and W
and after some algebraanalogousto that usedin [7], we
obtain from (7) in the first order of 1/N the following
self-consistent system of equations for the mean value
and the second-order cumulants (for details see [19]):

= _i\ifz+ wg+%Q(z, 7*.C,C*,B), (8

@G 0 —in, (9)

A~ _ 50VO ov o
iC = ZEBGDZC+2 ¥
. V* ov . (0)

iB = _%%_G%ZC+DWEZC*_IV(B_B ). (10)

The corresponding equation for C*(t) can be obtained
from (9) by complex conjugation. The quantum correc-
tion to the classical motion Q in (8) has the form

2 2
Q= 1@VOc, 100V oe.

T 2020 200
(11)
L09V om0
Lda*oal] 2U

In (8)—(11), the subscript z means that the values of V
and its derivatives are caculated for the mean value z;
we have introduced

B = NBoa*dal+1/2, C = Nda)’0 (12

The initial conditions for system (8)—10) are of the
form
B(0) = /2, C(0) =0, (13)
and an arbitrary z(0) = z, which is of the order of unity.
The equilibrium value of the cumulant B in (10) is
determined by the mean number of the reservoir quanta
and its zero-point energy as
B? = [h,O+ 1/2. (14)
We note that the zero-point energy of the reservoir
appears in the equations of mation for the cumulants,
though it is not present in the Heisenberg equations of
motion and can even be dropped from the Hamiltonian
by redefining a zero of energy. Such a “reappearance”
of a zero-point field energy is quite common in other
guantum theory problems where the vacuum is respon-
sible for physical effects[20].
The equations of motion for the second-order cumu-
lants B and C [(9), (10)] are linear inhomogeneous equa
tions. Their solution consists of two parts: a general
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solution of the homogeneous set of equations, (i.e.,
without the term +iyB© in (10)) that we denote as

(B (t), C(t)) and the particular solution of the inhomo-
geneous equations

(B(t), C(t)) = (B(1), C(1)) + (yB®t,0).  (15)
Tofind (B (t), C (1)), we use the perturbation theory for
N > 1 and asafirst step, neglect the quantum correction
Q/Nin (8). Itiseasy to see that the homogeneous equa-
tions of motion for cumulants (9) and (10) can be
obtained from the classical equation (i.e., from (8) with
Q/N — 0) by linearization around z (which goes by
substituting z — z + &z, |07] < |Z]), if one writes the
dynamical equations for the variables (82)?> and |dz]%.
The only difference between the linearization of the
classical equations of motion and equations for quan-
tum cumulants (9) and (10) liesin the impossibility of
obtaining theinitial conditions (13) for C and B from only
theinitial conditions for the linearized classcd equations
of mation (see aso the discussion of this problemin[7]).
Hence, we first need to know the classical solution

z,(1), find the differentials dz, and dz}, and then use
the substitution

(B(t), C(t)) — (ldz? (d2)?).

Thus, it has become apparent that assuming the
actual field deviations from the coherent state to be
small and treating the small deviation as a first-order
correction is not equivalent to the direct linearization
around the classical trgjectory. Even in the limit as
N — oo, we always deal with the effect of reservoir on
the dynamics of the quantum system via the second-
order cumulant B, which has the form of the quantum
diffusion

B(t) = B(t) + (Chy+ 1/2)yt, (16)
where B isobtained by linearizing around alarge mean
field. In particular, as follows from (16), the quantum
diffusion also exists for aquiet reservoir [my= 0.

We now discuss the validity range of the 1/N-expan-
sion and the role of the quantum diffusion in different
classical dynamical regimes. The validity criterion of
the 1/N-expansion can be represented in two forms.
First, the 1/N-expansion works well, provided the dif-
ference between the classical and quantum solutionsis
small,

IQ(t‘)dt'
2(t) —zy(t)| _ 10 |
() N |z(t)]

where z4(t) isthe solution of (8) for N — . To write
the second form of the validity criterion of the

<1, (17)
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1/N-expansion, we follow [6, 7] in introducing the
“convergence radius’

R = {[Re(30)7] + [Im(30))]} ™

The expansion is then correct over atimeinterval when

R() __B™(1)
Iz N"2z(t)|

As arule, both conditions (17) and (18) determine the
sametimeinterval for the validity of the 1/N-expansion
[6, 7]. (For aphysicaly interesting exception, the prob-
lem of SHG, see Section 4.)

For dissipative systems with a simple attractor, the
classical field intensity |zy(t)[? as well as the cumulants

B (t) and C(t) and the quantum correction Q(t) are pro-
portional to the factor exp(—yt); therefore, as follows
from (17) and (18), with (16) taken into account, the
UN-expansion is well defined only in the time interval
of the order of several relaxation times:

<1. (18)

=yt

(see [19]). Moreover, during this time interval, the
effect of quantum diffusion on the system dynamicsis
small.

A quite different behavior is characteristic of the
stable limit cycle. Here, a variation near the classica
trajectory collapsesto zero (da —» 0), hence,

B(t) = |da|*— 0, C(t) = (da)°—= 0.

However, |z4(t)] = 1 for the limit cycle and, as aresult,
the time interval of the validity of the 1/N-expansion is
rather large,

t* = Ny ™.

It is important that the diffusion is a major physical
mechanism responsible for the difference between the
classical and quantum dynamicsfor astablelimit cycle.
In the following two sections, we consider two typical
examples of dissipative optical systems with a simple
attractor and alimit cycle.

3. NONCLASSICAL STATE GENERATION
IN HIGHER ORDER ANHARMONIC
OSCILLATORS

We start by defining the squeezing and the Fano fac-
tor. We define the general field quadrature as

Xy = aexp(-iB) +a'exp(ih),

where 0 is the loca oscillator phase. A state is called
squeezed if there exists avalue of 8 for which the vari-
ance of Xy is smaller than the variance for the coherent
state or the vacuum [1, 9]. Minimizing the variance of
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Xg Over 6, we abtain the condition of the so-called prin-
cipal squeezing[1, 9, 10] in the form

S=1+2N(08al’0-| da)?d) = 2(B—|Cl) < 1.(19)

The determination of the principal squeezing Sis very
useful because it gives the maximum sgueezing mea-
surable by the homodyne detection [1, 9].

Another important characteristic of nonclassical
properties of light is the Fano factor

F = (0~ )/ O

that determines the deviation of the probability distri-
bution from the Poisson distribution [1, 9]. After the
substitution a —»= z + da in the expressions

hOd= N@&'ad
and
M’ 0= N°@'aa’ad= N?@'%a+ thQg

and after the Taylor expansionsto thefirst order of 1/N,
we obtain

(20)

_ R4 0
F = ZB+DZC+C.C.D

We see that in order to determine the time dependence
of the principal squeezing Sin (19) and the Fano factor
(20) for nonlinear oscillators, we must find the time
dependence of z, C, and B in (8)—(10) for Hamiltonian
(2). Following the general procedure described in pre-
vious section, we first neglect the quantum correction
Q/Nin (8). Inthis case, equation (8) has the exact solu-
tion

2(t) = zoexp[(—iA —y/2)t] exp[-ig |z ™ wi(D)],
Hi(t) =[1—exp(=yIt)]/yl.

We find the differentials dzand dz* of classical solution
(21) and using the substitutions |dz* + B — B and
(d2)> — C, weobtain

C(t) = =125z P (t) (1zo " gupn (1) + i)

x exp[ (~y ~i28)t ~i 2]z g (1],
B(t) = exp(-yt)[ 12+ 1%z " gl (1)]
+ (OhyH+ L2)yt,

where we took the initial conditions for B and C, (13),
into account. Inserting (22) in (19), we obtain in the
limitst = g(N)t < 1 and yt < 1 a very simple time
dependence of S

S(t) = 1-[1x5 —(y/g,) g2t < 1, (23)

where, for the sake of simplicity, we assume that the
initial value z, isreal, X, = Rez,, and only the terms that
arelinear in T and yt are taken into account. The short-

(21)

2(1-1)

(22)
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time approximation T < 1 and the limit of alarge pho-
ton number N > 1 are quite redistic for a nonlinear
medium modeled by the anharmonic oscillators (for
numerical estimates, see [1, Chap. 10] and [10]). It
should be noted that our formula (23) coincides with
the corresponding formula for St) in [10] for the Kerr
nonlinearity (I = 1) with zero loss (y = 0). In the case
where y = 0, our formula (23) shows that the rate of
squeezing is determined by the factor

213NN = 21P@ Y,

Since A, is proportional to the (2| + 1)-order nonlinear
susceptibility, the factor @ +1 has a physical meaning
of nonlinear polarization. Therefore, the stronger the
nonlinear polarization induced by light in the medium,
the greater the possibility of effective squeezing of light.
For afinite dissipation y #0, the squeezing is determined
by an interplay between the polarization of nonlinear
medium modeled by the anharmonic oscillator and the
thermal fluctuations of the reservoir. Asfollowsfrom (23),
there exists a critical number of phonons

|]1(jljcr) — (I/y)g)(zHl)

such that the squeezing is no longer possible for oy
[ty ().

In the same approximation, we obtain from (20) the
following time dependence of the Fano factor

F(t) = 1+ 20hy0Oyt. (24)

Thus, the statisticsis super-Poissonian for any y 0 and
isindependent of the degree of nonlinearity |. Thisisin
good agreement with the earliest result of [9] for adis-
sipative Kerr oscillator (I = 1), where the impossibility
of sub-Poissonian statistics and antibunching were
found from the exact solution.

We now discuss the validity ranges of our approach.
It is easy to see that in terms of this approach, the time
dependence of the number of quantafor | = 1is

[hCt) + 1/2 = N|Z* + B = N|zg (1 —yt) + Chy[Wt,

(25)
yt<1 gt<l,

where we have used (22) for cumulants B and C. It is

instructive to compare (25) with the exact solution for

(m((t) for the Kerr nonlinearity [9],

[hi(t) = Cholexp(—yt) +[1—exp(-y)] [hyl (26)

Equations (25) and (26) both describe the evolution of
an initially coherent state to afina chaotic state that is
characteristic of thereservoir. It is evident that (26) and
(25) coincide when yt < 1 and my[l= N > 1. A more
accurate analysis of the validity condition of the 1/N-
expansion should include a comparison of the solution
of quantum motion equation (8), which takes into
account the quantum correction Q/N given by (11),
with the solution of classical motion equation (21). It

No. 4 2000



QUANTUM—CLASSICAL CORRESPONDENCE

may be shown after some algebra, that if yt < 1 and
T < 1, the effect of the quantum correction Q/N on the
dynamics of the mean value zis of the order of /N and,
therefore, our cumulant expansion is well defined for
N> 1. The same conclusion could be obtained from
another criterion of validity (18).

4. QUANTUM-CLASSICAL CORRESPONDENCE
IN SELF-PULSING REGIME
OF SECOND-HARMONIC GENERATION

We now consider another example of a quantum
optical system, namely intracavity SHG. The Hamilto-
nian describing two interacting quantum modes in the
interaction picture has the form [11, 14]

2
H=Y A;blb; +iENY(b] —by)

=1

+4(b1%b, - biby),

(27)

where the boson operators by (j = 1, 2) describe the fun-
damental and second-harmonic modes, respectively, 4,
is the cavity detuning of mode j, ENY? is the classical
field driving first mode (E is of the order of unity), and
X is a second-order nonlinear susceptibility. The linear
reservoir and itsinteraction with asecond-order nonlin-
ear medium are described by Hamiltonians (2). Now,
we can rewrite the full Hamiltonian of the problem as
H = N7, where # has the same form as (27) and (2)
with replacements analogous to (4) taking into account
and with the new coupling constant defined by

g = XN, (28)

which is of the order of unity. Formally, the 1/N-expan-
sion procedure developed in Section 2 cannot be
applied to the problem of SHG; however, its straight-
forward generalization to two interacting modes gives
inthefirst order of 1/N the following self-consistent set
of equations

2, = —y§121+ E+92’1’Zz+%9512- (29)
Y 1

zZ, = —EZZZ—gZi—Ngcl, (30)
Bi = —vi(B,-B”) + gBhz, (31)

+gB,zf +Ciz,+C,Z,
Bz = —Y(B,— B(O)) —9BL,2, - 9Bp7r, (32)
C1 = —y;C; +29(CoZ + By2,), (33)
Cz = —Y,C,—29Cyp2y, (34)
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Cr = —0.5(y; +Y,)Cy, + 9Bz, - Cy7 + C,Z7, (35)

Biz = —0.5(y; +Y,) By, + 9C1p75 +92,(B,— By), (36)
where
z= 0= N"?b,J B, = NBa’da,+ 0.5,
C,; = N{3a))’0(j = 1,2),
B, = Ndaida,] C;, = NIda,da,]]
and BO isdefinedin (14). Theinitial conditionsfor sys-
tem (29)—(36) are
Bj(o) = 1/2, Cj(o) = C;p(0) = Bp(0) = 0,
z,(0) = 0, z(0) = z,
where 7, is of the order of unity. In this work, we limit

ourselves by the values of the field strength z, corre-
sponding to self-oscillations [11] and A, = A, = 0.

Itiseasy to seethat in the limit asN — oo and for
g = const = 1, we obtain from (29) and (30) the correct
classical equations of motion for the scaled field ampli-
tudes. The solution of equations of motion (31)—(36)
for the second-order cumulants has the form

X(t) = X(t) + (yB%, yB4, 0,0,0,0),
X (1) =[By(1), By(t), Ca(t), Ca(t), By(t), Cro(1)],

where the vector X describes the part of X that can be
obtained by linearization around the classical trajec-
tory. Variations near a stable limit cycle rapidly
approach zero and, therefore, X (t) — 0. Asaresult,
we have only a diffusive growth of cumulants B;
(=1,2as

(37)

B,(t) = 05yjt, (38)

where we considered the case of a quiet reservoir gLl
This result indicates that the effect of reservoir zero-
point energy on the dynamics of the nonlinear system
isthe principal physical mechanism responsible for the
difference between the classical and quantum dynamics
in the semiclassical limit. A time scale t* for a correct
description of the quantized SHG dynamicsin terms of
classical electrodynamics can be found using criterion
(18). Taking into account that |z(t)| = 1, we obtain t* =
2Ny,

We note that the quantum correctionsto the classical
equations of motion (29) and (30) do not include the
cumulants B, ,. Therefore, in the first order of 1/N,
thereis no difference between the evol ution of quantum
mean values and the classical limit cycle dynamics. In
other words, the quantum correction Q — 0, and
therefore, criterion (17) of the 1/N-expansion validity
does not work. In this respect, the quantized SHG isa
somewhat singular problem. In other quantum optical
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systems, for instance, for anonlinear oscillator with| = 1,
both validity criteria (18) and (17) typicaly give the
same result.

Over a decade ago, Savage addressed the same
guantum—classical correspondence problem for self-
oscillationsin SHG numerically [14]. He calculated the
Q distribution function in the Gaussian approximation
centered at a deterministic trajectory corresponding to
alimit cycle. He worked in alarge field and small non-
linearity limits, x/y; , — 0, which correspond to the
classical limit [14]. It is easy to see that the condition
X/y1, » — Ois consistent with our condition N > 1, if
one additionally considersthe natural condition of anot
very strong dissipation in (29)<36), y; ,/g < 1 together
with g = 1 (28). In other words, Savage's small param-
eter x/y corresponds to our large parameter N as
xly —= N2, To establish the difference between the
classica and quantum dynamics, the equations of
motion for low-order cumulants were obtained in [14]
and solved numericaly for particular values of the
parameters[21]. Based on the results of numerical sim-
ulations, Savage concluded that it is a quantum diffu-
sion that is mostly responsible for the difference
between the classica and quantum dynamics in the
semiclassical limit. Moreover, his numerical estimate
for a characteristic time for the classical description
scales as (Y/x)?, which isin a good agreement with our
analytic result t* = 2y*N. In summary, our analytic
results for the quantum-—classical correspondence at
self-pulsing in SHG are consistent with the previous
numerical investigation of same problemin[14].

5. CONCLUSION

We developed the 1/N-expansion method to con-
sider the nonlinear dynamics and nonclassical proper-
tiesof light in dissipative optical systemsin the limit of
alarge number of photons. The method was applied to
the investigation of squeezing in higher order dissipa-
tive nonlinear oscillators. Wewould like to note that our
method can aso be directly applied to an important
case of the generation of nonclassical states in a
medium involving competing nonlinearities [22].

We found atime scale of validity of the 1/N-expan-
sion for aclassical description of the dynamics of non-
linear optical systems with a ssmple attractor and with
a limit cycle. For systems with a simple attractor, this
time scale is of the order of unity, and for the limit
cycle, is proportiona to large N. Quadlitatively, this
result can be understood as follows. For time of the
order of unity, the trgjectory spirals around a stable sta-
tionary point with asmall amplitude, and therefore, by
virtue of the uncertainty principle, the contribution of
guantum corrections to the classical eguations of
motion becomes very important. Unlike the previous
case, the oscillations corresponding to the limit cycle
are often close to harmonic and, thus, their quantum
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and classical descriptions can coincidefor asufficiently
long period of time. The basic difference between the
classical and quantum dynamicsin the latter case orig-
inates from the influence of reservoir zero-point fluctu-
ations, which, in our notation, are of the order of 1/N.
Thisresult isin agood agreement with the result of ear-
lier numerical simulations of self-oscillations in the
guantized second-harmonic generation [14]. Finaly, it
should be noted that our findings are of arather general
nature and can be applied to the investigations of self-
oscillations in other optical systems, for example, in
those involving optical bistability [23-25].
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Abstract—~Properties of an electromagnetic field localized in the defect modes of two-dimensional photonic
crystals are studied. The defect-mode spectrum of these structuresis cal culated, electromagnetic field localiza-
tion and channeling effects are analyzed, and the properties of the field inside and beyond a photonic crystal
with a lattice defect are also studied. The calculations show that the electromagnetic field is localized in the
defect mode of a photonic crystal in aregion smaller than the wavelength. The dependence of the defect-mode
spectrum on the parameters of the photonic crystal isinvestigated and possibilities for controlling the spectrum
of defect modes are indicated. It is shown that the optical field leaving a photonic crystal possesses the proper-
ties of a evanescent wave, which means that spatial resolution substantially greater than the wavelength of the
radiation can be achieved in the near field and opens up possibilities for using photonic crystals with alattice
defect in near-field optical microscopy. The possibility of externally controlling an optical field localized in the
defect modes of a photonic crystals is demonstrated. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Photonic crystals [1-4] are a new type of artificial,
structurally organized media whose dielectric proper-
ties vary periodically in one, two, or three dimensions
with a characteristic spatial periodicity scale of the
order of the optical wavelength. An important charac-
teristic of these structures, associated with the periodic-
ity of therefractiveindex distribution, isthe presence of
photonic band gaps (PBGs) which are spectral regions
in which light waves cannot propagate in the photonic
crystal, being exponentially attenuated and reflected
from the structure. As aresult of the existence of PBGs
and their unusual dispersion properties, photonic crys-
tals can sustain various light wave, pulse, and beam
propagation regimes which are of physical interest and
important for numerous applications. Over the last few
years, these aspects have been intensively studied and
discussed in the extensive literature on this topic (see,
for example, [2-7]). In particular, photonic-crystal
structures can be used to solve various fundamental
problems associated with controlling spontaneous
emission [1], reducing the group velocity of light [8],
localization and channeling of light [9, 10], and aso
problems associated with increasing the efficiency of
nonlinear optical interactions and possible methods of
controlling phase locking in these interactions[11-14].
The relevance of the practica applications of PBG
structures is indicated by the rapid progress of Bragg
reflectors and chirped mirrors [15], the development of
photonic-crystal waveguides and devices for rotating
laser radiation [9, 16], and also the recently widely dis-

cussed ideas of developing low-threshold optical
switches and limiters [17-19], compact optical delay
lines[8] and light pulse compressors[20], channel drop
filters[21], and also nonlinear optical diodes[22].

Theincorporation of adefect in the crystal lattice of
a photonic-crystal structure leads to the appearance of
defect modes in the photonic band gap, which allows us
to observe new physical phenomena. An important
property of these structures is the localization of the
electromagnetic field in the defect modes [4]. These
effectsin photonic crystals have been widely studied by
analyzing the dispersion properties of PBG structures
[23] which can reveal the main properties of the trans-
mission spectrum of the PBG structure. Various modi-
fications of the slowly varying amplitude approxima-
tion [24] have a so been used to describe the main laws
governing the localization of a plane-wave field with a
slowly varying envelope in one-dimensiona photonic
crystals. However, adetailed physical understanding of
the effects of electromagnetic field localization in defect
modes of photonic crystals and also of the properties of
the field formed at the exit from these structures cannot
be obtained by analyzing the dispersion properties of
PBG structures or using the plane-wave approximation,
because these approaches do not allow us to determine
the field distribution in the photonic crystal. Quite
clearly, the only possible method of studying the field
distribution in these structures involves anumerical inte-
gration of the Maxwell equations since the problem of
obtaining an analytic description of the field of light
beamsinside and at the exit from two-dimensional and
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three-dimensional PBG structuresis almost impossible
to solve.

In the present paper, we investigate the defect-mode
spectrum of a two-dimensional photonic crystal, we
analyzethe effects of electromagnetic-field localization
and channeling in a two-dimensional PBG structure
with alattice defect, and we a so study the properties of
the electromagnetic field inside and at the exit from
such astructure. The calculations show that the el ectro-
magnetic field can be localized in the defect mode of a
PBG structure in aregion smaller than the wavel ength.
We investigate the dependence of the defect-mode
spectrum on the parameters of a photonic crystal and
suggest possibilities for controlling the defect-mode
spectrum. An optical field leaving a photonic crysta
possesses the properties of a evanescent wave which
means that the near-field spatial resolution can be sub-
stantiadly greater than the radiation wavelength and
opens up possibilitiesfor using photonic crystalswith a
lattice defect in near-field optical microscopy. It is
shown that placing a dielectric sphere close to the exit
face of aPBG structure with alattice defect can change
the optical-field distribution in the defect mode of a
photonic crystal. This effect can be used to control the
localization of the optical field in photonic crystals
from the outside.

2. CALCULATION METHOD
2.1. Difference Scheme

The method predominantly used for theoretical
analyses of PBG structures at present isthe plane-wave
approximation which involves a numerical solution of
the Hill equation using the Floquet theorem (this
approach is discussed in detail in the reviews [7, 25]).
This technique can ensure fairly high accuracy in cal-
culations of the dispersion properties of PBG structures
but gives rise to serious difficulties in calculations of
the field distribution in and at the exit from a PBG
structure.

A promising approach to study the field distribution
in PBG structures is based on a numerical solution of
the Maxwell equations using a finite-difference time-
domain (FDTD) method [26]. This method is now
being increasingly widely used to study photonic crys-
tals. In particular, this approach has been used to ana-
lyze the phenomenon of optical switching [18, 27] and
the formation of ultrashort optical pulsesin one-dimen-
siona PBG structures [20, 28], and aso to study the
influence of the materia dispersion on the reflection and
transmission spectra of multilayer media. The last two
years have seen the publication of studies in which the
FDTD method was used to investigate the propagation of
light in two-dimensional photonic crystals[21, 29].

Unlike methods based on the plane-wave approxima:
tion, the FDTD method does not require the inversion of
large matrices and consequently does not require alarge
computer memory. As aresult, the FDTD method can
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be used to calculate the propagation of spatially
bounded laser pulsesin photonic-crystal structures and
to analyze the possibility of controlling light pulsesand
beams. In connection with the problems addressed in
the present study, it is important to note that since the
FDTD procedureinvolves calculationsin real space not
in Fourier space, the addition of defectsto the photonic-
crystal structure does not significantly complicate the
calculations made by the FDTD scheme. Findly, by
using the FDTD technique we can go over from analyz-
ing linear to nonlinear problems and analyze a wide
range of phenomena associated with the development
of photonic-crystal compressors, switches, and modu-
lators using ultrashort optical pulses[18, 20, 27, 28].

In the FDTD method, the region of space being
studied is divided into cells of length &x = dy = 8z = 9,
and the time interval being studied is divided into sec-
tions of length &t. The real electric and magnetic fields
arereplaced by discrete functions of thetime variablen
and the spatial coordinatesi, j, k:

E(t, %, y,2 — E"(, j, k),
H(t, x, y, 2 — H"(, j, K).

The Maxwell equations for the two-dimensional
case are written in the following form:

(1)

H:+1/ZE’J 15 H- 1/2& +
+%t[E;(i,,-)_E;(i,,-+1)],

Hy 508 M H 5 G

+ SN+ 1, 1)~ EXL DI, @

£}, 0) = B0 D)+ s

[ n+1/zB J_1D Hn+1/zE J+;E

n+1/2 1.0 n+w2
HY R 2 B——,jm}.

Defining the initial distribution of the fields H and
E, we can calculate the field distribution for any spatial
cell for each time interval using the difference scheme
described above. The relationship between the dis
placement and el ectric field vectorsis defined phenom-
enologically:

D7(i, j) = (i, HEN, i), ©)
where (i, j) is the permittivity of the medium.

In this formulation of the problem, we neglect the
spatial and frequency dispersions of the material form-
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Fig. 1. Fragment of two-dimensional PBG structure without
(a) and with (b) alattice defect.

ing the PBG structure. However, in principle the
FDTD scheme can also allow for these dispersion
effects (see [30]).

2.2. Boundary Conditions

The solution of initial and initial-boundary-value
wave problems for regions of finite spatial dimensions
(photonic crystals of finite dimensions) encounters dif-
ficulties because an electromagnetic wave reaching the
boundary of the spatial region being studied is reflected
specularly from this boundary, reentering the calcula-
tion region and thereby distorting the real distribution
of the electromagnetic field. One method of solving this
problem is to enlarge the calculation region to such an
extent that the light wave (pulse) does not have time to
reach the boundaries during its time of propagation
through the region of interest to us. In this case, our
solution will not contain waves produced by artificia
reflection from the boundaries of the calculation region.
A similar procedure gives good results for short (in
time and space) optical pulses but excessively increases
the calculation time for relatively long pulses. At the
sametime, short optical pul ses can undergo appreciable
spreading in a photonic crystal as a result of the sub-
stantia dispersion of the group velocity, which leads to
an increase in the duration of the pulses transmitted by
and reflected from the structure.

With this reasoning in mind, the boundary condi-
tions should be formulated so that alight wave reaching
the boundary is completely absorbed by the boundary
without being reflected. Unfortunately, no ideally
absorbing, fairly simple boundary conditions exist for
two-dimensional and three-dimensional problems. For
our calculations, we used second-order absorbing
boundary conditions [31]

2 2 2
0o 0 10 [gn -
Loxat  y¢2 " ZayZHEZ|x: oL 0, Q)

where x =0, L correspond to the boundaries of the cal-
culation region. The conditions (4) can significantly
reduce the influence of reflection from the boundaries
on the accuracy of the numerical calculations.
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In order to check the efficacy of the boundary con-
ditions (4), we modeled the reflection of strongly
focused short pulses numerically. These calculations
showed that for a Gaussian beam whose diameter is of
the order of the wavelength, the reflection coefficient
for an angle of incidence of 45° islessthan 3% in terms
of amplitude, which agrees with the results of calcula-
tions made by the authors [31] for a plane monochro-
matic wave.

By analogy with higher order boundary conditions,
the second-order boundary conditions give reflection
coefficients of unity for glancing incidence. However,
the corresponding field components propagate along
the boundaries and generally have no significant influ-
ence on the field distribution in the region of interest.

2.3. Photonic Crystals

For our investigations we selected a structure con-
sisting of a variable number of periods (between five
and ten) of cylindrical air pores forming a triangular
latticein asilicon matrix (Fig. 1). Thistype of photonic
crystal was selected because silicon technologies are
extremely promising for fabricating one-dimensional
[14, 32], two-dimensional [33], and three-dimensional
[34] PBG structures.

In order to introduce a defect in the two-dimen-
sional PBG structure described above, we removed one
row of air pores (Fig. 1b). Since, in the region of the
complete band gap in our selected triangular lattice of
air cylinders in silicon, the depth of penetration of the
optical field in the photonic crystal (skin layer) does not
exceed asingle period of the structure, in order to deter-
mine the transmission spectrum of alattice with a defect
we considered structures in which the defect was intro-
duced periodically (with the period A aong the y axis).
In other words, we solved the problem of light propaga-
tion in a superlattice. Control calculations made for
superlattices differing only in terms of the period A
showed that the electromagnetic-field distribution in the
defect mode and the defect-mode spectrum do not
depend on A. Aswell as being convenient, this calcula-
tion scheme can also be used to determine the noise level
associated with the influence of light localized in neigh-
boring defects (cross talk) which is of interest for appli-
cations of these PBG structures in optical memory sys-
tems and optical information processing.

2.4. Calculations of Transmission Spectra

The transmission spectrum for a two-dimensional
photonic crystal with no lattice defects was calculated
by modeling the propagation of a plane monochromatic
wave

B2 0) = B2 )+ snEsnd  (9)

incident on a photonic crystal located in the xy plane,
parallel to the x axis. The absorbing boundary condi-

No. 4 2000



TWO-DIMENSIONAL PHOTONIC CRYSTALS WITH A LATTICE DEFECT

tions (4) were set inthe planesx=0and x = L. The cal-
culation region along the y axis corresponded to a sin-
gle period of the crystal superlattice. By virtue of the
symmetry of the problem, the field components in the
planesy =0andy = A are equal:

H(i,0) = Hy(i, Ny),
HY(i,0) = H(i, N,), (6)
H7(i,0) = H3(i, Ny).

Here, N, = A\/d isthe number of mesh divisions per period
of the photonic crystal in the direction of they axis.

Thus, the periodic Bloch conditions in real space
simply took the form of equal field components (6) on
these two planes. The calculations were made for the
squares of the electric and magnetic fields averaged
over the period of the oscillations. The calculation pro-
cedure continued until these values remained the same
to within the required accuracy after doubling the com-
putation time.

This scheme was used to calculate the transmission
spectrum of asguare lattice consisting of sixteen layers
of circular air cylinders of radius R = 0.504 um in a
PbO matrix (permittivity € = 2.72) having the period
a=1.17 um. The results of the cal culations compl etely
agreed with the calculations made for the same struc-
ture using a Fourier expansion of the fields and dielec-
tric constantsin [15], which indicates that this calcula-
tion procedureisreliable.

The transmission spectrum of two-dimensional PBG
structures with a lattice defect was calculated using a test
pulse scheme. In this approach, the shortest possible (one
or two optical periods) pulse is defined at the entrance
to aphotonic crystal at zero time:

—0.5((i —ig)d/1)?

E%i, j) = Ae cosEZD\—]:(i—io)ég @)

where| isthe pulse length in space (in our calculations
I =1-2\), Ag isthe wavelength corresponding to the
pulse carrier frequency, and x = i40 is the coordinate of
the pulse center.

In order to determine the transmission spectrum of
the photonic crystal, the spectrum of the pul se transmit-
ted by the PBG structure was normalized to the spec-
trum of the initial pulse. By performing a similar pro-
cedure for severa test pulses whose spectra cover the
entire spectral range of interest to us, we can find thetrans-
mission spectrum of the crystal, including the spectrum of
the defect modes. This approach can be used to draw
important conclusions from the physical point of view
on the nature of light channeling in the defect modes of
PBG structures.
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3. RESULTS AND DISCUSSION
3.1. Spectrum of Defect Modes

In order to study the transmission spectrum of two-
dimensional PBG dtructures, the field incident at the
boundary of the PBG structure was defined as a plane
wave (5). For theinvestigation we selected astructure con-
ssting of avariable number of periods (between five and
ten) of cylindrical air poresforming atriangular latticein
asilicon matrix (see Section 2.3 and Fig. 1).

Numerical calculations made for these PBG struc-
tures with no defects (Fig. 1a) showed that a band gap
exists for the direction along the x axis, corresponding
to the minimum width of the band gap [36], for theratio
a/A (whereaisthe period of the PBG structure, A isthe
wavelength of the optical beam) which varies between
0.35 and 0.52 for H-waves and between 0.44 and 0.57
for E-waves. Thus, the results of our calculations indi-
cate that a closed band gap exists and show good agree-
ment with the results of cal cul ations made by the plane-
wave method in [36] and also with the calculated and
experimental results reported in [33].

The numerical analysis showsthat whereas thefield
intensity in a PBG structure with no defects decreases
on a spatial scale of the order of the wavelength A and
the PBG dgtructure has a transmission coefficient of the
order of 1073, in aPBG structure having adefect (Fig. 1b)
the optical beam can propagate along the narrow chan-
nel formed by this defect. In this structure, the trans-
mission coefficient for E-waves in the range of a/A
between 0.44 and 0.47 increases from 10~ to 0.5 which
indicates the appearance of a defect level in the band
gap. Figure 2 shows the spectrum of defect modes for
propagation along the x axis for E-waves. This spec-
trum was calculated using the wide-band test pulse
method described in Section 2.4.

An analysis of the transmission spectrum of a PBG
structure with defects reveas that the defect-mode
spectrum can be controlled by varying the parameters
of the photonic crystal. It can be seen from Fig. 2 that a
decreaseintheratio of therefractiveindex of the matrix
material to that of the cylinder material (in our case air)
shifts the defect modes of the PBG structure toward
higher frequencies. A qualitatively clear interpretation
of this effect can be obtained by representing the defect
mode of the PBG structure as a standing wave formed
as a result of reflection from the walls of the channel
formed by the defect, whose length corresponds to that
of the lowest order natural mode:

As = 2dn,

where d is the channel width and n is the refractive
index of the channel material. Then, the wave number
of this standing wave decreases with increasing refrac-
tiveindex n, asis observed in the numerical modeling.
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Fig. 2. Defect-mode spectrum of the two-dimensional PBG
structure whose fragment is shown in Fig. 1b for various
permittivities of the matrix material: € = 11.7 (dashed
curve), 9 (solid curve), 7 (dotted curve), and 5 (dash—dotted
curve).

3.2. Localization of the Field Inside
a Two-Dimensional Photonic Band Gap Structure
with a Lattice Defect

We used the FDTD procedure (see Section 2.1) with
the absorbing boundary conditions (4) and initial con-
dition (5) to determine the field distribution in a photo-
nic crystal. The calculations were continued until the
period-averaged values of the electric and magnetic
fields and their squares ceased to vary. The output data
were the period-averaged squares (intensities) of the
electric and magnetic fields.

Figures 3a—3c show two-dimensional distributions

of the mean square of the electric field E* in a PBG
structure of the type described above consisting of ten
periods along the x axis with the defect period A = 5a
for theratio a/A = 0.454. An analysis of the spatial dis-
tribution of the electromagnetic field shows that the
light is channeled along the defect in this structure and
that the field is localized at the center of the defect. In
some sections of the channel the beam diameter is of
the order of A/10 (Figs. 3a-3c) which is five times
smaller than the diffraction limit for an optical beam
focused in air. The light intensity at the center of the
defect is several hundred times higher than the intensity
at the edges of the channel (Figs. 3a=3c) which indi-
cates that the beam channeling has a high contrast. In
this case, the group velocity of the light decreases sub-
stantialy which indicates that the defect modes of PBG
structures may be used to develop controllable optical
delay linessimilar to the optical delays lines using one-
dimensional PBG structures developed by the authors
of [8].

The results of the calculations for the superlattices
with variable period A described above yield several
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important conclusions on the nature of these phenom-
ena. Firgt, the effect of light channeling along a defect
is observed regardless of the period A which indicates
that these light localization effects are not associated
with the interference of light reflected from neighbor-
ing defects. Second, the field intensity beyond a photo-
nic crystal far from its surface, integrated over the
period A\, remained constant regardless of the value of
A\ which suggests that the light is only channeled aong
the particular defect. Third and finally, the field distri-
bution in the defect mode of a photonic crystal indi-
cates that the light intensity decreases so rapidly as a
function of the y coordinate beyond the defect that the
interference between neighboring defectsis negligible.

An important property of the optical field localiza-
tion effect in a photonic crystal is that the spatial distri-
bution of the field in the defect mode can be controlled
externally. This possibility isillustrated in Figs. 3b and
3c which show two-dimensional plots of the spatial dis-
tribution of the mean square of the electric field inten-
sity in a two-dimensional PBG structure having the
parameters described above when a transparent dielec-
tric sphere having the refractive index 1.5 and radius
M4 (Fig. 3b) and A/8 (Fig. 3c) is positioned closed to
the exit face of the photonic crystal. A comparison of
Figs. 3b and 3c with Fig. 3a shows that the presence of
asmall dielectric sphere perturbs the field distribution
inside the PBG structure. The physically observable
effect is attributed to a change in the conditions of for-
mation of the defect mode in the presence of the per-
turbing “potential” of the dielectric sphere. This effect
is extremely important for possible applications of the
light localization effect in photonic crystals in nonlin-
ear optics, optical memory, and also for controlling
atoms and atomic interactions in quantum calculation
problems.

3.3. Formation of Evanescent Waves
and Ultrahigh Near-Field Resolution

The distribution of the mean square of the electric
field at the exit from a PBG structure is shown in
Figs. 4a—4c. Under these conditions, the field is local-
ized in the transverse direction on a spatia scale
smaller than the wavelength (A/10), decreasing expo-
nentially along the x axis. The properties of this field
are similar to the properties of aevanescent wave local-
ized near the surface of the samplein near-field micros-
copy, which opens up the possibility of using PBG
structures as elementsfor the efficient formation of eva-
nescent waves in near-field optical microscopy [37].
Using the reciprocity principle, we find that PBG struc-
tures with a lattice defect can also be used to analyze
the evanescent field near a sample so that an informa-
tion acquisition mode can be achieved in near-field
microscopy.

It is extremely unlikely that an analytic description
can be obtained for the field at the exit from these PBG
structures. However, it is quite clear from qualitative
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Fig. 3. Two-dimensional pattern of electric field localization in a PBG structure with a lattice defect as shown in Fig. 1b. The gray

levels are the mean square of the electric field E? for the ratio a/A = 0.454: (8) without probe object; (b, c) with probe object of
diameter A/4 (b) and A/8(c) whose center is positioned at distances A /8 (b) and A/16 (c) from the exit face of the PBG structure.

physical reasoning that an optical beam of diameter
less than the wavel ength, formed in a two-dimensional
photonic crystal, cannot propagate in free space with-
out changing its shape. Since this beam has a diameter
substantially smaller than the wavelength and its spec-
trum contains higher order spatial harmonics, it exhib-
its properties similar to those of evanescent waves. This
beam can provide high resolution in the near-field zone
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and decreases rapidly in the longitudina direction
(along the x axis).

In order to demonstrate the possibility of achieving
high spatial resolution in measurements using an opti-
cal beam formed by this type of PBG structure, we cal-
culated the electric-field distribution at the exit of a pho-
tonic crystal in the presence of a transparent dielectric
sphere of refractive index 1.5 and radius A/4 (Fig. 4b)
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Fig. 4. Two-dimensional distribution pattern of the mean square of theelectricfield E? at theexit from aPBG structurewith alattice
defect asshownin Fig. 1b for the ratio a/A = 0.454: (a) without probe object; (b, ¢) with probe object of diameter A/4 (b) and A/8 (c)
whose center is positioned at distances A/8 (b) and A/16 (c) from the exit face of the PBG structure.
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and A/8 (Fig. 4c) positioned close to the exit face of a
PBG structure. A comparison of the two-dimensional
electric-field distribution patterns given in Figs. 4a-4c
shows that a small dielectric probe sphere significantly
changes the distribution of the radiation intensity in the
near-field zone, resulting in afield “tunneling” effect as
aresult of the perturbation introduced by the potentia
of the probe sphere. Theintegral of the mean square of
the electric field calculated in the plane x = 19.7a
(Figs. 4a-4c) also changes appreciably in the presence
of the probe sphere. The change in this integral in the
presence of probe spheres of diameters A/4, A/8, and
A/16 relative to the values of thisintegral in the absence
of the probe sphere is 6, 3.2, and 0.7%, respectively.
Consequently, the presence of a dielectric probe sphere
of diameter less than the wavelength of the incident
radiation leads to a detectable perturbation of the spa
tial distribution of the field at the exit of the PBG struc-
ture and also influences the characteristics of the radia-
tion in the far field. The results of these calculations
show that the evanescent waves formed in the defect
modes of photonic crystals can be used for near-field
optica microscopy systems (Fig. 5) with spatial resolution
exceeding the wavelength of the incident radiation and a
fairly high signal-to-noise ratio (cf. [38, 39]).

Although all the radiation energy in the evanescent
waves only propagates along the exit surface of the
PBG structure, without becoming detached from it, the
high density of the optical field at the exit from this
structure may give rise to physically observable phe-
nomenain the near-field zone. Thisfield can beusedin
particular for the local excitation of atoms or molecules
(Fig. 6). It can also be recorded, analogous to near-field
microscopy, by using a probe positioned near the sur-
face.

3.4. Applications of Photonic-Crystal Defect Modes

In addition to the various near-field microscopy sys-
tems discussed briefly in Section 3.3, the optical beam
propagation regimes which can be achieved using PBG
structures are potentially useful for a wide range of
applications. Important applications arising from the
properties of the field at the exit of a PBG structure are
associated with the possibilities of enhancing the spa-
tial resolution in photolithography (as in the scheme
shown in Fig. 6), increasing the data storage density in
optical memory systems, and also visualizing the mode
composition of the radiation in optical waveguides. The
possibility of focusing an optical beam in a region
smaller than the wavel ength opens up new possibilities
for increasing the data storage density in three-dimen-
sional optical memory systems [40, 41]. An extremely
important factor here isthe absence of any interference
between radiation propagating in neighboring defects
in the PBG structure which has been established in the
present study (Section 3.2). This factor can ensure
highly local recording and reading of data and avoid
any ateration of data stored in adjacent memory cells.
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Fig. 5. Near-field optical microscopy using a evanescent
wave formed in the defect mode of a photonic crystal. A
PBG structure is used to excite the evanescent wave with
recording in the far field.
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Fig. 6. Loca excitation of particles by a evanescent wave
formed in the defect mode of a photonic crystal.

Finally, the possibility of locally increasing thefield on
fairly extended spatial scalesin the direction of propa-
gation of the optical beam is potentially useful for
enhancing the efficiency of nonlinear optical interac-
tions. However, the nonlinear propagation regimes of
optical beams in two-dimensional and three-dimen-
sional photonic crystals require further study.

4. CONCLUSIONS

An analysis of the el ectromagnetic-field distribution
in two-dimensional PBG structures with lattice defects
and a study of the spectrum of the defect modes in the
band gaps of these structures has revealed various
important properties of field localization in photonic
crystals. Under these conditions an optical field can be
localized in a region smaller than the wavelength and
the field at the exit of the PBG structure possesses the
properties of a evanescent wave, which means that
near-field spatial resolution substantially greater than
the wavelength can be achieved. The presence of a
dielectric probe sphere of diameter smaller than the
wavel ength of theincident radiation perturbsthe spatial
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distribution of thefield both inside and beyond the PBG
structure and also influences the characteristics of the
radiation in the far field. These factors suggest that it is
possible to control the optical field distribution in
defect modes of photonic crystals and indicates that
subdiffraction spatial resolution may be achieved in
near-field optical microscopy systems.

The optical beam propagation regimes which can be
achieved using PBG structures are potentially useful
for solving awide range of problemsin near-field opti-
cal microscopy, increasing the data storage density in
optical memory devices, and aso for enhancing the
efficiency of nonlinear optical interactions.

Thiswork would not have been possible without many
fruitful and useful discussionswith the late N.I. Koroteev
who initiated the authors' research into photonic crys-
tals and actively supported this work until the very end.
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Abstract—A formal analogy between the classical method of averages and the Kramers—Henneberger approx-
imate description of the dynamics of atomic systems in a strong monochromatic field is used to determine the
limits of validity of this approximation. A unified approach is used to confirm the well-known fact that the
Kramers—Henneberger approximation can be applied in the limit of superatomic frequencies and it is shown
that this approximation also holdswhen this conditionisviolated, i.e., when thefield frequency fallsto acertain
value wy,;, and in this case it can be applied in the limit of superatomic fields. The results are compared with
data of numerical and laboratory experiments and with the conditions for validity of the Kramers—-Henneberger
approximation obtained earlier. The relationship between the validity of the Kramers—Henneberger approxima-

tion and the problem of determining the adiabatic stabilization threshold is discussed. ©

“ Nauka/Interperiodica” .

1. INTRODUCTION

The Kramers—Henneberger (KH) method [1, 2] of
approximately describing the dynamics of atomic sys-
tems in a strong monochromatic field is interesting in
the context of the stabilization of an atom in a strong
field. A reduction in the probability of photoionization
of an atom compared with the value predicted by the
Fermi golden rule is known as the stabilization effect
[3-6]. A didtinction is usually made between two dif-
ferent types of stabilization corresponding to different
manifestations of this effect and observed for different
relationships between the parameters of the laser pulse
and the atomic system: interference stabilization [4]
and adiabatic stabilization [7, 8]. The KH method can
be used to unravel the mechanism for adiabatic stabili-
zation. The gquestion of the limits of validity of the KH
approximation is interesting from both the method-
ological and practical point of view. Determining the
limits of validity of the KH approximation allows usto
determine the thresholds for the adiabatic stabilization
effect. With the appearance of the first experiments on
stabilization [9, 10] it has become important first, to
confirm that the experimental situation falls within the
limits of validity of the KH approximation and second,
to use this method to describe the experimental depen-
dences.

The idea of the KH method is to apply to theinitial
Hamiltonian of the system

2
= L -SaT +v(x), M)

2000 MAIK

where?
A = Ajesin(wt),
the transformation [1]

A, = —Fclew,

H=

which accompllshes atransition to the osci I lating coor-
dinate system

Xky = X—e,a,c0s(wt). ()]

Here, a, = F/muy is the amplitude of the free-electron
oscillationsin thefield F, w.

In the coordinates (2), the Hamiltonian has the fol-
lowing form:

Hkw = §<HS<H+S<HHS<H1
©)
Hey = % + V(X + €a,008(wt)).

In the KH approximation, the time-dependent potential
in the Hamiltonian (3) is replaced by the period-aver-
aged vaue Vi, (X, &), i.e, the KH potentid. The KH
approximation is vaid and productive if the influence of
the corrections 8V = V(xy + 68.C0S(tt)) — Vikn(Xkn» 80)
isnegligible. In this case, all the necessary values such
as the ionization rate and the polarizability can be cal-
culated using perturbation theory and the energies of
the steady-state | evel s accurately approximate the exact
guasienergies of the system.

L Here, we shall confine our analysisto alinearly polarized field.

1063-7761/00/9004-0609%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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The dominant trend in studies of the KH approxima-
tion is numerical quantum-mechanical calculations
[11-18]. So far, the properties of the KH potential, and
the properties of the KH eigenfunctions and el genstates
have been comprehensively studied using numerical
calculations [7, 11-14]. In particular, as the amplitude
of the oscillations increases, a, > a, the KH potential
acquires atwo-welled structure and is elongated in the
direction of the dectric field vector of the electromagnetic
wave, itscharacteristic depth decreases, and the number of
bound states (for the case of a short-range potentia)
increases. In this case, the energy of dl the eigenstates
tendsto zero and in thelaboratory system thisvalue corre-
sponds to the eectron vibrationa energy. Thus, the KH
states describe effectswhich have the nature of corrections
to the vibrational motion of afree eectron in the field of
an electromagnetic wave caused by the presence of a
weak attractive potential. Adiabatic stabilization is
such an effect: an almost-free electron does not absorb
(emit) field energy. Stabilization by the KH scenario
has been called adiabatic [19] because the KH states
appear asaresult of the adiabatic evolution of theinitial
unperturbed state of an atom under the action of afield.

However, athough there are no fundamental diffi-
culties involved in interpreting the results obtained
using the KH approximation, at present there is no
common viewpoint on the limits of validity of this
approximation and the role of various parameters.

Inthe KH formalism, aparticular roleis assigned to
the usua dimensionless combinations of field parame-
ters, initial potential, and KH potential: a/a. [2], ka.[5],
R[20], Exy/hw[20], and E/Aw[21]. Here, aisthe char-
acteristic dimension of the initial potential, k is the
electron wave vector in the continuum, R = FZ/mAw?® is
the Reiss parameter,2 Exy is the bound-state energy in
the KH potential, and E is the bound-state energy in the
initial potential.

The characteristic parameters of the problem can be
divided into two groups. We shall consider the group of
parameters which controlsthe transition of aninitia atom
and “perturbation-theory regime” to a “KH atom” and
“dabilization regime’: a/a,, ka,, and R.

We shall call thelimit (a/a, > 1, ka, <1, R< 1) in
which the KH potential is converted to the atomic
potential, the perturbation-theory regime. Thisterm can
be explained by the fact that the main dynamical char-
acteristics of an atom (the polarizability [22] and ion-
ization rate [2]) calculated using the KH Hamiltonian
agree with similar values calculated using the initia
Hamiltonian (1) using standard perturbation theory
[23]. We shall call the stabilization regime the opposite
limit (a/a, < 1, ka,> 1, R> 1) inwhich theionization
rate calculated using the KH approximation decreases
with increasing intensity [8, 24]. The parameter a/a,

2 The Reiss parameter is usually defined as the ratio of the ponder-
omotive energy to the quantum energy of the field, i.e, R =
F2l4mfh® (see, for example[26]). In the present study, we neglect
the numerical difference and retain the term “Reiss parameter”
for this combination of field parameters.
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determines the characteristic dimension of the KH
potential and its characteristic depth. Large values of
the parameter ka, ensure that the matrix element of the
transition from the bound KH state to the continuum
state caused by the perturbation 3V is small under the
conditions of validity of an approximation which uses
plane waves as the wave functions of the continuous
spectrum in the Kramers system. Thus, the smallness of
the parameter (ka,)is an additiona stabilizing factor.

In all cases of practical interest, wefind ka,= /R. The
Reiss parameter determines the number of harmonics
[24] which are important in the stabilization regime
ka, > 1, ala, < 1. Theranges of field parameters corre-
sponding to large and small values of the dimensionless
parameters a/a,, (ka,)™, and R are the same. However,
it is unclear which of these parameters controls the
matching of these asymptotic forms of the intensity
dependence of the ionization probability. For example,
it was shown in [25, 26] that for the hydrogen atom this
isthe parameter ka, (or R); however, on the basis of the
results of numerical experiments [26] for short-range
potentias, it is difficult to unambiguously conclude
which of these parameters determines the stabilization
threshold. This is because for given potential parame-
ters the thresholds calculated using each of these
parameters are very similar, i.e., al three conditions
(ala, <€ 1, ka, > 1, R> 1) begin to be satisfied simul-
taneously.

The second group of parameters (Ex/hiw, E/AwW)
occursin the context of the validity of the KH method.

It follows from an analysis of the limiting cases cor-
responding to the various regimes described above that
the validity of the KH approximation does not imply
the existence of a stabilization effect, but the occur-
rence of a stabilization effect may be predicted in the
range of field parameters in which the KH approxima-
tion is valid and the following conditions are satisfied:
ala, <1, ka. > 1, R> 1.

The limits of validity of the KH approximation are
usually associated with the following conditions being
satisfied: Exp/fico < 1[20], E/Aw < 1[21]. These con-
ditions formalize the concept of the high-frequency
nature of the KH approximation which arises because
of the obvious analogy between the KH method and the
method of averages, and they are equivalent in the case
al/a, > 1. The condition E,/fhw < 1 wasintroduced in
[20] when studying the stimulated stopping effect in a
strong field in the Kramers system (2) and is usualy
called the Gavrila-Kaminski condition. However, this
condition is not sufficient for the validity of the KH
approximation in the stabilization regime. This can be
confirmed using the model of a rectangular potential
well with parameters V, and a. The dependence of the
ground-state energy in the KH potential in the stabiliza-

tion regime on the field parameters for this model was
calculated in [27]: Eqy = Voaaz" (in atomic units).

Allowing for this dependence, the Gavrila—Kaminski
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condition yieldsthefollowing result: the lower thefield
frequency, the lower theintensity at which stabilization
occurs. Consequently, the condition Ecy/Aiw < 1 is
clearly anecessary but not a sufficient condition for the
validity of the KH approximation.

In the context of the classical stabilization problem
[6, 28-33], the analogy between the KH method and
the method of averagesis also used in [31, 33] to esti-
mate the limits of validity of the KH approximation and
yields the following result: Quu(as) < w, where
Qxu(ay) is the frequency of weak oscillations near the
minimum of the KH potential. In particular, the follow-
ing estimate was obtained in [33]:

Q2,.(a,) = max|o?U/ox? = a2

However, the condition for validity of the KH approxi-
mation formulated as Qxn(a.) <€ w cannot yield any
unambiguous conclusion as to the dependence of the
stabilization threshold on the field parameters. This is
because stahilization can occur not only as a result of
trajectorieslying near the minimum of the KH potential
but also as aresult of tragjectories lying above the sepa-
ratrix of the KH potential and having a different depen-
dence of the classical frequency on a., which deter-
mines the distance between the levelsin the semiclassical
limit. In this situation it is more natural to use small
parameters which do not depend on the structure of the
KH potential.

