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Abstract—The propagation of extremely short (without high-frequency filling) pulses and nonresonant
envelope solitons in a two-component medium comprising two-level atoms with substantially different quan-
tum transition frequencies was studied. The dynamics of a pulse whose reciprocal time scale lay between
these frequencies was shown to be described by the Kosevich–Kovalev equation, the one-way variant of
which was the Konno–Kameyama–Sanuki equation. If the transition dipole moments of medium components
were equal, the one-way equation became integrable. Soliton and soliton-like solutions to these equations
were used to analyze pulse propagation regimes at various two-component medium initial states. The stabil-
ity of these localized wave formations was analyzed. The possible existence of stable soliton-like pulses
propagating in a nonequilibrium medium at group velocities exceeding the velocity of light in vacuum was
discussed. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION 

The progress in laser physics made during the past
decade has, amongst other things, led to an improve-
ment in the methods for creating nonequilibrium states
of various media. This aroused interest of researchers in
the formation and recording of electromagnetic pulses
propagating in such media at velocities exceeding the
speed of light, c, in vacuum [1]. It is common knowl-
edge that superluminal regimes do inevitably exist in
media that is unstable with respect to the transition to
the equilibrium state [2].

At the same time, the generation of laser pulses of a
width (τp) to one electromagnetic oscillation period
[extremely short pulses (ESPs)] in laboratory condi-
tions [3, 4] gave strong impetus to theoretical studies on
interactions between such pulses and matter. The range
of τp values for ESPs is at present several hundred to
several femtoseconds. For obvious reasons, the approx-
imation of slowly varying amplitudes and phases,
which works well with pico- and nanosecond pulses
having well defined carrier frequencies ω [5, 6], ceases
to be valid when interaction between ESPs and matter
are studied. Below, such pulses will be called quasi-
monochromatic. A quantitative criterion of quasi-
monochromatic pulses can be written as ∆ω/ω ! 1,
where ∆ω is the pulse spectral width, which is nonzero
because of its finite duration.

Since the discovery of the self-induced transparency
effect and its theoretical description [7] based on the
approximation of slowly varying amplitudes and
phases, alternative mathematical methods for studying
this phenomenon have been continuously sought [8–
13]. For instance, in [8, 9], a small parameter was found
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(e = 8πd2N/"ω0, where N is the concentration of two-
level atoms interacting with the pulse field, ω0 is the
frequency, and d are the matrix elements of the quan-
tum transition dipole moment) that allowed the order of
the derivatives in the Maxwell equations to be
decreased (the reduced Maxwell–Bloch system). The
mathematical structure of the reduced equations is
identical (except for notation) with the structure of the
Maxwell–Bloch equations obtained using the approxi-
mation of slowly varying amplitudes and phases [8].
Both Maxwell–Bloch and reduced Maxwell–Bloch
equations are integrated by the inverse scattering prob-
lem method. Abandoning the approximation of slowly
varying amplitudes and phases [8, 9] was an important
step in developing the theory of interactions between
laser pulses and matter from the point of view of the
modern trends in coherent optics.

The authors of [14, 15] did not use the approxima-
tion of a low-density medium (e ! 1) but, in turn, sug-
gested the approximations of pulses very short,

(1)

and very wide,

(2)

compared with interatomic times  and  (τ∗  is
the characteristic time scale of the propagating signal).
In the limit given by Eq. (1), the dynamics of ESPs sat-
isfies the sine-Gordon equation for the “area” of the
electromagnetic pulse [14, 15], and in the limit given by
Eq. (2), it obeys the modified Korteveg–de Vries equa-
tion for the ESP electric field [14–17].
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Clearly, condition (1) can only be met for frequen-
cies ω1 in the infrared region, which corresponds with
the vibrational spectra of molecules [14]; that is, with
the motion of molecular ions. In gaseous media, this
can be tunnel-inversion transitions of some molecules,
for instance, ammonia. If it is, however, assumed that
condition (1) can be satisfied for frequencies ω1 in the
visible region, ionization processes (transitions to the
continuous spectrum) should be taken into account,
which can considerably complicate the problem.

Within the framework of our approach, condition (2)
can easily be satisfied by visible region ω2 frequencies
corresponding to electronic transitions. Recent years
witnessed an increased interest in resonance interaction
between laser pulses and two-component media. For
instance, various propagation regimes of resonance
quasi-monochromatic pulses in a system of two-level
atoms of two kinds were considered in [18–20]. The
transition frequencies for atoms of two kinds coin-
cided, but the transition dipole moments were different.
At the same time, when a nonmonochromatic pulse
propagates in a medium, the process involves interac-
tions with a large number of quantum transitions of dif-
ferent natures, both covered by the ESP spectrum and
lying outside it. The simplest theoretical model is then
a two-component medium comprising transitions satis-
fying conditions (1) (1-component or 1-atoms) and (2)
(2-component or 2-atoms).

This work is concerned with a theoretical study of
the propagation of ESPs and nonresonant quasi-mono-
chromatic signals in a nonlinear medium comprising
1- and 2-components, which will be treated as sets of
two-level atoms with frequencies ω1 and ω2 and transi-
tion dipole moments d1 and d2, respectively. Note that
this model can more or less satisfactorily describe ESP
interactions with gaseous media or some liquids like an
absorbing dye [21]. The matter is that, in the transpar-
ency region, it unambiguously follows from the two-
level medium model that the nonlinear refractive index,
n2, is negative [22, 23], whereas n2 > 0 in dielectric sol-
ids [24]. It was shown in [25] that n2 > 0 can only be
obtained in the approximation of an at least three-level
medium, the consideration of which is outside the
scope of this work.

The paper is organized as follows. Equations (1) and
(2) are used in Section 2 to derive nonlinear wave equa-
tions for the area of an electromagnetic pulse propagat-
ing in a two-component medium comprising two-level
atoms. Section 3 contains a comprehensive analysis of
some soliton-like solutions to these equations (from
ESPs to envelope pulses, or quasi-monochromatic soli-
tons). Generally, solitons considered in this work are not
solutions to completely integrable equations. Where nec-
essary, the distinction between true solitons and solutions
to nonintegrable equations in the form of solitary trav-
eling waves will be stressed. The “averaged Lagrangian”
method used in Section 3 allowed us to study the problem
of the stability of the solutions under consideration. In
JOURNAL OF EXPERIMENTAL
Section 4, we analyze stable ESP and envelope pulse
propagation regimes in a two-component medium pre-
pared in various initial states. Attention is paid to soli-
tons propagating in nonequilibrium media at group
velocities exceeding the velocity of light in the vacuum.
In the Conclusion (Section 5), we formulate the most
important results of this work and consider some
unsolved problems, which would, in this author’s opin-
ion, be interesting to solve in the future.

2. THE KOSEVICH–KOVALEV 
AND KONNO–KEMEYAMA–SANUKI 

EQUATIONS

Consider a gas comprising two-level 1- and 2-com-
ponents with quantum transitions satisfying conditions (1)
and (2), respectively.

The system of material Bloch equations for such a
medium has the form

(3)

(4)

(5)

where index j (j = 1, 2) is the number of the medium
component, Ωj = 2djE/", Wj is the inversion of transi-
tion populations of the jth component (–1/2 ≤ Wj ≤ 1/2),
and dynamic variable Uj determines the polarization P
of the medium,

(6)

where Nj is the concentration of atoms of the jth com-
ponent.

Excluding Vj, which has no real physical meaning,
from Eqs. (3)–(5) yields

(7)

Note that Uj and Vj are not the envelopes of the syn-
phase and quadrature dipole moment components, but
are the initial atomic variables related to the density
matrix  elements as follows:

∂U j

∂t
--------- ωjV j,–=

∂V j

∂t
--------- ωjU j Ω jW j,+=

∂W j

∂t
---------- Ω jV j,–=

P 2 d jN jU j,
j 1=

2

∑=

∂2U j

∂t2
----------- –ωj

2U j ωjΩ jW j,–=

∂W j

∂t
----------

Ω j

ωj

------
∂U j

∂t
---------.=

ρ̂

U
ρ21 ρ12+

2
--------------------, V

ρ21 ρ12–
2i
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Let us complement system (6), (7) by the Maxwell
equation

(8)

By virtue of Eq. (1), the U1 term in the right-hand
side of the first equation in (7) can be neglected for the
1-component. The solution to Eq. (7) for j = 1 is then
given by [14, 15]

(9)

where

and W1∞ is the inversion of 1-component atoms before
the action of an ESP.

Let us rewrite the first equation in (7) for the 2-com-
ponent in the form

(10)

In a zero-order approximation with respect to the
small (ω2τp)–2 parameter [see Eq. (2)], we obtain U2 ≈
–Ω2W2/ω2. Substituting this result into the second term
in the right-hand side of Eq. (10) and assuming W2 ≈
W2∞ in this equation (by virtue of a weak transition
excitation, W2∞ is the initial inversion of 2-component
atoms) yields

(11)

The substitution of U2 ≈ –Ω2W2∞/ω2 in the second
equation in Eq. (7) followed by the integration of this
equation gives

(12)

It follows from Eqs. (11) and (12) that

(13)

Equations (8), (6), (9), and (13) give

(14)

∆E
1

c2
----∂2E

∂t2
---------–

4π
c2
------∂2P

∂t2
---------.=

ω1
2

W1 W1∞ θ,
∂U1

∂t
---------cos ω1W1∞ θ,sin–= =

θ Ω1 t 'd

∞–

t

∫=

U2

Ω2

ω2
------W2

1

ω2
3

------
∂2U2

∂t2
------------.––=

U2 –
Ω2

ω2
------W2

W2∞

ω2
3

----------
∂2Ω2

∂t2
------------.+=

W2 W2∞ 1
Ω2

2

2ω2
2

---------–
 
 
 

.=

U2 –W2∞
Ω2

ω2
------ W2∞

Ω2
3

2ω2
3

---------
W2∞

ω2
3

----------
∂2Ω2

∂t2
------------.+ +=

∆θ
n0

2

c2
-----∂2θ

∂t2
--------–

=  α θsin β ∂θ
∂t
------ 

 
2∂2θ
∂t2
--------– ν∂4θ

∂t4
--------,–
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where n0 is the low-frequency refractive index corre-
sponding to 2-component quantum transitions,

(15)

In the spatially one-dimensional case (∆ = ∂2/∂z2) and
at d1 = d2 (β = 3ν/2), Eq. (14) coincides with the
Kosevich–Kovalev equation, which generalizes the
Frenkel’–Kontorova model for dynamic dislocations in
crystals to problems with lattice anharmonicity and
spatial dispersion of the acoustic regime [26]. Precisely
at β = 3ν/2, Eq. (14) has an exact solution in the form
of a solitary soliton-like pulse [26]. Equation (14) is not
an integrable model, and its solution in the form of a
solitary traveling wave therefore does not possess the
soliton property of elastic interaction with its like. As in
[27], solitary stationary waves will sometimes be called
solitrons to distinguish them from true solitons. As far
as true soliton solutions are concerned, of interest is the
“one-way” variant of Eq. (14). To obtain the one-way
equation from (14), we apply the approximation of one-
way propagation [15] along axis z at a velocity close to
c/n0. This is justified if, by virtue of Eqs. (1) and (2),
each term in the right-hand side of Eq. (14) is related to
both left-hand side terms as (ω1τp)2 ~ (ω2τp)–2 ! 1 to one.

As is seen from the equation for , N2 is formally
bounded from above in the nonequilibrium case W2∞ > 0.
For W2∞ = 1/2, this restriction has the form (see Eq. (12))

(16)

where ej = 8π Nj/"ωj (j = 1, 2). This is a weaker
restriction than that imposed by the reduced Maxwell–
Bloch system (e ! 1) [8, 9]. At e2 > 1, n0 becomes
imaginary, which corresponds to the effect of total
reflection of nonresonant ESPs from a nonequilibrium
medium. In contrast, no restriction is imposed on n2 in
an equilibrium medium (W∞ < 0). A comparison of the
first term in the right-hand side of Eq. (14) with an arbi-
trary left-hand side term of Eq. (14) yields one more
condition for the applicability of the one-way propaga-
tion approximation, namely,

(17)

By virtue of Eq. (1), Eq. (17) is also [like Eq. (16)] a
much weaker restriction than that imposed by the
reduced Maxwell–Bloch system (e1 ! 1).

n0
2 1

16πd2
2N2W2∞

"ω2
--------------------------------,–=

α
16πd1

2N1ω1W1∞

"c2
---------------------------------------,–=

ν
16πd2

2N2W2∞

"c2ω2
3

--------------------------------, β–
3d2

2ν
2d1

2
------------.= =

n0
2

e2 1,<

dj
2

e1 ω1τ p/n0( )2
 ! 1.
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Performing the standard procedure of the transition
to the comoving reference frame [28, 29] and taking
into account Eqs. (2) and (17), we obtain

(18)

where ∆⊥  is the transverse Laplacian, τ = t – n0z/c is the
local time,

Leaving aside the transverse dynamics (∆⊥ θ = 0),
Eq. (18) includes the sine-Gordon equation for θ (b = g =
0 in the absence of the 2-component) and the modified
Korteveg–de Vries equation for E = ("/2d)∂θ/∂τ (a = 0
in the absence of the 1-component) as particular cases.
Both equations belong to the class of models integrable
by the inverse scattering problem method [30]. Assum-
ing b = 3g/2 in Eq. (18) at ∆⊥ θ = 0, which is equivalent
to d1 = d2 [see Eq. (15)], leads to the Konno–Kam-
eyama–Sanuki equation [29]. Precisely at this ratio
between the b and g coefficients, Eq. (18) is integrable
by the inverse scattering problem method [31]. This
implies that its solutions in the ESP form are, unlike the
corresponding solutions to Eq. (14), true solitons,
which elastically interact with each other. In [26, 31],
the relation b = 3g/2 was introduced artificially. Here,
this relation follows from the assumption that the
dipole moments of the two system components are
equal. Note that the values in point are precisely dipole
moments rather than “oscillator strengths,” as for the
system of three-level molecules with a V scheme of
quantum transitions [32]. In our case, the ratio between

the fj = ωj (j = 1, 2) oscillator strengths of the transi-
tions under consideration is, at d1 = d2, such that

Nevertheless, although f1 ! f2, strong excitation of the
1-component compared with 2-component excitation
can result from the presence in the ESP spectrum of the
Fourier components in resonance with the correspond-
ing transitions [see Eq. (1)].

The d1 = d2 condition is a fairly strong restriction of
the model under consideration and can be regarded an
exceptional case, when Eq. (14) has an exact solution in
the form of a solitary pulse and, in addition, Eq. (18) at
∆⊥ θ = 0 is integrable and therefore has multisoliton
solutions. Hereafter, it is, as a rule, implied that d1 ≠ d2;
the transition dipole moments will be assumed to equal
each other only in analyzing exact solutions to Eq. (14)
and Eq. (18), which will largely be considered for illus-

∂2θ
∂z∂τ
----------- a θsin b

∂θ
∂τ
------ 

 
2∂2θ
∂τ2
--------–+

– g
∂4θ
∂τ4
-------- c

2n0
--------∆⊥ θ,=

a
cα
2n0
--------, b

cβ
2n0
--------, g

cν
2n0
--------.= = =

d j
2

f 2

f 1
-----

d2
2ω2

d1
2ω1

-----------
ω2

ω1
------  @ 1.= =
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trative purposes. For ESPs, the difference of d1 and d2
will be taken to be small (more details are given below).

3. EXTREMELY SHORT SOLITON-LIKE PULSES, 
BREATHERS, AND ENVELOPE SOLITONS

In this section, we consider various approximate and
exact solutions to Eqs. (14) and (18). Approximate
solutions in the ESP form will be found using an aver-
aged variational principle of the Ritz–Whitham type
[33, 34]. This approach enables us not only to obtain
solutions of the specified type but also to study the
problem of their stability.

Equations (14) and (18) can be written as Euler–
Lagrange equations using the Lagrangian densities

(19)

and

(20)

After the passage of an ESP, the medium should
return to the initial state corresponding to t  –∞.
The complete pulse area is then

[see Eq. (9)]. Accordingly, the trial solution can be

(21)

where Φ(r) and ρ(r) are, in terms of [33], the “fast” and
“slow” functions of coordinates. The profile of the elec-
tric field of the ESP is given by

(22)

Equations (14) and (18) have exact solutions in the
form of traveling ESPs at d1 = d2 (β = 3ν/2) and ∆⊥ θ = 0.
Using Eq. (21) as the corresponding trial solution, it is
therefore reasonable to assume that d1 and d2 insignifi-
cantly differ from each other (a more rigorous criterion
will be found below). Otherwise, there is no guarantee
that a solution of precisely this form can be found.

+1 –
1
2
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4N20
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 
2

.–

θ∞ Ω1 t'd
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∫≡ 2π=

θ 4 ρ r( ) t
Φ r( )

c
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 exp
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E
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Substituting Eq. (21) into Eqs. (19) and (20), ignor-
ing the derivatives of ρ(r) [33], integrating the resulting
equations with respect to t (or τ), and taking into account
Eq. (15), we obtain the “averaged Lagrangians”

(23)

(24)

where ∆⊥  is the transverse gradient and δ = 2( /  – 1).

The δ parameter characterizes the relative detuning
of the d1 and d2 quantum transition dipole moments
from each other. Confidence in the correctness of the
selected trial function of form Eq. (21) depends on the
fulfillment of the condition |δ| < 1 [see Eqs. (23) and
(24)]. It follows from this condition and the equation
for δ that the relative difference of d1 and d2 should not
exceed 20%. Below, we assume that δ ! 1 for ESPs.
Condition (1) can be satisfied by quantum transitions in
a system of vibrational sublevels [14] or in a system of
tunnel-inversion transitions, and condition (2) is met by
electron-optical transitions. Then

where e is the charge of the electron, ri ~  is
the amplitude of mixing of molecular ions, mi is the
characteristic mass of ions, aB = "2/mee2 is the Bohr
radius, and me is the mass of the electron. This gives

Putting mi ~ 104me and ω1 ~ 1013 s–1 yields d2/d1 ~ 1. It
follows that closeness of the d1 and d2 values can corre-
spond to real conditions.

Writing the Euler–Largange equations with L1 for Φ
and ρ, we obtain

(25)

(26)

System (25), (26) can be treated as geometrical optics
equations for solitrons [33]. The Φ value then has the
meaning of the solitron eikonal, and Eq. (25) is the solitron
eikonal equation, which determines the vn velocity of
solitron wave front propagation at each point in the

L1
1
4
--- +1 td

∞–

∞

∫≡ ρ
c2
---- n0

2 ∇ Φ( )2–[ ]=

–
α
ρ
--- 1

3
--- 1 δ+( )νρ3,–

L2
1
2
--- +2 τd

∞–

∞

∫≡ ρ∂Φ
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ρ
---––=

–
1
3
--- 1 δ+( )gρ3 c

2n0
--------ρ ∇ ⊥ Φ( )2,–

d2
2 d1

2

d1 eri, d2 eaB,∼ ∼

"/miω1
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3/2 miω1

mee
2
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2 c2 α

ρ2
----- 1 δ+( )νρ2– ,+=

∇ ρ∇ Φ( ) 0.=
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direction normal to the front. Indeed, differentiating the
solitron front equation

and ignoring slow variable ρ variations, we obtain

where dln is the displacement of the ESP front in the
direction normal to it. Therefore,

(27)

Additionally using Eq. (25) yields

(28)

Equation (26) can be rewritten in the form

As ∂Φ/∂ln = |∇Φ |, taking Eq. (27) into account leads us
to conclude that, along local normals to wave fronts,

(29)

Based on these results, wave front profiles at each
subsequent time moment can be obtained by applying
Huygens-type constructions corresponding to the
numerical solution to system (25), (26).

Prior to discussing these constructions, let us find a
one-way soliton-like solution for pulse propagation
along z. The ρ and Φ values then only depend on z. The
wave fronts of such a pulse are planes normal to the z
axis. Equations (27)–(29) yield

and

(30)

According to Eq. (22), the ESP profile is given by

(31)

Because Eq. (14) is not an integrable equation, ESPs of
form Eqs. (30) and (31) do not possess the property of
elastic interaction with their like.

Clearly, the τp and v values mean the ESP width and
the velocity of ESP propagation along the z axis, respec-
tively. We select the pulse width as a free parameter.

ρ t
Φ
c
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Fig. 1. Soliton wave fronts at equal time intervals obtained with the use of Huygens-type constructions corresponding to the numer-
ical solution to Eqs. (25) and (26): (a) defocusing medium and (b) focusing medium. For simplicity, secondary spherical waves are

shown by arrows normal to the soliton wave front:  =  =  = ….A j
±

B j
±

B j
±
C j

±
C j

±
D j

±

Note that, at d1 = d2 (δ = 0), Eqs. (30) and (31) cor-
respond to the exact solution of Eq. (14) at ∆⊥ θ = 0
found in [26].

Equations (21), (31), (9), and (12) give the laws that
determine how population inversions of both compo-
nents vary when a pulse of form Eq. (31) passes
through the medium:

(32)

It follows from Eq. (32) that the pseudospin corre-
sponding to the 1-component makes a complete revolu-
tion over the Bloch sphere during the passage of a
pulse (31), whereas the state of the 2-component
changes insignificantly. Indeed, the ESP Eq. (31) spec-
trum contains Fourier components resonant to the 1-com-
ponent [see Eq. (1)] and does not contain components
resonant to the 2-component [see Eq. (2)].

In reality, a pulse should have finite dimensions in
the plane normal to the z axis, and its amplitude is
larger in the center of its cross section than at the
periphery. In view of this observation, let us return to
the non-one-dimensional variant of system (25), (26)
[see also Eqs. (28) and (29)]. It follows from Eq. (22)
that ρ is proportional to the pulse amplitude. Equation (28)
then determines the amplitude dependence of velocity
vn normal to the soliton wave front at each front point.
The wave front transformations shown in Fig. 1 corre-
spond to vn monotonically increasing (dvn/dρ > 0) and
decreasing (dvn/dρ > 0) as the local ESP amplitude
increases. In the first case, the center of the signal cross
section moves faster than peripheral regions. The soli-

W1 W1∞ 1 2
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  ,=
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2
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ton wave front profile becomes convex forward, which,
at long times, favors the formation of an “electromag-
netic projectile” (“bullet”) [35, 36]. Importantly, the
pulse then remains stable; that is, it can propagate in the
medium for large distances. In the second case, the
cross section center lags behind ESP peripheral
regions, which eventually results in their self-focusing
(Fig. 1b). This effect causes instability of pulses Eq. (31)
with respect to transverse perturbations. Note, however,
that electromagnetic projectile formation and self-
focusing occur when wave fronts are strongly curved.
The condition of slow ρ(r) function variations is then
violated. Strictly speaking, the approach suggested in
this work is inapplicable at final wave front evolution
stages. Particular situations with stable pulse propaga-
tion (defocusing) and pulse self-focusing will be analyzed
in the next section. Here, it is useful to consider one more
approach to analyzing stable solutions of type (30), (31).
Note that system (25), (26) can be written in the form of
the Bernoulli integral and the continuity equation for a sta-
tionary potential flow of an ideal liquid,

(33)

where “velocity” V of liquid flow is defined as V =
(c/n0)∇Φ , and “pressure” p is related to “density” ρ as

(34)

Clearly, the stability condition for an ESP described
by Eqs. (30) and (31) takes the form of the criterion for
a stable ideal liquid flow Eq. (33); that is, dp/dρ > 0.

Performing the ρ =  substitution in Eq. (34) then gives

(35)

V2

2
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ρ
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2
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Clearly, stability condition (35) is in agreement with
the dvn/dρ > 0 criterion found above with the use of
Huygens-type constructions.

The stability of soliton solutions to Eq. (18), which
is a one-way variant of Eq. (14), is analyzed quite sim-
ilarly. The use of the “averaged Lagrangian” L2 [see
Eq. (24)] and trial solution (21) for this purpose yields
the system of variational parameter equations

(36)

where V⊥  = (c/n0)∇ ⊥ Φ, and the p(ρ) dependence is
determined by Eq. (34) taking into account the relations
between the a, b, and g coefficients of Eq. (18) and the
corresponding α, β, and ν coefficients of Eq. (14).

System (36) includes the Euler equations of motion
and the nonstationary continuity equation for a two-
dimensional ideal liquid flow. In these equations, the
role of time is played by the longitudinal coordinate z.

Curiously, ESPs of the complete (two-sided) Eq. (14)
generate a system of variational parameter equations in
the form of equations for a stationary potential ideal
liquid flow in the three-dimensional space, and solu-
tions to the reduced (one-way) Eq. (18) generate a sys-
tem of equations of motion for a two-dimensional ideal
liquid flow in two directions normal to the z axis, that
is, to the pulse propagation axis.

An important circumstance is that the p(ρ) “equa-
tions of state” coincide for ESPs of both equations. This
allows us to formulate a unified stability criterion in the
form of Eq. (35) for ESPs of type Eq. (22) obtained as
solutions to Eqs. (14) and (18) [for solutions to Eq. (18),
we must perform the substitutions α  a, β  b,
and ν  g in Eq. (35); as (a, b, g) = (c/2n0)(α, β, ν),
these substitutions are inessential].

Note that the one-dimensional (∆⊥ θ = 0) soliton-like
solution to Eq. (18) has form Eq. (31), and the equation
for the velocity v of the corresponding pulse is found
by expanding Eq. (30) in powers of the small parameter

with retention of the first two terms,

(37)

This expansion corresponds to the closeness of pulse
velocity v to c/n0. The populations of both components
then change according to Eq. (32).

At d1 = d2 (δ = 0), Eq. (18) becomes an integrable
equation, and a solution of form (31), (37) is then an
exact one-soliton solution to Eq. (18). Pulse (31) becomes
a soliton in the strict sense; that is, it elastically inter-
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acts with its like. True, Eq. (18) only describes the
interaction of solitons moving in one direction.

A two-soliton solution to Eq. (18) at d1 = d2 (b = 3g/2)
has the form [29]

(38)

where

τj and vj are the width and velocity of the jth soliton,
respectively, at a large soliton spacing.

Equation (38) can be used to obtain a breather solu-
tion to Eq. (18) by taking its free parameters τ1 and τ2
to be complex conjugate to each other [11]. With τ1, 2 =
τp/(1 ± iωτp), we obtain

(39)

The group v and phase vph breather velocities are
expressed through the breather width τp and frequency
ω as follows:

(40)

(41)

At ωτp < 1, the solution to Eqs. (39)–(41) corre-
sponds to ESPs each including about one electromag-
netic oscillation period, whereas if ωτp @ 1, Eq. (39)
gives the quasi-monochromatic soliton

(42)

where Em = 2"/d1τp and the group v and phase vph

velocities are determined by the equations

(43)

respectively [see Eqs. (40) and (41) at ω2 @ ].

Note that Eqs. (40) and (41) can be obtained by ana-
lytically continuing the dispersion parameters to the
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complex plane. This technique, which has a visual quasi-
particle interpretation [29], was suggested for one-para-
metric solitons and solitrons in [37, 38] and generalized
and extended to two-parametric solutions in [23, 29]. The
method is based on the assumption that there exists a
solution to the nonlinear system under consideration in
the form of an exponentially localized traveling pulse.
The linearized variant of the system generates the
F(ω, k) = 0 dispersion relation, where k is the wave
number in the laboratory frame of reference. Perform-
ing the substitutions ω  ω + iρ and k  k + iκ in
the dispersion equation and separating the real and
imaginary parts, we obtain

These equations establish relations between the local-
ized solution parameters, two of which can be selected
as free. In addition,

The latter expression for the group velocity can be illus-
trated invoking the concept of quasi-particles. Clearly,

the ρ =  value present in the imaginary addend to the
frequency in the substitutions specified above is the
reciprocal lifetime of quasi-particles (in our case, pho-
tons in a medium or polaritons [21]) in the state with
the "ω energy and the "k momentum; l = κ –1 is then the
mean free path of quasi-particles. The finiteness of τp

and l resulting from the interaction between quasi-par-
ticles caused by nonlinearity leads to finite widths ∆ω
and ∆k of the spectrum of quasi-particles, which gener-
ate a soliton-like formation. We have

The linearization of Eq. (18) at ∆⊥ θ = 0 gives

Substituting θ ~ exp[i(ωτ – qz)] (q is the wave number
in the comoving reference frame related to k by the
equation k = ωn0/c + q) into this expression), we obtain
the dispersion equation

Performing the substitutions ω  ω + iρ and k 
k + iκ and the procedure described above leads to
Eqs. (40) and (41). Setting ω = k = 0 at ρ, κ ≠ 0, we
obtain a one-parametric soliton-like solution. Note
that, at ω = 0, Eq. (40) transforms into Eq. (37) if δ = 0. On
the other hand, if ω < ρ and k < κ, we can hardly use the
concept of separate quasi-particles. We then deal with a
conglomerate of strongly interacting polaritons, which
lose their identity. In the ω, k  0 limit, a polariton
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condensate is formed in the zero regime. Because of
strong internal interactions in this condensate (interac-
tions responsible for its formation), its spectrum has

finite widths ∆ω ~  and ∆k = l–1 = (v τp)–1. As a
result, the polariton condensate propagates in a
medium in the form of ESP Eq. (31).

Since at b = 3g/2 and ∆⊥ θ = 0, Eq. (18) has solutions
of the quasi-monochromatic pulse type, we can use
Eq. (18) in the ωτp @ 1 limit to directly obtain an
approximate differential equation for the pulse enve-
lope. Let quasi-monochromatic pulses propagate in the
two-component medium under consideration. Clearly,
the approximation of slowly varying amplitudes and
phases is then applicable. We will write the electric
field of the pulse in the form

(44)

where %(z, τ) is the slowly varying pulse envelope. We
have

(45)

or ωτp @ 1. Multiple integration by parts yields the
expansion

(46)

Here, the role of the characteristic time scale is played
by the reciprocal frequency, ω–1. It then follows from
Eqs. (1) and (2) that

(47)

Because the pulse is quasi-monochromatic, its spectral
width satisfies the inequality ∆ω ! ω. For this reason,
the spectrum of the signal does not contain resonance
Fourier components, see Eq. (47). It follows that exci-
tation of atoms can be considered insignificant. This
allows the representation sinθ ≈ θ – θ3/6 to be used.
Substituting Eq. (44) into Eq. (18) and using Eqs. (45)
and (46) yields the nonlinear Schrödinger equation

(48)
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and the q parameter is related to the pulse frequency as
q = gω3 – a/ω. At ∆⊥ % = 0, the soliton of the envelope
of Eq. (48) in the laboratory frame of reference obtained
taking into account Eq. (44) has form Eq. (42), where

Em = , and the expressions for v and vph = ω/k
coincide with Eq. (43). Note that we obtained Eq. (48)
without using the condition of the equality or closeness
of d1 and d2. It follows that, in contrast to ESPs, the
existence of envelope pulses does not require imposing
special restrictions on the d1 and d2 parameters. Note
that Eq. (48) is integrable at ∆⊥ % = 0. Its solutions for
the pulse envelope are therefore solitons in the strict
sense. Below, these solutions are called envelope soli-
tons.

It follows from the equation for v that the velocity
of an envelope soliton in an equilibrium medium (a > 0,
b > 0 or W1∞ < 0, W2∞ < 0) is smaller than c/n0.

Note that the µ and η parameters in Eq. (48) can be
written in the form [39]

(49)

where k2 = ∂2k/∂ω2 is the dispersion index of the group
velocity, n2 is the nonlinear index of refraction deter-
mined by the equation

(50)

n(ω) is the total refractive index, and nl(ω) is its linear
part.

It follows from the equation for %m that the forma-
tion of solitons of type Eq. (42) (we exclude “dark”
solitons [39] from consideration) is possible if [39]

(51)

Putting b = 3g/2 (d1 = d2) in the expressions for µ and η,
we find that, if ∆⊥ % = 0, the envelope soliton for the
nonlinear Schrödinger equation (47) coincides with
breather Eqs. (39)–(41) at ωτp @ 1. A similar conclu-
sion on breathers of the modified Korteveg–de Vries
equation and the sine-Gordon equation was made in
[39, 40]. Note also that, if b = 3g/2, then η =
(1/2)(d1/")2µ. Condition (51) is then fulfilled automat-
ically, which results in possible formation of one-
dimensional envelope solitons no matter what the ini-
tial state of the medium. The example with d1 = d2 is yet
again evidence that an envelope soliton is a limiting
case of a breather at ωτp @ 1. Further, we will be inter-
ested in not only ESPs but also in envelope solitons.
These solitons are stable with respect to self-focusing if
the nonlinear refractive index n2 determined by Eqs. (49)
and (50) is negative [6]. Otherwise, there occurs self-
focusing or collapse [6, 33, 41]. According to Eq. (51),
condition (52) can be satisfied in the region of normal
group dispersion (k2 > 0). From this and the equations
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for n2 and k2, we obtain the stability condition for a
quasi-monochromatic soliton,

(52)

It is pertinent to mention here that Eqs. (35) and (52)
are valid for spatially uniform media.

4. AN ANALYSIS OF PARTICULAR SITUATIONS

Below, we consider the possibility of the propaga-
tion of extremely short and quasi-monochromatic soli-
tons at various initial states of a two-component
medium. Inequalities (35) and (52) can conveniently be
rewritten directly in terms of the macroscopic parame-
ters of media with the use of the corresponding expres-
sions for α, β, and ν [see Eq. (15)]. The stability condi-
tion for ESPs then takes the form

(53)

(hereafter, we neglect powers of δ higher than one
because it is assumed that δ ! 1). The stability criteria
for an envelope soliton can be written as

(54)

To make the further discussion less cumbersome,
the envelope soliton will be analyzed on the assumption
d2 > d1. A similar analysis for d2 < d1 creates no diffi-
culties and does not lead to basically new conclusions.

(a) An absorbing medium. In such a medium, W1∞ =
W2∞ = –1/2, and therefore a > 0 and g > 0. According to
Eq. (53), an ESP is absolutely stable, and its velocity
decreases as its width increases [see Eqs. (30) and (37),
and Fig. 2]. In addition, v > c/n0 (n0 > 1) if

It is, however, easy to see that v cannot exceed c,
because otherwise, inequality (2) would not hold.
Envelope soliton Eq. (42) is stable if its frequency sat-

isfies the conditions  < ω2 !  [see Eq. (54) and
Fig. 3], where
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370 SAZONOV
As ω1 ! ω2, this inequality can be satisfied, for
instance, if d2 ~ d1 and N2 = N1. According to Eqs. (48)
and (2), the group velocity of the envelope soliton also
does not exceed c.

In what follows, a medium with the inverted 1-com-
ponent (W1∞ = 1/2) and the 2-component in the ground
state (W2∞ = 1/2) will be called amplifying-absorbing,
otherwise (W1∞ = –1/2, W2∞ = 1/2) the medium is
referred to as the absorbing-amplifying. The relaxation
time from an excited to the ground state is known to be
inversely proportional to the cube of the corresponding
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(b)

(c)

(d)
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Fig. 2. Dependence of the velocity of a soliton-like ESP on
its width: (a) absorbing medium, (b) amplifying-absorbing
medium, (c) absorbing-amplifying medium, and (d) ampli-
fying medium. Solid and dashed curves correspond to stable
and unstable solitons, respectively. The part of the solid
curve that lies below (1 – n0)/c at n0 < 1 corresponds to v > c
(medium (c)).
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Fig. 3. Dependence of the group velocity of a quasi-mono-
chromatic soliton on its carrying frequency. See Fig. 2 for
notation.
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quantum transition frequency [5]. For this reason, the
1-component can exist in the inverse population state
much longer than the 2-component. If d1 ≈ d2, the estimate

is valid; here,  is the lifetime of atom 1 (2) in
the inverted state. A medium for which W1∞ = W2∞ = 1/2
will be called amplifying.

(b) An amplifying-absorbing medium (W1∞ = 1/2
and W2∞ = –1/2, or a < 0 and g > 0). According to Eq. (53),

an ESP is then stable if  ! τp < τm (Fig. 2), and its
velocity cannot exceed c. Let us prove this. The condi-
tion v > c for ESP (37) can be written as

(55)

According to Eq. (43), a similar condition for an enve-
lope soliton has the form

(56)

For simplicity, it will be assumed throughout that n0

differs from one insignificantly; that is, 8πd2N2/"ω2 ! 1

[see Eq. (15)], and n0 ≈ 1 – 8π N2W2∞/"ω2. Condi-
tions (55) and (53) for an ESP in an amplifying-absorb-
ing medium are written as

and

respectively. By virtue of Eq. (2), these inequalities
cannot be consistent. It follows that the velocity of an
ESP is lower than that of light, v < c. Note that, in the
absence of a 2-component (N2 = 0), condition (53)
determines the stability of solitons of the sine-Gordon
equation. It follows from Eq. (53) that these solitons are
unstable at W1∞ > 0, which agrees with the numerical
experiment data [1].

The situation with the group velocity of an envelope
soliton is different. According to Eq. (54), this soliton
is absolutely stable in an amplifying-absorbing medium
(Fig. 3). Taking Eq. (2) into account, we easily obtain
from Eq. (56) that v > c if

According to Eq. (1), ω2 @ , and therefore

N1/ N2 @ ω1/ω2. The latter inequality can easily be
satisfied if d1 ~ d2 and N1 = N2.
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EXTREMELY SHORT AND QUASI-MONOCHROMATIC ELECTROMAGNETIC SOLITONS 371
(c) An absorbing-amplifying medium (W1∞ = –1/2
and W2∞ = 1/2, or a > 0 and g < 0). An envelope soliton
is then absolutely unstable [see Eq. (54)]. At the same

time, ESPs are stable if τm < τp !  [see Eqs. (53)
and (2)]. If, in addition,

(57)

where Q = (1 – δ/2)N2ω2/4N1ω1, then v > c. It follows
from Eq. (37) that τm is the pulse width at which the
pulse velocity is maximum,

The necessary condition Q > 1 can be combined with
the inequality τp > τm as follows:

For instance, putting δ = 0, ω1τp = 0.2, and ω2τp = 5
[see Eqs. (1) and (2)] yields

It follows that, if the 2-component is inverted and the
1-component is in the ground state, the condition v > c
does not contradict the initial assumptions (1) and (2).
The corresponding pulse width dependence of soliton
velocity is shown in Fig. 2c. The region τm < τp < τc cor-
responds to a stable superluminal soliton.

(d) An amplifying medium (W1∞ = W2∞= 1/2, or a < 0
and g < 0). According to Eq. (53), an ESP is absolutely
unstable. The region of envelope soliton stability is

determined by the double inequality  ! ω2 <

(d1/d2) , see Eqs. (54) and (1) (Fig. 3). The group
velocity of the envelope soliton given by Eq. (43) then
exceeds the velocity of light in the vacuum. Let us

rewrite the condition (d1/d2)  @ , which is the
necessary condition of the formation of an envelope
soliton in an amplifying two-component nonresonant
medium, in the form

(see the expression for ωm). This inequality can easily
be satisfied, for instance, if d2 ~ d1 and N2 ≈ N1, because
ω2 @ ω1 according to Eqs. (1) and (2). Importantly, in
the presence of only the second component (N1 = 0), no
stable ESPs can exist in an amplifying medium. It
should be stressed that our conclusions refer to nonres-
onant pulses and are therefore somewhat different from
those on pulses that propagate in resonance-amplifying
media [18–20, 30]. Note also that the group velocity of
stable envelope solitons increases as their width
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decreases (Fig. 2), which is in agreement with the gen-
eral views on the properties of solitons. At the same
time, the group velocity of stable envelope solitons
decreases with the increase their filling frequency. The
observation that solitons of the nonlinear Schrödinger
equation are stable in homogeneous media with a nor-
mal group dispersion lends support to this conclusion.

Let us discuss localized solutions that correspond to
superluminal group velocities in more detail.

The possibility of superluminal propagation of opti-
cal resonance signals in amplifying media was consid-
ered in several works [42–46]. It should be stressed that
we discuss precisely the group velocity.

Superluminal propagation is caused by the impossibil-
ity of the spatial localization of the moving object [2]. The
exponentially increasing pulse forefront, which is situ-
ated far from its center, induces radiation of inverted
medium atoms. As a result, the energy of the center
becomes converted into the energy of the forefront, and
a new center is formed. The former center is absorbed
by atoms that underwent the transition to the ground
state. As a result, these atoms return into the excited
state. In [45], this mechanism of superluminal propaga-
tion was called reshaping, and in [1], it is discussed
visually and in much detail. To summarize, the profile
of the pulse changes at the expense of energy stored in
the medium, and precisely this profile moves at a super-
luminal speed [1, 42, 43, 45]. There is therefore no vio-
lation of the causality principle.

In our case, local pulse profile changes involve the
participation of a large number of particles and are
therefore a collective process. Photons themselves
move in interatomic gaps at the velocity c. However,
local amplification (an increase in the concentration of
photons), which is more manifest in the front region of
an exponential-localized pulse, results in a higher
velocity of pulse profile propagation compared with
photons that form this profile. The conclusion that a
bunch of a large number of particles can move at super-
luminal speed without violating the causality principle
was also made in [47].

It must be noted that, related to the profile of a pulse
is such its important physical characteristic as the elec-
tric field, which excites the medium [see Eq. (32)] and
induces its polarization. For this reason, medium exci-
tations also propagate at superluminal speeds. The role
of collective excitations is played by polaritons in our
case. It can therefore be said that a superluminal soliton
(or solitron) is a bunch of interacting polaritons (or,
with an ESP, a polariton condensate, see Section 4)
whose group velocity in a nonequilibrium medium
exceeds the velocity of light in vacuum.

Because nonequilibrium medium states are unstable
(that is, have finite lifetimes), superluminal pulses can
only conventionally be called stable. They can be con-
sidered stable as far as the time of their propagation,
τprop, through a medium much shorter than the relax-
SICS      Vol. 92      No. 3      2001
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ation times (  and ) of both system components
to the equilibrium state. It has been mentioned above
that  @  because ω1 ! ω2. The condition τprop !

 should therefore be fulfilled in media (c) (see Sec-
tion 4). At the same time, τprop ≤ lm/c (lm is the size of a
medium sample along the direction of pulse propaga-
tion). Hence, lm ! c . Putting  ~ 10–8 s for an
absorbing-amplifying medium, we find that a superlu-
minal ESP can be observed in a medium with lm ! 3 m.
With ω1 ~ 1013 s–1 and ω2 ~ 1015 s–1, conditions (1) and
(2) can be satisfied if τp ~ 10–14 s. The situation with
superluminal envelope solitons is at first sight more
impressive. As mentioned above, /  ~ (ω2/ω1)3 at

d1 ≈ d2, and, if ω2/ω1 ~ 102 and  ~ 10–9–10–8 s, we

have  ~ 10–3 s. If the medium is amplifying-absorb-
ing in the initial state [see Section 4, (b)], lm can amount
to several kilometers. In addition, envelope solitons

have a fairly wide frequency range,  ! ω2 ! .
However, there arises the problem of simultaneously
creating the inverted state of the 1-component through-
out the medium. Note also that the superluminal objects
considered in this work should be formed in a medium,
which takes time.

5. CONCLUSION

The analysis performed in this work leads us to con-
clude that the two-component character of the medium
is a key factor determining the possibility of the propa-
gation in it of wide-band extremely short pulses and non-
resonant envelope solitons. The Konno–Kameyama–
Sanuki equation obtained in this work [Eq. (18)] is one
more example of integrable (at ∆⊥ θ = 0) models con-
structed based on the initial Maxwell–Bloch-type sys-
tem. The Konno–Kameyama–Sanuki equation is inte-
grable if the transition dipole moments of two atomic
components are equal. Note that the integrability of the
reduced Maxwell–Bloch system in the presence of an
inhomogeneous broadening was proved in [9]. This
broadening was also taken into account on the assump-
tion of equal dipole moments for all frequencies of
inhomogeneously broadened line contour transitions.
Two transitions with substantially different eigenfre-
quencies considered in this work can, leaving aside
their different physical natures, be treated as two com-
ponents from the opposite wings of the contour of inho-
mogeneous broadening. The problem then seemingly
reduces to that already solved in [9]. It should, however,
be borne in mind that, in contrast to the reduced Max-
well–Bloch system, Eq. (18) was derived without any-
where using the approximation of low atomic concen-
trations. From this point of view, conditions (16) and (17)
are much weaker than the corresponding conditions
necessary for obtaining the reduced system from the

T R1
T R2

T R1
T R2

T R2

T R2
T R1

T R1
T R2

T R2

T R1

ω1
2 ω2

2
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complete Maxwell–Bloch system. Most likely, another
suggestion advanced in [48] holds true; according to [48],
equations obtained from an initial generally nonintegrable
system with the use of limiting procedures are in a cer-
tain sense integrable. In the derivation of Eq. (18) from
the initial (nonintegrable) system (3)–(5), (6), (8), we
indeed used limiting procedures consistent with condi-
tions (1) and (2) and the one-way propagation approxi-
mation.

The variational procedure used in this work to deter-
mine an ESP stability criterion allows equations for
variable pulse parameters to be reduced to a system of
equations of ideal liquid motion. An equally elegant
procedure was effectively used with envelope solitons
[33]. Extending this method to breather-like solutions
embedding one or several electromagnetic oscillations
encounters mathematical difficulties. This problem
should probably be solved using alternative approaches
to determining the stability of such breather solutions.
Apart from being of purely scientific interest, such a
study would be of interest for practical applications in
view of the possible use of pulses comprising several
oscillation periods in fiber optics [23].

Spontaneous emission with transition of atoms into
the ground state is an irreversible process. Our analysis
of the instability of nonequilibrium medium states and
the possibility of the propagation of electromagnetic
pulses at group velocities v > c does not answer ques-
tion of the relation between irreversibility of relaxation
processes and the existence of superluminal objects
[49, 50], a question that casts no doubt on the funda-
mental causality principle.
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Abstract—To analyze pulse dynamics in an optical system consisting of a periodic sequence of nonlinear
media, a composite model is used. It includes a model of the resonance interaction of an ultrashort light pulse
with the energy transition of the medium with allowance made for an upper level pump and an almost integrable
model that describes the propagation of the light field in the other medium with a cubic nonlinearity and dis-
persion. Additional allowance is made for losses and other kinds of interaction by introducing perturbation
terms. On the bases of the inverse scattering transform and perturbation theory, a simple method for analyzing
specific features of soliton evolution in periodic systems of this kind is developed. It is used to describe various
modes of soliton evolution in such a system, including chaotic dynamics. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Generation of solitons in nonlinear optics, has been
the objective of much research (see, e.g., [1] and survey
[2]). One of the lines of studies is based on the use of
completely integrable models. As a rule, the use of such
models requires a number of physical constraints; how-
ever, they provide the most detailed description of the
evolution of ultrashort pulses in nonlinear media. In
addition, exact solutions to these models are used to
verify numerical results obtained when analyzing non-
linear evolutionary processes.

The technique used in optics to generate ultrashort
pulses often includes various nonlinear and linear
media. The pulse is generated and amplified in one
medium, and other media are used to compress the
pulse and shape it. A single-pass two-level laser ampli-
fier with an additional nonlinear medium in the form of
an optical fiber light guide is an example of such a sys-
tem. Another example is a laser unit with a ring resona-
tor.

An extensive body of literature is devoted to the
analysis of pulse dynamics in such systems. Neverthe-
less, a number of nonlinear optical phenomena remain
poorly studied partly because of the lack of sufficiently
simple and effective theoretical methods.

In this paper, we suggest a method for analyzing
soliton dynamics in a medium consisting of a sequence
of media with different nonlinear optical properties.
The method is based on robust properties of soliton
modes and on perturbation theory developed for almost
integrable systems of equations [3, 4]. We construct a
model consisting of integrable models that describe the
evolution of fields on nonoverlapping adjacent intervals
1063-7761/01/9203- $21.00 © 20374
and analyze its properties. Such models are called
“composite” in contrast to models that combine inte-
grable models on identical intervals. The latter group of
models includes, in particular, a combination of the
Maxwell–Bloch system of equations for a two-level
medium and the nonlinear Schrödinger equation for an
infinite medium [2, 5]. To our knowledge, specific fea-
tures of the soliton evolution in composite models have
not been studied theoretically.

The nonlinear Schrödinger equation is often used to
analyze the effects of ultrashort-soliton propagation in
fiber light guides [6]. In such media, stable field pulses
appear as a result of a balance between the effects of
dispersion and nonlinearity. To compensate for the
losses that occur in the process of the soliton propaga-
tion in a light guide, various devices are used, including
those based on an amplification of the pulses on finite
intervals placed periodically along the light guide. For
example, a soliton is amplified when it passes through
a finite two-level medium with a transition frequency
close to the carrier frequency of the soliton. If the upper
level is externally pumped, the soliton amplitude increases
due to the nonlinear interaction in the resonance medium.
This process can be also described in the framework of
the integrable Maxwell–Bloch system of equations
with allowance made for the pump depending only on
the spatial variable [7].

As an example of the application of our approach,
the propagation of a soliton in a periodic medium con-
sisting of an alternating sequence of resonance media
and media with a cubic nonlinearity and dispersion is
considered. A fiber light guide can be used as the latter
medium. By way of this example, we demonstrate that
the approach suggested makes it possible to analyze
001 MAIK “Nauka/Interperiodica”
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various modes of the soliton dynamics. It is assumed
that the shape of the optical pulse is described by the
soliton solution to the nonlinear Schrödinger equation.
The variation of the soliton parameters in a light guide
is described according to the perturbation theory for
a model similar to the integrable one assuming that
the evolutionary equation is close to the nonlinear
Schrödinger equation. The evolution of the soliton in
the amplifying resonance medium is described in the
framework of the Maxwell–Bloch system of equations,
which is solved by the inverse scattering transform
method. In such a medium, a soliton is associated with
the phenomenon of self-induced transparency [2]. The
existence of a stable soliton (2π-pulse), which is both the
soliton of self-induced transparency and the nonlinear
Schrödinger equation, in the combined model of the
Maxwell–Bloch and the nonlinear Schrödinger equations
was theoretically and experimentally proved in [8, 9].

In Section 2, the general structure of the composite
integrable model and the boundary conditions are
described. The physical model and a method for solv-
ing it are given in Section 3. In Section 4, an analysis of
the soliton dynamics in the framework of this model
is given, which is reduced to analyzing a discrete
mapping. Various modes of soliton propagation are
described.

