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Abstract—The results of experiments on the polarization of nuclei of the 2*Na radioactive isotopein agastrap
are presented. The action of the trap is based on the effect of the photoinduced drift of atoms caused by laser
radiation. The anisotropy of y-radiation emitted by ?*Na during the illumination of sodium vapor in the trap by
circularly polarized laser radiation is measured and its dependence on the temperature of the trap wallsis ana-
lyzed. A degree of polarization of *Na nuclei of 62 + 2% is attained at temperatures above 1300 K, for
which arapid desorption of Naatomsfrom thewalls and the decomposition of Na-based compoundstake place.
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Since 1950, when the possibility of the optical spin
orientation of atoms was predicted by Kastler [1], a
large number of works devoted to the creation of
ensembles of free polarized atoms and nuclei by the
optical pumping method appeared (a detailed descrip-
tion of the method of optical orientation is given in the
review by Happer [2]). Polarized gas ensembles of
radioactive isotopes could be used for determining the
nuclear electric and magnetic moments as well as the
multipolarity of radiative transition [3] or for adetailed
analysis of fundamental processes such as [3-decay [4,
5]. However, the main limitation in the experiments
with polarized radioactive isotopes in gas cells is the
adsorption of the atoms under investigation at the cell
walls and the depolarization of the atoms. For this rea-
son, the experiments on optical polarization involving
the measurement of the nuclear radiation anisotropy
were carried out either on chemically inert atoms, or on
isotopes with a lifetime shorter than or comparable
with the time of diffusion of an atom under investiga-
tion to the cell walls [3, 6]. The effect of the walls can
be reduced by choosing an appropriate coating and
heating or can be eliminated amost completely by
using magnetooptical traps [7]. However, the former
method is applicable to a limited number of elements,
while traps are complex and fine experimental setups
with asmall capacity for accumulating atoms (less than
108 as arule) and a low efficiency of trapping [8, 9].
Besides, the electromagnetic field confining ions may
cause the depolarization of nuclei.

An alternative method for reducing the effect of the
walls of agas cell isbased on the effect of the photoin-
duced drift (PID) of atomsin a gas under the action of
laser radiation [10]. This effect makes it possible to
concentrate the atoms contained in the gas cdl in a

small volume (much smaller than the volume of the
cell) and to suppress the diffusion of atomsto thewalls.
However, the optical orientation of atoms reduces the
probability of the absorption of polarized laser radia-
tion, thus decreasing the drift velocity and suppressing
the PID effect. This negative influence of polarization
on PID can be eliminated almost completely by the spa-
tial separation of theregionsin which the optical pump-
ing and the PID take place. Thisideawas implemented
in our earlier work [11] for the stable 2*Na isotope:
10* atoms with a degree of polarization of 90% were
confined with the help of PID in a tube sealed at one
end (we measured the polarization of resonance-scat-
tered optical radiation corresponding to the D, line
of Na).

However, such an experimental setup could not
reveal Na atoms adsorbed at the tube walls and hence
depolarized since such atoms make zero contribution to
the resonance-scattered radiation. In order to obtain a
real pattern and to determine the degree of polarization
affecting all atoms including those adsorbed at the
walls, experiments with unstable nuclides are required.
The degree of polarization in such experiments could
be determined from the radioactive radiation. This
work is devoted to such an experiment, which includes
the polarization of the nuclei of the »*Na radioactive
isotopein a Pl D-based trap and the determination of the
degree of polarization from the anisotropy of the y-radi-
ation as well as the influence of various conditions on
the degree of polarization. The 2*Naisotopeis a conve-
nient object which is often used for such experiments
(the polarization of its nuclel exposed to a short high-
intensity pulse of laser radiation was observed by us
earlier [12]). The sequence of spins and the multipolar-
ity of radiative transitions in the daughter Mg nucleus
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lead to a noticeable anisotropy of the y-radiation emit-
ted by polarized **Nanuclei.

Theideaof aPlID-based trap can be presented asfol -
lows. If the drift of atomsinthetubeislimited by apar-
tition, the atoms accumulate near it until the drift is
compensated by the backward diffusion flow. In opti-
mal experimental conditions, the photoinduced drift
can create high density gradients, and most of the
atoms are confined near the partition in alayer having
athickness of just afew millimeters.

An important property of a PID-based trap (which
will be henceforth referred to asjust atrap) isits selec-
tivity. If atoms in a trap stop absorbing radiation after
the formation of molecules, the PID stops acting on
them, and the atoms |leave the trap as a result of diffu-
sion. Moreover, owing to theisotopic shift and (or) dif-
ferent modes of the hyperfine splitting for two different
isotopes in the optical transition being excited, the
wavelength of the exciting laser radiation can be tuned
so that the PID of atoms of these two isotopes will
occur in opposite directions. This peculiarity of PID
was demonstrated in our earlier work [13] for two
radioactive isotopes ??Na and ?*Na. Thus, only a defi-
nite isotope in the atomic form is confined in the trap
which can serve as an isotope separator.

Itiswell known that at temperatures near 400 K, the
adsorption of akali metals at the walls can be sup-
pressed by a paraffin coating [2]. Unfortunately, the
lifetime of atoms (relative to chemical binding) in cells
with such a coating does not exceed a second, which
sets a limit on their application. For this reason, in our
experiments we suppressed the adsorption at the walls
by heating the sapphire cell to a high temperature
instead of coating the walls with paraffin [11]. In our
subsequent experiments, we measured the energy of
adsorption of sodium atoms on the sapphire surface,
which proved to be equal t0 2.48 £ 0.1 eV. Thisvalueis
close to the binding energy of sodium with oxygen in
the Na,O molecule (2.55 eV [14]). For such a binding
energy, the sapphire surface should be heated to atem-
perature above 1800 K to suppress the adsorption com-
pletely. If we coat the sapphire surface with a potassium
layer, the adsorption energy for sodium atoms
decreases to 1.76 £ 0.07 eV [14], and the temperature
required for suppressing the adsorption decreases to
1300 K. Thismakesit possibleto carry out experiments
on the polarization of sodium at more accessible tem-
peratures.

At high temperatures, the suppression of adsorption
takes place along with the decomposition of molecules
in which the captured atoms are bound chemically. The
lifetime of adiatomic moleculewith the binding energy
E is defined by the well-known Arrhenius formula

E
Tmo = To€XP %ﬁ-% (1)
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where 1, isthe pre-exponentia factor, kis Boltzmann's
constant, and T is the absolute temperature. Substitut-
ing into expression (1) the typica values for sodium
bound with oxygen (1, ~ 103 s, E = 2.55 eV, and tem-
perature T=1300 K), weabtain 1,,, = 0.5 ms. Thistime
is too short for the molecules to leave the trap due to
diffusion. The atoms formed again drift to the closed
end of the trap, where they are confined. Thus, the
reversibility of chemical binding processes at high tem-
peratures makes it possible to confine atomsin the trap
without losses due to chemical binding. For the laser
radiation intensity used in our experiments (exceeding
10%° photon/(s cm?)), the polarization of 2*Nanuclei as
aresult of the optical pumping (including a number of
consecutive acts of excitation and spontaneous de-exci-
tation) occurs during atime shorter than a millisecond.
For this reason, virtually all sodium atomsin the laser
radiation zone are polarized.

Let us estimate the time of confinement of atomsin
the trap, which is important for carrying out experi-
ments. For the sake of simplicity, we assume that the
adsorption at the cell walls is insignificant, i.e., the
number of adsorbed sodium atoms is much smaller
than the number of free atoms. We also neglect the
losses associated with the radioactive decay and chem-
ical binding. In this case, the losses of atomsin the trap
are determined by their diffusion flow through the open
end of the tube:

dN(@) _  ~dn(L, 1)
dt =-D dx @)

L

NGO = [n(x, o, A3)
0

where n(x, t) is the number density of atoms, D is the
diffusion coefficient, and the valuesx = 0 and x = L cor-
respond to the closed and open ends of the trap. We
assumethat the time of confinement of atomsin thetrap
ismuch longer than the characteristic times of diffusion
and drift:

onx,t) Dazn(x, )

ot P 4
onx,t) . ,9n(x t)
ot > YTax ©)

where u is the PID velocity. In this case, the number
density of atoms is determined by the steady-state
equation

°n(x,t)  an(x,t) _
D " -u X = 0. (6)
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Solving this equation with the boundary condition
n(L,t) = 0, we find the following expression for the
number density of atoms:

n(x, t) = ny(t) [exp SJ—E;(E— exp %E} ™

O<x<L.

It should be recalled that u < 0. Assuming that the drift
velocity ishigh (JlulL > D), weevauatetheintegral in (3):

N = o0 . ®)

Substituting (5) and (6) into Eq. (2), we find the solu-
tion in the form

t
N(t) = Noexp =13 )

D QulLp
T= —expa—
P05 O

(10)

Let us find a numerical estimate of T, viz., the time
of the confinement of atoms in the trap for the typical
parameters of the experiments. For a pressure of the
buffer gas (krypton) of 30 torr at 1300 K, the values of
the diffusion coefficient and the drift vel ocity measured
in[10, 11] are D = 50 cm?/s and u = 150 cnV/s. For the
trap length L = 10 cm, the confinement time amounts
approximately to 2 x 10'° s, or more than 600 years. It
should be noted, however, that the situation changes
radically when atoms are confined in the trap by circu-
larly polarized light, and the effective optical pumping
takes place. The optical orientation of atoms lowersthe
probability of radiation absorption and, as a result,
decreases the PID velocity approximately by an order
of magnitude [11]. The time of the confinement of
atomsin the trap decreasesto 4.5 sin view of its expo-
nential dependence on the PID velocity. This can be
avoided by placing the open end of the tube in atrans-
verse magnetic field destroying the optical orientation
of the atoms. In this way, the regions of effective influ-
ence of the PID and optical pumping are spatially sep-
arated: the drift is effective at the open end, confining
theatomsin thetrap, whilethe optical orientation of the
confined atoms takes place at the sealed end. While
estimating the confinement time for atoms on the basis
of formula (10), we must take the length of the trap
region in which the PID is operating actively (i.e., the
larger part of the tube) instead of the entire length of the
trap. This decreases the value of T insignificantly.

It should be recalled that the optical polarization of
radioactive 2Na atoms (T,, = 15.02 h) by an optical
radiation with circular polarization with a frequency
tuned to the D, transition in the presence of abuffer gas
has some peculiarities. The hyperfine splitting of the
ground state of *Na is smaller than the Doppler's
broadening so that both hyperfine sublevels interact
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withthe optical radiation. It isessential for the polariza-
tion that in the course of the transition Sy, — P,,, the
sublevel corresponding to the maximum component of
the atomic angular momentum m = +9/2 (nuclear spin
| = 4) isunable to absorb a photon with the right polar-
ization o* by virtue of the momentum conservation law,
while atomsfrom all the remaining sublevels go over to
an excited state. The cross section of mixing of sublev-
elsof the Py, state asaresult of collisionswith particles
of the buffer gasis of the order of 1074 cm? [2], which
exceeds the gas-kinetic collision cross section. Thus,
for buffer gas pressures which are optimal for the PID
effects (approximately 30 torr [15]), the sublevels of
the P, state are mixed completely, and the excited
state is depolarized. As a result of spontaneous relax-
ation, the sublevels of the ground state are populated
uniformly, the sublevel with m. = +9/2 being also pop-
ulated with a probability of 1/18. The cross-section of
the mixing of sublevels belonging to the S, state due
to collisons with krypton atoms is much smaller
(approximately equal to 2.0 x 1072t cm? [2]). Thus, the
nonuniformity in the population of the sublevels of the
ground state emerging as aresult of multiple excitation
and spontaneous relaxation processes is accumulated.
In this case, the atmosphere of sodium atoms with the
maximal angular momentum component becomes
completely transparent for the circularly polarized laser
radiation tuned to D, transition.

The degree of the polarization of ?*Na nuclei was
determined from the anisotropy of its y-radiation emit-
ted as aresult of B-decay. This y-radiation consisted of
two y-quanta with energies of 2.754 and 1.369 MeV in
a cascade [16]. The sequence of spins and parities of
the nuclear energy levelsin the - and y-transitions was
asfollows:

4 Pogr Y Yoo,

The angular diagram of the emission of y-quantain the
nuclear transition of the daughter Mg nucleus is
described by the relation [17]

2L
W(0) = Z By(1o)UyAy(LLI1)P,(cosB), (11)
A=0

where 6 is the angle between the directions of orienta-
tion of the nuclear spin and the emitted y-quantum,
B, (l,) arethe parameters of the orientation of the parent
nucleus, U, are the parameters of disorientation as a
result of the transitions preceding the observed transi-
tion, A, (LLI;1;) are the angular distribution coefficients,
P, (&) are the Legendre polynomials, L is the multipo-
larity of the transition, I, is the spin of the parent
nucleus, and I; and |; are the final and initial values of
the nuclear spin in the transition. The summation in
(11) is carried out over only even values of A.
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The orientation parameters are defined by the rela
tion

By(lg) = ~2A+1,/21,+1

|

° +m O (12)
x 3 ()"0l oA ),

m=i, O-mmoU
where the parentheses contain the 3j symbols, and p(m)
is the occupancy of a sublevel with the nuclear spin
component m (m assumes the values from —4 to +4).
The main depolarizing processes accompanying the
optica pumping are the absorption of unpolarized
spontaneous radiation and the relaxation at thewalls. In
the former process, al the m-sublevels of the ground
state are populated with the same probability. We can
assume that the same applies to the relaxation of the
atomic angular momentum at the wall. Thus, concern-
ing the distribution over m sublevels of the ground
state, we can assume that the population of all the
me-sublevels (except that with me = +9/2) is the same,
while the elevated population of the sublevel with mg =
+9/2 indicates the polarization of atoms. In this case,
the population of sublevels p(m),,» 4 = Py, While p(4) =
po + A, and the orientation parameters are
B,(4) = 1.5954A, B,(4) = 0.9387A, (23

where A indicates the degree of polarization of #Na
nuclei. The disorientation parameters are determined
by al the previous transitions:

_OUB), 4— 2,
U, = EFJ
A(BU,(42), 2 —0.
It is natural to carry out the experimental observa-
tion of the anisotropy of the y-radiation in directions
where it has the maximum value, i.e., for the values of
theangle 8 = 0 and 90°. We assume that the 3-transition

is a purely Gamow-Teller transition. Then the coeffi-
cientsin formula (14) have the following values [17]:

U,(B) = 0.8500, U,(42) = 0.7491,
U,(B) = 0.5000, U,42) = 0.2847,
A(2224) = -0.4477, A,(2202) = —-0.5976,
A, (2224) = -0.3044, A,(2202) = —1.0690,
P,(cos0) = 1, P,(cos(1/2)) = -1/2,
P,(cos0) = 1, P,(cos(1v2)) = -3/8.

Substituting these parameters into formula (11), we
obtain identical expressions for both transitions:

W(0) = 1-0.7500A, W(90) = 1+ 0.2500A. (16)

The block diagrams of the experimental setup are
presented in Fig. 1. The main element of thetrap wasa
sapphire capillary of length 20 cm and inner diameter

(14

(15
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2.5 mm, which was sealed at one end. The capillary was
placed in atantalum coil and enclosed in another sap-
phire tube of alarger diameter. The coil ensured ahigh
temperature of heating and created a magnetic field
parallel to the direction of laser beam propagation. The
strength of the magnetic field created by the coil in our
experiments was 50-80 Oe. The cell wasfilled with the
buffer gas (krypton) under a pressure of 30 torr. Before
starting the experiment, the coil was calibrated: the
temperature was measured with the help of a thermo-
couplelocated directly inthe capillary at the sealed end
for various values of the voltage across the coil under
the experimental pressure of the buffer gas. A wire
made of ultrapure aluminum, having a mass of 20 mg,
and irradiated by fast neutrons in the LVR-15 nuclear
reactor at the Institute of Nuclear Physics, Rez (Prague
region) was placed on atantalum fail in the capillary at
adistance of 5 cm from the open end. As aresult of the
reaction 2’Al(n, a), 2Nawas obtained in an amount of
1.5 x 10" atoms. The intensity of the y-radiation emit-
ted by it was 5.5 x 10° Bg. Since tantalum is wet by
molten aluminum, the tantalum foil prevented the for-
mation of a drop of liquid aluminum in the sapphire
capillary, which could block the laser beam.

Permanent magnets creating a transverse magnetic
field of astrength of approximately 100 Oe (which was
sufficient for destroying the spin orientation of atomsin
thishalf of the trap) were arranged in the vicinity of the
cell at the open end. In the other half of the trap closeto
the sealed end, the strength of the field created by the
permanent magnets rapidly decreased and was below
10 Oe at a distance of 3 cm from the magnets, which
did not affect the orientation of atoms. The beam emit-
ted by adyelaser (manufactured at the joint-stock firms
“Inversiyd’ and “Tekhnoskan”, Novosibirsk) passed
through the capillary from the open to the sealed end.
The beam power was approximately 100 mw, and the
radiation frequency was tuned to the center of the D,
line emitted by stable sodium, which correspondsto an
approximately 700-MHz detuning from the center of
the line emitted by **Na to the “red” side (isotopic
shift). This ensured a PID velocity in the direction of
light propagation, which was close to its maximum
value. The beam had a Gaussian profile, its diameter
could be varied from 0.5 to 1.5 mm, and the polariza-
tion of the radiation was linear.

The larger tube contained an ampule with metallic
potassium placed at a distance of 8 cm from the
entranceto thetrap. In the course of the experiment, the
ampule was permanently heated so that the light of the
resonance fluorescence of sodium contained in potas-
sium as asmall admixture could be seen. The tempera-
ture of the ampule with potassium was close to that at
the sealed end of the tube and was measured by the
thermocouple. Potassium vapor purified the buffer gas
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10 9
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Fig. 1. Block diagrams of the experimental setups for mea-

suring (top) the spatial distribution of 2*Na in the cell and
(bottom) the anisotropy of the y-radiation emitted by

trapped 2*Na atoms: (1) sapphire capillary sealed at one

end, (2) aluminum containing 2*Na atoms, (3) sapphire
tube, (4) dye laser beam, (5) movable platform, (6) y-detec-
tor, (7) lead shield with a dlit, (8) ampule with metallic
potassium; (9) permanent magnet creating a transverse
magnetic field sufficient to destroy the optical polarization
in ahalf of thetrap, and (10) A/4 polarization plate.

and decreased the adsorption of sodium at the sapphire
surface which was gradually saturated with potassium.

The capillary was gradually heated, and sodium
atoms started leaving the aluminum, which was heated
and then melted. The spatial distribution of radioactive
sodium during heating was determined with the help of
a scintillation detector placed behind the dliding lead
dlit (see Fig. 1). The auminum and the tantalum foil
contained a considerable amount of stable sodium asan
impurity. As a result, the medium became opticaly
opague at high temperatures, which hindered the exper-
iments. For this reason, we first had to remove stable
sodium from thetrap, i.e., to separate the 22Naand %*Na
isotopesin the trap. At this stage of the experiment, we
selected a temperature at which the concentration of
sodium being evaporated was not too high and the laser
radiation penetrated to the sealed end of the cell. In due
time, stable sodium |eft the capillary through diffusion,
while ?*Na was concentrated at the closed end of the
capillary owing to the PID effect.

The evolution of the spatial distribution of *Na
upon agradua increase in temperatureisshownin Fig. 2.
After 5.5 h, the capillary was absolutely free of stable
sodium, and the process of separation of the 22Na and
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Fig. 2. Evolution of the2*Nadistribution over thelength | of
the cell during its preparation for the operation: (a) begin-
ning of heeting; (b) after 2.5 h; (c) after 4.5 h; (d) after 5.5 h.
Iyisthe intensity of y-radiation, | = 0 and | = 30 cm corre-
spond to the open and sealed ends of the tube.

%Na isotopes was completed. The glow of stable
sodium in the tube disappeared, and only the lumines-
cence of ?*Na was observed at the seaed end of the
tube. The y-radiation intensity measurements proved
that approximately 10'* atoms of *Na were present in
this region. It should be noted that this value is not the
limiting trap capacity since the latter is determined by
the trap volume which can be made quite large.

In order to calculate the enrichment factor (the vari-
ation of the isotope ratio) attained in the experiments,
we must estimate the amount of stable sodium removed
from the trap. The estimate can be obtained on the basis
of formula (2) by substituting the experimental values
of the parameters appearing in this formula, i.e., 5.5 h
for the separation time and 10%*? cm for the sodium
vapor density gradient. The diffusion coefficient of
sodium under a krypton pressure of 30 torr taking into
account the adsorption at the walls at a temperature
near 1000 K is of the order of 0.1 cm?%/5[18, 19]. It fol-
lows from this estimate that the amount of stable
sodiumis2 x 10* atoms, i.e., three orders of magnitude
larger than the amount of radioactive sodium. The
absence of a glow from stable sodium suggests that its
amount in the trap after the isotope separation is
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Fig. 3. Anisotropy of the y-radiation at various temperatures
of the cell: (1) readings of the detector arranged at 0°,
(2) readings of the detector at 90°.

A®)
0.6 ; :
[
04 if
3 3
0.2 e
§I
O—ﬁigi% §
1100 1200 1300
T,K

Fig. 4. Degree of polarization of 2*Na nuclei in the trap,
obtained from the readings of the detector arranged at 0°
(dark circles) and 90° (light circles) at various temperatures
of the cell.

smaller than one tenth of the amount of #*Na, i.e., less
than 10'° atoms. This means that the enrichment factor
attained in the experiment was larger than 10% In the
course of isotopic separation, we lost only about 20%
of 2*Na, which left the trap and was adsorbed at its open
end. This determines the efficiency of the >*Natrapping
attained in the experiment, which was 80%.

After the spatial distribution of 2*Na was stabilized,
we made experiments on the optical polarization of
%Na in the trap. For this purpose, we measured the
anisotropy of the y-radiation emitted during the decay
of 2Na. The measurements were made with the help of
two scintillation detectors having working volumes of
80 and 57 cm® and arranged at angles of 0 and 90° to
the wave vector of the laser beam at 30 cm from the
closed end of the trap. The polarization of light was
changed from linear to circular polarization and back
with the help of a /4 phase plate. The y-radiation was
detected at 2.754- and 1.369-MeV lines. The intensity
of this radiation was measured by each detector alter-
nately for the linear polarization of the laser radiation
and for the circular polarization (in this case, #Na
nuclei were polarized). Each act of measurement |asted
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for 10 min during which the detectors recorded at |east
4 x 10* y-quanta in the chosen spectra region. These
measurements resulted in the ratios

KOc_fl K90c
K, = . , Koy = —= ,
0 KO,I_fl % K90,I

where K, . and K, , are the numbers of y-quanta
recorded by a given detector for the circular and linear
polarizations of the laser beam, respectively, and f; is

the background from ?*Na escaping from the trap in the
detector arranged at 0°. Figure 3 shows the dependence
of these ratios on the cell temperature (for alaser beam
diameter of 1.0 mm).The statistical errors of measure-
ments are given with a 90% confidence level of the
probability. It should be noted that at temperatures
below 1230 K, the values of Kq are independent of tem-
perature, and their mean valuesare K, = 0.89 + 0.02 and
Kgo = 1.01 £ 0.02. The constant values of K, at temper-
atures below 1230 K can be explained by the fact that
the amount of *Na adsorbed at the trap walls at low
temperatures is much smaller than the amount of *Na
in the gas phase. For this reason, the anisotropy in the
y-radiation of polarized #Nain the gas phase does not
exceed the statistical error for the isotropic radiation
emitted by unpolarized ?*Na adsorbed at the walls. It
was noted above that when linear polarization changes
to circular polarization, the probability of light absorp-
tion decreases due to the optical pumping, and the PID
velocity of “Na atoms decreases accordingly, leading
to the atomic distribution blurring. As aresult, the dis-
tance between the center of gravity of the distribution
and the detector arranged at 0° increases, and this
detector records a smaller number of y-quanta. The
value of the quantity K, = f, = 0.89 + 0.02 indicated
above corresponds to a shift in the center of gravity of
the distribution of trapped atoms by 1.8 £ 0.4 cm. This
systematic error can be taken into account while calcu-
lating anisotropy W(0), and W(0) = K/ f,. The value of
anisotropy W(90) directly correspondsto ratio Kgy, i.€.,
W(90) = K.

Asthetemperature of the cell wasincreased further,
the anisotropy of the y-radiation became larger than the
dtatistical error of measurements. Ratio K, started
decreasing, and ratio K, increased, both values attain-
ing the saturation at temperatures above 1350 K. The
degree of polarization A of nuclei, calculated using the
data from Fig. 3 in accordance with formula (16), are
presented in Fig. 4 as afunction of temperature.

The degree of polarization of atoms in the trap is
determined by the dynamic equilibrium between the
polarization of atoms in the bulk and their depolariza-
tion at thewall. From this point of view, it wasinterest-
ing to measure the anisotropy for various diameters of
the laser beam since an increase in its diameter leads to
an increasein the effective volume in which the optical
pumping takes place and the PID effect is operating.
The table contains the results of measurements of the
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d=0.5mm d=0.8mm d=1.4mm

T, K

Ay, % Ny, % Ny, % Dy, % Agy, %0 Ny, %
1255 14+ 4 14+3 — - — _
1285 24+ 4 33+3 - - - -
1300 25+4 42+ 3 - -
1315 40+4 48+ 2 49 + 5 47+ 4 58+2
1340 33+4 51+2 51+ 56 + 60+4 61+2
1363 - - - - 60+ 4 63+2

degree of polarization from the readings of both detec-
torsfor various values of the laser beam diameter d and
of the sample temperature. It can be seen from the table
that the y-radiation anisotropy increases with the beam
diameter, while the difference in the anisotropy read-
ings of the detectors decreases. This is due to the fact
that the maximum PID velocity averaged over the cap-
illary cross section is attained when the radiation fills
the capillary to the maximum possible extent. As a
result, the distribution of trapped atoms in this case
becomes more compact and is less blurred (in absolute
measure) upon atransition from linear to circular polar-
ization. Accordingly, the effect of random variations of
the geometrical factor on the counting intensity of the
detectors decreases. The maximum degree of polariza-
tion of #Na nuclei attained in our experiments (and
averaged over the two detectors) was 62 £ 2%. One of
the possible ways of increasing the degree of polariza-
tion isthe addition of an inert molecular gas (e.g., nitro-
gen) to the buffer gas for quenching the depolarizing
[uminescence.

The experiments on the optical polarization of 2*Na
and on the measurement of its degree lasted approxi-
mately 6 h. During thistime, the losses of trapped #*Na
atoms corresponded only to their radioactive decay to
within the error of measurements, i.e., the losses due to
chemical binding were less than 2%. This means that if
molecules were formed in the trap, they were rapidly
decomposed into atoms at the experimental tempera-
tures (11001400 K) before they could leave thetrap as
aresult of diffusion. Such low losses correspond to a
very long formal time of the confinement of 2Naatoms
in the trap due to the PID effect (exceeding 300 h).

In conclusion, we list the main results obtained in
this work. It was demonstrated that a PID-based trap
can operate as an isotopic separator with low losses and
a large enrichment factor. In the course of the separa-
tion, theratio of the 2>Na and ?*Na i sotopes changed by
afactor exceeding 10* for losses of 20%. The trap cap-
tured 10 atoms of 2*Na, which were confined for 6 h
in the form of vapor virtually without aleakage (losses
were lessthan 2%). The trapped 2*Naatoms were pol ar-
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ized by laser radiation with circular polarization. The
dependence of the degree of polarization on the capil-
lary temperature was measured. It was found that at
temperatures above 1300 K, at which the rapid desorp-
tion of Na atoms from the walls and the decomposition
of the formed molecules took place, the degree of
polarization of ?*Na atoms reached 62 + 2%. The
obtained results demonstrate the high efficiency of the
developed method of the polarization of nuclei and
raise hopes that this method will be applied in experi-
ments with polarized atoms and nuclei.
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Abstract—We consider radiative corrections to the electron and photon impact factors. The generalized
eikonal representation for the e"e™ scattering amplitude at high energies and fixed momentum transfersis vio-
lated by nonplanar diagrams. An additional contribution to the two-loop approximation appears from the
Bethe—Heitler mechanism of fermion pair production with the identity of the fermions in the final state taken
into account. The violation of the generalized eikonal representation is also related to the charge parity conser-
vationin QED. A one-loop correction to the photon impact factor for small virtualities of the exchanged photon
is obtained using the known results for the cross section of the e"e™ production during photon-nuclei interac-

tions. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

It is well known (see [1]) that the QED scattering
amplitude for the process

atb— a+b

in the Regge kinematics

A(pa @) + B(pg, b) — A(py, @) + B(pg, b)),

2 142 2 (1)
S=(patPs) >-t = —(pa—pa) OUm
has the impact factor representation
A(s t) = is
(sit) 2
d’kt(k, r)T°(k, r) a2
, , +oldm
I[(k+r)2+A21[(k—r)2+A2]Ell a
4r® = —£>0,

that isvalid in the first non-trivial order of perturbation
theory. Here, A isthe photon mass; the two-dimensional
vectors r and k are orthogona to the initial particle
momenta p, and pg. The impact factors T describe the
inner structure of colliding particles. For the electron,
we have

19 = 4mag,;,

where the indices i, j enumerate the electron polariza-
tion states. The expression for the impact factors of the

TThis article was submitted by the authors in English.

photon on its mass shell can be written as[1]
1 1

= 80’ IdyJ'dx+dx_6(x+ +x_—-1)(A;-By), 3

with
A = 1 [8x3x y(1-y)r;r;
Doary(@-y)+mill T -
B, = ———[axdxy(1-y)QQ
D aQy(1-y) ¢l T -

Q%L 8x+xS/ IZHD”}

Q = 3(k+n)-x.r,

wherei, j refer to the photon polarization states.
According to the Regge theory, the impact factor is
proportional to the residue of the pole (j — 1) of the

t-channel partial wave fj+, with the positive signature

describing the t-channel transition of two particles into
anonsense state of two virtual photons[1],

® . pH1pU2
= ]!ifnl(j—l)J’ SimA’ (q,k; $) o2 Q-2(2),

(4)
S' = _2k pA7

1063-7761/01/9202-0203%21.00 © 2001 MAIK “Nauka/Interperiodica’
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where Z = cos@ isthe cosine of the scattering angle 8 in
the t-channel. This is a linear function of s. Here and
below s;, meansthe threshold value of s'. Higher orders
of perturbation theory involve the poles f; O 1/(j — 1)"
that must be subtracted from 1 to provide sumsof all the
logarithmic contributions Ulog(s) using the Bethe—
Salpeter equation [1].

For t = O, the impact factor is proportional to the s
integral of the total cross section for the scattering of
the photon with virtuality —k? off target a with mass m,

_kj

f(s, k%) =

dsGayu( k)f( ).

(5)
s? _akPm?
S ’

where f(s, k?) accounts for the virtual photon flux fac-
tor. Thismultiplier equals unity inthelimit ask? — 0,
which corresponds to the Weizsacker—Williams
approximation:

= [H— (6)
Sth

The motivation for our calculation of the radiative
corrections to impact factors is the high-precision
experiments performed on colliders where some inter-
esting physical quantities (for example, the BFKL
pomeron intercept) are measured [2]. In this case, one
must know the impact factors of the virtual photon [2].
Generally, impact factors describe the coupling of par-
ticles with the pomeron in QED or in QCD. For collid-
ers with electron (positron) beams, radiative correc-
tionsto impact factors can be used to cal cul ate the QED
part of cross sections with a good accuracy.

For small-angle e*e~ scattering, the amplitude for
the diagrams with the multi-photon exchange has the
eikonal representation

A(s 1) = Ag(s, 1)€Y,

Ao(s,1) = 4T 20(p}) pou(py)

R . 2s (7)
XV (p2)Pv(p2) = 4T[O(_N1N21

IN| =1, &(t) = —ialnEE

6

where we used the fact that only the longitudinal (non-
sense) polarizations of thet-channel virtual photons are
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essential at high energies,

a(pPL)Y,U(P:) V(P2)Yy v (P2) G (a),

12p2p1
S

(8)
G™(q) =

The radiative corrections to A, appear from the so-
called “decorated boxes’. These Feynman diagrams
were assumed to lead to ageneralized eikonal represen-
tation

A = Ag(s DM ()]%€°, ©)
whereI",(t) isthe Dirac form-factor of an electron,

uv
VA = Y0 + Tt

M), o =t
(10)

a

Y=

M) = 1+yr2) + ...,
We note that &(t) must also include corrections to the
virtual photon Green function, leading in particular to
the electric charge renormalization.

In the next section, we verify the generalized
eikonal representation for the decorated boxes.

2. ONE-LOOP CORRECTION
TO THE ELECTRON IMPACT FACTOR

Keeping in mind that the amplitude for near-forward
scattering with two-photon exchange is purely imagi-
nary (with corrections of the order n?/s omitted), we
can calculate its s-channel discontinuity. The radiative
corrections to this discontinuity originate from the vir-
tual photons and from the emission of areal photon in
the intermediate state. We split the last contribution into
two parts corresponding to the emission of soft and
hard photons.

The virtual photon contribution contains the elec-
tron vertex function for the on-shell initial and fina
electrons,

ot = Sr O)FP() + FO(K),

FE( = -G(OIng - Gy() = T(1),

_ 1+a’° _ 1+ 2a°
G(t) = >a Inb—1, Gyt) = 1- Ta Inb,(ll)
1+a°
T(t) = >a
No. 2 2001
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b
x {—%Inzb+ Inblin(1+b) —J’d;XIn(l ¥ x)},
1

1_@ b:a+1

—, t<0.
t a—-1

The contribution from the emission of a soft photon
has the classical form

_agh _p D]ﬁ_ilmrwﬂfﬁ
a1t ok, kaD:blkl plk ° W o <6E,
! (12)
OE<E = —/\gs,

where p and p; are the momenta of theinitial and final
electrons and p;, is the electron momentum in the inter-
mediate state. Because the energies of these particles
are approximately equal (but large compared to the
electron mass), we can use the relations

1 d kl m2 _ 2L
2w (pky)?
d° Ky Pi P; _1+a°

ek (RIPR) ™ - (13)
1

dx
Lelnb—ZIn2b+ Inbin(1 + b) —J’;In(l + x)},
1
OE
E<L

= InA+In?, t = (pi—pj)z, A=

with quantities a and b defined above. Thus, we obtain

At = [(G( k%) + G(—k*) - G(1)) L,

(14)
+T(—K%) + T(-k?) - T(1)],

where T(t) was defined above.

Now let us consider the hard photon emission. This
contribution to the imaginary part of the electron—elec-
tron scattering amplitude can be written as

3
o d’ k,dx
Im,A(s, t) = -s—[=—N;N
(1) 2T[2-rk2k'2 12x(1-x)

A<x<1,

1(x, ky, K),
(15)
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where x is the energy fraction of the hard photon. We
obtain

1(x Ky, k) = ﬁ(—4m2+2tlz)

+ _(—4m X*(1—x) + 2tz(1-x))
d,d; (26)

1 1 8m 1

—Am? + 2t,7) — 22+ — 4z + -2z,

d2 1( 2 ) d]_ d2 d dl
zZ= 1+(1—x) :

where

d, = (p—ky)* =" = [+ k],

1
d = (Pt k)=’ = Zrms M+ (dk —ky)’],
d; = (py—k)’ M’ = [m’X+ (xa -k, (17)
1
2pp; =t = g Imz+ (k—ky)°],

' 1
2pip; = t, = 7 [mz+ (xq +ky—k)°L.

The subsequent integration is straightforward and gives
the result

hard

_ (0d 2 2 1
Athd = 10 ﬁ[(G(—k)+G(—k )= G()Ing

(19
+ Gy () + Gy (K%)= Gy(1) |

where G(t) and G,(t) were defined above.

The interference of two amplitudes with a photon
emitted by two initial particles is small ~O(t/s). This
fact isknown in the literature as the up—down cancella-
tion. The contribution of the diagrams with two-photon
exchange is purely imaginary and, consequently, does
not interfere with the real Born amplitude. Adding all
the contributions, we obtain thefinal result for one-loop
radiative corrections to the electron impact factor,

AT, = %T(eO)F(f)(t), 19 = 4ma. (19)

This result agrees with the generalized eikonal form of
the small-angle scattering amplitude. However, in the
higher orders, the eikonal representation is violated as
shown below.
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3. GENERALIZED
EIKONAL REPRESENTATION

The above result for the radiative corrections to the
electron impact factor can be obtained in asimple way.
We consider again a decorated box with a positron
block corresponding to the Born diagram and an elec-
tron block containing a set of four Feynman graphs
with a virtual photon. We express the components of
the exchanged photon momentum in terms of the
squared invariant energies s; and s, for the electron and
positron blocks using the Sudakov parameters

k= ap,+Bp; +kpy,
1
d'k = Z—Sdsldszdzkm, K = k2,

s = (k=py)* = —sa—k*+m’,

S = (k+py)° = sB—k"+m.
Performing the s,-integration by taking the residue
of the intermediate positron propagator (which also

takes the diagram with crossed photon lines into
account), we obtain the total radiative corrections

d’k
S(2T[) I(k + A ((q=k)*+A%)

(20)
XIdslp§ P>0(P1) AL u(py),
C

where G(p;) Ay u(py) isthe Compton scattering ampli-
tude corresponding to the Feynman diagrams with only
the s-channel singularities and C isthe contour situated
above these singularities. The amplitude has a pole at
s; = m?, which corresponds to the electron intermediate
state, and a right-hand cut starting from s, = (m + A)?,
which corresponds to the one-electron and one-photon
intermediate state.

Using the Sudakov parametrization for the photon
momentum k and omitting the small contribution 01/s

proportional to Bp,, we can represent p, as

S
2(k—kD)“.

= 2(k—k—Bpy)" =~ (21)

1

We now consider the product of two terms in the
right-hand side of this equation with the Compton
amplitudeA,,,. The contribution of theterm [k is zero,

ds, kb

I( + kK] (22)

x a(pi) Au(sy k K)u(p,) = 0.
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This follows from the convergence of the integral over
thelargecircleinthes; plane and the absence of the left
cut. The second property is valid for planar Feynman
graphs. Theintegral converges because for the physical
(transverse) polarizations of the virtual photon, the

quantity e p; A, =K/ |k| behavesas /s, at large s,.

Applying the Ward identity for the first contribution
kM, we obtain

P5Po0(P1) A (S u(py)
Se2 v v 2 (23)
= —S—lpzﬂ(pi)r (u(p,), s >m’.
Theintegral over the large semicircle givesthe general-
ized eikonal result I ,,, which means, in particular, that
the total contribution of the various intermediate states
is not zero for physical t < 0. In particular, we see that
radiative correctionsto the impact factor of the electron
contain infrared divergences cancelled only in the total
cross section with the contribution of the inelastic pro-
cess (the photon emission).

For the n-photon exchange, the eikonal result for the
scattering amplitude corresponds to the classical pic-
ture where al the intermediate fermions are on their
mass shell. This is so because the Born amplitude for
the t-channel photon interactions with external parti-
cles tends to zero as (pak;i)2 for (paki) — o, which
allows usto calculate al the integrals over puk; by tak-
ing residues. For the radiative corrections correspond-
ing to the decorated diagrams with one additional vir-
tual photon, we can use the arguments similar to those
applicable in the two-photon case. The physical reason
for the generalized eikonal result for the total contribu-
tionisthat the integration over invariant s (correspond-
ing to the virtuality of the inner fermion line to which
the virtual gluon line is attached) gives zero because
after the cancellation of the renormalization effects in
accordance with the Ward identity, the amplitude

behaves as 1/s” at large 5. The nonvanishing result is
obtained only from the diagrams where the virtua
gluon lineis attached to the externa fermion lines, but
we then obtain the generalized eikonal result. This
argument is not valid for nonplanar diagrams because
they have left and right singularitiesin the s planes[6].

4. IMPACT FACTORS
IN THE TWO-LOOP APPROXIMATION

In the radiative correctionsto the photon impact fac-
tor, the infrared divergences are cancelled in the sum of
contributions from the e*ey and €'e intermediate
states. Using the crossing relationsfort = 0[7], one can
express the contribution of the e*ey intermediate state
to 1¥in terms of the contribution of the eyyintermediate
state to T, which isinvestigated better (see [4-6]). We
here estimate the radiative corrections for t = 0 only at
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small virtualities of the exchanged photon k2. Their
value can be extracted from the results of [3], wherethe
one-loop correction to the cross section of pair produc-
tion by a photon on the Coulomb field of nuclei was
calculated as

i=2

2 .2
Z[T+AT],,(k 0) = B% 145, K<
m
(24)
_a9 [1128 69710 _
P~ 1403 35 <)~ 2100~ 0.009.

The radiative corrections to the photon impact factor
can also easily be found in the region k? > n¥, where
one can use the DGLAP evolution eguations [10].

Now let us consider the radiative corrections to the
electron impact factor. The generalized eikonal hypoth-
esis is violated in the two-loop approximation. (This
fact was verified explicitly for t = 0 [6].) Indeed, if the
generalized eikonal hypothesis were valid, the com-
plete compensation of contributions from the transition
of the initial electron to the intermediate states e, ey,
and eyy would occur. However, it was shown that the
total contributionisnot zero and isequal to theinterfer-
ence term for the e*e~ pair production amplitudes.

To clarify this result, we write the impact factor as

ds
A as, 1 J(A)

T
2m
C

P& Ps, (25)

where the quantity (ﬂsZ)Jflf\,)poB is expressed in
terms of the amplitudes J® for the scattering of the vir-

tual photon from the initial particles and does not
dependonsass — .

In contrast to the planar amplitude A, discussed in

the previous section, Jﬁ\, corresponds to contributions

of all possible diagrams. The integration contour C is
displaced in accordance with the Feynman prescription
between the right- and left-hand side singularities of
the amplitude. The right singularities are the poles at
s, = n? and the cuts at
s, >(M+A)%  s,>(m+2\)°, s,>9n7.

There also exist |eft singularities at the same points for
the crossing variable

u, = s, —t—2m’ +k’+(q—k)>.

The additional e*e= pair can be produced in accor-
dance with the Bethe-Heitler or bremsstrahlung
mechanisms. There also exist interference terms tak-
ing the identity of thefinal electronsinto account. The
most important contribution isfrom the Bethe—Heitler
mechanism corresponding to the e*e~ pair production
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by two virtual photons. The corresponding impact fac-
tor contains the divergence in s, related to the pres-
ence of two-photon intermediate statesin the crossing
channel. (For t = O, this contribution was calculated in
[11].) We write it here only in the Weizsacker—Will-
iams approximation, where it has the form of the sum
rule for the Borselino formulas for the total cross sec-
tion a(s,) of the e*e” pair production in the electron—
photon collisions through the Bethe—-Heitler mecha-
nism,

e dS U(Sl)
T8, = k 1
BH, I T s,
(26)
[
%\In —+b|n—+cD
_ 14 . _ 218 418_13

As discussed above, the logarithmic dependence on the
upper limit sin the integral over s; must be subtracted
in a self-consistent way to avoid double counting,
because the logarithmic contributions are summed by
the Bethe-Salpeter equation for the pomeron in QED
(cf. asimilar procedure for the BFKL pomeron in the
next-to-leading approximation [12]). For muon produc-
tion, we have

3.2
e o’k 2 S S 0
T = —mln"—+bln—+c 28
BHM T[MZ% M2 M2 D ( )
_14 | _ 218 28 M
a=g b=—F7+3Ig 9
_ 3011 28 _107 M
€= 324 Z(Z) In

where m and M are the respective masses of the elec-
tron and muon.

The contribution of the bremsstrahlung mechanism
to e"e pair production must be added with the corre-
sponding two-loop radiative corrections to the electron
form-factor for the elastic intermediate state; the result-
ing expression corresponds to the generalized eikonal
approximation because the corresponding diagrams are
planar [6].

Among many Feynman graphs obtained from the
interference between the various amplitudes for pair
production, there are only four nonplanar diagrams cor-
responding to the identity of electronsin the final state
in the Bethe-Heitler mechanism. Only these graphs
give a nonvanishing result for 1® at t = 0. In the
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Weizsdcker—Williams approximation, the correspond-
ing contribution was calculated in [7],

(e _ K o [221 41549

T = T Ca15 * 6300 ¢
(30)

DkO(

192¢(2)In n28 ~3.57).

105Z (3)- 105

This leads to the sum rules for the integrals of the one-
and two-photon bremsstrahlung cross sections and the
slope of the Dirac form-factor at t = 0 [6].

Finally, the total two-loop contribution to the elec-
tron impact factor can be written as

2
A _o(4
1= =R+ 18,

2 (31)

where F{” is the full two-loop correction to the Dirac

form-factor (including the nonplanar diagrams and the

diagrams with theinner fermion loop). Theterm T3, is

thetotal contribution of the imaginary part correspond-
ing to the Bethe-Heitler mechanism of the pair produc-
tion including the interference effects related to the

identity of the produced electrons (Tgy = Tay, + Tay,
+ 1 fort=k2=0).

The physical meaning of thisformulaisobvious: the
non-trivial corrections to impact factors are related
only to the charge particle production in the intermedi-
ate states.

5. CONCLUSION

In the three-loop approximation, the most important
contribution to the photon impact factor corresponds to
the diagram with two fermionic loops connected in the
t-channel by two photons. It contains the logarithmic
divergence UlIns because the imaginary part of the cor-
responding amplitude is proportional to s, for large s;.
In particular, for t = k? = 0, the impact factor can be
expressed as the integral of the cross section for the
trangition of two real photons into two e‘e pairs.
Again, the ultraviolet divergence in s, is compensated
by the infrared divergence in the relative rapidities of
the produced pairs in the Bethe-Sal peter equation for
the pomeron in QED. The virtual photon actually inter-
acts with the electric dipoles inside the initial photon
[13]. The growth of the impact factor OInsisrelated to
the logarithmic increase of the number of dipoles at
large energies. The fermion identity effectsin the inter-
mediate state do not have any influence on this growth.
The contribution of the diagrams with one e"e pair and
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several photons gives afinite contribution to the photon
impact factor.

We now consider three-loop corrections to the el ec-
tron impact factor. The most important contribution
OIn?s comes from the one-loop radiative corrections to
the Bethe—Heitler mechanism of e"e production. Other
diagrams lead to finite terms. The generalized eikonal
representation is violated by nonplanar diagrams
related to e*e~ pair production, but there is another rea
son for its violation. It is related to the charge parity
conservation in QED. Indeed, two external photons
with momenta k and g — k cannot pass through the fer-
mion loop to the three-photon intermediate state in the
t-channel. Therefore, the generalized eikonal represen-
tation, containing in particular the form-factor corre-
sponding to the transition of the external photon
through the fermion loop into the three-photon state,
cannot be valid in the three-loop approximation.

The methods developed above for QED can aso be
used in QCD, where we urgently need to calculate the
radiative corrections to impact factors of the virtual
photon and other particles to find the energy region of
applicability of the BFKL theory in the next-to-leading
approximation [11].
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Abstract—The resonance fluorescence spectra of a degenerate three-level atom of the \-typein the field of an
intense monochromatic wave with an arbitrary polarization composition are investigated. Analytical expres-
sions are derived for the resonance fluorescence spectra, and the angular distribution of spontaneous fluores-
cence of atomsisanalyzed for the D-line emitted by vapors of alkali atoms. It is shown that the number of lines
inthe spectrum may decreasein the case of thelinear polarization of spontaneousradiation. Theradiation rel ax-
ation operator is obtained for the D-line of alkali metals in the case when an atom is near the metal surface.
Interference effects for such systems are analyzed. © 2001 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

Quantum interference processes accompanying the
spontaneous emission of atomsin two and more closely
spaced states has attracted attention from researchers
during recent years [1-10]. This is associated with
numerous and diversified effects (such as the trapping
of population [7], the decrease in the total intensity of
spontaneous radiation [11], the narrowing of individual
lines in spectra[1-5], occupancy beats [6, 12], and the
dependence of the shape of the spectrum on the phase
of exciting fields [2, 3, 10]) resulting from interference
processes in such systems.

For the emergence of an interference pattern, at |east
two correlated paths are required. The interference pro-
cessesin this case may affect the structure of the radia-
tion relaxation operator only if the system arrives at the
same final state. The simplest system of thistypeisa
nondegenerate three-level V-type atom for which all the
above-mentioned effects have already been manifested.
It should be noted, however, that such asystemisof the
model kind and does not include many characteristics
of real physical systems which are important for an
analysis of interference processes. A disadvantage of
such modelsisthe disregard of the possible degeneracy
of energy levels aswell as the angular and polarization
composition of the exciting and spontaneous radia-
tions. Moreover, the dipole moment of transitions is
assumed to be a scalar quantity. In our earlier publica-
tion [11], we proved that the inclusion of these factors
renders the radiation rel axation operator for most phys-
ical systems in the form identical to the standard diag-
onal expression. Thisisdueto the fact that the interfer-
ence terms vanish either as aresult of integration over
the solid angle, or upon summation over polarizations.

The interference terms appear only when the following
additional condition is satisfied: the density of states of
the eectromagnetic field is anisotropic [11, 13]. Thelife-
time of the excited state for such systems has already been
analyzed. Chew [14] studied the radiation emitted by a
vibrating dipole in asmall dielectric sphere. The effect of
the variation of relaxation constants in a cavity is also
well known. However, the influence of an anisotropic
density of states on the interference process accompar
nying spontaneous emission has become an object of
investigation only recently [13].

Another aspect which has been disregarded till now is
the influence of interference effects on the angular distri-
bution of spontaneous fluorescence of atoms. In [15], we
analyzed theangular distribution of the resonance fluores-
cence intensity for degenerate three-level systems of
the V-type in the field of an electromagnetic wave with
an arbitrary polarization composition. We proved that
the contribution of the interference processes must be
taken into account in an analysis of the angular distri-
bution of spontaneous radiation in spite of the fact that
such processes do not affect the dynamics of occupan-
cies and the total intensity of resonance fluorescence
for systems under standard conditions.

Thiswork isdevoted to an analysis of the resonance
fluorescence spectra for degenerate V-type three-level
systems and their dependence on the direction of obser-
vation and the polarization composition of the pumping
wave. Wewill analyzein detail the spectra of the D-line
emitted by alkali metal vapors taking into account the
influence of interference effects on the structure of the
radiation rel axation in the case when an atom is near the
metal surface.
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THE INFLUENCE OF QUANTUM INTERFERENCE EFFECTS

2. BASIC EQUATIONS

Let us consider the interaction between an ensemble
of degenerate three-level atoms of the V-type, charac-
terized by the total angular momentum J; of the levels
(j = b, ¢, d), and amonochromatic wave whichisin res-
onance with the trangtionsb — dand c — d (Fig. 1).
Assuming that the electromagnetic wave has an arbi-
trary polarization composition and using the rotating
wave approximation, we present it in theform of asum:

E = Z eoEo(eicot_i_e—iwt)’

0=0,%1 (1)
_1 .
Eil = +72(EX i IEy), EO = EZ'

Here, E isthe electromagnetic field vector, €° isthe unit
vector of o-polarization, E,, E,, and E, are the ampli-
tudes of field oscillations along the corresponding axes,
and E,; and E; are the corresponding amplitudes of the
polarized radiation. Using the dipole and resonance
approximations, we present the Hamiltonian (in rad/s)
of the system in the form of a sum:

H = FHo+ H + VL +V,. 2

Here, Ho describes the unperturbed atomic system:

€(J;, M)

o= 3 5

j=b,c M;

| M; I ], ©)

where e(J;, M) isthe energy of the atomic state with the
total angular momentum J; and its component M; along
the quantization axis z, and [M;j | and |jM;Clare the bra
and ket vectors of this state, respectively. Since we will
henceforth disregard the effect of magnetic sublevel
splitting as well as other effects leading to the depen-
dence of the level energy on the magnetic moment
component or other guantum numbers, the Hamiltonian
of afree atom can be written in the form

Ho = z ijd”MjD]]ijl’ (4)
j:b,ch

where w4 is the frequency of the j — d transition for
any pair of sublevels.

The second term in (2) describes the Hamiltonian of
the quantum field of radiation:
H f = Z wké:oékm (5)
ko

where wy is the frequency of photons with the wave
vector k and with ¢ polarization, and &, and &, are
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Fig. 1. Energy level diagram for a degenerate three-level
atom of the V-type.

the creation and annihilation operators for the corre-
sponding photons.

The interaction between a pumping wave and the
atomic system can be described by the expression

Vi = Z Z [Vid(M;Mg) exp (=i t)|jM;IMd]

j=b,chMd (6)
+ V4 (MgM;) exp (i t) [dMyIM; j[],
de(MjMd): Sj(Mde)
_ _Ujd(MjMd)Eo ()
) a—
o=0,%1

where ((MMy) is the matrix element of the dipole
moment. Using the Wigner—Eckart theorem [16], we
can write expression (7) in the form

Vi4(M;My)

= Y ), w V40,
0=0,+1 (8)
—1)?||uid E
2./3h
where Cﬁj_M"j 3,-m, arethe Clebsch-Gordan coefficients
[16], and ||4|[istheirreducible value of the matrix ele-
ment of the dipole moment.

The interaction of atoms with the quantum field of
radiation is described by the expression

Vo= 3 5 (915(MMoa|iMIMd]

j=b,cko MMy

— 957 (MM, & |dM M ),
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where

o 2TIW,
g:(d(M Mg) = Hja(M;My) Wk

W being the quantization volume. Using the Wigner—
Eckart theorem, we finally obtain

gﬁf('\/ldl\/l,-) = glj(g(M'Md)
2noo (10)
= (=1)°Cos,-wmlMial |

In order to describe the system under consideration,
we will use the atomic density matrix formalism [17].
The equation for the atomic density matrix assumesthe
form

ip = [Fo+ Vi, p] +if (o), (11)
" describing the radiation relaxation processes. It was
proved by us earlier [15] that disregarding the doublet

splitting, we can present operator ™ in the form

() = 3 (26" -6"6'p-p6" &), (12)

k

where the nonzero elements of operator G have the
form

~k _ ko .

Ga(Mg, M)) = dgj (MgM;), ] = b,c.
All the remaining elements of the operator are equal to
zero. The asterisk in Eq. (12) indicates Hermitian con-
jugation. The last two terms in this equation describe
the radiation relaxation of the density matrix and tran-
sitions to lower-lying levels, while the first term corre-
spondsto the arrivalsto the lower energy levels. Applying
the Wigner—Weisskopf procedure to the sumsin Eq. (12),
we obtain the following expression for the constants of
the radiation relaxation of magnetic sublevels, includ-
ing the nondiagonal elements:

yjljz(M sz) = I Z g (M Md)

Myoo'

dk
(2n)3
(13)

I, M M
1
z JaMy lc .]dM lo

dk
x D! )DL, W (W — w,) ——.
I}\:Zﬂ( ro) DroWG(wy p)(zn)g,

x gléjc:(Mdez)C(wk - W, 0,0')

27 o [ sl
ﬁA/(ZJ +1)(23;,+1),,
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Applying a similar procedure, we can obtain the fol-
lowing relation for the arrivals to lower energy levels:

VaoMMa) = [2 5 GG (MaM,)g(M;, M)

Mlejzco'
~ dk
*Pj,i,(Mj M) ¢(wy -, 0,0 )%
_ Ao ]
h (23, +1)(23, +1)

-2
Ju o Mjl‘ sz,o o'

(14)

M M
CJ My 10CJ My 10 JIJZ(M sz)

<Y (Dh) Dhownc(e— )55
A==1

(2 )
Here, ¢(ux—wy,, 0, 0") isthe spectral contour of theline,

W = (@ + W)/2, and Dy, = Dy, (4=, B=6,y=0)
isWigner's function [18], where angles ¢ and 6 define
the direction of the wave vector k of an emitted photon.
The method enabling us to determine the structure (12)
of the radiation relaxation operator and the expression for
its elements (13) taking into account the interference pro-
Cesses accompanying spontaneous emission for a degen-
erate three-level system of the V-type was considered in
detail in [15]. Expressions (12)—(14) completely deter-
mine the radiation relaxation processes for the model
under investigation. It was proved by usearlier [11] that
the operator of radiative departures for most real sys-
tems has a diagona structure. This follows from the
orthogonality of Wigner’'s functions [18],

i 3 dO 1
IDAMD)‘ZGZZ‘;[ = 21+1 16J1J260102’

if we take into account the properties of the sums[16]

(15

ZCJ My 1oCJ Mlo — d; 5 - (16)

11" "2

Formulas (15) and (16) immediately show that the val-
ues of y; ;. (M; M, ) differ from zero only for j, = j,
and M; = M,.

It should be emphasized that the application of
equality (15) in expression (13) for the relaxation con-
stantsimplicitly presumesthe isotropy of the density of
states of the electromagnetic field. Another situation
takes place, for example, in the vicinity of the metal
surface. In this case, the property of normalization and
orthogonality (15) is not observed in the general case,
and the operator y; ; (M; M; ) may not have a diago-
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nal structure. Besides, the explicit form of the operator
and the values of its elements may depend on the choice
of the direction of the z-axis relative to the surface. By

way of an example, the values of y; ; (M; M; ) near

the surface of ametal are given inthe Appendix for var-
ious orientations of the z-axis relative to the surface.

The dynamics of the system under investigation in
the rotating wave approximation is described by the
following equations:

10;,i,(M,M;) = 4 ;.0;,;,(M,M;))
+ > (Dlyg,iMM)p;;,(MM))
i
+p;,;(M; M)y, (M;M;)]
+ 3 [V3a(M;, M)y, (MM,
My
~P1,a(Mj,Ma)Vai,(MgM )],
ipia(M;Mg) = AP (M) My)
=i Vi, (M;,M))Pja(M;My)
iM;
+3 Vi0(M;, My)Baa(MsMy)
M

- ijlj(Mlej){/id(MjMd)y

j=b,c Mj

iPaa(MgM?) = iygg(MgM?)

(17)

+ 5 [Va(MM)B (M M)

j=b,c My
~Pj,a(MgM))Va(M;MQ)],
Pj,a(Mj My) = pgjl(Mdel)’
where
Vhd(Mled) = Véh(deMjl)
= led(Mled)exp(—ith),
5j1d(Mj1Md) = pja(M; My)exp(-iwt),

i1 IFNE
AL = (*)Jld_wL' Ajljz = AL _AL'
We disregard the effect of relaxation processes associ-
ated with collisions, assuming that the density of the

medium is quite low. Obviously, the effect of collisions

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

213

for dense mediais significant and may lead not only to
a depolarization between states, but aso to a displace-
ment of magnetic sublevels. Since the effect of other
(outer) energy levels is neglected, Egs. (17) must be
supplemented with a normalization condition:

> D PiMMy) = 1.

j=b.cd M,

(18)

3. RESONANCE FLUORESCENCE SPECTRA

Let us derive the general expressions for the reso-
nance fluorescence spectrum when the observation is
carried out in an arbitrary direction. In order to con-
struct the spectrum, we use the apparatus of the atom—
photon density matrix [19]. We define the operation
Cnv(...) which puts an n x n matrix, where

n= Y (23+1),

j=bcd

in correspondence with a vector of length N = n x n
according to the following rule:

Cnv(h) = (hpy(JIpdp), Npp(Ipdp—1), ...,
thJZ(MleJZ)’ ey hdd(_\Jd_Jd)).

Using this transformation, we can write Egs. (17) for
the density matrix in the form

i dCnv(p) _

Ot MCnv(p).

(19)

Using matrix M, we can write the equations for the
atom—photon density matrix in the form

dcnv(p,)
dt
o o (20)
= (M —vI)Cnv(p';z )+ Cnv(pszkz ),
V= -w, k,=IKe,

where p\'fA is the operator of the atom—photon density

matrix and p* is the operator of the atomic density
matrix, which are obtained from Egs. (17) and (20) in
the case when the quantization axis z is directed along
the wave vector of the emitted photon. The elements of

operator T° are defined by the relation
(T (M, M;) = [(G) 15 (M;, M e, 8ol

No. 2 2001



214

Theexpression for the polarization components of theres-
onance fluorescence spectrum in the case of the observa-
tion along vector k has the form

ALMW)AVAO =i [Tp! + (M) HT )
K (21)

2
x(Mde)‘;—’;dvdo, AMA = 1.

In order to derive the expressions for the polarization
components in the unified system of coordinates, we
must express the elements of the atom—photon matrix

(Py")i,5, (M;,M,.) in terms of the elements of matrix

ps? obtained from Egs. (17), (20) in the unified system
of coordinates. This transformation can be carried out
in the standard form [18]:

MMM = 5 (D)

0=0,%1
<3 Bl

Mleiz

Expressions (21) and (22) completely define the spec-
tral, angular, and polarization characteristics of the
spontaneous radiation emitted by the system under
investigation. It should be noted that the transformation
of the unified system of coordinatesto that in which the
observation is carried out cannot be applied in the gen-
eral case to the atomic density matrix or directly to the
vector E of the exciting field while cal culating the quanti-

ties A‘;X(V) at the stage of the solution of Eq. (20). Thisis
possible only in an analysis of systems for which the
density of states of the electromagnetic field is isotro-
pic. Otherwise, the radiation relaxation operator and,
hence, matrix M depend on the choice of the direction
of the z-axis.

The expression for the spontaneous fluorescence
intensity integrated over the spectrum in the direction
of vector k was derived by us earlier [15]:

§;A = IAM(V)dV = Z Z zgﬁﬁ(Mled)

(23)

(22)
(pv )Jl]Z(Mlejz)

v 2= bCM j

X G a(MgM )P, (M, M)
A transition to the unified system of coordinatesfor the
guantities plj(1j2(Mj1Mj2) is carried out in analogy with
transformation (22):
Pl (M;,M;)

iy Iy ' 24
E:)M M, gj M M pjljz(M M;). @9

J1 J2
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The total intensity of the spontaneous radiation is
defined by

Lot =

| > Sado

A==#1

kZ
= > > iy (MMy)pe;; (M M))

j1io=b.cM; M.
kZ
+ pjliz(Mleiz)yizjl(szMjl)]'
In fact, the right-hand side of Eq. (25) is the trace of

operator ', (6“6 " + 6 &) in the variables

pertaining to upper energy levels. Since (22) and (24)
are unitary transformations, the total resonance fluores-
cenceintensity does not depend on the choice of thedirec-
tion of the z-axis as expected. In the case when the density
of states of the electromagnetic field is isotropic, expres-
sion (25) can be reduced to the classical form

(25)

kZ
low = 2 z zyjj(Mij)pii(MiMi)'

j=ab M

(26)

It can be seen from formulas (26) and (13) that the
interference effects accompanying the spontaneous
emission of radiation in real physical systems do not
affect the dynamics of an atom in the laser field and the
total resonance fluorescence intensity. However, inter-
ference effects should be taken into account in an anal-
ysisof theangular distribution of spontaneousradiation
(see [15]). Interference effects also make their contri-
bution to the spectral characteristics of spontaneous
radiation. It should be noted that interference processes
are naturally taken into account for the polarization
components of spectrum (21) and in Eq. (20) through
the structure of operators Tk, which contain the bind-
ing constants for two upper energy levels simulta
neoudly. The final expression for the spectrum in this
case contains nonzero terms with nondiagona ele-
ments of the atomic density matrix, which reflect the
contribution from interference processes.

4. AN ANALY SIS OF THE RESONANCE
FLUORESCENCE SPECTRA FOR THE D-LINE
OF ALKALI METAL VAPORS

Using the formalism developed in the previous sec-
tions, we consider the resonance fluorescence of the
D-line emitted by vapors of alkali metalsin the station-
ary state. We introduce the following notation for
energy levels: b — Py, ¢ — Py, andd — S5, SO
that J, = 3/2, J. = 1/2, J4 = 1/2. The energy level dia
gram and the structure of transitions for an atom under
ordinary conditions are presented in Fig. 2. In the subse-
quent analysis of the spectra, we will be using the well-
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known fact that the relaxation constants of magnetic
sublevelsfor afree atom areidenticd: y; j, (M; M; ) =y
(see Appendix).

Since the steady-state solution of Eg. (20) isaratio-

nal function of v, we can present the resonance fluores-
cence spectrain the form of the following expansion:

N

f
k - m
A =3 e

whereN = n x n, n = 8 isthe number of energy levelsin
the system under investigation, and y,, and Q,, are the
imaginary and real components of the mth eigenvalue
of matrix M, which characterize the width and fre-
guency of the spectral line, respectively. In the station-
ary case, ., can be expressed in terms of the eigenvec-
tors of matrix M, atomic density matrix p¥, and opera-
tors Tk, Expansion (27) can be used to determine all
the characteristics pertaining to an individual line. The
energy of the spontaneous radiation of an individual
line is a parameter of practical importance. It can be
expressed in the form

c.c., (27

km _ fm —
F J’ym " i(Qm—v)dV +c.c. = 2rRe(f,,). (28)
The imaginary component of f,, corresponds to the dis-
persion-type component of the spectrum and makes
zero contribution to the fluorescence energy of theline.
It should be noted that the relation between the real and
imaginary components of constantsf,,, is such that quanti-

ties Aix.(v) in the “wings’ of the spectrum decrease in
proportion to 1/v* asin the case of the Mollow spectrum
[20].

Figures 3a and 4a show the dependences of the fre-
guencies of spectral lines with a nonzero intensity on
the field strength of the pumping wave. For conve-
nience of computation and presentation of the results,
ratio A,y = 120 is set much smaller than for real sys
tems (eg., Ape/ANa = 6 x 10%). However, the results
obtained in this section for strong fidds (V,,, > y) remain
unchanged. The quantity

_ e (Vi0))?
Vim = 4 23,—+1

defines the Rabi frequency for the system under inves-
tigation. It should be noted that since ||pyg|l /2J, + 1 =

bealV ~/23. + 1, V., does not depend on j.

Figures 3 and 4 correspond to the resonance fluores-
cence observation for the linear and circular polariza-
tion of the laser field, respectively. It was shown by us
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Fig. 2. Diagram of spontaneous transitions for the D-line
emitted by vapors of alkali atoms.

earlier [17] that the maximum possible number of lines
in the spectrum is determined by the formula N, =
n(n —1) + 1 (N, = 57 in the case under investigation).
The much smaller number of peaks in Figs. 3aand 4a
is apparently due to our assumption that the magnetic
sublevels are degenerate in energy. It is interesting to
note, however, that the numbers of quasi-energy levels
formed during the excitation differ considerably for dif-
ferent polarizations of the laser wave. For example,
three quasi-energy levels are formed at the top and at
the bottom, while five energy levels are formed at the
top and at the bottom for the circular polarization of the
exciting wave. The number of peaks in these casesis 7
and 21, respectively.

Apart from the polarization composition of the
pumping wave, the shape of the spectrum depends on
the direction of the resonance fluorescence observation.
The polarization composition of the spontaneous radi-
ation varies along with the intensity of individual lines
in the spectrum. Figure 5 shows the variation of the
spontaneous fluorescence energy of spectral lines
excited by linearly polarized radiation. The direction of
observation coincides with the vector of field strength
of the laser wave. According to our calculations, the

nondiagona elements A'i_l(v) and Afll(v) are identi-

cally equal to zero, and the radiation is absolutely
unpolarized in any spectral region. It should be noted
that the fluorescence energy of the lines decreases
with increasing field strength of the pumping wave.
This fact agrees with a similar result obtained for the
total resonance fluorescence intensity obtained by us
earlier [15].

