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Dear Readers! 
This issue of Acoustical Physics is devoted to Cor-
responding Member of the Russian Academy of Sci-
ences, Professor Vitaliœ Anatol’evich Zverev—a promi-
nent scientist and the author of many original ideas and
designs. His works have initiated the development of a
number of areas of research in physical acoustics and
adjacent fields of science. They include signal process-
ing and image formation, antennas, wave propagation
in inhomogeneous and random media, and nonlinear
acoustics. 

Almost all papers presented in this issue of the jour-
nal and reflecting the problems of modern acoustics are
more or less related to Zverev’s works, either in their
topics or ideas or in that they simply develop the
approaches and methods proposed by him. Among the
publications by Zverev in Acoustical Physics, one
should especially note the pioneering experimental
studies of parametric arrays and receivers of sound. The
subsequent works by Zverev on the development of
new methods for the reception and processing of acous-
tic signals resulted in the elaboration of the forward-
scattering location technique and the related acoustic
dark-field method for detecting inhomogeneities in the
ocean. 

Zverev’s work in science is characterized by enthu-
siasm for new directions of research and also by deep
physical intuition and ingenuity, which help him to find
5102- $26.000113
new approaches in solving complicated problems.
Zverev’s professional features are purposefulness and
ability to bring an original idea not only to a test exper-
iment but also to its practical implementation as a new
technical means or instrument.

It is important to note that most of the authors of
publications included in this issue are representatives of
the Nizhni Novgorod school in acoustics: the role of
Zverev in its formation was quite important. The edito-
rial board also decided to include papers that were writ-
ten by authors from other scientific centers but that
were concerned with subjects close to Zverev’s scien-
tific interests.

For years, Zverev has collaborated with the editorial
board of Acoustical Physics as an author and as a mem-
ber of the Editorial Council of the journal. Not many of
the recent issues have appeared without a paper written
by Zverev. This fact testifies to his creative activity and
can be a good example for young scientists. Therefore,
we are especially glad to congratulate Vitaliœ Ana-
tol’evich Zverev on the anniversary of his interesting
life full of scientific achievements. We wish him good
health and new creative ideas.

Editorial Board
 © 2005 Pleiades Publishing, Inc.
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Abstract—This article reviews the development of nonlinear acoustics in Nizhni Novgorod from the days
when the idea of parametric transmission and reception was conceived until the present time. © 2005 Pleiades
Publishing, Inc.
THE BEGINNING: PARAMETRIC ARRAYS

The history of nonlinear acoustics in Nizhni
Novgorod began as early as in the 1950s. Presumably,
its beginning should be associated with the first study
carried out by V.A. Zverev [1]. The subject of this study
was proposed to Zverev by Professor G.S. Gorelik as
the topic of Zverev’s candidate dissertation. Zverev the-
oretically considered and, most importantly, experi-
mentally implemented a relatively simple but previ-
ously unknown effect of a periodic transformation of an
amplitude modulation into a phase modulation and vice
versa when a spectral triplet consisting of a strong car-
rier and two weak side components propagates in a
medium with dispersion. The experiment was per-
formed using an ultrasonic wave propagating on a
string [1, 2].

It would be natural to surmise that this study helped
Zverev to invent and to implement, together with
A.I. Kalachev, the widely known idea of parametric
arrays. The basic idea of these arrays is simple and ele-
gant. If a low-frequency (Ω) signal is incident on a
high-frequency (ω) intense narrow acoustic beam prop-
agating in a medium (in air or in water), their interac-
tion caused by the nonlinearity of the medium gives rise
to side components ω + Ω and ω – Ω, which serve as
received signals. This is the so-called parametric
receiver. If, by contrast, the high-frequency signal con-
sists of two or three close frequencies (which form fre-
quency beats in the first case and an amplitude-modu-
lated wave in the second case), the medium serves as a
detector that generates a low-frequency field and emits
it as an end-fire array.

The main advantage of such devices is the possibil-
ity of receiving or transmitting a narrow-beam low-fre-
quency signal without using large antenna arrays.
Indeed, the directivity of the initial high-frequency
beam is formed by medium-size transducers, while the
1063-7710/05/5102- $26.00 0114
low-frequency signal is received and transmitted by a
“virtual” antenna of the end-fire array type that is
formed by the high-frequency beam itself, which is suf-
ficiently long to produce directional radiation. Another
advantage is that the width of the initial beam is smaller
than the low-frequency wavelength, and this beam pro-
duces no side lobes causing stray reflections, e.g., in a
shallow sea. The main disadvantage of such antennas is
their low efficiency and, hence, low signal-to-noise
ratio. The latter fact has imposed limitations on the use
of these devices in ocean acoustics at low frequencies
and long ranges. However, more local applications,
such as sonars used for fishing or bottom profiling,
proved to be rather promising for experimental investi-
gations and for commercial production of parametric
sonars.

The history of parametric arrays is somewhat dra-
matic. The first publication describing the principle of
a parametric radiator belongs to P. Westervelt, who
introduced the term “parametric” for these devices [3].
(In fact, it would be more correct to use the term “non-
linear arrays,” because the word parametric is conven-
tionally associated with the case of a parametric reso-
nance, when low-frequency signals are generated
owing to an instability and may exponentially grow
from noise, whereas, in arrays whose operation is based
on the principle of nonlinear acoustics, new frequencies
are formed owing to the interaction of waves of other
frequencies.) Later, in the 1960s–1970s, the number of
publications concerned with this subject considerably
increased and many experiments were carried out,
including those in ocean acoustics. Zverev began study-
ing the problems of the nonlinear interaction of acous-
tic waves as early as in the mid-1950s. His first paper
devoted to this problem appeared in 1955 [4] (co-
authored with G.S. Gorelik), and the second paper, in
1958 (co-authored with A.I. Kalachev). In these papers,
for calculating the effect of the nonlinear interaction of
© 2005 Pleiades Publishing, Inc.
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two sound waves, the authors used a method based on
taking into account the sound velocity variation caused
by the low-frequency wave in the medium and on cal-
culating the additional phase shift of the high-fre-
quency wave. Work in this area of research continued,
but the next publication did not appear until as late as in
1967 [6]. The parametric radiator and receiver were
proposed by Zverev and Kalachev in 1959; however,
according to the rules of that time, they were not
allowed to publish the results of their work but only
received a number of secret patents. Finally, in the late
1960s, the idea of the parametric receiver and the cor-
responding laboratory experiment could be disclosed
and published [7, 8]. Nevertheless, today, when dis-
cussing parametric arrays, even acousticians from
western countries refer not only to Westervelt’s but also
to Zverev and Kalachev’s publications.

Now, we consider the subsequent contribution of the
Nizhni Novgorod scientists to this area of research. One
result was concerned with the limiting modes of opera-
tion of parametric radiators, when an intense pumping
beam forms saw tooth shock waves [9, 10]. This result
is important because the efficiency of such arrays
increases with pumping intensity. The intensity of the
detected signal is proportional to the square of the
pumping amplitude up to the point where shock waves
are formed; then, the pumping signal is strongly atten-
uated. In addition, the formation of shock waves leads
to a broadening of the directivity pattern of the trans-
mitted signal, which removes the main advantage of the
system. The generation of low-frequency noise by para-
metric arrays under the nonlinear limitation of the radi-
ation intensity and the effect of fluctuations on the char-
acteristics of parametric arrays were studied in [11, 12].
A nonlinear attenuation of the pumping wave also lim-
its the low-frequency signal gain in the parametric
reception. For example, in the degenerate case of para-
metric interaction, when the pumping frequency is
twice as great as the frequency ω0 of the weak signal,
the maximal gain of the weak signal is equal to 4/π ≈
1.27. In [13], it was shown that the use of higher com-
bination frequencies ω1 + 2m = ω0(1 + 2m) allows one to
considerably increase the efficiency of the parametric
interaction of waves for extracting weak acoustic sig-
nals. This is related to the fact that, at the stage of dis-
continuity, the harmonic amplitudes at these frequen-
cies are equal to the amplitude of the amplified signal at
the frequency ω0 for a very large number of combina-
tion frequencies. In this mode of operation, the effect
also occurs for the case when the pumping frequency is
much higher than the frequency of the weak signal [14].
In [15], it was shown that the use of focusing for the
pumping wave also considerably increases the effi-
ciency of the parametric reception. In [16], the effi-
ciency of parametric reception was studied in a moving
medium with velocity fluctuations and a method for
reducing the effect of these fluctuations was proposed.

One more result was obtained for the acoustics of
nonlinear media with dispersion, when the pumping
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
energy is not spent for the higher harmonic generation
and one can avoid the formation of shock waves, which
makes the system more efficient. One of these possibil-
ities is to use the interaction of modes in waveguides.
Indeed, a waveguide may contribute to the radiation of
parametric arrays (like any other sources) through the
concentration of radiation in the vertical plane [17].
However, here, we consider the case when the nonlin-
ear process itself is subjected to the influence of the
waveguide as a medium with dispersion in which only
several specific modes interact. In the early papers [18,
19], a parametric (in this case, actually parametric)
sound generator was presented. The use of oceanic
waveguides for selection of individual modes was pro-
posed in [20].

Many of the works published by the representatives
of the Nizhni Novgorod school are devoted to the anal-
ysis of the operation of parametric radiators and receiv-
ers in inhomogeneous media: in a shallow sea and in
refraction waveguides (including those with random
inhomogeneities) [21–28]. These works are partially
reflected in the review [29]. It was shown that, under
specific conditions of waveguide propagation, paramet-
ric radiating arrays can be used to form a preset space–
time structure of the acoustic field, in particular, for a
selective excitation of modes of the oceanic waveguide.
In addition to theoretical studies, a series of model
experiments were performed in the tank of the Acous-
tics department of the Nizhni Novgorod State Univer-
sity. In these experiments, the mode composition of the
field produced by a parametric radiator in a range-inde-
pendent waveguide was studied [30, 31] and the forma-
tion of the characteristics of a parametric radiator near
a statistically rough surface was investigated [32]. The
results of experimental studies carried out in field con-
ditions together with the Acoustics Institute are pre-
sented in [33, 34].

Another factor that influences the nonlinear acoustic
effects is the presence of gas bubbles in water. In the
1970s, it became clear that a small concentration of
bubbles may increase the nonlinearity of water by sev-
eral orders of magnitude. This suggested the idea of
using bubbles of one size for amplifying the radiation
of parametric arrays; this idea was put forward by Zab-
olotskaya and Soluyan [35]. Under actual conditions,
bubbles strongly vary in radius, and the main contribu-
tion is made by those bubbles that are resonant at the
given frequencies. In Nizhni Novgorod, a parametric
radiation with the use of a bubble layer was realized in
a laboratory tank [36]. The problems concerned with
parametric arrays, including those in dispersion sys-
tems, are considered in detail in [37].

NONLINEAR ARRAYS AND BEAMS

Many of the Nizhni Novgorod scientists involved in
research in nonlinear acoustics were educated as spe-
cialists in electromagnetic or optical studies. In partic-
ular, they carried out research projects in laser physics
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and nonlinear optics that were originally related to non-
linear phenomena in wave beams, such as harmonic
generation, self-focusing, etc. Therefore, their interest
in the problems concerned with beams and rays in
acoustics is quite natural. The interest in these problems
was also quickened by the popularity of acoustic para-
metric arrays and by some problems of astrophysics.
The main theoretical difficulty in solving these prob-
lems is the smallness of dispersion in acoustics, which
results in the accumulation of nonlinear deformations
of waves up to the shock-front formation. Thus, the
approximation of quasi-harmonic waves, which is pre-
dominantly used in nonlinear optics (especially before
the present time, when ultrashort laser pulses have
become feasible), often fails in acoustics.

The early theoretical studies in this area of research
belonged to nonlinear geometrical acoustics (NGA), in
which diffraction could be ignored and the shape of a
ray and the deformation of the wave profile along the
ray were considered in terms of the short-wave approx-
imation. Actually, the term NGA was introduced by
Gubkin in 1958 [38], although nonlinear rays and ray
tubes were discussed earlier by Whitham [39]; presum-
ably, these works were concerned with waves from
explosions in the atmosphere. In 1963, one of the
authors of this review published a paper on the general-
ization of the NGA approach to the case of nonstation-
ary waves [40].

Subsequent studies in this direction, which were
carried out by a group from the Institute of Applied
Physics, were partially initiated by the key paper by
Khokhlov and Zabolotskaya [41], who derived a para-
bolic equation for a weakly divergent acoustic beam.
Later, this equation was extended to the case of a vis-
cous medium by Kuznetsov. This equation is still diffi-
cult for analytical study but is widely used for numeri-
cal calculations. Our group used another approach,
which is known as the linear-ray method. It assumes
that the accumulation of deformations of the wave pro-
file occurs separately within each ray tube determined
in the approximation of linear geometrical optics of
inhomogeneous media [42]. This approximation was
used in different problems, such as shock-wave propa-
gation in the solar chromosphere and heating of the lat-
ter by shock waves [43], shock-wave propagation in the
upper layers of the ocean [44], and the propagation and
attenuation of intense sound waves in an exponential
atmosphere [45].

The linear-ray approximation fails when the effect
of self-refraction manifests itself because of the depen-
dence of the velocity of a shock wave on its amplitude
(this may occur, e.g., for positive pulses). The geomet-
rical acoustics of shock waves was initially developed
by Whitham [39] for relatively long shock pulses of
arbitrary amplitude, which propagate within ray tubes
as in separate channels. A similar approximation was
used for solitons [46, 47]. In [48], Whitham’s theory,
with the use of the weak-nonlinearity approximation,
was extended to short pulses, whose nonlinear defor-
mations were of the same order of magnitude as the
amplitude variations due to self-refraction. Note that
another case, namely, the thermal self-refraction of
shock waves, was studied earlier by a group of scien-
tists from the Moscow State University [49, 50].

Simultaneously, a simplified approach suitable for
more than pencil beams was developed. For this pur-
pose, a step-by-step algorithm was elaborated on the
basis of the spatial separation of regions where the dif-
fraction effect is small compared to the NGA effect
(nonlinear deformations along the ray tube) and regions
where the diffraction effect is relatively strong with the
subsequent matching of the respective solutions in the
space between these regions. In fact, this approxima-
tion was used as early as 1972 in the study of the radi-
ation of an intense acoustic source, where, after the for-
mation of the directivity pattern, nonlinear effects due
to diffraction began to accumulate up to a possible
shock formation followed by a rapid attenuation of
waves in a fixed direction [51]. Since the wave ampli-
tude is usually maximal at the radiation axis, attenua-
tion begins from the axial direction and continues in
other directions. This leads to an isotropization of radi-
ation: the radiation intensities in different directions
become approximately equal. Note that, simulta-
neously, a similar effect was experimentally observed
by Blackstock et al. [52], which resulted in long-term
contacts between research groups from Nizhni
Novgorod and from the United States.

Another challenge was to describe the nonlinear dis-
tortions of a wave approaching a caustic when the latter
can be described by a Hilbert integral without consider-
ing the nonlinearity [53]. After the wave passes the
caustic, the NGA approximation again becomes valid
for its description. It was shown that, in the NGA
approximation, the nonlinear deformations of the wave
remain finite until the caustic is reached in spite of the
infinite growth of the wave amplitude in this approxi-
mation. As a result, a uniform matching with the dif-
fraction zone near the caustic is possible.

Finally, we note that the step-by-step algorithm
proves to be also valid for narrow beams obeying the
Khokhlov–Zabolotskaya–Kuznetsov (KhZK) equa-
tion, although the latter still usually requires a numeri-
cal solution. Such beams include the focused intense
acoustic beams that are used in remote acoustic surgery
and noninvasive diagnostics of organs. The focusing of
radiation can be considered in terms of NGA, and the
behavior of waves in the focal plane, in terms of the the-
ory of diffraction of a nonharmonic nonlinearly
deformed beam. This method was used in [54], which
made it possible to analytically derive the following
conclusions:

(i) in the focal plane, the profile of a focused har-
monic wave becomes asymmetric with positive peaks,
whose shape is close to the time derivative of a conver-
gent steepening wave;
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
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(ii) owing to the stronger concentration of higher
harmonics, the amplitude of the wave and the mean
intensity are additionally amplified at the focus, as
compared to linear focusing;

(iii) in the case of shock formation, the field maxi-
mum is achieved somewhat nearer than the geometrical
focus.

These conclusions were confirmed by numerical
calculations performed by other authors [55] and by
experiments. A similar algorithm was applied to dif-
fracted beams [56]. In the case of diffraction of a plane
nonlinear wave by a hole in a baffle, for the wave profile
at the axis, the Kirchhof method yields a profile close to
that at the axis of a focused beam; in a fixed transverse
plane, the diffracted wave is smoothed out away from
the axis.

Note that, for a beam in free space, this approxima-
tion yields a result that is only qualitatively correct.
A combination of the linear-ray theory and local dif-
fraction in the direction across the ray was considered
in [57]. A more rigorous derivation of the nonlinear
evolution equations (including the KhZK equation) was
performed in 1974 in [58] (see also [59]).

In the recent years, the theory of nonlinear acoustic
beams has found wide application, especially in medi-
cine. The applications use more complex numerical
calculations, which are often based on the KhZK equa-
tion, and the results often become more popular than
the relatively simple models described above. However,
these models remain useful not only for constructing a
clear qualitative model of the process but also for
obtaining fairly accurate quantitative estimates.

NONCLASSICAL NONLINEAR ACOUSTICS 
OF SOLIDS

Historically, “classical” nonlinear acoustics was
formed as a weak-nonlinearity branch of gas dynamics
and elasticity theory. It included acoustic waves in liq-
uids and crystalline solids that were usually represented
as dispersionless or weakly dispersive media with a
nonlinearity caused by the properties of interatomic
and intermolecular potentials. In such media, the non-
linearity is small (in most cases, quadratic) if the exter-
nal forces produced by pressure in an acoustic wave are
much smaller than the interatomic forces.

However, many media and materials have complex
structures that include grains, pores, cracks, and other
elements suppressing the internal bonds; as a result, the
acoustic nonlinearity may considerably increase. Such
a “structural nonlinearity” is typical of a wide class of
media with low volume contents of bonds and defects.
A well-known example is water with gas bubbles: when
the volume ratio of bubbles is 10–3–10–4 or less, the
effective nonlinear parameter of the gas–liquid mixture
may increase by several orders of magnitude. The same
is true for solids with grains, pores, or cracks.
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
Experiments with ultrasound in metals have been
carried out since the 1950s, but, initially, they were
mainly concerned with specific properties of samples
of materials rather than with their acoustic nonlinearity
and the effects related to it. Apparently, the first obser-
vations of nonlinear waves with the aim of studying the
aforementioned effects were performed the Institute of
Applied Physics [60]. A harmonic excitation of an alu-
minum ring resonator resulted in the observation of a
broad spectrum of harmonic and subharmonic frequen-
cies (i.e., a parametric generation). It was shown that
the parametric generation threshold was far below the
estimate obtained from the reference data on the char-
acteristics of the given metal. In addition, the material
exhibited the property of a prolonged relaxation (which
is now called “slow dynamics”): after an intense acous-
tic impact, the threshold value changed and then recov-
ered within an hour or more.

Intensive experimental and theoretical studies of
these phenomena in metals and, especially, in rock
were started in the 1980s by two research groups: one
from the Institute of Applied Physics and the other from
the Los Alamos National Laboratory. Experiments
were mainly carried out with bars made of different
materials, in which resonant longitudinal modes were
excited. Many specific effects were observed and mea-
sured. They included the following:

(i) harmonic generation. In most cases, the third-
harmonic amplitude exceeded the second-harmonic
amplitude. The fact of special importance is that the
typical dependence of the third-harmonic amplitude on
the fundamental signal amplitude was quadratic rather
than cubic. This clearly disagrees with any analytical
equation of state (the stress–strain dependence) that
allows a Taylor series expansion. This fact alone testi-
fies to the presence of singularities in the equation of
state, in particular, to the presence of hysteresis;

(ii) nonlinear frequency shift. The amplitude–fre-
quency characteristic of a single mode is characterized
by a strong dependence of the quality factor on the
wave amplitude, which is typical of media with hyster-
esis. The frequency corresponding to the resonance
maximum is shifted (usually to lower frequencies) as
the amplitude increases, and this shift is usually propor-
tional to the amplitude. Note that, for any “normal”
oscillator with a cubic nonlinearity, which is described
by the Duffing equation, the shift is proportional to the
amplitude squared. This difference also testifies to a
nonclassical (nonanalytical) nature of the dependence.

In addition, these phenomena are characterized by a
considerable inertia. For example, under the action of
an intense oscillation packet, the resonant frequency of
a weak (linear) signal decreased and recovered to its
original value within approximately an hour. It is worth
noting that the corresponding frequency shift decreased
with time according to a logarithmic law rather than an
exponential one;
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(iii) modulation. These experiments are of special
interest from the point of view of diagnostics. A sam-
ple is subjected to the effect of signals with two fre-
quencies: a high frequency and a low frequency. The
nonlinearity of the material gives rise to side compo-
nents represented by the sum and difference frequen-
cies; i.e., the high-frequency field is modulated by the
low-frequency one;

(iv) effect of a liquid. Water saturation is known to
affect the linear properties of substances. Studies per-
formed at Los Alamos showed that water saturation
also considerably affects nonlinear phenomena, such as
the nonlinear frequency shift. A 100% saturation
reduces the nonlinearity (which is natural, because
water fills the cavities and makes the material harder),
whereas a relatively low or medium water content (e.g.,
up to 30%) leads to a considerable increase in the non-
linearity. Presumably, this occurs because of the effects
of the surface tension and Van der Waals forces on the
grain coupling.

In Nizhni Novgorod, these effects were observed for
a number of materials, including metals [61–63], rock
(sandstone, limestone, etc.) [64], sand [65], ice [66],
and concrete [67].

A theoretical study of acoustical phenomena in
strongly nonlinear media and, especially, in media with
hysteresis, presents a complex problem, which has not
yet been fully investigated. One of the mechanisms that
may be responsible for a strong nonlinearity is related
to the interaction between grains, which can be repre-
sented as Hertzian contacts with the displacement
(strain) being proportional to the force (stress) to the
2/3 power. At the Institute of Applied Physics, the
application of such models to acoustic phenomena has
been studied since the early 1990s [68], and the theoret-
ical conclusions derived from these studies were con-
firmed by experiments with lead balls and tufa grains
[69]. Later, this theory was used to obtain estimates in
more realistic situations, for example, in the case of a
nonideal packing of grains or in the case of depth-
dependent parameters of rock [70–72]. Another model
refers to the type of cracks with rough edges, where
Hertzian-type contacts occur within a crack and the dis-
tributions of cracks in size and orientation are taken
into account in the derivation of the “macroscopic”
stress–strain dependence [73, 74].

These models account for strong nonlinearity but
not for hysteresis. Most of the existing hysteresis mod-
els are more or less phenomenological (except possibly
for the Granato–Lucke model proposed in the 1950s for
describing dislocations in metals). In [62, 64, 75], the
aforementioned experimental data were used as a basis
to propose some hysteretic stress–strain dependences
that simultaneously agreed with the results of different
types of measurements (harmonic generation, loss, and
frequency shift). Among the hysteresis models, we
select two main ones: with a loop around the zero point
(the so-called inelastic hysteresis, whose name origi-
nates in the residual stress at zero displacement) and
with a double loop returning to zero (the so-called elas-
tic hysteresis). Since the nonlinearity is still weak (the
nonlinear terms of the equation are much smaller than
the linear ones), any continuous portion of the hystere-
sis curve can be represented by a combination of linear
and quadratic terms. Note that these models can be
obtained by representing a medium in the form of a set
of hysteretic elements with different parameters and by
averaging their contributions to the stress–strain depen-
dence [76].

Wave processes that occur in such systems were the-
oretically studied with the use of the two aforemen-
tioned basic models. According to [77, 78], at the
beginning, a travelling harmonic wave considered in
the framework of the inelastic model may acquire a tri-
angular or saw tooth shape, which radically differs
from the wave profile in a classical medium with a qua-
dratic nonlinearity. Then, on the basis of the classical
“elastic” model, a shock-wave front may be formed in
addition to the singular peaks (jumps of derivative).
This theory was applied to traveling-wave modes in a
ring resonator [79]. However, most of the recent exper-
iments were performed on bars with free ends. This sit-
uation corresponds to a more complex problem of the
interaction of waves propagating in opposite directions.
For a classical quadratic nonlinearity, this problem was
solved in 1974 [80] (see also [81]). For hysteretic
media, it was considered in application to a single
example of harmonic oscillations and was only recently
generalized to the case of counter-propagating waves of
arbitrary shape [82, 83].

One of the practically important branches of nonlin-
ear acoustics of solids is the nonlinear vibroacoustics of
thin-walled structures (bars, plates, and shells). In
Nizhni Novgorod, these studies were mainly performed
at the Nizhni Novgorod Branch of the Institute of
Mechanical Engineering, Russian Academy of Sci-
ences, and at the Nizhni Novgorod State University. In
particular, nonlinear processes in a thin-walled ring res-
onator were studied with allowance for the self-consis-
tent interaction of longitudinal and flexural waves [84,
85]. It was found that, as a result of decay instability,
energy from an intense longitudinal wave can be trans-
ferred to flexural waves. Processes of a cascade transfer
of oscillation energy up and down the spectrum in dis-
tributed elastic systems were considered in the absence
of simple and multiple resonances. Conditions for the
formation of envelope solitons were revealed along
with the conditions for the resonance interaction of
long and short waves in the presence of a group syn-
chronism and for self-modulation effects [86–88].
Between 1984 and 1986, what were presumably the
first studies of the influence of diffraction effects on the
nonlinear evolution of quasi-plane longitudinal and
shear waves in a thin plate were carried out; the insta-
bility of nonlinear plane waves was demonstrated along
with the possibility of the formation of two-dimen-
sional longitudinal-strain solitons in a plate and the
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
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possibility of the self-focusing of a two-dimensional
shear-wave beam [89].

Research carried out at the Nizhni Novgorod
Branch of the Institute of Mechanical Engineering
included some other aspects of the nonclassical nonlin-
ear acoustics of materials consisting of nonpoint parti-
cles coupled by complex interaction forces. The parti-
cles may be large molecules, domains, nanocrystallites,
etc. Historically, one of the first models of a medium to
take into account internal rotations is the Cosserat con-
tinuum consisting of solid undeformable bodies with
not only translational but also rotational degrees of
freedom. In [90–95], the propagation and interaction of
nonlinear waves in such media are investigated and, in
particular, the formation of stationary longitudinal spin
waves and the nonlinear self-modulation of helical
shear waves are studied along with different variants of
resonance interactions between longitudinal, spin, and
shear waves.

The rapid development of nanocrystal technologies
in recent years has attracted considerable interest to
studies of the nonlinear dynamics of complex crystal
lattices, such as molecular polymers or liquid crystals.
In the long-wave approximation, the theory of such sys-
tems is equivalent to the nonlinear acoustics of media
with a microstructure. Nonlinear self-consistent models
that describe the propagation and interaction of transla-
tional and spin waves in quasi-one-dimensional and
quasi-two-dimensional crystals with lattices of a
molecular type were considered in [96, 97].

One more remarkable achievement was the develop-
ment of the theory of thermal parametric excitation of
nonlinear transverse vibrations in current-carrying
structures (bars and strings) in the presence of convec-
tive and radiative heat transfer to the surrounding
medium [98, 99]. It should be noted that the formula-
tion of the problem was first put forward by L.I. Man-
del’shtam in the late 1920s as an example of parametric
instability in an electromechanical system. Similar
effects of flexural vibration excitation in current-carry-
ing bars were observed, in particular, in electric-arc
melting plants and in experiments with current-carry-
ing tungsten bars simulating the operation of fuel ele-
ments in nuclear reactors.

A keen interest in the problems described in this sec-
tion is stimulated by the prospects of using nonlinear
methods for diagnostics of materials and for nonde-
structive testing of structures. Indeed, small defects,
such as cracks, or the fatigue of a material may cause
no considerable effect on the linear properties of a
given material or structure (e.g., the velocity of sound)
but may noticeably (by several orders of magnitude)
increase the manifestation of nonlinear processes.
Some aspects of the use of nonlinear acoustic methods
for the diagnostics of different media and materials are
described below.
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STATISTICAL PROBLEMS 
OF NONLINEAR ACOUSTICS

Active theoretical studies in statistical nonlinear
acoustics began in the USSR in the mid-1970s, simul-
taneously at the Moscow State University and in
Nizhni Novgorod (Nizhni Novgorod State University
and Institute of Applied Physics, Russian Academy of
Sciences). These studies were concerned with the anal-
ysis of plane intense noise waves described by the Rie-
mann or Burgers equations. In the theory of turbulence,
the Burgers equation is widely used in model descrip-
tions of hydrodynamic turbulence [100], and the solu-
tion to this equation with random initial conditions is
called Burgers turbulence (sometimes, even Burgu-
lence [101]) or acoustic turbulence. Therefore, many of
the papers on the Burgers turbulence that were pub-
lished by the Nizhni Novgorod specialists in nonlinear
waves were closely related to statistical nonlinear
acoustics. The most important results obtained by
Nizhni Novgorod scientists in this area of research
were summarized in the monographs [102–106] and
the reviews [107–110], which contain extensive lists of
references. Some of the original problems were
included in the university manual [111] prepared by the
Acoustics departments of the Moscow and Nizhni
Novgorod universities.

In describing acoustic waves, one can usually ignore
their dispersion in a broad frequency range. In a disper-
sionless medium, an effective interaction occurs
between a great number of harmonics, and this interac-
tion leads to a strong phase coherence of the harmonics
involved in it. Therefore, in this class of problems, one
cannot use the method of slowly varying amplitudes,
which is rather efficient in nonlinear optics, where it is
possible to limit consideration to a small number of lin-
ear interacting modes because of strong dispersion. The
strong coherence of spectral components also does not
allow one to use the chaotic phase approximation,
which is used in the weak turbulence theory, where the
description of the interaction of a great number of linear
modes can be reduced to kinetic equations for the mode
intensities.

For plane nonlinear waves, the evolution of the par-
ticle velocity v(t, z) is described by the nonlinear diffu-
sion equation, i.e., the Burgers equation. For acoustic
noise, the statement of the problem is reduced to a
search for the statistical characteristics of the field v(t, z)
in a cross section z from the known statistics of the field
v 0(t) at the source at z = 0. Although the nonlinear
Burgers equation can be reduced, via the Hopf–Cole
substitution, to a linear diffusion equation, a direct
application of the exact solution is of little use for sta-
tistical problems, where averaging over an ensemble of
realizations is required. This problem becomes espe-
cially difficult at large Reynolds numbers, when
approaches based on the perturbation method are inap-
plicable. However, when the viscosity coefficient is
small, the dissipation is significant in only a narrow
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vicinity of shock fronts, which, in the limiting case of a
vanishingly small viscosity, allows one to reduce the
solution of the Burgers equation to the so-called princi-
ple of maximum or principle of particle selection [102,
103]. In this case, the solution of a homogeneous Burg-
ers equation is reduced to a search for the maximum of
a functional of the initial field.

In the limiting case of a vanishingly small viscosity,
at the initial stage where the formation of discontinui-
ties can be neglected, the Burgers equation transforms
into the Riemann equation. The latter, in its turn, is
reduced to a set of characteristic equations in terms of
ordinary derivatives, i.e., to the free motion of particles.
Using the statistical relations between the Lagrangian
description (statistics of particles) and the Eulerian
description (statistics of the field at a given space–time
point), exact expressions were determined for the prob-
ability distributions of the Riemann waves [112, 113].
In particular, it was shown that, despite the strong dis-
tortions of the profile, the one-point probability distri-
bution of a Riemann wave is conserved. In the course of
the evolution of a wave with initially Gaussian statis-
tics, the one-dimensional distribution remains Gauss-
ian, while the higher probability distributions are dis-
torted. The use of higher order spectra in the diagnos-
tics of intense acoustic noise allows one to determine
the direction of the energy flux along the spectrum from
the measurements in a single cross section [114, 115].
In practical applications, an important problem is to
obtain information on the spectrum of a random acous-
tic wave. Expressions for the energy spectra of Rie-
mann waves were almost simultaneously obtained at
the Moscow State University and at the Nizhni
Novgorod State University [116–118]. On the basis of
these expressions, characteristic features of transforma-
tion of both broadband and quasi-monochromatic sig-
nals were studied. In particular, it was shown that a non-
linear interaction leads to a universal behavior (propor-
tional to the square of frequency) of the spectrum in the
low-frequency region. For a Riemann wave, the energy
should be conserved; however, from the expressions
obtained for the spectra in [116–118], it follows that the
energy, when calculated as the integral over the spec-
trum, decreases with distance from the input. This is
related to the fact that, in the case of Gaussian statistics,
the regions of ambiguity of the Riemann wave occur at
arbitrarily small distances, and the passage from the
Eulerian description to the Lagrangian one in the spec-
tral representation is equivalent to the replacement of
the multivalued solution by a single-flux one, which is
obtained by an alternating-sign summation of the
branches of the Riemannian solution [109].

The appearance of discontinuities leads to a univer-
sal asymptotics of the spectrum ∝ω –2 in the high-fre-
quency region. The effect of discontinuities can be ana-
lytically calculated either for the initial stage, where
their number on the characteristic time scale is small
[119], or for long distances, where, because of the mul-
tiple confluence of discontinuities, the characteristic
time scale of the wave τ(z) far exceeds the initial corre-
lation time τ0 [102, 103, 120, 121]. At these distances,
the wave represents a sequence of saw tooth pulses with
the same slope ∂v /∂t ∝ –1/z and with random positions
of discontinuities. The confluence of discontinuities
occurs according to the law of coalescence of perfectly
inelastic particles and leads to the growth of the charac-
teristic time scale τ(z). The multiple confluence of dis-
continuities leads to a loss of information on the fine
structure of the initial signal, and, at long distances, a

self-similar spectrum E(ω, z) ∝ τ 3(z)z–2 (ωτ(z)) is
formed, whose evolution in time is determined by a sin-
gle time scale τ(z) ∝ z1/2ln–1/4(z) [102, 103, 120]. In the
high-frequency and low-frequency regions, the spec-
trum has universal asymptotics E(ω, z) ∝ ω –2z–3/2 and
E(ω, z) ∝ ω 2z1/2, respectively. Because of the conflu-
ence of discontinuities, the energy spectrum is shifted
towards low frequencies and the decay of noise occurs
more slowly, 〈v2〉 ∝  τ2(z)/z2 ∝  z–1, than that of a periodic

signal, 〈v 2〉  ∝  /z2 ∝  z–2. A nonlinear decay of com-
plex deterministic signals (of a fractal type and with a
Weierstrass–Mandelbrot spectrum), whose behavior
reflects the main features of the noise-field evolution,
was considered in [122, 123].

At finite but rather large Reynolds numbers, the
shock fronts are of a finite width τshock(z) ∝ z/τ(z) and
the power law describing the spectrum decay, E(ω, z) ∝
ω–2z–3/2, is replaced by the exponential decay law
E(ω, z) ∝  exp[–ωτshock)2/3]. This behavior of the high-
frequency part is related to fluctuations in the width of
discontinuities of the noise wave (for a periodic wave,
E(ω, z) ∝  exp[–nω0τshock]). Because of the multiple
confluence of discontinuities, the distance zlin at which
the plane noise wave reaches the linear stage is large:

zlin ∝  exp( ), where Re0 is the Reynolds number of
the input noise [102, 103, 120, 124]. The analytical the-
ory adequately explains the results of the field experi-
ments on the propagation of intense acoustic noise
[125]. In [126–128], the decay of noise characterized
by a power law E(ω, z = 0) ∝  ωn in the low-frequency
region was studied. It was shown that, when 1 < n < 2,
a loss of self-similarity occurs with the evolution of the
energy spectrum, and, when n < 1, the asymptotic
behavior of the spectrum, as well as the behavior of
individual realizations, only weakly depends on the
high-frequency components.

For applications, it is important to study the evolution
of quasi-monochromatic signals v0(t) = a(t)cos(ω0t +
ϕ(t)) with random amplitude and phase modulations,
and the first studies were carried out for such signals. In
[129], the probability distribution of the discontinuity
development length was determined, and it was found
that discontinuities may appear in a randomly modu-
lated wave earlier than in a deterministic wave with the
same energy. For a quasi-monochromatic signal with
Gaussian statistics and zero spectrum width, the proba-

Ẽ

τ0
2

Re0
2

ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005



NONLINEAR ACOUSTICS IN NIZHNI NOVGOROD 121
bility distribution of the field was first calculated by
researchers from the Moscow State University [130]. It
was shown that, for an amplitude-modulated signal, a
nonlinear medium is a perfect limiter and that, at long
distances, the initial Gaussian distribution transforms
into a uniform one. In [131–133], it was shown that, in
a nonlinear medium, a frequency modulation of the
input signal is transformed into an amplitude modula-
tion of a saw tooth wave, which results in a spread of
the boundaries of the uniform distribution. If the input
spectrum has a finite width, the amplitude modulation
gives rise to motion of the shock fronts, i.e., to an addi-
tional phase modulation of the saw tooth wave. Physi-
cally, the motion of the shock fronts is related to the
interaction of the high-frequency quasi-periodic saw
tooth wave with the low-frequency wave vLF(t, z)
caused by the nonlinear detection of the input signal. As
the order number of harmonic increases, spectral lines
broaden until a continuous power-law spectrum is
formed. This effect was observed experimentally in
[133]. The same experiments demonstrated the disap-
pearance of the fine structure of intense broadband
acoustic noise. The fundamental difference between the
nonlinear propagation of a quasi-monochromatic wave
and that of a tone signal lies in the parametric genera-
tion of slowly decaying low-frequency components
vLF(t, z). In [131, 132, 134], the statistical characteris-
tics of low-frequency components were studied and, in
particular, it was shown that, for small Reynolds num-
bers, the detected component is characterized by a Ray-
leigh-type distribution, and, for large Reynolds num-
bers, by a Gaussian distribution.

Another class of problems is related to the propaga-
tion of modulated noise, when nonlinear processes lead
to the generation of coherent noise components with
zero mean. In [135–137], it was shown that, as a result
of the multiple confluence of discontinuities, a pulse
with a noise carrier is transformed into an N-wave; if
the time scale of the noise carrier is much smaller than
the pulse duration, the positions of the shock fronts of
the N-wave in different realizations are virtually deter-
ministic. The generation of a tone signal from noise
with a harmonic intensity modulation was studied in
[138]. It was shown that the efficiency of the generation
of a signal with a noise carrier is higher than that of a
signal with a tone carrier.

Pioneering studies of the nonlinear interaction of
noise with regular signals were performed at the Mos-
cow State University (see [117] and the literature cited
therein). A series of publications [14, 139, 140]
reported on the interaction of noise with signals at later
stages, when the formation of continuities radically
changes the spectral composition of the wave and, in
particular, noise components appear in a broad fre-
quency range. Here, we limit our consideration to the
example of interaction between an intense high-fre-
quency harmonic wave and low-frequency noise vN(t,
z). In this case, one can assume that noise only causes a
quasi-static phase shift of the high-frequency signal. At
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distances at which the nonlinear distortion of noise
vN, 0(t) can be ignored, the expression for the nth har-
monic of the signal can be represented as vn(t, z) =
An(z)cos(nω0t + ϕn(t, z)), where An(z) is the amplitude of
the nth harmonic of the regular signal and ϕn(t, z) ≈
nω0zβvN, 0(t) is the phase shift. As long as the phase
modulation index is small, for the noise component we
have (t, z) ≈ An(z)nω0zβvN, 0(t)sin(nω0t) and, hence,
the spectrum of the nth component reproduces the spec-
trum of the low-frequency noise. At the discontinuity
stage, where An ≈ 1/nω0zβ, the amplitude of the noise
component does not depend on distance z and is equal
to the amplitude of the low-frequency noise for a large
number of harmonics. This effect can be called the
effect of an anomalous amplification of noise. In its
turn, the noise leads to the decay of the regular signal.
In [142], it was shown that the interaction of a pulse
with intense noise can be described by introducing an
effective viscosity for the mean field. The evolution of
the mean field of a nonlinear wave in a medium with
random inhomogeneities was studied in [143].

The statistics of the velocity and density fields for
counter-propagating waves was considered in [144] for
different values of the Mach number.

THE USE OF NONLINEAR ACOUSTIC METHODS 
IN DIAGNOSTICS

The discovery of new physical effects usually stim-
ulates a quest for their practical application. Therefore,
it is no wonder that the rapid development of nonlinear
acoustics gave rise to studies aimed at the application of
new methods in nondestructive testing and different
types of diagnostics. The advantages of nonlinear
acoustic methods are primarily related to their high sen-
sitivity to structure disturbances in substances, such as
the appearance of bubbles in a liquid or cracks and foli-
ations in solids. The area of application of these meth-
ods is wide and includes diagnostics of liquids, testing
of large-size structures, seismic prospecting, and medi-
cine. Since we cannot consider all aspects of nonlinear
acoustical diagnostics in this section, we dwell on the
main areas of application in which practical achieve-
ments are evident.

Presumably, one of the first examples is the diagnos-
tics of gas bubbles in liquids. The detection of bubbles
in a liquid and the measurement of their size distribu-
tion is important, e.g., for underwater acoustics and
oceanography, for the operation of power plants
(nuclear reactors), and for the treatment of the decom-
pression disease. In Nizhni Novgorod, research in this
area was mainly carried out at the Institute of Applied
Physics and at the Department of Acoustics of the
Nizhni Novgorod State University. For bubble diagnos-
tics, different methods were used, including the second-
harmonic method [145–147], the combination-fre-
quency method [148–152], and the subharmonic and
ultraharmonic method [153, 154]. The first two meth-
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ods were successfully applied to measurements of the
bubble distribution in the subsurface layer of the sea.
The second-harmonic method allowed the use of com-
mercial sonars. In this method, the signal was recorded
at the second harmonic frequency of the transmitted
pumping signal. In the combination-frequency method,
the signal was recorded at the sum or difference fre-
quency when a bubble fell into a relatively small work-
ing volume of the measuring system. Measurements
carried out in different seas and oceans during expedi-
tions provided information on the bubble distributions
in space and size. In addition to the data on the mean
concentration, it was found that bubbles are nonuni-
formly distributed not only in depth but also in the hor-
izontal direction and form so-called bubble clouds
[147, 150]. On the basis of the difference-frequency
method, an instrument was designed for detecting bub-
bles in the heat-transfer medium of the cooling system
of a nuclear reactor [152].

Experiments performed together with colleagues
from Poland in the shallow-water areas of the Baltic
Sea using high-power sonar made it possible to use the
combination-frequency method at a distance of about
10 m for the diagnostics of both the subsurface bubble
layer and the gas-saturated bottom sediments [160]. To
measure the spatial distribution of nonlinear scatterers,
the pulsed tomography method was proposed in [161].

The subharmonic and ultraharmonic methods have
found application in the diagnostics of decompression
states of divers and astronauts [153, 154]. The genera-
tion of subharmonic and ultraharmonics is of a thresh-
old character, as in the case of the classical parametric
effect, and, hence, it requires fairly large pumping
amplitudes at the bubble resonance frequencies.

With a certain geometry of two pumping beams
(when they are directed toward each other), the differ-
ence-frequency signal scattered from a moving bubble
acquires a considerable Doppler frequency shift, whose
value is mainly determined by the Doppler shifts at the
pumping frequencies [155]. This allows one to measure
the velocities of moving bubbles with a high accuracy
and, hence, to measure the distribution of the velocity
of liquid in a flow [156]. If the concentration of bubbles
is high and prevents the use of the approximation of
preset pumping amplitudes within the whole cross sec-
tion of the liquid flow, the determination of the flow
velocity distribution is made possible by the tomo-
graphic reconstruction method [157, 158].

It should be noted that the use of transmitting or
receiving scanning acoustic systems allows one to
obtain spatial images of the distribution of nonlinear
scatterers. For bubbles in water, this problem was
solved using a scanning focusing system operating at
the difference frequency. With the difference-frequency
method, images of a liquid jet in the cavitation regime
and images of metal samples were obtained in [159]. In
the latter case, for the samples to acquire the properties
of nonlinear scatterers, a controlled voltage was applied
to them, so that the samples were covered with small
gas bubbles due to electrolysis.

Sometimes, new ideas arise not from theoretical
considerations but from attempts to solve specific prob-
lems encountered in practice. An example is the case in
which specialists from Moscow asked V.A. Zverev to
assist in the development of a method for testing the
strength of the heat-protection coating of a space vehi-
cle. The conventional linear high-frequency echo-
sounding method had failed in this case because of the
strong damping of sound. After many attempts were
made to solve this problem, a new idea involving low-
frequency vibrations of samples was put forward, so
that the sizing defects could be detected by their “chat-
ter” manifesting itself in the spectrum as the appear-
ance of higher harmonics [162]. The experiment verify-
ing this idea can be considered as the beginning of the
studies concerned with the development of methods of
the nonlinear acoustical diagnostics of solid materials
and structures at the Institute of Applied Physics. A
major contribution to this area of research was made by
A.M. Sutin. The higher harmonic method and the mod-
ulation method were used to demonstrate the potential-
ities of nonlinear acoustical diagnostics of metals with
cracks and steel samples with fatigue [63, 163, 164].
The higher harmonic method was also used to test large
graphite electrodes for cracks [165]. The modulation
method is as follows: an acoustic wave is introduced in
the sample under test conditions, and, simultaneously,
the sample is subjected to low-frequency vibrations.
The presence of cracks in the sample leads to the mod-
ulation of the high-frequency wave by the low-fre-
quency vibrations. Later on, this method was widely
used in nondestructive testing of different structures
(concrete, metal, etc.) [67, 166, 167]. The advantage of
this method is the possibility of exciting fairly intense
vibrations in a structure. In solving the problems of
diagnostics, it is also possible to use other nonlinear
acoustic effects, such as the shift of the resonance fre-
quency of a sample depending on the pumping-field
amplitude [168], the “slow dynamics,” the cross-modu-
lation, etc.

