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Abstract—To account for the microlensing events observed in the Galactic halo, Gurevich, Zybin, and Sirota
have proposed a model of gravitationally bound, noncompact objects with masses of ~(0.01–1)M(. These
objects are formed in the expanding Universe from adiabatic density perturbations and consist of weakly inter-
acting particles of dark matter, for example, neutralinos. They assumed the perturbation spectrum on some
small scale to have a distinct peak. We show that the existence of this peak would inevitably give rise to a large
number of primordial black holes (PBHs) with masses of ~105M( at the radiation-dominated evolutionary stage
of the Universe. Constraints on the coefficient of nonlinear contraction and on the compactness parameter of
noncompact objects were derived from constraints on the PBH number density. We show that noncompact
objects can serve as gravitational lenses only at a large PBH formation threshold, δc > 0.5, or if noncompact
objects are formed from entropic density perturbations. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Dark objects with masses of ~(0.01–1)M( were
detected in the Galactic halo when the microlensing of
stars from the Large Magellanic Cloud was observed.
Brown and white dwarfs and Jupiter-like planets were
proposed as possible baryonic candidates. According to
the latest data [1], dark objects must account for about
20% of the hidden mass in the Galactic halo. However,
the theory of primordial nucleosynthesis imposes much
more stringent constraints on the number of such bary-
onic objects. Gravitationally bound, noncompact
objects, which are also called neutralino stars, were
considered among nonbaryonic candidates; these
objects can explain some microlensing events with evi-
dence of gravitational lenses being noncompact [2, 3].
The hypothetical noncompact objects are the lightest
objects in the hierarchical large-scale structure of the
Universe. In the model of Gurevich, Zybin, and Sirota
[3], these are formed immediately after the passage of
the Universe to the dust stage.

To reconcile the parameters of noncompact objects
with data for the observed microlensing events, Gurev-
ich et al. [3] assumed the cosmological density pertur-
bation spectrum on some small scale to increase
sharply with an rms fluctuation of the order of 1 at the
peak. For adiabatic perturbations, rms fluctuations of
the order of 0.05 correspond to these fluctuations at the
radiation-dominated stage on the cosmological horizon
scale. As was shown in [4, 5], fluctuations with such an
rms value give rise to primordial black holes (PBHs) at
the radiation-dominated evolutionary stage of the Uni-
1063-7761/02/9401- $22.00 © 20001
verse. As we will see below, the mass of the forming
PBHs exceeds the mass of noncompact objects by sev-
eral orders of magnitude. The large difference between
the masses of noncompact objects and PBHs stems
from the fact that the mass of the radiation contained in
a fixed comoving volume at the radiation-dominated
stage is much larger than the mass of cold dark matter
(CDM) in the same volume at the dust stage.

If the power spectrum of primordial cosmological
perturbations is a power law with an index n ≥ 1, then
PBHs are formed in a wide range of masses. If, how-
ever, the spectrum has a peak on some scale, then PBHs
are formed mostly in a narrow range of masses, near the
mass that corresponds to this peak. A sharp peak
emerges in the fluctuation spectrum if the inflationary
potential V(φ) has a flat segment [6, 7]. Indeed, if the
derivative at some value of the scalar field is

then a peak emerges in the perturbation spectrum on the
corresponding scale, because the mean density pertur-
bation on the horizon scale is

where MPl is the Planck mass. A similar effect is
achieved in inflationary models with several scalar
fields [8, 9]. In this case, the spectrum outside the peak
can have an ordinary shape (for example, it can be a
Harrison–Zel’dovich spectrum) and can give rise to
galaxies, their clusters, and superclusters according to
standard scenarios.

V' dV φ( )/dφ 0,=

δH MPl
3– V3/2/V',∼
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Certain evidence for a deviation of the initial pertur-
bation spectrum from a simple power-law shape, more
specifically, for a spectral break near large scales, k ≈
(0.06–0.6)h Mpc–1, was obtained in the counting of
APM galaxies and in the Boomerang and Maxima cos-
mic microwave background (CMB) anisotropy mea-
surements [10]. Therefore, there is reason to suggest
that the spectrum may also exhibit features on small
scales.

Here, we show that, if the perturbation spectrum has
a peak, then there is a clear relationship between the
masses of noncompact objects and PBHs; a PBH mass
of the order of 105M( corresponds to a noncompact
object mass of the order of 0.1M(. For noncompact
objects to be able to serve as gravitational lenses, they
must originate from sufficiently large dark matter den-
sity fluctuations. At the radiation-dominated stage,
these fluctuations logarithmically increase with time
and become nonlinear even at this stage. To study the
evolution of the fluctuations at the radiation-dominated
stage, we use the nonlinear model proposed by Kolb
and Tkachev [11] and specify the initial data for this
model according to the linear theory.

Based on standard astrophysical constraints on the
PBH number density in the Universe, we obtained con-
straints on the rms fluctuations at the peak. In turn, the
constraints on the fluctuations give constraints on the
radius of a noncompact object. As was shown in [3], a
noncompact object can serve as a gravitational lens and
can produce observable microlensing events only if its
radius exceeds the Einstein radius for this object by no
more than a factor of 10. Stringent constraints on the
coefficient of nonlinear contraction for noncompact
objects follow from this condition.

The inferred relationship between noncompact
objects and PBHs holds only for adiabatic cosmologi-
cal density perturbations. If the density perturbations
are entropic, then even if there are large fluctuations in
the dust component, the radiation density on the hori-
zon scale is almost uniform and no PBHs are formed.

It should be emphasized that when talking about a
common origin of noncompact objects and PBHs, we
have in mind not the relationship between individual
noncompact objects and PBHs but the fact that the fluc-
tuations from which the entire collection of noncom-
pact objects and the entire collection of PBHs originate
have a common spectrum. If a PBH emerged at some
point in space, then a noncompact object can no longer
emerge at this point. Conversely, if there is a noncom-
pact object, then no PBH was previously (at the radia-
tion-dominated stage) formed at this point.

2. THE FORMATION OF PBHS

The PBH formation criterion was analytically
derived by Carr [5] and confirmed by numerical calcu-
JOURNAL OF EXPERIMENTAL
lations [12, 13]. The region of space with a density

can be roughly considered to be part of the closed Uni-
verse. Gravitational collapse of this region and the for-
mation of a PBH take place if the relative radiation den-
sity fluctuation

at the time the PBH goes under the horizon satisfies the
conditions

(1)

where δc = 1/3. The left-hand inequality implies that the
radius of the perturbed region at the time t that its

expansion stops exceeds the Jeans radius ct/ , while
the right-hand inequality corresponds to the formation
of a PBH rather than an isolated universe. The mass of
the forming PBH in this model is

(2)

where MH is the mass within the horizon.
In recent years, numerical experiments have

revealed the so-called critical gravitational collapse,
during which the mass of the forming PBH is [14, 15]

MBH = AMH(δH – δc)γ, (3)

where A ~ 3, γ ≈ 0.36, and δc ≈ 0.65–0.7. The mass (3)
can be much smaller than MH. However, as shown in
[16], the PBH mass distribution for critical gravita-
tional collapse is concentrated near MBH ~ MH, and the
contribution of low masses to the cosmological PBH
density is modest. Here, we consider various cases
where δc lies within the range 1/3 ≤ δc ≤ 0.7.

Following [6–8], we assume that there is a sharp
peak in the fluctuation spectrum on some fixed (in
comoving coordinates) scale ξ = r/a(t). Since the PBH
formation threshold is large, δH > 1/3, most ξ-scale fluc-
tuations do not collapse into a PBH but are preserved until
the passage to the dust stage if the dark matter particle free
streaming length is moderately large [3]. The mass MH

within the horizon as a function of the mass Mx of the dust
component in fluctuations of the same comoving scale can
be calculated by using the standard Friedmann equations.
Noncompact objects are formed on time scales t ≤ teq,
where teq is the time of equality between the matter and
radiation densities. At this epoch, a flat cosmological
model serves as a good approximation:

(4)

ρ ρc> 3H2

8πG
-----------=

δH

ρ ρc–
ρc

--------------=

δc δH 1,≤ ≤

3

MBH

MH

33/2
--------,=

a η( ) aeq 2
η
η*
------ η

η*
------ 

  2
+ ,=

ct aeqη*
η
η*
------ 

  2 1
3
--- η

η*
------ 

  3
+ ,=
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where

aeq is the scale factor at time teq,

(5)

is the present cosmological matter density, and h is the
Hubble constant (in units of 100 km s–1 Mpc–1). We per-
form our calculations for two cosmological models: the
model with the present matter density parameter Ωm =
0.3 and the cosmological term ΩΛ = 1 – Ωm ≈ 0.7 and
the model without the Λ term and with Ωm = 1. The
presence of the Λ term reduces only to a change in ρeq;
it does not affect the formation of noncompact objects,
because the Λ term contributes negligibly to the total
cosmological density on time scales t ≤ teq.

For MH and Mx, we have the expressions

(6)

On the horizon scale,

with ηH ! η* and ρH = 3/32πG . The present density
is

Using (4), we obtain

(7)

(8)

Denote the rms density fluctuation δH by

η*
2– 2πGρeqaeq

2 /3c2,=

ρeq ρ0 1 zeq+( )3=

=  3.2 10 20– h
0.6
------- 

 
8 Ωm

0.3
------- 

 
4

 g cm 3– ,×

1 zeq+ 2.32 104Ωmh2,×=

ρ0 1.9 10 29– Ωmh2 g cm 3–×=
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4π
3

------ρH a ηH( )ξ( )3, Mx
4π
3

------ρ0 a η0( )ξ( )3.= =

a ηH( )ξ 2ctH,=

tH
2

ρ0 ρeq aeq/a0( )3.=

MH
1

22/3
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2π
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.≡
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The fraction of the radiation mass that transformed into
PBHs at time tH is then [5, 8]

(9)

where erf(x) is the error integral. Since, according to
[16], the fraction of the collapsing mass of the Universe
for critical gravitational collapse is 0.8β, Eq. (9) for
critical collapse is also a good approximation.

Using (7) and (9), we can calculate the cosmological
PBH density parameter ΩBH at the present time t0:

(10)

To within a factor of order unity, expression (7) can
be derived from a simple estimate

where tH = GMH/c3 and teq ~ 6 × 1010 s is the completion
time of the radiation-dominated stage. In the same way,
we can derive (10) from the estimate

PBHs are formed in the tail of the Gaussian fluctua-
tion distribution, while most noncompact objects are
formed from rms fluctuations. Therefore, we repeat that
not every fluctuation, by any means, from which a non-
compact object formed could collapse into a PBH at
time tH.

3. THE EVOLUTION OF PERTURBATIONS

The evolution of a radiation density perturbation at
the radiation-dominated stage follows the law [17]

(11)

where for the growing mode

j1 is the spherical Bessel function, Ain is the normaliza-
tion constant, x = kη, and k is the comoving perturba-
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tion wave vector. The physical perturbation wavelength
λph satisfies the relations

(12)

On the horizon scale, λph/2 ≈ 2ct, xH ≈ π, and we obtain
from (11)

δr = δH = Ainφ,

where φ ≈ 0.817.
For adiabatic perturbations, the perturbation in non-

relativistic matter at x ! 1 is δ = 3δr/4. In [17], an ana-
lytic solution was found for δ(x) in the entire interval
from x ! 1 to x @ 1 at the radiation-dominated stage.
At x @ 1, this solution is

(13)

where γE – 1/2 ≈ 0.077 and Ain = δH/φ is the same as in
(11).

The applicability of (13) is limited to a linear stage,
δ ! 1. When passing to a nonlinear stage, we will use
the spherical model from [11]. In this model, the evolution
of adiabatic perturbations is described by the equation

(14)

where y = a(η)/aeq and the following parametrization
was introduced for the radius of the perturbed region:

λph η( ) a η( )
2π
k
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  ,=

Mx
4π
3
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λph t0( )
2
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3

.=

δ
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1
2
---–+ln ,=
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3
2
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------ 1

2
--- 1

b2
----- b–+ + 0,=

1

y

10

0.1

10–6 10–5 10–4 10–3 10–2 10–1

δH = 0.04

Mx = 0.1M(

δi = 0.2

yi

Fig. 1. The evolution of a CDM density perturbation δ. The
plot corresponds to the parameters δH = 0.04, Mx = 0.1M(,
and Ωm = 0.3. The curve was obtained from formula (13)

before the point (yi = 3.96 × 10–6, δi = 0.2), and a numerical
solution to Eq. (14) was used at y > yi. The cosmological
expansion of a noncompact object stops at the radiation-
dominated stage at y = a/aeq ≈ 0.49. The dashed line indi-
cates the evolution of δ according to the linear theory (13).

δ
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(15)

Here, ξ is the comoving coordinate, and b(η) allows for
the deceleration of cosmological expansion in the
region of enhanced density. The quantity b in (15) can
be expressed in terms of δ as

(16)

This relation means the passage from the Eulerian
description of the perturbation evolution (13) to its
Lagrangian description (14).

To solve (14) requires specifying δi at some initial yi,
bi = (1 + δi)–1/3 according to (16), and the expansion rate
db/dy. In [11], Eq. (14) was solved for entropic pertur-
bations when the initial velocity may be disregarded,
db/dy ≈ 0. In our case of adiabatic perturbations, the ini-
tial velocity is large; we specify it according to the solu-
tion (13). At x @ 1 and y ! 1, we have

(17)

We obtain from (13), (16), and (17)

(18)

We solve Eq. (14) numerically. The time yi must be cho-
sen in such a way that (13) and (14) are simultaneously
valid. An optimum choice is the time when δi = 0.2. A
test shows that the results of our calculations change by
no more than 15% for a different choice of δi in the
range 0.1–0.3. Having specified δi, we obtain xi and yi

from (13) and (17). The evolution of δ = b–3 – 1 is illus-
trated in Fig. 1.

The cosmological expansion of noncompact objects
stops when dr/dt = 0. According to [11], this is equiva-
lent to

(19)

Denote b and y at the time the expansion stops by bmax
and ymax, respectively. The CDM density in noncom-
pact objects at the same time is

(20)

and, consequently, the radius of the noncompact object
at the stoppage time is

(21)

The numerically calculated dependence of Rmax on δH is
shown in Fig. 2.
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AND THEORETICAL PHYSICS      Vol. 94      No. 1      2002



A COMMON ORIGIN OF NEUTRALINO STARS AND SUPERMASSIVE BLACK HOLES 5
Thus, we have shown how the radius of a noncom-
pact object at the time its cosmological expansion stops
can be determined for the specified perturbation δH on
the horizon scale.

4. THE PARAMETERS
OF GRAVITATIONAL LENSES

After its cosmological expansion stops, a noncom-
pact object begins to contract, with its final radius being

(22)

where κ is the coefficient of nonlinear contraction. It is
generally believed [18] that, after the cosmological
expansion of a noncompact object stops, it is virialized,
radially contracting by a factor of 2, i.e., κ = 0.5.
According to the theory of gravitational instability,
κ ≈ 0.3 in a multiflow region [3]. At present, the physi-
cal processes that could cause a noncompact object to
contract to κ < 0.3 are unknown. Therefore, we take
κ ≈ 0.3 as the lower limit.

For a noncompact object to be able to serve as a
gravitational lens producing observable microlensing
events in the Galactic halo, its radius should not signif-
icantly exceed the Einstein radius

(23)

where d ~ 20 kpc for microlensing in the halo. We
define ε as

(24)

According to calculations [3], the inequality ε ≥ 1 must
hold. If ε < 1, then the theory comes into conflict with
observational data on the light curves [3]. One of the
microlensing events with a lens mass Mx ≈ 0.02M( was
studied in detail in [19]. A comparison of the observed
and calculated light curves showed that, if a noncom-
pact object has no baryonic core at its center, then it
must have the size Rx = 1.6 × 1013 cm and a compact-
ness parameter (in our notation) ε ≈ 19. In the presence
of a baryonic core with a mass of 0.05Mx, Rx = 5.7 ×
1013 cm and ε ≈ 4.8. It was noted in [19] that the model
of a pointlike lens for this event is also acceptable
because of the large observational errors.

We obtain from (21), (23), and (24)

(25)

On the other hand, using our calculations (see the pre-
ceding section), we derived a relationship between Rmax
and δH; the quantity δH defines the present cosmologi-
cal PBH density according to Eq. (10). It should be

Rx κ Rmax,=

RE 2 GMxd/c2,=

ε 10
RE

Rx

------.≡

κε 10
RE

Rmax
----------=

=  
1.9 1015 cm×

Rmax
--------------------------------

Mx

M(

--------- 
  1/2 d

20 kpc
---------------- 

 
1/2

.
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noted that noncompact objects are formed from rms
fluctuations. Therefore, δH from the preceding section
should be set equal to the rms fluctuation δH = ∆H.
Using our numerical calculations, we derive the depen-
dence of ΩBH on the product κε (see Figs. 3 and 4).

There are several astrophysical constraints on the
mass and number of PBHs. It follows from a constraint

1014

0.04

Rmax, cm

δH

0.06 0.08 0.10 0.12 0.14

1015

1016

1017

12

3
4

5

6

Fig. 2. Radius Rmax of noncompact objects at the time their
expansion stops versus perturbation magnitude δH on the
horizon scale. Solid curves 1, 2, and 3 correspond to the
masses of noncompact objects Mx = 1M(, 0.1M(, and
0.01M( in the cosmological model with Ωm = 0.3. Dashed
lines 4, 5, and 6 were constructed for Ωm = 1 at the same
masses.

10–7

0.1

ΩBH

κ∈
1.0

10–6

10–5

10–4

10–3

10–2

10–1

100

1 2 3 4 5 6

7
8
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Fig. 3. PBH density parameter ΩBH versus nonlinear con-
traction coefficient and compactness parameter for non-
compact objects κε in the model with Ωm = 0.3. Curves 1,
2, and 3 correspond to the masses of noncompact objects
Mx = (0.01, 0.1, 1)M( at δc = 1/3. Curves 4, 5, and 6 corre-
spond to δc = 1/2; curves 7–9 correspond to δc = 0.7 for the
same masses. The horizontal and vertical lines correspond
to the upper observational limits ΩBH = 0.1, 10–3 and to
κε = 0.3, 1.44, respectively. The admissible regions lie below
the horizontal lines and to the right of the vertical lines.
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on the age of the Universe that ΩBH ≤ 1. If PBHs pro-
vide the dominant part of dark matter in the Galaxy,
then they must tidally interact with globular clusters by
disrupting them. The PBH mass was constrained for
this case in [20], MBH ≤ 104M(. At ΩBH ~ 1, PBHs are
capable of distorting the CMB spectrum if they are
formed about 1 s after the annihilation of e+e– pairs [5].
Mass accretion by black holes at the pregalactic and
present epochs contributes to the background radiation
in different wavelength ranges [21]. However, calcula-
tions strongly depend on the model and yield ΩBH ≤
10−3−10–1 for MBH ~ 105M(. In [22], the constraint
ΩBH < 0.1 on intergalactic PBHs was obtained from the
condition for the absence of reliable gamma-ray-burst
lensing events for 105M( < MBH < 109M(. A more strin-
gent lensing constraint, ΩBH < 0.01 for the mass range
106M( < MBH < 108M(, was obtained from VLBI
observations of compact radio sources [23].

Let us first consider the microlensing event studied
in [19] by assuming that ε = 0.3. If the noncompact
object has no baryonic core (the vertical line κε ≈ 5.7 in
Figs. 3 and 4 corresponds to this case), then the con-
straint ΩBH < 0.1 rules out the interpretation of this
event as microlensing by noncompact objects for all
δc = 1/3–0.7 in the two cosmological models under con-
sideration. In the presence of a baryonic core (the ver-
tical line κε ≈ 1.44), the case with δc = 0.7 remains
admissible in the cosmological model without the Λ
term (Fig. 4).

Consider the less stringent condition κε > 0.3, which
is satisfied at ε > 1 and κ > 0.3. At ΩΛ ≈ 0.7 (Fig. 3), the
constraint ΩBH < 0.1 rules out all models with δc < 0.5.
At ΩBH > 10–6, the case with δc ≈ 0.7 remains possible.
If ΩΛ = 0, then the constraint ΩBH < 0.1 leaves a narrow

10–7

0.1

ΩBH

κ∈
1.0

10–6

10–5

10–4

10–3

10–2

10–1

100

1 2 3 4 5 6

7

8

9

Fig. 4. Same as Fig. 3 for the cosmological model with
Ωm = 1. The vertical lines correspond to κε = 0.3, 1.44,
and 5.7.
JOURNAL OF EXPERIMENTAL
region (see Fig. 4) with Mx > 0.1M( and δc = 1/3. The
constraint ΩBH < 10–3 completely rules out the models
with δc = 1/3, but allows the cases with δc > 1/3.

5. CONCLUSIONS

We have shown that the formation of noncompact
dark-matter objects (neutralino stars) proposed in [2, 3]
to account for the observed microlensing events in the
Galactic halo must be preceded by the formation of
PBHs with masses on the order of 105M(. These PBHs
and neutralino stars are formed from the same peak in
the primordial fluctuation spectrum.

Astrophysical constraints on the number of PBHs in
the Universe allowed us to constrain the coefficient of
nonlinear contraction and compactness parameter for a
noncompact object; our constraints are shown in Figs. 3
and 4. The most stringent constraints are obtained in the
presence of a cosmological term ΩΛ ≈ 0.7. In this case,
noncompact objects can serve as gravitational lenses
only at a large PBH formation threshold, δc > 0.5,
which was calculated in the model of critical gravita-
tional collapse. At smaller δc, the model of noncompact
objects as microlensing objects is ruled out. The con-
straint on κε is significantly relaxed if the Λ term is
small (Fig. 4). However, this possibility is currently
considered to be unlikely.

It is important to note that to avoid the situation
where ln(ΩBH) ! 0 requires an accurate adjustment of
the parameters for the inflationary model that ensures
that ∆H is in a narrow interval, ≈0.05–0.12. Therefore,
if the observed microlensing events are actually pro-
duced by noncompact objects, then these objects most
likely originate from entropic density perturbations. In
this case, our constraints are removed, as discussed in
the Introduction.

The constraints can also be significantly relaxed if,
for some reason, PBHs are formed in smaller quantities
than that given by expression (9). This is possible, for
example, in the case of great importance of the nonlin-
ear effects that accompany the generation of metric per-
turbations at the inflationary stage if these effects sup-
press the appearance of large fluctuations [24]. Note,
however, that the role of nonlinear effects is presently
not completely understood, and the results of calcula-
tions depend on the specific inflationary model. For
example, it was found in [25] that nonlinear effects
cause the PBH formation probability to increase, which
is directly opposite to the result from [24].

Conversely, if the noncompact nature of lenses is
proven in the future, then for adiabatic density pertur-
bations this will lead us to conclude that a large number
of PBHs with masses of the order of 105M( can be
formed at the radiation-dominated sage of the Universe.
These PBHs must affect the evolution of galaxies and
their nuclei. It may well be that one of such PBHs was
found by the Chandra space X-ray observatory in the
 AND THEORETICAL PHYSICS      Vol. 94      No. 1      2002
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galaxy M 82 [26]. In a separate paper [27], we develop
a model for the formation of galaxies through multiple
mergers of protogalaxies with condensation centers in
the form of massive PBHs. The mergers of galaxies and
the growth of central massive black holes at the galactic
nuclei take place simultaneously with the formation of
galaxies. The recently found correlations between the
masses of central black holes and the bulge velocity
dispersion have been shown to arise naturally in this
scenario.

Since noncompact objects and PBHs originate from
a common perturbation spectrum, we can in principle
reconstruct the shape of the perturbation spectrum and
determine the PBH mass function from the distribution
of noncompact objects in mass and radius using a
Press–Schechter-type theory [28]. Unfortunately, only
a few objects were detected by microlensing, and such
a calculation will become possible only in the future
when the statistics improve.

We may consider a situation that, in a sense, is
reverse to the situation described previously. According
to the hypothesis [7], the dark halo objects responsible
for microlensing are PBHs with masses of the order of
(0.01–1)M(. If elementary particles with a free stream-
ing length !ξ compose the remaining part of the dark
matter, then miniclusters will be formed from these par-
ticles at the dust stage. Using formula (7), we can
immediately estimate the minicluster mass as (10–11–
10–8)M(. Such masses are possible if the mass of the
dark-matter particles exceeds 1 GeV [3]. The formation
of PBHs with ΩBH ~ 1 requires rms fluctuations ∆H ≈
0.06. At time teq, fluctuations in the dust component δ ~ 1,
which give rise to miniclusters, correspond to them.
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Abstract—The method of intermittent pulse loading is used for obtaining the dependences of the mean free
path of individual dislocations in SiGe single crystals with various concentration of Ge (0–5.5 at. %) on the
duration of loading pulses and time intervals between them. It is found that these dependences change qualita-
tively upon an increase in the Ge concentration. It is shown that the motion of dislocations in SiGe crystals
under small shear stresses is characterized by a nonlinear drift of kinks and the formation of superkinks. A the-
ory of the motion of dislocations under the action of intermittent pulse loading under the conditions of hetero-
geneous kink dynamics is developed. Extended quasi-one-dimensional defects repeating the shape of a part of
a segment of a moving dislocation are discovered in SiGe crystals containing 0.96 at. % Ge. The mechanism of
formation of such defects as the result of the shedding of a part of the impurity atmosphere by a dislocation
segment during overcoming of a local obstacle is proposed. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The Peierls relief, i.e., a periodic dependence of the
energy of a dislocation on its position in the slip plane,
is a direct consequence of the translational symmetry of
the crystal lattice. It is manifested most clearly in crys-
tals with covalent bonds (diamond, Si, Ge, and their
alloys). It is generally assumed that the motion of dis-
locations in the Peierls relief occurs through thermal-
fluctuation-induced formation of pairs of kinks and
their subsequent expansion to the ends of a dislocation
segment or until annihilation with opposite-polarity
kinks from adjacent pairs on a dislocation line [1, 2].
Kinks are short segments of a dislocation, connecting
dislocation segments in adjacent valleys of the relief.
The Peierls mechanism of the motion of dislocations
has been generally accepted for crystals with a deep
relief. Moreover, the existence of kinks has been con-
firmed recently by direct observations in a high-resolu-
tion electron microscope [3–5].

An analysis of experimental results on the dynamics
of dislocations and kinks in silicon and germanium [6,
7] having identical crystalline structures proved that a
number of serious discrepancies with the predictions of
the theory of motion of dislocations in an ideal Peierls
relief [1, 2] are observed even in high-purity semicon-
ducting crystals. It was found that the discrepancies
observed in Si crystals in the region of small shear
stresses are due to the entraining of mobile point
defects and impurities by a dislocation [6, 8]. As the
concentration of point defects in the vicinity of a dislo-
cation attains a certain critical value, the dislocation
mobility decreases abruptly down to its complete arrest
(starting stresses for the motion of the dislocation). In
1063-7761/02/9401- $22.00 © 0108
weakly doped Ge crystals for which the starting
stresses for the motion of a dislocation are not revealed,
the discrepancies with the theory of motion of a dislo-
cation in an ideal Peierls relief are due to the interaction
between the dislocation and the surrounding point
defects and impurities which determine the barriers for
the motion of a kink, which are distributed at random
along the dislocation [7, 9].

Thus, the nucleation and motion of dislocation kinks
determine the mobility of dislocations in semiconduct-
ing materials. However, the dynamics of these topolog-
ical excitations in systems with a random disorder has
not been adequately investigated experimentally. Such
investigations are especially important in view of the
possibility of the emergence of anomalous modes in the
motion of kinks in such systems. It was proved earlier
[10, 11] (see also the review in [12]) that, in the presence
of a considerable amount of impurities, an excitation of
the crystal lattice may result in the change from the con-
ventional kink dynamics to the so-called heterogeneous
mode. This phenomenon is of a general nature and must
be manifested not only for dislocation kinks, but also for
other topological defects (twin and domain boundaries,
interfaces, etc.). The change of the mode occurs when the
driving force F for a kink becomes smaller than a certain
critical value Fc determined by the extent of disorder cre-
ated by defects. The new type of the dynamics is charac-
terized by a nonlinear drift, in which the displacement
of a kink with time satisfies the equation

(1)x x0
t
t0
--- 

  δ
, δ≈ F

Fc

----- 1,≤=
2002 MAIK “Nauka/Interperiodica”
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where x0 = kT/Fc, t0 = /2Dk, Dk is the diffusion coef-
ficient for the kink, k is Boltzmann’s constant, and T is
the temperature.

In SiGe crystals, Ge atoms are distributed at random
and can be regarded as a low-mobility neutral substitu-
tional impurity in a Si crystal, which, together with
mobile impurities, is responsible for a random modula-
tion of the Peierls relief. This work is devoted to the
experimental investigation of the effect of this modula-
tion on the formation and motion of dislocation kinks.

2. EXPERIMENTAL TECHNIQUE

Single crystals of the Si1 – yGey (0 ≤ y ≤ 0.15) alloy
having a diameter up to 42 mm were grown by the Czo-
chralski method at the Institut für Kristallzüchtung in
Berlin (Germany) [13]. The ingots were characterized
by a small Ge concentration gradient in the direction of
the growth axis [111], were weakly doped with phos-
phorus or boron with a concentration of the order of
1015 cm–3, and contained oxygen with an approximate
concentration of 6 × 1017 cm–3.

The samples of SiGe in the form of right-angle

prisms with edges oriented along the , ,
and [111] axes, having a size of 35 × 4 × 1.5 mm and a
Ge concentration up to 5.5 at. %, were cut from a part
of the ingots free of dislocations and subjected to
mechanical and chemical polishing. The Ge concentra-
tion was determined from the position of the TO
phonon line [14].

Individual dislocation half-loops were introduced
by indentation of the broad (111) sides of the sample
with a diamond pyramid at room temperature, followed
by loading at 873 K through four-point bending about

the  axis. The dislocations introduced in this way
were “dispersed” to a diameter of 200–220 µm by a
reduced shear stress of 30 MPa. It should be noted that
in the given geometry, dislocation half-loops are gener-

ated and slide in the  and  planes, while
the segments emerging at the (111) surface can have
only the 60° orientation (a priori 60° side) on one side
of the indents and both 60° and screw orientation
(hybrid side) on the other side [15].

Considerable starting stresses σs for the motion of
dislocations in SiGe samples were detected earlier [16];
the magnitude of these stresses depends on the state of
the dislocation atmosphere of point defects [17, 18].
The reproducibility of the results requires that similar
conditions of the atmosphere state be created. For this
purpose, before each loading, dislocations were “dis-
persed” for 10–15 min under the action of shear stresses
σ = 30 MPa at temperature T = 873 K. Then the sample
was slowly cooled with the furnace and the positions of
dislocations were revealed by selective chemical etch-
ing in the Sirtl etchant 1CrO3 + 2H2O + 3HF [19].
Immediately before the main loading, a short-term (120 s)

x0
2

110[ ] 112[ ]

112[ ]

111( ) 111( )
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preliminary loading by a shear stress of 50 MPa was
carried out, which made it possible to reduce the start-
ing stresses considerably and to study the kink dynam-
ics under small stresses. The geometry of traces behind
dislocations was determined and studied by removing
the material layer by layer in the polishing solution
7HNO3 + 1HF and by selective chemical etching.

The dynamics of kinks on 60° dislocations was stud-
ied by the method of intermittent pulse loading (IPL)
[6, 7], which is based on the loading of a sample con-
taining individual dislocations by a sequence of stress
pulses σi. The duration ti of an individual pulse is com-
parable with the mean time of the displacement of a dis-
location through a crystal lattice parameter, ta = a/Vst,
where Vst is the velocity of the steady motion of the dis-
location under conventional static loading. Pulses are
separated by pauses of duration tp, during which no
stress is applied (σp = 0). During a loading pulse, new
pairs of kinks are formed on the dislocation and propa-
gate in addition to equilibrium kinks. During a pause,
when the pulse load is removed, these kinks become
nonequilibrium and collapse to the nucleation centers
under the action of the applied stress, mutual attraction
of pairs, and due to the interaction of the dislocation
and the kink with point defects. It will be shown in Sub-
section 3.2 that information on the kinetics of the for-
mation of kink pairs and their expansion and relaxation
can be obtained by varying the duration of pulses and
pauses and by measuring the characteristics of the path
length distribution of dislocations.

The samples were deformed through four-point
bending by a series of load pulses produced by an elec-
tromagnetic transducer with a shear stress amplitude
σi = 15 MPa. The total duration  of active loading
was maintained at a constant level and was chosen
equal to the time of static loading under which disloca-
tions were displaced over distances of 40–50 µm. The
duration of the loading pulse leading edge was kept
unchanged (4 ms). The temperature was measured by a
thermocouple and maintained constant to within ±1 K.
In order to determine the temporal characteristics of the
formation of a pair of kinks and their drift, we measured
the dependences of the mean paths of 60° dislocations
both on the pulse duration, l(ti) (for ti = tp), and on the
pause duration, l(tp), for a fixed duration of load pulses.

3. RESULTS AND DISCUSSION

3.1. Mobility of Individual Dislocations
and Kink Dynamics

Figure 1 shows the dependences of the velocity of
individual 60° dislocations on shear stresses in SiGe
single crystals with various Ge concentrations. It can be
seen that the three dependences differ insignificantly in
the range of high stresses. On the contrary, the differ-
ence between the curves corresponding to different Ge

ti∑
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concentrations in the region of small shear stresses
becomes considerable (dashed curves in Fig. 1).

In order to study the kinetics of kinks on the dislo-
cation line by the method of intermittent pulse loading,
we measured the dependence of the mean path of dislo-
cations on the duration of loading pulses for Si and
SiGe samples (Fig. 2). It can be seen that with increas-
ing pulse duration, the dislocation path lengths increase
both in Si and in SiGe. However, the rates of this
increase differ considerably. In silicon, path lengths of
dislocations increase sharply for ti/ta ≈ 0.5 in analogy

10–7

10

v , m/s

σ, MPa
100

10–8

10–9

10–10

1 2 3

Fig. 1. Dependence of the velocity of individual 60° dislo-
cations in Si1 – yGey crystals on the shear stress; y = 0.02 (1),
0.033 (2), and 0.055 (3); T = 873 K.
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ti/ta
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Fig. 2. Mean free paths of individual 60° dislocations under
the IPL in Si (1) and Si1 – yGey (y = 0.048) (2) as functions
of the duration of load pulses (tp = ti). The paths are normal-
ized to the mean free path value under static loading,
σi = 15 MPa, T = 873 K. Light rhombi correspond to the
results obtained on Si samples grown by float zone tech-
nique for σi = 7 MPa, T = 873 K [6].
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with the situation observed in silicon samples grown by
the float zone technique [6] (light rhombi). The curve
obtained for SiGe samples slopes more gently; i.e., the
mean path lengths of dislocations in SiGe samples
attain values on the order of the steady-state path length
for much larger relative durations of a pulse (~10ta)
than in Si samples (~ta).

It was proved by us earlier [6] that such a long time
of attainment of saturation for the dislocation velocity
is associated with the accumulation of kinks on the dis-
location line and the formation of superkinks.
Superkinks are formed in the presence of sufficiently
high barriers for the motion of kinks, when the time
required by a kink to move over an obstacle is longer
than the time of formation of a new pair of kinks. In the
theory, two types of obstacles for the motion of a kink
were considered. The first type is formed by structural
defects of the dislocation core or defects located in the
immediate vicinity of the core: dislocation jogs, clus-
ters of impurity atoms, etc. [20, 21]. The second type is
associated with fluctuations in the density of point
defects along the dislocation line, which determine the
localization of a kink in the random force field [10].

The kink dynamics is determined to a considerable
extent by the dominating type of obstacles. We ana-
lyzed the kink dynamics with the help of experiments
in which the mean path length of dislocations in SiGe
samples with different Ge concentrations was studied
as a function of the duration of pauses between loading
pulses (Fig. 3). It can be seen that the curves differ qual-
itatively. The samples with Si concentration of 2 at. %
(curve 1) are characterized by an S-shaped curve with a
point of inflection. Similar curves were observed for Si
crystals grown by zone melting [6]. A model providing
a qualitative explanation of such dependences as the
result of entrainment and redistribution of mobile point
defects by a moving dislocation completely immobi-
lized during long “pauses” was proposed in [8].

The crystals with Ge concentrations of 3.3 and
5.5 at. % (curves 2 and 3 in Fig. 3) display a monotonic
decrease in dislocation path lengths upon an increase in
the duration of “pauses” in analogy with the behavior of
Ge crystals [9]. However, a stress of the opposite polar-
ity had to be applied during pauses for a similar
decrease in Ge samples.

Let us compare these dependences with the model
taking into account only the change in the kink energy
in the field of a point defect [20, 21]. This model deter-
mines the linear drift of a kink under the action of the
applied force.

In accordance with the theory, there exists a thermo-
dynamically equilibrium density of kinks on a disloca-
tion even in the absence of shear stresses. The applica-
tion of a load causes a drift of kinks, which must result
in the motion of the dislocation even for an indefinitely
large duration of pauses. Such thermal kinks determine
a certain minimum (but not zero) value of the disloca-
 AND THEORETICAL PHYSICS      Vol. 94      No. 1      2002
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tion velocity under the IPL conditions in the absence of
additional loading during pauses [22]:

where α is the elastic interaction constant for kinks and
b is the Burgers vector for the dislocation. Under the
experimental conditions, Vmin was approximately equal
to Vst/2. However, its value obtained in our experiments
was smaller by more than an order of magnitude.

In accordance with the theory [23], the nonequilib-
rium kinks generated during stress pulses lead to the
following contribution to the path lengths of disloca-
tions, which decrease linearly upon an increase in the
duration of pauses under the IPL conditions:

(2)

where v i, p are the velocities of kinks during an pulse
and during a pause. This prediction does not match the
obtained experimental results. Curve 3 in Fig. 3 is obvi-
ously nonlinear and contradicts Eq. (2) even qualita-
tively. At first glance, curve 2 can be described approx-
imately by a linear equation. It can be seen from the
behavior of curve 2 that complete relaxation of kinks
occurs during the time tp ≈ ti. The agreement with the
experimental results could be reached only for

To this end, it is necessary that the virtually identical
forces act on kinks during load pulses and pauses.
However, in the experiment under investigation, no
external forces were applied during pauses, while inter-
nal stresses associated with the long-range elastic inter-
action of kinks in a pair [1] are too small according to
simple estimates.

Thus, our experimental results on the motion of dis-
locations under the action of intermittent pulse loading
in SiGe crystals cannot be described in the model for
the motion of kinks in a random potential. We must take
into account the nonuniformity in the distribution of
impurities between adjacent grooves of the Peierls
relief. This nonuniformity is determined by the redistri-
bution and accumulation of point defects in the vicinity
of the dislocation core, which are responsible for an
additional decrease in the dislocation energy. This cre-
ates a force returning kinks to their nucleation centers
and determines the emergence of starting stresses for
the motion of dislocations [24]:

(3)

Vmin
αabσi( )1/2

kT
-------------------------– V st,exp≈

l
lst
---- 1

v p

v i

---------
t p

ti

----,–=

v p

v i

--------- 1.≈

σs c1 c2–( ) u
ab
------.=
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Here, c1, 2 are the concentrations of point defects in
adjacent grooves of the potential relief, and u is the
energy of the short-range interaction of the dislocation
with a point defect.

It was mentioned above that in this approximation,
the perturbation of the potential relief by point defects
(including randomly distributed Ge atoms) changes the
kink dynamics. Under certain conditions, the motion
of kinks can be characterized by a qualitatively dif-
ferent type of kinetic mechanisms, viz., the so-called
heterogeneous dynamics with the nonlinear drift (1)
for σ < σc,

(4)

(5)

For stresses σ > σc not very close to the threshold, the
velocity of a kink in the field of a random force can be
described by the formula [11, 12, 25]

(6)

where σ assumes the values of σs during “pauses” and
σi – σs during load pulses. If, however, we estimate the
parameter δ = σ/σc (see Eq. (1)), it follows from Eq. (4)
that, in our experiments, δ is always smaller than unity
during “pauses” and, hence, the model of linear drift (2)
is also inapplicable in the approximation of the modi-
fied kink velocity (6). Thus, we must consider the mode
of nonlinear drift of kinks. The model dealing with this
mode will be described in the next subsection.

σc σ0 σs,+≈

σ0 c1 c2+( ) u2

2kTab
----------------.=

v k

Dk

kT
------ σ σc–( )ab,=

0.2
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tp/ti
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Fig. 3. Mean free paths of individual 60° dislocations in
Si1 – yGey under the IPL as functions of the relative duration
of “pauses” between pulses: y = 0.02 (1), 0.033 (2), and
0.055 (3); ti = 0.8ta, σi = 15 MPa; T = 873 K.
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3.2. Motion of a Dislocation under the Action
of Intermittent Pulse Loading under the Conditions

of Heterogeneous Kink Dynamics: Model
and Comparison with Experiment

Let us briefly describe some concepts of the hetero-
geneous kink dynamics that are required for describing
the experimental results considered above. A transition
to the heterogeneous dynamics is connected with the
existence of a broad spectrum P(τ) of the kink delay τ
at the obstacles created by the density fluctuations of
defects. The transition takes place when the kink drag
at a single most intense barrier within the mean free
path becomes dominating over the kink retardation by
many typical average-intensity barriers. This can be
illustrated by the following simple consideration [10].

Let P(τ) (the probability of encountering a barrier
with a delay time longer than τ),

,

where p(t) is the probability density, decrease for large
values of time as 1/τδ. In this case, the mean time of
overcoming the barrier,

,

is finite for δ > 1 and diverges for δ ≤ 1. Thus, for F ≤
Fc, where Fc corresponds to the value of δ equal to unity
in Eq. (1), 〈τ〉   ∞ and the mean velocity of kinks
becomes zero.

Under these conditions, the time required for tra-
versing a certain segment of the path is determined by
the most intense barrier in it. The probability of
encountering a barrier with a delay longer than t over
the path length x can be estimated as (x/∆l)P(t), where
∆l is the average barrier width and x/∆l is the number of
independent positions. As a rule, the highest and,
hence, the most uncommon barrier existing over the
length l satisfies the following condition:

This relation leads to the following nonlinear depen-
dence of displacement x on time t (cf. formula (1)):

It should be emphasized that this kinetic law is not
determinate and it is more appropriate to use its proba-
bilistic interpretation in which x is generally a random
quantity with a mean value equal to the average dis-
tance 〈x〉  ≈ ∆l/P(t) between the corresponding barriers.

Although the motion of a kink under the heteroge-
neous conditions cannot be described by the average
velocity (which is equal to zero), the dislocation pre-

P τ( ) p t( ) td

τ

∞

∫=

τ〈 〉 τ p τ( ) τd

0

∞

∫ P τ( ) τd

0

∞

∫= =

x
∆l
-----P x( ) 1.≈

x
∆l

P t( )
--------- tδ.∝≈
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serves, a finite mobility and its velocity can be esti-
mated on the basis of the following considerations. We
denote by J0 the rate of formation of kink pairs per unit
time per unit dislocation length under the action of a
constant stress. The number density of kinks generated
by the instant t is J0t and the mean distance between the
kinks is 1/J0t. The average displacement of kinks over
this time interval is

When this displacement becomes equal to the mean
distance between the kinks, the process of their coales-
cence begins, and the dislocation passes to the next val-
ley of the Peierls relief. Thus, the duration ta of the tran-
sition is determined by the equation

(7)

leading to the following expression:

Hence, the velocity of the steady motion of the disloca-
tion is given by

(8)

The intermittent pulse loading is the most suitable
method for experimental investigation of nonlinear
modes of motion of a kink. It was proved in [16] that the
motion of dislocation kinks in SiGe in the stress range
under investigation has the form of a nonlinear drift
both in the “forward” direction under pulse loading and
in the “backward” direction during “pauses.” In both
cases, the displacements of a kink are described by the
kinetic law (1), but with different exponents δi and δp

due to different magnitudes of the forces acting on the
kink: Fi, p = σi, pab. It should be noted that the barriers
for the forward and backward movements of the kink
are formed by fluctuations of different polarities. For
this reason, these barriers are not correlated with one
another (the barrier for the forward motion does not
play any significant role in the backward motion, and
vice versa).

In contrast to the steady-state mode of motion, a
new possibility to return during the “pause” to the
nucleation center and to annihilate with its “partner”
appears for a newly born kink in the case of intermittent
loading. Consequently, we must take into account only
the kinks remaining after the complete loading cycle
“loading pulse + pause.” At the stage of kink move-
ment, we must take into account the possibility of
returning to the initial position in front of a barrier dur-
ing the pause for kinks which surmounted the barrier
during the preceding pulse, as well as a decrease in the

x x0
t
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effective frequency of attempts to overcome the barrier
due to the backward motion of a kink from the barrier
during the preceding “pause.” The inclusion of these
corrections (see the Appendix) makes it possible to
derive the following expression for the dislocation path
lengths under intermittent pulse loading:

(9)

where

(10)

(11)

xi ≡ xi(ti), and xp is the mean distance between the bar-
riers for backward motion with the surmounting time
longer than the duration tp of the pause (xi, p(t) ≡

x0 ).

Let us now compare the experimental results (curve 3
in Fig. 3) with the theory. According to the theory
developed by Hirth and Lothe [1], the velocity of the
steady motion of a dislocation with a linear drift of
kinks can be expressed as follows in terms of the kink
concentration ck and the kink velocity v k (6): V = ackv k.
It was proved in [1] that the kink concentration in the
region of low stresses is independent of the stress. Thus,
the dependence of the velocity of the dislocation on the
stress for σ > σc has the form

(12)

In the region below the threshold (σ < σc), the stress
dependence of V is nonlinear and is defined by formula
(8).

In order to estimate the critical shear stress σc =
Fc/ab, for which the mean velocity of a kink vanishes,
we plot the dependence of the mean velocity of a dislo-
cation on the shear stress. Figure 4 shows the V(σ)
dependence for SiGe samples with the Ge concentra-
tion of 5.5 at. % in linear coordinates. It can be seen that
for stresses 30–70 MPa, the experimental results are
correctly described by a linear dependence of the form
(12) with σc = 17.68 MPa. Using this value and choos-
ing t0 and x0 as fitting parameters, we calculated depen-
dence (9). The solid curve in Fig. 5 presents the results
of fitting. It can be seen that the results of calculations
are in good agreement with the experimental data
obtained for the following values of the parameters:
t0 = 8.25 ms and x0 = 22b.
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Using these values, we can estimate the diffusion
coefficient for a kink from the relation

(13)

and the activation energy from

(14)

This value is quite close to the estimate obtained for
the energy of kink migration on dislocations in pure
silicon [6].

An analysis of the results obtained for a SiGe sam-
ple with an intermediate Ge concentration of 3.3 at. %
(curve 2 in Fig. 3) revealed that, in the framework of
model (9), a satisfactory description of experimental
results cannot be obtained. Apparently, a more complex

Dk
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2

2t0
-------≈ 2.29 10 15–  m2/s×=

Wm kT
νDb2
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----------- 
 ln 1.55 eV.≈=
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Fig. 4. Velocity of 60° dislocations as a function of stress in
Si1 – yGey (y = 0.055) (curve 3 in Fig. 1) plotted in linear
coordinates.
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Fig. 5. Comparison of the experimental data presented in
Fig. 3 (curve 3) with the results of calculations based on the
model (9)–(11) (solid curve).
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Fig. 6. The (111) surface of a Si1 – yGey sample (y = 0.0096) upon gradual removal of material layers by chemical polishing and
selective chemical etching: removed layer thickness is 7.5 (a), 10.7 (b), and 13.5 µm (c); dislocation etch pits (1) and traces behind
dislocations (2).
model taking into account the nonuniformity of the
point defect distribution along the dislocation line
(retardation of kinks in the field of a random force) as
well as the defect concentration gradient across the dis-
location (entrainment of mobile impurities by the mov-
ing dislocation) is required for describing this depen-
dence. The development of such a model requires a sep-
arate analysis.

Thus, the qualitative change in the shape of the
curves in Fig. 3 upon an increase in the Ge concentra-
tion indicates a gradual change in the mechanism con-
trolling the kink dynamics from the avalanche-like
entrainment of impurities with the immobilization of
dislocations (in the case of pure Si) to the quasi-static
effect of impurities with a clearly manifested nonlinear
drift of kinks in the case of Ge.

3.3. Traces of Dislocations in SiGe Crystals

One of numerous manifestations of the interaction
between a dislocation and point defects is the revelation
of various types of traces left by moving dislocations on
the etched surfaces of various materials [26–30]. In this
work, we observed traces in the form of randomly dis-
tributed flat-bottomed etch pits on the line of intersec-
tion of the swept part of the dislocation slip plane and
the surface of observation, which are left by individual
dislocations moving under the action of stresses vary-
JOURNAL OF EXPERIMENTAL 
ing from 20 to 35 MPa in SiGe samples containing
0.96 at. % Ge at 873 K after selective etching. The size
of pit traces was noticeably smaller than the size of dis-
location etch pits (Fig. 6).

It should be noted that, in contrast to the traces
observed earlier [28– 30], the traces in our samples
were revealed only after the removal of the surface
layer of thickness 3–4 µm. The layer-by-layer removal
of the material and etching showed that the traces
located closer to the initial position of a dislocation are
revealed first (Fig. 6a). The subsequent removal of lay-
ers revealed new traces located closer to the final posi-
tion of the dislocation in addition to the traces observed
earlier (Fig. 6b). Some of the latter traces remained
noncorroded. The maximum number of pits in a chain
was revealed after the removal of a layer 10–15 µm
thick. The number of etching pits decreased upon sub-
sequent polishing (Fig. 6c). After the complete removal
of the dislocation half-loop, traces were not etched
either.

It was also found that traces are revealed only
behind definite types of dislocations. On the sample
surface where compressive stresses were acting, chains
of traces were etched only on the mixed side (both
behind screw dislocations and 60° dislocations), while,
on the stretched surface, traces appeared only on the
60° side.
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An analysis of the change in the position of etch pits
upon the removal of layers shows that they have the
form of extended quasi-one-dimensional defects simi-
lar to those observed in [28]. These defects lie in the
dislocation slip plane, but are oriented parallel to the
dislocation segment located at the opposite end of the
half-loop rather than to the segment generating them.

After the repeated movement of dislocations under
the same conditions, it was found that the position of
the traces revealed after the first loading remained
unchanged. It should be noted that etching of the
freshly swept part of the slip plane revealed traces only
after the removal of a surface layer of thickness 10–12 µm
as in the case of the first loading. In this case also, the
pits located closer to the initial position of the disloca-
tion are revealed first. The maximum number of traces
in a chain was now revealed after the removal of a layer
20−25 µm thick.

Subsequent loading showed that, in each next load-
ing, the depth at which traces start being revealed
increases, while the number of etch pits in the chain
decreases. When the overall time of sample deforma-
tion exceeds 1.5 h, no traces are revealed. In this case,
the time during which the samples are kept in the fur-
nace at temperatures of 723–873 K (including the time
of extraction, temperature stabilization, and cooling
with the surface) amounts approximately to 5.5 h. No
traces behind dislocations introduced into a sample
annealed preliminarily for 3 h at 873 K were revealed
either.

What is the origin of the traces revealed in SiGe
crystals? The traces in the form of etch pits [27]
observed earlier in alkali-halide crystals were inter-
preted as the result of etching of dislocation dipoles
appearing upon cross slip. However, dipoles are formed
in silicon (in fact, the samples under investigation were
made of strongly alloyed silicon) only as a result of a
considerable plastic deformation at temperatures 200–
300 degrees higher than the temperature used in our
experiments [26].

Another possible reason for the emergence of a
chain of etch pits is the multiplication of dislocations
upon overcoming local obstacles. However, the stresses
and temperature used in our experiments are too low for
the multiplication of dislocations. In addition, the size
of etch pits in the traces was considerably smaller than
for the dislocation etch pits, and their position remained
unchanged after repeated loading.

In this connection, it was proposed that the reason
for the emergence of traces behind dislocations lies in
the shedding of a part of the point defect atmosphere by
a dislocation. It was shown in [28] that, under certain
conditions (upon a change in the direction of motion or
a sharp increase in the velocity), a dislocation may shed
a part of its impurity atmosphere. In the regions of such
a shedding, flat-bottomed triangular pits were revealed
using selective chemical etching.
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The nonuniform distribution of pits suggests that
atmosphere shedding occurs as a result of overcoming
of randomly distributed obstacles by a dislocation. Fig-
ure 7 shows the possible scheme of such a process.
When a dislocation encounters a local barrier, its parts
located at large distances from the obstacle continue
their motion, leading to the accumulation of kinks in
the obstacle region and to the formation of superkinks.
After the surmounting of the barrier, superkinks that
were formerly at rest start moving, shedding a part of
the point defect atmosphere. Since one of the
superkinks is parallel to the surface of observation, the
trace left behind it can hardly be revealed by selective
chemical etching. However, another superkink directed

along  leaves the trace sought. The emergence of
traces only in a certain range of shear stresses confirms
this hypothesis: the formation of superkinks becomes
disadvantageous from the energy point of view for low
shear stresses, while, for high stresses, the dislocation
overcomes the local barrier in a forced manner without
the formation of superkinks.

The fact that no traces are revealed after the anneal-
ing of crystals shows that the obstacles for the motion
of a dislocation are readily annealed. This is indirect
proof of the fact that local barriers are clusters of point
defects. A gradual increase in the depth starting from
which traces start being revealed can be explained by
the annealing of clusters and by the emergence of point
defects at the sample surface. SiGe samples with
0.96 at. % Ge were cut from the initial part of the ingot
in the vicinity of the seed. Since no traces were revealed
in the samples with a higher Ge concentration, which
were cut from parts of the ingot separated from the seed
by longer distances, we can assume that the reason for
the emergence of point defect clusters is supersatura-
tion of the initial part of the ingot with point defects in
the process of crystal growth.

011[ ]

123

〈101] [0
11

〉–

〈011]
–

Fig. 7. Diagram of the formation of one-dimensional
defects in the course of the formation of superkinks on a dis-
location segment (broken line) while overcoming a local
obstacle (filled circle). Numbers 1, 2, and 3 mark successive
positions of the dislocation loop; light circles are point
defects; the horizontal dashed line indicates the depth at
which a trace starts being revealed; the arrow marks the
position of the trace.

–
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4. CONCLUSIONS

It has been established that the disorder introduced
by Ge atoms leads to the formation of superkinks on the
dislocation line during the motion of the dislocation
under the action of stresses ≤30 MPa. It is shown that
an increase in the Ge concentration in SiGe leads to a
gradual change of the mechanism controlling the kink
dynamics from the avalanche-like entrainment of impu-
rities accompanied by immobilization of dislocations to
the quasistatic effect of impurities with a clearly mani-
fested nonlinear drift of kinks. Traces in the form of
chains of etch pits revealed in SiGe samples containing
0.96 at. % Ge are probably associated with the forma-
tion of superkinks at point defect clusters.
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APPENDIX

Let us describe the expected regularities in the
motion of dislocations with a nonlinear drift of kinks
under loading by pulses of amplitude σi separated by
“pauses” during which a stress σp of the opposite sign
(or equal to zero) is applied. Two main stages can be
singled out in this process: the formation of kink pairs
and their propagation until the recombination with
kinks from neighboring pairs. Let us first consider the
stage of formation of a kink pair. It was mentioned
above that the number of kinks generated per unit
length of a dislocation during any time interval dt under
the action of a constant stress is equal to J0dt. In the
case of intermittent loading, a new possibility appears
to return to the nucleation center and to annihilate with
its “partner” during a “pause.” Consequently, we must
take into account only the kinks remaining after a com-
plete loading cycle. Let us calculate the number of such
kinks.

Assuming the independence of fluctuations in the
density of defects creating various solitary barriers, we
will describe their spatial separation with the help of the
Poisson distribution with the mean density n = P(t)/∆l.
Although such an interpretation is not quite accurate
and a more correct description can be obtained on the
basis of Levi’s laws (see, for example, [12, 31, 32]), we
will use this interpretation owing to its simplicity and
evidence. Among other things, it provides a simple
description of the distribution of separations between
the barriers. For example, the probability that a kink
does not encounter a barrier over a distance x is
exp(−nx), while the probability that a next barrier is
encountered at a distance from the previous barrier in
the interval between x and x + dx is exp(−nx)ndx.

The probability that a kink generated at instant t'
after the beginning of a loading pulse is separated from
the site of its birth by a distance in the interval from x1
JOURNAL OF EXPERIMENTAL
to x1 + dx1 by the end of an pulse of duration ti is given
by

Here, xi(t) is the mean distance between the barriers
with a surmounting time longer than t,

Similarly, the probability that the second kink in the
pair moves through a distance in the interval from x2 to
x2 + dx2 is

The probability density pr(x) for the kink of a pair to be
separated from each other by a distance x is given by

(15)

Then, the probability Pr(x) that a pair of kinks does not
annihilate during a pause is equal to the probability that
the total path length traversed by the kinks during the
“pause” is smaller than x. Since the probability density
that the kinks in the pair are characterized by the rela-
tive path length x' during a “pause” is equal to

(x '/ )exp(–x '/xp) (in analogy with formula (15), where
xi is replaced by xp), we have

(16)

Integrating the product of probabilities (15) and (16)
with respect to all possible values of x from 0 to ∞, we
obtain the fraction of kinks that survived after the
“pause”:
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Consequently, the total number ∆N of kinks generated
during a loading cycle is

(17)

where I1 is defined by formula (10).
Thus, the “pauses” between pulses lead to the trans-

formation of the frequency J0 of generation of kink
pairs under static loading into the “effective” frequency
J0I1.

Let us now consider the stage of propagation of a
kink during a loading pulse. It should be recalled that,
in the approximation we are dealing with, the displace-
ment of a kink during a loading pulse is mainly deter-
mined by the distance to a strong barrier (which is
referred to as the principal barrier) with a given sur-
mounting time τ. If, however, the fraction of kinks sur-
mounting the barrier during the time dt ' is equal to dt '/τ,
the presence of “pauses” in pulse loading introduces
two corrections.

The first correction is the possibility for the kinks
that have surmounted a barrier during an pulse to return
to their initial position in front of the barrier during the
next “pause.” The probability that a kink surmounting a
barrier at instant t' is found at a distance x from the bar-
rier (in the interval from x and x + dx) is

The probability that the kink does not return to the ini-
tial position is equal to the probability of the presence
on the length x of a barrier with the surmounting time
longer than tp, i.e., 1 – exp(–x/x0). Integrating the prod-
uct of these two probabilities over all possible values of
x, we obtain the fraction of kinks surmounting the bar-
rier during a complete cycle,

which renormalizes dt'/τ.
The second correction is due to a decrease in the

effective frequency of attempts at surmounting a barrier
due to the backward motion of a kink from the barrier
during the previous “pause.” Under the action of a con-
stant stress, a kink is permanently pressed against the
barrier, while, under the conditions of intermittent load-
ing, a kink regresses during “pauses.” Its return to the
barrier takes a certain time after the beginning of a load-
ing pulse, and a shorter time is left for surmounting the
barrier.

The probability of the regress to a distance lying in
the interval between x' and x' + dx' is

.
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The probability that a kink returns to the barrier by
instant t' after the beginning of an pulse is
exp(−x '/xi(t ')). The integration of the product of these
two probabilities over all possible values of x' gives the
additional factor

to dt '/τ. Thus, the fraction of kinks surmounting the
barrier during a cycle is

where I2 is defined by formula (11).
We now have all what is required for generalizing

Eq. (8) and calculating the modified velocity of disloca-
tions under intermittent pulse loading. Let the transition
of a dislocation to the next valley of the minimum take
n cycles. This means that the barrier controlling the
propagation of a kink and preventing its annihilation
with an antikink is surmounted over n cycles with a
probability close to unity:

The mean free path for a kink equal to the mean dis-
tance between such barriers determining the annihila-
tion of kinks is xi(τ) ≈ xi(nI2ti).

We also know that the number of kinks generated
per unit dislocation length during n cycles is n∆N and
the mean distance between them is 1/n∆N. Equating the
mean distance between kinks to the mean free path of
kinks, we obtain the condition for the passage of the
dislocation to the next valley:

(18)

Solving this equation for n, we obtain the renormal-
ization of the duration ta of a dislocation transition
under the static loading conditions to the effective dura-
tion nti under intermittent loading. Assuming that the
displacement l of the dislocation is inversely propor-
tional to the duration of the transition process, we arrive
at formula (9).
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Abstract—The effect of alloying with nonmagnetic Mg2+ ions on the low-frequency branch of resonance of a
noncollinear quasi-one-dimensional CsNiBr3 antiferromagnet is investigated experimentally. It is found that a weak dilution
(x = 2 to 4%) leads to a considerable (up to 15%) reduction of the resonant gap and of the spin-flop field. The
results agree with the theory of Korenblit and Schender, according to which the small parameter of perturbation of the initial

system is x  rather than the impurity concentration x; i.e., a quasi-one-dimensional amplification coefficient exists, which
is equal in this case to approximately six. © 2002 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

The introduction of nonmagnetic impurities into a
magnetic material brings about considerable changes in its
properties. These changes are especially pronounced in
magnetic structures of reduced dimensions, in particular,
in quasi-one-dimensional antiferromagnets. The problem
on the properties of dilute antiferromagnetic chains was
treated theoretically by Bulaevskiœ [1]. He has demon-
strated that the rupture of antiferromagnetic chains due to
nonmagnetic inclusions is accompanied by the emergence
of magnetic defects (additional degrees of freedom) asso-
ciated with the fact that half of the chain segments will
exhibit uncompensated spin. The emerging defects behave
as a paramagnetic impurity.

Real quasi-one-dimensional antiferromagnets at T <

TN ~  (J is the constant of exchange interaction along
the chain and J' is the interchain interaction constant) are
characterized by three-dimensional magnetic order. At
low temperatures, the magnetic defects due to alloying
cease to be independent and come to be associated with
other spins. This fact must influence the process of order-
ing and all of the magnetic properties of the system. The
effect of impurity on the properties of a quasi-one-dimen-
sional antiferromagnet was treated theoretically within the
classical approximation of the spin-wave theory at T = 0
by Korenblit and Schender [2]. The corrections to the val-
ues of the susceptibility χ⊥  and of the gap in the spin wave
spectrum ω(q = 0), calculated in the first order of perturba-
tion theory, are defined by the following expressions,
depending on the impurity concentration x:

(1)

J J'

χ χ x 0=( ) 1 αx
J
J'
----+ 

  ,=

ω ω x 0=( ) 1
αx
2

------ J
J'
----– 

  ,=
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where α is a numerical coefficient of the order of unity,
dependent on the configuration of spins and on the
number of nearest neighbors. Therefore, the small

parameter of perturbation is x rather than the
impurity concentration x; i.e., a “quasi-one-dimen-
sional amplification” of the impurity effect exists.

Considerable variations of the ordering temperature
TN and magnetic susceptibility in the case of alloying
were observed in a number of experimental studies
(see, for example, [3–5]). It was further found [6] that
the introduction of Mg2+ ions into a quasi-one-dimen-
sional antiferromagnet with a noncollinear (“triangu-
lar”) structure, CsNiCl3, caused a reduction of the
energy gap in the spectrum ν1(H = 0) (at x = 0.07, the
frequency of antiferromagnetic resonance in zero field
decreased almost by half) in accordance with theoreti-
cal predictions [2]. However, the introduction of a
2−3% Mg impurity into single crystals of RbNiCl3 iso-
morphic to CsNiCl3 brought about qualitatively differ-
ent results [7]: an insignificant increase in the gap
ν1(H = 0) was accompanied by the emergence of addi-
tional resonance absorption in the range from 3 to
20 GHz. The field dependence of the frequency of this
additional line resembles the acoustic branch of reso-
nance ν3(H) characteristic of triangular structures of
strong easy-axis anisotropy. Note that no resonance
absorption is present in this frequency range for pure
RbNiCl3, and the frequency ν3(H = 0) is estimated at
only 0.5 GHz. In order to interpret this strange phenom-
enon, it was assumed that the Mg2+ ions introduced into
RbNiCl3 did not get to the lattice sites, this resulting in
strong distortions and in the emergence of additional
anisotropy causing an increase in the oscillation fre-
quencies ν1 and ν3. This assumption is supported by the
fact that it is impossible to grow single crystals of
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RbNi1 – xMgxCl3 with an Mg concentration of more than
3%. Therefore, there is no doubt interest in investigat-
ing the effect of substitutional impurity on resonance
frequencies in other triangular quasi-one-dimensional
antiferromagnets, in which the oscillation branch ν3 is
known to be in the microwave-frequency range, and to
find out how it varies when an impurity is introduced.

We investigated CsNiBr3 whose magnetic proper-
ties were experimentally studied by a number of
researchers (see, for example, [8–10]). According to the
results of those studies, three-dimensional magnetic
ordering occurs at T < TN ~ 12 K, and, as in the case of
CsNiCl3 and RbNiCl3, a plane “triangular” magnetic
structure arises, with the spin plane being perpendicular
to the basal plane of the crystal. The acoustic branches
of oscillation at H || C6, H < Hc are described by the fol-
lowing formulas (see [11, 12]):

(2)

where

Hc is the spin-flop field,  = D/(χ|| – χ⊥ ), and D is the
easy-axis anisotropy constant.

At H ⊥  C6, the first two branches are the roots of the
biquadratic equation

(3)

and the third branch is independent of the field.

ν1
2 γ2 ηHc

2 H2+( ), ν2
2 0,= =

ν3
2 η∆3

2 Hc
2 H2–

ηHc
2 H2+

----------------------- 1
H
Hc

------ 
  2

–
3

,=

η χ || χ⊥–( )/χ⊥ , ∆3 ν1 H 0=( )D
J'
----,∼=

Hc
2

ν4 ν2 H2 ηHc
2 η2H2+ +( )–

+ γ2η2H2 Hc
2

H2+( ) 0,=

0.95

0.80
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Fig. 1. Lines of absorption of a microwave signal in (1) pure
and (2) dilute CsNiBr3 at different frequencies. The impu-
rity concentration in dilute substance x = 0.04, T = 1.3 K.
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2. EXPERIMENTAL PROCEDURE
AND SAMPLES

Microwave spectrometers with direct amplification
were used to investigate the antiferromagnetic reso-
nance. The measurements were performed at helium
temperatures in the frequency range from 9 to 36 GHz
and in fields of up to 65 kOe.

Single crystals of CsNiBr3 were grown similarly to sin-
gle crystals of CsMnBr3 [13]. The method used to prepare
single crystals of solid solutions of CsNi1 – xMgxBr3 was as
follows. Single crystals of CsNiBr3 and metallic mag-
nesium in the form of shavings (1–2% by weight) were
placed in a quartz ampoule. The ampoule was evacu-
ated and sealed. It was then cautiously heated by a
burner to initiate the CsNiBr3 + Mg = CsMgBr3 + Ni
reaction. After that, the ampoule contents were melted
and stirred. The ampoule was placed into a furnace for
growing a single crystal. According to our observa-
tions, CsMgBr3 melts at a lower temperature than
CsNiBr3; therefore, the top portion of the obtained sin-
gle crystal is richer in magnesium than its bottom por-
tion. The impurity of metallic nickel formed does not
interfere with the crystal growth. The Mg content in the
samples selected for measurements was determined by
γ-activation analysis [6].

3. EXPERIMENTAL RESULTS

Figure 1 gives examples of recordings of resonance
lines for pure and doped CsNiBr3 at T = 1.3 K in a field
directed parallel to the C6 axis. One can clearly see that,
in the case of alloying, the resonance line correspond-
ing to the ν3 mode broadens severalfold and shifts
towards lower fields. No absorption in fields higher
than Hc was observed in the region of the ν2 branch at
any one of the measuring frequencies. No respective
recordings at H ⊥  C6 are given, because the ν3 branch
cannot be observed in this orientation due to the
absence of dispersion over the field, and the impurity
had almost no effect on the ν2 branch. Figure 2 gives the
results of our measurements of the ν2(H) and ν3(H)
curves for pure single crystals and single crystals with
an impurity of Mg2+ ions with the concentrations x =
0.02 and 0.04 and field directions H || C6 and H ⊥  C6.
The solid curves indicate the results of calculations by
formulas (2) and (3) with the parameters η = 0.75, Hc =
75.3, 64.0, and 53.4 kOe, and ∆3 = 25.3, 23.9, and
22.1 GHz for x = 0, 0.02, and 0.04, respectively. The
inset gives the dependences of the relative variation of
∆3 and Hc on the impurity concentration, as well as their
linear fits with the coefficients three and seven, the first
ND THEORETICAL PHYSICS      Vol. 94      No. 1      2002
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of which defines, according to formula (1), the value of
quasi-one-dimensional amplification of the impurity
effect. In our case, this parameter is equal to approxi-
mately six,

(4)

Note that the values of Hc, determined from our fits
for all samples, prove to be less than the real field of
spin plane flop Hsf. For example, the spin-flop field
determined by the results of magnetostatic measure-
ments for CsNiBr3 [8] is approximately 90 kOe. This is
apparently due to the existence in the samples of two
successive spin-reorientation transitions, as was
observed in another quasi-one-dimensional easy-axis
triangular CsMnJ3 antiferromagnet [14]. In this case,
the field dependence ν3(H) at H < Hc differs rather little
from that derived from formula (2); however, the ν3
branch relaxes at both points. The field of first transition
is determined by fitting. Also indicative of this is the
absence of resonance absorption in fields H > Hc in a
sample with x = 0.04, in spite of the fact that the calcu-
lated values of the resonance fields corresponding to
the ν1 andν2 branches lie within the accessible experi-
mental range. Our results indicate that the effect of
impurity on the field Hc proves to be twice as strong as
its effect on the gap ∆3; this is possibly the result of
broadening of the intermediate range Hc < H < Hsf due
to alloying. The dependences ν3(H) in the case of devi-
ation of the magnetic field from rational directions are
also well described by the theoretical formulas of [12].
Therefore, one can conclude that, in the case of light
alloying, a type of magnetic ordering persists, and the
observed reduction of the resonance gap and critical
field with increasing impurity concentration is in qual-
itative agreement with theory [2].

In order to perform a qualitative comparison, one
must determine the ratio J/J ' from other experiments.
The value of J may be calculated from the results of
magnetostatic measurements (according to [8], J = 17 K)
or from the excitation spectrum obtained using the
inelastic neutron scattering (it follows from [9] that
J = 22 K). The difference in the values of J obtained
from different experiments is 20% (we assumed in cal-
culations that J = 20 K). The constant J ' may be calcu-
lated using the experimentally obtained value of ν3(H).
It follows from our data, in view of the results of Kambe
et al. [10], that J ' = 1.3 K.

Therefore, the experimentally observed quasi-one-
dimensional amplification coefficient for CsNiBr3 is
close to the estimate that may be derived from the data
given above for J and J '. The observed discrepancy may
be attributed both to the difference of the coefficient α
from unity and to the errors in determining the param-
eters J and J ', which are inevitable in the case of
describing quasi-one-dimensional magnetic systems

Q
2
x
---

∆3 0( )
∆3 x( )
------------ 1– 

  α J
J'
---- 6.≈= =
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within the classical approximation of the spin wave the-
ory. Note that the inclusion of the contribution by zero
oscillation to the magnetization and to the spin wave
spectrum would bring about excess accuracy as com-
pared with the theoretical results [2].

In the case of strong dilution, the form of the spec-
trum changes. Figure 3 gives the experimental data for
CsNi0.74Mg0.26Br3. This spectrum is close to that char-
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–20 25 50 75 100

H||C6

H⊥ C6

∆3(0)/∆3(x) – 1
Hc(0)/Hc(x) – 1

Fig. 2. The resonance frequencies ν2, 3 as functions of
magnetic field for CsNi1 – xMgxBr3 at T = 1.3 K: n, x = 0;
d, x = 0.02; h, x = 0.04; solid curves, calculation by formu-
las (2) and (3) (dashed curves, not observed experimen-
tally). The inset gives the relative variation of the parame-
ters ∆3 and Hc with the impurity concentration in view of
linear fits.
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Fig. 3. The resonance absorption frequency as a function of
magnetic field at T = 1.3 K for CsNi0.74Mg0.26Br3. The
curves indicate the theoretically obtained dependence for
spin glass, calculated by formula (5).
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acteristic of transversely polarized resonant modes of
spin glass [15],

(5)

The theoretically obtained dependence ν1, 2(H) for
spin glass with ∆ = 65 GHz and γ = 3 GHz/kOe is
shown in the same graph by solid curves. However,
additional investigations are required before making a
conclusive statement to the effect that spin glass is
formed in this case.
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Abstract—A universal theory and calculation results for the bremsstrahlung of electrons on complex atoms are
presented. The theory accounts for the dynamic polarization of the core in the energy range from 0.5 to 10 keV,
which is characteristic of radiation energy losses in a hot plasma with heavy ions. The treatment is based on the
statistical atom model and the quasi-classical approximation of the incident electron. The model accounts for
the penetration of the incident electron into the atomic core, which affects the relationship between the polar-
ization and static radiation channels. The contribution of the polarization channel in both the spectral and the
total radiation loss of electrons at various frequencies, nucleus charges, and energies of the incident particle is
analyzed. It is shown that the contribution of the polarization channel is comparable with that of the static chan-
nel (which was calculated elsewhere) in a wide range of parameters. The results obtained are in a reasonable
quantitative agreement with the detailed quantum-mechanical calculation carried out for individual atoms.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Radiation loss of electrons in a continuous spectrum
under scattering by heavy atoms is due to their
bremsstrahlung in the atomic potential field (we do not
consider the loss due to the excitation of atomic elec-
trons, which correspond to a discrete radiation spec-
trum). A specific feature of these processes is the pene-
tration of the incident electron into the atomic core,
which results in the increase of the effective charge
interacting with the electron. As a result, the depen-
dence of the bremsstrahlung spectrum on frequency
increases, while it decreases for the purely Coulomb
field (see survey [1]). This phenomenon plays an
important role in the diagnostics and radiation loss in
plasma with heavy ions, which possess a substantial
electron core. In fact, we face here the interaction of
electrons with energies between 0.5 and 10 keV with
atoms with the nucleus charge greater than 20.

Calculations of the bremsstrahlung in a static atomic
potential were performed by various methods—in [2]
in the framework of Born’s approximation, in [3] on the
basis of the semiclassical approach, in [4, 5] on the
basis of a numerical solution of the Schrödinger equa-
tion in the Thomas–Fermi potential, in [6] by the self-
consistent field method, and in [7] by the quasi-classi-
cal method. In the latter case, it was shown that the clas-
sical approximation is exact for atomic potentials in the
case of moderate electron energies, which is character-
istic of plasma. Moreover, the so-called “rotational
approximation” can be used for the calculation of spec-
1063-7761/02/9401- $22.00 © 20012
tra in the range of high frequencies, which are respon-
sible for the greater part of electron energy loss. This
approximation accounts for the radiation at the most
curved part of the electron’s trajectory in the atomic
potential. In the framework of this approximation, the
spectrum of the bremsstrahlung is entirely determined
by the dynamics of the electron’s scattering and is
expressed in terms of a functional of this potential (for
details, see [1, 7] and below). A detailed comparison of
the results of classical and quantum-mechanical calcu-
lations confirmed a high accuracy of the classical
method. It is about 5% for the purely Coulomb poten-
tial and varies within 20% for complex ions depending
on the structure of the ion core.

Despite a good agreement on the whole between the
theories based on the static potential of the electron–
atom interaction, the comparison of the calculated data
[6] with those found by experiment [8] shows a system-
atic discrepancy for atoms with a large nucleus charge
(Z > 60), which is especially significant in the low-fre-
quency range.

This disagreement between the theory and experi-
ment can be caused by a number of factors including
the contribution of the polarization channel associated
with the dynamic polarization of the atomic core,
which is not taken into account in the consideration of
the ordinary (static) bremsstrahlung. Numerous calcu-
lations of the polarization bremsstrahlung show that the
contribution of this process can be comparable to (or
even exceed) the static channel contribution. A detailed
quantum-mechanical calculation of the polarization
002 MAIK “Nauka/Interperiodica”
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bremsstrahlung on a multielectron atom was carried out
in [10] for krypton by the chaotic phase approximation
method with exchange. Calculation of the polarization
bremsstrahlung spectra similar to that for the static
potential [7] is carried out in the present paper. The sta-
tistical atom model and quasi-classical approximation
similar to that used in [7] for the static bremsstrahlung
is used as the working theoretical model. Thus, it
becomes possible to directly compare the polarization
bremsstrahlung and static bremsstrahlung for all types
of atoms in a wide range of frequencies of emitted
quanta and energy of the incident particles.

2. ROTATIONAL APPROXIMATION 
IN THE THEORY OF THE POLARIZATION 

BREMSSTRAHLUNG

It was mentioned in the Introduction that the rota-
tional approximation was successfully used for the cal-
culation of the static radiation of quasi-classical elec-
trons in the atomic potential [7]. In addition to being
very accurate, this method is characterized by simple
computations. The expression for the effective spectral
radiation over the static channel, which was first
obtained in [7], has the form (in this paper we use
atomic units)

(1)

Here A is the normalizing factor, U(r) is the atomic
potential,

(2)

is the conventional “static” force acting on the incident
electron, Zeff(r) is the effective atomic charge at the dis-
tance r from the nucleus, T is the initial kinetic energy
of the incident particle, and ωrot(r) is the rotational fre-
quency determined by the equation

(3)

The quantity ωrot(r, T) naturally arises in the quasi-clas-
sical limit of matrix elements that determine the spec-
trum of bremsstrahlung in the atomic potential. The
delta function in Eq. (1) accounts for the dominance of
the matrix elements with the difference of frequencies
ω – ωrot over the corresponding matrix elements with
their sum (see [7]). Since the same quasi-classical wave
functions of the incident electron are also involved in
the calculation of the polarization bremsstrahlung, it is
natural to use the rotational approximation for the
polarization channel as well.

dκ
dω
------- 

 
st

rot 8πA

3c3 2T
------------------- f st r( )( )2

0

∞

∫=

× 1 U r( )
T

-------------+ δ ω ωrot r( )–( )r2dr.

f st r( ) dU
dr
-------–

Zeff r( )

r2
--------------= =

ωrot r T,( )
2 T U r( )+( )

r
------------------------------------.=
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The simplest variant of the rotational approximation
in the polarization bremsstrahlung theory consists in
replacing the “static” force by the “polarization” one
[11]. The polarization force, which depends on fre-
quency, is determined by the equation

(4)

where Npol(r, ω) is the effective charge of the atomic
core that causes radiation at the frequency ω over the
polarization channel. In the local electron density
model [11], this charge can be represented in the form

(5)

Here β(r, ω) is the space density of dynamic polariz-
ability of the target for which we will use the Brandt–
Lundqvist approximation [12], which corresponds to
the statistical plasma model of the atom,

(6)

where n(r) is the local electron density of the atomic
core. The presence of the current radius (distance from
the nucleus) in the upper integral limit in (5) accounts
for the penetration of the incident electron into the tar-
get’s core and related effects (see below).

It must be noted that introduction of the polarization
force (4)–(6) is rather conventional, since it is deter-
mined by both the real and the imaginary part of polar-
izability (6). The possible interference of the static and
polarization radiation channels can be related only to
the real part. The relative smallness of interference
effects, which is confirmed by numerical calculation
[10], is associated with the fact that polarization effects,
in accordance with (5), are proportional to the square of
the emitted frequency ω2; hence, the contribution of the
real part of polarization can be noticeable only at suffi-
ciently large values of ω. However, the effective core
charge (5) decreases due to the penetration of the inci-
dent electron into the core, while the effective charge
Zeff increases; hence, the interference terms are small.
Thus, the smallness of the interference contribution is
caused by the penetration of the incident electron into
the target’s core, which is essential in the frequency and
energy ranges under consideration. It must be noted
that the interference of the static and polarization radi-
ation channels can play an important role in the cases
when the penetration can be neglected [13] or is insig-
nificant [14].

The approach based on Eqs. (5) and (6) can be called
the local plasma frequency approximation. It can be
used to study polarization effects in the framework of
statistical atom models.

Substituting (4) into (1), we obtain the following
expression for the spectral loss of energy on radiation

f pol r ω,( )
Npol r ω,( )

r2
----------------------,=

Npol r ω,( ) ω2 β r' ω,( )

0

r

∫ 4πr'2dr' .=

β r ω,( )
n r( )

4πn r( ) ω2– i0–
---------------------------------------,=
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over the polarization channel in the framework of the
rotational approximation:

(7)

It is pertinent to note that the electrostatic interaction of
electrons with each other is small compared with their
interaction with the nucleus, which is known to exceed
the former interaction by a factor of seven in the Thomas–
Fermi model (see the problem in [15, Section 70]). This
fact enables us to use in the treatment of the polariza-
tion bremsstrahlung the same trajectory of the incident
electron as in static bremsstrahlung.

The presence of the delta function in (1) and (7)
makes it possible to find the integrals in an explicit
form. Then, with regard for (3), we find for the static
channel (cf. [7]) that

(8)

Similarly, we have for the polarization channel

(9)

In formulas (8) and (9), we introduced the characteristic
radiation radius in the rotational approximation reff [1,
7]. It is determined from the equation

(10)

The physical meaning of (10) is that the radiation
under our approach is determined by the distance from
the target’s nucleus at which the radiation frequency
coincides with the angular rotation velocity of the clas-
sical electron in the atomic field at the point of the clos-
est approach.

Formulas (8) and (9) imply the following expression
for the spectral R factor in the rotational approximation:

(11)
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An expression for the total energy loss due to the
bremsstrahlung over the static and polarization chan-
nels can be obtained by integrating (8) and (9) with
respect to the frequency up to the initial kinetic energy
T. On the other hand, the integration can be carried out
in formulas (1) and (7), which include the delta func-
tion. Then, we obtain the following expressions for the
total effective radiation over each of the channels:

(12)

(13)

Thus, formulas (8), (9) and (12), (13) with regard for
(3), (5), and (6) yield a general solution of the problem
for quasi-classical electrons if the target potential and
the electron density of its core are known. Below, we
use this approach to calculate the spectral and total
energy loss in the framework of the statistical atom
model.

3. POLARIZATION CHARGE 
IN THE FRAMEWORK OF THE STATISTICAL 

ATOM MODEL

It is seen from (9) and (13) that the key quantity that
determines radiation over the polarization channel is
the effective polarization charge Npol(r, ω), which
depends on frequency. Properties of this quantity are
investigated in this section.

First, we write general relations for the polarization
charge using the local electron density approximation
based on formulas (5) and (6). It is readily seen that Npol
satisfies the regular high-frequency asymptotics

(14)

which can also be derived from the quantum-mechani-
cal expression for polarizability. Here Ne(r) is the num-
ber of electrons in the atomic sphere of radius r. Natu-
rally, for r > R0 (where R0 is the atom size), Ne(r) equals
the total number of electrons in the target core N0e.

κ st
8 3π

3c3 2T
-------------------=

× Zeff
2 r( ) 1 U r( )

T
-------------+ r 2– r,d

reff T T,( )

∞

∫

κpol
rot 8 3π
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× Npol
2 r ωrot r T,( ),( ) 1 U r( )

T
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∞

∫

Npol
∞ r( ) Npol r ω ∞,( )=
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0
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In the low-frequency limit, we obtain from (5)
and (6) 

(15)

Note that (15) entails the following relation for the
static dipole polarizability of the target:

for atoms and ions with closed shells and a sufficiently
large number of bound electrons (N0e ≥ 30); this for-
mula has a reasonable accuracy if the atom (ion) size is
calculated according to the Thomas–Fermi–Dirac
model [11].

In static models, the electron density of the neutral
atom core, which determines the polarization charge
(see (5), (6)), can be represented in the form (see [15])

(16)

Here rTF = b/Z1/3 is the Thomas–Fermi radius, Z is the
nucleus charge, and

The form of the function f(x) depends on the underlying
statistical model. In the Thomas–Fermi model, we have
(see [15])

(17)

where χ(x) is the Thomas–Fermi function. The follow-
ing expression for f(x) obtained in the framework of the
Lenz–Jensen statistical model provides a better
description for the behavior of the electron density at
large distances from the nucleus (see [16]):

(18)

Note that for x ≤ 1 functions (17) and (18) give practi-
cally the same result.

Substituting (16) and (17) into (5) and (6), we obtain
the following expression for the polarization charge in
the Thomas–Fermi model:

(19)

Here, we use the universal function

(20)
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which is the polarization charge normalized to the total
number of the atomic electrons as a function of dimen-
sionless distance x = r/rTF and the reduced frequency
ν = ω/Z. Formulas (19) and (20) provide a universal
representation of the polarization charge in the Tho-
mas–Fermi model.

Note that (19), (20) extend the one-parameter simi-
larity law for dipole polarization of the Thomas–Fermi
atom, which was first obtained in [17], to the case of
two variables. The dipole limit for Npol is obtained from
(19), (20) by replacing the upper integration limit in
(20) by infinity; i.e., gdip(ν) = g(x  ∞, ν).

We compared the calculation results for the real and
imaginary parts of the dipole polarization of a krypton
atom (multiplied by the frequency squared) obtained in
the framework of the approach under consideration
with the results of quantum-mechanical calculations on
the basis of the chaotic phase approximation with
exchange [10]. It was discovered that, in the case of the
Thomas–Fermi atom, the local plasma frequency
method gives an averaged description of the exact spec-
tral dependence of the shell atom structure. For the
Slater electron density, our method results in the
appearance of maxima and minima associated with ion-
ization of electron subshells; however, the universal
character of the description, which is characteristic of
the Thomas–Fermi atom, is lost. Thus, we conclude
that the approximation under consideration yields a
rather accurate value for the atom’s dipole polarizabil-
ity without going into quantum-mechanical details of
the atomic electron distribution.

In what follows, we use the polarization charge calcu-

lated under the rotational approximation, ,
since it takes into account the penetration effect of inci-
dent particles into the target’s core, which is essential
for quasi-classical electrons. The corresponding
expression is obtained from formula (5) and the relation

(21)

Here reff(ω, T) is a solution to Eq. (10). Hence, we have,
for the normalized polarization charge in the rotational
approximation,

(22)

where t = bT/Z4/3 is the reduced energy and xeff(n, t) is
the solution to Eq. (10) written in terms of the parame-
ters ν and t.