2. COMPOSITE INTEGRABLE MODELS

First, we describe the general structure of the inte-
grable model consisting of N integrable models (some
of which can be identical). Let the integrable model be
the consistency condition of the linear systems of equa-
tions

(1)

(2)

Here θ(z) is a piecewise constant function; θ(z) = 0 for
z ≤ 0; θ(z) = 1 for z > 0; and αi, i + 1(z) are projectors, i.e.,

 = αi, i + 1(z).

The consistency condition for these linear systems
has the form

(3)

τ∂
∂ ψ τ z; λ,( ) L τ z; λ,( )ψ τ z; λ,( ),=

z∂
∂ ψ τ z; λ,( )

=  α i i 1+, z( )Ai τ z; λ,( )ψ τ z  λ;,( )
i 1=

N

∑ !ψ,=

α i i 1+, z( ) θ z zi–( )θ z zi 1++–( ), zi 1+ zi.>=

α i i 1+,
2 z( )

z∂
∂

L τ∂
∂ α i i 1+, z( )Ai

i 1=

N

∑ L α i i 1+, z( )Ai

i 1=

N

∑,+–  = 0.
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Multiply (3) by αi, i + 1(z) to obtain

(4)

Thus, the evolution in the strip [zi , zi + 1] is described,
for any ∀τ , by a system of equations having the linear
system ∂τψ = Lψ, ∂zψ = Aiψ as its Lax representation.

In this paper, we study composite models with the
Lax representation (1), (2) for –∞ < τ < ∞. The specific
features of the inverse scattering transform as applied
to composite models manifest themselves in finding the
dependence of the scattering parameters on z.

We assume that the field vanishes at infinity (as
τ  ±∞). For the example below, this means that the
asymptotics of the matrix L are

(5)

Any two solutions of Eqs. (1) and (2), ψ and φ are
related by the scattering matrix 7:

(6)

It follows from the symmetric properties of the concrete
spectral problem described in Section 3 (see Eq. (18)
below) that the scattering matrix has the form

(7)

Let us determine how the coefficients a and  depend
on z for conditions (5). Using Eq. (6), we find that

(8)

where

Introduce the functions

zi ≤ z < zi + 1.

Consider the matrix 7i = θ(z – zi)θ(zi + 1 – z)7,
which is the projection of 7 onto the interval [zi , zi + 1].
The formal solution to Eq. (8) on the interval –τf < τ <
τf  is

z∂
∂

L τ∂
∂

Ai– L Ai,[ ]+ 0, z zi zi 1+,[ ] .∈=
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(9)

It is seen from this solution that the evolution of 7i(z; λ)
on the interval [zi , zi + 1] is determined by formula (9)
with the boundary condition 7(zi, λ).

For conditions (5) and τf  ∞, the solution to
Eq. (8) has the form

(10)

where 70 is the value of the matrix 7 at z = 0, which is
determined by solving the spectral problem (1). Hence,
we find the dependence of the coefficient C0(z; λ0) =

/a'(λ)  on z, where λ0 is an isolated pole in the

upper half-plane of the complex plane λ:

(11)

3. A PHYSICAL EXAMPLE
OF THE COMPOSITE MODEL

Consider the self-induced transparency model in a
two-level medium under the single-frequency reso-
nance on the interval [Z1 = 0, Z2), Z2 > 0 and an optical
fiber light guide located on the interval [Z2, Z3), where
Z is the spatial coordinate. The dynamics of the
medium and the field in the first medium is described
by the Maxwell–Bloch model with allowance made for
the upper level pump. The field dynamics in the light
guide is described by the nonlinear Schrödinger equa-
tion (see, e.g., [2]). For simplicity, we consider the case
of the exact resonance; taking into account the nonuni-
form broadening does not change the results qualita-
tively. The composite model has the form

(12)

(13)
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where  = N2 + |P |2, T is the time variable, the
speed of light is set to unity, G = 2πk0, k0 is the carrier
wave vector, N and P are the occupation of levels and
the polarization of the medium, respectively, and N0 is
the total number of particles. The physical values of the
coefficients B and D are given, e.g., in [2, 6], αij(Z) =
θ(Z – Zi)θ(–Z + Zj), Zi < Zj, θ(Z) = 0 for Z ≤ 0, and
θ(Z) = 1 for Z > 0. Here, αij(Z) is the projector; its pres-
ence as the coefficient means that the second and third
terms on the left-hand side of Eq. (12) are nonzero on
the interval [Z2, Z3), the polarization on the right-hand
side of Eq. (12) is nonzero, Eqs. (13) and (14) are valid

on the interval [Z1, Z2),  characterizes the upper
level pump of the medium, and W = W(E, T, Z) is the
perturbation, which can account for various effects,
such as linear or nonlinear losses, dispersion, combina-
tion interaction, and others.

Let W = 0. We consider two cases.

(1) The completely integrable consistent model.
This case requires that strict constraints be imposed on
the physical constants.

(2) Equations (12)–(14) represent two different inte-
grable models (the case β ≠ 1 is considered below).

The perturbation (W ≠ 0) will be considered in the
adiabatic approximation when the effect of the pertur-
bation is reduced to ordinary differential equations for
the spectral parameter that characterizes the soliton
solutions to model Eqs. (12)–(14).

The solution obtained for the first case provides a
basis for the approximations used in considering the
second case.

A specific feature of this composite model consists
in the possibility of taking into account the pump

(which is proportional to ) without losing the integra-
bility of the Maxwell–Bloch model. This property
makes it possible to analyze various modes of soliton
propagation, including chaotic ones, using the exact

soliton solution for an arbitrary  as a robust nonlinear
mode.

Let us change the frame of reference:

In what follows, we consider the case of a periodic
sequence of media obeying the Maxwell–Bloch equa-
tions and the nonlinear Schrödinger equation. Let the
field % propagate through the periodic medium consist-
ing of a resonance medium on the interval [z1 + nL, z2 +
nL) and a light guide located on the interval [z2 + nL,
z3 + nL), where L = z3 – z1 is the period of the medium.

N0
2 z( )

C̃ Z( )

C̃

C̃

T t α T Z–( ) D
B
---- T Z–( ),= =

Z T z+
Z
G
----.=
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System (12)–(14) is reduced to the form

(15)

(16)

(17)

Here

αij(z) = θ(z – zi)θ(–z + zj); for zj > zi; θ(z) = 0 for z ≤ 0;
and θ(z) = 1 for z > 0. The facts that the perturbation 0
acts on the interval [z2 + nL, z3 + nL) and the pump
(which is proportional to c) acts on the interval [z1 + nL,
z2 + nL) are taken into account.

If 0 = 0 and β = 1, then system (15)–(17) can be
represented as the consistency condition of two linear
systems of equations

(18)

(19)

Here λ is the spectral parameter satisfying the equation
∂zλ = –c/(4λ),

For β = 1, this consistent system is completely integra-
ble. However, the condition β = 1 leads to strict con-
straints on the physical parameters. If c = 0, the Lax
representation for the unperturbed model (15)–(17);
i.e., for 0 = 0, it is similar to the well-known represen-
tation for the model that combines the Maxwell–Bloch
and the nonlinear Schrödinger equations on the same
interval (see [2, 5]). For β ≠ 1, the Lax representation is
valid for each of the Maxwell–Bloch and nonlinear
Schrödinger equation models separately on the corre-
sponding intervals; i.e., for β ≠ 1, Eqs. (18) and (19) are

∂ζ4 Gα1 2, z nL–( )R++

+ iα2 3, z nL–( ) ∂τ
2% 2 % 2% 0–+[ ] 0,=

α1 2, z nL–( ) ∂τ R+ R3%–( ) 0,=

α1 2, z nL–( ) ∂τ R3
1
2
--- R+*% R+%∗+( ) c–+ 0,=

4 %, τ t, ζ z, z z2 nL z3 nL ),+,+[∈= = =

4 β%, τ βt, ζ zβ,= = =

z z1 nL z2 nL ).+,+[∈

β2 µ0D1/2

"B1/2
---------------; c z( )

C̃ z( )
β

----------; 0
W
G
-----;= = =

∂τΦ
iλ– 4

4 iλ 
 
 

Φ,=

∂ζΦ
iGα1 2, z nL–( )

4λ
-----------------------------------

R3 R+–

R+– R3– 
 
 

Φ=

+ α2 3, z nL–( )
iH11– H12

H21 iH11 
 
 

Φ.

H11 2λ2 % 2
, H12– 2λ% i∂τ%,+= =

H21 2λ% i∂τ%.–=
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two unrelated Lax representations, although these mod-
els are connected by the common field %. For β = 1 (the
integrable case), joining the boundary conditions for
the parameters of the solitons λk is very simple: λk(zi –
nL – 0) = λk(zi – nL + 0), where zi is the boundary
between the media. However, for β ≠ 1, the problem of
joining the boundary conditions for these models arises
when a soliton crosses the boundary between the
media. This is due to the fact that these models use dif-
ferent scales of the coordinates and the field.

We show that the system of equations (15)–(17)
makes it easy to join the boundary conditions for soli-
ton solutions in the case β ≠ 1 as well. Let a soliton of
the field % on the interval [z2 + nL, z3 + nL) have the
form

(20)

where λn is a real-valued scalar function of n. Then, the
following change of scale must be performed when
crossing the boundary between the light guide and the
resonance medium:

(21)

For the soliton solutions (20), this transformation is
equivalent to the change of variables

(22)

When the boundary between the nonlinear media is
crossed, the parameter of the soliton that determines its
height and duration undergoes a jump, but its area and
speed remain unchanged; i.e., no solitons are absorbed
or born, and no radiation is generated. In the present
study, we do not take into account the effects of reflec-
tion and refraction of the light beam as it crosses the
boundary between the media; these effects can result in
the deformation of the soliton, radiation loss, etc. (see
Section 5).

Thus, we use the following scenario to describe the
dynamics of the soliton in the periodic medium. Let a
light field pulse shaped like the soliton q0(τ) =
2η0  be injected in the medium at the point
z = 0. We consider the dynamics of the field in the res-
onance medium in the framework of the inverse scatter-
ing transform method with the variable spectral param-
eter [7]. In the process of evolution in the resonance
medium, the soliton is amplified, which is described by
the change of its parameter

where

% z τ ; λn,( )
2λn iφn( )exp

2λn τ zVn
1––( )[ ]cosh

--------------------------------------------------,=

% %β, τ τβ, z zβ.

λn λnβ, Vn Vn.

η0τ( )sech

η η0
2 C+ ,=

C c x( ) xd

0

l

∫=
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and l = z2 – z1 is the length of the resonance medium.
We assume that C (an arbitrary real quantity) is inde-
pendent of n, i.e., C(z + nL) = C(z), ∀ z.

The field evolution in the light guide is described in
the framework of perturbation theory. The soliton solu-
tion (20) is used as a stable “robust” mode. The soliton
is subject to the perturbation 0 on the interval [z2 + nL,
z3 + nL). The influence of the perturbation on the shape
and parameters of the soliton is determined on the basis
of the perturbation theory developed for nearly integra-
ble models [3, 4], which is valid for sufficiently small
coefficients.

Let the effect of the perturbation 0 in the nth
medium be described (in the adiabatic approximation)
by the equation

(23)

Then, the parameters of the soliton as it passes from the
interval [z1 + (n – 1)L, z3 + (n – 1)L) to the interval
[z1 + nL, z3 + nL] are changed as follows. We assume
that the characteristics of the soliton in the light guide
z ∈  [z2 + (n – 1)L, z3 + (n – 1)L) at the point z3 + (n –
1)L – 0 are determined by the spectral parameter
λn − 1(z3 + (n – 1)L – 0). As the soliton crosses the
boundary, the parameter undergoes a jump: λn(z1 +
nL + 0) = βλn – 1(z3 + (n – 1)L – 0). Then, the parameter

increases due to the pump: λn(z2 + nL – 0) = [ (z1 +
nL + 0) + C]1/2. Then, when the point z2 + nL – 0 
z2 + nL + 0 is passed, the parameter jumps back to the
value λn(z2 + nL + 0) = λn(z2 + nL – 0)/β. In the light
guide (for z ∈  [z2 + nL, z3 + nL)), the parameter varies
according to Eq. (23). Then the cycle repeats. This
approach makes it possible to analyze the values of C
of order 1 and greater.

4. SOLITON PROPAGATION MODES
IN THE PERIODIC SYSTEM

In this section, we analyze possible evolution modes
of a soliton in the periodic system under study. Con-
sider perturbations of the soliton evolution in the light

∂zλn F λn( ).=

λn
2

0.1
0

C

λ 1
00

0

0.2 0.3 0.4 0.5 0.6

0.2

0.4

0.6

Fig. 1. Mapping (25). The dependence of  λ1000 on C for
C > 0.111, a = 1, and γ = 0.1.
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guide due to dispersion, cubic nonlinearity, and fric-

tion; i.e., let 0 = –g1 % – g2|%|2% – g3%. The contri-
bution of these perturbations to the variation of the soli-
ton parameters (20) is described (in the adiabatic
approximation) by the following equation (cf. [4]):

(24)

Here

Following the procedure described above, we obtain
the mapping

(25)

where γ = exp[–4g3(z3 – z2)] – 1 ! 1 is a small parame-
ter characterizing the perturbation. The approach sug-
gested makes it possible to analyze the domain of small
values of γ and arbitrary C. The numerical analysis of
mapping (25) shows that there exists an amplification
limit. For example, let λ0 = 0.1, γ = 0.1, and a = 1. Then,
λ∞ ≈ 0.099 for C = 0.113; however, for C = 0.114, we
have λ∞ ≈ 1.2.

The dependence of the asymptotic value λ∞ on C in
the domain C * 0.111 is shown in Fig. 1. In the vicinity
of C & 0.111, the dynamics becomes chaotic; i.e., the
asymptotic value of the amplitude varies chaotically
(see Fig. 2).

Let the perturbation have the form

Then, F(λ) = –f0 – f1λ2. By changing the scale of λ, the
problem can be reduced to the condition f0 = f1. In this
case, the mapping takes the form

(26)

∂τ
2

∂χλn aλn
3– λn.–=

a
4
3
---g1

8
3
---g2+– 

  1
2g3
--------, χ 2g3z.= =

λn 1+

λn
2 C+( ) 1 aγ–( ) γ–

1 a2γ a λn
2 C+( ) 1 a– a2γ–( )+ +

-------------------------------------------------------------------------------

1/2

,=

0
f 0

2π
------

f 1

4
-----% τ( ) % τ'( )

2 τ'.d

∞–

τ

∫––=

λn 1+ λn
2 C+arctan γ1–[ ] ,tan=

10
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6

4

2

0
0 0.05 0.10 0.15 0.20

C

λ 1
00

0

Fig. 2. The same as in Fig. 1 for 0.2 > C > 0.
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γ1 = 1 – exp[–f0(z3 – z2)] and |γ1| ! 1. For γ1< 0, no cha-
otic behavior is observed. The dependence λn (n =
1000) on C is shown in Fig. 3. For γ1 > 0, the chaotic
behavior of the soliton in the periodic system is
observed in the domain of small C. However, as C
increases, the chaotic behavior disappears (Fig. 4).

If the external force is proportional to exp(ir0λ2z),
where r0 is a real constant, then other, more complex
scenarios of passing to the chaotic behavior are
observed. A dependence of this type can be realized in
a ring resonator [10–13]. The approach suggested in
this paper can be directly used for analyzing the soliton
dynamics with in a ring resonator with two or more dif-
ferent nonlinear media.

5. CONCLUSIONS

It is shown that the analysis of composite integrable
models instead of combined ones or along with them
makes it possible to analyze the evolution of light
pulses in new physical conditions. The approach to the
analysis of composite models suggested in the paper
can be used to study the dynamics of solitons and other
robust nonlinear structures.

For the case of the combined self-induced transpar-
ency model and the nonlinear Schrödinger equation, it
was shown in [8, 9] (analytically and experimentally)
that a stable 2π-pulse exists, which is similar to the self-
induced transparency soliton. It was also shown in
these papers that a pulse with an area of 2πN disinte-
grates into N isolated 2π-pulses. Similar effects can be
expected in the composite model.

In the general case, the conditions of the existence
of solitons in composite nonintegrable models can be
weaker than for combined models. This is due to the
fact that in the latter case, the existence of solitons can
require a greater number of conditions than in the case
of spatially separated media.

When passing from one optical medium into
another, a reflected wave generally appears, which is
not taken into account in this paper. Actually, the evo-
lution of pulses in systems consisting of a sequence of

0

–4000

–8000

–12 000
0 0.2 0.4 0.6 0.8 1.0

C

λ 1
00

0

Fig. 3. Mapping (26). The dependence of λ1000 on C for
γ1 = 0.01.
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linear and nonlinear optical media has been under study
for several decades. For example, the laser with a ring
resonator belongs to such systems. The reflective wave
that appears when crossing the boundary between the
media and the air is usually eliminated by positioning
the medium surface at the Brewster angle to the direc-
tion of the wave propagation. Another way of eliminat-
ing the backward wave is the use of special plates or a
lubricant of proper thickness (clarified optics), where
the backward wave is eliminated due to the interfer-
ence. These methods are effective for pulses with a
duration up to several femtoseconds.

Another important circumstance in using composite
models is the possible generation of additional follow-
ing waves when the soliton crosses the boundary
between the media. In the model under consideration,
the shape of the soliton corresponds to one of the iso-
lated poles. As the boundary between the media is
crossed, a jump in the parameters of the soliton occurs,
which is described by Eqs. (22). In the process, no addi-
tional solitons or radiation are generated in the frame-
work of the approximation used. Indeed, since this
jump results in a simultaneous change of the duration
and height of the pulse, the area and the sech-shape of
the soliton remain unchanged. Under these conditions,
the solution to the general spectral problem (18) indi-
cates that a unique pole in the upper half-plane exists
both for the medium with self-induced transparency
and for the medium obeying the nonlinear Schrödinger
equation, despite the fact that the imaginary parts of the
corresponding spectral parameters differ by a factor of
β @ 1. In practice, this manifests itself thus: in the res-
onance medium the self-induced transparency soliton is
usually much shorter and higher (by a factor of β @ 1)
than the nonlinear Schrödinger equation soliton.

As a rule, the transformation and shaping of the soli-
ton takes several soliton lengths. This implies another
limitation of the applicability of the model studied in
this paper: the z-size of the media must be much greater
than the size of the soliton. For example, the resonance
medium must be much longer than the nonlinear
Schrödinger equation soliton, and so on.

0
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λ 1
00

0

0.1 0.2 0.3 0.4 0.5
0

1

2

Fig. 4. The same as in Fig. 3 for γ1 = –0.01.
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In conclusion, we note that radiation effects that are
related to the influence of perturbations are not taken
into account in this paper. These effects usually mani-
fest themselves in the next order of smallness and result
in a deformation of the soliton shape.
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Abstract—A perturbation theory is developed for constructing the quasi-energy operator Q of the Tavis–Cum-
mings Hamiltonian, which includes the interaction of atoms with a classical quasi-monochromatic field. The
operator Q of the first order in the interaction δ of an atom with a resonator mode has a form of the generalized
Tavis–Cummings Hamiltonian (in the interaction representation) to which the oppositely rotating terms with a
changed interaction constant are added. Such a Hamiltonian has a singularity in the dimensionless amplitude σ
of a classical field. In the vicinity of this singularity, the Hamiltonian spectrum tends to a continuous one, while
the degree of squeezing of field quadratures (in its eigenstates) increases infinitely. In the case of one atom and
the biharmonic perturbation, the operator Q is obtained up to the third order of the perturbation theory. The
spectral problem for Q is studied. The features of the dependence of the quasi-energy spectrum on σ are
explained by the presence of an efficient barrier between the regions of the “coordinate” space. It is found that
the above-mentioned singularity corresponds to the beginning of the parametric resonance zone. Analytic
expressions for the top and bottom of this zone in the δσ plane are presented. © 2001 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

The known Jaynes–Cummings model (JCM), which
describes the interaction of a quantized field mode with
a two-level atom [1], has become especially important
due to progress in the experimental possibilities in
quantum optics. Thus, advances in resonator quantum
electrodynamics resulted in the development of unique
devices—micromasers and microlasers—in which cal-
ibrated, rarefied, and cooled atomic beams are used that
are specially prepared by an external perturbation [1].
A number of quantum effects, which have been pre-
dicted in the JCM approximation, were experimentally
observed. These are collapses and revivals of the atomic
inversion [1], squeezed states of light [2], Schrödinger cat
states [3], trapped states of a micromaser [4], Fock states
of a quantum mode [5], etc. (a detailed review can be
found, for example, in [1]).

In recent years, the model has found a new applica-
tion in experiments on laser cooling of atomic beams
and in the development of ion and atomic magnetoop-
tical traps. Thus, it was shown in [6] that in the presence
of a classical travelling or standing wave, the efficient
interaction appears between the center-of-mass coordinate
of an ion confined by a parabolic potential of the trap and
the internal degrees of freedom of this ion. This interaction
is described, under certain conditions (the Lamb–Dicke
limit), by the JCM approximation. In this case, the cen-
ter-of-mass coordinate plays the role of a boson vari-
able, so that the quantum effects, which were found
earlier for a field mode, acquire a new meaning. In par-
ticular, the nonclassical states of the ion motion such as
1063-7761/01/9203- $21.00 © 20381
Fock states, Schrödinger cat states, even and odd coher-
ent states, etc. have been predicted and observed in
experiments with traps (see [7] and references therein).

The above-mentioned quantum properties of the
field and ions are used, for example, in nondestructive
measurements [8]. The object of a new research field,
which was called in [9] the engineering of quantum
states and is based on the generalization of the JCM, is
the development of methods for generating and con-
trolling new nonclassical states of the field and atoms
with specified properties. Thus, in [10, 11], a classical
field was used in the JCM as a controlling system,
whose parameters—the duration and shape of the pulse
train [10] and the shape and rate of variation in the
amplitude [11]—were appropriately chosen to obtain
the desired effect.

In this paper, which is a continuation of papers [12],
we propose another generalization of the JCM, based
on the inclusion of a classical quasi-monochromatic
field into the Hamiltonian, the carrier frequency of the
field being almost resonant with an atomic transition
frequency. Upon a certain choice of the periodically
changing envelope, the quasi-energy operator of the
JCM (in the first-order approximation of the perturba-
tion theory) has a form of the generalized Jaynes–Cum-
mings Hamiltonian, which differs from a usual operator
(written in the interaction representation) by the addition
of oppositely rotating terms with a changed interaction
constant. This operator has a number of unusual prop-
erties, in particular, the field part of its eigenvectors rep-
resents squeezed states [13], whose degree of squeez-
001 MAIK “Nauka/Interperiodica”
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ing is determined by the amplitude and modulation fre-
quency of a classical field.

2. PERTURBATION THEORY
FOR THE QUASI-ENERGY OPERATOR

The method of quasi-energies is applied for the
analysis of nonstationary quantum-mechanical prob-
lems with the periodic Hamiltonian

where T is the time period [14]. This method general-
izes the concepts of papers devoted to parametric reso-
nance, the interaction between “slow” and “fast”
motions in linear and nonlinear systems of classical
mechanics [15, 16].

Consider the Schrödinger equation for the evolution
operator U(t),

(1)

where I is the unit operator (hereafter we assume that
" = 1). According to the Floquet–Lyapunov theory [15],
because of its periodicity, the evolution operator can be
written in the form

(2)

Here, u(t) = u(t + T) is a periodic operator and Q is a
time-independent quasi-energy operator, which acts in
the space of states of a quantum-mechanical system.
The choice of Q is ambiguous because of the band
structure of the spectrum [14]; all information on the
spectrum is contained in the main Brillouin zone.

Let us assume that H(t) has a small parameter and
H(t) can be divided into two terms—the zero-order
Hamiltonian H0(t) and the perturbation V(t):

(3)

Assume further that the quasi-energy problem for H0(t)
is solved, i.e., that we have found the decomposition of
the unperturbed evolution operator U0(t), which satis-
fies the equation

(4)

into two factors:

(5)

Here, u0(t) and Q0 are the periodic evolution operator
and quasi-energy operator in the zero-order approxima-
tion, respectively. Then, the solution of problems (1)
and (2) can be derived using successive approximations
by the Bogolyubov–Mitropolskii averaging method (its
quantum-mechanical analogue) [16]. For this purpose,
we rewrite Eqs. (1) and (2) in the form of equations

H t( ) H t T+( ),=

i
d
dt
-----U t( ) H t( )U t( ), U 0( ) I ,= =

U t( ) u t( ) iQt–( ).exp=

H t( ) H0 t( ) V t( ).+=

H0 t( )U0 t( ) i
d
dt
-----U0 t( ), U0 t( ) I ,= =

U0 t( ) u0 t( ) iQ0t–( ).exp=
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determining u(t) and Q (the periodic time representa-
tion):

(6)

(7)

(8)

Here, we introduced the operator of averaging over the
period

Let us proceed in Eqs. (6)–(8) to a new time represen-
tation—the periodic interaction representation—with
the help of the operator u0(t) (5):

(9)

From Eqs. (4)–(8), we obtain equations for the periodic
operator W(t) and operator Q:

(10)

(11)

To obtain the recurrence scheme of successive cal-
culations, it is convenient to solve Eqs. (10) and (11)
using the additional condition

(12)

instead of the conventional condition W(0) = I.
Let us introduce the notation of successive approxi-

mations for W(t) and Q,

(13)

substitute these series into Eqs. (10)–(12), and obtain
the required recurrence formula

(14)

(15)

(16)

Let us make some remarks concerning the above
procedure. We denote the solutions of the system of

Eqs. (14)–(16) with a tilde: (t) and . The scheme of

H t( )u t( ) i
d
dt
-----u t( ) u t( )Q,+=

Q M u+ t( ) H t( ) i
d
dt
-----– 

  u t( )
 
 
 

,=

u 0( ) I .=

M Φ t( ){ } 1
T
--- Φ t( ) t.d

0

T

∫=

u t( ) u0 t( )W t( ),=

VI t( ) u0
+ t( )V t( )u0 t( ).=

Q0W t( ) W t( )Q– VI t( )W t( )+ i
d
dt
-----W t( ),=

Q M W+ t( ) Q0 VI t( ) i
d
dt
-----–+ 

  W t( )
 
 
 

.=

M W t( ){ } I=

W t( ) I W1 t( ) …, Q+ + Q0 Q1 …,+ += =

Qn M VI t( )Wn 1– t( ){ } ,=

i
d
dt
-----Wn t( ) Q0 Wn t( ),[ ]– Yn t( )=

=  VI t( )Wn 1– t( ) W j t( )Qn j– ,
j 0=

n 1–

∑–

M Wn t( ){ } 0, n 1 2 …., ,= =

W̃ Q̃
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successive calculations is closed because to determine

, one should know (t), and the highest order of

Q in Eq. (15) for the calculation of (t) is . The
additional condition (12), Eq. (16) significantly sim-
plifies the recurrence scheme; however, the solutions
found in this case do not possess the unitary property

(t )–1 ≠ (t )+ and the Hermitian property  ≠ .
To obtain the operators Q and W(t) in the final form,
one should perform the transformations

(17)

(18)

These operators are the solutions of Eqs. (6)–(9) and
possess the required properties.

We will seek a particular periodic solution of
Eq. (15) in the following way. Let us denote the opera-
tor of the kth harmonic of the evolution operator (t)

by  and the operator of the kth harmonic of the

right-hand side of Eq. (15) by :

Substitution of these series into Eq. (15) gives the

steady-state operator equation for  

(19)

Assuming that the eigenvector and eigenvalue problem
for the operator Q0 (Q0 |φα 〉  = Eα |φα 〉) is solved, we
obtain the solution of Eq. (19) in the form

(20)

It follows from Eq. (20) that the difficulty encountered
in this method can be related to the appearance of a
small resonance denominator. For example, this always
occurs when Q0 has a continuous spectrum. If due to
some approximations, Q0 has only a discrete spectrum,
the resonance can be avoided by changing Q0 and retain-
ing the decomposition H(t) (3) (which is determined, as a
rule, by the physical meaning of the problem) invariable.
According to Eq. (5), Q0 can be changed simultaneously
with u0(t), so that U0(t) would remain invariable. Thus,
we can add the operator

Q̃n W̃n 1–

W̃n Q̃n

W̃ W̃ Q̃ Q̃
+

Q W̃ 0( )Q̃W̃
1–

0( ),=

W t( ) W̃ t( )W̃
1–

0( ).=

W̃n

Wn
k( )

Yn
k( )

W̃n t( ) Wn
k( ) ikΩt( ),exp

k ∞–=
k 0≠

∞

∑=

Yn t( ) Yn
k( ) ikΩt( ).exp

k ∞–=
k 0≠

∞

∑=

Wn
k( )

–ΩkWn
k( ) Q0 Wn

k( ),[ ]– Yn
k( ),=

k 1 2 ….,±,±=

φα Wn
k( ) φβ

φα Yn
k( ) φβ

E0β E0α– kΩ–
------------------------------------.=

Ωk α( ) φα| 〉 φα〈 |
α
∑
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to Q0, where k(α) in an integer function of α. The spec-
trum of this operator is a multiple of the frequency Ω .
Therefore, the spectrum of Q0 can be located within the
main Brillouin zone of width Ω . If, for example, the
operator Q0 contains two levels, we can choose the ori-
gin of the Brillouin zone so that the distance between
these levels would be smaller than half the width Ω and
the resonance denominator will not appear. We will call
such a choice of Q0 correct; in this case, the small ratio

is a parameter of the theory.

3. THE QUASI-ENERGY OPERATOR
OF THE “OPEN” TAVIS–CUMMINGS MODEL

Let us apply the method of quasi-energies to the
problem of the interaction between N two-level atoms
with a quantized field mode of the resonator and a clas-
sical quasi-monochromatic electromagnetic field. We
assume that the conditions of the applicability of the
Tavis–Cummings model (TCM) considered in [17] are
satisfied. We will call this model the “open” model. The
Hamiltonian Hs(t) of the system under study has the
form

(21)

Here, ω0, ωc, and ω are the frequencies of the transition,
the carrier harmonic, and the quantized mode, respec-
tively; H.c. is the Hermitian conjugation; g(t) is the
complex “slow” envelope of the interaction of atoms
with the classical field; κ is the interaction constant of
an atom with the quantized mode; S3, S+, and S– are col-
lective atomic operators of the SU(2) algebra; and a and
a+ are the photon operators of the quantized mode. We
assume that g(t) is a periodic function of time:

Let us denote the evolution operator of the system
by Us(t) and pass on in the Schrödinger equation to the
coordinate system, which rotates at the carrier fre-
quency ωc, using the unitary operator UR(t):

The Hamiltonian H(t) of the problem in the rotating
coordinate system becomes periodical with the period T,
which allows us to use the method of quasi-energies for
obtaining the evolution operator

(22)

in the rotating coordinate system. Let us divide H(t)
into two terms:

(23)

φα VI t( ) φβ /Ω ! 1

Hs t( ) ω0S3 g t( ) iωct–( )S+ H.c.+exp( )+=

+ ωa+a κ S+a S–a++( ).+

g t( ) g t T+( ).=

UR t( ) iωc S3 a+a+( )t–{ } .exp=

U t( ) UR
+ t( )Us t( )=

H t( ) H0 t( ) V t( ).+=
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Here,

(24)

The interaction parameter κ is assumed small com-
pared to the frequency Ω = 2π/T. Then, by specifying
the form of g(t) and successively applying the formulas
from the previous section, we can construct the opera-
tor Q and the periodic operator u(t) of the atomic–field
system in the form of a power series in the parameter
δ = κ/Ω .

According to Eq. (24), the zero-order quasi-energy
operator Q0 (5) represents a sum of the atomic, Q0at ,
and field, Q0 f , operators,

(25)

while the zero-order periodic operator u0(t) (5) repre-
sents the product

(26)

The zero-order equations for u0at(t) and Q0at have the
form

(27)

(28)

The solution of this problem for the case of many atoms
and an arbitrary function g(t) is unknown. The zero-
order problem for the field quasi-energy has the solu-
tion

(29)

Here, we assume for generality that a sum of n quanta
with the modulation frequency Ω of the envelope is
approximately equal to one quantum ω – ωc of the
quantized mode detuning from the carrier frequency.
When seeking the zero-order solution, one should keep
in mind, as noted at the end of the previous section, that
the periodic operators u0at(t) and u0f(t) should be appro-
priately chosen.

The case of the exact resonance ω = ωc (a coinci-
dence between the frequencies of the carrier harmonic
and the quantized mode in the absence of any additional
restrictions on the atomic transition frequency ω0) is
especially simple. In this case, the zero-order operator

H0 t( ) H0at t( ) H0 f t( ),+=

H0at t( ) ω0 ωc–( )S3 g t( )S+ H.c.+( ),+=

H0 f ω ωc–( )a+a,=

V t( ) κ a+S– H.c.+( ).=

Q0 Q0at Q0 f ,+=

u0 t( ) u0at t( )u0 f t( ).=

H0at t( )u0at t( ) i
d
dt
-----u0at t( ) u0at t( )Q0at,+=

u0at 0( ) I ,=

Q0at M u0at
+ t( ) H0at t( ) i

d
dt
-----– 

  u0at t( )
 
 
 

.=

u0 f t( ) inΩa+at–( ),exp

Q0 f ω ωc– nΩ–( )a+a.=
JOURNAL OF EXPERIMENTAL
Q1 represents a linear form in the operators a and a+ of
the general form

(30)

The parameters of the linear form, real vectors m and n,
are functions of the parameters of the Hamiltonian
(21) and can have arbitrary lengths and directions; S is
the vector atomic operator of the generalized spin with
components Sx, Sy, and S3.

The eigenfunction problem for Q1 (30) is most sim-
ply solved in the case of the permutability of the atomic
operators

(31)

The right-hand side of Eq. (31) is zero in three cases
when

(32)

These are particular cases. The eigenvectors of Eq. (30)
are factorized to atomic and field factors, and the problem
has a continuous spectrum. The field eigenvectors repre-
sent the squeezed states for one of the field quadratures
with the infinite degree of squeezing. If conditions (32) are
not satisfied, another possibility exists: using the com-
pression transformation [13], the operator (30) can be
transformed to the Tavis–Cummings Hamiltonian form
(in the interaction representation under conditions of
the exact resonance). The unitary transformation oper-
ator has the form

(33)

Here, ϕ and ξ are arbitrary real parameters. The opera-
tor Q1 retains its form:

The vectors m and n are replaced by new vectors m' and n':

(34)

The operator  takes the form of the Tavis–Cum-
mings Hamiltonian if the parameters ϕ and ξ are related
in such a way that the two conditions

(35)

are satisfied simultaneously.
Expressions (35) correspond to the following choice

of the parameters ϕ and ξ:

(36)

(37)

Q1 a a++( )m S i a a+–( )n S.⋅+⋅=

m S⋅( ) n S⋅( ),[ ] i m n× S⋅( ) 0.= =

m 0, n 0, m n.||= =

G iϕa+a–( ) ξ aa a+a+–( )/2–{ } .expexp=

Q1' G+Q1G a a++( )m' S i a a+–( )n' S.⋅+⋅= =

m' m ϕcos n ϕsin+( ) ξ ,exp=

n' m ϕsin n ϕcos–( ) ξ–( ).exp=

Q1'

m' n'⋅ 0, m' n'= =

2ϕtan
2m n⋅

m 2 n 2–
-----------------------,=

4 ξ–( )exp

=  
m 2 n 2 m 2 n 2–( )2

4 m n⋅( )2+–+

m 2 n 2 m 2 n 2–( )2
4 m n⋅( )2++ +

--------------------------------------------------------------------------------------------.
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We obtain from Eqs. (34), (36), and (37)

(38)

By directing the coordinate axes along mutually
orthogonal vectors m' and n', we obtain the canonical
form of the operator 

(39)

Here, we retained the notations S– and S+ for atomic
operators in new coordinate axes. The eigenfunctions
|Ψ±n 〉  and the spectrum E±n, n = 0, 1, 2… for (39) are
known [18] and have the form

(40)

(41)

for the case of a single atom. Here, |n〉 and |±1/2〉  are the
eigenfunctions of operators a+a and S3, respectively.
One can see from Eqs. (38) and (39) that, when the
problem parameters approach to their critical values [con-
ditions (32) are satisfied], the distance between quasi-lev-
els tends to zero and the spectrum of Q1 becomes con-
tinuous. In this case, the squeezing parameter ξ (37)
tends to ∞, so that one of the mode quadratures
becomes strongly squeezed and the dispersion of the
second quadrature becomes very large. According to
Eqs. (33) and (41), the eigenfunctions of the operator
Q1 (30) have the form

(42)

Here, we introduced the notation of squeezed Fock
states

4. THE QUASI-ENERGY OPERATOR
FOR A BIHARMONIC EXTERNAL FIELD

Consider as an example the case of biharmonic per-
turbation with two frequencies equal to ωc ± Ω and

In the case of the exact resonance with the carrier fre-
quency ω0 – ωc = 0, ω – ωc = 0, we have the required
zero-order solutions (25)–(29)

We will call the parameter σ the dimensionless ampli-
tude of a classical field. By substituting these solutions
into Eqs. (14)–(16), we obtain the quasi-energy opera-
tor in the first-order approximation

(43)

m' n' D m n× .= = =

Q1'

Q1' D a+S– aS++( ).=

E n± D n,±=

Ψ n±| 〉 n| 〉 –1/2| 〉⋅ n 1–| 〉 1/2| 〉⋅( )±( )/ 2=

Ψξ n±,| 〉 ξ n,| 〉 1/2–| 〉 ξ n 1–,| 〉 1/2| 〉±( )/ 2.=

ξ n,| 〉 G n| 〉 .=

g t( ) F Ωt( ).cos=

Q0at 0, u0at t( ) iΦ t( )Sx–{ } ,exp= =

Φ t( ) σ Ωt( ),sin=

Q0 f 0, u0 f I , Q0 0, σ 2F/Ω.= = = =

Q1 2κ pSx xSyJ0 σ( )+( ).=
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Here, Jn(z) is the Bessel function. In the above expres-
sions, we introduced for brevity the field operators
(quadratures)

By comparing Eq. (43) with Eq. (30), we obtain the
relations for parameters m and n

Because m · n = 0, we have the angle ϕ = 0 (36), and
parameters ξ and D are determined by the relations

(44)

It follows from Eqs. (38), (39), and (44) that a singular-
ity in which the spectrum of Q1 becomes continuous
corresponds to a zero of the Bessel function:

.

Analysis of the high orders of the problem shows
that the operator Q can be represented in the equivalent
form QE, which is convenient for calculating its spec-
trum:

Here, the unitary operator L and the equivalent quasi-
energy operator QE found up to the third order in κ
inclusive have the form

(45)

The parameters f1, f2, F1(σ), and F2(σ) represent series
in the Bessel functions of the integer index of the argu-
ment σ = 2F/Ω . The expressions for F1(σ) and F2(σ)
required for further calculations have the form

Here,

x
i a a+–( )

2
---------------------, p

a a++

2
--------------.= =

m κex, n κeyJ0 σ( ).= =

2ξ( )exp J0 σ( ), D κ J0 σ( ).= =

σ 2F/Ω 2.4048…= =

Q LQEL+.=

QE Q1 QE3,+=

QE3 2κδ2 xpxSxF1 σ( ) x3SyF2 σ( )/2–( ),=

L i 2δxS3 f 1( )exp iδ2 px xp+( )S3 f 2–{ } ,exp=

δ κ /Ω.=

F1 σ( ) 2
Jk σ( )

k
------------- 

 
2

,
k 1=

∞

∑–=

F2 σ( ) 2
J2k' 1+ σ( )J2k 1+ σ( )J2k 2k' 2+ + σ( )

2k 1+( ) 2k' 1+( )
----------------------------------------------------------------------------

k k', ∞–=

∞

∑=

–
1
2
---

J2k' σ( )J2k σ( )J2k 2k'+ σ( )
2k 2k'⋅

----------------------------------------------------------.
k k', ∞–=
k 0, k' 0≠≠

k k' 0≠+

∞

∑

Jk σ( ) 1–( )k J k– σ( ).=
SICS      Vol. 92      No. 3      2001



386 MIROSHNICHENKO, SMIRNOV
The operator QE3 is nonlinear in the “coordinate” x and,
hence, determines the asymptotics of eigenfunctions of
the operator QE for |x |  ∞. It is obvious that the
asymptotics can change when the higher orders of the
perturbation theory are taken into account. Below, we
consider some features of the spectrum of the operator
QE as a whole, without assuming that QE3 is small com-
pared to Q1. Not all the results of such an approach are
reliable in the quantitative respect and require verifica-
tion by numerical methods.

Consider the possibility of the linearization of QE in
the “coordinate” x. Nonlinear terms are small and can
be neglected in the region of small x ≈ 0. We will call
this region a central “well.” Here, QE ≈ Q1 (43). The
spectral properties of this operator were studied above
[see (40)–(42), (44)]. In the region of large values of |x |
for 0 ≤ σ ≤ 2.4048…, the operator QE can be linearized
by the shift transformation

ix0 p( )x ix0 p–( )expexp x x0+=

δ = 0.15

0
σ

Q
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y
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Fig. 1. Levels of the quasi-energy operator for the “open”
JCM in a biharmonic field as functions of the classical-field
amplitude σ. The dashed curves are levels of noninteract-
ing “wells” (the linearization method). The solid curves
are the third order of the perturbation theory. The dotted
curves are calculations using the monodromy operator.
nmax = 150, δ = 0.15.

Fig. 2. The same as in Fig. 1, only for δ = 0.07.
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by choosing the parameter x0

(46)

The linearized operator QE has the form

(47)

The operator  determines the quasi-energy states of
the atomic–field system in the regions x ≈ ±|x0|, which
we will call side wells:

(48)

Here, we introduced the notation of a shifted (coherent)
squeezed Fock state of the field

The squeezing parameter ξ in Eqs. (33) and (44) is
defined by the relation

Thus, our analysis showed that there exist three
regions of values of x in the third order of the perturba-
tion theory where the quasi-energy states of the
atomic–field system are described by the generalized
Jaynes–Cummings Hamiltonian (30). Figures 1 and 2
show the dependences of energies of some quasi-energy
levels on the amplitude σ (for δ = 0.15 and 0.07, respec-
tively), which were obtained by three methods. The
dashed, monotonically decreasing curves, which converge
at the singularity σ ≈ 2.4048…, give the quasi-levels of
the linearized quasi-energy operator in the central well
of Q1 Eqs. (40) and (44). The dashed curves issuing
from the point σ = 0 and converging at the point σ ≈
2.4048… represent the doubly degenerate quasi-levels

of the operator  (side wells) (48). The solid curves
correspond to the energy levels of the operator QE (45)
(the third order of the perturbation theory), which were
obtained by the numerical diagonalization of its matrix
in the Fock basis. The basis dimensionality was limited
by the parameter nmax equal to 150. The dotted curves
show the quasi-levels of the exact quasi-energy opera-
tor Q of the problem under study [the Hamiltonian H(t)
(23)], which was found numerically from the formula [15]

Here, U(T) is the evolution operator (22) during the
period T. The dimensionality of the matrix Q was also
limited by the parameter nmax. As follows from Figs. 1
and 2, the calculation in the third order of the perturbation
theory and the exact calculation quantitatively agree with

x0 2J0 σ( )/δ2F2 σ( ).=

QE
lin 2κ pSxJ σ( ) 2xSyJ0 σ( )–( ),=

J σ( ) 1 2F1 σ( )J0 σ( )/F2 σ( ).+=

QE
lin

E n±
lin D n, D± κ 2J0 σ( )J σ( ),= =

Ψξ n±,
x0| 〉

=  x0 ξ n, ,| 〉 1/2–| 〉 x0 ξ n 1–, ,| 〉 1/2| 〉±( )/ 2.

x0 ξ n, ,| 〉 ix0 p–( )G n| 〉 .exp=

2ξ–( )exp J σ( )/2J0 σ( ).=

QE
lin

Q
iΩ
2π
------Ln U T( )( ).=
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each other. The agreement increases with decreasing
parameter δ of the perturbation theory. The plots of quasi-
levels obtained by the linearization method qualitatively
differ from the plots obtained by more exact methods. This
concerns first of all the regions of crossing of the levels of
the central and side wells. Upon the refinement of the
calculation, the level crossings are replaced by their
anti-crossings. In addition, the double degeneracy of
the side-well levels is removed upon approaching the
singularity.

To elucidate the reason for the differences found, we
consider the features of the field “motion” in the vicin-
ity of the above-mentioned wells in more detail. In Fig. 3,
the amplitudes of oscillations over the “coordinate” x
and “momentum” p for the central well, ∆x and ∆p [the
Hamiltonian Q1 (43)] are compared with these quanti-

ties ∆x1 and ∆p1 [the Hamiltonian  (47)] for side
wells as function of σ. Our estimate shows that the
amplitudes are determined by the relations

It follows from Fig. 3 that in the region σ ≈ 0, the
quadrature of x for oscillations in side wells is strongly
squeezed. Near the point σ ≈ 2.4048…, the quadrature
of p for oscillations in the central and side wells is
strongly squeezed. In the system of units chosen, the
absence of squeezing corresponds to the regions where
amplitudes are close to unity. Figure 4 shows the
dependence of the shift of side wells |x0| (46) on σ for
several values of the interaction parameter δ = κ/Ω . The
comparison of Figs. 3 and 4 shows that the eigenfunc-
tions of the field mode in the x representation are
strongly localized in the region of three wells at suffi-
ciently small δ:

The overlap of the wells appears near the value σ ≈
2.4048… . The side wells are separated from the central
well by a potential barrier whose penetrability is deter-
mined by the parameters σ and δ:

(49)

The potential barrier penetrability increases with
increasing σ for δ being fixed. The quasi-energy states
localized in the central well become quasi-stationary,
with the decay constant R, which can be estimated,
according to [19], from the formula

The wells located in the vicinity of the singularity begin
to interact with each other. This causes the splitting of
quasi-levels.

The barrier width (over the “coordinate” x) between
the central and side wells is of the order of the shift |x0|
(46) and tends to infinity with decreasing σ. This cir-

QE
lin

∆x 1/J0 σ( ), ∆p 1/∆x,= =

∆x1 J σ( )/2J0 σ( ), ∆ p1 1/∆x1.= =

x 0 x0± .,≈

B 4J0 σ( )x0
2/3–{ } .exp=

R κ J0 σ( )B/4π.=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
cumstance substantially affects the result of numerical
analysis because, due to the restriction of the dimen-
sionality of the Fock basis (n ≤ nmax), the region of vari-
ation of the “coordinate” is also restricted (0 ≤ |x0| ≤
xmax ≈ ). For this reason, the plot of any physical
quantity versus σ constructed at the fixed value of the
cut-off parameter nmax has two regions, which are
divided by the boundary value σ0. In the region 0 ≤ σ ≤ σ0,
the barrier width exceeds xmax, and the influence of side
wells is completely excluded. When σ ≥ σ0, the side wells
are taken into account in the calculation, resulting in the
drastic modification of the plot upon passing through σ0.
The dependence of the parameter σ0 on δ is determined
by the relation

Thus, we have σ0 ≈ 0.8 for Fig. 1 and σ0 ≈ 1.2 for Fig. 2.
The above-mentioned effect is manifested in these fig-
ures as the instability of calculations upon approaching
σ0 from the left.

The presence of the boundary value σ0 should be
also taken into account in the numerical solution of the

nmax

δ
J0 σ0( )

nmaxF2 σ0( )
-------------------------------.=
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Fig. 3. Amplitudes of oscillations over the “coordinate” x
and “momentum” p for noninteracting central (∆x, ∆p) and
side (∆x1, ∆p1) “wells” as functions of the classical-field
amplitude σ: (1) ∆p, (2) ∆x, (3) ∆p1, (4) ∆x1.
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Fig. 4. Parameter x0 of the shift of side wells from the cen-
tral well as a function of the classical-field amplitude σ: δ =
0.07 (1), 0.1 (2), 0.15 (3), 0.3 (4).
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problem on parametric excitation of the quantized field
mode of a resonator produced by a classical field with
the amplitude that smoothly increases from zero. In this
case, the inaccuracy caused by the cut-off of the Fock
basis can be eliminated assuming that the switching on
rate on the interval 0 ≤ σ ≤ σ0 is sufficiently high
(greater than the decay rate R), so that tunneling has no
time to occur. In other words, the rate of the initial
interval of the envelope of the classical-field pulse
should be matched with the cut-off parameter nmax of
the basis. The process of parametric excitation of the
quantized mode of the resonator by the classical field,
whose amplitude is much smaller than the critical
value, is of the below-barrier transition type. Having
fixed the barrier penetrability B in Eq. (49) at the 0.1
level, we obtain the estimate for the lower boundary
(bottom) δb(σ) of the parametric excitation region on
the δσ plane:

(50)

As analysis shows, to the right of the singularity σ ≥
2.4048…, the boundary curve (the top of the parametric
excitation region) δt(σ) is described by the relation

(51)

Figure 5 shows the plot of the parametric resonance
region. The singularity σ = 2.4048… corresponds to the
region origin.

5. CONCLUSIONS

We have considered the problem on parametric
excitation of a quantized field mode by a polychromatic
classical field. Parametric processes involving the elec-
tromagnetic radiation have many practical applications
and have been discussed in the literature [15, 20, 21].
According to [21, p. 303], parametric processes repre-
sent processes of energy exchange between vibrational

δb σ( )
8J0

2 σ( )
3F2 σ( )Ln10
-------------------------------.=

δt σ( )
4J0

2 σ( )
F1 σ( )J0 σ( ) 3F2 σ( )/2–
----------------------------------------------------------.=

1

2

0 0.05

0.5

0.10 0.15 0.20 0.25 0.30

1.0

1.5

2.0

2.5

3.0

δ

σ

Fig. 5. Parametric resonance region in the “open” JCM in a
biharmonic field on the δσ plane: (1) top of the region (48) and
(2) bottom of the region (47).
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systems due to their coupling via a nonlinear dissipa-
tive element. In the problem considered, the coupling
of the fields—the classical and quantum ones—is
caused by their interaction with two-level atoms placed
in a resonator. The fields and atoms form a unified
quantum system whose Hamiltonian depends on time.
It is assumed that this Hamiltonian can be simulated by
the Hamiltonian of the “open” TCM. In this paper, we
have paid a special attention to the statistical properties
of the quantized mode states, which are related to the
parametric process under study.