Often, it is important not only to determine which
sample has a defect but also to locate the defect in the
sample. In this case, the simplest way is to use the echo-
sounding method [169–171]. This method is based on
the modulation of the acoustic echo pulses that are scat-
tered from the crack by low-frequency vibrations of the
sample. One can use modulation within a single pulse
[170] or modulation of a pulse sequence [169–171]. In
the second case, much shorter pulses are used, which
increases the spatial resolution of the method. In this
method, the echo signals reflected from stable defects
(cavities, saw kerfs, etc.) have no modulation, which
allows one to distinguish them from cracks. However,
if the sample contains several cracks or stable defects,
errors in their identification are possible.
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Another approach to solving the problem of crack
location is based on the use of the resonant eigenmodes
of the sample. It is evident that the deformation of a
crack under vibrations of the sample depends on the
position of the crack with respect to the nodes and anti-
nodes of the resonant modes, and, hence, the effect of
modulation of the high-frequency wave propagating in
the sample also depends on the crack position. This
method of nonlinear mode modulation tomography
allows one to reconstruct the position of the crack from
measurements of the coefficient of modulation of high-
frequency acoustic waves by low-frequency resonance
vibrations of the sample for different modes [172, 173].
The advantage of the method is the possibility of using
continuous acoustic signals and relatively low frequen-
cies (compared to the pulsed method), which is impor-
tant for the diagnostics of materials with a strong sound
absorption. A further development of this method in
application to complex structures is possible if the
problems of calculation and identification of their
vibrations are solved. This actually presents an acoustic
spectroscopy problem. At the Institute of Applied Phys-
ics of the Russian Academy of Sciences, research in
this area is carried out with the aim of achieving the
highest possible measurement accuracy [174].

Studies in the nonlinear acoustical diagnostics of
solid media and materials were being carried out at the
Radiophysical Research Institute even before the estab-
lishment of the Institute of Applied Physics. At that
time, the phenomenon of the much stronger depen-
dence of nonlinear elastic parameters, as compared to
the linear ones, on the degree of fatigue of a material
was revealed [175].

The use of the parametric modulation of a high-fre-
quency acoustic wave by a low-frequency field excited
in a solid resonator proved to be an efficient method for
measuring the quadratic nonlinearity parameter. Spe-
cifically, a strong dependence of the quadratic nonlin-
earity parameter on electric and magnetic external
fields was revealed and acoustoelectronic devices with
a controlled nonlinearity were proposed [176].

Later on, a series of theoretical and experimental
studies of the nonlinear interactions of acoustic waves
in solids were carried out with allowance for cubic non-
linearity. In particular, the effect of cross-modulation
was experimentally observed [177], and a new method
of measuring the cubic nonlinearity was developed on
the basis of this effect [178]. The Radiophysical
Research Institute and the All-Russia Research Institute
for Standardization and Certification in Mechanical
Engineering in cooperation with the Institute of
Mechanics and Paton Electric Welding Institute of the
Academy of Sciences of Ukraine developed a standard
procedure for the determination of the nonlinear elastic
constants of structural materials by the acoustic method
[179].

Since the late 1970s, studies of seismic nonlinear
acoustic effects have been being carried out at the
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
Radiophysical Research Institute [180]. The develop-
ment of these studies culminated in the testing of a
number of new nonlinear methods of geological pros-
pecting. In particular, the method of nonlinear interwell
sounding based on the modulation of sound by sound
was implemented in a working pilot system [181–183].
A further development of well technologies for the non-
linear diagnostics of geological media resulted in the
design of a new type of well sources, namely, focusing
well arrays [184]. On the basis of the diffraction scat-
tering that occurs at the focus of the pumping field of
the detected signal, a method of studying the nonlinear
characteristics of the near-well region was developed.

The phenomenon of acoustoelasticity was experi-
mentally discovered in 1959, and, in the 1970s–1980s,
various nondestructive acoustoelastic methods for
determining mechanical stresses in structures were
developed. The corresponding research was mainly
carried out at the three institutes of Nizhni Novgorod:
the All-Russia Research Institute for Standardization
and Certification in Mechanical Engineering, the
Nizhni Novgorod Branch of the Institute of Mechanical
Engineering, Russian Academy of Sciences, and the
Institute of Applied Physics, Russian Academy of Sci-
ences. Methodical foundations were elaborated for the
pulsed acoustic method of determining biaxial stresses
from measurements of the travel time of longitudinal
and shear elastic waves, and a standard procedure of
determining the residual stresses in elements of com-
mercial structures was developed and approved by the
corresponding State Standard Institute [185–187].

Today, research aimed at developing methods of
nonlinear acoustical diagnostics for specific applica-
tions is carried out in many countries and laboratories.
Twenty years ago, there were only a few places where
such investigations were initiated. One of those places
was Nizhni Novgorod. Unfortunately, for reasons of
space, we cannot consider many other aspects of non-
linear acoustical diagnostics. Therefore, in this review,
we have narrowed the limits of this notion and concen-
trated on practical achievements.

CONCLUSIONS

Even from the brief description of ideas and works
that was given above, one can see the great progress in
nonlinear acoustics that took place over several decades
and the important role that was played by the scientists
from Nizhni Novgorod in this progress. Today, several
dozen researchers are working in this area of research
at different institutes in Nizhni Novgorod. Unfortu-
nately, for space reasons, it was impossible to mention
all publications and their authors in this review. There-
fore, above, we tried to outline the main stages of the
development of nonlinear acoustics in Nizhni
Novgorod, from the first ideas to the basic fundamental
and applied studies that are being carried out at the
present time.
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We note that the 80th birthday of Vitaliœ Ana-
tol’evich Zverev virtually coincides with the 50th anni-
versary of his first ideas and studies in nonlinear acous-
tics. Within these 50 years, Zverev also worked in other
areas of research and gave much of his time and energy
to solving many other scientific problems, for example,
in underwater acoustics. However, he returned to the
problems of nonlinear acoustics several times, and each
time he made new contributions to this area of research.
In particular, this occurred when he worked on the
application of superpower parametric systems in under-
water acoustics (this work was carried out in tandem by
scientists from the Institute of Applied Physics and the
Acoustics Institute). The history of nonlinear acoustics
once more confirms the statement that each field of sci-
ence develops on the basis of several key ideas. The
generation of such ideas is the quality that is character-
istic of Zverev, and it is an inspiring example for
younger scientists.
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Abstract—Results of experimental measurements of acoustic cavitation thresholds are presented for the waters
of the Atlantic Ocean, Pacific Ocean, Indian Ocean, Arctic Ocean, and some other parts of the World Ocean,
including the Arabian Sea, Baltic Sea, East Siberian Sea, North Sea, Philippine Sea, Black Sea, Sea of Japan,
Sea of Okhotsk, and South China Sea. The measurements were carried out by many oceanic expeditions
between 1963 and 1987. General laws governing the variations in the cavitation strength of sea water over the
World Ocean are revealed. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Cavitation occurs in water or in other liquids
under decreasing pressure and manifests itself as a
discontinuity of the medium. It is conventional to dis-
tinguish between acoustic and hydrodynamic cavita-
tion.

Acoustic cavitation arises in sea water or any other
liquid under the action of an intense acoustic field when
the acoustic pressure amplitude Pm exceeds some

threshold value , which is commonly called the
acoustic cavitation threshold or the tensile strength of
water. The value of  in sea water depends on many
hydrophysical and hydrochemical parameters. The
influence of hydrostatic pressure P0, linearly growing

with depth, is an important factor. The quantities 

and P0 are related by the formula  = P0 – Pc, where
Pc is the hydrodynamic cavitation threshold pressure
at which cavitation arises. Cavitation nuclei are usu-
ally represented by microscopic (most often gaseous)
inclusions in a liquid. For liquids with large cavitation
nuclei, the value of Pc is usually equal to the saturated
vapor pressure Pv. However, for very pure liquids with
small cavitation nuclei, Pc can be much smaller than
Pv and in some cases can even be negative. The value

of the acoustic cavitation threshold pressure  is
always positive.

Hydrodynamic cavitation is induced by the pres-
sure fluctuations arising in sea water due to the rota-
tion of screw propellers or due to flows around dif-
ferent moving bodies. The corresponding threshold
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value of the pressure variation (P0 – Pc) is conven-
tionally called the hydrodynamic tensile strength or
the cavitation threshold of sea water. This quantity is
virtually equal to the acoustic cavitation strength
when the frequency of the acoustic field is equal or
close to the frequency of hydrodynamic pressure
fluctuations.

The acoustic cavitation threshold  for ocean
water is connected with many hydrophysical parame-
ters of the water medium and with the parameters of
acoustic sources, including the acoustic field fre-
quency f, which can be much higher than the fre-
quency of hydrodynamic fluctuations caused by flows
around different bodies in sea water. However, at low
frequencies of acoustic cavitation excitation, the fre-
quency f may only slightly differ from characteristic
frequencies of hydrodynamic fluctuations. In this
case, the quantity  measured for acoustic cavita-
tion will be approximately equal to the hydrodynamic
cavitation strength of the same water under the same
conditions. This allows one to use the results of acous-
tic cavitation measurements to determine the cavita-
tion thresholds of sea water for hydrodynamic cavita-
tion.

CAVITATION NUCLEI

Usually, the tensile strength of sea water  grows
with sea water depth. However, this growth may obey
different laws, which are determined by the depth
dependence of the size and concentration of phase
inclusions serving as cavitation nuclei.
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In the upper sea water layer, the most characteristic
cavitation nuclei are gas bubbles. Their sizes and con-
centration are determined by the surface roughness and
by hydrophysical parameters governing the formation
and dissolution of gas bubbles in water. Depending on
these conditions, gas bubbles in the upper ocean layer
may vary in size from 10–5 to 10–1 cm.

Cavitation in sea water can also arise at phase inclu-
sions represented by zooplankton or phytoplankton.
The sizes of zooplankton range from several microns
for nanoplankton to several centimeters for mac-
roplankton. The sizes of phytoplankton vary over an
even wider range. On the whole, the size and concentra-
tion of plankton in sea water depends on the biological
condition of the medium in a given region, which is
characterized by both spatial and temporal variability
governed by complex laws and which is an object of
special studies.

Cavitation can also originate in solid nuclei, which
get into sea water from the atmosphere, from rivers, and
from other sources, including anthropogenic ones.
Solid nuclei may have different sizes (10–6 to 10–2 cm),
shapes, and degrees of wetting with water.

In sea water, cavitation nuclei in the form of small
vapor bubbles may also be generated by high-energy
particles caused by cosmic rays or radioactivity. Pri-
mary cosmic rays composed mainly of protons and
alpha particles are transformed into secondary particles
mainly consisting of electrons and µ-mesons at the sea
level. Electrons are intensively absorbed in water, while
µ-mesons possess a high penetrating power and are
poorly absorbed in water. Electrons and µ-mesons
interact with sea water atoms and knock out electrons,
thus spending energy for the ionization of the medium.
If the resulting electrons have a sufficiently high
energy, they may in their turn cause ionization. Such
secondary electrons are called δ electrons. The local
heat release by δ electrons leads to the formation of
vapor bubbles smaller than 10–6 cm in size. Their life-
time is small, but their concentration may vary depend-
ing on the intensity of cosmic rays.

The effect of radioactivity on sea water may mani-
fest itself as a neutron flux, which interacts only with
atomic nuclei on passing through the sea water
medium. In this case, free radicals and atoms of oxygen
and hydrogen can arise in water. They can form bubbles
owing to the coagulation of gas molecules. Similar
effects may be caused by such a primary cosmic parti-
cle as the neutrino.

All the aforementioned cavitation nuclei appear in
the sea water medium under the effect of external
forces and disturbances. However, even in the case of
a complete isolation from external effects, the forma-
tion of vapor bubbles in water is possible due to the
manifestation of thermodynamic heterophase fluctu-
ations. The size of such cavitation nuclei is deter-
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
mined by the absolute temperature of the medium
and, for water under normal conditions, does not
exceed 10–7 cm. Under usual conditions in sea water,
the effect of these cavitation nuclei is negligibly
small compared to the effects of gas bubbles, plank-
ton, and solid particles.

MEASUREMENT TECHNIQUE

The determination of the tensile strength of sea
water was performed by specially designed technical
means on the basis of measuring the acoustic field
threshold amplitude , the excess over which causes
the development of cavitation.

The measurement technique was first proposed in
[1], and its essence was as follows. Acoustic cavita-
tion was excited by an intense tonal acoustic signal
with a fundamental frequency f and with an increas-
ing amplitude Pm. The onset of cavitation corre-
sponded to the rise of an acoustic cavitation noise
signal with a summary pressure Pn, which contained
discrete harmonic spectral components with fre-
quencies nf, where n = 2, 3, …, and also a continuous
spectrum component of the received signal. The ratio
of the acoustic cavitation noise signal Pn to the
amplitude of the basic tonal signal Pm determines the
coefficient K of nonlinear distortion of the acoustic
signal at the beginning of acoustic cavitation: K =
Pn/Pm.

Figure 1 shows an example of an experimental mea-
surement of the initial acoustic signal Pm and the cavi-
tation noise signal Pn in sea water as a function of the
electric voltage V applied to the high-power acoustic
source with an excitation frequency of 10 kHz. Figure 2
shows the summary acoustic signal and the cavitation
noise signal. These measurements were carried out in
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Fig. 1. Dependence of the initial acoustic signal Pm and
cavitation noise signal Pn on the voltage U applied to the
source for different depths: (1) 5 and (2) 10 m.
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September 1982 in the Sea of Japan, at depths of 5 and
10 m, at the point with a latitude of 42° N and a longi-
tude of 132° E.

Experimental studies of the onset of acoustic cavita-
tion in sea water with different physical and chemical
characteristics (temperature, salinity, gas content,

Fig. 2. Summary signal (top) and cavitation noise signal
(bottom) for the case of cavitation excitation at a frequency
of 10 kHz at a depth of 10 m.
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Fig. 3. Schematic representation of the system for mea-
suring the acoustic cavitation thresholds with the use of
a water-filled cylindrical piezoceramic acoustic source.

meter
etc.) at different depths showed that the cavitation
threshold corresponds to the acoustic pressure
amplitude  at which the value of the coefficient of
nonlinear distortion due to cavitation is K = 0.1. In
Fig. 1, the pressure values of the fundamental tone
signal Pm and cavitation noise Pn that correspond to

the acoustic cavitation threshold  are marked with
empty circles.

In our measurements of the cavitation strength of
sea water at different depths, we used water-filled cylin-
drical acoustic sources, which in fact were cylindrical
focusing systems and which allowed us to stimulate
cavitation in water at a given distance from the inner
radiating surface without perturbing the physicochemi-
cal characteristics of water. Figures 3 and 4 show two
different systems used for measuring the acoustic cavi-
tation thresholds  in sea water.

The system presented in Fig. 3 is based on the appli-
cation of a high-power cylindrical acoustic source.
Usually, such sources are made of piezoceramic active
materials. The resonance frequency f of such an acous-
tic source is connected with the diameter of the cylin-
der d by the formula f = cp/πd, where cp is the speed of
sound in the piezoceramic material. Such sources are
suitable for frequencies f of more than 1 kHz. For mea-
surements at lower frequencies f, an excessive increase
in d is required, which leads to technical difficulties. To
excite cavitation in sea water at low frequencies f on the
order of hundreds of hertz, it is more convenient to
apply sound sources in the form of resonance metal
tubes open at one end and excited at the other by an
acoustic vibrator. Figure 4 shows a scheme of the sys-
tem with a resonance tube for measuring the acoustic
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Fig. 4. Schematic representation of the system for measuring
the acoustic cavitation thresholds with the use of a resonance
metal tube excited at one end by an acoustic vibrator.
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cavitation thresholds . In such a system, the coeffi-
cient of nonlinear distortion of the signal and, hence,
the acoustic cavitation threshold is determined by a
cavitation meter. This technique for measuring the
acoustic cavitation thresholds in sea water was sug-
gested in [2]. The resonance frequency of such an
acoustic source f is connected with the tube length L
by the formula f = cv/2L, where cv is the sound speed
in sea water. The aforementioned spectral feature of
measuring the acoustic cavitation thresholds  can
be successfully used with both piezoceramic cylindri-
cal sources and resonance tubes.

The proposed technique was used by us for measur-
ing the cavitation strength of sea water in different
regions of the ocean [1–3]. Similar techniques were
used later by other researchers [4, 5].

ACOUSTIC CAVITATION THRESHOLDS 
IN DIFFERENT REGIONS 
OF THE WORLD OCEAN

Below, we present the results of experimental mea-
surements of acoustic cavitation thresholds in different
regions of the World Ocean. The measurements were
performed between 1963 and 1987.

Figure 5 presents the results of measuring the cavi-
tation thresholds of sea water  depending on the
depth h according to the data obtained in September
1982 in the Sea of Japan at a latitude of 42° N and a lon-
gitude of 132° E. Acoustic sources with different fre-
quencies from 230 Hz to 10 kHz were used to excite the
cavitation. The measurements at a low frequency of
230 Hz were conducted using resonance acoustic steel
tubes in accordance with Fig. 4. The measurements at
other, higher, frequencies were conducted using water-
filled cylindrical piezoceramic acoustic sources in
accordance with Fig. 3.

As follows from Fig. 5, the values of acoustic cav-
itation thresholds  increase on the average lin-
early with increasing depth h. However, at some
depths h, one can see deviations of  from the
hydrostatic pressure level P0, which is shown by the
dashed line. In some cases, the acoustic cavitation
thresholds prove to be lower than the hydrostatic
pressure values. According to [6], this may occur
because of the so-called rectified gas diffusion under
the effect of the periodic acoustic field, when the
cavitation nuclei in water grow into bubbles whose
resonance frequency is close to the frequency of the
exciting acoustic field.

In 1968, measurements of acoustic cavitation
thresholds  were carried out in the northern part of
the Atlantic Ocean, including the North Sea and the
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Baltic Sea. Figure 6 shows the sites of the measure-
ments for two different seasons. The crosses corre-
spond to the spring season (March–April 1968), and
the crosses in circles correspond to the summer season
(June–July 1968). From general considerations, it fol-
lows that the seasonal variability of weather and the
related variability of both meteorological parameters
in the near-water layer of the atmosphere and hydro-
logical parameters in the upper water layer of the
ocean should be most pronounced away from the
equator, that is, at higher latitudes. Therefore, we
expected that the values of the acoustic cavitation
thresholds  measured in the near-equator zone of
the ocean should not noticeably vary from season to
season. However, the results of measurements proved
to be unexpected.

Figure 7 presents the experimental results of acous-
tic cavitation thresholds  as a function of latitude in
the Atlantic Ocean, from the equator to the North Sea
and the Baltic Sea. Cavitation was excited at depths of
10 and 20 m by a continuous tonal signal at a frequency
of 10 kHz. It is seen from Fig. 7 that, in the northern
part of the Atlantic Ocean, cavitation thresholds vary
depending on the latitude. The acoustic cavitation
thresholds  have higher values near the equator and
decrease with increasing latitude. This effect is more
pronounced at a depth of 20 m compared to at a depth
of 10 m. In Figs. 6 and 7, the point with a latitude of
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Fig. 5. Acoustic cavitation thresholds  versus the

depth for different frequencies f = (1) 230 Hz, (2) 750 Hz,
(3) 4.5 kHz, and (4) 10 kHz.
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Fig. 6. The measurement sites in the Atlantic Ocean for (+) the spring season (March–April 1968) and (⊕ ) the summer season
(June–July 1968).
54°30′ N (and a longitude of 4°52′ E) corresponds to
the measurements in the North Sea. Two points with
latitude 55°33′ N (longitude 15°55′ E) and latitude
57°46′ N (longitude 20°09′ E) correspond to the mea-
surements in the Baltic Sea. In the North Sea and Baltic
Sea, the thresholds  were measured in March and
July with maximum separation in time. From Fig. 7,
one can see that, in the aforementioned high-latitude
seas, the cavitation thresholds  in July are higher
than in March. This trend manifests itself to one or
another extent in all high-latitude measurements to
the north of latitude 40° N. To the south of this lati-
tude down to the equator, another trend is observed:
the cavitation thresholds are higher in spring and
lower in summer.

Figure 8 shows the data on temperature, salinity,
and dissolved gas and oxygen at the sites of acoustic

Pm*

Pm*
measurements at the aforementioned depths. From
Fig. 7, it follows that the cavitation strength of water
in the equatorial Atlantic proved to be higher in spring
compared to summer. According to Fig. 8, in this part
of the Atlantic Ocean in these seasons no considerable
difference was observed between the measured hydro-
logical parameters. In the regions lying to the north of
40° N, the picture was different. According to Fig. 7,
the cavitation thresholds in summer (in July) proved
to be higher than those in spring (in March). At the
same time, according to Fig. 8, in summer, because of
the increase in temperature, a decrease was observed
in the concentrations of dissolved gas and dissolved
oxygen. The latter decrease may lead to a decrease in
the concentration and size of gaseous cavitation nuclei
in sea water. According to the existing physical con-
cepts [6, 7], such changes in the hydrology should
definitely lead to an increase (see Fig. 7) in the cavita-
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
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tion strength of water in summer (July) compared to
that in spring (March) in subarctic waters.

A comparison of Figs. 7 and 8 shows that, in the
northern Atlantic, the cavitation strength decreased as
the latitude increased from the equatorial part of the
ocean with tropical waters to high-latitude regions
with subarctic waters. The passage from the equator to
high latitudes was accompanied by the characteristic
temperature decrease, a very small change in salinity
(except for the well-known salinity drop in the Baltic
Sea), and an increase in the concentrations of dis-
solved gas and oxygen.

The tendency towards the decrease in acoustic cav-
itation thresholds in ocean water on moving from the
equator to higher latitudes also proved to be typical of
other parts of the World Ocean.

Figure 9 shows the points where acoustic cavitation
thresholds were measured in the Pacific Ocean. The
measurements were carried out in different years from
1964 through 1985. The most extensive measurements
were carried out from September to November 1982,
when data were obtained for both the northern and
southern parts of the Pacific Ocean. At that time, it was
autumn in the northern part and spring season in the
southern part of the ocean. Figure 10 shows the acoustic
cavitation thresholds  as a function of latitude for
the Pacific Ocean, from a latitude of about 49° N near
the Kamchatka Peninsula to latitude 15°30′ S in the
Coral Sea. Cavitation was excited at depths of 10 m and
20 m by tone signals at a frequency of 10 kHz. Figure
10 shows that, in the Pacific Ocean, the cavitation
thresholds also vary depending on the latitude. It turned
out that the acoustic cavitation thresholds  were
higher near the equator and decreased with increasing
latitude in the directions from the equator to the north-
ern subarctic waters and to the southern subtropic
waters of the Pacific Ocean. This dependence of the
cavitation strength of water  on latitude in the
Pacific Ocean proved to be as clearly pronounced as in
the Atlantic Ocean.

The measurements of acoustic cavitation thresh-
olds in the Indian Ocean were carried out in March–
April 1987. Figure 11 shows the measurement sites
from a latitude of about 20° N in the Arabian Sea to a
latitude of about 45° S in the southern part of the Indian
Ocean. Figure 12 presents the measured cavitation
thresholds  as a function of latitude. Cavitation was
excited at depths of 10 and 20 m by continuous tonal
signals at a frequency of 10 kHz. In the Indian Ocean,
the cavitation thresholds had higher values near the
equator and decreased with increasing latitude in the
northern (toward subtropic waters) and southern
(toward subantarctic waters) directions. The measure-
ments were performed in late autumn in the southern
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part of the Indian Ocean. With the passage from the
equator to the south to latitude 45° S, the water temper-
ature decreased from 30°C in the tropical region to
10°C in the subantarctic region. The surface roughness
in the ocean varied in the southern direction from 1 m
near the equator to 6.5 m at the point with latitude
45° S. An increase in the sea surface roughness usually
leads to breaking of surface waves, which, in its turn,
causes an increase in the concentration and characteris-
tic size of gas bubbles serving as cavitation nuclei in the
upper ocean layer [7]. This explains the decrease in the
cavitation thresholds  with increasing latitude in the
southern part of the Indian Ocean (see Fig. 12).

It should be noted that the increase in the surface
roughness with growing latitude is a general feature of
all oceans except for those regions with an ice cover.
Presumably, it is this feature that explains the decrease
observed in the acoustic cavitation thresholds  with
the passage from the equator to higher latitudes in the
Atlantic, Pacific, and Indian oceans.

Measurements in the Arctic Ocean proved to be
important for understanding the relations between
the acoustic cavitation thresholds and the hydrome-
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Fig. 7. Acoustic cavitation thresholds  in the Atlantic

Ocean as a function of latitude at depths of 10 and 20 m
for different seasons of 1968: (d) spring and (s) summer.
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Fig. 9. The sites of cavitation measurements in the Pacific Ocean in different years: (() September 1964, (+) September–Novem-
ber 1982, (⊕ ) October–November 1983, and (∗ ) August–October 1985.
teorological and hydrological conditions. These
measurements were carried out in May 1969 from a
drifting block of ice in the East Siberian Sea (one of
the ice bases belonging to the North Pole-18 drifting
arctic station). Figure 13 shows the point (the cross
in the plot) with coordinates 76° N and 164° E where
the measurements of acoustic cavitation thresholds
were carried out. The ice thickness was about 3 m.
The air temperature was –12°C, and the water tem-
perature varied from –1.68°C near the water surface
to –1.55°C at a depth of 50 m. The ice cover pre-
vented surface roughness, and the upper water layer
contained almost no cavitation nuclei in the form of
gas bubbles, which usually occur in the open ocean
due to the breaking of waves. Presumably, this fact is
responsible for the very high values of cavitation
strength of water  that were obtained under these
conditions, as compared to the values obtained in
other ocean regions.

Table 1 presents the data on the acoustic cavitation
thresholds  for the arctic conditions under the ice
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Fig. 10. Acoustic cavitation thresholds  in the Pacific
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Fig. 11. The sites of cavitation measurements in the Indian Ocean (+) in March–April 1987.
cover at a depth of 10 m and for different frequencies
from 2.0 to 15.0 kHz. One can see that, at a frequency
of 10 kHz at a depth of 10 m, the value of the cavitation
threshold  is 5.6 × 105 Pa, which noticeably exceeds

the values of  obtained at the same frequency and
depth in other regions of the World Ocean. From Table 1,
it also follows that the acoustic cavitation thresholds

 increase as the excitation frequency f increases.
This tendency manifests itself to some extent in all
regions of the World Ocean.

It is of interest to compare the cavitation strength of
sea water in different regions of the World Ocean. This

Pm*

Pm*

Pm*

Table 1.  Acoustic cavitation thresholds  at different fre-
quencies f in the Arctic Ocean

Frequency f, kHz 2.0 4.0 6.0 8.0 10.0 15.0

Cavitation threshold, 105 Pa 1.9 2.9 3.8 4.7 5.6 6.9

Pm*
problem is not a simple one, because, even at one given
point of the ocean, the cavitation threshold may vary
with time over wide limits depending on weather con-
ditions and on the seasonal and climate variability of
those hydrophysical parameters of the water medium
that determine the threshold and the development of
cavitation, with all other technical conditions being the
same. However, we can speculate on some average val-
ues of acoustic cavitation thresholds  obtained at a
certain frequency f at the same depth in each of the
ocean regions under study.

Table 2 presents the results of measuring the acous-
tic cavitation thresholds  in different regions of the
World Ocean within 1963 to 1987. These results refer
to measurements at a standard depth of 10 m and at a
frequency of 10 kHz. The measurements were carried
out in the equatorial parts of the Atlantic Ocean, the
Indian Ocean, and the Pacific Ocean. The values
obtained for the Arctic Ocean correspond to the mea-
surements in the East Siberian Sea. The lowest acous-

Pm*

Pm*
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Fig. 12. Acoustic cavitation thresholds  in the Indian Ocean as a function of latitude at depths of 10 and 20 m in March–

April 1987.
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Fig. 13. (+) Site of cavitation measurements in the East Siberian Sea in May 1969.
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tic cavitation thresholds were found to occur in the
Indian Ocean, and the highest, in the Arctic Ocean. The
cavitation thresholds obtained for waters of different
seas vary over wide limits. The lowest values were
observed in the Black Sea, and the highest values, in the
East Siberian Sea.

CONCLUSIONS

The results presented above show that acoustic cav-
itation thresholds  have different values in different
regions of the World Ocean. This fact should be taken
into account when using high-power acoustic sources
in sea water. The value of the cavitation threshold 
determines the limiting level of acoustic intensity JC

that can be emitted by an acoustic source:

JC = Ka( )2,

where Ka is the coefficient that determines the type of
the acoustic field; for a plane acoustic wave, Ka =
(1/2ρc), where ρ is the density of sea water and c is the
sound velocity in it.

Moreover, the value of the cavitation threshold 
allows one to estimate the critical speed VC for bodies
moving in sea water, i.e., the speed limit beyond which
a moving body gives rise to cavitation. For a stream-
lined spheroidal body moving in sea water, the follow-
ing formula is valid:

VC = Kh( )1/2,

Pm*

Pm*

Pm*

Pm*

Pm*

Table 2.  Acoustic cavitation thresholds  in different re-
gions of the World Ocean

Region
Threshold

, 105 Pa Time of measurement

Atlantic Ocean 3.2 April 1968

Indian Ocean 2.8 March 1987

Arctic Ocean 5.6 May 1969

Pacific Ocean 3.6 October 1982

Arabian Sea 2.8 March 1987

Baltic Sea 2.3 June 1968

East Siberian Sea 5.6 May 1969

Sea of Okhotsk 2.2 September 1964

North Sea 2.4 June 1968

Philippine Sea 2.5 October 1985

Black Sea 1.8 September 1963

South China Sea 2.4 September 1985

Sea of Japan 2.6 September 1982

Pm*

Pm*
where the coefficient Kh = (2/ρKfKp)1/2 characterizes the
hydrodynamic flow around the body; here, the coeffi-
cient Kf is determined by the shape of the body and the
coefficient Kp is determined by the hydrodynamic fluc-
tuations of the flow around the body.

In closing, it should be noted that studies of the cav-
itation strength of sea water in different regions of the
World Ocean began in the early 1960s, when the
authors of this paper worked at the Sukhumi Marine
Research Station of the Acoustics Institute of the Acad-
emy of Sciences of the USSR [1]. Later, in the 1970s
and 1980s, these studies were continued at the Pacific
Oceanological Institute, Far-East Division, Russian
Academy of Sciences [2, 3, 8–15].
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Abstract—A spatially one-dimensional model of a plane active double layer between two homogeneous
elastic half-spaces is studied analytically. The layer synthesizes a preset smooth trajectory of the controlled
boundary between the media without any mechanical support. The outer layer of the coating is a piezoelec-
tric, and the inner layer is a polymer that is transparent for low-frequency sound and opaque for high-fre-
quency sound because of dissipation. An algorithm for controlling the piezoelectric elements of the layer on
the basis of signals from surface particle-velocity sensors is proposed, and a method for measuring the par-
ticle velocity is developed. Conditions of stability and efficiency of the synthesis are formulated. It is shown
that the active layer thickness can be much smaller than the wavelength corresponding to the minimal time
scale of the boundary trajectory to be formed. The accuracy of the trajectory synthesis depends on the accu-
racy of measuring, computing, and actuating elements of the system but does not depend on the vibroacoustic
characteristics of the half-spaces separated by the active layer or on the presence of smooth waves in these
half-spaces. For the synthesis to be efficient, the operating frequency band and the dynamic range of sensors
and actuators should be many times greater than the frequency band and the dynamic range of the trajectory
to be formed. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Many problems of controlling vibroacoustic fields
are reduced to the formation of a preset space–time dis-

tribution of normal particle displacements u⊗ ( , t) or

velocities (DNPV) {u⊗ ( , t)}t at the boundary S
between two elastic media (or, for instance, at the outer
surface S of a closed shell in a liquid, Fig. 1b). One of
these media is inside S and has arbitrary vibroacoustic
properties. The external medium is supposed to be infi-
nite, homogeneous, and isotropic with a density ρw and
a sound speed cw. The zero DNPV corresponds to the
solution to the problem of soundproofing and suppres-
sion of radiation [1–4]. An arbitrary nonzero DNPV
may be, for example, the solution to the problem of the
formation of a preset radiation field at the boundary S
or the problem of matching the distribution to incident
waves (suppression of scattering) [3]. The instrument
commonly used for solving such problems is an active
piezoelectric layer [4] (Fig. 1c) of a controlled thick-

ness ,( , t) separating the two media and lying
between the outer surface SV and the inner surface

 = S. The prescribed DNPV u⊗ ( , t) should be cre-
ated on the outer surface SV . The solution of the afore-
mentioned problems, as a rule, is complicated by the

fact that u⊗ ( , t) should be formed in real time, i.e., by
knowing only the past and current values of the pre-
scribed DNPV and the degree of its smoothness in

r

r

r

SV r

r

1063-7710/05/5102- $26.00 0139
space and time. For this purpose, exhaustive and peri-
odically updated information on the vibroacoustic char-
acteristics of the boundaries  and SV separated by the
layer is needed.

In the simplest case, it may be assumed that the sur-
face  is immobile, i.e., that this surface is in contact
with a stationary mechanical support. This suggests
that the impedance Z⊥  for waves of normal stresses of
surface SV (in the absence of contact with the external
medium) is negligible compared to the impedance of

SV

SV

(a)

Z⊥
S

r→ u(r→, t)

SV
–

(b) (c)

Z|| Z||

Z⊥

S SV

l(r→, t)

r→ u(r→, t)

Fig. 1. Geometry of a three-dimensional problem of con-

trolling the DNPV u( , t) (a) on the surface S of a homoge-
neous elastic body and (b) on a shell surface; Z⊥  and Z|| are
the impedances for waves of normal and tangential stresses

of the shell and ,( , t) is the thickness of the controlled
layer.

r

r

© 2005 Pleiades Publishing, Inc.
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the external medium, which simplifies the solution [5–
7] of noise control problems for, e.g., steel shells in air,
when |Z⊥ | @ ρwcw. However, for a steel shell in water,
|Z⊥ | ! ρwcw (Fig. 1b); in this case, the surface  = S
cannot play the role of an acoustically rigid mechanical
support for the active layer. In addition, under the con-
dition of neutral buoyancy of the shell in the liquid,
even a perfect rigidity of the shell does not provide a
sufficient support for the active layer. Such a perfectly
rigid shell should oscillate under the action of the active
layer as a monolithic body whose mass is limited by the
condition of neutral buoyancy.

In the general case, it is necessary to determine an
integral impedance operator [3] of the surfaces  and
SV, because only in this case is it possible to rigorously
formulate the problem of stability and efficiency of the
active system. In the cases of practical interest, the vol-
ume of required information is so large that the process
of learning (or updating the information) for an adap-
tive control system [8] in many cases lags behind the
natural drift of parameters of the boundary-value prob-
lem under the effect of changes in temperature, hydro-
static pressure, ageing of materials, and so on. In addi-
tion, the linear operator modeling normal-to-surface
vibrations of a closed shell disregards the factor of
“nonextensibility” of its walls, when the impedance Z||
of waves of tangential stresses on the shell surface is
much greater in absolute value than the impedance Z⊥
of waves of normal stresses; i.e., |Z||| @ |Z⊥ |. This makes
the fundamental difference between vibrations of a
shell and vibrations of a homogeneous elastic body
(Fig. 1a), where |Z||| ~ |Z⊥ |. The smallness of changes in
the perimeters of the shell compared to its normal
deformations imparts nonlinear properties to the model
system and severely complicates the control of its
vibrations. As a result, the sound-field control system of
interest cannot be based on the interaction with the
shell.

CHARACTERISTIC SCALES

A fundamental feature of the approach presented in
this paper is the absence of any requirements imposed
on the rigidity of the surface  (support) or on any
information about its vibroacoustic characteristics [9].
It is required on the surface SV to form a prescribed

DNPV u⊗ ( , t), the spectral power of which is mainly
concentrated in the frequency range

(1)

The DNPV u⊗ ( , t) is characterized by the minimal
τmin = π/ωmax and maximal τmax = π/ωmin time scales and
by the displacement amplitude u⊗  ~ Aw. The thickness

,( , t) of the active layer should be much smaller than
the wavelength corresponding to the upper boundary of

SV

SV

SV

r

ωmin ω ωmax.≤ ≤

r

r

frequency range (1) and much greater than the displace-
ment amplitude Aw; i.e.,

(2)

To form the DNPV u⊗ ( , t) on SV, we use a periodic

stepped change of space distributions u( , tn) = un( )
of normal displacements of surface SV at the instants
t = tn = nT (n = 1, 2, …) with the period

(3)

The jump like change of distributions un( ) takes place
as a result of impact-control actions of duration

(4)

Hence, it is necessary to remove the restriction on pos-
sible radiation in the range |ω| > ωmax. Thus, we try to
minimize the deviation u – u⊕  of the surface S from the
trajectory u⊗  prescribed in the interval (–∞, t) (but
unknown beforehand) in frequency range (1); i.e.,

where

and

are the spectra of the actual and prescribed trajectories.
Beyond range (1), it is sufficient to require that the
vibration power be bounded,

to provide for the stability of the system. For the one-
dimensional case considered below, this means the for-
mation of a prescribed trajectory of displacement
u(0, t) = u⊗ (t) of a certain plane boundary, the equilib-
rium position of which corresponds to the point x = 0.
The time derivative u(0, t)t of the displacement repre-
sents the particle velocity, whose spectrum should be
made close to the spectrum of the function [u⊗ ]t in fre-
quency range (1), while outside this range, it is only
restricted by the finiteness of the displacement.

THE BOUNDARY-VALUE PROBLEM

We consider a one-dimensional problem involving
the displacements u(x, t) of particles in an elastic
medium (–∞ < x < +∞) and assume that these displace-

Aw ! , r t,( ) ! 2πcw/ωmax.

r

r r

T  ! 2π/ωmax.

r

τc ! T .

ũ ũ⊗– 2 ω min,d

ω ωmin ωmax,[ ]∈
∫

ũ u r t,( ) iωt–( ) tdexp

∞–

+∞

∫=

ũ⊕ u⊕ r t,( ) iωt–( ) tdexp

∞–

+∞

∫=

ũ ũ⊗– 2 ω ∞,<d

ω ωmin ωmax,[ ]∉
∫
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ments are described by the equation utt = c2uxx, where
c is the sound speed in the medium. A homogeneous
medium with density ρw and sound speed cw corre-
sponds to the domains x < –hr – hc and x > 0. The inter-
vals x ∈ [–hc, 0] and x ∈  [–2hc, –hc] (Fig. 2) are sepa-
rated by metallized surfaces, electrically independent
of one another, and filled with longitudinally polarized
piezoelectric with density ρc, sound speed cc, and
Young’s modulus Ec. The domain –hr – hc < x < –hc is
filled with a polymer material (for example, rubber
with density ρ = ρr and sound speed c = cr) transparent
at low frequencies (1) and opaque at high frequencies
|ω| @ ωmax due to dissipation characterized by the
space attenuation factor ~exp[–αr(ω)x] (where αr =

α1  and α1, α2 = const ≥ 0). We assume that the
boundaries x = 0, x = –hc, and x = –2hc are sound-
transparent; i.e.,

(5)

where ωh = π/T @ ωmax. Some polymer piezoelectric
materials have impedances close to the impedance of
water [10]. The impedances of various types of rubber
may also vary over wide limits. The points x = –hr – hc

and x = 0 are the one-dimensional analogs of surfaces
 and SV, and the quantity (2hc + hr) is the analog of

the active layer thickness ,( , t).

A RECTANGULAR ELECTRIC PULSE

If, in the absence of incident waves, a constant elec-
tric voltage ϕ0 is applied to one piezoelectric layer (for
instance, to x ∈ [–hc, 0]) of thickness hc, then the surface
(along the plane x = 0) energy density of mechanical
deformation

and the surface density of electrostatic energy

are connected by the electromechanical coupling coef-
ficient η = Wmech/We, characterizing this piezoelectric
material (typically, η ~ 0.2–0.7), where εc is the relative
dielectric permittivity of vacuum and ε0 is the value of
static (compression–tension) deformation of the layer
x ∈ [–hc, 0] of thickness hc. For ψ(∞), we obtain the
expression ψ(∞) = (ε0εη/Ec)1/2ϕ0, which is independent
of the layer thickness. With fixed layer boundaries x ∈
[–hc, 0], we obtain the relationship P(∞) = µcϕ0
between the piezoelectric pressure P(∞) and the

applied voltage ϕ0, where µc = (ε0εηEc)1/2. Now, we
assume that, during the time interval t ∈ [0, τc] and in
the absence of incident waves, the electric voltage

ω
α2

ρrcr ρccc– / ρccc( ) ! 1,

ρwcw ρccc– / ρccc( ) ! 1, α r ωh( ) ! ωh/cr,

SV

r

Wmech Echc
1– ψ2 ∞( )/2=

We, ε0εchc
1– ϕ0

2
/2=

hc
1–
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ϕ(t) = ϕ0U(t) is applied to the layer x ∈ [–hc, 0], where
U(t) = 1 for t ∈ [0, τc], U(t) = 0 for t ∉ [0, τc], and ϕ0 is
the pulse amplitude. Due to the symmetry of the bound-
ary-value problem, the displacements u(0, t) and u(–hc, t)
of the boundaries x = 0 and x = –hc are connected by the
relation u(0, t) = –u(–hc, t) = ψ(t) at ψ(0) = 0. If, within
the time τc of action of the electric pulse, the displace-
ment ψ(t) of the boundaries of the segment x ∈ [–hc, 0]
is much smaller than the static limit, i.e., |ψ(τc)|/|ψ(∞)| ! 1,
then the action of all piezoelectric layers is equivalent
to pressure (compression or tension). This pressure is
instantaneously (with the light velocity) and uniformly
distributed over the segment x ∈ [–hc, 0] and is equal to
zero outside it. According to the Euler equation for a
continuous medium, the particles are subjected to a
force proportional to the gradient of this pressure.
Therefore, the boundary-value problem is reduced to a
simultaneous impact action of pressure P(t) = µcϕ(t) on
the boundary x = –hc and pressure –P(t) = µcϕ(t) on the
boundary x = 0. In this case, the boundary displacement
ψ(t) for 0 ≤ t ≤ τc is described by the integral

which yields the “plasticity” of the boundaries x = –hc
and x = 0 with respect to short pulses (impacts) of local
pressure: after termination of the pulse P(t), the dis-
placement of every boundary under the effect of the
pulse persists until the arrival of waves from the other
boundary. Below, we assume that the duration of the
electric pulses satisfies the condition

(6)

ψ t( ) zw/2( ) 1– P ξ( ) ξ ,d

0

t

∫=

τc ! hc/cc.

î(t) Ψ(t)

–hr – 2hc 0 x

ρw, cw

ϕ(t)

hc

–2hc –hc

Fig. 2. Modification of the boundary-value problem with
piezoelectric layers –hc ≤ x ≤ 0 and –2hc ≤ x < –hc in the form
of an echelon of thin layers with opposite polarization and
metallized boundaries electrically connected in parallel.
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Transient processes (and proper time scales) do not
manifest themselves in this system because of condi-
tion (3) of the transparency of the boundaries x = 0, x =
–hc, and x = –2hc.

Figure 3 shows the spatial distributions u(x, t) of
particle displacements in the medium under the effect
of a single short (see relation (6)) pulse of electric volt-

u(x, t)
t1

(cw/cc)hc

–hc 0

cwτc

P(t)

t2

t3

t5

t6
t7
t8
t9

x

t4

Fig. 3. Instantaneous distributions of the particle displace-
ments u(x, t) in the medium at the instants 0 < t1 < t2 < t3 <

t4 < 2–1hc , t5 = 2–1hc , 2–1hc  < t6 < hc , and

hc  < t7 < t8 < t9 under the effect of one voltage pulse of

duration τc ! hc .

cc
1–

cc
1–

cc
1–

cc
1–

cc
1–

cc
1–
age ϕ(t) within the interval x ∈ [–hc, 0] at various
instants of time.

A HUYGENS SOURCE

In the section concerning the scales, the formation
of the trajectory u(0, t) = u⊗ (t) of the boundary x = 0
was assumed to occur within the time ~T ! 2π/ωmax in
the absence of interaction of the active layer with the
underlying surface  (support) or with the boundary
x = –hr – 2hc. Therefore, below, we will try to find the
shortest time combination of the voltages b (t) and

b (t) (Fig. 4b) applied to the piezoelectric layers
x ∈  [–hc, 0] and x ∈ [–2hc, –hc] (Fig. 4a) that provides
a zero field u(x, t) = 0 in the domain x < –2hc and a non-
zero field u(x, t) ≠ 0 in the domain x > 0 for any coeffi-
cients b. We confine the class of desired voltages (t)

and (t) to rectangular pulses

of duration τc satisfying condition (4). Now, it is easy to
make certain that the above-mentioned goals can be

achieved only for  –  = hc/cc = τV and  = – , as is
shown in Fig. 4a. Trying to provide for u = 0 in the
domain x < –2hc, we obtain a unique combination of

delays ,  and amplitudes , , which, in turn, pro-
duces a bipolar rectangular wave of displacements
propagating rightward in the domain x > 0:

SV

ϕ
ϕ

ϕB

ϕB

ϕB t( ) bϕ0U t τ–( ), ϕB t( ) bϕ0U t τ–( )= =

τ τ b b

τ τ b b

u x t,( ) ψB t x/cw( )–[ ] .=
(a)

ϕ=B(t)

t = 3(hc/cc)

–2hc 0 ΨB [t – (x/cw)]
x

(b)

ϕ–B(t)

–hc

x

x

x

t = 4(hc/cc)

t = 5(hc/cc)

2τ–V

t

t

t

hc/cc

ϕ–B(t)

τc

ϕ=B(t)

ΨB(t)

Fig. 4. (a) Instantaneous spatial distributions of particle displacements in the medium under the effect of piezoelectric layers: black

pulses are produced by the voltage (t) across the layer x ∈ [–hc, 0], and gray pulses are produced by the voltage (t) across

the layer x ∈ [–2hc, –hc]; (b) diagrams of the base voltage pulses (t) and (t) and of the base pulse ψB(t) of mechanical dis-

placement u(0, t) of the boundary x = 0.