In the present study the limits of validity of the KH
approximation in the semiclassical range are deter-
mined using aformal analogy with the classical method
of averages [34-36] whose clear limits of validity are
established by the Bogolyubov theorem. The attractive
potential3 —V,f (¥a) in the field of an electromagnetic
wave of frequency w and strength F/e is used as the
model system. The problem has two semiclassical
parameters: R > 1 and B > 1, where R is the Reiss

parameter and B = ,/2mV,a’/#° isthe Born parameter.
The presence of two semiclassical parameters means
that both essentially quantum (B = 1) and semiclassical
(B > 1) systems can be considered from common view-
point. The cases R > 1 for arbitrary B and B > 1 for
arbitrary R are anayzed.

2. LIMITS OF VALIDITY
OF THE KRAMERS-HENNEBERGER
APPROXIMATION IN THE CASER > 1
FOR ARBITRARY B

The Heisenberg equations for the coordinate and
momentum operators ¢ and p of this particular model

3 In the present study, for simplicity all the estimates are made for
one-dimensional systems. The results can be generalized to the
three-dimensional case. In this case, they do not change qualita-
tively.
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system have the following form:

49 - P, F gna,

dp _ Vo..[00
dt m mw f )

d  a O

We write the system (4) in the dimensionless units m =
F=w=1

o
=n o))

o
>

Il

Here, we have € = Vy/aF, § = §(mw?/F), p = p(wF),
and 6 = a/a, (h = 1/R). Thus, the semiclassical situation
is achieved for R > 1 and the system dynamics can be
described using classicd models. In the classica
model, we have

dg _

dp _ _..[00
It ef

p + snT, a = O

Following the logic of the method of averages [34-36],
we impose the constraint that € is small and using the
transformations

g, = g+cCost, p, =P,

Xlzqv’ X2= pv/’\/é’
we reduce the system to the standard form

dx,

i JEX, (€, X, D),

Here, we have

dx,

i JeXo(g, x4, B).

Xl(sv X21 6) = X21

X1 — COST
X(e,%,,8) = fHE—=—0

We now apply the method of averages subject to the

condition /e < 1. The system in the first approxima-
tion has the following form:

du, _ du, _
E - ’\/EUZl E - ’\/EXO(SI u11 6)1
where u; and u, are the components of the column vec-
tor u which is the average solution in the first approxi-
mation. Here, we have

2m

1 ..t —COST
Xo(e, U3, 8) = 5[ | S“T%jr.

0

Returning to the variables g, and p, and the average
solutions corresponding to them
qv = ul’ F_)v = UZA/E’
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logF [au]
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logw [au]

6 3/4 5

Fig. 1. Region (indicated by heavy lines) of field parameters
in which the KH approximation holds in the quantum case
B=0.8(Vg=25¢eV,a=0.1nm). Thestarsindicate the val-

ues of the field parameters (fiw = 2.5 eV, P; = 3 x 10%°,

P, = 10'® W/cm?) for which stabilization was observed in
the numerical experiments [24]. Notation: (1) the condition
Vola=F; (2 e=1(Vp/a=F); QR=1,(46=1 (5 w=9Q;
and (6) Gavrila-Kaminski condition Exy/fio = 1.

logF [au]
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T T T
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] 7 !
/
2 /
R
7
EPZVAR 13

Fig. 2. Region (indicated by heavy lines) of field parameters
in which the KH approximation holds in the quantum case
B=0.6 (Vo=0.75¢eV, a=0.125 nm). Notation: (1) the con-
dition Vop/a=F; (2 e=1(Vo/a=F); B)R=1;(4 d=1;
and (5) w = Q. The dashed line indicates the lower limit of
the range of validity of the KH approximation determined
numerically in [37, Fig. 10].

we abtain a system which is the classical analog of the
KH approximation:

dg, _ _ dp, _ _..0f, —costp
el L S

Thus, after reducing the initial system to the stan-
dard form, it becomes clear that the main criterion for
the validity of the method of averages and therefore for
the KH method in the range R > 1 is the condition
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Je < 1. Thiscondition begins to be satisfied when the
field strength exceeds the characteristic force scale of
the system, i.e., in superatomic fields.

However, the time interval in which similarity
between the exact and average solutions is guaranteed
is also of interest from the practical point of view. This
is the condition for smallness of the classical response
of a“KH atom” to the perturbation induced by KH har-
monics, which determines the difference in the semi-
classical limit between the exact value of the quasi-
energy and the corresponding value calculated using
the KH approximation. The constraint t,, > T, where
T = 2w is the period of the field, can introduce addi-
tional constraints on the range of permissible field
parameters. This question can be answered for example
using the Bogolyubov theorem which delineates the
limits of validity of the method of averages. Relevant
estimates are given in the Appendix. The conditions of
validity of the method (in atomic units. m=e=# = 1),
supplemented by the condition for the absence of rela-
tivistic drift (the characteristic force scaleislarger than
the Lorenz force F.) determine the range of field
parameters in which the KH approximation is valid in
thecase R> 1:

() F> w2 (R> 1),
@ F>Vyla(e<1l),

B F>aw (0<1);

EVO V2, 112
(4) F< 20 a1/2

DVO > FiH

(a isthe fine-structure constant).

The range of field parameters satisfying these four
conditionsis shown in Fig. 1 for a potential having the
characteristic parameters4 Vo=25¢eV,a=0.1nm, and
B = 0.8, used in the numerical experimentsin [24]. We
note that in this range the Gavrila—Kaminski condition
E«n/hw is satisfied which, for this particular model in
the range & < 11, has the form F > (Vy/a)*3w?? (see
Introduction). The stars denote the field parameters cor-
responding to the stabilization regime in this numerical
experiment. The range of field parameters satisfying
the conditions given above for a potential having the
characteristic parameters V, = 0.75 eV, a = 0.125 nm,
and B = 0.6 used in the numerical experiments in [37]
isshownin Fig. 2. The dashed line givesthe lower limit
of therange of validity of the KH approximation deter-
mined numerically in [37, Fig. 10].

4 Here and subsequently, the ionization potential of the particular
state of the unperturbed system is taken as the characteristic
energy scaeV,.
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3. LIMITS OF VALIDITY
OF THE KRAMERS-HENNEBERGER
APPROXIMATION FOR THE CASEB > 1

In this section, we use the scheme for determining
the limits of validity of the KH approximation given
above for the case R > 1. Writing the system (4) in
dimensionlessunitsm=V,=a=1,

dg _ 5, Fgnl dP
ot PR ar T F(@,

where e = Q/w, Q= ./V,/a (i = 1/B), we find that the
semiclassical casetakesplacefor B> 1. Intheclassical
model, we have

dg_ ,FgT d_ .

The system (5) is reduced to the standard form of the
method of averages

Xm _ FD
% = le%, Xy, JZD

dX2 _ Fl:l
% = SXZ%, X1, ;2D

by making the substitution

- x+ £ cost
X = X+ —C0s,

T
0=",
€ w

X, = p.
Here, we have

= X,,

FO
X L X b I
1% 2 wgD

F , F
Xz%, Xl’ 52% = f %(1— JZCOSOS

Applying the method of averages under the condition
€ < 1, wefind that the system in the first approximation

du, _ du,

_ FO
de = EUy, % = Sxo%, uq, JZD

where

cose%je

Xo% ul!(% = 21'[_[f B,l

isthe classical analog of the KH approximation.

Asin the previous case, estimating the time interval
for which similarity between the exact and average
solutionsis guaranteed (see the Appendix), we find that
the range of field parameters for which the KH approx-
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Fig. 3. Limits of validity of the KH method in the semiclas-
sical caseB > 1(Vp=0.54€V,a=125nm). Thestar indi-
catesthe field parameters (iw=2¢eV, P = 10 wicm? ) for
which stabilization was observed experimentally [10]. The
letters SF denote the region (bounded by lines 1, 3, and 4) of
field parameters in which the KH approximation holds in
thestrong-field limit (F > V/a). ThelettersHF indicatethe
region (bounded by lines 1 and 3) of field parameters in
which the KH approximation holds in the high-frequency
limit (w 2> Q). Notation: (1) w=Q (¢ = 1for HF); (2) Vp/a=
Fi; B Vola=F (d=1for SF); (4 d=1,and(5) R=1

imation holdsfor B > 1 islimited by thefollowing con-
straints:

Dw>Q (<D,

EVO 1/2 1/2 DVO
@ F< a0 0(1/2 > FLD
We shall consider a potentia having the parameters
Vo, =054 eV, a=1.25 nm (B = 7) which simulates the
experimental situation [10]. The range of field parame-
ters satisfying these two conditions is shown in Fig. 3
and is denoted by HF. Since the results of the previous
section are valid for B > 1, the range of field parame-
ters satisfying the four conditions givenin Section 3is
also shown in Fig. 3 and is denoted by SF. The star
indicates the parameters of an adiabatic stabilization
experiment [10].

4. CONCLUSIONS

A formal analogy between the method of averages
and the KH method has been used to determine the limits
of validity of thelatter for essentialy quantum (B= 1) for
R> 1 (Figs. 1, 2) and semiclassical (B > 1) (Fig. 3) sys
tems.

A unified approach has been used to confirm the
well-known fact that the KH approximation can be
applied in the high-frequency limit (w > Q) and it is
shown that this approximation also works when the
above condition is not satisfied and the field frequency
decreasesto w,,; = Vy0/a. In this case, it can be applied
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in the superatomic field limit (F > V,/a) subject to an
additional constraint being satisfied for the Reiss
parameter: R > 1.

This conclusion agrees with the results of numerical
experiments on ionization in a superatomic low-fre-
guency field [37]. In [37] the limits of validity of the
KH approximation were analyzed numerically and it
was shown that in a low-frequency field there is a
threshold field intensity Egq close to the characteristic
“atomic” intensity for this modd (Ezg = V,/7a) and
almost independent of the frequency above which the
KH approximation becomes valid (see Fig. 2).

Thus, generdizing al these factors, we can con-
clude that the threshold of the adiabatic stabilization
effect depends on the field and system parameters as
follows:

.0 O Vv
951, min D—ngsl for —2>1;
) Pe RO aF
Oa 1D Q
-9 = => > ;
I:_1, maxg;e R% 1 for o 1, W> Wy,
Wet = Voa/a.

From the methodologica point of view, itisinteresting
to develop the quantum—classical analogy till further in
order to enrich the tools of quantum mechanicswith well-
developed methods of classical mechanics to solve quan-
tum-mechanical problems in the semiclassical range. We
note various aspects which arise in the course of imple-
menting this program for the method of averages.

(1) Determining the quantum analog of the system
in the second approximation of the method of averages
(see, for example [36]) and using this to construct cor-
rections to the KH approximation in perturbation the-
ory for the case & < 1 when the KH potential and the
correction term 3V (see Section 1) are of the same order
of smallness.

(2) Calculating the shift of the KH levels as aresult
of the corrections &V using the system in the nth
approximation of the method of averages and the semi-
classical quantization rules.

(3) Cadculating the spacings between the KH levels
with agiven accuracy intermsof thesmall parameters /R
and 1/B using A expansions of the transition quantum
frequencies [38].
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APPENDIX

Estimates are made using the Bogolyubov theo-
rem [36] in which two initial Cauchy problems are
compared:

dx

P = eX(t,x,€), x(0) = X,
and
AU exo(ug), u(0) = X,
dt
where

T

_1
= FfX(tu eyt
0

X(t) isthe exact solution, and u(t) isthe average solution
of the first approximation.

If the function X(t, X, €) satisfies the physically
obvious conditions of boundedness of the function and
its gradient® |IX(t, x, €)||< M, [IX(t, X, €) = X(t, X, €)|| <
Alx = X||, and is periodic with the period T, for times
0<t < L/g, the degree of similarity of the exact and
average solutions is determined by the inequality
[IX(®) —u(®)||< TM(LA + 2)exp(AL)e. (A rigorousformula
tion of the theorem can be found, for example, in [36]).

(1) The case R > 1 for arbitrary B. In order to con-
struct estimates, it is convenient to analyze the right-
hand sides not over the entire range of determination
but only in the p(g)-vicinity of the average solution
{u; £ p, U, £ p}. We shall first consider the case d < 1.

Estimating [[X|| = /X + X5, we determine the con-
stant M:

_ sRJl+ T
M = 85=——p

Here, it is assumed that

u, = & = 2V—KH_EKH
2 € € ’
~26V0 _ 2862
KH™ e, ~ 1’
|f'|2S [2_652 E, = F_2
O] mow”

It is also assumed that when the pulse is switched on,
stateslying above the separatrix of the KH potential are

> Here, we have |X|= /3 ; X
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preferentially populated [24]. The fact that the norm
[IX(t) — u(t)]] is equal to p is used to determine the value
of p together with M asafunction of €, R, &.

Similarly to determine the constant A we estimate

oX| — D{?xlmz + @lez + D:’XZDZ + G’XZDZ
ax|  ANx0 " o0 " Tox,0 " Tox,0"
We have
A= 1fira.
Tt

In this case, it is most convenient to set

L = ",

then subject to the condition LA < 1inthetimeinterval

Osts—1
e/t + 4

the Bogolyubov theorem gives

[x(t) —u(t)| < 8./1 + mde"’?.
For the variables in the Kramers system g, and p, and
the corresponding average solutions

— — 1/2
qv = uli pv = Uzsl

we have the estimate

A/lqv _qvl2 + |pv - pvl2 < 8/\/1 + T[6€1/2.

Note that the region & > 1 cannot be analyzed ade-
guately in the method of averages since the semiclassi-
cal parameter R is much less than unity in this range.

(2) Thecase B > 1for arbitrary R. Performing sim-
ilar estimates for thecasesd <€ 1 and & > 1 weobtain

M = J2+2p+p°
A= 2.

We set L = €2/ and then in the time interval 0< 0 <
1/./2¢ , we have |[x(t) — u(t)|| < CMe2 where C = 41t In
the three-dimensional case, we have M = ./6, A = ./6,
0<0<1/./6¢.
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Abstract—The specific electrical conductivity > of water was measured during multistage shock loading to
pressures of 12-130 GPa. At maximum pressure the density of the water was 3.2 g/cm®. Three or four pressure
discontinuities could usually be resolved experimentally and the value of X was determined in each of these. As
the pressure was increased in this range, the value of X increased from 1.2 to approximately 150 S/cm. In electro-
chemical experiments, galvanic cells having electrodes of various metals and water as the electrolyte were sub-
jected to dynamic compression. The characteristics of the recorded emf of these cells indicate that the high elec-
trical conductivity of highly compressed water is of an ionic nature. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Water is one of the most abundant substances on the
earth and in the universe. In particular, along with
methane and ammonia it forms the main component of
the inner shells of the giant planetsin the solar system,
Neptune and Uranus, occurring in the liquid phase at
temperatures up to several thousand K and pressures up
to hundreds of GPa [1-4]. It is quite possible that the
electrical conductivity of highly compressed and
heated water is responsible for the magnetic field of
these planets [5].

The physical properties of water under these
extreme conditions have recently attracted detailed
study. In particular, ab initio calculations of its phase
diagram using molecular dynamics[5] have shown that
at pressures above 30 GPa and temperatures higher
than 2000 K, water should be in asuperionic state char-
acterized by anomalously high proton mobility. The
guestion of the predicted [5] transition of water to the
metallic state under the action of high pressures and
temperatures by analogy with molecular hydrogen [6]
is aso fundamentally unresolved. An experimental
check of these conclusions by means of direct measure-
ments of the electrical conductivity of water in the
appropriate regions of the phase diagram is undoubt-
edly of interest.

It should be noted that the only source of experi-
mental information on the properties of liquid water at
high pressures and temperatures are experiments using
powerful shock waves, which have already yielded
unique data on its equation of state up to pressures of
around 100 GPa using explosives as the energy source
[7], up to 230 GPa in experiments using shock waves
generated by the planar impact of a special impactor
accelerated by a two-stage light-gas gun [8], and at
pressures of approximately 100 GPa[9] and 1425 GPa

[10] in experiments using underground nuclear explo-
sions.

Details of the structure of shock-compressed water
have been studied experimentally by spontaneous
Raman scattering [11] and have also been considered
theoretically [5, 12]. It was shown in particular that as
the dynamic pressure increases, the fraction of hydro-
gen-bonded hydroxyl groups decreases[12].

Results of the first measurements of the electrical
conductivity ~ of water beyond a shock wave front
were published in 1960 by David and Hamann [13, 14]
who observed a sharp increase in conductivity as the
dynamic pressure increased from 2 to 13 GPa and attrib-
uted thisto an increasein the degree of dissociation of the
water moleculesto formions. At dmogt the sametimethe
authors of [15] made independent measurements of Z for
water at a dynamic pressure of 10 GPa and obtained a
value of 0.2 S/cm in good agreement with the data in
[13, 14]. Slightly later [16] refined experimental values
of the conductivity were given at dynamic pressures up
to approximately 22 GPa. Measurements of the molar
electrical conductivity of agueous solutions of KCl,
KOH, and HCI in the range 7-13.3 GPa[17] were used
to calculate the ionic product of water at these pres-
sures, and these authors concluded that above approxi-
mately 15-20 GPa the water beyond the shock wave
front is amost completely dissociated to form ions and
has an electrical conductivity of 10 S/cm. The ionic
nature of the electrical conductivity of dynamicaly
compressed water is also supported by itsoptical trans-
parency, observed in[18] at pressures up to 30 GPa, and
also by the good agreement between the dynamic and
static [19] measurements of the electrical conductivity
made at similar temperatures and pressures.

Finally, using the two-stage light-gas gun at the
Lawrence Livermore National Laboratory, Mitchell

1063-7761/00/9004-0617%$20.00 © 2000 MAIK “Nauka/Interperiodica’
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Fig. 1. Schematic of experimental apparatus:. (1) base plate, (2—4) polyethylene layers, (5) manganin pressure gauge, (6) manganin

gauge functioning as shunt, (7) water sample, (8) reflector plate.

and Nellis succeeded in making accurate measure-
ments of the electrical conductivity of water at pres-
sures of 25-59 GPa beyond the shock wave front [8].

The aim of the present study was to further substan-
tially expand the range of pressures and compressionin
experiments to measure the electrical conductivity of
water and this was accomplished by using a multistage
dynamic loading regime in which the sampleis exposed
to the action of a series of successive shock waves circu-
lating between two plane-paralld plates having a substan-
tially higher dynamic rigidity than that of water. As a
result, we succeeded in measuring 2 for water up to pres-
sures of 130 GPa and density of 3.2 g/lcm?. The ionic
nature of the electrical conductivity of water under these
experimental conditions was confirmed by recording the
electrochemical potentials.

2. EXPERIMENTAL RESULTS
2.1. Electrical Conductivity

Characteristic features of a dynamic experiment
such as the need to have the measuring equipment some
distance from the site of the experiment and the short life-
time of the substancein the compressed state (108107 s)
necessitate using special methods to measure the elec-
trical conductivity [20]. In the present study we used a
modified dc electrical circuit [20-22].

The general experimental setup and the design of
the measuring cell are shown schematically inFig. 1. In
the experiments we used two independent measuring
channels supplied by a generator having symmetric
floating outputs. The generator delivered rectangular
current pulses of 8.5 A into low-resistance loads a few
tens of microseconds before the time of entry of the
shock wave into the sample. This specifically elimi-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

nated any electrolysis of the water and electrical polar-
ization of the electrodes. The generator was triggered
by a sensor located in the explosive charge.

The cell was constructed using low-density polyeth-
ylene (0.928 g/cmd) as the electrical insulator. This
material was chosen for various reasons, the main one
being its fairly low electrical conductivity under the
experimental conditions (£ < 10° S/cm) which was
estimated in special preliminary experiments. Having a
nonpolar structure of molecular units, polyethylene
also exhibits low shock-induced electrical polarization
[23] which means that a fairly low level of electrical
noise can be obtained experimentally. Finally, the
dynamic compressibility of polyethylene is very close
to the compressibility of water [24]. Thus, the shock
wave passes across the polyethylene/water interface
with almost no reflections.

The cell was fabricated by successively depositing
three layers of polyethylene (2—4), each between 0.5
and 1 mm thick, by hot pressing onto a polished base
plate 1 made of 12Kh18N10T stainless steel, 120 mm
in diameter and 2 mm thick. Between the first and sec-
ond layers from the base we inserted two H-shaped
piezoelectric pressure gauges (5, 6). These were made
of 35 um thick manganin foil electroplated witha5 pm
thick layer of copper over the entire surface area, except
for the bridges which formed the sensitive elements.
The width of the sensor outputs was 2 mm and the dis-
tance between the outputs 8 mm. During the pressing
process particular attention was paid to eliminating air
gaps and bubbles from the polyethylene. The electrodes
of one of the sensors (6) were in electrical contact with
the sample 7, as shown in Fig. 1. Thus, the manganin
bridge of this sensor functioned as a shunting resistor in
the measuring circuit. The geometric dimensions of the
water sample were defined by a rectangular cut of
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width 10 mm in the middle layer of polyethylene. In
other words, the sample was positioned in a cavity
inside a polyethylene insulator.

At the final assembly stage, a 5 mm thick stainless
steel or copper reflector plate 8 was installed and the
complete system was tightened with bolts. The sample
cavity was filled with doubly distilled water immedi-
ately before the experiment.

The dynamic loading of the sample was provided by
a series of shock waves circulating between the base 1
and the reflector 8 which were initiated by the planar
impact of a striker plate 9 against the base. The striker
plate, having a diameter of 60 or 90 mm and thickness
between 2.5 and 5 mm, was al so made of stainless steel.
These striker plates were accelerated by standard
explosives and their maximum velocity was 4.5 km/s at
2.5 mm thickness.

Positioning an dectrical shunt in the immediate
vicinity of the sample in the high-pressure zone mini-
mized the influence of the stray inductance of the cir-
cuit and improved the time resol ution of the method to
10-20 ns[21, 22]. In this case, the change in the resis-
tance of the shunt with pressure was calculated using
the readings from the pressure gauge 5.

The recorded change in the resistance dR of the
manganin sensor was converted to pressure p using the
following formula:

p[GPa] = 34(dR/R,) + 7(dR/R,)°,

where R, is the initial resistance of the sensor bridge.
This dependence was first used to describe the results
of calibration experiments carried out at pressures up to
40 GPa[25]. Itsvalidity at pressures up to 110 GPawas
checked by one of the present authors[26].

The experimentally achieved time dependence of
the pressure in the samples was also calculated using a
one-dimensional code based on the Hugoniot equations
of state for water, polyethylene, and steel [24], the cell
geometry, and the striker flight velocity.

The densities achieved during compression of the
samples, which are required to calculate the resistivity,
were calculated using a more accurate equation of state
for water [7] constructed using experimental data on
the compressibility of water and ice of different initial
density in the pressure range 3-120 GPa. Note that in
particular, this equation of state was used to accurately
describe the results of later measurements [8] of the
single-stage and two-stage compressibility of water at
pressures up to 230 GPa.

As an example, Fig. 2 shows a calculated sequence
of water states plotted in terms of pressure p versus
mass velocity u for an experiment with an impact
velocity of 3.78 km/s. It can be seen that for a first-
shock amplitude of 21 GPa, the fina pressure in the
sample is achieved after six or seven reflections and is
110 GPa.
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Fig. 2. Example of p—u diagram of the multistage compres-
sion of water in the experiment: (a, b) shock adiabat and
unloading adiabat of the stainless steel base and reflector
material; the numbers denote the sequence of water states.

R,Q
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0.3

0.2
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(+0.01 Q)
0.1

0 0.5 1.0 1.5 2.0
f, Us

Fig. 3. Dependences R(t) for eicosane experiment: (1) change
in the resistance of the pressure gauge, (2) changein resistance
in the sample channel.

The correspondence between the change in the el ec-
trical resistance R(t) of the pressure gauge 5 and the
shunt 6 was checked in a specia experiment where the
sample cavity was filled with a saturated hydrocarbon,
eicosane, which is a good insulator under the experi-
mental conditions. The corresponding experimental
dependences obtained for afinal pressure of 63 GPaare
plotted in Fig. 3. As was predicted, the resistances of
the pressure gauge and the shunt change fairly synchro-
nougly.

Figure 4 shows similar dependences R(t) recorded
in an experiment using water. It can be seen that at the
first pressure jump the resistance of the water sample
becomes comparable with the resistance of the shunt,
which isreflected in an appreciable drop in the overall
resistance of the shunt-sample system. Subsequent

No. 4 2000



620

R, Q
1.2

1.0

0.8

0.6

04

0.2

0 1 1 1 1 1 1 1 1 1 1 1 1
-0.2 0 0.2 0.4 0.6 0.8 1.0

t, Us

Fig. 4. Typical dependences R(t) obtained in an experiment
using water at the maximum pressure ~100 GPa: (1) change
in the resistance of the pressure gauge, (2) changein resis-
tance in the sample channel.

pressure jumps lead to an even larger decrease in the
sample resistance and cause the curves 1 and 2 to
diverge. Results of an analysis of the experimental data
from Fig. 4 in the form of the time dependence of the
electrical resistance of the water sample and the calcu-
lated pressure profile in the water are plotted in Fig. 5.
It can be seen that in this experiment we can immedi-
ately identify five points on the dependence of the sam-
ple resistance on the dynamic pressure during multi-
stage compression. In other experiments we usually
resolved between three and five pressure jumps, and
therefore electrical resistances, of the samples.

Figure 6 givesthe experimental results plotted asthe
electrical conductivity Z of water as a function of the
pressure p. Also plotted for comparison are data from
earlier studies [8, 16]. It can be seen than from a
dynamic pressure of ~30 GPa the value of X~ depends
weakly on p, which following [16] can be attributed to
the complete dissociation of water to giveions.

2.2. Electrochemical Potentials

Electrochemical phenomena in shock-compressed
liquids were observed and studied experimentally in
[27]. They are principally of interest because they can be
used as the basis to determine the type of conductivity of
aparticular substance in adynamic experiment (electronic
or ionic). The idea of the experiments involves recording
the emf of agalvanic cell whose electrolyte is the shock-
compressed conducting substance being studied. If the
substance possesses predominantly ionic conductivity,
electrochemical reactions may take place at the inter-
face between the electrodes and the sample and conse-
guently electric double layersmay form. Inthiscase, an
electrode made of a chemicdly active metal such as
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Fig. 5. Anaysis of experimenta results plotted in Fig. 4
(1) changeintheresistance of the water sample during com-
pression, (2) dynamic pressure profile in the sample.

magnesium, aluminum, zinc, and so on, will become
oxidized and emit its positively charged ions into the
conducting liquid, becoming negatively charged. The
sum of the potentia jumps at the electrode interfaces
with the compressed materia may be measured as the
emf of the experimental galvanic cell. It should be noted
that any electronic component of the conductivity will
reduced this emf in proportion to its fraction [28].

In the present study the electrochemical emf in
shock-compressed water was recorded using a system
similar tothat shownin Fig. 1 wherethe gauge 6 in con-
tact with the sample was replaced by two electrodes,
one made of copper and the other made of ~15 pm thick

>, S/cm
2
10 o dt ghar v m
‘,Iil
10° §°
o
102 lé
o °
104 o 3%
o *
_ ob
107 g o7/
o
108
1 1 1 1 1 1 1 ]
0 20 40 60 80 100 120 140
p, GPa

Fig. 6. Electrical conductivity of water as a function of
dynamic pressure: (1-5) experimental points from the
present study, (6) data from [8], (7) data from [16].
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Fig. 7. Results of experimentsto record the electrochemical
potentials: (1) voltage at copper electrode, (2) voltage at alu-
minum electrode, (3) pressure profile in sample.

aluminum foil. No external sources of current were
present in the recording channel. Each electrode was
connected to the corresponding amplifier input of an
oscilloscope by means of coaxial cable. In other words,
a completely symmetric system with respect to ground
was used to connect the electrodes to the measuring
devicein these experiments. In this case, the load resis-
tance of the cell was the sum of the input impedances
of the oscilloscope, 100 Q, which is considerably
higher than its interna resistance (tenths of an ohm).
Figure 7 shows a typical experimental oscilloscope
trace. Also shown is the dynamic pressure profilein the
sample calculated using the readings from the manga-
nin gauge. It can be seen that the potential difference
between the electrodes in the experimental cell is
approximately 1 V. As was predicted, the aluminum
electrode becomes negatively charged relative to the
less chemically active copper electrode. In accordance
with [27], the amplitude and sign of the recorded emf
indicate that this is of an electrochemical nature and
therefore that the conductivity of the shock-compressed
water is ionic in this range of dynamic pressures. In
other words, highly compressed and heated water in the
liquid state is essentialy an ionic melt in which the
majority carriers are protons whose mobility is appre-
ciably higher than the heavier hydroxyl ions. The elec-
trical conductivity of water is sufficient to explain the
generation of the magnetic field of Uranus and Neptune
by means of the dynamo effect [5].

3. CONCLUSIONS

The electrical conductivity of water has been mea-
sured in multistage (quasi-isentropic) water compres-
sion experiments in a region of the phase diagram not
studied previoudly. The range of pressures and densities
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studied has been approximately doubled, being increased
to 130 GPaand 3.2 g/cm?®, respectively. It has been shown
that from approximately 30 GPathe electrical conduc-
tivity of water increases dlowly with increasing density
and reaches 150 S/cm at its maximum. Direct measure-
ments of the electrochemical emf were used to estab-
lish that the conductivity of water isionic under these
extreme conditions.
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Abstract—It is suggested that a coherently precessing spin structure in a normal Fermi liquid should be used
to study the interface of two Fermi liquids. It is shown that the interface makes an additional contribution to the
attenuation of the precessing structure. This contribution is determined by the kinetic coefficient which relates
the magnetization flux across the interface to the magnetization jump at the interface. A relationship is estab-
lished between this kinetic coefficient and the nature of the scattering of Fermi quasiparticles at the interface.
Results of numerical calculations of the attenuation of the structure are presented for a specific object, a sepa-
rated solution of 3He in “He. © 2000 MAIK “ Nauka/Interperiodica’ .

1. INTRODUCTION

The interface between pure liquid *He and a satu-
rated solution of *Hein“Hein a separated mixtureisan
ideal object for studying the properties of the interface
between two different Fermi liquids. It is of consider-
able interest to study the spin fluxes across such an
interface and the corresponding boundary conditions.
In an earlier study [1] it was suggested that standing spin
wavesin aplanar resonator filled with aseparated mixture
could be used for this purpose. The spin wave spectrum
depends on the constraints imposed on the spin density
and the spin current at the interface so that it is possible to
assess the boundary conditions from data on the position
and width of the natural resonator modes. However, the
proposed experiment was not actualy performed. In the
present study we suggest using a previoudy studied non-
linear table spin mode, a coherently precessing structure,
as atest of the boundary conditions[2]. A coherently pre-
cessing structure has been observed separately in solu-
tions of *Hein“He and in pure liquid *He. It is formed
in aweakly uniform magnetic field in the presence of
large deviations of the magnetization from equilibrium
and is described by the steady-state solution of the spin
dynamics equations for a Fermi liquid (Leggett and
Rice equations) [3]. For the case of aconstant field gra-
dient, the coherently precessing structure consists of
two domains, in one of which the magnetization is par-
ale and in the other antiparallel to the field. The orien-
tation of the magnetization changes over a length of
domain wall perpendicular to the field gradient. The
entire structure precesses at the same frequency w,
which isegual to the Larmor frequency at the site of the
domainwall, which allowsthe position of thewall to be
monitored. A solution of the spin dynamics equations
describing a coherently precessing structure in a sepa-
rated mixture of *He and “He may be constructed from

the solutions for each liquid by “matching” these at the
interface using boundary conditions. We shall assume
that the interface between the two liquids (a solution of
SHe in “He and pure 3He) is planar and we shall direct
the z axis perpendicular to the interface from the solu-
tion to the concentrated phase. We shall assume that the
magnetic field H and the gradient of the Larmor fre-
guency w, are directed along the z axis. In this particu-
lar geometry transport of the transverse projection of
the magnetization relative to the field M* = MX £ iMY is
important. A thermodynamic analysis[4] (seeaso[1])
shows that the magnetization flux across the phase
interface J; is proportional to the jump of the effective
field By = M/X at the interface (X is the magnetic sus-
ceptibility). The boundary conditionsfor the transverse
components M and J; have the following form:

ps _ Ma] (1)

+ +
‘]12 - _J21 -

where M* = M* + i M, the subscripts 1 and 2 refer to the
different liquids (1 refers to the solution), and b is the
kinetic coefficient which depends on the properties of
the interface. It will be shown subsequently that the
interface makes an additional contribution to the rate of
relaxation of the coherently precessing structure whose
magnitude for a given current is inversely proportional
to b so that this structure can be used for an experimen-
tal determination of b. The value of b isin turn deter-
mined by the microscopic conditions for reflection of
quasiparticles from the interface of two Fermi liquids
and by knowing b, we can draw some conclusions on
these conditions. A relationship between b and the
probability of Fermi quasiparticles propagating across
an interface was obtained in [1] for an interface having
a low permeability for quasiparticles, although it was
noted in this study that this simplifying assumption is
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not satisfied for the interface between 3He and a solu-
tion. In this context, it is convenient to reexamine the
problem of microscopic boundary conditions.

2. BOUNDARY CONDITIONS

Spin waves and coherently precessing structures
exigt in the collisionless limit, i.e., when the characteristic
frequency of the problem w and the time between quasi-
particle callisions 1, satisfies the condition w1, > 1. In
this limit the state of the Fermi liquid is described by
the density matrix

Nag(P, 1, 1) = (P, 1, 1) +5(p, I, 1) ogp, (2

where o,z are the Pauli matrices. We are only interested
in the spin component s(p, r, t). In fact all the changes
in the density matrix are concentrated near the Fermi
surface and instead of s(p, r, t) it is convenient to use
the vector

1
m(n,r,t) = év‘[s(p,r,t)deO
or the related vector
_ as o AN
p(n,r,t) = m(n,r,t)+J’F (n,n)m(n,r,t)4n,

where F3(n, n') is the spin component of the function
describing the quasiparticle interaction in Landau the-
ory, n = p/Ip|, v is the density of states at the Fermi
interface, and ey = Ve (|p| — pg). For the following anal-
ysisit is convenient to express m in terms of p:

m(n,r,t) = p(n.r.1) —IGa(n,n‘)p(n',r,t)%?—T'.

The coefficients of expansion of the function G&(n, n')
are expressed in terms of the corresponding coefficients
for F3(n, n'):

Fa
G|a = —————a—-l——-—.
1+F(21 +1)

The functions m(n, r, t) and p(n’, r, t) are determined
from the kinetic equation [5, 3] which we write in the
collisionless limit:

om, , 3p _ 4w =

6t+vi6xi meL+th><p—0. 3
Themagnetization M and itsflux J; are expressed interms
of the zeroth and first harmonics m(n, t) and p(n, t),
respectively:

M(r,t) = yﬁJ‘m(n, r,t)%rl, 4)

30 = vhfvenp(n, r O (5)
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The Leggett and Rice equations describe the long-
wavel ength motion of the magnetization at frequencies
close to the Larmor frequency. They only contain M
and J; [3]. If the Fermi-liquid interaction is not weak,
this description can be applied at distances from the
interface substantially exceeding the characteristic
length |, = v;/wy . At distances from the wall shorter
than |, al the harmonics m(n, t) must be taken into
account.

In the context of a coherently precessing structure
we are interested in steady-state solutions of the kinetic
equation describing the precession m(n, r, t) at fre-
quency ®, which does not depend on the coordinates
and is similar to the Larmor frequency:

om(n,r,t) _
ot
Assuming that the functions m and p only depend

on a single coordinate z, we rewrite equation (5) in the
form

m(n,r,t) X @,. (6)

d 4
Vi = mx(@ o) -mmxp.  (7)

The equations for the two adjacent liquids have dif-
ferent values of the parameters. The boundary condi-
tion expresses the values of p for quasiparticles leaving
the interface in terms of the values of p for quasiparti-
cles approaching the interface. Because of the small-
ness of the perturbations, this relationship is linear and
generaly integral. However, if the analysis is confined
to single-particle processes, i.e., those for which a qua-
siparticle incident at the interface is either reflected or
converted into a similar quasiparticle in the other lig-
uid, the relationship becomes algebraic. Nonsingle-par-
ticle processes have alower probability because of the
statistical weight usually found in Fermi liquids. Let us
assume that 8 is the angle between the direction of the
quasiparticle momentum and the z axis, i = cosf (see
Fig. 1). Conservation of the transverse projection of the
momentum relative to the interface establishes a rela-
tionship between the values of | in the two liquids:

pFl’\ll_“i = szdl_Hg- 8

Incoming quasiparticlesin liquid 1 (solution) have val-
ues of u > 0 and those in liquid 2 have values of p < 0.
If we denote by a () the probability of a quasiparticle
propagating across the interface, the boundary condi-
tions for p,(u,) and p,(H,) may be written in the form:

P2(H2) —p2(—H2)

9
= FFa(u)ps() ~a(u)pal-Hy) ©
P1(Hy) —p1(—H1)
v, (20)
= (M) p1(Hy) —V_ZO((M)Pz(—Uz)-
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Here y, variesin therange 0 < u; < 1 and [, in accor-
dance with (8) varies in the range u* <, < 1, where

u* = /1 —(pe./Pe,)’ . The right-hand sides of condi-

tions (9) and (10) only contain the contributions of qua-
siparticles approaching the wall. In order to link the
kinetic coefficient b in formula (1) with the function
a(u), we consider equation (7) at distances from the
interface of the order of |, In thisregion we can neglect
the first term on the right-hand side:

dp _ 4
vZolz = hvpxm. (1)
Averaging this equation over the directions n, we con-
firm that hp= p, = const. This equdlity is a conse-
guence of spin conservation. We now rewrite the func-
tion p intheform

P = Pot3np+vy, (12)
where the vector p, is proportional to the average mag-

netization M which obeys the Leggett and Rice equa-
tions:

M = yhpo/(1+ FS).

Thevariation of p, over distances ~I , can be neglected.
The vector p, is proportional to the current: J, =
Vi vep4, where the current J, does not depend on z and
can be calculated at any point, in particular at z= 0. We
multiply equation (10) by yA vl and integrate it over
between zero and one. The left-hand side of the inte-
grated equality is equa to 2J,/v. On the right-hand
side we substitute p(p) in the form (12) which gives

22 = 11+ Fi)M,y — 21+ Fi)M, + 1,9

f 2
+ vhjula (M) w(py)dyy (13)
2,0 () w(—itp)d
sz’ul Ha)w(—Hz)duy,

where

1

L {a(w)} = Iua(u)du,
0

1

L{a(w} = J’ua(u)
0

Do e
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Fig. 1. Geometry of quasiparticle scattering at the inter-
phase boundary between 3He and a saturated solution of

3He in *He. The dot-dash line indicates the cone of critical
angles within which the momenta of quasiparticles entering

the concentrated 3He phase can lie.

The corrections () in the distribution functions of
the incoming particles can only occur as aresult of the
action of Fermi-liquid fields generated by quasiparti-
cles reflected from the wall. In the absence of Fermi-
liquid interaction the corrections y; and y, on the
right-hand side of equality (13) vanish and its (x + iy)
projection reducesto the boundary condition (1) where

cpyrf_ L{a@)}

b = VelVigo g 2-3l,{a(W}

(14)

The solution of the problem of particle propagation
across the interface between two Fermi liquids with
complete allowance for Fermi-liquid interaction is
unknown to us. Note that in cases where the transpar-
ency of the interface is low (a() < 1) expression (14)
yields the corresponding expression from [1] whereas for
cases of complete transparency (a(u) = 1) we find
Pr1 = Py b =0, i€, N0 By jump occurs at theinterface,
as predicted. Using for a(u) asimple modd of reflection
from arectangular potential barrier, asin[1],

4P1pP2o

y (15)
(P10 + P2n)

a(p) =

for values of the parameters corresponding to a separated

solution at zero pressurewe haveb = vex(1+ Fg)l, where

all the parameters are taken for liquid 1 (the solution)
and | = 0.320. In order to estimate the correction to |
obtained when alowance is made for Fermi-liquid
interaction, we consider the equation for y(lt) obtained
after substituting (12) into (7):

dy _ 4

VZE = RFgmo X (Wo—w), (16)
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Fig. 2. Dependence of the angle 8 for a coherently precess-
ing structure near the interface between *He and a saturated
solution of 2He in “He; Aq and A, are the characterlstlc
lengths in the solution and in the concentrated *He phase,
respectively.

where y, = Dy[and the angular brackets denote averag-
ing over angles. The solution of equation (16) for parti-
clesleaving the interface has the form

w(k.2) = v 0)ep B freafiEn
17)
Iexlez%V(Z')dZ'

where |, = 4FS my/vAv, and for particles approaching
the interface

0izg

y(H, 2) = eXpD e

(18)
Iexlez Q(2)dz.

Successive corrections to y(l, z) may be obtained by
iterations of equations (17) and (18) together with
equation (13). The zeroth approximation for the incom-
ing particles may be taken to be the solution with y, = 0
whereupon we return to expression (14) for b. For outgo-
ing particlesy(, O) isobtained from the boundary condi-
tions (9) and (10) after which y(j, 2) is obtained from
equation (17) followed by w,. Substituting v, into
equation (18) gives the correction to y(l, 2) for the
incoming particles which allows usto cal cul ate the cor-
rections to the integrals I,{ a(W)} and I,{a(u)} in for-
mula (14). Thefirst iteration gives correctionsto |, and
I, of the order of 10%, in this case the correction to b
only appears in the third decimal place, | = 0.318 is
obtained instead of | = 0.320, which indicates that
expression (14) is satisfactorily accurate for b. We shall
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subsequently use this expression in the numerical cal-
culations.

3. ATTENUATION OF A COHERENTLY
PRECESSING STRUCTURE

It was shown in [6] that the change in the angle 6
between the magnetization and the z axis for a coherently
precessing structure in a homogeneous liquid is described
by a universa function of the argument (z— z,)/A, where

|: W X :|1/3

3kyMUOw,

is the scale characterizing the thickness of the domain
wall, z, is the coordinate of the plane perpendicular to

the z axis on which the local Larmor frequency w, (2) is
equal to the precession frequency w, of the coherently

precessing structure, w? = v2 (1 + F3)(1 + F2/3), and

kK =—(Fg — F$/3)/(1 + Fj). Thefunction 8(z—zy/A) is
obtained as a solution of the equation

d’0 _ z-7

a; I (19

which satisfies the boundary conditions 8 — 0 for
zZ—> —oo and 8 —» 1tfor z— 0. The current J; is
proportional to the derivative dé/dz

Jy = AT (20)

3Kv2 dZ

In order to determine the form of a coherently precess-
ing structure which exists simultaneously in two lig-
uids, we need to match the two solutions at theinterface
using the boundary conditions (1). Asaresult of the dif-
ference between the parameters of the two liquids, the
continuity of the current leads to a jump of the deriva-
tive 6. A jump of the transverse component of M does
not change the angle 6 which thus remains continuous
at theinterface. Figure 2 shows an example of the match-
ing of the angles O for the interface between *He and a
solution under typicd conditions. Thejump AM~/x causes
a dight distortion of the structure near the interface
which is smoothed at distances of the order of A. Asa
result of the smallness of the distortion, thishasno sig-
nificant influence on the attenuation of the coherently
precessing structure of interest to us.

In order to calculate the contribution of the separa-
tion boundary to the attenuation of a coherently pre-
cessing structure, we use an equation obtained earlier
(see [6], formula (4)) to describe the change in the
energy of this structure. In dimensional units this has
the form

dE, 0 Ja0 335

=+ =M —xH) (B ——=—— (2))

ot 52% XU 1+ FYvixt
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(a) E, mW/m?
T=1mK
Hy=93mT -
0OH =2.5 mT/m
5 ~0.03
_/\¥
I - 0.01
A —0.5 mm Ay %
(b) E, mW/m?
T=1mK
Hy=240 mT -
UH =10 mT/m
0.06
I 0.02
1 1
—1 mm )\1 )\2 Zp

Fig. 3. Dependence of the volume (B) and surface (1) contri-
butions to the attenuation of a coherently precessing struc-
ture and aso of their sum (X) on the arbitrary distance
between the precessing domain wall and the interface,
whichisdefined as z, = (w, — o)/ |, where wyistheLar-
mor frequency at the interface, A; and A, are the character-

istic lengths in the solution and in the concentrated He
phase, respectively.

where E isthe energy density,

£ = (M—xH), 33
2X (1+F3)(1+FY3)vix

Integrating equation (16) over z, wefind the energy dis-
sipation per unit area of the interface:

0 _ 3 2 _JZ
a_tHEd% T+ Fg)v,zzxrj.%dz BS

Theratio of the interface contribution to the attenuation
[the last term in formula (18)] to the volume contribu-
tion is of the order ((1 + F5)/3)(I/\), where |, ~ veT is
the mean free path of the quasiparticles.

Figure 3 gives results of calculating the dependence
of the attenuation of a coherently precessing structure
on the distance between the precessing domain wall

. (22
z=0
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and the interface between *He and the solution for two
values of thefield and the gradient. For the calculations
the current distribution determined neglecting attenua-
tion was substituted on the right-hand side of formula
(22) and expression (15) was used for the quasiparticle
propagation probability a(u). In both cases considered,
the interface makes a significant contribution to the atten-
uation of the coherently precessing structure and this con-
tribution increases as the field and its gradient increase.
The results for Hy = 93 mT and UH = 2.5 mT/m differ
from that given in our previous study [7] where we made
a calculation error. This error influenced the numerica
vaues of the coefficients in the formula for the reflection
coefficient of the spin waves for small wave vectors and
the correct expression for the reflection coefficient in
thislimit has the form R = 0.0145-13.12(kvg/wy).

4. CONCLUSIONS

These results show that coherently precessing struc-
tures may be used as a tool to study the interface
between *He and a solution. The most convenient
experimental setup is that corresponding to continuous
NMR [8] when the energy dissipation of the coherently
precessing structure is compensated by the resonant rf
field. Thefield frequency determines the position of the
domain wall which can thus be monitored. This mea-
surement scheme has many advantages over that pro-
posed in [1] which is based on the observation of spin-
wave modes in a resonator.
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Abstract—Natural strain theory is used to determine the tensor of the differential elastic moduli for strains of
arbitrary magnitude and its relationship is established with values measured in acoustic and mechanostatic
experimentsin which an additional small load is applied. For illustration purposes an expression for this tensor
is given for an object which is isotropic before application of the load, and formulas to determine this tensor
from the results of measurements are calculated for an anisotropic object under pressure to within the second
order in terms of the shear produced as a result of its hydrostatic compression. © 2000 MAIK “ Nauka/Inter pe-

riodica” .

1. INTRODUCTION

A method of analyzing thefinite elastic strains of an
isotropic medium using the natural strain tensor was
developed in [1], its principal values having being
introduced in[2] in calculations of the virtual deforma-
tion work when the increment of the strain tensor is
coaxia with this strain. The problem of the uniaxial
expansion of an isotropic object subjected to prelimi-
nary compression of arbitrary magnitude in a high-
pressure chamber was discussed in [3] and the concepts
of Young's modulus and the Poisson ratio under pres-
sure were correctly introduced in terms of nonlinear
natural strain theory. This was possible because of the
simplicity of the equation of state when the stress ten-
sor iscoaxial with the strain tensor so that all the behav-
ior characteristics of the material are determined only
by the dependences of the scalar coefficients on the
invariants of the strain tensor with direction tensors (the
first three degrees of the strain tensor).

In analyses of additional small deformations of a
preliminarily loaded object, the results can be meaning-
fully expressed in terms of the differential elastic mod-
uli, whilefor an anisotropic object thisis frequently the
most reasonable method because the equation of state
for low-symmetry crystals may be fairly cumbersome.

In[4] natural strain theory was extended to anisotro-
pic media. The mathematical tools described in this
study can be applied to calculate the differential elastic
moduli of an arbitrary homogeneous medium, whichiis
the aim of the present study. The notation used here is
exactly the same as that introduced in [4]; some of the
points noted here are clarified in [4] and we shall not
specifically discuss these in the text for reasons of
space. References to [4], for example, formulas (12b),

(C.12b), and Appendix C will be given as [4 (12b)],
[4 (C.12b)], and [4, C], respectively.

We also add that as a result of the additivity and
commutativity of the volume and shear strainsin natu-
ral strain theory, expansionsin powers of the shear, i.e.,
the distance from the hydrostatic curve (and not the ori-
ginasin al previously known formulations of nonlin-
ear strain theory), could be constructed for any value of
these strains.

2. FUNDAMENTAL QUANTITIES IN STRAIN
THEORY FOR AN ANISOTROPIC OBJECT

Let us assume that deformation transfers an arbi-
trary point &; of an unstressed object to the point x; asa
result of adisplacement by thevector u;: x, =¢§; + u,. The
initial quantities describing the deformation in [1, 3]
are the matrices 1 and its inverse A, where their ele-
ments are determined asfollows (3 isthe distortion ten-
sor):

0¢; _0X
Hij = 5‘)(? Ay = 5;:_,
u. )
u=E-p, Bij = 6_)(J
We then introduce the natural strain tensor
1
s= Sy, y =y @)

Thus, the quantity y introduced differs from y = p™u
used in [1, 3] but, as explained in [4], they are both
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orthogonally similar: if y from (2) is denoted as y, and
similar notation isintroduced for s, we obtain

y = Oy,0', s= 0s,0', (23)

where

H=0'S=§0", y=5, y, =%,

where S, §, are symmetric matrices and O is an orthog-
onal matrix [5].

Since the thermodynamic variables for the anisotro-
pic case are s, Yo, and S, the values s, y, and S cannot
appear in this study. Thus, for conciseness the subscript
“0” is subsequently [asin (2)] omitted from the strain
variables (apart from Section 9 where the difference
between the values with and without the subscript “0”
needs to be recalled).

(2b)

3. MEASUREMENT OF STRAIN
USING THE DIFFRACTION PATTERN
OF ELASTIC SCATTERING
FOR A SINGLE CRYSTAL

The vectors of the affine (generally speaking) basis
of the Bravais crystal lattice are denoted by a; following
conventiona notation and the contravariant vectors are
denoted by b’ (vectors of the reciprocal |attice).

We introduce the matrix v of the transition from the
Cartesian basis {i,} tothe affine basis{a}:

a = Vikika V:( = iy [&, ©)

[a - b is the scalar product in E(3)] and the inverse
matrices { which are used to determine the contravari-
ant (and biorthogonal to {a}) basis {b} using the for-
mula

b' = Li, 4 = b' O
The metric tensor in the affine basisis
g; = aly = V:(Vlj( = (VTV)ii’ (4)
and itsinverse (contravariant) is
g’ = b' D' = Gk = €y (43)
with the usual rulesfor raising and lowering theindices

sothat if (but only in this section) the coordinates of the
tensorsin the Cartesian basis are denoted by the letters

(€, 1))
C = Gy = cibi = ciai,
W= QG 00) = Wi(a 0b) (5)
= p”(ai Oa) = ...,

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

629

arelationship between the components in the different
basesfollows directly from (3), (4), and (4a), for exam-
ple

L = VLZ',—M'.T, Hll = Z:(Vljﬁm (59)
[in(5) the symbol O indicatesthe Kronecker product of

the vectors from E(3) which determines the basisin the
space E(3) O E(3) of the second-rank tensorg)].

We shall assume that as a result of continuous (i.e.,
not accompanied by phase transition) deformation, the
vectors a, become

a = Tla;. (6)
Then after deformation the point
€ = Eiai
is converted into the point
r=&a =&Ta,
i.e.,
X =T
In [4] we showed that in curvilinear coordinates the

components u'_j of the tensor | are absolute derivatives
of the coordinates &; of the point before deformation
with respect to its coordinates x; after deformation and
since in affine coordinates the Kronecker symbols are
zero, these derivatives reduce to ordinary partial deriv-
atives (see[6] or [7]):

W = 0g/0x = (T (7)

Itisnow obviousthat sinceb’ - &} = bl - a = 3,

b' = b’ 8
or, introducing the no-less-traditional vectorsg' = 2mb',
g' = wig"

The vectors g are measured directly in a structural
experiment using the Laue method (after determining
their absolute values by the Bragg method or directly if
a spectrum analyzer is available). For the selected
reflex (with the vector g before deformation and g' after
deformation) we can then write (m areintegers, k isthe
wave vector of the incident wave)

g = k{cospsind, sinpsind, cosd —1} = migi, 9
g = k{cos¢'sind’, sing'sind’, cosd' — 1}

. . (9a)
=mg' = mg,
where
o mu = Lo a
m = M = 5-9 Ca. (9b)
No. 4 2000
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Thus, three independent reflexes (a = 1, 2, 3)

0u = Mgid, Gy = Myg (10
completely determine the matrix
W= (m™) my. (11)

Now, if theinitial orientation of the crystd, i.e., the
matrix v (or ) is known, formulas (5) and (5a) can be
used to calculate the components of the matrix [ in the
Cartesian basis:

M = VLZ;UEL

after which [see (2b)] wefind the matrix S, and then the
rotation matrix O:

~~T

S = Jip',

The accuracy of determining the strain by this
method depends on the size of the diffraction spots, i.e.,
for anideal crystal it is determined by the properties of
the lattice sum for athree-dimensional diffraction grat-
ing (although it can also be estimated from expressions
for the total scattering cross section in the spot o and
the maximum differential cross section ((do/do),, in
the Laue method, see[8)), i.e., since do ~ (a/L)?, it fol-
lows from (9), (9a), and (11) that

O=p(s'=s'. (12)

AsOAMOAY > 8¢ 0./6o Da/L 010°-107 (13)

(here the symbol A refers to the measurable change of
an observable quantity, aisthelattice constant, and L is
the sample dimension).