Another pattern of spontaneous radiation is observed
in the perpendicular direction, i.e., when the observation
axis is orthogonal to the field strength vector of the
pumping wave. In this case (see Fig. 3d), the nondiag-

ona elements Af_,(v) and A“;;(v) differ from zero,
and their contribution significantly changes the shape
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Fig. 3. Characteristics of the resonance fluorescence spectra as functions of the field strength of alinearly polarized pimping wave:
(a) linefrequencies; (b) characteristic resonance fluorescence spectrum for circular polarizations; (c) energies of linesfor the obser-

vation of circular polarizations; F'ﬂn , FET_ 1+ (d) nondiagonal elements Fﬂnl F';Tl; (e), (f) energies of linesfor alinear polarized
radiation. The observation is carried out at right anglesto the field strength vector of the pumping wave. The values of the parame-
ters: E,=E, Ey =0,E,=0, AE =80, Aﬁ =-40, and y= 1. Thefigures on the curves correspond to spectral linesin order of decreasing
frequency.
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spectrum attains its maximum value in the range A <
V,, < 2A,. and then decreases to zero with increasing
field strength. A spontaneous radiation polarized along
the 0 axis differs significantly. It contains only five
peaks (see Fig. 3f). The spectral lines positioned sym-
metrically to the transition lines relative to the fre-
guency of the exciting radiation are degenerate. As the
laser field strength increases, the heights of the central
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Fig. 5. Energies corresponding to lines of the resonance flu-
orescence spectra as functions of the field strength of acir-
cularly polarized pumping wave. The observation is carried
out at right anglesto thefield strength vector of the pumping
wave. The values of the parameters: E, = E, E, = 0,E,=0,

A =80, A =-40, andy=1.

X
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Fig. 7. Resonance fluorescence spectrum for atoms near the
metal surface. The observation is carried out along the nor-

mal to the surface. Thevaluesof the parameters: E, = E/ J2,
E,=0,E,=iE//2, A} =80, A} =-40; theradiation relax-
ation constant for afree atom is taken as unity.

and extreme peaks increase, while the heights of the
peaks corresponding to the transition frequencies
decrease. At high powers (V,, > A,.), the shape of the
spectrum correspondsto atwo-level atomin alaser field
with the transition frequency detuning 4. It should be
noted that the polarization of the spontaneous radiation
varies upon an increase in the strength of the laser field:
theradiation in awesk field ismainly polarized inthe g,
direction, and in astrong field, in the ey direction.

An analysis of the resonance fluorescence in the
case of the circular polarization of the exciting field
proved that the behavior of the spontaneous radiation
upon an increase in the laser field strength corresponds
to the case discussed above (see Fig. 4). The shape of
the spectra is obviously independent of the chosen
direction of observation in a plane perpendicular to the
direction of wave propagation. Asin the case of thelin-
ear polarization of the exciting field, the number of
lines Ng = 17 in the spectrafor the observation in the g,
direction (see Fig. 4f) is smaller than the number of
linesN;; =N_; _; =21 for the observation of thecircular
polarization (see Fig. 4c). However, in contrast to the
previous case, the number of peaks (N, = 13) is also
smaller for the radiation observed in the e, direction
(see Fig. 4f). Another interesting fact is that for alarge
field strength, the groups of lines contain several peaks
belonging to adjacent components for a small strength
of the exciting field (see Fig. 4a).

Finally, we analyzed the resonance fluorescence
spectrain the case when an atom is near the metal sur-
face (see version (a) in Appendix). As expected, the
change in the radiation relaxation operator does not
produce any significant effect on the fluorescence
energy of thelines. Thisis due to the fact that the con-
stants f,, are functions of the eigenvectors of matrix M
and of the values of the density matrix elements only.
The variation of the relaxation constants for V,, >
Yj,i,(M;j M) does not affect any of these quantities
seriously. However, the intensity of lines in the spec-
trum changes significantly (see Figs. 7 and 4b). Indeed,
the fluorescence intensity of the center of the line is
determined by ratio f,/y,, while linewidth y,, strongly
depends on the relaxation constants. The variation of
the values of vy, is ot uniform, which leads to a change
in the relative peak intensities.

5. CONCLUSION

The resonance fluorescence spectra of a degenerate
three-level atom of the V-type in the field of a high-
intensity monochromatic wave of an arbitrary polariza-
tion are studied. The genera form of the radiation relax-
ation operator is obtained for the systems under investiga
tion. The influence of interference effects accompanying
the spontaneous emission on the structure of the radiation
relaxationisanayzed. It isshown that for most real phys-
ical systems, the interference processes do not affect
the dynamics of occupancies of atomic sublevels. The
necessary condition under which the influence of the
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interference effects should be taken into account is a
variation of the density of states of the electromagnetic
field. The expressions for relaxation constants near the
metal surface are derived in the Appendix. It is shown
that in this case, the form of the radiation relaxation
operator depends considerably on the choice of the
direction of the quantization axis. The expressions for
the resonance fluorescence spectra for the observation
in achosen direction are derived using the apparatus of
the atom—photon matrix.

The steady-state resonance fluorescence spectra are
analyzed in detail for the D-line emitted by the vapors
of alkali metals. The angular and polarization charac-
teristics of the spontaneous fluorescence of atoms are
investigated. It is shown that the number of peaksin the
spectrum may decrease depending on the choice of the
direction of observation and the polarization of the

spontaneous radiation studied.
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APPENDIX

The Sructure of the Radiation Relaxation Operator
for a Degenerate Three-Level Atom of the V-Type Near
the Metal Surface

We will derive and anayze the structure of the radia-
tion relaxation operator for the trangitions Py, — Sy,
Py, — Sy, of the D-line emitted by atoms of alkali
metals near the surface in the following two cases: (a) the
z-axis is directed dong the norma to the surface, and
(b) the z-axis is parallel to the surface. The radiation
relaxation operator in these cases differs from that for
an atom in free space since the atom cannot emit in
directions along which the distance to the metal surface
is smaller than the wavelength of the emitted wave. For
this reason, the quantities

K(o,a") = IDA D2 do

10 >\202 ATt (Al)
appearing in the expression (13) for the radiation relax-
ation operator are integrated not over the total solid
angle, but over acertain angle ®. In the case of sponta-
neous emission near the metal surface, the solid angle
into which radiation cannot be emitted has the shape of
acone (see Fig. 8). In the space of the spherical angles
@, 6, this cone occupies different regions depending on
the choice of the z-axis, which determines the proper-
ties of quantities K(a, ") and the form of the radiation
relaxation operator.
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For our subsequent calculations, the explicit form of

functions s,(B) determining the transformation of the
wave functions upon a rotation of the reference frame
about the nodal line [18] isrequired:

1 .
_531 = _SilO = TZS‘nB,

1
Sit = S1-1 = 5(1"' cosp),

= Sé—l =
(A.2)

S, =Sy = %(1—005[5).

We recall the values of constants K(o, ¢") and the form
of nonzero elements of the radiation rel axation operator
for afree atom:

2

K(o,a") = Kpé(m. = 5600.,

ybbEBQ 2% CorK (1, 1),

03 3
ybbD > ZE = CppK(-1,-1),

1o _ K(1,1) + 2K (0, 0)
ybb[Q 50 = Cyp 3 )

0l 1g_ K(-1,-1) + 2K(0, 0)
Yoo T2 20 = 3 !

A 10_ ~ 2K(1,1) +K(0,0)
Ve[ 500 = Cee 3 !

yoOl A0 ¢ 2KEL 1)+K(OO)
CC|:|2 2D

where

(A.3)
Cbb

_2mu o [, S
iz = 5 duiz2=bc
hA/(ZJj1+1)(2Jj2+1)c
In view of the well-known relation

[bodl  _ _[[Medl
J23,+1 L J23.+1
all the relaxation constants for magnetic sublevels are
identical.
(@) If the z-axis is directed along the normal to the
surface (see Fig. 8a), we have

2n

%TJ’exp[i(c—G‘)cx]da
0

(A.4)

Ky(0,0") = Kpdsq —
(A.5)
sin
x z Siosio‘TBdB'

(02+ o)A = +1
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Fig. 8. Reference frame for an atom near the metal surface:
(a) zaxisisperpendicular to the surface, (b) zaxisisparale
to the surface.

It follows immediately from this expression that
K4 (o,0") =0for o # ¢', and

a(l 1) = Ka(_l! _l) = Kpéoo‘

———J’d(x J’ 11+ cos B)SdeB

" (A.6)
= %+%%n[30+ Sin;BOE
KA(0.0) = K 8oy — J’da } SdeB
0 m2+B (A.7)
= %+%%in[30—sm380%

The nonzero elements of the radiation relaxation oper-
ator supplementing (A.3) have the form

Dl 1o_ Dl 1D 2
0l 1g_ nl 10
ybcD 2’ 2|:J ybcm‘? _ED (A'8)

= CbC%Z[K(—l, -1) —K(0, 0)].

It follows from formulas (A.6)—(A.8) that in contrast to
the radiation relaxation operator for an atom in free
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space, the corresponding operator for an atom near the
metal surface has nonzero nondiagonal elements. Con-
stants yi(1/2, 1/2) and vy, .(—1/2, —1/2) describe the
spontaneous emission of the atom associated with the
induced interference between the corresponding mag-
netic sublevelsfor levelsb and c.

(b) If the zaxisis parald to the surface (see Fig. 8b),
the genera form of constants K(o, ') isasfollows:

b(o GI) =K 600'
sinp (A.9)
j > SwSos- dBIexp[l(G o')a]da,
By A==1
where
o' = arctan 12 —%.
sn'B, snpB

Since the functions

1 1 Snf
Z S)\GS)\U'——Z—

A==#1

areodd relativetotheangle = /2 for 0 — o' = £1, we
have Ky(o, ') =0, and

- Bo
_ B
Ku(1, 1) = K,— —(1+cos B)S'” dB [ L da
f3 e
T2

0 0
—g—lfarctanm 12 —-—1—D
3 ”B sn’B, sin’pO
1
x (1+ cos’p) 3By = 2
2 3 6Tu(l+u)’Ju—1

(A.10)

x [(uz— 1)EL By, 1+ tan’Bofd

+ (1—3u—5u2)FE’ET—BO, 1+ tan”Bo

+u(3+ 4u)1‘r%ot2 Bo» g— Bo 1+ tanzﬁog]

Here, F(g K), E(¢ k), and T1(c, ¢ K) are Legendre normal

dlipticintegrasof thefirst, second, and third kind, respec-

tively, and u = 1/sin?B,. Similarly, for K(0, 0) we have
/2

0 0
Ky(0,0) = g—gj'arctanm 1 _1p
3 snB, sin"BO

9 smB _ 1
(1-cos')=5xdp = 36Ttu(1+ u)’Ju—1
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x [(uz—l)E%T—BO, 1+ tan’ Bo) (A.11)

+(1+3u+ u2)FEg—BO, 1+ tan”Bo]

—u(3+ 2u)n%0t2[30, g— Bo 1+ tanzBoE]

The expression for the nondiagonal element K, (1, —1)
differs from those listed above in that the exponential
term exp[i(o — 0")a] is not equal identically to unity:

K1, 1)_K(11)_—i

J'Dsm 2arctanD 1DD
sin [30 sin BD 0d

x (1= cos B)SanB

3m(1+ u) *Ju

x H2u® + 6U% + 3u - 1)[E(arcsin(ﬂ1), Sin’B,)
. (A.12)

—EE’ET, sinzBOE} +(2u®+ 50" +u—2)

x [F(BO, 1+ tan’Bo) —F I, 1+ tanzsog}
—Su[ Eﬂ [30, 1+ cot’ BOD

1

Dl+sm

It should be emphasized that in spite of its appearance,
the above expression is purely imaginary.

The elements of the radiation relaxation operator
supplementing (A.8) can be written in the form

1 + cot BOD}

B _1o_ 1CbbK(1 1),

Yool 307 3

ybbg—%, g% = %CbbK(—l, 1),

Vool 30 = Gk (L.,

uf}3 5= FCuK(L D, -
w220 k@,
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YeorT5 50 = CooK(-11),
31
Vool 50 = ~CocK (1, -1),
3
Vel —59 = ~CarK (L, 1).

These results differ from those obtained for version (a)
in that the structure of the radiation relaxation operator
acquires elements connecting not only the levels with
identical values of the magnetic moment component,

but aso the levels with M; — M; = +2. Besides, the

interference effects will take place between the sublevels
of P3, evenin the absence of excitation of level Py,.
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Abstract—Some aspects of lasing at vibronic transitions in impurity crystals are theoretically studied. The
threshold conditions for avibronic laser are shown to be dependent on the strength of the interaction of optical
centerswith alocal vibration, which forms the vibronic spectrum, and the crystal lattice temperature. The the-
ory can easily be generalized to the spectrum containing a structurel ess phonon sideband and well agrees with
the experimental temperature dependence of the output power of aMg,SiO,:Cr** forsterite laser. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

The devel opment of tunable solid-state lasersis one
of the most urgent scientific and practical problems of
laser physics, which has been actively elaborated in the
last years.

The lasing conditions in solids are significantly
complicated because of a strong adiabatic vibronic
interaction, which determines the structure of vibronic
levels, the main lasing parameters being dependent on
the temperature of the laser medium and the strength of
vibronic interaction (see, for example, [1-4]). In this
case, a phenomenologica description of lasing based
on the use of rate equations for level populations and
the polarization of the resonance medium, when the
effect of the lattice and intramolecular vibrations is
reduced only to the broadening of energy levels, cannot
be considered adequate. A more fundamental, micro-
scopic description of the laser action in vibronic sys-
tems, which explicitly takes the electron-vibrational
interaction into account, will not only elucidate the fun-
damental problems of lasing at vibronic transitions in
impurity crystals but also will be helpful in the search
for new, more efficient laser materials.

The vibronic structure of optical spectra has been
explicitly considered in the theoretical studies[5, 6] of
threshold conditions and the radiation field dynamics of
a vibronic laser performed within the framework of
semiclassical equations of motion for field amplitudes
and generalized operators of the transition between
vibronic levels.

Below, the following aspects of the theory of a
vibronic laser are discussed: The microscopic approach
to the derivation of laser equationsisrealized, thelinear
Fokker—Planck equation is obtained for the distribution
function of the laser field amplitudes, the threshold las-
ing conditions are discussed [7, 8], and the theory

developed in this paper is applied to the description of
lasing in a chromium-doped forsterite single crystal.

2. THE LINEAR FOKKER-PLANCK EQUATION
FOR THE DISTRIBUTION FUNCTION
OF LASER FIELD AMPLITUDES

We assume that impurities in a crystal, which exhibit
lasing, can betreated astwo-level quantum objects, whose
ground and excited states are adiabatically coupled with
phonon modesof thecrystal latticeand local (for example,
intramolecular) vibrations, whose frequencies exceed the
maximum frequency of lattice phonons. The density
matrix p of an ensemble of impurities interacting with
vibrational modes and the electromagnetic field in a
cavity is described by the master equation

opt) _ .
ot i(Le+La+Ly+L+L+L (1)
+ I-aL + i/\f + i/\a+ i/\|)p(t),
where
LnX=[Hm X],

H,, and L, are Hamiltonians and corresponding Liou-
villians, respectively, m= a, f, |, etc.,

H; = wa'a, H,= sZRf
i
are Hamiltonians of the single-mode electromagnetic

field (radiation is collinear to an elongated pencil-like
sample) and optical two-level centers;

Hy = gZ(aR}' +H.c)
i
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isthe operator of interaction of the optical centers with
the radiation field; H, = vb*b is the Hamiltonian of the
intramolecular vibration;

H, = szRjz(b+ b")

J

isthe electron—vibrational interaction that producesthe
vibronic structure in the optical spectrum;

H = ZwkCICk
k
is the lattice Hamiltonian;

Ha = Z)\ka(Ck +Cy)
K

is the electron—phonon interaction operator; a*, b*, ¢,

and w, v, w, are the creation operators for photons,
intramolecular vibrational modes, kth phonon mode
and the corresponding frequencies, respectively; g, &,
and A, are the interaction coefficients; Rj-i’ * are opera-
tors of the energy spin, which describe the jth two-level
optical center (j =1, 2, ..., N) and are identical to the
Pauli spin matrices; and Planck’s constant 7 is assumed
equal to unity. Liouvillians /A; and A, take into account
incoherent interactions that result in the energy dissipa
tion from the radiation field and excited optical impuri-
ties, respectively:

A X = k([a(X,a")] +H.c)+2kN[a [X, a]], (2)

AX = %Z{ylz([Rj‘x, R/1+H.c.)
i
+yY1([R/ X, Rj]+H.c.)} 3
+ r(T)Z([Rij, Ri]+H.c),
i

where K is the decay constant of the radiation field
caused by the irreversible escape of photons outside an
elongated sample of length | (we assume that k = c/l,
where c isthe speed of light); N = [exp(w/ksT) — 1]7%;
T is the sample temperature; and y;,(V») is the rate of
transition from the ground (excited) to the excited
(ground) electronic state of the impurity. The latter,
purely dephasing term in (3) describes the electron—
phonon interaction, which is bilinear in the phonon
variables. For example, if dephasing is predominantly
determined by a narrow part of the phonon spectrum,
then, in the second-order of perturbation theory in the
electron—phonon coupling constant x, we have [9]

M(T) = X°n(wp)[M(,) + 1], (4)
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where wy is an effective Einstein frequency of the crys-
tal lattice and N (wy) = [exp(wy/kgT) — 1. The Liou-
villian A, describes the decay of the intramolecular
vibrational mode

AX = a([bX,b"]+H.c.)+2an[b,[X,b]], (5)

where a isthe decay constant and ¢ = [exp(v/kgT) —1] 2.

The form and derivation of Liouvillians (2), (3),
and (5) that take the dissipative processes into account
are presented, for example, in papers[9, 10].

The model of an ensemble of resonance optical cen-
tersinteracting with the radiation field in a crystal con-
sidered here is quite general. In particular, apractically
important and often encountered case of the impurity
systems whose optical spectrum consists only of one
zero-phonon line and a structureless phonon sideband,
which can producelasing, isasimplified version of this
model.

To derive the master equation describing the laser
action, one should adiabatically exclude the variables
related to the polarization (JRY), inverse population
(O Rf), amplitudes of local vibrations (b, b*), and lat-

tice modes (c,, cy), because these quantities rapidly

vary in time, whereas the amplitudes a and a* of the
light field slowly vary in time. Using the methods of
nonequilibrium statistical mechanics [11, 12] and tak-
ing into account that the orders of magnitude of the
operators for a high-Q cavity satisfy the inequalities
O(N\) < O(Ly) < O(Np, we obtain, in the second-
order approximation in Ly (or Hy), the master equa-
tion for the density matrix o = Sp,Sp,Sp, (p) of thefield
in the cavity

t

a(t) = A¢a(t) _IdTSpaSpISpL ©)
0

x{ Lar () exp[ An(t = T)] Lar (1) papiPLO (1)}
where
Lar(t) = exp(iLt)Lyexp(-iLt),
L= L,+L+L+L +L, +Ly +iA,

oL = exp(=H, ./ksT)
"t Sp,, [exp(—H, /ksT)]

pa = M55 + 0oRT]

0o = (Y12 —Yo1)/ (Y12 + V1) iSthe inverse popul ation of the
levels (-1 < 0, < 1), and yy,(Y»y) iSsthe rate of transition
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from the ground (excited) electronic state to the excited

(ground) state.

After sometransformations, EqQ. (6) can be rewritten

in theform

t

p(t) = Afo(t)—gzjdrexp[—vm(t—r)]

x { exp[iA(t—T)] U (H)U(T)0 L (7)

x [Spo(R'Rp,)(aa’a(1) —a'a(1)a)
+Sp,(R' R'p,)(o(t)a’a—ac(t)a’)] +H.c.},

where A =€ -, Yo = (Y2 + Y20)/2,

= ZRJ'L'Z’ 0.0 = SpSpd{---pipL}s

j
R wg [

U (UM = <TEexp[|IdtlF(tl)}E> (8)
O 5 O
o0 N
><<TDaxp{—|J’dt2F(tz)}§ ,
u 0 I, L

F(D) = V(t){zv(b EPADRICE cz)}V*(t), ©)
k

V(1) = exp[i(H +H +Hy +Hy +iA)E. (10)

The correlation function (8) can becalculated asin[9, 10].
Then, we have

INCU*(H)U(t)0 L= E5{—2(2n + 1)
—[(2n+ 1)a +iv](t—t')

+[nexp[iv(t—t)] + (n+ 1)exp[—iv(t—t)]]

11
xexp(—alt—t'l)}+zg\jkg (1)
k

x[-2(N+ 1) i (t—t") + Neexplio(t—t)]
+ (N + ) exp[-iw(t-t)]],

where n, = [exp(w/ksT) — 1] % The coefficients i&?v

and i k}\ﬁ/u)K in terms linear in (t —t') in the right-

hand side of expression (11) will be omitted below,
assuming that they have already been included into the
renormalized values of energies of the ground and
excited electronic states.
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By passing in (7) to the P-representation of Glauber—
Sudarshan for o,

o(t) = IdzaP(a,aD,t)Ial,

where alal)= ajal) we obtain, in the Markov approxi-
mation, instead of (7) the Fokker—Planck equation

’No
P(a,adt) = Q) a+ ach EH—g 0

Yo

) .
X ngVDeXp[UA —-Yo)1]

+ 0 0
x U (t)U(1)d L—oalU+c.c.O
ool 0
(12)
2
+ 2KN+g N(1+ay)
2y

x %’dryD exp[(iA—yg)t] U (DU (T)O L + c.c.%}
0

OGDD

Equation (12), whichislinear in the field amplitude,
describes the laser action below the threshold and
allows usto determine the lasing threshold by equating
thelossratek tothe gain G:

K =G,
_19'Ngg

2 vyg

(13)

O . O
X B’dTyDexp[(iA —yo)T] U (DHU(TD)O L+ c.c.%
0

The coefficient at the second-order derivative with
respect to the amplitude variable in (12)

+9 N(1+00)D

dt
ZVD yD

° (14)

O

x exp[(iA—yo)T] U (H)U(T)0 L +cc.0=D

I:I

is the diffusion constant.

Recall that N = [exp(wkgT) — 1]* in (14) is the
occupation number of the photon mode at temperature
T and N isthe number of impurity particles.
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3. THRESHOLD CONDITIONS OF LASING
AT THE VIBRONIC REPLICAS
OF THE PURELY ELECTRONIC LINE

By using expression (11) for the correlation func-
tion [W*(t)U(T)[,, the gain can be represented in the
explicit form

2
No
——exp[-£*(2n+1)]

O

I3

p=— r,S:O

G =

I—l Ez(r+s)(ﬁ + ]_)rr_]syD
k

X[yg+ (r +s)a +&°(2n+1)a] as)
x{r!sl[e —w—(r —s)v — pw,]°

+yo+ (r +s)a+ &4 2n+1)a)’}

O A2 N, + 1P
< expl-w(T)]1, 22 A+ D
k

where exp[-W(T)] isthe Debye-Waller factor, whichis
related to the total Stokes loss

Z %g(zm +1)

caused by phonons, and exp[-&%(2n + 1)] is the
Debye-Waller factor related to local vibrations; I ,isthe
Bessel function of the imaginary argument of the first
kind; € isthe purely electronic transition energy; w and
K are the frequency and the loss rate of a photon mode
in the cavity, respectively; v and a are the frequency
and the decay of alocal (intramolecular) vibration; w,
is the frequency of the kth phonon; and

Yo = Y2+ (T) (16)

isthe relaxation rate of the induced polarization, where
Yii= Yo T Yor

Consider first of all several particular cases concern-
ing the threshold condition (13), (15). First, in the
absence of the adiabatic interaction of the ground and
excited electronic states of the optical centerswith local
vibrations and phonons (¢ = 0, A, = 0), the threshold
condition (13), (15) coincides with the usual one[13],

_ gcho
Yo o
Second, in the case of avery strong coupling of optical

centers with the vibrational modes (82 > 1, A2/wf > 1),

as well as at high temperatures, gain G becomes so
small that equality (13) cannot be satisfied, and lasing
isimpossible. Third, for the purely electronic transition

(17)
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(r =s=p=0), inthe case of exact resonance (¢ —w=0),
we have the threshold condition [14]

gcho

kK== exp[-w(T)], (18)

where W(T) =w(T) + &(2n + 1) and V =Yy =yg +
&(2n +1)a. The threshold condition (18) corresponds
to the case when lasing occurs within the zero-phonon
ling, i.e., photons interact with the impurity crystal in
such a way that the vibrational states of both local
modes and phonons do not change.

More typical is the situation when the interaction of
light with an impurity crystal does not change the
vibrational state of the crystal lattice (p=0), but theres-
onance condition w =€ —(r —s)v issimultaneously sat-
isfied, so that one of the vibrationa replicas of the
purely electronic lineis observed, which correspondsto
the vibronic transition from the sth vibrational level in
the excited electronic state (when svibrational quantaare
annihilated) to therth vibrational level of the ground elec-
tronic state (when r vibrational quanta are crested). The
lasing threshold for such an individual vibronic transition
can bewritten in arather smpleform

gZNo
K = TOeXp[—EZ(ZﬁJfl)]
y &+ '’

xrls![vu+22(2ﬁ+1)a+(r+s)a] (19)

O 0
x exp[=w(T] [ lof2=5 /(M + )0
K k

which is convenient for estimates.

Expression (19) can be used for determining thelas-
ing thresholds for any of the vibronic transitions,
neglecting their interrelation (in the general case,
expressions (13) and (15) should be used). If suffi-
ciently high gains are simultaneously achieved for a
whole series of vibronic transitions, so that the corre-
sponding threshold conditions are realized, then, dueto
a distribution of the field modes in the cavity (because
the emission line has afinite width), the resonance can
be achieved at several transitions rather than at one
transition, and tunable lasing becomes possible.

The product of the zero-order Bessel functions in
expression (19) changes with temperature (or n,)
slower than the Debye-Waller factor exp[—-w(T)], and

for A\ /0 )?/N(N+ 1) < 1, this product can be set
equal to unity because I4(x) = 1 for x < 1. Since the
intramolecular frequency is much higher than the
phonon frequency, the temperature dependence of the
gain for different vibronic transitions [see the right-
hand side of Eq. (19)] will mainly be determined by the
Debye-Waller factor exp[-w(T)]. It aso follows from
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expression (19) that as the strength of interaction (i.e.,
the Stokes loss &2) of the optical centers with intramo-
lecular vibrations increases, the maximum gain is
achieved for the longer-wavelength vibronic transi-
tions.

4. LASING IN THE REGION
OF THE STRUCTURELESS PHONON SIDEBAND

If the optical spectrum of a crystal consists of only
a zero-phonon line and a structureless phonon side-
band, i.e., the coupling of electronic states with high-
frequency local vibrationsis negligible (or the latter are
absent at all), thenwe should set & =v = a = 0in the
above expressions and, in particular, in expression (15)
for the gain. For the estimates that will be performed
below, it is convenient to replace the phonon spectrum
of the crystal by an effective frequency wy, (the Einstein
approximation). Moreover, if lasing takes place within
a narrow region of the phonon sideband, the condition
of the exact resonance

E—W—pw, =0 (20)
can be reasonably imposed. Then, the corresponding
gain, taking into account expression (15), can berewrit-
ten in the form

G(0= £—pwy A; T) = 2 IZI_?)Of()\O, T), (21)
)\2
f(ho: T) = expO—2[2n(ay) + 1] O
[] Wy |
(22)

(0) + :I-DD/2
x | n(wy) (N(wy) +1
22 J (o)A@ + D

The arguments of the function G (21) show that the
gain depends on the electron—phonon coupling con-
stant A, and the temperature T of the crystal lattice, as
well asthat an elementary event of emission of a quan-
tum of the electromagnetic field of frequency w during
lasing is accompanied by the creation of p phonons
with frequency wy, due to the resonance condition (20).

Thelinear Fokker—Planck equation (12) is sufficient
for the determination of the lasing threshold and the
diffusion constant, whereas the real amplitude of the
laser-field oscillations can be found only with the help
of nonlinear theory, i.e., taking into account in the der-
ivation of the master equation for the density matrix the
terms at least up to the fourth order inclusive in the
interaction L (or Hy). However, if the resonance con-
dition (20) is satisfied, the field amplitude can be found
by modifying Egs. (14)—(16) from paper [14] by mak-
ing the substitution gexp[-S(T)/2] — gfY?(\y; T). As
a result, polarization P, inversion A, amplitude a, and
the average number of phonons n = [@*all= a2 will be
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determined, in the average field approximation, by the
set of equations

P = 2gaAf?-y,P,
A = —2gaPf?—y (A -0oN/2),
a = 2gAf'?—ka,
n = 2gaPf',

(23)

Assuming P = A = 0, we find the evolution equation
for the field amplitude generated in the region of the
phonon sideband at the frequency w = € — pwy:

4K 3

a=(G-kK)a-— Ga’.
( ) Ny, 00

(24)

For G > Kk, we can find from (24) the average number of
photonsin the stationary regime (a = 0):

N _
n=a= 4—?:”(00—00KG b, (25)
In this case, the laser radiation intensity is
| = wn = 2gwaPf*® = 2kn, (26)
or, after the substitution of (25) into (26),
| = %l[ K"D(T)f—l(xo, ) 27)

where the relation (21) between G and f is taken into
account.

5. APPLICATION OF THE THEORY
TO THE DESCRIPTION OF LASING
IN A Mg,SiO,:Cr* SINGLE CRYSTAL

The theory of avibronic laser developed above can
be compared with experiments on lasing observed in
the phonon sideband in the optical spectrum of a
Mg,SiO,:Cr#* forsterite single crystal. This laser pro-
duces stable quasi-continuous emission in the near IR
region with an average output power above 1 W [3, 4].
The pump freguency, the purely electronic transition
frequency, and the lasing frequency were 9276, 9158,
and 8097 cm2, respectively. Because no decreasein the
guantum yield of luminescence was observed in the
temperature range between 300 and 400 K of interest
for applications, i.e,, nonradiative relaxation was
absent, this means that the vibrational potential curves
of the atoms in the configuration space in the ground
and metastable electronic states should not intersect
(which was noted in [4]).

In [4], the temperature dependence of the energy
efficiency n (theratio I/1, between the output and pump
powers) of a M@,SiO,Cr# laser was measured.
Expression (27) can betransformed to describe the exper-
imental situation. Indeed, let the excess over the lasing
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n, %
10F

300 350

400
T,K

4+
2+ : A+
Mg,SiO,:Cr
0 1 1
300 340 380 T, K

Temperature dependence of the energy efficiency of lasing
n intheregion of the phonon sideband. Theinsert showsthe
experimental temperature dependence of the efficiency of a
chromium-doped forsterite laser [4].

threshold at some initial temperature T, be A and n equal
N, (in percent), then, using (27), we can write
I(T
n(m) = {0 = na
p
y [1_1 N0y, T)(N(wo, T) +1) f(Ag, ; To)
An(wg, To)(N(wg, To) +1) f(Ag, wyo; T)

Expression (28) takes into account that, at sufficiently
high temperatures, for example, room temperature, the
ratey) of energy relaxation is much lower than the dephas-
ing contribution ' (T) into (16), so that in fact we have

Ya(T) = X*N(wp, T)[A(0op, T) +1] (29)

(see expressions (4) and (16)). Thefunction f(Ag, wy; T)
is defined in (22). Thus, given the reference points T,
A, and n,, we can express the energy efficiency of laser
(28) only in terms of the crystal-lattice parameters,
such as the effective frequency wy, temperature T, and
the electron—phonon coupling strength A, However,
note that the effective frequency wy, in expression (29)

for y; or in expression (28) for n can be in the general
case different from this quantity appearing as an argu-
ment of function f in (28).

The excess over the lasing threshold at T, = 300 K
in the experiment [4] was A = 2.2 and the value of n,
was 10%. The temperature was measured with an exter-
nal heater. The experimental results are presented in the
insert in the figure. One can see that the energy effi-
ciency of the laser decreases by 25% at T < 330 K and
lasing disappears at 380 K.

In the calculation of n(T) from expression (28), we
will assume that wy, is equa to the difference between

the purely electronic transition frequency 9158 cm™

(28)
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and the lasing frequency 8097 cm™, i.e., to 1061 cm™,
and, because in this case only one-quantum transitions
occur, we will set p =1 in expression (22) for f and

A2/wp = 1. Theresult of the calculationsis presented in

thefigure. Thetheory adequately describesthe temperature
dependence n(T), both quditatively and quantitatively,
despite the fact that the phonon spectrum of the crystd was
represented by a very smplified one-oscillator moddl.

6. CONCLUSIONS

In this paper, some aspects of the operation of a
vibronic laser below the threshold have been studied. It
has been shown that the threshold conditions of lasing a
vibronic trangitions depend on the strength of the interac-
tion of optical centers with a loca (intramolecular)
vibration that forms the vibronic spectrum—a series of
vibrational replicas of the purely electronic line. These
threshold conditions also depend on the crystal lattice
temperature. As the Stokes loss per loca vibration
increases, the maximum value of the gain is achieved at
the longer wavelength vibronic trangitions, while the
increase in the crystal temperature reduces the gain at all
the vibronic trangitions virtualy in the same degree. The
theory can readily be generdized to the spectrum contain-
ing a structureless phonon sideband and well agrees with
the experimentd temperature dependence of the output of
power of aMg,SiO,:Cr# forsterite laser.
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Abstract—The method of molecular dynamicsis used to study the dynamic behavior of a nonideal system of
particles interacting through screened Coulomb potential. The behavior of the self-diffusion coefficient of par-
ticles as afunction of the nonideality parameter isinvestigated. The conditions of the crystallization of such a
system are discussed, aswell asthe possibility of using the crystallization criterion, based on the dynamic char-
acteristics of the system. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

A dusty plasma consists of an ionized gas contain-
ing particles of condensed matter (dust particles) that
either form spontaneously in the plasma as a result of
various processes or are introduced into the plasma
from the outside. This plasmais sometimes referred to
as colloidal plasma or plasma with a condensed dis-
persed phase. Dust particles acquire an electric charge
in the plasma and interact with the electric and mag-
netic fields, and the Coulomb interaction between par-
ticles may bring about a strong nonideality of a system
of dust particles.

One of the reasons for the current interest in the
physics of dusty plasmaliesin the experimentally sup-
ported possibility of the crystallization of a strongly
nonideal system of dust particlesin plasma of different
types. By now, the formation of ordered structures of
dust particles has been observed in an rf discharge
plasma [1-4], in the positive column of a dc glow dis-
charge [5, 6], and in an amospheric-pressure thermal
plasma |7, 8]. Plasma-dust crystals exhibit a variety of
unique properties and provide an indispensable tool in
studying both the properties of strongly nonideal
plasma and the fundamental properties of crystals.

It is generally agreed that dust particles in plasma
interact with one another through screened Coulomb
potentia (Yukawa potential),

U(r) = Zie’exp(-r/Ap)ir, (1)

where Z, isthe charge number of the dust particles, and
Ap is the screening distance (the respective Debye
length). The nonideality of dusty plasma is usually
characterized by the nonideality parameter I 4 equal to
the ratio of the potential energy of Coulomb interaction

between neighboring particles to their kinetic energy
characterized by the particle temperature Ty,

My = Z5€°/bTy, 2

where b = n;”g characterizes the mean distance

between particles. The dust particle charge Z in differ-
ent plasmas may be very high. For example, in alow-
pressure gas-discharge plasma, the charge may be esti-
mated at

Z,0-aT/€’,

which, for the particle radius a ~ 1 um and electron
temperature T, ~ 1 eV, gives Z; ~ —-10° elementary
charges. Therefore, it is much easier to attain the non-
ideality of a subsystem of dust particles than the non-
ideality of an electron-ion subsystem, in spite of the
fact that the particle concentration is usualy much
lower than the electron and ion concentrations.

The properties of nonideal systems of particles
interacting through potential (1) are studied intensively
using numerical simulation. Considerable attention is
given to the phase diagrams of such systems (including
the crystdlization conditions) [9-12], to the behavior of
particlesin thefield of various externa forces[13-15], to
the dynamics of the formation of ordered structures [8,
16], and to the dispersion properties of systems [17].
Two methods are usually employed in numerical calcu-
lations of this type, namely, the method of molecular
dynamics and the method of Brownian dynamics. The
method of molecular dynamicsis based on the integra-
tion of invertible equations of motion of particles in
view of interactions between them. The method of
Brownian dynamicsis based on the solution of stochas-
tic Langevin equations for the evolution of the positions
of particles. Theformer method enables one to adequately
smulate the processes in atomic systems. On the other
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hand, in systems of dusty plasma (as well as in colloida
solutions), macroscopic particles are in a viscous
medium, collisions with whose atoms or molecules
play an important part.

The currently available results of the investigation
of the dynamic behavior of particles interacting
through Yukawa potential [9, 18, 19] fail to give afull
picture of the dynamics of dust particlesin plasma. For
example, Robbins et al. [9] used the method of molec-
ular dynamics and, thereby, ignored the interaction
with the medium. Lowen et al. [19] studied the
dynamic properties of a system in the vicinity of the
crystallization point, and Lowen [18] studied the
dynamics and structural properties of a two-dimen-
sional system. In addition, in the last two studies, inter-
est was given to particles suspended in aliquid (colloi-
dal solutions) whose viscosity exceeded that of buffer
gas in a dusty plasma by several orders of magnitude.
The absence of quantitative resultsin theory makes dif-
ficult the analysis of recent results [20, 21] obtained
during the investigation of nonideal dusty plasma sys-
tems.

This study is devoted to the systematic investigation
of three-dimensional dynamics of strongly interacting
macroparticles in a weakly ionized plasma using the
method of molecular dynamics with due regard for the
interaction between particles and medium. The depen-
dence of the self-diffusion coefficient of particles on
the force of interaction between them and on the vis-
cosity of the medium is studied. The problem is treated
of the possibility of using the dynamic criterion of
melting suggested by Lowen et al. [19]. The conditions
of crystallization in adusty plasma are discussed.

2. MODEL

In order to include the interaction between particles
and the surrounding medium, we used the approach pre-
vioudly employed to investigate the dynamic processes
in a dusty plasma [8, 22, 23]. The interaction with the
medium isincluded by way of introducing into the equa-
tion of motion the so-called Langevin force represented
inthe form of two terms, of which one describes system-
aicfriction onthe part of the medium, and the other term
describes the momentum transfer upon individual colli-
sions with atoms or molecules of the medium.

The noninvertible normalized equations of motion
of dust particles, projected onto the Cartesian coordi-
nate axis x, have the form

Xy = (4T[rd)_]j2Vk’ ©)
Vi = 3 (raam KRy
jzk Rkj (4)
x exp(—-KRy)(Rjx [&,) — OV, + JZ_GE(T),

where X, and V, denote the dimensionless coordinate
and velocity of the kth dust particle, respectively; T is
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the dimensionless time; Ry = Ry — R; (R4 = |Ry);
e isthe unit vector in the direction of thex axis, K = b/Ap
is the structure parameter; 6 = n/wy is the ratio
between the frequency of friction of the medium and
the dusty plasmafrequency; and &(1) isthe delta-corre-
lated Gaussian white noise,

MU= 0, LEMET)U= d(T-T). ©)
The unit of distance is provided by the mean distance
between particles b, and the units of time and velocity
are provided by the inverse dusty plasma frequency

woy = (4niZ2e’ngmy) ™"
and the thermal velocity of dust particles
Vg = (Td/md)uzi

respectively.

The summation in the right-hand part of Eq. (4) is
performed over all dust particles except for that being
treated.

Inthegeneral case, accordingto Egs. (3) and (4), the
behavior of a system of dust particles is defined by
three dimensionless parameters 'y, K, and 6. In the
limit of 6 = 0, the standard method of molecular dynamics
isredized. Inthiscase, the systemischaracterized only by
the nonideality parameter and by the structure parameter.
Note that, in the standard method of molecular dynamics,
because of free exchange between the potential and
kinetic energies, a periodic renormalization of the par-
ticle velocities must be used in order to maintain con-
stant the system temperature. At the same time, in the
modified method of molecular dynamics, the system
temperature defined by the parameters of Langevin
force is maintained constant without requiring correc-
tion in the course of calculation.

The method of molecular dynamics employed by us
consisted in solving Egs. (3) and (4) in three dimen-
sions for each particle and in analyzing the trajectories
of particle motion. The cal culation region was a cube of
size L = 5h. In order to simulate a homogeneous spa-
tially extended plasma, periodic boundary conditions
were imposed. For reducing the calculation time, the
potential of interaction between particles was cut off at
distances exceeding 3.75b, which is a standard proce-
dure in the investigation of systems that interact
through potential (1) with not too small a value of the
structure parameter K. The cutoff of the interaction
potential does not lead to aconsiderable error at K = 1.
At the same time, in simulating systems with K < 1,
longer-range interactions must be included, which may
be done with the aid of an appropriate algorithm [12].

The procedure of numerical experiment was as fol-
lows. at the initid moment of time, the particles were
arranged in a random way within the calculation region;
then, owing to interaction between them, the process of
sdlf-organization started; after reaching the configuration
of the system of particles that was equilibrium for the
preassigned values of 'y, K, and 0, the data on succes-
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Fig. 1. Theratio of the diffusion coefficient D of interacting
particles to the diffusion coefficient Dy of noninteracting
Brownian particles asafunction of time (in termsof inverse
deceleration time n™) for K = 4.84, Iy = 554.7, and differ-
ent values of parameter 6 equal to (1) 0.05, (2) 0.15,
(3) 0.45), and (4) 1.33. Curve 5 representsthe exact solution
for noninteracting Brownian particles.

sive positions of particles were stored in the computer
memory with a view to subsequent analysis. The step
with respect to time was varied for different parameters
of the system, but it did not exceed n/20 for a correct
simulation of Brownian motion. The total count time
was at least 2 x 10° steps with respect to time.

The coefficient of self-diffusion of particlesis often
used as a quantity characterizing the dynamic behavior
of a system; this coefficient is defined as

D(t) = [I(t)—r(0)/6t,

where r(t) is the time-dependent trajectory of a single
particle, and [..Cimplies averaging over the ensemble.
It is common practice to introduce two coefficients for
interacting particles [19], namely, the short-term coef-
ficient Dg and the long-term coefficient D, which are
defined as

D¢ = limD(®), D, = limD().
t-0 t o o

Note that the diffusion behavior of particle motion
shows up over periods at time that are longer compared
with the inverse frequency of friction of the medium n=,
and the limit of t — O must be taken to mean that the
time is sufficiently short and, at the same time, long
compared with 2. In the case of not too great avolume
fraction of particlesb > a, it is customary to assume
[19] that the short-term coefficient of diffusion coin-
cides with the regular coefficient of diffusion of nonin-
teracting Brownian particles,

Ds = Dy = vZ4/n.
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Because of interaction between particles, the value of
D, provesto belessthan that of Dg. Inthe limiting case
of crystalline structure, D, — 0, because the displace-
ment of particleslocated at thelattice sitesislimited. In
view of this, the ratio D, /D, appears to be an adequate
quantity for the investigation of the effect of nonidedlity
on the dynamic behavior of a system of strongly interact-
ing particles, up to the paint of its crystallization.

3. SIMULATION RESULTS

The calculations were performed for the plasmaand
particle parameters typical of conditions of experi-
ments in a gas-discharge dusty plasma. We will treat,
for example, an argon plasmawith the el ectron temper-
ature T, ~ 1 eV and room temperature of ions and neu-
trals (~0.03 eV) and with a dust component having the
following characteristics: particleradiusa =5 um, par-
ticle concentration ny = 5 x 10%, density of the particle
material p = 1.5 g/cm?. Under these conditions and with
the characteristic concentration of plasma n, ~ 108 to
10° cm3, the value of the structure parameter isin the
range of K ~2to 7; in the pressure range of 3to 300 Pa,
parameter 8 isintherange 8 ~ 0.02 to 2. Based on these
estimates, we performed calculations for two values of
the structure parameter K = 2.42 and K = 4.84 and for a
set of values of parameter 8 = 0.03, 0.1, 0.3, 0.83, and
2.5 (for K =2.42) and 6 = 0.017, 0.05, 0.15, and 0.45
(for K =4.84). The nonideality parameter '  was varied
by varying the temperature of system T.

3.1. Time Dependence of the Diffusion Coefficient

Figure 1 gives the time dependence of the ratio of
the diffusion coefficient D of interacting particlesto the
diffusion coefficient D, of noninteracting Brownian
particles (in terms of inverse deceleration time n™) for
K =4.84,T ;=554.7, and different values of parameter 6.
Curve 5 represents the exact solution of a Langevin
equation in the absence of interaction between parti-
cles,

D) _ ,_1-—exp(—Nt)
D, Tt ©

so that, for along time compared with the inverse fre-
guency of friction (nt > 1), D(t) = D,, whilein the case
of short time (Nt < 1) the ballistic behavior of particle
motion shows up [Ar?(t)[= 3v4t? and D(t) O t. In the
presence of interaction, the behavior of D(t) over short
periods of time remains the same. Then it reaches a
maximum; it is sound practice to use the value of the
diffusion coefficient at this maximum in determining
the short-term coefficient of self-diffusion Ds. Note
that coefficient Dg proves to be less than D, and tends
to the latter as the viscosity of the medium increases.
With time, the diffusion coefficient tends to a constant
value D, < Dgcorresponding to the standard determina-
tion of the coefficient of self-diffusion of interacting
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Fig. 2. The self-diffusion coefficient D_(arbitrary units) as afunction of the nonideality parameter Iy for (&) K =2.42 and (b) K = 4.84:
8=0.03 (0), 0.1 (0), 0.3 (), 0.83 (v), and 2.5(<) (for K = 2.42) and 6 = 0.017 (1), 0.05 (0), 0.15 (), and 0.45 (V) (for K = 4.84).

Broken lines indicate the approximation results.

particles. In what follows, it is to the behavior of coef-
ficient D, that most attention is given, because it isthis
coefficient that may be determined experimentally dur-
ing investigations of dusty plasma [20, 21]. Further-
more, its determination is not as arbitrary as the deter-
mination of Dg.

3.2. The Effect of Nonideality on the Behavior of D,

Figures 2aand 2b give the coefficient D, of self-dif-
fusion of interacting particles as a function of the non-
ideality parameter 4 for two values of the structure
parameter K and for different values of parameter 6. We
will discuss some singularities of the behavior of D, .
First of al, note that, as the nonideality of the system
increases, coefficient D, decreases monotonically and,
at some value of Iy, decreases abruptly by severa
orders of magnitude. Thisjump isapparently anindica-
tor of the liquid—crystal phase transition in a system of
dust particles. For K = 2.4, the diffusion coefficient
experiencesajumpat 'y~ 180and, for K=4.8,a 4~
750. In so doing, it turns out that, with a preassigned value
of K and different values of 0, the diffusion coefficient
experiences ajump at the same values of the nonidedlity
parameter. Therefore, the conditions of crystallization of a
system are defined by only two parameters ™y and K, and
are independent of parameter 6.

Note that the behavior of the curve of the I';—
dependence of D, given in Fig. 2 in logarithmic coor-
dinates, isvirtualy straight when approaching the crys-
tallization point. Thisfact may be explained if, by anal-
ogy with molecular liquids, we represent the diffusion
coefficient in the form

_ A OWQ
D. = 50, &PET 0

where, in the case being treated, A characterizes the
mean distance between particles, 1, isthe characteristic
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period of particle vibrationsin a*“ settled” state, and W
is the energy barrier cleared by a particle upon transi-
tion between two neighboring “settled” states. It isrea
sonable to assume that W/T, [T 4 and approximate the
self-diffusion coefficient by a relation of the type of
D, = Aexp(-Br'y). Here, A may also depend on 'y (as
well as on K and 6). The approximation results are
giveninthetable, and are shown by broken linesin Fig. 2.
Note that, for a preassigned value of K, the values of
parameter B are close to one another irrespective of 6.

3.3. Crystallization Curve in the Calculations
by the Method of Molecular Dynamics

One of the fundamental problems arising during
investigations of the properties of dusty plasmais that
associated with the conditions of crystallization of the
subsystem of dust particles. It is known from the sim-
plest and best-studied model of nonideal plasma, i.e.,
the model of one-component plasma, that, at I' = 1,
short-range order appearsin a system, and, at I' = 106,
the one-component plasma crystallizes [24]. One can-

Results of the approximation of the I ; dependence of D, by
therelation D, = Aexp(-BI y)

K 0 Ax10° | Bx10? | B* x 1072

24 0.03 129 16 29
0.1 8.6 16 2.8
0.3 4.6 16 29
0.83 19 17 31
2.5 0.65 17 31

4.8 0.017 7.1 0.42 3.0
0.05 45 0.40 29
0.15 24 0.40 29
0.45 0.96 0.43 31
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Fig. 3. The data on the calculation of the crystallization
curve in Yukawa's model in the (K, I"4o) coordinates using
the model of molecular dynamics: a [10], A [11], O [12].
The crosses correspond to thevalues of I 4, a which ajump
of the value of diffusion coefficient occurs in our calcula
tions.

not claim the full adequacy of description of the prop-
erties of dusty plasma based on the model of one-com-
ponent plasma, primarily, because of disregard of the
screening effects. Nevertheless, it was reasoning based
on the qualitative results of the model of one-compo-
nent plasmathat led Ikezi [25] to the conclusion about
the possibility of the crystallization of the dust sub-
system in a nonequilibrium gas-discharge plasma. He
suggested that the conditions of the crystallization of
dust particlesin plasmamay be provided by acondition
of theform

Z§e2 0bQg
I s bT, exp Agl~ 106. (7)
The problem of the conditions of crystallization of a
system of particles with Yukawa interaction was stud-
ied using numerical simulation by the method of
molecular dynamics [10-12]. The simulation results
demonstrate that the phase transition of the dust com-
ponent from the liquid to crystalline state is described
in terms of two dimensionless parameters I'y and K.
Inso doing, the value of parameter I, required for
crystallization is not defined by a simple condition of
the type of (7), but exhibits a more complex depen-
dence on K.

Figure 3 gives the data on the calculation of the
crystallization curve in Yukawa's model in the (K, I y)
coordinates [10-12]. One can see that criterion (7) is
invalid. At the same time, it proves possible to intro-
duce the empirical condition of crystallization [26]

M1+ K +K?/2) = 108, (8)

which agrees, within the calculation error, with the
numerical simulation results up to at least K < 6. The
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curve shown in Fig. 3 corresponds to exact equality
in(8).

Marked with crossesin Fig. 3 are aso the values of
I 4 @ Which thevalue of D, in our calculationsfor K =
2.4 and K = 4.8 variesjumpwise. The obtained data cor-
relate well with the results of other calculations.
Thereby, an abrupt jump of the diffusion coefficient
indeed serves as an indicator of the crystallization of a
system. In addition, the calculation results do confirm
that the conditions of crystallization are independent of
parameter B (viscosity of the medium). However, the
boundary value of D,/D,, at which an abrupt jump
occurs, depends on 6.

Note that hormalization of a different type is often
employed in determining 'y and K, namely, the
Wigner—Seitz radius is used instead of the characteris-

tic distance n;”> between dust particles,
p = (4mmny/3)™2.

The thus determined nonideality parameter I'; and
parameter K' arerelated to I y and K by simplerelations

K'=K/1.612,

For example, the condition of crystallization of a one-
component plasmain this notation will be provided by
=172

ry=1.612r .

3.4. Normalization of the Nonideality Parameter
and of the Dusty Plasma Frequency

Notethat condition (8) may be obtained usingasim-
ple, though nonrigorous, approach [26]. Namely, we
will treat achain of particlesinteracting through poten-
tid (1). The characteristic frequency of the therma vibra-
tions of particlesin such achain may be written as[27]

KZ 1/2
wo Dy = wpdgl +K+2 0

K
>0 e&Pgog O

&PI50

The thermal displacement of particles relative to the
position of equilibrium

BU’DOT 4/myod;

on the crystallization curve must satisfy the Lindemann
condition,

Bu’lb® = condt,
from which we derive that

Fd%l_ +K+ -Kz—zgexp(—K) =Tr3

on the crystallization curve. We use the value, known
from the model of one-component plasma (K — 0), as
the value of constant to exactly derive condition (8).

= const (10)
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The foregoing reasoning leads one to assume that
parameters ' and wpy may serveassimilarity param-
eters for strongly nonideal systems interacting through

potential (1). The simulation results support this
assumption. Figure 4 gives the ratio D /D, as a func-

tion of the modified nonideality parameter '} for aset

of identical values of 8* = n/wj for two different val-
ues of the structure parameter. It follows from this fig-
urethat the dependencesof D, /Dyon 'y for astrongly

nonideal system virtually coincide with the same val-
ues of parameter 0* but with substantially different val-
ues of K. Therefore, the dynamic behavior of a system
of strongly interacting particles is fully defined by the

set of two parameters '; and 6*. Moreover, note that

the approximation of the I'; dependence of D, by the
formula

D, = Aexp(-BT})

produces amost identical values of B* both for differ-
ent values of the structure parameter and for different
values of 8 (seethetable).

3.5. Crystallization Criteria

Different phenomenological criteria exist of the
crystallization of a system of interacting particles,
which found their application in the physics of dusty
plasma as well. The best known is the Lindemann cri-
terion [28], according to which the solid phase melts if
the ratio of root-mean-square displacement of the par-
ticle-to-mean-interparticle distance reaches ~0.1 (this
number may vary from ~0.05 to ~0.2 for different phys-
ical systems). Another criterion is provided by the con-
stancy of the value of first maximum of theliquid struc-
ture factor [29], which reaches on the crystallization
line avalue of ~3.0 (this number likewise varies from
2.851t0 3.2 in different calculations). Treated as a sim-
ple crystallization criterion in terms of abinary correla-
tion function is the ratio between the minimum and
maximum values of the latter. The crystallization
occurs with the value of this criterion is equa to 0.2.
A simple dynamic criterion of melting, close in spirit
to the Lindemann criterion, was suggested by Lowen
et al. [19]. According to this criterion, crystallization
occurs when the ratio D, /D, of the diffusion coeffi-
cients of adust particle decreasesto avalue of ~0.1.

The simulation results demonstrate that the bound-
ary value of D /Dy, at which an abrupt jump of the self-
diffusion coefficient occurs (crystallization), increases
with 8*. In so doing, note the fact that in all calcula
tions, starting with 6* ~ 0.5 (and up to at least 6* = 3.6),
the ratio D, /D, in the vicinity of the crystalization
point is constant and closeto 0.1.

Thereby, the dynamic criterion of crystallization
provesto bevalid only for the case of not too low values
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of 8 (6* = 0.5). At the same time, for lower values
of 6%, theratio D, /D, at the crystallization point may
be much lower and, therefore, the criterion is violated.
In view of this, note that the experiments and calcula-
tions, performed by Lowen et al. [19] to substantiate
the criterion being treated, were performed to fit the
conditions of colloidal solutions, the viscosity (and,
consequently, the value of 8*) whichis, asarule, many
orders of magnitude higher than the viscosity of buffer
gas under conditions characteristic of experiments with
dusty plasma. In view of this, the application of the
dynamic criterion of melting to dusty plasma is
restricted to the region of not too low pressures.
Because, in investigating a dusty plasma under labora-
tory conditions, one often hasto deal with the situation of

>, i.e, 8 <1, the crystallization criterion treated
herein must be used with caution.

4. CONCLUSION

We used the modified method of molecular dynam-
icsto investigate the dynamic behavior of dust particles
interacting through Yukawa's potential. Main attention
was given to the study of the dependence of the coeffi-
cient D, of self-diffusion of dust particles on the force
of the interaction between the particles under condi-
tions of the plasma parameters typical of present-day
laboratory experiments in a weakly ionized gas-dis-
charge plasma.

The basic results may be formulated as follows. It
has been found that the self-diffusion coefficient D,
experiences an abrupt jump (decreases by severa
orders of magnitude) at a certain value of the nonideal-
ity parameter I 4. This jump may serve as an indicator
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of phase transition in a system of dusty plasma. The
value of the nonideality parameter, at which the jump
(phase transition) occurs, depends substantially on the
structure parameter K, but it is independent (within the
accuracy of numerical experiment) of the vaue of param-
eter 6. It proves possible to use three independent dimen-
sionless parametersT 4, K, and 6 to construct two parame-

ters '} and 6% which fully define the dynamic behavior
of astrongly nonideal system of dust particles. It has been
demonstrated that the I'; dependence of D, may be
well approximated by the expression

D, = Aexp(-BLI}),

where B* = 3.0 x 1072, It is further indicated that the
validity of the dynamic criterion of crystallization sug-
gested by Lowen et al. [19] is, in redlity, restricted to
the region of not too low values of 6* and, conse-
quently, of not too low pressures (6* = 0.5).

The obtained results may be used both in analyzing
the recent experimental results[20, 21] and in devel op-
ing methods of the diagnostics of dusty plasma, based
on determining the dynamic behavior of a system of
dust particles.
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Abstract—A non-self-sustained discharge in nitrogen with a condensed dispersed phase is studied experimen-
tally for the first time under atmospheric pressure at room temperature. It is shown that macroparticles strongly
affect the current—voltage characteristics as well as the stability of the discharge process. A numerical simula-
tion of dust particle charging in nitrogen is carried out at room temperature and cryogenic temperatures under
continuous medium conditions. It is shown that a considerable charge is accumulated at macroparticles in the
nitrogen beam plasma. As the gas temperature decreases, the charge of macroparticles in nitrogen increases,
while in argon their charge decreases. For this reason, the Coulomb interaction parameter for dust particlesin
nitrogen increases strongly upon atransition from room to cryogenic temperature, whilein argon this parameter
decreases. It is a'so shown that the characteristic time of dust particle charging is shorter than 1 s for abeam
current density of 90 uA/cm?, while the neutralization of the charge takes milliseconds. Possible mechanisms
of the influence of the dust component on the characteristics of non-self-sustained discharge are consid-

ered. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The interest in plasmas with a condensed dispersed
phase (CDP) has increased during the last decade in
connection with considerable advances in microtech-
nology and the progressin abtaining new materias[1, 2].
Thisinterest isalso dueto thefact that such plasmasare
the simplest real objects for studying self-organization
processes which are of fundamental importance. Such
amedium makesit possibleto carry out experimentson
convenient time and space scales and practically with
the naked eye. The study of a non-self-sustained dis-
charge in helium with a CDP revealed [3] that in a con-
stant electric field, the current density in the discharge
decreases upon an increase in the concentration of dust
particles. The rate of the current density drop increases
with the field. The theoretical model of a non-self-sus-
tained discharge with a CDP constructed in [3] was
based on the approximation of the orbital motion of
electrons. The necessary condition for such an approx-
imation to be applicable is that the molecular mode of
electron motion isrealized in the vicinity of adust par-
ticle, where the quasi-neutrality of the plasmais vio-
lated. Under atmospheric pressure, the opposite caseis
realized in molecular gases, where the regime of a con-
tinuous medium takes place for the transport of charged
particles. In this case, the description of the charging of
macroparticles in the plasma of a non-self-sustained
discharge is simplified since the joint solution of Bolt-
zmann's equation for the electron energy distribution

function (EDF) plus the continuity equations for
charged particles and Poisson’s equation for the el ectric
field isnot required. Consequently, it becomes possible to
construct a consistent and comprehensive mathematical
mode of dust particle charging, which has been verified
on other objects. For this reason, the study of a non-sdlf-
sustained discharge in molecular gases with a CDP is of
considerable interest.

A non-self-sustained discharge in molecular gases
is widely used for pumping CO,, CO, and other high-
power gas lasers. In such lasers, the erosion of elec-
trodes or the polymerization of particles of the original
gas or radicals formed in the discharge (e.g., the “laser
snow” effect in the active medium of the XeCl laser [4])
leads to the formation of macroscopic particles in the
working volume. Such particles can be responsible for
achange in the characteristics of the discharge process
and in the operation of the device proper (see [5] and
the literature cited therein). For example, aerosol parti-
cles may lower the discharge stability. It was noted in
[5] that the presence of dust particles in a high-pres-
sure CO, laser and in excimer lasers correlated with
instabilities such as discharge contraction or multiple
streamers.

The present work is devoted to experimental and
theoretical analyses of the effect of the dust component
on the characteristics of a non-self-sustained discharge
in nitrogen under atmaospheric pressure, which is con-
trolled by afast electron beam.
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Fig. 1. The current of a non-self-sustained discharge in
(a) helium and (b) nitrogen at j,, = 90 pA/cm? for various
concentrations of macroparticles: (a) U = 780 V, ng = 0
(curve 1), 3.1 x 10* (curve 2), and 4.8 x 10° cm™ (curve 3);
(b) U =2.1kV, ng =0 (curve 1), 1.4 x 10* (curve 2), and
2.8 x 10° cm™ (curve 3).
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2. EXPERIMENT

The experiments were carried out in the plasma of a
pulsed non-self-sustained discharge in nitrogen on the
setup described in [3]. We used nitrogen with an impu-
rity concentration below 0.005%. Asin[3], the dust com-
ponent wasin the form of carbon glassballs24 £ 5umin
diameter. The experimental conditions were chosen so
that, first, a comparison with the results of similar
experiments in helium was possible, and second, the
widest possible range of electric fields in the nitrogen
plasma was covered. A non-self-sustained discharge
was initiated under atmospheric pressure. The current
density in the fast electron beam with an energy of
125 keV was 90 pA/cm?, the length of the discharge
gap was 0.9 cm, and the area of electrodes was 1 cm?.
The range of working voltages across the discharge gap
was limited from below by the fact that during a certain
uncontrollable timeinterval after the initiation, the dis-
charge glows in the Thomson regime with a negligibly
small energy contribution of no interest for the experi-
ments, and from above, by arapid evolution of instabil-
ity leading to discharge contraction (in our conditions,
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Fig. 2. The current of a non-self-sustained discharge in
helium and nitrogen, reduced to the value without a CDP, as
afunction of the macroparticle concentration after (a) 150
and (b) 400 psfor j, = 90 uA/cm?: (a) Np: U = 2.1 (curve 1)
and 2.9 kV (curve 2); He: U = 480 (curve 3) and 780 V
(curved). (b) No: U =2.1KkV (curvel); He: U = 480 (curve 2)
and 780 V (curve 3). The curves are plotted by the least
sguares technique using second-degree polynomial's (except
curve 1in (a) for which afourth-degree polynomia was used).

the working range of voltages was from 2 to 3 kV for a
stable discharge time of at least 150 ps).

Typica oscillograms for the discharge current are
shown in Figs. 1a (helium) and 1b (nitrogen). For dis-
charge voltages up to 800 V, the discharge current in
helium virtually does not changein acertain timeinter-
val (400-1000 ps after the initiation of the discharge,
the current can only increase by 10% for zero or low
concentrations ny of microparticles and decrease by the
same value for ng > 10° cm™). In contrast to experi-
ments with helium, the quasi-stationary mode of the
discharge in nitrogen was not observed under our con-
ditions (the discharge current in Fig. 1b increases
monotonically with time). For this reason, we com-
pared the values of discharge current at 150 us, when
we can assume that the formation of the cathode layer
is completed and the current becomes a linear function
of time, and also at 400 ps.

Figure 2 showsthe discharge current in nitrogen and
helium, reduced to the values of a non-self-sustained
discharge in the absence of dust particles, as afunction
of the concentration of dust particles 150 and 400 s
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after the initiation of the discharge for various applied
voltages. In nitrogen, aswell asin helium plasma[3], a
stronger dependenceis observed for larger values of the
electric field. It can be seen from Fig. 2 that, first, the
decrease in the discharge current in nitrogen for high
concentrations of macroparticles (ng > 10° cm™) is
slower than in helium. Second, the introduction of
small amounts of dust (ny < 10° cm™) leads to an
increase in the discharge current in nitrogen as com-
pared to the case when the dust component is absent.

A peculiarity of a non-self-sustained discharge in
nitrogen with a CDP isatransition to a contracted state
under voltages insufficient for a breakdown of the dis-
charge gap in pure nitrogen (Fig. 3). Instability devel-
opsfor all concentrations of macroparticles studied for
discharge currents smaller and larger than in anon-self-
sustained discharge without a CDP.

3. CHARGING OF DUST PARTICLES
IN ZERO EXTERNAL ELECTRIC FIELD

The charge of dust particles is the most important
parameter of a plasmawith a CDP, which determinesthe
self-organization ability of such a system. For not very
high concentrations of macroparticlesin the plasma, the
Wigner—Seitz cell method can be used for describing the
charging of dust particles in zero external dectric fidd.
This method considerably simplifies the situation, trans-
forming the multidimensional problem into a one-
dimensional problem and providing the opportunity of a
more exact simulation of the dust particle charging.

According to estimates, the conditions for the appli-
cability of the hydrodynamic description of the charged
particle transport are satisfied for macroparticles hav-
ing aradius of the order of 1 um and above in nitrogen
under atmospheric pressure [6-8]:

Ae<Trot+d, A <ry+d, (D)

where A, and A; are the mean free paths for electronsand
ions, respectively, rqistheradius of adust particle, and
d is the characteristic size of the region in which the
quasi-neutrality of the plasma is violated.! Estimates
also show that for macroparticles having asize of 10 pm
and above in nitrogen under atmospheric pressure, amore
gringent condition for the applicability of the local
approximation for determining €l ectronic parameters such
as the mohility, the diffusion coefficient, and the rate con-
stantsfor the crestion and loss of eectronsis satisfied [6]:

Ay <ryt+d, (2

L Under atmospheric pressure, the mean free path of ionsisusually
of the order of 10°°-107% cm (A; = 0.053 um for N, ionsin nitro-
gen at T = 300 K), while the same for electrons in nitrogen does
not exceed 10 cm (the electron mean free path Ag = 0.72 um for
the reduced field E/N = 0.01 x 10716 ¢m?). According to calcu-
lations, the characteristic size of the region where the quasi-neu-
trality of plasmaisviolated is of the order of 10~2 cm for particles
having aradius of 10 cm.
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Fig. 3. The current of a non-self-sustained discharge in
helium and nitrogen for j, = 90 pA/em? and U = 2.9 kV for
various concentrations of macroparticles, ny = 0 (curve 1),

8.8 x 10* (curve 2), 3.6 x 10° (curve 3), and 4.8 x 10° cm™
(curve 4).

where A, is the energy relaxation length for electrons.
This quantity can be defined as

Ay = ./Ddvy,

where v, isthe frequency of inelastic collisions. If con-
dition (2) is satisfied, the transport coefficientsfor elec-
trons and the kinetic electronic constants are deter-
mined by thelocal value of the electric field. Asregards
the transport coefficients for ions, they can be approxi-
mately assumed to be constant for not very high fields.
It should be noted that for atomic gases the condition
opposite to (2) usually holds:

A, > ro+d. 3)

If this condition is satisfied, the electron distribution
function is practicaly unperturbed by the field of a
charged dust particle and, hence, we can use the elec-
tronic parameters for a plasma unperturbed by the dust
component as the first approximation.

Following the Wigner—Seitz cell method, we will
consider the charging of a spherical macroparticle
placed at the center of a spherically symmetric cell of
radius a4, which is determined by the concentration ny
of dust particles:

—~1/3

ay = %deg . 4

It should be emphasized here that each unit cell is
assumed to be electrically neutral. Consequently, the
processes of interaction between dust particles cannot
be considered in the given method. For this purpose, the
solution of at least two-dimensiona problem is
required, which is beyond the scope of the present arti-
cle. In the nitrogen beam plasma under atmospheric
pressure, simple ions are rapidly converted into com-

plex ions, and N becomes the main positive ion (the
fraction of such ions exceeds 80%). Therefore, we can
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assume that we are dealing with only one species of
positive ions. In this case, we have the self-consistent
system of continuity equations and Poisson’s equation
for determining the charge of macroparticles in the
nitrogen beam plasma:

aa_r:e + divje = Q + kionneN - Bei NeN;,

%—r:—i + dIVJI = Q + kionniN - Beineniv (5)

divE = 4me(n,—n,),

where n, and n; are the concentrations of electrons and
ions, respectively, N isthe concentration of neutral par-
ticles, Q istherate of gasionization by an external ion-
ization source, Kk, is the rate constant for the gas ion-
ization by intrinsic electrons in the plasma, B4 is the
coefficient of the dissociative electron—on recombina-
tion, joand j; aretheflux densities of electronsandions,
respectively, E isthe electric field strength, and eisthe
absolute value of the electron charge.