We have developed the perturbation theory for con-
structing the quasi-energy operator Q of the problem.
As a small parameter δ, we used the ratio of the con-
stant of interaction between the mode and an atom to
the modulation frequency of the amplitude of a bihar-
monic classical field. We derived the operator Q up to
the third order in δ inclusive. We studied the spectral
problem for Q analytically using linearization and
numerically, by matrix diagonalization. The Q matrix
was constructed in the third order and also exactly (in
the truncated basis) with the help of the monodromy
operator obtained by numerical methods. We studied
the lower limit of the parameter δ. The opposite case of
low frequencies Ω can be analyzed more easily and
seems to be of little interest because the quadrature
squeezing is absent in this limit. The question of the
convergence of the perturbation theory series obtained
by us remains open. It is not inconceivable that the
quasi-energy operator under study has a continuous
spectrum. In this case, the series can be treated only as
asymptotic and probably diverging.

The application of the linearization method to the
equivalent operator QE (in the “coordinate” representa-
tion) revealed the special feature of the problem,
namely, the presence of the efficient potential barrier
dividing the central and side wells. The term well
refers to the regions of the “coordinate” change where
the generalized JCM Hamiltonian Q1 (30) can be used.
The field part of the eigenfunctions of Q1 has interest-
ing statistical properties; namely, it represents squeezed
(over one of the quadratures) field states of quantum
optics. The degree of squeezing can be changed by
varying the parameters of the problem: the amplitude
and the modulation frequency Ω of the classical field.
The presence of the potential barrier is reflected in the
features of the spectrum of Q (the tunneling effect
results in the interaction between the wells, the splitting
of the quasi-levels, and the replacement of their cross-
ing by anti-crossing), as well as in the dynamics of
parametric excitation of the quantized field mode. The
initial excitation stage is of the below-barrier transition
type and therefore is improbable. As the barrier van-
ishes (with increasing amplitude of the classical field),
a region of the parametric resonance appears on the δσ
plane. The dynamics of the parametric process requires
a separate study.
AND THEORETICAL PHYSICS      Vol. 92      No. 3      2001
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Abstract—A theoretical treatment is performed of the mechanism (suggested in N. F. Bunkin and A. V. Lobeev,
Z. Phys. Chem. 214, 269 (2000)) of ionic effect on the Rayleigh line wing under conditions of light scattering
by liquid electrolytic solutions. The mechanism consists essentially in that the fluctuation electric field caused
by Brownian motion of ions dissolved in a liquid leads, because of the Kerr polarization effect, to fluctuations
of optical anisotropy of the scattering medium. The spectral characteristics of the Rayleigh line wing are
obtained using the fluctuation-dissipative theorem as applied to equilibrium thermal electromagnetic field. Expres-
sions are derived for the integral intensity and spectral width (∆ν) of the Rayleigh line wing in terms of parameters
of liquid solution such as the temperature T, the viscosity η, the concentration of dissolved ions ni, and the coeffi-
cient of their diffusion Di. It is demonstrated that ∆ν ∝  exp(–W/2T), where W is the activation energy of ion mobil-
ity bi = Di/T. The possible region of validity of developed theoretical concepts as applied to the experimental data
for the Rayleigh line wing in electrolytic solutions is discussed. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Modern concepts of the physical nature of the Ray-
leigh line wing under conditions of light scattering in
liquids are still far from being finalized. Although the
universally accepted macroscopic model of this phe-
nomenon, based on the results of treatment of fluctua-
tions of optical anisotropy (fluctuations ∆εik of the per-
mittivity tensor) of the scattering medium [1, 2], proved
to be very fruitful, it still calls for further development
as regards the concretization of the physical mecha-
nisms of such fluctuations. The difficulties encountered
in the process are associated with the interpretation of
the observed spectral structure of the Rayleigh line
wing and, first of all, of its width ∆ν, which reaches val-
ues of the order of ~100 cm–1 and higher for most of the
investigated liquids. With the values of ∆ν as high as
this, characteristic times τ ~ (∆ν)–1 ≤ 10–13 s must be
present in the ∆εik fluctuation spectrum. The need for
times as short as this is in conflict, first of all, with the
so-called relaxation models of the phenomenon, which
are based, with a number of variations, on the assump-
tion made as early as that of Landau and Plachek [3]
that the rate of fluctuations ∆εik in a liquid is defined by
the processes of rotational self-diffusion of its mole-
cules. According to these models, only one characteris-
tic time must be present in the ∆εik fluctuation spec-
trum, namely, the time of rotational diffusion of liquid
molecules, which coincides by an order of magnitude

with the time of Debye relaxation τD = 4η /T, where
η is the viscosity of the liquid, δl is the radius of its mol-
ecules, and T is the temperature (here and below, all

δl
3

1063-7761/01/9203- $21.00 © 20390
quantities are given in energy units). For molecular liq-
uids, τD ≥ 10–11 s; i.e., it exceeds the time (∆ν)–1 ≤ 10–13

s by at least an order of magnitude.

At present, it is generally recognized that simple
(relaxation) models are limited, which stimulated the
development of other theoretical approaches to inter-
preting the Rayleigh line wing; many of those
approaches are described in reviews [1, 4]. These new
approaches, however, have likewise failed to produce
an adequate explanation for the spectral structure of the
Rayleigh line wing, especially in the far portion of its
spectrum, i.e., at ∆ν @ 1/τD. The situation turned out to
be even less predictable theoretically as papers have
become available that described experiments involving
observations of the Rayleigh line wing in aqueous elec-
trolytic solutions. Gray et al. [5] and Lanshina et al. [6]
have found that the characteristics of the Rayleigh line
wing in such solutions depend considerably both on the
concentration of dissolved electrolyte and on the type of
the electrolyte. A qualitative explanation of this effect, as
suggested in [5, 6], consists in that the ions dissolved in
water cause a change in intermolecular interactions and,
thereby, in the water structure defined by hydrogen bonds.
Thus, one must bear in mind that the behavior of such vari-
ations depends on the type of ions which, according to
Frank and Evans [7], may be classified as structure-
forming and structure-destroying. The ions of the
former type fit into the structure of water without
destroying hydrogen bonds, while the ions of the latter
type destroy these bonds and, thereby, distort the struc-
ture of water. This is quite a plausible assumption
which, as far as we know, was not subjected to subse-
001 MAIK “Nauka/Interperiodica”
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quent quantitative treatment; therefore, it still remains
a hypothesis.

At the same time, in a recent paper [8] also dealing
with the investigation of the Rayleigh line wing in
aqueous solutions of some salts, another physical
mechanism of the effect of dissolved ions on the spec-
trum of the Rayleigh line wing was suggested. This
mechanism consists in that the fluctuation electric field
E(t) caused by thermal Brownian motion of ions dis-
solved in a liquid leads, because of the Kerr polariza-
tion effect, to fluctuations of optical anisotropy and, as
a result, to the emergence of depolarized scattering of
incident light (i.e., the Rayleigh line wing). Note that
the mechanism suggested in [8] applies, generally
speaking, to all molecular liquids, because the latter
liquids always possess ionic conduction to some or
other degree. If this is not a solution of impurity elec-
trolyte, the conduction is due to intrinsic ions which
appear as a result of thermal electrolytic dissociation of
molecules of the liquid proper. This dissociation is
especially effective in polar liquids characterized by high
values of static permittivity ε0. The resistivity ρ of very
thoroughly purified water at room temperature (ε0 ≈ 80) is
of the order of ~107 Ω cm, which corresponds to the den-
sity of intrinsic ions H+ and OH– ni ≈ 3 × 1014 cm–3. In
pure nonpolar liquids, the density ni is of course much
lower. In solutions (for example, aqueous) of strong
electrolytes, the density ni is limited only by their satu-
ration concentration.

Naturally, the mechanism of the effect of dissolved
ions on the spectral structure of the Rayleigh line wing,
treated below, cannot lay claim to universality if only
for the reason that it fails to enable one to explain the
dependence of the data of [5, 6] on the type of ions.
Therefore, it must be regarded as one possible mecha-
nism. It appears attractive owing to its physical clarity
and to the possibility of quantitative analysis, which
was first attempted in [8]. However, the quantitative
estimates of the effect, which were obtained in [8], are
not exhaustive: this fact caused us to resume the treat-
ment of the problem.

This paper describes the results of detailed theoreti-
cal analysis of the mechanism suggested in [8]. The
analysis is based on the general theory of equilibrium
thermal electromagnetic fluctuations, which involves
the use of the fluctuation-dissipative theorem; the most
complete description of this theory is found in [9] (see
also [10]). This approach enables one to relate the spec-
tral intensity F(ω) of fluctuations of electric field E(t)
in liquid with the parameters of the latter such as the
resistivity ρ (or the ionic density ni), the ionic diffusion
coefficient Di, and the temperature T. In turn, given
F(ω), one can use the third-rank tensor of nonlinear
polarizability of liquid χijkl to determine the spectral
intensity of fluctuations of the anisotropy tensor ∆εik

associated with the Kerr high-frequency effect. Note
that the spectral characteristics of equilibrium fluctua-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tions of the field E, calculated using the fluctuation-dis-
sipative theorem in terms of the linear dissipation char-
acteristics of the medium, are completely independent
of the nonlinear optical properties of the medium and,
in particular, of the third-order polarizability χ. There-
fore, in determining the anisotropy of liquid induced by
the field E, the field proper may be treated as external.

2. SPECTRAL INTENSITY OF FLUCTUATION
OF ELECTRIC FIELD

IN A LIQUID CHARACTERIZED
BY IONIC CONDUCTION

As was stated above, the spectral intensity F(ω) of
fluctuations of the field E(t) may be described using the
fluctuation-dissipative theorem. Because we are inter-
ested in the contribution to the intensity F(ω) caused
only by the thermal motion of ions dissolved in a liquid,
the use of this theorem implies that the permittivity ε of
the liquid proper is regarded as a real quantity. In fur-
ther treatment of aqueous electrolytic solutions (in par-
ticular, pure water), we will represent ε in the form

(1)

where ε0 = ε(0) is the static permittivity (for water, ε0 ≈
80) and ε1 is the permittivity in the IR frequency band
when (ωτD)2 @ ε0/ε1. For water at T = 4 × 10–14 erg
(293 K), the time τD ≈ 8 × 10–12 s. The expression for ε
in the form of Eq. (1) may be used, with certain limita-
tions, for all polar liquids. We will use the symbol εi to
denote the contribution to the total permittivity caused
by the presence of the ionic component. The dissipative
properties of the ionic solution, which are responsible,
according to the fluctuation-dissipative theorem, for the
emergence of fluctuation field E, are defined by the fact
that the quantity εi is complex.

It is known [9] that the calculation of the spectral
characteristics of thermal electromagnetic field inside
the medium proper calls for the inclusion of spatial dis-
persion in this medium. In the case of the problem
being treated, one must know the longitudinal compo-

nent (ω, p) of permittivity εi. Because the ionic den-
sity ni ! nl (nl is the density of molecules of liquid),
the motion of ions under the effect of the field E ∝
exp[i (ωt – p · r)] of electromagnetic wave may be
described in the diffusion approximation. In so doing,

(ω, p) is defined by formula (20.42) in monograph [9],

(2)

where

ε
ε0 ε1 ωτD( )2+

1 ωτD( )2+
---------------------------------,=

εi
l

εi
l

εi
l ε 1 i/ ωτ0 i p2a2–( )–[ ] ,=

a εT /8πe2ni, τ0 a2/Di,= =
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and Di is the ionic diffusion coefficient (the ionic solu-
tion is assumed to be binary, symmetric, and consisting
of singly charged ions of identical mobilities). The

transverse component  of permittivity in this approx-
imation does not possess spatial dispersion and is

The sought spectral intensity F(ω) of the field E is
defined by the second term of formula (20.15) in [9]
under conditions of R = 0 and substitution into this for-

mula of expression (2) for (ω). Thus, integration for
the region of ω > 0 yields1 

(3)

(3a)

(3b)

where aD =  is the Debye length.
In the case of aqueous solutions, when ε is defined

by formula (1) and the parameters ξ ≡ ε1/ε0 ≈ 1/40 and
α ≡ τD/τd ~ M/10 ! 1 (M is the molar concentration of
the solution; 1 M corresponds to the ion density ni =
6 × 1020 cm–3), expression (3) for the spectrum F(ω)
may be represented in the form (ω > 0)

(4)

where x ≡ ωτD and β ≡ "/TτD.

1 Formula (3) defines the spectral intensity F(ω) of a single projec-
tion Ea of the field onto the coordinate axis (average 〈Ea〉  = 0).
The continuation of the function F(ω) to the region of ω < 0 is
even, F(–ω) = F(ω), so that

The rejection of the first term in formula (20.25) in [9] is attrib-
uted to the fact that this term defines the spectral intensity of the
total thermal electromagnetic background in a liquid, which is in
no way related to the presence of dissolved ions in that liquid.
This term is present in the case of ni = 0 as well. In addition, the zero-
point vibration term "ω/2 is rejected in the mean oscillator energy.
To ensure against misunderstanding, note that, in the notation of
monograph [9], the spectral intensity F(ω) = 〈Ea(r) (r)〉 =

(1/3)〈E(r)E*(r)〉  (there is no summation over the indices; for
more detail, see the Appendix).

εi
t

εi
t ε 1 i/ωτ0–( ).=

εi
l

Ea
2〈 〉 F ω( ) ωd

∞–

∞

∫ 2 F ω( ) ω.d
0

∞

∫= =

Ea
*

F ω( ) F 0( ) 21/3ε0/ε( )3/2
=

× 1

1 1 ε/ε0( )2 ωτd( )2++

------------------------------------------------------------ "ω/T

e"ω/T 1–
--------------------,

F 0( )
2e

2
niT

9πε0
3Di

2
------------------,=

τd

ε0T

8πe2niDi

----------------------
aD

2

Di

------= = ,

ε0T /8πe2ni

F ω( ) T 2α( )1/2

6πDiε0aD

------------------------ 1 x
2

+

1 ξ x2+
----------------- 

 
2

=

× α 1 x2+

1 ξ x2+
----------------- x+

1/2– βx

eβx 1–
---------------,
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Until now, we talked about fluctuations of the field
E in time only. In reality, it fluctuates in space as well.
In so doing, F(ω) defines the spectral intensity of time
fluctuations at a fixed point in space and, accordingly,
their time correlation properties. The space–time corre-
lation characteristics of the field E(t, r), which will be
required in what follows, are given in the Appendix.

3. LIGHT SCATTERING BY FLUCTUATIONS
OF OPTICAL ANISOTROPY IN LIQUID, 

CAUSED BY ELECTRIC FIELD
OF DISSOLVED IONS

In the general case, the scattering properties of an
anisotropic medium during macroscopic description
are characterized by the properties of the tensor αik

appearing in the constitutive equation [2]

(5)

where  denotes the components of the electric field

of incident wave;  and  are the components of the
electric field and induction of scattered wave, respec-
tively; and ε is the permittivity of the medium. The
physical nature of the tensor αik may vary; its compo-
nents (as well as ε), generally speaking, are character-
ized by frequency dispersion. Therefore, the algebraic
form of notation (5) has a meaning only for monochro-
matic fields. In our problem, the tensor αik is defined by
the Kerr high-frequency effect in the fluctuating field
E(t, r), which has a continuous spectrum extending,
according to Eq. (3), to frequencies ~T/" ≈ 3 × 1013 s–1 ~
102 cm–1. Compared with the optical wave frequencies
ω0 ≈ 3 × 1015 s–1, such fluctuations of the field E may be
regarded as slow. Therefore, with due regard for the
nonlinear electron polarizability alone and, accord-
ingly, ignoring the dispersion of the tensor χijkl , we will
further represent the tensor αik in the algebraic form,

(6)

and the second, “scattering,” term in Eq. (5) in the form

where A is the amplitude of an incident plane mono-
chromatic wave and e is the unit vector defining the
polarization of this wave. Because the dispersion of the
tensor χijkl is ignored, all of its components are real, and
the tensor αik is also real (as regards the designations
adopted for Ek(t, r), see the Appendix). The degree of
its symmetry is defined by the known symmetry of the
tensor χijkl for isotropic media (see, for example, [11]);
the average values 〈α ik〉  = 0.

We will further assume that an incident wave, which
is linearly polarized along the z axis, propagates along
the x axis of rectangular coordinates (x, y, z). We will be

Di' εEi' α ikEk
0,+=

Ek
0

Ei' Di'

α ik α ik t r,( ) χ ijkl[E j t r,( )El t r,( ) E jEl〈 〉– ],= =

Aα ikek i ω0t k– r⋅( )–[ ] ,exp
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interested in the wave scattered along the y axis (scat-
tering angle of 90°); the x-component of this wave cor-
responds to the so-called depolarized component ,
and the z component corresponds to the polarized com-
ponent . In the Fraunhofer zone, we have for these
components [2]

(7)

For (t), we have an analogous formula with eH

replaced by eV . Here,

c is the light velocity, and R is the distance between the
observation point and the scattering region (R @ kV2/3,
V is the volume of the scattering region); integration in (7)
is performed with respect to the volume V. The correla-
tion functions of the components (t) and (t),

,

(ψVV(τ) is determined analogously) in view of (7) take
the form

(8)

.

According to Eqs. (6), (A.3), and (A.4), the quantity
〈(eH (t, r')eV) · (eH (t + τ, r'')eV)〉  which appears under
the integration sign is real, is an even function of only τ
and r = r' – r'', and is given by the formula (see the
Appendix)

(8a)

where

(8b)

EVH'

EVV'

EVH' EVH' t( ) C iω0t–( )exp[ ]= =

× eHα̂ t r,( )eVe iq– r⋅ r.d∫
EVV'

C A ikR( )exp[ ]k0
2/4πR,=

k k0 ε1, k0 ω0/c,= =

q k' k, q– 2k,= =

eV 0 0 1, ,{ } , eH 1 0 0, ,{ } ,= =

EVH' EVV'

ψVH τ( ) 1
4
--- EVH' t( )EVH'* t τ+( )〈 〉 c.c.–[ ]=

ψVH τ( ) 1
4
--- C 2=

× eHα̂ t r',( )eV( ) eHα̂ t τ+ r'',( )eV( )⋅〈 〉∫



× i ω0τ q– r' r''–( )⋅[ ]dV'dV'' c.c.+exp




α̂ α̂

eHα̂ t r',( )eV( ) eHα̂ t τ+ r'',( )eV( )⋅〈 〉

=  βklγδ
VH Kklγδ τ r,( ) βklγδ

VH Kklγδ τ– r–,( ),=

βklγδ
VH eH( )i eH( )α eV( ) j eV( )βχ ijklχαβγδ=

=  χxzklχxzγδ.
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The substitution of Eq. (8a) into Eq. (8) and single inte-
gration yield

(9)

For ψVV(τ), an analogous formula is derived with the

tensor  replaced by  = χzzklχzzγδ.
The spectrum of the Rayleigh line wing is defined

by the Fourier transform of the correlation functions
ψVH, VV(τ). On the basis of Eqs. (9), (A.9), (A.9a),
(A.9b), and (A.6), for this spectrum GVH, VV(ν) (ν =
(ω − ω0) denotes the mismatch between the frequency
ω of scattered wave and the frequency ω0 of incident
wave), we derive (the obvious condition |ν| ! 2ω0 is used)

(10a)

(10b)

where

(10c)

In deriving these formulas, the following notation was
used for components of the tensor χijkl [11]:

ψVH τ( ) 1
2
--- C 2V ω0τcos=

× βklγδ
VH Kklγδ τ ρ,( ) qr( )cos ρ.d

V
∫

βklγδ
VH βklγδ

VV

GVH ν( ) GVH ν–( ) const χ1212 χ1221+( )2= =

× q r⋅( )g11 ν ρ,( )cos rd∫



q r⋅( ) 1 γy
2–( )cos∫+

× g12 ν ρ,( )dr 2 q r⋅( )γx
2γz

2
g22 ν ρ,( )cos rd∫ 




,+

GVV ν( ) GVV ν–( ) const χ1111 2χ1122+( )= =

× q r⋅( )cos g11 ν ρ,( ) rd∫



+ 4 χ1122
2 1 γz

2–( ) χ1111
2 γz

2+[ ] q r⋅( )g12 ν ρ,( )cos rd∫
+ 2 χ1122 1 γz

2–( ) χ1111γz
2+[ ]2

q r⋅( )g22 ν ρ,( )drcos∫ 



,

g11 ν ρ,( ) g11 ν ρ,–( ) = L1 ω ρ,( )L1 ω ν+ ρ,( ) ω,d

∞–

∞

∫=

g12 ν ρ,( ) = g12 ν– ρ,( ) = L1 ω ρ,( )L2 ω ν+ ρ,( ) ωd

∞–

∞

∫

=  L1 ω ν+ ρ,( )L2 ω ρ,( ) ω,d

∞–

∞

∫

g22 ν ρ,( ) = g22 ν– ρ,( ) = L2 ω ρ,( )L2 ω ν+ ρ,( ) ω.d

∞–

∞

∫

χ1111 χxxxx≡ χyyyy χzzzz;= =

χ1212 χxyxy≡  = χxzxz = χyxyx  = χyzyz = χzxzx = χzyzy;
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The functions L1, 2(ω, ρ) = L1, 2(–ω, ρ) are defined in the
general case by formulas (A.7a) and (A.7b). For aque-
ous solutions, when relations (2) and (A.7c) are valid,
these functions take the following form at ω > 0:

(11a)

(11b)

Here, F(ω) ≡ L1(ω, 0) is the spectral intensity of fluctu-
ations of the field component Eα(t) at a fixed point in
space, which is defined by formula (3c), and

(11c)

If GVH, VV(ν) denotes the density of the energy flux of
scattered radiation (intensity) in a unit frequency range,
the constant appearing in Eqs. (10a) and (10b) is equal

to I0 V/(8π)2R2, where I0 = (c /8π|A |2 is the total
(integral) intensity of incident light wave. The integra-
tion in Eqs. (10a) and (10b) is limited to the ranges of
values of ρ, in which the functions g11(ν, ρ), g12(ν, ρ),
and g22(ν, ρ) are other than zero, i.e., in fact, to the ranges
of spatial correlation of the field E(t, r). The integrals over
solid angles (dr = ρ2dρdΩ = ρ2dρsinθdθdϕ), which
enter Eqs. (10a) and (10b), are readily calculated and
have the form

χ1221 χxyyx≡  = χxzzx = χyxxy  = χyzzy = χzxxz = χzyyz;

χ1122 χxxyy≡  = χxxzz = χyyxx  = χyyzz = χzzxx = χzzyy;

χ1111 χ1122 χ1212 χ1221.+ +=

L1 ω ρ,( ) F ω( ) 3/4( )κρ–[ ] ,exp=

L2 ω ρ,( ) 3F ω( )–=

× 3/4( )κρ–[ ] 1 κρ/4–( )exp–( ).exp

κ 1

2aD α
--------------------- α 1 x2+

1 ξ x2+
----------------- x+ , x ωτD.≡=

k0
4 ε1

J1 q r⋅( )cos Ωd

4π
∫ 4π qρ( )sin

qρ
-------------------,= =

J2 γy
2 q r⋅( )dΩcos

4π
∫=

=  4π/3( )1F2 2; 5/2; 1; qρ/2( )2–( ),

J3 γx
2γz

2 q r⋅( )cos Ωd

4π
∫=

=  4π/15( )1F2 2; 9/2; 1; qρ/2( )2–( ),

J4 γz
2 q r⋅( )dΩcos

4π
∫=

=  4π qρ( )sin
qρ

------------------- qρ( )cos– 
  1/ qρ( )2,
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where 1F2 is a generalized hypergeometric series. At
qρ = 0, the values of these integrals are as follows:

Therefore, formulas (10a)–(10c) and (11a)–(11c)
define the spectral structure of the Rayleigh line wing
for both depolarized (V, H) and polarized (V, V) compo-
nents. However, it proves impossible to perform inte-
grations indicated in these formulas; therefore, we will
restrict ourselves to the calculation of only the integral
intensity of scattering IVH, VV and the spectral width
(∆ν)VH, VV of the Rayleigh line wing. We will start with
the calculation

The substitution into this integral of the expressions for
GVH, VV(ν) according to formulas (10a)–(10c) gives rise
to the integrals

which, in view of the fact that the functions L1, 2(ω, ρ)

are even with respect to ω, are equal to (ρ) and
M1(ρ)M2(ρ), respectively, where

(12)

We substitute Eqs. (11a) and (11b) and perform integra-
tion in view of the condition α ! 1 to derive

(12a)

(12b)

where ρ0 = (4 /3)aD. Because (ρ) and
M1(ρ)M2(ρ) ∝  exp(–2ρ/ρ0), the integrals J1, 2, 3, 4, 5,
which enter Eqs. (10a) and (10b), may be replaced, on

J5 γz
4

4π
∫ q r⋅( )dΩcos=

=  12π 3/ qρ( )3 1–( ) qρ( )sin 3 qρ( )/qρcos–

qρ( )3
-------------------------------------------------------------------------------------------,

J1 4π; J2 4π/3; J3 4π/15;= = =

J4 4π/3; J5 4π/5.= =

IV H VV, GVH VV, ν( ) ν .d

∞–

∞

∫=

L1 2, ω ρ,( )L1 2, ω ν+ ρ,( ) ωd ρ,d

∞–

∞

∫∫

L1 ω ρ,( )L2 ω ν+ ρ,( ) ωd ν ,d

∞–

∞

∫∫

M1 2,
2

M1 2, ρ( ) 2 L1 2, ω ρ,( ) ω, M2 0( )d

0

∞

∫ 0.= =

M1 ρ( ) 2 2T

3πε0aD
3

------------------e
ρ/ρ0–

ρ/ρ0
------------,=

M2 ρ( ) 2 2T

πε0aD
3

--------------
ρ/ρ0( )e

ρ/ρ0–

6α ρ/ρ0( )2+
-------------------------------,–=

2 M1 2,
2
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the condition that (qρ0/2)2 ! 1, by their values at qρ = 0.
Assuming that this condition is valid (see below), the
integrals with respect to ρ in Eqs. (10a) and (10b)
reduce to the following:

(12c)

According to Eqs. (12a) and (12b), the respective val-
ues of these integrals are b, 9b, and –3b, where

(13)

In view of the foregoing, we derive for the intensities
IVH, VV, according to (10a)–(10c),

(14a)

(14b)

In accordance with this, the values of the scattering cross
section calculated per unit volume of the scattering region

(scattering coefficient),  ≡ (R2/V )(IVH, VV/I0), are
given by

(15a)

(15b)

where λ is the wavelength of incident light. (Note that,
in the CGSE system of units employed by us, the quan-

tities  are in cm–1 and the components of the ten-
sor χijkl are in s2 cm/g.) According to these formulas,
the degree of depolarization is

(15c)

It will be recalled that these formulas are valid subject
to the condition (qρ0/2)2 ! 1, which, in view of the fact

ρ2M1
2 ρ( ) ρ; ρ2M2

2 ρ( ) ρ;d

0

∞

∫d

0

∞

∫

ρ2M1 ρ( )M2 ρ( ) ρ.d

0

∞

∫

b
2 2

3
---------- 16

9π
------ 

 
2 T2

aD
3 ε0

2
-----------.=

IVH const χ1212 χ1221+( )2=

× 8 2
15π
---------- 16

9
------ 

 
2 T

aD
3 ε0

2
-----------,

IVV const χ1111
2 7

2
---χ1122

2 3χ1111χ1122+ + 
 =

× 64 2
15π

------------- 16
9
------ 

 
2 T

aD
3 ε0

2
-----------.

σ1
VH VV,

σ1
VH 5 2

3
---------- 16

9
------ 

 
2 T2

λ4ε0
2aD

3
---------------- χ1212 χ1221+( )2,=

σ1
VV 5 2

24
---------- 16

9
------ 

 
2 T

2

λ4ε0
2aD

3
----------------=

× χ1111
2 7

2
---χ1122

2 3χ1111χ1122+ + 
  ,

σ1
VH VV,

∆ IVH

IVV
-------

1
8
---

χ1212 χ1221+( )2

χ1111
2 7

2
---χ1122

2 3χ1111χ1122+ +
----------------------------------------------------------------.= =
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that q = k0 and ρ0 = (4 /3)aD, may be repre-
sented in the form

(16)

(room temperature).
We will now turn to the calculation of the spectral half-
width (∆ν)VH, VV of the Rayleigh line wing, defined by
the formula

(17)

The substitution of expressions for GVH, VV(ν) according
to formulas (10a)–(10c) gives rise to the integrals

which, in view of the fact that the function L1, 2(ω, ρ)
is even with respect to ω, prove to be equal to
2M1, 2(ρ) (ρ) and [M1(ρ) (ρ) + (ρ)M2(ρ)],
where M1(ρ) and M2(ρ) are defined by formulas (12), and

(18)

According to Eqs. (11a)–(11c), one can derive

(18a)

(18b)

If the condition (qρ0/2)2 ! 1, i.e., condition (16), is
valid, the internal integrals with respect to ρ, which enter

the integral GVH, VV(ν)dν according to Eqs. (10a)

and (10b), reduce to the following:

(18c)

2ε1 2

λ 8πε1
1/2aD≥

8πε1ε0T

e2ni

-------------------- 10 M 1/2–  nm≈=

∆ν( )VH VV, 1
2
---

ν2GVH VV, ν( ) νd

∞–

∞

∫

GVH VV, ν( ) νd

∞–

∞

∫
------------------------------------------.=

ν2L1 2, ω ρ,( )L1 2, ω ν+ ρ,( ) ωd ν ,d

∞–

∞

∫∫

ν2L1 ω ρ,( )L2 ω ν+ ρ,( ) ωd ν ,d

∞–

∞

∫∫

M1 2, M2 M1

M1 2, ρ( ) 2 ω2L1 2, ω ρ,( ) ω. M2 0( )d

0

∞

∫ 0.= =

M1 ρ( ) 16 2Tα3

πDiε0aDτD
3

---------------------------
ρ0

ρ
----- 

 
5

e
ρ/ρ0–

,=

M2 ρ( ) 2 2Tα3

πDiε0aDτD
3

---------------------------
ρ/ρ0( )e

ρ/ρ0–

18α3 ρ/ρ0( )2+
------------------------------------.–=

ν2

∞–

∞∫

ρ2M1M1 ρ; ρ2M2M2 ρ;d

0

∞

∫d

0

∞

∫

ρ2M1M2 M1M2+
2

------------------------------------ ρd .

0

∞

∫
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One can see in Eqs. (12a), (12b), and (18a), (18b) that

and

and, therefore, the first and third of integrals in (18c)
diverge at the lower limit. The formal reason for this con-
sists in that expressions (12a), (12b) and (18a), (18b) for
the functions M1, 2(ρ) and (ρ) were derived by us on
the condition that the quantity ρ/ρ0 is finite (i.e., cannot
tend to zero). In calculating IVH, VV, this limitation
proved to be of no importance, because it did not result in
the divergence of integrals (12c). In order to eliminate the
divergence of the above-identified integrals (18c), the
lower limit in them must be replaced by some finite scale
ρmin ! ρ0/2. Because the divergence is caused by the

fact that  ∝  (1/ρ)5 (see Eq. (18a)), it is natural to
determine the scale ρmin by equating the a fortiori finite
quantity

to the right-hand part of expression (18a), assuming
that, in this part, ρ = ρmin. In so doing, we derive

and, based on Eq. (3c), we have

and, therefore,

(19)

For aqueous solutions at room temperature,

so that the parameter (α5/2β3/2ξ2)1/5 ≈ 10–2 M1/2, and,
therefore,

M1M1( ) ρ0/ρ( )6e
2ρ/ρ0–

∝

M1M2( ) ρ0/ρ( )4e
2ρ/ρ0–

,∝

M1 2,

M1

M1 0( ) 2 ω2L1 ω 0,( ) ωd

0

∞

∫=

≡ 2 ω2F ω( ) ωd

0

∞

∫
dEα

dt
--------- 

 
2

=

ρmin ρ0
16 2Tα3

πDiε0aDτD
3 M1 0( )

------------------------------------------
1/5

=

M1 0( ) 2αT

3πDiε0aDτD
3 ξ2β3/2

---------------------------------------------=

ρmin 2ρ0 α5/2β3/2ξ2( )1/5≈

≈ 4 ε1/ε0( )2/5 Di
5τ r

3τD
2( )

1/10
.

α τD/τd τDDi/aD
2 M/10,≈≡ ≡

β "/TτD 3 10 3– ,×≈≡

ξ ε1/ε0 2.5 10 2– , τ r " T⁄ 2.5 10 14–  s,×≈≡×≈≡

ρmin/ ρ0/2( ) 4 10 2–  M1/2
 ! 1.×≈
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One can see in Eq. (19) that, with the Stokes mecha-
nism of ion mobility, when bi = Di/T ∝  1/η, the mini-
mal scale ρmin ∝  (bi)0.3, i.e., for the preassigned solution
having the temperature T and the viscosity η, the scale
ρmin depends (in the manner indicated above) only on
the mobility bi = bi(T, η) of dissolved ions (it is
assumed that the ratio ε1/ε0 is invariable).

The results of calculating integrals (18c) for the func-
tions M1, M2, , and , defined by formulas (12a),
(12b) and (18a), (18b), and, for the value of the scale
ρmin defined by formula (19), demonstrate that the main

contribution to the integral  is made

by the first of the integrals (18c), i.e.,

In so doing, we derive for the half-width of the Rayleigh
line wing, according to Eqs. (17), (10a)–(10c), (12c), and
(13),

(20a)

(20b)

4. DISCUSSION OF THE RESULTS. 
CONCLUSION

The obtained results demonstrate that the ion contri-
bution to the Rayleigh line wing under conditions of
light scattering in electrolytic solutions, which is due to
the mechanism suggested in [8], proves to be quite sub-
stantial. This is especially true of the spectral structure
of the Rayleigh line wing. According to the theory
described, three characteristic times define the spectral
half-width of the Rayleigh line wing (of both the depo-

larized and polarized components), namely, τd = /Di ,
the time of ionic diffusion through a Debye sphere;

τD = 4η /T, the time of rotational self-diffusion of liq-
uid molecules through a large angle (Debye relaxation
time); and τr = "/T, the time of correlation of the elec-
tric field generated by the Brownian motion of ions
(inverse spectral width of these fluctuations). One can
see from formulas (20a) and (20b), which define the

M1 M2

ν2GV H VV, ν( ) νd

∞–

∞

∫

ρ2M1M1 ρd

ρmin

∞

∫ 64

9 48( )3/5π2
-------------------------=

×
T2α3ρ0

3

Diε0
2aD

4 τD
3

----------------------- 1

α3/2β9/10ξ6/5
---------------------------.

∆ν( )VH 2
ε0/ε1( )0.6

τd
0.25τD

0.3τ r
0.45

---------------------------,=

∆ν( )VV ∆ν( )VH=

×
χ1111

2 2χ1122
2+

χ1111
2 7

2
---χ1122

2 3χ1111χ1122+ +
----------------------------------------------------------------.

aD
2

δl
3
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spectral half-width ∆ν of the Rayleigh line wing, that
the contribution by each one of these times to the value
of ∆ν is multiplicative, with the most significant part
played by the time τr , and the least significant part, by
the time τd. Note that the half-width (∆ν)VH is indepen-
dent of the components of the tensor χijkl , while the
integral intensity IVH ∝  (χ1212 + χ1221)2 (see Eq. (14a)).
We will give the numerical estimate of the quantity
(∆ν)VH for a typical aqueous solution of alkali salts at
room temperature, assuming that Di = 2 × 10–5 cm2/s. In
so doing, the time τd = (4.6 × 10–11/M) s. Formula (20a)
gives (∆ν)VH = 105 M1/4 cm–1. Assuming that the diffu-
sion coefficient for ions H+ and OH– in water is also
equal to 2 × 10–5 cm2/s, for purest water with pH = 7
(i.e., 10–7 M) we obtain (∆ν)VH ≈ 2 cm–1: this agrees
with the result given by the simple relaxation theory
with a single (rotational) relaxation time, according to
which (∆ν)VH = 3/τD [1].

It is of interest to treat the temperature dependence
of the spectral width ∆ν. For the quantities entering
Eq. (20a), we have ε0 ∝  1/T (water), τr ∝  1/T, and τd ∝
T/niDi. Assuming further that the Stokes mechanism
of ion mobility is valid, we have Di ∝  T/η; therefore,
τD ∝  1/Di. As a result, we derive

where W is the activation energy for the ion mobility
bi = Di/T. For weak electrolytic solutions, the density ni,
generally speaking, increases with T; therefore, the tem-
perature-related increase in ∆ν proves to be much faster.
For the ions of K+, Cs+, Cl–, and I– in water, the energy

W/2 ≈ 2 kcal/mol ≈ 103 K.

Therefore, in heating aqueous solutions of such ions
from 20 to 90°C, the width of their spectrum must
increase by a factor of approximately two, i.e., for
alkali salt solutions one must expect the values of

According to Eqs. (14a) and (14b), the integral

intensity of the Rayleigh line wing IVH, VV ∝  T5/2 ;
i.e., the dependence on temperature is weaker, and that
on the ion concentration is, on the contrary, stronger
than for ∆ν. As follows from Eq. (15c), the degree of
depolarization is independent of ni and T and, for each
liquid (solvent), is a fixed quantity (naturally, if the
dependence of χijkl on T and ni is ignored).

The foregoing theory qualitatively explains some of
the experimental data of [5, 6] and, at the same time,
displays considerable contradictions to those data.
For example, Gray et al. [5] have found a weak (nonex-
ponential) temperature-related increase in the integral
intensity of the Rayleigh line wing in aqueous solutions
of KI and MgSO4 salts in the concentration range of
0–3 M, which is predicted by our results. Gray et al. [5]

∆ν ni
1/4 W /2T–( ),exp∝

∆ν( )VH 210M1/4 cm 1– .≈

ni
3/2
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have further demonstrated that, in the region of fairly
high values of concentration, the integral intensity for
the KI solution increases slowly (in accordance with our
theory), but for MgSO4 it remains almost unchanged. At
the same time, for highly dilute solutions of both electro-
lytes, Gray et al. [5] observed a decrease in the intensity
of the Rayleigh line wing with an increase in concen-
tration, which may in no way be explained within our
model. A similar pattern is observed in comparing our
results with those of Lanshina et al. [6], who give the
data of measurements of the half-width (∆ν)VH in aque-
ous solutions of Zn(NO3)2, Ca(NO3)2, and Mg(NO3)2,
as well as carbonates of alkali metals. Lanshina et al.
[6] have found that an increase in concentration in the
range of its moderate and high values (up to saturation)
is accompanied by a weak increase in the values of
(∆ν)VH for electrolytes of the first group (which agrees
with our results), and for electrolytes of the second
group these values remain almost unchanged. How-
ever, in the range of fairly low values of concentration
(≤10–2 M), electrolytes of both types, on the contrary,
exhibited a decrease in (∆ν)VH as the concentration
increases analogously with the behavior of integral
intensity observed in [5].

The results of comparison with the experimental
data lead one to conclude that the mechanism of the
effect of dissolved ions on the Rayleigh line wing in
water, suggested in [8], may apparently play a decisive
part only in the region of fairly high values of dissolved
ion concentration. Given the hypothesis about the ionic
rearrangement of the structure of water, discussed in [5, 6]
(see the Introduction), one can suggest that the mecha-
nism treated by us becomes prevailing in the case of
such a concentration of ions when the rearrangement of
the structure of a solution is terminated as a result of its
saturation. In conclusion, note that a radical experimen-
tal proof of the concepts of the importance of ions in the
effect of the Rayleigh line wing, which were suggested
in [8] and developed in this paper, would be given by
finding the Arrhenius correlation (∆ν)VH ∝  exp(–W/2T)
in the range of high values of electrolyte concentration,
as well as the independence of the degree of depolariza-
tion of scattering in the Rayleigh line wing of ni and T.
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5. APPENDIX

We will give some results obtained using the corre-
lation theory of steady-state (with respect to time), uni-
form, and isotropic (with respect to space) random
fields that were employed in the main body of the
paper. In addition, we will establish a continuity rela-
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tion with the results of Levin and Rytov [9], which are
also employed in the paper. Further, as in the main text
of the paper, the quantity E(t, r) (which explicitly
includes the time t as one of the independent variables)
denotes the real value of the vector of electric field
intensity. In so doing, the spectral tensor of spatial cor-
relation of the field, defined by formula (20.24) of [9],
has the form

(A.1)

where

The dependence of Ψαβ on |τ| and r alone is a result of
stationarity and spatial uniformity of the random field
E(t, r). The tensor 〈Eα(r1) 〉 , in turn, satisfies the
equality

where

is the random spectral amplitude density of the process
E(t, r). According to the Wiener–Khintchine theorem,

(A.2)

Based on the known property of Gaussian random
quantities (as are the quantities entering this tensor), the
tensor

is represented as

(A.3)

(if the random quantities x1, x2, x3, and x4 have a joint
Gaussian probability distribution, the mean 〈x1x2x3x4〉  =
〈x1x2〉〈 x3x4〉  + 〈x1x3〉〈 x2x4〉  + 〈x1x4〉〈 x2x3〉).

Because of both the spatial uniformity and the isot-
ropism of the vector field E(t, r), we derive, in the gen-
eral case,

(A.4)

Eα r1( )Eβ* r2( )〈 〉

=  
1
2
---π Ψαβ τ r1, r2–( )e iωτ– τ ,d

∞–

∞

∫

Ψαβ τ r,( ) Ψαβ τ– r,( )=

=  Eα t r,( )Eβ* t τ+ r r+,( )〈 〉 .

Eβ* r( )

Eα ω r1,( )Eβ* ω' r2,( )〈 〉

=  Eα r1( )Eβ* r2( )〈 〉 δ ω ω'–( ),

E ω r,( ) 1
2
---π E t r,( )e iωt– td

∞–

∞

∫=

Ψαβ τ r,( ) Eα r( )Eβ* r r+( )〈 〉 eiωτ ω.d

∞–

∞

∫=

Kikjl 〈 Ei t r,( )Ek t r,( )Ej t τ+ r r+,( )El t τ+ r r+,( )〉=

– Ei t r,( )Ek t r,( )〈 〉 E j t τ+ r r+,( )El t τ+ r r+,( )〈 〉
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where N1, 2(τ, ρ) denotes scalar functions even with
respect to τ, with N2(τ, 0) ≡ 0. The representation of the
tensor

(A.5)

is analogous, where L1, 2(ω, ρ) denotes scalar functions
even with respect to ω, with L2(ω, 0) ≡ 0. According to
Eqs. (A.2) and (A.4),

(A.6)

Based on formulas (20.24) and (20.25) in [9], the func-
tions L1, 2(ω, ρ) may be represented as

(A.7a)

(A.7b)

For the medium being treated, according to Eq. (2),

(A.7c)

Here,

It follows from (A.7a) and (A.7b) (see Footnote 1) that

Hence, according to Eq. (A.6),

(A.8)

Therefore, based on Eq. (A.4), we have
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  pρ( )sin

pρ
-------------------

0

∞

∫=

–
3

pρ( )2
-------------- pρ( )sin

pρ
------------------- pρ( )cos– 

  p2dp

=  E r( ) E* r r+( )⋅〈 〉 3L1 ω ρ,( ).–

Im
1

εi
l

--- 
  1

ε0
----

ωτd

ε/ε0( )ωτd[ ]2 1 p2a2+( )2
+

----------------------------------------------------------------.=

a2 εT /8πe2ni, τd ε0T /8πe2niDi,= =

θ "ω/ e"ω 1–( ).=

L1 ω 0,( ) 1
3
--- E r( ) E* r( )⋅〈 〉 F ω( ), L2 ω 0,( ) 0.= = =

N1 τ 0,( ) L1 ω 0,( )eiωτ ωd

∞–

∞

∫=

=  F ω( )eiωτ ωd

∞–

∞

∫ ψ τ( ).=

Ψαβ τ 0,( ) Eα t r,( )Eβ t τ+ r,( )〈 〉≡ ψ τ( )δαβ,=
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where

is the correlation function of an individual component
of the field at a fixed point in space; thus, different com-
ponents are not correlated.

For the medium being treated, when  =

χxzklχxzγδ and  = χzzkl χzzγδ, we have

(A.9)

where

(A.9a)

(A.9b)

Here, γx, y, z denotes the direction cosines of the vector
r = r1 – r2. With ρ = 0, when N1(τ, 0) = ψ(τ) and
N2(τ, 0) ≡ 0, formula (A.9) yields

(A.10a)

With τ = 0, we have, according to Eq. (A.9),

(A.10b)

ψ τ( ) ψ τ–( ) Eα t r,( )Eα t τ+ r,( )〈 〉= =

βklγδ
VH

βklγδ
VV

βklγδ
V H VV, Kklγδ τ r,( ) f 11

VH VV, N1
2 τ ρ,( )=

+ f 12
VH VV, N1 τ ρ,( )N2 τ ρ,( ) f 22

VH VV, N2
2 τ ρ,( ),+

f 11
VH χ1212 χ1221+( )2,=

f 12
VH χ1212 χ1221+( )2 1 γy

2–( ),=

f 22
VH 2 χ1212 χ1221+( )2γx

2γz
2,=

f 11
VV 2 χ1111

2 2χ1122
2+( ),=

f 22
VV 4 χ1122

2 1 γz
2–( ) χ1111

2 γz
2

+[ ] ,=

f 22
VV 2 χ1122 1 γz

2–( ) χ1111γz+[ ]2
.=

βklγδ
VH VV, Kklγδ τ 0,( ) f 11

VH VV, ψ2 τ( ).=

βklγδ
VH VV, Kklγδ 0 r,( ) f 11

VH VV, M1
2 ρ( )=

+ f 12
VH VV, M1 ρ( )M2 ρ( ) f 22

VH VV, M2
2 ρ( ),+
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where (see Eq. (A.6))

(A.11)
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Abstract—The cross sections of the detachment of one and two electrons during the collision of two negative
ions H– + H–, H– + Cs–, and Cs– + Cs– are calculated in a wide range of collision energies: from the energy
threshold to approximately 100 keV. In adiabatically slow collisions, the detachment of electrons occurs as a
result of one- or two- electron Auger decays whose rates are calculated in the approximation of asymptotically
large separations between ions. For high collision energies, the cross sections of the electron detachment are
calculated by the method of close coupling of states. The calculated cross sections are in good agreement
with the results of experimental measurements made for the H– + H– collision. © 2001 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

The ionization processes occurring during the colli-
sion of two negative ions are of considerable interest in
connection with the problem of nuclear plasma heating
by neutral atomic hydrogen beams. It is convenient to
generate the beams of fast neutral atoms by accelerat-
ing and neutralizing negative ions in view of the rela-
tively large cross section of their neutralization at tar-
gets. However, the collisions of negative ions in high-
intensity beams, which occur due to the spread in their
velocities, effectively suppress the intensity of such
beams. The detachment of electrons during the colli-
sion between two negative ions of hydrogen atoms,
H– + H–, was studied earlier both experimentally [1–3]
and theoretically [4, 5].

In this paper, we analyze the following three pro-
cesses of electron detachment:

whose probabilities strongly compete with one another.
For this reason, we calculate the cross sections of these
processes simultaneously by solving a single wave
equation. Reactions (A), (B), and (AB) will be investi-
gated by us for the following three collisions: H– + H–,
H– + Cs–, and Cs– + Cs–.

For high collision velocities, processes (A), (B), and
(AB) occur as a result of direct transfer of a part of the

A– B–+

A B– e,+ +

A– B e+ + ,

A B 2e+ + ,



 A( )

B( )
AB( )

=

1063-7761/01/9203- $21.00 © 20400
kinetic energy of the nuclei to the electrons. In this
limit, the cross sections are calculated in the dynamic
approximation. For low velocities, the energy exchange
between electrons and nuclei has a low probability, and
another mechanism becomes effective. In view of the
smallness of the binding energy of negative ions and
their repulsion, several channels of autoionization
decay become effective simultaneously for low veloci-
ties. When two ions approach each other, the electronic
energy level rises and intersects the boundary of the
continuum even for very large distances between the
nuclei. As in the dynamic approximation, the Auger
decays of the autoionization states formed in this pro-
cess lead to considerable values of the cross sections of
the above reactions.

In this paper, atomic units of measurements are
used.

2. DETACHMENT OF ELECTRONS 
FOR HIGH COLLISION VELOCITIES. 

DYNAMIC DETACHMENT

All the three reactions, (A), (B), and (AB), occur
predominantly at large distances R between nuclei,
when the Coulomb repulsion between weakly bound
electrons of the negative ions play the major role. For
large R, this interaction can be expanded into a series in
reciprocal powers of R:
001 MAIK “Nauka/Interperiodica”
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(1)

where r1 and r2 are the radius vectors of electrons 1 and
2 in an arbitrary reference frame, while r1a and r2b are
the vectors of electrons 1 and 2 relative to nuclei a and
b, respectively. The correlation term W(r1a, r2b) is a
function of the product of the coordinates of both elec-
trons:

(2)

while the remaining terms in expansion (1) depend on
the coordinates of only one of the electrons, 1 or 2.

The relatively large term 1/R in expansion (1)
affects only the energy of the system. This term does
not depend on the electron coordinates and does not
perturb the wave functions of weakly bound electrons.
We can therefore use the unperturbed wave functions
both for bound states and for the states in the contin-
uum. The transitions between these states are deter-
mined by the terms following 1/R in expansion (1). In
order to calculate the matrix elements for dipole transi-
tions, we can use the following simple expressions for
the wave functions of the initial bound state [6–8]:

(3)

the binding energy of a negative ion being ε = –γ2/2,
while for the P state in the continuum, we have

(4)

with three components of angular functions cosθ,
sinθcosϕ, and sinθsinϕ. The z axis of the reference
frame introduced here is perpendicular to the plane of
the collision. The binding energies of the ions H– and
Cs– under investigation are given by [9]

1
r1 r2–
------------------ 1

R
---

z1a

R2
------

3z1a
2 r1a

2–

2R3
----------------------+ +≈

+
r1az1a 5z1a 3r1a–( )

2R4
-------------------------------------------- …

z2b

R2
------–

3z2b
2 r2b

2–

2R3
----------------------+ +

–
r2bz2b 5z2b 3r2b–( )

2R4
-------------------------------------------- … W r1a r2b,( ) …,+ + +

r1a r2b ! R,,

W r1a r2b,( )
r1a r2b⋅ 3z1az2b+

R3
----------------------------------------- …,+=

ψ0
–( ) r( ) B γ β,( ) γ

2π
------

e γr– e–βr–
r

-----------------------,=

B γ β,( )
1 γ/β+

1 γ/β–
----------------------,=

ψa
ε r( ) 2

πk
------

1
r
--- kr( )sin

kr
------------------ kr( )cos–=

× 3
4π
------ θ; θ ϕ ; θ ϕsinsincossincos{ }

ε
H– 0.75421 eV γ

H– 0.23544=( ),–=

ε
Cs– 0.4716 eV γ

Cs– 0.1862=( ).–=
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In monograph [6], coefficient B was determined by
joining the first term in formula (3) with the wave func-
tion of the H– ion determined by Chandrasekhar [10]
with three variable parameters; it was found that  =

1.183. In our earlier publications [7, 8], we considered
the wave equation satisfied by function (3). It was
found by fitting the potential appearing in this equation
to the static potential of a neutral hydrogen atom in the
ground state that  = 2.66 for H–. Using formula (3)

which defines coefficient B, we obtain  = 1.145.

