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Abstract—The propagation of extremely short (without high-frequency filling) pulses and nonresonant
envel ope solitonsin atwo-component medium comprising two-level atomswith substantially different quan-
tum transition frequencies was studied. The dynamics of a pulse whose reciprocal time scale lay between
these frequencies was shown to be described by the Kosevich-Kovalev equation, the one-way variant of
which was the Konno—-K ameyama—Sanuki equation. If the transition dipole moments of medium components
were equal, the one-way equation became integrable. Soliton and soliton-like solutions to these equations
were used to analyze pul se propagation regimes at various two-component medium initial states. The stabil-
ity of these localized wave formations was analyzed. The possible existence of stable soliton-like pulses
propagating in a nonequilibrium medium at group velocities exceeding the velocity of light in vacuum was

discussed. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The progress in laser physics made during the past
decade has, amongst other things, led to an improve-
ment in the methods for creating nonequilibrium states
of various media. Thisaroused interest of researchersin
the formation and recording of electromagnetic pulses
propagating in such media at velocities exceeding the
speed of light, ¢, in vacuum [1]. It is common knowl-
edge that superluminal regimes do inevitably exist in
media that is unstable with respect to the transition to
the equilibrium state [2].

At the same time, the generation of laser pulses of a
width (t,) to one electromagnetic oscillation period
[extremely short pulses (ESPs)] in laboratory condi-
tions[3, 4] gave strong impetusto theoretical studieson
interactions between such pulses and matter. The range
of 1, values for ESPs is at present severa hundred to
severa femtoseconds. For obvious reasons, the approx-
imation of slowly varying amplitudes and phases,
which works well with pico- and nanosecond pulses
having well defined carrier frequencies w [5, 6], ceases
to be valid when interaction between ESPs and matter
are studied. Below, such pulses will be called quasi-
monochromatic. A quantitative criterion of quasi-
monochromatic pulses can be written as Aww < 1,
where Aw is the pulse spectral width, which is nonzero
because of itsfinite duration.

Sincethe discovery of the self-induced transparency
effect and its theoretical description [7] based on the
approximation of slowly varying amplitudes and
phases, alternative mathematical methods for studying
this phenomenon have been continuously sought [8—
13]. For instance, in [8, 9], asmall parameter was found

(e = 8rd?N/%wy,, where N is the concentration of two-
level atoms interacting with the pulse field, wy, is the
frequency, and d are the matrix elements of the quan-
tum transition dipole moment) that allowed the order of
the derivatives in the Maxwell eguations to be
decreased (the reduced Maxwell-Bloch system). The
mathematical structure of the reduced eguations is
identical (except for notation) with the structure of the
Maxwel|-Bloch equations obtained using the approxi-
mation of slowly varying amplitudes and phases [8].
Both Maxwell-Bloch and reduced Maxwell-Bloch
equations are integrated by the inverse scattering prob-
lem method. Abandoning the approximation of slowly
varying amplitudes and phases [8, 9] was an important
step in developing the theory of interactions between
laser pulses and matter from the point of view of the
modern trends in coherent optics.

The authors of [14, 15] did not use the approxima-
tion of alow-density medium (e < 1) but, in turn, sug-
gested the approximations of pulses very short,

(W T,)* <1, )
and very wide,
(w,T,)% > 1, @)

compared with interatomic times w; and ;" (Tis
the characteristic time scale of the propagating signal).
In the limit given by Eq. (1), the dynamics of ESPs sat-
isfies the sine-Gordon equation for the “area’ of the
electromagnetic pulse[14, 15], and inthelimit given by
Eq. (2), it obeys the modified Korteveg—de Vries equa-
tion for the ESP electric field [14-17].
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Clearly, condition (1) can only be met for frequen-
cies wy in the infrared region, which corresponds with
the vibrational spectra of molecules [14]; that is, with
the motion of molecular ions. In gaseous media, this
can be tunnel-inversion transitions of some molecules,
for instance, ammonia. If it is, however, assumed that
condition (1) can be satisfied for frequencies w;, in the
visible region, ionization processes (transitions to the
continuous spectrum) should be taken into account,
which can considerably complicate the problem.

Within the framework of our approach, condition (2)
can easily be satisfied by visible region w, frequencies
corresponding to electronic transitions. Recent years
witnessed an increased interest in resonance interaction
between laser pulses and two-component media. For
instance, various propagation regimes of resonance
guasi-monochromatic pulses in a system of two-level
atoms of two kinds were considered in [18-20]. The
transition frequencies for atoms of two kinds coin-
cided, but the transition dipole moments were different.
At the same time, when a nonmonochromatic pulse
propagates in a medium, the process involves interac-
tionswith alarge number of quantum transitions of dif-
ferent natures, both covered by the ESP spectrum and
lying outside it. The simplest theoretical model is then
atwo-component medium comprising transitions satis-
fying conditions (1) (1-component or 1-atoms) and (2)
(2-component or 2-atoms).

This work is concerned with a theoretical study of
the propagation of ESPs and nonresonant quasi-mono-
chromatic signals in anonlinear medium comprising
1- and 2-components, which will be treated as sets of
two-level atoms with frequencies w, and w, and transi-
tion dipole moments d, and d,, respectively. Note that
this model can more or less satisfactorily describe ESP
interactions with gaseous media or some liquidslike an
absorbing dye [21]. The matter is that, in the transpar-
ency region, it unambiguously follows from the two-
level medium model that the nonlinear refractiveindex,
n,, isnegative [22, 23], whereasn, > 0 in dielectric sol-
ids [24]. It was shown in [25] that n, > O can only be
obtained in the approximation of an at least three-level
medium, the consideration of which is outside the
scope of thiswork.

The paper isorganized asfollows. Equations (1) and
(2) are used in Section 2 to derive nonlinear wave equa
tionsfor the area of an electromagnetic pul se propagat-
ing in a two-component medium comprising two-level
atoms. Section 3 contains a comprehensive analysis of
some soliton-like solutions to these equations (from
ESPs to envel ope pulses, or quasi-monochromatic soli-
tons). Generaly, solitons considered in this work are not
solutions to completely integrable equations. Where nec-
essary, the distinction between true solitons and solutions
to nonintegrable equations in the form of solitary trav-
eling waves will be stressed. The “averaged Lagrangian”
method used in Section 3 allowed usto study the problem
of the stability of the solutions under consideration. In
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Section 4, we analyze stable ESP and envelope pulse
propagation regimes in a two-component medium pre-
pared in various initial states. Attention is paid to soli-
tons propagating in nonequilibrium media at group
velocities exceeding the vel ocity of light in the vacuum.
In the Conclusion (Section 5), we formulate the most
important results of this work and consider some
unsolved problems, which would, in this author’s opin-
ion, be interesting to solve in the future.

2. THE KOSEVICH-KOVALEV
AND KONNO-KEMEYAMA-SANUKI
EQUATIONS

Consider a gas comprising two-level 1- and 2-com-
ponentswith quantum transitions satisfying conditions (1)
and (2), respectively.

The system of material Bloch equations for such a
medium has the form

U,

i ®
Vv,

oW,

Ea ©

where index j (j = 1, 2) is the number of the medium
component, Q; = 2d,E/%, W, is the inversion of transi-
tion populations of the jth component (-1/2< W, < 1/2),
and dynamic variable U; determines the polarization P
of the medium,

2
P=2Y% dNU, (6)
2
where N; is the concentration of atoms of the jth com-
ponent.

Excluding V;, which has no real physical meaning,
from Egs. (3)—«5) yields

2
U.
2 > =~V - W,
ot
(7)
ow; _ Q;0U;
ot w0t

Note that U; and V; are not the envel opes of the syn-
phase and quadrature dipole moment components, but
are the initial atomic variables related to the density
matrix p elements asfollows:

_ P2t Pr _ P21— P
U= 5 V = 5
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Let us complement system (6), (7) by the Maxwell
equation

2 2
AE_la_E = 4_7-[6_P (8)

cot® ot
By virtue of Eq. (1), the w;U, term in the right-hand

side of the first equation in (7) can be neglected for the
1-component. The solution to Eq. (7) for j = 1 isthen
given by [14, 15]

ouU .
W, = W, cosB, a_tl = —w,W,,,sin8, (9
where
t

and W,,, isthe inversion of 1-component atoms before
the action of an ESP.
Let usrewritethefirst equationin (7) for the 2-com-
ponent in the form
U= Q2 L o°U,
27wy, ? mﬁ ot?
In a zero-order approximation with respect to the
small (w,1,)~ parameter [see Eq. (2)], we obtain U, =
—Q,W,/w,. Substituting this result into the second term
in the right-hand side of Eq. (10) and assuming W, =
W,,, in this equation (by virtue of a weak transition
excitation, W,,, is the initial inversion of 2-component
atoms) yields

(10)

2
W, w, Ot

The substitution of U, = —Q,W,,/w, in the second
equation in Eq. (7) followed by the integration of this
equation gives

U, = (1)

(12)

It follows from Egs. (11) and (12) that

Q Q;  W,,0°Q
U, = -W,,—~ +W200_23 23 22-
W 2w, W, ot

Equations (8), (6), (9), and (13) give

2.2
Ny0°0
AB-=—
¢’ ot®
96fa’0 ‘e

+ (13)

(14)
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where n, is the low-frequency refractive index corre-
sponding to 2-component quantum transitions,

- 1_16Ttd§N2W2m

o = hw, ’
167d; N, 0, W
o = 1 12 1 loo, (15)
fic
_16Td5N, Wy, _ 3dv
hciws 2d?

In the spatially one-dimensional case (A = 0%/07?) and
ad, =d, (B =3v/2), Eq. (14) coincides with the
Kosevich—Kovalev equation, which generalizes the
Frenkel’—Kontorova model for dynamic dislocationsin
crystals to problems with lattice anharmonicity and
spatial dispersion of the acoustic regime [26]. Precisely
a B =3v/2, Eq. (14) has an exact solution in the form
of asolitary soliton-like pulse[26]. Equation (14) isnot
an integrable model, and its solution in the form of a
solitary traveling wave therefore does not possess the
soliton property of elasticinteraction withitslike. Asin
[27], solitary stationary waveswill sometimes be called
solitrons to distinguish them from true solitons. As far
astrue soliton solutions are concerned, of interest isthe
“one-way” variant of Eq. (14). To obtain the one-way
equation from (14), we apply the approximation of one-
way propagation [15] along axisz at avelocity closeto
c/ny. This is justified if, by virtue of Egs. (1) and (2),
each term in the right-hand side of Eq. (14) is related to
both left-hand side terms as (o T,)? ~ (w,T,) % < 1 to one.

As is seen from the equation for né, N, is formally
bounded from above in the nonequilibrium case W, > 0.

For W,,, = 1/2, thisrestriction has the form (see Eq. (12))

€ < 1! (16)

where ¢ = 8nd’N,/Awy (j = 1, 2). This is a weaker
restriction than that imposed by the reduced Maxwell—
Bloch system (e < 1) [8, 9]. At €, > 1, n, becomes
imaginary, which corresponds to the effect of total
reflection of nonresonant ESPs from a nonequilibrium
medium. In contrast, no restriction isimposed on n, in
an equilibrium medium (W,, < 0). A comparison of the
first term in the right-hand side of Eq. (14) with an arbi-
trary left-hand side term of Eq. (14) yields one more
condition for the applicability of the one-way propaga-
tion approximation, namely,

€1(00,T,/Nng)? < 1. (17)
By virtue of Eq. (1), Eqg. (17) is also [like Eq. (16)] a
much weaker restriction than that imposed by the
reduced Maxwell-Bloch system (e; < 1).
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Performing the standard procedure of the transition
to the comoving reference frame [28, 29] and taking
into account Egs. (2) and (17), we obtain

a 0 [qaegza 0
3701 +asind — bEB Dar
. (18)
oY _ C
_gaT4 - ZnOADe,

where Ay isthe transverse Laplacian, T =t —nyz/cisthe
local time,

- ca _ B =
2ny’ 2ny’ 2n,

Leaving aside the transverse dynamics (A8 = 0),
Eqg. (18) includes the sine-Gordon equation for 8 (b =g =
0in the absence of the 2-component) and the modified
Korteveg—de Vries equation for E = (A/2d)06/dt (a=0
in the absence of the 1-component) as particular cases.
Both equations belong to the class of modelsintegrable
by the inverse scattering problem method [30]. Assum-
ing b=3g/2in Eq. (18) at A6 = 0, which is equivalent
to d; = d, [see Eq. (15)], leads to the Konno-Kam-
eyama—Sanuki equation [29]. Precisely at this ratio
between the b and g coefficients, Eq. (18) isintegrable
by the inverse scattering problem method [31]. This
impliesthat its solutionsin the ESP form are, unlike the
corresponding solutions to Eq. (14), true solitons,
which elastically interact with each other. In [26, 31],
the relation b = 3g/2 was introduced artificially. Here,
this relation follows from the assumption that the
dipole moments of the two system components are
equal. Note that the valuesin point are precisely dipole
moments rather than “oscillator strengths,” as for the
system of three-level molecules with a V scheme of
guantum transitions[32]. In our case, the ratio between

thef; = df w, (j = 1, 2) oscillator strengths of the transi-

tions under consideration is, at d, = d,, such that

f, diw,
- 2 = —Z>1.
fi e, O

Nevertheless, athough f; < f,, strong excitation of the
1-component compared with 2-component excitation
can result from the presencein the ESP spectrum of the
Fourier components in resonance with the correspond-
ing transitions [see EQ. (1)].

The d, = d, condition is afairly strong restriction of
the model under consideration and can be regarded an
exceptional case, when Eq. (14) hasan exact solutionin
the form of a solitary pulse and, in addition, Eq. (18) at
A0 = 0 is integrable and therefore has multisoliton
solutions. Hereafter, it is, asarule, implied that d; # d,;
the transition dipole moments will be assumed to equal
each other only in analyzing exact solutions to Eq. (14)
and Eq. (18), which will largely be considered for illus-
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trative purposes. For ESPs, the difference of d; and d,
will be taken to be small (more details are given bel ow).

3. EXTREMELY SHORT SOLITON-LIKE PULSES,
BREATHERS, AND ENVELOPE SOLITONS

In this section, we consider various approximate and
exact solutions to Egs. (14) and (18). Approximate
solutions in the ESP form will be found using an aver-
aged variational principle of the Ritz—Whitham type
[33, 34]. This approach enables us not only to obtain
solutions of the specified type but also to study the
problem of their stability.

Equations (14) and (18) can be written as Euler—
L agrange equations using the L agrangian densities

No E@GDZ
2E6t

B e, vo'er
~1206t0 " 20520

£, = ——(De) +— —0(1-cosB)

(19)

and

10600
F2= 55751 -

gtﬁ ot
ZEbTZD 4N20D6'[ZD

After the passage of an ESP, the medium should
return to the initial state corresponding to t — —oo.
The complete pulse areais then

+o00

0, = J’Qldt‘ = 27
[see Eq. (9)]. Accordingly, the trial solution can be

0= 4arctanDexp[p(r)% q)(r)D}% (21)

where ®(r) and p(r) are, interms of [33], the “fast” and
“dow” functions of coordinates. The profile of the elec-
tric field of the ESP is given by

_ h a0 _ D(r)
25t = e[ pmf-2T. @
Equations (14) and (18) have exact solutions in the
form of traveling ESPsat d; = d, (B = 3v/2) and A6 = 0.
Using Eq. (21) as the corresponding trial solution, itis
therefore reasonabl e to assume that d; and d, insignifi-
cantly differ from each other (a more rigorous criterion
will be found below). Otherwise, there is no guarantee
that a solution of precisely thisform can be found.
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Substituting Eqg. (21) into Egs. (19) and (20), ignor-
ing the derivatives of p(r) [33], integrating the resulting
equations with respect to t (or 1), and taking into account
Eqg. (15), we obtain the “averaged Lagrangians’

100
Li=g [ Sadt = Bini— (007

(23)
a 1 3
_5_1_3(1+6)Vp :
1 L
LZEEJ’SBZdr = ﬁ_z_g
. (24)

1 3 C 2
—§(1 +0)gp —Z—nOP(qu’) ,

where A isthe transverse gradient and 3 = 2(d>/d> —1).

The & parameter characterizes the relative detuning
of the d; and d, quantum transition dipole moments
from each other. Confidence in the correctness of the
selected trial function of form Eq. (21) depends on the
fulfillment of the condition |d] < 1 [see Egs. (23) and
(24)]. 1t follows from this condition and the equation
for & that the relative difference of d; and d, should not
exceed 20%. Below, we assume that & < 1 for ESPs.
Condition (1) can be satisfied by quantum transitionsin
asystem of vibrational sublevels[14] or in a system of
tunnel-inversion transitions, and condition (2) is met by
electron-optical transitions. Then

d, Oer;, d,0eag,

where e is the charge of the electron, r; ~ ,/A/mw, is
the amplitude of mixing of molecular ions, m is the
characteristic mass of ions, ag = #%/m.” is the Bohr
radius, and m, is the mass of the electron. This gives

dy 07324 m; W,
d, m.€’

Putting my ~ 10°m, and o, ~ 10 s yields d,/d; ~ 1. It
follows that closeness of the d; and d, values can corre-
spond to real conditions.

Writing the Euler—L argange equationswith L, for ®
and p, we obtain

(Do) = n§+c2[%—(1+6)vp2}, (25)
p

O(pO®) = 0. (26)

System (25), (26) can be treated as geometrical optics
equations for solitrons [33]. The @ value then has the
meaning of the solitron eikonal, and Eq. (25) isthe solitron
eilkona equation, which determines the v,, velocity of
solitron wave front propagation at each point in the

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

365

direction normal to thefront. Indeed, differentiating the
solitron front equation

P _
pE_ED = const

and ignoring slow variable p variations, we obtain

gt = 99 - |D¢|d|n’
c c

where dl, is the displacement of the ESP front in the
direction normal to it. Therefore,

dl c

Vo = —dT = m (27)
Additionally using Eq. (25) yields
2
1 N, a 2
= = =+=—(1+0d)vp". (28)
Vo

Equation (26) can be rewritten in the form

0(pa®/oly) _
al

Asod/al,=|[@ |, taking Eq. (27) into account leads us
to conclude that, along local normals to wave fronts,

(29)

Based on these results, wave front profiles at each
subsequent time moment can be obtained by applying
Huygens-type constructions corresponding to the
numerical solution to system (25), (26).

Prior to discussing these constructions, let usfind a
one-way soliton-like solution for pulse propagation
along z. The p and @ valuesthen only depend on z. The
wave fronts of such a pulse are planes normal to the z
axis. Equations (27)—(29) yield

p/v, = const.

p=T, =const, v,=v =const, P =czv

and

2
1 _ [ng. o (L+8)v
Ve J“— @0
p

According to Eqg. (22), the ESP profileis given by

£ = gent=2Y
d;T, T,

(31)

Because Eq. (14) is not an integrable equation, ESPs of
form Egs. (30) and (31) do not possess the property of
elastic interaction with their like.

Clearly, the 1, and v values mean the ESP width and
the velocity of ESP propagation along the z axis, respec-
tively. We sdlect the pulse width as afree parameter.
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(b)

Fig. 1. Soliton wave fronts at equal time interval s obtained with the use of Huygens-type constructions corresponding to the numer-
ical solution to Egs. (25) and (26): (a) defocusing medium and (b) focusing medium. For simplicity, secondary spherical waves are

shown by arrows normal to the soliton wave front: ATB}I = BTCT = CTDT =...

Note that, at d; = d, (6 = 0), Egs. (30) and (31) cor-
respond to the exact solution of Eq. (14) at A® =0
found in [26].

Equations (21), (31), (9), and (12) give the laws that
determine how population inversions of both compo-
nents vary when a pulse of form Eq. (31) passes
through the medium:

t—z/v

W, = Wy, H —2sech? 5

Tp
2 sech? t—z/vQ
(@,T,)° T, U

p

It follows from Eq. (32) that the pseudospin corre-
sponding to the 1-component makes a compl ete revolu-
tion over the Bloch sphere during the passage of a
pulse (31), whereas the state of the 2-component
changes insignificantly. Indeed, the ESP Eq. (31) spec-
trum contains Fourier components resonant to the 1-com-
ponent [see Eq. (1)] and does not contain components
resonant to the 2-component [see Eq. (2)].

In reality, a pulse should have finite dimensions in
the plane normal to the z axis, and its amplitude is
larger in the center of its cross section than at the
periphery. In view of this observation, let us return to
the non-one-dimensional variant of system (25), (26)
[see aso Egs. (28) and (29)]. It follows from Eq. (22)
that p isproportional to the pulse amplitude. Equation (28)
then determines the amplitude dependence of velocity
v,, normal to the soliton wave front at each front point.
The wave front transformations shown in Fig. 1 corre-
spond to v,, monotonically increasing (dv,/dp > 0) and
decreasing (dv,/dp > 0) as the loca ESP amplitude
increases. In thefirst case, the center of the signal cross
section moves faster than peripheral regions. The soli-

(32)

W, = szgt—
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ton wave front profile becomes convex forward, which,
at long times, favors the formation of an “ electromag-
netic projectile” (“bullet”) [35, 36]. Importantly, the
pulsethen remains stable; that is, it can propagate in the
medium for large distances. In the second case, the
cross section center lags behind ESP periphera
regions, which eventually results in their self-focusing
(Fig. 1b). This effect causes ingtability of pulses Eq. (31)
with respect to transverse perturbations. Note, however,
that electromagnetic projectile formation and self-
focusing occur when wave fronts are strongly curved.
The condition of slow p(r) function variations is then
violated. Strictly speaking, the approach suggested in
this work is inapplicable at final wave front evolution
stages. Particular situations with stable pulse propaga-
tion (defocusing) and pulse salf-focusing will be analyzed
in the next section. Here, it is useful to consider one more
approach to analyzing stable solutions of type (30), (31).
Note that system (25), (26) can be written in the form of
the Bernoulli integral and the continuity equation for asta:
tionary potential flow of an ideal liquid,

VvZ | dp

—_—_t L = =

> 0 const, O(pV) =0,
where “velocity” V of liquid flow is defined as V =
(c/ng)[@ , and “pressure” pisrelated to “density” p as

dp _ c'ra, 2
— = =|=+(1+9d .
i nz[pz (1+8)vp’|

0

(33)

(34)

Clearly, the stability condition for an ESP described
by Egs. (30) and (31) takes the form of the criterion for
a stable ideal liquid flow Eqg. (33); that is, dp/dp > O.

Performing thep = r;l substitution in Eq. (34) then gives

atp+ (1+38)v>0. (35)
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Clearly, stability condition (35) is in agreement with
the dv,/dp > O criterion found above with the use of
Huygens-type constructions.

The stability of soliton solutions to Eq. (18), which
isaone-way variant of Eq. (14), isanalyzed quite sim-
ilarly. The use of the “averaged Lagrangian” L, [see
Eq. (24)] and tria solution (21) for this purpose yields
the system of variational parameter equations

ov 1
G_ZD +(Vplp)Vyg = _BDDP’
(36)

0

=+ Oo(pVo) = 0,

where V; = (¢/ng)J®, and the p(p) dependence is
determined by Eq. (34) taking into account the relations
between the a, b, and g coefficients of Eq. (18) and the
corresponding a, 3, and v coefficients of Eq. (14).

System (36) includes the Euler equations of motion
and the nonstationary continuity equation for a two-
dimensional ideal liquid flow. In these equations, the
role of timeis played by the longitudinal coordinate z.

Curioudly, ESPs of the complete (two-sided) Eq. (14)
generate a system of variational parameter equationsin
the form of equations for a stationary potential ideal
liquid flow in the three-dimensional space, and solu-
tions to the reduced (one-way) Eq. (18) generate a sys-
tem of equations of motion for atwo-dimensional ideal
liquid flow in two directions normal to the z axis, that
is, to the pulse propagation axis.

An important circumstance is that the p(p) “equa-
tions of state” coincide for ESPs of both equations. This
allowsusto formulate a unified stability criterionin the
form of Eq. (35) for ESPs of type Eq. (22) obtained as
solutions to Egs. (14) and (18) [for solutions to Eq. (18),
we must perform the substitutionsa — a, B — b,
andv — gin Eq. (35); as(a, b, g) = (c/2ny)(a, B, V),
these substitutions are inessential].

Note that the one-dimensional (A0 = 0) soliton-like
solution to Eq. (18) has form Eqg. (31), and the equation
for the velocity v of the corresponding pulse is found
by expanding Eq. (30) in powers of the small parameter

et 2 _(1+d)v
|
p
with retention of the first two terms,

1 ﬂ)_'_atz_(l +26)g_

v C P

(37)
p

This expansion corresponds to the closeness of pulse

velocity v to ¢/n,. The populations of both components

then change according to Eq. (32).

Atd, =d, (d = 0), Eqg. (18) becomes an integrable
equation, and a solution of form (31), (37) is then an
exact one-soliton solution to Eq. (18). Pulse (31) becomes
a soliton in the strict sense; that is, it eastically inter-
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acts with its like. True, Eq. (18) only describes the
interaction of solitons moving in one direction.

A two-soliton solutionto Eq. (18) at d; = d, (b =3g/2)
has the form [29]

_ h 08
2h 0 eXpsl + exps; (38)
= ——arct ,
d, ot ZDZ .
31 0 &xP(s1 +5y)
where
S = t_TZ/V, 1. 99+ar,-2—% (J=12),

i ¢ T
T; and v; are the width and velocity of the jth soliton,
respectively, at alarge soliton spacing.

Equation (38) can be used to obtain a breather solu-
tion to Eq. (18) by taking its free parameters 1, and T,
to be complex conjugate to each other [11]. With 1, , =
T,/(1+iwT,), we obtain
2h

Eza:

gtarctanalw—sechﬂ Z/V%l [wB }

The group v and phase vy, breather velocities are
expressed through the breather width 1, and frequency
w asfollows:

1 Ny a 2 2

- =24 + — A
VioC Ty 93w T, ), 0
1 Ny 2 )

—_= == +g(w —-31,). 41
Vph C w2+'[’_)2 g( p) ( )

At wT, < 1, the solution to Egs. (39)—41) corre-
sponds to ESPs each including about one electromag-
netic oscillation period, whereas if wT, > 1, Eq. (39)
gives the quasi-monochromatic soliton

- [t—zv _.z0
E = EmsechD % Ecos[ooB VphD}' (42
where E, = 2#/d;1, and the group v and phase v,
velocities are determined by the equations
1 _N,a 2 1 N, a

_:_+—2+3gw, —:___

+gw’.
v ¢ w Ve €

43
respectively [see Egs. (40) and (41) at o2 > T, ].

Notethat Egs. (40) and (41) can be obtained by ana-
Iytically continuing the dispersion parameters to the
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complex plane. Thistechnique, which has avisual quas-
particle interpretation [29], was suggested for one-para-
metric solitons and solitrons in [37, 38] and generaized
and extended to two-parametric solutionsin [23, 29]. The
method is based on the assumption that there exists a
solution to the nonlinear system under consideration in
the form of an exponentially localized traveling pulse.
The linearized variant of the system generates the
F(w, k) = O dispersion relation, where k is the wave
number in the laboratory frame of reference. Perform-
ing the substitutionsw — w+ipandk —= k+ ik in
the dispersion equation and separating the real and
imaginary parts, we obtain

Fi(owp k k) =0, Fy(wpkk)=0.

These equations establish relations between the local-
ized solution parameters, two of which can be selected
as free. In addition,
- W
p :Tp1, Vph = E’ vV = E
Thelatter expression for the group vel ocity can beillus-
trated invoking the concept of quasi-particles. Clearly,

thep= r;,l value present in theimaginary addend to the

frequency in the substitutions specified above is the
reciprocal lifetime of quasi-particles (in our case, pho-
tons in a medium or polaritons [21]) in the state with
the w energy and the ik momentum; | =k isthen the
mean free path of quasi-particles. The finiteness of 1,
and | resulting from the interaction between quasi-par-
ticles caused by nonlinearity leads to finite widths Aw
and Ak of the spectrum of quasi-particles, which gener-
ate a soliton-like formation. We have

p=T=bw, k=1T=ak v=0-800
The linearization of Eq. (18) at A6 = 0 gives
0’0 , .o_0'0
3zt G_E =0

Substituting 8 ~ exp[i(wT —g2)] (q is the wave number
in the comoving reference frame related to k by the
equation k = wny/c + Q) into this expression), we obtain
the dispersion eguation

Performing the substitutions w — w + ip and K —
k + ik and the procedure described above leads to
Egs. (40) and (41). Settingw=k=0at p, K Z 0, we
obtain a one-parametric soliton-like solution. Note
that, at w=0, Eq. (40) trandformsinto Eq. (37) if =0. On
the other hand, if w< p and k < k, we can hardly usethe
concept of separate quasi-particles. We then deal with a
conglomerate of strongly interacting polaritons, which
lose their identity. In the w, k — 0 limit, a polariton
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condensate is formed in the zero regime. Because of
strong internal interactions in this condensate (interac-
tions responsible for its formation), its spectrum has

finite widths Aw ~ 15" and Ak = 11 = (v1,) 2 As a
result, the polariton condensate propagates in a
medium in the form of ESP Eq. (31).

Sinceat b =3g/2 and A8 =0, Eg. (18) has solutions
of the quasi-monochromatic pulse type, we can use
Eg. (18) in the wt, > 1 limit to directly obtain an
approximate differential equation for the pulse enve-
lope. Let quasi-monochromatic pulses propagate in the
two-component medium under consideration. Clearly,
the approximation of slowly varying amplitudes and
phases is then applicable. We will write the electric
field of the pulsein the form

E = %%(z, 1) exp[i(wt —qz)] +c.c,, (44)
where €(z, 1) isthe slowly varying pulse envelope. We
have

4

or wt, > 1. Multiple integration by parts yields the
expansion

< q[¢| (45)

< /€, ‘_
0z

T

0 = J’Qldt'
(46)
_2dif6  10€ 9% O
7 Dw+wzaT (;036‘[2 + "'D+C'C'

Here, the role of the characteristic time scale is played
by the reciprocal frequency, w™. It then follows from
Egs. (1) and (2) that

0 < W < W (47)
Because the pulse is quasi-monochromatic, its spectral
width satisfies the inequality Aw < w. For this reason,
the spectrum of the signal does not contain resonance
Fourier components, see Eq. (47). It follows that exci-
tation of atoms can be considered insignificant. This
alows the representation sin@ = 6 — 636 to be used.
Substituting Eq. (44) into Eq. (18) and using Egs. (45)
and (46) yields the nonlinear Schrédinger equation

2
98 188 g = AD% (48)
62

Here,
a
T= T_EL)2+39(°% M= Sgw—(}J
_ fuf
n= DﬁDg)w_
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and the g parameter is related to the pulse frequency as
g =gw’ —a/w. At A€ = 0, the soliton of the envelope
of Eq. (48) inthe laboratory frame of reference obtained
taking into account Eq. (44) has form Eq. (42), where
E,= TglA/Zp/r] , and the expressionsfor v and v, = wk
coincide with Eq. (43). Note that we obtained Eq. (48)
without using the condition of the equality or closeness
of d; and d,. It follows that, in contrast to ESPs, the
existence of envelope pulses does not require imposing
specia restrictions on the d; and d, parameters. Note
that Eq. (48) isintegrable at A€ = 0. Its solutions for
the pulse envelope are therefore solitons in the strict

sense. Below, these solutions are called envelope soli-
tons.

It follows from the equation for v that the velocity
of an envelope soliton in an equilibrium medium (a> 0,
b>0or W, <0, W,, <0)issmaller than c/n,.

Note that the 4 and n parametersin Eq. (48) can be
written in the form [39]

_ ks _ wn
I-'l_zyr]__ )

- (49)

where k, = 3%k/ 0w is the dispersion index of the group
velocity, n, is the nonlinear index of refraction deter-
mined by the equation

n(w) = n(w) +n,lé/%, (50)

n(w) isthetota refractive index, and n,(w) isits linear
part.

It follows from the equation for €, that the forma-
tion of solitons of type Eq. (42) (we exclude “dark”
solitons [39] from consideration) is possible if [39]

(51)

Putting b = 3¢/2 (d, = d,) in the expressionsfor i and n,
we find that, if A€ = 0, the envelope soliton for the
nonlinear Schrodinger equation (47) coincides with
breather Egs. (39)+(41) at wt, > 1. A similar conclu-
sion on breathers of the modified Korteveg—de Vries
equation and the sine-Gordon equation was made in
[39, 40]. Note adso that, if b = 3g/2, then n =
(1/2)(dy/A)?p. Condition (51) is then fulfilled automat-
icaly, which results in possible formation of one-
dimensional envelope solitons no matter what the ini-
tial state of the medium. The examplewithd; =d, isyet
again evidence that an envelope soliton is a limiting
case of abreather at wt, > 1. Further, we will be inter-
ested in not only ESPs but also in envelope solitons.
These solitons are stable with respect to self-focusing if
the nonlinear refractive index n, determined by Egs. (49)
and (50) is negative [6]. Otherwise, there occurs self-
focusing or collapse [6, 33, 41]. According to Eq. (51),
condition (52) can be satisfied in the region of normal
group dispersion (k, > 0). From this and the equations

k,n, <O.
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for n, and k,, we obtain the stability condition for a
guasi-monochromatic soliton,

max (a/w’ — 2B, a/w’—3v) <0. (52)

Itispertinent to mention herethat Egs. (35) and (52)
arevalid for spatially uniform media.

4. AN ANALY SIS OF PARTICULAR SITUATIONS

Below, we consider the possibility of the propaga-
tion of extremely short and quasi-monochromatic soli-
tons at various initial states of a two-component
medium. Inequalities (35) and (52) can conveniently be
rewritten directly in terms of the macroscopic parame-
ters of media with the use of the corresponding expres-
sionsfor a, B, and v [see Eq. (15)]. The stability condi-
tion for ESPs then takes the form

N2

Wi (@1 Tp)(@rTp) =W L+ 3 6 20 (53)
(hereafter, we neglect powers of o hlgher than one
because it is assumed that & < 1). The stability criteria
for an envel ope soliton can be written as

4N
max[ W, 152)25 3W2(X,UJIZD—2

0N,
;0 rffN >
1 [§%1] 2t N,

1wwaD+3mbﬁ3[]N}<0

To make the further discussion less cumbersome,
the envel ope soliton will be analyzed on the assumption
d, > d,. A similar analysis for d, < d, creates no diffi-
culties and does not lead to basically new conclusions.

(a) An absorbing medium. In such amedium, W, =
W,,, =—1/2, and thereforea > 0 and g > 0. According to
Eqg. (53), an ESP is absolutely stable, and its velocity
decreases as its width increases [see Egs. (30) and (37),
and Fig. 2. In addition, v > c/ny (ny > 1) if

14
T,<1 _[%4_355 N, } _
ZDlelwz

It is, however, easy to see that v cannot exceed c,
because otherwise, inequality (2) would not hold.
Envelope soliton Eq. (42) is stable if its frequency sat-
isfies the conditions w?, < w? < w5 [see Eq. (54) and
Fig. 3], where

4

4 OdN,

Wy = EBEEV O—5—ww0 -
g BN, 0

The specified conditions can be met if w?, < w5. This
gives
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Fig. 2. Dependence of the velocity of a soliton-like ESP on
its width: (a) absorbing medium, (b) amplifying-absorbing
medium, (c¢) absorbing-amplifying medium, and (d) ampli-
fying medium. Solid and dashed curves correspond to stable
and unstable solitons, respectively. The part of the solid
curvethat lies below (1 —ng)/c at ny < 1 correspondsto v > ¢

(medium (c)).
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Fig. 3. Dependence of the group velocity of a quasi-mono-
chromatic soliton on its carrying frequency. See Fig. 2 for
notation.

As w; < W, this inequality can be satisfied, for
instance, if d, ~ d; and N, = N;. According to Egs. (48)
and (2), the group velocity of the envelope soliton also
does not exceed c.

In what follows, amedium with theinverted 1-com-
ponent (W,,, = 1/2) and the 2-component in the ground
state (W,,, = 1/2) will be called amplifying-absorbing,
otherwise (W, = =1/2, W,,, = 1/2) the medium is
referred to as the absorbing-amplifying. The relaxation
time from an excited to the ground state is known to be
inversely proportional to the cube of the corresponding
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guantum transition frequency [5]. For this reason, the
1-component can exig in the inverse population state
much longer than the 2-component. If d; = d,, the estimate

Rl |j"')2|]3
D% 0 >1

isvalid; here, TRI(TRZ) isthe lifetime of atom 1 (2) in
theinverted state. A medium for which W, = W,,,, = 1/2
will be called amplifying.

(b) An amplifying-absorbing medium (W,,, = 1/2
andW,,, =—1/2, or a<0and g > 0). According to Eq. (53),
an ESPisthen stableif w,' < 1, <1, (Fig. 2), and its

velocity cannot exceed c. Let us prove this. The condi-
tion v > c for ESP (37) can be written as
n,—1 2

o - (L220
p

According to Eqg. (43), asimilar condition for an enve-
lope soliton has the form

Ny —

c

<0. (55)

1
+ £ +3gw’<0. (56)
W
For simplicity, it will be assumed throughout that n,
differs from one inggnificantly; that is, 8rd?N,/Aw, < 1
[see Eq. (15)], and ny = 1 — 81td5 NyW,/7ic,. Condi-
tions (55) and (53) for an ESP in an amplifying-absorb-
ing medium are written as

5D 20,
(T p) > ETJIL * ZDNl(A)l

and

35DN2°02
< +
(0,1, <H NG

respectively. By virtue of Eq. (2), these inequalities
cannot be consistent. It follows that the velocity of an
ESP is lower than that of light, v < c. Note that, in the
absence of a 2-component (N, = 0), condition (53)
determines the stability of solitons of the sine-Gordon
equation. It followsfrom Eq. (53) that these solitonsare
unstable at W,,, > 0, which agrees with the numerical
experiment data[1].

The situation with the group vel ocity of an envelope
soliton is different. According to Eq. (54), this soliton
is absolutely stable in an amplifying-absorbing medium
(Fig. 3). Teking Eq. (2) into account, we easly obtain
from Eq. (56) that v > cif

_diN, o,

2 3(0
< (‘)10‘)2 =

wg dz 2
According to Eq. (1), «? > oof, and therefore
d2N,/d>N, > w,/w,. The latter inequality can easily be
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(c) An absorbing-amplifying medium (W,,, = —1/2
and W,,, = 1/2, or a> 0 and g < 0). An envelope soliton
is then absolutely unstable [see Eq. (54)]. At the same
time, ESPs are stable if 1, < 1, < ;" [see Egs. (53)
and (2)]. If, in addition,

Tm<Tp<Tc = Tm('\/é""\’Q_l)]J2 (57)

where Q = (1 — &/ 2)N,w,/4N, 0y, then v > c. It follows
from Eq. (37) that 1., is the pulse width at which the
pulse velocity is maximum,

C 4T[d2N2%|.

l1-0’ hw,

Vmax =
The necessary condition Q > 1 can be comb| ned with
the inequality 1, > 1, asfollows:

4%1+2§1 N1 %L—s—;%wﬂp)(wzrp)s‘.

For instance, putting & = 0, w;T, = 0.2, and w,T, =5
[see Egs. (1) and (2)] yields

0.16 < N,/N, < 25.

It follows that, if the 2-component is inverted and the
1-component isin the ground state, the condition v > ¢
does not contradict the initial assumptions (1) and (2).
The corresponding pulse width dependence of soliton
velocity isshownin Fig. 2c. Theregion 1., < 1, < T, coI-
responds to a stable superluminal soliton.

(d) An amplifying medium (W, = W,,,= 1/2, or a<0
and g < 0). According to Eq. (53), an ESP is absolutely
unstable. The region of envelope soliton stability is

determined by the double inequaity o’ < w? <

(dlldz)ooﬁq, see Egs. (54) and (1) (Fig. 3). The group
velocity of the envelope soliton given by Eq. (43) then
exceeds the velocity of light in the vacuum. Let us

rewrite the condition (d,/d,) > > -, which is the
necessary condition of the formation of an envelope

soliton in an amplifying two-component nonresonant
medium, in the form

38N: _ (i)’

l 1

(see the expression for w,,). This inegquality can easily
be satisfied, for instance, if d, ~d; and N, = N,, because
w, > w, according to Egs. (1) and (2). Importantly, in
the presence of only the second component (N; = 0), no
stable ESPs can exist in an amplifying medium. It
should be stressed that our conclusions refer to nonres-
onant pulses and are therefore somewhat different from
those on pulses that propagate in resonance-amplifying
media[18-20, 30]. Note also that the group velocity of
stable envelope solitons increases as their width
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decreases (Fig. 2), which isin agreement with the gen-
eral views on the properties of solitons. At the same
time, the group velocity of stable envelope solitons
decreases with the increase their filling frequency. The
observation that solitons of the nonlinear Schrédinger
equation are stable in homogeneous media with a nor-
mal group dispersion lends support to this conclusion.

Let usdiscuss localized solutionsthat correspond to
superluminal group velocitiesin more detail.

The possibility of superluminal propagation of opti-
cal resonance signals in amplifying media was consid-
ered in several works[42—46]. It should be stressed that
we discuss precisely the group velocity.

Superluminal propagation is caused by the impossibil-
ity of the spatial localization of the moving object [2]. The
exponentidly increasing pulse forefront, which is situ-
ated far from its center, induces radiation of inverted
medium atoms. As a result, the energy of the center
becomes converted into the energy of the forefront, and
anew center isformed. The former center is absorbed
by atoms that underwent the transition to the ground
state. As a result, these atoms return into the excited
state. In [45], this mechanism of superluminal propaga-
tion was called reshaping, and in [1], it is discussed
visually and in much detail. To summarize, the profile
of the pulse changes at the expense of energy stored in
the medium, and precisely this profile moves at a super-
luminal speed[1, 42, 43, 45]. Thereistherefore no vio-
lation of the causality principle.

In our case, local pulse profile changes involve the
participation of a large number of particles and are
therefore a collective process. Photons themselves
move in interatomic gaps at the velocity c. However,
local amplification (an increase in the concentration of
photons), which is more manifest in the front region of
an exponential-localized pulse, results in a higher
velocity of pulse profile propagation compared with
photons that form this profile. The conclusion that a
bunch of alarge number of particles can move at super-
luminal speed without violating the causality principle
was also madein [47].

It must be noted that, related to the profile of a pulse
is such itsimportant physical characteristic asthe elec-
tric field, which excites the medium [see Eq. (32)] and
induces its polarization. For this reason, medium exci-
tations also propagate at superluminal speeds. Therole
of collective excitations is played by polaritons in our
case. It can therefore be said that a superluminal soliton
(or solitron) is a bunch of interacting polaritons (or,
with an ESP, a polariton condensate, see Section 4)
whose group velocity in a noneguilibrium medium
exceeds the velocity of light in vacuum.

Because nonequilibrium medium states are unstable
(that is, have finite lifetimes), superluminal pulses can
only conventionally be called stable. They can be con-
sidered stable as far as the time of their propagation,

Tyrop through a medium much shorter than the relax-
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ation times (T, and Tg ) of both system components

to the equilibrium state. It has been mentioned above

that Tg > Tg, because w, < w,. Thecondition T,q, <

Tg, should therefore be fulfilled in media (c) (see Sec-
tion 4). At the same time, Ty, < I/C (I isthe size of a
medium sample along the direction of pulse propaga
tion). Hence, |, < cTg . Putting T ~ 10 s for an
absorbing-amplifying medium, we find that a superlu-
minal ESP can be observed in amedium with|,, < 3m.
With w, ~ 10 s and w, ~ 10'° s, conditions (1) and
(2) can be satisfied if 1, ~ 10 s. The situation with
superluminal envelope solitons is at first sight more
impressive. Asmentioned above, Tg /T, ~ (w,/0)* at

d; = dy, and, if wy/w; ~10%and Tg ~ 10°-10% s, we
have Tg ~ 1078 s. If the medium is amplifying-absorb-

ingintheinitial state [see Section 4, (b)], I, can amount
to severa kilometers. In addition, envelope solitons
have a fairly wide frequency range, mﬁ < W< oo§ .
However, there arises the problem of simultaneously
creating the inverted state of the 1-component through-
out the medium. Note also that the superluminal objects
considered in thiswork should be formed in a medium,
which takes time.

5. CONCLUSION

The analysis performed in thiswork leads usto con-
clude that the two-component character of the medium
is akey factor determining the possibility of the propa-
gation in it of wide-band extremely short pulses and non-
resonant envelope solitons. The Konno—-Kameyama—
Sanuki equation aobtained in this work [Eg. (18)] is one
more example of integrable (at A6 = 0) models con-
structed based on the initial Maxwell-Bloch-type sys-
tem. The Konno-Kameyama—Sanuki equation is inte-
grable if the transition dipole moments of two atomic
components are equal . Note that the integrability of the
reduced Maxwell-Bloch system in the presence of an
inhomogeneous broadening was proved in [9]. This
broadening was also taken into account on the assump-
tion of equal dipole moments for al frequencies of
inhomogeneously broadened line contour transitions.
Two transitions with substantially different eigenfre-
guencies considered in this work can, leaving aside
their different physical natures, be treated as two com-
ponents from the opposite wings of the contour of inho-
mogeneous broadening. The problem then seemingly
reducesto that already solved in [9]. It should, however,
be borne in mind that, in contrast to the reduced Max-
well-Bloch system, Eq. (18) was derived without any-
where using the approximation of low atomic concen-
trations. From this point of view, conditions (16) and (17)
are much weaker than the corresponding conditions
necessary for obtaining the reduced system from the
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complete Maxwell-Bloch system. Most likely, another
suggestion advanced in [48] holds true; according to [49],
equations obtained from aninitia generally nonintegrable
system with the use of limiting procedures arein a cer-
tain sense integrable. In the derivation of Eq. (18) from
the initia (nonintegrable) system (3)—(5), (6), (8), we
indeed used limiting procedures consistent with condi-
tions (1) and (2) and the one-way propagation approxi-
mation.

The variational procedure used in thiswork to deter-
mine an ESP stability criterion allows equations for
variable pulse parameters to be reduced to a system of
equations of ideal liquid motion. An equally elegant
procedure was effectively used with envelope solitons
[33]. Extending this method to breather-like solutions
embedding one or several electromagnetic oscillations
encounters mathematical difficulties. This problem
should probably be solved using alternative approaches
to determining the stability of such breather solutions.
Apart from being of purely scientific interest, such a
study would be of interest for practical applicationsin
view of the possible use of pulses comprising several
oscillation periods in fiber optics [23].

Spontaneous emission with transition of atoms into
the ground state is an irreversible process. Our analysis
of the instability of nonequilibrium medium states and
the possibility of the propagation of electromagnetic
pulses at group velocities v > ¢ does not answer ques-
tion of the relation between irreversibility of relaxation
processes and the existence of superlumina objects
[49, 50], a question that casts no doubt on the funda-
mental causality principle.
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Abstract—To analyze pulse dynamics in an optical system consisting of a periodic sequence of nonlinear
media, a composite model is used. It includes a model of the resonance interaction of an ultrashort light pulse
with the energy transition of the medium with allowance made for an upper level pump and an almost integrable
model that describes the propagation of the light field in the other medium with a cubic nonlinearity and dis-
persion. Additional allowance is made for losses and other kinds of interaction by introducing perturbation
terms. On the bases of the inverse scattering transform and perturbation theory, a simple method for analyzing
specific features of soliton evolution in periodic systems of this kind is developed. It is used to describe various
modes of soliton evolution in such a system, including chaotic dynamics. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Generation of solitons in nonlinear optics, has been
the objective of much research (see, e.g., [1] and survey
[2]). One of the lines of studies is based on the use of
completely integrable models. Asarule, the use of such
models requires a number of physical constraints; how-
ever, they provide the most detailed description of the
evolution of ultrashort pulses in nonlinear media. In
addition, exact solutions to these models are used to
verify numerical results obtained when analyzing non-
linear evolutionary processes.

The technique used in optics to generate ultrashort
pulses often includes various nonlinear and linear
media. The pulse is generated and amplified in one
medium, and other media are used to compress the
pulse and shape it. A single-pass two-level laser ampli-
fier with an additional nonlinear medium in the form of
an optical fiber light guide is an example of such asys-
tem. Another exampleisalaser unit with aring resona-
tor.

An extensive body of literature is devoted to the
analysis of pulse dynamics in such systems. Neverthe-
less, a number of nonlinear optical phenomena remain
poorly studied partly because of the lack of sufficiently
simple and effective theoretical methods.

In this paper, we suggest a method for analyzing
soliton dynamics in a medium consisting of a sequence
of media with different nonlinear optical properties.
The method is based on robust properties of soliton
modes and on perturbation theory developed for almost
integrable systems of equations [3, 4]. We construct a
model consisting of integrable models that describe the
evolution of fieldson nonoverlapping adjacent intervals

and analyze its properties. Such models are called
“composite”’ in contrast to models that combine inte-
grable modelsonidentical intervals. Thelatter group of
models includes, in particular, a combination of the
Maxwell-Bloch system of equations for a two-level
medium and the nonlinear Schrodinger equation for an
infinite medium [2, 5]. To our knowledge, specific fea-
tures of the soliton evolution in composite models have
not been studied theoretically.

The nonlinear Schrodinger equation is often used to
analyze the effects of ultrashort-soliton propagation in
fiber light guides [6]. In such media, stable field pulses
appear as a result of a balance between the effects of
dispersion and nonlinearity. To compensate for the
losses that occur in the process of the soliton propaga
tioninalight guide, various devices are used, including
those based on an amplification of the pulses on finite
intervals placed periodically along the light guide. For
example, a soliton is amplified when it passes through
a finite two-level medium with a transition frequency
close to the carrier frequency of the soliton. If the upper
level isexternally pumped, the soliton amplitudeincreases
due to the nonlinear interaction in the resonance medium.
This process can be aso described in the framework of
the integrable Maxwell-Bloch system of equations
with allowance made for the pump depending only on
the spatial variable[7].

As an example of the application of our approach,
the propagation of a soliton in a periodic medium con-
sisting of an aternating sequence of resonance media
and media with a cubic nonlinearity and dispersion is
considered. A fiber light guide can be used as the latter
medium. By way of this example, we demonstrate that
the approach suggested makes it possible to analyze
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various modes of the soliton dynamics. It is assumed
that the shape of the optical pulse is described by the
soliton solution to the nonlinear Schrddinger equation.
The variation of the soliton parametersin alight guide
is described according to the perturbation theory for
amodel similar to the integrable one assuming that
the evolutionary equation is close to the nonlinear
Schrédinger equation. The evolution of the solitonin
the amplifying resonance medium is described in the
framework of the Maxwell-Blach system of equations,
which is solved by the inverse scattering transform
method. In such a medium, a soliton is associated with
the phenomenon of sdf-induced transparency [2]. The
exigtence of astable soliton (2repulse), which is both the
soliton of self-induced transparency and the nonlinear
Schrédinger equation, in the combined model of the
Maxwell-Bloch and the nonlinear Schrédinger equations
was theoretically and experimentally proved in[8, 9].

In Section 2, the general structure of the composite
integrable model and the boundary conditions are
described. The physical model and a method for solv-
ing it aregiven in Section 3. In Section 4, an analysis of
the soliton dynamics in the framework of this model
is given, which is reduced to analyzing a discrete
mapping. Various modes of soliton propagation are
described.

2. COMPOSITE INTEGRABLE MODELS

First, we describe the general structure of the inte-
grable model consisting of N integrable models (some
of which can beidentical). Let the integrable model be
the consistency condition of the linear systems of equa-
tions

SuzN = Lz ez, @)

d .
a—ZlIJ(T, Z A

N
= 3 0 a@AGZ NN = sy, O
i=1

a;i+1(2 = 6(z=2)6(-z+2z.1), Z..>7.

Here 6(2) is a piecewise constant function; 6(z) = 0 for
z<0;06(2) =1forz>0; andq; ; . 1(2) areprojectors, i.e.,
Gfi +1(2 = i+1(2).

The consistency condition for these linear systems
has the form

(%L —%Zlca(i,iﬂ(z)Ai + {L, ;ai,m(Z)Ai} =0. (3
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Multiply (3) by a; ;. 1(2) to obtain

0 0 _

a_zL _ﬁAi +[L,A] = 0O,
Thus, the evolution in the strip [z, z . 4] is described,
for any @ , by a system of equations having the linear
system oy = Ly, 0, = A asits Lax representation.

In this paper, we study composite models with the

Lax representation (1), (2) for —o < T < 0. The specific
features of the inverse scattering transform as applied
to composite models manifest themselvesin finding the
dependence of the scattering parameters on z

We assume that the field vanishes at infinity (as
T — *00). For the example below, this means that the
asymptotics of the matrix L are
lim L(t,z; A) = —ig3A. 5)
Tt
Any two solutions of Egs. (1) and (2), ¢ and ¢ are
related by the scattering matrix J':

Yz A) = 1,z M) T (z; A). (6)

It follows from the symmetric properties of the concrete
spectral problem described in Section 3 (see Eq. (18)
below) that the scattering matrix has the form

z0[z,7.4]. (4)

Fo) = 0 a0 bR g @)
O-b(\) a(\) O

Let us determine how the coefficients a and b depend
on zfor conditions (5). Using Eq. (6), we find that

a%g(z; N = ATzN-TzNA,  ©
where

Ai(z; A) = Iirr+1 E_l('[; N AT, z; N E(T, A),

E = exp(-io3AT).
Introduce the functions

z N

B2 = [E 0Ny a@A: & MEY: N,
0 i=1

By, 2 = [E7(: DA, & ME(Y: N,
Z sz< Z 1.
Consider the matrix J, = 6(z — 2)6(z ., — 27,
which isthe projection of J onto theinterval [z, z . ].

The formal solution to Eq. (8) on theinterval —T; < T <
T is

Ti+1(z A) = exp[B(t, 21T 1(0; A) exp[-B (=T, 2]
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= exp[Bi(ty, D1Ti(z; N) exp[-Bi(-T11, 2]

9
= exp[Bi(Tr, 2] ... exp[Bu(Tr, 9] T 1(z1; A) ©

x exp[-By(~Ty, 2)] ... exp[-Bi(-T, )]

It is seen from this solution that the evolution of J,(z; A)
on the interval [z, z . 4] is determined by formula (9)
with the boundary condition J'(z, A).

For conditions (5) and 1; —» oo, the solution to
Eq. (8) hastheform

T (2 = R, TN, (10)

Ny = eXp[—icsjz ai,i+1(s)rlln3w(Ai)11(Tv S )\)ds},
oi=1 -

where J 4 isthe value of the matrix J at z= 0, whichis

determined by solving the spectral problem (1). Hence,
we find the dependence of the coefficient Cy(z; Ap) =

b(\) /2(\)| - », ONZ Where ), isanisolated poleinthe
upper half-plane of the complex plane A:

Co(z; Ao) = Co(0; Ag)
z N

x exp[—2i [3 el Jim (A)y(x. s Ao)ds}. )

oi=1

3. A PHYSICAL EXAMPLE
OF THE COMPOSITE MODEL

Consider the self-induced transparency model in a
two-level medium under the single-frequency reso-
nance on theinterval [Z, =0, Z,), Z, > 0 and an optical
fiber light guide located on the interval [Z,, Z3), where
Z is the spatia coordinate. The dynamics of the
medium and the field in the first medium is described
by the Maxwell-Bloch model with allowance made for
the upper level pump. The field dynamics in the light
guide is described by the nonlinear Schrédinger equa-
tion (see, e.g., [2]). For simplicity, we consider the case
of the exact resonance; taking into account the nonuni-
form broadening does not change the results qualita-
tively. The composite model has the form

2
O0E | OB | o 2)iDLE + a,(2) x 2iBIEE

aT 9z aT2 (12)
= —0p(2)iGP + axu(Z)W,
oP :
0255 = au@)iEEN, (13
N [ =
0D = -a(2)3-(EPI-EP)+C,  (14)
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where N3(2) = N2 + |PP, T is the time variable, the
speed of light is set to unity, G = 21Kk, k; is the carrier
wave vector, N and P are the occupation of levels and
the polarization of the medium, respectively, and N, is
the total number of particles. The physical values of the
coefficients B and D are given, e.g., in [2, 6], aij(Z) =
8(Z-2)8(-2+2),2<2,862 =0forz<0, and
8(2) = 1for Z> 0. Here, a;;(2) isthe projector; its pres-
ence as the coefficient means that the second and third
terms on the left-hand side of Eq. (12) are nonzero on
the interval [Z,, Z3), the polarization on the right-hand
side of Eq. (12) isnonzero, Egs. (13) and (14) arevalid

on the interval [Z,, Z,), C(Z) characterizes the upper
level pump of the medium, and W =WE, T, 2) isthe
perturbation, which can account for various effects,
such aslinear or nonlinear losses, dispersion, combina
tion interaction, and others.

Let W= 0. We consider two cases.

(1) The completely integrable consistent model.
This case requires that strict constraints be imposed on
the physical constants.

(2) Equations (12)—(14) represent two different inte-
grable models (the case 3 # 1 is considered below).

The perturbation (W # 0) will be considered in the
adiabatic approximation when the effect of the pertur-
bation is reduced to ordinary differential equations for
the spectral parameter that characterizes the soliton
solutions to model Egs. (12)—(14).

The solution obtained for the first case provides a
basis for the approximations used in considering the
second case.

A specific feature of this composite model consists
in the possibility of taking into account the pump

(whichisproportional to C) without losing the integra-
bility of the Maxwell-Bloch model. This property
makes it possible to analyze various modes of soliton
propagation, including chaotic ones, using the exact
soliton solution for an arbitrary C asarobust nonlinear
mode.

L et us change the frame of reference:

T—t=aT-2) = JE(T—Z),

Z
Z+T—2z c
In what follows, we consider the case of a periodic
sequence of media obeying the Maxwell-Bloch equa-
tions and the nonlinear Schrodinger equation. Let the
field € propagate through the periodic medium consist-
ing of aresonance medium ontheinterva [z; + nL, z, +
nL) and a light guide located on the interval [z, + nL,
Z; +nL), where L = z; — z; isthe period of the medium.
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System (12)—(14) is reduced to the form
0;2 +Gay ,(z—nL)R,
+ia, 5(z—NL)[0%€ + 2[€|*€ —W] = 0,
oy ,(z—nL)(0;R, —Rs€) = 0,

(15)
(16)

a, o(z-nL)[0.Ry+ 5(REE + R0 —c| = 0, (17)

9 =%, 1=t (=2 zO[z,+nL,zz+nl),
9 =B¢, 1=pt {=2zB,
zO[z,+nL,z +nL).

Here
2 _ MOD]JZ. - 6(2) W = W.
B” = vy c(2 = o =5

(2 =06(z—2)6(-z+ z); forz > z; 6(2) =0 for z< O;
and 6(2) = 1 for z> 0. The facts that the perturbation W
acts on the interval [z, + nL, z; + nL) and the pump
(whichisproportional to c) actsontheinterval [z + nL,
z, + nL) are taken into account.

If W =0and B = 1, then system (15)—17) can be
represented as the consistency condition of two linear
systems of equations

O_ix 9 O
0.0 =0 " m, (18)
g9 izt
iG —nD0 R, -R, O
o0 = —n2f” ) al’j& o R R
D_R+ _R3 |:|
(19)
O_j O
+0, 5(z—nL)0 HHyy 'le 0.
0 Hy iHy O

Here A isthe spectral parameter satisfying the equation
0 =—l/(4)),

H, = 2A€ —id,€.

For B = 1, this consistent system is completely integra-
ble. However, the condition 3 = 1 leads to strict con-
straints on the physical parameters. If ¢ = 0, the Lax
representation for the unperturbed model (15)—(17);
i.e., for W =0, itissimilar to the well-known represen-
tation for the model that combines the Maxwell-Bloch
and the nonlinear Schrédinger equations on the same
interval (see[2, 5]). For B # 1, the Lax representationis
valid for each of the Maxwell-Bloch and nonlinear
Schrédinger equation models separately on the corre-
sponding intervals; i.e., for B # 1, Egs. (18) and (19) are
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two unrelated Lax representations, although these mod-
elsare connected by the common field €. For = 1 (the
integrable case), joining the boundary conditions for
the parameters of the solitons A, isvery simple: A (z —
nL — 0) = A(z — nL + 0), where z is the boundary
between the media. However, for 3 # 1, the problem of
joining the boundary conditions for these models arises
when a soliton crosses the boundary between the
media. Thisis due to the fact that these models use dif-
ferent scales of the coordinates and the field.

We show that the system of equations (15)—17)
makes it easy to join the boundary conditions for soli-
ton solutionsin the case 3 # 1 aswell. Let a soliton of
the field € on the interval [z, + nL, z; + nL) have the
form

2\ exp(i@,)
cosh[2\,(T—2V; D]’

where A, isareal-valued scalar function of n. Then, the
following change of scale must be performed when
crossing the boundary between the light guide and the
resonance medium;

€ —~€p, (21)

For the soliton solutions (20), this transformation is
equivalent to the change of variables

A— A B, V,—V,. (22

When the boundary between the nonlinear media is
crossed, the parameter of the soliton that determinesits
height and duration undergoes a jump, but its area and
speed remain unchanged; i.e., no solitons are absorbed
or born, and no radiation is generated. In the present
study, we do not take into account the effects of reflec-
tion and refraction of the light beam as it crosses the
boundary between the media; these effects can result in
the deformation of the soliton, radiation loss, etc. (see
Section 5).

Thus, we use the following scenario to describe the
dynamics of the soliton in the periodic medium. Let a
light field pulse shaped like the soliton gy(t) =

2nysech(net) be injected in the medium at the point

z= 0. We consider the dynamics of the field in the res-
onance medium in the framework of the inverse scatter-
ing transform method with the variable spectral param-
eter [7]. In the process of evolution in the resonance
medium, the soliton is amplified, which is described by
the change of its parameter

E(zT; A\ =

(20)

T—1B3, z— Z[.

n = Jns+C,
where
|
C = [c(x)dx
|
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Fig. 1. Mapping (25). The dependence of Aqqoq 0N C for
C>0111,a=1,andy=0.1

and | = z, — z; is the length of the resonance medium.
We assume that C (an arbitrary real quantity) is inde-
pendent of n, i.e.,, C(z+ nL) = C(2), Uz

Thefield evolution in the light guide is described in
the framework of perturbation theory. The soliton solu-
tion (20) is used as a stable “robust” mode. The soliton
is subject to the perturbation W on theinterval [z, + nL,
z3 + nL). The influence of the perturbation on the shape
and parameters of the soliton is determined on the basis
of the perturbation theory developed for nearly integra-
ble models [3, 4], which is valid for sufficiently small
coefficients.

Let the effect of the perturbation W' in the nth
medium be described (in the adiabatic approximation)
by the equation

A, = FQA,). (23)

Then, the parameters of the soliton asit passesfrom the
interval [z, + (n — 1)L, z; + (n — 1)L) to the interval
[z, + nL, z; + nL] are changed as follows. We assume
that the characteristics of the soliton in the light guide
zO [z + (n-1)L, zz + (n—1)L) at the point z; + (n —
1)L — O are determined by the spectral parameter
An-1(zz + (n — 1)L — 0). As the soliton crosses the
boundary, the parameter undergoes a jump: A (z +
nL + 0) = BA,_1(zz + (h—1)L —0). Then, the parameter
increases due to the pump: A(z, + nL - 0) = [)\ﬁ (z, +
nL + 0) + C]Y2. Then, when the point z, + nL -0 —
Z, + nL + 0 is passed, the parameter jumps back to the
value A,(z, + nL + 0) = A(z + nL — 0)/B. In the light
guide (for z[J [z, + nL, z; + nL)), the parameter varies
according to Eq. (23). Then the cycle repeats. This

approach makes it possible to analyze the values of C
of order 1 and greater.

4. SOLITON PROPAGATION MODES
IN THE PERIODIC SYSTEM

In this section, we analyze possi bl e evol ution modes
of a soliton in the periodic system under study. Con-
sider perturbations of the soliton evolution in the light
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Fig. 2. Thesame asin Fig. 1 for 0.2>C>0.

guide due to dispersion, cubic nonlinearity, and fric-
tion; i.e., let W = —g,0°€ — g,|€[?€ — g;&. The contri-
bution of these perturbationsto the variation of the soli-

ton parameters (20) is described (in the adiabatic
approximation) by the following equation (cf. [4]):

O Ay = —aAi—A,. (24)
Here
_ 04 8 0l

8= g30it3pg X = 2952.

Following the procedure described above, we obtain
the mapping

12

(An+C)(1-ay)-y } )

Aoy =
. [1 +a%y+a(\2+C)(1—a—a’y)

wherey = exp[—495(z; — 2,)] — 1 < 1lisasmall parame-
ter characterizing the perturbation. The approach sug-
gested makesit possible to analyze the domain of small
values of y and arbitrary C. The numerical analysis of
mapping (25) shows that there exists an amplification
limit. For example, letA;=0.1,y=0.1,anda= 1. Then,
A, = 0.099 for C = 0.113; however, for C = 0.114, we
have A, = 1.2.

The dependence of the asymptotic value A, on Cin
thedomain C = 0.111isshownin Fig. 1. Inthevicinity
of C =< 0.111, the dynamics becomes chaotic; i.e., the
asymptotic value of the amplitude varies chaoticaly
(seeFig. 2).

L et the perturbation have the form

__fo_ i crerenac
= 5 4%(T)I|%(T)| dr'.

Then, F(A\) = —f, — ;A2 By changing the scale of A, the
problem can be reduced to the condition f, = f;. In this
case, the mapping takes the form

Ans1 = tan[arctan /A2 + C—yy], (26)

No. 3 2001



DYNAMICS OF SOLITONSIN PERIODIC SYSTEMS WITH DIFFERENT NONLINEAR MEDIA
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Fig. 3. Mapping (26). The dependence of A1ggg on C for
Y1= 0.01.

Vi = 1—exp[—fy(z;—2)] and |y;| << 1. For y;< O, no cha-
otic behavior is observed. The dependence A, (n =
1000) on C is shown in Fig. 3. For y; > 0, the chagtic
behavior of the soliton in the periodic system is
observed in the domain of small C. However, as C
increases, the chaotic behavior disappears (Fig. 4).

If the external force is proportional to exp(ir,\?2),
where r, is area constant, then other, more complex
scenarios of passing to the chaotic behavior are
observed. A dependence of thistype can berealized in
a ring resonator [10-13]. The approach suggested in
this paper can be directly used for analyzing the soliton
dynamicswith in aring resonator with two or more dif-
ferent nonlinear media.

5. CONCLUSIONS

It is shown that the analysis of composite integrable
models instead of combined ones or aong with them
makes it possible to analyze the evolution of light
pulsesin new physical conditions. The approach to the
analysis of composite models suggested in the paper
can be used to study the dynamics of solitons and other
robust nonlinear structures.

For the case of the combined self-induced transpar-
ency model and the nonlinear Schrédinger egquation, it
was shown in [8, 9] (analyticaly and experimentally)
that a stable 2re-pul se exists, which issimilar to the self-
induced transparency soliton. It was also shown in
these papers that a pulse with an area of 2riN disinte-
grates into N isolated 2re-pulses. Similar effects can be
expected in the composite model.

In the general case, the conditions of the existence
of solitons in composite nonintegrable models can be
weaker than for combined models. This is due to the
fact that in the latter case, the existence of solitons can
require a greater number of conditions than in the case
of spatially separated media

When passing from one optical medium into
another, a reflected wave generally appears, which is
not taken into account in this paper. Actualy, the evo-
lution of pulsesin systems consisting of a sequence of
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Fig. 4. Thesameasin Fig. 3 for y; =-0.01.

linear and nonlinear optical mediahas been under study
for several decades. For example, the laser with aring
resonator belongs to such systems. The reflective wave
that appears when crossing the boundary between the
media and the air is usually eliminated by positioning
the medium surface at the Brewster angle to the direc-
tion of the wave propagation. Another way of eliminat-
ing the backward wave is the use of specia plates or a
lubricant of proper thickness (clarified optics), where
the backward wave is eliminated due to the interfer-
ence. These methods are effective for pulses with a
duration up to several femtoseconds.

Another important circumstance in using composite
models is the possible generation of additional follow-
ing waves when the soliton crosses the boundary
between the media. In the model under consideration,
the shape of the soliton corresponds to one of the iso-
lated poles. As the boundary between the media is
crossed, ajump in the parameters of the soliton occurs,
whichisdescribed by Egs. (22). In the process, no addi-
tional solitons or radiation are generated in the frame-
work of the approximation used. Indeed, since this
jump results in a simultaneous change of the duration
and height of the pulse, the area and the sech-shape of
the soliton remain unchanged. Under these conditions,
the solution to the general spectral problem (18) indi-
cates that a unique pole in the upper half-plane exists
both for the medium with self-induced transparency
and for the medium obeying the nonlinear Schrédinger
equation, despite the fact that the imaginary parts of the
corresponding spectral parameters differ by afactor of
B> 1. In practice, this manifestsitself thus: in the res-
onance medium the self-induced transparency solitonis
usualy much shorter and higher (by a factor of B > 1)
than the nonlinear Schrédinger equation soliton.

Asarule, the transformation and shaping of the soli-
ton takes several soliton lengths. This implies another
limitation of the applicability of the model studied in
this paper: the z-size of the mediamust be much greater
than the size of the soliton. For example, the resonance
medium must be much longer than the nonlinear
Schrddinger equation soliton, and so on.
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In conclusion, we note that radiation effects that are
related to the influence of perturbations are not taken
into account in this paper. These effects usually mani-
fest themselvesin the next order of smallness and result
in a deformation of the soliton shape.
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Abstract—A perturbation theory is developed for constructing the quasi-energy operator Q of the Tavis—Cum-
mings Hamiltonian, which includes the interaction of atoms with a classical quasi-monochromatic field. The
operator Q of thefirst order in the interaction 6 of an atom with aresonator mode has aform of the generalized
Tavis—-Cummings Hamiltonian (in the interaction representation) to which the oppositely rotating terms with a
changed interaction constant are added. Such a Hamiltonian has asingularity in the dimensionless amplitude o
of aclassical field. In thevicinity of this singularity, the Hamiltonian spectrum tends to a continuous one, while
the degree of sgqueezing of field quadratures (in its eigenstates) increases infinitely. In the case of one atom and
the biharmonic perturbation, the operator Q is obtained up to the third order of the perturbation theory. The
spectral problem for Q is studied. The features of the dependence of the quasi-energy spectrum on ¢ are
explained by the presence of an efficient barrier between the regions of the “coordinate” space. It isfound that
the above-mentioned singularity corresponds to the beginning of the parametric resonance zone. Analytic
expressions for the top and bottom of this zone in the do plane are presented. © 2001 MAIK “ Nauka/lnter pe-

riodica” .

1. INTRODUCTION

The known Jaynes—Cummings model (JCM), which
describesthe interaction of aquantized field mode with
atwo-level atom [1], has become especially important
due to progress in the experimental possibilities in
guantum optics. Thus, advances in resonator quantum
electrodynamics resulted in the development of unique
devices—micromasers and microlasers—in which cal-
ibrated, rarefied, and cooled atomic beams are used that
are specialy prepared by an external perturbation [1].
A number of guantum effects, which have been pre-
dicted in the JCM approximation, were experimentally
observed. These are collapses and revival s of the atomic
inversion [1], squeezed states of light [2], Schrodinger cat
states [3], trapped states of a micromaser [4], Fock states
of a quantum mode [5], etc. (a detailed review can be
found, for example, in [1]).

In recent years, the model has found a new applica-
tion in experiments on laser cooling of atomic beams
and in the development of ion and atomic magnetoop-
tical traps. Thus, it was shown in[6] that in the presence
of a classcal travelling or standing wave, the efficient
interaction appears between the center-of-mass coordinate
of anion confined by a parabolic potentia of thetrap and
theinternal degreesof freedom of thision. Thisinteraction
is described, under certain conditions (the Lamb-Dicke
limit), by the JCM approximation. In this case, the cen-
ter-of-mass coordinate plays the role of a boson vari-
able, so that the quantum effects, which were found
earlier for afield mode, acquire anew meaning. In par-
ticular, the nonclassical states of theion motion such as

Fock states, Schrodinger cat states, even and odd coher-
ent states, etc. have been predicted and observed in
experiments with traps (see [7] and references therein).

The above-mentioned quantum properties of the
field and ions are used, for example, in hondestructive
measurements [8]. The object of a new research field,
which was called in [9] the engineering of quantum
states and is based on the generalization of the JCM, is
the development of methods for generating and con-
trolling new nonclassical states of the field and atoms
with specified properties. Thus, in [10, 11], a classical
field was used in the JCM as a controlling system,
whose parameters—the duration and shape of the pulse
train [10] and the shape and rate of variation in the
amplitude [11]—were appropriately chosen to obtain
the desired effect.

In this paper, which is acontinuation of papers[12],
we propose ancther generalization of the JCM, based
on the inclusion of a classical quasi-monochromatic
field into the Hamiltonian, the carrier frequency of the
field being amost resonant with an atomic transition
frequency. Upon a certain choice of the periodically
changing envelope, the quasi-energy operator of the
JCM (in the first-order approximation of the perturba-
tion theory) has a form of the generaized Jaynes-Cum-
mings Hamiltonian, which differs from a usua operator
(written in the interaction representation) by the addition
of oppositely rotating terms with a changed interaction
constant. This operator has a number of unusual prop-
erties, in particular, thefield part of itseigenvectorsrep-
resents squeezed states [13], whose degree of squeez-
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ing is determined by the amplitude and modulation fre-
guency of aclassical field.

2. PERTURBATION THEORY
FOR THE QUASI-ENERGY OPERATOR

The method of quasi-energies is applied for the
analysis of nonstationary quantum-mechanical prob-
lems with the periodic Hamiltonian

H(t) = H(t+T),

where T is the time period [14]. This method general-
izes the concepts of papers devoted to parametric reso-
nance, the interaction between “slow” and “fast”
motions in linear and nonlinear systems of classical
mechanics [15, 16].

Consider the Schrdodinger equation for the evolution
operator U(t),

iad;[U(t) = H(OU(), U(0) = I, (1)

where | is the unit operator (hereafter we assume that
h =1). According to the Floquet—Lyapunov theory [15],
because of its periodicity, the evolution operator can be
written in the form

U(t) = u(t)exp(-Qt). )

Here, u(t) = u(t + T) is a periodic operator and Q is a
time-independent quasi-energy operator, which actsin
the space of states of a quantum-mechanical system.
The choice of Q is ambiguous because of the band
structure of the spectrum [14]; al information on the
spectrum is contained in the main Brillouin zone.

Let us assume that H(t) has a small parameter and
H(t) can be divided into two terms—the zero-order
Hamiltonian H(t) and the perturbation V(t):

H(t) = Ho(t) +V(1). ©)

Assume further that the quasi-energy problem for Hy(t)
issolved, i.e., that we have found the decomposition of
the unperturbed evolution operator Uy(t), which satis-
fies the equation

Ho®Uo(t) = ISULD, o) =1, (@
into two factors:
Ua(t) = Uo(t)exp(~iQet). ©

Here, uy(t) and Q, are the periodic evolution operator
and quasi-energy operator in the zero-order approxima-
tion, respectively. Then, the solution of problems (1)
and (2) can be derived using successive approximations
by the Bogolyubov—Mitropolskii averaging method (its
guantum-mechanical analogue) [16]. For this purpose,
we rewrite Egs. (1) and (2) in the form of equations
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determining u(t) and Q (the periodic time representa
tion):

HOU( = iSu +uQ, ©
(g d 0

Q = Moy (t)%(t)_.d—t@(t)% )

u(o) = I. 6)

Here, we introduced the operator of averaging over the
period

M{D(t)} = _T:EICD(t)dt.

Let us proceed in Egs. (6)—8) to a new time represen-
tation—the periodic interaction representation—with
the help of the operator uy(t) (5):

u(t) = up(t)W(t),

V(1) = ug()V(t)ug(t).