The current densities of electronsand ionsin the dif-
fusion-drift approximation are defined by the following
expressions:

je = _nekeE_grad(Dene)’
Ji = nkE—D;gradn;,

where k, and k; are the mobilities, and D, and D, are the
diffusion coefficients for electrons and ions, respec-
tively (electronic transport coefficients are functions of
the field).

The formulation of the boundary conditions on the
surface of amacroparticle for the problem under inves-
tigation is a complicated problem in view of the inap-
plicability of the hydrodynamic approximation in the
Knudsen layer, which necessitates the transition to an
analysis of the molecular regime of charged particle
transport. This problem was thoroughly discussed in
connection with the devel opment of theories for radia-
tion and neutron transport [9]. We will assume that the
charge of electrons and ions reaching the surface of a
dust particle is absorbed with the unit probability. In
this case, taking into account the spherical symmetry of
the problem, we can introduce the effective boundary
conditions [10, 11] for the system of equations (5):

A0(rng) 3
Eﬁe_yOero or e, - 0.

Aio(rn;) _
EH—YOiF; ar arﬂo =0,

wherer, istheradius of adust particle, and corrections
Yoe @Nd Yy Weakly depend on the ratios of the mean free
paths to the macroparticle radius. In the limit AJr, — 0
or A/ro — 0, these corrections are equal to the Hopf

(6)

(7a)
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constant y, = 0.71. The boundary conditions (7a) are

—2r/Ag —2rg/A;
e

correct towithin e and [10], and hence can
be replaced by the following conditionswhen AJrg < 1
for electrons and A;/ry < 1 for ions:

ne|r:rO =0, ni|r:rO = 0. (7b)
We will require that the fluxes of charged particles
through the boundary of a unit cell be equal to zero at
the right boundary, while the electroneutrality condi-
tion for the cell implies that the field is equal to zero at
the boundary of the unit cell:

je|r:ad =0, ji|r:ad =0, E[-, =0 (7c)
It should be noted that the charge of a dust particle in
the one-dimensional approximation under investigation
can be determined from the value of the electric field at
the interface between the particle and the plasma from
the “boundary” condition

qe = 1oE|, ... (8)

which is a consequence of the charge conservation law.

The boundary-value problem (5) with the boundary
conditions (7) will be solved by using the finite-differ-
ence method. We construct the difference scheme on
the basis of the integral identity method [12] ensuring
the continuity of spherical flows on account of the
spherical symmetry of the problem:

J. = 4Trr25—nekeE—a—(%r’r]E)Er
on ®
J = 4nr"H1ikiE—Dia—r'Er

The charge of dust particles is determined through the
equation

((jj_f[l = —(Ji,o—Je0),
where J, o and J, , arethefluxes of charged particlesfor
r = ro. A comparison of the values of the charge
obtained by integrating (10) with those determined by
using relation (8) allows usto judge the accuracy of the
numerical solution of the problem. We used an inhomo-
geneous spatial mesh condensing in the direction to the
surface of amacroparticle.

It should be noted that the system of equations (5) is
stringent and therefore quite complicated for a numeri-
ca solution. For example, if we use the explicit
scheme, the size of the time step is bounded by the con-
dition At < min(h%2D,), while the size of the step along
the radius is limited from above by the required accu-
racy of the solution aswell as by the Gibbsinstabilities,
which weakly affect the accuracy of determining the
charge, but are nevertheless undesirable. On the other
hand, the characteristic time of stabilization of the

(10)
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charge and concentration of charged particles is deter-
mined by much slower ions. For not too low concentra-
tions of macroparticles, the order of magnitude of this
time can be estimated as

1, 0a3/D..

Consegquently, the number of time steps required for
obtaining a steady-state solution of the problem is of the
order of (ay/h)?(DJD;) (for ay~ 100 um and h = 0.1 pm,
the number of steps in nitrogen can be as large as 10’
and even more). For this reason, the application of sta-
ble semi-explicit or implicit integration schemes is the
only possibility for solving the given boundary-value
problem with reasonable computer time expenditures.

In the present work, the integration with respect to
time was carried out according to the unconditionally
stable semi-explicit Krank—Nicholson a gorithm of the
second order of accuracy. The solution of finite-differ-
ence equations on each time layer was sought by the
matrix factorization technique [13] using the Newton—
Kantorovich linearization method. The electronic
parameters for nitrogen required for the calculations
were borrowed from [14-16]. The tabulated data pre-
sented in [14, 15] were used for deriving approximate
expressions ensuring the continuity of the function
itself and (whenever possible) its first derivative
depending on the reduced field. It iswell known that the
diffusion coefficient in an electric field depends on
direction[7, 8]. Inthe course of charging adust particle
in zero externa field, electrons diffuse in the direction
opposite to the radial eectric field, and hence we must
take for D, in (6) the value of the longitudinal diffusion
coefficient D, for electrons. The dataon D, in nitrogen
at cryogenic temperatures are not available. For this
reason, we used in our calculations the data on the
transverse diffusion coefficient D+ for the gas tempera-
ture T = 77 K. The coefficient of dissociative recombi-

nation of electrons and N ions was calculated from
the functional dependence on the electronic tempera-
ture T, from [16] at T = 300 K using the approximate
dependence of T, on the reduced field E/N obtained
from the data borrowed from [15], whileat T = 77 K,
the approximate dependence of the characteristic elec-
tron energy on E/N was used instead of T.. The results
on electronic parametersin argon required for deriving
approximate dependences were obtained by numbering
the graphs presented in [17] and were supplemented

with the datafrom [14]. The mobility of N ionsat var-
ious gas temperatures in nitrogen was determined in

[18], whilethe datafor Ar, ionsat room and cryogenic
temperatures were borrowed from [19].

4. DISCUSSION OF RESULTS
OF NUMERICAL SIMULATION

Figure 4 shows the curves illustrating the evolution
of the charge on macroparticles having aradius of 12 um
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Fig. 4. Curves illustrating the evolution of the charge on
dust particles of radius 12 um for various ionization rates at

the nitrogen temperature (a) 300 and (b) 77 K, ng = 10* cm >,
Dashed curves are calculated with the boundary condi-
tions (7a).

at room and cryogenic temperatures for various gas
ionization rates, while Fig. 5 presents the dependences
of the macroparticle charge on the gas ionization rate
for particles of different sizes. Calculations were car-
ried out until the charge attained a steady-state level
(for low ionization rates, amost up to 1 ms). Note that
the current density j, = 90 HA/cm? in the fast electron
beam corresponds, according to Cason et al. [20], to the
ionization ratein nitrogen Q = 1.5 x 10 cm=3s2. It can
be seen from Fig. 4 that the magnitude of the charge as
well as the characteristic time of charge stabilization
depend on the ionization rate of the gas. Calculations
made with fine meshes proved that the values of the
charge obtained by the method of the integration of the
total current (10) per macroparticle and by formula (8)
usually differ only starting from the third or fourth dec-

imal place (note that the value E|, ., is determined

from the solution of system (5) using the finite-differ-
ence technigue described above). As we go over to
coarser meshes, Gibbs instabilities emerge in the vicin-
ity of amacroparticle (which is manifested in an irregular
behavior of the fluxes), invaidating the method of inte-
gration for determining the charge, while formula (8)
givesthe vaue of the charge with an admissible accuracy.
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Fig. 5. Dependence of the charge on dust particles of various
radii on the ionization rate for ny = 10%* cm3at T= 300 @
and 77 K (b). Solid curves are caculated with the zero
boundary conditions (7b) and dot-and-dash curves, with the
boundary conditions (7a).
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Fig. 6. Curves illustrating the evolution of the charge on
dust particlesof radius 12 um for Q= 10 cm=3stinargon
at room and cryogenic temperatures (ng = 10* cm‘?’)

For this reason, we will henceforth give the values of the
charge determined by using formula (8).

Figure 4 shows that the charge of a macroparticle at
room temperature passes through a peak, while at cryo-
genic temperatures, no peak is observed, the charge
attaining the steady-state value monotonically. The
same situation also takes placein argon (see Fig. 6). It can
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aso be seen from Figs. 4 and 5 that the charge of macro-
particles a cryogenic temperatures is noticeably larger
than at room temperature. A comparison of the results
obtained with the boundary conditions (7a) and (7b)
shows that they differ insignificantly as expected. For
this reason, we will henceforth operate with the data
calculated with the zero boundary conditions (7b). The
curves in Fig. 6 calculated with frozen electronic
parameters (we used the parameters for zero field)
illustrate the evolution of the charge of macroparticles
in argon at room and cryogenic temperatures. A com-
parison of Figs. 4, 5, and 6 showsthat asthe gas temper-
ature decreases in argon, the charge of macroparticles
noticesbly decreasesin contrast to nitrogen. For thisrea-
son, the Coulomb parameter

r = e’q’/a,T (11)
of the interaction between macroparticles in nitrogen
increases considerably upon cooling (see Fig. 7a),
whilein argon, on the contrary, it decreases noticeably.
Thisisdueto thefact that the electron mobility in nitro-
gen increases upon cooling from 300 to 77 K by afac-
tor exceeding three, while the mobility of ions
decreases from 2.3t0 1.9 cm?/(V s) [18]. A decrease of
temperature in argon results in a decrease in the elec-
tron mobility [17], while the mobility of ions remains
virtually unchanged [19]. Consequently, the gainin the
value of I in (11) in argon due to a decrease in the
denominator upon cooling is suppressed by a stronger
decrease in the numerator.

Theinteraction of charged particlesin the physics of
low-temperature plasma is usually described either by
the modd of one-component plasma, or the model with a
screened Debye potentid. In thefirst moddl, it is assumed
that the interaction potentid is of Coulomb’stype, and the
vadue of the nonidedity parameter I' determines the
phase state of the system [1]. For I' > 171, the dusty
plasma is transformed into a state with a crystalline
structure, i.e., a Coulomb crystal is formed. According
to the calculations, the value of this parameter under
our experimental conditions is considerably larger. It
can be seen from Fig. 7aillustrating the variation of the
nonideality parameter upon atransition from cryogenic
to room temperature that a decrease in the gas temper-
aturein nitrogen leads to a considerable increase in the
nonideality parameter of dusty plasma, which may
facilitate the formation of ordered dust-plasma struc-
turesin nitrogen.

In the second model, the description of the plasma
thermodynamics is complicated, and the conditions of
phase transitions are determined in this case by two
parametersinstead of one, i.e, theratio

K = a4/Ry
and the parameter

I, = Fexp(—a4/Ry).
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Fig. 7. Retio of (a) the nonideality parameters { = I'7/T 30
and (b) parameter I'gat T =77 and 300 K asfunctions of the
ionization rate for ny = 10° cm~3in nitrogen. Light sym-
bolsin (b) correspond to T = 77 K, and dark symboals, to
T=300K.

Here, R, is the Debye radius of plasma screening,
which in the case of an isothermal plasmais defined as

Ry = A/T/8me’n,,,

where n,, isthe concentration of charged particles away
from a dust particle (we assume here that the concen-
tration of ionsis equal to the electron concentration):

noo = /\/Q/Bei'

Figure 7b givesthe values of parameter ' asafunction
of the gas ionization rate for a dust particle concentra-
tion of 10° cm3. It can be seen from the figure that the
value of parameter I decreases noticeably with the gas
temperature, but the dependence on the gas ionization
rate is even stronger. This is due to a decrease in the
Debye radius of plasma screening (parameter ' is an
exponential function of the Debye radius) upon an
increase in the gas ionization rate and, accordingly,
upon an increase in the concentration of charged parti-
cles. The value of R, aso decreases with the gas tem-
perature, leading to an increase in parameter K and a
decreasein parameter ', upon atransition from room to
cryogenic temperatures. According to the result of
numerical calculations, the crystalization of dusty
plasmain the model with the Debye interaction poten-
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Fig. 8. Radial distributions of the concentrations of (a) elec-
tronsand ions and (b) charge in the nitrogen beam plasma at
various instants of time under atmospheric pressure (rg =

12 um, ng=10°cm 3, Q = 1.5 x 10 cm3 7).

tial for k ~ 10 occurs for values of the parameter '~ 1
(see [21]). It can be seen from Fig. 7b that at low ion-
ization rates, when the value of Ry isquite large and the
value of parameter K is close to 10, the charge on dust
particlesis still significant, and the value of parameter
I'siscloseto unity or exceedsit. This leads to the con-
clusion that the Debye model also indicates the possi-
bility of creating an ordered dust structure in the nitro-
gen beam plasma.

Figure 8 shows that the steady-state radial distribu-
tion of ion density has a small peak whose height
increases with the nitrogen ionization rate according to
the results of calculations. The peak and the region of
the slow decrease in the ion concentration behind it
appearing as a macroparticle moves to the surface are
associated with the drift motion of ions in the attractive
field of the macroparticle, which increases with decreas-
ing distance to it, while the next region of the sharp
decrease in n; in the vicinity of the macroparticle is asso-
ciated with adiffusive departure of ionsto the macroparti-
cle. It follows from Fig. 8 that for Q = 10'® cm® s, the
plasma becomes electrically neutral even at a distance
of the order of 100 um (this distance increases with
decreasing rate of ionization).

Figure 9 shows the dependence of the characteristic
time 1, of the charge stabilization on the parameters of
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Fig. 9. Characteristic time of charge stabilization on dust
particles of various radii (in micrometers) as a function of
theionization rate for ny = 10* cm~in nitrogen. Light sym-
bols correspond to T = 77 K and dark symboals, to T=300 K.
The dot-and-dash curve describes the diffusion time during
which anion traverses a distance equal to the Debye radius.
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Fig. 10. Curves describing the evolution of the charge on
dust particles of radius 12 pmfor j,, = 90 pA/cm2 innitrogen
at 300 K for various concentrations of macroparticles ny =

10% (curve 1), 10° (curve 2), and 108 cm™ (curve 3) (calcu-
lated with the boundary conditions (7a)).

the dusty plasma. This quantity was defined asthetime
required for attaining the value

q=(1-exp(-3))q. = 0.95q,

(0., isthe charge under steady-state conditions). In our
problem, 1, is determined by slower ions, and we can
assume for our estimates that 1, is the diffusion time
over which an ion crosses the region where quasi-neu-
trality is violated with a characteristic size (and not
radius!) d:

T, =

q (12)

o] EN
=N N

For our estimates, we assume that d is equal to the
Debyeradius. Figure 9 presents the curve calculated on
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the basis of (12). The behavior of this curve upon a
change in the ionization rate correlates with the behav-
ior of the characteristic time of charge stabilization asa
function of the ionization rate.

It can be seen from Fig. 9 that for the current density
jb = 90 pA/cm? in the fast electron beam (Q = 1.5 x

10" cm2 s, the characteristic time of the macropar-
ticle charge stabilization amounts to less than 1 ps. An
anaysis of the evolution of the charge on macroparticles
after switching off the fast electron beam following the
attainment of the quas-Stationary level (see Fig. 10)
shows that the neutralization of the charge isamuch
slower process as compared to charging (for ny =

10* cm3, the charge still amountsto 10% of the steady-
state value even after 10 ms). Thisis dueto the fact that
lighter electrons are accumulated with time from larger
and larger distances until the region of electron density
perturbation reaches the boundary of a unit cell. After
this, there are virtually no electronsin the bulk. In order
to completdly neutralize the charge of amacroparticle, we
must gather ions from the entire unit cell, which requires
atime of the order of (4/D;)(ay/m)?; for ng=10* cm2 and
T=300K, thistimeis~5.6 ms. Asthe concentration of
macroparticles increases tenfold to 10° cm3, this time
decreases to 1.2 ms (see Fig. 10). Large values of the
time of macroparticle charge neutralization indicate
that the formation of ordered dust structures can be
studied in systems with a pulse-periodic switching-on
of the beam (with a large relative pulse duration). The
time of the formation of ordered structures can be
roughly estimated from above as the time during which
a macroparticle possessing a thermal energy moves
over the average distance between particles. For parti-
cles of diameter 24 um in nitrogen under atmospheric
pressure, this time is of the order of a few seconds.?
Consequently, for a dust-plasma structure to have time
to form, the beam plasma should be maintained during
thistime interval; this can be done easily in pul se-peri-
odic systems. The electron gun used in our experiments
could operate only in the pulse mode (with a pulse
duration up to 1 ms). For this reason, no ordered dust-
plasma structures were observed although the value of
the nonideality parameter was much larger than the
critical value according to the estimates.

In order to determine the extent to which the dust
component affects the average concentrations of
charged particles, we calculated the fraction of positive
ions and, accordingly, electrons are lost as a result of
recombination on the surface of dust particles under
steady-state conditions. This quantity is defined as

n =3 ond/Q.

Figure 11a shows the curves describing | asafunction
of dusty plasma parameters. According to calculations,

2 The steady-state velocity with which carbon glass macroparticles
of radius 12 um in nitrogen under atmospheric pressure at room
temperature fall in the gravity field is 4.4 cm/s.
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theratio n/ny aswell asthe charge of macroparticlesare
virtually independent of the concentration of macropar-
ticles in the range of ionization rates under investiga-
tion for ny < 10° cm3. At higher concentrations, the
dependence on ny appears first for low ionization rates
and large macroparticles, and then for large values of Q
and small values of r, also. However, the condition for
the applicability of Wigner—Seitz cells starts being vio-
lated, and such calculations are of no practical value.
Figure 11a demonstrates that the perturbation exerted
by the dust component on the nitrogen plasmafor Q =
1.5 x 10" cm st is quite small under our experimen-
tal conditions even for ny = 10° cm=.

The values of the effective coefficient of the recom-
bination of charged particles on the surface of macro-
particleswere determined in [ 3]. The calculations made
by us here indicate that the effective coefficient of the
recombination of positive ions on a macroparticle is
approximately equal to the quantity defined by the Lan-
gevin theory: B4 = 41k [19], but is dways smaler than
this quantity in the steady state (see Fig. 11b). Thisis a
consequence of the fact that the electric field decreases
with increasing distance at a much higher rate as com-
pared to Coulomb’s law. It can be seen from Fig. 11b
showing the dependence of the quantity & = J, o/[q|Bdni, m
(n;, v is the concentration of ions at the boundary of a
unit cell) on the ionization rate that the ratio of the rate
of ion lost at the surface of a macroparticle to the Lan-
gevin rate weakly depends on the ionization rate, and
its behavior upon a change in Q changes significantly
upon atransition from room to cryogenic temperatures.

Concluding this section, we consider the fulfillment
of the similitude relations established by Belov et al.
[22] on the basis of asimplified model of macroparticle
charging. It was found in [22] that

alre = f(ngro, Q),

where f is a certain function. An analysis of the results
of a numerical solution shows that the similitude rela-
tion is quite rough and can be used only for obtaining
estimates. This is due to the fact that the two main
assumptions underlying the ssimplified model [22, 23],
i.e, (1) the independence of the fluxes on the radial
coordinate, and (2) the Coulomb dependence of the
electric field, are quite approximate according to the
numerical calculations. It should also be noted that the
dependence of the charge of dust particles on the ion-
ization rateis closeto QY4, while the chargeisvirtualy
independent of ny in the range under investigation.

5. CHARGING OF DUST PARTICLES
IN AN EXTERNAL ELECTRIC FIELD

Let us now consider the charging of macroparticles
in the presence of an external electric field. In this case,
the symmetry of the problem is lowered to the axial
symmetry, and a two-dimensional analysisis required,
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Fig. 11. (a) The fraction of ions perishing as a result of
recombination on the surface of macroparticles of various
radii (in micrometers) and (b) theratio of the surface recom-
bination rate to the Langevin rate in nitrogen under steady-

state conditions for ny = 10* cm™ as functions of theioniza-

tion rate. Light symbols correspond to T = 77 K and dark
symbols, to T =300 K.

which should be carried out separately. We will esti-
mate the charge of macroparticles in such a case, fol-
lowing Reist [24]. In our experiments, macroparticles
were made of carbon glass which is (although a poor)
conductor, its conductivity being five to six orders of
magnitude higher than the conductivity of the beam
plasmain our experiments. For this reason, the electric
field does not penetrate into a macroparticle, and the
potential ¢ outside it is described by the formula [25]

O 0
¢ =L Eco-Q
r o r’O

where E isthe vector of the applied eectric field strength,
r is the radius vector with the origin at the center of the
macroparticle, and q is the macroparticle charge. We
assume that the potentia on the surface of an uncharged
meacroparticle is equal to zero. Under conditions (1),
charged particles move aong the eectric fied lines, and
the radial component of thefied is given by

(13)

0 2ry0
g =909, EcosGDl+2—r30D, (14)
o r o

or 2
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where 0 is the angle measured from vector E. As the
negative charge increases, the number of electrons
reaching the macroparticle decreases, and the number
of ions increases until the electron and ion fluxes bal-
ance each other for a certain value of the charge. Con-
sidering that k. > k;, we can assume that this takes
place when the radial field at the surface of the macro-
particle becomes negative everywhere. Thisleadsto the
following expression for estimating the charge:

_ 3Er;
q-= e (15)

whence g = -9 x 10 for particles of radiusry = 12 um
inthefield E = 3 kV/cm. Thisvalue is ailmost thrice as
large as the macroparticle charge in zero field, and
hence the critical condition for a transition to the state
with an ordered dust structureis satisfied in a non-self-
sustained discharge in nitrogen also.

Let us now consider the effects associated with the
influence of the CDP on the properties of a non-self-
sustained discharge in nitrogen, which were observed
in our experiments. It was proved above that a signifi-
cant negative charge is accumul ated on macroparticles.
This charge can produce a focusing effect on electrons
in the plasma (which is similar to focusing of the drift
current of ions by negatively charged particles [26]).
Thisleadsto the formation of regionswith an enhanced
liberation of energy, which in turn leads to an increase
in the extent of the vibrational excitation of nitrogen in
these regions. It was proved in our earlier publication
[27] that atransition to the contracted state in nitrogen
occurs when the excitation wave reaches approxi-
mately the 15th or 16th vibrational level. Consequently,
an increase in the extent of vibrational excitation may
lead to a decrease in the stable-discharge time.

An increase in the extent of vibrational excitation
may also lead to an increase in the discharge current for
low concentrations of dust particles. A decrease in the
non-self-sustained discharge current for high concen-
trations of macroparticlesis due to the fact that the spe-
cific mass of macroparticles increases with ny and
becomes larger than the specific mass of nitrogen for
ng>9 x 10* cm3. This increases ineffective losses of
the energy of fast electronsin the beam and reducesthe
gas ionization rate. Naturally, the discharge current
decreases as aresult.

A large negative charge of macroparticles may aso
lead to another mechanism of increase in the current.
The large charge may cause an increase in the coeffi-
cient of the ion—electron emission of carbon glass and
ultimately to the short-circuiting of the discharge cur-
rent through macroparticles whose conductivity is
much higher than that of the plasma (see above). This
effect takes place when a minicathode layer is formed on
the side of amacroparticlefacing the anode. Such an event
does not appear to be improbable if we take into account
thefact that thedectric field on thisside (6 = i) isstrongly
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enhanced (by afactor of six on the surface of the macro-
particle!). Under the above conditionsin which the charge
of a macroparticle was estimated, this field is 18 kV/cm,
which is only half the value of the breakdown voltage
in nitrogen under atmospheric pressure [28]. According
to estimates, the charge of macroparticles in helium
must be much smaller than in nitrogen, and hence such
a mechanism should not operate in helium. Probably,
the discharge current in helium only decreases upon an
increase in the dust concentration due to a decrease in
the gasionization rate in this case.

6. CONCLUSION

The experimental investigations of a non-self-sus-
tained discharge in nitrogen with a condensed disperse
phase under atmospheric pressure carried out in this
work demonstrated a strong effect of macroparticles on
the current—voltage characteristicsaswell ason the sta-
bility of the discharge process. The numerical simula-
tion of the charging of dust particles occurring in the
continuous medium mode under our experimental con-
ditions proved that a considerable charge is accumu-
lated at macroparticles in the nitrogen beam plasma. It
wasfound that adecrease in the gas temperature notice-
ably increases the charge of macroparticlesin nitrogen
and, on the contrary, decreases this charge in argon. As
aresult, the Coulomb parameter of interaction between
dust particles strongly increases upon atransition from
room to cryogenic temperature in nitrogen and notice-
ably decreases in argon. The calculations also proved
that the charge attains the quasi-stationary level over
time periods of the order of a microsecond at high ion-
ization rates, while the charge neutralization takes time
of the order of amillisecond. For thisreason, theforma-
tion of ordered dust-plasma structures can be studied
experimentally in systems with pulse-periodic ioniza-
tion of the gas. An analysis of possible mechanisms of
the effect of the dust component on the characteristics
of a non-self-sustained discharge proved that it may
occur through the focusing effect of the electric field of
charged macroparticles on therma electrons in the
plasma. This leads to an increase in the discharge cur-
rent and to a decrease in the stable discharge time
through an increase in the extent of vibrational excita-
tion of nitrogen molecules. The mechanism of theiniti-
ation of microscopic discharges between macroparti-
cles may lead to similar effects. Additional studies
including a multidimensional simulation of the prob-
lem under investigation are required to clarify com-
pletely these mechanisms of the effect of the CDP on
the non-self-sustained discharge.
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Abstract—The optical phononsin semimetal's, semiconductors, and superconductors were studied by the light
reflection techniques with femtosecond time resolution and by the method of spontaneous Raman scattering.
During measurements in the time domain, the phonon system is converted into a coherent state by the first
ultrashort laser pulse and then probed at a variable delay by the second pulse. In this case, the phonons are
shown to occur in anonclassical state in which their fluctuational properties, different in various quadratures,
are described by periodic functions of time. A comparison of the results obtained in the time and frequency
domains gives evidence that the energies of thermal and coherent phonons coincide, while their dephasing and
energy relaxation times are different. © 2001 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

Phonons, aswell asall other elementary and collec-
tive excitations in solids, should be treated as essen-
tially quantum objects. Repeated changes of any vari-
ableinvolved in the description of the phonon field pro-
vide for an average value with an accuracy limited by
the noise. The quantum noiseisafundamental property
of any system and it was commonly believed for along
time that the accuracy of measurements cannot be bet-
ter than that determined by the noise level. However,
despite being the inseparable property of any system as
stipulated by the Heisenberg uncertainty principle [1],
the quantum fluctuations possess no immunity against
possible manipulations. the Heisenberg principle pos-
sesses an internal degree of freedom and poses restric-
tions on a system only with respect to a pair of conju-
gated variables. The nature does not forbid the noise
being reduced for one of the conjugated variables, pro-
vided that the other would accordingly begin to fluctu-
ate more strongly.

Until recently, optical phononswere usually investi-
gated in the frequency domain by spectroscopic meth-
ods, which usually provide information on equilibrium
thermal phonons [2, 3]. The main spectroscopically
measurable quantities are the frequency (i.e., energy),
which determines the energy separation of the quantized
levels, and the damping (decrement) assigned to the inter-
action between the system studied and athermd reservoir
(unaccounted degrees of freedom). The progress in laser
technologies made it possible to decrease significantly the
laser pulse duration, thus opening new prospectsfor inves-
tigations by alowing the crystal lattice dynamics to be
studied on a red time scale. Phonons excited by the
ultrashort light pulses are conventiondly referred to as
coherent, because the excitation laser pulse duration is
considerably smaller than a characteristic lifetime of
the phonon state.

In order to elucidate the equivalence and possible
distinctions of the information provided by investiga-
tions in the time and frequency domains, we have car-
ried out a comparative study of the phonon characteris-
tics of several solids—typical representatives of the
classes of semimetals, semiconductors, and supercon-
ductors—by two different optical methods: (i) Raman
light scattering and (ii) optical pumping followed by
probing with femtosecond pulses. During investiga-
tions in the time domain, special attention was paid to
the statistical properties of coherent phonons. The
structure of this paper is as follows. Section 2 focuses
on theoretical principles of the description of various
states in the phonon field and explains the essence of
experimental  methods employed. The experimenta
results are presented in Section 3, separated according to
the types of samples studied. Section 4 is devoted to the
discussion and possible interpretations of the results. The
main results are summarized in the Conclusion.

2. THEORETICAL PRINCIPLES AND METHODS
OF MEASUREMENTS

As noted above, most of the information concerning
optical phonons was obtained until recently by investi-
gations in the frequency domain. At present, the avail-
ability and wide application of femtosecond lasers
make it possible to study the phononsin real time and,
moreover, allow some nontrivial experiments. Investi-
gations in the time domain, with a typical procedure
based on the phonon system excitation with subsequent
probing by two time-separated laser pulses, are how
extensively carried out in many condensed systems.
There are severa good reviews explaining the physics
of measurements in the time domain and analyzing the
common and distinctive features of these studies in
comparison with experiments in the frequency domain
[4-6]. However, there are two points, not considered in
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sufficient detail in these reviews, which are worth spe-
cia attention.

First, the experiments with condensed mediain the
time domain usualy provide information on the
Raman-active phonons. The results obtained by apply-
ing the Fourier transform to the time-dependent
response are frequently compared to the spontaneous
Raman scattering spectra. However, despite the fact
that information on the phonon subsystem in both
methods is extracted from the results of measurements
performed on the photon field, different correlation
functions are measured in the frequency and time
domains. The Raman scattering isrelated to correlators

of the [&; a,type, whereas the optical response in the
time domain depends on correlators of the type
(& aa;a,0 (where & and & are the phonon creation
and annihilation operators [7]. Measurements in the
time domain provide data on the intensity correla-
tions, the dependence of which on the first-order cor-
relations measured in the frequency domain is often
determined by the statistics of the scatterers (in our
case, phonons) [8, 9].

The second important aspect, which is aso fre-
quently ignored during interpretation of the results
obtained in the time domain, is that even performing
investigationsin the frequency and time domainson the
same crystal by no means implies that the results of
these measurements would refer to the same state of the
system [8]. During spontaneous Raman scattering mea-
surements in the frequency domain, phonons occur in
thermal equilibrium in the state with an undetermined
phase. In the time domain, the measurements are per-
formed over a coherent system where the phase is a
well determined quantity [2, 4, 10]. There are no
grounds to ascertain a priori that all characteristics of
the two systems are identical. It should be emphasized
that measurementsin the time domain provide informa-
tion on the nondiagonal elements of the density matrix,
whereas measurements in the frequency domain allow
us to determine the diagonal elements.

The existence and properties of excitations with
nonthermal statistics were (and still are) the subjectsin
many investigations performed in the photon fidd. The
concept of the deformation (squeezing) of the uncertainty
contour was origindly theoretically introduced [11] and
then experimentaly realized [12] for photons. Investiga
tions of the squeezed photon states are reported in a vast
number of papers, al of which cannot be cited here; we
redrict this list of references to severa textbooks and
reviews, which are widely known and readily available
[13]. It was not until considerably later (in the end of
the 1980s) that the first theoretical works appeared in
which the analogy with the photon field was used to
study the possibility of obtaining squeezed phonon
states and their specific properties.

These (rather few) investigations can be divided into
three groups. In two of these, phonons were considered
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as component elements of acomposite object: polariton
[14] and polaron [15]. In the third group, phonons were
treated as independent excitations and their squeezing
was derived from the phonon—phonon or phonon—pho-
ton interactions [16-21]. It is the theoretical investiga:
tions of the third group that provided a necessary basis
for and facilitated the realization of the squeezed vibra-
tional and phonon states in optical experiments [20,
22-27].

Historically, the squeezed states were discovered
upon reaching a certain level of understanding in the
physics of coherent states, which can be determined as
eigenstates of the annihilation operator, using the dis-
placement operators, or as the states with minimum
uncertainty. Each method of determination of the
coherent phonons elucidates various properties of the
squeezed states.

In order to rationalize the physical pattern of
squeezed phonon states, let us determine, for each sep-
arate mode of the phonon field with the annihilation
operator a, a coherent state |a[that is an eigenstate of
this annihilation operator:

ajal= ajal
The coherent state can be obtained by applying a uni-
tary displacement operator D(a) = exp(aa* — a*a) to
the vacuum state |0

[oO= D(a)|00

If aphonon field mode varies with time according to
a harmonic law with frequency Q, the mode can be
described in terms of the canonical variables g and p
defined as

q= %(a++a), p = i@(f—a).

However, since the canonical variables g and p possess
different dimensiondities, it is more convenient to
introduce the dimensionless quadrature operators:

a++a=P Yza—a+= 1
2 on i Tk

Using these operators, we may write the phononfield in
the form of A = A[Xcos(Qt) + Ysin(Qt)]. The coherent
statesrepresented asa = o, + id,, where a; and a, are
real quantities, obey the relationships [a0= a; INO=
|a]?; AX2C= [AY?= /4. Defining the dispersion of an
arbitrary operator O as [AO?(= [[O — [OD’[Jwe obtain
for the quadrature operators by virtue of the Heisenberg
principle AX2IA Y2 1/16. In addition, AX?[H+ AY (>
1/2. Therefore, the displacement operator shiftsthe vac-
uum uncertainty contour from the origin to a point with
the coordinates (Rea, Ima), changing neither the
shape nor area of the contour.

These relationshipsindicate that a coherent state can
be represented as a classical state with superimposed
vacuum state noise. This result explains why the coher-

X =
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Fig. 1. Schematic representation of the (a) vacuum,
(b) coherent, and (c) squeezed states (left diagrams). Dia-
gramson theright show the evol ution of the coherent ampli-
tude, the cross-hatched region between dashed curvescorre-
sponds to mean-square fluctuations.

ent state is sometimes referred to as the displaced state
(see Fig.1). In the coherent state, only the vacuum is
noncoherent: any oscillator in the vacuum state has a
zero-point amplitude and a time-independent noise
determined by zero oscillations. The amplitude of the
coherent state is nonzero, while the noiseisidentical to
the vacuum noise with respect to both magnitude and
time variation. The circular shape of the uncertainty
contour is evidence that the coherent state noise is the
same in both quadratures.

In a more general case, we may create a phonon
field in which the dispersion in one quadrature differs
from that in the other. For afield with the phonon anni-
hilation operator a, this can be achieved by introducing
the operator b = pa + va*, where 1 and v are the com-
plex values satisfying the condition |u]? — [v[> = 1. The
latter operator transforms the uncertainty contour of the
coherent state amplitude to an elliptical shape, whereby
the noise in the two quadratures becomes different.
Moreover, the noise in one of the quadratures can be
reduced bel ow the vacuum noise level at the expense of
the corresponding increase in the other quadrature
noise. From the standpoint of an observer immobilerel-
ative to the coherent amplitude, the noise becomes
time-dependent, with the frequency of the noise varia-
tion being equal to doubled frequency Q of the coher-
ent phonon (Fig. 1).
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The coherent phonons are usualy investigated by
the method of phonon system excitation with subse-
guent probing by subpicosecond light pulses. One of
the simple variants of this method, which is most
widely used for the study of nontransparent media, is
based on the reflection measurements [2, 10]. In this
technique, a train of laser pulses is divided into two
beams with mutually orthogonal polarizations, the
probing beam power being 10—100 times smaller than
that of the pumping beam. A relative delay between the
two beams is varied by changing the optical path for
one of the beams with the aid of a step motor driven
system. The pump beam is modulated by a chopper or
ashaker. The detection is performed by mixing the sig-
nal s from photodiodes at the input of alock-in detector.
The output data are obtained in the form of a normal-
ized differential reflection coefficient

AR _ R-R,

Ro Ro

representing a change in the reflection of the probing
pulse induced by the pumping pulse divided by the
probing pulse reflection in the absence of pumping. If
the modulation is provided by the shaker (which
implies the integration with respect to time), the mea-
sured quantity is 0(AR/R,)/at.

The phenomenon of Raman scattering can be con-
sidered as the interaction of light with a crysta,
whereby the initial radiation with frequency w, is con-
verted into (scattered) radiation with a new frequency
W, as a result of the medium (crystal) excitation at a
characteristic frequency Q [3, 10]. Thelaws of the con-
servation of energy and momentum determine two scat-
tering channels—Stokes and anti-Stokes, differing by
the direction of energy transfer: from the photon field to
the medium and vice versa. The appearance of arela-
tionship between w, and w, was explained by the Plac-
zek theory assuming that the optical polarizability is a
function of the phonon coordinate (coherent amplitude)
0 = 0g + Q0a/0Q, where 0a/0Q is a constant value. A
linear relationship P 0 QEJa/0Q between the photon
field and the medium leads to a change in the field fre-
guency. A nonlinear mixing of w and w;taking placein
the case of ultrashort laser pulses changes the ampli-
tude Q aswell, so that the process description requires
three conjugated equations for the light field E, coher-
ent amplitude Q, and the differential occupancy n, of
the phonon levels involved in the scattering. The excited
phonon state depends on two values, n, and Q, which are
determined by the diagona and nondiagonal components
of the density matrix, respectively [28].

All measurements in this work were performed at
room temperature. The Raman scattering was studied
in the backscattering geometry, using atriple spectrom-
eter equipped with amultichannel detector. The Raman
spectra were excited by a radiation with A = 780 nm
from a Ti : sapphire laser or by aline of an Ar* laser.
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Instrumentation used for the Raman scattering mea-
surementsis described in detail in [29]. Experimentsin
the time domain were performed using alock-in detec-
tion scheme and a Ti : sapphire laser operated in the
pulsed mode with a pulse duration of 25-50 fs and a
pulse repetition rate of 78 kHz. The pumping beam
modulation was provided by a 2-kHz chopper or by a
shaker operated at 0.5 kHz. In the latter case, the mod-
ulation amplitude did not exceed the light pulse dura-
tion [27]. The duration and sometimes the initial phase
(determined by the time delay) of the laser pulses were
measured with the aid of a two-photon detector or a
nonlinear crystal [26].

3. EXPERIMENTAL RESULTS

At present, coherent phonons have been studied in
various condensed media [4-6]. Our investigation is
restricted to nontransparent media including semimet-
als, semiconductors, and superconductors.

3.1. Semimetals

Semimetals were among the first nontransparent
crystalline solids in which oscillations interpreted as
coherent phonons were observed [30]. This was partly
favored by the fact that semimetal s are characterized by
amaximum level of the photoinduced optical response
to ultrashort laser pulses. We will also use this advan-
tagein studying the statistical properties of the phonons
created by femtosecond pulses.

The investigation of coherent phonons was per-
formed in bismuth and antimony—two typical repre-
sentatives of the group of semimetals. Antimony is
known to form crystals with two atoms per unit cell,
belonging to the Dy point symmetry group [31].
Among a total of six phonons existing in antimony,
three optical phonons of the A, + E, type, which are
Raman-active, have been registered by now in the time
domain [30, 32]. The absence of nondiagona phonon
modesin thefirst experiments[30] led to theidentifica
tion and description of the excitation in antimony as
proceeding by the displacive excitation of coherent
phonons. In this case, the vibrational coherenceis cre-
ated in the excited electron state with a potential mini-
mum displaced relative to the minimum of the initial
equilibrium state [33]. Only the fully symmetric
phonons can be excited by the displacement mecha
nism, with the initial phases 112 for the oscillations
described by a decaying sinusoidal function. However,
the observation of anondiagonal E, phononin thetime-
dependent response [32] has brought doubt concerning
the adequacy of the displacement mechanism. This
observation stimulated the development of a mecha-
nism based on the concept of inglastic light scattering
(induced Raman scattering).

Figure 2 shows typical shapes of the optical
response to excitation and subsequent probing of a
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Fig. 2. Time-resolved normalized reflection signal in a Sb
sample excited with 30-fs light pulses (the pumping and
probing power is 50 and 1.2 mW, respectively). Curves 1
and 2 correspond to different methods of the pumping beam
modulation (see the text for explanation). Theinset showsa
phase shift related to different modulation methods on a
greater scale.

polycrystalline Sb film by femtosecond pul ses obtained
by modulating the pumping beam with the aid of a
mechanical chopper or a shaker. In the former case, the
excited electron state relaxes to equilibrium within atime
on the order of 2-3 ps. Superimposed onto this electron
relaxation are the rapid oscillations related to the exci-
tation of coherent phonons; the purpose of this work
was to study the latter oscillations in detail. In order to
separate the oscillatory phonon response, the measure-
ments can be performed using the excitation beam
modulated with the aid of a shaker. Because, as noted
above, these measurements give a derivative of the
time-dependent response, the relaxation process gives
no significant contribution to the signal. Since the
derivative of a harmonic function represents another
harmonic function (cos~— sin), the initial phase of a
signal obtained with the tilting retroreflector exhibits a
T2 shift (seetheinset in Fig. 2).

In order to study the relationship between oscilla-
tions observed by the method of the phonon system
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Fig. 3. (8) Coherent phonon oscillations in Sh: (open cir-
cles) Fourier transform of thetime-resolved response; (solid
curve) spontaneous Fourier scattering spectrum. (b) the
results of fitting the time-resolved response (solid curve)
illustrating the initial phase.

excitation with subsequent probing by delayed laser
pulses and the Raman-active modes in Sh, we have
used the Fourier transform for numerically converting
the data obtained in the time domain into the frequency
domain. A typica power spectrum (periodogram)
obtained upon such a conversion is presented in Fig. 3a
together with a spontaneous Raman spectrum of Sh. The
peak observed at 4.49 THz (149.7 cm™) corresponds to
afully symmetric phonon mode. A comparative analy-
sis of these results indicates that the positions of the
phonon peaks obtained from measurements in the time
and frequency domains coincide to within the accuracy
of measurements. The width (FWHM) of the spectral
line Av = 0.1 THz obtained from measurements of the
time-dependent response upon the Fourier transforma-
tion and the corresponding mode quality factor Q =
v/IAv (Q = 45), coincide with the values determined
from the spontaneous Raman spectra (Av = 0.1 THz,
Q =45) [30, 31]. The procedure of fitting in the time
domain, using adecaying sinusoidal function, givesthe
same value of the oscillation frequency and the same
initial phase -T2 (or O for the chopper modulation;
see Fig. 3).

An increase in the pumping pulse power leads to a
linear growth in the amplitude of the coherent oscilla
tions, while the frequency and the rate of dephasing
remain unchanged. Thisisillustrated by Fig. 4 showing

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

MISOCHKO

4.60

o 455

& 4501
N foo— Q00— C0—0—0—0——

4.45

4.40 T

S, AVl g

0.2

0.1 Foo—000——0—7—0—0—

Av, THz

1 1 1 1
0 20 40 60 80
Pumping power, mW

Fig. 4. Plots of the parameters of coherent oscillations ver-
sus pumping power for Sb (solid lines show the best linear
approximation).

the corresponding characteristics determined upon the
Fourier transformation of the time-dependent response.
The frequencies and widths of the spectral lines were
obtained by fitting to the Lorentz function, while the
oscillation amplitudes were evaluated by integral inten-
sities of the spectral lines in the periodogram. For con-
venience, theintegral intensity corresponding to amax-
imum power is taken to be equal to unity. It should be
noted that the direct measurement of the amplitude of
coherent oscillations at a fixed delay time provides
analogous results, but at a greater error.

In order to study the statistical (fluctuational) prop-
erties of phonons generated by ultrashort pulses, it is
necessary to use a modified scheme of measurements
[24]. Thetraditional scheme used for the coherent phonon
probing ensures access only to the principal moment
(mean value) of the phonon distribution, providing for an
average value of the coherent amplitude as a function of
the delay time. The study of fluctuationa properties
implies the knowledge of how the coherent amplitude
fluctuates with time at a fixed phase determined by the
delay time. This is illustrated in Fig. 5 showing essen-
tialy a sgueezed state in the Heisenberg (Fig. 58) and
Schrédinger (Fig. 5b) representations. In the former
case, we vary the detection angle, while in the latter
case, the state exhibits evolution with time at a constant
detection angle.
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For studying the fluctuational properties of phonons,
the measurements have to be conducted so as to retain
information concerning the particular state realizations.
Although each state realization cannot be measured
separately, we may compare the statistical sample sets
obtained using about 10° probing pulses at a fixed
phase (delay time). For this purpose, we have repeat-
edly measured a part of the oscillating response S to
calculate p = [$and the second-order moment g2 =
[~ p? in addition to the first-order moment for each
delay time. Figure 6 showsthe results of these measure-
ments for Sh. As expected, the mean amplitude deter-
mined by this method is identical to the amplitude
observed in atraditional experiment. Nevertheless, the
dispersion of the coherent amplitude calculated for
each time instant provides additional (new) informa-
tion. In the case when the system studied is prepared in
the coherent state, the dispersion characterizing the
noise is time-dependent. Note that the noise in the sys-
tem occurring in the equilibrium state isindependent of
the time, as is seen for the dispersion at negative delay
times (phase angles).

In order to elucidate and explain the time variation
of the noise, we have numerically converted the disper-
sion into the frequency domain with the aid of the Fou-
rier transformation. Figure 6¢ shows a typical noise
power spectrum obtained upon such conversion, in
comparison to the power spectrum of the coherent
amplitude (Fig. 6b). The two spectra are obviously dif-
ferent, the noise spectrum displaying acomponent with
a frequency equal to the doubled frequency of the
coherent phonon. As the pumping power grows, the
noise amplitude shows a linear increase, while the
spectrum remains virtually unchanged. However, the
intensity of the spectral component in the noise spec-
trum exhibits dlight redistribution, whereby the ratio of
integral intensities of the high- and low-frequency com-
ponents tends to increase.

Figures 7-9 show a similar set of data for a poly-
crystalline Bi film. Bismuth iscrystallized in arhombo-
hedral unit cell, with phonons of the A, + E, symmetry
allowed. Similar to the case of Sb, these modes were
observed in Bi samples measured in the time domain
[30, 34]. Theintensity of thefully symmetric modewas
also markedly higher as compared to that of the nondi-
agonal modes [34]. The Raman scattering spectra of
polycrystalline bismuth films exhibit, similarly to the
spectra of Sb, a dominating A,; mode corresponding
2.9 THz (97 cm™) [31]. However, the amplitude of
oscillations in Bi is somewhat lower than that in Sb
observed under identical experimental conditions. The
time-dependent response of Bi upon the Fourier trans-
formation gives a frequency of the fully symmetric
mode equal to 2.95 THz (98 cm™) that is analogousto the
vadue observed in the Raman spectrum. However, the
spectra line width (Av = 0.09 THz) obtained from mea-
surements in the time domain is smaller, while parameter

o2
(@ &7
Y sin(Q¢) :
/// X cos(Qr)

Fig. 5. Schematic diagram illustrating the measurement of
coherent phonon noise.
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Fig. 6. Coherent phonon oscillations in Sh: the plots of
(a) coherent amplitude and its dispersion versus phase
angle; (b) coherent amplitude power spectrum; (c) coherent
amplitude dispersion spectrum.
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Fig. 7. Time-resolved normalized reflection signal in a Bi
sample excited with 30-fs light pulses (the pumping and
probing power is 60 and 1.2 mW, respectively). The pump-
ing bean was modulated by shaking retroreflector. Theinset
shows (open circles) the Fourier transform of the time-
resolved response and (solid curve) the spontaneous Fourier
scattering spectrum.

Qisaccordingly greater (Q = 32) than the value extracted
from the Raman scattering data (Q = 17) [33].

The dependence of the coherent phonon parameters
on the pumping power in Bi isidentical to that in Sh:
the oscillation amplitude linearly varies with the pump-
ing power, while the frequency and the rate of dephas-
ing remain unchanged. It should be noted that, despite
a nongtationary character of the observed effect, the
spectrum of coherent amplitude in semimetals is sta-
tionary. This fact was established by varying the upper
and/or lower time limit during the Fourier transforma-
tion. The periodograms obtained for small delay times
were identical to those observed for large times, which
isindicative of the equivalence of the “fast” and “sow”
dynamics of the phonon subsystem in semimetals. Nev-
ertheless, it should be noted that the spectrum of coher-
ent oscillations obtained in the case when more than
one mode is excited can be time-dependent [35, 36].

3.2. Semiconductors

Besides semimetals crystallizing in a centrosym-
metric crystal lattice, coherent phonons may be gener-
ated in polar crystalstypically represented by semicon-
ductors of theA"'BY group, which crystallizein astruc-
ture of the zinc blend type [4, 5].

Among semiconductors of the above group, the one
most thoroughly investigated is GaAs, in which the
time-dependent oscillations assigned to the coherent
phonons and/or coupled phonorn—plasmon modes were
studied depending on the dopant concentration, tempera-
ture, and wavelength of exciting laser radiation [5, 37].
The major mechanism responsible for the excitation of
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coherent oscillations is believed to consis in the interac-
tion of photons with the eectric field generated in a near-
surface depleted |ayer of the semiconductor [37, 38]. Note
that this mechanism is capable of initiating only excita-
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Fig. 9. Coherent phonon oscillations in Bi: the plots of
(a) coherent amplitude and itsdispersion versus phase angle
(calculated using the delay time between exciting and prob-
ing pulses); (b) Fourier-transformed coherent amplitude
spectrum; (c) coherent amplitude dispersion spectrum.
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Fig. 10. Coherent phonon oscillations in GaAs: (a) Time-
resolved normalized reflection signal in GaAs samples
excited with 30-fs light pulses (the pumping and probing
power is80 and 1.1 mW, respectively). The upper and lower
curves correspond to the samples doped to ng = 1.5 x 10*/
and 8 x 10 cm3, respectively; (b, ¢) periodograms corre-
sponding to the upper and lower curvesin (a).

tions carrying the electric field (longitudinal phonons
and plasmons), but not the transverse phonons. It
should be also noted that the Raman scattering in semi-
conductors is well studied with respect to variation of
the crystal properties under the action of external fac-
tors leading to a decrease in the crystal symmetry (the
morphic effect) [39].

Figure 10 shows the results obtained for two n-GaAs
samples with charge carrier concentrations 1.5 x 107
and 8 x 107 cm. In the former case, the coherent
oscillations are observed at a frequency of 8.54 THz
(284.6 cm™) and correspond to the longitudinal optical
LO phonon [5]. The corresponding coherent oscillation
noise spectrum presented in Fig. 10 contains acomponent
with the doubled phonon frequency [26]. The coherent
amplitude dispersion reaches maximum at the points of
zero coherent amplitude, while the disperson minima
approximately coincide with the amplitude maxima.

The shape of the time-dependent response of GaAs
significantly changeswith anincreasein the level of dop-
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Fig. 11. Coherent phonon oscillations in a GaAs sample
with n, = 1.5 x 10 cm™3: (a) coherent amplitude and its
dispersion versus time delay between exciting and probing
pulses; (b, ¢) periodograms of the coherent amplitude and its
dispersion, respectively.

ing. Even measurements in the time domain show that
oscillations in the highly doped sample are related to
more than one mode, since the time-dependent
response reveals an additional modulation caused by
beats between the modes. The Fourier-transformed time-
dependent response (Fig. 10c) displays two modes having
the frequencies approximately coinciding with the LO
and TO phonon freguencies. It should be noted that
both frequencies remain unchanged upon increasing
the pumping power. Note also that the LO and TO
modes are mutually orthogonal and, hence, are not cou-
pled. The two modes can be coupled by zero-point
(vacuum) oscillations and/or an externa field (e.g.,
plasmons).

IntheA'"BY group of semiconductors, InSbis charac-
terized by a minimum bandgap width and by arelatively
small effective mass of charge carriers. The coherent
oscillations in InSb decay rather rapidly and cannot be
detected after 4 ps. Figure 12a shows a typical time-
resolved optical response and the corresponding dis-
persion for InSh. The frequency of the coherent oscilla
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Fig. 12. Coherent phonon oscillationsin InSh: (a) coherent
amplitude and its dispersion versus time delay between
exciting and probing pulses; (b, c) periodograms of the
coherent amplitude and its dispersion, respectively.

tions (5.6 THz or 186 cm™), determined upon the Fou-
rier transformation of the time-dependent response pre-
sented in Fig. 12b, coincides with the LO phonon
frequency [40]. The fluctuational properties of LO
phonons in InSb are illustrated in Fig. 12c, which
shows that the noise of the coherent amplitude istime-
dependent. The periodogram displays a peak at a fre-
guency equal to the doubled LO phonon frequency.

Indium phosphide (InP) belongs to the least studied
semiconductors of the A!"BY group with respect to
coherent phonons. At present, the coherent oscillations
in InP have been detected only in samples of the p-type
and identified at large delay times as related to the LO
phonon [41]. Figure 13 shows the time-resolved optical
response for a series of InP samples of both the p- and
n-type. As is seen, the coherent oscillations are most
pronounced in samples of the p-type. Let usconsider in
more detail the data obtained for a p-1nP sample with
n, = 10" cm2 and for an n-InP sample with n, = 7 x
10% cm3. Although the signal polarity in most experi-
ments was such as depicted in Fig. 13, some experi-
mental runs performed under identical conditions
showed signals of inverted polarity (Fig.14). This fact
indicates that the initial phase is bistable and may
acquire fixed values shifted by 1t This behavior of the
initial phaseishardly probable for the displacive mech-
anism or for the coherent phonon generation by an elec-
tric field in the near-surface depleted layer. However, a
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Fig. 13. Time-resolved reflection signal in a series of InP
samples excited with 35-fs light pulses (the pumping and
probing power is 40 and 1.2 mW, respectively). The type
and concentration of dopants areindicated at the curves.

mechanism based on induced Raman light scattering
allows this phenomenon to be explained by relating the
initial phaseto the Stokes or anti-Stokes scattering chan-
nels. The phase bistability was previously observed in
Y Ba,CuQg crystas at large delay times[42].

3.3. Superconductors

At present, coherent phonons have been detected in
superconductors belonging to all principal classes[27,
42, 44— 46]. TheY Ba,Cu;0; _ 5 System, where the phe-
nomenon was observed for the first time, still remains
the most thoroughly studied in this respect [43-46].
Therefore, it would be most expedient to consider the
phonon characteristics reported for the phonon sub-
system of YBa,Cu;O,_5 and compare the results
obtained in the time and frequency domains. The crys-
tal lattice symmetry of Y Ba,Cu;0; _ 5, belonging to the
Dy, point symmetry group, allows five fully symmetric
A, phonons at point " of the Brillouin zone [47]. Two
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Fig. 14. Schematic diagrams illustrating the initial phase

instability for InP with n, = 10 cm™ (@) and n, = 7 x

106 cm3 (b).

of these A, phonons, detected using measurements in the
time domain, represent the low-frequency phonons gener-
ated by z-displacements of Baand Cu ions at frequencies
of 3.6 and 4.5 THz (120 and 150 cm™2), respectively. The
copper phonon dominates in the femtosecond response
at temperatures above T, whereas the barium phonon pre-
dominantly contributes at |ower temperatures [44, 45].

Similarly to the case of semimetals, the initia
hypothesis for the explanation of the pattern of coher-
ent phonon excitation in'Y Ba,Cuz0; _ 5 was the displa-
cive mechanism [44]. Using this model, modified and
refined so asto apply to the superconducting state [48],
it is possible to explain both the observed frequencies
of the phonon modes and the change in magnitude and
polarity of the response upon the materia transition to
the superconducting state. However, the results of mea-
surements performed for various single crystal faces
showed that the ultrashort pul ses produce excitation of
both the fully symmetric and nondiagonal modes. This
isdemonstrated in Fig. 15 showing the periodograms of
time-resolved optical response from ab and ac faces. A
comparison of these patternsto the spontaneous Raman
scattering spectra of Ay and By, (Bsy) symmetry sug-
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Fig. 15. Coherent phonon oscillations in aYBay,CuzO7 _ 5
single crystal with T, = 92 K: (a—c) Raman spectra of
(8) Ag phonons (zz polarization), (b) Ay phonons (x'x" polar-
ization), and (C) Bagy + By phonons (zy + 2x polarization);
(d, ) time-resolved response from (d) ac and (d) ab (basal)
single crystal faces.

gests the presence of a mode with frequency 6.3 THz
(210 cm™). Based on this mode frequency and the com-
parison with a spontaneous Raman spectrum of the
untwinned single crystal [47], this phonon is readily
atributed to displacements of the bridging oxygen
atom and assigned the By, symmetry. Itismore difficult
to explain the presence of nondiagonal modes within
the framework of the displacive excitation of coherent
phonons; however, this task is readily solved proceed-
ing from the alternative mechanism based on the stim-
ulated Raman light scattering.

Our analysisof the fluctuational properties of coher-
ent phonons in YBa,Cu;O,_5 will be restricted to the
fully symmetric phonon mode. Figure 16 shows atypi-
cal time-resolved response obtained from the basal ab
plane of anYBa,Cu;0,_5 crystal at room temperature.
The presence of oscillations with a frequency of
4.52 THz (150.6 cm™) is evidence that the coherent
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The pumping bean was modulated by shaking retroreflector.
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Fig. 17. Coherent phonon oscillations in YBay,CuzO; _5:
(a) coherent amplitude and its dispersion versus time delay
between exciting and probing pulses; (b, ) periodograms of
the coherent amplitude and its dispersion, respectively.

background corresponds to a Raman-active mode with
the A, symmetry, generated by the displacements of Cu
ions. A comparison to the Raman scattering spectrum
shows that the characteristic time of dephasing at room
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temperature is greater than that of the energy relaxation
[27, 44]. The experimental geometry and a relatively
high temperature minimize the contribution of the other
fully symmetric mode (3.6 THz or 120 cm), in which
the dominating role belongs to the displacements of Ba
ions. Note that the room-temperature Raman spectrum
displays both modes with approximately equal intensi-
ties (the relative Raman peak intensity depends on the
particular polarization, but none of these leads to the
absence of the low-energy mode) [35].

In order to obtain information on the statistical
properties of coherent phonons in superconductors, we
have repeatedly measured the part of the oscillatory
response depicted in Fig. 16. Using this set of data, we
calculated the mean values and dispersions for each
delay time n the interval from —500 to 2000 fs. These
data (for a limited range of positive delay times) are
presented in Fig. 17. It is obvious that, similarly to the
case of semimetals and semiconductors, the coherent
phonon fluctuations in the superconductor studied
depend on the phase determined by the delay between
exciting and probing pulses. The dispersion of coherent
phononsis maximum at the points of the extrema of the
coherent amplitude [27]. The noise periodogram dis-
plays a peak at the frequency equa to the doubled
coherent phonon frequency (Figs. 17b and 17c).

4. DISCUSSION OF EXPERIMENTAL RESULTS

A number of phenomenological models were sug-
gested in order to describe the coherence arising in a
crystal lattice as a result of the interaction between
short laser pulses and the crystal [4, 5, 33]. These mod-
els explained the main experimental facts observed in
numerous investigations. However, the physical mean-
ing of theterm “ coherent amplitude” employed in these
models cannot be explained without recourse to a
microscopic theory. Devel oped by Kuznetsov and Stan-
ton [49], such atheory showed that, within the frame-
work of the microscopic description, the coherent
oscillations are related to a macroscopic occupation of
the phonon mode with g = 0, this circumstance making
the situation much like that observed for the Bose con-
densation.

Note that the Bogolyubov transformation used in
the description of the superfluidity phenomenon can be
also applied to squeezed states [50]. Moreover, the
coherent phonon excitation, considered as arealization
of a phase transition, may help us qualitatively under-
stand the phenomenon of squeezing. As is known, the
squeezing increases in systems occurring at the points
of bifurcation between various dynamic regimes
because of the quantum fluctuations growing for the
variablelosing stability at such apoint [51]. Asaresult,
fluctuations of the conjugated variable decrease by vir-
tue of the phase volume conservation.

An analysis of the results of measurements in the
time and frequency domains, allows usto conclude that
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the frequencies (energies) of thermal and coherent
phonons coincide to within the experimental error. The
error in determining the frequency is greater than the
error of measurementsin thetime domain. The width of
spectral lines in the spontaneous Raman spectra is
determined by the phonon decay, which depends on the
system interaction with thetherma reservoir. Asarule, a
dominating contribution to this decay is due to the anhar-
monic decay of the optical phonon into two phononswith
atotal momentum of zero [3]. The spectral line width in
the Fourier-transformed time-dependent responseis deter-
mined by a characterigtic time of the phase memory; for
any classical state, the time of dephasing must be shorter
than or equal to the energy relaxation time. Indeed, the
dephasing may proceed by both inelastic and elastic
collisions in the phonon gas, and the total number of
inelastic and elastic collisions cannot be smaller than
the number of elastic events alone.

A difference in the spectral line shape parameters
revealed by the data of measurements in the time and
frequency domain is by no means unexpected, since
these methods measure essentially different states of
the phonon system. In the case of femtosecond pul ses,
the initial system is prepared by the pumping pulse in
the coherent state, for which the phaseisawell defined
guantity; the spontaneous Raman scattering probes the
system in athermal state, in which the phase is uncer-
tain. It should be noted that use of the amplitude Fou-
rier transformation (instead of the power spectrum) for
the time-dependent response apparently cannot elimi-
nate the difference in shape of the spectral lines mea-
sured in the time and frequency domains, since various
crystal systems exhibit both wider and narrower lines
as compared to those obtained in the frequency spectra.

An analysis of the dependence of the coherent
amplitude on the pumping pul se power leadsto an impor-
tant conclusion concerning anonclassical character of the
state created by ultrashort laser pulses. Indeed, the decre-
ment of a classical state is a function of the intensity of
excitation. A typical example is offered by the thermal
state where the excitation lifetime is a function of the
temperature (the excitation factor). In optics, this is
manifested by the temperature dependence of the
phonon line width measured in the Raman spectra. In
contrast, coherent phonons exhibit independence of the
dephasing time of the degree of excitation, which is
related to the fact that only the Poisson distribution is
characterized by a constant ratio of the mathematical
expectation to dispersion [13].

A remarkable and rather surprising property of
coherent phonons is the noise, which depends on the
phase of the coherent oscillations. A possible interpreta-
tion of the phase-dependent noise employs the concept of
sueezed phonon states created during the interaction of
ultrashort laser pulses with crystal. This interpretation is
based on the fact that the phase dependence of the noiseis
aunigueindication of the squeezing [ 13], since any other
state (quantum or classical) is characterized by the
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phase-independent noise and, hence, the uncertainty
profile can be described by acircle.

The conclusion that measurements in the time
domain provide information on the quantum fluctua-
tions (i.e., the phonon behaves as a quantum, rather
than classical, object) is confirmed by the following
considerations. Classical behavior dominates in the
energy range determined by the inequality kgT < %w,
which stipulates that the thermal fluctuations are small
as compared to the quantum fluctuations. However, this
condition is valid only for the results of measurements
averaged over time T exceeding the characteristic time
T* of the system relaxation (t > 1*). However, the use
of femtosecond probing pulses implies that T < T*.
During such a short period of time, the system energy
exchange with the reservoir is markedly smaller than
ksT. In this case, the condition for the quantum charac-
ter manifestation should be modified and expressed as
ksT < AT /T [52]. This condition is satisfied in the
experiments described above.

At present, a particular mechanism responsible for
the squeezing is unclear. Apparently, establishing this
mechanism would require elucidating the process of
the coherent phonon excitation. If the coherent phonons
are created by amechanism related to the induced Raman
scattering (or some modification) [4], the phonon field
sgueezing canin fact be redized under certain conditions,
sincetheineagtic light scattering is a parametric process.
Note that the noise in most experiments is maximum at
the points of zero amplitude (and maximum, at the
points of extrema) of the measured signal. In the case
of modulation with the aid of a shaker, the zero points
correspond to the points of rotation of the oscillatory
wave packet tragjectory.

Investigation of the noise phase behavior depending
on the pulse duration may allow usto determinetherel-
ative contributions of the topological and dynamic
squeezing components [17]. At present, in addition to
explaining the phase-dependent noise as resulting from
the phonon field squeezing, we cannot exclude the pos-
sibility that such noise may also be related to the bista-
bility of the initial phase of coherent phonons, which
can acquire fixed values shifted by 1t Should thisbe the
case, the phase-dependent noise has nothing in com-
mon with the squeezed phonon states, but can still shed
light on the nature of the initia phase of the phonon
condensate. If the initial phase bistability is not the
major source of the noise, the squeezed phonon states
arein fact registered in the experiment.

5. CONCLUSION

We have compared the thermal and coherent phonons
created in severa typica representatives of semimetals,
semiconductors, and superconductors using the results of
optical measurementsin the frequency and time domains.
We have demonstrated that the energies of therma and
coherent phonons coincide, whereas the phase informa:
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tion in the coherent state is lost within the time different
from that of the energy relaxation. It was established that
coherent phonons exhibit phase-dependent fluctuational
properties. An andysisof the obtained experimental data
indicates that the final interpretation of the phase-
dependent noise requires determining the mechanism
of the coherent phonon excitation. Additional informa-
tion necessary for establishing the squeezing mecha-
nism and its particular realizations can be obtained by
measuring the time-resolved response, determining the
frequency-resolved optical field components at the
Stokes and anti-Stokes frequencies, and studying their
statistical properties.
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Abstract—We report on the (magneto-) optical study of many-body effectsin spatially separated electron and
hole layersin GaAg/Al,Ga, _,As coupled quantum wells (CQWSs) at low temperatures (T = 1.4 K) for a broad
range of electron-hole (e-h) densities. Coulomb effects were found to result in an enhancement of the indirect
(interwell) photoluminescence (PL) energy with increasing the e-h density both for a zero magnetic field and
at high fields for al Landau level transitions; this isin contrast to the electron—hole systems in single QWs
where the main features are explained by the band-gap renormalization resulting in a reduction of the PL
energy. The observed enhancement of the ground state energy of the system of the spatially separated electron
and hole layers with increasing the e-h density indicates that the real space condensation to dropletsis energet-
ically unfavorable. At high densities of separated electrons and holes, anew direct (intrawell) PL line has been
observed: itsrelativeintensity increased both in PL and in absorption (measured by indirect PL excitation) with
increasing density; its energy separation from the direct exciton line fitswell to the X~ and X* binding energies
previously measured in single QWSs. The line is therefore attributed to direct multiparticle complexes. © 2001

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Many-body interactionsin neutra electron-hole (e-h)
systems in semiconductor quantum wells (QWSs) lead
to renormdlization effects [1] that were extensively stud-
ied in single quantum wells (SQWS) in the padt. In partic-
ular, the main experimental featureswere explained by the
band-gap renormalization that resultsin areduction of the
ground state energy with increasing the e-h density (see
[2] and references therein).

In this paper, we study many-body effectsin a sys-
tem of spatially separated electron and hole layers at
zero and finite magnetic fiel ds perpendicul ar to the QW
plane. Due to the long radiative recombination times,
the e-h temperatures can be much lower in this system
than those achieved in single-layer e-h systems. In partic-
ular, this unique property may enable the observation of a
number of predicted collective phenomena [3-10]. The
major difference of many-body effectsin spatially sep-
arated electron and hole layers compared to single-
layer e-h systems is the asymmetry between the e—e,
and e-hinteractions. In a set of papers, this asymmetry
has been predicted to result in the instability of the uni-
form exciton phase at low temperatures [5, 6, 10]. In
particular, condensation to an exciton liquid has been
predicted for small interlayer separation: for 1.1a, <
d < 1.9a,, the liquid was predicted to be metastable,
whilefor d < 1.1a,, the liquid was predicted to bein the

T This article was submitted by the authorsin English.

ground state (a, = 7%/2me? is the 2D exciton radius,
€is the dielectric constant, m is the reduced exciton
mass, and a, ~ 6.5 nm for GaAs QWs) [10]. On the con-
trary, in another set of papers, the repulsive interaction
between the indirect (interwell) excitons at low densi-
ties and the el ectrostatic term originating from the el ec-
tric field between the separated el ectron and hole layers
at high densities was predicted to stabilize the uniform
phase in the system of separated el ectron and hole lay-
ers[7-9].

The spatially separated e-h system with the photo-
excitation-controlled e-h density is realized in electric
field tunable coupled quantum wells (CQWS) (see[11]
and references therein). The effects of exciton—exciton
interactions at low exciton densities (<10'° cm?) were
studied earlier [12]: an enhancement of the exciton
energy with density both at zero and finite magnetic
fields has been observed and interpreted in terms of the
net repulsive interaction between indirect excitons
(which are dipoles oriented in the z-direction).