Thisestimateisalso valid in dynamic scattering the-
ory [9] (obviously for asymptotic values of the scatter-
ing amplitude, i.e., for intensity measurements at dis-
tances from the sampler > L).

Broadening of the diffraction spot is caused [10] by
the presence of defects whose length is comparable
with its dimensions (for example, dislocation lines or
randomly distributed overlap errors in the crystal)
which leads to aloss of accuracy in the strain measure-
ments. By increasing the diffusion background and
lowering the intensity of the principal maximum, finite
defects keep the line width constant although they may
lead to distortion of the average (over the crystal) unit
cell [10]. If in this last case, the strain does not cause
any redistribution of defects which influences this dis-
tortion of the cdl, this estimate of the accuracy till
applies. The experimental errors mainly arising from
the inaccurate determination of k appreciably exceed
(13) sothat this accuracy estimate isthe maximum pos-
sible.
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4. ISOTHERMAL DIFFERENTIAL TENSOR
OF THE EFFECTIVE ELASTIC MODULI
AND THERMODYNAMIC STRAIN
SUSCEPTIBILITY OF A PRELOADED OBJECT

1. Asin [4], the tensor of the stresses o of an aniso-
tropic medium satisfying the equilibrium conditions

dg;;/0x;+ f; = 0, (14)

isafunction of the asymmetric tensor u and the flux
(15)

However, it is meaninglessto introduce the tensor of
the differential elastic moduli as a derivative of o with
respect to L because the deformation of the rotation, by
increasing the number of its different components (for
this derivative this number is 54), introduces no new
information on the physical properties of the medium.
In addition, the tensor thus determined depends on the
choice of origin for the strain.

Assuming that the deformation consists of a prelim-
inary displacement which converts¢; to X; and a subse-

quent displacement by u; :
X =& +0,

X = X+ Ui, (16)

bearing in mind that [1;; = 9¢;/0%; and having deter-
mined by analogy with (1)

0X; oy,
My = 51 = 8-, (17)
bax Iox;
we quite clearly obtain
Hij = Hikky- (178)
It isthen clear that
0 . 0
Hoin— = Hgiz—> (18)
K Yoy

and thisimpliesthat applying this operator to aquantity
which does not depend on the choice of origin for the
strain again gives a quantity which does not depend on
this choice. In particular, if the point of instantaneous
strain (which we shall denote by “c”) is taken as the
new origin, where ' = E, we obtain

u, 9 =0
Toug  apy

C
Thus, instead of the components of the derivatives

from (15) mentioned above, it is more logical to con-
sider the quantities

00;; 00;;

Niju = g = .

Ok 479 Mk

(19)

’
Cc
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in terms of which these components can easily be cal-
culated:

00;;/ 0k = —NijkmAmi- (20)

We shall call thetensor N thusintroduced the differ-
ential tensor of the effective elastic moduli (isother-
mal). Using its components, the equilibrium equations
(14) for arbitrary strains are written in the form

2
0y,
ijkm mlanan

Exactly three of these equations are obtained for the
components of the displacement vectors since it is
unnecessary to use additiona conditions that the tensor of
the curvature of the Euclidean space is zero, which are a
generdization of the St. Venant conditions (asin [1]).

2. We shall now calculate the tensor N', expressing
itscomponentsin terms of the components of the tensor

% introduced in [4] which we shall call the thermody-
namic strain susceptibility:

Yim = (00¢;;/0Sq)+- (22

Here g, is the “thermodynamic” stress tensor obtained
from the equation of state (p is the pressure, p is the
density, and 1, is the shear stress):

N +f =0 (21)

0y = p(0f/0s) = —pE+T1,, (23)

fisthefree energy per unit mass of the material, the nat-
ural strain tensor of an anisotropic medium swas deter-
mined in (2), and o, and o arerelated by

0 =530, ==-2M"%,
M= (puOp), D=9, = 0s/dy

[here O is the sign of the Kronecker product of the
operators from E(3)].

Strain rotation is evidently eliminated by using
these quantities but they are generally asymmetric with
respect to interchange of the pairs (ij) == (kl) so that
Y generally has 36 different components. Bearing in
mind that

(24)

9y _ O(HimH;m)
Ol Ol
= OikOmiMjm * MimOjkOm = M + HiOjx,

and denoting the second derivative of swith respect to
y by 9@ (see Appendix in [4]), taking into account
(24), [4 (A.38)], and the symmetry of y, we obtain

00
— = —26ik(D00)qnuﬂi —ZUmi(DGO)mqéjk

0
qu (26)

(25
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where
a( DoO)mn = a( Dmnrso-(r)s)
0Yuq 0Yuq

- N> 0

- Dmnrsuqors + DmnrsYrstv Dtvuq'
Again recaling (24) and [4 (A.38)], we obtain
Nij = =010 — 0 Tjy + 4l Uy DEnzr)nsuqol(')suukuql

+ 4Hmi unj DmnrsYrstv Dtvuquukp—ql . (27)

Also taking into account [4 (A.7)], we write this
expression in the form

N = -2M,(E0o)
+ 4 {DP[0,] + DYDY M

(the last term can evidently be written in the form
SYsT).

We now consider how N can be measured experi-
mentally for static loading. We envisage apreloaded (in
particular, hydrodynamically compressed in a pressure
chamber) single-crystal sample to which an additional
load is applied at the preloading point to measure the
moduli. This additional load induces a change in the
stress tensor d0;; and we then study the displacement of
the X-ray reflexes caused by the additional deforma-
tion. It follows from (15), (174), and (20) that

(273)

00;; _
o0;; = #(an—unk)
Mnk
(28)
_ 99
ap~nk
If quantities referring to the unloaded state are
denoted by “0” and those referring to the preloaded
state are denoted by a bar, from (10) and (9b) for an
arbitrary set of three reflexes (mgi are integers), we
have

Hoi (K —0p) = _Nijkléu;k-

go(O = mgigiO’ gu = r_notigiO’ gor = maigiO’ (29)
where
. _1_ 0 _ 0 —j
My = E'.F[ga LBy = mg;Hi,
(30)
m,: = —]'—g [9_0 = mo.uj.'
o] 271o° i o M-

Having determined the inverse matrix to my [see

(11)],
(m?) = A", (31)
we obtain
(M) mg; = Nip = .
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Thus, we can obtain the tensor Y’ from structural
data and by measuring the tensor o (for various orien-
tations of the sample) we can determine N in the crys-
tallographic coordinates.

For example, for the uniaxial deformation of an
arbitrarily oriented, preloaded sample, assuming that
w; isthe matrix of the operator for rotation of the sam-
ple from the laboratory to the crystallographic axes,
and itsreal orientation written in thelaboratory basisis:

e = we = w;e, (32)
we have
Nljkl - (*)nw“wkkwIINl((J:rlZm (33)

Assuming that uniaxial expansion takes place along the
zaxisin the laboratory system:

60‘ = tb33, (bpq)lj = 6|p61q’ (34)
we obtain from (28)
twgW3; = |(Jckr|)5lll(cr)v (35
where
6”;(kcr) = wmlwnkaulmn- (35&)

Since the number of components of the tensor N is
too large to make excessive measurements, we must
bear in mind that the aim isto determine the symmetric
tensor J{ [see the following section, formulas (37),
(37a), and (35b)] which is expressed in terms of N
using (39) and (39a). For specific calculations using
these formulas see Section 8 below.

5. COMPLETELY SYMMETRIC TENSOR
OF THE DIFFERENTIAL ELASTIC MODULI J{ IN
TERMS OF INDICES

1. We shall describe tensors possessing interchange
symmetry both within thefirst and second pairs of indi-
ces and with respect to the interchange of these pairs as
being completely symmetric. This symmetry is clearly
obtained for the quantities (the T sign indicates at con-
stant temperature)

HT = ol Ot o _ Poy/P)p
Tiw Bs0s,F "0 os, (36)
= Yukl + 0j; 6|<|

A similar construction is obtained for the adiabatic ten-
sors Y and F" (n is the entropy) where f is replaced
by the energy € per unit mass. Only at thispoint isadif-
ference observed in the calculated values, al the other
transformations are geometric and the same for the adi-
abatic and isotherma moduli. Thus, in the following
formulas (where there is no need) we shall simply talk
about the moduli, dropping the“T” or “n” signs.
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Choosing 7 asthe elastic modulus would be unsuc-
cessful because, as can be seen from (36), this contains
alinear term with respect to stress which is not explic-
itly related to the state of the object. An isothermal
symmetric tensor closest to the susceptibility may be
introduced using the formula

T

1 1
Kij = E(Yijkl"'Yinj) = H;kl—é(cgém+02|5ij)’(37)

or, more concisely

K= 9- %(oomz + Eo,), (373)
where (allb);;q = ;b and then (36) gives
Y = H—0,IE = % + %(ED&O—TODEIE). (38)

It can be seen that for a hydrostatically compressed
object the moduli Y and K are the same so that in this
case, the tensor Y is symmetric with respect to inter-
change of the first and second pairs of coordinates.

Substituting (38) into (27a) we obtain

N:N'+9R, (39)

where

N' = —2M,(E0 o)+ %(EEET—IDDE)

+ 40D P gL, (3%)

R = sHsT

(the form of the term containing T can be understood
from (24) and [4 (363@)]). The components of the tensor
N" areknown as soon asthe stress and strain tensors are
known, the last term in N is a calculable quantity asis
% (see Section 8) and only J{ depends on the properties
of the material.

Since unlike N', thetensor K (and therefore R) pos-
sesses the same symmetry with respect to interchange
of the indices as the elasticity tensor in linear theory, it
has a maximum of 21 different components. However,
sincethe free energy f isinvariant with respect tointrin-
sic rotations of the symmetry group of an undeformed
crystal, the true number of different components of the
tensor J{ in acrystal with any specific symmetry group
isthe same as that given in [11] for linear theory.

Equation (35) may be written in the form

RGO = toges —Njd'au”,  (350)
which can reduce the number of different crystal orien-
tationsin experimentsfor cases of the most general (tri-
clinic) symmetry to six (alarger number of these could
be used to enhance the measurement accuracy). From
these experiments we find R and the K () using for-
mulas (39) and (394).
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2. For illustration purposes we calculate the tensor
of the elastic moduli of an isotropic object using (37).
In this case we have [1, 3]

Oy = — pE+2uA +VA,, (40)
whence
_00p .1
H = E+2((2|1A+VA2)EII—EEﬂ]2uA+VA2)(Zu)
= K®P +2uM, + 2v%y,,
where the symmetric matrix K2 has the elements
n_ 24 2 _ oy 2v
K? = K-, K p+2alls x
13_V, 0V
K™ = 2+2|1s' (419)
ol 23 ov 33 _ 0V
K? =225, K®=2—>, K¥=2=
k, ok, ok,
where
K =-90 _ 9P (41b)

l1s = Sps = In(py/p), and py is the density of the unde-
formed material [4 (10)].

The operator I, (see [4, A]) isthe space unit of the
second-rank symmetric tensors T, (2) (and the projector
on it). Here the following operators appear

97)ab = ea[m:)ba %ab = (eaD eb)+1 (41C)
where[(a O b).Jju = (@ + l?najk"' by + aby)/4 and
e, are the vectors of the basis B,(s) = {E, A, A} [4

(B.78)].
On the hydrostatic axis (where A = A, = 0) we obtain

— it _ 21
K= K1Py, +2uM, = %—?EEDE+ 2url,, (41d)
or in index notation (see [4 (A.3d), (A.7)])
2
Kijw = Kaijékl+U§ik6jl+6ilajk_§6ij6klg (41e)

from which it can be seen that thisis exactly the same
asthe usual expression in [11] but with the bulk modu-
lus K and the shear modulus 1 determined under pres-
sureasin[12] and [3].

6. ADIABATIC DIFFERENTIAL ELASTIC
MODULI OF A PRELOADED OBJECT

In order to calculate the adiabatic moduli from the
results of ultrasound experiments, we consider the
propagation of sound in a uniformly loaded elastic
medium. By measuring the strain in the acoustic wave

field from the equilibrium value %; for given o, and T,
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and denoting the displacement in the acoustic wave
field by u;, we obtain using (16)—(17a):
ax, My, Hegxax
We thereby assume that a small amount of heat is
released asaresult of the dissipation of acoustic energy.

For small u; we can write dv;/dt = 9°u'/ot? so that the
sound propagation equation has the form

ij = azui'
Hql :
Olgc " OX0%

Oty _ (42)

bﬂ _ 00;0lg _ 00

at Otk 0X;
Thus, this equation contains the tensor N already ana-
lyzed by us (but adiabatic) which plays the same role

here as the linear-theory tensor Ay in formula (23.1)
from [11]:

(43)

0%y, 9%y
po Niiklm- (432)

After substituting u(r) = upexpi(kr — wt) and dividing
the resulting equation by k?, the equation to determine
the natural modes and velocities of sound has the form

pc’u; = Ny(Mu;, n = k/k, (44)

where the operator N(n) acting in E(3) with the matrix
elements

N;j(n) = Nj;nen, (443)

(and similarly for the operators T(n) and R(n) is (see
(39), (393), and [4 (A.7)])

Nij(n) = pg;; + pnin;

1 . (44b)
—E(nitjknk+ Tiknknj) -7+ Rij(oo, n),
whereR' =R + T
T o] = 4M'DP[ag) M (440)
and thus
Rij(0g, n) = Tij(0g, N) + Ry(n). (44d)

Since the number of different components of the
operator R' acting in E(3) O E(3)isthesameasin linear
theory, it becomes clear that determining the value of
R experimentally, and then R (and thus J{) with the
matrix elements R; for aknown stress tensor ¢ is not
much more difficult (neglecting the specific character-
istics of experiments using stressed objects) than
obtaining the ordinary tensor of the elastic moduli A
from [11]. In order to determine the moduli in the gen-
eral case of triclinic crystal system, it is clearly neces-
sary to measure the propagation velocities of all three
acoustic modes for no less than seven differently ori-
ented samples.
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7. LOCAL DIFFERENTIAL ELASTIC MODULI

It was noted in Section 4 that some quantities
(including ) depend on the choice of strain origin (see
also [13]) which is caused by the non-interchangeabil-
ity of the elements T(2) = E(3) O E(3). Thus, asin [4],
we select two variants of this choice: natural, or abso-
lute, when the point at which o = 0 is taken as the ori-
gin, and tangential when the origin is the point of
instantaneous deformation S, where the calculated
values are denoted by the index “c” in this case.
Quite clearly, the choice of strain origin has no influ-
ence on the observable quantities [N or, as follows
from (39), R).

As a result of fairly lengthy calculations using
expressionsfor the matrix derivatives of the matrix-val-
ued function Iny[4, F] with the transformation from the
basis B,(Y) to the basis B,(y) = {E, v, ¥*} [4, B] and
going to the limit ' — 0 [see (17d)], we obtain from
(39)

N' = 2n,(tOE)n_+ %(ED]—TD]]E), (45)
and since R = J¢, the expression for N in terms of J{¢
from (39) hasthe form

N =2n,(t0 E)I'I_+%(EEET—TD[E)+?7{°, (46)
or in terms of the components
1
Nij = E(Tikéu—éikTu+5i|Tjk—Ti|5jk)
1 c
+§(5ikal—Tij5kl)"'%ijm-

The number of different components of the tensors K

and H° may differ: thefirst isrelated to the initial sym-
metry of the crystal (before deformation) and the sec-
ond is related to the symmetry of the strain-distorted
lattice.

It can be seen that even in a hydrostatically loaded

anisotropic object, the values of N and J° are particu-
larly smply related:

N =H"

8. CALCULATION OF EXPRESSIONS
FOR THE DIFFERENTIAL ELASTIC MODULI
OF AN OBJECT UNDER PRESSURE

1. Since we are subsequently interested in measure-
ments under hydrostatic pressure, we assume [4]

o = 0, = —pE, D?[-pE] = —pB’[E],

(47)
N' = 2pn, —pJ[E].
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Then formula (44b), which is used to extract Ry, from
the experimental data, becomes

N;;(n) = pd;; + pnin; + R;(n), (473)
where [see (44c), (44d)]
Ri(n) = —pT;(E, n) + R;(n). (47b)

The tensor of the elastic moduli J{ is calculated
from (39) and (39a) after determining the tensor %R
experimentally: in the static case (isotherma moduli)
from (35b) and in the dynamic case (adiabatic moduli)
from (47a). Thus, we must analyze al the quantities
appearing in (39).

It can be seen from (24), (2b), and [4 (A.638)] that it
is possible to write

M= (SO9QT, = = Q%B, (48)
where
Q= (000), B =-2(S09%. (48a)
It isthen easy to see from (39a) that
% = sRE) =B RB
15 (1) 1 Ty1 (49)
=R NB -ZN(E) T,
where
% =Q'RQ, N =Q'NQ, (498)
and

SEINEYT = 2p(B7Y) - p2 B P[E]D . (49b)

Asisclear from (48a), the operator 281 may be written
as

Bt = 2as'os?, (50)
where 91 is the matrix derivative of y with respect to
s, the function y = exp(—2s) is the particular case of the
function

exp(~ts) = E’e, = 7/%Eje,,

2= exp(=21,/3) = (p/po)>°

(see [4 (10)], and the correspondence between this
notation and that in [3] [formulas (C.6)—C.6b) isgiven

by

(51)

Ef =a/3, E =b, E =c. (51a)

Calculations of % in the basis B,(s) [see (41b)]
give (summing over a between 1 and 2):

Gt = —2(yOE),P +aEd" '%,.. (52)
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Here we introduce (see (41¢), [4 (A.2), (A.3)])
9) = 9)abgab = eambav
9 = 5)—9), %ab = %abg1

where P is the projection on the half-space L (formed
by all powersof s), g?° = [@*"[is the contravariant met-
ric tensor in Ly, 2 is the projection on the orthogonal
complementary minor L to Lgas far as T,(2), $ isthe
unit operator in T(2) [4 (A.4)], the values of X, are
determined in (41c), and al % are calculated, as [4
(A.3), (A.6), (B.15)—«B.17)]

gzab = %ab_oyab,
O'yab = %ab@ = q;bqgf@df! q;b = |:eceaebD

(52a)

(52b)

The expression for 2@[E] in the basis B,(y) [see
(45)] is most easily obtained using formula [4 (C.12)].
Setting f(y) = Sy) = (1/2)Iny and referring to (A.7)

from [3], we conclude that since S(y) = -y %2,
J\{ 3 1
(S)" ==, () ==, (53)
21} 21%
and asisclear from (51) and [4 (B.73)]
I = 3E3, (54)

Then, recalling the definition of the invariantsin [1, 3]
and their expression in terms of each other, we obtain

1 1 1 3
I3 = §J§_§J1J;+6(JD
54a)
1 9-1-1,9,_1,3 (54a)
= E6—§E2E4+§(E2) :

It is how easy to conclude that

D[E] = Sy DE).P + %y,

(55)

C* = 3%(S)*+2(S)’Ex.

Multiplying (52) and (55) taking into account the
commutativity of &, with % [4], the rulesfor multipli-
cation of the operators %, given there [4 (34d)], and
the identities

(' Oy")P = B3 En(e, 0 &), P

(56)
= EgnEEZneaebecm]ac = qugcebﬂﬂac = ecm]aC = 9)1
obtained from the relationships
Erve = ECEiGhc, (568)

derived by multiplying the corresponding exponential
functions, having noted that the part of the unknown
operator acting in L, consists of terms having the form
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(56) with n =0, 1, 2, we obtain after ssmple calcula-
tions;

@_1@(2)[E]@_1 — 29) +Tabgab’ (57)
where
T = TedEg ' ES"!

4 (573)

x C'(31020lgr *+ 820t + 830cr + 870a).

The final result has the form

K = BENB T+ p[T - 20" %,

. (58)

N =Q'NQ,

where, as can be established from (50), (52), and [4
(A.6)—(A.6b)],

Bt = p_Bo, 1

B = é(:E‘;”E:Eﬂlqi’d,

U™ = BYBYgydl, B = 3(8%+B™)

The rotation Q as aresult of the hydrostatic loading
of an anisotropic sample is expressed in terms of the
distortion using (12), where it depends on the choice of
initial crystallographic plane fixed under loading, i.e.,
on the orientation and method of attaching the sample
in the high-pressure chamber.

The given values of the moduli become functions of
pressure as soon as the values of the shearsin (58) e, =
A(p) and e; = A,(p) are expressed in terms of pressure
using the equation of state (23).

2. The formulas obtained so far are exact and can be
used, for example, to analyze strainsin anisotropic rub-
ber but to calculate J{ we require (in addition to the val-
ues of Q and %R obtained experimentally) the values of

Ep determined (in aform parametrized by the eigenval-
ues of the shear tensor) using formulas (C.7)—C.7b)
from [3].

We shall now make calculations to within the sec-
ond order with respect to the shear, i.e., neglecting
terms ~|AF and higher, where

Al = J’O= 2k,

but assuming that the compression (and the pressure)
are arbitrary (i.e., particularly having in mind a solid).
From the expansions (C.8), (C.8a) from [3] and (51),
(51a) we obtain

2
el = 0+ L]

3
e = 27—k (59)

2 .4
& = 2L Ll
Vol. 90
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and (54a) gives
1y = 2, (60)
whence
2 _ 1|j?> 1
(S)” = +2k2D (s)’ 7 (61)
and then for the coefficientsin (55)
rias U L he U
(62)

o _——E*TL kZD

From (57), (578) using one of the relationships
proven in [4] for the values of % [4 (35a)] from (49) we
now abtain

% = ﬂf+k—2{fw, 9}, +{N, %},

- NGO
=%]_+§k2D {N 9)}+"'{N Xz} —{N, Y},
where{a, b}, =ab+ba,itisclearthat ¥, = %, Y,, =
P,and%,,=9.

As we have noted, the values of %, are calculated
using (52b) and we have the following representations
for Y,

1
Y3 = é(@lS +Pa) +aPyp+b(Py+ Pa)

.. . (632)
—CQ)33 = §2(@)22_gp33)-
Here we have
1 1
a= égl—zcoseczq)%
) (63b)
b = %’ C = 2_k2,
[¢] [¢]

and for the definition of |g| and ¢ see [4 (B.8d)]. The

values of % 4, are the corresponding projection opera-
tors (41c) constructed using the vectors of the orthonor-
malized basis [4 (B.20)] so that the last expression in
(63a) contains no singularities as explained in [4.B]; on
the other hand, the coefficients of % ,in (63a) must be
calculated exactly, some approximation in terms of |A|
was of no interest to us.

The representation of %,5 in an orthonormalized
basisisuseful for computer cal culations near the singu-
larities|g|.
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It can be seen from (52a) and [4 (B.83d)] that

P = 97)114'9}22“'@33 = %@11
(64)

1
+ @(Zkggpzz —9ky(P 3+ P3y) + 6k, P3),

and as we have noted, no term can be neglected in the
last expression.

3. Hydrostatic compression leads to volume and
shear deformation of the sample[1, 3]:

H=oaW, p=E-B, (65

and if detp’ = 1, i.e.,, a? = z(51), the rotation O, as can
be seen from (12), is expressed as follows in terms of
the “deviator” contribution to the distortion 3"

0 = E+3(B"-P)

X = &/a+u,

. (66)
+53BT-pI-BBT-BTP),

which must be substituted into (49a) and (63) to calcu-

late J:f . We shall not give the relevant expressions
because of their cumbersome nature and the absence of
any fundamenta difficulties.

4. The apparatus available to experimentalist can
usually determine either the isothermal or the adiabatic
tensors of the elastic moduli. For example, if the adia-
batic tensor of the elastic moduli J{" is obtained from
ultrasound measurements, by means of a standard pro-
cedure [12] using thermodynamic identities, we can
obtain the isothermal tensor which, as we can easily
see, can be written in one of the forms:

PCOTH )\ /@TO
TEBSD EBsDn

pTc E%?@ <S%E;

where ¢, is the specific heat per unit mass of material
for fixed strain and

900 _ _@p0g, PO
OoTO ~ ~OhTh - DTl

An expression for N can easily be obtained in an
isotropic (before deformation) arbitrarily strained
object from (41) which may be of interest for rough ori-
entation during an experiment.

H' = K" -
(67)
— g

(673)

9. HOW DOES THE PROPOSED FORMULATION
OF THE THEORY RELATE TO PREVIOUS ONES?

It is appropriate to make some observations on the cor-
respondence between these results and those obtained ear-

No. 4 2000



DIFFERENTIAL ELASTIC MODULI OF AN ANISOTROPIC MEDIUM UNDER PRESSURE

lier and discussed widely (see, for example [14] and the
literature cited therein).

1. First we assume that only Euler variables are ade-
guate for the strain problem since only in terms of these
variables (and only using the concept of natural strain)
can the independent quantities of bulk compression and
shear be separated (for details see [1, 3)).

2. Then, as explained in [4], the thermodynamic
variable in the anisotropic case, similar to the Lagrange
tensor for an isotropic medium, is the tensor u, deter-
mined from

Yo = E=2u, (68)
with the components
0 1[ﬁu du; 0y f)_u_JD
iy = Zﬂ9x ax 0%, Ox, (68a)

[asimilar construction for an isotopic medium, i.e., for
the tensor y = p'u (see (2a)) yields an ordinary
Lagrange tensor [11] in which the quadratic term with
respect to the displacement u has the form
—(0u/0x)(0u/0x): the minus sign is attributed to the
use of Euler variables]. The derivative of the thermody-
namic potential with respect to u, in the Murnaghan—
Birch equation should be taken to find the stress tensor
in an anisotropic solid (the procedure for determining o
for this variant of the theory is described in [4]).

3. The adiabatic tensor of the elastic moduli € deter-
mined in [14] isrelated to that calculated in the present
study (we obviously simplify the index notation and
subsequently drop theindex “0” for the tensor u: u and
u' denote different components of the tensor u) by:

d’e
Ciu = P35 = DiHED; +Diioo],  (69)
and since, asis easy to see from (68),
Dy = 29, D = 4972, (70)

where 9 and 9@ are the quantities used earlier, the
rel ationship between thistensor and %, asiseasily seen
from (39a), (24), (48), and (50) after taking into
account the equality YE = -0.5y?' derived from
[4(CH)]is

@©" = (S'OSHR(S O SY
—(@ Uo‘jj/_1 + y_lﬂlf(bo(jb),

which after substituting al the aready-known quanti-
ties, can then be expanded by a normal procedure in
powers of the deviator of the natural strain. Then, the
tensor s must be expressed in terms of u as—0.5In(E —
2u) using formulas from [4, F] where, as can be seen
from (65), E —2u = a?(E — 2u'). However, without hav-
ing recourse to the natural strain, it would be necessary
to express the result as afunction of u=0.5(1 — 0?)E +
o?u' and if U’ is considered to be a pure deviator contri-

(69)
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bution determined by the condition det(E — 2u’) = 1, it
becomes clear that the deviator component is scaled by
hydrostatic compression a2 = (p/py)?2 so that an inde-
pendent expansion in terms of the hydrostatic and devi-
ator components of the strain becomes impossible
which we consider to be amajor achievement of natural
strain theory.

4. We shall now consider the fluctuations of the
strain under pressure. As in [12], we determine the

coefficients C,,, of the quadratic form in terms of devi-

ations from the equilibrium values du, from [4 (64)],
this being the expression for the Gibbs potential of an
anisotropic obj ect under pressure, ¢ =f + p/p

- s 0%% +99 @<
pauau pajuasasD sPwp (71
whence we obtain
Cus = Dy(Hy + PEIE)D; (713)

+ (o + pE)D@".

Thus, since in equilibrium o + pE = 0, it is found that
€' and H = ¥ + pEIE are similar so that the fluctua-
tions of s are related to the matrix J{ in the same way
that the fluctuations of u, are related to €' and conse-
quently for a hydrostatically compressed sample we
can use the stability criteriaformulated in [14], replac-
ing the matrix €' (which must be determined in terms
of the derivatives with respect to u, and not u) by .

10. CONCLUSIONS

We have shown that of all the possible variants of
determining the tensor of the elastic moduli of an aniso-
tropic object in nonlinear macroscopic theory, only the
completely symmetric tensor H possesses the follow-
ing properties simultaneously: first, for small strains it
yields the tensor of the elastic modulusin linear theory,
second, for arbitrary strains it has a minimum number
of different components (which is the same as the num-
ber of components of the tensor of the elastic moduli in
linear theory for each crystal system of an unstrained
crystal [11]), and third it can be calculated if we know
the dependence of the free energy (or, for its adiabatic
value, the energy) on the strain.

All other moduli (which occur in analyses of partic-
ular problems): the tensor of the effective elastic mod-
uli N, the thermodynamic susceptibility tensor %Y, and

the local modification J° of the completely symmetric
tensor J{ are expressed in terms of the tensor J{ which
is calculated in terms of the tensor # of the second
derivatives with respect to the strain of the free energy
per unit mass of the object f (or, for adiabatic coeffi-
cients, the energy per unit masse).

It has been shown that on the hydrostatic strain line
all these quantities possess complete interchange sym-
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metry with respect to the indices and have a maximum

of 21 different components, where¥ =X, N = ¥ and
the difference between K and N [see (63)] is observed
in cases where the sample is arbitrarily clamped in the
first order with respect to the deviator component of the
distortion (as a result of the rotation of an anisotropic
sample under pressure) whereas when the sample is
clamped symmetrically, eliminating any rotation, it is
observed in the second order with respect to the strain
deviator, which ishonzero in an anisotropic object even
in the hydrostatic case.

Near the hydrostatic strain line the difference
between %Y and H [see (38)], exactly as between N and
J{° [see (46)] is determined by the shear stress, i.e., is
observed in the first order with respect to the resulting
additional shear strain, increasing, abeit trividly, the
number of different components of thetensors® and N'.

Bearing all these factors in mind, we find that the
value of J{ determined by expressions (36)—(37a) and
related to the other quantities discussed here by rela
tionships (38) and (39) can reasonably be taken as the
tensor of the elastic moduli in nonlinear theory.
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Abstract—An analysisis made of theinfluence of defects on the averaged Green’s function of optical phonons
whoseimaginary partisproportional to the cross section for Raman one-phonon light scattering, which depends
on the frequency transfer. A variant of the “cross’ technique which can take into account the localized states at
defects is used. The defects are assumed to be two-dimensional (of the dislocation type) at which localized
states exist near the edge of the continuous spectrum interacting weakly with the defect. Asaresult of thisinter-
action, which depends on the defect concentration, the states of the continuous spectrum are shifted and broad-
ened, the inhomogeneous broadening depending strongly on the frequency transfer (phonon density of states
effect), which leads to asymmetry of the Raman line. The defect concentration also influences the localized
states which interact mainly via band states. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Since the appearance of thefirst studies on localized
states [1,2], numerous theoretical and experimental
investigations have addressed this topic. The simplest
problem which can be solved exactly is the problem of
statesat asingleisotopic defect [1, 3]. Unfortunately, in
this example the frequency of the localized state is sep-
arated from the edge of the continuous spectrum by a
finite frequency interval and if the difference between
the masses of the matrix and defect atoms is small, a
localized state may not exist. Thus, the state at the
defect is determined by the integral characteristics of
the entire phonon spectrum and in addition to interac-
tion between the defect and the matrix, it is also neces-
sary to know the complete density of states of theinitia
unperturbed problem.

Of particular interest is the case of alow but finite
concentration of defects when the interaction of states
at neighboring defects cannot be neglected [4]. It is
then necessary to solve the problem of phonon scatter-
ing in al its aspects, taking into account the possible
formation of a band of localized states and a transition
to extended states [5—11]. The situation is reminiscent
of the problem of impurity levels in semiconductors.
An important difference, however, is that as a result of
the low effective mass of the carriers and the large
dielectric constant in semiconductors the impurity lev-
els are shallow and we can usually talk about the den-
sity-of-states tails in the band gap. The states at an iso-
topic defect are aways deep.

Finaly, another characteristic of the observed
phonon spectra is the necessary presence of so-called
natural phonon width even at zero temperature and for

ideal lattices. Thiswidth is associated with the possible
decay of phonons (of frequency ) into pairs and is
described by third- and higher-order anharmonicities.
Therelative magnitude of the natural width M@/, is of
the order of the square of the ratio of the amplitude of
the atomic vibrations to the interatomic spacing and is
usually around 102

In the present study we attempt to cope with these
difficulties by considering localized states at anisotro-
pic defects and specifically at two-dimensional disloca-
tion defects. In this case, the localized states exist at an
arbitrarily weak defect potential. As we know from
guantum mechanics, the energy of a state in a two-
dimensional quantum well is exponentially close to the
edge of the continuous spectrum. Consequently, the
localized state at a two-dimensional defect is deter-
mined by the immediate vicinity of the phonon branch
extremum. Interaction of these defects among them-
selves and with the continuous spectrum shoul d be con-
sidered in terms of a unified scheme in a suitable order
of the defect concentration.

Significantly, the interaction of phonons with
defects is elastic unlike their interaction with each
other. For this reason the contribution of defects to the
phonon width depends on the behavior of the density of
states near the edge of the continuous spectrum and is
therefore a particular function of the frequency variable.
This can easily be confirmed by writing the probability
of phonon scattering by a defect potential according to

the “golden rule’ and considering the 8(0? — wp + ?)

function which takes into account the energy conserva-
tion law for aphonon near, say, the maximum of the wy,

1063-7761/00/9004-0639%$20.00 © 2000 MAIK “Nauka/Interperiodica’



640

branch. For the case of scattering by a point defect, the
phonon width goes to zero proportionately as

Joe— ), for alinear defect we have afinitejump, and

for a planar defect we have a root divergence. At the
same time, the natural width M js a smooth function
of w (almost constant in asmall range of variation of w)
and since we are interested in the small vicinity of w,
this width can be taken into account (in the phonon
spectrum or in the expression for the retarded Green's
function) by adding the imaginary constant il to the
frequency variable w.

It can be seen from the formula containing the
o-function given above that we are interested in dis-

tances on the scale Uk ~ &/, Joi—w’ ~ o e, ™.

Since the dispersion parameter s has the order of the
velocity of sound and for optical phonons w, ~ T5/a,
where a is the lattice parameter, the characteristic val-

ues 1/k ~ a./w,/I™ are large on the atomic scale. At

present no experimental information is available on the
distances within which the defect potential should fall.
Calculations of the phonon spectra are usually made
using a scheme which assumes that the non-Coulomb
part of the atomic interaction may be taken into account
using an approximation of several nearest neighbors.
Thisis equivalent to assuming short-range interaction.
In addition, it has been established that a considerable
fraction of the perturbation caused by the lattice mis-
match in heterojunctions also relaxes over atomic dis-
tances. For this reason we shall consider short-range
defects, i.e., we shall assumethat their radiusrgissmall
compared with the characteristic value Uk (r, <

a./w,/I™) and take the Fourier component of the

interaction potential as being constant in the range of k
of interest to us. In this case, an isotopic defect only dif-
fersin dimension from alinear or planar defect.

Finaly, let us address the experimental side of the
problem. So far the most accurate information on the
phonon spectra has been obtained using Raman light
scattering, in which afrequency resolution of the order
of 1 K has been achieved. This means that not the den-
Sity of states but the Raman scattering line itself can be
studied under the influence of various factors, such as
pressure, ion implantation, defects, and so on (see, for
example [12]). A study of the role of defectsis of par-
ticular interest in semiconductor applications where a
micro-Raman scattering technique is employed, using
laser beams having a spot size of the order of the wave-
length.

Our aimisto cal culate the Green’sfunctions of opti-
cal phonons (whose imaginary part directly gives the
one-phonon Raman scattering cross section) using a
model of disorder induced by two-dimensional short-
range defects.
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2. CONTRIBUTION OF LOCALIZED
VIBRATIONS TO PHONON SCATTERING
The existing “cross’ technique [13] is usualy used

to study scattering of band quasiparticles at randomly
distributed impurities. In our case, this should be mod-
ified to allow for localized states. We shall consider the
equation for the retarded Green’s function

(H—iwlM +U(r)—w?)D(r,r', @) = 3(r —r'), (1)
where the matrix

62
+Uij|ma—xlaxm

describes the long-wavelength expansion of the
dynamic matrix near the branch extremum, the natural
width I allows for phonon interaction with each
other, and the perturbation

Uj(r) = zuij(r_rn) (2

2
Hij = gy

is the interaction with defects positioned at points r,.
For linear defectsthe vector r —r , is atwo-dimensional
vector in the plane perpendicular to the defect axis. The
subscript j allows for any degeneracy of the phonon
branch which may be substantial for Raman phonons at
the center of the Brillouin zone.

We shall expand the solution of equation (1) in pow-
ersof the perturbation U, which wewritein terms of the
Fourier components

Uji(r) = zuij(Q)eXP[iq L(r —rp)l, (©)
nq

and a each step we shall average, i.e., integrate the
resulting expression

\%Idrn...,

over the defect configuration. The Green's function in
the zeroth approximation depends on the difference of
coordinates, and its Fourier component has the form

D (k, @) = §;(wp K —iwr™ -, (9
where, to simplify the notation, we neglect the depen-
dence of the dispersion parameter on direction.

The first-order correction is —cDg(K, w)uyDy(K, w),
where U, = u(q = 0) and c is the defect concentration;
for two-dimensional defects this is calculated per unit
surface area perpendicular to the defect axis. Here we
conserved the sequence of the functions D and u since

they are matrices. However, we shall not observethisin
the subsequent intermediate calculations.

In the second order, we have, first, the contribution
c2u5D3(k, w) (Fig. 1a) which is obtained if the terms
corresponding to different defects are taken in both
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sums over the defects and, second, the contribution from
the same defect (Fig. 1b):

cu; D (k, ) Y 4Do (@ ).

We also assume that the number of defectsislargein a
sample. In addition, as we noted in the Introduction,

small g ~ /T"™/wy,/a are significant when integrating
over g. Thus, when calculating the second contribution

3 lu(k =a)I*Do(q, w) = U5y Dol ),
q q

the factor Ju(k — q)J? is taken the zero argument and the
remaining logarithmic integral may be cut off at large
g, of the order of the reciprocal defect radius. Note that
theresult, i.e., the correction to the Green’s function, is

nat

of interest to us for even smaller k < /I"/w,/a and

specificaly for k ~ 10%/a, which corresponds to the
optical range, since this is the range in which Raman
light scattering is studied experimentally.

Simple calculations yield the following result for

theintegral:
4, .4
1|1 sirg
Do(q, w) = [—In
% s’ 2 (@ - ) + (™’
2_ ZD
_i%sgn(oo)—arctanw n:t)OD.
wlh ™ g

We note that both contributions (Figs. 1a, 1b) can be of
the same order despite the fact that at |ow concentration
c thefirst contains an extra power of c. Thisis because
for w — wy this contribution has an additional pole
whereas the second is only logarithmically large.

Four types of terms appear in the third order. The
contribution

—culD*(k, w),
shown in Fig. 2ais obtained if the terms corresponding
to different defects are taken in all the sums over

defects. The contribution from the same defect is
shownin Fig. 2b:

3R2 Dz
—cuUyDg(k, w)§ Dy(q, w)O.
;. O

The “mixed” contribution (Fig. 2c) has the form

~2¢°ugD5(k, @) Y Do(d, @),
q
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Fig. 1. Second-order diagrams. The solid lines show the
Green's functions of an optical phonon, the crosses denote
interaction with defects, and the dashes show the transfer of
momentum; integration over the momentum transfer is per-
formed in the next Green’s function.

() (b) (© (d)

Fig. 2. Third-order diagrams for interaction with a defect.
The connected dashed lines indicate conservation of total
momentum.

where the coefficient 2 allows for the number of these
diagrams, and the “cross’ term (Fig. 2d) is given by

—c*uiDi(k, w) z D2(q, w).
q

Thelast two terms are of the same order in terms of the
concentration ¢ although, as we can see, the integral in
the crossterm gives apole of the type Dy(k, w) and both
terms have an equal number of poleswhereasthe mixed
term has an additional large logarithm In(cy,/I")
which has appeared as aresult of integrating over g. For
this reason we drop the cross term.

In the fourth order with respect to the interaction we
havefour terms of different order in terms of concentra-
tion: the fourth-order term

c'ugD’(k, w),

the first-order term

cutD¥(k ‘*’)EZ Dol w)g,

q

several diagramsof order ¢ among which thelargelog-
arithm only contains the mixed contribution,

3¢’uDg(k, @) Y Do(d, ),
q

and finally, diagrams of order c:

2 43 f
C UpDo(k, w)OY Do(a, w)% )

q
c’uDg(k, ) Y D(a, w),
q
which contain the square of the large logarithm.
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The following orders in terms of defect interaction
can then be analyzed similarly. In each order in terms
of concentration the cross terms are small compared
with this large logarithm. The remaining terms, allow-
ing for coefficients of 2 in the diagram in Fig. 2c,
become a geometric progression. Summing this yields
the following result for the Fourier component of the
averaged Green’s function:

D(k, @) = Dy(k, w) + cD5(k, w)

z ()" Dy(k, ) + 3 oua wE
®
1

[l
U
e " %HUOZ o w)%

An expression of the type (6) was obtained in [14] for
scattering by point isotopic defects by closing the equa-
tion for the scattering matrix. The difference in this
case is that first, we are considering two-dimensional
defects and second, we are taking into account natural
phonon damping. This alows us to estimate the order
of the omitted diagrams (in terms of In(w,/I')) and
also to consider interaction between localized and
extended states.

3. OPTICAL MODE AND LOCALIZED STATES
IN WEAK COUPLING REGIME

At low defect potential u, the Green’s function (6)
has two obvious singularities. One, near the pole Dy(k,
w), corresponds to the band states of a crystal contain-
ing defects and the other, near the zero of the expres-
sionl+u a D, (9, w) occursfor uy > 0 and describes

stateslocalized at defects. At afairly strong potentia u,
the frequency spacing between these states is large
compared with their width and the corresponding con-
tributions may be separated.

3.1. Influence of Defects on Shift and Damping
of the Optical Mode

The presence of defects leads to a shift and additional
width of the optica mode. Near the pole D, the dowly
varying real part of the expression 1 + u, qDo(q, w)
[see (5)] may be taken for w = wy, and the Green’s func-
tion (6) hasthe form

D(k w) = (Q*—s*K—iwl —w?) ", (7)
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where the new values of the branch edge Q and the
damping I" are given by

QZ _ w2+ ncumcz) (8)
= W) ,
1—uln(s/r5w,m ™)

2 2
— i
r= F”at+§'—arctanw ;:tOD
w0

(9)

2
RIS

x i)
[1-uln(s¥/r2w,m ™2

where we introduce the dimensionless coupling con-
stant with a defect u = uy/4ms®> and the number of

defects n, = 4res?/ oocz) in aregion of dimensions sy, of
the order of the defect radius r,. Note that under the
conditions of validity of the formulas given above, and
specifically far from the frequency of the localized
level, the denominatorsin (8) and (9) do not vanish.

It can be seen from expressions (8) and (9) that the
branch edge and the width vary by avalue of the order
of ' (the scale observed experimentally) if the defect
concentration is n, ~ I'"&/wy,. For small u thelinear term
with respect to u is the influence of the average defect
field on the phonon frequency shift and the quadratic
term describes the inhomogeneous shift and mode
broadening as a result of phonon scattering at defect
fluctuations. These were obtained earlier [15] as an
expansion in terms of u using the usual diagram tech-
nique and were observed experimentally using Raman
light scattering near heterojunctions [12]. The fluctua-
tion contribution to the damping is a rapidly varying
function of the frequency variable w near wy, on an
interval of the order of I'"®; the factor in bracketsin (9)
then varies between 11 and zero. Thus, a singularity
appears in the phonon density of states near the edge
(maximum) of the continuous spectrum: phonons can

only be scattered at defects for w? < wﬁ (in the limit

M - Q). The influence of defects can be observed
experimentally from the increase in the Raman scatter-
ing line width and, as we can see, from the appearance
of asymmetry in the spectrum. For the maximum of the
phonon branch the low-frequency line wing is more
gently sloping. This asymmetry may be observed on
the curves (Figs. 3, 4) constructed using the exact
expression (6). For lines corresponding to the branch
minimum the asymmetry will be the reverse. For the
case u > 0 as the magnitude of the interaction increases
the dependences (8) and (9) have a resonant character

foru = JJIn(szlrgwol'“at) whereas for larger u the shift
and width do not depend on the interaction. The result-

ing resonant dependence reflects the possibility that
localized states may exist.
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3.2. Localized Sates near the Optical Mode Edge

For u, > 0 alocalized state forms at asingleimpurity
near the edge of the continuous spectrum. Thisis deter-
mined by the equation

0 0
Re[1 + uoz Do(q, w)O = 0, (10)
0 q 0

whose solution allowing for (5) may be written in the
form

o = @ [(slro)'e ™~ (o™

(11)
The upper signin thisformula correspondsto the local -
ized state. For the lower sign the frequency liesin the
region of the continuous spectrum: in formula (5) even
inthelimit IM® — O afiniteimaginary part iT/2 exists
and this state isin fact quasi-local.

If as before we assume that the interaction u is so
strong that the distance between the edge of the contin-
uous spectrum wy, and the frequency wy is large com-
pared with the damping, the contribution of the local-
ized state to the Green's function may be expressed in
the form
-2

D(k, ) = —n.uwq(wy—uy) 12
1

x {1 + uoz Do(, 0) + NUW(0E — 6 —il ™) ™|
q

Comparing (12) with (7), we can see that the contri-
bution of the localized states is proportional to the
defect concentration, as predicted. The defect concen-
tration appears in the denominator of this last expres-
sion which leads to a shift and width of the localized
state, such is the effect of interaction with the continu-
ous spectrum. Having expanded the denominator in

powers of w? — wy, we find the corresponding correc-
tions:

Qf = of +n.wp, (13)

M= T+ nwg ™/ (0 — ). (14)
Curiougly, the potential of the interaction with the

defect only appears here by way of w [see (11)].

Note that for a quasi-local state the frequency is
w?< wp and the imaginary part in (5) is close to Tt
Then, on the right-hand side of expression (14) thefirst
term M s replaced by 21|y — wy, i.e., a quantity
larger than the interval between the quasi-local vibra-
tion and the edge of the continuous spectrum. This
implies that the width of the quasi-local vibrations is

comparabl e to the distance from the edge of the contin-
uous spectrum.
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Raman intensity, arb. units

520 530 540
Frequency transfer, cm

0 510

Fig. 3. Dependence of the imaginary part of the phonon
Green's function averaged over defects on the frequency
transfer w. The curves were plotted using formula (6) for
various defect concentrations and the same phonon—defect

interaction. Theinitial parameters, 520 cmi line center and

3.2 cmt natural width, correspond to pure silicon. It is
assumed that this line corresponds to the maximum of the
optical phonon branch at the center of the Brillouin zone.
The peaks at high transferred frequenciesreflect alocalized
state.

Raman intensity, arb. units

5,

520 530
Frequency transfer, cm!

0 510

Fig. 4. Frequency dependence of the imaginary part of the
Green's function for the case where the possible existence
of alocalized state is eliminated (u < 0).

4. RESONANT COUPLING OF AN OPTICAL
MODE WITH LOCALIZED STATES

The small denominators in formulas (8), (9), and
(14) are areflection of the resonant interaction between
the band and localized states. When the frequency spac-
ing between these states is small but large compared
with the damping, their interaction can be analyzed by
expanding the logarithm (5) in the general formula (6)

in powers of w? — oo|2, confining ourselves to the first-
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0 510 520

Fig. 5. Frequency dependence of the imaginary part of the
Green's function at high defect concentration.

order term. We find that the poles of the Green’s func-
tion (6) are related to the zeros of the expression

» 0 0
Do (k=0,w)+ Uoz Do(0, w)O+ cuy
O] ]
‘ (15)
0 (0 — 0f) (W5 — 00°) + Nwi(w; — p)
— (0’ — o)l (w),

where, as before, wy is determined by expression (11).
The frequencies

2,2 1/2

2 + 2 2
o, = 22 A el -al)| 0

at which the real part of this expression vanishes give
the positions of the band and localized states for k =0
and thus the Raman scattering maxima. The condition
for validity of the expansion of the logarithm given
above is that the second term under the root in (16)
should be small compared with the first and then this
formulais reduced to the form

W = W+ N, W = W — N0 (17)
Thefirst formula(17) isthe same as (13) while the sec-

ond differs from (8) in the limit of large u by the
absence of alogarithm.

The value of the imaginary part in (15) depends
strongly on frequency. Near the value of w, describing
the shift of the localized states, the damping is T (w;) =
I, However, for the value of w, determining the new
edge of the initia continuous spectrum we find

WM(w,) =T — 035 )SING:
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Using expressions (15) and (16) we find the imagi-
nary part of the Green’s function:

ImD(k = 0, w)
W — o +iwr™ (18)

= | ,
(= P (0 — ) — (6 — )T (@)

which gives the Raman scattering cross section.

Unlike (7) and (12), expression (18) simultaneously
describes band and localized states at low defect con-
centration. The concentration dependence of their posi-
tion can be seen from formula (17). We note a differ-
ence in their width. Whereas the width of the localized
states is mainly determined by their natural width &,
scattering at defects makes a significant contribution
to the width of the band states which is given by
[ = 1mn.wy,.

5. DISCUSSION OF RESULTS

Figures 3-5 show dependences of the Raman scat-
tering cross section, i.e. the imaginary part of the
Green'sfunction of the optical phonons, on the frequency
transfer w. The graphs are plotted using the exact
expression (6) for values of the frequency wy, = 320 cmr*
at the center of the Brillouin zone and the natural width
rna = 3.2 cm* determined experimentally for silicon.
The defect parameters were varied, i.e., the dimension-
less concentration n,, the number of defects in aregion
of the order of the interaction radius (which in (5) was
assumed to be r, = TiI5/wy,), and the dimensionless cou-
pling constant u. For u < 0 no localized states exist and
an increase in interaction or concentration leads to a
shift and broadening of the edge of the continuous
spectrum in accordance with formulas (8) and (9). For
u > 0 alocalized state appears outside the continuous

spectrum (for w? > oog) for amaximum at the band cen-

ter. For aminimum of the optical branch at the center of
the Brillouin zone, thelocalized state appearsfor u<0and
its frequency lies below the edge of the branch. Asthe
interaction increases, the localized state becomes sep-
arated exponentially rapidly from the continuous
spectrum in accordance with (13) whereas the edge of
the continuous spectrum is displaced nonmonotoni-
caly (8).

The mutual influence of localized states and states
of the continuous spectrum on their width is particu-
larly large when the distance between them isrelatively
small [see(9) and (14)]. We note that the dependence of
the width of the band and localized states on the natural
damping differs significantly for " — 0; for the
band state a weakly varying contribution remains as a
result of scattering at defects, as given by the second
term in (9) whereas the width (14) of the localized state
vanishes.

Figure 5 shows the Raman spectrum at high defect
concentration when the band contribution is barely
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discernible from the serieswith asharp peak created by
the localized states.