ϕB ϕB

ϕB ϕB
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Here, ψB(t) is characterized by the following properties:
(i) ψ(t) = 0 for t < 0;
(ii) ψB(t) = const > 0 for 0 < t ≤ τV;
(iii) ψB(t) = 0 for τV < t ≤ 2τV;
(iv) ψB(t) = const < 0 for 2τV < t ≤ 3τV;
(v) ψB(t) = 0 for t > 3τV, where τV = hc/cc.
The function ψB(t) also satisfies the integral rela-

tions

inside the finite interval 0 < t ≤ 3τV, and, outside this

interval, it equals zero. The functions (t) and (t)
satisfy the relation

where ϕ0 = 2ρwcw ψ0. The system described
above represents a pulsed version of a classical Huy-
gens wave source [1, 2] characterized by one-sided
radiation with the sound energy concentrated at the
jumps of the function ψB. The equality

(7)

is a consequence of the momentum conservation law for
the medium of wave propagation. Note that the wave
radiated only to the right (a wavelet [11]) ψB[t – (x/cw)]
of minimal duration 3τV necessarily has a pause τV
between the maxima of different polarities.

It is important to note that, in the effect of one-sided
radiation, a role of fundamental significance is played
by the wave deformations of the layers x ∈ [–hc, 0] and
x ∈ [–2hc, –hc]. For example, in the case of ρccc @ ρwcw

(unlike relations (5)), the layers x ∈ [–hc, 0] and x ∈
[–2hc, –hc] are perfectly rigid bodies, into which no
waves penetrate from the external medium (x < –2hc,
x > 0). Such bodies (layers) have the given thicknesses
d(t) = |u(–2hc, t) – u(–hc, t)| and (t) = |u(–hc, t) – u(0, t)|
and a common boundary u(–hc, t). In this case, none of

the combinations of the functions (t) and (t) can
provide the desired effect of one-sided radiation.

BASE PULSES
As was shown above, in the absence of incident

waves, the displacement u(0, t) = ψB(t) of the boundary
x = 0 is a result of the action of the voltage pulses (t)

and (t) connected by the relation

(8)
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0
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0
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and applied to the layers x ∈ [–hc, 0] and x ∈ [–2hc, –hc].
Now, we represent the current voltages

(9)

across the layers x ∈ [–hc, 0] and x ∈ [–2hc, –hc] as a

sum of base voltage, pulses (t) and (t), where
T = 2τV is the pulse repetition period. The current dis-
placement of the controlled boundary x = 0,

(10)

is represented as a sum of base pulses of displacement
ψB(t). The coefficients Bn of expansions (9), (10) (or the

amplitudes of pulses , , and ψB) are determined
by the control algorithm.

THE ALGORITHM FOR CONTROLLING 
THE BOUNDARY PROBLEM

The purpose of the algorithm for controlling the
piezoelectric layers is the synthesis of the prescribed
trajectory u⊗ (t) of displacement of the boundary x = 0
on the basis of a sequence of bipolar antisymmetric
pulses ψB(t) with the left third part of every subsequent
pulse being superimposed on the right third part of
every preceding pulse. The novelty of the proposed
approach is determined by the fact that, usually, the pre-
scribed trajectory is approximated by a sequence of
nonoverlapping pulses with nonzero mean value of
every pulse (for example, by a sequence of delta-
pulses), whereas, in the algorithm described below,
intersecting (Figs. 5a–5c) bipolar base pulses with zero
mean (see Eq. (7)) are used to synthesize the prescribed
trajectory.

The algorithm averages the difference u(0, t) – u⊗ (t)
between the desired u⊗ (t) and actual u(0, t) displace-
ments of the boundary x = 0 over the time interval
t ∈ [τV(n – ℑ ), τVn] and tends to compensate for this
error signal on the average within the interval t ∈
[nT, (n + 1)T]. For this purpose, at the instant t = nT, the
algorithm begins to generate the base pulse ψB(t – nT)
of displacement of the boundary x = 0 with the ampli-
tude

(11)

where  is the operator of action of one differentiating
network (see below), ε is a positive integer (see inequal-
ity (16)), u⊕ (t) is the measured displacement of the
boundary x = 0, u⊗ (t) is the prescribed trajectory of the

boundary x = 0, ψ0 = (t)dt, and TV is the dura-

tion of the interval of averaging.

ϕ t( ) = BnϕB t nT–( ), ϕ t( )
n

∑  = BnϕB t nT–( )
n

∑

ϕB ϕB

ψ t( ) u 0 t,( ) BnψB t nT–( ),
n

∑= =

ϕB ϕB

Bn ψ0TV /2( ) 1– F̂
ε

u⊕ u⊗–[ ] t,d

τV n TV–

τV n

∫=

F̂

τV
1– ψB0

τV∫



144 ARABADZHI
(a)

Bn–1

t

τw

Aw

|u|max

(b)

(c)

Bn

Bn+1

τV

t

t t

t

t

0

(d)

(e)

(f)

τV

τw
τV

(g)

(h)

(i)

τw τw

Aw t

t

t

τV

Aw

Aw

Fig. 5. Examples of synthesis of the prescribed displacement trajectory of the boundary x = 0 by means of controlling the amplitudes
Bn of sequence (10) of base pulses at zero noise and ℑ  = 1:
(a), (b), (c) successive superposition in time of the base pulses ψB(t) with the amplitudes Bn – 1, Bn, Bn + 1;
(d) the desired displacement u⊗ (t) with a nonzero mean value;
(e) amplitudes Bn of sequence (10) of the base pulses ψB(t) that approximates the prescribed displacement u⊗ (t) of the boundary
x = 0;
(f) the resulting displacement u(0, t) of the boundary x = 0;
(g) the desired displacement u⊗ (t) with a zero mean value;
(h) amplitudes Bn of sequence (10) of the base pulses ψB(t) that approximates the prescribed displacement u⊗ (t) of the boundary
x = 0; and
(i) the resulting displacement u(0, t) of the boundary x = 0.
STABILITY OF THE SYSTEM

Let us formulate the stability condition for a damp-
ing system to prevent the unlimited growth of the
impact amplitude. The origin of instability may be both
internal (connected with the compensation for the sys-
tem’s own inevitable random errors) and external (con-
nected with the special features of the synthesized tra-
jectory u⊗ (t) preset from outside).

(i) Internal source of instability. We assume that, for
a zero preset displacement u⊗ (t) = 0, one “wrong” base
pulse of displacement ψB(t) with the amplitude ξ1 ≠ 0
accidentally appears at the instant t = 0; then, algo-
rithm (11) tends to provide for u(0, t) = 0. Sequence of
pulses (9), which serves to compensate for the distur-
bance of the form ξ1ψB(t) according to algorithm (11),
has the amplitude distribution

(12)

where ℑ  = TV/(3τV) = 1, 2, 3, …. From Eq. (12) it fol-
lows that, for

(13)

the conditions  = 0 and  < ∞ are

satisfied and the system is stable. The value of the aver-
aging interval being a multiple of 3τV is needed for the
most efficient suppression of the oscillating component
in the error signal u⊕  – u⊗ .

Bn ξ1( ) ξ1 ψ0ℑ /2( ) 1– 1–( )nℑ n– ,=

ℑ 1,≥

Bn
n ∞→
lim Bkk 1=

n∑
n ∞→
lim
(ii) External source of instability. Assume that noise
in the system is absent, ℑ  = 1, and u⊗ (t) ≠ 0. The time
average value of every base pulse ψB(t – nT) equals
zero. Then, for the synthesis of a constant displacement
Aw (Fig. 5d), during the characteristic maximum inter-
val τmax = π/ωmin of sign constancy of the function u⊗ (t),
the amplitude of base pulses Bn should increase linearly

from Aw  at t = 0 to

(14)

at t = τmax (see Fig. 5e). In addition, after the termina-
tion of algorithm (10), (i.e., at Bn = 0 and t > τmax), a
powerful reverse displacement (Fig. 5f) of the bound-
ary with the amplitude

(15)

is inevitable.
The large amplitude of reverse displacement is

caused by the necessity of obtaining the zero value of

the integral (0, t)dt = 0, where the function u(0, t)

consists of the pulses ψB(t – nT) with zero mean in time.
The presence of a nonzero constant component in the
signal u⊗ (t) is equivalent to the tendency τmax  ∞
and, correspondingly, |u(0, τmax + τV)|max  ∞ and

ψ0
1–

Bn( )max 1 τmaxτV
1–+( )Awψ0

1–=

u 0 τmax τV+,( ) max Bn maxψ0=

=  1 τmaxτV
1–+( )Aw @ Aw

u
0

τmax τV+∫
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|Bn|max  ∞, which implies instability of the system.
Figures 5d–5f illustrate the incorrectness of the synthe-
sis of a function with nonzero mean using the function
combination ψB(t – nT) (Fig. 5d) with a zero time-aver-
aged value. Figures 5d–5f also show the process of syn-
thesis of the trajectory u⊗ (t) with a zero mean value by
algorithm (11). In this case, the result of synthesis
(Fig. 5i) and the sequence of amplitudes Bn (Fig. 5h) of
base pulses are fully adequate to the stated problem.
The prescribed rectangular trajectories u⊗  shown in
Fig. 5 are not smooth (as was supposed above) but, all
the more, they demonstrate the efficiency of algo-
rithm (11). For τV ! τmin, the amplitude of the nth base
pulse may be approximately evaluated as

which yields an unlimited increase in Bn with n  ∞.
Therefore, for stability of the system (or, for the finite-
ness of the quantities |Bn| < ∞ and |u(0, t)| < ∞), it is nec-
essary to exclude a constant component from the signal
u⊕ (t) – u⊗ (t). For this purpose, it is sufficient at the input
of algorithm (11) to insert

(16)

series-connected differentiating RC networks with a
time constant τD @ τmax, which are described by the

operator  (see Eq. (11)). Such networks with large
time constants suppress the Fourier components in the
error signal u⊕ (t) – u⊗ (t) in a narrow frequency band
|ω| < 2π/τD near the zero frequency but do not distort
the signal at the frequencies 2π/τD ! |ω| < ωmin. As was
mentioned above (see relation (1)), we consider the tra-
jectories u⊗ (t) with a zero power at zero frequency.

Estimates (14) and (15) of the quantities (Bn)max and
|u(0, τmax + τV)|max imply stronger requirements on the
dynamic range of compression (expansion) of the
piezoelectric material. However, if, instead of one
homogeneous piezoelectric layer of thickness hc, we
use an echelon (Fig. 2) of Nc @ 1 layers that have a
thickness hc/Nc and opposite polarizations and are elec-
trically connected in parallel, then, their static expan-
sion (compression) under the action of the same voltage
will be Nc times greater. This is possible because the
absolute value of linear expansion (compression) of a
piezoelectric is proportional to the applied electric volt-
age but does not depend on the layer thickness. How-
ever, in this multilayer piezoelectric system, the
recharging current is greater by a factor of Nc.

THE EFFICIENCY OF CONTROL

If conditions (13) and (16) determining the stability
of the system are satisfied, the efficiency of the system
is characterized by the closeness of the measured coor-
dinate u⊕ (t) of the displacement of the boundary x = 0

Bn ψ0τV /2( ) 1– u⊗ t( ) t,d

0

τV n

∫≈

ε 1≥

F̂
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to the prescribed trajectory u⊗ (t). We take into account
such disturbing factors as the following: (i) random
noise (an additive factor) with the relative value δ1 ! 1
in measuring and actuating units of the system and (ii)
hardware distortions (a multiplicative dynamic factor)
with the relative value δ2 ! 1 in measuring and actuat-
ing units.

(i) Random noise. We consider a sequence of
“improper” (to be suppressed by the algorithm) pulses
ξnψB(t – nT) with the random amplitudes ξn, where –∞
< n < +∞. We assume that the amplitudes ξn have a zero
mean value 〈ξ n〉  = 0 and are uncorrelated; i.e., 〈ξ nξm〉  =
χ2δnm, where χ = const > 0, δnm = 0 for n ≠ m, and δnm =
1 for n = m. Every nth pulse beginning at the instant
t = nT generates a sequence (ξn)ψB(t – mT)
of compensating base pulses with the coefficients
Bm(ξn) = ξn(ψ0ℑ /2)–1(–1)mℑ –m (m = 0, 1, 2, …) (see
Eq. (12)). Then, we obtain the estimate of total average
noise power 〈ψ2( )〉 = (1 – ℑ –2)–1χ2 of the trajectory u(0, t)
at the instant  due to the random errors ξn of ampli-
tudes of the base pulses started at the instants –∞ < t < 
without taking into account the averaging over the
interval  – TV < t < . With allowance for the interval
TV of time averaging in algorithm (11), the relative
noise error δ1 of the trajectory synthesis is

where δ⊕  = χ/Aw ! 1 is the total relative error of mea-
suring and actuating units of the system (see the next
section).

(ii) Hardware distortions. With the increase in TV

(or ℑ ), the noise error δ1 decreases, but the relative iner-
tial dynamic distortion δ2 ≈ TV/τmin ! 1 of the trajectory
u⊗ (t) grows. If both δ1 and δ2 are small, then the total
relative error [δΣ] of the synthesis can be represented as
the sum δΣ ≈ δ1 + δ2. An increase in TV leads to a
decrease in δ1 and an increase in δ2. Then, there is a cer-
tain value of TV for which  = 0 and δΣ is minimal.

MEASUREMENT OF THE COORDINATE
OF THE CONTROLLED BOUNDARY

We represent the measured coordinate u⊕ (t) of the
boundary x = 0 in the form

where Φ(t) ~ M{u(–2hc – hr, t)}tt is the signal of an iner-
tial accelerometer with a mass M (Fig. 2) and with a
sensing element located at the point x = –2hc – hr;
Ψ(t) ~ u(0, t) – u(–2hc – hr, t) is the signal of the sen-
sor measuring the distance between the boundaries
x = –2hc – hr and x = 0 (for instance, a miniature optical

Bmm n=
∞∑

t̃

t̃

t̃

t̃ t̃

δ1 1 ℑ 2––( ) 1/2– ℑ 1/2– δ⊕  ! 1,≤

δΣ( )TV
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interferometer). A rather large mass of the inertial body
of the accelerometer provides for its sensitivity to a rel-
atively weak slow signal Φ(t). A powerful component
of the signal u⊕ (t) at technological frequencies cannot
be represented adequately by the accelerometer
because of the propagation of sound waves in its iner-
tial body. However, the source of high-frequency radia-
tion is positioned at the point x = –2hc at a distance hr
from the accelerometer and, owing to the high-fre-
quency attenuation factor

(17)

influences the signal Φ(t) much less than u⊗ (t). Condi-
tion (17) is compatible with smallness (2) of the active
layer thickness

only when

It is easy to see that neither the inertial accelerome-
ter nor the optical interferometer taken separately can
provide the measurement of displacement of the bound-
ary x = 0 relative to the inertial reference system in such
a wide frequency band and in the absence of a mechan-
ical support.

CONCLUSIONS

We considered a one-dimensional system consisting
of piezoelectric layers x ∈ [–hc, 0], x ∈ [–2hc, –hc] and
a layer of a high-frequency absorbing polymer in a
homogeneous elastic isotropic medium occupying the
regions x < –2hc – hr and x > 0. The boundaries x = 0,
x = –hc, and x = –2hc were assumed to be transparent to
sound.

The minimal-duration configuration of voltage

pulses (t) and (t) applied to the layers x ∈ [–hc, 0]
and x ∈ [–2hc, –hc] is determined, for which the field at
the left (for x < –2hc – hr) is absent and, at the right (for
x > 0), a wave (wavelet) of particle displacements
u(x, t) = ψB[t – (x/cw)] propagates in the medium with an
amplitude proportional to the amplitude of the electric

pulses  and . The function ψB(t) has the duration
3hc/cc and consists of two rectangular pulses of differ-
ent polarity and the same duration hc/cc separated by a
pause of the same length hc/cc. The momentum conser-
vation law for the medium in the absence of the field at
the left determines the zero mean value of this wave.

A wavelet approximation of the prescribed smooth
trajectory u⊗ (t) of the boundary x = 0 by bipolar pulses

δA α π/τV( )hr–[ ]  ! 1,exp=

, hr 2hc ! cwτmin+=

hr @ crτV .

ϕB ϕB

ϕB ϕB
BnψB(t – nT) of displacement with a repetition period
T = 2hc/cc (n = 1, 2, …), which are produced by the cor-
responding sequence of electric pulses Bn (t – nT) and

Bn (t – nT), is considered. Every pulse of the sequence
is partially superimposed on the preceding one.

A control algorithm determining the amplitudes Bn
of the pulses ψB(t – nT) on the basis of the error signal
measurement within the preceding time interval TV is
formulated. It is shown that, for stability of the synthe-
sis, it is necessary to do the following: (a) to average the
error signal over the interval TV that is a multiple of the
duration 3hc/cc of the function ψB(t) (to suppress the
oscillatory component) and (b) to eliminate the zero
frequency from the error signal. The accuracy of the
trajectory synthesis is evaluated.

A technique for measuring the displacement of the
boundary x = 0 with respect to an inertial reference sys-
tem in a wide frequency range in the absence of
mechanical support is suggested.

The system of synthesis of a prescribed trajectory of
a controlled boundary is a version of a Huygens source
[1, 2]; it has the form of a thin continuous active coating
on the protected surface and is considered in the tempo-
ral (pulse) representation.
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Abstract—The results of research into the design and optimization of laboratory sources of intense airborne
ultrasound are reported. Two types of sources are studied: multielement arrays of small-size piezoelectric radi-
ators and single membrane transducers of a capacitor type. The measured characteristics of the ultrasound fields
and the audible sound fields generated in air due to the nonlinear interaction of high-frequency waves are pre-
sented. Applications of nonlinear acoustic problems in air are discussed. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Ideas about the possibility of a directional low-fre-
quency radiation caused by the interaction of intense
high-frequency waves and the possibility of receiving
low-frequency signals modulating an intense high-fre-
quency beam were put forward by V.A. Zverev
(together with A.I. Kalachev) and P. Westervelt more
than 40 years ago. The history of these ideas and their
experimental verification and implementation in the
original devices was described by Zverev in a historic
essay under the title “How the Idea of a Parametric
Acoustic Array Was Conceived” [1].

Parametric arrays operating in a fluid were studied
in detail and, owing to their unique characteristics, have
found wide application in underwater acoustics [2].
Arrays operating in air [3–7] appeared later than their
underwater analogs and could not find wide application
for a long time. Presumably, this was related to the fact
that nonlinear problems of airborne acoustics were not
as topical (at that time) and, hence, the development of
sources of intense coherent airborne ultrasound was of
no particular interest.

Today, interest in the problem of nonlinear radiation
of airborne sound has quickened in connection with
some applications. These primarily include the possi-
bility of detecting inhomogeneities in the atmosphere
by sounding the latter with a narrow-beam sound signal
of tunable frequency [3, 4]. Considerable interest is also
being expressed in “parametric” loudspeakers [5–7],
which produce unusual acoustic effects (e.g., selec-
tively transmit a speech signal to an individual listener
or form a moving localized source of sound) and offer
commercial success to the designers of the correspond-
ing audio systems. The advantages of parametric
microphones are described in [1].

From our point of view, the use of intense sources of
narrow-beam sound and ultrasound offers considerable
1063-7710/05/5102- $26.00 0147
promise for acoustic diagnostics and nondestructive
testing. As is known, the ratio of the energy flux
through a boundary between gas and a condensed
medium to the incident energy flux is fairly small:
about 10–3–10–4 (see, e.g., [8]). This means that, for a
reliable detection of the scattered signal in the remote
nondestructive testing of solid articles, it is necessary to
use high-intensity ultrasound. In this case, the signal
may have a combination frequency and originate from
a structural inhomogeneity (e.g., near the tip of an inter-
nal crack, whose vicinity is characterized by strongly
nonlinear properties [9]). The use of such narrow-beam
tunable sources as parametric radiators provides the
possibility to determine the frequency response of a
scattering inhomogeneity. In addition, one can selec-
tively excite specific types of vibrations, for example,
Lamb waves or Brillouin modes, in a plane-parallel
plate by irradiating it with a narrow beam incident
under a certain angle to the surface [10, 11].

ANTENNA ARRAYS

In view of the aforementioned applications, we
developed multielement antenna arrays for the excita-
tion of intense airborne ultrasound.

Each array consisted of small-size radiators repre-
sented by stock-produced radio-electronic devices. The
active element of each of these devices was a bimorph
piezoelectric plate 10.6 mm in diameter. At the center
of each plate, where the displacement was maximal, a
conic horn made of a light metal with a diameter of
7 mm was welded to provide a better matching with air.
The whole structure was placed in a cylindrical casing
and emitted radiation through the end of the cylinder,
which was closed by an acoustically transparent net.

The measured amplitude–frequency response of a
single radiator is shown in Fig. 1. The frequency depen-
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Amplitude–frequency response of a single radiator.
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Fig. 2. Directional patterns of two vertical rows of small-size
radiators for different distances between the rows: (a) 36,
(b) 72, and (c) 108 mm. The difference frequency is 4 kHz.
dence of the acoustic pressure level exhibits many res-
onance maxima. The highest of them is observed at a
frequency of 39850 Hz. Therefore, we choose the oper-
ating frequencies in the vicinity of 40 kHz with the aim
of providing for an efficient generation of ultrasonic
waves and, hence, of nonlinear signals in the audible
frequency range. The radiator operated in the linear
mode when the amplitudes of the alternating voltage
supplied to it varied from 1 to 20 V. At the maximum
voltage of 20 V, the ultrasound level measured at a dis-
tance of 30 cm was 120 dB.

In the first series of experiments, the frame of the
array was a rectangular fabric-based laminate plate, in
which holes were drilled to fix the small-size piezoelec-
tric radiators. On this plate, it was possible to mount
49 radiators forming a 7 × 7 square pattern. In this case,
the radiators were almost immediately adjacent to each
other, with the distance between their centers being
equal to 18 mm. The experiments were carried out with
an array completely filled with radiators and also with
an array containing only two vertical rows of seven
radiators each. In the latter case, the rows were spaced
at different distances from each other, specifically, from
18 to 108 mm.

The signal supplied to the radiators of the array was
a two-frequency one formed as a sum of two harmonics
with frequencies close to 40 kHz and amplitudes up to
10 V. We studied the directional patterns in the horizon-
tal plane for the difference-frequency wave (DFW)
generated by such an array. The measurements were
performed at a distance of 3.3 m from the plane of the
plate.

Figures 2a–2c show the directional patterns obtained
for the DFW signal of frequency 4 kHz that was pro-
duced by two vertical rows of radiators spaced at 36,
72, and 108 mm, respectively. Calculations were per-
formed by representing each radiator as a point source
with a directional pattern approximating the one mea-
sured for a single radiator in the angular range from
–60° to +60°. Figure 2 demonstrates a fairly good
agreement between the calculated and measured pat-
terns near the axis. For large angles, the accuracy of the
main lobe approximation increases with the distance
between the rows of radiators.

Directional patterns obtained with the completely
filled plate (with 49 small-size piezoelectric radiators)
are shown in Figs. 3a and 3b for DWF frequencies of
500 Hz and 4 kHz.

The second series of measurements was carried out
with a ring-shaped array. It consisted of a fabric-based
laminate ring 360 mm in diameter with 48 small-size
radiators fixed on it at regular intervals. Figures 4a and
4b show the angular dependences of the DFW ampli-
tude measured for difference frequencies of 500 Hz and
3 kHz at a distance of 4 m from the ring. At this dis-
tance, the ultrasound pressure level remained relatively
high (124 dB), while the DFW divergence law was
close to spherical.
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
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The third series of experiments was carried out with
a focusing array. It consisted of a disk with groups of
small-size radiators fixed on it. The groups were
arranged as rings whose radii approximately corre-
sponded to the boundaries of the Fresnel zones. The
electric signals supplied to neighboring rings had a
phase shift of π between them. The structure was care-
fully optimized to obtain the maximal intensities of
ultrasound in the focal region for a given focal length
and the limitations imposed on the diameter of the array
and the number of radiators. In addition, it was neces-
sary to obtain a sufficiently smooth field distribution
along the beam axis.

Two identical arrays containing 90 radiators each
were manufactured. We plan to later use these arrays at
different but close frequencies in the confocal position
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Fig. 3. Directional patterns of a square array. The difference
frequency is (a) 500 Hz and (b) 4 kHz.
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to obtain a pronounced nonlinearity and to generate low
(audio) frequencies near their common focus.

The focus of each of these arrays was at a distance
of about 32 cm from the plane of the source of radia-
tion, and the diameter of the focal spot was 2–3 cm. At
reasonable loads allowing for an almost infinitely long
operation of the device, the maximal intensity level
near the focus reached 152 dB. However, for safety rea-
sons, the experiments were performed with lower inten-
sities.

We measured the profile of the ultrasonic signal
immediately before the focus and behind it. We
observed typical nonlinear diffraction distortions asso-
ciated with the formation of steep wave fronts and the
asymmetric distortion of half-periods of different
polarity. A detailed comparison of the experimental
data with the theory is planned to be performed later.
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Here, we note only that the evolution of the profiles
and spectra of waves produced by the arrays differs
from the well-investigated evolution of periodic sig-
nals excited in a nonlinear medium by single radia-
tors.
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MEMBRANE TRANSDUCERS

Along with the radiating arrays, we fabricated a
family of radiating membrane transducers of the type
described in [12]. The principle of their operation is as
follows. A light metallized polymer film (membrane) is
slightly stretched over a rough surface of a conducting
disk. A constant voltage component induces charges of
opposite signs on the membrane and on the disk. As a
result, the membrane is pressed to the rough surface.
Under the action of an alternating voltage component,
parts of the membrane that lie over depressions of the
surface begin to vibrate. In this case, the air in the
depressions plays the role of an elastic load, and each
of these small areas operates as a small capacitor-type
radiator.

First, we studied the amplitude–frequency
responses with the use of four disks of different diame-
ters. Grooves on their surfaces were scratched by a
rough abrasive cloth. The polarization voltage was
equal to 200 V, and the amplitude of the alternating
voltage was 50 V. A microphone was placed at the axis,
at a distance of 1 m from the membrane surface. The
dependences obtained in the experiment are shown in
Fig. 5. The curves corresponding to different diameters
have the same shape with two smooth maxima and a
minimum between them. The positions of the extrema
on the frequency axis are approximately the same for
all curves. The sound pressure level increases with
increasing diameter because of the increase in the
working area of the radiator and, hence, in the radiation
power.

In the next experiment, we measured the ultrasound
pressure levels at the maxima of the amplitude–fre-
quency response for three disks with the same diameter
of 30 mm but with grooves scratched by different abra-
sive cloths: rough, intermediate, and fine. The frequen-
cies corresponding to the extrema varied within narrow
limits, but the radiator with rough grooves proved to be
–90 –60 –30 0 30 60 90

–10

–20

–30

–40

–50

–60

–70

–90 –60 –30 0 30 60 90

Relative amplitude, dB

Angle, deg

Experiment
Calculation

(‡) (b)

Relative amplitude, dB

–30

–40

–50

–60

–70

Angle, deg

0 0

–10

–20

Fig. 7. Angular dependences of the radiation levels for ultrasound modulation frequencies of (a) 3 and (b) 4 kHz.
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the most efficient one: it provided a 10-dB-higher pres-
sure level compared to the two other radiators.

Then, we measured the level of the first maximum as
a function of the groove depth (from 0.2 to 0.6 mm) for
grooves that were cut by a milling machine at a constant
step. The highest ultrasound pressure level was
obtained for the smallest groove depth (0.2 mm). This
level also was 18 dB higher than the pressure level
achieved with the disk with grooves made by the rough
abrasive cloth. Thus, we determined the parameters that
provided for the generation of ultrasound with maximal
intensity by the membrane transducers of the afore-
mentioned type.

In the following experiments, we used a large source
20 cm in diameter with 0.1-mm-deep grooves. Figure 6
shows the angular dependences of the normalized ultra-
sound level obtained with this source of radiation at dis-
tances of 1 and 4 m at the first maximum (62 kHz). For
comparison, in the same figure, we present the corre-
sponding dependence obtained for a disk 35 mm in
diameter at a frequency of 48 kHz at a distance of 1 m.
In the latter case, the diffraction length is about 14 cm;
i.e., we have a completely formed directional pattern at
this distance. Its angular width is evidently much greater
than that for the disk with the diameter of 20 cm.

The large source (20 cm) was loaded with an electric
signal generated at a frequency of 62 kHz (correspond-
ing to the first resonance) and modulated at a frequency
of 3–4 kHz. In air, a nonlinear demodulation takes
place, which results in the generation of an audio-fre-
quency wave. At a distance of 1 m, its level was 55 dB
for the frequency of 3 kHz and 60.5 dB for the fre-
quency of 4 kHz. The level of the high frequency signal
was 130 dB at the same distance. The angular depen-
dences of the sound pressure levels measured at a dis-
tance of 4 m for frequencies of 3 and 4 kHz are shown
in Figs. 7a and 7b.

CONCLUSIONS
Arrays of small-size piezoelectric radiators and

membrane transducers generating intense airborne
ultrasound have a number of characteristic features,
which include both advantages and drawbacks. There-
fore, their use in experiments and applications may be
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
advantageous or inappropriate, depending on the spe-
cific problem to be solved.

The sound pressure levels that were achieved in the
experiments described above can be noticeably
increased with the use of more advanced materials and
technologies.
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Abstract—Results of laboratory experiments aimed at studying the spatial distribution of the difference-fre-
quency acoustic wave field in a shallow-water waveguide with a sloping bottom are presented. It is shown that,
in an inhomogeneous waveguide, the direction toward the radiation maximum in the angular spectrum of the
low-frequency wave continuously varies as the rib of the wedge is approached, whereas, in a homogeneous
waveguide, the angular spectrum is shaped. A spatial filtering of low-frequency modes produced by a paramet-
ric radiator and reflected from the coastal wedge is experimentally realized. The results of the experiment are
confirmed by numerical modeling. Problems of the physical adequacy of the experimental results obtained
under actual and laboratory conditions are discussed. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The study of acoustic wave propagation in shelf
zones of the ocean presents a fairly complex problem
because of the difficulties involved in the determination
of the sound field characteristics when the parameters
of the medium depend not only on the depth of the
waveguide but also on the horizontal coordinates. For
the first time, the solution to the problem of wave dif-
fraction by a wedge was obtained in a general form by
Sommerfeld. However, this solution often does not
allow one to represent the physical picture of the field
without intricate additional transformations. Therefore,
at present, the problems of sound propagation in almost
stratified media, i.e., in media whose properties slowly
vary in the horizontal direction, are in most cases theo-
retically solved by using one of the two following
approaches.

One of them is based on the well-known theory of
horizontal rays and vertical modes [1, 2] with the
assumption that no interaction occurs between them. In
this method, taking into account the variations of both
sound velocity and waveguide depth in both space and
time, a combination of normal modes and horizontal
rays is used. The other approach is based on the ray rep-
resentations of high-frequency sound fields in media
whose parameters depend on three coordinates. For
example, in [3], an approximate relationship (called ray
invariant or Weston invariant) was derived, which then
was used in [4] to construct horizontal projections of
ray paths with multiple reflections from the bottom and
the surface of the sea. Expressions for “horizontal rays”
were obtained in the form of definite integrals for the
case of a sea depth depending on a single horizontal
coordinate. Using the relations between rays and
modes, Weston also considered the possibility of apply-
1063-7710/05/5102- $26.00 0152
ing Snell’s law to describing the “horizontal refraction”
of rays multiply reflected from the bottom and the sur-
face. In connection with this, one should note the pub-
lications by Komissarova [5, 6]: in addition to theoreti-
cal studies, she gave detailed descriptions of numerical
and field experiments on sound propagation in actual
oceanic conditions, where the depth of the water layer
depended on both horizontal coordinates in an arbi-
trary way.

The experiments described in [5, 6] were performed
with linear point sources of sound. A selective control
over the mode composition of the sound field can be
achieved with the use of horizontal and vertical phased
linear transmitting arrays of considerable length or with
the use of parametric sources of sound. The latter pos-
sibility is of special interest for oceanographic investi-
gations. This is related to the unique properties of para-
metric radiators, specifically, to the extremely narrow
directional pattern at a low radiation frequency. The use
of intense sources that have a fairly long region of inter-
action of the initial pumping waves makes it necessary
to take into account the waveguide nature of sound
propagation and the inhomogeneities of the medium in
the region where the difference-frequency wave is
formed.

However, in the literature available to us, we did not
encounter any information on experimental studies of
parametric sound radiation in waveguides whose
parameters smoothly vary along the sound propagation
path. With the aim of partially filling this gap, we car-
ried out experimental studies of the sound fields pro-
duced by parametric sound sources in waveguides that
modeled a shelf zone of the ocean.

The laboratory modeling of nonlinear acoustic wave
propagation has some distinctive features compared to
© 2005 Pleiades Publishing, Inc.
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the scaled physical modeling of linear wave propaga-
tion. Let us consider this issue in more detail [7].

SPECIFIC FEATURES OF THE SCALED 
PHYSICAL MODELING OF NONLINEAR 

ACOUSTIC WAVE PROPAGATION

A method often used at the Department of Acoustics
of the Nizhni Novgorod State University for studying
the propagation of sound in an oceanic medium is lab-
oratory physical modeling. The department’s wide
experience in the physical modeling of sound propaga-
tion in the ocean was summarized in a monograph by
Professor A.N. Barkhatov, which was published in
1982 [8]. Since the mid-1980s, this method has been
successfully used in studying the nonlinear effects that
manifest themselves in the underwater propagation of
intense acoustic waves [9–11].

The physical modeling of linear problems in the
acoustics of ideal inhomogeneous media should be per-
formed with a retention of the similarity between the
model and the phenomenon under study. This is possi-
ble when the condition kL = const is satisfied for the
field and laboratory experiments, where k is the wave
number and L is the respective spatial scale. In addition,
the so-called modeling parameter Q is introduced [8]:

Li/li = f/F = Λ/λ = Q,

where Li represents the microscales of the field physical
experiment (the characteristic size of inhomogeneities,
the ocean depth, the propagation path, etc.), li repre-
sents the corresponding scales of the laboratory exper-
iment, f and λ are the frequency and wavelength in the
laboratory experiment, and F and Λ are the correspond-
ing parameters of the field experiment.

As is known, the velocity of sound in the ocean var-
ies much faster with depth than in the horizontal direc-
tion. This allows one to approximately describe the
ocean as a horizontally layered medium, whose param-
eters vary only slightly along the horizontal [12].

For a correct scaled physical modeling of the under-
water sound channel, it is necessary to leave the same
absolute velocity drop but scale down the macroscopic
parameters of the problem (the waveguide depth) and
increase the radiation frequency by a corresponding
factor. However, under laboratory conditions, it is not
always possible to observe the formation of conver-
gence zones (zones of enhanced illumination) that lie at
distances of 50–70 km from the source in field condi-
tions. For example, when the modeling parameter is
Q = 104 and the depth of the underwater sound channel
axis is zÓÒ = 1.5 km under field conditions, the distance
to the first convergence zone under laboratory condi-
tions is Lcon = 5–7 m, which exceeds the size of our lab-
oratory tanks. Therefore, in the laboratory experiments,
it is necessary to reduce the cycle length of sound rays
by a disproportionate increase in the vertical gradients
of sound velocity.
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
It should also be noted that, in modeling the sound
propagation in a shallow sea under laboratory condi-
tions, it is impossible to retain the same value of the
parameter D/H, where D is the aperture of the sound
source and H is the depth of the waveguide. This vio-
lates the similarity of the angular characteristics of radi-
ation in the field and laboratory experiments.

In the modeling of nonlinear effects in an ideal
medium, the processes will be physically identical if
the similarity parameter Q holds for the characteristic
nonlinear length Lr = 1/kεM, where ε is the nonlinear
parameter and M is the Mach number. This condition is
satisfied if M has a constant value in the field and labo-
ratory experiments.

In the case of studying the propagation of acoustic
waves in linear dissipative media, the method of a
scaled physical modeling is, generally speaking, unre-
alizable, because the sound absorption coefficient non-
linearly depends on frequency. This leads to a dispro-
portionately high attenuation in the modeling of sound
propagation under laboratory conditions. However, for
linear problems, it is possible to introduce corrections
compensating for the attenuation and then take into
account this difference in the numerical processing of
experimental results [8].

In analyzing nonlinear problems, the relative role of
nonlinear and dissipative effects is also characterized
by a similarity number represented by the acoustic Rey-
nolds number Re, which is inversely proportional to the
radiation frequency [13]. This does not allow one to
obtain a simultaneous equality of the similarity num-
bers M and Re in the laboratory and field experiments
when considering the nonlinear interaction of sound
waves in inhomogeneous dissipative media. In particu-
lar, since the attenuation is one of the decisive factors in
the formation of the directional patterns of parametric
radiators [14], the physical modeling gives only a qual-
itative picture of the parametric source operation in an
oceanic medium.

However, despite these circumstances, the method
of laboratory modeling allows one to carry out unique
experimental studies in physical underwater acoustics
under strictly controlled laboratory conditions. With all
the aforementioned disadvantages, it remains a power-
ful instrument for studying sound fields in the ocean.

LABORATORY ACOUSTIC SYSTEM

The physical modeling was performed using the
acoustic system of the Department of Acoustics of
Nizhni Novgorod University. Earlier, this system was
used to study the nonlinear generation and scattering of
sound waves in a homogeneous space and under the
conditions of waveguide propagation [15] and also to
study the diffraction of sound waves by smooth and dis-
crete inhomogeneities of a medium [16]. In addition, a
physical modeling of the low-frequency sound propa-
gation in an oceanic medium was carried out [17] and
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Fig. 1. Flow chart of the experimental system.
methods for the acoustical diagnostics of the underly-
ing surfaces of shallow-water oceanic waveguides were
developed [18].

The experiments were performed in a laboratory
tank (W) with anechoic walls. The tank was 500 cm in
length with a width of 65 cm and a depth of 55 cm. It
was filled with water (characterized by sound velocity
c and the density ρ) and had a suspended bottom (with
a sound velocity c1 and a density ρ1), which could be
moved by screws in the vertical plane from 0 to 17 cm,
the desired depth being set with an accuracy of ±2 mm.
Thus, it was possible to model a plane waveguide and a
waveguide with a sloping bottom.

A simplified flow chart of the experimental system
is shown in Fig. 1, where the relative positions of the
source and receiver are indicated.

Below, we briefly describe the operation of the main
parts of the experimental system.

High-frequency oscillations were produced by two
high-power amplifiers (x1 and x2), to the inputs of
which continuous sinusoidal signals of frequencies f1
and f2 were supplied from the reference frequency unit
(≈). To reduce the level of reverberation noise due to the
boundaries of the volume under study, a pulsed radia-
tion mode was used in the experiments. The duration of
the pulses τ0 satisfied the condition f1τ0 @ 2π, which
ensured the quasi-monochromatic radiation mode.
The modulation pulses were produced by a genera-
tor (í1) of rectangular video pulses with a controlled
duration τ0 and a repetition rate Fr = 64 Hz. These
pulses, via a pulse amplifier (å1), were supplied to the
modulation inputs of the amplifiers (x1 and x2), where
the formation and amplification of radio pulses took
place. The signal formed in this way was supplied to the
acoustic transducer of pumping waves (S).

The source of the signal (S) was a circular piston-type
piezoceramic transducer with diameter D = 2.8 cm,
which formed a weakly divergent acoustic beam at the
frequency Fl = 200 kHz (the pumping frequencies were
f1 = 3.2 MHz and f2 = 3.0 MHz). With this transducer,
the angular width α of the low-frequency beam of the
difference-frequency wave was 1.5°. The transducer
was mounted on a rod that allowed for the positioning
of the source in depth z0 (with an error no greater than
1 mm), as well as for the orientation of the axis of the
parametric source radiation in the vertical plane (angle β)
with an accuracy of 1° or better.

To determine the mode of operation of the pumping
transducer, we performed preliminary experiments in
the unbounded space. The attenuation length deter-
mined experimentally was la = 1.47 m. As is known
[14], the mode of operation of a parametric source is

determined by the parameter η = , where Rf is

the diffraction divergence length of the transducer at a

la

Rf
----

Ωl

ωj

----- 
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high frequency, Ωl = 2πFl, and ωj = 2πfj (j = 1, 2). In our
case, we had η ! 1, so that the formation of the charac-
teristics of the difference-frequency wave radiation was
close to the Westervelt regime.

The synchronization of the operation of the whole
system was provided by a sync pulse produced by the
same generator (í1).

When it had been transmitted through the medium
under study, the signal was received by an omnidirec-
tional piezoceramic receiver (R). The distribution of
acoustic fields (in all three coordinates (r, y, z)) was
measured by a piezoceramic receiver whose size was
small compared to the wavelength. The receiver was
mounted on a carriage that could uniformly move in
three perpendicular directions (along the length, width,
and depth of the tank). The velocity of the receiver
motion along the hydroacoustic tank was V = 1.8 cm/s
in all experiments. The uncontrolled velocity fluctua-
tions did not exceed ±0.005 cm/s. In Fig. 1, the initial
distance between the source and the receiver of sound
is denoted R0, and the base of the receiver motion, L.
The accuracy of the receiver positioning along any of
the coordinate axes was within 1 mm.

After two-stage amplification and filtering per-
formed by an amplifier (x3), the pulsed received signal
was supplied to the gate unit (å2) controlled by the gate
pulse generator (í1). Pulses produced by this generator,
which were characterized by a duration τ1 and a con-
trolled delay time with respect to the onset of the trans-
mitted pulse, allowed us, first, to suppress the pulsed
reverberation noise and, second, to measure the ampli-
tude at any point of the received signal. The gated pulse
was supplied in parallel to both inputs of a multiplier
(×1), which made it possible to measure the intensity of
the signal. As a result, at the output of the multiplier
(×1), video pulses were formed with a duration τ1 and
an amplitude depending on the amplitude of the
received signal. The transformed signal was supplied to
an integrator (not shown in Fig. 1) controlled by the
pulse from the gate generator. Thus, the voltage formed
at the output of the integrator had an amplitude propor-
tional to the square of the amplitude of the pulsed input
signal. This voltage, in its turn, was converted to a dig-
ital code by an A/D converter and recorded on the disk
of a PC for a further processing. The sampling rate in
the A/D conversion was 50 Hz for all experiments.

Now, let us discuss the experimental results.

EXPERIMENTAL STUDY 
OF THE ANGULAR CHARACTERISTICS 

OF THE DIFFERENCE-FREQUENCY WAVE FIELDS 
IN A PLANE WAVEGUIDE AND IN A WAVEGUIDE 

WITH A SLOPING BOTTOM

In the experiment, we compared the angular (in the
horizontal plane) dependences of the difference-fre-
quency wave field in a plane waveguide and in a
waveguide with a sloping bottom at different fixed dis-
tances R0 between the source and the receiver.
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
The waveguide under study is schematically rep-
resented in Fig. 2. It has the form of a homogeneous
water layer of variable depth with sound velocity Ò =
1475 m/s and density ρ = 1 g/cm3. The water layer lies
on a sloping aluminum substrate with longitudinal wave
velocity Ò1 = 6200 m/s and density ρ1 = 2.72 g/cm3; the
wedge angle Φ is approximately equal to 0.78°. The
depth at the source site was the same as that in the ref-
erence waveguide and was equal to 38 mm. The dis-
tance r0 between the source and the rib of the wedge
was 280 cm.

The plane reference waveguide has the form of a
homogeneous water layer of thickness H = 38 ± 2 mm,
which overlies a metal substrate parallel to the free sur-
face of the layer.

The orientation of the axis of the parametric source
radiation in the vertical plane, i.e., the angle β, provided
the best excitation of the first three propagating modes.
The experimental studies of the mode structure of
acoustic field in the plane waveguide with the same bot-
tom model showed that the vertical structure of the low-
number mode field virtually corresponds to the field in
a waveguide with two acoustically soft boundaries. The
eigenmodes of this waveguide are described in terms of
the simplest Pekeris model, namely, a waveguide with
a liquid bottom [9].

In [19], directional patterns of single modes of the
difference-frequency wave in the horizontal plane were
calculated for an ideal waveguide with a free surface and
a rigid bottom. An expression was obtained for the main
maxima of the directional pattern of the mth mode:

(1)

where K is the wave number of the difference-fre-
quency wave, H is the depth of the plane waveguide,
and ζm = ζm(H) is the grazing angle of Brillouin waves
of the mth mode. From Eq. (1), it follows that, at some
preset slope angle of the source β, the field is formed by
different modes whose radiation maxima correspond to
different angles in the azimuth plane. This theory
agrees well with the results of the model experiment
carried out for a range-independent waveguide [9].

The analysis of Eq. (1) in the adiabatic approxima-
tion shows that the angle θmmax characterizing the direc-
tion toward the radiation maximum of the mth mode
should increase if the depth of the waveguide decreases
along the path of sound propagation. Hence, in study-
ing the horizontal distributions of acoustic fields in
range-dependent waveguides, one should expect a
broadening of the angular spectrum of the fields gener-
ated by the source, as compared to the corresponding
characteristics measured in the plane waveguide.

The source depth z0 and the angle β were fixed and
were the same in both experiments; in addition, z0 = H/2.

The technique used for the measurements in the
waveguide with a variable depth is worth noting. In the

θmmax π 2πβ
KH
---------- β ζm–( )2– ,±≅



156 GURBATOV et al.
c, ρ

y

R
S

h(r)

0

r0 – R0

R

β

α

c1, ρ1

z
z0

z

Φ

L

1 2

r

r0

R0

z
0

y

v1

R0

r

S

R

R

.