In this paper, we report on the experimental study of
the system of spatially separated electron and hole lay-
ers in GaAsg/AlLGa, _,As CQW in the broad range of
e—h densities, up to the maximum possible e-h densi-
ties corresponding to the complete screening of the
external electric field in the z-direction (this maximum
density depends on the applied electric field and
reaches more than 2 x 10 cm for the present experi-
ments). The e-h density was controlled by the excita-

1063-7761/01/9202-0260$21.00 © 2001 MAIK “Nauka/Interperiodica’
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tion dendty and by the excitation energy through the
absorption variation. The maximum density e-h system
with the minimum effective temperature was achieved a
the excitation resonant to the direct (intrawvell) exciton
states. The experimenta data suggest that the system of
separated electrons and holesis uniform with the ground
state energy increasing with the e-h density; these data,
therefore, do not support the predicted condensation to
the liquid state in the entire range of e-h densities that
we studied.

The dectric-fidd-tunable n*—4-—n* GaAgALGa, _,As
CQW structures were grown by molecular beam epit-
axy. A sketch of the band diagram of the structuresis
shownintheinset to Fig. 1. Thei-region consists of two
8-nm GaAs QWs separated by a 4-nm Al 33Gay5/AS
barrier and surrounded by two 200-nm Alj 33Gay 6/AS
barrier layers. The n*-layers are Si-doped GaAs with
Ng = 5 x 10% cm3. The second sample has the same
design, except for the QW widths that are equal to
15 nm. The data throughout the paper refers to the
8-4-8-nm CQW sample if not specified. The eectric
fied in the zdirection is monitored by the externa gate
voltage V, applied between n*-layers (see[12] for details).

Because the electron Fermi level in the n*-GaAs
layersisconsiderably below the electron energiesin the
GaAs QWs, the QWSs are nominally empty in the
absence of photoexcitation (the concentration of the
residual impuritiesin the QW region is unknown; how-
ever, it is certainly below the Mott density to provide
free electron or hole gases in the QWSs and below the
density of photoexcited carriersin the CQWs studied).
In most of the experiments, carriers were photoexcited
by atunable cw Ti : Sapphire laser with photon energy
considerably below the Aly33Gay/AS barrier energy.
Possible deviations from the charge neutrality occur-
ring in the CQW electron—hole system because of dif-
ferent collections of electrons and holes photoexcited
in the barrier layers are minimized.

To minimize the effect of the mesa heating, we
worked with the mesa area 200 x 200 um?, which was
much smaller than the sample area of about 4 mm?. In
addition, the bottom of the sample was soldered to a
metal plate. The excitation was modulated with a dark-
to-light ratio of about 15. The measurements were per-
formed in a Spectromag cryostat with the bath temper-
ature Ty, = 1.4 K. The PL spectrum was measured
using a charge-coupled-device camera.

2. COULOMB EFFECTS IN DIRECT
AND INDIRECT PHOTOLUMINESCENCE

The separation of electrons and holes in different
QWs (the indirect regime) is reaized by applying a
finite gate voltage that fixesthe external electric field in
the z-direction F = V,/d,, where d, is the i-layer width.
The excitation density dependence of the PL spectrum
intheindirect regimeisshownin Fig. 1. The excitation
energy E, = 1615 meV issufficiently below the barrier
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Fig. 1. Excitation density dependence of the PL spectrum at
Thath = 14K, Vg=1V, and Ey = 1615 meV. The dashed lines

are aguide for the eyes. Inset: schematic band diagram of the
GaAs/Al,Ga _,As CQW dgtructure under applied gate volt-

age; the direct (D) and indirect (I) transitions are shown by
arrows.

energy to ensure the e-h photoexcitation directly in
QWs. The direct and indirect transitions are identified
by the PL kinetics and gate voltage dependence: the
direct PL line hasashort PL decay time and its position
is practically independent of V,, while the indirect PL
line has along PL decay time and shiftsto lower ener-
gies with increasing V, (in the low-density exciton
regime, the shift magnitude is given by eFd, whered =
11.5 nm is close to the mean separation between the
electron and hole layers) [11, 12].

Figure 1 shows that the indirect PL line monotoni-
cally shifts to higher energies with increasing the e-h
density; this corresponds to an increase of the ground-
state energy of the spatially separated e-h system. At
high e-h densities, the energy shift isdetermined (1) by
the exchange and correlation energies, which resultsin
a reduction of the energy [1], and (2) by the electric
field between the separated electron and hole layers,
which partially compensates for the external electric
field and thereby resultsin an increase of the energy [7,
9]. The latter contribution to the nonlinear energy shift
is a unique feature of the system of spatially separated
electron and hole layers and can be estimated using the
plate capacitor formula 3E = 4mnge°d/e, where ng, is
the e-h density.

The observed increase of the ground state energy of
the spatially separated e-h system is opposite to the
case of e-h plasmain SQWSs, where exchange and cor-
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Fig. 2. Excitation energy dependence of the indirect PL at
Thatn = 14 K, Vg = 1V, and Wy, = 20 W/cm?. The corre-
sponding excitation energies are shown in the inset. Inset:
the direct PL at Ty = 1.4 K, Vi = 1V, Wy, = 0.5 W/cm?,
and Eo, = 1.96 eV (points); for separation of the lines, the

direct PL isfitted by two Gaussians (dashed lines, the sum
isthe solid line).

relation terms result in the reduction of the energy (an
effect known as the band-gap renormalization [1, 2]).
Therefore, in CQWs studied here, the electrostatic term
dominates over the exchange and correlation terms. In
particular, the observed enhancement of the ground-
state energy of the system of the spatially separated
electron and hole layers with increasing the e-h density
indicates that the real space condensation to dropletsis
energetically unfavorable and corresponds to the theo-
retical predictions of [7, 9]. On the contrary, the con-
densation to the exciton liquid predicted in [10] is not
supported by the present experiment (we note that for
the CQW studied, we have d = 1.77a,, which must cor-
respond to the metastable exciton liquid phase accord-
ing to [10]). Indeed, if the exciton liquid were the
ground state, the e-h density and hence, the PL shape
and energy should be fixed and independent of the exci-
tation density; this does not correspond to the experi-
mental data (Fig. 1).

The lowest estimate of the e-h density can be
obtained from the experimental shift of the indirect PL
line to higher energies using the plate capacitor for-
mula. This estimate does not include exchange and cor-
relation terms, and the resulting value of the density is
therefore lower than the actual one. In particular, the
estimate for the maximum possible e-h density corre-
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Fig. 3. Excitation energy dependence of (a) theindirect PL
line position M1 and (b) the integrated indirect PL intensity
Mg normalized by the excitation density vs. excitation den-
Slty at Tbath =14K and Vg =1V. Thedirect PL at Tbath =
14K, Vg=1V, Wy =05 Wi/cm?, and Eex = 1.96 €V is
shown above (b). The dashed lines are a guide for the eyes.

sponding to the complete screening of the external elec-
tricfieldis~2 x 10 cm? for V; = 1.8 V.

Two direct PL transitions, the upper (D,) and the
lower (D)), are observed in the indirect regime (Fig. 1).
Their excitation density dependence is opposite to that
of the indirect PL line. The D, line position is practi-
cally independent of W, and the D, line shifts to lower
energies (Fig. 1). Therelative intensity of the D, lineis
increased with W, (Fig. 1).

Figure 2 presents the excitation energy dependence of
theindirect PL for the excitation energies in the range of
direct PL (seetheinset to Fig. 2). The integrated indirect

PL intensity M, = J’I (E)dE and the PL line position given
by the line gravity center M, = Mgl EI(E)dE are pre-
sented in Fig. 3 asafunction of excitation energies. The
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set of My(E) and M, (E,,) dependencesis amore com-
prehensive analog of the indirect PL excitation (PLE)
spectra: in addition to the latter, it contains information
on avariation of the PL line position. In the case where
the indirect PL dominates the e-h recombination, the
My(Ee) dependence coincides with the absorption
spectrum.

Figures 2 and 3b show that the indirect PL line
intensity is maximum at the excitation energies corre-
sponding to the D, line. At the same time, no absorption
is observed at the energy of the D, line at low excitation
densities; the absorption at the D, line energy appears
and its relative intensity increases with increasing W,
(Fig. 3b).

The nature of the D, and D, lines is discussed in
what follows. The carrier distribution scheme in CQW
intheindirect regimeisshownin Fig. 4 (left). Theratio
of the densities of the minor carriers (electrons in the
left QW and holes in the right QW) to the densities of
the dominant carriers (holes in the left QW and elec-
trons in the right QW) is proportiona to the ratio
between the direct and indirect PL line intensities mul-
tiplied by the ratio between the direct and indirect radi-
ative decay timesand issmall.! The scheme of possible
direct and indirect PL transitionsis evident from Fig. 4
(left) and is shown in Fig. 4 (right). We attribute the D,
line to direct multiparticle complexes because its rela-
tive intensity increases with increasing the electron—
hole density in both PL and absorption (Figs. 1 and 3),
which indicates that more than two particles (electrons
and holes) are involved in the complex. The simplest
charged complexes are X~ and X*.

The D, line corresponds to the direct heavy hole
(HH) 1sexciton, X. In CQWSs, the formation of charged
complexes is promoted in the indirect regime because
of the interwell charge separation and the correspond-
ing realization of the charge configuration, where the
electron (hole) is surrounded by a dominant number of
holes (electrons) in the left (right) QW, see the scheme
of Fig. 4. Indeed, the D, line vanishesfor the symmetric
charge distribution at V, = 0. We note that two direct
lines could aternatively be ascribed to recombination
fromtwo QWsof dlightly different widths (seetheinset
to Fig. 1). This alternative interpretation is discarded
because the lower direct line is absent in the absorption
at low excitation densities (Fig. 3).

With increasing the e-h density, the D, line shiftsto
lower energies. This behavior of the intrawell optical
transition corresponds to the band-gap renormalization
in SQWs [1, 2] and is qualitatively discussed in what
follows (for simplicity, we discuss the intrawell PL
trangitions in the right QW with excess electrons, the
transitionsin the left QW are characterized by asimilar
density dependence). At high e-h densities, more than
oneexcesselectronisinthevicinity of the photoexcited

L The indirect radiative decay times are in the range of tens and
hundreds of ns, while the direct radiative decay time is below our
system resolution, 0.2 ns[11].
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Fig. 4. Scheme of the carrier distribution in CQW in the
indirect regime (left). Scheme of possible direct (intrawell)
and indirect (interwell) PL transitions (right). Thetransition
assignment (D, D), 1) correspondsto that of the PL linesin
Figs. 1-3. QW width dependence of X~ and X* binding
energiesin SQWs and CQWs (the lower plot).

or recombining exciton. In the dense limit, the direct
PL is described by the correation effects in the 2D
electron gas and the hole in the right QW and the 2D
hole gas in the left QW. The PL energy of the 2D elec-
tron gasis reduced with increasing the electron density
because of the band-gap renormalization [1]. The pres-
ence of the separated 2D hole gas in the left QW must
further increase the PL energy reduction due to the
exchange interaction with the hole in the right QW. In
CQWs therefore, similarly to the SQW case, the
intrawell PL energy must be reduced with increasing
the density due to the band-gap renormalization. This
corresponds to the experimental data (Fig. 1). We note
that the X= complex is the low-density limiting case of
the correlations of 2D electron gas with a hole.

The correct determination of the X~ and X* complex
binding energies must be done at the lowest e-h densi-
ties to avoid the effect of extra (more than one) excess
carriers occurring in the vicinity of the photoexcited or
recombining exciton (see above). The binding energy
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Fig. 5. Excitation energy dependence of (a) the indirect PL
line position M4 and (b) the integrated indirect PL intensity
Mg normalized by the excitation density vs. excitation den-
SityaB=9T, Tyan = 14K, and Vy=1V. Inset: excitation
energy dependence of the integrated indirect PL intensity
Mg vs. magnetic field at Tyyn = L4 K, Vg =1V, and Wy, =

0.2 W/cm?. The dashed lines are a guide for the eyes.

of the complexes was determined from the splitting
between the D, and D, lines at low excitation density
W, = 0.6 W/cm? fitting the direct PL by two Gaussians
(seetheinset to Fig. 2). The evaluation of the data at the
lower excitation densities results in the close val ues but
is less accurate due to noise. The obtained binding
energy of the complexesis 1.9 meV for the 84-8-nm
CQW and 1.5 meV for the 15-4-15-nm CQW. These
values are consistent with the earlier reported X—and X*
binding energies in the 2D e ectron (hole) gas in mod-
ulation doped GaAs SQWSs: 1 meV for X* in 30-nm
QW [13]; 1.1 and 0.9 meV for X~ in 22- and 30-nm
QWs, respectively [14]; 1.15meV for X~and 1.25 meV
for X*in 20-nm QW [15]; and 2 meV for X~ in 9.1-nm
QW [16]. The X~ and X* binding energiesincrease with
reducing the QW thickness because of the enhanced
Coulomb correlations, which is consistent with the the-
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oretically predicted increase of the complex stability
with reduced dimensionality [17]. The binding ener-
giesof X~ and X* for the same QW width are close to
each other [13-15, 17]. The measured complex bind-
ing energy values of 1.9 and 13 meV for the respective
8- and 15-nm QWs fit well to the X~ and X* binding
energy dependence on the QW width [13-17] (see the
lower plot of Fig. 4). Recently, the binding energy of X*
in the CQW structure with 8-nm QWs was reported to
be 3 meV [18]: this value is also presented in Fig. 4.
The difference in the binding energies observed in the
CQWs with similar well and barrier widths (compare
[18] and the present paper) is likely to be related to the
larger amplitude of the in-plane random potential in the
sample studied in [18], which is revealed in the larger
PL linewidth: similarly to the case of SQWSs [13-16],
trions are most likely localized in CQWSs by in-plane
potential fluctuations; the larger amplitude of potential
fluctuations results in a reduction of the carrier local-
ization area. This additional carrier confinement must
enhance the Coulomb correlations and, therefore, the
complex stability.

The absorption line at =17 meV above the direct 1s
HH exciton corresponds to the direct light hole (LH)
exciton (see Section 3) while the shoulder at =10 meV
abovethedirect 1sHH exciton correspondsto the onset
of the direct excited HH exciton states 2s, 3s, ..., and
the HH free carrier absorption edge. This indicates a
direct HH exciton binding energy about 10 meV.

Figures 2 and 3 show that the energy of the indirect
PL lineislocked toitsintensity: M, (E,,) variesin phase
with My(Eg). Thisis consistent with the excitation den-
sity dependence of the indirect PL line (Fig. 1 and the
excitation density dependence in Fig. 3a) and corre-
sponds to the enhancement of the ground-state energy
of spatially separated el ectrons and holes with increas-
ing the e-h density (see above). The density depends on
the excitation energy due to the absorption variation.

3. SPATIALLY SEPARATED ELECTRON
AND HOLE LAYERS
AT HIGH MAGNETIC FIELDS

Coulomb correlation effects in the PL spectra of
spatially separated electron and hole layers at a perpen-
dicular magnetic field are considered in this section.
Figure 5 presents the excitation energy dependence of
theindirect PL line position and the integrated indirect
PL intensity vs excitation density at B = 9 T. These
dependences are anal ogous to those at B = 0 presented
in Fig. 3. At B = 9 T, the direct magnetoexciton lines
dominate the absorption. They are identified by their
magnetic field dependence presented in theinset to Fig. 5.
The energy of the direct magnetoexciton is €,(N, B) =
Ey + (N + U2)hiw, — Ep(N, B), where E; is the energy
gap including the electron and hole confinement ener-
gies in the CQW, #iw, is the sum of the electron and
hole cyclotron energies, N is the Landau level number,
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and Ej is the direct exciton binding energy; at high
magnetic fields, Ey ~ 1/l and reduces with N, where

Ig = J#icleB isthe magnetic length [19]. At high mag-
netic fields, similarly to the zero-field case, the energy
of the indirect PL increases with increasing the e-h
density in the entire density range (compare Figs. 3a
and 5a). This is observed both with increasing excita-
tion density and with increasing absorption (see the W,
and E,, dependences of Fig. 5a).

At high excitations, a neutral dense magnetoplasma
of spatially separated €l ectronsand holes, indirect magne-
toplasma, is redlized: severa optica transitions between
occupied Landau levels of spatially separated eectrons
and holes (LL indirect transitions) are observed in the PL
spectraand identified by their magnetic field dependences
(theleft inset to Fig. 6). Hot direct PL isalso observed (the
leftinset to Fig. 6). Higher Landau level transitions appear
in PL spectrawith increasing excitation density because
of the consequent occupation of the higher Landau lev-
els (theright inset to Fig. 6).

The energies of al the indirect LL transitions in
indirect magnetoplasma monotonically increase with
increasing the e-h density (Fig. 6).2 Thisis opposite to
the density dependence of direct LL transitions in
SQWSs where the uppermost occupied (Nth) LL transi-
tion energy is independent of the e-h density in the
range of filling factors N <v/2 <N + 1 and is reduced
with increasing the e-h density everywhere outside this
range because of the band gap renormalization [20].
The density dependence of direct LL transitions in
SQWs is quantitatively well explained: for the upper-
most occupied LLs, electrons and holes bind into mag-
netoexcitons® that are noninteracti ng in the high-mag-
netic-field limit because of the compensation between
repulsion at small distances caused by the Pauli exclu-
sion principle and attraction at large distances caused
by the exchangeinteraction [21, 22]; for thefilled eand
hLLs(v/2> N +1) or empty LLs (v/2 < N), the transi-
tion energy isreduced because the exchange interaction
is not compensated [20, 23].

The energy independence of the direct magnetoex-
citon energy from density in SQWs originates from the
symmetry of the e-e and e-h interaction [21, 22]. In

2The rate of the indirect PL energy enhancement reduces with
increasing the excitation density (Fig. 6). The origin of this is
likely to be related to a sublinear increase of ng, with W, At a
higher excitation density, the internal electric field between the
electron and hole layers is smaller because of the carrier screen-
ing of the external electric field (see above); at the smdler dectric
field, the recombination time of interwell PL becomes shorter [11],
which results in a smaller density of photoexcited carriers for the
fixed excitation density (in addition, at high W, = 20 Wicm?,
the e-h recombination time is reduced also due to the enhance-
ment of the direct recombination.

3 Note that the screening of the magnetoexciton in a dense low-
temperature magnetoplasma is suppressed compared to the zero
field case: in particular, in the high-magnetic-field limit, the carri-
ers at the completely filled LLs do not participate in the screening
of magnetoexcitons at the uppermost occupied LL [20-23].
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Fig. 6. Excitation density dependence of the main direct (D)
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14K, Vg =18V, and W, = 20 W/em?, Upper right inset:

PL spectraat W, = 0.2 and 60 W/cm?, Ty = 14K, B =
33T, andVy=18V.

CQWs, the interaction is strongly asymmetric. The
asymmetry isthe basis of two opposite theoretical mod-
els. According to the first mode!, the uniform magnetoex-
citon phase is unstable at low temperatures|[5, 6, 10] and,
in particular, the condensation to the exciton liquid is
expected [10]; according to the second model, the
repulsive interaction between the indirect magnetoexci-
tons stabilizes the uniform gas phase and the indirect
magnetoexciton energy monotonically increases with
density [7]. The experimentally observed enhancement
of the magnetoexciton energy with density supportsthe
second model, and, in particular, indicates the domi-
nance of the electrostatic term over the exchange term
for the spatially separated electron and hole layers (as
in the zero-field case, see Section 2).

4. CONCLUSIONS

Many-body effects in spatially separated electron
and hole layers in coupled quantum wells were found
to result in an enhancement of the indirect PL energy
with increasing the e-h density both for azero magnetic
field and at high fields for all Landau level transitions
in the entire range of e-h densities. This behavior is
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opposite to the case of electron—hole systemsin single
QWs, where the main features are explained by the
band gap renormalization resulting in areduction of the
PL energy. The density dependence of the indirect PL
energy is explained by the dominance of the electro-
static term originating from the electric field between
the separated electron and hole layers; this reduces the
net local eectric field and results in an increase of the
energy. The observed enhancement of the ground-state
energy of the system of the spatially separated electron
and hole layers with increasing the e-h density indi-
cates that the real space condensation to droplets is
energetically unfavorable.

At high densities of separated electrons and holes, a
new direct (intrawell) PL line has been observed; its
relativeintensity increased both in PL and in absorption
(measured by indirect PL excitation) with increasing
the e-h density. It istherefore attributed to direct multi-
particle complexes. The measured complex binding
energy values 1.9 and 1.5 meV for the studied 8 and
15 nm QWs, respectively, fit well to the previously
reported X~ and X* binding energy dependence on the
QW width.
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Abstract—Spectral dependences of charge carrier relaxation rates, Yo (%) and Ye gn(fiw), were observed in
Au and Cu films and Y Ba,Cu30; _ 5 high-T,, superconductor films. The relaxation rates decreased substantially
in the spectral region corresponding to interband transitions to the Fermi level region (fiwa,, = 2.45 eV, fitog, =
2.15eV, and iy = 1.89 eV and 71w, = 2.08 eV for Y Ba,CuzO5 _ ;). This relaxation decel eration opens up pos-
sibilities for developing a new method, based on the spectral dependences of relaxation rates, for the determi-
nation of the Fermi level position and the parameters of electron—electron and el ectron—phonon interactions on
the one hand and for studying deviations from the Fermi-liquid behavior in strongly correlated electronic sys-
tems. The linear v, o(fiw) [ %w — E¢| spectral dependence was observed for aY Ba,CuzO; _ film near v, =
2.08 eV, which may be evidence of a non-Fermi-liquid behavior of the electronic subsystem. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

The interaction of ultrashort laser pulseswith solidsis
characterized by the disturbance of equilibrium between
the electronic and ionic subsystems of the solid on the
femtosecond time scale [1-4]. The temperature of radi-
ation-excited electrons may exceed the temperature of
the sublattice by several orders of magnitude [1],
because the pulse width (t, ~ 1074-1073 5) and the
time of electronic subsystem thermalization (T.. =

y;fe ~10%°-10"*s) are much smaller than the charac-

teristic time of energy exchange between electrons
and the lattice (Tepn = Yaipn ~ 10725). Equilibriumin
the initially disturbed electronattice system is re-
established with time as a result of electron—phonon
interaction. Data on the dynamics of attaining equilib-
rium in the femtosecond time range yield information
about the Eliashberg parameter A[Q ?[J where A isthe
el ectron—phonon interactions constant and Q are phonon
frequencies, for electron—phonon interaction in the
material under study [2]. The value of this parameter
determined experimentally can serve as evidence in
favor of one or another mechanism of high-temperature
superconductivity.

This method was used in several experimental stud-
ies of optical excitation relaxation in metals [3-9] and
high-T. superconductors [10-12]. Compared with tra-
ditional probing usually performed at the wavelength of
excitation [3, 4, 10], probing with a femtosecond time

resolution in a wide spectral range [13, 14] yields
important additional information about the response of
a system excited by ultrashort laser pulses. For instance,
adetailed study of the dependences of relaxation rates on
the energy of photoexcited charge carriers has made it
possible to determine the spectral dependences of relax-
ation times and, through this, electron—electron and elec-
tron—phonon interaction parameters[8, 9, 15]. The exist-
ence of a substantial spectral dependence of eectron—
electron and e ectron—phonon rel axation rates hasled the
authors of [16, 17] to suggest a method for determining
the position of the Fermi level based on a sharp increase
intherelaxation time near thislevel caused by adecrease
in the accessible phase volume. In addition, identifying
certain special features in the spectral dependences of
excited carrier relaxation times allows us to determine
deviations from the Fermi-liquid behavior of electronic
subsystems [17].

The purpose of thiswork was to study and compare
the special features of the superfast dynamics of non-
equilibrium charge carriers in Au and Cu and
Y Ba,Cu;0; _5 high-T, superconductors in the normal
phase (in the femtosecond time region) by the “excita-
tion—probing” method with probing in a wide spectral
range[13, 14]. Our goa wasalso to obtain detailed dataon
the spectral dependences of electron—electron and eec-
tron—phonon relaxation rates. The material is arranged as
follows. Section 2 describes the basic concepts of the
model for studying the relaxation of excited charge car-
riers, its shortcomings, and its possible generalization.

1063-7761/01/9202-0267$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Fig. 1. Band structure of aAu film near the L point of the
Brillouin zone in the parabolic approximation [19].
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Fig. 2. Variationsin difference permittivity components A€,
and A€, for aAu film according to the thermomodulation
model [18, 19] at various temperatures.

In Section 3, we analyze the spectral dependences of
both electron-electron and e ectron—phonon relaxations
characterized by substantial deceleration near the Fermi
level. This allows the position of the Fermi level to be
determined from the spectral dependences of relaxation
rates obtained in femtosecond experiments. Section 4
contains the experimental femtosecond spectroscopy
dataon the Au and Cu. Similar data on theY Ba,Cu;0; _5
high-T, superconductor are reported in Section 5. In
Section 6, we consider the excitation of coherent
phononsinY Ba,Cu;O- _5 films. Lastly, Section 7 sum-
marizes the results and discusses possible applications
of the observed effects to femtosecond studies of met-
als and high-T, superconductors.
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2. THERMOMODULATION MODEL

The traditional approach to studying the dynamics
of nonequilibrium charge carriersin metals and high-T,
superconductors by femtosecond spectroscopy tech-
nigques uses the thermomodulation model [1, 18]. This
model has been extensively employed to describe the
experimental femtosecond spectroscopy data on both
metals [3-9] and high-T, superconductors [9-12, 16].
Usually, the following assumptions are made within the
framework of the thermomodul ation model.

(1) A narrow laser radiation pulse of width T, is
absorbed by free eectrons in the conduction band, which
creates a nonequilibrium electronic subsystem distribu-
tion.

(2) Electron—€lectron interactions control the attain-
ment of a quasi-equilibrium electronic subsystem dis-

tribution at a characteristic relaxation rate y,_o = T;le. It
is assumed that the exciting pulse width isrelated to T, ¢
asT, > Te,, that is, at timet ~ 1,,, the electron distribu-
tion function is independent of the form of the perturb-
ing nonequilibrium distribution function and is charac-
terized by the effective temperature of electrons, T(t),
which exceeds lattice temperature T, . At longer times
t > 1, electron—phonon interactions equalize the elec-
tronic subsystem and lattice temperatures at a charac-

teristic relaxation rate Y pn = Tospn-

In experiments of the type under consideration, a
probing laser pulse is used to study absorption caused
by transitions from the deep-lying filled d band to the
Fermi level E¢ region in the conduction band (Fig. 1).
An excitation pulse increases the effective temperature
of electrons, and the population of electronic states
decreases below and increases above the Fermi level.
The difference in responses of excited and nonexcited
samples, which are measured in experiments and which
are proportiona to the imaginary part of permittivity
(Ae,), change their sign at the frequency corresponding
to the transitions to the Fermi level region. Thisresults
in the formation of different absorption spectra with
alternating signs, which pass through zero (Fig. 2) at
the AWy, point [19] corresponding to interband transi-

tions to the E¢ region,

2A
Aey(w, Te(), To) = ———
W (1-9p)

FWay

O  Aw-fw,—x(gy+0,)
X dxrtanh int o=l
[ *g T ETea ) )

h— fio —X(9s + g)
2KkgTo(1+9n) 0

—tanh
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Here, the notation is as follows (see [19] and Fig. 1):

iy = Eg+(1+90), 0O = Men

i O = E—Jl%w+§;—6—Egg

a

EN™
a=(1+gy)=—=-1+g,
Il

B = (1+gs)—

JE™
o = ENIM 2]

m’Q?
and kg is the Boltzmann constant.

Note that the determination of the position of the
Fermi level by traditional femtosecond spectroscopy
techniques requires performing independent reflec-
tance (ADg) and transmission (ADy) measurements.
Changes in the imaginary permittivity part can then be

d = (1+gp)EY,

unambiguously reproduced by
AD; = a€1Ael+ aeerz’ o
ADg = 3, Ae, + aEZAez,

which allowsthe position of the Fermi level to be deter-
mined [18, 19] (A€, , is the photoinduced change in
permittivity). We show below that the position of the
Fermi level can even more accurately be found from the
deceleration of relaxation near the Fermi level measured
in a single “excitation—wide-band probing” experiment
performed in either the transmission or the reflectance
mode.

In terms of the two-temperature model ignoring the
spectral dependence of relaxation [2], the y; rate of cool-
ing of the electronic subsystem under femtosecond exper-
iment conditions can be related to the A[Q 2[Eliashberg
parameter for electron—phonon interactions as

aT(t) _ _ 3hA 00
3t Yr(TL=Te), Yy = TKeTo ©)

The AIQ (el ectron—phonon interaction parameter plays
avery important role in the theory of superconductivity,
and itsdetermination can provide insight into the nature
of interactions responsible for electron pairing. Study-
ing the kinetics of photoinduced reflection (or transmis-
sion) by femtosecond spectroscopy techniques allows
the evolution of the temperatures of electrons and the
lattice to be reproduced and this parameter to be
experimentally determined. This approach has been
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extensively used to measure AQ2(Jfor both metals
(Cu, Au, and Nb [2, 10]) and high-T. superconductors
(YB&a,Cuy0;_5 and BiSr,CaCu,0Og ., , [2, 10-12)).

The use of the thermomodulation model has
allowed the principal physical processes of the dynam-
ics of charge carriers in metals and high-T, supercon-
ductors to be studied and the evolution of the effective
temperatures of the electronic and phonon subsystems
to be reproduced. When picosecond and subpicosecond
laser pulses are used, the application of the thermomod-
ulation model is doubtless warranted. Indeed, the time
of electron—€lectron relaxation in metals can be esti-
mated ast .~ Ly, , where w, isthe plasmafrequency.
For typical metals with wy, ~ 10 eV, the time of attain-
ing quasi-equilibrium in the electronic subsystem is of
the order of 1., ~ 10 fs. As the laser excitation pulse
widthis T, ~ 100 fs, there is sufficient time for electronic
temperature T, to be established, because 1,> T.,. The
use of narrower excitation pulses (T, ~ Toe), however,
raises the question of whether or not the 1., time of
establishing a quasi-equilibrium distribution can safely
be excluded from consideration [1].

Indeed, the existence of a honequilibrium distribu-
tion of the electronic subsystem at times up to 600 fs
was observed in femtosecond time resolution experi-
ments on the photoemission of electrons from Au films
[5]. In[5], the suggestion was made that electron—elec-
tron interaction processes determining the attainment
of a quasi-equilibrium distribution of electrons played
an important role when femtosecond laser pulses were
used, and the principal concepts of the thermomodula-
tion model should therefore be revised to take into
account the process of establishing electronic tempera-
ture. This suggestion was substantiated in femtosecond
experiments on the photoinduced absorption and
reflection of Au films [6] and in studies of Ag and Au
films by surface plasmon—polariton resonance tech-
niques [7]. These experiments showed that describing
the femtosecond responses of ametal required general-
izing the simple thermomodulation model, which
treated metals in terms of the two-temperature model
comprising the electronic subsystem with temperature
T4(t) and the lattice with temperature T, (t). The use of
ultrashort pulses required taking into account electron—
electron interaction during the “ thermalization of the elec-
tronic subsystem;” that is, during the establishment of
the effective temperature of the electronic subsystem [1].

Thereisanother fundamental reason for revising the
thermomodulation model. This model does not take into
account the spectral dependence of eectron—phonon
interactions. At the sametime, theory [15, 20, 21] predicts
the spectral dependence of the rates of both electron—
electron and eectron—-phonon relaxations to be substan-
tial. Both relaxation rates noticeably decrease near the
Fermi level because of a decrease in the phase volume
accessible to relaxation. A decrease in the rate of relax-
ation near the Fermi level was indeed observed in femto-
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second experiments conducted as excitation—-wide-
band probing [8, 9, 16] and by the two-photon photoe-
mission method [22, 23].

For thisreason, the use of ultrashort pulses of widths
comparable with the characteristic electron—electron
relaxation time requires generalizing the thermomodu-
lation model to take into account establishing equilib-
rium in the electronic subsystem, and wide-band prob-
ing makes it possible to thoroughly study the spectral
dependence of relaxation rates near the Fermi level and
to directly determine the e ectron—phonon interaction
parameter [15] from the spectral dependence of the rate
of electron—phonon relaxation.

3. THE SPECTRAL DEPENDENCES
OF ELECTRON-ELECTRON
AND ELECTRON-PHONON RELAXATIONS

The most important mechanisms of the scattering of
chargecarriersin metals, semimetal s, and semiconductors
(such as dectron-dectron and e ectron—phonon interac-
tions), the modern advancesin the kinetics of charge car-
riers, and the principa experiments in which the scatter-
ing manifests itself most obviously are described in
detail in the monograph by Gantmakher and Levinson
[20]. According to the y, ((w) spectral dependence of
the rate of electron—electron relaxation in the Fermi lig-
uid [20, 21], this rate should decrease near the Fermi
level,

(4)

This decrease in the y, [(Aw) relaxation rate, which
reaches a minimum at the Fermi level, is caused by a
decrease in the phase volume accessible to relaxation,
and the a. . and b, coefficients of (4) do not depend on
hw and T,. Although typical electron—electron relax-
ation times in metals at room temperature are of about
10 fs [21], interelectron interactions clearly manifest
themselves in the frequency dependence of the relax-
ation rate in excitation—wide-band probing femtosec-
ond experiments [8, 9].

Yoo = 8eoTa+ beo(ho0—Ep)%.

The spectral dependence of the vy, €lectron—
phonon relaxation rate near the Fermi level in the low-
temperature limit (that is, at kg Te < 710y, wherefiwyy, is
the characteristic phonon energy) is well known (see
[20] for details) and has the form vy, O (Aw — Eg)°. The
proportiondity factor is not directly related to the AQ (]
€l ectron—phonon interaction parameter. In contrast, under
excitation—wide-band probing femtosecond experiment
conditions [8, 9, 13] and intense pumping, we have the
other (high-temperature) limiting situation; that is, the
effective T, temperature of the dectronic subsystem then
substantially exceeds characteristic phonon frequencies
fity,. In this situation (that is, when A,/ kg T < 1), the
rate of electron—phonon relaxation near the Fermi level
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is proportional to the electron—phonon interaction
parameter [15],

Yeon(® TL, T = 8epn + b pn(h0—Ef)%,  (5)

where b 5, = THAD 22k T,)°. It follows from (5) that,
near the Fermi level, we must observe relaxation deceler-
aion. Approximating the experimental Y, (7w) depen-
dence by (5) then alows us to determine the eectron—
phonon interaction parameter, AQ 2= by (2K Te)*/ A

It should be stressed that the use of wide-band prob-
ing [13, 14] alowsthe position of the Fermi level (from
relaxation deceleration), electron—electron and elec-
tron—phonon interaction parameters [15], and possible
deviations [17] of the spectral dependence from theo-
retical predictionsto be determined.

4. FEMTOSECOND SPECTROSCOPY
OF GOLD AND COPPER FILMS

In this Section, we describe the results obtained for
Au and Cu metal films by femtosecond laser spectros-
copy techniques with the use of the excitation—wide-
band probing method [13, 14].

The sampleswere Cu and Au films 20 nm thick depos-
ited on aquartz substrate of thickness 200 um. Excitation
was effected by optical pulses 50 fs wide with excitation
photon energies Aiw, = 2.34 and 2.75 eV and 70 fs wide
with excitation photon energy 7wy, = 5.5 €V. Theintensity

of excitation pulseswas~10" W cnm?, and the diameter of
the excitation spot was about 100 um. The difference in
optical density of the samples in transmission and
reflection experiments was measured by wide-band
probing in the spectral range iw = 1.6-3.2 eV, where
wis the frequency of probing. The diameter of the
probing spot was approximately 80 um. The frequency
of excitation and probing pulseswas 3 Hz, and thetime
lag was varied in steps of 7 fs. A maximum time lag
amounted to 4 ps. All measurements were taken at
room temperature.

The dependences of the optical densities AD; of Au
and Cu films on the time lag between excitation (2, =
2.75eV) and probing pulses are shown in Figs. 3aand 3b.
Figures 4a and 4b show the time variation of the differ-
ence transmission AD+ and reflection ADg spectra mea-
sured for an Au film at various delay times. Figure 5
presents the analogous data for a Cu film. Similar depen-
dences were observed for the other excitation pulse
energies (fw, = 2.34and 5.5 eV).

The stages of response time evolution were similar
for Au (Fig. 4) and Cu (Fig. 5) films at excitation pulse
energies used in our experiments. At the initial time, a
strongly nonequilibrium distribution of electrons was
formed; electron—electron interactions determined the
relaxation of this strongly nonequilibrium distribution
to aquasi-equilibrium distribution of electronswith the
effective electronic temperature T (t) > T,, where Ty is
theinitial equilibrium temperature of electrons and the
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ADy, arb. units
1.0

0.5

Fig. 3. Normalized time dependences of photoinduced
response AD(fw)/AD (i) for various probing energies
fiw near Fermi level Eg (a) for aAu film, iwp, = 2.45 eV,
and (b) for a Cu film, Awg, = 2.15 eV; dashed curves are
pumping pulses, and At isthe delay time.

lattice. This stage of relaxation could be characterized
by the vy, ((hw) rate of electron—electron relaxation,
see (4). A maximum AD; signal amplitude [for AD; >0
ahw=24¢eV (Aufilm, Fig. 49) and AD; > O at iw =
2.15 eV (Cu film, Fig. 5a)] was attained at times of
about 500 fsand could be related to the contribution of the
nonequilibrium electronic subsystem over this time inter-
val. After attaining a quasi-equilibrium state of the elec-
tronic subsystem, further relaxation to the equilibrium
gtate of the lattice—€l ectrons system occurred as aresult of
electron—phonon interactions between quasi-equilibrium
electrons and phonons. According to Figs. 4 and 5, the
characterigtic time of this relaxation equaled severd pico-
seconds, and this relaxation stage could be characterized
by the Y, pn(72w) electron—phonon relaxation rate, see (5).

Note that the ADg(Aw) dependence is essentialy
nonmonatonic in the probing spectral region. Figures 4b
and 5b show that ADy >0 at w<2.15eV and ADr< O at
hw > 2.15 eV for the copper film. For the gold film,
ADgr>0athw<2.3eV and ADg<Oatiw>2.3€eV.As
mentioned above, this nonmonotonic dependence is
related to probing transitions close to the Fermi level,
and it can be used to determine the position of the
Fermi level from the condition Ae,(fiw,,) = 0. For the
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Fig. 4. Spectraof (a) ADtand (b) ADgfor aAufilm (20 nm)
at various delay times At .

copper film, ADg = Ae, (in the spectral region close to
2.15eV) and, therefore, fiwg, = 2.15 €V. In contrast, for
the gold film, ADg # Ae, near hw = 2.4 eV. Taking into
account (2) yieldsiw,, = 2.45 eV [18, 19]. Notethat a
substantial relaxation deceleration is observed close to
2.15 eV for the copper film and close to 2.45 eV for the
gold film, as is clearly shown in Fig. 3, which contains
normaized time dependences of the photoinduced
response at various probing energies close to the Fermi
level.

To study the observed relaxation deceleration in the
spectral region of transitions to the Fermi level region
(see Fig. 3), the experimenta dependences were approxi-
mated by two-exponential response functions including
the rates of both eectron—-electron and e ectron—phonon
relaxations|[6, 8, 9):

d

—C%- = _yl(ye—e + Ye- ph)’

d

d_ytz = _y2ye—ph T YiYe-e (6)
dy,

rri (Y1 + ¥Y2)Ye-ph-
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Fig. 5. Spectraof (a) ADtand (b) ADg for aCu film (20 nm)
at various delay times At.

The ADg(7iw, t) time dependence of the difference in
optical density was modeled by the convolution of the

Ft) = i?’:lCiyi linear combination of functions

obtained as solutions to system (6) with the S.(t)
mutual correlation function between the exciting and
probing pulses,

00

ADg(hw, t) = J' dt'F(t") St —t'). (7)

In the approximation that we use, the y; function is
related to the process that determines the superfast
response of the nonequilibrium electronic subsystem
and effects quasi-equilibration of electrons at a charac-
teristic relaxation rate of y. .. They, function may be
related to the contribution of the relaxation of thermal-
ized electrons, and the y; function describes lattice
heating [3, 4, 8].

The purpose of approximating the experimental
dependences wasto obtain the best fit to the experimen-
tal data (over the whole spectral range of probing 1.6—
3.2 eV) and to determine the Y (%) and Ye y(70)
spectral dependences of relaxation rates. The y, ((hw)
and Yo on(fiw) relaxation rates exhibited a strong spec-
tral dependence (see Fig. 6), namely, the relaxation
rates decreased substantially near fiwg, = 2.15 eV for
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the Cu film and near #iw,, = 2.45 €V for the Au film.
Recall that the positions of the Fermi levels determined
from the spectra of AD;and ADg were the same. This
coincidence allows usto assert with confidence that the
position of the Fermi level can be found by the new
method described above, namely, by determining the
position of the minimum in the spectral dependence of
the relaxation rate of excited charge carriers (also see
[16]). Note that the dependence of relaxation rates on
energy is fairly sharp, which allows the Fermi level to
be determined more accurately than from the vanishing
of Ae,(hw) [3, 4, 10], where #iw is the probing photon
energy. Also recall that determining the Ae,(%w) depen-
dence requires the use of additional data[3], which are
not necessary when the method under consideration is
applied. The Y, (/) and Y, o(7w) spectra dependences
measured for the other excitation energies (hw, = 2.34 and
5.5 eV) gave results identical to those described above.

The approximation of experimental data by (4) allows
us to check theoretical predictions concerning electron—
electron interactions. It was found that the parameters
obtained in thisway noticeably differed from the values
predicted for the one-component Fermi liquid [21] in
the region Aw,, £ 0.2 €V. For instance, the following
parameters were obtained for the Cu and Au films:
b =265 pstev2and bl =260 ps?eV-2 Devia-
tionsfrom the predictions of the theory of the one-com-
ponent Fermi liquid were also observed in femtosecond
two-photon emission experiments [22, 23]. It follows
that additional screening by valence d band electrons
should be taken into account [24, 25].

As mentioned above, the spectral dependence of
electron—phonon relaxation can be used to directly
determine the electron—phonon interaction parameter
(also see [15]) by approximating the experimental data
according to (5). This gives Al@ %[}, = 35 meV? and
A 2[], = 28 meV?, in close agreement with the param-
eter values determined earlier from the rate of elec-
tronic temperature variations [10]. Note that the deter-
mination of the electron—phonon interaction parameter
from the spectral dependence of the rate of electron—
phonon relaxation [15] in excitation—probing femtosec-
ond spectroscopy experiments is more warranted than
the approach based on the Allen theory [2], which
neglects the y, ;n(%w) spectral dependence.

5. FEMTOSECOND SPECTROSCOPY
OF YBCO FILMS

The excitation—~wide-band probing method of femto-
second spectroscopy was used to study the excited state of
the YBa,Cuz0; _5 high-T, superconductor and to obtain
detailed information about the relaxation of nonequilib-
rium charge carriersin the femtosecond time region.

The sample was a YBa,Cu;0,_5 film (T, = 89 K)
0.05 um thick on a SITiO; substrate of thickness
0.5 mm. Excitation was effected by optical pulses50 fs
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Fig. 6. Spectral dependences of relaxation rates for (a, b) Au and (c, d) Cu films 20 nm thick at an excitation pulse photon energy
=2.75¢V: (a b) electron—electron relaxation rate y,_o(fiw) and (c, d) electron—phonon relaxation rate yﬂh(ﬁw); squares are

hay

experimental data, and solid lines are approximations by (&, c) (4) and (b, d) (5).

wide of a 25 x 10" W/cm? intensity with photon
energy 7w, = 2.34 eV. The diameter of the excitation
spot was 100 um. Reflectance variations ADg were
studied by 50-fs probing pulses in the energy range
1.6-3.2 eV. The diameter of the probing spot was
80 um. The frequency of excitation and probing pulses
was 2 Hz. The delay time was varied in steps of 7 fs. A
maximum delay time was 4 ps. Measurements were
taken at room temperature.

The method for determining the position of the
Fermi level and the electron—electron and electron—
phonon interaction parameters from the vy, (Aw) and
Yepn(7i0) spectral dependences is described above for
metals (Au and Cu). Below, this approach is applied to
study Y Ba,Cu;0; _ 5 films,

The difference in the reflectance spectra ADy for
various delay timesin the spectral range 1.7-2.2 eV are
shownin Fig. 7. Time evol ution stages of these spectraare
smilar to those characteristic of metals (see Section 4).
Note that the ADg > 0 signal in the studied spectral
range at times of about several hundred femtoseconds
may be related to the contribution of the strongly non-
equilibrium eectronic subsystem. At delay times exceed-
ing 1 ps, the difference reflectance signa exhibits an
essentially nonmonotonic dependence. We found that
ADR(t>1ps)=0at iy, =1.9€eV and fi, = 2.08 eV (see
Fig. 7) and ADg(t > 1 ps) < 0 in the intermediate spec-
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Fig. 8. Spectral dependences of (a) electron—electron ye ¢
and (b) electron-phonon ye _ 4, relaxation rates: O, experimen-
tal data; W, Voo O] E— 189 V[ A, Yoo ] E—208eV|,
®, Ve pn 0 E-190eV[% and 4, Yo pn [ E-2.09 V[~

tral region. As mentioned above, this nonmonotonic
dependence is related to probing electronic states near
the Fermi level. The Situation issimilar to that with metals
(Cu and Au, see Section 4), the only difference being that
two interband trangitions to the Fermi level region are
observed at the e, = 1.9 6V and fuw, = 2.08 eV energies
in the ADg difference spectra.

Unlike the metals considered above, Y Ba,CuzO; _;
has a fairly complex band structure. For instance, the
Fermi level passes across several bands with different
effective masses of electrons and different dispersion
signs [26]. Consider two types of possible interband
trangsitions near the iw = 2 eV energy [27, 28].

(2) Interband transitions can occur near the I" point
of the Brillouin zone from low-lying valence bands
with negative effective masses of electrons to the con-
duction band formed by the Cul(dxy)—O1(px)—O4(py)
orbitals; this band contains the Fermi level. The ADg
va ue then has a nonmonotonic spectral dependence with
ADr = 0 at i, = 1.89 eV, ADg > 0 in the spectra range
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17eV <hw<19eV,and ADy<0intherange1.9eV <
hw<2eV (seeFig. 7).

(2) Interband transitions from low-lying valence
bands with negative effective masses of electrons can
occur to the same conduction band as with transitions (1)
but with a negative effective mass of electrons near the
Spoint of the Brillouin zone. The ADg value then has a
nonmonotonic dependence with ADg = 0 at fiw, = 2 eV,
ADg < 0in the spectral range 1.9 eV < aiw < 2.0 eV, and
ADg > 0inthe spectral range2 eV < i< 2.1 eV (see
Fig. 7).

These interband transitions can be observed in the
difference in the reflectance spectra of YBa,Cuz0;_;
films[27, 28]. As shown above for Cu and Au, the posi-
tion of the Fermi level for interband transitionsfrom the
valence band to the Fermi level region can be deter-
mined from the spectral dependences of the Y, . and Ye on
relaxation rates. The Y, (Aw) and Y gn(fiw) depen-
dences were obtained following the procedure used
with Cu and Au. The spectral dependences of the y,.
and Y, ,, relaxation rates (Fig. 8) were found to be sub-
stantialy different from those observed for the metals.

Note that both relaxation rates have minima at ener-
giesof w, = 1.89 eV and 4w, = 2.08 eV. These minima
may be related to interband transitions of types (1) and
(2) to the Fermi level region within the conduction band
formed by the Cul(dxy)-O1(px)—O4(py) orbitals [26].
An important difference from the metals (Cuand Au) is
the closeness of the mean electron—electron and elec-
tron—phonon relaxation rates, which equa iy, [~ 3 ps?
and Yo ;u0= 1 ps?in the studied spectral region. For
metals, these rates differ by an order of magnitude. The
relaxation rates decrease near 7w, = 1.89 eV and 7w, =
2.08 eV, in agreement with the passage of the ADg(#w) [
Ae, curve through zero at these points (see Fig. 7). This
agreement is another argument in favor of the conclu-
sion that the position of the Fermi level can be determined
from the decel eration of relaxation near thislevel. In addi-
tion, the obtained Fermi level position iscloseto thevaue
found in independent experiments on the differencein
the transmission response AD of YBa,Cuz0; _ 5 films
[10-12, 16].

The obtained spectral dependences were used to
check predictions (4) of the theory of the Fermi liquids,
as with Cu and Au. The electron—electron interaction
parameters for theY Ba,Cu;0;, _ 5 film were found to be
be o(he, = 1.98 eV) = 420 and b, (fiw, = 2.08 eV) =
375 pst eV Note that the b, . parameter is of the
order of the values obtained for Au and Cu. At the same
time, it should be stressed that substantial deviations
from the theory are observed for transitions to the
Fermi level region near 7w, = 2.08 eV. Data on y, (i w)
variations can be used to study these deviations [28] by
constructing dependences of the type y._(fw) O (Aw —
Ep)“ (for the Fermi liquid, a = 2 [21]). This opens the
way to thedevel opment of anew method for studying [17]

No. 2 2001



FEMTOSECOND SPECTROSCOPY OF RELAXATION PROCESSES

manifestations of non-Fermi-liquid behaviors of
strongly correlated electronic subsystems [30, 31]. The
spectral dependence of the relaxation rate near #w, =
2.08 eV can well be described by the law vy, J(Aiw) =
bl — E| (see Fig. 8) with by o(hw, = 2.08 eV) =
27 ps? eV~L. Note that alinear dependence of the elec-
tron—electron relaxation rate was aso observed in
experiments on the two-photon femtosecond photoe-
mission of graphite; this dependence was interpreted in
terms of electron—plasmon interactions [32]. In addition,
the b,  parameter for the'Y Ba,Cu;0; _ 5 film has virtually
the same value as for graphite (b, = 29 ps? eV [32]).
Such a striking coincidence of the parameters may be
explained by the two-dimensional behavior of the elec-
tronic subsystem characteristics of both YBa,Cu;0;_5
and graphite. An aternative explanation of the linear
Ye_e(iw) dependencesis based on the one-dimensional
character of the conduction band formed by the
Culd(xy)-O1p(x)—O4p(y) bonding chain ttorbital near
the Spoint of the Brillouin zone [26], which makes the
guasi-one-dimensional electronic liquid Luttinger in
character [30, 31].

The spectra dependence of the y, ,,, €lectron—phonon
relaxation rate with deceleration at 71w, = 1.89 eV and
hw, = 2.08 eV leads us to conclude that € ectron—phonon
interactions play an important roleinY Ba,Cu;0; _5 [15].
Indeed, we found that b, , = 90 pst eV2at fiwy = 1.9eV
and b ,= 290 ps™ eV2 at i, = 2.09 eV. These values
were substantialy larger than those determined for the
metals (for Cu, by, = 45 ps? eV for Au, be g, =
15 ps?t eV?). Let us estimate the maximum tempera-
ture of the electronic subsystem on the assumption that
the excitation pulse energy isfully transferred to it. For the
YBa,Cu,0,_5 film, this gives ksT.= 0.26 eV, which
alows the A[Q °CJelectron—phonon interaction parameter
to be estimated at about 840 meV?2. Thisvauediffersfrom
A 2= 500 meV? obtained earlier from the rate of elec-
tronic temperature variations. The theoretical estimation
[33] of the dectron—phonon interaction parameter gives
A 2= 2200 meV2. As mentioned above, the determi-
nation of A[Q 2[Jfrom the rate of electronic temperature
variations [2] ignores the spectral dependence of the
€l ectron—phonon relaxation rate, and the corresponding
value can only be treated as alower bound estimate. In
addition, determining the parameter by this method
requires additional experimental data[10] on the char-
acteristics of the sample under study. Additional exper-
imental data are not necessary for determining the
parameter from the spectral dependence of the elec-
tron—phonon relaxation rate, and the resulting value is
therefore morereliable [15].

6. COHERENT PHONONS IN YBCO FILMS

The use of femtosecond pul ses opens up fundamen-
tally new possibilities of studying elementary excita-
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Fig. 9. Spectrum of coherent phonons excited in a
Y Bay,Cu305 _ 5 superconductor film at room temperature.

tions in molecules and condensed media. These possi-
bilities include the direct oscillography of molecular
vibrations and probing not only the amplitudes but also
the phases of molecular vibrations by ultrashort pulses
of widths much smaller than the period of molecular
vibrations, T, < T, = WQ,. The use of such laser pulses
has allowed the excitation of coherent oscillations in
various media to be experimentally observed [34-38].
In experiments of this type, ultrashort laser excitation
pulses are used to cause impact excitation of the
medium. Coherent lattice or molecule vibrations (that
is, in-phase vibrations with aclassical population num-
ber of the excited phonon mode) excited by such
ultrashort pulses modulate medium permittivity varia-
tions, which causes changesin theintensity of transmit-
ted or reflected light. A probing pulse with a time lag
with respect to the excitation pul se allows the dynamics
of excited vibrations to be directly observed.

Theuse of ultrashort optical pulsesin the femtosecond
spectroscopy of Y Ba,Cus0, _ 5 filmsallowed usto observe
coherent lattice vibrations excited by them. A Fourier
analysis of the time dependence of the difference in opti-
ca dengty variations, ADe(t) —ADy; (t) [14, 16, 35], was
used to determine the characteristic lattice vibrationsin
the frequency range 10250 cm™. The excitation of
coherent phonons was found to occur in the whole
spectral range of probing, Aw = 1.6-3.0 eV. The fre-
guencies of coherent phonons, which were effectively
excited in thewhole spectrd range of probing, were deter-
mined from the product of al Fourier spectra; that is, from
their geometric mean (aso see [14, 16, 35]). A 152 cnt
mode was found to dominate in this spectra range (see
Fig. 9); vibrations with frequencies of about 55, 110,
and 215 cm and severa other modes had lower ampli-
tudes. The excitation of modes at about 116 and 150 cmrt
was earlier observed in [36-38]. For instance, femto-
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second pulses about 100 fs wide with the energy of
exciting and probing photons 7w = 2 eV were used in
[36, 37] to study aY Ba,Cu;0;_; film. Asin thiswork,
the excitation of the 150 cm™ mode, most intense at
room temperature, was observed.

7. CONCLUSIONS

In this work, we studied the dynamics of nonequi-
librium processes in Au, Cu, and YBa,Cuz0;_5 films.
We analyzed the spectral dependences of both elec-
tron—electron and e ectron—phonon relaxations. Relax-
ation deceleration near the Fermi level was observed
experimentally, which offersthe possibility of develop-
ing a new method for determining the position of the
Fermi level and the electron—electron and electron—
phonon interaction parameters. A method for determin-
ing the electron—phonon interaction parameter from the
spectral dependence of the rate of electron—phonon
relaxation was suggested. Studies of the spectra
dependences of relaxation rates open up new possibili-
tiesfor determining possible deviations from the Fermi
liquid behavior. We observed alinear dependence of the
relaxation rate, Y, o(Aiw) = b |hw — E¢|, for the inter-
band transition at 7w = 2.08 €V in the YBa,Cu;0,_;
high-T, superconductor. The excitation of coherent
phonons with predominant vibrations at an about 152 cm™
frequency was observed for the Y Ba,Cu;0; _ 5 film.
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Abstract—We propose anew theoretical method to study gal vanomagnetic effectsin bounded semiconductors.
The general ideaof thismethod is asfollows. We consider the el ectron temperature distribution and the electric
potential as consisting of two terms, one of which represents the regular solution of the energy balance equation
obtained from the Boltzmann transport equation at steady-state conditions and the Maxwell equation, whilethe
other isthe effect of the specimen size that is significant near the contacts (the boundary layer function). With
the distribution of the electric potential at the contacts and the electron temperature distribution at the surface
of the sample taken into account, we find that the magnetoresistance is different from the one in the standard
theory of galvanomagnetic effects in boundless media. We show that, besides the usual quadratic dependence
on the applied magnetic field B, the magnetoresistance can exhibit alinear dependence on B under certain con-
ditions. We obtain new formulas for the linear and quadratic terms of the magnetoresistance in bounded semi-
conductors. Thislinear contribution of the magnetic field to the magnetoresistance is essentially due to the spa-
tial dependence of the potential at the electric contacts. We also discuss the possibility of obtaining the distri-
bution of the electric potential at the contacts from standard magnetoresistance experiments. Because the
applied magnetic field acts differently on carriers with different mobilities, a redistribution of the electron
energy occursin the sample and thus, the Ettingshausen effect on the magnetoresi stance must be considered in

bounded semiconductors. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Physically, the magnetoresistance phenomenon
consists in an increase of the electric resistance of a
metal or semiconductor subject to an external magnetic
field applied transversally to the electric field direction.
We obtain a complete formula for the magnetoresis-
tance in a bounded semiconductor involving several
previously unknown terms. Using the expression for
the magnetoresi stance in bounded semiconductors, itis
possible to obtain some information about the electron
energy relaxation, the carrier density, and the electron
temperature distribution in the semiconductor. Cur-
rently, the innovation of some sensitive magnetic field
detectors is based on the magnetoresistance effect in
semiconductors. Thismeansthat the linear contribution
of the magnetic field to the magnetoresistance estab-
lished in this paper, which arises due to the spatial
dependence of the potential at electric contacts, can
improve the sengtivity of the devices. Furthermore, the
experimental measurements of magnetoresistance alow
oneto describethe homogeneity of the ectric potential at
the contacts and therefore also the homogeneity of the

TThis article was submitted by the authors in English.

current density in the sample, which is very important
for semiconductor devices.

Most of the theoretical works, asfar as galvanomag-
netic effectsin bulk semiconductors are concerned, have
been addressed to boundless media where the electric
field is constant in all directions and the only contribu-
tion to the magnetoresistance is related to the depen-
dence of the electric conductivity on the magnetic field
[1, 2]. However, this assumption implicitly involvesthe
effect of the sample surface, because the electrostatic
Hall field, and thus the magnetoresistance, cannot be
found otherwise. It is worth mentioning that, in reality,
itisausual practice to fix some specific boundary con-
ditions at the surface of the sample; as a consequence,
in general, magnetoresistance depends on the electric
potential, which is a linear function of the coordinates
[3]. Moreover, thislinear term can only be calculated if
the surface effects on the electric potential are consid-
ered through an additional function of coordinates. The
coefficients characterizing the potential also depend
strongly on these boundaries and, asthe result, they are
different from the coefficients obtained in the standard
magnetoresistance theory.

1063-7761/01/9202-0277$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Size-dependent contributions to the magnetoresis-
tance of an isotropic semiconductor in a uniform elec-
tric field E, and a transverse magnetic field B (in the
y-direction) have been discussed in [4—7]. The discus-
sionisgiven for systems bounded along only one direc-
tion (the z-axis) and boundless in the direction of the
eectric field. The current density is taken to vanish at
the surface of the sample, which is viewed as a bound-
ary condition (i.e., j,= 0 at z= +b) in contrast with stan-
dard magnetoresi stance theory, wherej, = 0 inthe semi-
conductor sample. Inthis case, the electron temperature
gradient 0T,/0z arises because the magnetic field actsin
a different way on carriers of different mobilities (the
Ettingshausen effect) [8], which leadsto alinear depen-
dence of the electron temperature distribution on the
electric field. The experimental evidence of these theo-
retical results has shown a strong influence of the semi-
conductor thickness on the magnetoresistance. When
the Ettingshausen effect in bounded semiconductorsis
taken into account, a size-dependent term appears in
the magnetoresistance. However, when the transverse
dimensions of the semiconductor are very large com-
pared to the electron—phonon energy relaxation length
(k™) [9], the usual result of conventional magnetoresis-
tance theory is recovered, with the Ettingshausen effect
being important if kb < 1. On the other hand, the size-
dependent contribution to the magnetoresistance does
not disappear inthelimit askb — 0[10] and isin fact
of the same order as the physical magnetoresistance
term in the standard theory.

As can be seen, the surfaces of the sample play an
important role in the theory of magnetoresistance in
thin-film semiconductors. However, in rea physical
experiments on magnetoresistance, besides the effect
of the size, the effects due to the inhomogeneity of the
potentials at the contacts must be considered.

Magnetoresistance and the electric potential distri-
bution in a bounded metal (degenerate electron gas)
have beeninvestigated in [11, 12]; in [12], in particular,
it was studied using a conformal transformation in the
complex plane. This approach is only valid when the
electric potential isconstant at the contacts, i.e., isinde-
pendent of the coordinates; the approach cannot be
applied to semiconductors where the current depends
on the potential and the temperature and satisfies the
Helmholtz equation.

In the limit of small electric and magnetic fields,
size-dependent contributions of the magnetoresistance
of an isotropic semiconductor have been considered in
[13, 14] using a perturbative method. The relevant dis-
cussion is given for systems bounded in al directions,
with the current density vanishing at z= +b. It isfound
that magnetoresistance existseven if therelaxationtimeis
independent of the electron energy. However, when the
distance between the contacts is very large, the pertur-
bative approach of [13, 15] looses its applicability.

Recently, magnetoresistance in bulk semiconduc-
tors that are bounded in al directions was investigated
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within a new mathematical approach [3] for a degener-
ate electron gas, the result being a simple anaytica
expression. Moreover, it was shown in [7] that the car-
rier temperature distribution for a nondegenerate semi-
conductor (the Ettingshausen effect) plays an important
role in the study of galvanomagnetic effects.

In this work, we analyze the magnetoresistance in
bounded isotropic nondegenerate semiconductors and
consider the effect of the inhomogeneous electric
potentials at the contacts, thickness b, and length a of a
thin-film semiconductor. This analysisis based on rep-
resenting the potential and the temperature as the sum
of aterm that isregular (analytical) in the small param-
eters b/a and w1, and a term involving the boundary
layer functions corresponding to vortex currents. The
boundary layer functions are essential near the con-
tacts. They vanish as the magnetic field B — 0 for a
constant potential at the contacts, are regular in the
small parameter w1, and decay exponentially along
the sample. The analysis shows that it should be possi-
ble to observe an interesting electronic transport phe-
nomenon caused by the electric field and the electron
temperature distributions; moreover, the magnetoresis-
tance that we find is different from the one in the stan-
dard theory.

2. THEORETICAL MODEL

We assume that a semiconductor sample has the
shape of aparaleepiped bounded by thex=0, a;y =0, c;
and z=0, b planes and the el ectric contactswith the dis-
tributions $°(y, 2) and ¢p(y, 2) areinthex=0and x=a
planes, respectively, while the applied uniform mag-
netic field isdirected along the y-axis. The normal com-
ponents of the current density vanish at they =0, c and
z=0, b planes of the sample (open circuit at these sur-
faces). If the potential distributions $°(y, z) and $3(y, 2)
are only functions of z, the transport problem is obvi-
ously two-dimensional (al the physical parameters
only depend on x and z). We consider the effect that the
redistribution of carriers according to their energy
across the sample has on the magnetoresistance (the
Ettingshausen effect). Assuming that the electric and
magnetic fields are weak (and therefore, T, — Ty = |B,
where T, is the ambient temperature), we can use the
Maxwell and the thermal balance equations to find the
electron temperature distribution and the electrostatic
potentia in the sample as functions of coordinates and
the magnetic field. Under steady-state conditions, the
equations for the coupled electron temperature and the
electric potential can be written as[7, 14]

020(x, 2) + ﬂelsze(x, 2 =0

1
02T (x, 2) +qTe2D2¢(x, 2) = KA(To(x 2) = T,),
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where k™! is the scale length of the electron—phonon
energy relaxation, referred to as the cooling length (k1 =
103-10* cm for nondegenerate semiconductors), and
g is a parameter characterizing the dependence of the
momentum relaxation time T on energy € via 1(g) =
To(e/Tp)". The values of g for various momentum rel ax-
ation mechanisms are given in [16] (it isimportant that
[g] < 3/2). In thiswork, we assume that the temperature
of the phonon system is equal to the ambient tempera-
ture T,

To arrive at Egs. (1), we have assumed that the el ec-
tron gas is nondegenerate (satisfies the Maxwell statis-
tics), the energy—momentum relation is quadratic and
isotropic, and the current density is sufficiently small
for the nonlinear effectsto benegligible, i.e., thekinetic
coefficients do not depend on the electric field. We also
consider a weak magnetic field such that w1, < 1,
where wy, is the cyclotron frequency.

The continuity and the energy balance equations for
the potential ¢(x, 2) and the eectron temperature Ty(X, 2)
must be supplemented by boundary conditions describ-
ing the distribution of the potential at the electric con-
tacts and the normal components of the current density
at the lateral surfaces:

0(x 2|, = 0°@, o(x2|, _,=¢®@,
| . :0' @)

JZ|z:0,b

The coupled egquationsfor the potential and the electron
temperature must be supplemented by boundary condi-
tions describing the absorption of the carrier energy at
the surface of the sample. These conditions can be writ-
tenas[17]

Qn|S = r]S(Te_TO)|Si (3)

where Q, is the electron normal component of the heat
flux at the surface of the sample and parameter n, rep-
resents the inelastic scattering of electrons at the
boundaries (surface heat conductivity), with n, =0 cor-
responding to the absence of surface mechanisms,
that is,

Qal,_p, =0 (4)

in our geometry, and with infinite n, corresponding to a
good thermal conductivity across the surface. We con-
sider this latter boundary condition for the electron
temperature at the contacts; i.e.,

Te| = TO' (5)

x=0,a

Under the above assumptions, we see from the expres-
sions for j and Q given in [18] that the potential and the

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

279

temperature digtributions satisfy the following equations
at the surface of the sample, wherej - o p, = Q,,=0,=0

%+q+1ﬂe+r(2q+5l2)
0z e 0z T(q+5/2)

x ((*)HTO)%E + Z—q‘eil%%a =0,
z=0,b (6)

0¢ , q+20T. T(2q+7/2)

0z e 0z T(q+7/2)

T
X ((-“)HTO)BN) + e Z(Laa =0,
z=0,b

[Bx e O0X

with " (x) being the gamma function.

Assuming the difference in potential at the contacts
to be small, which means restricting ourselves to the
transport effects that are linear in the electric field, we
seefrom [14, 19] that in the theory of galvanomagnetic
phenomena with the electron temperature distribution
taken into account, the x component of the current den-
Sity isgiven by

0¢ (q+1)0,0T,

Ix = =005y e  ox

+0o(WyHTp)

. [(2q+5/2)ra¢ , (29+1)0T.
F(q+5/2)[az+ e 02} "

oM (3q+5/2)ra9 , (3q+1)0Te
* 0o(OTe) F g 5 572) [6z+ e az}’

where

_ 4r(q+5/2)ne’T
3m m’

The first term in Eq. (7) corresponds to the usual cur-
rent; the second term corresponds to the thermoel ectric
current; the third term corresponds to the Hall effect
and the transverse Nernst-Ettingshausen effect. Thelast
term in Eq. (7) describes the longitudinal Nernst—
Ettingshausen effect.

0o

3. ASYMPTOTIC APPROXIMATION
FOR MAGNETORESISTANCE

For small magnetic fields such that (w,Ty)? < 1, we
naturally seek solutions of Egs. (1) in the form

0% 2 = do(X, 2) + §1(X 2 (0, To)

+0,(% 2 (Wi To) + ...,

- _ (8)
(X2 = To+ Ti(X, (WyTy)

+ To(X D(WLTo)* + ...
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To caculate the terms ¢;(x, 2) and T;(x, 2), we pro-
pose a new nonstandard perturbation theory with
respect to the small magnetic field. This theory is uni-
form with respect to the small parameter b/a. Inserting
Egs. (8) in Eq. (7), we can write the x component of the
current dengity to the second order of the magneticfield as

X% 2) = jo(x, 2) + ju(x 2 (0yTo)

+ 26 D(0uTe) + .o, ©)
where
s = _0"%@6(1;1 - 1aaTxl%rr((2qq++55//22)) (10)
e =

[0¢,
8 DDOZ * e

2q+10T,0 T(3q+5/2)0¢,L

6zD r(g+5/2) oxg

The average value of the current density over the semi-
conductor cross section that is significant for the mag-
netoresistance is given by

b

i = % [1x 2z (11)

Because divj =0, j is x-independent.
It is clear from the above that a detailed analysis of

j isavery complicated problem. Aswe seein what fol-
lows, however, an analytical expression for the average
current density can be obtained in the limit where
b/a < 1. Thiscondition allows usto study galvanomag-
netic effects in semiconductors; depending on the
results, we can decide whether it is possible to talk
about the effects of the finite dimension of the sample
on the magnetoresi stance.