4. SPECTRAL BREMSSTRAHLUNG LOSS
OF ELECTRON ENERGY UNDER SCATTERING 

FROM A THOMAS–FERMI ATOM
Spectral loss of energy of quasi-classical electrons

over the static channel under scattering from the Tho-
mas–Fermi atom was calculated in [7] on the basis of
the rotational approximation (within its scope ν > 3t)

Npol
rot( ) ω T,( )

Npol
rot( ) ω T,( ) Npol reff ω T,( ) ω,( ).=

g rot( ) ν t,( ) g xeff ν t,( ) ν,( ),=
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and in the low-frequency range (ν < 3t) on the basis of
the linear interpolation to the “transport” limit. The
comparison of these results with the results obtained by
the quantum-mechanical calculation [6] carried out in
[7] demonstrated a high accuracy of those approxima-
tions. The rotational approximation yields a universal
expression for the spectral bremsstrahlung loss over the
polarization channel under scattering from the Tho-
mas–Fermi atom. This is conveniently done in terms of
the R factor (11), which is the ratio of contributions of
the polarization and static radiation mechanisms.
Changing to reduced variables in (4) and (11), it is easy
to obtain the following expression:

(23)

Here, the prime means differentiation with respect to
the argument, and g(x, ν) is the normalized polarization
charge determined by formula (20). The maximal
reduced frequency νhf is determined from the energy
conservation law and is a function of the reduced initial
energy and the nucleus charge

The following relation allows us to pass to the conven-
tional frequency and energy:

(24)

Thus, relations (23), (24), (20), and the definition of
xeff(ν, t) yield a universal (i.e., valid for all values of the
nucleus charge) representation for the R factor on the
basis of our approach. These formulas must be supple-
mented with the expression for the spectral loss over
the static channel (8), which, for the Thomas–Fermi
atom, is expressed in terms of the reduced variables as

(25)

An equation equivalent to (25) was first obtained in [7]
in terms of the Gaunt factor for the rotational approxi-

mation. In the Coulomb (χ(x) = 1) and Kramers (  >
t) limits, we obtain from (25)

(26)
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A relation for the spectral radiation over the polar-
ization channel is obtained from (25) by the change of
variables

which follows from (23):

(27)

We also write the corresponding expression obtained in
[17] in the Born–Bethe approximation, which has the
following form in terms of the reduced variables:

(28)

Here, gdip(ν) = g(x  ∞, ν) is the normalized polar-
ization charge (20) in the dipole approximation. It fol-
lows from (28) that there is an upper limitation of fre-
quency for the Born–Bethe approximation in contrast

to the rotational approximation: ν < 1.7 .
Figure 1 presents the dependence of the effective

radiation of an electron on the Thomas–Fermi atom on
reduced frequency over the polarization and static
channels for two values of the initial energy of incident
particles calculated in the framework of various
approximations. Curves 1 and 3 describe the polariza-
tion channel calculated within the rotational and the
Born–Bethe approximation (28), respectively. In the
calculation of curve 2 for the static channel, the Gaunt
factor g0(t) was used in the low-frequency range for the
Thomas–Fermi atom in the transport limit. The corre-
sponding interpolation for g0(t) was obtained with the
use of the data presented in [18]. It is seen from Fig. 1
that the rotational approximation in the range ν < t
yields, for the polarization radiation, an almost identi-
cal result to that obtained within the Born–Bethe
approximation. Note that the inequality ν < t can be
written in the form ω < bT/Z1/3. Therefore, for large Z it
corresponds to the applicability condition of the low-
frequency approximation in the theory of bremsstrahl-
ung. In this case, an electron scattered from a neutral
atom is weakly perturbed by the radiation process, and
we can assume in the calculation of the polarization
bremsstrahlung that its motion is uniform and rectilin-
ear even for slow electrons [13]. This fact justifies the
validity of using the Born–Bethe approximation for the
polarization channel in the low-frequency range. Thus,
in view of a good conjugation of curves 1 and 3, we will
use the rotational approximation to calculate the polar-

x2 χ/x( )' g x ν,( ),
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Fig. 1. The effective spectral radiation of an electron on the Thomas–Fermi atom (Z = 60) as a function of reduced frequency ν =
ω/Z for various values of reduced energy of the incident electron t = 0.1 (a) and 1 (b). 1 corresponds to the polarization channel (in
the rotational approximation), 2 to the static channel, and 3 to the polarization channel (in the Born–Bethe approximation).
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Fig. 2. Spectral intensity of the bremsstrahlung of electrons with the energy of 1 keV (a) and 5 keV (b) on the krypton atom over
different channels. 1 corresponds to the polarization channel (the calculation carried out in this paper); 2 corresponds to the polar-
ization channel with account for the interference contribution (calculation in the chaotic phases approximation with exchange [10]);
3 shows the contribution of the static channel (the calculation carried out in this paper); and 4 shows the contribution of the static
channel according to [10].
ization radiation in the entire spectral domain under

consideration. The decrease in  with
increasing frequency shown in Fig. 1 is a consequence
of the penetration of incident particles into the target’s
core; however, it is not so large as it follows from the
Born–Bethe approximation. The initial increase in
(dκ/dω)pol with increasing frequency, which is well
known in the theory of polarization bremsstrahlung [9],
is caused by the factor ν2 involved in formula (20) for
the polarization charge. Thus, the spectral dependence
of the polarization bremsstrahlung intensity has a max-
imum with the central frequency shifted to the region of
high frequencies as the initial energy of the incident
particles increases. This is in agreement with the con-
clusion made in [17] in which the relation ωmax ≈ 0.8T
was obtained on the basis of the Born approximation. It

dκ /dω( )pol
rot
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is also seen from Fig. 1 that in the range of parameters
under consideration the contribution of the polarization
channel is less than that of the static channel, and the
difference increases with the energy of the incident par-
ticles.

Figure 2 presents the spectral effective radiation
over the static and polarization channels for electrons
with the energy of 1 keV and 5 keV scattered from a
krypton atom. The radiation was calculated on the basis
of the approach suggested in this paper (curves 1 and 3)
and by quantum-mechanical methods in [10] (curves 2
and 4). The calculation for the static channel was car-
ried out on the basis of formula (23) and the linear inter-
polation procedure to the domain of low frequencies
ν < 3t [7], which was mentioned above. Note that the
static bremsstrahlung was calculated in [10] in the
framework of the distorted plane wave approximation
SICS      Vol. 94      No. 1      2002
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by summing partial contributions of various angular
momenta with the use of the exact potential of the kryp-
ton atom. It is seen the results of both approaches are
very close for the static channel. A small difference of
curves 3 and 4 in the high-frequency domain is due to
an arbitrary choice of the upper frequency boundary for
linear interpolation. For the polarization channel, the
difference of our result from that in [10] is greater. The
latter result was obtained in the framework of the cha-
otic phase approximation with exchange, which takes
into account not only individual quantum-mechanical
features of the atomic electron motion, but also inter-
particle correlation effects. This difference is most sig-
nificant in the vicinity of ionization potentials of elec-
tron subshells, where the real and imaginary parts of the
atomic polarizability possess resonance structures. For
electrons with the energy of 1 keV, the wide dip in the
spectral dependence of the polarization bremsstrahlung
intensity is due to the ionization of the 3d subshell of the
krypton atom. In the case of electrons with the energy of
5 keV, which is shown in Fig. 2b, the dip on curve 2 is
caused by the ionization of the 2p subshell. Its relative
width is noticeably less; hence, the agreement between
the results of our approach with those of the quantum-
mechanical calculation is better. It must be noted that in
[10], in contrast to this study, the interchannel interfer-
ence was additionally taken into account, and it was
shown that the influence of this interference on the total
intensity of the bremsstrahlung is small. Interference
effects are most significant in the vicinity of ionization
potentials of electron subshells and in the high-fre-
quency domain of the spectrum. It seems that they
cause the difference of curves 1 and 2 in Fig. 2b for
photons with energy greater than 2200 eV. On the
whole, Fig. 2 demonstrates a reasonable accuracy of
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Fig. 3. Spectra of the bremsstrahlung of a 100-a.u.-energy
electron scattered from the Thomas–Fermi atom with
account for the polarization channel normalized to their val-
ues at ω = 90 a.u. The nucleus charge is Z = 30 (1), 60 (2),
and 90 (3).
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our method for the calculation of the polarization
bremsstrahlung on a multielectron atom.

Note that the relative contribution of the polariza-
tion channel for a given reduced frequency increases
with the initial energy of the electron, although the
maximal value of the R factor decreases as the energy
of the incident particles increases. This is due to the fact
that the effective radiation radius in the framework of
the rotational approximation increases with the energy
of the incident particles if the radiation frequency is
fixed. The spectral R factor attains its maximum at
νmax ≈ 0.15–0.45; moreover, νmax increases with the
energy of the incident particles, whereas νmax ≈ 1 for
fast electrons [20]. It is interesting that for slow elec-
trons (T < I, where I is the atom’s ionization potential)
the maximum of the polarization bremsstrahlung con-
tribution is shifted to high frequencies [13, 19]. This is
explained by the fact that, in this case, the incident par-
ticles do not penetrate the target’s core.

Formula (24) for the R factor makes it possible to
investigate its dependence on the charge of the Tho-
mas–Fermi atom nucleus under fixed values of the radi-
ation frequency and energy of incident particles. Calcu-
lations for various values of the frequency and identical
initial energy in the kiloelectronvolt range show that the
relative contribution of the polarization channel
increases with the nucleus charge. For the same initial
energy, the R factor is larger for lower radiation fre-
quencies.

The polarization bremsstrahlung theory elaborated
in this paper predicts an increase in the relative contri-
bution of the polarization mechanism with increasing
nucleus charge, which is in qualitative agreement with
the experimental result obtained in [8]. In that paper, it
was discovered that the intensity of the bremsstrahlung
in the low-frequency range for a large nucleus charge
(Z ≈ 90) is larger by approximately a factor of two than
the static bremsstrahlung predicted by the quantum-
mechanical calculation (without account for the polar-
ization channel) [6]. At the same time, for small and
moderate values of Z, there was good agreement
between the experiment and the exact theory of ordi-
nary (static) bremsstrahlung. It must be noted that the
polarization bremsstrahlung theory fails to give a quan-
titative description of this phenomenon; it is possible
that it is caused by the contribution of other radiation
processes, such as two-photon bremsstrahlung, which
was noted in [8].

Figure 3 shows the total (summed over the static and
polarization channels) effective radiation for three val-
ues of the nucleus charge of the Thomas–Fermi atom as
a function of photon energy. It is seen that the contribu-
tion of the polarization bremsstrahlung modifies the
shape of the spectrum as compared with the static case
(see curves 3 and 4 in Fig. 2).
AND THEORETICAL PHYSICS      Vol. 94      No. 1      2002
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5. TOTAL LOSS OF ENERGY
FOR QUASI-CLASSICAL ELECTRONS

UNDER SCATTERING 
FROM THE THOMAS–FERMI ATOM

The general expression (12) for the total energy loss
over the static channel was first obtained in [3] in the
framework of the semiclassical approach; for the Tho-
mas–Fermi atom, it can be written in terms of the
reduced variables as

(29)

Here, as in (23), νhf = (Z1/3/b)t is the reduced frequency
corresponding to the high-frequency limit of the
bremsstrahlung. It is essential that, for relation (29) to
be valid, it is not necessary that the rotational approxi-

mation condition ν >  ≈ 3t be satisfied; it is suf-
ficient that the motion of the electron being scattered be
quasi-classical, t ≤ 1. On the other hand, the correct nor-
malizing factor can be obtained only by comparing the
semiclassical result obtained in [3] with the quasi-clas-
sical limit of the exact quantum-mechanical relation for
the spectral cross section (see [7]).

In a similar way, we rewrite formula (13) for the
total loss of energy over the polarization channel to
obtain

(30)

Here, the function g(x, ν) is the normalized polarization
charge (20), and νrot(x, t) is the reduced rotational fre-
quency, which depends on reduced distance and
energy; an expression for it can be obtained from (3):

(31)

Relation (30) for the total loss of energy over the polar-
ization channel is obtained on the basis of the rotational
approximation, which yields an adequate description of
the polarization bremsstrahlung (in contrast to static
bremsstrahlung, see the preceding section) in the low
frequency range as well.

Note that formulas (29) and (30), in contrast to the
corresponding relations for the spectral loss (25) and
(27), involve (in addition to the factor Z5/3) an explicit
dependence on the nucleus charge. This is due to the
fact that Z depends on the lower limit of the integral
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with respect to the dimensionless distance x. Indeed,
the lower limit of the integral is given by the solution to
the equation

(32)

which involves the parameter Z. Thus, the total loss of
energy of the quasi-classical electron scattered from the
Thomas–Fermi atom does not obey the exact similarity
law with respect to reduced frequency and energy,
which is characteristic of the spectral energy loss. How-
ever, calculations show that the dependence on the
lower integral limit on Z in (30) is very weak; more pre-
cisely, as the nucleus charge varies by a factor of two,
the quantity xeff(νhf , t) changes only by 10–15%. There-
fore, we conclude that there exists an approximate law
of similarity for the total radiation loss of energy on the
Thomas–Fermi atom.

From the viewpoint of unifying radiation processes,
it is interesting to note that (29) can be represented in a
form similar to (30) if we introduce an effective (nor-
malized) radiation charge over the static channel:

In the rotational approximation, the effective polar-
ization channel at small distances from the nucleus
increases, while remaining almost independent of the
energy of the incident particles, and coincides with the
radial distribution of the electron charge of the core. At
large distances, the polarization charge becomes a
decreasing function of distance, and its magnitude is
greater for larger energies of the incident particles. If
we take into account the dependence of the rotational
frequency νrot(x, t) on the distance to the nucleus and
the energy of the incident particles, these facts can be
explained as follows. According to (3), νrot(x, t) is large
at small distances (independently of the parameter t),
and the high-frequency approximation (12) is valid for
the polarization charge; in this approximation, the dis-
tribution of the polarization charge coincides with the
radial distribution of the core’s electron charge. At large
distances from the nucleus, the rotational frequency
decreases the faster the less the initial energy, and the
polarization charge begins to decrease, as is implied by
its definition (see formula (20)).

Figure 4 presents the dependence of the Gaunt fac-
tor, i.e., the ratio of the total energy lost by a quasi-clas-
sical electron scattered from the Thomas–Fermi atom
(Z = 60) to its Kramers analog, on reduced energy of the
incident particles over the static and polarization chan-
nels. It is seen that there exists a very small region in the
low-frequency range (t < 0.05) where the polarization
channel dominates the static one; in terms of the con-
ventional units for the given charge, this corresponds to
T < 360 eV. Note that for such energy of the incident
particles, the characteristic radiation frequencies lie at

t
χ x( )
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------------x2t2,=

gst x( ) x2 χ x( )
x
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  '.=
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the boundary of the domain where the Brandt–Lund-
qvist approximation for the target polarizability is
applicable. It is also seen from Fig. 4 that the total loss
of energy over the polarization channel quickly reaches
a saturation value as the electron’s energy increases, in
contrast to the loss over the static channel, which
increases up to the Coulomb limit. A fast saturation of
the energy loss over the polarization channel is
explained by the increase in the penetration effect of the
electron into the target core with the energy of the inci-
dent particles and the associated decrease in the polar-
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Fig. 4. The Gaunt factor for the total energy loss of a quasi-
classical electron scattered from the Thomas–Fermi atom
(Z = 60) over the static (dotted curve) and polarization
(solid curve) channels as a function of reduced energy t =
bT/Z4/3 (T is the initial energy of the electron in atomic
units).
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ization charge. As a result, the scattered electron chiefly
emits relatively low frequencies over the polarization
channel, so that the increase in its energy does not result
in the increase in the total energy loss over the polariza-
tion channel.

By analogy with the spectral R factor (23), (24), one
can introduce an R factor for the total loss of energy,
which has the following form in terms of the reduced
units:

(33)

In terms of the dimensional energy units, we have

(34)

The dependence of Rtot on the initial energy of the elec-
tron (in terms of the conventional units) for various val-
ues of the atom’s nucleus charge is shown in Fig. 5. It
is seen that, in the range T > 1 keV, the contribution of
the polarization effects to the total bremsstrahlung loss
monotonically decreases with an increase in energy of
the incident particles. For a fixed initial energy, the rel-
ative contribution of the polarization channel increases
with the charge of the target nucleus; this is also the
case for the spectral radiation losses (see the preceding
section).

6. CONCLUSIONS

In this paper, we studied the role of the target’s core
polarization in the spectral and total radiation loss of
quasi-classical electrons with the energy of 1–10 keV
when they are scattered from the Thomas–Fermi atom.
A universal relation for the effective spectral radiation
over the polarization channel in terms of the reduced
frequency and energy was obtained on the basis of the
rotational approximation. This relation gives a unified
description for this process for any nucleus charge. It
was shown that, in contrast to the static bremsstrahlung,
the rotational approximation in the theory of polariza-
tion bremsstrahlung admits a correct passage to the
limit to the low-frequency domain and thus can be used
to calculate the total energy loss.

The statistical model of the atom provides highly
accurate results for the static bremsstrahlung channel.
In the case of the polarization channel, the model is
accurate only on the average, while its discrepancy with
the quantum-mechanical calculation [10] is rather high
in the vicinity of the ionization potentials of electronic
shells.

On the basis of an analysis of frequency and energy
dependences of the R factor, it was established that the
contribution of the polarization mechanism is maximal
in the low-frequency range ν ≈ 0.15–0.45, where the R
factor is about unity, and the central frequency of the
maximum increases with the energy of the incident par-

R̃tot t Z,( )
κpol t Z,( )
κ st t Z,( )
--------------------.=

Rtot T Z,( ) R̃tot
Tb

Z4/3
-------- Z, 

  .=
AND THEORETICAL PHYSICS      Vol. 94      No. 1      2002



RADIATION LOSS OF ELECTRONS UNDER SCATTERING BY A THOMAS–FERMI ATOM 21
ticles. At a fixed frequency, the magnitude of the R fac-
tor increases in the high-frequency range as the energy
of the scattered electron decreases; in the low-fre-
quency range, the R factor decreases.

It was shown that the relative magnitude of the
polarization radiation at a fixed frequency and energy
of the incident particles increases with the charge of the
atom’s nucleus; this fact is in qualitative agreement
with the available experimental data [8].

An analysis of the total energy loss over the polar-
ization channel showed that its part is comparable with
the loss over the static channel. The domain where the
polarization channel dominates is determined by the
inequality

and the characteristic radiation frequencies lie at the
boundary of the region where the underlying model
is applicable. As the energy of incident particles
increases, the polarization bremsstrahlung loss under
scattering of a quasi-classical electron from the Tho-
mas–Fermi atom quickly reaches a saturation level,
while the static bremsstrahlung loss continues to grow
(for t ≤ 1). The saturation over the polarization channel
is achieved due to the penetration of electrons into the
target’s core. The characteristic magnitude of the rela-
tive contribution of the polarization channel to the total
loss of energy in the energy range of 1–5 keV varies in
the range from 80 to 25%; it decreases with the increase
in energy and increases with the charge of the atom’s
nucleus.

Thus, we conclude that the role of polarization
effects in the bremsstrahlung of electrons with a mod-
erate energy increases with the charge of the nucleus
and with a decrease in the frequency and energy of the
incident particles.
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Abstract—It is shown that one-particle spectra of the lower Hubbard band of bilayer correlated 2D systems
with different relative alignments of the spin systems in the layers differ significantly. In particular, the bilayer
band splitting differs from zero for identically directed alternating spins of different layers (Fz configuration),
but tends to zero for antiparallel alignment (AFz configuration). It is found that the type of the alignment of the
ground state changes upon an increase in the doping δ from the lower AFz configuration to the Fz configuration
of the alignment observed for large values of δ. The behavior of bilayer splitting in Bi2Sr2CaCu2O8 + δ suggests
that the configuration of the alignment may change from Fz  AFz simultaneously with the superconducting
transition. The effects associated with the influence of spin alignment on the magnetic excitation spectrum as a
method of studying the spin structure of bilayer systems are considered for homogeneous solutions of effective
spin models. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the features of HTSC materials, viz., the
dependence of their properties on the number of CuO2
planes, indicates the importance of the interaction
between adjacent layers. The bilayer splitting of energy
bands and Fermi surfaces in Bi2Sr2CaCu2O8 + δ
(BSCCO) was discovered recently in photoemission
experiments (ARPES) [1–3]. It was precisely the
absence of bilayer splitting in earlier photoemission
experiments that led Anderson et al. [4] to a hypothesis
concerning the mechanism of superconductivity
assuming the simultaneous coherent transport of two
particles between layers with suppressed one-particle
transport [4]. New experiments change the point of
view on this problem. The peculiarity of new results [2]
is a considerable decrease in the bilayer splitting in the
region k ~ (π, 0) upon a transition to the superconduct-
ing state [2]. The topology of the Fermi surface in this
range of k values is not completely clear. It has not been
determined unambiguously whether the Fermi surface
near k ~ (π, 0) is of the electron [5–7] or hole [8–10]
type, while the hole nature of the main segments on the
Fermi surface around directions kx = ky is generally
accepted. Another phenomenon observed only in dou-
ble-layer (and not in single-layer) cuprates is the emer-
gence of magnetic resonance in inelastic scattering of
neutrons in the superconducting state [11–16].

The interpretation of these differences is important
for understanding the electron structure of cuprates
possessing many properties of a doped Mott insulator.
The main feature of this material is the Hubbard band
splitting associated with antiferromagnetic correla-
1063-7761/02/9401- $22.00 © 20123
tions. Although the long-range antiferromagnetic 2D
order vanishes for a low doping, δc = 1 – nc ~ 0.05, the
local spin 2D order is apparently preserved in a fairly
wide doping range including the superconductivity
region. This conclusion is confirmed by the results on
µ-MR, NMR, and NQR [17, 18] as well as by the large
length of spin correlations with Q = (π, π) and the
smooth evolution of collective magnetic excitations in
the course of doping (see the review in [11]), the obser-
vation of shadow Fermi boundaries, etc. Finally, direct
proof of the antiferromagnetic order has been obtained
recently (from Bragg reflections) [19, 20] even for the
superconducting state of YBa2Cu3O6.5 in the nanosec-
ond range.

A detailed analysis of antiferromagnetic zones and
interactions on the basis of the Hubbard model was car-
ried out in the classical work by Schrieffer et al. [21]. A
simple mean field method gives overestimated values
of the alternating spin d0 and the boundary δc ~ 0.45 of
the antiferromagnetic spin order region. Band renor-
malization on the basis of the zeroth antiferromagnetic
approximation [21] and calculations based on the t–t'–U
Hubbard model using the slave boson technique [22] or
on the states with correlations of the valence bond
type [23] reduce the value of d0 and give the boundary
δc ~ 0.3 of local magnetization vanishing. According to
the results of our previous investigations [23], the
region δ < δc includes the superconductivity region
also. The conservation of Hubbard’s band splitting for
δ < δc [23] in the t–t '–U as well as in the t–t '–J model
[24–26] is responsible for a change in the topology of
the Fermi surface under optimal doping with a transi-
002 MAIK “Nauka/Interperiodica”
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tion from hole pockets to a large Fermi surface with
segments of the electron and hole types.

If this pattern is correct, the interaction between the
layers in bilayer systems and the magnon excitation
spectrum may be determined to a considerable extent
by the relative orientation (alignment) of local alternat-
ing spins of the two layers even if this orientation is not
stationary in the rigorous sense and is preserved only in
a characteristic time scale. In the case of a small differ-
ence in the energies of configurations with different
spin alignments, one can expect a strong effect of dop-
ing and temperature on the properties of magnetic exci-
tations. The search for this kind of effects could explain
the origin of magnetic resonance in neutron scattering
in YBCO and BSCCO.

In the present work, a variational analysis of bands,
total energies, phase curves Tc(δ), and splitting is car-
ried out using the bilayer t–t '–U Hubbard model. The
analysis is carried out on the basis of correlated states
with the valence bond type correlations, i.e., a band
analogue of the Anderson RVB states. It was proved by
us earlier [23] that the so-called correlated hopping
interaction emerging in the effective Hamiltonian upon
the formation of valence bonds provides the attraction
between holes in the d channel and the corresponding
d-type superconductivity compatible with the antiferro-
magnetic spin order. Here, we use the same method for
studying the effect of interaction between two layers. In
other words, we assume that the intralayer pairing
mechanism operates and do not augment it by an artifi-
cial coherent transfer of pairs between the layers in con-
trast to the mechanism proposed by Anderson et al. [4].
We are interested in whether or not the large (in doping)
region of antiferromagnetic spin order is preserved and
what the relative alignment of the spin systems of the
two layers and the bilayer band splitting are for various
dopings. In the method used by us, the Hubbard split-
ting is preserved up to the optimal doping.

It should be emphasized that the approach used by
us here differs from the fluctuation exchange (FLEX)
method employed in [27] for investigating the bilayer
Hubbard model. According to FLEX, the attraction
between holes and band renormalization (in particular,
bilayer splitting) are due to the exchange of spin fluctu-
ations. The latter are described by the average isotropic
susceptibility χ''(q, ω) with a peak at k  (π, π). How-
ever, the RPA analysis [21, 28, 29] on the basis of the
antiferromagnetically split band makes it possible to
observe the low-frequency mode only for spin excita-
tions transverse to the vector d0 of the local alternating
spin. The contribution of such fluctuations to the inter-
action of particles from the lower Hubbard band is sup-
pressed by vanishing of the corresponding matrix ele-
ments at nesting lines [21, 30]. This means that the
attraction between holes is determined by close (~a)
antiferromagnetic correlations (in contrast to long-
wave fluctuations in the FLEX method). In the simplest
version, such fluctuations correspond to the formation
JOURNAL OF EXPERIMENTAL 
of valence bonds, i.e., singlets of bonds between near-
est sites. In the subsequent analysis, we will use pre-
cisely this model, although the inclusion of only one
type of valence bonds may introduce an error.

In contrast to the averaged analysis based on the
FLEX method, we calculate two specific configurations
of a bilayer system with the parallel or antiparallel
(opposite) alignment of alternating spins of the two
layers. We will denote these configurations as the Fz

and AFz (ferro- and antiferromagnetic in z) alignment,
although both cases correspond to a local antiferromag-
netic spin order in each layer. Leaving aside other possible
configurations (spiral or stripe phases), we cannot expect
that our results can be unequivocally used for cuprates for
which neutron measurements indicate the presence of
incommensurate structures. Nevertheless, the effects
observed in model calculations for the structures under
investigation may be useful in an analysis of bilayer split-
ting and magnetic properties of bilayer cuprates.

2. COMPUTATIONAL METHOD
We begin with the Hubbard Hamiltonian of a bilayer

system:

(1)

Here, n and m are 2D indices of a plane; γ, γ' = 0, 1 are
the layer indices; and tγn, γ'm are the hopping integrals.
The main interactions Hγ(U, t) within each layer γ are
determined by the standard parameters t and U of the
Hubbard model. The additional term ∆H(t ', tz) includes
hopping interactions t ' and tz between the next neigh-
boring centers in a layer and between the centers of dif-
ferent layers. The signs of the standard strong coupling
parameters t, t ', and tz are defined in such a way that the
zeroth bands (corresponding to U = 0) have the form

(2)

The dependence of the splitting ∆e(k) = e+ – e– of the
bonding and antibonding (in z) zeroth bands on k is
derived in [27, 31, 32].

A variational correlated state Ψ with the valence
bond type correlations is constructed [23] with the help
of the unitary transformation of an uncorrelated state Φ:

(3)
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(4)

The choice of the unitary operator W(α) with the varia-
tional parameter α is explained in [23]. The variational
analysis of the problem with the initial Hamiltonian H
in the basis of correlated states Ψ is equivalent to an
analysis of the effective Hamiltonian

(5)

based on the mean field method. For the effective
Hamiltonian, we use its approximate expression, con-
fining our analysis to the second-order terms in the vari-
ational parameter α (α ~ 0.22 for U/t ~ 8) for the main
interactions Hγ(U, t) and to the zeroth order in α for the
contribution Hγ(t ', tz) from additional interactions
removing degeneracy along nesting lines.

For the uncorrelated function {Φ}, we will use the
BCS-model function with anomalous means of the d
symmetry and with the antiferromagnetic spin order.
The energy averaged over such a state for Hamiltonian (1),

, (6)

is obtained as an explicit function of the set of one-elec-
tron means yν =  and z = 〈Tz〉Φ over the uncorre-
lated state Φ (for the sake of brevity, subscript Φ in the
means 〈 〉 Φ will henceforth be omitted). The set of these
means includes the density components rγl (|l | = 0, 1,

, 2 , 3), analogous alternating spin components

dγl (|l | = 0, , 2), anomalous means wγl of the d sym-

metry (|l | = 1, 2, , 3) for each layer γ = 0, 1, and the
quantity z determining the mean 〈Tz〉  = –tzz of the one-
electron hopping interaction between the layers:

(7)

Zγ
1
2
--- cγ, n, σ

† cγ, m, σ H.c.–( ) nγ, n σ–, nγ, m σ–,–( ).
σ nm〈 〉,
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Heff α( ) W† α( )HW α( ) Hγ t U,( )
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ŷν〈 〉 Φ

2 5

2

5

rγl
1

2N
------- cγ, n, σ

† cγ n, l σ,+〈 〉 ,
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n σ,
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In view of symmetry, all quantities in relations (5)
depend only on the modulus l = |l | and not on the direc-
tion of vector l, and the components of density rl are the
same for the two layers (independent of γ). We will ana-
lyze the following four versions of relative alignment
for spin and anomalous components:

(8)

The self-consistent minimization of the mean energy
 in Φ for a fixed variational parameter α and subse-

quent minimization in α are standard procedures [23].
The sought solution Φ is determined by the filling of
lower one-electron states of the linearized Hamiltonian

(9)

In turn, the value of Φ determines the order parameters
{yγν, z}, thus closing the self-consistent procedure.
Operators ,  correspond to means (7), respectively.
Vector k in Eq. (9) runs through values within the mag-

netic Brillouin zone F (|kx + ky| ≤ π), and operator 
in Eq. (9) has the form

(10)

in the basis of the following operators of the Nambu
representation:

(11)

The difference between our calculations carried out
here and in [23] lies in the doubling of the basis of
Fermi operators in the bilayer system. The structure of
the hij(k) matrix appearing in Eq. (10) is explained in
the Appendix.

The calculation of the Tc(δ) phase curves describing
the superconducting transition for two versions of the
symmetry of anomalous means (w1l = ±w2l) was carried
out on the basis of formulas (A.9)–(A.11). In this case,
only the principal harmonic with l = 1 was preserved in
Eqs. (7). The sufficiently high accuracy of this approx-
imation used for calculating Tc(δ) was demonstrated by
us earlier. It should be recalled that, in such an
approach, the e–e pairing itself is due to the formation
of valence bonds, viz., singlets of particles from adja-
cent sites [23]. The transformation W(α) in formulas
(3) describing these correlations supplements Heff with

dγ 1 l,= ζddy 0 l,= , ζd 1;±= =

wγ 1 l,= ζwwγ 0= l, wl, ζw 1.±= = =
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ĥk
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i 1 … 8; k̃, , k π π,( ).+= =
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the correlated hopping interaction (index γ is omitted
below):

(12)

Hirsh [33] was the first to demonstrate that interactions
of this type may provide for the attraction between par-
ticles. For each 〈nm〉  bond, interaction (12) contains a

six-fermion contribution  ~ αU cm, σnn, –σnm, –σ
providing the attraction of holes in the d channel. This
term was omitted in the truncated correlated hopping

interaction of the form Vnm ~ cm, σ(nn, –σ + nm, –σ),
which was used by Hirsh. He applied this interaction to
extra holes with a low concentration in the oxygen sub-
system. Such an interaction gives attraction only in the
s channel. However, the one-band Hubbard model (2)
corresponds to a hybridized p–d band with a high (of
the order of unity) total concentration of holes, and the
s-type superconductivity is suppressed by the strong
repulsion U. At the same time, a term of the V (6) type,
which is significant for a high concentration, gives
attraction in the d channel. The mean value of this term

contains a contribution proportional to r1  with
anomalous means of the d symmetry. Ultimately, for
the mean energy of each layer, we obtain the expression

(13)

with a negative principal superconducting pairing con-
stant k11.

3. DISCUSSION

Let us first consider qualitatively the effect of the
superconducting transition on the band splitting in a
bilayer system {ak, bk} without antiferromagnetic
order. According to [27], the band splitting (2) in the
normal state is given by

(14)

In the limit of a strong attraction of particles in the lay-
ers and a large superconducting gap (∆sc > ∆eN), the
wave function of the superconducting state in the zeroth
approximation in Vab is equal to the product of the BCS-
type wave functions of each layer (Φ0 = ΦaΦb). The
splitting of excited states emerging during photoemis-
sion from such a ground state can be written in the form

(15)

V αU cn, σ
† cm, σ H.c.+( )

mn〈 〉 σ,
∑∼

× nn σ–, nm σ–, 2nn σ–, nm σ–,–+( ).

Vnm
6( ) cn, σ

†

cn, σ
†

w1
2

H1L H1L rl dl,( ) κ ll 'wlwl ' ,+=

κ κ 11 8αUr1 O α2( ) 0<+–= =

∆ek
N 2tzϕ z k( ),=

ϕ z k( ) kxcos kycos–( )2/4.=

∆e
sc 2 Φ0βk↑ Vab α k↑

† Φ0〈 〉–=

=  v k
av k

b uk
auk

b–( )∆e
N .
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Here, α† and β† are the creation operators of quasipar-

ticles, α† =  – a–k↓, and a similar expression
can be written for β† with corresponding coefficients u
and v. This leads to the following expression for the
ratio of bilayer splittings in the normal and supercon-
ducting states:

(16)

where ξk = ek – µ, ∆sc is the superconducting gap, and

ζw = /  = ±1 is determined by the symmetry of
anomalous means of layers a and b in accordance with
Eqs. (8). Thus, the first-order estimate in the interlayer
interaction predicts that the bilayer splitting in the
region of the Fermi boundary (ξk = 0) either vanishes or
remains unchanged depending on the relative sign of
anomalous means for the two layers.

Similar estimates for a system with an antiferromag-
netic spin order show that the two-band splitting of
states of the lower Hubbard band depends on the rela-
tive orientation (ζd = ±1) of the alternating spins of the
layers in Eqs. (8). In the normal state, it is given by

(17)

where  = k – (π, π), Gk = [(ek – )2/4 + ]1/2, and
∆AF ~ Ud0 is the Hubbard band splitting. On nesting
lines and, in particular, at point (π, 0), the bilayer split-
ting (17) vanishes for the AFz configuration (ζd = –1) and
coincides with an unperturbed interaction for the Fz

configuration (ζd = 1). In the latter case, the supercon-
ducting transition lowers the bilayer splitting in the case
when anomalous means have the same sign (ζw = 1).

Thus, the antiferromagnetic spin order blocks the
bilayer splitting in the case of the AFz (and not Fz) con-
figuration and can be affected by the superconducting
transition. This is confirmed by numerical calculations.

Let us make several preliminary remarks concern-
ing the choice of parameters of the model (1), (2). For
the ratio of the main parameters, we used the value
U/t = 8, following from the cluster derivation of the
one-band model [34, 35]. Another parameter t ' controls
the position of the Van Hove singularity (VHS) in the
density of states EVHS = E(π, 0) relative to the edge of
the lower Hubbard band owing to its contribution
δe(0) = 4t 'coskxcosky to the band dispersion. In single-
layer t–t '–U or t–t '–J models, the value of t ' determin-
ing the optimal doping δopt since the Tc peak corre-
sponds to the coincidence of the chemical potential µ
with EVHS. According to calculations [23–27], the rea-
sonable values of δopt ~ 0.2–0.25 led to t '/t ~ 0.05–0.1.
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These values differ from the estimates t '/t ~ 0.2–0.4
obtained from the processing of photoemission data
and quantum-chemical bands on the basis of the strong-
coupling approximation. The two approaches differ
fundamentally. In the former case, the Hubbard band
splitting is preserved in a considerable doping range
(δ ≤ 0.3), while in the second approach it is assumed
that a single unsplit band exists everywhere except the
region δ ≤ 0.05 of antiferromagnetic dielectric state
t ' = 0.05–0.3. We varied parameter t ' from 0.05 to 0.3 in
order to find arguments supporting either of these
approaches.

The parameter of the interaction between the layers
was also varied in the limit tz/t = 0.07–0.3. Previous cal-
culations [27, 31, 32] led to the unrenormalized value
tz/t ~ 1/3. Recent (ARPES) measurements of bilayer
splitting ∆ = 2tz = δek(π, 0) [1, 2] resulted in a value of
tz/t ≤ 0.1. The determination of the signs of tz in Eq. (2)
and of t⊥  in [1, 2] corresponds to the relation tz = –t⊥ .

We begin with models corresponding to small val-
ues of t ' and tz, to a higher density of states at the Fermi
boundary, and a higher value of Tc.

Figure 1 shows the dependence of the difference
∆H = (AFz) – (Fz) between the mean energies of a
bilayer system on the doping for two types of the rela-
tive alignment of the spins in the layers. The following
features of this dependence are worth noting.

(1) The quantity ∆H(δ) changes its sign for a certain
δ. In an undoped system (δ = 0), the AFz state with the
antiparallel alignment of alternating spins in the layers
is lower than the Fz state with parallel alignment (in
Eqs. (8), ζd = –1 or +1, respectively). For large values
of δ, the situation is opposite up to the boundary value
δc for which local magnetization vanishes and the solu-
tion becomes paramagnetic. The negative sign of
∆H(δ = 0) can be explained by the positive exchange

coupling Jz ~ 2 /U > 0. The sign reversal of ∆H is the
result of the bilayer splitting of bonding and antibond-
ing (in z) bands, in particular, the splitting of the Van
Hove singularity and, accordingly, different popula-
tions of these bands for the two cases of spin alignment.

(2) The peak of ∆H(δ) corresponds to the doping
optimal for the 1L model with a single layer. At such a

doping,  – µ = 0. An increase in t ' simultaneously
shifts δopt and the position of the peak on the ∆H(δ)
curve. Such a relationship is not accidental. According

to [27, 31], the bilayer splitting δ  = 2tz(coskx –
cosky)2/4 of zeroth bands is maximum in the region k ~
(π, 0) forming a Van Hove singularity in the density of
states. However, the splitting can contribute to the mean
energy only if the bonding and antibonding bands in the
given region of k are populated and empty, respectively.
The latter takes place only for the relation E1L(π, 0) =

 = µ for unsplit band energies of the single layer.

H H

tz
2

EVHS
1L

ez
0( )

EVHS
1L
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It remains for us to explain why the contributions of
bilayer splitting in the mean energies of different con-
figurations do not coincide and are preserved in the dif-
ference ∆H = (AFz) – (Fz). The reason lies in dif-
ferent two-band splittings for different alignments.

Figure 2 shows the density of states (DOS) of the
lower Hubbard band for two configurations of spin
alignment for a system with small values of t ' and tz for
δ ~ 0.2. The DOS(E) curve is smoothed with the help of
a Gaussian function with dispersion δE = 0.02t. The

H H
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tz = 0.07, t' = 0.05
tz = 0.1, t' = 0.05
tz = 0.1, t' = 0.1

Fig. 1. Dependence of the energy difference for the two
configurations of spin alignment in a bilayer system on the
doping. Solid curves correspond to the normal state, and
dashed curves, to the superconducting state, of a model with
U/t = 8. The values of parameters tz and t' in units of t are
indicated in the figure.
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Fig. 2. Density of states for two types (AFz and Fz) of spin
alignment in a model with small tz and t '. Thin solid and
dashed curves correspond to the contributions to the DOS
from the bonding and antibonding bands. The energy
counted from the chemical potential is given in units of t.
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128 OVCHINNIKOV, OVCHINNIKOVA
bilayer splitting is absent for the AFz alignment, but can
be clearly observed for the Fz configurations. This is in
complete accord with the splitting (17) following from
the structure of the states in the lower Hubbard band.

The different behaviors of the density of states are
directly reflected in the shape of the phase curves Tc(δ)
of the superconducting transition. Figure 3 shows the
examples of Tc(δ) calculated by formula (42) for the
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0
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0.10 0.15 0.20 0.25 0.30

1
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1

1' 2'

δ = |1 – n|

Tc

Fig. 3. Superconducting transition temperature as a function
of the doping for models with parameters U = 8 and t ' =
0.05, tz = 0.07 (curves 1) or t ' = 0.1, tz = 0.1 (curves 2, 2')
for the Fz and AFz configurations of spin alignment.
Curves 1, 2 or 1', 2' correspond to solutions with different
symmetries (ζw = ±1 in Eqs. (8)) of anomalous means for
the two layers (only one type of symmetry survives for the
Fz configuration). All quantities Tc, t ', and tz are given in
units of t.
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Fig. 4. Differential tunnel spectra (Eq. (A.10) for n = 0.8 in
two configurations of spin alignment: AFz corresponds to
solid curves and Fz to dashed curves. The curves with sharp
and smoothed peaks correspond to temperatures T = 0.002t
and T = 0.023t below and above Tc, respectively.

AFz

Fz
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two models. For the AFz configuration, we have a curve
with a single peak in contrast to the case of the Fz align-
ment for which two peaks on the Tc(δ) curve correspond
to two peaks in the density of states. For the Fz config-
uration, we have only a solution with symmetry ζw = 1
of an anomalous order in Eqs. (8). The solutions of
Eq. (A.9) for the AFz alignment exist for two symme-
tries ζw = ±1 in Eqs. (8). However, solutions with ζw =

–1 give smaller values of  and vanish upon an
increase in parameters t ' and tz. For this reason, we will
consider below only superconducting states with the
symmetry ζw = 1 of anomalous means (8).

The following characteristic properties of models
with small t ', tz & 0.1 are worth noting.

(1) Relatively large values of  ≈ 0.02t ≈ 116 K
for t = 0.5 eV (in contrast to [23], the interaction V > 0
between adjacent sites, which suppresses Tc, is
neglected here).

(2) Very small difference in the energies for two

configurations of alignment, |∆H | < k .

(3) In the normal state for δ ~ δopt, the Fz configura-
tion of spin alignment corresponds to a lower energy.

(4) The condensation energy in our models is low
(its order can be seen in Fig. 1).

(5) Bilayer band splitting takes place for the Fz

alignment but is absent or suppressed for the AFz con-
figuration.

The last properties is close from the physical point
of view to the blocking of interlayer tunneling as a
result of intralayer scattering [36, 37]. As applied to the
two specific configurations of spin alignment, this
property must be manifested in the tunneling spectra of
the system. Figure 4 shows the differential tunnel cur-
rent as a function of the applied voltage, calculated for
two temperatures on the basis of formula (A.13) in the
one-particle approximation for the model with tz = t ' =
0.05t at a nearly optimal doping of a single-layer sys-
tem. In addition to the peaks at the superconducting gap
boundaries for eV = ±∆sc, the spectrum also reflects the
Van Hove singularity of the normal state. In particular,
two peaks can be seen for the Fz alignment at low tem-
peratures, which correspond to the bilayer splitting of
the Van Hove singularity. For T > Tc, the peaks are pre-

served on the curves in a smoothed form. For δ ~ ,
the peaks corresponding to the Van Hove singularity are
symmetric relative to V = 0 and resemble the manifes-
tation of a pseudogap in tunnel spectra. However, the

symmetry is broken when δ deviates from . The
results of our calculations do not allow us to attribute
the pseudogap of the normal state of cuprates to bilayer
splitting in view of their different doping dependences.

Tc
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max

Tc
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δopt
1L
 AND THEORETICAL PHYSICS      Vol. 94      No. 1      2002



BAND SPLITTING AND RELATIVE SPIN ALIGNMENT IN BILAYER SYSTEMS 129
In contrast to the normal state, the prediction of the
lower spin configuration in the superconducting state
for δ ~ δopt on the basis our analysis can hardly be
regarded as unambiguous. As a matter of fact, the esti-

mates for the condensation energy ~κ11  and the heat
capacity jump give values reduced approximately by a
factor of five as compared to those observed for YBCO
[38]. For this reason, we will consider the spin config-
uration in the superconducting state on the basis of the
behavior of the bilayer splitting observed for the super-
conducting transition in BSCCO [1, 2]. The bilayer
splitting in BSCCO observed in [2] for k ~ (0, π)
decreases from ∆e(0, π) = 80 meV in the normal state
to the value δe ~ 20 meV in the superconducting state.
In light of the effects considered above for homoge-
neous solutions, two different explanations can be pro-
posed for such a behavior. If we assume that the Fz con-
figuration corresponding to a lower energy is preserved
in the normal as well as superconducting states, the
decrease in the value of ∆e upon the superconducting
transition corresponds to the decrease predicted on the
basis of formula (16). However, the decrease in the den-
sity of states due to the band splitting with such an
alignment leads to relatively small values of Tc and to
two peaks on the phase curve. In the other version, the
behavior of ∆e during the superconducting transition
could be explained by the change in spin alignment
upon the superconducting transition. It cannot be ruled
out that the superconducting transition itself is induced
by the change in the configuration Fz  AFz since
such a transition is accompanied by an increase in the
density of states at the Fermi boundary.

For models with large values of t ' and tz, the form of
the dependence of the energy difference ∆H(δ) for the
two types of alignment on the doping is preserved. It
can be seen from Fig. 5 that the value of |∆H| increases
with tz. An increase in t ' shifts the position of the Fz–AFz

crossover towards higher dopings. The calculations
confirm that the local magnetization dγ0 ≠ 0 for each
layer is preserved in solutions in a considerable doping
region δ & 0.3 for models with large values of tz, t ' ≈
0.1–0.3 also. The value of d0 is an order of magnitude
higher than the antiferromagnetic spin density mea-
sured in the superconducting state of YBCO with the
help of elastic neutron scattering. This difference is
probably due to the spread in directions (or signs) of the
spin moments for different biplanes of the crystal. The

noticeable decrease in the value of  and the defor-
mation of phase curves upon an increase in the values
of t ' and tz are associated with a decrease in the density
of states at the Fermi boundary for these models. For
large values of tz, a more intricate profile of the band
energy at the boundary of the magnetic Brillouin zone
leads to bilayer splitting of the Van Hove singularity,
not only for the Fz, but also for the AFz configuration,

w1
2

Tc
max
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
although this splitting is smaller in the latter case (see
Fig. 6).

4. POSSIBLE EFFECT OF SPIN ALIGNMENT 
ON THE MAGNETIC EXCITATION SPECTRUM

It would be interesting to find the relation between
spin alignment and the magnetic excitation spectrum in
connection with the discovery of resonance in the neu-
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Fig. 5. Doping-level dependences of the local magnetiza-
tion d0(δ) (top), Tc(δ) (middle), and the value of anomalous
order parameter w1(δ) (bottom) for the AFz and Fz configu-
rations (curves 1 and 2, respectively). Curve 3 at the bottom
corresponds to the energy difference for these configura-
tions. The values of the quantities Tc, t ', tz, and ∆H are indi-
cated in units of t.
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Fig. 6. Density of states for the two configurations in mod-
els with a large ratio tz/t = 0.3 for n = 0.8. Thin solid and
dashed curves correspond to contributions to the DOS from
the bonding and antibonding bands of a bilayer system.
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130 OVCHINNIKOV, OVCHINNIKOVA
tron scattering of bilayer cuprates in the superconduct-
ing state and with its peculiar dispersion [11–16].

According to one of the widely discussed hypothe-
ses [39, 40], the origin of this resonance is associated
with the so-called π resonance, i.e., the excitation of an
e–e pair with q ~ Q = (π, π) in the triplet state,

The simplest arguments supporting this hypothesis fol-
low from the relation connecting such an excitation
with spin excitations and with the d-wave anomalous
mean w:

However, in this case, the integral (in ω) weight of the

resonance, which is of the order of /d0, must differ
from the integral intensity

of transverse spin waves by more than an order of mag-
nitude since the ratio w/d0 of the anomalous and spin
order parameters is approximately equal to 0.1–0.2.
The explanation of spin excitations and incommensu-
rate peaks in the susceptibility χ''(q, ω) by the proper-
ties of the Fermi surface (see, for example, [41]) also
contradicts the high integrated intensity. In addition, in
doped systems, it varies only slightly as compared to
the same characteristic of an undoped insulator. The
most feasible hypothesis is that of the general magnetic
origin of incommensurate anomalies in χ''(q, ω) and of
the resonance [42]. This origin is associated with the
presence of antiferromagnetic domains, i.e., incom-
mensurate modulation of the local alternating spin [42].
The existence of the stripe structure was confirmed for
LaSrCuO [43] and is also possible for double-layer
cuprates. However, when this hypothesis is applied for
bilayer cuprates, the fact that the resonance appears
only in the superconducting state and only in the odd
channel cannot be explained. For double-layer
cuprates, the effect of relative spin alignment on the
magnetic excitation spectrum is significant and must be
taken into consideration apart from the effect of incom-
mensurate configurations.

This section is devoted to an analysis of the effects
of the influence of spin alignment on the magnetic exci-
tation spectrum for the simplest homogeneous states of
a bilayer system.

Let us consider the phenomenological spin Hamil-
tonian describing the bilayer model {Sa, Sb}:

(18)
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Index γ = 0, 1 corresponds to layers a and b. We assume
that the homogeneous ground state is characterized by
the spin density

(20)

with a certain alignment (ζd = 1 or ζd = –1) stabilized
by spinless interactions. We calculate the transverse
susceptibilities in the even and odd channels,

(21)

in the RPA approximation on the basis of the linear the-
ory of spin waves [44]. In this relation, Sµ = Sx + µiSy,
µ = ±1, 〈〈 A|B〉〉  = 〈[A, B]〉 , and the signs ± correspond to
the even and odd components, respectively. The parity
(even/odd ratio) is determined relative to the transposi-
tion of the layers.

Linearizing the equations of motion for the spin

components (t), we obtain

(22)

where ν = even, odd. For the frequencies of transverse
spin excitations for the Fz (AFz) alignment (ζd = ±1), we
obtain

(23)

(24)

Here,

(25)

q corresponds to the complete Brillouin zone, so that
the most intense excitation peaks in χ''(q, ω) for q 
Q = (π, π) correspond to the gapless excitation branches
ωq = c|q – Q|.

Expression (25) coincides (except for a multiplier)
with the results obtained in [45] for a bilayer system
from the spin-wave theory. In contrast to [45], here, as
well as in the linear theory [43] and in the band RPA
calculations of χ(q, ω) [21, 28, 29], the frequencies and
intensities of spin fluctuations are proportional to the
alternating spin density d0.

The dispersions of frequencies (23) and (24) are pre-

sented in Fig. 7. For Jab > 0, the spin gap ∆ = 4d0

for undoped systems with the AFz alignment is open in
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the even (optical) excitation branch. For the opposite
sign (Jab < 0), the excitation frequencies for the Fz and
AFz configurations change place simultaneously with
the even  odd transposition of the excitation chan-
nels.

In the case of the AFz configuration, the doping of
the system leads to a decrease in the value of d0, in the
spin wave velocity, and in the spin gap for the even
channel. Such a behavior completely corresponds to the
observed decrease in the spin gap in weakly doped
YBa2Cu3O6.25. Homogeneous systems with a high dop-
ing and with the lower Fz configuration have gapless

excitations for |q – Q| = , but not for discrete
incommensurate values of quasimomentum as in the
case of YBCO and BSCCO [13, 14].

The lower value of energy in the Fz configuration
implies a negative contribution to the effective
exchange interaction constant Jab. For this reason, we
consider a more general spin interaction Vab between
the layers by introducing, for example, anisotropy, i.e.,
different constants of the interaction between the layers
for the longitudinal and transverse components:

(26)

The z direction in the “spin” system of coordinates is

determined by the vector of alternating spin  =
ez(ζd)γd0, γ = 0, 1, for each layer a or b.

In the case of the Fz alignment, the frequencies ω(q)
and intensities I(q) of susceptibility (22) are given by

(27)

(28)

In the case of the AFz alignment, the corresponding
quantities have the form

(29)

(30)
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Fig. 7. Magnetic excitation branches ω(q) of a bilayer sys-
tem for two spin configurations in a model with g = Jab/J0 =

0.1. Curves 1 and 2 correspond to ωeven(odd) for the AFz con-

figuration, while curves 2 and 3 correspond to ωeven(odd) for
the Fz alignment. For g = –0.1 < 0, the same curves 1, 2 or

2, 3 correspond to the ωodd(even) channels.
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Fig. 8. The curves for Fz and AFz demonstrate the change in
the magnetic excitation spectra upon the change Fz 
AFz in the spin configuration for a model with anisotropic
interlayer interaction (22) for the values of parameters g1 =
0.05 and g2 = 0.15. The right figure shows schematically the
excitation branches in the case of a spiral (Sp) or modulated
incommensurate spin structure of the ground state with
Qη = (π(1 – η), π) and η = 0.1. The square marks the pre-
dicted resonance frequencies in the interpretation based on
homogeneous solutions in the bilayer model (center) or the
interpretation [42] based on a modulated structure in the
single-layer model.
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For g2 > g1 > 0 and for the AFz alignment, spin gaps
open in the even and odd channels:

(32)

Thus, the low-frequency spin excitations with ω < ∆odd <
∆even are absent for the AFz configuration. At the same
time, the excitation spectrum for the Fz configuration is
gapless for the same relation g2 > g1 > 0. However, the
low-frequency peaks are characterized by a relatively
low intensity and are observed beginning from the
incommensurate quasimomenta

(33)

Figure 8 shows the dispersion of spin excitations in
the even and odd channels for the two types of align-
ment for a model with g1 = 0.05 and g2 = 0.15. If the
superconducting transition occurs simultaneously with
the spin configuration rearrangement Fz  AFz in
accordance with the above hypothesis, an intense peak
appears in the odd channel (χodd) for q ~ (π, π) at a fre-

quency ω = ∆odd = 2Ω . This peak was absent in the
Fz configuration, which, in accordance with our
assumption, is the main configuration for T > Tc. This
homogeneous model fails to describe the susceptibility
peaks χ''(q, ω  0) for incommensurate discrete val-
ues of quasimomenta Qη = (π)(1 + η), π) observed for
YBCO and BSCCO [12, 14] and indicating the pres-
ence of incommensurate structures. A generalization of
such kind of structures is essential. The right part of
Fig. 8 shows schematically the spin excitation branches
for spiral states [28, 29] or states with a modulation of
the local spin 〈Szn〉  = d0cosQηn [42] in single-layer (1L)
models. The resonance frequency in [42] was identified
with the frequency ω(Q) corresponding to the intersec-
tion of the branches for Q = (π, π). With such a pattern,
it is unclear, however, how the emergence of the reso-
nance is connected with the superconducting transition
and why the resonance is observed only in the odd
channel.

5. CONCLUSIONS

1. In the models with the interlayer mechanism of
superconducting pairing, the maximum superconduct-

ing transition temperature  for homogeneous solu-
tions obtained for a bilayer system does not exceed the
corresponding value for a single-layer system. This dis-
agrees with the observed difference in the values of

 for cuprates. Probably,  in single-layer cuprates
is suppressed by inhomogeneities of the stripe type
structure.

2. The local magnetization d0 is preserved in a broad
doping region for a wide range of parameters t ' and tz.
The value of d0 is an order of magnitude larger than the
antiferromagnetic spin density measured in the super-

∆even odd( ) 2Ω g2 1( ).=

q Q– δqν, δqeven odd( )> 2g1 2( ).=

g1

Tc
max

Tc
max Tc
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conducting state of YBCO by the elastic neutron scat-
tering. The difference is probably associated with the
spread in the directions (or signs) of spin moments in
different bilayer planes of the crystal.

3. A crossover of the two configurations of the spin
system upon a change in the doping is revealed. The
lower state for small values of δ with the AFz alignment
is replaced by the lower state with the Fz alignment of
alternating local spins of the layers for large values of
δ. The peak of the energy difference between these con-
figurations corresponds to the optimum doping of a sin-
gle-layer system and is connected with the splitting of
Van Hove singularities, which is the strongest in this
case. The small energy difference for these configura-
tions indicates the possibility of a strong effect of tem-
perature (and, probably, condensation of pairs) on the
spin alignment.

4. The bilayer band splitting δe(k) and, in particular,
the splitting of a Van Hove singularity in the density of
states are absent for the AFz alignment, but are clearly
manifested for the Fz alignment of local spins in the lay-
ers.

5. According to our models, the large bilayer split-
ting observed in Bi2Sr2CaCu2O8 + δ in the normal state
and the small splitting in the superconducting state [2]
may indicate a transformation of the spin alignment
configuration (Fz  AFz) in the course of or simulta-
neously with the superconducting transition. Further
investigations are required in order to find out whether
a transformation of this type or a rearrangement of
more complex spin structures of the stripe type can
explain the emergence of magnetic resonance in neu-
tron scattering in the superconducting state of double-
layer cuprates.

6. It is shown that the magnetic excitation spectrum
strongly depends on the type of spin alignment. An
example of a spin model in which the configuration
change from Fz to AFz leads to the emergence of reso-
nance (spin excitation gap) in χodd in the odd channel
for q = (π, π) is considered.

One of the urgent problems is an extension of the
study to inhomogeneous stripe-type spin structures of
bilayer systems.
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APPENDIX

The mean energy (6) for Hamiltonian (1) after trans-
formation (5) can be presented in the form

(A.1)

Here, Hγ(yγν) are the contributions from each layer γ =
0, 1, and the last term is the contribution from hopping
between the layers. The quantities z, yγν = {rγl, dγl, wγ}

are defined by Eqs. (7). The expressions for (yγν)
in the single-layer Hubbard model were derived earlier
[1, 2].

The eighth-order matrices hij(k) determining the lin-
earized Hamiltonian (9) in the basis of operators (11)
are given by

(A.2)

(A.3)

Blocks Aγ of the fourth order correspond to each layer
γ = 0, 1. The expressions for these blocks in terms of the
derivatives ∂ /∂yγν were given earlier [23].

The diagonalization of matrix (A.2),

(A.4)

for each k gives energies Ekλ and eigenoperators in the
basis of operators (11):

(A.5)

Their knowledge makes it possible to calculate the set
of mean values {yγν, z} in accordance with the equa-
tions

(A.6)

(A.7)

In Eqs. (A.6), fλ = f(Ekλ) are the Fermi functions. The
weight functions gν(k) and the structure of the matrices
follow from definition (7) of quantities yγν. The func-

tions rγν for dγν and the 4 × 4 blocks  in Eqs. (A.6)
and (A.7) are the same as those presented earlier for a

H yν z,( ) Hγ rγl dγl wγ, ,( ) tzz.+
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Hγ

hij

A1 hz

hz
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j

∑=

yγν
1
N
---- gν θγν[ ] ijUiλ
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F
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N
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F
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single-layer system. The quantity z is defined in accor-
dance with Eqs. (A.6) and (A.7), in which

(A.8)

The equation for Tc used for computing phase curves is
derived by expanding the right- and left-hand sides of
the equations for wγ from Eqs. (A.6) for wγ  0. Thus,
wγ = 1 = ζwwγ = 0 and ζw = ±1 for both types of symmetry
of the superconducting order of a bilayer system. As a
result, we obtain the following equations for Tc:

(A.9)

Here, fλ = f(Ekλ) are the Fermi functions; Eλ and Uiλ are
determined by the solution of the linear problem (A.4)
for a given k; and ϕ1(k) = coskx – cosky. The eighth-
order matrix θw depends on the superconducting order
symmetry (ζw = ±1 in Eqs. (8)) and is given by

(A.10)

The pairing constant κ in Eq. (A.9) for the effective
Hamiltonian (5) is given by

(A.11)

The main negative contribution to κ comes from the
quantity appearing in Eqs. (13). Tunnel current in the
so-called S–I–N contact typical of STM is calculated in
the one-particle approximation. The total tunnel current
J(V) = e(WI – WII) is determined by the probabilities
WI(II) of the electron transition from the superconductor
to the metal and back. We simulate the tunnel interac-
tion between the metal states (deσ) and the external
layer (say, through the layer γ = 1) of the bilayer super-
conductor by the expression

(A.12)

In this case, the differential tunnel current as a function
of the applied potential difference eV is given by

(A.13)

gz k( ) 1
4
--- kxcos kycos–( )2,=

θz
01( )ll ' θz

10( )ll ' δll ' 1 1 1– 1–, , ,{ } l.= =

1 κ rγldγl( )=

× 1
N
---- Uiλ*θij

wU jλ
2 f λ f λ '–
Eλ Eλ '–
-------------------ϕ1

2 k( ).
λ , λ '

∑
k

F

∑

θij
w a 0

0 a 
 
 

, a
0 σ3

ζwσ3 0 
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κ 1
4
---

∂2Hγ

∂wγ
2

------------.
γ
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V tun F k( ) c1, k , σ
† de, σ H.c.+( ).

σ, n

∑=

dI V( )
dV

--------------
1
N
---- U1λ

2 R U2λ
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k

F
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Here, R = F2(k),  = F2( ); f '(E) = df /dE is the deriv-
ative of the Fermi function; and Uiλ and Ekλ determine
the solutions of the linear problem (A.4) in the basis of

operators (11). The form factor F(k) = (k) is taken in
the same form as for the bilayer splitting in Eq. (2).
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Abstract—The optical spectrum of the normal state of a doped two-dimensional antiferromagnet is analyzed
in a Kondo lattice model with regard to the complex structure of a spin polaron. The optical properties are deter-
mined by sharply anisotropic scattering of spin–polaron excitations by antiferromagnetic fluctuations of a sys-
tem of localized spins. It is shown that the relaxation of carriers in the infrared range is mainly attributed to the
strong coupling between these carriers and the mode of low-frequency spin excitations with the quasimomen-
tum close to the antiferromagnetic vector Q = (π, π). The latter coupling is associated with the fact that the
regions of the Fermi surface of the lower polaron band are close to the boundary of the antiferromagnetic Bril-
louin zone. The calculated optical characteristics are in qualitative agreement with experimental data for the
normal state of high-temperature superconductors (HTSCs). © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, the optical properties of the CuO2 plane
are being intensively studied in view of the fact that this
plane represents the basic structural element of high-
temperature superconductors (HTSCs) (see, for exam-
ple, [1–7] and survey [8]). Investigations in the field of
infrared radiation give valuable information about the
scattering of charge carriers. In particular, the theoreti-
cal analysis of optical data about HTSCs, combined
with photoemission data on quasiparticle excitations
and neutron data on a boson subsystem, can give infor-
mation about the relative amplitude of scattering of
charge carriers by phonons and spin fluctuations. Such
an analysis is carried out both on the basis of the tradi-
tional electron–phonon scenario of coupling (within the
Eliashberg formalism) [8] and within the models of
strongly correlated electrons that are based on various
modifications of the Hubbard model (which takes into
account a strong coupling between electron and spin
subsystems) [9].

The experimental data obtained in [10] exhibit
strong anisotropy in the optical properties in the direc-
tions parallel and normal to the CuO2 planes as well as
the high sensitivity of these properties to the carrier
density in these planes. Below, we will restrict the anal-
ysis to the optical properties of the normal state in the
ab plane.

Experiments carried out in the infrared range in the
ab plane for various cuprates (for example, those based
on lanthanum, La2 – xSrxCuO4 [2]; yttrium,
1063-7761/02/9401- $22.00 © 20135
YBa2Cu3O6 + x (YBCO) [1]; bismuth, Bi2Sr2CaCu2O8
(Bi2212) [3, 5] and Bi2Sr2CuO6 (Bi2201) [4–6]; and
certain other HTSCs [7]) show that these substances
exhibit the same properties near the optimal doping
level: a sharp peak at zero frequency and a non-Drude
tail of optical conductivity σ(ω) in the range of higher
infrared frequencies, the spectral weights of this peak
and the tail being strongly dependent on the doping
level; linear temperature dependence of the electric
conductivity ρ; strong frequency dependence of the
relaxation time and effective mass; and nearly linear
frequency dependence of the reflectivity R(ω).

A number of models have been proposed to give a
theoretical explanation for the optical properties of the
normal state of cuprates. Here, we mention the models
based on the electron–phonon coupling [11, 12], on the
theory of almost antiferromagnetic Fermi liquid [13],
and on the electron–electron scattering in a nested
Fermi liquid [14], as well as the studies within the t–J
model based on the method of Hubbard operators [15]
and the method in which fermion operators are repre-
sented by products of holons and spinons [16]. A num-
ber of approaches, including computational methods,
were presented in survey [9].

Usually, the optical conductivity σ(ω) is considered
in terms of the generalized Drude formula

(1)σ ω( )
ωpl

2

4π
------- m

m* ω( )
---------------- 1

1/τ* ω( ) iω–
--------------------------------,=
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where the functions m*(ω) and 1/τ*(ω) are interpreted
as the optical (or transport) effective mass and the
relaxation rate, respectively.

In the traditional approach, the square of the plasma

frequency, , is related to the Fermi velocity through
the formula (h = 1)

(2)

where v x(k) is the velocity and εk is the energy of a qua-
siparticle with quasimomentum k. In the simplest, iso-
tropic, case, we have

(3)

where n and m are the density of quasiparticles and
their mass, respectively.

The theoretical analysis of the optical data on
HTSCs within the Eliashberg formalism shows [8] that
the optical properties of the normal state of HTSC com-
pounds are primarily determined by a relatively strong
coupling (with a coupling constant of λ ~ 2) of charge
carriers to phonon excitations with energies of at least
500 K. An appropriate choice of ωpl ~ 2.5–3 eV allows
one to correctly describe the infrared behavior of the
reflectivity R(ω) [11] and the temperature dependence
of the resistivity; the result weakly depends on a partic-
ular form of the Eliashberg transport function

(ω)F(ω).

At the same time, it is known from the data on
inelastic scattering of spin-polarized neutrons that spin
excitations in the normal state of an HTSC have a reso-
nant structure at energies of 300 K, i.e., at energies
comparable with the aforementioned phonon energies.
The spin excitations responsible for this resonance are
determined by the quasimomenta of magnons close to
the antiferromagnetic vector Q = (π, π) [17]. Actually,
the coupling constant λ of these excitations to carriers
is unknown. In a number of papers [18, 19], this con-
stant is used as a fitting parameter for describing an
experimental situation under the assumption that the
coupling is of d character. The coupling to a spin sub-
system is also introduced purely phenomenologically
[13] with the use of various model forms of the spin
susceptibility χ(q + Q, ω) near the antiferromagnetic
vector Q; for example,

where χQ(T) is the static spin susceptibility for the vec-
tor Q, ξ is the antiferromagnetic correlation length, Γ is

ωpl
2

ωpl
2

4π
------- 2e2 1

N
---- v x

2 k( )δ εk( ),
k

∑=

ωpl
2

4π
-------

e2n
m

--------,=

α tr
2

χ q Q+ ω,( )
χQ T( )

1 ξ2q2+
------------------- 1

1 i ω/ωSF( )tanh–
------------------------------------------,=

ωSF q( ) Γ
π β
----------- a

ξ
--- 

 
2

1 ξ2q2+( ),=
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the energy parameter of the spin subsystem, β is the fit-
ting parameter, and a is the lattice constant.

Note that the majority of the aforementioned theo-
retical approaches do not take into account the real
spectrum of carriers, which is obtained by angle-
resolved photoemission experiments (ARPES); for
example, one applies models with the carrier band-
width W, which is much greater than the experimental
bandwidth.

In the present paper, we investigate the optical con-
ductivity within the Kondo lattice model. We do not use
any fitting parameters except for the energy parameters
of the Hamiltonian. The problem is solved within the
theory of a spin polaron [20], which reproduces all the
basic features of the lower hole band of elementary
excitations observed in the recent ARPES experiments
[21–23]: a large Fermi surface with comparatively
small number of carriers, small bandwidth (~0.5 eV),
the presence of regions of the Fermi surface situated
near the boundary of the antiferromagnetic Brillouin
zone (quasinesting), and a small distance between the
Fermi level and the bottom of the conduction band
(~0.05 eV).

We consider an antiferromagnetic subsystem of
localized spins in a spherically symmetric approxima-
tion with allowance for the spin frustration. This
approach predicts the existence of low-energy (~500 K)
spin excitations with the momenta close to the antifer-
romagnetic vector Q. This fact, together with the
quasinesting character of the lower band, is of special
interest.

To calculate the optical conductivity, we applied the
formalism of memory functions [15, 24]. In this for-
malism, the conductivity σ(ω) is given by the general-
ized Drude formula

(4)

The complex memory function M(ω) = M '(ω) + iΓ(ω)

determines m*(ω) and 1/τ*(ω) in (1). The quantity  =

4πχ0V–1is an analogue of  in (1). Our basic concern
will be the study of Γ(ω) and χ0. We will show that the
calculated value of  is close to the values for copper
oxide systems, ωpl ~ 1 eV [25], and is not anomalously
small despite the strong polaron narrowing of the band
and low density n of carriers (as should be expected
from (2) and (3)).

We will demonstrate that the behavior of the func-
tion Γ(ω) is really determined by the spin excitations
with the momenta close to Q and energies of about
500 K. The calculated values of the electric conductiv-
ity are in agreement with experimental data.

σ ω( ) 1
V
---

iχ0

ω M ω( )+
------------------------.=

ω̃pl
2

ωpl
2

ω̃pl
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2. THE MODEL AND THE SPIN–POLARON 
DESCRIPTION OF THE CARRIER SPECTRUM

As for the spectrum of a hole in the normal state of
cuprates, it is well known that the condition of an inter-
mediate doping level corresponds to a Fermi surface in
the form of four hole pockets near the points N = (±π/2,
±π/2). Optimally doped compounds exhibit a large
Fermi surface centered at the point M = (±π, ±π); the
shape of this surface is close to the Fermi surface calcu-
lated using a tight-binding model with the filling 1 + nh.
The observed quasiparticle band is very narrow (a band
width of ~0.5 eV). These facts (and a number of other
ones) cannot be explained on the basis of the conven-
tional one-electron band model.

Essential details of the hole spectrum in cuprates are
well described within the frustrated effective three-
band model in a spin–polaron approximation [26]. This
model is rather complicated; however, its basic features
are reproduced by the generalized Kondo lattice model
if one chooses the on-site exchange parameter J as the
greatest energy parameter [27–29].

The Hamiltonian of a square Kondo lattice is given
by

(5)

where

Here, g = ±gx ± gy are the nearest-neighbor vectors, d
and 2g are the second- and third-nearest-neighbor vec-

tors, and  are the Pauli matrices (summation is
assumed over repeated Cartesian indices α). The Fermi

operator  generates a hole with the spin S = 1/2 at
node r with the spin projection σ/2.

The Hamiltonian  describes the hopping of a hole
between the nearest, second nearest, and the third near-
est neighbors with the respective amplitudes tg, td, and
t2g. The on-site Kondo coupling is described by the

Hamiltonian . The exchange Hamiltonian  describes
a frustrated antiferromagnetic coupling between local-
ized spins, p (0 ≤ p ≤ 1) is the frustration parameter, and
I1 = (1 – p)I and I2 = pI are the exchange constants for
the nearest and next nearest neighbors.

Ĥ T̂ Ĵ Î ,+ +=

T̂ tgar g+ σ,
† ar, σ

r g σ, ,
∑ tdar d+ σ,

† ar, σ

r d σ, ,
∑+=

+ t2gar 2g+ σ,
† ar, σ,

r 2g σ, ,
∑

Ĵ J ar, σ1

† Sr
ασ̂σ1σ2

α ar, σ2
,

r σ1 σ2, ,
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Î
1
2
--- I1 Sr g+

α Sr
α 1

2
--- I2 Sr d+

α Sr
α .

r d,
∑+

r g,
∑=

σ̂α

arσ
+

T̂

Ĵ Î
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In the momentum representation, the Hamiltonian

 is expressed as

where

(6)

The Hamiltonian  is responsible for the strong
coupling between a bare hole and the local spin sub-
system. This means that the elementary excitations rep-
resent a spin polaron—the superposition of the operator
ak, σ of a bare hole and the operators describing the
dressing of ak, σ in the operators of the spin subsystem.
The problem is solved within the standard Mori–Zwan-
zig projection method with the use of retarded two-time
Green’s functions. As is known, the Mori–Zwanzig
method suggests a choice of a finite set of basis opera-
tors, which, in the case under consideration, should take
into account the pairing of a bare hole with localized
spins from the very beginning.

It is known [30, 31] that the following set of basis
operators serves as the minimal “good” nodal set:

(7)

(8)

The first two operators  and  can be interpreted
as local spin–polaron operators, and the next two operators

 and  correspond to a spin polaron of intermediate
radius and describe the pairing of the local polaron opera-

tors  and  with the spin-wave operators

A characteristic feature of operators (8) is the fact that
they describe the pairing of spin waves with momenta
q close to the antiferromagnetic vector Q = (π, π): the
momenta q occupy a domain Ω consisting of four

T̂

T̂ εkak, σ
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k σ,
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εk rre
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Fig. 1. The spectrum of the lower polaron band (for T = 0.04τ ≈ 200 K, p = 0.15, I = 0.4τ, J = 1.5τ, tg = 0.3τ, td = 0.25τ, t2g = 0.2τ,

and τ = 0.4 eV) represented by the equal-energy lines  – µ = const; the heavily drawn solid curve  – µ = 0 corresponds to
the Fermi surface for a doping level of nh = 0.15. The energies are given in units of 0.1 eV. The arrow indicates the antiferromagnetic
vector Q = (π, π)
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squares L × L at the corners of the first Brillouin zone
(below, we set Ω = L × L = 0.25(π/g)2). The pairing with

such  takes into account a sharp peak of the spin–
spin structural factor in the domain close to the vector
Q and leads to the splitting of the lower quasiparticle
band that arises in the local-polaron approximation [30,
31]. Moreover, taking into account the finite domain Ω
is necessary for describing a correct passage to the limit
as T  0 [30].

The standard projection procedure for solving equa-
tions for the Green’s functions in the momentum repre-
sentation for operators (7) and (8) yields four bands for

a spin polaron , an explicit expression for the
Green’s function of a bare hole Gh(k, ω), and the num-
ber of bare holes nh (see Appendix A):

(9)

Sq
2

Ek
i( )

Gh k ω,( ) ak, σ ak, σ
†〈 | 〉〈 〉 ω

Zk
l( )

ω Ek
l( )–

------------------,
l 1=

4

∑= =

nh Zk
l( )nF Ek

l( )( ),
l 1=

4

∑
k σ,
∑=
JOURNAL OF EXPERIMENTAL
where nF(Ek) = (  + 1)–1 and µ is the chemical
potential.

The comparison of the present method of a complex
spin polaron [30] with calculations within the frame-
work of the self-consistent Born approximation
(SCBA) (at T = 0) [32] makes it clear that the lower

band  and the residues  describe well the qua-
siparticle SCBA peak and its intensity. The three upper

bands  effectively describe the incoherent part
Aincoh(k, ω) of the total hole spectral SCBA function

We chose the following set of parameters in our cal-
culations: p = 0.15, T = 0.1I = 0.04τ, I = 0.4τ, J = 1.5τ,
tg = 0.3τ, td = 0.25τ, and τ2g = 0.2τ. All energy parame-
ters are given in units of τ. The value of τ was chosen
equal to 0.4 eV. This choice corresponds to a bandwidth
of W = 0.7τ ≈ 0.3 eV, which agrees with the data of
ARPES experiments. In addition, this choice of τ gives
a reasonable value of the exchange coupling between
copper ions, I ~ 2000 K. The matrix elements arising in
the projection method depend on the spin–spin correla-
tion functions and are given in Appendix A.

e
Ek µ–( )/T

Ek
1( ) Zk

1( )

Ek
2 3 4, ,( )

ASCBA k ω,( ) Zk
1( )δ ω Ek

1( )–( ) Aincoh+ k ω,( ).=
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Figure 1 represents the lower polaron band by
equal-energy lines and the Fermi surface for a doping
level of nh = 0.15. One can see that the translation of the
parts of the Fermi surface by the vector Q approxi-
mately leads to the superimposition of the parts situated
in different squares, i.e., leads to the quasinesting.

Figure 2 illustrates the evolution of the Fermi sur-
face as the doping level increases. One can see that con-
ditions for quasinesting are preserved in the range of
doping levels up to nh = 0.3, which are of interest for
superconductivity. The characteristic values of the res-

idues below the Fermi surface amount to  ≈ 0.3.
According to the data of ARPES experiments, up to an
optimal doping level of nh ~ 0.3, the regions of the
Fermi surface are situated in the close vicinity of the
antiferromagnetic Brillouin zone.

3. CHARACTERISTIC FEATURES
OF THE SPIN SUBSYSTEM

It is known that the antiferromagnetic long-range
order vanishes in the entire temperature range even for
comparatively low doping level of the CuO2 plane. It is
usually assumed that the doping leads to the antiferro-
magnetic coupling between the next nearest neighbors
in the Cu2+ subsystem, i.e., to the frustration [33]. Clus-
ter calculations give a sufficiently large value of the
frustration parameter, J2/J1 ~ 0.1, even for undoped
La2CuO4 [34]. As the doping level increases, the spin–
spin correlation length decreases; an increase in the
frustration yields a similar result.

The frustration parameter p can be regarded as an
analogue of the number of holes x per one copper atom.
An estimate based on the single-band Hubbard model
for U/t ~ 5 yields a value of p ~ 0.1 for x = 0.1. Note
that, for La2 – xSrxCuO4, the spin subsystem of the CuO2
plane loses the long-range order for x > 0.02.

Therefore, the interpretation of a frustrated spin
within a spherically symmetric theory [35] that we
adopted here is essential. In particular, this implies that

the average spin at a node is  = 0; however, anti-

ferromagnetic spin–spin correlation functions 
(α is fixed) are different from zero and independent of
the Cartesian index α. Spin-wave excitations are
described by the Green’s function

(10)

where

(11)

Zk
1( )

Sr
α〈 〉

S0
αSr

α〈 〉

G q ω,( ) S q–
α Sq

α〈 | 〉〈 〉 ω
Fq

ω2 ωq
2–

------------------,= =

Fq 8 I1 1 γg q( )–( )Cg I2 1 γd q( )–( )Cd+( ),–=

ωq
8
3
--- I 1 γg–( ){ A1 1 γg+( )A2+( )=

+ 1 γd–( ) A3 1 γd+( )+ A4( ) γg 1 γd–( )A5 } 1/2.+
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The parameters A1, A2, A3, A4, and A5 are repre-
sented in a self-consistent manner in terms of the frus-
tration parameter p and the spin–spin correlation func-
tions Cr = .

Note that G(q, ω) in (10) strongly differs from the
appropriate Green’s function within the two-sublattice
approximation: the numerator Fq and the spectrum ωq
tend to zero as q  0 by analogy with an ordinary
phonon pattern as q  0; however, as q  Q, the
numerator Fq tends to a finite quantity and has a gap of
∆ = ωQ for finite temperatures and frustrations ωq.
Thus, the spin excitations (10) are periodic only with
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Fig. 2. The spectrum of the lower polaron band in the first
quadrant of the Brillouin zone with the distinguished Fermi
surfaces corresponding to nh = 0.15, 0.25, and 0.3. The

energy  is given in units of τ (parameters are the same

as in Fig. 1).
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respect to the total, rather than the antiferromagnetic,
Brillouin zone, and the points (0, 0) and Q are not
equivalent.

As we pointed out above, we choose a realistic value
for the frustration parameter of p = 0.15. Figure 3 rep-
resents the spectrum ωq for T ≈ 200 K (T = 0.1I, I =
0.4τ). The gap ∆ proves to be equal to ~500 K. These
excitations lie in that domain of boson energies that was
discussed in the Introduction.

8

6

4

2

0

0.8
0.4

0 0 0.2 0.4 0.6 0.8 1.0
q
y /π

qx /π

Cq

Fig. 4. The spin–spin structural factor Cq.
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Figure 4 shows the spin–spin correlation function
Cq entering in the expression for the optical conduc-
tivity,

(12)

One can see that Cq has a sharp peak at q = Q, while
ωq attains a local minimum. This is a direct conse-
quence of the fact that the mode with q = Q is a macro-
scopic mode for T = 0 and small frustration [35]. We
will demonstrate that, with regard to the quasinesting,
strong scattering occurs exactly on the mode with q
close to Q. For calculating the optical damping Γ(ω),

the combination J 2Fq  serves as an effective cou-
pling in the problem of scattering of carriers. Note
that this scattering is sharply anisotropic in a wide
range of q.

To analyze a coupling, one usually introduces the
Eliashberg function α2(ω)F(ω)[8, 36]. In our strongly
anisotropic case, to characterize the coupling on aver-
age, we present in Fig. 5 the density of states of spin
waves νm(ω) and the spectral density Φ(ω), which is an
analogue of the Eliashberg function α2(ω)F(ω); in
Fig. 6, we present the spectral function of the coupling

Cq S q– Sq〈 〉
Fq

2ωq
--------- 1 2nB ωq( )+( ),= =

nB ω( ) eω/T 1–( ) 1–
.=

ωq
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Fig. 5. The density of states of (dotted curve) a bare hole νh(ω – µ), (dashed curve) spin excitations νm(ω – µ), and (solid curve) the
function Φ(ω) (an analogue of the Eliashberg function (see [13])) in relative units. The parameters are the same as in Fig. 1; ω = 0
corresponds to the chemical potential for nh = 0.15.
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with thermal magnons, Φth(ω):

(13)

(14)

These figures also represent the hole density of states
(the energy is measured from the chemical potential for
a doping level of nh = 0.15; see Fig. 2),

(15)

Figure 5 shows that the function νm(ω) has a small
step at ω = ωQ ~ 400 cm–1 ≈ 500 K, which is attributed
to the contribution of spin waves with the momenta
close to Q. However, for the function Φ(ω), this feature
is manifested much more clearly due to the large value
of CQ (see Fig. 4).

As for the spectral function Φth(ω (Fig. 6), it has a
sharp peak at the same frequency. This peak and the
position of the maximum of the density of states of car-
riers will be discussed in greater detail in Section 5
when analyzing σ(ω).

4. CONDUCTIVITY
IN THE INFRARED RANGE

The expression for the conductivity in the theory of
linear response is given by [37]

where  and  are the operators of polarization and
current, respectively, and V is the volume of the system.
The polarization (e = 1)

and the current are related by the standard formula  =

 = i[ , ]. For Hamiltonian (5), the operator of cur-
rent is given by

where v(k) is the velocity of a bare hole.
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To calculate the conductivity σ(ω), it is convenient
to apply the apparatus of memory functions M(ω) [24]:

(16)

where Γ(ω) determines the inverse of the relaxation
time and M '(ω) is related to the renormalization of
mass.

The parameter χ0 is expressed in terms of the oper-
ators of polarization and current,

, (17)

and is given by

(18)

Here, the mean value  is expressed in terms
of the Green’s function (9).

To obtain an explicit expression for M(ω), one
should avail oneself of a chain of Green’s functions
with differentiation with respect to the first and second
variables:

(19)

(20)

(21)
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Fig. 6. The density of states of (dashed curve) a bare hole
νh(ω – µ) and (solid curve) the thermal spectral function
Φth(ω) (see [14]) in relative units. The parameters are the
same as in Fig. 1; ω = 0 corresponds to the chemical poten-
tial for nh = 0.15.
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Here, the force operator  arises:

As a result, M(ω) is expressed in terms of the force–
force-type irreducible Green’s function

where K = 〈[jx , ]〉  is a real quantity.

One can calculate  in the mode-cou-
pling approximation. The detailed procedure of deriv-
ing expressions for Γ(ω) and M '(ω) is described in
Appendix B. Here, we give the final form of Γ(ω):

(22)

The structure of Γ(ω) has a clear physical meaning.
The terms proportional to (1 + nB(ωq)) and nB(ωq)
describe, respectively, the processes with the creation
and annihilation of a magnon with energy ωq. The com-

bination of Fermi distributions nF( )(1 – nF( ))
takes into account the filling probabilities of the initial,
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Fig. 7. Optical damping Γ(ω) for three values of the doping
level: nh = 0.15, 0.25, and 0.3.
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k, and final, k + q, states. The coupling to the spin sub-

system is described by the factor J2Fq .

Expression (16) is usually represented in the form of
the generalized Drude formula:

(23)

where

(24)

It follows from expression (22) that the damping in
our model is associated with the scattering of a spin
polaron by spin waves and is described by the Hamilto-

nian  in (5).

5. RESULTS AND DISCUSSION

To calculate σ(ω), ρ, and  in practical units, we
have to specify the average distance az between CuO2
planes; we assumed that az = 6.6 Å, which corresponds
to lanthanum compounds [2]. We present the results of
calculations in the frequency range up to ω ≈ 2000 cm–1

(~0.25 eV). In this frequency interval, a contribution to
M' and the optical damping Γ(ω) is made only by the

hole scattering within the lower band , which is
shown in Fig. 2 (i.e., the terms with i = j = 1 in (22)).
This is associated with the fact that, within our method,
the incoherent part of the hole spectral function is sim-
ulated by three upper bands. These bands are located at
an energy greater than 0.3 eV ~ 2400 cm–1 from the
Fermi level, which (for a reasonable doping level) lies
in the lower band. In principle, the scattering to the
incoherent part can be taken into account by smearing
the upper bands over energies for every fixed k.

Figure 7 represents the optical damping Γ(ω) at tem-
perature T = 0.1I ≈ 200 K for three values of the doping
level: nh = 0.15, nh = 0.25, and nh = 0.3. A sharp increase
in Γ(ω) up to frequencies of 750 cm–1 represents an
interesting feature against the background of generally
increasing Γ(ω); this feature is most clearly displayed
in the case of nh = 0.15.

Let us dwell in greater detail on the doping level
nh = 0.15. In the low-frequency range, Γ(ω) is mainly
determined by the scattering on the spin excitations
with the momenta q close to Q. This fact becomes obvi-
ous if we consider, in the low-frequency domain, the
contribution to Γ(ω) due to the scattering to vectors q
satisfying the inequalities 0.9Qx, y < |qx, y| < Qx, y (i.e.,
the vectors q lie in small domains near the four points
M of the Brillouin zone). This contribution is shown in
Fig. 8 by a dot-and-dash curve together with the total
Γ(ω) value (solid curve). To find out why these scatter-
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ing processes prove to be dominant, we consider
expression (22) with ω = 0. In this case, both summands
involving the delta functions of energies coincide, and
Γ(0) takes the form

(25)

The spectral function Φth(ω) contains a multiplier

 and attains a maximum, associated with
close values of the vectors q and Q, at ωq ≈ 500 K (see
Fig. 6). This is the first factor that determines a large
contribution made by the scattering processes with q ~
Q to (25).

The second important factor is the quasinesting of
the Fermi surface, which allows us to satisfy the energy
conservation law in (25) under scattering on q ~ Q. In
this case, we have a large phase volume of scattered
states.

Suppose, for example, that a state k is in the first
quadrant below the Fermi surface and k ≈ (0.6π, 0.6π);
then, the scattered state k + Q turns out to be in the third
quadrant near the relevant sheet of the Fermi surface
(see Fig. 1). According to (25), in this case, a magnon
ωQ is absorbed. If we had a nesting situation, i.e., if
each sheet of the Fermi surface was symmetric with
respect to the boundary of the appropriate Brillouin
zone ((±π, 0), (0, ±π)), then such scattering would not
contribute to (25) because of the violation of the energy
conservation law (since Ek + Q ≈ Ek) and, in addition,
both states would lie below the Fermi surface. In the
case of quasinesting, the bottom of the hole band lying
below the ellipsoidal Fermi surface in each quadrant of
the Brillouin zone is shifted toward points M relative to
the points (±π/2, ±π/2), as is the case in doped HTSCs.
Due to the quasinesting, the state k + Q turns out to be
in the third quadrant over the appropriate sheet of the

Fermi surface with the factor (1 – nF( )) ~ 1.
Simultaneously, it becomes possible to satisfy the

energy conservation law  –  – ωQ = 0. To
illustrate the latter statement, in the inset of Fig. 8
(curve 1), we show the states k such that the energy

conservation law  –  – ωQ = 0 is satisfied.
Curve 2 represents the points k + Q from the third
quadrant that are obtained by reflection with respect to
the diagonal connecting the points (–π, π) and (π, –π).

The juxtaposition of curve 1 and the Fermi surface
for nh = 0.15 (Fig. 2) shows that a substantial part of this
curve lies rather deep below the Fermi surface. For the
parameters of our model (p = 0.15, I = 0.4τ, J = 1.5τ,
tg = 0.3τ, td = 0.25τ, t2g = 0.2τ, and τ = 0.4 eV) when
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nh = 0.15, the distance Wµ between the chemical poten-
tial and the bottom of the band is Wµ ≈ 0.04 eV (see
Fig. 2). The energy of spin excitations for q ~ Q is of
the same order of magnitude (Fig. 3). This means that a
contribution to the scattering is made by the k states that
lie rather deep below the Fermi surface. This fact, in
particular, makes our model different from electron–
phonon scattering in ordinary metals, where phonon
frequencies are small as compared with the Fermi
energy.

The scattered states k + q, q ~ Q, have energy of
~ωQ with respect to the chemical potential. Figure 6
shows that not only the peak of the spectral function
Φth(ω) but also the peak of the density of states νh(ω) of
carriers corresponds to these energies.

Thus, by an example of the case ω = 0, nh = 0.15, one
can explain the decisive role of the quasinesting and the
boson mode with ωQ ~ 500 K for the low-frequency
domain of Γ(ω).

Figure 9 represents the diagrams of σ(ω) for three
values of the doping level: nh = 0.15, nh = 0.25, and nh =
0.3. These diagrams exhibit conventional behavior for
doped compounds: a sharp peak at a frequency of ω =
0 and non-Drude behavior at larger frequencies, ω >
500 cm–1. They also exhibit nonmonotonic behavior at
ω ≈ 800 cm–1.