2

1

θ(β, h(r))

v

Fig. 2. Geometry of the experimental problem.
experiments with the reference waveguide, the source
depth was fixed (z = H/2) for all distances R0, at which
the field sections were considered. The position of the
receiver in the middle of the water layer ensured the
reception of the first and third modes of this waveguide.
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Fig. 3. Directions toward the difference-frequency wave
radiation maximum determined experimentally in the plane
waveguide and in the waveguide with a sloping bottom.
In the waveguide with variable depth, the receiver
depth varied from section to section with distance from
the source toward the rib of the wedge in such a way
that the quantity z/H = 1/2 remained constant; here, H
is the depth of the waveguide (wedge) at a distance r
from the rib. As one can see from Fig. 2, this depth lin-

early depends on r: H = Hs , where Hs is the depth of

the wedge at the source site. This technique was used
with the aim of retaining the amplitude ratios between
the normal modes forming the difference-frequency
wave field at different distances from the wedge rib.
The relative contributions of individual normal modes
to the resulting field remained invariable at different
distances from the source.

Figure 3 shows the experimental data on the spatial
positions of the radiation maxima of the difference-fre-
quency wave produced by the parametric radiator oper-
ating in the plane waveguide (crosses) and in the
waveguide with a linearly varying depth (asterisks) for
different source–receiver distances. The solid line
shows the theoretically determined direction toward the
radiation maxima of the first propagating mode of the
waveguide with variable depth. The calculations were
performed using formula (1).

r
r0
----
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From Fig. 3, one can see that the angular spectrum
of radiation in the plane waveguide is shaped, whereas,
in the wedge, the angular distribution of the maxima
noticeably broadens as the rib is approached.

Thus, the experiment confirmed the assumption
that, in a waveguide with a sloping bottom in the case
of difference-frequency wave propagation in the direc-
tion of decreasing thickness of the water layer, the
angular spectrum of parametric radiation broadens
compared to the angular spectrum of the field in the ref-
erence waveguide.

MODE COMPOSITION OF THE REFRACTED 
DIFFERENCE-FREQUENCY WAVE FIELD

IN A WAVEGUIDE WITH A SLOPING BOTTOM

According to the method of solving the problem of
sound propagation in an almost stratified medium,
which is called horizontal rays–vertical modes [2], the
field in the wedge can be represented as a superposition
of normal modes. The distribution of the field of a nor-
mal mode in the plane ϕ = const in the waveguide zone
is determined by the two-dimensional wave equation
for a layered inhomogeneous medium:

(2)

From Eq. (2), it follows that the field of a single normal
mode in the horizontal plane (r, y) can be studied by the
methods developed in the waveguide problems for
smoothly inhomogeneous media, e.g., by the methods
of geometrical acoustics. In this case, the refraction
index of the medium can be represented in the form

(3)

where m is the order number of the normal mode and
the quantity µm depends on r according to the transcen-
dental equation

(4)

where n = c/c1 and k = ω/c.

From Eq. (3), it follows that each single mode prop-
agates in the medium with a varying refraction index,
and each of the refracted mode rays has its own path in
the horizontal plane. As the wedge rib is approached,
the effective propagation velocity of the mth mode
increases. With respect to the normal mode of a given
order m, the whole wedge region falls into two subre-
gions separated by the straight line

(5)
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In the subregion where r > rm µm, the quantity µm takes
on real values. In this subregion, the waveguide propa-
gation of sound takes place. As the wedge rib is
approached, µm decreases and the maximum of the nor-
mal mode profile moves toward the lower boundary. At
the same time, the exponential part of the profile grows
within the limits of the half-space. The normal mode
seems to be gradually immersed in the half-space. This
phenomenon was called the vertical refraction of nor-
mal modes.

Thus, in the given acoustic waveguide, along with
the refraction of a normal mode in the horizontal plane,
which is determined by Helmholtz equation (2), a dis-
placement of the normal mode in the vertical plane
takes place; under certain conditions, this displacement
leads to the emission of the wave energy into the half-
space. However, in this paper, we investigate only the
horizontal refraction of individual mode rays in the
waveguide zone.

The waveguide under study is an isovelocity liquid
wedge of angle Φ = 5.07° overlying a metal substrate.
The parameters of the waveguide layer and the bottom
were described in the previous section. The depth of the
waveguide at the source site was 40 mm. The paramet-
ric radiator was placed at a distance of 45 cm from the
wedge rib. The axis of its radiation in the horizontal
plane made an angle θ0 = 34° with the normal to the
wedge rib. In the experiment, we measured the distribu-
tion of the sound field intensity by a receiver uniformly
moving parallel to the wedge rib (the y coordinate). The
distance between the wedge rib and the receiver varied
from 20 to 36 cm for different experiments. The
receiver depth was three-fourths of the waveguide
depth at a given distance from the rib for all measure-
ments. This configuration of the transmitting–receiving
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Fig. 4. Horizontal distribution of the refracted sound field in
the waveguide.
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Fig. 5. Vertical intensity distributions for the first, second, and third modes.
system ensured the reception of all three propagating
modes.

Figure 4 shows the experimental results for the case
of the field intensity measurement by a receiver moving
at a distance of 36 cm from the wedge rib. The same fig-
ure shows the paths of the refracted mode rays in the
horizontal plane for the first three propagating
waveguide modes of the difference-frequency wave.
These ray paths (marked with numbers 1, 2, and 3 in the
plot) were determined with the help of a computer pro-
gram using the MatLab package and the vertical
modes–horizontal rays computational algorithm [2].
The horizontal lines (marked as I, II, and III) indicate
the boundaries of the waveguide and nonwaveguide
zones for modes of respective numbers. One can see
from Fig. 4 that different modes with the same launch
angle θ0 in the horizontal plane are refracted in different
ways. The highest order mode is the first to be reflected,
and mode number one is reflected last.

The theory describes the propagation of monochro-
matic waves in the linear approximation. However, in
the experiments, we use a nonlinear traveling-wave
source. Evidently, the presence of soft boundaries in the
region of interaction of high-frequency pumping waves
should distort the angular characteristics of the sound
field produced by the parametric radiator. In addition,
the sloping boundaries of the waveguide lead to a situ-
ation where each of the propagating modes of the dif-
ference-frequency wave, as well as the high-frequency
pumping waves, propagate over their own paths in the
horizontal plane. Naturally, in this case, the synchro-
nism between the pumping wave and the difference-fre-
quency wave characterized by a limited mode composi-
tion is violated. The synchronism is affected by the loss
of collinearity of the initial pumping beam and the
modes parametrically generated at the difference fre-
quency. This mechanism deteriorates the directional
properties of the parametric radiator.

However, experimental studies have shown that, in
the waveguide under study, the directivity of the para-
metric source at the difference frequency remained suf-
ficiently high so as to allow for the selection of normal
modes in the refracted sound field with respect to the
spatial y coordinate. At the top right of Fig. 4, the inten-
sity distributions experimentally measured at distances
of 90 to 150 cm from the source are represented. One
can see that the spatial positions of the field intensity
maxima that correspond to individual refracted mode
rays agree well with the theoretical calculations. At
each of these maxima, the intensity of the difference-
frequency wave field was measured along the depth of
the waveguide. The results of these measurements are
shown in Fig. 5. One can see that the vertical distribu-
tion of the sound field intensity measured at each of the
detected maxima (1, 2, and 3) corresponds to the inten-
sity distribution of the first three propagating modes.

Thus, the application of the narrow-beam low-fre-
quency radiation produced by a nonlinear sound source
allowed us to demonstrate the filtering properties of
smoothly inhomogeneous media.

CONCLUSIONS

In conclusion, we will formulate the main results of
this study:

(i) We discussed the problems of the physical ade-
quacy of the experimental results obtained under actual
and laboratory conditions. We noted that, in modeling
the nonlinear effects in dissipative media, the method of
scaled physical modeling is, strictly speaking, unrealiz-
able, because it is impossible to achieve a simultaneous
equality of the Reynolds and Mach similarity numbers
in the laboratory and field experiments.

(ii) We presented experimental results on the spatial
distributions of difference-frequency sound wave fields
in a waveguide with a sloping bottom. We showed that,
in a waveguide of variable depth, the angular spectrum
differs from that in a plane reference waveguide. In an
inhomogeneous waveguide, the direction toward the
radiation maximum in the angular spectrum of the dif-
ference-frequency wave continuously varies as the rib
of the wedge is approached, whereas, in a homoge-
neous waveguide, the angular spectrum is shaped.

(iii) A spatial filtering of the difference-frequency
wave modes reflected from the coastal wedge was
experimentally realized. The results of the experiment
were confirmed by numerical modeling.
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Abstract—Optoacoustic conversion in diluted suspensions under the effect of nanosecond laser pulses is
considered. The mode of operation with moderate values of the laser fluence is studied theoretically and
experimentally. In this mode, a competition of the thermooptical and cavitation mechanisms of sound con-
version is observed, which leads to considerable fluctuations of the acoustic response from one laser pulse
to another. Analytical expressions for the basic characteristics of the acoustic signal are obtained. A simula-
tion of the statistical characteristics of the cavitation contribution to the signal is performed using the Monte
Carlo method. The experiment is based on the use of second harmonic pulses of a YAG laser and test suspen-
sions. The histograms of the amplitudes of acoustic signals can be used to discriminate between the mecha-
nisms of optoacoustic conversion and also can serve as the basis for diagnosing a low content of an insoluble
phase in a liquid. © 2005 Pleiades Publishing, Inc.
INTRODUCTION
In studying sound generation by laser radiation, one

sometimes has to deal with the probabilistic nature of
the effect. For example, studies of the random acoustic
field generated in the sea by laser irradiation of a rough
sea surface were conducted in the presence of a ran-
domly inhomogeneous heterophase subsurface layer
[1, 2].

A striking example of the statistical nature of optoa-
coustic conversion is the effect of sound generation due
to irradiation of liquid suspensions and inhomogeneous
solutions by laser pulses. This effect is the subject of
the present paper. We restrict our consideration to
strongly diluted suspensions, and, hence, the effect is
considered under the approximation of a single scatter-
ing of light (the optoacoustics of strongly scattering
heterogeneous media is another rapidly developing
area of research [3]).

Studying the statistical characteristics of the mecha-
nisms underlying the optoacoustic conversion in diluted
suspensions is important from both fundamental and
applied points of view. For example, it is possible to give
at least two examples of important medical suspensions,
the application of optoacoustic diagnostics to which is
very promising: suspensions of lipopolysaccharides (the
particle size is about several microns) [4] and suspen-
sions of gold nanoparticles [5].

FORMULATION OF THE PROBLEM
Apparently, the first studies of the probabilistic

nature of optoacoustic conversion in weakly absorbing
1063-7710/05/5102- $26.00 0160
inhomogeneous liquids were conducted about 15 years
ago [6, 7]. At that time, optoacoustic spectroscopy basi-
cally provided an opportunity to attain a record sensi-
tivity in the determination of small admixture concen-
trations in biological and medical solutions and suspen-
sions. The basis for the spectroscopy was the effect of
linear thermooptical generation of sound in liquids,
which were considered to be homogeneous solutions.
The quantitative basis of the measurements was the
well-known formula [8] for the peak level of the sound
signal observed in the direction perpendicular to the
beam axis in the case of liquid excitation by a short
(usually nanosecond) laser pulse:

(1)

where µ is the coefficient of optical absorption, β is the
coefficient of cubic thermal expansion, c is the sound
velocity, E is the energy of the laser pulse, a0 is the
diameter of the beam cross section, r is the distance
from the beam axis to the observation point, and cp is
the specific heat of the solvent. This formula played an
important role in the analysis of homogeneous solu-
tions.

Experiments with optoacoustic conversion in inho-
mogeneous liquids revealed the nonstationary nature of
the sound response even at very moderate values of the
laser fluence. The intense signals arising in the series
and exceeding the thermooptical contribution sug-
gested that a new contribution from cavitation nature
appeared because of the heating of inhomogeneities.

pm µβc2E( )/ πa0
3/2cpr1/2( ),≈
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Simplified scheme of the experiment. Scheme A is a general geometry. A laser beam is focused in an optoacoustic cell with
a low-concentration suspension of particles. Circles show the particles constituting the suspension. Stars are for the particles for
which the threshold of boiling of the surrounding liquid is attained at a given pulse. Scheme B demonstrates what happens around
a particle satisfying the threshold condition. The expanding vapor layer is an effective source of sound.
Thus, the question of the applicability of Eq. (1) to
the optoacoustic analysis of suspensions is mainly a
question of the optical contrast of the inhomogeneities
present in a sample against the surrounding liquid. In its
turn, this optical contrast depends on the wavelength of
the laser radiation and on the characteristics of both the
solvent and the solid phase. If this contrast is high, then,
starting from a certain energy of the laser pulse, Eq. (1)
describes only the regular component of the overall sig-
nal at best. It is possible to assume the presence of a cer-
tain competition between the common thermooptical
and the nonstationary cavitation contributions to the
optoacoustic conversion in suspensions. It is evident
that the investigation into the nature of this random pro-
cess primarily implies taking into account the threshold
of the energy that any particle should receive to stimu-
late the growth of a single cavitation cavity.

A simplified scheme of laser generation of sound in
suspensions is given in Figs. 1a and 1b. The interaction
of a laser beam with a weakly absorbing inhomoge-
neous liquid containing suspended absorbing particles
initiates an optoacoustic conversion within the region
shaped as an elongated cylinder. An emitted acoustic
signal is usually detected in the direction perpendicular
to the axis of the laser beam (below, we consider just
this signal). The liquid itself (solvent) is almost trans-
parent to the radiation, but the suspended particles are
heated effectively by the laser pulse. In the case of a low
laser fluence, the acoustic signal is caused by the ther-
mal expansion of the liquid, which is (a) directly heated
by the laser beam and (b) receives thermal energy from
heated particles.

The role of particles increases when the energy of
the laser pulse reaches a certain threshold value. Single
particles are heated over the boiling temperature of the
liquid. Such a particle is surrounded by a rapidly
expanding vapor layer. The energy of the laser pulse
that is evolved into the expanding region is converted
into both the energy of cavity fluctuations and the
energy entrained by an acoustic wave. Under these con-
ditions, the total signal has a random amplitude and
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
profile, since the sources with different intensities and
positions changing from one pulse to another contribute
to it.

The analysis of the absolute amplitude value of the
cavitation contribution is a difficult problem. However,
for a qualitative statistical analysis of the contribution
of the cavitation signal component, it is possible,
according to [7], to assume that the amplitude of the
signal emitted by an elementary cavity is proportional
to the difference between the absorbed energy and the
energy necessary to heat a particle to the boiling tem-
perature of the liquid.

Experiments demonstrate that, in the case of a fur-
ther growth of the laser fluence, the signal again
becomes stable (the mode of a developed laser spark).
Historically, this mode was investigated in the 1960s
and 1980s in parallel with the study of thermooptical
sound generation [9]. For example, shadow pictures of
bubble fluctuations were obtained in [10], and, in [11],
a description of acoustical–hydrodynamic phenomena
under a laser breakdown in a liquid is given. No inter-
esting statistical effects were revealed in this case.

Thus, the amplitude instability of the sound signal
under irradiation of real liquids characterizes only a
limited range of laser fluence. As was demonstrated in
the aforementioned papers [6, 7], the amplitude histo-
grams are an important instrument for studying the
acoustic responses in the instability range. In [12], the
histogram method was studied from the point of view
of its diagnostic potential by using latex suspensions as
test objects.

In the present paper, detailed amplitude histograms
are obtained, first, as the result of computer simulations
and, second, as an experimental result.

THEORY

The phenomenological model described above is
taken as the basis for studying the nonstationary cavita-
tion component of the acoustic signal. From the quan-
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titative point of view, it is based on the following
assumptions.

First, the suspension is assumed to be monodis-
perse, and only the cavitation component of the signal
is taken into account. The amplitude of the signal from
one particle is nonzero only if the density of the optical
energy flux ε at the point of the particle position is
higher than the threshold density of the energy flux εth
necessary for the formation of an expanding bubble.
The signal amplitude is assumed to be proportional to
the difference between the absorbed and threshold
energies [7]. We normalize the signal amplitude to the
signal amplitude of the particle that has absorbed twice
the threshold energy. In this case, the normalized
(dimensionless) signal amplitude p(ε) is given by the
expression

(2)

Second, we assume that the total amplitude of the
cavitation contribution to the signal generated in a mon-
odisperse suspension is the sum of the signal ampli-
tudes from single particles. This is true if the difference
of the arrival times of sound pulses at the receiver is
small in comparison to the characteristic length of a sig-
nal from one particle, which is determined by the upper
frequency of the reception band.

Third, we simulate a typical experimental situation,
where the longitudinal dimension of the focal spot l is
greater than the transverse dimension of the focal spot a
(the dimension of the beam waist).

p ε( ) ε εth–( )/εth.=
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Fig. 2. Determination of the focal region configuration that
is used for the calculations. The curves define the regions
with the energy flux density ε satisfying the relation εb ≤ ε ≤
εm for ζ = εm/εb = (1) 1.1, (2) 1.5, (3) e (= 2.72…), (4) 5,
(5) 10, and (6) 50, where εm is the energy flux density at the
focal spot center.
Moreover, we assume that the suspension has a
small concentration, so that the influence of absorption
and scattering of optical radiation by particles on the
density distribution of the energy flux is negligible. In
this case, the density distribution of the energy flux in
the vicinity of the focus can be calculated within the
framework of the quasi-optical approximation. In the
cylindrical coordinates r and z, it has the form [13]

(3)

where εm is the density of the energy flux at the center
of the focal spot.

Within the model under consideration, it is possible
to calculate such important characteristics of the pro-
cess of signal generation as the average number of par-
ticles above the threshold 〈Nth〉  and the average value of
the signal amplitude 〈pN〉  in a series of tests with irradi-
ation of a monodisperse suspension containing N parti-
cles.

Let us preliminarily calculate an important quantity,
namely, the volume of the region V(εb) where the den-
sity of the radiation energy flux exceeds εb (εb ≤ ε ≤ εm).
The boundary of this region is determined by the equa-
tion

(4)

where ζ = εm/εb and the longitudinal and transverse
coordinates are measured in the units of the longitudi-
nal and transverse dimensions of the focal spot, respec-
tively. The shape of the boundary depends on the ratio
between the value of the parameter ζ and the number e
(see Fig. 2). When ζ > e, the boundary point most dis-

tant from the axis is located at the point z = ±
at the distance r = . After simple integration, we
obtain the following expression for the desired volume:

(5)

Since the particles are distributed over the volume
randomly and independently of each other, the average
number of particles above the threshold is determined
by the product of the particle concentration n by the
volume V(εth) of the region where the density of the
radiation energy flux exceeds the threshold:

(6)
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Let us note useful asymptotic relations following
from Eq. (6):

The signal amplitude is represented by the sum of
independent responses from single particles; therefore,
the relation

(7)

is valid. Using Eqs. (2) and (5), from Eq. (7) we obtain
an equation for the average value of the signal ampli-
tude:

(8)

The following asymptotic forms are valid:

In the case where only one particle occurs in a sam-
ple, it is even possible to obtain an analytical expression
for the density of the probability distribution for the
normalized signal amplitude p1, which takes on random
values p determined by Eq. (2), depending on the parti-
cle position at the instant of irradiation. Let this particle
be present in a cell with volume V. In this case, the dis-
tribution density (p) is determined by the expres-
sion

(9)

where δ(p) is the delta function and Vth = V(εth) is the
volume of the region where the density of the energy
flux exceeds the threshold value. We assume that
εm ≥ εth and, in addition, that the “over-threshold” range
εm ≥ ε ≥ εth is fully contained in the cell region. The dis-
tribution given by Eq. (9) is of a discrete–continuous
character. The first addend formally determines the
finite probability of the fact that the signal amplitude
acquires a zero value; i.e., the particle is located in the
region where the density of the energy flux is below the
threshold. The second addend describes the distribution
density in the range 0 < p < γ – 1, corresponding to the
situation where the particle is in the “over-threshold”
region.
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Substituting Eqs. (2) and (5) into Eq. (9), we finally
obtain

(10)

where the parameter γ = εm/εth is the density of the
energy flux at the center of the focal spot when normal-
ized to the threshold density of the energy flux. It is
interesting to note that, at γ @ 1, there is a sufficiently
broad range of values of the signal amplitude p ! γ – 1
within which the distribution density is of a power char-
acter: (p) ∝  (p + 1)–7/2.

NUMERICAL SIMULATION 
WITH THE MONTE CARLO METHOD

To verify the analytical results obtained above and
to analyze the statistical characteristics of the cavitation
component of the sound signal formed by a large num-
ber of particles, we conducted a simulation with the
Monte Carlo method. The simulation was based on the
assumption that Np particles of equal size were distrib-
uted randomly in a cylindrical cell with diameter D and
length L. The distribution of the density of the energy
flux in the cell was described by Eq. (3). In this case, the
center of the focal spot was located at the cell center,
and the density of the energy flux εm at this center was
given in the units of the threshold energy density εth,
which was the same for all particles (i.e., the dimen-
sionless parameter γ was preset). We performed Nt
tests, which corresponded to the actual experimental
situation of sample irradiation by a series of laser
pulses. In each new test, the particle coordinates had
new random values.

The normalized signal amplitude for each of the Nt
tests was calculated as the sum of the normalized signal
amplitudes from each of Np particles, which were
described by Eq. (2).

The ratio of the focal spot dimensions corresponded
to a typical experimental situation, wherein the longitu-
dinal dimension of the spot exceeds the transverse one
by a factor of 10 to 100. To simplify calculations, as the
cell dimensions, we used the minimal dimensions satis-
fying the condition that, in the range of interest of the
energy density of optical radiation (γ = εm/εth varies
from 1 to 104), outside the cell, the density of the energy
flux of optical radiation was below the threshold. Cor-
respondingly, the following dimensions of the focal
spot and the cylinder (in the units of the transverse
dimension of the focus) were adopted: a = 1, l = 30,
L = 6000, and D = 125.
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Two situations were considered, and, for each situa-
tion, several series of irradiation experiments were sim-
ulated. The number of tests in each series was Nt =
300000.
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Fig. 3. Cavitation component of the signal. The probability
distribution density of the normalized signal amplitude in
double logarithmic coordinates for the series obtained with
the values of the energy parameter γ = (1) 1.1, (2) 3, (3) 30,
and (4) 300. The number of particles is Np = 100. The aver-
age number of particles above the threshold is less than
unity. The solid curves correspond to analytical calculation
by Eq. (10), and the diamonds correspond to numerical sim-
ulation.
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Fig. 4. Cavitation component of the signal (results of numer-
ical simulation). The probability distribution density of the
normalized signal amplitude in double logarithmic coordi-
nates for the series obtained with the values of the energy
parameter γ = (1) 1000, (2) 3000, and (3) 104. The number of
particles is Np = 100. The average number of particles above
the threshold is 1.8, 9.4, and 57.
First, we investigated the form of the probability
distribution density for the amplitude of the sound sig-
nal at a fixed particle concentration and different val-
ues of the density of laser energy. The number of par-
ticles was taken to be 100, and the normalized density
of the energy flux at the center of the focal spot, γ =
εm/εth, varied from one series to another within the
range 3–104.

Second, the form of the same function at a fixed
energy and different values of particle concentration in
the suspension was studied. The value of γ was fixed at
104, and the number of particles varied from 10 to 104.

For each series of tests, we calculated the probabil-
ity distribution density for different values of the signal
amplitude. To do this, from the array of amplitude val-
ues we excluded the zero values with nonzero probabil-
ity, which were only formally described by the proba-
bility density (the first addend in Eq. (2)). Then, the
array of amplitude values was nonuniformly broken
into several intervals, and the distribution density was
approximated by the quantity (∆n(i)/N)/∆p(i), where
∆n(i) was the number of events with amplitudes falling
within the ith interval of width ∆p(i).

Figures 3 and 4 show the results obtained by simu-
lating the energy dynamics of the signal amplitude dis-
tribution for a suspension with 100 particles for differ-
ent densities of the energy flux of optical radiation. Fig-
ure 3 presents the results of numerical simulation for
the range of the energy densities corresponding to the
case where the average number of particles above the
threshold is smaller than unity. The results of calcula-
tions according to Eq. (10), where only the second
addend was taken into account, are also presented in
this figure. The results of analytical calculations coin-
cided with the results of numerical simulations. At
small values of the energy parameter γ, the distribution
density is almost constant within the whole range and
sharply decreases to zero at p = γ – 1. As γ grows, a
region appears where, as was mentioned above, the dis-
tribution has a power-law character with an index of
7/2. The results of numerical simulations at large ener-
gies γ, when the average number of particles above the
threshold is greater than unity, are given in Fig. 4. In
this case, the distribution density becomes nonmono-
tonic and is not described by Eq. (10). More illustra-
tively, the change in the form of the distribution density
with the growth of the average number of particles
above the threshold is demonstrated by the simulation
results for the concentration dynamics of the amplitude
distribution, which are shown in Fig. 5. Thus, when the
average number of particles above the threshold
becomes greater than unity, a local maximum arises in
the distribution density in the range of small values of
p, and a long power tail persists in this case. When the
average number of particles above the threshold is
small, the distribution density has a complex form and
may have a local minimum apart from the maximum
(curve 1 in Fig. 5). If the average number of particles
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
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above the threshold grows, the distribution density
acquires the form of a normal distribution.

EXPERIMENT

In contrast to the model situation considered above,
in experimental practice, in the case of irradiation of
suspensions, one has to deal with several competing
mechanisms of optoacoustic conversion simulta-
neously. The experiment consisted in the irradiation of
samples by the focused second harmonic radiation of a
YAG laser with a pulse energy from 0.3 to 20 mJ and a
pulse length of 10 ns. A cell with a volume of 80 ml was
used as the sample container. The cell was equipped
with a piezoelectric pressure sensor with a sensitivity of
30 µV/Pa in a measuring band of 1 MHz. The geometry
of optoacoustic conversion corresponded to Fig. 1, and
the distance from the beam axis to the pressure receiver
was 7 mm. The beam diameter before the focusing lens
was 10 mm. The irradiation was conducted in several
series of 2000 pulses with a subsequent statistical pro-
cessing. Within each series, the energy of the laser
pulses was constant.

The signal from the receiver output was fed to the
first channel of a 12-digit two-channel A/D converter
(with a maximum sampling frequency of 40 MHz).
A signal from a photodiode was fed to the second chan-
nel to monitor the energy of laser pulses. The amplitude
of each sound signal was multiplied by the ratio of the
laser pulse energy averaged over the series to the cur-
rent energy. As the result of processing, the histograms
demonstrating the amplitude distribution of sound
pulses in a series were plotted.

Figure 6 shows histograms in double logarithmic
coordinates, which correspond to optoacoustic conver-
sion in the case of irradiation of singly purified distilled
water. Such water can be considered as a model of a
diluted suspension.

Figure 7 demonstrates the histograms obtained in
the case of irradiation of the same water sample with
the addition of particles of black Indian ink with a typ-
ical diameter of 3 µm. Here, the thermooptical sound
generation is more pronounced in comparison with
Fig. 6. The histogram shape is approximately the same;
however, to observe the realizations corresponding to
different mechanisms (sections 2 and 3), it was neces-
sary to increase to a certain extent the focal length of
the lens in this situation as well.

The presence of rectilinear sections in the plots in
both Figs. 6 and 7, which was predicted in the theoreti-
cal part of the paper, is evidence of the fact that the flat
“tails” of the distributions are characterized by decreas-
ing power functions, with the indices depending on the
energy in a series and on the particle concentration.
This is especially characteristic of the realizations with
prevailing cavitation contributions. In section 2, the
values of these indices vary from 1 to 4.5 (remember
that, in the theoretical part of this paper, we obtained a
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
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tion for the amplitude in a series of sound pulses. Two series
of irradiation of singly purified distilled water with energy
values of 0.3 mJ (crosses) and 1 mJ (squares). The focal dis-
tance of the lens is equal to 10 cm. (1) Realizations where
the thermooptical mechanism of sound generation prevails,
(2) realizations where the main contribution into sound gen-
eration belongs to the cavitation phenomena with a rela-
tively small number of “participant” particles, and (3) real-
izations where the threshold is exceeded for a large number
of particles (in these realizations, luminescence is observed
in the focal region).
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Fig. 5. Cavitation component of the signal (results of numeri-
cal simulation). The probability distribution density of the nor-
malized signal amplitude in double logarithmic coordinates for
the series obtained with the values of the energy parameter γ =
104 and the number of particles in the suspension Np = (1) 10,
(2) 30, (3) 1000, and (4) 104. The average number of particles
above the threshold is 5.7, 17, 570, and 5700.
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value of 7/2 for the analogous index in the case of irra-
diation of a monodisperse suspension). Sharp bends of
rectilinear sections clearly indicate the realizations cor-
responding to the change of the optoacoustic conver-
sion mechanisms.

CONCLUSION

The flat tails of the amplitude distributions observed
in the optoacoustics of suspensions are apparently man-
ifestations of both the fractal nature of phase transfor-
mations in disperse media [14] and certain fractal prop-
erties of wave processes [15]. In particular, it is known
that fractal effects in radiation may occur already in the
case of an aggregate of independent point radiators
with a fractal distribution in space (which corresponded
to the conditions of optoacoustic experiments with low-
concentration suspensions).

The shapes of the histograms for the amplitude of
the acoustic signals obtained by irradiating the test
samples of suspensions with several series of laser
pulses demonstrate the change of the competing con-
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Fig. 7. Experiment. The density of the probability distribu-
tion for the amplitude of sound signals. Two series of irradia-
tion of a suspension with Indian ink particles (volume con-
centration of 10–6) with the energy values of 13 mJ (crosses)
and 17 mJ (squares). The focal distance of the lens is 14 cm.
Notations are the same as in the previous figure.
version mechanisms and, in a certain way, depend on
the energy density of a laser pulse and on the concen-
tration of the suspension particles, which opens up pos-
sibilities for an optoacoustic diagnostics suitable for
very small particle concentrations.
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Abstract—Results of experiments on the scattering of a plane ultrasonic wave from a vortex wake formed in
an air flow behind a lattice of vertical cylinders are presented. The lattice is periodic in the direction perpen-
dicular to the oncoming flow. The experiments are performed in a wind tunnel for two values of the Reynolds
number, namely, Re = 75 and 500, and for lattices with different numbers of cylinders and with different lat-
tice periods g = (2.5–15)d (where d is the diameter of the cylinders). The measured parameters of the scattered
waves are used to estimate the degree of transverse correlation between the vortex wakes formed behind the
cylinders for flows with different Reynolds numbers. The results obtained from an analysis of the characteristics
of the scattered sound are compared with the results of direct hot-wire anemometer measurements and with the
data obtained by other researchers. © 2005 Pleiades Publishing, Inc.
By now, remote acoustic testing of vortex and tem-
perature fluctuations in air flows has been demonstrated
on a laboratory scale for a number of well-known flow
types: a Karman vortex street behind a circular cylinder
[1–3], vortex rings [4, 5], vortices behind a heated cyl-
inder [6], buoyancy-driven heated gas flows [7], and a
heated jet [8]. The experiments determined the param-
eters of hydrodynamic flows that could be extracted
from the characteristics of scattered sound. The basic
idea of these experiments consisted in the comparison
between the experimental data obtained for flows with
controlled parameters and the theoretical calculations
based on models with small numbers of parameters,
such as the circulation of vortices, the velocity of their
motion, and the amount of heat transferred by them (in
the case of vortices behind a heated cylinder).

In the recent years, the object of intensive studies
has been the wake behind an array of circular cylinders
placed in a plane-parallel air (or water) flow [9–14].
From a practical point of view, the interest taken in
these problems can be explained by the fact that sets of
such arrays placed in air or water flows are often used
as efficient cooling systems in different kinds of reac-
tors. Visualization of such flows (see [9] and the litera-
ture cited there) has shown that the vortex wakes
formed behind different cylinders may interact with
each other. This interaction may lead to a synchroniza-
tion of oscillations in the flow and to the formation of
different kinds of flows [9–11], depending on the
parameters of the array (the number of cylinders and
the distance g between them) and on the Reynolds num-
ber (Re = U0d/ν, where U0 is the velocity of the oncom-
ing flow and ν is the kinematic viscosity of air).

Studies of the vortex structures formed behind
arrays of cylinders show that the control parameter of
1063-7710/05/5102- $26.00 0167
the flow (at a constant Re of the oncoming flow) is the
distance g between the cylinders in the direction per-
pendicular to the oncoming flow. Depending on the
value of this parameter, the vortex wakes can be condi-
tionally divided into weakly coupled (g ≥ 4.5d) and
strongly coupled (g ≤ 2.5d).

For weakly coupled wakes (see, e.g., [9, 11, 12]), the
formation of an individual Karman street behind
every cylinder is typical. From visualization experi-
ments, it was found that the vortex streets behind dif-
ferent cylinders may be either in phase or in antiphase.
However, according to [9], only the state in which
∆ϕ = (2n – 1)π/2 (where ∆ϕ is the phase difference
between vortices characterized by the same sign of cir-
culation and belonging to neighboring vortex streets
and n = 1, 2, 3…) is stable and can persist downstream
as long as one likes. A flow with ∆ϕ = 2nπ persists
within only 1–2 spatial periods of the vortex structure
downstream from the cylinders; then, vortices that have

the same sign of circulation Γ (where Γ =  and 

is the vortex velocity field) but belong to neighboring
streets merge forming a single “consolidated” periodic
vortex structure behind every pair of cylinders. A visu-
alization of the flow behind an array of 16 cylinders
with g = 5d and Re = 75 was described in [16]. The
wake behind the cylinders was found to exhibit a spa-
tiotemporal chaos with randomly formed “disloca-
tions” or amplitude holes typical of this regime and also
with phase jumps by π in the direction perpendicular to
the flow.

Strongly coupled flows are characterized by a strong
spatial inhomogeneity across the flow (along the array).
For example, the visualization of a wake behind two
cylinders with g = 2.5d [11] revealed a strong asymme-

υ ld∫ υ
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Fig. 1. Schematic diagram of the experiment.
try of vortex streets behind different cylinders. One
more important feature of such a wake is the possibility
of “switching” between the asymmetric states [10],
when the width of the wake becomes alternately greater
behind the first and the second cylinder. The lifetime of
the flow in one of the states is inversely proportional to
the Reynolds number and may reach 102 time periods
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Fig. 2. Amplitudes of scattering into the harmonics of num-
bers +1 and –1 versus the scattering angle θ for the cases
of one, five, and ten cylinders at Re = 75.
of the vortex structure at Re = 70. A visualization of the
flow behind an array of 21 cylinders was performed in
[13] for the case of a strong coupling and for different
Reynolds numbers. In this experiment, a smooth
increase in the Reynolds number resulted in the recircu-
lation zones behind different cylinders beginning to
deviate from their positions and combining into the so-
called clusters. Then, as the Reynolds number drasti-
cally increased to Re = 100, oscillations with the Strou-
hal frequency (fst = fd/U0, where f is the vortex separa-
tion frequency) were initiated in each of these clusters.
The flow inside each of the clusters was fully synchro-
nized and represented a set of Karman streets with
∆ϕ = 2nπ; the number of these streets was approxi-
mately two times smaller than the number of cylinders
behind which the given cluster was formed. The width
of a cluster and the place of its formation varied in a
random way depending on the initial conditions. The
global modes of oscillation in different clusters were in
antiphase, and the flow between them had the form of
an alternating mode.

All aforementioned studies of the synchronization
of vortex wakes in air or water flows were mainly
purely experimental. To prove the presence of synchro-
nization, researchers used instantaneous photographs
of the flows. However, from instantaneous photo-
graphs, one cannot quantitatively estimate the degree of
the flow synchronization behind an array of cylinders.
We managed to obtain a quantitative characteristic of
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
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this effect with the help of remote acoustic testing.
Varying the number of cylinders and the distance
between them, as well as the velocity of the oncoming
flow, we studied the scattering from both weakly and
strongly coupled flows. We compared the experimental
results on sound scattering with the results of direct
measurements of vortex fluctuations by hot-wire ane-
mometers. In particular, we measured the coherence
length of a vortex wake in the transverse direction for
different parameters of the vortex flow. The results of
these measurements agree well with the data from
acoustic testing.

EXPERIMENTS ON SOUND SCATTERING

Experiments were performed in an air flow pro-
duced in the low-turbulence (the turbulent velocity fluc-
tuation level of the oncoming flow was below 0.4%)
wind tunnel of the Institute of Applied Physics of the
Russian Academy of Sciences with a working section
of 30 × 30 × 120 cm. A schematic diagram of the exper-
iment is shown in Fig. 1 (top view). 

We studied the scattering of ultrasound of frequency
f0 = 122.1 kHz (with wavelength λ0 = 2.7 mm) by the
vortex flow formed behind an array of vertically ori-
ented cylinders with diameter d = 2 mm and a length of
30 cm. The cylinders were rigidly fixed in symmetric
holes made in the upper and lower walls of the working
section of the wind tunnel in such a way that they were
positioned at regular intervals in a row across the flow
with the array period g = 2–24d (this value was varied
depending on the experimental conditions), at a dis-
tance of 30 cm from the confuser outlet. The velocity of
the oncoming flow was varied so as to study the scatter-
ing of both laminar (Re = 75) and turbulent (Re = 500)
vortex flows. The number of cylinders was varied from
one to ten. The source of ultrasound was a piezocer-
amic transducer placed behind a baffle with a square
opening of side a = 2 cm. The transducer was placed at
a distance of 65 cm from the center of the vortex street
to provide for the validity of the Fraunhofer zone
approximation (DΦ ~ Λ2/λ0 ~ 30 cm, where Λ is the size
of the transducer). To measure the parameters of the
ultrasound, we used a B&K 4135 high-frequency
microphone, whose signal was heterodyned to a fre-
quency range of 0–20 kHz (the operating range of the
A/D converter). The microphone was mounted on a
moving rod at a fixed distance of 1.6 m from the center
of the scattering region, and its position was varied in
the angular range from 45° to –45° with respect to the
direction toward the source of ultrasound. The spectral
characteristics of the scattered signal were measured
using a computer.

As is known (see, e.g., [1]), the amplitude of sound
scattered from an “ideal” infinite Karman vortex street
is represented by a set of harmonics propagating sym-
metrically about the direction of incident sound. The
amplitude of each of these harmonics is proportional to
the vortex circulation É in the vortex street. The fre-
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
quency of each harmonic is shifted with respect to the
frequency of incident sound f0 by a quantity that is a
multiple of the vortex separation frequency (i.e., the
Strouhal frequency fsh): ∆fn = nfsh, where n = ±1, 2….

Since every single vortex mainly scatters sound in
the forward direction, experimental observation is usu-
ally possible only for harmonic nos. +1 and –1. In our
experiments, we measured the directional patterns of
harmonic nos. +1 and –1 for different numbers of cyl-
inders and for two different values of the Reynolds
number. Figure 2 shows the rms amplitudes of these
harmonics obtained in a 3-Hz frequency band for the
cases of one, five, and ten cylinders at Re = 75. One can
see a certain asymmetry in the amplitudes and angles
that occurs for the scattering into harmonic nos. +1 and
–1 irrespective of the number of cylinders in the array.
This asymmetry is caused by the fact that, in our exper-
iment, the angle between the direction of incident

sound  and the direction of the vortex motion differs
from π/2 by ≤3°. Calculations show (see, e.g., [1]) that
this deviation leads to the asymmetry observed in the
experiment.

An increase in the number of cylinders in the array
(i.e., an increase in the number of Karman streets)
leads to an increase in the scattered signal amplitude.
Figure 3 shows the dependence of the mean amplitude

of the first harmonic ( , where A+1 and A–1

are the amplitudes of harmonic nos. +1 and –1,
respectively) on the number of cylinders in the array
at a constant array period g = 4d and a Reynolds num-
ber Re = 75. 

The same figure shows two approximations of the

aforementioned dependence by power laws ( , where
n is the number of cylinders in the array). Curve 1 is
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Fig. 3. First harmonic amplitude versus the number of cyl-
inders at Re = 75.
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plotted according to the formula an = a1 , where a1 is
the experimentally measured amplitude of sound scat-
tered from the wake behind a single cylinder and curve

2 follows the formula an = a10 , where a10 is the
experimentally measured amplitude of sound scattered
from the wake behind ten cylinders. From comparison
of the experimental results and the theoretical depen-
dence, it follows that, in our experiment, the scattered
signal amplitude grows more slowly than the root of the
number of scatterers (i.e., the number of vortex wakes).
This tendency is most pronounced for small values of n:
curve 2 gives a much better approximation of the exper-
imental data for the large number of cylinders than does
curve 1.

When the Reynolds number is Re = 500, the depen-
dence of the scattered sound amplitude on the number
of cylinders exhibits a different behavior. The results of
measuring the characteristics of scattered sound in this
case are shown in Figs. 4 and 5. Figure 4 represents the
directional patterns of harmonic nos. +1 and –1. 

One can see that, as in the case of Re = 75, the scat-
tering into harmonic nos. +1 and –1 exhibits an asym-
metry. However, at certain conditions, this effect is
much weaker. According to the analytical calculation
performed in [1], an increase in the flow velocity (in the
experiment, Re was varied by varying the flow velocity
at a constant viscosity and a constant diameter of the
cylinders) leads to an increase in the scattering ampli-
tude because of the growing circulation Γ of vortices in
the vortex streets. Unlike the case of Re = 75, the scat-
tering amplitude is proportional to the number of cylin-
ders in the array. 

Figure 5 shows the mean spectral amplitude charac-
terizing the scattering into the first harmonic versus the
number of cylinders in the array. This dependence is

almost perfectly approximated by a function ~ .
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Fig. 4. Amplitudes of scattering into the harmonics of num-
bers +1 and –1 versus the scattering angle θ for the cases
of one, five, and ten cylinders at Re = 500.
To reveal the origin of the difference in the depen-
dences of the sound amplitude on the number of cylin-
ders, we performed detailed measurements of the
velocity fields in the vortex wakes behind the arrays of
cylinders.

MEASUREMENTS OF THE VORTEX VELOCITY 
FIELD BY HOT-WIRE ANEMOMETERS

Direct measurements of the vortex velocity field
were performed by two hot-wire anemometers. The
positions of the sensors along and across the flow could
be varied by a traverse gear. The signal from the sensors
was amplified and filtered and then supplied to a com-
puter, where it was analyzed by a data-processing code.
In the experiment, we measured the following charac-
teristics:

(i) the velocity fluctuation profiles in the wake at
fixed numbers of cylinders for different distances
between them and for Re = 75 and 500 (Figs. 6 and 7);

(ii) the dependence of the velocity fluctuation
amplitude on the coordinate across the flow for differ-
ent numbers of cylinders at a fixed distance between
them for two Reynolds numbers Re = 75 and 500
(Figs. 8 and 9); and

(iii) the coherence function obtained with two sen-
sors and the phase difference as functions of the dis-
tance between the sensors in the direction perpendicu-
lar to the flow for two Reynolds numbers Re = 75 and
500 (Figs. 10–13).

Figure 6a shows the velocity field in the wake
behind a single cylinder at Re = 75. Figures 6b–6d rep-
resent the dependence of the velocity fluctuation profile
in the wake behind three cylinders on the distance
between them in the direction across the flow. As
seen from the velocity fluctuation profiles obtained
for Re = 75 (Fig. 6), when the cylinders become fairly
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Fig. 5. First harmonic amplitude versus the number of cyl-
inders at Re = 500.
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close to each other, the vortex streets merge and, at
g = 4d, two vortex streets are present instead of three.
These plots agree well with the visualization of the con-
fluence of vortex streets formed behind different cylin-
ders with the same parameters of the array and the same
Reynolds numbers as in our experiment [8]. For large
distances between the cylinders, g = 9d and 14d, the
vortex streets do not merge and the number of maxima
in the fluctuation profile is twice as great as the number
of cylinders.

Similar measurements (see Fig. 7) performed for the
case of Re = 500 show that an increase in the Reynolds
number suppresses the effect of the vortex street conflu-
ence. For all three periods of the array (g = 4d, g = 9d,
and 14d), velocity fluctuation profiles typical of a single
Karman street are observed behind each of the three
cylinders of the array.

From the comparison of the velocity fluctuation pro-
files obtained for the vortex wakes behind three and ten
cylinders at Re = 75 (Fig. 8), it follows that the effect of
a pairwise confluence of vortex streets at g = 4d also
occurs in extended arrays (see Fig. 8, where 11 maxima
and 10 vortex wakes are observed).
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Fig. 6. Fluctuation amplitude of the first harmonic of the
vortex velocity field in the wakes behind (a) one cylinder
and (b–d) three cylinders for different distances g between
them at Re = 75.
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The corresponding measurements performed for
Re = 500 (Fig. 9) show that, in this case, the vortex
streets do not merge. At Re = 500, the width of every
vortex street is much smaller then that observed at Re =
75, and the velocity maxima corresponding to different
rows of vortices in a single Karman street are much
closer to each other (see Figs. 9a and 9b) than at Re = 75.
The number of velocity fluctuation maxima observed in
Fig. 9c is equal to the number of cylinders; i.e., an indi-
vidual Karman vortex street is formed behind each of
the cylinders.

The fact that vortex streets may merge into pairs or
persist separately does not give any definite informa-
tion on the degree of coherence of the whole vortex
wake. To determine the degree of synchronization of
the vortex wakes, we measured the coherence function
of the signals obtained from two different hot-wire ane-
mometers. The measurements were performed in the
wakes behind one, three, and ten cylinders for two val-
ues of the Reynolds number, namely, Re = 75 and 500.
At first, we determined the maximum of the velocity
field fluctuations, which, in our case, was achieved
when the sensor position exactly coincided with one of
the two vortex rows of the Karman street formed behind
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Fig. 7. Fluctuation amplitude of the first harmonic of the
vortex velocity field in the wakes behind (a) one and (b–d)
three cylinders for different distances g between them at
Re = 500.



172 EZERSKIŒ et al.
0.10

0 20
Y, mm

0.08

0.06

0.04

0.02

40 60 80 100 120

(c)

140

0.10

0

0.08
0.06
0.04
0.02

(b)

0.10

0

0.08
0.06
0.04
0.02

(‡)

V, Òm/s

Fig. 8. Fluctuation amplitude of the first harmonic of the
vortex velocity field in the wakes behind (a) one, (b) three,
and (c) ten cylinders at Re = 75.

any of the cylinders. Then, one of the sensors was
placed at this maximum and remained fixed, while the
other sensor was placed above the first one (the distance
along the cylinder axis between the two sensors was
less than 2 mm) and then was moved across the wake.
We measured the coherence function and the cross-
spectrum phase as functions of the distance between the
sensors. Such measurements were performed in the
wakes behind one, three, and ten cylinders with the
same invariable position of the fixed sensor.