We now restrict ourselves to thin-film semiconduc-
tors with a > b. Because the cooling length is of the
order 1 um, we can use therelation

as> k4, b. (12)

Alternatively, if the geometry of the sampleis such that
a < b, the distribution of the current density j, corre-

sponds to the closed Hall contacts [19].

We introduce the average potential at the contacts
x=0andx=aas

b b
% [0°@dz §° = % [0'@e (9
0 0
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Note that, if the distribution of the potential is constant
at the contacts of the sample, we have $%(2) = q5° and

$2(2) = $°, otherwise it depends on the z-coordinate.

For a constant potential at the contacts and in the
presence of a weak magnetic field, the magnetoresis-
tance can be defined as

- (i—ioa _
(3 -°)0o
In the case where °(2) = $° and ¢3(2) = $°, the mag-
netoresistance is given by
5= [8-2(K+F(O) [(@10” (19

(the proof of this formulais given in Section 6). It fol-
lows that

_ [(5/2+q)I (5/2+3q) —T(5/2 + 2q)
r%(5/2 +q)

2
q 2
“(2q+5/2)
__52+g tanh[ (q + 2)2kb/2]

a+2)"r*(q+5/2)

is the magnetoresistance for samples such that the
dimension along the x direction is infinite (a — o)
and the transverse dimension b is finite. The formulas
for coefficient K and function F(kb) have not been
known previously. We obtain that

_r*(2q+5/2)16 15
F(q+5/2)nz(2I+1) 15
_8q° I*(2q+5/2)
F(kb) =
(kb) a+5/2 r?(q+5/2)
(16)

x 3 [1(21+ 1)+ (k)*(q+ 2]

It follows from Eqgs. (14)—(16) that, when the distri-
bution of the potential is uniform at the contacts, the
correction term to the magnetoresistance depends on
the ratio b/a < 1 linearly rather than exponentially via
exp(—a/b), asis assumed in the standard theory of gal-
vanomagnetic effects in semiconductors. On the other
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hand, if the electric potential is inhomogeneous at the
contacts, the magnetoresistance is given by

b
4 0 0 a 0 a
= ———[ 2-0°2-% -
nb(qsa—qs)g![q)() °@-9 -97]
17)
D’(2q+5/2)( )
s

o cos[(2! + 1)Tz/b]
> 21+ 1 dz

1=0

(the proof of thisformulais given in Section 5). In this
case, the magnetoresistance depends on the magnetic
field linearly rather than quadratically as in the usual
theory of galvanomagnetic effects in semiconductors.
In addition, it changes sign when the magnetic field is
reversed. Thus, the resistance in the sample decreases
with the magnetic field before reversing its sign. We
note that the sign in Eq. (17) strongly depends on the
potential distribution at the contacts and is independent
of the length a of the sample in the first approximation
with respect to the magnetic field. Size effects on the
magnetoresistance occur in the second-order approxi-
mation with respect to B. For example, if $°(2) + ¢3(2) —

$° — §° = C(z—b/2), it follows from Eq. (17) that

_ _8CwyTo M(29+5/2) -3
0 (%2 -¢°) M(a+5/2) Z(2|+1)

We note that Eq. (14) gives the magnetoresistance

with the precision [(wyTo)® + €™ (wy,10)?], and
Eg. (17), with the precision (wyT,)?. Therefore, Eq. (14)
gives the correct resultsin case where (wyT,
1 and b/a < e™@2); this does not necessarily imply the
congraint b/a << 1. Equation (17) isapplicablein the cases
where (b T) <€ 1 and (wyTy) << |d} We see that for the
potentia that is homogeneous at the contacts, we have
0, = O for the degenerate electron gas, that is, for g = 0.
This implies that the standard mechanisms of creating
magnetoresistance do not work and the magnetoresis-
tance is the result only of the mechanism proposed in
this paper. However, if the linear part of magnetoresis-
tance in the magnetic field does not vanish, it does not
vanish for all values of g. This meansthat inhomogene-
ity of the potential at the contact planeis anew mecha-
nism of creating magnetoresistance. The linear depen-
dence coefficient in Eq. (17) isaproduct of two factors.
The first factor depends only on the potential distribu-
tions at the contact planes. The second factor results
from the Ettingshausen effect and isindependent of the
potential distribution. It followsfrom Eqg. (17) that if we
know the potential distributions at the contacts, we can
calculate the parameter g of the relaxation mechanism
using the magnetoresistance.
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It isworth mentioning that if the magnetoresistance
is calculated in all orders in the magnetic field, the
potential distribution at the contacts can be evaluated
explicitly. The solution in the form of a Taylor expan-
sion has been exactly obtained only for the degenerate
electron gas (metals) [ 15, 20]. Thus, experimental mea-
surements of magnetoresistance allow one to shed
some light on the distribution of the potential at the
contacts.

4. MAGNETORESISTANCE CALCULATION
FOR RECTANGULAR SAMPLES

We now proceed to describe a method of solving the
problem concerning the two-dimensiona potential and
electron temperature distribution for magnetoresis-
tance in the presence of a weak magnetic field. The
geometry considered is again that of a rectangular
semiconductor. We introduce anew function ® depend-
ing on the potential and the electron temperature distri-
bution such that current J, is expressed through this

function up to the order (wyTy)? (see Eq. (7)) as

® = ¢+q”1 o T=T=T, (18)
and the dimensionless variablesx' = x/b and Z = zZ/b are
suchthat 0< x' <B*tand0< Z <1, where 3 = b/a. With
these new functions, Eq. (1) can be written as (we omit
the prime on the variables)

O0°® =0, D°T—(q+2)(kb)’T =0 (19
and the boundary conditionsin Egs. (4)—6) become

= O,

= ¢+ To:

q)|x:[3*1,o |X=O,B’1

0P
9z

T
37 + X (wyt 0)

= 0,

z=0,1

OCD
+a(WyT o) O(q((*)H o)

(20)
+ V((*)Hro)aq)

z=0,1
I(2g+5/2)
r(q+5/2)’
(2q+5/2) T(29+5/2)
r(g+5/2) r(q+5/2)°

r(2q+7/2) I(2q+5/2)
Y= e[r(q+7/2) F(q+5/2)}

a =

X =(q+1) (21)

In most of the theoretical works related to galvanomag-
netic effects in bulk semiconductors, solutions of Egs.
(19) are represented as infinite series in wyT, for weak
magnetic fields; to obtain approximations for the coef-
ficients ®, and T, of theordersk =0, 1, .... the authors
neglect the terms (wyT)0P/ox and (wWLTy)0T/OX in
boundary conditions (20). However, the exact solutions
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for the degenerate electron gas [15] demonstrate that
thisseriesdivergesfor large samples, i.e., for a> b. For

this reason, we now seek solutions of Egs. (19) in the
form

D = DX, Z, Wy To) + Py(X, Z WLTe) (WL To)"

0)2 + O(((;,)HTO)3),

T=Tyxz ('OHTO)((*)HTO)l

+ d,(X, Z, Wy To) (WyT (22)

+ (X, 2, Wy To) (WHTp)” + O((0To)°).

Functions @, and T; withj = 0, 1, ... satisfy Egs. (19).
The boundary conditions for @, and T, in the planes
x =0, B arethe same asfor functions ® and T, and we
have (D,—|X_ e 0, Tj|x— - Oforj = 1. Thebound-

ary conditions for ®;(x, z, wyTy) and T;(X, Z, wyTp) ONn
the planes z= 1, 0 were obtained from boundary condi-
tions (20) using perturbation theory with one exception.
For ®;, we keep the term (0,T0)0®P;/dx in boundary con-
dition (20) and omit the term (1) T;/0x. For Tj, on the
contrary, we keep the term (wyTo)0T;/0x in boundary
condition (20) and omit the term (wyTo)0®;/0x. The
terms dT; _,/0x and 0, _,/0x enter the boundary condi-
tions for the respective functions T; and ®; and make
them heterogeneous. We then see that the zero-order
term T, satisfies Eq. (19) and zero boundary conditions
intheplanesx=0, 3; z=0, 1. Therefore, T, =0, which
is why we started with the term T, in Eq. (22). Func-
tions ®; and T; are analytica in wyT, and can also be
expressed in terms of the natural low-field expansion
for w1, < 1. Within this approximation, we can obtain
the solution of Eg. (19) and, thus, the magnetoresis-
tance. The equations and boundary conditions for the
coefficients of Eq. (22) are formulated in what follows.
Since the average current in Egs. (7), (9), and (10)
depends on @, ®,, ®,, and T, and isindependent of T,
with the accuracy up to the (wyT)3 terms, it is not nec-
essary to calculate it. We then consider the boundary
problems for @, ®,, ®,, and T;. Similarly to the
above, we obtain the following boundary problem for
®yand T:

q+1

O®, =0, & _, = 0°(2) + To,

¢o|

= 0+
CLPINL

AW, T
0z H 0 5%

To, (23)

= O,

z=0,1
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~(@+2(kb)'T, =0, Ty =0
oT, 0T, 0%, (24)

Bz KTy TV Bk

z=0,1

With T, = 0, function @, satisfies Eqg. (19) with zero
boundary conditions, and hence, @, = 0. Function @,
satisfies the boundary problem

0°®, = 0, ® =0,
. 25)
0: 0200 ‘

. aanl
oz | d@nlogy

e 0X|,_q,

= 0.

5. THE WEAK-FIELD @4 SOLUTION

To derive the first term of the expansion of (23) for
a weak magnetic field, we represent solution ®, with

the precision O(e™®) as the sum of a regular and a
boundary layer function

By = Dpeg + Mo+, + O(€™ ), (26)
where
Dy = Cp + (X —0WL{TE2)Cy (27

satisfies the boundary condition

0D, . awHToacDreg -0
0z 0X |,.014
and I, (withi =0, 1) are two boundary layer functions
that are exact solutions of the problem
- or,
0’0, = 0 and Q—n—'+aooHr0 =0
0z 0X |, 1

such that M, and IM; exponentially decrease asx — o
and x — —oo, respectively. Separating the variables,
we can write solutions for the last equations as

My = /2 Z A,(cOSTINZ + AWy ToSinTNZ)e ™
n=1

My = ﬁz B,,(COSTINZ— 0 W, T,SINTINZ) €
n=1

(28)
(B -

Asnoted above, the boundary layer functions 1, and IT;
correspond to the vortex current, and, therefore, do not
contribute to the magnetoresistance. Now we will dem-
onstrate this. Note that the average current (11) is
x-independent. Therefore, we can calculate it at the
point x = 37Y/2. However, the exponentials in the bound-
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ary layer functions (28) arelessthan or equal to e ™R at
that point. We also have

b
Icos(nnz)dz =0, n=12....
0

Hence, the boundary layer contributions to average cur-
rent (7) and to the magnetoresistance have the order
wWyToe 2R, We can refine this estimate and demonstrate
that this contribution is smaller and has the order
(wyTo)%e ™28, Indeed, it follows from (7) that the contri-
bution of M, (withi = 0, 1) to the average current with
the precision w,1,e™?? is equal to the integral

b
0 9 9 q
GOIE_O_)(Hi(X’ 2+ GOOHToa_Zni(Xv 2) Edz|x= 1/2p°
0

Thisis easy to verify for the functions

+7x/ b TNz . TINZM
(S} %OS— F Ayt SnN—
b H'0 b I

inview of the expansions (28) for I1;, the aboveintegral
iszerofor al x. The boundary layer contributionsto the
average current and the magnetoresistance is therefore
of the order (wyTy)%e™?®. Inserting Eqgs. (26)—(28) in
boundary conditions (23) and neglecting terms of the
order exp(—131), we obtain

00

J2 z A,(cosTinz + a wyT,SiNTNZ)

n=1

= 0°(2) + awyTo2C;y — Co,
- . (29)
J2 Z B,,(cOSTINZ + 0 W, T,SINTINZ)

= 0% - (B~ —awy1,2)C, - C.

Equation (29) can be solved using the expansion in
Wy Tp << 1. A solutionin the zero- and first-order approx-
imation for A, and B, exists only if both C, and C,,
which depend on wyT,, satisfy special conditions with
respect to the potential distribution at the contacts. We,
thus, assume that

A, = A+ AlwyTo+...; B, = BO+BlwyTo+ ...

1 1
Co = Co+ CoyTo+...; Cp = CI+ClwyTo+ ... .
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Inserting these seriesin Eq. (29) and keeping the terms
of the zero order in w1, We obtain

J2 > Alcostinz = ¢°(2) - CY;
n=1

J2 > Blcostinz = ¢'(2) — (C+B'CY).

It is well known that the system of functions 1,

J2cosmz n=1,2, ... is complete and orthogonal on
the segment [0, 1]. Therefore, every function that is
orthogonal to the constant on [0, 1] can be uniquely
expanded into a Fourier series with respect to the

functions ﬁ costnz, n=1, 2, ... . Hence, to solve the

above system for A and BY, it is necessary and suffi-
cient that

1
d=p%m=ﬁ
0

B7CI+Co = [¢°(Ddz = §°
0
Thatis, CJ = $° and C = B($* — §°), and therefore,

A = ﬁI(¢°(z) —$%) cos(minz)dz;
L (30)
BY = I(¢a(z) — %) cos(Tinz)dz.
0

Keeping the first-order termsin the magnetic field wyT,
in Eg. (28), we then obtain the equations for coeffi-

cients Al and B!,
J2 Z Alcostinz = —./2a Z Alsintinz— Cg + azC?,
n=1 n=1

J2 Z Blcosminz (31)
n=1

= .J2a Z Bisintinz + azCl— (Cg+ B'Cy).

n=1

It follows that system (31) has a solution if and only if
the average of its right-hand side on [0, 1] is equal to

zero. These conditionsgive Cg, C; and AL, B.Ascan
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be seen from Egs. (9)—(11), the magnetoresistance
depends only on parameter C, given by

C, = Ch+ Clowy Ty + Ci(awyTo)” + O((awyTo)°).
where

= B($°-9"),

1

= B[ 0°@ +0°@ -5 -6" 1,(29(d2),
0

cos[(2m + 1)1Z]
(@ = nz 2m+1)m

1

1,(2) = 22 cosnan’sin(nnE)Il(E)dE,
n=1 0

(32)

Ci= —Bj{¢°(z)—¢a(z)—¢°—qsa}Iz(z)dz

16[3

z (2m+ 1)
Using Egs. (26)—(28) and recalling Egs. (32), we

now write the solution as a power series expansion
inwit, <1 i.e,

D, = DI+ DrawyT,

(33
+ P5(awyTo)” + O((awyTo)),
with
@ = L7049+ (6" - 9%)x+ MY+ MY, (39

where Mg and M arethe zero-order approximationsin
Wy T, of the respective functions M, and I, given by
Egs. (28) and

®p = [Cix+B(@°—$°)(z—1/2)]

L (3)
+ My + M5 + cte,

where Mg and M} arethefirst-order approximations of
My and M. The corresponding solutions are not given
here because the magnetoresistance equations do not
depend on them. Finally, the coefficient in the second-
order approximation of ®,in the magnetic field iswrit-
ten as

®; = C3(x—z+1/2) + N2+ M2 +cte,
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where M3 and M2 represent the second-order approxi-
mations of the functions in Egs. (28) in the magnetic
field; in this case, the magnetoresistance is aso inde-
pendent of them. Using all these approximations in
Egs. (10), we obtain the magnetoresistance given by
Eq. (17), which depends linearly on the magnetic field
as a consequence of the z-dependence of the potential
a the contacts. It is important to note that, when the
potential distribution at the contactsis constant, thelin-
ear term vanishes. In this case, the second-order contri-
bution in the magnetic field must be considered in &
(see Eq. (14))

6. MAGNETORESISTANCE
AND THE HOMOGENEOUS POTENTIAL
DISTRIBUTION AT THE CONTACTS

Proceeding to the calculation of the coefficient T, (X,
Z, WyT,), We begin with the explicit equations that deter-
mine this quantity in the approximation of a constant

potential at the contacts, i.e., for ¢%(2) = ¢° and

$2(2) = $*. As can be seen, Egs. (24) depend on the
magnetic field, and hence, T,(X, z, wTp) isaso afunction
of this parameter. It follows from Egs. (10) that the mag-
netoresistance depends only on T;(X, z 0), which implies
that it is only necessary to consider T,(X, z, wyTg) in the
zero-order approximation in the magnetic field in
Egs. (25) and (10). With these approximations, we
write the zero-order term of the potential CDS instead of
@, in Egs. (24). We can then write T;(X, z, wyTy) as a
regular term and two boundary layer terms similar to
@, in Eg. (26). In this specific case, it is possible to
obtain the exact expression for T,(X, z, wyTy) if theterm
XwyT0T,/0X istaken into account in the boundary con-
ditions. We can then express T,(X, z, wyTp) asaseriesin

W4T < 1; however, the only significant termis T(l) (the
zero-order approximation) that is given by

By(i]i —$% sinh[kb./q + 2(z—1/2)]

kb./q+2 cosh[ékbA/q + 2}
w (36)
+ Z AscosTinZ] exp{ —Jren® + k’b*(q+ 2)x}
+ exp{—10n + K’b*(q+2) (B =)} ],
where
O 2By -9") . -
2:%[2 +kb(q+2) if n=2m+1,
Ep if n=2m,
m=123,.
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We now derive the second-order approximation in
the magnetic field for ®,, see Egs. (25). We set @, =
Y, + Y, where function W, satisfies the heterogeneous
boundary conditions

o, o,
Bz T 9WTogy

and Ay, = 0. It istherefore equal to

_aqgdTy
e 0x|,_

awy
0,1

W, = Y [ep{—/1n’ +K'b’(a +2)x}

—exp{ T’ + K’b’(q + 2) (B - )} ] @
x (Disin{[1®n’ + Kb%(q+ 2)]°2

+ DZcos{ [1Pn? + K2b(q+ 2)] %2} ),
where

N

By ($°-5")

> if n=2m+1,
n“+k'b(q+2)

=

m=123...,

pil* cos[1Pn? + k?b%(q + 2)]"*
sn[ren® + K2b%(q + 2)]"°

if n=2m+1,

O if n =2m,

1,2,3....

m =

For ;, we obtain

qu—'l =0, LIJl| .= _'~|J2| o
x=0,B x=0,B

oy, oy,

Bz T XOnTogy -

(38)
= 0.

0,1

The latter system of equations can be solved in the zero-
order approximation in the magnetic field smilarly to
what was done in Section 5. The solution for @, in the
zero-order approximation in the magnetic field isthen

o) = 82N X5 ¢°)
X0 [1P(21+ 17 + Kb(q+ 2] >
% 0

+M5+ N+ cte,
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where functions MY and M? are the decreasing expo-
nential functions of the distance ~1 from the contacts at
x=0andx= 31> 1. Itisimportant to note that the sum

|‘|8 + I'I(l’ + cte gives a negligible contribution to the

magnetoresistance of the order e™(w,1,)2. However,
these functions must be considered, otherwise the reg-

ular function in ® cannot be calculated. Inserting ®5
into Eq. (10) and taking Egs. (21) for a and y into
account, we obtain expression (16).

7. CONCLUSIONS

We have shown that, when the electric potential is
inhomogeneous at the contacts, the magnetoresistance
exhibits a linear dependence on the magnetic field and
it is also possible to mathematically derive the electric
potential distribution on the contacts from the experi-
mental measurements of the magnetoresistance. The
magnetoresistance changes its sign when the magnetic
field is reversed; i.e., the resistance in the sample
decreases with the magnetic field before it changes
its direction. It is important to note that the sign in
Eqg. (17) strongly depends on the potential distribu-
tion at the contacts and is independent of the length
of the sample in the first-order approximation in the
magnetic field.

We emphasi ze that the correct evaluation of the cur-
rent contacts for the constant potentials at the contacts
leads to the effects of the order b/a but not to the expo-
nential terms e™ as was expected from the traditional
theory of magnetoresi stance.

Finaly, it is worth mentioning that the solution of
the problemsin Egs. (19) and (20) studied in this paper
gives afinite total energy for the system under consid-
eration. These problems can also have a nonphysical
solution with an infinite total energy.

This work is partially supported by CONACYT,
IPN, and CINVESTAV.
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Abstract—A model of astrongly correlated electron liquid based on fermion condensation (FC) is extended to
high-temperature superconductors. Within our model, the appearance of FC presents a boundary separating the
region of astrongly interacting electron liquid from the region of astrongly correlated el ectron liquid. We study
the superconductivity of a strongly correlated liquid and show that, under certain conditions, the superconduc-
tivity vanishes at temperatures T > T, = T, oqe, With the superconducting gap being smoothly transformed into a
pseudogap. As aresult, the pseudogap occupies only a part of the Fermi surface. The gapped area shrinks with
increasing the temperature and vanishesat T = T*. The single-particle excitation width is also studied. The qua-
siparticle dispersion in systems with FC can be represented by two straight lines, characterized by the effective

masses Mg and MY, intersecting near the binding energy that is on the order of the superconducting gap. It

is argued that this strong change of the quasiparticle dispersion upon binding can be enhanced in underdoped
samples because of strengthening the FC influence. The FC phase transition in the presence of the supercon-
ductivity is examined, and it is shown that this phase transition can be considered as driven by the kinetic

energy. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The unusual properties of the normal state of high-
temperature superconductors have been attracting
attention for along time. In describing these properties,
which are well beyond the standard Fermi liquid the-
ory, the notion of a strongly correlated liquid has
emerged (see, eg., [1, 2]). Later on, angle-resolved
photoemission studies revealed unusua properties
observed in underdoped samples, with the leading edge
gap discovered up to the temperature T* > T.. This
behavior is interpreted as coming from the pseudogap
formation; it was observed in a number of underdoped
compounds such as YBa,Cu;0Og, 4, Bi,Sr,CaCu,Og ., 5,
etc. As T increases above T*, the pseudogap closes,
leading to a large Fermi surface and an extremely flat
dispersion in electronic spectra, which is called the
extended Van Hove singularity [3—7]. A break in the
guasiparticle dispersion observed near 50 meV results
in adrastic change in the quasiparticle velocity [8-10].
This behavior is definitely different from what one
would expect from anormal Fermi liquid.

A correlated liquid can be described in conventional
terms, assuming that the correlated regime is related
with the noninteracting Fermi gas by adiabatic continu-
ity. Thisisdonein thewell-known Landau theory of the
normal Fermi liquid, but the question arising at this

TThis article was submitted by the authors in English.

pointiswhether thisis possible. Most likely, the answer
is negative. To tackle the above-mentioned problems,
we consider amodel where a strongly correlated liquid
is separated from the conventional Fermi liquid by a
phase transition related to the onset of FC[11, 12]. The
purpose of our paper is to show that, without any
adjustable parameters, a number of fundamental prob-
lems of strongly correlated systems are naturaly
explained within the model. The paper is organized as
follows. In Section 2, we consider the general features
of Fermi systems with FC. In Section 3, we show that
the pseudogap behavior can be understood within the
standard BCS superconductivity mechanism provided
the appearance of FC is taken into account. In Section
4, we analyze the condensation energy that is liberated
when the system in question undergoes the supercon-
ducting phase transition superimposing on the FC
phasetransition. In Section 5, we describe the quasi par-
ticledispersion and line shape. Finally, in Section 6, we
summarize our main results.

2. THE MAIN FEATURES
OF LIQUIDS WITH FC

We first consider the key points of FC theory. FC is
related to a new class of solutions of the Fermi liquid
theory equation [13]

1063-7761/01/9202-0287$21.00 © 2001 MAIK “Nauka/Interperiodica’
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O(F-uN) _
3n(p. T) = g(p, T)—(T) "
1- n(p T) _
~TIn ) =0

for the quasiparticle distribution function n(p, T)
depending on momentum p and temperature T. Here F
is the free energy,  is the chemical potential, and
e(p, T) = dE/dNn(p, T) isthe quasiparticle energy, which
isafunctional of n(p, T) just like energy E and the other
thermodynamic functions. Equation (1) is usually rep-
resented as the Fermi—Dirac distribution

n(p.T) = e epERID=WIE g
0 O

In ahomogeneous matter and at T = 0, one obtainsfrom
Eq. (2) the standard solution ne(p, T = 0) = 8(p: — p),

with &(p = pe) — 1 = pe(p — pe)/ M{ , where pe is the
Fermi momentum and M7 isthe commonly used effec-
tive mass [13],

1 _1de(p,T=0)
Mf  p dp

It is assumed to be positive and finite at the Fermi
momentum pe This implies the T-dependent correc-

tions to M, the quasiparticle energy €(p), and the
other quantities start with T?-terms.

However, this solution of Eqg. (1) is not the only one
possible. There exist “anomaous’ solutions of Eq. (1)
associated with so-called fermion condensation [11, 14,
15]. Being continuous and satisfying the inequality
0 < n(p) < 1 within some region in p, such a solution
n(p) admits afinite limit for the logarithm in Eq. (1) as
T— 0, yielding

SE[n(p)]
on(p)

Equation (4) is used in searching for the minimum
value of E asafunctional of n(p) under the assumption
that a strong rearrangement of the single-particle spec-
trum can occur. We see from Eq. (4) that the occupation
numbers n(p) become variational parameters. the
solution n(p) exists if energy E is decreased by alter-
ation of the occupation numbers. Thus, within the
region p; < p < py, the solution n(p) deviates from the
Fermi step function ne(p) such that the energy €(p, T)
stays constant, while n(p) coincides with ng(p) outside
this region. As a result, the standard Kohn-Sham
scheme for single-particle equations is no longer valid
beyond the FC phase transition point [16].

Thisbehavior of systemswith FCisclearly different
from what one expects from the well known local den-
sity calculations; therefore, these calculations are not
applicable to systems with FC. On the other hand, the

©)

P=Pe

&(p) = =W, PSPsp: (4)
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guasiparticle formalism is applicable to this problem,
because as we see in what follows, the damping of sin-
gle-particle excitations is not large compared to their
energy [15]. It is also seen from Eqg. (4) that a system
with FC has awell-defined Fermi surface.

It follows from Eq. (1) that at low T, new solutions
within the interval occupied by the fermion condensate
have the spectrum g(p, T) that islinear in T [15, 17],

e(p, ) (T = =P 5
FC

=T[1-2n(p)] < T;.

Here, T; is the quasi-FC phase transition temperature
above which FC effects become insignificant [15],

pf p| Qpc

2Me; = Q' ©)
where M is the bare electron mass, Q is the conden-
sate volume, € is the Fermi energy, and Qg is the vol-
ume of the Fermi sphere. One can imagine that the dis-
persionless plateau €(p) = W given by Eq. (4) isdightly
tilted counter-clockwise about 1 and rounded off at the
end points. If T < T, it follows from Egs. (1) and (5)

that the effective mass Mg related to FC is tempera-
ture dependent,

D

N(@©O) Tf
No©) T @)

where Ny(0) is the densty of states of the noninteract-
ing electron gas, and N(0) is the density of states at the
Fermi level. We note that, outside the FC region, the
single-particle spectrum is not distinctly affected by
temperature, being determined by the effective mass

M} given by Eq. (3), which isnow evaluated at p < p..
Thus, we are led to the conclusion that systems with an
FC must be characterized by two effective masses:

M. related to the single-particle spectrum of a low-

energy scaleandM] related to the spectrum of ahigher

energy scale. The existence of these two effective
masses can be observed asabreak in the quasiparticledis-
persion. This break is observed at temperatures T < T,
and also when the superconducting state is superim-
posed on the FC state. In the former case, the occupa
tion numbers over the area occupied by the fermion
condensate are dightly disturbed by the pairing corre-

lations such that the effective mass Mg becomeslarge

but finite. We remark that at comparatively low temper-
atures, FC and superconductivity go together because
of the remarkable peculiarities of the FC phase tran-
sition. Thistransition isrelated to a spontaneous gauge
symmetry breaking: the superconductivity order
parameter

K(p) = ~n(p)[1-n(p)]
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has anonzero value over the region occupied by thefer-
mion condensate, while gap A can vanish [15, 16].

Itisseenfrom Eq. (4) that at the FC phase transition
point, p; —»= p; — PR While the effective mass and the
density of statestend to infinity asfollowsfrom Egs. (4)
and (7). One can conclude that the beginning of the FC
phase transition is related to the absolute growth of

MEc . The onset of the charge density wave instability

in an electron system, which occurs as soon as the
effective electron—electron interaction constant rg
reaches its critical value r,, must be preceded by the
unbounded growth of the effective mass [18]. For a
simple electron liquid, the effective constant is propor-
tional to the dimensionless average distance rg ~ ro/ag
between particles of the system in question, with r,
being the average distance and ag the Bohr radius. The
physical reason for this growth isthe contribution of the
virtual charge density fluctuationsto the effective mass.
The excitation energy of these fluctuations becomes very
smal if rg = rg,. Thus, an FC can occur when rg ~ ry,,.
The standard Fermi liquid behavior can therefore be
broken by strong charge fluctuations when the insulator
regimeisapproached in acontinuous fashion. Werecall
that the charge density wave instability occursin three-
dimensional [19] and two-dimensional (2D) electron
liquids [20] at a sufficiently high rg. As soon as rg
reachesitscritical value rgc <r,, the FC phasetransi-
tion occurs. Thereafter, the condensate volume is pro-
portional tor,—rrcand also T;/e ~rg—rec [15, 18]. In
fact, the effective coupling constant r, increases with
decreasing doping. It is assumed that both T; and con-
densate volume Q¢ build up with decreasing doping.
The FC then serves as a stimulating source of new
phase transitions lifting the degeneracy of the spec-
trum. FC can produce, for instance, the spin density
wave (SDW) phase transition or the antiferromagnetic
one, thereby promoting a variety of the system proper-
ties. We note that the SDW phase transition, the antifer-
romagnetic transition, and the charge density one also
depend on rg and occur at asufficiently large value of rg
even if FC isabsent. The superconducting phase transi-
tionisalso aided by FC. We analyze the situation where
the superconductivity wins the competition with the
other phase transitions up to a temperature T.. Above
the temperature T* < T;, the system under consider-
ationisinitsanomaousnorma state, Eq. (7) isvdid, and
one can observe smooth nondispersive segments of the
spectra at the Fermi surface [6].

3. SUPERCONDUCTIVITY
IN THE PRESENCE OF FC

We focus our attention on investigating the
pseudogap that is formed above T, in underdoped (UD)
high-temperature superconductors [4-8]. As we see in
what follows, the existence of the pseudogap is closely
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allied with the presence of FC characterized by a suffi-
ciently high temperature T, given by Eq. (6). Thus, the
pseudogap is peculiar to UD samples, while optimally
doped (OP) and overdoped (OD) samples may not
exhibit this feature. We consider a 2D liquid on asim-
ple square lattice that has a superconducting state with
a d-wave symmetry of the order parameter k. We
assumethat the long-range component V,,(q) of the par-
ticle-particle interaction V,,(q) is repulsive and has
radius g, in the momentum space such that p:/q, < 1. The
short-range component Vg (q) is relatively large and
attractive, withitsradius p:/qy > 1. In agreement with
the d-symmetry requirements, the low temperature, gap
A isthen given by the expression [21-23]

A@) = 2KE(@Q) =D, 008(29) = Ay (X —y?),

where E(g) = Je*(¢) + A*(@) and A, is the maximal
gap. At finite temperatures, the equation for the gap can
be written as

Alp, @) = - I f Voo(P: @, P1, @)K(P1, @1)

(8)
E(p., @) pdp,de,
2T art

where p isthe absolute value of the momentum and @is
the angle. It isalso assumed that FC arises near the Van
Hove singularities, leading to alarge density of statesat
these points in accordance with Eg. (7). We note that
the different FC areas overlap only dlightly [17]. A(g)
obeys the following equation that is determined by the
chosen interaction V,

x tanh

AE’.ZT+ o = _AE"ZT_ (9)

It vanishes at 174 and can therefore be expanded in the
Taylor series around 174, with p = pg:

A(p,8) = Ba—0%b+ ..., (10)

where 6 = @ — 174. Hereafter. we consider solutions of
Eqg. (8) ontheinterval 0 < 6 < 174. We transform Eq. (8)
by setting p = pr and separating the contribution 1,
coming from V., with the contribution related to Vg
denoted by I. At small angles, I,, can be approximated
in accordance with (10) by I, = 6A + 6°B, with param-
eters A and B independent of Tif T< T* < T;, because
they are defined by the integral over the regions occu-
pied by FC. This theoretical observation is consistent
with the experimental results showing that A, is essen-
tially T-independent at the temperatures T < T* [6]. The
coefficients of the expansion of |, in powers of 6
depend on T. It is therefore more convenient to use the
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Fig. 1. Gap A asafunction of ¢ calculated at three different
temperatures expressed in terms of Tpoge = T, While A is
presented in terms of T*. Curve 1, solid line, shows the gap
calculated at temperature 0.9T,qge. N curve 2, dashed line,
the gap is given at T,oqe- Note the important difference in

curve 2 compared with curve 1 due to a flattening of the
curve 2 over the region Q,,. Calculated A(@) at 1.2T,oqe iS

shown by curve 3, dotted line. The arrows indicate the two
nodes restricting area Qp, and emerged at Tj,oqe-

integral representation for Iy following from Eq. (8).
We, thus, have

2n

A(e) = Isr + IIr = _IIVsr(ef P (pl)K(pll (pl)

0 (11)

E(p., @) p.dp,de,
2T 4TF

In Eqg. (11), variable p was omitted since p = pg. It is
seen from this equation that FC produces the free term
0A + 6°B. Inwhat follows, we show that at T = T, .4, the
solution of EQ. (11) has a second node at 8,(T) in the
vicinity of the first node at 4. We aso demonstrate
that temperature T, has the meaning of temperature
T, a which the superconductivity vanishes. To show
this, we simplify Eg. (11) to an algebraic equation. We
havelg ~ (Vy/T)0 because tanh(E/2T) =E/2TforE<T
and T = T, 8Sisthe case in the vicinity of the gap
node at 6 = 0. The integration in Eq. (11) runs over a
small arealocated at the gap node because of the small
radius of V. Dividing both parts of Eq. (11) by k(8),
we obtain

+0A+ 6°B.

x tanh

E(0) = Vo —A,—-6°B,H8, (12)

g
where A, and B, are new constants and V, ~ V4 (0) isa
constant. Imposing the condition that Eq. (8) only has
the solution A =0 when Vg = 0, we seethat A, is nega-
tive and B, is positive. The factor in the brackets on the
right-hand side of Eq. (12) changes its sign at some
temperature T4 = Vo/A1; On the other hand, the excita-
tion energy must be E(6) > 0. Therefore, we have two
possibilities [24, 25]. The first follows from the
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assumption that A(B) =0 if © belongsto theinterval Q,,
[0< B <86].Inthiscase for T > T, .4 We must solve
Eqg. (8) with the condition

AB)=0, 0<0<8,, T, ,e<T.

This resembles Eg. (4) with the parameter y being
equal to zero. The similarity is not coincidental, be
cause we are searching for new solutions in both cases.
Such solutions do exist because the points 8 = 0 and
0 = 6, represent the branching points of the solution.
The second possibility can occur if the above solution
does not lead to a minimum value of the free energy.
Because the excitation energy must be positive for a
stable state, the sign of A must be reversed at the point
0 = 8. Then gap A(B) has the same sign within interval
Q,, and changes its sign once more at the point 6 = 0,
with A(8,) = A(0) = 0. Thuswe conclude that gap A pos-
sesses new nodes at T > T4 [25], See Fig. 1. It can be
seen from Eq. (12) that angle 6. isrelated to T > T, o4 DY

Vo
T=—0
A, + B,6;

It follows from the above consideration and Eq. (12)
that even below T, 4. the order parameter A cannot be
approximated by a simple d-wave form; amore sophis-
ticated expression must be used to fit the flattening of
gap A around the node. The following expression can
be used for this purpose,

A(Q) = A[Bcos(2¢) + (1—B)cos(6¢)]. (14)

Here 0 < B < 1 in accordance with the experimental
results [7] and the term involving cos(6¢) is the next
compatible with the d-symmetry of the gap. It aso fol-
lowsfrom Eq. (12) that parameter B isadecreasing func-
tion of thetemperature. At thetemperatures T > T, 4., the
value of 1 - B issufficiently large to produce new nodes
of A given by Eq. (14).

As an example of the solutions of Egs. (8) and (11),
we show, in Fig. 1 gap A(g) calculated at three different
temperatures: 0.9T,oger Troger AN 1.2T, 4. AN important
difference between curves 2 and 1 is the flattening of
curve 2 at the nodeslocalized within region Q,, contain-
ing the interval -8, < 6 < 6. As seen from Fig. 1, the
flattening occurs as aresult of the new nodes restricting
area Q,. It is aso seen from Fig. 1 that gap A is
extremely small over range Q. It was recently shown
in a number of papers (see, e.g., [26, 27]) that there
exists an interplay between the magnetism and the
superconductivity order parameters, leading to the damp-
ing of the magnetism order parameter below T.. Con-
versaly, one can anticipate the damping of the supercon-
ductivity order parameter by magnetism. Thus, we con-
clude that the gap in range Q, can be destroyed by
strong antiferromagnetic correlations (or by spin den-
sity waves) existing in underdoped superconductors
[28, 29]. Itisbelieved that impurities can easily destroy

(13)
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A in the considered area. As aresult, oneis led to the
conclusion that T, = T, .4 With the exact value of T,
defined by the competition between the antiferromag-
netic correl ations (or spin density waves) and the super-
conducting correlations over range Q,..

We now consider the possibility of two quite differ-
ent properties, the superconductivity and static spin
density wave (SDW), coexisting. We start by briefly
outlining the main features of the SDW [30]. A ssimple
example is given by the linear SDW, with the net spin
polarization P(r)

P(r) = Pyecos(Ox),

where O% is the angle between vectors Q and x. For
convenience, the direction of the SDW is taken along
the x-axis, and eisthe unit polarization vector, whichin
general can have any orientation with respect to Q. In
contrast to the superconductivity, the SDW can occupy
only a part of the Fermi sphere with the volume S =
p0@&, where d@is the Fermi surface angle and oK is
the “penetration depth” of the SDW into the Fermi
sphere. At T = 0, the energy gain dW due to the onset of
the SDW is given by

(15

3W = g°N(0)30, (16)
where g isthe SDW gap determined by the formula[30]

PedK 4 0
= ex
9= N0 TP ONO)yde”

wherey, isthe coupling constant. As seen from Eg. (8),
the variation of the gap within some area produces a
variation of the gap over the entire occupied area with
the same order of magnitude. Therefore, the elimina-
tion of A over a segment d@ requires the energy oE; ~
N(0)A?(¢p). We concludethat at T < T, the destruction
of thegap ontheinterval dgeiminates A over theentire
region, because 0E; is comparable with gain 6E due to
the superconducting state. A different situation occurs
at thetemperatures T > T, .4, When A isextremely small
in Q, and the corresponding destruction energy satis-
fies inequality E; < OE. Equations (16) and (17) are
very similar to the corresponding BCS equations and
this similarity also remains at finite temperatures [30].
Thus, gain W and gap g vary with the temperature sim-
ilarly to the superconducting gain 8E and gap A. We
also assume that the SDW transition temperature T, is
sufficiently high, namely, T,, = T.. We then come to the
conclusion that dE; < dW, and region Q,, is therefore
occupied by the SDW at temperatures T = T4, result-
ing in the destruction of the superconductivity [24, 25].
We note that the Fermi surface angle d¢@ must be suffi-
ciently large, because gap g depends exponentially on d¢@
in accordance with Eg. (17). On the other hand, because
we are deding with an SDW, we have 8¢/t~ 10~ [30].
We thus conclude that a strong variation of the super-

(17)
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Fig. 2. Calculated angle 8., pulling apart the two nodes, as
afunction of (T - TY/T..

conductivity characteristics may be observed in the
vicinity of T,oge-

It follows from the above considerations that A(B)
can be destroyed only locally within region Q, because
of different reasons. It also followsthat T, iSthe tem-
perature at which the superconductivity vanishes, that
is, To = Troqe AStothegap at T > T, or more precisely,
the pseudogap, it persists outside the Q, region. In
accordance with [4, 7], we see that the superconducting
gap A(B) smoothly transforms into the pseudogap at
T > T.. We can therefore expect a dramatic reduction in
the difference between the free energy of the normal
and the superconducting state at T = T, (the so-called
condensation energy, which we consider in some detail
in the next section). It can then be concluded that tem-
perature T* has the physical meaning of the BCS tran-
sition temperature between the state with the order param-
eter K # 0 and the normd state. Because T, = V/A;, we

find from Eq. (13) that 6, O /(T —T.)/T.. Thisresult
is in harmony with our calculations of the function
0,([T-T./T,) plotted in Fig. 2. Thus, we conclude

that the pseudogap “dies out” in UD samples as tem-
perature T* is approached. Quite naturally, one has to
recognize that A, must scale with T*.

A few remarksarein order at thispoint. Onthe basis
of the previous consideration, we conclude that the
BCS approach is fruitful in considering OD, OPF, and
UD samples in the weak coupling regime. With more
underdoping, the antiferromagnetic correlations become
stronger, breaking down the gap over range Q,, at lower
temperatures. Thus, one observes the decrease of T, with
the decrease of doping. On the other hand, the conden-
sate volume Qg becomes larger with the decrease of
doping, leading to an increase of gap A; which is pro-
portiona to the volume and interaction V,, [11]. Conse-
quently, temperature T* becomes higher with decreasing
doping. All these results are in agreement with the
experimental findings [4, 7]. A peak was observed at
41 meV = 24 ininelagtic neutron scattering from single
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crystals of the OD, OPR, and UD samplesYBa,Cu;Os . «
and Bi,Sr,CaCu,0Og, 5 at temperatures below T, while
a broad maximum above T, exists in underdoped sam-
plesonly [31, 32]. The explanation of this peak given
in [33] was based on the ideas of BCS theory. From the
above discussion, it appears that the same explanation
holds for the broad maximum in underdoped samples
above T, because the physics of the process is essen-
tially the same.

4. CONDENSATION ENERGY

We now consider the energy gain or condensation
energy E.q liberated when the system in question
undergoes the superconducting phase transition
involved in the FC phase transition. We set T = 0 for
simplicity. Energy E.,4 can be schematically broken
into two parts related to the kinetic and the potential
energy. The condensation energy was considered in
[34], where it was argued that the main contribution to
the condensation energy comes from the kinetic energy,
i.e., the superconducting phase transition of high-tem-
perature superconductors is kinetic-energy driven.
Here, we give a possible interpretation of the situation.
It isknown [35] that in the superconducting phase tran-
sition, the positive contribution comes from the poten-
tial energy, while the gain in the kinetic energy is neg-
aive. In the other words, the superconducting phase
transition is driven by the gain in the potentia energy.
This result is rather obvious because the ground state

energy Eg is given by
Egslk(p)] = E[N(p)] + Ex[k(p)], (18)

with the occupation numbers n(p) determined by

K(p) = ¥n(p)[1—-n(p)] . The second term E.[K(p)] on
the right-hand side of Eq. (18) is defined by the super-
conducting contribution, which in the simplest case is
of theform

[E.K®)] = GafVp(Prs PK(POK(P,) (pln)pz (19)
Thefirst term E[n(p)] can be taken as
2 dp
E[n(p)] = [2=n(p)—>

M ar (20)

1 ld 2
+9 + 3 VP PINEINPY P,

with the second integral playing the role of the
exchange-correlation contribution to the ground state

energy. If the effective mass M given by Eq. (3) is
positive and finite, E[n(p)] reaches its minimum at
n(p) = ne(p) and increases with the deviation of n(p)
from the Fermi distribution, asit occursin the presence
of superconducting correlations. Thus, the standard sit-
uation is that the superconducting phase transition is
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driven by a decrease of the potential energy [35]. The
situation can be different if the system undergoes the
FC phase transition. To see this we temporarily assume
that g, — 0 and rewrite Eq. (20) as

Eln(p)] = js(p)n(p)d—p

4tt
(21)
=3 [V(Ps PPN (pl )p
with the single particle energy
_ OE[n(p)]
e(p) = () (22)

The energy E[n(p)] can be lowered by the ateration of
n(p) if Eq. (4) has solutions. As a result, we can write
the inequality [11]

Econd = EN - EFC

> [1e(p) - h1n(p) 2 (23)

p > O
41

with Ey being the energy of the system in its normal
state, Ex the energy with FC, and the integral taken
over theregion occupied by FC. The chemical potential
I preserves the conservation of the particle number
under the variation dn(p). We assume that the kinetic
energy is given by the first term on the right-hand side
of Eqg.(21). It then follows from Eq. (23) that the
kinetic energy can be lowered, and this lowering is
driven by the FC phase transition. It is instructive to
illustrate this by a simple example. We take V(p,, p,) =

9:3(P1 — P2), then Eqyg given by Eq. (23) becomes
Ecns = [TEoP)ne(p) ~e@I(P] T

g d (29
+ 21 (1n%(p) — n2 _p’
3 RCRIE Ol
with €,(p) being the single particle energy of the normal
ground state. It iseasily verified that the second term on
the right-hand side of Eq. (24), which is related to the
potential energy gain, is negative. This term can be
written as

I -] %

j[n(p) ne(PIIN(P) + ne(p)] 22

ez
Observing that

_ dp _
JIn(p) nF(IO)]4T[2 0
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because of the particle number conservation and taking
into account that

[n(P) + Ne(P)] o< . > [N(P) + Ne(P)] . <

we arrive at the conclusion. The first term is positive
because of inequality (23). Thus, we are led to the con-
clusion that the FC phase transition can be considered
asdriven by the kinetic energy. We now let the coupling
constant g, be small, then gap A is proportiona to g,
[11]. The optimum values of the occupation numbers
given by Eq. (4) are disturbed, leading to an increase of
the energy E[n(p)]. The positive gain in the potential
energy given by Eq. (19) isdriving the formation of the
superconducting ground state. Because the coupling
constant g, is sufficiently small, the structure of the sys-
tem ground state is defined by the FC, and the super-
conducting state is a “shadow” of the FC under these
conditions [15]. Then, the main contribution to E .4
comes from the FC phase transition, and the complex
transition (FC plus superconductivity) is kinetic-energy
driven [36]. On the other hand, in the case where FC is
weak compared to the superconductivity (or is absent),
we are dealing with a pure superconducting phase tran-
sition, which is obviously potential-energy driven.

5. QUASIPARTICLE DISPERSION
AND LINE SHAPE

We now discuss the origin of two effective masses
M} and Mg occurring in the superconducting state
and leading to a nontrivial quasiparticle dispersion and
a change of the quasiparticle velocity. As we see in
what follows, our results are in reasonably good agree-
ment with the experimentally deduced data [8-10]. For
simplicity, we set T = 0. Varying Ey given by Eq. (18)
with respect to a,,, we find

Sl %] = g (p) —tenh(20,) ~A@) = 0, (25)
oa,,

with n(p) = cos?a,, k(p) = sina,cosa, and g(p)
defined by Eq. (22). As g, — 0, we have that
A(p) — 0, and Eq. (25) becomes

[e(p—W)]tanh(20a;) = 0. (26)

Equation (26) requires that
e(p)—-u=0, if tanh(20,)#0 (0<n(p) <1),(27)

which leads to the FC solutions defined by Eq. (4)
[16, 25]. As soon as the coupling constant g, becomes
finite but small, such that g,/g; < 1, the plateau e(p) —
K =0isdlightly tilted and rounded off at the end points.
Thisimplies that

g(p) —u 04, (28)
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which allows us to estimate the effective mass as
Mic Ty

Outside the condensate area, the quasiparticle dis-
persion is determined by the effective massM| given

by Eqg. (3). We note that calculationsin the context of a
simple model support the above consideration [15]. In

that case, putting V(py, P2) = 8(py1, P2) and Vi(py, P2) =
o(p1, P2) in Egs. (19) and (20) and carrying out direct
calculations, we obtainat T =0

(Ps—Pi) Pe
Mgc

On the other hand, at T > T, taking into account that
n(p,) = 1 and n(py) = 0, we obtain from Eq. (5) with the
same accuracy,

Eo = &(ps) —€(p) = =2A,. (30)

_ (Pt —=P)Pe

E,= =2T.
M

(31)

Equations (30) and (31) alow us to estimate the effec-
tive mass Mg related to the region occupied by FC at
temperatures T < T;. Outside the region, the effective
mass isM{ . When Egs. (28) and (29) are compared
with Egs. (5) and (7), it isapparent that gap A, playsthe
role of the effective temperature that defines the slope
of the plateau. On the other hand, at T =T, in OD or OP
samples, the gap vanishes and Egs. (5) and (31) define
the quasiparticle dispersion and the effective mass.
Taking into account that A, ~ T, we are led to the con-
clusion that Egs. (28) and (29) derived at T = 0 match
Egs. (5) and (7) a T.. Thus, Egs. (28) and (29) are
approximately valid over therange0< T < T.. It follows
from Eq. (30) that at T < T, the quasiparticle dispersion
can be presented with two straight lines characterized
by the respective effective masses M. andM} and
intersecting near the binding energy E, ~ 2A,. Equa-
tion (31) implies that above T, the lines intersect near
the binding energy ~2T. The break separating the faster

dispersing high-energy part related toM{ from the
slower dispersing low-energy part defined by M. is
likely to be enhanced in UD samples at | east because of
the rise of temperature T;, which grows with the
decrease of doping. We recall that in accordance with
our assumption, the condensate volume Qg- and T;
grow with underdoping, see Eq. (6) and Section 3. It we
also suggested that FC arises near the Van Hove singu-
larities, while the different FC areas overlap only
dlightly. Therefore, as one moves from (0, 0) towards
(T, 0) theratio Mg /M} growsin magnitude, devel op-

ing into the distinct break. In fact, assuming that tem-
perature T; depends on angle @ along the Fermi surface
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P—q

k+q

k k
() (b)

Fig. 3. Diagram (a) depicts a process contributing to the
imaginary part. Diagram (b) showsareal process contribut-
ing to the imaginary part, observe that quasiparticlesp —q,
k + g, and k are on the mass shell.

and taking Eq. (29) into account, one can arrive at the
same conclusion. The dispersions above T, exhibit the

same structure except that the effective mass Mg is

governed by Eq. (31) rather than (30) and both the dis-
persion and the break are partly “covered” by the qua-
siparticle width. Thus, one concludes that there also
exists anew energy scale at T < T; defined by E, and
intimately related to T; [36].

We turn to the quasiparticle excitation with the energy
E(®) = J€°(¢) + A*(¢). At temperatures T < T,, they

aretypical excitations of the superconducting state. We
now qualitatively analyze the processes contributing to
width y. Within the limits of the analysis, we can take
A = 0, which corresponds to considering excitations at
the node. Our treatment isthen valid for both T < T, and
T, < T. For definiteness, we consider the decay of a par-
ticle with the momentum p > pe. Then y(p, w) isgiven
by the imaginary part of the diagram shown in Fig. 3a,
where the wiggly lines stand for the effective interac-
tion. Because of the unitarity, diagram 3b (which
represents real events) can be used to calculate the
width [37] as

y(p, w) = 2ﬂJ’

2

V(9
E(q! _(*)pq)

dqdk (32)
xn(k)[1 = n(k + G)]3(pq + W) iy,
(2m)
with e(q, o being the complex dielectric constant
and V(qg)/e the effective interaction. Here, g and w, =
gk + q) — g(k) are the transferred momentum and
energy, respectively, and w,, = w — &(p — q) is the
decrease in the quasiparticle energy as the result of the
rescattering processes. the quasiparticle with the
energy w decays into a quasihole (k) and two quasi-
particlese(p —q) and e(k + q). The transferred momen-
tum g must satisfy the condition

p>|p—al > pe. (33)

Equation (32) gives the width as afunction of p and w;
the width of aquasiparticle with energy €(p) isgiven by

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

ARTAMONOQV, SHAGINYAN

v(p, w=¢€(p)). Estimating the width in Eq. (32) with the
constraint (33) and wy,, ~ T, we find that

v(p, @ =g(p)) O(M})°T?,
for normal Fermi liquids. In the case of FC one could
estimatey ~ /T upon using Egs. (9) and (34). This esti-
mate is correct if the dielectric constant is small, but
€ ~ ME¢ . Astheresult, for the FC we have

(34)

* \342
V(.= (p) 0 T le
Fc) €

(35)

where g¢ is the Fermi energy [38]. Calculating y(p, w)
as a function of p at constant w, we obtain the same
result for the width given by Eq. (35) when w = g(p).
The calculated function can be fitted with a simple
Lorentzian form, because quasi particles and quasiholes
involved in the process are aso located in the vicinity
of the Fermi level, provided w—¢&¢ ~ T. It then follows
from Eqg. (35) that the well defined excitations exist at
the Fermi surface even in the normal state [38]. This
result is in line with the experimenta findings deter-
mined from the scans at a constant binding energy
(momentum distribution curves or MDCs) [8, 39]. On
the other hand, considering y(p, w) asafunction of w at
constant p, we can check that the quasiparticles and
quasiholes contributing to the function can have an
energy of the same order of the magnitude. For w—¢- ~T,
the function is of the same Lorentzian form, otherwise
the shape of the function isdisturbed at high w by high-
energy excitations. In that case the specia form of the
quasiparticle dispersion characterized by the two effec-
tive masses must be taken into account. As the result,
the lineshape of the quasiparticle peak as a function of
the binding energy possesses a complex peak-dip-
hump structure [9, 10, 40] directly defined by the exist-
ence of the effective masses Mg andM7 . Our consid-

eration shows that it is the spectral peak obtained from
MDCs that provides important information on the
existence of well defined excitations at the Fermi level
and their width [36]. The detailed numerical resultswill
be presented el sewhere.

At T > T, the gap is absent in OD or OP samples,
and the width y of excitations closeto the Fermi surface
is given by Eq. (35). For UD samples, A(B) = 0in the
range Q, and we have normal quasiparticle excitations
withwidth y. Outside range Q,, the Fermi level is occu-
pied by BCS-type excitations with finite excitation
energy given by gap A(8). Both types of excitations
have widths of the same order of magnitude. We now
estimate y. For the entire Fermi level occupied by the
normal state, the width is equal to y= N3(0)T%/B?, with
the density of states N(0) ~ 1/T and the di€l ectric constant
B~N(0). Thus, y~T[15]. Inour case, however, only apart
of the Fermi level within Q,, belongsto the normal excita
tions. Therefore, the number of states alowed for quasi-
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particlesand for quasiholesis proportional to 8., thefactor
T2 is therefore replaced by T26. Taking these factors

into account, we obtainy ~ 8T~ T(T=T)/T,~T-T,,
because only small angles are considered. Here, we
have omitted the small contribution coming from the
BCS-type excitations. That is why width y vanishes at
T = T.. Thus, the foregoing analysis shows that in UD
samples at T > T, the superconducting gap smoothly
transforms into the pseudogap. The excitations of the
gapped area of the Fermi surface have the same width
y ~ T —T, and the region occupied by the pseudogap is
shrinking with increasing temperature. These results
arein good qualitative agreement with the experimental
facts [4-T7].

6. CONCLUDING REMARKS

We have discussed the modd of a strongly corre-
lated electron liquid based on the FC phase transition
and extended it to high-temperature superconductors.
The FC transition plays the role of aboundary separat-
ing the region of a strongly interacting electron liquid
from the region of astrongly correlated electron liquid.
On the basis of the BCS theory ideas we have also con-
sidered the superconductivity with the d-wave symme-
try of the order parameter in the presence of FC. We can
concludethat the BCS-type approach isfruitful for OD,
OP, and UD samples. We have shown that in UD sam-
ples, the gap becomes flatter near the nodes at temper-
atures T < T, and the superconducting gap smoothly
transforms into a pseudogap above T.. The pseudogap
occupies only a part of the Fermi surface, which even-
tually shrinks with increasing temperature, vanishing at
T =T*, and the maximum gap 4, scales with the tem-
perature T*. We have aso shown that the genera
dependence of T, T*, and A; on the underdoping level
fits naturally into the considered model. At tempera-
tures T* > T > T, the single-particle excitations of the
gapped areaof the Fermi surface havethewidthy~T—T,.
The quasiparticle dispersion in systems with FC can be
represented by two straight lines characterized by the

respective effective masses Mg andM} . At T < T,

these lines intersect near the point E, ~ 24, while
above T, we have E, ~ 2T. It is argued that this strong
change of the quasiparticle dispersion at E, can be
enhanced in UD samples because of strengthening the
FC influence. The single-particle excitations and their
width y are aso studied. We have shown that well-
defined excitations with y ~ T exist at the Fermi level
even in the normal state. This result isin line with the
experimental findings determined from the scans at a
constant binding energy, or MDCs. We have aso
treated the FC phase transition in the presence of the
superconductivity and shown that this phase transition
can be considered as kinetic-energy driven. Thus, with-
out any adjustable parameters, a number of the funda-
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mental problems of strongly correlated systems are nat-
urally explained within the proposed model.

This research was supported in part by the Russian
Foundation for Basic Research under Grant no. 98-02-
16170.
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Abstract—The method of threshold photoemission spectroscopy isused to investigate the el ectronic properties
of the ultrafine gallium-enriched Cs/GaAs(100) interface. The rearrangement of the spectrum of surface photo-
emission asafunction of Cscoating, aswell asthe temperature dependence of the spectrum, enable oneto iden-
tify two phases of adsorption with strong (Cs-Ga) and weak (Cs-Cs) bonds. In thefirst phase of adsorption with
the coating of approximately 0.3 monolayers, two surface bands are detected which are due to the local inter-
action of cesium adatoms with gallium dimers. It is found that the transition from the first to the second phase
of adsorption occurswith the Cs coating of approximately 0.7 monolayers, which corresponds to the saturation
of al dangling bonds of gallium on the gallium-enriched GaA s(100) surface. In the second phase of adsorption
with the coating of morethan 0.7 monolayers, a number of additional photoemission singularities are observed
in the spectra, whose emergence is associated with the formation of metastable Cs formations. Photoemission
peaks at 1.9 and 2.17 €V may be associated with the excitation of quasi-two- and/or quasi-three-dimensional
Csclusters, and the peaks at 2.05, 2.4, and 2.78 €V may be associated with the excitation of an interface plas-

mon and of surface and bulk Cs plasmons, respectively. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Great interest in the investigations of interfaces
between metal and GaAs is associated both with the
fundamental problems of the physics of interface phe-
nomenaand with numerous engineering applications of
such systems. Of special significance isthe GaAs(100)
surface, because most GaAs-based semiconductor
devices are developed on this particular face using
molecular-beam epitaxy [1]. A large number of recon-
structions may be observed on the GaAs(100) surface,
which differ from one another by the stoichiometric
composition. Heating at temperatures below 450°C
|eads to the formation of arsenic-enriched surfaces, and
heating at higher temperatures results in the formation
of gallium-enriched surfaces. The amorphization of a
surface, associated with the formation of droplets of free
gallium, occurs at atemperature of approximately 650°C
[2—4]. Both arsenic- and ga lium-enriched GaAs(100) sur-
faces are dimer-reconstructed. The dimerization resultsin
aconsderable reduction of the number of dangling bonds
of gallium or arsenic. A GaAs(100) surface, obtained at an
annealing temperature of about 560°C, is characterized by
a (4 x 2)/c(8 x 2) structure with gallium dimers in the
top layer [5, 6]. According to the adopted model with a
single absent Ga dimer [6], the concentration of gal-
lium atoms in the top layer of the (4 x 2)/c(8 x 2)
GaAs(100) surface is approximately 3/4 of the mono-
layer, and a group of three Ga dimers may beidentified
in a unit cell. Unlike the fairly complete data about the

gtructure of the GaAs surface, the available information
about its dectronic properties and, especially, about its
surface statesisrather limited. In spite of intensive the-
oretical and experimental investigations, the nature of
the surface states of GaAs is ill a subject for discus
sons. The investigation of the surface eectronic proper-
ties involves, on the one hand, detecting localized sur-
face and interface statesand ascertaining their nature and,
on the other hand, searching for the correlation between
the structural and electronic properties. In this case, the
adsorption of metals serves as an atomic probe for
studying various interactions on the surface.

During adsorption, the dimer structure of the sur-
faceis preserved, asarule, and the adatoms interacting
with the dangling bonds of the substrate may take dif-
ferent positions, the so-called adsorption sites. For
example, for the process of the adsorption of cesium on
adimer-reconstructed Si(100)2 x 1 surface, it has been
found that the adatoms successively take adsorption
sites above the dimers and between series of dimers|[7].
Inthiscase, local interactions of adatomswith dangling
bonds of silicon of two types are observed, thisleading
to the formation of characteristic surface bands [8, 9].
Unlike numerous investigations of the electronic struc-
ture of interfaces between metal and Si(100)2 x 1, such
investigations for interfaces on GaAs(100) substrates
have just been started [10-13].

Theresults of investigations of (Cs, K, Na)/GaAs(100)
systems by photoreflection spectroscopy [14], as well

1063-7761/01/9202-0297$21.00 © 2001 MAIK “Nauka/Interperiodica’



298

as of (Cs, K)/GaAs(110) systems by characteristic elec-
tron loss spectroscopy [15], have demonstrated that the
process of interface formation is accompanied both by
local interactions of adatoms with dangling bonds and,
possibly, by the formation of quasi-two- and quasi-
three-dimensional clusters of adsorbed atoms. It has
been found that clusters of alkali metals, formed at a
low temperature on the GaAs(100) surface, are meta
stable and disintegrate readily asaresult of an insignif-
icant increase in temperature.

It is known that the atoms of akai metals are
adsorbed in layers and feature a high mobility on the
surface. At room temperature, only one monolayer
(ML) of cesium may be deposited on the surface of
metals and semiconductors, because the heat of adsorp-
tion after the deposition of one ML is low [16]. This
means that the cesium atoms from the second layer
have a short lifetime on the surface. Akhter and Ven-
ables [17] have demonstrated that, upon the deposition
of cesium on the W(110) surface, the lifetime of atoms
in the second layer at room temperature does not
exceed 2000 s. Thefact that atoms have afinite lifetime
on the surface explains the difference between the
adsorption processes under conditions of step-by-step
deposition, when the measurements are performed after
depositing a certain amount of alkali metal, and under
conditions of dynamic deposition, when the measure-
ments are performed directly in the process of deposi-
tion. In particular, Akhter and Venables[17] have found
that the structure of a saturating Cs coating on the
W(110) surface under conditions of step-by-step depo-
sition differs from that under conditions of dynamic
deposition. Note that most of the papers known to us
fail to give proper attention to the problem of the stabil-
ity of adsorption systems consisting of an alkali metal
and a semiconductor.

We performed, for the first time ever, detailed pho-
toemission investigations of the gallium-enriched
Cg/GaAs(100) interface in the range of submonolayer
coatings from 0.2 to 0.9 ML. Thanks to the use of dif-
ferent modes of deposition, metastable Cs coatings
exceeding amonolayer were also investigated. The sta-
bility of the adsorption system was studied for different
coatings and at different temperatures. Studies were
made into the variation of ionization energy and the
evolution of spectra of surface photoemission as func-
tions of Cscoating. The resultant data point to the pres-
ence of two phases of cesium adsorption. In the initial
phase of adsorption, local surface Cs bandswerefound,
whose formation was completed on accomplishing a
saturating Cs coating. It was found that a considerable
rearrangement of the spectrum of surface photoemis-
sion occurred in the second phase of adsorption. In so
doing, the emergence of photoemission peaks was
observed, which may be associated with the excitation
of metastable Cs clusters and of interface and surface
plasmons. It wasfound that the Cs/GaAs(100) interface
exhibited semiconductor behavior in the entire investi-
gated range of coatings.
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2. EXPERIMENTAL PROCEDURE

The measurements were performed in situ under
conditions of an ultrahigh vacuum of P = 5 x 107! torr
at room temperature. A pure GaAs(100) surface (n-
type, 0.9 x 108 cm3) was obtained after the thermal (at
a temperature ~580°C) remova of a thin protective
oxide layer which was preformed in a growth chamber.
As was mentioned above, this temperature mode |eads
to the formation of a galium-enriched dimer-recon-
structed surface, as a rule, (4 x 2)/c(8 x 2). The high
surface quality of this sample and the presence of a
dimer series was demonstrated in [10] by atomic-force
Mi Croscopy.

Atomically pure cesium was deposited onto the
sample surface from astandard source. A unigue proce-
dure [9, 10] was used to determine the intensity of
cesium flux from the source. This made possible the
determination, within 10%, of the dose D of cesium
deposited onto the GaAs surface. In the step-by-step
mode, the cesium source was switched off after deposi-
tion, the sample was held in darkness for a period of
about 600 s, and photoemission spectra were then
recorded. The photoemission current was measured in
the range from 1023 to 108 A. In the dynamic mode,
the spectrum was recorded directly in the process of the
deposition of cesium.

The electronic properties were investigated by
threshold photoemission spectroscopy using s- and
p-polarized excitation [18, 19]. Thismethod isbased on
the separation of bulk and surface photoemission, as
well as on the effect of the threshold amplification of
photoemission from surface states.

In the case of s-polarization, only the bulk states of
the substrate are excited, with the photoemission
threshold hv corresponding to the position of the top of
the valence band, i.e., hv, = @, where @istheionization
energy. Two cases must be treated. In thefirst case, the
width of the region of band bends during emission from
weakly aloyed samples exceeds considerably the
escape depth of photoel ectrons, and threshold hv,isthe
ionization energy. In the second case, the width of the
region of band bends is comparable to the escape depth
of photoelectrons. Then, during photoemission from a
p-type semiconductor, the photoemission threshold for
electrons excited at some distance from the surface may
differ from that for electrons excited directly at the sur-
face, which may lead to errorsin determining the value
of @. In our case, for an n-type semiconductor, thresh-
old hv, is always the ionization energy.

In the case of p-polarization, the surface bands are
excited owing to interaction with the norma compo-
nent of an electric vector of light. If the surface states
arelocated in the forbidden band of the semiconductor,
the photoemission thresholds may differ, hvg > hv,,. In
so doing, threshold hv, is defined either by the position
of the Fermi level E; or by the long-wave edge of the
surface band.
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The method of threshold photoemission spectros-
copy is characterized by a high surface sensitivity and
optical resolution (AE < 0.02 €V). Yet another advan-
tage of this method is that it is fundamentally nonde-
structive. The method enables one to obtain detailed
information about the structure of surface bands from
the spectra of surface photoemission I,(hv)/I(hv),
where |, and | denote the photoemission current upon
excitation by s and p-polarized light, respectively; in
particular, in the absence of collective excitations, the
quantity 1./l is proportional to the density of surface
states[19].