The relative difference between the values of the coef-
ficient  obtained in [6] and in [7, 8] amounts to only

3.3%. For Cs–, the same approximation that was used
earlier [7, 8] for H– now yields  = 1.45 (see also

[11]), which gives  = 1.22.

In view of the smallness of the binding energy for
negative ions, the cross section for all the three reac-
tions are large, and we therefore take into account only
the transitions of weakly bound electrons. In this case,
the wave functions of the complete set of the states of
the system formed by two negative ions are given by

(5)

(6)

(7)

(8)

where  are the wave functions of weakly bound

electrons and  are the wave functions of neutral
atoms with an electron in the continuum corresponding
to energy ε. Expression (5) is the wave function of the
system formed by two negative ions, i.e., the wave
function of the initial state; expressions (6) and (7)
describe the states in which the electron of one of the
ions, A– or B–, is detached and belongs to the contin-
uum, while expression (8) describes the state with two
detached electrons.

The complete wave function of the system is given
by

(9)

B
H–

β
H–

B
H–

B
H–

β
Cs–

B
Cs–

ψa
–( ) r1a( )ψb

–( ) r2b( ) i εa εb+( )t–[ ] ,exp

ψa
ε r1a( )ψb

–( ) r2b( ) iεbt– iεt–( ),exp

ψa
–( ) r1a( )ψb

ε r2b( ) iεat– iεt–( ),exp

ψa
ε r1a( )ψb

ε' r2b( ) iεt– iε't–( ),exp

ψa b,
–( )

ψa b,
ε

ΨAB
–( ) t r1a r2b, ,( )

=  a0 t( )ψa
–( ) r1a( )ψb

–( ) r2b( ) i εa εb+( )t–[ ]exp

+ a t ε,( )ψa
ε r1a( )ψb

–( ) r2b( ) i εb ε+( )t–[ ]exp εd∫
+ b t ε,( )ψa

–( ) r1a( )ψb
ε r2b( ) i εa ε+( )t–( )exp d∫ ε

+ c t ε ε', ,( )ψa
ε r1a( )ψb

ε' r2b( ) –iεt iε't–( )exp εd ε',d∫∫
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and the system of time-dependent equations for ampli-
tudes a0(t), a(t, ε), b(t, ε), and c(t, ε, ε') can be written
in the form

…

(10)

…

…

where

(11)

a0(t) is the amplitude of the initial state, a(t, ε) and
b(t, ε) are the amplitudes of states with one electron
detached from ion A– or B–, respectively, and c(t, ε, ε')
is the amplitude of the state with both electrons
detached. We have neglected the transitions between
states in the continuum. The system of equations (10)
must be solved under the initial condition

Simple integration of the equations for a, b, and c,

and the substitution of these integrals into the first
equation of system (10) leads to an integro-differential
equation in one unknown function a0(t):

(12)

i
da0

dt
-------- a t ε,( )V0 ε,

A t( ) iφ0ε
A t( )[ ]exp εd∫=

+ b t ε,( )V0 ε,
B t( ) iφ0ε

B t( )[ ]exp εd∫
+ c t ε ε', ,( )V0 ε ε', ,

AB t( ) iφεε'0
AB t( )[ ]exp εd ε',d∫∫

i
da t ε,( )

dt
----------------- a0 t( )Vε 0,

A t( ) iφ0ε
A t( )–[ ] ,exp=

i
db t ε,( )

dt
----------------- a0 t( )Vε 0,

B t( ) iφ0ε
B t( )–[ ] ,exp=

i
dc t ε ε', ,( )

dt
------------------------ a0 t( )Vε ε' 0, ,

AB t( ) iφ0εε'
AB t( )–( ),exp=

φ0ε
A B, t( ) ε εa b,–( )t,–=

φ0εε'
AB t( ) ε εa– ε' εb–+( )t,–=

a0 t ∞–=( ) 1, a ∞–( ) b ∞–( ) c ∞–( ) 0.= = = =

a t ε,( ) i a0 t'( )Vε0
A t'( ) iφ0ε

A t'( )–[ ]exp t',d

∞–

t

∫–=

b t ε,( ) i a0 t'( )Vε0
B t'( ) iφ0ε

B t'( )–[ ]exp t',d

∞–

t

∫–=

c t ε ε', ,( ) i a0 t'( )Vεε'0
AB t'( ) iφ0εε'

AB t'( )–[ ] t'd ,exp

∞–

t

∫–=

da0

dt
-------- –SA t( ) SB t( )– SAB t( ),–=
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where

(13)

(14)

and kernels K(t, t ') of the integro-differential equation
(12) are given by

(15)

(16)

Equation (12) was solved numerically for each rec-
tilinear trajectory of the classical motion of atomic
nuclei. A similar integro-differential equation was used
earlier [8] for evaluating the ionization cross section of
the negative ion by the field of the positive ion in colli-
sion H– + H+.

The total probability of the detachment of an electron
from ion A by the instant t of the collision is given by

(17)

while its derivative is

(18)

Similar expressions can be written for PB and PAB. Sub-
stituting into these expressions the derivative of ampli-
tude da*(ε, t)/dt from the system of equations (10), we
obtain the total probabilities of the detachment of one
and two electrons:

(19)

(20)

In the solution of Eq. (12), these relations make it pos-
sible to directly evaluate the total probabilities of elec-
tron detachment without additional integration over the
spectra.

The matrix elements V0, ε can be calculated in the
dipole approximation since the nuclear distances which
make the main contribution to the detachment cross

SA B, t( ) a0 t'( ) iεa b, t t'–( )[ ]KA B, t t',( )exp t',d

∞–

t

∫=

SAB t( ) = a0 t'( ) i εa εb+( ) t t'–( )[ ]KAB t t',( )exp t'd

∞–

t

∫

KA B, t t',( ) V0ε
A B, t( )Vε0

A B, t'( ) iε t t'–( )–[ ]exp ε,d

0

∞

∫≡

KAB t t',( ) V0εε'
AB t( )Vεε'0

AB t'( )

0

∞

∫
0

∞

∫≡

× i ε ε'+( ) t t'–( )–( )dεdε'.exp

PA ρ t,( ) a ε t,( ) 2 ε,d

0

∞

∫≡

dPA ρ t,( )
dt

---------------------- 2Re a ε t,( )
a∗ ε t,( )d

td
-------------------- εd

0

∞

∫ 
 
 

.=

PA B, ρ t,( ) 2Re a0* t'( )SA B, t'( ) t'd

∞–

t

∫ 
 
 

,=

PAB ρ t,( ) 2Re a0* t'( )SAB t'( ) t'd

∞–

t

∫ 
 
 

.=
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sections are very large. Using the wave functions (3)
and (4), we obtain

(21)

The accuracy of the expansion carried out in (21) is
determined by the small parameter (γ/β)2 ~ 10–2 since
k ~ γ. The kernels K of Eq. (12) in this case are given by

(22)

(23)

where the spectral function

(24)

is a function of only one variable, which considerably
simplifies the procedure of the numerical solution of
Eq. (12). This function was calculated numerically.

For large impact parameters ρ  ∞, the probabil-
ities of the detachment of one electrons are PA, B ~ ρ–3

so that PA, B(ρ)ρdρ ~ ρ–2dρ. The effective cross sections
were determined from the numerical solution of Eq. (12)
in the range of impact parameters 0 ≤ ρ ≤ ρmax, and the
contribution from large impact parameters ρ ≥ ρmax was
calculated in the approximation of the theory of small
perturbations. In the dipole approximation, the contri-
bution from ρ ≥ ρmax is given by

(25)

where v is the relative velocity of the collision.

r θcos( )0 ε,
2 16γk3B2 γ β,( )

3π γ2 k2+( )
4

---------------------------------=

× 1
γ2 k2+

β2 k2+
---------------- 

 
2

–
2 16γk3B2 γ β,( )

3π γ2 k2+( )
4

---------------------------------.≈

KA B, t t',( )
4Ba b,

2

3π εa b,
------------------=

×
ϕR t( ) ϕR t'( )–[ ]cos

R2 t( )R2 t'( )
--------------------------------------------F εa b, t t'–( )( ),

KAB t t',( )
16Ba

2Bb
2F εa t t'–( )( )F εb t t'–( )( )

3π2 εaεb

----------------------------------------------------------------------------------=

×
3 ϕR t( ) ϕR t'( )–[ ] 1–cos

2

R3 t( )R3 t'( )
-----------------------------------------------------------,

F x( ) y3/2e ixy– yd

1 y+( )4
------------------------

0

∞

∫=

σA B, ρm( ) 2π P1 ρ( )ρ ρd

ρmax

∞

∫
64Ba b,

2

3v 2 εa b,

---------------------= =

× Re iyΩ ρm( )–[ ]F yΩ ρm( )( )exp y f x y,( ) xd

0

∞

∫d

0

∞

∫ 
 
 

,

f x y,( )

1 x
y
2
---+ 

  x
y
2
---– 

  q+ x y,( )q– x y,( )+ +

q+ x y,( )q– x y,( ) q+ x y,( ) q– x y,( )+[ ]2
---------------------------------------------------------------------------------------,≡

q± x y,( ) 1 x
y
2
---± 

 
2

+ ,≡
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The total cross sections of one- and two-electron
detachment for high collision velocities, i.e.,

were calculated using the rectilinear trajectories for the
H– + H– collision. The relative error in the calculation
of the total cross section did not exceed 1%. The impact
parameter ρmax was chosen so that the contribution to
the cross section from ρ ≥ ρmax was also below 1%. The
total cross sections of one- and two-electron detach-
ment are presented in Fig. 1 in comparison with the
results of experimental measurements [1, 2, 5]. For a
symmetric collision, the total cross section of the
detachment of one electron is σ1 = σA + σB (σA is the
cross section of electron detachment from the partner

σA B AB, , 2π PA B AB, , ρ( )ρ ρ,d

0

∞

∫=

1

1

1'

1''

3''

2

3
7

4

3
6

5

3'

6

BB

100
1

σ, 10–16 cm2

ECM, eV
101 102 103 104 105

10

100

Fig. 1. Cross section of the electron detachment in the H– +
H– collision as a function of the collision energy ECM in the
center-of- mass system: curves 1 and 2 are obtained as a
result of calculations in the approximation of the decay with
one- and two-electron detachments, respectively; the dotted
curves 1' and 1'' are the cross sections of the electron
“squeezing” as a result of collision with an antiproton, H– +

, calculated by us earlier [12], and the doubled antiproton
cross section, respectively, h and × are the doubled cross
section of the electron detachment from H– in a collision
with an antiproton, classical approximation, the Monte
Carlo method [25, 26]; curves 3 and 4 are the cross sections
of one- and two electron detachments, respectively, calcu-
lated in the dynamic approximation; the dotted curves 3' and
3'' are the cross section of the electron detachment by the
impact of an antiproton, dynamic approximation, and the
doubled antiproton cross section, respectively; curve BB is
the doubled Bethe–Born cross section of the one-electron
detachment [12], e and + are the results of the experimental
measurements of the one- and two electron detachments,
respectively [1, 2, 5]; curves 5 and 6 are the theoretical esti-
mates of the total cross section of the one-electron detach-
ment obtained on the basis the doubled antiproton cross sec-
tion [5, 24], and curve 7 is the total cross section of the one-
electron detachment, calculated in the classical approxima-
tion by the Monte Carlo method [1].

p
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of collision  and σB is the cross section of electron

detachment from ), where σA = σB = σ1/2.

3. SMALL VELOCITIES OF COLLISION. 
ONE- AND TWO-ELECTRON AUGER DECAYS

For low collision velocities v ! 1, the energy
exchange between electrons and nuclei is hardly prob-
able. Although the energy of heavy particles exceeds
the total binding energy of weakly bound electrons, the
dynamic detachment cross sections are adiabatically
small. Figure 1 shows that the limiting energy for the
H– + H– collision in the center-of-mass system is equal
to 2–3 keV. For low energies, however, five channels of
Auger decay are open [3], and the electron detachment
cross sections remain large (~10–14 cm2) up to the
threshold values of energy of the order of 1 eV, for
which the cross sections decrease due to the Coulomb
repulsion between negative ions.

In order to study Auger decays, we must analyze in
detail the behavior of the binding energies of electrons
for two negative ions approaching each other. Expan-
sion (1) can be presented in the form

(26)

since all the power terms in the first line in expansion (1)
coincide with those in the expansion of the interac-
tion between an electron and a negative point charge,
|R – r1a|–1. If we supplement the second line in (1) with
term 1/R, the line will coincide with the expansion of
interaction |R + r2b|–1. These coincidences follow from

the Taylor expansion for the function  of sev-
eral variables. The power series for W(r1, r2) is pre-
sented by mixed derivatives of the Taylor series.

If one of the electrons is removed to a large distance
from the system, the following expansions hold:

The presentation of the electron–electron interac-
tion in the form of expression (26) indicates a certain
analogy between the collision of two negative ions and
the collision of a negative ion with a structureless neg-
atively charges point particle (electron or antiproton),
which was investigated earlier [12, 13]. In particular, a
one-electron detachment in the collision between two
negative ions is determined by the process of “squeez-
ing” [12] of one electron by the field of the other elec-
tron, i.e., by the tunneling of one electron from its own
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ion through the potential barrier created by the other
negative ion. However, in the collision of two negative
ions, both electrons are subjected to squeezing, and
these processes compete since after the detachment of
one weakly bound electron the squeezing of the second
electron becomes impossible. Such a competition does
not take place, for example, in the collision of a nega-
tive ion with an antiproton.

Using expansion (26), we can write the total Hamil-
tonian of the system in the form

(27)

where the one-electron Hamiltonians  and  are
given by

(28)

and Ua, b(r) are the energies of the interaction of weakly
bound electrons a and b with their atomic residues. The
wave equations for these electrons can be written in the
form

(29)

(30)

and their energies can be presented as

(31)

where αa, b are the polarizabilities of negative ions.
The terms –1/R can be attributed to either Hamilto-

nian  or Hamiltonian . In Eqs. (28)–(30), this term

is attributed to . In this case, electron b possesses the
excess energy 1/R, and the change in the energy of elec-
tron a is small and can be neglected. The absolute value
of 1/R is of the order of or greater than |εa, b|, and the
electric field, which is of the order of 1/R2, is small and
can be neglected. The energy Eb(R) of electron b lies in
the continuum for nuclear spacings R ≤ Rb ≡ 1/|εb |, and
this electron can tunnel from ion B away from ion A.
This process was investigated earlier [12] for the colli-
sion of H– with an electron treated as a classical point
particle. In contrast to the collision between a negative
ion and a structureless negatively charged particle, the
following two-electron process is possible for the colli-
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ĥa ĥb
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sion of two negative ions. Electron b may transfer its
excess energy 1/R to electron a, after which electron a
will go to the continuum if R ≤ Ra ≡ 1/|εa |. In these
peculiar Auger processes which will be described in
detail below, only one electron is detached, while the
other electron remains bound to the negative ion.

If R ≤ Rab ≡ |εa + εb |–1, the Auger decay with the
emission of two electrons is possible from the point of
view of energy. The rate of this decay is determined by
the square of the matrix element of the correlation
interaction W (see below).

If term –1/R is added to Hamiltonian , we obtain
an alternative representation equivalent to the previous
one after the change in indices a  b. In order to
obtain a complete description of the system, both rep-
resentations should be analyzed. We will consider in
detail only representation (28)–(30) since the results for
the alternative representation can be written analo-
gously.

In both representations, the total energy of the sys-
tem is given by

(32)

The polarization terms are small and will be neglected.
Melchert et al. [3] thoroughly investigated the change
in the total energy E(R) in the approximation of the
δ-potential model [14] using the Coulomb Green’s
function [15, 16]. It was proved that the total energy
obeys relation (32) after the intersection of the contin-
uum boundary also.

The zeroth-order term 1/R of the electron–electron
repulsion can be formally divided into two, say, equal
parts, and each half can be ascribed to different elec-
trons. In other words, instead of formulas (31), we can
formally write the one-electron energies, for example,
in the form

However, in this case we obtain incorrect values of the
nuclear spacing for which the one-electron detachment
channels are open. It follows from relations (31) and
(32) that the detachment of the electron from ion a
becomes possible for R ≤ |εa |–1, while the above formu-
las for Ea, b(R) imply that this occurs at a half as large
distance R ≤ |2εa |–1.

The rates of all the Auger decays listed above were
calculated on the basis of the Fano method [17], which
was also used in our earlier works [12, 18– 20] (see also
[21, 22]).

Distances Ra, Rb, and Rab are very large since the
binding energies for negative ions are very small. For
example, for the H– + H– collision, the distances are
Ra = Rb ≈ 36a0 and Rab ≈ 18a0. For this reason, the effec-
tive electron detachment cross sections determined by

ĥb

     

E R( ) Ea R( ) Eb R( )+ εa εb
1
R
---.+ += =

Ea R( ) εa 1/2R, Eb R( ) εb 1/2R.+≈+≈
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the above-mentioned Auger decays are very large
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 of tunneling through the barrier calculated in
[12] is given by

(33)

The rate of decay 

 

Γ

 

sq, (

 

a

 

, 

 

b

 

)

 

(

 

R

 

) 

 

≡

 

 0 for 

 

R

 

 

 

≥

 

 

 

R

 

a

 

, 

 

b

 

 since the
energy of a “tunneling” electron at such distances is
negative (

 

E

 

a

 

, 

 

b

 

(

 

R

 

) < 0) and the tunneling is ruled out. If
electron 

 

a

 

 (or 

 

b

 

) tunnels for 

 

R

 

 

 

≤

 

 

 

R

 

a

 

, 

 

b

 

, electron

 

 b

 

 (or 

 

a

 

)
cannot tunnel to the continuum since there is no Cou-
lomb repulsion in system A + B
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 + B). The simul-
taneous tunneling of the two electrons is also impossi-
ble since, in accordance with formula (31), the energy
of only one electron can acquire positive values.

Formula (33) is valid for large separations between
the ions, which satisfy the condition [12]

(34)

In [3], formula (33) was derived in the 

 

δ

 

-potential
approximation using the Coulomb Green’s function
[15, 16] written in the semiclassical approximation.

 

3.2. One-Electron Auger Decay

 

If it is electron 
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, it can transfer it to electron 
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, which will go to the
continuum for 

 

R

 

 

 

≤ Ra. Electron b in this case remains
in the bound state so that this process is a one-electron
Auger decay. The rate of this decay is determined by the
matrix element of the correlation interaction W(r1a, r2b). If
we calculate this matrix element using the unperturbed
wave function of electron b, this matrix element is equal to
zero since the state of electron b remains unchanged.
Actually, the wave functions of electron b before and
after the decay are different. Before the decay, the state
of electron b is perturbed by the electron–electron
repulsion, and its wave function is polarized. After the
decay, this electron is perturbed by the neutral atom A;
the perturbation is much weaker than the Coulomb
repulsion and can be neglected. The matrix element of
the correlation interaction W calculated with such wave
functions of electron b differs from zero. Thus, we must
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determine the wave function of electron b, which is
polarized in the initial state due to the interaction with
electron a.

The perturbed orbit  is the solution of the
wave equation (30). For large values of R, this equation
can be written in the form

(35)

and solved by using the theory of small perturbations

(  =  + δ  + …):

(36)

(37)

where the unperturbed orbit  is specified by expres-
sion (3). The exact solution of Eq. (37) with the corre-
sponding boundary conditions is given by

(38)

Substituting Eq. (38) into Eq. (37), we can verify
directly that Eq. (38) is indeed the exact solution of this
equation.

After the calculation of the dipole matrix elements,
the two-electron matrix element of the one-electron
Auger decay, i.e.,

(39)

has the form

(40)

Using the energy conservation law

(41)

we obtain the rate Γ1ab of the one-electron Auger decay
with the detachment of an electron from the negative
ion A– by the negative ion B–:
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(42)

Similarly, the rate Γ1, ba of the one-electron Auger decay
with the detachment of an electron from the negative
ion B– by the negative ion A– is given by

(43)

3.3. Two-Electron Auger Decay

The rate ΓAB(R) of the two-electron Auger decay
can be calculated using the unperturbed wave functions
of the initial state of the system formed by two negative
ions:

(44)

As a result, we obtain the partial width

(45)

of the decay leading to the formation of a pair of free
electrons whose momenta ka and kb are related through
the energy conservation law:

After the integration over the electron momentum, we
obtain the total rate of the two-electron Auger decay:

(46)

The rates of all Auger decays are presented in Fig. 2
as functions of the nuclear spacing R for the H– + Cs–

collision. The squeezing rate Γsq(R) has the maximum
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value in the range of distances 2 to 3 ≤ R ≤ 35, which
make the main contribution to the one-electron detach-
ment cross section for energies of collision that are not
very low. However, the squeezing rate is an exponen-
tially decreasing function of R; at a distance R > 25 to
35, it becomes smaller than the rate Γ1 of the one-elec-
tron Auger decay, which is a power function of R. As a
result, for small collision energies close to the threshold
value, the one-electron decay is determined by the one-
electron Auger decay, i.e., by the quantity Γ1. Such a
behavior of the decay rates and the electron detachment
cross sections is observed for all the three collisions
under investigation: H– + H–, H– + Cs–, and Cs– + Cs–.

3.4. Probabilities and Cross Sections
for a Multichannel Decay

The initial state of the system formed by two nega-
tive ions A– + B– may decay through five different chan-
nels with the formation of three different final states:
(A), (B), and (AB). The probabilities of such a decay
must be calculated using the multichannel scheme. Let
P0(ρ, t) be the probability of finding the system in the
initial state at the instant of time t for a collision with
the impact parameter ρ and Γtot(R(t)) be the total prob-
ability of the decay via all the channels; in this case,

(47)

The probability of the decay through the ith channel is
given by

(48)

where Γi(R(t)) is the rate of the decay via the ith chan-
nel and

(49)

The cross sections σA and σB of one-electron detach-
ments from ions A– and B–, respectively,
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(50)

and the cross section σAB of the two-electron detachment,

(51)

were calculated using the Coulomb trajectories R(t),
which made it possible to correctly reproduce the
behavior of the cross sections in the vicinity of energy
thresholds, which is determined by the repulsion
between ions A– and B–.

The cross sections of electron detachments in colli-
sions H– + H–, H– + Cs–, and Cs– + Cs– are shown in
Figs. 1, 3, and 4. A comparison with the results of
experimental measurements is carried out in Fig. 1 only
for the H– + H– collision since the experimental results
for the collisions between other ions are not available.
The total cross sections of one-electron detachments in
the collisions of like ions, H– + H– and Cs– + Cs–, pre-
sented in Figs. 1 and 4, are given by

(52)

while the cross sections of the electron detachment
from each partner in a collision are equal to half the
total cross section.
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Fig. 2. Partial decay rates as functions of the nuclear spacing
R for the H– + Cs– collision:  and  are the

rates of the electron squeezing from H– and Cs–, respec-
tively, formula (33);  and  are the rates of the

one-electron Auger decays with the electron detachment
from H– and Cs–, respectively, formulas (42) and (43); Γ2 is
the rate of the two-electron Auger decay, formula (46).
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4. RESULTS AND CONCLUSIONS

Equation (12) was solved numerically by the finite-
difference method. The fifth-order recurrence relation
used by us has the form

where S(ti) is the write-hand side of Eq. (12):

These quantities were evaluated by integrating between
t = –∞ and ti so that double integration was carried out
for each trajectory. The stability of the computational
algorithm was controlled by the equality to unity of the
total probability:

The relative computational error was of the order
10−3–10–4.

Figure 1 shows the cross sections of one- and two-
electron detachments for the H– + H– collision in the
collision energy range from the threshold values to
100 keV in comparison with the results of experimental
measurements [1, 2, 5] made in the high-energy range
(1–100 keV). The one-electron detachment cross sec-
tion calculated by us in the dynamic approximation is
on the average in good agreement with the results of
experimental measurements, although a large spread of
experimental points is worth noting. The calculated
cross section for the two-electron detachment is 15–
20% smaller than the experimental value. This discrep-
ancy can be attributed to the contribution of reaction
H− + H  H + H + e to the experimentally observed
cross section [5], which was disregarded in our calcula-
tions. This reaction, which was theoretically investi-
gated for the first time in [23], occurs after the one-elec-
tron detachment and leads to the detachment of two
electrons. Both cross sections of the dynamic detach-
ment calculated by us decrease exponentially for adia-
batically low energies of collisions (≤2–3 keV).

Figure 2 depicts the rates of decay through all pos-
sible channels as functions of the nuclear spacing for
the H– + Cs– collision. The rates of squeezing in the
range of distances 5 ≤ R ≤ (22–37)a0 have the highest
values, the rate of squeezing of an electron from Cs–

being the largest since the binding energy for the Cs–

ion (0.4716 eV) is almost half as large as the binding of
the H– ion (0.75421 eV). The detachment of an electron
from the Cs– ion becomes possible at a distance R ≤

 = 57.70a0, while the threshold distance for the

H– ion is R ≤  = 36.08a0. A two-electron decay is

possible in such a collision at distances R ≤ R2 =
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22.20a0, the main contribution to the two-electron
decay cross section coming from distances 5 ≤ R ≤
20a0. The rate of squeezing decreases exponentially
upon an increase in the distance to Rsq, and hence the
rate of the one-electron Auger decay, which decreases
at a lower rate with increasing R, becomes larger than
the squeezing rate at distances close to Rsq (R ~ Rsq).

The rates of Auger decays depicted in Fig. 2 were
used by us for calculating the electron detachment
cross sections for slow H– + H– collisions. Curve 1 in
Fig. 1 corresponds to the total cross section of a one-
electron detachment, while curve 2 describes the cross
section of a two-electron detachment. The cross section
of a one-electron detachment was estimated in [5, 24]
on the basis of the assumption that the total cross sec-
tion of a one-electron detachment is twice as large as
the cross section of the electron detachment from H– by
the impact of an antiproton, which was calculated in
[25, 26], where the weakly bound electrons of both ions
were treated as classical particles. Neither of these sim-
plifying assumptions was used in our calculations and,
hence, it would be interesting to compare the total cross
section of the one-electron detachment obtained by us
with the cross section of the electron detachment from
H– by the impact of an antiproton. Curve 1' in Fig. 1 is
the cross section of the electron detachment from H– for
small velocities of the collision with the antiproton. In
this collision, the electron detachment at low collision
velocities, v < v0, is possible only as a result of squeez-
ing, while at high velocities, a dynamic detachment
takes place. For this reason, the cross section for small
values of v was calculated by using formula (50) in
which only one decay channel (squeezing of the elec-
tron from H– by the field of the antiproton) was present,
i.e., when only  ≠ 0, and the decay rates for all

other channels were put equal to zero. Curve 1'' in Fig.1
describes the doubled cross section 1'. The dotted curve
3' is also the cross section of the electron detachment
from H– by the impact of an antiproton, which was cal-
culated by us earlier for large values of v in the
dynamic approximation while solving Eq. (12), where
we put SA ≠ 0 and SB = SAB = 0. The dotted curve 3'' in
Fig. 1 is the doubled cross section 3'. These results indi-
cate that when the collision energy ECM ≤ 10 keV, the
cross section of the electron detachment from H– by the
impact of an antiproton is very close to the total cross
section one the one-electron detachment in the H– + H–

collision, and the doubled antiproton cross section is
approximately twice as large as the latter value. The
doubled antiproton cross section 3'' in Fig. 1
approaches the cross section 3 only for high energies
ECM ≥ 100 keV.

The results of the comparison can easily be inter-
preted. In the collision between two negative ions, the
detachment of the electron from one of the ions, e.g.,

, competes with the detachment of the electron from

Γ
sq H–,

HA
–
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the other ion, . The electron detachment from the

 ion as a result of the Coulomb repulsion from the

 ion is possible only as long as ion B is intact. If the

electron of ion  has been detached, the detachment

of the electron from ion  is possible only as a result
of a weaker interaction with the neutral atom HB. Con-
sequently, the probability of the electron detachment

from  should be estimated as product PA(1 – PB),
where 1 – PB is the probability of ion B being undam-
aged. The total probability on the one-electron detach-
ment in this case is PA(1 – PB) + PB(1 – PA). For high
collision energies, the main contribution to the detach-
ment cross section comes from collisions with large
impact parameters, when the detachment probabilities
are low, PA, B ! 1. In this case, 1 – PA, B ≈ 1, the total
probability of the one-electron detachment is of the
order of PA + PB, and the total cross section is of the
order of σA + σB. For energies ECM ≤ 10 keV, the prob-
abilities PA, B of the electron detachment strongly
depend on the impact parameter ρ. For large values of
ρ @ 1, these probabilities are close to zero, and in a
small region δρ, they increase from zero to unity, remain-
ing close to unity for smaller values of ρ. With such a
behavior of the probabilities, the sum PA + PB ≈ 2 in the
main region of variation of ρ and, hence, the probabili-
ties as well as cross sections cannot be summed. The
detachment of an electron from ion A strongly competes
with the detachment from ion B, and the total cross section
of a one-electron detachment is close to the single cross
section 1' of the detachment by an antiproton rather than
to the doubled cross section 1'' (see Fig. 1).

An analytic expression for the cross section of the
ionization of H– by an electron was obtained in [12]
using the Bethe–Born approximation. In order to com-
pare this formula with the results of our present calcu-
lations of the total cross section of the one-electron
detachment in the H– + H– collision, we must consider
the doubled Bethe–Born cross section which, in accor-
dance with [12], is given by

(53)

The cross section (53) is shown in Fig. 1 (curve BB).
While calculating this cross section, we used the value

B = 1.145 instead of the previous value B =  =
1.628 [12]. It can be seen from the figure that even for
a collision energy close to 100 keV, the Bethe–Born
cross section (53) is larger than the cross section
obtained by us here approximately by a factor of 1.5. In
the peak region, the Bethe–Born cross section is twice
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as large as that calculated in the present work (curve 1).
The difference can be explained by the fact that the
time-dependent problem in the Bethe–Born approxi-
mation is solved using the theory of small perturba-
tions. In our calculations, however, we solved the time-
dependent equation (12) exactly, without using any
approximation. It should also be noted that formula (53)
disregards the above competition between the detach-
ments of electrons from each of the ions and holds only
for very high energies of collisions, when the main con-
tribution to the cross section comes from the region of
large impact parameters, for which the detachment
probability is much smaller than unity.

For collisions of heavy particles, the Born approxi-
mation is applicable for energies differing considerably
from the reaction threshold due to the presence of the
logarithm in formula (53) (see Fig. 1), while for colli-
sions with an electron, this approximation is applicable
for energies whose values are closer to the threshold
[12]. For collisions between two different negative
ions, A– + B–, the electron detachment from one ion
strongly competes with the detachment from the other
ion, the ratio of the probabilities of the electron detach-
ment from the ions depending on the ratio of their bind-
ing energies. If the binding energy for ion A– is higher
than the binding energy for ion B–, the detachment from
B– is more probable than from A–, the electron detach-
ment cross section from B– being close to the cross sec-
tion of the detachment by an antiproton, while the cross
section of disintegration of A– is considerably lower
than the corresponding antiproton cross section. Figure 3
presents the cross sections of the electron detachment
in the H– + Cs– collisions calculated by us. The cross

100

1

σ, 10–16 cm2

ECM, eV
101 102 103 104 105

10

100

1000

1

2

3

Fig. 3. Cross sections of one- and two-electron detachments
calculated in the decay approximation for the H– + Cs– col-
lision: curves 1 and 2 are the cross sections of the electron
detachment from Cs– and H–, respectively; the dotted curve
corresponds to the cross section of the electron detachment
as a result of a collision with an antiproton, Cs– +  = Cs +

 + e; curve 3 is the detachment cross sections for both

weakly bound electrons, H– + Cs– = H + Cs + 2e.

p
p
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section of the electron detachment from Cs– (curve 1) is
very close to the cross section of the destruction of the
Cs– ion by an antiproton (dotted curve). At the same
time, the cross section of the disintegration of H– (curve 2)
is approximately half as large as the cross section of the
electron detachment from one of the partners of the
H− + H– collision (see Fig. 1).

Figure 4 shows the cross sections calculated by us
for the Cs– + Cs– collision. A comparison of Figs. 1 and
4 readily shows that the ratio of the total cross sections
of the one-electron detachment (curves 1 in these fig-
ures) is inversely proportional to approximately the
square of the ratio of the binding energies for the nega-
tive ions. On the contrary, the cross section of the

1
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1

ECM, eV

σ, 10–16 cm2

101 102 103 104 105

10

100

1000

Fig. 4. Cross sections of one- and two-electron detachments

calculated in the decay approximation for the  + 

collision: curve 1 is the total cross section of the one-elec-
tron detachment with the formation of systems Csa + e +

 or  + Csb + e; curve 2 is the cross section of the

detachment of two electrons, Cs– + Cs– = 2Cs + 2e.
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Fig. 5. Cross section of the electron detachment from H– in
collision H– + Cs– = H + Cs– + e in the region of threshold
energies: curve 1 is the cross section of the one-electron
decay of the H– ion; curve 2 is the cross section of the elec-
tron squeezing from H–, curve 1 + 2 is the sum of cross sec-
tions 1 and 2.
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detachment of two electrons (curves 2 in Figs. 1 and 4)
increases very slowly upon a decrease in the energy of
the colliding ions; this is valid for slow (Auger decays)
as well as rapid (dynamic detachment) collisions.

A new type of Auger decay, i.e., the one-electron
Auger decay, whose rate Γ1(R) is approximately two
orders of magnitude smaller than the rate of squeezing
Γsq(R) for nuclear spacings R = 10–20 (see Fig. 2), was
considered in Subsection 3.2. This route of the decay is
insignificant for high collision energies far from the
energy threshold. However, it was mentioned above
that the rate of the one-electron decay decreases upon
an increase in the distance R between the ions at a much
lower rate than the rate of squeezing. For collision ener-
gies close to the threshold, the colliding ions do not
approach each other to a distance at which squeezing
dominates because of the Coulomb repulsion, and the
one-electron detachment is determined by the one-
electron Auger decay. Figure 5 shows the cross section
of the electron detachment from H– in the range of
threshold energies of collisions with Cs–. The contribu-
tion to this cross section comes from the squeezing pro-
cesses (curve 2) and from the one-electron Auger decay
(curve 1). For energy ECM = 1.35 eV, these contribu-
tions are equal (see Fig. 5). For lower energies ECM >
1.35 eV, the one-electron Auger decay dominates. The
total cross section (curve 1 + 2) changes its functional
dependence on the collision energy in the vicinity of
ECM = 1.35 eV. This singularity in the behavior of the
cross section can be investigated experimentally by the
method of combined beams. It should also be noted that
the dipole expansion of the electron–electron interac-
tion used by us here is especially accurate since the
negative ions do not approach each other to small dis-
tances for threshold energies, and the behavior of the
cross section reproduced in Fig. 5 is also quite correct.
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Abstract—A theoretical model of collisions between fast ions and atoms is proposed which describes the effect
of projectiles on the excitation of autoionization resonances. The model takes into account the change in the
binding energy of electrons in a target atom induced by the field of a projectile, the effect of the field of the
atom on the kinematics of the ion scattering, as well as the effect of the intermediate (1snl )1L states on the
two-electron excitation mechanism. The charge dependence of the excitation cross section of the (2s2)1S and
(2s2p)1P resonances is found to be weaker than in the first order of the perturbation theory and is in qualita-
tive agreement with experimental data. The reasons for the emergence of such a charge dependence are ana-
lyzed. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The description of the scattering of structureless
ions from atoms is a fundamental problem in the phys-
ics of collisions [1]. In the case of many-electron pro-
cesses (whose simplest examples are the excitation and
decay of autoionization resonances of the helium
atom), not only the interaction between a projectile and
an atom must be correctly taken into consideration, but
also the electron correlations must be taken into
account.

At the present time, the two-electron excitation by
structureless and partially ionized ions at high and
intermediate energies of collision has been experimen-
tally investigated by many authors [2–7]. In these
experiments, the profile of autoionization resonances as
a function of the electron ejection angle and of the
charge and velocity of the projectile was determined
along with the parameters of the yield [2–4] and asym-
metry [2, 4] of autoionization resonances averaged over
the angles of electron ejection. It was found that upon
an increase in the charge Zp of the projectile, the yields
of resonances (2s2)1S and (2s2p)1P integrated over the

ejection angles increase very slowly (Y(Zp) ~ , n < 2)
[2], while the averaged yield of the (2s2)1S resonance
may even decrease upon an increase in the charge of the
projectile, n < 0 [4]. Such a weak dependence of the dif-
ferential and total cross sections of the excitation of
autoionization resonances on the charge of the projec-
tile is not a specific feature of two-electron excitation.
Similar dependences for total cross sections were also

Z p
n

1063-7761/01/9203- $21.00 © 0412
observed in the processes with the single ionization [8]
and the one-electron excitation of an atom [9, 10] in
collisions with various ions.

In order to explain the saturation of the charge
dependence theoretically, it was initially assumed that
in the limit as Zp  ∞, the differential and integrated
cross sections must tend to constant dσ/dZp  0 inde-
pendent of Zp [11]. A sufficient condition for such a
dependence would be the unitarity of the amplitude of
the processes under investigation for Zp @ 1 [8]. Such
an assumption is apparently of a purely model nature
and cannot explain the physical reasons behind the
observed effects. Besides, it fails to explain the
decrease in the integrated yield of resonances [4] and
the cross section of one-electron excitation [12] upon
an increase in the charge of a projectile. The interaction
of a projectile with a target atom leads to several effects
determining the charge dependence of cross sections,
including the modifications of the mechanism of elec-
tron excitation from the initial to the final state [13–16]
due to the effect of intermediate excited states and the
states corresponding to the continuous spectrum of the
target, the change in the kinematics of ion scattering
from the short-range potential created by a neutral tar-
get [17], and an increase in the binding energy [18] of
electrons in the target atom at short nuclear distances as
compared to electrons of an isolated atom. It remains
unclear which of the above effects lead to the saturation
of the charge dependence since most theoretical models
take into account the integrated influence of these
effects.
2001 MAIK “Nauka/Interperiodica”
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The effect of intermediate states on the mechanism
of electron transitions from the initial to the final state
is taken into account explicitly in perturbation theory in
the interaction of a projectile with a target [13–16] or in
the close coupling method with one-center wave func-
tions [19, 20]. These approaches successfully describe
the profile of autoionization resonances excited in col-
lisions with charged particles with Zp = ±1 [15, 16].
However, the observed charge dependence of excita-
tion cross sections for ions with Zp ≥ 2 is not repro-
duced in these models [20, 21]. For example, the per-
turbation theory using a power expansion in Zp predicts
an even stronger dependence than the first Born
approximation. The close coupling method also cannot
reproduce the saturation of cross sections of two-elec-
tron excitation [22] as well as the parameters of the
autoionization resonance yield integrated over the elec-
tron ejection angles [20].

In order to take into account all the terms of the per-
turbation-theory series in the expansion of the excita-
tion amplitude, we must use the wave function that
takes into account the interaction between a projectile
and a target most completely. This is usually realized in
theoretical models using the methods of distorted
waves. For example, in the eikonal approximation [23],
the wave function is constructed under the assumption
that a projectile interacts independently with the
nucleus of a target atom and with electrons which are
stationary relative to this nucleus. In this case, the elec-
trons of the target atom are regarded as if belonging to
the continuous spectrum of the projectile, and its influ-
ence on the binding energy is disregarded. The wave
function obtained in this way corresponds to partial
summation of the series in perturbation theory. For fast
collisions (Zp/Vi ! 1), this function is transformed into
the wave function of the first Born approximation and
satisfies not only the correct boundary conditions for
R @ r for any nuclear charge of the target atom, bu also,
in contrast to the wave function in the CDW approxima-
tion [24], to the regular normalization conditions [23].

However, a considerable disadvantage of the wave
function in the eikonal approximation is that the ampli-
tude is calculated using additional approximations
since the dependence of the phase factor on the nuclear
spacing R as well as on R – r (r is the radius vector
determining the position of an electron in the atom)
does not permit the factorization of the six-dimensional
integral over the variables of the configuration space.
An amplitude with a wave function in the eikonal
approximation is usually calculated with the help of
two approximations: the interaction of heavy particles
in the transition operator is disregarded in spite of the
nonorthogonality of the wave functions used, and the
following approximate relation is introduced for the
phase factor:

Ln ViR Vi+ R⋅( ) Ln Vi R r– Vi R r–( )⋅+( ).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
These transformations are equivalent to the disregard of
the interaction between heavy particles in the transition
amplitude at the first stage, followed by its phenomeno-
logical inclusion in the phase factor [23]. Such an
approach makes it possible to factorize the amplitude in
variables R – r, r in analogy with the first Born approx-
imation and to calculate it analytically. Such a transfor-
mation is obviously applicable only for R @ 1 and in
effect reduces the interaction of an ion with the elec-
trons and the nucleus of an atom to the interaction of
the projectile with a structureless target. This increases
the discrepancy between the results of calculations
based on this model and the experimental data prima-
rily for optically forbidden transitions [25], which
occur predominantly for small values of R.

The theoretical analysis of differential characteristics
in the one-electron excitation of hydrogen (1s  2p)
[26] and helium ((1s2)1S  (1snp)1P) atoms [19, 27]
by multiply charged ions proved that the saturation of
the total cross sections for optically allowed transitions
is a consequence of the change in the probability distri-
bution depending on the impact parameter ρ. As the
value of Zp increases, the position of the peak of the
excitation probability function ρP(ρ) is displaced
towards higher values of the impact parameter, and the

height of the peak of the function ρP(ρ)/  decreases
[19, 26]. It is impossible to experimentally determine
the probability distribution as a function of the impact
parameter, and hence the proposed explanation of the
effect of saturation in one-electron processes is purely
formal. The situation for two-electron excitations is
more complicated. In the case when the peak of the
function ρP(ρ) is shifted towards larger values of ρ, the
calculations [20] did not reveal any saturation of the
integrated yield of the autoionization resonances
(2s2)1S, (2s2p)1P, and (2p2)1D upon an increase in the
charge of a projectile. Thus, the reasons behind the sat-
uration of total cross sections for two-electron transi-
tions in atoms has not been explained even qualita-
tively.

The present work aims at developing a theoretical
model of collisions of fast ions with atoms, which
would take into account the role of intermediate states
in the excitation of autoionization resonances, the
change in the kinematics of scattering of a projectile by
the field of a target atom, and also the change in the
binding energy of electrons in the field of the projectile
for small nuclear spacings. The influence of these
effects on the form of the charge dependence of the dif-
ferential and total excitation cross sections is also ana-
lyzed.

2. THEORY

2.1. Wave Functions

Let us consider a system formed by a neutral atom
containing Ne electrons and an structureless charged

Z p
2
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projectile having charge Zp, mass Mp, and momentum
Ki = MpVi, where Vi is the velocity of the particle. The
position of the jth electron and the projectile relative to
the target nucleus with charge Zt will be characterized
by vectors rj and R, respectively, while the set of all
vectors rj, j = 1, …, Ne, will be denoted by r. The state
of the target electrons in the absence of a projectile is
characterized by the set of quantum numbers τi. We
will seek the wave function of such a system in the form

(1)

where function (R) describes the motion of the pro-
jectile in the effective field created by the atom in state
τi, and function (r, R) describes the motion of the
electrons in the field of two Coulomb centers. Substi-
tuting Eq. (1) into the Schrödinger equation and inte-
grating with respect to r with (r, R), we obtain the
following system of integro-differential equations cor-
rect to within terms of the order O(1/Mp):

(2)

(3)

where (R) is the optical potential depending on

velocity,  and ετ(Zt) are the Hamiltonian and the
energy of the electrons of the isolated target, and

is the operator describing the interaction of the projec-
tile with the electrons of the atom.

As the first approximation in the solution of the sys-
tem of equations (2) and (3), we can use in (R) the

wave function (r) for the isolated target atom

instead of (r, R). In this case, disregarding the imag-

inary component of potential , we obtain

(4)

In this approximation the system of the integro-differ-
ential equations (2) and (3) is reduced to two indepen-
dent second-order differential equations. Since

the potential of the interaction between the projectile
with the neutral (Zt = Ne) target appearing in Eq. (2) has
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a short range and the solution of Eq. (2) for Mp @ 1 can
be found in the eikonal approximation.

Let us first consider the solution of Eq. (3) for the
ground state of the helium atom with τi = (1s2)1S. Tak-
ing into account the normalization conditions, we will
seek the solution of Eq. (3) in the form of an expansion
in the electron wave functions for an isolated helium-
like atom:

(5)

where (r) and (r) are the wave functions of

the ground state and the excited (1snL)1L states of the
isolated helium-like ion with the nuclear charge Z, M is
the component of the total orbital angular momentum

L, YL, M( ) is a spherical function, r is the impact
parameter, and t is time. The expansion coefficients
Cn, L(ρ, t) and the effective charge Zi(R) are unknown
real-valued functions. It should be noted that the wave
function (5) cannot be characterized by a definite parity
since the electrons move in the field of two Coulomb
centers, which is not centrosymmeric.

We will assume that the effective charge Zi(R) is a
slowly varying function. This leads to the following
equations in Zi(R) and Cn, L(ρ, t):

(6)

(7)

with the boundary conditions

(8)

where (R) are the reduced matrix elements. The
choice of the wave function in form (5) makes it possi-
ble to single out explicitly the dependence of the wave
function on r and to determine numerically the effec-
tive charge Zi(R) of the centrosymmetric field for fixed
values of R and Zp from the condition of the minimum
of functional (6). The increase in the effective charge
for small R in Eq. (5) takes into account the fact that
with decreasing R, the electrons of the atom fall in a

ϕτ i
r R,( ) Φτ i

Zi R( )
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× 4π
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deeper potential well, and functional (6) in the limit
R  0 tends to the energy in an isolated ion with
charge Z = Zt + Zp. Consequently, the effective charge
can be approximated, to a high degree of accuracy, by
the function

Functional (6) corresponds to the sum of the binding
energy of the electrons in the target atom and the energy
of the interaction of the atom with the projectile. In
order to separate these quantities, we assume that the
binding energy of the electrons for a fixed value of R
coincides with the binding energy in an isolated
helium-like ion with a nuclear charge equal to the effec-
tive charge Zi(R), and the difference between functional (6)
and the binding energy determined in this way corre-
sponds to the energy of interaction between the atom
and the projectile. In this case, the dependence of the
binding energy of the electrons in the target atom on the
nuclear distance R and on the charge Zp of the projectile
is determined by the behavior of the effective charge as
a function of R and Zp: (Zi(R)). It should be noted
that the variational method used for determining the
effective charge in one-electron functions as a function
of the nuclear spacing was also used in [28]. After
determining the effective charge Zi(R), we can calcu-

late the matrix elements  appearing in Eq. (7).
Since |Cn, L(ρ, t)| < 1, we can disregard the quadratic
terms in Eq. (7), which gives

(9)

The same method can be used for determining the
wave functions for the excited states τf of the target
atom. However, since we must take into account the
conditions of orthogonality to all wave functions corre-
sponding to the states with a lower energy, the wave
functions for the highly excited and autoionization
states obtained in this way turn out to be quite cumber-
some since

It is more convenient to use the approximation describ-
ing all the states of the target atom in a unified effective
centrosymmetric field. In this case, the effective charge
Zf(R) in the excited states τf, as well as in the states of
the continuous spectrum, coincides with the effective
charge in the ground state:

(10)

With this approximation, which provides a unique
description for the evolution of all atomic states, the
conditions of orthogonality of the initial and final states
are satisfied automatically due to the properties of the
wave functions of isolated helium-like ions defined for

Zi R( ) Zt Z p ZtR–( ).exp+=

ετ i

Vn L,
Zi R( )

Cn L, ρ t,( ) dt'Vn L,
Zi R t'( )( )

ρ2 Vi
2t'2+( ).

∞–

t

∫–=

Φτ i

Zi r( ) Φτ f

Z f r( ) 0 for Zi Z f .≠ ≠

Z f R( ) Zi R( ) Z R( ).= =
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the same nuclear charge. As the nuclear spacing R
decreases, the depth of the potential well in which the
electrons in any state τ of the target atom are located
increases, and the larger the charge of the projectile, the
deeper the well. This leads to an increase in the excita-
tion energy,

, (11)

for small values of R, which considerably affects the
dynamics of the processes occurring in the region of
strong interaction.

2.2. Excitation of the Target Atom in Collisions
with Multiply Charged Ions

Let us first consider the process of excitation τi 
τf for a fixed scattering angle, i.e., for

where Q = Kf – Ki is the momentum transferred to the
target atom, Kf is the momentum of the scattered ion,
and q||(R) and q⊥ (R) are its components along the direc-
tion of the incident beam and the direction perpendicu-
lar to the incident beam of projectiles,

For

,

a transition of the target atom to state τf is forbidden. In
the case of scattering of projectiles through small
angles, when

(12)

there exists a region of atomic spacings R < Rmin(Q) in
which the energy QVi transferred to the atom is insuffi-
cient for its transition to the final state τf . In other
words, because of an increase in the binding energy of
electrons for small nuclear spacings, a projectile must
fly to a large distance R ≥ Rmin(Q) for the process of the
electron transition τi  τf in the target to become pos-
sible from the point of view of energy. For large values
of the transferred momenta QVi ≥ ∆εi f (Zt + Zp), the
transition of the target atom to the excited state τf  is
possible for any R.