The table shows the temperature dependence of the
gap in the spectrum of spin excitations ωQ, the electric
conductivity ρ, and the plasma frequency . One can
see that ωQ is primarily determined by the frustration
parameter p = 0.15 and slowly increases with tempera-
ture.

The calculated values of conductivity ρ are compa-
rable with experimental results. Recall that we consider
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Fig. 8. (solid curve) Optical damping Γ(ω) and (dot-and-
dash curve) contribution to the low-frequency part of Γ(ω)
associated with the scattering into vectors q close to the anti-
ferromagnetic vector Q; 0.9Qx, y < |qx, y| < Qx, y (the doping
level is nh = 0.15). The inset represents curves 1 and 2 (see
the text).
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Energy ωQ of spin excitations for Q = (π, π), the temperature dependence of electric conductivity ρ, and the plasma frequency
 for nh = 0.15

T 0.05I
(90 K)

0.075I
(140 K)

0.1I
(190 K)

0.15I
(280K)

0.2I
(370 K)

0.25I
(460 K)

0.3I
(560 K)

ωQ 0.114τ 0.115τ 0.119τ 0.132τ 0.149τ 0.171τ 0.194τ
ωQ/T 5.7 3.8 3.0 2.2 1.9 1.7 1.6
ρ, µ Ω cm 50 280 620 1290 1710 1920 2100

, eV 1.37 1.35 1.31 1.24 1.19 1.14 1.10

ω̃pl

ω̃pl
the doping level nh = 0.15 as intermediate, while the
optimal doping level is nh = 0.3. At a temperature of
T ≈ 300 K, the optimal doping level corresponds to ρ ≈
700 µΩ cm. This value is of the same order of magni-
tude but is greater than the experimental value ρ ≈
300 µΩ cm [3] by approximately a factor of 2. The
table shows that the conductivity exhibits an almost lin-
ear dependence on temperature.

The characteristic value  ≈ 1.3 eV (see table) is
close to the experimental value, ωpl ≈ 1 eV, which is
obtained from the measurement of energy losses of fast
electrons [25, 38, 39]. Despite the low concentration of
carriers and a relatively small width of the lower
polaron band, we obtain a reasonable value for 
since the quantity χ0 (18) essentially depends on the
velocity v(k) of bare carriers. Introducing the effective
mass according to (24), we obtain m* ≈ 8 for the low-
frequency region.

Thus, our analysis of a strongly correlated Kondo
lattice model within a spin–polaron approach shows
that the spin-excitation mode with ωQ ~ 500 K and the
strong coupling of this mode to the subsystem of carri-
ers due to the quasinesting character of the structure of
the lower band allow one to qualitatively describe the
low-frequency part of the optical conductivity in the
CuO2 plane.

ω̃pl

ω̃pl

0 500 1000 1500 2000 2500
ω, cm–1

3000
σ, Ω–1 cm–1

2500

1500

1000

500

2000

0.25
0.3

nh = 0.15

Fig. 9. Conductivity σ(ω) for three values of the doping
level: nh = 0.15, 0.25, and 0.3.
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In conclusion, we point out several disadvantages of
the approach proposed, which, in our opinion, lead to
certain discrepancies with experiment. These discrep-
ancies result from the calculation of the reflectivity
R(ω), which demonstrates a correct quasilinear
decrease in a wide range of frequencies; however, the
slope of the decrease is substantially greater than the
experimental value.

The Kondo lattice model does not reflect the follow-
ing important feature of the plane CuO2: the residues

 in the lower band are strongly suppressed for the
vectors k close to the points Γ = (0, 0) and M. Such a

decrease in  is described by a three-band model,
and taking into consideration this decrease may signif-
icantly reduce the value of Γ(ω) and eliminate the dis-
crepancy with experimental data in the behavior of
R(ω). Next, our approach simulates the incoherent part
of the spectral function of a polaron in the form of
upper coherent polaron bands. Our analysis shows that
such a description is not quite adequate and leads to an
artificial decrease in Γ(ω) for ω ≥ 2500 cm–1. Finally,
we should have taken into account that the frustration
parameter p increases with the doping level nh.
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APPENDIX

Appendix A

Here, we present a method for determining the spin–

polaron bands  and residues  (see (9)) and an
explicit expression for the matrix elements arising in
the projection method.

For the given basis of spin–polaron operators (7),
(8), we introduce retarded two-time Green’s functions

Zk
1( )

Zk
1( )

Ek
l( ) Zk

l( )
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Gij(t, k) for the Fourier components  of the opera-

tors  (for short, we omit the spin indices):

(26)

The equation of motion for the Fourier components
of the Green’s functions is given by

(27)

In the projection method, the new operators  are
approximated by the projections of the basis operators

(7), (8) onto the space :

(28)

After the substitution of the approximate expressions

for the operators  (28) into the equation of
motion (27), the system of equations (27) for the

Green’s functions  becomes closed, and it
can be represented in the following matrix form:

(29)

where E is the identity matrix. The solution of the sys-
tem allows one to determine the Green’s function (9) of
a bare hole.

In particular, the spectrum Ek of quasiparticles is
defined by the poles of the Green’s function G and is
determined from the equation

Let us give explicit expressions for the matrix ele-
ments of K and D.

Below, we adopted the following notation: Dij(k) =

 =  +  + ; Kij, ,

, and  are symmetric matrices; γg = 0.5(coskx +
cosky); γd = coskxcosky; γ2g = 0.5(cos2kx + cos2ky).
Below, we give the nonzero matrix elements.

K matrix

ϕk
j( )

ϕr
j( )

Gij t k,( ) ϕk
i( ) t( ) ϕk

j( )† 0( )〈 | 〉〈 〉≡

=  iΘ t( ) ϕk
i( ) t( ) ϕk

j( )† 0( ),{ }〈 〉 ,–

ϕk
j( ) 1

N
-------- e ikr– ϕr

j( ), i j,
r

∑ 1–4.= =

ω ϕk
i( ) ϕk

j( )†〈 | 〉〈 〉 ω Kij ψk
i( ) ϕk

j( )†〈 | 〉〈 〉 ω,+=

Kij k( ) ϕk
i( ) ϕk

j( )†,{ }〈 〉 , ψk
i( ) ϕk

i( ) Ĥ,[ ] .= =

ψk
i( )

ϕk
i( ){ }

ψk
i( ) Lil k( )ϕk

l( ), L k( )
l

∑≈ D k( )K 1– ,=

Dij k( ) ψk
i( ) ϕk

j( )†,{ }〈 〉 .=

ϕk
i( ){ }

ϕk
i( ) ϕk

j( )†〈 | 〉〈 〉 ω

ωE DK 1––( )G K ,=

det KEk D– 0.=

ϕk
i( ) T̂ Ĵ Î+ +( ),[ ] ϕ k

j( )†,{ }〈 〉 T̃ ij J̃ ij Ĩ ij T̃ ij

J̃ ij Ĩ ij

K11 1, K14 u,= =

K22 0.75, K23 u, K24 u,–= = =

K33 u, K34 w 2uv ,–= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
 matrix

 matrix

 matrix

K44 0.75u= w– 2uv .+

T̃

T11 4tgγg 4tdγd 4t2gγ2g,++=

T14 u 4tgγg 4tdγd 4t2gγ2g++( ),=

T22 4tgγgCg 4tdγdCd 4t2gγ2gC2g,++=

T23 4tgγgug 4tdγdud 4t2gγ2gu2g,++=

T24 4tgγgCg v g v–( )=

+ 4tdγdCd v d v–( ) 4t2gγ2gC2g v 2g v–( ),+

T33 T23= ,

T34 4tgγg wg uv g– ugv–( ) 4tdγd wd uv d– udv–( )+=

+ 4t2gγ2g w2g uv 2g– u2gv–( ),

T44 4tgγg Cgug Cg v 2 2v gv+( ) 2
3
---Cg

2 v 2 3v g
2+( )+ +

=

– 4Cg
1
3
---ugv uv g+ 

  u2 1
3
---u2 2

3
---Wg

1( )––+ 


+ 4tdγd Cdud Cd v 2 2v dv+( ) 2
3
---Cd

2 v 2 3v d
2+( ) ---++



– 4Cd
1
3
---udv uv d+ 

  u2 1
3
---ud

2 2
3
---Wd

1( )––+ 


+ 4t2gγ2g C2gu2g C2g v 2 2v 2gv+( ) + 
2
3
---C2g

2 v 2 3v 2g
2+( )+



– 4C2g
1
3
---u2gv uv 2g u2 1

3
---u2g

2 2
3
---W2g

1( )––+ + 
  .

J̃

J1 j JK2 j, j 1 2 3 4,, , ,= =

J2 j J 0.75K1 j K2 j–( ), j 2 3 4, ,= =

J33 JK34,=

J34 J 0.75u w– 2uv+( ),=

J44 J
7
4
---w 3.5uv– 0.75u– 

  .=

Ĩ

I22 4I1Cg 4I2Cd,––=

I23 4I1Cg v g v–( ) 4I2Cd v d v–( ),+=

I24 2I1 Cg v v g–( ) ug+( ) 2I2 Cd v v d–( ) ud+( ),+=

I33 4I1Cg v g v–( ) 4I2Cd v d v–( ),+=
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Here, we used the following notation:

I34 4I1
2
3
---Wg

3( ) 2
3
---Cg uv w– uv g– wg+( )+

=

+ Cg v 2 1.5vv g– 0.5v g
2+( ) 2

3
---Cg

2 v g
2 vv g–( )+ 



+ 4I2
2
3
---Wd

3( ) 2
3
---Cd uv w– uv d– wd+( )+



+ Cd v 2 1.5vv d– 0.5v d
2+( ) 2

3
---Cd

2 v d
2 vv d–( )+ 

 ,

I44 4I1 0.5wg
1( ) ugv g vv g Cg

8
3
---Cg

2+ 
 ––

=

– v g
2Cg

8
3
---Cgugv g

8
3
---Cguv Cgv

2 Cgu––++

–
2
3
---ugu

2
3
---Wg

2( ) 0.75Cg v g v–( )+ + 


+ 4I2 0.5wd
1( ) udv d vv d Cd

8
3
---Cd

2+ 
 ––



– v d
2Cd

8
3
---Cdudv d

8
3
---+ Cduv Cdv 2–+

– Cdu
2
3
---udu

2
3
---Wd

2( ) 0.75Cd v d v–( )++ 
 I34.––

v
1
N
---- 1,

1
N
----  ≡ 1

N
---- ,

k Ω∈
∑

k
∑

k
∑=

v l
1
N
---- eikl; l

k
∑ g d 2g,, ,= =

u
1
N
---- Ck,

k
∑=

ul
1
N
---- eiklCk, l

k
∑ g d 2g, , ;= =

w
1

N2
------ Ck1 k2– ,

k1 k2,
∑=

wl
1

N2
------ e

ik1l–
Ck1 k2– , l

k1 k2,
∑ g d 2g,, ,= =

wl
1( ) 1

N2
------ e

i k1 k2–( )l–
Ck1 k2– , l

k1 k2,
∑ g d,,= =

Wl
1( ) 1

N2
------ e

i k1 k2–( )r–
e

ik2l–
CrCr l– ,   l 

k

 

1

 

k

 

2

 

r

 

, ,

 ∑  g d 2 g , , , = =
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Appendix B

To represent σ(ω) in the form (16), we apply
Eqs. (19), (20), and (21). Let us rewrite (21) in the fol-
lowing identical form:

Next, we apply Eq. (20) to obtain

It is convenient to rewrite this equation as

Now, we substitute the last equation into (19). As a
result, we have

Thus, we obtain an explicit expression for M(ω) in
terms of the current–force-type irreducible Green’s
function [40]:

or

Next, we have to express M(ω) in terms of the

force–force-type irreducible function .

Differentiating the function  with respect
to the first variable, we obtain

where the irreducibility implies the following combina-
tion:

Wl
2( ) 1

N2
------ e

i k1 k2–( )r–
CrCr g– , l

k1 k2 r, ,
∑ g d,,= =

Wl
3( ) 1

N2
------ e

ik2l
e

i k1 k2–( )l–
–( )Ck1 k2– Ck2

, l
k1 k2,
∑ g d.,= =

ω jx jx〈 | 〉〈 〉 ω Px jx〈 | 〉〈 〉 ω
1– Px jx〈 | 〉〈 〉 ω jx Fx

†〈 | 〉〈 〉 ω.=

jx jx〈 | 〉〈 〉 ω Px jx〈 | 〉〈 〉 ω
1– iχ0 Px Fx

†〈 | 〉〈 〉 ω+( ) jx Fx
†〈 | 〉〈 〉 ω.=

jx jx〈 | 〉〈 〉 ω iχ0( ) 1– jx Fx
†〈 | 〉〈 〉 ω[=

– jx jx〈 | 〉〈 〉 ω Px jx〈 | 〉〈 〉 ω
1– Px Fx

†〈 | 〉〈 〉 ω] Px jx〈 | 〉〈 〉 ω.

Px jx〈 | 〉〈 〉 ω iχ0 ω χ0
1– jx Fx

†〈 | 〉〈 〉 ω[–{=

– jx jx〈 | 〉〈 〉 ω Px jx〈 | 〉〈 〉 ω
1– Px Fx

†〈 | 〉〈 〉 ω] } 1–
.

M ω( ) 1
χ0
----- jx Fx

†〈 | 〉〈 〉[ ω–=

– jx jx〈 | 〉〈 〉 ω Px jx〈 | 〉〈 〉 ω
1– Px Fx

†〈 | 〉〈 〉 ω]

M ω( ) 1
χ0
----- jx Fx

†〈 | 〉〈 〉 ω
irred

.–=

Fx Fx
†〈 | 〉〈 〉 ω

irred

jx Fx
†〈 | 〉〈 〉 ω

irred

M ω( ) χ0ω( ) 1– K Fx Fx
†〈 | 〉〈 〉 ω

irred
+[ ] ,–=

Fx Fx
†〈 | 〉〈 〉 ω

irred
Fx Fx

†〈 | 〉〈 〉 ω=

– Fx jx
†〈 | 〉〈 〉 ω Px jx

†〈 | 〉〈 〉 ω
1–

Px Fx
†〈 | 〉〈 〉 ω.
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Since K is purely real, it is convenient to calculate
first the imaginary part of M(ω). Then,

where (ω) is the spectral intensity of the function

〈 Fx(t)〉 irred.

Taking into account that  = –Fx, we obtain the
function Γ(ω) expressed in terms of the force–force-
type irreducible correlation function [15]:

Within the framework of the mode-coupling approxi-
mation, we retain in the correlation function
〈FxFx(t)〉 irred only the first term corresponding to the
correlation function 〈FxFx(t)〉  and untangle it as fol-
lows:

Then, we express the correlation functions

, , and  in terms
of the Fourier components of the hole and spin Green’s
functions presented in Sections 2 and 3. As a result, we
arrive at expression (22) for Γ(ω). The expression for
the real part M'(ω) is obtained from the Kramers–Kro-
nig relation:

Thus, in the approximation of coupled modes, the
complex memory function M(ω) can be represented as

where E =  –  – ωq, δ > 0.

Γ ω( ) χ0ω( ) 1– Im Fx Fx
†〈 | 〉〈 〉 ω

irred
–=

=  2χ0ω( ) 1– eω/T 1–( )7
Fx

†
Fx

irred ω( ),

7
Fx

†
Fx

irred

Fx
†

Fx
†

Γ ω( ) 1 eω/T–
2χ0ω

------------------ FxFx t( )〈 〉 irredeiωt t.d

∞–

+∞

∫=

〈ak1, σ1

† Sk1 k2–
α σ̂σ1σ2

α ak2, σ2
ak1' , σ1'

† t( )Sk1' k2'–
β t( )σ̂σ1' σ2'

β ak2' , σ2'
t( )〉

≈ 2 ak2, σ2
ak2, σ2

† t( )〈 〉 Sk1 k2–
α Sk2 k1–

α t( )〈 〉

× ak1, σ1

† ak1, σ1
t( )〈 〉δ k1k2'

δk2k1'
δσ1σ2'

.

Sq
αS q–

α t( )〈 〉 ak, σak, σ
† t( )〈 〉 ak, σ

† ak, σ t( )〈 〉

M ' ω( ) 1
π
--- Γ ζ( )

ζ ω–
------------- ζ .d

∞–

+∞

∫=

M ω( ) J2

χ0
----- 1

N2
------ v x k( ) v x k q+( )–( )2

k q,
∑=

× Zk
i( )Zk q+

j( ) 1 nF Ek
i( )( )–( )nF Ek q+

j( )( )
i j, 1=

4

∑

×
Fq

ωq
------ 1 nB ωq( )+( )eE/T 1–

E
------------------ 1

E ω– iδ–
------------------------ 1

E ω iδ+ +
-------------------------– ,

Ek q+
j( ) Ek

i( )
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Abstract—Superconducting pairing of holes with a large (on the order of doubled Fermi) total pair momentum
and small relative motion momenta is considered taking into account the quasi-two-dimensional electronic
structure of high-Tc cuprates with clearly defined nesting of the Fermi contour situated in an extended neigh-
borhood of the saddle point of the electronic dispersion law (the momentum space region with a hyperbolic met-
ric) and the arising of a spatially inhomogeneous (stripe) structure as a result of the redistribution of current
carriers (holes) that restores regions with antiferromagnetic ordering. The superconducting energy gap and con-
densation energy were determined, and their dependences on the doping level were qualitatively studied. The
energy gap was shown to exist in some hole concentration region limited on both sides. The superconducting
state with a positive condensation energy appears in a narrower range of doping within this region. The reason
for the arising of the superconducting state at a repulsive screened Coulomb interaction between holes is largely
the redistribution of hole pairs in the momentum space related to the special features of the hyperbolic metric,
which is responsible for the formation of the “pair” Fermi contour, and the renormalization of the kinetic energy
of holes when the chemical potential changes because of the condensation of pairs. Hole pairs of the type under
consideration exist not only in the condensate but also in the form of quasi-stationary states with very weak
decay at temperatures substantially exceeding the superconducting transition temperature. The pseudogap
region of the phase diagram of high-Tc cuprates is related to such states. The pairing mechanism under consid-
eration allows not only the principal characteristics of the phase diagram but also key experimental data on
high-Tc cuprate materials to be qualitatively explained. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The special properties of the quasi-two-dimensional
(2D) electronic structure of the compounds that exhibit
high-temperature superconductivity (the presence of
long almost rectilinear Fermi contour portions, which
are situated in an extended neighborhood of the saddle
point of the electronic dispersion law) result, because of
screened Coulomb repulsion, in the arising of quasi-
stationary states of hole pairs with a large total momen-
tum K ≈ 2kF (kF is the Fermi momentum in the direction
of vector K) and a small relative motion momentum
[1]. Such quasi-stationary states are characterized by
very weak decay [1] and can therefore be treated as
peculiar elementary excitations of the electronic sub-
system of crystals. The appearance of bound states of
hole pairs under repulsive interaction conditions and
virtual absence of their decay (although the levels of the
quasi-stationary states lie in the region of the continu-
ous spectrum of one-particle excitations) is explained
by different signs of the principal values of the tensor of
effective masses which determines the kinetic energy of
the relative motion of a pair in the vicinity of the saddle
point (the momentum space in an extended neighbor-
hood of the saddle point has a pseudo-Euclidean or
hyperbolic metric). The qualitative description of the
1063-7761/02/9401- $22.00 © 20149
pseudogap state of underdoped high-Tc materials sug-
gested in [1] was based on the concept of quasi-station-
ary states of hole pairs. It was, in particular, shown how
characteristic temperature T* of the appearance of a
pseudogap depended on the doping level [1].

The scattering amplitude of the relative motion of
hole pairs considered in [1] contains one more complex
pole [2], possibly, responsible for superconducting
instability. The imaginary part of the corresponding
pole should be related to the superconducting gap ∆
value and the Tc superconducting transition tempera-
ture. The disappearance of the complex pole and, con-
versely, a monotonic increase in the energy of quasi-
stationary states with increasing repulsive Coulomb
interaction between holes explain the substantial differ-
ence between T* and Tc in the strongly underdoped
region and qualitatively describe the observed phase
diagram of high-Tc cuprates (in the temperature–doping
level coordinates).

The absence of a quasi-particle peak [3] in the angu-
lar-resolved photoemission spectra (ARPES) at Tc <
T < T* is also explained by the presence of hole-pair
quasi-stationary states in this temperature interval.
Indeed, each state of such a pair with a given total
momentum is represented by the sum of Bloch one-par-
002 MAIK “Nauka/Interperiodica”
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ticle (hole) states, all of which are present in quasi-sta-
tionary states with small weights g ! 1 [1]. In ARPES
experiments, an inner-shell electron is excited into one
of the Bloch states near the Fermi contour and, there-
fore, has g = 1. This state strongly decays because of
excitation redistribution between quasi-stationary
states with different total momenta. In the scheme
under consideration, the observation of a quasi-particle
peak at T < Tc [3] is explained by the presence of a com-
plex scattering amplitude pole and Bose condensation
of a macroscopic number of hole pairs, when the
weight of Bloch states in the condensate of pairs with a
given momentum K is close to one (g ~ 1).

If the concentration of holes p becomes smaller than
a certain pN value as T  0, the high-Tc compound
becomes insulator and acquires a long-range antiferro-
magnetic order. At p > pN, short-range antiferromag-
netic order is retained, and a spatially inhomogeneous
quasi-one-dimensional (1D) state arises in the conduct-
ing planes of high-Tc compounds in the form of static or
dynamic stripes, that is, regions with restored antiferro-
magnetic order depleted of holes and separated by lay-
ers with metallic conductivity, which are enriched in
holes [3]. It follows that antiferromagnetic and super-
conducting orderings in high-Tc compounds are closely
and nontrivially related to each other. In particular,
short-range antiferromagnetic order may play a stabi-
lizing role in the arising and superconducting conden-
sation of hole pairs with large total momenta consid-
ered in [1]. Indeed, the real part of the complex scatter-
ing amplitude pole is positive [2]. Energy loss caused
by depopulating some hole states in the region with a
hyperbolic metric within the Fermi contour can there-
fore be balanced by the redistribution of hole pairs in
the r space, which results in the coexistence of regions
of the metallic and antiferromagnetic types. Such a
phase stratification [4] accompanied by changes in hole
state populations in the momentum space may corre-
spond to an energy minimum.

The superconducting state with a large (K ≈ 2kF)
total pair momentum studied below has formally been
considered in [5] in terms of microscopic models of the
coexistence of superconductivity and antiferromag-
netism or charge density waves (structural phase transi-
tion; the ≈2kF momentum then transforms into a new
reciprocal lattice vector). States with large pair
momenta then arise as a result of the coexistence of
antiferromagnetic ordering and Cooper pairs with a
zero total momentum. Phenomenologically, such trans-
formations are described as breaking of certain symme-
tries, for instance, by the SO(5) or SU(4) models [6, 7].

As is known [8, 9], increased doping of the antifer-
romagnetic phase related to the spin density wave may
result in that simultaneous appearance of a charge den-
sity wave will be also energetically favorable. This
leads to a weak ferromagnetism observed in some com-
pounds [10]. Existence of the charge ordering was also
reported in superconducting bismuth cuprates [11]. The
JOURNAL OF EXPERIMENTAL
formation of a one-dimensional stripe structure natu-
rally leads to modulation of the spin and charge density,
which may result in the appearance of weak ferromag-
netism. 

In this work, we show that, for pairs predominantly
formed from states within the Fermi hole contour and
from states outside the Fermi contour, the total pair
momenta (K and K', respectively) are not equal (this
should result in actually observed asymmetry of tunnel
volt–ampere characteristics with respect to changing
the sign of bias voltage.) These momenta are equal nei-
ther to the antiferromagnetic vector nor to the doubled
Fermi vector, and Cooper pairs with a zero total
momentum can therefore not appear, as is assumed in
what follows. The hyperbolic metric of the kinetic
energy of the relative motion of such pairs results in the
redistribution of particles in the momentum space, that
is, in the appearance of a pair Fermi contour which does
not coincide with the Fermi contour defined as a zero-
energy line of one-particle excitations. Such a nonuni-
formity of the distribution of particle pairs in the
momentum space against the background of doping-
dependent antiferromagnetic ordering corresponds to
the nonuniform (stripe) electronic structure of conduct-
ing planes in high-Tc compounds.

2. THE HAMILTONIAN OF HOLE PAIRS

Relative motion momentum k of a hole pair with
total momentum K (K ≈ 2kF, where kF is the Fermi
momentum in direction K) belongs to some K-depen-
dent region ΞK within the 2D Brillouin zone [1].
Because the Fermi contour is situated in an extended
neighborhood of the saddle point of the electronic dis-
persion law, this region is naturally separated into two
parts, in one of which the energy of pair relative motion

is positive ( ), and, in the other, negative ( ). The
ΞK region corresponding to pair momentum K (K pair)
which is smaller than twice the Fermi momentum in
direction K (K < 2kF) is schematically shown in Fig. 1.
In Fig. 1, direction K coincides with the direction of the
Cu–O bond in the conducting plane (antinodal direc-
tion). The shape of the Fermi contour (a square with
rounded angles; a part of the Fermi contour is shown in
Fig. 1 as a line labeled by the corresponding hole
energy value, which equals the Fermi energy EF) is typ-
ical of high-Tc cuprates with p-type doping [16]. The ΞK

region for the selected direction K therefore consists of
two parts. One part is situated inside the Fermi contour,
and the other, outside it. The energy of the pair along

the a–a' and b–b' lines, which separate the  and

 regions, equals the energy of the center of mass
2ε(K/2). Clearly, there are many hole pairs with
momentum K and the same energy in which the k± =
K/2 ± k momenta of the holes constituting these pairs
belong to some line in the k space region bounded by

ΞK
+( ) ΞK

–( )

ΞK
+( )

ΞK
–( )
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the Fermi contour. In addition, there exist pairs with the
same momentum K of the center of mass and the same

energy but hole momenta  outside the region
bounded by the Fermi contour. It follows that, because
of the hyperbolic k space metric, the removal of a pair
of holes with momenta k± (the creation of two electrons
inside the Fermi hole contour) and the creation of a pair

of holes with momenta  outside the Fermi contour
can occur without a change in energy. If the pair
momentum K' value (K' pair) is larger than twice the

Fermi momentum (K ' > 2kF), the corresponding 
region fully lies outside the Fermi contour. The transfer
of a pair of holes from ΞK to ΞK ' is definitely related to
an increase in energy (the energy of the center of mass
then increases). However, note that such a transfer can
involve the removal of pairs with a positive relative
motion energy from ΞK and the appearance of pairs
with a negative relative motion energy in ΞK '.

The transfer of hole pairs from the  part of the
ΞK region to the k space region outside the Fermi con-
tour can be related to the formation of a spatially inho-
mogeneous (stripe) structure in which regions with
decreased and increased (with respect to the mean
value) hole concentrations alternate. The region to

which hole pairs can be transferred can be the  part
of the ΞK region that is situated outside the Fermi con-
tour and corresponds to the same K < 2kF pair momen-

tum value or the  part of the  region that corre-
sponds to the K ' > 2kF pair momentum (Fig. 1). The
density of states of the relative pair motion is substan-

tially higher in  than in , which allows us to con-

sider    transitions only. The pairs that
come from ΞK have positive relative motion energies,

whereas relative pair motion energies in  are nega-
tive. A peculiar band diagram for pairs with momenta
K and K' is shown in Fig. 2. There is some energy gap

δεKK ' between the highest pair energy 2EF in  and

the lowest pair energy in . As mentioned above,

hole transfer from  to  therefore results in
kinetic energy loss. To estimate this loss, suppose that a

certain δN number of pairs from  are transferred to

. In the  region (when T  0 and there is no
interaction between holes), free pair states appear in
some energy interval near 2EF, which is small com-
pared with δεKK '. The same number of pairs fill a narrow
energy interval (determined from the condition of the
conservation of the number of pairs) at the lower

boundary of the zone corresponding to the  region,

k±'

k±'

ΞK'

ΞK
+( )

Ξ̃K

ΞK'
–( ) ΞK'

ΞK'
–( ) Ξ̃K

ΞK
+( ) ΞK'

–( )

ΞK'

ΞK
+( )

ΞK'
–( )

ΞK
+( ) ΞK'

–( )

ΞK
+( )

ΞK'
–( ) ΞK

+( )

ΞK'
–( )
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and energy loss caused by the transfer of holes from

 to  can therefore be estimated as δNδεKK '.

The    transition in the k space corre-
sponds to the transfer of holes from antiferromagnetic
to metallic part of the stripe region in the r space (Fig. 3).
The accompanying strengthening of antiferromagnetic

correlations in  somewhat decreases energy, which
should balance energy loss caused by the excitation of

hole pairs from  to . Energy gain in the

removal of a hole pair from  (that is, from the anti-
ferromagnetic part of the stripe region) can be taken into
account phenomenologically, by the introduction of an
I = I(x) parameter depending on the p – pN ≡ x difference.

Let each hole pair removed from the  region give
energy gain I. The hole energy gain of removing δN
pairs then equals –δNI. It follows that the stripe struc-
ture is energetically favorable if

(2.1)

ΞK
+( ) ΞK

–( )

ΞK
+( ) ΞK'

–( )

ΞK
+( )

ΞK
+( ) ΞK

–( )

ΞK
+( )

ΞK
+( )

I δεKK' .>

Fig. 1. Regions of admissible relative motion momenta of K
pairs (region ΞK bounded by the m'dcmc'd'm' line and region

 bounded by the nm'n'n and pmp'p lines) and K' pairs
(region ΞK ' bounded by the 1'2'21 line). The straight lines

 and  (  and ) correspond to K (K') pair
energy equal to the center-of-mass energy 2ε(K/2) (2ε(K'/2)).
The region of negative relative pair motion energies lies
above and below these lines, and the region of positive ener-

gies, to the left and to the right of them. The  region

corresponding to negative K-pair relative motion energies
counted from the chemical potential level is bounded by the

m'dcmc'd'm' line, and the  region of positive energies,

by the m'dd'm and mcc'm lines. For K' pairs, the 1'2' 1'

and 12 1 lines bound the  region, and the 

line bounds the  region. The nn' and pp' lines are por-

tions of the boundary of the momentum space region with a
hyperbolic metric for K pairs, and the 11' and 22' lines are
similar boundaries for K' pairs. The Fermi contour labeled
by EF (the Fermi energy) is the line passing through the
n'1m'dcm2p' points. The pair Fermi contour is shown by

lines dd' and cc' for K pairs and by lines  and  for K'
pairs.

Ξ̃K

aa' bb' aa' bb'

ΞK
–( )

ΞK
+( )

d' d

cc' ΞK'
–( )

dd'cc'd

ΞK'
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–––

–––
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K' pairsK' pairsK' pairs
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c'c'c' mmm222
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–––
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SICS      Vol. 94      No. 1      2002



152 BELYAVSKY, KOPAEV
Fig. 2. Given at the top are the ΞK and ΞK ' regions. Along the straight lines within ΞK and ΞK ', relative motion energies of K and
K' pairs, respectively, equal zero. The ff ' line is a portion of the Fermi contour corresponding to the homogeneous state of the elec-
tronic system (left diagram, top part). The cc' and dd' lines are pair Fermi contour portions for antiferromagnetic (AF) stripe region
(diagram in the middle, top part) and stripe region with metallic conductivity (M) (right diagram, top part). Occupied states are
shaded. The bottom band schemes of relative motion energy show the uniform electronic system state (left diagram), AF stripe part
(middle diagram), and M stripe part (right diagram). The lower band corresponds to K pairs, and the upper one, to K' pairs.

Uniform state Stripe structure state

AF M

c'f f 'b'a' d'

gK '

gK '

gK '

gK

gK

gK

δεKK '

δεKK '

δεKK '

c

d

c'

d'

d cab

gEF
Note that the arising of the stripe structure within the
approach that we use is not at all related to a possible
transition of the electronic subsystem into the super-
conducting state.

Note also that, whereas, in this work, the transfer of

holes from the  to the  region sustained by theΞK
+( ) ΞK'

–( )

Fig. 3. A schematic diagram of the stripe ordering. Arrows
indicate the hole transitions from metallic to antiferromag-
netic stripe region corresponding to the transitions in the
momentum space indicated by arrows in Fig. 1.

M– M+

MM AFAF
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restoration of antiferromagnetic order in the formation
of stripes that is considered, in [12], the redistribution
of holes between the ΞK region and some acceptor res-
ervoir level was implicitly assumed to occur. The
degree of transfer (and the chemical potential value in
the absence of superconducting pairing) is then deter-
mined by the energy position of the acceptor level. For
instance, if the acceptor level of an EA energy (this
energy may be due to the presence of the corresponding
doping admixtures in layers-reservoirs) is situated
below the Fermi level, the depopulation of hole states in
the energy layer of width δE = EF – EA near the Fermi
contour should occur at T = 0. If the hole dispersion law
is isotropic and the momentum space has the usual
Euclidean metric, then the Fermi contour congruently
shrinks precisely by δE. Holes that leave the initially
populated region become bound with impurity atoms
uniformly distributed in the r space. If the Fermi con-
tour with long almost rectilinear portions is strongly
anisotropic, then it follows from the aforesaid that,
because of the hyperbolic metric of the momentum
space in the vicinity of the Fermi contour, the corre-
sponding change in the population of states near the
Fermi contour will be nonuniform, which should result
 AND THEORETICAL PHYSICS      Vol. 94      No. 1      2002
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in a spatially inhomogeneous population of acceptor
states [3].

The presence of a hole-populated part in the ΞK =

 +  region (for this part, we will use the 
notation introduced above), where the relative hole
motion energy counted from the chemical potential
level is by definition negative, and of a depopulated part

(denoted by ) with a positive relative motion
energy (and a similar distribution of holes in the k space
in the ΞK ' region) makes hole pairing possible near the
lines that separate ΞK and ΞK ' region parts depopulated
and populated as a result of stripe formation. It follows
that these lines (Fig. 1) play the role of a peculiar “pair”
Fermi contour on which a superconducting gap can
arise. If the K' – K vector value that determines the
scale of the stripe structure is substantially larger than
the δkc ~ ∆ characteristic size of the k space region near
the Fermi contour in which the superconducting order
parameter is nonzero (as is assumed in what follows),
the problems of pairing in ΞK and  can in a first
approximation be considered independently of each
other.

It should be taken into account in writing the Hamil-
tonian of hole pairs with momentum K that each hole

virtually transferred from  to  in the k space as
a result of superconducting pairing (as shown by arrows
in Fig. 1) goes into the antiferromagnetic part of the
stripe in the r space which, as noted above, may feature
weak ferromagnetic ordering caused by the simulta-
neous existence of spin and charge density waves. It is
natural to suggest that the resulting average magnetiza-
tion is proportional to the phenomenological parameter
I(x) introduced above and the hole energy can be
expressed as 

(2.2)

where ε(k) is the dispersion law of holes with momenta
k and σ is the projection of the hole spin. The charac-
teristic function θk equals 1 for the relative hole motion

momentum k ∈   and θk = 0 for k ∈  . The coef-
ficient of proportionality between the weak magnetiza-
tion (arising in the antiferromagnetic part of the stripe)
and the Weiss antiferromagnetic field I(x) is sufficiently
small (χ ! 1); in particular, assuming χ  0 in (2.2),
it is possible to consider the superconducting pairing in
the absence of weak ferromagnetism. It follows that the
Hamiltonian of hole pairs with momentum K has the
form

(2.3)

ΞK
–( ) ΞK

+( ) ΞK
–( )

ΞK
+( )

ΞK'

ΞK
–( ) ΞK

+( )

εσ k( ) ε k( ) χI x( )σθk,+=

ΞK ΞK'

ĤK  = ε↑ k+( ) µ–[ ] âk+↑
+ âk+↑ ε↓ k–( ) µ–[ ] âk–↓

+ âk–↓+{ }
k

∑

+ Ũ k k'–( )âk+↑
+ âk–↓

+ âk–' ↓ âk+' ↑ ,
k k',
∑
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where  = K/2 ± k',  ( ) are the operators of
creation (annihilation) of a hole with momentum k± and
spin projection σ, symbol ↑ (↓ ) corresponds to σ =
1/2 (–1/2), µ is the chemical potential of holes, and the
summation with respect to k, k' is performed over the
whole domain of definition of the relative motion
momentum of the K and K' pairs.

The Fourier transform of the energy of screened

Coulomb repulsion of holes (k – k') depends on the
k space region within which scattering in interactions
between holes is allowed [1]. Because of the limitations
imposed by the Pauli principle, the whole region of
allowed scattering for the K pair components (k+ and k–
momenta) is ΞK. However, if K pairs with negative rel-
ative motion energies are considered, that is, if k, k' ∈

, then, clearly, (k – k') = U0 . Similarly, if

k, k' ∈  , that is, K pairs with positive relative

motion energies are considered, then (k – k') =

U0 . If scattering involves the transfer of pairs from

 to , that is, if k ∈   and k' ∈   (and vice
versa), then the region allowed for scattering is the

whole ΞK region, and we must then assume that (k –
k') = U0ΞK. In the case when the momenta k and k'
belong to the regions  and  corresponding to dif-

ferent total momenta K and K', the energy (k – k') is
determined in a similar way. Here [1], U0 =

4πe2 a2/cS; r0 is the screening radius; a and c are the
interatomic distances in the conducting plane and
between neighboring planes, respectively; and S is the
normalization area. The area of the ΞK region or the
related dimensionless ΞKa2/(2π)2 value, which is the
ratio between this area and the 2D Brillouin zone area
determining the statistical weight of the K pair [1],
takes into account statistical correlations in the system
of holes and thereby plays the role of the correlation
attenuation factor [17].

3. ENERGY GAP

Approximate diagonalization of Hamiltonian (2.3)
can, as usual [18], be performed with the use of the
Bogoliubov transformation, which introduces new one-
particle creation and annihilation operators,

(3.1)

The subscripts K and K', indicating domains of the particle
creation and annihilation operators for the operators and
amplitudes uk and νk in Eq. (3.1), will be omitted below.

Hamiltonian (2.3) can be written [18] accurate to 

k±' âk± σ
+ âk± σ

Ũ

ΞK
–( ) Ũ ΞK

–( )

ΞK
+( )

Ũ

ΞK
+( )

ΞK
–( ) ΞK

+( ) ΞK
–( ) ΞK

+( )

Ũ

ΞK ΞK'

Ũ

r0
2

âk+↑ ukbk +1, νkb̂k –1,
+

,+=

âk–↓ ukb̂k –1, νkb̂k +1,
+

.–=

b̂
2
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as  = E0 +  + , where the ground state
energy is

(3.2)

2ξk ≡ ε(k+) + ε(k–) – 2µ is the hole pair energy counted

from the chemical potential level, and  and 
are, respectively, the transformed Hamiltonian diagonal
and off-diagonal parts, which have the form

(3.3)

(3.4)

Let us define the order parameter as

(3.5)

where nk, β ≡  = [exp(ηβ(k)/T) + 1]–1 are the
mean occupation numbers determined by the energies

(3.6)

that correspond to two β = ±1 branches of the spectrum
of one-particle excitations. The population of the region
where the hole pair energy 2ξk < 0 and the condition of

off-diagonal Hamiltonian part  vanishing deter-
mine the selection of the amplitudes in the Bogoliubov
transformation,

(3.7)

The equation for the order parameter takes the form

(3.8)

It follows from (3.8) that, at (k – k') > 0, a constant-
sign solution is absent in ΞK. Let us therefore assume,
for finding an approximate solution, that the depen-
dence of the order parameter on the relative motion
momentum is determined by a discontinuous function,
which abruptly changes sign in passing across the
Fermi contour. We restrict our consideration to the sim-
plest case when the order parameter takes on constant
(independent of k) values on both sides of the Fermi

contour. Namely, we assume that ∆k ≡ ∆– > 0 in 

Ĥ Ĥ
0( )

Ĥ
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and ∆k ≡ –∆+ < 0 in . This selection of the solution
(as well as of the simplest solution in the BCS theory
[19, 20]) most probably does not correspond to an exact
minimum of the ground state energy. However, this
solution leads (as will be shown below) to an energy
gain in the superconducting pair condensation. It
should be noted that the superconducting pairing con-
sidered independently on the pair Fermi contour in each
of the  and  domains may lead only to the trivial
solution ∆+ = ∆– = 0 because (as noted above) Eq. (3.8)
has no nontrivial constant-sign solutions. Thus, the
transitions of particles between states close to the pair
Fermi contour parts inside (  domain) and outside

(  domain) of the Fermi contour account for the main
contribution to the superconducting pairing. In the r
space, these transitions correspond to the transitions
between metallic and antiferromagnetic parts of the
stripe. For this reason, the mean field approximation
used in writing Eq. (2.2) is valid, strictly speaking, only
provided that the spatial scale of the stripe structure
does not exceed the coherence length. 

Equation (3.8) can be rewritten in the form

(3.9)

Here, α = /(  + ). Note that the (1 – α + α2) >
0 multiplier is positive at arbitrary α in the range 0 <

α < 1. This multiplier, which is proportional to  –

, appears as the difference between the square
of the matrix element of the interaction energy between
holes “off-diagonal” with respect to the (±) indices and
the product of the matrix elements “diagonal” with
respect to these indices; it takes into account the popu-
lation of states within the pair Fermi contour, that is,
statistical (determined by the Pauli principle) correla-
tions in the electronic system. The inequality specified
above is met irrespective of the above suggestion that
the matrix element of screened Coulomb repulsion
U0 = const in the whole ΞK region.

As excitation energy (3.6) is positive by definition in

the whole  region, that is, η±1(k) =  > 0,
the 2ξk energy of the pair in this region lies in the range
−2εK– ≤ 2ξk ≤ 0, where εK– is the energy width of the

ΞK
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 region (Fig. 2). According to (3.6), we have

η±1(k) =  ± χI/2 in the  region. Clearly,
η+1(k) > 0 always, whereas the η–1(k) > 0 condition,
which is necessary in order that the multiplier contain-
ing occupation numbers be equal to one on the right-
hand side of the second equation in (3.9) when T  0, is

met if χI , where εK+ is the

energy width of the  region (Fig. 2). Indeed, if 0 ≤

2ξk ≤ χI , we have nk, 1 = 0 and nk, –1 = 1
for T  0 in this region of pair energy variations (and
in the corresponding momentum space region within

). It follows that the (1 – nk, 1 – nk, –1) multiplier

excludes some part of the  region from the sum in
the second equation in (3.9).

Assuming that ∆+ ! I < 2εK+ (the hole pair energy
can then be counted from the chemical potential level
established as a result of the stratification of holes in the
formation of the stripe structure; at this stage, we can
therefore ignore the chemical potential shift caused by
the formation of the condensate of pairs in calculating
the ∆± order parameter, because this shift is small as ∆±)
and passing from the summation to the integration,

(3.10)

where g(+)  (g(–)) is the mean density of states in

( ), let us rewrite (3.9) for T  0 as

(3.11)

where the notation w±(α) = (e2 a2/2πcε±) (1 – α + α2)
is used. The second equation in (3.11) is linear, whence
it immediately follows that ∆+ = γ∆–, where the coeffi-

cient relating order parameter values in the  and 
regions has the form

(3.12)

By definition, γ > 0. Taking (2.1) into account, we
therefore arrive at the conclusion that a solution to (3.8)
exists if

(3.13)
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1
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As the I = I(x) antiferromagnetic energy value depends
on the doping level, inequalities (3.13) actually deter-
mine the region of doping in which the order parameter
is nonzero.

The first equation in (3.11) yields the order parame-
ter value, which also depends on the doping level,

(3.14)

Here, w±(α) = w±(1 – α + α2) and ν = γ(1 – α)2w+/αw–.
Although the obtained expression is formally similar to
that for the energy gap in the BCS theory [19, 20],
(3.14) exhibits a dependence on the U0 effective cou-
pling constant which is substantially more complex
than and different from that in the BCS theory, because
this constant is present in the definitions of the γ and ν
parameters. The preexponential factor is determined by

the kinetic energy of the pair in the  region; on the
other hand, this energy itself depends on how large the

 region depleted of holes as a result of stripe struc-
ture formation and determined by the I antiferromag-
netic energy value is. Of course, parameter (3.14) also
depends on pair momentum K. This momentum should
in principle be determined by comparing the ground
state energies of the system in the superconducting and
normal phases.

In calculating superconducting order parameter
(3.14), we only considered the situation when the pair
Fermi contour opens as a result of the redistribution of
holes between the ΞK and ΞK ' regions and ignored pos-

sible influence of the  region (corresponding to the
same pair total momentum as the ΞK region) on super-
conducting pairing. For this influence, there is no I >
δεKK ' restriction on the antiferromagnetic energy, and a

minimum hole transfer energy from ΞK to  is zero
(points m and m' in Fig. 1; in the situation that we are
considering, the pair Fermi contour degenerates into
these two points). The formation of such a contour of a
finite length requires energy expenditure related to the

redistribution of holes between ΞK and . It is likely
that a stripe structure does not form in this case, and
such an energy loss can be balanced by restoring partial
antiferromagnetic order in such a redistribution of holes
over energies. As mentioned, the density of states van-
ishes at m and m', which means that superconducting
transition temperatures, even moderately high, can
hardly be attained in this case.

As a consequence of crystallographic symmetry, all
wave functions of the pair that correspond to the set of
vectors that form the star of vector K are equivalent.
The wave function of the pair having the symmetry
properties of the crystal should therefore be represented
as some linear combination with coefficients selected
according to the irreducible representations of the sym-
metry group of the crystal. In tetragonal crystals, the

∆– 2ε–
χI
2ε+
-------- 

  ν γ
αw+
----------– 

  .exp=

ΞK'
–( )

ΞK
+( )

Ξ̃K

Ξ̃K

Ξ̃K
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momentum space region comprising four, generally
nonoverlapping in the vicinity of nodal directions, ΞK

regions (Fig. 1) corresponds to this linear combination.
For this reason, in this neighborhood corresponding to
some finite Fermi contour region, the superconducting
order parameter should vanish irrespective of the irre-
ducible representation (A1g or B1g) under which the
wave function of the pair transforms. Transformations
under the A1g representation formally correspond to
anisotropic s-wave order parameter symmetry (which
also exists when ΞK regions pairwise overlap each
other). In the case of B1g transformations, we have
d-wave symmetry irrespective of whether the ΞK

regions do or do not overlap; rotation through π/4 then
corresponds to the transformation ∆–  ∆+.

4. THE SHIFT OF THE CHEMICAL POTENTIAL

The 2EF chemical potential value of hole pairs in a
spatially uniform system means that the whole ΞK

region is filled, whereas states in the ΞK ' region are
vacant. The appearance of an inhomogeneous stripe
structure results in the redistribution of holes between
ΞK and ΞK ' and the formation of a pair Fermi contour,
which is the line that, at T = 0, separates occupied and
unoccupied states in ΞK and ΞK '. Precisely as a result of
such a redistribution sustained by partial restoration of
antiferromagnetic order, the very possibility of pairing
of holes arises. This pairing may result in the formation
of an energy gap on the pair Fermi contour. The degree
of depletion of the ΞK  region and population of ΞK ' is
determined by the I antiferromagnetic energy value,
which is responsible for the position of the 2µ chemical
potential of hole pairs with respect to energy band
boundaries with the gK(ε) and gK '(ε) densities of states
corresponding to the ΞK and ΞK ' regions, as is shown in
Fig. 2.

To determine the shift of chemical potential µ'
directly caused by the condensation of hole pairs, we
must take into account that the formal definition of the
mean number of holes in ΞK,

(4.1)

takes into account holes experiencing transfer from

 to ; at equilibrium, this transfer is balanced by

holes supplied to  from . The conserved value
is therefore the sum 〈NK〉  + 〈NK '〉 , where the second term
is the mean number of holes in the  region. When a
condensate of pairs with momenta K and K' is formed,
hole fluxes between ΞK and ΞK ' change. However, if
|K' – K | @ δkc (as was assumed above), condensations
in ΞK and ΞK ' can be considered independent of each
other. As the contribution to 〈NK〉  of transitions from ΞK

to ΞK ' is nonzero, only transitions related to the conden-
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sation of 

 

K

 

 pairs can be taken into account if the posi-
tion of the pair Fermi contour determined by the 

 

I

 

 phe-
nomenological parameter is set and transitions of hole
pairs caused by interaction (2.3) across this contour are
considered. Precisely these transitions are responsible
for the shift of the pair Fermi contour as a result of pair-
ing interaction of holes in hole pair Hamiltonian (2.3).
Strictly speaking, the inclusion of pairing interaction
(when 

 

∆

 

–

 

 

 

≡ ∆

 

 

 

≠

 

 0) also causes a small (against 

 

∆

 

)
change in hole pair fluxes between 

 

Ξ

 

K

 

 and 

 

Ξ

 

K

 

'

 

. On the
other hand, the shift of chemical potential 

 

µ

 

' caused by
the condensation is itself small as 

 

∆

 

, and taking into
account changes in fluxes between 

 

Ξ

 

K

 

 and 

 

Ξ

 

K

 

'

 

 can only
slightly change the values of the 

 
λ

 
 and 

 
τ

 
 coefficients

introduced below without giving qualitatively new
results. It follows that 

 
〈

 
N

 

K

 
〉

 
 has the meaning of an

approximately conserved number of holes in the 
region; this number is determined by the 

 

I

 

 parameter.
As in [12], (4.1) can, at 

 

T 

 

= 0, be rewritten as

(4.2)

Passing from summation to integration yields

(4.3)

Here, 

 

δΞ ≡  − 

 

. The index labeling 
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pairs and
the (2

 

π
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–2

 

 common factor of the mean densities of states
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±

 

 = /

 

ε

 

±

 

 in the 

 

 

 

regions are omitted. As the shift
of chemical potential 

 

µ

 

' counted from the pair Fermi
contour determined for 

 

∆

 

  0 is small in 

 

∆

 

, we
assume that 

 

µ

 

' = 

 

λ|∆|

 

 + 

 

τ∆

 

2

 

 (here, we select 

 

∆

 

 > 0 and
will therefore omit the modulus sign; note also that the
shift of the chemical potential is identical for all crys-
tallographically equivalent directions of the total pair
momentum). Further, assuming that 

 

ε

 

±

 

 @ ∆, we can
rewrite (4.3) with accuracy to terms of the order of ∆2

inclusive. The equality corresponding to (4.3) should
be fulfilled at arbitrary ∆ ≠ 0. The λ and τ values can
therefore be found by equating the coefficients of ∆ and
∆2 to zero in the expansion. The equation for λ has the
form

(4.4)

whence

(4.5)
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Using λ allows the τ coefficient to be found,

(4.6)

Coefficients (4.5) and (4.6) that determine the shift of
the chemical potential caused by the condensation
depend on expression (3.12) for the γ parameter relat-
ing the superconducting order parameter values ∆– and

∆+, which are constant within the  and 
regions, respectively. According to (3.12), the γ param-

eter depends on the shape and size of the  and 
regions (which determine the α, ε±, and w± values) and
on antiferromagnetic energy I. This energy, like effec-
tive coupling constants w±, depends on doping level x.
As has been mentioned above, I(x) is a monotonically
decreasing function of its argument (Fig. 4). If we ini-
tially assume that χI0 ≡ χI(0) > 2ε+, then ln[2ε+/χI(x)]
in the definition of γ is a slowly increasing function of
x, which passes zero at some point xa > 0 (this is shown

in Fig. 4). In contrast, w±(x) ~  is a decreasing func-
tion of x (for simplicity, below the assume w+ = w– = w);
the plot of w(x) is also presented in Fig. 4. The
w(x)ln[2ε+/χI(x)] product is therefore a function with a
maximum and passes through xa (Fig. 4). The γ ≥ 0 con-
dition can be written as

(4.7)

This condition can be used to find the doping level
interval, x1 ≤ x ≤ x2, within which there exists a solution
to (3.11) for the superconducting order parameter (Fig. 4).
The denominator in (3.12) vanishes at x = x1, 2; there-
fore, γ  +∞ if x  x1 + 0 or x  x2 – 0. The x =
x1, 2 points are the simple poles of the γ = γ(x) function;
this function is schematically plotted in Fig. 4.

It is believed [3] that antiferromagnetic correlations
are essentially suppressed at the doping level that
approximately corresponds to the optimal doping level,
x = xc (at x = xc, the temperature of the superconducting
transition is a maximum; clearly, x1 < xc < x2). Set I(x) =
I0exp(–x/xc). We will only use the linear term of the
expansion of w(x) in powers of x; that is, w(x) = w(1 –
x/xb), where xb > xc. The left-hand side of (4.7) can then
be written in the form

(4.8)

[the right-hand side of (4.7) is determined by the spe-
cial features of the electronic spectrum at x1 < x < x2
and, in this doping level interval, can be considered
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independent of x]. The plot of function (4.8) is a parab-
ola passing through points xb and xa ≡ xcln(χI0/2ε+). The
maximum value of this function, (w/4xbxc)(xb – xa)2, is
attained at  = (xb + xa)/2 and can exceed κ in (4.7) only
if the w coupling constant is fairly large. It follows that
inequality (4.7) imposes restrictions on the minimum

coupling constant value. As w ~ , condition (4.7)
can only be satisfied if the ΞK region exceeds some def-
inite value. The ΞK region may be large for an appropri-
ate value of the antiferromagnetic energy ensuring (due
to the Fermi contour nesting) a sufficiently large length
of the pair Fermi contour, whereby the vectors K and K'
are aligned with the nesting vector (antinodal direc-
tion). On the contrary, the ΞK region is fairly small for the
K and K' vectors rotated through π/4 with respect to the
nesting vector (nodal directions). For this reason, condi-
tion (4.7) actually establishes the direction of the pair
momentum at which the condensation of pairs occurs.

By definition, xa > 0 if χI0 > 2ε+. As follows from
Fig. 4, we then have x1 > 0. The long-range antiferro-
magnetic order region is therefore separated from the
x1 < x < x2 region, where the superconducting order
parameter is nonzero, by a finite doping level interval,
as, for instance, in the La2 – xSrxCuO4system [21]. At
xa < 0, that is, if χI0 < 2ε+, situations with x1 ≤ 0 are pos-
sible; that is, the region with a nonzero superconducting
order parameter (when T  0) borders upon the anti-
ferromagnetic phase as the doping level increases, as,
for instance, in the YBa2Cu3O6 + x phase [21].

5. CONDENSATION ENERGY

The existence of solution (3.14) for the supercon-
ducting order parameter in the x1 < x < x2 doping inter-
val does not mean that the superconducting state arises
in all of this interval or at least in some part of it, that is,
that the electronic system should experience the transi-

x

ΞK
2

1

1

2

4

3

5

x1 x2 x

κ

I0/2ε+

Fig. 4. Doping dependences (drawn schematically, not to
scale) of the functions (1) I(x), (2) ln[2ε+/χI(x)], (3) w(x),
(4) w(x)ln[2ε+/χI(x)], and (5) γ(x).
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tion from the nonsuperfluid normal phase to the super-
fluid superconducting phase as temperature decreases.
For such a transition to occur, it is necessary that the
condensation energy determined as the difference of
the ground state energies of the system in the normal
and superconducting phases be positive.

The ground state energy T = 0 can, according to
(3.2), be written as

(5.1)

Using the chemical potential shift caused by the con-
densation found above, µ' = λ∆ + τ∆2, we can write
(5.1) in the form

(5.2)

where the dimensionless order parameter δ ≡ ∆/2ε– is
introduced and the ground state energy of the normal
state,

, (5.3)

is defined as the limit to which (5.1) tends as δ  0.
The parameter c determined in (5.2) is related to the
coefficient τ in (4.6) as

(5.4)

The second term in (5.4), which is not related to the
condensation-induced chemical potential shift, for-
mally originates from the direct contribution of the
potential energy of pairing interaction in Hamiltonian
(2.3) to the condensation energy, whereas the contribu-
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Fig. 5. Doping dependences (drawn schematically, not to
scale) of dimensionless order parameter δ(x) and the λ(x)
and c(x) parameters determining the condensation energy;
c(x) function behaviors discussed in the text are shown by
the dashed and dot-and-dash lines.
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tions related to the λ and τ coefficients can be explained
by the renormalization of the kinetic energy of relative
pair motion caused by the condensation of pairs.
Although such an artificial separation [15, 16] of the
condensation energy into kinetic and potential energy
contributions [both these contributions, naturally, dis-
appear as the coupling constant in (2.3) tends to zero] is
quite conventional, applying it to (5.2) allows us to get
a clearer idea of the role played by the hyperbolic met-
ric of the momentum space and the resulting spatially
inhomogeneous spin and charge density distributions in
the formation of the ground state of the system.

As follows from (5.2), energy gain as a result of the
condensation of pairs is possible if

(5.5)

This gain is largely caused by the renormalization of
the kinetic energy of pairs. Indeed, the chemical poten-
tial change accompanying the arising of a condensate
of hole pairs changes the position of the pair Fermi con-
tour. Under condition (5.5), the contour shifts in such a
way that the part of the ΞK region in which the relative
pair motion energy is negative expands. Filling this
region during condensation decreases the ground state
energy.

In this context, the important experimental result
obtained in [24] should be mentioned. In conventional
superconductors, the sum rule holds fairly well.
According to this rule, the density of the Bose conden-
sate approximately equals the integral of the σ1N – σ1S

difference of the conductivities of the normal and
superconducting phases with respect to frequency
taken from zero to ~∆. It was found in [24] that the Bose
condensate density in the known high-Tc compounds
exceeded this integral several fold. Measurements
showed [24] that the σ1N – σ1S difference was nonzero
in a frequency range much broader than ∆. As follows
from the BCS theory, the condensation of each Cooper
pair in conventional superconductors yields energy
gain ∆, and the condensation region itself in the
momentum space in the neighborhood of the Fermi sur-
face has an energy width also of the order of ∆. Pre-
cisely for these reasons, the condensation energy is of
the order of ∆2. The presence of the term linear in ∆ in
ground state energy (5.2) is evidence that each K pair
also gives an energy gain of the order of ∆, but the con-
densation region in the momentum space (in this case,
related to the pair Fermi contour rather than the Fermi
surface and determined precisely by the kinetic energy
of holes of the order of ε–) is substantially broader,
which substantiates the conclusion drawn in [24].

Let us define the condensation energy per unit area
as

(5.6)

and qualitatively study its dependence on the level of
doping. Note that (5.6) determines the contribution to
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the energy of condensation only of one ΞK region cor-
responding to the total pair momentum K. We must
therefore multiply (5.6) by the number of vectors in the
star of vector K. The γ(x) function determines the dop-
ing level dependence of order parameter (3.14) and
coefficients (4.5) and (4.6) that determine the chemical
potential shift caused by the condensation of pairs.
According to (3.14), the dimensionless order parameter
has the form

(5.7)

As ν ~ γ and χI(x) < 2ε+ in the x1 < x < x2 doping inter-
val, it is easy to see that δ(x) exponentially tends to zero
as either x  x1 + 0 or x  x2 – 0. Function (5.7) has
a maximum at x1 < x < x2 and is sharply asymmetric
(Fig. 5) because I(x) and w(x) are both decreasing func-
tions of x. Condition (5.5) allows the doping level inter-
val (x* < x < x*) within which the condensation of pairs
results in energy gain to be found.

Equation (5.7) with the found λ and τ coefficients
that determine the condensation-induced chemical
potential shift is a very complex function of the doping
level, which also depends on several parameters spe-
cific to a given high-Tc superconductor. For instance,
the α parameter is directly determined by the structure
of the lines of equal energy in the vicinity of the Fermi
contour, the ε± parameters characterize the energy
width of the momentum space domain of definition of
K pairs, and w± and I0 are the Coulomb and antiferro-
magnetic interactions in the system of holes. Depend-
ing on the ratio between these parameters, a complex
and diversified behavior of the condensation energy as
a function of doping can be expected. Below, this
behavior is characterized only in general.

The γ(x) function, which actually determines the
(also doping-dependent) λ(x) and c(x) coefficients in
expression (5.6) for the energy of condensation, is sche-
matically plotted in Fig. 4. As directly follows from
(4.5), the λ(x) function definitely changes sign twice
within the x1 < x < x2 interval (Fig. 5), and, if condition
(3.13) is fulfilled, the character of this dependence does
not change. The other function, c(x), exhibits a more
diversified behavior when the ε±  parameters change.
For instance, it can be positive everywhere in the x1 < x < x2
interval or twice change its sign within this interval if the
parameters are properly selected; in addition, it can be
negative everywhere within the whole x1 < x < x2 inter-
val. The first two possibilities are also shown in Fig. 5.

Precisely the combination of functions shown in
Fig. 5 determines the dependence of the condensation
energy on doping (Fig. 6). If c(x) > 0 everywhere in the
x1 < x < x2 interval, the condensation energy is positive
in some x* < x < x* interval (within x1 < x < x2) and neg-
ative at x1 < x < x* and x* < x < x2. Possible changes in
the behavior of the c(x) dependence, that is, the exist-

δ x( )
χI x( )
2ε+

------------ 
  ν γ

αw x( )
---------------– 

  .exp=
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ence of concentration regions within which c(x) < 0,
can cause the appearance of two clearly discernible
maxima of the εc(x) curve instead of one (the dashed
line in Fig. 6). What is more, we can in principle select
such K-pair parameters that cause the appearance of
two separated regions in which εc(x) > 0, as is also
shown in Fig. 6 by the dash and dot-and-dash curves.
Such a nonmonotonic doping dependence of the super-
conducting transition temperature, clearly, directly
related to the condensation energy, is well known for
many high-Tc cuprates [21].

Figure 6, in which the dependence of the order
parameter on doping, δ(x), shown in Fig. 5 is repro-
duced, allows certain qualitative conclusions to be
drawn regarding the 2∆/Tc ratio, which is a universal
quantity in the BCS theory, (2∆/Tc)BCS ≈ 3.5. This is def-
initely not so with high-Tc compounds; especially
strong deviations toward increasing this ratio are
observed in extremely underdoped cuprates. According
to Fig. 6, the condensation energy (and, accordingly, Tc)
is very low in the superconducting region [where
εc(x) > 0] close to its left edge x = x*, whereas the order
parameter, which approximately equals δ(x*), is, con-
versely, fairly large. It is therefore natural to expect
that, in this doping region, we will have 2∆/TC @ 3.5, as
is often observed in experiments. Figure 6 also shows
that the δ(x) and εc(x) curves approach each other in the
overdoped region, which should correspond to smaller
2∆/Tc ratio values.

6. CONCLUSION

The special features of the crystal chemical struc-
ture of high-Tc compounds lead to a peculiar quasi-two-
dimensional electronic structure responsible for the
existence of an extended momentum space region with
a hyperbolic metric. At the concentration of carriers

x1 x2

εc

x

x*

x*

Fig. 6. Doping dependences (drawn schematically, not to
scale) of condensation energy εc(x) and dimensionless
parameter δ(x) also shown in Fig. 5; the dashed and dot-
and-dash εc(x) curves correspond to c(x) function behaviors
discussed in the text and shown in Fig. 5.

δ
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close to half-filling, the hole Fermi contour with a
clearly defined nesting along the sides of the square
2D Brillouin zone (antinodal directions) is situated pre-
cisely in this k space region. This opens up a possibility
of the arising of hole pairs with a large total momentum
(of the order of twice the Fermi momentum) and com-
paratively small relative motion momenta [1]. There is
no need to consider some attractive interaction between
holes constituting a pair because the hyperbolic metric
causes the appearance of bound states in the form of
hole pairs under screened Coulomb repulsion condi-
tions [1, 2]. What is more, precisely under repulsive
interaction conditions, the dependence of the scattering
amplitude on the energy of relative motion of two holes
allows certain conclusions to be drawn [2] that qualita-
tively agree with the known phase diagram for high-Tc

cuprates, especially in the underdoped region. In the
energy region corresponding to repulsion, the scatter-
ing amplitude has two poles. One pole with a high pos-
itive energy and very weak decay is related to the quasi-
stationary hole pair state [1]. The density of one-parti-
cle excitations then substantially decreases, which can
be related to the pseudogap state in the phase diagram.
The second scattering amplitude pole [2] is related to
the development of superconducting instability (the
imaginary part of this pole corresponds to the supercon-
ducting gap).

The positive sign of the real part of the second pole
is likely to correspond to some energy loss. This energy
loss appears because, for pairs to arise, at least some
part of the domain of definition of the relative motion
momentum of a pair with a given total momentum
should be free of holes. Depopulating this region
requires a certain number of hole pairs to be transferred
to states outside the Fermi contour. The resulting inho-
mogeneity of state populations in the momentum space
should cause a nonuniform distribution of holes in the
conventional space, which is generally energetically
unfavorable. However, if partial restoration of antifer-
romagnetic ordering (inherent in an undoped com-
pound but violated by doping) occurs in real space
regions depleted of holes (as is likely to be the case with
high-Tc compounds), there arises some energy gain
capable of balancing energy loss caused by the transfer
of hole pairs outside the Fermi contour. Such a transfer
is related to the special features of the hyperbolic
momentum space metric near the Fermi contour: hole
pairs that have positive relative motion energies within
the Fermi contour go outside it to the k space region
where the energy of their relative motion is negative. In
this way, regions inside and outside the Fermi contour
are formed in which the relative motion momenta of
pairs with given total momenta can vary. The occupied
and free parts of these regions are separated by lines
that are a peculiar Fermi contour for relative pair
motions, or the pair Fermi contour.

The presence of long almost rectilinear Fermi con-
tour portions determines the structure of the pair Fermi
JOURNAL OF EXPERIMENTAL A
contour for the pair momentum directed along the
boundary of the 2D Brillouin zone; namely, the distri-
bution of populated and depopulated regions is one-
dimensional in character. A consequence of this may be
quasi-one-dimensional spatially inhomogeneous spin
and charge density distributions in the form of a stripe
structure, whose characteristic period should be deter-
mined by the |K' – K | value. The arising of the super-
conducting order parameter requires that the antiferro-
magnetic energy, which determines the stripe structure,
be limited by inequalities (3.13). Increasing doping
decreases I(x) and, through this, the ΞK region part free
of holes (accordingly, the length of the pair Fermi con-
tour decreases). Increasing doping also decreases w(x),
which results in an increase in the exponential multi-
plier in (3.13). When ΞK becomes fully occupied, the
superconducting order parameter vanishes at some x =
x2 value. A virtually depopulated ΞK region with a small
pair Fermi contour length corresponds to large I(x) val-
ues. The right inequality in (3.13) therefore results in
the existence of some I value corresponding to the
x = x1 doping level at which the superconducting order
parameter reduces to zero. It follows that the order
parameter passes a maximum at some point within the
x1 < x < x2 interval.

The static picture of stripe ordering that we consider
persists even when the τAF characteristic antiferromag-
netic fluctuation lifetime exceeds the τSC characteristic
time of attaining the superconducting state, τAF > τSC.
Elementary estimates based on the uncertainty relation
show that τAF ~ I–1, whereas, as follows from (3.14), τSC

is inversely proportional to the right-hand side of
(3.13). It follows that the quasi-static stripe structure
picture (dynamic stripes) conforms with condition
(3.13), which determines the existence of the supercon-
ducting order parameter.

When we cross the optimal doping level in passing
from underdoped to overdoped conditions, the ampli-
tude of stripes (dynamic or static) can become rather
small; this is a possible reason why we do not have
experimental proof of the existence of stripes in the
overdoped region. It follows from (3.13) that an
increase in the amplitude of stripes eventually sup-
presses superconducting ordering. The possibility of
the existence of a nontrivial solution for the supercon-
ducting order parameter persists while inequalities
(3.13) can be satisfied. 

The spectacular result obtained in [26], which leads
to an unexpected conclusion if a traditional (based on
the picture of independent one-particle excitations)
interpretation is used [26], is easy to bring into confor-
mity with the concept of the pair Fermi contour. If the
electronic spectra of some high-Tc cuprates are studied
by the ARPES method when the energy of an electron
excited from inner atomic shells differs from the Fermi
level energy by 100 meV or less, the ARPES data quite
unambiguously show that the states near the Fermi
ND THEORETICAL PHYSICS      Vol. 94      No. 1      2002
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level have a 2D character [26] and lead to the well-
known Fermi contour shape, which is a square with
rounded corners [16]. However, if the energy “window”
of ARPES measurements is broadened (that is, an elec-
tron is excited into a state separated from the Fermi
level by approximately 500 meV), the results imply that
the electronic structure is one-rather than two-dimen-
sional. Note, however, that the simple crosslike shape
of the Fermi contour suggested in [26] was obtained not
directly from experiment but from some plausible rea-
soning based on the concept of ideal quasi-one-dimen-
sional stripes.

The conclusion of the 2D  1D “transformation”
of the electronic spectrum made in [26] is in conformity
with the pair Fermi contour concept. Indeed, for the
pair Fermi contour, which lies within the Fermi contour
as is shown at the top of the scheme in the middle of
Fig. 2, to manifest itself in ARPES experiments, elec-
trons should be excited to energies substantially differ-
ent from the Fermi energy (for instance, to energies
substantially lower than EF).

The observation of so-called “dip-hump” structure
in ARPES spectra can be considered one more piece of
evidence in favor of the pair Fermi contour. The maxi-
mum (hump) that appears precisely in the situation that
we are considering (antinodal direction), when the area
of the ΞK region is a maximum, is observed at energies
substantially higher than that corresponding to the
quasi-particle peak and can be related to excitations in
the form of pairs near the pair Fermi contour.

The phenomenological approach that we use to take
into account the influence of antiferromagnetic fluctua-
tions on hole pairing allows the key experimental data
on high-Tc cuprates to be given a sound and consistent
interpretation. Note that the principal conclusions con-
cerning a hyperbolic metric and the arising of a pair
Fermi contour remain valid in approaches alternative to
the band description and based, for instance, on the t–J
model [27] taking into account next-nearest-neighbor
interactions (the t–t '–J model [28]).
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Abstract—Magnetostriction was for the first time studied under the conditions of formation of diamagnetic
domains (Condon domains). Transverse magnetostriction oscillations on a beryllium single crystalline plate
oriented normally to magnetic field were measured in magnetic fields up to 7 T at temperatures down to 1.5 K.
The relative amplitude of oscillations increased almost as the square of magnetic field and reached 10–5.
The signal had a sawtoothed shape corresponding to alternation of homogeneous and inhomogeneous (domain)
states in the region of the existence of magnetic domains. The arising of domains was accompanied by singu-
larities in the observed signals which is explained by an anomalous increase in the compressibility coefficient
of the domain state: coefficient oscillations were more than 100 times larger than the value predicted by the
standard theory. The observed relation between magnetization current and deformation led us to conclude
that the compressibility of the metal was fully determined by conduction electrons. Magnetostriction then
exactly compensated Fermi level oscillations. The position of the Fermi level therefore remained constant
under magnetic field variations. In addition, the domain wall thickness had to increase as the plate grew
thicker. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Landau was the first to introduce the quantization of
free electron orbital motion in a magnetic field for
explaining diamagnetism of metals [1]. The formation
of Landau levels doubtless plays the key role in all
aspects of the low-temperature physics of metals. In the
same work [1], Landau predicted the appearance of a
periodic magnetic field dependence of magnetization in
strong magnetic fields at fairly low temperatures. This
was in essence a prediction of the de Haas–van Alphen
effect discovered later, which was the first one in a large
series of oscillation effects in metals described by
Schönberg [2] fairly fully and in detail. The de Haas–
van Alphen effect had in due time played the decisive
part in studying and interpreting the shape and size of
the Fermi surfaces of most metals. Its role cannot, how-
ever, be reduced to the possibility of obtaining informa-
tion about the Fermi surfaces. The de Haas–van Alphen
effect is central to a very interesting phenomenon,
namely, the phase transition of metals from the state
with homogeneous magnetization to the inhomoge-
neous state with a diamagnetic domain structure. The
formation of such diamagnetic domains, or Condon
domains (Condon was the first to observe this effect for
a plate oriented normally to magnetic field [3]), is a
macroscopic quantum effect, which is of obvious inter-
est of its own. Nevertheless, works that have ever since
been concerned with this phenomenon are exceedingly
few, in all probability because of the extreme complex-
ity of creating conditions necessary for the formation of
domains. This domain structure is certainly alternation
of phases with opposite magnetizations; that is, it is
both diamagnetic and paramagnetic with respect to an
1063-7761/02/9401- $22.00 © 20162
external magnetic field. The term “diamagnetic” is tra-
ditionally used in relation to diamagnetic orbital
motion of electrons with expressly differentiating the
corresponding phenomena from spin magnetism.

Diamagnetic domains were for the first time
described by Condon and Walstedt [4]. A nuclear mag-
netic resonance (NMR) signal was observed in a single
crystalline silver plate oriented normally to the mag-
netic field. The arising of a domain structure was estab-
lished from the beat signal corresponding to NMR line
splitting. The splitting equaled ∆B = 12 Oe in a 9-T
magnetic field. In addition, the authors made an
attempt, unfortunately unsuccessful, to observe a simi-
lar effect in beryllium at H = 1.9 T. Only some thirty
years later were the authors of [5, 6] able to observe dia-
magnetic domains in beryllium directly from splitting
of the resonance peak of free muon precession (µSR).
The µSR method for locally measuring magnetic fields
in substances [7] has been exceedingly successful and
has allowed diamagnetic domains to be observed in
several other metals (primarily, tin [8]) in recent years.
Note also that Bozhko and Vol’skii [9] claimed the for-
mation of domains in aluminum based on helicon reso-
nance measurements.

In this work, we studied the problem of direct inter-
relation between the formation of domains and metal
deformation and elastic properties caused by the mag-
netostriction effect. Chandrasekhar [10] (1963) was the
first to note that magnetization oscillations should
always be accompanied by simultaneous magnetostric-
tion oscillations. In a short period of time, magneto-
striction oscillations in Ag, As, Bi, Cd, Cu, Ga, Sb, Sn,
and Zn [11] were studied experimentally. Experiments
002 MAIK “Nauka/Interperiodica”
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were also performed for differently oriented beryllium
samples [12]. In [12] and, as a rule, in the other works,
experiments were performed for samples whose
demagnetization factors were much smaller than one,
as is natural for measuring the de Haas–van Alphen
effect. For this reason, diamagnetic domains did not
form in these experiments. The purpose of this work
was to study magnetostriction under the conditions of
formation of diamagnetic domains [2], that is, when,
first, the inequality

(1)

(here,  is the oscillating part of electron gas energy, B
is the magnetic field induction in the sample, and M is
the magnetization) was fulfilled and, secondly, the
demagnetization factor in the external magnetic field
direction was close to one.

As the period of δB oscillations is proportional to B2

and therefore increases more rapidly than the M(B)
amplitude, condition (1) bounds from above the inter-
val of magnetic fields in which domains are formed. On
the other hand, the distance between Landau levels
should be substantially larger than temperature ("ωc @
kT), which requires using fairly low temperatures. In
addition, the magnetic field should be strong enough
for this distance to exceed the Landau level width "/τ;
that is, the inequality ωcτ > 1 should be met. Here, ωc is
the cyclotron frequency of conduction electrons in the
field, and τ is the mean free time of electrons in the
sample. It follows that the lower bound of the interval
of fields for observing domains is determined not only
by temperature but also by the quality of the sample. In
addition, this interval is also bounded from below by
solenoid magnetic field inhomogeneity in the sample:
the inhomogeneity value should be substantially
smaller than one-quarter of the oscillation period. In
this interval of magnetic fields, domains periodically
arise in samples. The magnetization vector in each
domain is either collinear or anticollinear with respect
to the external magnetic field. The absolute M values
are equal in all domains.

We used the beryllium single crystal in which the
arising of domains was observed in the earlier experi-
ments, first, in µSR measurements at fields H up to 3 T
[5, 6]. In these measurements, a diamagnetic domain
structure was shown to arise in the sample up to T ≤
3 K. For instance, the µSR spectrum experienced split-
ting at T ~0.8 K and external field H = 27.38 kOe. The
splitting value, ∆B = 30 Oe, remained constant up to
external field H = 27.41 kOe. The same sample was also
used by us earlier [13] to establish the formation of a
domain structure by studying magnetic breakdown
oscillations of thermoelectromotive force and resis-
tance under the conditions identical to those studied in
this experiment. The results described below were
briefly reported in [14].

∂2Ω̃
∂B2
----------–

∂M
∂B
-------- 1

4π
------>=

Ω̃
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2. EXPERIMENTAL

The beryllium single crystal was an 11 × 9 × 1.8 mm3

plate cut in such a way that its hexagonal crystallo-
graphic axis was directed along the shortest edge. The
ratio between the specific resistances at room and liquid
helium temperatures was ρ300 K/ρ4.2 K ≈ 300. We mea-
sured magnetostriction ε, that is, sample size oscilla-
tions δl = εl, along its longer edge (l = 1.1 cm). For this
purpose, the sample was placed into a dilatometer (Fig. 1)
operating by the principle of measuring the capacitance
of a plane capacitor. The corresponding face of the sam-
ple was fairly small (9 × 1.8 mm2), and it would be dif-
ficult to use it as a mobile capacitor plate, as is usually
done (e.g., see [15]). The mobile plate was therefore
made as a separate spring-supported plate with a protu-
berance against which the sample rested by its face in
the first variant of measurements (see Fig. 1). An
adjusting screw, which rested against the opposite face,
could be used to slightly shift the sample and thereby
change the distance between measuring capacitor
plates and the initial capacitance. The adjustment could
only be performed at room temperature. The capaci-
tance increased as temperature decreased because of
the difference in the expansion coefficients of the sam-
ple and holder. This allowed us to establish the final
capacitance at a level slightly below 100 pF, which cor-
responded to the highest resolving power of the bridge.

The sample in the dilatometer was in the center of a
superconducting solenoid. Solenoid magnetic field uni-
formity within the sample was ±0.015% or better,
which equaled ±4.5 Oe at a 30 kOe field. The period of

H

1

2

4

3

5

c

Fig. 1. A schematic of the dilatometer with the sample:
(1) beryllium single crystal, (2) mobile capacitor plate
(spring is not shown), (3) static capacitor plate, (4) adjust-
ment screw, (5) mobile plate protuberance, and (c) measur-
ing bridge input.
ICS      Vol. 94      No. 1      2002
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de Haas–van Alphen oscillations in such a field was
approximately ~93 Oe. The magnetic field was parallel
to the hexagonal axis of the sample and, accordingly,
perpendicular to the plate. Recall that, earlier [13],
magnetic breakdown oscillations of resistance and ther-
moelectromotive force were observed for the same
sample at the same temperatures in the same solenoid
and that the magnetic field dependences of these oscil-
lations corresponded to the arising of magnetic
domains. This led us to believe that diamagnetic
domains were also formed in the same interval of mag-
netic fields and temperatures in magnetostriction mea-
surements, although no additional control was exer-
cised.

Measurements were performed both in liquid
helium (normal or superfluid) and in helium vapor. The
results were substantially different in the level and
character of noise. In normal liquid helium, noise was
caused by helium boiling and equaled about 2 × 10–3 pF.
At a capacitance of about 100 pF and, accordingly, an
approximately 10–3 cm gap, this corresponded to δε ≈
2 × 10–8. In superfluid helium, noise decreased to about
10–3 pF, but occasional signal spikes were observed,
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Fig. 2. Magnetostriction shape variations in a wide range of
magnetic fields at T = 1.5 K; scheme of measurements is
shown in Fig. 1. Scales of linear size changes are shown to
the right of each record. Anomalous behavior caused by the
arising of diamagnetic domains is quite noticeable in
records (b) and (c) (see text).
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which might be caused by incidental appearance of gas
bubbles between measuring capacitor plates. In addi-
tion, when the surface of liquid helium passed through
the capacitor, we observed a substantial change in
capacitance, which virtually prevented us from taking
measurements. The most favorable conditions were
created in helium vapor: noise equaled ~0.5 × 10–3 pF
at 1.5 K, which corresponded to the relative deforma-
tion of the sample equal to ε ≡ δl/l ≈ 5 × 10–9.

Temperature was controlled by monitoring vapor
pressure. Measurements were taken with the use of a
TESLA BM484 semiautomatic bridge. The measuring
capacitance was connected to the bridge by shielded
wires, which allowed us to exclude the capacitance of
the leads. The magnetic field dependences of capaci-
tance were recorded on a two-coordinate recorder.

3. RESULTS

Magnetostriction measurements were performed in
magnetic fields of 10 to 70 kOe at helium temperatures;
the results are shown in Fig. 2. The external magnetic
field dependences of magnetostriction at 4.2 K closely
agree with the results obtained earlier [12]. These
dependences are almost identical in shape to magnetic
moment oscillations with beats characteristic of beryl-
lium (Fig. 2a). The beat frequency is approximately 33
times lower than the frequency of oscillations. (This is
explained by the presence of two closely spaced extre-
mal cross sections of the Fermi surface of beryllium;
the corresponding frequencies are F1 = 9.42 × 106 Oe,
F2 = 9.71 × 106 Oe, and F2 – F1 = 0.29 × 106 Oe [16].)
A much more complex pattern is, however, observed at
1.5 K and fields of 2 to 6 T, that is, under the conditions
of the formation of diamagnetic domains in the sample.
Starting with fields of about 2 T, small amplitude dips
appear close to size maxima (Fig. 2b), and double max-
ima are actually observed. The depth of these dips
increases as the magnetic field grows. The dips become
comparable with the amplitude of oscillations in the
field range 39–42 kOe, and the frequency of oscilla-
tions as though doubles (Fig. 2c). A further field
increase causes changes in the opposite direction, and,
starting with fields of H ~ 6 T, oscillations take on the
usual form of magnetic moment oscillations (Fig. 2d).

It would certainly be natural to explain this unusual
behavior by the arising of diamagnetic domains. In
addition, the suggestion was made that the formation of
a domain structure, that is, a peculiar state in which two
phases, generally, of different densities coexist, could
be accompanied by a noticeable decrease in the com-
pressibility coefficient. As a result, the pointed tips (the
protuberance of the mobile capacitor plate and the end
of the adjusting screw) against which the sample rests
periodically “dip” into the sample. (Note that beryllium
is one of the hardest metals, inferior only to iridium and
tungsten.) Copper spacers ~0.5 mm thick put under the
copper tips fully excluded these anomalies. The results
 AND THEORETICAL PHYSICS      Vol. 94      No. 1      2002



DIAMAGNETIC DOMAINS AND MAGNETOSTRICTION IN BERYLLIUM 165
of measurements performed with and without copper
spacers at equal magnetic fields under identical condi-
tions are compared in Fig. 3. With spacers, we observe
a well-defined sawtooth signal whose amplitude is
noticeably larger. Ascending and descending sawtooth
portions alternatively correspond to a uniform sample
state with smoothly changing deformation and magne-
tization and to a nonuniform state, or a domain struc-
ture, consisting of oppositely deformed diamagnetic
and paramagnetic domains.

The results of measurements in the whole range of
magnetic fields are shown in Fig. 4. Amplitude mea-
surements were accompanied by beats, and the depen-
dences were constructed based only on the points that
corresponded to oscillation antinodes. The amplitude
of the signal measured with the use of spacers falls
within the region situated noticeably higher than the
region of domain formation; this amplitude was
approximately 2 times larger close to H ~ 4 T. The dot-
ted line was obtained by treating the obtained depen-
dence according to the quadratic law. To the left and to
the right of the domain region, that is, in low and high
fields in which the state of the crystal is everywhere
homogeneous, this curve passes noticeably lower than
that measured without the spacers. It is likely that this
result can be explained by a much more rigid kinematic
connection between the sample and the measuring
capacitor through screw and protuberance tips com-
pared with the connection through copper spacers.

4. DISCUSSION

1. The hypothesis formulated above allows a quan-
titative estimate of elasticity modulus oscillations to be
obtained. To do this, we must take into account that, in
addition to the usual magnetostriction signal δl  = εl
present in the absence of a load, loadings, even insignif-
icant, should cause additional oscillating deformation
and elasticity modulus oscillations

(2)

Here, h0 is the homogeneous static deformation under
an evenly distributed load, h is the depth of sample sur-
face deflection (“pit”) under the pointed copper tip (see

Fig. 5), and  +  is the oscillating contribution of
these deformations proportional to the amplitude of
elasticity modulus oscillations, that is,

(3)

First, let us find /E using the simple approximation
for the oscillation contribution to the energy,

(4)

Here, a is some amplitude, and ϕ = 2πF/B is the phase,
where F is the magnetic frequency corresponding to the
cross section of the Fermi surface and B is the induction

δl ' h̃0= h̃.+

h̃0 h̃

h̃0 h̃+ h0 h+( )Ẽ/E.=

Ẽ

Ω̃ a ϕ .cos=
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in the sample. The change in energy in a magnetic field
including the elastic contribution then can be written as

(5)

For beryllium, this is a good approximation, because
the anisotropy of its compressibility coefficient is very
small (±5%) [17], its Poisson coefficient virtually
equals zero, and all deformations can therefore be con-
sidered independent. Beryllium is indeed a unique metal
in this respect: its Young’s modulus is E = 300 GPa,

δΩ a ϕ 1
2
---E εx

2 εy
2 εz

2+ +( ).+cos=
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Fig. 3. A comparison of the results obtained in magneto-
striction measurements (b) with and (a) without spacers in
the same range of magnetic field variations under identical
conditions.
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Fig. 4. Field dependence of magnetostriction amplitude
(from peak to peak) in experiments (s) with and (h, solid
line) without spacers. Symbols are placed at field values
corresponding to oscillation antinodes. The dotted line cor-
responds to the quadratic law.
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and the compressibility coefficient K = –(V–1)(∂V/∂P) =
9.97 × 10–12 Pa–1 [18]. The Poisson coefficient value
calculated from the well-known equation K–1 = E/3(1 –
2σ) equals σ = 5 × 10–3 ≈ 0, which closely agrees with
the tabulated data [18]. Under thermodynamic equilib-
rium conditions, we must have

(6)

The first derivative of oscillating contribution (4) is
therefore given by

, (7)

and the equation for magnetostriction takes the form

(8)

Differentiating the rapidly oscillating contribution
yields the oscillating part of Young’s modulus

(9)

Let us denote the amplitude of magnetostriction oscil-
lations (from peak to peak) by

(10)

The relative Young’s modulus oscillations in the har-
monic approximation that we use can then be written as

(11)

Applying (11) to the problem under consideration

yields /E ≈ 10–3. This estimate is based on the follow-
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Fig. 5. Calculated deflection profile uz(R) [see Eq. (12)] of
sample surface under a point load. The vertical and horizon-
tal scales differ by a factor of 104. The hatched region with
an arrow schematically depicts a pointed tip. Deflection h
equals 0.14 µm at E = 300 GPa, σ = 0, F = 10 N, and R0 =
0.15 mm. Deformation h0 under the action of the same load
evenly distributed over a sample face equals 0.022 µm for
an 11 × 9 × 1.8 mm3 sample.
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ing values: the “cigar” cross section is described by F =
107 G, and the phase value in magnetic field H = 4 ×
104 Oe is therefore ϕ ≈ 1500; ∂lnF/∂ε ~ 1 [see below,
Eq. (22)]; and |ε|max ≈ 10–6 (experimental value).

Let us also find h and h0. The problem of the shape
of the deflection of an elastic medium surface under the
action of a force concentrated in some surface portion
can be solved using the results obtained by Landau and
Lifshitz [19, §8]. For this purpose, it suffices to inte-
grate the equation given in [19] with the weight func-
tion describing the distribution of pressure over the sur-
face of the medium. Displacements uz of surface points
along the z axis normal to the surface are given by

(12)

where E and σ are Young’s modulus and the Poisson
coefficient of the medium, respectively; R is the dis-
tance from the origin (along the surface) to the point
whose displacement uz is to be calculated; f(r, ϕ) is the
distribution density of the external force over the sur-
face; and R0 is the radius of the surface within which
f(r, ϕ) does not identically equal zero. We will restrict
our consideration to the simplest distribution function,

namely, f = F/π  for r ≤ R0 and f = 0 for r > R0 (here,
F is the force applied to a tip). Numerically integrating
(12) then gives the deflection profile shown in Fig. 5.
The calculations were performed for E = 300 GPa [18],
σ = 0, force F = 10 N (experimental), and R0 = 0.15 mm
(copper tip). The last value was determined both exper-
imentally (visual microscopic examination) and from
the yield point of copper; the two methods gave closely
similar results. The calculated deflection value was h =
1.4 × 10–5 cm. The same force evenly distributed over
the face of the sample (such a distribution was attained
in experiments by putting copper plates under the tips)
gave an h0 = 2.2 × 10–6 cm deformation (calculated).