The square of the coherence function, , of two
signals x(t) and y(t) is determined as (see, e.g., [14])

 = , where Sx(f) and Sy(f) are the power

spectrum densities of the corresponding signals and Sxy(f)
is the cross-spectrum density function of the two signals,
x(t) and y(t). The latter function is understood as the quan-

tity Sxy(f) = (f) (f) = ,
where (f) and (f) are the Fourier transforms of the
corresponding signals and the asterisk denotes complex
conjugation. In elementary statistics, an analog of the
coherence function is the square of the correlation coef-
ficient.

The results of measuring the coherence function and
the phase difference for the wakes behind one, three,
and ten cylinders at Re = 75 are shown in Figs. 10 and 11.
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---------------------------

x̂ ŷ* x̂ f( ) ŷ f( ) ei F̂x f( ) F̂y f( )–( )

x̂ ŷ
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Fig. 9. Fluctuation amplitude of the first harmonic of the
vortex velocity field in the wakes behind (a) one, (b) three,
and (c) ten cylinders at Re = 500.

As one can see from Fig. 10a, for one cylinder, the coher-
ence function has two maxima, where it is equal to
unity. These maxima exactly correspond to two vortex
rows forming the Karman street. As one would expect,
the phase difference between the two signals is exactly
equal to 180° when the sensors are in two different vor-
tex rows (see, e.g., [15]).

In the case of a three-cylinder lattice, the coherence
function broadens and exhibits a single clearly pro-

nounced maximum with  = 1 and two local maxima

with  = 0.85 and 0.45 on both sides of the maximum

 = 1. At each of the local maxima, the phase differ-
ence between the signals of the two sensors has a con-
stant value (see Fig. 11). Presumably, the broadening of
the coherence function is related to the confluence–syn-
chronization effect, which was described in the papers
reporting on the visualization of wakes.

In the case of a ten-cylinder lattice, the coherence

function is symmetric about its maximum at  = 1. In
addition to the central maximum, the coherence func-

tion exhibits four local maxima with  = 0.65 and 0.4,
which are positioned symmetrically about the point of

 = 1. Each of the local maxima corresponds to a pla-
teau in the dependence of the cross-spectrum phase on
the transverse coordinate (see Fig. 11). These measure-
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Fig. 12. Coherence function of the signals from two veloc-
ity sensors versus the distance between the sensors across
the wake for the cases of (a) one, (b) three, and (c) ten cyl-
inders at Re = 500. The cylinders are represented by col-
umns.
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Fig. 10. Coherence function of the signals from two veloc-
ity sensors versus the distance between the sensors across
the wake for the cases of (a) one, (b) three, and (c) ten cyl-
inders at Re = 75. The cylinders are represented by col-
umns.
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Fig. 13. Phase difference between the signals from two
velocity sensors versus the distance between the sensors
across the wake for the cases of (a) one, (b) three, and
(c) ten cylinders at Re = 500. The cylinders are represented
by columns.
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Fig. 11. Phase difference between the signals from two
velocity sensors versus the distance between the sensors
across the wake for the cases of (a) one, (b) three, and
(c) ten cylinders at Re = 75. The cylinders are represented
by columns.
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ments allow us to estimate the characteristic correlation
length of the velocity fields in the direction perpendic-
ular to the oncoming flow at Re = 75. Specifically, in
the wake behind the ten-cylinder lattice, this length is
about 10–11d. Hence, in the case of a wake with a total
width of 50d, we deal with approximately five uncorre-
lated scatterers (“enlarged” Karman streets), which
fully agrees with the result obtained by us at Re = 75
with the use of remote acoustic testing (see Fig. 3).

Figures 12 and 13 show similar results for the
case of Re = 500. The main difference from the case
of Re = 75 is that all coherence functions are much nar-
rower (in the direction perpendicular to the flow). Spe-
cifically, when the lattice consists of ten cylinders, the
coherence function has only two closely spaced max-

ima with  = 0.82. In this case, the characteristic
coherence length is only 5–6d, which corresponds to
ten uncorrelated scatterers fitting within the wake width
of 50d. As a result, at Re = 500, the scattered signal

amplitude grows according to the law ~  (see Fig. 5).

Thus, for both Re = 75 and Re = 500, the synchroni-
zation is actually possible only between the vortex
streets that are closest to each other, because the coher-
ence function has a finite length in both cases. The dif-
ference is only in that, at Re = 75, the vortex streets can
merge and, hence, the increase in amplitude with grow-
ing n occurs more slowly than in the case of Re = 500.

CONCLUSIONS

The results reported in this paper show that remote
acoustic testing allows one to quantitatively estimate
the degree of synchronization of the vortex flow formed
behind a lattice of cylinders. Thus, this method can be
used as an alternative to taking instantaneous photo-
graphs of a vortex flow, which is the conventional
method of proving the presence of synchronization
without any quantitative estimates.

For the future, we plan to construct a model of such
a vortex flow with allowance for the interaction
between the vortex streets. A comparison between the-
oretical and experimental results should give insight

γxy
2

n

into the manifestation of synchronization effects in
scattered sound.

ACKNOWLEDGMENTS
This work was supported by the Russian Foundation

for Basic Research, project no. 04-02-17504.

REFERENCES
1. P. R. Gromov, A. B. Ezerskiœ, and A. L. Fabrikant, Akust.

Zh. 28, 763 (1982) [Sov. Phys. Acoust. 28, 452 (1982)].
2. C. Baudet, S. Ciliberto, and J. F. Pinton, Phys. Rev. Lett.

67 (2), 193 (1991).
3. A. B. Ezerskii, P. L. Soustov, and V. V. Chernov, Acoust.

Phys. 46, 670 (2000).
4. P. R. Gromov, A. B. Ezerskiœ, S. V. Kiyashko, and

A. L. Fabrikant, Preprint No. 59, IPF AN SSSR (Inst. of
Applied Physics, USSR Academy of Sciences, Gorki,
1982), p. 16.

5. A. B. Ezerskiœ, A. G. Munin, A. A. Potokin, and
M. I. Rabinovich, in Proceedings of 8th Scientific and
Technical Conference on Hydroacoustics (Tsentr.
Aerogidrodin. Inst., Moscow, 1990), p. 25.

6. A. B. Ezerskiœ, A. B. Zobnin, and P. L. Soustov, Izv.
Vyssh. Uchebn. Zaved., Radiofiz. 38, 832 (1995).

7. J. F. Pinton, C. Laroche, and S. Fauve, J. Phys. II 3, 767
(1993).

8. A. Petrossian and J. F. Pinton, J. Phys. II 7, 801 (1997).
9. C. H. K. Williamson, J. Fluid Mech. 159, 1 (1985).

10. H. J. Kim and P. A. Durbin, J. Fluid Mech. 196, 431
(1988).

11. P. Le Gal, M. P. Chauve, R. Lima, and J. Rezende, Phys.
Rev. A 41, 4566 (1990).

12. I. Peschard and P. Le Gal, Phys. Rev. Lett. 77, 3122
(1996).

13. P. Le Gal, I. Peschard, M. P. Charve, and Y. Takeda, Phys.
Fluids 8, 2097 (1996).

14. J. F. Ravoux and P. Le Gal, Phys. Rev. E 58, 5233 (1998).
15. R. Otnes and L. Enochson, Applied Time Series Analysis

(Wiley, New York, 1978; Mir, Moscow, 1982).
16. M. Okude and T. Matsui, Trans. Jpn. Soc. Aeronaut.

Space Sci. 33 (99), 1 (1989).

Translated by E. Golyamina
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005



  

Acoustical Physics, Vol. 51, No. 2, 2005, pp. 175–181. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 51, No. 2, 2005, pp. 221–227.
Original Russian Text Copyright © 2005 by Zverev, Salin, Stromkov.

        
Determination of the Mode Composition of the Sound Field
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Abstract—A possibility of determining the mode composition of the sound field in a shallow sea is considered.
The procedure involves the transmission of a short pulse by a point source and the subsequent reception of this
pulse at a single point. It is shown that the problem can be solved by using linearly frequency-modulated broad-
band pulses at relatively short distances (about 20 km), where the attenuation of the signal is rather weak. To
take into account the intramode dispersion, it is proposed to use the value of the dispersion typical of a perfect
Pekeris waveguide with a stiff bottom. With the use of the calculations and the experimental data obtained in
the Barents Sea, it is shown that the proposed approximation is sufficient to determine the mode composition
of the sound field. © 2005 Pleiades Publishing, Inc.
The location of objects in a shallow sea requires spe-
cial methods of signal processing to be used [1–6]. This
problem becomes easier if the mode structure of the
wave field is known. A major portion of monograph [1]
deals with the technique of determining the mode com-
position in a shallow sea. In solving this problem, two
quite different methods can be used [1]. With the first
one, the modes can be selected by a distributed vertical
antenna array covering the entire waveguide. Another
method consists in separating the modes by their arrival
times in view of the fact that the modes propagate with
different group velocities. The second method does not
imply using a long array, because the separation in time
can be implemented with a single hydrophone serving
as the signal receiver.

For the signals to be separable in time, they must be
localized within a short time interval. Such a localiza-
tion can be implemented by either using short pulses or
compressing a complex signal in time. Both methods
imply a broad frequency band. The use of broadband
probing signals requires taking into account the intra-
mode dispersion, which causes an initially short pulse
to spread, in addition to the intermode dispersion. To
avoid such a necessity, the authors of monograph [1]
propose to use long sequences of complex (with a high
product of the duration and the frequency bandwidth)
but sufficiently short pulses. The detailed calculations
and experimental data of [1] argue that long distances
should be traveled by the wave in the waveguide for the
modes to be reliably separated if the intramode disper-
sion is neglected. Such distances can be impracticable
because of the high attenuation of sound waves in a
shallow sea.
1063-7710/05/5102- $26.00 0175
In this paper, we study the possibility of determining
the modes of the waveguides by transmitting and
receiving linearly frequency-modulated (LFM) signals,
which are characterized by a high value of the product
of the duration and the frequency bandwidth because of
the large bandwidth. The latter, in turn, offers an
opportunity to reach a high time resolution in the sig-
nal processing. With such a signal propagating in the
waveguide, the processing procedure should necessar-
ily include the intramode dispersion.

It is known [1] that taking into account and even
compensating for the intramode dispersion are desir-
able and, in principle, feasible. However, the difficulty
of doing so for the natural waveguide is also well
understood. Such a waveguide has too many parame-
ters governing the intramode dispersion for one to be
able to estimate them in advance. Furthermore, it is not
quite clear how the parameters of the medium (the sea
depth varying along the path, the characteristics of the
layered bottom, the properties of internal waves, etc.)
can be related to the parameters of the waveguide gov-
erning the intramode dispersion. In addition, it is
unlikely that all the parameters could or should be mea-
sured in practice.

In view of the aforementioned considerations, this
paper uses an approximation that facilitates the solution
of the problem with allowance for the intramode disper-
sion in an LFM signal. As such an approximation, the
value of the intramode dispersion is used that corre-
sponds to the simplest Pekeris waveguide (SPW) with
a stiff bottom in the absence of sound absorption. In the
SPW, the group velocity of the modes is determined by
several parameters: the ordinal number of the mode, the
distance, the sound speed, and the thickness of the
© 2005 Pleiades Publishing, Inc.
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waveguide. The same is true for the propagation time of
the pulse components with different frequencies. In
addition, all of these parameters influencing the mode
group velocity can be combined into a single coeffi-
cient. This coefficient can be easily fitted by analyzing
the experimental data, and one can drop the assumption
of the bottom stiffness.

It was found that the aforementioned approxima-
tion can be used to satisfactorily interpret the experi-
ment performed in a shallow sea at a distance much
shorter than that required for the intramode dispersion
to be neglected in transmitting pulsed CW signals.
The study showed that, with allowance for the intra-
mode dispersion, one could not select the modes by
simply separating them in their arrival times, even in
the SPW, where the intramode dispersion can be com-
pletely compensated for. To determine the set of
modes of the sound field received by a single hydro-
phone, a special technique of processing and repre-
senting the data is required. Such a technique is pro-
posed here.

The experiments on the signal propagation were
carried out in the Barents Sea. The sound signals were
produced by a broadband transmitter deployed from a
drifting research vessel. The hydrophones positioned
at different depths operated as self-contained units.
The signal received by a single hydrophone was
recorded by the digital system [7] with allowance for
its amplitude and phase. The distance between the
transmitter and the receiver (the path length) varied
from 2–3 to 20 km. The transmitted signals were the
LFM pulses with a frequency deviation of about 30 Hz/s
and a frequency band from 100 to 350 Hz.

The processing of the received signals recalled a
preceding modeling of the signal propagation in the
SPW similar to a natural waveguide (the distance R =
17 km, the waveguide thickness H = 120 m, and the
sound speed c = 1500 m/s). In view of the frequency
dependence of the group velocity, the arrival time of a
mode in the SPW is determined by the formula [1, 2]

(1)

where ω is the cyclic frequency and m is the mode num-
ber.

The LFM wave can be represented as

A(t) = cos[Φ(t)], (2)

where the phase Φ(t) is given by the expression

Φ(t) = ω0t + α . (3)

To take into account the dispersion of waves in the
waveguide, one should introduce delay (1) into Eq. (2).

τ ω( ) π2Rc m 0.5–( )2

2ω2H2
-------------------------------------,=

t2

2
---
A problem arises even at this step. If the delay is intro-
duced formally, so that oscillation (2) is delayed
according to Eq. (1),

AD(t) = Acos[Φ(t – τ(ω))], (4)

the oscillation will be extended in time. Such an exten-
sion influences the spectrum of the oscillation in a man-
ner opposite to the delay introduced. Figure 1a shows
the running spectrum of the oscillation for m = 9. This
spectrum is obtained by introducing the delay accord-
ing to Eq. (4).

To correctly calculate the frequency-modulated
oscillation with allowance for the dispersion in the
waveguide, one should proceed in the following way.
The variation in the frequency of the LFM signal is
defined as

ω = ω0 + αt (5)

for the time interval [0, t].
Into this time dependence, the delay is introduced

according to Eq. (1):

ω = ω0 + α(t – τ(ω)). (6)

From Eq. (6), the frequency ω(t) and phase Φ(t) of
the oscillation is found by integrating the frequency
ω(t) over time from 0 to t:

(7)

Thus, an oscillation is obtained that models the
amplitude and phase of the LFM signal transmitted
through the Pekeris waveguide:

AD(t) = cos[ΦD(t)]. (8)

Figure 1b shows the running spectrum of Eq. (8). As
one would expect, the lower frequencies correspond to
greater delays, as compared to higher frequencies.

Figure 1 displays the dispersion in an explicit form.
This suggests the conclusion that the dispersion can be
directly extracted from the experimental running spec-
trum of the oscillation. It seems that the shape of the
curves carries some information on the mode composi-
tion of oscillations. However, this is not true, because,
for low mode numbers, short distances, and shallow
depths (these being the factors that govern the disper-
sion), the offset of the frequency deviation from the lin-
ear law is so small that it cannot be detected in the run-
ning spectrum.

Figure 2 confirms the above statement. This figure
shows the time dependences of the frequency in the
LFM oscillations transmitted through the SPW in view
of the dispersion given by Eq. (6). The curves shown
are not the current spectra as in Fig. 1 but rather the cal-

ΦD t( ) ω ξ( ) ξ .d

0

t

∫=
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Fig. 1. Dependence of the signal frequency (vertical axis, in hertz) on time (horizontal axis, in seconds) without (straight lines) and
with (curves) allowance for the dispersion. The dispersion is taken into account by (a) selectively delaying the entire LFM signal
and (b) by delaying the time dependence of the frequency with a subsequent reconstruction of the signal. The distance is 17 km.
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Fig. 2. Dependence of the signal frequency (vertical axis, in hertz) on time (horizontal axis, in seconds) for the LFM signal (solid
line) and the LFM signal with allowance for the intramode dispersion of (a) modes 1 to 3 and (b) modes 7 to 9. The distance is 17 km.
culated dependences of the frequency on time. With
such a visualization of variations (6) in the frequency of
the oscillations, the resolution is incomparably higher
than with the analysis of the running spectra. However,
in Fig. 2a, which shows the three initial modes, the off-
set from the linear law is also nearly unnoticeable. Such
an offset is clearly pronounced in Fig. 2b, which corre-
sponds to higher modes. Thus, the analysis of the run-
ning spectrum (or the running correlation function)
cannot lead to the desired result, that is, to the selec-
tion of modes with low ordinal numbers at short dis-
tances.

The processing of the experimental data may consist
in cross-correlating the oscillation received by the
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
hydrophone with a reference oscillation. The latter can
be obtained by using a mathematical model allowing
for the dispersion of the velocities of the waves propa-
gating in the waveguide. The inclusion of the dispersion
in the reference oscillation allows one to compensate
for the spread of the maximum in the cross-correlation
function of the LFM signal with the reference one and
thereby to more accurately measure the arrival time of
the signal for each waveguide mode.

To analyze the set of modes, we use the cross-corre-
lation between the received oscillation and the refer-
ence one obtained with allowance for the dispersion of
waves in the waveguide. At the first stage, a mathemat-
ical model of the SPW is used. To do so, we combine



 

178

        

ZVEREV

 

 

 

et al

 

.

                                   
1

0

–100 –50 0 50 100 –100 –50 0 50 100

(‡) (b)

(c) (d)

0

1

Fig. 3. Coefficients of correlation (vertical axis) of the modeled signal with the LFM signal (a) without and (b–d) with allowance
for the dispersion of modes (b) 1, (c) 2, and (d) 3. The horizontal coordinate is time (in milliseconds). The distance is 8 km.
oscillations (8) with a single mode in each summand.
For instance, the sum of the second and third modes has
the form

E(t) = AD(t, 2) + AD(t, 3), (9)

where the characters in parentheses denote the mode
numbers used to allow for the dispersion.

Then, the reference oscillation (RO) is constructed.
It is advantageous to represent the RO in the form of
Eq. (8), where the number m of the mode, whose dis-
persion is taken into account, can be varied. For brevity,
the RO is assigned a subscript denoting the mode num-
ber. The cross-correlation functions of signal (9) with
the RO0.5, RO1, RO2, and RO3 are shown in Figs. 3a–3d,
respectively.

The mode with subscript 0.5 corresponds to the
LFM signal that is not disturbed in its propagation. Fig-
ure 3a shows the cross-correlation for this signal. In
Fig. 3a, a correlation response can be seen that mani-
fests itself as a peak spread in time (to the left of zero,
with negative delays). The negative delay time corre-
sponds to a lag of signal (9) relative to the reference
one. Such a lag indicates that the signal contains higher
modes arriving later than the RO0.5. The response is
spread, because signal (9) and the RO0.5 differ in their
frequency deviations. Figure 3b is quite similar to
Fig. 3a, because the RO1 slightly differs from the RO0.5
used as reference in Fig. 3a. In Fig. 3c, two responses
can be seen, one of which is spread as in previous fig-
ures and the other of which looks like a narrow well-
developed correlation peak. This peak corresponds to
the second mode, because the RO2 is the signal of the
second mode, which is also present in signal (9). The
spread peak is the response to the higher third mode;
therefore, it is at the left of zero. Two responses are also
present in Fig. 3d. The first one is a well-pronounced
correlation peak at zero. This peak is the correlation of
the RO3 with the third mode, while the spread response
results from the correlation of the RQ3 with the second
mode. The latter mode has a lower number, and, hence,
the corresponding response advances the correlation
peak (this is the only response in Fig. 3 that exists to the
right of zero).

The following general conclusion can be drawn
from Fig. 3. Cross-correlating the signal and the RO
containing a single known mode allows one to deter-
mine the amplitude of the mth mode from the concen-
trated-in-time response. At the same time, the left- and
right-hand spread responses carry information on the
presence of modes with numbers higher and lower than
m in the signal.

The aforementioned situation of the strong intra-
mode dispersion differs from that considered in [1],
where each mode has its correlation maximum
observed simultaneously with the maximum of another
mode. In our case, one cannot focus the responses on
two modes arriving at different times, because these
modes correspond to different frequency deviations
depending on the intramode dispersion.

Nevertheless, a method exists that allows one to
focus all the modes and to represent them in the same
plot, even if the intramode dispersion is taken into
account. For simultaneously visualizing all the modes
existing in the signal, one can calculate the cross-cor-
relation function of the received or modeled signal
and the reference one for a single instant and then use
the numbers of the modes in the reference signal as the
variable required to obtain a plot. In doing so, the
mode number m takes not only integral but also frac-
tional values.

The possibility of varying the mode number in the
reference signal instead of performing tuning in time
is offered by the fact that Eq. (8) automatically sepa-
rates the LFM signals with different mode numbers in
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
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Fig. 4. Coefficients of correlation (vertical axis) between the mathematical model of the LFM oscillation in the form of the sum of
modes 1, 2, and 3 and the LFM oscillation constructed with allowance for the SPW dispersion at a zero delay versus the number of
the mode taken into account (horizontal axis). The distances are (a) 8 and (b) 17 km.
time. Therefore, if the distance, the parameters of the
path, and the initial time are correctly fitted, the max-
imum of the cross-correlation function of the RO and
the signal will correspond to the same instant t for all
the modes.

Figure 4 illustrates the results obtained with the pro-
posed technique for the signal numerically modeled as
a sum of three modes (signal (9) is complemented with
the first mode). The curves shown correspond to dis-
tances of 8 and 17 km. In Fig. 4a, three maxima can be
seen. Their horizontal coordinates are 1, 2, and 3,
according to the ordinal numbers of the modes present
in the signal. For other mode numbers, the responses
are noticeably lower. As the distance increases, the dif-
ference in propagation conditions for different modes
becomes greater, and one can expect that, at long dis-
tances, the modes will be distinguished better than in
Fig. 4b.

The plot shown in Fig. 4 accentuates the difference
in the shapes of the correlation functions for different
modes, i.e., the difference that could be noticed from
Fig. 3. It is true that, in Fig. 4, all the modeled modes
are clearly pronounced, and a distance of 8 km is suffi-
cient for the modes to be reliably separated. Thus, the
necessary part of the problem is solved: it is shown that
the set of modes can be determined for the numerically
modeled signal.

In an in-sea experiment, the initial delay time can be
estimated from the instant corresponding to the maxi-
mum in the correlation response at some mode if such
a response is present in the signal. An error in determin-
ing this instant leads to both a shift of the mode num-
bers in the plot and a decrease in the correlation coeffi-
cient.

The results of Fig. 4 do not lead to the conclusion
that the same situation will take place in an experi-
ment. The reason is not only that, in numerical model-
ing, a “pure” signal is obtained without noise and inter-
ference. The point is also that the natural waveguide
differs from the SPW used in generating the reference
signal.

An experimental curve plotted with the same tech-
nique as Fig. 4 should exhibit individual maxima corre-
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
sponding to mode numbers indicated on the horizontal
axis. However, the dispersion characteristic is governed
by both the mode number and the value of the coeffi-
cient appearing in Eq. (1). This coefficient depends on
the waveguide thickness, which is not known along the
path, and on the impedance of the bottom in the natural
waveguide (again, along the path). In addition, an
uncertainty is caused by the error in measuring the
instant of the zero delay between the arrivals of differ-
ent modes; this delay is determined by the maximum in
the cross-correlation of the signal and the RO. The nat-
ural waveguide does not have a perfectly stiff bottom,
and, hence, the mode numbers can take nonintegral val-
ues [1].

The signals received in the experiment were pro-
cessed with the parameter H = 136.1 m, while the sea
depth in the vicinity of the receiver was about 120 m.
Such a value of H was chosen for the maximum in the
figure to correspond to the 3rd mode at a distance of
17 km. In fact, this mode can be number 2, 2.5, or some
other. Accordingly, the characters on the horizontal axis
in Fig. 5 should be treated as the numbers of modes in
the reference signal (NMRS) rather than the mode
numbers themselves.

Figure 5 illustrates the results of processing the
experimental signals with the aforementioned tech-
nique. To obtain the plots in Fig. 5, the same reference
signals were used as in Fig. 4. According to Fig. 5, the
results obtained are noticeably different for different
distances and reception depths. It is characteristic that
the maxima are noticeable at certain values of the
NMRS in all the plots. However, these maxima are pro-
nounced to different extent. In Fig. 5a (a distance of
8 km, reception near the surface), a well-pronounced
maximum exists at NMRS = 3 and less pronounced
maxima occur at the NMRS values of 1, 4.5, and 5. In
Fig. 5c (the same distance but a different depth), a
strong and well-pronounced maximum corresponds to
the vicinity of NMRS = 1, while the noticeable peak that
corresponds to NMRS = 3 in Fig. 5a is nearly absent in
Fig. 5c. At deeper horizons of reception (Fig. 5e), the
highest maximum corresponds to NMRS = 5. The
sharpness of the maxima in Figs. 5a, 5c, and 5e is
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Fig. 5. Coefficients of correlation (vertical axis) between the received LFM oscillation and the LFM oscillation constructed with
allowance for the SPW dispersion at a zero delay versus the number of the mode taken into account (horizontal axis). The dis-
tances are (a, c, e) 8 and (b, d, f) 17 km. The receivers are (a, b) near the surface, (c, d) at the half-depth of the sea, and (e, f) near
the bottom.
nearly the same as in Fig. 4a, corresponding to the same
distance.

In Figs. 5b, 5d, and 5f, corresponding to a distance
of 17 km, much more pronounced and narrower max-
ima exist than in Figs. 5a, 5c and 5e. This fact fully
agrees with Fig. 4, which also shows a much clearer
pattern at a distance of 17 km than at 8 km. At 17 km,
there are nearly no maxima at NMRS values greater
than 3. Such a situation can be explained by the fact that
higher modes attenuate more rapidly than lower ones as
the distance increases. This result confirms the fact that
the actual modes of the waveguide are observed in
Fig. 5. The most pronounced mode is the one that cor-
responds to an NMRS value of about 3 at a distance of
17 km. This mode is easily detectable at all depths. The
main justification of the statement that Fig. 5 yields the
actual individual modes of the signal consists in the
existence of the pronounced maxima in this figure and
in the agreement of their shapes with the results of
numerical modeling (Fig. 4).

The comparison of Figs. 5 and 4 shows that the
separation of modes also takes place in the experiment
and that this separation is almost as definite as in mod-
eling, although the experimental values of the cross-
correlation coefficients are substantially lower. The
decrease in the experimental cross-correlation coeffi-
cients is governed by both factors responsible for the
difference between the experiment and the calcula-
tions. These are the existence of noise and interfer-
ence and the difference between the modeled refer-
ence signal and the LFM signal propagating in the nat-
ural waveguide. The reliable separation of modes in
the experiment shows that, for solving the problem at
hand (that is, for determining the mode composition in
a shallow sea with an intramode dispersion), it is suf-
ficient to use the approximation of a perfect Pekeris
waveguide.

Thus, the approximation of a perfect Pekeris
waveguide allows one to take into account the intramode
dispersion and to determine the approximate mode com-
position of the broadband oscillation at a distance where
the modes can be separated due to the broad frequency
band. It is also shown that, to obtain a higher correlation
coefficient (and, hence, to increase the noise immunity),
the transmitted LFM signal should be correlated with a
signal that, in the first approximation, allows for sound
propagation in the waveguide rather than with the initial
LFM signal.
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Abstract—Possibilities for the observation of randomly distributed and spatially localized inhomogeneities in
a shallow sea by the method of low-frequency low-mode pulsed diffraction tomography are discussed. Results
of computer simulations and experimental studies of the emission and reception of low-frequency low-mode
acoustic signals in a shallow sea are presented. © 2005 Pleiades Publishing, Inc.
In this paper, we analyze the potential of low-mode
pulsed tomography of a shallow sea using echolocation
(multistatic in the general case) schemes of observation
in shallow water [1, 4, 5, 8–15]. The structure of the sig-
nals diffracted by spatially localized inhomogeneities
in a waveguide, as applied to the problem of tomo-
graphic observations in oceanic underwater channels,
was analyzed for the first time in [1, 2] and also in many
subsequent publications cited in [13]. In the first part of
this paper, we analyze the basic idea of the method and
demonstrate the potential of low-mode pulsed tomogra-
phy for reconstructing the parameters of some specific
types of inhomogeneities in a shallow sea on the basis
of a computer model developed for this purpose. An
important condition for the implementation of low-
mode pulsed tomography is the selection of waveguide
modes. In the second part, we briefly describe the
equipment and some results of experimental studies
aimed at the determination of the abilities of selective
excitation and reception of waveguide modes. The
employment of vertically developed receiving systems
in shallow water has its own history. In particular, it is
necessary to note the joint experimental studies of the
General Physics Institute and the Institute of Applied
Physics of the Russian Academy of Sciences that were
conducted in 1990 [3]. However, a combined employ-
ment of vertical multielement radiating and receiving
arrays in the low-frequency tomographic observations
on long tracks in a shallow sea was considered for the
first time only in [4, 5]. In [6, 7], the abilities of such
arrays were examined in application to phase conjuga-
tion in an acoustic waveguide for short tracks within a
higher frequency range.

BASIC PROPERTIES 
OF LOW-MODE PULSED TOMOGRAPHY

The idea of the low-mode pulsed tomography is as
follows: pulsed signals corresponding to the nth mode
1063-7710/05/5102- $26.000182
and characterized by an ambiguity function that is suf-
ficiently narrow in the frequency–time plane are
excited with the help of a set of vertically developed
arrays Si (i = 1, …, I, where I is the number of radiating
arrays). Here, we assume that the waveguide and mode
structures are known. It is necessary to note that it is
practically impossible to excite just one mode because
of the finiteness of the radiating array aperture and the
impossibility of placing the radiator in the soil. We will
call a signal low-mode if it is emitted so that all modes
are much smaller than one produced by matched exci-
tation [8–12]. The pulses scattered by the inhomogene-
ity under investigation, which correspond to the modes
with the numbers m = 1, …, M, where M is the total
number of modes propagating in the waveguide, are
received by a set of vertically developed receiving
arrays Rj (j = 1, …, J, where J is the number of receiving
arrays). A matched filtration of pulses with sweeping
delays τ and Doppler frequency shifts Ω is performed
for each of the modes selected at the reception. The
number and positions of the sources and receiving sys-
tems and the number of the mode tomographic projec-
tions corresponding to each source–receiving system
pairs may vary. Thus, the received signal for each pair
of radiating and receiving arrays is a function of several
variables: the numbers of excited and received modes,
the delays, and the Doppler frequency shifts. As a result
of combined processing of all spatial mode and fre-
quency tomographic projections, the spatial and tempo-
ral parameters of inhomogeneities are determined.

Far from the source, in plane-layered waveguides,
the field is a finite sum of N propagating modes (for
horizontal homogeneous waveguides, the number of
modes near the source and the receiver is the same and
N ≡ M). A mode is characterized by the eigenfunctions
ϕn(z) and the complex eigenvalues hn(ω), with the
imaginary parts determined by the mode damping fac-
tors δn(ω). Each ith source of a tomographic system,
which is an array of radiators with a length L1, emits a
 © 2005 Pleiades Publishing, Inc.
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sequence of narrowband probe pulses f0(t) with the
pulse spectrum F(ω – ω0), where ω0 is the carrier fre-
quency. If the depth and dimensions of the radiating
arrays are selected optimally, the emitted low-mode
signal consists of a mode of number n whose level far
exceeds the levels of all other modes [8–12]. In this
case, under the assumption of the smallness of the intra-
mode dispersion effects (this imposes limitations on the
frequency band of radiated pulses and on the distances
at which they are observed), after matched filtration, a
direct (nonscattered) pulsed signal from the jth receiv-
ing array of length Lj can be represented in the form

(1)

where hn = hn(ω0);  = rij/vn(ω0) is the delay of the
pulse corresponding to the mode with number n in the
reception channel that corresponds to the mode with
number m; vn(ω0) is the group velocity of the mode with

number n;  is the Doppler frequency arising due to

the scatterer motion;  = (z)ϕn, m(z)dz are the

coefficients of mode excitation by the radiating and

receiving arrays, respectively; (z) are the weight
factors along the apertures of the arrays; FH(τ, Ω) =

1/2π F(ω)F0(ω – Ω)exp[i(ω – Ω)τ] is the ambi-

guity function of probe pulses; and F0(ω) is the spec-
trum of the replica of the probing signal. In the case of
an ideal spatial filtration, where the conditions of mode
orthogonalization are satisfied at the array apertures,
the second term in Eq. (1) in the form of a sum of small-
value interfering modes vanishes and only the compo-
nent corresponding to the illuminating field in the form
of a single emitted mode remains.

In the course of tomographic observation, the probe
pulses subjected to diffraction by waveguide inhomo-
geneities are measured. In the framework of the mode
description, the complex amplitudes of diffracted
waveguide modes are determined by the scattering
matrix. The matrix depends on the internal structure,
shape, and positions of inhomogeneities (for example,
see [13–15]). When inhomogeneities are illuminated
with a pulsed signal corresponding to the mode with
number n, the amplitude of each pulse of the diffracted
modes with index m is formed as a result of signal scat-
tering from all inhomogeneities located within a corre-
sponding pulse volume, the points r' of which satisfy the

condition |t – r1i  + r2j | < ∆τ/2, where r1i = |ri – r'|
and r2j = |r' – rj| are the distances from a scatterer to the
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source and the receiver, respectively. In the general
case, the inhomogeneities are moving and, hence, the
scattered pulses have a Doppler shift. In the case of nar-
rowband illuminating pulses and relatively small veloci-
ties of the scatterers Vs, all scattarers satisfying the con-

dition |ω0Vs(r')( cosαi(ri, r') – cosβj(rj, r'))| < ∆Ω
fall in a separate channel on the axis of the Doppler
shifts. Here, αi(ri, r') and βj(ri, r') are, respectively, the
angles between the direction of the velocity vector of
the velocity for an elementary scatterer at the point r'
and the radius vectors constructed from the point of the
scatterer position to the source and the receiving sys-
tem. The quantities ∆τ and ∆Ω are determined by the
width of the ambiguity function FH(τ, Ω) of the probe
pulses, respectively, on the axes of time delays and
Doppler frequency shifts. In the digital signal process-
ing, in each of the delay–Doppler shift planes corre-
sponding to the pair of radiated modes with the number
n and received modes with the number m, it is possible
to introduce a set of channels for each source–receiver
pair (i, j), which correspond to the interval of the time

delays  + (l – 1)∆τ <  <  + l∆τ, and the Dop-

pler frequency shifts (k  1)∆Ω <  < k∆Ω, where
l = 1, 2, …, L and k = ±1, 2…, ±K are the channel num-

bers and  are the initial values of time delays, which
are fixed for each tomographic projection {i, j, n, m}.
After processing consisting of the matched filtration of
received mode pulses, taking into account the discreti-
zation determined above, we have in the general case
{IxJxNxMxKxL} tomographic projections, the signals
of which are the integral characteristics of all inhomo-
geneities located within each projection. The combined
processing of the signals of these projections yields a
reconstruction of the differential characteristics of the
inhomogeneities observed, i.e., the distribution of their
parameters in the observation region.

Under the assumption of the smallness of multiple
scattering effects, the amplitudes of the modes scat-
tered by single elements of the pulse volume are deter-
mined by the components of the spatial spectrum of
inhomogeneities, which satisfy the condition of reso-

nance scattering  = hnr1i/r1i – hmr2j/r2j [16]. The
observed pressure amplitudes of the acoustic field are

the sum of the illuminating field , the components

 of the field scattered by the inhomogeneity under

observation, the field  scattered by all interfering
inhomogeneities, and the field of the sources of the

additive oceanic noise . In the general case, each
component of the received field must be considered as
a random signal with certain inherent statistical proper-
ties. In this case, it is necessary to assume that the direct
illuminating field and the diffracted components of the
field are partially coherent, which leads to their inter-
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ference. This effect can be used for the reconstruction
of inhomogeneities, in particular, in the case of obser-
vation of the fields diffracted through small angles. In
the scheme of low-mode pulsed tomography, this situa-
tion takes place within the first pulsed volume, when
the direct pulse and the diffracted pulses are not
resolved. A detailed consideration of the influence of
the interference effects arising in this case and their use
can be found in [1, 13–15]. In this paper, we consider
situations where interference effects between the direct
illuminating field and the diffracted fields are small;
i.e., we analyze the specific features of the tomographic
reconstruction of the inhomogeneities located in the
pulse volumes, where l > 1 and k > ±1. Assuming the
interference effects to be small, we have, for the
received signal intensity [13, 14],

(2)

The averaging in Eq. (2) is performed over the statistical
ensembles of the corresponding random inhomogene-
ities and noise. If random inhomogeneities are relatively
weak or the length of the tomographic tracks is small, the
illuminating field can be considered as approximately

coherent: 〈| ( , )|2〉 ≈ | ( , )|2. In
the case of illumination with the nth mode, the intensi-
ties of the signal components from the output of a
matched filter, which correspond to the diffracted (by
observed (with index σ) and interfering (with index R)
inhomogeneities) pulses of the received mode with the
number m, are determined by the matrix of mode scat-

tering :

(3)

It is necessary to note that, in the case of observation of
spatially restricted inhomogeneities, the interference is
represented by randomly distributed surface, bottom,
and bulk inhomogeneities in the ocean. The intensity of

the additive noise 〈| ( , )|2〉 can be repre-
sented in the form

(4)
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where the function ( )j( , ) determines the
intensity of the output signal from a matched filter in
the absence of the illuminating field, when the receiv-
ing array with the index j detects the signals of additive
noise in the process of reception of the mode with the
number m.

The scattering matrix in Eq. (3) is determined by the
spectrum of inhomogeneities [13, 16],

(5)

where h0 is the value of the wave number at the channel

axis for the carrier frequency, (k, ω, r) are the
corresponding components of the local spectrum for
the correlation function of inhomogeneities with
respect to differential variables for the sum of the sur-
face, bottom, bulk, and spatially restricted inhomoge-
neities, and the integration is performed over the hori-
zontal coordinates, the depth of inhomogeneity posi-
tions being taken into account in the process of
calculation of the components of the local spectrum for
inhomogeneities [13, 14, 16, 19].

Tomographic reconstruction of an object consists in
the evaluation of the observed parameters of the model
describing the object. In particular, in the case of a spa-
tially restricted inhomogeneity, its coordinates, shape,
and velocity and direction of motion can be the
observed parameters. In the case of wind waves, the
parameters of an observed object model can be the
velocity and direction of the wind inducing the waves.
Let us denote the set of the observed parameters for the
object model by the vector p. The components of the
vector of observed parameters are evaluated by the
method of statistical verification of hypotheses deter-
mined by the solution of the direct problem by using
a priori information in the form of models of the
medium, observation object, interference and noise,
and configuration of the observation system. The solu-
tion corresponds to the global extremum of residual
Ψ(p) ≡ ||q – q(p)||η   between the vectors of the

measured parameters q and the corresponding sorted
hypotheses q(p). The rule of decision making on the
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Fig. 1. Block diagram of the algorithm of acoustic observation by the method of low-mode pulsed tomography in a shallow sea.
validity of a hypothesis concerning the value of the vec-
tor q = q(p) usually has the form

(6)

where the norm ||·||, its power index η, and the threshold
values s in the general case are determined by the dis-
tribution of the probability density for the vector of
measured parameters, preset probabilities of errors of
the first and second kinds in the process of decision
making, noise and interference, and other factors, in
particular, the evaluation algorithm for the vector of the
conditional probability for the decision on the approval
of a hypothesis by an employed measuring device.
Under the assumption that the value distributions are
normal, using the quadratic metrics η = 2 and taking
into account Eq. (2), for the components of the vector
of measuring parameters q the hypothesis is approved
if the difference of the useful signal level and the level
of interference and noise exceeds the threshold deter-
mined (at the required probabilities of errors) by the
statistical distribution of values [17]. In this case, the
observation algorithm is determined by the succes-
sion of the operations given in Fig. 1, where just two of
the {I × J × N × M} of jointly processed tomographic
projections are given. As follows from Eq. (2) with
allowance for Eqs. (1), (3), (4), and (5), the components
of the vector of aperture factors for each tomographic
projection are determined by the dimensions and posi-
tions of the receiving arrays Lj, the frequency band of
measurements, the shape of probe pulses, the structure
of a hydroacoustic waveguide, and other factors, which
are determined by a priori information in the form of
models of the medium, object, interference, noise, and
configuration of the observation system (blocks M1–M4
in Fig. 1). In particular, the aperture factors provide the
filtration of mode channels, which is matched to the
waveguide, and the compression of probe pulses
(blocks I1, I2, P1, and P2). The search for the solution
corresponds to the search for hypotheses and, in our
case, to the search for discrete channels in the planes

q q p( )–
η s,<
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( , ) of separate tomographic projections
(blocks G). For each hypothesis, the decision for each
tomographic projection is made by the blocks PU, and
the resulting solution, obtained by combined process-
ing of all projections in the form of the evaluation of the
true values of the observation vector p = , is formed
by the block Σ. In the case of a change in the observa-
tion conditions, the models are corrected (block M4),
which can be done by using oceanological models and
the hydrological and acoustic data bank for the region
of observations. Let us analyze in more detail the spe-
cific features of the operation of low-mode pulsed
tomography using the examples of observation of wind
waves and a spatially restricted inhomogeneity.

RECONSTRUCTION OF THE PARAMETERS
OF WIND WAVES

As follows from Eq. (5), the intensity of diffracted
low-mode acoustic pulses from the output of a matched
filter is determined by the integral equation of convolu-
tion of the local spectrum components for inhomogene-
ities with the squared modulus of the ambiguity func-
tion of probing signals. Variation of the delays and
Doppler shifts allows us to obtain a set of integral tomo-
graphic projections for the spectrum of inhomogene-
ities and to evaluate their spatial distribution with a res-
olution determined by the configuration of separate
pulse volumes. For different pairs of modes {n, m}, the
spatial structure of pulse volumes may change. Fig-
ure 2a shows the structure of these pulse volumes in the
horizontal plane (x, y) for n = 1 and m = 3 for a shallow-
water waveguide with a depth of 300 m. In the process
of simulation, we adopt the model of a shallow-water
sea whose bottom is in the form of two layers of sedi-
ments, which lie on an elastic base with the dependence
of sound velocity on depth that is typical of winter con-
ditions [4, 5]. The model parameters are conditional
and can be easily changed. Selection of mode projec-
tions is performed by the blocks I1 and P1 shown in the
block diagram in Fig. 1. The positions of radiating i = 1

τ ij
nm Ωij

nm

p̃
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and receiving j = 1 arrays located at a distance of 100 km
from each other are denoted in Fig. 2a by the letters S
and R, respectively, and the digits indicate the positions
of pulse volumes with respective numbers. The shapes
of pulse volumes, generally speaking, depend on the
time of pulse arrival. Their vertical structure is deter-
mined by the product of the eigenfunctions ϕn, m(z) of
the modes used.

Let us assume that phase-shift-keyed pulses with a
length of 10 s and the modulation law in the form of an
M sequence with a carrier frequency of 250 Hz and a
frequency band of 10 Hz are used as probing signals [4,
5]. In the case of such probing signals, the central peak
of the response in the process of matched filtration per-
formed by the blocks I2 and P2 (Fig. 1) is localized in
a narrow interval of the Doppler frequencies and
delays. To describe the structure of bottom reverbera-
tion, we use the simplest Lommel–Seelinger model
[17]. We also assume that nonisotropic wind waves are
described by the JONSWAP model [18]. This model
can be characterized by the vector of observed param-
eters, whose components are the wind velocity V and
the angle χ determining its direction in the horizontal
plane, p = pR = {p1 = V, p2 = χ}. Further, we assume
that the waves are induced by wind with a velocity V
= 5 m/s directed at an angle χ = 5π/4 (the wind direc-
tion is indicated in Fig. 2a by an arrow). Calculating the
matrices of scattering of waveguide modes from waves
at the surface, we use a two-scale model of surface
waves, where acoustic field scattering is performed by
the resonance harmonic of the waves. The phase veloc-
ity of the harmonic is modulated by higher waves [19].

The shape of such a spectrum is shown in Fig. 2b in
the form of a brightness distribution on a logarithmic
scale. The anisotropy of the spatial spectrum of wind
waves causes the shape asymmetry of the matched filter
response on the axis of the Doppler frequencies. Since,
in each element of the pulse volume, the scattering is
performed by a corresponding spatial harmonic satisfy-
ing the condition of resonance scattering, a spatial
pulse volume can be associated with a pulse volume in
the plane of wave numbers. White lines in Fig. 2b show
the structure of such volumes in the case of illumination
with the first mode and reception of the third mode and
the aforementioned parameters of the wind velocity and
the shallow-water waveguide. Pulsed volumes for l = 1
have the shape of two adjoining circles and, in particu-
lar, for l = 20, they take on the form of a circle shaped
like a dumb bell. The shape of pulse volumes with high
numbers tends to a circular ring with the radius 2k. Note
the importance of mutual orientation of pulse volumes
and the symmetry axis of the wave spectrum in the
space of wave numbers in the process of formation of
the response structure of a matched filter, which is evi-
dent when comparing the corresponding structures of
pulse volumes in the horizontal plane and the wave-
number space of (Figs. 2a and 2b). As the analysis
shows, a change in the wind direction causes a rise in
the asymmetry of the dependence of the matched filter
response (Eq. (5)) at the axis of the Doppler frequency
shifts. Figure 2c demonstrates such a response in the
brightness form on a logarithmic scale (for a clearer
perception of the signal structure, the isolines corre-
sponding to the levels of 80 and 90 dB are given in the
brightness field). The search for the values of the delays
and Doppler frequency shifts is performed by the block
for the verification of hypotheses (block G in Fig. 1).
The response values in separate channels of delays
from the output of a matched filter correspond to the
pulse volumes with the structures shown in Figs. 2a and
2b. The interval of delays that corresponds to the
20th pulse volume is shown in Fig. 2c by two vertical
dashed lines. The summary signal in all Doppler fre-
quencies for a fixed value of τ is determined by the dis-
tance from all scattering elements of a corresponding
pulse volume. The decrease in the response levels of the
signals scattered by bottom inhomogeneities located in
the resolution elements with a zero Doppler shift
(Fig. 2c) is determined by the structure of the model for
the spectrum of bottom inhomogeneities and mode
decay that is used for calculations.