The amplitude of the excitation from the initial state
τi to the final state τf can be written in the form

(13)

∆εif Z R( )( ) ετ f
Z R( )( ) ετ i

Z R( )( )–=

Q q⊥ R( ) q|| R( )+ const,= =

q|| R( ) ∆εif Z R( )( )/Vi.=

Q ∆εif Z R( )( )/Vi≤

∆εif Zt( ) QVi ∆εif Zt Z p+( ),≤ ≤

Tif Q( ) dR 4π
2L f 1+
------------------YL f M f

* R̂( )Vif ρ t,( )∫=

× iQ R⋅ iατ i

+ ρ t,( ) iατ f

– ρ t,( )–+( ),exp

Vif ρ t,( ) V L f

Z R( ) τ i τ f , R( ) i Cn L, ρ t,( )
n L,
∑+





=
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(14)

where 〈L0l0|Lf0〉  is the Clebsch–Gordan coefficient,

(τi  τf , R) and (nL  τf , R) are the
reduced matrix elements describing the transitions
from the ground state and from the (1snL)1L state to the

autoionization state τf, and (ρ, t) and (ρ, t) are
the eikonal phases. Thus, the two-electron excitation
amplitude (13) and (14) can be presented in the form of
a sum in which the first term in Eq. (14) corresponds to
the excitation mechanism such that only one electron of
the atom interacts with the projectile, while the other
electron is excited due to electron correlations. The
remaining terms in Eq. (14) correspond to the mecha-
nism of excitation of the autoionization state via the
intermediate (1snL)1L energy levels, in which both
electrons of the atoms interact with the projectile. In
this case, the amplitudes corresponding to these two
mechanisms of excitation do not interfere with each
other in the differential cross section. As in perturba-
tion theory, the amplitude of the excitation via inter-
mediate energy levels has a stronger charge depen-
dence since Cn, L(ρ, t ) ~ Zp (9). However, in contrast to
the amplitude in the second order of the perturbation
theory, amplitude (13) and (14) contains the normaliza-
tion factor

which is a function of Zp and can noticeably change the
charge dependence of the cross section. Integration in
Eq. (13) is carried out over the entire region in which
QVi ≥ ∆εi f (Z(R)). Thus, the inclusion of the effect of the
projectile on the binding energy of the electrons in the
target atom not only modifies the transition operator in
Eq. (13), but also leads to the exclusion of a part of the
configuration space R < Rmin(Q) from the amplitude.

3. RESULTS OF CALCULATIONS

We calculated the differential and total excitation
cross sections for the autoionization resonances (2s2)1S,
(2s2p)1P, and (2p2)1D of helium, which are excited
by structureless ions with energies of 0.5 and
1.5 MeV/amu. The effect of the degenerate continuous
spectrum on the autoionization states is disregarded.
The integration with respect to ρ and t in Eq. (13) in the
region R ≤ Rmax, where Rmax = 20, was carried out numer-
ically, and the contribution of the region |Vit| > Rmax,

× L0l0〈 |L f 0〉 Vl
Z R( ) nL τ f , R( )

l

∑ 



× 1 Cn L,
2 ρ t,( )

n L,
∑+

 
 
 

1/2–

,

V L f

Z R( ) V L
Z R( )

ατ f

– ατ i

+

1 Cn L,
2 ρ t,( )

n L,
∑+

 
 
 

1/2–

,
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ρ ≤ Rmax was estimated using asymptotic methods. The
wave functions of isolated helium-like ions with a con-
tinuous dependence of all parameters on the nuclear
charge were obtained by using the variational method
[29, 30]. In the sum over intermediate states in Eq. (14),
only states (1snL)1L, where n = 2, 3, were taken into
consideration.

The excitation amplitude (13) and (14) was calcu-
lated in the following approximations:

(1) the first Born approximation (Cn, L(ρ, t) = 0,

(ρ, t) = 0, (ρ, t) = 0, and Z(R) = Zt);

(2) only the transitions through intermediate levels

were taken into account (Cn, L(ρ, t) ≠ 0, (ρ, t) = 0,

(ρ, t) = 0, and Z(R) = Zt);

(3) the transitions through intermediate levels and
the change in the kinematics of the projectiles were

taken into consideration (Cn, L(ρ, t) ≠ 0, (ρ, t) ≠ 0,

(ρ, t) ≠ 0, and Z(R) = Zt);

(4) complete analysis was carried out taking into
account the effect of the projectile on the binding
energy of the electrons in the target (Cn, L(ρ, t) ≠ 0,

(ρ, t) ≠ 0, (ρ, t) ≠ 0, Z(R) ≥ Zt).

The table contains the results of the calculations of
the parameter determining the charge dependence

of the excitation cross sections for the autoionization
resonances formed as a result of collisions with struc-
tureless ions with energy 0.5 MeV/amu, which are
compared with the parameter describing the charge
dependence of the experimental yield of resonance
from [2] integrated over the ejection angles. It should
be noted that n(Zp) = 2 in the first order of perturbation
theory. The inclusion of the transitions through inter-
mediate energy levels (second version of the calcula-
tions) leads to an increase in n(Zp) for all resonances
(2 ≤ n(Zp) ≤ 4), the value of n(Zp) increasing with Zp.
The largest increase is observed for the parameter n(Zp)
for the (2p2)1D resonance since the transitions

through intermediate levels make the main contribution
to the excitation cross section of this resonance for the
collision energy in question. Our results also indicate
the weak effect of the intermediate states in the excita-
tion of the (2s2p)1P resonance in the given energy
range. The inclusion of the interaction between the
atom and the projectile on the kinematics (third version
of the calculations) leads to a noticeable decrease in
parameter n(Zp). The charge dependence of the excita-

ατ i

+ ατ f

–

ατ i

+

ατ f

–

ατ i

+

ατ f

–

ατ i

+ ατ f

–

n Z p( ) Ln
σif Z p( )

σif Z p 1=( )
---------------------------- 

  /Ln Zp( )=

1s2( )1
S 1snL( )1L 2 p2( )1
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tion cross section for resonances (2s2)1S and (2s2p)1P is
found to be weaker than in the first order of perturba-
tion theory (n(Zp) < 2), which is in qualitative agree-
ment with the experimental data. The influence of two
factors producing opposite effects on the charge depen-
dence of the excitation cross section qualitatively
explains the difference in the dependences n(Zp) for the
(2s2)1S and (2s2p)1P resonances. The transitions
through intermediate levels accompanied by an
increase in Zp produce a strong effect on the excitation
cross section for the (2s2)1S resonance, and the param-
eter n(Zp) for this resonance increases with Zp. On the
contrary, the parameter of charge dependence for the
(2s2p)1P resonance decreases upon an increase in Zp

like in the experiment [2]. In the case of the (2p2)1D res-
onance, parameter n(Zp) changes insignificantly when
the change in the kinematics of the scattered ion is
taken into account and, hence, the charge dependence
of the excitation cross section for this resonance is
determined predominantly by two-step transitions. The
inclusion of the effect of the projectile on the binding
energy of the electrons in the atom in the most complete
version of the calculations leads to a decrease in the
excitation cross section. However, this decrease for the
(2s2p)1P and (2p2)1D resonances actually does not
change the charge dependence parameter for these res-
onances. Potential (14) for resonances (2s2p)1P and
(2p2)1D decreases rapidly upon a decrease in R,

,

and slowly for large R,

As a result, refining the value of amplitude (13) in the
range of small R for moderate value of Zp weakly
affects the charge dependence of the excitation cross
section. On the other hand, the charge dependence of
the excitation cross section for the (2s2)1S resonance
taking into account the effect of the projectile on the
binding energy of the electrons in the atom is modified
significantly. The excitation of this resonance takes
place only for small values of R since potential Vi f (ρ, t)
has a short range (Vi f (ρ, t)  0 for R  ∞ and
Vi f (ρ, t)  const for R  0).

The differential cross section of the excitation of the
(2s2)1S resonance for small scattering angles of struc-
tureless triply charged ions with an energy of
0.5 MeV/amu is presented in Fig. 1. The inclusion of
the transitions through intermediate energy levels
increases the differential excitation cross section for
small scattering angles as compared to the cross section
in the first order of perturbation theory. A change in the
kinematics of the projectiles strongly diminishes the
differential cross section in the range of small scatter-
ing angles. The short-range potential with a Coulomb

Vif ρ t,( ) R
L f 1+

for R 0∼

Vif ρ t,( ) R
L f 1+( )–

for R ∞.∼
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
kernel in Eq. (2) leads to a rapid change in scattering
phases in Eq. (13) for small ρ and, hence, to a quasipe-
riodic variation of the differential cross section. The
larger Zp, the stronger the Coulomb repulsion of the
projectile by the nucleus of the target atom for small R,
the higher the rate of variation of scattering phases for
small ρ, and the weaker the charge dependence of the
differential cross section. In other words, the Coulomb
repulsion of the projectile by the nucleus of the target
atom lowers the probability of finding the projectile in
the region of small nuclear spacings; however, it is this
region that makes the main contribution to the excita-
tion amplitude for the (2s2)1S resonance. The inclusion
of the effect of the projectile on the binding energy of
the electrons in the target atom modifies the excitation
amplitude for small values of R also. However, in con-
trast to the change in the kinematics of the scattered
ion, this effect is manifested most clearly for small scat-
tering angles, for which the energy transferred to the
target atom may turn out to be insufficient for a transi-
tion of the atom to an excited state for small R. As a
result, a peak which was not observed in the previous
versions of the calculation is formed in the differential
cross section for the (2s2)1S as well as (2s2p)1P and
(2p2)1D resonances for small scattering angles. Thus,
the presence of a peak in the differential cross section

Parameter characterizing the charge dependence of the exci-
tation cross section for the autoionization resonances formed
as a result of collision with 0.5-MeV/amu ions

Zp (2s2s)1S (2s2p)1P (2p2p)1D

Experimental data [2]

2 1.6 2.1 3.4

3 1.3 1.7 2.9

Our calculations (version 2)

2 2.1 2.3 3.6

3 2.2 2.4 3.7

5 2.3 2.5 3.7

Our calculations (version 3)

2 1.5 2.0 3.7

3 1.6 2.0 3.7

5 1.8 1.8 3.6

Our calculations (version 4)

2 1.3 2.0 3.8

3 1.6 1.9 3.8

5 1.9 1.7 3.6

Note: The results obtained in different versions of calculation are
denoted by 2 when only intermediate levels are taken into
account, by 3 when the transitions between intermediate levels
and the change in the kinematics of the projectile are included,
and by 4 when the transitions through intermediate levels, the
change in the kinematics of the projectile, and its effect on the
binding energy of the target electrons are taken into consider-
ation.
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of excitation for small scattering angles is associated
with the effect of the projectile on the binding energy
of electrons in the target atom.

Figure 2 shows the results of calculation for the
cross section of excitation of the (2s2)1S resonance by
structureless ions with energy 1.5 MeV/amu. The cross
section calculated taking into account only the transi-
tions through intermediate states reproduces qualita-

0 0.1

0.0001

Scattering angle, mrad

dσif/dΩf, 10–12 Òm2/sr

0.2 0.3 0.4 0.5

0.0010

0.0100

0.1000

Differential cross section of excitation
of (2s2)1S resonance by ions with Zp = 3

and Ei = 0.5 MeV/amu

1

2
3

4

Fig. 1. Differential cross section of excitation of the (2s2)1S
resonance for small angles of scattering by ions with Zp = 3
and with an energy of 0.5 MeV/amu. The results are
obtained using various versions of calculation: (1) first Born
approximation, (2) taking into account only the transitions
through intermediate levels; (3) taking into account the tran-
sitions through intermediate levels and the change in the
kinematics of the projectile, and (4) taking into account the
transitions through intermediate levels, the change in the
kinematics of the projectile, and its effect on the binding
energy of the target electrons.

1
0.1

Charge of projectile

σif(Zp)/Z2
p, 10–20 cm2

10

1

10
Cross section for excitation of
(2s2)1S, Ei = 1.5 MeV/amu

1

2

3

4

Fig. 2. Cross section of excitation of the (2s2)1S resonance
by ions with energy 1.5 MeV/amu. The results of calcula-
tions obtained by other authors are marked with crosses [22]
and circles [31]. The remaining notation is the same as in
Fig. 1.
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tively and quantitatively the results of the calculations
using the method of close coupling between channels
[22] as well as the calculations based on the perturba-
tion theory [31] disregarding the effect of the degener-
ate continuous spectrum. Refining the kinematics of the
projectiles leads to a value of the excitation cross sec-
tion smaller than in the first order of the perturbation
theory, and the increase in the cross section for small

values of Zp is slower than in proportion to ; i.e.,

σi f (Zp)/  decreases with increasing Zp. However, as

the value of Zp increases further, function σi f (Zp)/
starts increasing due to a stronger charge dependence of
the amplitude of excitation through intermediate states.
It should be noted that experimental data for this colli-
sion energy are available only for a very narrow region
of ejection angles [5], and the procedure of deriving the
resonance yield integrated over ejection angles [5] from
these data appears to us as not quite correct.

4. CONCLUSIONS

In the present paper, we propose a theoretical model
of two-electron excitation, which has made it possible
for the first time to take into account explicitly the
effect of the Coulomb field of a projectile on the bind-
ing energy of the electrons in a target atom along with
the transitions through intermediate states and the
change in the kinematics of the projectile. The cross
section of the excitation of autoionization resonances,
which is calculated taking into account only the transi-
tions through intermediate states, increases with the
charge of the projectile at a rate higher than in the first
order of perturbation theory. However, the inclusion of
the change in the kinematics of the projectile and its
effect on the binding energy of the electrons in the tar-
get atom reduces the excitation cross section and sup-
presses the charge dependence. The charge dependence
of the excitation cross section for resonances (2s2)1S
and (2s2p)1P becomes weaker as compared to the first
order of perturbation theory, which is in qualitative
agreement with the experimental data. The modifica-
tion of the kinematics of the projectile by the short-
range potential of the interaction with the atom and a
rapid change in the scattering phases may lead to oscil-
lations in the differential excitation cross section in a
wide range of scattering angles. On the other hand, the
effect of the field of the projectile on the binding energy
of the electrons in the target atom leads to a decrease in
the differential cross section for small scattering angles
since, in the case of small transferred momenta, there
exists a region of nuclear spacings in which electron
transitions to an excited state are forbidden by the
energy conservation law.

Z p
2

Z p
2

Z p
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Abstract—A theoretical explanation is proposed for an anomalously high reflectivity of air masses exposed to
radioactive radiation relative to electromagnetic waves from the rf range. The mechanism of formation of the
reflected signal is connected with a change in the electric parameters of the ionized gas. The concentration of
free charges under the typical conditions of radioactive contamination is ten orders of magnitude lower than
that required for the formation of an experimentally detectable reflected signal. The discrepancy between the
values of reflectivity observed under the real conditions of radar probing and predicted theoretically on the basis
of the elementary theory of a weakly ionized gas amounts to 20 orders of magnitude. It is shown that the inclu-
sion of the variation of the mass and the critical capture radius of ions due to their hydration changes the dif-
ference between the theoretical predictions and the experimental observations insignificantly. The discrepancy
becomes smaller (but only by 1.5 orders of magnitude) when the scattering of radiowaves from turbulent vor-
tices is taken into account. The mechanism of the formation of the high reflectivity is associated with slowing
down the recombination and with the accumulation of a profuse population of unrecombined ionic pairs stabi-
lized in the clusters of water molecules. The steady-state concentration of such electrically neutral clusters is
several orders of magnitude higher than the concentration of free hydrated ions. A variation of the intensity of
ionizing radiation is accompanied by proportional variations of both components. The recombination barrier is
formed as a result of drawing dipole molecules into the gap between ions at the final stage of motion of coun-
terions towards one another before their recombination. The accumulation of ionic pairs ensures the multiple
enhancement of the sensitivity of the electric properties of cold plasma to the effect of ionizing radiation. A
quantitative kinetic theory of the effect is constructed. The numerical calculations of the parameters of the pre-
recombination states of ions against the background of the molecular component are made using computer sim-
ulation at the microscopic level. The steady-state recombination rate is an exponential function of the pre-
recombination barrier height and decreases rapidly even upon an insignificant change in the number of mole-
cules involved in an ion recombination act. The obtained theoretical conclusions are confirmed by the indepen-
dent results of observations of the strong absorption band in the atmosphere in the middle part of the IR spec-
trum, which is attributed to the anomalously high concentration of electrically neutral water clusters. © 2001
MAIK “Nauka/Interperiodica”.
1. RESULTS OF RADAR PROBING

The first observations of the reflected radar signal
from a radioactive burst in the atmosphere were made
in 1986 by the group headed by V. B. Bogdanov [1] in
the region of the Chernobyl nuclear power plant. Sub-
sequently, the presence of the reflected signal was con-
firmed by several independent groups of scientists [1–
3]. The experiments were made using various types of
industrial radars in the centimeter and decimeter ranges
at the South-Ukrainian, Zaporozh’e, St. Petersburg,
Balaklava, Udomlya, and other nuclear power plants as
well as on the research reactors at Gatchina and other
towns. Burst flames were observed at distances ranging
from 11 to 65 km. The limiting range in one of the
experiments amounted to 500 km [2], and the limiting
sensitivity to radioactive impurity bursts attained sev-
eral curies per day. The total number of independent
observations reaches several hundreds.
1063-7761/01/9203- $21.00 © 20420
The reflection of a radio signal takes place at the
boundaries of macroscopic fluctuations of electric
parameters such as permittivity ε and conductivity σ.
The variations of ε and σ are associated with the ioniza-
tion of the gas in a radioactive cloud. According to the
results of preliminary calculations, the values of the
equilibrium concentration of free charges calculated
using the classical theory of ionization of gases are 9 to
10 orders of magnitude lower than those corresponding
to the experimentally observed intensity of the reflected
signal. The measured signal intensity was used in [1] to
estimate value of the effective reflecting surface of a
radioactive cloud. The calculations were made accord-
ing to the formula [4]

(1)Seff 4π( )3 R0
4NkBTmnoise∆f

p τ r/τ p( )Gdir
2 λ2

----------------------------------------,=
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where R0 is the distance to the object, λ is the radiation
wavelength, ∆f is the transmission band, N is the noise
factor, kB is Boltzmann’s constant, mnoise is the signal-
to-noise power ratio,  is the average power of the
transmitter, and τr and τp are the radar pulse repetition
and duration time, respectively. The antenna power
gain Gdir is equal to 4πsa/λ2, where sa = ζπα1α2 is the
effective area of the antenna, ζ is the antenna efficiency,
αn = 0.61λ/∆ϕn, ∆ϕ1 and ∆ϕ2 are the azimuthal and
angular sizes of the antenna. The numerical estimate
obtained using formula (1) for the typical experimental
conditions [1] (λ = 6 cm,  = 300 W, τr = 2.5 µs, τp =
1.7 µs, R0 = 42 km, mnoise = 2.5 × 103, N = 12, ∆f =
2 MHz, ζ = 0.4, ∆ϕ1 = 2.3°, and ∆ϕ2 = 0.5°) is Seff =
5.1 m2, which agrees with the result of blank experi-
ments. The estimate given by formula (1) varies from
0.1 m2 (the level corresponding to the limiting sensitiv-
ity of the method) to 100 m2 depending on the experi-
mental conditions. The obtained value of Seff makes it
possible to estimate the required degree of ionization ρi

in a radioactive cloud. In the model of a random charge
distribution in a cylindrical gas column of length L and
radius r0 [5], the following expression is derived:

(2)

The mean square of permittivity fluctuations is given by

(3)

where qi, ρi, and mi are the charge, concentration, and
mass of free charge carriers and c is the velocity of
light. Substituting mi ≈ 10–23 g for ions into formula (3)
and L = 3 km and r0 = 0.1 km into formula (2), for
Seff = (1–100) m2, we obtain ρi = (4 × 1012–4 × 1013) cm–3.
A similar estimate for the electron concentration gives
ρe = (4 × 108–4 × 109) cm–3. Both estimates are much
higher than the values predicted by the standard the-
ory of ionization–recombination equilibrium in gases.
In [2], such calculations were made under the assump-
tion that free charge carriers in the atmosphere are

mainly ions , , and . Free electrons are absent
since they are trapped by oxygen molecules in the case of
their relatively high concentration (  = 0.54 × 1019 cm–3)

and form negative ions. The system of equations describ-
ing the time evolution of the concentrations of posi-
tive (ρ+) and negative (ρ–) ions as well as electrons (ρe)
has the form

p

p

Seff 0.6πr0
2 L1/3

λ1/3
-------- ∆ε( )2.≈

∆ε( )2 qi
2ρiλ

2

πc2mi

---------------
 
 
 

2

,=

O2
+ N2

+ O2
–

ρO2
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(4)

where koe = 8.8 × 10–11 cm3/s is the electron trapping
coefficient, kie = 7 × 10–7 cm3/s and kii = 1.4 × 10–6 cm3/s
are the ion–electron and ion–ion recombination coeffi-
cients, W = 2.08 × 109 R–1 cm–3 is the radiation yield of
electron–ion pairs, and Y is the dose rate. The steady-
state solution of Eqs. (4) for Y = 1 R/h gives the follow-
ing concentrations: ρ+ ≈ ρ– = 6.5 × 105 cm–3 and ρe =
3.5 × 10–3 cm–3. The electron component is virtually
absent, while the ionic concentration is 7–8 orders of
magnitude lower than the value obtained in the experi-
ments on the measurement of the intensity of the
reflected radar signal.

Didenko et al. [3] estimated Seff on the basis of the
rated degree of ionization in accordance with for-
mula (2) using the expression for fluctuations in which
the corrections for collisions of ions with gas molecules
and the frequency-dependent phase shifts between the
field of the wave and the displacement of charges in the
plasma associated with these collisions are taken into
account [5]:

(5)

Here, summation is carried out over all species of ions,
the second sum being the imaginary component of the
complex quantity ∆ε; ωik is the plasma frequency of
ions and νik is the frequency of collisions of ions with
neutral particles. The ionic concentrations required for
calculating the plasma frequencies ωik are estimated on
the basis of the elementary theory of the ionization–
recombination equilibrium for a gas ionization rate of
105–106 cm–3 s–1, which corresponds to a specific activ-
ity of impurities of the order of (3–30) × 10–6 Cu cm–3

typical of highly radioactive wastes. Under these con-
ditions, the expected equilibrium concentration of ions
is of the order of 106 cm–3, while the electron concen-
tration is seven orders of magnitude lower. Substituting
the values of ωik calculated for this concentration into
formula (5) and then Eq. (5) into formula (2) for λ =
10 cm, we obtain a negligibly low estimate for the
radioactive cloud reflectivity: Seff ≈ 2 × 10–16 m2. This
value is 16 orders of magnitude smaller than that
obtained from the measurements of the reflected signal
intensity. The actual discrepancy is still larger since the
theoretical estimates were obtained for ionic concentra-
tions corresponding to the limiting contamination by

dρe

dt
-------- WY koeρe kieρ+ρe,––=

dρ+

dt
--------- WY kiiρ+ρ– kieρeρ+,––=

dρ–

dt
-------- koeρO2

ρe kiiρ+ρ–,–=

ρ+ ρ– ρe,+=

∆ε
ωik
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ω2 ν ik
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422 SHEVKUNOV
radioactive wastes, while the reflected radio signal is
detected in experiments when the burst intensity
exceeds the background level just by a factor of several
units. The calculations based on the refined formula (5)
instead of Eq. (3) do not significantly change the gen-
eral pattern of mismatching between the measured
intensities of the reflected signal and the rated degree of
ionization in a radioactive burst.

Thus, the application of the standard theory of ion-
ization in plasma to the problem of reflection of a radio
signal from a radioactive cloud leads to a discrepancy
between the theoretical and measured values of the
reflected signal intensity of more than 16 orders of
magnitude. According to these estimates, the reflected
signal could not be detected even by using the most
powerful and sensitive radar systems. The results of
experiments renounce this conclusion. Obviously,
Eqs. (4) do not take into account all circumstances
affecting the electric parameters of cold plasmas.

2. SCATTERING OF AN ELECTROMAGNETIC 
WAVE IN A TURBULENT PLASMA FLOW

We consider a plane sinusoidal electromagnetic
wave with the cyclic frequency ω = 2πν and the wave
number k0, which is incident along the normal to the
plane boundary at which the electric parameters suffer
discontinuity:

(6)

The reflected electromagnetic wave has the complex-
valued amplitude E1:

(7)

The “joining” of the solutions of Maxwell’s equations
on both sides of the reflection plane leads to the well-
known [6] amplitude–phase relation

(8)

where  = n(1 – iκ) and  = n0(1 – iκ0) are complex
refractive indices on the sides of the reflection bound-
ary. The reflection coefficient is given by

(9)

Substituting Eq. (6) into Maxwell’s equations for a con-
ducting medium,

(10)
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4π
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j σE, D eE,= =
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where σ is the conductivity and j is the current density,
leads to the complex permittivity

The last relation can be written separately for the real
and imaginary components in the form

(11)

Expanding expressions (11) into a two-dimensional
Taylor series and retaining the principal powers of the

small parameters ε – ε0, σ0ν–1, σν–1, and (σ2 – )ν–2,
we obtain the following expressions for the optical
density jump in the leading order in (ε – 1) ! 1 and
(ε0 – 1) ! 1:

(12)

Substituting these expressions into relation (9) and
retaining the main powers of the small parameters, we
arrive at the following expression:

(13)

It can be seen that the role of conductivity in the forma-
tion of the reflectivity at high frequencies ν decreases.

The vortices formed as a result of the turbulent mix-
ing of a radioactive burst with uncharged masses of air
induce additional spatial fluctuations of ρi, ε, and σ
from which the electromagnetic waves emitted by the
radar will be scattered. The strongest scattering effect
should be expected from vortices with a size of the
order of the radiation wavelength λ since the scattering
of waves from vortices with a size smaller than λ
decreases strongly. The criterion of the turbulent flow is
the Reynolds number Re = ρgvl/µg, where ρg is the gas
density, µg is the gas viscosity, v is the jet velocity, and
l are the characteristic linear dimensions of the region.
Substituting the numerical values for air under standard
conditions (ρg = 1.29 kg m–3, µg = 17.2 × 10–6 N s m–2),
the characteristic velocity v ≈ 1 m s–1 of convective dis-
placements in the atmosphere, and the spatial scale of
the order of the wavelength, l ≈ λ ≈ 0.1 m, we obtain
Re = 7.5 × 103 @ 1, which corresponds to the boundary
of the transition from a laminar to a turbulent flow. In
the first approximation, the effective scattering surface
is comparable with the total surface of the vortices. If

ε̃ ε 4πσ
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SCATTERING OF CENTIMETER RADIOWAVES 423
volume V contains approximately V/λ3 vortices with a
size comparable with the radar wavelength, their total
surface is of the order of V/λ. The effective reflection
surface of a radioactive cloud (whose geometrical sur-
face is of the order of V2/3) increases due to scattering
from turbulent vortices by a factor of kturb = V1/3/λ. Typ-
ically, for V = 109 m3 and λ = 6 cm, we have the “gain
factor” kturb = 1.7 × 104:

(14)

Let us set a limit on the sensitivity of a radar with a
moderate resolving power, which is capable of detect-
ing a radio signal reflected from a metallic surface of
area Seff = 0.1 m2 at a distance of 30 km. The substitu-
tion of this value into relation (14) leads to Re = 6 × 10–12.
Using this result in (13), we find that the permittivity
jump must be ε – ε0 > 10–5. The same effect will be
observed at frequency ν = 1010 s–1 due to the conductiv-
ity jump σ – σ0 > 5 × 104 s–1.

The general theory of transport [7, 8] implies that
the static conductivity jump is connected with a jump in
the concentration of singly charged ions through the
relation

(15)

where γ+ and γ– are the equilibrium mean numbers of
water molecules trapped in the electric field of ions (the
degree of hydration),  is the effective average mass of
air molecules, and the terms containing  take into
account the effect of the difference in the masses of ions
and molecules on the ionic mobility. Substituting the
expressions for the thermal velocities of hydrated ions

at temperature T = 300 K as well as the numerical val-
ues of the mass of the H+ and OH– ions and assuming
that the mean free paths for ions in the first approxima-

tion are  =  = 4 × 10–6 cm, we obtain the lower esti-
mate for the concentration of free ions in the case when
the reflection coefficient is formed due to the conduc-
tivity jump:

Seff kturbReV
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(16)

It can be seen from this expression that hydration does
not affect the order of magnitude of ρ – ρ0. For typical
values of γ+ = γ– = 10, we obtain

(17)

The change in the permittivity of air due to the bind-
ing of water molecules at ions is connected with the
jump of the ionic concentration through the following
relation:

(18)

For ε – ε0 > 10–5, this leads to the following lower esti-
mate for the equilibrium concentration of hydrated ions
in the case when the reflection coefficient for a radio-
wave is formed due to the permittivity jump:

(19)

where  and  are the equilibrium polarizabilities
of hydrated ionic shells associated with the rotation of
intrinsic dipole moments of water molecules and

 is the polarizability associated with the

rotation of free molecules in the gas phase,  =

1.83 × 10–18 CGS units being the intrinsic dipole
moment of a water molecule.

We calculated the quantities χcl and γ+(–) using com-
puter simulation on the molecular level. For obtaining
numerical estimates, it suffices for us to use the
obtained orders of magnitudes of the quantities γ+ = γ– =
10 and χcl ~ 10–22 cm3, whose substitution into (19)
gives ρ – ρ0 > 2.9 × 1016 cm–3. While writing expression
(19), we disregarded the effect of amplification due to
scattering from thermal fluctuations. The inclusion of
this effect may subdue the constraint imposed on the
concentration, but not more than by one or two orders
of magnitude:

(20)

which is 9 to 10 orders of magnitude higher than the
value obtained from equations (4) of the ionization–
recombination kinetics. The concentration (20) of
hydrated ions is only 1.5 orders of magnitude lower
than the theoretical limit set by a finite concentration of
water in the atmosphere. At temperature T = 300 K and
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424 SHEVKUNOV
a relative humidity of 80%, the vapor pressure ps ≈
2.4 × 10–2 bar, while the volume concentration of water
molecules amounts to ps/kBT = 5.8 × 1017 cm–3. For the
degree of hydration γ ≈ 10, this concentration is suffi-
cient for the formation of 2.9 × 1016 cm–3 pairs of ions.
In other words, for the concentration of ionic pairs
defined by condition (20), 3% of moisture is bound at
the ions. Thus, the model of a turbulent plasma fails to
explain the experimentally observed reflectivity by the
permittivity jump.

Let us now consider the mechanism associated with
conductivity. Substituting the values of γ+ and γ– = 10
into Eq. (15) and taking into account the criterion
σ – σ0 > 5 × 104 s–1, we obtain

(21)

A comparison of this relation with the estimate follow-
ing from Eqs. (4) shows that the concentration of free
charge carriers required for obtaining a reflected signal
is at least 4–5 orders of magnitude higher than that
ensured by the mechanism laid in Eqs. (4). In actual
practice, the discrepancy is still larger since the esti-
mates were made with a considerable margin. Conse-
quently, the increase in the reflection coefficient by a
factor of kturb = 1.7 × 104 due to scattering from turbu-
lent vortices does not remove the discrepancies
between the results of experimental observations and
the theoretical estimates, but makes them less pro-
found.

3. EFFECT OF HYDRATION 
ON THE CRITICAL RADIUS OF ION TRAPPING 

IN A COLD PLASMA

Hydration of ions is absent in hot plasmas, but must
be taken into account in ionized gases. Water mole-
cules possess relatively large intrinsic dipole moments

 = 1.85 × 10–8 CGS units [9] and are the first to be
pulled into the field of ions. The energy of binding
between a water molecule and an ion is of the order
of 1 eV (approximately 39kBT). Ions are coated with a
layer of water molecules, and their effective mass and
collision cross sections change as a result. In fact, we
are dealing with a cluster plasma.

If we disregard the electronic component, the time
evolution of the volume concentration of free ions in a
gas can be described by the dynamic equation

(22)

where ρ is the number of ions of the same polarity per
unit volume; I is the number of pairs generated per unit
time per unit volume under the action of ionizing radi-
ation; kiiρ2 is the number of recombination acts per unit

time per unit volume; kii = πd2(  + )
1/2

, πd2 being
the effective collision cross section; and v+(–) =

ρ 1.4 1010 cm 3– .×>

µH2O

dρ
dt
------ –kiiρ

2 I ,+=

v +
2 v –

2
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(8kBT/πM+(–))1/2, the average velocity of an ion of mass
M+(–) at temperature T. The solution of Eq. (22) with the
initial condition ρ(0) = 0 has the form

(23)

with the characteristic relaxation time τ = (2 )
–1

and the asymptotic form

(24)

for large values of t @ τ, where ρ∞ =  is the
steady-state concentration of ions, and

(25)

It can be seen from relation (25) that the macroscopi-
cally long relaxation times detected in experiments can
be ensured either by the small value of coefficient kii, or
in a system with a low degree of ionization ρ∞.

The integrals of motion make a transition from the
electrostatic energy of ions to the kinetic energy almost
impossible without the participation of a third particle.
The recombination occurs via one of the following
channels:

(26)

The second and third channels presenting the radiation-
induced recombination and mutual neutralization with
charge reversal dominate under a gas pressure below
10–3 bar [8, 10]. The recombination involving a third
particle prevails under atmospheric pressure.

While estimating the effective reaction cross sec-
tion, we must take into account the long-range Cou-
lomb interaction between ions. In a system of singly
charged ions, we can single out at least two character-
istic distances for the interactions between ions, i.e., the
Debye radius rD = (kBT/4πρe2)1/2, where e is the ele-
mentary charge [11], and the Bjerrum radius rB =
2e2/3kBT. Debye screening is of the collective origin
and is observed when the number of ions in the Debye

sphere is much greater than unity, (4/3)π ρ @ 1, or, after
the substitution of temperature T = 300 K, for ρ !
5 × 1013 cm–3. For such concentrations of ions, we
obtain rD @ 1.7 × 10–5 cm for the Debye radius, while
the Bjerrum radius at the same temperature amounts to
rB = 3.7 × 10–6 cm. At distance r < rB, the necessary con-
dition for the linearization of the Poisson–Boltzmann
equation forming the basis of the Debye–Hückel theory
[11] is violated, and the collective screening degener-
ates into the screening by a counterion. The statistical
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SCATTERING OF CENTIMETER RADIOWAVES 425
analysis of the system of charged particle by the com-
puter experiment methods [12–24] revealed that the
collective nature of screening changes upon an increase
in density, when the Bjerrum radius becomes compara-
ble with the Debye radius: contact pairs of ions start to
form, and the radius of correlations between the ions
continues to decrease monotonically, attaining its min-
imum value at a point where the formation of ionic trip-
lets begins. At the point corresponding to the minimum
of the ionic correlation radius, the monotonic behavior
of the correlation functions changes to the oscillating
behavior, and the correlation radius starts increasing
with the density of the system up to the condensation
into the ionic liquid. Thus, the region of high ionic con-
centrations ρ > 5 × 1013 cm–3 cannot be attained in
actual practice in ionized air if only due to the fact that
the intense formation of contact pairs of ions, which is
inevitable at such concentrations, would indicate a
sharp increase in the recombination rate kii , which
obstructs the increase in the ionic concentration. This
limitation on the concentration of ions is in serious con-
tradiction to the requirements on the ionic concentra-
tion (20).

For r > rB, the total energy of two counterions is neg-
ative on the average and corresponds to the bound state,
while the probability of counterion trapping is close to
unity. Consequently, under atmospheric conditions,
when rD > rB, the effective scattering radius d can be
estimated by the Bjerrum radius rB. Under standard
conditions, the Bjerrum sphere contains 5.2 × 103 elec-
trically neutron air molecules with the mean free path

lmol = ( p/kBT)–1 ≈ 10–5 cm. The mean free path
li of an ion in the gas depends on the degree of its hydra-
tion γ since the latter increases the integrated cross sec-
tion of collisions of a hydrated ion with molecules. For
γ = 10, li = (0.3–0.5)lmol = (3–5) × 10–6 cm, i.e., it
amounts to a value of the order of the Bjerrum radius.
Molecules carry away the excess of the kinetic energy
of ions liberated due to the work done by the Coulomb
attractive force, thus ensuring their convergence to a
distance of the order of a molecular radius. Since the
linear size of the Bjerrum sphere is comparable with the
mean free path, this convergence is preceded by several
cycles of finite motion of two interacting counterions,
which are accompanied by collisions with molecules.
The electrically neutral component plays the role of a
viscous medium ensuring the collision with the counte-
rion captured in the electric field even if the impact
parameter is larger than the diameter of the ion.

There exist three classical theories of the ion–ion
recombination involving a third particle: Langevin’s
theory [25] valid for high pressures (considerably
exceeding 10 bar), which describes the motion of ions
as a drift in a continuous viscous medium, Thomson’s
theory [26, 27], applicable for low pressures (below

2 dmol
2
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10 bar), and the more universal Natanson’s theory [28].
In Thomson’s theory, the critical radius of counterion
capture is equal to the Bjerrum radius (rc = rB). The
averaging over various direction of entrance into the
capturing sphere of radius rc leads to the integrated
probability of collision with a third particle [26]:

(27)

It is assumed that one collision is sufficient for getting
rid of the excess kinetic energy e2/rc relative to the aver-
age thermal energy 3kBT/2. In Natanson’s theory, a cor-
rection to rc is introduced to take into account the fact
that the kinetic energy of the relative motion decreases
after the collision with the third particle only by e2/4rc.
Accordingly, another condition for rc can be derived:

whence

For the atmosphere, another correction must be intro-
duced to take into account a considerable difference
between the mass of an air molecule  = 29mp, where
mp is the proton mass, and the mass of a hydrated ion,
Mα = mα + γα , with the degree of hydration γα,

where α = +, –. For Mα @ , the average amount of
energy transferred from ions to a molecule during the
act of collision is

This corresponds to the critical capture radius for
hydrated ions:

(28)

where the numerical value is given for the H+ and OH–

ions with γ+ = γ– = 10. It can be seen from relation (28)
that the inclusion of hydration increases the critical
capture radius for ions by a factor of 1.4.

Substituting Eq. (27) for positive and negative ions

with  =  = 4 × 10–6 cm and (28) into the formula for
the recombination coefficient, we obtain

(29)
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The inclusion of hydration increases the value of  by
a factor of 2.3, simultaneously reducing the velocity

(Mr is the reduced mass) to one third of its initial value,
while the probability W+ + W– increases by a factor of
1.8 and the recombination coefficient, by a factor of
1.4. The inclusion of hydration of ions does not reduce
the recombination coefficient and cannot explain the
anomalously intense accumulation of ions in the atmo-
sphere.

4. FORMATION OF CLUSTER PLASMA

The presence of ion-hydrate clusters in the atmo-
sphere is confirmed by studies using the methods of
mass spectrometry [29–33]. The thermodynamic sta-
bility of clusters is determined by the dependence of the
work of their formation A(N) = Gcl(N) – µN from a
vapor with the chemical potential µ on the cluster size
N. The equilibrium size corresponds to the extremum
of the work of formation ∂Gcl(N)/∂N = µ, while the sign
of the second derivative of the free energy Gcl(N)deter-
mines the stability of an equilibrium cluster. As a rule,
the clusters of electrically neutral particles are unstable.

The atmosphere contains various types of ions. The

most numerous populations are formed by the H+, ,

OH–, O2–, and C  ions. Our goal is to determine a typ-
ical pattern of cluster formation on ions. For this rea-
son, computer simulation has been carried out only for
two types of ions, H+ and OH–. A free proton H+ formed
as a result of the dissociation of a water molecule is rap-
idly captured by another water molecule, forming a
hydronium ion H3O+. The energy of addition of the first
water molecule to a proton is anomalously high and
amounts to 7.18 eV ≈ 280kBT. The energies of the addi-
tion of next molecules are much lower: 1.6, 0.97, 0.74,
0.67, 0.57, and 0.51 eV. In these calculations, we disre-
gard the dissociation of this particle, which has a low
probability. The H3O+ ion is regarded as rigid since the
intraionic vibrational degrees of freedom are “frozen”
in view of the smallness of the thermal energy kBT as
compared to the vibrational quantum. The Hamiltonian
of the system is written in the form of a combination of
multicenter potentials. The numerical values of the
potential parameters are set so that they reproduce the
experimentally measured free energy and entropy of
clusters [34, 35]. The potential is described in detail in
[36–44]. The interaction includes the Coulomb,
exchange, and dispersion interactions, as well as the
energy of the polarization of molecules in the field of
ions, the energy of covalent bonds, and the contribu-
tions associated with the transport of the excess charge
from an ion to molecules. The interaction is of an
unpaired type. Strong many-particle interactions at the

rc
2

v +
2 v –

2+
8kBT
πMr

------------ 2.62 104 cm s 1–×= =

N4
+

O4
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contact distances to the ion are explicitly taken into
account. In the present work, we refine the numerical
values of parameters as compared to those contained in
[36–44] on the basis of more exact experimental data
[34, 35] taken instead of the results presented in [45,
46]. The Hamiltonian of the system is supplemented
with the interaction of the dipoles induced on the mol-
ecules with one another and with the molecular electro-
static field. The following numerical values of parame-
ters have been established for the H3O+ ion (in the nota-
tion adopted in [36–44]): the polarizability αw = 1.44 Å3

of a water molecule, the ionic charge Q+ = 4.80298 ×
10–10 CGS units being screened, the Lennard–Jones

potential parameters  = 0.515 × 10–13 erg and σ+ =
2.959 Å, the amplitude and the limiting radii of the iso-

tropic component of covalent interactions  =

0.17025 × 10–11 erg,  = 4.410 Å, and  = 5.372 Å,
the amplitude, the preexponential parameter, and the
parameter characterizing the many-particle nature of

unpaired interactions  = 0.9285 × 10–12 erg,  =
25.2 Å, and n+ = 1.323, the radii of unpaired interac-

tions  = 4.425 Å and  = 5.458 Å, the parameter
κ+ = 0.195 characterizing the intensity of excess charge
transport, and the correction χ+ = 0.92 to the non-point-
like nature of the induced dipoles. Four point charges
simulating the anisotropic component of the ionic field
and of covalent bonds are arranges at the following
points in the local system of coordinates:

 CGS units,

 CGS units,

 CGS units,

 CGS units.

The corresponding parameters for the OH– ion have the
following values:

Q– = –2.30298 × 10–10 CGS units,  = 0.155 × 10–13 erg,

σ– = 3.2835 Å,  = 0.924 × 10–12 erg,

 = 4.760 Å,  = 5.275 Å,

 = 0.306 × 10–12 erg,

ε0
+

U0
+

RL
+ RU

+

a0
+ b0

+

R̃L
+

R̃U
+

x1 0, y1 1.0171 Å, z1 0.2961 Å,= = =

q1 2.129 10 10–×=

x2 = 0– .8809 Å, y2 = 0.5086–  Å, z2 = 0.2961 Å,

q2 2.129 10 10–×=

x3 = 0.8809 Å, y3 = 0.5086–  Å, z3 = 0.2961 Å,

q3 2.129 10 10–×=

x4 0, y4 0, z4 0.128 Å,= = =

q4 6.387– 10 10–×=

ε0
–

U0
–

RL
– RU

–

a0
–
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 = 28.8 Å, n– = 0.55,  = 4.770 Å,

 = 5.067 Å, κ – = 0.

Two point charges simulating the anisotropic compo-
nent of the field created by the OH– ion are located at
the following points and have the following values:

x1 = 0, y1 = 0, z1 = 0.78 Å,

q1 = 1.758 × 10–10 CGS units,

x2 = 0, y2 = 0, z2 = 0, q2 = –4.258 × 10–10 CGS units.

The Monte Carlo method was used to calculate the
Gibbs free energy of clusters (Tables 1 and 2). The cal-
culations were made on a bicanonical statistical ensem-
ble [47–52]. The free energy of the addition reaction is
calculated through the ratio of the probabilities of two
classes of microscopic states with the numbers of mol-
ecules n and n – 1:

(30)

The numerical calculation of Gcl(k, p, T) is reduced to
the summation of differences ∆Gcl(n, p, T) = Gcl(n, p, T) –
Gcl(n – 1, p, T) for n = 1, 2, 3, …, N. In fact, we calculate
the configuration components

(31)

and

(32)

where

is the result of integration over the momenta of the
translational motion in the statistical sum;

is the result of integration over the rotational momenta
of molecules; Λ is the thermal de Broglie wavelength;
σ is the parameter characterizing the rotational symme-
try of molecules (σ = 2 for water); and vref is an arbi-

b0
– R̃L

–

R̃U
–

w n( )
w n 1–( )
-------------------

=  Gcl n p T, ,( ) Gcl n 1– p T, ,( )– µ p T,( )–
kBT

----------------------------------------------------------------------------------------------– 
  .exp

∆Gcl conf, n p T, ,( ) ∆Gcl n p T, ,( )=

– kBT Z tr
kinZrot

kinv ref( )ln–[ ]

µconf p T,( ) µ p T,( ) kBT Z tr
kinZrot

kinv ref( )ln–[ ]–=

=  kBT
σ

8π2
-------- p

kBT
---------v ref 

  ,ln

Z tr
kin h

2πmkBT
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  3– 1

Λ3
------= =

Zrot
kin 2kBT( )3/2 I1I2I3( )1/2π3/2

h3
-------------------------------------------------------=
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trary fixed volume. The substitution of expressions (31)
and (32) into Eq. (30) leads to the following relations:

(33)

and

(34)

The chemical potential µconf(p, T) of vapor is an
input parameter, while the ratio w(n)/w(n – 1) is calcu-
lated by directly counting the numbers of n- and (n – 1)-
states in a Markov random process of roaming over
microscopic states. The fluctuational computation
errors of a bounded sampling strongly depend on the
value of µconf(p, T). The optimal value corresponding to
the w(n) = w(n – 1) mode is unknown beforehand and
is determined at the initial stage of computations by
using a special iterative procedure.

The transitions between microscopic states with the
numbers of particles n – 1 and n occur with the proba-
bilities pij ensuring the limiting distribution over micro-
scopic states ρi:

(35)

where dΩ and dV are the elementary volumes in the
space of the orientations and the coordinates of the
molecular centers of mass, and µc ≡ µconf –
kBTln(σ/8π2). The probabilities dΩ/(8π2/σ) and dV/V
are realized when a molecule is cast out at a randomly
chosen point of the system. The remaining factors in
(35) are played in the standard manner using the pro-
gram of random numbers [53]. In addition to the steps
of casting in and omitting, the steps of translation and
rotation of molecules were made in accordance with
the standard Metropolis procedure for a canonical sta-
tistical ensemble [54, 55]. The maximum length of a
step in the translation of the molecular center of mass

w n( )
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kBT
------------------------------------------------------------------------– 
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was 0.3 Å, while the maximum rotation step was 20°.
The frequency of acquiring new configurations upon
translations and rotations of molecules varied from 30
to 50%, while the corresponding value for casting in
and omitting of molecules varied approximately by
0.5%. An attempt of a translation with a rotation was
accompanied by five attempts of casting in or omitting
a molecule. The system was placed in a spherical cavity
of radius 10 Å, and an ion was fixed at the center. The
length of the Markov process used for calculating
canonical averages amounted to 5 × 108 steps, which is
one to two orders of magnitude larger than the adopted
standards and ensures a high reliability of calculated
averages. The calculation of a point for a cluster formed
by 10 molecules on a 600-MHz PENTIUM-III com-
puter takes approximately 10 hours. Table 1 contains
the numerical results obtained for the H3O+ ion. The
dependences for the OH– ion are similar.

The work of formation of clusters as a function of
size (Fig. 1) has a clearly manifested minimum indicat-
ing the stability of clusters formed at ions. The depth of
the minimum is estimated at Umin = 1 eV ≈ 39kBT. The
probability of cluster disintegration is negligibly low as
compared to the probability of cluster formation.
Almost all ions in the cold plasma are hydrated. The
position of the minimum corresponds to a stable size of
the cluster and is displaced upon an increase in the
vapor pressure to larger sizes. However, the degree of
hydration even in a conventionally “dry” atmosphere

Table 2.  The same as in Table 1 for the oxonium ion OH–

with the experimental values from [35] at T = 297 K

n –∆Hexp –∆Htheor –∆Gexp –∆Gtheor

1 24.0 24.00 17.8 17.80

2 17.9 17.90 11.6 11.69

3 15.1 15.11 7.7 6.50

4 14.2 14.29 5.4 5.40

5 14.1 13.80 4.2 4.31

Table 1.  Experimental values of ∆Hexp and ∆Gexp [34] and the
values of ∆Htheor and ∆Gtheor for the enthalpy H and the Gibbs
free energy G of the reaction of addition of a water molecule
to a cluster based on the hydronium ion H3O

+ at T = 300 K cal-
culated by the Monte Carlo method for the standard conditions
of vapor at p = 1 atm. All values are in kcal/mole

n –∆Hexp –∆Htheor –∆Gexp –∆Gtheor

1 31.6 31.6 24.3 24.3

2 19.5 19.5 13.0 13.0

3 17.9 17.8 9.5 9.5

4 12.7 13.4 5.6 5.7

5 11.6 11.1 4.1 4.2

6 10.7 10.7 3.0 3.5
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with a relative humidity of 10% (which corresponds to
vapor pressure p ≈ 300 Pa at T = 300 K [56]) amounts
to γ = N ≈ 10. As the moisture content decreases to one
third of the initial value, the equilibrium size of the
cluster decreases, remaining larger than γ = 8. Clusters
with a size γ > 20 are formed only in the vicinity of the
point of equilibrium between vapor and liquid. For γ =
10, the difference between the free and internal ener-
gies of the cluster is of the order of ∆ = 3 eV ≈ 116kBT
(Fig. 2). This means that the substitution of the internal
energy for the free energy is ruled out even in estimates
since it would lower the probability of cluster forma-
tion approximately by a factor of exp(–∆) ≈ 10–50. For
γ = 12, the entropy per molecule attains its maximum
value, indicating qualitative rearrangements in the clus-
ter. For γ > 12, the coupling of water molecules changes
from the confinement due to the direct interaction with
the ion to the collective interactions between the mole-
cules. Under the conditions corresponding to lower lay-
ers of the atmosphere, the hydrate shell is formed by a
single layer located at a distance of 2.6 Å from the ion.
The growth of the second hydrate layer at a distance
of 5.1 Å and a transition to the confinement of the mol-
ecules due to collective interactions start only when the
pressure approaches saturation (Fig. 3). The mass of the
ion increases as a result of hydration by an order of
magnitude, and the effective radius is doubled. The
degree of hydration weakly depends on the moisture
content in the atmosphere and is close to γ = 10 under
typical conditions. The cluster remains in a metastable
state for a threefold–fivefold supersaturation. When
supersaturation is approximately tenfold, the cluster
loses its stability and experiences an avalanche-type
growth (Fig. 4).