From Egs. (4)—8), we obtain equations for the periodic
operator W(t) and operator Q:

9

QoW(t) —W(t)Q + V,()W(t) = id%W(t), (10)

_ . d 0
Q = MIW O+ Vi -igHVOE @D

To obtain the recurrence scheme of successive cal-
culations, it is convenient to solve Egs. (10) and (11)
using the additional condition

M{W(t)} = |

instead of the conventional condition W(0) = 1.

Let usintroduce the notation of successive approxi-
mations for W(t) and Q,

Wity =1+W,(t)+..., Q=Qu+Q,;+..., (13

substitute these series into Egs. (10)—(12), and obtain
the required recurrence formula

(12)

Qn = M{V/(OW, (1)}, (14
| SWa(t) ~[Qo Wa()] = Yo(t)

n-1 (15)
= Vi(OW,_a() = T W,(0Q,

i=o
M{W.()} =0, n=12 .. (16)

Let us make some remarks concerning the above
procedure. We denote the solutions of the system of

Egs. (14)«(16) with atilde: W (t) and Q . The scheme of
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successive calculations is closed because to determine
Qn, oneshould know W, _1 (t), and the highest order of

Q in Eq. (15) for the calculation of W, (t) is Qn. The
additional condition (12), Eq. (16) significantly sim-
plifies the recurrence scheme; however, the solutions
found in this case do not possess the unitary property

W (t) # W(t)* and the Hermitian property Q # Q" .
To obtain the operators Q and W(t) in the final form,
one should perform the transformations

Q = W(0)QW (0), (17)

W(t) = W(t)W (0). (18)

These operators are the solutions of Egs. (6)—9) and
possess the required properties.

We will seek a particular periodic solution of

Eqg. (15) in the following way. L et us denote the opera-

tor of the kth harmonic of the evolution operator Wi )
by Wﬁk) and the operator of the kth harmonic of the
right-hand side of Eq. (15) by Y

Wa(t) = S W¥ exp(ikQt),
“exo.
v =y YW exp(ikQt).
o0
Substitution of these series into Eq. (15) gives the

steady-state operator equation for W
—QkW, —[Qo W1 = Y,
k= +1,%2, ...

Assuming that the eigenvector and eigenvalue problem
for the operator Qy (Qp|l@ U= E4|@ D is solved, we
obtain the solution of Eq. (19) in the form

Y
(niviley = Sl

It follows from Eq. (20) that the difficulty encountered
in this method can be related to the appearance of a
small resonance denominator. For example, this always
occurs when Q, has a continuous spectrum. If due to
some approximations, Q, has only a discrete spectrum,
the resonance can be avoided by changing Q, and retain-
ing the decomposition H(t) (3) (which isdetermined, asa
rule, by the physical meaning of the problem) invariable.
According to Eq. (5), Q, can be changed smultaneousy
with ug(t), so that Uy(t) would remain invariable. Thus,
we can add the operator

S QK(@) i1

(19)

(20)
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to Q,, wherek(a) in an integer function of a. The spec-
trum of this operator is a multiple of the frequency Q.
Therefore, the spectrum of Q, can be located within the
main Brillouin zone of width Q. If, for example, the
operator Q, contains two levels, we can choose the ori-
gin of the Brillouin zone so that the distance between
these levels would be smaller than half the width Q and
the resonance denominator will not appear. We will call
such achoice of Q, correct; in this case, the small ratio

KeaViDlepl/Q < 1
is a parameter of the theory.

3. THE QUASI-ENERGY OPERATOR
OF THE “OPEN" TAVIS-CUMMINGS MODEL

Let us apply the method of quasi-energies to the
problem of the interaction between N two-level atoms
with aquantized field mode of the resonator and aclas-
sical quasi-monochromatic electromagnetic field. We
assume that the conditions of the applicability of the
Tavis—-Cummings model (TCM) considered in [17] are
satisfied. Wewill call thismodel the*open” model. The
Hamiltonian Hy(t) of the system under study has the
form

Hs(t) = wpS;+ (g(t) exp(—ict) S, + H.c.) -
+wa'a+k(S,a+Sa). )

Here, wy, W, and w arethefrequencies of thetransition,
the carrier harmonic, and the quantized mode, respec-
tively; H.c. is the Hermitian conjugation; g(t) is the
complex “dow” envelope of the interaction of atoms
with the classical field; k is the interaction constant of
an atom with the quantized mode; S;, S,, and S_are col-
lective atomic operators of the SU(2) algebra; and aand
a* are the photon operators of the quantized mode. We
assume that g(t) is a periodic function of time:

g(t) = g(t+T).

Let us denote the evolution operator of the system
by U(t) and pass on in the Schrédinger equation to the
coordinate system, which rotates at the carrier fre-
guency w, using the unitary operator Ug(t):

Ur(t) = exp{-ia(S;+a"a)t}.

The Hamiltonian H(t) of the problem in the rotating
coordinate system becomes periodica with the period T,
which allows usto use the method of quasi-energiesfor
obtaining the evolution operator

U(t) = Ur(U(t) (22)

in the rotating coordinate system. Let us divide H(t)
into two terms:

H(t) = Hg(t) + V(t). (23)
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Here,
Ho(t) = Hoa(t) + Hoe (1),
Hoat(t) = (wo—w)S;+(g(1)S, +H.c.),

Ho; = (0—wy)a'a, @9

V(t) = k(a'S_+H.c).

The interaction parameter K is assumed small com-
pared to the frequency Q = 21/ T. Then, by specifying
the form of g(t) and successively applying the formulas
from the previous section, we can construct the opera-
tor Q and the periodic operator u(t) of the atomic—field
system in the form of a power series in the parameter
0=K/Q.

According to Eq. (24), the zero-order quasi-energy
operator Q, (5) represents a sum of the atomic, Qyy;,
and field, Qy¢, operators,

Qo = Qoar + Qo (25)

while the zero-order periodic operator uy(t) (5) repre-
sents the product

Uo(t) = Uga(t)Uor(t). (26)

The zero-order equations for uy,(t) and Q,,; have the
form

.d
HOat(t)ant(t) = Id_tant(t) + ant(t)QOatf

ant(O) = I!

(27)

[N .d Ll
Qoxt = MEuom(t%om(t)—laghom(t)g (28)

The solution of this problem for the case of many atoms
and an arbitrary function g(t) is unknown. The zero-
order problem for the field quasi-energy has the solu-
tion

Ups (1) exp(—=inQa at), 29)
Qo = (w—w,—nQ)a’a.

Here, we assume for generality that a sum of n quanta
with the modulation frequency Q of the envelope is
approximately equal to one quantum w — w, of the
guantized mode detuning from the carrier frequency.
When seeking the zero-order solution, one should keep
in mind, as noted at the end of the previous section, that
the periodic operators uy,(t) and uy(t) should be appro-
priately chosen.

The case of the exact resonance w = wy, (a coinci-
dence between the frequencies of the carrier harmonic
and the quantized mode in the absence of any additional
restrictions on the atomic transition frequency wy) is
especially simple. In this case, the zero-order operator
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Q, represents alinear form in the operators a and a* of
the general form

Q, = (a+a)uB+i(a—a")vI[B. (30)

The parameters of the linear form, real vectorsp and v,
are functions of the parameters of the Hamiltonian
(21) and can have arbitrary lengths and directions; Sis
the vector atomic operator of the generalized spin with
components §,, §,, and S;.

The eigenfunction problem for Q, (30) is most sim-
ply solved in the case of the permutability of the atomic
operators

[(nB), (vIB)] = i(nxvIE) = 0. (31)

The right-hand side of Eq. (31) is zero in three cases
when

p= 0, (32)

These are particul ar cases. The eigenvectors of Eq. (30)
are factorized to atomic and field factors, and the problem
has a continuous spectrum. The field eigenvectors repre-
sent the squeezed states for one of the field quadratures
with theinfinite degree of squeezing. If conditions(32) are
not satisfied, another possibility exists: using the com-
pression transformation [13], the operator (30) can be
transformed to the Tavis—Cummings Hamiltonian form
(in the interaction representation under conditions of
the exact resonance). The unitary transformation oper-
ator has the form

v=0 pnlv.

G = exp(-ipa‘a)exp{-E(aa—a’'a’)/2}. (33
Here, ¢ and & are arbitrary real parameters. The opera
tor Q, retainsitsform:

Q, = G'Q,G = (a+a)p' [B+i(a—a")v' [B.
Thevectors p and v arereplaced by new vectorsp' and v':

p = (pncosp +vsing)expg, (39)
V' = (nsing —vcosg)exp(-%).

The operator Q) takes the form of the Tavis—-Cum-

mings Hamiltonian if the parameters ¢ and & arerelated
in such away that the two conditions

wov =0, [ =|v]
are satisfied simultaneously.

Expressions (35) correspond to the following choice
of the parameters ¢ and &:

2u v

(35

tan2¢ = ———, (36)
2=
exp(—4[&|)
_ P P v A v (3D)
I+ V2 + (2= VD) + 4(p )
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We obtain from Egs. (34), (36), and (37)
Wl =[v| =D = Jnxvl. (38)

By directing the coordinate axes along mutualy
orthogonal vectors p' and v', we obtain the canonical

form of the operator Q;

Q; = D(a'S_+aS,). (39)

Here, we retained the notations S_ and S, for atomic
operators in new coordinate axes. The eigenfunctions
|W,,Oand the spectrum E,,,, n =0, 1, 2... for (39) are
known [18] and have the form

E., = +D.J/n,

W, 0= (InO0-1/20 (n—100020)/ /2 (41)

for the case of asingleatom. Here, |nCand |+1/2(arethe
eigenfunctions of operators a*a and S;, respectively.
One can see from Egs. (38) and (39) that, when the
problem parameters approach to their critical vaues[con-
ditions (32) are stisfied], the distance between quasi-lev-
elstendsto zero and the spectrum of Q; becomes con-
tinuous. In this case, the squeezing parameter ¢ (37)
tends to o, so that one of the mode quadratures
becomes strongly squeezed and the dispersion of the
second quadrature becomes very large. According to
Egs. (33) and (41), the eigenfunctions of the operator
Q; (30) have the form

Ve, en0= ([E, NOFL20 €, n— 100720/ 2. (42)

Here, we introduced the notation of sgueezed Fock
states

(40)

&, nO= G|nl

4. THE QUASI-ENERGY OPERATOR
FOR A BIHARMONIC EXTERNAL FIELD

Consider as an example the case of biharmonic per-
turbation with two frequencies equal to w, + Q and

g(t) = Fcos(Qt).

In the case of the exact resonance with the carrier fre-
guency wy, — W, = 0, w — w, = 0, we have the required
zero-order solutions (25)—(29)

Qoat = 0, Upy(t) = exp{-®(1)S},
®(t) = osin(Qt),
Qot =0, uys =1, Qy=0, o = 2F/Q.

We will call the parameter o the dimensionless ampli-
tude of aclassical field. By substituting these solutions
into Egs. (14)—(16), we obtain the quasi-energy opera-
tor in the first-order approximation

Q: = J2K(pS,+x§,30(0)). 43
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Here, J,(2) isthe Bessel function. In the above expres-
sions, we introduced for brevity the field operators
(quadratures)

i(a—a") ata’

J2 J2
By comparing Eg. (43) with Eg. (30), we obtain the
relations for parametersp and v

X = p =

L = Ke, Vv = KeJdy(0).

Because p - v = 0, we have the angle ¢ = 0 (36), and
parameters & and D are determined by the relations
exp(28) = Jo(0), D = K,/Io(0). (44)

It follows from Egs. (38), (39), and (44) that asingular-
ity in which the spectrum of Q, becomes continuous
corresponds to a zero of the Bessel function:

0 = 2F/Q = 2.4048....

Analysis of the high orders of the problem shows
that the operator Q can be represented in the equivalent
form Qg, which is convenient for calculating its spec-
trum:

Q = LQgL".

Here, the unitary operator L and the equivalent quasi-
energy operator Qg found up to the third order in K
inclusive have the form

Qe = Q1+ Qgs,
Qes = 2k (xpxS,F1(0) — xX’S,F,(0)/2), )
L = exp(i/25xS; 1) exp{-i&"(px + xp)Ss 2},
0 = K/Q.

The parameters f,, f,, F,(0), and F,(0) represent series
in the Bessel functions of the integer index of the argu-
ment 0 = 2F/Q. The expressions for F,(0) and F,(0)
required for further calculations have the form

00

_ P(9)f
Fi(o) = -2 T
2

0k O
- e J2c+1(9) I+ 1(0) Ik 2k +2(0)

rAoy =2 ; (2k+1)(2k +1)
1 e J2(9)2(0) Jok+ 2(9)
2“2 2K (2K '

K0, K #0

k+K#0

Here,

J(0) = (-1)“3 (o).
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Fig. 1. Levels of the quasi-energy operator for the “open”
JCM in abiharmonic field as functions of the classical-field
amplitude 0. The dashed curves are levels of noninteract-
ing “wells” (the linearization method). The solid curves
are the third order of the perturbation theory. The dotted
curves are calculations using the monodromy operator.
Nmax = 150, 6 = 0.15.

—_
9]

o
=

o
n

Quasi-energy

Fig. 2. Thesameasin Fig. 1, only for & = 0.07.

The operator Qg5 isnonlinear inthe “coordinate” x and,
hence, determines the asymptotics of eigenfunctions of
the operator Qg for [x| — oo. It is obvious that the
asymptotics can change when the higher orders of the
perturbation theory are taken into account. Below, we
consider some features of the spectrum of the operator
Qe asawhol e, without assuming that Qg5 issmall com-
pared to Q,. Not all the results of such an approach are
reliable in the quantitative respect and require verifica
tion by numerical methods.

Consider the possibility of the linearization of Qgin
the “coordinate” x. Nonlinear terms are small and can
be neglected in the region of small x = 0. We will call
this region a central “well.” Here, Qg = Q; (43). The
spectral properties of this operator were studied above
[see (40)—(42), (44)]. Intheregion of large values of |x|
for 0< 0 <2.4048..., the operator Q¢ can be linearized
by the shift transformation

exp(ixop)Xexp(=iXop) = X+ X
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by choosing the parameter x,
X = 4/230(0)/8°F(0). (46)
The linearized operator Qg has the form
Q' = /2K(PSI@) -G Ho(0). )

J(0) = 1+ 2F,(0)Jy(0)/F,(0).
The operator Q'é“ determines the quasi-energy states of
the atomic—field system in the regions x = X, |, which

we will call sidewells:
E\" = +D.J/n, D = k./2J,(0)J(0),
Wl

= (IXor & NOFL/20 |xo, &, n—100/20)/.4/2.

Here, weintroduced the notation of a shifted (coherent)
squeezed Fock state of the field

[Xo, &, NO= exp(—ix,p)GInL]

(48)

The squeezing parameter ¢ in Egs. (33) and (44) is
defined by the relation

exp(-2¢) = J(0)/2Jo(0).

Thus, our analysis showed that there exist three
regions of values of x in the third order of the perturba-
tion theory where the quasi-energy states of the
atomic—field system are described by the generalized
Jaynes—-Cummings Hamiltonian (30). Figures 1 and 2
show the dependences of energies of some quasi-energy
levels on the amplitude o (for 6 = 0.15 and 0.07, respec-
tively), which were obtained by three methods. The
dashed, monatonically decreasing curves, which converge
a the singularity o = 2.4048..., give the quasi-levels of
the linearized quasi-energy operator in the central well
of Q, Egs. (40) and (44). The dashed curves issuing
from the point 0 = 0 and converging at the point o =
2.4048... represent the doubly degenerate quasi-levels

of the operator Q'é” (side wells) (48). The solid curves

correspond to the energy levels of the operator Qg (45)
(the third order of the perturbation theory), which were
obtained by the numerical diagonalization of its matrix
in the Fock basis. The basis dimensionality was limited
by the parameter n,,,,, equal to 150. The dotted curves
show the quasi-levels of the exact quasi-energy opera-
tor Q of the problem under study [the Hamiltonian H(t)
(23)], which wasfound numerically from theformula[15]

I Te)
Q= ﬁLn(U(T))'

Here, U(T) is the evolution operator (22) during the
period T. The dimensionality of the matrix Q was also
limited by the parameter n,,. As follows from Figs. 1
and 2, the calculation in the third order of the perturbation
theory and the exact caculation quantitatively agree with
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each other. The agreement increases with decreasing
parameter o of the perturbation theory. The plots of quasi-
levels obtained by the linearization method qualitatively
differ from the plots obtained by more exact methods. This
concernsfirst of dl theregionsof crossing of thelevels of
the central and side wells. Upon the refinement of the
calculation, the level crossings are replaced by their
anti-crossings. In addition, the double degeneracy of
the side-well levels is removed upon approaching the
singularity.

To elucidate the reason for the differencesfound, we
consider the features of the field “motion” in the vicin-
ity of the above-mentioned wellsin more detail. In Fig. 3,
the amplitudes of oscillations over the “coordinate”’ x
and “momentum” p for the central well, Ax and Ap [the
Hamiltonian Q; (43)] are compared with these quanti-
ties Ax, and Ap, [the Hamiltonian Q)" (47)] for side
wells as function of 0. Our estimate shows that the
amplitudes are determined by the relations

Ax = J1/Jy(0), Ap = 1/AX,
AXx, = ,/3(0)/[234(0), Ap, = 1/AX,.

It follows from Fig. 3 that in the region ¢ = 0, the
quadrature of x for oscillations in side wellsis strongly
sgueezed. Near the point o = 2.4048..., the quadrature
of p for oscillations in the central and side wells is
strongly squeezed. In the system of units chosen, the
absence of squeezing corresponds to the regions where
amplitudes are close to unity. Figure 4 shows the
dependence of the shift of side wells [x,| (46) on o for
several valuesof theinteraction parameter =k/Q. The
comparison of Figs. 3 and 4 shows that the eigenfunc-
tions of the field mode in the x representation are
strongly localized in the region of three wells at suffi-
ciently small o:

X=0, [Xg|.

The overlap of the wells appears near the value o =
2.4048... . Thesidewellsare separated from the central
well by a potential barrier whose penetrability is deter-
mined by the parameters o and &:

B = exp{—4J,(0)x3/3}. (49)

The potential barrier penetrability increases with
increasing o for & being fixed. The quasi-energy states
localized in the central well become quasi-stationary,
with the decay constant R, which can be estimated,
according to [19], from the formula

R = k./Jo(0)B/4T.

Thewellslocated inthevicinity of the singularity begin
to interact with each other. This causes the splitting of
quasi-levels.

The barrier width (over the “coordinate” x) between
the central and side wells is of the order of the shift |x]
(46) and tends to infinity with decreasing ¢. This cir-
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Fig. 3. Amplitudes of oscillations over the “coordinate” x
and “momentum” p for noninteracting central (Ax, Ap) and
side (Axq, Apq) “wells’ as functions of the classical-field
amplitude o: (1) Ap, (2) Ax, (3) Apy, (4) AX.
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40
30}
S
20

101

0

Fig. 4. Parameter x of the shift of side wells from the cen-
tral well asafunction of the classical-field amplitude o: & =
0.07 (1), 0.1(2), 0.15(3), 0.3 (4.

cumstance substantially affects the result of numerical
analysis because, due to the restriction of the dimen-
sionality of the Fock basis (h < n,,,), theregion of vari-
ation of the “coordinate” is aso restricted (0 < [X] <

Xmax = A/Nmax )- FOr this reason, the plot of any physical
guantity versus o constructed at the fixed value of the
cut-off parameter n,, has two regions, which are
divided by the boundary value a,. Intheregion0< o < g,
the barrier width exceeds X5, and the influence of side
wellsiscompletely excluded. When o = g, the side wells
aretakeninto account in the calculation, resulting inthe
drastic modification of the plot upon passing through oy,
The dependence of the parameter g, on o is determined
by the relation

Jo(00)
nmaxFZ(GO)
Thus, we have o, = 0.8 for Fig. 1 and oy = 1.2 for Fig. 2.
The above-mentioned effect is manifested in these fig-

ures astheinstability of calculations upon approaching
0, from the left.

The presence of the boundary value o, should be
also taken into account in the numerical solution of the

o =
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Fig. 5. Parametric resonance region in the “open” JCM in a
biharmonic field onthe da plane: (1) top of theregion (48) and
(2) bottom of the region (47).

problem on parametric excitation of the quantized field
mode of a resonator produced by a classical field with
the amplitude that smoothly increasesfrom zero. Inthis
case, the inaccuracy caused by the cut-off of the Fock
basis can be eliminated assuming that the switching on
rate on the interval 0 < 0 < g is sufficiently high
(greater than the decay rate R), so that tunneling has no
time to occur. In other words, the rate of the initial
interval of the envelope of the classical-field pulse
should be matched with the cut-off parameter n,,, of
the basis. The process of parametric excitation of the
guantized mode of the resonator by the classical field,
whose amplitude is much smaller than the critical
value, is of the below-barrier transition type. Having
fixed the barrier penetrability B in Eq. (49) at the 0.1
level, we obtain the estimate for the lower boundary
(bottom) &,(0) of the parametric excitation region on
the &0 plane:

_ |83
%(9) = | |3F,(0)Lnio

As analysis shows, to the right of the singularity o 2
2.4048..., the boundary curve (thetop of the parametric
excitation region) &,(0) is described by the relation

(50)

_ 435(0)
olo) = J F,(0)35(0) —3F,(0)/2
Figure 5 shows the plot of the parametric resonance

region. Thesingularity o = 2.4048... correspondsto the
region origin.

(51)

5. CONCLUSIONS

We have considered the problem on parametric
excitation of aquantized field mode by apolychromatic
classical field. Parametric processesinvolving the elec-
tromagnetic radiation have many practical applications
and have been discussed in the literature [15, 20, 21].
According to [21, p. 303], parametric processes repre-
sent processes of energy exchange between vibrational
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systems due to their coupling via a nonlinear dissipa
tive element. In the problem considered, the coupling
of the fields—the classica and quantum ones—is
caused by their interaction with two-level atoms placed
in a resonator. The fields and atoms form a unified
guantum system whose Hamiltonian depends on time.
It isassumed that this Hamiltonian can be simulated by
the Hamiltonian of the “open” TCM. In this paper, we
have paid a special attention to the statistical properties
of the quantized mode states, which are related to the
parametric process under study.

We have devel oped the perturbation theory for con-
structing the quasi-energy operator Q of the problem.
As asmall parameter o, we used the ratio of the con-
stant of interaction between the mode and an atom to
the modulation frequency of the amplitude of a bihar-
monic classical field. We derived the operator Q up to
the third order in & inclusive. We studied the spectral
problem for Q analyticaly using linearization and
numerically, by matrix diagonalization. The Q matrix
was constructed in the third order and aso exactly (in
the truncated basis) with the help of the monodromy
operator obtained by numerical methods. We studied
the lower limit of the parameter 3. The opposite case of
low frequencies Q can be analyzed more easily and
seems to be of little interest because the quadrature
squeezing is absent in this limit. The question of the
convergence of the perturbation theory series obtained
by us remains open. It is not inconceivable that the
guasi-energy operator under study has a continuous
spectrum. In this case, the series can be treated only as
asymptotic and probably diverging.

The application of the linearization method to the
equivalent operator Qg (in the “coordinate” representa-
tion) revealed the special feature of the problem,
namely, the presence of the efficient potential barrier
dividing the central and side wells. The term well
refers to the regions of the “coordinate” change where
the generalized JCM Hamiltonian Q, (30) can be used.
The field part of the eigenfunctions of Q, has interest-
ing statistical properties, namely, it represents squeezed
(over one of the quadratures) field states of quantum
optics. The degree of sgueezing can be changed by
varying the parameters of the problem: the amplitude
and the modulation frequency Q of the classical field.
The presence of the potential barrier is reflected in the
features of the spectrum of Q (the tunneling effect
resultsin the interaction between the wells, the splitting
of the quasi-levels, and the replacement of their cross-
ing by anti-crossing), as well as in the dynamics of
parametric excitation of the quantized field mode. The
initial excitation stage is of the below-barrier transition
type and therefore is improbable. As the barrier van-
ishes (with increasing amplitude of the classical field),
aregion of the parametric resonance appears on the 8o
plane. The dynamics of the parametric process requires
a separate study.
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Abstract—A theoretical treatment is performed of the mechanism (suggested in N. F. BunkinandA. V. Lobeev,
Z. Phys. Chem. 214, 269 (2000)) of ionic effect on the Rayleigh line wing under conditions of light scattering
by liquid electrolytic solutions. The mechanism consists essentially in that the fluctuation electric field caused
by Brownian mation of ions dissolved in aliquid leads, because of the Kerr polarization effect, to fluctuations
of optical anisotropy of the scattering medium. The spectral characteristics of the Rayleigh line wing are
obtai ned using the fluctuati on-dissipative theorem as applied to equilibrium thermal electromagnetic field. Expres-
sionsarederived for theintegral intensity and spectral width (Av) of the Rayleigh linewing in terms of parameters
of liquid solution such asthe temperature T, the viscosity n, the concentration of dissolved ions n;, and the coeffi-
cient of their diffusion D, . Itisdemonstrated that Av 0 exp(-W/2T), where W isthe activation energy of ion mobil -
ity by = D;/T. The possible region of vdidity of developed theoretical concepts as applied to the experimental data
for the Rayleigh line wing in electrolytic solutionsis discussed. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Modern concepts of the physical nature of the Ray-
leigh line wing under conditions of light scattering in
liquids are still far from being finalized. Although the
universally accepted macroscopic model of this phe-
nomenon, based on the results of treatment of fluctua-
tions of optical anisotropy (fluctuations Ag;, of the per-
mittivity tensor) of the scattering medium [1, 2], proved
to be very fruitful, it still calls for further development
as regards the concretization of the physical mecha
nisms of such fluctuations. The difficulties encountered
in the process are associated with the interpretation of
the observed spectral structure of the Rayleigh line
wing and, first of al, of itswidth Av, which reachesval-
ues of the order of ~100 cm and higher for most of the
investigated liquids. With the values of Av as high as
this, characteristic times T ~ (Av)™ < 1023 s must be
present in the Ag;, fluctuation spectrum. The need for
times as short as thisisin conflict, first of all, with the
so-called relaxation models of the phenomenon, which
are based, with a number of variations, on the assump-
tion made as early as that of Landau and Plachek [3]
that the rate of fluctuations Ag;, in aliquid is defined by
the processes of rotational self-diffusion of its mole-
cules. According to these models, only one characteris-
tic time must be present in the Ag;, fluctuation spec-
trum, namely, the time of rotational diffusion of liquid
molecules, which coincides by an order of magnitude

with the time of Debye relaxation T, = 4n3; /T, where
n istheviscosity of theliquid, ¢, isthe radius of itsmol-
ecules, and T is the temperature (here and below, al

guantities are given in energy units). For molecular lig-
uids, 1o = 10 s; i.e,, it exceedsthetime (Av) ™' < 1023
shy at least an order of magnitude.

At present, it is generally recognized that simple
(relaxation) models are limited, which stimulated the
development of other theoretical approaches to inter-
preting the Rayleigh line wing; many of those
approaches are described in reviews [1, 4]. These new
approaches, however, have likewise failed to produce
an adequate explanation for the spectral structure of the
Rayleigh line wing, especialy in the far portion of its
spectrum, i.e., at Av > 1/1p,. The situation turned out to
be even less predictable theoreticaly as papers have
become available that described experimentsinvolving
observations of the Rayleigh line wing in aqueous elec-
trolytic solutions. Gray et al. [5] and Lanshinaet al. [6]
have found that the characteristics of the Rayleigh line
wing in such solutions depend considerably both on the
concentration of dissolved eectrolyte and on the type of
the electrolyte. A quaitative explanation of this effect, as
suggested in [5, 6], condsts in that the ions dissolved in
water cause a change in intermolecular interactions and,
thereby, in thewater structure defined by hydrogen bonds.
Thus, one must bear in mind that the behavior of such vari-
ations depends on the type of ions which, according to
Frank and Evans [7], may be classified as structure-
forming and structure-destroying. The ions of the
former type fit into the structure of water without
destroying hydrogen bonds, while the ions of the latter
type destroy these bonds and, thereby, distort the struc-
ture of water. This is quite a plausible assumption
which, as far as we know, was not subjected to subse-
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guent quantitative treatment; therefore, it still remains
ahypothesis.

At the same time, in arecent paper [8] also dealing
with the investigation of the Rayleigh line wing in
aqueous solutions of some salts, another physical
mechanism of the effect of dissolved ions on the spec-
trum of the Rayleigh line wing was suggested. This
mechanism consistsin that the fluctuation electric field
E(t) caused by therma Brownian motion of ions dis-
solved in a liquid leads, because of the Kerr polariza-
tion effect, to fluctuations of optical anisotropy and, as
a result, to the emergence of depolarized scattering of
incident light (i.e., the Rayleigh line wing). Note that
the mechanism suggested in [8] applies, generally
speaking, to al molecular liquids, because the latter
liquids always possess ionic conduction to some or
other degree. If thisis not a solution of impurity elec-
trolyte, the conduction is due to intrinsic ions which
appear asaresult of thermal electrolytic dissociation of
molecules of the liquid proper. This dissociation is
especidly effective in polar liquids characterized by high
values of static permittivity &,. The resistivity p of very
thoroughly purified water at room temperature (€, = 80) is
of the order of ~10” Q cm, which corresponds to the den-
sity of intrinsic ions H* and OH~ n; = 3 x 10% cmr3. In
pure nonpolar liquids, the density n; is of course much
lower. In solutions (for example, agueous) of strong
electrolytes, the density n; islimited only by their satu-
ration concentration.

Naturally, the mechanism of the effect of dissolved
ions on the spectral structure of the Rayleigh linewing,
treated below, cannot lay claim to universality if only
for the reason that it fails to enable one to explain the
dependence of the data of [5, 6] on the type of ions.
Therefore, it must be regarded as one possible mecha
nism. It appears attractive owing to its physical clarity
and to the possibility of quantitative analysis, which
was first attempted in [8]. However, the guantitative
estimates of the effect, which were obtained in [8], are
not exhaustive: this fact caused us to resume the treat-
ment of the problem.

This paper describes the results of detailed theoreti-
cal analysis of the mechanism suggested in [8]. The
analysis is based on the general theory of equilibrium
thermal electromagnetic fluctuations, which involves
the use of the fluctuation-dissi pative theorem; the most
complete description of this theory isfound in [9] (see
also [10]). Thisapproach enables oneto relate the spec-
tral intensity F(w) of fluctuations of electric field E(t)
in liquid with the parameters of the latter such as the
resistivity p (or theionic density ), theionic diffusion
coefficient D;, and the temperature T. In turn, given
F(w), one can use the third-rank tensor of nonlinear
polarizability of liquid X;;,s to determine the spectral
intensity of fluctuations of the anisotropy tensor Ag;,
associated with the Kerr high-frequency effect. Note
that the spectral characteristics of equilibrium fluctua-
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tions of thefield E, calculated using the fluctuation-dis-
sipative theorem in terms of the linear dissipation char-
acteristics of the medium, are completely independent
of the nonlinear optical properties of the medium and,
in particular, of the third-order polarizability X. There-
fore, in determining the anisotropy of liquid induced by
thefield E, the field proper may be treated as external.

2. SPECTRAL INTENSITY OF FLUCTUATION
OF ELECTRIC FIELD
IN A LIQUID CHARACTERIZED
BY IONIC CONDUCTION

As was stated above, the spectral intensity F(w) of
fluctuations of thefield E(t) may be described using the
fluctuation-dissipative theorem. Because we are inter-
ested in the contribution to the intensity F(w) caused
only by thethermal motion of ionsdissolvedinaliquid,
the use of thistheorem impliesthat the permittivity € of
the liquid proper is regarded as a real quantity. In fur-
ther treatment of aqueous electrolytic solutions (in par-
ticular, pure water), we will represent € in the form

e = S0"'51((’01'0)2
1+ (wip)?

1
where g, = £(0) isthe static permittivity (for water, g, =
80) and ¢ is the permittivity in the IR frequency band
when (wTp)? > gy/e,. For water at T = 4 x 107 eg
(293K), thetime 1, = 8 x 102 s, The expression for €
in the form of Eq. (1) may be used, with certain limita-
tions, for al polar liquids. We will use the symbol g; to
denote the contribution to the total permittivity caused
by the presence of the ionic component. The dissipative
properties of the ionic solution, which are responsible,
according to the fluctuati on-dissi pative theorem, for the
emergence of fluctuation field E, are defined by the fact
that the quantity ¢; is complex.

It is known [9] that the calculation of the spectral
characteristics of thermal electromagnetic field inside
the medium proper callsfor theinclusion of spatial dis-
persion in this medium. In the case of the problem
being treated, one must know the longitudinal compo-
nent €| (w, p) of permittivity & . Because the ionic den-
sity n; < n, (n, is the density of molecules of liquid),
the motion of ions under the effect of the field E [
expl[i(wt — p - r)] of electromagnetic wave may be
described in the diffusion approximation. In so doing,

e! (0 p) isdefined by formula (20.42) in monograph [9],

gl = e[1-i/(wty,—ip’a’)], )

where

a = ,JeT/8ne’n;, 1, = a°/D,,
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and D, isthe ionic diffusion coefficient (the ionic solu-
tion is assumed to be binary, symmetric, and consisting
of singly charged ions of identical mobilities). The
transverse component €; of permittivity in this approx-
imation does not possess spatia dispersion and is

g = g(1-ilwry).

The sought spectral intensity F(w) of the field E is
defined by the second term of formula (20.15) in [9]
under conditions of R =0 and substitution into thisfor-
mula of expression (2) for €| (w). Thus, integration for
the region of w > 0 yields

F(w) = F(0)(2%%,/e)*
1 Rl T @A)

i/ T ’
1

J1+ i ele) (wr?® T

2e2n-T
F(0) = 5 (33
91te, D;
g T a2
y=——=2, (30)
8T[e ni Di i

whereap = A/soT/8ne2ni isthe Debye length.

In the case of agueous solutions, when € is defined
by formula (1) and the parameters & = €,/¢, = 1/40 and
o = Tp/Ty ~ M/10 < 1 (M isthe molar concentration of
the solution; 1 M corresponds to the ion density n; =
6 x 10%° cm3), expression (3) for the spectrum F(w)
may be represented in the form (w > 0)

T(20)" 1+ f
6TD;g0ap ) + EXZD
2 -1/2
x[a1+X2+X} Bx |
1+Ex -1
where X = Wi and B =4/ Ttp.

F(w) =

1 Formula (3) defines the spectral intensity F(w) of asingle projec-
tion E, of the field onto the coordinate axis (average [ 0= 0).
The continuation of the function F(w) to the region of w < 0 Is
even, F(-w) = F(w), so that

(<) 00

[(E20= [ F(w)dw = 2[F(w)dw.
—oo 0

The rejection of the first term in formula (20.25) in [9] is attrib-
uted to the fact that this term defines the spectral intensity of the
total thermal electromagnetic background in aliquid, which isin
no way related to the presence of dissolved ions in that liquid.
Thistermispresent in the case of n; = 0 aswell. In addition, the zero-
point vibration term 71w/2 is rejected in the mean oscillator energy.
To ensure against misunderstanding, note that, in the notation of
monograph [9], the spectral intensity F(w) = [E(r)E; (r)O=
(Y/I)E(r)E*(r)O(there is no summation over the indices; for
more detail, see the Appendix).
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Until now, we talked about fluctuations of the field
E intime only. In redity, it fluctuates in space as well.
In so doing, F(w) defines the spectral intensity of time
fluctuations at a fixed point in space and, accordingly,
their time correlation properties. The space-time corre-
lation characteristics of the field E(t, r), which will be
required in what follows, are given in the Appendix.

3. LIGHT SCATTERING BY FLUCTUATIONS
OF OPTICAL ANISOTROPY IN LIQUID,
CAUSED BY ELECTRIC FIELD
OF DISSOLVED IONS

In the general case, the scattering properties of an
anisotropic medium during macroscopic description
are characterized by the properties of the tensor a;,
appearing in the constitutive equation [2]

Di = €E +a,Ey, (5)

where E; denotes the components of the electric field

of incident wave; E; and D; are the components of the
electric field and induction of scattered wave, respec-
tively; and € is the permittivity of the medium. The
physical nature of the tensor a;, may vary; its compo-
nents (as well as €), generally speaking, are character-
ized by frequency dispersion. Therefore, the algebraic
form of notation (5) has a meaning only for monochro-
matic fields. In our problem, the tensor q;, is defined by
the Kerr high-frequency effect in the fluctuating field
E(t, r), which has a continuous spectrum extending,
according to Eq. (3), to frequencies ~T/A = 3 x 10883 st ~
10? cm. Compared with the optical wave frequencies
Wy = 3 x 10" s, such fluctuations of thefield E may be
regarded as slow. Therefore, with due regard for the
nonlinear electron polarizability alone and, accord-
ingly, ignoring the dispersion of thetensor x;;y , we will
further represent the tensor a, in the algebraic form,

Ay = Ot r) = XiulEi(t n)E(t r) - EED, (6)
and the second, “ scattering,” termin Eqg. (5) intheform
Ada;eexp[—i(wet—k )],

where A is the amplitude of an incident plane mono-
chromatic wave and e is the unit vector defining the
polarization of thiswave. Because the dispersion of the
tensor X isignored, all of itscomponentsarereal, and
the tensor q;, is also rea (as regards the designations
adopted for E(t, r), see the Appendix). The degree of
its symmetry is defined by the known symmetry of the
tensor X;;i for isotropic media (see, for example, [11]);
the average values [, [= O.

Wewill further assumethat an incident wave, which

islinearly polarized along the z axis, propagates along
the x axis of rectangular coordinates (X, y, z). Wewill be
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interested in the wave scattered along the y axis (scat-
tering angle of 90°); the x-component of this wave cor-

responds to the so-called depolarized component E,, ,
and the z component corresponds to the polarized com-
ponent E,,, . In the Fraunhofer zone, we have for these
components [2]

Evh = Evn(t) = [Cexp(-iwgt)]

xJ’eHé((t, r)e,e ' dr. @

For Eyy (t), we have an analogous formula with e,
replaced by e,. Here,

C = [Aexp(ikR)]K/4ATR,
k = koo Je1, ko = wylc,

q=k'—-k, q= .2k,
e, ={0,0,1}, e, ={1,0,0},
cisthelight velocity, and R is the distance between the
observation point and the scattering region (R > kv?23,

V isthevolume of the scattering region); integration in (7)
is performed with respect to the volume V. The correla-

tion functions of the components E,, (t) and E, (1),
1 "
$(1) = ZIEWOEL(t+D0-cc]

(WW(7) is determined analogously) in view of (7) take
the form

W) = 3107

x O Henat r)e,) et +1,re)d ()

X expi[weT —q Lr'=r")]dV'dV" + c.c%
0

According to Egs. (6), (A.3), and (A.4), the quantity

(e, a (t, r)e)) - (&40 (t + 1, r")e,)Owhich appears under
theintegration signisreal, isan even function of only t
and p =r'—r", and is given by the formula (see the
Appendix)

Meqa(t, r)ey) Qeya(t+1,r")e,)0
= Bmakaa(T: p) = BméKklyé(—T,—P),
where

(8)

Bitys = (en)i(en)a(®v); (&) eXijuXapys

= szkl szy5 :

(8)
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The substitution of Eq. (8a) into Eq. (8) and single inte-
gration yield

p(r) = %ICI2Vcosoo0T
VH ©)
xlBklyéKklyé(Tf p)cos(gp)dp.

For yVV(1), an analogous formula is derived with the

tensor Byiys replaced by Byys = X Xeys

The spectrum of the Rayleigh line wing is defined
by the Fourier transform of the correlation functions
PYH-W(1). On the basis of Egs. (9), (A.9), (A.93),
(A.9b), and (A.6), for this spectrum GH-W(v) (v =
(w — wy) denotes the mismatch between the frequency
w of scattered wave and the frequency wy, of incident
wave), we derive (the obvious condition |v| < 2wy is used)

GVH(V) = GVH(_V) = CO"‘St(X1212"'X1221)2

x E{cos(q )G (v, P)dp + [005@ (P)(L-}) (109

0
% g2o(V, p)dp +2[ cos(q )Y2y202(V, p)dp 0

GVV(V) = GVV(—V) = const(X 111 + 2X1122)

x E[cos(q )gu(v, p)dp
(10b)

+ 4J.[X5122(1 - Vf) + Xilllyi] cos(@ [p)gy2(v, p)dp

O
+ 2I[X1122(1—V§) + X1111V§]2C03(q [(p)gxa(v, p)dp E

where

[

9u(V, p) = gu(-v,p) = J'Ll(w, P)Li(w+v, p)dow,

[

912(V, P) = 9ro(-V, P) = ILl(w! p)Ly(w+ v, p)dw
- (10c)

[

= ILl(w+ v, p) LZ((‘O! p)d(.k),

00

922(Vs P) = Goo(—V, P) = ILz(w’ P)Ly(w+v, p)dw.

In deriving these formulas, the following notation was
used for components of the tensor X;;q [11]:

Xllll = XXXXX = nyyy = Xzzzz;

X1212 = Xxyxy = szxz = nyyx = Xyzyz = szzx = Xzyzy;
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X1221 = Xxyyx = szzx = nyxy = Xyzzy = szxz = Xzyyz;
X1122 = Xxxyy = Xxxzz = nyxx = nyzz = Xzzxx = Xzzyy;

X111 = X122 T X122 T X1221-

ThefunctionsL; ,(w, p) =L, »(—w, p) aredefined inthe
general case by formulas (A.7a) and (A.7b). For aque-
ous solutions, when relations (2) and (A.7c) are valid,
these functions take the following form at w > O:

Li(w, p) = F(w)exp[—(3/4)kp], (11a)

Lo(w, p) = —3F(w)

(11b)
x exp[—(3/4)kp](1—exp(-kp/4)).
Here, F(w) = L,(w, 0) isthe spectral intensity of fluctu-
ations of the field component E,(t) at a fixed point in
space, which is defined by formula (3c), and

1 1+ x°

= a
'\/éaD’\/a 1+EX2

If GYH-W(v) denotes the density of the energy flux of
scattered radiation (intensity) in aunit frequency range,
the constant appearing in Egs. (10a) and (10b) is equal
to Iokg V/(8m)2R2, where |, = (. /g, /8TAP is the total
(integral) intensity of incident light wave. The integra-
tion in Egs. (10a) and (10b) is limited to the ranges of
values of p, in which the functions gy;(v, p), 912(V, P),
and g,,(v, p) are other than zero, i.e., in fact, to theranges
of spatial corrdlation of thefield E(t, r). Theintegrals over
solid angles (dp = p?dpdQ = p?dpsinBdddd), which
enter Egs. (10a) and (10b), are readily calculated and
have the form

K +X, X=Wip. (11c¢)

J, = L{[cos(q (p)dQ = 4n%,
32 = [vycos(q (p)dQ
41
= (41U3),F,(2; 5/2; 1; (qp/2)?),
3= | yy2cos(q Cp)dQ
4m
= (41015),F,(2; 9/2; 1; <(qp/2)?),

Js = [vzcos(q (p)dQ
411

= 4n% — cos(ap)L/(ap)?,
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Js = fv;‘cos(q [p)dQ
41

- 1on{31(ap)" ~ 1) Sn(gp) — 3cos(gp)/ap
(ap)

where ;F, is a generalized hypergeometric series. At
gp =0, the values of these integrals are as follows:
J, =4, J, = 41v3; J; = 41U15;
J, = 41U3; Jg = 41U5.

Therefore, formulas (10a)—(10c) and (11la)—(11c)
define the spectral structure of the Rayleigh line wing
for both depolarized (V, H) and polarized (V, V) compo-
nents. However, it proves impossible to perform inte-
grationsindicated in these formulas; therefore, we will
restrict ourselves to the calculation of only the integral
intensity of scattering IMYV and the spectral width

(Av)VH- W of the Rayleigh line wing. We will start with
the calculation

00

[VHW J-GVH,VV(V)dV.

The substitution into thisintegral of the expressionsfor
GYH-W(v) according to formulas (10a)—(10c) givesrise
totheintegrals

00

J] Ly 2(w, p)Ly (w0 + v, p)dwdp,

[

J'I L,(w, p)Ly(w+ Vv, p)dway,

which, in view of the fact that the functions L; (w, p)

are even with respect to w, are equal to Miz(p) and
M1(p)My(p), respectively, where

[

My ,(p) = ZILl,Z((*)v p)dw, M,(0) =0. (12
0
We substitute Egs. (11a) and (11b) and perform integra-
tion in view of the condition a < 1 to derive
2./2T ™

3, az P/Po’

2. /2T (plpo)e ™™™
Teoap 60 + (p/po)°

Mi(p) = (124)

M,(p) = (12b)

where p, = (44/2/3)a,. Because M3 ,(p) and

Mi(p)M2(p) O exp(=2p/py), the integrals J 2 34 s,
which enter Egs. (10a) and (10b), may be replaced, on
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the condition that (qpy/2)?> < 1, by their values at gp = 0.
Assuming that this condition is valid (see below), the
integrals with respect to p in Egs. (10a) and (10b)
reduce to the following:

IpzMi(p)dp; IpzMg(p)dp;
0 0 (12¢)

[

[0°Ma(p)M(p)dp.

0
According to Egs. (12a) and (12b), the respective val-
ues of these integrals are b, 9b, and —3b, where

b = 24/2006(F T°
3 Lond 3¢2

In view of the foregoing, we derive for the intensities
|VH- W according to (10a)—(10c),

VH _ 2
I = const(X 1212 + X1221)

(13)

144
(Bleged T -
15149 ap€;
7
1" = const S(illl + éXilZZ + 3X1111X1122%
(14b)

< M%@g% _
151 L9 apEy

In accordance with this, the values of the scattering cross
section calculated per unit volume of the scattering region

(scattering coefficient), oy """ = (RIV)(IVH-WII,), are
given by
5./2016f T°
\1/H = _})/_%%EF_‘l > 3(X1212+X1221)2’ (159)
Agpap
oWV = Sﬁ[ﬂ__@ﬁ T?
Woo
SR (15b)

.
X %(illl + éXilZZ + 3X1111X1122Er

where A is the wavelength of incident light. (Note that,
in the CGSE system of units employed by us, the quan-
tities o} arein cmt and the components of the ten-
Sor X« are in 2 cm/g.) According to these formulas,
the degree of depolarization is

[ _1 (Xaziz + Xaz20)°
(Vo 8.2

A= =
2
Xau ZX 1122 + 3X1111X 1122

(15¢)

It will be recalled that these formulas are valid subject
to the condition (gpy/ 2)? < 1, which, in view of the fact
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that q = ,/2&,k, and p, = (4+/2/3)ap, may be repre-
sented in the form

A > 8mer’a, = 8m2—18°T =10 M nm
| en (16)

(room temperature).

We will now turn to the calculation of the spectral half-
width (Av)VMW of the Rayleigh line wing, defined by
the formula

[

VZGVH’VV(V)dV

- : 17
J-GVH,VV(V)dV

(AV)VH, ‘A% -

NI

The substitution of expressionsfor G VV(v) according
to formulas (10a)—(10c) givesrise to the integrals

00

ﬂ’szl,z(w, P)L; »(w+V, p)dwdv,

00

J’J‘szl(w, p)L(w+V, p)dwdv,

which, in view of the fact that the function L, ,(w, p)
is even with respect to w, prove to be equal to

2M; (P)M12(p) and [My(p)M2(p) + Mi(P)My(P)],
where M,(p) and M,(p) are defined by formulas (12), and

00

My 2(p) = 2Iw2L1,2(w, p)dw. M,(0) = 0. (18)
0

According to Egs. (11a)—(11c), one can derive

16A/§T0(3 [&)DS —p/po

Mi(p) = e,
' D, €020 T, P U

(18a)
2.2Ta° _(plpo)e ™™
D, €,apT5180° + (p/p,)?
If the condition (gpy/2)? < 1, i.e., condition (16), is
valid, theinterna integrals with respect to p, which enter
the integra J‘f wvz GMW(v)dv according to Egs. (10a)

and (10b), reduce to the following:

00 00

Iplel\_/lldp: ijMdep:
0 0

Ma(p) = (18b)

. o (18c)

2
0
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Onecan seein Egs. (12a), (12b), and (184), (18b) that

(M;My) O (pg/p)°e "™
and

(M;My) O (po/p)'e "™,

and, therefore, the first and third of integrals in (18c)
diverge at the lower limit. The forma reason for this con-
sdtsin that expressions (12a), (12b) and (18a), (18b) for
thefunctions My »(p) and My, » (p) were derived by us on
the condition that the quantity p/p, isfinite (i.e., cannot
tend to zero). In calculating IYM'VV, this limitation
proved to be of no importance, becauseit did not result in
the divergence of integrals (12¢). In order to diminate the
divergence of the above-identified integrds (18c), the
lower limit in them must be replaced by some finite scale
Prin << Po/2. Because the divergence is caused by the

fact that M, O (1/p)° (see Eq. (18d)), it is natural to
determine the scale p,,,, by equating the a fortiori finite
quantity

00

M(0) = 2 J'oole(w, 0)dw
0

e _ [ By
_Zgw F(w)dw—<DdtD>

to the right-hand part of expression (18a), assuming
that, in this part, p = pmin- |N SO doing, we derive

5
o =p 16./2Ta’
") D g gapTo ML (0)

and, based on Eqg. (3c), we have
J2aT

M1(0) =
3D g,apTnE B
and, therefore,
Prin= 2Po(a**p*2%) "

5.3_2, V10 (19)

= 4(e,/e)P(DPTPTL) .
For aqueous solutions at room temperature,
o =1,/T4=1,Di/a5 = M/10,
B=#/TTp=3x107,
E=¢,/g,=25%x107, T1,=h/T=25x10"s,

so that the parameter (a¥2B%282)15 = 102 MY2, and,
therefore,

pmin/(polz) =4x 10_2 Mﬂz < 1.
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One can see in Eg. (19) that, with the Stokes mecha
nism of ion mobility, when b, = D;/T O 1/n, the mini-
mal scale p,, O (;)%3, i.e., for the preassigned solution
having the temperature T and the viscosity n, the scale
Prmin depends (in the manner indicated above) only on
the mobility b, = b;(T, n) of dissolved ions (it is
assumed that theratio €,/¢, isinvariable).

The results of calculating integrals (18c) for the func-
tions M;, M,, My, and M, defined by formulas (12a),
(12b) and (184), (18b), and, for the value of the scale
Prin defined by formula (19), demonstrate that the main

00

contribution to the integral IVZGVH’VV(v)dv is made

by thefirst of the integrals (1w8c), i.e.,

20, 64
p’M,Mydp = ———
p.[ ! 9(48)%°1¢
T a’pg 1
DisgaéT%GSIZBQ/lOEUS

In so doing, we derive for the haf-width of the Rayleigh
linewing, according to Egs. (17), (10a)—10c), (12c), and
(13),

VH _ (80/51)0'6
(Av) - 2T0'25 0.3_0.45" (200)
d D 'r
(AV)VV _ (AV)VH
Xiu1 + 2X i1z (20b)

X

7 )
Xilll + éXilZZ + 3X1111X1122

4. DISCUSSION OF THE RESULTS.
CONCLUSION

The obtained results demonstrate that theion contri-
bution to the Rayleigh line wing under conditions of
light scattering in electrolytic solutions, which isdueto
the mechanism suggested in [8], provesto be quite sub-
stantial. Thisis especially true of the spectral structure
of the Rayleigh line wing. According to the theory
described, three characteristic times define the spectral
half-width of the Rayleigh line wing (of both the depo-

larized and polarized components), namely, 14= azD /D,
the time of ionic diffusion through a Debye sphere;
Tp =4n 3, /T, thetime of rotational self-diffusion of lig-
uid molecules through a large angle (Debye relaxation
time); and t, = A/T, the time of correlation of the elec-
tric field generated by the Brownian motion of ions
(inverse spectral width of these fluctuations). One can
see from formulas (20a) and (20b), which define the
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spectral half-width Av of the Rayleigh line wing, that
the contribution by each one of these timesto the value
of Av is multiplicative, with the most significant part
played by the time t,, and the least significant part, by
the time 14. Note that the half-width (Av)Y" isindepen-
dent of the components of the tensor x;;, while the
integral intensity IM O (X112 + X1221)? (Se€ EQ. (14Q)).
We will give the numerical estimate of the quantity
(Av)M for atypical agueous solution of alkali salts at
room temperature, assuming that D; = 2 x 10° cm?/s. In
so doing, thetime 14 = (4.6 x 1071/M) s. Formula (20a)
gives (Av)YM = 105 M¥4 cmrL. Assuming that the diffu-
sion coefficient for ions H* and OH~ in water is aso
equal to 2 x 10° cm?/s, for purest water with pH = 7
(i.e, 107 M) we obtain (Av)"" = 2 cm™: this agrees
with the result given by the simple relaxation theory
with a single (rotational) relaxation time, according to
which (Av)"M = 3/t [1].

It is of interest to treat the temperature dependence
of the spectral width Av. For the quantities entering
Eqg. (20a), wehave e, O U/T (water), T, O VT, and 14 O
T/n,D;. Assuming further that the Stokes mechanism
of ion mobility is valid, we have D; O T/n; therefore,
Tp O 1/D;. Asaresult, we derive

Av O n"exp(=W/2T),

where W is the activation energy for the ion mobility
b, = D;/T. For weak eectrolytic solutions, the density n;,
generally speaking, increases with T; therefore, the tem-
perature-related increase in Av proves to be much faster.
For theions of K*, Cs*, Cl~, and I~ in water, the energy

W/2 = 2 kcal/mol = 103K .

Therefore, in heating agueous solutions of such ions
from 20 to 90°C, the width of their spectrum must
increase by a factor of approximately two, i.e., for
alkali salt solutions one must expect the values of

(Av)VH =210M™ cm™.

According to Egs. (14a) and (14b), the integral
intensity of the Rayleigh line wing IVH:-W [0 T52n¥?;
i.e., the dependence on temperature is weaker, and that
on the ion concentration is, on the contrary, stronger
than for Av. As follows from Eq. (15c¢), the degree of
depolarization is independent of n; and T and, for each
liquid (solvent), is a fixed quantity (naturaly, if the
dependence of x;; on T and n; isignored).

The foregoing theory qualitatively explains some of
the experimental data of [5, 6] and, at the same time,
displays considerable contradictions to those data.
For example, Gray et al. [5] have found aweak (nonex-
ponential) temperature-related increase in the integral
intensity of the Rayleigh line wing in agueous solutions
of KI and MgSQ, salts in the concentration range of
0-3 M, whichispredicted by our results. Gray et al. [5]
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have further demonstrated that, in the region of fairly
high values of concentration, the integral intensity for
the KI solution increases dowly (in accordance with our
theory), but for MgSO, it remains amost unchanged. At
the same time, for highly dilute solutions of both electro-
lytes, Gray et al. [5] observed a decrease in the intensity
of the Rayleigh line wing with an increase in concen-
tration, which may in no way be explained within our
model. A similar pattern is observed in comparing our
results with those of Lanshina et al. [6], who give the
data of measurements of the half-width (Av)"" in aque-
ous solutions of Zn(NQOs),, Ca(NOs),, and Mg(NO5),,
as well as carbonates of alkali metals. Lanshina et al.
[6] have found that an increase in concentration in the
range of its moderate and high values (up to saturation)
is accompanied by a weak increase in the values of
(Av)'M for electrolytes of the first group (which agrees
with our results), and for electrolytes of the second
group these values remain amost unchanged. How-
ever, in the range of fairly low values of concentration
(€102 M), electrolytes of both types, on the contrary,
exhibited a decrease in (Av)Y" as the concentration
increases analogously with the behavior of integra
intensity observed in [5].

The results of comparison with the experimental
data lead one to conclude that the mechanism of the
effect of dissolved ions on the Rayleigh line wing in
water, suggested in [8], may apparently play a decisive
part only in theregion of fairly high values of dissolved
ion concentration. Given the hypothesis about the ionic
rearrangement of the structure of water, discussed in[5, 6]
(see the Introduction), one can suggest that the mecha-
nism treated by us becomes prevailing in the case of
such aconcentration of ions when the rearrangement of
the structure of a solution isterminated as aresult of its
saturation. In conclusion, notethat aradical experimen-
tal proof of the concepts of theimportance of ionsin the
effect of the Rayleigh line wing, which were suggested
in [8] and developed in this paper, would be given by
finding the Arrhenius correlation (Av)YM O exp(—W/ 2T)
intherange of high values of electrolyte concentration,
aswell astheindependence of the degree of depolariza-
tion of scattering in the Rayleigh linewing of n; and T.
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5. APPENDIX

We will give some results obtained using the corre-
lation theory of steady-state (with respect to time), uni-
form, and isotropic (with respect to space) random
fields that were employed in the main body of the
paper. In addition, we will establish a continuity rela
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tion with the results of Levin and Rytov [9], which are
also employed in the paper. Further, asin the main text
of the paper, the quantity E(t, r) (which explicitly
includes the timet as one of the independent variables)
denotes the real value of the vector of electric field
intensity. In so doing, the spectral tensor of spatial cor-
relation of the field, defined by formula (20.24) of [9],
has the form

[Ea(rl)EE (rp)0

0

_ 1 —i T (A'l)
= énJ’lJJO(B(T,rl—rZ)e dr,

where
LIJGB(T’ p) = LpaB(_Ta p)
= [Eq(t, r)Eg(t+1, 1 +p)0

The dependence of W, on [t| and p aloneis aresult of
stationarity and spatial uniformity of the random field

E(t, r). The tensor (E,(r,)Eg (r)Clin turn, satisfies the
equality
[(Eq(w, 1) Ef (0, 1)U
= [Ea(r1)E} (r)B(w-w),
where

00

E(w,r) = %T[I E(t, r)e “dt

is the random spectral amplitude density of the process
E(t, r). According to the Wiener—Khintchine theorem,

00

Woe(T, p) = IDEa(r)EE(r+p)Eemdw. (A.2)

Based on the known property of Gaussian random
guantities (as are the quantities entering thistensor), the
tensor

Kigi = E(t DE( NE(t+T,r +p)E(t+1,1 +p)0
—E(t, n)E(t, n)E|(t+1,r +p)E(t+ 1,1 +p)0
isrepresented as
Kii(T, p) = W;(T, p)W (T, p)
+ Wi (1, p)Wy(T, p)

(if the random quantities x;, X,, X3, and x, have ajoint
Gaussian probability distribution, the mean B XXX,
By X MTKaX g [H kg Xg KX [ H [ X X5

Because of both the spatial uniformity and the isot-
ropism of the vector field E(t, r), we derive, in the gen-
eral case,

Wos(T, p) = Ny(T, p)Bap + No(T, P)Pupp/P’,

(A.3)

(A4
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where N; (T, p) denotes scalar functions even with
respect to T, with N,(t, 0) = 0. The representation of the
tensor

[(Eq(r)Eg(r +p)0

= Ly(w, P)Byp + Lo(w, p)papp/p’

is analogous, where L; ,(w, p) denotes scalar functions
even with respect to w, with Ly(w, 0) = 0. According to
Egs. (A.2) and (A.4),

(=)

Ny o(T,p) = ILl,z(w1 p)eiwrd(*)-

(A.5)

(A.6)

Based on formulas (20.24) and (20.25) in [9], the func-
tions L, ,(w, p) may be represented as

L p) = 2
5 (A.79)
Ilmmlms (PP) _ cos(pp)EP9R.
Pp)
Lo(w,p) = pmmﬂs”(pp)
__3 rsn(pp) _ 0] 2
(pp)zD op cos(pp)D}p dp (A.7b)

= [E(r) CE*(r + p)-3Ly(w, p).
For the medium being treated, according to Eq. (2),

mCLO -
QI

W4

5. (A7)
Eot(e/eo)wrd]2+ (1+p’a’)

Here,
a® = eT/8ne’n, 14 = €,T/8me’n,D;,
8 = hwl/(e"-1).
It follows from (A.7a) and (A.7b) (see Footnote 1) that
L(,0) = %EE(r) [E*(1)0= F(w), Ly(w,0) = 0.

Hence, according to Eq. (A.6),

[

N,(t,0) = J’ L,(w, 0)e“ dw
- (A.8)

00

= J'F(w)ei‘*“dw = Y(1).

Therefore, based on Eq. (A.4), we have
LIJGB(T1 0) = ‘Iu(tv r)EB(t + Tv r)D: L|J(T)6GB1 (A8a‘)
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where
P(r) = Y() = Bt n)E(t+1, 10

is the correlation function of an individual component
of thefield at afixed point in space; thus, different com-
ponents are not correlated.

For the medium being treated, when By =
szkIszyé and B\kll\;é = Xzzkl Xzzy& we have

Bins  Kiys(T, p) = f11" Ni(T, p)

VH, W VH, VWV p 2 (A,9)
+ 17 Ny(T, P)N(T, p) + f22 " N(T, p),
where

f\lT = (X2 * X1221)2,

f\1/2H = (X2 * X1221)2(1_V§)a (A.99)
f\zle = 2(X1o12 t+ X1221)2V§V§’

f\ﬁ/ = Z(Xim + 2X5122)’

fy = AlXhe(1-V2) + XimYal, (A.9b)

2
f3 = 2[X1120(1 = V2) + XuanaVal -
Here, y, ,, , denotes the direction cosines of the vector
p=r, —r, With p = 0, when Ny(t, 0) = (1) and
No(T, 0) =0, formula (A.9) yields

Buys  Kiays(T,0) = f11" (1), (A.108)
With 1 = 0, we have, according to Eq. (A.9),
VH, VV VH,VV, 2
s K 0, =f, M
Buys  Kiys(0, p) 1 1(p) (A.100)

+ 15 M(P)My(p) + f " M3(p),
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where (see Eq. (A.6))
Mio(P) = Ni2(0.) = [laz(@ p)de,
M,(0) = 0.
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Abstract—The cross sections of the detachment of one and two electrons during the collision of two negative
ionsH™+ H7, H™ + Cs", and Cs™ + Cs™ are calculated in a wide range of collision energies: from the energy
threshold to approximately 100 keV. In adiabatically slow collisions, the detachment of electrons occurs as a
result of one- or two- electron Auger decays whose rates are calculated in the approximation of asymptotically
large separations between ions. For high collision energies, the cross sections of the electron detachment are
calculated by the method of close coupling of states. The calculated cross sections are in good agreement
with the results of experimental measurements made for the H™ + H™ collision. © 2001 MAIK “ Nauka/l nter-

periodica” .

1. INTRODUCTION

The ionization processes occurring during the colli-
sion of two negative ions are of considerable interest in
connection with the problem of nuclear plasma heating
by neutral atomic hydrogen beams. It is convenient to
generate the beams of fast neutral atoms by accelerat-
ing and neutralizing negative ions in view of the rela-
tively large cross section of their neutralization at tar-
gets. However, the collisions of negative ions in high-
intensity beams, which occur due to the spread in their
velocities, effectively suppress the intensity of such
beams. The detachment of electrons during the colli-
sion between two negative ions of hydrogen atoms,
H- + H-, was studied earlier both experimentally [1-3]
and theoretically [4, 5].

In this paper, we analyze the following three pro-
cesses of electron detachment:

EA+B‘+e, (A)
A_”53_=%A‘+B+e, (B)
(A+B+2e, (AB)

whose probabilities strongly compete with one another.
For this reason, we calcul ate the cross sections of these
processes simultaneously by solving a single wave
equation. Reactions (A), (B), and (AB) will be investi-
gated by us for the following three collisions; H= + H-,
H-+Cs,and Cs + Cs.

For high collision velocities, processes (A), (B), and
(AB) occur as aresult of direct transfer of a part of the

kinetic energy of the nuclei to the electrons. In this
limit, the cross sections are calculated in the dynamic
approximation. For low velocities, the energy exchange
between electrons and nuclel has alow probability, and
another mechanism becomes effective. In view of the
smallness of the binding energy of negative ions and
their repulsion, several channels of autoionization
decay become effective simultaneously for low veloci-
ties. When two ions approach each other, the electronic
energy level rises and intersects the boundary of the
continuum even for very large distances between the
nuclei. As in the dynamic approximation, the Auger
decays of the autoionization states formed in this pro-
cess lead to considerable values of the cross sections of
the above reactions.

In this paper, atomic units of measurements are
used.

2. DETACHMENT OF ELECTRONS
FOR HIGH COLLISION VELOCITIES.
DYNAMIC DETACHMENT

All the three reactions, (A), (B), and (AB), occur
predominantly at large distances R between nuclei,
when the Coulomb repulsion between weakly bound
electrons of the negative ions play the major role. For
large R, thisinteraction can be expanded into aseriesin
reciprocal powers of R:

1063-7761/01/9203-0400$21.00 © 2001 MAIK “Nauka/Interperiodica’
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1

Z; + 3Zia_ria
[ry—ry

+ =2
R? 2R

Tl

+ rlazla(SZla - 3r1a) + _ @ + 3Z§b - r;b
2R R 2R D)
_ TanZo(5Z5p — 3 31) +
2R

e W, Fop) + o0y

Ma Mop <€ R,

wherer, andr, arethe radius vectors of electrons 1 and
2 in an arbitrary reference frame, whiler,, and r,, are
the vectors of electrons 1 and 2 relative to nuclei a and
b, respectively. The correlation term W(r,, ry,) IS @
function of the product of the coordinates of both elec-
trons:

[t o, + 3214251 +

= '
while the remaining terms in expansion (1) depend on
the coordinates of only one of the electrons, 1 or 2.

The relatively large term 1/R in expansion (1)
affects only the energy of the system. This term does
not depend on the electron coordinates and does not
perturb the wave functions of weakly bound electrons.
We can therefore use the unperturbed wave functions
both for bound states and for the states in the contin-
uum. The transitions between these states are deter-
mined by the terms following 1/R in expansion (1). In
order to calculate the matrix elementsfor dipole transi-
tions, we can use the following simple expressions for
the wave functions of theinitial bound state [6-8]:

Y 4B
W50 = BB (L=,

J1+y/
B(y, p) = L VB
1-vy/B
the binding energy of a negative ion being € = —y%/2,
while for the P state in the continuum, we have

Pa(r) = A/%%[% —cos(kr)}

3 C - §n0s
x/\/%_[{ cosB; sinBcosd; sinBsing}

with three components of angular functions cos,
sinBcosp, and sinBsing. The z axis of the reference
frame introduced here is perpendicular to the plane of
the collision. The binding energies of the ions H~ and
Cs™ under investigation are given by [9]

g, =-075421eV (y, =0.23544),

N
W(r 1 o) = =

@)

©)

(4)

£, = —04716eV  (y. = 0.1862).
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In monograph [6], coefficient B was determined by
joining thefirst term in formula (3) with the wave func-
tion of the H- ion determined by Chandrasekhar [10]

with three variable parameters; it wasfound that B, - =
1.183. In our earlier publications[7, 8], we considered
the wave equation satisfied by function (3). It was
found by fitting the potential appearing in this equation
to the static potential of aneutral hydrogen atom in the
ground state that 3, - = 2.66 for H™. Using formula (3)

which defines coefficient B, we obtain BH_ = 1.145.

The relative difference between the values of the coef-
ficient B - obtainedin[6] andin[7, 8] anountsto only

3.3%. For Cs-, the same approximation that was used
earlier [7, 8] for H™ now yields B_. = 1.45 (see also

[11]), which gives B__ = 1.22.

In view of the smallness of the binding energy for
negative ions, the cross section for al the three reac-
tions are large, and we therefore take into account only
the transitions of weakly bound electrons. In this case,
the wave functions of the complete set of the states of
the system formed by two negative ions are given by

S0 W (r 20 expl—i(ea + )1, (5)
WA 1) W5 (1 20) exp(—igpt —igt), (6)
WS 1) WH(r 20) exp(—igat —igt), (7)
WE(r 1) Wh(r 20) €Xp(—igt —ig't), 8

where wﬁ;{) are the wave functions of weakly bound

electrons and Y}, , are the wave functions of neutral
atomswith an electron in the continuum corresponding
to energy €. Expression (5) is the wave function of the
system formed by two negative ions, i.e., the wave
function of the initial state; expressions (6) and (7)
describe the states in which the electron of one of the
ions, A~ or B, is detached and belongs to the contin-
uum, while expression (8) describes the state with two
detached electrons.

The complete wave function of the system is given
by

WEA( 1, T 2)
= ag(WS (1) W5 (v 25) €Xp[—i(€a + Ep)]
+ [alt YW () expl-i(es + )t de - (9)
+ [[b(t, E)Wa (1) Wl 20) &XP(-i (24 + £)D) e
+ [[elt & )WAT 1 Wn(r ) xp(-iet —igt)dec’,
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and the system of time-dependent equations for ampli-
tudes ay(t), a(t, €), b(t, €), and c(t, €, €") can be written
in the form

d
52 = [alt Ve eplighn]de
+ [[b(t, €)Vo,o(t) expligu.()] ce

+[[ett.e, €) Vo2 «(t) exp[i gfo(t)] dede’,

i% = Voo expl-igh()],  (10)
igﬂ_ditﬂ = ag(t) Ve ot) exp[—i @5e(t)],
.% = ay(t)VE2 oft) exp(—i Ghea(®)),

where
ABry — o
G (1) = ~(e—€ap)t, (11)

Goee(t) = (e, + € —gy)t,
ay(t) is the amplitude of the initia state, a(t, €) and
b(t, €) are the amplitudes of states with one electron
detached from ion A~ or B-, respectively, and c(t, €, €')
is the amplitude of the state with both electrons
detached. We have neglected the transitions between

states in the continuum. The system of equations (10)
must be solved under the initial condition

2t =—e) = 1, a(—x) = b(~) = () = O.
Simple integration of the equations for a, b, and c,

t

at, €) = - jao(t')VSo(t') exp[—i gi(t)] dt,

t

b(t, €) = -i jao(t')VEo(t') exp[—igb,(t)]dt’,

t

c(t, €, €) = i jao(t')v;%(t') exp[—i ghea(t)]

and the substitution of these integrals into the first
equation of system (10) leads to an integro-differential
equation in one unknown function ay(t):

8 _ 50 = () — Sus(),

at (12)
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where
t

Sas(l) = Iao(t')exp[iﬁa,b(t—t')]KA,B(t, r)dt, (13)

t

Sas() = Iao(t') expli(e, + &) (t — 1)K ap(t, t)dt" (14)

and kernels K(t, t') of the integro-differential equation
(12) are given by

00

Kas(t t) = IVQ;B(tWQaB(t') exp[-ig(t—t)]de, (15)
0

00 cO

Kag(t, 1) = [[Vioee() Veealt) (16)
00

x exp(—i(e+¢€)(t—t))dede'.

Equation (12) was solved numerically for each rec-
tilinear trgjectory of the classical motion of atomic
nuclei. A similar integro-differential equation was used
earlier [8] for evaluating the ionization cross section of
the negative ion by the field of the positiveion in colli-
sonH-+ H*.

Thetotal probability of the detachment of an electron
fromion A by theingtant t of the collision is given by

00

Pa(p. 1) = [lae, t)|*de, (17)
0

whileits derivativeis

dP,(p,t) _ . 0O dale, t) , O
S 2Re%|’ ae, ) =g dsg (18)

0

Similar expressions can be written for Pg and P, . Sub-
gtituting into these expressions the derivative of ampli-
tude da* (g, t)/dt from the system of equations (10), we
obtain the total probabilities of the detachment of one
and two electrons:

t

O, 4o n
Pa (P, 1) = 2Reg aO(t)SA,B(t)dt%

—00

(19)

t

Pas(0.1) = 2Re§ja3(t')sw(t')dt'5 (20)
P 0

In the solution of Eq. (12), these relations make it pos-
sible to directly evaluate the total probabilities of elec-
tron detachment without additional integration over the
spectra.

The matrix elements V, . can be calculated in the
dipole approximation since the nuclear distanceswhich
make the main contribution to the detachment cross
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sections are very large. Using the wave functions (3)
and (4), we obtain

|(r Cose)o El M
3y’ + k)’ 1)
[ oy’ + K[ T 16yk°B(y, B)
Bt sy ey

The accuracy of the expansion carried out in (21) is
determined by the small parameter (y/B)? ~ 102 since
k ~vy. ThekernelsK of Eq. (12) inthis case are given by

48B%,
311E, |

F(lea bl (t 1)),

Ka st t) =

. COS[D(t) — Pr(t)]
Rt R(t)
16B3B,F (|| (t—t)) F(led (t—t))
310)e,8,)
 3c0S [0x(t) —0a(t)] 1
R R(t)
where the spectral functi on

(22)

Kap(t, t) =
(23)

F(x) =

f ey dy (24)

(1+y)*

is afunction of only one variable, which considerably
simplifies the procedure of the numerical solution of
Eq. (12). Thisfunction was calculated numerically.

For large impact parameters p —» oo, the probabil-
ities of the detachment of one electrons are P, g ~ p~
so that P, g(p)pdp ~ p~2dp. The effective cross sections
were determined from the numerical solution of Eq. (12)
in the range of impact parameters 0 < p < pPa, and the
contribution from large impact parameters p 2 pp,, Was
calculated in the approximation of the theory of small
perturbations. In the dipole approximation, the contri-
bution from p = p,, iS given by

) 64B2,
o =2 P dp = ——22
A,8(Pm) j 1(p)pdp V.

Prmax

00

x ReC[ exp[—iyQ(o,)] FYR(pm)dy[ f(x y)dxgx
0 0 (25)

1+ g+ I -2E+ A y)a(x.y)

0.6 )96 V[0 ¥) + (%, Y)]*

q(xy) = |1+t ggz

where v isthe relative velocity of the collision.

f(xy) =
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Fig. 1. Cross section of the electron detachment inthe H™ +
H™ collision asafunction of the collision energy Ey, in the
center-of- mass system: curves 1 and 2 are obtained as a
result of calculationsin the approximation of the decay with
one- and two-€l ectron detachments, respectively; the dotted
curves 1' and 1" are the cross sections of the electron
“squeezing” asaresult of collision with an antiproton, H™ +
p, calculated by us earlier [12], and the doubled antiproton
cross section, respectively, 0 and x are the doubled cross
section of the electron detachment from H™ in a collision
with an antiproton, classical approximation, the Monte
Carlo method [25, 26]; curves 3 and 4 are the cross sections
of one- and two electron detachments, respectively, calcu-
lated in the dynamic approximation; the dotted curves 3' and
3" are the cross section of the electron detachment by the
impact of an antiproton, dynamic approximation, and the
doubled antiproton cross section, respectively; curve BB is
the doubled Bethe-Born cross section of the one-electron
detachment [12], ¢ and + are the results of the experimental
measurements of the one- and two electron detachments,
respectively [1, 2, 5]; curves 5 and 6 are the theoretical esti-
mates of the total cross section of the one-electron detach-
ment obtained on the basis the doubl ed antiproton cross sec-
tion [5, 24], and curve 7 isthetotal cross section of the one-
electron detachment, calculated in the classical approxima-
tion by the Monte Carlo method [1].

The total cross sections of one- and two-€electron
detachment for high collision velocities, i.e.,

0

Oa,B,AB = ZHIPA, s, as(P)PAP,

were calculated using the rectilinear trajectories for the
H- + H- collision. The relative error in the calculation
of thetotal cross section did not exceed 1%. The impact
parameter p,,.x Was chosen so that the contribution to
the cross section from p = p,, Was aso below 1%. The
total cross sections of one- and two-electron detach-
ment are presented in Fig. 1 in comparison with the
results of experimental measurements [1, 2, 5]. For a
symmetric collision, the total cross section of the
detachment of one electron is g, = 0, + 05 (0, iSthe
cross section of electron detachment from the partner
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of collision H, and op is the cross section of electron
detachment from Hy ), where 6, = 05 = 0,/2.