For each pulse volume, it is possible to construct a
dependence of signal decay on the position of a scatter-
ing element. Such translational characteristics [20] cal-
culated for the first and third modes demonstrate that
there are spatial regions where the signals scattered by
relatively low spatial frequencies are weak. This depen-
dence is explained by the fact that the low-frequency
spatial components satisfying the conditions of spatial
synchronism are located in the elements of the pulsed
volumes that are at large distances from the source and
the receiver, which leads to their relatively large atten-
uation because of decay. It is evident that these regions
(the pulse volumes and wave-number intervals corre-
sponding to them) must be excluded in the process of
solving the inverse problem that corresponds to the reg-
ularization of measured data and that is performed by
the optimal selection of the components of the vector of
the measured parameters q = qR (block M2 in Fig. 1) [4,
19, 20].

Using the minimization of the rms residual as a cri-
terion, the solution pR =  corresponding to the global
extremum in a two-parameter space (Fig. 3) is deter-
mined with the help of the iteration parameters opti-
mized on the basis of a priori information concerning
the iteration algorithms [4, 20], in particular, using the
ravine character of the space of residuals. Since, in the
case of bistatic observation, a symmetry axis exists, an
observation system consisting of just one tomographic
projection is incapable of distinguishing the positive
angles of the wind direction from the negative angles.
The true position of the global extremum is invariant
with respect to the power of the illuminating source and
the noise level that represents interference in the pro-
cess of reconstruction of the parameters of wind waves.
However, if the level of additive noise increases and a
preset power of the illuminating source is used, the dis-

p̃R
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persion and the shift of the evaluation of the wind wave
parameters grow. At a preset required precision of
reconstruction, the observation becomes impossible
starting from a certain value of the noise level. Using
the waveguide model and setting the noise levels, it is
possible to indicate a priori the regions of the parame-
ters where the reconstruction is possible. These regions
can be called the system field of view in the space of the
observation parameters pR.

RECONSTRUCTION OF SPATIALLY
LOCALIZED INHOMOGENEITIES

A spatially restricted inhomogeneity in the general
case can be characterized by the vector of observation
parameters p = {R, a, V, s}, including, respectively,
the three-dimensional vectors of position, orientation,
velocity, and extension. Let us consider some specific
features of the reconstruction of spatially restricted
inhomogeneities for the case of the observation condi-
tions adopted in the previous example. As an observed
spatially restricted inhomogeneity, we consider an ice-
berg, which is simulated by a perfectly rigid body mov-
ing along the waveguide surface and partly immersed in
the waveguide. To describe diffraction of mode pulses,
we assume that the iceberg is shaped like a vertically
oriented cylinder with a finite height and dimensions
far exceeding the wavelength for the central part of the
spectrum of the probe pulse [14, 21]. We assume that
the iceberg moves along rectilinear trajectories with
equal inclinations with respect to the line between the
source and the receiver. The levels and the Doppler
shifts of the mode pulses diffracted by this inhomoge-
neity vary, which determines the efficiency of recon-
struction depending on the ratio of useful signals to the
level of interference and noise. We assume that, apart
from additive noise, the competing scatterers in the
form of the wind waves examined in the previous
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Fig. 3. Space of residuals in the process of evaluation of
wind parameters.
example also exist. For the observation conditions
adopted in the previous section, the pulses scattered by
the iceberg are observed after matched filtration against
the background of reverberation interference with the
structure shown in Fig. 2c. Let us assume that useful
signals and interference have a normal statistics. We
assume the probability of correct reception of a signal
and the probability of false alarms to be set. In this case,
the decision on the presence of an iceberg in one of the
spatial pulse volumes shown in Fig. 2a, i.e., in a corre-
sponding channel in the plane of time delays and Dop-
pler shifts, is made by a decision device (block PU in
Fig. 1). Since the velocity of the moving inhomogene-
ity is small (0.5–2 m/s), a useful signal is located within
the interval of small values of the Doppler shifts, where
the interference level is sufficiently high (see Fig. 2c).
This situation is mainly characteristic of the iceberg
positions near the source–receiver line. In this case, the
evaluation of the components of the vector of iceberg
parameters, in particular, its coordinates, can be hin-
dered. To increase the spatial resolution, it is necessary
to perform observations using several tomographic pro-
jections. Let us consider a simple scheme of low-mode
pulsed tomography with one illuminating source and
two receiving systems, one of them being located near
the source, and the other, at a certain distance from it.
In this case, one of the tomographic projections corre-
sponds to the monostatic scheme of observation, where
all back-scattered signals are detected. The spatial
pulsed volumes shaped like concentric circular rings,
which correspond to it, are formed by the blocks I1, I2,
P1, and P2, and also by the block M1 from the model of
the medium (Fig. 1). Verification of hypotheses on the
position of the observed inhomogeneity in one of the
pulse volumes is performed by the blocks G and PU by

searching the channels in the ( , ) and ( , )
planes corresponding to the monostatic and bistatic
projections in the case of using the model of reverbera-
tion interference and noise (block M3 in Fig. 1).

Let us use the numerical model of observation to
analyze the efficiency of iceberg observation in the case
when some components of the vector of observed
parameters, in particular, the velocity and direction of
motion, are fixed. In this case, observation is reduced to
evaluation of the iceberg position. We assume that the
iceberg moves with a velocity of 1.5 m/s along a set of
trajectories. Each trajectory makes an angle of π/4 with
the line between the source and the second receiver,
located at a distance of 100 km. Calculation of the ratio
of the levels of the signal diffracted by the inhomoge-
neity observed to the level of reverberation from wind
waves and the bottom, as well as additive noise, allows
us to estimate the probability of the observed object
position. Figure 4 gives the spatial distributions
obtained in this way for the probability of the approval
of a hypothesis on the iceberg coordinates, which deter-
mine the fields of view for the monostatic (Fig. 4a) and
bistatic (Fig. 4b) projections of low-mode pulsed
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Fig. 4. Structure of the field of view in the case of iceberg observation for the (a) monostatic and (b) bistatic observation schemes
and also for (c) a combined processing of two projections. The white line in the lower plot shows one of the trajectories of the iceberg
motion.
tomography and also for the case of combined process-
ing of two projections (Fig. 4c). The term “field of
view” is rather conditional. We consider it expedient to
represent the observation capability of the described
tomographic scheme in the form of a brightness distri-
bution of the probability of correct reception in the hor-
izontal plane, to which we relate this concept. The com-
bined processing of the signals from separate tomo-
graphic projections, which is performed by the block Σ
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
(Fig. 1), consists in the logical accumulation of the
probabilities of separate projections. In the process of
calculation, we assume that the iceberg has the shape of
a cylinder with a diameter of 200 m, which is immersed
in the waveguide for 50 m. The level of additive noise
is taken to be equal to 70 dB relative to 1 µPa. The
power of the illuminating source is selected to be equal
to 100 W. In the case of monostatic observation, the
level of the signals back-scattered by the observed
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inhomogeneity only depends on the observation dis-
tance. The value of the Doppler shift for the reflected
pulses is determined by the angle between the direction
of motion and the radius vector from the observation
point to the point of the inhomogeneity position (apart
from the velocity). The relationship of the values of the
Doppler shifts corresponding to iceberg motion with a
small velocity and the value of the frequency resolution
in the model under consideration is such that the field
of view is broken into five pulse volumes corresponding
to five channels of the Doppler frequency shifts with
different levels of reverberation noise from wind waves
and random inhomogeneities of the bottom (Fig. 2c). At
small values of the Doppler shifts, the reverberation
level is determined mainly by scattering from the bot-
tom. The probability of iceberg observation in the corre-
sponding spatial pulse volumes is close to zero (Fig. 4).
The iceberg is also less visible in the case of its motion
to the observation point, since, in these regions, the
interference is formed by the most intense components
of wind waves (Fig. 4a). An analogous structure of the
field of view is also formed for a bistatic tomographic
projection (Fig. 4b). The maximum interference is
formed at small values of Doppler shifts (see Fig. 2c).
However, in contrast to the monostatic case, the useful
signal level depends on both the illumination angle and
on the angle of observation, which leads to a nonunifor-
mity of the field of view (Fig. 4b). In the case of small-
angle scattering, where the iceberg is located between
the source and the receiving system, the signal level is
high, so that the iceberg is visible even against the back-
ground of large interference. The spatial distribution of
the signal from the iceberg at small scattering angles is
of the character of a clearly pronounced interference
determined by the scattering pattern of the iceberg,
which manifests itself in an irregularity of the field of
view in the region between the source and the receiver.
The asymmetry of the distribution of interference peaks
that is observed in this region is determined by differ-
ences in the scattering of modes with different numbers
at different angles. Figure 4c shows the field of view in
the case of iceberg observation by a tomographic sys-
tem consisting of two tomographic projections, i.e., the
monostatic and bistatic ones. As follows from calcula-
tion, the resulting field of view, i.e., the region where it
is possible to observe the iceberg, is considerably
greater.

The structure of the field of view depends on the
observation conditions, such as the level and structure
of noise and interference, the waveguide structure, and
the parameters of motion of the observed inhomogene-
ity, which requires the adaptation of the parameters of
the observation system to their variation. This adapta-
tion is performed by the block M4 shown in Fig. 1. Most
frequently, the external boundary of the field of view is
determined by additive noise, while the reverberation
interference from random inhomogeneities in the
waveguide causes a nonuniformity of the field of view
and forms the regions of bad visibility within it. In the
case of variation of the parameters of motion, the trajec-
tory of the observed inhomogeneity, and the wave
parameters, the field of view may noticeably change. In
particular, if the iceberg moves along the track of
bistatic observation, the regions where bottom rever-
beration hinders observation are located at right angles
to the source–receiver line.

SELECTIVE EXCITATION AND RECEPTION 
OF LOW-MODE SIGNALS

An important condition for observation of inhomo-
geneities in a shallow sea by the method of low-mode
pulsed tomography is the selection of mode signals.
When implementing low-mode pulsed tomography in
practice in shallow water, it is impossible to provide for
an ideal selection of waveguide modes, since real radi-
ating and receiving vertically developed arrays always
have finite dimensions. Moreover, array deviations
from the vertical line are possible, for example, because
of the influence of underwater currents, which also
affects their selective properties [8, 9, 11, 12].

To verify the possibilities of selective excitation and
reception of waveguide modes, a corresponding set of
equipment was developed and field experiments were
conducted. A radiating array immersed to a preset
depth from a research vessel provided the opportunity
to emit tone, tone-pulsed, and complex signals with dif-
ferent durations within the frequency range 234–254 Hz.
The distance between single radiators in the array (their
total number was 16) was 3 m. The position of the radi-
ating array was varied depending on the bottom profile.
Two receiving systems were installed at a distance of
1.5 km from each other and operated autonomously.
The distance between the hydrophones of each receiv-
ing array was 3 m, and the total number of hydrophones
in each array was 32. The receiving arrays were held in
a vertical position with the help of an anchor and using
their flotation ability. The depth at the array sites was
125 m. The level of the signals detected by the receiv-
ing arrays in the process of measurements exceeded the
noise level by 60–80 dB. The duration of continuous
reception was over 48 h. The distance between the
source and the receiving systems varied because of the
drift of the research vessel from 1 to 22 km. The
underwater waveguide depth varied along the trajectory
of the vessel motion from 125 to 90 m. A hydrology
close to an isovelocity one was observed in the course
of measurements. When calculating the mode structure,
we adopted the values of the acoustic parameters of the
bottom that were characteristic of the region. Effective
matching of emitted low-frequency signals, which cor-
respond to the waveguide modes, with a waveguide can
be reached by setting the amplitude–phase distribution
of pressure at each receiver. Creating such a distribu-
tion, it is fundamentally important to take into account
the mutual influence of the sources. The preset ampli-
tude–phase distributions were implemented using spe-
cial iteration algorithms [11]. In the process of mea-
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
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surements, the distribution that was uniform over the
aperture and the distributions corresponding to the first
three modes of the waveguide were implemented.

Because of the finiteness of the radiating array aper-
ture, as was indicated before, it is impossible to excite
only one specified mode. The level of “parasitic”
modes in experiments was determined by the ambiguity
in the determination of waveguide parameters and by
uncontrolled changes of the array position because of
rocking, vessel drift, and currents. One can judge the
level of mode selection reached in experiments in the
case of combined operation of radiating and receiving
arrays by the measured mode spectrum given in Fig. 5.

The measurements demonstrate that the vertical dis-
tributions of the acoustic field in both cases are sub-
jected to noticeable time variations caused by the hori-
zontal variability of the parameters of the underwater
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Fig. 5. Mode spectrum of a signal received at a distance of
10 km from a radiating array with a uniform amplitude–
phase distribution; the array is positioned in the depth inter-
val from 44 to 89 m.
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sound channel along the track of signal propagation and
the spatial variations of the radiating array in the pro-
cess of research-vessel motion. As a result of these
effects and also because of the insufficient track length,
it turned out to be impossible to measure with sufficient
accuracy the mode attenuation coefficients and some
other important parameters of the mode content for dif-
ferent regimes of radiation. At the same time, the acous-
tic field power summarized over all hydrophones was a
very stable quantity at the aperture of the receiving
arrays. Figure 6 presents the time variability of the ver-
tical distribution of the field in two radiation regimes.
One can see that this distribution is much more stable in
the course of the array formation.

In free space or deep ocean, the concentration factor
is commonly used as the measure of the array effi-
ciency. In the case of shallow waters, this factor is prac-
tically useless, since a layered bottom and surface
affect the field formation in the far wave zone. It is sug-
gested to use the ratio of total powers at the aperture of
a receiving array covering almost the whole water layer
in the case of the field excitation by an array and a sin-
gle radiator as the measure for the efficiency of a verti-
cal radiating array. Figure 7 shows the dependence of
the total powers on the distance for these two radiation
regimes in decibels relative to the radiation level of
1 µPa at a distance of 1 m. The difference in these values
characterizes the efficiency of an array in a waveguide in
comparison with a single radiator. In the described
experiment, this value was approximately 7 dB, which
agrees well with the calculated data. It corresponds to
the array gain at equal radiated powers of a single radi-
ator and an array of radiators. The real level of array
radiation can be estimated by adding 10  to the
given data, where N is the number of radiators in the
array. Sometimes, the so-called transition distance, i.e.,
the distance, starting from which the spherical law of
field decay changes to a cylindrical one, is used in engi-
neering calculations. To a certain degree by convention,
on the basis of the given experimental data, its value for
a single radiator positioned at the array center and for
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an array with 16 radiators can be estimated as 100 and
20 m, respectively.

The acoustic field fluctuations in the described mea-
surements were caused by several factors. Low-fre-
quency fluctuations with characteristic scales of about
10 min were apparently connected with the instability
of the track length because of the vessel drift. This is
confirmed by a comparison of the spectra of signal fluc-
tuations with the fluctuation spectrum of the track
length obtained from GPS data. Internal waves as a
source of fluctuations can be excluded, since they were
not detected in the accompanying measurements by an
ADCP Doppler acoustic profiler and an STD probe.
The high-frequency fluctuations caused by scattering
from surface waves are of most interest. The peak orig-
inating from signal modulation by surface waves and
fluctuations of the array shape and position is clearly
seen in the measured fluctuation spectra of the signal
(Fig. 8) from a single source. A comparison of the sin-
gle source fluctuations with an array demonstrates that
the level of the spectral components connected with
surface waves in the case of radiation by a vertically
distributed source is 10 dB lower than the levels
observed in the case of sound radiation by a point
source. The major part of the energy of these spectral
components is concentrated in the modes with high
numbers. These results are explained by the fact that a
distributed source almost immediately forms an acous-
tic field within the water layer, and its region of interac-
tion with the surface decreases, whereas, in the case of
a single source, this region is much greater. As a result,
the received reverberation level for a single radiator is
much higher than the reverberation level observed in
the case of radiation by an array of radiators.
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Thanks to the experiments conducted up to now, it
was possible to establish that the focusing of the acous-
tic energy flux with the help of a vertically oriented
array of radiators in the direction of the waveguide axis
reduces the losses connected with the excitation of
high-number modes strongly interacting with the lay-
ered bottom and, therefore, that are characterized by
higher attenuation factors. On account of this effect, in
the measurement conditions, it was possible to obtain a
gain of about 7 dB in the level of the excited field rela-
tive to the case of the field excitation by a single radia-
tor of the same power, which coincides with the theo-
retical estimates obtained earlier. Moreover, it was
experimentally demonstrated that the level of the field
fluctuations in the course of the array operation is much
lower than in the case of the operation of a single radi-
ator. This is caused by the weaker interaction of the
field with the bottom and surface and by the lower sen-
sitivity of the excited low-mode field to variations of
the radiating system due to the rocking of the vessel. It
was also experimentally found that the level of surface
reverberation is more than 10 dB lower in the case of
the use of a radiating array with 16 elements in compar-
ison with the use of a single radiator. Thus, the experi-
mental results on the whole confirm the efficiency of
selective excitation and reception of low-mode pulsed
signals in a shallow sea with the help of vertically
developed antenna arrays and allow us to make a con-
clusion about the possibility of the implementation of
low-mode pulsed tomography for solving practical
problems. At the same time, the necessity of a station-
ary mounting of a radiating array follows from the same
results.

The experimental studies described above demon-
strate that the use of vertical radiating and receiving
arrays for low-mode excitation and reception with a
subsequent spectral–time processing provides an
opportunity to increase the efficiency of tomographic
reconstruction and to perform measurements with a
comparatively small number of spaced sources and
receivers.
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Abstract—A review of research concerned with adaptive noise and vibration control systems and performed under
the supervision of Corresponding Member of the Russian Academy of Sciences V.A. Zverev at Nizhni Novgorod
State University in the 1980s and 1990s is presented. The history of the subject is briefly outlined, and the theoretical
foundations of the design of adaptive active control systems for random wave fields are considered. The main exper-
imental studies performed in this area of research at the Department of Bionics and Statistical Radiophysics of
Nizhni Novgorod State University are described. Promising lines of research in this area are indicated, and exam-
ples of the practical application of adaptive control systems are given. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

This paper is a review of research conducted at the
Radiophysical Faculty of Lobachevski State Univer-
sity, Nizhni Novgorod (NNSU) in the field of adaptive
active noise and vibration control systems within the
last 20 years. The investigations were performed as
research and development works for enterprises and
industrial R&D institutes in close collaboration with
the Institute of Applied Physics, Russian Academy of
Sciences. The supervisor of this work from the Acad-
emy of Sciences was Vitaliœ Anatol’evich Zverev. It can
be unquestionably stated that the emergence of this new
area of research itself is closely associated with the gen-
eral approach to the solution of a variety of problems in
acoustics, optics, and radio physics that Zverev devel-
oped and supported in his publications and reports at
seminars. This approach consists in the development
and application of ideas and methods elaborated in one
branch of radio physics to solving problems that arise
in its other branches. Studies carried out by Zverev [1–
3] are brilliant examples of the efficiency of the mutual
interpenetration of ideas that appeared in radio engi-
neering, optics, and acoustics. We believe that the series
of works reviewed here is an illustration of the applica-
tion of Zverev’s approach.

It should be noted that the development of adaptive
active control systems (AACSs) was preceded by
numerous studies of systems providing for sound and
vibration control in a given spatial region by creating a
canceling field with the help of active radiators without
using the adaptation principle (automatic adjustment of
the suppressing radiators). As long ago as in the early
1970s, a possibility of suppressing wave fields of differ-
ent physical natures by creating a canceling field with
the help of a continuous system of monopole or dipole
radiators, which realize the Huygens surfaces, was the-
oretically shown in [4, 5]. Foundations of the theory
and experiment concerning nonadaptive systems for the
1063-7710/05/5102- $26.00 0195
active control of wave fields were laid in 1971–1982 by
G.D. Malyuzhinets, M.V. Fedoryuk, B.D. Tartakovskiœ,
A.A. Mazannikov, V.V. Tyutekin, M. Jessel, G. Man-
giante, and other researchers in Russia and abroad [6–
14]. The fullest list of publications related to this sub-
ject for the period up to 1982 inclusive is given in [15].

However, the practical implementation of the active
sound and vibration control technique proved to be
rather difficult. Particularly, real active suppression sys-
tems encountered computational difficulties in the cal-
culation of Green’s operator and in its optimal approx-
imation by discrete radiators [7, 8]. Also, even the first
experiments on active sound control in waveguides [9,
10, 13] showed that the system that controls the cancel-
ing radiators must be tuned to a very high accuracy. To
overcome these difficulties, an adaptive (self-tuning)
active wave control system was proposed. This system
operates as follows: the adaptive system collects infor-
mation from sensors of the primary and residual fields
and uses it to control the characteristics of the radiators
so as to minimize the average power of the residual
field.

BASICS OF THE THEORY OF ADAPTIVE 
CONTROL OF RANDOM WAVE FIELDS

The first publications on AACSs were those by
J.C. Burgess [16], S.N. Arzamasov, A.N. Malakhov,
A.A. Mal’tsev, and I.E. Pozumentov [17–19], which
actually appeared at the same time in 1981 and 1982.
The first of the cited papers [16] considered the sim-
plest adaptive canceller containing one active element
for solving the one-dimensional sound control problem
in a single-mode waveguide. This scheme may be
regarded as a straightforward development of the con-
cept of adaptive filters and adaptive cancellers, which
was successfully implemented in radar in the late
1960s and early 1970s. For the sake of comparison,
© 2005 Pleiades Publishing, Inc.
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Fig. 2. (a) Adaptive antenna array, which operates by the minimal root-mean-square error criterion, and (b) multidimensional adap-
tive wave field control system, which operates by the criterion of the minimizing the root-mean-square residual field at several test
points.
Fig. 1 shows a structural diagram of adaptive systems
used to cancel interference in radar (Fig. 1a) and to sup-
press a single-mode acoustic field in a waveguide
(Fig. 1b). The similarity of these schemes is evident.
Their main physical difference is that the radar cancel-
ler eliminates interference in the electric circuit (in a
wire), while the acoustic adaptive canceller must sup-
press the field in a certain nonzero region in space (in
this example, in the right-hand part of the waveguide).

Adaptive Suppression 
of Narrowband Random Wave Fields

A more general problem of developing multidimen-
sional AACSs that cancel sound in space and multi-
mode waveguides was considered in [17–19]. In this
formulation, the problem can be regarded as a general-
ization of the structural scheme of an adaptive antenna
array to the cancellation of wave fields in space. Since
the early 1980s, adaptive arrays have been widely used
for spatial signal processing in radar and communica-
tions. For the sake of comparison, Fig. 2 shows struc-
tural diagrams of signal processing in a narrowband
adaptive array, which operates by the minimum root-
mean-square (rms) criterion, and in a narrowband
AACS that suppresses acoustic field in space. The nar-
rowband antenna array processes signals produced by

field sensors by multiplying them by a vector  of
weighting coefficients and then summing the results so
as to minimize the rms error between the adaptive array
output and the required (training) signal. As shown in
Fig. 2b, the main elements of the AACS are the sensors
(monopoles and dipoles) of the primary field at L points
on the surface S1, M control radiators (monopoles and
dipoles) on the surface S2 characterized by their inten-

sity vector , and Q sensors (monopoles and

dipoles) of the residual field  on the surface S3.
Based on the information collected by the primary field
sensors, the adaptive system adjusts the complex
weights (entries of the M × L matrix W) so as to mini-
mize the total power (a sum of mean squares) of the
residual field at the points where the secondary mea-
surements are taken.

It can also be seen from the structural diagrams
shown in Fig. 2 that, apart from the evident increase in
dimension (the number of controlled weights and feed-
back circuits), the AACS differs from the adaptive array

W

F t( )

E t( )
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Comparison of formulas that describe narrowband adaptive arrays and AACSs
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in that it possesses the following fundamentally new
features: it contains a signal transformation (described
by the Green’s function matrix G) on the path between
the suppressing radiators and residual field sensors, and
wave feedback (described by the Green’s function
matrix GFB) is possible between the canceling radiators
and sensors of the primary field. Due to the wave feed-

back, the vector (t) = {V1(t), V2(t), …, VL(t)}T of sig-
nals produced by the primary field sensors (for the nar-
rowband system, all signals are represented by their
complex amplitudes) is actually a superposition of the
signal produced by the primary field and the feedback
signals produced by the canceling radiators. Thus, in
the presence of the wave feedback, adaptive algorithms
used in active control systems and the optimal weights
W, which minimize the total power of the residual field,
depend on elements of the Green’s matrices G and GFB.
It is of interest to compare the main analytic expres-
sions that describe operation of narrowband adaptive
arrays and AACSs presented in the table.

These expressions use the following designations:

E( ) ≡ Eq(t) is the residual (total) field or its derivative

at the sites of secondary sensors ; Wml is the weight
(element of matrix W), which determines the contribu-
tion of the total signal Vl(t) produced by the lth primary
field sensor to the signal of the mth canceling radiator;
γ is a constant factor, which determines the conver-

gence rate of the gradient adaptive algorithm;  is
vector of cross-correlation coefficients between the pri-

mary wave field (t) and the required signal d(t); PV is
the cross-correlation matrix between the primary ran-

VΣ

rq

rq

PVq

V
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dom fields at the sites of the primary and secondary
(monitor) sensors; and R is the correlation matrix
between the random fields at the sites of the primary
sensors. The remaining designations are clear from the
structural diagrams shown in Fig. 2. The analytical
expressions demonstrate a close similarity of the adap-
tive array and AACS theories. For example, Fig. 3 com-
pares the block diagrams that implement the gradient
algorithm that tunes one weight of the adaptive array to
that for the AACS. Note that, unlike the adaptive array,
to provide stability of the narrowband AACS, the feed-
back circuit between each qth residual field sensor and
the control circuit of each mth canceling radiator must
contain a correction filter . It can easily be seen that
this filter compensates for phase advances of the waves
traveling from the mth canceling radiator to the qth con-
trol receiver, thereby providing for the stability of the
multidimensional control system as a whole. It is clear
that, in the narrowband AACS, the correction filters can
easily be realized with the help of phase shifters and
amplifiers.

Papers [17–19] were the first to report fundamental
theoretical results on the narrowband AACSs. Adaptive
algorithms for tuning the weights were derived, stabil-
ity conditions were studied, and analytical expressions
for the optimal weights were obtained. It was shown
that the wave feedback reduces the convergence rate of
the adaptive algorithms and may cause the system as a
whole to lose its stability. However, operating by the
criterion of the minimum power of the residual field at
the sites of the secondary sensors, the AACS automati-
cally accounts for the wave feedback and, with the sta-
bility condition of the adaptive algorithm being satis-

Gqm*
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fied, the average total power of the residual field is inde-
pendent of the wave feedback.

The analytical results have shown that all averaged
AACS characteristics can be expressed through auto-
and cross-correlation matrices of the primary field and
through the Green’s function matrices. Thus, it became
possible to analytically study the characteristics of the
AACSs in a number of model theoretical problems. Let
us illustrate this by two classical theoretical problems.

Cancellation of a Plane Wave Transmitted 
through a Chaotic Screen [17]

Consider a two-dimensional problem of the active
cancellation of random waves behind an infinite cha-
otic planar screen. Let a monochromatic plane wave
p(x, z, t) = expj(kz – ω0t), z < 0 (see Fig. 4) be normally
incident on a screen lying in the plane z = 0. Let an

.

.

.

.

.

x

z0 z

d 0
D

A

0

Fig. 4. Arrangement of elements of the AACS for suppress-
ing the plane wave transmitted through an infinite chaotic
screen: primary field sensors (open circles), canceling
dipole radiators (closed figure-eight-shaped symbols), and
monopole monitor receivers (open circles with dots).
active sound control system be used to cancel the ran-
dom narrowband field p(x, z, t) = P(x, z)exp(–jω0t),
which is modulated by the screen, in the half-space
z > 0. Let the primary sensors (monopoles) be arranged
uniformly, at a distance d0 from each other, in the plane
z = 0 just behind the screen and measure the modulated
field p(x, 0, t) at L points. To eliminate the wave feed-
back, the canceling radiators (dipoles) are also placed
in the plane z = 0 at M points, and Q secondary sensors
(monopoles) of the residual field are located in the far-
field zone in the plane z = z0. We assume that the chaotic
screen does not affect the field produced by the cancel-
ing radiators in the region z > 0. For the sake of definite-
ness, let the number of radiators be equal to the number
of secondary sensors: M = Q. To obtain analytical
expressions and numerically estimate the efficiency of
the AACS, assume that the random field in the plane
z = 0 (just behind the chaotic screen) is stationary, sta-
tistically homogeneous, and zero-mean 〈P(x, 0)〉  = 0,
and that its spatial correlation function is exponential:

(1)

where  = 〈|P(x, 0)|2〉  is the variance and lp is the cor-
relation radius of the boundary field behind the chaotic
screen. In the case of the large-scale boundary field
inhomogeneity (klp @ 1), which is most interesting for
applications, expressions for the spatial correlation
matrix of the initial field R and the cross-correlation
matrix PV can easily be found. This allows us to derive
analytical expressions for the matrix Wopt of optimal
weights, to find the minimum value of the perfor-
mance criterion functional J(Wopt) and the residual
power of the random field at the sites of the monitor
sensors, and, thus, to perform a complete analysis of
this model problem.

Ψp x1 x2 0 0, , ,( )

=  P x1 0,( )P* x2 0,( )〈 〉 σ p
2 e

x1 x2– /lp–
,=

σp
2
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For example, consider the structure of the residual
field in the simplest case, when the system consists of a
large number of primary sensors arranged in a uniform
array of elements spaced a sufficiently small distance
apart (d/lp ! 1), one canceling radiator at the point with
the coordinate x1, and one secondary sensor at the point
with the coordinate x2. Figure 5 shows the theoretical

relative power of the residual field 〈|E(x)|2〉/  in the
plane z = z0 versus the transverse coordinate x for two
relative positions of the secondary sensor placed at the
point (x2, z0) and the canceling radiator placed at the
point (x1, 0). As follows from this plot, the power at the
site of the secondary sensor is always zero in this
approximation, and the maximum cancellation region
(about 2lp long) occurs when the radiator is exactly
opposite to the monitor receiver (x1 = x2). When |x2 – x1| >
λ0z0/(4lp), intensity oscillations are observed in the
residual field, which, presumably, are due to the inter-
ference between the spherical wave of the suppressing
radiator and the quasi-plane wave of the random field.
It is clear that, at long distances |x – x2| @ lp from the
monitor sensor, the field of the suppressing radiator and
the primary field are incoherently combined and, as one
would expect, the total field intensity is twice as high.

This example thus shows that, to efficiently cancel
the random field with the help of an active array of
adaptively controlled radiators, it is necessary that peri-
ods of arrays of the primary and secondary sensors be
smaller than the transverse correlation radius lp of the
primary random wave. If the sensors (primary and sec-
ondary) and canceling radiators are sufficiently dense,
a shadow region is formed behind the active array of
radiators (in the far zone with respect to lp), whose
boundaries for different suppression levels are shown in
Fig. 6 as a function of dimensionless parameter χ–1 =
2z0/(klpD), which is proportional to the distance z0
between the plane of the canceling radiators and the
secondary sensors.

Cancellation of the Random Wave Field 
behind a Slot in a Planar Screen [20]

Let a plane wave with the random complex ampli-
tude P(x, z) be incident in the two-dimensional space
(x, z) from the region z < 0 onto an infinite rigid screen
lying in the plane z = 0 and containing a slot (|x| ≤ a/2),
as shown in Fig. 7. Let us specify the field and its deriv-
ative ∂P(x, z)/∂z in the plane z = 0 behind the screen in
terms of Kirchhoff’s approximation. It is necessary to
cancel the diffraction field Pd(x, z) at z > 0. To this end,
we place L primary dipole receivers oriented along the
z axis, which measure the normal derivative ∂P(x, z)/∂z.
Let us relate the intensity vector F = {F1, …, FM}T of
the canceling dipole radiators also placed in the plane
of the slot z = 0 to the readings of the primary sensors
through the matrix W of adaptive weights (see Fig. 2b).
Applying the technique of calculating the optimal

σp
2
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Fig. 5. Power of the residual field near the monitor receiver
located at the point (x2, z0) when the system contains one
suppressing radiator located at the point (x1, 0): (1) (x2 – x1) =
3z0λ/4lp and (2) x2 = x1.
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shaped symbols), canceling monopole radiators (closed cir-
cles), and monopole monitor receivers (open circles with
dots).
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weighting coefficients and the average power of the
residual field described above, we can analytically
study the characteristics of the AACS in this model
problem with any parameters of the random wave inci-
dent on the slot and with a different number of elements
in the active system.

To illustrate how the degree of canceling the diffrac-
tion field depends on the accuracy to which the spatial
structure of a weakly coherent incident wave is mea-
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Fig. 8. Power of the (1) diffraction and (2–6) residual fields
behind a slot in a rigid screen versus angle θ for a weakly
coherent incident wave (lp = 0.5a, M = Q = 6, L' =3, 5, 7, 9,
and 11).
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Fig. 9. Angular power spectra of the (1) diffraction and
(2, 3) residual fields versus the arrangement of the sec-
ondary sensors at a high coherence of the incident wave
(lp = 103a, M = Q = 6, L' = 5).
sured, Fig. 8 represents the power of the diffraction and
residual fields with the number of primary sensors as a
parameter (the power of the diffraction field on the z
axis is taken as reference). The secondary sensor posi-
tions were specified by the sine of angle θ and are indi-
cated on the abscissa axis by open triangles. The posi-
tions and number of the canceling radiators and second-
ary sensors were fixed (M = Q = 6). A comparison of
curves 2–6 shows that the residual field power
decreases with an increasing number of primary sensors
(and correspondingly decreasing spacing d0 between
them). However, even detailed measurements of the spa-
tial structure of a weakly coherent incident wave (d0/lp =
0.18, curve 6) do not reduce the residual field power in
the shadow region |sinθ| ≤ 0.15 below –23 dB.

Figure 9 shows the power of the diffraction and
residual fields at lp/a = 103 with the number of radiators
equal to the number of secondary sources (M = Q = 6).
It can be seen that, due to the high spatial coherence of
the primary field, the cancellation of the diffraction
field in this case is more efficient. Towards the second-
ary sensors, the residual field power decreases by 52 dB.
However, when the secondary sensors are widely
spaced (curve 2; all six sensors are in the sector of the
main lobe and first side lobes of the angular spectrum
of the diffraction field), interference maxima appear
between them. To reduce the amplitude of these max-
ima and to create a region of deep shadow (of about
–52 dB) over the entire angular sector, the secondary
sensors should be placed closer (curve 3; all sensors are
in the sector of the main lobe of the diffraction field) or
both their number and the number of suppressing radi-
ators should be increased.

The examples presented above show the efficiency
of applying the analytical formalism developed in
[17–22] to the analysis of main characteristics of adap-
tive active systems that cancel random fields. It is well
known that direct numerical investigation of solutions
to such problems, for example, by the finite element
method, requires much computational effort and long
processor time.

Adaptive Control of Broadband Wave Fields:
Space- and Time-Domain Adaptation [23]

In problems of the active control of broadband ran-
dom fields in waveguides, it is necessary to model
Green’s function in both space and time (frequency)
domains. One of the methods for approximating the
required transfer functions relies on transversal filters.
An algorithm based on a multidimensional transversal
filter was derived, and characteristics of a broadband
adaptive active control system for broadband random
wave fields were studied in [23].

Let sources of a broadband random field p( , t) be
located in a finite space region. Let it be necessary to

suppress the primary field p( , t) in a certain region

r

r
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Fig. 10. Block diagram of a tuning circuit of one weighting coefficient of a broadband AACS (preemphasis filters are on the left in
the circuits of signals picked up from the primary sensors).
outside a closed surface that includes the sources. To do
this, let us use the active control system, the arrange-
ment of the elements of which is illustrated in Fig. 2b.
The surface S1 carries L monopole and dipole sensors of
the primary field, and M monopole and dipole can-
celing radiators lie on the surface S2. The residual
field is measured on the surface S3 by Q monopole
and dipole sensors. All elements of the active control
system are assumed to be broadband and perfectly
transparent.

Let the broadband device that controls the canceling
radiators be an N-stage multidimensional transversal
filter, whose inputs are the signals produced by the pri-
mary field sensors and whose output signals control the
canceling radiators. The structure of the device that
controls the weights of this transversal filter can be
derived by an element-by-element analysis of the
matrix gradient adaptive algorithm. A block diagram of
the device that tunes one weight of the matrix adaptive
filter is shown in Fig. 10. Note that signals produced by
the sensors and radiators of the broadband active con-
trol system (output v l(t) of the lth primary field sensor,
output fm(t) of the mth canceling radiator, and output
eq(t) of the qth monitor sensor of the residual field) are
real. As shown in Fig. 10, the weight Wlmn (in the
nth tap of the transversal filter that links the lth pri-
mary field sensor to the mth canceling radiator) is pro-
portional to the current estimate of the cross-correla-
tion function between signals produced by the moni-
tor sensors and primary field sensors, which are
preprocessed by linear preemphasis filters. The
impulse-response functions Gqm(t, t') of these filters
are equal to the Green’s functions of the wave equa-
tion at the corresponding points of the surfaces S2 and
S3. The purpose of the preemphasis filters is to trans-
form the outputs of the primary field sensors so as to
increase their correlation with the corresponding com-
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
ponents of the error signal eq(t) and to provide for the
stability of the system as a whole.

It is of interest to compare the block diagrams of the
weight-control circuits of the narrowband and broad-
band systems (see Figs. 3b and 10). It can be seen that
a significant difference between the narrowband and
broadband systems is that the broadband system uses
preemphasis filters in the circuits of primary field sen-
sors instead of correction filters (phase shifters) in cir-
cuits of the monitor sensors. As a result, the complica-
tion of the control system is not simple (about N/2-fold,
taking into account that weights of the narrowband sys-
tem are complex) but rather more complex, because
each real weight Wlmn is now not produced by one mul-
tiplier but rather represents a sum of outputs of Q mul-
tipliers. Thus, for narrowband fields, when the lag of
the envelope of the narrowband signal traveling along
the path from a canceling radiator to a control sensor
can be neglected, the structure of the adaptive control
system can be significantly simplified (in terms of the
number of multipliers).

Note that, to implement the gradient adaptive con-
trol algorithms, one must specify the elements of the
Green’s matrix Gqm or Gqm(t, t') (see Figs. 3b and 10) as
a priori information about the propagation medium.
When the relative positions of canceling radiators and
monitor sensors are fixed and the characteristics of the
medium do not change, the elements of the Green’s
matrix can be calculated beforehand or measured
experimentally and subsequently used to tune the pre-
emphasis or correction filters. If the functions Gqm or
Gqm(t, t') are unknown or slowly change with time, one
can use more complex identification adaptive algo-
rithms or search gradient algorithms instead of the gra-
dient algorithms described by the above block dia-
grams. The search gradient algorithms use the system
that controls the canceling radiators to directly estimate
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Fig. 11. Acoustic pressure amplitude distribution along the tank axis: (1) primary field, (2) residual field with one monitor sensor,
and (3) residual field with four monitor sensors.
the gradient of the goal function through incrementing
the weights and measuring the residual field power
[24]. Apart from fluctuations in the weighting coeffi-
cients and search oscillations, the analysis of AACSs
that employ the usual and search adaptive gradient
algorithms is completely the same.

It should be noted that results concerning the theory
of adaptive random wave field control systems obtained
in [17–23] were later repeated in a number of works
abroad. Among these, we should primarily mention
paper [25], in which the adaptive algorithm for tuning a
multielement active sound and vibration control system
was derived for the second time. After this paper, a
great number of publications on the application of
adaptive methods to this problem were published. For
example, the fullest Guicking’s (1995) reference bibli-
ography of foreign works on the active control included
more than 2000 entries [26].

EXPERIMENTAL INVESTIGATIONS
OF ADAPTIVE ACTIVE WAVE FIELD 

AND VIBRATION CONTROL SYSTEMS

Adaptive System for the Active Control 
of a Single-Mode Narrowband Acoustic Field 

in a Rectangular Tank

The first adaptive active acoustic control system was
intended for laboratory studies of the tuning algorithms
and to refine the physical model of processes that
evolve therein [27]. The experiment used a tank made
of organic glass with 11-mm-thick side walls, a
30-mm-thick bottom, and 118 × 30 × 29 cm inner
dimensions; the tank was filled with water to a depth of
16 cm. Piezoceramic radiators and sensors were placed
along the axis near the bottom: the source field radiator
(a 100-mm diameter disk), canceling radiator (a 50-mm
sphere), four residual field monitor sensors (cylinders
30 mm in diameter and 25 mm high), and a monitor
hydrophone (a cylinder 5 mm in diameter and 7 mm
high) for measuring the spatial field structure in the
tank. The control signal for the canceling radiator was
synthesized in the adaptive control unit from signals
produced by the four monitor sensors and a harmonic
reference signal. The experiment studied the cancella-
tion of harmonic and narrowband noise signals in a fre-
quency band about 100 Hz wide (between 3-dB points).
As an example, Fig. 11 shows the pressure amplitude
measured along the tank axis at a depth of 14 cm:
(1) primary field, (2) residual field obtained using one
(the rightmost) monitor sensor, and (3) residual field
obtained using all four monitor sensors. The arrange-
ment of the radiators and monitor sensors on the z axis
is shown schematically. The plots show that, when the
control system is on, the field in the cancellation region
(behind the canceling radiator) sharply (by 15 to 20 dB)
falls off; the amplitude of the standing wave in the
region between the source and canceling radiators
changes little, but its zeroes and maxima are shifted;
and a deep minimum appears in the residual field near
the canceling radiator. The changes in the spatial phase
structure of the standing wave observed in the region
between the radiators allow us to regard the canceling
monopole radiator used in this experiment as an equiv-
alent soft wall. A comparison of curves 2 and 3 shows
that an increase in the number of monitor sensors (from
one to four) makes the residual field smoother and
slightly reduced. On the whole, it should be noted that
the use of several residual field monitor sensors placed
at various points of the cancellation region improved
the stability of the AACS and rendered it actually insen-
sitive to positions of the monitor sensors. In contrast,
with one monitor sensor placed near a minimum of the
primary standing wave, the degree of field cancellation
is significantly lower due to the lower correlation feed-
back factor and signal-to-noise ratio. One should also
note that the results of these experiments were actually
independent of the type of the radiators and sensors.
With one suppressing radiator and one monitor sensor,
the adaptive control system canceled the field at the site
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
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Fig. 12. Block diagram of an experimental setup for studying the possibility of active suppression of intense acoustic radiation by
a system of light acoustic radiators.
of the monitor sensor very well. In particular, the signal
from the monitor sensor placed near a maximum of the
primary field decreased by 45−50 dB when the control
system was switched on. We also studied the suppres-
sion factor at the site of the monitor sensor as a function
of frequency and parameters of the adaptive system for
frequency-modulated and narrowband noise acoustic
fields in both off line and on line modes of operation.

Adaptive Active Control System
for a Two-Mode Acoustic Field in a Closed Air Space

To study the possibility of the active control of
intense acoustic fields with the use of adaptive systems,
a special experimental setup was developed [28]. This
setup made it possible to experimentally study the can-
cellation of a two-mode two-frequency acoustic field
by a system of light active radiators. A general block
diagram of the experimental setup is presented in
Fig. 12. The acoustic resonator consisted of two sections:
free-propagation region (4) and cancellation region (6).
The source of primary field (3) was placed at the end of
the free propagation region (4). We used nine canceling
radiators 5: one central radiator and eight small-size
radiators combined into a circular array necessary for
suppressing high-frequency modes with a complex
transverse structure. Four monitor sensors (7) were
placed in the cancellation region. The radiator was fed
by a superposition of two harmonic signals at frequen-
cies f1 and f2 produced by signal source (8); these sig-
nals were also used as reference ones. The adaptive pro-
cessor (1) assembled from analog multipliers and
adders was used to control three pairs of quadrature cir-
cuits of the adaptive gradient algorithm. Two pairs of
the circuits fed the central loudspeaker with two refer-
ence signals at the frequencies f1 and f2. One pair of the
circuits independently controlled the circular array at
the frequency f2. Three monitor sensors were placed in
the cancellation region. The effective acoustic pressure
measured along the axis in the cancellation region is
shown in Fig. 13. The experiments showed that an
increase in the number of degrees of freedom of the
adaptive active control system makes it possible to vir-
tually independently and simultaneously cancel two
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
modes at two different frequencies. The cancellation
efficiency was approximately the same as that obtained
for each mode separately.

Adaptive Control System 
with an Additional Identification Channel

As we noted above, the preemphasis filters in an
AACS with the gradient algorithm must preliminarily
be tuned in accordance with values of the Green’s func-
tion of the wave equation at the sites of the canceling
radiators and residual field monitor sensors. If charac-
teristics of the acoustic channels vary in time over a
wide range, stable operation of the AACS may only be
provided for with the use of a completely adaptive con-
trol system with an additional identification unit [29–
31]. Figure 14 shows an experimental setup that studies

0 50

103

|P|, mV
(a)

0

400

50
x, Òm

1 3
2

(b)

Fig. 13. Acoustic pressure amplitude distribution of a two-
mode field (at frequencies of 1020 and 2820 Hz) along the
axis of an acoustic resonator: (a) primary two-mode field
and (b) the residual field with the control system switched on
((1) total two-frequency residual field, (2) 1020-Hz residual
field component, and (3) 2820-Hz residual field component;
on the average, the field is suppressed by 17 dB).