To conclude we note that we have considered the
case of the lowest possible defect concentration c: in
the denominator of expression (6) all corrections linear
in c were summed. The next step involves aself-consis-
tent consideration, i.e., replacing Dy(q, w) with D(q, w)
after the summation sign in the last equality in (6). This
so-called renormalized approximation was investigated
in[16].
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Abstract—The quantum Hall effect in a 2D system with antidots is studied. The antidots are assumed to be
large compared with the quantum and relaxation lengths. In this approximation the electric field in the system
can be described by the continuity equation. It is found that the electric field in a system without conducting
boundaries can be expressed in terms of the same system without a magnetic field. Specific problems of the
electric field and current in structures containing one or two antidots and in a circular disk with point contacts
are solved. The effective Hall and longitudinal conductivities in a sample containing a large number of ran-
domly distributed antidots are found. In the limit of zero local longitudinal conductivity, the effective longitu-
dinal conductivity also vanishes, and the Hall conductivity isequal to thelocal conductivity. The correctionsto
the conductivity tensor which are due to the finiteness of the local conductivity are obtained. Breakdown of the
guantum Hall effect in alattice of antidots is studied on the basis of the assumption that a high current density
in narrow locations of the system results in overheating of the electrons. Loca and nonlocal models of over-
heating are studied. The high-frequency effective conductivity of a system with antidots and the shift of the

cyclotron resonance frequency are found. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

It is known that various microscopic approaches
lead to quantization of the Hall conductivity and van-
ishing of the drift conductivity. These approaches
include the microscopic approximation, based on a
local relation between the electric field and the current
density, and an approach based on edge currents which
attributes the quantum Hall effect (QHE) to currents
flowing along the boundaries.

The standard microscopic theories of the QHE are
based on the derivation of an expression for the conduc-
tivity tensor in a uniform electric field and neglect the
spatia fluctuations of the external electric field. In con-
trast to them, the quantum Hall conductivity is consid-
ered in some recent works to be a macroscopic phe-
nomenon, using a quantum Hall conductivity and zero
drift conductivity of an ideal system as the zeroth
approximation, and the problem of current flow in a
mixture of aHall conductor and anideal metal [1] orin
Hall conductors on various Hall plateaus [2, 3] is
solved. This approach leads to a so-called “semicircle
relation” between the Hall and drift components that
does not contain Planck’s constant. This approach cor-
rectly describes the experimental data for the integral
and fractional Hall effects.

The macroscopic approach expands the range of
applicability of microscopic theories by taking account
of the spatia variations of the applied eectric field.
Thus, the main result “survives’ independently of the

presence of boundaries, mixing of the Hall phases, and
so on. Nonethel ess, the question of thelimits of the Hall
guantization remains.

The purpose of the present paper isto investigate the
electric fields and currents in anonuniform two-dimen-
siona system in the quantum Hall effect regime. We
shall consider this system to be a mixture of a uniform
Hall conductor and an insulating phase, neglecting the
screening length. This approach is applicable, for
example, to a QH system with strong doping and com-
pensation, where the insulating regions are formed as a
result of a randomly decreased donor density. Specifi-
caly, in the quantum limit of a single partially filled
Landau level the system can be treated as a mixture of
insulating regions, where the first Landau level is
empty, and aHall insulator, wherethefirst Landau level
is completely filled. Another example are artificially
structured systems: antidot lattices, where the problem
of the current density distribution isimportant in itself,
specifically, in the problem of breakdown of QHE [4].

The method is based on mapping this systeminto an
anal ogous conductor without amagnetic field. It will be
shown that the spatial distribution of the electricfieldin
a conductor with and without a magnetic field with the
same geometry isidentical. The longitudinal and trans-
verse effective conductivities can be expressed in terms
of the effective conductivity of asystem without amag-
netic field. If the Hall phase is connected, then the
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effective conductivity also vanishes in the limit of an
ideal Hall insulator, o, — O.

It is known that a high current density results in
breakdown of QHE. We shall find the breakdown
threshold, studied experimentally in [4], in an antidot
lattice.

The formulas obtained for the conductivity are also
applicable in the limit of a high-frequency field. The
absorption of an electromagnetic field in an antidot |at-
tice will be studied and the shift of the cyclotron reso-
nance line will be found.

2. IDEAL HALL INSULATOR
WITH INSULATING INCLUSIONS

We shall examine first a mixture of a Hall insulator
and an ordinary insulator. In the Hall phase the expres-
sion for the current has the form

J =04 +O4e X1, 1
where ;5 is the magnetic-field unit vector. In the limit
of aHall insulator o,, — 0. Nonetheless, weretain o,
inequation (1) in order to determine the potential ¢. For
example, the longitudinal conductivity can be assumed
small but finite because of the finiteness of the temper-
ature.

It follows from the continuity equation [Jj = O that
O =0. 2
The boundary conditions at the boundary of the Hall
and ordinary insulators with the normal n on the side of

the Hall insulator have the form jn = 0. In the limit
0,, — 0the boundary conditions give

nxp,=0. ©)
The last expression does not contain o,,. The potential
isaharmonic function with azero tangential field at the
boundary of the insulator. Therefore an ordinary insu-
lator in a Hall insulator can be treated as an ideal con-
ductor embedded in a conducting medium.
We shall now consider a random, on the average
uniform, infinite medium consisting of a Hall insulator
plus an inclusion consisting of an insulator with an

average field directed along the y axis 0@, = (0, E,).
(The overbar denotes averaging over an area: A =

J AdSS)
The effective Hall conductivity is defined as
_ I 0,9dS
eff _ jx - Hall
Oy = =—— = Oy ——. (4)
g 0,9 ¢ J’ 0,@dS

Theindex “Hall” meansthat the integration extends
only over the Hall phase. Let us assume that the insu-
lating phase consists of closed disconnected regions.
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Since the potential on their boundaries is constant, the
integral of the field over the insulator vanishes:

Ya(X)

0,@,dS = [dx [ dyO, @,
R e e ©)

= Jax(@(y2(x)) — @(y2(x))) = 0.

Therefore the numerator and denominator in equation

(4) areidentical and o‘fyf =0y, Thisprovesthat the Hall

plateau is stable with respect to the appearance of insu-
lating inclusions: The effective conductivity does not
change, while the insulating phase does not form an
infinite connected region, breaking up the Hall phase
into disconnected regions.

3. HALL CONDUCTOR
WITH INSULATING INCLUSIONS

We shall study below the problem of finite o,,. Let
us consider the analytic function w = @, + i, where @,
and Y, satisfy the Cauchy—Riemann equations:

Dx(pO = Dyl-l"01 Dy(Po = _DxlpO' (6)
In terms of the dual potential Y,

Byo =0, W =0, [OhdS=0. (7

If therelation (7) is applied to the expression for the
current j = ol , they correspond to the longitudinal
conductivity of the medium with a local longitudinal
conductivity o, containing insulating inclusions in the
absence of amagnetic field.

We shall now express the electric field and current
density in terms of the solution of the problem without
a magnetic field. Let the function ¢ be determined by
the equation

® = @,sina + YPycosa = Im(ew). (8)

The function ¢ satisfies the boundary conditions nj =0
with j from equation (1), if theanglea is

CoSQl = ——2X O<a<T1U2. 9

N0+ Ol
As a result, the solution ¢ of the boundary-value
problem with the magnetic field B differsfrom the solu-

tion in the absence of amagnetic field, Y, by arotation
of the electric field at any point by an angle a:

E(r, B) = U(a)E(r, 0),

where U (a) is the matrix giving a rotation by the
anglea.
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Let us now consider the boundary-value problem
with a prescribed electric field at infinity E(). The
electricfield at the point r isrelated with E(e) by alin-

ear transformation G
E(r) = GE(w).

Transforming the field at the point r and at infinity, we
find that

Gl, = O(a)Gl,_ U(-a), (10)
i.e., the exterior boundary conditions must be rotated
by an angle —a, after which the equation must be solved

in the absence of a magnetic field and the electric field
obtained must be rotated by the angle a.

The formulation of the problem with the electric
field prescribed at infinity assumes that the sample has
no boundaries, and all nonuniformitiesliein abounded
region. In the problem of the effective properties of the
medium, prescribing the average field plays the role of
a boundary condition at infinity. Therefore the relation
(10) also determines a relation between the local and
average fields.

Itiseasy to seethat the current density is a potential
field with the potential /o7, + 0% Wo. Indeed,

j(r) = Jog+ 05 U(-0)E(r, B)
= Jog +05,0(-a)U(a)E(r, 0)
= /\lo-ix+o-§y|:|l-|"0'

The equation (11) and the boundary conditions for the
current at the boundary of an insulator do not contain
the magnetic field. Therefore the magnetic field does
not affect the local current density in problems with
(a) a prescribed current density at infinity and (b) a
fixed average current in a sample with no boundaries.

We note that these results must be used with care.
For example, they cannot be used for a sample with
metallic contacts that violate the conditions of the the-
orem.

The case () can be used to describe current flow
around a limited number of insulating inclusions in a
Hall conductor. The case (b) can be used to describe
current in microstructures with point contacts and for a
large datistically homogeneous system containing
insulating inclusions.

(11)

4. ELECTRIC FIELD
AROUND ONE AND TWO ANTIDOTS

We shall discuss below various consequences of the
method proposed above. The projection of the problem
of the current and electric field in the QHE regime on
the problem in a zero magnetic field makes it possible
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to find the field and current in various geometries,
which can be solved using conformal mappings. For
example, let us consider the distribution of fields
around one and two antidots with radii a. In the first
case the electric field

E( =E+IE,
is determined by the expression

E*(2) = E* (o) —E(w)e”%a’/Z". (12)
The case of two close antidots is important for describ-
ing breakdown of QHE in antidot lattices [4], which is
attributed to concentration of current density between
antidots. The solution can be found similarly to [5]. A
conformal mapping of two circleswith centersat +(a + d)
onto thering /R < |w| < Rin the complex w plane,

R = J2a+d+./5
J2a+d-./5

is given by the expression
b = J2a5+85".

The boundary condition at infinity for the electric field
transformsinto the potential of adipole a the pointw = 1.
The electric field is determined by the expression

_z+b

= 13

R4n
(R"(z=b) —z—b)°

E* = 4b2[E*(oo) >
o (14)
E(e e—2i0‘ R4n+2 i|
NP R —

In the situation of close antidots, & < a, the strongest
field and highest current density are reached near the
point z= 0. At this point

E(0) = J/a/23(E* () —eE(0))
divergesasd —» 0.

Figures 1 and 2 show equipotential linesand current
lines around one and two antidots for the cases where
a =0, a =174, and a = 172. For the QHE problemit can
be assumed that in the Hall plateau regime o,, — O,
while a the maximum o, ~ o,, i.e, the angle a
changes from zero to ~174 and then to 0 as the maxi-
mum is crossed.

Another easily solvable problem is the problem of
the current and field distributions in a large quantum
dot with small tunneling contacts (Fig. 3). Tunneling
occurs in the thinnest parts of the barriers, so that the
contacts can be assumed to be point sources of current.
We note that point contacts do not violate the condi-
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Fig. 1. Equipotential lines (solid lines) and current lines (dashed lines) around an antidot (filled circle). The average electric field
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Fig. 2. Sameasin Fig. 1, but with two antidots.

tions of the theorem and, in consequence, a magnetic
field has no effect on the current distribution, in con-
trast to contacts of finite size.

The current density and the potential inthis case are
given by the expressions

o-2a) 1
Jx y T aZ_ZZ’
a7 (15)
Q= Re%xp( |0()Ioga+2[r

2
m/oxx+ 0

where Jisthetotal current. Figure 3 shows the equipo-
tential lines and the current linesin this case.

5. EFFECTIVE CONDUCTIVITY
OF AN ANTIDOT LATTICE

The effective conductivity tensor is given by the for-
mulas
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Oix = = Oy =

(es[Exi1)

(16)

The average current in a disordered system, containing
insulating inclusions, in the absence of amagnetic field
is characterized by the effective conductivity o

j = ¢E = foE.

The ratio f of the conductivities is determined by the
structure of the medium. Specifically, if the inclusions
are circular holes with radius a and density n, then
f depends only on the dimensionless density x = na?.

Let us consider antidots randomly and uniformly
distributed in aplane. If the antidot density islow, f(x) =
1 —2x. Near the percolation threshold x — X,

f(x)

(wheret = 1.3 [6]) irrespective of the geometry of the
system [7].

= (X - Xc)t
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Fig. 3. Digtribution of the current and field in alarge circular
quantum dot with two tunneling contacts. TheHall angleisTv4.

In the case of a quadratic periodic antidot lattice
with period d, the quantity f in limiting casesis

f = 1-2m(a/d)’,
if a/d < 1, and
f = whJ/(d-2a)/a,

ifd-—2a<d.
To find the effective conductivity in a magnetic
field, al integralsin equation (16) must be expressed in

terms of a single quantity, for example, J’ O, YedS.
Using equation (8) and
o I Oy,dS = o' J’Dwods,

Hall

we obtain
j = Jou+ogOu,, (17)
O = O,,(f " cosa, —sina). (18)
Asaresult

o_eff — o-xx(o-ix + o-iy)

XX 2 2. 2
Ot f Oy (19

eff _ f20-xy(0-ix+ o-iy)

Similar formulas were obtained in [8] by a different
method for a standard macroscopic medium with inclu-
sions and were not analyzed in the QHE limit.

The equations (19) make it possible to apply to the
QHE problem all results of the theory of conductivity
of a nonuniform medium. This theory can be used to
find the effective conductivity from thelocal conductiv-
ity of a uniform sample and to solve the inverse prob-
lem of determining the local conductivity according to
ameasured effective parameter.
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In the limit of an ideal Hall insulator o,, — O,

equation (19) gives oy, —~ 0 and 0., —= 0y, The

function f can be eliminated from equations (19), and
this leads to a semicircle relation (2), which was found
in the case of amixture of different Hall phases:

2 2 2 2 2 2
(O_eff)2 + Ejeff _ Oyt 0ug _ Pyt Oug
X X 20, U 0O 20, O
Inthelimit o,, — 0 equation (20) does not contain
Oy

(20)

2 o i
(o5 + - % = Bl

Thisrelation permits oifxf to befinitefor small o, i.e.,

finite global losses in a nondissipative medium. This
apparent paradox is resolved by taking into account the
fact that the semicircle relation arises when the indeter-
minate form is expanded in the limit 0,,/0,, =H — 0
and f — 0. Astheratio H/f varies, the components of
the effective conductivity tensor run through all points

of a semicircle. For small H/f, a finite o5 arises

because of the small value of f. In other words, finite
dissipation near the percolation threshold arises
because of competition of dissipation in the Hall phase
and in narrow necks.

InthelimitH < f
eff eff

Oy = Oy, Oy = Oyl/f.
If H>f,
2 3 2
eff _ f O-xy eff _ nyf
Oy = > O = —.
0-XX

XX

The paradoxical result is that after holes are cut out

of the 2D plane, ci';f can increase (and the losses with

a fixed electric field can decrease). The explanation is
that for small g,, the current is approximately perpen-
dicular to the electric field. The field in narrow necks
between antidots, determining the entire current, is
large compared with the average field. A finite o,
“shorts’ thefield in the necks, and all the more strongly,

the narrower the necks are. Therefore, the smaller f, the

larger 0% is.

InthelimitH — 0, f —= 0, and H > f the finite-
ness of g,, gives rise to losses concentrated in narrow
necks, playing the role of “hot spots.”

6. BREAKDOWN OF QHE
IN AN ANTID OT LATTICE

Breakdown of QHE consists in the appearance of

finite 0% at the minimaof o,, with ahigh current den-

sity. Measurements of breakdown of QHE in regular
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and random antidot lattices [4] show that the threshold
decreases compared with the sample with no pattern.

We shall discuss the breakdown of QHE in a disor-
dered antidot lattice using the model of [4] as a basis.
According to this model, if the current density in nar-
row necks between a pair of close antidots is higher

than a critical value jg, the electron gas in the necks

becomes overheated and the Hall insulator near these
necks becomes a conductor. Breakdown of QHE in the
entire sample means that the regions of normal metal
overlap (and the Hall phase breaks up).

The radius of the zone of influence of overheating is
determined by a phenomenological electronic cooling
length | .. The scenarios of breakdown differ, depending
on the ratio of I, to the distance between the antidots
and their size.

We shall discuss the nonlocal case |, > a first. We
note that even an individual antidot decreases the criti-
cal current. According to equation (12), the maximum
current density near an antidot is two times higher than
the average current density. Therefore if the average

current density is greater than j2/2, the neighborhood
of an antidot of radius I, becomes a conductor. This
value determines the critical current in the entire sam-
ple, if the resistive phase which appears becomes con-
nected. The condition for connectedness of the resistive

phaseis4ml2 = B, = 4.4[6].

If 42 < B, and j, > > j2/2, the resistive phases
around isolated antidots are torn up. Current flows
around a solitary normal region within a Hall phase, if
the diagonal conductivity of the resistive phaseis much
higher than the diagonal conductivity of the Hall phase.
As a result, the thermal overheating within resistive
regions can maintain only a moderate increase in con-
ductivity within the region up to avalue of the order of
the conductivity o,, of the Hall phase.

If the current density is sufficiently low, the neigh-
borhood of isolated antidots remains in the Hall phase,
while the necks between close pairs of antidots become
resistive. Even though the size |, of the resistive phase
isgreater than the antidot radius, insulation of theresis-
tiveregion from the current limits overheating inside, if
these regions do not overlap.

If the regions of the resistive phase around close
pairs overlap, we can find a percolation threshold, esti-
mating the current maintaining the resistive state.

The density n. of critical pairs, determined by the
same condition 4T|nCI§ = B, can befound from theine-
guality expressing the fact that the current j(0) in aneck

between antidotsis greater than jJ. The value of j(0) is
~J2aldj()|cosy|, where X is the angle between the
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intercenter direction and the direction of the average
current. Hence the critical pair density is

n. = 8r(na)’(jo/j2)’.

o .OF 1
Je = lo 2 4mmnal,’

The last formulais valid if the antidot density is suffi-
ciently high, n > By(16mal,)™ If n.<n < By(16mal,)™,
the critical current determined by isolated antidots is

i2r2.

Asaresult

(21)

7. BREAKDOWN OF QHE
IN AN ANTIDOT LATTICE. LOCAL MODEL

Here we shall discuss the lower breakdown thresh-
old of QHE in a random antidot lattice, based on the
assumptions that na? < 1 and the critical current pro-
duces self-maintaining local overheating in a narrow
strip dividing the sample into two QHE conductors
adjoining the current contacts.

First, we apply a strong current to a Hall strip of
variable width with no antidots. In this narrow part the
current density is maximum and the threshold for
breakdown is lowest. Near the narrowest section, the
strip passesinto the resistive state.

At the lowest threshold the current density else-
whereis below threshold, and these locationsremainin
the Hall insulator phase, where the voltage drop van-
ishes. For thisreason, the critical location in the sample
is the narrowest part of the sample. The width of the
resistive strip vanishes as the average current density
approaches its threshold value. The local width of the
resistive phase and the current density depend on the
voltage between the Hall phases and therefore along the
edge of the Hall phases.

We shall apply these considerationsto asamplewith
antidots. Based on them, it is natural to expect that the
lowest breakdown threshold should be determined by
the shortest section of the Hall phase, dividing the sam-
ple into two disconnected regions adjoining the con-
tacts (Fig. 4). A resistive phase appears along this sec-
tion. To a first approximation, the current density is
bounded by thisresistive phase and does not depend on
the coordinates.

For thisreason, the problem of finding the threshold
reduces to the mathematical problem of finding the
length of the shortest section of arectangle, containing
circular openings separating the rectangle into discon-
nected regions. For na? < 1 the length in the zeroth
approximation is equal to the width W of the rectangle.
Corrections arising in this quantity as a result of the
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2A

Fig. 4. Breakdown of QHE in an antidot lattice: local model.
The resistive phase appears along the shortest cut connect-
ing the antidots.

finiteness of na? can be found as done in [9]. We must
minimize the length of the cut

£ = Z(|ri_ri+1l_2a)

between the antidots with positions r;. The sum
includes a subset of antidots, minimizing the length &£.

At first glance the corrections are determined by the
fraction of the straight line separating the sample and
faling on an antidot, ~~Wna?. Actualy, this line
includes only antidots whose centers are located not
more than 2a away from it. To minimize the length of
the cut, it must be made as straight as possible, but the
maximum number of antidots must be included in it.
Thiscan bedone by includinginit all antidotsin astrip
of width 2A, such that a < 2A < n¥2, Thelength of the
cut is determined by the number N of antidots which it
intersects. The number N is of the order of the total
number of antidots in the strip 2A: N = 2nWA. The typ-
ical distance between the centers of the antidots within

astripis| = «/(W/N)? + A% ~WIN + A2N/(2W). For this
reason, the minimum length of a cut passing along the
Hall phaseis

A*N?

2W
The expression (22) must be minimized with respect to
A. This gives A = (a/(2n))Y® and £ ~ W(1 — 3 x
273(na?)?3). This value of A is much less than N2, so
that the cut is actually ailmost straight.

At the breakdown threshold the current density
through a cut should correspond to the critical current
density j2 in an infinite medium. The average lowest
critical current density, taking account of corrections
for the ratio of the length of the cut to the width of the
sample, isj. = jo (1—3 x 2°¥3(na?)?3). We note that this
correction is not analytic in na? and is much greater

than the correction found on the basis of general con-
Siderations.

We have found the typical minimum length of asec-
tion. Of course, this result is valid only in the macro-

=W+

—2aN =W+ 2n°WA* —4anWA. (22)
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scopic limit, N > 1. In asmall sample the fluctuations
of this number are decisive, and the minimum length of
the cut and therefore the breakdown threshold should
fluctuate from sample to sample. This case can also be
studied using the optimal-fluctuation method, but we
shall confine ourselves to only the macroscopic limit.

8. CYCLOTRON RESONANCE

Let us consider the conductivity of a sample with
antidots in a magnetic field at finite frequency. The
electrostatic problem remains two-dimensional, if the
frequency w of the electric field is sufficiently low and
in conseguence the ohmic current is greater than the
displacement current. Then the effective conductivity is
determined by the expression (19), in which the local
conductivity tensor is replaced by the high-frequency
response. We shall consider a QHE medium with anti-
dots near cyclotron resonance.

The local conductivity tensor has the form

_ il 1 _ 1 0
O = Bl =713 " o w130 -
23

o, =pd—L _+_1 O

b Lo, —w+id . +w—idd

where 3 = €2n/2m, e and m are the electron charge and
mass, n is the surface electron density, w is the cyclo-
tron frequency, and d is the damping. Substitution of
expressions (23) into equation (19) gives

eff — Zchfz
T (w=i8)+ FAW] 24)
eff _ 2i Bwf

Y (w-i8)’+ FPf

Absorption of a linearly polarized electromagnetic

wave is determined by oifxf . It follows from equations

(24) that the resonance frequency and the oscillator
strengths are renormalized by the factor f. The absorp-
tion of a circular wave with cyclotron-active polariza-
tion in the plane of the system that is associated with

o5y —iay, has the same resonance frequency shift,

and the oscillator strengths are renormalized by the fac-

tor f2. If f is sufficiently small, the renormalization can
be very large.

9. APPLICABILITY
OF THE MACROSCOPIC APPROXIMATION

Our analysis is based on two important assump-
tions. The first one is that the relation (1) between the
current density and thefield islocal. The other assump-
tion is that the microscopic properties of the medium
are uniform. Both assumptions require that the geomet-
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ric dimensions of the system be large compared with
the microscopic lengths.

The first assumption requires that the equilibration
length be small compared to the geometric lengths.
Within uniform regions of a Hall dielectric the equili-
bration length is, evidently, small, since the displace-
ment of a center of the cyclotron orbit in a strong mag-
netic field is caused by scattering and is of the order of
the cyclotron diameter, which for the lower Landau lev-
elsisequal to the magnetic length a,,.

The situation with the edge currents is different.
Edge currents are sources of the Hall quantization in
quite small regions[10, 11]. In large samples, the elec-
trons injected into a sample from a contact along an
edge state move along it until they are scattered into a
volume or another edge state. (The phenomenology of
the process is described in [9].) These transitions are
limited by the necessity of tunneling to a distance much
greater than the size of the wave function and therefore
the equilibration length is exponentially large.

The equilibration length between the edge and vol-
ume states, evidently, depends on the splitting between
the Fermi level and the Landau level. If it issmall, then
the transitions are elastic, otherwise exchange between
edge and volume states limits the emission or absorp-
tion of phonons with activation energy determined by
the energy splitting between delocalized volume states
and the Fermi level. It isknown that in a Hall insulator
state the equilibration length can reach macroscopic
values, right up to 100 pum [13].

There aretwo types of edge currents. Currents along
the outer boundary of a sample carry achemical poten-
tial from the source to the sink [10, 11]. A large equili-
bration length on these edge states can be compensated
by large sample dimensions. If this is so, these edge
currents can be neglected.

Other edge currentsflow around the antidots and are
not related directly with the contacts. They play no role
in the two cases, when the size of and the distance
between antidots are much greater than or, conversely,
less than the equilibration length. Indeed, in the first
case the edge currents are disconnected from one
another and the contacts to the sample, and in the sec-
ond case they usually mix with volume states.

Mixing also occurs between edge states of different
antidots. It is exponentially small in the parameter
equal to the ratio of the distance between the edges of
antidots and the magnetic length ay, and the only
important fact isthat this distance is sufficiently small.

Direct transitions between different edge states or
between edge and volume states are determined by the
overlapping of their functions. Let us consider elastic
trangitions. The transition time can be estimated as

(Vw)exp(d:/2aZ), where d, is the distance between
the corresponding states. The quantity d, for transitions

between edge states or between edge and volume states
is determined primarily by the width of the depletion

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

653

layer. For transitions between different edge states, d; is
determined by the distance between the corresponding
edges. More accurate estimates require analyzing the
profile of the potential and the participation of impuri-
tiesin the tunneling process [14].

The inner edge currents around antidots are discon-
nected and do not participate in the overall conductiv-
ity, if the distance d between antidotsis greater than the
magnetic length a,,. If asample lies close to the region
of aHall insulator, o,, < 0, the criterion for the edge
currents to be neglected is that the ratio of the parame-

ter exp(-8%/4a%, ), characterizing the overlapping of the

edge states around different antidots, to the parameter
H = o,,/0,, be small.

The profiles of the potential and electron density
confirm also the validity of the assumption that the
macroscopic properties of the medium are uniform.
The width of the depletion layer around antidots is
determined by the screening of the potential as aresult
of the redistribution of electrons. In the generally
accepted approach [14], the screening is determined by
the redistribution of electrons, complicated by the
structure of the Landau levels. Since in the QHE the
chemical potential is a step function of the electron
density and, vice versa, the electron density is a step
function of the chemical potential, the profile of the
potential near the edges is also a step function of the
coordinates, and screening occurs with aternation of
the Hall conductor and insulator phases.

A simpler situation arises in the presence of afield
electrode, screening the lateral potential. In this case
the position of the chemical potential on the potential
surface is fixed. If, as ordinarily happens, the distance
between the two-dimensional layer and the surface is
small, ~1000 A, the width of the depletion layer is
determined predominantly by this distance and not by
the 2D electrons. This assumption seemsto usto corre-
spond better to experiment than the situation described
in[14].

We shall distinguish two cases. In the first one, in
the outer region of the electronic liquid between anti-
dots, the chemical potential is fixed at a Landau level
(Hall conductor). In the second case it lies between the
Landau levels (Hall insulator).

Inthefirst casethelinear screening is determined by
the surface and the redistribution of electrons in the
two-dimensional layer, while in the second case it is
determined only by the electrons. In both casesthe typ-
ical spatial scale of the electron density is determined
by the geometric factors, i.e., the distance D between
the two-dimensional layer and the surface. The behav-
ior of the potential is distinguished from an antidot
along the 2D layer by the asymptotic behavior. At large
distances from the edge of the capacitor, formed by the
edge of an antidot, the eectric potential approaches
exponentialy its value at infinity. The electron density
is determined by the normal derivative of this potential
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and therefore has the same behavior. In the second case
the variation of the potential along the 2D layer is a
smooth function of the ratio of the longitudinal coordi-
nate p to D. This function can be estimated by treating
an antidot as an additional charge Q placed at adistance

D near ametallic surface: @(p) = Q/p— Q/+/p’ + 4D° ~
@aD?/p?, where s isthe potential of the surface of the
semiconductor and @ is the equilibrium potential. The
corresponding change in the electron density (number
of quasiparticles in Landau levels lying next to ) is
proportional to dn = exp(—w./2 — |1 — ep— nw,|)/T).

Let us assume that the conductivity o, ~ on.
According to this assumption, the change in o, should
be small. This determines the electrical size of an anti-
dot.

In the first case the size of an antidot increases with
D. In the second case the electric size a,, if it exceeds
the geometric size a, should satisfy the inequality a, >
(@aD?T)V3, Outside this region a,, can be assumed to
be constant. If the conductivity is determined by hops
near the chemical potential, the temperature T must be
replaced by a characteristic energy 6, determining the
dependence of the conductivity on the chemical poten-
tial that is associated with the density of states in the
gap: O, ~ F(/0).

The depletion layer around an antidot can consist of
aternating Hall phases, which should complicate the
problem. However, according to [2] the boundary con-
ditions at the boundary of different Hall phases require
that the normal component of the current vanish. If the
inner region is closed, it can be taken to be insulating
and our entireanalysisremainsin force. The only quan-
tity requiring redefinition is the boundary of an antidot,
which should be understood as the boundary of the last
phase of the Hall insulator.

10. CONCLUSIONS

In conclusion we shall underscore the main results.

We have studied the quantum Hall effect in asystem
containing antidots. The conductivity tensor of a sys-
tem with antidots in a magnetic field can be expressed
in terms of the conductivity of asimilar system without
a magnetic field and the local conductivity in a mag-
netic field. We found that the presence of insulating
inclusions does not influence the Hall quantization and
the vanishing of the diagonal conductivity. A measure
of the influence of antidots on the conductivity is the
deviation of thelocal conductivity o,, from zero and the
conductivity a,, from the quantum values. The finite

effective conductivity of, and the deviation of of

from the stepsin the limit o,, — 0 arise near the per-
colation threshold.

A local electric field in a system containing antidots
in amagnetic field differs from the electric field in the
absence of a magnetic field by a rotation by the Hall
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angle. Thelocal current density with prescribed bound-
ary conditions for the current on the outer boundaries
does not depend on the magnetic field.

In this paper the distribution of the local field in the
particular cases of one and two antidots was found.
Knowing thelocal fields makesit possible to determine
the breakdown threshold for QHE in an antidot lattice
on the basis of the model of overheating of the electron
gas.

The formulas for the effective conductivity, which
are applicable to the case of high-frequency electric
field, made it possible to find the cyclotron resonance
frequency in a system with antidots that is different
from the frequency for a uniform medium.
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Abstract—It is suggested that the order parameter and the critical temperaturein an S-N structure be described
on the basis of the microscopic W theory, modeling the metal in the normal state by the Ginzburg—L andau equa-
tion with a negative coefficient a. It is shown that at a contact between layers the order parameter in the layer
whose temperature is below the critical temperature induces an order parameter in the other layer whose tem-
perature is higher than the critical temperature. © 2000 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

The physics of contact proximity of a superconduc-
tor and anormal metal has been under investigation for
many years. Although investigations of this problem
peaked in the 1960s [1-4], it continues to attract atten-
tion today [5, 6]. The effect of a contact between anor-
mal metal and a superconductor on the critical temper-
ature of the superconductor has been studied theoreti-
caly and experimentaly [3, 4]. Relations describing
the superconducting transition temperature of a com-
posite structure containing anormal metal and a super-
conductor have been obtained on the basis of a micro-
scopic theory. The computational results are in good
agreement with experiment [4]. The overwhelming
majority of works on the problem of contact proximity
employ a microscopic approach. In the present work
an attempt is made to describe the proximity effect
and related effects on the basis of the W theory of
superconductivity which isbased on the nonstationary
Ginzburg-Landau (GL) equation [7, 8]

(%LIJ(r,t) = (a=b|WH¥(r, 1)
e 2 D
+D%]—iﬁ—‘éAg w(r, t).

The standard notation, similar to that adopted in many
works [7-14] based on equation (1), is used in this
equation. A description on the basis of the microscopic
theory of an effect such as the proximity effect requires a
model that dlows for the appearance of an order parame-
ter inthenormal metal. For thisreason, inwhat followswe
shall describe the normal metal by a GL equation with a
negative coefficient a. Therdation [7, 8]

nHn W +§A4H =0, 2

where n is a vector normal to the surface of the super-
conducting sample, is used as a condition at the bound-

ary with thevacuum. Accordingto[2, 11], at theinterface
between two different materials (including between a
superconductor and a normal metal)

v, Y, D,d¥, _ D,d¥,

N,V, NV, V,dx ~ V,dx’
where different indices are used to denote quantities at
the interface on the side of the different layers, N; isthe
density of states, V, is the interaction constant for the

current carriers, and D; is the diffusion coefficient of
pairs.

©)

2. PERIODIC AND ASYMPTOTIC SOLUTIONS
OF THE GL EQUATION

We shall analyze the nonstationary solutions of
equation (1) in the simplest one-dimensional case with
no magnetic field. We represent the order parameter in
the form

12
W) = B weoelio (],

1 )

TO !
where T, is the critical temperature of a bulk uniform
superconductor and Y(x) and ¢(x) are rea functions
which did not depend on the coordinates y and z
According to equation (1), these functions satisfy the
equations

a=oa0, 0=

d’y o G
=% - _y(e- = 5
e ( llJ)+llJ (5)
d _ G
dg  y? ©

where & = Ja/Dx and G is an arbitrary constant of
integration. In the absence of a superconducting current

1063-7761/00/9004-0655%$20.00 © 2000 MAIK “Nauka/Interperiodica’



656
0]
401 !
201 2
-1.5 -0.5 0.5 1.5
20+

Fig. 1. Asymptotic solutions of equation (7). The order
parameter in arbitrary units is plotted along the ordinate. The
curve 1 (symmetric) corresponds to the values (0) = 1.5 and
W'(0) = 0 and possesses avertical asymptote§, = 1.442. The
curve 2 (asymmetric) correspondsto the values (0) = 0 and
Y'(0) = 2.6 and possesses a vertical asymptote &, = 1.468.

G = 0, which we shall assume in what follows. Then
equation (3) possesses, besides the obvious solutions
Y =0 and Y? = 6, solutionswhich are determined by the

equations
dU _, e_gu?s ¥
dE_iC qu+2, (7

where C is a constant of integration. For 8 > 0 and
0 < C < 622 the solutions of equation (7) are periodic.
Indeed, a continuous periodic function necessarily passes
through aternating maxima and minima. It follows
from equation (7) that

P2 = 0+ .0°—2C (8)

at the extremal points. It is obvious that two rea
extrema (amaximum and aminimum) existif 6 >0 and
0<C<#?2

For C = 62%/2 the order parameter isidentically acon-
stant (Y% = 0). However, if 6 <0 for any C, or C <0 for
any 6, or C > 62/2, then the solutions are no longer peri-
odic: They increase with & and approach a vertica
asymptote (Fig. 1). The numerically computed posi-
tions of the asymptotes ¢, for various values of the
order parameter (J(0)at the point chosen asthe origin of
the coordinates are presented in Table 1. For definite-
ness, it was assumed in the calculations that 6 = —0.5,
and the derivative of the order parameter at the initial
point was chosen to be 0. It is obvious that as {(0)
increases, the asymptote shifts toward the origin. Thus,
the thinner the superconducting layer is, the larger the

ORAEVSKII

tic feature of the solutions with a vertical asymptote
(“asymptotic” solutions) isthat they exist even for neg-
ative values of the parameter 6. This suggests that the
order parameter in the normal metal can be described
by modeling the last GL equation with a negative coef-
ficient a (or 0). In such amateria without contact with
a superconductor the order parameter is 0, so that the
superconducting state does not exist. At the sametime,
this model potentially admits the existence of a super-
conducting state under favorable conditions.

In the absence of afield, the boundary condition (2)
requires that the derivative vanish at the boundary with
a vacuum. This condition determines the relation
between the constant C and the value of the order
parameter at the boundary. It is obvious that periodic
solutions can satisfy the conditions (2) at the boundary
with a vacuum on both sides of a finite-size sample.
However, solutions with a vertical asymptote cannot
satisfy the conditions at the boundary with avacuum on
both sides of the sample. Therefore, in auniform mate-
rial adjoining a vacuum they must be dropped as non-
physical solutions. But if the sample consists of two
layers of different superconducting materials, then the
asymptotic solution on one edge of the sample can
made to conform directly with the vacuum, while on
the other edge it can be made to conform with the vac-
uum via a periodic solution for a layer of a different
material. Theidea of such matching is demonstrated in
Fig. 2.

In what follows we shall analyze a two-layer ele-
ment with layer thicknesses |; and |,. The material in
the layers will be superconductors (metals) with differ-
ent parameters, specifically, different critical tempera-
tures. We shall denote the parameters of the materials
by the a,, by, D,,, and T,,. Then equation (1) for the sta-
tionary case with no magnetic field can be written for
both materialsin the general form

2
D% = b(a,-buY), w=12 @

The asymptotic and periodic solutions of the nonlin-
ear equation (9) can be expressed in terms of elementary
functions. We introduce the following notation for them.
We denote a periodic function that is symmetric with
respect to the origin of the coordinates by Py(x; a, b, C)
and an asymptotic symmetric function by A(X; a, b, C).
We shall place the origin of the coordinates on the | eft-
hand boundary of the |eft-hand layer. Then for the left-
hand layer

admissible value of the order parameter. A characteris- Wi(X) = Py(x; a;, by, Cy), (10)
Table 1
w(0) 10 15 2.0 25 30 35 4.0 45 5.0
Ea 1.657 1.170 0.898 0.726 0.609 0.524 0.460 0.409 0.369
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90 No.4 2000
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and for the right-hand layer

Wy(X) = A(x=11=15; ay, by, Cy). (11)

The solutions (10) and (11) satisfy the condition (2) at
the boundary with a vacuum. The conditions (3) at the
boundary of the layers reduce to the relations

D, d D,d
Vld [Ps(l1; @, b, Cy)] = 2 [As(lz, ay by, Cy)],
ES (12)
S I 1] a 1 b C - I ) a ) b ) C
N V ( 1 1 l) 2V AS( 2 21 M2 2)

which determine the values of C; and C, in terms of the
parameters of the materials and the thicknesses of the
layers. This givesthe solution for atwo-layer structure.

Together with the solution described by equations (10)
and (11), there also exists a zero solution. Thus, compe-
tition between two solutions occurs in the layer struc-
ture under study. The stability of the solutions deter-
mines which oneisrealized.

3. CRITICAL TEMPERATURE AND STABILITY
OF THE SOLUTIONS

It is simplest to determine the stability of the zero
solution. For this, it is necessary to use the nonstation-
ary equation (1). In the absence of amagnetic field, we
shall seek this solution in the form

Wy, x) = €8Py 5(x),

where A isaLyapunov exponent determining the stabil-
ity of the regime. Stability analysis assumes that the
quantity oy »(x) is small. We shall use the linearized
equation (1) normalized to the parameters of the left-
hand layer:

(13)

2
Du% = (A-ay)uy. (14

The solution of equation (14) for the left-hand layer

(6,> 0), satisfying the condition on the left-hand
boundary with the vacuum, has the form

_ D/al_)\ O
6lIJ1(X) = Acos TlXD

For A = Oitisalinear approximation of a periodic sym-
metric solution. Thus solution of equation (14) for ds,,
which isalinear approximation of asymmetric asymp-
totic solution and satisfies the condition at the boundary
with a vacuum on the right-hand side, is given by the
relation

(15)

SW,(X) = Bcosh[ _fz(x—ll—lz)] (16)
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Fig. 2. Qualitative form of the curve of the order parameter
in a two-layer superconducting structure. Here |, is the
thickness of the layer with the higher critical temperature
(left-hand layer); I, is thickness of the layer with the lower
critical temperature (right-hand layer).

Then, according to equations (3),

al_)\ |:| 8.1—)\ D
N, l——lil——tan —[—)——IlD
A— A—
= D,N, | azt anh{H[2== az|ZDD

Obvious, A > 0 means that the zero solution is unstable.
Therefore equation (17) with A =0,

& 0%, 0
B
- o, e[ 2100

determines the ratio of the layer parameters that corre-
sponds to the boundary of instability of the zero solu-
tion. Depending on circumstances, equation (18) can
determinethe following: (a) the general critical temper-
ature of atwo-layer sample; (b) the sample thicknesses
for which the block as awhol e possesses afixed critical
temperature; and, (c) the critical temperature of the
right-hand layer with a fixed temperature of the left-
hand layer, if the layers are thermally insulated from
one another.

We shall now present numerical examples illustrat-
ing these situations.

First example. The temperature of both samples is
the same. For fixed parameters of the materials the con-
dition (18) determines the genera critical temperature
of the sandwich. The critical temperature of a system
consisting of a normal metal and a superconductor has

17

(18)
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Fig. 3. Periodic structure, symmetric regime. The order
parameter in the layer with the lower critical temperatureis
symmetric with respect to the center of the layer.

WNV

Fig. 4. Periodic structure, antisymmetric regime. The order
parameter in the layer with the lower critical temperatureis
antisymmetric with respect to the center of the layer.

been studied previously both experimentally and theo-
retically. The condition (18) is the same, to within the
notation, as the relation obtained in [3] for the general
superconducting transition temperature of a layered
structure. In [ 3] excellent agreement between the calcu-
lations and experiment was demonstrated for a sand-
wich consisting of lead and auminum.

Second example. The layers are thermally insulated
and fabricated from the same material: T, = T, =100 K.
The temperature of the left-hand layer is T = 50 K. We

set ,/a,/D,l; = ,Ja,/D,l, = 1.5. Then the thermally

insulated right-hand layer will remain in the supercon-
ducting state right up to temperature T, = 390 K.

It is clear that the parameters being determined are
not absolutely arbitrary. Thus, the general critical tem-
perature of a sample cannot exceed the critical temper-
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ature T, (T, > T,). When the layers are thermally insu-
lated, the fixed temperature of the left-hand layer must
be lower than the critical temperature of the layer.
Then, however, the critical temperature of the right-
hand layer can be appreciably higher than that of the
left-hand layer. In principle, it can exceed room temper-
ature, as the numerica example presented above
shows. In the exampl e presented, the temperature of the
layerswas assumed to be different purely specul atively.
In redlity, the thermal insulation of the layers will
require the insertion of an additiona insulating layer.
This additional layer can change the results obtained.
For thisreason, amodel of athree-layer element isdis-
cussed in Section 4.

A multilayer structure can be periodic. It can be con-
structed from two-layer elements joined at the surfaces of
layers congisting of identical materials. Two casesare pos-
shle: The asymptotic functions describing the order
parameter in the layers with a lower critical temperature
can be symmetric or antisymmetric (Figs. 3 and 4). The
order parameter in the layer with the higher critical tem-
perature must aways be symmetric. The antisymmetric
asymptotic solutions change sign on passing through the
center of the corresponding layer. Thisactually meansthat
the phase of the order parameter changes by Tt Since the
phase jump occurs at a point where the modulus of the
order parameter is0, thisdoesnot lead to an abrupt change
in the superconducting current. Therefore competition
between two possible regimes arises in a periodic struc-
ture.

The analysis of the instability of the zero value of
the order parameter with respect to fluctuations with an
antisymmetric structure of the asymptotic solution is
similar to the analysis for a symmetric structure. It is
only necessary to replace the hyperbolic cosine in the
solution for the right-hand layer by a hyperbolic sine.
As aresult, we arrive at the following equation for the
Lyapunov exponent A:

a.l_)\ |:| 8.1—)\ D
D;N; l——[sl——tanD}—[—)—l—llm
_ )\-8.2 |:| )\_az D

Introducing the variable u = 1,./(A + |a,|)/D, and per-
forming simple transformations, it can be shown that
equations (17) and (19), which have the same left-hand
sides, can be reduced to an equation of the form

(19)

Outanhu

axb—cu’tan(yb—cu?) = (20)
[ucothu,

where a, b, and c are constants. Graphical analysis of
this equation shows that the largest Lyapunov expo-
nents for antisymmetric regimes is always less than the
analogous exponents for the symmetric solutions.
Therefore the symmetric solutions always win in the
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mutual competition. Figure 5 illustrates this assertion
for the particular cascea=b=c=1.

4. THERMALLY INSULATED LAYERS

To prepare a sandwich with different layer tempera-
tures it is necessary to introduce an intermediate insu-
lating layer. To investigate such structures the boundary
conditions employed for describing Josephson junc-
tions must be applied [8]:

d d
‘dip)‘(‘l = Vo, dix2 = viy,. (21)

The index 1 denotes the order parameter in the left-
hand superconducting layer at the boundary with the
insulator, theindex 2 denotesthe order parameter in the
right-hand superconducting layer at the boundary with
the insulator, and v, , are real constants, whose values
depend on the properties of the materials and the thick-
ness of the insulating layer. Using the corresponding
expressions (15) and (16) for the fluctuations of the
order parameter and the relations between them (21),
due to the presence of the insulator, we obtain the fol-
lowing equation at the boundary of the transition from
the normal to the superconducting regime:

1 &, 008 O onD[_82).0
Vv, DlthanEk/;llﬂ_ coth DZI2Er (22

Theright-hand side of thisexpression is not lessthan 1.
The left-hand side can assume any value as a function
of the thickness of the layer. Thus, the conclusion con-
cerning the possibility of initiating asuperconducting state
in the “warm” layer a a temperature above the critical
temperature remains quditatively in force. True, the
smaler the quantity v,v, characterizing the degree of
contact between the layers, the more difficult it is to
find the required thickness |, of the layer. Ultimately,
this could turn out to be impossible, if v,v, is so small
that increasing or decreasing the sample thickness by
one atomic layer will destroy the equality following
from equation (22).

5. CYLINDRICAL AND SPHERICAL
STRUCTURES

Layer structures can possess cylindrical or spherical
geometry: acylinder (ball) consisting of one material is
inserted into a hollow cylinder (sphere) consisting of a
different material. Determining the parameters of
superconducting structure of this kind is essentially
similar to doing so for a planar layers, except that the

()
2.0

-0.5
-1.0
-1.5

Fig. 5. Example of the graphical solution of equation (20):
(D))= ¥1-u*tan(J1-u?): (2 f(u) = ucothu; (3) f(u) =

utanhu.

second derivative in equation (9) must be replaced by a
Laplacian in a cylindrical or spherical coordinate sys-
tem. Thus, we have for the cylindrical isotropic case

d’y . 1dy N
a‘{2+zdz+(e"”’)”"o' (23)

Similarly, for the spherical isotropic case we arrive at
the equation

d’y | 2dy 2 _
d_52+§¥+(e_w Yp = 0. (24)

In equations (23) and (24) & must be treated as a nor-
malized radial coordinate: & = ./a/Dr.

The positions of the asymptotes for the cylindrical
and spherical cases are presented in Table 2. Compar-
ing with the corresponding values for a planar layer
shows that for spherical and cylindrical geometries the
asymptote liesfarther from the origin of the coordinates
than in the planar case. Hence, for aradius equal to the
linear size of the planar layer the admissible values of
the order parameter in spherical and cylindrical geom-
etries are larger than in the planar case.

To determine the boundaries of instability of the
zero solution it isnecessary to investigate the linearized
equation. In the cylindrical geometry it has the form

ddy , 13y | By -
o +r ar +Dp5l]J = 0. (25)

Table 2
Y(0) 1.0 15 2.0 25 3.0 35 4.0 45 5.0
€A o 2.033 1.434 1.100 0.889 0.746 0.642 0.563 0.501 0.452
Ea s 2.307 1.627 1.248 1.009 0.846 0.728 0.639 0.569 0.513
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90 No.4 2000
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As is well-known [15, 16], the solutions of equation
(25) are zero-order Bessel functions of thefirst and sec-

ond kinds: Jy (/@ o/D; o 1) and Yy (J/ag o/ Dy, ).

Let the material with the lower critical temperature
belocated inside acylinder. Then the linear approxima-
tion for the asymptotic solution is a Bessel function of
the first kind with imaginary argument J, (i ./|a,/ D, ),
since a, < 0. A Bessel function of the second kind is

unsuitable as a solution, since it possesses asingularity
and zero. The linear combination

a
L2 g = w2 v g

where n isaconstant, must be taken as the solution for
the outer cylindrical layer. The value of n isfound from
the condition at the boundary with a vacuum:

|—0Q/7r HD—L1Q/7V nD

(26)

27)
a4 a4 N a4 4 N
J Y
ﬁz ﬂglﬂ ”ﬁl qﬁ
_ 1 0/3 .0,y 04 0
A

Then the condition for matching of the solutions at the
point r; becomes

WENDPERAMNEYDEIN)
Jo(i/|ax/Dry)
(iJ/]a1/Dy|ry)Li(J/[ai/Dylry; 0)
Lo(«/|a/Dyfry; n)

(r, andr, aretheinner and outer radii of the cylindrical
sample). Therelation (29) isequivalent to equation (18)
for a planar structure. The same consequences follow
qualitatively from it has from equation (18). Carbon
nanotubes can be tried for producing superconducting

layered elements with cylindrical and spherical geome-
tries.

The linearized equation for a spherical geometry is

d5lIJ 2d6qJ a
dr? rdr

The solution of equation (30) can be expressed in terms of
aBessal function of order 1/2: (1/ /r )J,y(. Ja; 2/Dy ,r).

Inturn, J4»(2) = J2/Tzcosz, Jy»(2) = J2/Tzsinz [15].
Now the matching equation at the boundary of the spheri-
ca layers, similar to equations (18) and (29), can be
written down. This equation is too complicated to
present here.

D2N,
(29)

= DNy

Halp

u

(30)
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6. DISCUSSION

The effects discussed above do not depend critically
on the form of the pantry conditions at the point of con-
tact. The boundary conditions are only required to
match the asymptotic solution through the supercon-
ducting layer with the condition at the boundary with a
vacuum. This general assertion is supported by the fact
that the effect exists with the boundary conditions (18)
at the contact point as well as with the condition (21).

The fluctuations of the order parameter can play a
large role in the region where the order parameter van-
ishes. For this reason, strictly speaking, the GL equa-
tions extended to the fluctuation region [17] should be
used to analyze the stability of the zero solution. The
generalized GL equations in the linear approximation
differ from equation (1) by the fact that the coefficient
0 isreplaced by the coefficient 8]0[/°. It can be shown that
this does not qualitatively change the results presented
above. Thus, in alayered superconducting structure akind
of initiation of an order parameter in the layer whose tem-
perature is higher than the critical temperature of the cor-
responding material can occur. Thisis caused by the order
parameter in the neighboring layer whose temperature is
lower than the critical temperature.

The superconducting regime in a system of ther-
mally insulated layers is interesting. In a three-layer
element, where two superconductors with good thermal
conductivity are separated by an insulator which con-
ducts heat poorly, aregime with adifferent temperature
should be established if one of the superconducting lay-
ersisin contact with a refrigerant while the other isin
contact with the surrounding environment at a higher
temperature. The insulator must bear the sharp temper-
ature drop between the superconducting layers. The
thermal resistance of the insulator can be increased by
increasing its thickness, and good tunneling transmit-
tance can be achieved by selecting a material with a
small barrier.

It is obvious that the characteristic features of two-
and multilayer structures are not exhausted by what we
have set above. Certainly, nonstationary regimesin lay-
ered structures are of interest. To study them it is nec-
essary to use a system of equations that takes into
account not only the dynamics of the order parameter
of the superconducting Bose condensate but also the
associated dynamics of free quasiparticles [18].
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Abstract—The saturation of the electron mobility, as determined according to the magnetoresistance, was
observed in a semiconductor with alarge-scale potential due to charged impurities. It was shown that the satu-
ration is due to the existence of a quantum mobility threshold. A negative magnetoresistance of nondegenerate
electrons, which is due to the suppression of quantum interferences corrections to the conductivity by the mag-
netic field, was found. The magnitude of these effects near the mobility threshold was explained by the absence
of short, closed, electronic trajectories in the large-scale potential. A relation was established between the
amplitude of the random potential and the saturated values of the mobility and the quantum corrections to the

conductivity. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

A disordered spatial distribution of scattering cen-
ters (for example, charged impurities) results in local-
ization of electrons with energy below a certain value
€., called the mobility threshold. L ocalization phenom-
enon have been studied in detail in systems with a
degenerate electron gas. The character of the conduc-
tivity of a degenerate electron gasis determined by the
position of the Fermi level g with respect to the mobil-
ity threshold. For g > €. the mobility is of a metallic
character, while for g < g, the system behaves like an
insulator, and its mobility vanishes at the temperature
T= 0. The meta—insulator transition, which occurs
when the Fermi level crosses the mobility threshold, is
known as Anderson’s transition. Localization effects
can a so be observed in nondegenerate systems, such as
an electron gas above the surface of solid hydrogen [1]
or semiconductors with Fermi energy in the band gap
[2, 3]. A system with a nondegenerate electron gaslies
on theinsulator side of Anderson’stransition. However,
a finite conductivity exists at zero temperature T as a
result of the thermal “tail” of the Boltzmann electron
energy distribution function. Since in a nondegenerate
electron gas electrons with energy of the order of KT, for
low T when KT < g, make the main contribution to
transport phenomenon, this makes it possible to study
the behavior of electrons in the critical energy range
near the mobility threshold. In a well-known sense, a
nondegenerate electron gasis more “pure” for studying
localization phenomenon than a degenerate gas, since
the interelectron interaction can be neglected because
the electron density is so low. In addition, for a nonde-
generate electron gas the amplitude of the random
potential dueto the charged impurities and the mobility
threshold should not depend on the free-electron den-

sity, which can be varied over awide range, for exam-
ple, by means of optical excitation of electrons from
impurities.