3. SMALL VELOCITIES OF COLLISION.
ONE- AND TWO-ELECTRON AUGER DECAY S

For low collision velocities v < 1, the energy
exchange between electrons and nuclei is hardly prob-
able. Although the energy of heavy particles exceeds
the total binding energy of weakly bound electrons, the
dynamic detachment cross sections are adiabatically
small. Figure 1 shows that the limiting energy for the
H~+ H~ collision in the center-of-mass system is equal
to 2-3 keV. For low energies, however, five channels of
Auger decay are open [3], and the el ectron detachment
cross sections remain large (~10%* cm?) up to the
threshold values of energy of the order of 1 eV, for
which the cross sections decrease due to the Coulomb
repulsion between negative ions.

In order to study Auger decays, we must analyzein
detail the behavior of the binding energies of electrons
for two negative ions approaching each other. Expan-
sion (1) can be presented in the form

-1, 1 . 1
£ R [R=ry] [R+ry

Ma Fap < R,

+ W(r lar er)v

(26)

since all the power termsin thefirst line in expansion (1)
coincide with those in the expansion of the interac-
tion between an electron and a negative point charge,
IR = r ™. If we supplement the second line in (1) with
term 1R, the line will coincide with the expansion of
interaction |R + r ™. These coincidences follow from

the Taylor expansion for the function r[ﬁ(r 1 I,) of sev-
era variables. The power series for W(r4, r,) is pre-
sented by mixed derivatives of the Taylor series.

If one of the electronsisremoved to alarge distance
from the system, the following expansions hold:

i: = 1 _r2b|:(R_r31a)+ o |R_r1a| > I,
o |[R=ry |IR—r]

+
1. 1  radR r:,;Zb)"'---, IR+ 15| >,
o [R+r2) |R+1 5

The presentation of the electron—electron interac-
tion in the form of expression (26) indicates a certain
analogy between the collision of two negative ions and
the collision of a negative ion with a structurel ess neg-
atively charges point particle (electron or antiproton),
which was investigated earlier [12, 13]. In particular, a
one-electron detachment in the collision between two
negative ions is determined by the process of “ squeez-
ing” [12] of one electron by the field of the other elec-
tron, i.e., by the tunneling of one electron from its own
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ion through the potential barrier created by the other
negative ion. However, in the collision of two negative
ions, both electrons are subjected to squeezing, and
these processes compete since after the detachment of
one weakly bound electron the squeezing of the second
electron becomes impossible. Such a competition does
not take place, for example, in the collision of a nega-
tive ion with an antiproton.

Using expansion (26), we can write the total Hamil-
tonian of the system in the form

H = Ho+W(r, o), Ho = ha+hp, (27)

where the one-electron Hamiltonians h, and h, are
given by

1

- 1
ha = -z,
a R-r R

A
_El + Ua(r 1a)
28
fo = 2240 (ro) + @
b = 2 b\! 2b |R+r2b|
and U, (r) arethe energies of the interaction of weakly
bound electrons a and b with their atomic residues. The
wave equations for these electrons can be written in the
form

A 1
|:| a(rla) |R | ﬁ

x W) = 0,
R - - BRIz = 0 (30

and their energies can be presented as

~E,(RY 9

A,
E 5t Up(rzn) +

a
Ea(R)zEa—Eéz'i' .

L (31)
~ %
Eb(R)~8b+§_5—R—4+ .

where o, , are the polarizabilities of negative ions.
The terms —1/R can be attributed to either Hamilto-

nian ha or Hamiltonian hy . In Egs. (28)—«30), thisterm

isattributed to ha. Inthis case, electron b possessesthe
excessenergy /R, and the changein the energy of elec-
tron aissmall and can be neglected. The absolute value
of 1/Ris of the order of or greater than |g, |, and the
electric field, which is of the order of 1/R?, issmall and
can be neglected. The energy E,(R) of electron b liesin
the continuum for nuclear spacingsR< R, = 1/|g,|, and
this electron can tunnel from ion B away from ion A.
This process was investigated earlier [12] for the colli-
sion of H~ with an electron treated as a classical point
particle. In contrast to the collision between a negative
ion and a structureless negatively charged particle, the
following two-€lectron processis possible for the colli-
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sion of two negative ions. Electron b may transfer its
excess energy 1/R to electron a, after which electron a
will go to the continuum if R < R, = Ulg,|. In these
peculiar Auger processes which will be described in
detail below, only one electron is detached, while the
other electron remains bound to the negative ion.

If R< Ry, = e, + &7, the Auger decay with the
emission of two electrons is possible from the point of
view of energy. Therate of this decay is determined by
the square of the matrix element of the correlation
interaction W (see below).

If term —1/R is added to Hamiltonian hy, we obtain
an alternative representation equivalent to the previous
one after the change in indices a <~ b. In order to
obtain a complete description of the system, both rep-
resentations should be analyzed. We will consider in
detail only representation (28)—(30) sincetheresultsfor
the aternative representation can be written analo-
gously.

In both representations, the total energy of the sys-
temis given by

E(R) = E(R)+EyR) = eat ey =

(32)
The polarization terms are small and will be neglected.
Melchert et al. [3] thoroughly investigated the change
in the total energy E(R) in the approximation of the
o-potential model [14] using the Coulomb Green's
function [15, 16]. It was proved that the total energy
obeys relation (32) after the intersection of the contin-
uum boundary also.

The zeroth-order term /R of the electron—electron
repulsion can be formally divided into two, say, equal
parts, and each half can be ascribed to different elec-
trons. In other words, instead of formulas (31), we can
formally write the one-electron energies, for example,
in the form

E(R) =¢,+ V2R, E4(R) =g, + 2R

However, in this case we obtain incorrect values of the
nuclear spacing for which the one-electron detachment
channels are open. It follows from relations (31) and
(32) that the detachment of the electron from ion a
becomes possible for R< |g, [ 2, while the above formu-
las for E, ,(R) imply that this occurs at a half as large
distance R< [2¢,[™

The rates of all the Auger decays listed above were
calculated on the basis of the Fano method [17], which
was also used in our earlier works[12, 18—20] (seeaso
[21, 22]).

Distances R,, R,, and R, are very large since the
binding energies for negative ions are very small. For
example, for the H- + H~ collision, the distances are
R, =R,=36a,and R,, = 18a,. For thisreason, the effec-
tive electron detachment cross sections determined by
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the above-mentioned Auger decays are very large
(=107 cm?).

3.1. “ Sgueezing” Process

If R<R,, the energy of electron b liesin the contin-
uum (E, = ¢, + /R > 0), and electron b can tunnel
through the potential barrier, thus going over to the con-
tinuum. The sameisvalid for electron afor R<R,. The
rate ', of tunneling through the barrier calculated in
[12] isgiven by

2

Bab 4
M (R = —2 ex[ f }
a @n(R) Voo Pl v)
_ arcsin,Jy _ R 33)
flyys—==Z-1, y=o—=1, (
Jy(1-y) Rab
_ 1
Ra,b—lanb|-

The rate of decay I, (5 1)(R) =0 for R= R, , since the
energy of a “tunneling” electron at such distances is
negative (E, ,(R) < 0) and the tunneling is ruled out. If
electron a (or b) tunnelsfor R< R, ,,, electron b (or a)
cannot tunnel to the continuum since there is no Cou-
lombrepulsioninsystemA + B~ (or A-+B). Thesimul-
taneous tunneling of the two electronsis also impossi-
ble since, in accordance with formula (31), the energy
of only one electron can acquire positive values.

Formula (33) is valid for large separations between
the ions, which satisfy the condition [12]

yR>1. (34)

In [3], formula (33) was derived in the &-potential
approximation using the Coulomb Green's function
[15, 16] written in the semiclassical approximation.

3.2. One-Electron Auger Decay

If it is electron b that possesses the excess energy
1/R, it can transfer it to electron a, which will go to the
continuum for R< R,. Electron b in this case remains
in the bound dtate so that this process is a one-electron
Auger decay. The rate of this decay is determined by the
matrix element of the correlation interaction W(r 1, r 5. If
we calculate this matrix element using the unperturbed
wave function of eectron b, thismatrix dementisequal to
zero since the dtate of dectron b remains unchanged.
Actually, the wave functions of electron b before and
after the decay are different. Before the decay, the state
of electron b is perturbed by the electron—electron
repulsion, and its wave function is polarized. After the
decay, this electron is perturbed by the neutral atom A,;
the perturbation is much weaker than the Coulomb
repulsion and can be neglected. The matrix element of
the correlation interaction W cal cul ated with such wave
functions of electron b differsfrom zero. Thus, we must
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determine the wave function of electron b, which is
polarized in the initial state due to the interaction with
electron a.

The perturbed orbit lIJ(b_)(er) is the solution of the

wave equation (30). For large values of R, this equation
can be written in the form

DA
02

r,,coso
2

+Up(rz) + —e 05 = 0 (39)

and solved by usi ng the theory of small perturbations
(W = Wig +3y) +..):

A
35+ Unlran) —Eoio = (36)
A
735+ Unlfan) — P (20
(37
_ 0080
wherethe unperturbed orbit Y] isspecified by expres-

sion (3). The exact solution of Eq. (37) with the corre-
sponding boundary conditionsis given by

7,
(2080 OB—D (38)
2be (R0

() = bO(er)|:l_

Substituting Eq. (38) into Eqg. (37), we can verify
directly that Eq. (38) isindeed the exact solution of this
equation.

After the calculation of the dipole matrix elements,
the two-electron matrix element of the one-electron
Auger decay, i.e.,

W = mJ (rla)LIJ (r2b)|

~ (39
X IWAT 10 7 26) [Wa(T 1) W5 (1 25)0)
has the form
k/ 3/2
Wi = 1 (KlYa) 52 L 5 (40)
Yan/3T(1 + (K/y,)?)’ (VaR)
Using the energy conservation law
K _ R, 1
\Z—E—l, Ra=@, (4D

we obtain therate I ,,, of the one-electron Auger decay
with the detachment of an electron from the negative
ion A~ by the negativeion B~
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yaB Bblj/al] (1- X)
642 D (2092

<1l

Ma(R) = 2mW,|* =
(42)
R
R,
Similarly, theratel", , of the one-electron Auger decay

with the detachment of an electron from the negative
ion B~ by the negative ion A~ is given by

YoBa BbEYbD(l y)¥

X

M pa(R :
sl = 6.2 V.0 (29)52 @)
R 1
=—<1, R=—
y Rb b |sb|

3.3. Two-Electron Auger Decay

The rate ' ,5(R) of the two-electron Auger decay
can be calculated using the unperturbed wave functions
of theinitia state of the system formed by two negative
ions:

MR = 21
ab ( 44)

zluugo’(rla)w (1 )W 10 7o) (T 1 WE( o)

As aresult, we obtain the partial width

2.y, B2By

rab(Rl ka’ kb) = 3T[R6

45
kkb (45)

(ya + ka) (yb + kb)

of the decay leading to the formation of a pair of free
electrons whose momenta k, and k,, are related through
the energy conservation law:

K+ = 2%_|Ea+ A
After the integration over the electron momentum, we

obtain the total rate of the two-electron Auger decay:

2°Yay5BaBi(1-x)*
3RS, X

r ab( R) =

(1-t)*at
(1-x47"

(46)
o o -

e <1l
|8a + Eb|

X =
Rab

Therates of al Auger decays are presented in Fig. 2

as functions of the nuclear spacing R for the H™ + Cs”

collision. The squeezing rate I'g,(R) has the maximum
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value in the range of distances 2 to 3 < R < 35, which
make the main contribution to the one-electron detach-
ment cross section for energies of collision that are not
very low. However, the sgueezing rate is an exponen-
tially decreasing function of R; at a distance R > 25 to
35, it becomes smaller than the rate I'; of the one-elec-
tron Auger decay, which is apower function of R. Asa
result, for small collision energies closeto the threshold
value, the one-electron decay is determined by the one-
electron Auger decay, i.e., by the quantity I';. Such a
behavior of the decay rates and the el ectron detachment
cross sections is observed for al the three collisions
under investigation: H-+ H-, H-+ Cs", and Cs™ + Cs".

3.4. Probabilities and Cross Sections
for a Multichannel Decay

Theinitial state of the system formed by two nega-
tiveionsA~+ B~ may decay through five different chan-
nels with the formation of three different final states:
(A), (B), and (AB). The probabilities of such a decay
must be calculated using the multichannel scheme. Let
Po(p, t) be the probability of finding the system in the
initial state at the instant of time t for a collision with
the impact parameter p and I ,(R(t)) be the total prob-
ability of the decay viaal the channels; in this case,

t

Polp, 1) = exp{—_[ rtot(R(tl))dtli|v 47)

Po(P) = Po(p, t = +o).

The probability of the decay through the ith channel is
given by
Pi(p) = I Po(p, HI(R(D)) dt

00 t

= _[ Fi(R()) eXp{— J’ rtot(R(t'))dt}dt,

where I';(R(1)) is the rate of the decay viathe ith chan-
nel and

Mot =

3

= rsq,a"' rsq,b + r1,ab + I_1, ba+ I_ab-

(49)

The cross sections o, and og of one-electron detach-
ments from ions A~ and B, respectively,
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00

ZHI (Pg, a(P) *+ Py an(P)) Pdp,
0

Op

(50)

00

2nj (P, o(P) *+ Py, 0a(P)) pdp,
0

Op

and the cross section 0, of the two-electron detachment,

00

Oag = ZTTJ'Pab(p)pdp, (51)
0

were calculated using the Coulomb trajectories R(t),
which made it possible to correctly reproduce the
behavior of the cross sections in the vicinity of energy
thresholds, which is determined by the repulsion
between ionsA~and B~.

The cross sections of electron detachmentsin colli-
sonsH-+ H-, H + Cs, and Cs + Cs are shown in
Figs. 1, 3, and 4. A comparison with the results of
experimental measurementsiscarried out in Fig. 1 only
for the H= + H~ collision since the experimental results
for the collisions between other ions are not available.
The total cross sections of one-electron detachmentsin
the collisions of likeions, H=+ H-and Cs™ + Cs-, pre-
sented in Figs. 1 and 4, are given by

0,50, +0g = 2T

00

(52)
X I (Psy alP) + P b(P) + Py, an(P) + Py ba(P)) PP,
0

while the cross sections of the electron detachment
from each partner in a collision are equal to half the
total cross section.

r
100+

1073 L
107°F

107+

10—12
0 10 20 30 40 50 60

R, at. units

Fig. 2. Partial decay rates asfunctions of the nuclear spacing

R for the H™ + Cs™ collision: T _and I _ arethe
sqg, H sq, Cs

rates of the electron squeezing from H™ and Cs~, respec-
tively, formula (33); I'1 . and Fl o A€ the rates of the

one-electron Auger decays with the electron detachment
from H™ and Cs~, respectively, formulas (42) and (43); ', is
the rate of the two-electron Auger decay, formula (46).
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4. RESULTS AND CONCLUSIONS

Equation (12) was solved numerically by the finite-
difference method. The fifth-order recurrence relation
used by us has the form

aulty 1) = ault) + i TS0 ~ oSt )

41 3 1
+ 155502 = 25569 + g9 |
where §t,) is the write-hand side of Eq. (12):

St) = Sa(ti) + Ss(t) + Sas(t).

These quantitieswere evaluated by integrating between
t = —0 and t; so that double integration was carried out
for each trgjectory. The stability of the computational
algorithm was controlled by the equality to unity of the
total probability:

1= |a0|2+ Pa+ Pg+ Pag.

The relative computational error was of the order
1073-10*.

Figure 1 shows the cross sections of one- and two-
electron detachments for the H- + H~ collision in the
collision energy range from the threshold values to
100 keV in comparison with the results of experimental
measurements [1, 2, 5] made in the high-energy range
(1-100 keV). The one-electron detachment cross sec-
tion calculated by us in the dynamic approximation is
on the average in good agreement with the results of
experimental measurements, although alarge spread of
experimental points is worth noting. The calculated
cross section for the two-electron detachment is 15—
20% smaller than the experimental value. This discrep-
ancy can be attributed to the contribution of reaction
H-+H — H + H + e to the experimentally observed
cross section [5], which was disregarded in our calcula-
tions. This reaction, which was theoretically investi-
gated for thefirst timein[23], occurs after the one-elec-
tron detachment and leads to the detachment of two
electrons. Both cross sections of the dynamic detach-
ment calculated by us decrease exponentially for adia
batically low energies of collisions (<2-3 keV).

Figure 2 depicts the rates of decay through al pos-
sible channels as functions of the nuclear spacing for
the H- + Cs™ collision. The rates of squeezing in the
range of distances 5 < R < (22—37)a, have the highest
values, the rate of squeezing of an electron from Cs-
being the largest since the binding energy for the Cs
ion (0.4716 eV) isamost half aslarge as the binding of
theH~ion (0.75421 V). The detachment of an electron
from the Cs™ ion becomes possible at a distance R <

R = 57.70a,, while the threshold distance for the

1,Cs

H ionisR< R - =36.08a,. A two-electron decay is
possible in such a collision at distances R < R, =
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22.20a,, the main contribution to the two-electron
decay cross section coming from distances 5 < R <
Oay. The rate of squeezing decreases exponentially
upon an increase in the distance to R and hence the
rate of the one-electron Auger decay, which decreases
at alower rate with increasing R, becomes larger than
the squeezing rate at distances closeto Ry, (R~ Ryy).

The rates of Auger decays depicted in Fig. 2 were
used by us for calculating the electron detachment
cross sections for slow H- + H- collisions. Curve 1 in
Fig. 1 corresponds to the total cross section of a one-
electron detachment, while curve 2 describes the cross
section of atwo-electron detachment. The cross section
of a one-electron detachment was estimated in [5, 24]
on the basis of the assumption that the total cross sec-
tion of a one-electron detachment is twice as large as
the cross section of the electron detachment from H- by
the impact of an antiproton, which was calculated in
[25, 26], where the weakly bound el ectrons of both ions
weretreated as classical particles. Neither of these sim-
plifying assumptions was used in our calculations and,
hence, it would beinteresting to compare thetotal cross
section of the one-electron detachment obtained by us
with the cross section of the electron detachment from
H~ by the impact of an antiproton. Curve 1'in Fig. 1is
the cross section of the electron detachment from H-for
small velocities of the collision with the antiproton. In
this collision, the electron detachment at low collision
velocities, v < v, ispossible only asaresult of squeez-
ing, while at high velocities, a dynamic detachment
takes place. For this reason, the cross section for small
values of v was calculated by using formula (50) in
which only one decay channel (squeezing of the elec-
tron from H- by thefield of the antiproton) was present,

i.e.,, when only qu 4 % 0, and the decay rates for all

other channelswere put equal to zero. Curve 1" in Fig.1
describes the doubled cross section 1'. The dotted curve
3'is also the cross section of the electron detachment
from H- by the impact of an antiproton, which was cal-
culated by us earlier for large values of v in the
dynamic approximation while solving Eq. (12), where
weput S, #0and S; = Sig = 0. The dotted curve 3" in
Fig. 1isthedoubled cross section 3'. Theseresultsindi-
cate that when the collision energy Eqy < 10 keV, the
cross section of the electron detachment from H- by the
impact of an antiproton is very close to the total cross
section one the one-electron detachment in the H= + H-
collision, and the doubled antiproton cross section is
approximately twice as large as the latter value. The
doubled antiproton cross section 3" in Fig. 1
approaches the cross section 3 only for high energies
Ecv = 100 keV.

The results of the comparison can easily be inter-
preted. In the collision between two negative ions, the
detachment of the electron from one of the ions, e.g.,

H, , competes with the detachment of the electron from
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the other ion, Hg . The eectron detachment from the
H, ion as aresult of the Coulomb repulsion from the
Hg ionispossible only aslong asion B isintact. If the
electron of ion Hg has been detached, the detachment

of the electron fromion H, ispossible only asaresult
of aweaker interaction with the neutral atom Hg. Con-
sequently, the probability of the electron detachment

from H, should be estimated as product P,(1 — Pg),
where 1 — Py is the probability of ion B being undam-
aged. The total probability on the one-electron detach-
ment in this case is P,(1 — Pg) + Pg(1 — P,). For high
collision energies, the main contribution to the detach-
ment cross section comes from collisions with large
impact parameters, when the detachment probabilities
arelow, Py g < 1. Inthiscase, 1 — P, g = 1, the total
probability of the one-electron detachment is of the
order of P, + Pg, and the total cross section is of the
order of 0, + Og. For energies E, < 10 keV, the prob-
abilities P, g of the electron detachment strongly
depend on the impact parameter p. For large values of
p > 1, these probabilities are close to zero, and in a
small region dp, they increase from zero to unity, remain-
ing close to unity for smaller values of p. With such a
behavior of the probabilities, the sum P, + Pg = 2 in the
main region of variation of p and, hence, the probabili-
ties as well as cross sections cannot be summed. The
detachment of an eectron from ion A strongly competes
with the detachment fromion B, and thetotal crosssection
of a one-electron detachment is close to the single cross
section 1' of the detachment by an antiproton rather than
to the doubled cross section 1" (see Fig. 1).

An analytic expression for the cross section of the
ionization of H- by an electron was obtained in [12]
using the Bethe-Born approximation. In order to com-
pare this formula with the results of our present calcu-
lations of the total cross section of the one-electron
detachment in the H= + H~ collision, we must consider
the doubled Bethe-Born cross section which, in accor-
dance with [12], is given by

_ 4B’ 155V

(1) —

0-H_+H_ - 2O-(-:‘+H_ - 3 |£ |V2 yB
0

2

a2 = 2.8003x 107" cm®.

(53)

The cross section (53) is shown in Fig. 1 (curve BB).
While calculating this cross section, we used the value

B = 1.145 instead of the previous value B = ./2.65 =
1.628 [12]. It can be seen from the figure that even for
a collision energy close to 100 keV, the Bethe-Born
cross section (53) is larger than the cross section
obtained by us here approximately by afactor of 1.5. In
the peak region, the Bethe-Born cross section is twice
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Fig. 3. Cross sections of one- and two-el ectron detachments

calculated in the decay approximation for the H™ + Cs™ col-
lision: curves 1 and 2 are the cross sections of the electron

detachment from Cs™ and H™, respectively; the dotted curve
corresponds to the cross section of the electron detachment

asaresult of acollision with an antiproton, Cs™+ p =Cs+
p + € curve 3 is the detachment cross sections for both
weakly bound electrons, H"+ Cs = H + Cs + 2e.

aslarge asthat calculated in the present work (curve 1).
The difference can be explained by the fact that the
time-dependent problem in the Bethe-Born approxi-
mation is solved using the theory of small perturba
tions. In our calculations, however, we solved the time-
dependent equation (12) exactly, without using any
approximation. It should also be noted that formula (53)
disregards the above competition between the detach-
ments of electrons from each of theions and holds only
for very high energies of collisions, when the main con-
tribution to the cross section comes from the region of
large impact parameters, for which the detachment
probability is much smaller than unity.

For collisions of heavy particles, the Born approxi-
mation is applicablefor energies differing considerably
from the reaction threshold due to the presence of the
logarithm in formula (53) (see Fig. 1), while for colli-
sions with an electron, this approximation is applicable
for energies whose values are closer to the threshold
[12]. For collisions between two different negative
ions, A~ + B~, the electron detachment from one ion
strongly competes with the detachment from the other
ion, theratio of the probabilities of the electron detach-
ment from the ions depending on theratio of their bind-
ing energies. If the binding energy for ion A~ is higher
than the binding energy for ion B~, the detachment from
B~ is more probable than from A-, the electron detach-
ment cross section from B~ being close to the cross sec-
tion of the detachment by an antiproton, while the cross
section of disintegration of A~ is considerably lower
than the corresponding antiproton cross section. Figure 3
presents the cross sections of the electron detachment
in the H- + Cs callisions calculated by us. The cross
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Fig. 4. Cross sections of one- and two-€el ectron detachments

calculated in the decay approximation for the Cs, + Cs,

collision: curve 1 is the total cross section of the one-elec-
tron detachment with the formation of systems Cs, + e +

Cs, or Cs, + Cs, + € curve 2 is the cross section of the
detachment of two electrons, Cs™ + Cs = 2Cs + 2e.

0, 10719 cm?
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Fig. 5. Cross section of the electron detachment from H™ in

collisonH™+ Cs = H + Cs™ + eintheregion of threshold
energies: curve 1 is the cross section of the one-electron

decay of the H™ ion; curve 2 isthe cross section of the elec-

tron squeezing from H™, curve 1 + 2 isthe sum of cross sec-
tions1and 2.

section of the electron detachment from Cs™ (curve 1) is
very close to the cross section of the destruction of the
Cs ion by an antiproton (dotted curve). At the same
time, the cross section of the disintegration of H- (curve 2)
isapproximately half aslarge asthe cross section of the
electron detachment from one of the partners of the
H~+ H-collision (see Fig. 1).

Figure 4 shows the cross sections calculated by us
for the Cs + Cs collision. A comparison of Figs. 1 and
4 readily shows that the ratio of the total cross sections
of the one-electron detachment (curves 1 in these fig-
ures) is inversely proportional to approximately the
sguare of the ratio of the binding energies for the nega-
tive ions. On the contrary, the cross section of the
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detachment of two electrons (curves 2 in Figs. 1 and 4)
increases very slowly upon a decrease in the energy of
the colliding ions; thisisvalid for slow (Auger decays)
aswell asrapid (dynamic detachment) collisions.

A new type of Auger decay, i.e., the one-electron
Auger decay, whose rate I';(R) is approximately two
orders of magnitude smaller than the rate of squeezing
I'(R) for nuclear spacings R = 10-20 (see Fig. 2), was
considered in Subsection 3.2. Thisroute of the decay is
insignificant for high collision energies far from the
energy threshold. However, it was mentioned above
that the rate of the one-electron decay decreases upon
anincreasein the distance R between theions at amuch
lower rate than therate of squeezing. For collision ener-
gies close to the threshold, the colliding ions do not
approach each other to a distance at which sgueezing
dominates because of the Coulomb repulsion, and the
one-electron detachment is determined by the one-
electron Auger decay. Figure 5 shows the cross section
of the electron detachment from H- in the range of
threshold energies of collisionswith Cs". The contribu-
tion to this cross section comes from the squeezing pro-
cesses (curve 2) and from the one-electron Auger decay
(curve 1). For energy Ecy = 1.35 eV, these contribu-
tions are equal (see Fig. 5). For lower energies E¢), >
1.35 eV, the one-electron Auger decay dominates. The
total cross section (curve 1 + 2) changes its functional
dependence on the collision energy in the vicinity of
Eqcw = 1.35 eV. This singularity in the behavior of the
cross section can be investigated experimentally by the
method of combined beams. It should also be noted that
the dipole expansion of the electron—electron interac-
tion used by us here is especially accurate since the
negative ions do not approach each other to small dis-
tances for threshold energies, and the behavior of the
cross section reproduced in Fig. 5 is also quite correct.
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Abstract—A theoretical model of collisions between fast ions and atomsis proposed which describesthe effect
of projectiles on the excitation of autoionization resonances. The model takes into account the change in the
binding energy of electronsin atarget atom induced by the field of a projectile, the effect of the field of the

atom on the kinematics of the ion scattering, as well as the effect of the intermediate (1snl )L states on the
two-el ectron excitation mechanism. The charge dependence of the excitation cross section of the (2s%)'Sand

(2s2p)*P resonancesis found to be weaker than in the first order of the perturbation theory and isin qualita-
tive agreement with experimental data. The reasons for the emergence of such a charge dependence are ana-

lyzed. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The description of the scattering of structureless
ions from atomsis a fundamental problem in the phys-
ics of collisions [1]. In the case of many-€lectron pro-
cesses (whose simplest examples are the excitation and
decay of autoionization resonances of the helium
atom), not only theinteraction between a projectile and
an atom must be correctly taken into consideration, but
aso the electron correlations must be taken into
account.

At the present time, the two-electron excitation by
structureless and partialy ionized ions a high and
intermediate energies of collision has been experimen-
tally investigated by many authors [2—7]. In these
experiments, the profile of autoionization resonances as
a function of the electron gection angle and of the
charge and velocity of the projectile was determined
along with the parameters of theyield [2-4] and asym-
metry [2, 4] of autoionization resonances averaged over
the angles of electron gjection. It was found that upon
an increase in the charge Z, of the projectile, the yields

of resonances (25°)'S and (2s2p)*P integrated over the
gjection anglesincrease very slowly (Y(Z,) ~ Z'; ,n<2)
[2], while the averaged yield of the (25°)'S resonance
may even decrease upon anincreasein the charge of the
projectile, n<0[4]. Such aweak dependence of the dif-
ferential and total cross sections of the excitation of
autoionization resonances on the charge of the projec-
tile is not a specific feature of two-electron excitation.
Similar dependences for total cross sections were also

observed in the processes with the single ionization [8]
and the one-electron excitation of an atom [9, 10] in
collisions with various ions.

In order to explain the saturation of the charge
dependence theoretically, it was initially assumed that
in the limit as Z, — oo, the differential and integrated
cross sections must tend to constant do/dZ, —= Oinde-
pendent of Z, [11]. A sufficient condition for such a
dependence would be the unitarity of the amplitude of
the processes under investigation for Z, > 1 [8]. Such
an assumption is apparently of a purely model nature
and cannot explain the physical reasons behind the
observed effects. Besides, it fals to explain the
decrease in the integrated yield of resonances [4] and
the cross section of one-electron excitation [12] upon
anincrease in the charge of aprojectile. Theinteraction
of aprojectilewith atarget atom |eadsto severa effects
determining the charge dependence of cross sections,
including the modifications of the mechanism of elec-
tron excitation from the initial to the final state [13-16]
due to the effect of intermediate excited states and the
states corresponding to the continuous spectrum of the
target, the change in the kinematics of ion scattering
from the short-range potential created by a neutral tar-
get [17], and an increase in the binding energy [18] of
electronsin thetarget atom at short nuclear distances as
compared to electrons of an isolated atom. It remains
unclear which of the above effectsead to the saturation
of the charge dependence since most theoretical models
take into account the integrated influence of these
effects.
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The effect of intermediate states on the mechanism
of electron transitions from the initial to the final state
istaken into account explicitly in perturbation theory in
theinteraction of aprojectilewith atarget [13-16] or in
the close coupling method with one-center wave func-
tions [19, 20]. These approaches successfully describe
the profile of autoionization resonances excited in col-
lisons with charged particles with Z, = +1 [15, 16].
However, the observed charge dependence of excita
tion cross sections for ions with Z, > 2 is not repro-
duced in these models [20, 21]. For example, the per-
turbation theory using a power expansion in Z, predicts
an even stronger dependence than the first Born
approximation. The close coupling method also cannot
reproduce the saturation of cross sections of two-elec-
tron excitation [22] as well as the parameters of the
autoionization resonance yield integrated over the elec-
tron gjection angles [20].

In order to take into account all the terms of the per-
turbation-theory series in the expansion of the excita-
tion amplitude, we must use the wave function that
takes into account the interaction between a projectile
and atarget most completely. Thisisusually realized in
theoretical models using the methods of distorted
waves. For example, in the eikonal approximation [23],
the wave function is constructed under the assumption
that a projectile interacts independently with the
nucleus of atarget atom and with electrons which are
stationary relative to thisnucleus. In this case, the elec-
trons of the target atom are regarded as if belonging to
the continuous spectrum of the projectile, and itsinflu-
ence on the binding energy is disregarded. The wave
function obtained in this way corresponds to partial
summation of the series in perturbation theory. For fast
collisions (Z,/V; < 1), this function is transformed into
the wave function of the first Born approximation and
satisfies not only the correct boundary conditions for
R > r for any nuclear charge of the target atom, bu also,
in contrast to the wave function in the CDW approxima-
tion [24], to the regular normalization conditions [23].

However, a considerable disadvantage of the wave
function in the eikonal approximation isthat the ampli-
tude is calculated using additional approximations
since the dependence of the phase factor on the nuclear
spacing R as well ason R —r (r is the radius vector
determining the position of an electron in the atom)
does not permit the factorization of the six-dimensional
integral over the variables of the configuration space.
An amplitude with a wave function in the eikonal
approximation is usually calculated with the help of
two approximations: the interaction of heavy particles
in the transition operator is disregarded in spite of the
nonorthogonality of the wave functions used, and the
following approximate relation is introduced for the
phase factor:

Ln(V,R+V;[R) — Ln(V,|[R=r|+V,; QR -r)).
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These transformations are equivalent to the disregard of
the interaction between heavy particlesin the transition
amplitude at the first stage, followed by its phenomeno-
logical inclusion in the phase factor [23]. Such an
approach makesit possibleto factorize the amplitudein
variablesR —r, r in analogy with thefirst Born approx-
imation and to calculate it analytically. Such atransfor-
mation is obviously applicable only for R> 1 and in
effect reduces the interaction of an ion with the elec-
trons and the nucleus of an atom to the interaction of
the projectile with a structureless target. This increases
the discrepancy between the results of calculations
based on this model and the experimental data prima-
rily for optically forbidden transitions [25], which
occur predominantly for small values of R.

Thetheoretical analysis of differentia characteristics
in the one-electron excitation of hydrogen (1s —= 2p)
[26] and helium ((1s9)'S — (1snp)'P) atoms [19, 27]
by multiply charged ions proved that the saturation of
the total cross sections for optically alowed transitions
is aconsequence of the change in the probability distri-
bution depending on the impact parameter p. As the
value of Z, increases, the position of the peak of the
excitation probability function pP(p) is displaced
towards higher values of the impact parameter, and the

. . 2
height of the peak of the function pP(p)/Z,, decreases

[19, 26]. It is impossible to experimentally determine
the probability distribution as a function of the impact
parameter, and hence the proposed explanation of the
effect of saturation in one-electron processes is purely
formal. The situation for two-electron excitations is
more complicated. In the case when the peak of the
function pP(p) is shifted towards larger values of p, the
caculations [20] did not reveal any saturation of the
integrated yield of the autoionization resonances
(289)'S, (2s2p)*P, and (2p?)!D upon an increase in the
charge of aprojectile. Thus, the reasons behind the sat-
uration of total cross sections for two-electron transi-
tions in atoms has not been explained even qualita-
tively.

The present work aims at developing a theoretical
model of collisions of fast ions with atoms, which
would take into account the role of intermediate states
in the excitation of autoionization resonances, the
change in the kinematics of scattering of a projectile by
the field of a target atom, and aso the change in the
binding energy of electronsin thefield of the projectile
for small nuclear spacings. The influence of these
effects on the form of the charge dependence of the dif-
ferential and total excitation cross sectionsis also ana-
lyzed.

2. THEORY
2.1. Wave Functions
Let us consider a system formed by a neutral atom
containing N, electrons and an structureless charged
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projectile having charge Z,, mass M,,, and momentum
Ki =M,V;, whereV; is the velocity of the particle. The
position of the jth electron and the projectile relative to
the target nucleus with charge Z; will be characterized
by vectors r; and R, respectively, while the set of all
vectorsrj, j = 1, ..., N, will be denoted by r. The state
of the target electrons in the absence of a projectile is
characterized by the set of quantum numbers 1;. We
will seek the wavefunction of such asystemintheform

l'IJ:—i,Ki(r! R) = ¢Ti(r1 R)E:&,(R)v (1)

where function Eﬁi (R) describes the motion of the pro-
jectilein the effective field created by the atom in state
T;, and function ¢, (r, R) describes the motion of the

electrons in the field of two Coulomb centers. Substi-
tuting Eq. (1) into the Schrédinger equation and inte-
grating with respect to r with ¢ (r, R), we obtain the
following system of integro-differential equations cor-
rect to within terms of the order O(1/M,):

Fani, Vet 212+ UR) - (R =0, @)

(Ha+V(r,R) —1V;Veln(¢.(r, R))

©)
_UTi(R)_STi(Zt))q)Ti(r! R) =0,

where U, (R) is the optical potential depending on

velocity, Ha and €.(Z) are the Hamiltonian and the
energy of the electrons of the isolated target, and

z
- _ P
V(r, R) Z Ror]
I

is the operator describing the interaction of the projec-
tile with the el ectrons of the atom.

Asthefirst approximation in the solution of the sys-
tem of equations (2) and (3), we can usein U, (R) the

wave function CDTZi‘ (r) for the isolated target atom
instead of ¢, (r, R). Inthiscase, disregarding theimag-
inary component of potential U, , we obtain

U, (R)= Uy (R) = (@(n)IV(r, RI®(r)).  (4)

In this approximation the system of the integro-differ-
ential equations (2) and (3) is reduced to two indepen-
dent second-order differential equations. Since

Z,N,

U;—I(R)—»— R for R—»OO

the potential of the interaction between the projectile
with the neutral (Z, = N,) target appearing in Eq. (2) has
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ashort range and the solution of Eq. (2) for M, > 1 can
be found in the eikonal approximation.

Let us first consider the solution of Eq. (3) for the
ground state of the helium atom with 1; = (1s?)!S. Tak-
ing into account the normalization conditions, we will
seek the solution of Eq. (3) in the form of an expansion
in the electron wave functions for an isolated helium-
like atom:

Z(R)

¢ (r,R) = 0P, (f)+|ZCn (P, 1)

()

—1/2
Z(R)

[ 5 0
X Z 2L 1 Y* M(R)chLM (r)E..%IL + ch, (P, t)% ,
v nL

where @7 (r) and 7, (r) are the wave functions of

the ground state and the excited (1snL)L states of the
isolated helium-like ion with the nuclear charge Z, M is
the component of the total orbital angular momentum

L, Y. m(R) is a spherical function, p is the impact
parameter, and t is time. The expansion coefficients
C, L(p, t) and the effective charge Z(R) are unknown
real-valued functions. It should be noted that the wave
function (5) cannot be characterized by a definite parity
since the electrons move in the field of two Coulomb
centers, which is not centrosymmeric.

We will assume that the effective charge Z,(R) is a
slowly varying function. This leads to the following
equationsin Z;(R) and C,, | (p, t):

(o7 P )lAa+V(r, R) @7 P (r))

(6)
= £,(2) +Uy(R),
aCn ,t TI( )
Talerd) o (R)ml+zcn (03 @
with the boundary conditions
Z(R)— Z, for R —= oo,
(R t o ®)

Cor(Prt) = O fOr t v —o,

where Vi‘(LR) (R) are the reduced matrix elements. The
choice of the wave function in form (5) makes it possi-
ble to single out explicitly the dependence of the wave
function on r and to determine numerically the effec-
tive charge Z;(R) of the centrosymmetric field for fixed
values of R and Z, from the condition of the minimum
of functional (6). The increase in the effective charge
for small R in Eq. (5) takes into account the fact that
with decreasing R, the electrons of the atom fall in a
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deeper potential well, and functional (6) in the limit
R — 0 tends to the energy in an isolated ion with
charge Z = Z; + Z,. Consequently, the effective charge
can be approximated, to a high degree of accuracy, by
the function

Z(R) = Z,+ Z,exp(-ZR).

Functional (6) corresponds to the sum of the binding
energy of the electronsin thetarget atom and the energy
of the interaction of the atom with the projectile. In
order to separate these quantities, we assume that the
binding energy of the electrons for a fixed value of R
coincides with the binding energy in an isolated
helium-likeion with anuclear charge equal to the effec-
tivecharge Z (R), and the difference between functional (6)
and the binding energy determined in this way corre-
sponds to the energy of interaction between the atom
and the projectile. In this case, the dependence of the
binding energy of the electronsin the target atom on the
nuclear distance R and on the charge Z, of the projectile
is determined by the behavior of the effective charge as

a function of Rand Z,: &, (Z(R)). It should be noted

that the variational method used for determining the
effective charge in one-electron functions as afunction
of the nuclear spacing was aso used in [28]. After
determining the effective charge Z;(R), we can calcu-

late the matrix elements V) '( R appearing in Eq. (7).

Since |C, (p, t)] < 1, we can disregard the quadratic
termsin Eq. (7), which gives

t

Coilp,t) = — jdt ViEO e+ vy, (9)

The same method can be used for determining the
wave functions for the excited states t; of the target
atom. However, since we must take into account the
conditions of orthogonality to all wave functions corre-
sponding to the states with a lower energy, the wave
functions for the highly excited and autoionization
states abtained in this way turn out to be quite cumber-
some since

<q>rziu(r)|q>f:(r)> #£0 for Z # Z;.

It is more convenient to use the approximation describ-
ing all the states of the target atom in aunified effective
centrosymmetric field. In this case, the effective charge
Z;(R) in the excited states T;, as well as in the states of
the continuous spectrum, coincides with the effective
charge in the ground state:

Zi(R) = Z(R) = Z(R). (10)

With this approximation, which provides a unique
description for the evolution of al atomic states, the
conditions of orthogonality of theinitial and final states
are satisfied automatically due to the properties of the
wave functions of isolated helium-like ions defined for
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the same nuclear charge. As the nuclear spacing R
decreases, the depth of the potential well in which the
electrons in any state T of the target atom are located
increases, and the larger the charge of the projectile, the
deeper the well. This leads to an increase in the excita-
tion energy,

Agi1(Z(R)) = & (Z(R)) —&,(Z(R)),
for small values of R, which considerably affects the

dynamics of the processes occurring in the region of
strong interaction.

(11)

2.2. Excitation of the Target Atomin Coallisions
with Multiply Charged lons

Let usfirst consider the process of excitation 1, —
T; for afixed scattering angle, i.e., for

Q = gu(R) +q,(R) = const,

where Q = K; — K; is the momentum transferred to the
target atom, K; is the momentum of the scattered ion,
and q,(R) and g(R) areits components along the direc-
tion of the incident beam and the direction perpendicu-
lar to the incident beam of projectiles,

q,(R) = A& (Z(R))/V,.
For
Q<= A& (Z(R))/V;,

atransition of the target atom to state 1; isforbidden. In
the case of scattering of projectiles through small
angles, when

Agis(Z,) < QVi < Agi(Z,+ Z,), (12)

there exists aregion of atomic spacings R < R.;,(Q) in
which the energy QV, transferred to the atom is insuffi-
cient for its trangition to the final state T;. In other
words, because of an increase in the binding energy of
electrons for small nuclear spacings, a projectile must
fly to alarge distance R= R,,;,(Q) for the process of the
electron transition T, — T; in the target to become pos-
sible from the point of view of energy. For large values
of the transferred momenta QV, > Ag;(Z, + Z), the
transition of the target atom to the excited state t; is
possible for any R.

The amplitude of the excitation from theinitial state
T, to the final state T; can be written in the form

T4 (Q) = IdR 5T lYf w, (RVir(p, 1) 13)

x exp(iQ [R + iati(p, t)~ia (p. 1),
Vi(p. 1) = D/JR)(r — T R)+|zcn (P 1)
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Z(R) U
| O

~1/2

0 0
<0+ Y Culp D
0 & 0

where [LOIO|L;00is the Clebsch—Gordan coefficient,
ViR —= 1, R and Vi (nL — 1, R) are the

reduced matrix elements describing the transitions
from the ground state and from the (1snL)L stateto the

autoionization state 1, and a. (p, t) and a; (p, t) are

the eikonal phases. Thus, the two-electron excitation
amplitude (13) and (14) can be presented in the form of
asum in which thefirst termin Eq. (14) corresponds to
the excitation mechanism such that only one electron of
the atom interacts with the projectile, while the other
electron is excited due to electron correlations. The
remaining terms in Eq. (14) correspond to the mecha
nism of excitation of the autoionization state via the
intermediate (1snL)L energy levels, in which both
electrons of the atoms interact with the projectile. In
this case, the amplitudes corresponding to these two
mechanisms of excitation do not interfere with each
other in the differential cross section. As in perturba-
tion theory, the amplitude of the excitation via inter-
mediate energy levels has a stronger charge depen-
dencesince C, ((p, t) ~ Z, (9). However, in contrast to
the amplitude in the second order of the perturbation
theory, amplitude (13) and (14) contains the normaliza-
tion factor

-1/2
[ ]
d+5Colp D
O T |

whichisafunction of Z, and can noticeably change the
charge dependence of the cross section. Integration in
Eqg. (13) is carried out over the entire region in which
QV, = Ag;: (Z(R)). Thus, theinclusion of the effect of the
projectile on the binding energy of the electronsin the
target atom not only modifies the transition operator in
Eq. (13), but also leads to the exclusion of a part of the
configuration space R < R.,;,(Q) from the amplitude.

3. RESULTS OF CALCULATIONS

We calculated the differential and total excitation
cross sectionsfor the autoi oni zation resonances (25°)'S,
(2s2p)*P, and (2p?)*D of helium, which are excited
by structureless ions with energies of 0.5 and
1.5 MeV/amu. The effect of the degenerate continuous
spectrum on the autoionization states is disregarded.
Theintegration with respectto p andtin Eq. (13) inthe
region R< R, where R, = 20, was carried out numer-
ically, and the contribution of the region Mt| > R4
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p < R, Was estimated using asymptotic methods. The
wave functions of isolated helium-like ions with a con-
tinuous dependence of all parameters on the nuclear
charge were obtained by using the variational method
[29, 30]. Inthe sum over intermediate statesin Eq. (14),
only states (1snL)L, where n = 2, 3, were taken into
consideration.

The excitation amplitude (13) and (14) was calcu-
lated in the following approximations:

(1) the first Born approximation (C, (p, t) = 0,
oz, (p,1) =0, o, (p, ) = 0, and Z(R) = Z));

(2) only the transitions through intermediate levels
were taken into account (C, .(p, t) # 0, o (p, t) = 0,

o, (p, 1) =0, and Z(R) = Z);

(3) the transitions through intermediate levels and
the change in the kinematics of the projectiles were

taken into consideration (C, (p, t) # 0, oy (p, t) # 0,
a, (p,t) #0,and Z(R) = Z);

(4) complete analysis was carried out taking into
account the effect of the projectile on the binding
energy of the electrons in the target (C, (p, t) # O,

a; (p, 1) 20, ar, (p,1) #0, Z(R) > Z).

The table contains the results of the calculations of
the parameter determining the charge dependence

— ] o-if(Zp)
n(Z,) Lnﬂ:if(zp . 1)E(Ln(zp)

of the excitation cross sections for the autoionization
resonances formed as a result of collisions with struc-
tureless ions with energy 0.5 MeV/amu, which are
compared with the parameter describing the charge
dependence of the experimental yield of resonance
from [2] integrated over the gection angles. It should
be noted that n(Z,) = 2 in the first order of perturbation
theory. The inclusion of the transitions through inter-
mediate energy levels (second version of the calcula
tions) leads to an increase in n(Z,) for all resonances
(2= n(Z,) < 4), the value of n(Z,) increasing with Z,
The largest increaseis observed for the parameter n(Z,)
for the (2p?)*D resonance since the transitions

(1s%)'s —~ (1snL)'L —= (2p)'D

through intermediate level s make the main contribution
to the excitation cross section of this resonance for the
collision energy in question. Our results also indicate
the weak effect of the intermediate states in the excita-
tion of the (2s2p)'P resonance in the given energy
range. The inclusion of the interaction between the
atom and the projectile on the kinematics (third version
of the calculations) leads to a noticeable decrease in
parameter n(Z,). The charge dependence of the excita-
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tion cross section for resonances (2s?)!Sand (2s2p)*Pis
found to be weaker than in the first order of perturba-
tion theory (n(Z,) < 2), which is in qualitative agree-
ment with the experimental data. The influence of two
factors producing opposite effects on the charge depen-
dence of the excitation cross section qualitatively
explains the difference in the dependences n(Z,) for the
(28%)1S and (2s2p)'P resonances. The transitions
through intermediate levels accompanied by an
increase in Z, produce a strong effect on the excitation
cross section for the (25%)'Sresonance, and the param-
eter n(Z,) for this resonance increases with Z,. On the
contrary, the parameter of charge dependence for the
(2s2p)*P resonance decreases upon an increase in Z,

likein the experiment [2]. Inthe case of the (2p?)'D res-
onance, parameter n(Z,) changes insignificantly when
the change in the kinematics of the scattered ion is
taken into account and, hence, the charge dependence
of the excitation cross section for this resonance is
determined predominantly by two-step transitions. The
inclusion of the effect of the projectile on the binding
energy of the electronsin the atom in the most complete
version of the calculations leads to a decrease in the
excitation cross section. However, this decrease for the
(2s2p)'P and (2p?)'D resonances actualy does not
change the charge dependence parameter for these res-
onances. Potential (14) for resonances (2s2p)'P and
(2p?)'D decreases rapidly upon adecreasein R,

Le+1

Vi(p, t) OR

and slowly for large R,

for R— O,

—(L¢+1)

Vit(p,t) OR for R— oo.

As aresult, refining the value of amplitude (13) in the
range of small R for moderate value of Z, weakly
affects the charge dependence of the excitation cross
section. On the other hand, the charge dependence of
the excitation cross section for the (25%)'S resonance
taking into account the effect of the projectile on the
binding energy of the electronsin the atom is modified
significantly. The excitation of this resonance takes
place only for small values of R since potentia Vi; (p, t)
has a short range (Vi¢(p, t) — 0 for R — o and
Vit (p, t) — const for R — 0).

The differential cross section of the excitation of the
(25°)1S resonance for small scattering angles of struc-
tureless triply charged ions with an energy of
0.5MeV/amu is presented in Fig. 1. The inclusion of
the transitions through intermediate energy levels
increases the differential excitation cross section for
small scattering angles as compared to the cross section
inthefirst order of perturbation theory. A changein the
kinematics of the projectiles strongly diminishes the
differential cross section in the range of small scatter-
ing angles. The short-range potential with a Coulomb
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Parameter characterizing the charge dependence of the exci-
tation cross section for the autoioni zation resonances formed
as aresult of collision with 0.5-MeV/amu ions

zZ, (2s29)'s (2s2p)'P (2p2p)'D
Experimental data[2]

2 16 21 34

3 13 17 29
Our calculations (version 2)

2 21 23 3.6

3 22 24 3.7

5 23 25 3.7
Our calculations (version 3)

2 15 20 3.7

3 16 20 3.7

5 18 18 3.6
Our calculations (version 4)

2 13 2.0 3.8

3 1.6 19 38

5 19 17 3.6

Note: The results obtained in different versions of calculaion are
denoted by 2 when only intermediate levels are taken into
account, by 3 when the trangitions between intermediate levels
and the change in the kinematics of the projectile areincluded,
and by 4 when the trangitions through intermediate levels, the
change in the kinematics of the projectile, and its effect on the
binding energy of the target electrons are taken into consider-
ation.

kernel in EQ. (2) leads to a rapid change in scattering
phasesin Eqg. (13) for small p and, hence, to a quasipe-
riodic variation of the differential cross section. The
larger Z,, the stronger the Coulomb repulsion of the
projectile by the nucleus of the target atom for small R,
the higher the rate of variation of scattering phases for
small p, and the weaker the charge dependence of the
differential cross section. In other words, the Coulomb
repulsion of the projectile by the nucleus of the target
atom lowers the probability of finding the projectilein
the region of small nuclear spacings; however, it isthis
region that makes the main contribution to the excita-
tion amplitude for the (25?)*Sresonance. The inclusion
of the effect of the projectile on the binding energy of
the electrons in the target atom modifies the excitation
amplitude for small values of R also. However, in con-
trast to the change in the kinematics of the scattered
ion, thiseffect is manifested most clearly for small scat-
tering angles, for which the energy transferred to the
target atom may turn out to be insufficient for a transi-
tion of the atom to an excited state for small R. As a
result, a peak which was not observed in the previous
versions of the calculation is formed in the differential
cross section for the (25%)'S as well as (2s2p)'P and
(2p?)'D resonances for small scattering angles. Thus,
the presence of a peak in the differential cross section
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dG,-f/de, 10712 cm?/sr
Differential cross section of excitation
of (25)'S resonance by ions with Z,, = 33
and E; = 0.5 MeV/amu -

0.1000
0.0100%

0.0010F

0.0001F

0 0.1 0.2 0.3 0.4 0.5
Scattering angle, mrad

Fig. 1. Differential cross section of excitation of the (259)'S
resonance for small angles of scattering by ionswith Z, =3
and with an energy of 0.5 MeV/amu. The results are
obtained using variousversions of calculation: (1) first Born
approximation, (2) taking into account only the transitions
through intermediate levels; (3) taking into account thetran-
sitions through intermediate levels and the change in the
kinematics of the projectile, and (4) taking into account the
trangitions through intermediate levels, the change in the
kinematics of the projectile, and its effect on the binding
energy of the target electrons.

0/(Z,)/Z3, 1072 cm?

10 & ———
F Cross section for excitation of .
L (259)!S, E;= 1.5 MeV/amu -
C 271
o o? e ’
0% .-
1E o $ P - E
+ + _ -~ 1 —
3 ]
4
0. 1 1 L L L L VI R |
1 10
Charge of projectile

Fig. 2. Cross section of excitation of the (252)S resonance
by ions with energy 1.5 MeV/amu. The results of calcula-
tions obtained by other authors are marked with crosses[22]
and circles [31]. The remaining notation is the same as in
Fig. 1.

of excitation for small scattering angles is associated
with the effect of the projectile on the binding energy
of electrons in the target atom.

Figure 2 shows the results of calculation for the
cross section of excitation of the (2s?)'S resonance by
structurelessions with energy 1.5 MeV/amu. The cross
section calculated taking into account only the transi-
tions through intermediate states reproduces qualita-
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tively and quantitatively the results of the calculations
using the method of close coupling between channels
[22] as well as the calculations based on the perturba
tion theory [31] disregarding the effect of the degener-
ate continuous spectrum. Refining the kinematics of the
projectiles leads to a value of the excitation cross sec-
tion smaller than in the first order of the perturbation
theory, and the increase in the cross section for small

values of Z, is lower than in proportion to Z3; i.e,,
0t (Zy)/ Zf) decreases with increasing Z,. However, as

the value of Z, increases further, function a¢(Z,)/ Zf)

startsincreasing dueto astronger charge dependence of
the amplitude of excitation through intermediate states.
It should be noted that experimental data for this colli-
sion energy are available only for avery narrow region
of gection angles[5], and the procedure of deriving the
resonanceyieldintegrated over gection angles[5] from
these data appears to us as not quite correct.

4. CONCLUSIONS

In the present paper, we propose a theoretical model
of two-electron excitation, which has made it possible
for the first time to take into account explicitly the
effect of the Coulomb field of a projectile on the bind-
ing energy of the electrons in atarget atom along with
the transitions through intermediate states and the
change in the kinematics of the projectile. The cross
section of the excitation of autoionization resonances,
which is calculated taking into account only the transi-
tions through intermediate states, increases with the
charge of the projectile at arate higher than in the first
order of perturbation theory. However, the inclusion of
the change in the kinematics of the projectile and its
effect on the binding energy of the electronsin the tar-
get atom reduces the excitation cross section and sup-
presses the charge dependence. The charge dependence
of the excitation cross section for resonances (2s%)'S
and (2s2p)'P becomes weaker as compared to the first
order of perturbation theory, which is in qualitative
agreement with the experimental data. The modifica-
tion of the kinematics of the projectile by the short-
range potential of the interaction with the atom and a
rapid change in the scattering phases may lead to oscil-
lations in the differential excitation cross section in a
wide range of scattering angles. On the other hand, the
effect of thefield of the projectile on the binding energy
of the electronsin the target atom leads to adecreasein
the differential cross section for small scattering angles
since, in the case of small transferred momenta, there
exists a region of nuclear spacings in which electron
transitions to an excited state are forbidden by the
energy conservation law.
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Abstract—A theoretical explanation is proposed for an anomalously high reflectivity of air masses exposed to
radioactive radiation relative to electromagnetic waves from the rf range. The mechanism of formation of the
reflected signal is connected with a change in the electric parameters of the ionized gas. The concentration of
free charges under the typical conditions of radioactive contamination is ten orders of magnitude lower than
that required for the formation of an experimentally detectable reflected signal. The discrepancy between the
values of reflectivity observed under the real conditions of radar probing and predicted theoretically on the basis
of the elementary theory of aweakly ionized gas amountsto 20 orders of magnitude. It is shown that the inclu-
sion of the variation of the mass and the critical capture radius of ions due to their hydration changes the dif-
ference between the theoretical predictions and the experimental observations insignificantly. The discrepancy
becomes smaller (but only by 1.5 orders of magnitude) when the scattering of radiowaves from turbulent vor-
tices is taken into account. The mechanism of the formation of the high reflectivity is associated with slowing
down the recombination and with the accumulation of a profuse population of unrecombined ionic pairs stabi-
lized in the clusters of water molecules. The steady-state concentration of such electrically neutral clustersis
severa orders of magnitude higher than the concentration of free hydrated ions. A variation of the intensity of
ionizing radiation is accompanied by proportional variations of both components. The recombination barrier is
formed as a result of drawing dipole molecules into the gap between ions at the final stage of motion of coun-
terions towards one another before their recombination. The accumulation of ionic pairs ensures the multiple
enhancement of the sensitivity of the electric properties of cold plasma to the effect of ionizing radiation. A
guantitative kinetic theory of the effect is constructed. The numerical calculations of the parameters of the pre-
recombination states of ions against the background of the molecular component are made using computer sim-
ulation at the microscopic level. The steady-state recombination rate is an exponential function of the pre-
recombination barrier height and decreases rapidly even upon an insignificant change in the number of mole-
culesinvolved in an ion recombination act. The obtained theoretical conclusions are confirmed by the indepen-
dent results of observations of the strong absorption band in the atmosphere in the middle part of the IR spec-
trum, which is attributed to the anomalously high concentration of electrically neutral water clusters. © 2001
MAIK “ Nauka/Interperiodica” .

1. RESULTS OF RADAR PROBING

The first observations of the reflected radar signal
from a radioactive burst in the atmosphere were made
in 1986 by the group headed by V. B. Bogdanov [1] in
the region of the Chernobyl nuclear power plant. Sub-
sequently, the presence of the reflected signal was con-
firmed by several independent groups of scientists [1—
3]. The experiments were made using various types of
industrial radarsin the centimeter and decimeter ranges
at the South-Ukrainian, Zaporozh'e, St. Petersburg,
Balaklava, Udomlya, and other nuclear power plants as
well as on the research reactors at Gatchina and other
towns. Burst flames were observed at distances ranging
from 11 to 65 km. The limiting range in one of the
experiments amounted to 500 km [2], and the limiting
sensitivity to radioactive impurity bursts attained sev-
eral curies per day. The total number of independent
observations reaches several hundreds.

The reflection of a radio signal takes place at the
boundaries of macroscopic fluctuations of electric
parameters such as permittivity € and conductivity o.
Thevariations of € and o are associated with theioniza-
tion of the gasin aradioactive cloud. According to the
results of preliminary calculations, the values of the
equilibrium concentration of free charges calculated
using the classical theory of ionization of gasesare 9to
10 orders of magnitude lower than those corresponding
to the experimentally observed intensity of thereflected
signal. The measured signal intensity was used in [1] to
estimate value of the effective reflecting surface of a
radioactive cloud. The calcul ations were made accord-
ing to the formula[4]

3 RgN I(B-I—mnoiseAf
P(T/T) G A

Sur = (4m) )
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where R, is the distance to the object, A isthe radiation
wavelength, Af is the transmission band, N is the noise
factor, kg is Boltzmann's constant, m.,« is the signal-
to-noise power ratio, p is the average power of the
transmitter, and T, and T, are the radar pulse repetition
and duration time, respectively. The antenna power
gain Gy, is equal to 41s,/A%, where s, = {10, a1, is the
effective area of the antenna, { isthe antennaefficiency,
o, = 0.61IN/Ad,, A, and Ad, are the azimuthal and
angular sizes of the antenna. The numerical estimate
obtained using formula (1) for the typical experimental
conditions[1] A =6cm, p =300W, T, =25 s, T, =
1.7 pus, Ry = 42 km, My = 2.5 x 105, N = 12, Af =
2MHz, { = 04, Ad, = 2.3°, and Ap, = 0.5°) is S =
5.1 m?, which agrees with the result of blank experi-
ments. The estimate given by formula (1) varies from
0.1 m? (the level corresponding to the limiting sensitiv-
ity of the method) to 100 m? depending on the experi-
mental conditions. The obtained value of Sy makes it
possibleto estimate the required degree of ionization p;
in aradioactive cloud. In the model of arandom charge
distribution in a cylindrical gas column of length L and
radiusr,[5], the following expression is derived:

]J

Sy = 06T[I‘0 3(Aa) @)

The mean square of permittivity fluctuationsisgiven by

Bq—'m (3)
Cnc’m 0

(Ae)*

where g;, p;, and m, are the charge, concentration, and
mass of free charge carriers and c is the velocity of
light. Substituting my = 10> g for ions into formula (3)
and L = 3 km and r, = 0.1 km into formula (2), for
S« = (1-100) n?, we obtain p; = (4 x 1024 x 10%%) cm3,
A similar estimate for the electron concentration gives

= (4 x 1084 x 10°) cm=3. Both estimates are much
higher than the values predicted by the standard the-
ory of ionization—recombination equilibrium in gases.
In [2], such calculations were made under the assump-
tion that free charge carriers in the atmosphere are

mainly ions O, N3, and O . Free electrons are absent
since they aretrapped by oxygen moleculesin the case of
their relatively high concentration (po, =0.54 x 10 cn3)
and form negativeions. The system of equations describ-
ing the time evolution of the concentrations of posi-

tive (p,) and negative (p_) ions aswell as electrons (p,)
has the form
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d_d% = WY —KoePeo — KicD: Pe
ddpt+ = WY —k;p.p_— KicPePs @
dd—ﬂ‘ = KoePo,Pe—KiiP:p_,

p+ = p—+ pev

where k. = 8.8 x 107'* cm¥/s is the electron trapping
coefficient, ki, =7 x 10" cm¥sand k; = 1.4 x 10° cm?/s
are the ion—electron and ion—on recombination coeffi-
cients, W= 2.08 x 10° Rt cm2 isthe radiation yield of
electron—on pairs, and Y is the dose rate. The steady-
state solution of Egs. (4) for Y = 1 R/h givesthe follow-
ing concentrations: p, = p_=6.5x 10° cm™ and p, =
3.5x 102 cm3. The €electron component is virtually
absent, while the ionic concentration is 7-8 orders of
magnitude lower than the value obtained in the experi-
ments on the measurement of the intensity of the
reflected radar signal.

Didenko et al. [3] estimated S4; on the basis of the
rated degree of ionization in accordance with for-
mula (2) using the expression for fluctuations in which
the correctionsfor collisions of ionswith gas molecules
and the frequency-dependent phase shifts between the
field of the wave and the displacement of chargesin the
plasma associated with these collisions are taken into
account [5]:

— |2k |kV|k
As-Zw +vk+lzw(w ) (5)

Here, summation is carried out over all species of ions,
the second sum being the imaginary component of the
complex quantity Ag; wy, is the plasma frequency of
ions and v;, is the frequency of collisions of ions with
neutral particles. The ionic concentrations required for
calculating the plasma frequencies w,, are estimated on
the basis of the elementary theory of the ionization—
recombination equilibrium for a gas ionization rate of
10°-108 cm~3 s, which corresponds to a specific activ-
ity of impurities of the order of (3-30) x 10 Cu cm™
typical of highly radioactive wastes. Under these con-
ditions, the expected equilibrium concentration of ions
is of the order of 10° cm=3, while the electron concen-
tration is seven orders of magnitude lower. Substituting
the values of w,, calculated for this concentration into
formula (5) and then Eq. (5) into formula (2) for A =
10 cm, we obtain a negligibly low estimate for the
radioactive cloud reflectivity: Sg = 2 x 10726 m2. This
value is 16 orders of magnitude smaller than that
obtained from the measurements of the reflected signal
intensity. The actual discrepancy isstill larger since the
theoretical estimateswere obtained for ionic concentra-
tions corresponding to the limiting contamination by
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radioactive wastes, while the reflected radio signa is
detected in experiments when the burst intensity
exceeds the background level just by afactor of severa
units. The calculations based on the refined formula (5)
instead of Eq. (3) do not significantly change the gen-
eral pattern of mismatching between the measured
intensities of the reflected signal and the rated degree of
ionization in a radioactive burst.

Thus, the application of the standard theory of ion-
ization in plasmato the problem of reflection of aradio
signa from a radioactive cloud leads to a discrepancy
between the theoretical and measured values of the
reflected signal intensity of more than 16 orders of
magnitude. According to these estimates, the reflected
signal could not be detected even by using the most
powerful and sensitive radar systems. The results of
experiments renounce this conclusion. Obvioudly,
Egs. (4) do not take into account all circumstances
affecting the electric parameters of cold plasmas.

2. SCATTERING OF AN ELECTROMAGNETIC
WAVE IN A TURBULENT PLASMA FLOW

We consider a plane sinusoidal electromagnetic
wave with the cyclic frequency w = 2rv and the wave
number k,, which is incident along the normal to the
plane boundary at which the electric parameters suffer
discontinuity:

E(t,X) = Eyexp(iwt —KkoX). (6)

The reflected electromagnetic wave has the complex-
valued amplitude E;:

E'(t,X) = E,exp(iot + ko). 7

The “joining” of the solutions of Maxwell’s equations
on both sides of the reflection plane leads to the well-
known [6] amplitude—phase relation

E, _

Nn—-n, N-—ny—ik(n—ny)
E, Nn+n,

= (8)

n+ny—ik(n+ng)’

where n = n(1 —iK) and N, = ny(1 —iKy) are complex
refractive indices on the sides of the reflection bound-
ary. Thereflection coefficient is given by

ExrEar _ (0=1g)” + (KN —Konp)°

EolEl  (n+ny)%+ (kn+Kony)?

R, = 9)

Substituting Eq. (6) into Maxwell’s equationsfor acon-
ducting medium,

4t. 10D
= ]t - —
curlH - ] e

j = 0E, D = &E,

(10)
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where o is the conductivity and j isthe current density,
leads to the complex permittivity

~ _ 4mo.
E=&E€———m1I,
W
e—%gi - n(1-ik)>

The last relation can be written separately for the rea
and imaginary componentsin the form

n = JO.S(e +J€° + 40°v7),
-1

(11)

nK

_ oV

4/0.5(8 + €7+ 40°V7)
Expanding expressions (11) into a two-dimensional
Taylor series and retaining the principal powers of the
small parameters € — g, oV, ov?, and (02 — 05V 2,
we obtain the following expressions for the optical
density jump in the leading order in (¢ — 1) < 1 and
(=1 < 1:

n-n, = %(s—so)+..., 12)

KN—KoNy = (0—0p)V "+ ...

Substituting these expressions into relation (9) and
retaining the main powers of the small parameters, we
arrive at the following expression:

1 1 -
R, = E(s—so)2+z(o—oo)2v v (13
It can be seen that the role of conductivity in the forma-
tion of the reflectivity at high frequenciesv decreases.

The vortices formed as aresult of the turbulent mix-
ing of aradioactive burst with uncharged masses of air
induce additional spatial fluctuations of p;, €, and o
from which the electromagnetic waves emitted by the
radar will be scattered. The strongest scattering effect
should be expected from vortices with a size of the
order of the radiation wavelength A since the scattering
of waves from vortices with a size smaller than A
decreases strongly. The criterion of theturbulent flow is
the Reynolds number Re = pyvI/|,, Where p, isthe gas
density, |, isthe gas viscosity, v isthe jet velocity, and
| are the characteristic linear dimensions of the region.
Substituting the numerical valuesfor air under standard
conditions (py = 1.29 kg 3, py = 17.2 x 10° N sm?),
the characteristic velocity v = 1 m s of convective dis-
placements in the atmosphere, and the spatial scale of
the order of the wavelength, | = A = 0.1 m, we obtain
Re=7.5x 10° > 1, which corresponds to the boundary
of the transition from a laminar to a turbulent flow. In
the first approximation, the effective scattering surface
is comparable with the total surface of the vortices. If

No. 3 2001



SCATTERING OF CENTIMETER RADIOWAVES

volume V contains approximately V/A® vortices with a
size comparable with the radar wavelength, their total
surface is of the order of V/A. The effective reflection
surface of a radioactive cloud (whose geometrical sur-
face is of the order of V?3) increases due to scattering
from turbulent vortices by afactor of k., = V¥3/A. Typ-
ically, for V =10° m3 and A = 6 cm, we have the “gain
factor” Ky, = 1.7 x 10%

Seff = kturb Revza-

Let us set a limit on the sensitivity of a radar with a
moderate resolving power, which is capable of detect-
ing aradio signa reflected from a metallic surface of
area Sy = 0.1 m? at a distance of 30 km. The substitu-
tion of thisvalueinto relation (14) leadsto R, = 6 x 1072,
Using this result in (13), we find that the permittivity
jump must be € — g, > 105, The same effect will be
observed at frequency v = 10'° s due to the conductiv-
ity jumpo —0,>5x 10*s™.

(14)

The genera theory of transport [7, 8] implies that
the static conductivity jump is connected withajumpin
the concentration of singly charged ions through the
relation

0—05 = (P—po)€LIi (M +y'my )"

X VL (M +y My )M+ (M +y My o) (15)

x V[T () +y my o)),

where y* and y- are the equilibrium mean numbers of
water moleculestrapped in the eectric field of ions (the

degree of hydration), m isthe effective average mass of
air molecules, and the terms containing m take into
account the effect of the differencein the masses of ions

and molecules on the ionic mobility. Substituting the
expressions for the thermal velocities of hydrated ions

, o [T
8(m +y'my o)

o= _9nkEiT
N8(my +y my o)

at temperature T = 300 K as well as the numerical val-
ues of the mass of the H* and OH~ions and assuming
that the mean free paths for ions in the first approxima-

tionare |’ =17 =4 x 10 cm, we obtain the lower esti-

mate for the concentration of freeionsin the case when
the reflection coefficient is formed due to the conduc-
tivity jump:
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D —py>2.68 % 101°V 1+(1+18y)/29
J1+18y"
(16)

— -1
, A1+ (17+ 18y )/29} —
J17 + 18y

It can be seen from this expression that hydration does
not affect the order of magnitude of p — p,. For typical

values of y* =y~ =10, we obtain
p—po>6.72x 10" cm™>. (17)

The changein the permittivity of air dueto the bind-
ing of water molecules at ions is connected with the
jump of the ionic concentration through the following
relation:

€—g = (P—po)
x[Xa +Xa = (Y +Y)ph,o/3ke 1.

For € — g, > 105, thisleads to the following lower esti-
mate for the equilibrium concentration of hydrated ions
in the case when the reflection coefficient for a radio-
wave is formed due to the permittivity jump:

(18)

p—po>10"
+ - + - 2 -1 -3 (19)
XX+ Xar = (V" + V) Paol3ksT| ™ [em ],

where x5 and X are the equilibrium polarizabilities
of hydrated ionic shells associated with the rotation of
intrinsic dipole moments of water molecules and

pﬁzol?’kBT is the polarizability associated with the
rotation of free molecules in the gas phase, pyo =

1.83x 108 CGS units being the intrinsic dipole
moment of awater molecule.

We cal culated the quantities x4 and y*© using com-
puter simulation on the molecular level. For obtaining
numerical estimates, it suffices for us to use the
obtained orders of magnitudes of the quantitiesy* =y =
10 and Xy ~ 1022 cm®, whose substitution into (19)
givesp —py > 2.9 x 10'® cm3. While writing expression
(19), we disregarded the effect of amplification due to
scattering from thermal fluctuations. The inclusion of
this effect may subdue the constraint imposed on the
concentration, but not more than by one or two orders
of magnitude:

p—py > (10"-10") cm, (20)

which is 9 to 10 orders of magnitude higher than the
value obtained from equations (4) of the ionization—
recombination kinetics. The concentration (20) of
hydrated ions is only 1.5 orders of magnitude lower
than the theoretical limit set by afinite concentration of
water in the atmosphere. At temperature T = 300 K and
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a relative humidity of 80%, the vapor pressure p, =
2.4 x 1072 bar, while the volume concentration of water
molecules amountsto p/kg T = 5.8 x 10'” cm=. For the
degree of hydration y = 10, this concentration is suffi-
cient for the formation of 2.9 x 10 cm™ pairs of ions.
In other words, for the concentration of ionic pairs
defined by condition (20), 3% of moisture is bound at
theions. Thus, the model of a turbulent plasmafails to
explain the experimentally observed reflectivity by the
permittivity jump.

Let us now consider the mechanism associated with
conductivity. Substituting the values of y* and y~ = 10
into Eqg. (15) and taking into account the criterion
0 —0,>5x10*s™, we obtain

p>14x10" cm™. (21)

A comparison of this relation with the estimate foll ow-
ing from Egs. (4) shows that the concentration of free
charge carriers required for obtaining areflected signa
is at least 4-5 orders of magnitude higher than that
ensured by the mechanism laid in Egs. (4). In actual
practice, the discrepancy is still larger since the esti-
mates were made with a considerable margin. Conse-
guently, the increase in the reflection coefficient by a
factor of k., = 1.7 x 10* due to scattering from turbu-
lent vortices does not remove the discrepancies
between the results of experimental observations and
the theoretical estimates, but makes them less pro-
found.

3. EFFECT OF HYDRATION
ON THE CRITICAL RADIUS OF ION TRAPPING
IN A COLD PLASMA

Hydration of ionsis absent in hot plasmas, but must
be taken into account in ionized gases. Water mole-
cules possess relatively large intrinsic dipole moments

Hp,o0 = 1.85% 108 CGSunits[9] and are thefirst to be

pulled into the field of ions. The energy of binding
between a water molecule and an ion is of the order
of 1 eV (approximately 39gT). lons are coated with a
layer of water molecules, and their effective mass and
collision cross sections change as a result. In fact, we
are dealing with a cluster plasma.

If we disregard the electronic component, the time
evolution of the volume concentration of freeionsin a
gas can be described by the dynamic equation

do _ _, 2
a0 Kip“+1,

where p is the number of ions of the same polarity per
unit volume; | isthe number of pairs generated per unit
time per unit volume under the action of ionizing radi-
ation; k;;p? is the number of recombination acts per unit

time per unit volume; k;; = Td?(v2 + vf)ﬂz, Td? being
the effective collison cross section; and v, =

(22)
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(8kg T/TiM..))¥2, the average velocity of an ion of mass
M., a temperature T. The solution of Eq. (22) with the
initial condition p(0) = 0 hasthe form

o = JTki[1—exp(=2./k11)]
1+ exp(-2,/k;I1)

with the characteristic relaxation time 1 = (2,/k;;1 )_l
and the asymptotic form

P(t) = Po[1—2exp(-t/T)]

for large values of t > 1, where p,, = ,/I/k;; is the
steady-state concentration of ions, and

1
2p.kii’

It can be seen from relation (25) that the macroscopi-
cally long relaxation times detected in experiments can
be ensured either by the small value of coefficient k;;, or
in asystem with alow degree of ionization p,,.

The integrals of motion make a transition from the
electrostatic energy of ionsto the kinetic energy almost
impossible without the participation of athird particle.
The recombination occurs via one of the following
channels:

p(

(23)

(24)

T = (25)

A"+B +M° —~AB+M°,
A"+B —AB+hv,
A"+B — A0+ BO

(26)

The second and third channel s presenting the radiation-
induced recombination and mutual neutralization with
charge reversal dominate under a gas pressure below
103 bar [8, 10]. The recombination involving a third
particle prevails under atmospheric pressure.

While estimating the effective reaction cross sec-
tion, we must take into account the long-range Cou-
lomb interaction between ions. In a system of singly
charged ions, we can single out at least two character-
istic distancesfor theinteractions betweenions, i.e., the
Debye radius rp = (kg T/4Tpe?)V?, where e is the ele-
mentary charge [11], and the Bjerrum radius rg =
2e?/3ksT. Debye screening is of the collective origin
and is observed when the number of ions in the Debye

sphere ismuch grester than unity, (4/3)rr2 p > 1, or, after
the substitution of temperature T = 300 K, for p <
5x 1018 cm3. For such concentrations of ions, we
obtain rp > 1.7 x 107 cm for the Debye radius, while
the Bjerrum radius at the same temperature amounts to
rg =3.7 x 10°cm. At distancer <rg, the necessary con-
dition for the linearization of the Poisson-Boltzmann
equation forming the basis of the Debye—-Hiicke theory
[11] is violated, and the collective screening degener-
ates into the screening by a counterion. The statistical
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analysis of the system of charged particle by the com-
puter experiment methods [12-24] reveded that the
collective nature of screening changes upon an increase
in density, when the Bjerrum radius becomes compara:
ble with the Debye radius: contact pairs of ions start to
form, and the radius of correlations between the ions
continues to decrease monotonically, attaining its min-
imum value at a point wherethe formation of ionic trip-
lets begins. At the point corresponding to the minimum
of theionic correlation radius, the monotonic behavior
of the correlation functions changes to the oscillating
behavior, and the correlation radius starts increasing
with the density of the system up to the condensation
into theionic liquid. Thus, the region of high ionic con-
centrations p > 5 x 10'3 cm™ cannot be attained in
actual practiceinionized air if only dueto the fact that
the intense formation of contact pairs of ions, which is
inevitable at such concentrations, would indicate a
sharp increase in the recombination rate k;;, which
obstructs the increase in the ionic concentration. This
limitation on the concentration of ionsisin serious con-
tradiction to the requirements on the ionic concentra-
tion (20).