204 MAL’TSEV et al.
Source of the primary
acoustic field

Source
of the reference

signal 
of the cancellation

channel 

Source
of the harmonic

signal 
of the identification

Source of the frequency
modulated signal 

of the identification channel

Preemphasis
filter

Adaptive
identification unit

Adaptive controller
of the canceling radiator

Controlled
phase shifter

+

–

+

+

Σ

Σ

Fig. 14. Block diagram of an adaptive control system with an additional identification channel for suppressing narrowband acoustic
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channel
the characteristics of such a completely adaptive nar-
rowband AACS. The narrowband AACS consisted of
one canceling radiator and one residual field monitor
sensor placed in a pipe 2.5 m long with an inner diam-
eter of 45 mm. The end source radiator was fed with the
help of a narrowband (1.5%) noise generator. The
nonstationary behavior of the acoustic channel
(Green’s function) between the canceling radiator and
monitor sensor was simulated by a variable phase
shifter. The entire electronic control system was built
around a TMS320C26 signal processor and contained
an adaptive control unit for the canceling radiator
(with the reference-signal generator of the cancella-
tion channel and the preemphasis filter) and adaptive
identification unit with the reference-signal generator
of the identification channel. The adaptive unit that
controlled the canceling radiator formed the signal
through the quadrature weighting of the harmonic ref-
erence signal at a frequency equal to the average fre-
quency of the primary acoustic field. To determine the
characteristics of the acoustic-signal propagation
channel, a small identification signal (harmonic or
phase-shift keyed) was additively applied to the can-
celing radiator. The active control system was capable
of achieving a general field cancellation ratio of about
12 dB; the identification channel was fast enough to
follow phase variations in the acoustic channel at a
rate of about 6 deg/s without disrupting stable opera-
tion of the system as a whole.

Adaptive System of Control 
over Boundary Conditions in a Waveguide

Reflection of the hydroacoustic wave from the
active boundary at the end of the waveguide was stud-
ied experimentally in [32]. These studies were used to
develop an adaptive active control system over bound-
ary conditions that employed a search gradient tuning
algorithm. The experiments were performed in water-
filled duraluminum pipe with a length l = 2.2 m, an
external diameter D = 50 mm, and a wall thickness d =
6 mm. As the canceling radiators (used to realize the
specified boundary conditions), the system used spe-
cially designed acoustically transparent electronic radi-
ators. The signals induced by the incident and reflected
waves were separated by digitally processing the sig-
nals picked up from two spaced monitor transducers.
The adaptive system that controlled the canceling radi-
ators allowed the system to realize the specified bound-
ary conditions (matched, compliant, or rigid bound-
aries) in the presence of a passive boundary with an
arbitrary reflection coefficient slowly varying in time.
The tuning accuracy achieved in the experiments was
20 to 25 dB relative to the initial value of the parameter
being minimized at a tuning time of 0.5 to 1.5 s.

Active Control of a Broadband Acoustic Field Produced 
by a Turbulent Jet

In 1991–1993, a series of studies [33–35] on the
cancellation of a random broadband acoustic field pro-
duced by a turbulent jet in a pipe with unmatched ends
were performed at the Department of Statistical Radio-
physics of NNSU and experiments were conducted
under conditions close to the field conditions. The
major part of the hydroacoustic noise was above the
critical frequency, and only the waves with a homoge-
neous cross-sectional structure could be excited in the
pipe. A block diagram of the experimental setup is
shown in Fig. 15. The pipe was made of stainless steel,
had an inner diameter of 100 mm, was 4.7 m long, and
was filled with water. The water jet was fed into the
pipe by a centrifugal pump through a nozzle mounted
on the left end flange. The adaptive control system con-
sisted of two primary field sensors, two canceling radi-
ators, two residual field monitor sensors, wave selectors
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
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(WSs), and a wave former (WF), which were capable of
receiving and exciting unidirectional hydroacoustic
waves. The systems of receivers and radiators together
with the WSs and WF provided for the cancellation
(isolation) of waves traveling in the opposite direction
by 20 dB in the frequency range from 700 to 2000 Hz.
The control signal for the canceling radiators was
synthesized by a digital adaptive transversal filter
with 32 variable coefficients built around a digital sig-
nal processor. The system’s efficiency criterion was
the power of the residual wave traveling from left to
right in the right-hand part of the pipe behind the can-
celing radiators. The system was tuned by the search
gradient algorithm, and, therefore, it was not neces-
sary to additionally identify the signal-propagation
channels. Parameters of the adaptive algorithm were
optimal in terms of stability, convergence rate, and
cancellation efficiency. Characteristics of the adaptive
hydroacoustic noise canceling system were studied in
the most efficient design version with unidirectional
reception and unidirectional radiation (from left to
right) of the canceling wave. Figure 16 shows typical
power spectrum densities of the primary (curve 1) and
residual (curve 2) fields in the right-hand part of the
pipe. The highest cancellation ratio, about 10 to 25 dB,
was achieved over the frequency range from 850 to
2200 Hz. The lower cancellation at the ends of the fre-
quency range is apparently due to the action of inho-
mogeneous waves on the primary field sensors (at
lower frequencies) and due to the degradation of the
WS and WF characteristics outside the range 700–
2000 Hz. The integral cancellation ratio of the broad-
band hydroacoustic noise in the frequency band from
500 to 2500 Hz was 12 to 14 dB.

Adaptive Active Vibration Canceling Systems

Along with research into the active acoustic field
cancellation, model experiments were also performed
on the active suppression of vibrations in various mech-
anisms. As the active elements (canceling radiators),
these experiments used controlled vibrators (linear
motors).

One of these model problems was formulated as
cancellation of the field produced by a ship due to low-
frequency vibrations of its mechanisms. A block dia-
gram of such a system is shown in Fig. 17. The system
has no primary field sensors, because the primary
vibration signal is a combination of harmonic signals
whose frequencies can be directly measured. The sec-
ondary sensors were vibration detectors placed on the
ship’s hull. As the canceling radiators, the system used
12 active vibrators with inertial masses: three vibrators
for each of the four passive supports to cancel their
vibrations in three perpendicular directions. In this lab-
oratory prototype, harmonic vibrations were canceled
with a ratio of about 20 to 30 dB.

Another problem was to reduce the effect of vibra-
tions produced by the base (ship’s hull) on precision
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
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Fig. 15. Block diagram of an experimental setup for the
active cancellation of broadband acoustic fields produced
by a turbulent jet (WS is the traveling wave selector and WF
is the unidirectional wave former).
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Fig. 16. Power spectrum density of (1) the primary hydroa-
coustic field and (2) the residual field. The Reynolds num-
ber is above the critical value (Re ≅  5000). The average
cancellation ratio within the frequency range from 500 to
2500 Hz is 12 to 14 dB.
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Fig. 17. Block diagram of a prototype canceller of a narrow-
band vibration field (at a frequency of about 100 Hz) with
an independent harmonic reference signal (12 active vibra-
tors with inertial masses and 9 residual field monitor sen-
sors; the field cancellation ratio is 20 to 40 dB).
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Ŝ z( )

F̂ z( )

Fig. 18. Block diagram of an active canceling system that protects the inner container from vibrations of the base.
mechanical and electronic devices [36]. In this case, the
active elements were linear motors, which allowed the
system to eliminate low-frequency resonances in all
possible degrees of freedom. A block diagram of the
active vibration control system used to suppress the
vibrations in one degree of freedom is shown in Fig. 18.
For the sake of comparison, Fig. 19 shows the transfer
functions of the vibration control system that uses
purely passive elements and of the active canceling
system.

The reader interested in the experimental works on
these problems conducted abroad in the 1980s in paral-
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Fig. 19. Transfer functions of the active and passive cancel-
ing systems.
lel to our works should be referred to the review [37]
published in 1990.

CONCLUSIONS

Research performed in the 1980s and 1990s showed
that modern computers possess enough computational
power to allow for the design of adaptive active systems
for canceling and suppressing narrowband multimode
acoustic and vibration fields of a complex spatial struc-
ture or broadband fields of a sufficiently simple spatial
structure (for example, a single-mode wave in a pipe).
An active planar control system operating on the basis
of the extraction and cancellation of particular spatial
acoustic modes was developed theoretically in [38–40].
A prototype of this system was built and successfully
tested in canceling two horizontal harmonics in a
hydroacoustic tank [41]. However, the realization of
adaptive control systems for broadband fields of a com-
plex spatial structure described by the above block dia-
grams is difficult because of the complexity of the sen-
sor–radiator system and due to the very high processor
burden imposed by the adaptive control algorithms.
Therefore, presently, one of the most promising
research directions is the development of so-called
local adaptive active control systems, which combine a
sensor and a radiator in one element (whose size is
about a wavelength), so as to actively absorb the inci-
dent waves [42].

Experiments on the active control of the surface
acoustic impedance with the help of tile like active ele-
ments were performed at one of the US Navy laborato-
ries [43]. Each such tile consisted of several layers,
which included a piezoelectric radiating transducer and
a piezoelectric pressure sensor, and was supplied with
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
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an integrated surface velocity meter. Tests of this sys-
tem showed that a two-dimensional array of such active
elements is capable of controlling the surface imped-
ance in a frequency band from 0.5 to 3.5 kHz.

Theoretical and experimental research into the
development of thin (in terms of the incident wave-
length) active absorbing coatings based on nonresonant
parametric microstructures has been carried out in
recent years [44–46]. This approach does not measure
the parameters of the wave field being absorbed but
transforms its energy into high-frequency oscillations
of the active microstructure.

A challenging and rapidly developing area of
research is the use of adaptive active vibration control
systems for protecting the variety of electronic equip-
ment deployed on ships and other vehicles and sub-
jected to high vibrations and shocks. This idea has
recently been embodied in the development of dedi-
cated protective racks for computers and other radio
electronic devices that do not comply with special
requirements in terms of vibrations and shocks. In spite
of their rather high cost, the cost efficiency of these pro-
tective racks is very high, because they allow for multi-
ple updates of the equipment and eliminate the neces-
sity of developing expensive electronic devices consis-
tent with special requirements. Realizations of these
protective racks based only on passive insulators are
vulnerable to unwanted low-frequency resonances and
suffer from large shock displacements. Therefore, mod-
ern designs usually combine active and passive vibra-
tion control elements.
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Abstract—On the basis of a numerical solution to the equation of radial oscillations of a gas bubble in a liquid,
the abilities of nonlinear acoustic methods in detecting gas bubbles in biological tissues with the use of pulsed
acoustic location are analyzed. It is demonstrated that, with moderate amplitudes of the probing signal, it is pos-
sible to detect bubbles whose size is close to resonance. An improved version of the method of paired pulses is
proposed, along with a method for detecting the bubbles and measuring their dimensions on the basis of a non-
linear excitation of their natural oscillations. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

The problem of detecting gas bubbles and measur-
ing their concentration and dimensions in blood and in
biological tissues is important for aviation and space
medicine, for ensuring the safety of underwater and
pneumatic works, and also for other human activities
under extreme conditions, where a working individual
is subjected to strong variations in the external pres-
sure. The detection of gas bubbles in human biological
tissues at the stage of their nucleation is important
from the point of view of investigating the mecha-
nisms of their formation, as well as for predicting the
risk of the decompression disease. Lately, interest has
been generated in the employment of contrasts in
ultrasonic testing. The basis for these contrasts is par-
ticles containing gas bubbles. Another important
problem is the monitoring of the nucleation of cavita-
tion bubbles under the effect of intense ultrasonic
radiation on biological tissues.

At the same time, the common linear acoustic tech-
niques for bubble detection are efficient only in the case
of the location of moving bubbles by the Doppler method
[1, 2] or the echolocation of very large bubbles with scat-
tering cross sections sufficiently large to insure their
selection against the background of biological tissue lay-
ers [3, 4].

One of the problems to be solved is the detection
and localization of bubbles with a wide range of radii
(1–100 µm). The resonance frequencies for the bub-
bles in the upper part of this range are so low that it is
necessary to apply very low probe frequencies. As is
known, the relationship of the resonance frequency of
a bubble to its size in a liquid is determined by the
expression [5]
1063-7710/05/5102- $26.00 0209
(1)

where γ = 4/3 is the adiabatic exponent for the air in a
bubble, σ is the coefficient of surface tension of the liq-
uid, ρ0 is the density of the liquid, and R is the bubble
radius. According to Eq. (1), a bubble with a radius of
100 µm has a resonance frequency of about 32 kHz
(λ = 5 cm). Thus, the necessity of detecting relatively
large bubbles is at odds with the possibility of their
localization.

Another problem involved in detecting motionless
bubbles consists in that a bubble is surrounded by lay-
ers of biological tissues with different acoustic imped-
ances, which cause a strong reverberation. In the case
of the linear pulsed location of biological tissues, a con-
tinuous sequence of pulses reflected from the layered
structure is recorded, and the pulses from gas bubbles
may be indistinguishable against their background.
Therefore, of most interest is the development of loca-
tion techniques based on the nonlinear acoustic proper-
ties of bubbles. At the same time, nonlinear effects
manifest themselves not only in the signal scattered by
a bubble but also in the wave propagation through bio-
logical tissues [6].

This paper is devoted to an analysis of the abilities
of nonlinear acoustic methods to detect gas bubbles in
biological tissues. The techniques based on the second-
harmonic generation [7], combination (difference and
sum) frequencies (for example, see [7, 8]), subharmon-
ics and ultraharmonics [9, 10], and location by paired
pulses with phase keying and alternate-period compen-
sation for the reflected signals [11, 12] will be consid-
ered.

f res

3γP0

ρ0
------------ 3γ 1–( )2σ

ρ0R
---------------------------+

2πR
--------------------------------------------------,=
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The basis for all the aforementioned detection tech-
niques is pulsed probing, because, first, a spatial local-
ization is desirable and, in the ideal case, so is the map-
ping of bubble positions in biological tissues, and, sec-
ond, the implementation of a nonlinear mode of
operation is possible only with the use of location by
high-amplitude probe signals while maintaining the
average value of radiation intensity at the level permit-
ted for medical diagnostic equipment.

A pulsed location mode has its own special fea-
tures. As will be demonstrated below, in some cases,
the presence of the transient processes inherent in the
pulsed location mode leads to the generation of quali-
tatively different signals, depending on the ratios
between the parameters of bubbles and probe pulses.
One more specific feature of the techniques under
consideration is the use of a single (two at maximum,
for the technique with combination frequencies) car-
rier frequency of location, which corresponds to
actual location abilities when it is necessary to detect
bubbles in a wide range of sizes.

SECOND-HARMONIC GENERATION

First, let us consider the location of gas bubbles by
the method of second-harmonic reception [7]. The
major negative factor in this case is the intrinsic nonlin-
earity of biological tissues, which also leads to the
appearance of the second harmonic in the signal propa-
gating through biological tissues. Let us evaluate the
amplitude of the signal caused by the intrinsic nonlin-
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Fig. 1. Dependence of the second-harmonic amplitude on
distance at the reflection from a layer with Kref = 0.1. The

initial pressure amplitude is (1) 0.25 × 105 and (2) 105 Pa.
earity of the medium and reflected from the boundary
of the tissue layers.

Let a boundary between different soft tissues with
the reflection coefficient Kref = 0.1 (for example, the
boundary between muscle and fat [6]) lie at a distance
r from the tissue surface. For estimates, we use the
Burgers equation under the condition of the smallness

of the Reynolds number Re =  ! 1 [13], where

Vi =  is the initial amplitude of particle velocity, Pp

is the pressure amplitude of the emitted wave, λ is the
ultrasonic wavelength, Ò0 is the sound velocity in the
medium, ε is the nonlinear parameter with a value of 4–

6 for different biological tissues [6], b = ρ0 α/2πf 2,
and α is the coefficient of ultrasonic absorption at the
location frequency f. The absorption coefficient in this
case includes both viscous and thermal losses (the
classical mechanism of absorption) and the relaxation
mechanism characteristic of biological tissues. At a
frequency of 1 MHz, it is equal to α1 MHz ≈ 11.2 m–1

[6]. At the pressure amplitude in the incident wave
Pp = 105 Pa, Re ~ 1.6 × 10–2. For the wave at the sec-
ond-harmonic frequency in the case of reflection from
a layer located at a distance r from the biological tis-
sue surface, the pressure amplitude is determined by
the equation [13]

(2)

Figure 1 shows the dependence of the pressure
amplitude P2f on the distance r for two amplitudes of
the probe signal at ε = 6.

To evaluate the possibility of bubble detection, we
numerically simulate the location process for a medium
with gas bubbles by solving the equation for bubble
oscillations under the action of a high-frequency (HF)
pumping pulse (the frequency f = 106 Hz and the dura-
tion τ = 10 µs), calculating the time dependence of bub-
ble radius oscillations and (according to it) the pressure
in the wave reradiated by a bubble, and simulating the
filtration of the acoustic signal by a frequency-selective
receiving system. The equation describing the bubble
radius oscillations R(t) has the form [14]

(3)

ρ0Viλ
2πb
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ρ0c0
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c0
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c

----------– 
  3
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Fig. 2. Dependence of the signal amplitude at the second-harmonic frequency on the radius of a bubble positioned at the distance
of 1 cm from the radiator in the case of its excitation by a pulse with an amplitude of 0.25 × 105 Pa.
where P(t) =  +  –  – P0 + P‡c(t) –

4µ , R(t) is the current radius of the bubble, R0 is

the bubble radius, P0 is the static pressure in the liquid,
P‡c(t) is the pressure in the incident acoustic wave, and µ
is the viscosity of the liquid. The values µ = 2 mN s/m2

and σ = 52 N/m used here and below in the calculations
related to biological tissues are selected as being typical
of the intercellular fluid, and the density ρ0 for the inter-
cellular fluid is approximately equal to the density of
water.

A solution to Eq. (3) with the initial conditions

R(0) = R0 and (0) = 0 is tried by the Runge–Kutta
method of the fourth order. According to the solution
determined for the bubble radius, the bulk velocity

V(t) =  is calculated, where S is the area of

the bubble surface. Then, we calculate the pressure at

the distance r from the bubble, P(t) = .

After that, we perform the filtration of the pressure
signal reflected from the bubble in a frequency band of
±100 kHz with respect to the central reception fre-
quency (i.e., the second-harmonic frequency, the sub-
harmonic, etc.)

Figure 2 shows the dependence of the second-har-
monic amplitude on the bubble radius. Note that, in the
case of a small amplitude of the probe signal (Fig. 2a),
two resonance peaks are observed at the bubble size
corresponding to the resonance at the probing fre-
quency (the right peak, R = 3.7 µm) and to the reso-
nance at the second-harmonic frequency (the left peak,

P0-
 2σ

R0
------

 R0

R t( )
---------- 

 
3γ 2σ

R t( )
----------

Ṙ t( )
R t( )
----------

Ṙ

R t( )d
td

------------- Sd∫
s
∫

ρ
4πr
---------dV t( )

dt
--------------
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R = 2 µm). When the probing-signal amplitude
increases, the pronounced resonance peaks vanish
(Fig. 2b).

Comparing the curves (Figs. 1 and 2), it is possible
to conclude that reliable detection of a bubble is possi-
ble only in the case of its excitation near the fundamen-
tal resonance. Outside the resonance, in the case of
large-size bubbles, the amplitude P2f is small, although
it is sufficient for bubble detection in a homogeneous
medium. At the same time, at this distance, the second-
harmonic signal reflected from the boundary of tissues
is on the order of 40 Pa. As the pumping amplitude
increases, both the amplitude of the signal reflected
from the layer and the amplitude of the signal reflected
from a bubble grow. The ratio of these amplitudes con-
siderably increases for the bubbles located at a smaller
distance from the surface. For example, when the depth
of a bubble in the tissue decreases to 1 mm, the ampli-
tude of the signal from the bubble at the second-har-
monic frequency increases tenfold, while the amplitude
of the signal from the tissue layers at this frequency
noticeably decreases. Thus, using the method of the
second harmonic, it is possible to detect bubbles,
including nonresonance ones, that occur near the sur-
face of a biological tissue.

COMBINATION FREQUENCY GENERATION

This method is based on the irradiation of the
medium under investigation by two HF pulses of differ-
ent frequencies with the help of radiators positioned at
a certain angle to each other and the signal detection at
the sum and difference frequencies [8]. Signals at com-
bination frequencies, which are associated with the
nonlinearity of the medium, should not be generated in
the course of the propagation of probe pulses because
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Fig. 3. Dependence of the signal amplitude on the bubble radius at the (a) difference and (b) sum frequencies for a pumping ampli-
tude of 0.25 × 105 Pa, a pulse length of 10 µs, and probing frequencies of 1 and 1.6 MHz.
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Fig. 4. Dependence of the signal amplitude on the bubble radius at the (a) difference and (b) sum frequencies for a pumping ampli-
tude of 105 Pa, a pulse length of 10 µs, and probing frequencies of 1 and 1.6 MHz.
of the very weak dispersion in biological tissues. The
possibility of signal detection at the difference fre-
quency, where big bubbles resonate, could also be con-
sidered to be an advantage of this method. However, in
a real experiment, a certain interaction of probing fields
is still observed because of the existence of the col-
linear components of wave vectors, and detection at the
low difference frequency requires the use of long probe
pulses. As for the major disadvantages of the combina-
tion method, they are the awkwardness of the antenna
system (four antennas are needed: two radiating and
two receiving antennas tuned to the sum and difference
frequencies) and a small location region determined by
the zone of intersection of the ultrasonic beams. The
last fact makes it almost impossible to map large
regions of tissues, which reduces the probability of
bubble detection. It is also possible to demonstrate that,
in the case of two-frequency probing, one can reliably
detect only those bubbles with dimensions close to the
resonance ones at the frequencies of probing or recep-
tion. The dependences of the pressure amplitude on the
bubble size, which are obtained by numerically solving
Eq. (3) at a small pumping pressure Pp = 0.25 × 105 Pa,
are given in Fig. 3. The results qualitatively coincide
with the results obtained in [7] under the approximation
of a small quadratic nonlinearity. It is necessary to note
the presence of three marked peaks corresponding to
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
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Fig. 5. Dependence of the signal amplitudes on the bubble radius at the (a) subharmonic and (b) ultraharmonic frequencies. The
pumping amplitude is 105 Pa, the pulse length is 10 µs, and the probing frequency is 1 MHz.
resonances at the pumping, difference, and sum fre-
quencies.

GENERATION OF SUB- AND ULTRAHARMONICS

Let us evaluate the abilities of the detection tech-
nique based on the reception of sub- and ultraharmon-
ics at the frequencies fp(2n + 1)/2 (n ≥ 0). Since the
presence of sub- and ultraharmonic signals is con-
nected only with a bubble and is not observed in tissues,
this technique suggests a considerable increase in con-
trast for bubble detection in biological tissues. A possi-
bility of detecting gas bubbles in a pulsed mode of oper-
ation at subharmonic and ultraharmonic frequencies
was demonstrated experimentally in [9, 10]. The best
detection was achieved, as in the case of the second-
harmonic generation, when the resonance frequencies
of bubbles coincided with the pumping or detection fre-
quencies. The results of numerical calculation by
Eq. (3) for the cases of subharmonic and an ultrahar-
monic (5/2fp) detection are shown in Fig. 5. The signal
amplitudes outside the resonances are small, which
makes it difficult to detect nonresonance bubbles with
this location method.

It is necessary to note that the amplitude of the
pressure signal at ultraharmonics can be comparable
with the amplitude of the pressure signal at a subhar-
monic. This is connected with the fact that pressure is
proportional to the second time derivative of the bub-
ble radius and that the frequency of the ultraharmonic
is in this case five times higher than the subharmonic
frequency.

As in the case of the employment of the second har-
monic, in location at a subharmonic, the detection con-
trast is determined by the ratio of the useful signal and
the level of noise not connected with the bubble but
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
caused by the fact that, in a pulsed testing mode, the
parasitic signal still can fall within the reception band if
the spectral components at the subharmonic frequency
are present in the radiated pulse with a broad spectrum;
in addition, if these components are suppressed in the
radiated pulse, they may reappear due to the propaga-
tion of a wideband signal through an acoustically non-
linear medium [13].

We implemented and tested the method of bubble
detection at sub- and ultraharmonics in experiments
in vivo. The device constructed for this purpose used
probe pulses with a frequency of 1 MHz, a length of
10 µs, and an amplitude of 105 Pa with a cosine enve-
lope; reception was performed at frequencies of
0.5 ± 0.1 and 2.5 ± 0.1 MHz. Figure 6a shows, as an
illustration, the results of bubble location in soft tissues
of a dog, which was subjected to a pressure change
from 10 to 1 atm in a pressure chamber. Figure 6b pre-
sents analogous results obtained by locating soft tis-
sues of a human in a pressure chamber under a pres-
sure decrease from 1 to 0.7 atm. As one can see from
these figures, signals from bubbles appear for a short
time. This is connected with the change in their
dimensions (their growth, in this case) and, hence,
with a shift of their resonance frequency from the
location frequency.

An increase in the amplitude of the probe signal,
on the one hand, does not lead to a considerable
increase in the signal from nonresonance bubbles; on
the other hand, it may lead to an increase in the admis-
sible radiation level for ultrasonic diagnostic devices.
It is necessary to note that a probe pulse in medical
diagnostic equipment contains only two or three oscil-
lations of the carrier frequency with a total duration
not exceeding 1–2 µs. Nonlinear methods of detection
by the second harmonic, combination frequencies,
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(‡) (b)

Fig. 6. Appearance of signals from bubbles in the decompression process with signal reception at the ultraharmonic (upper half-
frames) and the subharmonic (lower half-frames) frequencies: (a) an experiment with a dog under a pressure drop from 10 to 1 atm
and (b) an experiment with a human under a pressure drop from 1 to 0.7 atm. The horizontal axis represents the time within 0–30 s. In
the vertical axis, the probing depth is 0–5 cm in each half-frame.
and subharmonics require the employment of longer
pulses to “excite” the bubbles at the resonance fre-
quency. Therefore, to maintain the energy of the prob-
ing signal at the level permitted for diagnostics, one
should make its amplitude smaller than in ordinary
medical diagnostic devices.

LOCATION BY PAIRED PULSES
The method of location by paired pulses is based

on alternate testing by HF pulses with different initial
phases or different types of modulation, storing of the
testing results, and their alternate-period subtraction.
As a result of this operation, the signals reflected from
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Fig. 7. Dependence of the uncompensated signal amplitude at
the location frequency on the bubble radius in the nonreso-
nance range in the case of alternate testing by pulses with a
phase shift of π. The amplitude of the probe pulse is 4 × 105 Pa,
the probing frequency is 1 MHz, the pulse length is 3 µs, and
the distance to the bubble in the tissue is 1 cm.
tissue layers must be completely compensated for,
while the signals scattered by gas bubbles, because of
their nonlinear distortion, are not compensated for.
This method is described in [11, 12] and is intended
for visualization of contrast particles introduced into a
blood vessel. An essential role here is played by the
amplitude dependence of the phase shift between the
excitation signal and the natural oscillations of a bub-
ble. Naturally, this dependence is most pronounced
near the bubble resonance, but the presence of a small
amplitude-dependent phase shift, as will be demon-
strated below, provides an opportunity to also obtain a
certain level of the difference signal outside the reso-
nance.

In [11], the alternate testing of a medium by
pulses with initial phases differing by π and with a
subsequent summation of the received echo signals
was performed to implement the method. Owing to
the change in phase relations in signals due to non-
linearity, the sum signal is nonzero. In [12], an anal-
ogous alternate location method by the use of three
pulses with initial phases differing by 120° and a
subsequent summation of echo signals was sug-
gested. In this case, a better suppression of the signal
from linear reflectors is achieved. The distinctive-
ness of our version of such a system consists in that
we compare not directly received signals but rather
selected signals in the reception band at either the
carrier frequency of the locator or the second-har-
monic frequency. The results of calculation for the
amplitude of the uncompensated signal scattered by
bubbles are shown in Fig. 7. One can see that, in the
nonresonant region, the signal is sufficient for bubble
detection in a wider range of bubble sizes than in the
case of other nonlinear methods. It is necessary to
note that this compensation method can also be
applied in the case of using comparatively short
pulses, which provide a higher spatial resolution. A
disadvantage of this method is the possible loss of
contrast in the case of tissue motion. In this case, no
complete compensation of the signals reflected from
tissue layers can be achieved.
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
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Fig. 8. (a) Oscillogram and (b) the spectral power density of a pressure signal reflected from a bubble with a radius of 25 µm
(a pulse amplitude of 5 × 105 Pa, a pulse length of 3 µs, and a frequency of 1 MHz, which corresponds to a bubble resonance radius
of 3.7 µm).
NONLINEAR EXCITATION OF NATURAL 
OSCILLATIONS OF A BUBBLE

Let us consider one more possible version of detec-
tion and evaluation of the size of gas bubbles. Location
is performed by short HF pulses containing several
periods of oscillations. As the result of pulse detection,
the natural oscillations of a bubble are excited because
of its nonlinear response. Their frequency is directly
connected with the bubble size according to Eq. (1). To
provide for a contrast against the tissue background, the
frequency components falling within the reception
band are suppressed in the pumping signal, while, on
the contrary, in the signal reflected from a bubble and
received from the medium, the signals at the testing fre-
quency are suppressed. For example, in the case of the
numerical simulation, the frequencies lower than
500 kHz were suppressed with the help of an HF filter
in the spectrum of the probe pulse with the carrier fre-
quency fp = 1 MHz. As one can see from Fig. 8a, after
the end of the pumping pulse, the natural oscillations at
the frequency determined by the resonance frequency
of the bubble are observed in the pressure oscillogram.
Figure 8b shows the spectrum of the received signal. A
similar procedure is proposed in [16], where spectros-
copy based on the excitation of natural low-frequency
oscillations of a bubble by high-frequency pulses is
suggested. The distinctive feature of the method pro-
posed by us is as follows. In the method described in
[16], the driving force contains frequency components
at the resonance frequency of a bubble, and, in this
case, signals from linear reflectors will not be sup-
pressed. In the version proposed by us, natural oscilla-
tions result from the effect produced on the bubble by a
“detected” pulse, which results from the acoustic non-
ACOUSTICAL PHYSICS      Vol. 51      No. 2      2005
linearity of the bubble. By measuring the frequency of
natural oscillations (for example, with the help of a
spectrum analysis), it is possible to determine the bub-
ble size. To do this, it is necessary to suppress the prob-
ing frequency in the received signal to eliminate signals
from linear scatterers (see Fig. 9a). Then, it is possible
to analyze the received signal, for example, to alternately
calculate the convolution of the received signals with the
calibration signals of natural oscillations of bubbles for
different dimensions. Figure 9b gives an example of
such a convolution, where the solution to Eq. (3) with
the suppressed spectrum region around the probing fre-
quency is taken as the basic signal. The first peak is
connected with the resonance at the probing frequency
(the carrier frequency is filtered out insufficiently), and
the second peak is connected with the resonance of the
bubble itself.

Substituting functions with different central fre-
quencies and damping factors characteristic of different
bubble dimensions into the expression for the convolu-
tion, it is possible to determine the resonance frequen-
cies of bubbles and to determine the bubble size accord-
ing to them. Applying this technique, it is necessary to
provide a monotonic frequency characteristic for the
receiving antenna in a wide frequency range. This is
possible, for example, if one uses a receiving transducer
operating within a band lower than the natural reso-
nance.

It is necessary to note that the described procedure
of analysis is just a model. Applying the recently devel-
oped methods of local time–frequency analysis of
pulsed signals (for example, the wavelet analysis or
nonlinear spectrum analysis [17]), it is possible to
speed up the processing and improve the space–time
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Fig. 9. (a) Filtered response of a signal (the band of the probe signal is suppressed) from a bubble with a radius of 25 µm and
(b) the convolution of the solution to Eq. (3) for bubbles 1–100 µm in size with the response from a bubble with a radius of
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resolution for both the vertical localization of bubbles
and for improving the accuracy of the determination of
their size.

CONCLUSION

According to the results of the numerical experi-
ments, it is possible to conclude that the nonlinear
acoustic detection methods based on the generation and
reception of the second harmonic, combination fre-
quencies, and sub- and ultraharmonics in the signal
reflected from a gas bubble in biological tissues provide
for a high reliability of detection only for the bubbles
with dimensions close to the resonance ones at the
probing or reception frequencies. The bubbles of other,
nonresonance, dimensions at moderate probing ampli-
tudes are almost undetectable by similar techniques
because of either echo signals from the layers of biolog-
ical tissues or reflected signals. Somewhat better capa-
bilities are possessed by the method of paired pulses,
which allows one to expand the range of detectable
bubbles with a high contrast against the surrounding
layers of biological tissues.

The proposed method of nonlinear excitation of
natural oscillations provides an opportunity to detect
gas bubbles and to measure their sizes in a wide range.
Evidently, the echo-signal contrast against the noise
from biological tissues in this case must also be high,
because the resonance properties of the layers mani-
fest themselves weakly. The application of modern
achievements in the field of signal processing will
make it possible to improve the localization character-
istics of gas bubbles. The described technique evi-
dently needs further study and experimental verifica-
tion.
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Abstract—Several procedures are proposed that allow one to determine the parameters of motion of an inho-
mogeneity crossing the propagation path between a source of an acoustic signal and a receiving array without
the use of any detailed description of the medium (the sound velocity profile, the bottom parameters, etc.). The
potentialities and characteristic features of the proposed approach are analyzed within the framework of a one-
dimensional waveguide propagation model. A comparative analysis of the reliability of inhomogeneity obser-
vations is performed on the basis of a representative experimental data set obtained from a lake experiment for
the cases of using the procedures of coherent space–time processing of signals in antenna arrays and the pro-
cedures with a spatial and temporal incoherent accumulation. © 2005 Pleiades Publishing, Inc.
INTRODUCTION: 
STATEMENT OF THE PROBLEM

Together with the pulsed location method, which
mainly uses backscattered echo signals for the observa-
tion of inhomogeneities, the observation method using
the forward scattering, where the scattering cross sec-
tion considerably increases and proves to be close to the
geometric area of the inhomogeneity under observa-
tion, has been under consideration for a rather long time
[1–5]. Observation schemes of this type can be classed
with tomographic ones, since the source of acoustic
field “illuminates” a certain region of the medium,
while the receiver detects the signal variation indicating
that the source–receiver path is crossed by an inhomo-
geneity.1 By now, a series of sufficiently effective meth-
ods have been proposed for inhomogeneity observation
against the background of the direct signal fluctuations
due to scattering by wind waves and by volume inho-
mogeneities of the refractive index with the use of both
vertical and horizontal receiving arrays [6–8]. More-
over, it was demonstrated that an inhomogeneity can be
clearly observed not only at the instant of crossing the
source–receiver path but also in a broader region,
including the closest sidelobes of the scattering pattern.

1 We have often encountered the criticism of this classification on
the basis of the fact that a certain set of projections is commonly
used in tomography, whereas, in the scheme under consideration,
only one projection exists (with one source and one receiver).
Although, as will follow from the further discussion, there is still
a certain set of projections in this scheme, which appears because
of the motion of inhomogeneities in a certain vicinity of the
source–receiver path, we do not insist on the fact that the term
“tomographic” is the most suitable one. It is also possible to use
the term “transmission scheme of observation,” which is used in
practical applications, not only in underwater acoustics but also
in radar techniques.
1063-7710/05/5102- $26.00 0218
This possibility, in particular, results from the specific
features of the behavior of the fluctuation spectrum of a
direct signal [8]. Naturally, the problem of comparing
the efficiencies of different observation methods,
including a direct comparison in experiments, seems to
be important. The present paper is devoted to this prob-
lem.

As the experimental material, we used the data
obtained from the lake experiments of 1997–1999 [8].
In these experiments, several types of inhomogeneities
with a length of several meters and heights of up to 1 m
were towed under the water surface approximately
across the sound propagation path between a source (a
monopole-type radiator installed near the bottom or a
vertical radiating phased array) and a receiver (a verti-
cal or horizontal 64-element equidistant array with a
length of 12 m). In the experiment, several (up to five)
tone signals were emitted simultaneously in the fre-
quency range of 1–3 kHz. Over one hundred signal
records were made, which included the moments of
crossing the path 300–450 km in length under identical
and different weather conditions, which made it possi-
ble to compare different methods. A detailed descrip-
tion of the lake experiment is given in [8].

In the next section, the models of direct and dif-
fracted signals in a plane-layered waveguide are con-
sidered from the point of view of the synthesis of sig-
nal-processing algorithms in receiving arrays and the
understanding of the particular features of inhomoge-
neity observation in a shallow sea. Below, on the basis
of models taking into account the characteristic space–
time properties of the interference (first of all, fluctua-
tions of the direct signal), we formulate four methods of
inhomogeneity observation: the methods of observa-
tion of forward scattering, which employ (a) the combi-
© 2005 Pleiades Publishing, Inc.



        

COMPARATIVE ANALYSIS OF TOMOGRAPHIC METHODS 219

                                                                                                                               
nations of coherent time and incoherent space process-
ing for a vertical array, and (b) space–time coherent
processing for a horizontal receiving array and the
methods of observation of a scattered signal beyond the
main lobe of the scattering pattern, i.e., in the near
bistatic region with the use of (c) the space–time pro-
cessing within a floating time window and (d) incoher-
ent accumulation in time. The last two methods are
developed for a horizontal receiving array. The second-
to-last section gives the comparison of the efficiencies
of methods (a)–(d) on the basis of experimental data,
and, in the last section, we formulate our conclusions.

MODELS OF DIRECT 
AND DIFFRACTED SIGNALS IN A REGULAR 

PLANE-LAYERED WAVEGUIDE

Figure 1 shows the observation scheme correspond-
ing to the given signal models. The trajectory of inho-
mogeneity motion lies between the source and the
antenna array. The center O of the Cartesian coordinate
system (x, y, z) in Fig. 1 is positioned at the water sur-
face. The receiving elements of a vertical array are
positioned on the z axis, and, for the case of a horizontal
array, they are arranged parallel to the x axis. The z axis
crosses the center of the horizontal antenna array. The

source emits a continuous tone signal .

The sound pressure p measured by an nth element of
the array can be described in the form of the sum of the
direct field p0 observed in the absence of the scatterer
and the diffracted (scattered) field pd for the current
position of the source:

(1)

In a regular plane-layered waveguide, the direct field
has the form

(2)

where zs and zn are the depths of the source and the nth
element of the array, respectively; r is the length of the
propagation path OS; xn is the position of the nth ele-
ment of the array on the x axis; α0 is the source bearing;
ϕm(z) is the mth vertical depth eigenfunction corre-
sponding to the mth wave number κm; κmr @ 1; and M
is the total number of propagating modes; the factor

 is omitted.

A diffracted field can be represented with the help of
the Kirchhoff approximation. We assume for definite-
ness that a plane inhomogeneity has a rectangular shape
with length lh and height lv. The integration over the
inhomogeneity aperture performed for Green’s func-
tion in the form of Eq. (2) and its derivative with respect
to the normal to the aperture by taking into account kmlh,

e
2πi f 0t–
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kmlv @ 1 leads to the following representation of the dif-
fracted component:

(3)

where D = lhlv cosαd is the area of the “shadow” of the
inhomogeneity and Φd is the section of the scattering
pattern in the horizontal plane:

(4)

sincx = sinπx/πx. The main lobe of the scattering pat-
tern (Eq. (4)) describes the forward scattering, and the
sidelobes correspond to the region of bistatic scattering.
The matrix fm', m'' describes the mode coupling, which is
determined by the vertical dimension of the scatterer:

(5)

(6)
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where α is the current bearing of the inhomogeneity.
The distances rsd and rd’o and the angles αi, αr, and α are
determined from elementary geometrical construc-
tions:

(7)

(8)

where u = V(t – t0), V is the velocity of the inhomoge-
neity, t0 is the instant of its crossing the line OS, and r1
and r2 are the distances between the source and the scat-
terer trajectory and between the scatterer trajectory and
the origin of coordinates, respectively, r1 + r2 = r. In the
vicinity of the instant of crossing, the first three terms
of the expansions of Eqs. (7) and (8) in u can be used
instead of the full expressions. The diffracted compo-
nent reaches the global maximum when the inhomoge-
neity crosses the propagation path, i.e., at the instant t =
t0. This is true, however, only in the case where the scat-
terer trajectory is perpendicular to the propagation path
OS (αd = 0°). At αd ≠ 0°, the global maximum can be
located in a certain vicinity of the instant of crossing.

The use of Eq. (3) as a replica while processing the
received signals leads to serious difficulties, because
Eq. (3) strongly depends on the propagation conditions.
Equation (3) can be simplified under the assumption
that the difference between the wave numbers κm is
negligible; i.e., it is possible to assume that κm ≈ κ for
all m = 1, …, M, where κ is a certain average wave num-
ber. In the vicinity of the crossing instant, this approxi-
mation takes on the form

(9)

where phase (9) characterizes the constant and time-
variable components of the source bearing for a hori-
zontally positioned antenna array and the function

(10)

describes the time shape of the diffracted component,
which can be considered as a linearly frequency-modu-
lated pulse with duration Td and frequency deviation γ:

(11)
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where λ = 2π/κ is the wavelength, re = r1r2/r is the effec-
tive distance, and

(12)

In the case of a horizontal antenna array, all amplitudes
an are equal: a1 = a2 = … = a. Thus, in a plane-layered
waveguide, the approximate space–time form of the
diffracted signal does not depend on the propagation
conditions except for the value of the average wave
number; i.e., the form of the approximation given by
Eq. (9) coincides with the case of free space with a con-
stant sound velocity. In the case of a vertical antenna
array, the dependence of the amplitudes an on the pro-
file of sound velocity and the acoustic parameters of the
bottom is significant, and only the time shape of dif-
fracted signal component (10) does not depend on the
propagation conditions.

Using Eq. (3), it is possible to investigate two basic
effects of multimode propagation that affect the obser-
vation characteristics. The first effect consists in that
the value of the maximum of the diffracted component
considerably varies depending on the position of the
inhomogeneity trajectory and the depths of the source
and the receiving array. In some cases, the diffracted
components cannot be observed, namely, when the
inhomogeneity is located at the minimum of the inci-
dent field or the receiver is located at the minimum of
the diffracted field. The second effect consists in the
mismatch of the time or space–time shapes (Eqs. (3)
and (9)). To describe both these effects qualitatively, it
is possible to use a simplified model for an underwater
sound channel, e.g., a Pekeris waveguide [9].

The above effects can be illustrated with the help of
a numerical simulation for a set of parameters approxi-
mately corresponding to the conditions of the lake
experiment [8]: r = 450 m, depth H = 15 m, sound
velocity in the water layer c = 1450 m/s, sound velocity
in the bottom cb = 1700 m/s, density of the bottom ρb =
1.5 (bottom reflection coefficient Kb = 0.28), zs = 13 m,
zd = 6 m, lh = 5 m, and lv = 1 m. Figure 2 shows the
dependence of the diffracted component maximum at
the instant t = t0 for a frequency of 3 kHz and a source
amplitude of 1 Pa at a distance of 1 m. The upper plot
demonstrates the variation of the maximum for one
array element located at the depth z1 = 6 m, and the
lower plot represents the amplitude  averaged over
the elements of a vertical antenna array, which are
located at the depths zn = 2.0 + (n – 1)d, where n = 1,
…, N, N = 64, d = 0.19 m,

(13)
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One can see that the maximum of the diffracted compo-
nent is subjected to considerable variation already in
the case of a change in r2 by ~5 m. The swing of these
oscillations is reduced (from ~47 dB to ~18 dB) as a
result of averaging over the elements of the vertical
array.

(a)

(b)
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Fig. 2. Dependences of the maximum amplitude of the dif-
fracted component on the distance r2 determining the posi-
tion of the trajectory of the inhomogeneity between the
source and the receiver (a) for a single receiving element
at a depth of 6 m and (b) the result of averaging the ampli-
tudes over the elements of the vertical array at the depths
2–14 m. The frequency is 3 kHz, and the scale is linear.
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The mismatch of the time shape of diffracted com-
ponent models (3) and (9) can be characterized by the
correlation coefficient C:

(14)

for the time instants tj in the interval ±2Td at t0 = 0. Fig-
ure 3 presents the dependences of |C| and the maximum
of the diffracted component on the depth of a receiving
element z1 and the distance r2. As follows from Fig. 3,
the maximum of the diffracted component is subjected
to strong variation in the range of ~20 dB, while the
modulus of the correlation coefficient varies mainly
within ~0.9–1.0 and decreases only in the deepest min-
ima |pd|. Precisely this fact provides an opportunity to
perform matched signal processing based on model (9).
The latter is characterized by just one parameter deter-
mined by the propagation medium, namely, the mean
wave number or the average sound velocity in the
waveguide c. Calculations for the above group of
parameters demonstrated that, in the case of variation
of c in the wide range of 1250–1650 m/s, the correlation
coefficient may vary within 0.88–1.0 in the frequency
range of 1–3 kHz; i.e., for processing, it is sufficient to
use an approximate value of sound velocity. The last
geometrical parameter that can affect the correlation
coefficient is the angle αd (see Fig. 1). Numerical sim-
ulations demonstrated that the correlation coefficient
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noticeably decreases with an increase in this angle: for
the given set of parameters, the correlation coefficient
remains within 1.0–0.8 at |αd| < 25° and decreases to
~0.4 at αd = 60°. The time dependences of the ampli-
tude and phase of the diffracted signals that were calcu-
lated according to Eqs. (3) and (9) for αd = 0° and 45°
are given in Fig. 4 as an example.

It is necessary to note that the influence of multi-
mode propagation on the form of the diffracted signal
for a horizontal antenna array in a plane-layered
waveguide is the same as for a single receiving element,

since the factors  in Eq. (3) are identi-
cal for all elements. Additional influence of multimode
propagation on the precision of the bearing estimate is
well-studied (for example, see [10]). It is inessential for
comparatively short arrays and the directions close to
the normal to the array.