The existence of a mobility threshold should deter-
mine the character of transport phenomenon in a non-
degenerate electron gas when the wavelength A of elec-
trons with average thermal energy is of the order of the
electron mean free path | (the loffe-Regel’ condition).
This condition for strong localization can be easily sat-
isfied in acompensated semiconductor with deep impu-
rities at not too-low temperatures and moderate doping
levels. In the present work, localization effects were
studied in compensated Ge doped with deep multiply
charged impurities. A mobility threshold should existin
this material because of the strong scattering by the
charged impurities. On the other hand, disorder in the
spatial arrangement of the same charged impurities
should result in the appearance of a random Coulomb
potential, and it should cause the conduction to exhibit
percolation behavior. This raises the question of the
relation between the quantum mobility threshold and
the amplitude of the random potential.

The next question concerns the magnitude of the
interference corrections to the conductivity. It has been
shown in [4] that for athree-dimensional electron gas
the quantum corrections to the conductivity as result of
the interference of el ectron waves on closed trajectories
in the presence of multiple scattering are of the order of
A?/12 and are small to the extent that the parameter Ml is
small. Near the energy €. the interference correctionsto
the conductivity should increase, and it can be expected
that for A = | (at T = 0) these corrections should be of
the order of 1. On the other hand, the interference cor-
rections to the conductivity should be strongly sup-
pressed in systems with a random potential [5].
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2. EXPERIMENT

Copper-doped Ge crystals (n-Ge), partially com-
pensated with shallow donors (antimony) so that only
doubly and triply negatively charged copper ions were
present at equilibrium, were investigated. The anti-
mony density varied from 1.5 x 10'°to 1.2 x 10 cm3,
At thermal equilibrium the Fermi level lies near the
upper level of copper (0.26 €V from the conduction
band). The conductivity at low temperatures was
obtained by optical excitation of electrons from the
copper levels. It has been shown in [6] that at low tem-
peratures, when the compensating shallow donors are
frozen out, their filling is controlled by direct interim-
purity recombination shallow copper—deep acceptor
and depends on the intensity | of the optical generation
from deep levels of copper. As | varied, the degree of
filling of the donors could vary from 10~ up to 0.2.
Thus, virtualy all impurity centers are charged (Cu®,
Cu?, and Sb* ions).

A chaotic spatial arrangement of charged impurities
leads to the appearance of arandom Coulomb potential
with amplitudey. The values of y can be determined by
several methods. In thefirst place, it can be determined
according to the classical broadening of the spectrum
of impurities states. Specificaly, the measured [6]
donor density of states has been found to depend on the
energy asexp[(egp —€)/Y], where g isthe Fermi quasi-
level of the donors. In the second place, it can be deter-
mined from the dependences of the interimpurity
recombination coefficient 3 on 1 and T. It has been shown
in [6] that the broadening of the energy spectrum of the
impurities by the random potential leadsto adependence
B O Iexp(y/KT). The experimental values of y are pre-
sented in the table. The table also presents the values

of y calculated using the formulay = N2 /k NY2 [7],
whereN; = ) Z N isthetotal density of charged impu-
rities taking account of their charge Z, N is the density
of the screening charges, which in our case is equa to
the total density of filled (neutral) donors and triply
charged copper ions, e is the elementary charge, and k

isthe permittivity. It isevident that the computed values
of y agree well with the experimental values.

The strong impurity scattering in our samples dueto
the multiply charged impurities makes it possible to

663
Aao/a, %
T=38 T=20.4
0.15LY=12~y=28 T=485K
\ / y=5.6 meV
0.10F y=12 (
0.05 06k [/Y=28
0 04} y=>5.6meV
—0.05 F 02k
—0.10} o
-0.15 ! 0 2, 4 6 8 \,
0 2 4 H,kOe

Fig. 1. Magnetic-field dependence of the relative magne-
toresistance for samples with different doping levels and
close values of the ratio KT/y. Inset: negative magnetoresis-
tance.

satisfy the condition T, > T (T is the average mean-
flight time, T, isthe phase interruption time of the elec-
tronic waves due to inelastic scattering), which is nec-
essary for observing weak-localization effects. A nega-
tive magnetoresi stance was observed in our experimen-
tal samples [2]. The magnetoresistance was
reconstructed from the measured dependence of the ac

i = H di/dH, caused by the modulation of the magnetic
field, H+ H and H < H onthe constant magnetic field

H, since i 0O do/dH (o is the conductivity). Figure 1
shows the relative magnetoresistance Ao/ versus the
magnetic field for samples with different impurity con-
centrations (different values of y) and close values of
theratio KT/y =0.6. It isevident that there existsarange
of weak magnetic fieldswhere the magnetoresistanceis
negative. In stronger fields it becomes positive and
increases as H2. As will be shown below, the negative
magnetoresistance arising in weak fields, when the
classical magnetoresistance is small, is due to the sup-
pression of quantum interference corrections to the
conductivity in a magnetic field [4, 5]. The change in
the sign of the magnetoresistance with increasing H is

Amplitudey of the random potential and mobility threshold €. (meV)

2,,2/3 interi
e N y from the interim- y from the donor h €. from comparison
= . — C .
Sample | Y N2 (7 tﬁ’g{:%gﬁgg{gﬁf& density of states[6]|  Kle o1, |of Aol(H) with Eq, (4)
12 - - 11 12 -
2.8 2.7 2.8 2.3 2.8 35
3 5.6 55 5.7 5.6 6.0 9.0
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Fig. 2. Magnetic-field dependence of the negative magne-

toresistance at different temperatures for a sample with
y=2.8meV.
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Fig. 3. Magnetic-field dependence of the negative magne-
toresistance with different electric fields. Inset: initial sec-
tions of the curves.
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Fig. 4. Temperature dependence of the electron mobility for
samples with different y.
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due to the saturation of the negative magnetoresistance
and atransition to the classical dependence

AC - _pH(f
o Oc O

(the condition puH/c < 1, where u isthe el ectron mobil -
ity and c isthe speed of light, isvirtually aways satis-
fied in our experiments). The magnetoresi stance did not
depend on the free-electron density, which can be var-
ied from 107 up to the 10'* cm=3 by varying the illumi-
nation intensity. This shows that the interelectronic
interaction indeed plays no role in our case. The inset
shows the magnetic-field dependence of the negative
magnetoresistance for the same conditions (in con-
structing these curves, the classical magnetoresistance
was subtracted from the total magnetoresistance). In
weak magnetic fiel ds the negative magnetoresistanceis
proportional to the squared magnetic field (see Fig. 7a
below). As the magnetic field increases further, the
dependence of the negative magnetoresistance on H
decreases and saturates. It is evident that in samples
with different values of y but close values of kTly, the
negative magnetoresi stance saturates at different values
of H, and this value is virtually the same in the satura-
tion region. Figure 2 shows curves of the negative mag-
netoresistance as afunction of H for different values of
T for samples with antimony density 1.5 x 10 cm3,
As the temperature increases, the negative magnetore-
sistance decreases and for KT > y it vanishes (for this
sample for T > 26 K). The larger the value of v, the
higher the temperature at which negative magnetoresis-
tanceisobserved is. For sampleswith antimony density
1.2 x 10'® cm3 (y = 5.6 meV) it is observed right up to
60 K (see Fig. 7b below).

Heating of the electron gas also suppresses the neg-
ative magnetoresistance. However, this occurs differ-
ently when the electrons are heated by an electric field
and by light. In an electric field the negative magnetore-
sistance decreases in the saturation region (Fig. 3) and
on the quadratic section (inset). Photoheating of elec-
trons becomes substantial at low temperatures, where
the rate of thermal ionization of the donors becomes
less than the rate of ionization of the donors by the
background radiation, and it intensifies as temperature
decreases. Photoheating is manifested in an increase of
the electron mobility | at low temperatures, sinceinthe
presence of electron scattering by charged impurities
the mobility p should increase with the el ectron energy.
In this case the saturated value of the negative magne-
toresi stance al so decreases (see the experimental points
for y=5.6 meV in Fig. 7b), but the slope of the curve
of Aa/o versus H on the quadratic section no longer
changes with decreasing temperature.

Figure 4 shows the temperature dependence of the
electron mobility , determined from the slope of the
guadratic section of the positive magnetoresistance, for
samples with different values of y. The mobility was
determined from the formulaAa/o = —r (UH/c)?, where
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be magnetoresistance constant r,,, = 4 for impurity scat-
tering was used. At temperatures below acritical value T,
the mobility saturates (U = ). At temperatures T > T,
a power-law growth of the mobility with temperatureis
observed. The quantities KT, for different sampleswere
found to be close to the corresponding values of vy (see
table). Figure 5 shows the dependence pi(y). The satu-
rated low-temperature value of the mobility p, was
found to be inversely proportional to y and not the den-
sity of charged centers, as should happen for impurity
scattering.

Thus, the saturated value of the mobility and the
interference corrections to the conductivity are deter-
mined by the random Coulomb potential of the charged
impurities.

3. COMPARISON WITH THE THEORY

Saturation of the mobility at low temperatures
atteststo the existence of aquantum mobility threshold.
It isknown (see the reviews[8, 9] and the initial works
cited) that in disordered metals, when the Fermi energy
is close to g, electronic diffusion vanishesat T=0in
accordance with the expression

_ €T
D= DO%“S‘FD'

where D, = v21/3 is the diffusion coefficient, v is the
electron velocity, 1 is the electron free-flight time
(determined in our case by scattering by charged impu-
rities), and sisacritical exponent. Correspondingly, the
conductivity should vanish. For a nondegenerate semi-
conductor it is natural to study not the conductivity but
rather the mobility of the electrons [10]. To determine
the critical exponent swe used the expression

o df
ZeISTV&%_%Dd
— €
~ 3m B
vfde
I

(9

M 1

Herev(g) isthe density of statesand f isthe distribution
function. The lower limit of integration and the factor
(1 — eJ/¢)s take account of the fact that diffusion van-
ishes at the mability threshold. For a Boltzmann distri-
bution function, f = exp[—& — &)/KT], the limit of the
expression (1) as T — 0 gives pu O (KT)s~1. Mohility
saturation can be observed only if s =1, in agreement
with the prediction of the theory [9, 11-13] for the
guantum mobility threshold. For the classical percola-
tion threshold the critical exponent s= 1.7-1.9[7], and
mobility saturation should not be observed. We note
that the theoretical conclusion that sis exactly 1 is not
generally accepted. In its explicit form this hypothesis
has been formulated in [14]. The theoretical derivation
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Fig. 5. Saturated mobility . and coefficient A versusy.

of this assertion, claiming mathematical strictness, is
givenin[13]. Onthe other hand, numerical calculations
[15] give s = 1.3-1.5. However, our experimental data
support the hypothesiss= 1.

The condition for strong loffe-Regel-Mott localiza-
tion, A = I, equivalent to the relation €. = A/2t1,, can be
used to determinethe threshold energy .. The values of
the mobility threshold €, determined for different sam-
ples according to the low-temperature values of 1, =
mpL./e (mis the effective mass), turned out to be close
to the corresponding values of y (see table). Thus, the
value of the saturated mobility is related with the
amplitude of the random potential of charged impuri-
ties as [ = efi/2my. This relation can be interpreted as
the quantum limit of the mobility, which is reached as
aresult of the modulation of the electron wave function
by the random potential. Treating y as the quantum
uncertainty of the energy and taking account of the fact
that this uncertainty and the mobility threshold should
be of the order of the electron energy, we have for the

momentum uncertainty Ap = ./2my /2. Interms of scat-
tering, this modulation determines the mean free path

| = Al20p = AlJ2my = A(y).

This, at the energy y we have | = A, but both quantities
have a strongly nonclassical meaning. We note that the
classical mean free path for scattering by the random
potential cannot be less than the radius of the optimal
fluctuation [7], which in our samples is approximately
30 times greater than the mean free path determined

according to the saturated value 1. has | = 1././2y/m.
Thus, mobility saturation at low temperatures and its
dependence on y show that electron scattering at tem-
peratures KT < yis strongly nonclassical.
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Fig. 6. Temperature dependence of the phase interruption
time.

For KT > y the mobility starts to increase. We
endeavored to compare L(T) with the standard temper-
ature dependence of theimpurity mobility pu(T) = AT 32,
shown by the straight lines in Fig. 4. The coefficient A
(seeFig. 5) turned out to depend on y (A [y —2°) and not
on the effective density of charged centers (Ng =

% Z*N,, N, is the density of centers with charge Z).

isis clearly seen by comparing the curvesin Fig. 4
for sampleswithy= 1.2 and 2.7 meV, for which N has
approximately the same value, while the amplitude of
the random potential is different because the degree of
compensation isdifferent. Thefact that (1 isrelated with
the amplitude of the random potential shows that the
mobility in this temperature range is determined not
only by the energy dependence of the mean-free flight
time but also by a transition to a percolation character
of the mobility.

We shall now examine the characteristic features of
the negative magnetoresistance. The main difficulty for
the analysis of our experimental results using the exist-
ing theory of weak localization [4, 5,16] is that theory
makes use of the condition A < |, which does not hold
near the mobility threshold. For this reason, the quanti-
tative comparison, presented below, of the experimen-
tal datawith the theory can be viewed only as plausible
estimates, since at present a strict theory of interference
correctionsto the conductivity near the mobility thresh-
old has not been developed. Nevertheless, we endeav-
ored to compare these data with the calculations. The
dependence of the negative magnetoresistance on the
magnetic field for a three-dimensional noninteracting
electron gas is described, according to the theory of
weak localization, by the expr on

Ao _ [?'cbD
o 2|| faor o @)
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derived for a degenerate electron gas under the condi-
tionsA <1 <y, lyy. Herel = v, I, = Jch/eH isthe

magnetic length, qu, = Doy, T isthe phaseinterruption
time (coherence break down time) of the electronic
wave because of inelastic scattering (in our case — by
acoustic phonons[16]), and fyisafunctionfoundin[4],
and all quantities are referred to the Fermi energy. For
weak magnetic fields (2l,/l; < 1) the asymptotic
expression f; = (1/48)(2l, /IH)3|svaI|d[4] Thisgivesa
guadratic dependence of the negative magnetoresis-
tance on H:

32
A?c _ I)\_Dzl EEL[—F?E (Q)T) ©)

570

w, = eH/mc is the cyclotron frequency. The asymptotic

dependence Ac/c O /H is expected in the magnetic-
field range where | <1, < |,. Finally, in strong fields,
wherel, = |, the interference corrections to the conduc-
tivity should be completely suppressed by the magnetic
field, and the negative magnetoresistance should satu-
rate.

The ratio A/l can be estimated using the expression
(3). The deviation from a quadratic dependence first
appear in magnetic fields where |, = 2l,. Substituting
the corresponding experimental values of H and Ac/o
into equation (3), we obtain once again | = A, i.e., the
negative magnetoresistance data likewise indicate the
existence of amobility threshold.

1
64

The time 1, can be determined using the expression on
the right-hand side in equation (3). It is easy to verify
that here the energy dependence of the transport coeffi-
cients can be neglected. Even assuming that these
dependences are classical (1,(e) O %2, 1(g) 0 £¥2) we
obtain Ao/o O 132 TV2 [k ~¥4¢¥4 = congt. For this rea-
son, the magnetoresistance is determined by the values
of the transport coefficients at the mobility threshold.
Here the parameter €. plays the same role as the Fermi
level g for a degenerate gas. This is the well-known

basis for using equation (3) for a nondegenerate elec-
tron gas.

The temperature dependences of 1, [J 1/T obtained
from the quadratic section of the negative magnetore-
sistance using the expression (3) are presented in
Fig. 6. It is evident that at high temperatures the phase
interruption time 1, and it saturates as T decreases. The
values of 1, agree well with the theoretical scattering
times for electrons scattered by acoustic phonons in
germanium. The free-flight times 1. found from the sat-
urated values of the mobility p; are 0.75 x 1073, 1.65 x
1013, and 3.4 x 1023 sfor sampleswithy=1.2, 2.8, and
5.6 meV, respectively, and are two orders of magnitude
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Fig. 7. (a) Negative magnetoresistance at different temperatures. Solid lines represent the calculation using equation (4). (b) Tem-
perature dependence of the quantum corrections to the conductivity. Solid lines represent the calculation using equation (6), aver-

aged over the Boltzmann distribution function.

lessthan 1y, i.€., the conditions T, > T, which is neces-
sary for negative magnetoresistance to arise, was
indeed satisfied in our samples. The phase interruption
time 1, is inversely proportional to the temperature.
Thisisnatural, sincefor scattering by acoustic phonons
we have (had energy ;) Ty = Toc 0 €5~ - T The wesk-
ening of the temperature dependence of 1, at low T is
due, in our opinion, to scattering by the zero-point lat-
tice vibrations, which is manifested at such compara-
tively high temperatures, once again, because of the

existence of amobility threshold. Indeed, scattering by
zero-point vibrations should become appreciable when

the energy loss, equal to A/8muzs, in acollision of an
electron with energy € with a phonon (u is the sound
velocity) becomes comparable to KT. For the standard
Boltzmann gas, when € = KT, this gives very low tem-
peratures, KT < mu?. Near the mobility threshold, at € =
€. =Y, to reach zero scattering with y= 2.8 and 5.6 meV
we obtain, respectively, T< 10K and T < 7 K, whichis
closeto the observed temperatures (see Fig. 6). We note

that the critical temperature T, 0 1/./y at which Ty Sat-

urates, while the saturated value T, O (T./y)™ O Ly
also agreeswith experiment (Fig. 6). Of course, inthese
argumentsit isessential that in the random potential the
minimum Kkinetic energy of electrons participating in
conduction is of the order of y.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

We note that the saturation of 1, with decreasing
temperature has also been observed in a degenerate
electron gas[17, 18]. Thetheoretical interpretation [19,
20] of this saturation was based on the large role of the
interelectron interaction, which is absent in our case.

We used the expression (2) for the single-electron
guantum corrections, averaging it over the Boltzmann
distribution function, to calculate the negative magne-
toresistance in the entire range of magnetic fields:

%Ideswﬁ—% - —%e‘”” f3[2|"’D
x %’dssrv %L - ?%&‘””@

Here the factor 1 — A/l takes account of the fact that the
diffusion vanishes at the mobility threshold. The energy
dependences of the transport coefficients entering here

where assumed to be classical (A = #//2me, T [E 37,

Ty = Toc & 2T, and v(e) O Je). (We note that the
specific energy dependence v(¢) of the density of states
is not essentia for our purposes. Its value at the mobil-
ity threshold is, of course, important.) We also used the
condition €. = #/21., so that the only adjustable param-
eter is the mobility threshold €. It is easy to show that
for small H the expression (4) as T — 0 reducesto the
formula (3) with energy €.. The computational results

(4)
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culation using equation (7).

are shown by the solid linesin Fig. 7a. We note that at
low temperatures, KT < €., the energy dependences of
the transport coefficients become negligible, so that the
curves calculated using equations (2) and (4) are iden-
tical (top curvein Fig. 7a). The values found for €, on
the basis of the best agreement with experiment are pre-
sented in the table. They agree quite well with the value
of €. determined from the saturated mobility and with
the values of y.

Itisevident from Fig. 7athat the experimental mag-
netic-field dependences of the negative magnetoresis-
tance agree well with the dependences calculated using
eguation (4) in a quite wide range of magnetic fields,
but saturation of the experimental negative magnetore-
sistanceisreached in much weaker magnetic fieldsthen
expected (corresponding to the condition I, = 1). In our
case the quantity | obtained near the mobility threshold
from the experimental data(l = v 1, v = ./2e./m) isof
the quarter of 10 cm, and saturation of the negative
magnetoresistance could be expected for magnetic
fields at least an order of magnitude greater than
observed experimentally (seeFigs. 1, 2, and 7). The sat-

uration of the negative magnetoresi stance was observed
starting in fields where |, = I¢. For this reason, the

square-root dependence Ac/c O ./H, which should
occur for Iy < 1, isnot observed in the experiment.

The saturated values of the relative negative magne-
toresistance AcJ/o give quantum correctionsto the con-
ductivity. The dependence Ac/o(T) for samples with
different values of yisshown in Fig. 7b. As T increases,
the interference corrections strongly decrease. We note
that their magnitude does not exceed several percent,
though at the mobility threshold the electron wave-
length A is close to the electron mean-free path |, and it
was to be expected that AaJ/o will be of the order of 1.
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4. DISCUSSION

We shall consider first the characteristic features of
the negative magnetoresistance. According to the the-
ory [4, 16], interference of electronic waves on closed
trajectories with radii ranging from | to |, makes the
main contribution to the quantum corrections to the
conductivity. Low values of the magnetic fields in
which saturation occurs (large magnetic lengths |, > )
indicate that the contribution of short trajectoriesto the
interference corrections is small. Short closed trajecto-
riesdisappear because of the presence of thelarge-scale
random potential of charged impurities, on account of
which arandom three-dimensional conducting network
forms near the percolation threshold [7]. In this case,
for interference an electron must go around the
“humps’ in the large-scale potential relief. The charac-
teristics scale of the random potential is of the order of
the radius R of the optimal fluctuation. An estimate of
R, using equation (13.8) from [ 7] showsthat in our case
Rs > |,. The probability of short closed trajectories is
low, so that the interference corrections to the conduc-
tivity should be strongly suppressed [5]. To illustrate
this we estimated the interference corrections to the
conductivity for the three-dimensional case using and
expression from [5]

Ao " A%y
® = [——=F[x(t)]dt 5
5 = [ oyt Xl 5)
T
multiplying the integrand by the distribution function
F(x) of closed electronic trajectories over their lengths
X. For F(x) we used the expression F = exp(-ly/vt),
which, generally speaking, requires substantiation. We
used it simply by analogy with equation (39.10) in [7],
F = exp(-R/R), derived for the distribution function of
fluctuations with the potential y over the radii R. Here
we took account of the fact that the length of a tragjec-
tory it is vt and that interference becomes negligible at
distances greater than |,. Calculation of the integral on
the right-hand side of equation (5) gives

Ao, _ A
o 1

(6)

Averaging this expression over the Boltzmann distribu-
tion function we obtained the temperature dependences
of Ao /o shown by the solid linesin Fig. 7b. They agree
well with the experimental data. (The decrease in
Ao /o at low temperatures, whichisshown for asample
with y = 5.6 meV, as indicated above, is due to photo-
heating.) We note that here, once again, the mobility
threshold ¢, was the only adjustable parameter. It
agrees with the value of ¢, found by other methods.
Thus, the small values of the quantum correctionsto the
conductivity near the mobility threshold are due to the
large-scale random potentia of the charged impurities,
which for a three-dimensional conducting network
with a scale of the order of the percolation radius, in
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which the probability of closed electronic tragjectories
with asmall radiusis exponentially small. Actually, as
one can see from the expression (6), interference occurs
only on trgjectories with a radius of the quarter of .
This explains the low saturation magnetic fields for the
negative magnetoresistance. Indeed, in the experiment
thisoccursfor I = 1,.

We shall now consider the effect of heating of the
electron gas on the interference corrections to the con-
ductivity. In the presence of photoheating the form of
the electron energy distribution function f changes. The
Boltzmann exponential is replaced by a much weaker
dependence of the form f 00 1/€? [21]. For this reason,
the contribution of high-energy eectrons to the quan-
tum corrections (the quantity A%Il, averaged over the
distribution function) increases and the saturated nega-
tive magnetoresistance strongly decreases at low tem-
peratures (points for y = 5.6 meV for T < 20 K in
Fig. 7b). On the quadratic section of the negative mag-
netoresi stance the energy dependence of the transport
coefficients is negligible, and they are referred to the
energy €. For this reason, here, photoheating has no
effect on the negative magnetoresistance. In an electric
field it decreases in the saturation region and on the qua
dratic section of the dependence Ao/a(H) (seeFig. 3). The
|latter meansthat the quantity T, decreaseswithincreasing
electric field (Fig. 8). (To eliminate the dependence
T4(T), thefield dependence of the product 1, T is shown
inFig. 8.) The decrease in T, in an electric field cannot
be explained by heating of the electron gas. Indeed, an
electron in an electric field E acquires over the mean
free path an additional energy eEl. Substituting herethe
experimental values of |, we obtained at eEl <y, KT for
E =30V/cm. On the other hand, the energy acquired by
an electron between elastic collisions on different sec-
tions of a closed trajectory is arandom quantity (of the
order of eEl) because of the random character of the
scattering events. For this reason, the uncertainty of the
electron energy as result of inelastic scattering can be
represented in the form

=2 eml @

The quantity rqf calculated using this expression is
shown in Fig. 8 (solid line). We note that the observed
dependence T1,4(E) is at variance with the theoretical
representations [22], according to which in the absence
of heating the electric field should not affect the phase
interruption time, sincetheresulting changein the elec-
tron energy on a closed trgjectory is zero.

Let us now see what the idea of arandom conduct-
ing network for the observed features of the mobility.
At the percolation threshold the transverse section of
the conducting channels (“wires’) of this random net-
work approaches zero, and the characteristics size of
the“network” (the correlation radius) approachesinfin-
ity. On the other hand, according to the experiments the
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conductivity (mobility) at low temperatures is deter-
mined by the existence of the quantum mobility thresh-
old. In the “wire network” language this means that the
minimum electron energy for which conductivity still
exists determines the minimum cross section of awire
of the order of A\2. The existence of such a “quantum
percolation” threshold [23] makes it possible to esti-
mate the threshold mobility from other physical consid-
erations. We shall consider the percolation network to
be a three-dimensional system of one-dimensional
channels in which an electron moves without scatter-
ing. The minimum conductivity of each such channel is
of the order of €’/A. The specific conductivity of the
random network is determined by the conductivity of
an individual element of the network and is equal to
e’lh& [24], where € is the correlation radius. To obtain
the mobility we must multiply the specific conductivity
o by the volume occupied by asingle electron (EA?) and
divide by the elementary charge e. This result is 4 =
eN?/fi. For g, = ythisexpression is equivalent to the con-
dition y = A/2t, found from experiment, and it is actu-
ally the loffe-Regel’ condition.

5. CONCLUSIONS

The data presented in this paper show that the
mobility threshold for conducting electrons in the ran-
dom Coulomb potential of charged impurities is of a
guantum nature. The physical reason for this threshold
is the existence of the percolation conducting network
and its minimum conductivity, and not coherent back-
scattering, which leads to the appearance of interfer-
ence corrections to the conductivity. Due to the pres-
ence of the large-scale random potential, these correc-
tions, just as the negative magnetoresistance caused by
their suppression by a magnetic field, are small.
Because of inelastic scattering, the phase interruption
time T, of an electron wave is equal to the free-flight
time in the presence of scattering by acoustic phonons,
and it saturates at low temperatures. The saturation of
T, IS due to scattering by zero-point lattice vibrations.
The values of 1, decrease in comparatively weak elec-
tric fields, when appreciable heating of the electron gas
still does not occur. The average free-flight time T satu-
rates at low temperatures, and its saturated values 1. is
the guantum limit of t, related with the amplitude y of
the random potential by the relation 1, = A/2y.
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Abstract—A theory of Josephson vortices-multikinks moving with a constant velocity is formulated for non-
dissipative Josephson junctions on the basis of the Aubry—Volkov analytical model. Cherenkov trapping of Swi-
hart waves by moving vorticesis predicted. A description of the structure of vortices which is due to the waves
trapped by them is given. It is predicted that the characteristic velocities of the moving vortices are discrete.
This phenomenon is due to the structure of the Swihart waves trapped by the vortices. The concept of gluing
of elementary Josephson vortices by Swihart waves in a coherently-phased, multivortex, structure is

advanced. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Interest in moving Josephson vortices, carryingn > 1
magnetic flux quanta, called 2rm-kinksin long Joseph-
son junctions arose a comparatively long time ago [1].
For discrete Josephson junctions, important theoretical
results were obtained in[2]. The definite progress made
in the description of long Josephson junctions was
obtained in atheory that takes account of strong surface
losses due to normal electrons [3]. However, in [3], in
thefirst place, the case of very low temperatures, when
there are no normal electrons in a superconductor, was
neglected and, in the second place, the phenomena pre-
dicted by our work (see below) had not been observed.
For long Josephson junctions without dissipation, an
analytical description of Josephson vortices (41ekinks)
moving with a constant velocity was given in [4-6],
which are based on local Josephson electrodynamics
applied to the case of avery high critical Josephson cur-
rent density. The latter was the reason why the results
of [4—6] did not attract a great deal of attention. The
presence of a moving 41tkink was established numeri-
calyin[7], likewise on the basis of nonlocal Josephson
electrodynamics. The important step made in [7] was
the analysis of an approximation of nonlocal Josephson
electrodynamics that corresponds to weak nonlocality,
which takes account of the fourth-order spatial deriva-
tive together with the second derivative in the equation
for the phase difference. As shown in our work, this
approximation is suitable for describing Josephson vor-
tices in Josephson junctions with alow critical current
density. However, thework [7] did not attract attention.
The next step was made in [8], where a 41-kink was
once again studied on the basis of nonlocal Josephson
electrodynamics. Here, it should be said that the
numerical analysisin[7, 8] led to acompletely definite
velocity of 4tekinks, which corresponded to the analyt-
ical results of [4-6]. In [8], an analogous property was

established for the 61-kink, obtained for the first time
numerically and corresponding to a Josephson vortex
carrying three magnetic flux quanta. It is very impor-
tant to note that in [8], together with a 4r-kink with a
monotonic spatial dependence, a 4rekink with a non-
monotonic dependence was a so found. The idea of the
existence of asimilar 6rekink was advanced in [8]. We
note that the nonmonotonic and monotonic 4t-kinks
moved with different vel ocities. To some extent thishas
something in common with theresults of [2] for the dis-
crete model of a Josephson junction.

The material which has now accumulated on the
theory of moving Josephson vortices in long nondissi-
pative Josephson junctions poses a variety of questions
for us. These include: 1) the question of the possibility
of the existence of various multikink; 2) the question of
the velocities of such multikinks; and 3) the question of
why such motion occurs with definite velocities. Even on
the basis of the results of [4-8] on nonlocal Josephson
electrodynamics, it can be asserted that nonloca Joseph-
son dectrodynamics, in contrast to the standard local
Josephson el ectrodynamics, in many cases was successful
in finding multikinksin long Josephson junctions without
dissipation. It should be underscored that the standard
Josephson electrodynamics of long Josephson junc-
tions does not describe the physical phenomenon of
Cherenkov interaction of Josephson vortices with Swi-
hart waves, which is of decisive importance for under-
standing the effects predicted below, sincein the standard
Josephson electrodynamics the velocity of a vortex is
always less than the phase velocity of the waves. These
physical considerations are the basis for using nonloca
Josephson el ectrodynamics in the present paper. The con-
tent of this paper attests to the adequacy of the physical
model which we have selected for nonlocal Josephson
electrodynamics for describing the phenomena which
we predict. In the present paper the physical results pre-
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dicting qualitatively new properties of moving Joseph-
son vortices are presented. The Aubry—Volkov model
[9-12] (see als0[13]) isused. In this model, instead of
the standard sinusoidal nonlinearity, the relation

19) = j{(¢/m-21[(¢/2m) + 1/2]},  (1.1)

where j. is the critical current density and I[X] is the
integer part of the number x, is used for the relation
between the superconducting current j and the phase
difference ¢ of Cooper pairs on different sides of a
Josephson junction. The nonlinearity (1.1) corresponds
tothat indicated in [14]. We have published preliminary
results for 4= and 61kinks in the Aubry—Volkov
model (1.1) in[15, 16].
In ordinary local Josephson electrodynamics the
equation
2 2 .
19°¢ ,207% +T[J(_ﬁ =0,

ira i

where 1Y sing is often chosen for the function j(9), is
used to describe free one-dimensional vortices. Here
and below, following the Aubry—\Volkov model, we
shall work with the expression (1.1). In equation (1.2)

w; = 4(€lj.d/he)"?, (1.3)

(1.2)

A = c(h/Nelj)?/4 (1.4)

are, respectively, the Josephson frequency and length,
which are defined somewhat differently than in [11],
which isdictated by the possibility of describing vortex
solutions graphically in aform similar to the generally
accepted one. In equations (1.3) and (1.4) 2d is the
width of anonsuperconducting layer, € isthe permittiv-
ity of this layer, eis the electron charge, cis the speed
of light, # is Planck’s constant, and A is the London
penetration depth.

The Aubry—\Volkov model presupposes not only the
use of the relations (1.1) but also the application of the
Fourier transform in finding the required solutions.
Thismakesit possible, specifically, to study the discon-
tinuous functions sgnx (sign function), 6(x) (Heaviside
function), and I[x] as functions determined in accor-
dance with the Fourier transform, when the values of
the functions at ajump are given by the half-sum of the
valuesto the left and right of the jump. This refinement
makes the mathematical apparatus which we used
below quite understandable.

A very important advantage of the Aubry—\Volkov
model over the standard model of a sinusoidal nonlin-
earity should be underscored. It is expressed in the fact
that the Aubry—Volkov model makes it possible to use
the Fourier transform, which ordinarily is successful
for solving linear problems, for solving nonlinear prob-
lems of nonlocal Josephson electrodynamics success
fully and productively. At the same time, the problems
of finding the nonlinear states are solved using an accu-
rate treatment of discontinuous functions. The corre-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

MALISHEVSKII et al.

sponding simplicity of the Aubry—\Volkov model is its
advantage on the one hand and a disadvantage on the
other. Specifically, the use of the relation (1.1) of the
Aubry—Volkov model together with other possible non-
linearities (compare [14]) gives in many cases only a
qualitative description of Josephson vortices. Thisindi-
cates, specificaly, the limits of applicability of the
Aubry—Volkov model. We shall indicate a well-known
qualitative property of the Aubry—Volkov model. Spe-
cificaly, in nonlinear Josephson el ectrodynamics such
a model forbids (see below) the existence of freely
moving 2rekinks. However, even this drawback can be
viewed as an advantage, because it indicates a way to
improve the model.

For comparison with the results obtained below, we
indicate that the solution of equations (1.1) and (1.2),
describing a Josephson vortex moving with a constant
velocity v and carrying an elementary flux (quantum)
@, = 1hc/|e] of the magnetic field (2rekink), has the
form

Pon(z—Vt) = 0

0 - 0
+ n{l - exp[-)————l—z———‘ﬂ———D} sgn(z—vt),
0

ONJ1-vP/ve

where vg = WA is the Swihart velocity. This solution
corresponds to the following expressions for the inten-
sity of the magnetic field in anonsuperconducting layer
of a Josephson function (compare [11]):

@ O jz—vtf U
4m\)\jexplj O (1.6)

ONJ1-vi/viD

(1.5)

Hyz-vt) =

and the energy of the vortex

W =W,/ J1-v?/ V2

where W, = (p§/32n)\)\j is the energy of a 2rekink at
rest.

In the present paper, ageneral approach is given for
theoretical investigation of 2rm-kinks (Section 2). In
Section 3 the general situation concerning the phenom-
enon of Cherenkov trapping of generalized Swihart
waves moving with the Josephson vortices is formu-
lated. Sections 4 and 5 are devoted to the structure of
41t and 6rekinks, carrying trapped waves, which deter-
mines the spectrum of the characteristic velocities of
Josephson vortices. In Section 6, 8re-kinks, which are
Josephson vortices carrying four magnetic flux quanta,
are examined. Such kinks have not been previoudly dis-
cussed.

Among the results obtained in our paper, besides
ascertaining the establishment of new vortex solutions of
Josephson dectrodynamics, the theoretical prediction of
Cherenkov trapping of Swihart waves by Josephson vorti-
ces should be underscored. This phenomenon determines
the spectrum of the values of the velocity of the free

(1.7)
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motion of vortices and predicts the phenomenon of glu-
ing of Josephson vortices by trapped Swihart waves.

2. TRAVELING 2m-KINK

We shall consider one-dimensional vortices travel-
ing with constant velacity v. For thesevortices §(z, t) =
P(z — vt) = P(Q), and on the basis of the nonlocal
Josephson electrodynamics the following equation is
satisfied:

N—

2d*y(Z
F) + %

; dg®

_Z'

w
AW ()

_ld o

(2.1)

Here Ky(xX) is the Macdonald function, | = )\J-ZIA, and
F(W) corresponds to equation (1.1):

F(w) = w—2m[(y/2m) + 1/2]. (2.2)

A traveling 2rm-kink is determined by the boundary
conditions at infinity, Y(—e) = 0 and Y(+o0) = 21, and
by the set of conditions

WE) =T, WE) =3M ..., UE,) = (2n-1)T (2.3)

Thelast set of formulas and equation (1.4) makeit pos-
sible to write

[[(@/2m) + /2] = z 0(C-¢,). (2.4)

n=1

On account of equation (2.4), equation (2.1) is linear.
For this reason, it can be solved by a Fourier transfor-
mation. Using the Fourier transform of the Heaviside
function 8(C —¢,,),

d(k) —iexp(—ikE,)V.P.(1/K), (2.5)
where V.P,(1/K) denotes the Cauchy principal value, we
have for the solution of equation (2.1) that describes a
moving 2mm-kink

W = Y Warll -,

(2.6)
n=1
qJZT[(Z) =T
- 1 K*v? )
+V.P. [ dkksin(K2) | 1+ K(K) ~—-
- [ ;i } (2.7)

" K*v?
+ nI dkcos(kZ)é[l + K(k) — —2}

w;
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K _ AK
JI+ I A1+ KN

The vanishing of the argument of the & function in
equation (2.7) corresponds to the condition of Cheren-
kov interaction (resonance) of a vortex moving with
constant velocity v and a generalized Swihart wave
with spectrum w(K):

K(K) =

(2.8)

(2.9)

The formula (2.7) can be rewritten in a different, con-
venient form

Won(€) = + 1 1-1()]sgnd
+2mCcos(ky() (L),

w’(K) = w1+ KK] = KV

(2.10)

2 (1+)\2|<2)3J2

— 0

C=— - P —, (211)
ATko2(v/ v )P (L+ A3 2N

2, 2,32
2 (1+A°Kky)  exp(=k;[C|)

f(Q) = =5
NK52 - NKC—2(v/ v )21+ A KkD)*
i ™o 1 ( s) ( 1) (2_12)
2
+2—)‘2J'drr r—1—— exp(—rlZIz/)\) —-
T4 r+(r =1)[(A/A)"+(vr/vy)]

Here k; = k;(v) isthe modulus of the purely imaginary
root of equation (2.9), describing the monotonic depen-
dences of 2rm-kinks, and k, = ky(v) is the modulus of
the real root of equation (2.9), corresponding to gener-
alized Swihart waves, interacting resonantly (by the
Cherenkov mechanism) with moving vortices.

In the present paper, we shall be concerned with
Josephson junctions with comparatively low Josephson
critical current density, when

A <A, (2.13)
This enables us to neglect the second term in equation
(2.12), which we shall not mention below.

The formula (2.6), according to equations (2.9)—
(2.12), satisfies boundary conditions at infinity. We shdll
show below that the satisfaction of the conditions (2.3)
determines the quantities &, the velocity v of a multi-
kink, and therefore al so the wave vector ky(v) of gener-
alized Swihart waves trapped by the vortex.

In concluding this section we shall consider the gen-
eral relations which determine the magnetic field and
energy of avortex in along Josephson junction.

Following the general principles of the nonlocal
el ectrodynamics of Josephson junctions[4], inthelimit
A > 2d the magnetic field directed along the y axis and
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produced by the distribution of the phase difference
Y (Q) can be represented in the form

HX z—vt) = H(x, Q) = — T‘[‘;OAZ
/(€ =0)* + (xF o) (@) (239
+ (X +F
J’de 3 T

Here |x ¥ d| isthe distance from the coordinates +d of
the boundaries of the tunnel junction to the coordinate
x of the point of observation in the superconductor.

When the current density through the junction is
related with the phase difference by the relation (1.1),
the total energy of the state described by the solution
P(Q) of equation (2.1) is given by

_ %
BATUAN]
JE ﬁm(z) —2m [%%ZT-) ¥ %ﬂ " Z_)ZE%%EZE (2.15)

e =T dp(@
gl ST

+ 45 2
641T A

where the first term is the energy of the Josephson cur-
rent, scaled to unit length along they axis, and the second
and third terms are the energies of electromagnetic fields
in the tunnel junction and the superconductors [4].

3. GENERAL CONSISTENCY EQUATIONS
AND CHERENKOQOV TRAPPING OF WAVES
BY VORTICES

We shall now consider the consequences of the con-
dition (2.3) for the example of several lowest-order
kinks. First, we shall consider avery smple 2rekink, for
which, according to [11], the solution

[

b, (2) = T+ ZIdkk‘l[l+ K(K] 'sin(kz), (3.1)
0

describing a 2rekink at rest, holds. For amoving vortex, a
2rekink, we have according to the expressions (2.6) and
(2.10)

PE, = m+nC#m, (3.2)

when C # 0, which occursfor v # 0. Thismeansthat in
the Aubry—Volkov model the Cherenkov interaction of
a 2rekink with Swihart waves, which leads to C # 0,
forbids free motion of a 2rekink. This conclusion is
characteristic of the Aubry—\Volkov model. For higher-
order multikinks the Aubry—Volkov model leads to
more interesting results. In what follows, using an
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appropriate choice of the origin of the coordinate sys-
tem, we take &, = —,.

We now consider a 4tekink. Setting &; = —(, and
&, = (o, We obtain from the conditions (2.3)

f(2{o) = C
cos(kqCy) = 0.

(3.3)
(3.4
The equation (3.4) possesses a discrete set of solutions

KoCo = Ko(V)(p = T(N+ 1/2),

35
n=012.... (35)

Eliminating ¢, from equation (3.3) and using equation
(3.5), we obtain a single equation for the velocity v of
a4rrkink, determining the discrete set of characteristic
velocities of the vortex. Therelation (3.4) makesit pos-
sible to write down the solution (2.6) for a 4r-kink in
the following form:

War(Q) = Worm({ + &) (3.6)
+War m(C = o) + Wu(C, o),
where
War m(€) = 10+ T 1 - £({)] sgnd (3.7)
corresponds to a monotonic function, and
W€, ¢ = 2nCceos[ky(v)(IZ| - )] 38)

x[68(=C+ {9 —-0(=C-Cy)]sgnd

describes an oscillatory function, corresponding to
Swihart waves trapped by avortex and localized inside
avortex intheinterval =, = [-{, {J. At the boundaries
of the trapping region the derivative of the function
(3.8) is zero, which corresponds to zero energy flux of
Swihart waves. Denoting the Swihart wavelength by
Ao(V) = 21k(V), in accordance with equation (3.5) it
can be asserted that the size of the region of trapping of
waves by a 4rekink is given by the relation 2{y(n) =
Ao(N)(n + 1/2). The corresponding detailed formulas are
given in Section 4.

Similar general consistency equations also arise for
a 6rekink. Setting &, = (g, &, = 0, and &5 = ¢, we
obtain from the conditions (2.3)

cos[ky(V) (o] = -1/2,
f(Co) + f(2¢p) = C

These consistency equations determine the discrete
“quantized” spectrum of the characteristic velocities v(n)
of 6rekinks, the wave numbers ky(n) of generdized Swi-
hart waves trapped by a 6rekink, and the dimensions
of the trapping regions 2{y(n) = Ay(N)[n + 1/2 + (-1)"/6],

(3.9)
(3.10)
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n=0, 1, 2, .... Correspondingly, the solution (2.6) of
equation (2.1) can be represented in the form

WerlQ) = Warm(C + (o) + W m(Q)
+ Yor m(C = o) + WL, Co)-

Thelast term of thisformula, in accordance with equa
tion (3.8), describes the field of Swihart waves trapped
by a 6rekink. A detailed description of “quantized”
properties of a6rekink is given in Section 5.

Finally, we shall describe 8rt-kinks. Let &, = —(,,
&, =—(4, &= (4, and &, = {,. Then the conditions (2.3)

give the following general consistency relations for
8rekinks:

(3.11)

cos[ky(v){,] + cos[ky(v)(,] = 0, (312)
f(C—C) + F((+{) + F(20) = C, (313)

f(2¢y) +21((y +{p) + (20
(3.14)

= 4CcosTky(v) (L, - 1)/ 2],

which determinethe discrete (“ quantized”) spectrum of
the characteristic velocities v(n) of 8r-kinks, the wave-
lengths Ay(n) = 217ky(N) of trapped Swihart waves, and
the characteristic dimensions {; and ¢, of the trapping
regions. Corresponding to the consistency condition
(3.12) and equation (2.6), we now have for the solution
of equation (2.1)

WerlQ) = Warm(C+ () + Warm(C + C4)
+ lIJZT[, m(Z _Zl) + l-|J2T[, m(z _ZZ)
+ (¢ C) +W,(¢ D).

In contrast to 41t and 61-Kinks, two oscillatory terms,
describing generalized Swihart waves trapped by an
8rr-kink and localized, respectively, in the regions =;
and =,, where the region =, lies inside the region =,,
have now appeared. The latter indicates the possibility
of interference phenomena. According to equation
(3.12), (2n + 1) Swihart wavelengthsfit into the sum of
theintervals =, and =,:

2n+1 = (20, + 20,)[ko(v)/ 21,
n=012....

We shall determine the second integer p, having in
mind an interference pattern in the region =,, associ-
ated with overlapping of the regions of trapped Swihart
waves. We take

P+0p = 20y[ko(v)/T] = 24,[2/A(V)],

(3.15)

(3.16)

(3.17)

where dp variesintherange 0 < dp < 1. Thisvaue of p
corresponds to the number of whole half-wavelengths
Ao(v)/2 which fit into the inner trapping region =,.
Using the relations (3.16) and (3.17), the total field of
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trapped Swihart waves in the region =, is given by the
expression

4nCsin[T(p + 8p/ 2)] sin[ko(v)Z]. (3.18)

This simple expression describes the result of interfer-
ence of two trains of trapped Swihart waves moving
together with an 8r-kink. For even values of p and dp
closeto zero or for odd p and &p closeto 1, thefields of
interfering Swihart waves are amost in antiphase and
the quantity (3.18) is much less than 41C in absolute
magnitude. Conversely, for even p and dp closeto 1 or
for odd p and dp closeto zero, the interfering waves are
amost in-phase and the amplitude (3.18) is close to
4AmC. A detailed description of 8m-kinksisgivenin Sec-
tion 6.

The results of this section show that in the general
case of atraveling 2rm-kink the phase difference Y(Q)
(2.6) consists of the following sum of n monotonic
functions of thetype (3.7) and s(n) = [2n—1 + (-1)"]/4
oscillatory functions of the type (3.8), describing gen-
eralized Swihart waves Cherenkov-trapped by a mov-
ing vortex:

W(Q) = @(Q) + @u(Q), (3.19)

where
00 = Z {m+nf1-f((-&)]san({—&q)} (3.20)
n=1

isthe sum of the contributions of the components of the
vortex structure of separate vortices, and

s(n)

LOEDR LGS (321)

corresponds to the collection of Swihart waves trapped
by the vortex structure.

4. GLUING OF 41-KINKS

We begin our detailed exposition of the results of the
theory of the quantized motion of 4r-kinks with the
case where the vel ocity of the kinksis close to the Swi-
hart velocity:

y=l-(v/v)’ <1 (4.1)

Keeping in mind the condition (2.13), we obtain for the
roots of equation (2.9) the expressions

1/2

2
Ko = %[y2+ /y4+2)\i2} ,
j

12
2
kl = %'|:—y2+ /y4+%\)—\2—i|
j

2000

(4.2)

No. 4



676

MALISHEVSKII et al.

v Y ] P

41t 41 41tk 41tk

21 # 2T 2 = 2Tt
-5 0 5 -5 0 5 -5 0 5 -5 0 5

Fig. 1. Phase difference  of afast 41-kink as afunction of the dimensionless coordinate 2Y42 1 AN j- The plots (from left to right)

correspondton=0, 1, 2, 3.

Setting 0 = ky/k,, we write down the relations

Ko = JW2/8MN;, Ky = A28/, (4.3)
2 2
v 1-5°A
Z=1-—=c. 4.4
/2 a5\, (4.4)

In accordance with equations (2.11) and (2.12), we aso
have

C = &/(1+39),

f(Q) = (1+8°) exp(—y/~/28/ A [2)).

These relations and the consistency conditions for
4rekinks (3.3) and (3.5) give the following egquation for
determining the parameter & = d(n):

o(n) = exp[—T(n+ 1/2)d(n)]. 4.7

Besides the formulas (4.3) and (4.4), which determine
a discrete set of wave numbers and velocities of
4tekinks, the parameter o(n) also determines the dis-
crete dimensions of the region of trapping of Swihart
waves

(4.5

(4.6)

274N = %‘En " %g - ﬁ./xxja(n)(zn +1). (48)

For this reason, the solution of equation (4.7) in the
case (4.1) describes al properties of 4re-kinks. For
small nhumbers n of the vortex modes, from equation
(4.7) we have 3(0) = 0.474, 3(1) = 0.274, 5(2) = 0.203,
and &(3) = 0.164. For high-order modes, for whichn> 1,
from equation (4.7) follows

1
3(n) = n‘lﬁw + %E In[nﬁw + %E} <1

In accordance with the formula (4.4), the maximum
value of the characteristic velocity of a4rekink is

Vs = [1=058(\/\)]vs, (4.10)

4.9
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which corresponds to the zeroth mode n = 0. For the
high-order modes, n > 1, we have

U 11

v(n) = [ 2n+1
O

" o%2In[(2n + 1)1/ 2]

AU
X Ve (411)
i

It is obvious that the condition (4.1) imposes an upper
l[imit on the number of high-order modes that corre-
spondsto the smallness of the second termin the bracesin
equation (4.11) compared to 1. Figure 1 displaysthe spa-
tial dependences of Y,,(Q) for the first four 4rekinks. As
the mode number n of a vortex increases, the width of
the region of nonmonotonic spatial dependence of a
kink, due to the Cherenkov-trapped Swihart wave, also
increases. At the same time, the degree of modulation
decreases. On this basis, equation (3.6) can be written
in the form

War(Q) = 21+ misgn[{ + {o(M]{ 1 - F(C + Lo(n), n)}
+1sgn[{ = {o(M{ 1 = F({ = Co(n), m)}

+(-1)"2m*(n)[ 1 + 62(n)]_1sin[i

JS AN,
x [8(C+ Co(m) —B8(C —¢(m))]

}(4.12)

wherein accordance with equations (4.1), (4.4), and (4.6)

f(Cn) = [1+3)]

O g V2l (4.13)
0 Y, [y'm, A gd
x exp-iel / B + +==| Ha
0 'g 2 MY ay

In equation (36) of [15] the first factor in the last
expression is dropped as an approximation. This corre-
sponds to the approximation (4.9).
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In complete analogy to 21e-kinks of the sine-Gordon
model [17], the spatial size of our vortices is much
smaller than the Josephson length:

172

Y, Y'm, _
A7 { 2}\} <)\ (4.14)

This similarity is literal for sufficiently high modes,
when A/A; < y%(n) < 1 and theleft-hand side of theine-
quality (4.14) approximately assumes the standard for
Josephson el ectrodynamics form

Ay(n) = A 1= vin)/vEis],
of the Lorentz-contracted Josephson length. The size of
the region of Cherenkov trapping of wavesisIn(ren?) > 1
times greater than A;.

We now turn to the asymptotic limit of low veloci-
ties,

vV <V, (4.15)
which obtains for very high-order vortex modes. Then
we obtain from equation (2.9)

ke = AN (vo/v) > AT
0 (Vs v) (4.16)

ky = A

and for the expressions (2.11) and (2.12) we have
C = 2(A/A)*(v/vy)?, (4.17)
f(Q) = exp(-I¢l/A)). (4.18)

As aresult, on the basis of the consistency conditions
(3.3) and (3.5), we abtain the following expressions for
the size of the region of Cherenkov trapping of a Swi-
hart wave:

5 I s (4.19)
for the quantum velocity of a4re-kink:
v(n) = v /A/AJAN)/ 21N < v, (4.20)
and for the wave number of atrapped wave:
ko(n) = 2rm/A;A(n) > A (4.22)
Corresponding to these formulas
War(Q) = D2n(C+ {o(N) + §2n({ —o(N))
VGns oS oamd 42

* [8(C + Co(m) —B8(C = Lo(M))]

where the function ¢, is determined by the expression
(1.5) with v = 0. The characteristic scale of the spatial
variation of aslow 4tekink correspondsto the ordinary
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Fig. 2. Gluing of aslow 4rekink from two 2rekinks; Aj/A = 10,
n = 1600. The velocity of the vortex is v = 0.1vg, and the
distance between the 2rekinksis 2{g = 10.8);.