3. EXPERIMENTAL RESULTS AND DISCUSSION
3.1. The First Phase of the Adsorption of Cesium

Shown in the top part of Fig. 1 isthe variation of the
ionization energy ¢ during the adsorption of cesium on
the gallium-enriched GaAs(100) surface. One can see
that, with adose D = 6.1 x 10** atom/cm?, the ioniza-
tion energy reaches a minimum of @, = 1.45 £ 0.02 eV.
In order to estimate the degree of coating 6,,, corre-
sponding to @, one must know, in addition to the dose,
the coefficient of the adhesion of cesium to the given sur-
face. The results of Auger spectroscopy demongtrate that,
at room temperature, the adhesion coefficient for
cesium isequal to unity at 6 < 0.5 ML and decreases by
afactor of two-three at 8 > 0.5 ML [20]. Note that one
monolayer equal to 6.3 x 10* atom/cm? corresponds to
the coating at which the concentration of adsorbed
atomsisequal to the concentration of atoms on the non-
reconstructed GaAs(100) 1 x 1 surface. The scale of
coatings is given in the top part of Fig. 1. The inade-
guate data on the adhesion coefficient define the error
which is £0.05 ML for 8 < 0.7 ML and 0.1 ML for
0 > 0.7 ML. In view of the dose determined by us and
the data on the adhesion coefficient, one can estimate
Bin = 0.7 ML. The coating of 8,,,= 0.7 ML isthe sat-
urating coating of B, because it corresponds to the
concentration of dangling bonds of gallium on the gal-
lium-enriched GaAs(100) surface[3, 5]. The datagiven
in Fig. 1 were obtained using the step-by-step mode of
deposition. According to our estimates, the maximum
coating that may be obtained in this mode is approxi-
mately 0.9 ML.

The bottom part of Fig. 1 gives the photoemission
threshold difference A = hvg — hv, as a function of
cesium coating. The photoemission thresholds almost
coincide in the case of coatings of 8 < 0.5 ML, which
points to the absence of surface states in the forbidden
band. It is known that pure GaAs(100) surfaces exhibit
a high density of surface states whose nature is associ-
ated with the defects on the surface [ 21, 22]. Therefore,
the adsorption of cesium results in a reduction of the
electron density of surface statesin the forbidden band
with coatings of about 0.2 ML. At 6 > 0.5 ML, adiffer-
ence between photoemission thresholds shows up, this
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Fig. 1. The variations of the ionization energy (top) and of
the photoemission threshold difference A = hvg—hv, (bot-

tom) during the adsorption of cesium on the GaAs(100) sur-
face. Step-by-step mode of deposition.

implying the emergence of surface states in the forbid-
denband. At6=0.7 ML, A=0.1eV.

Figure 2 gives, for different coatings of 6 < 8, the
density p of surface statesinduced by the adsorption of
cesium on the GaAs(100) surface, which was deter-
mined from the spectra of surface photoemission
I(hv)/I(hv) [19]. Two cesium-induced bands were
found, the formation of which began at 6 = 0.5 ML. At
0 = 0.55 ML, two bands are clearly distinguishable in
the spectra, namely, A, and A,, with their bond energies
differing by approximately 0.17 eV. The band intensity
increases with the Cs coating; in so doing, the differ-
ence between the bond energies decreases (to approxi-
mately 0.1 eV for 8 = 0.65 ML), and the bands shift
towards higher bond energies while demonstrating the
behavior which is characteristic of bands induced by
adsorption [8, 9].

At 0 =0.7 ML, bands A; and A, are not resolved in
the spectrum and form a single band A located 0.35 eV
below the top of the valence band. Note that, for the
case of the Cs/Si(100) 2 x 1 interface with a saturating
coating of 8, = 1 ML, both induced bands are well
resolved, which indicates that the differencesin adsorp-
tion sites on Si dimers are retained. In the case of the

No. 2 2001



0.4

v
0.8 {l .
0.55 ML 0.65 ML 0.7 ML

r's
| | | | |
p, rel. units

Fig. 2. The spectrum of the density of surface statesinduced
by the adsorption of cesium for different coatings. The
energy isreckoned from the top of the valence band E,,; the

arrows indicate the thresholds hv|, for p-polarized light that
correspond to the position of the edge of the surface band.

galium-enriched GaAs(100) surface, one can assume
that with a saturating coating, when all dangling bonds
of galium atoms are filled, the differences between
adsorption sites associated with Ga dimers disappear.
The difference in the behavior of induced bands on the
GaAs and Si surfaces with saturating coating is appar-
ently due to the differences in the behavior of local

1.5
hv, eV

Fig. 3. Spectra of surface photoemission I,/1 for Cs coat-
ings of 8 > 64 6 = (a) 0.8 and (b) 0.9 ML. Step-by-step
mode of deposition.
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interactions of dangling bonds of silicon and gallium
with adsorbed cesium atoms. One can assume that the
charge transfer to the substrate in the case of a Cs-Si
bond exceeds that in the case of a Cs-Ga bond. There-
fore, the interaction between cesium atoms is weaker
on the Si surface than on the GaAs surface. It is possi-
ble that even with a saturating coating, conditions are
developed for interaction between two cesium adatoms
bound on a Ga dimer.

3.2. The Second Phase of Adsorption of Cesium

Figure 3 illustrates the development of photoemis-
sion spectra obtained using the step-by-step mode of dep-
ogtion with coatingsin therange 0.7 ML <06 < 0.9 ML.
One can see that the shape of spectra varies cardinally
compared with the spectrafor 8 < 0.7 ML. In addition
to maximum A, the emergence of three photoemission
peaks was observed, namely, B, C, and P;, with ener-
gies of approximately 1.9, 2.05, and 2.4 eV, respec-
tively. Figure 4 gives the spectra obtained using the
dynamic mode which enables one to produce coatings
of 8 > 0.9 ML. Even more significant changes in the
intensity of photoemission peaks were observed, as
well asthe emergence of two new singularities, namely,
D and P,, with energies of approximately 2.17 and
2.78 eV, respectively.

hv, eV

Fig. 4. Spectra of surface photoemission 1,/15 for different
doses of Cs: (a) 1.6 x 10%°, (b) 2.3 x 10'°, and (c) 2.6 x
10 atom/cm?. Dynamic mode of deposition.
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The <ability of the adsorption system of
C9GaAs(100) for different Cs coatings was investi-
gated using a modification of the spectra of surface
photoemission after holding the sample for approxi-
mately one hour after deposition, as well as after a
short-term heating of the sample. It was found that, for
8 < 0.7 ML, neither the short term heating at a temper-
ature below 400°C, nor holding the sample in darkness
for about one hour, resulted in changes in the spectrum.
The results of experiments in thermal desorption [23]
demonstrate the absence of the desorption of cesium
for the given temperatures and coatings. Temperatures
above 500°C are required for the desorption of cesium
and, accordingly, for the disappearance of cesium-
induced surface states A, and A,. With a saturating coat-
ing of By = 0.7 ML, the adsorption system is also sta-
ble. Even holding the sample in darkness for many
hours after deposition fails to result in variations of
photoemission spectra.

With 8 > 0.7 ML, the adsorption system becomes
unstable. Both the intensity and shape of the spectra
experience considerable changes after exposure of the
sample. A short-term (60 s) and low (at 100°C) heating
of the sample results in a spectrum that corresponds to
saturating coating. One can conclude that, with coat-
ings of 8 > B, cesium atoms are adsorbed to aweakly
bound state. Therefore, after reaching a saturating coat-
ing, i.e, when the concentration of cesium atoms
almost coincides with that of gallium atoms in the top
layer, the behavior of adsorption on the gallium-
enriched GaA s(100) surface varies.

In the second phase of adsorption, the predominat-
ing process defining the shape of photoemission spectra
is that of the generation of metastable cesium forma
tions; in order to clarify the nature of these formations,
we anayzed in detail the behavior of photoemission
peaks in the spectra obtained at 8 > 0.7 ML. All of the
photoemission peaks at the moment of emergence have
aconsiderable half-width (0.3 to 0.5 eV), which distin-
guishes them from the peaks emerging in thefirst phase
of adsorption. Figure 5 gives the data about the varia-
tion of the intensity of the peaks as a function of the
dose of cesium, which were obtained using two modes
of deposition. All peaks may be divided into three
groups from the standpoint of their emergence and vari-
ation of their intensity.

(1) The maxima of A and B exhibit the same behav-
ior of intensity variation. Both of them emerge in the
case of the step-by-step mode of deposition, with the B
peak emerging in the spectrum for approximately the
coatings in the case of which the A peak disappears.

(2) The maxima of C and P, emerge in the step-by-
step mode of deposition; however, they both exhibit an
insignificant intensity in the case of coatingsof 6 = 0.8—
0.9 ML. Their intensity increases considerably with the
dose of cesium in the dynamic mode. Thisis especially
characteristic of the P; maximum, whaose intensity
increases jumpwise at D = 1.5 x 10> atom/cm?.
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Fig. 5. The scheme of variation of the intensity of photoe-
mission peaks in the second phase of adsorption. To the
right of the thin vertical line, the region of the dynamic
mode of deposition islocated.

(3) Themaximaof D and P, emergein the spectrum
only in the case of deposition in the dynamic mode.

As was pointed out above, the A peak emerges at
0. = 0.7 ML, when two induced Cs bands A; and A, in
the spectrum becomeforbidden. The A peak reachesthe
maximum intensity at D, = 8 x 10 atom/cm?, which
corresponds to 6 = 0.8 ML, and amost disappears at
Dcs = 1.2 x 10% atom/cm?. One can assume that the
nature of the A peak is associated with the emergence,
in the case of a saturating coating, of two cesium ada-
toms localized on a Ga dimer. We assume that this is
accompanied by the formation of a pair of cesium ada-
toms, i.e., aminimal Cs cluster. It is to be emphasized
that the correlation between such a formation with the
Gadimer isfairly strong, and the adsorption system is
stable. The possibility of the existence of such mini-
mal clusters, i.e., local surface clusters, was demon-
strated experimentally for silver atoms by Gomoyunova
et al. [24].

The B peak appears in the spectra of surface photo-
emission for approximately the same coatings in the
case in which the A peak disappears. Simple geometric
reasoning enables one to make some assumptions about
the subsequent development of Cs clusters. For amodel
of reconstruction of (4 x 2)/c(8 x 2) with one absent Ga
dimer [3, 5], one can assume that, in the case of a satu-
rating coating, a quasi-two-dimensional cluster of six
(2 x 3) cesium atoms is formed in each unit cell on the
surface. In so doing, the Cs-Cs interaction becomes
predominant, and the bond with Ga dimers weakens
considerably. We believe that the B peak is associated
with local plasma excitations in such clusters. One can
expect that the photoemission singularities caused by
excitationsin these clusterswill emergein the case of a
coating of 6/8 ML. Then, when the coating increases to
one monolayer, the interaction between clusters must
bring about the formation of a“solid” film of cesiumon
the surface, i.e., to the “destruction” of hexatomic clus-
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ters and of the photoemission singularities associated
with them. Basically, the B peak behaves (see Fig. 5) in
accordance with the described model. The quantitative
differences may be attributed to inaccuracies in deter-
mining the coating, especiadly, in the dynamic mode,
and to the absence of defects on the surface. Hexatomic
Cs clusters are metastable, because even alow heating
leadsto their destruction (disappearance of the B peak).
In so doing, an inverse transition occurs to three pairs
of adatoms of cesium weakly interacting with one
another (emergence of the A peak).

The P, peak with an energy of 2.4 eV is character-
ized by an abrupt rise of intensity during the transition
to the dynamic mode (see Fig. 5). The maximum inten-
sity isattained by ajump at D, = 1.2 x 10% atom/cm?,
and, as the dose continues to increase, the peak inten-
sity aimost does not vary. As was demonstrated by the
results of investigations of the spectra of differential
reflection of a multilayer cesium film on the silver sur-
face [25], a surface Cs plasmon is observed in the case
of the p-polarized excitation of hv = 2.4 eV. Therefore,
the nature of the P; peak may be associated with the
excitation of a surface Cs plasmon. The coating, in the
case of which a jumpwise increase in the intensity of
this maximum is observed, apparently corresponds to
the percolation threshold after which the excitation of a
surface plasmon becomes possible.

The P, peak (2.78 V) appearsin the spectraonly in
the dynamic mode at D > 1.9 x 10% atom/cm? (see
Figs. 4 and 5). The available literature data [25, 26]
enable one to interpret this singularity as the excitation
of abulk plasmon.

Revealing the nature of the C and D peaks causes
the most difficulties. Only general assumptions may be
made, based on the behavior of those peaks as the Cs
dose increases (see Figs. 4 and 5). In view of the fact
that the behavior of the C peak is suggestive, by and
large, of the behavior of the P, peak associated with a
surface Cs plasmon, one can assume that the C peak is
caused by the so-called interface plasmon. Reaching
the percolation threshold is not a necessary condition
for the excitation of an interface plasmon, because, in
this case, the main part is played by the distribution of
electron dengity in the interface layer. The C peak reaches
the maximum intensity at D = 1.8 x 10 atom/cn?,
which apparently corresponds to a coating close to one
monolayer, i.e., to the formation of a “solid” film of
cesium. The subsequent adsorption of cesium and for-
mation of the second layer of cesium brings about the
reduction of the peak intensity. The photoemission
peak D (see Figs. 4 and 5) emerges at Dy > 2 %
10% atom/cm?, when, according to our estimates, a
monolayer coating has been formed. The nature of this
peak may be associated with Cs formations of the type
of three-dimensional clusters in the second layer.
Because, in the case of an idea surface and, accord-
ingly, of an ideal first monolayer of cesium, the forma:
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tion of such clusters is unlikely due to electrostatic
repulsion, it is the defects on the surface that appear to
be the centers of cluster formation. As the second layer
of cesium is formed, these clusters “disappear”, much
like the hexatomic clustersin thefirst layer.

4. CONCLUSION

The results of the investigation of the electronic
properties of the Cs/GaAs(100) interface demonstrate
the existence of two phases of adsorption, with thetran-
sition from the first to second phase occurring with a
coating of approximately 0.7 ML, which corresponds
to the saturation of all dangling bonds of gallium on the
surface. Inthefirst phase, local interactions of adsorbed
cesium atoms on adsorption sites of two types are pre-
dominant, which lead to the formation of two induced
bands. Fundamental changes of the photoemission spectra
in the second phase of adsorption are defined by the pro-
cesses of the formation of metastable quasi-two- and
guasi-three-dimensional clusters of cesium on the sur-
face, aswell as by the formation, in the dynamic mode,
of amonolayer (and probably close to two monolayers)
Cscoating. A qualitative model has been suggested for
interpreting the observed photoemission singularities,
which takes into account the structure of the gallium-
enriched GaAs(100) surface and the singul arities of the
formation of Cs clusters and excitations of an interface
plasmon, as well as of surface and bulk Cs plasmons.
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Abstract—We study the external strain effect on the surface properties of simple metalswithin the framework
of a modified stabilized jellium model. We derive the eguations for the stabilization energy of the deformed
Wigner—Seitz cells considered as afunction of the bulk electron density and the given deformation. The results
for the surface stress and the work function of aluminum calculated using the self-consistent Kohn—-Sham
method are also given. The problem of the anisotropy of the work function of afinite system is discussed. A
clear explanation of independent experiments on the stress-induced contact potential difference at metal sur-
facesis presented. © 2001 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

The early experimental investigations of the force
acting on electrons and positronsinside ametal tubein
the gravitational field of the Earth [1, 2] raised a ques-
tion about the influence of metal deformation on the elec-
tron work function. Direct measurementsusing the Kelvin
method showed a decrease/increase of the contact poten-
tial difference (CPD) of the stretched/compressed metal
samples [3-5]. Similarly, the experiment with a high-
speed spinning meta rotor nonuniformly deformed over
the length demongtrated that the CPD changes between
areas of the surface subjected to different deformations[6]
(see ds0 the discussion of the earlier experiments by
Harrison [7]). The influence of the deformation on the
electron emission from a thin metal film has also been
investigated [8]. Recently, a similar effect on the CPD
was observed at the surface of a sample with a nonuni-
form distribution of the residual mechanical stress[9].
These at first sight surprising results imply the respec-
tive increase/decrease of the work function with the
uniaxial tension/compression of the metal sample. All
these experiments raise two important questions that
must be answered by microscopic theory: (i) Does the
change of the CPD correspond to a change in the work
function? (ii) What is the sign of the deformation gra-
dient of the surface energy and the work function for a
metal subject to tension (or compression) along some
direction?

The first question is related to the violation of the
local electroneutrality of the metal and hence, to non-
equipotentiality of its geometric surface. The second
guestion stems from the general statement of elasticity
theory: the change in the total energy of a solid is pro-

TThis article was submitted by the authors in English.

portional to the square of the relative deformation.
Therefore, the energy must increase for compression as
it does for tension. On the other hand, it was found
experimentally that, in the elastic deformation range, a
uniaxial deformation of ametal sampleleadsto alinear
change in the CPD [4, 5]. This implies that classical
elasticity theory is not completely correct in determin-
ing the elastic characteristics of surfaces. This question
is aso important in determining the surface tension or
the surface stress for macroscopic samples [10] and
small metal particles[11].

The measurements of the derivative of the surface
tension of a solid with respect to the electrical variable
(the so-called “estans’ [12]) indirectly show a small
difference between the surface stress and the surface
energy. On the other hand, different calculations [13-15],
including the ones based on thefirst principles[16], show
an appreciabl e difference between these two quantities.
A rough estimation of the difference between the sur-
face energy and the surface stress can also be done
using the cohesive energy and the vacancy formation
energy. In the continuum approximation, the cohesive
energy (or the atomic “work function) €., and the
vacancy formation energy €,.. give respectively the
irreversible and reversible work required for the cre-
ation of a new spherical surface of the Wigner—Seitz
cell with radiusr,. Following [17], we have

Econ = 4T gYo(1 + 8/Ty),

where y, is the surface energy per unit area of the flat
surface and o/ is the size correction for the surface of
apositive curvature.
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The reversible work for the creation of a vacancy
(which can be defined as the work needed for blowing
asmall bubble) is given by [18]

T'o

€, ac =Idr4nr2[2To(1—6/2r)/r] = ATt (1-3/ry),
0

where we introduce a well defined physical quantity—
the surface stress of the flat surface T,—to describe a
tensed curved surface [19, 20]. Combining the expres-
sionsfor €., and €., we obtain

o= (L + /Mo Evac
o= Yory 3 Ce .,

The Kohn—Sham calculationsin [21, 22] give d/ry =
0.40 and 0.52 for Naand Al, and the ratio of the exper-
imental values €,,J/€., IS approximately equal to 1/2
and 1/3, respectively. These values agree very well with
olrqg = 1/2 obtained in [18], which follows from the
Langmuir semiempirical rule [23]. From this ssimple
estimation, it follows that 1, is approximately equal to
or less than yj,.

In thiswork, we investigate theoretically the surface
energy, stress, and work function of an elastically
deformed metal. A uniaxial strain applied to the surface
introduces anisotropy to the metal by changing the den-
sity (or separation) of the atomic planes and the elec-
tron gas concentration and contributes to an extra sur-
face dipole barrier. A rigorous study of this problem
from first principles is tedious and requires cumber-
some numerical computations. On the other hand, the
calculations based on the isotropic models of metal,
i.e., on the jellium model [24] (which ignores the dis-
crete nature of ions) or the stabilized jellium model (in
which interparticle interactions are averaged over vol-
umes of the spherical Wigner—Seitz cells), do not allow
one to properly account for the inhomogeneous strain
effects.

We develop a modification of the stabilized jellium
model in order to describe the metal deformed by the
strain [25-27]. In this modification, the metal energy is
expressed as a function of the density parameter r and
the given deformation. In Section 2, we give a general
discussion of the effect of the deformation-induced
anisotropy on the work function, which is one of the
most important el ectron surface characteristics. In Sec-
tion 3, we present equations for the stabilized jellium
model accounting for the elastic deformation. In Sec-
tion 4, the modified stabilized-jellium model is applied
to calculate, by the Kohn—Sham method, the effect of
the uniaxial strain on the electron surface characteris-
tics of single-crystal aluminum.

2. THE DESCRIPTION OF DEFORMATION

Itisimportant to notethat in all experimentswe deal
with finite samples. Different reticular electron densi-
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A qualitative sketch of the sample deformation.

ties at particular faces of asingle crystal (crystallite) of
an irregular shape lead to different electrostatic poten-
tialsfor these faces. A similar situation can occur inthe
deformed metal.

We consider a hypothetical crystal having the shape
of arectangular parallelepiped (see figure). We assume
the eguivalence of all crystal faces in the undeformed
state. This picture breaks down upon the crystal defor-
mation. The four side faces remain equivalent to each
other, but not to the two base faces. The €l ectroneutral -
ity condition for the metal sample that is stretched or
compressed along the x-axis can be written as

dxfdyfdz[n(x,y,2) —p(X Y, 2] = O, D
oy

where the electron charge density distribution n(r)
attains magnitude ny in the metal bulk. The ion charge
distribution can be modeled by the step function,

p(r) = pB(r—r’),

where r' is the radius vector of the surface, p = N, /Z,

and Z isthe valence. We use atomic units(e=m=# = 1)
throughout.

By definition [14], with the electrostatic potential
set equal to zero in the vacuum, the electron work func-
tion for aface of the semi-infinite crystal is

- d
Wface = _(po_%(ﬁo‘cx]) - |:BV[:}ace’ (2)

where @ < 0 denotes the electrostatic potential in the
metal bulk and €; = g(n,) is the average energy per

electron in the uniform electron gas. The last term rep-
resents the difference dv(r) between the pseudopoten-
tial of the lattice of ions and the electrostatic potential
of the positive background averaged over the Wigner—
Seitz cell; this term allows us to distinguish between
different faces of the crystal (cf. Section 3).

For a deformed sample, we assume that the y- and
z-directions are equivalent. Deformation along the x-
axisinduces an artificial homogeneous anisotropy. The
work functions along the x- and z-directions seem to be
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different for afinite sample, but this conclusion is not
correct. Thisnotion isrelated to thewidely spread point
of view (see [28] and references therein) that the work
function “anisotropy” is determined by the reticular
electron density of a given crystal face. However, the
electron work function is defined as the difference
between the electron energy level in a vacuum and at
the Fermi surface. This difference is independent of
space directions and coordinates and is constant for a
metal sample. The work function (or the ionization
potential) is ascalar quantity.

From the standpoint of afinite-size sample, the con-
siderations presented by Smoluchowski [28] and by
Lang and Kohn [29] are correct in the case where all
faces of the finite sample posses the same atomic pack-
ing density. For the cubic crystals, it is aparallelepiped
with all its sides having equivalent Miller indices. For a
sample of an arbitrary form, the work function in the
general case depends on the orientation of all parts of
the surface.!

We note that the “spurious’ difference W, — W, of
the work functions along the x- and z-directions defined

using the standard form (2) vanishes. This leads to an
important inequality

o—@, = — v+ BvE#0 (3

that meansthat the values ¢« and @, of the electrostatic
potential in the bulk of the metal can be treated as if
they corresponded to different semi-infinite crystals.
This inequality does not allow us to unambiguously
define the work function of afinite macroscopic sample
because the surface electrostatic barrier is different for
different directions.

To simplify the analysis, we express the electron
profile of the sample as

n(r) = ne(r) +on(r) (4)

and
® = @o+30, (5)
where ny(r) and @ are the values corresponding to a
semi-infinite metal. The “surplus’ density &n(r) origi-
nates from the electron transfer from one crystal sideto
another [31] and differs from zero only in the near-sur-

face layer. Condition (1) along each direction then
takes the trivial form

[

AiIdX[nO(r) —-p(n] =0, (6)

where A = A, A, A, are the areas of faces of a macro-
scopic sampleand A, = A,.

Linthe specia case of anonzero quadrupole moment of the charge
distribution in the elementary cell, the effective potential in the
bulk depends on the shape of the sample [30].
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Taking Eqg. (4) into account, Eq. (6) can be written
in the “ cross-directional” form

00 00

A, I dxdn(r) + AyI dyon(r)
= - (7)

0

+AZId26n(r) =0,

where the surplus charge at each sideis proportional to
its area. Here, for smplicity of illustration, we assume
that &n(r) is constant on each side of the sample. It fol-
lows from Eq. (7) that

}dzén(r)

A,
27, (8)

J' dxon(r)

which means that the charges on these sides have oppo-
site signs. The entire sample must be neutral .

The corresponding changes of the electrostatic
potential are determined by the Poisson equation,
which yields relations for the x- and z-components.
These relations have the same form

00

3¢ = 4T I dxxdn(r) = —C,Xo, 9

where %, and accordingly z, are the positions of self-
induced charge density at the lateral and base sides and
C, and C, are constants. This allows us to speak about
the appearance of an additional, three-dimensional sur-
face dipole barrier. Since (see Eq. (8))

A< ALA,, (10)
we have
|C,/CJ O AJA,
for the weight coefficients and
B9y = (5@ < [5¢
for the additional potentials. Using (5), we can rewrite
Eq. (3) as

dp= [Bdv— v and 3@, = dg,=0.  (11)

Condition (10) means that the work function is weakly
dependent on the electron transfer between the faces
perpendicular to y- and z-directions, and the measure-

2 We note that the phase shift N of the single-particle wave func-
tion along each direction depends on the potential shape in the
vicinity of the surface and the Sugiyama-L angreth neutrality sum
rule [32] must be rewritten with the anisotropy (i.e., the self-
charging) taken into account [33].
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ment of the work function at these faces can therefore
be replaced by the measurement for a semi-infinite
metal. The true work function can be measured by the
Kelvin method in the areas near the edges. These areas
correspond to sign changes of the density, on(r = 0).
For the photoemission method of measuring the work
function, conditions (10) and (11) imply that the regis-
tration of electrons must be performed at distances
much greater than the linear dimensions of the sample.
Otherwisg, if the photon energy is not sufficiently high,
an electron escaping from the metal does not reach
“infinity” but may transit from one face into the other.

The surplus charge Q, transferred from one face to

the other (see Eqg. (9)) can roughly be estimated with
the help of the standard electrostatic relation

3¢« = Qul /Ax.
Taking into account that

A, = N, 272,

where N, is the number of the surface Wigner—Seitz
cells of the radius r,, we obtain

Qx = 3rO/\/Wxé(_pX-

The condition Q, > 0 means that Q, electrons are trans-
fered from the base faces to the latera ones. The sur-
face energy per unit area therefore changes by
-W,Q,/A, and +W,Q,/2A, at the base and the lateral
sides, respectively. The ratio of these values corre-
sponds to (7). Here, WQ, is equal to the work needed
to remove Q, electrons from the base side of the metal
sampleto infinity and W, isthe work function of agiven
sidei. Self-charging of the surface can therefore affect
the surface energy anisotropy of the single crystal. For

example, for an aluminum sample with 8¢, = 0.5 eV

and N, = 102, 10%, the respective electronic charges are
Q.= 1, 10. Itisworth noting that this charge can be very
significant for asmall crystal (cluster) [34]. Therefore,
the elasticity and self-charging effects can play an
important rolein explaining the recently observed force
and conductance fluctuationsin stretched metal nanow-
ires[35, 36].

On the ground of the above discussion, and owing to
Eqg. (11), the properties of a large surface plane of a
deformed metal crystal can be calculated in the stan-
dard manner.

3. THE MODEL OF A UNIFORMLY
DEFORMED METAL

The dependence of the CPD on the uniaxial defor-
mation u,, was measured for polycrystalline stretched
samples [4, 5]. We assume that the deformation is a
measured quantity and the polycrystal is considered as
being assembled from a number of simple crystallites.
Qualitatively, the problem can therefore be reduced to
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the consideration of the tension or compression applied
toasingle crystal.

We first express the average electron density in the
metal as a function of the deformation. For this pur-
pose, we consider an undeformed cubic cell of the side
length a, and the volume

QO = ag = g‘r[rg, (12)
where r, = Z¥%, is the radius of the spherical Wigner—
Seitz cell. For a uniaxialy deformed cell elongated or
compressed along the x-axis, we can write

_ 2 _ 4 2
Q =aa = énab,

where a, and a, = a, are the sides of the elementary par-
allelogram and a and b are the half-axes of the equiva-
lent prolate or oblate spheroid of revolution around the
x-axis. We & so have

a, = a0(1+uxx)
and a, = a0(1+uzz) = aO(l_Vuxx)l

(13)

(14
where v is the Poisson coefficient for the polycrystal,
and

Q/Qp—1 = Uy + Uy + Uy,
It follows from Egs. (12)—(14) that
a=ryl+u,) and b = ro(1-vu,,). (25)

Similarly, the spacing between the lattice planes per-
pendicular to the y- or z-direction is

du = dO(l -V uxx) ' (16)
where d, is the interplanar spacing in the undeformed
crystal. It then follows from (12)—15) that the average
electron density in the deformed metal is given by

N = NQy/Q = N[1—(1-2v)u,] + OWZ) (17)
and the corresponding density parameter is
fao = T[1+(1=2v)u,] ™. (18)

Proceeding similarly to the derivation of the equa-
tions for the original stabilized jellium model [25], we
consider a metal assembled from Wigner—Seitz cells.
The average energy per valence electron inthe bulk is

& = gy(N) + &y + Wg, (19
where the first term gives the jellium energy
3k 3, _
e = X0 Sy mae,m @)

consisting of the average kinetic and exchange-correla-
tion energy per electron,

ke = (3r2R)"°.
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The remaining two terms in (19) represent the average
of the repulsive part of the Ashcroft model potential,
the Madelung energy. A small band-structure energy
term [25, 37] in (19) is neglected.

By transforming the ordinary jellium into the stabi-
lized one, the Coulomb interactions were averaged over
the Wigner-Seitz cells, as is usua for an isotropic
medium. The uniaxial strain applied to the crysta
deforms the spherical Wigner—Seitz cdlls into ellipsoi-
dal ones. This affects the Madelung energy €, that now
must be averaged over the volume of the deformed cell.
This energy can be expressed similarly to the gravita
tional energy of the uniform spheroid [38] as

£,(M) :% [ dQﬁ[—ﬂ+é [ danv)
spheroid

0z 1,

10a2p

spheroid
1+p
1-p’

a>b, (21)

—-g—élarctan p, b>a,

10ap

where V(r) is the electrostatic potential inside the uni-

formly charged spheroid, p = +/|1—b%a? determines
the spheroid eccentricity, and the upper/lower case cor-
respondsto aprolate/oblate spheroid, respectively. This
expression has the correct limit

ey(n) — 0.9Z/r, as u,, — 0.

We assume that the shape of ionic coresis not influ-
enced by the deformation and remains spherical; there-
fore,

— .2
Wg = 2mnr .

For the potential difference dv(r) averaged over the
Wigner—Seitz cell [25], we have the same relationship
asthat for the undisturbed crystal:

[BVWg = €+ gy + Wg, (22)
where the electrostatic self-energy of the uniform neg-
ative background inside the spheroid is

€= —%sM. (23)

The pseudopotential core radius can be found from
the mechanical equilibrium condition depending on the
mechanical stressinduced in the volume of the cell. To
determine the core radius r., we note that, for the
strained metal, the intrinsic pressure P = —dE/dQ =

n”de/dn in the bulk of a metal sample is compensated
by the pressure exerted by external forces,

P = _(Oxx + ny + 0-zz) = _Yuxx(l - 2\))! (24)
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where g;; are the mechanical stress tensor components
and Y is the Young modul us.
For a strained metal, the averaged energy per elec-
tron in the bulk is therefore given by
€ = g(N) + gy + W+ P/N. (25)

For an ideal metal, v = /2 and P = 0. This means that
the external force changes not the volume but the shape
of acell or asample. In the linear approximation, the
Madelung energy (21) iswell approximated by

SM(ﬁ)H —nglrou

Inserting the explicit expressions for (20), (21), and
(24) in (25), we have from the minimum condition that

_ 0 2romfe | 1romit.
fo = B 15040 " 6ndal "
" (26)
1232, 2 2a0€or 8 6 0
+=Z7rg+or +-mr PO,
57 =79'%dr, "9 g

where rg, is the equilibrium density parameter of the
strained metal. Here, we assume that the volume of the
spheroid isequal to the volume of the equivalent sphere
of theradiusrg, = Z%r,.

Taking into account that

BV Ths = k(6 + 0, @)

we obtain for the strained metal with the equilibrium
density
_d ., P
BV s = —nﬁ[sj(n) + ﬁ] (28)
Subsequently, similarly to Perdew et al. [25], we can

introduce the face dependence of the stabilization
potential as

Tin
|:BVE}ace = |:BVNVS_ g'gM + gdﬁg
Thetotal energy of afinite crystal can be written as

the sum of the bulk EP and the surface ES energies,
where

(29)

E° = Y/AA, +Y,2A,, (30

with y, and y, being the respective surface energies per
unit area of the lateral and base sides. In the unde-
formed state, wherey, =y, =y, = Y, surface energy (30)
changes by

d
dE® = 4A,(8,5 + T Hiugg
ap

(31)
+2AH5,,+ d_c:;y g,
ap
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Table 1. The calculated surface energiesy, the work function W, the strain derivative dy/du,,, and the surface stress t,,, for

elastically deformed Al (rs = 2.06) samples

Metal Face y, erglcm? W, eV Uy dy/du,,, erg/lcm?| T, erg/lcm? AW, eV
Al (111) 946 4,096 (+) 460 1406 —0.032
&) 400 1346 +0.033

(100) 1097 3.780 (+) 833 1930 ~0.025

&) 810 1907 +0.016

Note: uy, =+0.03, positive and negative deformations arelabeled with (+) or (-). AWisthework function difference. Thevalue of Young's

modulus for Al is 70 GPa[39].

where a and 3 denote directions in the plane of the lat-
eral and base sides and g, is the Kronecker symbol. In
our model, we calculate only

dy
du_ (32
The work function is calculated using the displaced-pro-
file-change-in-a-self-consistent-field (DPASCF) expres-
sion instead of Eq. (2).

To discuss our results, it is useful to rewrite Eq. (2)
as

TXX = y+

Wface = — Vgt —E&f, (33)

where
Veff = (p+ ch+ [ngace

isthe effective potentid in the bulk giving the totd barrier
height a the meta—vacuum interface and v, is the

exchange-corrdation potentia inthebulk (V. = v, (—)).

4. RESULTS AND DISCUSSION

To verify the theory presented in Section 3, we
solved the Kohn-Sham equations for the two most
densely packed surfaces of Al represented by the stabi-
lized jellium model. In terms of our model, we consider
two regular single crystals of Al such that all their sides
are equivalent in the undeformed state. Under the crys-
tal deformation, thefour sidefacesremain equivalent to
each other, but not to the two base faces (see figure).
The B vl term included into the effective potential
allows us to generate the face-dependent density pro-
files used in calculating the surface characteristics:
work function, surface energy, and surface stress. All
calculations were carried out for the upper side of the
sample (see figure) assuming the polycrystalline value
of the Poisson coefficient v = 0.36 for the elastic prop-
ertiesof Al [39].

Within the applied range of deformations —0.03 <
u, < +0.03, the changes in surface quantities remain
linear. The positive/negative deformation u,, implies
the tension/compression of the side of the sample, i.e.,
the decrease/increase of the atomic packing density at
this side, and the decrease/increase of the mean elec-
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tron concentration n and the interplanar spacing in the
direction perpendicular to the chosen crystal side. For a
better understanding the crystal effects, we have also
performed calculations for the special case of an
“ideal” metal withv = 1/2. In this case, the deformation
does not change n, however, the second term (the corru-
gation dipole barrier) in the face-dependent potentid (29)
is changed.

The results of calculations are summarized in Table 1.
As can be seen, the surface energy increases linearly with
the applied positive deformation u,, and decreases with
the negative one. This means that dy/du,, is positive for
either u,, >0 or u,, < 0. Accordingly, Eq. (32) givesthe
values of the surface stress component 1,,, larger than
the surface energy. For ug, > 0, the surface stress is
somewhat larger than for u,, < 0. We now consider the
“ideal” metal withv = 1/2. It seemsthat the ideal metal
fits better to the classical definition of the surface stress
[19, 20]. Thisisrelated to the fact that in an ideal metal
subjected to deformation, only the surface area is
changed, while the electron concentration in the bulk
remains unchanged.

Calculations performed for the Al (111) surface
yield the respective strain derivatives dy/du,, = 247 and
213 erg/cm? for u,, > 0 and u,, < 0. These values are
much smaller than the ones reported in Table 1. In this
case (with v = 1/2), we can al so eval uate the other com-
ponents of the surface stress as

T, = T,y = Y +dy/du,,.
Inserting
du,, = duy, = —vduy,,
we obtain
T, = Ty, = Y—2dy/du,<y.

We can make two observations at this point. First,
the latter result agrees with our estimation (T <) in
Section 1 and with the results derived on the basis of
elasticity theory [40], where the 1/y ratio expressed
in terms of the Poisson coefficient v is given by
(3v - 1)/(1-v). Forv = 1/2, thisformulagivest/y=1
and v < 1/2 for t/y < 1/2. Second, in order to calculate
1, and 1, for a sample stretched along the x-axis, we
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Table 2. The calculated change in the effective potential for
elastically deformed surfaces of Al single crystal

Metal Face Uy BVt (0, Uod).
ev
Al (111) +) ~0.103
&) +0.106
(100) +) —0.064
a +0.069

must use dy/du,, for u,, < 0, whereas for a compressed
sampl e, we use the corresponding valuefor u,, > 0. This
is because the tension applied along the x-direction
leads to compressing the sample along the orthogonal
(y and 2) axes. The caculated surface stressfor Al(111) is
in very good agreement with the values resulting from the
available ab initio calculations: 1441 erg/cm? in [15], and
1249 erg/cm? in [41]. This also improves the results
obtained for the ordinary jellium model [24, 41] and the
previous direct application of the stabilized-jellium
model [13].

The work function decreases linearly with u,,, but
the relative change is less than 1% (see Tablel) for the
considered strains. A similar behavior is observed for
v= 1/2. The dominating component leading to a
decrease of W with u,, is a change in the [3 v term.
Thus, the change of the work function under the defor-
mation conditions is determined by the competition of
negative changes in the exchange-correlation (v,.) and
the electostatic (¢)) components of the effective poten-
tia v and the positive change in the face-dependent
component B vl A dominant role is played by the
change of [8 vl whilethe changein the Fermi energy
isnegligibly small. An overall decrease/increase of the
work function W is determined by a positive/negative
shift of the electrostatic potential in the metal interior.

The calculated change of the work function with
strain seems to contradict the experimentd results [3-6]
where the work function was found to increase/decrease
with the elongation/compression of the sample. This
conclusion was based on the analysis of the measured
CPD [3-7, 9, 27]. In what follows, we demonstrate that
this contradiction is spurious. The point is that the mea-
surement by the Kelvin method fixes the change of the
surface potential. The experimental observations can
therefore be explained not as a change of the work
function but as the change of the effective potential v«
upon deformation. The Kelvin method gives the value
of the potentia difference at the surface of a sample,
which can be defined as the position of theimage plane
Z2=17,[26]. Indistinction to the work function, to which
B v contributes directly (Eq. (2)), a the image-plane
position located outside the geometric surface, the effec-
tive potentia feels the change in [@ vl by means of the
self-consistent procedure for solving the Kohn—Sham
equations (even though Bv[. is nonzero inside the
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sample only). The calculations performed for Al(111)
demonstrate that the ratio of the effective potential dif-
ferences Av of the strained (u,, = +0.03) and strain-
free samples at the surface and inthe bulk is

Av (z = 25)|AV 4 = 3.

Here, v« denotes the respective difference in the metal
bulk.

The results for Avg (7, uy) are shown in Table 2.
The potential difference outside the sample is more
negative as the deformation increases. The calculated
changes in the effective potential have the same sign as
the CPD measured for Al. For apolycrystaline Al sam-
ple subject to deformation with u, = 0.03, the CPD
amounts to —0.025 £ 0.002 V [5]. Because a polycrys-
talline sample can be considered as being assembled
from arbitrarily oriented single crystals, the values
obtained by us must be averaged in order to compare
them with experiment. Thus, both the experiment and
the calculations give a negative change of the surface
potential,

CPD = Av4(z=2z)<0.

For the conventional method of measuring the work
function changes upon strain [4, 5, 9], thisimplies that

W(Uy,) = W(0) —CPD(uy,) >W(0),

i.e., thework function increases for atensed sample. In
general, therefore, our results agree with the indepen-
dent experimentsfor both stretched [4-6] and compressed
[1, 3] metal samples. The results for Avg(z, u,,) corre-
spond to a direct observation of the stress-induced shift
in the measured contact potential: the effective poten-
tial outside the open faces of the sample is more nega-
tive/positive when tensile/compressive forceis applied.
However, unlike the effective potential at the surface,
the value of the potential in the metal bulk is more pos-
itive/negative for an expanded/compressed sample
because of the different effect of the [d v term. Thus,
for the Al sample, the work function change vs. strain
shows the opposite trend compared to that of the con-
tact potential (the behavior of which also differs from
that predicted by non-self-consistent calculations[27]).
Accordingly, the resultsin Table 1 demonstrate that the
work function decreases with uy,. In other words, our
results show that the measurements by the Kelvin
method give not the variation of thework function upon
strain but the variation of the surface potential.

In summary, the stabilized-jellium model has been
extended to encompass the elastic strain effects on the
surface properties of simple metals. By imposing a
uniaxial strain to the metal surface and limiting our-
selves to linear terms in the deformation, we have
obtained arealistic description of the strain dependence
of surface quantities: surface energy, surface stress, and
work function. We have presented a consistent explana-
tion of experiments on the stress-induced contact
potential difference at metal surfaces.
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Abstract—L ow-temperature anomalies in the physical properties of iron monosilicide are analyzed based on
the results of thorough measurements of the conductivity, Hall coefficients, thermo emf, and magnetic charac-
teristics of high-quality single-crystal FeSi samplesat liquid helium (LHe) and intermediate temperatures. It
is demonstrated that the most adequate and consistent interpretation of the experimental magnetic, transport,
and optical characteristics can be given within the framework of the Hubbard model. The model parameters
are determined and the arguments are presented which provide evidence of the spin polaron formation and
the density of state (DOS) renormalization taking place in FeSi in the vicinity of the Fermi energy at inter-
mediate temperatures. It was found that a decrease in the sample temperaturein theregion of T< T.= 15K
is accompanied by a transition to a coherent regime of the spin density fluctuations. As a result, the ferro-
magnetic character of the interaction leads to the formation of magnetic microdomains with a characteristic
size ~10 A. The exchange-induced magnetization enhancement in the vicinity of charge carriers in these
microdomains probably accounts for the anomal ous components in the Hall coefficient and the magnetiza-
tion hysteresis observed in FeSi at L He temperatures. The nature of the low-temperature transitionat T,,= 7 K in
the system of interacting magnetic microparticles in iron monosilicide is discussed. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

In recent years, considerable attention from research-
ers has been devoted to the class of narrow-band-gap
semiconductors based on rare-earth elements, where
strong quasiparticle interactions lead to the formation
of a gap in the band spectrum in the vicinity of the
Fermi energy. The cubic compound FeSi [1] is adso
conventionally included into this class of condo insula-
tors, primarily because the behavior of the physical
characteristics of iron monosilicide [1, 3] is sSimilar to
that of the classical semiconductor SmBg [2].

However, some researchers (see, e.g., [4]) seriously
doubt the validity of a condo lattice model in cases
when the Fermi level occurs immediately within anar-
row 4f (3d) band, which givesrise to rapid charge den-
sity fluctuations in samarium hexaboride (with the
mean samarium valence vg, = 2.6 [5]) and spin density
fluctuationsin iron monasilicide [6]. Recently [7, g], it
was demonstrated that the most adequate description of
the anomalous behavior of SmBg can be given within
the framework of a model [9] assuming the formation
of exciton—polaron complexes in the samarium centers
at low temperatures (T < 15 K) due to rapid (~10% s)
fluctuations of the samarium valence.

Previoudly [10, 11], we presented analogous exper-
imental datathat provide evidence against applying the

condo insulator model to the interpretation of the phys-
ica characteristics of FeSi. It was demonstrated that
FeSi apparently represents a spin-polaron dielectric of
the Mott type with strong Hubbard's correlations. At
the sametime, the ground state formation iniron mono-
silicide at liquid helium (LHe) temperatures is accom-
panied by the appearance of an anomal ous component
in the Hall coefficient [10-12] and some featuresin the
temperature dependence of the SHF conductivity,
thermo emf, and capacitance [13]. We suggested
[10, 13] that the hysteresis of these anomalies in the
region of T=T, =7 K might be explained in terms of
a phase transition taking place in the electron sub-
system of FeSi, but the nature and character of the elec-
tron structure rearrangement still remain unclear.

In this context, the purpose of thiswork wasto study
in detail the behavior of the Hall coefficient of FeSi at
LHe and intermediate temperatures in a wide region
around T,, and to perform thorough measurements of
the magneti zation and magnetoresi stance on high-qual-
ity single-crystal FeSi samples.

2. EXPERIMENTAL METHODS

The experiments were performed on single-crystal
samples made of the same FeSi ingot as that used pre-
viously [10, 13]. Specia attention was paid to prepar-
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ing the sample surface and making contacts for the
resistance measurements. The magnetization measure-
ments were performed using a setup employing com-
mercial (PARC Model M155, USA) and laboratory
vibration magnetometers with cryostats operating in a
wide range of working temperatures (2-300 K) and
with an electromagnet (H < 12.5 kOe).

The Hall coefficients were measured in an auto-
mated experimental setup of an original design, with a
sample rotated by a step (3.6°) electric motor in afixed
magnetic field (H < 80 kOe) of a superconducting sole-
noid. In therange of small signals, the accuracy of mea-
surements was increased by using a Keithley Model
2182 nanovoltmeter. The process of data acquisition,
sample rotation, and temperature variation was con-
trolled by a personal computer with a microprocessor-
based interface of special design.

3. EXPERIMENTAL RESULTS

Figure la shows typica experimental curves
obtained by measuring the field dependence of the Hall
resistance R(H) of an FeSi sample at L He temperatures.
A characterigtic feature of the R(H) curvesisthehysteresis
observed in the intervad of magnetic filds H < 5 kOe,
which reflects the appearance of an anomal ous compo-
nent in the Hall response (see also [10, 12]). It should
be noted that the anomalous Hall signal amplitude in
the region of H < 10 kOe markedly exceeds the normal
Hall component U"(H).

In contrast, the sample magnetization behavior at
LHe temperatures (Fig. 1b) is characterized by a dom-
inating paramagnetic contribution, linearly depending
on the magnetic field strength in the range of H <
125 kOe, and a smdl “ferromagnetic’ contribution
M(H). Small absolutevalues[M(H) <5 x 102 (G cm?®)/g]
and the irreproducibility of the magnetization, accom-
panying variation of the sample cooling conditions and
repeated magnetization cycles in a single-crystal FeSi
sample (memory effects), are indicative of the mag-
netic moment “freezing” in the iron monosilicide
matrix and the FeSi transition to a spin glass state at
LHe temperatures see, e.g., [14]).

In order to elucidate the features of the magnetic
moment formation in FeSi low temperatures, we have
thoroughly studied the angular dependence of the Hall
resistance. Figures 2—4 show the results of the R(¢)
measurements (where ¢ is the angle between the [111]
normal to the sample surface and the magnetic field
vector H) for various constant values of H <80 kOeand
temperatures in the interval from 1.6 to 20 K. An anal-
ysis of the angular variation of the Hall resistance at
LHe temperatures (Figs. 2 and 3) confirms dominating
contribution of the anomalous component for the field
strengths H < 20 kOe. An increase in the magnetic field
strength is accompanied by a sharp narrowing of the
hysteresis|oop: the loop width at H > 10 kOe becomes
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Fig. 1. Variation of (a) the Hall resistance R(H) and (b) the
magnetization M(H) of an FeSi samplewith amagneticfield
strength at L He temperatures (arrows indicate the direction
of angle variation during the sample rotation).

comparable to the experimental error. Simultaneously,
theincreasein H leadsto an increasein the normal Hall
voltage component (Figs. 2 and 3). Note also that the
Hall resistance versus angle curves measured in FeSi
at LHe temperatures in the region of field strengths
H = 35 kOe revea the appearance of an additional
doubl e-frequency component (indicated by thearrowsin
Fig. 2b).

As the temperature increases above the LHe level,
the anomalous Hall component amplitude exhibits a
sharp drop (Figs. 4 and 5), which is accompanied by a
decrease in the hysteresis loop width A¢y, 4. Figure 5
shows the angular dependence of AR «(9) = (R, —R)/2
representing a half-difference between the R(¢) curves
(depicted in Fig. 4) measured for a sample rotated in
opposite directions. The amplitude of the anomalous
component of the Hall resistance determined by this
method is used in what follows for separating the nor-
mal and anomalous contributions to the Hall coeffi-
cient.

The data presented in Fig. 5 can aso be used to
study the temperature variation of the hysteresis width
brys Measured at haf maximum of AR, 4(9). Figure 6
shows the temperature dependence of the Adp, 4 value
determined from the results of measurements per-
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Fig. 2. Theangular profiles R(¢) of the Hall resistance measured for an FeSi sampleat T =4.2 K at variousfield strengths Hg (indi-
cated at the curves). Arrows indicate (a) the direction of angle variation during the sample rotation and (b) the additional double-
frequency Hall signal components.

formed for various values of the magnetic field strength ~ A¢y,, upon further increase in the temperature (Fig. 6):
in the interval of H < 4 kOe. Note that the relatively  the R(¢) curves for T > 15 K measured in the entire
sow decrease in the hysteresis loop width A¢, range of the magnetic field strength show only the nor-
observed at T < 11 K is followed by a sharp drop in mal (sinusoidal) Hall signal component related to

0 | | |
0° 120° o 240° 360°
Fig. 4. Theangular profiles R(¢) of the Hall resistance mea-
Fig. 3. Theangular profilesR(¢) of the Hall resistance mea- sured for an FeSi sample at Hy = 1.63 kOe and various tem-
sured for an FeSi sample at T = 1.73 K at various field peratures (indicated at the curves with the corresponding
strengths Hq (indicated at the curves). Arrows indicate the scaling factors). Arrows indicate the direction of angle vari-
direction of angle variation during the sample rotation. ation during the sample rotation.
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Fig. 5. Variation of the anomalous Hall resistance compo-
nent ARpy(9) = (R, —R)/2 of an FeSi sample measured at
Ho = 1.63 kOe and various temperatures (indicated at the
curves). The curves are constructed by data of Fig. 4.
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Fig. 7. A series of the angular profiles of the Hall resistance
R($¢) measured at T = 4.2 K and the field strength Hg
changed between fixed values H, for various orientations of
an FeSi samplerelative to the magnetic field vector H: ¢ =
180, (1) —= (2) —= (3); 99 =360°, (3) —= (4); Ho =
1.7 (1), 1.28 (2), 1.06 (3), and 0.89 kOe (4).

charge carriers of the p-type in the FeSi matrix (see,
e.g., Fig. 4). It should also be emphasized that the signs
of the Hall coefficient Ry(T) and the thermo emf T)
coincideinthetemperatureinterval from 15to 70 K. As
the temperature decreases below 15 K, the appearance
and growth of the anomalous (negative) Hall signa
component is accompanied by a rapid decrease in the
positive YT) value [10].
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Fig. 6. Temperature variation of the hysteresis loop width
Adpyg for the Hall resistance of an FeSi sample measured
for three values of the magnetic field strength (indicated at
the curves). The inset shows a plot of the activation param-
eter ARy, (270°) versus reciprocal temperature constructed

by data for the three Hy values.
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Fig. 8. A series of angular profiles of the Hall resistance
R(¢) for an FeSi sample measured at T = 4.2 K and the field
strength H changed from Hg = 1.22 to 0.67 kOe, showing

variation of the hysteresis contribution to R(¢). The Hq value
was changed for a fixed sample orientation (¢ = 180°) rel-
ative to the magnetic field vector H.

The aforementioned memory effects related to a
dependence of the experimental parameters of FeSi on
the sample prehistory (i.e., on the cycles of temperature
and magnetic field variation in the sample) were also
manifested in the angular dependence of the Hall resis-
tance. Figures 7 and 8 show two families of the experi-
mental curves R(¢) measured at LHe temperatures for
fixed Hy values in the 0.5-2 kOe interval. In the exper-
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Fig. 9. A series of angular profiles of the anomal ous compo-
nent of the Hall resistance ARy 5(9) = (Ry — R.)/2 for an

FeSi sample measured at T=4.2 K and various values of the
magnetic field strength Hy. The inset shows a plot of the

hysteresisloop area S« versusfield strength H constructed
by the data of Fig. 9.

iment presented in Fig. 7, the values of R(¢p = 0) and
R(¢ = 180°) (the difference of which gives the double
total Hall resistance) were found to depend both on the
applied magnetic field amplitude and on the magnitude
and direction of the H vector during the H, variation
between the fixed values. Moreover, the H, variation
for a strictly determined sample orientation relative to
the magnetic field (for H perpendicular to the sample
surface) is accompanied by one of the boundary values
(R(¢ = 0) in Fig. (8)) remaining constant, whereat a
decrease in the Hall resistance with decreasing H, pro-
ceeds virtualy entirely at the expense of the variation
of the R(¢ = 180°) value. An analysis of the curves pre-
sented in Fig. 7 and 8 allows usto estimate achangein
the hysteresis amplitude for the Hall resistance in the
magnetic field (see, Fig. 9). Theinset in Fig. 9 showsa
field dependence of the hysteresis loop area S, «(H)
determined by integrating the experimenta AR, ()
curves depicted in Fig. 9.

In order to determine the effect of the magnetoresis-
tance contribution on the results of measurements of
the Hall signa component, we have also studied the
dependence of the FeSi sample resistivity on the field
strength, angle, and temperature inthe T < 10 K inter-
val. Figure 10 shows typical plots of the negative mag-
netoresi stance versus field strength measured for FeSi
inthe LHe temperature range. Note that the behavior of
the negative magnetoresi stance (as well as of the Hall
resistance considered above) in FeSi significantly dif-
fers from that observed for the SmBg condo insulator
(considered as the analog of FeSi), where the Ap(H)
obeys a quadratic law for the field strength of up to

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

SLUCHANKO et al.

Ap/py
0

—-0.055

Ap/pg

~0.02 00601 %
—0.065

-0.070

-0.04

I I
50 H,kOe

-0.06

—-0.08 ' '
0 10 20 30

H/T, kOe/K

Fig. 10. Plots of the magnetoresistance versusfield strength
for an FeSi sample measured at T = 4.2 (1) and 1.73 K (2).
The inset shows a part of the Ap/pg(H) curve measured at

T = 4.2 with the magnetic field strengths above 20 kOe.

500 kOe[15]. The Ap(H, T =4.2K) curve of FeSi inthe
range of H < 35 kOe is approximated to a sufficiently
good precision by the Brillouin function (Fig. 10):

Ap' = poB,(a)
_ oI+l o 23+1 1 ap @D
Poi 55~ SN —=7-% ~ 350550

where a = gugJH/KT, g isthe Bohr magneton, and kg
is the Boltzmann constant. An additional contribution
(Ap") appearing in Ap(H) at LHe temperatures gives
rise to a broad minimum in the region of H = 35 kOe,
which is followed by a tendency to saturation for H =
60 keV (Fig. 10, curve 1 and inset). As the temperature
decreases from 4.2 to 1.7 K, additional contribution is
not observed for the fields below 70 kOe and the mag-
netoresistance is described by the Brillouin function
with good precision in the entire range of field strengths
studied in thiswork (Fig. 10, curve 2).

Based on the results of measurements of the angular
variation of the magnetoresistance (Fig. 11), we may
exclude any significant dependence of the above-
described (see Figs. 1-5) anomalies in the Hall resis-
tance on the negative magnetoresistance related to a
“nonequipotential” arrangement of the Hall contactson
the sampl e surface. Our investigations showed that the
Ap/p(d) value in the indicated interval of temperatures
and the range of fields (up to 70 kOe) does not exceed
0.5%. The anomalous angular dependence of the nega-
tive magnetoresistance (Fig. 11) isrelated to the afore-
mentioned Ap''(H) component (contributing to the
magnetoresistance at H = 35 kOe) and vanishes when
thetemperatureincreasestoalevel of T=T,,= 7K.
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Fig. 11. Angular variation of the magnetoresistance p(H =
70.2 kOe, ¢)/p(dg) observed at various temperatures for an

FeS samplerotated in aconstant magnetic field H = 70.2 kOe.

In concluding this section, prior to proceeding with
the discussion and analysis of the physical properties of
iron monosilicide, we will briefly consider the results
of magnetization measurements performed in the region
of intermediate temperatures. Note that a restricted preci-
sion of the available magnetometersallowed usto perform
reliable measurements of M(H, Ty) only in the regions of
T<50K and T 2120 K. In the vicinity of a minimum
observed in the magnetic susceptibility of FeSi at T =
90 K (Fig. 12a), the magnetic response exhibited a
sharp drop in amplitude and the experimental datawere
poorly reproducible.

Figure 13 shows the results of magnetization mea-
surementsin FeSi. Asis seen from Fig. 13a, the M(H)
curvesobtainedat T= 120K and H < 12.5 kOe are well
approximated by the initial portion of the Brillouin
function. The temperature dependence of the magnetic
susceptibility M(T) of FeSi measured at T < 50 K shows
aweakly pronounced inflectionat T, = 13-15K (Fig. 13b)
correlated with the appearance of low-temperature
anomaliesin the Hall resistance (Fig. 2-5) and the neg-
ative thermo emf contribution [10] (see also Fig. 12c)
in FeSi. Theinterpolation of the results of magnetic mea-
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Fig. 12. Temperature variation of (a) the magnetic suscepti-
bility X(T), (b) the effective mass ratio m,/my, of charge car-

riers, and (c) thermo emf coefficient ST) in FeSi.

surements (Figs. 12a and 13b) to the temperature inter-
val below the inflection point (T < T,) reveals an addi-
tional magnetic contribution to M(T, Hy) (Fig. 13b) and
X(T) (Fig. 128). As the temperature decreasesto T < 7K,
this contribution apparently converts into the afore-
mentioned “ferromagnetic’ magnetization component
My(H) in FeSi (see Fig. 1b).

Finally, it should be noted that a generally similar
behavior of iron monosilicide was observed in [16]
where single-crystal FeSi sampleswere studied using a
SQUID magnetometer. However, the measurements in
[16] were performed only at 5 and 300 K. This restric-
tion did not allow the results to be interpreted with an
allowance for various contributions to M(H, Ty) in the
passage from intrinsic to impurity conductivity in FeSi.

4. DISCUSSION OF RESULTS

An analysis of the experimental results presented
above reveals a sharp quantitative difference between
magnitudes of the components related to the normal
and anomal ous (magnetic) effectsin the values of mag-
netization and those in the Hall coefficient. Indeed, the
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Fig. 13. (a) The plots of magnetization M versus H/T mea-
sured at fixed temperatures above 120 K: T = 290 (1),
250 (2), 220.2 (3), 200.7 (4), 179.5(5), 159.5 (6), 141K (7).
The inset shows the temperature variation of the effective
magnetic moment W determined upon approximating the

experimental data by formula (3). (b) The plots of magneti-
zation M versus T measured in the region of T, = 15K at

fixed values of the magnetic field strength Hg (indicated at

the curves). The inset shows a schematic diagram illustrat-
ing the Fe 3d band splitting in the FeSi crystal field.

Hall coefficient determined at LHe temperatures and
the field strengths below 10 kOe is characterized by a
dominating anomalous contribution. At the same time,
the description of magnetization shows a dominating
role of the paramagnetic contribution determining both
the signa amplitude and the character of the M(H)
value variation in FeSi. Since the experimental data
were obtained for single-crystal FeSi samples of high
quality, where the presence of magnetically-ordered
impurity phase in the bulk is hardly probable, the
enhanced anomalous contribution to the Hall coeffi-
cient has to be explained by assuming a local increase
in magnetization in the immediate vicinity of charge
carriers.

We believe that, in this situation, ahighly promising
approach to the interpretation of the anomalous trans-
port and magnetic characteristics of iron monosilicide
is offered by the method proposed previously [10, 11].
According to this approach, the properties of FeSi are
described within the framework of the Hubbard model
[17] in the critical range of parameters 2 < U/D < 3,
where U is the Hubbard repulsion and 2D is the con-
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the results of calculations [17] (see aso [18, 19]).

with Py, = 15 [10] and (2) p

duction band width (see aso [18, 19]. In accordance
with the results of the investigation of the transport
properties and thermo emf [10, 11], we must distin-
guish several temperature intervals featuring different
variations of the physical properties of FeSi.

4.1. Intrinsic Conductivity in FeS (T > 100 K)

According to the conclusions made in [10, 11], the
intrinsic conductivity isobserved in FeSi at T> 100 K.
Thisregime correspondsto the charge carrier activation
via the indirect gap (E4/2 = 30 meV) separating the
Hubbard bands composed predominantly of Fe 3d dates.
Figure 14 (curve 1, region 1) illustrates the behavior of
charge carriers (for example, of the p-type) in the
region of intrinsic conductivity determined from the
results of measurements of the galvanomagnetic char-
acteristics of FeSi [10].

The activation asymptotics determined for the
intrinsic carrier concentration in the temperature inter-
val T>100K can be used to eval uate the effective mag-
netic moment P Of charge carriers in the upper 3d
band (conduction band) from the results of our magne-
tization measurements (see Fig. 13d). Indeed, the
results of the magnetic susceptibility measurementsin
a broad range of temperatures (77-800 K) [20] are
indicative of a nonmagnetic character of the Fe 3d
states (singlet S= 0) in the lower (valence) band, thus
suggesting that the magnetic properties of FeSi must be
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related to 3d states in the conduction band. Approxi-
mating the x(T) function by an expression of the type
(see, e.g. [20])

X(T) = Ng’Ua  S(S+1)(2S+1) o
3kgT 25+ 1+ exp(Ey/kgT)’

we obtain the values S= 1 and g = 2.17 for the param-
eters characterizing the upper 3d band of FeSi. Using
the results of the magnetic susceptibility calculation
performed in [20] for the two-level system of singlet
and triplet states separated by agap withawidth of E; =
60-70 meV, we may describe with sufficiently high
precision the behavior of the x(T) curve in FeSi in the
temperature range above room temperature.

We described the experimental data for the temper-
atureinterval from 120to 300 K (presented in Fig. 13a)
within the framework of the Curie-Weiss relationship

No€XP(—Ey/2ks T) Wa(T)
3ksT H. )

Thevaluesof pg(T) for the Fe centers determined from
this analysis vary from 2z (at room temperature) to
Mgt = Mg at T = 140-160 K (seetheinsetin Fig. 13a). It
should be emphasized that the latter value (U = Hg)
corresponds to the free carrier with s=1/2 and g = 2.
Note also that the value g = 2Ug Was previously
reported in [21], where the magnetic susceptibility of
FeSi was measured at temperatures above 700 K; there-
fore, this value can actually be considered as character-
istic of the Fe 3d states of charge carriersin the conduc-
tion band of FeSi.

In atetrahedral environment of the paramagnetic Fe
ion occurring in a cubic B20 crystal structure of FeSi,
we may additionally expect that the Fe 3d bands would
be split into g, and t,, subbands. We believe that the
value E; = 60 meV obtained for FeSi can be related to

the minimum energy Asy" of splitting in the crystal
field of FeSi. The most probable structure of 3d bands
corresponds to a tetravalent state of iron in this com-
pound with silicon and accounts for the thermoacti-
vated transitions between e, (nonmagnetic singlet) and
t,y States (see theinset in Fig. 13b). In this situation, an
electron—hole pair, which appears at the Fe center as a
result of the thermal activation of a carrier from the
completely filled e, subband, hasthe spin S= 1 and the
effective magnetic moment g = 2Ug (Seetheinset in
Fig. 13a).

M =

4.2. Spin—Polaron Transport
in FeS (T < 100 K)

As the temperature decreases below 100 K, the
regime of intrinsic conductivity is replaced by the car-
rier transport via spin-polaron states on the Fermi level
[10, 11]. Thisregime is characterized by the activation
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behavior of the conductivity and the Hall coefficient
(Fig. 14, region I1) in the temperature interval from 15
to 50 K (activation energy E, = 6 meV [10]) and by
a nearly constant value of the thermo emf S= 900 +
20 uV/K inthisinterval [10, 11] (seealso Fig. 12¢). In
this situation, the most probabl e explanation of the fea-
tures in the behavior of the physical characteristics of
FeSi can be given assuming that this crystal features
strong Coulomb (or Hubbard) correlations at interme-
diate temperatures. The conduction and valence bands
of FeSi (composed predominantly of the Fe 3d states)
correspond to the upper and lower Hubbard bands.
Within the framework of our approach, the valence
band is essentially a Hubbard band of doubly occupied
states (singlet S= 0, seetheinset in Fig. 13b).

Under the conditions of strong hubbard correla
tions, the concentration of charge carriers is usually
estimated using the Hicks formula [22]:

Ke, (-
Sm = 2G5 @

Here, parameter v is the reduced concentration of
carriers (p-type) in the lower Hubbard band (v = p/Ng, =
1.3 x 10°°). Using this value, we may estimate the hole
concentration asp = 6 x 10* cm2[11]. Thus, the spin-
polaron states (corresponding [23] to the regime of
strong Hubbard correlations) in FeSi are characterized
by asmall (~10*" cmr3) concentration of carriers (holes)
in the g; and t,, subbands (see the inset in Fig. 13b).
These states may appear as aresult of rapid spin fluctu-
ations between Fe 3d statesin the conduction band and
at the Fe centers situated in the nearest environment of
a charge carrier. The activation energy of the low-tem-
perature transport E, = 6 meV (Fig. 14, curve 1, region 1)
must correspond to the potential well depth of the spin-
polaron states. The actual carrier concentration in the
Hubbard bands of agiven single-crystal FeSi sampleis
fixed on alevel of 6 x 10" cm2 (Fig. 14, curve 2).

It should be emphasized that, according to the con-
clusons made in [17-19], the appearance of spin-
polaron states at the Ef level is related to the electron
spectrum renormalization in the Hubbard model. The
low-temperature multiparticle resonance at E- (see the
inset in Fig. 14) accounts for the “metallization” of the
spectrum related to the transition to a narrow-band con-
ductivity regime corresponding to charge carriers pos-
sessing a large effective mass. Apparently, the afore-
mentioned decrease in the effective mass to g = Ug
(seetheinset in Fig. 13a) with decreasing temperature
should be related to atransition to the regime of charge
carrier transport viaanarrow band situated in thevicin-
ity of Er.

In order to estimate the role of the effective mass
renormalization in the bands of FeSi, we can treat the
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results of our galvanomagnetic measurements [10]
using the relationships

RHG = Up_“n, (5)
Un,p = eT/mn,p’ (6)

which are applicable to semiconductorsin the region of
intrinsic conductivity. Taking into account the room-
temperature (300 K) carrier mobility ratio p,/p, = 1.5

and the relationship p, — 1, = A//T valid in the 150~
300 K range, we may evaluate the variation of the
m,/m, ratio in FeS with the aid of formulas (5) and (6).
Figure 12b shows the results of the calculation of the
valuem,/m, = f(T) for iron monosilicidein awide tem-
perature range (4-300 K). A twofold increase in the
m,/m, ratio observed for FeSi in the temperature inter-
val from 50 to 150 K correspondsto the transition from
electron states in the upper Hubbard band (conduction
band with the density of states ~13 states/eV per unit
cell; see, eg., [24]) to the States of the multiparticle reso-
nanceat E; (seetheinsetinFig. 14). AsisseeninFig. 12b,
the effective “weight gain” of electrons upon theforma-
tion of spin-polaron states at the Fermi level isjust what
accountsfor theinversion of sign of the Hall coefficient
aT=T,,= 70K [10] corresponding to the condition
m, = m,.

Another, quite correct estimate of the increase in
amplitude of the multiparticle resonance at Ex can be
obtained from the results of direct measurements of the
magnetic susceptibility of iron monosilicide (Fig. 12a).
Thetransition (accompanying adecrease in the temper-
ature) from the exponentia x(T) asymptotics observed
intheregion of T~ 150-500 K to ahigher susceptibility
level at T < 90 K (with alowance for the density of
statesdepicted intheinset in Fig. 14) must berelated to
an increase in the paramagnetic Pauli’s contribution to
X(T). In the approximation of a narrow rectangular
potential well (with awidth of 6 = E, = 6 meV) at the
Fermi level, the x,(T) value can be estimated as

d/2
1 of
Xu(T) = SCUENHER) [ FaptE ()

—3/2

Taking into account the x,(T) renormalization contribu-
tion due to the integral in the right-hand part of (7),
which allows for a 4- to 5-fold increase in x(T) with
the temperature (for details, see, e.g., [25]), the gain
factor directly describing the DOS renormalization
at the Fermi level can be evaluated as N*(Eg, T =
4.2 K)IN*(Eg, T =100 K) = 20.