For r > rg, thetotal energy of two counterionsisneg-
ative on the average and corresponds to the bound state,
while the probability of counterion trapping is close to
unity. Conseguently, under atmospheric conditions,
when rp > rg, the effective scattering radius d can be
estimated by the Bjerrum radius rg. Under standard

conditions, the Bjerrum sphere contains 5.2 x 10° elec-
trically neutron air molecules with the mean free path

Lot = (/2 02, plksT)™ = 105 cm. The mean free path
l; of anionin the gas depends on the degree of itshydra
tion y since the latter increases the integrated cross sec-
tion of collisions of a hydrated ion with molecules. For
y = 10, I; = (0.3-0.5)l,q = (3-5) x 10 cm, i.e, it
amounts to a value of the order of the Bjerrum radius.
Molecules carry away the excess of the kinetic energy
of ions liberated due to the work done by the Coulomb
attractive force, thus ensuring their convergence to a
distance of the order of a molecular radius. Since the
linear size of the Bjerrum sphereis comparablewith the
mean free path, this convergenceis preceded by several
cycles of finite motion of two interacting counterions,
which are accompanied by collisions with molecules.
The electrically neutral component plays the role of a
viscous medium ensuring the collision with the counte-
rion captured in the electric field even if the impact
parameter islarger than the diameter of theion.

There exist three classical theories of the ion-ion
recombination involving a third particle: Langevin's
theory [25] valid for high pressures (considerably
exceeding 10 bar), which describes the motion of ions
as a drift in a continuous viscous medium, Thomson’'s
theory [26, 27], applicable for low pressures (below
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10 bar), and the more universal Natanson’s theory [28].
In Thomson's theory, the critical radius of counterion
capture is equal to the Bjerrum radius (r, = rg). The
averaging over various direction of entrance into the
capturing sphere of radius r. leads to the integrated
probability of collision with athird particle [26]:

[; 2r
= 1——|1— exp-2icl
W=1 2rc[1 e D}.

(27)
It is assumed that one collision is sufficient for getting
rid of the excess kinetic energy €?/r.. relative to the aver-
agethermal energy 3ks T/2. In Natanson's theory, a cor-
rection to r. is introduced to take into account the fact
that the kinetic energy of the relative motion decreases
after the collision with the third particle only by e’/4r..
Accordingly, another condition for r can be derived:

3 3¢’ €
skeT+=— = —
2% 8r,
whence
r. = 5¢’ = 23x10° cm.
© T kT

For the atmosphere, another correction must be intro-
duced to take into account a considerable difference
between the mass of an air molecule m = 29m,, where
m, is the proton mass, and the mass of a hydrated ion,
Mg = My + Y*my o, With the degree of hydration y°,

where a = +, — For M, > m, the average amount of
energy transferred from ions to a molecule during the
act of collisionis

2
£ mid

1o
4r, v, MU

This corresponds to the critical capture radius for
hydrated ions:

_ 2€° 3.0l . 10 6
ro = 3kBT[1_8mEM++ M_D}~3'3x 10 cm, (28)

where the numerical valueis given for the H* and OH~
ionswith y* =y~ = 10. It can be seen from relation (28)
that the inclusion of hydration increases the critical
capture radius for ions by afactor of 1.4.

Substituting Eq. (27) for positive and negative ions
with I = |7 =4 x 10 cm and (28) into the formulafor
the recombination coefficient, we obtain

ki = T2 v2+ v (W +W)

=46%x10" cm’s™.

(29)
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Theinclusion of hydration increases the value of ri by
afactor of 2.3, smultaneously reducing the velocity

8ksT
Jvi+v? = B

™,

(M, isthe reduced mass) to onethird of itsinitial value,

while the probability W + W increases by a factor of
1.8 and the recombination coefficient, by a factor of
1.4. Theinclusion of hydration of ions does not reduce
the recombination coefficient and cannot explain the
anomalously intense accumulation of ionsin the atmo-
sphere.

= 262x10*cms®

4. FORMATION OF CLUSTER PLASMA

The presence of ion-hydrate clusters in the atmo-
sphere is confirmed by studies using the methods of
mass spectrometry [29-33]. The thermodynamic sta-
bility of clustersisdetermined by the dependence of the
work of their formation A(N) = GY(N) — uN from a
vapor with the chemical potential |1 on the cluster size
N. The equilibrium size corresponds to the extremum
of thework of formation dG(N)/oN =y, whilethe sign
of the second derivative of the free energy G%(N)deter-
mines the stability of an equilibrium cluster. As arule,
the clusters of electrically neutral particlesare unstable.

The atmosphere contains various types of ions. The
most numerous popul ations are formed by the H*, N,

OH-, 0%, and CO, ions. Our goa isto determineatyp-

ical pattern of cluster formation on ions. For this rea
son, computer simulation has been carried out only for
two typesof ions, H* and OH~. A free proton H* formed
asaresult of the dissociation of awater moleculeisrap-
idly captured by another water molecule, forming a
hydroniumion H;O*. The energy of addition of thefirst
water molecule to a proton is anomalously high and
amountsto 7.18 eV = 280k T. The energies of the addi-
tion of next molecules are much lower: 1.6, 0.97, 0.74,
0.67,0.57, and 0.51 eV. In these calcul ations, we disre-
gard the dissociation of this particle, which has a low
probability. The H;O" ion isregarded asrigid since the
intraionic vibrational degrees of freedom are “frozen”
in view of the smallness of the thermal energy ks T as
compared to the vibrational quantum. The Hamiltonian
of the system iswritten in the form of acombination of
multicenter potentials. The numerical values of the
potential parameters are set so that they reproduce the
experimentally measured free energy and entropy of
clusters[34, 35]. The potentia is described in detail in
[36-44]. The interaction includes the Coulomb,
exchange, and dispersion interactions, as well as the
energy of the polarization of molecules in the field of
ions, the energy of covalent bonds, and the contribu-
tions associated with the transport of the excess charge
from an ion to molecules. The interaction is of an
unpaired type. Strong many-particle interactions at the
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contact distances to the ion are explicitly taken into
account. In the present work, we refine the numerical
values of parameters as compared to those contained in
[36—44] on the basis of more exact experimental data
[34, 35] taken instead of the results presented in [45,
46]. The Hamiltonian of the system is supplemented
with the interaction of the dipoles induced on the mol-
ecules with one another and with the molecular electro-
static field. The following numerical values of parame-
ters have been established for the H;O* ion (in the nota-
tion adopted in [36-44]): the polarizability a,, = 1.44 A3
of awater molecule, the ionic charge Q" = 4.80298 x
107° CGS units being screened, the Lennard—-Jones

potential parameters g = 0.515 x 1023 erg and o* =
2.959 A, the amplitude and the limiting radii of the iso-
tropic component of covalent interactions U, =

0.17025 x 10 erg, R| =4.410A, and R}, =5.372A,

the amplitude, the preexponential parameter, and the
parameter characterizing the many-particle nature of

unpaired interactions a; = 0.9285 x 102 erg, by =
25.2 A, and n* = 1.323, the radii of unpaired interac-

tions R. = 4.425 A and R = 5.458 A, the parameter
K* =0.195 characterizing the intensity of excess charge
transport, and the correction x* = 0.92 to the non-point-
like nature of the induced dipoles. Four point charges
simulating the anisotropic component of theionic field
and of covalent bonds are arranges at the following
pointsin the local system of coordinates:

X, =0, y, =10171A, z = 0.291A,
0, = 2129 x 10™° CGS units,
X, =—0.8809 A, y,=-05086A, z,=02961A,
0, = 2129 x 10° CGS units,
X;=0.8809 A, y,=-05086A, z,=0.291A,

s = 2.129 x 10° CGSunits,

X, =0, y,=0, z =0128A,

q, = —6.387 x 10 ° CGS units.

The corresponding parameters for the OH-ion havethe
following values:

Q =-2.30298 x 102 CGS units, € =0.155 x 103 erg,
0-=3.2835A, Uj =0.924 x 102 erg,
R, =4.760A, R; =5275A,
ag = 0.306 x 102 erg,

No. 3 2001



SCATTERING OF CENTIMETER RADIOWAVES

by =28.8A, m=055 R =4770A,

Ry =5.067A, k-=0.

Two point charges simulating the anisotropic compo-
nent of the field created by the OH- ion are located at
the following points and have the following values:

X,=0, y;=0, z=078A,
g; = 1.758 x 10719 CGS units,
%=0, y,=0, 2=0, g,=-4.258x 10" CGSunits.

The Monte Carlo method was used to caculate the
Gibbsfree energy of clusters (Tables 1 and 2). The cal-
culations were made on a bicanonical statistical ensem-
ble [47-52]. The free energy of the addition reactionis
calculated through the ratio of the probabilities of two
classes of microscopic states with the numbers of mol-
eculesnand n—1:

w(n)
w(n—1)
0G'n p, -G (n=1,p, T) —u(p T)m(so)
p— eXp|:| 1 kBT 1 3

The numerical calculation of GY(k, p, T) is reduced to
the summation of differencesAGY(n, p, T) = G%(n, p, T) —
GYn-1,p,MHforn=1,2,3,...,N. Infact, wecalculate
the configuration components

AG™ " (n, p, T) = AGY(n, p, T)

kin—kin (31)
_[_kBTIn(Ztr Zrot ref)]
and
L"(p, T) = p(p, T) —[Ke TIN(Z{"Zo1 V 1er)]
_ 0o p . O (32)
kBTInEgT[Zk TV ey
where
R 3
2= f—=—f'= &

C Ukt AP

is the result of integration over the momenta of the
translational motion in the statistical sum;

(2ks T)¥2(1,1,15)
h3

kin _
Zrot -

is the result of integration over the rotational momenta
of molecules; A is the therma de Broglie wavelength;
o isthe parameter characterizing the rotational symme-
try of molecules (o = 2 for water); and v, is an arbi-
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trary fixed volume. The substitution of expressions (31)
and (32) into Eqg. (30) leads to the following relations:

W) _ o, 0AGT (0, p. T) —u™ (p, 1)) 35
w(n—1) O kg T O
and

AGcI, conf(n p, T)
0 W(n) conf (34)
—Kg TIn CW(n 1)D +u T (p, T).

The chemical potential p(p, T) of vapor is an
input parameter, while the ratio w(n)/w(n — 1) is calcu-
lated by directly counting the numbersof n- and (n—1)-
states in a Markov random process of roaming over
microscopic states. The fluctuational computation
errors of a bounded sampling strongly depend on the
value of u®(p, T). The optimal value corresponding to
the w(n) = w(n — 1) mode is unknown beforehand and
is determined at the initial stage of computations by
using a special iterative procedure.

The transitions between microscopic states with the
numbers of particles n — 1 and n occur with the proba
bilities p;; ensuring the limiting distribution over micro-
scopic states p;:

Pij _ B
Pi.i P
kinyn —kinyn |j1p-(p:

%dev

(Ztr ) (Zrot) D

1 k|n n-1 Zkln n- 1 dn—l)u(p, T)_Un—1|]
(n 1)|( ) ( rot) D kBT D
conf
T-(U,-U 01
= Lo E“ (p. D =( n- l)D—deV (35)
n k T D ref
_dQ dvv 1 Ei(p,T) (Up—-U,_1)0
= S ZoV NV kaT H
8/o nVref Bl O
_ _dQ dVv_pVv " 0 Yn—Un_10
81'[2/cyvnkBT U kg T ]

where dQ and dV are the elementary volumes in the
space of the orientations and the coordinates of the
molecular centers of mass, and p¢ = ot —
kg TIn(o/81®). The probabilities dQ/(8m%/c) and dV/V
are realized when a molecule is cast out at a randomly
chosen point of the system. The remaining factors in
(35) are played in the standard manner using the pro-
gram of random numbers [53]. In addition to the steps
of casting in and omitting, the steps of translation and
rotation of molecules were made in accordance with
the standard Metropolis procedure for a canonical sta-
tistical ensemble [54, 55]. The maximum length of a
step in the trandation of the molecular center of mass
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Table 1. Experimental valuesof AH®P and AG®P[34] and the
values of AH™M" and AG™" for the enthalpy H and the Gibbs
free energy G of the reaction of addition of a water molecule
to acluster based on the hydroniumion H;O" at T=300K cal-
culated by the Monte Carlo method for the standard conditions
of vapor at p =1 atm. All valuesarein kcal/mole

n —AHeP _Acheor —AGE®P _AGtheor
1 316 31.6 24.3 24.3
2 195 195 13.0 13.0
3 17.9 17.8 9.5 9.5
4 12.7 134 5.6 57
5 11.6 111 41 4.2
6 10.7 10.7 3.0 35

Table 2. The same asin Table 1 for the oxonium ion OH~
with the experimental valuesfrom [35] at T =297 K

n —AHe®P _Acheor —AGEP _AGtheor
1 24.0 24.00 17.8 17.80
2 17.9 17.90 11.6 11.69
3 151 1511 7.7 6.50
4 14.2 14.29 54 5.40
5 141 13.80 4.2 431

was 0.3 A, while the maximum rotation step was 20°.
The frequency of acquiring new configurations upon
tranglations and rotations of molecules varied from 30
to 50%, while the corresponding value for casting in
and omitting of molecules varied approximately by
0.5%. An attempt of a trandation with a rotation was
accompanied by five attempts of casting in or omitting
amolecule. The system was placed in aspherical cavity
of radius 10 A, and an ion was fixed at the center. The
length of the Markov process used for calculating
canonical averages amounted to 5 x 108 steps, which is
one to two orders of magnitude larger than the adopted
standards and ensures a high reliability of calculated
averages. The calculation of apoint for acluster formed
by 10 molecules on a 600-MHz PENTIUM-III com-
puter takes approximately 10 hours. Table 1 contains
the numerical results obtained for the H;O* ion. The

dependences for the OH~ion are similar.

The work of formation of clusters as a function of
size (Fig. 1) hasaclearly manifested minimum indicat-
ing the stahility of clustersformed at ions. The depth of
the minimum is estimated at U,,;,, = 1 eV = 39%gT. The
probability of cluster disintegration isnegligibly low as
compared to the probability of cluster formation.
Almost all ions in the cold plasma are hydrated. The
position of the minimum correspondsto a stable size of
the cluster and is displaced upon an increase in the
vapor pressure to larger sizes. However, the degree of
hydration even in a conventionally “dry” atmosphere
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with arelative humidity of 10% (which corresponds to
vapor pressure p = 300 Paat T = 300 K [56]) amounts
toy = N = 10. Asthe moisture content decreases to one
third of the initial value, the equilibrium size of the
cluster decreases, remaining larger than y = 8. Clusters
with asizey > 20 are formed only in the vicinity of the
point of equilibrium between vapor and liquid. For y =
10, the difference between the free and internal ener-
gies of the cluster is of the order of A =3 eV = 116ksT
(Fig. 2). Thismeans that the substitution of the internal
energy for the free energy isruled out even in estimates
since it would lower the probability of cluster forma
tion approximately by a factor of exp(-4) = 10, For
y = 12, the entropy per molecule attains its maximum
value, indicating qualitative rearrangementsin the clus-
ter. For y> 12, the coupling of water molecules changes
from the confinement due to the direct interaction with
the ion to the collective interactions between the mole-
cules. Under the conditions corresponding to lower lay-
ers of the atmosphere, the hydrate shell isformed by a
single layer located at a distance of 2.6 A from theion.
The growth of the second hydrate layer at a distance
of 5.1 A and atransition to the confinement of the mol-
ecules due to collective interactions start only when the
pressure approaches saturation (Fig. 3). The mass of the
ion increases as a result of hydration by an order of
magnitude, and the effective radius is doubled. The
degree of hydration weakly depends on the moisture
content in the atmosphere and is close to y = 10 under
typical conditions. The cluster remains in a metastable
state for a threefold—fivefold supersaturation. When
supersaturation is approximately tenfold, the cluster
loses its stability and experiences an avalanche-type
growth (Fig. 4).

5. MECHANISM OF RECOMBINATION
RETARDATION IN A CLUSTER PLASMA

The calculations made in the previous sections
prove that the concentration of free charges formed as
aresult of the air mass ionization is insufficient for the
formation of the experimentally observed reflectivity.
The reason behind the high reflectivity is obviously
associated not with free charges as such, but with side
effects accompanying their formation. According to
estimates, a cold plasma must contain, apart from clus-
ters, a large population of electrically neutral com-
plexes stabilized by ions.

In the absence of ions, water clusters are thermally
unstable. The intrusion of an ion stabilizes a cluster
[36—42], but the latter loses its electroneutrality. On the
other hand, the results of previous investigations show
[13-24, 57] that the intense pairing of charges accom-
panied by the formation of water clusters at two coun-
terions should be expected in the density and tempera-
ture ranges under investigation. In view of their electri-
cal neutrality, water clusters cannot be detected in
electrometric experiments. The presence of this com-
ponent in the atmosphere is confirmed by the anoma-
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Fig. 1. Thework of formation of the hydrate shell of aH;0*

ion from vapor at temperature T = 300 K under various pres-
sures. 10 Pa(1), 50 Pa(2), 250 Pa(3), 1.25 kPa(4), 6.25 kPa(5),
31.25 kPa (6), and 156.25 kPa (7).

LA

0.10

0.05

Fig. 3. Binary atom—atom correlations in the hydrate shell
of an HO" ion in water vapor at T = 300 K: correlations

between the ion and the oxygen atom in a water molecule
(1, 3), between the ion and the hydrogen atom in awater mol-
ecule(2, 4); p=2.75kPa(closetothe saturation pressure) (1, 2)
and p = 10.0 kPa (supersaturated vapor) (3, 4). The functions
are normalized to the number of moleculesin the system. The
dashed line corresponds to the gross density of water under
standard conditions.

lously strong absorption of electromagnetic radiation at
the middle of the infrared range [29, 58, 59]. The
absorption wavelength corresponds to the characteris-
tic frequency of vibrationsin hydrogen bonds and indi-
cates the presence of high concentrations of water clus-
ters in the atmosphere. Indirect estimates based on
spectroscopic measurements indicate [29, 30, 33] that
under standard conditions, a free charge in the atmo-
sphere corresponds to at least 10°-10 electrically neu-
tral water clusters. After the formation of a cluster, its
future depends on the type of ions contained in it. The
ions of solvable salts and acids remain in a cluster,
ensuring its stability. Their coagulation leads to the for-
mation of coarse drops of strong electrolytes. Unstable
ions formed as a result of ionization recombine in a
water cluster with a certain characteristic recombina
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G, W+ KUeV

Fig. 2. Gibbs free energy (1) and internal energy (2) of the
hydrate shell of an H;O" ion at temperature T = 300 K.

25

20

15

10|

|
-10 -5 0
log (p[Pa]/100 Pa)

Fig. 4. Equilibrium number of particles in the hydrate shell
of an H30" ion as afunction of vapor pressure. The dashed

curve correspondsto the saturation vapor pressure abovethe
plane boundary at T = 300 K [56].

tion time T, In athermodynamically equilibrium state
that sets in when there are no source of ionization, all
unstable ions recombine, and the clusters formed on
their basis are destroyed. Under natural conditions, free
charges are permanently supplied due to ionization. In
the case of the steady-state production and recombina-
tion of charges, the finiteness of thelifetime 1, of elec-
trically neutral clusters is responsible for their invari-
able presence in a cold plasma. The steady-state con-
centration of clustersis equal to the radio T,./T, Of the
characteristic time of the recombination of ions in a
cluster to the characteristic time of production of aclus-
ter per unit volume, 1o, = It scm?®. A long lifetime T,
ensures a high concentration of electrically neutral
clusters under steady-state conditions even in the case
of their absolute instability under equilibrium condi-
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tions. An increase in T, indicates the retardation of
recombination and their relative instability.

In a cold rarefied plasma, the energy of interaction
between ions and molecules is comparable with the
energy of interaction between ions and exceeds the
thermal energy ksT. As cluster ions approach one
another, aregion of astrong electric field formed in the
gap between the ions pulls in water molecules. The
energy of interaction of awater molecule with the elec-
tric field in the gap between two monovalent counteri-
ons separated by 4.1 nm amountsto —kg T, and the prob-
ability of finding a molecule in this region is thrice as
high as outside the gap. Thisisequivalent to alocal ele-
vation of the pressure of vapor, which provokes its con-
densation. The collective interactions between mole-
culesrender the process an avalanche-type, but its evolu-
tionislimited in space to the region of ionic gap.

Each ion carries a thermally stable hydrate shell
formed by N, Cand IN_Cimolecules. In view of anonlin-
ear dependence of the statistical weights of micro-
scopic states on their energy, the total number INLbf the
molecules bound in the field of two counterions
increases as theions approach one another and the total
(negative) energy WO of interaction ion the cluster
decreases. The potentia of the average force for two
counterions is given by

®(R) = ks TIn(p,_(R)/p) = U+ U,0- U_]

where p,_(R) is the equilibrium density of counterions
at adistance Rfromtheions, (U, Cand [W_Care the equi-
librium potential energies of hydrate shells of the ions
separated by an infinitely long distance, and p = p, = p_.
The potential ®(R) includes the direct interaction
between the ions and the indirect interaction through
water molecules. The two types of interaction display
different dependences on the distance R between the
ions. The relative motion of the centers of mass of the
ionsis determined by the potential ®(R) of the average
force, which is the result of averaging of energy over
the positions of molecules and orientations of two inter-
acting counterions for afixed distance R between them.
At distances much smaller than the average separation
between cluster ions, the contribution of the interaction
with athird ion to ®(R) isinsignificant.

Such a pattern corresponds to a hypothetic equilib-
rium state of a cold plasma in the absence of ionic
recombination and the sources of ionizing radiation.
Under natural conditions, the number of ions and clus-
tersinthe plasmaisaresult of the dynamic equilibrium
between opposite processes of ionization and recombi-
nation. For times longer than the relaxation time, the
steady-state regime corresponding to equal numbers of
generated and recombining charges sets in. The calcu-
lation of the concentration of electrically neutral clus-
terson recombining ionic pairsisatypical kinetic prob-
lem, but its considerable part can be solved by the
methods of equilibrium statistics. In a weakly ionized
gas with a charge density of 10°-10° cm3, the time T,
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of relaxation of the internal degrees of freedom for
cluster is much shorter than the mean free time 1, of
cluster ions before their collision and recombination.
Under these conditions, a cluster ions should be
regarded as an internally equilibrium system. The char-
acteristic time of interaction of cluster ions with vapor
isdetermined by the frequency of collisions of the clus-
ter with water molecules. The volume density of vapor
under typical conditions is approximately 12 to
13 orders of magnitude higher than the density of
charges, but it is 5 to 6 orders of magnitude lower than
the density of moleculesin acluster. For thisreason, the
time T, 4, of stabilization of alocal equilibrium between
acluster and vapor occupies an intermediate positionin
the time hierarchy: Ty < Ty, < Ty FOr alarge dis-
tance between ions, the conditions of the interaction
between a cluster and vapor remain unchanged during
almost the entire time interval 1;;;, of diffusion counter-
flow. During thistime, the thermal and material equilib-
rium of the cluster and vapor sets in, and its hydrate
shell is formed. The conditions of interaction of
charged clusterswith vapor changeradically only at the
final stage of this motion for an ionic spacing of the
order of 3 nm. The process of convergence of hydrated
ions is accompanied by the intense pulling of vapor
molecules into the ionic gap. The time of motion of
ionsin thisfinal region is comparable with the charac-
teristic time of exchange of molecules between the
cluster and vapor. The average distance between vapor
molecules is approximately equal to 15 nm, but water
molecules are approximately an order of magnitude
lighter than clusters. Their thermal velocity is approxi-
mately thrice as high asthat of clusters, while the cross
section of their collisionswith gas molecules equal to a
guarter of the value corresponding to clusters. For this
reason, the mobility of water molecules is an order of
magnitude higher. It can be expected that in the final
stage of motion before recombination, a partial equilib-
rium sets in between clusters and vapor: only those
molecules which are separated from colliding clusters
by adistance not exceeding acertain radiusr 4 of relax-
ation are pulled into the ionic gap. The remaining mol-
ecules moving in the gas cannot reach the ionic gap
during the collision time. The value of r,4 depends of
the time of the head-on motion of clusters at the final
stage before their collision, when polar water mole-
cules are intensely pulled into the ionic gap. The num-
ber of vapor molecules getting into the sphere of radius
rg iSgiven by

4
Nrel = énr ?el Pws (36)

where p,, is the vapor density. The quantity N,y IS
smaller than the number of vapor molecules which
would have been pulled into the ionic gap under the
equilibrium conditions. Consequently, the relative
motion of two recombining counterions under steady-
state conditions corresponds not to the equilibrium
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function ®(R), but to itsanalogue ®(R, r,4). During the
time of formation of the dense phasein theionic gap, a
local equilibrium hastimeto set in only in the sphere of
radius r.4 surrounding the recombining ions, and the
number of molecules pulled into the ionic gap does not
exceed N,y. The characteristic relaxation time within a
cluster is much shorter than the time of interaction of
the cluster with vapor. For this reason, the cluster
formed from vapor remains a locally equilibrium sys-
tem against the background of arelatively slow varia-
tion of the number of molecules, and the motion of ions
is controlled by the average force potential ®(R, r.4)
formally in the same way as in the thermodynamic
equilibrium. The limiting case of an infinitely slow
counter motion of ions corresponds to the condition of
a transition from a local to the global equilibrium:
P(R, ) = P(R).

The calculation of r,y isacomplex kinetic problem
even when the computer simulation technique is used.
Difficulties are encountered in the calculation due to a
considerable difference in the time scales of the diffu-
sion motion of water molecules in a gas and the relax-
ation movements in a nucleus of the dense phase. An
estimate of r,y can be obtained from the following con-
siderations. During the counter motion of ionsfrom R;,
at which the dense phase starts being formed in the
ionic gap, to the retarding barrier R,,, vapor molecules
during their relaxation motion towards an ionic pair are
displaced only through a distance not exceeding

Uy,0
o, +o_

Y
(«/W + «/Mi_)dezodazo
where Opo, 0, and a_ arethe mobilities of vapor mol-

ecules and hydrated ions in the gas, dy o and d; are
their effective radii of collision with gas molecules, and
M =m® +yOm, , isthemassof ahydratedion.
Putting R; = 3 nm, R, = 0.80 nm (see below), and
d/dy,0 =2, weobtainry =14 nm. The substitution of

thisvalueinto (37) and then into Eq. (36) givesN,y = 6.
This is approximately one-fourth of the number of
water molecules which would be pulled into the ionic
gap in thermodynamic equilibrium.

The values of ®(R) and ®(R, r,4) were calculated
for ry =14 nmand T = 300 K numerically using the
Monte Carlo method on a large canonical statistical
ensemble. For this purpose, the centers of mass of two
ions (H;O* and OH") were fixed in a spherical cavity at
adistanceR. Theionswere alowed to rotatefreely. The
interaction of water molecules was described by the
five-center ST2 Raman—Stillinger potential [36—44]
supplemented with the interaction of the dipoles

el =

( R3 - Rm)
(37)

(R3_Rm)v
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induced in the ionic field. Use was made of the poten-
tial of interaction of ions with water molecules (the
reconstruction of this potential from the experimental
data on the free energy of cluster formation was
described in the previous section). The direct interac-
tion between the ions includes the Coulomb interaction
between the charges, between a charge and a dipole,
between the dipoles, and the energy of the polarization-
induced interaction between a charge and the induced
dipole. The dipole interaction and the induced interac-
tions between ions a distance R > 1 nm are relatively
week, and the variations in the values of the parameters of
theseinteractionsvirtualy do not affect the formation of the
barrier ®(R, r.y). The induced interaction (—a/2)(e/R?)?
between ions separated by a distance R > 1 nm is
weaker than the interaction of an ion with awater mol-
ecule pulled into the ionic gap by a factor of 50 and
amounts to less than 0.05k;T; for this reason, it can be
disregarded altogether. We take it into account only
from the considerations of the formal completeness of
the pattern, ascribing to the ions the polarization coef-
ficients a the same as for an isoelectronic water mole-
cule, a,, = 1.44 x 102* cmq [9].The ion—dipole interac-
tion —ep/R? is approximately an order of magnitude
stronger than the induced interaction, but it is an order
of magnitude weaker than the average interaction of an
ion with awater molecule pulled into theionic gap and
is of minor importance against the background of
molecular component fluctuations. The dipole moment
of anion depends on the point relativeto whichitiscal-
culated. The indeterminacy in the dipole moment of an
ion is equivalent to a certain indeterminacy in the posi-
tion of the point relativeto whichitsrotation in thefield
of the other ion is described. It can easily be seen that
the indeterminacy in the value of the dipole moment of
anion of 1 D is equivalent to the indeterminacy in the
position of a singly charged ion amounting approxi-
mately to 0.02 nm, which is an order of magnitude
smaller than the error in the value of ionic spacing
admissiblein our computations, and it sufficesfor usto
take into account only the order of magnitude of the
ion-dipole interaction. Therefore, in our numerical cal-
culations, we ascribe to ions the same dipole moment
asthat of awater molecule, p,, = 1.85 x 1078 CGS units
[9]. The main mechanism responsible for the formation
of apotential well and abarrier at such distancesliesin
the interaction between ions and their hydrate shells
againgt the background of the Coulomb interaction of
ions. For thisreason, we pay the greatest attention here
to a detailed description of the interaction between ions
and water molecules. The exchange and dispersive
interactions between ionsis described by the Lennard—
Jones potential with the same numerical valuesasinthe
ST2 model for water molecules. Their contribution at
such distances is negligibly small and is taken into
account only from the considerations of the formal
completeness of the pattern. The number of water mol-
ecules was not fixed, but fluctuated in accordance with
the distribution function of alarge canonical ensemble
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Fig. 5. Meanforce potential ®(R, ) of theinteracting H;O*

and OH™ ions in water vapor under pressure p = 2 kPa at
temperature T = 300 K (1), the equilibrium mean energy of
interaction between water molecules and the ions (2), and
the equilibrium mean energy of direct interaction between
theions (3).
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Fig. 6. The number AN = N} N, [ ON_[Clof vapor mole-
cules pulled into the ionic gap as a function of the distance
between the H;O" and OH™ionsat T=300K and p=2kPa
Ig = (1) and 14 nm (2).

[51-53]. The chemical potential of vapor, which is an
initial parameter in the computations, corresponded to
avapor pressure of 2 kPa, which is observed for an air
humidity of 65%. Configuration averaging was used to
determine the equilibrium energy (U of the system, the
direct interaction (U, _[between ions, and the average
number INOof molecules for various ionic spacings R.
The length of the Markov process used for calculating
each point was 5 x 108 steps. The values of W, [ W_[]
N, ] and [IN_Cwere calculated separately for each ion.
In these computations, the system contained only one
ion. The average force potential ®(R, r,4) Was obtained
asthe difference W3- W, [W_[and was subjected to
the condition ®(c, r,q) — 0. The value of ®(R, r4)
was cal culated using amodified large canonical ensem-
blein which the transitions to microscopic stateswith a
number of particles greater than N[+ IN_[0+ N, are
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forbidden. In the calculation of ®(R), the constraint
imposed on the number of particles pulled into theionic
gap was removed, which corresponds to N,y = co.

As the ions approach one another to a distance R =
R;, the average force potential d(R) decreases abruptly
dueto the pulling of additional water moleculesinto the
ionic gap (Figs. 5 and 6). The sharp decrease in the
potential, which resembles a phase transition, is associ-
ated with collective phenomena in the molecular
ensemble. The stability of the molecular component in
theionic gap is partially ensured by molecular interac-
tions. As the separation between ions decreases further,
the volume of the ionic gap decreases, and afraction of
molecules is expelled from it. As a result of the
decreasein the number of interacting molecul es, poten-
tial d(R) decreases in magnitude down to contact ionic
spacings, at which it starts increasing due to the direct
interaction between the ions. The ®(R) curve acquires
two deep minimaat R, = 0.3 nm and R, = 3 nm, sepa-
rated by a peak at the point R,, = 0.89 nm (see Fig. 5).
The peak height is approximately equal to 278kgT. This
means that the density of the probability of finding two
counterions separated by distance R,, in a thermody-
namically equilibrium state is lower than the corre-
sponding value for distance R, by afactor of exp(278) =

10%%, At the sametime, the density of the probability of
finding the ions at distance R, is approximately

exp(452) = 10'% times higher than at any other distance
R > R, at which the pulling of moleculesinto the ionic
gap ceases. Thus, in the resultant interaction between
the ions separated by distance R,, aminimum isformed
on the ®(R) curve dueto the pulling of water molecules
into the field of the ionic gap, while the p,_(R) depen-
dence acquires an intense peak corresponding to a
locally stable state of the ionic pair. The thermal stabi-
lization of theionic pair is achieved due to the molecu-
lar component in the ionic gap. The total number of
molecules participating in the stabilization is approxi-
mately equal to 40, from which approximately 25 mol-
ecules are additionally pulled into the ionic gap.

In the steady state, the orders of magnitude of the
quantities change, but the typical prevailing of ionic
pairs with a spacing close to R, persists. As a result of
adecreasein the number of water molecules pulled into
the ionic gap, the depth of the minimum at distance R,
decreases to one-fourth the initial value, and the mini-
mum itsdlf is displaced towards shorter distances (Fig. 7).
Sincethe barrier height is measured from the bottom of
this minimum, the barrier becomes lower, but dightly
wider. The position of the barrier changes insignifi-
cantly. Since the probability of the barrier surmounting
depends exponentialy on its height and linearly on its
width (see below), the resultant effect of nonequilib-
rium conditions for the accumulation of water mole-
culesintheionic gap liesin anincrease in the recombi-
nation probability. The same figure showsthe ®(R, 1)
curve calculated by the Monte Carlo method for the
hypothetical conditions r,q = 0 corresponding to the
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prohibition of pulling water molecules into the ionic
gap. The recombination minimum and barrier on this
curve are absent altogether. It can be seen that at dis-
tancesR < R,, the curves are close and their behavior is
determined mainly by the direct interactions between
the ions. Against the background of this interaction,
only relatively small energy oscillations associated
with a nonmonotonic variation of the number of mole-
cules in hydrate shells are observed. The separations
ranging from 0.8 to 0.9 nm are unfavorable and the
cluster size at such distances attainsits minimum value,
amounting approximately to five molecules. On the
contrary, the separation R = 0.6 nm at which the size of
the ionic gap coincides with the size of a molecule is
most favorable for hydration (see Fig. 6).

The finite value of r4 in P(R, rq4) indicates the
inclusion of the nonegquilibrium conditions of cluster
formation at ionic pairs, but does not take into account
the nonequilibrium conditions of generation and
recombination of the ions themselves. Let us consider
an ensemble of pairs of recombining counterions. The
recombination of two ions is preceded by their counter
diffusion involving the overcoming of the potential bar-
rier (R, r,y4). The presence of the barrier hinders the
convergence of the ions and decelerates their recombi-
nation. The rate of recombination in an ensemble of
particles is determined by the total steady-state coun-
terflow of ions having opposite signs:

J(R = JE(R +I(R) = «.0pI(R)
_a+p+—(R)Dq)(Rv rrel) _K—Dp—+(R) (38)
—a_pZ(ROP(R rg) = ~(K, +K)Op3(R)
—(C(+ + a_)pi_(R)DCD(R, rrel)a

where k., and k_ are the diffusion coefficients for the
positive and negativeions, o, = K, /ksT and a_=K_/kgT

are their mobilities, and p;_(R) is the spatia correla-
tion function for the counterions in the steady-state
recombination mode, normalized by the condition
p;_() =p_, p_being the gross density of negativeions.
The last equality in Eq. (38) is valid for an electrically
neutral plasmawith p, = p_=psince p;_(R) = p*,(R) in
this case. The average force potential ®(R) = ®(R, r,y)
for two counterions corresponds to the hypothetic equi-
librium conditions between paired and unpaired ions as
if the irreversible recombination of ions did not occur
even at contact distances, but the ions formed instead a
contact ionic pair, and the reverse process of pair disso-
ciation were possiblein principle. In this case, the num-
ber of molecules pulled into the ionic gap is subjected
to the formal constraint of the finiteness of the value of
I'a- The substitution of the equilibrium binary correla-
tion function for the counterions,

p+_(R, rrel) = p_exp[—dD(R, Irrel)/kBT] )
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D, eV

R, nm

Fig. 7. Mean force potential ®(R, r,g) of the interaction
between the H;O" and OH ™ ionsin water vapor at T =300 K
andp=2kPa rg =0(1), 14 nm (2), and r,g =« (3). The
values of Ry, Ry, and Ry indicated in the figure correspond
torg =14 nm.

for p5_(R) into Eq. (38) would lead to the equilibrium

result J° = 0. Recombination is a nonequilibrium pro-
cess, and a steady-state mode is possible only in the
presence of a permanent source of ions pumping new
charges instead of recombining ones. We assume that
the distance between an ion and the potential barrier
D(R, r,y) is much smaller than the average separation
between ions. In this case, we can conjecture that a new
ion is generated at an infinitely large distance from the
ion which it approaches and recombines with. Each act
of recombination is preceded by overcoming the poten-
tial barrier. Since the averaging over the rotational
degrees of freedom of ions has already been carried out
in d(R, r.y), the problem is spherically symmetric. The
projection of EQ. (38) on vector R connecting two
counterions in the reference frame of one of these ions
has the form

PR, 1 IO(RT,)
O 0R kT OR

_ #pi (R pi(R 9p, (R
= *RESR p.(R1e) R O

(RIp. (R 1,
= —K(Rp.(R 1) PLED LR L]

F(R) = —«(R) p-(RH

(39)

where the counter-diffusion coefficient K(R) = K, + K_
is a function of the separation between the ions since
the gas density in the ionic gap changes with the dis-
tance R, and the ionic diffusion mode varies accord-
ingly. The counterflow of ions corresponds to the nega-
tive sign in Eqg. (39). Since we are dealing with a
steady-state flow of ions into the sphere of radius R, it
is equal to the number of recombination acts per unit
time at theion located at the center of the sphere. Con-
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sequently, the number of pairs recombining per unit
volume per unit time is given by

| = 4RI (Rp = 4mpK(RRP.(R T'1e)
L LT (RIP. (R 1)l
] R 0

where k; is the recombination coefficient. Since the
recombination rate | is independent of R, Eq. (40) can
be written in the following form convenient for integra-
tion:

(40)

Ekiipza

| 1
4T[p K(R) R2p+_(Rv r.rel)
_ AP (R/P(R 1e)]
oR '

The integration of EQ. (41) between the ionic spacing
R. at which recombination takes place and infinity with
the boundary conditions

P(R)  _ pi(=) _,
p+—(Rr!rreI) ’ p+—(°°1rrel)

leads to the following expression for the recombination
rate at an ion:

j dR N
| =4 .
T[p|:‘R[K(R) R2p+_(R, rrel)i|

(41)

(42)

We dividetheintegration interval in (42) into two inter-
vals. from the distance R, at which the recombination
takes place and the distance R, at which ions are accu-
mulated, and from R, to infinity. The results of com-
puter simulation show that in thefirst interval of interi-
onic distances, the system is essentially a cluster
formed by water molecules and two counterions
immersed in them. The cluster density has the same
order of magnitude as the density of water under the
standard conditions. The mechanism of diffusionin this
case differs qualitatively from the diffusion mechanism
in the second interval of interionic distances, R>R,, in
which the cluster disintegrates and two independent
cluster ions are formed. In the former case, the dis-
tances between the moleculesin the cluster are compa-
rable with the molecular size, and the diffusion modeis
closeto diffusioninliquids. In thelatter case, the diffu-
sion of hydrated ionstakes place in the gaswith amean
free path of the order of I, = (3-5) x 10 cm according
to the estimates presented in Section 3; i.e,, it is two
orders of magnitude larger than the molecular size.
Since the formation of a cluster as a result of conver-
gence of ions is abrupt in nature, it is sufficient for
obtaining the order-of-magnitude estimates to assume
that the density of themedium in theregion of ionic dif-
fusion changes abruptly from the typically liquid mode
inthefirst interval of ionic spacingsto thetypically gas
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mode in the second interval. At the same time, the dif-
fusion coefficient K(R) a so changes jumpwise from the
value Ky typical of diffusionin aliquid to the value K,
typical of diffusion in a gas. Accordingly, the expres-
sion for the recombination rate assumes the form

R2

dR

1
| = 4mp| = [————
p|:KC|‘R[ R2p+_(R, er)

P 1
KgR R p+_(R, rrel)

In view of the exponential dependence of p,_(R, r,q) On
®(R, r,4), the main contribution to the integralsin (43)
comes from the region of maximum valuesof ®(R, r,g).
For the first integral, this is the neighborhood of the

minimum of the function R?p, (R, r,g) a point Ry. For
the second integral, thisisthe region R > R;, where the
value of p, (R, r,y) decreases, approaching asymptoti-
cally the gross density p of ions. Taking into account
this circumstance, we write expression (43) substitut-
ing p for p,_(R, r,g) inthe second integral and changing
the lower integration limit to R;. This gives the follow-
ing expression for the recombination coefficient:

Ry

1
X | — =
{Km!exp{ —[DP(R, r,q) —2kg TIN(R/Rm)]/Kg T}
17dR]
+—==] .
KgJ. RZ}
R3
In view of the strong exponential dependence of the

integrand in the first integral of (44), the main contribu-
tion to theintegral comes from the neighborhood of the

maximum of the function &(R, rhea) = PR, ryg) —
2ks TIN(R/Rm) & point R = Rn. Expanding ®(R, T )

into a Taylor seriesin the vicinity of = , retaining the
first two leading terms, and integrating (44), we obtain

EtD"(ﬁ{m, rrel) 2 Di|_

(44)

172

01

el 4 2
% 0 keT Ry
1 @(Rma r.rel)|:|_|_ 1 D_

X = &X O,
R PO keT U AT R,

ki =
(45)

where ©"(R, r,4) = 0°P(R, 1,4)/0R2. The expression in
the bracesin (45) isthe sum of two terms. Thefirst term
is the contribution to k; associated with the diffusion
flow of ionsintheinterval from R, to R,, and the second
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term, the samein the interval from R, to co. The substi-
tution of numerical valuesinto (45) showsthat the lead-
ing roleis played by the second term (41K jR;) whose
valueisof theorder of 10°cm s=3. Thefirst termissmall

due to the exponentia factor exp[®(Rm)/ksT] =
exp(—174) = 10-". Thissmall factor is not compensated
by the relation between other factors appearing in the
first and second terms, the ratio ky/ky < 10%-10* being
the next in the hierarchy of vaues. Consequently,
expression (45) can be replaced, with an excessive
degree of accuracy, by

ki = 4TKyR;. (46)
The physical meaning of this result is obvious. The
main obstacle for the probability flux of diffusing ions
is the interval from infinity to R;. The relatively low
resistance to the probability flux of diffusing ion in a
short interval from R; to R, is due to low values of the
average force potentia (see Fig. 7) and, hence, expo-
nentially high values of ionic concentration at such dis-
tances. However, the potential barrier existing within

this interval at the point Rn = R, decelerates the
counter diffusion of ions and leads to the accumulation
of ionic pairsin front of the barrier in theinterval R, <
R < R;. Under natural conditions, the continuous
recombination of ionic pairs and the “ pumping” of new
charges from the sources of ionizing radiation take

place. The steady-state distribution p5_(R) isthe result

of the dynamic equilibrium between these opposite
processes. The number of ionic pairs formed as aresult
of deceleration and recombination in front of the bar-

rier can be expressed in terms of function p5_(R) which

differs significantly from the equilibrium distribution
p:(R r) intheinterval R, < R< R, in view of acon-
siderable difference in the probabilities of traversing
the intervals [0 — R,] (formation of an ionic pair)
and [R, —= R] (its recombination) by ions. The first
process occurs at a much lower rate than the second,
and the predominant “ pumping” of ionic pairsfrom the
region [R,, Rs] in front of the barrier would occur until
their number would drop to the value compensating for
the difference between the probabilities of single acts
of formation and recombination. Consequently, it
should be expected that the following relation between
the equilibrium and steady-state correlation functions
is observed in the region in front of the barrier:

p+—(R2- I’rel) > pi—(RZ) > p (47)

In order to verify the validity of these inequalities, we
derive an expression for the recombination coefficient

k; in terms of p5_(R,). For this purpose, we return to

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

435

the differential equation (41) and integrate it from R, to
R,. Thisgives

R, -1
pi_(Rz) dR
| = 4m Ke ' 8
P |p+_(R2, rrel) |:J’ R2p+_(R, rrel):| ( )
Rr

instead of (42) and

k. = p;(Ry)
N p+—(R21 rrel)

01 0l qvE 2 e
— M My + —
X %cl[ 8T[EkBTCD (Rm, Trep) Rﬁqm}

¢(I~?m, rrel) ljl
o :

instead of (45). Equating the right-hand sides of Egs. (46)

and (49), solving the equation for p;_(R,), and using

the expression for p,_(R, r,y) interms of (R, r,4), we
obtain

(49)

x—exp[

s Ky, R
Pi(Ry) = 4ﬂpﬁ=—3
. e (50)

2 (D"(Rm’ rrel) 0 2 ACD(rrel)
ey oo o)

where A®(r4) = P(Rm, ry) — P(Ry, I'g) IS the recom-
bination barrier height. It can be seen from Eq. (50) that
the number of ionic pairsis an exponentia function of
the barrier height A®(r,y) and depends almost linearly
on the barrier width. With decreasing temperature, the
number of ionic pairs increases aimost exponentially.
The steady-state volume density of ionic pairs can be
obtained by integrating from the recombination dis-
tance to the distance of disintegration of an ionic pair:

RB
P> =p j4nR2pi_(R)dR.

R

(51)

The integral in (51) weakly depends on the limits of
integration since in view of exponentialy strong varia-

tionsof p;_(R) withthe distance, the main contribution
to the integral comes from a narrow neighborhood of

the peak of function pS_(R) R a point R> = Ry. It fol-
lowsfrom Eq. (50) that in the vicinity of point R, the
profile of function p5_(R), as well as the profile of
P.(R, rg), is determined by the exponential depen-
dence p;_(R) O exp[-®(R, r)/ksT]. Expanding the
exponent in the integrand in (51) into a Taylor seriesin
the vicinity of point R;, retaining the first two leading
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terms, and integrating between infinite limits taking
into account the exponentialy rapid decrease of the
integrand, we obtain

p5 = 4TRoppS(Re)
J'exp 1%’M ~2[(R R2) }dR
R (52)

_ 8T[2K gRs= RO qu) '(Rm, rel)_ZD_llz

C| Rm D kBT D
2®' (RZ’ l'rel) D_ v [Acb(rrel)
x%“‘_"kB tg oo >

The height, width, and position of the barrier aswell as
the position and the width of the minimum of potential
P(R, r.y) required for the calculations based on for-
mula (52) were computed using the Monte Carlo
method. In thetypical case of r,4 = 14 nm, the follow-
ing results were obtained:

AD(r,y) =1.60€V, Rn =0.80 nm,
¢"(I~?m) =-45¢eV nm=3, R, =22 nm,
®"(R.)=83eV nm? R, =30nm

(see Fig. 7). In the limiting case when r,4 = o, the val-
ues of the same parameters are as follows:

AD(r,y) =7.18€V, R, =0.89nm,
®"(Rn) =—61eV nm2, R, =3.0nm,
®"(Ry)=2.8eV nm? R, =35nm
(see Fig. 5). The diffusion coefficient for a positive ion
inthe gasis k? = [V \°00,/3, where
dnglellz
Omv O

is the average relative velocity of collision of a cluster
with gas molecules and

o'fo=

+ +
(M +y my o)my

M = + +
m +y My o+

is the reduced mass, m, being the mass of a gas mole-
cule. The substitution of the numerical valuesof |; =4 x
10-° cm and m, = 0.49 x 1022 g for air leads to the esti-

mate k¢ =0.032 cm? s for ahydrated H* ion. The dif-

fusion flow of hydrated ions in the gas is mainly con-
trolled by collisions of gas molecules with the hydrate
shells of ions and is independent of the details of inter-
action at the contact with an ion. Since the sizes of the
hydrate shells of the H* and OH- ions are close, their
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mean free paths and diffusion coefficients also differ
insignificantly. Assuming that the diffusion coefficients
of the hydrated H* and OH-ions in the gas are approx-
imately identical, we obtain for the counter diffusion
coefficient the estimate k, = kI + k% = 0.06 cm? s,
which is in satisfactory agreement with the diffusion
coefficient of the H;O" ion measured under the same
conditions in gaseous nitrogen, which is equa to
0.071cm?s? [56]. The calculation of the diffusion
coefficient Ky for acluster isalaborious computational
problem. For calculations based on formula (52), it is
sufficient to estimate the order of magnitude. Since the
density of moleculesin acluster is close to the density
of water under the standard conditions, we can natu-
rally expect that the value of Ky is close to the corre-
sponding diffusion coefficient for water, whose value
can be reconstructed from the experimental values of

the ionic conductivity o,® = 350 A (g-equiv.)/(cm* V)
and 6" = 189 A (g-equiv.)/(cm* V) [56]:
ki = kBT? = 094x10% em’ s,
pe
K'Y= 051x10* cm’ s .
The counter diffusion coefficient is given by

Ka=Kjq = Ky0+k!'9 = 145x107* em’ s

Substituting into (52) these numerical values and
the characteristics of the potential barrier (R, r,y) cal-
culated by the Monte Carlo method for r,y = 14 nm as
well as the experimentally measured free carrier con-
centration p = 10° cm3 typical of the background radi-
ation level a temperature T = 300 K, we obtain

p> = 7.6x 10" cm™. The predicted steady-state con-
centration of clustersisin fact higher:

pS+p3+pi+..>7.6%x10" cm™, (53)

since while calculating the right-hand side of thisrela-
tion, we assumed that thevaluer 4 = 14 nmis preserved
for al recombining pairs irrespective of the type of the
relative motion of ions. In actual practice, thisvalueis
correct only for pairs overcoming the prerecombination
barrier during one cycle of the finite counterflow. The
remaining (unrecombined) ionic pairs continue accu-
mulating water molecules in their ionic gaps, which
leads to an increase in the barrier height, a decrease in
the recombination probability, and the stabilization of a
cluster. Against the background of such a retardation,
slower recombination channels are activated. The most
probable channel is the recombination in ionic chains.
Detailed studies of strongly nonideal ionic systems by
the computer simulation methods reveal ed [ 14-24] that
ionic pairs form ionic clusters with a chain structure
(+ —+—+—+-)inararefied system at temperatures

No. 3 2001



SCATTERING OF CENTIMETER RADIOWAVES

satisfying the condition 0.02u, < kg T < 0.1u,, where u,
isthe energy of interaction of counterions at the contact
distance. The coiling of chainsinto compact clustersis
disadvantageous from the entropy point of view in the
range of densities and temperatures under investiga-
tion. Thereason behind this effect isstudied in detail in
[21, 60, 61]. The chains correspond to a higher entropy
S and thefree energy G = U — TS+ pV of the chains at
temperatures exceeding a certain threshold value T
turns out to be lower than for compact structures. The
energy U of asystem of charged particles decreases due
to screening upon the coiling of the chainsto asmaller
extent than in systems of electrically neutral particles
and cannot compensate the loss in the entropy. The sys-
tem considered by us here is not identical to ionsin a
vacuum, but the presence of dectric charges of the
opposite polarity will inevitably lead to the competition
between compact and chain-type clusters in this case
also. The effective diameter of an ion increases due to
hydration approximately to r, = 1-2 nm (see Fig. 5). If
we disregard the effects associated with the expulsion
of molecules from ionic gaps, the electrostatic energy
of interaction between theions of such asize at the con-
tact distance would be uy = (1-2) x 102 erg, or kgT =
(0.02-0.04)u,, which falsinto the temperature interval
of the stability of ionic chains. The stability condition
for the chains in the gross charge density [21, 60, 61]
p < (104103 r;’> = (10-10%) cr8 is satisfied with
aconsiderable margin. The presence of the dipole com-
ponent in the system in the form of water molecules
must catastrophically increase the probability of chain
formation and to extend the chain stability interval
since the molecules are mainly pulled into the gap
between ions of opposite signs. Against such a back-
ground, the interactions between like ions whose frac-
tion in a compact cluster is larger appear as especialy
disadvantageous. The coiling would lead to the expul-
sion of a part of molecules from the cluster, which is
also disadvantageous from the energy point of view.

An ionic chain is formed as a result of a complex
many-particle collision whose probability islower that
for a collision of two ions, and this process is kineti-
cally slower. However, recombination within a chain
cluster ismore probable and occurs at a higher rate than
inacluster formed on anionic pair. In achain-like clus-
ter, there exists a trgjectory of the counter motion of
ions, which is not accompanied by the expulsion of
dipole molecules from the cluster and, hence, does not
involve the surmounting of a potential barrier. When
two counterions move towards each other along the
chain, the molecules expelled from the ionic gap may
go over to the neighboring ionic gaps in the chain so
that the total number of molecules in the cluster
changes insignificantly. The larger the cluster size, the
greater the number of such collective relaxation modes
bypassing the potential barrier of recombination in it.
In the limiting case of a macroscopic liquid phase, the
effect of pulling in and expulsion of moleculesfrom the
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interionic gap to the gaseous phase disappears ato-
gether with the recombination barrier. We can expect
that ionic pairs that escaped recombination in the first
cycle of finite motion will recombine in large clusters,
and the recombination rate will be controlled by the
rate of cluster formation. The presence of such clusters
in the case of anomalously high concentrations is con-
firmed by the results of measurements of IR absorption
spectrum in the atmosphere [29, 58, 59]. The measure-
ments of electric parameters in water vapor prove that
the accumulation of clustersis an extremely slow pro-
cess, while the relaxation time is of the order of tens of
minutes and hours [29-33]. These experimental results
can easily be interpreted by estimating the lifetime

T = P/l Of clugtersin a cold plasma. Substituting esti-

mate (53) for p;, and using the value of | = 10° cr3 s,

we obtain T, = 10'°s. Thisresult is obviously exagger-
ated since it takes into account only one mechanism of
cluster destruction through the recombination of ions.
However, the order of magnitude of this quantity shows
that the stability of clusters to recombination is
extremely high even on macroscopic time scales.

Estimate (53) is one or two orders of magnitude
higher than the minimal concentration of clusters suffi-
cient for detecting aradioactive cloud according to cal-
culations (1)—«3) made on the basis of the threshold
sensitivity of standard radars. Estimate (53) also satis-
fies the requirement (20) for the threshold concentra-
tion obtained on the basis of the theoretical analysis of
the scattering of radiowaves from permittivity fluctua-
tionsin aclustered plasma. At the same tame, the value
given by (53) is nine orders of magnitude higher than
the ionic concentration following from the solution of
the ionization—recombination kinetics equation (4) dis-
regarding the dipole component. This resolves the con-
tradiction between the low concentration following
from Egs. (4) and the requirements to the threshold val-
ues given by (1)—(3) and (20). The nine-orders-of-mag-
nitude difference was due to the disregard of the recom-
bination retardation associated with the dipole compo-
nent in the plasma.

In actual practice, the intensity of the reflected sig-
nal is higher than that obtained from formulas (12),
(13), and (18) after the substitution of the cluster con-
centration (53), and the conclusion following from esti-
mate (53) and concerning the possibility of radar prob-
ing of radioactive bursts to the atmosphere has a*“ mar-
gin” of at least several orders of magnitude. Thisisdue
to unique electrical properties of ionic pairs formed in
the atmosphere, which magnify the polarizability of the
medium by several orders of magnitude and change its
permittivity. The discussion of these effects is beyond
the scope of this article.
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6. CONCLUSION

The presence of dipole particlesradically affectsthe
equilibrium and kinetic parameters of a cold plasma.
The role of such particlesin the ionized atmosphere is
played by water molecules. Dipole particles are pulled
into the electric field of ions and coat them as a stable
envelope. Asaresult of hydration, the effective mass of
the ions increases by an order of magnitude, and the
critical radius of capture increases by a factor of 1.5.
Theinteraction between the ions and the dipole compo-
nent qualitatively changes the nature of correlations
between the ions. The pulling of dipole particles into
thefield of anionic gap leadsto the formation of adeep
minimum in the effective ionic interaction potential at
aseparation of 2—4 nm between the ions and of a high-
intensity recombination barrier at a distance of the
order of 1 nm. The barrier significantly increases the
lifetime of ionic pairs in the prerecombination state.
However, in thermodynamic equilibrium in the absence
of ionizing radiation, the charges remaining after
switching off the external sources of radiation ulti-
mately recombine, and the plasma as such ceases to
exist. The existence of a cold plasma requires a perma-
nent supply of new ions. Under natural conditions, the
role of such a source of ions is played by radioactive
radiation. The presence of the barrier strongly sup-
presses the recombination and leads to the accumula-
tion of a considerable population of ionic pairs with an
ionic gap of 2—4 nm filled with water molecules under
the steady-state condition of the cold plasma. Theionic
pairs in the prerecombination state are not absolutely
stable, but the lifetime of such formations, which is
extremely long on the molecular scale, leads to their
accumulation in amounts exceeding the number of free
charges in the plasma by 8-9 orders of magnitude.
Under steady-state conditions, the volume concentra-
tion of ionic pairsis proportional to the power of ioniz-
ing radiation and repesats its variation in time, although
with a delay determined by the relaxation time.

The formation of a large population of electrically
neutral water clustersat ionic pairs make theinteraction
of electromagnetic waves with the natural atmosphere
extremely sensitive to the presence of ionization
sources. Although the concentration of free charges
formed as aresult of radioactive irradiation of amoder-
ate intensity is insufficient for the formation of the
experimentally observed reflectivity of a radioactive
cloud relative to centimeter radiowaves, the role of free
chargesis played by clustersformed at ionic pairs. The
prerecombination barrier decelerates the recombina-
tion and ensures the mechanism of enhancement of the
effect of ionizing radiation on the electrical properties
of the medium through the accumulation of ionic pairs.
The effect of enhancement is proportional to the num-
ber of the accumulated ionic pairs, which in turn
depends exponentialy of the recombination barrier
height. If the counter motion of ions prior to their
recombination were slow enough so that the equilib-
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rium density of water molecules could follow the
increasing electric field, the number of molecules
drawn into the ionic gap under the natural atmospheric
conditions would be of the order of 25, which would
lead to the formation of an extremely deep minimum
(of approximately 280kgT) and an intense barrier (of
approximately 450kgT) in the ionic interaction at dis-
tances smaller than the recombination radius. Accord-
ing to the results of calculations, al the ions under the
steady-state conditions would be coupled into ionic
pairs. The number of such pairs would be independent
of the power of the ionization source and would belim-
ited only by the moisture content in the atmosphere.
Vapor would be completely bound in clusters on ionic
pairs. Thisis not observed in actual practice since the
density of water molecules in the ionic gap is much
lower than a local equilibrium value, and just a few
molecules can get into theionic gap at the final stage of
the counter motion of theions. Thus, in contrast to the
equilibrium conditions, the height of the prerecombina-
tion barrier under the steady-state conditionsis a result
of a compromise between the dynamics of the counter-
flow of hydrated ions and the mobility of vapor mole-
cules. A higher mobility would correspond to a higher
barrier and a more intense accumulation of ionic pairs.

The formation of clusters on ionic pairs noticeably
changes the dielectric properties of the air mass since
the rotational mobility of a molecule bound to a cluster
and its contribution to the polarizability of the medium
change radically. The giant (on the molecular scale)
value of the dipole moment of abound ionic pair, which
is 2 or 3 orders of magnitude higher than the dipole
moment of a water molecule, ensures the elevated
polarizability of the ionized gas. In view of the qua-
dratic dependence of rotational polarizability on the
dipole moment of particles [51], the formation of an
ionic pair makes the same contribution to the polariz-
ability of the gas as the addition of 10*-10° free water
moleculesto it.

A detailed analysis of the permittivity and the reflec-
tivity associated with the formation of ionic pairs is
beyond the scope of this paper. However, even the
obtained order-of-magnitude estimates (up to 9 orders
of magnitude in the concentration of ionic pairs and 4—
6 ordersin their polarizability) undoubtedly prove that
itisjust ionic pairs formed as a“side product” of ion-
ization that ensure more than 8 to 10 orders of magni-
tudein therelative change in the permittivity of the nat-
ural atmosphere, which were missing in theoretical cal-
culations, and eliminate the discrepancy between the
results of theoretical calculations and experimental
observations on the scattering of radiowaves from
radioactive bursts in the atmosphere.

Finaly, it should be observed that the problem
investigated here has basically common roots with a
number of other important phenomena in the atmo-
sphere, including the well-known problem of an anom-
alously high absorbability of higher atmospheric layers
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in the middle part of the IR spectrum. The most reason-
able explanation of this phenomenon is associated with
the formation of alarge population of electrically neu-
tral water clusters stabilized by ionic pairs [29-31, 58,
59]. Another example is the problem of a globular dis-
charge. Although a number of daring and sometimes
exotic hypotheses have been put forth [62—64], Stakha-
nov’'s model [65, 66] appearsthe most plausiblein view
of its quantitative consistency. According to thismodel,
the energy of a globular discharge is accumulated in
ionic pairs stabilized by water molecules. The unique
condition for the formation of a globular discharge is
apparently an intense cold ionization. The temperature
of the plasma must be low for the formation of molec-
ular clusters on ions. The cold nonequilibrium glow of
a plasma globe is formed as a result of relatively rare
acts of recombination, which is hampered by the
hydrate shells of ions. The heating of the globe by inter-
nal electric currents as a result of the mechanical con-
tact with the conducting surface leadsto the destruction
of hydrate shells, the intensification of recombination,
and the avalanche-type liberation of thermal energy.
The evolution of instability terminates by the burst of
the globular lightning and is accompanied by rapid
heating to atemperature of thousands of degrees. In our
opinion, the formation of the reflectivity of the ionized
atmosphere and the globular electric discharge are
based on the same phenomenon and differ in the scale
of the spatial concentration of energy. In both cases, we
are dealing with a cold plasma, but the high concentra-
tion of unrecombined ionic pairsin the case of globular
lightning leads to the energy instability which evolves
into a burst, while in aweakly ionized atmosphere, the
process evolves to a steady-state mode. The mecha
nisms of retardation of recombination also differ in
their spatial scales. According to the hypothesis devel-
oped on the basis of Stakhanov’s model [67], the stabi-
lization of ions in a globular lightning occurs at dis-
tances of the order of the thickness of the first hydrate
shell of anion (0.3-0.5 nm), while in the steady-state
process initiated by a radioactive radiation, the leading
role is played by another thermodynamic barrier
located at a distance of the order of 1 nm. The origin of
this barrier is qualitatively different and is associated
with the rapid expulsion of molecules from the ionic
gap. In Stakhanov’s model, the retardation of recombi-
nation is mainly determined by the probability of elec-
tron tunneling through a monomolecular hydrate layer,
whilein our model of the cold plasmawith alow charge
concentration, the recombination rate is determined by
the deceleration of the counter diffusion flows of ions
in the region in front of the barrier at atomic spacings
larger by afactor of 7-8 than in the former case.
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Abstract—Radiative transfer in anonequilibrium plasmain an external electric field is considered. The system
of kinetic equations determining the populations of atomic levelsiswritten taking into account the combination
of collision and radiative processes and is solved together with the kinetic equation for photon of various fre-
guencies, which are emitted and absorbed in the radiative transitions from the states of the continuous and dis-
crete spectra. The shape of spectral linesis determined from the solution of the quantum-mechanical problem
on the emission of an atom in the electric field of the plasma and an external magnetic field, taking the Doppler
effect into consideration. The devel oped approach is used in the model calculation of radiative transfer under
the conditions corresponding to the edge plasmain a tokamak, which is simulated by a homogeneous plane
layer of a deuterium plasma. It is shown that the joint action of the external magnetic field and the electric
plasma fields considerably affects the spectral and integrated characteristics of the radiation. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

In order to analyze the radiation emitted by a non-
equilibrium plasma, one must determine the concentra-
tions of all emitting components and solve the radiative
transfer equation for photons in the entire spectral
range. In the presence of reabsorption of the radiation,
the populations are nonlinear functions of radiation
parameters. For this reason, the system of kinetic bal-
ance equations determining the level populations must
be solved together with the radiative transfer equation.
In the presence of externally applied and intrinsic
plasma fields, the problem is complicated since the
effect of these fields on the emission and absorption
coefficients for photons of various frequencies must be
taken into consideration. The practical need in formu-
lating such problem emerges, for example, in an analy-
sis of radiative transfer in the low-temperature edge
plasma of a tokamak. For instance, in the deuterium
plasma in the edge region of the Alcator C-Mod toka
mak [1, 2] at temperature T, ~ 1 eV, for the electron
number density n, = 3 x 10'> cm3, and the atomic den-
sity n, = 10'3-10% cm= in amagnetic field B=6-8 T,
theemissionin spectral linesplaysadecisiveroleinthe
energy transfer process. Asaresult of intense recombi-
nation and the emergence of radiation with a partial
reabsorption of the lines from the Lyman series, the
plasma becomes nonequilibrium. Transport processes
are very sensitive to the shape of the lines, which is
strongly affected by the magnetic field of the tokamak
and the electric fields produced by the plasmaions and

electrons. Under such conditions, the Zeeman, Stark,
and Doppler effects for the lower lines in the Lyman
and Balmer series are approximately of the same order
of magnitude and must therefore be taken into account
simultaneously.

This work is devoted to the analysis of radiation
parameters of such plasmas. For this purpose, the equa-
tions of radiation—collision kinetics for excited states
are solved together with the radiative transfer equation.
The populations are determined from the direct numer-
ical solution of these equations as well as using the
modified diffusion approximation [3]. The calculation
of the spectral line profile is aseparate problem. To this
end, we obtained the solution of the quantum-mechan-
ical problem on the shape of the spectral lines emitted
by an atom in the electric microscopic field of the
plasmaand in an external magnetic field in the presence
of the Doppler effect. The electric microfield created by
the plasmaionsis taken into account in the quasi-static
approximation. Together with the magnetic field, this
field removes degeneracy and leads to the splitting of
spectral lines into components. For a fixed ionic
microfield, the broadening of the componentsis due to
the interaction with plasma electrons and the Doppler
effect. The resultant profiles of the lines determined in
thisway are averaged over the magnitude and direction
of the ionic microfield and are used in the equations of
kinetics and radiative transfer. We consider the simplest
geometry of the emitting volume, i.e., a homogeneous
plane plasmalayer. In view of the presence of the mag-
netic field, the problem is not one-dimensional, which
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complicates computations significantly. The inclusion
of the magnetic field may change the radiation energy
transferred in spectral linesand may considerably mod-
ify the intensity and shape of the lines emitted from the
bulk of the plasma.

2. POPULATION OF LEVELS

The populations of the excited statesn, = n(r, t) can
be determined proceeding from the equations of energy
level kinetics:

(1[‘_k - (W(Q)n _W(Q)n ) (1)
dt z z kK'k''k kk' ' 'k/

g=crk#k

Here, k determines the electron state corresponding to
the discrete level k= 1, 2, ..., k,, or to the continuous
spectrum k = e. We assume that the population of levels
with k >k, are in equilibrium with the continuous spec-
trum, and these level can be effectively taken into
account by ascribing them to the continuous spectrum e.
Symbol g denotes the collision-induced (q = ¢) pro-
cesses of excitation, ionization, quenching, three-parti-
cle recombination aswell asradiative (q = r) processes
such as transitions in the discrete spectrum, photore-
combination, and photoionization. The probabilities

Wf,‘,‘])1 of then — mtransitionsin aq process were cal-
culated using the formulas from [4].

According to estimates, the formation and destruction
of negative and molecular ions at temperatures T ~ 1 eV
are not essential for calculating the populations of
excited states and the radiative transfer. For thisreason,
we considered plasmas consisting of atoms, electrons,
and singly charged positive ions.

In the quasi-stationary approximation, putting
dn,/dt = 0, we obtain a system of algebraic equationsin
the collision—adiation approximation, which was
solved in agiven radiation field. Besides, to reduce the
computation time, we used the modified diffusion
approximation (MDA) in which analytic formulaswere
derived for calculating the populations [3]. This
approximation is constructed on the analogy between
the motion of an electron in the discrete space of atomic
energy levels and the random roaming of a Brownian
particle; thisleadsto the discrete version of the Fokker—
Planck equation. Its solution directly specifies the val-
ues of populations taking into account radiative and
collision processes (see [3, p. 133]).

In this paper, atomic units are used.

3. RADIATIVE TRANSFER

If we disregard scattering processes, the spectral
intensity of radiation at frequency w with polarization
p in a certain direction defined by the unit vector €
( = k/|k|, where k is the wave vector of the electro-
magnetic radiation) satisfies the transfer equation
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di,, .
—d—S—p + Kwplwp = prv (2)

where s is the coordinate along the beam in the preset
direction, j,, isthe bulk emissive power, and K, isthe
absorption coefficient taking into account the induced
emission. The solution of Eq. (2) hasthe form

S S

g g
lop(S) = J’jwp(S')eXpE‘rJ’Kmp(S')dSEHS'- ©)
—o0 s

For the isolated spectral line corresponding to tran-
sition n — m, in the approximation of the total redis-
tribution over frequency and polarization, we have

.nm W 1. nm
J(.op(r’ Q) = Z_F[Anmnn(r)éq)mp(rv .Q), (4)

where A,,, is the Einstein coefficient for the spontane-

ous emission of aphoton, and ®g (r, Q) istheline pro-
file for such an emission in direction €, normalized to
unity. In the presence of a magnetic field B, the emis-
sive power and the absorption coefficient depend on the
magnitude of the magnetic field aswell asitsdirection.
If there exists a preferred direction, the anisotropy in
the properties of the plasma may become significant
and, hence, the electromagnetic radiation in the genera
caseis determined by the four Stokes parameters. In an
optically inactive medium, under the condition of com-
plete mixing of polarizations, it is sufficient to write the
transfer equations for each polarization separately. The
necessary condition for complete mixing in frequency
and polarization is that the frequency of collisions
between an atom and electronsis much higher than the
frequency of radiative transitions.

In the case of aplane plasmalayer (O<z<Ll)ina
uniform magnetic field directed at angle 3 to the z axis
(which is normal to the layer), the intensity of radia-
tion (3) emitted from the layer in direction (3, ¢)
(9 isthe angle between the direction L of the beam and
the zaxis and ¢ is the angle between the projections of
Q and B on the plane perpendicular to the z axis) can
be written in the form

lo(9,0) = ZImp(z,{), )],
L p L (5)
1 . 0 1 0
= G055 X Jun(® ) @PEos [iu(Z, X) 02z,
PO Z

where X isthe angle between € and B:
cosy = cosPcosd + sinfBsingd cosd. (6)
In the problem of plasma radiation energy losses, it
is important to calculate the emissive power carried
through a unit area element on the surface of the layer.
For the spectral line corresponding to then — mtran-
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sition, the radiation yield in the half-space correspond-
ing to the positive direction of the z axisis defined as

/2 21

= [dw [ sinddd [dd N I,,(d, d)cosd
foofsnse [o03 .

L 2

= %"Anm dzn,(2)[deo [ sin9dd @)
0 0

Kp(Z, X)dz0
Id¢zz¢ o2 x)exp[-)—f cosd [
where we have taken into account the fact that the line
width is much smaller than the radiation frequency .

In Egs. (1) of the energy-level kinetics, the emission
and absorption processes in the spectral linen — m
appear in the form of the combination

Wi )N (r) =Wia(r)ng(r) = Agna(r)
+ % IdedQ%[Bnmnn(r)&:ES(r, Q) 6)

- annm(r)q)gg(rﬂ 9)] I(r:)n’:(r, Q)

Here, cisthe velocity of light, B,,,, and B,,,, are the Ein-
stein coefficients for absorption and induced emission,
P (1, ) and Pop (1, Q) are the spectral line profiles
for the emission in direction  corresponding to these
processes, and dQ is the solid angle element for the
direction of emission (dQ = sinddddd). Quantity (8)
defines the number of photons corresponding to transi-
tion n — m, which emerge from the unit volume of
the plasma surrounding point r per unit time. It is con-
venient to introduce the so-called effective probability
of radiation,

Ann(r) = A

1 .dw nm ©)

where K (r, ) is the absorption coefficient corre-
sponding to the given isolated line,

w
Kwp(r, Q) = o

X [ B (1) Pasp(F, ) = BraNen(r ) Pin(r, )]

Relations (8) and (9) are of a general nature and are
valid for an arbitrary geometry of the emitting system.
Using relation (9), we obtain instead of (8) the follow-
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ing expression for the radial component of the equa-
tions of the energy-level kinetics:

Wi(r)N(r) =Wia(r)ng(r) = Akna(r).  (10)

Substituting the solution of the transfer equation in
form (3) and the emissive power (4) into Eqg. (9), we
obtain

ALL(r) = Anm[ - J’nn(r YI(r, T )dr} (11)

where the integral is taken over the entire plasma vol-
ume, and

H(r,r) = %%ZJ’KW(r,g)q:g;‘(r', Q)

Amir —r'
[r—r

xexpE-)—I Kep(r", ﬂ)dqtdw

Here, point r" runs along the straight line from point r
to point r', so that
= r;r' = ' —_— "
Q= e q=|r-r".

Following Biberman [5], we assume that n,(r) isa
slowly varying function of r (at least in the major part
of the integration domain). In this case, n(r") in
Eq. (11) can be taken out of the integral. According to
calculations, such a representation holds well for the
model problem with aplasmalayer of thicknessL since
the value of n,(r) varies only dightly except in narrow
surface regions (z= 0, z= L) of thickness Az < L mak-
ing asmall contribution to the integral (see Section 5).

As aresult, we obtain the following expression for
the effective emission probability A% in the problem

with aplane layer under consideration:

Arn(2) = Aun[Onm(Z 0) + Oyn(z L)1, (12)
w2
Onm(z,2) = =— J’dwj‘dz tand dd
7, (W2)(1-3) (13)
Kpo(Z, X)dZU
P
whered = 1for z,> z and 6 =1 for zl> Z.
In zero magnetic field, we have
11
enm(zl’ 22) = E_ éIdwKw(Zl)
Z, z |:| (14)
x Iqag”‘(z) E.0(K(2)dz|z
O
r Z
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where z. and z. are respectively the smallest and largest
values of z; and z,, and E;(y) isthe integral exponential
function:

ooe_yt
Ei(y) = .[T dt.
1

4. SPECTRAL LINE PROFILE
IN A MAGNETIC FIELD

The problem on a hydrogen atom in cross electric
and magnetic fields was considered by many authors
both analytically, using perturbation theory [6-9], and
by solving equations numerically in the case of ultras-
trong magnetic fields [10, 11]. A much more compli-
cated problem of spectral line broadening in the case
when an emitting atom is under the action of an exter-
nal magnetic field and the fluctuating electric micro-
scopic field of aplasmawas studied in detail in [12-14]
using the quasi-static approximation for ions. The first
two Lyman lines and a Bamer line were calculated.
Mathys[14] took into account the Doppler broadening.
The effect of ionic dynamicswas studied by Giinter and
Koniesin their recent work [15].