5. MECHANISM OF RECOMBINATION 
RETARDATION IN A CLUSTER PLASMA

The calculations made in the previous sections
prove that the concentration of free charges formed as
a result of the air mass ionization is insufficient for the
formation of the experimentally observed reflectivity.
The reason behind the high reflectivity is obviously
associated not with free charges as such, but with side
effects accompanying their formation. According to
estimates, a cold plasma must contain, apart from clus-
ters, a large population of electrically neutral com-
plexes stabilized by ions.

In the absence of ions, water clusters are thermally
unstable. The intrusion of an ion stabilizes a cluster
[36–42], but the latter loses its electroneutrality. On the
other hand, the results of previous investigations show
[13–24, 57] that the intense pairing of charges accom-
panied by the formation of water clusters at two coun-
terions should be expected in the density and tempera-
ture ranges under investigation. In view of their electri-
cal neutrality, water clusters cannot be detected in
electrometric experiments. The presence of this com-
ponent in the atmosphere is confirmed by the anoma-
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lously strong absorption of electromagnetic radiation at
the middle of the infrared range [29, 58, 59]. The
absorption wavelength corresponds to the characteris-
tic frequency of vibrations in hydrogen bonds and indi-
cates the presence of high concentrations of water clus-
ters in the atmosphere. Indirect estimates based on
spectroscopic measurements indicate [29, 30, 33] that
under standard conditions, a free charge in the atmo-
sphere corresponds to at least 106–107 electrically neu-
tral water clusters. After the formation of a cluster, its
future depends on the type of ions contained in it. The
ions of solvable salts and acids remain in a cluster,
ensuring its stability. Their coagulation leads to the for-
mation of coarse drops of strong electrolytes. Unstable
ions formed as a result of ionization recombine in a
water cluster with a certain characteristic recombina-
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Fig. 1. The work of formation of the hydrate shell of a H3O+

ion from vapor at temperature T = 300 K under various pres-
sures: 10 Pa (1), 50 Pa (2), 250 Pa (3), 1.25 kPa (4), 6.25 kPa (5),
31.25 kPa (6), and 156.25 kPa (7).
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Fig. 3. Binary atom–atom correlations in the hydrate shell
of an H3O+ ion in water vapor at T = 300 K: correlations
between the ion and the oxygen atom in a water molecule
(1, 3), between the ion and the hydrogen atom in a water mol-
ecule (2, 4); p = 2.75 kPa (close to the saturation pressure) (1, 2)
and p = 10.0 kPa (supersaturated vapor) (3, 4). The functions
are normalized to the number of molecules in the system. The
dashed line corresponds to the gross density of water under
standard conditions.
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tion time τrec. In a thermodynamically equilibrium state
that sets in when there are no source of ionization, all
unstable ions recombine, and the clusters formed on
their basis are destroyed. Under natural conditions, free
charges are permanently supplied due to ionization. In
the case of the steady-state production and recombina-
tion of charges, the finiteness of the lifetime τrec of elec-
trically neutral clusters is responsible for their invari-
able presence in a cold plasma. The steady-state con-
centration of clusters is equal to the radio τrec/τcr of the
characteristic time of the recombination of ions in a
cluster to the characteristic time of production of a clus-
ter per unit volume, τcr = I–1 s cm3. A long lifetime τrec
ensures a high concentration of electrically neutral
clusters under steady-state conditions even in the case
of their absolute instability under equilibrium condi-
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Fig. 2. Gibbs free energy (1) and internal energy (2) of the
hydrate shell of an H3O+ ion at temperature T = 300 K.
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Fig. 4. Equilibrium number of particles in the hydrate shell
of an H3O+ ion as a function of vapor pressure. The dashed
curve corresponds to the saturation vapor pressure above the
plane boundary at T = 300 K [56].
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430 SHEVKUNOV
tions. An increase in τrec indicates the retardation of
recombination and their relative instability.

In a cold rarefied plasma, the energy of interaction
between ions and molecules is comparable with the
energy of interaction between ions and exceeds the
thermal energy kBT. As cluster ions approach one
another, a region of a strong electric field formed in the
gap between the ions pulls in water molecules. The
energy of interaction of a water molecule with the elec-
tric field in the gap between two monovalent counteri-
ons separated by 4.1 nm amounts to –kBT, and the prob-
ability of finding a molecule in this region is thrice as
high as outside the gap. This is equivalent to a local ele-
vation of the pressure of vapor, which provokes its con-
densation. The collective interactions between mole-
cules render the process an avalanche-type, but its evolu-
tion is limited in space to the region of ionic gap.

Each ion carries a thermally stable hydrate shell
formed by 〈N+〉  and 〈N–〉  molecules. In view of a nonlin-
ear dependence of the statistical weights of micro-
scopic states on their energy, the total number 〈N〉  of the
molecules bound in the field of two counterions
increases as the ions approach one another and the total
(negative) energy 〈U〉  of interaction ion the cluster
decreases. The potential of the average force for two
counterions is given by

where ρ+–(R) is the equilibrium density of counterions
at a distance R from the ions, 〈U+〉  and 〈U–〉  are the equi-
librium potential energies of hydrate shells of the ions
separated by an infinitely long distance, and ρ ≡ ρ+ = ρ–.
The potential Φ(R) includes the direct interaction
between the ions and the indirect interaction through
water molecules. The two types of interaction display
different dependences on the distance R between the
ions. The relative motion of the centers of mass of the
ions is determined by the potential Φ(R) of the average
force, which is the result of averaging of energy over
the positions of molecules and orientations of two inter-
acting counterions for a fixed distance R between them.
At distances much smaller than the average separation
between cluster ions, the contribution of the interaction
with a third ion to Φ(R) is insignificant.

Such a pattern corresponds to a hypothetic equilib-
rium state of a cold plasma in the absence of ionic
recombination and the sources of ionizing radiation.
Under natural conditions, the number of ions and clus-
ters in the plasma is a result of the dynamic equilibrium
between opposite processes of ionization and recombi-
nation. For times longer than the relaxation time, the
steady-state regime corresponding to equal numbers of
generated and recombining charges sets in. The calcu-
lation of the concentration of electrically neutral clus-
ters on recombining ionic pairs is a typical kinetic prob-
lem, but its considerable part can be solved by the
methods of equilibrium statistics. In a weakly ionized
gas with a charge density of 103–105 cm–3, the time τint

Φ R( ) kBT ρ+– R( )/ρ( )ln– U〈 〉 U+〈 〉– U–〈 〉 ,–= =
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of relaxation of the internal degrees of freedom for
cluster is much shorter than the mean free time τlife of
cluster ions before their collision and recombination.
Under these conditions, a cluster ions should be
regarded as an internally equilibrium system. The char-
acteristic time of interaction of cluster ions with vapor
is determined by the frequency of collisions of the clus-
ter with water molecules. The volume density of vapor
under typical conditions is approximately 12 to
13 orders of magnitude higher than the density of
charges, but it is 5 to 6 orders of magnitude lower than
the density of molecules in a cluster. For this reason, the
time τvap of stabilization of a local equilibrium between
a cluster and vapor occupies an intermediate position in
the time hierarchy: τint ! τvap ! τlife. For a large dis-
tance between ions, the conditions of the interaction
between a cluster and vapor remain unchanged during
almost the entire time interval τlife of diffusion counter-
flow. During this time, the thermal and material equilib-
rium of the cluster and vapor sets in, and its hydrate
shell is formed. The conditions of interaction of
charged clusters with vapor change radically only at the
final stage of this motion for an ionic spacing of the
order of 3 nm. The process of convergence of hydrated
ions is accompanied by the intense pulling of vapor
molecules into the ionic gap. The time of motion of
ions in this final region is comparable with the charac-
teristic time of exchange of molecules between the
cluster and vapor. The average distance between vapor
molecules is approximately equal to 15 nm, but water
molecules are approximately an order of magnitude
lighter than clusters. Their thermal velocity is approxi-
mately thrice as high as that of clusters, while the cross
section of their collisions with gas molecules equal to a
quarter of the value corresponding to clusters. For this
reason, the mobility of water molecules is an order of
magnitude higher. It can be expected that in the final
stage of motion before recombination, a partial equilib-
rium sets in between clusters and vapor: only those
molecules which are separated from colliding clusters
by a distance not exceeding a certain radius rrel of relax-
ation are pulled into the ionic gap. The remaining mol-
ecules moving in the gas cannot reach the ionic gap
during the collision time. The value of rrel depends of
the time of the head-on motion of clusters at the final
stage before their collision, when polar water mole-
cules are intensely pulled into the ionic gap. The num-
ber of vapor molecules getting into the sphere of radius
rrel is given by

(36)

where ρw is the vapor density. The quantity Nrel is
smaller than the number of vapor molecules which
would have been pulled into the ionic gap under the
equilibrium conditions. Consequently, the relative
motion of two recombining counterions under steady-
state conditions corresponds not to the equilibrium

N rel
4
3
---πrrel

3 ρw,=
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function Φ(R), but to its analogue Φ(R, rrel). During the
time of formation of the dense phase in the ionic gap, a
local equilibrium has time to set in only in the sphere of
radius rrel surrounding the recombining ions, and the
number of molecules pulled into the ionic gap does not
exceed Nrel. The characteristic relaxation time within a
cluster is much shorter than the time of interaction of
the cluster with vapor. For this reason, the cluster
formed from vapor remains a locally equilibrium sys-
tem against the background of a relatively slow varia-
tion of the number of molecules, and the motion of ions
is controlled by the average force potential Φ(R, rrel)
formally in the same way as in the thermodynamic
equilibrium. The limiting case of an infinitely slow
counter motion of ions corresponds to the condition of
a transition from a local to the global equilibrium:
Φ(R, ∞) ≡ Φ(R).

The calculation of rrel is a complex kinetic problem
even when the computer simulation technique is used.
Difficulties are encountered in the calculation due to a
considerable difference in the time scales of the diffu-
sion motion of water molecules in a gas and the relax-
ation movements in a nucleus of the dense phase. An
estimate of rrel can be obtained from the following con-
siderations. During the counter motion of ions from R3,
at which the dense phase starts being formed in the
ionic gap, to the retarding barrier Rm, vapor molecules
during their relaxation motion towards an ionic pair are
displaced only through a distance not exceeding

(37)

where , α+, and α– are the mobilities of vapor mol-

ecules and hydrated ions in the gas,  and di are
their effective radii of collision with gas molecules, and

 =  + γ+(–)  is the mass of a hydrated ion.
Putting R3 = 3 nm, Rm = 0.80 nm (see below), and
di/  ≈ 2, we obtain rrel ≈ 14 nm. The substitution of
this value into (37) and then into Eq. (36) gives Nrel ≈ 6.
This is approximately one-fourth of the number of
water molecules which would be pulled into the ionic
gap in thermodynamic equilibrium.

The values of Φ(R) and Φ(R, rrel) were calculated
for rrel = 14 nm and T = 300 K numerically using the
Monte Carlo method on a large canonical statistical
ensemble. For this purpose, the centers of mass of two
ions (H3O+ and OH–) were fixed in a spherical cavity at
a distance R. The ions were allowed to rotate freely. The
interaction of water molecules was described by the
five-center ST2 Raman–Stillinger potential [36–44]
supplemented with the interaction of the dipoles

rrel
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induced in the ionic field. Use was made of the poten-
tial of interaction of ions with water molecules (the
reconstruction of this potential from the experimental
data on the free energy of cluster formation was
described in the previous section). The direct interac-
tion between the ions includes the Coulomb interaction
between the charges, between a charge and a dipole,
between the dipoles, and the energy of the polarization-
induced interaction between a charge and the induced
dipole. The dipole interaction and the induced interac-
tions between ions at distance R > 1 nm are relatively
weak, and the variations in the values of the parameters of
these interactions virtually do not affect the formation of the
barrier Φ(R, rrel). The induced interaction (–α/2)(e/R2)2

between ions separated by a distance R > 1 nm is
weaker than the interaction of an ion with a water mol-
ecule pulled into the ionic gap by a factor of 50 and
amounts to less than 0.05kBT; for this reason, it can be
disregarded altogether. We take it into account only
from the considerations of the formal completeness of
the pattern, ascribing to the ions the polarization coef-
ficients α the same as for an isoelectronic water mole-
cule, αw = 1.44 × 10–24 cm3 [9].The ion–dipole interac-
tion –ep/R2 is approximately an order of magnitude
stronger than the induced interaction, but it is an order
of magnitude weaker than the average interaction of an
ion with a water molecule pulled into the ionic gap and
is of minor importance against the background of
molecular component fluctuations. The dipole moment
of an ion depends on the point relative to which it is cal-
culated. The indeterminacy in the dipole moment of an
ion is equivalent to a certain indeterminacy in the posi-
tion of the point relative to which its rotation in the field
of the other ion is described. It can easily be seen that
the indeterminacy in the value of the dipole moment of
an ion of 1 D is equivalent to the indeterminacy in the
position of a singly charged ion amounting approxi-
mately to 0.02 nm, which is an order of magnitude
smaller than the error in the value of ionic spacing
admissible in our computations, and it suffices for us to
take into account only the order of magnitude of the
ion-dipole interaction. Therefore, in our numerical cal-
culations, we ascribe to ions the same dipole moment
as that of a water molecule, pw = 1.85 × 10–18 CGS units
[9]. The main mechanism responsible for the formation
of a potential well and a barrier at such distances lies in
the interaction between ions and their hydrate shells
against the background of the Coulomb interaction of
ions. For this reason, we pay the greatest attention here
to a detailed description of the interaction between ions
and water molecules. The exchange and dispersive
interactions between ions is described by the Lennard–
Jones potential with the same numerical values as in the
ST2 model for water molecules. Their contribution at
such distances is negligibly small and is taken into
account only from the considerations of the formal
completeness of the pattern. The number of water mol-
ecules was not fixed, but fluctuated in accordance with
the distribution function of a large canonical ensemble
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[51–53]. The chemical potential of vapor, which is an
initial parameter in the computations, corresponded to
a vapor pressure of 2 kPa, which is observed for an air
humidity of 65%. Configuration averaging was used to
determine the equilibrium energy 〈U〉  of the system, the
direct interaction 〈U+–〉  between ions, and the average
number 〈N〉  of molecules for various ionic spacings R.
The length of the Markov process used for calculating
each point was 5 × 108 steps. The values of 〈U+〉, 〈U–〉,
〈N+〉 , and 〈N–〉  were calculated separately for each ion.
In these computations, the system contained only one
ion. The average force potential Φ(R, rrel) was obtained
as the difference 〈U〉  – 〈U+〉  – 〈U–〉  and was subjected to
the condition Φ(∞, rrel)  0. The value of Φ(R, rrel)
was calculated using a modified large canonical ensem-
ble in which the transitions to microscopic states with a
number of particles greater than 〈N+〉  + 〈N–〉  + Nrel are
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Fig. 5. Mean force potential Φ(R, ∞) of the interacting H3O+

and OH– ions in water vapor under pressure p = 2 kPa at
temperature T = 300 K (1), the equilibrium mean energy of
interaction between water molecules and the ions (2), and
the equilibrium mean energy of direct interaction between
the ions (3).
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Fig. 6. The number ∆N = 〈N〉  – 〈N+〉  – 〈N–〉  of vapor mole-
cules pulled into the ionic gap as a function of the distance
between the H3O+ and OH– ions at T = 300 K and p = 2 kPa:
rrel = ∞ (1) and 14 nm (2).
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forbidden. In the calculation of Φ(R), the constraint
imposed on the number of particles pulled into the ionic
gap was removed, which corresponds to Nrel = ∞.

As the ions approach one another to a distance R =
R3, the average force potential Φ(R) decreases abruptly
due to the pulling of additional water molecules into the
ionic gap (Figs. 5 and 6). The sharp decrease in the
potential, which resembles a phase transition, is associ-
ated with collective phenomena in the molecular
ensemble. The stability of the molecular component in
the ionic gap is partially ensured by molecular interac-
tions. As the separation between ions decreases further,
the volume of the ionic gap decreases, and a fraction of
molecules is expelled from it. As a result of the
decrease in the number of interacting molecules, poten-
tial Φ(R) decreases in magnitude down to contact ionic
spacings, at which it starts increasing due to the direct
interaction between the ions. The Φ(R) curve acquires
two deep minima at R1 = 0.3 nm and R2 = 3 nm, sepa-
rated by a peak at the point Rm = 0.89 nm (see Fig. 5).
The peak height is approximately equal to 278kBT. This
means that the density of the probability of finding two
counterions separated by distance Rm in a thermody-
namically equilibrium state is lower than the corre-
sponding value for distance R2 by a factor of exp(278) ≈
10121. At the same time, the density of the probability of
finding the ions at distance R2 is approximately
exp(452) ≈ 10197 times higher than at any other distance
R > R3, at which the pulling of molecules into the ionic
gap ceases. Thus, in the resultant interaction between
the ions separated by distance R2, a minimum is formed
on the Φ(R) curve due to the pulling of water molecules
into the field of the ionic gap, while the ρ+–(R) depen-
dence acquires an intense peak corresponding to a
locally stable state of the ionic pair. The thermal stabi-
lization of the ionic pair is achieved due to the molecu-
lar component in the ionic gap. The total number of
molecules participating in the stabilization is approxi-
mately equal to 40, from which approximately 25 mol-
ecules are additionally pulled into the ionic gap.

In the steady state, the orders of magnitude of the
quantities change, but the typical prevailing of ionic
pairs with a spacing close to R2 persists. As a result of
a decrease in the number of water molecules pulled into
the ionic gap, the depth of the minimum at distance R2
decreases to one-fourth the initial value, and the mini-
mum itself is displaced towards shorter distances (Fig. 7).
Since the barrier height is measured from the bottom of
this minimum, the barrier becomes lower, but slightly
wider. The position of the barrier changes insignifi-
cantly. Since the probability of the barrier surmounting
depends exponentially on its height and linearly on its
width (see below), the resultant effect of nonequilib-
rium conditions for the accumulation of water mole-
cules in the ionic gap lies in an increase in the recombi-
nation probability. The same figure shows the Φ(R, rrel)
curve calculated by the Monte Carlo method for the
hypothetical conditions rrel = 0 corresponding to the
 AND THEORETICAL PHYSICS      Vol. 92      No. 3      2001
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prohibition of pulling water molecules into the ionic
gap. The recombination minimum and barrier on this
curve are absent altogether. It can be seen that at dis-
tances R < Rm, the curves are close and their behavior is
determined mainly by the direct interactions between
the ions. Against the background of this interaction,
only relatively small energy oscillations associated
with a nonmonotonic variation of the number of mole-
cules in hydrate shells are observed. The separations
ranging from 0.8 to 0.9 nm are unfavorable and the
cluster size at such distances attains its minimum value,
amounting approximately to five molecules. On the
contrary, the separation R = 0.6 nm at which the size of
the ionic gap coincides with the size of a molecule is
most favorable for hydration (see Fig. 6).

The finite value of rrel in Φ(R, rrel) indicates the
inclusion of the nonequilibrium conditions of cluster
formation at ionic pairs, but does not take into account
the nonequilibrium conditions of generation and
recombination of the ions themselves. Let us consider
an ensemble of pairs of recombining counterions. The
recombination of two ions is preceded by their counter
diffusion involving the overcoming of the potential bar-
rier Φ(R, rrel). The presence of the barrier hinders the
convergence of the ions and decelerates their recombi-
nation. The rate of recombination in an ensemble of
particles is determined by the total steady-state coun-
terflow of ions having opposite signs:

(38)

where κ+ and κ– are the diffusion coefficients for the
positive and negative ions, α+ = κ+/kBT and α– = κ–/kBT

are their mobilities, and  is the spatial correla-
tion function for the counterions in the steady-state
recombination mode, normalized by the condition

 = ρ–, ρ– being the gross density of negative ions.
The last equality in Eq. (38) is valid for an electrically

neutral plasma with ρ+ = ρ– = ρ since  =  in
this case. The average force potential Φ(R) = Φ(R, rrel)
for two counterions corresponds to the hypothetic equi-
librium conditions between paired and unpaired ions as
if the irreversible recombination of ions did not occur
even at contact distances, but the ions formed instead a
contact ionic pair, and the reverse process of pair disso-
ciation were possible in principle. In this case, the num-
ber of molecules pulled into the ionic gap is subjected
to the formal constraint of the finiteness of the value of
rrel. The substitution of the equilibrium binary correla-
tion function for the counterions,

,

Js R( ) J+
s R( ) J–

s R( )+ κ+∇ ρ+–
s R( )–= =

– α+ρ+–
s R( )∇ Φ R rrel,( ) κ –∇ ρ–+

s R( )–

– α–ρ–+
s R( )∇ Φ R rrel,( ) κ+ κ–+( )∇ ρ+–

s R( )–=

– α+ α–+( )ρ+–
s R( )∇ Φ R rrel,( ),

ρ+–
s R( )

ρ+–
s ∞( )

ρ+–
s R( ) ρ–+

s R( )

ρ+– R rrel,( ) ρ– Φ R rrel,( )/kBT–[ ]exp=
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for  into Eq. (38) would lead to the equilibrium
result Js = 0. Recombination is a nonequilibrium pro-
cess, and a steady-state mode is possible only in the
presence of a permanent source of ions pumping new
charges instead of recombining ones. We assume that
the distance between an ion and the potential barrier
Φ(R, rrel) is much smaller than the average separation
between ions. In this case, we can conjecture that a new
ion is generated at an infinitely large distance from the
ion which it approaches and recombines with. Each act
of recombination is preceded by overcoming the poten-
tial barrier. Since the averaging over the rotational
degrees of freedom of ions has already been carried out
in Φ(R, rrel), the problem is spherically symmetric. The
projection of Eq. (38) on vector R connecting two
counterions in the reference frame of one of these ions
has the form

(39)

where the counter-diffusion coefficient κ(R) ≡ κ+ + κ–

is a function of the separation between the ions since
the gas density in the ionic gap changes with the dis-
tance R, and the ionic diffusion mode varies accord-
ingly. The counterflow of ions corresponds to the nega-
tive sign in Eq. (39). Since we are dealing with a
steady-state flow of ions into the sphere of radius R, it
is equal to the number of recombination acts per unit
time at the ion located at the center of the sphere. Con-
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Fig. 7. Mean force potential Φ(R, rrel) of the interaction

between the H3O+ and OH– ions in water vapor at T = 300 K
and p = 2 kPa: rrel = 0 (1), 14 nm (2), and rrel = ∞ (3). The
values of Rm, R2, and R3 indicated in the figure correspond
to rrel = 14 nm.
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sequently, the number of pairs recombining per unit
volume per unit time is given by

(40)

where kii is the recombination coefficient. Since the
recombination rate I is independent of R, Eq. (40) can
be written in the following form convenient for integra-
tion:

(41)

The integration of Eq. (41) between the ionic spacing
Rr at which recombination takes place and infinity with
the boundary conditions

leads to the following expression for the recombination
rate at an ion:

(42)

We divide the integration interval in (42) into two inter-
vals: from the distance Rr at which the recombination
takes place and the distance R2 at which ions are accu-
mulated, and from R2 to infinity. The results of com-
puter simulation show that in the first interval of interi-
onic distances, the system is essentially a cluster
formed by water molecules and two counterions
immersed in them. The cluster density has the same
order of magnitude as the density of water under the
standard conditions. The mechanism of diffusion in this
case differs qualitatively from the diffusion mechanism
in the second interval of interionic distances, R > R2, in
which the cluster disintegrates and two independent
cluster ions are formed. In the former case, the dis-
tances between the molecules in the cluster are compa-
rable with the molecular size, and the diffusion mode is
close to diffusion in liquids. In the latter case, the diffu-
sion of hydrated ions takes place in the gas with a mean
free path of the order of li = (3–5) × 10–6 cm according
to the estimates presented in Section 3; i.e., it is two
orders of magnitude larger than the molecular size.
Since the formation of a cluster as a result of conver-
gence of ions is abrupt in nature, it is sufficient for
obtaining the order-of-magnitude estimates to assume
that the density of the medium in the region of ionic dif-
fusion changes abruptly from the typically liquid mode
in the first interval of ionic spacings to the typically gas

I 4πR2 Js R( ) ρ 4πρκ R( )R2ρ+– R rrel,( )= =

×
∂ ρ+–

s R( )/ρ+– R rrel,( )[ ]
∂R

---------------------------------------------------- 
  kiiρ

2,≡

I
4πρ
---------- 1

κ R( )R2ρ+– R rrel,( )
-------------------------------------------

=  
∂ ρ+–

s R( )/ρ+– R rrel,( )[ ]
∂R

----------------------------------------------------.

ρ+–
s Rr( )

ρ+– Rr rrel,( )
--------------------------- 0,

ρ+–
s ∞( )

ρ+– ∞ rrel,( )
-------------------------- 1= =

I 4πρ Rd

κ R( )R2ρ+– R rrel,( )
-------------------------------------------

Rr

∞

∫
1–

.=
JOURNAL OF EXPERIMENTAL
mode in the second interval. At the same time, the dif-
fusion coefficient κ(R) also changes jumpwise from the
value κcl typical of diffusion in a liquid to the value κg

typical of diffusion in a gas. Accordingly, the expres-
sion for the recombination rate assumes the form

(43)

In view of the exponential dependence of ρ+–(R, rrel) on
Φ(R, rrel), the main contribution to the integrals in (43)
comes from the region of maximum values of Φ(R, rrel).
For the first integral, this is the neighborhood of the

minimum of the function R2ρ+–(R, rrel) at point . For
the second integral, this is the region R > R3, where the
value of ρ+–(R, rrel) decreases, approaching asymptoti-
cally the gross density ρ of ions. Taking into account
this circumstance, we write expression (43) substitut-
ing ρ for ρ+–(R, rrel) in the second integral and changing
the lower integration limit to R3. This gives the follow-
ing expression for the recombination coefficient:

(44)

In view of the strong exponential dependence of the
integrand in the first integral of (44), the main contribu-
tion to the integral comes from the neighborhood of the

maximum of the function  ≡ Φ(R, rrel) –

2kBTln(R/ ) at point R = . Expanding 

into a Taylor series in the vicinity of , retaining the
first two leading terms, and integrating (44), we obtain

(45)

where Φ''(R, rrel) ≡ ∂2Φ(R, rrel)/∂R2. The expression in
the braces in (45) is the sum of two terms. The first term
is the contribution to kii associated with the diffusion
flow of ions in the interval from Rr to R2, and the second
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term, the same in the interval from R2 to ∞. The substi-
tution of numerical values into (45) shows that the lead-
ing role is played by the second term (4πκgR3)–1 whose
value is of the order of 109 cm s–3. The first term is small

due to the exponential factor exp[Φ( )/kBT] ≈
exp(−174) ≈ 10–75. This small factor is not compensated
by the relation between other factors appearing in the
first and second terms, the ratio kg/kcl < 103–104 being
the next in the hierarchy of values. Consequently,
expression (45) can be replaced, with an excessive
degree of accuracy, by

(46)

The physical meaning of this result is obvious. The
main obstacle for the probability flux of diffusing ions
is the interval from infinity to R3. The relatively low
resistance to the probability flux of diffusing ion in a
short interval from R3 to Rr is due to low values of the
average force potential (see Fig. 7) and, hence, expo-
nentially high values of ionic concentration at such dis-
tances. However, the potential barrier existing within

this interval at the point  ≈ Rm decelerates the
counter diffusion of ions and leads to the accumulation
of ionic pairs in front of the barrier in the interval Rm <
R < R3. Under natural conditions, the continuous
recombination of ionic pairs and the “pumping” of new
charges from the sources of ionizing radiation take

place. The steady-state distribution  is the result
of the dynamic equilibrium between these opposite
processes. The number of ionic pairs formed as a result
of deceleration and recombination in front of the bar-

rier can be expressed in terms of function  which
differs significantly from the equilibrium distribution
ρ+–(R, rrel) in the interval Rm < R < R2 in view of a con-
siderable difference in the probabilities of traversing
the intervals [∞  R2] (formation of an ionic pair)
and [R2  Rr] (its recombination) by ions. The first
process occurs at a much lower rate than the second,
and the predominant “pumping” of ionic pairs from the
region [Rm, R3] in front of the barrier would occur until
their number would drop to the value compensating for
the difference between the probabilities of single acts
of formation and recombination. Consequently, it
should be expected that the following relation between
the equilibrium and steady-state correlation functions
is observed in the region in front of the barrier:

(47)

In order to verify the validity of these inequalities, we
derive an expression for the recombination coefficient

kii in terms of . For this purpose, we return to
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the differential equation (41) and integrate it from Rr to
R2. This gives

(48)

instead of (42) and

(49)

instead of (45). Equating the right-hand sides of Eqs. (46)

and (49), solving the equation for , and using
the expression for ρ+–(R, rrel) in terms of Φ(R, rrel), we
obtain

(50)

where ∆Φ(rrel) = Φ( , rrel) – Φ(R2, rrel) is the recom-
bination barrier height. It can be seen from Eq. (50) that
the number of ionic pairs is an exponential function of
the barrier height ∆Φ(rrel) and depends almost linearly
on the barrier width. With decreasing temperature, the
number of ionic pairs increases almost exponentially.
The steady-state volume density of ionic pairs can be
obtained by integrating from the recombination dis-
tance to the distance of disintegration of an ionic pair:

(51)

The integral in (51) weakly depends on the limits of
integration since in view of exponentially strong varia-

tions of  with the distance, the main contribution
to the integral comes from a narrow neighborhood of

the peak of function R2 at point  ≈ R2. It fol-
lows from Eq. (50) that in the vicinity of point R2, the

profile of function , as well as the profile of

, rrel), is determined by the exponential depen-

dence  ∝  exp[–Φ(R, rrel)/kBT]. Expanding the
exponent in the integrand in (51) into a Taylor series in

the vicinity of point , retaining the first two leading
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terms, and integrating between infinite limits taking
into account the exponentially rapid decrease of the
integrand, we obtain

(52)

The height, width, and position of the barrier as well as
the position and the width of the minimum of potential
Φ(R, rrel) required for the calculations based on for-
mula (52) were computed using the Monte Carlo
method. In the typical case of rrel = 14 nm, the follow-
ing results were obtained:

∆Φ(rrel) = 1.60 eV,  = 0.80 nm,

Φ''( ) = –45 eV nm–2,  = 2.2 nm,

Φ''( ) = 8.3 eV nm–2,  = 3.0 nm

(see Fig. 7). In the limiting case when rrel = ∞, the val-
ues of the same parameters are as follows:

∆Φ(rrel) = 7.18 eV,  = 0.89 nm,

Φ''( ) = –61 eV nm–2,  = 3.0 nm,

Φ''( ) = 2.8 eV nm–2,  = 3.5 nm

(see Fig. 5). The diffusion coefficient for a positive ion

in the gas is  = li/3, where

is the average relative velocity of collision of a cluster
with gas molecules and

is the reduced mass, mg being the mass of a gas mole-
cule. The substitution of the numerical values of li = 4 ×
10–6 cm and mg = 0.49 × 10–22 g for air leads to the esti-

mate  = 0.032 cm2 s–1 for a hydrated H+ ion. The dif-
fusion flow of hydrated ions in the gas is mainly con-
trolled by collisions of gas molecules with the hydrate
shells of ions and is independent of the details of inter-
action at the contact with an ion. Since the sizes of the
hydrate shells of the H+ and OH– ions are close, their
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mean free paths and diffusion coefficients also differ
insignificantly. Assuming that the diffusion coefficients
of the hydrated H+ and OH– ions in the gas are approx-
imately identical, we obtain for the counter diffusion

coefficient the estimate κg =  +  ≈ 0.06 cm2 s–1,
which is in satisfactory agreement with the diffusion
coefficient of the H3O+ ion measured under the same
conditions in gaseous nitrogen, which is equal to
0.071 cm2 s–1 [56]. The calculation of the diffusion
coefficient κcl for a cluster is a laborious computational
problem. For calculations based on formula (52), it is
sufficient to estimate the order of magnitude. Since the
density of molecules in a cluster is close to the density
of water under the standard conditions, we can natu-
rally expect that the value of κcl is close to the corre-
sponding diffusion coefficient for water, whose value
can be reconstructed from the experimental values of

the ionic conductivity  = 350 A (g-equiv.)/(cm4 V)

and  = 189 A (g-equiv.)/(cm4 V) [56]:

The counter diffusion coefficient is given by

Substituting into (52) these numerical values and
the characteristics of the potential barrier Φ(R, rrel) cal-
culated by the Monte Carlo method for rrel = 14 nm as
well as the experimentally measured free carrier con-
centration ρ = 103 cm–3 typical of the background radi-
ation level at temperature T = 300 K, we obtain

. The predicted steady-state con-
centration of clusters is in fact higher:

(53)

since while calculating the right-hand side of this rela-
tion, we assumed that the value rrel = 14 nm is preserved
for all recombining pairs irrespective of the type of the
relative motion of ions. In actual practice, this value is
correct only for pairs overcoming the prerecombination
barrier during one cycle of the finite counterflow. The
remaining (unrecombined) ionic pairs continue accu-
mulating water molecules in their ionic gaps, which
leads to an increase in the barrier height, a decrease in
the recombination probability, and the stabilization of a
cluster. Against the background of such a retardation,
slower recombination channels are activated. The most
probable channel is the recombination in ionic chains.
Detailed studies of strongly nonideal ionic systems by
the computer simulation methods revealed [14–24] that
ionic pairs form ionic clusters with a chain structure
(+ – + – + – + –) in a rarefied system at temperatures
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satisfying the condition 0.02u0 < kBT < 0.1u0, where u0
is the energy of interaction of counterions at the contact
distance. The coiling of chains into compact clusters is
disadvantageous from the entropy point of view in the
range of densities and temperatures under investiga-
tion. The reason behind this effect is studied in detail in
[21, 60, 61]. The chains correspond to a higher entropy
S, and the free energy G = U – TS + pV of the chains at
temperatures exceeding a certain threshold value T
turns out to be lower than for compact structures. The
energy U of a system of charged particles decreases due
to screening upon the coiling of the chains to a smaller
extent than in systems of electrically neutral particles
and cannot compensate the loss in the entropy. The sys-
tem considered by us here is not identical to ions in a
vacuum, but the presence of electric charges of the
opposite polarity will inevitably lead to the competition
between compact and chain-type clusters in this case
also. The effective diameter of an ion increases due to
hydration approximately to r0 = 1–2 nm (see Fig. 5). If
we disregard the effects associated with the expulsion
of molecules from ionic gaps, the electrostatic energy
of interaction between the ions of such a size at the con-
tact distance would be u0 ≈ (1–2) × 10–12 erg, or kBT =
(0.02–0.04)u0, which falls into the temperature interval
of the stability of ionic chains. The stability condition
for the chains in the gross charge density [21, 60, 61]

ρ < (10–4–10–3)  = (1017–1018) cm–3 is satisfied with
a considerable margin. The presence of the dipole com-
ponent in the system in the form of water molecules
must catastrophically increase the probability of chain
formation and to extend the chain stability interval
since the molecules are mainly pulled into the gap
between ions of opposite signs. Against such a back-
ground, the interactions between like ions whose frac-
tion in a compact cluster is larger appear as especially
disadvantageous. The coiling would lead to the expul-
sion of a part of molecules from the cluster, which is
also disadvantageous from the energy point of view.

An ionic chain is formed as a result of a complex
many-particle collision whose probability is lower that
for a collision of two ions, and this process is kineti-
cally slower. However, recombination within a chain
cluster is more probable and occurs at a higher rate than
in a cluster formed on an ionic pair. In a chain-like clus-
ter, there exists a trajectory of the counter motion of
ions, which is not accompanied by the expulsion of
dipole molecules from the cluster and, hence, does not
involve the surmounting of a potential barrier. When
two counterions move towards each other along the
chain, the molecules expelled from the ionic gap may
go over to the neighboring ionic gaps in the chain so
that the total number of molecules in the cluster
changes insignificantly. The larger the cluster size, the
greater the number of such collective relaxation modes
bypassing the potential barrier of recombination in it.
In the limiting case of a macroscopic liquid phase, the
effect of pulling in and expulsion of molecules from the

r0
–3
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interionic gap to the gaseous phase disappears alto-
gether with the recombination barrier. We can expect
that ionic pairs that escaped recombination in the first
cycle of finite motion will recombine in large clusters,
and the recombination rate will be controlled by the
rate of cluster formation. The presence of such clusters
in the case of anomalously high concentrations is con-
firmed by the results of measurements of IR absorption
spectrum in the atmosphere [29, 58, 59]. The measure-
ments of electric parameters in water vapor prove that
the accumulation of clusters is an extremely slow pro-
cess, while the relaxation time is of the order of tens of
minutes and hours [29–33]. These experimental results
can easily be interpreted by estimating the lifetime

τrec = /I of clusters in a cold plasma. Substituting esti-

mate (53) for  and using the value of I = 105 cm–3 s–1,

we obtain τrec ≈ 1010 s. This result is obviously exagger-
ated since it takes into account only one mechanism of
cluster destruction through the recombination of ions.
However, the order of magnitude of this quantity shows
that the stability of clusters to recombination is
extremely high even on macroscopic time scales.

Estimate (53) is one or two orders of magnitude
higher than the minimal concentration of clusters suffi-
cient for detecting a radioactive cloud according to cal-
culations (1)–(3) made on the basis of the threshold
sensitivity of standard radars. Estimate (53) also satis-
fies the requirement (20) for the threshold concentra-
tion obtained on the basis of the theoretical analysis of
the scattering of radiowaves from permittivity fluctua-
tions in a clustered plasma. At the same tame, the value
given by (53) is nine orders of magnitude higher than
the ionic concentration following from the solution of
the ionization–recombination kinetics equation (4) dis-
regarding the dipole component. This resolves the con-
tradiction between the low concentration following
from Eqs. (4) and the requirements to the threshold val-
ues given by (1)–(3) and (20). The nine-orders-of-mag-
nitude difference was due to the disregard of the recom-
bination retardation associated with the dipole compo-
nent in the plasma.

In actual practice, the intensity of the reflected sig-
nal is higher than that obtained from formulas (12),
(13), and (18) after the substitution of the cluster con-
centration (53), and the conclusion following from esti-
mate (53) and concerning the possibility of radar prob-
ing of radioactive bursts to the atmosphere has a “mar-
gin” of at least several orders of magnitude. This is due
to unique electrical properties of ionic pairs formed in
the atmosphere, which magnify the polarizability of the
medium by several orders of magnitude and change its
permittivity. The discussion of these effects is beyond
the scope of this article.

ρn
s

ρn
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6. CONCLUSION

The presence of dipole particles radically affects the
equilibrium and kinetic parameters of a cold plasma.
The role of such particles in the ionized atmosphere is
played by water molecules. Dipole particles are pulled
into the electric field of ions and coat them as a stable
envelope. As a result of hydration, the effective mass of
the ions increases by an order of magnitude, and the
critical radius of capture increases by a factor of 1.5.
The interaction between the ions and the dipole compo-
nent qualitatively changes the nature of correlations
between the ions. The pulling of dipole particles into
the field of an ionic gap leads to the formation of a deep
minimum in the effective ionic interaction potential at
a separation of 2–4 nm between the ions and of a high-
intensity recombination barrier at a distance of the
order of 1 nm. The barrier significantly increases the
lifetime of ionic pairs in the prerecombination state.
However, in thermodynamic equilibrium in the absence
of ionizing radiation, the charges remaining after
switching off the external sources of radiation ulti-
mately recombine, and the plasma as such ceases to
exist. The existence of a cold plasma requires a perma-
nent supply of new ions. Under natural conditions, the
role of such a source of ions is played by radioactive
radiation. The presence of the barrier strongly sup-
presses the recombination and leads to the accumula-
tion of a considerable population of ionic pairs with an
ionic gap of 2–4 nm filled with water molecules under
the steady-state condition of the cold plasma. The ionic
pairs in the prerecombination state are not absolutely
stable, but the lifetime of such formations, which is
extremely long on the molecular scale, leads to their
accumulation in amounts exceeding the number of free
charges in the plasma by 8–9 orders of magnitude.
Under steady-state conditions, the volume concentra-
tion of ionic pairs is proportional to the power of ioniz-
ing radiation and repeats its variation in time, although
with a delay determined by the relaxation time.

The formation of a large population of electrically
neutral water clusters at ionic pairs make the interaction
of electromagnetic waves with the natural atmosphere
extremely sensitive to the presence of ionization
sources. Although the concentration of free charges
formed as a result of radioactive irradiation of a moder-
ate intensity is insufficient for the formation of the
experimentally observed reflectivity of a radioactive
cloud relative to centimeter radiowaves, the role of free
charges is played by clusters formed at ionic pairs. The
prerecombination barrier decelerates the recombina-
tion and ensures the mechanism of enhancement of the
effect of ionizing radiation on the electrical properties
of the medium through the accumulation of ionic pairs.
The effect of enhancement is proportional to the num-
ber of the accumulated ionic pairs, which in turn
depends exponentially of the recombination barrier
height. If the counter motion of ions prior to their
recombination were slow enough so that the equilib-
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rium density of water molecules could follow the
increasing electric field, the number of molecules
drawn into the ionic gap under the natural atmospheric
conditions would be of the order of 25, which would
lead to the formation of an extremely deep minimum
(of approximately 280kBT) and an intense barrier (of
approximately 450kBT) in the ionic interaction at dis-
tances smaller than the recombination radius. Accord-
ing to the results of calculations, all the ions under the
steady-state conditions would be coupled into ionic
pairs. The number of such pairs would be independent
of the power of the ionization source and would be lim-
ited only by the moisture content in the atmosphere.
Vapor would be completely bound in clusters on ionic
pairs. This is not observed in actual practice since the
density of water molecules in the ionic gap is much
lower than a local equilibrium value, and just a few
molecules can get into the ionic gap at the final stage of
the counter motion of the ions. Thus, in contrast to the
equilibrium conditions, the height of the prerecombina-
tion barrier under the steady-state conditions is a result
of a compromise between the dynamics of the counter-
flow of hydrated ions and the mobility of vapor mole-
cules. A higher mobility would correspond to a higher
barrier and a more intense accumulation of ionic pairs.

The formation of clusters on ionic pairs noticeably
changes the dielectric properties of the air mass since
the rotational mobility of a molecule bound to a cluster
and its contribution to the polarizability of the medium
change radically. The giant (on the molecular scale)
value of the dipole moment of a bound ionic pair, which
is 2 or 3 orders of magnitude higher than the dipole
moment of a water molecule, ensures the elevated
polarizability of the ionized gas. In view of the qua-
dratic dependence of rotational polarizability on the
dipole moment of particles [51], the formation of an
ionic pair makes the same contribution to the polariz-
ability of the gas as the addition of 104–106 free water
molecules to it.

A detailed analysis of the permittivity and the reflec-
tivity associated with the formation of ionic pairs is
beyond the scope of this paper. However, even the
obtained order-of-magnitude estimates (up to 9 orders
of magnitude in the concentration of ionic pairs and 4–
6 orders in their polarizability) undoubtedly prove that
it is just ionic pairs formed as a “side product” of ion-
ization that ensure more than 8 to 10 orders of magni-
tude in the relative change in the permittivity of the nat-
ural atmosphere, which were missing in theoretical cal-
culations, and eliminate the discrepancy between the
results of theoretical calculations and experimental
observations on the scattering of radiowaves from
radioactive bursts in the atmosphere.

Finally, it should be observed that the problem
investigated here has basically common roots with a
number of other important phenomena in the atmo-
sphere, including the well-known problem of an anom-
alously high absorbability of higher atmospheric layers
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in the middle part of the IR spectrum. The most reason-
able explanation of this phenomenon is associated with
the formation of a large population of electrically neu-
tral water clusters stabilized by ionic pairs [29–31, 58,
59]. Another example is the problem of a globular dis-
charge. Although a number of daring and sometimes
exotic hypotheses have been put forth [62–64], Stakha-
nov’s model [65, 66] appears the most plausible in view
of its quantitative consistency. According to this model,
the energy of a globular discharge is accumulated in
ionic pairs stabilized by water molecules. The unique
condition for the formation of a globular discharge is
apparently an intense cold ionization. The temperature
of the plasma must be low for the formation of molec-
ular clusters on ions. The cold nonequilibrium glow of
a plasma globe is formed as a result of relatively rare
acts of recombination, which is hampered by the
hydrate shells of ions. The heating of the globe by inter-
nal electric currents as a result of the mechanical con-
tact with the conducting surface leads to the destruction
of hydrate shells, the intensification of recombination,
and the avalanche-type liberation of thermal energy.
The evolution of instability terminates by the burst of
the globular lightning and is accompanied by rapid
heating to a temperature of thousands of degrees. In our
opinion, the formation of the reflectivity of the ionized
atmosphere and the globular electric discharge are
based on the same phenomenon and differ in the scale
of the spatial concentration of energy. In both cases, we
are dealing with a cold plasma, but the high concentra-
tion of unrecombined ionic pairs in the case of globular
lightning leads to the energy instability which evolves
into a burst, while in a weakly ionized atmosphere, the
process evolves to a steady-state mode. The mecha-
nisms of retardation of recombination also differ in
their spatial scales. According to the hypothesis devel-
oped on the basis of Stakhanov’s model [67], the stabi-
lization of ions in a globular lightning occurs at dis-
tances of the order of the thickness of the first hydrate
shell of an ion (0.3–0.5 nm), while in the steady-state
process initiated by a radioactive radiation, the leading
role is played by another thermodynamic barrier
located at a distance of the order of 1 nm. The origin of
this barrier is qualitatively different and is associated
with the rapid expulsion of molecules from the ionic
gap. In Stakhanov’s model, the retardation of recombi-
nation is mainly determined by the probability of elec-
tron tunneling through a monomolecular hydrate layer,
while in our model of the cold plasma with a low charge
concentration, the recombination rate is determined by
the deceleration of the counter diffusion flows of ions
in the region in front of the barrier at atomic spacings
larger by a factor of 7–8 than in the former case.
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Abstract—Radiative transfer in a nonequilibrium plasma in an external electric field is considered. The system
of kinetic equations determining the populations of atomic levels is written taking into account the combination
of collision and radiative processes and is solved together with the kinetic equation for photon of various fre-
quencies, which are emitted and absorbed in the radiative transitions from the states of the continuous and dis-
crete spectra. The shape of spectral lines is determined from the solution of the quantum-mechanical problem
on the emission of an atom in the electric field of the plasma and an external magnetic field, taking the Doppler
effect into consideration. The developed approach is used in the model calculation of radiative transfer under
the conditions corresponding to the edge plasma in a tokamak, which is simulated by a homogeneous plane
layer of a deuterium plasma. It is shown that the joint action of the external magnetic field and the electric
plasma fields considerably affects the spectral and integrated characteristics of the radiation. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION 

In order to analyze the radiation emitted by a non-
equilibrium plasma, one must determine the concentra-
tions of all emitting components and solve the radiative
transfer equation for photons in the entire spectral
range. In the presence of reabsorption of the radiation,
the populations are nonlinear functions of radiation
parameters. For this reason, the system of kinetic bal-
ance equations determining the level populations must
be solved together with the radiative transfer equation.
In the presence of externally applied and intrinsic
plasma fields, the problem is complicated since the
effect of these fields on the emission and absorption
coefficients for photons of various frequencies must be
taken into consideration. The practical need in formu-
lating such problem emerges, for example, in an analy-
sis of radiative transfer in the low-temperature edge
plasma of a tokamak. For instance, in the deuterium
plasma in the edge region of the Alcator C-Mod toka-
mak [1, 2] at temperature Te ~ 1 eV, for the electron
number density ne ≈ 3 × 1015 cm–3, and the atomic den-
sity na ≈ 1013–1016 cm–3 in a magnetic field B ≈ 6–8 T,
the emission in spectral lines plays a decisive role in the
energy transfer process. As a result of intense recombi-
nation and the emergence of radiation with a partial
reabsorption of the lines from the Lyman series, the
plasma becomes nonequilibrium. Transport processes
are very sensitive to the shape of the lines, which is
strongly affected by the magnetic field of the tokamak
and the electric fields produced by the plasma ions and
1063-7761/01/9203- $21.00 © 20441
electrons. Under such conditions, the Zeeman, Stark,
and Doppler effects for the lower lines in the Lyman
and Balmer series are approximately of the same order
of magnitude and must therefore be taken into account
simultaneously.

This work is devoted to the analysis of radiation
parameters of such plasmas. For this purpose, the equa-
tions of radiation–collision kinetics for excited states
are solved together with the radiative transfer equation.
The populations are determined from the direct numer-
ical solution of these equations as well as using the
modified diffusion approximation [3]. The calculation
of the spectral line profile is a separate problem. To this
end, we obtained the solution of the quantum-mechan-
ical problem on the shape of the spectral lines emitted
by an atom in the electric microscopic field of the
plasma and in an external magnetic field in the presence
of the Doppler effect. The electric microfield created by
the plasma ions is taken into account in the quasi-static
approximation. Together with the magnetic field, this
field removes degeneracy and leads to the splitting of
spectral lines into components. For a fixed ionic
microfield, the broadening of the components is due to
the interaction with plasma electrons and the Doppler
effect. The resultant profiles of the lines determined in
this way are averaged over the magnitude and direction
of the ionic microfield and are used in the equations of
kinetics and radiative transfer. We consider the simplest
geometry of the emitting volume, i.e., a homogeneous
plane plasma layer. In view of the presence of the mag-
netic field, the problem is not one-dimensional, which
001 MAIK “Nauka/Interperiodica”
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complicates computations significantly. The inclusion
of the magnetic field may change the radiation energy
transferred in spectral lines and may considerably mod-
ify the intensity and shape of the lines emitted from the
bulk of the plasma.