The expected additional oscillating deformation
value caused by loading can easily be calculated.
According to (2) and (3), δl' ≈ (1.4 × 10–5 + 2.2 × 10–6) ×
10–3 ≈ 1.6 × 10–8 cm. In other words, we should have
δl ' ~ 10–2δl  in the approximation that we use. In addi-
tion, these oscillations should be shifted in phase by π/2
with respect to the magnetostriction signal. Clearly, this
contribution is then absolutely unobservable, although
h is almost an order of magnitude larger than h0.

In our experiments, in which the crystal was in con-
tact with a copper tip, δl ' oscillations were, however,
approximately equal to δl (see Figs. 2c, 3). It can, there-

fore, be assumed that the  amplitude approximately
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equals δl, that is, approximately 1.5 × 10–6 instead of

1.6 × 10–8 cm. Therefore, /E ~ 10–1, which is approxi-
mately 100 times larger that the value calculated in the

harmonic approximation, /E ~ 10–3. When copper
spacers are used, we only have an evenly distributed
load, and δl ' ~ 10–1δl  oscillations are then also shifted
by π/2 with respect to ε. This contribution might in
principle be observed under a sufficiently larger load
but is virtually unnoticeable under the conditions of our
experiments.

It follows that the results obtained in this work
should be interpreted as a giant increase in compress-
ibility caused by the formation of diamagnetic
domains. As the domain structure is in essence a mix-
ture of two phases having different densities, such an
increase in compressibility is not very surprising. Dia-
magnetic and paramagnetic domains are deformed
“oppositely” and noticeably differ in density and,
accordingly, in the density of charge carriers (electrons
and holes). Note anticipatively that precisely the charge
carrier density gradient in a magnetic field determines
the magnetization current density in domain walls [20].

2. Next, consider the role played by deformation in
the formation of domains in more detail. Let us return
to (5) taking into account magnetization energy. We
then have

(13)

In addition to the equation for magnetostriction given
above [Eq. (8)], we obtain

(14)

by differentiating  with respect to B. Comparing (14)
with (8), we obtain the well-known [2] proportionality
relation between magnetostriction and magnetization,

(15)

Here, we used the inequality B – H = 4πM ! H, accord-
ing to which B ~ H in equations of this kind. (The dif-
ference of B and H should only be taken into account
for phase changes within a period. Here, by the magne-
tization M we imply the magnetic moment of a sample
with a zero demagnetization factor.) Equations for
magnetostriction in the other directions are obtained
similarly. As a result, crystal magnetization (along the
z axis in the problem under consideration) is accompa-
nied by the total deformation in all directions. The total
deformation is generally anisotropic and ensures the
required δF change. All deformations are very small. It
can therefore be thought that all these values including
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δF are linearly related to each other. This means that
energy changes (13) in a magnetic field can be
described as functions of H (external magnetic field)
and two variables, namely, B – H (magnetization) and
δF (the magnetostriction effect). The “three-dimen-
sional” plot shown in Fig. 6 is a paraboloid with a ver-
tex at (H, 0). Superimposed crimping is caused by the

 = acosϕ oscillating contribution; the larger the a
value, the greater the degree of crimping. [Recall that
the a amplitude is determined by experimental condi-
tions such as temperature, the quality of the sample (the
Dingle temperature), and magnetic field uniformity.]

Clearly, the crimping shifts the projection of the
minimum onto the (B, δF) plane with respect to the
(H, 0) vertex; this shift is shown separately in Fig. 7.
The displacement to the left and upward corresponds to
the diamagnetic state with sample deformation toward
increasing the Fermi surface volume, that is, toward
larger charge density N and cross section F. The dis-
placement to the right and downward during the second
half-period corresponds to the paramagnetic state with
a lower density, that is, with negative δF. According to
(15), the ratio between these displacements, that is, the
ratio between deformation and magnetization (more
exactly, magnetization current) within one period, is to
a high accuracy constant. In other words, the phase shift
slope angle is proportional to the magnetic field and
inversely proportional to Young’s modulus, and, if the

Ω̃

δΩ

B

–δF

Fig. 6. Schematic drawing of δΩ energy changes depending
on induction B and sample deformation proportional to δF
at given external field H. Slant lines in the (B, δF) plane cor-
respond to constant phase ϕ values. The dot on this plane is
the projection of the global energy minimum slightly dis-
placed to the left and upward with respect to the (H, 0)
paraboloid vertex. This point traces the phase trajectory as
external field H changes (more details are given in Fig. 7).
SICS      Vol. 94      No. 1      2002



168 EGOROV, LYKOV
scale is selected properly, this displacement is every-
where virtually perpendicular to the corresponding
constant phase lines, which are shown by slanting lines
in Figs. 6 and 7 for the ϕ = 2π and ϕ = 2π(n – 1) phase
values. Such a trace of the minimum position is the
phase trajectory of the simultaneously magnetized
and deformed state of the metal under external field
H variations. Naturally, the phase trajectory of a
sample with arbitrary demagnetization factor also
remains the same, although the displacement angle
changes. For example, in a plate with B = H this dis-
placement is vertical.

This trajectory is everywhere continuous if the
crimping a value is small (see curve a1 in Fig. 7). The
displacement of the state from the P0(H, 0) point to P1
then occurs to the left and upward (diamagnetism and a
density increase) during the first half-period and,
accordingly, to the right and downward (paramagnet-
ism and a density decrease) during the second half-
period. However, if the a amplitude is fairly large
(curve a2 in Fig. 7), which virtually coincides with con-
dition (1), and if H is situated precisely at the center of
the period, when the Landau level is half-filled, the δΩ
value at minimum 1 equals that at minimum 2. This
means that, if the demagnetization factor of the sample
approximately equals zero (a thin rod along the field),
the whole metal experiences a jump transition from
state 1 to state 2, and both deformation and magnetiza-
tion change their signs. If the demagnetization factor
approximately equals one (that is, as in our experi-
ments) and the plate is oriented normally to the field,
then this plate is divided into phases 1 and 2 in the range
B1 ≤ H ≤ B2, and these phases differ in both deformation
and magnetization. Naturally, magnetization and defor-
mation and therefore electron densities N1 and N2 are
constant within each phase. Close to the boundary

δF

0

1

2

N

B

M

L

P0

P0

P1
P2

a2
a1

φn φn – 1

K

Fig. 7. Metal state phase trajectories. Slant lines correspond
to constant phases of the oscillating contribution to energy,
φ = 2πn and φ = 2π(n – 1). Curves a1 and a2 are the phase
trajectories at different amplitudes (a1 < a2). Trajectory a1
is continuous, whereas the transition from 1 to 2 along a2
occurs in a jump. The P1 and P2 points show state changes
with respect to the P0(H, 0) point. KLMN is the phase tra-
jectory of a two-dimensional electron gas.
JOURNAL OF EXPERIMENTAL
between the phases, or domains, a smooth transition
from state 1 to 2 should occur; that is, both deformation
and, accordingly, electron density change across inter-
domain walls. The difference of the electron densities
to the left and to the right of the domain wall creates a
magnetization current in a magnetic field. This current
flows in the wall and causes the δB = 4πδM difference
between neighboring domains. Precisely the same
mechanism is doubtless responsible for the arising of
magnetization currents when magnetization is uniform,
that is, when domains are absent. This means that mag-
netostriction should be uniform in the whole sample
except a region near its boundary (where this deforma-
tion vanishes), whose thickness is of the same order as
that of domain boundaries. Indeed, closed Larmor
motion of electrons cannot occur at distances from the
boundary smaller than the Larmor diameter, and the
corresponding oscillating contribution to energy is
zero. Earlier [21, 22], precisely the Larmor orbit diam-
eter has been suggested as the domain wall thickness.
This is hard to argue with, but the problem of deforma-
tion has not been tackled in [21, 22], and the situation
should therefore be considered in more detail.

Deformation is doubtless isotropic in the basal plane
in a homogeneous phase, either diamagnetic or para-
magnetic. Deformation can also be considered isotro-
pic when domains of the “new” phase are formed as
long as the amount of the new phase is so small that it
is likely to consist of separate inclusions. However gen-
erally, the transition to the laminar structure, which is
much more favorable energetically, should occur very
rapidly as the volume of the new phase increases. This
unambiguously follows from the behavior of
“domains” in the transition state of superconductors of
the first kind [23], in which separate filamentary inclu-
sions only exist close to the transition to the normal
state.

Each phase of a laminar structure cannot be consid-
ered locally isotropic. Indeed, the difference of defor-
mations in neighboring domains should then “accumu-
late” along the interphase boundary, which would cause
the arising of shear stress and increase the energy. Of
course, it would be much more favorable energetically
if the necessary difference of deformations (more
exactly, electron densities) only existed in the direction
normal to the boundary. (Exactly the same reasoning
applies to the boundary layer of a sample in the usual
situation with homogeneous magnetization, when
inhomogeneous deformation in this layer should be
anisotropic with respect to the side boundary because
of such a peculiar “surface tension.”) For this reason,
anisotropic deformation in separate domains should
exist in laminar domain structures, although, on aver-
age over the whole crystal, the situation in the absence
of a preferential direction should, we believe, remain
isotropic because of mosaic orientations of laminar
regions, as is observed in a similar situation in the tran-
sition state of superconductors of the first kind [23].
This scenario appears to be quite plausible, which
 AND THEORETICAL PHYSICS      Vol. 94      No. 1      2002
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allows such a giant increase in the compressibility coeffi-
cient caused by the formation of a domain structure to be
partly explained. Indeed, local anomalous deformation
under a point load can only occur as a result of reorienta-
tion and redistribution of closely lying anisotropic
domains.

In any event, there is a difference of deformations in
neighboring domains along the magnetic field direc-
tion. This leads us to conclude that the domain wall
thickness cannot but increase as the thickness of the
crystal increases. This is at variance with the above sug-
gestion that the interdomain wall thickness is always of
the order of the Larmor diameter. This value (the Lar-
mor diameter) may play the role of the lower domain
wall thickness limit in thin samples.

Figure 7 can be used to examine the role played by
magnetostriction in the behavior of a metal in the model
of two-dimensional (or quasi-two-dimensional) elec-
tron gas, that is, a metal whose Fermi surface is a cylin-
der. Let us, for definiteness, assume that the magnetic
field increases. The phase trajectory is then the
…KLMN…, etc., polygonal line. The metal is homoge-
neous in the KL and MN regions and smoothly contracts
while experiencing the transition from the paramag-
netic to the diamagnetic state. The corresponding Lan-
dau level is then always filled, and the next level is
absolutely empty. If (1) is satisfied, we have an instabil-
ity along the whole LM portion, and the transition from
point L to M occurs either in a jump if the sample is a
long rod aligned with the magnetic field or with the for-
mation of domains if the sample is a plate oriented nor-
mally to the field. Homogeneous and inhomogeneous
state portions then alternate along the phase trajectory.
Note that taking magnetostriction into account makes
the region of the existence of domains, BL – BM, smaller
than the period value. If (1) is not satisfied (this is inev-
itable in fairly high magnetic fields, where the Landau
level number becomes smaller than the critical num-
ber), the volume and magnetization smoothly change
along the whole polygonal line. Clearly, if magnetostric-
tion is forbidden and the volume cannot change, the pic-
ture radically changes, and the Fermi level should oscillate
at a constant electron density [24]. As a result, magnetiza-
tion current oscillations should arise under certain condi-
tions. The magnetization current is then related to the con-
tact potential difference rather then magnetostriction.
Such a current is in antiphase with the “classic” de Haas–
van Alphen effect and is especially important in superhigh
magnetic fields [25]. In particular, precisely this current
is responsible for the quantum Hall effect.

3. It is easy to see that the difference in magnetiza-
tion between neighboring domains is indeed caused by
deformation accompanied by electron density changes.
The magnetization current density in a domain wall can
be described by the formula [20]

(16)jm ccurl nk r( )mk.
k

∑=
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Here, nk(r) is the number of Larmor orbits correspond-
ing to the mk magnetic moment of a unit volume. Let us
integrate (16) over the domain wall thickness from one
domain to another taking into account that the orbital
magnetic moments of all electrons are parallel to the
external field. This gives the magnetization current in
the wall related to a unit length of this wall along the
field,

(17)

where (N1, 2)k are the volume densities of charges with
magnetic moment µk in neighboring domains. Because
the δN difference is small, all orbits can be considered
to be situated on the Fermi surface. The characteristic
values can be estimated as follows. The magnetic
moment of the Larmor orbit is

(18)

where

(19)

Here, ωc is the cyclotron frequency, e is the charge of
the electron, RH is the Larmor radius, and ν⊥  is the
velocity of the electron on the Fermi surface in the
direction normal to the field. Complete current J in the
domain wall per unit wall length in the magnetic field
direction is

(20)

where  is the total difference of the numbers of
charge carriers (electrons and holes) in neighboring
domains, that is, the difference of the Fermi surface vol-

umes in these domains, and  and are the corre-
sponding values averaged over the Fermi surface.
Beryllium is a compensated metal, and the volume of
electrons (two cigars) always strictly equals the volume
of holes (crown). It follows that determining δN only
requires volume changes to be calculated for the cigar,
which is much simpler, because the cigar is close in
shape to a cylinder. The total difference of Fermi sur-
face volumes in neighboring domains can therefore be
written as

(21)

Here, N0 is the total number (Fermi surface volume) of
charge carriers in beryllium, and the value in parenthe-
ses is the relative change in the volume of the cigar in
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opposite domains caused by the total deformation
(F and L are the cigar cross section area and length,
respectively). The ∂lnF/∂εi and ∂lnL/∂εi values can be
determined from the well-known relation between the
Fermi surface of beryllium and the Brillouin zone size
[26–29]. This is especially simple to do precisely for
beryllium, because its Poisson coefficient σ ≈ 0, and, as
mentioned above, all deformations can be considered
mutually independent. Such calculations closely agree
with the experimental results [12], and it can be
assumed that

(22)

Substituting the εx = εy = ε and εz = –6ε deformation
values yields δN ≈ –50εN0, where ε is understood to be
δl/l from peak to peak. Clearly, we have such a large
coefficient (50) because the Fermi surface of beryllium
is formed close to Brillouin zone vertices and edges and
constitutes a very small part of the Harrison sphere.
(Clearly, this coefficient equals 3 in the model of free
electrons.) The ωc and RH values in the basal cigar plane
are well known, ωc = eH/m*c = 4.17 × 1012 s–1 (m* =
0.16me and H = 4 × 104 G), RH = νF/ωc = 0.24 × 10–4 cm
(νF ≈ 108 cm/s), and the total number of charge carriers
N0 = 0.43 × 1022 cm–3 can be obtained from the data
reported in [29], according to which we have
0.01573 electrons per atom and two atoms per unit cell,
the volume of the cell being 109.0758 (rel. units)3. Note
that this amounts to 1.6% of the Harrison sphere vol-
ume. We believe that estimating the mean orbit area

π  at half the area of the central orbit of the cigar can-
not introduce a large error. Combining these estimates
and substituting the value ε ≈ 1.37 × 10–6 (Fig. 3) in
field H = 4 × 104 G gives J ≈ 29 A/cm. Considering the
roughness of the estimates made above, this value more
than satisfactorily agrees with the value ∆B = 4π∆M ≈
30 G observed in [6], although the conditions of exper-
iments performed in [6] and this work do not com-
pletely coincide.

It is easy to see that Eq. (20) for current can be
rewritten as

(23)

where coefficient c1 takes into account averaging over
the Fermi surface. As the induction jump between
neighboring domains is ∆B ≡ 4π∆M ≈ (4π/c)J, we have

(24)

where δN can always be considered equal to N0εc2 and
c2 is the coefficient unambiguously determined by the
Fermi surface shape. In the problem under consider-
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ation, it equals 50. Representing (24) in the form ε =
(∆MH/E)c3 and comparing it with the equation for
magnetostriction [Eq. (8)], we obtain the equation for
Young’s modulus

(25)

where all coefficients, c1, c2, and c3, are fully deter-
mined by the structure of the Fermi surface. Here, εF is
the kinetic energy of the electron on the Fermi surface,

that is, εF = "2 /2m. For instance, for beryllium, kF ≈
1.03 (a.u.)–1, and N0 = 0.43 × 1022 cm–3 [29]. The correct
Young’s modulus value for beryllium is obtained at a
quite plausible coefficient c1 value, c1 ≈ 0.6. In other
words, we arrive at the conclusion that the Fermi sur-
face determines not only the electronic properties of
metals but also their elastic properties. Note that this
assertion is correct accurate to the assumption that the
magnetization current is fully determined by the charge
density gradient in the magnetic field.

The above conclusion deserves a more detailed dis-
cussion. The problem of the contribution of conduction
electrons to metal compressibility is of obvious inter-
est, and different views on this problem have been
expressed. For instance, the estimates made in [30] lead
the authors to conclude that the electronic contribution
to compressibility amounted to 60–80%. On the other
hand, the ionic contribution to compressibility was
fully ignored in [31], where it was actually assumed
that the elastic properties of metals, niobium in partic-
ular, were fully determined by conduction electrons.
This problem was central to explaining numerous
experiments [2] performed to determine Fermi level
oscillations in magnetic fields predicted earlier [24].
For the first time, in a similar and very accurate experi-
ment and precisely for beryllium [32], these oscilla-
tions were shown to be absent with an accuracy of 10%
of the theoretically expected value [24]. To explain this
result, it was shown in [32] that, if metal compressibil-
ity was fully determined by conduction electrons,
Fermi level oscillations in a magnetic field should
exactly be compensated by magnetostriction effects.
Generally, this is not at all at variance with the result
obtained in [24], where magnetostriction was not taken
into account and, in essence, a model with a given and
constant volume density of electrons in a metal was
considered. It follows from the results obtained in [32]
that the electronic contribution to the compressibility of
beryllium was at least 90%. The suggestion that the
compressibility coefficients of the other metals are also
determined almost entirely by conduction electrons is
substantiated by very accurate theoretical calculations
by Brovman and Kagan performed for magnesium
[33]. The summation of all electronic and ionic contri-
butions to compressibility (see Table 3 in [33]) with an
accuracy of 3% or higher only leaves the contribution
of conduction electrons, which, equally accurately,
agrees with the tabulated Young’s modulus of magne-
sium.

E εFN0c1c2c3,=

kF
2
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To summarize, our calculations on beryllium
described above show that conduction electrons should
fully determine its compressibility coefficient. At the
same time, the character of our reasoning leads us to
believe that this conclusion applies to all metals.
Indeed, the formation of diamagnetic domains is doubt-
less characteristic of all metals; the only problem is the
extreme difficulty of creating the necessary conditions
for most of them. As mentioned, such domains were
observed in silver, beryllium, tin, and aluminum. On
the other hand, if and only if compressibility is fully
determined by the electronic contribution, volume and
magnetization only oscillate when the magnetic field
varies, whereas the Fermi level remains constant. This
means that the Fermi levels of neighboring domains are
equal, and there is no contact potential difference
between domains; the existence of such a difference
would be both fairly unexpected and energetically
unfavorable. In other words, the very possibility of the
existence of diamagnetic domains lends support to the
point of view according to which conduction electrons
should fully determine the compressibility of metals.
Of course, we do not know to what extent this conclu-
sion is quantitatively accurate.
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Abstract—Mobility of electrons in quasicrystals is considered in the framework of the fractional Fermi surface
(FS) model, i.e., a multiconnected FS with many electron–hole pockets. The Mott law for the variable range
hopping conductivity is obtained when intervalley scattering processes with small momentum transfer are taken
into account. The transition to the power-law temperature dependence is discussed. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Quasicrystals (QCs) are materials that have a long-
range aperiodic atomic order and rotational symmetries
which are crystallographically forbidden for periodic
structures (e.g., five-, eight-, ten-, and twelvefold rota-
tional axes). Quasicrystals usually are intermetallic
alloys, but their physical properties differ from those of
the crystalline and amorphous metallic phases. Like
metals, quasicrystals have a nonzero electronic contri-
bution to the specific heat, although it is smaller than
the value calculated within the free-electron model. At
the same time, the electronic resistivity of quasicrystals
at low temperature is anomalously high and increases
with increasing the structural order and annealing the
defects. The highest resistivity of all the known quasi-
crystals occurs in icosahedral (i) Al–Pd–Re quasicrystal,
where the value of resistivity at 4.2 K exceeds 1 Ω cm.
Large values of the resistivity ratio 5 = ρ(4.2 K)/ρ(295 K),
up to 200, are also observed for this material (the values
of 5 are 1.1 for i-Al–Li–Cu, up to 2 for i-Al–Cu–Fe,
and about 4 for Al–Cu–Ru), which shows how perfect
the sample is [1–5]. In contrast to the Matissen rule,
where the resistivities are additive, the conductivity of
quasicrystals behaves as σ = σ(0) + ∆σ(T) over a wide
range of temperatures, where σ(0) is the residual con-
ductivity at zero temperature, and ∆σ(T) represents the
T-dependent part. Usually, σ(0) increases with the
structural disorder and ∆σ(T) increases with the tem-
perature as ∆σ(T) ∝  Tβ [1–3]. In a series of i-Al–Pd–Re
samples with different 5, Gignoux et al. [3] obtained
1 < β < 1.5 in the temperature range from 7 to 700 K.
Pierce et al. [4] measured σ(T) in several i-Al–Pd–Re
samples (with various 5 ratios) and found the power-
law temperature dependence with β in the range 0.5 to
1 for temperatures from 0.45 to 3 K.

¶This article was submitted by the authors in English.
1063-7761/02/9401- $22.00 © 20172
Different explanations of the transport properties of
quasicrystals have been proposed. Much attention has
been given to the power-law temperature dependence
of σ(T). The role of the pseudogap in the density of
states (DOS) at the Fermi level, the role of quantum
interference effects (weak localization and electron–
electron interactions), proximity to the metal–insulator
transition, the spiky structure of the electronic spec-
trum, and the criticality of wave functions have been
discussed in connection with this problem (see the
review articles by Poon [1] and Rapp [2]). Fujiwara
et al. [6, 7] tried to obtain the σ(T) dependence on the
basis of the band structure and Fermi surface (FS) cal-
culations for crystalline approximants. Macia [8] gave
a phenomenological description of σ(T) based on the
DOS model that takes the pertinent experimental
results into account. The problem was analyzed by
Burkov et al. [9], who used the fractional Fermi surface
model, i.e., a multiconnected FS with many electron-
hole pockets. They considered the intravalley and inter-
valley scattering processes in order to explain the
power-law dependence of σ(T). They also predicted a
zero value of σ at T = 0 K for the perfect QC (with no
scattering centers) and a small residual conductivity for
“dirty” QC.

Currently, the physical origin of the high resistivity
of intermetallic quasicrystalline alloys compared to
other systems composed only of metals is not well
understood, and this has challenged the experimenters
to examine the possibility of a metal–insulator transi-
tion (MIT) in quasicrystalline systems and to investi-
gate whether these materials are metallic. Recent
experiments on the perfect icosahedral Al70.5Pd21Re3.5

quasicrystals have shown that, at low temperatures,
their conductivity follows the Mott law for the variable
range hopping (VRH) conductivity,

(1)σ σ0 T0/T( )– p[ ] ,exp=
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where p = 1/4 [10–13]. The temperature range where
the Mott law is fulfilled was found to be 0.45–10,
0.02−0.6, and 0.5–7 K according to Guo and Poon [10],
Delahaye et al. [12], and Wang et al. [13], respectively.
In i-Al70.5Pd21Re8.5 – xMnx, it was found that the VRH
including the Coloumb interaction (p = 1/2) can
describe the experimental data for 2 < x < 4 [10]. The
experimental data on bulk i-Al–Pd–Re samples are
rather contradictory. Different authors quote different
values of T0. According to [10, 11, 13], T0 reaches 100 K
and is higher for samples with higher 5. On the other
hand, in [12], the very low value of T0 ~ 1 mK was
given. However, the lowest temperature reached in this
experiment was 20 mK, and the value of T0 was deter-
mined by extrapolation. Moreover, in [10], a small but
finite value of σ(0) was obtained, although it decreased
upon increasing the perfectness of the sample [11]. At
the same time, in [12, 13], the conductivity was fitted to
Eq. (1) without including any extra σ(0) term, while it
was used by Guo and Poon [10] in order to analyze their
experimental data on conductivity. We note that the
presence of a residual conductivity is quite possible,
because the different conductivity channels in QC are
parallel, and a nearly vanishing conductivity σ(0) can-
not hide the VRH conductivity.

The occurrence of the Mott law (Eq. (1)) shows that
electronic states in QC are localized and the sample is
on the insulating side of the MIT. Qualitatively, the pos-
sible role of the hopping conduction between localized
states in QC at low temperatures has been previously
discussed by several authors on experimental grounds
[1, 3, 5, 14]. Poon [1], Pierce et al. [14], and Mayou
et al. [5] discussed the possibility of explaining the
power-law dependence of σ by a hopping mechanism
taking the criticality of the wave functions into account.
Janot [15] considered this problem in the framework of
the hierarchical cluster model and predicted the con-
ductivity that scales roughly as T3/2. But the localiza-
tion lengths ξ obtained experimentally (we recall that
T0 ∝  ξ–3 in accordance with the Mott theory) are much
larger than the separation, ~20 Å, of the ideal clusters
that are assumed to be structure units between which
the electrons hop in the Janot model. In addition, in the
subsequent paper [16], Janot proposed that “the power
law Tβ may be lost experimentally because of extrinsic
effects due to structural defects, boundaries, and peri-
odic approximant distortion which may restore the T−1/4

law of the Mott model.” That is, the existence of the
Mott law was related to the presence of disorder in QC,
which contradicts the experimental data. A rather inter-
esting but unrealistic idea was put forward by Rivier
and Durand [17] based on the results obtained for the
one-dimensional model. In order to obtain the VRH
conductivity, they suggested that the electronic struc-
ture of a quasicrystal looks somewhat similar to highly
doped, p-type semiconductors, but no reliable explana-
tion of the Mott law, Eq. (1), for quasicrystals was
given.
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In this paper, we proceed on the ground of the band
structure theory to explain the VRH conductivity in
QC. Although the Bloch theorem does not apply to a
quasicrystal, the ideas of the band structure theory can
be used to describe the transport properties of QC, with
the quasicrystalline state considered as a structural
limit of a sequence of rational periodic approximants
with increasing periods. Therefore, we take the band
structure effects into account that are specific for the
quasicrystalline symmetry and use the fractional Fermi
surface model [9] to explain the origin of the VRH con-
ductivity in QC. However, the hopping mechanism of
conductivity involves hops between localized states,
and we therefore begin with the discussion of the nature
of localization in the regular and perfect QC without
phasons and other distortions.

The paper is organized as follows. In Section 2, the
localization of electrons in quasicrystals is discussed.
The VRH conductivity is discussed in Section 3. In
Section 4, the crossover to the power-law temperature
dependence of conductivity is considered.

2. LOCALIZATION OF ELECTRONS
IN QUASICRYSTALS

For amorphous alloys, granular metal films, and
doped semiconductors, the electronic localization plays
an important role in the low-temperature electron trans-
port. For the above systems, the localization of elec-
trons is known to arise from disorder. But the object of
our discussion is the origin of localization in QC. The
Al–Pd–Re QC is a highly ordered material with very
sharp X-ray diffraction spots, and as mentioned above,
improving the perfection of the quasilattice order has
been found to lead to increasing of the resistivity.

The experimental results for i-Al–Pd–Re show that,
at low temperatures, the regular and perfect quasicrys-
tal behaves as a material in the Fermi glass state, that is,
the DOS is finite at the Fermi level, but the electrons are
localized. This localization in a QC is a consequence of
the coherent interference of the electronic states caused
by the specific symmetry and the structure of the mate-
rial, and the more perfect the material is, the more
localized the electrons are. Whereas in a disordered
metal or a heavily doped semiconductor the origin of
the localization is the destruction of the phase coher-
ency of the wave functions due to disorder (the Ander-
son localization), in the QC, the phase coherency of the
wave functions is the main source of localization. The
following simple observations can justify this conclu-
sion.

First, within the six-dimensional periodic descrip-
tion of the icosahedral structure, it is obvious that each
scattering wave vector in the quasicrystal corresponds
to a reciprocal wave vector in the periodic structure of
a higher dimension. Thus, the set of the reciprocal lat-
tice vectors densely fills the reciprocal space of the qua-
sicrystal, and all the electron states at the Fermi level
SICS      Vol. 94      No. 1      2002
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have zero group velocity (standing waves) due to the
Bragg reflections (evidently, with different intensities),
i.e., due to the constructive interference of the electron
states at the Fermi level.

Second, it is convenient to elucidate this picture by
considering the quasicrystal as a structural limit of a
sequence of rational approximants (crystal analogs)
with an increasing lattice period. The Brillouin zone
(BZ) volume is diminished upon increasing the order of
the approximant because the lattice period increases,
and the BZ volume becomes infinitely small (~h3) in
the quasicrystalline limit. Therefore, employing the
usual approach to the construction of the FS [18], one
can see that, in the hierarchy of higher order approxi-
mants, the energy bands are folded down and the FS
becomes fractional in the quasicrystalline limit,
namely, it is multiconnected with a large number of
electron and hole “pockets,” and for atomically ordered
perfect QC as was pointed out by Poon [1], the electron
states must be localized at zero temperature, because

the strong localization condition l ~ 1 (where l is the

mean free path and  is Fermi momentum) is satisfied
for the electrons in each valley i. Therefore, each valley
plays a role similar to that of a localization center in a
disordered object. Hence, there is a formal analogy
between a well-ordered quasiperiodic object with a
fractional FS and a disordered metal or a heavily doped
semiconductor. This analogy helps one to explain the
occurrence of the Mott law in perfect quasicrystals at
very low temperatures, because the electrons in local-
ized states can participate in conductivity only via hop-
ping between localization sites.

3. VRH CONDUCTIVITY IN QC

Mott was the first to point out that, at low tempera-
tures, the most frequent hopping process would not be
the hopping to a nearest neighbor [19]. To explain the
conduction with an activation energy monotonically
decreasing with decreasing temperature, Mott proposed
a model where, in strongly localized systems with a
sufficiently high density of states N(EF) near the Fermi
level, the states that are optimal for conduction accu-
mulate closer and closer to the Fermi level as T
decreases. Thus, the activation energy decreases, while
the hop length grows with decreasing temperature. The
simplest arguments were as follows. Within a radius R
around a given site, the total number of electron states
near the Fermi energy is

(2)

and the lowest activation energy ∆E for a hopping pro-
cess at the distance R is reciprocal to Eq. (2),

(3)

kF
i

kF
i

4π
3

------R3N EF( ),

∆E
3

4π
------ 1

R3N EF( )
----------------------.=
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Therefore, ∆E decreases upon increasing the hopping
range. But hopping by a large distance involves tunnel-
ing with the probability proportional to exp(–2αR),
where 1/α = ξ is the decay length of the localized wave
function. Therefore, there exists an optimum hopping
distance Ropt, for which the expression

(4)

has a maximum. This maximum occurs at the minimum
value of the exponent

(5)

which gives

(6)

Inserting Ropt in (4), we find that the hopping probabil-
ity, and hence the conductivity, is given by Eq. (1) with
p = 1/4 and

(7)

We now consider the quasicrystalline state. In the
fractional FS model with a practically infinite number
of valleys, all the electrons in the atomically ordered
quasicrystal are localized at zero temperature. At a
finite temperature, the scattering of an electron from a
particular valley to the state in a neighboring valley can
occur not only due to thermal excitation but also due to
tunneling via the gap formed by Bragg reflections. At
very low temperatures, the process with a higher prob-
ability is the scattering with a small momentum trans-
fer; in the real space, this corresponds to a hopping by
a large distance. But the tunneling and, correspond-
ingly, the large-distance hopping are a necessary pro-
cess for the VRH mechanism. Thus, following the Mott
procedure [19] and using expression (5), we immedi-
ately obtain Eq. (1). The Mott formalism usually fails
when R < ξ or T0 < T. But in the case of a quasicrystal,
it is always possible to find a state for which T0 < T,
even though R > ξ. As a matter of fact, the material with
a fractional FS has a hierarchy of localization lengths.
Therefore, the characteristic temperature T0 can change
from sample to sample in an arbitrary way.

This mesoscopical situation is typical of QC and
conventional disordered systems in the vicinity of MIT
[20]. It is known that, in amorphous alloys and heavily
doped semiconductors, the electron wave functions
show a characteristic change from localized to
extended behavior because of this transition. This cor-
responds to a change from the states that do not enable
transport in the limit of vanishing temperature to the
states that do, thereby distinguishing the insulating and
metallic character. In the localized regime, the spatial
behavior of the wave functions is usually described by
an exponential decay length reflecting the spatial extent

2αR–( ) ∆E/kBT–( )expexp

2αR
3

4πR3
------------ 1

N EF( )kBT
-------------------------,+

Ropt
9

8πN EF( )αkBT
------------------------------------ 

  1/4

.=

T0
1

ξ3N EF( )
---------------------.∼
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of the wave function, whereas, on the metallic side, the
wave functions are extended. As the MIT is
approached, the localization length diverges. Close to
the MIT, the localization length is already much greater
than the numerically accessible system size, and there-
fore, there can be no direct reflection of the localization
in the calculated eigenstates. Exactly at the MIT, where
the characteristic length scale is absent, the eigenstates
show fractal characteristics and the wave functions are
critical. However, characterizing the eigenstates and
wave functions at the transition point requires a more
general concept of multifractality. This implies that dif-
ferent parts of the same eigenstate must scale with dif-
ferent exponents, thus extending the simple fractal pic-
ture that comprised only one scaling exponent. Schriber
and Grussbach found that, at the critical point of the 3D
Anderson model, strong fluctuations of the wave func-
tion amplitudes display the multifractal character on all
length scales and the singularity spectrum of the critical
wave function does not depend on the system size [21].
The same state is typical of QC [11]. As shown in [22],
most of the wave functions in a three-dimensional
icosahedral QC are critical and their electronic spec-
trum contains a singular part. The situation is meso-
scopic, and it is possible to experimentally obtain dif-
ferent values of T0 for different samples (see [10–13]).
We also note that the fractional FS model implies that
the VRH mechanism ceases to work beginning with
some ξmin, when tunneling probability becomes negli-
gibly small.

The VRH mechanism in the fractional FS model
depends on the structure of the FS; for a perfect mate-
rial, the VRH conductivity must always exist in bulk
samples and in films. Recently, it was shown by Rosen-
baum et al. [23] that some thin (2200 Å) icosahedral
films of Al72Pd20Re8 prepared by magnetron sputtering
exhibit insulating transport properties down to 0.07 K,
where their resistivity follows an activated Mott VRH
law. Although we did not consider the role of electron–
electron interactions, it is possible to assume that, with
decreasing temperature, the Mott law (T–1/4) is followed
by the Efros–Shklovskii law (T–1/2). Although it is dif-
ficult to distinguish between T–1/4 and T–1/2 depen-
dences experimentally, one could observe this cross-
over on the high-quality i–Al–Pd–Re samples with a
high resistance ratio 5.

In contrast to the Anderson localization, the local-
ization of electrons in quasicrystals is due to construc-
tive interference (phase coherence) of the wave func-
tions and is unstable with respect to small perturbations
[22]. The system can therefore be driven to the metallic
side of MIT by increasing the temperature or the num-
ber of imperfections. Moreover, in a “dirty” object at
temperatures larger than approximately 10 K, the elec-
tronic states are smeared by the inelastic scattering pro-
cesses that wash out the fine details of the FS with a
large number of pockets and lead to the FS with an
effectively finite number of pockets, depending on the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
perturbations [13]. When the number of FS pockets is
finite, the VRH mechanism does not work, and the
crossover to another temperature dependence must
occur.

4. HIGH-TEMPERATURE CONDUCTIVITY

In a real quasicrystal, one must take the smearing of
electron states in the momentum space into account.
Because the energy of a quasiparticle is defined with
the uncertainty δε ~ max(T, "/τ), where T is the temper-
ature and τ is the electron relaxation time, the splitting
of the FS within the procedure described above makes
sense as long as the characteristic size of the pockets is
larger than δε. This leads to the FS with a finite number
of electron–hole pockets with the size of the pocket
defined by the uncertainty of the electron energy. This
also leads to a nonmetallic regime of the conductivity
caused by an intravalley scattering. At these conditions,
the VRH mechanism does not work, because the inter-
valley scattering with small momentum transfer is inef-
fective. On the contrary, the momentum transfer that is
now required for the intervalley scattering is large (of
the order 1/a, where a is the quasilattice constant). In
the FS model with a finite number of valleys, the tem-
perature-dependent conductivity is governed by the
intravalley and intervalley processes. As shown in [9],
σ is inversely proportional to the scattering relaxation
time and should increase with increasing temperature
according to a power-law dependence. However, the
high-temperature region (T > u/a ~ ΘD, where u is the
sound velocity and ΘD is the Debye temperature) has
not been considered previously, and we now appropri-
ately analyze this regime. In this region, the tempera-
ture dependence of σ is governed by the electron–
phonon intervalley scattering processes and a sharp
decrease of the electron–phonon scattering time should
be observed, accompanied by the corresponding
change in the character of conductivity.

We consider the probability for an electron with the
momentum k in a tiny pocket of the Fermi surface to be
scattered by a phonon to the free electron state with the
momentum k'. This probability is given by

(8)

Here, K = k' – k, q + g = k' – k (where g is a reciprocal
lattice vector), ωq is the phonon energy, nq is the Bose–
Einstein distribution, fk is the Fermi–Dirac distribution,

and g(K) = π(ne/EF)(Ke)/  is the matrix ele-
ment of the electron–phonon interaction, where ne is
the electron density at the Fermi level, e is the phonon
polarization vector, and Ni and Mi are the ion density
and mass, respectively (in the case where the Fermi sur-
face pocket is considered as a sphere of the diameter µ0,
we have ne/EF = 2µ/3). To obtain the electron–phonon

w k k ',( ) g2 K( ) δ[ ek ' ek– "ωq–( )nq
0 f k

0 1 f k '
0–( )=

+ δ ek ' ek– "ωq+( ) nq
0 1+( ) f k '

0 1 f k
0–( ) ] .

NiMiωq
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relaxation time τ0, we must integrate Eq. (8) over k and
k'. This integration procedure is similar to those for the
electron–phonon relaxation time calculation in usual
metals: the integration over the modulus of k' elimi-
nates the delta function; the intergration of the Fermi
distribution function over the modulus of k gives the
so-called structural factor. The remaining angular inte-
grations can then be easily reduced to an integral over
the angle Θ between the vectors k and k'. After the final
integration over Θ, we find the equation for τ0 for the
hypothetical metal with one tiny valley,

(9)

where qD and ΘD are the Debye wave vector and tem-
perature, respectively. For the object with the N-com-
ponent Fermi surface under the conditions of valley

uniformity, we obtain  = N , where N is a
parameter of the model. The effective number N of the
FS electron–hole pockets can be estimated using X-ray
or electron diffraction experiments, from the amount of
main strong Bragg reflections that satisfy the condition
G = 2kF (G is a vector of the six-dimensional reciprocal
lattice) [1], including the multiplicity factor.

In discussing the application of these relations to
quasicrystals, one should remember that the electron–
phonon interaction can change the electron momentum
only by a small amount, of the order T/u. We again note
that a large momentum transfer is necessary for the
intervalley scattering to occur. Hence, there exists a
characteristic temperature T* ~ u/a ~ ΘD, below which
the phonons are unable to scatter the electrons from one
pocket to another, thereby permitting only the intraval-
ley processes. Accordingly, the electron–phonon scat-
tering mechanism is ineffective for the temperatures
T < T* because Eq. (9) does not contain the factor
N @ 1. Hence, we can neglect the electron–phonon
scattering in the low-temperature region and consider
the high-temperature limit of Eq. (9) only. The integral
in Eq. (9) is then proportional to (Θ/T)4 and we find that
the electron–phonon relaxation time at high tempera-
tures is given by

Because the probability of the electron scattering by
phonons is linear in T, it is easy to show, using the
results of [9], that the temperature dependence of the
conductivity at high temperatures must be linear. We
note that according to some experimental data, the σ(T)
dependence at high temperatures for some i-quasicrys-
tals is indeed nearly linear [2, 24, 25].

τ0
1– k0qD

6

π2mNiMiΘD

------------------------------ T
ΘD

------- 
  5

=

× z5

1 e z––( ) ez 1–( )
--------------------------------------,

0

ΘD/T

∫

τe– ph
1– τ0

1–

τe ph–
1– Nq4k0 NiMiu

2m( ) 1–
T .≈
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We finally estimate the conductivity at zero temper-
ature. The relaxation of the electronic momentum on
the structural imperfections results in a finite value of σ,
in analogy with metallic systems. On the other hand, it
was found that σ(0) is proportional to the concentration
of the structural imperfections, in contrast to the usual
metallic Drude-like conductivity [9],

where |U0| is the amplitude of the Born scattering of an
electron by the structural defects, m is the electron
mass, and nimp is the concentration of defects. To check
the agreement of the predicted data with the experimen-
tal data, we numerically estimate the magnitude of
σ(0). With the rough assumptions |U0| ~ 10–8 cm
(atomic radius) and nimp ~ 1022 cm–3, we immediately
obtain σ(0) ~ 10N2 [Ω–1 cm–1]. For N, we can assume a
reasonable value of about one hundred [1], which gives
the reasonable estimation for σ(0). For the imperfection
concentration nimp ~ 10–5, σ(0) is about 1 Ω–1 cm–1,
which approximately corresponds to the experimental
values for the perfect Al–Pd–Re alloys with the high
resistance ratio 5 [2].

5. CONCLUSION

We have considered a “scenario” in which the band
structure effects, namely, the constructive interference
of wave functions due to Bragg reflections, are respon-
sible for the localization of the electrons and, conse-
quently, for the electron transport in quasicrystals. The
Fermi surface of an atomically ordered perfect icosahe-
dral quasicrystal (such as i-Al–Pd–Re) at zero temper-
ature contains an infinite number of electron–hole
pockets where the electrons are localized. In this case,
the VRH mechanism of conductivity should be opera-
tive, because the intervalley scattering processes with
small momentum transfer are available. The Mott law
is obtained for the low-temperature region taking the
intervalley tunneling transitions into account. We note
that the importance of interband tunneling transitions
was previously pointed out in [26]; recently, Krajcî and
Hafner [27] emphasized the significance of these tran-
sitions for the electron transport in QC. With increasing
temperature and QC imperfections, the FS effectively
contains a finite number of pockets due to smearing,
and the conductivity becomes power-law temperature
dependent. The estimate made in the framework of the
fractional FS model predicts that, at high temperatures
(T > ΘD), the conductivity should linearly depend on
the temperature. Finally, it is worth noting that we have
considered only the role of the band structure effects
and did not discuss either the influence of the quantum
interference effects, which can be important for a mate-
rial with a low value of the resistance ratio 5, or other
possible mechanisms of the conductivity in QC. In
addition, we based our consideration only on the exper-
iments carried out for the i-Al–Pd–Re quasicrystal.

σ 0( ) e2
"

1– N2m2nimp≈ U0
2,
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Although the scattering mechanisms in different types
of QC may be different, we believe that our conclusions
about the mechanism of conductivity in QC in the
framework of the fractional FS model are quite general.
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Lattice Relaxation and Charge-Transfer Optical Transitions Due 
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We explore the role of electronic and ionic polarization energies in the physics of “colossal” magnetoresistive
(CMR) materials. We use the Mott–Littleton approach to evaluate polarization energies in the LaMnO3 lattice
associated with holes localized on both the Mn3+ cation and the O2– anion. The full (electronic and ionic) lattice
relaxation energy for a hole localized at the O site is estimated at 2.4 eV, which is appreciably greater than that
of 0.8 eV for a hole localized at the Mn site, indicating a strong electron–phonon interaction in the former case.
The ionic relaxation around the localized holes differs for anion and cation holes. The relaxation associated with
Mn4+ is approximately isotropic, whereas ionic displacements around O– holes show axial symmetry with the
axis directed towards the apical oxygens. Using the Born–Haber cycle, we examine thermal and optical energies
of the hole formation associated with the electron ionization from Mn3+, O2–, and La3+ ions in the LaMnO3 lat-
tice. For these calculations, we derive a phenomenological value for the second electron affinity of oxygen in
the LaMnO3 lattice by matching the optical energies of the La4+ and O– hole formation with maxima of binding
energies in the experimental photoemission spectra. The calculated thermal energies predict that the electronic
hole is marginally more stable in the Mn4+ state in the LaMnO3 host lattice, but the energy of a hole in the O–

state is only higher by a small amount, 0.75 eV, suggesting that both possibilities should be treated seriously.
We examine the energies of a number of fundamental optical transitions, as well as those involving self-trapped
holes of Mn4+ and O– in the LaMnO3 lattice. The reasonable agreement of our predicted energies, linewidths,
and oscillator strengths with experimental data leads us to plausible assignments of the optical bands observed.
We deduce that the optical band near 5 eV is associated with the O(2p)–Mn(3d) transition of a charge-transfer
character, whereas the band near 2.3 eV is rather associated with the presence of Mn4+ and/or O– self-trapped
holes in the nonstoichiometric LaMnO3 compound. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The striking behavior of the “colossal” magnetore-
sistive (CMR) oxides of R1 – xAxMnO3 (where R stands
for trivalent rare-earth ions and A for divalent alkaline-
earth ions, and 0.2 ≤ x ≤ 0.5) arises from the interplay
of several distinct energy terms: magnetic interactions,
electronic band structure energies, crystal field split-
tings, vibrational energies, and the electron–lattice cou-
pling, including small polaron ideas and the Jahn–
Teller (JT) effect. Understanding this behavior has been
helped very greatly by the use of models to map the var-
ious regimes of behavior [1]. The experimental evi-
dence [2] suggests that manganites are doped charge-trans-
fer insulators having O(2p) holes rather than Mn3+(3d) elec-
trons as the current carriers. However, whether holes
reside at O and/or Mn sites is still a subject of contro-
versy. Some of the models of polarization and vibration
in CMR systems make major approximations, such as a
single vibrational frequency (Einstein model) or rigid,

¶This article was submitted by the authors in English.
1063-7761/02/9401- $22.00 © 20178
unpolarizable ions. These simplifications are known to
give seriously inadequate results, both quantitatively
and qualitatively. For example, for the charge transfer
transitions of the zinc vacancy center V– in ZnSe, opti-
cal spectroscopy [3] allows one to obtain the key relax-
ation and tunneling energies. But in the simple one-fre-
quency rigid-ion model, these values are inconsistent
with the observed charge localization on a single Se
neighbor to the vacancy [4]. However, the consistency
and good agreement with experiment are restored in the
general model at the harmonic and dipole approxima-
tion level, namely, the shell model. Important proper-
ties of the shell model [5, 6] consist, first, in properly
separating the ionic and electronic polarizations, such
that phonons are well predicted and polarization at the
atomic scale is well reproduced, and, second, in recog-
nizing that the local environment affects the polariz-
ability of ions through short-range repulsive forces. As
a result, the shell model provides an adequate frame-
work for understanding energies dominated by polar-
ization and distortion. Such energies include those
describing small polarons [3–5] and optical charge
002 MAIK “Nauka/Interperiodica”
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transfer transitions (as considered for MgO [7] and V–

centers in ZnSe [4]). The shell model has also been
extensively used in studies of defect energetics and nons-
toichiometry in oxides [8]. Its considerable quantitative
success arises largely because it provides such an accurate
description of the large polarization energies.

It is helpful to recognize the orders of magnitude of
the several energy terms for CMR oxides. Obviously, a
small energy does not mean that the particular energy is
unimportant, but a small value often means that very
simple ideas for those terms are sufficient in examining
phenomena dominated by large energies. Typical mag-
nitudes are as follows:

CMR instability energy of an electron in an external
field of 10 T, 0.001 eV (~µBgH);

Magnetic exchange (from kTN, with TN being the
Néel temperature), 0.01 eV;

Energy of the noncubic structural deformation of
the LaMnO3 cell, ≤0.4 eV;

JT energy (from the largest known JT energies),
≤0.4 eV;

Crystal-field splitting energies (from data on many
systems), 1 eV typical;

Polarization energies (net charge ±e), 5 to 10 eV;
Free-ion ionization potentials, tens of eV;
Madelung energies (fully ionic models), tens of eV.
In this paper, we mainly consider the polarization ener-

gies, for which the large energy terms are dominant. We
only discuss the JT and crystal field energies in simple
terms, although we remark that one-frequency models of
the JT effect also lead to inconsistencies.

We apply the shell model calculations to look spe-
cifically at energies associated with the localized holes
of Mn4+ and O– in a nonstoichiometric or slightly doped
“parent” LaMnO3 compound. Using this model, we
address some of the issues in the physics of CMR sys-
tems for which the polarization energies are crucial.
First, we calculate the electronic and ionic polarization
energies due to holes localized on Mn3+ and O2– ions in
order to estimate the key polaron energies and examine
the controversial question of whether holes reside at
Mn or O sites in the LaMnO3 lattice. Second, we esti-
mate the energies of the main charge transfer transitions
including Mn4+ and O– species, which determine spe-
cific transport properties of doped CMR materials. We
analyze their contribution to the optical conductivity in
the nonstoichiometric LaMnO3 crystal and make the
assignment of bands in the optical conductivity spec-
trum more clear-cut.

2. DESCRIPTION OF THE LaMnO3 SYSTEM
AND THE SHELL MODEL APPROXIMATION

Many of the CMR materials are hole-doped systems
of perovskite manganites of the form La1 – xAxMnO3.
Their properties are intimately related to those of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the “parent” compound (x = 0). Below TN ≈ 140 K,
LaMnO3 is an A-type antiferromagnet in which the
MnO2 ferromagnetic layers are stacked along the c axis
with alternating spin directions. The structure of the
perovskite manganites can be clearly understood start-
ing from the simple cubic perovskite structure (Pm3m).
The idealized cubic structure of LaMnO3 featuring a
chain of the corner-sharing MnO6 octahedra is pre-
sented in Fig. 1. The Mn3+ ion with the 3d4 electronic
configuration is known to exhibit a large JT effect in
other systems [9]. Therefore, it is natural to assume that
the JT instability of the Mn3+ ion can contribute to an
orthorhombic distortion of the perovskite structure of
the Pnma symmetry in the LaMnO3 crystal. The orthor-
hombic structure can be obtained from the cubic per-
ovskite structure by two consequent and coordinated
rotations of the MnO6 octahedra around the [010] and
[101] directions, as shown in Fig. 1. Another possible
contribution to the observed distortion from the cubic
symmetry in LaMnO3 could be attributed to an atomic
size mismatch: the sum of the Mn–O layer ionic radii,
rMn + rO, does not match that of the La–O layer, (rMn +

rO)/ , in the right way for a stable cubic structure.
The size mismatch effect is known to be a common rea-
son for distortions in different perovskite oxides. Our
shell model calculations performed for the LaMnO3

Pnma structure indicate that the orthorhombic distor-
tions experimentally observed at low temperatures
could not simply be caused by the lattice mismatch
effect (which, in principle, must be properly described
in the framework of the shell model approximation),

2

Mn

Mn

Mn

MnO

O

La

x

y

z

Fig. 1. The idealized cubic perovskite structure (Pm3m) of
the LaMnO3 crystal. The orthorhombic Pnma structure can
be obtained by two consequent rotations of the MnO6 octa-
hedra around the [010] and [101] directions.
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but are caused by both effects, with a comparative con-
tribution of the JT effect. Some special efforts should
be undertaken to empirically account for the JT effect
in the framework of the shell model. We perform the
shell model calculations for the cubic perovskite struc-
ture (Fig. 1). This approximation seems to be mostly
relevant to the nonmagnetic quasi-cubic perovskite
structure of the LaMnO3 crystal experimentally
observed at high temperatures T ≥ 400 K > TN ≈ 140 K.
We suggest that our modeling of the cubic perovskite
structure provides a reasonable model because we are
mainly interested in estimating the key polarization
energies associated with polaron-type charge carriers in
the high-temperature insulating quasi-cubic phase of
the CMR lattices.

We model the LaMnO3 system using methods based
on the shell model and the Mott–Littleton approach that
have been successfully applied to studying the proper-
ties of a wide range of oxides (including transition
metal oxides), halides, and other systems [10, 11]. The
calculations are performed using the GULP code [12].
In the shell model [5], the lattice is considered as an
assembly of polarizable ions, represented by massive
point cores and massless shells coupled by isotropic
harmonic forces. The interaction potential includes
contributions of the Coulomb, polarization, and short-
range interactions. We adopt a fully ionic model (with
the formal charges of ions in the LaMnO3 lattice, La3+,
Mn3+, and O2–). This is less restrictive than one might
think because a parallel covalent description is possible
[13]. The sum of the core and shell charges is equal to
the formal charge of the ion in the lattice. The core and
shell charges and the spring constant of each ion are
parameters of the model. The electronic polarization of
the ions is represented by the displacement of their

Table 1.  Potential parameters for short-range interactions in
LaMnO3 (Pm3m): (a) elaborated in the present work; (b) from
Islam et al. [17]; (c) from Grimes [20] for Mn3+ and Mn4+

different valence states; rcutoff = 20 Å

A, eV ρ, Å
C,

eV Å–6 Y, |e | k,
eV Å–2)

(a) La3+–O2– 1516.3 0.3639 0.00

Mn3+–O2–
1235.9 0.31525 0.00

O2––O2–
22764.3 0.1490 20.37 –2.48 16.8

(b) La3+–O2– 1516.3 0.3525 0.00

Mn3+–O2–
1235.9 0.3281 0.00

O2––O2–
22764.3 0.1490 43.00

(c) La3+–O2– 2088.79 0.3460 23.25

Mn3+–O2–
922.83 0.3389 0.00

Mn4+–O2–
1386.14 0.3140 0.00

O2––O2–
9547.96 0.2192 32.00 –2.04 6.3
JOURNAL OF EXPERIMENTAL
shells relative to the cores in the dipole approximation.
The lattice distortion is simulated by the core displace-
ments from their lattice site positions.

In our model, cations are treated as unpolarizable
and the short-range interactions between relatively
small cations (core–core interactions) are ignored. The
short-range potentials used for the shell–shell (oxygen–
oxygen) and core–shell (metal–oxygen) interactions
are of the Buckingham form,

(1)

The parameters of both repulsive and attractive
components of the Buckingham potential for the shell–
shell (O2––O2–) interactions used in this work are
obtained in [14] and presented in Table 1, part a. The
Buckingham parameters for the core–shell Mn3+–O2–

and La3+–O2– interactions were fitted in this work using
the experimental data including the lattice parameter,
the static and high-frequency dielectric constants, and
the frequencies of the transverse optical (TO) phonons
in the LaMnO3 crystal [15]. The dielectric constants are
especially important if one wishes to predict polariza-
tion energies accurately. We have not found an experi-
mental value of the static dielectric constant of LaMnO3
in the literature. We are grateful to T. Arima and
Y. Tokura [16] for sending us the experimental data on
the reflectivity spectra of LaMnO3 measured at room
temperature and reported in [15]. In the present work,
the experimental value of the static dielectric constant
e0 ≈ 18 ± 2 was derived from these data by Kramers–
Kronig analysis and was further used in the fitting pro-
cedure. The parameters fitted for LaMnO3 (Pm3m) in
[17] (see Table 1, part b) were used as the starting val-
ues for the core–shell La3+–O2– and Mn3+–O2– short-
range interaction potentials. The oxygen shell charge
was taken as −2.48|e |, and the shell–core spring con-
stant k was chosen to give the correct value of the static
dielectric constant e0.

The final values of our shell model parameters are
presented in Table 1, part a. The calculated and experi-
mental properties of LaMnO3 (Pm3m) are summarized
in Table 2. One can see that both sets of parameters
(Table 1, parts a, b) give close values for the lattice
parameter and cohesive energy; however, at the same
time, our parameters give results that are close to the
static and high-frequency dielectric constants. The
value of the static dielectric constant calculated with
the parameters given in [17] is much higher than that
derived from the experimental reflectivity spectra. Our
model also agrees well with the experimental values of
the transverse optical phonon energies [15]. The
phonon bands obtained in our calculations correlate
well with those observed with higher oscillator
strengths. In particular, the predicted phonon energies
agree well for the La external mode ( ), Mn–O–Mn

Vij Aij
r

ρij

-----– 
 exp

Cij

r6
------.–=

ωTO1
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Table 2.  Crystal properties of LaMnO3 (Pm3m) calculated using the shell model potentials (Table 1) and compared with
experimental data

Lattice
const. a0, Å

Cohesive 
energy Elat, eV e0 e∞ , cm–1 , cm–1 , cm–1

Experiment 3.889 18 ± 2 [15] 4.9 [15] 172 [15] 360 [15] 560 [15]

Calcd. (a) 3.889 –140.52 15.6 4.9 172 308 513

Calcd. (b) 3.904 –139.12 56.17 – – – –

Calcd. (c) 3.906 –139.58 14.1 4.6 156 252 368

ωTO1
ωTO2

ωTO3
bending mode ( ), and Mn–O stretching mode

( ) for the quasi-cubic perovskite structure of the
strongly doped perovskite manganite system
La0.67Ca0.33MnO3 [18, 19].

We have also tested another set of short-range pair
potentials that are different for the Mn ion in different
valence states Mn2+, Mn3+, and Mn4+. The potentials
were obtained by fitting the equilibrium structures of
several oxide compounds, such as MnO, LaMnO3, and
Ca2MnO4 [20]. We tested pair potentials for Mn4+ and
Mn3+ from this set, presented in Table 1, part c. These
parameters also give good results (see the set of values
(c) in Table 2) for the lattice parameter and dielectric
constants, but are less successful in predicting the opti-
cal phonon frequencies. As we show below, both these
and our parameters give similar values for the calcu-
lated properties of polarons in these crystals, thereby
validating the correctness of the shell model approach.

We then apply the shell model parameters to esti-
mate key defect energies using the well-known Mott–
Littleton method (see [11] for a more detailed descrip-
tion). It is based on the concept that the total energy of
the crystal lattice containing a defect is minimized by
relaxation of the ions surrounding the defect, and this
relaxation fairly rapidly decreases at distances away
from the defect. In these calculations, the crystal is
divided into three regions: an inner spherical region I,
containing the defect and its immediate surroundings;
an intermediate finite region II, which is created to
properly link region I; and an outer infinite region III,
which responds as a dielectric continuum. Finite
regions I and II are embedded in infinite region III. The
typical radii of regions I and II used in our calculations
were 10 and 25 Å, respectively. We considered an elec-
tronic hole located in the center of region I, which is the
most perturbed. The displacements of cores and shells
in this region are calculated explicitly. In intermediate
region II, the ions are also treated within the shell
model, but their displacements and polarizations are
derived from the dielectric continuum approximation.
The system total energy is minimized (the preset accu-
racy was 0.01 eV) with respect to the positions of all
cores and shells in regions I and II in the potential pro-
duced by polarized region III.

ωTO2

ωTO3
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The Mott–Littleton method is especially valuable to
estimate key polaron energies because the long-range
polarization fields are treated properly; many other
methods (such as cluster methods or periodic cell meth-
ods) treat these significant terms badly.

3. ELECTRONIC HOLES IN LaMnO3

3.1. Relaxation Energies of the Localized Holes
in LaMnO3

We study possible hole localization (self-trapping)
on Mn3+ and O2– ions in a slightly hole-doped or nons-
toichiometric LaMnO3 crystal. Theoretical predictions
of the electron charge carrier self-trapping in the ideal
lattice are based on calculations of the so-called self-
trapping energy [10], which is the difference between
the localization and relaxation energies. The first of
these terms is basically an increase in the hole (elec-
tron) kinetic energy due to its localization on a finite
number of lattice sites from a completely delocalized
state. The second is the energy gain due to the lattice
polarization by the localized charge. They represent a
very delicate balance of large terms that in many cases
differ by 0.1 eV only. The calculation of the localization
energy, especially in complex crystals, is the most dif-
ficult part of the study of the electron charge carrier
self-trapping [10] and requires accurate electronic
structure calculations beyond the scope of this work.
Our aim is rather to compare the relaxation energies for
the hole localization in two different sublattices of the
same crystal. These energies are indicative of the
strength of the electron–phonon interaction, and their
difference can suggest whether there are major differ-
ences in hole trapping in one of the sublattices.

The hole formation process can generally be seen as
the ionization of the in-crystal ion with an electron
being taken out of the crystal and put on the vacuum
level. The energy required in this process (the hole for-

mation energy  for α = Mn, O, La) is the work done
against the in-crystal ionic core potential, Iα, and the

crystalline electrostatic potential, , less than the
energy gain due to the lattice polarization effects, Rα:

(2)

Eh
α

UM
α

Eh
α Iα UM

α Rα .+ +=
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Table 3.  Formation and polarization energies for localized holes in LaMnO3: (a) for the pair potentials explored in this work;
(c) for the pair potentials from Grimes [20] (Table 1) for Mn3+ and Mn4+ different valence states

α-hole Iα 

(a) Mn4+ 2.56 1.73 47.41 (51.20) –44.85 –45.68 –38.3 –6.55 –0.83 1.2

O– 4.86 2.48 –13.91 18.77 16.39 22.1 –3.33 –2.38 3.5

La4+ 18.36 17.63 49.45 (49.45) –31.09 –31.82 –27.4 –3.68 –0.73 17.0

(c) Mn4+ 2.62 1.95 46.83 (51.20) –44.27 –44.94 –38.1 –6.17 –0.67 1.2

O– 4.92 2.52 –13.82 18.74 16.34 22.0 –3.26 –2.40 3.5

La4+ 18.42 17.84 49.45 (49.45) –31.03 –31.61 –27.4 –3.63 –0.58 17.0

Eh opt,
α

Eh th,
α

EIV
α( ) Sopt

α
Sth

α
UM

α
Ropt

α ∆Rth
α

EPES
α

To assess the extent of the lattice perturbation by the
hole localization and calculate the hole relaxation
energy, it is useful to distinguish the “electronic” and
“ionic” terms in the polarization energy. The first term,
which we call , is due to the “electronic” polariza-
tion of ions by the momentarily localized hole, which
in our method is represented by the displacements of
shells with respect to the cores that are fixed at their perfect
crystal positions. This term takes the lattice response on,
e.g., the Franck–Condon photoionization into account.
The lattice distortion term due to displacements of cores
and related adjustment of shells after the complete lattice
relaxation, denoted as , is the difference between the

full polarization energy Rα and ,

(3)

It represents the hole relaxation energy. If this energy
exceeds the localization energy, i.e., the kinetic energy

Ropt
α

∆Rth
α

Ropt
α

∆Rth
α Rα Ropt

α .–=

0.004 Å

Mn

La

0.01Å

0.01 Å

0.1 Å

Mn

Mn

Mn

Mn

Mn

O

O

hole0.1 Å

Fig. 2. The core displacements (≥0.004 Å) of the ions sur-
rounding the Mn4+ electronic hole defect after the complete
relaxation of cores and shells in the LaMnO3 lattice.
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rise due to the complete hole localization on this site,
then one can talk about the hole being self-trapped on
this site. Given this assumption, Eq. (2) takes the form

(4)

The shell model Mott–Littleton calculations give the

cumulative energy of the second and third terms, ,

or of the last three terms, , in Eq. (4) depending on
whether both shells and cores or shells only were
allowed to relax. It is sensible, however, to evaluate
these terms separately. This can be rigorously done by
independently calculating the on-site electrostatic

potential  within the periodic model and using the

definition introduced by Eq. (3). The values of  and

 and the calculated terms , , and  are
summarized in Table 3.

It follows from the calculations that there is a large
difference in the lattice relaxation energies for the O–

and Mn4+ holes. The lattice relaxation energy –
caused by the hole localization at the O site (2.38 eV)
appears to be significantly larger than that for the hole
localized at the Mn site (0.83 eV), as shown in Table 3a.
This indicates a strong electron–phonon interaction in
the case of the hole localized at the O site and could
suggest that the hole trapping is more preferential in the
oxygen sublattice. However, the width of the Mn(3d)
subband in the density of states, which determines the
hole localization energy, is much narrower than that of
the O(2p) related subband [21]. Without a much fuller
electronic structure calculation of the localization
energy, it is therefore impossible to draw any final con-
clusion as to in which sublattice the holes could be
localized.

One experimental test could involve the analysis of
local vibrations due to the hole localization. It can be
facilitated by the qualitative difference in the lattice
relaxation around the two centers that is clearly seen in
Figs. 2 and 3. The completely relaxed configuration of
the ions surrounding the Mn4+ electronic hole defect
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(see Fig. 2) corresponds to the positions of cores in region
I that have appreciable displacements (more than or equal
to 0.004 Å) from their perfect lattice sites. The cores of
the six nearest neighbor oxygen ions are symmetrically
displaced by about 0.1 Å towards the Mn4+ ion carrying
the hole. The rest of the lattice relaxation comprises
small displacements of the Mn and La ions (about
0.01 and 0.004 Å, respectively) out from the Mn4+ hole
center.

By contrast, the ionic relaxation around the O– hole
center has axial symmetry, with the largest lattice dis-
placements of the nearby Mn ions (about 0.21 Å)
along the axis away from the O– hole center (see
Fig. 3). These displacements cause the next two apical
oxygen ions along the axis to move away from the O–

hole center by about 0.1 Å. The equatorial oxygen
ions in the octahedron relax towards the hole center by
about 0.03 Å. In-plane La ions also show appreciable dis-
placements away from the O– hole center. The qualitative
difference in the symmetry of the lattice relaxation around
the two centers implies the difference in the local vibra-
tional modes, which can be used for experimentally
probing the hole localization in LaMnO3.

3.2. Photoemission Spectra and In-Crystal Ionization 
Potentials in LaMnO3: Formation Energies 

of the Localized Holes in the LaMnO3 Crystal

To evaluate the hole formation energy, we need to
estimate the values of the unknown in-crystal ioniza-
tion energies Iα. We suggest estimating the ionization
potentials from the experimental photoemission spec-
troscopy (PES) data, which can be directly related to
our calculations. In principle, PES at different excita-
tion energies probes bonding states as well as nonbond-
ing states. The latter, being ion-in-crystal-like, can be
related to the Franck–Condon energies obtained in our
calculations. In order to juxtapose experimental and
calculated values, we must also take into account that
the PES binding energy EPES is measured with respect
to the Fermi energy level EF of the sample. Therefore,
we write

(5)

In the PES spectra of LaMnO3, there are two main pho-
toemission bands around 3.5- and 6-eV binding ener-
gies at T = 100, 200 K for the HeI (hν = 21.2 eV) and
HeII (hν = 40.8 eV) photon energies for which the
O(2p) photoionization cross section is dominant [22].
The main maximum at 3.5 eV has been primarily
assigned to the O(2p) nonbonding states, whereas the
second maximum is assigned to the Mn(3d)–O(2p)
bonding states and the decrease of the O(2p) character
correlates with the decrease of the Mn(3d)–O(2p)
hybridization strength. For higher energies with the
HeII PES study, the σMn(3d)/σO(2p) cross-section ratio
increases and a feature near 2.7 eV appears [22]. At

Iα UM
α Ropt

α+ + EPES
α EF.+=
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high photon energies of 500 eV and T = 280 K, the band
at 3.5 eV is not clearly evident, but the band at 2.7 eV
becomes dominant over the band at 6 eV, which stands
for the maximum contribution of Mn(3d) 3t2g states at
the binding energy of 2.7 eV [23]. The crystal field
splitting between the Mn(3d) 3t2g and eg states in
LaMnO3 has been estimated from the PES study to be
about ∆CF ≈ 1.5 eV [23]. The peak at 17 eV has been
assigned to the La(5p) states [23].

Thus, in accordance with the dominant contribu-
tions to the PES spectra of LaMnO3 [22, 23], we assign

the values  ≈ 3.5 eV,  ≈ 17.0 eV, and  ≈
1.2 eV, suggesting that the Mn hole formation process
is associated with the electron photoionization from the
eg level. These maxima in the PES spectra correlate
well with the maxima in the density of states for the
O(2p) and Mn(3d) eg valence bands in LaMnO3 calcu-
lated within the local spin density approximation
(LSDA) [21]. The corresponding schematic representa-
tion of the band structure in accordance with the
assigned maxima of binding energies in the PES spec-
tra [22, 23] in the scale of energies related to the crystal
Fermi level EF is shown in Fig. 4. The gap in the eg elec-
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Mn
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Mn

O

hole

La
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0.1 Å

0.1 Å
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Mn

Mn

O
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Mn

0.04 Å

0.21 Å

O

Fig. 3. The core displacements (≥0.03 Å) of the ions sur-
rounding the O– electronic hole defect after the complete
relaxation of cores and shells in the LaMnO3 lattice.
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Fig. 4. A schematic representation of the valence band structure of the LaMnO3 crystal, showing binding energies [22, 23] with
respect to the crystal Fermi level EF. The processes of the optical electron excitation from the Mn(3d) eg, O(2p), and La(5p) valence
bands to the vacuum level are shown by arrows. These optical excitation energies can be compared with experimental PES data [22, 23]
and with the calculated values of optical energies Eopt, for the Mn4+, O–, and La4+ hole formation (Table 3).
tron band opened at EF due to the lattice distortion (the
JT effect and/or lattice mismatch effect) is shown in
accordance with the PES crystal field splitting data
[23]. The relevant electron excitations from the Mn(3d)
eg, O(2p), and La(5p) valence band levels are schemat-
ically shown by arrows. The corresponding PES ener-

gies  are summarized in Table 3.

Having assigned the  energies, we now pro-
ceed with the evaluation of the hole formation energies

. We first obtain the crystal Fermi energy using
Eq. (5) and data for the La ion. We assume that the elec-
tronic density of the closed-shell La3+ ion is not signif-
icantly deformed by the crystalline field, and the in-
crystal ionization energy ILa can therefore be plausibly
estimated by the fourth standard ionization potential
EIV of a free La atom [24], presented in Table 3. This
approximation is consistent with the full ionic charges
adopted in our shell model parametrization. We note
that the above approximation of a free cation is shown
to be reliable only for closed-shell cations. This gives
EF ≈ 1.36 eV for the Fermi energy of the LaMnO3
crystal.

The situation is more complicated for manganese
and oxygen. The Mn3+ ion has a nonclosed 3d shell
with four electrons in it, and we therefore expect the in-
crystal ionization energy IMn to be different from the
fourth ionization potential of a free Mn atom. Because
the O2– ion is only stabilized by the crystalline field, it
has a negative ionization potential that cannot be
defined in a nonspeculative way. Using the Mn(3d) and

O(2p) related maxima in the PES spectra, , and the
obtained value EF ≈ 1.36 eV, we can now estimate the
effective ionization energies Iα for manganese and oxy-
gen in the LaMnO3 crystal from Eq. (5). These values
are presented in Table 3, with the free metal ionization
potentials [24] given in brackets for comparison. The

EPES
α

EPES
α

Eh
α

EPES
α
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O2– in-crystal ionization potential IO (negative electron
affinity of O–) is then estimated to be –13.91 eV. The
absolute value of this potential is within the limits of O–

electron affinities calculated for many oxide com-
pounds in [25] using the embedded cluster ab initio
method. Those calculations predicted 10.6 eV for MgO
and 12.9 eV for ThO2. Taking the semiempirical nature
of our calculations into account, we find this agreement
quite good.

The optical and thermal energies of the hole forma-

tion,  and , are calculated using these effec-
tive values of the in-crystal ionization energies in
accordance with Eq. (4) and presented in Table 3. Tak-
ing the crystal field splitting effect into account, we
have found that the electronic hole is marginally more
stable at the Mn site than at the O site in the LaMnO3
lattice, but the energy difference between the thermal ener-

gies of the hole formation, , is too small (0.75 eV).
This result rather suggests that both possibilities should
be treated seriously. That is, providing the balance
between the localization and relaxation energies favors
the possibilities for hole self-trapping at the Mn and O
sites, the electronic hole in LaMnO3 is likely to be
localized on the manganese, or on both the oxygen
anion and the transition metal cation, rather than on the
oxygen ion alone.

To assess the accuracy of the calculated energies of
the hole formation and lattice relaxation, we need to
discuss the following issue related to the pair potentials
used in these calculations. The energies presented in
Table 3a were obtained using the pair potentials listed
in Table 1a. To verify the robustness of our results, we
repeated the same calculations using the potentials in
[20], which give close values for the dielectric con-
stants in LaMnO3 (see Table 2, part c), but were spe-
cially optimized to treat different Mn3+ and Mn4+

charge states. The calculated values of formation and
polarization energies for the localized holes Mn4+, O–,

Eh opt,
α Eh th,

α

Eh th,
α
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Fig. 5. (a) The experimental optical conductivity spectrum of the LaMnO3 crystal [15] (curve 1, T = 300 K) represented by the con-
tributions from the three Lorentz oscillators in accordance with the dispersion analysis of the imaginary part of the dielectric func-
tion e2 shown in Fig. 5b. (b) The experimental e2 spectrum of LaMnO3 (curve 1, T = 300 K) represented by a sum of three main
Lorentzian-shaped bands: 1.93, 4.75, and 9.07 eV (drawn by curves 2, 3, and 4, respectively). The rest of the e2 spectrum after sub-
traction of the Lorentzian bands is shown by line 5. The Lorentzian band parameters are given in Table 4 together with the estimated
oscillator strengths fi.
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and La4+ and the energies deduced in Eq. (4) using
these pair potentials are presented in Table 3, part c.
These calculations demonstrate that the hole relaxation
energy of Mn4+ is decreased by 0.16 eV if we account
for the change in the short-range potentials caused by
the change in the Mn charge state. Comparing these
with our results, we can see good coincidence for the
similar values and for the thermal and optical energies
of hole formation.

4. OPTICAL CHARGE TRANSFER 
TRANSITIONS IN LaMnO3

Polaronic-type electron charge carriers mostly
determine specific transport properties of CMR materi-
als in their high-temperature insulating paramagnetic
phase, which are always associated with photoinduced
charge transfer transitions. In hole-doped systems of
perovskite manganites R1 – xAxMnO3, the most impor-
tant charge transfer transitions associated with local-
ized charge carriers are apparently those involving
Mn4+ and O– self-trapped holes. In this section, using
the derived values of the in-crystal ionization energies,
we calculate energies of the main charge transfer tran-
sitions, suggesting that holes could be localized at the
Mn or O sites. We analyze the contribution of these
charge transfer transitions to the experimental optical
conductivity in nonstoichiometric or slightly hole-
doped LaMnO3 crystals to make the assignment of the
bands in the optical conductivity spectrum more clear-
cut and to verify our shell model approach. We now
proceed with a brief analysis of the optical conduc-
tivity.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
4.1. Analysis of the Optical Conductivity Spectra 
in LaMnO3

The room-temperature optical conductivity spec-
trum of LaMnO3 measured in [15] is shown by solid
curve 1 in Fig. 5a in the spectral region 0 to 8 eV (repro-
duced from the original data with permission of Arima
and Tokura [15, 16]). This spectrum is very similar to
that measured by Okimoto et al. at T = 9 K [26]. It
reveals the optical gap near 1.3 eV and includes several
broad absorption bands with maxima near 2.3, 5, and
9 eV. The gap is assumed to be of the charge transfer
type [15]. The first transition around 2.3 eV has been
suggested to be of O(2p)–Mn(3d) character. The band
near 5 eV is thought to be due to excitations to a higher
lying Mn 3d eg antiparallel spin configuration, sepa-
rated by a Hund rule coupling energy. The wide band
observed around 9 eV in the optical conductivity spec-
trum is assigned to the O(2p)–La(5d) interband optical
transition [15].

The optical spectra measured in hole-doped manga-
nese oxides show striking changes over a wide photon
region (0 to 6 eV) as the temperature and doping con-
centration change. In the La1 – xSrxMnO3 system, with
increasing doping concentration (x = 0 to 0.3, T = 9 K
[26]), the excitations around 2.3 and 5 eV shift appre-
ciably to lower energies. However, the principal
changes occur in the low-energy mid-infrared spectral
region stemming from the filling of the gap because of
the hole doping. In the insulating paramagnetic phase
of hole-doped manganites, there are two features
clearly observed in the experimental mid-infrared opti-
cal conductivity, around 0.6 eV [18, 26] and around
1.2–1.5 eV [27, 28]. The optical band around 0.6 eV
SICS      Vol. 94      No. 1      2002
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seems to be associated with polaronic-type charge car-
riers in doped CMR manganites, and the consistent
value of the activation energy of about 0.15 eV was
measured for the hopping conductivity in the adiabatic
temperature limit [29, 30]. The origin of these features
is still a subject of many controversial discussions. It is
well known that the LaMnO3 crystal has a strongly dis-
torted orthorhombic structure at low temperatures,
which in many works is ascribed due to a strong elec-
tron–phonon interaction stemming from the JT effect
inherent for Mn3+ ion in the octahedral oxygen config-
uration. In this case, the eg bands split into two sub-
bands separated by the JT energy EJT. Because the on-
site d–d transitions are dipole-forbidden, these mid-
infrared peaks around 0.6 and 1.2–1.5 eV were qualita-
tively explained as occurring because of an electron
transition from an occupied site Mn3+ to an unoccupied
site Mn4+ and an adjacent occupied site Mn3+, respec-
tively [1].

In a recent theoretical study of the optical conduc-
tivity spectra of 3d transition metal perovskites LaMO3
(M = Ti–Cu) [31] using the local spin density approxi-
mation method (LSDA + U), the authors estimated the
role of lattice distortions in the band structure calcula-
tions and concluded that the JT structural distortions
play a crucial role in opening the optical gap in the
LaMnO3 Mn(3d) eg valence band. Considering the
experimentally observed distorted structure of the
LaMnO3 crystal, the direct gap in the LSDA study has
been estimated at approximately 0.7 eV, which is less
than the observed optical gap (about 1.3 eV [15, 26]).
There are also some discrepancies observed at higher
energies between the experimental optical conductivity
in 3d transition metal perovskites LaMO3 and the cal-
culated optical conductivity considering contributions
from the interband and intraband transitions for the per-
fect lattice [31], which complicates the assignment of
the optical bands. In addition, the contribution from the
charge transfer transitions to the optical conductivity in
the nonstoichiometric lattice must be taken into
account to describe the optical conductivity at low ener-
gies satisfactorily and to clarify the assignment of the
optical bands in the LaMnO3 crystal.

To estimate the contribution of the charge transfer
transitions to the experimental optical conductivity of
the LaMnO3 crystal, shown by curve 1 in Fig. 5a, we

Table 4.  Parameters of the imaginary part e2 of the dielectric
function [15, 16] represented by the sum of Lorentzian sha-
ped bands

Ei, eV γi, eV , eV2 fi

1.93 1.46 1.895 0.51

4.75 2.0 4.22 0.187

9.07 5.1 12.75 0.155

ν pi
2
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have analyzed the imaginary part e2(ν) of the dielectric
function [15, 16]. For this purpose, we represented the
e2(ν) spectrum, shown by curve 1 in Fig. 5b, as the sum
of the first three main bands with Lorentzian line
shapes,

(6)

where (νpi/Ei)2 = fi is the oscillator strength,νpi is the
plasma frequency, γi is the bandwidth, and Ei is the res-
onance frequency of the ith oscillator. The three Lorent-
zian bands with the maxima Ei at 1.93, 4.75, and
9.07 eV and the respective widths γi of 1.46, 2.0, and
5.1 eV are represented by curves 2, 3, and 4 in Fig. 5b.
The rest of the imaginary part of the dielectric function
after subtraction of the Lorentzian bands is shown by
curve 5. The Lorentzian band parameters together with
the estimated oscillator strengths are given in Table 4.
These Lorentzian bands contribute to the experimental
optical conductivity spectrum, as shown by the corre-
sponding lines in Fig. 5a, with more details at low ener-
gies.

4.2. Calculation of Charge Transfer 
Transition Energies

Using the Born–Haber cycle and the shell model,
we can consider both thermally assisted and optical
charge transfer processes. This can be illustrated for a
hypothetical transformation of two ions X(m + 1)+ and
Y(n – 1)+ into Xm+ and Yn+ with an electron transferred
from Y to X (or a hole from X to Y),

(7)

There are two basic steps: (1) removing an electron
from the in-crystal Y(n – 1)+ ion to infinity, outside the
crystal; (2) adding an electron from infinity, outside the
crystal, to the in-crystal X(m + 1)+ ion. The steps are stan-
dard within the shell model. Whether shells alone or
shells and cores are relaxed depends on which transi-
tion is being calculated. In the case of a thermally
assisted hopping, the shell and core positions are con-
sidered to be fully relaxed in both charge states and the
transition energy is denoted by Eth. Comparison of the
two charge states gives an additional indication which
species are more stable. For optical transitions, the
Franck–Condon approximation is used and the transi-
tion energies Eopt are calculated on the assumption that
only shells can relax (corresponding to full electronic
polarization), whereas the cores remain in the positions
corresponding to the initial state. The major contribu-
tions into these energies come from ionization energies

, ; the Madelung and polarization terms,
whose cumulative energies for the defect configuration
corresponding to the charge transfer transition consid-
ered, S[Xm+, Yn+]opt, th, result from the Mott–Littleton

e2 ν( )
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Table 5.  Calculated optical (Eopt) and thermal (Eth) energies for the main charge transfer transitions in LaMnO3; Sopt and Sth
are resultant calculated values of the sum of defect energies for the corresponding charge transfer process

No. Charge transfer transition Eopt, eV Exp., eV Eth, eV Sopt, eV Sth, eV

1 Mn4+ + Mn3+  Mn3+ + Mn4+ 1.33 – 0.00 –44.35 –45.68

2 O– + Mn3+  O2– + Mn4+ 1.43 (2.29) 1.93 –0.75 (0.12) –43.50 –45.66

3 Mn4+ + O2–  Mn3+ + O– 2.98 (2.12) 1.93 0.75 (–0.12) 18.62 16.39

4 2Mn3+  Mn4+ + Mn2+ 3.72 3.5 [27], 3.2 [32] 2.68 –13.06 –14.10

5 Mn3+ + O2–  Mn2+ + O– 5.61 (4.75) 4.75 3.50 50.15 48.04

6 La3+ + O2–  La2+ + O– 8.93 9.07 6.47 42.02 39.56

Note: Transitions nos. 4, 5, and 6 are associated with the Mn(3d) gap, O(2p)–Mn(3d), and O(2p)–La(5d) transitions, respectively.
calculations (as in Eq. (4)). If the charge transfer
includes a localized hole in thermal equilibrium in the
initial state (the related values in the LaMnO3 lattice are

presented as  in Table 3), the corresponding thermal
energy S[X(m + 1)+, Y(n – 1)+]th of the initial defect config-
uration must be subtracted. Thus, the thermal and opti-
cal energies of the charge transfer transitions can be
calculated using the formulas

(8)

(9)

Evidently, there is some dependence on the separation
of X and Y. The charge transfer optical transitions for
nearest neighbors are likely to dominate, and the rele-
vant key cases have been calculated. If X and Y are the
same (symmetric), the ionization terms cancel each
other, as for the intervalence charge transfer transition

Mn4+ + Mn3+  Mn3+ + Mn4+.

Here, we emphasize that the calculations of charge
transfer transitions between the metal Mn sublattice
ions are more reliable because they do not depend on
the difference between the Madelung potentials of the
two sublattices nor on the phenomenologically deduced
parameter of the O2– in-crystal ionization potential.

The cumulative thermal Sth and optical Sopt energies
following from the Mott–Littleton calculations for the
charge transfer transitions involving Mn4+ and O– spe-
cies and those characterizing fundamental electronic
transitions in the LaMnO3 lattice (e.g., the Mn(3d) gap
transition O(2p)–Mn(3d) and O(2p)–La(5d)) are pre-
sented in Table 5 by transitions 1–3 and 4–6, respec-
tively. To calculate the optical and thermal energies of
the charge transfer transitions, we used a self-consistent
set of the ionization potentials (see Table 3, part a)
derived by matching the calculated optical energies of
the hole formation with the photoemission experimen-
tal energies and the standard ionization potentials for a

Sth
α

Eopt In
Y Im 1+

X– S Xm+ Yn+,[ ] opt+=

– S X m 1+( )+ Y n 1–( )+,[ ] th,

Eth In
Y Im 1+

X S Xm+ Yn+,[ ] th+–=

– S X m 1+( )+ Y n 1–( )+,[ ] th.
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free La atom. We must also estimate the third in-crystal

ionization potential of Mn, . We suggest that it
should be shifted in-crystal from the standard value for
a free Mn atom (33.67 eV [24]) by the same value as the
fourth potential of Mn (from the standard value
51.2 eV), by subtracting the crystal field splitting effect
(∆CF ≈ 1.5 eV); we thus calculate in-crystal

Taking the standard value  = 19.18 eV, the calcu-
lated optical energy of the fundamental transition of the
charge transfer character O(2p)–La(5d),

(see Table 5, transition 6), correlates well with the max-
imum of the broad band in the e2 function near 9.07 eV
(curve 4 in Fig. 5b). This encouraging consistency
between the experimental and calculated energies
allows us to suggest that the earlier estimated in-crystal
value IO = –13.91 eV provides a reasonable value in this
shell model calculation. We also calculated the optical
energy of the fundamental transition of the charge
transfer character O(2p)–Mn(3d),

(see Table 5, transition 5). We suggest that the relevant
transition should correlate with the broad optical band
observed in the e2 function near 4.75 eV (curve 3 in
Fig. 5b). Our calculations therefore predict transitions
which appear to correlate with the maxima of the major
broadband features in the optical conductivity spec-
trum. The calculated optical energy for the transition
between the Mn(3d) valence band and the upper Hub-
bard Mn(3d) band is estimated to be

(see Table 5, transition 4), predicting a band gap of the
Mott–Hubbard type in the LaMnO3 crystal. This value
agrees well with the assigned transition experimentally
observed near 3.5 eV in Nd0.7Sr0.3MnO3 [27] and near
3.2 eV in La0.825Sr0.175MnO3 [32]. A small contribution

IIII
Mn

IIII
Mn 33.67 51.2 47.41 ∆CF/2+( )–( )– 30.63 eV.= =

IIII
La

Eopt IO IIII
La– S La3+ O2–,[ ] opt+ 8.93 eV= =

Eopt IO IIII
Mn– S Mn3+ O2–,[ ] opt+ 5.61 eV= =

Eopt IIV
Mn IIII

Mn– S Mn3+ Mn3+,[ ] opt+ 3.72 eV= =
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to the experimental optical conductivity can be
observed around 3.7 eV in the LaMnO3 crystal, as
shown by curve 5 in Fig. 5b, resulting from our disper-
sion analysis.

Having assigned the fundamental electronic transi-
tions in the LaMnO3 crystal in accordance with the
results of our calculations, which are also consistent
with the consideration in [27], we note that the assign-
ment of the optical conductivity band around 2.3 eV
still remains controversial. In the earlier study [15], this
band was associated with the fundamental charge trans-
fer transition of the O(2p)–Mn(3d) eg character,
whereas the band at about 5 eV was associated by the
authors with the excitations to a higher lying Mn 3d eg

antiparallel spin configuration, separated by the Hund
rule coupling energy. However, our results allow us to
argue that an alternative interpretation of this transition
obtained in this work can be correct. We suggest that
the band at about 2.3 eV is rather associated with the
presence of Mn4+ and/or O– localized holes in the
LaMnO3 crystal, which is known to exhibit a strongly
nonstoichiometric behavior with respect to the oxygen
content, up to 0.1 in as-grown crystal.