An externaly applied magnetic field and the electric
field produced by ions and electrons of a plasma
strongly affect the shape of spectral lines. Asarule, the
ions can be considered in the quasi-static approxima:
tion, while the electrons should be analyzed in the
impact approximation [16]. In crossed electric and
magnetic fields, the degeneracy is removed, and the
spectral lines corresponding to transitions between the
levels with the principal quantum numbers n and n
split into individual components. The structure of such
asplitting is more complex than in the presence of one
of the field. The shift of each component and its inten-
sity are determined by the magnetic field induction B,
the strength of the quasi-static ionic microfield E, and
the angle between vectors E and B. Besides, the inten-
sity of a component (but not its shift) depends on the
direction  of radiation, to be more precise, on the
angles between Q and vectors E and B. The profile of
each component is determined by the Doppler effect
and by the interaction between an atom and free elec-
trons. The resultant profile of the line corresponding to
the n — n transition can be calculated by averaging
over the magnitude and direction of the quasi-static
ionic microfield:

Pon(r, Q) = A%JP(E)
(15)
X Z Rove(E) @oup(w, E)dE.

Here, P(E) is the probability distribution function for
the electric ionic (quasi-static) microfield, which is
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assumed to be isotropic, Ry, (E) and @,,,(w, E) are
the relative intensity and the profile of an individual
component v . — v into which transition n — n
splits in the given magnetic (B) and electric (E) fields
(here and below in this section, the dependence on the
magnetic field and on r isnot manifested explicitly). By
v and v we denote the sets of quantum numbers deter-
mining the initial and final states for each component
(see below).

In contrast to [12-14], where the energy matrix
could be diagonalized numericaly in the basis of the
angular momentum eigenstates, we develop here an
approach using the analytical results obtained in [6] for
energy level splitting. This allows us to present analyt-
icaly the dipole matrix elements between the basis
wave functions.

The profile of each component is determined by the
Doppler effect and by the interaction of the atoms with
free electrons. These mechanisms are treated as statisti-
cally independent, and the resultant contour @;,, (w, E)
can be calculated as a convol ution of the corresponding
profiles:

1
'\/;[D\’)v
XJ.Lvap(w_ Wyy —S, E) exp[_(S/DVV)Z] dS,

where wy, isthe position of the center of the compo-
nent correspondingto v.— v,

Govp(W, E) =
(16)

Doy = (wy/C)(2T /M)

is the Doppler broadening parameter, T, is the temper-
ature of atoms, and M is the atomic mass. For the elec-
tronic profile Yy, (w E), we use the approximation
proposed by Seaton [17] for calculating the broadening
of Stark components by electrons. In the given case, the
line splitting is associated with a combination of the
Stark and Zeeman effects, which renders specific fea-
tures to the line profiles and requires a certain modifi-
cation of thetheory [17]. Thisproblem isconsidered in
the Appendix.

The relative intensities of the components corre-
sponding to the v. — v transition in the dipole
approximation are defined as

e, V|r|vll hn o
Z||pe mrEEﬂZ =, eIV An
P nn

where g, is the unit vector of photon polarization and
f.n ISthetotal oscillator force for then — n transi-
tion.

We assume that the lines are isolated. In this case,
the characteristic line width is smaller than the separa-

_ 2w

Vvp
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tion between the lines, which imposes the following
limitations on the magnetic field and the plasma density
for agiven line:
B<c/A®, n,<0.05/n""> (18)
It should be noted that the approximation of the rec-
tilinear classical tragjectories of perturbing electrons,
which is conventional in the theory of atomic spectral
line broadening, does not lead to any additional con-
straint on the magnitude of the magnetic field. Indeed,
this condition requires that the Larmor frequency be

smaller than the plasma frequency, or B < 8nc2ne. It

can easily be verified, however, that the latter inequality
always holds when inequalities (18) are satisfied. We
can neglect the spin—orbit interaction since the fine
structure splitting at temperatures T ~ 1 eV, which are
typical of divertor plasmas, is smaller than the Doppler
width of the levels.

It was proved by Epstein in the framework of the old
Born theory (see [18, 19]) that the combined effect of
the magnetic and electric fields on the orbit of an elec-
tron in astate with the principal quantum number n and
the orbital quantum number | in the first approximation
in the field can be described as a uniform and indepen-
dent precession of vectors

gnL Fry
(L isthe angular momentum and r, is the radius vector

of the electron, averaged over its orbital maotion) with
the angular velocities

W, = 2_ch F :—;nE, (29
respectively.

In the same approximation, the corrections to the
electron energies have been obtained [18]. The quan-
tum-mechanical analysis in the first order of perturba-
tion theory leads to the same result [6]. Hamiltonian #
can be written as the sum

H = Ho+ ¥,
of the unperturbed Hamiltonian
¥ = D121t
and the perturbation
¥, = (2c)'BLL +E [T,

which can be presented in the subspace of states with a
preset value of nintheform

#1= 3¢ 2
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where
1
= - +
I, = 5(L£A)

and A is the Runge-L enz vector satisfying in this sub-
space the relation [6]

A = =2r/3n.

Operators|, ,commutewith J€, and satisfy the con-
ventional commutation relations for the angular
momentum operator. It follows hence that

11=12=i(+1),

where | is determined by the number of possible states,
i.e, 2(2j+1)* = 2n°, and hence j = (n—1)/2, and
the components |, along the w, axis and I, along the
w, axis (we will denote them by n' and n", respectively)
may assume 2j + 1 integer or haf-integer values
-, -+ ..., ]-1,].

Inthefirst order of perturbation theory, we can write

1

1 1 "
Ennn'm, = _Z_nz N +wn + EBmS’ (20)

where m, = +1/2 is the spin projection on the axis
directed along the magnetic field.

The corresponding wave function .- can be writ-
ten as a linear combination of wave functions in the

parabolic coordinates with the z axis directed along the
electric field E:

i j

o = 3 Y i (00) A (@)W, (2D)
]

ip=—ji;=—
where dlj(k. (o) = Djkk. (O, a, 0) isthe Wigner function [20]
corresponding to the rotation about the z axis through

anglea and Yy, i, = W, , m» arethewavefunctioninthe

parabolic coordinates. In the present case, it is conve-
nient to characterize these functions by guantum num-
bersi, andi,, which are the components of operators|,
and |, along the z axis and are connected with the con-
ventional parabolic quantum numbers n;, n, and the
magnetic quantum number m (n; + n, + M| + 1 =n)
through the following relations:
ip+i,=m, i;—i, = n,—n;,.
Angles a; and a, are formed by vector E with vectors
o, and w,, respectively, i.e.,
_ (1/2c)Bcos?' ¥ (3/2)nE

cosa, , = S :
1,2

where 9" isthe angle between E and B.
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The shift of component v — v (v denotes the set
of quantum numbers nn'n") relative to the center of the
line can be obtained from Eq. (20) if we disregard the
spin-orbit interaction:

Wy, — Wy, = WN' +W,N" —w;N' —w,N".

The dipole matrix elements appearing in (17) with
the wave functions (21) can be presented in the form of
linear combinations of the matrix elements calculated
in parabolic coordinates. Let €0 Epy and epzbethe Car-
tesian coordinates of the unit polarization vector e, ina
coordinate system with the z axis directed along E and
the x axis lying in the plane of vectors E and B. In this
case, we have

e, V[rjvO= Z €, V|a v

a=xy,z

V|a|v(= thn'n"|a|nn'n"0
i P | _,
=Y 2 Y Y du(a)dv,(@)dy (0 (22)

x d;'-iz(az) Chyn,mlalnyn,m0]

where the matrix elements h,n,m|a|n, h,M Cin the par-
abolic coordinates are calculated by the Gordon formu-
las[21].

We direct one of the polarization vectors, e, along
the normal to the plane of vectors Q and B and choose
the other vector e,so that it liesin this plane and is per-
pendicular to Q. It is convenient to carry out the aver-
aging in Eq. (15) over the directions of E in areference
frame associated with the magnetic field. Let ¢' be the
angle between the projections of vectors  and E on a
plane perpendicular to vector B. In this case, we can
write

e = cosd'sing’, e, = cosd', e, = sind'sing’,
€,, = —Cosy cosd'cosd' —sinxsing',
€, = cosxsing',
e,, = —cosy sind'cost’ + sinx cosy’,
where angle x is defined by Eqg. (6).

The Wigner function dlj(k. (a) in formulas (21) and
(22) can be expressed in terms of the Jacobi polynomi-
as[20]:

172

die(a) = Ekk’[(:'f.su-;!k(lszv\z!)!}

. art art )
x%nED %:OSED P (cosa),
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where

w= k=Kl v=lkekl, s=j-S@+v),

M for k'=k,
S = O KK
-1) for k' <k.

The Jacobi polynomials P*" can be conveniently
evaluated using the recurrence relations [22].

For caculating the broadening by eectrons, we will
use an gpproximation in which the profiles of individual
components are independent of angle ¢' (see the Appen-
dix). In this case, the integration with respect to ¢' in
Eq. (15) is carried out analytically, which gives

nn __ 1-00 ’ [ ] '
Dy = 2JdEP(E)ZIdw‘a SiN®' @y p(w, 9 [Ry,,,0 (23)
0 AN
1 2n
Ryyp0 = EJ Roypdo'. (24)
0

For p =1, we have
wﬁn

[(Ry, L=
e

[(x/cos9" +Zsin®)” +(y1)],
while for p = 2, the following expression holds:
(*)ﬁn

[Ry,,0= oy {2sin’x(X’sind’ — Z'cos9")’
n

+ coS’X[ (X} cosd"' + Zsin®")” + (y3)°1},

where the matrix elements a = M|a|v ((a=Xx, Y, 2) are
defined by expression (22).

5. RESULTS OF CALCULATIONS

We studied a plane layer of a homogeneous deute-
rium plasma at temperature T, = 1 eV, with the electron
number density n, = 3 x 10' cm= and atomic densities
n, = 1013-10'% cm~3, which simulates a plasma with a
varying optical density. Although the total number den-
sity of atoms was assumed to be fixed for definiteness,
the populations of individual levels depend, among
other things, on the optical density of thelayer andisa
function of coordinate z (the z axis is perpendicular to
the plane of the layer). In order to determine the extent
to which the magnetic field affects the radiative transfer,
we made cdculaions for zero magnetic fidld (B = 0) as
well aswith amagnetic field B=8 T directed at various
angles to the plane of the layer. In the conditions under
investigation, the Zeeman, Stark, and Doppler effects
for the lower linesin the Lyman and Balmer seriesare
of the same order of magnitude, which means that
these effects must be taken into account simultaneously.
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The relevant quantities are given in the table. The elec-
tronic width is estimated by using the approximate for-
mula [23, 24], the Stark shift is included as the second
term on the right-hand side in formula (19) for the upper
energy level in the trangition in the norma (Holzmark)
field of ions, and the shift in the magnetic field is taken
into account as the first term in the same formula.

In our calculations, we assumed that the profiles of the
spectral line corresponding to spontaneous emission,
absorption, and induced emission are the same, which
corresponds to the approximation of the complete
redistribution of photons over frequency [25]. In the
static approximation for ions, the participation of colli-
sions with the ions in this redistribution is neglected.
However, in the conditions of our problem, almost
complete redistribution is attained due to impact colli-
sions with electrons and the Doppler effect. The fre-
guency of the collisions with electrons is much higher
than the spontaneous emission probability, and the
overlapping of the Zeeman—Stark components ensures
the frequency redistribution within the entire line pro-
file (see the table).

It should be noted that the application of the quasi-
static approximation for ions in the central region of
spectral lines is incorrect. In zero magnetic field, the
width of thisregion for the Ly-a line is of the order of
the width of the line itself. Consequently, the accuracy
in the calculation of the Ly-a profile is lower than for
other lines. However, in the presence of a magnetic
field, the linewidth increases significantly, and the rela-
tive role of the ionic dynamics decreases. For this reason,
“switching on” the magnetic field dightly improves the
accuracy of calculation of line profiles, and the inclusion
of the ionic dynamics becomes relatively less impor-

4 T T T T
3l <7 n=2\\\\ |
7
g
i 7
é2
N 6
= 5
C 7
1r 3 4 7
(a)
0 02 04 06 08 1.0
z cm
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Parameters of line broadening (in eectronvolts) for various
mechanisms responsible for broadening in deuterium plasma
for T,=1eV,n,=3x10%cm3 n,=3x10%cm3, andB=8T

; Electronic | Doppler . | Shiftin mag-
Line | = \lidth | parameter | @K St | ™haic field
Ly-a | 41x10° | 33x10% | 1.2x10* | 46x10*
Ly | 1L.7x10* | 3.7x10% | 1.9x10* | 46x10*
Ly-y | 47x10% | 42x10% | 25x10% | 46x10%
D-a | 1.7x10* | 6.2x10° | 1.9x10* | 46x10*

tant [15]. A similar conclusion about alower line shape
sensitivity to the broadening mechanisms in the pres-
ence of a magnetic field was drawn long ago by
Mathys [14].

The population distribution over the plasma layer

was calculated by the method of iterations. First, the
populations were assumed to have equilibrium values

n, = nff)) and a modified diffusion approximation was
used. At thelast stage (third or fourth iteration), the sys-
tem of equations (1) was solved. To describe the spec-
trum, 3100 groups had to be chosen on a special non-
equilibrium mesh in w (100-200 points for each of the
principal lines of deuterium). The calculations were
made using a multiprocessor computer. Parallelizing
was carried out by splitting the problem over the spec-
trum paying attention to the uniform loading of the pro-
CESSOrS.

The distribution of deuterium atoms over the energy
levelsin a plasma layer of thickness 1 cm is shown in
Fig. 1. The role of the radiation yield in the lines

(b)

0 02 04 06 08 1.0
Z cm

Fig. 1. Populations of excited levels of deuterium in a plasma layer of thickness 1 cm for T,= 1 eV, ng= 3 x 10° cm™, (8) n, =
3 x 10 cm3 and (b) 3 x 10 cm™ as a function of coordinate z perpendicular to the plasma layer.
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Fig. 2. Population of deuterium levels at the center of the
layer normalized to their equilibrium valuesfor To= 1 eV,

Ne=3x 101 cm™3, n, =3 x 10 (1) and 3 x 10 cm 3 (2).
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Fig. 3. Profiles of the Ly-a and D-a spectral lines of deu-
terium (in the absence of reabsorption) for To= 1€V, ng =

3x 10 cm 3, B=0(1) and 8 T (2—6) for various directions
of the magnetic field relative to the direction of observation:
cosy =0(2), /4 (3), U2 (4), 3/4 (5), and 1 (6).

belonging to the Lyman series increases strongly aswe
approach the edge of the layer; for this reason, the pop-
ulation of the first excited energy level (n = 2) at the
layer edge decreases abruptly. The width Az of the
region where this decrease takes place corresponds to
the optical width k Az~ 1. For other energy levels, this
effect isless pronounced, and their populations rapidly
approach equilibrium values (according to Saha) with
increasing n (Fig. 2). Inthiscase, the magnetic field vir-
tually does not affect their values. “ Switching on” the
field B=8T leads to a change in the population by less
than 0.3%, and the dependence on the direction of the
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field is even weaker. The populations of all energy lev-
els turn out to be weakly dependent on coordinate z
except for the level with n = 2 for which the population
in the surface regions decreases considerably (see Fig. 1).

Specifying the atomic concentration n, below or

above the equilibrium value (which amounts to nff) =

24 x10% cm3forn,=3x10% cm2and T, = 1 eV),
we simulate the recombination or ionization mode,
respectively, in the nonequilibrium plasma. This leads

to an underpopulation (n,/ nﬁo) < 1) or overpopulation

(n/n'® > 1) of lower atomic levels, while upper levels

are always in equilibrium with free electrons. In fact, a
considerable departure from equilibrium population
under our conditions is observed only for the ground
level n =1 (see Fig. 2). Figure 1 also shows the results
of calculations in a modified diffusion approximation,
which ensures virtualy the same accuracy as in the
numerical solution, but the computation time becomes
much shorter, which is important for the numerical
realization of complex computational algorithmsin the
calculation of radiative transfer in a nonequilibrium
plasmain the 2D or 3D geometries.

The effect of the magnetic field on the profiles of the
first linesin the Lyman (Ly-a) and Balmer (D-a) spec-
tral seriesof deuteriumisillustrated in Fig. 3. Each pro-
fileis the result of averaging of profiles (23) for polar-
izations p = 1, 2 and is normalized by the condition

J’CDZ)”dw = 1.

For the resultant profile, the direction of the magnetic
field is as important as its strength. The line profile
changes significantly depending on the angle x between
the direction of the magnetic field and the direction of
radiation (direction of observation). The results of calcu-
lation arein agreement with the data obtained in [12-14].

The combined effect of radiation reabsorption and
of magnetic fields of various orientations is illustrated
in Figs. 4-6, which show the variation of the profiles of
the spectral lines emitted by a plasma layer in a direc-
tion normal to the layer depending on the layer thick-
nesses. The results of calculation by formula (5) are
given for two values of atomic number density n, = 3 x
10* cm3 (Figs. 4a, 5a, and 6a) and 3 x 10'° cm
(Figs. 4b, 5b, and 6b). Each figure shows the profiles of
three Lyman and one Balmer line (Ly-a, Ly-f3, Ly-y, and
D-a from left to right) whose centers are separated by
0.005 eV for five values of the layer thickness. All the
lines are given on the same intensity scale and on the
energy scale relative to the center of the lines.

It can be seen from the figures that the Ly-a line is
trapped in a layer of thicknessL = 0.1 cm for n, = 3 x
10% cm= and in a layer of thickness L = 0.6 cm for
n, = 3 x 104 cm3. Asthe layer thickness increases fur-
ther, the line intensity changes insignificantly. The Ly-3
lineistrapped for L = 2 cmiif n, = 3 x 10* cm3; if the
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atomic density is an order of magnitude higher, it
occursfor the layer thicknesswhich is an order of mag-
nitude smaller. Indeed, the popul ations of the absorbing
energy level n = 1 in the Lyman series differ in these
two cases almost by an order of magnitude (see Fig. 2).
The features of self-absorption for Ly-y appear only for
n, = 3 x 10% cmr3, while for n, = 3 x 10* cm3, theline
intensity increases in proportion to the layer thickness,
which is typical of optically transparent plasmas. For
the D-a line, the plasma layer is optically transparent,
the line intensity remaining virtually unchanged upon
an order-of-magnitude change in the value of n, since
in these two cases, the population of the upper (n = 3)
and the lower (n = 2) energy level areclose (see Figs. 1
and 2).

Thedip at the center of alinetypical of self-absorp-
tion appears only on the Ly-a contour since the popula-
tion of the energy level n = 2 emitting this line
decreases noticeably at the layer surface (see Fig. 1).
Thiscan be seenin Fig. 4 (B =0) and Fig. 5 (B is per-
pendicular to the direction of observation), where the
Ly-a line is not split by the magnetic field. In the case
when the magnetic field is parallel to the direction of
observation, the Ly-a lineis split by the magnetic field,
and the self-absorption effects emerge on each of the
two peaks (Fig. 6; cf. Fig. 3). The central part of the Ly-3
and Ly-y linesremains flat after their reabsorption since
the populations of the levels emitting these linesremain
virtually unchanged in the surface regions.

The magnetic field affects the line width and the
structure of the prafile, the magnetic field direction play-
ing asignificant rolein the latter case. However, the inte-
grated characteristic, i.e., theradiation yield from the layer
surface, is virtualy independent of the field direction
since achangein the direction does not lead to anotice-
able redistribution of intensity between the center of the
lineanditswings (seeFig. 3). Theradiation yield wascal-
culated by formula(7) taking into account the dependence
of the population of levels on the radiation field in accor-
dance with the system of kinetic equations (1) and rela-
tions (10), (12)—«14).

Figure 7 shows the radiation yield from one of the
two surfaces of aplane plasmalayer asafunction of its
thickness for two values of atomic number density in
zero magnetic field as well asin the field B =8 T
directed perpendicularly (3 = 0) to the plasmalayer and
paralel toit (B = 172). In the last two cases, the curves
almost merge into one. The magnetic field leads to an
increasein the radiation yield for partially locked spec-
tral lines due to an increase in their width. The plasma
layer is optically transparent for the D-a line and,
hence, the magnetic field does not affect itsyield. The
yield of thetrapped Ly-a linefor n, = 3 x 10'> cm and
L > 1 cmisalso affected by the magnetic field insignif-
icantly. Therelativerole of the magneticfield intheline
broadening decreases as we go over to higher termsin
a spectral series. The presence of thefield B=8T vir-
tually does not affect the radiation yield even for Ly-y
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Fig. 4. Profiles of the Ly-a, Ly-B, Ly-y, and D-a spectra
lines emitted by a plane layer of deuterium plasmain zero
magnetic field in a direction normal to the layer for Te =

l1eV,ng=3x10%cm=3 (@ n,=3x10%cm3 o

(b) 3 x 10%° cmi3; the plasmalayer thicknessis0.1 (1), 0. 6(2)

11(3), 1.6 (4), and 2.1 cm (5). For each value of the layer
thickness, the centers of the lines are separated from one
another by 0.005 eV.
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Fig. 7 Radiation yield for spectral lines Ly-a (1), Ly-B (2),
Ly-y (3), and D-a (4) as afunction of the plasmalayer thick-
nessfor T,=1eV, ng=3x 10® cm3, (a) n; = 3 x 101 cm
and (b) 3 x 10'® cm™3; solid curves correspond to B = 0, dot-
ted curvestoB=8T, B =0, and dashed curvestoB=8T,
B=m2.

for both values of n, considered above, although the
effect of reabsorption in these two casesis different.

6. CONCLUSION

The shape of the spectral lines of deuterium and the
radiation yield from aplanelayer of adeuterium plasma
of various thicknesses are calculated for T = 1 eV,
Ne=n,=10%cm=3 andB=8T.

It is shown that the magnitude as well as the direc-
tion of the magnetic field considerably affect the shape
of spectral lines. The contour of a spectral line may
acquire a complex structure. For example, when the
direction of observation is paralle to the magnetic
field, adip appears at the center of the Ly-a line. Asthe
principal quantum numbers of the lower and upper
states of the transition increase, the contour structure
becomes more complicated. It should be noted that in
order to single out the effect of the magnetic field and
to simplify our computations to the maximum possible
extent, we disregarded the dynamics of ions. Obvi-
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oudly, itsinclusion must lead to a partial smoothing of
the obtained structures.

The spectral line profile may be considerably
deformed asaresult of reabsorption. Thiseffect isobvi-
ously manifested most clearly for the first lines in the
Lyman series and depends on the optical thickness of
the plasma layer. Operating together with the magnetic
field, it may either additionally complicate or simplify
the observed contour of the spectral line. Thisis prima-
rily determined by the form of the spatial dependence
of the population of the upper and lower levels of the
trangition in the vicinity of the surface of the emitting
layer.

Theradiation yield from the plasmalayer for agiven
line integrated over the spectrum depends on the mag-
nitude of the magnetic field, but is virtually indepen-
dent of its direction since the magnetic field direction
affects the structure of the spectral line profile, but not
the line width. This allows us to use in the radiation—
collision kinetics the radiation parameters averaged
over the directions and simplifies the inclusion of the
magnetic field effect on the energy balance in the edge
region of atokamak. Thefactorsleading to spectral line
broadening, in particular, strong magnetic fields, con-
siderably affect the radiation yield for partially reab-
sorbed lines. In the limiting cases of small or large opti-
cal width, theradiation yield isvirtually independent of
the line width and shape.
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APPENDIX
Broadening by Electrons

A simple model for calculating the electron broad-
ening of hydrogen lines was proposed by Seaton [17].
It is based on the Bethe-Born approximation for the
binary interaction of an emitting atom with aperturbing
electron, the truncation in the orbital angular momen-
tum, and the analytic approximation of the line profile
taking into account its normalization to unity. This
approximation ensures the correct frequency depen-
dence both in the profile core, where it corresponds to
the impact approximation, and at the wings in the
region of transition from the impact to the static
approximation. The static electron wing for the plasma
parameters under investigation falls to the frequency
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range in which the approximation of isolated lines is
violated and was not considered by us here. The profile
associated with electron broadening can be approxi-
mated by the expression

Ye(Uu)/2m

Velu) = U+ ge(u)/4’

(A.D
where & denotes the component v — v (nN'N" —»
nn'n") of linen — nand u=w- w;y, isthe distance
from the center of the given component.

Profile (A.1) is symmetric; consequently, we will
henceforth assume that u > 0. Functions y;(u) and g¢(u)

satisfy the following formulas derived by Seaton [17]
for a hydrogen plasmain zero magnetic field:

Ye(u) = A/ngerw(u), (A.2)
ge(u) = J?%T . W(g)du‘. (A.3)

Here, function w(u) depends only on the principal
guantum numbers of the transition and is the same for
all components. On the contrary, factor F; is determined
by dl quantum numbers of theinitial and final Sates and
does not depend on u. In the presence of amagnetic field,
function w(u) remains the same asin [17] and factor F;
must change. For w(u), we have

D/Vo,
W = B,

where u, is determined from the equation

u<u,

u>uy,

Woo(ul) = WO'
In the case of a neutral hydrogen (or deuterium)

atom, we have
_2 _2_ D
O-y,—E, 4n°(n 1)D,

1| O 2TrD O
Wy = 3| ING——p2— P
2| @Bn*(n°-1)0 O(5n% + 1)°T O
C+Du/TTh
In%L 1+Qu/Tul

where rp is the Debye radius and y, = 0.5772 is the
Euler constant. The parameters C, D, and Q depend on
n and are given in [17]. The integral with respect to u'
in (A.3) can be evaluated in elementary functions.

The diagonal matrix y approximates the electron—
electron interaction matrix I" and is defined so that [17]
its elements are proportional to the diagona el ements
of the interaction matrix, and the matrix product D*I'D
does not change as aresult of approximation, i.e.,

Y: = bl;, D*yD=D'TD.
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Here, D is the column matrix consisting of the transi-
tion probability amplitudes D; whose squares of the
moduli are equal to the relative intensities of compo-
nents (17). For this reason, factor F; is the product of
the proportionality factor b and the diagonal element
Gy of matrix G (F; = bGg), which is connected with I’
inthe sameway asF; is connected with y; through rela-
tion (A.2):

I = /2wW/Tn ,Gw(u).
Coefficient b is defined as
> Dz G Dy
b= &

2
z |De| “Gee
:

The explicit form of G is defined in [17] in the rep-
resentation of states |nim(the corresponding matrix
will be denoted by G() and the transition to the repre-
sentation of the parabolic states |n;n,mis indicated. In
the case of crossed electric and magnetic fields, we
must go over to the basis of states (21). In the nim rep-

resentation, the matrix element Gth) (s, taretransitions

(A.4)

between the il M and nlm states) has the form
G(aLt) = C(ls, ’ 51 ms1 ms_ r_ns1 ms)
x C(Iy, 1, Iy; My, m—m, m)G (I, Ts; 1, 1)

x[(2lg+1)(21,+1)] ™,

where C(jy, jo j; My, m,, m) are the Clebsch—Gordan

coefficients and G-(l, Is; I, I;) is the reduced matrix
element which may differ from zero only if

ls—lg = 1, [i—I, = #1,
l,—lg=0,%#1, I—Is=0, %1
Forlg=1,=1(inthiscase, Is = I, = | also), we have
P, 1,1,1)

= 6[nA(n*=1*=1—1) + A("°=1° =T -1)],
whilefor I, # |, we have

P, Ts 1, 1)

* Ji(n, 1, 1)d(n, T, 1),
tlt
where

d(n, 1,1 = (I=1)[nl.(n®=13)]"*

and |, isthe larger of numbers| and I'.
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A transition to representation (21) is carried out
with the help of the transformation matrix Y, which is
constructed from the coefficients of the expansion of
states [nn'n"(in states |nimC

G = YG"v*,
Y(§,s) = Chim|nn'n"(Thi m|An'n"0
The expansion of thenn'n” statesin the statesin par-
abolic coordinatesis determined by formula(21), while
the expansion of thelatter in the nimstatesis carried out

with the help of the Clebsch—-Gordan coefficients
[26, 27, 19]:

J
Mimanno= (=1)"dl; (ay)
ip=-]
% A (02)C(J, ], 1 iz Tz ),
wherei, =m—i, n, =j +i; — (M+ |m])/2.
The numerator in formula (A.4) can be calculated in
any representation, but the easiest way is to make cal-

culation in the nim representation. The denominator is
calculated in the nn'n" representation. In this case, the
relative intensities of the components D¢ [ = R;,, and,
hence, profiles (A.1) are complex functions of anglesd'
and ¢' over which the integration in Eq. (15) is carried
out. In order to simplify calculations, we use the fol-
lowing approximation. Instead of |Dg|?, we substitute
into Eq. (A.4) relation (24), i.e., the result of averaging
of thisquantity over ¢', and also carry out the averaging
over polarizationsin the numerator and denominator of
Eq. (A.4) separately. This gives

b=4% (I=19(~1)(sl)"
Iy
x RRAG (15 T 1, T)
(A.5)

X

O %I:I

ZGEE {2sn°x (X sin9' — 2 cos9')’
;

-1

+ (1+ cogx)[(Kcos9" + Zsind") + (v2)]) @ ,

wherel, isthelarger of thevaluesof I;and [, |, isthe

larger of the values of |, and I, and Rﬂ,' is the radia

matrix element calculated by using Gordon’s formula
[21, 28]. In order to justify this approximation, we note,
first, that the broadening of individual components is
determined by three factors: the Doppler effect and the
interaction with ions and electrons, while the applica
tion of approximation (A.5) roughens the effect of only
one (the latter) of these factors. Second, factor b
appears in the approximation of the interaction matrix
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which is computed using a number of approximations;
consequently, it is meaningless to require a high accu-
racy of its calculation. Finaly, the dependence of the
final result on b will be masked to a considerable extent
as a result of averaging over the magnitude and direc-
tion of the quasi-static microfield in Eq. (15). For this
reason, approximation (A.5) is justified, which was
confirmed by approximate calculations. The application
of thisapproximation makesthe profile of component (16)
independent of angle ¢' and simplifies the integration
in Eq. (15).
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Abstract—L ow-frequency oscillations in the density of dust particles, which are spontaneoudly excited in the
standing plasma column of a dc glow discharge in neon, were experimentally studied. The longitudina waves
were monitored by a special visualization technique, and the dust sound oscillation characteristics were deter-
mined and analyzed using specially developed algorithm and data processing software. It was established that
the longitudinal waves propagate from anode to cathode, the frequency and wavevector of the dust sound oscil-
lations being dependent on the discharge current, gas pressure, particle density in the dust cloud, and spatial
coordinates. Two-dimensional (2D) fields of the main wave characteristics were studied using an original algo-
rithm. The possible mechanisms of excitation of the dust sound oscillationsis discussed. The experimental spa-
tial distributions of the wave parameters are compared to the patterns obtained within the framework of various
theoretical models. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In the absence of an applied magnetic field, a plasma
may exhibit three oscillation branches, representing trans-
verse (electromagnetic) and longitudina (Langmuir and
ion sound) modes. The presence of macroscopic particles
changes the charge digtribution in the plasma and intro-
duces new time and space scales into the system. This
resultsin modification of the longitudinal plasma oscil-
lation modes, the appearance of new modes, and achange
in the dispersion relationships. A new branch of the low-
frequency oscillations appears, representing the dust
sound [1, 2], and the system is characterized by the dust
plasma frequency in addition to the electron and ion
plasma frequencies characterizing the dust-free system.
The physical nature of the dust sound is analogous to
that of the ion sound, the dust particles (instead of ions)
representing the inertial component of the system.
Depending on the interparticle interaction parameter I,
the low-frequency oscillations in the dust plasma can
be divided into two types. dust acoustic waves (DAW)
and dust lattice waves (DLW). The DAW modes are
excited in aplasmafeaturing weak electrostatic interac-
tions between particles, while DLW modes (i.e., waves
in the plasma crysta lattice) appear when the dust par-
ticles oscillate in strongly correlated structures with
large values of the coupling parameter I".

At present, there are many theoretica papers devoted
to thorough anays's of the waves of both types in dust
plasmaswith various sets of parameters[3-18]. The DLW
modes excited under RF discharge conditions were
specialy studied in [19-21]. Zuzic et al. [19] analyzed
induced oscillationsin a plasma crystal and their influ-
ence upon phase transitions in the system. Pieper and

Goree [20] aso studied the induced dust sound oscilla
tionsin aplasma crystal and used an experimental dis-
persion relationship to determine the particle charge.

The dust sound waves in a Q-plasma were experi-
mentally observed for the first time in 1995 [22]. The
particle density waves in a dc gas discharge were
reported in [23]. Experimental investigations of the
acoustic (DAW) modes reported in [22-26] were
restricted to determining averaged parameters of the
dust plasmaoscillations. Thelack of systematic dataon
the wave parameters as functions of the plasma charac-
teristics hindered a correct comparison of the available
theoretical models with experiment.

The purpose of this work was to develop methods
for visualization of the dust sound waves in a gas
plasma and to use these methods in the experimental
study of acoustic oscillationsin the dust plasmacolumn
of adc glow discharge.

2. EXPERIMENTAL

The experiments were carried out with a dc glow
discharge in neon at pressures in the range from 0.1 to
2 Torr. The concentration of dust particlesin the system
was 10%-10* cmr3, the density of electrons and ionsin
the plasma was 10’-108 cm3, the el ectron temperature
was 2-8 €V, and the temperature of ions and atoms was
300400 K. The experimental setup was similar to that
used in our previous investigations of the dust plasma
column formed under dc glow discharge conditions
[27]. A schematic diagram of this system is depicted in
Fig. 1. The discharge tube had an internal diameter of
55 mm and a length of 800 mm; the distance between
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electrodes (arranged in side fingers) was 600 mm. The
plasma parameters were determined using a single
cylindrical probe.

Iron particles with a diameter of 6 um were intro-
duced into a stratified region of the positive gas-dis-
charge plasma column. The micron particles were ini-
tially charged into a cylindrical container mounted in
thetop part of the discharge tube (Fig. 1). The container
bottom was made of a40-pum mesh metal grid. The sus-
pended dust particles were illuminated with a ribbon-
shaped beam of an argon laser. The probing beam could
be moved in both vertical and radial directions. The
light scattered from the microscopic dust particles was
detected with the aid of aCCD video cameraat an angle
of 90° and recorded on a video tape recorder. The
parameters of acoustic oscillations were determined
using a specialy developed algorithm. Correctness of
this determination was checked with the aid of an addi-
tional photomultiplier detector (FEU-106) linked to an
$0-8 oscillograph. The oscillograms were analyzed by
conventional methods to determine the oscillation fre-

quency.

3. RESULTS AND DISCUSSION

Our experiments showed that low-frequency longi-
tudinal waves of the dust particle density appear in the
system and can be clearly observed for certain plasma
parameters. The waves propagate in the discharge tube
downward from anode to cathode. The character of this
wave motion significantly depends on the discharge
current, gas pressure, and particle density in the dust
cloud. As the discharge current and particle density
increase, the wave amplitude grows and the wave process
can observed by naked eye. The waves of large amplitude
are aso observed a low gas pressures. An anaysis of the
experimental data showed that waves spread over the
entire dust volume, rather than restrict to the bottom
part of the tube as was indicated in [23, 26]. The wave
amplitude is coordinate-dependent: greater waves were
observed in the dust plasma region close to a head of
the column. The size of thisregion varies from 0.1Z to
0.8Z (Z isthe vertical size of the dust plasma column),
depending on the discharge parameters and particle
density.

Figure 2 shows typical video images of the dust
plasma column observed in the course of the particle
density wave propagation. An analysis of the sequence
of such images allows the wavelength, frequency, and
phase velocity of the density wave to be determined.
We have used the following algorithm for determining
the density wave parameters. The initial image was
considered as an array of pixels representing the scat-
tered laser radiation intensity distribution 1 (i, j ), where
i and j arethe pixel indexes. Since the scattering objects
in our case are the dust particles, the scattered light
intensity is proportional to the particle density I = yn,,
For determining the particle density wave amplitude, it
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Fig. 1. A schematic diagram of the experimental setup.
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is necessary to find the coefficient y. The other quanti-
ties (wavelength A, frequency wy and phase velocity v)
can be determined from anaysis of the relative I values.
For this purpose, the time sequence of 2D arrays| (i, j) is
represented by a 3D array f(X, y, t), where x = ai and
y = Bj are the spatial coordinates and t isthe time. The
discreteness of datain thef(x, y, t) array with respect to
the spatial coordinates is determined by the values

A™x = PM,, A™y = PM,, D

where P,, P, are the pixel dimensions and M,, M, are
the magnification coefficients of the detecting system
along the x and y axis, respectively. The discreteness
t — A™"t with respect to the time is determined by amin-
imum time interval t, between two sequential images (in
our experiment, t, = 20 ms). The values of A™"y, x
(depending on the registration system characteristics)
in our experiments were varied from 10 to 30 um.

For determining the particular A, w, and v values,
we used the f(X, y, t) arrays at each point with the coor-
dinates (x, y) to construct the following functions:

05’0 = Sy Df (e t+aY, (2
ox7(By) = H f(x v O)f(x y+dy, 1),  (20)
0,7(By) = H F(x v f(x Y, t+t). (2c)

The analysis of variation of the ¢ (At), ¢,(Ay), and
¢, (Ay) values allowed the corresponding parameters of
the wave process to be determined. For example, the
circular frequency w is obtained by plotting ¢(At),
determining the period of this periodic function t, and
using the formula w = 217/1.
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(©)

(d)

Fig. 2. Typical video images of the acoustic waves observed in a dust plasma column in a dc glow discharge under various condi-
tions: (8) P=1.2Torr,1 =2mA; (b) P=1Torr,| =0.8 mA; (c) P=0.8 Torr, | =0.3mA. (d) P=0.3 Torr, | =0.4 mA.

Using the above algorithm, we can determine the
local parameters of the density waves studied and con-
struct the corresponding 2D fields of phase velocity,
frequency, and wavelength. The local character of the
algorithm used for determining the wave parametersis
very important for the study of acoustic oscillationsin
the dust plasma structures formed in a dc glow dis-
charge, where the oscillations spread in astrongly inho-
mogeneous medium and the wave parameters are dif-
ferent at various points of the plasma column.

Figure 3 shows the maps of the 2D fields of main
parameters determined for the acoustic oscillations
observed in a cloud of iron particles with a radius of
r, =3 um. Asis seen, the fields are inhomogeneous: all
the parameters exhibit spatial variations. The most pro-
nounced variation of the dust density wave parameters
are observed along the vertical coordinatey. For amore
thorough investigation of the general pattern, we have
analyzed the wave behavior in the central region of the
dust plasmain more detail. Figure 4 showsthevariation
of the frequency, phase velocity, and wavelength in the
wave propagating in the dust plasma column at various

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

parameters of the gas discharge. In order to check the cor-
rectness of determining the parameters of oscillations, we
have compared the frequency values obtained using the
algorithm based on Egs. (1) and (2) to the values deter-
mined by astandard method empl oying a photodetector
and digital oscillograph. The results obtained by the
two methods showed good coincidence; a difference
(<5%) can be explained by different dimensions of the
plasma region probed.

The results of our experiments showed that the fre-
guency and wavevector of the dust plasma oscillations
not only vary in space, but depend on the discharge cur-
rent, gas pressure, and particle density in the dust cloud.
Figure 5 shows a region in the kw phase plane repre-
senting the domain of existence of acoustic oscillations
in the dust plasma formed in adc glow discharge.

The acoustic oscillations in the dust plasma struc-
tures observed in our experiments are of interest both
from the fundamental standpoint, as a physical phe-
nomenon, and from the standpoint of applications, asa
method of dust plasma diagnostics. In particular, using
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Fig. 3. 2D fields of (a) frequency w, (b) wavelength A, and
(c) phase velocity v for the acoustic waves in dust plasma
structures (P = 0.23 Torr; | = 0.28 mA).

the existing models of wave processes in adust plasma
and the experimentally measured values of parameters
of the acoustic waves, we may evaluate the charge of
dust particles.

v, 10 mm/s; A, mm w, Hz
3.0 ’

4170
2.5

1130
2.0 490
1.5 150
1.0
3.0
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2.5 470
205 50
1.5 130

0 0.4 0.8 1.2 1.6
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Fig. 4. Vertical profiles of the wavelength A, frequency w,
phase velocity v of dust plasma oscillations under various
discharge conditions: (@) P = 1.2 Torr, | =2 mA; (b) P =
0.3 Torr, | =0.4 mA.
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Fig. 5. The domain of existence of self-excited low-fre-
quency dust density oscillations in a dc glow discharge for
the discharge current varied from 0.2 to 0.4 mA and the gas
pressure, from 0.2 to 4 Torr.

The law of dispersion for the acoustic (DAW)
modes in a two-stream approximation is given by the
formula[1]

K*AS
2 2 d
W = Wy—, 3
d1+k2)\§ ()

where wy = ,/4Tn,Z5€*/M isthe dust sound frequency
and A, is the Debye screening radius.
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Fig. 6. Model dispersion relationships determined by
Egs. (3)«5) (number of eguation indicated at the curve;
Kg = 217A).
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Fig. 7. Dispersion relationships for the dust sound wavesin
a dc discharge under various conditions: (1) P = 1.2 Torr,

I =2mA,Z=10%¢;n,=10"cm3; (2) P=0.3Torr, | =0.4mA,
Z=10%¢e n; =4 x 107 cm. Black circles represent exper-
imental points; solid curves show the approximations cal cu-
lated using Eq. (3).

With the interparticle interactions taken into account,
the dispersion relationship acquires the following
form [18]:

KA 16

2 2 d

w = W, . (@]
1+ 1K3A216 + KON

The values of charge on dust particles calculated by Egs. (7)
and (8)

P, Torr [, mA Zy €
12 2 22x10%
12 14 4.3 x 10*
12 0.8 1.6 x10%
0.8 0.4 2.8 x 10
0.3 0.6 3.3x10*
0.3 0.4 5.6 x 10*
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For the dispersion of the dust plasma lattice (DLW)
waves, the model of crystal modes yields[8]

W= 20,41 + K + K*/2exp(-K/2)sin(kA/2), (5)
where K = A/,

.y 273
Wpd = — 3,
myA

and A isthe interparticle distance.

Some other dispersion relationships for DAW and
DLW modes were reported in [4, 7, 8, 16-18]. How-
ever, these expressions are not quite convenient for ana-
lyzing our experimental data. For this reason, we will
restrict the consecration to the three cases given above.
The dispersion curves described by formulas (3)«5) are
depicted in Fig. 6. Figure 7 presents the experimental
plots of w versus k and shows the approximation of
these data by curves constructed using formula(3). The
best fit observed for this approximation indicates that
the corresponding model quite adequately describesthe
law of dispersion for the longitudinal waves propagat-
ing in the system studied. Once the dispersion law is
established, we may use the approximated curves to
evaluate the charge on dust particles and the ion con-
centration. The particle charge estimated using the data
depicted in Fig. 8 was 10% and the ion concentration
wasn; ~ 10” cm3,

A simpler algorithm for evaluation of dust the parti-
cle charge can be used inthe casewhen A > Ap. Indeed,
the condition kA\; < 1 allows the dispersion relation-
ship for the dust sound to be written as

W = vk, (6)

where v, is the dust sound velocity. In our case, Ap ~
200 um and the condition kA, < lisvalid for thewaves
with A > 2 mm. The dust sound velocity is determined
by the formula

Zy ngT;
Vg = WAy = =% [—. (7
d A d niﬂz m

When the wavel ength is comparabl e to the interparticle
spacing (or k — 1[0, the phase vel ocity of the wave
tendsto zero and the frequency—to a certain fixed value
called the dust plasmafreguency wy. Thisvalueisgiven

by the formula
laTn,Z5€°
Wy = % (8)

Thus, the particle charge is readily estimated from the
wave phase velocity and the ion density by formula (7)
(for A > Ap) or from the limiting dust plasmafrequency
and the dust particle size and density by formula (8).
The particle charge values Zpe calculated using formu-
las (7) and (8) for various discharge parameters are
summarized in the table.
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Using Eq. (6), we may also determine variation of
the dust particle charge Z,(y) depending on the vertical
coordinate in the dust plasma column. Variation of the
phase velocity in the vertical direction is determined
experimentally (see Fig. 3). Using asingle probe avail-
able in the setup, we may also determine the ion con-
centration. Since the measurements were performed at
asingle point (at the upper boundary of the dust plasma
column), the Z4(y) function was approximated using the
known variation of the relative value n;(y) taken from
[28] (Fig. 8).

The Z,(y) values determined by this method are pre-
sented in Fig. 9 (dashed curve). As seen, the charge exhib-
its a considerable (more than twofold) variation aong the
height of the dust plasma column. In order to andyze
these results, we calculated the charge on dust particles
within the framework of the orbital motion (OML) model
[29] using the following parameters: T, = 0.03 eV,
T«(y) asinFig. 8[28]; n;(y) = n.(y). Theresults of these
calculations are presented in Fig. 9 (solid curve). As
seen in Fig. 9, the values of the particle charge deter-
mined by two methods almost coincide, but the curve
based on our experimental data markedly deviatesfrom
the calculated curve at the distant end of the plasma col-
umn (the coordinate was measured from the top of the
dust plasma column), that is, in the region of high field
strength. This deviation can be explained by uncon-
trolled polydispersity of the iron dust particles. Parti-
cleswith greater masswill tend to the region of greater
field strength (i.e., to the bottom of the plasma column).
This factor may account for the particle charge varia-
tion along the vertical axis, since the charge of a parti-
cleisdirectly proportional to its size. The same reason
may explain a difference between the data obtained in
this experiment and the results of numerical modeling
[30] of agas-discharge dust plasmawith close parame-
ters, where it was established that achange in the parti-
cle charge along the vertical axis does not exceed 20%.
Our analysis indicates that this estimate is valid only
for the dust plasmain the upper part of the column.

We have experimentally observed spontaneous excita-
tion of the low-frequency oscillations in the dust particle
density, which indicates that there are mechanisms of
instability development in the oscillation process stud-
ied. Various possible models of the instability develop-
ment in a dust plasma were proposed in the literature.
These models were used to analyze the influence of fluc-
tuations in the charge of dust particles [3, 4, 17, 18, 26],
the role of nonlinearity [7-9] and nonideadlity of the
dust plasma [10-12], and the effects of ionization and
ion entrainment [13, 15, 16] on the dust sound wave
propagation. The mechanisms of wave instability
caused by the electron and ion drift relative to the
charged dust particles were analyzed in [5, 6, 23, 26].

Fortov et al. [26] most exhaustively described and
analyzed various mechanisms for the excitation of
oscillations in the positive plasma column of adc glow
discharge. According to thisanalysis, the mechanism of
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Fig. 8. Vertical profiles of the ion density n and the electron
temperature T,. Coordinate h measured from the upper
boundary of the dust plasma structure.
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Fig. 9. Variation of the charge Z on dust particles along the
vertical axis: dashed curve shows the profile calculated by
Eq. (6) using our data on the wave velocity and the n;(h)
curve depicted in Fig. 8; solid profile was calculated within
the framework of the OML model [29] for T; = 0.03 eV and
the Tg(h) curve from Fig. 8.

instability is related to the nature of forces holding par-
ticles within the positive discharge region and to the
particle charge variations during the plasma density
wave propagation. However, despite the large number
of proposed models, the question as to whether a com-
mon driving force and mechanism are responsible for
the excitation of density oscillations in a dust plasma
observed in the laboratory experiments is still open.
This situation is explained by the fact that no experi-
mental evidence is available for any of the proposed
models. The comparison of experiment and theory in
[23-26] was performed on a qualitative level and did
not provide sufficient grounds for unambiguously
selecting one or another mechanism on the instability
development in the system studied.

We have attempted to compare the experimental
profile of the wavevector variation in height of the dust
plasma column to the anal ogous distributions obtained
within the framework of various theoretical models.
Figure 10 shows plots of the wavevector versus height
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Fig. 10. Plots of the wavevector k versus height h calculated
within the framework of various models: (1) model [5];
(2) model [16]; (3) model [26]; (4, 5) experimental data for
iron dust particles measured in a discharge tube operated
at P=0.8Torrand | =0.5 (4) and 0.22 mA (5).

calculated using the models described in [5, 16, 26]
(dashed curves) and the profiles experimentally mea-
sured under various discharge conditions. As seen from
this comparison, the theoretical curves differ rather sig-
nificantly from the experimental profiles. A possible
explanation is offered by the fact that models based on
the analysis of linear dispersion relationships for the
low-frequency oscillations cannot adequately describe
wave processes in the dust plasma systems. Indeed, the
dust plasma column belongs to the class of nonlinear
thermodynamically nonequilibrium open dissipative
systems [31, 32]. For acorrect anaysis of this system, we
should employ an adequate physica modd. The most
interesting caseisoffered by amodel of theautooscillating
system with the parametersindependent of theinitial con-
ditions and determined completely by properties of the
medium [33].

The appearance of stable oscillatory motions of mac-
roparticlesin adust plasmais possible only provided that
there are potential sources capable of compensating for
the energy dissipation. There must be a dynamic equilib-
rium between the amounts of supplied and dissipated
energy. Under equilibrium conditions, the dissipative
effectswould level off any inhomogeneity, thusleading to
the thermodynamic equilibrium. In a nonlinear open sys-
tem, the dissipation plays a quite different role. Acting
jointly with some other processes, the energy dissipation
may lead both to the appearance of stable stationary struc-
tures and complicated oscillatory regimes[32, 34].

In the case of alaboratory gas-discharge plasma, it
is obvious that stationary autooscillations in the dust
plasma column must be maintained at the expense of
the energy taken from the power source in the discharge
circuit. A possible mechanism capable of converting
the potential energy of the externa electricfieldintothe
energy of moving dust particles is related to the pres-
ence of spatial gradients of the system parameters such
as temperature, ionization, and charge. In particular, a
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possible mechanism considered in [35] is based on the
presence of space charge gradient in a dust cloud
formed in a trap under the action of electric field and
the Earth gravity field.

4. CONCLUSION

Thus, we have experimentaly studied the low-fre-
quency oscillations in the dengity of dust particles, which
are spontaneoudy excited in the stationary plasmacolumn
of a dc glow discharge in neon. The longitudinal dust
sound wave parameters were determined using a specia
visualization technique. The dust sound oscillation char-
acteristics were determined and analyzed using specidly
developed agorithm and data processing software. Based
on these data, two-dimensional fields of the main wave
characteristics were constructed.

Using the values of the phase velocity of the wave
studied, the charge on the dust particles was evaluated
and the profile of its spatial variation in the dust plasma
column was determined. Under the experimental con-
ditions studied, the charges on particles occurring in
various regions of the dust cloud may differ by afactor
of more than two, and the particles carrying a greater
charge are found in the bottom part of the plasma col-
umn.

The experimental spatial distributions of the wave
parameterswere compared to the distributions obtained
within the framework of various theoretical models.
The results of this comparison showed that the princi-
pa mechanisms of the oscillation excitation cannot be
based on linear analytical models. It isnecessary to per-
form numerical modeling of the wave process taking
into account the nonlinear dissipative character of the
system studied.
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Abstract—A new approach to the study of phase separation in lanthanum manganitesis proposed based on the
combined investigation of their optical and magnetooptical characteristics providing information about the con-
ducting and ferromagnetic regions, respectively. Effects of the 180 isotope substitution for 160 in the epitaxial
films of (Lay5Pro5)07C83sMNO3 (grown on SrTiO; or LaAlO5 substrates) upon the IR absorption spectra and
the equatorial Kerr effect measured in the 1.5-3.8 €V range were studied. A giant drop in the temperature of
maximum resistance of the film grown on SrTiO3 and disappearance of the metal-insulator transition in the film
on LaAlO3, observed upon the isotope exchange, are accompanied by a decrease in the contribution of free
charge carriers to the absorption spectra, by the appearance of bands due to localized states, and by a decrease
in magnitude of the equatorial Kerr effects. Measurements of the Kerr effect and the temperature variation of
the optical transmission show evidence of the presence of ferromagnetic metal regions in the 80-isotope-sub-
stituted (Lag 5Pro5)07Ca03MNO4/LaAI0; film at low temperatures, with a general semiconductor character of
the resistivity behavior in the entire temperature range studied. Changes observed in the absorption spectraare
explained based on amodel of the pseudo-Jahn-Teller polar centers and phase separation. The optical and mag-
netooptical data show evidence of a percolation nature of the giant isotope effect in manganites. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Manganites with a perovskite structure are exten-
sively studied in the context of a problem of the giant
magnetoresistance (GMR) phenomenon. The unusual
properties of manganites are related to the interaction
of charge, spin, orbital, and local structural (Jahn—
Teller) degrees of freedom with a strong charge inho-
mogeneity, static and dynamic phase separations, and
percolation effects [1-3].

One of the brightest phenomena in GMR mangan-
ites is the giant isotope shift. A decrease in the Curie
temperature T upon substituting the 2O oxygen iso-
tope for 0 in LaygCay,MnO; reaches 21 K [4]. The
same substitution in a (La _,Pry)o7Ca,sMNO; system
composition with y = 0.75 results in the trangition from
ferromagnetic metal to antiferromagnetic insulator
state [5]. The main reasons for such a strong varia-
tion of the material properties upon the isotope
exchange are associated with a change in the elec-
tron—phonon interaction [4, 5] and with the phenom-
enaarising near the percolation threshold [2, 3]. A strong
isotope effect is observed near a ferromagnetic—anti-
ferromagnetic phase boundary of manganite compositions
possessing the narrowest electron g, band, where the
charge carrier localization processes become substantial.

This group of materids includes La,gCa,,MnO; [4],
(Lay_,Pry)o7CasMnO; withy =0.75and 0.5 5, 6], and
(L& sNdy 5)213CaysMNO; [7].

Systems featuring a strong isotope effect dso exhibit
phase separation, significant hysteresis effect during the
heating—cooling cycles, and relaxation processes with
large characterigtic times. These essentidly inhomoge-
neous systems should be studied by loca methods capa-
ble of providing information on the separate compo-
nents of the system. Below we propose a hew quasilo-
cal approach to the study of inhomogeneous systems
based on the combined measurement of their optical
(absorption spectra) and magnetooptical (the equatorial
Kerr effect) properties. The main idea of applying the
optica methods to the study of phase separation and
percolation phenomena is naturaly related to a differ-
ence in the optical response of various phases. In the
absence of percolation, the metal inclusionsin adielec-
tric matrix cannot be detected by dc conductivity mea-
surements but are well manifested in the IR absorption
spectra.

In application to the GMR manganites, a quasilocal
character of the optical methods is related to the fact
that the optical absorption in a spectral range corre-
sponding to the light interaction with the charge carri-
ers provides information about the conducting (i.e.,

1063-7761/01/9203-0462%$21.00 © 2001 MAIK “Nauka/Interperiodica’



THE ISOTOPE EFFECT AND PHASE SEPARATION

light-absorbing) regions in the insulator (transparent)
matrix, thus revealing the charged phase separation [8].
At the sametime, the Kerr effect taking placein the fer-
romagnetic crystal regions allows us to make a judg-
ment on the magnetic phase separation [9]. In addition,
the optical absorption spectra of manganites also
clearly reveal the delocalized and localized states [10],
which alows usto follow the process of charge carrier
localization during the isotope exchange.

The purpose of this work was to use the new
approach in studying the nature of the giant isotope
effect observed upon substituting the ‘0 isotope for
160 in the epitaxia films of (LaysPrys)g-CansMnO;
manganite. The results obtained by the optical methods
are compared to the data obtained by the resistivity
measurements.

2. SAMPLE PREPARATION
AND EXPERIMENTAL METHODS

The films of (LaysPrgs)o7CasMnO; manganite
composition with a thickness of 60 nm were obtained
by a chemical vapor deposition (CVD) method on sin-
gle crystal LaAlO; (LAO) and SrTiO; (STO) perovs
kite substrates[11, 12]. Theresultsof X-ray diffraction,
Raman spectroscopy, and high-resolution transmission
electron microscopy investigation confirmed the epi-
taxial character and the structural and chemical homo-
geneity of the sample films.

The crystal lattice parameters of the films on LAO
substrates are

a

> = 0.3846 + 0.0003 nm,

NIT

0.3872 + 0.0002 nm,

NIO

and on the STO substrates,

g g = 0.3879 + 0.0003 nm,

= 0.3823 + 0.0002 nm

NIO

(the c-axis corresponds to the normal to the film sur-
face); tetragonal distortions for films on the LAO and
STO substrates were 0.7 and —1.5%, respectively.

The neutron diffraction measurements on ceramic
samples of the same bulk composition [13] showed that
this compound is a collinear ferromagnet at tempera-
tures below T = 175 K. The charge ordering tempera-
tureis T, =200 K. Because of the epitaxial stresses, the
properties of manganite films usually differ from those
of the bulk ceramic samples of the same nominal com-
position [11].

The process of isotope exchange, leading to the substi-
tution of 80 for 60 in the samples, was performed at the
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Fig. 1. The temperature dependence of resistivity for the
(Lag 5Pro5)0,7C30,3MNnO; films annealed in 60 and 180.
Dashed and solid curves refer to the films grown on SrTiO;
(STO) and LaAlO3 (LAO) substrates [14].

Kurchatov Ingtitute as described in [5]. The exchange
process resulted in that about 85% of 60 oxygen ions
were replaced by 2O ions.

The IR absorption spectra of the manganite films
were measured using an automated |KS-21 spectrome-
ter in the 0.09-0.9 eV spectral range and using an
MDR-4 monochromator in the 1.0-3.6 €V range. The
temperature-induced variations in the spectra were
studied in the 80-293 K range by heating samples pre-
liminarily cooled in the presence or in the absence of
external magnetic field. A magnetic field with a
strength of 0.8 T was directed aong the normal to the
sample surface.

The equatorial Kerr effect was measured in a spec-
tral range of 1.5-3.8 eV for the sampletemperature var-
ied from 20 to 300 K (cooling—heating cycles) and the
magnetic field (0.1 T) normal to the film surface.

3. EXPERIMENTAL RESULTS

Asis seen from Fig. 1 (reproduced from [14]), the
resistivity p of the (LaysPrgs)o7,CasMNO; manganite
films with 160 isotope on both substrates (denoted below
as °0O/LAO and 80/STO) exhibits a maximum at a tem-
perature of 189 K, beow which the samples exhibit a
dielectric—metal transition. Theisotope exchange does not
lead to any increase in the room-temperature resistivity.
However, the resistance of an *®O/LAO film at low tem-
peraturesis considerably greater as compared to that of
the 180O/L AO film, the difference reaching more that six
orders of magnitude at 80 K. For the filmson STO sub-
strates, the difference is about 1.5 orders of magnitude.
The position of maximum resistivity shifts by approxi-
mately 60 K upon the isotope exchange in films on the
STO substrates, while the $BO/LAO films exhibit no such
maximum at dl in atemperature range downto 4.2 K.
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E, eV

Fig. 2. Room-temperature optical absorption spectra of the
(Lag 5Prg 5)0,7Ca0,3MNnO;3 films with 180 and 80 isotopes
on STO substrates.

According to [15], the resistivity measurements in
the cooling—heating cycle mode with a magnetic field
applied in the plane of the film reveal a hysteresis with
aloop width reaching 60 K at afield strength of 1 T.

Figure 2 presents the IR absorption spectra of the
films with 180 and 80 on STO. As seen, the room-tem-
perature spectra are much alike, showing a broad band
withamaximum at 1.5 eV, asmall peak at 0.14 eV, and
a growth of the absorption above 2.5 V. However, the
spectraof the'80/STO and ¥O/STO samples measured at

25 T T T T T T T

20

15

10

5

20

K, 103 cm™!

15

10

Fig. 3.

Optical absorption
(Lag 5Pros)0.7Ca,3MnO;3 films with (a) 10 and (b) ®0
isotopes on STO substrates. The samples were cooled to

various temperatures in the absence of external magnetic
field.

spectra  of  the
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80 K exhibit a considerable difference (Fig. 3). The film
with %0 (Fig. 34) is characterized by an increase in the
absorption intensity with decreasing energy, which is
characteristic of theinteraction of light with free charge
carriers. In contrast, the free carrier contribution to the
absorption at 0.2 eV in the film with 80 is small. For
the 60/STO film, the low-energy wing of the absorp-
tion band at 1.5 eV exhibits no features (except aweak
shoulder at 1.2 €V) at al temperatures. The spectrum of
180/STO in the same region (Fig. 3b), and especialy that
of the samples cooled in the magnetic field (Fig. 4a),
shows evidence of a complicated structure of the 1.5 eV
absorption band edge, suggesting the presence of local-
ized sates in both paramagnetic and ferromagnetic
regions. The room-temperature spectra of samples on
STO show weakly pronounced absorption bands at
0.95 and 1.2 eV; on cooling in the absence of the mag-
netic field, these features transform into shoulders and
shift toward higher energies. The spectra of the films
cooled from room temperature to liquid nitrogen tem-
perature in afield of 0.8 T (Fig. 4) show (in a 80-150 K
interval) a pronounced absorption band at 0.80-0.95 eV
and alessintense band at 0.40-0.50 eV.

Similar variations of the optica absorption spectra
are observed for the manganite films with 10 and 80
on LAO substrates. The differenceisthat the absorption

25 T T T T T T T

20

15

10

3]
=}
T

—_
(9)]
T

—
=}
T

1
0 04 0.8 1.2
E, eV

Fig.4.  Optical absorption  spectra  of  the
(Lag5Prg.5)0,7Ca0,3MnO; films with 180 isotope on (a) STO
and (b) LAO substrates. The sampleswere cooled to various
temperaturesin the presence of external magnetic field with
a strength of 0.8 T. For clarity, the curves are shifted along
the ordinate axis.
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band a 0.9 eV for O/LAQ is clearly observed only at
80K (Fig. 4b) and the energy positions of the absorp-
tion bands are generally somewhat lower as compared
to those of the manganite films on STO substrates.
Figure 5 shows the temperature variation of the optical
transmission for the manganite films with 60 and 80
on LAO substrates. As seen, the curves for the 1°O/LAO
films heated upon cooling with and without magnetic field
differ rather insignificantly (Fig. 5a). As for the 2O/LAO
film (Fig. 5b), a monotonic variation observed for the
sample cooled without magnetic field (curve 1)
changes to a curve with maximum at about 120 K for
the sample cooled in the field (curve 2). The repeated
experiment on the latter sample (cooled in the field)
with amagnetic field of 0.8 T applied during the optical
transmission measurements showed a shift in the trans-
mission maximumto T = 135 K (Fig. 5b, curve 3).

The value of magnetotransmittance (the ratio of the
sample transmittances with and without applied field)
was determined during hesting of the samples preliminar-
ily cooled in a magnetic field; the field was switched on
and off at each point. The magnetotransmittance ratio of
the 18O/LAO filmisabout 6% for amagnetic field strength
of 0.8 T (Fig. 6). The magnetotransmittance of the
18O/LAO film measured under the same conditions is
markedly lower. 1t should be noted that repeated transmis-
sion (absorption) measurements reproduced only the gen-
eral behavior of the spectrd and temperature depen-
dences, while the absolute transmittance val ues exhibited
asystematic variation. The most significant variation of
the results of repeated measurements, which was espe-
cialy pronounced for large time intervals between the
measurements, were observed for the manganite films
with 80 isotope.

The spectra of the equatorial Kerr effect (EKE) of
the manganite films with 1O on both STO and LAO
substrates measured at low temperatures (T < 80 K) are
virtualy identical (Fig. 7) and coincide with the spectra
reported for both ceramic and film samples of
(La, Pr)g7Ca,sMnO4 [9, 16]. The isotope exchange leads
to a decrease in the EKE intensity, which is most pro-
nounced for *80/LAO. The O/STO film sample exhibits
a consgderable change in the EKE spectrum as com-
pared to that of the 1O/STO film: the main extremum
shifts toward lower energies and an additional peak
appears at 3.25 eV. Anaogous changes were reported
for the EKE in (La _Pry)o7Ca,sMnO; samples with
x = 0.75 measured in the course of cooling [9].

The temperature variation of the EKE magnitude
measured a E = 2.9 eV differs considerably in the sam-
ples of dl the four types studied (Fig. 8). A common fea
ture of these temperature dependences is a considerable
hysteresis revealed by measurements in the heating—cool-
ing cycles. Thetemperature below which the EKE isman-
ifested (that is, a ferromagnetic order appears) is close to
the temperature of maximum resistance observed for all
films during heating in the field. The EKE magnitudes
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Fig. 5. Temperature variation of the optical transmittance at
0.4 eV for the (Lay sPrg 5)0 7C80.3MNO;3 films with () 160
and (b) 180 isotopes on LAO substrates: (1) cooled without

field; (2) cooled in the field; (3) cooled and measured in a
magnetic field with a strength of 0.8 T.
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Fig. 6. The plots of magnetotransmittance at 0.4 eV versus
temperature for the (LaysPrgs)g7C893MNO3 films with

160 and 180 isotopes on LAO substrates measured (1, 3) in
aconstant magnetic field with astrength of 0.8 T and (2, 4)
using the same field switched on and off at each point.

for the manganite films with 180 on both substrates are
approximately equa. The 80 isotope substitution for 10
leads to adecrease in the EKE magnitude in the saturated
gate. A minimum EKE vaue was observed for the
1BO/LAO sample.

A comparison of the temperature variation of the
EKE and transmission values at 0.14 eV (and a 0.4 V)
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Fig. 7. The spectra of equatorial Kerr effect (EKE) for the
(Lag sPrg 5)0.7Ca0,3MNO;3 films with 180 and 80 isotopes
on (a) STO and (b) LAO substrates.

for the samples cooled inamagnetic field showscloseval-
ues of the temperature at which the EKE appears and the
transmittance exhibits a maximum for the films of all
types. It should be noted that the EKE measurements for
the 1%0/STO sample a 150-200 K gave a value of the
opposite sign as compared to that observed in the low-
temperature region. The EKE measurements on the sub-
strate side did not show the change in sign. This observa-
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tion isadirect evidence of the surface magnetism man-
ifestations in the films studied.

4. DISCUSSION OF RESULTS
4.1. The Electron Structure of Doped Manganites

The traditional approach to describing the electron
structure of manganites is based on the assumption of
applicability of the standard energy band models with
an alowance for a strong electron—vibrational interac-
tion. The “low-energy physics’ of doped manganites
(onascaebelow 4 eV) isdetermined by the e, states of
Mn ions coupled by a strong Hund's exchange to the
localized t,, states of Mn, as well as by the Jahn-Teller
interaction with the lattice. Thus, the model of double
exchange with a strong Jahn—Tedl ler interaction assumes a
pronounced Mne; band character of the injected holesin
systems of the La, _,Sr,MnO; type.

However, the experimental data are not as unambig-
uous in determining the character of injected holes in
these manganite systems. In particular, the study of
electron energy losses near the O1s-O2p transition in
La, _,Sr,MnO; led Ju et al. [17] to arather unexpected
conclusion about an O2p character of holes generated
in this system in a broad range of doping (0 < x < 0.7).
The same character of holes was indicated by the
results of investigating the exchange splitting of the
Mn3s level in the X-ray photoelectron spectra (which

T T T T
(b)
10f
S L
—
X
m St
N
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1
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Fig. 8. Temperature dependence of the EK E magnitude for the (Lag sPro ) 7C80.3MnOj3 filmswith (a, b) 260 and (c, d) 2O isotopes
on (a, ¢) STO and (b, d) LAO substrates measured in the cooling—heating cycles (arrows indicate the direction of temperature vari-

ation).
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are highly sensitive to the valence state of manganese)
[18]. It was demonstrated [18] that the exchange split-
ting of theMn3slevel in systemsof theLa, _,MnO; and
La _,Sr,MnO; remains virtually unchanged when the
formal valence of Mn in this composition changes from
3.0 to 3.3. The same study presented convincing evi-
dence for the appearance of Mn?* ions in oxygen-
depleted compositions of the LaMnO;_5 type. For a
low doping level (x < 0.3), theMn K X-ray photoelectron
spectra of the La,_,CaMnO; [19] even showed a

“monovaent” Mn® state, with the O2p character of holes
being most probable. For ahigh doping leve (x> 0.3) the
X-ray photoelectron spectra were indicative of a mixed
valence state Mn3*-Mn* with acomponent ratio corre-
sponding to the x value (which implies predominantly
Mn3d character of the injected holes).

The experimentally observed redistribution of the
spectral density from high-energy charge-transfer band
(O2p—Mn3d) to the region of lower energies upon the
hole injection agrees with the notion that this must |ead
to the appearance of a considerable concentration of
O2p holes.

A potentially more complicated character of the
charge transfer process in doped manganites is indi-
cated by the results of a high-temperature investigation
of LaMnO; [20]. These data show evidence of theinsta-
bility of manganites with respect to a disproportion-
ation reaction, which can be schematically represented
as a process

2MnO; — MnOY™ +MnOy>

leading to the formation of hole and electron centers
with the structure admitting a mixed valence of manga-
nese ions (of the Mn*-Mn** type for the hole centers).

On the whole, the character of charge fluctuations in
GMR manganitesis till one of the centra points of dis-
cussion from both theoretical and experimental stand-
point. The state with x = 0.3 for the (La, Pr)y,Ca,sMnO;
composition studied most probably corresponds to a
mixed Mn3d—O2p character of the charge fluctuations.

4.2. Electron Inhomogeneity, Phase Separation,
and Percolation Phenomena in Manganites

Thereisincreasing evidence that doped manganites,
as well as many other strongly correlated oxides such
as cuprates, nickelates, and vanadites, are capable of
occurring in acomplicated inhomogeneous state exhib-
iting a metal—dielectric dualism.

Generally speaking, such systems can be character-
ized by a certain self-consistent distribution of various
charge, spin, orbital, and structural fluctuationswith the
corresponding lifetimes and correlation lengths. The
possibility of using the approximation of an effective
homogeneous medium for describing the properties of
systems with strongly developed static and dynamic
fluctuations is disputable.
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The heterovdent doping of manganites leads to the
gppearance of strong local inhomogeneities in the poten-
tial distribution. The corresponding potential wells may
serve both asthe centers of charge (hole or eectron) local-
ization and as the centers of nucleation for the phase pro-
viding the mogt effective screening of the charge inhomo-
geneity. These charge inhomogeneity centers may possess
a complex structure featuring charge, spin, orbita, and
structural fluctuations, each type with a character of its
own. As the concentration of dopant ions (Ca?*, S+, ...)
and, hence, of the charge inhomogeneity centers
increases, these centers may exhibit a superposition lead-
ing to an increase in the correlation length of various
charge, spin, and orbital fluctuationsand, eventualy, to the
corresponding long-range ordering.

In the smplest case, when the charge inhomogeneity
centers can be considered as microscopic domains of a
new (ferromagnetic metal) phase, the process can be
described within the framework of amode of percolation
phasetransition. According to thismodel, the conductivity
(eswell as some other values) in the vicinity of the perco-
lation threshold is described by apower function of certain
“geometric order parameter” p — p, [21]. In the Smplest
variant, this parameter can be represented by deviation of
the bulk fraction p of the metal phase from a critical
value p. corresponding to the percolation limit, for
example,

oO(p-p), 1)

where t is the critical exponent [21]. In turn, the geo-
metric order parameter near the percolation threshold
can be related to the concentration of the charge inho-
mogeneity centers:

P—Bc 0 (X_ Xc)av
where X, is the critical concentration, which yields

o O x—xJ™.

By the same token, the critical temperature Ty, corre-
sponding to the percolation breakage and the metal—
dielectric transition at p = p, can be expressed as

Twn =T (P—po), %)

where vy is the critical exponent and Tf,” is a certain
characteristic temperature determined by their micro-
scopic transport parameters.

Urushibara et al. [22] showed that the concentration
dependence of the low-temperature conductivity of
La _,Sr,MnO;intheregion of x < 0.3 can bepresented as

o(¥) 0 (x=x)"

with acritical concentration of X, = 0.174 and the expo-
nent at = 0.5, which also well falls within the frame-
work of the percolation model.
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A principal difference of this variant of the percola-
tion model for GMR manganitesis the (ferro)magnetic
character of the metal regions, which leads to certain
anomalies in the magnetic behavior. The first of these
effectsis a sharp increase in the relative volume of fer-
romagnetic metal regions at temperatures below the criti-

ca value T?; corresponding to the “local” ferromagnetic

ordering. The temperature dependence of magnetization
and the magnetization curve reflect the superposition of
two effects: the “internal” effect of spin ordering in the
metal regions and the “external” effect of increasing
volume of the magnetically ordered phase with a char-

acteristic effective “ Curie temperature” T < T2. Inthe
simplest model, T can be represented by the tempera-
ture of maximum of the average “thermal expansion”
coefficient a(T) = dp/dT of the magnetically ordered
metal phase. It is this externd effect that can lead to the

metal—dielectric percolation transition at Ty, < T2. Inthe
general case, the temperatures Ty, and T may differ.

The metal—dielectric percolation transition with a
critical fraction p = p. of the metal phase volume in
GMR manganites can be shifted toward either smaller
or greater concentration x of divalent elements, for
example, by selecting a dopant with appropriate ion
radiusto provide for anecessary relative decreasein the
energy of metal or dielectric phase. In particular, these
conditions are satisfied for Lagg_,Pr,CagsMnO; with
y=3/8 [23] and for the composition studied in this
work. All features in the thermal, electron, and magne-
totransport properties of Lagg_,PryCagsMnO; are
related to the dominating contribution of the percolation
conductivity through ferromagnetic metal regions coexist-
ing with charge-ordered insulating regions. Note that the
percolation transition is accompanied by strong fluctua-
tions of the geometric order parameter and by the anoma:
lous relaxation phenomena, hysteresis, and memory
effects.

The results of measurements of the 1/f noisein poly-
and single-crystalline samples of (La, Pr)s5CaysMnO;
with low values of the effective temperature T of mag-
netic ordering [24] are indicative of a percolation
mechanism of the transition from an inhomogeneous
charge-ordered state to the ferromagnetic metal state. It
is necessary to note several features characteristic of
the first-order phase transitions, including a large tem-
perature hysteresis of the resistivity and magnetization.
In contrast to the behavior typical of the phase transi-
tions in homogeneous systems, the magnetization of
crystals under consideration varies smoothly in the
vicinity of T and remains a linear function of T—T
even in aweak magnetic field.

Theresults of analysis of the scaling behavior of the
1/f noise and resistance agree with predictions of the
percolation model concerning the pattern of phase sep-
aration, with the formation of conducting phase regions
chaotically distributed in the insulating matrix. It is
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interesting to note that Podzorov et al. [24] even
revealed a difference in the critical behavior of poly-
and single-crystalline samples. Although the values of
resigtivities in the two cases are close, the temperature
variation of p near T in single crystals exhibits repro-
ducible jumps by more than one order of magnitude.
For explaining this phenomenon, it was suggested [24]
that the jumps of resistance are related to alarge size of
conducting regions in single crystals, which exceeds
that in polycrystaline samples and cannot be considered
small as compared to the characteristic system size (which
isanecessary assumption in percolation models).

4.3. Percolation and the Giant | sotope Effect
in Doped Manganites

The isotope exchange in a homogeneous system
must not lead to any substantial changes in the optical
properties beyond the phonon spectrum. Indeed, nei-
ther the energy spectrum of the optically active centers,
nor the oscillator strengths for the optical transitions are
significantly modified by the exchange. The main effect of
theisotope substitution is related to the lattice oscillations
and, hence, pronounced manifestations can be expected
only in systems featuring strong el ectron—phonon interac-
tions or the Jahn-Teller systems. The 6080 isotope
exchange, owing to a relaively large mass increment
(12.5%), produces a considerable stabilization of the
(pseudo)-Jahn-Teller centers (Jahn-Teller polarons) on
the one hand, and leadsto asignificant vibronic reduction
of various electron matrix elements (e.g., the electron
or hole transfer integrals) on the other hand.