2. POPULATION OF LEVELS

The populations of the excited states nk = nk(r, t) can
be determined proceeding from the equations of energy
level kinetics:

(1)

Here, k determines the electron state corresponding to
the discrete level k = 1, 2, …, km or to the continuous
spectrum k = e. We assume that the population of levels
with k > km are in equilibrium with the continuous spec-
trum, and these level can be effectively taken into
account by ascribing them to the continuous spectrum e.
Symbol q denotes the collision-induced (q = c) pro-
cesses of excitation, ionization, quenching, three-parti-
cle recombination as well as radiative (q = r) processes
such as transitions in the discrete spectrum, photore-
combination, and photoionization. The probabilities

 of the n  m transitions in a q process were cal-
culated using the formulas from [4].

According to estimates, the formation and destruction
of negative and molecular ions at temperatures T ~ 1 eV
are not essential for calculating the populations of
excited states and the radiative transfer. For this reason,
we considered plasmas consisting of atoms, electrons,
and singly charged positive ions.

In the quasi-stationary approximation, putting
dnk/dt = 0, we obtain a system of algebraic equations in
the collision–radiation approximation, which was
solved in a given radiation field. Besides, to reduce the
computation time, we used the modified diffusion
approximation (MDA) in which analytic formulas were
derived for calculating the populations [3]. This
approximation is constructed on the analogy between
the motion of an electron in the discrete space of atomic
energy levels and the random roaming of a Brownian
particle; this leads to the discrete version of the Fokker–
Planck equation. Its solution directly specifies the val-
ues of populations taking into account radiative and
collision processes (see [3, p. 133]).

In this paper, atomic units are used.

3. RADIATIVE TRANSFER

If we disregard scattering processes, the spectral
intensity of radiation at frequency ω with polarization
ρ in a certain direction defined by the unit vector W
(W = k/ |k |, where k is the wave vector of the electro-
magnetic radiation) satisfies the transfer equation

dnk

dt
-------- Wk'k

q( )nk' Wkk'
q( )nk–( ).

k' k≠
∑

q c r,=

∑=

Wnm
q( )
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(2)

where s is the coordinate along the beam in the preset
direction, jωρ is the bulk emissive power, and κωρ is the
absorption coefficient taking into account the induced
emission. The solution of Eq. (2) has the form

(3)

For the isolated spectral line corresponding to tran-
sition n  m, in the approximation of the total redis-
tribution over frequency and polarization, we have

(4)

where Anm is the Einstein coefficient for the spontane-

ous emission of a photon, and (r, W) is the line pro-
file for such an emission in direction W , normalized to
unity. In the presence of a magnetic field B, the emis-
sive power and the absorption coefficient depend on the
magnitude of the magnetic field as well as its direction.
If there exists a preferred direction, the anisotropy in
the properties of the plasma may become significant
and, hence, the electromagnetic radiation in the general
case is determined by the four Stokes parameters. In an
optically inactive medium, under the condition of com-
plete mixing of polarizations, it is sufficient to write the
transfer equations for each polarization separately. The
necessary condition for complete mixing in frequency
and polarization is that the frequency of collisions
between an atom and electrons is much higher than the
frequency of radiative transitions.

In the case of a plane plasma layer (0 ≤ z ≤ L) in a
uniform magnetic field directed at angle β to the z axis
(which is normal to the layer), the intensity of radia-
tion (3) emitted from the layer in direction W(ϑ , ϕ)
(ϑ  is the angle between the direction W of the beam and
the z axis and ϕ is the angle between the projections of
W and B on the plane perpendicular to the z axis) can
be written in the form

(5)

where χ is the angle between W and B:

(6)

In the problem of plasma radiation energy losses, it
is important to calculate the emissive power carried
through a unit area element on the surface of the layer.
For the spectral line corresponding to the n  m tran-
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sition, the radiation yield in the half-space correspond-
ing to the positive direction of the z axis is defined as

(7)

where we have taken into account the fact that the line
width is much smaller than the radiation frequency ωnm .

In Eqs. (1) of the energy-level kinetics, the emission
and absorption processes in the spectral line n  m
appear in the form of the combination

(8)

Here, c is the velocity of light, Bmn and Bnm are the Ein-
stein coefficients for absorption and induced emission,

(r, W) and (r, W) are the spectral line profiles
for the emission in direction W corresponding to these
processes, and dΩ is the solid angle element for the
direction of emission (dΩ = sinϑdϑdϕ). Quantity (8)
defines the number of photons corresponding to transi-
tion n  m, which emerge from the unit volume of
the plasma surrounding point r per unit time. It is con-
venient to introduce the so-called effective probability
of radiation,

(9)

where κωρ(r, W) is the absorption coefficient corre-
sponding to the given isolated line,

Relations (8) and (9) are of a general nature and are
valid for an arbitrary geometry of the emitting system.
Using relation (9), we obtain instead of (8) the follow-
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ing expression for the radial component of the equa-
tions of the energy-level kinetics:

(10)

Substituting the solution of the transfer equation in
form (3) and the emissive power (4) into Eq. (9), we
obtain

(11)

where the integral is taken over the entire plasma vol-
ume, and

Here, point r'' runs along the straight line from point r
to point r', so that

Following Biberman [5], we assume that nn(r) is a
slowly varying function of r (at least in the major part
of the integration domain). In this case, nn(r') in
Eq. (11) can be taken out of the integral. According to
calculations, such a representation holds well for the
model problem with a plasma layer of thickness L since
the value of nn(r) varies only slightly except in narrow
surface regions (z ≈ 0, z ≈ L) of thickness ∆z ! L mak-
ing a small contribution to the integral (see Section 5).

As a result, we obtain the following expression for
the effective emission probability  in the problem
with a plane layer under consideration:

(12)

(13)

where δ = 1 for z2 > z1 and δ = –1 for z1 > z2.
In zero magnetic field, we have

(14)
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where z< and z> are respectively the smallest and largest
values of z1 and z2, and E1(y) is the integral exponential
function:

4. SPECTRAL LINE PROFILE
IN A MAGNETIC FIELD

The problem on a hydrogen atom in cross electric
and magnetic fields was considered by many authors
both analytically, using perturbation theory [6–9], and
by solving equations numerically in the case of ultras-
trong magnetic fields [10, 11]. A much more compli-
cated problem of spectral line broadening in the case
when an emitting atom is under the action of an exter-
nal magnetic field and the fluctuating electric micro-
scopic field of a plasma was studied in detail in [12–14]
using the quasi-static approximation for ions. The first
two Lyman lines and a Balmer line were calculated.
Mathys [14] took into account the Doppler broadening.
The effect of ionic dynamics was studied by Günter and
Könies in their recent work [15].

An externally applied magnetic field and the electric
field produced by ions and electrons of a plasma
strongly affect the shape of spectral lines. As a rule, the
ions can be considered in the quasi-static approxima-
tion, while the electrons should be analyzed in the
impact approximation [16]. In crossed electric and
magnetic fields, the degeneracy is removed, and the
spectral lines corresponding to transitions between the
levels with the principal quantum numbers  and n
split into individual components. The structure of such
a splitting is more complex than in the presence of one
of the field. The shift of each component and its inten-
sity are determined by the magnetic field induction B,
the strength of the quasi-static ionic microfield E, and
the angle between vectors E and B. Besides, the inten-
sity of a component (but not its shift) depends on the
direction W of radiation, to be more precise, on the
angles between W and vectors E and B. The profile of
each component is determined by the Doppler effect
and by the interaction between an atom and free elec-
trons. The resultant profile of the line corresponding to
the   n transition can be calculated by averaging
over the magnitude and direction of the quasi-static
ionic microfield:

(15)

Here, P(E) is the probability distribution function for
the electric ionic (quasi-static) microfield, which is

E1 y( ) e yt–

t
-------- t.d

1

∞

∫=

n

n

Φωρ
nn r W,( ) 1

4π
------ P E( )∫=

× Rννρ E( )φννρ ω E,( )dE.
νν
∑
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assumed to be isotropic, (E) and (ω, E) are
the relative intensity and the profile of an individual
component   ν into which transition   n
splits in the given magnetic (B) and electric (E) fields
(here and below in this section, the dependence on the
magnetic field and on r is not manifested explicitly). By

 and ν we denote the sets of quantum numbers deter-
mining the initial and final states for each component
(see below).

In contrast to [12–14], where the energy matrix
could be diagonalized numerically in the basis of the
angular momentum eigenstates, we develop here an
approach using the analytical results obtained in [6] for
energy level splitting. This allows us to present analyt-
ically the dipole matrix elements between the basis
wave functions.

The profile of each component is determined by the
Doppler effect and by the interaction of the atoms with
free electrons. These mechanisms are treated as statisti-
cally independent, and the resultant contour (ω, E)
can be calculated as a convolution of the corresponding
profiles:

(16)

where  is the position of the center of the compo-

nent corresponding to   ν,

is the Doppler broadening parameter, Ta is the temper-
ature of atoms, and M is the atomic mass. For the elec-
tronic profile (ω, E), we use the approximation
proposed by Seaton [17] for calculating the broadening
of Stark components by electrons. In the given case, the
line splitting is associated with a combination of the
Stark and Zeeman effects, which renders specific fea-
tures to the line profiles and requires a certain modifi-
cation of the theory [17]. This problem is considered in
the Appendix.

The relative intensities of the components corre-
sponding to the   ν transition in the dipole
approximation are defined as

(17)

where eρ is the unit vector of photon polarization and
 is the total oscillator force for the n   transi-

tion.
We assume that the lines are isolated. In this case,

the characteristic line width is smaller than the separa-
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tion between the lines, which imposes the following
limitations on the magnetic field and the plasma density
for a given line:

(18)

It should be noted that the approximation of the rec-
tilinear classical trajectories of perturbing electrons,
which is conventional in the theory of atomic spectral
line broadening, does not lead to any additional con-
straint on the magnitude of the magnetic field. Indeed,
this condition requires that the Larmor frequency be

smaller than the plasma frequency, or B < . It
can easily be verified, however, that the latter inequality
always holds when inequalities (18) are satisfied. We
can neglect the spin–orbit interaction since the fine
structure splitting at temperatures T ~ 1 eV, which are
typical of divertor plasmas, is smaller than the Doppler
width of the levels.

It was proved by Epstein in the framework of the old
Born theory (see [18, 19]) that the combined effect of
the magnetic and electric fields on the orbit of an elec-
tron in a state with the principal quantum number n and
the orbital quantum number l in the first approximation
in the field can be described as a uniform and indepen-
dent precession of vectors

(L is the angular momentum and ra is the radius vector
of the electron, averaged over its orbital motion) with
the angular velocities

(19)

respectively.

In the same approximation, the corrections to the
electron energies have been obtained [18]. The quan-
tum-mechanical analysis in the first order of perturba-
tion theory leads to the same result [6]. Hamiltonian *
can be written as the sum

of the unperturbed Hamiltonian

and the perturbation

which can be presented in the subspace of states with a
preset value of n in the form

B c/n4, ne 0.05/n15/2.< <

8πc2ne

3
2
---nL ra+−

w1 2,
1
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3
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where

and A is the Runge–Lenz vector satisfying in this sub-
space the relation [6]

Operators I1, 2 commute with *0 and satisfy the con-
ventional commutation relations for the angular
momentum operator. It follows hence that

where j is determined by the number of possible states,

i.e.,  and hence  and
the components I1 along the ω1 axis and I2 along the
ω2 axis (we will denote them by n' and n'', respectively)
may assume 2j + 1 integer or half-integer values
−j, −j + 1, …, j – 1, j.

In the first order of perturbation theory, we can write

(20)

where ms = ±1/2 is the spin projection on the axis
directed along the magnetic field.

The corresponding wave function ψnn'n'' can be writ-
ten as a linear combination of wave functions in the
parabolic coordinates with the z axis directed along the
electric field E:

(21)

where (α) = (0, α, 0) is the Wigner function [20]
corresponding to the rotation about the z axis through
angle α and  ≡  are the wave function in the
parabolic coordinates. In the present case, it is conve-
nient to characterize these functions by quantum num-
bers i1 and i2, which are the components of operators I1
and I2 along the z axis and are connected with the con-
ventional parabolic quantum numbers n1, n2 and the
magnetic quantum number m (n1 + n2 + |m | + 1 = n)
through the following relations:

Angles α1 and α2 are formed by vector E with vectors
w1 and w2, respectively, i.e.,

where ϑ ' is the angle between E and B.
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The shift of component   ν (ν denotes the set
of quantum numbers nn'n'') relative to the center of the
line can be obtained from Eq. (20) if we disregard the
spin-orbit interaction:

The dipole matrix elements appearing in (17) with
the wave functions (21) can be presented in the form of
linear combinations of the matrix elements calculated
in parabolic coordinates. Let eρx, eρy , and eρzbe the Car-
tesian coordinates of the unit polarization vector eρ in a
coordinate system with the z axis directed along E and
the x axis lying in the plane of vectors E and B. In this
case, we have

(22)

where the matrix elements 〈n1n2m|a | 〉  in the par-
abolic coordinates are calculated by the Gordon formu-
las [21].

We direct one of the polarization vectors, e1, along
the normal to the plane of vectors W and B and choose
the other vector e2 so that it lies in this plane and is per-
pendicular to Ω . It is convenient to carry out the aver-
aging in Eq. (15) over the directions of E in a reference
frame associated with the magnetic field. Let ϕ' be the
angle between the projections of vectors W and E on a
plane perpendicular to vector B. In this case, we can
write

where angle χ is defined by Eq. (6).

The Wigner function (α) in formulas (21) and
(22) can be expressed in terms of the Jacobi polynomi-
als [20]:

ν

ωνν ωnn– ω1n' ω2n'' ω1n'– ω2n''.–+=

eρ ν r ν〈 〉 eρa ν a ν〈 〉 ,
a x y z, ,=

∑=

ν a ν〈 〉 nn'n'' a nn'n''〈 〉≡

=  dn'i1

j α1( )dn''i2

j α2( )dn' i 1

j α1( )
i 2 j–=

j

∑
i 1 j–=

j

∑
i2 j–=

j

∑
i1 j–=

j

∑

× dn'' i 2

j α2( ) n1n2m a n1n2m〈 〉 ,

n1n2m

e1x ϑ ' ϕ', e1ysincos ϕ', e1zcos ϑ ' ϕ',sinsin= = =

e2x χ ϑ ' ϕ'coscoscos– χ ϑ ',sinsin–=

e2y χ ϕ',sincos=

e2z – χ ϑ ' ϕ'cossincos χ ϑ ',cossin+=

dkk'
j

dkk'
j α( ) ξkk'

s! s µ ν+ +( )!
s µ+( )! s ν+( )!

-------------------------------------
1/2

=

× α
2
---sin 

  µ α
2
---cos 

  ν
Ps

µ ν,( ) αcos( ),
JOURNAL OF EXPERIMENTAL
where

The Jacobi polynomials  can be conveniently
evaluated using the recurrence relations [22].

For calculating the broadening by electrons, we will
use an approximation in which the profiles of individual
components are independent of angle ϕ' (see the Appen-
dix). In this case, the integration with respect to ϕ' in
Eq. (15) is carried out analytically, which gives

(23)

(24)

For ρ = 1, we have

while for ρ = 2, the following expression holds:

where the matrix elements  ≡ 〈ν|a | 〉  (a = x, y, z) are
defined by expression (22).

5. RESULTS OF CALCULATIONS
We studied a plane layer of a homogeneous deute-

rium plasma at temperature Te = 1 eV, with the electron
number density ne = 3 × 1015 cm–3 and atomic densities
na = 1013–1016 cm–3, which simulates a plasma with a
varying optical density. Although the total number den-
sity of atoms was assumed to be fixed for definiteness,
the populations of individual levels depend, among
other things, on the optical density of the layer and is a
function of coordinate z (the z axis is perpendicular to
the plane of the layer). In order to determine the extent
to which the magnetic field affects the radiative transfer,
we made calculations for zero magnetic field (B = 0) as
well as with a magnetic field B = 8 T directed at various
angles to the plane of the layer. In the conditions under
investigation, the Zeeman, Stark, and Doppler effects
for the lower lines in the Lyman and Balmer series are
of the same order of magnitude, which means that
these effects must be taken into account simultaneously.
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The relevant quantities are given in the table. The elec-
tronic width is estimated by using the approximate for-
mula [23, 24], the Stark shift is included as the second
term on the right-hand side in formula (19) for the upper
energy level in the transition in the normal (Holzmark)
field of ions, and the shift in the magnetic field is taken
into account as the first term in the same formula.

In our calculations, we assumed that the profiles of the
spectral line corresponding to spontaneous emission,
absorption, and induced emission are the same, which
corresponds to the approximation of the complete
redistribution of photons over frequency [25]. In the
static approximation for ions, the participation of colli-
sions with the ions in this redistribution is neglected.
However, in the conditions of our problem, almost
complete redistribution is attained due to impact colli-
sions with electrons and the Doppler effect. The fre-
quency of the collisions with electrons is much higher
than the spontaneous emission probability, and the
overlapping of the Zeeman–Stark components ensures
the frequency redistribution within the entire line pro-
file (see the table).

It should be noted that the application of the quasi-
static approximation for ions in the central region of
spectral lines is incorrect. In zero magnetic field, the
width of this region for the Ly-α line is of the order of
the width of the line itself. Consequently, the accuracy
in the calculation of the Ly-α profile is lower than for
other lines. However, in the presence of a magnetic
field, the linewidth increases significantly, and the rela-
tive role of the ionic dynamics decreases. For this reason,
“switching on” the magnetic field slightly improves the
accuracy of calculation of line profiles, and the inclusion
of the ionic dynamics becomes relatively less impor-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tant [15]. A similar conclusion about a lower line shape
sensitivity to the broadening mechanisms in the pres-
ence of a magnetic field was drawn long ago by
Mathys [14].

The population distribution over the plasma layer
was calculated by the method of iterations. First, the
populations were assumed to have equilibrium values

nn =  and a modified diffusion approximation was
used. At the last stage (third or fourth iteration), the sys-
tem of equations (1) was solved. To describe the spec-
trum, 3100 groups had to be chosen on a special non-
equilibrium mesh in ω (100–200 points for each of the
principal lines of deuterium). The calculations were
made using a multiprocessor computer. Parallelizing
was carried out by splitting the problem over the spec-
trum paying attention to the uniform loading of the pro-
cessors.

The distribution of deuterium atoms over the energy
levels in a plasma layer of thickness 1 cm is shown in
Fig. 1. The role of the radiation yield in the lines

nn
0( )

Parameters of line broadening (in electronvolts) for various
mechanisms responsible for broadening in deuterium plasma
for Te = 1 eV, ne = 3 × 1015 cm–3, na = 3 × 1015 cm–3, and B = 8 T

Line Electronic 
width

Doppler 
parameter Stark shift Shift in mag-

netic field

Ly-α 4.1 × 10–5 3.3 × 10–4 1.2 × 10–4 4.6 × 10–4

Ly-β 1.7 × 10–4 3.7 × 10–4 1.9 × 10–4 4.6 × 10–4

Ly-γ 4.7 × 10–4 4.2 × 10–4 2.5 × 10–4 4.6 × 10–4

D-α 1.7 × 10–4 6.2 × 10–5 1.9 × 10–4 4.6 × 10–4
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Fig. 1. Populations of excited levels of deuterium in a plasma layer of thickness 1 cm for Te = 1 eV, ne = 3 × 1015 cm–3, (a) na =

3 × 1014 cm–3 and (b) 3 × 1015 cm–3 as a function of coordinate z perpendicular to the plasma layer.
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belonging to the Lyman series increases strongly as we
approach the edge of the layer; for this reason, the pop-
ulation of the first excited energy level (n = 2) at the
layer edge decreases abruptly. The width ∆z of the
region where this decrease takes place corresponds to
the optical width κω∆z ~ 1. For other energy levels, this
effect is less pronounced, and their populations rapidly
approach equilibrium values (according to Saha) with
increasing n (Fig. 2). In this case, the magnetic field vir-
tually does not affect their values. “Switching on” the
field B = 8 T leads to a change in the population by less
than 0.3%, and the dependence on the direction of the
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Fig. 2. Population of deuterium levels at the center of the
layer normalized to their equilibrium values for Te = 1 eV,

ne = 3 × 1015 cm–3, na = 3 × 1014 (1) and 3 × 1015 cm–3 (2).
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field is even weaker. The populations of all energy lev-
els turn out to be weakly dependent on coordinate z
except for the level with n = 2 for which the population
in the surface regions decreases considerably (see Fig. 1).

Specifying the atomic concentration na below or

above the equilibrium value (which amounts to  =
2.4 × 1015 cm–3 for ne = 3 × 1015 cm–3 and Te = 1 eV),
we simulate the recombination or ionization mode,
respectively, in the nonequilibrium plasma. This leads

to an underpopulation (nn/  < 1) or overpopulation

(nn/  > 1) of lower atomic levels, while upper levels
are always in equilibrium with free electrons. In fact, a
considerable departure from equilibrium population
under our conditions is observed only for the ground
level n = 1 (see Fig. 2). Figure 1 also shows the results
of calculations in a modified diffusion approximation,
which ensures virtually the same accuracy as in the
numerical solution, but the computation time becomes
much shorter, which is important for the numerical
realization of complex computational algorithms in the
calculation of radiative transfer in a nonequilibrium
plasma in the 2D or 3D geometries.

The effect of the magnetic field on the profiles of the
first lines in the Lyman (Ly-α) and Balmer (D-α) spec-
tral series of deuterium is illustrated in Fig. 3. Each pro-
file is the result of averaging of profiles (23) for polar-
izations ρ = 1, 2 and is normalized by the condition

For the resultant profile, the direction of the magnetic
field is as important as its strength. The line profile
changes significantly depending on the angle χ between
the direction of the magnetic field and the direction of
radiation (direction of observation). The results of calcu-
lation are in agreement with the data obtained in [12–14].

The combined effect of radiation reabsorption and
of magnetic fields of various orientations is illustrated
in Figs. 4–6, which show the variation of the profiles of
the spectral lines emitted by a plasma layer in a direc-
tion normal to the layer depending on the layer thick-
nesses. The results of calculation by formula (5) are
given for two values of atomic number density na = 3 ×
1014 cm–3 (Figs. 4a, 5a, and 6a) and 3 × 1015 cm–3

(Figs. 4b, 5b, and 6b). Each figure shows the profiles of
three Lyman and one Balmer line (Ly-α, Ly-β, Ly-γ, and
D-α from left to right) whose centers are separated by
0.005 eV for five values of the layer thickness. All the
lines are given on the same intensity scale and on the
energy scale relative to the center of the lines.

It can be seen from the figures that the Ly-α line is
trapped in a layer of thickness L = 0.1 cm for na = 3 ×
1015 cm–3 and in a layer of thickness L = 0.6 cm for
na = 3 × 1014 cm–3. As the layer thickness increases fur-
ther, the line intensity changes insignificantly. The Ly-β
line is trapped for L ≈ 2 cm if na = 3 × 1014 cm–3; if the

na
0( )

nn
0( )

nn
0( )

Φω
nn ωd∫ 1.=
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atomic density is an order of magnitude higher, it
occurs for the layer thickness which is an order of mag-
nitude smaller. Indeed, the populations of the absorbing
energy level n = 1 in the Lyman series differ in these
two cases almost by an order of magnitude (see Fig. 2).
The features of self-absorption for Ly-γ appear only for
na = 3 × 1015 cm–3, while for na = 3 × 1014 cm–3, the line
intensity increases in proportion to the layer thickness,
which is typical of optically transparent plasmas. For
the D-α line, the plasma layer is optically transparent,
the line intensity remaining virtually unchanged upon
an order-of-magnitude change in the value of na since
in these two cases, the population of the upper (n = 3)
and the lower (n = 2) energy level are close (see Figs. 1
and 2).

The dip at the center of a line typical of self-absorp-
tion appears only on the Ly-α contour since the popula-
tion of the energy level n = 2 emitting this line
decreases noticeably at the layer surface (see Fig. 1).
This can be seen in Fig. 4 (B = 0) and Fig. 5 (B is per-
pendicular to the direction of observation), where the
Ly-α line is not split by the magnetic field. In the case
when the magnetic field is parallel to the direction of
observation, the Ly-α line is split by the magnetic field,
and the self-absorption effects emerge on each of the
two peaks (Fig. 6; cf. Fig. 3). The central part of the Ly-β
and Ly-γ lines remains flat after their reabsorption since
the populations of the levels emitting these lines remain
virtually unchanged in the surface regions.

The magnetic field affects the line width and the
structure of the profile, the magnetic field direction play-
ing a significant role in the latter case. However, the inte-
grated characteristic, i.e., the radiation yield from the layer
surface, is virtually independent of the field direction
since a change in the direction does not lead to a notice-
able redistribution of intensity between the center of the
line and its wings (see Fig. 3). The radiation yield was cal-
culated by formula (7) taking into account the dependence
of the population of levels on the radiation field in accor-
dance with the system of kinetic equations (1) and rela-
tions (10), (12)–(14).

Figure 7 shows the radiation yield from one of the
two surfaces of a plane plasma layer as a function of its
thickness for two values of atomic number density in
zero magnetic field as well as in the field B = 8 T
directed perpendicularly (β = 0) to the plasma layer and
parallel to it (β = π/2). In the last two cases, the curves
almost merge into one. The magnetic field leads to an
increase in the radiation yield for partially locked spec-
tral lines due to an increase in their width. The plasma
layer is optically transparent for the D-α line and,
hence, the magnetic field does not affect its yield. The
yield of the trapped Ly-α line for na = 3 × 1015 cm–3 and
L > 1 cm is also affected by the magnetic field insignif-
icantly. The relative role of the magnetic field in the line
broadening decreases as we go over to higher terms in
a spectral series. The presence of the field B = 8 T vir-
tually does not affect the radiation yield even for Ly-γ
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Fig. 4. Profiles of the Ly-α, Ly-β, Ly-γ, and D-α spectral
lines emitted by a plane layer of deuterium plasma in zero
magnetic field in a direction normal to the layer for Te =

1 eV, ne = 3 × 1015 cm–3, (a) na = 3 × 1014 cm–3 or

(b) 3 × 1015 cm–3; the plasma layer thickness is 0.1 (1), 0.6 (2),
1.1 (3), 1.6 (4), and 2.1 cm (5). For each value of the layer
thickness, the centers of the lines are separated from one
another by 0.005 eV.
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for both values of na considered above, although the
effect of reabsorption in these two cases is different.

6. CONCLUSION

The shape of the spectral lines of deuterium and the
radiation yield from a plane layer of a deuterium plasma
of various thicknesses are calculated for T = 1 eV,
ne ≈ na ≈ 1015 cm–3, and B = 8 T.

It is shown that the magnitude as well as the direc-
tion of the magnetic field considerably affect the shape
of spectral lines. The contour of a spectral line may
acquire a complex structure. For example, when the
direction of observation is parallel to the magnetic
field, a dip appears at the center of the Ly-α line. As the
principal quantum numbers of the lower and upper
states of the transition increase, the contour structure
becomes more complicated. It should be noted that in
order to single out the effect of the magnetic field and
to simplify our computations to the maximum possible
extent, we disregarded the dynamics of ions. Obvi-
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ously, its inclusion must lead to a partial smoothing of
the obtained structures.

The spectral line profile may be considerably
deformed as a result of reabsorption. This effect is obvi-
ously manifested most clearly for the first lines in the
Lyman series and depends on the optical thickness of
the plasma layer. Operating together with the magnetic
field, it may either additionally complicate or simplify
the observed contour of the spectral line. This is prima-
rily determined by the form of the spatial dependence
of the population of the upper and lower levels of the
transition in the vicinity of the surface of the emitting
layer.

The radiation yield from the plasma layer for a given
line integrated over the spectrum depends on the mag-
nitude of the magnetic field, but is virtually indepen-
dent of its direction since the magnetic field direction
affects the structure of the spectral line profile, but not
the line width. This allows us to use in the radiation–
collision kinetics the radiation parameters averaged
over the directions and simplifies the inclusion of the
magnetic field effect on the energy balance in the edge
region of a tokamak. The factors leading to spectral line
broadening, in particular, strong magnetic fields, con-
siderably affect the radiation yield for partially reab-
sorbed lines. In the limiting cases of small or large opti-
cal width, the radiation yield is virtually independent of
the line width and shape.
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APPENDIX

Broadening by Electrons

A simple model for calculating the electron broad-
ening of hydrogen lines was proposed by Seaton [17].
It is based on the Bethe–Born approximation for the
binary interaction of an emitting atom with a perturbing
electron, the truncation in the orbital angular momen-
tum, and the analytic approximation of the line profile
taking into account its normalization to unity. This
approximation ensures the correct frequency depen-
dence both in the profile core, where it corresponds to
the impact approximation, and at the wings in the
region of transition from the impact to the static
approximation. The static electron wing for the plasma
parameters under investigation falls to the frequency
 AND THEORETICAL PHYSICS      Vol. 92      No. 3      2001
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range in which the approximation of isolated lines is
violated and was not considered by us here. The profile
associated with electron broadening can be approxi-
mated by the expression

(A.1)

where ξ denotes the component   ν (  
nn'n'') of line   n and u = ω –  is the distance
from the center of the given component.

Profile (A.1) is symmetric; consequently, we will
henceforth assume that u > 0. Functions γξ(u) and gξ(u)
satisfy the following formulas derived by Seaton [17]
for a hydrogen plasma in zero magnetic field:

(A.2)

(A.3)

Here, function w(u) depends only on the principal
quantum numbers of the transition and is the same for
all components. On the contrary, factor Fξ is determined
by all quantum numbers of the initial and final states and
does not depend on u. In the presence of a magnetic field,
function w(u) remains the same as in [17] and factor Fξ
must change. For w(u), we have

where u1 is determined from the equation

In the case of a neutral hydrogen (or deuterium)
atom, we have

where rD is the Debye radius and γ0 = 0.5772 is the
Euler constant. The parameters C, D, and Q depend on

 and are given in [17]. The integral with respect to u'
in (A.3) can be evaluated in elementary functions.

The diagonal matrix g approximates the electron–
electron interaction matrix G and is defined so that [17]
its elements are proportional to the diagonal elements
of the interaction matrix, and the matrix product D+GD
does not change as a result of approximation, i.e.,

 D+gD = D+GD.
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Here, D is the column matrix consisting of the transi-
tion probability amplitudes Dξ whose squares of the
moduli are equal to the relative intensities of compo-
nents (17). For this reason, factor Fξ is the product of
the proportionality factor b and the diagonal element
Gξξ of matrix G (Fξ = bGξξ), which is connected with G
in the same way as Fξ is connected with γξ through rela-
tion (A.2):

Coefficient b is defined as

(A.4)

The explicit form of G is defined in [17] in the rep-
resentation of states |nlm〉  (the corresponding matrix
will be denoted by G(L)) and the transition to the repre-
sentation of the parabolic states |n1n2m〉  is indicated. In
the case of crossed electric and magnetic fields, we
must go over to the basis of states (21). In the nlm rep-

resentation, the matrix element  (s, t are transitions

between the  and nlm states) has the form

where C( j1, j2, j; m1, m2, m) are the Clebsch–Gordan

coefficients and GL(ls, ; lt , ) is the reduced matrix
element which may differ from zero only if

For ls = lt = l (in this case,  =  =  also), we have

while for ls ≠ lt , we have

where

and l> is the larger of numbers l and l'.
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A transition to representation (21) is carried out
with the help of the transformation matrix Y, which is
constructed from the coefficients of the expansion of
states |nn'n''〉  in states |nlm〉:

The expansion of the nn'n'' states in the states in par-
abolic coordinates is determined by formula (21), while
the expansion of the latter in the nlm states is carried out
with the help of the Clebsch–Gordan coefficients
[26, 27, 19]:

where i2 = m – i1, n2 = j + i1 – (m + |m |)/2.
The numerator in formula (A.4) can be calculated in

any representation, but the easiest way is to make cal-
culation in the nlm representation. The denominator is
calculated in the nn'n'' representation. In this case, the
relative intensities of the components |Dξ |2 =  and,
hence, profiles (A.1) are complex functions of angles ϑ '
and ϕ' over which the integration in Eq. (15) is carried
out. In order to simplify calculations, we use the fol-
lowing approximation. Instead of |Dξ |2, we substitute
into Eq. (A.4) relation (24), i.e., the result of averaging
of this quantity over ϕ', and also carry out the averaging
over polarizations in the numerator and denominator of
Eq. (A.4) separately. This gives

(A.5)

where ls> is the larger of the values of ls and , lt> is the

larger of the values of lt and , and  is the radial
matrix element calculated by using Gordon’s formula
[21, 28]. In order to justify this approximation, we note,
first, that the broadening of individual components is
determined by three factors: the Doppler effect and the
interaction with ions and electrons, while the applica-
tion of approximation (A.5) roughens the effect of only
one (the latter) of these factors. Second, factor b
appears in the approximation of the interaction matrix
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which is computed using a number of approximations;
consequently, it is meaningless to require a high accu-
racy of its calculation. Finally, the dependence of the
final result on b will be masked to a considerable extent
as a result of averaging over the magnitude and direc-
tion of the quasi-static microfield in Eq. (15). For this
reason, approximation (A.5) is justified, which was
confirmed by approximate calculations. The application
of this approximation makes the profile of component (16)
independent of angle ϕ' and simplifies the integration
in Eq. (15).
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Abstract—Low-frequency oscillations in the density of dust particles, which are spontaneously excited in the
standing plasma column of a dc glow discharge in neon, were experimentally studied. The longitudinal waves
were monitored by a special visualization technique, and the dust sound oscillation characteristics were deter-
mined and analyzed using specially developed algorithm and data processing software. It was established that
the longitudinal waves propagate from anode to cathode, the frequency and wavevector of the dust sound oscil-
lations being dependent on the discharge current, gas pressure, particle density in the dust cloud, and spatial
coordinates. Two-dimensional (2D) fields of the main wave characteristics were studied using an original algo-
rithm. The possible mechanisms of excitation of the dust sound oscillations is discussed. The experimental spa-
tial distributions of the wave parameters are compared to the patterns obtained within the framework of various
theoretical models. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the absence of an applied magnetic field, a plasma
may exhibit three oscillation branches, representing trans-
verse (electromagnetic) and longitudinal (Langmuir and
ion sound) modes. The presence of macroscopic particles
changes the charge distribution in the plasma and intro-
duces new time and space scales into the system. This
results in modification of the longitudinal plasma oscil-
lation modes, the appearance of new modes, and a change
in the dispersion relationships. A new branch of the low-
frequency oscillations appears, representing the dust
sound [1, 2], and the system is characterized by the dust
plasma frequency in addition to the electron and ion
plasma frequencies characterizing the dust-free system.
The physical nature of the dust sound is analogous to
that of the ion sound, the dust particles (instead of ions)
representing the inertial component of the system.
Depending on the interparticle interaction parameter Γ,
the low-frequency oscillations in the dust plasma can
be divided into two types: dust acoustic waves (DAW)
and dust lattice waves (DLW). The DAW modes are
excited in a plasma featuring weak electrostatic interac-
tions between particles, while DLW modes (i.e., waves
in the plasma crystal lattice) appear when the dust par-
ticles oscillate in strongly correlated structures with
large values of the coupling parameter Γ.

At present, there are many theoretical papers devoted
to thorough analysis of the waves of both types in dust
plasmas with various sets of parameters [3–18]. The DLW
modes excited under RF discharge conditions were
specially studied in [19–21]. Zuzic et al. [19] analyzed
induced oscillations in a plasma crystal and their influ-
ence upon phase transitions in the system. Pieper and
1063-7761/01/9203- $21.00 © 20454
Goree [20] also studied the induced dust sound oscilla-
tions in a plasma crystal and used an experimental dis-
persion relationship to determine the particle charge.

The dust sound waves in a Q-plasma were experi-
mentally observed for the first time in 1995 [22]. The
particle density waves in a dc gas discharge were
reported in [23]. Experimental investigations of the
acoustic (DAW) modes reported in [22–26] were
restricted to determining averaged parameters of the
dust plasma oscillations. The lack of systematic data on
the wave parameters as functions of the plasma charac-
teristics hindered a correct comparison of the available
theoretical models with experiment.

The purpose of this work was to develop methods
for visualization of the dust sound waves in a gas
plasma and to use these methods in the experimental
study of acoustic oscillations in the dust plasma column
of a dc glow discharge.

2. EXPERIMENTAL

The experiments were carried out with a dc glow
discharge in neon at pressures in the range from 0.1 to
2 Torr. The concentration of dust particles in the system
was 102–104 cm–3, the density of electrons and ions in
the plasma was 107–108 cm–3, the electron temperature
was 2–8 eV, and the temperature of ions and atoms was
300–400 K. The experimental setup was similar to that
used in our previous investigations of the dust plasma
column formed under dc glow discharge conditions
[27]. A schematic diagram of this system is depicted in
Fig. 1. The discharge tube had an internal diameter of
55 mm and a length of 800 mm; the distance between
001 MAIK “Nauka/Interperiodica”
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electrodes (arranged in side fingers) was 600 mm. The
plasma parameters were determined using a single
cylindrical probe.

Iron particles with a diameter of 6 µm were intro-
duced into a stratified region of the positive gas-dis-
charge plasma column. The micron particles were ini-
tially charged into a cylindrical container mounted in
the top part of the discharge tube (Fig. 1). The container
bottom was made of a 40-µm mesh metal grid. The sus-
pended dust particles were illuminated with a ribbon-
shaped beam of an argon laser. The probing beam could
be moved in both vertical and radial directions. The
light scattered from the microscopic dust particles was
detected with the aid of a CCD video camera at an angle
of 90° and recorded on a video tape recorder. The
parameters of acoustic oscillations were determined
using a specially developed algorithm. Correctness of
this determination was checked with the aid of an addi-
tional photomultiplier detector (FEU-106) linked to an
S9-8 oscillograph. The oscillograms were analyzed by
conventional methods to determine the oscillation fre-
quency.

3. RESULTS AND DISCUSSION

Our experiments showed that low-frequency longi-
tudinal waves of the dust particle density appear in the
system and can be clearly observed for certain plasma
parameters. The waves propagate in the discharge tube
downward from anode to cathode. The character of this
wave motion significantly depends on the discharge
current, gas pressure, and particle density in the dust
cloud. As the discharge current and particle density
increase, the wave amplitude grows and the wave process
can observed by naked eye. The waves of large amplitude
are also observed at low gas pressures. An analysis of the
experimental data showed that waves spread over the
entire dust volume, rather than restrict to the bottom
part of the tube as was indicated in [23, 26]. The wave
amplitude is coordinate-dependent: greater waves were
observed in the dust plasma region close to a head of
the column. The size of this region varies from 0.1Z to
0.8Z (Z is the vertical size of the dust plasma column),
depending on the discharge parameters and particle
density.

Figure 2 shows typical video images of the dust
plasma column observed in the course of the particle
density wave propagation. An analysis of the sequence
of such images allows the wavelength, frequency, and
phase velocity of the density wave to be determined.
We have used the following algorithm for determining
the density wave parameters. The initial image was
considered as an array of pixels representing the scat-
tered laser radiation intensity distribution Is(i , j), where
i and j are the pixel indexes. Since the scattering objects
in our case are the dust particles, the scattered light
intensity is proportional to the particle density Is = γnp.
For determining the particle density wave amplitude, it
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
is necessary to find the coefficient γ. The other quanti-
ties (wavelength λ, frequency ω, and phase velocity v)
can be determined from analysis of the relative Is values.
For this purpose, the time sequence of 2D arrays Is(i , j) is
represented by a 3D array f(x, y, t), where x = αi and
y = βj are the spatial coordinates and t is the time. The
discreteness of data in the f(x, y, t) array with respect to
the spatial coordinates is determined by the values

(1)

where Px, Py are the pixel dimensions and Mx, My are
the magnification coefficients of the detecting system
along the x and y axis, respectively. The discreteness
t − ∆mint with respect to the time is determined by a min-
imum time interval tr between two sequential images (in
our experiment, tr = 20 ms). The values of ∆miny, x
(depending on the registration system characteristics)
in our experiments were varied from 10 to 30 µm.

For determining the particular λ, ω, and v values,
we used the f(x, y, t) arrays at each point with the coor-
dinates (x, y) to construct the following functions:

(2a)

(2b)

(2c)

The analysis of variation of the ϕω(∆t), ϕλ(∆y), and
ϕv(∆y) values allowed the corresponding parameters of
the wave process to be determined. For example, the
circular frequency ω is obtained by plotting ϕω(∆t),
determining the period of this periodic function τ, and
using the formula ω = 2π/τ.

∆minx PxMx, ∆miny PyMy,= =

ϕω
x y, ∆t( ) f x y t, ,( ) f x y t ∆t+, ,( ),

t

∑=

ϕλ
x y, ∆y( ) f x y t, ,( ) f x y, ∆y t,+( ),

t

∑=

ϕv
x y, ∆y( ) f x y t, ,( ) f x y t tr+, ,( ).

t

∑=
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Fig. 1. A schematic diagram of the experimental setup. 
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Fig. 2. Typical video images of the acoustic waves observed in a dust plasma column in a dc glow discharge under various condi-
tions: (a) P = 1.2 Torr, I = 2 mA; (b) P = 1 Torr, I = 0.8 mA; (c) P = 0.8 Torr, I = 0.3 mA. (d) P = 0.3 Torr, I = 0.4 mA.

(a) (b)

(c) (d)
Using the above algorithm, we can determine the
local parameters of the density waves studied and con-
struct the corresponding 2D fields of phase velocity,
frequency, and wavelength. The local character of the
algorithm used for determining the wave parameters is
very important for the study of acoustic oscillations in
the dust plasma structures formed in a dc glow dis-
charge, where the oscillations spread in a strongly inho-
mogeneous medium and the wave parameters are dif-
ferent at various points of the plasma column.

Figure 3 shows the maps of the 2D fields of main
parameters determined for the acoustic oscillations
observed in a cloud of iron particles with a radius of
rp = 3 µm. As is seen, the fields are inhomogeneous: all
the parameters exhibit spatial variations. The most pro-
nounced variation of the dust density wave parameters
are observed along the vertical coordinate y. For a more
thorough investigation of the general pattern, we have
analyzed the wave behavior in the central region of the
dust plasma in more detail. Figure 4 shows the variation
of the frequency, phase velocity, and wavelength in the
wave propagating in the dust plasma column at various
JOURNAL OF EXPERIMENTAL
parameters of the gas discharge. In order to check the cor-
rectness of determining the parameters of oscillations, we
have compared the frequency values obtained using the
algorithm based on Eqs. (1) and (2) to the values deter-
mined by a standard method employing a photodetector
and digital oscillograph. The results obtained by the
two methods showed good coincidence; a difference
(<5%) can be explained by different dimensions of the
plasma region probed.

The results of our experiments showed that the fre-
quency and wavevector of the dust plasma oscillations
not only vary in space, but depend on the discharge cur-
rent, gas pressure, and particle density in the dust cloud.
Figure 5 shows a region in the kω phase plane repre-
senting the domain of existence of acoustic oscillations
in the dust plasma formed in a dc glow discharge.

The acoustic oscillations in the dust plasma struc-
tures observed in our experiments are of interest both
from the fundamental standpoint, as a physical phe-
nomenon, and from the standpoint of applications, as a
method of dust plasma diagnostics. In particular, using
 AND THEORETICAL PHYSICS      Vol. 92      No. 3      2001
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the existing models of wave processes in a dust plasma
and the experimentally measured values of parameters
of the acoustic waves, we may evaluate the charge of
dust particles.
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Fig. 3. 2D fields of (a) frequency ω, (b) wavelength λ, and
(c) phase velocity v for the acoustic waves in dust plasma
structures (P = 0.23 Torr; I = 0.28 mA).
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The law of dispersion for the acoustic (DAW)
modes in a two-stream approximation is given by the
formula [1]

(3)

where ωd =  is the dust sound frequency
and λd is the Debye screening radius.

ω2 ωd
2 k2λd

2

1 k2λd
2+

--------------------,=

4πndZd
2e2/M
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Fig. 4. Vertical profiles of the wavelength λ, frequency ω,
phase velocity v of dust plasma oscillations under various
discharge conditions: (a) P = 1.2 Torr, I = 2 mA; (b) P =
0.3 Torr, I = 0.4 mA.

0 20
k, cm–1

ω, Hz

40 60 80 100

20

40

60

80

100

Fig. 5. The domain of existence of self-excited low-fre-
quency dust density oscillations in a dc glow discharge for
the discharge current varied from 0.2 to 0.4 mA and the gas
pressure, from 0.2 to 4 Torr.
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With the interparticle interactions taken into account,
the dispersion relationship acquires the following
form [18]:

(4)ω2 ωd
2 k2λd

2

1 k2λd
2+

-------------------- 16

16 k2λd
2+

-----------------------.=
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Fig. 6. Model dispersion relationships determined by
Eqs. (3)–(5) (number of equation indicated at the curve;
Kd = 2π/λ).
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Fig. 7. Dispersion relationships for the dust sound waves in
a dc discharge under various conditions: (1) P = 1.2 Torr,
I = 2 mA, Z = 104 e; ni = 107 cm–3; (2) P = 0.3 Torr, I = 0.4 mA,

Z = 104 e; ni = 4 × 107 cm–3. Black circles represent exper-
imental points; solid curves show the approximations calcu-
lated using Eq. (3).

The values of charge on dust particles calculated by Eqs. (7)
and (8)

P, Torr I, mA Zd, e

1.2 2 2.2 × 104

1.2 1.4 4.3 × 104

1.2 0.8 1.6 × 104

0.8 0.4 2.8 × 104

0.3 0.6 3.3 × 104

0.3 0.4 5.6 × 104
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For the dispersion of the dust plasma lattice (DLW)
waves, the model of crystal modes yields [8]

(5)

where K = ∆/λd,

and ∆ is the interparticle distance.
Some other dispersion relationships for DAW and

DLW modes were reported in [4, 7, 8, 16–18]. How-
ever, these expressions are not quite convenient for ana-
lyzing our experimental data. For this reason, we will
restrict the consecration to the three cases given above.
The dispersion curves described by formulas (3)–(5) are
depicted in Fig. 6. Figure 7 presents the experimental
plots of ω versus k and shows the approximation of
these data by curves constructed using formula (3). The
best fit observed for this approximation indicates that
the corresponding model quite adequately describes the
law of dispersion for the longitudinal waves propagat-
ing in the system studied. Once the dispersion law is
established, we may use the approximated curves to
evaluate the charge on dust particles and the ion con-
centration. The particle charge estimated using the data
depicted in Fig. 8 was 104, and the ion concentration
was ni ~ 107 cm–3.

A simpler algorithm for evaluation of dust the parti-
cle charge can be used in the case when λ @ λD. Indeed,
the condition kλD ! 1 allows the dispersion relation-
ship for the dust sound to be written as

(6)

where vd is the dust sound velocity. In our case, λD ~
200 µm and the condition kλD ! 1 is valid for the waves
with λ > 2 mm. The dust sound velocity is determined
by the formula

(7)

When the wavelength is comparable to the interparticle
spacing (or k  π/〈r〉), the phase velocity of the wave
tends to zero and the frequency–to a certain fixed value
called the dust plasma frequency ωd. This value is given
by the formula

(8)

Thus, the particle charge is readily estimated from the
wave phase velocity and the ion density by formula (7)
(for λ @ λD) or from the limiting dust plasma frequency
and the dust particle size and density by formula (8).
The particle charge values Zpe calculated using formu-
las (7) and (8) for various discharge parameters are
summarized in the table.
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Using Eq. (6), we may also determine variation of
the dust particle charge Zd(y) depending on the vertical
coordinate in the dust plasma column. Variation of the
phase velocity in the vertical direction is determined
experimentally (see Fig. 3). Using a single probe avail-
able in the setup, we may also determine the ion con-
centration. Since the measurements were performed at
a single point (at the upper boundary of the dust plasma
column), the Zd(y) function was approximated using the
known variation of the relative value ni(y) taken from
[28] (Fig. 8).

The Zd(y) values determined by this method are pre-
sented in Fig. 9 (dashed curve). As seen, the charge exhib-
its a considerable (more than twofold) variation along the
height of the dust plasma column. In order to analyze
these results, we calculated the charge on dust particles
within the framework of the orbital motion (OML) model
[29] using the following parameters: Ti = 0.03 eV;
Te(y) as in Fig. 8 [28]; ni(y) = ne(y). The results of these
calculations are presented in Fig. 9 (solid curve). As
seen in Fig. 9, the values of the particle charge deter-
mined by two methods almost coincide, but the curve
based on our experimental data markedly deviates from
the calculated curve at the distant end of the plasma col-
umn (the coordinate was measured from the top of the
dust plasma column), that is, in the region of high field
strength. This deviation can be explained by uncon-
trolled polydispersity of the iron dust particles. Parti-
cles with greater mass will tend to the region of greater
field strength (i.e., to the bottom of the plasma column).
This factor may account for the particle charge varia-
tion along the vertical axis, since the charge of a parti-
cle is directly proportional to its size. The same reason
may explain a difference between the data obtained in
this experiment and the results of numerical modeling
[30] of a gas-discharge dust plasma with close parame-
ters, where it was established that a change in the parti-
cle charge along the vertical axis does not exceed 20%.
Our analysis indicates that this estimate is valid only
for the dust plasma in the upper part of the column.

We have experimentally observed spontaneous excita-
tion of the low-frequency oscillations in the dust particle
density, which indicates that there are mechanisms of
instability development in the oscillation process stud-
ied. Various possible models of the instability develop-
ment in a dust plasma were proposed in the literature.
These models were used to analyze the influence of fluc-
tuations in the charge of dust particles [3, 4, 17, 18, 26],
the role of nonlinearity [7–9] and nonideality of the
dust plasma [10–12], and the effects of ionization and
ion entrainment [13, 15, 16] on the dust sound wave
propagation. The mechanisms of wave instability
caused by the electron and ion drift relative to the
charged dust particles were analyzed in [5, 6, 23, 26].

Fortov et al. [26] most exhaustively described and
analyzed various mechanisms for the excitation of
oscillations in the positive plasma column of a dc glow
discharge. According to this analysis, the mechanism of
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instability is related to the nature of forces holding par-
ticles within the positive discharge region and to the
particle charge variations during the plasma density
wave propagation. However, despite the large number
of proposed models, the question as to whether a com-
mon driving force and mechanism are responsible for
the excitation of density oscillations in a dust plasma
observed in the laboratory experiments is still open.
This situation is explained by the fact that no experi-
mental evidence is available for any of the proposed
models. The comparison of experiment and theory in
[23–26] was performed on a qualitative level and did
not provide sufficient grounds for unambiguously
selecting one or another mechanism on the instability
development in the system studied.