Indeed, if an optical band is associated with a charge
transfer transition in a crystal lattice, its maximum
position hνmax and the half-width ∆W are known to be
related by a simple formula in the high-temperature
limit [33],

(10)

We can invoke this expression to verify the charge
transfer transition character of the bands associated
with the photoinduced hopping conductivity of the
localized charge carriers. Using this expression, the
estimates for T = 300 K show a very encouraging con-
sistency between the half-width and the maximum
energy of the first Lorentzian band (curve 2 in Fig. 5b,
with the parameters given in Table 4): from ∆W ≈
0.73 eV, we obtain hνmax ≈ 1.92 eV, which matches well
the maximum position estimated to be near 1.93 eV
from the dispersion analysis of the e2 function. This is
consistent with the view that this transitions could be of
the charge transfer type, associated with the presence of
localized electronic charge carriers in the LaMnO3
crystal lattice.

The main contributions to the optical conductivity
are then expected from the following charge transfer
transitions: 

(1) the intervalence Mn3+/Mn4+ charge transfer tran-
sition,

Mn4+ + Mn3+  Mn3+ + Mn4+,

hνmax
∆W2

16kT 2ln
---------------------.=

Eopt S Mn3+ Mn4+,[ ] opt Sth
Mn– 1.33 eV;= =
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(2) the transition of the O– self-trapped hole to a
neighboring manganese ion,

O– + Mn3+  O2– + Mn4+,

(3) the transition of the Mn4+ self-trapped hole to a
neighboring oxygen ion,

Mn4+ + O2–  Mn3+ + O–,

(see transitions nos. 1–3, respectively, in Table 5).
Analyzing all calculated and experimental optical

energies given in Table 5, we can conclude that the
agreement is much better for the calculations not
involving the in-crystal ionization potentials of manga-

nese,  and , or in the case where their difference
enters and the inaccuracy due to these terms cancels
out. Relying on the correlation between the calculated
and experimental optical energies, we can try to refine

the values of  and , whose in-crystal determina-
tion presents difficulties due to a nonclosed 3d shell of
the Mn3+ ion. Indeed, expecting the calculated optical
energy of the fundamental transition of the charge
transfer character O(2p)–Mn(3d),

(see Table 5, transition no. 5) to be correlated with the
broad optical band observed in the e2 function near
4.75 eV (curve 3 in Fig. 5b), we can refine the third in-

crystal ionization potential of manganese as  =

31.49 eV and, correspondingly,  = 48.27 eV.
Using these corrected values, we recalculated the ener-
gies of transitions nos. 2 and 3 in Table 5 associated
with the charge transfer transitions of O– and Mn4+ self-
trapped holes and obtained close values of optical ener-
gies, Eopt = 2.29 eV and Eopt = 2.12 eV, respectively.
These corrected values for the optical charge transfer
transition energies are presented in brackets in Table 5
for transitions nos. 2 and 3. We suggest that these tran-
sitions, Mn4+ + O2–  Mn3+ + O– and O– + Mn3+ 

O2– + Mn4+, associated with the hole transfer along the
chain Mn4+–O2––Mn3+, could be responsible for the
band around 2.3 eV in the optical conductivity spec-
trum (the related band in the e2 spectrum has the maxi-
mum energy 1.93 eV) of the as-grown nonstoichiomet-
ric LaMnO3 crystal. If the band is thus assigned, the net
oscillator strength of this band, fi = 0.51 (see Table 4),
must depend on the concentration of the localized holes
as fi = fCT/x, thereby providing an estimate of the oscil-
lator strength for the charge transfer transition, fCT. The
typical value x ≈ 0.1 for an as-grown LaMnO3 crystal

Eopt IIV
Mn IO– S O– Mn3+,[ ] opt Sth

O–+ 1.43 eV;= =

Eopt IO IIV
Mn– S O2– Mn4+,[ ] opt Sth

Mn+ + 2.98 eV= =

IIII
Mn IIV

Mn

IIII
Mn IIV

Mn

Eopt IO IIII
Mn S Mn3+ O2–,[ ] opt+–=

=  –13.91 30.63– 50.15+ 5.61 eV=

IIII
Mn( )*

IIV
Mn( )*
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gives an estimate for the oscillator strength consistent
with the transition of the charge transfer type.

The negative value of the thermal energy, Eth =
−0.75 eV, for transition no. 2 in Table 5 indicates a more
thermally stable state of the Mn4+ hole compared to the
O– hole state, in accordance with our results for the

thermal energies  of the formation of holes
(Table 3a) based on preliminary estimates for the fourth
in-crystal ionization potential of the manganese ion.

Using the refined value  = 48.27 eV deduced from
the comparison between the calculated and experimen-
tal optical energies, we now derive the respective ther-
mal energies 0.12 and –0.12 eV for transitions nos. 2
and 3. This result reinforces our arguments made above
that the electronic hole can be thermally stable on both
the transition metal cation and the oxygen anion in the
LaMnO3 crystal.

In accordance with our shell model calculations, the
intervalence charge transfer transition Mn4+ + Mn3+ 
Mn3+ + Mn4+ is predicted to have the optical energy
Eopt = 1.33 eV (Table 5, transition no. 1); compared
with the energy of the optical gap in LaMnO3, it is not
observable in an as-grown pure crystal.

Because of the doping effect, the optical spectra in
CMR manganese oxides show striking changes over a
wide photon region (0 to 6 eV). In the La1 – xSrxMnO3
system, with increasing the doping concentration from
x = 0 to 0.3 at T = 9 K [26], the optical conductivity
bands around 2.3 and 5 eV shift to lower energies by
more than 0.5 eV. We have analyzed the low-energy e2
function in a slightly doped La7/8Sr1/8MnO3 compound
[28] and found it to be well described by the Lorentzian
curve with the maximum at 1.32 eV and the half-width
of 0.61 eV, as presented in Fig. 6. We emphasize that
the maximum position of this band and its half-width
are also in a good correlation with the formula describ-
ing a transition of the charge transfer character (see
Eq. (10)): from ∆W ≈ 0.61 eV, we obtain hνmax ≈ 1.34 eV,
which matches well the maximum position observed
experimentally. It is reasonable to suggest that this band
is of the same origin as the band at e2 = 1.93 eV in the
pure LaMnO3 compound, assigned to transitions nos. 2
and 3 in Table 5 and shifted by about 0.5 eV to lower
energies because of the hole interaction effect in CMR
systems. Using this line of reasoning, we can also sug-
gest that the 0.6-eV band [18, 26] in the optical conduc-
tivity of CMR compounds is due to the intervalence
charge transfer transition Mn4+ + Mn3+  Mn3+ +
Mn4+ and is associated with the photoinduced hopping
conductivity of Mn4+ localized holes, with the consis-
tent value of hopping conductivity activation energy of
approximately 0.15 eV measured in the adiabatic tem-
perature limit [29, 30].

The results given are based on the shell model
parameters (Table 1, part a), which were fitted to give

Eth
α

IIV
Mn
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good values for both the dielectric constants and the TO
modes. When we use the second set of the shell model
parameters, determined primarily using the oxide struc-
tures MnO, LaMnO3, and Ca2MnO4 [20] (Table 1, part c),
the resulting energies are very similar for the low-energy
optical charge transfer transition band near 2.3 eV, but the
predicted energies are about 1.5 eV higher for the 5-eV
optical band.

5. CONCLUSIONS

In this paper, we explore the role of electronic and
ionic polarization energies in the physics of CMR
materials. In particular, we examine energies associated
with the localized Mn4+ and O– holes in the lattice of the
“parent” LaMnO3 compound. Our calculations are
done for the idealized cubic perovskite LaMnO3 struc-
ture, which is relevant to the nonmagnetic quasi-cubic
perovskite structure experimentally observed at high
temperatures T ≥ 400 K > TN ≈ 140 K. To estimate the
polarization energy terms, we use a fully ionic shell
model. The shell model parameters that we derive sat-
isfy the equilibrium conditions for the quasi-cubic per-
ovskite structure LaMnO3 and agree well with experi-
mental values of the static and high-frequency dielec-
tric constants as well as the TO phonons.

As a result of our shell model calculations, we find
that, on one hand, there is a huge difference between the
hole relaxation energies on the oxygen and manganese
sites, which indicates a strong electron–phonon interac-
tion in the case of a hole localized at the O site. On the
other hand, the difference that we find between the ther-
mal energies of the Mn4+ and O– holes is too small. This
means that we must seriously consider the possibility
that the electronic hole in LaMnO3 is localized on the
manganese, or on both the oxygen anion and the transi-
tion metal cation, rather than on the oxygen ion alone.

2

0 0.5

∈ 2

hv , eV
1.0 1.5 2.0

4

6

hvmax = 1.32 eV
∆W = 0.61 eV

Fig. 6. The experimental e2 spectrum (solid line) of
La7/8Sr1/8MnO3 [28] (T = 300 K) approximated by the
Lorentzian-shaped band (dashed line).
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If so, this system would be similar to many other tran-
sition metal oxides.

Assuming that holes in the LaMnO3 crystal can
localize in either or in both of the Mn and O sublattices,
we estimate the main associated optical charge transfer
transition energies, which we relate to the experimen-
tally observed optical conductivity spectra. Applying
the Mott–Littleton approach, we estimate the charge
transfer transition energies within the Born–Haber
cycle using the in-crystal ionization potentials for ions
in the LaMnO3 crystal obtained in our study of the
experimental photoemission spectra.

Our analysis allows us to suggest a new interpreta-
tion of the main bands in the optical conductivity spec-
trum near 2.3 and 5 eV. We suggest that the band around
5 eV is associated with the fundamental O(2p)–Mn(3d)
transition of the charge transfer character, whereas the
band near 2.3 eV is rather associated with the presence
of Mn4+ and/or O– self-trapped holes in the nonstoichi-
ometric LaMnO3 compound.

To summarize, we believe that the results of this
work demonstrate the applicability and usefulness of
the shell model approach to preliminary modeling of
polaron-related features in complex oxides such as
CMR materials, and we hope that they will stimulate
further theoretical and experimental studies of the char-
acter and properties of hole states in these materials.
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Nonequilibrium interaction effects of two Hubbard–Anderson impurities have been experimentally studied by
means of STM/STS methods and theoretically analyzed using a self-consistent approach based on the Keldysh
formalism. © 2002 MAIK “Nauka/Interperiodica”.
Impurity states at surfaces and interfaces of semi-
conductors can strongly modify the local electronic
structure. As the system size decreases, the correct
understanding of localized state properties becomes
more and more important. The interaction between
impurities must also be taken into account as the impu-
rity concentration increases. If the distance between
impurities is of the order of the localization radius, suf-
ficiently strong correlation effects arise that modify the
tunneling conductivity. The electronic structure of such
complexes can be tuned by an external electric field.
These effects are believed to determine electronic prop-
erties of semiconductor nanostructures in the future.
However, local effects caused by the interaction of two
impurity states near the surface are not well examined
at present. A powerful tool for studying the local elec-
tronic structure is scanning tunneling spectroscopy
(STS) combined with scanning tunneling microscopy
(STM) imaging. In the present work, the electronic
structure of localized impurity states formed by a pair
of impurity Si atoms separated by 3 nm at the (110)
GaAs surface is studied by STM/STS methods.

The samples under investigation are GaAs single
crystals doped with compensating impurities Si and Zn
with the respective concentrations of 5 × 1018 cm–3 and
2 × 1019 cm–3. All measurements were carried out at
4.2 K with a home-built low-temperature STM equipped
with an in situ cleavage mechanism [1]. After the crys-
tal was cleaved along the (110) plane, two Si atoms
with a spatial separation of about 3 nm were chosen as
the object of investigation. The separation distance is
comparable to the visible localization radius of the Si
impurity states, which is about 1–1.5 nm (Fig. 1a). A
high doping level accounts for a nonuniform Coulomb
potential in the sample. This is one of the reasons why
the initial electronic states of the observed atoms are
not equivalent. The scanned area was 10 nm × 10 nm,

¶This article was submitted by the authors in English.
1063-7761/02/9401- $22.00 © 0191
and within this area, the tunneling conductivity
(dI/dV)/(I/V) was measured with a spatial step of
0.25 nm.

In the experimentally observed spatial distribution
of the local tunneling conductivity, one can distinguish
a twofold switching on and off for each of the atomic a
and b states upon changing the tunneling bias within
the semiconductor band gap (visible as the dark stripe
in Fig. 1). After switching on, the excess tunneling con-
ductivity occurs in the vicinity of each of these atoms in
a bias range of about 0.65 eV, which is much greater
than the level width of the localized state. At the same
time, the transition from the dark state to the light one
occurs within the bias change range of ≈0.15 eV, which
is comparable to the energy level width of the localized
state.

The map view of the tunneling conductivity allows
the evolution of the local density of states (LDOS) near
each impurity atom to be analyzed. At zero applied
bias, atom a forms a bright area of the enhanced tunnel-
ing conductivity and remains switched on in a bias
range from –0.2 to +0.4 V. Atom b is invisible at V ≈ 0.
In the bias range from +0.4 to +0.7 V, the tunneling con-
ductivity decreases in the vicinity of atom a (dark area).
The next switching on of this atom occurs at +0.7 V,
and a bright spot of the enhanced tunneling conductiv-
ity is observed up to +1.3 V.

The enhanced tunneling conductivity near atom b is
also observed in two separated bias ranges: from +0.1  to
+0.5 V and at the same polarity from +0.6 to +1.2 V.
In Fig. 2, two experimentally obtained (dI/dV)/(I/V)
curves are shown for two different positions of the STM
tip: above atom a and above atom b.

Because such effects have not been observed for an
isolated impurity, a natural question is to what extent
the interaction between the two impurities modifies the
kinetic processes. To answer this question, we suggest
a self-consistent theoretical analysis of the local tunnel-
ing conductivity behavior in the vicinity of two inter-
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. STM images (right panel) and the map view of the normalized tunneling conductivity measured along the direction x
depicted on the STM topography images (left panel). (a) An isolated Si impurity, scan area 5.8 nm, bias range from +2.5 to –2 V;
(b) two interacting Si impurities, scan area 10 nm, bias range from +2.5 to –2 V.
acting Anderson impurities on a semiconductor surface
[2]. In the Anderson model [3], an individual impurity
state is characterized by the following parameters: the
bare impurity electron level ε0, the on-site Coulomb
repulsion of localized electrons U, and the level broad-
ening Γ caused by the hybridization with continuum
states. It is known that nontrivial effects occur in the
Anderson model if the on-site Coulomb repulsion is
sufficiently strong. Because the experimentally
observed localization radius of Si impurity states at the
JOURNAL OF EXPERIMENTAL 
GaAs surface is on the order of 1 nm, the estimated
value of the Hubbard energy is about 0.5–1 eV. It must
be mentioned that, although the Si atoms in the bulk
GaAs are known to form a shallow impurity state with
binding energies of about 6 meV at low doping levels,
the situation is different near the surface in the presence
of the STM tip. It was experimentally observed by
many authors (see, e.g., [4–6]) that the band bending
induced by the surface and by the STM tip can consid-
erably change the position of the Si impurity level rela-
AND THEORETICAL PHYSICS      Vol. 94      No. 1      2002
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tive to the conduction band edge. Numerous STM
images (see references above) show that the localiza-
tion radius of the Si atom state is about 1–1.5 nm. In
addition, in highly doped crystals, the electronic state
of any particular atom can be strongly modified by the
presence of neighboring dopant atoms.

The electron transport through a single Anderson
impurity in the Coulomb blockade and the Kondo
regime has been studied experimentally and is still
under theoretical investigation [7–13]. However, most
of the authors concentrated on the weak tunneling cou-
pling, when the tunnel junction is used only as a probe
without affecting the impurity states [9]. Therefore, the
tunneling conductivity through the Anderson impurity
is usually supposed to be determined by the equilibrium
impurity density of states. In the Coulomb blockade
regime of tunneling through an impurity or a quantum
dot, the influence of the tunneling current on the impu-
rity (dot) spectrum is neglected [11]. The impurity
charge therefore takes discrete values; nσ and n–σ can be
equal only to 0 or 1. The width of the tunneling conduc-
tivity peak in the Coulomb blockade regime is deter-
mined by the sum of relaxation rates and cannot
achieve (without destroying this regime) the experi-
mentally observed anomalously large values ≈0.65 eV
even at room temperatures. As the tunneling coupling
increases, the impurity charge is no longer a discrete
value and one must consider impurity electron filling
numbers (which now become continuous variables)
determined from the kinetic equations.

We note that the coupling to the leads in the Kondo
regime modifies the impurity spectrum, but charge fluc-
tuations are suppressed because the initial impurity
level lies deep below the Fermi level [14]. In the equi-
librium case, the electron filling numbers nσ and n–σ sat-
isfy the relation

Spin fluctuations dominate in this case because the
impurity state is always single occupied. This requires
the following relations between the parameters of the
Anderson model: –ε0 @ Γ and ε0 + U @ Γ. The Kondo
resonance then contributes to the zero-bias anomaly of
the tunneling conductivity. But the contribution of the
Kondo effect to the tunneling conductivity dependence
on the applied voltage becomes almost negligible when
the applied bias exceeds a typical energy value deter-
mined by the Kondo temperature (small compared to ε0
and Γ) (see [15, 16]). When the applied bias increases
(decreases) to the impurity energy level, the Kondo res-
onance is destroyed.

In the present work, we are interested in the tunnel-
ing conductivity behavior in a wide bias range from
+2.5 to –2 V (while the typical value of the Kondo tem-
perature is less than 1 meV). The adopted parameters of
the model correspond to the mixed-valence regime, ε ≈ Γ
or ε + U ≈ Γ (although U @ Γ). This choice of the set of
parameters is more adequate for our analysis of the

nσ n σ–+ 1.=
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anomalies in the tunneling conductivity behavior
observed experimentally in a wide bias range V compa-
rable to U and V ≥ ε0. Under all these conditions, the
Kondo effect does not reveal itself in the tunneling
characteristics, although spin asymmetry of the elec-
tron filling numbers occurs in particular bias ranges.

As the applied bias is increased, nonequilibrium
processes start playing a significant role, especially at
low temperatures. Nonequilibrium effects in the tunnel-
ing conductivity spectra of metallic nanoparticles have
been considered by Agam and coauthors [17]. In this
work, changes in the energy of an excited single elec-
tron state are caused at large applied bias by different
nonequilibrium occupancy configurations of other sin-
gle electron states. It was assumed that the electron
spectrum of a nanoparticle consists of many levels and
the level spacing is smaller than the applied bias. But
the filling numbers of each level are equal to either 0 or 1.
Different random configurations of the electron occu-
pation result in fluctuations of the Coulomb interaction
energy. However, continuous changes in nonequilib-
rium electron filling numbers caused by kinetic pro-
cesses were not taken into account.

In the present work, the nonequilibrium charge dis-
tribution due to tunneling processes and the effect of
the tunneling bias voltage on the impurity state energy
values are taken into account. Nonequilibrium electron
filling numbers on the Hubbard–Anderson impurities

dI
/d

V
I/

V

(a)

(b)

–1.0 –0.5 0 0.5 1.0 1.5 2.0

–0.4 0 0.4 0.8 1.2
Bias voltage, V

Fig. 2. The normalized conductance (dI/dV)/(I/V) measured
within the semiconductor band gap in the vicinity of impu-
rity atoms: (a) the STM tip is placed over the a atom in
Fig. 1b; (b) the STM tip is placed over the b atom in Fig. 1b.
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are calculated from a self-consistent system of kinetic
equations based on the Keldysh diagram technique
[18]. At the final stage of calculations, the Coulomb
interaction of localized electrons is treated self-consis-
tently in the mean-field approximation. It is shown that,
with an increase in the tunneling bias, two states with
different energies for opposite-spin electrons can
appear at each impurity: the transition from the para-
magnetic regime to the magnetic one can occur. The
inverse transition from the magnetic to the paramag-
netic state can also occur with a further increase in the
tunneling bias. We have also determined the conditions
under which the transition to the magnetic state is
enhanced by the interaction between two Anderson
impurities. We found that the impurity interaction
results in a redistribution of localized nonequilibrium
charges and can lead to pinning of the impurity levels
near the Fermi level of each electrode and to the mutual
attraction of the energy levels of different impurities in
particular ranges of the applied bias.

We consider a theoretical model with two interact-
ing Anderson impurities. The STM tip is assumed to be
positioned above one of the impurity atoms (atom a).
The Hamiltonian of the model is given by

(1)

where

(2)

describes noninteracting electrons in the two elec-
trodes, (k, σ) for the tip and (p, σ) for the example.

The part  corresponds to the impurity states and
takes the Hubbard repulsion into account,

(3)

Here,  = aσ, aσ destroys an impurity a electron

with the spin σ,  = bσ, bσ destroys an impurity b
electron with the spin σ; and εa and εb are the energy
levels of impurities a and b (they depend on the bias V
in general).

The part  describes the interaction between the
impurity states,

(4)

Ĥ Ĥ0 Ĥ tun Ĥ int Ĥ imp,+ + +=

Ĥ0 εk µ–( )ck σ,
+

ck σ,

k σ,
∑=

+ εp µ– eV–( )cp σ,
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∑+
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∑+
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∑
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+

nσ
b

bσ
+

Ĥ int

Ĥ int T aσ
+
bσ h.c.+( ),

σ
∑=
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and  is responsible for tunneling transitions from
the impurity states to each electrode (tip or substrate),

(5)

Nonequilibrium effects in the tunneling current and
conductivity are naturally described by the Keldysh dia-
gram technique ([19]; see also the recent paper [16]).

The tunneling current is determined as [19]

(6)

The functions  can be obtained from the kinetic
equations, which in the Keldysh formalism are of the
general form

(7)

where  usually includes all the interactions; in our

case, however,  is determined only by the tunneling
coupling to the leads and by the interaction between the

impurities. Therefore, the elements of  simply reduce
to the corresponding nonzero parameters Tα, β (α, β = a,
b, k, p). It is reasonable to use the approximation in
which the strongest interaction of the considered
model—the on-site Coulomb repulsion U—is included
in G0. At this stage, it is not necessary to consider the
details of any particular approximation for treating U.

With the help of the kinetic equations, tunneling
current (6) can be transformed to the form

(8)

where (ω) is the equilibrium filling number for the

metallic tip, (ω, V) is the exact retarded Green’s

function of the impurity a state, (ω) is the exact
impurity filling number, and the tunneling rate γk is one
of the set of kinetic coefficients determined by

(9)

where

Ĥ tun
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is the density of states in the metallic tip and

is the substrate density of states.
In Eq. (8) and in what follows, we use the standard

approximation with the filling numbers (ω) and

(ω) for the continuum states of the banks unper-
turbed by the tunneling processes, which yields

(10)

Equation (8) shows that the problem is reduced to

finding the exact nonequilibrium filling number .

This problem can be solved using Eqs. (7) for ,

, and  in the stationary case,

(11)

(12)

(13)

(14)

where we use the notation

(15)

For (ω) and (ω), we then have
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where

and where (ω) and (ω – eV) are the respective
equilibrium filling numbers of the substrate and the
metallic tip states.

It must be noted that no particular approximation for
treating the Coulomb interaction has been used until
now. If we use the mean-field approximation, which is
suitable for the mixed-valence regime, for decoupling
the on-site Coulomb interaction, we obtain

(17)

In the mean-field approximation, the impurity ener-
gies depend on the applied bias V both directly through
the external field in the contact area (which changes the
“bare” impurity level) and indirectly through the Cou-
lomb interaction of the nonequilibrium electron den-
sity,

(18)

The coefficients α and β (α, β < 1) approximately
describe the potential drop between the semiconductor
substrate and the impurity. (If one deals with the Cou-
lomb blockade regime, the electron filling numbers 〈nσ〉
are set equal to 0 or 1, because the hybridization with
the lead states is neglected.)

For simplicity, the indirect interaction between the
impurities through the semiconductor band states is not
included in the results presented. This interaction can
easily be taken into account, but it does not lead to any
new qualitative changes in the tunneling conductivity
behavior.

Now, the main point is that the nonequilibrium elec-
tron filling numbers for impurity atoms a and b must
satisfy the self-consistency condition

(19)
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where (ω) and (ω) are determined by stationary
equations (16). Equations (19) can be rewritten as

(20)

(21)

where

(22)

(23)

(with the Fermi level for nk shifted by eV from the
Fermi level for np). For the equilibrium case, V = 0 and

 = (a) = (a).

Solving Eqs. (16) for (ω), we can rewrite the tun-
neling current in Eq. (8) in the final form

(24)

where the self-consistent values for  and  are

inserted in , , and Rab for each value of the bias V.
As expected, the tunneling current depends only on the
difference of the electron distribution functions of the
electrodes. The first term of the above expression for
the tunneling current describes the renormalization of
the relaxation rate by the interaction with the neighbor-
ing impurity atom b,

(25)

If the interaction is absent, T = 0, then η = 0 and the
usual form of the tunneling current through the impu-
rity localized state is restored. The second term is
responsible for the charge redistribution between the
interacting impurity atoms. As a consequence of this
charge redistribution, we find that the tunneling con-
ductivity (see (24)) is no longer simply proportional to
the impurity density of states. These complications
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make the investigation of the tunneling current through
a multichannel system with the interaction between dif-
ferent channels much more difficult (see, e.g., [20]).

In what follows, the interaction between the impuri-
ties is chosen (in accordance with the experimental sit-
uation) to be no greater than the tunneling rates. This
implies that the equilibrium level splitting (see
Eqs. (17)) is not resolved via level broadening. In
kinetic processes, however, the interaction consider-
ably modifies the charge distribution. The opposite sit-
uation, with the zero-bias conductivity determined by
the exact equilibrium spectrum of the two-site complex,
was recently analyzed in [13].

We emphasize that Eq. (6) is exact and is valid in
any case, irrespective of the approximations used in

calculating Im  and na. Equations (19)–(24) can be
applied to any regime, including the Coulomb blockade
regime, with the proper choice of the retarded Green’s
function and the Rab function. However, as noted in the
introduction, in the present paper, we are mainly inter-
ested in the mixed valence regime ε ≈ γ or ε + U ≈ γ and
U @ γ, and we therefore use mean-field equations (17)
for numerical calculations of the tunneling conduc-
tivity.

The tunneling conductivity enhancement can usu-
ally be observed at the tunneling bias voltage such that

or

However, it is very important to note that any
increase in the LDOS in the energy interval

with changes in the applied bias V leads to an enhance-
ment of the tunneling conductivity at eV. This increase
in the LDOS for an interacting system is not necessarily
related to crossing a single electron level ε by the
shifted Fermi level EF – eV.

The analysis of the proposed model allows one to
describe different possible regimes of the tunneling
conductivity behavior in the vicinity of impurity atoms
in a wide range of tunneling bias changes. In numerical
calculations, we adopt α ≈ 0.3 and β ≈ 0.1 in Eq. (18).

(1) If γk ! γa, γb, one of the impurity atoms (atom a)
can be in the magnetic state in a certain tunneling bias
range. The transition from the paramagnetic regime to
the magnetic one and vice versa can occur with a
change in the applied voltage (Fig. 3a). This behavior
leads to switching the a atom “on” and “off” twice on
spatially resolved local tunneling conductivity spectra
(Fig. 3b), which are very similar to the STS experimen-
tal data shown in Fig. 2.

In addition, the energy levels are pinned in the vicin-
ity of the Fermi level of one of the electrodes (tip or

Ga
R

εa
σ±

V( ) EF
t

– Γ<

εa
σ±

V( ) EF
s

– Γ .<

EF eV ε EF< <–
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sample) while the bias voltage changes within an order
U range.

In the nonequilibrium case, where the tunneling bias
is not zero, the interaction between atoms a and b can
enhance the magnetic state and increase the difference
between the energy values εσ and ε–σ of the opposite-
spin electrons localized on atom a.

A detailed analysis of the tunneling bias range for
which

leads to the following conclusions.

If there is no interaction between the atoms (the bias

range is such that | (V, ) – | < Γ)), the occu-

pancy of the state (V, ) grows and (V) and

(V) increase; consequently, (V) and (V)
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Fig. 3. A well-pronounced twofold structure of the tunnel-
ing conductivity with an increased peak width, very similar
to the one observed in STS experiments. (a) The depen-
dence of the a and b atom energies on the applied bias V; the

parameter values are (in eV)  = –0.25,  = –0.5, Ua =

1.6, Ub = 0.5, γa = 0.2, γb = 0.2, γk = 0.05, εa =  – 0.3 V,

εb =  – 0.1 V; T = 0.2; solid curves correspond to  and

; dotted curve shows the mean value of εb = (1/2)(  +

) because atom b is close to the paramagnetic state for

this set of parameters. (b) The normalized tunneling con-
ductivity vs. the applied bias voltage.
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decrease. The levels (V, ) and (V, ) become
closer, and a sharp transition from the magnetic to the
paramagnetic state occurs (Fig. 4b).

In the presence of interaction, the (V, ) state
filling is suppressed because of a charge redistribution
between the two interacting atoms a and b. Correspond-

ingly, the increase in (V, ) and the decrease in

(V, ) also are not as fast as in the noninteracting
case. Therefore, when atom a is in the magnetic state,
the range of the applied bias becomes wider because of
the interatomic interaction (compare Figs. 4a and 4b).
We stress that this enhancement of the magnetic regime
is possible only in the nonequilibrium case, i.e., for a

nonzero tunneling bias and energy levels (V, )
close to the Fermi level of one of the electrodes.

In the equilibrium case, the interaction with para-
magnetic atom b results in the suppression of the mag-
netic state on atom a (compare Figs. 4a and 4b).

Figures 5a and 5b depict the dependence of the tun-
neling conductivity on the applied bias in the vicinity of
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Fig. 4. The dependence of the a and b atom energies on the

applied bias V. The parameter values are (in eV)  = –0.25,

 = –0.1, Ua = 1.8, Ub = 0 5, γa = 0.15, γb = 0.2, γk = 0.05,

εa =  – 0.3 V, εb =  – 0.1 V; T = 0.2 (a), 0 (b). Solid

curves correspond to  and . The dotted curve shows

the mean value of εb = (1/2)(  + ) because atom b is

close to the paramagnetic state for this set of parameters.
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the a atom. Two broad peaks in the tunneling conduc-
tivity spectra correspond to switching “on” the a atom at

and

(2) For γk @ γa, γb (i.e., for a sufficiently strong cou-
pling to the STM tip), the magnetic state on the a atom
can appear twice for the opposite polarity. In Fig. 6a,

the dependence of (V, ) on the applied bias is
shown. In the applied bias range

atom a is in the magnetic state. But as the tunneling bias
increases, the filling numbers rapidly decrease and the
magnetic regime is suppressed, and atom a can be
found in the paramagnetic state. However, for the oppo-
site polarity of the applied bias, atom a can again be

found in the magnetic state when | (V, )| is close
to the Fermi level of the tip,

The interaction between the a and b atoms can enhance
this transition. Tunneling conductivity versus bias volt-
age is shown in Fig. 6b.

(3) Finally, when the coupling to the STM tip is
comparable to the coupling of the impurity atom to the
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Fig. 5. The dependence of the normalized tunneling con-
ductivity on the applied bias voltage for the same sets of
parameters as in Figs. 4a and 4b.
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substrate, i.e., γk ≥ γa, γb, increasing the tunneling bias
usually leads to the suppression of the magnetic state
(Fig. 7a) because filling numbers decrease due to the
tunneling processes. Figure 7b depicts the suppression
of the second maximum of the tunneling conductivity
in this case.

Thus, a significant role of the nonequilibrium elec-
tron distribution in tunneling processes through cou-
pled Anderson impurities is demonstrated. Tunneling
conductivity resonances are sensitive to changes of the
electron filling numbers, which are not discrete at a
nonzero applied bias. We have shown that an impurity
atom can be found in the magnetic state for the applied
bias within a certain range. Transitions from the para-
magnetic regime to the magnetic one and vice versa can
occur with changes in the bias voltage. In the presence
of such transitions, impurity levels can be pinned near
the Fermi levels of each electrode, thereby leading to
the twofold structure of spatially resolved tunneling
conductivity spectra with enormously broad peaks in
the vicinity of each impurity. The theoretical approach
proposed here allows us to explain the experimentally
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Ua = 2.0, Ub = 0.5, γa = 0.05, γb = 0.05, γk = 0.35, εa =

 – 0.3 V, εb =  – 0.1 V; T = 0.2; solid curves correspond

to  and ; dotted curve shows the mean value of .

(b) The normalized tunneling conductivity vs. the applied
bias voltage.
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obtained STS results and predicts some new interesting
possible switching regimes. An interesting theoretical
prediction is that the interaction between impurities
with different values of the Coulomb repulsion can
unexpectedly enhance the magnetic regime of a single
atom in the nonequilibrium case at a large applied bias.
At the same time, the interaction with a more paramag-
netic neighbor always leads to the suppression of the
magnetic state in the equilibrium.
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Abstract—Taking into account terms of a higher order than those usually included in the expansion of free

energy close to κ = 1/  in the Ginzburg–Landau theory can lead either to the transition from the mixed to the
intermediate state, as is commonly supposed, or to a chain of sequential transitions from one- to n-quantum vor-
tices (n = 2, 3, …). © 2002 MAIK “Nauka/Interperiodica”.

2

The transition from type I to type II superconductors
occurs at the critical Ginzburg–Landau parameter value
κ = 1/  [1]. In the presence of a magnetic flux, this is,
clearly, a first-order transition because the intermediate
state cannot continuously transform into an Abrikosov
vortex lattice. The commonly employed approxima-
tion, however, involves random degeneracy, namely,
both intermediate state and vortex lattice lose stability
at the transition point. On the one hand, the surface
energy of the NS boundary vanishes [1], and, on the
other, repulsion of vortices changes into their attraction
at the transition point [2]. What is more, according to
Kramer [2], the energy of an n-quantum vortex at κ =
1/  equals εn = n (we use units natural for the Gin-
zburg–Landau theory [1]); that is, for each flux quan-
tum, there is the same fraction of energy as in the nor-
mal state in the critical field. This degeneracy is quite
familiar to specialists thanks to Bogomol’nyi [3].

As there is no physical reason for such a degeneracy,
taking into account next terms in the expansion in order
parameter Ψ and gradients should remove it. For an iso-
tropic system, we have four such invariants of equal
order with respect to closeness to the transition temper-
ature, namely,

Our goal is to show the possibility in principle of sub-
stantial changes in the character of the transition. For
this purpose, we include the simplest correction |Ψ|6.
The Ginzburg–Landau functional then takes the form

(1)

2

2

ΨΨ∗ i 2∇– κA+( )Ψ i 2∇ κ A+( )Ψ∗ ,
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8π
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BH0

4π
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where H0 is the external field and B = rotA. In the equi-
librium state and in the absence of a magnetic field, this
functional reaches a minimum at |Ψ|2 = |Ψ0|2,

(2)

where γ = –2ac/b2 (note that, at the phase transition
point, a = 0 and γ vanishes). This energy gain reduces
to zero in critical field Hc,

(3)

The ratio between correlation length ξ and penetration
depth δ,

(4)

determines the Ginzburg–Landau κ parameter,

(5)

Let us introduce the dimensionless variables

(6)

Functional (1) then takes the form

(7)

Ψ0
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b
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3
2
---γ– 

  ,–=
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2 4πa2

b
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ξ2 4π
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---------------, δ "
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32πe2
-------------- 1

Ψ0
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---------------,= =

κ "c

8π 2 e
--------------------
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2g

--------------- κ0 1 γ+( ).= =

r
R
δ
---, ψ Ψ

Ψ0
------, b

B
Hc

------,= = =

h0

H0

Hc

------, a
A
Hc

------, f
F

Hc
2δ2

------------.= = =

f
1

8π
------ b2 2

κ
-------∇ ia– 

  ψ
2

+




=

+ 1 ψ 2–( )2
1 γ ψ 2+( ) 1– 2bh0–
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ON n-QUANTUM VORTICES IN SUPERCONDUCTORS 201
We will not consider field penetration into a supercon-
ductor and will therefore assume that the magnetic flux
is constant; accordingly, we will omit the 2bh0 term. In
addition, the κ parameter will be considered indepen-
dent, because its variations are not fully described by
(5) in real superconductors.

Consider a separate n-quantum vortex. We select the
calibration at which the order parameter phase equals
nφ, where φ is the azimuthal angle, and the vector-
potential only has the a(r) azimuthal component. The
energy of an axially symmetrical vortex in the cylindri-
cal coordinate system is then given by the equation

(8)

here, ψn(r) is the order parameter modulus. The Gin-
zburg–Landau equations with the boundary conditions
ψn(0)= 0, r |r = 0 = 0, a(0) = 0, and ψn(∞) = 1 corre-
spond to the lowest energy. We solved this problem
numerically at arbitrary κ values and γ of –0.1 to 0.1.
The n-quantum vortex energy fraction per flux quantum
at γ = –0.1 is shown in Fig. 1.

If γ > 0, we obtain the commonly expected picture
of the transition from type II to type I superconductors
with one-quantum vortices, into which magnetic flux
penetrates in the form of macroscopic normal regions.
At γ < 0, sequential transitions from one- to n-quantum
vortices (n = 2, 3, …) should occur as κ decreases in the

region close to the 1/  critical value; clearly, the
width of this region is proportional to γ (Fig. 2). The
chain of such transitions becomes denser (the n value
infinitely increases) in approaching some critical κ* =
κ*(γ) value. At κ = κ*, the surface energy of the NS
boundary changes sign. Indeed, at large n, a vortex is a
macroscopic cylinder in the normal state with the mag-
netic field virtually equal to the critical field. The vol-
ume contribution to vortex energy divided by n is an n-
independent value (the fraction of the normal state
energy per flux quantum). The dependence on n arises
if the energy of the boundary between the normal and
superconducting states, σNS, is taken into account. The
εn/n function then acquires a capillary correction pro-

portional to σNS/ . It follows that transitions can only
condense at the point of σNS vanishing.

According to Luk’yanchuk [4], widely spaced vorti-

ces attract each other at κ  – 1 < –γ/2. Therefore, in

the region of parameters of interest to us (κ < 1/ , γ < 0),
the necessary condition of the existence of an n-quan-
tum vortex is its stability with respect to the decompo-
sition into a bound state of several vortices carrying the
same total flux. An analysis of the stability of vortices
will be performed using perturbation theory. The Gin-

εn
1
4
--- a' a

r
---+ 

  2 2

κ2
----- ψn'( )2

+

0

∞

∫=

+ 2n
κr

---------- a– 
 

2

ψn
2 1 ψn

2–( )2
1 γψn

2+( )+ rdr;

ψn'

2

n

2

2
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zburg–Landau equations for degenerate unperturbed

solutions (at κ = 1/ , γ = 0) can be replaced by the
Bogomol’nyi equations

(9)

(10)

and the potential for perturbation theory can be written as

(11)

where α = κ – 1/ . The unperturbed solution in the
form of an axially symmetrical n-quantum vortex is
described by the equation ψ(r) = v n(r)einφ, and the

2

∇ 2ln ψ 1
2
--- 1 ψ 2–( )– 2π niδ r ri–( ),

i

∑+=

b 1 ψ 2
,–=

δf
1

8π
------ ψ 1 ψ 2–( ) γ 1 ψ 2–( ) 2α 2–{ } ,=

2

0.96
0.66

κ

0.97

0.98

0.99

1.00

1.01
εnκ n 2⁄

10

5

n = 1

0.67 0.68 0.69 0.70 0.71 0.720.65

Fig. 1. n-Quantum vortex energy fraction εnκ/n  per flux
quantum at γ = –0.1.

2

0.68

–0.1

κ

γ

0.69

0.70

0.71

0.67

0.72

–0.05 0 0.05

n = 1

n = 2

n = ∞
n > 2

Fig. 2. Regions in which vortices with different parameter n
values correspond to energy minimum.
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amplitude of the order parameter satisfies the equation

(12)

with the asymptotic behavior v n(r) ∝  rn as r  0 and
v n(r)  1 as r  ∞.

The energy of a separate n-quantum vortex per flux
quantum can be written in the form

(13)

where the quantities 

and

are found by numerically integrating solutions (12).
The condition under which (n + 1)-quantum vortices
become more energetically favorable than n-quantum
vortices is as follows:

(14)

This conclusion corresponds with direct numerical cal-
culations (Fig. 1) and the result obtained in [4] for
n = 1; according to this result, two-quantum vortices
become more favorable than one-quantum vortices at
α/γ > 0.034, γ < 0. Upon the attainment of the lower
critical field H0 = Hc1, the magnetic flux penetrates into
a superconductor in the form of the most favorable
n-quantum vortices. Two-quantum vortices are the
most favorable at 0.034 < α/γ < 0.066, three-quantum
vortices are the most favorable at 0.066 < α/γ < 0.081,
etc. In the limit n  ∞, Eq. (14) also yields the con-
dition under which the NS boundary energy vanishes,
namely, α/γ = 0.155. Note that separate vortices and
even vortex lattices can be observed as metastable
states at a positive NS boundary energy, that is, in usual
type I superconductors.

A separate most favorable n-quantum vortex can
decompose into bound one-quantum vortices or other
combinations of m-quantum vortices with the conser-
vation of the total flux. To study the stability of an
n-quantum vortex toward decomposition, consider the
perturbed solution as a combination of vortices with the
coordinates |ri | ! 1. The order parameter can then be
expanded into a series in powers of ri. Truncating this
series after the second-order term yields [4]

(15)

∇ 2lnv n
1
2
--- 1 v n

2–( )–=

ε
n
--- 1

1
4
--- γQn 2α 2Pn–{ } ,+=

Qn n 1– r rv n
2 1 v n

2–( )2
d∫=

Pn n 1– r rv N
2 1 v N

2–( )d∫=

α
γ
---

Qn Qn 1+–

2 2 Pn Pn 1+–( )
---------------------------------------, γ 0.<>

ψ r( ) v n r( )
1

2n
------ ri ∇,( )2v n r( ).

i

∑+=
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Substituting (15) into potential (11) and integrating the
result, we obtain

(16)

This yields the condition of the stability of an n-quan-
tum vortex in the form

(17)

A two-quantum vortex is stable with respect to the decom-
position into two one-quantum vortices at α/γ > 0.14.

To summarize, we do not agree with the assertion
[4] that the structures with one-quantum vortices can
only be stable. We consider this conclusion erroneous.
Indeed, in [4], the interaction energy between narrowly
spaced vortices was analyzed without taking into
account terms proportional to |ψ|2.

Calculations of the coefficient of |ψ|6 in the Gin-
zburg–Landau theory for the standard BCS model [5]
showed that the sign of this coefficient was negative.
According to the results obtained in this work, this cir-
cumstance is favorable to the observation of n-quantum
vortices. Candidates for observing n-quantum vortices
are superconductors in which vortex lattices with
attraction are formed. The existence of attraction man-
ifests itself through a finite magnetization jump in field
H0 = Hc1. If temperature variations cause changes in the
behavior of a superconductor such that its magnetiza-
tion in field H0 = Hc vanishes jumpwise, as is character-
istic of type I superconductors, observing n-quantum
vortices near this transition is feasible.
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Abstract—The problem of the effective conductivity and the distributions of a field and currents is analyzed in
a regular two-component system composed of regular triangles. An efficient solution method is developed that
admits a generalization to multicomponent systems. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In 1970, Dykhne [1] put forward a hypothesis about
a universal dependence of the effective conductivity σeff
of a two-component system on the conductivities σ1, 2
of its constituents:

(1)

The hypothesis is that relation (1) is always valid,
provided that the following two conditions are satisfied:
the conductivity of each component is isotropic, and the
distributions of the components are symmetric with
respect to the interchange 1  2. A proof is based on
the analysis of the equation for a current, j = σ(r)E, and
the equation obtained from it by the vector multiplica-
tion by n (n is a normal vector to the surface), n × j =
σ(r)n × E. The quantity n × j can be represented as n ×
j = ∇ H = E', where j = curl(0, 0, H) and H is a magnetic
field. The vector E' can be interpreted as an electric
field in a medium with the same structure and the con-

ductivity σ' = /σ(r), where σ0 is an arbitrary con-
stant. The current density j' is defined by the equation

j' = n × E. One can readily verify that the quantities

j', E', and /σ(r) satisfy both the equation and the
boundary conditions for the field and current. Averag-
ing the equations for j and j' over the sample area and
taking into account that the effective conductivity is
isotropic in both media, we obtain the Dykhne relation
[1, 2]

(2)

Relation (1) is a particular case of Eq. (2) for σ0 =

. Relation (2) is also valid for multicomponent

σeff σ1σ2.=

     

σ0
2

σ0
2

σ0
2

σeff σ1 σ2,( )σeff σ0
2/σ1 σ0

2/σ2,( ) σ0
2.=

σ1σ2
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systems and admits a generalization to an anisotropic
conductor. In [3], an exact solution was obtained to the
problem of the effective conductivity and the field dis-
tribution in a regular two-component system with a
chessboard structure. It was demonstrated that relation
(1) is satisfied in such a system for any value of the
parameter Z = (σ1 – σ2)/(σ1 + σ

 

2

 

), although this is
achieved in a rather sophisticated way.

A perturbation theory with respect to a small devia-
tion of the local conductivity from its mean value was
considered in [4].

In the general case, the problem of the field distribu-
tion and the conductivity of a multicomponent system
can be reduced to a system of integral equations for the
density of charges arising along the boundaries of
domains. For a two-component system, such a system
of equations depends only on a single parameter 

 

Z

 

.
Below, we present an efficient method that allows

one to determine the distribution of charges and a field
in a regular two-component system composed of regu-
lar triangles to a high degree of accuracy for arbitrary
values of the parameter 

 

Z

 

.
The Dykhne relation [1] will be applied to verify the

accuracy of the approximation used.

2. CONDUCTIVITY OF A REGULAR
TWO-COMPONENT SYSTEM WITH CELLS
IN THE FORM OF REGULAR TRIANGLES

The two-component system under consideration
consists of regular triangles (Fig. 1). The effective con-
ductivity 

 

σ

 

eff

 

 of such a system is isotropic. Therefore, it
suffices to determine a current for the orientation of the
external electric field shown in Fig. 1. It is obvious from
the symmetry considerations that there exist only two
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204 OVCHINNIKOV, LUK’YANCHUK
independent charge densities ρ1, 2 distributed along the
edges of the cells in the structure under consideration.
Inside each triangle, the equation

(3)

holds, where ϕ is a scalar potential, which is every-
where continuous, and ∆ is the Laplace operator. Equa-
tion (3) follows from the conservation law for current j

(4)

∆ϕ 0=

div j 0.=

E0

ρ2 ρ2

ρ1 ρ1 y

x

Fig. 1. Two-component system with cells in the form of reg-
ular triangles.
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It follows from Eq. 3 that potential ϕ can be repre-
sented as

(5)

where G is a two-dimensional Green’s function,

(6)

The charge density ρ is distributed along the edges
of triangles,

(7)

where  is a local coordinate transverse to the bound-
ary of a triangle. Henceforth, we will omit the sign ˆ
over the charge density.

The following relations hold on the boundaries of
triangles:

(8)

where E = –∂ϕ/∂r is an electric field and n is a normal
vector to the boundary of a triangle. From Eqs. (5) and
(8), we obtain a closed system of equations for the
charge densities :
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In (9), we have passed to the dimensionless vari-
ables

where  is the length along the edge measured from the
corner point (Fig. 1) and a is the length of the triangle’s
edge. The effective conductivity σeff is expressed in

t̂ a t̃ , ρ1 2, E0ρ̃1 2, ,= =

t̂

terms of the function  by the simple relations

(10)

ρ̃2 t( )

σeff

4πσ1σ2

σ1 σ2–
------------------ tρ̃2 t( ),d

0

1

∫–=

σeff

σ1σ2

----------------
2π 1 Z2–

Z
------------------------- tρ̃2 t( ).d

0

1

∫–=
AND THEORETICAL PHYSICS      Vol. 94      No. 1      2002



CONDUCTIVITY AND FIELD AND CURRENT DISTRIBUTIONS 205
The examination of Eqs. (9) reveals that the func-
tions  satisfy the relations

(11)

where the function  changes its sign under the sub-
stitution of 1 – t for t:

(12)

It follows from the system of equations (9) that the
functions  are doubly periodic analytic functions

of the complex variable t with periods of (1/2 ± i /2).
The points

are branching points of the functions . In the neigh-
borhood of the point t = 0, we have

(13)

where , , and κ are certain constants. From Eqs. (9),
(11), and (13), we obtain the following system of equa-

tions for the coefficients , , and κ:

(14)

The solvability condition for the system of equations (14)
yields the following equation for the parameter κ:

(15)

Solving Eq. (15), we obtain an explicit expression for
the parameter κ,

(16)

In addition to the singularity (13), the functions 
have a singularity of the form

(17)
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The parameter  satisfies Eq. (15) under the
replacement κ  – ,

(18)

a solution to which is given by

. (19)

The functions  are generated by doubly periodic
analytic functions whose periods T1, 2 are given by

(20)

where K is a positive integer. The period T1 = 2 is asso-
ciated with the fact that the functions ρ1, 2 must assume
the original value after a turn around the points (0, 1).
This means that a meromorphic elliptic function, which
is a basic one for constructing ρ1, 2, has an ordered

arrangement of poles and zeros on the set { eiπ/3 + L},

where  is fixed and L = 0, ±1, ±2, …; i.e., for any
value of L, only one pole and one zero of the same order
can be located at the neighboring points (L, L + 1). For
any value of K, there exist 2K meromorphic elliptic
functions whose poles and zeros are ordered in the
aforementioned sense. Among these functions, there
exists a maximal set of 2K functions that are mutually
transformed under the translations

Taking into account complex conjugation, we obtain
equivalent sets of meromorphic functions for K = 1, 2
that are insufficient for satisfying conditions (14), (15),
(17), (18). These functions are contained in the sets that
arise for K > 2. An arbitrary meromorphic function with
prescribed periods and location of poles and zeros is
expressed in terms of the Jacobi theta function [5]. In
our case, we have

where L' is an integer such that |K'/2 – 2L' | is minimal:

(21)
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When K = 1 (L' = 0), there exists a single meromorphic elliptic function φ1(t) that can be used for constructing the

charge densities  and ρ2:ρ1
1

(22)

φ1 t( )

πt N
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Consider the case of K = 3. Eight meromorphic
functions are divided into two sets of functions that are
invariant under the translations tN, M. One of these sets
consists of two functions, φ1(t) and φ1(1 – t), which are
defined in Eq. (22). The second set consists of six func-
tions,

(23)

where

(24)

In (24), the theta function is defined by expression
(21):
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Under the translations by the periods τ = 2 and τ' =
3eiπ/3, this theta function is transformed as follows:

(26)

Let us introduce the functions , , and

 by the relations

(27)

The functions , , and  are basis func-
tions for constructing the charge densities ρ1, 2. Retain-
ing only these functions as the basis and taking into
account the symmetry properties (11) and (12), we
obtain
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------------– 

 +

– C3 Ŵ t( ) Ŵ∗ t( )+( ) Ŵ1 t( ) Ŵ1* t( )+( )+[ ]

+ iC4 Ŵ t( ) Ŵ∗ t( )–( ) Ŵ1 t( ) Ŵ1* t( )–( )+[ ] ,

ρ1
1 t( ) A1 φ̂1 t( ) φ̂1* t( )+( ) 1
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In formula (28), the asterisk denotes complex conjuga-
tion, and the coefficients C1–4 and A1–4 are certain con-
stants that will be defined below.

Expressions (28) for the charge densities ρ2 and 
exhibit required behavior at all points tN, M and possess
the symmetry properties (11) and (12) under the substi-
tution of 1 – t for t. Therefore, one may hope that, even
if these functions do not provide an exact solution to
Eqs. (9), they may serve as a good approximation to the
exact solution uniformly throughout the range of varia-
tion of Z.

Now, let us pass to the calculation of the coefficients
C1–4 and A1–4. First of all, note that, in the neighborhood

+ A3 Ŵ t( ) Ŵ∗ t( )+( ) Ŵ1 t( ) Ŵ1* t( )+( )–[ ]

– iA4 Ŵ t( ) Ŵ∗ t( )–( ) Ŵ1 t( ) Ŵ1* t( )–( )–[ ] .

ρ1
1
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of the singularity t2κ, the expansion is carried out in
even powers of t. This means that the quantity L (see
(19)) is equal to 1, and, hence,  = κ + 2. The vanishing
of the coefficients of t2κ and t2κ + 2 in the expressions for

ρ2 and  yields four equations for the coefficients C1−4

and A1–4. Two equations are derived from the solvability
condition (14). Another equation can be obtained by
integrating the first (or second) equation in (9) with
respect to t1 over the interval (0, 1). Finally, the last
(eighth) equation is chosen in such a way that the func-
tions ρ1, 2 defined by Eqs. (28) should provide the best
approximation to the exact solution of the system of
equations (9).

Let us introduce eight functions G1–4 and  of
parameter κ by the following relations:

κ̃

ρ1
1

F̂1–4
(29)

Expression (29) for G2, 4 and  in (29) can be substantially simplified. Summing over M, we obtain

(30)
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Ŵ t( ) Ŵ∗ t( )+
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Substituting expression (28) for the charge density
ρ2 into (10), we obtain the following expression for the
effective conductivity in terms of the coefficients C1–4:

(31)

As we noted above, there exist seven natural equa-
tions for eight coefficients A1–4 and C1–4. This system of
seven equations defines a one-parameter family of
functions ρ1, 2 (see (28)). Along with this family of

functions, we also consider the family of functions 
that represents the first iteration of the system of equa-
tions (9) with respect to the functions ρ1, 2 of zero-order
approximation. As the norm S, we choose a functional
of the form

(32)

The value of the free parameter is chosen from the min-
imum condition for the functional S:

δS = 0. (33)

The final expression for the functions ρ1, 2 is indepen-
dent of the choice of the free parameter.

To derive the other seven equations, we have to use

the expansion of the functions  in the domain
0 < t ! 1 up to the fourth-order terms. To facilitate the
calculations, we will use the general properties of mer-
omorphic elliptic functions. Suppose that ψ is an ellip-

σeff

σ1σ2

----------------
4π
Z

------ 1 Z2–=

× C1G1 C2G3+( ) C3F̂1 C4F̂3+( )+[ ] .

ρ1 2,
it( )

S t ρ2 ρ2
it( )– ρ1 ρ1

it( )–+{ } .d

0

1

∫=

φ̂1 2, t( )
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tic function that has one zero and one second-order pole
in the parallelogram of periods and can be expanded as

(34)

in the neighborhood of the pole. Then, the function ψ(t)
is a solution to the equation

(35)

In our case, the function ψ(t) also satisfies the relation

(36)

Formulas (35) and (36) also imply that, in this case,
the coefficient c is given by

(37)

and, consequently, ψ satisfies the equation

(38)

Equation (38) substantially facilitates the determina-
tion of the Taylor expansion coefficients of the function
ψ(t).

Now, let us consider the function φ1(t). In the
domain t  ! 1, we determine the first two terms in the
Laurent series expansion of the function φ1(t) from for-
mula (22) and recover the third term by formula (37):

(39)
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Using the explicit expressions for the theta functions
(τ = 2, τ ' = 3eiπ/3) given in Appendix A, we find the first
two terms in the Laurent series expansion of the func-
tion

ϑ 1
1 t–

τ
---------- 

  ϑ 1
t
τ
-- 

 
 
 

2

.
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As above, the third term is recovered by formula (37):
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------------------------------------------------------------------------------------------------------------------------------------------------------- ,
There exists a simple relation between the elliptic
functions on the right-hand side of (24), which directly
follows from the transformation formulas (26):

(43)

The elliptic functions φ2(t)/φ1(t), φ2(t + eiπ/3)/φ1(t), and
φ2(t + e2iπ/3)/φ1(t) on the right-hand side of (24) differ
only by a shift in the argument. Therefore, all these
functions satisfy the same equation whose coefficients
a and b are defined by formula (41):

(44)
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.= =
Hence, to determine the Taylor expansion coefficients
of the function φ2(t)/φ1(t) equal to

(45)

it suffices to determine its value at t = 0. This is done in
Appendix A. The values of the other coefficients are
obtained by Eq. (38):

e iπ/2– ϑ 1
eiπ/3 t–

τ
----------------- 

 

ϑ 1
1 eiπ/3 t–+

τ
-------------------------- 

 
-----------------------------------------

 
 
 
 
 

2

^0e
iχ0=

× 1 ^1e
iχ1t ^2e

iχ2t2 ^3e
iχ3t3 ^4e

iχ4t4+ + + +( ),

^1e
iχ1 2

a
------- –3b ^0e

iχ0 1
^0

-------e
iχ0–

+ + ,–=

^2e
iχ2 1

a
--- –6b 3^0e

iχ0 1
^0

-------e
iχ0–

+ + 
  ,=
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(46)

The numerical values of the coefficients Ri, Di, ^i, γi,
ϕi, and χi are given in Appendix A. Separating the term

having a singularity ~t–2κ from expressions (28) for 
and ρ2, we obtain the following relations for the coeffi-
cients Ai and Ci from Eq. (14):

(47)

Up to terms of the fourth order in t, we obtain the

following expressions for the functions  and 
from formulas (24), (39), (41), and (45):
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(48)

The expressions for the coefficients 3i, Qi, αi, and βi

in terms of Ri ^i, Di, γi, and χi are given in Appendix B.
Using expressions (A.8) and (A.9) for the charge densi-

ties and ρ2(t), we obtain the remaining five equa-
tions for the coefficients Ai and Ci. The first four equa-
tions are obtained from the vanishing of the coefficients
of t2κ and t2κ + 2 in the expressions for the charge densi-

ties  and ρ2, while the last equation follows from
Eqs. (13) and (14):
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(49)
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The functions ρ1, 2 defined by Eqs. (28) do not represent
an exact solution to system (9). Nevertheless, they pro-
vide a very good approximation to the exact solution
for any value of the parameter Z. Figure 2 represents the

ratio σeff/  as a function of Z for the solution
defined by formula (28) (solid curve). For the exact
solution, this ratio is independent of Z and identically
equal to unity. Using (28) as the zero-order approxi-
mation, we obtain its first iteration by the system of

equations (9). The expression for σeff/  obtained
with the use of these functions is shown in Fig. 2; the
dashed curve corresponds to the first iteration. Fig-
ures 3 and 4 represent the functions  for the values
Z = 0.2, 0.4, 0.6, 0.8 (solid curves) defined by formulas
(28) (zero-order approximation) and (dashed curves)
the results of the first iteration. We also present the val-
ues of the coefficients A1–4 and C1–4 at the points Z =
{0.2, 0.4, 0.6, 0.8}.
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Fig. 2. The ratio σeff/  as a function of parameter Z

(solid curve) for the solution defined by (28) and (dashed
curve) the result obtained by the first iteration of func-
tions (28).

σ1σ2
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Fig. 4. Function  for Z = {0.2, 0.4, 0.6, 0.8} (solid curve) defined by formula (28) and (dashed curve) the result of the first iteration.ρ̃2
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Fig. 3. Function  for Z = {0.2, 0.4, 0.6, 0.8} (solid curve) defined by formula (28) and (dashed curve) the result of the first iteration.ρ̃1
3. CONCLUSION

The conductivity and the distributions of charge,
current density, and electric field are analyzed in a two-
component system composed of regular triangles. An
efficient method is proposed for investigating the prop-
erties of two-component systems that is based on the
JOURNAL OF EXPERIMENTAL
application of elliptic functions. This method admits a
generalization to multicomponent systems.

The presence of corner points leads to a singular dis-
tribution of the charge density. Therefore, the conven-
tional perturbation theory is inefficient. The method
proposed in this paper (see also [3]) correctly takes into
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Coefficients A1–4 and C1–4 at the points Z = {0.2, 0.4, 0.6, 0.8}

Z A1 A2 A3 A4 C1 C2 C3 C4

0.2 544.796 –95.428 –544.756 95.545 –11368.274 –1673.776 3789.333 –663.774

0.4 70.423 –60.533 –70.353 60.661 –766.805 –289.381 255.505 –218.651

0.6 7.124 –13.678 –7.090 13.791 –49.934 –36.644 16.617 –32.006

0.8 0.964 –3.208 –0.943 3.305 –6.685 –8.223 2.220 –7.718
consideration all specific features arising in the charge-
density distribution. The functions ρ1, 2 (see (28)) are
double-periodic analytic functions of the variable t with

the periods (1/2 ± i /2) associated with the structure
of the system. The basis of doubly periodic functions
used in this study can easily be extended. Nevertheless,
the minimal basis used for constructing the functions
ρ1, 2 allows one to determine the functions ρ1, 2 to a high
degree of accuracy and provides a good first-order
approximation for the iterative procedure.
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APPENDIX

Appendix A

Let us derive an explicit expression for the four theta
functions used in Eq. (24). From formula (21), we
obtain

(A.1)

3

τ 2, τ' 3
iπ
3
----- 

  ,exp= =

ϑ 1
t
τ
-- 

    3
 

i π
 

16
--------  

  exp 2 –1 ( ) 
N

 
1+

 S N

N

 

1=

 

∞

 ∑ = 

× π

 

N

 

1
2
---–

 

 
 

 

t

 

 
 

 

T

 

N

 

cos

 

i T

 

N

 

sin+

 

[ ]

 

,sin

ϑ 1
1 t–

τ
---------- 

    3 i π 
16
--------  

  exp 2 –1 ( ) 
N

 
1+ S N

N

 

1=

 

∞

 ∑ = 

× π

 

N

 

1
2
---–

 

 
 

 

1

 

t

 

–

 

( ) 
 

 

T

 

N

 

cos

 

i T

 

N

 

sin+

 

[ ]

 

,sin

ϑ 1

iπ
3
----- t– 

 exp

τ
----------------------------

 
 
 
 
 

  3
 

i π
 

16
--------  

  exp
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS   
=  –1( )NSN

N 1=

∞

∑ π 3
2

---------- N
1
2
---– 

 
 
 exp





× T N π N
1
2
---– 

  1
2
--- t– 

 – 
 sin

– –
π 3

2
---------- N

1
2
---– 

 
 
 exp

× T N π N
1
2
---– 

  1
2
--- t– 

 + 
 sin

– i
π 3

2
---------- N

1
2
---– 

 
 
 exp

× T N π N
1
2
---– 

  1
2
--- t– 

 – 
 cos

– –
π 3

2
---------- N

1
2
---– 

 
 
 exp

× T N π N
1
2
---– 

  1
2
--- t– 

 + 
 cos





,

ϑ 1

1
iπ
3
----- 

 exp t–+

τ
-------------------------------------

 
 
 
 
 

  3
 

i π 
16
--------  

  exp

=  –1( )N 1+

N 1=

∞

∑ SN
π 3

2
---------- N

1
2
---– 

 exp 
 





× T N π N
1
2
---– 

  1
2
--- t+ 

 + 
 sin

–
π 3

2
---------- N

1
2
---– 

 – 
 exp

× T N π N
1
2
---– 

  1
2
--- t+ 

 – 
 sin
   Vol. 94      No. 1      2002



214 OVCHINNIKOV, LUK’YANCHUK
where

(A.2)

The numerical calculation yields the following val-
ues of the coefficients Ri, γi, Di, ϕi (39) and (41) and ̂ 0,
χ0 (45):

(A.3)

Substituting Di and ϕi into Eq. (43), we obtain the coef-
ficients a and b by which we determine the coefficients
^i and χi (i = 1, 2, 3, 4) (45):

(A.4)

Appendix B

Up to terms of the fourth order in t, from Eqs. (24)
and (40) we obtain
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Comparing expression (45) with (A.5) for (t +
eiπ/3), we obtain the following values of the parameters
3i and αi:

(A.6)

The coefficients Qi and βi are obtained in a similar
way from Eqs. (24), (44), and (45):

(A.7)

Let us determine the term proportional to t2κ in the

expressions for the charge densities ρ2 and . From
Eqs. (28) and (45), we obtain
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(A.9)

Expressions (A.8) and (A.9) have been used for
deriving Eqs. (46) for the coefficients Ai and Ci.
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Abstract—The effect of radiative friction emerging during the transverse motion of a screen with a slit relative
to the luminous flux is considered. It is shown that the effect is associated with the diffraction of light. Although
this effect is weak, it must be taken into consideration in high-precision measurements like those for detecting
gravity waves. The effect is analyzed for various types of slits and in the framework of various diffraction
modes. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

During the last several decades, considerable
advances were made in the theory of physical measure-
ments. The methods developed in this field have made
it possible to study new physical phenomena mainly
related to quantum physics and to carry out experi-
ments (such as the detection of gravity waves) which
were formerly impossible. The following example
illustrates the complexity of such a problem: the detec-
tion of gravity waves involves the measurement of the
displacement of one of the mirrors by a distance on the
order of 10–16 cm [1]. In high-precision measurements,
the effects which could be formerly disregarded due to
their smallness must be taken into account. One of such
effects is diffraction-induced friction, which was intro-
duced during an analysis of the Heisenberg microscope
[2], where it limits considerably the sensitivity of the
measuring circuit. The essence of this effect can be
described as follows. Let a photon beam be incident on
a moving screen with a slit. As a result of diffraction
from the slit and the Doppler effect, photons acquire an
additional momentum transferred in the direction of
motion of the slit. In accordance with the momentum
conservation principle, an equal and opposite momen-
tum is transferred to the screen, resulting in friction.
This effect is close to the Robertson–Poynting light
friction [3, 4] observed for an astronomical object as a
consequence of the Maxwell electromagnetic theory.

In [2], only the main principles of this effect were
formulated. Subsequent discussions proved that a more
rigorous analysis of this effect is required. This article
is devoted to a detailed description of this effect. In Sec-
tion 2, the basic equation for the diffraction-induced
frictional force is derived. An analysis of the effect for
various types of slits is carried out in Section 3 for two
models of diffraction, which provide different descrip-
1063-7761/02/9401- $22.00 © 0022
tions of the radiation intensity for large diffraction
angles.

2. BASIC EQUATION

We choose a laboratory frame of reference which is
fixed relative to an observer (the quantities related to
this frame are primed). As a model, we take an ideal
conductor in the form of a flat thin screen lying in the
plane z' = 0 with a narrow long slit cut in it along the y'
axis. The slit width amounts to several wavelengths of
the incident light (see figure). In such a formulation of
the problem, diffraction effects are independent of y'
and the light intensity is reduced to the solution of a 2D
diffraction problem. A plane phonon beam incident
along the normal to the screen will be defined by fre-

quency . In order to register the momentum, we
mentally arrange a series of photodetectors around the
slit for measuring the energy of photons incident on
them. It is well known that the momentum and energy
of photons are connected through the relation p = E/c
(c is the velocity of light). Consequently, the total
momentum transferred to the screen by the luminous
flux is given by

(1)

where Θ is the smallest angle formed with the normal
to the screen and the integral is taken over an arbitrary
surface bounding the slit. The energy dE of the lumi-
nous flux hitting a detector during the time interval dt in
the solid angle dΩ visible from the side of the slit is
determined by the intensity of the light wave passing
through the slit, I(Θ, ω) = I(Θ)δ(ω – ω0), through the
relation

(2)

Here, S is the area of the slit and ScosΘ is the area of
the slit visible from the detector side. It is convenient to

ω0'

d px
1
c
--- Θsin E,d∫–=

dE I Θ ω,( )S ΘdtdωdΩ.cos=
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carry out a further analysis for the case when the detec-
tors are arranged at a large distance behind the slit so
that the slit can be regarded as a point source with a
given angular distribution of intensities I(Θ). In this
approximation, light waves from light sources distrib-
uted over the surface of the slit propagate in parallel to
an arbitrarily chosen detector (as in the Huygens–
Fresnel diffraction model).

Let us now assume that the slit moves at a velocity
V ! c. In this approximation, we will omit the terms of
the order of V2/c2 in subsequent calculations. We seek
the force acting on the screen and proportional to V.
This simplifies the calculations since the terms contain-

ing , as well as the relativistic change in the
width of the slit and the detectors, are disregarded in the
transformations of the wave vector upon a transition to
another frame of reference.

In the laboratory frame of reference, a diffraction
pattern varying with time is formed around the slit; for
this reason, it is convenient to pass to a reference frame
in which the slit is stationary. In this frame of reference,
a wave is incident on the screen at a small angle β ≈ V/c
and the field distribution will be characterized by the
intensity I(Θ, β). The force acting on the screen is given
by

(3)

Here, K = S∆φ/c, ∆φ being the angular size of the detec-
tors along the y axis. The second term in the parenthe-
ses in the integrand is the initial value of the photon
momentum which would be transferred to an absorbing
screen without a slit:

where

is the power of diffracted light. Photons that do not par-
ticipate in diffraction create no frictional force; for this
reason, the effect is referred to as diffraction-induced
friction. Let us consider the change in formula (3) upon
a transition to the laboratory frame of reference.

1 v 2/c2–

Fx

d px

dt
-------- K I Θ β,( ) Θ Θsin β+( )cos Θ.d∫–= =

Fx
initio βW

c
--------,–=

W K I Θ β,( ) Θcos Θd∫=
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In the laboratory frame, the photon frequency
(energy) varies in different angular directions in accor-
dance with the Doppler effect: dω' = dω(1 + βsinΘ).
Consequently, the force acting on the screen can be
expressed through the angular distribution of intensity
in a reference frame in which the slit is stationary as fol-
lows:

(4)

This expression includes only the force created by the
wave passing through the slit and should be supple-
mented with the force created by the wave reflected
from the surface of the screen (we consider the case of
ideal reflection). According to [5], if we consider dif-
fraction as radiation emitted from the screen edges, its
intensity turns out to be the same in the half-planes in
front of and behind the screen; consequently, the value
of friction must be doubled:

We will now analyze the coefficient of diffraction-
induced friction (m is the mass of the screen),

(5)

expressed in terms of an auxiliary coefficient δ which
depends only on the intensity distribution of the diffrac-
tion pattern:
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Schematic diagram of propagation of a light wave (a) in the
laboratory frame of reference and (b) in a frame of reference
where the slit is stationary.
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Since the diffraction-induced scattering of the wave
is small, we can calculate the power of the diffracted
wave behind the screen (the quantity in the denomina-
tor) confining ourselves to small diffraction angles; in
this case, the dependence on β is insignificant.

In the next section, we will calculate the coefficient
δ for two different types of slits in two models of dif-
fraction.

3. FRICTION FOR DIFFERENT TYPES OF SLITS 
IN DIFFERENT DIFFRACTION MODELS

In order to determine the intensity of a light wave
passing through the slit, we define the polarization of

the vector field potential A along the y axis, I ∝  .
This is essential since the choice of polarization affects
the intensity distribution in some cases [5].

3.1. Fresnel Diffraction

Fresnel diffraction [3] is the simplest model of dif-
fraction, in which the field at the point of observation is
treated as a superposition of the fields created by point
sources distributed over the surface of the slit (of width
a). The intensity at a large distance from the slit, such
that a2/ω0r ! 1 (Fraunhofer approximation), is propor-
tional to the Fourier transform of the transmission coef-
ficient T(x) of the slit:

(7)

It does not depend on the properties or thickness of the
screen material.

Let us consider a slit with a Gaussian distribution of
the transmission coefficient (as in the Heisenberg
microscope [2]),

The field decreases rapidly and, hence, we can confine
our analysis to small angles, setting sinΘ ∝  Θ. The
coefficient

(8)

is proportional to the square of the diffraction angle.

A slit with sharp boundaries such that

displays a different behavior. In this case, we have

Ay
2
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T x( ) e x
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2– , I e
k0

2
a
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For a narrow slit (k0a ! 1), we obtain δ = 2.7. For a
wide slit (k0a @ 1), numerical calculations give the fol-
lowing dependence:

(9)

where the parameter ξF(k0a) oscillates in the range of
values from 0.6 to 1.9 with a period π.

3.2. Sommerfeld Diffraction

A more accurate expression for the intensity distri-
bution can be obtained by representing the screen as an
aggregate of infinitely thin wedges separated from one
another by a distance a. For a perfectly conducting
wedge, Sommerfeld solved the diffraction problem
exactly [5]. The superposition with the solution for the
second wedge leads to the following expression:

For a narrow slit (k0a ! 1), we obtain δ ≈ 2. For a wide
slit, a numerical calculation leads to an expression sim-
ilar to that in the Fresnel theory:

(10)

where the parameter ξZ(k0a) oscillates in the range
from 2.1 to 2.2 with a period π. The discrepancy with
the Fresnel theory is significant. This indicates that,
while calculating the coefficient of diffraction-induced
friction, one cannot confine the analysis to approximate
models of diffraction.

A more accurate expression for intensity [5] in the
case of a wide slit takes into account the effects of
mutual diffraction at the screen edges, but contains cor-
rections to ξ of the order of (k0a)–1/2, which are insignif-
icant for our analysis. For a narrow slit with k0a ! 1, we
have I ∝  cos2Θ. In this case, δ = 1.2.

4. CONCLUSIONS

Let us consider a diffraction grating with a view of
possible practical applications and for obtaining
numerical estimates. The total intensity from several
slits can be obtained by multiplying the intensity from
one slit (calculated using a more accurate Sommerfeld
theory) and the grating factor

I
k0a Θsin β+( )[ ]sin

2

Θsin β+( )2
--------------------------------------------------.∝
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k0a
--------,=

I
k0a Θsin β+( )[ ]sin

2
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2

--------------------------------------------------
k0a Θsin β+( )[ ]cos

2

Θ β–( )/2[ ]cos
2

---------------------------------------------------.+∝

δ
ξZ

k0a
--------,=

Nk0d Θsin( )sin
2

k0d Θsin( )sin
2

----------------------------------------,
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where d is the grating constant and N is the number of
slits. A numerical analysis shows that for N @ 1, the
coefficient δ oscillates about the value of 2 and is virtu-
ally independent of d and N. The minimum value of δ ≈
0.1 is attained for a slit width such that k0a ≈ 8.2, while
the maximum value of δ ≈ 3.1 is attained for k0a ≈ 11.2.
The amplitude of oscillations decreases monotonically
upon an increase in k0a. Consequently, the average
coefficient of diffraction-induced friction

has a value that must be taken into account in high-pre-
cision measurements in an analysis of the motion of the
diffraction grating in a luminous flux. For a screen of
mass m = 10–6 g and a laser of power W = 1 W creating
a diffraction pattern, the coefficient of diffraction-
induced friction σ ~ 10–8 s–1. It follows from this esti-
mate that the inclusion of diffraction-induced friction
becomes essential in an analysis of the motion of a dif-
fraction grating in a luminous flux if the duration of

σ 2W

mc2
---------≈
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high-precision measurements is several months or
more.
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Abstract—The dynamics of charged particles is investigated under conditions close to those of experiments in
a weakly ionized laboratory gas-discharge dust plasma. The existing phenomenological criteria of phase tran-
sitions for dust structures in such a plasma are treated, and new criteria are suggested. The parameters respon-
sible for the order and scaling of dynamic processes in Yukawa dissipative systems are determined. The relation
for the diffusion coefficient D of macroparticles in strongly correlated liquid structures is derived. © 2002
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A dust plasma is a partially ionized gas containing
micron-sized particles of condensed matter (dust). Dust
particles in plasma may acquire electric charges and
interact with one another. The combined effect of
forces of interparticle interaction and dissipation pro-
cesses may lead to the formation of steady-state dust
structures (similar to liquid or solid), as well as to com-
plex oscillatory or chaotic modes [1–10].

It is customary to assume that dust particles in a
weakly ionized plasma interact with one another
through the intermediary of a screened Coulomb poten-
tial (Yukawa potential),

(1)

where eZ is the dust particle charge, λ is the screening
length, and l is the interparticle spacing. The properties
of nonideal Yukawa systems are subjected to extensive
numerical simulation studies [9–22]. The nonideality
of dust plasma is usually characterized by the parame-
ter Γ equal to the ratio of the potential energy of Cou-
lomb interaction between neighboring particles to their
kinetic temperature T,

(here, n is the dust concentration and T is measured in
energy units). The numerical calculation results indi-
cate that, at Γ > 1, the short-range order arises in the
Coulomb system of particles, and the value of the criti-
cal nonideality parameter Γ = Γc on the crystallization
curve is close to 106 [16, 19–21]. The assumption of
screened interaction given by Eq. (1) leads to an
increase in the parameter Γc on the crystallization curve

φD
eZ
l

------ l
λ
---– 

  ,exp=

eZ( )2n1/3

T
---------------------
1063-7761/02/9401- $22.00 © 20026
of dust systems. The phase diagram for Yukawa sys-
tems, obtained by way of generalization of the numeri-
cal simulation results [11–18], is given in Fig. 1. The
simulation results demonstrate that the phase transi-
tions in Yukawa systems are defined by two dimension-
less parameters Γ and κ = n−1/3/λ. However, the correla-
tion f (Γ, κ) relating these parameters to the quantity
Γc = Γc = f (Γ, κ) has not yet been obtained either for
liquid–crystal phase transitions or for the transition
between the body-centered cubic (bcc) lattice and face-
centered cubic (fcc) structure. The authors of a number
of publications restrict themselves to the introduction
of linear approximations of the data of numerical sim-
ulation in different regions of the phase diagram [13,
15]. Such approximations result from the optimal math-
ematical fitting of the calculated points by the linear
function and are not validated from the physical stand-
point. The most successful of relevant papers [12] sug-
gests the condition of constancy of the normalized
value of the nonideality parameter as the criterion for
melting of the bcc lattice,

(  ≈ 106). It has been demonstrated in [18] that the

normalized value of  is almost independent of the
ambient gas viscosity (friction coefficient of dust parti-
cles νfr). This fact is important because, in laboratory
plasma-dust systems, the macroscopic particles find
themselves in a viscous medium, where the dissipation
due to collisions with gas atoms or molecules plays an
important part.

The diffusion of macroparticles is the main transport
process of mass transfer, which defines the energy loss
(dissipation) in dust systems and their dynamic charac-
teristics such as the phase state and the conditions of

Γ∗ 1 κ κ 2/2+ +( ) κ–( )Γexp=

Γ c*

Γ c*
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wave propagation and of formation of dust instabilities.
By using hydrodynamic approaches, one can obtain a
successful description of the diffusion of macroparti-
cles only in the case of short-range interactions. When
the forces of interparticle interaction are not as small as
in gases, the attempts at constructing a correct kinetic
equation fail. The theory of diffusion in molecular liq-
uid has been developing in two directions, one of which
(more fundamental) leans upon the general principles
of statistical physics. The other approach (“jump” the-
ory) is based on analogies between liquid and solid and
gives the following expression for the molecular diffu-
sion coefficient [23]:

(2)

where d is the mean distance between particles, τ0 is the
characteristic time defining the frequency ν0 of transi-
tions of a particle from one “settled” state to another,
and W is the energy barrier surmounted by the particle
during those transitions. The exponential dependence
of DM on temperature T in molecular liquids is sup-
ported experimentally. A similar temperature depen-
dence for the coefficient D of self-diffusion of macro-
particles was found as a result of calculations for
Yukawa dissipative systems [18]. The experimental
verification of this result is hampered by the fact that a
variation of any of the parameters of a plasma-dust sys-
tem leads to a self-consistent variation of the remaining
parameters defining the particle dynamics. The solution
to this problem resides in determining simple func-
tional dependences or approximations for the coeffi-
cients of self-diffusion of macroparticles in Yukawa
systems, the search for which is an object of intensive
investigations [22–28]. The value of diffusion coeffi-
cients for dissipative systems of macroparticles inter-
acting with the screened potential given by Eq. (1) is of
interest from the standpoint of both determining the
dynamic characteristics of dust plasma and analyzing
various kinetic processes in molecular biology, medi-
cine, polymer chemistry, and so on [22–28]. Various
approximations suggested at present for the coefficients
of self-diffusion of macroparticles in Yukawa systems
are based either on virial expansions for various ther-
modynamic functions such as effective viscosity η in
the Einstein relation D0 = ηT [25–27] or on analogies
with critical phenomena in gases [22, 24]. In view of
this, under certain conditions, the quantity D may be
represented either by the sum of the first expansion
terms,

or as a power function of the form

where Tc is the temperature at the melting point, and the
parameters ζ0, ζ1, ζ2, and ψ are determined for concrete

DM
d2

6τ0
-------- W

T
-----– 

  ,exp=

D0 1 ζ0+( ),

ζ1 ζ2 T /Tc 1–( )ψ,+
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conditions (n, eZ, κ, νfr) as a result of measurements or
by numerical simulation.

I have investigated the criteria of various phase tran-
sitions and the processes of diffusion of interacting
macroparticles in Yukawa dissipation systems with
parameters close to the conditions of experiments in a
weakly ionized laboratory gas-discharge dust plasma.

2. SIMULATION 
OF MACROPARTICLE DYNAMICS

A correct simulation of the motion of dust particles
in a weakly ionized plasma calls for the use of the
method of Brownian dynamics, which is based on the
solution of a set of ordinary differential equations with
the Langevin force FBr ,  allowing for random impacts
by the surrounding gas molecules,

(3)

where mp is the particle mass, and the quantity

describes the pair interparticle interaction in the sys-
tem. For analyzing the macroparticle dynamics, three-
dimensional equations of motion (3) were solved for
periodic boundary conditions. The total number of par-
ticles in the system being simulated was Np = 125 × 27,
where 125 is the number of independent particles

mp

d2lk

dt2
--------- Fint l( ) l lk l j–=

lk l j–
lk l j–
---------------

j

∑=

– mpνfr

dlk

dt
------- FBr,+

Fint l( ) eZ
∂φD

∂l
---------–=

103

0 2

Γ

κ
4 6 8 10

bcc

fcc

102

104
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liquid

crystal

Fig. 1. The dependence of the Coulomb parameter Γ on κ
on the phase curves, plotted by the results of different cal-
culations [1–4].
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Fig. 2. (a) The first maxima of the structural factor S1 and pair correlation function g1 and (b) their relative positions dS1/q1 and
dg1/r1 as functions of Γ* (the ranges of absolute deviations of the quantities for different cases of calculation are indicated: ξ = 0.166,
0.5; κ = 2.4, 4.8).
and 27 is the number of counting cells for the three-
dimensional problem given by Eq. (3). The interaction
potential was truncated at distances exceeding 4d,
where d = n−1/3 is the mean interparticle spacing. The
time step was selected to be

where

is the normalized dust frequency. The total count time
varied from 2000/νfr for νfr < ω* to 2000νfr/ω*2 for νfr >
ω* and ranged from 2 × 105∆t to 2 × 106∆t for different
parameters of the system. A more detailed description
of the algorithm of the numerical experiment may be
found in [18].

The coefficient of self-diffusion of macroparticles
was treated as the quantity defining the dynamic behav-
ior of a dust system,

(4)

where l(t) is the displacement of an individual particle,
and 〈〈 〉〉  denotes averaging over the ensemble (N) and
in time (t). The values of the diffusion coefficient D of
dust particles were found for different values of the
buffer gas pressure (νfr), the characteristic dust fre-
quency ω*, the dust temperature T, and the screening
length λ (κ = 2.4, 4.8). The choice of the screening
length for performing the calculations was governed by
the condition necessary for correct simulation of the
dynamics of Yukawa systems, i.e., the counting cell size
L @ λ [11]. In our calculations,

∆t min 1/νfr 1/ω*,( )/20,=

ω* eZ n/mp( )1/2 1 κ κ 2/2+ +( )1/2 κ /2–( )exp=

D D t( )
t ∞→
lim

l t( ) l 0( )–〈 〉 N
2〈 〉 t

6t
-------------------------------------,= =

L 5n 1/3– 12–24λ .>≈
JOURNAL OF EXPERIMENTAL
The correlation between the interparticle interaction
and dissipation in the system was preassigned by the
parameter

(5)

The values of the latter parameter were selected pro-
ceeding from the results of analysis of experimental
conditions in a gas-discharge plasma [1–10]. For the
given conditions, the frequency of friction may be writ-
ten in a free-molecular approximation [29],

where r is the particle radius, ρ is the density of the
material, P is the pressure, and CV is some parameter
defined by buffer gas neutrals (for example, CV ≈ 840
for argon and CV ≈ 600 for neon). The equilibrium
charge of dust particles may be represented as [30]

where Te is the electron temperature, and Cz ≈ 2000 for
most experiments in inert gases. Then, for some aver-
aged parameters (ρ ≈ 4 g cm–3, Te ≈ 1.5 eV, CV ≈ 700,
k ≈ 2), one can obtain the following estimate for the
quantity defined by Eq. (5):

(6)

From this, we derive the following range for particles of
radius r = 2.5 µm (with their concentration n varying
from 103 to 105 cm–3 and the gas pressure P varying
from 1 to 0.01 Torr):

ξ = 0.02 to 4.2.

ξ ω∗
νfr
-------=

= 
eZ n/mp( )1/2 1 κ κ 2/2+ +( )1/2

–κ /2( )exp
νfr

-----------------------------------------------------------------------------------------------.

νfr s[ ] CV P Torr[ ] / ρ g cm 3–[ ] r µm[ ]( ),≈

Z Czr µm[ ] Te eV[ ] ,≈

ξ 10 3– n cm 3–[ ] /r µm[ ]( )1/2
P Torr[ ]( ) 1– .≈
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In accordance with this range, the parameters of the
system were varied in our numerical experiment (ξ =
0.055, 0.166, 0.5, 1.5, 4.5).

In order to analyze the formation of order in the sys-
tems being simulated, use was made of the pair correla-
tion function g(r) and structure factor S(q). The depen-
dence of the magnitude of the first maxima for these
functions (q1, S1) and their positions (r = dg1, q = dS1) on
the quantity Γ* are given in Figs. 2a and 2b for different
parameters of the system. An analysis of the results of
these calculations reveals that the normalized parame-
ter Γ* fully defines the correlation of macroparticles
(the emergence of both long-range and short-range
orders in a dust system) and may be treated as the order
parameter for a Yukawa dissipative system from Γ* < 1
to the point of its crystallization. In the case of increas-

ing parameter Γ*  , a body-centered crystal
structure was formed. The position of the first maxima
of the functions g1 and S1 for the crystal structure cor-

responded to a bcc lattice (dg1 ≈ r1 = (3 /4n)1/3, dS1 ≈
q1 = 2π( n)1/3; see Fig. 2b) [31, 32].

The ratio of the diffusion coefficients D of charged
particles to the diffusion coefficient D0 = T/nfrmp of
noninteracting (Brownian) macroparticles for different
values of κ and ξ is given in Fig. 3. One can see from
this figure that the dynamics of highly nonideal systems
(Γ* > 40) is defined by two main parameters Γ* and ξ,
the latter of which may be treated as the scaling param-
eter for liquid dissipative systems.

3. DIFFUSION COEFFICIENT 
OF MACROPARTICLES IN STRONGLY 
CORRELATED LIQUID STRUCTURES

It should be recalled that the jump theory gives quite
an adequate description for the diffusion coefficient DM

(2) of molecules in real liquids, and the diffusion coef-
ficient D of macroparticles in highly nonideal Yukawa
systems is exponentially dependent on the parameter
Γ* [18],

As an illustration, Fig. 4 gives the dependence of D on
Γ* on a log scale. One can readily see that the D(Γ*)
curves in the range of Γ* from 102 to 50 are close to lin-
ear and exhibit identical slopes (c1 ≈ const). We will
take the value of the parameter Γ* on the crystallization
curve to correspond to that in the middle of the region
of abrupt variation of the diffusion coefficient (Fig. 3),

 ~ 104.5. Then, c1 ≈ 3 within ±3% for all parameters
of the calculations of ξ and κ [18]. The jumps observed
in Yukawa systems being simulated are illustrated in

Γ c*

3

2

D c1Γ∗ /Γ c*–( ).exp∝

Γ c*
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Fig. 5, which shows the difference in averaging the sys-
tem over the ensemble,

,

and over time,

,

∆N
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2
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Fig. 3. The ratio of the coefficients D/D0 as a function of the
parameter Γ* for different values of κ = 4.8 (triangles, bro-
ken curves) and 2.4 (squares, solid curves) and ξ =
(1) 0.055, (2) 0.166, (3) 0.5, (4) 1.5, and (5) 4.5.