10 2/M,

Josephson length. The scale of oscillations that corre-
spondsto atrapped Swihart wave is small compared to
the London length. The amplitude of the trapped wave
is also very small. However, only its existence allows
the existence of the countable set, which we have
obtained, of moving 41kinks with a condensation point
as v(n) — 0. In the formula (4.22) the functions ¢,
describe 2rr-kinks separated by a distance 2{y(n) > A;.
The small-amplitude Cherenkov oscillations, which are
described by thelast term in equation (4.22), glue these
2re-kinks into a single moving 4tekink. The cooling
phenomenon isillustrated in Fig. 2.

We note that the phase difference (4.12), corre-
sponding to afast 4r-kink, can also be represented asa
sum of two monotonic 21-kinks,

T+ Tisgn({ £ {o(M){ 1 - F(C £ {o(n), N}, (4.23)

which are combined into asingle 4rt-kink and are Cher-
enkov trapped Swihart waves, whose field is described
by the last term in equation (4.12). In this case there is
no sense in talking about gluing of 2r-kinksfor n > 1,
when the amplitude of the gluing Swihart wavesisrel-
atively small.

Using the relations (4.3)—<4.5) and (4.8), we find
from equations (A.1), (A.4), and (A.5) the magnetic
field of afast 4r-kink moving with velocity closeto the
Swihart velocity,

_ % B glxFdo
HudX, Q) = 27/4AN1+6 eXP N O
| U4 ¢ - ZoID D va |Z+Zo|D
o——- =2 JO——
G v el sy
g oY
+28(-1)"[8(C + o) -8 - )] COS%E%

According to eguation (4.24) the magnetic field of a
fast 4re-kink is concentrated near the plane of the
Josephson junction at distances of the order of the Lon-
don length. The region of localization of the magnetic
field ismuch wider along the propagation axis of avor-
tex. The monotonic component of the field is localized
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onthesections+{,— L/kyd < { < £(, + L/ksd, where {; =
2714, [3AN; T(n + 1/2). On the interval L, < { < {, the
magnetic field oscillates with period 217k, = 25411, /OAA
and the amplitude of the oscillations is 2 times smaller
than the maximum value of the monotonic component.

We aso note that as the mode numbers increase, the
maximum value of the magnetic field decreases as

0./ = [(InTm)/mm] 2.
Thelimit v < v,, using the relations (4.16), (4.17),
and (4.20) we obtain for the magnetic field

08 OIxFdg

H4TI(X1 Z) = 4)\)\ eXpD )\ |:|
0l¢- Z0|D ol¢+ Z0|DD
X + eXx
DeXpD N OSP4
_(_1)n|:| (pO

W%exp(—koln d)
(ALY
X [8(Z +Lo) - 8 — L)l cos(kolZ]),

where k, = )\j_l [2TmVI n(T[n)\j/)\)] > 1/A. The maximum
values of thefield (4.25) reached at { = +{, arelessthan
for the fast vortices and do not depend on the mode
number. In contrast to equation (4.24), the oscillating
part of the field of the slow vortices is confined within
a distance =1/k, close to the plane of the Josephson
junction which is much less than A. The amplitude of
the oscillations is ko) /4 > 1 times less than the maxi-
mum value of the monotonic component.

Let us now compare the magnetic field (4.24) of a
slow 4rekink inside the junction with the field of the
ordinary (A < Aj) 2rekink (1.6) with v = 0. The expres-
sion (4.24) shows that the monotonic component of the
magnetic field of a 41-kink is the field of two ordinary
21tkinks, which, according to equation (4.19), are sep-
arated by a distance 2{, much greater than the scale A
of the spatial variation of the 2r-kinks themselves. In
the region from ¢ = -, to { = {, the magnetic fields of
21tkinks are “joined” by a function oscillating with
period 217k, < 2{, and alow amplitude, describing the
magnetic field produced by the trapped Swihart waves,
which glue two 2re-kinks into a single 4tekink.

We shall now discuss the energy of 4re-kinks. We
obtain from equations (A.7)—<A.9)

W,, = 2(1-C)%k\,

(4.26)

X [1+ (1 + 2k (o) exp(—2k, (o) ] Wor,
Wiy = 4C(1=C)(1+ v/ VIKA Wy, (4.27)
W, = 2C*T(2n+ 1) (v/ V) °koh Wy, (4.28)
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where W, is the energy of a 2rekink at rest with A < A,
and C is given by the formulas (4.5) or (4.17). Specifi-
cally, for the main mode with n = 0 we find from equa-
tions (4.26)—(4.28)

W = 3.05,/A;/ AW,
Wy = L7JA /AW, Wy, = 0.98,/A /AW,

W,, = 0.37,/A,/ AW,

For n> 1, when the velocity of avortex is described
by the expression (4.11), the energy of the vortex is
determined primarily by W,,,:

N _ S0Inm)H? A
W =W, = 22T [Siw,,
2

D/D

and we have for the energy of the gluing waves from
eguation (4.28)

(4.29)

= 2W,, / > 2W,,.

2In (nn)
(m)°

The smallness of the energy W,, compared with W, cor-

responds to the assertion that the kinks are glued

together by Swihart waves. The gluing energy of the
kinksis even smaller:

W, = D<W

2W,,, / 1- (4.30)

2
g'”(””)ﬂzwm/ _ovQ

Won = 0 @3y

<W, <W,,.

The expressions (4.29)—4.31) are valid for vortices
with velocities close to the Swihart velocity. This
means that the large mode number n cannot exceed the

value (/2 \/m\)In(/2\;/A) > 1. For modes with even
larger numbers, when n satisfies the inequality

"/é)\q D‘/é)\

ll:l> 1

the total energy W of avortex is also determined by the

sum of the energies of the components of its 2r-kinks:
W = W,, = 2W,, (4.32)

and the energies of the waves and the gluing energy are,
once again, small:

W, ~ [2}\ |n25;ﬁ/(nnx J-)}2W2" <W,,
(4.33)
TINA|
W, = [2)\In i/ (TiA, )}2w2n <W, <W,.
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Fig. 3. The phase difference Y of afast 6r-kink as afunction of the dimensionless coordinate 2V /)\)\j . The plots (from left to

right) correspondton=0, 1, 2, 3.

The formula (4.32) corresponds to the formula (4.29) in
thelimit (4.15). Even though the energies (4.33) are small
compared to (4.32), only the presence of waves leads to
the cooling phenomenon, and therefore to the existence
of a4rekink. This aso pertains to the relations (4.29)—
(4.31).

5. GLUING OF 61-KINKS

We shall make use of the definite similarity between
61 and 4rr-kinks. The relations (4.1)—«4.6) hold for
6rekinks moving with velocity close to the Swihart
velocity. The following new equation for the parameter
d(n) arises from the consistency equations:

3(n) = exp E)—né(n)[n +05+ ﬂ} E
O 6 1o

(5.1)

+ exp[1—2n6(n)[n +05+ D 1)° }

0

We have for the quantized size of the region of Cheren-
kov trapping of waves

24(n) = 2**n{n+ 0.5+ (=1)"/6]./3(N)AA,.

For thefirst few modes of a6rekink wefind from equation
(5.2) 8(0) = 0.603, 3(1) = 0.434, &(2) = 0.298, &(3) =
0.262, and d(4) = 0.213. Correspondingly, the highest
velocity of a6rekink correspondston=0and is

v {0) = [1—0.37%}\/5 (5.2)

i

which is somewhat higher than the highest velocity of

a 4r-kink (4.10). For n > 1, but under the condition
(4.1), we have

8(n) = [n+05+( é)}

X In%[n+0.5 0N 1) }g< 1
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The explicit form of the solution of equation (2.1) is
Wer(€) = 31+ msgn[{ + {p(n)]
x{1—-1£(C+o(n), M} +msgn{1- (¢, n)}

+1tsgn[{ — {o(N)]{ 1 - F({ = o(n), n)} (5.3)

+[6(Z +Zo(n)) =B — Zo(n))]118°()
x (1+8(M) {(-1)"/3sin[2"2/ [A(MAA]
—cos[ 277/ J3(M)AN,1sgnl},

wheref({, n) isgiven by the expression (4.13). Figure 3
illustrates the spatial dependence of a moving 6rtkink
for thefirst four modes, for which the roots of eguation
(5.1) can be found numerically.

Slow 6rtkinks, moving with velocities satisfying
the condition (4.15), correspond to high-order modes of
vortices, for which

ﬁ)\

> NER
ns 2 n)\ > 1. (5.4)

We obtain for the width of the region of Cherenkov
trapping of waves, the velocity of a slow 61tkink, and
the wave number of the trapped generalized Swihart
wave, respectively,

nn)\

2y(n) = 2A, Inﬁ > 2M;, (5.5)
)\ nn)\
v(n) = v nn)\ln ) l<vy (5.6)
_ nn)\ 1
Ko(n) = I L o X' (5.7)
J
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Fig. 4. Gluing of aslow 6rekink from three 2rekinks; A/A =
10, n=3200. Thevelocity of thevortexisv = 0.1vg, antlthe
distance between the 2rekinksis (g = 10.8);.

The solutions of equation (2.1) for slow 61-kinks can
be written in the explicit form

Wer(Q) = Gan(L + Lo()) + §2n(Q) + 92n(C — o))

2\ nn)\
)\

— cos[ky(n){]1sgnd } [8(C + Lo(n) —B(C —Lo(n))],

where ¢, is determined by the formula (1.5) with v = 0.
Thelast oscillating term of the formula (5.8) is compar-
atively very small in magnitude. However, the field of
the Cherenkov-trapped Swihart waves which is
described by this term makes possible the existence of
a moving 61-kink. Just as in the case of a 4t-kink,
guantized discrete states of 67t-kinks possess a conden-
sation point asn —» oo, According to this formula and
equation (5.5) with ¢ varying from left to right, We,
increases by 2 starting approximately at a distance A
near { =—(,. Then, at adistance approximately equal to
(o and much greater than the Josephson length A;, the
phase difference changes very little. Further, near { =0,
once again, Wg, increases by 21 at a distance of a
approximately A;. Once again, equation (5.8) at a dis-
tance of about {, correspondsto asmall changein Yg;.
Finally, alast increase by 2rtoccurs near { = {, approx-
imately at a distance A;. Figure 4 illustrates the depen-
dence described. On this basis an interesting observa-
tion can be made, similar to that made in Section 4 for
a 4rekink trapping a large number of Swihart waves.
Specifically, a 6rekink in the case of slow motion of a
multivortex is clearly separated into three 2re-kinks,
moving synchronously with a definite velocity (5.6). At
the same time, Swihart waves with comparatively low
intensities, which are trapped by a 6rekink and move
together with it, make possible the existence of this
kink. Being trapped by the vortices, the Swihart waves
glue together three 2re-kinks into a single 6rekink.
Thus, once again, we can talk about Swihart wavesasa
kind of glue for Josephson vortices.

5 11 "/3sin[kg(n)] (5.8)
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We shall now consider the magnetic field and the
energy of a6re-kink. For avortex moving with aveloc-
ity close to the Swihart velocity, we obtain from equa-
tions (A.1), (A.4), (A.5), and (5.3)

_ ® B olxFdg
Hen(X, 0) = 27/4)\m1+6 D ;\- U
0 g.um z0-%n o4 s 18 O
Iy RN o it O——
erXpD /8 mD“L exp [J—D
repll ”‘VS'ZJ;_AZ"'E 59
+28(-1)"[6(C + o) —6(C = To)]
Mg _(-)"nd0
B______
xcosm/emj 6 DD

Just as in the case of a fast 41e-kink, the field (5.9) is
localized near the plane of the Josephson junction on a
scale of the order of the London length, while the char-
acteristic scale of variation of the monotonic compo-

nent is approximately 27 /AN;/3 > . The field of
Cherenkov-trapped waves is different from zero on an

interval =, and oscillates with period 2%n OAA; > A.
As the mode number increases (i.e., the vortex velocity
increases), the maximum value of the magnetic field
decreases.

For dow 6rekinks, when the inequality (5.4) is sat-
isfied, we obtain from equations (A.1), (A.4), (A.5),
and (5.7)

08 O IxFdg

Hen(X Q) = exp
; D, PT X O
01820, o180, g8+ S
"BeXpD T, 07 ORIy 0T PO Ty
(5.10)

-(- 1) eXD( —Kolx F dI)

Ko i
+[8(Z +20) ~ 8¢ ~ L)l costhol?] - (-1)"G

where ky = (T0V/A)In(TmA/2\) > LA, Similarly to a
4rekink, the monotonic component of the field of a
slow 6rekink penetratesinto superconductorsto the Lon-
don length, and the contribution of the Cherenkov-trapped
Swihart waves to the magnetic field is locdized near the
plane of thejunction on asmaller scale, /k, << A.

The expression (5.10) demonstrates the assertion,
made after equation (5.8), about the gluing of vortices.
Indeed, the monotonic part of the field (5.10) in the
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junction can be represented as a sum H,(C + () +
H,{(Q) + Ho(C — ), where H,,, is described by the
expression (1.6) with v = 0. Thismeansthat thefield of a
6re-kink can be represented as a superposition of thefields
of three comparatively widdly separated 2rekinks. The
trapped Swihart waves, having low intengities, glue these
three fields into a single field, correspondingly to a
slowly moving 6rekink.

We shall now demonstrate the effect of the gluing on
the energy of a 6re-kink in the limit of large n, when a
vortex has trapped a large number of wavelengths. Just
as for a4rekink, in this limit the gluing energy W,,,, is
small compared to W,,, and compared to the energy W,
of thewaves. For n> 1 wefind from equation (5.3) and
the definitions (3.19)—«3.21) and (A.7)—«A.9)

Wi, = 3K A Wap = 3W,/ /1 - (V/ V)%,

W, = 4Trncz%gko)\ War
S
82 f 3 v f
[3Eh Jin }ZWZ,T/ 1-HF < W

We can seethat the energy of avortex isdetermined pri-
marily by the energy of three 2rekinks (1.7) and, corre-
spondingly, the energy W,, of the gluing wavesis low.

For avortex with velocity v < v, when theinequal-
ity (5.4) holds, we have

W, = 3W,,,

8 2\
Wy = [én A

The last expressions show that, to a high degree of
accuracy, the energy of a61ekink consists of the energy
of three 2rekinks. The energy of the Swihart waves that
glue these 2rekinks together is much less than W,
which corresponds to the idea of gluing of Josephson
vortices by the trapped waves.

The properties established here and in Section 4 are
manifested just as strikingly for Josephson vortices cor-
responding to 8rekinks. This will be examined in the
next section.

|nz"n)‘ }3W2n <W,.

6. GLUING OF 8r=KINKS

In Section 3 it wasindicated that the structure of the
field of Swihart waves Cherenkov-trapped by an
8rr-kink is more complicated than that of the field of
trapped waves in the case of 4rtand 6rekinks. Indeed,
now, besidesthe number n characterizing the number of
wavelengths of the trapped waves in the sum of the
intervals =; and =, and corresponding to equation
(3.16), another integer p, determined by the relation
(3.17) and corresponding to the interference of waves
in the interval =;, plays an essential role. Using the
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parameter 8, which was introduced in Section 4 and
which for 8mkinks is a function of the numbers n and
p(d(n, p)), we can write the consistency conditions
(3.13) and (3.14) in the form

exp[—Ko({2—{1)8] + exp[—Ko(Ly + (2) 8]
+ exp[—2kyl,0] = &,
exp[—2ko{10] + 2exp[—Ko({y + (2) 8]
+ exp[—2kol,0] = 48°cos(ky(Lo—T4)/2).

Introducing the notation a = 1(2n + 1)d, we can write,
using equations (3.16) and (6.1), thefollowing equation
for the parameter o:

(6.1)

e(1+8)°
(1+6e) (3% -1)
For theintervals =, and =, we have

_ el 1 et-10
= 45%cos [25'”D1+ea D}. 6.2)

2 _a
-1
27 [156 O
' f\} ﬁ De=+ 10
)\)\ De +1|:J
2( |[—= Lin
2 ﬁ [52 —aD

Just as in the two preceding sections, for small values
of n corresponding to a very small difference of the
characteristic velocity of an 8rekink from the Swihart
velocity, equation (6.2) together with the determination
of a can be solved numerically. The values obtained for
o(n, p) and for the quantity dp(n, p), characterizing the
interference pattern, determined according to equation
(3.17) are presented in the table. According to equation
(4.4), d(n, p) determines the characteristic velocity of
an 8rekink. The 8rekink, which depends monotoni-
cally on the argument { and does not oscillate, corre-
spondsto n = p = 0. The maximum characteristic veloc-
ity of uniform motion of such an 8rekink is

V{(1-0.290/1)),

which is higher than the maximum velocities of a
4tekink (4.10) and a 61e-kink (5.2), and for the regions
of Cherenkov trapping of waves we have

22,(0,0) = 0.91,/AN;, 2750,0) = 3.42,/AA,.

Only one wavelength A(0, 0) = 217ky(0, 0) = 4.33 /AX,

fits into the segment 2¢; + 2(,. This wavelength is
greater than the wavelength of the trapped waves in
8rekinkswith n> 0. Figure 5 shows plots of 8re-kinksfor
thesmallest numbersn=0(p=0)andn=1(p=0, 1, 2).

We shall now consider hi gh—order modes of vortices

[2A

Vimax =

1<€n<
”m\

No. 4 2000



682

MALISHEVSKII et al.
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Fig. 5. Phase difference  of afast 8m-kink as afunction of the dimensionless coordinate 2Y42 1 AN j- The plots (from left to right)

correspondton=0,p=0;n=1,p=0;n=1,p=1n=1p=2

where on account of the right-hand inequality the char-
acteristic velocity of an 8rekink is still essentially the
same as the Swihart velocity. Then equations (6.1) can
be reduced to the following:

exp[ko(v)({,~11)3] = &,

exp[—2ky(v);8] = 48°cos’[ky(v)(Lp—1y1)/2].

Hence, using the relations (3.16), (3.17), and (4.3) we
obtain

22, = 27" /AN 3(p + 8p), (6.3)
22, = 27" /AN 8(4n +2-p-3p), (6.4)
3= 2A/T (6.5)
and the following equation for dp(n, p):
exp[—(2n+1-p-93p)A] = 2A/T, (6.6)

where A = (2n + 1 —2p — 20p)~tIn|2sin(ti(p + 8p)/2)|.
A particular case of such an interference of trapped

waves on the section =;, when the amplitude of the

oscillatory dependence (3.18) is much less than 41C,

corresponds to the solution of equation (6.6) with

n+r—2]In‘1%]< p<2n-3,
when
1-(-1)°
op = —(2 )
. (6.7)
+ (—1)pn‘lexpErN[p— -G } 0
O 2 1
where

N = N(n, p)=4[4n—2p+1+(<1)°"

<ingrth- B 1 (110
Theformulas (4.3), (4.4), (6.3)—«6.5), and (6.7) makeit

possibleto obtain the following discrete spectrum char-
acterizing the quantities for fast 8rekinks:

v(nP) = g o2y, p);')\\‘_'

s J

22,(n, p) = 27 p/MNAA,,

Table
n
p 0 1 2 3
3(n, p) op(n, p) o(n, p) op(n, p) o(n, p) op(n, p) 3(n, p) op(n, p)

0 0.672 0.421 0.355 0.818

1 0.439 0.735

2 0.511 0.139 0.303 0.379 0.228 0.672
3 0.466 0.954 0.263 0.708
4 0.483 0.039 0.286 0.186
5 0.472 0.987
6 0.476 0.007

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

No. 4 2000



GLUING OF JOSEPHSON VORTICES

22,(n, p) = 2‘”“(4n +2—p) JTINAA,,
= 2% [TNAA,.
ko(n

As the number p increases, the size of the region =,
increases and the size of the region =, decreases. In other
words, the size of the region of such interference of
trapped waves, where the waves compensate one another,
becomes larger. At the same time, for a fixed vaue of n,
the characteristic velocity of an 8rekink, which is essen-
tialy the same as the Swihart velocity, increases.

The equation (6.6) holds in the limit of large values
of n and not too large values of p, when only the first
few terms need be retained, approximately, on the left-
hand sides of equations (6.1). Conversely, for p closeto
2n the size 2¢, of the inner trapping region is close to
2(, and the approximation (6.6) of equations (6.1) is
not accurate enough. For thisreason, for such values of
p we shall find the values of &(n, p) and dp(n, p) directly
from equation (6.1), after which we shall determine the
parameters characterizing an 8rekink. Thus, for p = 2n,
op=0andp=2n-1,9p = 1wefind: d = 0474, 2{; =
3.64n /A, 20, = 3.64(n+1). /AN, VIve= 1—058(\/\),
and A, = 211k, = 3.64,/A); . Correspondingly, for p =
2n—2,0p=0andp=2n-3, dp = 1wefind d = 0.274,
20, ~ 2.77(n—1) /AN, 20, = 3.64(n+2) /AN, ViV =
1-1.19(MN,), and Ao = 210Ky = 2.77. /AN, .

As p decreases further, the asymptotic equation
(6.6) is applicable to a high degree of accuracy. For
example, even for p = 2n — 4 the accuracy of the solu-
tion (6.7) of thisequation is 3%.

Finaly, we shall consider dow 8rekinks, whose mode
numbers satisfy the condition (5.4). Then the relations

(4.16)4.18) are satisfied, and the consistency equations
(3.13) and (3.14) reduce to the following:

=G 2N

Ao(n, p) =

(6.8)

0 2440 - 8A _cos [ o(Zz 1)}
j 0 j 2
Using equation (3.17), according to equation (6.8),
the characteristic parameters of a vortex can be repre-
sented in the form

= T(p + 0p)/ Ko,
vV = v/ JKA < v,
Ao = 2TV/Ky = 4N A <A, (6.10)
The unknown dp(n, p) is determined by the equation
ANA
el

J

20, =1(4n+2—p—-0p)/kKy,
(6.9

exp{—2(2n+1-p-0Op)A} = (6.12)
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The presence of the small parameter (A/A;) ontheright-
hand side and the fact that this parameter is positive
immediately indicate theinequality 2n+1—-p—9p > 1,
which followsfrom equations (6.10) and (6.11). Hence,
in accordance with the formulas (6.9), immediately fol-
lowsthe condition 2¢, > 2¢, for the size of theinner region
of Cherenkov trapping of waves to be small compared
with the size of the outer region =..

Sincetheright-hand side of equation (6.11) issmall,
this equation can be written in the following approxi-
mate form:

In[Ti(2n—p)A;/ 2A]
2n—p = Na(n, p).

It is obvious that for p < n this equation has no solu-
tions. For interference of trapped wavesintheregion =,
close to complete compensation, we have from equa-
tion (6.12):

2A =

(6.12)

dp(n, p) = [1-(-1)"]/2

+(=1) 1T exp{ ~(p—n)NA(", P)},
and

TIA 2\ i
n+n/|nj<p<2n—m\lnﬁ)\.

Interference leads to doubling of the amplitude of
the oscillations if

|[sin[r(p+0p)/2]| = 1. (6.13)

The corresponding solution obtainsfor 1 < n—p < n,
when n — p = nin2/In[rmA;/2A]. In accordance with
equation (6.13), dpiscloseto 1 for even p and O for odd p.

When the inequdity (5.4) holds, equation (6.11) and
hence the system (6.8) are asymptoticaly exact for p <
2n. We shall show that the consistency equations (3.13)
and (3.14) have no solutions for p < 2n, i.e., we shall
show that no solutions are lost on switching from equa-
tions (3.13)—(3.14) to equation (6.8).

Indeed, we set p = 2n —p; (p; < n), X = KA =
TA(V/VYYN, < TAA; < 1. Then equation (3.13)
assum%theform

exp[—(py +1-0p)x] + exp[—(2n + 1)X]
Op)x] = 2AX/TA;.

This equation possesses solutions that satisfy the con-
dition x < TA/A; only for sufficiently large val ues of p:

p, > (ZAJITO\)In(Aj/ﬁA). Thus, the exact consistency
equations do not admit solutions for values of p closeto
2n. The solutions with smaler p values (p < 2n —

(%j/m)ln(Aj/ﬁA)), as can be easily check, can be
described by the approximate equation (6.8). For this
reason, equation (6.8) is suitable for describing all
8r-kinks moving with velocities much less than the
Swihart velocity.

+exp[—(2n+2+p; -
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Fig. 6. Typical gluing of aslow 8rekink; A;/A =10, n=2000;
curve 1 corresponds to p = 3000, v = 0.18vg curve 2, p =
2200, v = 0.13vg curve 3, p = 1886, v = 0.12v,

To demonstrate gluing of vortices clearly, we shall
write equation (3.15) in the limit v < v, when equa-
tions (4.16)—(4.18) hold:

Wen(Q) = 4+ T 1—exp(-{{ +{J/A)]sgn(L + ¢p)
+ 11— exp(-{ + 4o /A)Isan(L + Ly)

+ 11— exp(—{{ — L/ A)]sgn({ - Cp)

+ 11— exp(—{ =yl /A)]san(C—Cy)
+4T(A/ N ) (v/ v )] cos[ko(v) (12 -]

x sgnZ[B(={ + ;) —=6(=C~¢y)]
+ cos[ke(v)(I2] = ¢2)]
x sgnL[B(=L +25) —6(=—-C2)] }-

The smallness of the oscillating term due to the trapped
waves is obvious here, i.e., the smallness of the field
of waves, which glues individual 2r-kinks, is obvious.
In order to see more easily the spatial separation of the
2rekinks from which the 8rekink is glued, we shall
rewrite equation (6.10) using the relation (6.12):

— )T\
%}/(Zn—p).

(6.14)

- 2m _
ho= i = 2>\j|n[
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This permits writing immediately
In[(2n—p)TA;/ 2A] S

27, = pA, — A
In[(2n—p)TA;/ 2\
20, (an-pip, i B 5

The fact that the inner region of Cherenkov trapping of
waves by a slow vortex islarge compared with the size
A; of a 2rekink should be obvious because equation
(6.12) has no solutions for p < n. Figure 6 illustrates
four 2m-kinks, which are strongly separated in space
and are glued by Cherenkov-trapped Swihart waves
into asingle Josephson vortex consisting of four phased
elementary vortices.

We shal demonstrate how the interference of
trapped waves in the section =, is manifested and how
the phenomenon of gluing is manifested in the form of
the magnetic field and the energy of 8rt-kinks. For a
vortex with v = v, we have

@ o olxFdp

Hg (X, () = ex
gn(%: C) 27/4AM1+52 pD A O

O]
X EeXp(_kﬂZ +(,|) + exp(—ky|{=Cy)

+ exp(—Ky|C + ¢y ) + exp(—K, | —Cy))
+20[0(C + () —8(C ) —6(C + ¢y) +6(C - )]
x sin[ko({,—1C[)] +43[0(C + {y) —8(C - )]

x sin[g( p+ 6p)} cos(kq() El

where k, and k; are described by the expressions (4.3).
Just as in the case of 41+ and 61e-kinks, the magnetic
field of afast 8r-kink penetrates into the superconduc-
torsto adistance of the order of the London length, and
the characteristic distance of variation of the monotonic
component is 1/k; > A. The field of the Cherenkov-
trapped Swihart waves oscillateswith period 217k, > A.
As the velocity of a vortex decreases, the maximum
value of the monaotonic component of the field and the
amplitude of the field engendered by the trapped char-
acteristic Swihart waves decrease.

The most striking difference of the magnetic field of
an 8rekink from that of 4t and 61-kinks is due to the
presence of two overlapping regions of trapping of
Swihart waves, =, and =,. Asaresult of theinterference
of waves from different trapping regions on the section
from -, to {4, the term with the cosine contains the
additional factor 2sin[(p + 0p)1v2]. The appearance of
such afactor resultsin the suppression of the amplitude
of oscillations of the magnetic field, if p is even and
op<lorifpisoddand1—-9p < 1.
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The magnetic field of an 8rekink moving with
velocity v < vghasthe form

@ O  glxxdp

[ 0le+¢ ole+ lem

exprt X, 2|D+epD

0l¢-=44 lem 0l¢=%JmE
+exp D+expD—————)\j D}E

%
KoAA

sexp(—Kolx Fdl) (6.15)

j
X @9(1 + () +6(0—Cy) —6(C + () —B8(C - )]

x sin(ko(L2—12])) +2[({ +21) —6(( - )]

_ O
x sm%[(p + 6p)%605(k01) 51

where ky = (V/v)%A\ > 1/\. Similarly to the magnetic
fields of dow 41t and 61ekinks, the oscillating part of
the magnetic field is confined within a small distance
from the plane of the junction, 1/k, < A.

The expression (6.15) shows that when the inequal-
ities2(, > A\;and {, - (; > \; are satisfied, the magnetic
field produced in the junction by a slow 8rtkink is a
sum of thefields of 2rekinks, which are separated by a
large distance, are localized near the points{ = —(,, { =
—;,(=¢(;,and { = (,, and are glued into asingle field
by Swihart waves of low intensity. Only the presence of
such Swihart waves which have a low amplitude and
interfere ontheinterval =; makes possible the existence
of the solution (6.14)—a slow 8rt-kink.

Finally, we shall consider the manifestation of the
gluing of vorticesfor the example of the expressionsfor
the energy of an 8r-kink, trapping afield with alarge
number of wavelengths. Keeping in mind the inequali-
ties W,y < W, < W,,,, we confine our attention to the
two largest contributions to the energy. For a vortex
moving with velocity v = v, we have

4W, .
W,, = 4TtkoA ;C3(v/ v)°
x[2n+1—(=1)"(p + dp) cos(TOP) W, < W,y

The uniqueness of the latter expression as compared with
the wave contributions to the energy of 41t and 6rekinks

Wm = 4kl}\jW2T[ =
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Fig. 7. Gluing of an 8rekink from two 4re-kink; A;/A = 10.
The velocities of the vortices are =0.18v. For an 8rekink
n = 2000 and p = 3000. For the 4ttkinks n = 500. The same
number of wavelengths, 500.5, fits on the sections[—(5, 4]
and [{4, (o] (for an 8rrkink) and on the segments where
Cherenkov oscillations are present (for 41-kinks).

lies in the appearance of aterm containing a cosine and
arising because of the interference of trapped waves. We
can see that the energy of the vortex consists primarily of
the energies (1.7) of four 2rekinks, and the energy of the
gluing wavesis small.

The energy of an 8re-kink in the limit v < v, also
consists primarily of the energy of four 2rekinks which
are almost at rest:

WSn = 4W2r[1

and the energy of the trapped Swihart waves, which
give rise to the gluing of the 2rekinks, once again is
small.

In concluding this section, we shall discuss the
results presented in Fig. 7. The top curve in this figure
corresponds to an 8rekink with n = 2000, p = 3000,
when 2, = 29\; > {, — {; = 9.66A; and v/v, = 0.18.
Each of the two bottom curves, differing from one
another only by ashift along the { axis, correspondsto
a4rekink (naturally, glued from 2re-kinks) with 2¢, =
9.66\; and v/vg = 0.18. Comparing the three curves
presented in Fig. 7 shows clearly the meaning of gluing
of an 8rekink from two 4tekinks, each of which is
glued from two 2re-kinks. We underscore that this
assertion is based only on the quantitative possibility of
a substantial spatial separation of the two pairs of
2re-kinks forming the 8rekink.

One can talk about a substantial separation of pairs
of 2rekinks forming a single 8re-kink when the size of
each pair ({, — ;) issmall compared with the distance
between the pairs (2¢,). In accordance with equation
(6.9), such a possibility occurs for p > n and corre-
sponds to the case of strong suppression of Cherenkov
oscillations on the segment =;. Since each pair of
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2rekinks is a 4rekink, one can talk about gluing in the
limit p > n as gluing of two 4r1tkinks.

As p decreases, the amplitude of the interference
pattern in the region =; increases and the distance
between the pairs of 2rt-kinks decreases. The smallest
value of p (corresponding to the condition (6.13)) cor-
responds to the following sizes of the trapping regions:
20, = AIn(mmA;/27), 20, = 3\In(TmA;/2)), i.e.,
20, = (,—{; > \;. Thismeansthat the size of each pair
of 2rekinks and the distance between these pairs are
close. In this case, naturaly, it is natural to talk about
the fact that an 8rekink is glued from four 2rekinks
separated by approximately the same distances.

7. CONCLUSIONS

Summarizing the material presented above, it should
be underscored, first and foremost, that application of the
Aubry-Volkov model was very productive. This made it
possible to formulate in a comparatively simple analytical
form atheory of Josephson vorticeswhich carry afinite
number (greater than one) of elementary magnetic
fluxes. The analytic theory of our work not only made
it possible to formulate a closed theory describing such
vortices (multikinks) but it also established a new role
for the Cherenkov interaction of Josephson vortices
with Swihart waves. It was shown that moving multi-
vortices are coherent structures, carrying within them-
selvesthe field of trapped Swihart waves. The frequen-
cies and wave numbers of such waves are related with
the velocity of the moving vortices by the Cherenkov
resonance condition (2.9). Thus, the phenomenon of
Cherenkov trapping of Swihart waves by Josephson
multivortices was predicted. On the other hand, the prop-
erties which were established for the coherence of mul-
tivortices with the waves trapped by them made it possi-
ble to predict discretization (nonlinear quantization) of
the characteristic velocities of freely moving Josephson
multivortices. Finally, we associate the existence of mul-
tivortices itself with the phenomenon of gluing of indi-
vidua vortices by the glue consisting of the trapped
Swihart waves. The latter phenomenon, which we pre-
dict, is seen especialy strikingly for high modes of the
coherent structures which we studied, where the size of
theregion of gluing ismuch larger than the size of individ-
ual glued vortices. We note in closing that the phenomena
which we predict could have a bearing not only on the
dynamics of Josephson vortices but in a number of other
cases on the nonlinear dynamics of vortices. It can be
asserted that the theory expounded above satisfies, to a
definite extent, theinquiry of the experiment formulated in
[1] back in 1981. Indeed, the authors of [1] were confi-
dent that their experimental results on microwave radi-
ation from a long Josephson junction were consistent
with the fluxon picture, where according to [1] acollec-
tive motion of coherent multifluxon groups corre-
spondsto astable stationary state. The same conclusion
was drawn in [1] in connection with an analysis of the
current-voltage characteristic (IVC) presented there.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 90

MALISHEVSKII et al.

Aside from this, it can be inferred that the theoretical
discovery in our work of adiscrete spectrum of charac-
teristic velocities of Josephson vortices could find a
unique reflection in the IVC of long Josephson junc-
tions carrying multivortex structures. A theoretical
investigation of the IV Csin the Aubry—Volkov model is
asubject of aspecial investigation.
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APPENDIX

We shall derive the contribution of trapped wavesto
the magnetic field of a 2rm-kink and to the expression
for the energy of a Josephson junction. In the calcula
tion of the magnetic field (2.14), we note that the dis-
continuous functions sgn¢ and 6(¢) appearing in the
expressions (3.7) and (3.8) need not be differentiated,
since the terms arising in so doing cancel one another.
Thelast property follows from the fact that there are no
jumpsin the phase difference at the matching points &,
and it is guaranteed by theidentity 1 =f(0) + C. Taking
this remark into account, the magnetic field (2.14)
assumes the form

H Q) = 3 Halx (=&

o (A.1)
+ 3 HU 22D,
where
B
H , =
0 = 2
o - . (A.2)
N (O A CE 20 e -L1(4)
Jad X Odg
®Cko
H e =
02,29 = 25

Z D/ N (A.3)
[ e B ED Binig 1 - ).

=
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GLUING OF JOSEPHSON VORTICES

Thelast expression describesthe magnetic field generated
by Swihart waves trapped in the interval =, = [, {{,
which are emitted by a moving vortex and are trapped
by it in the process of motion.

To simplify the expression (A.2) we note the follow-
ing. Under the conditions discussed A < A;, freemotion
of multikinks is alowed only with velocities v < vg
The characteristic scale of variation of the function ()
is=1/k; and it is aways much greater than A—the size
of the effective region of integration over {' in equation
(A.2) (thisfact follows from asimple analysis of equa-
tion (2.9)). For k,A < 1, wefind from equation (A.2)

Ho(x, Q) = ———

2k A\

_ (A.9)
exp[— k|7~ [x Fdl/A]

2-KAA2=2(v/v )3 (1-KAD)*

Next, using the integral representation of the Mac-
donald function

KD/Z +X°0 _

g o~

s
x exp[ik{ — x| /k?+ A 7]

and integrating over ¢' and k in the complex plane, we
obtain from equation (A.3)

k
Hux, 7,79 = — Ko

AN 1+ KoN?

xep(-xFd ko + A Sn(l=Ld) (5 )
+ sin(kol + 24) — 2c0s(koZ ) Sin(kolZ)) ]

—1(% (=09 —1(x, { + {9 +2c0s(Kels) (X, 0),

where the function I(x, {) hasthe form

J-r—l

« SPCTIN oot 7 230
r +k)\

The contribution of this integral to the magnetic field
(A.1) is small compared with the contribution of H,,,
and we shall neglect it in what follows. The relations
(A.1), (A.4), and (A.5) form the basis of the description
of the magnetic field of moving vortices which have
trapped generalized Swihart waves.

In conclusion, we shall present the energy of the vor-
tex structure of a Josephson junction (2.15) as the sum

W = W, +W, +W,, (A.6)

%, ) = %C"
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of the energy W, of individual vortices, the energy W,,
of the Swihart waves, and the interaction energy W,,, of
vortices with the Swihart waves which are trapped by
the vortices and which glue the vortices into a single
multikink vortex structure. For this, we employ the
notation

_ df (¢ —¢&n)
=y AT

s(n)

P(Q) =21k, C Z sin[ko(12| = Z)]

*[6(¢s— Z) 9(—15 0l

In addition, we note that from equations (2.4) and
(3.19)—(3.21) follows

v -2n[ 4+ 2] = FL@) + 00,

where

Fr(@) = -1y f(C-&)san(C—&x).

n=1

Then, we can write the following expression for the
energy of aset of individual vortices:

DDVD ' 2 2 [l
wy = = Mzgdz%mtw)l TR0
(A.7)
Idz Idz Kooy @@ 5

Correspondingly, we have for the energy of trapped
Swihart waves

2 « 2
__ 9% O Vs oo g2, 2,900
W, = d¢ O
64H3szm_|m Zﬁjm [@.(2)] +<RN(Z)E e

AN 7 0
o [ & f ek S O
Finally,

2

%
321N

Doo DDV |:|2 1 J D
x dlH—F @ Fr )
E-[ ngjm“’@%@)* (Z)%(Z)% (A.9)
Idz Idz S GLIGTs
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describes the action of a set of individual vorticesin a
vortex structure with trapped Swihart waveswhich glue
individual vortices together.
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Abstract—A new galvanoantiferromagnetic effect is predicted—the Hall effect nonlinear in the electric cur-
rent, i.e., apotential differencethat istransverse to the current and is associated with the antisymmetric contri-
bution to the resistivity tensor, which violates Ohm’s law, for example, of the form Ap;; = -Ap;; O LE, where L
is the antiferromagnetism vector and E isthe electric field. The indicated contribution i's characteristic for cen-
trally antisymmetric antiferromagnets and can lead to a Hall field that is quadratic in the current: AE™ O LJ2.
Similarly, the effect AE” 0 LJ® can exist in centrally symmetric antiferromagnets even in a state where the ordi-
nary Hall effect, whichislinear in J, isabsent (for example, in hematite below the Morin point). © 2000 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

The antiferromagnetoel ectric Faraday effect (circu-
lar birefringence of light), caused by an electric field E,
as aresult of an antisymmetric contribution of the form
Ag; = -Ag; U LE, where L is the antiferromagnetism
vector, to the permittivity, iswell-known in optics. This
effect is characteristic for centrally antisymmetric
exchange magnetic structures (these are the structures
with which we shall be concerned). This optical effect
was discovered experimentally in [1] for the crystal
Cr,05, which possesses a centraly antisymmetric

exchange magnetic structure 1(—)3,(+)2(-) [2]. The
corresponding invariant in A€ for Cr,O; has the form
L,E,.

The analogue of the Faraday effect in kineticsisthe
Hall effect. There arises the question: What will be the
galvanomagnetic analogue of the antiferromagneto-
electric contribution to the Faraday effect? To answer
this question it is necessary to take into account aterm
of the form LiE; in the resistivity tensor p;;. Such terms
violate Ohm’s law and they are antisymmetric: Ap;; =
—Ap;; O LE, which follows from Onsager relations [ 2],

pij(L, E) = p;i(-L, E).

The antisymmetric components of the tensor p are
responsible for the appearance of an electric field per-
pendicular to the current J: E¥ 0 J. This effect is anal-
ogous to the Hall effect, but there are very big differ-
ences. In the first place, the effect also arises in the
absence of amagneticfield (B = 0). In the second place,
it isnot linear but quadratic in the current J: EY O LJA
The specific expressions for EF depend on the crystal-
chemical structure (system), the exchange magnetic

structure, the orientational state (the direction of the
vector L), and the geometry of the experiments.

L et usassumethat the sampl e has been prepared and
mounted in a manner so that the current can flow in
only one direction (let this direction be x;). Then, if
symmetry permits the effect under study, afield

E; = praydi = —rLpyJi (1)

should arise in the transverse direction x,. Here r is a
constant and p; is the resistivity along x;. If the direc-
tions of the current and transversefield excited by it are
interchanged, then we have instead of equation (1)

E? = Ppgd2 = erng- (2

Theindicesenclosed in bracketsin p signify theantisym-
metry of the corresponding components, ppiz = —Ppay
whence follows, specifically, p;J; = p2Js.

In what follows we shall present the results for tet-
ragonal and trigonal antiferromagnets with various
exchange magnetic structuresin the easy-axis (EA) and
easy-plane (EP) states.

2. EASY-AXIS ANTIFERROMAGNETS
WITH AN EVEN PRINCIPAL SYMMETRY AXIS

We shall consider first the exchange magnetic struc-

ture 1(-)4,(+)24(-), which is characteristic for certain
trirutiles (Fe,TeOg, and others, Fedorov space group
Gg = P4,/mnm), inthe EA state L ||z || 4 (4 is afour-
fold symmetry axis). If B || z also, then the latter is sta-
ble only in fields B, < Hg, where H is the “ spin-flop”
field. This caseisthe most unfavorable onein the sense
that the effect of interest to usis absent in the EA state.
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The same thing can a so be said about the exchange

magnetic structure 1(-)3,(+)2,(-) and the EA state
L ||z ]| 3 (likewise, for B, < Hg), which are characteris-
tic for the best known centrally antisymmetric antifer-

romagnet: chromium oxide Cr,O5 (Gg = R3c).

3. TETRAGONAL ANTIFERROMAGNETS
WITH AN ODD 4,(-)-AXIS
IN THE EASY-AXIS STATE

We are talking about to exchange magnetic struc-

tures with the classification numbers 1 (9)4,(-9)24(2),
which correspond to certain trirutiles aswell asrare-earth
phosphates (DyPO, and others) and vanadates (GdVO,
and others) (G = 14,/amd; see, for example, [3]).

Let us examine once again the EA state, which
occurs in the indicated phosphates and vanadates. The
parity of the 2;-axis depends on how we orient the x-axis
(and, correspondingly, they-axis): If we orient it dong the
edge of the basal square, then 2, = 2,4(-), and if we orient
it along the diagonal of the square, then 2, = 24(+). To
switch from one case to the other, the coordinate sys-
tem must be rotated by 45° around the z-axis.

The compounds DyPO, (Ty = 3.4 K) and GdvO,
(Tn = 2.4 K) possess the exchange magnetic structure

1 (-)4,(-)24(-) and the EA state L || z. In contrast to the
preceding case of a structure with 4,(+) (Section 2),
here the quadratic Hall effect exists.

The invariant, relative to the symmetry elements
appearing in the above-indicated classification indices
of exchange magnetic structures, expressions for the
antisymmetric components of the tensor p in this case
areasfollows[2]:

p[zx] = RZBy + r2LZEX’
p[yz] = RZ Bx + r.2|—2Eyv (3)
p[xy] = R3BZ’

where Rand r are constants. Further, let J || x and J, =
J, = 0. Then, using equations (3), we have

El = pudw Ey = ppdy = —RsB,J,, @
E; = Pady = RoByJ,+1,p:L,J5

Thus, indeed, besides the standard Hall effect linear in
J (vanishing for B = 0), there appears a quadratic effect
which, in addition, is proportional to the z component
of the vector L. Therefore, the samples require specia
treatment [4], which removes the domain structure
along L, in order to observeit.
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The formula corresponding to thecase B ||[x and J ||y
can be easily derived from the expression (4). The sym-
metry element 4,(—) must be applied to it. Theresult is

E, = —R,B,J,—r,p,L,J5. (5)

(We note only that p, = p; = p; for the case under
study.) The general expression for an arbitrary direction
of J in the basal plane (let J make an angle ¢; with the
x axis) for B = 0 assumes the form

E; = r,poL (35— 32) =r,poL,dicos(20,).  (6)

It is easy to show that this expression is invariant with

respect to theelements 1 (-), 4,(-), and 2,(-), appearing
in the classification indices of the exchange magnetic
structure.

We shall now examine the case J || z with the same
exchange magnetic structure and orientational EP state.
Here, we can talk about a second effect, which is asso-
ciated with terms of the form LiE; in the tensor p. This
effect occursonly inthe presence of afield B # 0. Using
equations (3), in this case we obtain for the field com-
ponents transverse to the current

o _ RZBsz

x _1 + r2Lsz B _RZBYJZ(l_ rZLZJZ)’ (7)
o _ RZBX‘]Z
T R,ByJ,(1+71,L,d,).

Here there is also a contribution, which quadratic in J,
to the Hall field (in the approximate expressions (7)),
but it isalso proportional to thefield B. Since this effect
is proportional to the product of the cofactors R,and r,
which are responsible for the standard and quadratic
Hall effects, respectively, it can be inferred that it
makes a small contribution to E” compared with the
second term in equations (4), (5), or (6).

4. EASY-PLANE STATE
FOR THE EXCHANGE MAGNETIC STRUCTURE

19424
The antiferromagnets (trirutiles) Cr,WO; (Ty = 69 K)
and V,WOQO; (Ty = 370 K) have the magnetic structure
indicated in the heading (i.e., an exchange magnetic struc-
ture and orientational date). Since in this case L 0O z,

instead of equation (3), the components of the tensor
Pgij) Which correspond to this state must be rewritten as

p[xy] = R3Bz + rS(LxEy + LyEx)1
p[zx] = RZBy"' rZLxED (8)
Pryg = ReBy+r1,L E,.
Here and everywhere below, we shall assume that the
projection B O z of thefield islarge enough so that the
vector L Oz is perpendicular to B in the basal plane:
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L 5 O Bg. We note that this assumption will also pertain
to the case where the state L , [0 z appeared in the “ spin-
flop” processin afield B, > Hg from the EA state with
L =L¢||z. Introducing the azimuthal angle ¢ for the
vector B (measured from the binary symmetry axis

2, |1X), we have in these cases
By = Bgcosps, By =

LX = _LDS.nq)B, Ly =

Bosingg,
L,costg.

We shall examine first what is perhaps the mogt inter-
esting case of a sample with current orientation J || z.
Then, using equations (8), we find for the field trans-
verseto J (the Hall field)

EE = Pixgdz = =SiNdg(R,By—r,p3L1d,) I, ©)
Ey = Pryadz = C0S0a(RoBy+ 15p5L03) ;.
Hence we obtain for the field part of the effect (OB)
that E5 O By, and its magnitude is isotropic: Ep =
|R,BJ,| (does not depend on the angle ¢g). The sign
changes when J, changes sign. At the same time, we

have for the antiferromagnetic (quadratic) part of the
effect

EC Ly = rypsLidicos(26g). (10)

The projection EE on the vector L is anisotropic: It
depends on the direction of the field B (and, therefore,
the vector L ) in the basal plane. Specificaly,

E'OL, for ¢g = ig,

E L, for ¢g = 0,%5.
However, the absolute magnitude of the effect LJ?
remains isotropic (independent of the angle ¢):

E = [rpsLodd. (11)

We shall now present the results for various cases
where J [0 z. We shall confine our attention to examples
that take into account two very simple situations. The
direction of the current is along the magnetic field B
(cases (8 and (b)) or dong the vector L (the cases (¢)
and (d)).

@LIly, IIBglIx:

E, = «(RsB,+rspol,d0)Jd,, E, = 0. (12
()L |1x, IIB|ly:
E, = (RsB,+r3pal,Jdy)d,. (13)

Itiseasy to verify that the formulasfor the cases (a) and
(b) are related with one another in accordance with the
symmetry of the transformations 4,(-) and 2,4(-).
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© JIIL Iy, Bollx:
o _ R3Bsz o _ RZBny
B = 1-r5L,J,) 7 1+r,L,d) (14)
(d) JIIL I Bolly:
o _ R3BZ‘JX o _ R2By‘]x
E, = 1+r,L,J, E. = 1-r,L,J, (15)

The relations (14) and (15) are dso related with the
indicated transformations.

Thus, here, the effect LF in which we are interested
exigs for J O L only in the geometry (&) and (b), when
J||Bg, while for (c) and (d) only the second effect,

which is analogous to one described by equations (1)
inthe state J || L || z, occurs.

5. EASY-PLANE STATE FOR THE EXCHANGE
MAGNETIC STRUCTURE 1 (9)4,(+)2,(-)

According to [3], the trirutile Cr,TeOg (Ty = 105 K)
possesses such a magnetic structure. This material is of
interest if only because the classification indices of this
structure differ from those in the preceding case only
by the parity of the 4, symmetry axis: 4,(-) — 4,(+).
Moreover, the other trirutile Fe,TeOg (Ty = 219 K)
mentioned above, which possesses an even axis 4,(+),
can transform as aresult of a“spin-flop” transitioninto
an EP statein fields B, > Hg. We shall hereby clarify the
role of the parity of the element 4, for the phenomena
of interest to us.

The form of the tensor py; also changes when the
parity of 4, changes. Instead of equation (8), we now
have [2]

Pxy; = RsB,+r3(LE,+ LE)),
p[zx] = Rsz + rgLyEZ,
p[yz] = Rsz + r2|—sz-

(16)

(The changes do not concern the field terms, which are
identical for all uniaxial crystals.)

We shall write out the results for EX for the same
geometric situations asin Section 4.

ForJ||z
EE = —(R;Bpsingg + r,psLnJ,cosdg)J,,
ES = (Ry;Bpcosdg —r,psLlnd,sindg)J,.

In accordance with what we have said above, the field
termsof the Hall field (linear in J,) areidentical to those
for the preceding case (Section 4): Eg OBy and Eg =
|R,BJ,| for any value of ¢g. For the quadratic antiferro-
magnet effect

(17)

E/(L,=0, (18)
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so that in contrast to equation (10), here, EE OLyis
independent of the angle ¢5. However, therelation (11)

for the absolute magnitude of the effect holds in the
present case al so.

Next, for J 00 z we have under the same conditions
as for equations (12)—15)

@ L ly. JlIBallx:
R3BZ‘JX O

o_ - 0
& =iy B0 (19)
L [Ix, IIBglly:
R;B,J
ED — 32zVy EI] — . 2
S Tl N 0: (20)
(© JIIL |y, Bullx:
E) = (RyB,+rsp;L,J,)J,,
X (D3 .+ 13polydy)dy 21)
E, = -R,B,J,;
(d) J|IL [, Bolly:
E, = —(RyB,+rspyL, J)Jd,,
y (Rs 3Pp ) 22)

E, = R,B,J,.

Of coursg, in this case, as should happen, the formulas
for the situations (@) and (b) or (c) and (d) transform
into one another under the transformations 4,(+) and
24(-), appearing in the classification indices of the
exchange magnetic structure under study.

Finally, we note that in contrast to the structure
i(—)4z(—)2d(—), the quadratic effect EE O LY for the

structure 1 (9)4,(+)24(-) existsin the configuration J ||
L 5 but not J; || By (Section 4). Once again, the parity of
the 4, symmetry axis comesinto play.

6. EASY-PLANE STATE
FOR THE EXCHANGE MAGNETIC STRUCTURE

1(93(1)20)

We shall now consider the second of the systems
which we intended to study: trigonal (rhombohedral)
antiferromagnets. We shall confine our attention to the

exchange magnetic structure 1(-)3,(+)2,(-) and EP
state (L 0 3| 2). True, the well-known antiferromagnet
with such an exchange magnetic structure, Cr,05 (Ty =
318 K), isfound in anatural EA statewith L ||z, but, in
amagneticfield B,>Hg= 100 kOeit can transforminto
the “spin-flop” phase with L O z, which we shall
assume have occurred. Moreover, once again, it is
assumed that afield B 0 z is present and that thisfield,
overcoming the basal anisotropy, aigns the vector's
L5 OBginthe basal plane xy.
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The tensor py;;; for the state of interest to us has the
form

p[xy] = R3 Bz + r3( LxEx + LyEy)l
p[zx] = RZBy + rZ(LxEx_ I-yEy) + rll—yEz1
p[yz] = RZBX + rZ(LxEy + LyEx) + I’1|—sz-

(23)

In many cases, the formulas for E" in this state will
be somewhat more complicated than the formulas pre-
sented above for a tetragonal antiferromagnet, but we
need only present them in an approximate form,
neglecting termswhich contain products of theform r;r;
and Rr; and are small compared to 1.