Thus, the formation of spin polarons at low temper-
atures (T < 200 K) in FeSi is accompanied (within the
framework of the approach adopted), by the appearance
of a narrow multiparticle resonance at the Fermi level.
The resonance is characterized by the DOS vaue
N* (Ep) = 20 states/eV per unit cell. It should be noted
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that the conclusion concerning asignificant DOS renor-
malization in the energy gap region was independently
made in [26] based on the results of experiments with
electron tunneling in FeSi.

Within the framework of the approach adopted in
this study, we will estimate the parameters of the Hub-
bard model and the microscopic characteristics of spin
polaronsin iron monosilicide. For this purpose we will
use the results of calculations of the optical conductiv-
ity of FeSi [17] in comparison with the optical spectra
o(w) measured for iron monosilicide in a broad fre-
guency interval in the IR range [27]. A comparison of
data on the position and width of the o(w) maximum at
U/2 [11] leads to the following values of the model
parameters: U = 270 meV; 2D = 210 meV; U/D = 2.6;
and E; = U — 2D = 60 meV; note that both the energy
gap E4 and the model parameter U/D = 2.6 < 3 (deter-
mining the critical behavior of the system) are in good
agreement with the values predicted in [17].

Using a criterion analogous to the Stoner product
UN(Eg) > 1 for aband structure featuring multiparticle
spin-polaron resonance at the Fermi level (seethe inset
in Fig. 14), we obtain UN* (E;) > 5. Thus, within the
framework of the approach adopted for iron monosili-
cide, we may expect that the spin-polaron states must
lead to the formation of ferromagnetic microdomainsin
FeSi at low temperatures.

Under the conditions of a strong el ectron—phonon
interaction in FeSi [27], the width y" of the bands of
optical phonons observed in the 180-400 cm interval
can be used for estimating the charge carrier relaxation
time in the Hubbard bands. Using the values of y"" =
10 cm™ (for the bands at 198, 318, and 338 cm™), we
obtain an estimate of the relaxation time [@,_,,=
1/3y"" = 1.7 x 103 s, Using formula (6) and the values
of W, , = 46 cm?(V s) [10], we may calculate the
effective mass of the charge carrier for the upper and
lower Hubbard bands: my; (T = 200 K) = 50m, and

mj, (T=200K) = 75m. It should be noted that asimilar
value of m* = 50m, was obtained [28] from the results
of measurements of the optical conductivity o(w) for
FeSi in abroad (5025000 cm™) spectral range.

Using these values of parameters m; and mj and

taking into account the behavior of their ratio my; /my =
f(T) (see Fig. 12b), we obtain an estimate from above
for the effective mass of spin polarons at low tempera-
tures, corresponding to the states of the multiparticle
resonance at the Fermi level (see theinset in Fig. 14):
mg, < 100my,. It should be noted that the relaxation

times [@,_ [Janalogous to those calculated above can
be obtained by estimates based on the width of the line
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of polarized neutron scattering in FeSi: I' = V@, _,,[ =
34 meV [29].

The localization radius a, of the spin-polaron state
can be estimated using the known expression [30]

a, = 1l J2E,mg,. (8)

For the values of the polaron potential well depth (E, =
6 meV) and the spin polaron mass (mg, = 100my,) deter-
mined above, we obtain an estimate a, = 5 A. At the
sametime, the a, value in the region of the metal—insu-

lator transition can be estimated using the relationship
(see eg., [22])

a,~a(2nu/2D)* = 15a= 42 A, )

where parameter a was taken equal to r, = 2.75 A cor-
responding to the shortest distance between iron atoms
in the FeSi lattice. The good agreement between two
independent estimates of the spin polaron localization
radius in iron monosilicide is additional evidence for
the validity of the proposed interpretation.

4.3. Ground-Sate Formation
in the Spin Polaron System of FeS

As the temperature decreases to within the interval
T < 15 K, we may expect (taking into account the fer-
romagnetic character of exchange interactions due to
the spin density fluctuationsin FeSi [29]) an exchange-
induced magnetization enhancement as a result of the
polarization of the Fe centers in the vicinity of al
charge carriers occurring in the upper Hubbard band. In
FeSi at low temperatures, we may also expect the for-
mation of “ferromagnetic microdomains’ with dimen-
sions on the order of 10 A, possessing a nonzero total
magnetic moment. The concentration of these magnetic
particlesin FeSi is directly related to the concentration
of spin polarons and amounts (for the single crysta
studied) to 10*” cm=.

Under these conditions, we may readily explain the
aforementioned difference between the magnitudes of
the effects related to the normal and anomalous (mag-
netic) components in the values of low-temperature
magnetization and those in the Hall coefficient (Figs. 1la
and 1b). Indeed, the exchange-induced magnetization
enhancement in the vicinity of charge carriers occur-
ring in the upper Hubbard band must be accompanied
by the appearance and enhancement of the anomalous
component of the Hall coefficient, whereas the integral
magnetization component due to the “ferromagnetic
microdomains” with asize of about 10 A and aconcen-
tration of 10" cm~3is much less significant.

Thus, the formation of magnetic microdomains in
the iron monosilicide matrix at low temperatures (T <
T. = 15 K) can be expected to lead to the appearance of
localized magnetic moments (LMMs) in FeSi. Note
that a rather similar situation takes place in micromag-
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netic systems (spin glasses) [14] in a superparamag-
netic state. This state is characterized by the formation
of atotal magnetic moment for each cluster in a non-
magnetic matrix and isrealized immediately before the
spin glass phase transition. On the other hand, the
nature of the total LMM of microdomains in the two
cases may be significantly different.

We believe that the formation of magnetic particles
(microdomains) with LMMs in FeSi may account for
the appearance of an additional contribution to the
magnetization, which is manifested by the inflection
points in the M(T) curves at T = 15 K (Fig. 13b). In
addition, the appearance of correlationsin the spin den-
sity fluctuations and a change in the characteristics of
spin polarons in the vicinity of T, = 15 K must be
related to a sharp drop in the constant positive values of
the Hall coefficient and thermo emf (see, e.g. Figs. 12b
and 12c) [10, 11] in the temperature interval indicated.
Additional evidence to confirm the hypothesis concern-
ing the formation of ferromagnetic particles directly
from spin polarons may be provided by the coincidence
between the activation energy of the process of magne-
tization reversal (T, = 65.6 K = 6 meV) determined for
the system of magnetic microdomains in the FeSi
matrix from data on the temperature dependence of
parameter AR« (see the inset in Fig. 6) and the value
E,=6meV (Fig. 14).

For LHe temperatures, the Ly value of LMMs in
FeSi can be determined, for example, by analysis of the
magnetoresistance curves (Fig. 10). Applying relation-
ship (1) to the curves depicted in Fig. 10, we have
obtained the following values of the effective magnetic
moment for ferromagnetic microdomains formed in the
immediate vicinity of charge carriers: pg(4.2 K) =
5.3Ug, Hei(1.73 K) = 3.9g. Apparently, these g val-
ues should be considered asfirst estimates. At the same
time, these Y values, together with the results of pre-
liminary analysis based on the separation of the Pauli
and Brillouin low-temperature contributions to the
magnetization M(H, T) (see Fig. 13b and data in [12]
and [16]), allow us to conclude that the effective mag-
netic moment of the magnetic particles pg(T) variesin
a honmonotonic manner with a maximum in the vicin-
ityof T=T,,= 7K.

The effective magnetic moment of the ferromag-
netic microdomains formed in the FeSi matrix grows
up to ~(6-8)lz When the temperature decreases below
T<T.=15K. The g value passes through amaximum
and begins to decrease again when the temperature
dropsbelow T < T,,, = 7 K, which apparently indicates
that the interaction between spin polaronsis “ switched
on.” We believe that the character of variation of the
M (T) value, together with the other features of low-
temperature behavior (the shape of the magnetization
hysteresis curve, memory effects, relaxation phenom-
ena, etc.), may be evidence that a micromagnetic state
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Fig. 15. The angular profiles of the Hall resistance R(¢) at
L Hetemperatures approximated using formula (12) derived
within the framework of the uniaxia ferromagnet model.
Thetop inset shows the mutual arrangement of vectorsc, H,
and M* for an ellipsoidal magnetic particle.

of the spin glasstypeisredized inthe LMM system of
magnetic microdomains formed in the FeSI matrix at
T<T,=7K.

At the same time, we may expect that the physical
characteristics of iron monosilicide would exhibit a
much more complicated behavior because the magnetic
microdomains do not occupy fixed positionsin the FeSi
matrix. On the contrary, these microdomains play asig-
nificant role in the process of charge transfer at low
temperatures. Under these conditions, we cannot
exclude that, besides the anomalous physical properties
characteristic of the systems with micromagnetic
states, the system studied would exhibit the formation
of new spatially organized magnetic structures, mag-
netic orientation transitions, etc. In our opinion, it is
such a magnetic transition in the system of magnetic
spin polarons that accounts for the features observed in
the magnetic fields H = 35 kOe on the angular profiles
of the Hall resistance (Fig. 2b) and on the field and
angular dependences of the magnetoresistance (Figs. 10
and 11) in FeSi at LHe temperatures.

Thus, within the framework of the proposed inter-
pretation, the low-temperature anomalies in variation
of the Hall resistance (Figs. 1-9) and magnetoresis-
tance (Figs. 10 and 11) should be related to the process
of remagnetization in the system of ferromagnetic
microdomains—magnetic spin polarons of low con-
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centration (~10'” cm3) formed in the regime of coher-
ent Hubbard correlations in the crystalline structure of
iron monosilicide. We believe that an adequate quanti-
tative description of the Hall effect, with the separation
of the Ry(H, T) components, in FeSi is provided (to the
first approximation) by amodel considering two groups
of charge carriers and taking into account both the
usual contributionsto the Hall coefficient and the effect
of the exchange-enhanced electron contribution.

Under these conditions, the normal component of
the Hall resistance correspondsto the electron and hole
contributions linear in the magnetic field, whereas the
ferromagnetic character of the microdomainsformedin
the vicinity of electrons accounts for the anomalous
contribution proportional to the local magnetization
M* of these microdomains. As aresult, the Hall resis-
tance can be represented in the following form (for
wrt < 1):

0,—0,

2
H + 4TR, E%ﬂﬂ MO

Rd:_RH D

(10)

where R, =Ry, =Ry, = (pe)™, 0 = 0, + g, isthetotal
conductivity, p, e are the hole and electron concentra-
tions, and d is the sample thickness. At noted above,
this relationship is approximate and essentially repre-
sents the usua form of description of the normal and

anomal ous components Ry(H, T) = Ry H + R M(H, T)

written taking into account some special features of the
model adopted.

For asystem of single-domain ellipsoidal ferromag-
netic particles exposed to a magnetic field with the
strength H > H, = 2K /M* (H, is the anisotropic field,
K, isthe magnetic anisotropy constant), we may expect
ajumplike change of the local magnetization asafunc-
tion of the angle of rotation of the magnetic field vector
H. If the rotation axis coincides with the a-axis, while
c-axisisthe easy magnetization direction (see the inset
in Fig. 15), we may use the well known relationships
for the director cosines of H and M* vectors (see, e.g.,
[31]) to rewrite the above relationship as follows:

(11)
x [(1 +k+K*)cosp — tk— %kzacos% + gkzcosscl)}

wherek = 2K /M*H < 1.

Taking into account the structure of EQ. (11), we
may separately anayze the terms with odd powers of
cos:

R($) = A;(H, T)cosd

12
+Ay(H, T) cos3¢ +A(H, T) cossq). 12
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Fig. 16. Plots (a) showing coefficients A; versus magnetic

field strength calculated according to formulas (12), (13)
and (b) illustrating the determination of the anisotropic field

Ha = 2K/ Mg inFeSi at LHe temperatures.

Figure 15 shows an example of an approximation con-
structed within the framework of relationship (12) for a
set of experimental curves of the Hall resistancein FeSi
(Figs. 2 and 3). These curves represent analytical R(¢)
expressions calculated for a series of H values in the
15-35 kOe interval. The plots of A(H, T) coefficients
obtained in the course of the computational procedure
are presented in Fig. 16a.

Comparing the expressions in (11) and (12), we
readily derive the formulas for A,(H, T):

Ryo0,—C
A(H,T) = —FH%‘H

__|jjn|:| * 2
A D ME (L4 k+ 1),

RH[P f ZD )
AH, T) = —4n— g My % 5k

_ 4 RarPurf
As(H, T) = 4nd g M 2k
Asisseen, theratio of A; and A5 given by formulas (13)
can be used to estimate the anisotropic field H,(H) for
the ferromagnetic microdomains formed in FeSi:

Ha(H) = —H/E5A3 0

£ (14
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Fig. 17. Plotsillustrating the procedure of the separation of
the normal and anomal ous contributions to the Hall coeffi-
cient in FeS at LHe temperatures: (1) the sum of coeffi-
cientsA; + Az + As versusfield strength H according to for-

mulas (12) and (15); (2, 3) total amplitude AR versusH plot-
ted using dataon the (2) angular and (3) field dependence of
the Hall resistance.

At temperatures in the LHe interval (1.7-4.2 K), the
value of H, = 15 kOe (see Fig. 16b) remains virtually
constant within abroad interval of magnetic fields (H <
70 kOe).

Sincethe sum of coefficients A;, As, and A given by
formulas (13) appears as

A+ A+ A
_ 4 Rurguf, i Ruo,—0, (15)
4711 300 M 1 o H,

the procedure of separating the normal and anomalous
components in the Hall resistance within the frame-
work of the proposed model reduces to determining a
constant term and a coefficient at the linear term in the
expression As = A, + A; + A; = f(H). The plot of param-
eter A asafunction of the field strength is presented in
Fig. 17. For comparison, Fig. 17 (curve 2) shows the
estimates of the total contribution to the Hall resistance
obtained directly from the angular profiles of R(¢).
Parameter AR is calculated as the difference AR =
(/2)[R(0) — R(180°)] (see the notation in Fig. 15). In
addition, Fig. 17 (curve 3) shows a plot of the Hall
resistance versus the field strength H obtained by mea-
suring the output voltage on the Hall contacts in the
course of the magnetic field sweep for two opposite ori-
entations of the magnetic field vector H || c.

As can readily be seen, the estimates of the normal
and anomalous contributions to the Hall resistance of
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FeSi obtained within the framework of our model using
Egs. (11)—<(15) intheinterval H < 35 kOe coincide (at a

good precision) with the RYH and RiMg values deter-
mined by the usua methods of separating the corre-
sponding components in Ry(H, T). Taking equal contri-
butions in (15), we may roughly estimate the exchange
field (to within afactor on the order of (o,/0,)? -1~ 1:

HY = 41tMZ = H(R, = 0) = 500 kOe.

The estimate of Hg obtained for the ferromagnetic

microdomains in FeSi is considerably smaller as com-
pared to the typical values of exchange fields in ferro-
magnetic metals. For iron, estimates of the molecular

field givethevalue H (Fe) = 1.1 x 10*kOe[32].A sig-

nificant decreaseinthe Hg value for the ferromagnetic

microdomainsin FeSi (as compared to Fe) is quite nat-
ural, taking into account arelationship between the size
of monodomain regions and the correlation radius of
spin density fluctuations in these materials [6].

5. CONCLUSION

In concluding, it should be noted that the proposed
approach to the interpretation of the low-temperature
anomalies in the physical properties of iron monosili-
cide within the framework of the Hubbard model
apparently providesfor acertain level of understanding
of the physical processes and phenomena taking place
in this narrow-band-gap semiconductor featuring
strong quasiparticle interactions. In the regime of
strong Hubbard correlations, the spin-polaron descrip-
tion isquite effective both in elucidating the reasons for
a considerable increase in the effective mass of charge
carriers and for the DOS renormalization at the Fermi
level in FeSi, on the one hand, and in determining the
mechanisms of the formation of the weakly-magnetic
ground state in iron monosilicide at LHe temperatures.

From the standpoint of the model adopted, the tran-
sition to a coherent regime of spin density fluctuations,
involving the formation of magnetic microdomains
with a size of ~10 A on decreasing the temperature to
T <T.=15K, isgeneraly analogous to the superpara-
magnetic behavior of micromagnetic metal alloys (spin
glasses). The appearance of localized magnetic
moments of the ferromagnetic microdomains is appar-
ently followed by the transition to the state with frozen
moments at T,, = 7 K. It should be emphasized that the
study of coherent effects in the system of spin polarons
with alow density (~10% cm™3) ispossible only in high-
guality single-crystal FeSi samples.

The quantitative estimates of the model parameters
and the microscopic characteristics of spin polarons
presented above are quite realistic. However, for eluci-
dating the nature of the ground state formation in FeSi
in more detail, it is necessary to measure the low-tem-
perature quasioptical spectraof FeSi inthefar IR range
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(€50 cm™?) in combination with high-precision mea-
surements of the magnetic properties of single-crystal
iron monosilicide at LHe and intermediate tempera-
turesin strong magnetic fields (up to 500 kOe).
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Abstract—The singularities in the spectrum of bulk acoustic phonons polarized in the sagittal plane areinves-
tigated on a plate made of a uniaxial ferroelastic material undergoing a proper ferroelastic transition from the
paraelectric to the ferroel ectric phase. The singularities are induced by anomalies in the reflection of this type
of normal elastic vibrations at the crystal boundary. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

One of the most intriguing features of the interac-
tion of an elastic wave polarized in the plane of inci-
dence with the crystal surface is the possibility of the
simultaneous excitation (under definite conditions) of
four normal elastic waves characterized by the same
excitation frequency w and the same component of the
wave vector k on the crystal surface [1]. Two of these
waves belong to the spectrum of a quasi-transverse
wave polarized in the plane of incidence (the acoustic
birefringence effect without a change in the branch).

Thetheory of thiseffect developed by Balakirev and
Gilinskii [2] for a cubic crystal shows, among other
things, that if the medium in which phonons are propa-
gating possesses € astic anisotropy, the reflection and
refraction of a normal elastic wave polarized in the
plane of incidence from the crystal boundary are unam-
biguoudy determined by the shape of its surface of
reciprocal phase velocities. For example, if the section
of such an isofrequency surface by the plane of inci-
dence of the wave is a convex curve, the reflection
(refraction) of a quasi-longitudina as well as a quasi-
transverse elastic wave from the crystal boundary is
gualitatively the same as in the case of an elastically
isotropic medium. If, however, the anisotropy of elastic
propertiesis high enough for the formation of segments
with anegative Gaussian curvature on the section of the
isofrequency surface by a quasi-transverse elastic wave
(the surface of the wave vectors of a quasi-longitudinal
wave is aways convex), the birefringence effect may
take place. In other words, two quasi-transverse elastic
waves identically polarized in the plane of incidence
can be formed. These waves possess the same fre-
guency and the wave vector component in the plane of
the interface between two media, but have different val-
ues of the wave vector component along the normal to
the interface.

A similar effect can also be realized in piezoelectric
crystals possessing adefinite symmetry for atransverse
elastic wave polarized at right angles to the plane of
incidence. A comparison of these two cases shows that
the necessary condition for the formation of such
anomalies on the surface of the wave vectors of aquasi-
transverse elastic wave is the presence of an accompa-
nying quasi-longitudinal elastic surface wave that does
not belong to natural vibrations of the system, but is
formed only in the presence of a bulk elastic quasi-
transverse wave incident on the crystal surface. In the
case of piezoelectric crystals, the formation of the bire-
fringence effect without a change in the branch for a
shear-type elastic SH wave is associated with the pres-
ence of an accompanying surface vibration of the elec-
trostatic or magnetostatic type. In al cases, the inclu-
sion of the accompanying surface vibration is of para-
mount importance for an analysis of the interaction of
an acoustic wave with the crystal surface. The presence
of the surface vibration makes possible the formation of
parabolic points (segments with zero curvature) aswell
as concave segments (possessing a negative Gaussian
curvature) on the curve appearing as aresult of the sec-
tion of the refraction surface by the sagittal plane. From
the viewpoint of the reflection (refraction) of a bulk
elastic wave from the crystal boundary, the presence of
such asegment may lead, for example, to the vanishing
of the accompanying surface vibration and to the for-
mation, along with the normal reflected wave, of an
auxiliary bulk elastic wave with the same polarization
(the effect of the multibeam reflection of waveswithout
a change of the branch) [2].

Naturally, the local geometry of the wave vector sur-
face of the type under investigation for normal bulk
vibrations of an unbounded crystal must be manifested
in the spectral structure for this type of normal bulk
vibrations in a bounded crystal since the spatial distri-
bution of the amplitude of the bulk vibrations is the
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result of the interference of the bulk waves incident on
the sample surface and reflected from it.

However, the conditions required for the implemen-
tation of this effect (the formation of a segment with a
negative Gaussian curvature on the surface of the wave
vectors of anormal elastic wave) impose quite stringent
constraints on the relative value of elastic interactions
inacrystal. Consequently, we can expect that such con-
ditions are observed primarily in the vicinity of noniso-
morphic structural phase transitions of the soft mode

type.

It iswell known [3] that there exists a wide class of
continuous structural phase transitions associated with
achangeinthecrystal symmetry, for which one of non-
diagonal (shear) components of the elastic deformation
tensor u,, can be chosen as the order parameter. In the
model of an infinitely large crystal, this leads to the
possibility of an abrupt deceleration (softening) of the
phase velocity of the shear wave near the stability
boundary of the given crystalline state provided that its
wave number differs from zero only dlightly, while the
polarization and the direction of propagation are con-
nected in acertain way with the symmetry properties of
the order parameter [4-6]. In the vicinity of a shear-
type structural phase transition in a finite sample, the
interference effects for such a softening acoustic wave
multiply reflected from the sample surface consider-
ably modify the spectrum of surface as well as bulk
elastic modes of the corresponding types[7-9]. Similar
singularities in the phonon dynamics of a bounded
crystal may also be observed in the course of a phase
transition in polarized mediaif it isaproper ferroelastic
transition. In other words, the (generally) multicompo-
nent order parameter for such a transition is trans-
formed according to the same representation as for a
certain (generally) linear combination of the deforma-
tion tensor components u;, [8, 10, 11]. A detailed anal-
ysis of the principal anomalies emerging in the phonon
spectrum near the stability boundary of agiven crystal-
line state is of not only academic, but also of practical
importance since, first, it allows us to study the critical
dynamics of the crystal using the well developed meth-
ods of acoustic and optical spectroscopy, and second,
there exists a number of crystals for which a similar
structure of the phonon spectrum can be formed even
far away from the region of astructural phase transition
in view of the strongly anisotropic nature of intermo-
lecular interactions in the medium (quasi-low-dimen-
siona crystals), or due to an artificialy created addi-
tional translational symmetry (superlattices, etc.).

It is especialy interesting to analyze the rearrange-
ment in the vicinity of a continuous structural shear-
type transition of the fraction of phonon vibrations for
which the displacement vector u of the polarization lat-
ticeliesinthe sagittal plane of the crystal. If the sample
isamechanically free plate, these waves are referred to
as Lamb waves, and if the plate is a part of an acousti-
cally continuous structure of the layer + half-space or
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half-space + layer + half-space type, the waves are
called the generalized Lamb waves [1].

Most of the publications devoted to the effect of the
anisotropy of elastic moduli on the dispersion proper-
ties and the propagation conditionsfor Lamb waves are
associated with the study of a Rayleigh wavein a semi-
bounded crystal. It iswell known that asregards elastic
vibrations of the plate, this corresponds to the short-
range approximation for the spectrum of surface Lamb
waves, which consists of two branches [13, 14]. The
main effects obtained by using this model and associ-
ated with the influence of the elastic anisotropy on the
spectral structure of a surface Rayleigh wave can be
formulated as follows (we assume that the propagating
elastic wave is not dipole-active, i.e., is not accompa
nied by a magnetostatic or electrostatic field):!

(1) the phase velocity decreases[14];

(2) the polarization tends to the transverse orienta-
tion [14];

(3) the penetration depth of the wave increases (the

extent of wave localization near the crysta surface
decreases) [14];

(4) asmooth transition from a generalized to a sur-
face Rayleigh waveis possible[7, 8];

(5) a one-to-one correspondence exists between the
parameters of the surface Rayleigh wave and the struc-
ture of the surface of reciprocal phase velocitiesfor the
corresponding type of normal elastic waves in an
unbounded crystal [7, 8].

Asregardsthe analysis of the effect of elastic anisot-
ropy on the spectrum of Lamb waves in a plate in the
long-wave limit, the main results obtained in this direc-
tions can be formulated as the following conclusions
(for nondipole-active waves):

(1) all the modes belonging to the spectrum of
quasi-transverse Lamb waves in the vicinity of a con-
tinuous shear-type structural phase transition are
slowed down [7, 11];

(2) for a given value of the wave number and the
ratio of elastic moduli in amechanically free plate, one
or two surface Lamb waves can propagate;

(3) as the wave number k- decreases, the dispersion
curve for a symmetric surface Lamb wave may
smoothly go over to the dispersion curve of abulk lon-
gitudinal Lamb wave withv =1 for k5 # O;

(4) for acertain v = 1, the point of degeneracy of a
Lamb wave and atransverse el astic wave of the SH type
can be formed.

However, till now

(2) the lower (longitudinal and bending) modes of
the Lamb spectrum of an anisotropic plate were mainly
considered;

1 This can be observed not only in nonpolar media, but also, for
example, for one-component dipole-active ferroelastic phase tran-
sitions for a definite orientation of the plane of propagation of an
elastic wave.
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(2) the effects associated with the influence of spa-
tial dispersion, which are known to affect significantly
the critical dynamics of the order parameter under
phase transitions of the soft mode type were ignored
(the class of continuous shear-type structural phase
transitions are just an example of such transitions);

(3) only anisotropic plates with mechanically free
boundary conditions were considered in spite of the
fact that an analysis of the peculiarities in the rear-
rangement of the spectrum of generalized Lamb waves
is undoubtedly important in connection with consider-
able advancesin the physics of composite materias;

(4) the relation between the spectra structure of
bulk Lamb waves and peculiarities of reflection of nor-
mal elastic waves polarized in the plane of incidence at
the sample boundary was not investigated. At the same
time, this type of elastic vibration of an anisotropic
plateisthe result of the interference of quasi-transverse
and quasi-longitudinal phonons which can be trans-
formed into one another as a result of multiple reflec-
tions from the plate boundaries. Both components of
the lattice displacement vector u lie in the wave inci-
dence plane and have a multipartite structure.

An additional argument in favor of a considerable
effect of the configuration of the refraction surface on
the spectral structure of bulk elastic vibrations is also
the fact that the presence of a segment with a negative
Gaussian curvature on the surface is a sufficient condi-
tion for the formation of a semi-bounded hexagonal
crystal of a generalized Rayleigh wave for a mechani-
cally freesurface[7, 8]. At the sametime, it was shown
[12, 13] that the dispersion relation for the symmetric
branch in the spectrum of surface Rayleigh waves (in
the short-wave limit) for a plate made of the same crys-
tal smoothly goes over (for k; # 0) into the dispersion
curve for a bulk longitudina Lamb wave upon a
decrease in the wave number k.

However, the relation between the local geometry of
the isofrequency surface for the normal elastic vibra-
tions of an unbounded crystal and the spectral structure
of Lamb phonons in a crystal plate undergoing a con-
tinuous shear-type structural phase transition has not
been investigated as yet.

In connection with what has been said above, the
present work aims at determining the relation between
the configuration of the wave vector surface for normal
elastic vibrations polarized in the plane of incidence in
an unbounded crystal and the anomalies in the spec-
trum of bulk Lamb phonons, using as an example aone-
component proper ferroel astic phase transition in afer-
roelectric plate without a center of symmetry (i.e., dis-
playing the piezoelectric effect) in the paraelectric
phase [3]. The subject matter of the paper is asfollows.
Section 2 contains basic relations as well as the formu-
lation of the boundary-value ferroelastic problem. An
analysis of the spectral structure (in the absence of spa-
tial dispersion) of bulk acoustic waves polarized in the
sagittal plane of a crystalline ferroelectric film under-
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going a structural phase transition is presented in Sec-
tion 3. The results of the anaysis of the shape of the
section of the isofrequency surface for normal elastic
vibrations in the ferroelastic material under investiga-
tion by the sagittal plane and the relation between this
shape and the observed anomalies in the phonon spec-
trum are considered in Section 4. In Section 5, the sin-
gularities in the spectrum of generalized Lamb waves
induced by the presence of arhombic anisotropy in the
sagittal plane are analyzed. Additional anomaliesinthe
phonon spectrum associated with correlation effectsin
the ferroelectric subsystem of the crystal (spatial dis-
persion), which must be taken into account inthe vicin-
ity of the phase transition, are considered in Section 6.
The main results obtained in this work are formulated
in the Conclusion.

2. BASIC RELATIONS

Following [4], we consider the transition from the
paraelectric to the ferroel ectric state, which takes place,
for example, in KDP crystalsat T — T, (T¢ is the
Curie temperature) as an example of a one-component
ferroelastic phase transition. The structure of the corre-
sponding thermodynamic potential can be presented in
theform [3, 14]

_ 0 2 b2
W = E(DPZ) +§Pz+ypzuxy

1 2 2 1 1
+ écll(uxx + uyy) + §C33uzz + ClZUXXUyy ( )

2 2 2
+ ClS(uxxuzz + L'lzzuyy) + 2C44(uzx + uzy) + 2C66uxy'

Here, 3, b > 0, and y are the constants characterizing
gpatial dispersion, anisotropy, and the piezoelectric
interaction, respectively, and ¢, are the elastic interac-
tion constants.

Since we are interested here in the nondipole-active
dynamics of the model of theferroelectric crystal under
investigation, we must put, in accordance with (1), k 0 xy
(k, = 0). In this case, the corresponding closed system
of equations connecting only the polarization vector P,
and the vector u of elastic displacements of the lattice
[15] hasthe form

3w _ 0P,
3P,  ot?’

(p isthe density). In the case of abounded ferroelectric
plate, the system of dynamic equations (2) must be sup-
plemented with the required boundary conditions. The
boundary condition for the polarization vector P ischo-
sen in the form of the relation [15]

6%—%+aPZ =0, T = =d, (©)
corresponding to a partial (a # 0) pinning of the polar-
ization vector on both surfaces of the ferroelectric film

O’y _ _o'w
p6t2 - 0%, 0U;y

)
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under investigation. As regards the elastic boundary
conditions, wewill henceforth assume that the relations
corresponding to a boundary with tangential slip hold
on both surfaces of the plate [1]:

&jk%i\inkn' =0, uth=0 (@]
(€ isaunit antisymmetric tensor). It iswell known that
thistype of boundary conditionsisrealized on theinter-
face between two solids with completely incoherent
conjugation [16]. In this case, we assumein (4) that the
elastic medium bordering the plate along the normal to
the interface can be regarded as an absolutely rigid
medium (u - n = 0). Thus, we are dealing here with a
layered structure of the half-space + layer + half-space

type.

Calculations show that the spectrum of coupled fer-
roelagtic vibrations in the model of the unbounded ferro-
electric material under investigation with u, k [1[001] and
P, # 0 in the paraelectric tetragonal phase can be pre-
sented in the form

(A -@)(Ap-w’) = AL, (5)

(f\ is the Chrigtoffel tensor). While deriving relation (5),
we assumed that in the corresponding components of
the Christoffel tensor, the elastic modulus cgg is multi-
plied by the parameter

o - wp + K —

2 2 2,2 2"
W + Wpe + CK —w

Here, w, isthe ferroelastic gap, wy is the activation of
the spectrum of polarization-induced vibrations, which
is associated with the uniaxial anisotropy b, ¢® = d/f,
and k2= K + K’ . It can easily be proved that if we dis-
regard the piezoelectric interaction (y — 0), Egs. (5)
can be factorized, and the obtained dispersion relations
describe two physically different sets of natural vibra-
tions of the dynamic system under investigation, each
of which describes, respectively, the spectrum of
phonons in a nonpolar tetragona or cubic crystal,
which are polarized in the plane of incidence, and the
spectrum of bulk vibrations of the z component of the
electric polarization vector P disregarding the effect of
thelattice. For y# 0, expression (5) makesit possible to
determine the relation between the wave vector compo-
nent normal to the film surface, (n [ [001]), character-
ized by frequency w and the wave number k- of aprop-
agating bulk elastic wave; i.e., it can be regarded as the
characteristic equation for the solution of the boundary-
valueproblem for n, u, k O xy. It followsfrom relation (5)
that the structure of the component of the lattice eastic
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displacement vector u normal to n for n ||[100] aswell
asn ||[110] can be presented in the form

3

u= % Aexp(-g,0)exp(iot—ikiT) (6)

v=1

(t istherunning coordinate along the direction of prop-
agation of the wave T 0 n; g = —(k - n)?). Using rela-
tions (5) and (6), we can classify the possible types of
propagating elastic waves depending on their localiza-
tion near the surface of amagnet ({ > 0) defined by q; ».
In order to simplify subsequent calculations, we will
formulate a number of simplifying assumptions com-
plying with the requirements of the present work.

(1) Since the softening of an acoustic surface wave
is known to occur in the long-wave region of the spec-
trum of ferroelastic vibrations, we will henceforth
assume that the frequency and the wave number of the
phonons under investigation are such that the following
relation holds to a high degree of accuracy:

2 2 2
W < Wpe + Wy @)

(the dynamics of the polarization subsystem of the
crystal will be analyzed in the quasi-static limit). As a
result, the boundary-val ue problem for the zcomponent
of the electric polarization vector P assumes the form

2 2
Czar(zz-l-%%bz_(mg*-wie)ljz = yf_luxy’
€S
6%—'22+aPZ =0, {=zd

If we use the apparatus of Fredholm’s equations, we
can use Green's function G(¢, t) [17] of the form

G(t, )
“sinh(p(t—2))sinh(pt-2.), -ds<T<t,
“sinh(p(t—2.))sinh(p(t-2)), t<Z<d,

A=psinh(pt—2.)), P =wo+whe+ ks, (9)

5-d

ad " = peoth(p(d. —d)), ad" = pcoth(p(Z_+d))

to eliminate P, from the equations for the lattice dis-
placement vector u both for n ||[100] and for n ||[110].
As aresult, the boundary-value problem under investi-
gation can be reduced to an analysis of only the elastic
boundary-value problem for the components of vec-
tor u.

(2) Since the analysis of the conditions for the
reflection (refraction) of elastic waves polarized in the
plane of incidence shows that achange in thelocal cur-
vature of the reciprocal phase velocity surface is possi-
ble only for the quasi-transverse branch of the spectrum
of normal elastic vibrations of an unbounded crystal,
wewill assume that the velocities 5 and s, of quasi-lon-
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gitudinal and quasi-transverse acoustic waves are con-
nected through the condition

s/s < 1. (10)

Subsequently, wewill confine our analysisto the singu-
larities in the phonon spectrum of a ferroelectric plate
taking into account only the quasi-transverse branch in
the spectrum of normal elastic vibrations of phonons
polarized in the plane of incidence (k2 = kf + ki, tand =
ki/k,). Thus, the corresponding dispersion relation for

the spectrum of quasi-transverse phonons with u [J xy
in an unbounded crystal can be presented in the form

W= A1+ rsin28), r s(l‘”r)]w, (11)

wheren = 2¢40/(C; — C10), & = Cg60/cy;, and sg = CeeB/p
for n ||[100]. On account of the above approximations,
relations (1), (2), and (6) show that the following types
of propagating normal elastic vibrations (c — 0) are
possible in the frequency range (11) depending on the
magnitude and sign of parameters  and r both for
n ||[100] and for n || [110].
. Bulk wave of the first type (¢ > 0; g5 < 0):
W’ >s5k3, n||[100],

2 25052”[ ] (12)

W >s5(1+r)ky, n||[110].

1. Generalized surface waves (g = (q3)"):
W<l =4[ r L+ )P o1,

n || [110],

w’ < Wi =4s7kE[|r| 2 ~r]],
r<0, n}||[100].

r>0, (13)

1. Surface waves (q; , > 0):

Wl <w’<s’ki, r<0, [ <4, n|[110],

W<’ < (1+r)k3, (14)

0<r<1/3, n||[100].
IV. Bulk waves of the second type (g , < 0):
W<’ <sk:, |rl<V4, r<0, n||[100], as)
W <w’<s(1+r)k3, r>13, n|[[110].
If, however, r > 0for n ||[100] or r <Ofor n||[110], an
analysis shows that al the relations obtained above

remain valid except that now we must put w’ =0 for

any kg. In other words, the formation of generalized
surface waveswith k [J xy isimpossiblefor n ||[100] as
well asfor n [|[110]. Thus, the necessary condition for
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the propagation of bulk phonons corresponding to the
guasi-transverse branch in the spectrum of normal elas-
tic waves along the ferroelectric plate under investiga-
tion is that their frequency w and the wave number k;
must lieinregion | or 1V. In this case, atripartite elastic
wave having the polarization in question and propagat-
ing aong the plate has at |east one bulk component.
Multiple reflection of this type of phonons from the
plate boundary and their interference lead to the forma-
tion of normal elastic modes polarized in the sagittal
plane of the ferroelectric film under investigation
(Lamb waves). The next section will be devoted to an
analysis of the main singularities in the phonon spec-
trum of aplate made of auniaxial ferroelectric material
in the paraglectric phase, undergoing the one-compo-
nent ferroelastic phase transition 42m — mm2 disre-
garding the correlation effects (we assumethat & — 0

and 8 = wop /(W + Wie)).

3. ELASTIC VIBRATIONS POLARIZED
IN THE SAGITTAL PLANE

It follows from the boundary-value problem (4) that
the spectrum of bulk ferroelastic vibrations with k [ xy
(u O[001]) can be presented in this case in the form

Nl._i_ D[M.DZ_ N D]JZ
2 20 a0
Ni(kp) = AL+ A%,
No(kp) = /\91<1/\*2<2—(/\,1rz)21

/\;kkE/\ikv kx = m\,, ky = kD1 kz = 01
where A\, is the Christoffd tensor, n ||[100], m, = Tv/2d,
v =1, 2, ... Sincethe corresponding characteristic equa-
tion (4) isbiquadraticink - n, wewill simplify our ana-

Iytical calculations by assuming henceforth that the fol -
lowing conditions are satisfied:

Ci1, C12 > Ceg. (17)

In thislimit, relations (11) and (16) can be presented in
theform [2]

Qko) =

(16)

0’ = sok3(1 + rcos’29),

O K2 —m?)°0 (18)
Qi(ks) =ikt i+ e
otm, O
for n ||[110] and
W’ = Sok3(1+rsin°29),
0 KEmZ O (19)
Q¥(k.) = S0+ + 4r -
O k5 + miO

for n || [100]. An analysis of relations (18) and (19)
shows that the shape of the dispersion curve of the bulk
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mode with number v in a crystal with a preset ratio of
elastic moduli (disregarding the piezoelectric interac-
tion) changes qudlitatively depending on the orientation of
normal n to the film surface (n ||[200] or n ||[110]) in the
plane (001) of wave propagation. An analysis shows, in
particular, that the phonon spectrum (18), (19) under-
goes the most significant transformation when the fol-
lowing condition is satisfied for the elastic moduli of
the crystal even if we disregard the piezoel ectric inter-
action (y=0):

n>1 r<o0 (20)

(the condition & < 1 is observed everywhere). In this
case, an analysis of relations (18) and (19) shows that
the dispersion curves describing the spectrum of bulk
guasi-transverse elastic vibrations for n || [110] corre-
spond to forward-type waves (0Q,/0k- > 0) irrespective
of the mode number v and the magnitude of the wave
number k5 for |r| < 1/3. In this case, two points of
inflection k,, , # O, which are real-valued roots of the
equation

0Q2/0k% = 0,

may appear on these curves. However, as we approach
the region of a ferroelastic phase transition, the points
of inflection on the dispersion curve with a fixed value
of the mode number v start converging and merge into
one point for n =1 (r = 0). Asthecrystal approachesthe
phasetrandgition point (the vaue of |r|increases, r > 0), the
dispersion curve under investigation becomes more and
more gently sloping and may ultimately acquire amin-
imum for r > 1/3 and for k; = k,.,,, where

ki, = m[(4r/(1+1))°-1]. (21)
Asaresult, for k5 > k,,,, the corresponding segment of

the dispersion curve (18) describes a forward-type
wave (0Q,/0k- > 0), while for k < k,,, a backward-

type wave (0Q,/0k- < 0) propagates in the film under
investigation. Moreover, for r > 1/3, a point of cross-
over (intersection) of the corresponding dispersion
curves may appear for the modes with numbersv and p
of spectrum (18) for ky =k, # O:

Qyu(kup) = Qp(kyp).

In the case when the conditionn > 1 (r <0) issatis-
fied in afilm with the normal n ||[100], the transforma-
tion of spectrum (19) for the bulk phonon type under
investigation is qualitatively different. An analysis
shows that in contrast to the case (18) with n || [110]
considered above, the long-wave asymptotic form of
the dispersion curve describing a mode with a fixed v
for the given geometry of propagation of an elastic
wave may depend considerably on the value of |r| even
for k; — 0 and far away from the structural phase
transition region. For example, a backward-type wave
(0Q,/0k; < 0) isformed irrespective of the mode num-
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ber v for |r| > /4, whilefor |r| < 1/4, the corresponding
dispersion curve describes aforward-type wave for any
value of the wave number k-. As the regards the shape
of the dispersion curve for a mode with number v for
[r| > 1/4, calculations show that for k; =k, ,,, where
ey = my(2r|"*-1), (22)
aminimum is formed on the curve. Besides, for modes

with numbersv and p (v # p), apoint of degeneracy of
the dispersion curves Q, (k) and Q, (k) belonging to

spectrum (19) can be formed for kg = Kj, .

Asthe crystal under investigation approachesthe point
of the ferroelastic phase trangition, |r| starts decreasing,
quantity r remaining negative (r — —1/4, r > -1/4). As
aresult, in accordance with (19), the wave numbersk, ,,

and k,,, corresponding respectively to the point of the
minimum on the dispersion curve with number v and
the point of degeneracy of the dispersion curves Q,, (k)
and Q,(k-) belonging to the spectrum decrease in abso-
lute value. As we approach the point of the shear-type
structural phase transition under investigation, the
absolute value of r becomes smaller and smaller, and
for any r from the region —1/4 < r, al the dispersion
curves described by relations (19) and belonging to the
spectrum of Lamb waves of thetypein question arefor-
ward-type wave (0Q,/0k- > 0) irrespective of the mode
number v and the wave number k-. For any mode num-
ber v and p, the following inequality is observed:

Q,(kn) # Qp(kp).

An analysis of relations (18) and (19) showsthat the
rearrangement of the spectrum for the bulk phonons
under investigation in the vicinity of the continuous
shear-type structural phase transition also takes place
when the crystal has the properties of an elastically iso-
tropic medium (n=21orr =0) fory=0. Inthiscase, in
accordance with (18) and (19), the shape of the disper-
sion curves belonging to the spectrum of acoustic
phonons of the given typeis determined by the inequal-

ities 9Q,/0k > 0 and 82Q,/dk? > 0 both for n || [100]
and for n ||[110] irrespective of the value of k; and the
mode number v (0Q,/0k; — 0 for k; — 0). The
existence of the piezoelectric interaction in the crystal
(y# 0in (1)) leads to different transformations of the
spectrum of Lamb phonons of the type (18), (19) under
investigation for different orientations of n in the (001)
planein the vicinity of the ferroelastic phase transition
in question (T — T). For example, for n ||[100], the
shape of the dispersion curve of the mode Q, (k) with
afixed v isthe same asfor y = 0: it corresponds to afor-
ward-type wave 0Q,/0k; > 0. However, as the value of r

increases, two points of inflection (92Q,/0k? > 0) can be
formed for k,,, # 0. On the other hand, if the normal n to
the surface of an dasticdly isotropic (for y = 0) plate coin-
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cides with the direction [110] for y # 0, an analysis of
relations (18) shows that, first, for r > 1/3, a minimum
may appear on the dispersion curve from (18) with
number v for k; # 0 and, second, a point of crossover
for the dispersion curves with numbersv and p belong-
ing to spectrum (18) can beformed for k,, # 0 [k, isthe
real-valued root of the equation Q, (k) = Qg(k)].
For r > 0, the pattern of rearrangement of the spectrum
of bulk quasi-transverse phonons polarized in the sagit-
tal plane of an anisotropic platewith n ||[100] or n ||[110]
may also be qualitatively similar to that considered
abovefor r =0andy=0. Tothisend, the conditionr < 1/3
for n ||[110] or r < V/4 for n ||[100] must be observed
inthelimity=0.

Finally, an analysis of relations (18) and (19) shows
that if the elastic properties of the crystal type under
investigation satisfy the conditionsr > 1/3 for n ||[110]
orr <1/4for n ||[100] even in the absence of a piezo-
electric interaction (y = 0), the shape of the dispersion
curves of modes (18) and (19) describing the spectrum
of bulk quasi-transverse elastic vibrations does not dis-
play any qualitative changes as we approach the stabil-
ity boundary for the given crystalline state irrespective
of the direction of normal n in the sagittal plane of the
film (n]|[100] or n ||[110Q]). In particular, for n ||[100],
the dispersion curves of spectrum (19) correspond
to forward-type waves (0Q,/0k; > 0) for arbitrary v

and kg. If the relation agf/aké = 0 holds for ky # O,

two points of inflection can be formed on the corre-
sponding curve describing the mode with a given num-
ber v. For n ||[110], the dispersion curve describing the
mode with a number v from spectrum (18) has a mini-
mum for k; # 0. In other words, it describes a back-
ward-type wave (0Q,/0ky < 0) in the long-wave limit
ky — 0. Besides, if the condition Q,(kp) = Qy (ko) is
satisfied for the modes with numbersv and p, a point of
degeneracy of the phonon spectrum under investigation
will be formed.

The above analysis shows that the physical reason
behind the presence of a minimum on a dispersion
curve belonging to the spectrum of bulk Lamb phonons
of the type under investigation is the presence of an
accompanying elastic vibration of the quasi-longitudi-
nal type in the given region of frequencies and wave
numbers. If thisaccompanying vibration istransformed
into an auxiliary bulk wave for certain values of w and
ko, the formation of a crossover point on dispersion
curves belonging to the spectrum of the Lamb phonons
in question becomes possible for k # 0.

Since the presence of an accompanying surface
vibration in a crystal is essentialy determined by the
configuration of the refraction surface for the corre-
sponding normal elastic wave in an unbounded crystal
[1, 2] (see Introduction), we devote the next section to
an analysis of the relation between the local geometry
of the refraction surface for a normal quasi-transverse
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elastic wave in an unbounded cubic crystal, which is
polarized in the plane of incidence, and the anomalies
in the spectrum of bulk Lamb phonons determined above
for aferroelagtic plate in the paraphase with n || [100] or
n ||[110] and k [J xy.

4. RELATION WITH THE SHAPE
OF THE REFRACTION SURFACE

Since the wave vector of the wave described by rela-
tions (18) and (19) liesin the (001) plane, we must ana-
lyze, using relation (11), the shape of the cross section
of the surface of reciprocal phase velocities of the
guasi-transverse (u 0 [001]) elastic wave (w = const) by
the (001) plane in the k space. Taking into account
approximations (7) and (11), we can write the corre-
sponding expression in the form

2
> _ A

e P B (23)
S(1+rsin"29)

(K;/k2=sim9, k?= k; + k5, & —= 0). An andlysis of
the extremum points of the curve described by (23) [1]
and their comparison with the singularities in the shape
of the dispersion curves (18) and (19) discussed above
show that the presence of alocal minimum on the dis-
persion curve of the waveguide phonon (18), (19) under
investigation is connected with the formation of a seg-
ment with the maximum negative curvature (at & = 14
forr>1/3and a9 = 0for r <—-1/4) on the correspond-
ing cross section of the refraction surface for a normal
guasi-transverse wave of the same polarization (23) in
an unbounded crystal. The position of this segment on
curve (23) inthe k spaceis determined by the condition
9 = 0 and is unambiguously connected with fre-
guency w, the mode number v, the film thickness 2d,
and the wave number k; of the waveguide phonon (18),
(19) under investigation.

If we consider the section of curve (23) by the
straight lines determined by the conditions k, = const
and k, = const, an analysis of the common points of
such a straight line and the refraction surface for (23)
makes it possible to obtain information on the spectral
structure of the corresponding waveguide phonon for a
given wave number k, frequency w, aswell as a mode
number v (curves (18) and (19) in the present case). In
particular, if the direction of normal n to the film sur-
face coincides with the ordinate axisin the plane of the
wave vectorsk,, k, (n [|[100]), the number of common
points of the straight line k, = k; and curve (23) deter-
mines the numbers v of modes with the same wave
number k- and frequency w in the spectrum of the bulk
Lamb phonons under investigation, which can propa-
gate along the [010] axis of the given crystalline plane
of thickness 2d (i.e., crossover points). In the same
geometry, the presence of common points of curve (23)
and the straight line k, = m, allows us to determine the
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wave numbers k- for the given type of aLamb waveguide
phonon with a fixed mode number v and frequency w,
which can propagate along the plate having a thickness
2d and made of the ferroelectric under investigation.
Since the outward normal to the refraction surface coin-
cides with the direction of the group velocity of the
wave [1], the joint analysis of relations (18), (19), and
(23) shows that the study of the local geometry of the
cross section of the isofrequency surface (23) makes it
possible to judge which type of the wave (forward or
backward) corresponds to the relevant segment on the
dispersion curve of awaveguide phonon, which can be
determined from (18) and (19) by specifying w, m,, and
ko. For example, in the case under consideration, when
k || [020] (n || [100]), the bulk Lamb wave (19) propagat-
ing along the film is a backward wave if the projection of
the outward normal to the refraction surface on the direc-
tion [100] has negative sign at the point of intersection
of thissurface with the straight linek, = m,. If, however,
the projection is positive, the corresponding wave for
given k, w, and m, isaforward wave. If the component
along thex axisisequal to zero for acertain k; # 0, such
asgituation is possible when the dispersion curve for the
mode having number v and belonging to the spectrum
of bulk vibrations propagating along the surface of the
film of thickness 2d (n || [100]) has an extremum for
this value of the wave number k. The sign of the local
Gaussian curvature of curve (23) at this point deter-
mines whether the point is a maximum or a minimum.

Till now, we carried out the analysisfor acrystaline
plate for which the elastic properties along the normal
to the surface and along the direction of propagation of
an elastic wave with a preset polarization were identi-
cal. In this connection, it would be interesting to find
out how the eagtic anisotropy in the sagittd plane affects
the above necessary conditions for the existence of the
point of crossover k,, aswell asthe point of minimum Kk,

(the formation of a backward wave 0Q,(k-)/dk- < 0) on
the dispersion curve for the mode Q, (k) belonging to
the spectrum of bulk Lamb phonons in an anisotropic
plate. For this purpose, wewill consider in the next sec-
tion the effect of rhombic anisotropy in the sagittal
plane of an anisotropic plate on the conditions of the
formation of the above anomaliesin the spectrum of the
bulk Lamb phonons of the type under investigation. By
way of an example, we will analyze a one-component
ferroelastic phase transition from the paraphase to the
ferroelectric state for a crystalline plate displaying the
piezoelectric effect 222 — 2 in the paraphase (Roch-
ellesalt) [3].

5. EFFECTS OF RHOMBIC ANISOTROPY

For the convenience of comparison with the results of
the above calculations, we assumethat thezaxis ([001]) is
the polar axis for the one-component ferroelastic phase
trangtion. In this case, the thermodynamic potential den-
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sity corresponding to the given model can be presented
in the form

1 2
5C11Uxx

_ 0 2 b2
W = E(DP) +§PZ+yPZqu+2

1 2 1 2 24
+ §C22uyy + §C33uzz + Clzuxxuyy F CyaUyy Uy, ( )

2 2 2
+ C23uzzuyy + 2C55uzx + 2C44uzy + 2C66uxy-

As before, we assume that vectors k and n lie in the
(001) plane and confine our analysis to the spectrum of
bulk elastic nonpiezoactive vibrations localized in the
sagittal plane and propagating along the film. We will
consider only the cases when n || [100] and n || [010]
provided that relations (3) and (4) are satisfied on the
surfaces of the plate.

Calculations show that in limit (7), the spectrum of
coupled ferroelastic vibrations with u, k [ [001] and
P, # 0 in the parael ectric tetragonal phase in the model
of an unbounded ferroel ectric medium can be presented
in the form

Q5(k) = 0.5(Ay +Ay)
+0.5((Ay —

(25)
12
/\22) + 4/\iz)

where k2= K + k;, 9 is measured in the sagittal plane
and is equa to zero for k |[010], and A, are the Crist-
offel tensor components. Expressions (24) and (25)
make it possible to find the relation between the com-
ponent of the wave vector k normal to the film surface
with n [0 [001] on the one hand and the frequency and
the wave number k; of a propagating bulk elastic wave
on the other, i.e., to write the characteristic equation for
the solution of the boundary-value problem for n, u,
and k O xy. It follows from (24) and (25) that the struc-
ture of the component of the vector u of thelattice elas-
tic displacements, which is norma to n, can be pre-
sented in form (6) both for n ||[100] and for n |/ [010].
Using relations (6) and (25), we can classify the possi-
ble types of propagating el astic waves depending on the
form of their localization near the surface of a magnet
(€ = 0) defined by g, ,. If we confine our subsequent
analysis to the range of frequencies w and wave num-
bers k; such that

Cip Crp 3 Cgg, O < Cyy/p fOr Cyy < Coo, 26
Copr Cip 5 Cesr 0 << Coolp fOI Cpy > Cp,

we can analyze the effect of rhombic anisotropy on the
spectral structure of propagating bulk elastic waves
polarized in the sagittal plane of aferroelectric film tak-
ing into account only the quasi-transverse branch in the
spectrum of normal elastic vibrations of an unbounded
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crystal (25), which is polarized in the plane of inci-
dence (001) (X = C,,/Cqy):
W = (L + 1, 4KGKSI (K; + XK3)),

.
CnX + Ceee —(Cpp+ Cﬁee) —(1+ X)Cnceee 27)
C11Ce60

*

It followsfrom relations (6) and (27) that, depending on
the form of localization of the film plane = 0 near the
crystal surface, the following types of propagating normal
quasi-transverse elastic waves are possiblefor n || [001] as
well asfor n ||[010] for the chosen orientation of nor-
mal n to the film surface (n ||[100] or n ||[010]) and of
the plane (001) of wave propagation.

. Bulk wave of the first type (¢ > 0; o < O):
w’>sk3, N [[[100],

n ||[010].

w2>st2ké’ (28)
1. Generalized surface waves (g = (5)”):
W <2 =SIA[L-X + 40X 2 =1rD1,
2" > X", n [|[200],
0’ <o =STKE[1 - 1/x +A(Ir ] = Ir)/x],

r<o,
(29)

Ire| >1/4, r,<0, n|[[010].

I11. Surface waves (g , > 0):
2r, [ <x*,
n ||[100],
Wi <0’ <stkd, el <14,
r<0, n||[010].

2 2 21,2
(.k)+<(.k) <StkD!

* < 01
' (30)

IV. Bulk waves of the second type (g , < 0):

2 2 21,2 1/2 1/2
W, < <skg, 27> xT

r. <0, nJ|[100],

Wl <’ <sKE, .| > V4,

(31)
n ||[010].

If, however, ryx > 0, an analysis shows that all the rela-
tions derived above remain valid except that we must

assume now that w’ = 0 for any kg; i.e., the formation
of generalized surface waveisruled out.

Thus, the necessary condition for the propagation of
the bulk Lamb phonons (corresponding to the quasi-
transverse branch in the spectrum of norma eastic
waves, which is polarized in the plane of incidence)
along the ferroelectric plate under investigation is the
requirement that their frequency and wave number kg
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belongtoregion| or V. Inthiscase, the bipartite elastic
wave having the appropriate polarization and propagat-
ing along the film has at least one bulk component.

Multiple reflection of thistype of phonons from the
plate boundary and their interference lead to the forma:
tion of normal elastic modes polarized in the sagittal
plane of the ferroelectric film under investigation. In
our geometry (k O xy, n [|[100] or n || [010]), the spec-
trum of these bulk phonons can be determined in the
explicit form:

4 ’K2
Q%(ky) = &2 kmt+r ”‘“Du n[I[100], (32)
D
4y k>
04k) = kDL+rk XD”}% n|[[010]. (33)

O

Calculations show that in view of the above assump-
tions, the section of the isofrequency surface for the
guasi-transverse branch in the spectrum of normal elas-
tic waves polarized in the plane of incidence by the sag-
ittal plane (001) can be described by the following rela-

tion (tand =k/k)):

2 W r,sin’29 ot
K= S+ —5=g . (34)
So cos d +xsin'g
Asin the case considered above, segments with a neg-
ative Gaussian curvature may be formed on the isofre-
guency surface of quasi-transverse norma elastic
vibrations for definite rel ations between elastic moduli.
The maxima on these segmentsin the xy plane coincide
with the [100] and [010] directions. However, in view
of the rhombic symmetry of the crystal, a concave seg-

ment can appear on curve (34) for k ||[100] if

Afr .| > X, (35)

while the region with a negative curvatureis formed on
the slow-mode surface (34) for k ||[010] when

Afr,| > 1. (36)
Thus, the conditions for the existence of aregion with
a negative Gaussian curvature on the refraction surface
along normal n to the plate surface and along the direc-
tion of propagation of a bulk elastic wave, k; I n, can
be satisfied simultaneously in the given case. Let us
find out how this circumstance is connected with the
spectral structure of propagating bulk quasi-transverse
elastic vibrations polarized in the sagittal plane of the
crystal plate under investigation.

An analysis of relations (32) and (33) showsthat the
plate in question now has anisotropic elastic properties
along the directions associated with vectors n and k.
For agiven parameter of crystal rhombicity (x # 1), the
necessary condition for the formation of a minimum on
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the dispersion curve for the phonon mode with a preset
number v is the fulfillment of the inequalities

4jr,| >1, n||[010],
2r, | >x", n||[200].

Asregards the necessary condition for the formation of
a point of degeneracy of the dispersion curves for
modes with numbers v and p, belonging to the spec-
trum of the bulk Lamb phonons under investigation, for
the given directions of wave propagation and normal n
to the film surface (k, n [ xy) it can be presented in the
form

(37)

2Ir,l>x*2, n||[010],
4r,|>1, n||[110].

Thejoint analysis of relations (18), (19) and (32), (33)
shows that additional (as compared to those considered
above) singularities appear in the spectrum of the bulk
Lamb phononsin an anisotropic plate with n ||[100] (or
n ||[010]) if the following relations hold for r« < O:

(38)

39
X <4lr,| <1 (9
In this case, two additional versions (besides those ana-
lyzed abovefor x = 1) of the spectral rearrangement for
phonons with a given polarization can be realized:

(1) for any mode number v, the corresponding dis-
persion curve has a minimum at k; = ks«,; however,

there are no points of crossover for any k; and mode
numbersv and p if n ||[100], x > 1, or n ||[010], x < 1;

(2) for any k5 and mode number v, there are no
points of minima on the dispersion curve Q,(ky)
(0Q,/0k; > 0); however, for any v and p, there exists a
point of degeneracy on the relevant dispersion curves
Q,(kn) = Qy(ky); for n || [100], it is necessary that x < 1,
while for n || [010], the condition X > 1 must be
observed.

Thus, the above analysis showsthat the formation of
these additional versions of the spectral rearrangement
for bulk Lamb phonons is associated with a change in
the local geometry of the isofrequency surface for the
normal quasi-transverse phonons polarized in the plane
of incidence in an unbounded crystal. Till now, the
analysis of the effect of the local geometry of the isof-
requency surface for a norma elastic wave in an
unbounded crystal on the spectral structure of the cor-
responding type of bulk phonons propagating aong the
crystal plate in the vicinity of a shear-type structural
phase transition was carried out in the limit d — O,
i.e., disregarding the correlation effectsin theferroel ec-
tric subsystem of the crystal. Consequently, the above
results are valid primarily for plates of strongly aniso-
tropic crystals away from the region of stability of the
given crystaline state. As regards the spectral rear-
rangements for bulk phononsin the immediate vicinity
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of aferroelastic phase transition, we must al so take into
account the correlation effects apart from the effects of
the shape of the isofrequency surface for the normal
acoustic vibrations of an unbounded crystal. In the
model under investigation, this means that the approxi-
mation & = 0 becomes invalid. The results of such an
analysis for the model of arhombic crystal will be pre-
sented in the next section.

6. EFFECTS OF SPATIAL DISPERSION

An analysis of the boundary-value problem taking
into account both elastic (4) and additional (3) bound-
ary conditions shows that for any value of x compatible
with the conditions of elastic stability of the crystal, the
spectrum of the Lamb waves of the type in question can
be determined explicitly, as before, by using the same
approximations, for any value of the wave number k;
for a = oo both for n || [100] and for n || [010].

If we consider arhombic crystal by way of an exam-
ple, the spectrum of the bulk phonons under investigation
in our geometry (k O xy, n || [200] or n || [010]) can be
determined in the explicit form (k, =Tw/2d,v =1, 2, ...):

Q2 (ko) = Sok*(1 + 1, 4k2KE (K2 + XK2)),

1
2 2,2 " ”[ 001, 2 2 2 (40)
Qy(Kg) = sok™ (L + 1, 4kak /(K5 + XKY)),
n || [010],
CoY + Co0% = (Cpp + CegB)° — (1 + V) C11Cee
r* = 11 66 12 66 11~66 .(41)

C11Ces0

A comparative analysis of relations (32), (33) and (40),
(41) shows that the main auxiliary effects associated
with the influence of the spatial dispersion of elastic
moduli (6 # 0) on the spectrum of the bulk Lamb
phonons of the type in question are as follows.

(1) For wp + cX(Tw/d)? < %k < wh,, the phase
velocity of a mode with number v becomes a function
of the wave number k.

(2) The phase velocity of Lamb modes with num-
bersv # 0 does not vanish at the stability boundary of
the given crystalline state.

(3) The spatial dispersion of the elastic modul us Cgg
leads to the disappearance of the points of crossover in
the spectrum of the bulk Lamb phonons of the given
type for modes with numbers v and p (due to partial
trapping at the surface) and to the divergence of the cor-
responding dispersion curves (dissipation is absent).
For example, for the case of arhombic crystal consid-
ered above, for 0 # a < 1, the structure of the dispersion
curves for modes with numbers v and p in the vicinity
of the point of degeneracy of the modes Q, (k) and
Q. (k) existing at & = 0 can be approximately pre-
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sented, taking into account relations (40) and (41), in
the form

(0’ = Q2(ko)) (W’ = Q2 (ko))

(42)
~ W, Q0 (ko) Qa (ko) =0,

where||W2,| <1, W2, = a2 Inthe case of theintersec-

tion of the dispersion curves corresponding to the for-
ward and backward types of the waves at the point of

degeneracy ky =k, (W\z,p =0), theremoval of degener-

acy (W3p # 0) leads to the disappearance of the degen-

eracy point and to the formation of two points of
extremain the vicinity of this point: a minimum for the
branch whose frequency w > Q,(k,,,), and a maximum
for w < Q,(kyp).

(4) I the relation c(Tv/d)2 > wh,is satisfied for a
phonon mode with number v, the spectral structure of
such an el astic modetaking into account the spatial disper-
sion in theferroeectric subsystem of the crystal (8 # 0) is
determined only by the relation between elastic moduli
in the limit y — 0 not only far away from the fer-
roelastic phase transition, but also in its vicinity.

7. CONCLUSION

The main conclusionsdrawn in the present work can
be formulated as follows.

(1) There exists a oneto-one correspondence
between the presence of regions with a negative Gauss-
ian curvature on the section of the isofrequency surface
for normal quasi-transverse vibrations polarized in the
incidence plane by the sagittal plane and certain anoma:
liesin the spectrum (type of the wave and the presence of
the points of extremum and crossover) of the dispersion
curves of the modes belonging to the relevant type of
generalized Lamb waves in an anisotropic plate.

(2) The form of elastic anisotropy can considerably
affect the spectral structure of the Lamb phonons of the
type under investigation.

(3) A consistent inclusion of the effects of spatial
dispersion in the ferroelectric subsystem of the crysta
may be of utmost importance for a correct description
of spectral transformations for the bulk Lamb phonons
under investigation in the vicinity of a proper ferroelas-
tic phase transition.

In this paper, we analyzed the peculiarities in the
transformation of the spectrum of bulk Lamb waves
under the condition that their sagittal plane coincides
with the symmetry plane of the crystal under investiga-
tion. It is known that in this case, SH waves and Lamb
waves propagate independently. If, however, the crystal
is hexagonal and the sixth-fold axis coincides with the
direction of normal n to the surface of the film for
which conditions (4) are satisfied on both surfaces as
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before, it can easily be verified that in view of elastic
anisotropy, the anomalies observed by us (for an appro-
priate relation between bulk moduli) take place for any
direction of propagation k/ |k;| of abulk Lamb wavein
the plane of the film. In particular, the characteristic
crossover and extremum points mentioned above will
form closed curvesin the k--space for k5 # O, which lie
in a plane with the normal along n.

It is well known that the presence in the dispersion
relation for normal vibrations Q, (k) of pointsat which
one or several components of the group velocity
(0Q,/0k-) are equal to zero leads to the formation of
singularitiesin the density of states of the relevant type
of quasiparticles (phonons in the present case). Such
points are known as critical and are associated with
peculiaritiesin the thermodynamic, kinetic, and optical
properties of the crystal. The formation of critical
points can be associated with the symmetry properties
of the crystal (symmetric critical points) [18]. More-
over, critical points whose presenceis not connected in
any way with the crystal symmetry may also exist.
They are known as dynamic critical points [18]. An
analysis of the conditions for the existence of critical
points in the magnon spectrum was carried out in
[19, 20], but only inthe model of an unbounded crystal.
In the present work, it is demonstrated for thefirst time
that the consistent inclusion of the anisotropy of elastic
moduli makes it possible to determine the mecha-
nisms of the formation of a number of new critical
pointsin the vicinity of a continuous shear-type struc-
tural phase transition in the phonon spectrum of a
crystalline plate, which are absent in the model of an
unbounded crystal.

It is well known [21] that the structure of normal
bulk vibrational modes whose amplitude has nodes
over the plate thickness weakly depends on the type of
boundary conditions. Consequently, we can expect that
the effects observed by usin the spectrum of bulk Lamb
waves for aspecial case of elastic and auxiliary bound-
ary conditions will take place for this type of bulk
acoustic vibrations for other types of boundary condi-
tions also (probably, except that the mode degeneracy
will be removed and the dispersion curves for modes
with different numbers will diverge in the region of
crossover points).

In the present work, we considered by way of an
example aproper ferroelastic phasetransitionin acrys-
talline plate. It can naturaly be concluded, however,
that the basic effects observed by us here can also be
realized for plates of magnetic crystals undergoing a
proper ferroelastic phase transition.

It should be emphasized that we considered only the
transformation of the spectrum in the vicinity of afer-
roelastic phase transition for nondipole-active bulk
phonons polarized in the sagittal plane of a crystalline
plate. The singularitiesin the spectrum of bulk phonons
in the case of dipole-active elastic vibrations in an
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anisotropic plate will be analyzed in aseparate publica
tion.
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Abstract—The Doppler-shifted cyclotron resonance in an aluminum plate in the geometry when constant mag-
netic field H is directed along the [100] crystallographic axis oriented normally to the surface of the plate is
studied theoretically. The analysisis performed for asimple model Fermi surface possessing fourth-order sym-
metry. Capture of holes by the magnetic field of aradio-frequency wave is shown to considerably decrease the
effectiveness of cyclotron absorption at large exciting field amplitudes. This suppresses the collisionless damp-
ing of dopplerons (propagating modes related to odd cyclotron resonance harmonics). As a result, the sample
becomes more transparent to radio-frequency radiation. © 2001 MAIK “ Nauka/Interperiodica” .