20

D, cm2/s

Γ∗
40 60 80 100

10–4

10–5

10–6

10–7

Fig. 4. The diffusion coefficient D as a function of the
parameter Γ* for κ = 2.4 (triangles) and 4.8 (squares).
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in the vicinity of the crystallization curve of the system.
This difference disappears with decreasing parameter
Γ*, and the system being investigated becomes ergodic.

Therefore, the search for a simple empirical func-
tion for the value of the diffusion coefficient D of inter-
acting particles may be based on the choice of a suitable
value for the characteristic time τ0 in relation (2).
Assume that the characteristic frequency ν0 of transi-
tion between neighboring settled states is defined by
random collisions of particles with one another (at

1

0

∆N/d

2

3

4

5 Γ∗
 = 77

Γ∗
 = 92

∆N
t /d

Γ∗
 = 102

1800 2800 3800
v frt

Fig. 5. The relative root-mean-square displacement ∆N/d as
a function of νfrt for an ensemble of dust particles with ξ =
0.5 and κ = 2.4. The solid curve indicates the case of aver-

aging ∆N in time ( ) for Γ* = 92.∆N
t

0.07

0 0.5

Ac/L

t/Tw
2

1.0 1.5 2.0

0.12

0.17

0.22

0.02

1

2

Fig. 6. The relative displacement of the center of mass Ac/L
(L is the counting cell size) as a function of the ratio of time

t to the vibrational period Tw = 2π/wf, where wf = w*/ ,
for the following values of parameters: (1) ξ = 1.5, Γ* =
102, κ = 4.8; (2) ξ = 0.5, Γ* = 92, κ = 2.4.

π
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some characteristic frequency ω ≈ c2ω*, where c2 =
const) and with molecules of ambient gas at the fre-
quency νfr. We will further assume that the quantity τ0 ≈
2/ν0 may be written as

because the frequency ν0 must tend to ω for ξ ! 1 and
to ω2/νfr for ξ @ 1 [33]. Then, the unknown coefficient
c2 may be determined by finding the best fit to the
numerical results obtained by the method of Brownian
dynamics. The procedure of minimization of the stan-
dard deviation between relation (2) and the numerical
results in the range of Γ* from 102.5 to 50 gives c2 ≈
(π)–1/2. Then, with due regard for the resultant coeffi-
cients (c1, c2) and transformation

one can write the following expression for the diffusion
coefficient:

(7)

The error of approximation of the calculation results for
the diffusion coefficient by formula (7) does not exceed
2.5% for Γ* varying from 102.5 to 50. As Γ* decreases
to 40, the error increases to 7–13% and amounts to
approximately 25–30% for Γ* = 30.

Note that the characteristic frequency of collisions
between macroparticles in liquid, ωl = (π)–1/2ω*, may
be obtained if one treats the force of interparticle inter-
action in a dust system,

assuming that the electric fields from all particles,
except for the nearest ones, are fully compensated [12].
Then, the quantity ωl will be defined by the derivative
dF/dl at point l = d as

It is interesting that the vibration of particles at frequen-
cies close to ωl = (π)–1/2ω* may be revealed in motions
of a system even at a fairly high viscosity of gas, where
ξ = 0.5 (Fig. 6). It was not the objective of our study to
investigate the behavior of this vibration; however, it
has been observed that such regular motions disappear
with decreasing Γ*.

A relation similar to Eq. (7) may be derived if one
assumes the independence and randomness of colli-
sions between charged macroparticles (ω) and between
particles and neutrals of ambient gas (νfr), and also if

τ0

2 ω ν fr+( )
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12π π 1/2– ω∗ νfr+( )mp
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one assumes that, for the dust system being investi-
gated, the Maxwell–Boltzmann distribution is valid.
Then the dynamic processes in this system will be
described by Langevin equations which, as a result of
simple transformations [32], may be represented as a
system of N1 equations for mean-square displacements
of particles in the “settled” state,

(8a)

and N2 equations which describe the motion of “free”
dust particles,

(8b)

Here,

is the random force of impacts exerted by free dust par-
ticles (j = 1 – N2), ωc is the characteristic frequency of
vibrations of particles, and x describes the particle dis-
placement in the preferred direction. In view of the fact
that only free particles diffuse, the solution of the set of
equations (8a) and (8b) at t  ∞ gives the expression

for the diffusion coefficient, where

In the case of N1 = 0 and ω = 0, this coefficient coin-
cides with the diffusion coefficient of Brownian parti-
cles

D0 = T/νfrmp.

For the case of N1 ! N2 ≈ N, the law of conservation of
energy in the set of equations (8a) and (8b) gives the
following expression [23, 32]:

(9)

where W is the energy characterizing the transition of
particles from the settled to free state. Then, assuming
that W/T = cΓ* (where c = const) and in view of the fact
that the total energy of a settled particle at the crystalli-
zation point of the system being treated cannot exceed
the energy of an ideal three-dimensional oscillator
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E = 3T, we find that the coefficient c = 3/  and the
diffusion coefficient is

(10)

This relation is similar to expression (7); therefore, the
coefficients appearing in these expressions before the
exponential must be close to one another. If one assumes
that ω ≈ ω*(π)–1/2, then the value of the nonideality
parameter at the crystallization point may be derived
from the simultaneous solution of Eqs. (7) and (10),

which agrees within approximately 5% with the value
of 104.5 found by the jump of the diffusion coefficient.

In conclusion of this section, we will give two sim-
ple relations for the diffusion coefficient D in two lim-
iting cases,

These relations enable one to fairly easily determine the
modified parameter Γ* from the results of measure-
ment of the mean interparticle spacing, the tempera-
ture, and the diffusion of particles in liquid systems and
may be of use in the case of experimental analysis of
particle parameters such as the charge and the screen-
ing length.

4. CRITERIA OF PHASE TRANSITIONS

4.1. The Melting of a Three-Dimensional Crystal

Different phenomenological criteria of crystalliza-
tion of a system of interacting particles are known,
which have found application in the physics of dust
plasma. Best known is the Lindemann criterion [34],
according to which the solid phase melts if the ratio of
the root-mean-square displacement

of a particle from its position of equilibrium l0 to the
mean interparticle spacing d = n–1/3 reaches a value on
the order of 0.15. Note that, in numerical experiments,

one usually measures the displacement ∆ = ∆0 of a
particle relative to the center of mass of the system,
whence, in accordance with the criterion, the ratio ∆/d
on the melting curve must be on the order of 0.21. For
the majority of solids at the melting point, ∆/d ~ 0.2–0.25
[35]. However, according to the results of numerical
simulation performed by different researchers, this
value varies from 0.16–19 in the case of melting of an
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fcc lattice to 0.18–0.2 for bcc structures. For all cases
discussed in my paper, the crystallization was observed
at ∆/d  0.19–0.2 (Fig. 4). This fact may be due to
the insufficient number Np of particles in the systems
being simulated, because ∆/d  0.2 with increasing
Np in the case of melting of lattices of both types [15].

Another known criterion suggested by Hansen
defines the value of the first maximum S1 for the liquid
structural factor [36] as being less than 2.85 (this value
likewise varies from 2.5 to 3.2 in different calcula-
tions). The variation of the value of S1 from 2.65 to 3.1
during the transition of the system from the liquid to
crystalline state was observed in my calculations as
well (see Fig. 2a). A simple criterion of crystallization
in terms of a binary correlation function is provided by
the equality of the ratio between its minimal and maxi-
mal values to 0.2. Note that, for a system with a finite
number of particles, the latter two criteria depend
strongly on the procedure of determining the structural
factor and the pair correlation function, respectively. In
addition, the fluctuations of correlations between parti-
cles increase infinitely in the vicinity of the crystalliza-
tion points of the system or of other phase transitions
[37]. Therefore, the results of calculation of character-
istics for a bounded dust system may prove to be incor-
rect on the phase curves.

The condition of constant value of the modified non-
ideality parameter Γ* on the melting curve of the sys-
tem may be treated as a simple criterion for the liquid–
bcc structure phase transition. As was already men-
tioned above, the value of the parameter Γ* on the
curve between melting and crystallization of a structure

may be defined as  ≈ 104.5. This value corresponds
to the middle of the range of Γ* = 102–107, where the
ratio of the coefficients D/D0 decreases by more than
two orders of magnitude (Fig. 3), and drastic variations
occur in the values of the first maxima of the pair cor-
relation function and structure factor (Fig. 2a). It should

be emphasized that the value of  ≈ 104.5 (±2%) is
almost independent of the ambient gas viscosity; there-
fore, this criterion agrees with the results of calculation
of the crystallization of Yukawa systems by the meth-
ods of molecular dynamics disregarding the particle
friction [13–17]. The deviations of these calculation

results from the value of  ≈ 104.5 vary within ±5%
[12] and may be associated with the differences in the
numerical methods used in analyzing the system (the
choice of different numbers of particles, integration
step, and so on), as well as with the choice of the value
of Γ either at the melting point or at the crystallization
point of the system. Note that the obtained value of

 ≈ 104.5 (±2%) is consistent with the theoretical
results of Slattery et al. [19], who give the value of 105
(±3%) for the nonideality parameter on the phase curve
in Coulomb systems; this value agrees with the results
of calculations within different criteria of liquid–crystal

Γ c*

Γ c*

Γ c*

Γ c*
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phase transitions (crystallization) [20] and crystal–liq-
uid phase transitions (melting) [21].

A simple dynamic criterion of melting was obtained
by Lowen et al. [38] for the conditions of colloidal
solutions; this criterion defines the ratio of the diffusion
coefficients of a dust particle D/D0 on the line of liquid–
crystal phase transition as a quantity whose value is
close to 0.1. A reference to the inadequacy of this result,
as applied to a gas-discharge dust plasma where the gas
viscosity may not be high enough, was made in [12].
Indeed, one can use Eq. (11a) to derive D/D0 ≈ 0.13 for

Γ* =  ≈ 104.5 at νfr @ ω. With increasing ξ (decreas-
ing νfr—see Fig. 3), the value of D/D0 will decrease in
inverse proportion to νfr at νfr  0, with the value of
the coefficient D being in fact independent of the ambi-
ent gas viscosity according to Eq. (11b). Note further
that, in view of the inferences made in the previous sec-
tion, the ratio D/D0 on the crystallization curve must
depend on the lattice dimension.

A condition analogous to the Lindemann criterion
may be obtained with due regard for the fact that the
volume of thermal fluctuations

for a bcc lattice must not exceed

where

and aWS = (4πn/3)–1/3 is the radius of the Wigner–Seitz
cell. For a stable existence of an fcc structure, it is nec-
essary that

(see [27, 31]). We will allow for the possibility of coun-

terdisplacement of particles and assume ∆ = ∆0
(where ∆ denotes the most probable magnitude of dis-
placement). From this, we derive that the value of ∆/d
necessary for the destruction of a bcc structure must
exceed 0.211 (∆0/d > 0.15) and, within 7%, be equal to
∆ ~ 0.198 on the melting curve of an fcc lattice (∆0/d ≈
0.14). This result is in excellent agreement with the
results of Stevens and Robbins [15] and with all further
estimates given in my paper (see table).

The values of the parameters  and ∆ on the melt-
ing curve of crystal lattices enable one to estimate the
characteristic oscillation frequency of particles ω in a
dust crystal, the determination of which is treated in a
number of theoretical papers [13, 22, 27]. For an ideal
harmonic oscillator, we have

(12)

Γ c*

V tf 4π/3∆3∼

1 π 2/8–( )V 0.32V ,≈

V n 1– 4π
3

------aWS
2 ,≈=

V tf 1 π 2/6–( )V 0.26V≈<

2

Γ c*

∆0
2 3T /mpωc

2,=
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where ωc is the characteristic oscillation frequency. We
express T in terms of ω* and Γ* to find

(Note that relation (12) is the solution to the set of equa-
tions (8a) and (8b) for the case of N1 = 0.) We assume
that Γ* = 104.5 and ∆0/d = 0.15 to derive (with an accu-
racy of up to 1.5%), for the characteristic oscillation
frequency ωc = ωbcc of particles in the bcc lattice, the
frequency whose value is twice that found for the liquid
case,

An analogous value for ωbcc may be obtained in a dif-
ferent manner if one assumes that the value of ∆ on the
melting curve of the crystal lattice must be close to that
of the mean free path lliq of a particle in the liquid
phase, lliq ≈ (6Dτ0)1/2, where the characteristic time
τ0 = 2(ω + νfr)/ω2 was introduced previously. Note
that the ratio lliq/d on the crystallization curve for liq-
uid indeed corresponds to a value of 0.2.

Based on the foregoing and in view of the fact that
∆0/d ≈ 0.14, the characteristic oscillation frequency of
particles in an fcc lattice could be estimated as

Then, the value of Γ* on the crystallization curve of lat-
tices of both types would have remained constant,
which is inconsistent with the results of numerical sim-
ulation (see Fig. 7). This is associated with the fact that,
as κ increases, the effect of the nearest neighbors on the
behavior of an individual particle decreases as com-
pared with the effect of the remaining particles of the

ωc ω∗ Γ∗ ∆0
2/3d2( ) 1/2–

.=

ωbcc
2 4np eZ( )2 κ–( )1 κ κ 2/2+ +

π
-----------------------------.exp≈

ωfcc 0.15ωbcc/0.14.≈
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system. On the assumption of homogeneity, the sum-
mation of the forces of interparticle interaction from
each particle within some constant quantity produces

FΣ = α3np(eZ)2exp(–l/λ)λ{1 + l/λ – α},

where α = (4π/3)–1/3 ≈ 1.612. From this, for the fre-
quency characteristic of an fcc structure, one can derive
the expression

On assuming ∆0/d ≈ 0.14 on the melting curve of an fcc
lattice, one can find from Eq. (12) the critical parameter

ωfcc
2 2α3np eZ( )2 κ–( ) κ α–( ).exp=

90
0 4

Γ*

κ
2 6 8 10 12 14

130

170

210

250

290

fccbcc

crystal

liquid
1

2

34

Fig. 7. The dependence of Γ∗  on κ for different phase tran-
sitions: circles, [16]; squares, [15]; rhombs, [14] (the dark
symbols correspond to the formation of an fcc lattice);
(1) Γ* = 106 (bcc  liquid); (2) fcc  liquid,
Eq. (13); (3) bcc  fcc, Eq. (15); (4) fcc  bcc,
Eq. (16).
The value δc of the ratio of the most probable displacement ∆ to the mean interparticle spacing d, the value of the nonideality
parameter Γc = (eZ)2n1/3/T on the curve of different phase transitions in Yukawa systems, and the coefficients Cw for approximations

 = Cwn(eZ)2 exp(–κ) of the characteristic vibrational frequency ωc of macroparticles in bcc and fcc lattices (α = (4π/3)–1/3, κ = d/λ)

Phase transition δc = ∆/d ≡ 
Γc = Cp(Kn exp(–κ))–1

Cw
Cp Kn

bcc  liquid 1 + κ + κ2/2

bcc  fcc

fcc  bcc
2α3(κ – α)

fcc  liquid κ – α

ωc
2

2∆0/d

1 π 2/8–( )
1/3

2α
------------------------------------ 0.211∼

6

4π 1– δc
2

---------------- 106∼ 4
π
--- 1 κ κ2

2
-----+ + 

 

1 π 2/6–( )
1/3

2αk
------------------------------------ κ α–( )

∼ 0.27 κ α–( )
κ

----------------------------

6

4π 1– 0.272
------------------------ 64∼ 1 κ κ 2/2+ +( ) κ α–( )2

κ2
-------------------------------------------------------

6/2α30.272 9.8∼
κ α–( )3

κ2
--------------------

1 π 2/6–( )
1/3

2α
------------------------------------ 0.198∼ 6/2α3δc

2 18.5∼
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Γc (see table) or the parameter  for the given phase
transition,

(13)

The use of the normalized value of  as given by
Eq. (13) enables one to illustrate the pattern of the fcc
structure–liquid and bcc structure–liquid melting
curves on a close (nonlog) scale (Fig. 7). The difference
between the criterion given by Eq. (13) and the various
results of simulation [14–16] of the fcc structure–liquid

Γ c*

Γ c* 18.5 κ α–( ) 1– 1 κ κ 2/2+ +( ).≈

Γ c*

0.04

0 2

∆0/d

κ

0.08

0.12

0.16

0.20

4 6 8 10 12 14

1
2

bcc
fcc

crystal

liquid

Fig. 8. The dependence of ∆0/d on κ for different phase transi-
tions: (1) bcc  liquid, (2) fcc  liquid, (3) bcc 
fcc; hollow circles, κ = 5.8; filled circles, κ = 6.8.

1
17

D, 10–5 cm2/s

Γ*

2

3

4

5

6

22 27

1

2

(a)

(b)

Fig. 9. (a) The condensation of dust clusters and (b) jumps
of the diffusion coefficient D as functions of the parameter
Γ* for κ = 2.4 and different values of the parameter ξ = (1)
0.5 and (2) 0.166.
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phase transition does not exceed 2% for κ > 6.8. In the
range of values of κ from 5.8 to 6.8, the triple point of
the system (bcc–fcc–liquid) is located; the behavior of
the system in the vicinity of this point will be analyzed
below, along with the analysis of the effect of the
screening length λ in the processes of formation of an
fcc lattice for κ < 6.8. To this, we will add that, in the
range of values of κ from 3 to 7, the obtained frequency
ωbcc will correspond to 0.15ωbcc/0.14 with an accuracy
of ±5%, as is reflected in the results of calculations of

the values of  (see Fig. 7).

4.2. Phase Transition between bcc and fcc Structures

The most complete data for the phase diagram of
transition of a Yukawa system from a bcc to an fcc
structure were given by Hamaguchi et al. [16] (see
Figs. 1 and 7). The criterion for this transition may be
found when it is considered that, in order to change the
bcc symmetry of the lattice, it is necessary that the
spacing between particles in the system exceed their
screening length λ. It is only subject to this condition
that the interparticle interaction will be close to the
“rigid-sphere” interaction, when the formation of an fcc
structure is possible. Then, with due regard for the
mean volume of thermal fluctuations

and the possibility of counterdisplacement of particles
(see Subsection 4.1), we will derive the following con-
dition for the transition of the system from a bcc to an
fcc structure:

(14)

The values of the ratio ∆0/d for different phase transi-
tions are given in the table and in Fig. 8, where one can
see that the range of values of κ from 5.8 to 6.8 defines
the region of triple phase transition (bcc structure–fcc
structure–liquid).

Condition (14) may be transformed to the condition
for the nonideality parameter Γc (see table) or for the
modified parameter Γ* using relation (12),

where, for a bcc lattice, we assume that 

We substitute the numerical values of the coefficients to
derive

(15)

The validity of condition (15) as a criterion for the bcc–
fcc transition was verified for the data of Hamaguchi
et al. [16]. The verification has revealed that the devia-

Γ c*

V fr 1 π/3 2–( )V<

2 1 π/3 2–( ) 1/3– ∆0 aWZ λ .–<

∆0
2 3T

mpωc
2

------------- 3π
4Γ∗
----------,≡=

ωc
2 4np eZ( )2 κ–( )1 κ κ 2/2+ +

π
-----------------------------.exp=

Γ∗ 64κ2 κ α–( ) 2– .≈
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tion of the calculated values of Γ* for the bcc–fcc tran-
sition from relation (15) is within ±2%. An illustration
is given in Fig. 7 (curve 3). In view of the fact that the
possibility of reverse transition from an fcc to bcc struc-
ture will be defined by the frequency

the relation

(16)

may be treated as a criterion for this transformation.
Note that condition (16) depends on the correctness of
approximation of the frequency ωfcc and may be errone-
ous for small values of κ  α. Nevertheless, the
results of calculations by formulas (15) and (16)
(curves 3 and 4 in Fig. 7) fully define the region of triple
phase transition (κ = 5.8 to 6.8) and agree with the results
obtained for the values of the ratio ∆0/d (see Fig. 8). We
will add that the difference in the position of the curves
defined by formulas (15) and (16) is capable of explain-
ing the inconsistencies between the results of numerical
simulation by different researchers [14–16] in deter-
mining the location of the triple point.

4.3. Condensation of Macroparticles

We will dwell on the qualitative analysis of the
results of observation of condensation of macroparti-
cles (growth of dust clusters—see Fig. 9a), when the
parameter Γ* takes values of about 23.5. The formation
of groups of individual macroparticles was reflected by
the variation of the position of the maximum of the pair
correlation function (Fig. 2b) and by the abrupt varia-
tion of the diffusion coefficient (see Figs. 3 and 9b). It
should be recalled that, for Γ* < 40, the system being
simulated is no longer described by simple relations
(7)–(11) derived within the jump theory for molecular
liquids, and the scaling parameter ξ given by Eq. (5) is
not suitable for analyzing the macroparticle dynamics.

One can assume that the observed phenomenon is a
phase transition (of the second order) of the system
from a strongly correlated liquid to a nonideal gas.
Some unsoundness of this assumption is due to two rea-
sons, one of which is that, in the critical region of Γ* ~
23.5, the diffusion coefficient does not tend to zero.
This fact may be associated with the above-mentioned
finite size of the counting cell which hampers further
growth of dust clusters. Similar effects were observed
by Maekawa et al. [39]. The second reason is that, in
the set of equations (3), the attractive forces between
particles were not preassigned in an explicit form.

The observed phenomenon may be associated with
the symmetry of the interparticle interaction potential
(similarly to the Bose–Einstein condensation arising
due to the symmetry of the wave function [35]). Then,
the value of Γ* ≈ 23.5 must define conditions under
which a system begins to exhibit properties that are due
to the identity of its particles. Indeed, if we assume the

ωfcc
2 2α3np eZ( )2 κ–( ) κ α–( ),exp=

Γ∗ 9.8κ2 κ α–( ) 3– 1 κ κ 2/2+ +( )≈
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mean free path lliq = (6Dτ0)1/2 of a particle in the liquid
phase to be equal to the Wigner–Seitz cell radius aWS,
we derive a value of about 26 for the critical parameter
Γ*, which agrees with Γ* ≈ 23.5 within the accuracy of
applying formula (7) to the region of Γ* < 40.

In conclusion, note that, unlike the Bose–Einstein
condensation occurring in the momentum space, the
condensation of dust particles is observed in the coor-
dinate space, similarly to the phenomena of real phase
transitions from gas to liquid. Therefore, it remains
unclear whether or not the observed phenomenon is a
phase transition. Nevertheless, it is quite apparent that
the dynamic characteristics of the system being simu-
lated change qualitatively at point Γ* ≈ 23.5 (Fig. 3).

5. CONCLUSION

The dynamics of charged particles has been investi-
gated in a wide range of temperatures under conditions
close to those of experiments in a weakly ionized labo-
ratory dust plasma. The existing phenomenological cri-
teria for different phase transitions have been treated
and new criteria suggested (see table). The order
parameter for Yukawa systems has been determined, as
well as the parameter responsible for the scaling of
dynamic processes in a dissipative system of strongly
interacting macroparticles. The relation for the diffu-
sion coefficient D of dust particles in liquid structures
has been derived. These results may be used for passive
(nonpenetrative) diagnostics of the dynamic character-
istics of liquid dust structures and for analysis of
parameters of the system such as the nonideality
parameter, the screening length, and the macroparticle
charge.
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Abstract—New phenomena in which the stimulated Brillouin scattering (SBS) changes the number and mag-
nitude of frequency shifts in a plasma upon a nonlinear increase in the pumping field intensity are discovered.
It is found that the SBS becomes forbidden and then allowed again (upon a subsequent increase in the pumping
intensity). © 2002 MAIK “Nauka/Interperiodica”.
The stimulated Brillouin scattering (SBS) may be
accompanied by a strong nonlinear effect of variation
of the scattered radiation spectrum if it involves
strongly attenuating low-frequency excitations. This
meets the requirement that the field of scattered radia-
tion (pumping field) be strong enough to overcome dis-
sipation determining the strong damping of low-fre-
quency excitations. In this sense, the SBS itself is a
strong nonlinear effect. Since the damping of the low-
frequency excitations we are interested in is comparable
with their frequency, the spectrum of excitations partici-
pating in scattering changes as compared to the spectrum
of such strongly damped excitations in the absence of a
pumping field even at the SBS instability threshold. In the
superthreshold region, this effect is manifested in a depen-
dence of the SBS spectrum on the pumping field intensity.
The possibility of the effect under consideration will be
demonstrated for a plasma with two species of ions for
which peculiar nonlinear properties of the scattered radi-
ation spectrum are observed.

The properties of collective excitations of collision-
less plasmas with two species of ions have been
attracted the attention of researchers for a long time [1–
6]. Such collective excitations may be manifested in the
SBS in a peculiar way [7–10]. In the latter case, collec-
tive excitations in the plasma are usually associated
with ion-sound waves. The properties of such waves
change in a certain way under the action of the scatter-
ing pumping field. This enables us to speak of the decay
of a pumping wave into a scattered wave and a sound
SBS quasimode. In the simplest case of weak damping
of ordinary ion-sound waves in a plasma, the main dif-
ference between the sound SBS quasimodes and ordi-
nary waves is that the quasimodes do not attenuate
beyond the parametric instability threshold. However,
the situation changes radically when the damping of
1063-7761/02/9401- $22.00 © 20037
ordinary ion-sound waves is significant and when their
damping decrement is not very small as compared to
their frequency. Indeed, at the SBS threshold, the
damping of ion-sound waves must be suppressed by the
pumping field. For strongly damped ion-sound waves,
the intensity of the pumping field is so high that it results
in a considerable difference between the frequencies of
the threshold SBS quasimodes and of the ordinary ion-
sound waves. Since the spectrum of SBS quasimodes is
acoustic (ω = kV), the velocity V of the quasimodes dif-
fers considerably from the ordinary velocities of sound
for fast and slow ion-sound waves (see below) which
may take place in a plasma with two species of ions in
zero electromagnetic pumping field [1–6].

In [10], distinctive dependences of the velocity of
the threshold SBS quasimodes on the impurity concen-
trations and the parameter characterizing the deviation
from isothermal equilibrium (i.e., the ratio of the elec-
tron and ion temperatures) were established for a
hydrogen plasma. It was shown in [10], among other
things, that, for the same value of this parameter, three
different SBS quasimodes with different thresholds can
be excited. It was also established that for the same
threshold, two different quasimodes with different fre-
quencies can be excited in an unusual way, which cor-
responds to SBS with two different frequencies shifts
existing simultaneously [10]. It should be emphasized
in this connection that such a nonlinear variation of the
velocity of ion sound under the action of a pumping
field takes place for not very strong pumping fields.
This is observed when the ratio of the energy of oscil-
lations of an electron in the pumping field to its thermal
energy is equal in order of magnitude to the small ratio
of the frequency of electron–ion collisions to the pump-
ing field frequency. This noticeably distinguishes the
nonlinear effect under investigation from the variation
002 MAIK “Nauka/Interperiodica”
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of the velocity of ion sound under the action of a strong
pumping field in the case when the energy of oscillations
of an electron is higher than its thermal energy [11].

In this communication, we consider some nonlinear
properties of the SBS quasimodes under the conditions
when the parametric instability threshold is surpassed.
It has been found that the velocity of sound for the SBS
quasimodes changes nonlinearly upon an increase in
the pumping intensity in the superthreshold region. We
will demonstrate that the SBS quasimodes may disap-
pear upon an increase in the pumping intensity and that
the SBS might be forbidden and then allowed again
upon a subsequent increase in the pumping field.

We assume that the pumping field is linearly polar-
ized:

(1)

where  =  + , = 4πe2Ne/me. For the
amplitude of the electron oscillation speed in the pump-
ing field, we have vE = eE0/meω0. The electromagnetic
field of the scattered wave has the frequency ωs = ω0 –
ω and the wave vector ks = k0 – k, where ω and k are
the frequency and the wave vector of quasimodes,
respectively. Following [12, 13], we will describe the
SBS by using the dispersion equation

(2)

where

(3)

is the dispersion function of the scattered field and γei =

– νei/2ω2, νei being the frequency of electron–ion
collisions. In Eq. (2), we have

where summation is carried out over all the species of

ions. We assume in Eq. (2) that  @ 1 and  !

ωω0 , which corresponds to the ion-sound spectrum
of the SBS quasimodes.

Analyzing the SBS evolution in time, we assume in
Eq. (2) that ω  ω + iγ, where γ ! ω. Considering
that the condition c2(2k · k0 – k2) = 2ωω0 – ω2 is satis-
fied, we obtain D– = 2iω0(γ – γei). In this case, Eq. (2)
leads to the following two equations:

(4)

(5)
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2 ωLe

2 k0
2c2 ωLe

2

1
δεe ω k,( )
---------------------- 1

δεi ω k,( )
----------------------+

k2 k k0–( ) vE× 2

4 k k0–( )2D–

-----------------------------------------,=

D– ω iγei ω0––( )2– c2 k k0–( )2 ωLe
2+ +=

ωLe
2

δεi ω k,( ) δεα ω k,( ),
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rDe
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a ω k,( ) γ ω∂
∂

b ω k,( ),=

0 b ω k,( ) γ ω∂
∂

a ω k,( )
k2 k k0–( ) vE× 2

8ω0 γ γei–( )k0
2

-----------------------------------------,+ +=
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where

These equations define the increment of the SBS exci-
tation buildup and the quasimode spectrum. In the
approximation of the Maxwellian distribution of parti-
cles in a plasma containing two species of ions, we
assume that the ion temperatures are equal (T1 = T2 = Ti)
and use the notation X = Te/Ti for their ratio. We assume
that the sound velocity of quasimodes is smaller than

the thermal velocity vTe =  of electrons. For
the thermal velocities of various species of ions, we

assume that  = vT1 > vT2 =  and also
use the notation z = V/vT1. Then, Eqs. (4) and (5) can be
written in the form

(6)

(7)

In these equations, the following notation has been
used:

(8)

Here, Zα is the degree of ionization, Nα is the number

density of ions of species α, u = , and

is Dawson’s integral [14].
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We will demonstrate the peculiar consequences of
Eqs. (6) and (7) describing the nonlinear dependence of
the SBS quasimode spectrum on the pumping intensity

for the  plasma (see Figs. 1–7 below). We
will analyze the case when Xe ions play the role of an
impurity (y ≡ N2/(N1 + N2) ! 1).

Figure 1 shows the curves characterizing the veloc-
ity zth(X) of sound SBS quasimodes at the instability
threshold and the excitation threshold Ith(X) ≡ Ψ(X,
zth(X)) for such quasimodes as functions of the parame-
ter X describing the deviation from isothermal equilib-
rium. Taking into account the definition (8) of quantity

I and the radiation flux density q = c /8π, we can con-
clude that the threshold value Ith(X) corresponds to a
relatively small value of flux density. In particular, for
the backward SBS, when k = 2k0, we have

Here, Te is the electron temperature in kiloelectronvolts,
and λ is the wavelength of the pumping field in
micrometers. Solid curves correspond to the Xe con-
centration y = 0.01, while dashed curves correspond to
a higher concentration y = 0.06. In both cases, three
branches of SBS quasimodes are present for Xmin(y) <

X < Xmax(y). For y = 0.01, we have  ≈ 1.60, while

y = 0.06 corresponds to  ≈ 2.14 and  ≈ 2.44.
In the case when y = 0.01, the region of the three quasi-

mode branches is not bounded from below; i.e.,  = 0.
An even more important property in the case of the
lower concentration is the existence of a self-intersec-
tion point on the threshold curve in Fig. 1b, which is not
observed for the higher concentration.

Let us first consider the case of the lower concentra-
tion y = 0.01, described by the solid curves in Fig. 1.
The upper solid curve in Fig. 1a in this case is a nonlin-
ear continuation to the region of small deviations from
the isothermal equilibrium velocity of the fast quasi-
mode, which corresponds to the velocity V =

rDe  of ordinary fast sound for X @ 1. The
two lower solid curves are separated by a considerable
distance from the curve corresponding to the fast wave
and can be regarded as the result of spectral splitting for
a slow ion-sound wave.

We will attribute the lowermost solid curve in Fig. 1a
to the velocity zs, which will be referred to as the slow
wave velocity, while the upper of the two solid curves
will be attributed to the velocity zi referred to as the

intermediate velocity. For X = , the two lower
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branches of the SBS quasimodes converge. The proper-
ties of these two comparatively slow quasimodes,
whose velocities differ considerably from the velocity
of the fast wave under investigation, can be explained
qualitatively on the basis of the above-mentioned con-
cept concerning the nonlinear splitting of the ordinary
mode of slow ion sound. We will demonstrate this using
an analytic corollary which can be derived from Eq. (6)
under the assumption that the velocities of the SBS
quasimodes are smaller than vT1, on the one hand, and
greater than vT2, on the other hand. The latter relation
corresponds to the conditions of realization of slow ion-
sound waves in zero pumping field. Under our condi-
tions, we obtain from Eq. (6)

(9)
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Fig. 1. Dependence (a) of the velocity zth(X) of sound SBS
quasimodes at the instability threshold and (b) of the exci-
tation threshold Ith(X) for such quasimodes in a

 plasma on the parameter X for the Xe concen-

tration values y = 0.01 (curves 1) and y = 0.06 (curves 2).
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The plus sign in this formula corresponds to the smaller
value of velocity, i.e., to the lower branch of the nonlin-
ear dependence zs(I) on the dimensionless pumping
intensity I and to a smaller value of the instability
threshold Is. The minus sign corresponds to a larger
value of the sound velocity zi(I) of the SBS quasimode
and to a higher value of the instability threshold Ii. After
the attainment of the excitation threshold for a quasi-
mode with velocity zi(I), the two branches converge
upon a further increase in the pumping intensity.
Accordingly, the intensity value I0, which is deter-
mined, in accordance with Eq. (9), by the condition

corresponds to nonlinear convergence of the two
branches zs(I) and zi(I). Thus, the lower branch zs(I) lies
between the points Is ≤ I ≤ I0, while the upper branch
zi(I) lies between the points Ii ≤ I ≤ I0.

Let us compare the qualitative corollaries of formula
(9) with the nonlinear dependences presented in Fig. 2
and corresponding to the solutions of Eqs. (6) and (7)
for different values of X. The fast ion-sound SBS quasi-
mode zf is excited at the threshold If. This quasimode
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corresponds to z > zi. In this case, two patterns of devel-
opment of the SBS instability are possible. Figure 2a
illustrates the situation when Is < If < Ii. For Is < I < If,
this case corresponds to an SBS spectrum with a single
frequency corresponding to the slow quasimode. For
If < I < Ii, we have an SBS spectrum with two frequency
shifts corresponding to one slow and one fast quasi-
mode. As the pumping intensity increases, the quasi-
mode zi is excited, and we deal with an SBS spectrum
with three frequency shifts. A further increase in the
pumping intensity again leads to the case with two fre-
quency shifts in the scattered radiation in the vicinity of
I = I0, since the branches zs and zi coincide. The results
presented in Fig. 2a show that the sound velocity of two
slower quasimodes near I = I0 is a strongly nonlinear
function of the pumping intensity, which also follows,
by the way, from formula (9). For I > I0, an SBS insta-
bility with the conventional shift in the scattered radia-
tion spectrum by a frequency of the fast quasimode takes
place (see Fig. 2a). Figure 2b illustrates the situation
when a fast quasimode is excited at the same threshold
as for the excitation of the intermediate quasimode zi.
This is observed for X ≈ 1.43. For a large excess over
the threshold value in the interval Ii = If < I < I0, the SBS
spectrum of the scattered wave field is characterized by
 AND THEORETICAL PHYSICS      Vol. 94      No. 1      2002
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three frequency shifts. Finally, for I > I0, the conven-
tional situation of a single frequency shift of the scat-
tered field takes place. In the case corresponding to the
Xe concentration y = 0.01 and illustrated in Fig. 2c, we
have X = 1.5. Here, the excitation of a slow quasimode
for a comparatively low threshold in the interval Is ≤ I <
Ii leads to only one frequency shift of scattered radia-
tion by the frequency of the slow wave. Then, an inter-
mediate wave is excited at I = Ii, and, accordingly, two
frequency shifts are possible in the SBS spectrum in the
interval Ii ≤ I < If. After this, a fast quasimode is excited
at I = If, leading to three frequency shifts in the SBS
spectrum. Finally, for I > I0, only one frequency shift takes
place in the scattered radiation spectrum. Figure 2d illus-
trates a peculiar nonlinear SBS effect, when an increase
in the pumping intensity first leads to the excitation of
the zs branch; i.e., the SBS with a single frequency shift
is realized. Then, the zi branch is excited, while the fast
zf branch is still under the superthreshold conditions.
This corresponds to the SBS with two frequency shifts.
After this, in accordance with Fig. 2d, two slow
branches zs and zi merge into one at I = I0 owing to their
strong nonlinear interaction. It turns out, however, that
the excitation threshold for the fast quasimode has not
been reached yet. Consequently, an increase in the
excess intensity over the threshold value to I0 < I < If

imposes a nonlinear prohibition which is removed for
I > If . In other words, Fig. 2d illustrates the effect of
nonlinear prohibition followed by nonlinear permission
of SBS. This effect is strongly nonlinear in analogy
with the strongly nonlinear dependence of the sound
velocity of slow quasimodes on the pumping intensity
in the vicinity of I = I0 (see Figs. 2a, 2b, and 2c).

Figure 3 presents the curves characterizing the time
increment of the SBS instability for the cases corre-
sponding to Figs. 2c (solid curve) and 2d (dashed
curve). The straight lines in Fig. 3 correspond to a fast
wave with velocity v f from Figs. 2c and 2d, according
to which such a velocity is virtually independent of the
pumping intensity, i.e., corresponds to the pattern (in
the pumping intensity range presented in the figures)
similar to that emerging in the linear theory of excita-
tion spectra. In turn, the straight lines in Fig. 3 charac-
terize the linear functional dependence of the SBS
instability increments corresponding to the fast quasi-
mode on the pumping intensity. Such a functional
dependence is typical of the conventional linear theory
of stimulated scattering. The nonlinear curves in the left
part of Fig. 3 describe the dependence of the increment
of the parametric instability associated with the excita-
tion of a split slow SBS quasimode; this corresponds to
the velocities v s(I) and v i(I) in Figs. 2c and 2d, which
are nonlinear functions of the pumping intensity. These
curves located in the left part of Fig. 3 and characteriz-
ing the increments of slow quasimodes differ qualita-
tively from the linear dependence of the increment of
fast quasimodes on the pumping intensity. Vertical
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
dashed lines in Fig. 3 correspond to the maximum val-
ues of the pumping intensity for which the splitting of
slow waves still exists (to be more precise, terminates).
It should be emphasized that the maximum value of the
increment of the split SBS quasimode is attained before
the convergence and is realized for the slow wave.

Let us now demonstrate the nonlinear spectral prop-
erties of the SBS, which are observed when the value of
X is close to Xmin(y) ≠ 0. This case corresponds to curves 2
in Figs. 1a and 1b obtained for y = 0.06. Curve 2 in
Fig. 1b corresponding to the SBS threshold has no
point of self-intersection. Figure 4 shows the depen-
dences of the velocity z(I) of quasimodes and the time
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Fig. 3. Dependence of the time increment γ(I) of the SBS
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increment γ(I)/kvT1 of the SBS instability on the inten-
sity I of the pumping field, corresponding to the solu-
tion of the system of equations (6) and (7) for the value

of the parameter X = . For I = Is, a slow quasimode
with velocity zs(I) exhibiting a weak dependence on the
pumping field intensity is excited, and only one fre-
quency shift of scattered radiation is observed on the
interval Is ≤ I < Ii = If (see Fig. 4a). This quasimode cor-
responds to a linearly increasing time increment in the
range of relatively small values of I under investigation
(see Fig. 4b). For I = Ii = If, the second frequency shift
emerges in the scattered radiation spectrum, which cor-
responds to the excitation of intermediate and fast quasi-
modes with identical frequencies zi(Ii = If ) = zf (Ii = If) con-
siderably exceeding the sound velocity zs of the slow
quasimode. The nonlinear effect of pumping on fast
quasimodes is manifested most strongly precisely in
the vicinity of Ii = If. A further increase in the pumping
intensity leads to nonlinear splitting of the conventional
fast mode of ion sound, which attenuates relatively
strongly for the value of the parameter X under investi-
gation, into two quasimodes with close velocities: a fast
quasimode with the highest velocity of sound zf (I) and
an intermediate quasimode with a lower value of veloc-
ity zi(I). The nonlinear effect of pumping on the veloc-
ity of split waves is insignificant, although it is just the
nonlinear effect of the pumping field which causes the
splitting of fast quasimodes. Such a behavior of the
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X ≡ Xmin ≈ 2.78.
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velocities zi and zf is similar to a certain extent to the
nonlinear splitting of a slow wave (see Fig. 2). Thus, for
I > Ii = If, the scattered radiation spectrum contains
three frequency shifts corresponding to zs(I), zi(I), and
zf (I). It can be seen from Fig. 4b that, in the range of rel-
atively small values of I under investigation, two split
quasimodes correspond to virtually coinciding time
increments of SBS instability which are smaller in
absolute value than the increment for the slow quasi-
mode. Figure 4b shows that the nonlinear effect of
pumping on the increment of quasimodes is even
weaker than the effect produced on their velocity.

It was proved in the discussion of Fig. 4 that the
qualitative peculiarity of the scattered radiation spec-
trum for values of the plasma parameter X close to Xmin
lies in the nonlinear splitting of exactly the fast mode of
ion sound into two quasimodes, while, for values of X
close to Xmax, it is the slow mode of ion sound that splits
nonlinearly (see Figs. 2a–2d). Let us now consider the
situation when, in contrast to the cases depicted in
Figs. 2 and 4a, the nonlinear behavior of the velocity of
quasimodes cannot be reduced to splitting of slow or
fast waves. Figure 5a demonstrates a nonlinear depen-
dence of the sound velocities of all three SBS quasimo-
des on I, which is realized in the range of small values

of pumping intensity I for a  plasma for val-
ues of concentration y slightly smaller than y0 = 0.0765.
According to [10], y0 corresponds to the highest value
of the concentration of the heavy impurity ions Xe+40

for which the region of three values of the threshold
curves zth(X) and Ith(X) still exists. For y = 0.075 < y0,
the behavior of the threshold velocity zth(X) and the
SBS threshold Ith(X) is qualitatively similar to that illus-
trated by curves 2 in Figs. 1a and 1b, but the boundary
values Xmin ≈ 2.78 and Xmax ≈ 2.79 of the parameter X
differ insignificantly in this case. It can be seen from
Fig. 5a that, for I = Is, a slow quasimode with the sound
velocity zs(I) is excited and there exists only one fre-
quency shift in scattered radiation corresponding to this
quasimode in the interval Is ≤ I < Ii = If. For I = Ii = If, a
faster intermediate and a fast quasimode with coincid-
ing frequencies zi = zf are excited. As the pumping
intensity increases further in the interval Ii = If < I < I1,
the scattered radiation spectrum acquires all three fre-
quency shifts. It can be seen from Fig. 5b that, in the
interval of pumping intensities Ii = If < I < I1 in which
all the three quasimodes exist, their time increments are
of the same order of magnitude. In this case, the slow
quasimode with velocity zs(I) is enhanced most effec-
tively. The intermediate mode zi(I) increases less effec-
tively, while the fast quasimode zf (I) has the smallest
increment. With a further increase in the pumping field
for I > I1, scattered radiation again displays only one
frequency shift associated with the excitation of quasi-
mode zf (I). Figure 5 shows the pumping intensities for
which the nonlinear effect of pumping is manifested
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most clearly. In the vicinity of Ii = If, both velocities and
increments corresponding to the split fast and interme-
diate quasimodes experience a strong nonlinear effect
of pumping. In the vicinity of I1, the pumping field pro-
duces a considerable nonlinear effect on the same quan-
tities corresponding to the split slow and intermediate
quasimodes. Outside the above-indicated ranges of I,
the nonlinear effect of pumping on the sound velocities
of quasimodes is preserved (the slow quasimode
increases for Is ≤ I < I1, the intermediate quasimode for
Ii < I < I1, and the fast quasimode for If < I), and the
increment of the increases of the corresponding quasi-
modes in time is a linear function of the pumping inten-
sity. It should be emphasized that, for the concentration
y = 0.075 in question, which is close to the boundary
concentration y0, the velocities of all three quasimodes
differ insignificantly. However, the relation between the
slow, intermediate, and fast quasimodes described
above is characterized by a strong nonlinear depen-
dence on the pumping intensity I. This property distin-
guishes the situation considered above from the cases
discussed earlier (y = 0.01 and X is close to Xmax or y =
0.06 and X is close to Xmin), when one of the three
branches (fast in the first case and, accordingly, slow in
the second case) weakly depends on the pumping field
intensity and can be described in the framework of the
linear theory of stimulated scattering.

In conclusion, we consider another peculiar case of
a nonlinear effect of pumping on the SBS spectrum,
which is manifested for parameters X close to Xmin. This
case has no analogues among those considered earlier
and supplements the qualitative variety of manifesta-
tions of nonlinear spectral properties of SBS. It was
mentioned earlier that curve 1 in Fig. 1b, which deter-
mines the threshold value of the pumping intensity
Ith(X) for y = 0.01, displays self-intersection as a result
of which the threshold of the fast quasimode turns out
to be lower than the threshold for the intermediate
quasimode for parameters X smaller than that corre-
sponding to the self-intersection point (see Fig. 2a).
However, for concentration y = 0.01, the three-valued
region of the threshold curve is not bounded from

below in the parameter X; i.e.,  = 0. It was shown

in [10] that the threshold curves Ith(X) for a 
plasma in the concentration range 0.024 < y < 0.037
exhibit self-intersection, and the lower boundary of the
three-valued region of Xmin(y) differs from zero, so that
the fast and intermediate branches of the threshold
curve Ith(X) form a loop closed for Xmin ≠ 0 to the left of
the self-intersection point. Figure 6 shows on a magni-
fied scale a segment of the Ith(X) curve containing a
self-intersection point and the loop formed in this case.

Here,  = 0.714. It should be emphasized that, in the
loop region, the threshold of the fast quasimode If

(lower part of the loop) is lower than the threshold for
the intermediate quasimode Ii (upper part of the loop)
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only slightly. For this reason, the values of the pumping
intensity corresponding to the excitation of these two
quasimodes virtually coincide in Fig. 7a, which pre-
sents the nonlinear pattern of variation of the SBS
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Fig. 6. Segment of the threshold curve Ith containing the
neighborhood of the self-intersection point and the closed
loop formed in this case for the concentration y = 0.035 on
a magnified scale.
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quasimode spectrum upon an increase in the pumping
intensity for the parameter X = 0.7142, which exceeds

the value of  only slightly. In can be seen from
Fig. 7a that even for a low pumping intensity Is, the
slow quasimode zs(I) is excited. In contrast to the case
presented in Fig. 4 for the concentration y = 0.06, when
the nonlinear effect of pumping on the spectrum and
increment of the slow quasimode is weak, Fig. 7 shows
that the velocity zs(I) of the slow quasimode and the
appreciable time increment of its buildup exhibit a
strong nonlinear increase with the pumping intensity I.
Such a nonlinear effect of pumping is due to the
extremely low excitation threshold Is for the slow SBS
quasimode, which may correspond to a considerable
excess over the SBS threshold associated with the exci-
tation of this quasimode even in the range of relatively
small values of pumping intensity I under investigation.
As the pumping intensity increases further, a fast and an
intermediate quasimode are exited successively for I =
If ≈ Ii, and the SBS spectrum acquires three different
frequency shifts for a pumping intensity I > Ii. It should
be noted that for I > Ii, close values of velocities zi(I)
and zf (I) considerably exceed zs(I), which again corre-
sponds to nonlinear splitting of a conventional strongly
damped ion-sound wave into two (fast and intermedi-
ate) quasimodes. As the pumping intensity increases
still further, the fast and intermediate branches con-
verge. In the vicinity of I = I2, the nonlinear effect of
pumping on the velocities of the intermediate and fast
quasimodes is manifested most strongly and leads to
their merging, so that only one slow quasimode is
excited for I > I2. Such a manifestation of the nonlinear
effect of pumping on the velocities of fast and interme-
diate quasimodes, which rules out their excitation upon
an increase in the pumping intensity, resembles to a cer-
tain extent the manifestation of the nonlinear effect of
pumping on the SBS quasimode spectrum in the case
presented in Fig. 2, where an increase in the pumping
intensity led first to the nonlinear merging and then to
the prohibition on the excitation of the slow and inter-
mediate SBS quasimodes. On the other hand, the non-
linear convergence and subsequent disappearance of
faster nonlinearly split quasimodes upon an increase in
the pumping intensity for values of X slightly exceeding
Xmin are qualitatively different manifestations of the
nonlinear effect of pumping on the spectrum and incre-
ment of the SBS quasimodes in the case characterized
by the threshold curve Ith(X) with a loop and a self-
intersection point as compared to the case of the thresh-
old curve without self-intersection considered above
for values of X close to Xmin (see curve 2 in Fig. 1b),
when an increase in the pumping intensity leads to the
opposite result, viz., nonlinear splitting of the indicated
quasimodes with a subsequent increase in the differ-
ence between their velocities (see Fig. 4a). Since the
threshold for the slow SBS quasimode Is is lower
than the thresholds of the intermediate and fast

Xmin
3( )
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quasimodes (If ≈ Ii) by almost 1.5 orders of magnitude,
the time increments of the latter quasimodes turn out to
be much smaller than the increment for the slow
quasimode (Fig. 7b). It can also be seen that the incre-
ments of the intermediate and fast quasimodes virtually
coincide and are linear functions of the pumping inten-
sity for values of I not very close to I2. The relative
smallness of the time increments of the fast and inter-
mediate quasimodes as compared to the increment of
the slow quasimode indicates that SBS is mainly deter-
mined by the slow quasimode. On the other hand, the
value of pumping intensity I2 for which the splitting of
the fast sound wave terminates turns out to be quite sen-
sitive to small variations of the plasma parameter X.
The value of I2 increases by almost an order of magni-
tude upon an increase in the value of X by just one per-
cent. For such a small increase in the parameter X for
I > Ii, we arrive at the pattern corresponding to the exist-
ence of one slow and two faster quasimodes with close
velocities zi and zf  exhibiting a weak dependence on I.

Summarizing the results of our analysis, it is appro-
priate to note that the nonlinearity of the SBS quasi-
mode spectrum caused by a relatively weak pumping
field is manifested most strongly exactly in the vicinity
of the boundaries Xmin(y) and Xmax(y) of the three-val-
ued region on the threshold curves depicted in Fig. 1.

Thus, the idea that the frequency of low-frequency
excitations whose damping decrement is not small as
compared to their frequency may change nonlinearly
under the effect of the pumping field in the case of the
SBS involving such excitations has been implemented
in this article. The SBS spectra for a nearly isothermal
completely ionized plasma with two species of ions
clearly display a nonlinear variation. It is shown that
under certain conditions determined by the properties
of plasma, different numbers of SBS quasimodes with
different numbers of frequency shifts in scattered radi-
ation can be manifested depending on the pumping
intensity, the frequency shifts themselves being deter-
mined by the pumping intensity. The phenomenon of
nonlinear prohibition and subsequent permission of the
SBS is also ascertained. It is manifested in that the para-
metric instability appearing after overcoming a certain
threshold becomes forbidden upon a further increase in
the pumping intensity. The SBS becomes possible only
as a result of a subsequent increase in the pumping
intensity and overcoming another SBS threshold. All
these facts indicate, in particular, the variety of nonlin-
ear optical properties of plasmas with a complex com-
position.
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Abstract—An integral equation is derived for the spectral density of excited atoms using optically dense
bounded dispersion media as an example. It is found that the inclusion of the thermal motion of atoms and of
the effects due to the existence of a boundary brings about a nonlocal correlation between the concentration of
excited particles and the intensity of electromagnetic field in the medium. It is demonstrated that, when the spa-
tial dispersion of permittivity and the boundary effects are disregarded, the obtained result transforms to the
well-known Biberman–Holstein equation. The problem on the spectral intensity of radiation of a heated half-
space is also investigated. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the most important characteristics defining
the resonance radiation transfer in a medium is the
spectral density of excited atoms N(r, v, ω, t). In the
semiclassical limit, this density is defined as the num-
ber of atoms capable of emitting a photon with the fre-
quency ω located at the moment of time t at point r and
having the velocity v [1–3].

In fairly dense media, conditions may be realized
under which the frequency of irregularity of the phase
of excited atom in broadening collisions, γcoll, will be
high compared with the probability γR of spontaneous
transitions (i.e., γcoll @ γR). In this case, the correlation
of the frequencies of absorbed and emitted photons dis-
appears; i.e., the atom “forgets” about the frequency
exhibited by the absorbed photon and emits a photon
with a probability proportional to the spectral line pro-
file. This mode is referred to as “complete frequency
redistribution” (CFR). In the case of a resonance mech-
anism of broadening [4], associated with the transfer of
excitation from one atom to another, we have, for γcoll,

where N is the particle density in the ground state, and
d12 is the matrix element of dipole moment for reso-
nance transition. In what follows, the subscript 1 will
indicate the ground state of an atom, and the subscript 2,
the excited state. For the probability of spontaneous
radiation γR, we have [3]

γcoll Nπ
d12

2

"
-------,=

γR
4
3
---

ω3d12
2

hc3
-------------,=
1063-7761/02/9401- $22.00 © 20046
where c is the velocity of light, and ω is the resonance
photon frequency. Therefore, the condition γcoll @ γR

will be valid for such a gas density N that

 @ 1. (1)

For sodium atoms, condition (1) for the resonance
line of atomic vapor implies that N ≥ 3 × 1013 cm–3. If,
in this case, the correlation γcoll > kvT is valid (where
kvT is the Doppler line width k = 2π/λ, and vT is the
atomic thermal velocity), then, as is shown in [6], the
photon free path lω ~ 1/kω (kω is the absorption coeffi-
cient in the line) for such a gas density becomes com-
parable with the wavelength, and the description of
radiation transfer in terms of photons becomes invalid.
In this case, the theory must take into account the effect
of the dielectric properties of the medium on the reso-
nance wave propagation. For sodium atoms, the condi-
tion γcoll > kvT becomes valid at N > 1017 cm–3.

We will restrict ourselves to the treatment of the
case of not too high an atom density, when the medium
is “transparent,” i.e., the resonance photon free path is
long compared with the wavelength, but the condition
for the mode of complete frequency redistribution (1) is
valid. In the case of a transparent medium, a kinetic
equation of standard form may be written for the spec-
tral radiation intensity, which is a particular case of the
Dyson equation for the Green’s photon function, writ-
ten in a quasiclassical approximation.

The resonance radiation transfer in the CFR mode
was studied in detail by Biberman [7] and Holstein [8].
They have demonstrated that, in the case of complete
frequency redistribution, the spectral density of excited

Nλ3

32π
----------
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particles may be represented as

(2)

where a(ω) is the spectral line profile, and N2 is the total
population of higher state (in the general case, it is non-
equilibrium). This correlation, which is valid for the
case of moderate detuning from resonance, ∆ = ω –
ω0 ! T (T is the temperature of broadening particles,
and ω0 is the resonant transition frequency), implies
that the probability of emission of a quantum of fre-
quency ω does not depend on the absorbed photon fre-
quency and is proportional to the spectral line profile.
This assumption is valid when frequent collisions with
broadening particles bring about a random walk of an
excited atom within the line profile and make the atom
forget the excitation history (i.e., in the case of com-
plete redistribution in particles). Note that the purely
radiative mechanism of broadening does not cause the
frequency redistribution of emitted photons, which is
important from the standpoint of radiation transfer in
optically dense media, when the main fraction of
energy is transferred in the spectral line wings (in the
line wings, the Voigt line profile exhibits the Lorentz
asymptotic behavior).

In addition, an integral equation (Biberman–Hol-
stein equation) for total density of excited atoms N2(r)
was obtained in the CFR limit, describing the nonlocal
transfer of excitation due to resonance radiation,

(3)

Here, ν = γR + γT is the total rate of depopulation of the
excited level due to spontaneous decay and inelastic
collisions, and Q(r) is the rate of collisional population
of the excited level (for example, by an electron
impact). In the case of a homogeneous medium, the
kernel of integral equation (3) has the form

(4)

The physical meaning of Eq. (3) consists in that the
density of excited atoms at point r decaying at the rate
ν is formed owing to inelastic collisions Q(r) and reso-
nance radiation emitted by excited atoms (located at
point r') at the rate γRaω in the frequency range of ω, ω +
dω. When this radiation arrives at point r, it is attenu-
ated proportionally to the factor

and is absorbed at this point with the probability pro-
portional to the value of the absorption coefficient kω.
In optically dense media, when R @ 1 (R is the charac-
teristic size of the system), the contribution made by the
frequency range in the vicinity of the line center ∆ =

N2 ω( ) N2 ω v,( ) vd∫ N2a ω( ),= =

νN2 r( ) Q r( ) r'K r r',( )N2 r'( ).d∫+=

K r r,( ) γR=

× ω
kωaω

4π r r'– 2
------------------------ kω r r'––( ).expd∫

–kω r r'–( )exp

4π r r'– 2
--------------------------------------

kω0
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ω – ω0 ! Γ is exponentially small, and the main contri-
bution to the integral in Eq. (4) is made by the line
wings, i.e., ∆ @ Γ.

Note that Eq. (3) was first written from purely heu-
ristic considerations. In addition, Eq. (3) was written
disregarding the effects caused by the existence of the
boundary and by the thermal motion of atoms of the
medium (i.e., the spatial dispersion of permittivity). As
will be demonstrated below, the thermal motion of
atoms and the presence of the boundary result in a non-
local pattern of the response of the medium to the elec-
tromagnetic field in bounded systems. It is the objective
of our study to derive a generalized Biberman–Holstein
equation that would include these effects. It will be
found that the spectral density of excited particles sat-
isfies an equation of the form of (3) with the general-

ized kernel  dependent on the dielectric properties of
the medium. It will be further demonstrated that, if the
spatial dispersion and the presence of the boundary are

ignored, the kernel  transforms to Eq. (4).
In addition, we treat the problems on the radiation

emitted by a heated half-space and on the transmission
of resonance waves through a medium. The expressions
for the Green’s photon functions may be found directly
from the solution of the appropriate kinetic equation in
the external and internal regions and subsequent joining
at the interface. The explicit form of the coefficient of
reflection of electromagnetic waves from a resonant
medium will be found. Note that this problem was pre-
viously studied by Wood [9] and Veklenko and Tka-
chuk [10]. We will also derive the expression for the
reflection coefficient, which includes explicitly the spa-
tial dispersion and, thereby, generalizes the known
Fresnel–Wood result [9]. In addition, explicit expres-
sions have been derived for the spectral radiation inten-
sity in a medium, which is due to incident resonance
waves and spontaneous photon sources. In what fol-
lows, we will demonstrate that the function of a bulk
source of spontaneous radiation εω is proportional to
the spectral density N2 of excited atoms. Therefore,
given the depth dependence of N2, the obtained results
enable one to fully describe the transmission of incident
radiation through a medium, as well as the emission of
radiation by a heated half-space into vacuum.

2. KINETIC EQUATION FOR SPECTRAL 
DENSITY OF EXCITED ATOMS

We will treat a semi-infinite, homogeneous and iso-
tropic medium consisting of two-level nondegenerate
systems. Thereby, various effects associated with the
polarization of radiation will be ignored. The xy plane
will be selected as the interface, and the z axis will be
directed into the bulk of the medium.

The traditional mechanism enabling one to derive an
equation for the spectral density N(r, v, ω, t) of excited
atoms is the mechanism of the kinetic Green’s func-

K̃

K̃
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tions. Note, however, that, in what follows, we will deal
only with the projections of the atomic Green’s func-

tion  (i, j = 1, 2) onto the ground and excited states.

For example, for , we have

Here, x = {t, r} is the 4-coordinate of the atomic center
of gravity, and ξ denotes the variables characterizing

the motion of atomic electrons. The operator is the
Heisenberg field operator of atomic particles (for defi-

niteness, we will assume that  satisfies the Fermi sta-
tistics), and ϕi (i = 1, 2) is a set of atomic functions. The
subscripts α and β have, in accordance with the
Keldysh technique [11], the values of + or –. Note that,
in the absence of coherent pumping, the nondiagonal

elements of  (i ≠ j) are zero.

We will assume a fairly slow variation of all quanti-
ties in space and time, which will enable us to impart to
theory the form of kinetic equations for the populations
of atomic states and spectral intensities. Following is
the correlation, in a semiclassical approximation,
between the spectral density N(r, v, ω, t) of excited par-

ticles and the kinetic Green’s function  of excited
particles:

(5)

The wave vector k is related to the velocity v of an
atomic particle by the relation v = "k/M, where M is the
atomic mass. Note that the quantity N2(r, v, ωp, t) has
no physical meaning because of the uncertainty princi-
ple and, generally speaking, may be negative. Only the
moments of spectral density have a physical meaning.

The Green’s function  is the solution of the corre-
sponding kinetic equation representing a particular case
of the Dyson equation. Therefore, the derivation of the
expression for the spectral density of excited atoms

reduces to finding the Green’s function  of excited
particles, i.e., to the solution of the corresponding
kinetic equation. We will solve this equation under the
following assumptions: the atomic gas is nondegener-

ate—i.e., we ignore the terms of the order of N  (λT =

 is the thermal de Broglie atomic wave-
length) compared with unity; the interaction between
photons and atoms of the medium is described in the

Gij
αβ

Gij
–+

iGij
αβ x x',( ) ϕ i* ξ( ) Ψ̂+

x'ξ'( )Ψ̂ xξ( )〈 〉ϕ j ξ'( ) ξd ξ'.d∫–=

Ψ̂

Ψ̂

Gij
αβ

G22
–+

N r v ω t, , ,( ) G22
–+ r1 t1 r2 t2, , ,( )∫–=

× iωpτ ik r⋅–( )dτdr,exp

τ t1 t2, r– r1 – r2, r
r1 r2+

2
---------------, t

t1 t2+
2

--------------.= = = =

G22
–+

G22
–+

λT
3

2π"
2/MT
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dipole approximation; detuning of frequencies from
resonance is small, i.e.,

In addition to the atomic Green’s functions, we will
use the correlation functions of electromagnetic field

 determined in terms of the Heisenberg operators

of the vector potential . For example, for the kinetic

Green’s photon function , we have (assuming the
calibration with the scalar potential ϕ = 0)

The retarded DR(GR) and advanced DA(GA) Green’s
functions are expressed in terms of the D––(G––),
D++(G++), and previously introduced D–+(G–+) func-
tions as follows:

As was already indicated, finding the spectral den-
sity N2 of atoms in the excited state reduces to solving
the appropriate equation for the kinetic Green’s func-

tion of excited particles , which is a particular case
of the Dyson equation. We change over in this equation
to Fourier components with respect to time and coordi-
nate differences and take into account the definition (cf.
Eq. (5))

(the subscript ⊥  indicates the direction perpendicular to
the z axis) to derive, for a half-space,

(6)

Here and in what follows, in order to simplify the nota-
tion, we will not indicate explicitly the arguments k⊥
and ωp. In deriving Eq. (6), we have ignored the retar-
dation effects, which is justified when the radiation
intensity varies in time rather slowly. The mass opera-

∆ ω ω0 ! ω0, ω0– ω2 ω1.–= =

Dik
αβ

Âi

Dik
–+

iDik
–+ x x',( ) Âk x'( ) Âi x( )〈 〉 ,=

iD0i
–+ iDi0

–+ 0, i k, 1 2 3., ,= = =

DR D–– D–+, DA– D–+ D++.–= =

G22
–+

G22
– + z1 z2 k⊥ ωp t, , , ,( )

=  τ r⊥ iωpτ ik⊥ r⊥⋅–( )G22
– + r1 t1 r2 t2, , ,( ),expdd∫

τ t1 t2, r⊥– r1⊥ r2⊥ , t–
t1 t2+

2
--------------= = =

–i"
t∂

∂ "
2

2M
-------- d2

dz1
2

------- d2

dz2
2

-------–
 
 
 

– G22
– + z1 z2 t, ,( )

=  z3 Σ22
–– z1 z3 t, ,( )G22

– + z3 z2 t, ,( ){d

0

∞
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+ Σ22
++ z3 z2 t, ,( )G22

–+
z1 z3 t, ,( ) Σ22

–+ z1 z3 t, ,( )G22
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tors  describe the interaction of excited particles
with resonance photons and broadening particles (for
example, electrons), with the following correlation
being valid in the limit of low atomic density:

The last two terms on the right-hand side of Eq. (6)
correspond to the incoming term associated with the
absorption of resonance photons by atoms in the
ground state, as well as with transitions to the excited
level under the effect of collisions. Analogously, the
first two terms describe the depopulation of the excited
level due to spontaneous and induced emission or colli-
sions.

We will seek a steady-state solution to Eq. (6) in the
CFR mode; i.e., we will assume the frequency of elastic
collisions (leading to a random walk of excited atoms
along the line profile) γcoll to be higher than the frequen-
cies of spontaneous radiative transitions γR and of
inelastic collision transitions γT. In this case, from the
equality to zero of the elastic collision integral, Stelastic = 0,

we derive that  may be represented in the
form [12]

(7)

Here,

is the energy of translational motion of an atomic parti-
cle; µ is the chemical potential; and a2(εp) is the Lorentz
profile of excited state,

The quantity (ω, k) in the case of degenerate gas
and moderately broad lines; i.e., γ2 & T (we assume that
the broadening particles are described by the Fermi dis-
tribution with the absolute temperature T), is written as

(8)

Here, λT is the de Broglie wavelength of a particle, and

 is the effective nonequilibrium population of higher
state defined in the general case by radiative and colli-
sion-induced (inelastic) transitions between the ground
and excited levels. Therefore, the kinetic equations for
the concentration of excited particles in the CFR limit

Σ22
αβ

Σ22
–+

 ! Σ22
+– Σ22

–– Σ22
++., ,

G22
–+ G22

+–( )

G22
+– ω k,( ) G22

R G22
A–( ) 1 Ñ2 ω k,( )–( )=

=  2πia2 εp( ) 1 Ñ2 ω k,( )–( ),

G22
–+ ω k,( ) G22

R G22
A–( )Ñ2 ω k,( )–=

=  2πia2 εp( )Ñ2 ω k,( ).

εp ω ω2– E k( ) µ, E k( )+– k2

2M
--------= =

a2 εp( )
γ2

2π
------ εp

2 γ2
2

4
-----+ 

 
1–

.=

Ñ2

Ñ2 ω k,( ) Ñ2λT
3 εp E k( )+

T
----------------------– 

  .exp=

Ñ2
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will now be formulated in terms of the quantities .
Expressions (7) and (8) represent a generalization of
the inferences made in the traditional theory of transfer
to the case of broad spectral lines and enable one, in the
case of thermodynamic equilibrium, to derive a correct
expression for spectral intensity [12]. At equilibrium,

the “populations”  (i = 1, 2) obey the Boltzmann
equations. We substitute expressions (7) and (8) into the
equation for spectral radiation intensity to arrive (in
contrast to the traditional theory) at the correct Planck
formula for photon occupation numbers. Note further
that, in the case of very narrow lines, i.e., for γ2 ! T, we
can ignore εp in the exponent; in this case, the “popula-

tions”  coincide with the true populations obtained
by integration of (7) with respect to frequency and
momenta.

We will first solve Eq. (6) in view of relations (7)
and (8). We will treat in more detail the absorption by
atoms of resonance photons from the ground state. For
this purpose, we will first write the last term on the
right-hand side of Eq. (6) in the explicit form

(9)

In deriving Eq. (9), use was made of the correlation
G− − ≈ GR, valid in the case of a low atom density. In
addition, we ignored the broadening of the ground
atomic state and used the Green’s function of unper-

turbed atoms as . The function  is the higher
level retarded Green’s function, and jk is the kth projec-
tion of matrix element of the current density operator
between states 2 and 1 (summation is implied by the sub-

scripts i and k). The function  satisfies the corre-

sponding Dyson equation with the mass operator ,
which we solve to derive

(10)

In deriving Eq. (10), we used the relation

where the first term characterizes the level shift due to
interaction with resonance photons and broadening par-
ticles, and the second term characterizes the finite
width of the excited level. In Eq. (10), the functions
ψk(z) ∝  sin(kz) are the eigenfunctions of the Laplacian,
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which describe the translational motion of an atom in
the region of z > 0;

denotes the respective eigenvalues of energy; and ω2 is
the frequency renormalized in view of the shift. The
quantity

is the total width of the excited level, which, in the gen-
eral case, is due to collisions and spontaneous decay. In
the purely radiative mode, γ2 = A, where A is the prob-
ability of the spontaneous 2  1 transition (Einstein

coefficient). For the Green’s function , it follows
immediately from the definition that

(11)

where N1(k, k⊥ ) are the occupation numbers of atoms in
the ground state by the quantum numbers k and k⊥ . We
substitute Eqs. (10) and (11) into (9) and take into
account the smallness of the photon wave vector com-
pared with the particle wave vector to derive the follow-

ing expression for the incoming term :

(12)

where

(13)

In deriving Eq. (12), averaging was performed over rap-
idly oscillating functions of the type exp(ip(z1 + z2)).
One can analogously derive an expression for the third
term in the right-hand part of Eq. (6). On adding this
third term to Eq. (12), we will derive the final expres-
sion for the incoming term describing the photoabsorption
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from the ground state,

(14)

Expression (14) describes the nonlocal absorption
of radiation in the vicinity of the half-space boundary.
As follows from Eq. (14), the characteristic scale of
nonlocality of the kernel is L ~ νz/∆. Away from the
boundary, at a distance much longer than L, we can
ignore the nonlocality and extend the integration for z3
to the entire axis from –∞ to +∞, with the kernel being
of the order of δ(z – z3).

Turning back to Eq. (6), we will treat the terms
defining the depopulation of the excited level due to
radiative decay. Disregarding the induced radiation, the
decay term may be written as

(15)

where A is the probability of the spontaneous 2  1
transition. We substitute Eqs. (14) and (15) into Eq. (6)
to derive the kinetic equation for the spectral density N2
of atoms in the upper state,

(16)

Here, N1 is the total number of atoms on the lower level;
f(k, k⊥ ) is the distribution function of atoms in the
ground state over the quantum numbers k and k⊥ , i.e.,
N1(k, k⊥ ) = N1f(k, k⊥ ); and νz = k/M is the z projection
of the atomic velocity. In performing numerical calcu-
lations, we will use the Maxwell distribution function
as the distribution function f(k).

In the steady-state case, the general solution of
Eq. (16) may be written in the form

(17)
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where St+ is the integral of collisions with photons (14),
and the quantities z0 = z0(νz) and  must be deter-
mined from the boundary conditions. We will first treat
the atoms with νz < 0, i.e., the atoms moving towards
the interface. We assume that z0 = ∞ and that N2(z)  0
at z  ∞ to derive from Eq. (17)

(18)

We will now derive the expression for the atom density
N2 with νz > 0, i.e., for the atoms moving into the bulk
of the medium. For this purpose, we will designate the
fraction of mirror collisions of atomic particles with the
interface by η; accordingly, the quantity 1 – η will give
the fraction of diffuse collisions. We assume z0 = 0 and,
in view of Eqs. (17) and (18), find

(19)

We will dwell on the case of purely specular collisions,
η = 1. Here, the following correlation is valid on the
interface z = 0:

(20)

It follows from Eq. (20) that atoms with velocities νz >
0 may be regarded as atoms that passed through the
plane z = 0 from the region z < 0. Owing to a certain
symmetry arising as a result of specular collisions, the
problem actually reduces to finding the spectral density
of excited particles in the entire space provided the fol-
lowing correlations are valid:

(21)

Proceeding from Eqs. (18) and (19) in view of (21), the
respective expression for the total concentration

of atoms in the upper state will be written as

(22)
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where

(23)

As was already mentioned, the kernel K of the integral
contains the description of the effects of nonlocal
absorption of radiation in the vicinity of the interface
(i.e., at z & L = νz/∆), which are due to the absorption,
by atoms at point z, of the radiation emitted by atoms at
some other point z3. In addition, this kernel takes into
account various effects associated with the thermal
motion of atoms, i.e., the specular reflections of parti-
cles from the plane z = 0 and the transfer of excitations
by the moving atoms. In the case of thermal transfer of
excitations, the atom that absorbed a photon at point z'
may then emit this photon at another point z with the
probability proportional to the factor exp(–A|z – z' |/νz).
Analogously, the excited atoms reflected from the inter-
face also make an additional contribution to the excited
particle concentration N2 at depth z. Therefore, the
inclusion of the thermal motion of atoms may bring
about an increase in the effective number of excited
atoms in the medium. In the case when the thermal
velocity of particles is fairly low and the upper level is
short-lived, the thermal effects become insignificant
(except for the narrow region in the vicinity of the
boundary, where the reflected atoms must be taken into
account). In this limit, the kernel K is simplified consid-
erably and takes the form

(24)

It is important to note that, in media with the permittiv-
ity |ε – 1| ~ 1, the reflection of electromagnetic waves
from the interface takes on significance; this results in
an additional contribution to the intensity of radiation
in the material, thereby causing an increase in the pop-
ulation of the upper level.

We have treated the case of purely specular reflec-
tions of atoms from the interface z = 0. The problem
may be reduced to that on finding the spectral density
in the entire space. Under conditions when diffuse
reflections cannot be ignored, one must use other meth-
ods for solving Eqs. (18) and (19) for the region z > 0.

Given , formulas (22) and (23) fully define the
dependence of the spectral density N2(z, ωp) of excited

particles on the depth z. However, , in turn,
depends on N2(z, ωp); i.e., Eq. (22) is essentially an inte-
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gral equation for spectral density. Therefore, in order to
close the set of equations, one must solve the equation

for the photon function .

3. THE RADIATION TRANSFER IN THE CASE
OF SEMI-INFINITE MEDIUM 

AND THE RADIATION OF HEATED HALF-SPACE

In order to derive a closed equation for the spectral
density N2 of excited atoms, one must find the kinetic

Green’s photon function  (see [22]). It follows

immediately from the definition that the quantity 
is a second-rank tensor. Determining all of the compo-
nents of this tensor reduces to solving the set of equa-

tions for , derived from the appropriate Dyson
equation [13]. In the general case, the solution of this
set of equations involves very cumbersome computa-
tions and cannot be reduced to a set of algebraic equa-
tions, because we treat a semi-infinite medium (and it is
necessary to apply methods of solving sets of integro-
differential equations on a half-line). It is only when the
spatial dispersion is ignored that this system is simpli-
fied and allows an analytical solution.

In this study, we are interested in the case when the
spatial dispersion is significant. Therefore, for proce-
dural purposes, we will not investigate the polarization

properties of the function  and will confine our-
selves to the treatment of the model problem, assuming
that

We will assume a scalar form of the photon function

 and will treat only one component of the polariza-
tion of radiation.

For convenience, we will represent  as the sum

where the first term corresponds to spontaneous photon
sources, and the second term, to the radiation incident
on the medium from vacuum. We will first investigate
the part of the Green’s function that is associated with

incident radiation, . The Dyson equation for this
function will be written in the form (the vector q⊥  will
be directed along the y axis)

(25)
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(26)

(27)

(28)

We will assume that the collisions of particles with the
interface are purely specular. In this case, we use the
even extension to the negative semiaxis z < 0 to derive,
from Eq. (25),

(29)

Here, the prime indicates a derivative with respect to
the first argument (with respect to z). The quantity ε(ω,
k, q⊥ ) is the permittivity of the medium, expressed in
terms of the polarization operator ΠR,

(30)

Here,  and  denote the effective population of the
upper and lower states, respectively (see Eqs. (7) and
(8)). Generally speaking, ε is a function of both the fre-
quency ω and the photon wave vector k and describes
the temporal and spatial dispersion of permittivity,
respectively. As was already mentioned, the following
condition may be valid in the case of a fairly high atom
density:

where ∆ωD is the Doppler width, γsp is the radiation line
width, and γcoll ~ N is the collisional line width (propor-
tional to the density of broadening particles). For such
media, the dependence of permittivity on k and q⊥
becomes unimportant. In this study, we are interested in
the case of rather rarefied media, when the above-iden-
tified condition is invalid, and the spatial dispersion of
permittivity proves to be significant (in application to
sodium atoms, this means N < 1017 cm–3).
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The Green’s function derivative  may be found
from the joining of solutions obtained in the regions z < 0
and z > 0 on the interface z = 0. For this purpose, we will
first treat the case z < 0, z' > 0. From Eq. (26), we find

(31)

Here, A is the incident wave amplitude, r is the coeffi-

cient of reflection from the boundary,  is the projec-
tion of the wave vector of incident wave onto the z axis

(in the case of normal incidence,  = ω/c), and c(z') is
some function of z' which may be determined by treat-
ing Eq. (27). From the condition of continuity of the
electric and magnetic field intensities on the boundary,

we can derive the boundary conditions for ,

(32)

We find from Eqs. (29) and (31) in view of boundary
conditions (32)

(33)

One can see that the function (z, z') may be written
in the form of the product of two functions dependent
on only one of the coordinates,

In order to determine c(z'), we will turn to Eq. (27). We
will use the even extension to the negative semiaxis z' < 0
to derive the following correlation for the function c(z'):

(34)

In deriving Eq. (34), use was made of the inequality
ΠA = (ΠR)*. The derivative c'(+0) may be found from
the boundary conditions (32). Indeed, from the defini-

tion of the photon function  and from Eq. (31), we
derive
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On substituting Eq. (34) into (33), we arrive at the final

expression for the Green’s photon function (z, z')
corresponding to resonance waves incident on the
medium,

(35)

where

(36)

It follows from Eq. (35) that the Green’s function 
is proportional to the square of the amplitude of a wave
incident on the medium, i.e., to the incoming flow. Note

that the quantity , in turn, is associated with the
radiation flux (Poynting vector) in the medium. In the
case of a transparent medium (i.e., a medium in which
ε' = Reε  1 and ε'' = Imε  0), the Poynting vec-
tor component will be written as

(37)

Here, the quantity  defines the radiation flux at depth
z, which is associated with incident resonance waves.
Therefore, relation (35) is in fact a generalization of the
known Fresnel formula to the case of a medium with
spatial dispersion of permittivity. Note that, as was
demonstrated by Schuurmans [14], in media with spa-
tial dispersion and a boundary, one must take into
account the thermal transfer of excitation and the
reflection of atoms from the walls. These effects result
in the disturbance of local correlation between the elec-
tromagnetic radiation intensity and the populations of
atomic levels at some depth z; as was demonstrated in
[14], the decay of electromagnetic waves in the
medium proceeds by other than an exponential law. The
radiation transfer in this case, generally speaking, can-
not be described in terms of the complex refractive
index; therefore, the existing theory of transfer must be
generalized.

When the effects of nonlocality are ignored, it
becomes possible to use the complex refractive index
for describing the radiation transfer through the
medium. Indeed, on ignoring the spatial dispersion in
Eqs. (35) and (36) and assuming that q⊥  = 0 (i.e., treat-
ing the normal incidence), we arrive at the conventional
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Fresnel formula [15] relating the intensities of the inci-
dent, reflected, and transmitted waves on the interface,

where

The wave vector  defines the propagation of radiation

in the medium. In nonabsorbing media,  = ωn/c is a

real quantity (here, n = n(ω) =  is the refractive

index of the medium). The quantity µ = 1/ , i.e., is
inversely proportional to the refractive index. For an
absorbing medium, the wave vector  becomes com-

plex. The imaginary part of , proportional to the imag-
inary part of permittivity ε", is responsible for the
absorption of an incident wave by the medium atoms
(ε" > 0 at ω > 0). In this case, the field decay in the
material proceeds by an exponential law.

We have treated the part of the kinetic Green’s func-
tion D–+ that corresponds to incident radiation. We will

now dwell on the Green’s function  associated with
spontaneous emission of photons by the medium
atoms. This function may be found from the corre-
sponding Dyson equation,

(38)

Here, Π–+ is the polarization operator describing the
interaction between the photon field and atoms, and DR

and DA are the retarded and advanced Green’s photon
functions, respectively. It follows from the definition of
the retarded and advanced photon functions that

(39)

Therefore, in order to find , we must calculate only
the retarded function DR by solving the corresponding
Dyson equation with the polarization operator ΠR,

(40)

Din
–+ z z',( ) 4 A 2 µ 2

1 µ+ 2
-----------------eikz ikz'– ,=

µ
kz

0

k
----, k

ω2

c2
------ε ε'

ω
c
---- i

2
---ω

c
---- ε''

ε'
-------.+≈= =

k

k

ε'

ε'

k

k

Dsp
–+

Dsp
–+ z3 z q⊥ ω, , ,( ) DR z3 z1 q⊥ ω, , ,( )

0

∞

∫–=

× Π–+ z1 z2 q⊥ ω, , ,( )DA z2 z q⊥ ω, , ,( )dz1dz2.

DA z2 z q⊥ ω, , ,( ) D
R* z z2 q⊥ ω, , ,( ).=

Dsp
–+

d2

dz2
------- ω2

c2
------ q⊥

2–+ DR z z',( ) 4π"δ z z'–( )=

+ 4π" ΠR z z2,( )DR z2 z',( ) z2.d

0

∞

∫

JOURNAL OF EXPERIMENTAL
We proceed as in the case of the function  (i.e., use
the even extension to the negative semiaxis z < 0) to
find, from Eq. (40),

(41)

The derivative D'R(+0, z') may also be obtained from the
joining of solutions obtained in the regions z < 0 and
z > 0, on the interface at z = 0. In view of the definition
of the retarded Green’s function DR and kinetic Green’s
function D–+, we have, from Eq. (31),

(42)

Similarly to the function c(z') in Eq. (31), the function
s(z') may be found from the solution of the correspond-
ing Dyson equation for the variable z'. Proceeding from
Eqs. (41), (42), and (34) and the boundary conditions
for DR, we arrive at the final expression for the retarded
Green’s photon function,

(43)

(44)

Note that the integrals over k appearing in formulas
(34)–(36), (41), and (44) do not reduce to the contribu-
tion of residues of integrands, because ε(ω, k, q⊥ ) has
discontinuities in the k plane. It is with this fact that the
effect of selective narrowing of reflection for Doppler-
broadened lines [14] is formally associated.

We will turn back to Eq. (23) and treat in more detail
the polarization operator Π–+ defining the intensity of
spontaneous sources in the medium. In the case of res-
onance, the contribution by the vertex functions to Π–+

becomes insignificant, and the one-loop approximation
may be used,

(45)

One can see that the polarization operator Π–+ is pro-
portional to the density of excited particles and contains
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the description of the effects of nonlocality (in the
absence of nonlocality, Π–+ ∝  δ(z – z'). In deriving
Eq. (45), we ignored the decay effects, which is true in
the case of a fairly slow variation of the concentration
of excited particles with time.

According to Eqs. (7) and (8), the Green’s function

of excited particles  has the form

where (z, k, k⊥ , εp) is the effective population of the

excited level (see Eq. (8)). We assume that (z, k, k⊥ ,
εp) varies little over distances on the order of the ther-
mal de Broglie wavelength of a particle, λT. Then, we

derive from Eq. (7) that the Green’s function  of
excited particles may be written as

(46)

Here,

is the integral density of excited particles and f(k, k⊥ ) is
the function of distribution of atoms in the ground state
over the quantum numbers k and k⊥ . We substitute
Eq. (45) into (46) and ignore the broadening of the
ground state of an atom (i.e., use the appropriate func-
tion for an unperturbed atom instead of the Green’s

function  to find the explicit form of the polariza-
tion operator Π–+

(47)

Here, (z') is the total effective population of the
upper level (see Eq. (8)), and the factor exp(–(ω –
ω0)/T) is necessary for generalizing the theory to the
case of broad spectral lines γ2 * T. The function K(z, z')
has the form

(48)
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where

is the function of distribution of atoms over the quan-
tum numbers p. When the boundary effects are ignored,
the kernel K(z, z'|z3) appearing on the right-hand side of
the equation for spectral density (22) changes to K(z, z')
from Eq. (47). So, we substitute Eqs. (47), (43), and
(39) into (38) to obtain the explicit form of the Green’s

photon function  corresponding to spontaneous
photon sources in the medium, 

(49)

where

(50)

(51)

The ϕ function from Eq. (51) is a Voigt line profile
including both the homogeneous broadening due to
spontaneous decay and collisions with broadening par-
ticles and the inhomogeneous Doppler broadening. We
have obtained parts of the kinetic Green’s photon func-
tion corresponding to incident flow (see Eq. (35)) and
to emitted photons (see Eq. (49)). On summing both
these contributions, one can find the total radiation flux
in the medium. In fact, the solution to the equation of
resonance radiation transfer has been found. Given the
spectral density, these results describe fully the propa-
gation of resonance radiation in the material, as well as
the spectral intensity of radiation of a heated semi-infi-
nite medium. We will study in more detail the problem
on radiation of a heated half-space in the case when the
medium is in thermodynamic equilibrium. In this case,

the effective populations  and  are independent
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of coordinates and satisfy the Boltzmann relations. In
addition, the relation

(52)

is valid, where n(ω) denotes the Planck (equilibrium)
occupation numbers of photons. We substitute Eq. (43)
into (49) in view of (52) to derive the expression for the
spectral Poynting vector on the interface for an equilib-
rium medium,

(53)

Relation (53) defines the spectral distribution of the
intensity of radiation emitted by a heated half-space
and is, in fact, Kirchhoff’s law reflecting the energy bal-
ance on the interface. The quantity R denotes the
energy coefficient of reflection of electromagnetic
waves from the interface. The first term in Eq. (53)
describes the radiation flux incident on the boundary
from the medium, and the second term corresponds to
photons reflected from the boundary. It follows from
Eq. (53) that the reflection of waves from the boundary
becomes significant for fairly dense media, i.e., media
with a refractive index appreciably different from unity
(|ε' – 1| ~ 1).

Assuming R = 0, we will obtain from Eq. (53) half
the Planck flux. This is due to the fact that we have
treated only one of two possible directions of polariza-
tion of the electromagnetic field.

4. GENERALIZED BIBERMAN–HOLSTEIN 
EQUATION

As was already mentioned, the problem on propaga-
tion of incident radiation in a medium and the problem
on radiation of a heated half-space reduce to finding the
spectral density of excited atoms. We will demonstrate
that the spectral density satisfies the integral equation
(Biberman–Holstein equation). For this purpose, we
will treat the case where no incident radiation is

present, assuming  = 0. In this case, the radiation
flux in the medium will be caused by spontaneous

sources alone; i.e., D–+ = .

For simplicity, we will assume the case of narrow

spectral lines. Then, the effective populations  coin-
cide with the true populations of atomic states. We sub-
stitute Eq. (49) into (22) to derive the integral equation
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Ñ2

ω ω0–
T

----------------– 
 exp
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for N2(z), the total concentration of excited particles at
depth z,

(54)

(55)

We introduced here the quantity Q(z) characterizing the
rate of incoherent pumping to an excited level due to
recombination or inelastic collisions. In addition, the
presence of a boundary leads to the emergence of an
additional contribution to the concentration of excited
particles due to atomic particles reflected from the
boundary of the medium, as well as to the effective
increase in the field intensity in the medium with due
regard for the electromagnetic waves reflected from the
boundary. The function K
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) is defined by
expression (23).

Equation (54) describes the nonlocal radiation
transfer in the medium due to resonance radiation and
is, in fact, a generalization of the well-known Biber-
man–Holstein equation including the spatial dispersion
of permittivity and the presence of a boundary. The
solution of this equation helps us find an exact solution
to the problem on the transfer of resonance waves
through the medium. In what follows, we will demon-
strate that, if the spatial dispersion and boundary effects
are ignored, the obtained result transforms to the Biber-
man equation.

We will treat the simplest case, when the excited
level is short-lived and the particle velocity is not too
high. Then the kernel 
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') is simplified apprecia-
bly and takes the form of Eq. (24) everywhere except
for a narrow region at the boundary with a width on the
order of the thermal de Broglie wavelength. In this
case, the respective expression for the total kernel

 (see Eq. (55)) may be written as
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where

(57)

and the quantities ε and ϕ are defined by relations (30)
and (51), respectively.