All the above manifestations of the isotope
exchange can be related to a vibronic mechanism of the
isotope effect. In a homogeneous regular lattice, this
mechanism leads to an increase in the effective mass of
the Jahn-Teller polarons and favors their localization
accompanied, in particular, by a small modification of
the polaron IR absorption spectrum. In contrast, the
160180 isotope exchange in inhomogeneous systems
with phase separation will lead to an additiona increasein
the relative volume of a dielectric phase of the locdlized
Jahn-Teller polarons. This will be accompanied by
anomal ous phenomena near the percolation threshold. It
isthis “percolation” mechanism that may account for the
anomalous response to the isotope exchange in the sys-
temswith phase separation [2, 3].

Using Eg. (1), we may establish a relationship
between the constant a (characterizing the isotope
effect with respect to the critical temperature Ty, of the
metal—insulator transition) and the parameter p in the
vicinity of the percolation threshold (x = x.):

o = DalnTwm___DamTﬁmm
= OoalnM,0 O alnm,0

(©)
Pc g dlnp_

+yp— p.JalnM,0

avibr + Gperc-
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In other words, the isotope effect includes two additive
contributions-vibronic (a.;,) and percolation (Olpec)-
The former term is of a purely microscopic electron
nature and describes the influence of the isotope
exchange on the microscopic parameters of electron
transport. The latter term reflects the phase separation
and describes the isotope-exchange-induced variation
in the relative phase volume.

An important consequence of relationship (3) isthe
appearance of a power divergence

Ol pere O [ X =% ™

in the isotope effect constant a near the critical point cor-
responding to the percolation threshold. Thisfact of prox-
imity to the percolation threshold may explain the anoma-
loudly large a values observed inthe La, _,CaMnO; sys-
tem for x, = 0.18[4]. In this system, the character of the
temperature dependence of magnetization in a weak
external field and the concentration dependence of the
constant reflecting the i sotope effect with respect to the
effective Curie temperature (determined as the temper-
ature at which the magnetization reaches half of the
maximum value) agrees with predictions of the perco-
lation model for both x > x, and x < X..

It should be noted that the congtant a, = —dInp/dInM,
of the isotope effect with respect to the relative phase
volume can be considered as an effective “isotope pli-
ability” of a system with phase separation. This quan-
tity characterizes the influence of the isotope exchange
on therelative phase volume and on the eff ectiveness of
the percolation isotope effect. Note that large values of
this constant far from the percolation threshold may be
accompanied by a relatively small contribution to the
isotope effect for T.

4.4. Optical Properties of Manganites

Manganites with giant magnetoresistance, in con-
trast to many other typical systems based on 3d ele-
ments, exhibit anomalously strong fluctuations of the
charge state and the crystal field in both Mn3d and O2p
sublattices and may occur in a multiphase state with
coexistence of metal and dielectric regions. Thisbehavior
markedly complicatesinterpretation of the optical proper-
ties of GMR manganites. The modd of phase separation
implies the existence of an opticaly inhomogeneous
medium, many properties of which are analogous to those
of the well-known and extensively studied diglectric sys-
tems such as glasses with meta inclusions [25-27]. For
example, this refers to manifestations of the (quasi)-
Drude with an integral weight proportional to the rela-
tive volume p of the metal regions. In addition to this
(quasi)-Drude contribution of charge carriers, the opti-
cal spectra of manganites also revea sufficiently nar-
row resonance transitions related to the hole and elec-
tron centers. Measurements of the optical properties of
manganites are an important tool in studying their elec-
tron structure and multiphase composition.
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The photoconductivity spectrum of undoped LaMnO,
manganite exhibits a low-energy band in the region of
2.4 eV and ahigh-energy band at 5.2 eV [28], which are
naturally assigned to the d—d type transition 5Eg—f’TZgl in
Mn3* ions and the lowest allowed charge-transfer transi-
tion O2p-Mn3d in the octahedra complexes (MnOg)®,
respectively [29]. The introduction of Ca?* and Sr?*
ions (hole doping) leads to a significant modification of
the optical properties in a broad spectra range. The
low-energy band at 2.4 eV sharply drops in intensity,
while the high-energy band gradually shifts toward
lower energies. As a result, the spectral weight is gen-
erdly transferred toward the IR range, with a pro-
nounced maximum appearing at 1.5 eV [28, 30]. The
nature of this peak was actively discussed. According to
Takenaka et al. [28], this peak is related to the charge-
transfer transition O2p—-Mn3d, while most of the other
researchers attribute this peak to various one-center or
two-center d—d transitions. For example, Jung et al.
[31] believe that this absorption is most probably dueto

indirect transitions between occupied (eng)) and empty

(el?)) states (the € and €!” states belong to the g,

band of Mn®* ions, which splits as aresult of the Jahn—
Teller interaction).

The d—d electric-dipole transitions become possible
due to hybridization of the g, states of Mn and the 2p
states of oxygen. The observed band shift and the
increasein the IR absorption coefficient in the region of
ferromagnetic ordering are due to the appearance of a
contribution from carriers in the conduction band and
to the spectral weight redistribution from high- to
low-energy region [32]. In our opinion, the d-d transi-
tion may also include the SE—T,, transition in Mn®*
ions because the crystal field for these ions in doped
manganitesis screened by the hole density partly delo-
calized on the surrounding oxygen ions. Indeed, a par-
tial screening of the negative charge of the oxygenions
will lead to a decrease in the parameter of crystal-field
splitting which, inturn, may result in decreasing energy
of the E—°T,, transition from 2.4 eV in pure mangan-
iteto 1.5 eV in substituted compositions.

The main body of the optical data for manganites
was obtained by measuring and processing the reflec-
tance spectra, which cannot provide for the detection
(and the more s0, the detailed investigation) of many
important features manifested by reatively weak (but
highly informative) d—d transitions and forbidden charge-
transfer trangitions. In particular, thisis valid for the tran-
sitionsin Mn** ions and octahedral complexes (MnOg)®-
appearing in systems of the La, _,Sr,MnO; type as a
result of the hole doping. Balykina et al. [33] studied
the magnetooptical activity of these transitions in
A,Mn,O, pyrochlores with the octahedral complexes
(MnOg)% in the 1.5-4.5 eV range by measuring the
Kerr effect. These measurements revealed the bands at
2.6 and 3.1 eV assigned to the d—d type transitions
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AyTog and “Ag—*T;5 in Mn* ions and octahedral
complexes (MnOg)?, respectively. The band at 3.8 eV
and avery intense band withamaximum at E = 4.3 eV
can be attributed to the forbidden and alowed charge-
transfer transitions, respectively, This assignment gen-
erally agrees with the data reported in [34] for a series
of systems containing Mn**.

One of the first measurements of the Faraday effect
in manganites was reported by Lawler et al. [35] for
La _,CaMnO; in the 1.5-3.0 eV range. These mea
surements showed evidence of alarge Faraday rotation
with maximain the regions of the °E;—T,, transition in
Mn3* (1.5 eV) and the charge-transfer transition (3.1 eV).
Yamaguchi et al. [36] studied the magnetooptical Kerr
effect in the La, _,Sr,MnO; system in the 0.9-5.3 eV
range. The obtained spectral dependences of the polar
Kerr effect (more precisely, the nondiagonal compo-
nents of the dielectric permittivity tensor calculated
from these data) were processed within the framework
of the simplest two-oscillator model. This model satis-
factorily described the low-frequency band with a max-
imum at 1.2 eV, but adiscrepancy between the behavior
observed in the 2-5 eV interval and the contribution of
one model oscillator with an energy of 3.1 eV exceeded
the experimental error. The magnetooptical activity in
the latter interval was explained by a contribution from
charge-transfer transitions O2p—-Mn3d. Gan’'shinaet al.
[9, 16] measured the equatorial Kerr effect in the
(Lay _4Pr,)o-(CasSr),sMnO; system [9, 16] and estab-
lished that the magnetooptical activity in this case must
be assigned to transitions in the octahedral complexes
of Mn® and Mn**.

On the whole, we may expect that the doped manga-
nites must exhibit a considerable optical activity in the
region of 2-3 eV, which isrelated to the Mn3* and Mn**
ions responsible for the unique properties of these
oxide systems.

Let us consider the general features of the optical
and magnetooptical spectra of the epitaxial manganite
films studied in our experiments. The absorption spec-
tra presented in Figs. 3 and 4 show evidence of a com-
plicated character of the absorption band at 1.5 eV. The
low-energy edge of thisband clearly revealsacontribution
dueto thelocdized states. The appearance of bands dueto
locdized sates, called themiddleinfrared (MIR) bands, is
agenera featurein the optica absorption of many trans-
tion metal oxides representing strongly correlated sys
tems. The two bands mentioned above (0.14 and 0.45 eV)
were aso observed in our investigations of the optical
absorption of La,oMnO; and (Lay¢Srg1)0oMNO; single
crystals[10, 37]. The photoconductivity band at 0.4 eV
reported for singe-crystalline Lay¢Sry;MnO; [30] and
polycrystalline LaysSrysMnO; [31] was attributed to
the polaron effects. The phonon absorption in mangan-
iteswith aperovskite structure takes place in theregion
of energies below 0.09 eV. The appearance of bands
due to localized states at a high carrier concentration
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created by doping cannot be explained within the
framework of aone-electron band model. The existence
of these bands together with the Drude or quasi-Drude
contribution is important evidence for the electron
inhomogeneity and phase separation in the system.
The nature of bands related to the localized states
and many other features in the properties of transition
metal oxides are successfully explained based on a
cluster model [2] assuming the existence of the pseudo-
Jahn—Teller electron and hole clusters characterized by
the two-€electron (boson, bipolaron) nature of the carri-

ers. Transitions in the main clusters [MnOj ] form the

fundamental absorption band (above 3 eV), while the
low-energy transitions in the electron and hole clusters
account for the MIR bands. The origin of the MIR
bands is related to a strong correlation effect produced
by an additional hole (or electron) appearing in the
main cluster. This correlation leads to a pseudo-degen-
eracy in the energy of states with the hole (electron)
localized in the Mn3d and O2p states and, hence, to a
valence resonance (of the Mn*-Mn* type in the hole
cluster) and a decrease in the energy of a charge-trans-
fer transition. The MIR bands are essentially related to
the charge-transfer transitions Mn3d-O2p inside the
electron and hole clusters.

In the above mode [2], the electron and hole clus-
ters MnOg form the centers of charge inhomogeneity.
These centers may possess a complicated structure and
contain various numbers of clusters. The energy states
of the polar clusters (and of the charge inhomogeneity
centers) are determined by the charge, sin, and orbita
degrees of freedom. therefore, the charge inhomogeneity
centers are essentidly the large Jahn—Teller magnetic
polarons. The formation of these centersisfavored by the
locd potential inhomogeneity caused by a nonisovalent
substitution or by the vacancy formation. The appearance
of the charge inhomogeneity centers may account for
the metal phase nucleation in manganites with a per-
ovskite structure and, hence, for the static ad/r dynamic
phase separation in the systems [2].

The experimental results presented in this paper can
also be explained within the framework of the model
proposed in [2]. Indeed, the band at 0.14 eV observed
in LaggMnO; and (LaygSrg1)ooMNnO; single crystals
was previously assigned to transitionsin the hole closer

MnOj , whilethe band at 0.4 eV was attributed to tran-
sitions in the corresponding electron cluster [10].
According to an alternative interpretation, the band at
0.4 eV isexplained by the delocalization of polar clusters
[2], that is, by afast two-€electron exchange between cou-
pled electron and hole clusters. Thisexchange may give
rise to acommon band centered at the energy

Ay = CA+ A,

where c, , arethe concentrations of electronsand holes,
respectively, and A, ,, are the corresponding MIR peak
energies. Assuming that transitionsin the electron clus-
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ter account for the band at 0.95 eV (i.e, A, = 0.14 eV
and A, =0.95¢eV), weobtain Ay = (A, +A)/2=0.5¢eV.
This delocalization is accompanied by an increase in
the conductivity and leads to the formation of a Drude-
like metal contribution. This very situation is observed
below the metal—dielectric transition (accompanied by
an additional absorption at 0.2 €V). The intensity of
absorptionintheregion of the“hole’ pesk at 0.14 eV dso
increases bel ow the metal—die ectric transition, which can
be explained both by an increase in the Drude-like contri-
bution and by achangein the overall pesk intensity.

As is seen from Fig. 5, the intensity of absorption
bandsat 0.14 and 0.4 eV is strongly affected by the mag-
netic order, which alows us to assign the bands of local-
ized states to the magnetic polarons. In the genera case,
theintensity of polaron absorption bands reflects the con-
ductivity in the polaron system. This temperature depen-
dence of the absorption bands at 0.14 and 0.4 eV (Fig. 5
showsdataonly for theband at 0.4 €V), aswell asasimilar
variation observed for La,oMnO; and (L&ygSo,1)ooMNO;
sngle crystas [2, 10] that indicates that these bands
belong to the same object—the charge inhomogeneity
center containing electron and hole clusters. It should be
noted that we failed to reved thetrendsin the temperature
variation of the intensity of absorption at 0.9 eV because
this band exhibited a temperature-dependent shift (see
Figs. 3 and 4) because of the superposition of other
absorption bands.

A comparison of the EKE spectra of the 8O/LAO
and 80/STO samples (Fig. 7) to the absorption spectra
of the same films (Figs. 3 and 4) shows that the appear-
ance of an intense band at 0.9 eV in the absorption
spectrum coincides with the shift of the EKE spectrum
toward lower energies. Apparently these effects are inter-
related. Assuming that theband at 0.9 eV isdueto thelow-
energy trangitions in the eectron clusters, the growth in
intensity of this band observed for the O/STO sample
implies an increase in the number of these eectron clus-
ters. A change in the ratio of hole end eectron clustersin
the charge inhomogeneity centers (in the ferromagnetic
regions) can modify the energies of transitions in the
Mn3* and Mn** clusters. This can result from achangein
the crystal field screening by carriers and must apparently
affect the EKE spectrum. In the spectrum of the 20/LAO
sample, the band at 0.9 eV isless pronounced; accord-
ingly, no shift isobserved in the EKE spectrum (Fig. 7).
The drop in the EKE intensity upon the isotope exchange
inthese samplesisrelated to adecreasein thevolumefrac-
tion of ferromagnetic regions at the expense of growing
charge-ordered antiferromagnetic regions. A differencein
the degree of the EKE intengity drop for thefilmson STO
and LAO substratesis probably related to differencesin
the character of the process of charge carrier localiza
tion in these samples. These distinctions are caused by
the different character of stresses developed in thefilms
grown on different substrates.

Previoudly [8, 10], we demonstrated that a decrease
in the intensity of optical absorption in the region of
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energies corresponding to the light interaction with the
charge carriers observed on cooling the samples below
the Curie temperature (“metal” contribution), together
with retained “ semiconductor” character of the tempera-
ture variation of then dc resistivity p(T), is evidence of
the phase separation in the system, representing metal
“droplets’ distributed in an insulating matrix. A compar-
ison of the optical and magnetooptical datato the results
of resigtivity measurements indicates that the phase sep-
aration phenomenon is most pronounced in the 12O/LAO
samples. Indeed, a decrease in the absorption intensity
of thisfilm (cooled in amagnetic field) at temperatures
below 120 K (Fig. 5) demonstrates the presence of a
“metal” contribution related to the metal—dielectric
transition. Simultaneously, this film exhibits a growth
in the EKE intensity below 125 K (Fig. 8). Thus, both
the absorption and Kerr effect measurements are indic-
ative of the presence of ferromagnetic conducting
regionsin the 180/LAO film. However, theresistivity of
this film in a zero magnetic field keeps monotonically
increasing below 125 K (Fig. 1). These facts show that
the optical methods are more sensitive than the el ectri-
cal measurements with respect to the presence of a
small fraction of ferromagnetic metal droplets in the
insulating matrix.

From the standpoint of the optical properties, the
180 isotope substitution for 60 in manganites leads to a
decrease in the contribution rel ated to the free carriers and
to anincreasein intensity of bands related to the localized
states, which isindicative of aconsiderablelocalization of
the charge carriers. Thislocalization apparently has a per-
colation character [2, 3]. A system occurring near the per-
colation threshold is extremely sensitive with respect to
various external factors (light, electric field, pressure,
etc.). In our case, the external action consistsin substi-
tuting the 10 oxygen isotope for 1°0. As aresult of this
isotope exchange, the fraction of ferromagnetic metal
droplets decreases and the proportion of antiferromag-
netic charge-ordered regions increases. Assuming that the
charge carriers take the form of polarons, an increase in
their localization caused by the growth of the oxygen ion
mass can be explained by the polaron band narrowing [3].

Application of a magnetic field during cooling of the
film is an additional external factor that strongly affects
the character of the inhomogeneous multiphase state of
the composition studied. Thisfactor leads, in particular, to
an increase in the relative volume and size of the ferro-
magnetic metal regions which, in turn, results in the
growth in intengity of the MIR absorption bands accom-
panied by suppression of the inhomogeneous broadening
effects characterigtic of the small metal droplets. The
curves of the EKE magnitude versus temperature mea-
sured in the heating mode for the samples preliminarily
cooled in the magnetic field exhibit a sharper decay in
the vicinity of Tc.

During the magnetotransmittance measurements,
when the field is switched at every point (Fig. 6), the
system of charge carriers cannot relax during the time
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of measurement. For this reason, the measured magne-
totransmittance valuesis considerably (at least, by half)
smaller that those calculated using the data of Fig. 5
(measured with a constant magnetic field applied dur-
ing the sample heating from 80 K to room tempera-
ture). The existence of long-term relaxation and irre-
versible phenomena is an important feature typical of
inhomogeneous systems.

A considerable difference in the results of isotope
exchange in the manganite filmson LAO and STO sub-
strates is related to a difference in the character of
stresses developed in the films grown on different sub-
strates—expanding on STO and contracting on LAO.
This difference is related to the fact that the substrate
lattice parameter a inthe lateral direction isgreater (for
LAO) and smaller (STO) ascompared to that of thefilm
material [14, 38]. This circumstance also accounts for
the different character of the magnetic anisotropy of the
manganite films on STO and LAO substrates, which is
manifested by a change in the EKE sign in the temper-
ature interval 145 K < T < 205 K observed for the
16Q/STO film.

5. CONCLUSION

The effects of temperature, external magnetic field,
isotope exchange, and illumination on the doped manga-
nites lead to a strong modification of their optica absorp-
tion spectrum in a broad spectral range (up to 5 eV). Tak-
ing into account the very small energy scale of these
perturbations (especially of the external magnetic field
and isotope exchange), the observed anomalous
changes can be related to the percolation phenomena.

The results of the optical and magnetooptical mea-
surements for the epitaxial (LaysPrgs)o7CaysMnO;
films with a partial 2O isotope substitution for O
show evidence in favor of the model of phase separa
tion and confirm the percolation character of changes
cased by the isotope exchange. The observed spectral
features can be interpreted within the framework of the
model of the pseudo-Jahn—Teller electron and hole
cluster formation.
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Abstract—The processes of phonon transport in ceramics and composites based on aluminum and zirconium
oxides are studied experimentally in the region of helium temperatures. It is demonstrated that, for the ceramic
grain size R within two orders of magnitude and more (up to nanosizes), the phonon diffusion coefficient
D4t O R and exhibits a decreasing temperature dependence. In duminum-based nanoceramics with R < 200 nm,
the phonon diffusion coefficient decreases abruptly by two orders of magnitude, and its temperature depen-
dence becomes increasing. A model of temperature dependence of the diffusion coefficient is suggested.

© 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Interest in nanocrystal materials is associated with
expectations of high mechanical and other functional
characteristics of such materials, as well as of new
properties resulting from the dimensional effect of the
crystals or grains that form those materials and struc-
tural changes of the boundaries between them [1, 2].

One of the methods of preparing dense nanostruc-
ture ceramics, for example, ZrO, and Al,O5, and com-
posites on their basis, involves making the process of
compaction more important compared with the process
of subsequent sintering. Such a method was provided
by pulsed compaction using shock waves up to 22 GPa
[3] and soft pressure waves generated by the magnetic
pulse method [4]. The stage of sintering, i.e., the fina
operation in the preparation of nanoceramics, differs
from the conventional modes of preparing ceramics by
lower ((0.5-0.6)T,,) temperatures of treatment and
shorter (by two-three orders of magnitude) exposure
times. This stage defines both the grain size and the
structure of interfaces between the grains[4].

A number of methods exist for the investigating the
structure of nanoceramics. They include, first of al,
X-ray techniques whereby one can use the broadening
of X-ray diffraction peaks compared with the lines of
standards such as coarse-grained ceramics to estimate
the average grain size. An analysis of thetype of bound-
aries between grains proves to be a more complicated
problem to be solved by high resolution microscopy.
Nevertheless, numerous questions as to the type of
boundaries, the pore structure, and the pore and grain
dispersion remain open.

This paper deals with the investigation of nanocer-
amics and composites on the basis of a-Al,O; and ZrO,
using the heat pulse method. The use of weakly non-

equilibrium phonons with a temperature of 2 to 4 K
and, accordingly, with the wave vector for the main
group of phononsgs= 2.7KT/Av= (1.0-2.0) x 10° cn? or
As = 30-60 nm makes it possible to “sense” the size of
nanocrystallites. The transmission of a phonon or
acoustic wave from grain to grain via a boundary layer
of thickness |, whose properties differ from those of
the grains, is defined within the laws of acoustic match-
ing [5] by the quantity glg, < 11, which enables one, with
the acoustic wavelengths employed, to identify the
thickness, density, and other quantitative parameters of
this boundary layer.

2. EXPERIMENTAL PROCEDURE

We investigated samples of high-density a-Al,O;
and ZrO, ceramics and composites on their basis,
which were prepared from nanopowders of oxides pro-
duced by electric explosion of metallic aluminum and
zirconium in an oxygen-containing atmosphere. The
average size of powder particles of a close-to-spherical
shape did not exceed 30 nm. The powder was pressed
by the magnetic pulse techniquein ahard mold with the
maximum pressure pulse of 1.2 GPa for a period of
200300 ps. The compaction was performed in vacuum
(p= 1 Pa) at room temperature with preliminary degas-
sing of the powder. Compactsin the form of diskswith
the diameter of 3.0 cm and thickness of up to 0.35 cm
had arelative density of 0.7-0.8.

The compactsweresintered intheair in alaboratory
resistance furnace at temperatures T, = 1400°C. The
exposure time at the synthesis temperature ranged from
zero to 60 min; it was this time that defined the obtained
vaues of the grain size R (crystdlites) and the quality of
the boundaries between them. In preparing Al,O;—~ZrO,

1063-7761/01/9203-0474%$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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composites, the sintering temperature of 1410°C was
selected for the composition of 0.4Al1,040.6ZrO,
(A40-Z60) and 1450°C for the composition of
0.85Al1,05-0.157rO, (A85-Z15). In both cases, the
exposure time amounted to 15 min; as aresult, approx-
imately similar (~70 nm) grain sizes of the ZrO, phase
could be obtained. Asto the grain sizes of the a-Al,O;
phase, they were different for different compositions,
namely, approximately 120 nm for the first composi-
tion and approximately 180 nm for the second compo-
sition in which the a-Al,O; phase predominates. Also
investigated were ceramics prepared by the conven-
tiona technology and produced commercialy (sap-
phirite, polycor). The characteristics of theinvestigated
samples are given in the table.

The microstructure of the surface (spalation) of
ceramic samples was investigated using a JSM-840
scanning electron microscope manufactured by Jeol.

The kinetics of phonons at helium temperatures
were investigated by the “heat pulse” method. A film of
gold, which was heated by a short ((=10~ s) pulse of
current and served as an injector of nonequilibrium
phonons, was deposited on one side of a plate of mate-
rial being investigated. A bolometer of Sn in the form
of a meander with an area of 0.3 x 0.25 mm? was
applied onto the other side of the plate. The displace-
ment of the working point of the bolometer under the
effect of magnetic field (=160 x 10° A/m) enabled one
to obtain the dependence of scattering of nonequilib-
rium phonons on the temperature in the sample being
investigated in the range from 1.7 to 3.8 K. The power
dissipated in the heater was selected to be sufficiently
low so that the injected phonons could be assigned the
thermostat (bath) temperature with the frequency dis-
tribution close to Planckian.

3. RESULTS AND DISCUSSION

Examples of microphotographs of the spallation
surface of ceramic samples, obtained by scanning
microscopy, are given in Fig. 1 for a-Al,O; samples.
One can see that, both for commercialy produced
ceramic (Fig. 1a) and for nanoceramic prepared by
magnetic pulse compaction with subsequent sintering
(Fig. 1b), the grains of ceramic are close-packed crys-
tallites (or single crystals), which leads one to assume
their high structural perfection. At the same time, the
employed procedure leaves open the question of the
type of boundaries between grains of ceramic.

Before turning to the analysis of the main experi-
mental results, we will briefly dwell on the theoretical
prerequisites of applying the heat pulse method to
ceramic materials, as described in [6]. In the model of
[6], it is assumed that the free path of phonons consid-
erably exceeds the grain size, I, > R, as follows obvi-
ously from the perfect structure of thegrain (Fig. 1) and
low temperature of the experiment. In thissituation, the
scattering of nonequilibrium phonons reflects only the
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Fig. 1. The microstructure of the spalation surface of
ceramic samples. (a) VK-100 (polycor); (b) nanoceramic,
sample no. (N1862).

structure and properties of boundaries between grains.
According to [6], the expression for the arrival time of
the maximum of the signal t,,, of a pulse of nonequi-
librium phonon radiation under conditions of diffuse
propagation of phonons in a ceramic sample of thick-
ness L > R has a conventional form of

too = L/ Dy
and
Dy = V.RfZ/S. 1)

Here, v, isthe velocity of sound in agrain of ceramic,
Sisthe area of the grain surface, Z isthe total area of
contact sites per single grain, and f,,is the probability of
transmission of aphonon of frequency w through acon-
tact site. The expression Z/S reflects the possibility of
open and closed porasity on the grain boundaries in
ceramic samples. In what follows, we will demonstrate
that, for dense ceramics with open porosity (of approx-
imately 1-2%) investigated in our experiments, 2/S=1,
the average velocity of sound in the ceramics and com-
posites being investigated within the experimental
errors and estimates may be assumed to be the same
and equal to v= 7 x 10° cm/s.

The behavior of the effective diffusion coefficient
Dy as a function of temperature, ceramic grain size,
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Parameters of samples of Al,O5; and ZrO, ceramics and composites on their basis investigated by us

No. of sample Powder Tof suorgerl N9 | Dens ty, g/cm®| Grain size d, nm Eé]%oanj“rﬁ Phase composition
1604 AT-1s2 1410 3.74 200-300 0
1862 AM1-1 1410 3.80 ~300 2
1868 AM1-1 1310 3.62 ~100 3
1863 AM1-1-s5 1410 3.87 ~1000 60
1872 AM1-1-s5 1410 3.86 ~500 20
1623.7 AM1-1-s5 1230 3.25 94 a-Al,03-96%, spinel—4%
1623.3 AM1-1-s5 1310 3.60 164 a-Al,05-96%, spinel—4%
1466 AM1-1-s2 1370 3.724 ~100 a-Al,03-96%, spinel—4%
88 ZrO, 1050 5.28 45 Monoclinic
196 ZrO, 1100 5.52 ~70 Monoclinic
2071 A40-Z60 1410 5.01 120/70* 15
2036 A85-Z15 1450 4,07 180/70* 15
VK100-1 (Polycor) 3.96 20000 99% a-Al,0O5
VK98-1 (Sapphirite) 3.88 7000 98% a-Al,05
VK-94-1 (22KhS) 3.65 12000 98.4% a-Al,0O4

* The numerator gives the size of Al,O5 crystallites, and the denominator, that of ZrO,.

and the properties and area of the intergrain boundaries
fully describes the properties of ceramic material.

Examples of curves of heat pulse propagation for a
number of temperatures in an a-Al,O; sample with an
averagegrainsizeR= 0.2 umaregivenin Fig. 2; shown
in the inset are analogous curves for a sample with R <
0.2 um. In both cases, the curves of the signal on the
bolometer have a bell shape with a well-defined maxi-
mum, that is characteristic of diffuse propagation of
injected phonons. The conditiont,,,, [ L?isvalid for all
investigated samples, which points to the diffuse
behavior of the motion of nonequilibrium phonons.

1
0 50 100
t, Us

Fig. 2. The amplitude of the signal of nonequilibrium
phonon radiation as a function of time in samples of
a-Al,03 nanoceramics: sample no. 1862, R=300 nm, L =
3.75x 102 cm, T=3.83(1), 3.43(2), 3.03(3), and 2.62 K (4).
Theinset correspondsto sample no. 1868, R= 100 nm, L =
1.7x 102 cm, T=23.85(1) and 3.46 K (2).
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Note that, for a-Al,Oz ceramics with R > 0.2 pm and
for al ZrO, samples, aswell asfor composites, thetime
of the maximum of the bolometer signal t,,,, increases
with the temperature of injected phonons (0t /0T > 0);
for a-Al,O; nanoceramics with R< 0.1 um, the time t,,,,,
increases by two orders of magnitude, and itstemperature
dependence becomes decreasing (0t,,,,/0T < 0).

For investigated samples (see table), the curve of
D = L2/t dependence on the ceramic grain size was
constructed at the fixed temperature T = 3.8 K (Fig. 3).
For ceramicswith ot,,,,,/0T > O in the range of values of
R within two orders of magnitude, it turns out that
Dy O R(curve 1); it wasfor thefirst time that such cor-
relations were obtained. A deviation from the linear
dependence (decrease in the values of D) occurs at
R < 100 nm for ZrO, ceramics and ZrO,—Al,O; com-
posites. A deviation from the linear dependence Dy; [
R may be due either to the variation of the properties of
intercrystallite boundaries, i.e., of the quantity f,, or to
the manifestation of the effects of diffraction (interfer-
ence) of the phonon flux because of the comparability
of the wavelengths of phonons used in the experiment
with the grain size of ceramic crystalites. This inter-
pretation of the behavior of the Dy O ¢(R) for thegrain
size R< 40 nm appears possible, in particular, because
of dispersion in the sizes of nanocrystallites of ceramic
material. The results obtained by a number of authors
for a-Al,O5 ceramics [7, 8] “fit” the linear portion of
curve 1 well (Fig. 3). This pointsto the validity of for-
mula (1) for describing the diffusion of phonons in
ceramics, and the quantity f_2 /S defined by the proper-
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ties of boundaries between crystallites turns out to be
within the experimental error, which isthe samefor the
samples being investigated (irrespective of the time of
exposure and the temperature during sintering, which
define the size of grain in ceramics) and for high-qual-
ity commercially produced ceramics. A quantitative
comparison of the experimental datawith Eq. (1) leads
one to argue that the boundary between grainsisfairly
perfect and well formed, and one can assume that 3/S= 1
and f,= 0.8-0.9.

As was aready mentioned above, the situation
changes radically for a-Al,O; nanoceramics with R <
0.2 um, which have a decreasing temperature depen-
dence of t,.,; thevalue of Dy at T = 3.8 K decreases by
two orders of magnitude. Therefore, achange of mech-
anism of phonon scattering on the boundaries between
grains occurs as a result of variation of the structure of
those boundaries. One can assume that, because of the
singularities of the process (rapid sintering at a lower
temperature, seetable), the boundariesin these samples
are not fully formed and have alow-density interlayer
between them, this leading to effective reflection of
phonons from the boundary. We will perform numeri-
ca estimation; namely, for a value of Dy =107t cm?/s
and grain size R= 10 cm (see Fig. 3), we have |4 =
Dgi/Vvs= 1.5 x 107" cm < R for the effective free path;
i.e.,, a phonon “dangles’ in crystallite for quite some
time and is reflected from the boundaries before mov-
ing over to the adjacent crystallite (f,~/S= 107?). Note
further that, for these samples, gR > 1, and this rules
out any significant manifestation of diffraction effects.
Feofilov et al. [9] arrived at the same conclusion study-
ing a-Al,O; ceramic with agrain size of approximately
10 cm by the optical methods. They believe that the
dynamics of phonons with the energy of 29 cm differ
sharply from those for a-Al,O5; with agrain size of the
order of ~10-2 cm. The variation of the phonon dynam-
ics is associated with the variation of the conditions of
phonon transmission between the crystallite bound-
ariesrather than with the decreasein the crystallite size.
In some of our previous experiments, ot /0T < 0 was
observed for a number of single-phase ceramics with a
large grain size (5.0 to 10 um), namely, a-Al,O; [6],
and SiC and AIN [10]. The diffusion coefficients for
thesesamplesat T=3.8K arealsogiveninFig. 3. They
are matched with the data for nanocrystals given by
curve 2, which also obeysthe Dy U R correlation. For
a large class of ceramics with 0dt,,/0T < O, there is
much in common in the structure of boundaries between
grains, this defining the weak transparency (f,2/S= 107?)
of these boundaries for phonons.

We will treat the possible resonance mechanism
[11] explaining the origin of the experimentally
revealed increasing and decreasing forms of the tem-
perature dependence for the arrival time t,, of the
maximum for the signal of a pulse of nonequilibrium
phonon radiation, as illustrated by the example of the
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Fig. 3. The effective diffusion coefficient of phonons as a
function of theaverage grain size of ceramic sample, T=3.8K.
Curve 1 indicates theincreasing temperature dependence of
tmax: @nd curve 2 indicates the decreasing temperature

dependence of t,,. References for ceramic samplesinves-

tigated in other studies or by other authors are given in
square brackets.

structure shown in Fig. 4, which isa simplified model of
a phonon (high-frequency acoustic wave) propagating
from grain 3 to grain 1 via the boundary layer 2. The
materials of the structure of Fig. 4 are assumed to be
isotropic and homogeneous with preassigned val ues of
density p; and group velocity of sound v; (i = 1, 2, 3),
with the grains 1 and 3 assumed to be semibounded
plane layers of thickness |y, We follow the method of
acoustic matching of media[12] to estimate the proba-
bility f,, of phonon transmission from grain 3to grain 1
via the boundary layer 2 as the ratio of the power of
radiation transmitted to grain 1 to the power of radia-
tion incident on the boundary layer, with due regard for
all angles of incidence 65 and transmission 8, (Fig. 4).
This determination gives

2

J’ 0 (65)cosB;sin6,d6,
0

fo= "3 : 2
I cosB,sin6;d0,
0

Here, the coefficient a(05) iswritten as
a(8;) = (23/21)|W|2’ (©)
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Fig. 4. The acoustic model of phonon transmission from
grain to grain via plane boundary layer.
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Fig. 5. Predicted curvesof probability f,, of the transmission

of a phonon of frequency w from grain 3 to grain 1 via
boundary layer 2 of thickness |y, as afunction of the layer

thickness o3lg,, Where gz = w/v3. The other parameters:
Vl/V2 = 183, V2/V3 = 06, p2V2/pr1 = 032, p3V3/p2V2 =
3.5. Givenin theinset is the value of f, for small values
of galgey

where Z; = p;v;/cosb; is the acoustic impedance of the
medium, i = 1, 2, 3, and Wisthe coefficient of transpar-
ency of the boundary layer with respect to the wave
amplitude [5], that is equal to
47,7,

(Z1+Z,)(Z,+ Zs)
9 1

exp(=iYalgp) + ViVaseXp(iyalgs)

W =
(4)
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with the quantities V,, and V,; having the meaning of
the coefficients of wave reflection at the boundaries of
themedium2,1and 3, 2, i.e,

Z,—2,

_ _ 2yt 7,
S Z+ 7,

V12 23 — Zz+z3'

©)
and with the wave number vy, = g,cos6, of wave propa-
gation inside the boundary layer in the direction trans-
verseto its boundaries, g, = W/ v,.

We used Egs. (3)—<(5) and preassigned the parame-
ters of the structure shown in Fig. 4 to perform numer-
ical integration (2) and obtain the dependence of the
coefficient of transmission of phonon flux through the
boundary between grains on the acoustic thickness of
the boundary gl The calculation results are given in
Fig. 5. For a thin (perfect) boundary between grains,
alg, < landf,=0.7 (seetheinset in Fig. 5), the value
of f,, decreases as the frequency (or the phonon temper-
ature) increases, and, therefore, the value of t,,,
increases. The absolute value of f, for this case agrees
with our estimates based on the experimental curve 1in
Fig. 3for £/S=1.

In the case of afairly thick boundary layer, gly, = 1,
for the preassigned parameters of the layer p,/p; 3= 0.6
and v,/v, 3= 0.6, the transparency of the boundary to
the phonon flux decreases, f = 0.1, and may exhibit an
increasing temperature dependence, and, consequently,
tax Will decrease as the temperature increases. The
estimates based on the condition gl gy, = 1 givelg, > 5nm
for the thickness of the intergrain layer, which appears
to be areasonable value.

TheresultsgiveninFig. 3 (curve 2), i.e., for samples
with adecreasing temperature dependence of t,,,,, were

used to estimate the value of f,2/S= 1072

For the model shown in Fig. 4 and for the boundary
layer thickness |, > 5 nm, we have f,, = 0.1, and, con-
sequently, 2/S= 107, i.e., the porosity or closed poros-
ity in the region of the boundary between grainsin such
ceramicsis high, and the contact between grainsin the
region of this layer is poor.

In conclusion, note that the method of propagation
of nonequilibrium phonons in ceramic samples,
employed by us, makes it possible to suggest a model
of the boundary between grains in Al,O; and ZrO,
ceramics and in composites on their basisin the case of
change of process conditions of preparation with aview
to reducing the grain size (for example, in Al,Oq
ceramic) to the nanolevel. Of course, the suggested
model is not final, and its development calls for further
studies.
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Abstract—~Peculiarities of the superconducting state (s and d pairing) are considered in a simple model of the
pseudogap state caused by short-range fluctuations (e.g., of the antiferromagnetic type), which is based on the
model of a Fermi surface with “hot” regions. A system of Gor’kov recurrence equations is constructed taking
into account all diagrams in perturbation theory in the electron interaction with short-range fluctuations. The
superconducting transition temperature is determined, and the temperature variation of the energy gap depend-
ing on the pseudogap width and the correlation length of short-range fluctuations is analyzed. In a similar
approximation, amicroscopic derivation of the Ginzburg—L andau expansion is carried out, and the behavior of
the main physical parameters of the superconductor near the transition temperature is studied depending on the
pseudogap width as well as the correlation length of the fluctuations. The obtained results are in qualitative
agreement with a number of experiments with underdoped HTSC cuprates. © 2001 MAIK “ Nauka/lnterperi-

odica” .

1. INTRODUCTION

The pseudogap state observed in a wide region on
the phase diagram for HTSC cuprates leads to numer-
ous anomalies in their properties in the normal as well
as superconducting states [1]. These anomalies can be
explained using two basic theoretical scenarios. The
first is based on the model of the formation of Cooper
pairs even above the superconducting transition tem-
perature [2-4], followed by the stabilization of their
phase coherence at T < T.. The second assumes that the
origin of the pseudogap state is associated with fluctu-
ations of the antiferromagnetic (AFM) short-range
order existing in the region of underdoped composi-
tions on the phase diagram [5-7]. A number of recent
experimental results convincingly demonstrate the
validity of the second scenario [8, 9].

Most of theoretical publications are devoted to an
analysisof the models of the pseudogap statein the nor-
mal phaseat T > T.. We proposed [10, 11] avery simple
exactly solvable model of the pseudogap, which is
based on the concept of “hot” (planar) regions existing
on the Fermi surface. In the framework of this model,
the Ginzburg-Landau expansion was constructed for
various types of Cooper pairing [10] and the peculiari-
ties of the superconducting state in the range of T < T,
[11], caused by short-range fluctuations of the AFM
type, were analyzed. We used an extremely simplified
model of Gaussian short-range fluctuations with an
infinitely large correlation length, which allowed us to
obtain the exact solution for the pseudogap state. Inreal

systems, the correlation length of AFM fluctuations is
finite and comparatively small [6]. The present work is
mainly devoted to the generalization of the main results
obtained by us earlier [10, 11] to the case of finite cor-
relation lengths of the short-range AFM fluctuations
and to the analysis of the main parameters of the super-
conducting state as functions of this correlation length
and the effective width of the pseudogap.

2. MODEL OF THE PSEUDOGAP STATE

The simplified model of the pseudogap state [10,
11] under investigation is based on the pattern of well-
developed fluctuations of the antiferromagnetic short-
range order and is close to the model of “hot points’ on
the Fermi surface [6]. We assume that the Fermi surface
of a 2D electronic system has the form depicted in
Fig. 1. Such aFermi surface was observed in a number
of ARPES experiments on HTSC cuprates [12, 13]. It
should be noted that the assumption concerning the
existence of planeregionsis not of fundamental impor-
tance for our model. However, it considerably simpli-
fied the calculations which could also be in principle
made in a more realistic model of hot points. Such a
model of the Fermi surface was applied long ago to
HTSC cuprates by many authors [14-16] who thor-
oughly analyzed, among other things, the microscopic
criteria for the existence of the antiferromagnetic and
superconducting phases. We will be using a purely phe-
nomenological model presuming the existencein asys-
tem of static Gaussian fluctuations of a short-range
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order with a correlation function (structural factor) of
the form [5]

_ 1 &t &t
S(q) - 5 2 _ 2 Y (1)
(90— Q) +E7%(q,- Q) +&7

where & isthe correlation length of the fluctuations, and
the scattering vector is taken in the form Q, = +2k,
Q =0, 0r Q =2k, Q, =0, which envisages the pres-
ence of incommensurate fluctuations. The factorized
form of correlator (1) introduced in [5] considerably
simplifies the calculations and is virtually identical
guantitatively to the conventional isotropic Lorentzian
in the range |g — Q| < &, which is the most important
for our analysis[7].

The least physically justified assumption concerns
the static form of fluctuations and can be used only at
high temperatures [6, 7]. At low temperatures, includ-
ing those corresponding to the superconducting phase,
the spin dynamics may naturally turn out to be quite
significant. This also applies to the microscopic theory
of Cooper pairing in the model of a“nearly antiferro-
magnetic” Fermi liquid [17, 18]. However, we
assume that the static approximation used here is
sufficient for an analysis of the qualitative effect of
pseudogap formation on the superconductivity, which
will be described by using a purely phenomenol ogical
approach of the BCS theory.

We present the effective interaction of electrons
with AFM fluctuations in the form

Vi = (2)°W’S(q), )

where parameter W determinesthe energy scale (width)
of the pseudogap. We assume that only the electrons
belonging to planar (hot) regions on the Fermi surface
interact with fluctuations, so that the value of W effec-
tively differs from zero only for these electrons [10,
11]. We completely disregard the spin structure of the
interaction, which could be easily taken into account
[6], but thiswould make our calcul ations more cumber-
some. Inthis sense, our analysis can be applied literally
to a description of the interaction between short-range
fluctuations and charge density waves rather than spin
density waves. We also assume that this smplifying
assumption isinsignificant for an analysis of the quali-
tative effects of the pseudogap state on superconductiv-
ity that we are interested in.

The factorized form of correlator (1), and hence of
the effective interaction (2), makes the scattering from
fluctuations one-dimensional. In the limit of an infi-
nitely large correlation length (§ — ), the model of
scattering from such fluctuations has an exact solution
[10, 11, 19]. For afinite &, we can construct an “amost
exact” solution [7] generalizing the one-dimensiona
approach proposed in [20]. In this case, the sum of the
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Fig. 1. Fermi surface of a two-dimensional system. Hot
regions are shown by bold lines of thickness ~& L.

entire diagrammatic series for the one-particle Green’s
function for electrons from the planar regions on the
Fermi surface (where the nesting condition &, . o = —¢,
for the electron spectrum is satisfied) can be (approxi-
mately) determined.

For the contribution of an arbitrary diagram, we can
write the following ansatz for the N-order eigenenergy
component in the interaction (2) [7, 20]:

2N-1

2™ (en p) = W 7] Gog (. P).
i=1

3
1

ig,—(-1)'E, +ikk

Gij(‘c'n! p) =

where k = vg&™? (vr is the Fermi velocity), k; is the
number of interaction curves embracing the jth electron
line in the diagram (starting from the origin), and €, =
21T (n + 1/2) (we assume for definiteness that €, > 0).
Thus, the contribution of any diagram is actually deter-
mined only by the set of integers k. Any diagram with
the intersection of the lines of interaction isidentical to
a certain diagram of the same order without intersec-
tion of interaction lines, and the contribution of al dia-
grams with intersections can be taken into account
through the combinatorial factors v(k;) ascribed to
interaction lines on diagrams without intersections [ 20,
7, 6]. In the model of incommensurate fluctuations
under investigation, we have

K+l torodd K,

O 2

v(k) = (4)
Eéz foreven k.

Asaresult, we arrive at the following recurrence proce-
dure (presentation in the form of a chain fraction) for
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W2 (k+ 1)
= = —— + e—éﬁ
Gk GOk GOk Gk+l Gk

Fig. 2. Diagrammatic representation of the recurrence rela-
tion for aone-particle Green's function.

the one-particle Green's function G(g,, p) for electrons
from hot regions [20, 7, 6]:

Gk(sn’ p)

1

T enm (1% + K- WU K+ DGy a(ep) )

G(Sni p) = Go(sn’ p)

The diagrammatic representation of this procedure is
illustrated in Fig. 2.

Ansatz (3) for the contribution of an arbitrary
N-order diagram is usually not exact [7, 21]. However,
in the 2D case, we can indicate the topologies of the
Fermi surface for which representation (3) is exact [7].
In the remaining cases, it can be proved [7] that this
representation exaggerates (in a certain sense) the role
of the finiteness of the correlation length & in the given
order of perturbation theory. In the 1D case, when this
problem is especially vital [7, 21], it turns out that the
calculations of the density of states on the basis of
approximation (3) for incommensurate fluctuations
give anearly perfect quantitative coincidence [22] with
the results of the exact numerical simulation of this
problem, which was carried out in [23, 24] Linthelimit
& — o0, ansatz (3) can bereduced to the exact solution
[19], whileinthe limit § — O, it leadsto aphysically
correct limit of free electrons for afixed value of W.

Outside hot regions, electrons do not interact with
fluctuations atogether in our model, and the Green’'s
function remains free:

1
i“':n_zp.

G(enp) = Goo(€nP) = (6)

The model considered above leads to a non-Fermi-lig-
uid (two-hump) behavior of the spectral density in hot
regions on the Fermi surface and to a blurred
pseudogap in the density of states (cf. similar resultsin
the model of hot points [6, 7]). In cold regions of the
Fermi surface, we observe the conventional Fermi-lig-
uid behavior (free electrons).

LIn the case of a one-dimensional problem with commensurate
fluctuations, ansatz (3) failsto describe only aweak Dyson singu-
larity in the density of states near the center of the pseudogap [23,
24], also providing a quantitatively good approximation to the
exact results beyond the pseudogap. Note that in the 2D case, the
Dyson singularity in the density of statesisjust absent in all prob-
ability.
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3. GOR'KOV EQUATIONS FOR A
SUPERCONDUCTOR WITH A PSEUDOGAP

In our previous publications [10, 11], we analyzed
the peculiarities of the superconducting state in the
exactly solvable model of the pseudogap state induced
by short-range AFM fluctuations with an infinitely
large correlation length (§ —= o). Among other
things, it was proved [11] that AFM fluctuations may
lead to strong fluctuations of the semiconducting order
parameter (energy gap A), which violate the standard
assumption concerning the self-averaging of the gap
[25-27]. This assumption makes it possible to average
(over the configurations of the random field of static
short-range fluctuations) the order parameter A and var-
ious combinations of the electron Green's functions
appearing in the basic equations of the theory. The con-
ventional arguments in favor of such an independent
averaging are usually formulated as follows [25, 27].
The value of A varies over characteristic scales of
length of the order of the coherence length &, ~ v/A,
inthe BCStheory, while Green’sfunctionsvary rapidly
over much smaller scales of the order of atomic spac-
ings. Naturally, the latter assumption becomes incor-
rect when a new characteristic length & —» co appears
for the electronic subsystem. At the same time, if the
antiferromagnetic correlation length § < &, (i.e, if
AFM correlations correlate over distances smaller than
the characteristic size of Cooper pairs), the assumption
concerning the self-averaging of A must be preserved,
being violated only in the region where § > &,. For this
reason, the subsequent anaysis will be carried out
assuming self-averaging of the energy gap of a super-
conductor over AFM fluctuations. Thisallows usto use
the standard approach of the theory of disordered
superconductors (mean-field approximation in the lan-
guage of [11]). In this case, the interesting question
concerning superconductivity in the absence of self-
averaging of the order parameter is not considered. It
should be noted that for real HT SC cuprates, we appar-
ently always have & ~ &;, so that these materialsfall in
the most complicated range of parameters of the theory.

Following [10, 11], we assume that the supercon-
ducting pairing is governed by the attraction potential
of the following simplest form:

V(p,p') = V(o @) = -Ve(g)e(9), ()

where @ is the polar angle determining the direction of
the electron momentum p in a plane, and for (@) we
assume the following ssimplest model dependence:

&(q) = L (s-pairing), ®
¥ = Bscos(29)  (d-pairing).

As usual, the constant of attraction V is assumed to be
other than zero in a certain layer of width 2w, in the
vicinity of the Fermi level (w is the characteristic fre-
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W2 (k+1)
e s + >+ —
Gy  Gu  Gop Gry1 Gy Gop Frwy Fi For Gy Fio For Fii1 Gy
_ N PN N (/“ N *l/*‘ N *‘/‘\
Fi  Fo Fo Gro1 Gy Foy Fron Fi Gy Geywy Fio Gop Fiyy Gy

Fig. 3. Diagrammatic representation of the recurrence relation for Gor’ kov’s equations.

guency of quanta ensuring the attraction of electrons).
In this case, the superconducting gap has the form

A(p) =A(9) = Ae(9). 9)

In order to simplify the notation, we will henceforth
assumethat the gap A just standsfor A(¢) and will write
explicitly the angular dependence only when required.

The perturbation theory in the interaction with AFM
fluctuations (1) for the superconducting state must be
constructed on “free” normal and anomalous Green's
functions for the superconductor:

ie,+¢&
Gu(&m p) = ————2—,
olenP) = 7 &+ A (10)
+ AU
Foo(€n P) =

2, ¢2 2’
Ent &+ A

In the adopted model with planar regions on the Fermi
surface, the el ectron spectrum in the regions orthogonal
to the p, axis hasthe form &, = ve(|py| — pg) since the
electron velocity v is perpendicular of the p, axis (a
symmetric situation is also observed in the regions
orthogona to p,). Consequently, in the case of s-pair-
ing, when the value of A isindependent of the direction
of the momentum, the problem becomes completely
one-dimensional in the model with an interaction of
form (1) and (2). In the case of d-pairing, the situation
is more complicated since the value of A(¢@) depends on
p, evenin the planar regions orthogonal to p, (and, sym-
metrically, on the regions orthogonal to p,). For this
reason, it is convenient to analyze d-pairing by using
instead of Eq. (1) the correlator of fluctuations in the
form

E—l

14
= = 5
@ M 7 2pp) 2+ €2 @)
(11)
&t O
+ Pe) «
(9, F2pg)’+ &7 (q)%

In this case, the interaction does not affect p, and p, in
the planar regions orthogonal, respectively, to p, and p,,
and the problem becomes completely one-dimensional
again.
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We can now formulate an analogue of approxima-
tion (3) for the superconducting state also. The details
of the substantiation of the relations presented below
are given in Appendix A. The contribution of an arbi-
trary N-order diagram in interaction (2) to the total nor-
mal or anomalous Green's function has the form of a

product of N + 1 “free” normal Gij and anomalous

(ng;) Green's functions with frequencies and gaps

renormalized in acertain way (seebelow). Herek; isthe
number of the interaction curves embracing the given
jth electron line (starting from the origin of the dia-
gram). Asin the normal phase, the contribution of any
diagram is determined by the set of integersk;, and each
diagram with the intersection of interaction curves is
equivalent to a certain diagram of the same order with-
out intersection of these curves. Consequently, we can
again consider only diagrams without intersections of
interaction curves, taking into account the contribution
of the remaining diagrams through the same combina-
torial factors v (k) ascribed to the interaction curves as
in the normal phase. As a result, we obtain a diagram-
matic analogue of the Gor’kov eguations [28] pre-
sented in Fig. 3. Accordingly, we have two coupled
recurrence equations for the norma and anomalous
Green's functions:

Gy = Goy + GGGy — Gy FFy
~FoG*Fy —FolF Gy,
+ + + = + -t (12)
Fr = Fox + Fo GGy + —Fo FFy
+ G5 G*F, + G5F G,
where

G=Wv(k+1)Gy,., F =Wv(k+1)Fy,,, (13)

ig, + (1) €
Golen p) =~ D 5y
Ent &+ Al 14
. A*
Fox(€n P) = =

E2+82+[0*
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and the renormalized frequency € and gap A

A=nd no=1+—% (15

Jeb+10)?

have been introduced in analogy with the case of super-
conductors with impurities [28].

Equations (12)—(15) can easily be used to derive a
system of recurrence relations directly for the real and
imaginary components of the normal Green’s function
and for the anomal ous Green's function:

8n = nkena

e
~ =2 k “N2 (%, 22!
(E-ImG)" + ((-1)*¢, + ReG) " +|A + F|

ImG, =

ReG,
_ (-1)'¢, + ReG
(E-ImG)”+ ((-1)'¢, + ReG)" + A + F|*

(16)

E = A*+|E+
k= - ~ .2 K ~2 |7 ~2t
(E-ImG)" + ((-1)*¢, + ReG)" +|A + F|

Let usintroduce the following notation:
IMG, = —€,J), ReG, = —~(-1)¢,R,, Fy = A* f,.(17)

It turns out that the recurrence relations for J, and f, are
completely identical in this case so that J, = f,.. Finally,
we arrive at the following system of recurrence rela-
tionsfor J, and R,

Je = [N+ Wov (k+1)J,, 4]
x[(2+0%) (N + WAV (k+ 1), 1)’

+E(1+ WAV (K+ DR )]

(18)
Re=[1+W v (k+1)R.4]

x [(2+ 82 P (N + WAV (K + 1)y, 1)°
+E2(1+ WAV (K+ 1)Rer)]

The normal and anomalous Green's functions for the
superconductor we are interested in can be defined in
terms of R, and J,,

ImG =-¢,J,, ReG=-¢R,, F'=24*J,
and have the form of atotally summed seriesin the per-
turbation theory in the interaction of an electron with
short-range antiferromagnetic fluctuations in the semi-
conductor.

(19)
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4. SUPERCONDUCTING TRANSITION
TEMPERATURE AND THE TEMPERATURE
DEPENDENCE OF THE GAP

The energy gap in a superconductor is defined by
the equation

Ap) = =T > Valp, P)F(enp).  (20)
P &,

The anomalous Green's function on planar regions of
the Fermi surface can be determined from Egs. (19) by
using the recurrence procedure (18). In our model, the
scattering from AFM fluctuations on the remaining
(cold) part of the Fermi surfaceis absent, and the anom-
alous Green's function has the same form asin Egs. (10).
As a reault, Eg. (20) for s-pairing taking into account
dependence (8) assumes the form

U w,
U~
1= A@MTS [dEIq(e,
ép( szn_{ € Jo(€n€)
(21)
2 2
“ tanh EZ_T_AE
+ (1) [l —= ]
0 E+ A O
O

where A = VN,(0) is the dimensionless constant of the
pairing interaction (Ny(0O) isthe density of statesfor free
electrons at the Fermi level) and a = 4a/m wherea is
the angular dimension of a planar region on the Fermi
surface (see Fig. 1). In our further numerical calcula-
tions, we will assume (quite arbitrarily) that a = 2/3,
i.e, a =106, which is close, for example, to the results
obtained in [12].

In the case of d-pairing, we must take into account
the angular dependence of gap (9), and Eg. (20)
assumes the form

W,

O q e
_ 4,4
1= A;T%T{dcpez(cp)ezn J%daJo(snz)

0
[z2 2.2 (22)
4 W, tanhw E
+ [ dge’(9) [ — =1
a 0 NE +Ae(@) E

Figure 4 shows the temperature dependences of the gap
width calculated from Eqg. (21) in the case of s-pairing
for various values of correlation length (parameter
K = ve&) of the fluctuations. In the case of d-pairing,
the corresponding qualitative dependences are quite
similar.
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0 02 04 06 0.8 1.0
T/TCO

Fig. 4. Temperature dependence of the superconducting gap
width in the case of s-pairing for various values of correla-

tionlength (parameter k = v,:E‘l) for AFM fluctuations, cal-
culated for A = 0.4, w/W=3,k/W=0(1), 1.0(2), and 10.0(3).
The dashed curve describes A(T) in the absence of a
pseudogap.

The equation for the superconducting transition
temperature T, follows directly from Egs. (21) and (22)
for A — 0. Inthiscase, Jo(A — 0) isindependent of
@ and isthe samefor s- and d-pairing. Accordingly, the
equation for T, hasthe form

[l 0,
O

1= }\mefchZ I d&Jo(eng; A —=0)
E €y —W

(23)

* tanh&/(2T
Hl_adf)J’dEM
0

[ .|

where the “effective” fraction of planar regions on the
Fermi surface is defined as

55( (s-pairing),
= 0 - 24
Gt Ep(+1—lTsin(T[a) (d-pairing). (24)
0

The theoretical dependence of T. on the pseudogap
width W and correlation length (parameter kK = V&™)
are shown in Fig. 5 (T, is the superconducting transi-
tion temperature in the absence of a pseudogap).

The general qualitative conclusion isthe same asin
[10, 11]: the pseudogap suppresses superconductivity
due to a partial “dielectrization” of the electron spec-
trum in hot regions on the Fermi surface. The suppres-
sion effect isthe strongest for k = 0 (infinitely large cor-
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Fig. 5. Dependence of the superconducting transition tem-
perature on the pseudogap width W and the correlation

length (parameter k = vE™2) for AFM fluctuations: k/W =

0.1(2), 1.0(2), and 10.0 (3). The dashed curve corresponds
tok =0[10]. Theinset shows the dependence of T, on k for

WiTg = 5.

relation length of AFM fluctuations) [10, 11] and
decreases with the correlation length, which is quitein
accordance with the experimental phase diagram of
HTSC systems.

It should be emphasized once again that all the
results described above are valid under the assumption
of the self-averaging of the superconducting order
parameter (gap) in AFM fluctuations (mean-field
approximation [11]), which holds for not very large
values of the correlation length & < &, where &, is the
coherence length for the superconductor (the size of
Cooper pairsat T = 0). For & > &, considerable non-
self-averaging effects appear, which are manifested in
the emergence of characteristic “tails’ on the tempera-
ture dependence of the averaged gap in the temperature
range T, < T < Ty [11].

5. COOPER INSTABILITY. RECURRENCE
PROCEDURE FOR THE VERTEX PART

It iswell known that the superconducting transition
temperature can also be determined in a different way,
namely, from the equation for the Cooper instability of
the normal phase:

1-Vx(0,0) = 0, (25)

where the generalized Cooper susceptibility is
described by the graph in Fig. 6. In this case, we are
dealing with the problem of calculation of the “triangu-
lar” vertex component taking into account the interac-
tion with AFM fluctuations. For the one-dimensional
analogue of our problem (and for real frequencies,
T =0), the corresponding recurrence procedure was
formulated in [29]. For the 2D model considered by us
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q
X0, q) = r

—IE,, p

Fig. 6. Diagram for the generalized Cooper susceptibility.

here, this procedure was used for cal culating the optical
conductivity [30]. The procedure can easily be general-
ized to the case of Matsubara frequencies. Henceforth,
we will assume for definitenessthat €, > 0. This gives

Me1(En —€m ) = 1+ W2V (k)G Gk

N 2ikk E
O 2ig,—(-1)*veq—W2v(k+ 1)(Gy. 1 —Cks+1)0
(26)

X I_k(sn! <€ q)l
r(snv —€n q) = I_0($nv —€n q)!
where G, = G,(g,,, p + q) and Gy = G,(-¢,, p) are cal-
culated in accordance with relations (5).
In order to find T, we consider the vortex where q =

0. In this case, Gx = G, and the vertices I', become

real-valued, which considerably simplifies procedure
(26). Using a notation similar to (17), we obtain from
relations (5) and (26)

I
1+ WV (K+1)Je,,

Feey = 1+Wov(K) F., @70

while for R, and J, we have recurrence relations coin-
ciding with Egs. (18) for A= 0.

The following exact relation (which will be proved
below) of the type of the Word identity holds:

G(Snv p)G(_Sn’ p)r(ena _Sn! 0)
= (E2R5(Em &p) *+ €2d0(En &p))

X T o(n £ 0) = Jo(En &) = —= (£ D).

(28)

A numerical analysis completely confirms the validity
of this relation, demonstrating complete matching
between the recurrence procedures for the one-particle

Green's function and for the vertex component.2 Since
Jo(A — 0) coincides with J, in the normal phase, rela-
tion (28) just leads to the coincidence of the equation for
T, obtained from the Cooper instability condition (25),

2 Note that an analytic proof of this relation through a direct com-
parison of the recurrence procedures themselves for the Green's
function and the vertex component is not at all obvious.
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0J 0,
12N DTy [ OBERi(en &)+ ehdolen &)
o "™ (29)

W

T e =60, O) + (1= ) [l 221
0

¢ 0

and Eq. (23) obtained as aresult of the linearization of
the equation for the gap in spite of the apparently dif-
ferent recurrence procedures used for their derivation
and taking into account AFM fluctuations.

6. THE GINZBURG-LANDAU EXPANSION

The Ginzburg—Landau expansion in the exactly
solvable modd of a pseudogap with an infinitely large
correlation length of AFM fluctuations was constructed
in [10]. Here, we will generaize these results to the
case of finite correlation lengths.

We write the Ginzburg-Landau expansion for the
difference in the free energy densities of the supercon-
ducting and normal states in the standard form

B
Fs—F, = A|Aq|2 + qZC|Aq|2 + §|Aq|41 (30)
where A, is the amplitude of the Fourier component of
the order parameter:

A(@ q) = Aqe(9). (31)

Expansion (30) isdetermined by the graphs of theloop-
type expansion for the free energy in the field of order
parameter fluctuations with asmall wave vector g [10].

We present the Ginzburg—Landau coefficientsin the
form
A = AgKn, C = CoKe, B = ByKg, (32

where A,, C,, and B, denote the standard expressions
for these coefficients in the case of an isotropic s-pair-
ing:

_ T-T. _ 7(3)Vr
Ao = No(0)——, Co = No(0) >3,
¢ - 3217 T2 33)
B, = NO(O)8—T[2T§.

In this case, al the peculiarities of the model under
investigation, which are associated with the emergence
of apseudogap, are contained in the dimensionless coef-
ficients K,, K¢, and Kg. In the absence of a pseudogap,
all these coefficients are equal to unity (Kg = 3/2 only in
the case of d-pairing). For this reason, we will normal-
ize coefficient K for d-pairing to this value, presenting

the numerical resultsfor Kg = (2/13)Kg.
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Let us consider the generalized Cooper susceptibil-
ity (Fig. 6)

X(9,0; T) = —TZZG(SW p+q)
& P
X G(~€p, P)EX(Q)T (€, —€n, Q).

Using relations (28), we can easily write coefficients K,
and K¢ in the form

X(q! 0: T) _X(O, 01 Tc) = qa TC

(34)

Ka =

A, T OUET T,
0 o,
0Ty [dedend)
E €n=T[T(2n+l)_wc (35)
o E
=T dg Jo(en, &) O+ 1 -0,
E=TT (2n+ 1)_(0C %
. ,0: T)=x(0,0; T
K, = IImx(q )2 X( c)
q-0 q Co
0 o
21T 0 -
= —Cg = O IdEJo(5n1E)
7Z (3) VFq %n =nT(2n+ ;|_)_wC (36)
1 0
- Y [UEGE.E+5vecH
£=TT (2n+1)—0
D
X T (€~ 0) G €, & — quwl O
D

The situation with coefficient B in the general case is
much more complicated. Considerable simplifications
can be made by confining the analysistothecaseof q=0
in the order |A,l*, as is usudly done in actua practice.
Then coefficient B can be determined directly from the
anomalous Green's function F for which we aready have
the recurrence procedure (18) and (19). Indeed, let us con-
sider the diagrammatic series for the anomalous Green's
function presented in Fig. 7a. It can easily be seen that

F(en, P) _
0 - G(Sn’ p)G(_Snl p) (37)
= G(sn! p)G(_sn’ p)r(snv —<€n 0)1

which, by the way, immediately proves relation (28)
taking into account Egs. (19). Consequently, for the

lim
A~
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Fig. 7. (a) Disgrammatic series for the anomalous Green's
function; dashed curves correspond to AFM fluctuations;
(b) diagram defining coefficient Kg.

bipartite loop x(0, 0), we have

x(0,0) = TZZH F(s”’ 2
(38)

=Ty S (8 =0).
p €

For the “four-tail” diagram in Fig. 7b defining coeffi-
cient B, we similarly obtain

' F(g,, p)/A—iimoF(snp)/A
Ty3im
Jo(B) — Jo(A 0)

= —TZZHAO ,

where Jy(4) is determl ned through the recurrence pro-
cedure (18). As a result, for the dimensionless coeffi-
cient Kg, we have

A2
(39)

8 TS
A TE) 40
dEIl J(8=0)- J(A)+l—0( 0
Z A0 A2 B
where
a (s-pairing), (1)

% = 15+ Xsnmd + sin2md  (d-pairing)

3m 6Tt 9
The obtained relations allow us to carry out direct
numerical calculations of the coefficients K,, K¢, and
Kg. Figure 8 shows, by way of an example, the calcu-
lated dependence of K on the pseudogap width W and
on the correlation length of AFM fluctuations (parame-
ter kK = v&€1). The corresponding dependences for K,
and K are qualitatively similar. In particular, for k =0,
wejust have Kg = K¢ [10].
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Fig. 8. Dependence of coefficient Kc on the pseudogap

width W and the correlation length (parameter k = vE™)

for AFM fluctuations: k/W = 0.1 (1), 1.0 (2), and 10.0 (3).
Thedashed curve correspondsto k = 0[10]. Theinset shows
the dependence of K on k for W/Tg = 5.

7. PHYSICAL PARAMETERS
OF SUPERCONDUCTORS WITH A PSEUDOGAP

The Ginzburg—L andau equations define two charac-
teristic lengths for superconductors. the coherence
length and the magnetic field penetration depth.

The coherence length &(T) at a given temperature
determines the characteristic scale of inhomogeneities
in the order parameter A:

£X(T) = —CIA. (42)

In the absence of a pseudogap, we have
Eacs(T) = —Col A, (43)
Eacs(T)=0.748,/ J1-TIT,, (44)

where &, = 0.18v/T.. Inthe model under investigation,
we can write
& (T)/&aes(T) = Kc/K. (45)

The corresponding dependences of EZ(T)/EQCS(T) on
the pseudogap width W and on the correlation length of
fluctuations (parameter K) in the case of d-pairing are
presented in Fig. 9. Note that the coherence length var-
iesinsignificantly.

For the magnetic field penetration depth in a super-
conductor without a pseudogap, we have

1 A
Ages(T) = —= 2

J2, =TT,

(46)
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WIT,

Fig. 9. Dependence of the coherence length on the
pseudogap width W and the correlation length (parameter
K = v&™1) for AFM fluctuations: k/W=0.1(1), 1.0 (2), and
10.0 (3). The dashed curve corresponds to k = 0 [10]. The
inset shows the dependence of the coherence length on k for
WITy =5.

where A2 = mc2/4tne? defines the penetration depth at
T =0. In the general case, we have

¢ B

AN(T) = - —, 4
(T) S AC (47)
Then, in the model under investigation, we can write
AT Kg 1*?
( ) — [0 ns DU (48)

)\BCS(T) - l:KAKCE| .

The dependences of these quantity in the case of d-pair-
ing are presented graphically in Fig. 10.

A/Agcs

1.8
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1.4

1.2

1.0

0.8

0 2 4 6 8 10
W/ TCO

Fig. 10. Dependence of the penetration depth on the
pseudogap width W and the correlation length (parameter
k = veE) for AFM fluctuations: k/W=0.1 (1), 1.0 (2), and
10.0 (3). Theinset shows the dependence of the penetration
depth onk for WiTy = 5.
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\dH /dT|
1.6 1.0

1.2

0.8

0.4

W/ TCO

Fig. 11. Dependence of the slope of the upper critical field
on the pseudogap width and on the correlation length

(parameter K = VFE‘l) for AFM fluctuations: k/W= 0.1 (1),

1.0(2), and 10.0 (3). The dashed curve correspondstok =0
[10]. Theinset shows the dependence of the slope of H, on

K for WiT = 5.

In the vicinity of T, the upper critica field H., can
be expressed in terms of the Landau—Ginzburg coeffi-
cients:

__ % _ %A
ome’(T)  21C’
where @, = crve is the magnetic flux quantum. In this

case, the slope of the curve describing the upper critical
field in the vicinity of T, isgiven by

(49)

c2

2411, T &\
_ T,
T 7¢3)vi Kc

(50)

‘dch
dT

Figure 11 shows graphically the derivative [dH,/dT|

normalized to the derivative at temperature T, as a
function of the effective width W of the pseudogap and
the correlation parameter K in the case of d-pairing. It
can be seen that for large correlation lengths, the deriv-
ative of the field decreases rapidly with increasing
pseudogap width. However, for small correlation
lengths, this parameter can dightly increase for small
values of the pseudogap width. For a fixed pseudogap
width, the function dH.,/dT increases noticeably for a
decreasing correlation length of fluctuations.

Finally, let us consider the heat capacity jump at the
transition point:

C-Ci_ T A f
Q  BO-TI" 1)

where C, and C,, are the heat capacities of the supercon-
ducting and normal states and Q is the sample volume.
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Fig. 12. Dependence of the heat capacity on the pseudogap
width and jump on the correlation length (parameter kK =

V&™) for AFM fluctuations: k/W = 0.1 (1), 1.0 (2), and
10.0 (3). The dashed curve corresponds to k = 0 [10]. The

inset shows the dependence of the heat capacity jump on kK
for WiTo=5.

At temperature T, (in the absence of apseudogap, W=0),
we have

= N(0)

£:-Cu 8T
Ta 52

B 7¢(3)°

The relative jJump in the heat capacity in the model
under investigation can be written as

(Cs_cn)Tc _ Tc ﬁ

—_—t o — 53
(C.—Cr.,  TeoKs 3
The corresponding dependences on the effective
pseudogap width W and the correlation length parame-
ter K in the case of d-pairing are presented in Fig. 12. It
can be seen that the heat capacity jJump decreases rap-
idly with increasing pseudogap width and, on the con-
trary, increases upon a decrease in the correlation
length of AFM fluctuations.

For superconductors with s-pairing, the depen-
dences of the physical quantities considered above are
basically quite similar. The only difference is a larger
scale of W for which the corresponding changes take
place. This correspondsto ahigher stability of isotropic
superconductorsto a partial dielectrization of the elec-
tron spectrum due to the formation of a pseudogap in
hot regions on the Fermi surface [10, 11].

From the physical parameters of a superconductor,
detailed experimental data have been obtained for heat
capacity jump [8]. In complete qualitative agreement
with our conclusions, the heat capacity jump for the
Bi-2212 system decreases rapidly upon a transition to
the range of underdoped compositions for which the
pseudogap width increases. According to the results
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obtained by Tallon and Loram [8], the pseudogap width
(parameter 2W in our case) varies from a value of the
order of 700 K for the hole concentration p = 0.05 to a
value of the order of T, ~ 100 K in the vicinity of the
optimal concentration p = 0.16, vanishing for p = 0.19.
In this case, a clearly manifested correlation between
the decrease in the heat capacity jump and the increase
in the effective pseudogap width is observed. Unfortu-
nately, we are not aware of detailed results on the con-
centration dependence of correlation length of fluctua
tions and, accordingly, of the corresponding depen-
dences of physical parameters of a superconductor.
Qualitatively, the correlation length increases as we go
over to the range of underdoped compoasitions, so that
the effect of a decrease in the heat capacity jump is
quite justified from this point of view.

8. CONCLUSION

In this work, we continue our study of the peculiar-
ities of the superconducting state on the basis of arather
rough model of the pseudogap state of a two-dimen-
sional electronic system [10, 11], which neverthelessis
in qualitative agreement with anumber of observed sin-
gularities in the electronic structure of underdoped
HTSC cuprates. In our earlier publications[10, 11], we
considered anonrealistic limit of aninfinitely large cor-
relation length of fluctuations with the short-range anti-
ferromagnetic order, which, however, alowed us to
find the exact analytic solution of the problem. Here,
we have carried out ageneralization to therealistic case
of finite correlation lengths, which takes into account
all the diagrams of perturbation theory in the interac-
tion of electrons with short-range fluctuations in the
same way as in [10, 11]. The analysis was carried out
using the standard (mean-field in terms of [11])
approach based on the assumption of the self-averaging
of the superconducting order parameter in the fluctua-
tions of the random field induced by AFM fluctuations.
It was proved in [11] that this assumption is not sub-
stantiated in the limit &€ — . At the same time, it is
undoubtedly valid for § < &, (where &, isthe coherence
length of the superconductor at T = 0, i.e., the size of
Cooper pairs). Thus, it remains for us to solve the
extremely complicated problem of taking into account
the non-self-averaging effects for & > §,. It was men-
tioned abovethat inreal HTSC systems, & isin all prob-
ability of the order of &, so that non-self-averaging
effects for the superconducting gap of the type of those
considered in [11] can be quite significant. These
effects are manifested of the form of “tails” on the tem-
perature dependence of the averaged gap at T > T, (the
pattern of superconducting “drops’ [11]).

Another significant simplification in our model is
the assumption concerning the static (Gaussian) type of
short-range fluctuations. This assumption is justified
only in the limit of high temperatures T > wy (Where
Wy is the characteristic frequency of spin fluctuations)
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[6, 7]. For this reason, its application to the supercon-
ducting phase for T < T, is quite dubious. We believe,
however, that the simplified analysis carried out above
can be used for describing the most significant effects
of variation of the electron spectrum (formation of a
pseudogap in hot regions on the Fermi surface) on the
superconductivity in such a system. If we took into
account the dynamics of spin fluctuations, we would
inevitably leave the limits of the ssmple phenomenol-
ogy of the BCS model and would have to analyze in
detail the microscopic aspects of the pairing interac-
tion. Such a program can hardly be realized at present.
Moreover, the problem of inclusion of all orders of per-
turbation theory in AFM fluctuations appears as com-
pletely futile on account of the dynamics of the spin
subsystem.
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APPENDIX

Coordinate Representation:
Normal and Anomalous Green's Functions

Let us consider some technical aspects of the deri-
vation of the recurrence relation for Gor’kov's equa-
tions (12)—(15). We will confine our analysis to two
regions on the Fermi surface, which are orthogonal to
the p, axis and coupled though the scattering vector
Q= (£2pg, 0). In this case, the problem becomes
purely one-dimensional since the velocity component
vy = 0 and the electron spectrum in the linearized form

&p 3p. = TVEP, iscompletely independent of the y-com-

ponent of the momentum. For the sake of brevity, we
will henceforth assume that vg = 1.

It is convenient to carry out the calculations in the
coordinate representation [21], analyzing the motion of
an electron in the field of Gaussian AFM fluctuations
W(X) # W*(x) (incommensurate case) with the correla
tor

W X)W(x)O= Woe™ =, (A.1)
In this case, the propagators corresponding to the nor-
mal and anomal ous Green'’s functions (10) of the super-
conductor assume the form

” d X _iPyX
Guo(X) = J’Eep Goo(Py)
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id € O
=g 4 oasgnx%ﬁxp(w/sﬁ +]4]%x),

202+ |n?

ood X i X =+
Foo(X) = J'Eep Foo(P2)

AU
= 2—29Xp(—«/€ﬁ +]4/%x),
NER T4

where g3 = 1 for particles moving to the right and
0, =— 1 for particles moving to the left. Scattering at
fluctuations transforms “right” particles to “left” ones,
and vice versa. It can be seen from expressions (A.2)
that a particle traversing adistance of length | givesthe

factor exp(—./> +|A|%1).