If the inhomogeneity moves away from the path OS
(see Fig. 1), the diffracted component is determined by
the sidelobes of the scattering pattern. Their description
(in contrast to the main lobe) is difficult within the
Kirchhoff approximation; it is necessary to take into
account the shape of the scatterer edges, the boundary
conditions at its surface, etc. Therefore, one has to use
a cruder model as a replica in the region of bistatic scat-
tering. For a horizontal array, it can be the time varia-
tion of the signal phase that is determined by the Dop-
pler frequency shift and the inhomogeneity bearing,
which synchronously vary in time. This approximation
can be represented in the form

(15)

where φd(t) = κ[rsd'(t) + rd'o(t)]; Ad(t) is a certain quasi-
random complex-valued function determined by both
the sidelobes of the scattering pattern and the interfer-
ence structure of the field in the waveguide; κ is the

Φde
i κm'rsd' κm''rd'θ+( )

pd
a b,( ) Ad t( )e

i φd t( ) κ xn α t( )sin–[ ]
,=
average wave number, as in Eq. (9); and the distances
rsd' and rd’o and the sine of the scatterer bearing are
determined according to Eqs. (7) and (8). The first
derivative of φd is a current Doppler frequency shift:

(16)

The properties of the diffracted component in the
region of bistatic scattering can be illustrated by the
current estimates for the inhomogeneity bearing, which
are obtained using a common procedure of the scatter-
ing pattern formation:

(17)

where pd is determined by Eq. (3). The two-dimen-
sional representation given by Eq. (17) that is obtained
by numerical simulation is given in Fig. 5b for the time
interval t0 + 4Td < t < t0 + 4Td + 250 s and the parameters
f0 = 2 kHz, V = 0.6 m/s, α0 = 10°, and αd = 0°. Figure 5a
demonstrates the current estimates of the bearing for
free space, where Eq. (15), with Ad = DΦd(κlh(sinαi +

sinαr)/2π)/(λr0 ), is taken as pd. The rate of the
diffracted field decrease in this case was taken to be the
same as in a waveguide with the transition range r0
(~12 m). One can see from Fig. 5a that the estimate for
the inhomogeneity bearing in the case of free space is
modulated by sidelobes (4). This modulation becomes
irregular for waveguide propagation (Fig. 5b), since the
inhomogeneity also crosses interference maxima and
minima in the course of motion. Such irregular modu-
lation can be considered, however, as a positive factor
in the case of a sufficiently long trajectory of the inho-
mogeneity. As we have noted above, in the case of
observation of forward scattering, the maximum of the
diffracted signal strongly varies depending on the loca-

ωd dφd/dt κV α rsin α isin+( ).= =

B α t,sin( ) 1
N
---- pd xn t,( )e

iκ xn αsin

n 1=

N

∑ ,=

rsd'rd'o
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tion of the inhomogeneity trajectory between the
source and the receiving array (see Fig. 2), so that, at
certain values of the distance r2, the inhomogeneity
may be unobservable. Although the average amplitude
of the diffracted signal in the region of bistatic scatter-
ing is smaller in comparison with the forward scatter-
ing, the observation of a moving scatterer becomes
more stable at the trajectory length comparable to the
length of the propagation path. At least several max-
ima of the diffracted signal can be observed for any
distance r2.

The spectrum of the function Ad(t) determined from
Eq. (3) is shown in Fig. 5c for the same parameters as
in Fig. 5b. The width of this spectrum determines the
admissible duration of the temporal coherent process-
ing of a signal in the region of bistatic scattering (in the
given example, this duration is ~20 s).

The models of replicas given above (Eqs. (9) and
(15)) will be used below for the synthesis of signal-pro-
cessing procedures aimed at the detection and estima-
tion of the parameters of moving inhomogeneities.
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ESTIMATION OF THE PARAMETERS 
OF A MOVING INHOMOGENEITY

As we have mentioned above, inhomogeneities are
characterized by a sufficiently large number of param-
eters, which, as a rule, are unknown: the time of cross-
ing t0, the velocity V, the distance r2, the length lh, and
the angle αd between the trajectory and the normal to
the propagation path. Therefore, the observation proce-
dure itself must consist in the estimation of these
parameters with allowance for the fact that the dif-
fracted signal is observed against a noise background.
Assuming that the observation is conducted with an
antenna array, the set of signal snapshots, i.e., the vector
p(t) with the dimension N × 1, where N is the number
of receiving elements, after a complex demodulation at
the radiated signal frequency, low-pass filtration, and
decimation, can be represented according to Eq. (1) in
the form

where the vector q denotes the set of the unknown
parameters listed above and x(t) is the noise back-

p t( ) pd t q,( )= p0 t( ) x t( ),+ +
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ground. In a natural underwater channel, both the dif-
fracted component and the direct signal fluctuate due to
scattering by random inhomogeneities. We assume that
these fluctuations are comparatively small; e.g., for the
direct signal, the average value is much greater than the
fluctuating part. At the same time, because of the small-
ness of the diffracted component in comparison with
the direct signal, the fluctuating part of the direct signal
is comparable with the diffracted component and inter-
feres with its observation. At least in the lake experi-
ment [8], precisely the fluctuations of the direct signal
were the major interference in the observation of the
diffracted component. Under this approximation, the
diffracted component can be treated as a regular signal
with a known structure, and the direct signal together
with the background noise, as a random additive inter-
ference V(t) = p0(t) + x(t).

As is known, a classical method for the determina-
tion of the unknown parameters of a deterministic sig-
nal observed against the background of additive noise
is the maximum likelihood technique (for example,
see [11]). Further, we assume that interference is a
process stationary in time; i.e., its covariance matrix K
can be represented in the form 〈V(t1)VH(t2)〉 = K(t1 – t2),
where (·)H means Hermitian transpose. We represent
the diffracted component model (a replica) in the form
pd(t, q) = θ0sd(t, q1), where θ0 is an unknown complex
amplitude and q1 = (t0, V, …)T is the vector of the
parameters nonlinearly involved in the diffracted com-
ponent model. The components of the vector sd, for
example, in the case of a horizontal receiving array and
observation of forward scattering, are determined
according Eq. (9):

(18)

In this case, the maximum likelihood estimate of
unknown parameters in the case of the normal distribu-
tion of noise is determined in the form [12]

(19)

where ud, q, and the matrix of the cross-spectral densi-
ties of interference W are the discrete Fourier trans-
forms of the replica sd, the input signal vector p, and the
matrix of interference covariance K, respectively; fs is
the sampling rate. It is necessary to note that Eq. (19) is
also a detection procedure: according to the excess of
max F over a certain threshold, it is possible to judge
the presence of a moving inhomogeneity.

In the case of a vertical receiving array, the replica
is represented in the form sd = Sd(t – t0)a, where a is the

sd t q1,( ) Sd t t0–( )a t q1,( ), an e
iκ xn α t( )sin–

.= =

q̂1 F q1( );
θ1

maxarg=

F q1( )

ud
H f q1,( )W 1– f( )q f( ) fd

f s/2–

f s/2

∫
2

ud
H f q1,( )W 1– f( )ud f q1,( ) fd

f s/2–

f s/2

∫
---------------------------------------------------------------------------------,=
constant vector characterizing the diffracted field distri-
bution over the array aperture. As was noted before, its
structure depends on the propagation conditions; there-
fore, the simplest way is to consider it to be an unknown
parameter. A maximization of Eq. (19) with respect to
this vector leads to the replacement of Eq. (19) by a
quadratic form:

(20)

where

(21)

and Ud is the discrete Fourier transform of Sd(t – t0).
However, the experiment demonstrated that the struc-
ture of processing algorithms (19) and (20) can be con-
siderably simplified. Figure 6 shows one of the experi-
mental dependences of the cross-spectrum density
matrix averaged along the diagonals:

As follows from Fig. 6, the cross-spectrum density
matrix has a complex spatial structure in a narrow fre-
quency range with a width of several tens of millihertz,
but, as the frequency grows, the spatial correlation van-
ishes (the correlation scale becomes ~λ/2). Since
Eqs. (19) and (20) include inverse filtration, it is evi-
dent that this narrow frequency interval will be “cut
out” by the inverse filter. In this case, the spatial struc-
ture of the matrix within the “cut-out” range does not
play a significant role. This structure of interference
provides an opportunity to use the diagonal represen-
tation of the cross-spectrum density matrix in Eqs. (19)
and (20). Taking into account the fact that the shape of
the power spectral densities (diagonal elements) is
almost the same, it is possible to proceed to the repre-
sentation W( f )  I · W( f ), where I is the unit
matrix and W( f ) is the spectral density of the interfer-
ence power that is averaged over the array elements.
In this case, Eqs. (19)–(21) transform into Eqs. (22)–
(24), respectively:

(22)

(23)

F q1( ) vHQ 1– v,=

v Ud* f q1,( )W 1– f( )q f( ) f ,d

f s/2–

f s/2

∫=

Q Ud f q1,( ) 2W 1– f( ) f ,d

f s/2–

f s/2

∫=

Wn f( ) 1
N n–
------------- Wl l n–, f( ), n

l n=

N 1–

∑ 0 … N 1.–, ,= =

F q1( )

ud
H f q1,( )q f( ) fd

W f( )
-------------

f s/2–

f s/2

∫
2

ud
H f q1,( )ud f q1,( ) fd

W f( )
-------------

f s/2–

f s/2

∫
----------------------------------------------------------------------,=

F q1( ) vHv/Q f( ),=
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where

(24)

Expressions (22)–(24) determine the procedures of
detection and estimation of the parameters of motion of
an inhomogeneity according to the forward-scattering
data in the case of the use of a horizontal or vertical
receiving array, respectively. The practical implementa-
tion of Eqs. (22) and (23) basically depends on the
selection of the inverse filter W–1( f ). For example, the
time sequence of p(t) can be initially high-passed using
a finite impulse response filter, which has coefficients
determined with the help of the estimation of the power
spectral density within the framework of the autore-
gressive model of a fixed order (for example, see [11]).
This adaptive filtration is sufficiently convenient from a
practical point of view, since it does not need any pre-
liminary estimation of the parameters of the high-pass
filter. In processing the results of the lake experiment,
we used filter orders lying within the range 5–12. For
other techniques of filtration of upper frequencies in
estimating the parameters of a signal scattered forward,
see [5, 6].

As has been noted above, in the case of the estima-
tion of inhomogeneity parameters in the region of
bistatic scattering with a horizontal receiving array, two
strategies were used.

v Ud* f q1,( )q f( ) fd
W f( )
-------------,

f s/2–

f s/2

∫=

Q f( ) Ud f q1,( ) 2 fd
W f( )
-------------.

f s/2–

f s/2

∫=
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The first was based on the fact that, when the inho-
mogeneity passes along the trajectory approximately
equal in length to the propagation path, clear peaks of
the diffracted signal may form on one or several local
sections of the trajectory. In this case, it is possible to
conduct matched processing within a certain time win-
dow by simultaneously moving this window in such a
way that the maximum of the function F(q1, tc),

(25)

(see Eqs. (7), (8), (15), and (18)), is achieved with
respect to the parameters q1 and the position of the time
window center tc. Here, T0 is the length of the time win-
dow, and p( f )(t) is the time sequence of signal vectors
after a high-pass filter. As has been shown in the previ-
ous section, the length of the time window must be
selected for each specific waveguide and dimensions of
the inhomogeneity proceeding from the spectrum width
of the time factor Ad(t) in Eq. (15), as follows from
Fig. 5c. For the lake data, this value was determined
experimentally. The cut off band of the high-pass filter
was taken to be approximately equal to the minimum
Doppler frequency shift (Eq. (16)) corresponding to the
preset variability range of the parameters q1. It also was
assumed that, in the range of the Doppler frequency
shifts, which is determined by the dimension of the
time window, the fluctuation spectrum of the direct sig-
nal can be taken as approximately constant (as is dem-
onstrated in [8], this spectrum flattens out with fre-

F q1 tc,( )

=  aH t j q1,( )e
iφd t j q1,( )–

p f( ) t j( )
T0/2– t j tc T0/2<–<

∑
2
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quency growth); therefore, the operation of interference
“whitening” was not included in Eq. (25).

The second strategy consisted in the accumulation
of Eq. (25) in time windows with a certain weight. In
this case, the dimension of the time window was
selected in such a way that, within each lth window
with the center tc, l, it was possible to consider the bear-
ing αl and the Doppler frequency shift ωd, l to be con-
stant. The calculation in this case was reduced to the
determination of the function

(26)

where n is the element number and j is the snapshot
number within the window. In the process of summa-
tion, we excluded the windows adjoining the current
value of the instant of crossing t0. The terms in Eq. (26)
have different dispersions, because the two-dimen-
sional spectral power density of direct signal fluctua-
tions P(ω, κ sinα) determining the dispersion of each
term changes noticeably in the variation range of ωd, l

and αl used; this fact was taken into account with the

F q1( ) gl

tc l, t0 ∆t t0 ∆t+,–[ ]∉
∑=

× p jn l, e
iωd l, q1( )t j– iκ xn α l q1( )sin+

j

∑
n

∑
2

,

help of the weights gl. While processing, we assumed

gl = 1/ (ωd, l, κ sinαl), where  is the estimate of the
two-dimensional spectral power density P, which is
made according to the realization of the received signal.
Selecting the statistical weight, we took into account
the fact that responses to the diffracted component for
different windows decrease on the average with an
increase in the Doppler frequency shift and the bearing
(it is possible to demonstrate rigorously that, for con-
stant responses, in the case of the Gaussian fluctuations,
the dispersion F is minimal at gl = 1/P2). Explicit
dependences of the Doppler frequency shift and the
bearing on the parameters q1 = (t0, V, …)T are deter-
mined by Eqs. (7), (8), and (16).

Examples of the experimental dependences (22),
(23), (25), and (26) on the parameter t0, i.e., the instant
of crossing the propagation path by an inhomogeneity,
are given in Fig. 7. Other parameters (the inhomogene-
ity velocity, the distance r2, etc.) in this case were
assumed to be known. In the case of using Eq. (25), the
time window was taken to be equal to 40 s, according
to the preliminary experimental estimation of the opti-
mal value for this parameter. The procedure of Eq. (22)
was implemented using adaptive time filtration.

P̂ P̂
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COMPARISON OF THE CHARACTERISTICS
OF OBSERVATIONS PERFORMED 

BY DIFFERENT METHODS

In total, according to the results of the experiments
conducted in 1997–1998, the analysis of more than 120
crossings of the signal propagation path by different
inhomogeneities was carried out. Signals from a verti-
cal and/or horizontal receiving array were recorded
usually during ~10 min, while an inhomogeneity
moved from one shore of the lake to another. Signals
were detected simultaneously at several (from three to
five) discrete radiation frequencies from the range 0.6–
3.5 kHz. Inhomogeneities of four types were used. The
first and second types were hollow metal cylinders with
a diameter of 0.45 m and lengths of 6 and 3.5 m, respec-
tively; the third type was a short cylinder equipped with
an additional plastic foam screen of 0.7 × 2 m. A plastic
foam screen with dimensions of 5 × 1 m was used as the
fourth-type inhomogeneity. The inhomogeneities were
most often towed at a depth of 6 m with a velocity of
0.6 m/s. The processing of these data demonstrated
that, as a rule, in the case of observation by vertical and
horizontal arrays, the crossing was detected for all
types of inhomogeneities at at least one frequency.
However, the crossing was not always observed at all of
the radiated frequencies. In all series, for a vertical
receiving array, the results were more stable, which also
follows from Fig. 2.

The estimation of a successful observation of the
crossing of the signal propagation path by an inhomo-
geneity was performed proceeding from the noticeable
prevalence of the global maximum over the fluctuating
background in the process of estimation of the crossing
instant (see Fig. 7). It is natural to use a well-known cri-
terion, namely, the signal-to-noise ratio after process-
ing, as the quantitative characteristic of the success in
the observation of crossing:

(27)

where  is the average value of the random back-
ground beyond the vicinity of the global maximum and
disp{F} is the background variance in the same region.
The value of Eq. (27) for each experiment can be deter-
mined empirically from the realizations of F. In this
case, we assume that, beyond a certain vicinity of the
global maximum F, the ambiguity function rapidly
decreases and does not contribute to the estimation of
the background mean and variance. Note that, in com-
paring the results obtained by different methods, the
use of Eq. (27) is not quite correct, since, for coherent
processing (22), (25) and procedures (23), (26) using
incoherent accumulation, the random quantity F has
different probability-density distributions and, there-
fore, different detection probabilities at the same sig-
nal-to-noise ratio. Therefore, a more correct quantity
for the comparison is the difference ∆SNR between the

SNR 10
max F{ } F–

disp F{ }
------------------------------ dB[ ] ,log=

F
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empirically determined signal-to-noise ratio SNR and
its threshold value SNR0 corresponding to the fixed
probabilities of detection of the diffracted component
PD and false alarm PF. The threshold value SNR0 was
determined theoretically for the normal interference
distribution V(t) and, correspondingly, the central or

noncentral distribution  for F in the presence or
absence of the diffracted component [12]. For the
coherent processing, the number of the degrees of free-
dom n was taken to be equal to two. For the procedures
with incoherent accumulation, the number of degrees
of freedom must correspond to twice the number of
independent accumulated blocks. Its precise estimation
for experimental conditions is difficult, but we demon-
strated that, for sufficiently large PD and PF = 10–2–10–4,
the difference in SNR0 at n = 16–128 for fixed PD and
PF does not exceed 1 dB, which corresponds to the
accuracy of the empirical estimation of SNR. In what
follows, for the coherent processing, we took SNR0 =
11.5 dB and, for incoherent processing, SNR0 = 8 dB,
which corresponds to PD = 0.95 and PF = 10–3.

A detailed comparison of the above-mentioned dif-
ferences ∆SNR was conducted for the most representa-
tive series of experiments with the inhomogeneity of
the third type (a cylinder with an additional screen).
The series included 18 crossings observed simulta-
neously with the help of vertical and horizontal arrays
positioned at a small distance from each other. Figure 8
shows four frequency dependences of ∆SNR for proce-
dures (22), (23), (25), and (26), respectively. It is nec-
essary to note that the results for a horizontal receiving
array (procedures (22), (25), and (26)) were obtained
with the same initial data.

From Fig. 8 and from the results of processing of
other experiments, we draw the following conclusions:

(i) At given characteristics of the fluctuations of the
direct signal and a uniform rectilinear motion of the
inhomogeneity, the methods developed for estimating
the parameters of the diffracted signal in the bistatic
region provide a slightly higher signal-to-noise ratio in
comparison with the estimation of the parameters for
forward scattering. Method (26) using incoherent accu-
mulation along the whole motion trajectory, on the
average, gives higher values of SNR in comparison with
purely coherent space–time processing (25), designed
for detecting “bright” spots of the diffracted signal
along the trajectory of the inhomogeneity motion. It is
necessary to note that bistatic methods use a longer rec-
tilinear section of the trajectory, as compared to the
methods based on forward-scattering observations.

(ii) The estimation of the parameters of forward
scattering with the help of a vertical receiving array
yields a smaller variation of ∆SNR, whereas, in the case
the use of a horizontal array, greater values of ∆SNR may
be observed.

(iii) The detection characteristics for all methods
deteriorate at the edges of the selected frequency range.

χn
2
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This may be cased by both technical factors (the fre-
quency dependences in Fig. 8 closely coincide with the
frequency characteristic of the radiator used in the
experiment) and the existence of a certain optimal fre-
quency range for inhomogeneity observation: at low
frequencies, the target strength decreases, and, at high
frequencies, the correlation between the replica and the
actual shape of the diffracted signal is reduced. The
experiments gave no definite answer to this question.

The experiment also demonstrated that, at least in
the case of a horizontal receiving array, it is expedient
to use a group of processing methods in parallel, by
analogy with many applications where the filter-bank
technique is used.

CONCLUSIONS

Several methods for estimating the parameters of
motion of an inhomogeneity from its field scattered
both forward and in the bistatic region are developed
for the case of observation by antenna arrays and a
simultaneous emission of several tone signals at differ-
ent frequencies. A sufficiently representative experi-
mental sample is obtained, which allows one to draw a
conclusion concerning the statistical characteristics of
the observation results for signals scattered by a mov-
ing inhomogeneity under the conditions of waveguide
propagation of sound and fluctuations of the direct sig-
nal because of random scattering by wind waves and
volume inhomogeneities of the refraction index. In par-
ticular, it is demonstrated that the reliability of observa-
tions strongly depends not only on the fluctuations of
the direct field but also on the interference effects,
which are regular but poorly predictable because of the
indeterminacy in the description of the propagation
medium. The after fact must be taken into account in
the theoretical estimation of the reliability of inhomo-
geneity observations under preset conditions together
with such characteristics as the space–time scales and
the values of fluctuations of the direct signal.
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Abstract—The nonlinear propagation of an initially harmonic acoustic wave in a microinhomogeneous medium
containing defects with quadratic hysteretic nonlinearity and relaxation is studied by the perturbation method. The
frequency dependences of the effective nonlinearity parameters are determined for the self-action of the quasi-har-
monic acoustic wave and the higher harmonic generation processes. © 2005 Pleiades Publishing, Inc.
INTRODUCTION

Hysteretic equations of state are commonly used to
explain the phenomenon of amplitude-dependent inter-
nal friction (ADIF) in solid materials with imperfect
elasticity. Earlier [1–7], different types of inertialess
hysteretic equations, i.e., dependences of the type of
σ = σ(ε, ) (where σ is the stress and ε is the strain),
were obtained to describe the deformation of such mate-
rials at low frequencies. The absence of inertia in these
equations means that the stress σ at a given point of the
medium at a given instant t is determined by the strain ε
and the sign of the strain rate  at the same point at the
same instant of time. For media with inertialess nonlin-
earity, the effective nonlinearity parameters (which, gen-
erally speaking, are different for different wave pro-
cesses) are constant and independent of the frequencies
of the interacting acoustic waves. The results of experi-
mental studies of the ADIF effects (such as nonlinear
loss, resonance frequency shift, and higher harmonic
generation) testify that the nonlinearity parameters of
some polycrystalline metals and rocks are frequency-
dependent. To explain these results, a rheological model
of a microinhomogeneous medium was proposed and
studied in [8, 9]. The model had the form of a one-dimen-
sional chain of linear elastic elements and relatively soft
nonlinear viscoelastic (relaxation) defects. In the cited
publications, three-wave processes in media containing
defects with a quadratic elastic nonlinearity were consid-
ered and it was shown that, because of the nonlinear
relaxation of defects at the frequencies of initial and non-
linearly generated waves, the quadratic nonlinearity
parameters of microinhomogeneous media are fre-
quency dependent; i.e., such media exhibit a dispersion
of their nonlinear elasticity. Evidently, rheology alone
cannot completely elucidate the physical nature of this
phenomenon: its mechanisms may be different for differ-
ent media. However, the proposed rheological model
adequately describes the behavior of linear and nonlinear
acoustic properties of a wide class of microinhomoge-

ε̇sgn

ε̇
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neous media (in particular, polycrystalline metals and
rocks) and qualitatively accounts for the results obtained
from the experimental studies of nonlinear effects in
such media. For each specific medium, the amplitude–
frequency characteristics of nonlinear effects manifest
themselves in an individual manner, and, therefore,
along with the nonlinear properties, the relaxation prop-
erties of microinhomogeneous media can also be used
for their classification and diagnosis.

In this paper, we present a theoretical analysis of
nonlinear effects accompanying the propagation of an
initially harmonic acoustic wave in a microinhomoge-
neous medium containing defects with a quadratic hys-
teretic nonlinearity and relaxation. We determine the
frequency dependences of the effective nonlinearity
parameters for the wave self-action and higher har-
monic generation processes.

EQUATION OF STATE 
OF A MICROINHOMOGENEOUS MEDIUM

WITH QUADRATIC HYSTERETIC 
NONLINEARITY AND RELAXATION

As in the previous publications [8, 9], we consider a
rheological model of a medium in the form of a one-
dimensional chain of linear elastic elements and rela-
tively soft nonlinear viscoelastic defects characterized
by a hysteretic stress–strain (σ– ξ) dependence:

(1)

(2)

σ ξ ξ̇ ξ̇,sgn,( ) ζE ξ f ξ ξ̇sgn,( )–[ ] ηξ̇ ,+=

f ξ ξ̇sgn,( )

=  
1
2
---

γ1ξ
2, ξ 0, ξ̇ 0;>>

γ2ξ
2 γ1 γ2+( )ξmξ , ξ 0, ξ̇ 0;<>+–

γ– 3ξ
2, ξ 0, ξ̇ 0;<<

γ4ξ
2 γ3 γ4+( )ξmξ , ξ 0, ξ̇ 0.><+
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Here, E is the elastic modulus of stiff elements, ζ is the
relative elasticity of a defect with respect to the elastic-
ity of a linear stiff element (ζ ! 1), η is the viscosity

coefficient, ξm and  are the strain amplitude and the
strain rate, γ1–4 are the hysteretic nonlinearity parame-
ters, |γ1–4|ξm ! 1, and |γ1–4| @ 1. For definiteness, we
consider defects described by a quadratic elastic hyster-
esis [10] (or the separation hysteresis [3]), but the
expressions obtained below for the nonlinearity coeffi-
cients Ap(ω) and Bp(ω) are also valid for defects with an
inelastic but also quadratic hysteresis [10] (or a friction
hysteresis [3]).

When the concentration of defects is small, the
equation of state of a microinhomogeneous medium
has the form [8, 9]

(3)

(4)

where R(ε) = (τ)e–W(t – τ)dτ, W = ζE/η is the

defect relaxation frequency, and N = N(ζ, W) is the
function describing the defect distribution in the param-
eters ζ and W.

Equation of state (3) takes into account the relax-
ation and contains both linear and nonlinear relaxation
terms. The linear and nonlinear relaxations of this
medium are caused by the relaxation of defects, and the
nonlinear relaxation manifests itself twice: first, owing
to the linear relaxation, because the nonlinear correc-
tion is determined by the linear response of the defects,
and, second, owing to the relaxation of the nonlinear
correction itself. In the low-frequency approximation,
i.e., for ω/W ! 1 (where ω is the frequency of the
acoustic wave), Eq. (3) is reduced to a simple inertia-
less equation:

(5)

ξ̇

σ ε( ) E ε R ε( )N ζ W,( ) ζ Wdd

0

1

∫
0

∞

∫–=

– ζR f R ε( ) Ṙ ε( )sgn,( )[ ] N ζ W,( ) ζ Wdd

0

1

∫
0

∞

∫ ,

ζR f R ε( ) Ṙ ε( )sgn,( )[ ] N ζ W,( ) ζ Wdd

0

1

∫
0

∞

∫

! R ε( )N ζ W,( ) ζ Wdd

0

1

∫
0

∞

∫  ! ε ,

W
ζ
----- ε

∞–

t∫

σ ε( )

=  E ε 1
N ζ( )

ζ
------------ ζd

0

1

∫–
 
 
 

f ε ε̇sgn,( ) N ζ( )
ζ3

------------ ζd

0

1

∫– .
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The propagation of a quasi-harmonic wave in a medium
with inertialess hysteretic nonlinearity (2) was studied
in [10, 11].

NONLINEAR PROPAGATION 
OF A QUASI-HARMONIC WAVE

We set a boundary condition in the form of
ε(x = 0, t) = ε0sinωt and consider the nonlinear effects
that accompany the propagation of a longitudinal
(along the x axis) acoustic wave in the medium. Substi-
tuting equation of state (3) into the equation of motion
ρUtt = σx (where ε = Ux, U is the displacement, and ρ is
the density) and solving the latter by the perturbation
method, we obtain expressions for the wave (in the
form of a Fourier series), the nonlinear damping decre-
ment δ(ε1), and the nonlinear variation of the propaga-
tion velocity ∆C(ε1)/C of the wave at the fundamental
frequency ω:

(6)

(7)

(8)

(9)

(10)

(11)

ε x t,( ) εp x( ) ωpt kpx– ϕ p x( )–[ ] ,sin
p 1=

∞

∑=

εp x( ) ! ε1 x( ),
p 2=

∞

∑

ε1 x( )
ε0 Al 1, k1x–[ ]exp

1
A1

Al 1,
---------ε0 1 Al 1, k1x–( )exp–[ ]+

------------------------------------------------------------------------,=

ϕ1 x( ) Bl 1, k1x=

–
B1

A1
------ 1

A1

Al 1,
---------ε0 1 Al 1,– k1x( )exp–[ ]+ 

  ,ln

εp x( ) Ap
2 Bp

2+ ε0
2kpx,=

ϕ p x( ) pϕ1 x( ) pBl p, k1x– Bp/Ap( ),arctan+=

ϕ p x( ) pϕ1 x( )–  ! π,

δ ε1( ) A1 ω( )ε1 x( ),
∆C ε1( )

C
----------------- B1 ω( )ε1 x( ),= =

Al p, ω( ) pωWN ζ W,( )
2ζ p2ω2 W2+( )
------------------------------------- ζ W ,dd

0

1
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0

∞
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2ζ p2ω2 W2+( )
------------------------------------- ζ W ,dd

0

1
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0
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A1 ω( )
B1 ω( ) 

 
  N ζ W,( )

ζ2 1 ω/W( )2+[ ] 5/2
-------------------------------------------

0
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0
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× a1
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(12)

where ωp = pω, kp = ωp/C, C = (E/ρ)1/2, Ψ =
2 ,

(13)

and Ap(ω)  and Bp(ω)  are the Fourier coeffi-
cients of the nonlinear function of equation of state (3).
(Expressions for the coefficients ap and bp for media
with elastic and inelastic hysteresis are given in [11].)

From Eqs. (7)–(12), it follows that the relaxation of
hysteretic defects has two consequences: first, the coef-
ficients Ap(ω) and Bp(ω), which determine the nonlin-
ear loss, the wave velocity variation, and the higher har-
monic amplitudes and phases in the microinhomoge-
neous medium, become frequency-dependent (with any
sign); second, each of these coefficients is a linear com-
bination of the coefficients ap and bp. From Eqs. (8) and
(12), one can see that the excitation of a harmonic
wave of frequency ω in a microinhomogeneous
medium with hysteretic nonlinearity and relaxation
gives rise to waves with frequencies pω. The ampli-
tude of each of these higher harmonics exhibits a qua-
dratic dependence on both the initial wave amplitude
and the distance traveled by the wave and is propor-
tional to the effective nonlinearity parameter Dp(ω) =

, which depends on the initial wave
frequency ω and the number p of a given harmonic:

Ap ω( )
Bp ω( ) 

 
 

=  ap
2 bp

2
+ N ζ W,( )

ζ2 1 ω/W( )2+[ ] 1 pω/W( )2+[ ] 1/2
--------------------------------------------------------------------------------

0

1

∫
0

∞

∫

× pΨ bp/ap( )arctan+[ ]cos

pΨ bp/ap( )arctan+[ ]sin 
 
 

ζdW ,d

ω/W( )arctan

a1
1

24π
--------- γ1 γ2 γ3 γ4+ + +( ) 0,≥=

b1
1
16
------ γ1 γ2 γ3 γ4+ + +( ) 1

6π
------ γ1 γ2 γ3 γ4–+–( ),+=

a2
1

24π
--------- γ1 γ2 γ3 γ4––+( ),=

b2
1

12π
--------- γ1 γ2 γ3 γ4––+( ) 1

32
------ γ1 γ2 γ3 γ4+––( ),+=

ε1
2 x( ) ε1

2 x( )

Ap
2 ω( ) Bp

2 ω( )+

Fig. 1. Frequency dependences of the coefficients (a)
A1(ω/W0)/B1(0) and (b) B1(ω/W0)/B1(0) and (c) the param-
eter r(ω/W0) for a medium containing identical defects; r0 =
(1) 0.5, (2) 1, and (3) 2.
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(14)

In the quasi-static approximation, i.e., for ω/W  0,
expressions (7)–(12) and (14) are simplified by trans-
forming to expressions for a medium with an inertialess
(i.e., frequency-independent) hysteretic nonlinearity
[10, 11]. In this case, the nonlinearity coefficients Ap(0)
and Bp(0) are determined by the coefficients ap and bp

(separately) and the defect concentration:

(15)

Now, we determine the parameter r = r(ω) repre-
senting the ratio of the damping decrement δ(ε1) to the
relative variation of the wave velocity, ∆C(ε1)/C. This
dimensionless parameter, which is independent of the
wave amplitude, is an important characteristic of the
ADIF [1–3, 5]:

(16)

In the low-frequency region (ω ! W*, where W* is the
effective frequency of defect relaxation), we have
r(0) = r0 = a1/b1 = const, while for ω ≥ W*, the param-
eter r(ω) may be arbitrary in the general case. Its value
and sign are determined by the wave frequency ω and
the defect distribution function N = N(ζ, W). Below, to
simplify the calculations, we consider different distri-
butions of defects in relaxation frequencies W under the
assumption that ζ = const.

FREQUENCY DEPENDENCES
OF NONLINEAR COEFFICIENTS 

FOR IDENTICAL AND DISTRIBUTED DEFECTS

The simplest expressions for the coefficients Ap(ω)
and Bp(ω) and the parameter r(ω) are obtained in the
case of a monodisperse distribution of defects in relax-
ation frequencies: N(W) = N0δ(W – W0). For example,
the expression for r(ω/W0) has the form

(17)

Dp ω( ) ap
2

bp
2

+=

× N ζ W,( )
ζ2 1 ω/W( )2+[ ] 1 pω/W( )2+[ ] 1/2
-------------------------------------------------------------------------------- ζ W .dd

0

1

∫
0

∞

∫

Ap 0( )
Bp 0( ) 

 
  ap

bp 
 
  N ζ( )

ζ 2
------------ ζ .d

0

1

∫=

r ω( )
A1 ω( )
B1 ω( )
---------------.=

r ω/W0( )
r0 1 ω/W0( )2–( ) 2 ω/W0( )+

1 ω/W0( )2– 2r0 ω/W0( )–
-------------------------------------------------------------------.=

Fig. 2. Frequency dependences of the coefficients
(a) A1(ω/W1)/B1(0) and (b) B1(ω/W1)/B1(0) and (c) the
parameter r(ω/W1) at r0 = 1 for media with different distri-

butions of defects in relaxation frequencies: W1 = 102 s–1

and W2 = (1) 103, (2) 104, and (3) 105 s–1.
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From Eq. (11), it follows that (for r0 > 0) the coeffi-
cients A1(ω) and B1(ω) are positive in the frequency

regions ω/W0 ≤ µ1 =  + (1 + )1/2 and ω/W0 ≤ µ2 =

–r0 + (1 + )1/2 < µ1, respectively, so that the parameter
r(ω/W0) is positive at low frequencies (ω/W0 ≤ µ2) and
at high frequencies (ω/W0 > µ1), while in the frequency
range µ2 < ω/W0 < µ1, it is negative. Figures 1a–1c show
the coefficients A1(ω/W0)/B1(0) and B1(ω/W0)B1(0) and
the parameter r(ω/W0), respectively, as functions of the
ratio ω/W0 for a medium containing identical defects;
the curves are plotted for different values of r0. From
these plots, one can see that, in the low-frequency
range (ω ! W0), we have A1(ω/W0)/B1(0) . r0 and
B1(ω/W0)B1(0) = 1; in the high-frequency range (ω @
W0), these coefficients tend to zero (as ω–3); and in the
intermediate frequency region (ω ≈ W0), the coeffi-
cient A1(ω/W0)/B1(0) slightly exceeds r0, while the
coefficient B1(ω/W0)/B1(0) decreases to zero and
changes sign. The parameter r(ω/W0) exhibits a corre-
sponding behavior: at low and high frequencies,
r(ω/W0) . r0, while at intermediate frequencies, it
exhibits changes in its value and sign.

Figures 2a–2c show the coefficients A1(ω/W1)/B1(0)
and B1(ω/W1)/B1(0) and the parameter r(ω/W1), respec-
tively, as functions of the ratio ω/W1 for a medium with
defects distributed in relaxation frequencies (at r0 = 1):

(18)

r0
1– r0

2–

r0
2

N W( )
N0

W2/W1( )Wln
---------------------------------, W1 W W2.≤ ≤=

1

0
10–2 100 102 104

Γ2

ω/W

1 2 30

Fig. 3. Frequency dependences of the coefficient Γ2(ω/W1)
for media with (0) identical and (1–3) distributed defects: W1 =

(1–3) 102 s–1 and W2 = (1) 103, (2) 104, and (3) 105 s–1.
With this distribution of defects in relaxation frequen-
cies, the medium possesses a frequency-independent
linear damping decrement in the frequency range W1 ≤
ω ≤ W2. In this case, the frequency dependences of the
coefficients A1(ω/W1)/B1(0) and B1(ω/W1)/B1(0) and the
parameter r(ω/W1) qualitatively coincide with those
shown in Fig. 1.

Figure 3 represents the dependences of the normal-
ized quadratic nonlinearity coefficient Γ2(ω/W1) =

 on ω/W1 for media with identical defects

(W0 = W1) and with defects distributed according to law
(18). In the low-frequency region, this coefficient is
equal to unity, and, as the frequency increases, it
decreases and tends to zero. If the upper bound W2 of
distribution function (18) increases, the aforemen-
tioned decrease in the nonlinearity coefficient becomes
slower because of the increase in the effective relax-
ation frequency W*. Similar frequency dependences
occur for other nonlinearity coefficients Γp(ω/W1) =

, where p > 2.

CONCLUSIONS

Thus, in this paper, in terms of the rheological
model of a microinhomogeneous medium containing
viscoelastic defects with quadratic hysteretic nonlin-
earity, we studied the effects of both the self-action of
an initially harmonic wave and the higher harmonic
generation. We derived analytical expressions for the
nonlinear coefficients Ap(ω) and Bp(ω) responsible for
these processes. We have shown that, unlike the
medium with the same hysteretic nonlinearity but with-
out relaxation, where the nonlinearity of the medium
does not depend on the frequency of the acoustic wave,
the hysteretic nonlinearity of a microinhomogeneous
medium with relaxation is frequency-dependent; as the
frequency of the acoustic wave increases, the effective
nonlinear parameters of such a medium asymptotically
tend to zero. Although, in this paper, we considered a
definite class of media with a quadratic elastic hystere-
sis, the expressions obtained for the nonlinearity coef-
ficients Ap(ω) and Bp(ω) are also valid for media with
an inelastic quadratic hysteresis [10], because the
dependences of the nonlinear effects on the wave
amplitude are determined by the degree of the nonlin-
ear equation of state of a single defect (for both types of
hysteresis, the degree is equal to two), while the depen-
dences on the wave frequency are determined by the
distribution of defects in relaxation frequencies (and
elasticities).

We believe that the study described above and the
analysis of the measured amplitude–frequency depen-
dences of different nonlinear effects accompanying the
propagation and interaction of elastic waves in a relax-
ing microinhomogeneous medium demonstrate the

D2 ω/W1( )
D2 0( )

-------------------------

Dp ω/W1( )
Dp 0( )

-------------------------
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possibility of determining the general form of the non-
linear equation of state of this medium, the parameters
of this equation, and the distribution function describ-
ing the distribution of defects in relaxation frequencies
and elasticities.
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CHRONICLE

    
Vitaliœ Anatol’evich Zverev
(On His 80th Birthday)
November 3, 2004, marked the 80th birthday of the
prominent scientist, Corresponding Member of the
Russian Academy of Sciences, Doctor of Physics and
Mathematics, Professor Vitaliœ Anatol’evich Zverev.

Zverev is a well-known specialist in radiophysics
and acoustics. He is the author of more than 200 scien-
tific works, including four monographs and 30 inven-
tions. He made a substantial contribution to the devel-
opment of acoustics; he was one of the first to lay the
foundations of nonlinear acoustics, which has become
a rapidly developing area of research.

Zverev’s youth fell within the period of the Second
World War. From 1942 to Victory Day in 1945, he
served in the army, specifically in the air-defense
forces. As a young soldier, Zverev demonstrated his tal-
ent for research and invention: he successfully fixed
and tuned new complicated radar systems that were
appearing at that time in air defenses. Zverev’s occupa-
tion in the army determined his civilian profession. In
1063-7710/05/5102- $26.00 0236
1945, he left the army and became a student in the
newly founded Radiophysical Faculty of Gorki State
University. In 1950, Zverev graduated from the univer-
sity and became a postgraduate student of Professor
G.S. Gorelik.

Zverev’s first research project was based on the idea
put forward by M.A. Isakovich regarding the dispersion
of acoustic waves in emulsions. To implement this idea,
Zverev studied the characteristic features of the propa-
gation of modulated waves in dispersive media. He
found that the propagation of a modulated wave in a
dispersive medium can be described by a single param-
eter—the phase invariant. Zverev developed a method
for measuring this parameter and designed the corre-
sponding equipment. This work resulted in his candi-
date dissertation, which he defended in 1953. The fur-
ther development of these studies offered the possibil-
ity of using the same approach and equipment for
studying the spatial spectra of random inhomogene-
ities. This possibility was realized in acoustics.

In the following years, Zverev’s scientific activity
was related to the formation of images by wave fields.
All four monographs written by Zverev are devoted to
this subject. The first of them, entitled Optical Analyzers,
was published in 1971 (in co-authorship with E.F. Orlov),
and the second, Radio-Optics, in 1975. The last two
monographs were written in recent years: Physical
Foundations of the Formation of Images by Wave
Fields appeared in 1998, and Extraction of Signals from
Noise by Numerical Methods was published in 2001 (in
co-authorship with A.A. Stromkov). Zverev was one of
the first to propose and develop the optical methods of
spectral and correlation analysis. Based on these meth-
ods, unique instruments for spectral and correlation
analysis were designed under his supervision. The
instruments have found applications in radar, acoustics,
and medicine.

The book Radio-Optics published by Zverev in
1975 and his monographs published in 1998 and 2001
are unique editions that contain a unified description of
all known features of image formation. To consider all
possible cases, it was necessary to combine optics,
acoustics, and radiophysics, because no single area
covers the whole variety of image-formation condi-
tions.

The simplest and most illustrative example of the
image formation by wave fields is our vision. Waves
arriving at the pupil of the eye are processed so as to
allow us to reconstruct (to see) their sources. To see
© 2005 Pleiades Publishing, Inc.



        

VITALI

 

Œ

 

 ANATOL’EVICH ZVEREV 237

        
objects, we do not need to understand the mechanism of
the phenomenon. However, to see objects with some
other waves, e.g., acoustic ones that cannot be per-
ceived with our eyes or ears, a corresponding scientific
description of the phenomenon is necessary with allow-
ances made for the specific conditions of the image for-
mation. The variety of the image-formation conditions
can be illustrated by hearing and sight. We perceive the
images with our ears in a completely different way than
with our eyes. Zverev proposed a mathematical model
describing how we “see” with our ears. The proposed
procedure was close to the aperture synthesis widely
used in radio astronomy. The determination of this pro-
cedure allowed Zverev to explain the characteristic fea-
tures of the perception of monophonic and stereo-
phonic sound and to propose an original method of vol-
ume sound reproduction. This method is now
successfully used in industry.

Zverev’s studies in nonlinear acoustics were also
related to the problems of acoustic vision. Zverev pro-
posed and implemented the parametric transmission
and reception of sound. Parametric antennas possess
some specific features of image formation. A paramet-
ric acoustic array has a directional pattern close to an
ideal one. Similar systems were proposed by Westervelt
two years later, and his publications marked the begin-
ning of nonlinear acoustics in Western countries. For
their studies in nonlinear acoustics, Zverev and his col-
leagues received a USSR State Award in 1985.

Currently, Zverev is involved in both scientific and
tutorial activities. In the past five years, he has submit-
ted for publication 19 scientific works, including one
monograph. Most of his papers were published in the
Akusticheskii Zhurnal (Acoustical Physics). Zverev
continues working on the problems of vision in acous-
tic fields. Many media that are opaque to other types of
waves prove to be transparent to acoustic waves. How-
ever, conventional ways of image formation are not
always appropriate in acoustics. The factors that hinder
image formation and ways to overcome these difficul-
ties are currently studied by Zverev. In the last ten
years, he has proposed and developed the acoustic
dark-field method, which allows one to select the
objects of interest against scattered and direct intense
radiation. Zverev’s most recent studies are concerned
with the problems of acoustic vision by the so-called
time-reversal method. This subject is now being
actively investigated by M. Fink and other scientists
from Western countries. In this area of research, Zverev
has found a number of new solutions, which, in partic-
ular, have made it possible to interpret some experi-
mental results.

Zverev developed original lecture courses on statis-
tical radiophysics, acoustics, and physical foundations
of the image formation by wave fields (radio-optics).
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For years, these lectures were delivered to the students
of Nizhni Novgorod State University.

Zverev’s working activity has always been related to
Nizhni Novgorod. Over a period of seven years, he
chaired the department of General Physics at the Radio-
physical faculty of Nizhni Novgorod State University.
Starting in 1956, he headed the department of Statisti-
cal Radiophysics and Acoustics of the Radiophysical
Research Institute, and, in 1977, he became head of the
department of Physical Acoustics at the newly estab-
lished Institute of Applied Physics of the Russian Acad-
emy of Sciences. Today, Zverev is councilor of the Rus-
sian Academy of Sciences.

In 1964, Zverev defended his doctoral dissertation,
which included the results of his research in modulated
waves, optical signal processing, nonlinear acoustics,
and some applications. In 1979, he was elected as cor-
responding member of the Russian Academy of Sci-
ences for the Division of General Physics and Astron-
omy. For his achievements in science, Zverev was
awarded an Order of the Red Banner of Labor and sev-
eral medals.

While celebrating his 80th birthday, Zverev is
deeply involved in his creative endeavors. As always,
he is full of new ideas and plans. He spends much of his
time working with his personal computer verifying new
concepts and algorithms of signal selection against
background noise. In the aforementioned monograph
published in 2001, Zverev considered some character-
istic features of programming for wave problems and
included a great number of specific computer codes,
which clarify the principles of image formation under
different conditions. He shares his enthusiasm for work
with his students and colleagues. Zverev is an interest-
ing story teller; he has written memoirs about different
people and about his childhood, studies, and work. Part
of the stories were written as lectures for schoolchil-
dren with the aim of showing them the attractiveness of
scientific studies.

Zverev’s hobby is classical music, which he has
loved since childhood. At the age of 23, he started play-
ing piano, and, today, he can easily play his favorite
pieces by Liszt, Beethoven, Rachmaninov, Schubert,
and other composers. Though 80 years old, Zverev
remains tireless in his many-sided activities and cre-
ative abilities, with which nature has generously
endowed him. He demonstrates a wonderful example of
vitality and devotion to science and human ideals.

The friends, students, and colleagues of Vitaliœ Ana-
tol’evich Zverev wish him good health and further suc-
cess in his creative endeavors.

Translated by E. Golyamina
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