Once again we begin with the case J || z. The

approximate results for E, and E, with the indicated

guantities neglected are exactly described by equa-
tions (17), obtained for the exchange magnetic struc-

ture 1 (-)4,(+)24(-), and it is pointlessto writethem out
once again. Of course, relations of the form (18) and
(11), determining the perpendicularity of E;’ to L 5 and
the isotropic absolute magnitude of the effect LJ?, are
also preserved.

In concluding our analysis of centrally antisymmet-
ric antiferromagnets, before proceeding to the centrally
symmetric case, we shall present several formulas for
the exchange magnetic structure discussed (with 3,(+))
in the situation J [ z. Specifically, we shall confine our
attention to the cases for which the quadratic Hall effect
is different from zero. Thiswill occur for two geomet-
ric configurations (c, d) from the four configurations
considered (a, b, c, d) for the corresponding tetragonal
structures:

) JIIL IIx, Blly:
E, = ~(RsB, +r3pol,d) .
E, = (R:B, +1,p0L,J)Jy
d) JIL [ly, Bollx:
E, = RsB,J, +rspoL,J5, E; = -R,BJ,. (25)

Comparing these formulas with equations (19)—22)
demonstrates at |east one case where the crystal system
influences the results. Even for the configurations ()
and (d), where the LJ? effect occursfor both systems, in
the rhombohedral case for (d) it does not occur accord-

ing to equation (25) for the component EZD :

(24)

7. CENTRALLY SYMMETRIC
EXCHANGE MAGNETIC STRUCTURE
OF THE TYPE 1(+)3,(+)2(-)
So far we have been discussing centrally antisym-
metric antiferromagnets. It is in these materials that a
Hall effect quadratic in the current E” O LJ? arises. To
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complete our analysis we must show very briefly, at
least at the fundamental level, what occurs instead of
this effect in centrally symmetric antiferromagnets.
We shall consider the exchange magnetic structure

1(+)3,(+)2,(-), which occursin hematite a-Fe,Os. Itis
obvious that here the antisymmetric components of the
tensor py;, which violate Ohm’slaw, will be quadratic in
thefield E:

Ap; = -0p;; = LE%, (26)

In the temperature range T > Ty, = 260 K, which is
above the Morin point, where hematite, being in an EP
state, possesses weak ferromagnetism and, in a field
E", a spontaneous term [JLJ, an additional term that is
cubic in the current J appears because of equation (26).
We shall write the results only schematically:

E” = r,Ld+r,Ld® (27)

(once again, r; are constants). The first term has been
observed experimentally in [5]. The second term seems
to be small compared to the first term; no specia
attempts were made to observeit.

A more favorable situation is the situation in the EA
state, in which hematite is found at temperatures T <
Tyw. Herewe shall write out one formulafor the specific
casewhereacurrent J =J; Uzisstudied with L ||z. In
this case aHall field

E, = r,L,p333sin(30,), (28)

where ¢; is the angle between the current J and the
symmetry axis 2(-), parallel to the x axis, should arise.
The main point is that this effect can be observed
against a zero background. Of course, once again, care
must be taken to make sure that the sample consists of
a single domain. A very suitable object for such an
investigation is hematite at temperatures below the
Morin point.

8. DISCUSSION

The theory presented above is a phenomenological
symmetry theory. Therefore without additional micro-
scopic calculations it is difficult to say anything about
the magnitude of the predicted effects. Still, in my
opinion, thisis not the main difficulty of the experimen-
tal observation of these effects. Ultimately, the optical
analog, the antiferromagnetoelectric Faraday effect,
turned out to be measurable experimentally [1]. The
fact that the spontaneous antiferromagnetic Hall effect
(E” O LJ), was discovered in hematite [5], and turned
out to be orders of magnitude stronger than the ordinary
(normal) Hall effect (E” 00 BJ), is also encouraging.

Thedifficulty liesin finding and, possibly, preparing
appropriate conducting centrally antisymmetric anti-
ferromagnets (when the LJ? effect is being studied).
Unfortunately, | have no information about the electri-
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cally conducting properties of antiferromagnets for
whose symmetry these effects were studied in the
present paper. This pertains trirutiles as well as rare-
earth phosphates and candidates. The Cr,O; crystals on
which optical experiments have been performed (see
the review [1] and the corresponding citations) are evi-
dently optically transparent (i.e., virtually nonconduct-
ing) insulators. It can only be inferred that when these
oxides are specialy treated with the addition of certain
dopants, they can become semiconductors. The existence
of other conducting oxides (and, specificaly, a-Fe,05) of
thistypeis hopeful.

Of course, other centrally antisymmetric antiferro-
magnets with adequate conductivity can also be found
among crystals with orthorhombic symmetry, for
example, rare-earth orthoferrites, orthochromites, and
orthoaluminates (G- = Pbnm), in which the rare-earth
magnetic ions can become ordered in a centrally anti-
symmetric manner (see, for example, Table 14.1in[6]).
However, for them it is necessary to perform a special
analysis, similar to the one performed above, using the
above-indicated symmetry and the exchange magnetic
structures and orientational states corresponding to
them. As an example, we shall nonetheless present here

aformulafor the structure 1 (-)2,(-)2,(+). Specificaly,
the orthoaluminates TbAIO;, DyAlO; and GdAIO,
possess such an exchange magnetic structure [2,7]. For
thefirst two L || x and for the third L ||y. For theL || x
state, it is not difficult to prove that relations with the
following form are invariant with respect to the ele-
ments appearing in the indicated classification indices
of the exchange magnetic structure:

E, = rLJ..

This attests to the possibility of the existence of a qua-
dratic Hall effect for TbAIO; and DyAlO;. At the same
time, the effectisabsent inthe state L ||y, characteristic
for GdAIO,. This once again demonstrates the strong
dependence of the effect E” 0 LJ? on the orientational
state (direction of vector L). It even appears in the EP
state of atetragonal antiferromagnet, if the 4, symmetry
axis is odd (see equations (9) or (10)). Such an anisot-
ropy does not occur for the analogous configuration in
the case of an even axis (4,(+) and 3,(+)).

In closing, | wish to make several important
remarks.

The reader who has not delved deeply into the heart
of the matter could have the impression that the qua-
dratic Hall effect studied here is atrivia effect due to
the magnetoel ectric contribution to the magnetization
Mg = & E, which, viaterms of the form M; in the tensor
Prij) [2] (having the same symmetry as the terms with
B;) also leads to terms of the form LE; in this tensor,
since the magnetoel ectric susceptibility tensor depends
onlL, & ~L.However, thisis not the case. The coeffi-
cientsr; inthe expressions (3), (8), and so are, generally
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speaking, independent of @, so that the coefficientsr,

can be different from 0 even if & = 0. A similar situa-
tion has already been encountered repeatedly for
effects which are linear in the vector L. In the first
place, the spontaneous Hall and Faraday effects in the
centrally symmetric antiferromagnets, which are pro-
portional to L, by no means are determined by the
weakly ferromagnetic contribution to the magnetiza-

tion M, = dL. Experiments (see [3]) have shown that
the indicated effects remain virtually unchanged when
the magnetization produced by afield H varies several-
fold. Furthermore, the study of the effect of afield E on
the NMR frequency in centrally antisymmetric antifer-
romagnets has shown that the magnetoelectric channel
of thisinfluence (viaM g) by no means gives acomplete
picture of the splitting of the NMR spectrum by the
field E. This splitting is determined by independent
terms of the form LE; inthe hyperfinefield [8]. Finally,
in the so-called nonreciprocal linear birefringence
effect, which is due to terms of the type Lik; in the per-

mittivity € (k isthe wave vector), the Mg channel like-

wiseis not the determining channel. The tensor £ con-
tainsindependent termswhich are dueto the linear spa-
tial dispersion of different nature (see [1, 4] and the
citations).

Now | shall consider the question of how the Hall
fields which are linear and quadratic in the current can
be distinguished experimentally. This can be done very
simply: Measurements must be performed for two
opposite directions of the current J and the half-sum of
theresultstaken. It isimportant that in so doing another
extraneous transverse field effect (transverse galvano-
magnetic effect) due to the anisotropy of asymmetric
part of the tensor p, which under conditions where

Ohm'’slaw holdsfor thispart of p isalsolinearinJ,is
eliminated. This pertains especially to the EP state, in
which theindicated anisotropy in p appears asresult of
terms of thetype LL and LB [2,5]. Thereisalso awell-
known standard method for distinguishing the Hall
effect from the transverse galvanomagnetic effect:
Measure the transverse fields E" corresponding to the
P;j and p;;. Then the half-difference of the results will
givethe Hall effect and the half-sum will givethe trans-
verse galvanomagnetic effect.

Off all of the effects predicted above, at present time
theeffect E” I L, represented by equations (27) and (28)
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seems to be most accessible experimentally (because
samples (hematite) are very accessible). In the first
case, it is necessary to check the existence of a devia-
tion of E” from linearity in the current. In the second
case (below the Morin point, where L || z) an attempt
can be made to observe the Hall field, which here is

proportional to LZJ%sin(Sq)j). But, till, the quadratic
Hall effect in centrally antisymmetric antiferromagnets
is most attractive for an experimental search precisely

because of its unusual nature ([J J?). Moreover, it
should be expected that it will be greater in magnitude.
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Abstract—The asymptotic behavior of the solutions of the KdV eguation in the classical limit with an oscil-
lating nonperiodic initia function uy(x) prescribed on the entire x axis is investigated. For such an initial con-
dition, nonlinear oscillations, which become stochastic in the asymptotic limit t — oo, develop in the system.
The complete system of conservation laws is formulated in the integral form, and it is demonstrated that this
system is equivalent to the spectral density of the discrete levels of the initial problem. The scattering problem
is studied for the Schrddinger equation with theinitial potential —uy(x), and it is shown that the scattering phase
isauniformly distributed random quantity. A modified method is developed for solving the inverse scattering
problem by constructing the maximizer for an N-soliton solution with random initial phases. A one-to-onerela-
tionis established between the spectrum of the discrete levels of theinitia state of the system and the spectrum
established in phase space. It is shown that when the system passes into the stochastic state, all KdV integral
conservation laws are satisfied. Thefirst three laws are satisfied exactly, while the remaining laws are satisfied
in the WKB approximation, i.e., to within the square of a small dispersion parameter. The concept of a qua-
sisoliton, playing in the stochastic state of the system the role of a standard soliton in the dynamical limit, is
introduced. A method is developed for determining the probability density f(u), which is calculated for a spe-
cific initial problem. Physically, the problem studied describes a developed one-dimensional turbulent state in

dispersion hydrodynamics. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The asymptotic behavior of the solutions of the
Korteveg—de Vries (KdV) egquation

u,+6uu, +€e°u,, = 0 (1)
was studied in [1] in the semiclassical (Witham) limit
e<1l 2

The initia functions were assumed to be hydrody-
namic, i.e., smooth, oscillatory, nonperiodic, and
defined on the entire x axis. In this formulation the
problem is fundamentally different from the classical
KdV solutions studied previously [2-5] in that, as will
be shown in the present work, the asymptotic behavior
of the solution ast — oo acquires a statistical charac-
ter as aresult of phase mixing. The infinite system of
interacting solitons with uniformly distributed random
phases, which developsin the process, leads to stochas-
tic oscillations. Such a system can be described in
terms of a continuous random process. Specificaly, in
the asymptotic limit t — oo the exact dynamical value
of u(x, t) becomes meaningless and one can talk only
about f(u, X, t)—the density of the probability of finding
at the point (x, t) agiven value of u or about f(u, U'; x, t,
X, t)—a two-point distribution function, i.e., the joint
probability density of a value u occurring at the point

(x, t) and avalue u' occurring at the point (X, t'), and so
on. It isremarkable that it becomes possible to simplify
substantially the description of the asymptotic behavior
of the solution. Specifically, for aspatially uniformini-
tial function uy(X) the probability density f(u) depends
only on the velocity u, and the spatial correlation func-
tionisK = K(s), wheres =[x —X]|.

We note that random processes in integrable sys-
tems have been studied previously in a number of
works, but these works were concerned with taking
account of the influence of a small stochastic perturba-
tion on the soliton solutions (see, for example, [6, 7]) or
with the evolution of random initial data (see, for exam-
ple, [8, 9]). The question of the appearance of a sto-
chastic regime asaresult of purely dynamical evolution
of an integrable system with a uniquely determined
deterministic initial potential —uy(X) is posed in the
present paper (aswell asin our preceding work [1]) for
the first time.

It should be underscored that the analysis performed
in [1] showed that with time a developing system of
interacting solitons arrives in a state where the semi-
classical multimoda Witham structure breaks down as
aresult of phase mixing. This still does not prove com-
pletely the appearance of a stochastic state of solitons:
Additional analysis based on the solution of the scatter-
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ing problem for the Schrédinger equation is required.
This solution will be presented below. No less impor-
tant is the fact that the specific construction of a solu-
tion in the statistical limit is a very complicated prob-
lem. In [1] the construction is obtained only in the
degenerate case, when the initial function uy(x)is a
sequence of extremely widely spaced semiclassical
pulses. The density of solitons formed as aresult of the
decay of theinitial pulses approaches zero. For thisrea-
son, to afirst approximation, solitons can be treated as
free and noninteracting, which makes it possible to
investigate the problem as the statistics of free solitons.
Degeneracy is removed when the density of solitonsis
finite. Thisresultsin fundamental changesin the struc-
ture of the phase space. The interaction between soli-
tons now plays adetermining role. The present paper is
devoted to the specific construction of the asymptotic
statistical limit, developing from a smooth semiclassi-
cal initial function uy(x) with an arbitrary density of
solitons.

The paper is organized as follows. In Section 2 a
general formulation of the problem is given and the
process leading to the development of a smooth deter-
ministic initial state in time is described. It is shown
that small-scale nonlinear oscillations in the form of an
infinite system of solitons arise and agradual stochasti-
zation of these oscillations occurs. In Section 3 the
complete system of integral conservation laws, which
determine the properties of the asymptotic solution, is
formulated. In Section 4 the solution of the scattering
problem for the Schrédinger equation is analyzed. It is
shown that for the initial potential under study the scat-
tering phases are distributed randomly and uniformly,
which rules out the possibility of a dynamical descrip-
tion of the system in the asymptotic limitt —» oo. In
Section 5 amethod of constructing the maximizer for a
system of interacting solitons, defined on acertain scale
L and possessing uniformly distributed random phases,
is developed on the basis of the known N-soliton solu-
tion. The limit with a fixed dimensionless soliton density
C=¢eN/lL isgudied inthe limitsN —» o and L — oo,
Itis shown that the condition for the existence of a
maximizer with afixed density C leadsto alinear inte-
gral equation. In Section 6 asolution of thiseguationis
found and the spectrum of solitons in a stochastic state
isdetermined. The conservation laws play themain role
in determining the final form of the spectrum. The new
concept of a quasisoliton is introduced in Section 7.
This object is of fundamental significance in the sto-
chastic state of the system: It playsarole similar to that
of an ordinary soliton in the dynamica state. In Section 8
the probability density f(u) isdetermined on the basis of
the soliton spectrum obtained. A general computational
procedure is indicated. Specific calculations are per-
formed using a maximizer, which makes it possible to
develop an algorithm for finding the N-soliton solution
rapidly for large values of N. It is shown that the distri-
bution f(u) obtained after averaging over the initia
phases does not depend on N, but rather it is determined
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only by the properties of the initial semiclassical func-
tion uy(X).

The theory constructed actually describes the
appearance and devel opment of aturbulent statein one-
dimensional dispersion hydrodynamics. The statistical
properties of developed turbulence are determined
completely by the initia large-scale hydrodynamic
flow. A method making it possible to determine the
characteristics of turbulence on the basis of a pre-
scribed initia state is developed. Here the finiteness of
the dispersion parameter € plays a fundamental role,
though the value of € itself can be as small as desired.

2. FORMULATION OF THE PROBLEM

We shall study the solution of the KdV equation in
the semiclassical limit (1) and (2). The initial function
Ug(X) is a smooth, bounded, nonperiodic, oscillating
function on the entire x axis. The detailed conditions
imposed on the class of ergodic functions uy(x) are pre-
sented in [1]. As an example, we shall consider an ini-
tial deterministic function uy(x) in the form of an infi-
nite sequence of nonoverlapping pulses F;(x):

ux 0 = u) = SREZH @

Here 6; is the width of the pulse and the point x; deter-
mines the position of the maximum of theith pulse. We
shall assume that at the maximum F;(0) = 1; then 0 <
F, < 1. The average distance between the neighboring
points x; isl, and the ratio of the average width 6 of the
pulse to the distance between the pulsesis

y=2<1 @
The quantity yisacharacteristic parameter of theinitial
problem under study, and the last condition takes into
account the fact that the pulses do not overlap.

The process of the temporal development of theini-
tial function uy(X) (3) has been studied in [1] in accor-
dance with the KdV dynamics. We shall recall its basic
qualitative features. First, the highest-order derivatives
in the KdV eguation are not essential, and the solution
in each of the pulses develops according to the Hopf
dynamics. When the special toppling points are
reached, single-mode (three-zone) fine-scale oscilla-
tions, described by Witham's equations [4, 10-12],
arise near these points. The regions occupied by the
oscillations gradually expand and then overlap. Over-
lapping occurs for t = | (since the maximum velocity
Ugmax ~ 1) and istheresult of the superposition of waves
generated in two neighboring pulses. As a result,
regions of two-mode (five-zone) oscillations, which
can be represented as two interacting nonlinear waves
[13, 14], arise. As time passes, for t > nl, the waves
which are now generated in alarge number n of initial
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pulses overlap. Asaresult, the number of forbidden and
allowed zones on the Riemann surface increases, and
the solution is now described by multimodal (multi-
zone) nonlinear Witham waves [1, 2, 5, 15-18]. We
note that the appearance of new modes in a Witham
systemisdirectly related with the number of maximaof
the semiclassical initial function uy(X). In the asymp-
totic limit t —= oo, the number of modes is equal
exactly to the number of initial maxima. Of course, the
initial spectrum of the Schrédinger equation is com-
pletely preserved.

In our case the number P of initial pulsesisinfinite
and correspondingly, with time the number of Witham
modes grows with no limit. It is important that the
width of the allowed zones decreases exponentialy
with time

Ay O exp(—/T1).

As aresult, each mode extends into a chain of solitons.
The structure of the oscillations becomes extremely
complicated, but once again they retain their dynamical
character—the law of conservation of the number of
waves holds for each mode. Thisisvalid aslong as the
number n of modes s not too large so that the width A
of the forbidden zones is much greater than the disper-
sion parameter €. In this case the solitons belonging to
a given mode are separated by a distance that is much
less than the scale of the oscillations of the initial func-
tion uy(x). This makes it possible, on account of the
interaction of the solitons, to retain definite phase rela
tions. However, according to the dynamics[1] of the oscil-
lating initia function uy(X) defined on the entire axis, the
widths of the forbidden zones decrease with time:

Ag O 1/1.

For thisreason, for large values of t = 1/ the condition
Ay < eisawayssatisfied. According to [3], the Witham
approximation breaks down in this case.

We shall now discuss in greater detail the process
leading to the destruction of the dynamics of the soliton
phases. Even when the first oscillatory zone arises,
phase interruption appears at singular points on its
boundaries—for example, the position of the first soli-
ton in the Witham system is not precisely determined
[4, 2, 19]. This phase interruption arises at the moment
oscillations are generated on passage of asingular point
of the Hopf equation. The second mode is generated
after the singularity in the single-mode solution is
reached [14]. Phase interruption of the oscillations also
arises at the moment of passage of this singularity. For
this reason, although all phases are matched within
each of the two interacting modes, a phase uncertainty
is present between the modes. The same thing a so hap-
pens with the generation of the third, fourth, fifth, and
other modes. As a result, by the time the number n of
modes exceeds the number of solitons on the character-
istic scale of the oscillations of theinitia function uy(X)
(n ~ t > 1/¢), these solitons all belong to different
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modes, and therefore it can be assumed that their
phases will be completely mismatched (random).

Thus, the analysis performed above shows that the
development of an asymptotic solution of the KdV
equation (1) and (2) for an oscillatory nonperiodic
function uy(x) defined on the entire x axis can lead to
the appearance of a stochastic state, i.e., a state with
random, uniformly mixed soliton phases. The condi-
tions for the appearance of this state have the form

<1, EP — oo, (5)

Here P is the number of humps in the initial function
Uo(X). Specificaly, if the large-scale oscillations of the
initial function uy(X) are themselves random, then the
appearance of a stochastic state of a system of solitons
in the asymptotic limit (5) is obvious. However, it can
be inferred on the basis of the argument presented
above that the same state also appears for a strictly
deterministic initial function. The latter assumption
requires detailed substantiation, which will be pre-
sented below on the basis of an investigation of the
scattering problem for the Schrodinger equation.

We underscore that ordinarily solutions of the KdV
equation are studied in the different limiting case of
small dispersion[3, 10-18]: € — 0 with the additional
condition et — 0 or eP — 0. Thislimit isof apurely
dynamical character and therefore differs fundamen-
tally from the statistical limit which we have examined
and which arisesfor arbitrarily small but finite val ues of
€ in the asymptotic limitst —» co and P —» oo,

8t—>007

3. INTEGRAL FORM
OF THE CONSERVATION LAWS

We shall describe some general properties of theini-
tial problem under study. Let the spectrum of the
Schrédinger equation for a given initial semiclassica
potential —uy(X) be known (as usual, we neglect the con-
tinuous part of the spectrum in the semiclassical
approximation [2]). We shall assume that for abounded
oscillatory nonperiodic function ug(X) (the detailed
conditions imposed on the class of ergodic functions
Ug(X) are presented in [1]) the spectrum can be
described by the density p(k) of the distribution over
the wave numbers. Let n be the number of spectral lev-
els A = —k? per unit length. On account of the ergodic
nature of the function uy(x), n does not depend on x. The
levelspresent intheinterval from k to k + dk can be sep-
arated from these n levels:

dn = np(k)dk. (6)

It is convenient to fix the interval on which the wave
numbers are defined, as 0 < k < 1 and to normalize the
spectral density according to the relation

1

J’p(k)dk =1 (7)
0
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We underscorethat the exact determination of the spec-
trum of the Schrodinger equation for a nonperiodic
oscillatory potential —uy(x) defined on the entire x axis
is a very difficult mathematical problem [20]. In our
case the problem simplifies because we are interested
not in the detailed structure of the spectrum but only the
completely discrete levels p(k) in the semiclassical
limit (2). In this case the density p(k) can be determined
as the spectrum of the potential —ug(X) on a finite seg-
ment L > L,, where L, isthe characteristic scale of uni-
formity of the function uy(x). Since the initial function
is ergodic, it can be assumed that the normalized den-
sity p(k) approaches a completely determined function
inthelimit L —» oo.

The spatial density of the discrete levels C is deter-
mined simultaneously with the spectral density p(k). It
is convenient to write it in a dimensionless form, nor-
malized to the dispersion parameter ¢,

=N
C=c¢ X (8
where N is the total number of levels on the character-
istic scale L.

According to the semiclassical Bohr—Sommerfeld
formula, the spectral density can be represented in the
form

H(k) N
p(k) =
T[Cz'[k)LIZW 9)
L—>0, N-—o0o.

Here &..(K) are the roots of the equation F;(€) = k?, and
the constant C is determined by the normalization con-
dition (7).

Specifically, if al pulses have the same form, for
example,

FE = 1-—%

10
(8./2) (10

21

then we find
£ = 201K

and, correspondingly, the spectral density of thelevelsis
p(k) = 2k. (11

The normalization (7) is used in the last expression.
The dimensionless level density (8) is

_N_8

CEer =

The simple example of a nonperiodic function (3),
(10) can be obtained by assuming that | is constant and

(12)
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modeling the width 6; by a periodic function which is
incommensurate with |:

6, = 6(1+qgsin(ox/1)),

13
g<l, o# 2nﬂ. (13)
m

We shall consider this case below as aspecific example.
We note that the initial function (3), (10) has weak dis-
continuities at the points x = x; + 6;. Thisfeature affects
the behavior of the spectrum p(k) 0 kask — 0. For a
smooth function uy(x), which does not contain weak
discontinuities, the asymptotic behavior in the limit

k —= Oisdifferent: p(k) O KIn(1/K).

We underscore that, as aready indicated in [1], for
hydrodynamic (semiclassical) initial problems the
dimensionless (i.e,, normalized to the dispersion
parameter €) soliton density isvery low: C < 0.3. Thus,
for the case of nonoverlapping parabolic pulses (10)
considered above, the maximum valuey = 1 and, corre-
sponding, C,, = 0.25.

Asiswell known, the KdV equation has an infinite
number of conservation laws [2]. However, for theini-
tial problems of the semiclassical (hydrodynamic) type
only three of these laws play a determining role. Spe-
cifically, Witham's system of equations has been
obtained on the basis of three conservation laws [21].
The two laws,

u + (3u+€’uy), = 0 (14)

and

(UP)e + (4u® + €2(2uu, — U3)), = O, (15)
are actualy completely unrelated with small-scale
oscillations. They express only the conservation of the
average values [Wi0and [W20of a smooth initial large-
scalefunction uy(x). Here the higherorder derivativesin
theinitial problem play only asmall role because of the
dispersion parameter € is small. Conversely, the third
conservation law describes the conservation of the

number of small-scale oscillations which depends

directly on the small parameter €:
ki +w, = 0. (16)

Herek isthe wave number and wisthe frequency of the
oscillations.

We note that all other higher-order KdV conserva-
tion laws can be represented in the form

d,(u"+ O(%)) + 9,P.(u, uy, ...) = 0. (17)
For example, the fourth conservation law has the form
0,2u’ - %)
+ 6,((9u4 + <°.2(6u2uXX +2u,u,) + £4uix) = 0.

For the problems of interest to us it is natural to
switch to the integral form of the conservation laws.
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Since initia functions ug(x) which are bounded and
ergodic [22], i.e., uniform on a quite large scale L, are
studied here, according to the conservation laws (14)—
(16), the average val ue of the vel ocity, the mean-square
value of the velocity, and the average density of discrete
levels should be conserved at any moment in timet:

W= lel_ J' udx, (18)
-L/2
L/2

P0= lim2 [ uldx, (19)
Lo -L/2

C= s< ’_!> = L“EnwL I —dx (20)

-L/2

Indeed, integrating equations (14)—16) over dx in the
interval [-L/2, L/2] and dividing by L we obtain

L/2
I udx = —(3u +€

—L/2

xx) L/2’

L/2
1 1
L J’ (U)dx = [(4u3+82[2uux

-L/2

L/2
x]) L/21

jDka———wm%z
—L/2

Passing to the limit of infinite L and taking account of
the bounded nature of the function u(x, t) and its deriv-
atives, we find that

d d d
&EUDOEDJDOE

and this means that the integrals (18)—(20) exist.

Thus, the average values C, (L) and WP20at any
moment in time are determined by the form of the ini-
tial function uy(X). It is easy to show that all other inte-
grals of motion (17) are determined initially to within a
small correction of order €2 by the averages of powers
of the velocity:

Cc =0,

C,= W'+QE?), n=34,... (21)

It is important to note that the entire collection of
averages [WMOsinitially uniquely related with the aver-
age density C and the spectral density p(K). Indeed, let
us consider for simplicity a function ug(x) in the form
of an infinite sequence of nonoverlapping pulses (3)
and let us use the Bohr—Sommerfeld formula (9) for

p(K). To determine the relation between the level den-
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sity (6) and the average values (18)—(21) let us consider
an integral of the form

1

o= Ikzn_lp(k)dk.

Substituting the expression (9) into this integra we
obtain

1 &M N

J, = TOiC K" dk
{ i#ZJHa

Changing the limits of integration and performing the
integration over dk, we obtain

1 N L/2
Jn = ﬁz I [Fi(§)]"dE
i=1_1/2
1
» A an w0 (22)
Jo’(l s) sds-= 5C’
_ 2n+1n!
Sh = 2n-D)!°

The desired relation can be seen from the expression
(22), specifically,

1

0= 4C[kp(Kck, (23)
0

1
0= %Sc [k, (24)

For example, for the above-considered sequence of
nonoverlapping parabolic pulses (10) of width 6 with
distance | between the centers we have

6/2

1

wo= g [ [1- 529’%2} x=2 (25)
-0/2
06/2

0= Tl [ [1 %zexg} dx = 15|. (26)

-0/2

Using equations (11) and (12) it is easy to show that the
relations (23), (24), and (25), (26) areidentical.

The opposite assertion is also valid: knowing all the
averages, the spectral level density p(k) can be recon-
structed uniquely. Indeed, | et ustake account of the fact
that the function p(k) describes the density of the spec-
tral levels of the Schrodinger equation A = —k2. For this
reason, in accordance with equation (9), it is an odd
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function of k.2 Let us represent the function p(Kk) in the
form of a seriesin the odd Legendre polynomials:

PK) = > anPan.a(®). (27)

Multiplying equation (27) by k®™*1, integrating
over dk from —1 to 1, and comparing the expressions
(18)—(22), we obtain a system of algebraic equations
from which the coefficients a, can be successively
determined:

80 = = U]

_ 105
a = 53 CH:ILI 02 m[g
The coefficients a, are related, in addition, by the nor-
malization condition (7). Thus, in the semiclassica
limit there is a one-to-one correspondence between the

spectral density of discrete levels and the KdV system
of integral conservation laws.

We shall take account of one other interesting cir-
cumstance. The structure of the discrete levels does not
change with time—this property reflects the conserva-
tion law for the soliton amplitudes when the solitons
interact with one another. But, this means that the inte-
gra conservation laws can also be represented in the
differential spectral form

dcC, = CS,K" *p(k)dk,

where C isthe spatial density of discrete levels. Specif-
icaly,

(28)

dwO= 4Ckp(k)dk. (29)

4. STATISTICAL LIMIT
IN THE SCATTERING PROBLEM

We shall consider aninitial function of the form (3)
and investigate the scattering problem for the potential
U(X) = —Uy(X) in the semiclassical limit. To solve this
problem we need to find the discrete spectrum k,, of the
Schrédinger operator

L = —€%9,, + U(X)

(the parametersk, arerelated with the eigenvalues A, by

the relation k, = ,/<A,) and the shift parameters
(“phases’) s,. Since we are studying the semiclassical
potential (3), in which there are no resonances because
the form of the wells varies quasiperiodically,

MNEA, (30)

2\We note that the even continuation of the function p(K) into the
region k < 0 leads to a singularity at the point k = 0.
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the spectrum is, to exponential accuracy, a sum of the
spectra of each well which are found from the Bohr—
Sommerfeld quantization conditions:

Xy

2 [ Ip0olax
P9 = JA-UR).

Here, as usual, x, are the turning points determined by
the vanishing of the momentum in each well:

p(x) =0, r=1,...,2N.
To determine the region of applicability of our anal-

ysis we shall calculate the correction )\ﬁ to the eigen-

values (31) which is due to the interaction with other
wells. According to the general rules of quantum
mechanics [23], we have

)\i = Vnn! mﬂ J.q’l(O) V(X)lpaO)dX’
where V(X) is a sum of all wells except the well to
whose level we are seeking acorrection, and ¢'* isthe
eigenfunction in the absence of a perturbation. We shall

estimate the correction )\ﬁ for each well. For this, we

take account of the fact that the unperturbed el genfunc-
tion decays exponentialy in a classically inaccessible
region:

cosw; = 0, w; =
(31)

W O exp(—k x/€).
Hence we obtain the estimate

- 0 anJD nkilg

AL Z Ujexp Ubexp =0
j=

Here 6, isthe characteristic width of thejthwell, |; isthe

distance between the jth well and the well under study,

| and 6 are the characteristic spacing and the average

width of the wells (see equations (3) and (4)). The cor-

rection Y@ for the wave function has the form [23]

(l) mn (0)
DN LE
m#n
Thus, in our casethe correctionsto the spectrum and
the wave function are small. Asiswell known, the con-
dition of applicability of perturbation theory is deter-
mined by the relation [23]

Vil < An=Anl. (32
Since
A=Ay O€,
and the matrix element
Vil O exp[—(kn, + kp)1 /€],
No. 4 2000
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the relation (32) is always satisfied well in our case
when

&llng|
Kn+ Ky

This means that the condition (32) holds for al levels
except asmall fraction of the low-energy levels (of the
order of €), for which

k, <Ko= ¢€llng|. (33)
We shall now determine the shift parameters [2]

| >

Sn - Inlbn| (34)
where b, = C,,,/C,,_istheratio of the coefficientsin the
asymptotic eigenfunctions ), as X — o, We shall
first find the parameters s, for one potential well, and
then we shall determine their shift as a result of the
effect of N wells. We shall use the semiclassical solu-
tion in which the lower limit of integration is chosen at
the turning point x.:

.1 Oi 0
; O ——=expE-[p(x)dx0
U] 7500 stJp() .

We choose the branch of the root around acircuit in
the upper half-plane in accordance with the scheme
shownin Fig. 1a. Thefigure also showsthe Stokeslines
on which the asymptotic behavior of the exponentially
decreasing solution must be changed. We choose to the
left of the point x; a solution in the form

_ 1 O X O
Px) = Pi(x) = T &XpL I p(x)dxd
nel O

Jp(x)
Sz 0
— explL Ilp(X)IdX%

This solution approaches zero asx — —. Passing
into the region (x,, X3) from the right-hand side of the
first well and using the well-known rules for crossing
the Stokes lines, we obtain

YK = e “Wyx) - 2i cos(wy) P3(¥).
To satisfy the condition Y(+) = 0, the coefficient of

the WBK solution (s, , which grows asx — +co, must

vanish. This condition gives the quantization rule (31).
Comparing the asymptotic behaviors
W) =

i) & X o

and

P2 at X—» +oo,

Px) = e
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(a)
arg(p) = MZ () = (Xarg(m =172 Zr o= -
X, X5 X3

U (b)

O_
)\:jI& X,/ \ X, X5/ X
NNV

-1+

Fig. 1. (a) Scheme for choosing the branches of the root on
acircuit in the upper haf-plane. The Stokes lines are also
shown. (b) Threeregionssingled out to clarify the changein
phase on passage of the jth well.

we arrive at arelation for the shifts (as asimplification,
we omit the index n):

C,
C

b =
"1 0”0
= (1) eng{k(Xl"‘Xz) + EI + I %(k—lpl)dx},

= i|n|b| = 1-()(1"')(2)

+—EJ IE(k—Ipl)dX

We shall now determine the phase shift for the gen-
era case of N wells. For this, we shall see how the
phase of the wavefunction, localized in the well under
study changes on passage of the jth well to which the
turning pointsx, and x; . ; (r = 2j — 1) refer. For passage
of this well, we single out three regions, as shown in
Fig. 1b. In the region | we have a solution with ampli-
tude A, _; which decays exponentialy from the initial
wave function:

A
llJI = 11 (35)

Jp

In the region |1 the wave function has the form

01 O
expF= I | pldxd
O¢€ O

o = el (1ol ool (o (36
I @ G-)!’ 0 @ DSJ O
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Passing in the complex plane above the point X,, we
find from equations (35) and (36) the following relation
between the coefficients:

><2
U 1 O
A = A -z
r r—leXpE4 SleldX%
Hence, right up to the point X5, we have the solution
O 17 . O %X 0
+ It 1
= A _;expl=—= dxex dxO
Yy r-1 pD4 s;([|p| 5 DB.JIDI 5
Similarly, passing around the point X5, we obtain

01 . O On 1., . 0O
Ar+1eXpE}_EJ-|pldXE= Ar—lexpgz_gj’lpldx%
“ 37)
xeXpEjr 3|p|deIe><pE‘rlxlpldeL
[?J 0 DSXI 0

To determine the shifts we are interested only in the
modulus of the amplitude ratio. Proceeding from equa
tion (37), we obtain a relation between the amplitudes
on passage of the jth potentia well, whose levels,
according to equation (30), do not coincide with those
of thefirst well:

X

Ayl = expEr—jlpldXD

r—1

Repesating this procedure N times and taking account
of, in addition, the integrals from the “terminal” seg-
ments (—oo, X;) and (Xy, +0), we obtain

D lN 1%2j+1
g+ = eXp%(lerXN)_—le XJZ' | pldx

(39)

+ 200 + [ k-l

X1 XN

o o

The integrals in the expression (38) extend over the
regions where the wavefunction decays exponentially.
Using equations (38) and (34), we obtain finally

N—1%2j+1

SN = 500+ 30 -5 5 [ Iplax

I=1 x

(39)

+im +jc(k—|p|>dx

X1
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Itisimportant to underscore that the minussign in front
of the sum in the expressions (38) and (39) is deter-
mined by the fact that we have found correctionsto the
shifts from the wells located to the right of the well
under study. If a similar procedure is performed for
wells on the left side, then the sign changes to plus.

We shall now calculate the shifts s, for a parabolic

potential of the form (3), (10). Simple but quite labori-
ous calculations of the integralsin equation (39) yield

N
sm(N)=mee,-,
i=1
Xm = X(Kp) (40)
%Jl k+(1 K2)In 1t kD
1-K D

Here 6; are the half-widths of the parabolic pulses. We
shall assume that they are modulated according to the
law (13). To simplify the formulas we set 0 = 1, since
the result depends on the modul ation parameter o triv-
ialy. Let us examine the limit N —» oo, For this, we
first investigate the “symmetric” limit, i.e., we add N
wells to the right of the potential well under study and
N wells to the left. We renumber the wells from left to
right. Then, using equation (40), we find

[ 2N N 0
Sm = Xm@00 ) sinj-% €njg
j=N+1 =1 O

Calculating the sums, we obtain, finally,

sn(N) = qexm[anDlD} sn%%ﬂng\';lg
(41)
= qexm[zgn%g} [cos%%— cos%\l + %E}

It is evident from equation (41) that the phase has no
limit asN —= co: as N increases, the phase s,, densely
fillsthe interval

stquxm[Zsin%E} [cos%g 1},

qexm[ZSin %E} [cos%%+ 1}

The process of filling thisinterval is completely analo-
gous to the process leading to the appearance of chaos
in dynamical systems|[24].

We now consider the asymmetric passage to the
limit N — oo, i.e., the situation where the number of
wells on the |eft-hand side differs by M from the num-
ber of wells on the right-hand side. It is easy to show
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that all calculations presented above are preserved, and
the interval over which the phase is spread will be cen-
tered at the point

© — q8x
X > —=Tcot E2D+ Xim Z 9;.
j=1

Since the parameters §; are incommensurate with the
period | on which the minima of the potential wellslie,
for arbitrary M the phase uniformly covers the entire
period [0, I].

Thus, for an infinite number of potential wells the
scattering phase fills any segment [l I;. 4] randomly
and uniformly.

Theresult obtained can be extended to any sequence
of initial pulses of the form (3), including pulses of
variable height. At the same time, we underscore that
the narrow range of small values k, < K, (33) does not
conform to the indicated laws and can form a separate
structure.

In concluding this section we call attention to the
correspondence between the scattering problem studied
here and the process of temporal mixing of adetermin-
isticinitial state, described in Section 2. Each potential
well generates an individual mode of aWitham system.
The appearance of a new mode, as noted above, leads
to phase interruption in a soliton chain, and this inter-
ruption corresponds to the contribution of anew poten-
tial well in the scattering problem. It is important that
the phase interruption does not depend on the time
when a new mode appears. This corresponds com-
pletely to the fact that the contribution to the scattering
phase does not depend on the distance between two
given potential wells and the number of wells in the
interval between them. Thus, the above investigation of
the scattering problem with an infinite number of
potential wells can be taken as a proof of the fact that
the function uy(x), according to KdV dynamics, decom-
poses asymptotically ast — oo into a system of soli-
tons with random phases.

5. MAXIMIZER OF THE N-SOLITON SOLUTION
WITH RANDOM PHASES

We shall now describe an infinite system of solitons
with random phases. According to the methods of sta-
tistical physics [25], this requires separating an arbi-
trary subsystem from N solitons on some segment and
then averaging over an ensemble of states with random
phases s, assuming the number N and the segment
length to be increasing with no limit in proportion to
one another (the statistical limit). It is natural to use the
well-known exact solution [26-28] for N interacting
solitons:

un(x, t) = 2826XXInZ exp[®,(x, )] (42)
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Here u = (Uy, Ky, ...y My, K, =00r 1, and
1 1
2 =22 43
M Mp=0 py=0

The argument of the exponentia is alinear function of
xand t:

N
G 1) = 287y Hiky(s; + 4tky—X)
N (44)

N N

- z z Um“nlmnl

m=1n=1

where
= |n|(km+kn)/(km_kn)|
a m#zn, |, =0.

The function uy(x, t) depends on 2N parameters: the
wave vectorsky, ..., ky and the phases s, ..., Sy

The expressions (42)—(44) establish a unique corre-
spondence between a set of pointsin S space with the
coordinates

sit) = s, +4tkp,

which move uniformly, i.e., they do not interact, and a
set of interacting solitons. It is natural to characterize
thefirst set by its average density

C. = eN/L,,

where L is the length of the interval containing the
pointss,. Thuswearrive at the problem of the statistical
properties of the function (42)—(44), in which the shift
parameters s, ..., Sy are random quantities which uni-
formly and independently distributed in an interval of
length L, where L approaches infinity in proportion to
N so that the ratio N/L; = €7'C, is constant. We shall
consider the interval (—L42, LJ2), so that the possible
edge effects due to the ends of the interval would have
no effect (at Ly — ) in any predetermined bounded
region on the x axis. The velocity v, = 4k? of the points
in Sspace is determined by the parameter k, which var-
ies over the sameinterval asfor solitonsO< k< 1. The
spectrum of solitons over kis given by the known func-
tion p(k), and the distribution p(k) of the points of the
Sset over k is unknown—we must find this distribu-
tion. The normalization of the function p4K) is deter-
mined, just asin equation (7), by the condition

1

J’ps(k)dk =1 (45)
0
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Thismeansthat the densities C, and C arerelated by the
relation

, CL = &N,

L (46)

C, = CT

where L isthe scale on the x axis, on which the N inter-
acting solitons are distributed. Here the law of conser-
vation of the number of solitons (20) and the unique
correspondence between the solitons and the points of
the S-set istaken into account.

The expression (42)—(44) is exact: it takes account
of the interaction of all N solitons with one another.
Thisiswhy the formulas (42)—(44) are so complicated
and the number of terms is so large (~2V). However, it
is obvious that most of them are unessentia: only a
small number of terms, including the maximum terms,
determining the interaction of the group of closest soli-
tons, plays the main role in the sum. Our problem isto
find the maximum of the function @, by varying the
numbers Y, (44) with afixed set of values of k, and s,
for the N-soliton solution and then passing to the con-
tinuous limit. This method is essentially similar to the
method developed previously by Lax and Levermore
[3] (see aso Mazur [29]). The fundamental difference
lies in the fact that in [3, 29] the maximizer was con-
structed under the conditions of a uniquely prescribed
functional relation between the values of the vectorsk,
and their phases s, and was a completely determinate
dynamical problem. In our case, however, there is no
dynamical relation between k, and s,: The parameters
Sy, .-, S, @e, on the contrary, a set of random numbers.
Statistical methods must now be used to determine the
maximizer. We note that the N-soliton solution (42)—
(44) isvalid for apotential decreasing rapidly as|x| —
oo [3]. For thisreason, the very possibility of using this
solution to describe a statistical subsystem with a non-
decreasing potential —uy(X) is a hypothesis which will
be substantiated bel ow.

In analyzing the problem of finding the maximum of
®,, we shall employ an analogy with the simplified
model ®,,, obtained by dropping in equation (44) the
terms which are quadratic in i and which describe the
interaction of the solitons. The maximum of the
remaining part (linear in 1) can be found exactly and
very easily: the quantity

N

EDu(x, 1) = 2 Hoko(sy+4tki—X)  (47)
n=1
reaches amaximum for p = {i such that
n = N(s,—ay), (48)
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where a, = x—4tk’, and the function n(€) = 0 for & <0

and n(§) = 1 for & > 0. In other words, in the sum (47)
it is sufficient to take p, = O for s, < a, and y, = 1 for

s,>a, wheren=1, ..., N. The maximizer (I depends
ons, ..., Sy i.e, itisarandom quantity.

We shall use a construction similar to equation (48)
(astep function of s,) to find the maximizer of the com-
plete expression (44), including the quadratic interac-
tion terms. It turns out that this makesit possibleto find
an approximate (in the probabilistic sense) maximizer
I, and the accuracy of this expression increases with
N, which makes it possible in the limit N — o to
replace the exact maximizer by the approximate one.

We seek [1 in the form

n = N(s,—by), (49)
where—-L4/2 < b, < L42 (thereisno point in considering
b, <—-LJ2or b, > LJ2, since s, stays within the range
(-LJ2, L42)). The average value of [, is equa to the
probability that {1, = 1:

L= (L/2-b)/Ls = U2-b /L.  (50)

Changing in the sequence I one element |, gives
the sequence p
Hy = ﬁv + (1_2}]—n)6n\)'

The function e®, with the indicated elementary
changein P acquires the increment

N

A= e(q)u - q)ﬁ) = 20, kn(Sn _an) —& z Invl]vi|!(51)
v=1
whereo, =1-2p, = (—1)ﬁ”.

For the example considered above without an inter-
action, there is no sum over v, and we have

A, = 2k,0,(s,—a,). (52)
Setting b, = a, in equation (49), we obtain o, =
-sgn(s,—a,) and, therefore,

A, = (53)
i.e, al A, are negative, as should be for a maximum.

_2kn|Sn - an| ;

Separating from Z< l.H, itsaverage value (which,

according to equation (50), can be simply expressed in
terms of by, b,, ...), equation (51) can be put into the

form
A, = 2k,0,
£ N b, € "
£ LSO, &
x|:sn—an_knzl| nv LD anInV(UV i|
(54)
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Comparing this relation with equation (52) shows that
if the numbers b, are made to satisfy the conditions

€ i bpg_
at+— Inv 571 1M1~ bnv
knv; L0 (55)
n= 11 ’ N!

which comprise a system of N linear equations for N
unknowns b, the expression (54) becomes (compare
equation (53))

N

An == 2kn|5n - bn| + 280'n Z Inv(ﬁv - ﬁv) (56)
v=1

Hence it is evident that the unremovable random cor-
rection, which depends on al s, withv £ nand is zero
on the average, makes it impossible to satisfy the con-
ditions for amaximum A, < 0.

An estimate of this correction for N — o is pre-
sented below. It showsthat in the probabilistic sensethe
correction is negligibly small. Thus, the multi-index |1,
which can be efficiently calculated in analytical form,
is a good approximation (as N —» o) for the exact
maximizer {1, which cannot be found analytically.

An important aspect of the calculation of i is solv-
ing the system of linear equations (55). It is better to
interpret this system as a system for the unknownsy,, =

12 -b /L= [y

N

Xy
L

NI

Yo = (57)

—

[%2]

N
t 2 €

k- — z | .
s n Lsknv:l nVy\)

We also note the fact that although the formal solution
of this system of equations can be found for any x and
t and is a linear function of these variables, it makes
sense only as long as 0 < y, < 1 for al n (the corre-
sponding limitation for the system (55) is that —L42 <
b, < LJ2). Outside the limits of the corresponding
region of the xt plane the system (57) must be modified
somewhat.

In passing to the limit N —» o (Ly=eNC;") in the
system (57), x/L, = & and t/L, = T must be fixed. In this
limit the unknowns y,, are made continuous, y,, = y(k,),
and equation (57) gives an integral equation of the sec-
ond kind for the function y(k):

1

W) = -+ 41 - [0 pLYRIK, (59
0
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where
Ik, k) = In|(k+K)/(k=K)|

and p4(K) isthe level density in the Sset. To obtain the
general solution of this equation for arbitrary values of
the parameters t and &, it is sufficient to solve two spe-
cific integral equations

1

k) = K = [k K)puK)Ya 00K,
0

(59
a=02
and form the linear combination
Y0 = 55— &) + 4ry(K). (60)

The solution obtained makes sense only for & and 1
suchthat 0 < y(k) < 1.

We shall now clarify the sense in which 1 is an
approximate maximizer. According to equation (56),
the increment A, is a sum of two independent random
guantities: a negative quantity

Aﬁneg) - _an|sn _ bn| ,

which is distributed piecewise-uniformly, adjoining
zeroinaregion of length ~L, on the left-hand side, with
the probability density (k,Lo)™, and a sign-aternating
correction

N

An = 2‘(‘:O-n Z Inv(yv - ﬁv)

v=1

The latter, being a sum of N — 1 independent random
quantities, is distributed (in the limit N — o) accord-
ing to a Gaussian distribution with zero mean. Its vari-
anceis

N
dy = 46" (1) W(L-W).
v=1
Passing to the continuous limit, we rewrite d, in the
form
d, = €°Nd(k,),

1

d(k) = 4f[Ik K)1° k) Y(K)[1 - y(K)] k.
0
Thus, while
A% 0L, DeN,

the correction A, O ,/d,, has, on the average, the much
smaller value ~¢ /N .
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We are interested in positive values of A,, which
should not exist for deviations from an exact maximum.
Intheregion A > 0 thedistribution density of A, isgiven
by the expression (a convolution of a step distribution

A" and a Gaussian distribution An )

0

WD) = J'exp[—(z—A)Z/ 2d,]dz,

1
k,Ls./21d,,

whence it is easy to obtain the probability of a positive
value of A,

[

w,(8)dA =
|

Jd, _ G Jdk)
kiLso/2T  J2TIN Ko

This quantity approacheszero asN —» o and the aver-
age number of “incorrect” elementsin i (i.e., elements
H, such that replacing them by 1— j, increases ) is
equal to

f;ﬁm {k-VTk)ps(k)dk

that is only an infinitesimal fraction of al N of its ele-
ments.

A “correction” at [ “incorrect” zeros and units

gives a better approximate maximizer ﬁ(l), in which
their number is of the order of NY4, and so on. Proceed-
ing in this manner we arrive at the exact maximizer {1
(for finite N, in afinite number of steps). Based on this
procedure of successive approximations, it can be
shown that (in the limit as N — o)

Hn = Mo (61)

Thus, the expressions (49) and (50) for sufficiently
large N can be used as the maximizer and its average
value.

We recall, however, that we still do not know the
density C of pointsin S space or the spectral density
pJ(K). As aresult, the expression for the maximizer is
also undetermined. To find it, arelation must be estab-
lished between C,, py(k) and C, p(k), which are deter-
mined by theinitial potential —uy(X).

6. CONTINUOUS SPECTRUM OF THE S-SET

The conservation laws (18)—21) play an important
rolein the determination of the relation between theini-
tial and phase-mixed states of the system. As already
mentioned above, because of the conservation law for
the number of solitons (20), the densities C and C, are
related by the relation (46). For this reason, we shall
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calculate the average U and the mean-square u® inthe
stochastic state, using the expression obtained above
for the maximizer.

It is convenient to express the averages U and Jz in
terms of the derivatives 0,, 0; of the average quantity
w = &0,/\, where A\ isthe logarithm in the expression (42):

A = Inzexp(dbu).
u

Evidently,
0= 2e0,W (62)
and, because of the conservation law (14),
W = —%(ZSGt\THeZGXXU). (63)

Aswe shall see below, 0,,0 = 0in the region of the xt
plane of interest to us. The calculation of the average of
w = £d,/\ reduces to averaging the quantity

0, P(X) = 0, Max B (x),
H

because, as shown below, A = 3,® in the limit

N — co. However, the average of 3,® can be easily

found, since the approximate maximizer [1 found inthe
preceding section can be used for this.

The difference

A 0 ~(@-o )
D(X) = A—=® = In[L+ Ze(@'> *g

- O
T

is a positive continuous piecewise-smooth function of
X, uniformly bounded above as N — oo. For this rea-
son, if Ly 0 N — oo, then the derivative ,D can be
averaged over an interval x; < X < X, whose length
approaches «, comprising only a small part of the
entire length L. In the limit we obtain

1
Xo— Xy

D(x,) — D(xy)
Xo— X,

0.