In the case when the spatial dispersion is insignifi-
cant (for example, at a fairly high atom density), one
can ignore the wave vector dependence of permittivity
(with the same accuracy, we can assume that the func-
tion ϕ depends on frequency alone). In view of Eqs. (56)
and (57), the integral equation (54) is written as

(58)

Here, a2(ω) is the spectral line profile and

is the absorption coefficient of resonance radiation at
frequency ω.

The first term in the braces from Eq. (58) corre-
sponds to the classical expression for the kernel in the
Biberman–Holstein theory. It defines the absorption of
a resonance photon emitted by an excited atom at point z1.

In deriving Eq. (58), we ignored the thermal transfer
of excitations. Therefore, the last two terms define the
effect of the boundary of the medium on the concentra-
tion of excited atoms. The second term in the braces
describes the additional contribution to the population
of an excited level due to waves reflected from the sur-
face of the medium. One can see in Eq. (58) that, at
depth z, these waves are attenuated in proportion to the
factor exp(–kωtz). Accordingly, the third term charac-
terizes the interference of resonance waves reflected
from the boundary and waves emitted by excited atoms
at point z1. Note that, when we ignore the effect of the
boundary on the concentration of excited particles, we
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directly derive from Eq. (58) the Biberman–Holstein
equation,

(59)

5. NUMERICAL CALCULATION RESULTS

In order to illustrate the above theory, numerical cal-
culations were performed using the resonance line of
sodium atom as an example: the transition 3S1/2–3P3/2
(λ = 5889.95 Å). The probability of spontaneous emis-
sion for this line is (see, for example, [16]) A = 6.25 ×
107 s–1. The collisional width in the case being treated
is associated with the resonance mechanism of excita-
tion transfer and is γcoll = 4.78 × 10–7N, where N [cm–3]
is the concentration of sodium atoms, and γcoll is given
in s–1. The temperature dependence of the concentra-
tion N of sodium vapor was determined using the data
of Nesmeyanov [17]. The collisional width exceeds the
radiation width starting from the values of the concen-
tration N ≈ 1014 cm–3 (at temperatures T > 550 K). The
total homogeneous width associated with radiative
decay and collisions exceeds the inhomogeneous Dop-
pler width starting from the values of the temperature
T ≈750 K.

We have previously obtained the explicit form of the
integral equation for the concentration of excited particles,

In the general case, the equation kernel (z, z1) is
defined by relation (55). Here, we will restrict ourselves
to treating a simpler kernel, when (z, z1) is defined by
relations (56) and (57). Therefore, we will ignore the
contribution by the particles reflected from the medium
boundary to the population of the upper level at a depth
greater than the thermal de Broglie wavelength.

We will investigate the spectral dependence of the
total kernel (z, z1) (for simplicity, we assume that
q⊥  = 0), which has the form

(60)
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where A and B are defined by expressions (57) with
q⊥  = 0. We will further consider the pattern of variation
of the spectral composition of the kernel in view of spa-
tial dispersion. For this purpose, one must compare the
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Fig. 1. The integral equation kernel  as a function
of detuning of frequency from resonance, ∆ = ω – ω0, for
the values of depth z = 0 and z' = 10λ. The solid curve indi-
cates the calculation by formula (60) in view of spatial dis-
persion and effects of the boundaries, the dashed curve indi-
cates the calculation by Biberman’s formula (59) in view of
spatial dispersion, and the dotted curve indicates the calcu-
lation by Biberman’s formula (59) disregarding spatial dis-
persion. Each curve is normalized to the respective quantity
K0 (the value of the kernel  at ω = ω0); plotted on the
abscissa is the ratio of frequency detuning to the Doppler
width ∆D = ω0νT/c; T = 600 (a), 800 (b), and 900 K (c).
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results obtained using the suggested theory with the
results obtained using the Biberman–Holstein theory.

We will assume that the density of excited particles
is low, N2 ! N1 ~ N (N is the total number of particles).
In this case, the expression for the permittivity of a res-
onant medium will be written as (it is assumed that the
lines are rather narrow compared with the temperature
of the broadening particles, so that the effective popu-
lations coincide with total populations of atomic levels)

It is most natural to select the Maxwell distribution func-
tion as the atomic velocity distribution function f(v).

Given in Fig. 1 is the spectral dependences of the
function  obtained for different temperatures (the
quantity K0 is the respective value at the line center).
We treat the temperature T = 600, 800, and 900 K, at
which the quantity g (the homogeneous-to-Doppler
width ratio ω0νT/c) assumes the values of 0.06, 5.37,
and 23.8, respectively.

Note that the case of most interest is that when the
distance between the emitting and absorbing atoms
becomes longer than or on the order of the resonance
photon free path (this is possible in the case of optically
dense media). For this purpose, we will treat the case of
z = 0 and z' = 10λ (λ = 2πc/ω0 is the resonance photon
wavelength). It follows from the figure that the main
contribution is made in this case by the line tails, i.e., by
the high values of detuning ∆ @ γ (in the case of very
high values of detuning, the asymptotic form change to
the Lorentz asymptotic form). This is reflective of the
fact that, in optically dense media, the main fraction of
energy is transferred in the line wings, and the energy
transfer at the line center may be ignored (the effect of
trapping of resonance radiation).

At a fairly low temperature (T = 600 K), the Doppler
width exceeds considerably the homogeneous width. In
this case, the main contribution to the spectral line
broadening is made by Doppler broadening; therefore,
the spatial dispersion of permittivity must be taken into
account. Figure 1a gives the spectral dependence of the
kernel  at temperature T = 600 K (g = 0.06). One can
see from the figure that, when the thermal motion of
atoms is ignored, the Biberman curve has a characteris-
tic form of a doublet with a minimum at the line center.
The width of the peaks and of the dip at the line center
is defined by the homogeneous width at a given temper-
ature. As a result of inclusion of spatial dispersion in the
Biberman kernel, this dependence ceases to be so pro-
nounced due to the Doppler “smearing” of the peaks.
The peak width comes to be on the order of the Doppler
width. The results obtained using the foregoing theory
(solid curve) demonstrate that the inclusion of the
boundary leads to a narrowing of the Doppler-broad-
ened curve. The line profile contains an additional con-
tribution with a width on the order of the homogeneous
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width (one can see in the figure that the width of the dip
at the center is on the order of the homogeneous width).
Schuurmans [14] demonstrated that this contribution is
due to the spatial dispersion of permittivity (caused by
the thermal motion of atoms) and exists at g & 1. From
the mathematical standpoint, this means that, as a result
of spatial dispersion, the integrand in Eqs. (56) and (57)
has, in addition to poles, lines of discontinuity which
must be included in the integration in the complex
plane k. According to Schuurmans [14], it is the inte-
grals along the discontinuity line that give the narrow
additional contribution to the spectral dependence of
the kernel. Therefore, the integrals given by Eqs. (56)
and (57), generally speaking, cannot be simply reduced
to residues of the integrand. Note further that the results
obtained using the theory referred to above and the Bib-
erman theory start to agree only in very distant wings of
the spectral line. In the case of high values of detuning,
∆ @ max(∆D, γ), we have ε'  1, ε''  0; i.e., the
dielectric properties of the medium in the case of high
values of detuning become unimportant, and the results
obtained in view of the dispersion agree with those
obtained disregarding the dispersion.

As the temperature increases, the homogeneous line
width increases due to the increase in the broadening
collision frequency. At temperature T = 800 K, the
homogeneous width is on the order of the Doppler
width, and one must take the spatial dispersion into
account. Figure 1b gives the spectral dependence of the
kernel  at temperature T = 800 K (g = 5.37). As in
the case with T = 600 K, it follows from the curve given
in this figure that the inclusion of the boundaries and of
the spatial dispersion brings about a narrowing of the
Doppler-broadened profile. At the same time, one can
see in the figure that the depth of the dip at the line cen-
ter is defined by the homogeneous width (at a given
temperature).

Figure 1c gives the dependence of  obtained at
temperature T = 900 K. One can see in the figure that
the results obtained using the theory treated by us and
the Biberman–Holstein theory agree in almost the
entire range of values of detuning ∆. Indeed, at high
temperatures (T = 900 K), the homogeneous width
exceeds considerably the Doppler width, and the spatial
dispersion of permittivity may be ignored. Therefore,
the results obtained using the present theory and the
Biberman–Holstein theory must coincide. This is sup-
ported by the dependences given above.

6. CONCLUSION

We have derived integral equations for the concen-
tration of excited atoms, which generalize the well-
known Biberman–Holstein equations to the case where
the spatial dispersion and the importance of the
medium boundaries are taken into account. An example
of a half-space is used to demonstrate that the kernel of
the integral equation is defined by the retarded and

Kω
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advanced Green’s functions for photons, which allow
for the dielectric properties of the resonance medium
and for the reflection of radiation from the half-space
boundary. Numerical calculations have been performed
of the spectral part of the kernel of the integral equation
for the concentration of excited particles at different
temperatures using sodium vapor as an example and
allowing for all of the above-identified effects. It has
been demonstrated that, in the temperature range of T &
800 K, the effects of the type of narrowing of Doppler pro-
files upon reflection from the interface produce an appre-
ciable influence on the dependence of the spectral compo-
nent of the kernel differing from the respective expression
in the classical Biberman–Holstein equation.
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Abstract—By means of spatially resolved high-resolution X-ray spectroscopy, we have investigated the gen-
eration of fast ions at various laser installations with different flux densities and laser wavelengths. It is demon-
strated that the fast ion generation in laser-produced plasma can be achieved for a very low level of the averaged
laser intensity on the target. The time-of-flight mass spectrometry ion diagnostics and X-ray spectrographs give
very close results for the energy distribution of the thermal ion component. For higher energies, however, we
found significant differences: the spatially resolved high-resolution spectrographs expose the presence of
suprathermal ions, while the time-of-flight method does not. Suprathermal ion energies Eion plotted as a func-
tion of the qλ2 parameter show a large scatter far above the experimental errors. The cause of these large scatters
is attributed to a strong nonuniformity of the laser intensity distribution in the focal spot. The analysis by means
of hydrodynamics and spectral simulations show that the X-ray emission spectrum is a complex convolution
from different parts of the plasma with strongly different electron density and temperature. It is shown that the
highly resolved Li-like satellite spectrum near Heα contains significant distortions even for very low hot elec-
tron fractions. Non-Maxwellian spectroscopy allows determination of both the hot electron fraction and the
bulk electron temperature. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interaction of intense laser radiation with matter
leads to the creation of plasma in which the absorbed
energy is not completely thermalized. This gives rise to
the familiar phenomena of fast ion emission, whose
understanding is important for both laser fusion and
development of fast ion sources [1–3].

Until now, the main part of the experimental infor-
mation on the fast ion production in laser plasmas was
obtained with the help of mass spectrometry methods
(see, e.g., review [4] and the special issue [5]). These
methods are based on the direct observation of ions
over large distances, usually performed by charged par-
ticle detectors (e.g., Faraday detector) several meters

¶This article was submitted by the authors in English.
1063-7761/02/9401- $22.00 © 20060
away from the place of plasma creation. In this case, the
results strongly depend on the recombination processes
that occur during the plasma expansion to large dis-
tances. Thus, although these methods are suitable to
investigate laser-produced plasmas as possible sources
of multicharged fast ions for some practical applica-
tions, they have serious limitations for studies of the
fast ion production mechanisms inside the laser-pro-
duced plasma. More suitable for this purpose are indi-
rect spectroscopic methods—the observation of pho-
tons emitted by fast ions rather than the direct observa-
tion of fast ions. At present, such spectroscopic
methods are not widely used for the investigations of
fast ions. There are only several papers where these
methods have been used in nanosecond [6–8] and fem-
tosecond [9, 10] laser-produced plasmas.
002 MAIK “Nauka/Interperiodica”
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Fig. 1. The X-ray images of fluorine (a) and densitograms (b) obtained from the teflon plasma radiation for different observation
directions: (1) parallel to the target surface, (2) at the angle φb = 45° to the target surface (φlas = 0). The XeCl laser pulse parameters

are λlas = 0.308 µm, τlas = 12 ns, Elas = 2 J, q = 6 × 1012 W/cm2, and  = 6 × 1011 W µm2/cm2.qλ las
2

In this paper, we present results for the fast ion pro-
duction in plasmas created by nanosecond laser pulses
with different wavelengths (0.308, 0.8, 1.06, and
10.6 µm). The results of X-ray spectroscopic methods

show that the parameter q  (where q is the laser flux
density and λlas is the laser wavelength) is important for
the processes of fast ion generation, but it does not
completely determine these processes. It is also shown
that, using laser radiation with the wavelength ~1 µm,
it is possible to generate multicharged ions with MeV
energy (so-called MeV ions) even for moderate values
of laser flux density at about 1013 W/cm2.

2. EXPERIMENTAL SETUP

The experimental investigations were carried out at
four different research centers: GSI-Darmstadt and the
Technical University of Darmstadt (Germany), Frascati
(Italy), Saclay (France), and TRINITI (Russia). At GSI,
the experiments were carried out at the nhelix-laser
installation (nanosecond high-energy laser for heavy-
ion experiments). nhelix is a Nd-glass/Nd-YAG laser
(λlas = 1.06 µm) with a pulse duration of 15 ns and
energy up to 100 J. The present experiments, however,
were performed with an energy of 17 J. The laser radi-
ation is focused with a plane-convex lens (diameter
100 mm, focal length f = 130 mm) onto a solid teflon
target (CF2). With a spot size of about 500 µm, we
obtain a flux density of about 1012 W/cm2 onto the tar-
get and an extremely extended plasma source where the
radiation emission of the He-like ions extends up to

λ las
2
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1.5 cm [8]. In order to obtain different laser fluxes onto
the target, the distance between the lens and the target
was changed.

In the Saclay laser center, the experiments were per-
formed with the UHI10, a Ti:sapphire laser with λ =
0.8 µm It was designed to generate 10-TW ultrashort
pulses with a 10-Hz repetition rate. In the experiments
reported here, the oscillator was switched off and the
amplified pulse was provided by a regenerative ampli-
fier used as a free-running Q-switched nanosecond
oscillator. The pulse had a nearly Gaussian temporal
profile with the full width at half maximum equal to
8 ns. The available energy in the experimental chamber
was between 0.6 and 0.8 J. The 80-mm-diameter
p-polarized laser beam was focused with an f/2.35 off-
axis parabolic mirror onto a CF2 target with the inci-
dence angle φlas = 45° (Fig. 1). The 1/e2 focal spot
radius was between 10 to 20 µm, giving a flux density
of about 5 × 1013 W/cm2.

The excimer laser HERCULES used in Frascati is a
discharge pumped XeCl system (λlas = 0.308 µm)
designed and built by ENEA, INN FIS Department of
Frascati [11]. The capacitor bank of HERCULES is
directly connected to the laser electrodes. Just before
the rising voltage reaches the self-breakdown level, an
X-ray pulse is injected into the Ne-based XeCl gas mix-
ture providing an avalanche process. This phototrigger-
ing technique allows circumventing the typical prob-
lem of reliable switching in the main discharge circuit.
In this way, HERCULES can be easily operated in the
repetition rate mode without limitations because of
SICS      Vol. 94      No. 1      2002
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both the high charge transfer (~30 mC) and the high
current rate (~1011 A/s). In the present experiments, we
used an injected PBUR (positive branch unstable reso-
nator) configuration, which means that HERCULES
was used as a laser amplifier amplifying the beam gen-
erated by a commercial laser (Spectra Physics) with a
10-ns pulse duration. The energy thus obtained was 2 J
per pulse with a 10-Hz repetition rate. The laser beam
was focused by a triplet lens (with the f number F = 3)
to a spot with a diameter of 50–80 µm onto a plane solid
target, giving an intensity of about 6 × 1012 W/cm2.

In TRINITI, the experiments were carried out using
the TIR-1 facility, which was thoroughly described in
[12]. The TIR-1 scheme can be used to generate CO2
laser pulses with stable parameters and duration that
can be varied in the range from 2 to 30 ns. Gas-phase
saturable absorbers eliminated the feedback between
the target under study and the laser system. The wave
front of the radiation was shaped by spatial filters and
matched irises. The output beam with a diameter of
200 mm had a divergence close to the diffraction limit.
The laser system characteristics ensured good repeat-
ability and optimization of the laser pulse parameters
from the start. In the experiments described below, the
laser source was a single-mode CO2 oscillator built
around the amplifier module of the TIR-1 facility with
an active volume of ~17 liters. The radiation was pro-
duced in an unstable resonator having a length of 2.7 m
and amplification equal to ~3. The energy of the output
beam with a diameter of 150 mm was about 60 J, and
the laser pulse duration was 20 ns. The laser radiation is
focused with a lens (with the focal length f = 600 mm)
onto a solid magnesium target with a spot diameter of
about 500 µm. In this case, the laser flux density was
about 1012 W/cm2. In order to obtain different laser
fluxes onto the target, the distance between the lens and
the target was varied.

In all experiments, soft X-ray radiation was simulta-
neously recorded by two spectrographs with spheri-
cally bent mica crystals. The angle between the target
normal and the laser beam was φlas, and the angle
between the target surface and the central ray of the sec-
ond (b) spectrograph was φb. The curvature radii of the
crystals were 150 and 100 mm. Both spectrographs
were installed in the FSSR-2D scheme [13, 14]. This
allowed observing spectra with spectral resolution
λ/δλ = 3000–5000 and spatial resolution δx = 25–45 µm.
In the TRINITI experiments, we simultaneously used
both X-ray spectroscopy and traditional mass spec-
trometry (described in detail in [12]) diagnostics.

The experiments at GSI, Frascati, and Saclay were
performed with flat solid teflon targets. In these cases,
spectrographs were tuned to the spectral region of
13.7–17 Å containing the resonance line Lyα of H-like
F IX and the lines Heα, Heβ, and Heγ of He-like F VIII.
In the TRINITI experiments, flat solid magnesium tar-
gets were used. In this case, we observed (in the second
order of crystal reflection) the spectral regions of 9.0–
JOURNAL OF EXPERIMENTAL
9.5 and 7.8–8.6 Å, which contain the Lyα line of
Mg XII and the Heα and Heβ lines of Mg XI. Examples
of the spectrograms and densitograms obtained are pre-
sented in Figs. 1 and 2.

3. RESULTS AND DISCUSSION

The main idea to use X-ray spectroscopy for the
observation of fast ions is as follows. Suppose that a
plasma expansion occurs predominantly in the direc-
tion normal to the target surface (the z axis). The
observed emission spectra then depend on the angle
between the direction of observation and the z axis
because of the Doppler effect. Using several spectro-
graphs simultaneously, it is possible to derive the direc-
tion of the predominant plasma expansion and its
velocity distribution from the observed spectra. For
example, if the plasma is cylindrically symmetric (the
usual case for the interaction of a laser pulse with a flat
target), the use of two spectrographs already provides
the necessary information. In this case, spectrograph
(a) observes the plasma in the direction perpendicular
to the z axis and the line profiles are expected to be
essentially symmetric. The width of the lines (apart
from the random walk characterized by the ion temper-
ature Ti) is determined by the transverse component
Vx, y of the plasma expansion velocity,

(1)

For the second spectrograph (b), the situation is differ-
ent: the plasma motion is not symmetric, because the
plasma moves only in the positive z direction. The spec-
tral line is then shifted to shorter wavelengths by

(2)

Because different ions can have different expansion
velocities, the observed spectra show corresponding
wings on the blue side of all spectral lines. The line pro-
file is strongly asymmetric. Using the relation

(3)

it is possible to determine the number N(Vz) of fast ions
for a given velocity, i.e., the velocity distribution. We
note that usually Vz @ Vx, y, and consequently, the asym-
metry observed by spectrograph (b) must be much
more pronounced than the broadening observed by
spectrograph (a). Exceptions from the symmetrical line
shape for spectrograph (a) can be caused by radiation
transport effects in transverse differentially moving (x-,
y-direction) plasmas. Differential plasma motion
results in a relative shift of the emission and absorption
profiles, and the emission profiles are asymmetric [2].

The first X-ray spectroscopic observations of fast
ions in a laser-produced plasma from solid targets were
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Fig. 2. The X-ray images of fluorine (a) and densitograms (b) obtained from the teflon plasma radiation for different observation
directions: (1) parallel to the target surface, (2) at the angle φb = 90° to the target surface (φlas = 45°). The Ti:sapphire laser pulse

parameters are λlas = 0.8 µm, τlas = 8 ns, Elas = 0.7 J, q = 5 × 1013 W/cm2, and  = 3 × 1013 W µm2/cm2.qλ las
2

made many years ago [6, 7]. The spectral distribution of
Doppler-shifted radiation from fast He-like ions was
detected using flat or cylindrically bent crystal spectro-
graphs. This technique has the serious drawback of spa-
tial integration (we note that, although the introduction
of slits in principle also provides a spatial resolution
with flat crystals, the intensity drops considerably and
the signal-to-noise ratio becomes insufficient for a
detailed analysis of spectra). However, the use of focus-
ing spectrographs with spherically bent crystals allows
obtaining a high spatial resolution while maintaining
high luminosity. The high spectral and spatial resolu-
tion, as well as the high luminosity, allows measure-
ments for low intensity sources (and less intense lines,
which are extremely important for diagnostic purposes)
with higher spectral line densities.

The spectrograms shown in Figs. 1 and 2 were
obtained using the various laser facilities described
above. Figure 1 presents the plasma production by a rel-
atively low-intensity and short-wavelength laser pulse.
Figure 1a shows the images, and Fig. 1b shows the cor-
responding traces (spectra). The lines from highly
charged fluorine detected by the spectrometer aligned
perpendicularly to the plasma expansion axis, i.e.,
along the target surface (images 1 in Fig. 1a), exhibit a
symmetrical shape. The width of the Heα and Heβ lines
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are approximately equal to each other, indicating that
Stark broadening does not dominate in the line wings.
Images 2 in Fig. 1a correspond to aligning the spec-
trograph at the angle φb = 45° to the target surface.
More details are seen from the spectra obtained by trac-
ing the corresponding images (Fig. 1b, spectra 1 and 2).
The width of the lines is determined by the Doppler
broadening due to the expansion at thermal velocities
and by the plasma optical thickness.

In contrast, the results obtained for the teflon plasma
using the GSI and Saclay laser facilities (see, e.g.,
Fig. 2) show that the line shape detected in the direction
at 55° to the target surface exhibits a strong asymmetry
in the blue wings (e.g., for each line Heα, Heβ, Heγ,
Lyα). This asymmetry occurs because of the expansion
dynamics and corresponds to large Doppler shifts
(which cannot be explained by thermal expansion) and
manifests the existence of a considerable amount of fast
ions. The arrow near the curve in Fig. 2b shows the
value of the Doppler shift that corresponds to a relative
velocity of 5 × 108 cm/s. We note that, although the
laser wavelengths and pulse durations were rather sim-
ilar, the pulse energies and focusing conditions were
quite different.

Similar results were obtained for a Mg plasma pro-
duced by a long-wavelength CO2-laser pulse for the
SICS      Vol. 94      No. 1      2002
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observation angle φb = 45°. In this case, the line asym-
metry is pronounced for the optically thick resonance
line (Heα1) and for the spectrally resolved optically thin
intercombination line (Heα2).

The extraction of the average energy of fast ions
from the measured spectra is based on the analysis of
the blue wings of the spectral lines. Because the motion
of ions is directed towards the spectrograph, the radia-
tion emitted by fast ions must not pass through dense
absorbing plasma regions. We now estimate possible
absorption effects. The frequency-dependent optical
thickness is given by

(4)

where λji is the wavelength for the transition j  i, gj

and gi are the statistical weights of the upper/lower
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Fig. 3. Ion energy distributions derived from the relative
intensities in the blue wings of the spectral lines of Heα of
F VIII and Heα of Mg XI. The smooth lines represent the
Maxwell distribution fits: (a) Saclay experiment, (b) GSI
experiment, (c) TRINITI experiment.
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states, Aji is the spontaneous transition probability, ni is
the absorbing ground state, φij is the line profile, and L
is the relevant plasma size. The line center optical
thickness τ0 can be estimated from

(5)

where λ/∆λ is the relative line width. For a Doppler
profile, the relative line width is given by

(6)

For ne = 1021 cm–3 (the critical density of the Nd-glass
laser), kTi = 200 eV, M = 24, and Leff = 100 µm, we
obtain τ0 ≈ 40 for the He-like resonance line Heα1 of Mg
(A = 1.95 × 1013 s–1) and τ0 ≈ 0.1 for the intercombina-
tion line Heα2 (A = 3.40 × 1010 s–1). The optical thick-
ness of the intercombination line can therefore be
neglected even in the line center, and for the resonance
line, the optical thickness is negligible about one
FWHM from the line center. Therefore, the spectral
dependence of the intensities is directly related to the
ion velocity distribution function.

Figure 3 shows the relative intensity in the blue
wings of the Heβ line of fluorine versus the Doppler
shift measured in terms of the ion energy (directed
motion). The smooth lines represent Maxwell distribu-
tion fits (with the temperature determined by the angle
to the abscissa axis in logarithmic plots). The results
show that the experimental uncertainty is sufficiently
small to determine the average energy values for the
fast ions. It should be noted that the difference between
the Saclay (Fig. 3a) and GSI (Fig. 3b) results can be
caused by two factors. The first is the higher laser flux
density for the UHI10 facility. The second factor can be
related to a resonance absorption of the p-polarized
laser pulse [15–17] occurring when the angle φlas ≠ 0.
Figure 3c shows the results for the TIR-1 CO2-laser
installation.

Figure 4a presents the velocity distribution of He-
like ions measured in the TRINITI experiment (CO2
Laser) by a mass spectrometer. Figure 4b shows the
mass spectroscopic measurements together with the
line spectroscopic results obtained from the He-like Mg
lines. The low-velocity part is obtained from the opti-
cally thin He-like intercombination line

whereas the high-velocity part originates from the He-
like resonance line

It can be seen that, for velocities below 1.4 × 108 cm/s
(with 1.4 × 108 cm/s corresponding to an energy of
245 keV for Mg ions), the agreement is very good;
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however, only the line spectroscopic measurements
access the higher velocity region.

Figure 5 presents the fast ion average energy per

nucleon as a function of the parameter q  as was pro-
posed in [4]. In Fig. 5, we compare the measurements
carried out for flat targets and ns-laser pulses [6, 7, 18–
25]; we note, however, that the measurements indicated
with filled squares were obtained for 35 ps-pulses [15,
17]. The results of the present mass spectrometry mea-
surements (open triangles in Fig. 5) are also shown. The
various results show a large scattering (by orders of
magnitude) of the data for both the X-ray observations
and the mass spectroscopy measurements. This indi-

cates that the parameter q  may not be the only
important parameter in the description of the fast ion
generation.

We note that the mass-spectrometry and X-ray spec-
troscopy methods deal with different registration areas.
In the first method, the ions are detected in a region far
from the laser pulse and the interaction zone, while, in
the second method, the interaction region involves var-
ious processes related to the formation of spontaneous
X-ray radiation. One can therefore expect a more com-
plicated scaling behavior of the average energy with the
laser pulse parameters than that presented in [4]. At the
same time, direct measurements from the interaction
region provide more information for the understanding
of the fast ion generation mechanisms.

4. SIMULATION TECHNIQUES

To reveal the physical phenomena responsible for
different features of the measured X-ray spectra, we
performed numerical simulations using two computer
codes. The first is the one-dimensional GIDRA-1 code
for the simulation of plasma hydrodynamics and popu-
lation kinetics. Although real plasma movement is evi-
dently not one-dimensional, this approach allows a
good estimate of the average plasma parameters to be
obtained. The numerical model is described in detail in
[26]. Plasma hydrodynamics is described in the one-
fluid two-temperature approximation. The model
includes electron heat conduction with heat flux limita-
tion, electron–ion temperature relaxation, and heating
by laser light taken into account semiempirically. The
electron energy balance equation also includes terms
corresponding to the ionization and excitation of
plasma ions and to the energy loss due to the plasma
radiation. The energy losses due to the radiation in
spectral lines and in the continuum are self-consistently
taken into account along with the hydrodynamics and
population kinetics. The interaction of laser light with
plasma is modeled in the geometrical optics approxi-
mation by the ray-tracing technique. The ideal gas
equation of state was used to couple the system of equa-
tions.

λ las
2

λ las
2
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The total number of atomic and ionic states for Mg
used in the simulation was 77. The atomic model equa-
tions were solved self-consistently along with the
hydrodynamics equations, which also allowed correct
treatment of the transient effects in population kinetics.
Temperature-dependent rates are calculated under the
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Fig. 5. The average fast ion energy Eion [keV/amu] vs.

. Open symbols are the results obtained in the present

work: circles are the X-ray spectroscopy measurements; the
triangle is the mass spectrometry measurement. The filled
circle is the X-ray spectroscopic result from [6], filled trian-
gles denote the data in [15–24], and filled squares are the
results in [15, 17].
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assumption that the temperature distribution of electron
energies obtained from hydrodynamics is given by the
Maxwell distribution function. The effect of the line
radiation re-absorption was described within the pho-
ton escape probability approach. The values of escape
probabilities were calculated in the Sobolev approxi-
mation [27]. The drawback of the GIDRA-1 code for
the purpose of X-ray spectra analysis is that doubly
excited states are absent in the atomic model, and no
satellite lines are therefore present in the generated
spectrum.

On the other hand, another code package exploited
in the course of the present work, MARIA [28], solves
multilevel multi-ion stage atomic model equations with
two important features: the correct account for a large
number of doubly excited levels and a non-Maxwellian
electron energy distribution function. MARIA solves
the completely transient set of nonlinear population
kinetics equations

(7)

where nj are the population densities, N is the maximum
number (dynamic) of levels (ground, singly excited,
and multiexcited states of various ion stages), and the W
matrix contains all the collision radiative processes and
radiation transport effects. If a matrix element physi-
cally does not exist, its value is zero. More details
related to the applications to spectra interpretation are
described elsewhere [2, 28–31].

We have confined ourselves to the representation of
non-Maxwellian distribution functions with the lowest
possible number of temperature parameters T that
allowed a reasonable description of the experimental
spectra to be achieved. This was checked by means of
three T parameters and a monoenergetic beam by
changing the respective relative fractions and energies.
The non-Maxwellian electron distribution function can
then be characterized by the hot electron fraction

(8)

The non-Maxwellian rate coefficients are given by

(9)

where the brackets indicate the integration of the cross
section with the distribution function (assumed to be
Maxwellian with the parameter T),

(10)
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For three-body recombination, the corresponding
expression is more complicated because it then
becomes necessary to simultaneously introduce two
distribution functions and the double differential ion-
ization cross section

(12)

where

(13)

If k = l, the integral in Eq. (13) can be reduced to an
integral involving the usual ionization cross section
σI(E) (physically, this is equivalent to the application of
the detailed balance principle). For k ≠ l the integrals
are calculated numerically using the double differential

ionization cross section .

Because we use the MARIA code to generate the
detailed X-ray spectra for a given plasma density, tem-
perature, and electron distribution function, we first
investigated the validity of this approach. The two
important features of laser plasma are the strong non-
uniformity of plasma parameters and the essentially
transient ionization and recombination processes
occurring when plasma flows from the cold nearly
solid-state density region through the hot critical zone
to the rare and rather cold “corona.” We restrict our
treatment to one-dimensional effects (however, spheri-
cal geometry was chosen).

One type of simulation was made for a Nd laser at
the irradiation conditions corresponding to the experi-
ments at the nhelix-laser facility at GSI. The target was
assumed to be solid magnesium. The pulse shape was
Gaussian with a FWHM of 15 ns, and the peak of the
pulse was shifted by 7.5 ns from the start of the simula-
tion (therefore, the simulation time t = 7.5 ns corre-
sponds to the peak of laser power). The peak power
density of a pulse with a Gaussian temporal shape irra-
diating a solid target was set as Plas = 1012 W/cm2, λ =
1.06 µm. The initial radius of the target was set to R0 =
750 µm.

Figure 6 presents the results of this simulation for a
(Lagrangian) plasma particle that passes the point
where Te reaches the maximum at the time of the laser
power peak. Figure 6a shows the relative abundances of
Li-like and He-like Mg as a function of time for a
Lagrangian particle. It is clearly seen that Li-like ions
are present only for a few nanoseconds. Thereafter, the
He-like ion population becomes dominant very soon.
After the electron density becomes several times
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smaller than the critical density, the ionization state of
the plasma becomes “frozen” because the characteristic
recombination time is much longer than the character-
istic time of rarefaction. For the same Lagrangian par-
ticle, we also calculated the relative abundances
obtained under the assumption that all populations are
in a steady state. The steady-state He-like ion popula-
tion becomes significantly different from the transient
one only after 15 ns when the laser pulse is already
over. Figure 6b shows the evolution of the electron den-
sity Ne and the electron temperature Te. In Fig. 6c, the
radiation power loss per unit volume is plotted for the
resonance line of He-like Mg ions. The peak of the radi-
ation power loss occurs slightly earlier than the peak of
the electron temperature. This is because the electron
density is rapidly decreasing.

Another type of GIDRA-1 simulation corresponds
to irradiation conditions at the TIR-1 laser facility at
TRINITI. The initial radius was set to R0 = 200 µm. The
optical system of the TIR-1 laser was designed to pro-
vide a power density close to 1014 W/cm2. However, it
turned out to be impossible to obtain high-quality spec-
tra because of film overexposure (probably caused by
fast electrons hitting the crystal and resulting in X-ray
radiation from the mica surface). To avoid this effect,
the target was displaced from the optimal focus posi-
tion. This led to a smaller laser power density and sig-
nificantly decreased the amount of fast electrons. In
accordance with estimates, the peak intensity in the
simulation was set to P0 = 2 × 1012 W/cm2. The pulse
shape was Gaussian with the full width at half maxi-
mum equal to 26 ns, and the peak of the pulse was
shifted by 13 ns from the start of the simulation. Simu-
lations were performed in spherical geometry, provid-
ing a qualitatively correct distribution of plasma param-
eters even for the one-beam illumination geometry of a
plane target (provided the initial diameter of the target
in the simulation is about 1.5–2 times larger than the
focal spot size). The initial radius of the spherical target
for the simulation was 400 µm, while the focal spot size
in the experiment was estimated to be 400–600 µm.

Simulation data are shown in Fig. 7. Because the
peak of the electron temperature is higher than it was in
the Nd-glass laser simulation, stationary populations
deviate from the transient values at the temperature
peak moments. The strongest effect is observed for the
H-like ions: the relative abundance is less than 1% in
the transient simulation, but two orders of magnitude
larger in the steady-state simulation. The intensity peak
of the He-like resonance line occurs before the temper-
ature peaks (deviations of stationary populations from
the transient ones are small). Based on these results, we
expect that X-ray spectra produced by the MARIA
code are reasonably accurate for the plasma regions
close to the target surface.
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5. INVESTIGATION OF HOT ELECTRONS

Theoretical models [4, 15, 17] relate the generation
of fast ions to the appearance of hot electrons. Although
various mechanisms are under discussion (e.g., [4, 15,
17, 32, 33]), a satisfactory understanding is still miss-
ing. In this situation, the experimental investigation of
fast ions and hot electrons inside the plasma volume
where the laser energy is absorbed is mandatory for the
understanding and benchmarking of theoretical mod-
els. X-ray spectroscopy set up with a high spectral and
spatial resolution proves to be an excellent tool for
these purposes. Moreover, the development of models
for the interpretation of non-Maxwellian emission
spectra have shown that the radiation from autoionizing
states (the so-called dielectronic satellite spectra) plays
a significant role [8, 28–30, 34–40]. However, the reg-
istration of these important satellite transitions requires
very high luminosity spectrographs. Spherically bent
mica crystals [13, 14] have been proved to simulta-
neously satisfy all the requirements that are necessary
in practical applications: high spectral resolution
(λ/δλ ≈ 5.000), high spatial resolution (δx ≈ 10 µm),
high luminosity, and a sufficiently large spectral inter-
val for the registration of various line emissions.
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Figure 8a shows the spectral interval from the
He-like intercombination line up to the Li-like kj satel-
lites (see, e.g., [41] for the satellite designation) from
the nhelix-Nd-glass/YAG-laser at GSI. The spectrum
corresponds to a distance of about 1.9 mm from the
center of the laser spot. For these areas, the laser flux
density is much lower than for the central spot, and we
do not expect a considerable amount of hot electrons
and fast ions. This spectrum is therefore suitable to
experimentally cross-checking the spectra simulations
of multiexcited ions under well-defined conditions. The
theoretical modeling (thick line in Fig. 8a) fits the
experiment in all spectral details with the following
parameters: the electron temperature kTe = 200 eV, the
electron density ne = 2 × 1020 cm–3, and the photon path
length Leff = 500 µm. The essential point here consists
in the simultaneous match of the intercombination line
Heα2, the qr, a-d, and jk satellites that strongly depend
on non-Maxwellian electrons because of their different
excitation channels and excitation mechanisms [8, 28,
36]. It can be clearly seen that a good modeling is
obtained without the introduction of hot electrons (we
note that the slight discrepancies in wavelengths are not
caused by inaccurate atomic data but rather by a nonlin-
ear experimental wavelength scale). It is also worth
paying attention to the good interpretation near the
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intercombination line Heα2, first, we note that no blue
wings are observed, and second, we also obtained a
good agreement of the satellite structure near the posi-
tions indicated with “nm” and “st.” In fact, the corre-
sponding intensities are caused by the emission not
only from the Li-like 1s2l2l' satellites nm/st but also
from higher order satellites originating from the
1s2l2nl' configurations. Extended atomic data calcula-
tions and subsequent spectra simulations have shown
that these higher order satellites accumulate not only
near the He-like resonance line Heα1, but also near the
He-like intercombination line Heα2 [30].

An entirely different situation is realized for
CO2-laser-produced plasmas. Figure 8b shows the
emission spectrum obtained from the TRINITI installa-
tion. Numerous parameter variations showed that the
experimental situation could not be fitted by simula-
tions with a Maxwellian electron energy distribution
function. We have also investigated highly transient
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Fig. 8. (a) Experimental spectrum from the ns-nhelix laser
at GSI. A good match between the theory (thick curve) and
the experiment (thin curve) is obtained for the plasma
parameters kTe = 200 eV, ne = 2 × 1020 cm–3, Leff = 500 µm;
(b) experimental spectrum from He- and Li-like Mg ions
obtained from the TRINITI CO2 laser at 320 µm from the
central spot. A good agreement could only be obtained assum-
ing a non-Maxwellian energy distribution function. The simu-
lation parameters are kTcold = 60 eV, ne = 1 × 1019 cm–3,

kThot = 1 keV, fhot = 4 × 10–7, and Leff = 50 µm.
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phenomena that in principle could lead to enhanced
qr-satellite emission due to an ionization abundance,
which is lacking beyond the electron temperature.
However, taking the transient numerical data for a
Lagrangian cell from gas-dynamical calculations (see
Fig. 7), we find that, in the early stage of plasma devel-
opment (corresponding to spectra near the target sur-
face to which we confine our present discussion), these
effects are small. The main reason for this is the high
electron density in the first few nanoseconds after the
target ablation driving the confinement parameter (neτ)
to large values. The detailed non-Maxwellian investiga-
tion of the data with the MARIA simulations showed
that Tcold is rather low, about 60 eV, while the tempera-
ture of hot electrons Thot is about 1 keV (or higher). The
reasons are as follows. Usually the hot electron compo-
nent not only increases inner-shell excitation rates (and
therefore raises the corresponding lines, e.g., the qr sat-
ellites), but also drives the ionic population to higher
charge states through increased ionization rates. In
quasi-stationary plasmas with the confinement parame-
ters

(14)

the increased inner-shell excitation rates and depleted
charge states can partly cancel. However, if the bulk
electron temperature is very low, we meet with an
entirely different regime: the hot electrons are not able
to shift the ionic charge states to significantly higher
values, and increased inner-shell excitation rates are
directly visible through the increased emission of the
corresponding lines. In this regime, the spectroscopic
diagnostic is extremely sensitive to the hot electron
fraction and the low values of fhot about 10–6 lead to sig-
nificant changes in the spectral distribution. This is
shown in Fig. 9 for the intercombination line Heα2 and
qr and kj satellites. Two important observations can be
made from this figure: first, the critical value of kTcold,
where the influence of the hot electrons starts to be
essential, is different for different lines (see arrows);
second, the “bumps” for curves (b) are also very differ-
ent. In particular, the bump for the qr satellites at
kTcold ≈ 50 eV is so strongly pronounced that it even
leads to a local maximum (the increased inner-shell
excitation rates strongly dominate over the shifted bal-
ance—see the discussion above). Therefore, the qr sat-
ellites rise in intensity relative to the other emission
lines. The different threshold values (in particular,
those for the kj satellites) have the following origin: the
dielectronic capture energy and the excitation energy
for the intercombination line are different. The small
bump for the kj satellites results from the dielectronic
recombination caused by the distribution function with
the parameter kThot. These overall characteristics are
caused by the excitation from different channels
through different mechanisms: the inner-shell excita-
tion for the qr satellites, collisional excitation from the
He-like ground state for the intercombination line, and

neτ 1012 cm–3 s,≥
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dielectronic capture into the He-like ground state for
the kj satellites. Precisely these different channels make
the selected emission lines suitable for the hot electron
investigation.

Figure 8b also shows the theoretical fitting of the
experimental spectrum. The theoretical spectrum was
obtained for kTcold = 60 eV, ne = 1019 cm–3, kThot = 1 keV,
fhot = 4 × 10–7, and Leff = 500 µm. It should be noted that
it was impossible to describe the relative structure of
satellite lines without introducing hot electrons. On the
other hand, it is impossible to explain the blue wing of
the Heα2 line without the introduction of fast ions. The
relative structure of satellite intensities is not very sen-
sitive to the hot electron energy if Thot is comparable to
or larger than the threshold value (because the rate
coefficients are mainly inversely proportional to the
square root of Thot and do not show a strong exponential
dependence). Therefore, Thot may be significantly
higher.

We next consider spatial nonuniformity of the plas-
mas. In Fig. 10, we present the spatial distribution of
plasma parameters (at the time of the peak laser inten-
sity) from the simulation of the CO2-laser-produced
plasma. Figure 10a shows the electron density as a
function of radius together with the population densi-
ties of Li-like and He-like Mg. It is easily seen that Li-
like ions are present only in a rather narrow spatial
region of about 20 µm, while the He-like Mg ions
occupy an order-of-magnitude wider region. Figure 10b
shows the distribution of the electron temperature and
Fig. 10c presents the distribution of the radiation power
density (per unit volume) for the He-like resonance (R)
and intercombination (I) lines. Two things are impor-
tant to emphasize. First, resonance and intercombina-
tion lines of He-like magnesium have a peak of the radi-
ation power at an electron density much higher than
critical. This explains the rather large X-ray emission
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intensity fixed in experiments. Second, the electron
temperature at the point where the peak of these two
lines occurs is about 200 eV, which is significantly
higher than the temperature at the point where the peak
of Li-like Mg is situated (60 eV). From these results,
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we conclude that the emission of the He-like resonance
line and associated satellite lines originate from two
distinct regions in which both the temperature and elec-
tron density are quite different. The fact that the reso-
nance line and the satellites are radiated from different
spatial regions is valid for lower and higher laser radia-
tion intensities (we performed simulations in the range
of intensities P0 = 5 × 1011–1 × 1014 W/cm2) as well as
for plasma parameters corresponding to the peak of the
Li-like ion abundance. The peak of the He-like reso-
nance line is found to be very conservative against
changes of the laser power density.

The presence of blue wings at the He-like resonance
and intercombination lines and the absence of this fea-
ture on satellites also indicate that satellites are radiated
from narrow regions where the velocity does not
change significantly. On the other hand, the resonance
line is radiated from a rather wide region where the
plasma is strongly accelerated.

Taking the plasma nonuniformity into account, we
treat the effective electron temperature obtained by
comparing the intensities of both He-like and Li-like
transitions as, probably, strongly underestimated in
comparison to the peak electron temperature. Because
we revealed that the He-like resonance line is insensi-
tive to the density fraction of hot electrons (for f ≤ 10–5

at least) at electron temperatures above Te = 120 eV, the
value of f obtained by the spectrum fitting is probably
also underestimated. Nevertheless, the sensitivity of the
method to the density of hot electrons is surprisingly
high.

6. NONUNIFORM LASER INTENSITY 
DISTRIBUTION WITHIN THE FOCAL SPOT

One of the important features of our experiments
was a strong nonuniformity of the laser intensity distri-
bution within the focal spot at the nhelix and TIR-1
lasers. At the nhelix laser facility, this distribution was
measured. Results presented in Fig. 11 demonstrate the
complex structure of the laser intensity distribution.

Under the conditions of experiments at the TIR-1
laser facility, the intensity pattern was also not uniform
(due to the shifts of targets away from the optimal
focus). The two-dimensional laser intensity distribution
was obtained from numerical simulation performed
with the FOCUS code for the real experimental geom-
etry. FOCUS is a two-dimensional diffraction code for
the calculation of light intensity distribution in complex
optical schemes that can include an arbitrary number of
apertures of arbitrary shape and plane or spherical mir-
rors. The concentric gap appears due to the shadow of
the target and the support pivot placed into the converg-
ing light beam. Diffraction of the laser beam on the tar-
get introduces additional peaks. In our view, these quite
nonuniform intensity distribution patterns provoke fila-
mentation of laser light, which leads to the creation of
locally overheated regions. This effect in the CO2-laser-
AND THEORETICAL PHYSICS      Vol. 94      No. 1      2002
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produced plasma was, probably, first reported in [42],
where the filamentation effect was observed above an
incident intensity of ~2 × 1012 W/cm2, a value signifi-
cantly lower than that in our experiments at TIR-1. At
the same time, our pinhole images produced by several
subsequent shots (from four to ten) clearly demonstrate
several “plasma jets” (see arrows in Fig. 12), which,
would be averaged on the film in the case of stochastic
filamentation. The example of an X-ray pinhole image
is shown in Fig. 12. This qualitatively proves the pre-
sumed correlation of the laser intensity nonuniformity
and the appearance of laser light filamentation, which,
as a consequence, leads to an “easier” generation of fast
ions and electrons. This might be a way to control the
fast particle production, but in the present work, we did
not aim at any optimizations.

Our experiments demonstrate that the generation of
fast electrons and ions can be achieved at very low lev-
els of laser intensity compared to that reached at femto-
second lasers [43, 44] (qλ2 > 1018 W µm2/cm2). As
Fig. 5 indicates, fast ion energy shows no clear correla-
tion with the qλ2 parameter. This is in line with the
observation of the fast ion generation in the CO2-laser-
produced plasma, which was significantly less efficient
than when we studied plasmas created by lasers in the
visible wavelength range (while one would expect the
opposite due to much lower critical electron density).

7. CONCLUSIONS

We have studied the fast ion and hot electron pro-
duction at various different laser installations at GSI-
Darmstadt (Germany), Saclay (France), Frascati
(Italy), and TRINITI (Russia) for Nd-glass, Ti-sap-
phire, XeCl, and CO2 lasers by means of high-resolu-
tion X-ray spectroscopic methods and ion time-of-
flight measurements. The spectroscopic approach pro-
vides information about the plasma particles even
inside the plasma volume. Experimentally further
advantageous is the fact that the analysis is based on a
unique footing, namely, on the investigation of a highly
resolved spectral interval containing numerous X-ray
line transitions of target ions from states with various
charges.

Fast ion distributions have been characterized
through Doppler-shifted line wings of spatially
resolved X-ray spectra originating from highly charged
target ions inside the plasma volume. For laser intensi-
ties qλ2 < 1014 W µm2/cm2, a large scattering (by orders
of magnitude) of fast ion energies has been obtained.
These observations are presumably caused by inhomo-
geneous intensity distributions over the laser spot,
which have been identified with measurements and
two-dimensional diffraction calculations. These scat-
ters might be advantageous for a simple creation of
MeV-energy ions with sufficiently low laser intensities:
in fact, MeV-energy ions for relatively low intensities
qλ2 < 1013 W µm2/cm2 have been observed.
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MHD and non-Maxwellian spectroscopy have been
used to characterize plasmas containing non-Max-
wellian particles. Methods were developed to deter-
mine the electron bulk temperature and the hot electron
fraction with a sensitivity down to about 10–5 (com-
pared to the electron bulk). These methods are based on
the detailed analysis of the spectral distribution of the
radiation emission of multiexcited target ions near the
target surface.
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Abstract—The heating of clusters by femtosecond laser pulses is studied theoretically and experimentally.
Both the formation of a cluster target and the results of experimental studies of the cluster plasma by the meth-
ods of X-ray emission spectroscopy are considered. A numerical model of cluster formation in a supersonic gas
jet is proposed. It is shown that detailed studies of two-phase gas-dynamic processes in a nozzle forming the jet
give the spatial distributions of all parameters required for the correct calculation of the cluster heating by short
laser pulses. Calculations of nozzles of different configurations show that in a number of cases an almost homo-
geneous cluster target can be formed, whereas in other cases the distributions of parameters prove to be not only
inhomogeneous but also even nonmonotonic. A simple physical model of the plasma production by a femto-
second laser pulse and a picosecond prepulse is proposed. It is shown that a comparison of X-ray spectra with
detailed calculations of the ion kinetics makes it possible to determine the main parameters of the plasma being
produced. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Studies of the interaction of high-power ultrashort
(femtosecond) laser pulses with solid-state and gas tar-
gets have become especially important in the recent
years. On the one hand, such studies yield information
on the fundamental properties of matter under extreme
conditions (see, for example, [1–12]), and, on the other
hand, they allow one to use new approaches for solving
a number of applied problems, such as the initiation of
nuclear reactions, the acceleration of heavy particles,
and the creation of a bright X-ray emission source for
medical, biological, and lithographic studies (see, for
example, [1, 2, 11, 13]).

It is obvious that the properties of the plasma pro-
duced by an ultrashort laser pulse should depend first of
all on the aggregate state of the target material. Using,
for example, solid-state or cluster targets, an ultrahigh-
density hot plasma with a temperature of several hun-
dred electronvolts can be produced. Because of the high
density of the plasma, its ionization occurs mainly due
to electron–ion collisions. For example, the authors of
papers [9, 14, 15] produced multiply charged Ar XVII
and Kr XXVII ions by irradiating cluster targets by
ultrashort laser pulses with the power density qlas =
1063-7761/02/9401- $22.00 © 20073
1017–1018 W/cm2. The production of such ions due to
tunnel ionization would be possible only at much
greater (by several orders of magnitude) intensities of
laser pulses.

In the opposite case of low-density gas targets, the
efficiency of target heating by laser pulses is substan-
tially lower, and the temperature of a comparatively
low-density plasma being produced will be only several
tens of electronvolts (see, for example, [16]). In this
case, the ionization state of the plasma will be deter-
mined by multiphoton or tunnel ionization.

However, as the first experiments with solid targets
have shown, there exists another very important param-
eter determining the nature of the interaction of
ultrashort laser pulses with matter, namely, the contrast
of the laser pulse, i.e., the ratio of the laser radiation
power at the maximum of the femtosecond pulse to the
prepulse power. In particular, it was found that the
ultrahigh-density plasma could be formed only using
pulses with a very high contrast (~1010), when the heat-
ing radiation flux density in the prepulse is insufficient
for producing a preplasma and the main-pulse energy is
absorbed directly in a solid (see, for example, [17–21]).
002 MAIK “Nauka/Interperiodica”



 

74

        

SKOBELEV 

 

et al

 

.

                                                                                       
The character of the interaction of a femtosecond
pulse with cluster targets should depend on its contrast
even in a greater extent than for solid targets. Recall
that cluster targets represent the gas containing clusters,
i.e., large conglomerates of atoms or molecules, which
are produced during the escape of cooled gas through a
high-pressure nozzle. The size Lcl of clusters and the
number Ncl of particles in them are determined by the gas
being used and by the values of its parameters (tempera-
ture, density), as well as by the nozzle construction, and
achieve Lcl ≈ 100–1000 Å and Ncl ≈ 104–106 atom/clus-
ter, the density of particles in the cluster being compa-
rable with the density of a solid (see, for example,
reviews [1, 22]). In this case, the situation proves to be
even more complicated than in the case of solid targets,
and two new parameters, the laser prepulse duration
τprepulse and the cluster size, acquire a crucial role in the
interaction physics. Indeed, if the intensity of the
femtosecond pulse is high enough (experiments are
usually performed at the radiation flux density qlas ≈
1017–1018 W/cm2), then, even for sufficiently high con-
trasts of about 104–105 (which are typical for femto-
second lasers), the flux density in the prepulse is
1013–1014 W/cm2 and is quite sufficient for the destruc-
tion of the cluster and the production of the preplasma
with the electron temperature Te of the order of
100−300 eV. Due to the expansion of such cluster
plasma for the time

(1)

(where Zn, and mi are the charge and mass of the ion and
Ncr is the critical density for the heating laser), its elec-
tron density becomes smaller than the critical one [1].
This means that, if the prepulse duration satisfies the
condition

(2)

then the main femtosecond pulse will interact not with
clusters but with the low-density plasma, and the char-
acter of the interaction will be in fact the same as upon
heating of gas targets (a weak absorption of laser radi-
ation and the almost complete absence of collision ion-
ization).

It follows from (1) that, for typical values kTe ~ 100 eV,
Ncr ~ 1021 cm–3, and Lcl ~ 100–1000 Å,  has a
value on the order of 1–10 ps, and condition (2) was ful-
filled with a large margin in earlier experiments with
the nanosecond prepulse [1]. In paper [15], the case of
a comparatively short prepulse with τprepulse ≈ 
has been studied for the first time, when density regions
efficiently absorbing the main pulse remain in the clus-
ter preplasma after the prepulse termination.

It is rather difficult to control the laser prepulse
duration under real experimental conditions. For this
reason, different cases of the interaction of femtosec-

τexpansion Lcl

mi

ZnkTe

-------------- 
 

1/2

1023/Ncr( )1/3∼

τprepulse @ τexpansion,

τexpansion

τexpansion
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ond pulses with clusters can be much more easily real-
ized by varying the average size Lcl of the cluster or
changing the laser contrast, which in fact determines
the preplasma temperature Te. In any case, to construct
an adequate model of the interaction of a laser pulse
with clusters, one should know the initial state of the
target, i.e., at least the average size of clusters in the gas
flow and the distance between them. In papers devoted
to the study of the interaction of laser radiation with
clusters, the main attention was paid, as a rule, to the
behavior of clusters irradiated by laser pulses, whereas
the process of cluster formation itself was not investi-
gated. The parameters of clusters were commonly esti-
mated using the empirical theory developed by Hagena
[23–25] and special experiments related to Rayleigh
scattering [1]. Such approaches do not involve a
detailed consideration of processes proceeding in the
gas flow, and, therefore, they permit only qualitative
estimates of the conditions of cluster formation and
rather rough estimates of the average size of clusters
and of their concentration. The parameters obtained in
this way are related to the gas flow as a whole, whereas
information on their spatial and time distributions can-
not be obtained. At the same time, such information is
necessary both for the solution of the fundamental
problem of numerical simulation of laser heating of
cluster targets and for some possible practical applica-
tions (for example, the building of an X-ray laser),
which require the production of a sufficiently homoge-
neous plasma of a large extension along one of the spa-
tial coordinates. Such data can be obtained by simulat-
ing gas-dynamic processes proceeding in a gas jet.

In this paper, we consider the process of formation
of a cluster target and the results of experimental stud-
ies of the cluster plasma by the methods of X-ray emis-
sion spectroscopy, which have given so far the main
information on the interaction of ultrashort laser pulses
not only with clusters but also with solid targets and
low-density gas targets. We also propose simple models
for calculating the emission spectrum of the plasma for
different heating conditions.

In Section 2, we consider a numerical model of clus-
ter formation in a supersonic gas jet. It is shown that
detailed studies of two-phase dynamic processes in a
nozzle forming the jet allow one to obtain spatial distri-
butions of all the parameters of clusters, which are
required for the correct calculation of cluster heating by
short laser pulses. The calculations performed for noz-
zles of different configuration show that in a number of
cases an almost homogeneous cluster target can be pro-
duced, whereas in other cases the distributions of
parameters prove to be not only inhomogeneous but
also even nonmonotonic.

In Section 3, we consider the physical model of
plasma production in the regime τprepulse ~ . It is
shown that a comparison of X-ray spectra with detailed
calculations of the ion kinetics makes it possible to

τexpansion
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determine the main parameters of the plasma being pro-
duced.

2. NUMERICAL SIMULATION OF THE PROCESS 
OF CLUSTER FORMATION IN GAS JETS

The methods that have been used so far for estimat-
ing parameters of a cluster jet (semiempirical Hagena
theory [23–25] and measurements of Rayleigh scatter-
ing of weakened laser radiation [1]) give qualitative
estimates of the average size and concentration of clus-
ters. The parameters obtained in this way are related to
the gas flow as a whole, whereas information on their
spatial and time distributions is absent. The data on the
spatial structure of a cluster target can be obtained only
from a detailed study of gas-dynamic and thermody-
namic processes proceeding in gas jets and in nozzles
where the jets are formed. Numerical experiments can
be efficiently used for studying nozzle flows.

Note that, whereas gas-dynamic equations give, as a
rule, the flow pattern that agrees well with the experi-
ment, models of kinetic phase transitions (formation of
clusters) are often not so accurate. Therefore, a compar-
ison of experimental and calculated data for such
parameters as the concentration of clusters and their
average size is also useful from the point of view of the
development and study of phase transition models.

2.1. Mathematical Model of a Gas Jet 
with Formation of Clusters

The methods for calculating supersonic gas flows in
nozzles are described in detail, for example, in [26].
One of the simplest models is the gas-dynamic equa-
tions

(3)

(4)

(5)

(6)

with the boundary conditions of “the absence of flow”

through the nozzle walls and

at the input surface. Here, ρ, v, e, and P are the gas den-
sity, velocity, specific internal energy, and pressure; e0,
P0, and ρ0 are the values of gas parameters in a vessel
from which the gas is delivered to the nozzle; and S is
entropy.

∂ρ
∂t
------ div ρv( )+ 0,=

∂ρv
∂t

--------- div ρv v×( )+ gradP,–=

t∂
∂ ρe

ρv2

2
--------+ 

  div ρv e
v2

2
-----+ 

 
 
 + div Pv( ),–=

P P ρ ε,( )=

v n⋅ 0=

e
P
ρ
--- v2

2
-----+ + e0

P0

ρ0
-----, S P ρ,( )+ S P0 ρ0,( )= =
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Although this model neglects cluster formation, it
can be useful for studying the jet structure (jumps, etc.),
which can play a key role in the formation of the spatial
distribution of clusters. Below, we will consider an
example of such calculations. In addition, this model
can be used as a starting point for the construction of
more complicated models that take into account the for-
mation of clusters.

The formation of clusters can be treated as conden-
sation of the supercooled gas. Although, in principle,
there exist flow regimes in which solid clusters are
formed (for example, such clusters are observed in car-
bon-dioxide jets because carbon dioxide has an
extremely high pressure at the triple point compared to
other gases used), in this paper we restrict ourselves to
the consideration of the liquid-phase formation. There-
fore, the terms a “cluster” and a “drop” become identi-
cal. Because the gas blown into a nozzle does not con-
tain condensation centers (ions, solid particles, etc.),
density fluctuations play the role of condensation
nuclei (spontaneous condensation).

Spontaneous condensation occurs in vapor turbines
for appropriate parameters, and it has been investigated
in detail in many papers (see [26–29] and references
therein). The general picture of the nozzle flow with
spontaneous condensation was obtained using calcula-
tions and experimental methods. Because the gas is
expanded adiabatically in the nozzle flow, it saturates in
some section when the gas parameters at the nozzle
entrance are chosen appropriately. However, because
condensation nuclei are absent, the isoentropic expan-
sion continues for some time and the gas becomes
supercooled. As the gas supercooling rises, the effi-
ciency of nucleus formation increases due to density
fluctuations, and at some point, where the number of
condensation centers becomes large enough, finely
divided moisture precipitates abruptly (condensation
jump occurs). The gas parameters become close to
those of the saturation line. Therefore, there exists only
a rather thin layer where drops are formed. Down-
stream, only the growth of the drops occurs, the gas
expanding virtually along the saturation line.

The most general approach to the simulation of
flows with spontaneous condensation is based on the
introduction of the distribution function f(r, x, t) of
drops over their radii and the addition of the kinetic
equation

(7)

(where dr/dt is the growth rate of drops and IΣ is the
number of newly produced drops) to the system of
equations (3)–(5). It is assumed that the drops are so
small that they are immobile relative to the gas.
Because the curved surface of a small drop provides an
additional pressure 2σ/r (σ is the surface tension coef-
ficient and r is the drop radius), thereby decreasing the
work required for extracting a molecule from a drop, a

∂f
∂t
----- div vf( )

r∂
∂

f
dr
dt
----- 

 + + IΣ=
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small drop can be in equilibrium or evaporate even
being surrounded by the supercooled gas. Therefore,
for the specified parameters of the supercooled gas,
there exists the critical radius  at which the drop is in
equilibrium with the gas. Drops with r < are evapo-
rated and disappear, and only the drops with the radius
r >  can grow.

Thus, a condensation nucleus capable of a further
growth can appear only when the fluctuation occurs
resulting in the appearance of a drop of radius r > .
We calculated the frequency of such fluctuations by the
Frenkel–Zel’dovich formula

(8)

where ρl is the liquid-phase density, µ is the molar
mass, NA is Avogadro’s number, and kB is the Boltz-
mann constant. This formula may give large errors for
small critical radii because it uses macroscopic values
of temperature, drop radius, and surface tension coeffi-
cient, which become meaningless for clusters consist-
ing of several tens or hundreds of molecules. There are
other approaches for calculating the rate of nucleus for-
mation (see, for example, [28]).

Because the probability of the drop appearance due
to fluctuations strongly (exponentially) decreases with
increasing the drop radius, whereas drops of radii r <

 are evaporated and disappear and, hence, can be
neglected, we can assume that the drops being formed
have a radius that is close to the critical one, and IΣ =
Iδ(r – ).

The detailed calculations of the number of mole-
cules leaving a drop and precipitated on it give the
expressions for the critical radius

of the drop (where Ps = Ps(T) is the saturation pressure
at temperature T) and for the growth rate

for the drops that already exist (the Hertz–Knudsen for-
mula). To further derive the equations of the model, it is
necessary that dr/dt be independent of r. For this pur-
pose, it is assumed that the temperature Tl of a drop is
equal to the saturation temperature Ts(P) at a given
pressure (this assumption is generally invalid for small
drops). As a result, we have

r*
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To eliminate the additional independent variable r in
equation (7), we introduce, following [30, 27], the
moments of the distribution function

.

By multiplying (7) by rn and integrating over r from
0 to ∞, we obtain the equations for the moments

(9)

(10)

under the condition that dr/dt is independent of r.
Because the third moment is related to the degree of
dryness β of the gas phase in the mixture,

the system of equations (9), (10) for n = 0, … 3,
together with equations (3)–(5) and the equation of
state for the two-phase medium

,

becomes closed.

2.2. Results of Calculations

The models described above were applied to the
nozzles used in our experiments. We considered the
Laval nozzle and a conic nozzle through which argon
was blown with the initial parameters P0 = 20–60 bar
and T0 = 293 K. The results of calculations presented
below are related to some instant of time when the flow
was virtually steady-state.

The results of calculations performed for the Laval
nozzle (P0 = 40 bar) by neglecting cluster formation
show that there exists a rather complicated system of
oblique pressure shocks in the cylindrical part of the
nozzle, their formation being determined exclusively
by geometrical factors (poor profile of the nozzle wall).
The reflection of the first oblique shock (in the left one-
third of the cylindrical part of the nozzle) from the axis
occurs in the Mach regime (reflections of shocks are
described in detail in [31]), resulting in the formation of
a direct pressure shock (the so-called Mach leg). The
intensity of this shock is quite large because the pres-
sure drop in the shock is approximately threefold,
whereas the theoretically possible value is

ρΩn x t,( ) f r x t, ,( )rn r, nd

0

∞

∫ 0 1 2 …, , ,=

∂ρΩ0
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β 1
4
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(γ is the adiabatic index), and the Mach number
decreases from 9 to 0.3. All this strongly decreases the
nozzle efficiency because the Mach number at the noz-
zle exit becomes equal to 3–4 instead of its theoretical
value M = 5, which can be obtained for the given expan-
sion.

For this reason, it is natural to expect that the flow
will also be substantially inhomogeneous when the
cluster formation is taken into account, the driest gas
escaping near the flow axis because this gas has passed
through a strong pressure shock. In addition, the total
number of clusters in such a nozzle can be lower than
expected. The results of calculations for the same noz-
zle taking the cluster formation into account confirm
this conclusion. In this case, the region of dry gas,
beginning from the Mach leg and extending down-
stream to the nozzle, is indeed observed.

Figures 1 and 2 show the distributions of parameters
calculated behind the nozzle edge for a pressure of
40 bar for the Laval and conic nozzles. The depen-
dences on the distance from the jet axis are presented
for the following quantities: the degree dryness β, the
concentration of drops ndrop, the average drop radius 〈r〉 ,
and the average concentration of atoms nmol. One can
see from these figures that the distribution of all the
parameters for the conic nozzle is much more homoge-
neous than for the Laval nozzle. For the conic nozzle,
the parameters only weakly change over the entire jet
cross section (up to r = 2 mm), whereas, in the case of
the Laval nozzle, there exists a region of completely dry
gas at the jet center, while clusters exist only at the
periphery.
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Fig. 1. Distributions of the gas jet parameters at a distance
of 1.5 mm from the Laval nozzle edge.
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3. CLUSTER HEATING 
IN THE τprepulse ~  REGIME

As mentioned above, the physics of interaction of
short laser pulses is substantially determined by the
relation between times τprepulse and . Among the

three possible cases, the case τprepulse @ , when
the main femtosecond pulse almost does not interact
with clusters and the relatively low-temperature plasma
is produced only by the prepulse, is of the least interest.
In the other two cases, the femtosecond pulse effi-
ciently interacts with matter, producing high-energy
electrons in the plasma, and the degree of plasma ion-
ization drastically increases compared to that in the first
case. However, the details of the interaction and the
plasma parameters produced in these cases strongly
differ from each other and should be considered sepa-
rately. At present, the case τprepulse ~  is the most
interesting because it is very difficult to obtain the con-
dition τprepulse !  in experiments and such
experiments are scarce so far. Here, we will consider
the physical model of the plasma production in the
τprepulse ~  regime and will demonstrate the pos-
sibility of application of X-ray spectroscopy for its
diagnostics. The dependences of the plasma parameters
on the laser contrast, the pulse duration, and the cluster
size require separate detailed studies.

The experimental studies were performed using a
800-nm 10-TW Ti : Al2O3 sapphire crystal laser of the
UHI10 type (Saclay, France). The laser beam was
focused on a cluster target by an off-axis parabolic mir-
ror, the laser beam diameter in the focal plane being
approximately 25 µm. The main laser pulse had a dura-

τexpansion

τexpansion

τexpansion

τexpansion

τexpansion

τexpansion

r, mm

ndrop, 1011 cm–3

nmol, 1018 cm–3〈r〉 , 10–3 µm

0.750

0.746

0.740

0.734

1.2 mm
1.8 mm

8

6

4

2

0

5

4

3

2

1

0 1 2 30 1 2 3

26.0

25.6

25.2

24.8

24.4

24.0

Fig. 2. Distributions of the gas jet parameters at distances of
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tion of 60 fs and an energy of about 0.6 J, providing the
power density on the target of about 1018 W/cm2. The
laser prepulse duration was about 1 ps. Because the
contrast was approximately 105, the power density in
the prepulse was of the order of 1013 W/cm2.

The argon cluster target was produced upon adia-
batic expansion of the gas in vacuum through a pulsed
conic high-pressure nozzle (the input and output diam-
eters of the nozzle were 1 and 8 mm, respectively, and
its length was 20 mm).

The plasma diagnostics was performed by the X-ray
spectroscopy methods. Two X-ray spectrographs with
spherical mica crystals (the radius of curvature was
150 mm) were arranged in the FSPR-2D scheme [32–
34] and were tuned to the spectral ranges of 3.9–4.2 Å
and 3.35–3.45 Å containing the Heα and Heβ lines of
the He-like Ar XVII ion. In some experiments, one the
spectrographs was tuned to the range of 3.72–3.82 Å
containing the resonance Lyα line of the H-like Ar
XVIII ion; however, we failed to detect this line. Note
that, upon observation of the 3.9–4.2 Å range in the
fourth order of reflection from the crystal, the shorter
wavelength Heγ line from the fifth reflection order was
also present in the spectrogram.

Figure 3 shows the spectrum obtained in the 3.9–
4.2 Å range. For comparison, analogous spectra are also
presented which were obtained earlier upon heating an
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Fig. 3. Emission spectra of the argon plasma produced on
different plasma setups: (a) nanosecond laser plasma [35];
(b) femtosecond laser plasma [(1) this paper, (2) [37]);
(c) plasma focus [36].
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argon target by a nanosecond laser pulse [35] on the
“plasma focus” setup [36] and by a less powerful fem-
tosecond laser [37]. One can clearly see from this figure
that the emission spectra of the femtosecond laser plasma
(Fig. 3b) and of the “plasma focus” (Fig. 3c) are quite
similar and drastically differ from the emission spec-
trum of the nanosecond laser plasma (Fig. 3a). First, in
the cases shown in Figs. 3b and 3c, intense satellite
structures are observed, which are related to the transi-
tions in many-electron argon ions (Be-, B-, and C-like),
whereas, in the case shown in Fig. 3a, only the lines of
He- and Li-like ions are observed. Second, the intensi-
ties of “collision” Li-like q, r, and a–d satellites in the
femtosecond plasma, as in the plasma focus, exceed
those of the “dielectron” satellites k, j, whereas in the
nanosecond plasma the situation is opposite.

Both these differences can be easily explained by
assuming that the ionization state of the plasma corre-
sponds to the electron temperature on the order of 100–
200 eV and the spectra are excited by high-energy elec-
trons (with energies on the order of 5–10 keV). In the
case of the plasma focus, where the plasma temperature
is indeed comparatively low and fast-electron beams
are present, such an assumption seems quite reason-
able, and it was used in [36] to explain the experimental
results. Below, we will show that, when the condition
τprepulse ≤  is fulfilled, a similar situation can
also take place in the femtosecond cluster plasma.

3.1. Model of the Plasma Dynamics

Consider the interaction of an intense femtosecond
laser pulse with argon clusters. Because the laser pulse
contrast in the experiments described above was about
105, the power density of the prepulse (~1012–1013 W/cm2)
was sufficient for the destruction of clusters and pro-
duction of the preplasma with the electron temperature
of several hundred electronvolts. The spatial distribu-
tions of the electron density and temperature in the pre-
plasma are formed during the dispersion of heated clus-
ters. Because the ionization processes occurred in the
clusters that had initially the density of a solid, the time
of collision ionization did not exceed 1 ps for all argon
ions with the number of bound electrons m > 2. This
means that the produced preplasma should contain the
He-, Li-, Be-, B-like, etc., argon ions at concentrations
corresponding to the equilibrium distribution. Note that
the H-like Ar XVIII ions are not produced in fact in the
preplasma, because the ionization rate for the 1s2 shell
by 100- to 200-eV electrons is several orders of magni-
tude lower than the ionization rate for the 1s22l shell.

The main femtosecond pulse will interact with the
inhomogeneous preplasma and its energy will be pre-
dominantly absorbed in the preplasma regions where
the electron density exceeds the critical density. As a
result, the plasma temperature in a small volume
(within some characteristic distance rhot) abruptly
increases up to several thousand electronvolts, whereas

τexpansion
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the plasma temperature in other regions remains low.
Therefore, during the action of the main pulse, hot
points will appear in the plasma. The distance rcold
between these points is approximately equal to the dis-
tance between clusters in the gas jet, and the distance
rhot is of the order of magnitude of the initial cluster
size. It is important that the ionization state of the
plasma remains virtually unchanged during plasma
heating by the main femtosecond pulse because of its
short duration.

After the main-pulse termination, hot electrons
appear in the plasma, whose relative amount is approx-
imately

and their temperature reaches 5–10 keV (see, for exam-
ple, calculations in papers [22, 38]). The thermalization
time of these electrons is a few tens of picoseconds
even in a plasma with the critical density equal to
1021 cm–3, while their mean free path exceeds the dis-
tance between clusters. This means that after the termi-
nation of the femtosecond pulse, hot electrons will also
be present in cold regions of the plasma produced by
the laser prepulse. Therefore, after the main-pulse ter-
mination, the plasma will have, first, low-density (Ncold)
regions with low electron temperature (Tcold) containing
a small amount of hot (Thot) electrons and, second,
higher density regions (with Ne ~ Ncr) in which the frac-
tion of hot electrons will be much higher. It is important
that the ionization state of the plasma will be almost the
same in all regions and will correspond to the electron
temperature Tcold.

Even the simplified model of the plasma dynamics
described above is rather complicated. The emission
spectra of the plasma can be calculated using even a
simpler model, which is based on the above consider-
ations and takes into account the basic features of the
interaction of the laser pulse with clusters, but uses very
simple temporal and spatial distributions of plasma
parameters. Namely, we will consider three stages of
the plasma evolution.

(a) The preplasma stage. The plasma contains dense
regions of size rhot with the electron density Ncr =
1021 cm–3. The distance between the dense regions is
rcold, and the electron density outside the dense regions
is Ncold = 1020 cm–3. The temperature of all plasma is
Tcold. The ionization state of the plasma is stationary
and corresponds to the temperature Tcold. The duration
of this stage is τ1 ~ 1 ps.

(b) Heating by the main pulse. The temperature of
the dense regions increases to Thot. The temperature of
the low-density plasma regions and the ionization state
of all plasma do not change. The duration of this stage
is τlas ! τ1.

(c) The decay stage. Hot electrons generated in
dense regions at the stage (b) are distributed over the

rhot/rcold( )3 10 8– –10 6– ,∼
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entire plasma. The plasma parameters in the dense
regions do not change (Ne = 1021 cm–3, Te = Thot). Out-
side dense regions, the plasma density is 1020 cm–3, the
temperature is Tcold, and a small amount of hot electrons
(rhot/rcold)3 × 1020 cm–3 have the temperature Thot. The
duration of this stage is τ2 ~ τ1 @ τlas.

We used these space–time distributions of the
plasma parameters for simulating its emission spectra.
Note that the calculated spectra depend not only on the
plasma density and temperature but also on the param-
eters τ = τ1/τ2 and β = (rhot/rcold)3. The exact values of
these parameters are unknown. Simple estimates can
give only the order of magnitude of these parameters:

The final values of τ and β were chosen by comparing
the model and experimental spectra.

3.2. Kinetic Calculations

We solved the system of stationary radiative-colli-
sion kinetic equations for a homogeneous plasma with
different values of plasma parameters. Multiply
charged argon ions with the total number of bound elec-
trons m = 1, 2, 3, and 4 were considered. We studied the
atomic configurations of the H-, He-, Li-, and Be-like
ions with principal quantum numbers n < 6, including
autoionization states (25 H-like levels, 59 He-like lev-
els, 334 Li-like levels, and 1188 Be-like levels). The
rates of collision processes were calculated using the
model energy distribution of electrons [39, 40], which
included a hot electronic component. A relatively large
thermalization time for hot electrons allowed us to treat
them as an electron beam with a Gaussian distribution
centered at the energy E0. In calculations, we used the
value E0 = 5 keV. The relative amount of hot electrons
(the quantity f in Figs. 4 and 5) was varied from 0 (sin-
gle-temperature plasma) to 5 × 10–5. The emission
spectra of the plasma were calculated in the spectral
regions of 3.93–4.04 Å and 3.3–3.5 Å, which were
observed in our experiments.

Figure 4 shows the dependence of the emission
spectra of the argon plasma on its density. One can see
that the increase in the electron density up to 1022 cm–3

in the single-temperature plasma (f = 0) does not
change significantly the emission spectrum in the
region of the Heα line and its satellites.

Figure 5 demonstrates the dependence of the emis-
sion spectrum on the electron temperature. One can see
that for f = 0 the spectrum is much more sensitive to the
temperature than to the plasma density. One can also
see that the influence of hot electrons on satellite tran-
sitions drastically decreases with increasing tempera-
ture.

It follows from these results that, when hot electrons
are absent (f = 0), the intensities of the Li-like satellites

τ 1, β 10 8– –10 6– .∼∼
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k and j are much greater than those of satellites q, r,
a−d. The predominance of collision satellites q, r, a–d
in the emission spectra at moderate plasma densities
can be explained only by the presence of hot electrons
(in general, a similar structure of the intensity of Li-sat-
ellites can be observed in a single-temperature ultra-
high-density plasma with Ne > 1023 cm–3, but such an
assumption explains neither the intensity of satellites of
other ions nor the intensity of the intercombination
line).

3.3. Comparison of the Results of Calculation 
with the Experimental Spectrum

We used the above kinetic calculations for simulat-
ing the emission spectra of the plasma observed in our
experiments. Because the experimental data were not
time-resolved and the plasma was inhomogeneous, it
was necessary to calculate the spectra for all regions of
the plasma and then to sum the results obtained for all

Heα1 Heα2

3.94 3.98 4.02
Å

f = 5 × 10–5

f = 0

(a)

(b)In
te

ns
ity

Fig. 4. Emission spectra of the argon plasma with the elec-
tron temperature Te = 190 eV, the electron density Ne = 1020 (a)

and 1022 cm–3 (b), and different fractions of fast electrons
f = 0, 10–5, 2 × 10–5, 3 × 10–5, 4 × 10–5, and 5 × 10–5 in the
spectral range 3.9–4.2 Å.
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instants of time. The spatial and temporal properties of
the plasma were simulated using simple dependences
described above. We used the value Tcold = 190 eV and
Thot = 5 keV.

The results presented in Fig. 6 show that our model
describes the experimental spectra well when the
parameters

are used. A small difference between the experimental
and theoretical spectra is caused by the presence of the
Heγ line of Ar XVIII (λ = 3.1996 Å) in the experimental
spectrum, which is related to the five-order reflection
and was not taken into account in calculations in the
spectral range from 3.93 to 4.04 Å.

The theoretical spectrum shown in Fig. 6 is a sum of
the spectra emitted from different plasma regions at dif-
ferent instants of time. It is interesting to understand
what stage of the plasma evolution gives the main con-
tribution to its total emission. Our calculations showed

τ τ 1/τ2 1, β rhot/rcold( )3 4 10 7–×= = = =
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Fig. 5. Emission spectra of the argon plasma with the elec-
tron density Ne = 1021 cm–3, the electron temperatures Te =
180 (a) and 220 eV (b), and different fractions of fast elec-
trons f = 0, 10–5, 2 × 10–5, 3 × 10–5, 4 × 10–5, and 5 × 10–5

in the spectral region 3.9–4.2 Å.
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that the plasma emission is predominantly related to the
stage c. The preplasma stage proves to be important
only for the Be-like satellites and Li-like “dielectronic”
satellites k, j. It also follows from the calculations that
almost all emission of the He-like and Li-like ions at the
stage c is caused by the most dense plasma regions,
while the low-density plasma makes a noticeable con-
tribution only to the intensities of the Be-like lines and
to the k and j transitions in the Li-like ion.

We used the above model with the same values of
the plasma parameters for calculating the mission spec-
trum in the range of 3.35–3.45 Å, where the Heβ line of
Ar XVII is located. Figure 7 demonstrates good agree-
ment with the experimental spectrum in this spectral
region as well.

Our model shows that only a very small amount of
the H-like Ar XVIII ions can be produced during heat-
ing of clusters under our experimental conditions. This
conclusion is also confirmed by the fact that we have
failed to observe the Lyα line of the H-like Ar XVIII
ion.

Note that a single-temperature stationary kinetic
model is not valid for the case of heating of clusters by
femtosecond laser pulses, and attempts to use it for
diagnostics of such plasma can lead to absolutely incor-
rect results. For example, the single-temperature model
gives the best agreement with the emission spectrum
observed in the region of 3.92–4.00 Å (Heα1, 2 lines and
Li satellites) for Ne = 1021 cm–3 and Te = 550 eV. How-
ever, the agreement between this model and the experi-
mental data is very poor, and the emission spectrum in
the region of the Heβ line calculated for the same
parameters drastically differs from the experimental
spectrum.

3.92

In
te

ns
ity

Å
3.98 4.04

Heα1

Heα2

Heγ

Li-like satellites

Be-like satellites

Fig. 6. Comparison of the emission spectrum of the femto-
second argon-cluster plasma (solid curve) with the model
spectrum (thin curve) in the spectral region containing the
Heα line of the Ar XVII ion. The theoretical spectra are calcu-

lated for Ne = 1021 cm–3, Tcold = 190 eV, and Thot = 5 keV.
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Good agreement between the theoretical and exper-
imental spectra proves the presence of hot electrons in
the cluster plasma produced by the intense femtosec-
ond laser pulse. In general, a comparison of experimen-
tal and model spectra allows one to measure the average
energy of hot electrons. However, the dependence of
the spectrum on the energy of hot electrons is expressed
in terms of the parameter

and to measure Thot, one should measure independently
the ratio (rhot/rcold)3, which gives the relative amount of
hot electrons. Unfortunately, we could not measure this
quantity in our experiments.

Thus, we have shown that the interaction of a high-
intensity femtosecond laser pulse, having a picosecond
prepulse, with argon clusters can be used for producing
a bright X-ray source. At first glance, it may seem that
our result contradicts the conclusion made in paper [1].
However, the prepulse duration in experiments [1] was
several nanoseconds. The clusters were completely
destroyed in this time, and no regions with the critical
density remained in the plasma by the main-pulse
arrival. Under such conditions, the femtosecond pulse
was not absorbed in fact, the plasma was not heated,
and, hence, no X-ray emission was observed. This com-
pletely agrees with the above conclusion about the inef-
ficiency of the plasma production in the τprepulse @

 regime. Our experiments corresponded to the

condition τprepulse ~ . In this case, the prepulse
duration is too long for the production of a homoge-
neous low-density nonabsorbing plasma.

The laser–cluster interaction in the τprepulse ~
 regime provides the production of the plasma

rhot/rcold( )3 –Eexc/Thot( )exp /Thot
1/2,

τexpansion

τexpansion

τexpansion
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Heβ
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3.40 3.42

Fig. 7. Comparison of the emission spectrum of the femto-
second argon-cluster plasma (thin curve) with the model
spectrum (solid curve) in the spectral region containing the
Heβ line of the Ar XVII ion. The theoretical spectra are cal-

culated for Ne = 1021 cm–3, Tcold = 190 eV, and Thot = 5 keV.
SICS      Vol. 94      No. 1      2002



82 SKOBELEV et al.
whose ionization state is determined by the prepulse
properties, while its temperature (or, more exactly, the
characteristic energy) of hot electrons is determined by
the main-pulse intensity. This means that, by varying
the ratio between the intensities of the main pulse and
prepulse, one can rather easily control the degree of the
nonstationary state of the plasma.

Such a plasma is of interest first of all for the prob-
lems of atomic spectroscopy, because it allows the
study of the ion levels that are efficiently populated
upon collisions or ionization of the inner shells of
many-electron highly charged ions. On the other hand,
the plasma with such properties can also find some
practical applications, for example, in the development
of X-ray lasers operating at the transitions in the Ne-
and Ni-like ions, because the conditions that are opti-
mal for producing the high population inversion are
easily realized (see, for example, [41–44]).

4. CONCLUSIONS

We have considered two scopes of the problems that
are relevant to heating of clusters by ultrashort laser
pulses. First, we described a numerical model of the
cluster formation in a supersonic gas jet and showed
that detailed studies of two-phase gas-dynamic pro-
cesses in the nozzle forming the jet allow one to obtain
the spatial distributions of all parameters required for
the correct calculation of the cluster heating by short
laser pulses. The calculations performed for nozzles of
different configurations showed that in some cases a
virtually homogeneous cluster target can be formed,
whereas, in other cases, the distributions prove to be not
only inhomogeneous but even also nonmonotonic. Sec-
ond, we considered the physical model of the plasma
production in the τprepulse ~ τexpansion regime and showed
that a comparison of the X-ray emission spectra with
the detailed calculations of the ion kinetics allows one
to determine the basic parameters of the plasma being
produced. The dependences of the plasma parameters
on the laser contrast, the pulse duration, and the cluster
size require separate studies.
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Abstract—A flat-layered active medium in which two types of layers with different refractive indices alternate
is considered. The thickness of a layer is assumed to be random and large as compared to the wavelength of
propagating radiation. A wave propagating along the normal to the layers in such a medium is exponentially
enhanced over lengths of the order of many layer thicknesses. In contrast to the familiar case of a periodic flat-
layered active medium, waves with any (not necessarily definite resonant) frequency are amplified identically
in a wide frequency range. By way of an example, convective instability of space-charge waves in a flow of
charged particles moving through a randomly layered medium is considered. The predicted effect can be
regarded as an analogue of Anderson’s localization, when increasing solutions rather than exponentially
decreasing ones are selected in view of the activity of the medium. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The equation of a linear oscillator with a varying
eigenfrequency is a basic model for many physical
problems. These can be mechanical oscillators or elec-
tromagnetic oscillatory circuits with parameters vary-
ing in time, or quantum particles in an external poten-
tial, or linear waves propagating in an inhomogeneous
medium. The behavior of the solutions of equations for
a linear oscillator was studied in detail from the physi-
cal and mathematical points of view for various typical
dependences of its eigenfrequency on an independent
variable. The same mathematical result may corre-
spond to different physical phenomena depending on
the physical system for which the oscillator equation is
a model. For this reason and also because of the differ-
ence in the scientific language in different branches of
physics, a result obtained in some field may be
unclaimed in another field.

It so happened that the obvious similarity between
Anderson’s localization (a quantum-mechanical parti-
cle in a random potential) and the parametric instability
of an oscillator with random variations of the eigenfre-
quency has been noted only recently [1], although the
pioneering work of Anderson [2] was published in
1958. It is clear now that the time-independent
Schrödinger equation in the former case is precisely the
equation of a harmonic oscillator and that the quantity
equal to the particle energy minus the potential plays
the role of the square of the eigenfrequency. The equa-
tion for an oscillator with random variations of the
eigenfrequency has two (exponentially increasing and
exponentially attenuating) solutions. The only differ-
ence is that Anderson’s localization problem is formu-
lated in the form of a boundary-value problem, while
parametric instability is described by the initial value
Cauchy problem. In the former case, the exponentially
1063-7761/02/9401- $22.00 © 20008
increasing solution is discarded since it does not satisfy
the boundary conditions (the wave function must be
bounded), while in the latter case, on the contrary, the
exponentially small attenuating solution is disregarded
as compared to the increasing solution. However, from
the mathematical point of view, we are obviously deal-
ing with manifestations of the same effect.

We consider here the propagation of an electromag-
netic wave in a flat-layered active medium composed of
two types of alternating layers with random thick-
nesses. This system can be described by the equation of
an oscillator with random eigenfrequency jumps (see
figure). A similar problem was considered earlier [3, 4]
for an analogous optically passive medium. As a result,
the effect of an exponentially attenuating wave propa-
gating to the bulk of such a medium (i.e., the reflection
of a wave incident on such a medium) was discovered
and a similarity with Anderson’s localization was
noted. In this problem, no exponentially increasing
solutions are observed since these solutions do not obey
the energy conservation principle (the medium is pas-
sive). A similar (from the mathematical point of view)
problem was considered in [5] for an oscillator with an
analogous parametric action. In [5], we studied the
parametric instability of the system and analyzed the
exponentially increasing solutions. However, the for-
mulas for the damping increment [3, 4] and the instabil-
ity increment [5] derived in different ways proved to be
identical, which means that, in these publications, two
different solutions of the same linear equation were
dealt with.