In[1], we studied the penetration of radio-frequency
radiation through noble metalsin anonlinear regime. It
was shown that the “capture’ of carriers by the mag-
netic field of a large-amplitude wave could substan-
tially decrease collisionless absorption. For instance,
when constant magnetic field H was directed along the
[110] axis and there were open orbits on the Fermi sur-
face, damping caused by them was suppressed to the
extent that helicon propagation became possible (in the
linear regime, carriers in open orbits hindered helicon
propagation). In the region bel ow the helicon threshold,
the suppression of the cyclotron wave absorption by
holes could be so strong that the propagation of a new
wave having no analogs in the linear regime became
possible.

Substantial nonlinear effects in the propagation of
radio-frequency waves can exist not only in noble met-
alsbut also in other metalswith unequal concentrations
of electrons and holes, in particular, in aluminum. The
Fermi surface of aluminum bears no resemblanceto the
Fermi surfaces of noble metals. Collisionless absorp-
tion in aluminum is determined by the form of the
09 dp, function, where §(p,) isthe area of the cross sec-
tion of the Fermi surface by the p, = const plane and p,
is the momentum component of the conduction elec-
tron along the z axis (the field H direction). The prop-
erties of collisionless absorption in aluminum are dif-
ferent from those of collisionless absorption in noble
metals. There are no open orbits in auminum, and the
05 0p, derivative does not become infinite, asit doesin
noble metals, at the boundary cross section separating
hole orbits of the “dog’s bone” type from electron
orbits.

The hole Fermi surface of aluminum is such that, in
the H || [100] geometry, the S(p,) area is maximum at
the central cross section (p, = 0) and monotonically
decreases as p, increases. The |05 dp,| function experi-

ences complex nonmonotonic variations. It sharply
increases near the central cross section, reaches a max-
imum, slightly decreases and passes a minimum, again
increases and passes another maximum equal in height
to the first one, and then monotonically decreases.
Accordingly, holes can be divided into three groups.
The first group comprises holes for which |0S0dp,|
changes from zero to a maximum value. For holes of
the second group, |05 0p,| changes from the first maxi-
mum to the second, and the third group includes holes
for which |0S0p,| decreases after the second maxi-
mum. Although the second group is the largest, these
holes do not contribute to cyclotron absorption in the
short-wave region. Short-wave cyclotron absorption is
caused by first- and third-group holes, which make up
a comparatively small fraction of the total number of
holes. For this reason, collisionless absorption in au-
minum is considerably weakened compared with the
metals in which cyclotron absorption is determined by
majority carriers. It is therefore of interest to study the
propagation of radio-frequency waves in aluminum in
a nonlinear regime, in which collisionless absorption
should beweakened to atill greater extent. It should be
borne in mind that the situation with aluminum is
essentially different from that with noble metals. In
noble metals, the orbits of the electrons that determine
the spectrum of anonlinear wave are virtually circular;
for this reason, only fundamental Doppler-shifted
cyclotron resonance (DSCR) is observed for these met-
as. The Fermi surface of aluminum has fourth-order
symmetry, and hole orbits of the second group, which
are majority carriers, are closer to squares than to cir-
cles. For this reason, there occur multiple DSCRs,
which should result in the existence of the correspond-
ing propagating modes. This work is concerned pre-
cisely with these effects in aluminum in a nonlinear
regime.

1063-7761/01/9202-0338%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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Fig. 1. (a) Cross section areaand (b) the derivative of the cross section area of the Fermi surface of aluminum inthe (H [|[100] || 2)

geometry.

1. A FERMI SURFACE MODEL
AND NONLOCAL CONDUCTIVITY

Consider the propagation of aradio-frequency wave
inauminum inthe (H ||k ||[100] || 2) geometry, where
k is the wave vector. The concentration of electronsin
aluminum isless than 3% of the concentration of holes,
and the contribution of electrons to conductivity can
therefore be ignored. The cross-section area §p,) and
its derivative 05/ dp, are plotted asfunctions of p,in Fig. 1
(dashed lines). These plots were obtained in the calcu-
lations performed by Larsen and Greisen [2]. We con-
sider amodel inwhich the §p,) dependenceisgiven by
the formulas

10S _
Z.[a_pz - _py( pz) sgnp,, (1)

np,

y(p,) = asing P, < p1, 2

_1 _ | P — Paf
y(p,) = 2[1+0( +(a 1)005%[ o D}’ 3

P1< [P < Pyt P2

where a is a dimensionless constant and p, p,;, and p,
are momentum dimension parameters. In the interval
p; + P, < |p,| € 2(p, + p,), they function should be con-
tinued symmetrically with respect to the p, = p; + p»
point. The y(p,) function at a = 1.1 and p,/% = 2p,/h =
0.35 Atisshown in Fig. 1b (solid ling). Its symmetry
with respect to the minimum considerably simplifies
nonlocal conductivity calculations. The left part of the
y(p,) plot is similar to the left part of the Larsen-Gre-
isen calculation curve, wheresas the difference between
the right partsis of no consequence because the major-
ity of holes occur in the |p,| < p, + p, region. The p
parameter should be adjusted to provide coincidence
between the period of Gantmakher—Kaner oscillations
and the experimental value; this condition is met at

p/h =1 AL Note that, at such a p value, the d5dp,
derivative at a minimum somewhat exceeds the value
obtained by Larsen and Greisen [2]. It isa so necessary
to specify the area of the central cross section Sp, = 0).
This value is determined by the condition of the equal-
ity of the concentration of holes in the model under
consideration to the true concentration of holesin au-
minum [3],

2V
=N, 4
(2mh)® @
where
V = 4(p;+ P2)S(P1 + P2) ©)

and V isthe volume enclosed by the hole Fermi surface.
Equation (5) follows from S 0dp, function symmetry
with respect to the p, = p, + p, point. As

P+ P2

S(p; + p2) = S(0) —2mp j y(p’)dp', (6)
0

S0) is easy to express through N. The plot of the Sp,)
function for our model a N = 0.06 A= is shown in
Fig. 1la(solid line).

L et the hole orhits be square,

pd+Ip) = 58 p). ™

where S(g, p,) isthe area of the cross section of a con-
stant-energy surface (¢ = const) by a p, = const plane.
The attractive feature of square orbits is their simplic-
ity, required symmetry, and some similarity to real hole
orbits in auminum. We in addition assume that the
cyclotron masses of all holes equal m. The S(g, p)
function can then be written in the form

e, p,) = 2mm(e —g¢) + S(p,), ©®
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where g¢ is the Fermi energy. It follows from (8) that
the dispersion of holes obeys the law

_ 1 2 S(pz)
e(p) e = —(Ipd +[P)) — 5 )
The components of the velocity vector of a hole are
determined by the formulas

_0dg _ 2 =
Vo= 5 = A(pd+ [p)sEnp, o = Xy, (10)
_0e _ 1 9s
Vz_apZ ~ 2mmap, (1)

In the geometry under consideration, when the k
and H vectors are directed along the symmetry axis of
the Fermi surface, the system of equations for circu-
larly polarized wave field components decomposesinto
two independent equations containing the o.(k, H) =

O, * 10y, conductivity elements. According to [4],
these elements are determined by the formulas
2
a.(k H) = 2Em
(2mh)
w L) (12)
VE Vn + Vn
x[dp. Z VFi(NWw—KV,—-)’
where
2n
(13)

vi= Ej'ﬁI[VX(T)iiVy(T)]eide,
0

e isthe absolute value of the charge of the electron, cis
the velocity of light, w, = eH/mc is the cyclotron fre-
guency of holes, v is the frequency of hole collisions
with the lattice, and 1 is the dimensionless time charac-
terizing the motion of aparticlein the orbit. Further, we
will be interested in strong magnetic fields when w, >
[V—iw].

According to (7), [p,| + |py| = const at fixed € and p,.
For thisreason, at each square side, the v, and v, veloc-
ity components given by (10) remain constant. This
congderably smplifies the caculations of integral (13),
because over each quarter of the hole revolution period,
the expression in square brackets remains constant. As

aresult,v; isgiven by

4,/2.JS(p,)

*
Vn:+_

“n M

where sruns over all integers from —oo to co. It follows
from (14) that DSCR harmonicswith numbersn=...,—7,
-3, 1,5, ... and polarization (+) and with numbers
n=...,-5,-1, 3,7, ... and polarization (-) are present
in conductivity (12). This is a consequence of the
fourth-order symmetry of the Fermi surface.

(14)

6n, 4s+ 1
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Substituting (14) and (11) into (12) transforms the
equation for the nonlocal conductivity into

0. = -i0%%s,(a), (15)
32 o 1
= — F. , 16
s.(q) nan_m@sﬂ)z s(Q) (16)
+ _ 1
Fsla) = 2(py+ o)
Py + P2 1 1 (17)
X dpz[ - + — },
J; I;_qy(pz) I;_qy(pz)
KD - oasiioiv v Y
q= o g =4s+t1-iy, y = ™ (18)

The q value is the ratio between the shift of holes with
p, = p; + Py to which a minimum of |0S0dp,| corre-
sponds, and the radio-frequency wave length.

Note that, in the local collisionless limit (q — O,
y‘> 0)1

Fi = 1/(4s+1),

00

S 1 _m
3
£ (4sx1)’ 32
and, therefore, s,(0) = £1; that is, we obtain the local
Hall conductivity.

Next, let us substitute (2) and (3) into (17) and per-
form the integration over p,. Thisyields

* _ 4s+1
F(Q) = 2557
R (19)
0052 -’ J(:-ag)(l:-q)
P

+ .
JUE+ag)(1f+q) O

for g? < (4s+ 1)%0?, and

é(q)n n, > 559N
15 —a’q® J(ls—ag)(ls—
(1) —a“q” A a)(ls—q) 20)
+ N.Sgnq
J(15 + ag) (1 + )
for g > (4s + 1)?, where the coefficients
P1 P2
= , =2 21
M P+ P2 2 2(py+ p2) (1)
No.2 2001
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are n; = n, = 1/3 for the model under consideration
(P, = 2p,). We do not give expressions for F in inter-
mediate regions (4s + 1)%/0? < ¢ < (4s + 1)?, where the
imaginary part of F; caused by cyclotron absorption is

larger than its real part, and the propagation of modes
of any kind istherefore impossible. Further, we will not
be interested in these g value intervals.

2. FUNDAMENTAL DOPPLERON
IN LINEAR AND NONLINEAR REGIMES

The properties of eigenmodes in metals are deter-
mined by solutions to the dispersion equation
K°c® = 4Tiw0o,. (22

Using the dimensionless wave vector g allows this
equation to be conveniently written in the form

®.(q) = % (23)
o, (q) = 29, (24)
q
£ = 4T[wN3f:p . (25)
eH

The character of solutions to (23) can be studied by
considering the behavior of the @, functions. The
imaginary parts of the @, and ®_ functions coincide,
and their real partsonly differ in sign. The ®, = Re®,
function in the region g > /a for y — O is plotted in
Fig. 2 (inthisregion, ®; = Im®, = 0). At small q val-
ues, we have @', = 1/c?. This dispersion curve branch
corresponds to the helicon whose field rotates in the
same direction asthe holes do. At g = g, the ®,, func-
tion reaches the minimum value ®]" = 4, and, as

g — La, it tendsto infinity, which is caused by the res-
onance of the holesthat are characterized by the largest
shift during the cyclotron period (holes with p, = p,). It
follows that, above the helicon threshold H = H, at
which & = 1/ 4, a DSCR mode, or doppleron, does
exist. This doppleron is, however, virtually unobserv-
able because it has the same polarization as the helicon
but its amplitude is much smaller.

The ®_ = Re®_and ®” = Imd_ functions in the
region 1 < g < 3/a, where ®” >0, are plotted in Fig. 3.
At the boundaries of thisinterval, ®" becomesinfinite,
and within this interval, it decreases to its minimum
value ®" = 0.04. Thismeansthat, inthe“—" polariza-

tion at fields H > H, /10?3, two DSCR modes can exist.
One of them is caused by the fundamental DSCR of

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

341

®,
60

20r

Fig. 2.

0
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Fig. 3. Functions (1) ' and (2) ®".

holeswith p, = p,; + p,, for which 05 dp, and, therefore,
the shift along field H during the cyclotron period has
minima. The q value for this dispersion curve branch
tendsto one asH increases. The second modeisrelated
to the third DSCR harmonic of holes with the largest
shift during the cyclotron period. In strong fields, the g
value for this doppleron tends to 3/a. Both dopplerons
exist above field H,, whose value is approximately five
times lower than the threshold helicon field H, . In real-
ity, the doppleron caused by holes with the largest shift
isvirtually unobservable, because the amplitude of the
third DSCR harmonic is much (approximately 30
times) smaller than the fundamental resonance ampli-
tude.

The spectrum and damping of the fundamental dop-
pleron can be determined by solving dispersion equa
tion (23) with the ®_(g) complex function. At strong
fields, in which & < 1, the dispersion equation can be
solved analyticaly,

qu=1+E&+iy. (26)

In this region, collisionless cyclotron absorption virtu-
aly does not contribute to doppleron damping, and
doppleron damping is caused by collisions of holes. In
a wide range of magnetic field values, the dispersion
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Fig. 4. Functions (1) '(H) and (2, 3) 9"(H) in (2) linear and
(3) nonlinear regimes.

eguation can only be solved numerically. The ' = Req,
and g" = Imq;, curves (curves 1 and 2, respectively) are
plotted in Fig. 4 versus magnetic field H. The damping
iS seen to increase as the doppleron threshold is
approached. The major contribution to the damping is
made by cyclotron absorption caused by first- and
third-group holes.

Thisis how matters stand with the linear regime. At
large radio-frequency field amplitudes, the magnetic
field of the wave can “capture” holes responsible for
cyclotron absorption [5]. As a result, the translational
motion of these holes along the H vector is superim-
posed on vibrational motions with the frequency

(27)

where H, is the amplitude of the magnetic field of the
wave. If the frequency of oscillations of captured holes
is high, and w, > v, the effectiveness of wave absorp-
tion by such holes decreases wy/v times. The equation

for the F;(q) function describing the fundamental
DSCR then takes the form [cf. (20)]

Fin(@) = — oy T2

T laif-1 Mag-1)(a-1) -
_ N2
Jag+1)(q+1)’

and the other terms of series (16) remain unchanged. As
a result, fundamental doppleron damping in compara-
tively weak magnetic fields can be substantially weaker
than in the linear regime. For instance, a w/2m =
50 kHz, v =4 x 10 s, and an H, = 100 Oe, the wy/Vv
ratio at the doppleron threshold (H = H,) isclosetofive.
The g"(H) dependence then has the form of curve 3in
Fig. 4, which shows that the capture of holes by the
wave field in a nonlinear regime substantially weakens
doppleron damping.
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In addition to the propagating mode (doppleron),
there is one more mode (damped mode). The corre-
sponding root g, of the dispersion equation in the
vicinity of the doppleron threshold H > H, can be deter-
mined from the asymptotic behavior of conductivity 6_(q)
at > > 1, because & < linthisregion. We canthen dis-
regard multiple resonances with small amplitudes and
only take into account the term with s = 0 in (16).
Neglecting the difference between the 32/18 coefficient
and one, wefind

|, 21+a)
3ald  30*?q*

s (q)= (29)

To this conductivity there corresponds the well-known
anomalous skin effect.

If nonlinearity is strong (w, > v) and collisionless
absorption is suppressed, the first term in (29)
decreases wy/Vv times; that is, the nonlocal conductivity
takes the form

iv +2(1+O()

3algw,  3a*g? 0

s’ (q) =
If the wy/v ratio is so large that the first term in (30)

becomes smaller than the second, the dispersion equa-
tion becomes

4_ iv
g ~E[Mlqlwo

+ 2(1+ a)}
3a3/2q2

(31)

The first, amost real, root of this equation ¢, approxi-
mately describesthe doppleroninthe& > 1region. The
second, amost imaginary, root g, refers to the damped
component,

2(1+a)¥4
0= [ (30(312 )} . (32)
Next, consider the surface impedance of an alumi-
num plate under antisymmetric excitation with respect
totheelectric field. When the reflection of carriersfrom
the surface of a plate is diffuse and the field within the
plate is a superposition of two eigenmodes, the imped-
ance is described by the formula given in [6, Eq. (29)].
If the second component is damped asin the case under
consideration, this formula becomes

_ 8nwp
ceH
_ _ 33
-ty --dgiary &
g—ai+ (1-af)a; — (-t
11-exp(iq,L) eH
= = —d, 34
0,1+ exp(iq,L) pc 39
where d is the thickness of the plate.
No. 2 2001
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The results obtained in calculating R. = ReZ_ at

w/2m=50kHz,v =4 x 10 s, and d = 0.8 mm areshown
inFig. 5. Curve 1 was obtained for the linear regime, and
curve 2, for the nonlinear regime at an H, = 100 Oe
amplitude of the wave magnetic field. At these parame-
ter values, the threshold helicon field wasH, = 8.3 kOe,
and the wy/ v ratio at the fundamental doppleron thresh-
old equaled five. Figure 5 showsthat the surface imped-
ance in the linear regime is a monotonic function of H.
In the nonlinear regime, R experiences strong oscilla-
tions because collisionless doppleron damping is sup-
pressed and the plate becomes more transparent to the
radio-frequency wave.

3. THE THIRD DSCR HARMONIC

Asin the Ya < q < 1 interval, strong cyclotron
absorption caused by second-group holes occurs in the
3/a < g< 3interval, and there can be no wave propaga-
tion. At large q values, 3 < q < 5/a, first- and third-
group holes only contribute to cyclotron absorption,
and this absorption is much less effective. Close to the

boundaries of this interval, the @' function sharply
increases and becomes much larger than @ (Fig. 6).
Within the interval, the ®. function has a minimum

and decreases to ®§"" = 0.0006. This means that two

modesexigt in magnetic fildsH >H;=H (P; /Py ) =
0.05H, . One of these is related to the third DSCR har-
monic of holes with the largest shift during the cyclo-
tron period. The second mode has a much smaller
amplitude and manifests itself much less strongly. The
ratio between these two modes is similar to the ratio
between two modesin the 1 < g < 3/a interval.

The dispersion equation determining the spectrum

and damping of the doppleron with the“+" polarization
can be written as

o’ = €[ Fo(a) +5F(@ + 5Fi@]. (39
+ ing 1P
Fo(a) = -
T aregmlaeo1 fea-DE-n
+ N, ’
Jag+1)(g+1)
F'y(a) = Ny
(1+ wy/v) o’ = (3 +iy)°
+ n, 37)
J(ag-3-iy)(g—3-iy)
n.

~ Jag+3-iy)(q+3-iy)’
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Fig. 5. Aluminum plate surface impedance R_ as afunction
of Hin (1) linear and (2) nonlinear regimes.
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Fi(q) = M
J(5-iy)’-a’q’
TN — (38)
J(5-iy-aqg)(5-iy—q)
N,

+J(5—iv+aq)(5—iv+q)'

Equations (36) and (37) are interpolation equations;
their first terms are written in such a way that they
remain valid in both linear (w, < v) and nonlinear
Wy > V) regimes. We omitted the terms for s,(q)
(EQ. (16)) that described the seventh, ninth, and higher
DSCR harmonics, because harmonic amplitudes rap-
idly decreased as the harmonic number increased, and
the denominatorsin the g range under consideration are
far from resonance.

The solution to the dispersion equation (35) deter-
mines the spectrum and damping of the doppleron
related to the third DSCR harmonic (Fig. 7). Curves 1

and 2 in Fig. 7 correspond to the g; = Req,(H) and
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Fig. 7. Functions (1, 3) '(H) and (2, 4) g"(H) in (1, 2) linear
and (3, 4) nonlinear regimes for the third mode.
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Fig. 8. Functions R,(H) in the region of weak magnetic
fieldsin (1) linear and (2) nonlinear regimes.

g; =Ima,(H) functions, respectively, and curves 3 and
4 describe these functions at 50 kHz and H, = 200 Oe.

Apart from the doppleron root q,, Eg. (35) has two
essentially complex roots, g, and g3, which correspond
to the damped wave field component. To determine
these roots in the nonlinear regime, it suffices to take
into account only the second and third terms of (36) in
Eqg. (16) for s,(g) and assume that g > 1 in these terms.
This gives

l+a 2
L(Q) = — =, 39
s.(q) 30 3q (39)
and we obtain
4 4
0= @3] 6= 14030 o

If three different exponential wave field components
exist in a metal, the impedance of the plate can be
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obtained with the use of a method similar to that
applied in [6] to derive aformulafor Z in the presence
of two exponential components. The corresponding
equation is very cumbersome. It can be substantially
simplified taking into account that the g, and g roots
have large imaginary parts (therefore, |exp(id, sL)| < 1)
and that the ¢, doppleronroot isclosetothree, (0, —3) < 1.
This allows the equation for Z to be reduced to

_ 8nwp iq;L
= Cen (@@= -2 -]

X [(d2—3)(ds—3)(0z + G + 1) + 2(q, —3)q,e ™.

The terms in the numerator and denominator of (41)
that contain the exp(iq;L) factor describe the penetra-
tion of the mode related to the third DSCR harmonic
through the plate. These terms are proportional to the
small g, — 3 value, which means that this mode is
excited with a noticeably smaller amplitude than the
fundamental doppleron. The results obtained in calcu-
lating the R, = ReZ, surface impedance of the plate as
afunction of H in the region of weak fields are shown
in Fig. 8. The cdculations were performed at a 50-kHz
exciting field frequency and a plate d = 1.6 mm thick.
Curve 1 describesthe R,(H) function in the linear regime,
and curve 2 was obtained for an H,, = 200 Oeexciting field
amplitude. Curve 1 corresponds to a monotonic function
of H, whereas curve 2 contains well-defined oscillations
caused by the passage of the doppleron related to the third
DSCR harmonic through the plate. It follows that nonlin-
earity again plays an important role. The capture of holes
by the wave field suppresses cyclotron damping of the
doppleron and makes the aluminum plate more “ transpar-
ent” to radio-frequency radiation.
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Abstract—The structure of the vortex | attice in anisotropic superconductors at an arbitrary temperaturein mag-
netic fields close to critical was studied. Generally, arhombohedral structure with a vertex angle depending on
temperature, magnetic field, and material constantsis formed. An important factor isthe small (2%) difference
of thefree energies of thetriangular and square latticesin the Ginzburg—L andau approximation. Thisfactor also
persists in anisotropic superconductors. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In type Il isotropic superconductors, the transition
to the superconducting state in a magnetic field occurs
asasecond-order phase transition with the formation of
avortex lattice [1]. It is clear from symmetry consider-
ationsthat avortex lattice can either be square or trian-
gular. It has been found that, near the T, transition tem-
perature, the triangular lattice with one flux quantum
per unit cell corresponds to a free energy minimum,
whereas the sguare lattice is a saddle point [2]. This
property of isotropic superconductors persists at arbi-
trary temperatures except in a narrow region of super-
conductor physical parameters within which the transi-
tion to the superconducting state may be more complex
in character [3].

For numerical reasons, the difference of the free
energies of thetriangul ar and square | attices amountsto
about two percent of the energy of the superconducting
transition [1, 2]. It would therefore be of interest to
study the influence of anisotropy on the structure of the
vortex lattice, evenif thisinfluenceisweak. Clearly, the
vortex lattice of an anisotropic superconductor should
be rhombohedral and have parameters depending on
the temperature and magnetic field strength.

Below, we show how vortex lattice parameters
depend on temperature and superconductor material
parameters. We consider the most physically interest-
ing case of a“dirty” superconductor to show that vortex
lattice parameters should be determined taking into
account free energy terms of higher orders with respect
to the electron mean free path. In an anisotropic super-
conductor, the contribution of these correction terms to
the equation for the angle made by the unit cell vectors
may be not small.

2. A SYSTEM OF EQUATIONS
FOR GREEN FUNCTIONS
IN AN ANISOTROPIC SUPERCONDUCTOR

In the quasi-classical approximation, the system of
equations for Green functions in an anisotropic super-
conductor has the same form as in an isotropic super-
conductor [4-6],

008 + A _AA =
5’&56”""3‘6"’ = 0,

O o O 1
. o. —i .
G=0H"r BPE, & =1,
0iBe =0 O
where
& = wT,—iev AT, —iA
o1 09 &
— + —r—"
'”2 ZTJ 4 TG, T
pp
- (] 1l
A=0 9 Aq
O-A* 0O
©)

> = —%/Iopplépldfzpl.
pp

In (1)—3), v = 0¢,/dp is the velocity on the Fermi
surface, and the p, p, momentum values also depend on
the direction. A solution to (1) is sought in the form

Gzéo+é1+é2+é3+... (@]
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The Gy Green functionin (4) isindependent of vec-
tor p angles, and the G, , ; values do not contain the
mean value and are approximations of thefirst, second,
and third order in the electron mean free path, respec-
tively. Equations (1)—(4) give

él = —TtréoV EDGO
~ O - . ~ ~ l
= 1, G 260 iev (A (1,Go- Gt ]
O O

éz = rt,fzéo{v ED(éoV EDéo) (5)
- v D(Gov (DG},
G3 = _Ttr{ éoV EDéz}l—'Ey{ éoV [Déz}g,

4 _1 1 ~a_
Ttr E-—=, T = E__[_! T3
2

1 1 ~a_1 1

T T3

The D operator in (5) is defined by the upper for-
mula, and T, T4, and T, are the collision times for the firdt,
second, etc. harmonics[3]. Under isotropic scattering con-
ditions, al thesetimes except T are zero. The{} ; 3 symbol
denotes the projection of the expression in braces onto
thefirst and third harmonics, respectively. Substituting (5)

into (1) yields a closed equation only for the Go func-
tion. As usual, Go will be written in the form

'Bu a?+ 1B’ 6)

A O o
Go=10 ¢
dip* —a

Equation (6) reduces the equation for the Go Green
function to one differential equation for the a and 3
functions and the normalization condition (6),

aA—Bw+ %‘[tr[d va.)2B — B%/(%ga}
+ %T§%2< (v Fr(va B~ B%/‘%%ZGE
—<a(va_)2[3—[3%/§?ga>}
+[H%0 4 (vo.p)(va. 64 |
x [%a (vd.)*B —2[3%(%520(5
<a(va )'B- B%arm >}
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~25va p)(va.pr) + B0

x Hi(va.)*g - BS/C,FD
< 99 1 (va_p)(vo. B*)>

x Hi(vo_)’B - BH’arD
(25
<cx(va )’B- B%arg >
+h(vo_p)-pH%

<[5 + (vo_B)(va.6)

(B3 + wapop)]
+ %{%%x +B(v,)BrHva.) [a(va_)zB
-p32a —<a(va_)2B—B5b§rEza>}
+Bivo)p-pH 9
[porseai e

_<a§/£ga + B*(va_)2[3>]> = afr,

wherel = Tgl and 0, = d/or + 2ieA. Equation (7) con-
tains the mean products of two and four velocities. Let
us use the notation

@
@+ B0, + B (v0)’B]

arD

arD

2~
Dy = t.0/ivid T = T, L0 vvvid  (8)

Our task is to obtain an expression for the free
energy from (7). Near the transition temperature, this
task can be fulfilled at an arbitrary external magnetic
field value[3]. At an arbitrary temperature, the problem
can only be solved for fields closeto critical. The a and
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B Green functions can then be expanded in powers of
the order parameter A. Thisyields

Fs—Fy = vjdsr a—%ll-z

ol

—2m Y 8+ + 0-30,(0% ),

w>0

%rijkl (a?)i (69),— (a(—))k(ag)'

+ %szij Dy (ag)i (ag)j (ag)k(a?)l E_ A

_ wlal* 3 Dj a|al%a|A®
Aw+T+A)" 8w+ +A)" 0n 0r
ie(A,),D;
— (A% (99),A - A7) [ A*) 9
(W+T +A)
Miw  Lo°18*d%la
(w_l_ r +;\)4mar|ar]arkar|

+

~2((0)B)((0),0) (0)d*) (0 4%)

80rar;

((32),)((89),0%)

_%((a?)i(a?)jA)((ai’)k(af)lﬂ*)5}

OO

1.5 2
+8—rJd r(rotA —Hgp)".

Here, |A| is the effective interaction constant. The
vector potential A is selected in the form

A=A+A+..., A, =(0,Bx0), (20)

whereA, , . arebounded functions. The L operator is

defined as 8° = 8/or — 2ieA,, and A is the smallest
eigenvalue of the operator

L = —20,(2%,(9,
(1)

~ 2T 4= T2D,D,)(89,(09),(09 (D).

3. THE STRUCTURE
OF THE VORTEX LATTICE NEAR Hg,

Further, it will be convenient to pass to the principal
axes of the D;; tensor. These axeswill (arbitrarily for the
present) be denoted by a, b, and c. The magnetic field
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is assumed to be directed along one of the principal
axes, suppose, axis ¢. Let the order parameter (A) be
written as a seriesin powers of H,, — B:
A=A +A +A+
where A, AA,, ... are orthogonal to A,

In the main approximation with respect to the elec-
tron free path,

(12)

0. D 0
A = ZCNexp[QleBley— B lbi’(x— Nx,)’ 0 (13)
N O 2 U

Suppose that the modulus of the order parameter forms
aperiodic lattice with unit cell vectors a, ,; that is,

|A(r —na, —may)|* = A7, (14)
where n and m are integers.
The &, , vectorswill be selected in the form
a,; = a(sind, cosp), a, = a(-sing, cosd). (15)

Suppose that there is one flux quantum in the unit
cell. Periodicity condition (14) then yields

eBa’sin(2¢) = m, asing = x,,

(16)
Cy = CoexpE”T 2%

TheK , reciprocal lattice vectors will be selected as

K, = asun2¢(cos¢ sing),

(17)

K, = asinzq)(cosq);—sinnb).

In the main approximation with respect to the free
path and the (H., — B) parameter, the current density |
is given by the equation

A*3°A — NAOA*

j = —|evD2T[TZ (18)
oo (W+T+ 3%
Using (13), we aobtain the important relation
rot(0, 0, |A|%) = {D(A*0_—N3,A%)}. (19)

|
A Dan

In the geometry under consideration, the magnetic
field is directed aong the z axis. Equation (19) enables
us to obtain an explicit expression for correction H, to
the magnetic field. It has the form

rotA, = H,(0,0,1),

L, T +An
VBt o D}

x /D,Dy(1A° - 0Al°D),

2001

H, = —4nev[ (20)
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where Y(x) isthe Euler psi function. 0,2 0\2 ) 4
Taking (20) into account, (9) can be rewritten as ((9-):8)(0:).A
DTcD = zANMexp{i(NK1+ MK,) [t}.
[ﬂAl I:{ InDTD N, M
The Cym, Cnm, and Ay coefficients can be found
+ wgl r(T)+ )\D —w(1/2) from use of the explicit expression (13) for the order
(D 21T parameter (A). Thisyields
2 _ 2 M(M —N)
ul\gnp f F(T)+7\D Cam = 04 T-) exp(—TQm),
~Pa [q’ 2T O
8(2 T) n . , ) D
Cnw = 047 —MM‘NeBF
+r(T)+>\llJ F(T)+)\D} = HAY ) D,
emT D" omT O

X [1—21Qum] exp(—=TQuwm),
—(Bx-1)D,D, []A|2ﬁ_e_zl’_zﬁpﬂl- + MDDZ E
21T

_ D
2nT [ B Awm = EFA0|2E(—)M(M N)GZBZEb (23)
a
_HoB B+ Ho 0 MP—N'E . arDarM— N
411 81t (21) X 584‘87'[ O 2 0 + 4711 [D—aDTD tan (I)

v L, T+ A, [alalala)
+48(2,-[-|-)llJ 21T %Dij< or; 6er>

N
v [g (T)+XH“ 19°|a1°9%|a)°
6(2mT)? 2nT 'K\ 8ar,ar,dr,ar,

DyM — N[f O
_1ZHFD_D tand O
~2((098) (O ) (00)d*) (09 %) Pan 2 .

162|A|2 where
0 0\ A%
* garor (O )A)(0:)8%)

2
- %((af)i(a?) D) ((39)(87),A% )>, (24)

Here, V is the volume of the superconductor, Tg is

the temperature of the superconducting transition in a
superconductor free of paramagnetic admixtures, and

B = A [*IAJA A is the Abrikosov structure constant.

Using (22) and (23), we eventually recast Eq. (21)
for the free energy density into the form

The mean values present in (21) will be calculated Fs—Fn _ (B- Ho)’
with the help of the relations \V; 81T
. ID,, -0
(02,8 = i F(a_m,
oD e+ A A

2" ZHTDZHT
= S Cuuexp{i(NK; + MK;) [T},
N, M

g, na %t [w.,gl.+r(T)+5\D
((02),0)(87),A% giermy’l’ (27 2nT O
. (22) .
_ : M(T) +A LT +A
MZMCNMeXp{l(NK1+MK2)EI’}, + (61)TT e EQ (21)1T E}
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r(T)+A +)\|]]]D

22 €V .[Jl.
~(Ba~ DDy IAE= Y 5 + (1 0 (29

LVAOAD L, T A
4T T B2 2mT

r + )\ [raaaa rbbbb
2nT

v [WE’M
6(2mT)°

d_aaaa r bbbb I_aabb
-6
Up?z  p Dan%S

|j_aaaa rbbbb I_aabb 0
+ + -2 0
Upz ~ p? Dan%’ D

where

S= Z Qnm EXP(—2TQym),
N, M

Ba = Z exp(—21Quw),

+

_ (ParN + M(f
S = ZEEHZEE)D 5 Ecotzcb

N, M

Db[M NDt

7 /DarN + M[f
DD 5 —Dcotcb

¢_ DbD 2

_|DpM = N(f

50 (26)

tan ¢ EBXp (=21Qnm),

—N 0 exp(—21Qum),

z

M

Sy = 21y Quvexp(-2mQuy),
N, M

or—A = e(Hg,—B)./D,Dy,
A = eB,/D,D,,.

In (26), we omit the terms responsible for the small
renormalization of the coefficients of the B, and S
structure sums. All structure constants (B, S S 5 3)
present in EqQ. (25) for the free energy and determining the
vortex lattice structure only depend on the parameter

Dy
= t
zZ= D, and.

(27)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

349
1.5 T T T
Ba
1.OF .
0.5p 45
0 1 1 1
0.3 0.5 0.7 0.9 z

Fig. 1. Dependences of the 5 and 4S functions on the

z= ,/D,/D tan¢ parameter.

S
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0.4 .
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~04f .
| | |
0.2 0.4 0.6 0.8 1.0

z

Fig. 2. Dependences of the S;, S,, and S; functions on the
z=,/D,/D tand parameter.

Thez — L/zreplacement transformsthe 3,4, S S,, and
S; functionsinto themselves and changesthe sign of S;.
TheB,, S S, S, and S; functionsin the z range 0.3-1
are plotted in Figs. 1 and 2. It follows from symmetry
considerations that the 3, S, and S; structure sums

have extremaat z=1andz=1,z= /3, 1/./3. Iniso-
tropic superconductors, the coefficients of S, and S,
vanish.

4. EQUATIONS FOR THE [AJPLAND z
PARAMETERS

The APL] z, and B values are free parameters in
Eq. (25) for the free energy. They are determined from
the free energy extremum conditions with respect to
these parameters; that is,

—F
a%’:—sv N OA*D= o,
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Table
Ba 4S S S S
1 1.18034 | 0.375714 0 |0.85416 |1.001706
1/./3 | 1.159595 | 0.3691106 | O |0.5281606 |1.056321

a%@%az = 0,

(28)

aEFS E(GB = 0.

Suppose that the temperature is close to T, to the
extent that only the highest terms in 1 — T/T, may be
retained in (25). The B, value should then be extre-
mal [1]; that is,

J%tancb = {1, ./3,1/./3}.

Point 1 (square lattice in the isotropic case) corre-
sponds to the saddl e point (maximum with respect to z).
It follows that, in this simple situation, a rhombohedral
structure is formed with the ¢ angle given by

jgibtanq) - (B,

As mentioned above, the 3, and Svalues vary very
slowly over thewhole interval (29). For thisreason, the
correction term in Eq. (25) for the free energy may
become significant in the second equation in (28):

(29)

(30)

x05

"B‘%[w"( )+ X522y

OS)\
+ 21’ DyDy(Y () 5 ST ()

aaaa _ r bbbb[psl

12nT D2 Ooz (31)
_ d_aaaa + rbbbb _ 6raabb[:p_52
]

p? p? p2Uoz

d_aaaa rbbbb aabb [p% 0
+ + -2 0= 0,
Upz " p? “D.bHoz
wherex =1/2+ (I'(T) + X)/ZHT.

Thefirst equation in (28) does not contain numerical
smallness and can therefore be written in the main
approximation with respect to the free path. Thisyields
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0A°0= 2nTe(H,, - B)./D.D, W' (X)

"'(x)} (32)

O Bal
XE_4[ (x)+

-1

[l
—4T(B,—1)D,Dye’v + =" (x)S[] .
6T m
Equations (31) and (32) determine the z and [A PO

parameter values and, through this, the free energy (25)
value. The 3, and Sfunctions have maximaat z= 1 and

minimaat z={1/./3, +/3}. The S; function hasamin-

imum at z= 1 and maxima at z={1/./3, J/3}. It fol-
lows from (26) that the 35, S, and S; functions are pro-
portional to zV2 when z tends to zero. The S; function
therefore has two more minima. According to (25), tak-
ing into account correction free path terms only deep-
ens the minimum corresponding to the triangular | attice
in isotropic superconductors. Generally, the z= 1 point
is not extremal in an anisotropic superconductor. The
positions of all three minima change. This removes
degeneracy, and one of the minima becomes a local
minimum. More than three solutions to (31) may exist.

The Ba, S S, S, and S; function values at the
{1, 1/./3} pointsarelisted in the table.

5. CONCLUSION

We studied the structure of the vortex lattice in
anisotropic superconductors at arbitrary temperatures
in magnetic fields close to critical. If the magnetic field
is oriented along one of the principal axes, the deter-
mining factor is anisotropy in the plane perpendicular
to the magnetic field. Even weak anisotropy can sub-
stantialy change the angle of the rhombohedral unit
cell. This angle is a function of temperature, field, and
material constants. Indeed, in the Ginzburg—Landau
approximation, the difference of the free energies of the
square and triangular sublattices in isotropic supercon-
ductors only amounts to 2% of the superconducting
transition energy. Nothing significant occurs in isotro-
pic superconductors astemperature lowers. In anisotro-
pic superconductors, the degeneracy related to the
z — 1l/ztransformation is removed, and two identical
states become different. One of these corresponds to
only a local minimum, and the other, to the ground
state. These states are separated by a barrier, and the
transition between them is a first-order transition. It is
quite possiblethat achangein thefield can cause atran-
sition between these two states [7]. Note also that
Eq. (31) for the vertex angle of therhombohedral struc-
ture can have more than three solutions even in fields
close to H,. Studies of weak fields H < H, involve
serious difficulties, because the energy only dependson
the density of vorticesin the main approximation[2]. In
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our view, asimplified approach with a nonlocal gener-
alization of the London approximation [8] is then
unsatisfactory. It gives results that are at variance with
experiment [7, 9].
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Abstract—The Van Hove singularities in the vacancy spectrum of “He crystals are manifested as singularities
in the field dependence of the drift velocity of charges. In 3He, the field dependence of the drift velocity is deter-
mined by the vacancy spectrum in the completely spin-polarized state of the crystal. © 2001 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

The quantum nature of “He crystals makes it possi-
ble to obtain a quite general theoretical description of
the motion of charges in these crystals [1, 2] without
using any model concepts of the structure of charge
complexes. The description is essentially based on a
single assumption concerning the vacancion mecha-
nism of the motion of charges, which has received con-
vincing experimental confirmation [3]. Owing to the
guantum delocalization of vacancies in “He crystals
and their transformation into freely moving quasi parti-
cles, the vacancion mechanism of motion can be pre-
sented as successive acts of the inelastic scattering of
vacancion quasiparticles at a charged complex, which
are accompanied by the displacement of a complex
from one localized state to other states crystall ographi-
cally equivalent to it. The application of the quantum
theory of scattering makes it possible to express the
drift velocity of chargesin terms of the general symme-
try parameters of complexes as well as through the
energy spectrum of vacancies. The experimental study
of the motion of charges in this case is a sort of the
spectroscopy of vacancion quasiparticles. On the other
hand, it leads to definite conclusions concerning the
structure and (which is especially important) symmetry
of charge complexes.

Recent direct measurements of anisotropy in the
drift velocity of chargesin “He [4, 5] confirm the quan-
tum-mechanical approach [1, 2] to the problem. For
example, it is difficult to use the macroscopic descrip-
tion of the motion of charges [6] to explain the experi-
mentally observed strong anisotropy in the drift veloc-
ity [4] as a diffusion—viscous vacancion flow of the
crystal [7, 8]; however, this phenomenon can be inter-
preted in a ssimple and natural manner using the quan-
tum-mechanical approach (see below). A quantitative
interpretation of the results of experimental observa-
tions [4] requires that our previous results [2] be sup-
plemented with a number of new concepts. The main

goal of the present paper isto formulate these concepts
and to compare them with the experimental data [4].
Preliminary results were reported by us earlier [5].

In Section 4, we will consider a peculiar pattern of
the motion of charges in *He crystals. Keshishev [9]
proved in his early works that a cubic field dependence
of the velocity of the type (E + Eg)® (E, isafunction of

temperature and pressure) is observed both for “He
(under not very low pressures if we are dealing with
positive charges) and for *He. Our explanation [2] of
this dependence was based on the assumption of the
existence of vacancy quasimomentum as a good quan-
tum number, whichisvalid for “He but isnot correct for
3He in view of its disordering in the values of nuclear
spins of atoms. It will be proved below that the
observed drift velocity of charges in *He in a wide
range of electric field values coincides with the drift
velocity in the completely spin-polarized state of the
crystal (nuclear spins have the same direction), in
which the vacancies behave in the same manner asin
“He. The reason behind this interesting fact is the for-
mation of macroscopic ferromagnetic polarons around
vacanciesin *He crystals (see [10]).

2. VAN HOVE SINGULARITIES

Asin our previous publications [1, 2], we consider
the simplest case when the main role is played by
phonon-free one-vacancion processes in which the
charge complex is displaced by vector u from its ini-
tially localized state as a result of the inelastic scatter-
ing of avacancy. Probability W of the displacement of
acharge per unit timeis given by

d’k ok
(2m®(2m)®

where k and k' are the values of quasimomentum of
the vacancy in the initial and final states, respectively;

W = J’W(k, k'; u)n(e) D
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€ = g(k) is the energy spectrum of vacancies; and
n(e) = exp(—e/T) isthe equilibrium function of vacancy
distribution. The differentia probability w(k, k'; u) can
be expressed in terms of the amplitudef(k, k'; u) of the
process through the familiar formula

w(k, k' u) = 2m (K, k'; u)|?3(e' —e —eE 1), (2)
where eE - u is the change in the energy of the charge
complex having charge e upon its displacement by vec-
tor uintheelectricfield E, €' = g(k’).

Atlow temperaturesT < Aand T < eEu, where A =
max (&' —€) isthe width of the vacancy energy band, the
major roleis played by vacancieswith k = k, wherek,
is the value of the quasimomentum corresponding to
the bottom of the band g, = g(ky) = ming(k), and by
transitions with eE - u > 0. The probabilities of reverse
processes accompanied by a decrease in the energy of
vacancies (€' < €) are exponentially small. Inthe expres-
sion for win formulas (1) and (2), we can put k = k, and
€ =g, Thisgives

ks w)l, ©)

(2)

where N = I n(€) d*k/(2m)® O exp(—<y/ T) is the equilib-

rium number of vacancies per unit volume of the crys-
tal. Integration in formula (3) is carried out over a con-
stant-energy surfacein thek space (for the sake of brev-
ity, we denote the momentum k' of final states just by
k) with the energy

€ = go+teE [, (@]
[0/0k | isthe abso-

dSisthe surface element and v (k) =
lute value of the vacancy velocity.

The probability W= W(E) as afunction of the abso-
lute value of the electric field E has Van Hove singular-
ities (see [11]) for the values E = E; corresponding to
the vanishing of the vacancy velocity v(k') = d¢/dk' in
the final state. This is observed for certain values of
k' =k, corresponding to the extrema (i.e., local min-
ima, local maxima, or saddle points) of the energy
spectrum € = g(k"). For each such kg, the vacancy den-

sity of states g(€) = [dS/v(k) has aVan Hove root sin-

gularity for € = g, = €(ky), where integration is carried
out over the constant-energy surface € = €(k) (see[11]).
Function W(E) defined by formula (3) has similar root
singularities for E = E,, where quantity E, is connected
with &g through the relation

€, = g+ euE,coso. 5
Here, 6 is the angle between the directions of u and E

(it was mentioned above that cos 6 > 0). By virtue of
relation (3), the singular part W,(E) of function W(E)
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for E = E,isconnected with the singular part g4€) of the
density of states g(€) for € = € through the relation

N
W(E) =
S( ) (2T[ 2

ke U)|°04(€), (6)

while E and € are connected through formula (4).

Thus, the type of singularities of functions W(E) and
g(e) isessentially the same. Sincethedrift velocity V of
chargesis equal (in the simplest case) to uW, the field
dependence V = V(E) of the drift velocity must have the
same type of singularities for E = E,. There exist only
four types of Van Hove singularities for drift velocity,
which are exactly the same as the four known types of
singularitiesin the density of states (see[11]).

1. The function € = g(k) has alocal minimum at the
point k = K. In this case,

V(E) =
0 a E<E,
O
[ronst (E — E))"?

VR(E)

+
a E>E,

where Vg(E) isacertain function regular for E = Egand
const stands for a positive constant.

2. If € = g¢(k) has a local maximum at the point
k =k, then

V(E) = Vg(E)

12
N %bonst [{Es—E)
0 a E>E..

3. If k =ksisasaddle point of the function € = g(k),
the following two cases are possible.

(&) The surface € = ¢(k) for € = & is a one-sheet
hyperboloid. In this case,

V(E) =

a E<E,

VR(E)
Cconst E,— E)"?
0 a E>E,

for E<E,,

(b) The surface € = g(k) for € = ¢ is a two-sheet
hyperboloid. In this case,

V(E) =

0 a E<E,
-0

Cronst (E — E)"

VR(E)

for E>E..

A specia case of afirst-type singularity is the root
dependence of W(E) in weak fields eE - u < A deter-
mined by usearlier (seeformula(19)in[2]) at low tem-
peratures T < eE - u. In this case, we are speaking of
the absolute minimum of the function € = g(k), and
E.=0, V() = 0. It was shown in [2] that the root
dependence in weak fields is confirmed by the experi-
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Fig. 1. Field dependence of the drift velocity of positive
chargesin hcp crystals of 4Hein thedirection of the Cgaxis.

mental data [9] obtained in the low-pressure range for
positive charges.

A singularity of the second type was al so considered
by us earlier for the case when we are dealing with an
absolute maximum (see formula (21) in [2]). In the
region T < (A — eE - u) < A, probability W of a one-
vacancion phonon-free process vanishes as we
approach the energy threshold of the processin propor-
tion to (A — eE - u)¥2 in complete accord with the gen-
era result for a second-type singularity. In this case,
VR(E) = 0 and E; = A/(eucosb).

Figure 1 presents a typical dependence of the drift
velocity V(E) of positive charges in the hcp lattice of
“Hein the direction of the principal axis Cg of the crys-
tal as a function of field E, which was obtained by
Andreevaet al. [4]. In Fig. 2, the same results for E < E
are presented in [V(Ey) — V]? vs. E; — E coordinates. It
can be seen that the experimental data completely cor-
respond to the type of Van Hove singularitiesin case 3a.
Here, E;= 3.1 x 10* V/cm. According to the Van Hove
theorem (see [11]), the vacancy spectrum necessarily
contains at least one singular point of type 3b, and
accordingly, one more singularity of type 3b must be
observed on the V(E) dependence upon a further
increase in the field. In still stronger fields, the above-
mentioned singularity of type 2 corresponding to the
threshold of one-vacancion phonon-free processes
must be observed.

The nonmonotonic field dependence of the drift
velocity with aVan Hove-type singularity presented in
Fig. 1 was observed [4] for the motion of positive
charges in the direction of the principal axis Cg of the
crystal. The drift velocities of positive charges moving
in directions perpendicular to C; and of negative
charges moving in al directions are much smaller in
absolute value, and their field dependences are of areg-
ular monotonic type. The absence of singularities indi-
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Fig. 2. Processed experimental data obtained in [4].

cates the many-particle nature of the corresponding
nonelastic processes. The expressions for W of type (1)
for such processes acquire additional integrals, which
strongly suppresses the singularity in any case.

Apart from one-vacancion processes, we considered
in [2] the scattering of vacancies at a charge complex,
accompanied by the emission (or absorption) of
phonons. It isthese processes that are responsible for a
cubic dependence of the type (E + Eg)® that can be
observed in strong fields. It should be noted that there
exists the possibility of many-vacancion processes
(which was not considered in [2], but was noted in [5]).

The displacement of the charge complex as aresult
of the simultaneous scattering of two vacancies from it
isobviously characterized by aconsiderably higher dif-
ferential probability wthan that corresponding to aone-
vacancion process. For this reason, the two-vacancion
process can compete with the one-vacancion process.
However, the expression of type (1) for the transition
frequency W acquires the product of two distribution
functionsfor the impinging vacancies. The temperature
dependence of the drift velocity is characterized by the
factor exp(—2¢,/ T), and the field dependence must have
no Van Hove singularities (see above). In the experiments
[4], the activation energy for the motion of postive
charges in directions perpendicular to C; is (to a high
degree of accuracy) twice as high as for motion along Cg
(11K and 5.3K), and thefield dependences are regul ar.
Thisisastrong argument in favor of the two-vacancion
nature of motion in directions perpendicular to Cs.

3. ANISOTROPY OF MOBILITY
AND THE STRUCTURE OF CHARGES

The presence of an anomalously high anisotropy in
the mobility of positive chargesin the hep lattice of “He
(the mobilities along and across the Cg axis differ by a
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factor of 200(!)) indicates [4] (see aso the end of [2])
that one possible vector of the displacement of acharge
is directed strictly along the Cg axis of the crystal, and
the probability W of a displacement by this vector is
much higher than the probability of a displacement by
all other vectors. Thelarge differencein these probabil-
ities can be explained by different types of the corre-
sponding charge-transfer processes (one-vacancion or
two-vacancion process), and the fact that one of the dis-
placement vectorsis directed along the C; axis leadsto
a conclusion on the spatial position of the “center of
gravity” of a positive charge in the hcp lattice of “He.
Indeed, we assumethat the “ center of gravity” of apos-
itive charge in the hcp lattice coincides with the center
of the octahedron ABCDEF depicted in Fig. 3. The dots
indicate the positions of the atoms of the hcp lattice in
the basal plane (coinciding with the plane of the figure)
perpendicular to the C; axis. The crosses mark the pro-
jections of atoms lying in the plane displaced upwards
from the plane of the figure by half the lattice period
onto this plane. Such a position of anion is crystallo-
graphically equivaent, for example, to the position of
an ion at the centers of the octahedra AOGcbD and
A*B*C*DEF, where sites A*, B*, and C* are obtained
from A, B, and C by the reflection in the plane of
crosses (their position in Fig. 3 coincides with the posi-
tions of sites A, B, and C). The vector of tranglation
from position ABCDEF to position AOGchD liesin a
plane perpendicular to the Cy; axis and is equal in mag-
nitude to the atomic spacing a. The vector of trandation
from ABCDEF to A*B* C* DEF isdirected along the Cq

axis and has a length of ./2/3a; i.e, it is noticeably
shorter than the trandation vector in the transverse
direction. On the other hand, it can be seen easily that
there are no other positions of an ion in the hep lattice
(except the octahedral positions mentioned above)
which contain, among the set of vectors of translation
to neighboring crystallographically equivalent posi-
tions, the vectorsdirected along the C; axisthat are suf-
ficient for displacing a charge over large distances (see
example 2 from [2]). Knowing the density of helium
crystals in the experiments [4], the length of the dis-

placement vector (./2/3a) aong the C; axis, and the
value E; of the field for which a singularity is observed
on the field dependence (E, = 3.1 x 10* V/cm), we can
easily calculate the position of the saddle point in the
vacancy spectrum relative to the bottom of the vacancy
band using formula (5). Thisvaue isfound to be approx-
imately equal to 10 K. The field dependence of the drift
velocity must also contain at least one more singul arity,
but it isnot observed on the experimental curveinfields
up to 6 x 10*V/cm. This can mean that the width of the
vacancy band in the hep crystals of “He on the melting
curve exceeds 18 K.
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Fig. 3. Arrangement of atomsin hcp crystals.

4. MOTION OF CHARGES IN ®He

The behavior of vacancies in 3He crystals is deter-
mined by the configuration of the nuclear spins of the
atoms (see [3]). If the spins are completely polarized,
the crystal is periodic and the states of vacancies are
characterized by definite values of quasimomentum as
in the case of “He crystals. All the conclusions drawn
above and in [2] concerning the drift of chargesin “He
crystals can be completely extended to this case (natu-
rally, taking into account the difference in the symme-
try of the crystal lattices of “He and *He).

It was shown by Nagaoka [12] that the energy of
vacancies corresponding to the bottom of the band in
the completely polarized state is the absol ute minimum
(for bec crystals) of the energy of vacancies relative to
its possible values for any other spin configuration.
Under such conditions, at temperatures T smaller than
the vacancy band width A in the completely polarized
state, a ferromagnetic region of a completely polarized
crystal must be formed around a vacancy (see [3, 10]).
The order of magnitude of the radius R of such a spin
polaron at temperatures much higher than the tempera-
ture T, of antiferromagnetic ordering is determined by
the relation R ~ a(A/T)Y5, where a is the lattice con-
stant. In the antiferromagnetic state, we have R ~
a(A/T)Y5. Inthis case, avacancy itself islocalized and
is on the lower energy level in the spherical potential
well of radius R, which is formed by a spin polaron.
Highly excited vacancy states within the polaron are
virtually identical to the vacancy states in the homoge-
neous completely polarized state of the crystd; i.e.,
they are characterized by a definite quasimomentum.
We can visualize the vacancy as awave packet within a
certain large volume. Such a representation is valid if
the packet does not | oseits shape during itsflight across

the polaron. The packet is deformed by /ta’A/% dur-
ing time t. Substituting the time of flight R/v (v isthe
vacancy velocity) into this formulafor t and requiring
that the packet size does not exceed the polaron radius
R, we obtain the condition v > Aa%RA. This condition
holds for the entire vacancy energy interval except for
regions of a width on the order of Aa?/R? ~ ASST 25
directly adjoining stationary points (including the bot-
tom and top) of the vacancy band in acompletely polar-
ized crystal. The width of these regionsfor T < A is
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aways much larger than the temperature, but much
smaller than the band width A.

In the course of diffusive motion of vacancies
together with ferromagnetic polarons surrounding
them, a localized charge complex may get into one of
the polarons. In this case, the charge can go over into
another crystallographically equivalent localized state
as aresult of itsinteraction with avacancy. The energy
eE - u liberated in this caseistransferred to the vacancy.
The conclusions drawn here and in our earlier publica-
tion [2] concerning the field dependence of the drift
velocity of charges in strong fields are obviously valid
in the given case also. However, in the present case the
constraint imposed on thefield ismore stringent: eE - u >
A3T 25, A unique property of charges under these con-
ditions is that their drift in a unpolarized crystal is the
same as in the completely polarized state of the crystal.
In particular, the field dependence of the drift velocity
must have Van Hove singularities the same as in the
vacancy spectrum considered above. Such a possihility
of studying the vacancy spectrum in the completely
polarized state of *He crystals is of special interest in
connection with the problem of the existence of zero-
point vacancies in a polarized *He crystal, which was
discussed earlier (see[3]).
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Abstract—The standard ohmic measurements by means of two extra leads contain an additional thermal cor-
rection to resistance. The current resultsin heating (cooling) at the first (second) sample contact because of the
Peltier effect. The contact temperatures are different. The measured voltage is the sum of the ohmic voltage
swing and the Peltier-effect-induced thermoel ectromotive force that islinear in the current. Asaresult, the ther-
mal correction to the resistance measured existsas| — 0. The correction could be comparable with the ohmic
resistance. Above some critical frequency depending on thermal inertial effects, the thermal correction disap-

pears. © 2001 MAIK “ Nauka/lnterperiodica” .

It iswell known that ohmic measurements (see Fig. 1)
are carried out at low current density in order to prevent
sample heating. Usually, only the Joule heat is consid-
ered to be important. In contrast to the Joule heat, the
Peltier and Thomson effects are linear in the current.
The crucia point of the present paper isthat the Peltier
effect, which is linear in the current, influences the
ohmic measurements and results in a correction to the
resistance measured. Under the current carrying condi-
tions, one of the sample contactsis heated and the other
is cooled because of the Peltier effect. The temperature
gradient established is proportional to the current. The
Thomson heat is then proportional to the square of the
current and can therefore be neglected. Finaly, the
voltage swing across the circuit includes the thermo-
electromotive forceinduced by the Peltier effect, which
islinear in the current. Accordingly, there exists ather-
mal correction to the ohmic resistance of the sample.

First we consider an isotropic (or possessing acubic
symmetry) conductor that can be in thermodynamic
nonequilibrium with respect to conducting electrons. In
general, the current density j and the energy flux den-
sity g of theinhomogeneous conductor are given by [1]

i = o(E—adT), 1)
q = (e+aT)j—kUT, (2

where o is the conductivity, a is the thermopower, and
K is the thermal conductivity. For an inhomogeneous
conductor, the potential @ = ¢ + p/eis the sum of the
electric potential ¢ and the chemical potential p of con-
ducting electrons. For a homogeneous conductor, the
above definition of the potential differs from ¢ by a
constant, and the average microscopic eectric field -
therefore coincideswith E = —[¢ .

TThis article was submitted by the authors in English.

Thefirst term in Eqg. (1) corresponds to the conven-
tional Ohm'’s law and the second term describes ther-
moel ectric phenomena. In the steady state,

divj = 0, 3)

Q = —divq = div(kOT) +j’/c—jTB =0, (4)

where Q is the total amount of heat evolved per unit
time and unit volume of the conductor. The current flow
is accompanied by both the Joule and Thomson heats
that are proportional to the second and first power of the
current, respectively. Using Egs. (1)—(4), one can find
the potential ¢(r) and the temperature T(r) for the con-
ductor under given boundary conditions.

Now we consider the thermal effects in connection
with ohmic measurements of the conductor resistance
(Fig. 1). The conductor is connected by means of two
identical extra leads to the current source (not shown).
Both contacts are assumed to be ohmic; a, o, K, length
[, and the conductor cross section Sare different for the
leads and the sample. The voltage is measured between
the open ends c and d that are kept at the temperature T,
of the external thermal reservoir. In general, the con-
tacts a and b could be at different temperatures T, and
T, respectively.

It iswell known that Peltier heat is generated by the
current crossing the contact of two different conduc-
tors. At the contact (for example, ain Fig. 1), tempera-
ture T,, the electrochemical potential ¢, the normal
components of the current | = S, and the total energy
flux gS are continuous. There exists the difference of
thermopowers Aa = a; — d,. For Aa > 0, the charge
intersecting contact a gains the energy eAaT,. Conse-
guently, Q, = 1AaT, is the amount of the Peltier heat
evolved per unit time in contact a. We emphasi ze that
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Fig. 1. The circuit for standard ohmic measurements. The
dashed square represents the sample chamber.

Q, can be caculated directly through the Thomson
termin Eq. (4):

Q. = [-IT0ads,

where the integration is taken over the contact length.
In fact, the Peltier effect is equivalent to the Thomson
effect established at the contact.

For Aa > 0 and the current direction shown in Fig. 1,
contact a is heated and contact b is cooled. Thus, the con-
tacts are at different temperaturesand T, — T, = AT > 0.
Now we will show that the standard ohmic measure-
ments always result in athermal correction to theresis-
tance measured. Using Eq. (1), we express the voltage
swing U between ends c and d as

d

U :J'%+CXDT%1X = Rl +¢5, (5)
C
where
21, 1,
R=2R +R, = —L + -2
' 2 S0, S0,

is the total resistance of the circuit. The first term in
Eq. (5) corresponds to Ohm's law. The second term,

d

€ = IadT,

coincides with the expression for the conventional ther-
moelectromotive force under zero current conditions
[1]. We notice that €; is a universal value because it
only depends on the contact temperatures for arbitrary
cooling conditions.

There exists a correlation between the thermoel ec-
tromotive force and the Peltier and Thomson heats. The
total power evolved in the circuit, Ul, isthe sum of the
Joule heat RIZ and the power &l related to the thermal
effects. The product &l is then exactly the sum of the
Peltier heat

Qr = Qa—Qp = 1AaAT

1 ohm's law: “The amount of current flowing in a circuit made up
of pure resistances is directly proportional to the electromotive
forces (voltages) impressed on the circuit and inversely propor-
tional to the total resistance of the circuit” (1827).
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evolved at both contacts and the Thomson heat

d
Qr = —(ITOadx

C

in the conductor bulk:
erl = Qp+ Q. (6)

It followsfrom Eqg. (6) that for an arbitrary circuit under
the same contact temperatures (T,, T,,, and Ty), the zero
current measurements of the thermoelectromotive
force alow oneto find the total amount of both the Pelt-
ier and Thomson heatsat | # 0.

We recall that the sample contacts are always extra
heated (or cooled) because of the Peltier effect. The dif-
ference of the contact temperatures AT islinear in cur-
rent, and therefore, there exists a thermal correction to
the ohmic resistance:

AR = g/l = U/l -R.

For simplicity, we assume further that conductivity o,
thermopower Kk, and the thermal conductivity a are
temperature independent. The thermoelectromotive
force isthen given by €1 = AaAT.

Using Egs. (4) and (5), one can easily find the volt-
age swing U and, thus, the thermal correction ARfor an
arbitrary circuit. We emphasize that the real cooling
conditions strongly influence AR. Now we specify the
cooling conditions of the circuit shownin Fig. 1. We con-
sider the adiabatic conditions with the sample being
thermally isolated from the environment. For example,
the sample can be placed into a vacuum chamber (see
Fig. 1) surrounded by athermal reservoir kept at T,. We
neglect the heat transfer within the leads considering a
self-isolated sample. We emphasize that under the
above conditions, the sample is not heated. In fact, at
small current we have T, = T, = T, and hence, the Pelt-
ier heat evolved at contact a is equal to the heat
absorbed at contact b. The energy flux qSis continuous
at each contact, and therefore,

Qu=-Q = 18T, =« (1)

Using Eq. (7), we find the thermal correction to
resistivity as

To(20)1,
SK,

According to Eq. (8), AR depends on the reservoir tem-
perature and on the geometry and heat conductivity of
the sample. We emphasi ze that the thermal correctionis
always positive, because the total amount of Peltier
heat Qp = ARI? > 0.

AR = 8)
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PELTIER-EFFECT-INDUCED CORRECTION TO OHMIC RESISTANCE

Now we estimate the magnitude of the thermal cor-
rection AR to resistivity in the case where both the con-
ductor and leads are metals. At room temperature, the
electron heat conductivity and thermopower of the
electron gas are given by

_ 10K

LoT = =
ol, d 2e

€,

where L = 12k?/3€? is the Lorentz number and & =
KT/Er < 1isthe degeneracy parameter. Difference Aa
is of the order k&/e. It follows from the above assump-
tions that AR/R ~ &2 < 1. Thus, the thermal correction
is small compared with the ohmic resistance because
the electron gas is degenerate. For semimetals (bis-
muth, Ex = 35 meV), the therma correction can be
greater.

In contrast to the case of astrongly degenerate elec-
tron gas, the thermal correction must be greater for a
non-degenerate semiconductor because

K

~q. = K -1
Aa=0, = —=+r1—¢§ DDé’

elp

where r is the parameter related to the mechanism of
the electron scattering. For example, we consider the
nondegenerate n-InSb at T = 0.3 K. The Fermi energy
lies between the conduction band and the shallow
donor impurity level AE4 = 7 K. For the photon scatter-
ing (r = 3/2), we obtain Aa = 11k/e. At low tempera-
tures, the electron heat conductivity is smaller than the
photon-related Debye one (k,, = 0.05T% W/(cm K)).

(Ta—=To)Snh[A(1—n)] + (T, —To)sinh[AN]
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[T(n) — Tol/AT
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Fig. 2. Thedimensionless T(n) relation given by Eq. (9) for
fixed current, A =0, 2, 5, 10, and the contact temperature dif-
ference AT found at A = 0.

For n-InSb with the electron concentration n = 10 cn®
and mobility p =5 x 10° cm?/(V s), we obtain the ther-
mal correction to resistivity AR/R ~ 0.01.

In reality, the cooling conditions can be different
from those assumed above. Now we consider a more
realistic case where the local cooling of the sample is
important, for example, with the sample chamber con-
taining the gas. One can take the cooling effects into
account using Eg. (4) with the linear term —3(T — T)
included, where 3 denotes the strength of the sample-
to-gas thermal exchange. Under small current the spa-
tial temperature distribution (Fig. 2) is given by

) =

where n = ¥/, is the dimensionless coordinate. The
sample local cooling is therefore governed by the

dimensionless parameter A = ,/B/K,l,. Actudly, A is

the ratio of the outgoing and internal (within the sam-
ple) heat fluxes. When A < 1, the local cooling can be
neglected, and hence, T(n) is linear (Fig. 2). In the
opposite intensive cooling case where A > 1, the T(n)
dependence is sharp near the contacts.

The above results allow us to calculate the thermal
correction to the sampleresistance. Using Egs. (5), (7),
and (9) and omitting cumbersome algebraic calcula
tions, we calculate the thermal correction to the resis-
tance as

To(80)’l, tanh (A/2)

AR = = T A2

(10)
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For small cooling as A — 0, Egs. (8) and (10) coin-
cide. In the opposite strong-cooling case, where A —» oo,
difference AT and, thus, the thermal correction
decreases (see Fig. 2).

Now we estimate AR given by Eq. (10) for natural
air convection cooling. For a sample with the typical

dimension d ~ ./S, the outgoing thermal flux is given
by Kgas(T — To)NU/S, where Nu ~ 10 is the Nusselt num-
ber. For an-InSh sample (0.5 x 0.5 x 0.5 cm), the heat
conductivity is Ky, = 0.15 W/(cm K) (T = 293 K).
Assuming the air heat conductivity Ky, = 2.6 W/(cm K),
wefind A = 14. Thus, the thermal correction to resistiv-
ity isapproximately seven times smaller than that in the
absence of convection.

We emphasize that both dc and ac ohmic measure-
ments|ead to athermal correction. However, AR dimin-
ishes at high frequencies because of the thermal inertial
effects. In fact, Eq. (8) isvalid below some critical fre-
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quency f., = x/d?, where x is the temperature diffusive
coefficient of the sample. For example, in ametal con-
ductor at room temperature x = k/C = 10?> cm?/s, where
Cistheheat of the electron gas. For atypical metal con-
ductor with d = 1 mm, we obtain the critical frequency
f, = 10* Hz. We suggest that the spectral dependence of
the thermal correction can be used to estimate the mag-
nitude of the thermal correction.

In conclusion, the ohmic measurements of a con-
ductor resistance contain the thermal correction caused
by the Peltier effect. The thermal correction aways
exists, while its magnitude depends on the actua cool-
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ing conditions of the circuit. Above some critical fre-
guency depending on thermal inertial effects, the ther-
mal correction disappears.

The author is grateful to M.l. Dyakonov and
V.I. Perel for fruitful discussions.
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