0,D = JiaXDdx =

Thus,

W= €00 (64)

inthelimitasN —» oco.
The coefficient of x in the linear dependence (44) is

N
_28_1 Z Unknl
n=1
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whence it follows that
N

£d, D(X) = -2 Z (0K,
n=1

Using equation (61), we find that asN — o
N
€0, d=-2 z HaK,

= zkn(yo) T anwz)

Using this relation and equation (64), we obtain from
the general expressions (62) and (63)

N
4eL’ z KelYo)ns

4zma

Here the fact that we confine our attention to the region
of xand t where 0 <y, < 1 and therefore (yp),, and (¥,),
do not depend on x and t is taken into account. Hence,
passing to the continuous limit N —» o (eN/Lg = C)
we obtain

u
(65)
2 _ l6e

1

0= 4Csfkps(k)yo(k; CJdk. (66)

This average does not depend on x, so that d,,0 = 0and
therefore equations (63) and (64) give

1
0 = Zeom = ZCKpKyollc Cack.  (67)
3 3
0

The derivation of the last expression a'so employed the
identity
1 1

JkpK)yak; Codk = Ikgps(k)yo(k; CJdk,
0 0

which is obtained by multiplying equation (59) with
a=0and a =2 by py(Kk) and k’p4(K), respectively, and
then integrating the difference of the obtained relations
over kfromOto 1.

We now separate in the sum (65) for U a narrow
region Ak in a neighborhood of any value of k, chosen
in the interval (0, 1). Passing to the continuous limit as
N — oo, just asin equation (66), we find

do = 4Ckpy(K)yo(k; CYdk. (68)

The possibility of separating the differential contribu-
tion du isdueto thefact that the amplitude of the soli-
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tons is preserved in an interaction so that there is no
mixing of the spectrum in regions with different values
of k. This makes it possible to use the differential con-
servation law (29). Comparing equations (29) and (68)
we shall establish arelation between the spectra densi-
ties of the S-set and the set of solitons:

CsYo(k, CIp(k) = Cp(K). (69)

It is obvious that this relation agrees with the integral
conservation laws (compare equations (23) and (66)
and equations (24) and (67)).

Next, we shall take into account the normalization
condition (45). This makes it possible to find immedi-
ately the solution of thefirst integral equation (59)

1

Yok, C) = 1—- % J' I(k, k)p(k)dk' (70)

and the density of the gas noninteracting particlesin the
statistical limit

1
_ Pk
* = Pyeoy

Thus, the use of a maximizer, together with the ini-
tial requirement that the conservation laws be satisfied,
completely determines the relation between the soliton
spectrum and the S-set with an asymptotic transition
into a stochastic state:

Cp(K)

P(K) —= pdK) = CLC)yok O

Such a transformation is physically completely obvi-
ous. It determines the correspondence between a one-
dimensional gas of free, uniformly moving, noninter-
acting points of the S-set and a gas of interacting soli-
tons. Both sets are related by the relations (42)—44)
and are in a statistical state, i.e., the phases s, are ran-
dom. We recall that the density C is proportional to the
dispersion parameter €. For this reason, the fact that in
our problem the parameter € is a finite but small quan-
tity playsthe main rolein the possibility of thetransfor-
mation (72).

The spectrum p¢(K) for various values of the density
C for the example of parabolic pulses (3) and (10)
which was considered aboveis presented in Fig. 2. It is
evident that there is a large deformation of the spec-
trum: p, decreases for large k and increases for small k.
This drift in the direction of small k becomes increas-
ingly stronger as C increases. The density C; also
increases substantially with C, and as C approaches the
maX|mum value C,, = 0.25, in genera, C, approaches
infinity.3 At the same time, the scale L on which the

(71)

C— C{O), (72)

3 We note that a singularity arises as C — Cpyy and the small
modulations of the pulse widths 6; (see equation (13)) also
become substantial. For this reason, this case must be anayzed
separately.

No. 4 2000



708

0 0.2 0.4 0.6 0.8 1.0

Fig. 2. Spectral density pg(k) for the indicated values of C
and the dependence of Cgon C.

points of the S-set are given, according to equation (46),
decreases with increasing C:
- L&
L.=1L c.

We note that such a stretching of the space
s —Kx

is possible only for an ergodic initial state defined on
the entire x axis. Physically, the result obtained is com-
pletely understandable: The points of the S-set do not
interact, while solitons repel one another and therefore
the “volume’” which they occupy increases. It is
because of the repulsion that the soliton density C can-
not exceed a finite value C,, even as C; — . From
Fig. 2, just as from equations (69)—71), it is also evi-
dent that as the density of the soliton gas decreases, the
difference between p, and p decreases, and in the limit
C — Owehave pyk) = p(K). This degenerate case was
studied in [1].

The necessity of transforming the spectrum (72)
when passing from solitons to the S-set isillustrated in
Fig. 3. The figure shows the integral of the function
un(X) from —o to x. The calculation was performed
using the maximizer for N = 100 solitons and the set of
parameters k,,, s, corresponding pg(k), Cs according to
the transformation (72). To smooth the fluctuations,
averaging was performed over an ensemble of 50 ran-
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300F c-02

C,=0.60176

200

100

O 1 1 1
-800 -600 —400 -200 0

1
400
X

1
200
Fig. 3. Integral u from —o to x for C=0.2.

dom realizations of the function uy(x). Thethin straight
line shows the slope of the integral, determined by
equation (23) for [ It is evident that the agreement
with the numerical calculation is good. The thin line
represents the same integral but with the parametersk,,
s, corresponding to the initial p(k) and C. Here, con-
versely, there is no agreement with the formula (23).

It should be especialy underscored that the maxi-
mizer plays an important role, making it possible to
develop a very efficient algorithm for performing
numerical calculations using the formulafor the N-soli-
ton solution (42). For large values of N, finding the
maximizer (1 of the argument ®, of the exponential
beforehand makesit possible to retain in the sum (42) a
comparatively small number of terms corresponding to
variations near the maximizer. The number of terms
included depends on the accuracy required of the calcu-
lation and especialy strongly on the parameter C.
Actualy, for small C, (C, ~ 0.2 and smaller), only sev-
eral (2-5) terms are required to obtain an accuracy of
102-107. But, even for C~ 1, when hundreds of terms
are required in order to obtain the same accuracy, the
number of termsis still incomparably lessthan 2V. This
makes the calculation radically faster than summing all
2N terms. |n addition, the approximate maximizer (49),
which can be easily calculated even for large N, is help-
ful in the numerical calculation of uy(x), being a good
starting point for finding the exact maximizer by the
“steepest rise” method. Ordinarily, it is sufficient to
change in 24 elementsin [ (with atotal of the order
of 100 elements) so that further changes would only
decrease ®,,.. Theindicated methods makeit possibleto
perform very efficiently numerical calculations for al
necessary characteristics in the statistical limit under
consideration.
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Thus, we have constructed an algorithm for finding
the asymptotic solution of the KdV equation in the
semiclassical limit (2) for initial conditions which
result in stochastization of the phases. The basis of the
algorithm lies in establishing a direct relation between
the density and spectrum of the S-set, C, and py(k), and
the set of interacting solitons C and p(k). The latter are
determined according to a prescribed initial potential
Ug(X), after which C, and p4(k) are found using the rela
tions (70)—(72) and then a direct calculation of the
required characteritics is performed using the maxi-
mizer constructed here for the N-soliton solution in the
statistical limit. In what follows, we shall present addi-
tional examples of the application of this method.

The characteristics of the statistical S-set, determin-
ing the asymptotic properties of the solution of the KdV
equation (1) and (2) for a prescribed initial function
Uo(X), were found above. An inverse formulation of the
problem is also possible: to find the initial distribution
from prescribed C and pg(k). Asfollows from equation
(59), yo(k, Cy) isthen determined by the integral equa-
tion

1

Yok, C) = 1- %Il(k, K)py(K)yo(K, CodK'.
0

Having solved this equation, we can find, according to
equations (69) and (7), the density

1

C= CsJ'ps(k) Yo(k, Cdk
0

and the spectrum

oty = PLOYC)

JPk)yelk, Codk
0

as well as the average velocity (23), the mean-sgquare
velocity (24), and all other averages (21). It is obvious
that an entire class of initial functions uy(X) leadsto the
same values of the density C and spectrum p(k). But
greater information about uy(x) cannot be obtained on
the basis of prescribed C, and p¢(k). This is one of the
manifestations of the irreversibility of the problem
under consideration.

The density C and the spectrum p(k), which are
determined by the initial function uy(x), are preserved
in the statistical limit found. According to the results of
Section 3, this means that all conservation laws of the
KdV equation are satisfied in our solution. The method
developed, where an N-soliton solution with random
phasesis used, can therefore be regarded as amodifica-
tion of the inverse problem of scattering for an oscillat-
ing nonperiodic semiclassical initial potential —uy(X)
defined on the entire x axis.
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7. QUASISOLITONS

Solitons are not free in the stochastic solution which
we found for the KdV equation: They are constantly
interacting with other solitons. This changes their
velocity, which, just as the form of the soliton, fluctu-
ates constantly. However, in a homogeneous stochastic

state, the average velocity v (K) , the average amplitude

a(K), and the effective average form tuy(x) of a soliton

are constant and determined by the single parameter k.
Therefore it is natura to introduce the concept of a
“guasisoliton,” i.e., afluctuating soliton, corresponding
to this parameter k. In the limit C — 0, aquasisoliton
becomes an ordinary classical soliton. The deviations
from an ordinary soliton for average quantities and for
fluctuations grow with increasing density C.

A quasisoliton is, seemingly, an ordinary soliton
moving in a fluctuating soliton vacuum. Its average
velocity v(K), asfollowsfrom equation (60), is

4y,
R

The first correction obtained hence with respect to the
parameter C to the soliton velocity

(73)

dv(k) = ‘-‘kgj'l(k, K)(k* — k') p(K)dk' (74)

isidentical to the correction found by Zakharov [8].
We shall investigate the changes in the form and
amplitude of a quasisoliton for a numerical example.
Figure 4 shows a “test” soliton against the background
consisting of a stochastic soliton gas with density C =
0.2. The background solitons have, as usual, wave num-
bersintheinterval 0< k<1 (i.e, theamplitudeO<a<
2) and their spectrum is determined according to equa-
tion (11). In the calculation, the numerical method
described above was used, taking account of the param-
eters of the S-set, which were determined according to
equations (70)—«72). The amplitude of the test qua-

sisoliton was assumed to be large, a, = 2k§ = 3, so that

it can be singled out among the background solitons. It
is evident that the test soliton joins the background
curve uy(X) almost exactly, if it fallsinto theregion with

alow perturbation level in 2k§ (and its height remains

almost unchanged, close to 2k;). For a high level of
un(X), however, the interaction has a large effect and
leads to “repulsion” of close maxima of uy(X), and the
height of the test soliton decreasing appreciably.

Figure 5 compares for the same value C = 0.2 the
form of the test quasisoliton with amplitude 2k§ =25
with a“free” soliton with the samevalue of k, i.e., with

the function §(x) = 2k§ cosh *(K,X) . The wave num-
bers of the background solitonsk;, ..., ky were distrib-
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O 1
-150 -100 =50

0 50

Fig. 4. Trial soliton with amplitude 2kg = 3 (thick line) (0<k,<1)forC=0.2.

uted in the interval (0, 1) with density p(k) = 2k. The
form of the quasisoliton was calculated by averaging
over 150 shifts of the parameter s,: the functions
Un+ 1% Koy +-y Kno Sov -5 Sy) TOr various values of s,
were shifted so that their highest maximum would shift
into the point x = 0, and their arithmetic mean was cal-
culated. The result of the averaging was used to calcu-
late the average value of uy(X), which, according to
equation (23), is (8/3)C for p(k) = 2k. It is evident that
a quasisoliton differs substantially from a free soliton
by the maximum height, a general downward shift, and
a more complicated form (minima appear). As kg
increases, the difference between the quasisoliton and a
free soliton decreases, just as expected. Conversely, as
ko decreases, alarger change in the form of a quasisoli-
ton can be expected.

Figure 6 shows a spatial-temporal picture of the
motion of a test soliton among N solitons with ran-
domly selected initial values of s,. As an example, N =
30 values were chosen, C, = 0.4, and k, was chosen to
be above the maximum background solitonsin theratio

-4 -3 -2 -1 0 1 2 3 4

Fig. 5. Comparison of a quasisoliton averaged over the
shifts g (with the average U subtracted out) and a free soli-
ton with the same wave number k.
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10/9. The figure shows the coordinates of the maxima
of the function uy ., 1(X, t) in short time intervals (At =
0.1). The points of the maximum which exceed 90% of

the free amplitude of the test soliton 2k§ are singled

out. It is noteworthy that even the points of the maxi-
mum on the “track” of the test soliton which were not
singled out fall practically on the same straight line.
This indicates that the maximum moves with the same
(and even somewhat higher) velocity, even though its
height islower. It isclearly seen that the average veloc-
ity of aquasisoliton is higher than the velocity of afree

soliton 4k§ (the dashed curvein the figure corresponds

to uniform motion with this velocity). The reason for
this acceleration is simple: a high-amplitude soliton
undergoes rapid additional shifts at the moments when
collisions occur. The value of the average velocity of
the test soliton agrees well with equation (73). Figure 6
shows the tracks and some background solitons whose
amplitude is less than that of the test soliton and which
move, naturally, more slowly. We note that according to
equation (73), the solitons with a small amplitude are
not accelerated, but rather they move more slowly than
the free soliton with the same amplitude: their average
velocity decreases because of the interaction with the
background.

8. PROBABILITY DENSITY

A genera method for determining the probability
density in the asymptotic limit t — oo was devel oped
in[1]:

f(U) = CB(U—u(x, 1)) oalg (75)

where the average [Mis taken over the characteristic
scale of the uniformity of the problem. However, it was
found that f(u) could be calculated only in the limiting
case of free solitonsC — 0, since therelation between
the phase-mixed set of solitons and the S-set was not
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studied in[1]. In the present paper thisrelation is estab-
lished and it is shown that it is unique. This makes it
possible to indicate a direct algorithm for calculating
the probability density.

The N-soliton formula (42) is used to make a spe-
cific calculation of the uniform probability density f(u)
distributed uniformly over the phases. First, according
to equations (46) and (70)—(72) obtained above, the
scale, density, and spectrum of the initial distribution
aretransformedasL — L, C — C, and p(k) —
p4(K), respectively, for the transition to the S-set. Then,
according to equation (75), we have

L/2

f(u) = % [ 3(u=uy(x D)cx

-L/2
Xi(u)>Sl...SN

_ [l |du
- <LZ x
The averaging in the last expression was first per-
formed over al roots of the inverse function x, = x;(u).

The brackets [T] , denote a further averaging over

an entire ensemble of uniformly distributed phases
s,...Sy. We note that according to equation (76), the
function f(u) is“bad” from the standpoint of continuity,
since u(x) undergoes many oscillations (~N), and each
extremum gives in equation (76) a singularity of the
type (U — Ugin) Y2 or (U —Ung)~"2. Averaging over many
realizations does not remove these singularities: their
number only increases, though the coefficient for each
one correspondingly decreases. For this reason, an
additional smoothing procedure is used to calculate
f(u). Of course, the computational results do not depend
on this smoothing procedure.

(76)

The calculations were performed using quite long
N-soliton realizations. Since the fluctuations are sub-
stantia even for N ~ 100, to obtain objectively signifi-
cant results it is necessary to perform an additional
averaging over an ensemble consisting of a quite large
number of realizations (which, because of ergodicity, is
equivalent to increasing the length of aredlization, i.e.,
the number N).

Figure 7 demonstrates the presence of a quite large
random spread in the functions f(u), calculated over
20 specific realizations of the function uy(x) with N =
100. The next figure shows the averages over ensem-
bles of a much larger number of realizations of the
function f(u) for two values of the parameter C: for C =
0.1 the averaging was performed over 500 realizations,
while for C = 0.2 the averaging was performed over
400 redlizations. It is evident that as C increases, the
structure of f(u) deforms: a maximum of the probabil-
ity density stands out clearly at afinite value of u. The
maximum shiftsin the direction of large values of u as
C — C,,. Conversely, for low densities C the func-
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Fig. 6. Motion of atest soliton with amplitude 2k(2) among
background solitons.

Fig. 7. Probability density f(u) with C = 0.1. Fluctuationsfor
variousrandom realizations of thefunction uy(X) are shown.

tion f(u) increases for small values of u according to a
power law:

f(uy=Au™.

The dependence of the exponent a on the soliton density
Cisdso shown in Fig. 8. The dtraight linea =1 -2C
showsthe limit C — 0, which was established in [1].
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Fig. 8. Probahility density f(u), averaged over ensembles of
realizations of the function up(x), for two values of C. The

dependence of the exponent on C in the asymptotic limit

f(u) = AU asu —= 0; straight line aetheoretical value as
C—0[1].

We note that for very widely spaced pulses, when
C — 0, the expression (42)—(44) for uy(x, t) becomes
a sum of single-soliton solutions uy(X). As a result, the
expression for the equilibrium distribution function f(u)
reduces to the expression which we obtained previ-
oudly in[1]:

_ _2 1
f(u) = B(u—uyx))0= [< m—'>

2

2 du -t
= =(p(a)|—=s da
LIp()dx

Here p(a) isthe amplitude distribution of the solitons.

Thus, the general algorithm constructed here made
it possible to find, for a specific example, the probabil-
ity density f(u) for theinitial function uy(X), defined on
the entire x axis and generating a system of interacting
solitons with arbitrary density. The correlation function
K(s) can be found in acompletely similar manner.

In conclusion, we note that the theory constructed in
[1] and the present paper describes the appearance and
development of a turbulent state in one-dimensional
dispersion hydrodynamics. The successive elimination
of the small dispersion parameter € in the semiclassical
(weak) limit considered makes it possible to describe a
flow using asystem of quasilinear nondissipative equa-
tions of hydrodynamic (Euler) type: Hopf’'s equation
and Witham's equation for single-maode and multimode
systems. The singular points arising in a hydrodynamic
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flow are decisive for the appearance and structure of
fine-scal e oscillations. New modes of fine-scale oscilla-
tions always develop near singular points. Theincrease
of the number of modes in time ultimately results in
complete stochastization of the small-scale oscilla-
tions, i.e., the development of turbulence.

The statistical properties of developed small-scale
turbulence are completely determined by the integral
characteristics of the initial large-scale hydrodynamic
flow. A method making it possible to determine the
characteristics of turbulence according to a prescribed
initial state was developed. The finite (though arbi-
trarily small) value of the dispersion parameter € plays
afundamental role in developed turbulence. Of course,
the theory constructed makes substantial use of the
integrability properties of the KdV equations.
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Abstract—A relativistic quantum exchange protocol making it possible to implement a bit commitment
scheme isrealized. The protocol is based on the idea that in the relativistic case the propagation of afield into
aregion of space accessible for measurement requires, in contrast to the nonrelativistic case, afinite time that
depends on the structure of the states. The protocol requires one classical and several quantum communication
channels. It turns out that it is possible in principle to preserve the secret bit for aslong aperiod of time desired
and with probability as close to 1 as desired. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The conventional bit commitment scheme includes
two spatially separated participants A and B and
reducesto thefollowing [1]. Let usassumethat at acer-
tain time t, the participant A selects one bit (0 or 1) and
transmitsto B part of theinformation about this bit, and
this information is insufficient to determine reliably
which bit A chose. Further, after receiving the informa-
tion sent by participant A participant B can ask A, at any
time at the second stage of exchange (commitment
stage), for the remaining part of the information about
the bit, and B must be confident that A has not changed
his decision about the choice of bit, received at thetime
to, i.€., A should not be able to fool B.

The classical bit commitment schemes, where A and
B can exchange information only through a classical
communication channel, are based on the unproved
complexity of computing, for example, a discrete loga-
rithm. If A and B can also use a quantum communica:
tion channel in addition to a classical communication
channel, then such a scheme is called a quantum bit
commitment scheme. In this case the information carri-
ers are quantum states. Various quantum bit commit-
ment protocols have been proposed [2-4]. Subse-
quently it was determined that the ideal quantum bit
commitment scheme isimpossible, since A can aways
fool B, using an Einstein—Podol sky—Rosen (EPR) pair
and delaying his measurements (actually delaying the
choice of bit himself) to the second stage of the proto-
cal [5, 6].

A classical bit commitment protocol that takes
account of the existence of a maximum propagation
velocity of the signal (information) was recently pro-
posed [7, 8]. A relativigtic classical protocol [7, 8] is
definitely secret (i.e., the secrecy is based only on the
fundamental laws of nature) and makes it possible, in
principle, to delay the second stage of the protocol, i.e.,
to preserve information about the secret bit, conceived
by A, aslong as desired, but to implement the protocol

each participant A and B can monitor two spatially sep-
arated units.

We shall propose here a relativistic quantum proto-
col that makesit possible to implement bit commitment
inafinitetimeinterval. More accurately, we aretalking
about aprotocol inwhich participant B could not recon-
struct in afinite time t,, on the basis of the information
sent to him, the bit chosen by the participant A (this
means that the probability of correctly identifying the
chosen bit during as long as desired, but finite, pre-
scribed timet, does not exceed 1/2, i.e., the probability
of randomly guessing thishit by assmall asdesired pre-
scribed value ). At any timet < t, the participant B can
ask Afor the bit transmitted to him, and at acertaintime
T > t. he can check which bhit participant A chose at
time t,. We note that in redlity the finite time t. is
implicitly also present in classical bit commitment pro-
tocols based on the computational complexity of partic-
ular problems, where it is determined by the computa-
tional resources of the participant B and must be chosen
so that these resources would be inadequate to find the
selected bit on the basis of information obtained intime
t.. In our protocol, however, the impossibility of deter-
mining in atimelessthan t, the bit chosen by Aisbased
not on the limitation of the technical capacity of B but
rather by the fundamental laws of nature, just asin the
classical relativistic protocol [7, 8]. However, the use of
guantum states (more accurately, single-particle states
of thefield) as carriers of information makesit possible
to construct a protocol in which each participant con-
trols only his own unit. In addition, the existence of a
limiting propagation velocity for states of the field
makesit possible to construct, in contrast to nonrelativ-
istic quantum mechanics, a secret protocol based on
orthogonal states.

The quantum-mechanical measurements used in the
protocol are discussed in Section 2. A graphic model
example of measurements in the one-dimensional case
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is presented in section 3. The protocol is described in
Section 4.

2. QUANTUM-MECHANICAL MEASUREMENTS
USED IN THE PROTOCOL

All quantum cryptographic protocols use the fol-
lowing two circumstancesin one form or another. First,
there is the so-called theorem [9] stating that it is
impossible to copy an unknown quantum state, i.e., the
assertion that the process

|AQWO— U(|AOwD = |ByQwwd

where |ACand |B,[are states of the apparatus before and
after copying and U isaunitary operator, isimpossible.
Such aprocessisforbidden on the basis of the linearity
and unitarity of evolution in guantum mechanics. Sec-
ond, the even weaker process of obtaining any informa-
tion about one of two nonorthogonal stateswithout per-
turbing them is impossible [10], i.e., a process of the
form

|AQW, 00— U(JAOW,0 = IALUIE]”JID
|AQW E— U(JAOW,0 = [Ay,Hw,0

with |A, 02 |Ay,0 if Wy|@,03# O, isimpossible, which
means that it is impossible to distinguish nonorthogo-
nal states reliably. There is no such prohibition for
orthogonal states. For this reason, amost all crypto-
graphic protocols employ nonorthogonal states as
information carriers. An exception is a protocol pro-
posed in [11].

In nonrelativistic quantum mechanics there are no
restrictions on reliably distinguishing one of a pair of
orthogonal states without perturbing the states, and
there are no restrictions on doing this instantaneously.
At the present time, there is every reason to believe that
in relativistic quantum theory orthogonal states also
can be distinguished reliably without perturbing them.
However, the existence of a maximum propagation
velocity of the field (and information) introduces an
additional restriction. States cannot be reliably distin-
guished instantaneously: orthogonal states can be dis-
tinguished reliably only in afinite time, which depends
on the structure of the states themselves.

This is due to the fact that such measurements are
nonlocal. We shall elucidate what we have in mind.

Let us consider the nonrelativistic casefirst. Let two
orthogonal states |y, 0and |y,Jof a one-dimensional
nonrelativistic particle be given,

W, |p,0= 0. N
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In the momentum representation of the Hilbert space
we have

W, 0= J’ Wy, »(p)|pLdp. 2

Let the wave functions |, ,[Jpossess nonoverlapping
supports

supp W1(p) N supp Yo(p) = 0,

. _ (3)
W, |p,0= le(p)wz(p)dp = 0.

The orthogonality of the statesis, generally speaking, a
nonlocal property in the sense that the values of the
wave functionsat all pointsin space appear inthe scalar
product. If the states are orthogonal in the complete
space, then their projections on a subspace are not nec-
essarily orthogonal. To demonstrate thiswe shall exam-
ine the same states in the coordinate representation of
the Hilbert space:

Wy 0= I Py, o(X) [xLalx,
- 4
Py o(X) = je““wl,z(p)dp.

The orthogonality of the states is preserved, generally
spesking, only in the complete space, and with a
restriction on some subspace the states are not neces-
sarily orthogonal, i.e.,

W, |p,0= I W7 (X)W,(x)dx 20, )

Generally speaking, in order to be able to distinguish
states reliably, accessisrequired to the entire region of
the coordinates space where these states are present. In
nonrelativistic quantum mechanics there are no restric-
tions on the instantaneous access to the entire coordinate
space, 0 that there are no redtrictions on performing
instantaneous nonlocal measurements. Let us clarify what
we have in mind. According to the nonrelativistic quan-
tum-mechanica theory of measurements, the statistics of
the outcomes of any measurement refers to a state of the
system at a certain definite moment in time. In the non-
relativistic caseinformation about the outcome of acer-
tain measurement which touches upon spatially sepa-
rated points (for example, the measurement apparatus
can “extract” information about a quantum state at the
same moment in time at different spatial points) can be
collected into a single point for the observer instanta-
neously (at the same moment in time), since there are
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no restrictions on the propagation velocity of informa-
tion.

In the relativistic case, in contrast to the nonrel ativ-
istic quantum mechanics, there is no systematic theory
of measurements. Apparently, nonlocal instantaneous
measurements in the sense mentioned above for the
nonrelaivistic case are impossible. Even if the measure-
ment apparatus performs measurements on a state at the
samemoment intime (in somereference system) at differ-
ent spatia points x, and x,, afinitetimet = [x; —x,J/2c is
required to collect the data obtained at one point for the
observer. For this reason, nonlocal measurements
require afinite time that depends on the structure of the
state.

Thus, in relativistic quantum field theory a finite
time is required to obtain information about the out-
come of anonlocal measurement. In addition, when the
measurement apparatus has access to a bounded region
D of space, ameasurement of anonstationary state will
giveinformation about this state only if the spatial sup-
port of the state intersects D at the moment the mea-
surement is performed. If at time t, the support of the
state is located outside D, then complete information
about the state can be obtained by a measurement local-
ized in D no sooner thaninatimet; = L/2c, whereL is
the characteristic size of the support of the state, since
the support of the state cannot bewholly in D for atime
less than t; because the field propagation velocity is
finite.

Before describing the protocol, we shall discussin
greater detail the measurements used. In what follows,
we shall be considering massless particles (photons).
The operators of the four-dimensional vector potential
have the form [12]

E 1 +ikX p dk
AL(%) = —— e " A% (k) Z&

(%) (Zn)wj (k) 3
dk

J2K°

where kX = k°®° —kx. The operators Ay (%) of thefour-

dimensional vector potential are required to satisfy the
Bose commutation relation [12]

[An(X1), An(%)]- = igmDo(%1— %), (7)

whereg™isthemetric tensor (g =—g'' = g2 =-g*=1),
D, isthe negative-frequency commutator function for
afield with zero mass

(6)

= ol a0

Dy(X) = i (271)3’2 [aka(k)0()e"
| ®)
= Zé-'T[-)-Bficll—t-lexp(—ixolkl +ixk),
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which isdifferent from zero and possesses asingularity
on the light cone [12]

Dy(X) = 4—1n£(x°)6()\), A2 = 0O =x% (9

In what follows, we assume ¢ = 1. The creation and

annihilation operators a:,(k) describe four types of
photons: two transverse, “time-like,” and longitudinal.
The latter are fictitious and are introduced in order to
preserve the four-dimensional structure of the vector
potential. The commutation relations have the form

[an(k), an(k)]- = —g""d(k —k),
(" &) = 8,5 (a,p=123),

e =0, € =k/k.

When working with four types of photons, it is neces-
sary to use an indefinite metric. For our purposesit will
be sufficient to confine our attention to one type of pho-
ton with adefinite helicity, so that we shall work imme-
diately in the subspace of single-particle states with the
standard Hermitian scalar product (see detailsin [12]).

The single-photon states [, (and [y,L)referring to O
and 1, respectively, can be chosen in the form

W, 0= ILIlez(k)a‘L(k, s)|0|:.|$

J2K

= [Ws a0k, B, a0

2K
&, gk', sO= d(k —k"),
wherea*(k, s) isthe creation operator for a photon with

momentum k and helicity s. We assume that the ampli-
tudes of the states have nonoverlapping supports

supp W1(k) N supp Yo(k) = 0,

(11)
Q" = supp (k).
Then the states |, Jand |y,Care orthogonal :
% dk _
W, |, 0= le(k)wz(k)x) = 0. (12)

A measurement making it possible to distinguish reli-
ably apair of orthogonal states |;[land |Y»Cis given by
adecomposition of unity:

(13)

0’

Py + Py +Po=1, | =I|k,sum,s|29k5
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D D
llle = Py, 2(K) K, s— D
%{kz J_

e, sy (k) -2
/2k0'D

Po= =Py —P,.

O
xDJ’

Q; 2(K)

The probability of various outcomes on an input state
|y, Os given by therelations

Pry{ @wl} = Tr{ NJlEmJﬂ@wl}

—Dj|w1(k)|2d"mj|w1(k) O=1, (g

Q)m [I%(k)
Prwl{@’% oy = Tr{ |¢1D]I|J1|g)wz, oy =0
and analogously for the input state [,

DDDD

To demonstrate explicitly the nonlocal nature of the
measurement (13) we shall examine an auxiliary mea-
surement in the coordinate representation, which on
expanding the spatial region up to the entire space
becomes a measurement making it possible to distin-
guish a state with nonoverlapping supports.

We shall consider an auxiliary measurement making
it possible to distinguish reliably not a specific pair of
states but rather any states with nonoverlapping sup-

ports. Such a measurement is very similar to the mea-
surement (13):

P+ P+ P, =, =I|k,sDIR,s|—20|—I(l%,

(15

@)12— J.lk SDIR Sl 0 @D: I—g)l—gpz.
ol
The probability of various outcomes with an input
state |, Lhis given by

Pr{P.} = Tr{ |y, 0P} = j|w1(k)|29'5— ,

o
Pri{®, 0} = Tr{|w,00,|%, } =0
and similarly for the input state |5,

(16)

According to the quantum-mechanical theory of
measurements, any quantum-mechanical measurement
gives a decomposition of unity on a Hilbert space of
states of the system, more accurately, by prescribing a
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positive operator-valued measure M on a certain mea-
sured set of results U that satisfies the conditions [13]

1) M(®) = 0, M(U) =1, M(U)=0,

2) M(U) = M(U), Uy OU,, (17)

3) MH:'%,E: le(qu)’ O]Ilqﬂ OLLJ = 0.
We shall take for the set of measurement results adis-

crete set consisting of three points denoted by the indi-
ces{1, 2, [}:

D D
M, = dx exp(lk(x X)) |k, S—
{2](;) Q}J"k) N2 D
(18)
D , U
J'exp( iR (= o)) K, oK -
Che, 2’0

XHIH

dx FEXp(ik(X = %)) K, SB—= D
=11l B,

x Eexp (K (X —%0)) K', —==H— M, =M,

J_D
where
X = {x:x0O (-, ®)},
H = {k: k O (-0, o)}.

The positive operator-valued metric M; gives a decom-
position of unity on the space of results{1, 2, [1}:

M, +M,+ Mg +ﬂ’fdx5lexp(|k(x %)), S ——

XHIK

«/—D

(20)

0 .k
x Cexp (=K (x—Xp))K',
. 2K

o'

= J’lk, sk, s|d—kO =1.
2k
N

We note first that a measurement, as follows from
equations (19) and (20), with the spatial region Q®
expanded up to its coordinate space & transforms into
an orthogona decomposition of unity (15), which
makes it possible to distinguish uniquely states with
nonoverlapping supports.

For example, the probability of obtaining the result 1
with an input state |, Cis given by the relations

Pri{M;} = Tr{|y,0m,|M,}
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0J A de
x [ dxpf exp(ik(x - %)W (k)57
2k
ot Qﬁk) O
(21)
D dk O
x 5f exp(-ik(x- xo))wl(k) -
Q)(k)
_ 6 |:| . 6 2 —n ~ +,A A~
= —(2mn) Idx wlD_'& Dy(X — Xo) Do(Xo — X).
Q(X)

Since the amplitude ;(k) possesses a finite support,

i.e., itiszerooutsidetheregion Q(lk) , theregion of inte-
gration over k and k' in equation (21) can be expanded
up to the entire space K. We shall assume that the
amplitude Y, (k) is a sufficiently smooth function so
that the argument k can be replaced by i0/0x and the
function can be removed from theintegrand in the inte-
gral over k. Next, taking account of the definition of the

function D, (X) (8), we obtain the final expression. We
recal that Dy (X) = —Dg(—%). The probability of

obtaining the result 2 with input state |, Cisidentically
zero (and similarly for outcome 1 with input state |J,0):

Pri{M,} = Tr{|y,Im,|M,}

D de

= [ axgf exp(ik(x=%e)wi (k) 5
o0 Lhw D
D 0

< B[ exp(k (%= %) (k) 25 B=0,
BYO) 2kOD

since the amplitudes Y, (k) and (k) have nonoverlap-
ping supports. Findly, the probability of obtaining the
result O with input state |y, ({and similarly for [y,0lis

Pri{Mg} = Tr{|y,[0p,|My}

(22)

D de
= [ dxg[ em(ik(x- xo))wl(k)ZkoE
P %(k) [
(23)
D O
<[ exp(-k(z- xo»tul(k)o”(D
[hw D
= —(2n)° d D'OZD“AD“ R
= —(2mn) J- Xqug"& 0(X=%0)Do(Xo—X).
EaYels
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The measurement (19)—(23) has asimple meaning. The
formula (21) describes the probability of detectingin a
spatial region QW a state which possesses a support in

Q' (and similarly for |y5,0.

To detect reliably states with support in Q(lk) itis
necessary to have access to the entire spatial region
where the state is present. In addition, as one can see
from equation (21), because the commutator functions
D; (X — X,) are different from zero only on the light
cone, only the points of space-time which are related
with one another by a cause-effect coupling, i.e., (X —
%0)? =0, |Xo — X| = c]ty — t|, make a contribution. Even
though the commutator functions in equations (21) and
(22) possess a singularity on the light cone, their prod-
uct always exists as a generalized function, since the
Fourier transforms of the D~ functions possess support
in the forward part of the light cone (for a detailed dis-
cussion, see, for example, [14]).

Theformula(23) describesthe probability of detect-
ing a state with support in Q% (and similarly for |,0)
in the residual spatial region \Q® on account of the
“tails’ of the state [y, Jwhich did not “fit into” the spa-
tia region Q®. When the accessible region Q® is
expanded up to a size so that the state [, [1*fits” into it
entirely, this measurement becomes a measurement
corresponding to orthogonal projectors in (15), which
make it possible to distinguish a pair of states with
probability 1 (reliably). Correspondingly, the probabil-
ity of the outcome [ approaches zero.

The formula (21) has an especidly transparent
meaning for a state that is strongly localized in coordi-
nate space. In this case, the amplitude of the statein the
momentum representation is strongly delocalized (in the
limit [y,(k)P) —= congt, the support QY —~ I and,

correspondingly, |(—i0/0x)]? does not depend on x). The
formula (21) becomes

Pr{M;} = (2m)° [ dx|Do(X-%o)".  (24)

o™

If it is now recalled that - Dy (X — X,) describes the
amplitude of the propagation of a single-particle state
of the field created at the point X, into the point X

0]y1(%) W1 (%) I00= ~i D%~ o), (25)

then the formula (21) describes the probability of
detecting a single-particle state of the field, having sup-
portin Q% —~ I in the spatial region Q. It is evi-
dent from equation (24) that if the region of integration
Q® does not encompass the point of creation X, of the
single-particle state, then the probability of detectionis

0
Xo = Xo»
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zero. For a state that is strongly localized in space, a
spatial region of arbitrarily small size Q¥ —~ 0 can be
chosen for reliable detection. An arbitrarily short time is
required for the dtate of the field to fill this region (of
course, minus the time required to reach Q® from the
point of creation X, of thefield).

However, if the state is not strongly localized in space
(inthis case |y, (k)] # const and, therefore, |, (—0/0X)|* #
const), then all points of the region QX contribute. In
addition, the more strongly the state is localized in k
space, the more strongly it is delocalized in coordinate
space, and the larger the region Q™ required to detect a
given state with probability 1 is. The state of the field
cannot fill thisregion morerapidly thanintimet = L/c,
where L is the characteristic size of the region.

For the bit commitment protocol it will be important
that the probability of detecting states increases with
time (asthefield fillsthe region accessible for measure-
ments). After a finite time T, which depends on the
structure of the states themselves, has elapsed, the
states become reliably different because of their orthog-
ondlity. The states are effectively nonorthogonal (reli-
ably indistinguishable) for times 0 <t < T. In addition,
there are no fundamental restrictions on making them
effectively nonorthogonal (reliably indistinguishable) in
a preassigned arbitrarily long time interval T, choosing

their supports Q{, to be increasingly more localized.

For the protocol, because of the “symmetry” of O
and 1, it is more convenient to choose states so that the
region QW isidentical (the probability of correct iden-
tification as afunction of timewill then be the same for
Oand 1, i.e, unbiased for 0 and 1). This can always be
done for photons, choosing, for example, apair of nar-
row-band states with the same frequency width of the
spectrum, but with different support frequencies.

We underscore that equations (21)—(23) are of asta-
tistical character. If a small spatial region is accessible
for measurements or, equivalently, a determination
must be made in a short time interval as to which state
[y, Oor |yCiis present, then the probability of a correct
answer is low (correspondingly, the probability of an
error is high), since the main outcomes of the measure-
ments will occur in the channel M irrespective of the
initial state |Y,0or |y, But the probabilities of out-
comes in the channels M, and M,, are low to the extent
that the region accessible for detection is small. How-
ever, if a detector has been triggered in channel M, or
M,, then thisis already sufficient to say unequivocally
what the state is; the probability of such detection is
low simply because the accessible region is small.

We shall also present a measurement that depends
on the dimensions of the region accessible for measure-
ments and makes it possible to distinguish reliably a
pair of specific orthogona states |, and |y,(and not
only states which have nonoverlapping supports) when
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the spatial region QX is expanded up to the entire coor-
dinate space:

0 A A
My, = EJ dXIJ’%,z(k)eXp(i(k—k')(?—?o))

o0 X
dkdk' *
XK= [ X[ [Elwia(k)  (26)
(2k°2K°) T 9
. O
x exp(i (k— k) (k%)) — 9K
(2k°2k*) "3

When the accessible region is expanded up to the entire
space (Q®W — &), this measurement transforms into
the orthogonal projectors (13).

3. EXAMPLE OF MEASUREMENTS
IN THE ONE-DIMENSIONAL CASE

To obtain more specific estimates and to determine
the qualitative picture, we shall examine a one-dimen-
sional model situation, since in the three-dimensional
case it is necessary to specify the geometry of the spa-
tial regions. Moreover, experimental implementations
employ optical fibers, which are a quasi-one-dimen-
siona system, for the quantum channel. Such model
one-dimensional schemes are often used in problems of
guantum optics.

Let
W, 0= le,z(k”kmka
0 (28)
P12 = Wy Wy 4,
k>0, EKkO= d(k—k)
be a pair of orthogonal single-photon packets, where

[kO= a,|00is a single-photon monochromatic Fock

state (we are considering particles moving in one direc-

tion). In addition, in the one-dimensional case the
energy isk® =k (c = Llisthe speed of light).

The states possess nonoverlapping supports with the

same spectral width

Eio = supp Yy,

= {k k D (_A/2+ kl,27 k112+A/2)} y

E = {k kO[O0, )},

(29)

kl_kzzA, I|w1’2(k)|2dk = l-

El, 2
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The states with nonoverlapping supports are orthogonal:

00

Wy |w. 0= IlIJ’{(k)llJz(k)dk = 0. (30)
0

A measurement that makes it possible to distinguish
reliably the states (28) is given by a decomposition of
unity, similar to equation (15),

[

@1"'@2"'@5 - I, | = Ilk[ﬂkldk,
0
Piz= [ KKk, (31)
Ei
Po= [ KKk
E\E, U Ey)

The coordinate and the time parameter do not yet
appear in the decomposition of unity (31). Thisimplic-
itly implies that the spatial region accessible for mea-
surementsis x [0 (—oo, ).

In the one-dimensional case ameasurement M; anal-
ogous to equations (19) and (20) has the same form but
with the three-dimensiona region Q™ replaced by a one-
dimensional region, which, for brevity, we shall denote by
& ={x x 0O (=X, X)}. The one-dimensiond case is espe-
cidly clear, since the coordinate and the time parameter
are present in the combination x — ct. Thisis actudly due
to the properties of the fundamental solution of the wave
equation in the one-dimensiona case, which, as is well
known, has the form €(x, t) = [B (ct — [x]), in contrast to
the three-dimensiona case (€(x, t) 00 ()o(c’t? — [x]?))
[15]. For this reason, in the one-dimensional case an
increase in the spatial region X accessible for measure-
ment can be effectively obtained (with fixed X) by
increasing the accessible time interval T. In what fol-
lows, with these stipulations, we shall say briefly that
the measurements are performed in an accessible time
window (=T, T).

It is convenient to write the probability of obtaining
aresult in aset 1 on the input density matrix p, in the
one-dimensiona case in the form (performing first the
integration over x)

Pri{M;} = Tr{p,M}

= [ jwf(k)wl(k')wdkdkz (32)

(k=K)

El El
T=ct—|X|.
The formula (32) isthe probability of detecting sys-

tems with a density matrix whaose support liesin E; in
the time window (-T, T).
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If the timewindow during which ameasurement can
be madeissmall (TA < 1), then from equation (32) we
have

Pri{M;} =TA <1=0, (33)

i.e., the probability of detecting a state is proportional
to the size of the time window. For alarge time window
(TA > 1) wefind

N
_l.sing o _ _cos(TA):
Prl{Ml}~nJr E. dz =1 TA 1’ (34)

TA > 1.

If theinput state is p,, then irrespective of thesize T of
the time window the probability of obtaining aresultin
channel 1iszero (and similarly for p, in channel 2)

Pro{M;} = Tr{p,M,}
= Pri{M;} = Tr{p;M;} = 0.

The formula (32) can be rewritten in the more familiar
form

(35

Pri{M;} = I|UJ1(T)|2dT,
- (36)

Py(1) = jwl(k)e‘i“dk,

which agrees with the classical intuitive ideas. If a
function is localized in the frequency representation,
then it is smeared in the time representation, so that a
large time window into which (1) “fits’ completely is
required for reliable detection of the signal.

Here we shall make a stipulation. If aclassical state
(aclassical function Y(x) whose support in the k repre-
sentation is unknown in advance (supp (k) = 4A)) is
presented, then in order to determine the support it is
necessary to know the values of the functionin aregion
of coordinate space of size not lessthan L, = 1/A. How-
ever, if there are two classical functions (k) and Y,(K)
with nonoverlapping supports and it is only necessary to
distinguish one from the other, then it is sufficient to have
the value at one of the points x, where ;(X) # W,(X). For
this reason, to distinguish two classical functions with
probability 1, asingle point where the functions are not
equal is sufficient (if the functions are not specially
pathological, i.e., it is assumed that they coincide only
on a set of points of measure zero).

To distinguish two orthogona quantum states |,
and [,Cwith probability 1 it isnecessary to have access
to the entire spatial region where the states are different
from zero (we assume that the states are different from
zero in the same spatial region).

For asmall timewindow (T < 1/A, thereciprocal of
the width of the spectrum) the probability of aresult is
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low to the extent that TA < 1 issmall. If the result is
obtained in channels 1 or 2, then thisis sufficient to dis-
tinguish |,0and |Y,0reliably. However, for a small
time window the outcomes on the input state |, [Jand
on the state |P,0will occur in the channgl O with an
overwhelming probability, i.e., the states are indistin-
guishable with overwhelming probability (they are
effectively nonorthogonal).

The results of measurements in the channel O will
arise in the time window (—oo, ©) on account of states
whose supports do not liein E; or E, and, moreover, in
thetime intervals (—eo, —T) and (T, ) on account of the
“tails’ of states with supports in E; ,, which were not
detected inthe channels1 and 2 in (T, T).

The probability of detecting p, , in the channel [
has the form

Praal0) = [ [ Dotkete) - SIS

2 (k=K) g @7
x W 5(K) Wy 2(K)dkdK.
For TA > 1 (large time window) we have
Pr, ,{ O} = cos(TA)/TA— 0O (38
and for TA < 1 (small time window)
Pri ,{ 0} = sin(TA)/TA — 1. (39)

The formulas (32)—39) actually mean that if a state
with p, or p, is presented and it is required to identify
the statein atime T, then for T <€ 1/A the probability of
a correct answer is p, = TA < 1 (correspondingly, the
probability of an incorrect answer isp_=1—TA ~ 1),
since the probability of detection in the interval T is
low. However, if measurementsin alarge time window
(TA > 1) are dlowed, then the probability of a correct
answer isp, = 1 — 1/TA = 1 (and the probability of an
error is p_ = 0) and the states are distinguishable reli-
ably (TA > 1).

For a small time window the states are effectively
nonorthogonal (reliably indistinguishable). The effective
angle a between p; and p, intheinterval (=T, T) issmall

WP,k cosa=1-TA, a=TA<1. (40)

4. RELATIVISTIC QUANTUM BIT
COMMITMENT PROTOCOL

We shall now describe the bit commitment protocol.
The participants in the protocol agree beforehand as to
which states |;,0and |,C0correspond to 0 and 1. It is
always possible to choose a pair of orthogonal states so
that their extent would be much greater than the length
of the communication channel, and the rate of decay at
infinity would make possible virtually reliable identifi-
cation in a certain finite time T. For photonsiit is possi-
ble to choose two states in a quite narrow energy band
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such that the effective extent L = c/Aw (Awisthe energy
width of the spectrum) would be much greater than the
length of the communication channel (L > L, Ly, iS
the length of the communication channel). In this case
the length of the communication channel can be
assumed to be effectively zero. Formally, this means
that the participants A and B in the protocol can monitor
only neighborhoods of points x, and Xz and cannot
monitor all space outside these points, i.e., outside the
neighborhoods x, and xg anything can be done that is
not forbidden by the laws of relativistic quantum
mechanics. The number N of quantum states transmit-
ted by Ais aso agreed upon beforehand.

The participant A conceives hishit a (O or 1), whichis
aparity bit of N quantum states(a=a, 0 a, 0 ... 0 a).
Next, a timet = 0 A immediately transmits N states.
More accurately, A switches on N sources which form
the states. As the states are formed, they start to propa-
gate in the communication channel. The states |, Cand
|Ww,Care, in the general case, nonstationary and by fixing
thetimet =0itis possible to “tune” the measurement
(13) with a corresponding phase shift for any spatial
region which thefield reaches asit propagates. The par-
ticipant B performs the measurement (13) for each state
individually. Since the states are orthogonal, they
become digtinguishable by the time T, when they become
completely accessble. In atime 0 <t < T the Sates are
completely inaccessible (effectively nonorthogonal), so
that they are not distinguishable reliably. The probability
of correctly identifying the statesis an increasing function
of time (p(t = 0) =0 and (p(t = T) = 1); the specific form
of p(t) depends on the structure of the states and is not
essential for us. For individual measurements, the prob-
ability of correct identification of a parity bit is P,(t) =
pN(t) < 1 at times when p(t) < 1. In collective measure-
ments, when measurements of dl states are performed
immediately in order to determine the parity bit, the prob-

ability of correct identificationis PS*"** (t) = /p"(t) <1
[16], and it can also be made as small as desired by
appropriate choice of the states. It is always possible to
choose states so that for any as small as desired 6 < 1,
known beforehand, and as long as desired time t, (t; is
the conservation of the secret bit conceived by the par-
ticipant A) the probability P (t) of correct identifi-
cation of the parity bit in time t < t, can be made as
small asdesired. Thiscan be achieved by increasing the

effective extent of the states (decreasing the width of
the spectrum).

The arguments presented above concern the case
where the participant B obtains information about
states only from quantum-mechanical measurements.
We note that the probabilities p(t) appearing above are
the probability of detecting states (triggering aclassical
device), which intimest < T isless than 1 because the
normalized states are not completely accessible. How-
ever, if detection has occurred, this uniquely makes it
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possible to distinguish the states. For this reason, as
long as the probability of detection itself ispi(t) < 1/2,
the participant B need not make any measurements at
all, and he simply can guesswhat was transmitted along
each channel. At times when p;(t) > 1/2, measurements
give more information than simply guessing without
performing any measurements. Ast — T the measure-
ments give amost reliable information about the states.
Thus, the probability of preserving the secret bit
psiore(t) conceived by the participant A is a decreasing
function of time (P%°¢(t = 0) = 1 and P°"¢(t = T) = 0).
After the quantum part of the protocol is completed
for t > T, when B now possesses complete access to the
states and can distinguish them reliably, the user A
reports through the classical channel what he has sent
in each of the N quantum channels. If it is discovered
that the classical information is inconsistent with the
guantum-mechanical measurements in at least one of
the channels, the protocol is terminated. The fact that
participant A must report classical information after
guantum-mechanical measurements and the fact that
the states are individualy reliably distinguishable
(orthogonal) make deception impossible. For this rea-
son, participant A cannot, for example, send mixed
states of the type p = |, 4| + |Y,ID ,|, Since thiswill
cause (for large N) the quantum measurements to be
inconsistent with the classical information. Likewise,
the participant A cannot send some states other than
|W,0and |ys,L) once again because they are orthogonal
(reliably distinguishable). Any other states will give
(for large N), when using measurements % , , non-
zero outcomesin the channelswhere they should not be
present. Because of the existence of a maximum prop-
agation velocity of the states of thefield, the user Aalso
cannot, for example, delay sending his states, since
nonzero outcomes can arrive in a measurement (13)
which “is tuned” to the states |;Cand |y, Formally, a
delay can be described asatrandation in space-time. This

results in the addition of the phase factor e intheinte
grand in equation (10). A “shifted” gate, for example,
|w,Blwill no longer give an outcome of probability 1inthe
channd P,.

In the nonrelativistic case the use of EPR states by
participant A would enable him to delay the choice of
his bit before measurements are performed by the par-
ticipant B [5, 6]. In the relativistic case an EPR attack
does not work because of the existence of a maximum
propagation velocity of the states of the field. Even
though EPR correlations are preserved in the relativis-
tic case, for measurements on entangled two-particle
states of the field at points separated by space-like
intervals [17], a field cannot propagate from an EPR
source faster than the speed of light. For thisreason, the
use of an EPR pair by participant A for purposes of
delay before the second stage of the protocol, in con-
trast to nonrelativistic quantum mechanics, does not
work.
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We note once again that for the protocol it isimpor-
tant that the orthogonal states are quantum states. For
this reason afinite spatial region isrequired in order to
distinguish one state from another with probability 1.
Two classical orthogonal states (functions) can be dis-
tinguished with probability 1 on the basis of one point.

The time T required to distinguish states reliably
(the time during which the secret parity bit is pre-
served) is determined by the width Alk| = Aw/c of the
spectrum of photons used in the protocol and is esti-
mated as T = 1/Aw. We note that although there are no
fundamental reasons why the width of the photon spec-
trum cannot be made as small as desired, this problem
istechnically very difficult.

5. CONCLUSIONS

We shall make one remark in conclusion. The possi-
bility of identifying stateswith unit probability one dur-
ing afinite time interval T depends on whether or not
for particles of agiventypethereexist stateswith afinite
support in space. If the particles are photons, then today
only states with exponential localization of energy and
detection velocity are known [18]. The latter means, for-
mally, that a result with unit probability can be obtained
only over an infinite time. This is not too important for
the protocol, sincethetimeinterval can be chosen to be
long enough so asto obtain aprobability of distinguish-
ing two orthogonal states exponentially close to one.

The experimental implementation is very smple (at
least speculatively). It is sufficient to have N wide-band
sources. The wide-band sources mean that when they are
switched on, the sources emit signas which are localized
inspaceandtime, i.e., sgnaswith awide frequency spec-
trum can be prepared at thetimet = 0. Before entering the
communication channd the signals are passed through
narrow-band filters and then through attenuators in
order to reach the single-photon level. Transmission
through anarrow-band filter requires, effectively, either
along time or a great deal of space. Detection is per-
formed with narrow-band photodetectors.
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