For calculating specific diagrams, is it convenient
[21] to go over from the integration with respect to
coordinates x, of interaction vertices to the integration
over paths |, traversed by a particle between individual
scattering acts by fixing the total displacement x — X'.
The interaction curve connecting vertices m and n on
the electron line in this case corresponds to the factor

WzlAlzeXp(_lem_ an)

n-1

Y D)

k=m

(A.2)

(A.3)

o 2in2 O O
= WA|“expFK O
| U

The integration over all values of I, is carried out from
0 to co.

Thus, considering the finiteness of the correlation
length of fluctuations leads to the emergence of a cer-
tain “damping” of the corresponding transition ampli-
tude in each diagram with increasing distance traversed
by an electron. It is very difficult to take into account
this effect exactly. In [7], however, we used the obvious
inequality

> D)
k=m

and replaced the exponentia in (A.3) by the exponen-
tial from theright-hand side of (A.4). Thisisequivaent
to the replacement of the correlator (A.1) of random
fields by an analogous expression in which the distance
[x —X'| in the exponent is replaced by the total distance
traversed by a particle between the scattering acts at
pointsx and X'. Therefore, in accordancewith Eg. (A.4),
we slightly overestimate the role of the damping factor
K in each diagram of the series in perturbation theory.
As aresult of such a substitution, the diagrams of all
orders can be calculated easily and reproduce exactly
ansatz (3) for the normal phase [21]. It was mentioned
above that the results obtained in thisway, for example,

n-1

0 [l 0 0
exp-K 0> expFK z 1O (A.4)
0 0o 040
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for the density of states arein good agreement with the
results of exact numerical simulation of the problem
under investigation [23, 24]. Thisis an additional argu-
ment in favor of the approximation used, extending the
qualitative estimates obtained in [7].

We will use the same approximation for analyzing
the diagrams in perturbation theory in the supercon-
ducting phase, which are constructed on propagators
(A.2). In this case, the role of interaction with fluctua-

tionsis reduced only to the addition of the factor g
to each normal or anomalous Green's function (A.2),
which is embraced by the given interaction curve or,

which is the same, to the addition of K to /g, + |A]” in
the exponent of each such Green’s function. Returning
to the momentum representation, we can easily verify
that the contribution of any higher-order diagram is
determined by the product of the corresponding num-
ber of normal and anomalous Green’s functions of the
form
e + (-1)'E,

e + |01

2 2
8k-'-Ep

Gok(p) =

. (A.5)
AD—=k

e + |01

Fo(p) =
ok 8i+2’2)

whereg, = /g, + |A]* + kk, k being the number of inter-
action curves embracing a given Green’s function. The
factor (—1) appears due to the fact that the scattering
transforms “right” particles into “left” ones, and vice
versa. Introducing the renormalized frequency and gap
width in accordance with relations (15), we see that
relations (A.5) can be reduced to the standard form
(14), which completes the justification of the recur-
rence procedure (12) and (15).
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Abstract—Many-phonon optical transitions between Landau levels and size quantization levelsin alongitudi-
nal magnetic field areinvestigated in solitary quantum wells. The devel oped theory makesit possibleto describe
theintensity of the cyclotron resonance line aswell asthetemperature and field dependences of itshalf-width. The
theoretical results are compared with experimental data. It is shown that when the interaction between electrons
and optical phonons is taken into account, phonon satellites may appear as a result of an electron transition
between the size quantization levels and magnetic levels. © 2001 MAIK “ Nauka/Interperiodica

1. INTRODUCTION

If the direction of a magnetic field is normal to the
surface of a quantum well, the electron energy is fully
quantized. For a rectangular quantum well of width a
with infinitely high walls, the energy of an electron
with the effective mass mis defined as

Enw = ﬁwca\l+%+eon2.

Here, w). isthe cyclotron frequency and €, = A#21%/2ma?
isthe spatial quantization step.

The experiments on light absorption determined by
an electron transition between Landau levels were
made in superlattices [1], heterostructures [2—6],
metal— nsulator—semiconductor systems [7], and in
guantum wells[8, 9]. The experimental results show that
with increasing magnetic field strength, the absorption
pesk is displaced to the short-wave region, and the cyclo-
tron resonance line haf-width A varies over awiderange
A = 0.1-2 meV depending on the quasi-two-dimen-
sional system under investigation. The half-width of the
optical absorption line associated with an electron tran-
sition between discrete states is of fundamental impor-
tance. Thisis dueto the fact that the inel astic scattering
of charge carriers from vibrations, which reflects the
nonstationary nature of electronic states, determines
thevalue A < 102 meV, which is much smaller than the
experimental results. In the theoretical analysis of the
shape of the cyclotron resonance line [10-12], it is
assumed that it is described by a Lorentzian curve. The
half-width of the cyclotron resonance line may be deter-
mined by nonuniform broadening (in the case of superlat-
tices), whilefor adegenerate e ectron gas, it is determined
by the Coulomb interaction between electrons [8], long-
range impurity potentials[13], the interaction with soft
magnetoplasmon modes [8], center-of-mass fluctua

tions (phonons and impurities are regarded as fluctua-
tionsof forces) [14, 15], and the interaction of electrons
with surface phonons [16]. The half-width of the cyclo-
tron resonance linein rectangular quantum wells[17, 18],
heterostructures [5], and structures of the metal-insula-
tor—semiconductor type [7, 14] noticeably depends on
temperature. The value of A increases upon heating, the
increase being nonlinear for T> 1 K. Thelatter circum-
stance clearly indicates that phonons play a significant
role in the formation of the frequency dependence of
the cyclotron resonance line.

We investigate here the many-phonon absorption of
an electromagnetic wave, which is determined by an
electron transition between Landau levels (cyclotron
resonance) as well as between size quantization levels
(size resonance). The inclusion of many vibrational
guanta in an optica transition makes it possible to
explain the half-width of the cyclotron resonance line
as well as its temperature and field dependences. The
mechanism proposed by us is apparently the only pos-
sible mechanism which provides a description of the
shape of the cyclotron resonance line in solitary quan-
tum wells.

2. FORMULATION OF THE PROBLEM.
GENERAL RELATIONS

In accordance with the Kubo formula [19], the
absorption coefficient for light of frequency Q is defined
through the corréation function of dipole moment opera-

tors.
Z daa dBB

x J'dte'm@ﬂ(t)aa.(t)aBaBD

411Q

K(Q) = Vnyhc

(D
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Here, d,, is the matrix element of the dipole moment
on the electron wave functions |alin alimited-size sys-
tem in the presence of a magnetic field directed along
the spatial quantization axisz, a = (N, n, K,) is the set
of quantum numbers describing the state of a charged
particle, K, is the wave vector of the electron along the

x axis, a, (a,) are the creation (annihilation) operators
for a charge carrier in state a, V is the volume of the
guantum system under investigation, n, istherefractive
index in the quantum well, and c is the velocity of light
in avacuum:

a;(t) — eitH/ha;e—itH/ﬁ, (2)
H=Hy+V, €)
Ho = ZE aaaa+2hmq P 4
> CoVap(by +blg)asay, (5)

q.a,pB

where H, is the Hamiltonian for free electrons and

phonons, b; (bby) are the creation (annihilation) opera-
tors for phonons with energy #w, and the wave vector
g, C, isthe coefficient function of the electron—phonon
interaction, and

Vg = (ale]p). (6)

Theangle bracketsin relation (1) describe statistical
averaging with Hamiltonian (3). While writing Eq. (1),
we consider that the electron spin does not change as a
result of the optical transition (the summation over the
spin states gives factor 2).

In accordance with Eq. (2), the operator a;, (t) satis-
fies the equation of motion:

i D
a,(t) = -k,
() = FEea (O
()
+ —i o, t + _iw,t O
+ ZanB(t)VBa(bqe “+bae ")O
B 0
While writing Eq. (7), we assume that electrons do
not modify the phonon spectrum of the system, i.e.,

t

by(t) =€ by, bi(t)=e™'b;.
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The last approximation is justified for a nondegen-
erate electron gas since the corrections introduced into
w, are proportional to the charge carrier concentration.

It follows from Eq. (7) that the equation of motion
for the operator

+ + |:| It o |:|
€a(t) = ag(t)expG—= 0 ®
0 4 O
is defined by the relation
€a(t) = 73 Co&s()Vea
" ©)

O it O “iwt + iwgt
xexp+=(E,—Ez){b,e * +b,e ™),
i A B i q —q
where 3 = (n', N', K5).

Subsequent calculations will be carried out in the
approximation diagonal in the quantum numbers (N =N/,
n=n’). Putting N=N', n=n"in Eq. (9), we arrive at the

following approximate equation for operators &, (t):

() =1 EOMOKT 10
K

where |K, Care the wave function for afree el ectron:

V,(t) = chvv(q)e"*(bqe‘“”‘*‘+biqe“”‘*‘). (12)

For arectangular quantum well with infinitely high
walls, we have

4iPn®>  exp{iga} -1
(9,2)°-(2m)> G2

a [R (qx + qy)l]

Vy(q) =

X expe R’ (0|x+qy
0

(12)

R°P
A= igxrig 2 P, = —ih%, R = mﬁ),
C

where Ly(2) are the Laguerre polynomials.

The solution of Eg. (10) taking into account the ini-
tial conditions ET,KX(O) = E:Kx = aSKx has the form

800 = TEdKuoK). 09
K
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Here, the following notation has been introduced:

Ly it

. Git 0 O
Uy(t) = exp (H¢ + V) XI5 O
7 o o rH g

Hi = 3 fiogbgb, (14)

V, = ZCqVV(q)(bq +b’,)exp{iA}.

Consequently, in accordance with Eq. (8), we have
+ _ + DtEV f +
) = 3 e dKkluiik,). a9

The validity of solution (13) can easily be verified
by substituting it into Eq. (10) and taking into account
the equation of mation for the evolution operators

Us() = FUSOVL(

aswell asthe condition of the compl eteness of the wave
functions for afree electron along the x axis:

3 KSR = 1,

K"

X

where | isthe unit operator.
The operator a,(t) can be calculated in asimilar way.

Substituting the values of ag (t) and a4(t) into rela-

tion (1), we obtain the following expression for the
optical absorption coefficient:

_4nQ
K(Q) = Vnych

Z va;dex, lexdle;, VK,

v, vy, Ky, K]

X

® O
xJ’dtexp%i—t(Ev—EvﬁhQ)D (16)
O

B4
x KU () K, KU, KL,
0 )

where
= (B a,0= 2nR°aDn,sinh(BAw,/2)
x exp{ —Bhoo,/2} exp{ —B(Nhw, + £o°)},

= 3 enl-pen), B =
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Gt,, O Ot 0
U,,(t) = exppHiEepi (Hi + V)0
O 0 O 0

f, is the equilibrium distribution function for electrons
in the nondegenerate limited-size system under investi-
gation, and n, is the electron concentration.

While writing expression (16), we disregarded the
polaron effects; consequently, { ...}, denotes the aver-
aging over the system of the free phonon field. The
averaging over the system of noninteracting electrons
was carried out in the lowest approximation in electron
concentration:

(25,8,80,30,)0 = ( 8,30, oB,0,00,a,

If thelinearly polarized electromagnetic wave being
absorbed is incident along the normal to the surface of
alimited-size system, we have

eR
aoy — :/—ién nléKx, K.,

x{'\/NéN,Nl+l+ NN+ 10y N, -1}

In accordance with this relation, direct optical tran-
sitions are possible in this case only between nearest
Landau levels without a change in the quantum num-
bers n of size quantization.

We will henceforth consider the case when all elec-
tronsareinthe lowest state (N=0, n=1); i.e,,

d
(17)

o, >koT, 3&>KoT, fux = fox, = T[neaRZ.

The substitution of relation (17) into (16) leads to
the following form of the optical absorption coefficient:

2T[2Qe2R4nea
Ku(Q) = Vn,ch
w (18)
x J'dteXp{—it(wc—Q)} i KUoUulK,Go.
—o K

If an electromagnetic wave propagates along the
surface of aquantum well and the polarization vector is
parallel to the space quantization axis, the matrix ele-
ment of the dipole moment is defined by the relation

ea
dotorlz?éN,N1

costi(n+n 1 _cosT(n—n 1

<5 ( 1) — (n—n,) - %

O (n+n1) (n— nl)

(19)

Consequently, direct optical transitions are possible
in the case in question between the space quantization
levels (n £ n;) without a change in the number of the
Landau level (N =N,).
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Let us analyze the absorption of light determined by
atransition from the lowest state (N = 0, n = 1) to the
next size-quantized state (N, = 0, n; = 2). The substitu-
tion of relation (19) into (16) leads to the following
expression for the optical absorption coefficient:

2 ~2
<, (@) = 4TQe Rnartears
Vnoch  Lhgd
(20)

J'dteXpD— (380 Q)0 {[H<><|U01U02|Kx[}o

K

X

The averaging over the system of free phonons in
expressions (18) and (20) can be carried out exactly
using the methods of the theory of many-phonon tran-
sitions [20] or the algebra of Bose operators [21]. This
gives

{U$(t)uvl(t)}0 = exp{—gu,(1)},

|mf)| (Vo (@I =[Va, (@)

(21)

g () = 3
q

+ 22(2';:)21|Cq|2|vv(q) —V,, ()] *(1 - coswyt) (22)

-y (' Sl v, (@) - Vo (@ et

Taklng relatlon (21) into consideration, we can
write, in accordance with (18), the optical absorption
coefficient associated with a transition from the lower
Landau level in the form

mQe’R%n
K D(Q) = nocﬁ <
. 23)

x Idt exp{—it(w;—Q)} exp{—Go (1)}

Similarly, we can write the expression for the
absorption coefficient of light whose polarization vec-
tor is directed along the space quantization axis:

2nQe’n, rl6ar?

Ki(®) = " nech g0

o (24)
Uit |

x IdteXp D—%(?’so —hQ) EXP{ —Joz, 02(1)} .
O O

3. DISCUSSION OF RESULTS
AND COMPARISON WITH EXPERIMENT
Relations (23) and (24) describe the frequency depen-
dence of the optical absorption coefficient, associated
with the transition of an electron between Landau lev-
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els and size-quantized states and taking into account
many phonons involved in the process.

Let us consder a guantum system in which electrons
interact most actively with long-wave acoustic phonons.
If electrons are described in the quasiclassical approxi-
mation, the function g, (t) in (22) can be expanded into
aseriesint up to termswith t2 inclusively. (The main cri-
teriaof such an approximation can befoundin[22].) This
gives

G, (1) =B, t%,

1+ 2N (25)

2ICq Vo (@) =V, ()]

VVl ZZ
Consequently, in accordance with Eqg. (23), the opti-
cal absorption coefficient associated with an electron

transition from the lowest Landau level [v(0, 1)] to the
nearest Landau level [v(1, 1)] assumes the form

2 ~2 2
K.(Q) = Qe R neﬁm 0 (hQ—zﬁooc) E
Nch NB "3  4a’B O (26

1+2N
2 q|Cq|2|V01(Q) _V11(Q)|2-

o=y

q
In the case of high temperatures a which N, =
koT/7iwy, > 1, we obtain

3k, TEZ
A pvimaR?
where p is the density of the quantum well, E; is the

deformation potential constant for electrons, and v is
the velocity of sound in the limited-size system.

It follows directly from Egs. (26) that the frequency
dependence of the absorption coefficient for an electro-
magnetic wave is described by a Gaussian curve with
the half-width

k., TEim
A=4 thlnzzzJ%—ml 2
nﬁapv

B = 27)

(28)

For typical quantum wells with p = 5.4 g/lcm?3, v =
3 x10°m/s, and m=0.06m,, forB=8T, T=50K, a=
50 A, and E; = 10 eV, we have A = 3 meV, which isin
the range of experimental data [1, 4]. In accordance
with (28), the half-width of the cyclotron absorption

line increases with T (A O ./T). Such an obviously
nonlinear temperature dependence of A (at T > 10 K)
was observed in experiments [5-7, 16, 17]. The half-
width of the cyclotron resonance line increases with the

magnetic field strength (A = ./B). Hopkins et al. [5]
experimentally observed an increase in A in the range of

strong magnetic fields (the value of B was varied from
6t014T).
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In accordance with Eq. (24), the optical absorption
coefficient for an electromagnetic wave whose polar-
ization vector is directed along the space quantization
axisis defined by the relation

2nQe’n6ar? [1

, (29)
0 (hQ —3¢,)°0
XeXpO———— O
O 44A°B; O

For an electron transition between two nearest size-
guantized states, we have

_ 1+ 2N 5 ) 1
B, = % 552 4Cl Vou(a) = Voa(0)| ~§B. (30)
Consequently, the frequency dependence of the

optical absorption coefficient is described by a Gauss-
ian curve whose half-width is smaller than in the case

of the cyclotron resonance by afactor of 1/./3.

If acircularly polarized electromagnetic wave prop-
agates along the surface of aguantum well, the optical
absorption coefficient is defined by the sum of Egs.
(26) and (29):

K(Q) = Kp(Q) +Ky(Q)

nQeszneﬁD 0 [/Q - A0
———— |5 DeXp———T

Nocti O 0O 4°B O (3

how,  O[2Q—3g,]°00
+0.55—exp B—ﬁmm
€o O 4a°B; 00O

Consequently, for w, < 3¢y, the frequency depen-
dence K(Q) is described by two Gaussians. The first

peak with half-width A = 4 B#°In2 and a maximum
at 71Q = fuw, is associated with the cyclotron absorption of

light, while the second peak with haf-width A; = A/Jé
and a maximum at AQ = 3¢, is determined by an elec-
tron transition from the lowest state to the next size-
quantized state. It should be noted that the maximum of
the second absorption peak differs in absolute value
from the cyclotron resonance peak by the quantity o =
0.55(Aw./gp). Similar results are obtained when a lin-
early polarized electromagnetic wave being absorbed is
incident at an angle to the surface of alimited-size sys-
tem. It isin this casethat the influence of size-quantized
states on the cyclotron resonance was observed in het-
erostructures [23].

For narrow rectangular quantum wells of space quan-
tization, &, = (5 x 10%/a)) eV (a, is the quantum well

width); for a, = 100 A, 3¢, = 0.15 eV, which exceeds the
energy Ay, of the limiting optical phonon. Consequently,
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on account many optical phonons, the absorption of light

is possible between spatialy quantized states.

If we consider the interaction between an electron
and optical phonons, the quantity g,,, in Eq. (22) can
be presented in the form

O, = itweBy+ A—Zcos(wot — ). (32

Here, the following notation has been introduced:

- |Cq|2 2_ 2
BO ;(ﬁwo)Z[l\/V(q)l |Vv1(q)| ]v

_ S’
A= (1+2Ng) S 25|V, (q) -V, (q).
°%m%ﬂ |

7" = A°-B% tang = i%,

where N, is the distribution function for equilibrium
phonons with energy 7w,

If we use the equality [24]
exp{ Zcos(wot - )} = 3 1n(2)exp{in(wot - )}

(In(2) is a modified Bessel's function), the optical
absorption coefficient determined by an electron transi-
tion from the lowest state (N = 0, n = 1) to the next size-
guantized state (N = 0, n = 2) assumes the form

Ar? Qezne[g_aaD?
NeC E}E)_T[ZD
(33)
A+ B,

n/2
53 I”(Z)[A— BJ 5(3e4—HQ — Nfiey — Byh ).

Ky(Q) = exp{-A}

The term with n = O describes a phonon-free elec-
tron transition. If Z > 1, the processes of light absorp-
tion accompanied by the emission (n > 0) or absorption
(n < 0) of phonons occur actively. Consequently, along
with the phonon-free absorption of light at frequency
hQ = 3¢, — By, vibrational satellites separated by
hwy appear. If we take into account the interaction
between an electron and acoustic vibrations, the shape
of the phonon-free absorption line aswell as of phonon
satellites is described by a Gaussian curve with half-

width A/./3. The constants B and A are calculated
directly. This gives

e’c,
4hwya’

Z = Z,D(N, &), Z, = (34)

Co = e, — 1/€,, where g, and &, are the static and
high-frequency dielectric constants, respectively.
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Fig. 1. Dependence of D(N) on é .Curves 1, 2, and 3 were
obtained for Ng = 0.5, 1, and 1.5, respectively.

—_
W

—
)

W

[(A + B)/[(A - Bo)]'?

Fig. 2. Dependence of [(A + Bg)/(A—Bg)] Y2 on £ . Curves 1,
2, and 3 were obtained for Ng= 0.5, 1, and 1.5, respectively.

15 T

Fig. 3. Dependence of A/Zy on E . Curves 1, 2, and 3 were
obtained for Ng = 0.5, 1, and 1.5, respectively.

Figure 1 shows the dependence of D(N, £) on & =
2(eo/ i) for various values of N,. Curves 1, 2, and 3
are obtained for N, = 0.5, 1, and 1,5, respectively. Fig-
ures 2 and 3 depict, respectively, the dependences of
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[(A + Bo)/(A—By)]¥2 and A/Z, on & for various values
of No.

For quantum wellswitha=50 A in GaAg/Al,Ga, _,As
(co = 14 x 1072, hwy = 0.03 eV), Z, = 0.03; for
InP/InGa, _,As (¢, = 1.73 x 1072, hw), = 0.03 eV), we
have Z, = 0.04, while for GaN/AIGaN (¢, = 9 x 1072,
hwy = 0.05 eV), the value of Z, = 0.13. In accordance
with Egs. (34), for { = 1 (N = 1.5), for example, for quan-
tum wells in GaN/AlIGaN, we have Z = 0.39, while for
GaAdAlLGy, _,As, thevaue of Z=0.09. Consequently,
limited-size systems with a strong polar bond must dis-
play vibrational satellites appearing upon the absorp-
tion of an electromagnetic wave whose polarization
vector is directed along the spatial quantization axis.

In an analysis of optical many-phonon transitions,
the diagonal approximation in the quantum numbers N
and n was used (see Eq. (10)). This approximation has
made it possible to carry out the exact averaging over
the vibrational subsystem. The contribution of nondi-
agonal elementsto the optical spectra can be estimated
asfollows. It can easily be verified that the solution of
Eqg. (9) can be written in the form

+ + U L
€0 = 3 EOBlemT(Ho + VI EpLy HolaT
B

g

Here,
V = ZCq(bq+bfq)exp{iqr}.
q

Consequently, in accordance with Eqg. (8), we can
easily determine a,, (t). The operator a,(t) can be cal-

culated similarly. If we substitute a, (t) and a,(t) into
the sought relation (1) for the optical absorption coeffi-
cient, the averaging over the phonon subsystem can be
carried out approximately by using the cumulative
expansion [25] and confining the analysisto the second
cumulant. According to the results of our earlier inves-
tigations[26], in the theory of magnetooptical phenom-
ena, this approximation corresponds (in the language of
the Konstantinov—Perel diagrammatic technique) to the
summation of graphs which do not intersect phonon
lines[27] and to the ordinary breaking of achainfor the
Green's function [28]. According to the results of cal-
culations, the contribution of termswithN# N'and n# n'
to the parameter B, (25), which determines the half-

width of the absorption line, and to Z (34), which
describestheintensity of vibrational satellites, amounts

to lessthan 10% for & > 1.
Consequently, the diagonal approximation is quite

reasonable for an analysis of many-phonon processes
in the optical spectrafor limited-size systems.
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Abstract—We present the results of an investigation of the light absorption dueto interband and interlevel tran-
sitions and the photoconductivity in dense arrays of Ge quantum dots (QDs) in Si formed using the effect of
self-organization during molecular-beam heteroepitaxy. It was found that the formation of charged exciton
complexes composed of two holes and one electron, as well as of the be-exciton complexesin QDs of type I,
leads to an increase in the energy of indirect (in real space) exciton transition, which is explained by the spatial
separation of electron and hole. Self-consistent calculations of the wavefunctions for electrons and holes in
exciton and in the exciton complexes showed that an electron in a single exciton is localized in the region of
maximum stress for Si in the vicinity of the Ge pyramid apex, while a hole islocalized near the pyramid base.
In a be-exciton complex, electrons exhibit repulsion leading to their spatial separation. As a result, the second
electron isbound at the boundary between Si and a continuous Ge layer in which the pyramid basesreside. The
experimental data show that an increase in the charge carrier concentration in the ground state of QDs leads to
ashortwave shift of theinterband resonance and to the narrowing and shape change of the light absorption band,
which isexplained by depolarization of the external electromagnetic wave dueto interaction with the collective
charge density oscillations in the lateral direction of the array of Ge nanoclusters. It is established that the hole
injection into an excited state of QDs leads to alongwave shift of the photoconductivity peak as a result of
decay of the collective excitations and suppression of the depolarization effect. © 2001 MAIK “ Nauka/Inter-

periodica” .

1. INTRODUCTION

Quantum dots (QDs) represent alimiting case of the
systems with reduced dimensionality (quantum-con-
fined systems), since the motion of charge carriers in
these structures is spatially restricted in three dimen-
sions. From the standpoint of device operation, the size
of these nanostructures must be on the order of a few
nanometers so as to avoid thermal blurring of the dis-
crete energy spectrum at room temperature. Moreover,
in order to provide for a high modal gain in lasers, a
high quantum efficiency in photodetectors, asignificant
shift of the threshold voltage in single-electron transis-
tor memory elements, and fast data transfer in quantum
networks, it is necessary to create dense QD arrayswith
alayer density of QDs exceeding =10 cm2.

The requirement of nanoscale dimensions and large
density of QDs considerably restrict the possibility of
using traditional methods of heterostructure fabrication
based on the lithographic process and require the devel -
opment of new approaches. In the search for new tech-
nologies, very good prospects are offered by theidea of
using changes in the surface morphology involved in
the growth of mismatched heteroepitaxial systems for
the formation of arrays of atomic nanoclusters on the
passage from 2D to 3D growth by the Stranski—Kras-
tanow mechanism. We have implemented this idea for

thefirst timein 1992 inthe Ge/Si system[1]. Theinves-
tigation of this system showed evidence of the presence
of single-electron effects in nanostructures of the new
type. Subsequently, this principle of obtaining the QD
arrays was referred to as “ self-organization” because it
was necessary to explain the formation of an array of
nanoclusters with sufficiently homogeneous size distri-
bution [2, 3].

A special interest of researchersin the Ge nanoclus-
ters in Si is related to the following circumstances.
First, a decrease in the temperature of heteroepitaxy
and increase in the deposition rate allowed the size of
Ge nanoclustersto be reduced to ~10 nm. These dimen-
sions ensured the manifestation of the quantum-con-
finement and single-el ectron effects up to room temper-
ature and provided for the QD layer density as high as
3 x 10 cm2[3, 4]. In addition, methods devel oped for
the formation of Ge nanoclusters proved to be compat-
ible with the world-spread silicon technology used for
the fabrication of discrete devices and integrated cir-
cuits.

The strained layers of Ge/Si(001) belong to the het-
erostructures of type Il. The characteristic features of
systems of thistype are determined by a special mutual
arrangement of the energy band edges of the compo-
nent semiconductors at the heterojunction. The conduc-

1063-7761/01/9203-0500$21.00 © 2001 MAIK “Nauka/Interperiodica’



CONTRIBUTION OF THE ELECTRON-ELECTRON INTERACTION

tion band of one materia (Si) in thisregion is close to
the valence band of another component (Ge), which
resultsin the spatial separation of charge carriers. Inthe
system under consideration, the holes are localized
within the Ge quantum dots, while electrons in Ge
encounter a potential barrier. However, a positive charge
created by holes and an inhomogeneous deformation of
the structure as aresult of the lattice mismatch between
Ge and Si may result in the appearance of a potential
well for nonequilibrium electrons in the conduction
band of silicon near the Ge/Si heterojunction (Fig. 1).
Thus, a distinctive feature of the QDs of type Il is the
possibility of formation of an indirect (in real space)
exciton, whereby a hole is localized within the Ge
island and an electron movesin the self-consistent poten-
tial of S inthe vicinity of the hole. At present, the proper-
ties of indirect excitons in QDs are studied rather insuffi-
ciently, athough these systems are of considerableinterest
from the standpoint of both basi ¢ research and the technol -
ogy of devices which cannot be implemented using the
heterogtructures of type | [5]. In particular, no data are
available concerning the spectrum and structure of mul-
tiparticle exciton complexes formed in the QDs
described above.

The urgent importance of investigations into the opti-
ca properties of QDs is explained by the pronounced
practica orientation of thisresearch toward the creation of
photodetectors and light-emitting devices, which offer a
number of advantages in comparison with 2D systems.
Important features of QDsare asfollows: (i) the possibil-
ity of controlling the spectral band (i.e., the color) of pho-
toemisson and photoresponse by populating discrete
states with a necessary transition energy; (ii) reduced
threshold current density and high temperature stability
of diode lasers [2]; (iii) the lateral quantum confine-
ment removes prohibition of the optical transitionswith
polarization in the photodetector plane, which provides
for the possihility of photon absorption at hormal inci-
dence without using additional gratings and reflectors;
and (iv) large expected lifetimes of photoexcited carri-
ers, which are due to the so-called “phonon bottleneck
effect” [6]. The last property is related to the fact that the
scattering on LO-phonons is suppressed when a distance
between discrete levels differs significantly from the
phonon energy.

Until recently, optical measurements were per-
formed for the most part in low-density systems of QDs,
where the interaction effects can be ignored [7-9]. Basi-
cally, the optica measurements in dense QD arrays
must reveal some new phenomena related to a large-
scale Coulomb interaction. In a high-density system of
atomic isands, where the distance between islands is
comparable with their dimensions (L ~ 10 nm), the
interaction between charge carriers localized in the
neighboring QDs becomes a significant factor determin-
ing, in particular, the dark conductivity along the Ge lay-
ers containing QDs [10]. The characteristic magnitude
of thisinteraction, U = e%/41tee L = 10 meV (where g,
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n*-Si

p-Si p+-Si

Fig. 1. Schematic diagrams of the energy band structure of
ap'—p—n*-Si diode with Ge quantum dots under conditions
of zero and reverse bias. The arrow indicates the optical
transition accompanied by the formation of animplicit exci-
ton in the ground state.

is the permittivity of vacuum and € is the relative per-
mittivity of the medium), is comparable with room-
temperature KT and is no longer negligibly small in
comparison to the characteristic energy separation of
levels (70-80 meV) in the quantum-confined system
[3,11].

The purpose of thiswork was to study the process of
light absorption and photoconductivity in the region of
photon energies corresponding to interband and inter-
level transitions in Ge/Si heterostructures with QDs.
The measurements were performed in the geometry of
normal incidence of the excitation light wave (propa
gating perpendicularly to the sample surface). The
paper is arranged as follows. Section 2 presents the
results of investigation of the light absorption by exci-
tons in QDs (at a wavelength of =1.6 um). Based on
these experimental data, it is concluded that the forma-
tion of charged exciton complexes (each comprising
two holes and one electron), as well as of the two-exci-
ton complexesin the QDs of type Il leadsto an increase
in the energy of exciton transition, which is explained
by the spatial separation of the electron and hole in
these QDs. Section 3 is devoted to the light absorption
and photoconductivity in the region of photon energies
corresponding to the trandtions between ground and
excited states of holes in Ge quantum dots (photon wave-
length, =15-18 um). We observed a shortwave shift of the
interband resonance and the narrowing and shape change
of the absorption band accompanying an increase in the
concentration of carriersin the ground state of QDs. This
isexplained by depolarization of the external e ectromag-
netic wave due to interaction with the collective charge
density oscillations in the lateral direction. It is shown
that the hole lifetime in the excited state is comparable
to the values typical of two-dimensional quantum
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Fig. 2. The plots of (a) room-temperature capacitance of a
*—pn*-Si diode with Ge quantum dots measured at
100 kHz, (b) integral IR absorption measured in the region
of HO-EO and H1—E1 exciton transitions, and (c) energy of
the exciton transitions HO-EO (left ordinate scale) and
H1-E1 (right ordinate scale) versus reverse bias voltage
amplitude (modulating the QD occupancy by holes).

wells, which casts some doubt concerning validity of
the phonon bottleneck effect.

2. EXCITONS AND EXCITON COMPLEXES
IN QUANTUM DOTS OF TYPE Il

2.1. The Method of Electron Occupancy Modulation

Effects of the charged state of QDs on the interband
optical transitions were studied by the method of elec-
tron occupancy modulation. Previously, this technique
was successfully employed for the investigation of
luminescence [12] and reflectance [13] in the arrays of
QDs based on InNAg/GaAs and In,Ga, - ,AJGaAs sys-
tems. According to this approach, alayer of Ge atomic
idandsisintroduced into the base region of an n*—p—*-S
diode. In this structure, the hole level occupancy in the
QDs is controlled by a bias voltage applied to the diode
(Fig. 1). Once alevel in the valence band of Ge isfilled
with holes, the transition to the conduction band from
this level is blocked; should the bias voltage be such
that the QD is neutra (i.e., contains no holes), an elec-
tron in the valence band may absorb a photon to form
an indirect exciton. By applying atime-modulated bias
voltage (leading to the time-modulated QD occupancy
by the holes) and measuring the IR photon transmission
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through the QD structure at the modulation frequency,
we can obtain the spectrum of absorption due to the
quantum dots. The measurements at various modul ated
bias amplitudes allow us to study the effect of the
charge on islands (QDs) on the corresponding transi-
tion energies. An advantage of this method is that the
lock-in detection suppresses the nonmodulated system
response (related to the absorption in substrate, atmo-
sphere, etc.).

The samples were grown by molecular beam epit-
axy (MBE) on (001)-oriented Si substrateswith aresis-
tivity of 4.5 Q cm. The layers of Si preceding and fol-
lowing the Ge layer were grown at 800 and 500°C,
respectively. The growth rates were controlled on a
level of 0.3 nm/sfor Si and 0.03 nm/sfor Ge. The layer
of Ge islands with a rated thickness corresponding to
10 atomic monolayers (1 monolayer = 1.4 A) was
formed at 300°C in the middle of a 1-um-thick p-Si
layer (boron-doped to 5 x 10% cm2). The bottom (bur-
ied) contact was provided by depositing a 50-nm-thick
p*-Si layer (boron-doped to 2 x 10'® cm3). The hetero-
structure growth was completed by forming an n*—p
junction, which was provided by a a 50-nm-thick n*-Si
layer (Sb-doped to 1 x 10'° cm2). Previously, we stud-
ied Ge quantum dots in these structures by the methods
of scanning tunneling microscopy and high-resolution
transmission electron microscopy. It was established
that Ge islands have the shape of pyramids with a
15 x 15 nm baseand a1.5 nm height [14]. The QD size
scatter was characterized by a standard deviation not
exceeding 20%.

The IR absorption measurements were performed at
room temperature in the normal incidence geometry.
The radiation transmitted through a sample was moni-
tored by a germanium photodetector. The occupancy of
QDs by holes was modulated by applying rectangular
reverse bias pulses at afrequency of 700 Hz. In order to
determine the necessary pulse amplitude and establish
arelationship of thisvalue to the charged state of QDs,
we have measured the capacitance-voltage (C-V) char-
acterigtic of the heterostructure at afrequency of 100 kHz.
The results of these measurements are presented in
Fig. 2a. At a zero bias, the QDs are filled by holes and
possess a positive charge. The space charge region
occursin p-Si abovethe Ge layer. Asthe biasamplitude
increasesto V = 0.5V, the boundary of the space charge
region reaches the QD array and the holes begin to
leavethe energy levels of islands. Here, the capacitance
C of the structureisvirtually independent of the voltage
V and is entirely determined by the depth of QDs. We
can estimate this depth using the approximate rel ation-
ship x = ee,/C. For C = 20 nF/cm?, thisyields x = 0.5 um
in agreement with the value stipulated by the growth
procedure. At abias voltage exceeding 8.5V, the holes
completely leave the QDs (making the ground state
empty). The QDs become electrically neutral and the
structure capacitance begins to decrease again because
the space charge region penetrates into silicon. Note a
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weakly pronounced maximum in the C-V curve at
V=6-8V (seetheinset in Fig. 2a), which a character-
istic feature of the d-shaped spectrum of the density of
states in islands [15]. Based on these data, subsequent
measurements of the differential absorption of QDs
were performed using the QD level occupancy modu-
lated by the reverse bias voltage varying from zero to
V=2-10V.

2.2. The Interband Optical Absorption

Figure 3 shows the differentia absorption spectra
measured for various vaues of the bias modulation ampli-
tude. In the region of energies from 650 to 850 meV
(below the fundamentd absorption edge of Si equa to
~1.12 eV), we observe an absorption band with awidth
of ~70 meV. Previoudly [14], we observed a similar max-
imum (at 730-750 meV) in the spectra of photocurrent
measured in a silicon p——n diode with Ge quantum dots.
Note that the same energy region (~800 meV) contains a
peak (with close width) of the photoluminescence due
to the exciton transition in Ge/Si(001) quantum dots
[16-19]. An analysis of the shape of the absorption
maximum showed that a good approximation is pro-
vided by a superposition of two Gaussian components
(Fig. 4).

We assign the absorption peaked at 760—770 meV to
the electron excitation from the valence band of Ge
guantum dotsto the conduction band of Si, which leads
to the formation of the ground state of an indirect exci-
ton (with a hole in the ground state HO of QD and an
electron localized in the ground state EO of Si near the
heterojunction). The absorption band of lower intensity
at 850-860 meV is attributed to the excited state of exci-
ton (with both hole and eectron in the excited states H1
and E1, respectively). A large width of the bandsisrelated
to fluctuations of the Ge idand dimensions.

Phaotons with higher energies excite the transitions to
locdized states of the conduction band, which increases
the probability of absorption. Certain features on this
background are probably related to participation of the
higher excited states of excitons.

The assignment of the HO—EO absorption band to
the interband transitions in QDs is confirmed by analy-
sis of theintegral absorption intensity | asafunction of
the bias voltage modulation amplitude (Fig. 2b). The
area under the peak was determined by approximating
the absorption band shape with a Gaussian curve. For
the exciton transition,

| = he’nf/2mye,c(1 + Je), (1)

where f is the oscillator strength, n is the concentration
of carriers involved in the absorption, my is the free
electron mass, and c is the speed of light. Since | O n,
the plot of (V) directly reflects a change in the degree
of QD occupancy by holes caused by variation of the
reverse bias applied to the diode. In the region of V >
8.5V, theintegra intensity (I = 1.4 x 10° eV) isinde-
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Fig. 3. Optical absorption spectra of a p*—p—n*-Si diode
structure with Ge quantum dots measured at various values
of the reverse bias voltage (indicated in volts by figures at
the curves): (a) HO—EO transitions; (b) H1-E1 transitions.
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Fig. 4. Low-energy region of the absorption spectra corre-
sponding to exciton transitions measured at two values of
thereverse bias (gate) voltage (3 and 8V). Solid curves rep-
resent the experimental spectrum, dashed curves show the
results of decomposition into two Gaussian components.

pendent of the bias voltage because al QDs are neutral
(this situation is most favorable for the interband tran-
sitions). On decreasing the modulation amplitude, the
integral absorption decreases as well because holes
begin to occupy the ground state of QDs and suppress
the interband transitions. This scenario completely
agrees with the C-V characteristic of the heterostruc-
ture presented in Fig. 2a.
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Fig. 5. Plots of the exciton transition energy versus average
number of holes (occupancy) in the ground state of QDs.
Black squares refer to a situation where the holes injected
into QDs under the action of applied bias (no illumination)
form complexes of the exciton—hole type. Open squares cor-
respond to the case of optical injection of electrons and
holes into QDs at a fixed reverse bias of V = 9V, which
results in the formation of two-exciton complexes.

It should be noted that the area of the band corre-
sponding to the excited state of excitons becomes
almost constant when the bias voltage varies from 4 to
10V, whichisexplained by thefact that, in thisinterval,
the energy level corresponding to the excited state of
the idlands contains no holes.

The experimental values of the integral absorption
measured for V> 8.5V can be used for determining the
oscillator strength f characterizing the exciton transi-
tion. Since the maximum number of holes present in
the ground state of QDsistwo, nisequal to the double
density of QD (6 x 10 cm?). Taking | = 1.4 x 10 eV,
we obtain f = 0.5. This value is about 1/20 of the oscil-
lator strength for direct excitonsin the INAS/GaAs sys-
tem (f = 10.9 [21]), which is a consequence of the spa-
tial separation of electron and holein the QD with indi-
rect exciton. In addition, the absolute value of the
absorption intensity (a = 1.6 x 10#at V=10V) can be
used to estimate the equivalent cross section of inter-
band absorption in Ge quantum dots, which yields
2.5x 106 cm?,

2.3. The Exciton—-Hole Interaction

When the bias voltage decreasesto 8.5V and below
(Fig. 2c) and the holes are injected into Ge idands, the
energy of the exciton absorption peak exhibitsan 11 meV
shift toward shorter wavel engths. Thisresult isopposite
to that observed previously for the direct (in real space)
excitons in InNAS/GaAs quantum dot arrays [12, 21],
where the exciton transition energy decreased upon the
formation of charged complexes. We estimated the
average hole occupancy N, for the ground state of QDs
at various bias voltages using the oscillator strength
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evaluated above and the experimental values of integral
absorption. The N,, values were calculated taking into
account that the hole injection into an island decreases
by one the number of possibleinterband transitions (the
total number of transitions related to the ground state at
each QD istwo). A plot of the exciton transition energy
versus Ny, is presented in Fig. 5 (black symbols). Here,
an important point is that the energy sharply increases
when one hole isinjected into the ground state of QDs
and then only dlightly varieswith further increasein the
hole concentration.

It must be noted that QDs occur in the region of suffi-
ciently strong electric field. Under the conditions studied,
the field strength may reach up to 10*V/cm and lead to
a shift of the quantum confinement levels according to
the quantum Stark effect [ 22]. However, we can present
at least three arguments against using the Stark effectin
explaining the observed shift. First, the Stark shift
would monotonically increase with the electric field
strength, whereas we observe a steplike change in the
transition energy precisely at the bias voltage produc-
ing a change in the charged state of QDs. Second, the
magnitude of the Stark effect should be obviously very
small because the island size in the vertical direction
(QD height) isonly 1.5 nm. Indeed, Miesner et al. [23]
observed a Stark shift of about 60 meV for the levels of
Ge/Si structures with 7.5-nm-high quantum dots for a
field strength on the order of 10* V/cm. Since the shift
magnitudeis proportional to L4 whereL isthe quantum
well size[24], the resonance shift in our structures must
be as small as 0.1 meV. Third, the electric field shifts
the hole energy level in Ge/Si heterostructures with
QDs toward delocalized states in the valence bands
[23]. This implies an increase in the interband transi-
tion energy—in contrast to our experimental data. Thus
the shift in the exciton energy observed in our experi-
ments cannot be interpreted within the framework of
the quantum Stark effect.

L et usconsider in more detail theinteractions between
al particles in the system during the exciton absorption.
Upon the exciton excitation, asingly-charged QD festures
the formation of an exciton-hole complex with an elec-
tron bound near two holes in the ground sage. One of
these holes is injected due to the bias application and
the other hole is generated when an electron passes
from the valence band of Ge to the conduction band of
Si. There are two additional contributions to the energy
of charged exciton. The first is the energy of repulsion
between injected and photoexcited holes (E;;,). The sec-
ond isthe energy of attraction between theinjected hole
and the photoexcited electron (Eg,). The resulting addi-
tiona energy for the charged exciton is determined as
thedifference AE, _, = E;,— E4. Sincetwo holesinthe
ground sate exhibit an antiparallel spin orientation, the
contribution due to exchange interaction is absent [25].
In the case of direct excitons, the €lectron—hole interac-
tion dominates and the absorption band of charged
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exciton exhibitsa“red” (longwave) shift [21]. The spa-
tial separation of carriers in the QDs of type |1 alows
us to expect that the energy Eg, is smaller than E;,, and
the exciton absorption band would shift toward shorter
wavel engths upon the charged complex formation.

Taking into account experimental values of the exci-
ton shift AE,,_,, = 11 meV and E,,, = 36 meV [26], we
may estimate the el ectron-hol e interaction energy in QDs
as Eg, = 25 meV. This value agrees with the results of
self-consistent-field (SCF) calculations of the exciton
binding energy in the structures studied (see Section 2.5
below). Note that this value is dmogt ten times greater as
compared to the free exciton energy in bulk Ge and is
approximately two times the exciton binding energy in
bulk Si. This result, theoreticaly predicted for the quan-
tum dots of type Il by Rorison [27], is related to two
factors. First, the spatial localization of at |east one par-
ticle (in our case, a hole) leads to correlated motion of
the second particle (electron). Second, the final height
of the potential barrier in areal system (energy band
breaks) leads to the penetration of particlesinto the bar-
rier regions, which results in a considerable overlap of
their wavefunctions.

It should be also noted that a shift in the absorption
maximum corresponding to the excited exciton state is
much less pronounced when a hole appears in the
ground state of QDs (Fig. 2). Thisisrelated to an obvi-
ous fact that, because of a smaller overlap of the wave-
functions, the energy of interaction between a hole in
the excited state and ahole in the ground statesis lower
than the energy of interaction between two holesin the
ground state.

2.4. The Exciton—Exciton Interaction
in Quantum Dots

Additional evidence for assigning the absorption
maximum in the region of 760 meV to an exciton tran-
sition in the QD was obtained in experiments with the
optical pumping of diode structures with the light of a
hal ogen lamp. Figure 6 shows the absorption spectramea-
sured at afixed bias modulation amplitude (V=9V) and
various pumping intensities. Under the conditions of
additional interband optical excitation, the levels of
holesin QDs and those of electronsin Si near the het-
erojunction are occupied by nonequilibrium charge
carriers. At a sufficiently high illumination intensity,
the ground state levels are completely filled and the
HO—EO exciton transition under the action of probing
IR radiation becomes impossible (blocked). Indeed, the
data presented in Fig. 6 show evidence that the absorp-
tion intensity drops with increasing intensity of the
pumping radiation.

Figure 5 (open symbols) shows a plot of the exciton
transition energy versus the average number of holes
(per QD) generated by the interband optical pumping. As
seen, the optica carrier generation leads to a more pro-
nounced shift of the absorption maximum (in the same
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Fig. 6. The exciton optical absorption band measured at var-
ious intensities of additional optical pumping P (indicated
in mW/cm? by figures at the curves).

direction) as compared to the bias-induced hole produc-
tion. A difference between the experiments with electric
and optical pumping consists in that the probing (IR)
photon absorption in the latter case takes placein aQD
with exciton excited by the additional illumination.
Thus, the experiment with illumination corresponds to
the case of two excitons in the same QD, one of which
is excited by the optical pumping and the other is gen-
erated by the probing radiation. In comparison with the
isolated exciton, the interaction between two excitons
increases the energy by AE, _o = Ey + Eee — 2E4,
where E isthe energy of interaction between two el ec-
trons bound at a QD by the Hartree potential of two
holes. Similarly to the above case, the spatial separation
of the exciton components results in that E;, > Eg,
Enn > Eg, and AEg,_o > 0. This means that two excitons
formed in the same QD of a heterostructures of type |1
exhibit repulsion and abe-exciton moleculeis not formed.

2.5. Self-consistent Cal culation of the Energy Structure
of Indirect Excitons

The wavefunctions and energy spectra of electrons
and holes in indirect excitons for a Ge pyramid with a
15 x 15 nm base and 1.5 nm height were determined by
numerical modeling. The pyramid occurs in a continu-
ous5-monolayer (7-A-thick) layer of Ge surrounded by
Si. The substrate and pyramid orientations corre-
sponded to the experimental situation (see Section 2.1).
The z-axis direction is paralel to the principal symme-
try axis of the pyramid; the x- and y-axes are lying in
the pyramid base (continuous Ge layer). In the first
stage, we calculated the distribution of elastic stresses
in this model structure. The calculation was performed
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Energy parameters of exciton and exciton complexes

SOLICe 1 MeV |y, MeV | Aq,_p, MeV | Eqy_ey, MeV.
Experiment| — 25 +(11+3) | +(19+5)
Calculation| 38 31 +9.7 +10.2

Note: sign (+) indicates a shortwave shift.

within the framework of the valence force field (VFF)
model with a Keating potential [28], based on the elas-
tic force potential considered as a function of inter-
atomic distances and angles. An advantage of this
model as compared to the continuum theory is the pos-
sibility of determining real atomic positions. The
results of the model calculations showed that a most
stressed region in the vicinity of the pyramid isthat out-
side the apex, while the apex region inside the pyramid
ischaracterized by most relaxed elastic stresses. Taking
into account the obtained 3D distribution of elastic
deformationsinside and outside the pyramidal QD and
the known deformation potentials of Si and Ge[29], we
calculated the valence and conduction band breaks at
the Ge/Si heterojunction. In particular, it was estab-
lished that the lowest minima in the stressed structure
are represented by two A-valleys oriented in the [001]
and [001] directions.

In the second stage of modeling, we solved a set of
two 3D Schrodinger equations for electron and hole in
the effective mass approximation. The electron and
hole were considered as moving in a self-consistent
field created by the band breaks and the second particle.
The system Hamiltonian was written in the following
form:

A = Ae+ A+ Hen, 2

where the terms He and Hi, include operators of the
kinetic and potential energy of noninteracting electron

and hole, respectively, and Hen describes the el ectron—
hole interaction. For modeling the exciton—hole or
exciton—exciton complexes, the set of equations was
supplemented with one or two self-consistent equations
for the hole or the hole and electron, respectively. The
interaction between particles was described by a Cou-
lomb potential:

Uij(l'i, I’J) = eZ/4T[€€0|I’i —r]|

The exciton wavefunction was written in the Hartree
form as

lIJex(rhi re) = l~|Jh(rh)qJe(re)1

where ,(ry,) and Y(r.) are the wavefunctions of hole
and electron, respectively. A solution to the Schrédinger
eguation was obtained on a network with a step equal
to half of alattice constant (0.27 nm) containing 80 x
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80 x 50 nodes with a Dirichlet boundary conditions.
The caculation was performed for the following
energy band parameters. The conduction band break
between the corresponding A-minima of unstressed Ge
and S was taken equal to 340 meV; the analogous
valence band break was taken equal to 610 meV. The
effective masses of carriers were m, = 0.92m, and m,, =
0.19my in the conduction band and m, = 0.2m, and
m,, = 0.39m in the valence band.

The experimental and calculated values of the elec-
tron localization energy on the exciton formation E;, the
exciton binding energy E, and the exciton transition
energy shifts for the exciton—hole (AE,,_;) and exci-
ton—exciton (AE,,_.) complexes in comparison with
the energy of asingle exciton in QD are summarized in
thetable. As seen, the theoretical and experimental data
are in satisfactory agreement in al respects. The mod-
eling gives a somewhat smaller exciton transition
energy shift AE,, _., as compared to the experimental
value. This difference can be explained by the neglect of
a contribution due to the interaction of electrons local-
ized in the neighboring QDs. The calculations show
that E; = 38 meV, the main fraction of this value being

due to the eectron—hole interaction <L|Jex||:|eh|lIJe>> =

31 meV and the remainder { Y,/HdWe,) =7 meV, due

to a potential well formed at the Ge/Si interface as a
result of the inhomogeneous strain distribution.

Figure 7a presents the calculated profile (in the
direction of the z-axis passing through the pyramid
apex) of a potential binding electron and hole in an
exciton. Figure 7b shows the absolute values of the
electron and hole wavefunctions in the cross section of
a quantum dot. As is seen, an electron in the ground
state is localized in the vicinity of the pyramid apex in
silicon (the region of maximum compression in the ver-
tical direction and maximum extension in the lateral
direction), while ahole in the ground state is localized at
the pyramid base. The wavefunction of the ground state of
the holeis characterized by a 15% overlap with that of the
ground electron state. If adirect exciton in the INASGaAs
heterosystem with an 80% overlap [30] has an oscillator
strength of f = 10.9[21], theindirect exciton with a15%
overlap in our system can be expected to have f = 0.4,
which is close to the experimental value (f = 0.5). This
result suggests that arelatively high oscillator strength
observed for indirect excitonsin QDs of the Ge/Si het-
erostructure studied isrelated to the penetration of elec-
trons and holes into the barrier regions.

The structure of a complex composed of two exci-
tons bound at a common quantum dot is illustrated in
Fig. 8. It was found that, upon the excitation of two
excitons, the Coulomb repulsion of electrons leads to
their separation in space; asaresult, the second electron
islocalized in Si at the rear side of QDs, that is, at the
boundary between Si and the continuous Ge layer.
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Fig. 7. (a) The calculated profile (in the direction of the
z-axis passing through the Ge pyramid apex) of a potential
binding electron and hole in an indirect exciton. (b) A 2D
map of the absolute values of the electron || and hole [y
wavefunctions in the cross section of a quantum dot. The
boundaries of differently shadowed regions correspond to
the wavefunction amplitude decreasing to 75, 35, and 10%
of the maximum level.

3. INTERLEVEL OPTICAL TRANSITIONS
IN MULTILAYER STRUCTURES
WITH QUANTUM DOTS

3.1. Callective Phenomena in 2D Systems

The mation of electrons in 2D systems is confined
in the transverse direction (i.e., dong the z-axis). The
IR radiation polarized in this direction can be absorbed
by a 2D €electron gas, which leads to the excitation of
transitions between subbandsin the quantum valley. As
is known, the energy of the inter-subband absorption
may significantly differ from the distance between sin-
gle-particle quantum-confinement levels, provided that
the carrier concentration in the subband is sufficiently
high (10'-10% cm™) [31]. The difference is explained
by the appearance of collective electron of spin density
oscillations under the action of the incident electromag-
netic wave, which results in a shift of the corresponding
resonance. One of such collective effects is the resonance
screening of an externa dectric field by sdf-sustained
electron dendity oscillations related to a long-range
dynamic eectron—electron interaction (depolarization
effect). In experiment, the depolarization effect is mani-
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Fig. 8. (a) The calculated potential profile and (b) a2D map
of the absolute values of the electron |y,| and hole ||
wavefunctions in the cross section of complex of two exci-
tons bound at a common quantum dot. The boundaries of
differently shadowed regions correspond to the wavefunc-
tion amplitude decreasing to 75, 35, and 10% of the maxi-
mum level.

fested by a shift of the intersubband resonance toward
shorter wavelengths with increasing carrier concentration
in the first subband. In systems with a nonparabolic bind-
ing potential, this effect is additionally manifested by nar-
rowing of the resonance line and by a change in the line
shape [32].

Investigation of the arrays of quantum dots, in which
the charge carriers are additionaly confined in the lateral
direction, posed a question as to whether there exist col-
lective excitations polarized in the plane of the QD struc-
ture. Recently, Metzner and Déhler [33] pointed out that
a dynamic multiparticle Coulomb interaction must be
also operative between electrons oscillating in the lateral
direction. However, Sauvage et al. [8], employing the
light polarized in the plane of INAYGaAs layers contain-
ing QDs, observed the interlevd trangitions in this struc-
ture but did not reveal any depolarization shift. Thereason
isvery simple: thelayer density of QDs (4 x 10%° cm™)
was insufficient for providing a manifestation of the
electron—electron interaction and for binding the opti-
cal excitations in a collective mode. In this context, it
was especially important to study the Ge/Si structures
with a QD density in the array reaching 3 x 10'* cm2.,
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Fig. 9. The photoinduced IR absorption spectraof interlevel
transitionsin Ge/Si quantum dots measured at various opti-
cal pumping power density (indicated in mW/cm? by figures
at the curves). For clarity, the curves are shifted upward with
astep of 5x 10, An increase in the optical pumping power
density corresponds to the growing hole concentration in the
ground state of Ge nanocrystal ensemble. Crosses show the
result of modeling of the absorption band for P = 40 mW/cm?
using Egs. (3) and (4) with the asymmetry parameter y =
1.25. Dashed curve presents the %oproximation of the
absorption band for P = 110 mW/cm< by the Lorentz func-
tion according to Eq. (5) describing the collective mode
excitation.

3.2. The Method of Photoinduced Absor ption

The sample structures were grown on n-Si(001)
substrates with aresistivity of 5 Q cm under the condi-
tions anal ogousto those described in Section 2.1. A dif-
ference was in the number of Ge island layers, which
was equal to ten. The QD layers were separated by
30-nm-thick Si spacers. The concentration of phospho-
rus (dopant) in the epitaxial Si layers was about 2.5 x
10% cm3,

Sincethe doping level wasrelatively low, theislands
contain virtualy no free carriers (holes) and exhibit no
interband transitions. Occupation of the ground state
levels with holes can be provided by two methods. Firdt,
by means of the field effect, whereby a gate isformed in
the sample structure and the corresponding potentid is
applied. Second, by means of an additiona interband opti-
cal excitation ensuring a large concentration of nonequi-
librium charge carriers. A disadvantage of thefirst method
is the presence of a strong electric field and, hence, of
the unavoidable (more or less pronounced) stark effect.
On the other hand, electrons excited by the optica
pumping may affect the energy spectrum of holes in
QDs. However, the results of numerical calculations of
the exciton structure (see Section 2.5) showed that a
change in the hole energy induced by the electron field
does not exceed 0.1 meV. For this reason, we injected
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holes into QDs by means of a high-power optical
pumping with modulated radiation of a halogen lamp
(Fig. 9). After passage through an interferencefilter, the
pumping radiation exhibited a maximum intensity at a
wavelength of 0.67 um (photon energy hv = 1.85 eV).
The integral pumping power density was measured
using a Si photodiode and could be varied from 40 to
140 mW/cn?. The sampleswere probed by IR radiation
from a Globar source. The probing beam transmitted
through a sample was detected with alock-in bolometer
circuit tuned to the pumping modulation frequency
(1.7 Hz). Smilarly to the experiments described above,
the IR absorption measurements were performed in the
normal incidence geometry. The photoinduced absorp-
tion spectra were normalized to the reference bolome-
ter signal intensity measured without additional illumi-
nation of the sample.

It was very important to know the concentration of
holes optically injected into quantum dots. There are two
channels for the photoproduction of holes during inter-
band optica excitation. The first is the hole generation
immediately in Ge. In alinear regime, the 2D density of
holesinaGelayer with QDscan be estimated asn = G,
where G = aP/hv isthe carrier generation rate, a isthe
absorption probability, and 14, is the time of interband
recombinationin Ge. For o = 2 x 10 (see Section 2.2),
P = 100 mW/cm?, hv = 1.85 eV, and T, = 10 us[34, 35,
we obtain n=5 x 10° cm2. Thisvalueisthree orders of
magnitude lower than the QD density (3 x 10! cm™).
Therefore, the optical generation of holes immediately
in Ge cannot significantly affect the QD occupancy.

We must take into account that nonequilibrium car-
riers are generated not only in Ge, but in the surround-
ing Si aswell (the penetration depth of photons with a
wavelength of 0.67 um in Si is =2 um). Under the
experimental conditions employed, the characteristic
lengths of the system studied—the hole diffusion
length L (typically, 100-1000 pm [36]) and the light
attenuation depth d,—obey the relationship Ly > d,.
For this reason, a considerable part of the photogener-
ated charge carriers is carried away by diffusion from
the absorption region in silicon to be effectively trapped
on the bound states of germanium QDs. In this situa-
tion, the concentration of holes opticaly injected into
QDs is given by a simple relationship n = Ptg/hv,
where 1g isthe lifetime of nonequilibrium holesin sil-
icon. By measuring the kinetics of the intensity of light
absorption by free carriersin analogous Si layers con-
taining no QDs, we established that the latter quantity
is Tg = 15 us (in agreement with the published data
[37]). Since 14 = Tg the recombination of electrons
and holes trapped on the QDs does not |ead to achange
in the concentration of holesin these islands. For P =
100 mW/cm?, hv = 1.85 eV, and 14 = 15 ps, we obtain
n=5.1 x 102 cmr2. Taking into account that the structure
under consideration comprises 10 germanium layers with
QDsand the QD density ineach layer is3 x 10 cm?, we
conclude that the optical pumping with a power density of
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100 mW/cm? provides for an almost complete occupation
of the ground state in QDs (two holes per island).

3.3. The Effect of Lateral Depolarization
in Quantum Dot Arrays

Figure 9 shows the photoinduced absorption spectra
measured at room temperature for various intensities of
the optical injection. The absorption peak observed in
the 7090 meV energy interval (15-18 pum) corre-
sponds to the hole transition from ground to excited
state in QDs. Approximately the same energy separa-
tion (~75 meV) of the first two levels in germanium
QDs was previously observed in experiments on the
resonant tunneling in structures with a single layer of
Ge idands [3]. The fact that the photon absorption is
observed in the norma light incidence geometry is evi-
dence of the lateral polarization of the hole statesin QDs.
The spectrum measured with amaximum optical injection
intensity (140 mW/cm?) exhibits abackground absorption
increasing with the wavelength, which is probably
explained by the absorption related to free carriers in S
not trapped by QDs. The integral absorption intensity
(areaunder curve) for P < 140 mW/cn? is proportional to
the pumping power density (Fig. 10a). Thisfact indicates
that recombination of the nonequilibrium carriers occurs
in alinear regime and implies that the concentration of
holes injected into QDs is alinear function of the opti-
ca pumping power density. At P = 140 mW/cn?, the
ground state is completely filled and the absorption
intensity ceasesto grow.

For asmall concentration of holesin theislands, the
absorption band has a clearly pronounced asymmetric
shape: the absorption intensity drops sharply at lower
energies and exhibits an extended “tail” on the side of
higher energies relative to the peak. The asymmetric
shape can be described within the framework of thefol-
lowing simple model. In the absence of collective
effects, the interlevel resonance exhibits inhomoge-
neous broadening caused by fluctuations of the island
size within the array. Let us make an obvious assump-
tion that the distribution of islands with respect to size
L isdescribed by the Gaussian function (whichisvalid
with high precision in al the known experimental situ-
ations),

_ 1 (L-Lo)°
D(L)—moexp[ ”~ } (©)

where L, is the average island size. The distribution of
distances D(E) between energy levels in QDs is con-
nected to theisland size distribution by the relationship
D(E) O D(L)(dE/dL)™. In the case when the quantum
confinement energy decreases with increasing QD size
by the power law 1/LY, we obtain

D(E) O D(L)/E* MY, (4)
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Fig. 10. The plots of (&) integral IR absorption intensity,
() interlevel resonance energy, and (c) full resonance width
at half maximum versus optical pumping power density.

With neglect of the energy dependence of the oscillator
strength, the distribution (4) must describe the shape of
the absorption band. The result of approximating the
band measured at P = 40 mW/cm? by the curve corre-
sponding to Eq. (4) isdepicted by crossesin Fig. 9. The
fitting parameters were the position of the band maxi-
mum and the asymmetry parameter y. As seen, the reso-
nance shape is adequately reproduced for y = 1.25. This
result indicates that the distance between energy levels
varieswith a QD size dower than 1/L2. Previoudly, this
fact was repeatedly pointed out in calculations of the
electron spectrum for nanoclusters of pyramidal and
lenticular shapes [38—40].

Asthe hole concentration in the ground state of QDs
increases, the absorption band shifts toward greater
energy, decreasesin width, and becomes more symmet-
rical (Fig. 10). For P > 110 mW/cm?, the band width
increases again because the interaction between QDs is
screened by the free charge carriers. This behavior is
indicative of the presence of collective electron density
excitations polarized in the lateral direction. It must be
noted that, in the case of electron QDs with a parabolic
potential shape, the positions of interlevel absorption
peaks depend neither on the number of electronsin the
guantum well nor on the Coulomb interaction between
these electrons (generalized Kohn theorem [41]). This
is explained by the possibility of separating the motion
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of the center of mass and the relative motion of elec-
trons. However, the Kohn theorem may fail to be valid
in systemswith anonparabolic potential and inthe QDs
with holes [42]. In this case, an increase in the number
of carriers on a given level is accompanied by the
growth in their energy because of the electrostatic Cou-
lomb interaction. Thus, if the observed band shift were
related to the hole interaction, the energy of the transi-
tion from ground to excited state would decrease by E;,
upon occupation of the ground state. However, this
contradicts our experimental results and we conclude
that the observed shortwave shift cannot be related to
the electrostatic charging of QDs with holes.

In the regime of collective electron modes, the indi-
viduality of QDsin the array islost as aresult of mul-
tiparticle effects. In this case, the width of theinterlevel
resonance must be determined only by the carrier life-
time in the excited sate, rather than by the island size
fluctuations. The energy dependence of the absorption
probability is described by the Lorentz function

_ fNne*% 1
2myl' niCeo1 + [(E + Ep)/T]?

)

were N = 10 is the number of quantum dot layers, I is
the rate of the excited carrier relaxation to the ground
state (determined by the scattering mechanism), and n,
isthe index of refraction. By approximating the exper-
imental absorption band measured at P = 110 mW/cm?
with acurve according to Eq. (5) (dashed curvein Fig. 9),
we determined the full resonance width at half-maxi-
mum 2" = 17 meV and the oscillator strength f = 0.95.
The width 2I' = 17 meV corresponds to the hole life-
timein the excited state 1., = /N = 0.8 x 1023 s, which
is also atypical value for 2D systems [43]. The pres-
ence of effective relaxation is evidence that the phonon
bottleneck effect does not play any significant role for
the interlevel transitions in QDs. Previoudy, an analo-
gous conclusion was derived from the analysis of exciton
trangtions in INAS/GaAs quantum dots [2]. In our case,
this behavior can be explained by the proximity of the
interlevel resonance energy (~80 meV) to a double vaue
of the LO-phonon energy in Ge (=40 meV), which must
smulate the two-phonon scattering processes.

As noted above, the optical transitions are often
characterized by the equivalent absorption cross sectionin
addition to the oscillator strength and lifetime. Taking into
account the absorption band amplitude (4 x 102 for the
system with 10 QD layers) and the carrier concentra-
tion in each QD layer (5 x 10 cmr?, see Section 3.2), we
estimate the absorption cross section at 8 x 1076 cm?.
Note that asignificantly smaller value (1.6 x 10726 cm?)
was obtained previously for the interlevel hole transi-
tionsin INAS/GaAs quantum dots [8].

The experimental value of the oscillator strength
f = 0.95 corresponds to a dipole length of XO=

JﬁszZmO(El— E,;) = 0.7 nmin the sample plane for
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E; — E; = 70 meV. We performed a theoretical analysis
of the polarization selection rules for the main inter-
level transition in a tight binding approximation using
spid®s* atomic orbitals. In calculating the optical tran-
sitions, we aso took into account the spatial distribution
of elagtic deformationsinthe structure studied [ 28] . 1t was
found that the hole transition from ground to excited
state has a nonzero matrix element only in the lateral
direction and is characterized by an oscillator strength
of f=0.7 and adipole length of X[= 0.9 nm, in agree-
ment with experimental data.

3.4. Photoconductivity in the Region
of Interlevel Transitions

The photoconductivity was studied in a multilayer
sample structure with eight QD layers grown on a
highly doped p*-Si substrate, which also served as the
bottom electric contact. The top contact was obtained
by depositing a 50-nm-thick layer of p*-Si doped with
boron to =10%° cm3. The thickness of Si regions sepa-
rating the Ge layers was 110 nm. Within a 10-nm dis-
tance from each Ge layer, Si was d-doped with boron at
alayer concentration of 6 x 10* cm, which ensured
nearly complete filling of the island ground state with
holes. The photoconductivity measurements were per-
formed in the vertical geometry. The temperature
dependence of the dark conductivity within the ochmic
region of the current—voltage curve in these structures
follows the activation law with an activation energy
close to the depth of the ground energy level of holes
(~400 meV). When the applied voltage increased above
0.1V, the current exhibited a quadratic dependence on
the voltage explained by the holeinjection into the first
excited state. In this regime, the conductivity activation
energy decreased to ~300 meV, which is actually close
to the ionization energy of the excited state in charged
Ge quantum dots [44].

Figure 11 shows the spectra of photoresponse mea-
sured at various applied voltages. The curves exhibit
two photoconductivity peaks. the low-energy peak corre-
sponds to the hole transitions from the ground to the first
excited state, and the high-energy peak apparently reflects
the trangitionsto athird excited level of QDs. The energy
positions of the peaks agree with the distances from the
first to second and from thefirgt to third levels determined
previoudy for Ge quantum dots by the method of reso-
nance tunneling spectroscopy [3]. The appearance of
photoconductivity in the vertical geometry of the exper-
iment is determined by two processes. The first is the
photoexcitation of holes from the ground to excited State.
The second is the therma ionization of the excited leve,
which transfers the hole to the band of delocalized states
and alowsit to contribute to the photocurrent.

Figure 12 shows the behavior of the photoconduc-
tivity amplitude as a function of the applied voltage. In
the region of voltages above 0.4V, the signa intensity
beginsto decrease because holes are accumulated in the
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Fig. 11. The photoconductivity spectrameasured in the ver-
tical geometry at various applied voltages (indicated in volts
by figures at the curves). The ground state of QDsis filled
with holes as a result of d-doping. At an applied voltage
above 0.1V, holes are injected into the excited state. Insets
in the top part show the optical transitions of holes in the
valence band corresponding to the observed photocurrent
peaks.
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Fig. 12. The plots of (a) photoconductivity amplitude (pho-
tosensitivity) and (b) photodetection capacity versusapplied
voltage. Black and open squares correspond to low- and high-
energy photoconductivity peaks, respectively (see Fig. 11).

excited states and the optical transitions are blocked.
Combining these data with the results of noise current
measurements, we evaluated the maximum detection
capacity of the structure studied as a photodetector:
1.7 x 108 (cm HZzY?)/W at a wavelength of 20 um and
0.7 x 108 (cm HZY?)/W at a wavelength of 10 um (at
room temperature and a quantum efficiency of 0.1%).
Note that, even without optimization of the structure
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parameters, these values exceed the anaogous character-
istics presently achieved using INAS/GaAs heterostruc-
tures with quantum dots [45].

From the standpoint of fundamental knowledge, an
important result consists in the shift of the photocon-
ductivity peaks toward higher energies observed with
increasing applied voltage (independently of the voltage
polarity). The “red” shift of the intersubband resonance
position previoudy observed for the carrier injection into
excited subbands in 2D systems [46] was related to the
suppression of the depolarization effect [47]. We
believe that a similar phenomenon must take placein the
QD araysaswell. At low applied voltages (in the absence
of injection), the depolarization effect shifts the interlevel
resonancetoward greater energiesrelative to the quantum-
confinement energy. According to the Pauli principle,
occupation of the excited state decreases the probability
of interlevel transitions and leads to the decay of the
collective excitation. As a result, the resonance must
return to theinitial position (unperturbed by the collec-
tive interaction). Analogous behavior must be observed
in the photoinduced absorption spectra at large optical
pumping intensities (Section 3.3). However, a strong
background absorption by free carriers hinders the
manifestation of this phenomenon.

4. CONCLUSIONS

The results of this investigation of the optical proper-
ties of Ge/Si heterostructures with quantum dots alowed
usto draw the following conclusions:

1. We have studied the properties of indirect (in red
gpace) excitons bound at the Ge quantum dots. It was
shown that the binding energy of these excitons exceeds
that of thefreeexcitonsbothin S and Ge, which isrelated
to the spatia confinement of the hole maotion in Ge nanoc-
rystals and the underbarrier penetration of eectron to the
region of holelocalization. The exciton absorption energy
shifts toward shorter wavelengths upon the formation of
excitor—hole and exciton—exciton complexes in charged
guantum dots. This effect is explained by the spatial
separation of exciton components. For this reason, the
Coulomb interaction between two holes in a quantum
dot, as well as that between two electrons localized in
Si near this quantum dot, dominates over the electron—
hole interaction.

Our theoretical anaysis, conducted within the
framework of the SCF approximation with allowance
for the inhomogeneous distribution of elastic deforma
tion in the structure, showed the following. In a quan-
tum dot with single exciton, the electron is localized in
Si in the vicinity of the Ge pyramid apex (the region of
maximum stresses in Si), while the hole is localized at
the pyramid base. In a complex of two excitons, the
repulsion of electrons leads to their spatial separation
and the second electron islocalized in Si under the Ge
pyramid base.
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2. We have studied the IR absorption and photocon-
ductivity for the vertical geometry of light incidencein
the region of photon energies from 60 to 100 meV. The
IR and photoconductivity spectra exhibit maxima cor-
responding to the hole transitions between the first two
guantum confinement levelsin Ge nanocrystals. It was
found that an asymmetric shape of the absorption band
observed for low occupancies of the ground state of Ge
guantum dots corresponds to a Gaussian distribution of
the nanocrystal dimensions with a 20% dispersion.

The absorption band exhibited a shift toward short-
wave region, adecrease in width, and achangein shape
(from asymmetric to symmetric) with increasing con-
centration of holes in the ground sate of quantum dots.
These observations are explained based on the concept of
self-sustained collective oscillations of the hole density in
the lateral direction. The collective oscillations are due to
a long-range dynamic electron—electron interaction (lat-
eral depolarization effect).

It is established that the hole injection into an excited
state leads to a longwave shift of the photoconductivity
pesk, which is caused by decay of the collective excitation
and by suppression of thelateral depolarization effect.
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Abstract—The problem of a nonlinear current flow in a heterophase medium formed by a random mixture of
linear and nonlinear phasesisinvestigated. The duality relation is derived for the critical indices describing the
effective response of a heterogeneous system. The critical index is calculated at the percolation threshold (for
equal concentrations of the phases). The nonlinear percolation problem is simulated numerically for degrees
k=3, 5, and 7 of the nonlinear phase. The existence of aduality relation for critical indicesis establishedin a
range of phase concentrations. © 2001 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

The problem of determining the effective conductiv-
ity of macroscopically heterogeneous two-phase media
in the linear ohmic approximation was studied most
thoroughly in the 2D case. It was proved that for equal
concentrations of the phases, the effective conductivity
of randomly heterogeneous two-phase media is equal
to the geometrical mean of the conductivities of the
phases:

O = 4010, 1

and for arbitrary concentrations of the phases, the fol-
lowing duality relation holds:

0¢(€)0¢(=€) = 0,0, )

These results were abtained in [1, 2] and, according to
Dykhne [2], are consequences of the symmetry of the
2D equations for direct current relative to the linear
transformations of rotation.

However, in the critical region, in the vicinity of the
metal—insulator transitions, nonlinear effects become
significant in view of anomaloudly strong fluctuations
of fields and currents. The necessity of including non-
linear effectsin the critical region was demonstrated in
[3-5], where an anomalous behavior of critical fields
(currents) as a function of the closeness to the percola
tion threshold was observed. Besides, additiona infor-
mation concerning the microscopic structure of hetero-
geneous media can be obtained from higher-order cor-
relators of fields (currents) [6].

In the weak-nonlinearity approximation, the prob-
lem is reduced to the inclusion of the cubic term in the
expansion of the current in the field:

j = o.e+xee. ©)

Nonlinear effects become significant when both terms
become of the same order of magnitude [7-9]. The
effective nonlinearity coefficient X is determined from
the expression for energy dissipation and is defined as

— E)(e4Dz Xllzeﬂ"')(z‘]eﬁ
= 2E*

Thisexpressions also impliesthat the reason behind the
increase in the effective nonlinearity of the structure are
singularities in the field correlators [&*[] and [&*(J. An
anomalous increase in the nonlinear conductivity indi-
cates that the system goes over to the nonlinear perco-
lation mode. Thisis observed for the critical fields

E. = Jo/Xe ©)
and the critica currents
‘]C = 0-eEC' (6)

A considerable number of publicationsis devoted to an
analysis of the properties of the nonlinearity coefficient
in the critical region aswell asoutsideit [10, 11].

We will analyze here the nonlinear percolation
problem in the following formulation. Suppose that we
have a random mixture of two phases: a linear ohmic
phase with j; = 0,e and a nonlinear cubic phase j, =
X-€%. We are interested in the effective response of such
a system at the percolation threshold,

JOE, (7)

and in the value of the index v describing the nonlinear
response of the system.