In the present work, we combine the ideas devel-
oped in [3, 4] and in [5]. Indeed, if the medium is active,
the exponentially increasing solutions can exist (the
wave can receive energy from the medium). Various
media with beams may serve as examples of active
002 MAIK “Nauka/Interperiodica”
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media. Problems with periodic inhomogeneities in such
media were considered by many authors (see [6–9] and
the references cited therein), and the existence of
increasing solutions corresponding to attenuating solu-
tions in the case of a passive medium was confirmed. In
periodically heterogeneous media, the exponentially
increasing solutions correspond to parametric reso-
nances of an oscillator; for this reason, only waves with
certain frequencies for which resonance conditions are
satisfied will increase in a periodic layered active
medium. A distinguishing feature of a layered active
medium with random thicknesses is that it amplifies
waves with a wide frequency range and the gain in this
range depends only on the relative refractive indices
and average thickness of the layer. If the ratios of the
refractive indices for different layers are independent of
frequency, incident waves are amplified identically
irrespective of their frequency. Thus, such a medium
can be used as a wideband amplifier or generator.

2. GENERAL MODEL

Let us consider the equation of a classical harmonic
oscillator,

(1)

where primes denote the derivative with respect to an
independent variable ζ. The energy of the system can
be written in the form

(2)

The solution of Eq. (1) for a constant frequency is the
function

(3)

where a and ϕ are the amplitude and phase of the solu-
tion, respectively, defined by the initial conditions of
the problem. Substituting expression (3) into (2), we
obtain

(4)

Let the function w(ζ) have the form presented in the
figure. On the segments where the value of w is con-
stant, the solutions are defined by formula (3) with cor-
responding values of a and ϕ. At instantaneous jumps,
solutions of the form (3) can be joined using the conti-
nuity conditions for f and f '. In this case, the change in
energy (2) as a result of the jump from w = w0 to w = w1
is given by

(5)

f '' w2 ζ( ) f+ 0,=

E
1
2
--- f '2 w2 f 2+( ).=

f a wζ ϕ+( ),cos=

E
1
2
---a2w2.=

E E0–
f 2

2
----- w1

2 w0
2–( ),=
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where E0 is the value of energy before the jump. Using
formulas (3) and (4), we can write expression (5) in the
form

(6)

where ϕ0 is the value of the phase of the solution at the
instant of jump in w. The change in energy as a result of
the reverse jump from w1 to w0 can be written similarly.

Using expression (6) and considering that the
energy of the system does not change for a constant
value of w, we obtain the following expression for the
oscillator energy after 2N jumps:

(7)

where ϕi and  are the phases of solutions (3) at the
instants of jumps in w from w0 to w1 and back, respec-
tively. The value of energy (7) strongly depends on the
phases of the solution at the instants of jumps. If, how-
ever, we consider an ensemble of systems with random
phases or the same system with random jumps in a
parameter over a long interval of time, we can carry out
averaging over phases. (The phases of solutions can be
regarded as random at instants of jumps if the typical
spread in the intervals between jumps is larger than or
of the order of the characteristic period of oscillations
w–1 (strong-disorder approximation [3]).)

It will be proved below that the energy increases
exponentially with N; for this reason, the energy loga-
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Dependence of the eigenfrequency w on the independent
variable ζ in the oscillator equation describing waves in a
randomly layered media. Segments with w = w0 and w = w1
correspond to different types of the layers.
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rithm must be averaged over phases. After the averag-
ing of expression (7) over ϕi and , we obtain

(8)

where we have used the fact that

It can be seen from relation (8) that the energy loga-
rithm averaged over phases increases linearly with N.
Thus, the energy increases approximately exponen-
tially on intervals much larger than the separation
between the jumps:

The increment λ is defined as

(9)

where T = ζ/N is the average period of a cycle of varia-
tion from w = w0 to w = w1 and back. Apart from T,
increment λ depends only on the ratio w1/w0. In the case
of waves in a layered medium, this ratio is determined
by the ratio of refractive indices of the layers.

Among other things, formula (9) describes the atten-
uation of waves in a randomly layered passive medium.
In this case, the quantity λ is the damping decrement or
the inverse localization length. The value of this quan-
tity was determined using other methods in [3, 4]. The
above derivation of formula (9) is in line with the idea
formulated in [5]. An analysis of this formula, the fields
of its application, and the results of numerical simula-
tions can be found in the above-mentioned publica-
tions.

3. EXAMPLE

Let us consider space-charge waves in a flow of
charged particles propagating in a layered medium. A
periodic layered medium and the instability of space-
charge waves in such a medium were investigated in [7,
9]. The initial system of equations is formed by Max-
well’s equations, the continuity equation, and the equa-
tion of motion linearized over small perturbations of

ϕ i'

EN
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the electric field of the space charge, velocity, and num-
ber density of particles:

(10)

Here, x is the coordinate perpendicular to the layers,
along which the particles move (we consider the 1D
case); n0 and v 0 are the unperturbed constant values of
the number density and the velocity of particles, respec-
tively; n and v  are their varying perturbations; e and m
are the charge and mass of a particle, respectively; E is
the electric field strength; and D = ε(x)E is the electric
induction. The permittivity ε(x) is constant and real-
valued in each layer and is a function similar to that
depicted in the figure with permittivity values ε0 and ε1
in alternating layers. In a homogeneous medium,
space-charge waves are characterized by the dispersion

(11)

where ω and k are the frequency and the wave number
of a wave, respectively, and

is the plasma frequency of particles in the beam.

Taking into account the fact that the problem under
investigation is homogeneous in time and the wave
number contains the constant term ω/v 0, we will seek
the solutions of Eqs. (10) in the form

where q(x, t) is any of the variables under investigation.
As a result, system (10) can be reduced to the following
equation:

(12)

The quantities  and  ~  must be continuous
when a wave intersects the boundary between two lay-
ers [7]. Obviously, Eq. (12) is completely analogous to
Eq. (1) considered above. Consequently (cf. relation (9)),
the solutions to Eq. (12) with a wavelength smaller than
or of the order of indeterminacy in the layer thickness
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exhibit an exponential increase (or damping) with the
increment

(13)

where L is the average period of the layered system (the
ratio of its thickness to the number of pairs of the lay-
ers) and expressions (9) and (13) differ by a factor of
two since the energy is proportional to the square of the
solution amplitude. The quantity λ is independent of
the wave frequency ω and the beam current; it contains
only the parameters of the layered medium.

In order to find out whether the emergence of the
effective eigenvalue (13) characterizes the instability or
the attenuation of the wave, we return to the initial vari-
ables. Then, the effective wave number of the oscilla-
tions under investigation can be written in the form

(14)

where χ is a certain real function whose explicit form is
insignificant. Let us now use the well-known Briggs
criterion [10, 11] according to which the oscillations
are enhanced if the quantity Imk(ω) changes its sign
upon a variation of Imω from +∞ to 0. The wave num-
ber (14) with Im keff = –iλ (for Imω = 0) satisfies this
condition due to the presence of the term ω/v 0 respon-
sible for the transport of oscillations by the flow of par-
ticles. It is precisely the kinetic energy of this motion
that ensures the activity of the system under investiga-
tion, as in other cases of beam instabilities.

4. CONCLUSIONS

We have considered a layered structure with random
thicknesses of alternating layers of two types and the
propagation of linear waves in this medium along the
normal to the layers. The mathematical model of such a
system is the equation of an oscillator with random
eigenfrequency jumps between two preset values. This
system has an effective eigenvalue with a nonzero real
part on the scale of many layers. This eigenvalue corre-
sponds to attenuating solutions in the case of a passive
medium [3, 4] or in the problem of Anderson’s localiza-
tion of a quantum particle [2] and to increasing solu-
tions in the case of a parametric action on a mechanical
system [5] or for an active layered medium.

The latter case was considered in this paper. It is
shown that a randomly layered active medium can be
used as a wideband amplifier due to the fact that the
increment of the buildup of the waves is independent of
their frequency. The characteristic wavelengths in this

λ 1
L
---

ε0 ε1+( )2

4 ε0ε1

------------------------------- 0,>ln=

keff iλ ω
v 0
------ χ ε ωp v 0, ,( ),+ +±=
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case must be smaller than the characteristic spread in
the thicknesses of the layers. In the example of the
instability of a space-charge wave considered above,
this leads to the condition

where δL ≤ L is the characteristic deviation of the thick-
ness of a layer from the average value for one type of
layer. In the opposite case, we must use the weak-disor-
der approximation leading to a different frequency
dependence of the gain [3]. The situation correspond-
ing to the weak-disorder approximation and a transition
to a periodic passive layered medium were also consid-
ered in [12].

In view of the mathematical identity of the problem
for the above examples of passive and active media, the
results obtained from an analysis of the localization
constant for passive media can be extended to the prop-
erties of the instability increment in the corresponding
cases of active media.
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Abstract—Using exciton spectroscopy methods, it was established that  centers can be oriented under

uniaxial compression conditions not only in the [111] axis direction, but in the  and  directions as

well. Disorientation of the  centers was studied in detail, a kinetic equation adequately describing this pro-
cess is presented, and an expression for the characteristic reorientation time as a function of the temperature
was obtained. It was found that the reorientation rate obeys the Arrhenius law with an activation energy of about

1.54 eV. The experimental results are explained proceeding from a hypothesis that the  center is identical

to a ring hexavacancy. A mechanism of the  center (hexavacancy) reorientation is proposed within the
framework of this model, according to which the hexavacancies are thermally excited into the first metastable
state and then pass to a ring state with different orientation. Involving the spatial displacement of hexavacancies
during reorientation, this process has to be accompanied by the Brownian motion of the hexavacancies. A cor-

relation was found between the direction of orientation of the  centers (hexavacancies) and the relative
change in the 〈110〉  bond length under uniaxial compression conditions. This result is interpreted in terms of
the hexavacancy geometry. © 2002 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

This paper continues the previous communication
[1], in which preliminary results on the disorientation

kinetics of  centers were reported and experimental

evidence was presented that allowed the  centers to
be identified with ring hexavacancies (V6).

1 The results
were naturally explained by assuming that hexavacan-
cies may possesses several metastable states. Each ring
hexavacancy represents a cavity appearing upon the
removal of six silicon atoms from the vertices of a
chair-shaped hexagon possessing a third-order axis par-
allel to the [111] crystallographic axis.

The previous investigations of  centers [2–4]
showed that these defects (i) appear upon annealing
pure silicon single crystals containing a large number
of vacancies, (ii) behave as isoelectron quasi-acceptors
with an electron-attracting potential depending on the
deformation tensor, (iii) belong to the trigonal system,
and (iv) possess a not less than C3v point symmetry. In

particular, it was shown that excitons bound on the 

1 Unless otherwise is stated, we employ the notation adopted in
[1, 3].
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centers are of a triplet–singlet type [4] and a Hamilto-
nian describing all properties of such excitons was con-

structed. Recently, it was established [5] that the 
centers can be oriented by uniaxially compressing a
sample in one of the 〈111〉  directions.

Below, we describe in detail the process of disorien-

tation of the  centers and present new data to con-
firm that these centers represent hexavacancies.

2. EXPERIMENTAL

The samples with dimensions 17 × 1.25 × 1.25 mm,
having the shape of bars terminated with tetragonal

pyramids oriented in the [111] or  directions (see
Figs. 1 and 2 below), were cut from a pure silicon single
crystal irradiated with neutrons with a Cd number of
~50 to a total dose of 1017 cm–2. Here, the directions
with negative indexes indicate the orientation of sam-
ples cut from an ingot grown in the [111] direction.

The samples were uniaxially compressed at temper-
atures in the interval from 150 to 500°C. For this pur-
pose, a sample was mounted between stainless steel
plunger dies with 0.5-mm-deep 120° cone-shaped
wells. During compression, the wells acquired the
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002 MAIK “Nauka/Interperiodica”



        

DISORIENTATION KINETICS 85

                                                                                                                                      
shape of terminal pyramids (for each succeeding test,
the cone-shaped wells have to be restored). In order to
eliminate the buildup of shear stresses (capable of
destroying the sample), a steel ball was placed between
the plunger and a rod transferring the applied load.

In order to create the  centers oriented either

along the [111] axis or in the  or  direc-
tions, the crystal samples uniaxially compressed in the

[111] or  directions, respectively, can be
annealed for 30 min at 375°C. However, a more conve-
nient procedure consists in creating unoriented centers
(by annealing the initial samples at 375°C without
applied load) and their subsequent orientation. The lat-
ter is achieved by annealing the samples for 30 min at a
temperature of about 250°C and a pressure of 0.25 GPa.
It was found that the total number of centers remains
virtually unchanged in the course of orientation and
disorientation processes. This circumstance allows the
samples to be multiply reused and facilitates interpreta-
tion of the results.

The samples were immersed in liquid helium and
excited by radiation from an Ar laser with a power of up
to 200 mW. Special measures were taken to maintain
the samples at a constant temperature during each
experiment. This is related to the fact that the ratio of
intensities of the recombination emission lines strongly
depends on the temperature [3]. The recombination
emission spectra were studied with the aid of an SDL-1
spectrometer equipped with a cooled photomultiplier
operating in the photon count mode. The spectra were
analyzed at a resolution of about 200 µeV.

It must be noted that, since the recombination emis-
sion of the samples containing oriented centers is polar-
ized, the spectrum becomes significantly distorted upon
passage through the optical tract. Previously [1], these
distortions were eliminated by recording the spectra of
two components of the recombination emission with
mutually perpendicular polarizations, followed by
summing these components multiplied by the corre-
sponding correction factors. In this study, the results
were corrected by means of a correction parameter r
introduced into the calculation relationships. The
parameter was experimentally determined as the ratio
of the transmission coefficients of the recombination
emission components polarized perpendicular and par-
allel to the sample axis. This method provides for a bet-
ter accuracy and simplifies the experimental procedure.
Special checks showed that the two methods of correc-
tion yield virtually identical results.

3. MODEL CALCULATIONS

As demonstrated previously [1, 5], the I1/I2 value

representing the ratio of intensities of the (J1) and

(J2) lines in the recombination emission spectrum
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of excitons bound on the  centers depends on the
relation between concentrations n1, n2, n3, and n4 of the
centers oriented in various 〈111〉  directions. If the cen-
ters are initially oriented (i.e., the major axes are
aligned in certain selected directions), the thermal
motion of the lattice gives rise to a disorientation pro-
cess leveling the number of centers oriented in various
directions. As a result, the quantity I1/I2 also exhibits a
change. In order to determine the I1/I2 ratio as a func-
tion of time, we will first study the time variation of the
concentrations n1, n2, n3, and n4 representing the centers
of types 1–4 with the major axes oriented in the [111],

, , and  directions, respectively.
Then, we will relate the concentrations ni to intensities

of the (J1) and (J2) lines. Assuming that (i) the

total concentration of the  centers remains
unchanged in the course of disorientation and (ii) the
probability of a change in the orientation of a given cen-
ter does not depend on the initial and final directions,
the kinetic equations describing variation of the ni  val-
ues can be written in the following form [1]:

(1)

where τ = τij = τji is the characteristic time for reorien-
tation of a center from ith to jth direction, −3ni/τ is the
rate of decrease in the concentration ni, and nk/τ is the
rate of increase in the concentration ni  (i ≠ k). The sum
of Eqs. (1) yields dn/dt = 0, which is equivalent to the
assumption concerning conservation of the total num-
ber of centers in the course of disorientation.

Introducing the “vector” n = {n1, n2, n3, n4} with the
sum of components representing the total concentration
n, we can write Eqs. (1) in matrix form as

(2)

where M is the fourth-order matrix with all elements
equal to unity and I is the unity matrix of the fourth
order. Note that Eqs. (1) cannot be used to describe the
process of orientation, since the uniaxial compression
renders the centers oriented in various directions
unequivalent (τij ≠ τji).

For an initial distribution of centers at t = 0
described by the vector n(0), a solution to the above
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Table 1.  The ratio I1/I2 of the intensities of  and  lines calculated with an allowance for distortions caused by differ-
ential transmission of the parallel and perpendicular components of the recombination emission for the disorientation pro-
cesses {1}  {2, 3, 4} (x = n2/n1) and {2, 4}  {1, 3} (x = n1/n2)

Sample orientation k e⊥ I1/I2 for x = 0* I1/I2 for x = 1 I1/I2

[111] wr 2w

[1 0] 2w

[1 0] 2w

Note: k and e⊥  are the wavevector and the polarization vector of the recombination emission; the quantity 1/r gives the factor by which the
spectrometer sensitivity to the perpendicular component is smaller than that to the parallel component (determined from experiment);
For the reverse processes {2, 3, 4}  {1} and {1, 3}  {2, 4}, the quantity x should be replaced by 1/x. * Expressions for x = 0
refer to direct processes only.

X80
4

X72
4

112[ ] / 6 110[ ] / 2 w
3r 8 5r+( )x+
3 1 4r+( )x+
-----------------------------------

1 112[ ] / 6 111[ ] / 3 wr
3 8r+
6 r+

--------------- w
3 8r+( ) 9 4r+( )x+

6 r+( ) 5rx+
-------------------------------------------------

1 111[ ] / 3 112[ ] / 6 wr
3 7r+
6 2r+
--------------- w

3 7r+( ) 9 5r+( )x+
6 2r+( ) 4rx+

-------------------------------------------------
matrix equation can be presented in the following
form [6]:

(3)

where G is the operator of evolution of the vector n(t).
Using a spectral matrix theorem [6], the matrix G can
be expressed as

where g = exp(–4t/τ). Thus, once the initial distribution
of orientations of the centers is known, the time varia-
tion of this distribution is described by relationship (3).
Let us consider two particular cases corresponding to
the experimental results obtained in this study.

1. When a sample is annealed with a deforming load
applied along the [111] direction, the centers can orient

either in the same [111] direction or along the ,

, and  axes. In the former case, the initial
state of orientation is conveniently described as

where p = n2/n = n3/n = n4/n ≤ 1/4. Upon calculating
n(t) = Gn(0) and determining the n2/n1 ratio for n(t), we
can describe the {1}  {2, 3, 4} disorientation pro-
cess by the function

(4)

Below, we will denote by x the ratio of a smaller con-
centration ni to a greater quantity and by p the ratio of a
smaller quantity ni to the total concentration n.

By the same token, the “reverse” process {2, 3, 4} 
{1} beginning from the initial state

n t( ) Gn 0( ) eAtn 0( ),= =

G gI4
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(with p = n1/n ≤ 1/4) is described by the function

(5)

2. When the deforming load during annealing is

applied in the  direction, the centers can align

either in the  and  directions or along the

[111] and  axes. In the former case, the initial
state of orientation is conveniently described as

where p = n1/n. Upon calculating n(t) = Gn(0) and
determining the n1/n2 ratio for n(t), we can describe the
{2, 4}  {1, 3} disorientation process by the function

(6)

For the “reverse” process {1, 3}  {2, 4} beginning
from the initial state

(with p = n1/n ≤ 1/4) we obtain

(7)

Now, we can describe the time variation of the ratio

of intensities I1/I2 of the  and  lines in the recom-
bination emission spectrum of excitons bound on the

 centers. This can be done using the expressions for
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Fig. 1. Recombination emission spectra of excitons bound on the  centers in single crystal silicon samples cut along the [111]

axis (measured at T = 4.2 K): (a) the spectra of samples with unoriented (dashed curve) and [111]-oriented (solid curve) centers at
a pressure of P = 0; (b) emission line components polarized perpendicularly (dashed curve) and parallel (solid curve) to the axis of
a sample with [111]-oriented centers at P = 0.055 GPa; (c) the spectra of a sample with unoriented centers measured at P =
0.086 (dashed curve) and 0.244 GPa (solid curve). The insets show the sample configuration and the plots of I1/I2 versus angle β

of the sample rotation around the  axis: (points) experiment; (sold curves) calculation by formula (A.3) for the {1}  {2, 3, 4}
process and a unit circle; (dashed curve) calculation for the {2, 3, 4}  {1} process.

B80
4

112[ ]
intensities of the components of the  and  emis-
sion lines polarized parallel and perpendicular to the
sample axis (see Tables 3 and 4 in the Appendix). For

example, the I1/I2 ratio for the emission in the 
direction from a sample oriented in the [111] direction
is obtained by setting ϕ = 0 in Table 4, adding intensi-
ties of the parallel and perpendicular components (the
latter have to be multiplied by the experimentally deter-
mined correction coefficient r for the perpendicular

components of  and  lines), and taking the
required ratio. The I1/I2 ratios determined in this way
for the experimental situations studied are presented in
Table 1.

An expression for the I1/I2 ratio as a function of the
time of annealing at a constant temperature T is
obtained by substituting the corresponding functions
x(t) from Eqs. (4)–(7) into the formulas for I1/I2 in
Table 1, in which the parameter w is determined exper-
imentally for x  1 or t  ∞.

4. RESULTS AND DISCUSSION

First, it will be demonstrated that the centers under
consideration can be effectively oriented both in the

[111] direction and along the  and  axes.
Figure 1 shows the spectra of recombination emission
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of excitons bound on the  centers measured for the
samples cut in the [111] direction. The samples were
mounted parallel to the spectrometer slit so as to ana-

lyze the light emitted in the  direction. The
dashed curve in Fig. 1a represents the spectrum of a

sample containing  centers in an unoriented state,
while the solid curve shows the spectrum of the same
sample annealed in a compressed state. As can be seen,

the ratio of intensities I1/I2 of the  and  lines
decreased from 1.15 to 0.55 (I1/I2 < 2w, see Table 1),

which indicates that the  centers are oriented to a
considerable extent.2 Let us consider distribution of the

 centers in these samples with respect to orienta-
tions. Upon compression in the [111] direction, the cen-
ters divide into two groups, {1} and {2, 3, 4}, which is
manifested in the recombination emission spectrum as
the orientation-related splitting of lines. Evidently, the
intensity of lines representing each group is propor-
tional to the number of centers belonging to this group.

Figure 1b shows components of the recombination
emission spectrum corresponding to the parallel and
perpendicular polarizations in a sample compressed in

2 As demonstrated below, these spectra can be used for reconstruct-
ing the initial orientation distribution n(0).
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the [111] direction and, hence, containing the  cen-
ters in an oriented state. The spectra display two clearly
distinguished groups of lines with the components
denoted by 1, 2 and 3, 4. The same groups of lines are
well pronounced in the uniaxially compressed samples

containing the  centers in an unoriented state. As the
pressure varies, the spectral positions of the lines
change in an independent manner. By comparing the
amplitudes of lines belonging to each group observed at
small pressures, we may note that the orientation pro-
cess transforms these centers into a group represented
by the components 1, 2 in Figs. 1b and 1c. Finally, com-
paring the experimental data on the polarizations of
components 1 and 2 (Fig. 1b) to the calculated relative
intensities (Appendix, Table 4), we conclude that the

 centers in the case under consideration are oriented
in the [111] direction.

The same result can be obtained in a more exquisite
manner. For this purpose, we can express the I1/I2 ratio
as a function of the angle of rotation β around the

 direction (k direction) for a sample containing

the  centers in the oriented state and compare this
expression to a dependence calculated by formula (A.3)
presented in the Appendix. This dependence was deter-
mined and depicted by black circles on the inset in Fig. 1
(where solid curves show a dependence calculated for
the centers oriented in the [111] direction and a unit cir-

B80
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B80
4

B80
4

112[ ]
B80

4

Fig. 2. Recombination emission spectra of excitons bound

on the  centers in single crystal silicon samples cut

along the  axis (measured at T = 4.2 K) in the samples

containing unoriented (dashed curve) and - and

-oriented (solid curve) centers at a pressure of P = 0 (a)
and 0.1 GPa (b). The insets show the sample configuration
and the plots of I1/I2 versus angle β of the sample rotation
around the [111] axis: (points) experiment; (solid curves)
calculation by formula (A.4) for the {2, 4}  {1, 3} pro-
cess and a unit circle; (dashed curve) calculation for the
{1, 3}  {2, 4} process.
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cle that allows the I1/I2 ratio to be readily determined
for an arbitrary rotation angle). As can be seen, the
experimental data fit the calculated curve well. At the
same time, the dashed curves, corresponding to the case

of centers oriented in the , , and 
directions, qualitatively differ from the experimental
pattern.

Here, it is necessary to refine the essence of the
method proposed for determining the orientation of the

 centers. The spectrometer used in the experiment is
nonideal (in our case, r ≈ 0.37) and transmits the com-
ponent polarized perpendicularly to the entrance slit
differently (worse by a factor of about 2.7) as compared
to the component polarized parallel to the slit. In other
words, the optical tract of the spectrometer contains an
implicit “effective polarizer” that is responsible for the
observed dependence of I1/I2 on β. Upon going from the
direct ({1}  {2, 3, 4}) to reverse ({2, 3, 4}  {1})
process, positions of the emitting centers relative to the
“effective polarizer” (modeling the differential polar-
ization effect introduced by the optical tract) exhibit a
change leading to a qualitatively different I1/I2 versus β
relationship. In the ideal spectrometer (r = 1), these
angular dependences can be obtained only by introduc-
ing a polarizer into the optical tract. This effect is well
consistent with expressions (A.3) and (A.4) derived in
the Appendix for the I1/I2 versus β relationship. As can
be seen from these expressions, the angular dependence
vanishes for r = 1.

Now let us proceed to the samples cut in the 
direction. The emission was measured in the [111]
direction. Figure 2 shows the spectra of the recombina-

tion emission of excitons bound on the  centers
measured in this case. The dashed curve in Fig. 2a rep-

resents the spectrum of a sample containing  cen-
ters in an orientation-disordered state, while the solid
curve shows the spectrum of the same sample annealed
in a compressed state. As can be seen, the ratio of inten-

sities I1/I2 of the  and  lines decreased from 1.15
to 0.71 (I1/I2 < 2w, see Table 1), which indicates that the

 centers are oriented to a considerable extent either

in the  and  directions or along the [111]

and  axes.

An attempt at distinguishing between the two possi-
bilities is illustrated in Fig. 2b, where the dashed and
solid curves show the spectra of samples with unori-
ented centers and with the centers oriented by anneal-

ing under uniaxial compression in the  direction.
The spectra display two clearly pronounced groups of
lines (with the components denoted by 1, 2 and 3, 4)
and show the intensity redistribution between these
groups, reflecting an increase in the number of centers
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B80
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4
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Fig. 3. Experimental (black circles) and theoretical (solid curves) plots of the ratio of intensities I1/I2 of the (J1) and (J2)

emission lines versus the time of annealing (T = 217.5°C) for the samples cut in the directions (a) [111] (calculation parameters

w = 0.575; r = 0.357; p = 0.1) and (b)  (w = 0.575; r = 0.357; p = 0.11).

X80
4

X72
4

110[ ]
belonging to one group at the expense of a decrease in
another group. However, it was impossible to judge
with confidence on the dominating group ({1, 3} versus
{2, 4}), which is probably explained by a strong mixing
of exciton states in the samples deformed in this mode.

In order to solve the problem, the experimental
dependence of I1/I2 on the angle β of sample rotation
around the [111] direction was measured for a sample

containing the  centers in the oriented state. These
experimental data are depicted by black circles on the
inset in Fig. 2, where the solid curves show the same
dependence calculated for the centers oriented in the

 and  directions and a unit circle. As can be
seen, the experimental points fit the calculated curve
well. If the centers were oriented in the [111] and

 directions, the points would fit the dashed curve.
Thus, the disorientation kinetics should be studied in
terms of relationships (4) and (6).

Returning to Figs. 1a and 2a, let us consider how
these data can be used to determine the initial orienta-
tion distribution n(0). Upon determining I1/I2 from
these data, these values should be substituted into the
corresponding expressions presented in Table 1. The
resulting equations are used to find x(0). Finally, rela-
tionships (4) and (6) for x(0) can be used to determine
p representing the ratio of the smaller group concentra-
tion to the total concentration of the centers studied.

Now let us consider the kinetics of disorientation of

the  centers. The main parameter in Eq. (2) describ-
ing this process is the characteristic reorientation time
τ(T). At a given temperature T, the reorientation time
was determined by comparing the experimental curve
of I1/I2 versus annealing time t to the calculated depen-
dence obtained by substituting x(t) from (4) and (6) into
the expressions for I1/I2 presented in Table 1. Figures 3a
and 3b show typical plots of the I1/I2 ratio versus
annealing time at T = 217.5°C for two different orienta-

B80
4

111[ ] 111[ ]

111[ ]

B80
4
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tions of the  centers, measured in the course of the
{1}  {2, 3, 4} and {2, 4}  {1, 3} disorientation
processes, respectively. The spectra of the initial and
final states of these processes are given in Figs. 1a
and 2a. It must be noted that these different processes
lead to the same reorientation time. This result confirms
validity of the assumptions made in deriving Eq. (1).

The mechanism of reorientation of the  centers
was explained based on the experimental τ(T) depen-

B80
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B80
4

101

1.9 2.0

τ, min

(1/T) × 103, K–1
2.1 2.2 2.3

102

103

[110]

[111]

_

Fig. 4. The plot of reorientation time τ versus annealing
temperature T for different reorientation processes: (black
circles) {1}  {2, 3, 4} in [111]-cut samples; (open cir-

cles) {2, 4}  {1, 3} in -cut samples.110[ ]
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dence. The reorientation time was determined from the
curves analogous to those presented in Fig. 3, measured
in the temperature range from 175 to 240°C. The result-
ing τ versus T curve is depicted in Fig. 4. The statistical
processing of these data yielded an exponent [7]

(8)

where E = 1.5462 ± 0.03 eV and a = (1.7197 ± 1) ×
1014 min–1. In other words, the rate of reorientation of

the  centers obeys the Arrhenius law with an activa-
tion energy of 1.54 eV.

In order to interpret the obtained results, we assume

as previously [1] that the  centers are identical to
ring hexavacancies (V6). Then, the mechanism of reori-

entation of the  centers can naturally be explained
by the fact that such hexavacancies may possesses sev-
eral metastable states. A ring hexavacancy, which is
most stable among the vacancy centers, represents a
combination of six vacancies (or, e.g., three divacan-
cies), belongs to the point symmetry group D3d, and
contains a completely closed bond system [8]. A spe-
cial feature of V6 is the ability of occurrence in several
metastable states. The first of these is characterized by
a binding energy about 0.87 eV smaller than that of sta-
ble V6, while the other metastable states are lower by
more than 3.5 eV. Taking into account [8] that the acti-

vation energy for reorientation of the  centers is
close both to the energy of divacancy breakage (V2 
V1 + V1) equal to 1.69 eV and to the energy required for

1
τ
--- a

E
kT
------– 

  ,exp=

B80
4

B80
4

B80
4

B80
4

σd

[110]

y

x
C3

C2

[011] [101]

Fig. 5. The schematic diagram of bonds in a hexavacancy
viewed along the [111] direction showing silicon atoms
(black circles), double bonds (thick solid lines), the second-
order rotation axis C2 perpendicular to the principal axis C3
of the hexavacancy, and the mirror reflection plane σd con-
taining the principal axis (hexagons are drawn so as to indi-
cate the hexavacancy symmetry).
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a transition to the first metastable state (about 0.87 eV),
we may consider the reorientation process as proceed-
ing by the following scheme. A thermally excited hexa-
vacancy V6 passes into the first metastable state and
then returns back to the previous state but with a differ-
ent orientation [1]. It should be noted that the process
of V6 reorientation involves the displacement of hexa-
vacancies and, hence, has to be accompanied by their
Brownian motion in the crystal.

In conclusion, let us establish a correlation between
the direction of sample compression and the orientation

of the  centers proceeding from the hypothesis of

 and V6 identity and taking into account the geome-
try of hexavacancies (determined by the 〈110〉  bonds).
It can be shown that the hexavacancies tend to orient in
the directions for which the 〈110〉  bond lengths
decrease to a greater extent under uniaxial loading con-
ditions. In other words, the directions of predominant
V6 orientation are determined by the hexavacancy
geometry. Evidently, hexavacancies occurring in a
deformation field and oriented in unequivalent direc-
tions will change their shapes and bond lengths differ-
ently and, hence, the binding energies. This is just what
accounts for the appearance of preferred orientation
directions.

Figure 5 shows a schematic diagram of bonds in the
V6 hexavacancy viewed along the [111] crystallo-
graphic axis. The invisible bonds (situated beneath the
figure plane) are determined by applying the S6 opera-
tion (mirror rotation relative to the [111] axis perpen-
dicular to this plane) to the visible bonds. The 〈110〉
bonds are selected by being strongly stretched as com-
pared to the normal silicon–silicon bonds. The V6 hexa-
vacancy structure contains a total of six double bonds
of the 〈110〉  type: each of the three 〈110〉  bonds
depicted in Fig. 5 corresponds to a parallel bond situ-
ated under the figure plane). Therefore, the number of
unequivalent double 〈110〉  bonds is three.

Now, let us assume that a change in the length of
these initially stretched bonds determines the major
contribution to variation of the hexavacancy formation
energy. Moreover, we will suggest that a change in the
hexavacancy formation energy is proportional to the
average relative change in length of the three bonds.
The average values of bond length for hexavacancies
oriented in various directions for a given uniaxial com-
pression direction are listed in Table 2. As can be seen
from these data for the samples compressed in both

[111] and  directions, a maximum change in the
average 〈110〉  bond length is observed in the directions

of orientation of the  centers (indicated by an aster-
isk in Table 2) for the samples annealed under uniaxial
compression conditions. For example, in a sample com-
pressed along the [111] axis, this is the [111] direction
corresponding to the {1}  {2, 3, 4} disorientation
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Table 2.  Average relative variations of the 〈 110 〉  bond lengths for hexavacancies oriented along the [111], [ 11], [ 1],

and [ 11] axes in silicon single crystal samples compressed in the [111], [1 0], and [001] directions

Uniaxial
compression

direction

V6 orientation direction

[111] [ 1]

P [111] –P(S11 + 2S12 + S44/2)/3 = – 0.322 × 10–11 P* –P(S11 + 2S12 – S44/2)/3 = – 0.043 × 10–11 P

P [1 0] –P(S11 + 2S12 – S44/4)/3 = – 0.087 × 10–11 P –P(S11 + 2S12 – S44/4)/3 = – 0.087 × 10–11 P

P [001] –P(S11 + 2S12)/3 = – 0.113 × 10–11 P* –P(S11 + 2S12)/3 = – 0.113 × 10–11 P*

Uniaxial
compression

direction

V6 orientation direction

[ 11] [1 1]

P [111] –P(S11 + 2S12 – S44/2)/3 = – 0.043 × 10–11 P –P(S11 + 2S12 – S44/2)/3 = – 0.043 × 10–11 P

P [1 0] –P(S11 + 2S12 + S44/4)/3 = – 0.218 × 10–11 P* –P(S11 + 2S12 + S44/4)/3 = – 0.218 × 10–11 P*

P [001] –P(S11 + 2S12)/3 = – 0.113 × 10–11 P* –P(S11 + 2S12)/3 = – 0.113 × 10–11 P*

Note: For silicon, S11 = 0.768 × 10–11 m2/N; S12 = –0.214 × 10–11 m2/N; S44 = 1.256 × 10–11 m2/N; P > 0.

1 1 1

1 1

1 1

1

1 1

1

process; in a sample compressed along the  axis,

these are the  and  directions correspond-
ing to the {2, 4}  {1, 3} disorientation process. As
can be seen from Table 2, the average relative changes
in the bond lengths for hexavacancies oriented in other
directions are much smaller. Apparently, this coinci-
dence is due to a characteristic geometry of the ring
hexavacancies. Thus, it is possible that a change in the
energy of hexavacancies in the deformation field is
related to a change in the 〈110〉  bond length.

5. CONCLUSION

It should be recalled that the hexavacancies were
predicted theoretically. The original method employed
in this study has provided experimental evidence that

the  point center can be identified with a hexava-
cancy. The obtained results well agree with the data
reported recently by Hourahine et al. [10] suggesting

 centers to be the most appropriate candidate for the
role of hexavacancies in silicon. However, the hypothe-

sis that the  center is identical to the hexavacancy
needs further justification. It should be noted that a
series of hexavacancy-based hydrogen-containing cen-
ters was predicted in [10], which must possess interest-
ing properties. Therefore the research in this direction
can be expected to yield valuable results.
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APPENDIX

All axes and planes in the crystallographic coordi-
nate system are determined in terms of the Müller

indexes. The  centers belong to a trigonal system
and are characterized by a point symmetry of not less
than C3v (C3v is a subgroup of the hexavacancy D3d

group [11]). The third-order principal axis of the 
center is directed in one of the four 〈111〉  directions. Let

a coordinate system x, y, z related to a  center ori-
ented in the [111] direction possess a basis set

while the basis sets for the  centers oriented in the

, , and  directions are obtained by
rotating the above basis set around the [001] axis by
π/2, π, and 3π/2, respectively. For a hexavacancy, the x
axis coincides with the C2 symmetry axis, the y axis is
perpendicular to the principal axis and belongs to the σd

reflection plane, and the z axis (the main axis of the 
center) coincides with the principal axis of the hexava-
cancy (Fig. 5). In calculating the relative probabilities

of the optical decay of excitons bound on the  cen-
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Table 3.  Relative intensities of various components of the  and  emission lines for the  centers oriented along

the equivalent directions [111], [ 1] and [ 11], [1 1] in a [ 0]-cut sample

Emission line Set of equivalent centers
n1 = n3, n2 = n4

I|| I⊥

(J1) n1, n3 18n1 [9 + u(ϕ)]n1

n2, n4 6n2 [15 – u(ϕ)]n2

(J2) n1, n3 0 [9 – u(ϕ)]n1

n2, n4 12n2 [3 + u(ϕ)]n2

e⊥

k

Note: k and e⊥  are the wavevector and polarization vector of the recombination emission, respectively; u(ϕ) = cos2ϕ – ; ϕ is

the angle of emission measured from the [111] axis in the plane perpendicular to the sample orientation axis [1 0].

X80
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X72
4

B80
4

1 1 1 1 11

X80
4

X72
4

ϕ 2 ϕ ϕ 2 ϕ –2 ϕ 2+cos ϕsin,sin+cos,sin+cos[ ] / 6

2 ϕ ϕ 2 ϕ ϕ 2 ϕ 2 ϕsin+cos,sin–cos,sin–cos[ ] / 6

2 2 2ϕsin

1

ters from a singlet (  line) and doublet (  line)
states, it will be assumed that the electric dipole
moments corresponding to these transitions are
directed along the z or x and y axes.

The relative intensities of the  and  line com-
ponents of the recombination emission from a sample
with an arbitrary distribution of orientations n = {n1, n2,

n3, n4} of the  centers were calculated using the
expressions

(A.1)

where e is the vector of polarization of the recombina-
tion emission; mk = 0 or 1 plays the role of a mask sep-
arating the recombination emission from equivalent
centers; and dk, l and dk, z are the vectors of electric

dipole moments corresponding to the  and 
emission lines:

(A.2)
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X80
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B80
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I1 e dk l,⋅( )2nkmk,
k 1=

l x y,=

4

∑∝

I2 e dk z,⋅( )2nkmk,
k 1=

4

∑∝
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d1 x, 110[ ] / 2, d1 y, 112[ ] / 6,= =

d2 x, 110[ ] / 2, d2 y, 112[ ] / 6,= =

d3 x, 110[ ] / 2, d3 y, 112[ ] / 6,= =

d4 x, 110[ ] / 2, d4 y, 112[ ] / 6,= =

d1 z, 111[ ] / 3, d2 z, 111[ ] / 3,= =

d3 z, 111[ ] / 3, d4 z, 111[ ] / 3.= =
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An analysis of the two cases considered in this study
led to the following results.

1. The centers oriented predominantly in the 

and  directions in the samples cut along the

 axis. To calculate the relative intensities of var-
ious components of the recombination emission in the

direction k, polarized parallel (e|| = / ) or per-

pendicular (e⊥ ) to the sample axis , the polariza-
tion (e|| or e⊥ ) vector and the mask (separating the cen-
ters with preset polarization) were substituted into
expressions (A.1), after which the sums were taken
using expressions for the electric dipole moments. The
results are summarized in Table 3.

2. The centers oriented predominantly in the [111]
directions in the samples cut along the [111] axis. The
relative intensities of various components of the recom-
bination emission in the direction k, polarized parallel

(e|| = [111]/ ) or perpendicular (e⊥ ) to the sample axis
[111], were calculated by a procedure analogous to that
used in the first case. The results are summarized in
Table 4.

Now let us express the ratio of intensities I1/I2 of the

 and  lines as a function of the angle of rotation
β around the recombination emission direction (i.e.,
around the k vector). For the samples cut along the

[111] axis, containing the  centers oriented in the

[111] direction, and rotated around the  axis, this
expression is as follows:

(A.3)

111[ ]
111[ ]

110[ ]

110[ ] 2

110[ ]

3

X80
4 X72

4

B80
4

112[ ]

I1

I2
----

=  
w 1 r+( ) 3 13x+( ) 3 r 1–( ) x 1–( ) 2βcos–[ ]

1 r+( ) 3 5x+( ) 3 r 1–( ) x 1–( ) 2βcos+
-----------------------------------------------------------------------------------------------------------.
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Table 4.  Relative intensities of various components of the  and  emission lines for the  centers oriented along

the equivalent directions [111] or [ 11], [ 1], [1 1] in a [111]-cut sample

Emission line Set of equivalent centers n1, n2 = n3 = n4 I|| I⊥

 (J1) n1 0 3n1

n2, n3, n4 8n2 5n2

 (J2) n1 3n1 0

n2, n3, n4 n2 4n2

e⊥

k

Note: k and e⊥  are the wavevector and polarization vector of the recombination emission, respectively; ϕ is the angle of emission measured

from the [11 ] axis in the plane perpendicular to the sample orientation axis [111].
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X72
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1 1 1 1

X80
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X72
4

3 ϕcos ϕsin – 3 ϕcos ϕsin –2 ϕsin,+,+[ ] / 6

ϕ 3 ϕsin ϕcos 3 ϕsin –2 ϕcos,+,–cos[ ] / 6

2

For the samples cut along the  axis, containing

the  centers oriented in the  and  direc-
tion, and rotated around the [111] axis, the correspond-
ing expression is

(A.4)

where the angle β is measured from the initial position
of the sample axis.

For the  centers oriented along the ,

,  or [111],  directions, the angular
dependences of I1/I2 are obtained by substituting 1/x for
x in expressions (A.3) and (A.4), respectively.
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Abstract—It is shown by the methods of time-resolved self-reflection and linear reflection that irradiation of a
silicon target by a 100-fs laser pulse induces successive structural transitions of the target material to new crys-
tal and liquid metal phases, which can occur during the laser pulse or 0.1–103 ps after the pulse termination,
depending on the excitation conditions. The thresholds of these structural transitions are determined, and “'soft”
phonon modes involved in them are identified, which represent “hot” short-wavelength LA modes. The dynam-
ics of the structural transitions in silicon in the time interval from 0.1 to 103 ps is described using the model of
instability of phonon modes caused by an electron–hole plasma and intra- and intermode phonon–phonon
anharmonic interactions © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Beginning from the early 1980s, when the first
experimental observations were reported [1, 2] on the
“nonthermal” plasma-induced disordering and melting
of semiconductors exposed to intense femtosecond
pulses, which were predicted earlier in papers [3–6],
many experimental and theoretical studies were per-
formed in this field (see references in [7–10]). Because
of the high rates of linear and nonlinear optical genera-
tion of free carriers, femtosecond lasers can produce a
dense electron–hole (e–h) plasma in semiconductors
with the density Ne > 1022 cm–3. The formation of such
a dense e–h plasma in a semiconductor results in a vari-
ety of electronic effects such as Auger recombination
and collision ionization [11, 12], a transport of charge
carriers from the excited region to the material volume
[1, 9], and a decrease in the band gap caused by many-
body interactions in the plasma and by screening of the
ion core [13]. The interaction of free carriers with a
crystal lattice results in a change in the lattice state—
excitation and “softening” of some acoustic or optical
phonon modes [3–6, 14–22]. The destabilization of one
or several such modes causes a phase (vibronic) transi-
tion through a “soft” mode, which is accompanied by a
change in the crystal structure of the material. Such
ultrafast structural transitions have been theoretically
predicted and described in papers [3–6, 18–22] and
have been observed experimentally (with a delay of a
few hundred femtoseconds after a pump pulse termina-
tion) upon transformations to a metal liquid phase (in Si
[1, 8], GaAs [8], InSb [23]) and in a new crystal phase
(in amorphous Ge0.04Sb0.96 [24]). Nevertheless, the
1063-7761/02/9401- $22.00 © 0094
mechanisms of these structural transitions are not con-
clusively established. In particular, at present the nature
of the soft mode is treated differently in different
papers. Thus, the authors of papers [3–6] believe that
soft modes represent transverse acoustic TA modes
near the boundary of the Brillouin zone, whereas in
papers [19, 18] the soft modes are treated as longitudi-
nal optical LO modes at the center of the Brillouin zone
or their combinations, respectively.

Along with the vibronic mechanism of plasma-
induced (nonthermal) ultrafast structural transitions in
semiconductors, which are phase transitions of the sec-
ond kind, an alternative thermal model of structural
transformation at a subpicosecond time scale was pro-
posed in a number of papers [18, 20–22] for semicon-
ductors (Si, GaAs, and graphite). In particular, it was
shown [18] that ultrafast structural transitions with a
subpicosecond (longer than 100 fs) delay can be
explained by ultrafast transfer of the kinetic energy to
the crystal lattice, which exceeds the melting enthalpy
of the material, and by excitation due to anharmonic
interactions of the continuum of phonon modes, result-
ing in the phase transition of the first kind. Unfortu-
nately, no experiments have been performed so far that
would allow the measurement of the temperature (pop-
ulation of phonon modes) of new structural phases at
the subpicosecond scale, in particular, the temperature
of the liquid phase. Nevertheless, one can assume that
both factors—the lattice heating and excitation of the
e–h plasma—favor the structural transformations [5,
6]; and in the general case, the development of these
processes, as phase transitions of the first or second
2002 MAIK “Nauka/Interperiodica”
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kind (thermal or nonthermal mechanism), will be deter-
mined not only by the excess over the thermodynamic
threshold of the structural transition (melting enthalpy
or the threshold density of the plasma, respectively) but
also by the transition kinetics.

It is known that thermal phase transitions of the first
kind, being activation processes, originate on the seeds
of a new phase, which appear, as a rule, on the surface
of the initial phase, and propagate in its volume at a
velocity that does not exceed the speed of sound, even
in the presence of strong heating [25]. Conversely,
plasma-induced nonthermal structural transformations,
being transitions of the second kind (without activa-
tion), occur in any region of the initial phase where the
threshold density Nc of the plasma for the soft mode
instability is surpassed. These transitions proceed at the
time scale of the order of the oscillation period T =
2π/ω0(q) of the corresponding soft phonon mode with
the initial frequency ω0(q) (T ~ 10–13 s). They have a
“volume” character, and the growth rate of the new
phase is determined only by the spatial distribution of
the plasma density Ne (controlling parameter), whose
local value (Ne ≥ Nc determines the frequency of the
unstable (soft) mode [3–6, 19],

, (1)

and the transition duration t(Ne),

(2)

It follows from expression (2) that, for plasma-induced
structural transformations, both the “critical” slowing
down [26] near the instability threshold (Ne ≈ Nc) of the
soft mode can occur, which is inherent in phase transi-
tions of the second kind (slowing down to 10–15 ps was
experimentally observed in [27]), and the transition
time can become shorter than the characteristic oscilla-
tion period of the unperturbed soft mode when its insta-
bility threshold is strongly surpassed (Ne @ Nc). In the
case of critical slowing down of a transition of the sec-
ond kind, the thermal and nonthermal mechanisms
began to compete with each other (due to phonon–
phonon relaxation occurring at the time scale of 10–12–
10–11 s, and it can be difficult to establish the nature of
the structural transformation. Conversely, when the
instability threshold for the soft mode is strongly sur-
passed Ne @ Nc), the transition time can be comparable
with the oscillation period of the mode (t ≤ 10–13 s),
which unambiguously indicates the nonthermal nature
of the effect. The possibility of the plasma-induced
change in the symmetry of the GaAs lattice during a
100-fs laser pulse was noted in SHG experiments [8,
28, 29]; however, as far as we know, no systematic stud-
ies of the dependence of the structural transition dura-
tion on the controlling parameter (the e–h plasma den-
sity, and the energy density or the laser pump radiation
intensity in the experiment) have yet been performed

ω2 q( ) ω0
2 q( ) Ne/Nc 1–( )=

t Ne( ) T

Ne/Nc 1–
----------------------------.=
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for different semiconductors (in [27], such a depen-
dence was obtained for GaAs for times longer than
0.3 ps, but the dependence was not interpreted and its
parameters were not determined). At the same time, the
parameters of this dependence are of considerable
interest. Thus, the characteristic transition time T,
which is determined by the frequency ω0(q) of the soft
mode allows one to explain the microscopic mecha-
nism of the structural transformation, while the thresh-
old of the e–h plasma density for the infinitely slow
development of the soft mode characterizes a real ther-
modynamic instability threshold, which is of interest
for theoretical studies of plasma-induced phenomena in
semiconductors.

In this paper, we used the methods of ellipsometry
(self-reflection of pump pulses for s and p polariza-
tions) and of linear reflection of the second-harmonic
probe radiation (2"ω = 3.12 V) for time-resolved stud-
ies of structural transformations in silicon samples
induced by 100-fs fundamental-harmonic laser pulses
("ω = 1.56 eV). The ellipsometric data processed with
the time resolution “within” a laser pump pulse by the
method proposed in the paper revealed three successive
discrete red shifts of both linear absorption bands of sil-
icon (“collapse” of the band gap Eg along the corre-
sponding direction of the Brillouin zone) during the
pump pulse. In each case, a new metastable crystal state
of matter appeared and the process terminated by melt-
ing of the excited surface layer at the blue wing of the
E2 band. Analysis of the dynamics of linear reflection of
the second harmonic by the method of optical micros-
copy confirmed the presence of discrete red shifts and
the successive formation of three new structural states.
The model of instability of phonon modes caused by
the e–h plasma and phonon–phonon anharmonicity
proposed in the paper is used to describe the depen-
dence of the duration of structural transitions on the
experimental controlling parameter—the effective
(absorbed) laser pump energy density. The thresholds
of these transformations are determined, the involved
soft phonon modes are identified (nonequilibrium, or
“hot” short-wavelength LA modes), the mechanism of
generation of these modes from long-wavelength LO
modes is established, and the contributions of diffusion
and recombination to the dynamics of the e–h plasma
are estimated.

2. EXPERIMENTAL

The studies were performed using a standard
Ti:Al2O3 sapphire crystal femtosecond laser setup at
the Institute of Laser and Plasma Physics, University of
Essen (Germany). The basic components of the setup, a
Kerr lens master oscillator and a regenerative and a
multipass amplifier, are described in papers [30, 31].
The laser emitted 794-nm (the fundamental harmonic),
100-fs (FWHM) pulses with a normal power distribu-
tion, an energy of up to 1.5 mJ (TEM00 mode), and a
SICS      Vol. 94      No. 1      2002
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pulse repetition rate of 10 Hz. The relative amplitudes
of the precursor and accompanying parasitic pulses
were less than 7%.

An input laser beam was split in the experimental
setup (Fig. 1) into the pump and probe beams with the
energy ratio 3 : 1. The pump beam was polarized (s or
p polarization), and its pulse energy was measured with
a calibrated photodiode. Then, the beam was focused
with a lens with the focal length 50 cm and was directed
on the target surface at an angle of 45°. The distribution
of the pump energy density on the target was described
by a Gaussian with parameters σx ≈ 70 µm and σy ≈
40 µm. The targets were undoped silicon Si(100)
plates, which were mounted on a dual-axis translation
stage which was translated from pulse to pulse using
step motors. The energy of the reflected pump beam
with s and p polarizations was measured with a pyro-
electric detector.

The probe beam passed through an optical delay line
and was focused, passing through a nonlinear crystal to
produce the second harmonic (the fundamental har-
monic was rejected with a narrowband filter), on a cir-
cular diaphragm of diameter 100–150 µm, which was
used for eliminating long-wavelength inhomogeneities
of the transverse distribution of the radiation energy.
Then, the second-harmonic radiation was focused
through the objective of an optical microscope near the
target surface (for normal incidence) so that the spot
from the low-intensity probe beam (second harmonic)
on the target surface would be 3–6 times greater than
that from the pump beam (fundamental harmonic). The
probe beam specularly reflected from the target was
directed back through the objective and a beam splitter

10

11
5 6

13

15
14

12

3

8

1

4

9

17

16

7

2

Fig. 1. Schematic of the optical microscopy setup: (1) input
laser radiation; (2, 3) electromechanical shutters; (4–9) beam-
splitters and dielectric mirrors; (10) optical delay line;
(11) broadband retroreflector; (12, 13) focusing lenses;
(14) nonlinear PBBO crystal (frequency doubler); (15) CCD
camera with a fundamental-harmonic cutoff filter; (16) objec-
tive; (17) target on a dual-axis translation stage with step
motors.
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to a synchronized CCD camera equipped with a filter
rejecting the fundamental harmonic. The parameters of
the probe channel allowed us to study the dynamics of
reflectivity of the excited area of the target with a spa-
tial resolution of about 2 µm and a time resolution of
about 100 fs (time-resolved optical microscopy [32]).

The data on optical probing of excited silicon were
processed by normalizing the images of a sample,
which were obtained in the reflected light of the nor-
mally incident probe pulse for different delays td with
respect to the center of the pump pulse, to the image of
an unexcited sample. After calibration, these images
represented the two-dimensional spatial distribution of

the reflectivity  of the sample, which was symmet-
rical with respect to the center of the pump radiation
spot. The vertical cross sections of normalized images
passing through the center of the pump radiation spot
on the sample surface, after the transformation of spa-

tial coordinates, characterize the dependence of  on
the energy density for different values of td.

3. EXPERIMENTAL RESULTS
AND DISCUSSION

We studied the dependence of the self-reflection
coefficient for pump radiation in silicon samples (for
both polarizations of the fundamental harmonic) on the
incident energy and the dynamics of linear reflection of
the probing second harmonic at the fixed maximum
energy density of p-polarized pump radiation.

3.1. Linear Self-Reflection of Pump Laser 
(Fundamental Harmonic) Pulses

We processed the experimental dependences of the

self-reflection coefficients  and  of samples on
the pump pulse energy obtained for both polarizations
using the iteration procedure, which eliminated the
averaging of the coefficients because of the spatial
inhomogeneity of the energy density F in the light spot
of the TEM00 mode on the target. The processing pro-
cedure was based on the consideration of the relative
contribution from circular parts of the light spot, which
differed in the local energy density F, to the integrated

reflection. The resulting dependences of  and 
on the effective (absorbed) pump energy density Feff =

(1 – )F integrated over the pulse are presented in
Fig. 2a. Such a representation allows one to compare

the parts of the curves for  and  in Fig. 2 that
correspond to the identical excitation conditions. The
corresponding dependences Feff(F) for pump radiation
at both polarizations are monotonic and do not contain
a plateau or any special features.
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Because of the self-action effect of laser radiation
[8, 28], which is manifested in a continuous variation of
the optical parameters of the semiconductor during the

laser pulse, the dependences of  and  on Feff are
time-averaged within the laser pulse duration. For this
reason, these curves were additionally processed graph-
ically (time-transformed) using the expressions [33]

(3)

(4)

where  and  (Fig. 2a) are “true” values of the
reflection coefficient of silicon for the instantaneous
quantity Feff(t) representing the integral of the radiation
intensity for the time t during the laser pulse, and the
values Feff1 and Feff2 determine the integration range in
which the above transformation is valid. Note that the

transformation of the dependence of  and  on
Feff according to expressions (3) and (4) assumes that
excitation of the material is nonstationary, when diffu-
sion and recombination contributions can be neglected
in the kinetic equation for the e–h plasma density. The
first contribution can be neglected when αldif ! 1,
where ldif ~ 10 nm is the diffusion length in the plasma
during the pump pulse (100 fs) and α–1 is the skin depth
for the excited semiconductor. As will be shown below,
the recombination contribution also can be neglected in
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the range of pump energy densities under study accord-
ing to the results of papers [1, 13], which demonstrated
saturation of the rate of Auger recombination at e−h
plasma densities above Ne ≈ (3–5) × 1021 cm–3 caused
by a strong screening of the e–h interaction potential.

The dependences  and  in
Fig. 2a have two distinct minima at 0.03–0.10 J/cm2

and 0.11–0.21 J/cm2 in the region of small Feff(t) ≤
0.15 J/cm2 and rapidly increase at Feff(t) ≥ 0.21 J/cm2;
for the p-polarized pump radiation, both minima are
present but they are not resolved. The presence of one
minimum and a subsequent increase in the linear reflec-
tion with increasing F was observed earlier in semicon-
ductors and was explained by the attainment of the
plasma reflection edge [1, 9]. However, the two
resolved minima that we observed for the dependences

 and  allow us to propose a new
interpretation of these features. For this purpose, we
calculated the optical constants nω and kω for excited
silicon for different values of Feff(t) (Fig. 2b) by Fresnel
formulas using these dependences. The calculations
were performed by selecting pairs of the values of nω

and kω that provided the minimum discrepancy between

calculated and experimental values of  and .

According to the dependences nω(Feff(t)) and
kω(Feff(t)) obtained, the two minima of curves

(Feff(t)) and (Feff(t)) correspond to two intense
linear absorption bands of silicon at Feff(t) ≈ 0.08 and
0.16 J/cm2 in the absence of strong two-photon absorp-
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tion and free-carrier absorption, which are weaker than
the residual absorption between the peaks in the curve
kω(Feff(t)) (Fig. 2b). The position and amplitude of the
first maximum in the curve kω(Feff(t)) in Fig. 2b agree
well with the data from paper [34]; however, the region
of the second maxima was not studied in [34].

Taking into account the red shift of the linear absorp-
tion band of semiconductors in a high-density e–h plasma
caused by the band gap collapse [27], we can assume
that we detected both interband transition bands E1 and
E2 of silicon during the 100-fs pump pulse, which lie at
3.4 and 4.3 eV, respectively, in unexcited silicon (Si0)
[35]. Recall that this effect was earlier observed only in
GaAs and only for long delays td ≥ 0.3 ps [27], although
a weak decrease in the process duration with increasing
F was noted. Good agreement between the dependence
Rω(Feff(t), 0°) for the normal incidence in Fig. 3a,
which was plotted using the corresponding values of nω

and kω for an excited sample (Fig. 2b), and the spectral
dependence R("ω, 0°) for Si0 (the values of n("ω) and
k("ω) were taken from [35]) qualitatively confirms the
hypothesis of the red shift for both linear absorption
bands of silicon.

The successive plasma-induced band gap collapses
along different crystallographic axes in silicon is prob-
ably caused by the renormalization of the band struc-
ture of silicon due to the change in its crystal structure
JOURNAL OF EXPERIMENTAL
upon vibronic phase transitions rather than by the elec-
tronic effects such as multiparticle interactions in the
e−h plasma and screening of its ion composition [13].
Indeed, at present the effect of band gap collapse along
a certain direction in the Brillouin zone, which causes
the red shift of the interband absorption band, was
observed not only in semiconductors but also in metals
having the interband absorption [36, 37], and its
vibronic nature is reliably established. Therefore, the
red shift of the absorption bands E1 and E2 of Si0 that
we observed during the pump pulse can be explained by
the successive (with increasing input energy) structural
vibronic transitions to metastable and, as follows from
the preservation of the band structure upon the red shift
of the absorption band, crystal phases nos. 1 and 2.
According to the band theory, metastable phases nos. 1
and 2 will be semimetal and metal, respectively, and
their specific features are indeed observed in the depen-
dence of the real part of the dielectric constant

(Feff(t)) (nos. 1 and 2 in Fig. 3b), which allows us to
estimate the red shift for the corresponding vibronic
transitions as "ω1 ≈ 3.8 eV and "ω2 ≈ 4.2–4.3 eV
(arrows 1 and 2 in Fig. 3a). Phases nos. 1 and 2 can be
probably assigned to the phases of Si-III with the body-
centered cubic (bcc) lattice and of tetragonal Si II [38].
Note that such a sequence of the formation of semi-
metal and metal phases upon irradiation of semicon-
ductors by ultrashort laser pulses was predicted in [39].
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R1
2ω
The dependences nω(Feff(t)) and kω(Feff(t)) in Fig. 2b
also demonstrate for the first time the plasma-induced
ultrafast melting of the material [metal phase l'-Si (no. 3)
in Fig. 3] during the 100-fs pump laser pulse above the
threshold Feff(t) ≈ 0.25 J/cm2 which corresponds to the

monotonic increase of the curves  and

 (Fig. 2a) after the preceding abrupt jump.
The melting is experimentally confirmed by the agree-
ment between the values of nω(Feff(t)) ≈ 3.7 ± 0.4 and
kω(Feff(t)) ≈ 5.3 ± 0.5 for Feff(t) ≥ 0.25 J/cm2 and the
optical constant for the equilibrium liquid phase of l-Si
[n(1.5 eV) = 3.3 and k(1.5 eV) = 5.7 [40]]. In addition,
near Feff(t) ≈ 0.25 J/cm2, the reduced plasma density
Ne/Mopt ≈ (2.0 ± 0.3) × 1023 cm–3 in the material (where
Mopt is the optical electron mass) calculated using the
Drude model with the above values of nω(0.25 J/cm2)
and kω(0.25 J/cm2) becomes equal to the maximum

concentration of valence electrons  ≈ 2 × 1023 cm–3

in crystal silicon at room temperature under the
assumption that for each atom there are four conduction
electrons and the initial density of the material is pre-
served. Therefore, Mopt = 1.0 ± 0.2, which is generally
typical for structureless conducting media (metal liq-
uid, plasma) and solid univalent metals, i.e., in this
case, for the liquid l'-Si phase. Estimated by the data of
Fig. 3a (arrow no. 3), the red shift corresponding to the
material melting amounts to "ω3 ≈ 4.7 eV.

Therefore, the experimental study of self-reflection
of the fundamental harmonic in silicon during the pump
pulse revealed the successive transformations of two
metastable crystal states and the liquid phase of silicon
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0
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upon three vibronic transitions manifested in three suc-
cessive red shifts of the absorption spectrum of Si0. The
dynamics of these structural transitions was studied
with a time resolution of about 100 fs in experiments

with the linear reflection  of the probe second har-
monic (by the method of optical microscopy). The
results of these experiments are presented in the next
section (Fig. 4).

3.2. Dynamics of Linear Reflection 
of Probe (Second Harmonic) Laser Pulses

Unlike the experiments on self-reflection of the fun-
damental harmonic pump radiation from the silicon
surface, in which the oblique incidence of radiation
favors the observation of structural transformations
even in relatively thin layers, the probing depth in
experiments on linear reflection of the normally inci-
dent second-harmonic probe beam can be substantially
greater than the depth of structural modification of the
material, which requires the consideration of thin-film
effects (Fig. 5).

According to the results of [27], the red shift of the
linear interband absorption spectrum accompanying
structural transitions in semiconductors can also be
observed at other frequencies of the probe radiation;
i.e., upon probing by the second harmonic radiation, the
red shift of the spectrum of Si0 should take place, begin-
ning from "ω ≥ 3.1 eV. In this case, the relatively stable
(metastable) nature of the emerging new phases will be

manifested in the quasi-stationary behavior of ,
whereas, in the case of continuous deformation of the
material, the corresponding red shift of the linear

R1
2ω

R1
2ω
SICS      Vol. 94      No. 1      2002



100 KUDRYASHOV, EMEL’YANOV
0.50

0

(a)

d, nm
40 80 120

3.4
3.5

3.3

4.0
3.6

3.9
3.8

3.7

0.45

0.55

0.60

0.65

0.5

0

(b)

40 80 120

0.6

0.7
4.27

4.3– 4.6

4.27
4.7
4.8

4.9
5.0
4.2

4.1

4.0
3.9

R
12ω
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5.8, k(3.18 eV) = 0.7 [34]} with different optical constants within the linear absorption E1 band of silicon (dashed curves, the figures
at the curves are photon energies); and (b) for a film located on the surface of the optically thick phase no. 1 {n(3.8 eV) = 4.7,
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R1
2ω

R1
2ω
absorption spectrum will be manifested in a monotonic

dependence of  on time. Indeed, the analysis of the
reflectivity of the excited silicon sample (Fig. 4) shows

that the specific features in curves (Feff)—the
decay, rise, and plateau—can be assigned not only to
the features of the absorption spectrum of Si0 but also
to the same discrete red shifts of this spectrum as in
experiments on self-reflection of the fundamental har-
monic, i.e., to the new phases of the material mentioned

above. Figure 6 shows the time dependences of  for
several characteristic cases corresponding to certain
parts of excited silicon (I–IV in Fig. 4) for Feff = 0.11,
0.18, 0.22, and 0.31 J/cm2.

Thus, the decrease in  in the region Feff ≥
0.11 J/cm2 in the time interval td = 0.1–0.4 ps (Fig. 4a)
can be assigned to the “bleaching” of the sample sur-
face layer caused by the formation of a surface phase
with nω(Feff) < n(3.1 eV, Si0) = 5.5 and nω(Feff) >
kω(Feff), whose thickness increases with increasing Feff.
According to the dependences Rω(Feff(t), 0°) and R("ω,
0°) (Fig. 3a), the bleaching effect takes place for 3.6 ≤
"ω ≤ 3.9 eV. More exactly, as follows from the value

 ≈ 0.47 ± 0.01 for the optically thick layer of this
phase, which is indicated by arrow II in Fig. 4a, this
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effect is observed for n(3.8 ± 0.1 eV) = 4.7 ± 0.2 and
k(3.8 ± 0.1 eV) = 2.1 ± 0.3 for the photon "ω1 = 3.8 ±
0.1 eV (Fig. 5a) at the minimum of Rω(Feff(t), 0°) and
R("ω, 0°) in the blue wing of the E1 band (no. 1 in
Fig. 3a), i.e., for hypothetical semimetal phase no. 1.
Note that the alternative interpretation of the minimum

of  as a plasma reflection edge [1, 9] contradicts the

decrease in this quantity to  ≈ 0.47 ± 0.01 which
was observed after the pump pulse termination for
delays td = 0.1–0.4 ps, whereas the plasma component
in the optical constants of excited silicon should be
maximum by the pump pulse end (at td ≈ 0.1 ps).

In region I (Fig. 4), at times td = 0.2–0.8 ps, the value

 ≈ 0.49 ± 0.01 is reached (curve 1 in Fig. 6a), which
characterizes the optically thin layer of phase no. 1 (the
curve for "ω = 3.8 ± 0.1 eV in Fig. 5a). The further
dynamics of the material in this region is determined by

the increase in  for the time td ≈ 10 ps to the station-
ary value of 0.52 ± 0.01, which does not change up to

td ≈ 3 ns, the spatial region of the increasing  being
coincident with the preceding bleaching region. There-
fore, taking into account that td ~ 10 ps is the character-
istic time of the absorbed energy transfer to a phonon
subsystem due to the electron–phonon interaction and
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Fig. 6. Time dependences of  for the values of Feff corresponding to regions I–IV in Fig. 4: (a) 0.11 (1) and 0.16 J/cm2 (2);

(b) 0.22 (3) and 0.31 J/cm2 (4). The horizontal straight lines correspond to the stationary values of  for phases nos. 1–3:

 ≈ 0.47,  ≈ 0.67, and  ≈ 0.71;  is the initial reflection level,  is the reflectivity of the amorphous phase

ring around the crater. The arrow shows the pump-pulse center.
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Auger recombination [1, 7, 13], as well as due to
phonon–phonon and acoustic relaxation in the skin
layer of thickness up to 50 nm probed by the second

harmonic, the increase in  can be explained by a
further red shift of the linear absorption spectrum of
Si0, approximately to "ω ≈ 4.0 eV, caused by the ther-
mal expansion (deformation) of the layer of phase no. 1,
assuming that phonon modes are thermalized for 10 ps
(in the general case, they can be characterized by the
effective temperature T*). Taking into account the
above red shift of the absorption spectrum by 0.2 eV,
which is described by the temperature dependence of
the band gap of Si0 for direct interband transitions [41],
the maximum temperature in the layer was estimated as
T* ≈ 700 K. This value reasonably agrees with the esti-
mate T* ≈ 1 × 103 K, which was obtained for Feff(t) ≈
0.11 J/cm2 by calculating (using the dependence
kω(Feff (t)), Fig. 2b) the volume energy density (of
about 3.6 × 105 J/mol) absorbed during the pump pulse
in the skin layer of thickness α–1 ≈ 3 × 10–6 cm and due
to the ambipolar diffusion of the e–h plasma (the diffu-
sion coefficient D ~ 102 cm2/s) distributed in a layer of
thickness 10–5–10–4 cm during the plasma lifetime of
the order of 10 ps. Finally, after the target cooling
within a few tens of seconds (conditionally, at td = 105 s),

the initial level of  (  ≈ 0.50 at room tempera-
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ture) is virtually restored, which can indicate the revers-
ibility of the transition to phase no. 1.

The increase in  to 0.68 ± 0.01 and its stationary
value 0.67 ± 0.01 observed for Feff ≥ 0.18 J/cm2 for
times td = 0.1–1 ps (Fig. 4) agree well, according to the
data in Fig. 5b, with the formation of the reflecting sur-
face layer with the coefficients nω(Feff ) and kω(Feff )
corresponding to n("ω) = 3.7 ± 0.2 and k("ω) = 4.6 ±
0.2 for Si0 for the photon "ω2 = 4.27 ± 0.05 eV in the
red wing of the E2 band (arrow no. 2 in Fig. 3a). The
appearance of this layer under different excitation con-
ditions of the sample in different time intervals (Fig. 6)
indicates that a new phase no. 2 is formed. Note that the
assignment of "ω2 to the red wing of the E2 band rather
than to the blue wing ("ω ≈ 4.7 eV) follows from a
comparison of the values of "ω2 in experiments with
the fundamental and second harmonics, as well as from
the absence of the characteristic reflection maximum of

R("ω, 0°) ≈ 0.69 for "ω ≈ 4.5 eV in curves  (Figs. 4
and 6) for Feff ≈ 0.18 J/cm2

In the region II (Feff = 0.18 J/cm2) (Fig. 4) at td < 0.4 ps,
the matter passes through phase no. 1 (curve 2 in

Fig. 6a), whose optical layer (  ≈ 0.47 ± 0.01) is

formed at the pump pulse end (td ≈ 0.1 ps). Then, 
increases to 0.63 for 2 ps and continues to rise slowly

R1
2ω

R1
2ω

Rno. 1
2ω

R1
2ω
SICS      Vol. 94      No. 1      2002



102 KUDRYASHOV, EMEL’YANOV
up to the stationary value of 0.67 ± 0.01 (td = 5–30 ps),
which corresponds to the formation of the optically
thick layer of phase no. 2. It is obvious that the devel-
opment of phase no. 2 at td = 0.4–5 ps (Fig. 6a) occurs
during the Auger recombination of the e–h plasma and
is probably stimulated by the intra- and (or) intermode
phonon–phonon anharmonicity. At times td = 40–100 ps,

 increases to the characteristic value R("ω, 0°) ≈
0.69 (Fig. 3a, "ω ≈ 4.5 eV) and then somewhat

decreases to  = 0.67 ± 0.01, in accordance with the
data presented in Fig. 3a, which can be treated as a
whole as a further quasi-thermal red shift of the absorp-
tion spectrum of Si0 to "ω ≈ 4.7 eV. In this case, the

subsequent increase in  above 0.69 at td = 200–500 ps
is probably caused by material melting. The decrease in

 beginning with td ≈ 500 ps is caused by sample
cooling due to thermal conductivity, which virtually
terminates at td ≥ 3 ns. Finally (at td = 105 ps), the value

 =  ≈ 0.51 ± 0.01 somewhat exceeds the initial

value  ≈ 0.50 due to the formation of the reflecting
amorphous surface a-Si layer [42]; the corresponding
circle with a higher reflection coefficient was indeed
observed around the crater on the target images, which
were obtained within a few tens of seconds after irradi-
ation by the pump pulse. The appearance of the amor-
phous phase confirms the formation of the melt film on
the surface of phase no. 2. A rapid cooling of the film
can be caused by the potentially high thermal conduc-
tivity of the metal phase no. 2, which plays the role of a
substrate. Therefore, in accordance with the results
obtained in [36, 37], we can assume that the last red
shift (up to "ω ≈ 4.7 eV) caused by the quasi-thermal
deformation of crystal phase no. 2, i.e., by the next
vibronic transition, corresponds to a virtually complete
disappearance of the band structure for the state lying
near the band gap and, hence, to material melting.

Curves 3 and 4 in Fig. 6b, which correspond to
regions III and IV in Fig. 4 (Feff = 0.22 and 0.31 J/cm2),
also confirm the formation of the optically thick layer

of phase no. 2 (  ≈ 0.67) at td ≈ 0.3–1 ps (Fig. 6b).
The transition to this phase through intermediate phase

no. 1 (  ≈ 0.47 ± 0.01) begins already at the center
of the pump pulse (at td ≈ 0). Under these conditions,
because the input energy greatly exceeds the formation
threshold of phase no. 2, the phase is strongly heated
due to Auger recombination and electron–phonon
relaxation at td ~ 10 ps, and the next red shift occurs to
"ω3 ≈ 4.7 eV. This shift is manifested in a monotonic

increase in  up to 0.69 ± 0.01 at times td = 7–40 ps
followed by its decrease to 0.67 ± 0.01; then, as for

curve 2, the value of  increases due to melting
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(curve 3 in Fig. 6b). Curve 4 in Fig. 6b behaves simi-
larly and characterizes the dynamics of the state of the
matter in region IV (Feff = 0.31 J/cm2 ≤ Fabl, where Fabl
is the ablation energy), i.e., at the external edge of the
emerging crater (Fig. 4b). Although in the latter case
the vibronic transition and melting in phase no. 2 are
masked at times td = 2–200 ps by the thermal expansion
of the melt and ablation of the material, the termination
of ablation and cooling of the melt due to thermal con-
ductivity restore after 250–300 ps the reflection of the

material at the level corresponding to the value of 

for the optically thick phase of the l-Si melt (  ≈
0.71 ± 0.01) with the temperature near the melting

point, as follows from the value of  calculated
using the optical constants for l-Si [n(3.1 eV) = 1.8 ±
0.2, k(3.1 eV) = 4.2 ± 0.2] from paper [40]. Note that,
in experiments on self-reflection of the fundamental
harmonic, the material melting (phase no. 3 of l'-Si) is
observed on the surface of phase no. 2 already during
the pump pulse (Fig. 3), which, together with the data
for the second harmonic, indicates the combined effect
of the e–h plasma and phonon-phonon anharmonicity
on the melting dynamics of silicon.

3.3. Description of the Dynamics of Structural 
Transitions in Silicon

Using curves (Feff) for different delays td (Fig. 4),
we determined thresholds Feff for the appearance of
specific features in the curves corresponding to the ini-
tiation of phases nos. 1 and 2. The dependences of the
delay time td for the formation of these phases on Feff
(Fig. 7a) with the asymptotic values of thresholds F1
and F2 of structural transitions, in accordance with
analogous experimental dependences for GaAs [27],
have the functional form of inverse proportionality [like
expression (2)], which is quite expected according to
the theory of plasma-induced structural transitions [3–
6, 19]. Nevertheless, unlike [27], we observed the
asymptotic behavior of the dependences td(Feff) up to
times td ≈ 103 ps at which the e–h plasma no longer
affects the dynamics of the corresponding structural
transitions, and it seems that another controlling param-
eter, the effective temperature T* caused by the inter-
mode phonon anharmonicity, plays a key role. In the
intermediate range from 1 to 10 ps, structural transi-
tions to phases nos. 1 and 2 obviously occur under a
combined action of parameters Ne and T*.

By processing the curves in Fig. 7a, it is reasonable
to choose the quantity Feff as a controlling parameter for
the structural transitions, by describing dependences
tdi(Feff) [taking expression (2) into account] in the phe-
nomenological form

(5)
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Fig. 7. (a) Dependences of the duration td of the Si0  no. 1 and no. 1  no. 2 vibronic transitions on Feff  (F1 and F2 are
asymptotic thresholds, and open symbols are thresholds of the corresponding transitions occurring during the pump pulse upon fun-
damental-harmonic probing); (b) subpicosecond part of the above dependences plotted in double logarithmic coordinates

, where Fni = Feff/Fi, i = 1, 2.td– Fnloglog
which follows in this case from the condition of vanish-
ing of the frequency ν(q) of the corresponding soft
mode under the action of parameters Ne and T*:

(6)

where Ti =  is the characteristic time of the ith
transition (i = 1, 2 for phases nos. 1 and 2) and the oscil-
lation period of the corresponding soft mode; Fni =
Feff/Fi – 1 is the reduced energy density; γi is the expo-
nent taking into account the root dependence of tdi on
real controlling parameters Ne and T* [expression of
type (2)] and the dependence of these parameters on
Feff; and Nc and Tc are the critical density of the e–h
plasma and the temperature of the structural transition,
respectively. We processed the subpicosecond part of
the curves in Fig. 7a, which was plotted in double log-
arithmic coordinates  (Fig. 7b). In this
part, the contribution from Ne dominates over that from
T*, which simplifies the form of the power dependence
in (5). In addition, in this part of the curve, the scatter
of data is minimal, in accordance with the inverse-pro-
portionality character of experimental curves td(Feff).

The method proposed by us for processing depen-
dences td(Feff) gives for the asymptotic thresholds of
transitions to phases nos. 1 and 2 F1 ≈ 0.08 J/cm2 and
F2 ≈ 0.15 J/cm2 the close values of the characteristic
transition time T1 = 0.13 ± 0.02 ps and T2 = 0.14 ±
0.03 ps (frequencies ν01(q) = 7.8 ± 1.0 THz and ν02(q) =
7.4 ± 1.5 THz, respectively). Both dependences

 in Fig. 7b have the slope γi of about

ν2 q( ) ν0
2 q( ) 1

Ne

Nc

------– T∗
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------– 
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ν0i
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td– Fnloglog

td( )– Fn( )loglog
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−0.5 (–0.51 ± 0.05 and −0.60 ± 0.11), which suggests
that the dependence Ne(Feff) is linear at td ≤ 1 ps, as was
assumed earlier upon transformation of the depen-

dences (Feff) and (Feff) according to expressions
(3) and (4) neglecting Auger recombination and diffu-
sion in the kinetic equation for the dynamics of the e–h
plasma during the pump pulse (about 100 ps). Note that
the linearity of the dependence Ne(Feff) in the subpico-
second time interval is provided only when the rate of
Auger recombination is low. If this recombination was
dominant, it would give γi ≈ –0.17 because this process
involves three particles. However, according to papers
[1, 13], this process does not occur. Therefore, the sub-
picosecond dynamics of the e–h plasma is mainly
determined by ambipolar diffusion [1], which is consis-
tent with the linear dependence of Ne(Feff).

The found frequencies ν01(q) = 7.8 ± 1.0 THz and
ν02(q) = 7.4 ± 1.5 THz of soft modes involved in
vibronic transitions to phases nos. 1 and 2 correspond,
within the experimental error, to the half frequency of
the LO mode near the center of the Brillouin zone of sil-
icon νLO(0) ≈ 15.5 THz) [41], which is predominantly
excited due to the electron–phonon interaction in the
conduction band. The above relation between the fre-
quencies indicates the possibility of appearance of non-
equilibrium short-wavelength LA modes due to fast
(within 100 fs) symmetric decay of a long-wavelength
LO phonon into two LA phonons with identical ener-
gies and oppositely directed quasi-momenta having the
same magnitude (Fig. 8), corresponding to the known
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104 KUDRYASHOV, EMEL’YANOV
scheme of phonon–phonon relaxation [43]. The time
dependence of the normalized differential reflection

(where 〈 〉  are the time-averaged value of )
observed in the subpicosecond range of td at compara-
tively low values of Feff = 1–6 mJ/cm2 (Fig. 9a) shows

that the quantity  is modulated probably due to
Raman scattering of probe radiation in the weakly
excited material [44] resulting in the appearance of a
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Fig. 8. Schematic diagram of the decay of high-energy
long-wavelength longitudinal optical (LO) phonons upon
relaxation of hot carriers in silicon with emission of longi-
tudinal (LA) and transverse (TA) acoustic phonons.
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number of nonequilibrium modes (Fig. 9b), including
the mode with ν ≈ 8 THz. Note, however, that due to

time-averaging of the value of  over the duration of
the second-harmonic pump pulse (about 100 fs), the
power of components in the high-frequency part of the
spectrum (10–15 THz) is underestimated in this exper-
iment. (Fig. 9b).

It follows from the data presented in Fig. 7 that the
initial long-wavelength LO mode remains stable upon
exceeding the instability threshold for “weaker” LA
modes and is not directly involved in the vibronic tran-
sition. In contrast, hot LA modes are destabilized prob-
ably due to a combined action of the e–h plasma and
intramode phonon–phonon anharmonicity at short
times (phonon–phonon relaxation times), and predom-
inantly of the intermode phonon–phonon anharmonic-
ity at times of the order of a few tens and hundreds of
picoseconds. The destabilization of short-wavelength
hot LA modes along axes Λ, Σ, and ∆ of the phonon
spectrum corresponds to the band gap collapse in the
crystal over three corresponding directions of the Bril-
louin zone, resulting in three discrete red shifts of both
linear absorption bands E1 and E2 of crystalline silicon.
The preservation of the band and phonon spectra in
excited silicon during successive transitions to phases
nos. 1 and 2 and to the melt unambiguously indicates
the crystalline nature of intermediates phases nos. 1 and 2.
Note that these phase transitions of the second kind are
related to the destabilization of short-wavelength LA
modes and occur due to the formation of a spatial com-
pression–rarefaction grating in the excited surface layer
of silicon. New phases appearing in compression
regions will probably be analogous to known high-
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Fig. 9. (a) Time dependence of  in the subpicosecond range for Feff  ≈ 1 mJ/cm2 (inset shows  for the same conditions) and

(b) the power spectrum for Raman-active modes of silicon under the same conditions.
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pressure phases (Si-II and Si-III), which are formed
upon hydrostatic compression due to phase transitions
of the first kind. Along with this, at times td that are
shorter than the characteristic time of acoustic relax-
ation τa ~ 10 ps, the compression-rarefaction grating
represents a set of nuclei of a new phase (a stage of the
premelting type), which is transformed at td ≥ τa to a
continuous phase, which grows inside the sample.

The mechanism of vibronic transitions in silicon
proposed in this paper is substantially different from
known mechanisms [3–6, 18, 19]. First, based on our
experimental data, we assume that soft modes are short-
wavelength nonequilibrium modes LA modes rather
than short-wavelength TA modes [3–6, 18] or long-
wavelength LO modes [19]. The possibility of the
appearance of such hot short-wavelength modes is con-
firmed by the results of our experimental studies and
studies performed in [43]. Second, we established here
for the first time the role of the intra- and intermode
phonon–phonon anharmonicity for vibronic transitions
(in addition to the known plasma-induced instability
[3–6, 18, 19]), which favors structural transformations
over tens and hundreds of picoseconds, i.e., for times
that are substantially longer than the lifetime of the
high-density e–h plasma in semiconductors.

Indeed, we can consider the softening of the fre-
quency of nonequilibrium LA phonons taking into
account the intra- and intermode anharmonicity (along
with the plasma contribution) by using the equation for
the Fourier amplitude uq of the LA mode in the form

(7)

where ω0(q) = 2πν0(q),  is the constant of interac-
tion between the q mode and the q + q1 mode whose
Fourier amplitude is , and the term with β0 ≡ 
takes the intramode anharmonicity into account. It is
obvious that the intramode anharmonicity of the LA
mode under study is substantial at the time scale of
decay (10–11–10–10 s) of nonequilibrium LA phonons
into pairs of transverse TA phonons (with lower fre-
quencies), when, owing to a large amplitude of LA
vibrations, their frequency decreases. Further, at the
time scale of thermalization of the absorbed energy, the
softening of LA phonons is maintained by excitation of
all the acoustic modes due to the intermode anharmo-
nicity. We can assume that the contribution summed
over the spectrum to the renormalization of the fre-
quency of LA phonons with the wave vector q on the
right-hand side of expression (7) will be virtually con-
stant at all stages of phonon–phonon relaxation. This
assumption allows us to introduce the characteristic of
the level of laser excitation of an acoustic subsystem of
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a semiconductor—the effective nonequilibrium tem-
perature T*, which was already mentioned—as

(8)

where A is a constant determining the value of the crit-
ical temperature Tc = ω2(q)/A in expression (6). As a
result, the destabilization of the q mode of nonequilib-
rium LA phonons, which is initiated at short times by
the contribution from the e–h plasma (the parameter
Ne), is continuously sustained and even develops at
longer times due to anharmonic interactions of the q
mode with strongly excited acoustic vibrations of the
lattice (the parameter T*). Thus, the above model
explains the asymptotic time divergence of thresholds
for vibronic transitions to phases nos. 1 and 2 to their
“thermodynamic” limits F1 and F2 (Fig. 7a), which are
related, similarly to the critical slowing down of phase
transitions of the second kind, to the corresponding
critical temperatures Tci.

Unfortunately, we failed to separate the effect of
melting of silicon against the background of the reflect-
ing phase no. 2 and to study its dynamics in subpicosec-
ond second-harmonic experiments. Nevertheless, as
follows from the data presented in Figs. 2, 3, and 7, the
melting dynamics is qualitatively similar to the dynamics
of the vibronic transitions Si0  no. 1 and no. 1 
no. 2: both the ultrafast (during the pump pulse) and
relatively slow (td ≈ 1–103 ps) melting occur caused by
the e–h plasma and different types of phonon–phonon
anharmonicity. The ultrafast melting occurs at the blue
wing of the E2 band (Fig. 3a). Recall that, at the red
wing, the contribution from interband transitions along
the ∆ axis is dominant (the destabilization of the corre-
sponding phonon mode is probably related to the for-
mation of phase no. 2), whereas, at the blue wing, the
main contribution comes from transitions along the Σ
axis [41]. Taking into account that the band gap for
valence σ electrons, which is maximal along the axes X,
∆, and Σ, is similar to the splitting of the energy states
in molecules (HOMO–LUMO gap), which is related to
the energy of a covalence bond, we can assume that the
bonding of atoms along these directions predominantly
determines the stability of a silicon crystal. For this rea-
son, at the blue wing of the E2 band a complete destabi-
lization of a crystal lattice (melting, i.e., the formation
of the l'-Si phase) should occur, as shown above, via the
vibronic mechanism, which is typical for phases nos. 1
and 2. Indeed, the lower estimate of the frequency of
the mode whose destabilization causes melting of the
material by the pump-pulse end (td ≤ 0.2 ps) for Feff(t) ≥
0.25 J/cm2 and the minimum value of the asymptotic
melting threshold F3 ≥ F2 ≈ 0.15 J/cm2 gives, according
to expression (5), the value ν03 ≥ 6.6 THz (the charac-
teristic melting time ν3 ≤ 0.16 ps), which is comparable
with ν01(q) and ν02(q), confirming indirectly the
vibronic nature of silicon melting in our experiments.

βq1
uq q1+

2

q1
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4. CONCLUSIONS

We have observed for the first time by the method of
ellipsometry three consecutive discrete red shifts of
both linear absorption bands of an undoped silicon
crystal during a 100-fs pump fundamental-harmonic
laser pulse accompanied by silicon melting. Time-
resolved probing of the sample by second-harmonic
radiation showed that the shifts occur at a large time
scale (0.1–103 ps). We explained these results by the
consecutive appearance of three long-lived (0.1–103 ps)
metastable states of silicon, which are characterized by
certain emergence thresholds and correspond to certain
discrete red shifts of the absorption spectrum of silicon.
The dependence of the duration of transitions to these
states on the effective energy density showed that these
transitions have a vibronic nature (soft short-wave-
length LA modes of the phonon spectrum along the cor-
responding crystallographic directions) and are related
to structural transformations in silicon, the appearing
semimetal (no. 1) and first metal (no. 2) phases being
crystalline, whereas the second metal phase (no. 3) is a
melt. We determined the microscopic mechanism of
formation of the soft modes and proposed the model
describing the role of the electron–hole plasma and of
the intra- and intermode phonon-phonon anharmonic-
ity in vibronic transitions proceeding in silicon at the
time scale 0.1–103 ps.
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