In order to solvethis problem, we generalize thelin-
ear transformations of rotation to the nonlinear case
and use these generalized transformations to determine
the nonlinear response. This will lead us to the duality

Xe (4)
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relations for the critical indices v, and v_ of the nonlin-
ear percolation problem, which describe the response of
the system above and bel ow he percolation threshol d:

v,v_ = k. (8)

Here, k=3,5,7, ... isthedegree of system nonlinearity.
In the second part of this paper, we present the results
of the numerical simulation of nonlinear percolation for
various values of conductivities of the phases and in a
wide range of concentrations. The numerical ssimula-
tion is used to establish the existence of a duality rela-
tion for the critical indices (8) of the nonlinear percola-
tion problem in randomly heterogeneous media.

2. ROTATION TRANSFORMATIONS
AND A GENERALIZATION
TO THE NONLINEAR CASE

We will briefly recall the main lines of reasoning
used for solving the problem of the effective character-
istics of arandomly heterogeneous medium. In the 2D
case, the equations for direct current and Ohm’s law
(linear relation between the current and the field),

divj =0, cule=0, | = oe, 9
are invariant to the linear transformations of rotation:
j =b[nx€], e=dnx¢g]. (20

Here, n isthe unit normal to the plane, j' and € are the
electric current and the field in the new primed system,
and b and d are constant coefficients. In the primed sys-
tem, Ohm’s law also holds:

i = a'e, (12)

where ¢' = b/do is the conductivity of the transformed
medium. For an appropriate choice of the coefficients,
i.e, for

b = é = ,/0,0,,

we obtain a system differing from the initial system in
the transmutation of phases:

(12)

0,0,
et

Such asystemisreferred to asdual relativetotheinitia
one. Repeating the same arguments for averaged quan-
tities, we obtain a similar relation for the effective
parameters of the two-phase medium also:

(13)

0c(€)0e(€) = 010,. (14)

Since the initial and primed systems differ only in the
phase transmutation, we have

Oe(€) = Te(-£). (15)

Consequently, the effective conductivity of a two-
dimensional randomly heterogeneous two-phase sys-
tem satisfiesthe duality relation (2). Thismeansthat the
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effective conductivity at the percolation threshold (€ = 0)
isgiven by

0,0 = ,/o,0,. (16)

Thisduality relation turns out to be helpful for deriving
approximate expressions for the effective conductivity
also. For example, the expressionsfor the effective con-
ductivity of two-phase media with alow concentration
of inclusions can easily be derived from thisrelation. It
also alows us to find the conductivity of the systemin
the entire range of concentrations if we know the con-
centration dependence of o, above or below the perco-
lation threshold. Besides, the duality relation also
makesit possible to establish the general form of effec-
tive conductivity (structural dependence):

0.(€) = X(€) + JX ()" + 0,0,. (17)

Here, 2x(€) = 04(€) — 04(—¢€) is the odd component of
the effective conductivity as afunction of variable €. It
is described by the functional equation

X, 25 = hx(e, b, (18)

where h = 0,/0; istheratio of the conductivities of the
phases.

Note that formula (16) is valid both for randomly
heterogeneous media with an isotropic structure, and
for two-periodic media[12, 13]. Recently, thisformula
has been derived anew in a different way for the media
with a staggered structure [14].

We will now generalize the rotation transformations
to the nonlinear case. For the sake of definiteness, we
first consider acubic nonlinearity. Wewill seek the gen-
eralized nonlinear transformationsin the form

j = b[nxele?

e=d[nxj1. (29

It can easily be verified that these transformations con-

vert the linear phase with conductivity o into a nonlin-
ear phase: j' = X'e®. Here, the coefficient X' is given by

o= b
17 doy
Let us now prove that the same transformations convert

the nonlinear phase into the linear one. The conductiv-
ity of the transformed linear phase in this caseis

(20)

b1/3
0, = —. (21)
Ty
Consequently, the proposed generalized nonlinear
transformations make it possible to establish the one-
to-one correspondence (isomorphism) between nonlinear
and linear phases. By averaging transformations (19) over
arandom distribution of the phases, we obtain the fol-
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lowing relations for the averaged characteristics of the
initial and the primed system:

J=00= AE®, E = [&0= BJ, (22)

where A and B are constant coefficients. Further, we
assume that the average currents in the initial and the
transformed system are nonlinear functions of thefield:

JOE™, JOE™. (23)

Formulas (22) and (23) readily lead to the following
rel ation between the critica indices describing the system
response above and below the percolation threshold:

v,v_ = 3. (24)
The relation has a simple meaning. Away from the per-
colation threshold, when the current can flow only
through the linear phase, the effective responseislinear
(index v, = 1). Inthis case, the effective response of the
dual primed system (differing from theinitial systemin
the phase transmutation) away from the percolation
threshold, which isaccompanied by the formation of an
infinite cluster from the nonlinear phase, will be nonlin-
ear. The nonlinearity index is equal to the index of the
nonlinear phase: v_= 3.

At the percolation threshold (for equal concentra-
tions of the phases), when both phases must take part in
the conduction of current, and in the case of the macro-
scopic equivalence of the initial and primed systems,
relation (24) leads to the exact expression for the non-
linearity index at the percolation threshold. It hasaroot
dependence on theinitial nonlinearity:

Vo = /3.

The condition of the macroscopic equivalence of the
initial and primed systems is important for deriving
result (25) and will be considered here in greater detail.
In accordance with relations (19), the primed systemin
the general caseis microscopically nonequivalent to the
initial system sincethelocal field is not of the potential

type:
divj = bn[e?curle —e [TI(e?)] = 0. (26)

Thus, in order to obtain the transformed local dectricfield
of the potentia type, we must impose an additiona con-
draint of axia symmetry on randomly heterogeneous
media In this case, local two-dimensiona fields are
directed aong the radius, and the condition that the fields
are of the potentia typeis naturaly satisfied. (By way of
an example, we can consider acylindrical capacitor filled
with a random mixture of linear and nonlinear phases
and study the effective response of such a system.)

In the general case of apower nonlinearity, we must
use the generalized transformations:

(25)

j =[nxe, e=[nxjl. 27)
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Repeating the above arguments, we derive relation (8)
for the critical indices of type (24) for an arbitrary
power nonlinearity:

v,v_ = k. (28)

At the percolation threshold and for the macro-
scopic equivalence of the initial and primed systems,
the nonlinear response index for the general case of a
power nonlinearity is given by

Vo = Jk. (29)

It should be noted that, strictly speaking, the
obtained relations (24) and (28) arevalid only for alim-
ited class of systemswith axial symmetry. We will now
verify the applicability of the obtained duality relation
in the absence of such limitations using numerical sim-
ulation, thus extending the region of applicability of the
obtained results.

3. NUMERICAL SIMULATION

Let us briefly describe the algorithm of simulation.
Astheinitial model, we considered a square network of
conducting links. The values of the conductivities of
the links were chosen at random: alink has conductiv-
ity o, with probability p and conductivity o, with prob-
ability 1 — p. (In the limit o, — O, this problem is
transformed into the familiar problem of links in the
percolation theory [15, 16].) Then we calculated the
values of currents| and potentials U in such a medium.
The distributions of currents and potentials in a con-
ducting medium are described by Kirchhoff’s laws:

Z‘]i =0, ZJiRi+zUi = 0. (30
Using the simulation program, we studied the flow of
current along the diagonal (from the upper I€ft to the
lower right corner). The current was specified at theini-
tial point and then was divided into parts depending on
the relation between the conductivities of the phases. The
vaue of the current arriving at the next node was divided
accordingly, and so on. The operation was repested until
the paths with ahigher conductivity started to converge to
the opposite node (sink) and, accordingly, the currents
started to add up. The distribution of potentials at the
nodes of the network can be determined from the
Kirchhoff’s second law taking into account the magni-
tude of the current and the conductivity of the links; in
other words, the potential drop across each link was
taken into consideration.

The effective conductivity is determined as the pro-
portionality factor between the average current and the
average field:

o, = OCEO
The correctness of the program operation was verified
by calculating the effective conductivity of atwo-phase
medium at the percolation threshold. The results of
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Fig. 1. Dependence of critical indices on the concentration
of the phase with a cubic nonlinearity (k = 3).

simulation coincide with the exact solution of the prob-
lem to a high degree of accuracy.

In the case of anonlinear percolation in our formu-
lation of the problem, one phase is a linear ohmic
phase, while the other phaseisnonlinear: j = xek, k=3,
5, 7, 9. Asdescribed above, first arandom medium con-
sisting of a mixture of the linear and nonlinear phases
was generated, then the current in the system was cal-
culated and the potential drop was determined using the
linear or nonlinear expression depending on the properties
of the conducting phases. Further, the averaging over a
large number of configurations (of the order of 1000) was
carried out to find the effective parameters of the system.
The results of simulation are presented graphically.
Figure 1 shows the values of critical indices above and
below the percolation threshold as well as their prod-
ucts (the value at the percolation threshold) for a cubic
nonlinearity (similar results can also be obtained for
other degrees of nonlinearity). Figure 2 presents the
values of the product of the critical indices for various
degrees of nonlinearity and near the percolation thresh-
old. It can be seen that the results of the numerical sim-
ulation are in good agreement with the predictions of
the above theory based on nonlinear transformations of
rotation.

4. CONCLUSION

Let usdiscuss our results. A generalization of linear
transformationsto the case of nonlinear media has been
carried out. The generalized nonlinear transformations
are used to establish the one-to-one correspondence
(isomorphism) between linear ohmic and nonlinear
phases. The relation for the critical indices describing
the effective response of the system under investigation
above and below the percolation threshold (relation
(28)) isderived for arandom mixture of linear and non-
linear phases (with an arbitrary power-type nonlinearity).
In the linear approximation, the problem of current flow
through the system is reduced to determining the effective
conductivity of a heterogeneous medium. Accordingly,
the relation (28) between the indices is transformed into
the dudlity relation for the effective conductivity of ran-
domly heterogeneous media. At the percolation thresh-
old, as well as in the case when the initial and primed
systems are macroscopically equivalent, thisrelationin
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Fig. 2. Vaues of the parameter A = V+V_/V§ near the perco-

lation threshold for various degrees of nonlinearity k: 3 (1),
5(2),and 7 (3).

the linear approximation leads to the exact expression
for the effective conductivity at the percolation thresh-
old (root dependence on the conductivities of the
phases). In our case, we abtain the exact expression for
the critical nonlinearity index at the percolation thresh-
old. It isaso aroot function of the initial nonlinearity
(formula (29)).

Moreover, it can be verified that although the local
field in the primed system subjected to transforma-
tions (19) isnot of the potential type, the averaged electric
fied is of the potential nature. For this purpose, we
average Eq. (26) over space. The second term in the
sum vanishes after the averaging over space as the pro-
jection of a two-dimensional vector lying in the plane
on the direction of the electric field. Consequently, the
averaged electric field is of the potential type. Thus, the
initial and primed systems are macroscopically equiva
lent at the percolation threshold and, hence, the effec-
tive response of the system to the external electric field
can be found and the degree of nonlinearity at the per-
colation threshold can be determined.
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Abstract—There exists awide temperature region (GiT < T— T, < T./Gi ) where the influence of fluctuations
on the thermodynamic properties of superconductors can be taken into account in the linear (Gaussian) approx-
imation, while their influence on the kinetic propertiesis strongly nonlinear. The Maki—Thompson contribution
to the conductivity saturates in this region. However, the Aslamazov—L arkin contribution becomes even more
singular. This enhancement isrelated to the fact that nonlinear effectsincrease the lifetime of fluctuating pairs.
The pair breaking and energy relaxation processes can decrease the nonlinear effects. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

The éectron scattering from usual impurities leads
to a temperature-independent residual resistance of
normal metal [1]. The conductivity of bulk samplesand
films can be measured with avery high accuracy. This
allows one to study different mechanisms leading to
temperature-dependent conductivity at low tempera-
tures. One of these mechanisms is related to thermal
fluctuations above the superconducting transition tem-
perature T, [2-5]. There are two kinds of fluctuation
corrections leading to temperature-dependent conduc-
tivity above T.. The first one is known as the Maki—
Thompson (MT) contribution and the second is the
conductivity of fluctuating pairs (the Aslamazov—Lar-
kin (AL) contribution). These corrections depend dif-
ferently on the spin flip scattering time 1. The charac-
teristic temperature range for the contributions of both
types is determined by the Ginzburg parameter Gi,
which depends on dimensionality; for films, Gi = 1, =
1/32vDd = €//16#0, wherev = mp?/212 isthe electron
density of states per spin, D = v¢l/3 is the diffusion
coefficient, d is the film thickness, |, is the electron
mean free path, p isthe Fermi momentum, and o isthe
conductance of a square film. It has been found in [6]
that nonlinear fluctuation phenomena lead to a new

temperature scale T,./Gi (see also [7-10]). In this
paper, we obtain expressions for the conductivity in the
temperature region Gi < T < ./Gi , where the Gaussian

approximation workswell and the nonlinear fluctuation
effects are important.

In[6], an attempt to find the fluctuating correction to
the conductivity was made. The main point was that

TThis article was submitted by the authors in English.

long-wave fluctuations with Dk? < Tt are essential.
These fluctuations can be considered as a Bose conden-
sate. The dynamics of superconductors must be consid-
ered in the background of these fluctuations. They lead
to a pseudogap in the excitation spectrum. In this paper,
we show that shortwave fluctuations with Dk? > Tt can
beimportant. It wasfound in [11] that short-wave fluc-
tuations of the order parameter A affect the electron
Green's functions as paramagnetic impurities with the

depairing factor I' = r;l = [JAJ[Ze. Essentia values of
the energy € are of the order ¢ ~ A ~ T./Gi , and there-

fore, I is of the order T./Gi. This large value of the
depairing factor leads to saturation of the M T contribu-

tion to conductivity in the temperature region T < ./Gi .

A more complicated situation occurs for the AL
contribution. This contribution is proportiona to the
density of pairsand their lifetime. For sufficiently large
values of T, the time-dependent Ginzburg—Landau
(TDGL) equation can be used to obtain thislifetime. It
is proportional to #/(T —T.), and hence, the AL contri-

bution is proportional to 1. If the concentration of
paramagnetic impuritiesis large or if the energy relax-
ation time is short, the TDGL equation can be used for
all temperatures T. In this case, the AL contribution is
valid in the temperature range T > Gi. In the opposite
limiting case, the nonlinear fluctuation effects destroy
the applicability of the TDGL equation and increasethe
lifetime of fluctuating pairs. As aresult, the AL contri-
bution to the conductivity becomes more singular in the

temperature region J/Gi > 1 > Gi.

1063-7761/01/9203-0519$21.00 © 2001 MAIK “Nauka/Interperiodica’
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2. QUALITATIVE PICTURE

In the temperature region 1 > 1 > Gi, thermody-
namic fluctuations of the order parameter A can be con-
sidered as Gaussian. The corresponding correlator is
given by

I__ 1 _2%6_GT
vdr + iDK%/8T T K*+8Tt/TD

To calculate thermodynamic quantities in the tem-
perature region T > Gi, it is sufficient to know only this
correlator. However, amore complicated problem must
be solved in order to calculate kinetic coefficients. One
must find how the Gaussian fluctuations change the
one-particle excitation spectrum. The long-wavelength

fluctuations with I < k%, = 8Tt/TD can be considered

as aloca condensate. They lead to the formation of a
pseudogap in the one-particle spectrum of excitations.
It follows from Eq. (1) that the pseudogap is equal to

Boe = S/GIT, @

(A A0 = D

At some distance from the transition (for T > ./Gi),
only excitationswith the energy w > Apg are significant.
The pseudogap does not play any role in these excita-
tions. It is therefore sufficient to consider fluctuations
in the linear approximation (see [3-5]). It isimportant,
however, that the excitations with the energy w < Apg

become essential in the temperatureregiont < ./Gi . In
[6], the fluctuation correction to the conductivity was
considered with the pseudogap taken into account in
the same way as the gap below the transition tempera-
ture. This approximation gives a correct estimate for
thewidth of the temperature region where the nonlinear
effects are important.

However, the model with a constant A considered
in [6] cannot reproduce the correct temperature
dependence of the conductivity in the temperature

regionT < ./Gi .

To describe the nonlinear effects, we consider fluc-
tuations of A in the statical approximation. Thisis eli-
gible, because the fluctuation lifetime (Tt)™* is large
compared to the inverse pseudogap. However, the spa-
tial dispersion of the pseudogap changes the physical
picture significantly. To take the spatial variations into
account, we must calculate the conductivity as a func-
tion of the order parameter A(r), which is an arbitrary
function of r, and average the result over the Gaussian
fluctuations with correlator (1). We accomplish this
program up to a numerical coefficient in the limiting
case where the energy relaxation rate is large (1, <<
(Tt)™). In other cases, we obtain a functional form of
the temperature dependence of the conductivity with
undetermined coefficients.

To consider the spatial dependence of the order
parameter, we use the results obtained in [11], where
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the spatial variations of A were shown to act on one-
particle excitations in the same way as the magnetic
impurities. In this case, the total pair breaking rate I
can be written as a sum of the pair breaking rate due to
the magnetic impurities and the fluctuation term. Thus,
the self-consistent equation for I becomes

2 ;A0 L1

d’k

r= : 3

I(2n)2w+ DK/2+T Ts )
It is important to mention that Eq. (3) is exact if either
w > T or 15 is very smal such that the first term in
Eqg. (3) is a small correction to the second one. In the
other cases, the self-consistent equation (3) can be con-
sidered as an approximation and gives the result valid
by the order of magnitude only.

In the region where w < I and I’ > Tt, we abtain
from Egs. (1) and (3) that

8T.., 2
r= —T[-Bsulnﬁgu, (4)

which coincides with the value obtained in[7, 12] up to
the logarithmic term. In what follows, we repeat the
derivationin [11] and show that the pseudogap does not
change result (4) qualitatively.

We note that the pair breaking rate I' is of the order
of the pseudogap Apg. Thus, a wide maximum of the
density of states appearsat w ~ Apg.

As known from [5], the MT correction to the con-
ductivity saturatesfor Tt < I and takes the form

5" _ 8TGi  ml
(o i ATT

)

As can be seen from Egs. (4) and (5), this saturation

occursfor T < ./Gi . Similar results have been obtained
in[7, 8, 10]. However, numerical coefficients are dif-
ferent.

We note that the numerical coefficient in Eq. (5)
depends on how the summation of higher-order dia-
grams is made. However, its exact value is not very
important because in the region Tt < I", the M T contri-
bution isless singular than the AL contribution and can
be neglected. The AL contribution does not saturate as
T tends to T, but becomes more and more singular.

To estimate the AL contribution due to the appear-
ance of fluctuating Cooper pairs, we use the simple
Drude formula

2
ne
ETH- (6)

da™t =

where n, m, and T;, are the concentration, the mass, and
the lifetime of the fluctuating Cooper pairs. The ratio
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n/m can be estimated from Eq. (1), while the lifetime
follows from the TDGL equations,

%% + DK+ ?TTTEAK(t) = (), (7)

where  is the Langevin noise. In the two-dimensional
case, we have

and

At asufficient distance from thetransition (Tt > Apg) Or
for avery large energy relaxation rate, wecan seta=1,
because the quasiparticles are at the therma equilib-
rium. Thus, we have

00, _ Gi

5 . (8

In the presence of the pseudogap, there is no equi-
librium and the coefficient a becomes greater than one.
We recall that below the transition temperature the
coefficient a in the TDGL equations for |A| similarly
changes (see, e.g., [13-17]). The growth of a and, con-
sequently, the growth of the fluctuation lifetime occur
because the quasiparticles require more time to attain
the thermal equilibrium (let 1, denote the correspond-
ing time). A rough estimate gives a ~ ApgT,. For aweak
energy relaxation, 1, must be determined from the dif-
fusion equation with the pseudogap taken into account
(see[18-20]). We notethat in this complicated case, the
coefficient a becomes a nonlocal operator. Rough esti-
mates give the thermal equilibrium transition time 1, ~

(Dkzmm)—l ~ (Tt)™ Taking Eg. (2) into account, we
obtain

dolo, = Gi¥?I?. 9)

We see that paraconductivity can exceed the normal
conductivity o, in the region Gi¥* > 1 > Gi. We empha-
size that corrections to all the thermodynamic coeffi-
cients are small in this region and are adequately
described by the linear theory.

We now discuss the role of the energy relaxation
processes characterized by the quasiparticle lifetime ..
In the two-dimensional case, the nonelastic electron—
el ectron scattering in dirty metalsleadsto the electron—
electron collision time:

1, OTdIp°OGiT.

Such a large collision time does not change nonlinear
effects. However, the nonelastic electron scattering
from phonons and other possible collective excitations
can decrease T, significantly. These processes, together
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with additional pair breaking processes (due to mag-
netic impurities or a magnetic field), decrease the non-
linear effects. The energy relaxation reduces the ther-
mal equilibrium transition time t.. If these processes
are very strong (for example, if the temperatureisrela-
tively large), the transport equation for the distribution

function becomeslocal, and in the limit Tt ~ Dk? < r;l,
we can write T, = T,. Thus, in the temperature region
under consideration, we have

-3/2
eYe} _ Gi TTs
(o T

. (10)

The elastic scattering from magnetic impurities and the
magnetic field also tend to diminish the nonlinear fluc-
tuation effects in conductivity, but in a different way.
These scattering processes (as well as scattering from
the static fluctuations of the order parameter) do not
affect the quasi particle motion nor, hence, 1,. However,
if the pair breaking rate is sufficiently large (I' > Apg),
these processes lead to the reduced pseudogap Apg ~

AP (we recall that Apg ~ +/ OA|°0~ TGiY2 without

pair breaking). Thus, the fluctuation correction can be
written as

dalo, = GI°TIT. (11)

In the presence of both a strong pair breaking and a

large energy relaxation, exact expressions for the coef-

ficient a in the TDGL equation, which is local in this

case, and for paraconductivity can be derived with aloga-
rithmic accuracy. The main contribution to a then comes

from the fluctuations with Tt < DK? < T,*. The first ine-

quality allows us to consider only the leading termsin
the expansion of a with respect to A, and the second one
impliesalocal approximation in the transport equation.
Theresultis

A0
a= e (12)
2Gi°T?

% _ 32O T, T (13

o rert | BILT

We note that Egs. (9)—(13) are valid only if the param-
eters ™ and T, are such that the contribution to the con-
ductivity doislarger than the usual Aslamazov—Larkin

contribution in Eq. (8). If I > T and Tt, < ./Gi or if
T2t /I < Gi, the nonlinear effects are negligible and the

usual result (8) isvalid for al T > Gi. We note that the
MT contribution saturates at the temperatures such that

Tt ~ max[l", Ut,, TJ/Gi].
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3. DEPAIRING FACTOR INDUCED
BY FLUCTUATIONS

A nonzero fluctuating order parameter A and the
Gor’kov—Green function 3 [6] exist above the transi-
tion temperature. In the temperature region T > Gi, the
main contribution to the order parameter A arises from
zero “frequency.” The momentum space can be sepa-
rated into two parts: TDk%8T < 1 and Dk?/8T > 1. The
fluctuations with Dk%8T > T can be considered as
“fast” variables created in the background of slow fluc-
tuations with TDk%/8T < 1. The “fast” fluctuations
induce theintrinsic depairing factor I even if the exter-
nal depairing factor related to paramagnetic impurities
ismissing (tg— ). A similar phenomenon was stud-
ied in [11]. Using the method developed in that paper,
we obtain expressions for the statical Green’sfunctions
o and B and the depairing factor I'. We start from the
Usadel equation for Green’s functions a and 3 in the
dirty limit (see[6, 21]),

Ad— B + %(GDZB—BDZG) - aBr.  (14)

Following [11], we present Green’s functions o and
Binthefield of “fast” fluctuations of the order parame-
ter A(K) as

o = [oH+ay,

B = BLHB,. (15

Thedeviations of Green’sfunctionsfrom their mean
values can be found using the perturbation theory [11]:

AK) TR0
O+ AR+ DKY2

The“mean” Green's functions [dOand [Bare solu-
tions of the system of equations

i+ B = 1, WIAFwPO= WIRT. (17)
The value of the parameter ' is determined by
Eq. (16) and isequal to
r = Ok (A AD
I(zn)zmm+ AR+ DKY/2’
where [AC= [AJP¥2. The quantity [ACin Egs. (16) and
(17) must be understood as the integral over k of

expression (18) over the range mDK?/8T < T; it then
becomes

a,k) = (16)

(18)

T . dk 1 Y2 _r64Gi1¥
0= [— } ﬂ[—} . (19)
v (2m)°t + MDK?/8T ¢
From Egs. (1) and (18), we obtain
r - 16TGi 1

it (TV/4TT) (wlo [+ CAIRO -1

N |nDT(‘*’[‘“D+ OIBOO
] 4Tt )

(20)
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As can be seen from Eq. (20), I (w) is afunction of

the energy w. Intherange T < /Gi , essential values of
w are of the order I". Thus, I' itself is of the order (AL
(see (19)). This order of ' is related to fluctuations of
the order parameter modulus. Thisvalueis much larger
than the one due to the phase fluctuations of the order
parameter (see[6]).

4. EQUATIONS FOR THE TIME-DEPENDENT
ORDER PARAMETER

The static Ginzburg—L andau equations are valid the
in the wide temperature region

G <|1-TITJ <1 (21)

The TDGL equations are valid if the energy relax-
ation time T, or the pair breaking time 1, = I is suffi-
ciently short [13-16]. For large 1., the dynamics of nor-
mal excitations becomes essential. As a result, the
dynamical term in the equation for the order parameter
becomes more complicated. We now derive the corre-
sponding equation.

The order parameters AA; ,(t) can be written as

A
Apo(t) = —=ZFL (1, t)

5 (22)

with Green’s function G presented in the form [18]
(23)

where GR AKX are the retarded, advanced, and Keldysh
Green’'s functions. Each of these is a Gor’ kov—Nambu
matrix

A K
0-F, g, O
(24)
- O 0
A=p° %g
0-8, 00

where A (w) = AT (—w).

In the dirty limit, we have the system of equations
for GRA (see[19])

R A
-0 [0, FI - FH£ s 2in, o™
Y A M
29)
~2ieFff+ 2RAFRS = TR,
S
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where 17F? s the electron-phonon collision inte-

gra; in the vici nity of the transition temperature T, for
small energy values |€| < T, this quantity is equal to

I5RA = _%F?;Q. (26)
€
The Keldysh—Green function GK can be written as
[20]

G = J'dtl(GRf -fch, (27)

where the distribution function f is given by [20]

f=f+1,f,. (29)
Equations for the distribution functions f; , have
been derived in [20] and have the form

o ot

ar[pr

(1- GG)D—D (152) + 23 spa

of U _0A. _
aS[eDat ¢ 25p6t6 +4I1(f) 0,

o [Pf, R a0 _of.
—DWSp%W(l—TZG 1,G )E—Darj8 (29)
0 . ~
+25:(f1Spa) —4i f,Sp(yA)
009 oA i 0°A080 . pn
2 Sp 3¢ O atsz+ 29¢ e O+4l, (f) = 0,
where
. = Sp1,(GRIGT-G"aGh),
_ 0 .
=5 ieAT,, (30
20 =G"r,-1,6%, 26=G"-G" 2y=G"+G"

In the important limiting case where ¢ ~ ' > A,
Egs. (25) and (29) can be simplified and we obtain

= —|E‘+|e——ar A

2 -1

A:_- __aD D
|B‘+|a ZarZD A

(31)
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°f Do
_2 46 ( 8 1)

lof (DA,

a4,
4as 0ot Ot (F2 -

]

F2) + 5 (FY - FHO+15(f) = 0,
|
pfi_D.ofy of,
arz J ar at

fDa¢

+5 fl(A(F2+F2)+AEKFl+F1)) at

1 0A
GRS R+ SRR 1) = 0

where

rOF; FRaF1 FA6F2
or %o Lor

The genera expression for the collision integrals

15", isgivenin [20, 22]. For small energy values|g| < T,
these integral s can be taken in the simple form:

17(f) =

AaFl

je = —F1 Pt (3

tanh E;:l_%+ £

IZ’“(fl) = 1f, 539

T, = 74(3)Tvg T 2(sp)?,
where sisthevelocity of sound inthe metal and gisthe

electron-phonon coupling constant.

In the limiting case of strong energy relaxation with
1A < 1, the distribution function f can be taken asthe
equilibrium one,

f = tanh(e/2T), f, = 0. (34
In this case, Egs. (22), (31), and (34) alow one to

obtain the time-dependent Ginzburg—Landau equation
in the standard form:

1D ;2

%1 T —7Z(3)|A|2Ep 8T6_A
(35)
—%%+2ie¢%ﬁ - 0.

If the condition t,A < 1 isnot satisfied, the devia-

tion of the distribution function f from its equilibrium
value can change the last term in Eq. (35).
Intherangel” > A, thecrossing termin Eq. (31) has

a smallness of (A/I')2 In the leading approximation,
system (31) istherefore diagonal.
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(a) (b)
Fig. 1. The Adamov—Larkin contribution to the conductivity

(8); the Maki—Thompson contributions to the conductivity (b).

With the aid of Egs. (27), (28), and (31), we can
rewrite Eq. (22) as

T 0
[T + sT0] =l 0, — DFD A

2 o [6f(F1—F1)—f1(F1+F1)] =0,

(36)
T[] . 0 0
[T +— aT0 =l W, — DFD}AZ
-3 2[6HF2 F2) = fu(F5+ F5)] = 0,
where Wé set
f = tanh(e/2T) + of . (37

In (36), the contributions of the second terms are of
the order (A/T")?. Thisresult is dueto the cancellation of
the terms coming from &f and f;, but in the next orders
of the perturbation theory, the quantity f; becomes
small and the main contribution arises from the distri-
bution function &f beyond perturbation theory.

5. THE CONDUCTIVITY OF FLUCTUATING
PAIRS (THE ASLAMAZOV-LARKIN
CONTRIBUTION)

The conductivity of fluctuating pairsis given by the
diagrams in Fig. 1a. In what follows, we assume that
the order parameters AA; , can be written as the sums of
two terms. One of them isrelated to the statical thermo-
dynamic fluctuations A and A*. In the range T > Gi,
these fluctuations are Gaussian with the correlator
given by Eg. (1). The wavy line in Fig. 1a gives the

dynamical fluctuations 51, > of the order parameter.
The correlators of these fluctuations K;; must be found
in the background of thermodynamic fluctuations,

Kif(w) = v DAL, (38)

R_l

1
o o
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The contribution to the conductivity can be

expressed through the correlators K inthe sameway as
for weak fluctuations [3].

Firgt, we must find the conductivity asafunction of the
Matzubara frequency wy, and then perform the analytica
continuation in wy,. The correction to the current was
found in [6] with the aid of the equations for the Green's
function in the dirty limit in high-frequency fields,

on ZdId r,T
(39)

x ZSpI:? R(wy + 0, 1, 1) LR (g, 1, 1AL,

]

where A, is the vector potential of the external field
and the matrix L isgiven by
L1 = Ly =0, L11( - _TebD o 0
|:gz = —|A_$1.

After the analytical continuation with respect to wy,
in Eqg. (39), we abtain
o 1o iT . 1 1
Jo = —==[dr,=— dcol[ . — ]
2 2 —iw—
dI ﬂ_{o W —iw=> w+9d (a1)
x Sp(L7 K (o, —iw+ 8,1, 1) LF K(w, =8, 1y, 1)) AP,

It was found in [6] that the fluctuations are weak in
therange T > Gi¥2. In thisregion, we have

Ky +8) = Ky(w, +9)
_ 1 (42)
T+ (TU8T)(w, + DK

From Egs. (40)—(42), we obtain the well-known result
for the paraconductivity [3],

a?/a, = Gilt. (43)

To obtain the conductivity in the temperature region

T < Gi¥2, we must find the correlation functions K in
the field of thermodynamic fluctuations A. We must
then average the expression for conductivity over A.

The correlation functions K can be found from Eq. (36),

(44)

o o |

- C22

No. 3 2001



NONLINEAR FLUCTUATION PHENOMENA IN THE TRANSPORT PROPERTIES

where the operators C;; are given by

Cy = 2; C[(Fy - P - 1R+ DI,

noo de
Cro = 5 [ Rl (FI-FDSF® - FFI+ FD],

v (45)
Cy = zI SL(FE—F)81 % + (F5 + F)8f 1],
Cp = j E[(FS-FH5t? + (FE+ D)5,

In Egs. (45), the operators f %2 and f{"? are such
that

5t = 5f DA+ 8120,

WA 2 (46)
fl = fl Al+ f]_ AZ;

with of and f, being the respective solutions of system (31)

inthefield of Ay and A, . System (31) cannot be solved
analytically for an arbitrary function A(r). Neverthe-
less, in the range T < Gi'?, the expression for the corre-

lation functions K can be found with the logarithmic
accuracy if the value of the external depairing factor I
islarger than A. In this case, simple expressions for the

y . R A
Green'sfunctions F;’, can be used,

—iaAd
rFie

—iA RA _
rFie’ 2

If Dk? > |APIT, the contribution of &f (2 is can-
celled out in the expressions for C,; and C,,. We note

that Dk? < |ART implies "% < &f@2, Thus, this
region gives the dominant contribution to C;;. Equa-
tions (44) and (45) can then be reduced to

L OZD
T e K

nw, A -1 0 D_l
16T O™ T — DPD (ALK )

RA
Fl -

(47)

nwlA a d D‘l
16Tr + T, — a (AKZZI.) - 6(r _rl)

[T + ——Bo i ZD}KR
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T[(A)]_A -1 62 D_l
16Tr +T€ _D ZD (A[KIZ)
T[(*)lA -1 9 D_l _
tlerr it e ~Do5p (BKz) =0,
(48)

20 -0 0
Tt -o 0 @) < 0
[ +8£-|-B’31—D ZD}Kzz
PO+ -0 20 (k)
T _l(AEklz) = 3(r-r).

This system can be solved with the logarithmic

accuracy for strong energy relaxation rgl > Tt1. In this
region, it follows from Eq. (1) that
2 —l
<AEB0 + 15" A>
(49)
_ 64G|.|_ I T D
G EBT

Equations (1), (48), and (49) now imply the relations
for the correlators K

N D 4GiTrT, ooll T [

]
Et 8TK T EBTTTD
(50)
2r4GITT, W
Tgl i lDI H<11 =1, Kyp =Ky,
where
I :I dXdy2 3
a = 1+4m1TT€GIInD T

mrt (8Ttt U
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The nondiagonal elementsin K give a logarithmi- ~ Thisimpliesthat the coefficient at w; in the equation for
cally small contribution to the conductivity. Asaresult, K, is logarithmically large. Contrary to the previous

we obtain case (1. > Tr), the last term in the right-hand side of
(la 32Gi’T? TSI n g 2 Eq. (53) is gssenﬂal; together W|th.off—d|agonal ele-
Oy oI EBTTT 0 ments in K, it leads to the cancellation of large terms

in the conductivity. To verify this, we must find the
The situation becomes more complicated if the Mean value of the product of four A in the last term in
energy relaxation time T, is large. From (48), we then  EG. (53). We have

obtain the equation for the correlator K, oo f AE» 5 020 T+—E» D
2 1 OeTro 1 67D 2D
LS 0 K
[t et o, .
A a 5 lGTI'AEB}J D }
N muw—a’;‘:;% e
XAEBol—DWE ADexp(ikr)> = exp(ikr)
2 00 (55)
X AR + T, —D A[HSTB» D 5 (59) 0 _[ Idk
DJ.6TdeD (2% (2m)?
L a2 i -
mD
TS A} <[B+ g + 5] [(w1+ D(k-ky)?)
0 -1
x AR, +1;* (AEKn) = 8(r —ry). (e, + D(k— k) + grDKE + wnctefd]
We next find the mean value where
kg = k—k; —ky,
2 —l
AR, - D_ZD (Aexp(ikr)) _ 4TGi 1 (DK + 8Tt/m)’ (56)
o, = > InD 0
, (&9 T Dk +8Tt/mt 8Ttw,
_ BAT’Gi 1 [r[(Dk +8Tt/T) . . .
= In Theln? term can be easily separated in expression (55).
@ DK +8Tym U 8Tww, [ As aresult, we obtain
_ 1 Eﬂz 4T[GkGI (MD/8T) (K — )+u)1(0(k (o] %
t+(nD/8T)k + 0,0 [ I(Zn) (1 + (MD/8T)KS) (k, —Kk)*(T + (TiD/8T) (K, —k)* + w0y ) 0
(57)
In Eg. (55), we omitted the “diagond” term with the With the same accuracy, we now present the
denominator of thetype[w, + D(k+k,)?]2 Thistermleads  expression for the nondiagonal elements K;, and
toasmall correction to the coefficient at w, in (53). K, as
Koo T d’k,dk, A A K 1(K)
%% I8 (20" (@ + DK kDT (MDIBT) (kKoK + oty o] -
58

o, dkedk, Ay Ay K(K)
12 16TFI (2m)* (00, + D(K + kg)*)[T + (TID/8T) (K + kg + Kg)? + 00,00y 4, +k]
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Using Egs. (57) and (58), we obtain the correction
to the conductivity as

0 _ATGi®

Oo mlt?

This expression is valid up to a numerical factor of the
order unity.

If the external depairing factor I is zero (a super-
conductor without paramagnetic impurities), the quan-
tity I in Egs. (51) and (59) must be replaced by its
intrinsic value

(59)

r=TGi" (60)

(see Eq. (18)). In the temperature region Gi < T < Gi'?,
we then obtain

0%/0,= 4Gi ¥/’ (61)

Equation (61) impliesthat the AL contribution to the
conductivity is strongly enhanced in the temperature
region Gi <1 < Gi*2

6. THE MAKI-THOMPSON CONTRIBUTION
TO CONDUCTIVITY IN THE NONLINEAR
FLUCTUATION REGION

The general expression for the MT contribution to
the conductivity (o®) was givenin [6]. Equation (28) in
[6] can be considered as the interpolation of the MT
contribution that is valid in the entire temperature
region T > Gi. The depairing factor I" in Eq. (28) in [6]
must be changed to a sum of two terms: the external

depairing factor r;l related to the spin flip scattering on

magnetic impurities and the intrinsic depairing factor
given by Eq. (20). Asaresult, we obtain

o _ modk 1 1
o 8dv.r (2m)°T + DK’/21 + (D/8T)K (62)
_ 2Gi 1 o o

T T ATt oaTo

In the range Gi < 1 < Gi¥?, the MT contribution
reaches its saturation value and effectively becomes
temperature independent,

AP SITINS € i
O, Ot O
The correction remains small in the entire region Gi <
T < Gi¥2, where nonlinear effects are important.

We note that real superconductors are always inho-
mogeneous. The finite value of the transition width
leads to the appearance of an effective depairing factor
[11]. The value of this depairing factor can be suffi-
ciently large in the units of TGi. In this case, the MT
contribution to the conductivity is small compared to
the AL contribution in the entire temperature region.

(63)
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7. CONCLUSIONS

We have seen that nonlinear fluctuation effects are
much stronger in kinetics phenomena than in thermo-
dynamics. If the external depairing factor is absent, the
nonlinear effects lead to a saturation of the MT con-
tribution to the conductivity in the temperature region
T < Gi'2, In this temperature region, the AL contribu-
tion becomes even stronger and grows as

0%/0,= Gi**/1*. In a superconductor with a suffi-
ciently large external depairing factor I' = Tgl > TGiY?

or a short energy relaxation time Tgl > TGiY?, the MT
contribution saturates in the temperature region Tt < I

or Tt< 1.". Itisnot very sensitive to nonlinear effects.

Magnetic impurities and the energy relaxation act on
the AL contribution in different ways. Energy relax-
ation leads to the appearance of a collision integral in
the kinetic equation for the distribution functions of
normal excitations. This collision integral diminishes
the nonequilibrium contributions to the distribution
functions. Magnetic impurities and the magnetic field
act only on the superconductivity and do not lead to the
relaxation of the distribution functions. However, the
TDGL equation essentially depends onthe electron dis-

tribution function. If T." > TGi¥2, the nonlinear fluctu-
ation effects are not essential and the AL contribution

remains the same, 0°/0,= Gi/t, in the entire tempera-
ture region T > Gi. If the inequality T;" < TGiY2is sat-
isfied, the law 6°/0, = Gi**/1* appliesin the tempera-

tureregion Tt > rgl. Intheregion (Tt,)* > 1 > Gi, the
correction to the conductivity is given by
0%/0, ~ Gi**Tt,/1 (see Eq. (52)). Magnetic impurities
(or a current) suppress nonlinear fluctuation effects in
02, but the effect isnot as strong as for the energy relax-
ation. Intherange TGi/l" >t > Gi, the correction to the
conductivity a?isgiven by Eq. (59), 6%/c, ~ TGi%/(I'1?).
In the temperature region T > TGi/I", the correction ¢®
isgiven by Eq. (43) in the linear approximation.

It is essential that the conductivity of fluctuating
pairs can belarger than the conductivity of normal elec-
trons in the temperature region where the correction to
the thermodynamic quantities is still small (see

Eq. (61)).
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Abstract—The dynamics of localized waves is analyzed in the framework of a model described by the
Korteweg—de Vries (KdV) equation with account made for the cubic positive nonlinearity (the Gardner equa-
tion). In particular, theinteraction process of two solitonsis considered, and the dynamicsof a“ breathing” wave
packet (a breather) is discussed. It is shown that solitons of the same polarity interact as in the case of the
Korteweg—de Vries eguation or modified Korteweg—de Vries equation, whereas the interaction of solitons of
different polarity is qualitatively different from the classical case. An example of “unpredictable” behavior of
the breather of the Gardner equation is discussed. © 2001 MAIK “ Nauka/I nterperiodica” .

1. INTRODUCTION

The Korteweg—de Vries (KdV) equation provides a
basisfor the description of wave processesin dispersive
media. It includes anonlinear (quadratic) and a disper-
siveterm, which appear in thefirst order approximation
in perturbation theory with respect to two small param-
eters, the amplitude and the wave number. The KdV
equation, which provides a model for describing sur-
face and internal waves in oceans and the Rossby
waves, can be also used to describe various wave pro-
cesses in the atmosphere, plasma, astrophysics, and
transmission lines (see, eg., [1-3]). In a number of
physical applications, the nonlinearity of the lowest
order is cubic. In this case, the problem is reduced to
the modified Korteweg—de Vries equation. For exam-
ple, it describes acoustic wavesin plasma, the propaga
tion of an elagtic quasi-plane wave in a lattice, and
internal ocean waves under certain stratification [4—6].
If the solution of the modified KdV equation on a ped-
estal is considered (which tends to a constant at infin-
ity), which often corresponds to an external confining
force or flow, then this problem is described by an evo-
lutionary equation with two nonlinear terms, which isa
generalization of the KdV equation and is called the
Gardner equation. It iswritten as

au 20U . ,0°U _
a+(c+au+a1u)a—x+[35;3—0. D

Two nonlinear terms in Eq. (1) correspond to the case
of large amplitude waves. The coefficients in Eq. (1)
can take various val ues depending on a concrete appli-
cation. In physical problems, the KdV equation must be
replaced by the Gardner equation (1) in the case when
the coefficient of the quadratic nonlinearity is very

small. In physical problems, the nonlinear coefficients
in Eg. (1) can vary within awide range and can change
their sign (for example, in [7], an analysis of the non-
linear coefficients for model cases of the stratification
of internal ocean wavesis given), which resultsin non-
trivial effects in the wave transformation [8-10]. All
three models mentioned can be integrated by the
inverse scattering transform [11-14] and have an infi-
nite set of time-independent integrals and elastically
interacting soliton solutions.

It is aso known that in the case of a positive cubic
nonlinearity, the modified KdV and Gardner equations
have breather solutions corresponding to “breathing”
wave packets [3, 15, 16]. Breathers, along with soli-
tons, determine the asymptotics of the wave field. The
KdV and modified KdV equations have long become
classical, and the dynamics of their solitons is well
understood (seeg, e.g., [1-3, 15]).

Notwithstanding the increased interest in nonlinear
evolutionary equations with higher order nonlinear and
dispersive terms (see, e.g., [17-19]), the completely
integrable Gardner equation has not been studied from
the viewpoint of soliton interaction. In the papers [20,
21], the interaction of solitons was analyzed for the
case of a negative cubic nonlinearity (o, < 0), and the
special role played by the limit (“broad”) soliton in the
evolution of the wave field was demonstrated. The phe-
nomenon of peculiar interaction with a“broad” soliton
has been recently validated in the framework of the
fully nonlinear model of the two-layer water [22]. In
this case, the second soliton changes its polarity and
propagates on the back of the “broad” soliton. The
wave dynamics of the Gardner equation (1) with a pos-
itive nonlinearity (a, > 0) isqualitatively different from
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Fig. 1. Solitons of the Gardner equation with a positive
cubic nonlinearity. The dashed curve represents the “age-
braic” soliton.

that of the former case. The present paper givesan anal-
ysis of the soliton interaction for this equation.

2. SOLITON SOLUTIONS
TO THE GARDNER EQUATION

For simplicity, we use dimensionless variables;
then, Eq. (1) for the function v(y, T) is written in the
form

3
W\ ey(1+ v)%—;+a—v = 0. %)

0'[ ays

Itiswell known that Eg. (2) has soliton solutions

Very, T) = E
sol\ Y - y
1+s,/1+fcoshz, @)

Zy = Ty(y=Vit-yy), V;= Fi s, = %1

The parameter I ; determinesthe size of the soliton, and
thesign s; = 1 determinesiits polarity.

The shape of positive solitonsis the same as that of
the solitons of the KdV equation in the limit ' — 0
(small amplitudes), and they tend to the solitons of the
modified KdV equation as " (the amplitude) increases
(Fig. 1). The amplitude of negative solitons cannot be
|ess than the critical one, whichis

Ver = 2. (4)

A soliton with such an amplitude (for it, '; = 0 and
s, =-1) is called agebraic, since its value at infinity
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decreases as a power function rather than as an expo-
nential one (the dashed curvein Fig. 1):

2
1+y2'

()

Valg(va) = r”EnOVSOl(y'T) = -

This soliton does not move and is unstable [16]. In the
limit ', — oo, the shape of negative solitons tends to
that of the solitons of the modified KdV equation.

It must be noted that I has a clear physical meaning:
its square equals the propagation speed of the solitary
wave V. For the KdV and modified KdV equations, the
greater soliton propagates faster; however, for the
Gardner equation with a positive cubic nonlinearity,
thisistrue only for solitons of the same polarity.

Since the Gardner equation is integrable, it pos
sesses an infinite number of time-independent inte-
grals. The simplest of them are the mass and energy
integrals:

0 00

M = J’v(y,T)dy, E = Ivz(y, T)dy. (6)

They are often used for qualitative reasoning and to
control the accuracy of numerical experiments. For
solitons (3), these integrals have the form

My, = 2arctanl,,
M, — 2T, )

+

E;_rol = 2rsoI_M;0Il

Msol =

where the signs “+” and “—" correspond to the polarity
of the soliton.

The simplest multisoliton solution (the two-soliton
one) can be obtained by the inverse scattering trans-
form, by the Hirota method, and by the Darboux trans-
formation (these methods were adapted for the Gardner
equation with a negative cubic nonlinearity in [14, 23]
and [21], respectively). In the most compact form, the
two-soliton solution to Eq. (2) iswritten as

=l 2 2] 1
Vosol(Ys T) 2(F2 rl)[]'zcoth22+—l'1tanh21+

_ 1 0
rzcoth Zz_ - rltanhzl_lj

r.
Zi, = Ej(y—VjTiéj—yJ'): 8

tanh(l";9;) = —-il;,
Vi =T} j=12 T,>r>0
The expression for v, (Y, T) was obtained by the Dar-
boux transformation (see [21]) for EQ. (2); it describes
the real solution, although it is complex in its form.
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When written in the real form, it is much more compli-
cated:

Vasal (¥ T) = (Mo =T 1)(M2dy, —M1d,)
x [[5dy.dy + M2d, d,_
+2I [ 5(F,[,—D,D,sinhZ,sinhZ,)]7,
dj, = 1+DjcoshZ;, dj_ = 1-Djcoshz;, (9)

D, = §4J1+T7,
Z =Ti(y=-Vit-y)), V;= rjz,
s =21, j=12 T[,>r>0.

The subscript j indexesthe solitons, and thesign 5 = +1
in the expression for D; determines the polarity of the
corresponding soliton.

3. INTERACTION OF SOLITONS

Formulas (8) and (9) describe the interaction of two
solitons of any polarity. In the framework of Eq. (2),
two solitonswith an equal speed cannot exist as station-
ary: they would interact. Aswas already mentioned, the
amplitude of every type of solitons (the positive and the
negative ones) monotonically depends on the speed;
however, the negative of two solitons of different polarity
propagating with the same speed is greater in amplitude
(inthe absolute value). Hence, the positive of two solitons
of different polarity and the same amplitude isfaster.

The interaction of solitons of the same polarity is
gualitatively similar to that of the KdV solitons or of
the modified KdV solitons of the same polarity: if their
amplitudes are significantly different, then one soliton
overtakes the other, and a single-hump symmetric pro-
file appears; otherwise, an exchange of energy takes
place, but no single hump appears.

Itisconvenient to introduce a parameter equal to the
ratio of the amplitudes, r = Aj/A,, where the soliton
with the subscript 2 is the faster oneand ', > I, (for
solitons of the same polarity, A, > A, and, therefore, 0 <
r < 1). Then, the boundary value of this parameter,
which separates two possible interaction scenarios, can
be found from the two-soliton solution (9). It depends
on the amplitude of the interacting solitons; the plot is
shown in Fig. 2. The curve A, = —2/r, which limits the
domain of feasible values of the parametersin Fig. 2,
appears due to the existence of the minimal negative
soliton, the algebraic one. For demonstrative purposes,
Fig. 2 isnot to scale. In reality, the range of values of r
is very small for various amplitudes A,: for positive
solitons, it is 0.33 < r < 0.38, and for negative ones,
0.38 <r <0.40. In the limit, this parameter tends to the
values corresponding to the KdV equation (small
amplitudes) and to the modified KdV equation (infi-
nitely large amplitudes). For this reason, the inclusion
of two nonlinear terms in the equation is of no qualita-
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r= A]/AQ

Fig. 2. The domains of parameters of the Gardner equation
solitons interacting with overtaking (domain 1) or energy
exchange (domain 2).

tive importance for describing the interaction of soli-
tons of the same polarity.

While interacting, the solitons of the Gardner equa-
tion of different polarity pass through one another,
forming a single-hump symmetric shape at timet = 0.
This situation is similar to that for the modified KdV
equation. For interacting solitons of the Gardner equa-
tion, the relation

vo(y=0,1=0) = A,— A, (10)
holds. For solitons of different polarity, this means that
the height of the central point is equal to the difference
of the amplitudes of the solitons at the moment when
the symmetric wave profile is formed. Thus, the inter-
action of solitons of different polarity increases the
amplitude of the wave. The polarity of the combined
wave is determined by the faster soliton, which is dif-
ferent from the similar problem for the modified KdV
equation, in which the greater soliton isfaster. Neglect-
ing the quadratic nonlinearity in Eq. (2) when consider-
ing the interaction of solitons of different polarities,
that is, an attempt to describe the problem by the mod-
ified KdV equation, can give a qualitatively different
result (see Fig. 3). Figure 3a presents the result of the
interaction of two solitons of the Gardner equation (2)
when the smaller (positive) soliton is faster (the param-
eters of the solitonsarel"; =3.8, N, =4, A, =-4.9, and
A, = 3.1). Aswas explained above, the interaction pro-
duces a positive wave with the amplitude equal to the
sum of those (Fig. 3a) of theinteracting solitons. Figure 3b
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4r (b)

Fig. 3. Modeling the interaction of two solitons of different polarity for (a) the Gardner equation and (b) the modified KdV equation.
The parameters of the solitonsarel"; =3.8, M, =4, A1 =—4.9,and A, = 3.1.

demonstratesthe results of modeling the same problem by
the modified KdV equation (the amplitudes of the inter-
acting solitons are the same as in the example in Fig. 3a).
In this case, the amplitude of the combined wave is deter-
mined by the greater soliton, and the wave is negative.

The presence of two nonlinear terms in the Gardner
equation implies interesting phenomena in the case of
the interaction of slow solitons of different polarity.
Since the amplitude of the positive soliton tendsto zero
as its speed decreases, whereas the amplitude of the
negative soliton cannot be less than v, we see that the
small positive soliton can be indiscernible at the back-
ground of the negative one (Fig. 4a). However, if the
positive soliton is faster, the wave sharply changes its

"4
0 T T T
T=-2000
—1r -
(a)
) 1 1 1
-120 -80 -40 0
v T T T
2 -

-2
—-10 -5 0 5 10

Fig. 4. Interaction of a negative soliton with a positive
small-amplitude, but faster, one (“unpredictable” soliton):
(a) before interaction (the positive soliton is marked by an
asterisk); (b) sharp change in the wave polarity at the
moment of interaction.
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polarity at the moment of overtaking (Fig. 4b), and then
the polarity of the wave is recovered.

As aresult of the interaction, the solitons acquire a
coordinate (phase) shift

2 I+l

A = +—1|n ,

Yi.2 Mo =Ty

which is the same as in the case of the KdV and modi-
fied KdV equations.

(11)

4. A NONLINEAR WAVE PACKET (BREATHER)

In addition to solitons, the Gardner equation has one
more solitary solution that corresponds to the “breath-
ing” wave packet, the so-called breather. For example,
abreather can appear asaresult of asoliton passing the
domain where the quadratic linearity changes its sign
[10], as aresult of a perturbation of the algebraic soli-
ton [16], or from a certain initial perturbation (in [24],
the appearance of a breather for the modified Kdv
equation from an initial antisymmetric perturbation is
considered). A formula for the breather of Eqg. (2) was
obtained in [16] by solving the inverse scattering prob-
lem. The breathing solution can be also obtained from
the two-soliton solution (8). In this case, the wave
packet corresponds to two coupled solitons of different
polarity with the parameters

N, =a+ib, r, =a-ib, a>0, b>0. (12
In the most compact form, the breather can be written as
V(Y T) = =2Im(y?)
O

]
x Re[?

Y y*
B/tanh[é(z + 6)} _y* tanhb(z* —6*)}

where

1 (13)

I

T A = vy 2
6—2ylni_y, y = a+ib, z=y-y,-yT.

In the real-valued form, Eq. (13) can be written as
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coshn cosy + cosBcosh¢ + sinhnsiny + sinBsinh¢
asinBcoshd + bsinhncosy acosbsinhd —bcoshnsiny (14)

Vi (Y, T) =2ab

bcoshnsiny —acosBsinhg bsinhncosy +asinBcoshd’

asinBcosh¢ + bsinhn cosy _acosesinhcl) —bcoshnsiny

where

r] = a(y_vbrT_ybr)1
V,, = a°—3b°, w = 3a°-b’,
¢ = Re(yd), ¢ = Im(yd).

The breather as awhole propagates with the speed \j,;
the quantity w corresponds to the rate of the change of
the breather filling; and y,, and y,, are arbitrary real
constants. For b > a, the wave packet includes a large
number of wave bunches (Fig. 5a). At time intervals

B = b(y—wt -y

T

S | S 15
b(a’ + b°) 15

Tbr

the breather repeats its shape. The wave packet of the
Gardner equation tends to the cubic breather of the
modified KdV equation as (a? + b?) increases (large
amplitudes or dense filling). The presence of a qua-
dratic nonlinearity in the eguation only makes the
breather asymmetric with respect to the level v = 0

(Fig. 5).

The case a > b is of great interest. In this case, the
propagation of the breather is similar to the situation
when two solitons of different polarity (Figs. 4, 5b)
overtake each other in turn. Solution (14) implies that
two solitons of different polarity that are parts of a
breather move apart to the distance

L = g]nz_a

25 (16)

as aresult of such an oscillation.

If we consider two solitons with close parameters
Iy » = a(close speeds) that differ by asmall quantity b,
then formula (16) yields the phase shift acquired by the
solitons as aresult of theinteraction (cf. formula (11)).
Thus, for a > b, the breather consists of two coupled
solitons of different polarity with close speeds. In the
process of theinteraction, the solitons acquire the phase
shift characteristic of overtakes; then, the roles of the
solitons are interchanged. Up to the moment of being
overtaken, the overtaking soliton accelerates, while the
soliton being overtaken decelerates; then, the faster
soliton decelerates, and the slower one accelerates asis
the case in the ordinary interaction. In this interpreta-
tion, the case when one of the solitons of the wave
packet is close to the algebraic one and the other isvery
broad and small in amplitude (a and b are small) is of
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interest. The amplitude of the well-distinguished nega-
tive soliton undergoes sharp periodic variations due to
the poorly discernible positive soliton, much the same
asin the interaction of two solitons (Figs. 4, 5b).

For the breather, the mass and energy integrals (6)
have the form

[

My, = I Vie(y, T)dy

-4y -2,

[

Ebr

4a—M,,.

(17)

Ivﬁr(y, 1)dy

The breather’s energy increases with a and decreases
when b isincreased (i.e., when the filling of the wave
packet increases). Increase of the frequency of thewave
packet filling resultsin decreasing the mass (in absolute
value), which tends to zero for large b. The breather’'s
mass is aways negative and is maximal in absolute
value (2m) asa and b tend to zero.

v
2 T T T
(@) 21Ty,
T Z —
4 (\ T=0
0 V/\\/ V/\v A VI\V
_2 C 1 1 1 i
-20 -10 0 10
y
v
(b) T T
0 /\ N\~
1T=0 - h‘
4
2k i
0 20 40
y

Fig. 5. Breathers of the Gardner equation: (a) alarge num-
ber of wave bunchesin the packet (a= 1 and b = 3); (b) two
coupled solitons (a=1and b =0.3).
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5. CONCLUSIONS

A detailed analysis of the interaction of solitonsin
the framework of the Gardner equation, which is a nat-
ural generalization of the Korteweg—de Vries equation,
is given. The Gardner equation involves the quadratic
and positive cubic nonlinear terms. The analysis is
based on the analytical two-soliton solution to this
equation. It is shown that taking into account two non-
linear terms in this equation does not qualitatively
change the description of the interaction dynamics of
two solitons of the same polarity compared to the clas-
sical and modified Korteweg—de Vries equations; it is
sufficient to alow for the dominant nonlinear term in
the evolutionary equation. However, both nonlinear
terms are important for the describing the interaction of
two solitons of different polarity, especially slow ones.
The polarity of the resultant wave is determined by the
faster of the two solitons; thus, the greater soliton can
sharply change its polarity under the influence of a
small wave of different polarity (Fig. 4). The “breath-
ing” wave packet (breather) becomes asymmetric if the
guadratic nonlinearity is taken into account. The
breather can possess a complicated behavior similar to
that of two coupled solitons (Figs. 4, 5).
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Abstract—The results are given of an experimental investigation of fluctuation phenomena under conditions
of electric arc discharge. Fluctuations are observed whose spectral density is inversely proportional to fre-
guency (1/f noise). Power dependences are revealed of the fluctuation distribution functions. The behavior of
spectral density and of distribution functions is associated with the simultaneous occurrence of various non-
equilibrium phase transitions. Within the framework of the mean field theory, a mathematical model is sug-
gested of interacting nonequilibrium phase transitionsin adistributed system, which predictsthe self-organi zation
of the critical state and the generation of fluctuations with diverging spectral characteristics. An adequate agree-
ment is observed between the suggested model and experimenta data. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Fluctuation processes, whose power spectrum var-
iesinversely proportionally to frequency (flicker or L/f
noise), are observed in diverse systems (electrophysi-
cal, geophysical, astrophysical, biological, environ-
mental, etc.).

To date, various models are available in the litera-
ture, which explain the origin of flicker noise. The best
known models of flicker noise in solids include the
model of exponential distribution of relaxation times
(see, for example, [1, 2]), aswell as thermal modelsin
which the mechanisms of thermal conductivity are
taken to be responsiblefor flicker noise[3]. Theoretical
reasoning, which points to the possibility of switching
off the thermal-conductivity mechanism and to the
responsibility of nonlinear interaction of the diffusion
and thermal-conductivity modes in metals for 1/f¢
noise, isgivenin [4]. According to [5], the scale-invari-
ant power form of the spectrum in phonon systems is
associated with fluctuations of the rate of diffusion of
the phase and of relaxation of the phonon modes. Kli-
montovich [6] treats 1/f noise as anomalous Brownian
motion in bounded space. However, in spite of the
efforts of many years, no generally accepted pattern of
this phenomenon exists until now, and it is often that
the mechanisms leading to fluctuations with 1/f spec-
trum are not clear. Therefore, the problems associated
with the search for new systems with flicker noise and
with the construction of new models of this phenome-
non retain their urgency.

Interest in random processes with diverging spectral
characterigtics has sharply increased recently in view of
the discovery of the phenomenon of salf-organized criti-
cality [7]. With sdf-organized criticality, a system comes
to behave criticaly inthe course of itsevolution and needs
no fine adjustment of controlling parameters. The concept

of self-organized criticality isvery general and can be used
to describe the behavior of diverse dynamic systems. An
important and unresolved problem of the theory of sdlf-
organized criticality is that of how a system with flicker
noise comesto find itsdf in the critical State.

The low-frequency divergence of the spectral den-
sity of fluctuations points to the absence of a character-
istic time scale of the process with flicker spectrum.
Thisleads oneto assume that the systemisin the neigh-
borhood of critical phase transition. The experiments
performed in [8-10] reveaded fluctuations with L/f
spectrum upon changeover of the modes of boiling of
nitrogen on the surface of thin films of high-tempera-
ture superconductors under conditions of Joule self-
heating. In this case, the superposition and interaction
of two nonequilibrium phase transitions occur. In [11],
thermal fluctuations with 1/f and 1/f2 spectra were
observed experimentally under conditions of film
boiling of water on a vertically oriented wire heater,
and a similarity was observed between the investi-
gated process and the effect of self-organized critical-
ity. A mathematical model has been suggested [9, 10]
for interpreting the experimental results that describes
nonequilibrium phase transitions in a lumped nonpo-
tential system which is a system of two nonlinear sto-
chastic equations that transforms white noise into two
stochastic processes with the values of spectral den-
sity proportional to 1/f and 1/f2. It appears of interest
to find the possibility of fluctuations of order parame-
terswith 1/f spectrum in spatially distributed potential
systems.

The intersection and interaction of two nonequilib-
rium phasetransitionsisaphenomenon that is observed
fairly frequently. For this reason, 1/f noise may be
observed in awide range of processes with phase tran-
sitions. A typica example of nonequilibrium phase
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Fig. 1. An oscillogram of the voltage drop between the
anode and cathode under conditions of arc discharge in
water.
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Fig. 2. The spectral density of oscillation of the voltage drop
between the anode and cathode. The dashed line indicates
the §(f) O f~* correlation.

transitions is provided by processes associated with
electric discharge. Thus, different phase transitions
may occur simultaneously and interact in the discharge
plasma and in the electrode regions. For example, an
arc discharge is accompanied by intensive erosion and
evaporation of electrodes[12].

In this paper, the results are given of an experimen-
tal study into fluctuations of the current of a high-pres-
sure electric arc, and a mathematical model is sug-
gested of the emergence of fluctuations with flicker
spectrum under conditions of interaction of phase tran-
sitions in a distributed system.

2. EXPERIMENT

In this study, we investigated electric fluctuations
under conditions of burning arc discharge. The arc was
ignited with contacting carbon el ectrodes moved 0.3 to
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0.5 mm apart. The electrode diameter was 6 mm. The
experiments were performed either intheair or with the
electrodes immersed in water. In the former case, a
high-pressure hot-cathode arc was realized [12], and in
the latter case, a cold-cathode arc. A strong destruction
of the electrodes occurred in the process of arc burning,
first of all, of the anode. Therefore, in order to avoid the
short-circuiting of the interelectrode gap by coal dust,
the anode was located underneath the cathode. The
experiments were performed at direct current.

The fluctuations of transport current and voltage
drop between the anode and cathode were measured in
the experiments. The method of Fourier transform was
used to find the spectral density of fluctuations by the
measured oscillograms. In many of the experiments
performed inthe air, the frequency dependence of spec-
tral density had the 1/f form. The 1/f behavior of the
spectrum was al so often observed for fluctuations of the
arc current (inthis case, the voltage drop was tapped off
acalibrated resistor). A random phase shift was observed
between the electrodes and current, which was dueto the
reactive component of the arc conductivity.

When the electrodes were immersed in water, the
arc became less stable, as manifested in afaster extinc-
tion of the arc; however, in this case, the 1/f behavior of
spectra was observed for almost all oscillograms. In
order to extend the frequency range (defined for a sin-
gle oscillogram by the buffer memory of the oscillo-
scope, 2048 points), the measurements were performed
with different time discretization. Figure 1 gives one of
the oscillograms of the voltage drop between the anode
and cathode. Figure 2 gives the spectral density of
oscillation of the voltage drop between the anode and
cathode. The broken line in Fig. 2 corresponds to the
S(f) O f correlation. One can see in Fig. 2 that the
correlation of the 1/f form extends over more than four
decimal orders of magnitude.

A microscopic study of the electrodes after the
experiments revealed traces of appreciable erosion. In
experiments with a cold cathode (arc discharge in
water), characteristic traces of cathode spots were
clearly observed on the cathode [12]. Specia experi-
ments were performed in order to investigate the
dynamics of electrode destruction; in these experi-
ments, cylindrical carbon electrodes were arranged per-
pendicular to the arc column (in our case, horizontaly).
In the course of experiments, a moderate transport cur-
rent was passed through the electrodes in the direction
perpendicular to that of the arc current. Simultaneously
with measuring the voltage drop between the elec-
trodes, fluctuations of the voltage drop across the hori-
zontal electrodes were recorded. Figure 3 gives the
spectrum of fluctuations of the voltage drop on the
cathode and the corresponding oscillogram (in the
inset). One can seein Fig. 3 that the spectrum of fluctu-
ations on the cathode corresponds to the white noise
spectrum, and the realization consists of a sequence of
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random spikes. A similar pattern was observed for fluc-
tuations of the voltage drop on the horizontal anode.

3. MATHEMATICAL MODEL

We will treat, within the framework of the phenom-
enological mean field theory, two simultaneous and
interacting phase transitions. In this paper, we will not
define the physical meaning of the order parameters
concretely. We will assume that the space-time evolu-
tion of the processis described by two one-dimensional
stochastic equations of the diffusion type,

2
%itp = D%)-:-ng Qu(@ W) + T (1),
D

2
W= D2 Qe W)+ ),

where D, and D, are the diffusion coefficients, and
(%, t) and I",(X, t) are d-correlated random forces. The
set of equations (1) isfairly general and describes non-
equilibrium phase transitions in numerous physical and
chemical systems. We will treat the case in which the
characteristic space scales of variation of the order
parameters differ strongly, i.e., D,/D, > 1. In aparticu-
lar case, thismay imply astrong difference between the
coefficients of thermal diffusivity and diffusion. We
will approximate the source functions characterizing
the interaction of the order parameters (asin [9, 10]) by
the expressions

Qe W) = U+, Qe W) = —Y¢’ + 0.

In this case, the set of stochastic equations takes the
form

0Q _ 62<p 2
a3t Dlﬁ—q’w +P+T (1),

0
a—‘f = @’ + e+ 1).
The set of equations (2) describes random walks in the

potential

)

® = o+ [[300° 00+ 300 Jox. (@

The form of the potential surface is shown schemati-
caly in Fig. 4. The function ®(¢, Y) has a saddle point
at zero. In the absence of uniformity ([p = 0), lines of
stationary points are also available, which are defined
by the condition @y = 1. When a nonuniformity of the
parameter @ appears, the @@ = 1 hyperbolas incline
towards an increase in the parameter . Figure 5 gives
a phase pattern of the system, obtained by numerical
integration of the set of equations (2) without random
sources(I"; =I,=0). ThebrokenlinesinFig. 5indicate
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Fig. 3. The spectrum of erosion-related fluctuations of the
voltage drop on the cathode. An oscillogram is given in the
inset.

Fig. 4. The system potentia defined by expression (3).

Fig. 5. A phase pattern of adynamic system, averaged over
spatial variable.

separatrices. This set of equations has an asymptotic
solution at t — oo in the form of power dependences

-4

T
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Fig. 6. The space-averaged spectral density [§,[of fluctua-
tionsof the parameter @, and the respective averaged realiza-
tion of [PLIBroken lineindicatesthe (%11 1/f-% correlation.
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Fig. 7. A contour diagram of space-time redlization of @(x, t).

In the presence of a spatially distributed random
source, an anaytic investigation of the set of equations (2)
presents considerable difficulties because of the pres-
ence of nonlinear terms and the absence of stationary
points. The transition from stochastic equations to the
respective nonlinear Fokker—Planck eguation fails to
solve the problem of finding spectral characteristics.
Therefore, in this study we have restricted ourselves
to the numerical methods of solving the set of equa-
tions (2).

The explicit integration scheme was used to derive
numerical solutions. Sequences of Gaussian random
numbers were taken to serve as spatially distributed
white noise. The intensities of random sources and the
diffusion coefficient were used as the controlling

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 92

SKOKOV et al.

parameters. For a low intensity of noise, solutions of
the set of equations (2) had the form of dightly noisy
relaxation correlations @(t) and (t), i.e., the system
performed random walks along one of the valleys of the
potential ®(¢, P) depending ontheinitial conditions. In
so doing, the process was non-steady-state. As the
intensity of random sources increased, changes from
one valley to another started. The process became
steady-state (at least by the first two moments of the
distribution function of the parameter ¢ and during the
final steps of integration). The transition to the steady-
state process is due to the fact that the external random
forces prevent the system from moving too far along
the narrowing valleys of the potential ®(¢, g). Thedis-
tribution functions of variables ¢(t) and Y(t) had asym-
metric cupola shape and were well approximated by
Gaussian distribution.

The method of Fourier transform was used to find
the spectral density of fluctuations by the calculated
realizations of variables. It was found that, in fairly
wide variations of the diffusion coefficient D; and of
the intensity of random sources, the spectral density S,
of fluctuations of the parameter @ varied in inverse pro-
portion to frequency. At the same time, the frequency
dependence of §, was inversely proportional to the
square of the frequency. Figure 6 gives the frequency
dependence of spectral density S,(f) obtained by space
averaging of spectra. The same drawing gives the
respective space-averaged realization. The numerical
datain Fig. 6 were abtained for 65 540 time integration
steps and 32 space integration steps, with dt = 0.05,
dx = 0.8, theintensity o = 3, and zeroinitial and bound-
ary conditions. Thevariation of theinitial and boundary
conditions had almost no effect on the results of numer-
ical integration of the set of equations (2). One can see
in Fig. 6 that the L/f behavior is observed in the fre-
guency range of over four decima orders. One can
extend this range and observe diverging low-frequency
asymptotics if, as the number of integration steps is
increased by a factor of n, the time integration step is

reduced by a factor of Jn (with a simultaneous
increase in the intensity of random sources). The spec-
trum of the parameter Y is the same as in the case of
Wiener's process of random walks. However, as dis-
tinct from the classical Brownian motion, no deviation
of the mean value of the variable, calculated along the
realization of a random process, from the value aver-
aged over the entire realization is observed in our case
intherealizations of Y(t). Thisindicatesthe stationarity
of the process.

The fluctuation spectra of the variable ¢ at every
space point also had the characteristic 1/f form. In spite
of the fact that the external random forces were &-corre-
lated, significant space-time correlations are observed
in the solutions of the system of @(x, t) and Ww(x, t). Fig-
ure 7 gives a contour diagram of the space-time distri-
bution of the parameter ¢(x, t). Light-colored in Fig. 7
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Fig. 8. The distribution functions of time intervals of passing the preassigned level: (a) experiment, (b) model.

are the regions of strong space-time correlation. Such
regions may be interpreted as avalanches of sorts.

Note that the 1/f behavior of spectral characteristics
was aso retained in the case when random forces in
Eqg. (1) did not depend on the space coordinate, i.e., the
external noise acting at every point in space was one
and the same.

The above-described results correspond to the case
when one of the diffusion coefficients (in this case, D,)
is zero. The results of numerical analysis have demon-
strated that, as D, increases from zero to D, the S(f)
and Sy(f) curves exhibit horizontal “shelves’ in the
low-frequency region characteristic of Lorentz spectra.
In the case of equality of the diffusion coefficients, the
parameters @ and P coincide, and the set of equations
(2) isequivalent to the Ginzburg-Landau equation for a
first-order phase transition with one order parameter.

For better understanding of the physical meaning of
the set of equations (2), we will perform alinear trans-
formation of variables in the expression for potentid (3).
We will introduce new variables

=42 oty
N2 2

This transformation corresponds to a turn of the phase
plane through angle 174 and causes no variation of the
type of potentia surface. In the new variables, the
expression for potential will take the form

1 1
®(6,n) = I[§G4+ §ﬂ4

1 2,1 2 1,22
+5(06)° + 3(0n)* =78 —Demn]dx.

n:

1o 12
+§6 _én

One can see from the structure of expression (4) that the
potential (6, n) corresponds to an intersection of two
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phase transitions with the order parameters 6 and n
[13]. Different signs before the squares of the order
parameters imply an intersection of subcritical and
supercritical phase transitions. The last two terms in
Eq. (4) characterize the interaction of the order param-
eters. The negativity of the coefficients before the term
6°n? describing the interaction corresponds to the
absence of nonzero steady-state solutions in a purely
dynamic (noiseless) system.

4. DISCUSSION OF THE RESULTS

A distinguishing feature of self-organized criticality
isthe presence of power laws of distribution of physical
quantities (which was largely the reason for the emer-
gence of the very term “criticality”). In the papers deal -
ing with self-organized criticality in distributed models
of the “sand pile” type, power distributions of ava-
lancheswith respect to size are analyzed, aswell asdis-
tributions of avalanche duration [14-16]. In the case
when we have atime series of dataobtained experimen-
tally or asaresult of numerical integration of equations,
the concept of “avalanche” must be defined in order to
obtain such distribution functions.

Assume that we have adiscrete time series x;(t;). We
will select an arbitrary level, for example, x = 0, and
designate the moments at which this level is passed as
t.. We will refer to the time interval between two suc-
cessive passages of thislevel asthe avalanche duration,

Ty = et

The avalanche size will be defined (by analogy with
[16]) as

tk+1

s= 3y X )

t=t
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Fig. 9. The size distribution functions of avalanches: (a) experiment, (b) model.

Figure 8a gives the distribution functions of time inter-
vals of passing zero level for experimental realization,
and Fig. 8b givesthe distribution functionsfor anumer-
ical solution of the set of equations (2) (the variable
[(p(t) Caveraged over space coordinate). Straight linesin
Fig. 8 indicate the f; 0 T4 correlation. Therefore, the
distribution of timeintervals (avalanche durations) both
for experimental redlizations and for the mode is
described by the power law,

f,07T7, 1=14 (6)

Figure 9 gives the size distribution functions of ava-
lanches for experimental realization (a) and for the
modd (b), determined in accordance with expression (5).
Straight linesin Fig. 9 indicate thef, I s12 correlation.
In other words, the size distribution of avalanches
obeys the power law,

fOs?’, y=12. @)
These results are independent of the choice of the level
from which the time intervals and sizes of avalanches
are reckoned.

Therefore, the distributions of avalanche size and
duration, determined experimentally and from model
realizations, are described by the same power laws. The
suggested model of emergence of fluctuations with
flicker spectrum upon interaction of phasetransitionsin
aspatially distributed potential system describes quali-
tatively correctly the experimentally observed results.
Note that the spatial distribution of a system is not of
fundamental importance from the standpoint of self-
organization of the critical state of a system and gener-
ation of flicker noise. Such behavior may aso be
observed in point systems in the presence of externa
flows [9, 10]. As distinct from [9, 10], the model sug-
gested by usisapotential one and predicts the possibil-
ity of both time and space correlations.
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The model of interacting phase transitions within
the mean field theory isfairly genera and offersafresh
view of the cause of flicker noise and of self-organized
criticality.

The divergence of the spectral characteristics of
fluctuations and the power behavior of relaxation
dependences are indicative of the critical behavior of a
system. Such behavior is observed in a wide range of
controlling parameters and does not require their fine
adjustment. In this sense, one can refer to self-organi-
zation of the critical state.
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