We have attempted to compare the experimental
profile of the wavevector variation in height of the dust
plasma column to the analogous distributions obtained
within the framework of various theoretical models.
Figure 10 shows plots of the wavevector versus height
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Fig. 8. Vertical profiles of the ion density n and the electron
temperature Te. Coordinate h measured from the upper
boundary of the dust plasma structure.

0.20

1

h, mm

Zd, 104

0.4 0.6 0.8

2

3

4

Fig. 9. Variation of the charge Zd on dust particles along the
vertical axis: dashed curve shows the profile calculated by
Eq. (6) using our data on the wave velocity and the ni(h)
curve depicted in Fig. 8; solid profile was calculated within
the framework of the OML model [29] for Ti = 0.03 eV and
the Te(h) curve from Fig. 8.
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calculated using the models described in [5, 16, 26]
(dashed curves) and the profiles experimentally mea-
sured under various discharge conditions. As seen from
this comparison, the theoretical curves differ rather sig-
nificantly from the experimental profiles. A possible
explanation is offered by the fact that models based on
the analysis of linear dispersion relationships for the
low-frequency oscillations cannot adequately describe
wave processes in the dust plasma systems. Indeed, the
dust plasma column belongs to the class of nonlinear
thermodynamically nonequilibrium open dissipative
systems [31, 32]. For a correct analysis of this system, we
should employ an adequate physical model. The most
interesting case is offered by a model of the autooscillating
system with the parameters independent of the initial con-
ditions and determined completely by properties of the
medium [33].

The appearance of stable oscillatory motions of mac-
roparticles in a dust plasma is possible only provided that
there are potential sources capable of compensating for
the energy dissipation. There must be a dynamic equilib-
rium between the amounts of supplied and dissipated
energy. Under equilibrium conditions, the dissipative
effects would level off any inhomogeneity, thus leading to
the thermodynamic equilibrium. In a nonlinear open sys-
tem, the dissipation plays a quite different role. Acting
jointly with some other processes, the energy dissipation
may lead both to the appearance of stable stationary struc-
tures and complicated oscillatory regimes [32, 34].

In the case of a laboratory gas-discharge plasma, it
is obvious that stationary autooscillations in the dust
plasma column must be maintained at the expense of
the energy taken from the power source in the discharge
circuit. A possible mechanism capable of converting
the potential energy of the external electric field into the
energy of moving dust particles is related to the pres-
ence of spatial gradients of the system parameters such
as temperature, ionization, and charge. In particular, a
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Fig. 10. Plots of the wavevector k versus height h calculated
within the framework of various models: (1) model [5];
(2) model [16]; (3) model [26]; (4, 5) experimental data for
iron dust particles measured in a discharge tube operated
at P = 0.8 Torr and I = 0.5 (4) and 0.22 mA (5). 
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possible mechanism considered in [35] is based on the
presence of space charge gradient in a dust cloud
formed in a trap under the action of electric field and
the Earth gravity field.

4. CONCLUSION

Thus, we have experimentally studied the low-fre-
quency oscillations in the density of dust particles, which
are spontaneously excited in the stationary plasma column
of a dc glow discharge in neon. The longitudinal dust
sound wave parameters were determined using a special
visualization technique. The dust sound oscillation char-
acteristics were determined and analyzed using specially
developed algorithm and data processing software. Based
on these data, two-dimensional fields of the main wave
characteristics were constructed.

Using the values of the phase velocity of the wave
studied, the charge on the dust particles was evaluated
and the profile of its spatial variation in the dust plasma
column was determined. Under the experimental con-
ditions studied, the charges on particles occurring in
various regions of the dust cloud may differ by a factor
of more than two, and the particles carrying a greater
charge are found in the bottom part of the plasma col-
umn.

The experimental spatial distributions of the wave
parameters were compared to the distributions obtained
within the framework of various theoretical models.
The results of this comparison showed that the princi-
pal mechanisms of the oscillation excitation cannot be
based on linear analytical models. It is necessary to per-
form numerical modeling of the wave process taking
into account the nonlinear dissipative character of the
system studied.
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Abstract—A new approach to the study of phase separation in lanthanum manganites is proposed based on the
combined investigation of their optical and magnetooptical characteristics providing information about the con-
ducting and ferromagnetic regions, respectively. Effects of the 18O isotope substitution for 16O in the epitaxial
films of (La0.5Pr0.5)0.7Ca0.3MnO3 (grown on SrTiO3 or LaAlO3 substrates) upon the IR absorption spectra and
the equatorial Kerr effect measured in the 1.5–3.8 eV range were studied. A giant drop in the temperature of
maximum resistance of the film grown on SrTiO3 and disappearance of the metal-insulator transition in the film
on LaAlO3, observed upon the isotope exchange, are accompanied by a decrease in the contribution of free
charge carriers to the absorption spectra, by the appearance of bands due to localized states, and by a decrease
in magnitude of the equatorial Kerr effects. Measurements of the Kerr effect and the temperature variation of
the optical transmission show evidence of the presence of ferromagnetic metal regions in the 18O-isotope-sub-
stituted (La0.5Pr0.5)0.7Ca0.3MnO3/LaAlO3 film at low temperatures, with a general semiconductor character of
the resistivity behavior in the entire temperature range studied. Changes observed in the absorption spectra are
explained based on a model of the pseudo-Jahn–Teller polar centers and phase separation. The optical and mag-
netooptical data show evidence of a percolation nature of the giant isotope effect in manganites. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Manganites with a perovskite structure are exten-
sively studied in the context of a problem of the giant
magnetoresistance (GMR) phenomenon. The unusual
properties of manganites are related to the interaction
of charge, spin, orbital, and local structural (Jahn–
Teller) degrees of freedom with a strong charge inho-
mogeneity, static and dynamic phase separations, and
percolation effects [1–3].

One of the brightest phenomena in GMR mangan-
ites is the giant isotope shift. A decrease in the Curie
temperature TC upon substituting the 18O oxygen iso-
tope for 16O in La0.8Ca0.2MnO3 reaches 21 K [4]. The
same substitution in a (La1 – yPry)0.7Ca0.3MnO3 system
composition with y = 0.75 results in the transition from
ferromagnetic metal to antiferromagnetic insulator
state [5]. The main reasons for such a strong varia-
tion of the material properties upon the isotope
exchange are associated with a change in the elec-
tron–phonon interaction [4, 5] and with the phenom-
ena arising near the percolation threshold [2, 3]. A strong
isotope effect is observed near a ferromagnetic–anti-
ferromagnetic phase boundary of manganite compositions
possessing the narrowest electron eg band, where the
charge carrier localization processes become substantial.
1063-7761/01/9203- $21.00 © 20462
This group of materials includes La0.8Ca0.2MnO3 [4],
(La1 – yPry)0.7Ca0.3MnO3 with y = 0.75 and 0.5 [5, 6], and
(La0.5Nd0.5)2/3Ca1/3MnO3 [7].

Systems featuring a strong isotope effect also exhibit
phase separation, significant hysteresis effect during the
heating–cooling cycles, and relaxation processes with
large characteristic times. These essentially inhomoge-
neous systems should be studied by local methods capa-
ble of providing information on the separate compo-
nents of the system. Below we propose a new quasilo-
cal approach to the study of inhomogeneous systems
based on the combined measurement of their optical
(absorption spectra) and magnetooptical (the equatorial
Kerr effect) properties. The main idea of applying the
optical methods to the study of phase separation and
percolation phenomena is naturally related to a differ-
ence in the optical response of various phases. In the
absence of percolation, the metal inclusions in a dielec-
tric matrix cannot be detected by dc conductivity mea-
surements but are well manifested in the IR absorption
spectra.

In application to the GMR manganites, a quasilocal
character of the optical methods is related to the fact
that the optical absorption in a spectral range corre-
sponding to the light interaction with the charge carri-
ers provides information about the conducting (i.e.,
001 MAIK “Nauka/Interperiodica”
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light-absorbing) regions in the insulator (transparent)
matrix, thus revealing the charged phase separation [8].
At the same time, the Kerr effect taking place in the fer-
romagnetic crystal regions allows us to make a judg-
ment on the magnetic phase separation [9]. In addition,
the optical absorption spectra of manganites also
clearly reveal the delocalized and localized states [10],
which allows us to follow the process of charge carrier
localization during the isotope exchange.

The purpose of this work was to use the new
approach in studying the nature of the giant isotope
effect observed upon substituting the 18O isotope for
16O in the epitaxial films of (La0.5Pr0.5)0.7Ca0.3MnO3
manganite. The results obtained by the optical methods
are compared to the data obtained by the resistivity
measurements.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL METHODS

The films of (La0.5Pr0.5)0.7Ca0.3MnO3 manganite
composition with a thickness of 60 nm were obtained
by a chemical vapor deposition (CVD) method on sin-
gle crystal LaAlO3 (LAO) and SrTiO3 (STO) perovs-
kite substrates [11, 12]. The results of X-ray diffraction,
Raman spectroscopy, and high-resolution transmission
electron microscopy investigation confirmed the epi-
taxial character and the structural and chemical homo-
geneity of the sample films.

The crystal lattice parameters of the films on LAO
substrates are

,

and on the STO substrates,

,

(the c-axis corresponds to the normal to the film sur-
face); tetragonal distortions for films on the LAO and
STO substrates were 0.7 and –1.5%, respectively.

The neutron diffraction measurements on ceramic
samples of the same bulk composition [13] showed that
this compound is a collinear ferromagnet at tempera-
tures below TC = 175 K. The charge ordering tempera-
ture is T0 = 200 K. Because of the epitaxial stresses, the
properties of manganite films usually differ from those
of the bulk ceramic samples of the same nominal com-
position [11].

The process of isotope exchange, leading to the substi-
tution of 18O for 16O in the samples, was performed at the

a
2
--- b

2
--- 0.3846 0.0003 nm+= =

c
2
--- 0.3872 0.0002 nm,+=

a
2
--- b

2
--- 0.3879 0.0003 nm+= =

c
2
--- 0.3823 0.0002 nm+=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
Kurchatov Institute as described in [5]. The exchange
process resulted in that about 85% of 16O oxygen ions
were replaced by 18O ions.

The IR absorption spectra of the manganite films
were measured using an automated IKS-21 spectrome-
ter in the 0.09–0.9 eV spectral range and using an
MDR-4 monochromator in the 1.0–3.6 eV range. The
temperature-induced variations in the spectra were
studied in the 80–293 K range by heating samples pre-
liminarily cooled in the presence or in the absence of
external magnetic field. A magnetic field with a
strength of 0.8 T was directed along the normal to the
sample surface.

The equatorial Kerr effect was measured in a spec-
tral range of 1.5–3.8 eV for the sample temperature var-
ied from 20 to 300 K (cooling–heating cycles) and the
magnetic field (0.1 T) normal to the film surface.

3. EXPERIMENTAL RESULTS

As is seen from Fig. 1 (reproduced from [14]), the
resistivity ρ of the (La0.5Pr0.5)0.7Ca0.3MnO3 manganite
films with 16O isotope on both substrates (denoted below
as 16O/LAO and 16O/STO) exhibits a maximum at a tem-
perature of 189 K, below which the samples exhibit a
dielectric–metal transition. The isotope exchange does not
lead to any increase in the room-temperature resistivity.
However, the resistance of an 18O/LAO film at low tem-
peratures is considerably greater as compared to that of
the 16O/LAO film, the difference reaching more that six
orders of magnitude at 80 K. For the films on STO sub-
strates, the difference is about 1.5 orders of magnitude.
The position of maximum resistivity shifts by approxi-
mately 60 K upon the isotope exchange in films on the
STO substrates, while the 18O/LAO films exhibit no such
maximum at all in a temperature range down to 4.2 K.
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 c
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Fig. 1. The temperature dependence of resistivity for the
(La0.5Pr0.5)0.7Ca0.3MnO3 films annealed in 16O and 18O.
Dashed and solid curves refer to the films grown on SrTiO3
(STO) and LaAlO3 (LAO) substrates [14].
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According to [15], the resistivity measurements in
the cooling–heating cycle mode with a magnetic field
applied in the plane of the film reveal a hysteresis with
a loop width reaching 60 K at a field strength of 1 T.

Figure 2 presents the IR absorption spectra of the
films with 16O and 18O on STO. As seen, the room-tem-
perature spectra are much alike, showing a broad band
with a maximum at 1.5 eV, a small peak at 0.14 eV, and
a growth of the absorption above 2.5 eV. However, the
spectra of the 16O/STO and 18O/STO samples measured at
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Fig. 2. Room-temperature optical absorption spectra of the
(La0.5Pr0.5)0.7Ca0.3MnO3 films with 16O and 18O isotopes
on STO substrates.

Fig. 3. Optical absorption spectra of the
(La0.5Pr0.5)0.7Ca0.3MnO3 films with (a) 16O and (b) 18O
isotopes on STO substrates. The samples were cooled to
various temperatures in the absence of external magnetic
field.

E, eV
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80 K exhibit a considerable difference (Fig. 3). The film
with 16O (Fig. 3a) is characterized by an increase in the
absorption intensity with decreasing energy, which is
characteristic of the interaction of light with free charge
carriers. In contrast, the free carrier contribution to the
absorption at 0.2 eV in the film with 18O is small. For
the 16O/STO film, the low-energy wing of the absorp-
tion band at 1.5 eV exhibits no features (except a weak
shoulder at 1.2 eV) at all temperatures. The spectrum of
18O/STO in the same region (Fig. 3b), and especially that
of the samples cooled in the magnetic field (Fig. 4a),
shows evidence of a complicated structure of the 1.5 eV
absorption band edge, suggesting the presence of local-
ized states in both paramagnetic and ferromagnetic
regions. The room-temperature spectra of samples on
STO show weakly pronounced absorption bands at
0.95 and 1.2 eV; on cooling in the absence of the mag-
netic field, these features transform into shoulders and
shift toward higher energies. The spectra of the films
cooled from room temperature to liquid nitrogen tem-
perature in a field of 0.8 T (Fig. 4) show (in a 80–150 K
interval) a pronounced absorption band at 0.80–0.95 eV
and a less intense band at 0.40–0.50 eV.

Similar variations of the optical absorption spectra
are observed for the manganite films with 16O and 18O
on LAO substrates. The difference is that the absorption
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Fig. 4. Optical absorption spectra of the
(La0.5Pr0.5)0.7Ca0.3MnO3 films with 18O isotope on (a) STO
and (b) LAO substrates. The samples were cooled to various
temperatures in the presence of external magnetic field with
a strength of 0.8 T. For clarity, the curves are shifted along
the ordinate axis.
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band at 0.9 eV for 18O/LAO is clearly observed only at
80 K (Fig. 4b) and the energy positions of the absorp-
tion bands are generally somewhat lower as compared
to those of the manganite films on STO substrates.
Figure 5 shows the temperature variation of the optical
transmission for the manganite films with 16O and 18O
on LAO substrates. As seen, the curves for the 16O/LAO
films heated upon cooling with and without magnetic field
differ rather insignificantly (Fig. 5a). As for the 18O/LAO
film (Fig. 5b), a monotonic variation observed for the
sample cooled without magnetic field (curve 1)
changes to a curve with maximum at about 120 K for
the sample cooled in the field (curve 2). The repeated
experiment on the latter sample (cooled in the field)
with a magnetic field of 0.8 T applied during the optical
transmission measurements showed a shift in the trans-
mission maximum to T ≈ 135 K (Fig. 5b, curve 3).

The value of magnetotransmittance (the ratio of the
sample transmittances with and without applied field)
was determined during heating of the samples preliminar-
ily cooled in a magnetic field; the field was switched on
and off at each point. The magnetotransmittance ratio of
the 16O/LAO film is about 6% for a magnetic field strength
of 0.8 T (Fig. 6). The magnetotransmittance of the
18O/LAO film measured under the same conditions is
markedly lower. It should be noted that repeated transmis-
sion (absorption) measurements reproduced only the gen-
eral behavior of the spectral and temperature depen-
dences, while the absolute transmittance values exhibited
a systematic variation. The most significant variation of
the results of repeated measurements, which was espe-
cially pronounced for large time intervals between the
measurements, were observed for the manganite films
with 18O isotope.

The spectra of the equatorial Kerr effect (EKE) of
the manganite films with 16O on both STO and LAO
substrates measured at low temperatures (T < 80 K) are
virtually identical (Fig. 7) and coincide with the spectra
reported for both ceramic and film samples of
(La, Pr)0.7Ca0.3MnO3 [9, 16]. The isotope exchange leads
to a decrease in the EKE intensity, which is most pro-
nounced for 18O/LAO. The 18O/STO film sample exhibits
a considerable change in the EKE spectrum as com-
pared to that of the 16O/STO film: the main extremum
shifts toward lower energies and an additional peak
appears at 3.25 eV. Analogous changes were reported
for the EKE in (La1 – xPrx)0.7Ca0.3MnO3 samples with
x = 0.75 measured in the course of cooling [9].

The temperature variation of the EKE magnitude
measured at E = 2.9 eV differs considerably in the sam-
ples of all the four types studied (Fig. 8). A common fea-
ture of these temperature dependences is a considerable
hysteresis revealed by measurements in the heating–cool-
ing cycles. The temperature below which the EKE is man-
ifested (that is, a ferromagnetic order appears) is close to
the temperature of maximum resistance observed for all
films during heating in the field. The EKE magnitudes
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
for the manganite films with 16O on both substrates are
approximately equal. The 18O isotope substitution for 16O
leads to a decrease in the EKE magnitude in the saturated
state. A minimum EKE value was observed for the
18O/LAO sample.

A comparison of the temperature variation of the
EKE and transmission values at 0.14 eV (and at 0.4 eV)
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Fig. 5. Temperature variation of the optical transmittance at
0.4 eV for the (La0.5Pr0.5)0.7Ca0.3MnO3 films with (a) 16O

and (b) 18O isotopes on LAO substrates: (1) cooled without
field; (2) cooled in the field; (3) cooled and measured in a
magnetic field with a strength of 0.8 T.
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16O and 18O isotopes on LAO substrates measured (1, 3) in
a constant magnetic field with a strength of 0.8 T and (2, 4)
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for the samples cooled in a magnetic field shows close val-
ues of the temperature at which the EKE appears and the
transmittance exhibits a maximum for the films of all
types. It should be noted that the EKE measurements for
the 16O/STO sample at 150–200 K gave a value of the
opposite sign as compared to that observed in the low-
temperature region. The EKE measurements on the sub-
strate side did not show the change in sign. This observa-
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Fig. 7. The spectra of equatorial Kerr effect (EKE) for the
(La0.5Pr0.5)0.7Ca0.3MnO3 films with 16O and 18O isotopes
on (a) STO and (b) LAO substrates.
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tion is a direct evidence of the surface magnetism man-
ifestations in the films studied.

4. DISCUSSION OF RESULTS

4.1. The Electron Structure of Doped Manganites

The traditional approach to describing the electron
structure of manganites is based on the assumption of
applicability of the standard energy band models with
an allowance for a strong electron–vibrational interac-
tion. The “low-energy physics” of doped manganites
(on a scale below 4 eV) is determined by the eg states of
Mn ions coupled by a strong Hund’s exchange to the
localized t2g states of Mn, as well as by the Jahn–Teller
interaction with the lattice. Thus, the model of double
exchange with a strong Jahn–Teller interaction assumes a
pronounced Mneg band character of the injected holes in
systems of the La1 – xSrxMnO3 type.

However, the experimental data are not as unambig-
uous in determining the character of injected holes in
these manganite systems. In particular, the study of
electron energy losses near the O1s–O2p transition in
La1 – xSrxMnO3 led Ju et al. [17] to a rather unexpected
conclusion about an O2p character of holes generated
in this system in a broad range of doping (0 ≤ x ≤ 0.7).
The same character of holes was indicated by the
results of investigating the exchange splitting of the
Mn3s level in the X-ray photoelectron spectra (which
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are highly sensitive to the valence state of manganese)
[18]. It was demonstrated [18] that the exchange split-
ting of the Mn3s level in systems of the La1 – yMnO3 and
La1 – xSrxMnO3 remains virtually unchanged when the
formal valence of Mn in this composition changes from
3.0 to 3.3. The same study presented convincing evi-
dence for the appearance of Mn2+ ions in oxygen-
depleted compositions of the LaMnO3 – δ type. For a
low doping level (x < 0.3), the Mn Kβ X-ray photoelectron
spectra of the La1 – xCaxMnO3 [19] even showed a
“monovalent” Mn3+ state, with the O2p character of holes
being most probable. For a high doping level (x > 0.3) the
X-ray photoelectron spectra were indicative of a mixed
valence state Mn3+–Mn4+ with a component ratio corre-
sponding to the x value (which implies predominantly
Mn3d character of the injected holes).

The experimentally observed redistribution of the
spectral density from high-energy charge-transfer band
(O2p–Mn3d) to the region of lower energies upon the
hole injection agrees with the notion that this must lead
to the appearance of a considerable concentration of
O2p holes.

A potentially more complicated character of the
charge transfer process in doped manganites is indi-
cated by the results of a high-temperature investigation
of LaMnO3 [20]. These data show evidence of the insta-
bility of manganites with respect to a disproportion-
ation reaction, which can be schematically represented
as a process

2Mn   Mn  + Mn

leading to the formation of hole and electron centers
with the structure admitting a mixed valence of manga-
nese ions (of the Mn3+–Mn4+ type for the hole centers).

On the whole, the character of charge fluctuations in
GMR manganites is still one of the central points of dis-
cussion from both theoretical and experimental stand-
point. The state with x = 0.3 for the (La, Pr)0.7Ca0.3MnO3
composition studied most probably corresponds to a
mixed Mn3d–O2p character of the charge fluctuations.

4.2. Electron Inhomogeneity, Phase Separation,
and Percolation Phenomena in Manganites

There is increasing evidence that doped manganites,
as well as many other strongly correlated oxides such
as cuprates, nickelates, and vanadites, are capable of
occurring in a complicated inhomogeneous state exhib-
iting a metal–dielectric dualism.

Generally speaking, such systems can be character-
ized by a certain self-consistent distribution of various
charge, spin, orbital, and structural fluctuations with the
corresponding lifetimes and correlation lengths. The
possibility of using the approximation of an effective
homogeneous medium for describing the properties of
systems with strongly developed static and dynamic
fluctuations is disputable.

O6
9– O6

8– O6
10–
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The heterovalent doping of manganites leads to the
appearance of strong local inhomogeneities in the poten-
tial distribution. The corresponding potential wells may
serve both as the centers of charge (hole or electron) local-
ization and as the centers of nucleation for the phase pro-
viding the most effective screening of the charge inhomo-
geneity. These charge inhomogeneity centers may possess
a complex structure featuring charge, spin, orbital, and
structural fluctuations, each type with a character of its
own. As the concentration of dopant ions (Ca2+, Sr2+, …)
and, hence, of the charge inhomogeneity centers
increases, these centers may exhibit a superposition lead-
ing to an increase in the correlation length of various
charge, spin, and orbital fluctuations and, eventually, to the
corresponding long-range ordering.

In the simplest case, when the charge inhomogeneity
centers can be considered as microscopic domains of a
new (ferromagnetic metal) phase, the process can be
described within the framework of a model of percolation
phase transition. According to this model, the conductivity
(as well as some other values) in the vicinity of the perco-
lation threshold is described by a power function of certain
“geometric order parameter” p – pc [21]. In the simplest
variant, this parameter can be represented by deviation of
the bulk fraction p of the metal phase from a critical
value pc corresponding to the percolation limit, for
example,

(1)

where t is the critical exponent [21]. In turn, the geo-
metric order parameter near the percolation threshold
can be related to the concentration of the charge inho-
mogeneity centers:

where xc is the critical concentration, which yields

By the same token, the critical temperature TMI corre-
sponding to the percolation breakage and the metal–
dielectric transition at p ≥ pc can be expressed as

(2)

where γ is the critical exponent and  is a certain
characteristic temperature determined by their micro-
scopic transport parameters.

Urushibara et al. [22] showed that the concentration
dependence of the low-temperature conductivity of
La1 – xSrxMnO3 in the region of x < 0.3 can be presented as

with a critical concentration of xc = 0.174 and the expo-
nent at = 0.5, which also well falls within the frame-
work of the percolation model.

σ p pc–( )t,∝

p pc x xc–( )a,∝–

σ x xc– at.∝

TMI TMI
0 p pc–( )γ,≈

TMI
0

σ x( ) x xc–( )at∝
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468 LOSHKAREVA et al.
A principal difference of this variant of the percola-
tion model for GMR manganites is the (ferro)magnetic
character of the metal regions, which leads to certain
anomalies in the magnetic behavior. The first of these
effects is a sharp increase in the relative volume of fer-
romagnetic metal regions at temperatures below the criti-

cal value  corresponding to the “local” ferromagnetic
ordering. The temperature dependence of magnetization
and the magnetization curve reflect the superposition of
two effects: the “internal” effect of spin ordering in the
metal regions and the “external” effect of increasing
volume of the magnetically ordered phase with a char-

acteristic effective “Curie temperature” TC < . In the
simplest model, TC can be represented by the tempera-
ture of maximum of the average “thermal expansion”
coefficient α(T) = ∂p/∂T of the magnetically ordered
metal phase. It is this external effect that can lead to the

metal–dielectric percolation transition at TMI < . In the
general case, the temperatures TMI and TC may differ.

The metal–dielectric percolation transition with a
critical fraction p = pc of the metal phase volume in
GMR manganites can be shifted toward either smaller
or greater concentration x of divalent elements, for
example, by selecting a dopant with appropriate ion
radius to provide for a necessary relative decrease in the
energy of metal or dielectric phase. In particular, these
conditions are satisfied for La5/8 – yPryCa3/8MnO3 with
y = 3/8 [23] and for the composition studied in this
work. All features in the thermal, electron, and magne-
totransport properties of La5/8 – yPryCa3/8MnO3 are
related to the dominating contribution of the percolation
conductivity through ferromagnetic metal regions coexist-
ing with charge-ordered insulating regions. Note that the
percolation transition is accompanied by strong fluctua-
tions of the geometric order parameter and by the anoma-
lous relaxation phenomena, hysteresis, and memory
effects.

The results of measurements of the 1/f noise in poly-
and single-crystalline samples of (La, Pr)5/8Ca3/8MnO3
with low values of the effective temperature TC of mag-
netic ordering [24] are indicative of a percolation
mechanism of the transition from an inhomogeneous
charge-ordered state to the ferromagnetic metal state. It
is necessary to note several features characteristic of
the first-order phase transitions, including a large tem-
perature hysteresis of the resistivity and magnetization.
In contrast to the behavior typical of the phase transi-
tions in homogeneous systems, the magnetization of
crystals under consideration varies smoothly in the
vicinity of TC and remains a linear function of TC–T
even in a weak magnetic field.

The results of analysis of the scaling behavior of the
1/f noise and resistance agree with predictions of the
percolation model concerning the pattern of phase sep-
aration, with the formation of conducting phase regions
chaotically distributed in the insulating matrix. It is

TC
0

TC
0

TC
0
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interesting to note that Podzorov et al. [24] even
revealed a difference in the critical behavior of poly-
and single-crystalline samples. Although the values of
resistivities in the two cases are close, the temperature
variation of ρ near TC in single crystals exhibits repro-
ducible jumps by more than one order of magnitude.
For explaining this phenomenon, it was suggested [24]
that the jumps of resistance are related to a large size of
conducting regions in single crystals, which exceeds
that in polycrystalline samples and cannot be considered
small as compared to the characteristic system size (which
is a necessary assumption in percolation models).

4.3. Percolation and the Giant Isotope Effect
in Doped Manganites

The isotope exchange in a homogeneous system
must not lead to any substantial changes in the optical
properties beyond the phonon spectrum. Indeed, nei-
ther the energy spectrum of the optically active centers,
nor the oscillator strengths for the optical transitions are
significantly modified by the exchange. The main effect of
the isotope substitution is related to the lattice oscillations
and, hence, pronounced manifestations can be expected
only in systems featuring strong electron–phonon interac-
tions or the Jahn–Teller systems. The 16O–18O isotope
exchange, owing to a relatively large mass increment
(12.5%), produces a considerable stabilization of the
(pseudo)-Jahn–Teller centers (Jahn–Teller polarons) on
the one hand, and leads to a significant vibronic reduction
of various electron matrix elements (e.g., the electron
or hole transfer integrals) on the other hand.

All the above manifestations of the isotope
exchange can be related to a vibronic mechanism of the
isotope effect. In a homogeneous regular lattice, this
mechanism leads to an increase in the effective mass of
the Jahn–Teller polarons and favors their localization
accompanied, in particular, by a small modification of
the polaron IR absorption spectrum. In contrast, the
16O–18O isotope exchange in inhomogeneous systems
with phase separation will lead to an additional increase in
the relative volume of a dielectric phase of the localized
Jahn–Teller polarons. This will be accompanied by
anomalous phenomena near the percolation threshold. It
is this “percolation” mechanism that may account for the
anomalous response to the isotope exchange in the sys-
tems with phase separation [2, 3].

Using Eq. (1), we may establish a relationship
between the constant α (characterizing the isotope
effect with respect to the critical temperature TMI of the
metal–insulator transition) and the parameter p in the
vicinity of the percolation threshold (x ≥ xc):

(3)

α0
∂ TMIln
∂ M0ln
-----------------– 

  ∂ TMI
0ln

∂ M0ln
-----------------– 

 ≈=

+ γ
pc

p pc–
-------------- ∂ pln

∂ M0ln
----------------– 

  αv ibr αperc.+=
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In other words, the isotope effect includes two additive
contributions–vibronic (αvibr) and percolation (αperc).
The former term is of a purely microscopic electron
nature and describes the influence of the isotope
exchange on the microscopic parameters of electron
transport. The latter term reflects the phase separation
and describes the isotope-exchange-induced variation
in the relative phase volume.

An important consequence of relationship (3) is the
appearance of a power divergence

in the isotope effect constant α near the critical point cor-
responding to the percolation threshold. This fact of prox-
imity to the percolation threshold may explain the anoma-
lously large α values observed in the La1 – xCaxMnO3 sys-
tem for xc ≈ 0.18 [4]. In this system, the character of the
temperature dependence of magnetization in a weak
external field and the concentration dependence of the
constant reflecting the isotope effect with respect to the
effective Curie temperature (determined as the temper-
ature at which the magnetization reaches half of the
maximum value) agrees with predictions of the perco-
lation model for both x > xc and x < xc.

It should be noted that the constant αp = −∂lnp/∂lnM0
of the isotope effect with respect to the relative phase
volume can be considered as an effective “isotope pli-
ability” of a system with phase separation. This quan-
tity characterizes the influence of the isotope exchange
on the relative phase volume and on the effectiveness of
the percolation isotope effect. Note that large values of
this constant far from the percolation threshold may be
accompanied by a relatively small contribution to the
isotope effect for TC.

4.4. Optical Properties of Manganites

Manganites with giant magnetoresistance, in con-
trast to many other typical systems based on 3d ele-
ments, exhibit anomalously strong fluctuations of the
charge state and the crystal field in both Mn3d and O2p
sublattices and may occur in a multiphase state with
coexistence of metal and dielectric regions. This behavior
markedly complicates interpretation of the optical proper-
ties of GMR manganites. The model of phase separation
implies the existence of an optically inhomogeneous
medium, many properties of which are analogous to those
of the well-known and extensively studied dielectric sys-
tems such as glasses with metal inclusions [25–27]. For
example, this refers to manifestations of the (quasi)-
Drude with an integral weight proportional to the rela-
tive volume p of the metal regions. In addition to this
(quasi)-Drude contribution of charge carriers, the opti-
cal spectra of manganites also reveal sufficiently nar-
row resonance transitions related to the hole and elec-
tron centers. Measurements of the optical properties of
manganites are an important tool in studying their elec-
tron structure and multiphase composition.

αperc x xc– a–∝
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The photoconductivity spectrum of undoped LaMnO3
manganite exhibits a low-energy band in the region of
2.4 eV and a high-energy band at 5.2 eV [28], which are
naturally assigned to the d–d type transition 5Eg–5T2g in
Mn3+ ions and the lowest allowed charge-transfer transi-
tion O2p–Mn3d in the octahedral complexes (MnO6)9–,
respectively [29]. The introduction of Ca2+ and Sr2+

ions (hole doping) leads to a significant modification of
the optical properties in a broad spectral range. The
low-energy band at 2.4 eV sharply drops in intensity,
while the high-energy band gradually shifts toward
lower energies. As a result, the spectral weight is gen-
erally transferred toward the IR range, with a pro-
nounced maximum appearing at 1.5 eV [28, 30]. The
nature of this peak was actively discussed. According to
Takenaka et al. [28], this peak is related to the charge-
transfer transition O2p–Mn3d, while most of the other
researchers attribute this peak to various one-center or
two-center d–d transitions. For example, Jung et al.
[31] believe that this absorption is most probably due to

indirect transitions between occupied ( ) and empty

( ) states (the  and  states belong to the eg

band of Mn3+ ions, which splits as a result of the Jahn–
Teller interaction).

The d–d electric-dipole transitions become possible
due to hybridization of the eg states of Mn and the 2p
states of oxygen. The observed band shift and the
increase in the IR absorption coefficient in the region of
ferromagnetic ordering are due to the appearance of a
contribution from carriers in the conduction band and
to the spectral weight redistribution from high- to
low-energy region [32]. In our opinion, the d–d transi-
tion may also include the 5Eg–5T2g transition in Mn3+

ions because the crystal field for these ions in doped
manganites is screened by the hole density partly delo-
calized on the surrounding oxygen ions. Indeed, a par-
tial screening of the negative charge of the oxygen ions
will lead to a decrease in the parameter of crystal-field
splitting which, in turn, may result in decreasing energy
of the 5Eg–5T2g transition from 2.4 eV in pure mangan-
ite to 1.5 eV in substituted compositions.

The main body of the optical data for manganites
was obtained by measuring and processing the reflec-
tance spectra, which cannot provide for the detection
(and the more so, the detailed investigation) of many
important features manifested by relatively weak (but
highly informative) d–d transitions and forbidden charge-
transfer transitions. In particular, this is valid for the tran-
sitions in Mn4+ ions and octahedral complexes (MnO6)8–

appearing in systems of the La1 − xSrxMnO3 type as a
result of the hole doping. Balykina et al. [33] studied
the magnetooptical activity of these transitions in
A2Mn2O7 pyrochlores with the octahedral complexes
(MnO6)8– in the 1.5–4.5 eV range by measuring the
Kerr effect. These measurements revealed the bands at
2.6 and 3.1 eV assigned to the d–d type transitions

eg↑
1( )

eg↑
2( ) eg

1( ) eg
2( )
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4A2g–4T2g and 4A2g–4T1g in Mn4+ ions and octahedral
complexes (MnO6)8–, respectively. The band at 3.8 eV
and a very intense band with a maximum at E ≥ 4.3 eV
can be attributed to the forbidden and allowed charge-
transfer transitions, respectively, This assignment gen-
erally agrees with the data reported in [34] for a series
of systems containing Mn4+.

One of the first measurements of the Faraday effect
in manganites was reported by Lawler et al. [35] for
La1 – xCaxMnO3 in the 1.5–3.0 eV range. These mea-
surements showed evidence of a large Faraday rotation
with maxima in the regions of the 5Eg–5T2g transition in
Mn3+ (1.5 eV) and the charge-transfer transition (3.1 eV).
Yamaguchi et al. [36] studied the magnetooptical Kerr
effect in the La1 – xSrxMnO3 system in the 0.9–5.3 eV
range. The obtained spectral dependences of the polar
Kerr effect (more precisely, the nondiagonal compo-
nents of the dielectric permittivity tensor calculated
from these data) were processed within the framework
of the simplest two-oscillator model. This model satis-
factorily described the low-frequency band with a max-
imum at 1.2 eV, but a discrepancy between the behavior
observed in the 2–5 eV interval and the contribution of
one model oscillator with an energy of 3.1 eV exceeded
the experimental error. The magnetooptical activity in
the latter interval was explained by a contribution from
charge-transfer transitions O2p–Mn3d. Gan’shina et al.
[9, 16] measured the equatorial Kerr effect in the
(La1 − xPrx)0.7(CaSr)0.3MnO3 system [9, 16] and estab-
lished that the magnetooptical activity in this case must
be assigned to transitions in the octahedral complexes
of Mn3+ and Mn4+.

On the whole, we may expect that the doped manga-
nites must exhibit a considerable optical activity in the
region of 2–3 eV, which is related to the Mn3+ and Mn4+

ions responsible for the unique properties of these
oxide systems.

Let us consider the general features of the optical
and magnetooptical spectra of the epitaxial manganite
films studied in our experiments. The absorption spec-
tra presented in Figs. 3 and 4 show evidence of a com-
plicated character of the absorption band at 1.5 eV. The
low-energy edge of this band clearly reveals a contribution
due to the localized states. The appearance of bands due to
localized states, called the middle infrared (MIR) bands, is
a general feature in the optical absorption of many transi-
tion metal oxides representing strongly correlated sys-
tems. The two bands mentioned above (0.14 and 0.45 eV)
were also observed in our investigations of the optical
absorption of La0.9MnO3 and (La0.9Sr0.1)0.9MnO3 single
crystals [10, 37]. The photoconductivity band at 0.4 eV
reported for singe-crystalline La0.9Sr0.1MnO3 [30] and
polycrystalline La7/8Sr1/8MnO3 [31] was attributed to
the polaron effects. The phonon absorption in mangan-
ites with a perovskite structure takes place in the region
of energies below 0.09 eV. The appearance of bands
due to localized states at a high carrier concentration
JOURNAL OF EXPERIMENTAL 
created by doping cannot be explained within the
framework of a one-electron band model. The existence
of these bands together with the Drude or quasi-Drude
contribution is important evidence for the electron
inhomogeneity and phase separation in the system.

The nature of bands related to the localized states
and many other features in the properties of transition
metal oxides are successfully explained based on a
cluster model [2] assuming the existence of the pseudo-
Jahn–Teller electron and hole clusters characterized by
the two-electron (boson, bipolaron) nature of the carri-

ers. Transitions in the main clusters [Mn ] form the
fundamental absorption band (above 3 eV), while the
low-energy transitions in the electron and hole clusters
account for the MIR bands. The origin of the MIR
bands is related to a strong correlation effect produced
by an additional hole (or electron) appearing in the
main cluster. This correlation leads to a pseudo-degen-
eracy in the energy of states with the hole (electron)
localized in the Mn3d and O2p states and, hence, to a
valence resonance (of the Mn3+-Mn4+ type in the hole
cluster) and a decrease in the energy of a charge-trans-
fer transition. The MIR bands are essentially related to
the charge-transfer transitions Mn3d–O2p inside the
electron and hole clusters.

In the above model [2], the electron and hole clus-
ters MnO6 form the centers of charge inhomogeneity.
These centers may possess a complicated structure and
contain various numbers of clusters. The energy states
of the polar clusters (and of the charge inhomogeneity
centers) are determined by the charge, sin, and orbital
degrees of freedom. therefore, the charge inhomogeneity
centers are essentially the large Jahn–Teller magnetic
polarons. The formation of these centers is favored by the
local potential inhomogeneity caused by a nonisovalent
substitution or by the vacancy formation. The appearance
of the charge inhomogeneity centers may account for
the metal phase nucleation in manganites with a per-
ovskite structure and, hence, for the static ad/r dynamic
phase separation in the systems [2].

The experimental results presented in this paper can
also be explained within the framework of the model
proposed in [2]. Indeed, the band at 0.14 eV observed
in La0.9MnO3 and (La0.9Sr0.1)0.9MnO3 single crystals
was previously assigned to transitions in the hole closer

Mn , while the band at 0.4 eV was attributed to tran-
sitions in the corresponding electron cluster [10].
According to an alternative interpretation, the band at
0.4 eV is explained by the delocalization of polar clusters
[2], that is, by a fast two-electron exchange between cou-
pled electron and hole clusters. This exchange may give
rise to a common band centered at the energy

where ce, h are the concentrations of electrons and holes,
respectively, and ∆e, h are the corresponding MIR peak
energies. Assuming that transitions in the electron clus-

O6
9–

O6
8–

∆M ce∆e ch∆h,+=
AND THEORETICAL PHYSICS      Vol. 92      No. 3      2001



THE ISOTOPE EFFECT AND PHASE SEPARATION 471
ter account for the band at 0.95 eV (i.e., ∆h = 0.14 eV
and ∆e = 0.95 eV), we obtain ∆M ≈ (∆h + ∆e)/2 ≈ 0.5 eV.
This delocalization is accompanied by an increase in
the conductivity and leads to the formation of a Drude-
like metal contribution. This very situation is observed
below the metal–dielectric transition (accompanied by
an additional absorption at 0.2 eV). The intensity of
absorption in the region of the “hole” peak at 0.14 eV also
increases below the metal–dielectric transition, which can
be explained both by an increase in the Drude-like contri-
bution and by a change in the overall peak intensity.

As is seen from Fig. 5, the intensity of absorption
bands at 0.14 and 0.4 eV is strongly affected by the mag-
netic order, which allows us to assign the bands of local-
ized states to the magnetic polarons. In the general case,
the intensity of polaron absorption bands reflects the con-
ductivity in the polaron system. This temperature depen-
dence of the absorption bands at 0.14 and 0.4 eV (Fig. 5
shows data only for the band at 0.4 eV), as well as a similar
variation observed for La0.9MnO3 and (La0.9Sr0.1)0.9MnO3
single crystals [2, 10] that indicates that these bands
belong to the same object—the charge inhomogeneity
center containing electron and hole clusters. It should be
noted that we failed to reveal the trends in the temperature
variation of the intensity of absorption at 0.9 eV because
this band exhibited a temperature-dependent shift (see
Figs. 3 and 4) because of the superposition of other
absorption bands.

A comparison of the EKE spectra of the 18O/LAO
and 18O/STO samples (Fig. 7) to the absorption spectra
of the same films (Figs. 3 and 4) shows that the appear-
ance of an intense band at 0.9 eV in the absorption
spectrum coincides with the shift of the EKE spectrum
toward lower energies. Apparently these effects are inter-
related. Assuming that the band at 0.9 eV is due to the low-
energy transitions in the electron clusters, the growth in
intensity of this band observed for the 18O/STO sample
implies an increase in the number of these electron clus-
ters. A change in the ratio of hole end electron clusters in
the charge inhomogeneity centers (in the ferromagnetic
regions) can modify the energies of transitions in the
Mn3+ and Mn4+ clusters. This can result from a change in
the crystal field screening by carriers and must apparently
affect the EKE spectrum. In the spectrum of the 18O/LAO
sample, the band at 0.9 eV is less pronounced; accord-
ingly, no shift is observed in the EKE spectrum (Fig. 7).
The drop in the EKE intensity upon the isotope exchange
in these samples is related to a decrease in the volume frac-
tion of ferromagnetic regions at the expense of growing
charge-ordered antiferromagnetic regions. A difference in
the degree of the EKE intensity drop for the films on STO
and LAO substrates is probably related to differences in
the character of the process of charge carrier localiza-
tion in these samples. These distinctions are caused by
the different character of stresses developed in the films
grown on different substrates.

Previously [8, 10], we demonstrated that a decrease
in the intensity of optical absorption in the region of
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energies corresponding to the light interaction with the
charge carriers observed on cooling the samples below
the Curie temperature (“metal” contribution), together
with retained “semiconductor” character of the tempera-
ture variation of then dc resistivity ρ(T), is evidence of
the phase separation in the system, representing metal
“droplets” distributed in an insulating matrix. A compar-
ison of the optical and magnetooptical data to the results
of resistivity measurements indicates that the phase sep-
aration phenomenon is most pronounced in the 18O/LAO
samples. Indeed, a decrease in the absorption intensity
of this film (cooled in a magnetic field) at temperatures
below 120 K (Fig. 5) demonstrates the presence of a
“metal” contribution related to the metal–dielectric
transition. Simultaneously, this film exhibits a growth
in the EKE intensity below 125 K (Fig. 8). Thus, both
the absorption and Kerr effect measurements are indic-
ative of the presence of ferromagnetic conducting
regions in the 18O/LAO film. However, the resistivity of
this film in a zero magnetic field keeps monotonically
increasing below 125 K (Fig. 1). These facts show that
the optical methods are more sensitive than the electri-
cal measurements with respect to the presence of a
small fraction of ferromagnetic metal droplets in the
insulating matrix.

From the standpoint of the optical properties, the
18O isotope substitution for 16O in manganites leads to a
decrease in the contribution related to the free carriers and
to an increase in intensity of bands related to the localized
states, which is indicative of a considerable localization of
the charge carriers. This localization apparently has a per-
colation character [2, 3]. A system occurring near the per-
colation threshold is extremely sensitive with respect to
various external factors (light, electric field, pressure,
etc.). In our case, the external action consists in substi-
tuting the 18O oxygen isotope for 16O. As a result of this
isotope exchange, the fraction of ferromagnetic metal
droplets decreases and the proportion of antiferromag-
netic charge-ordered regions increases. Assuming that the
charge carriers take the form of polarons, an increase in
their localization caused by the growth of the oxygen ion
mass can be explained by the polaron band narrowing [3].

Application of a magnetic field during cooling of the
film is an additional external factor that strongly affects
the character of the inhomogeneous multiphase state of
the composition studied. This factor leads, in particular, to
an increase in the relative volume and size of the ferro-
magnetic metal regions which, in turn, results in the
growth in intensity of the MIR absorption bands accom-
panied by suppression of the inhomogeneous broadening
effects characteristic of the small metal droplets. The
curves of the EKE magnitude versus temperature mea-
sured in the heating mode for the samples preliminarily
cooled in the magnetic field exhibit a sharper decay in
the vicinity of TC.

During the magnetotransmittance measurements,
when the field is switched at every point (Fig. 6), the
system of charge carriers cannot relax during the time
SICS      Vol. 92      No. 3      2001
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of measurement. For this reason, the measured magne-
totransmittance values is considerably (at least, by half)
smaller that those calculated using the data of Fig. 5
(measured with a constant magnetic field applied dur-
ing the sample heating from 80 K to room tempera-
ture). The existence of long-term relaxation and irre-
versible phenomena is an important feature typical of
inhomogeneous systems.

A considerable difference in the results of isotope
exchange in the manganite films on LAO and STO sub-
strates is related to a difference in the character of
stresses developed in the films grown on different sub-
strates–expanding on STO and contracting on LAO.
This difference is related to the fact that the substrate
lattice parameter a in the lateral direction is greater (for
LAO) and smaller (STO) as compared to that of the film
material [14, 38]. This circumstance also accounts for
the different character of the magnetic anisotropy of the
manganite films on STO and LAO substrates, which is
manifested by a change in the EKE sign in the temper-
ature interval 145 K < T < 205 K observed for the
16O/STO film.

5. CONCLUSION

The effects of temperature, external magnetic field,
isotope exchange, and illumination on the doped manga-
nites lead to a strong modification of their optical absorp-
tion spectrum in a broad spectral range (up to 5 eV). Tak-
ing into account the very small energy scale of these
perturbations (especially of the external magnetic field
and isotope exchange), the observed anomalous
changes can be related to the percolation phenomena.

The results of the optical and magnetooptical mea-
surements for the epitaxial (La0.5Pr0.5)0.7Ca0.3MnO3

films with a partial 18O isotope substitution for 16O
show evidence in favor of the model of phase separa-
tion and confirm the percolation character of changes
cased by the isotope exchange. The observed spectral
features can be interpreted within the framework of the
model of the pseudo-Jahn–Teller electron and hole
cluster formation.

ACKNOWLEDGMENTS

The authors are grateful to N.A. Babushkina for pre-
paring the isotope substituted samples. The work was sup-
ported by the Russian Foundation for Basic Research
(project no. 99-02-16595) and the INTAS Foundation
(project nos. 97-30252 and 97-11954).

REFERENCES

1. É. L. Nagaev, Usp. Fiz. Nauk 166, 833 (1996) [Phys.
Usp. 39, 781 (1996)].

2. A. S. Moskvin, Physica B (Amsterdam) 252, 186 (1998).

3. D. Khomskii, Physica B (Amsterdam) 280, 325 (2000).
JOURNAL OF EXPERIMENTAL
4. G. Zhao, K. Conder, H. Keller, and K. A. Müller, Nature
381, 676 (1996); Phys. Rev. B 60, 11 914 (1999).

5. N. A. Babushkina, L. M. Belova, O. Yu. Gorbenko, et al.,
Nature 391, 159 (1998).

6. N. A. Babushkina, L. M. Belova, A. N. Taldenkov, et al.,
J. Phys.: Condens. Matter 11, 5865 (1999).

7. G. Zhao, H. Keller, J. Hofer, et al., Solid State Commun.
104, 57 (1997); M. R. Ibarra, G. Zhao, J. M. de Teresa,
et al., Phys. Rev. B 57, 7446 (1998).

8. N. N. Loshkareva, Yu. P. Sukhorukov, S. V. Naumov,
et al., Pis’ma Zh. Éksp. Teor. Fiz. 68, 89 (1998) [JETP
Lett. 68, 97 (1998)].

9. E. A. Gan’shina, O. Yu. Gorbenko, A. R. Kaul, et al.,
J. Phys.: Condens. Matter 12, 2857 (2000).

10. N. N. Loshkareva, Yu. P. Sukhorukov, É. A. Neœfel’d,
et al., Zh. Éksp. Teor. Fiz. 117, 440 (2000) [JETP 90,
389 (2000)].

11. O. Yu. Gorbenko, A. R. Kaul, A. A. Bosak, et al., in
High-Temperature Superconductors and Novel Inor-
ganic Materials, Ed. by G. van Tendeloo, E. V. Antipov,
and S. N. Putilin (Kluwer, Dordrecht, 1999), p. 233.

12. B. Guettler, L. Skuja, O. Yu. Gorbenko, et al., Mater.
Res. Soc. Symp. Proc. 517, 111 (1998).

13. A. M. Balagurov, V. Yu. Pomyakushin, V. L. Aksenov,
et al., Pis’ma Zh. Éksp. Teor. Fiz. 67, 672 (1998) [JETP
Lett. 67, 705 (1998)].

14. O. Yu. Gorbenko, A. R. Kaul, N. A. Babushkina, et al.,
Aust. J. Phys. 52, 269 (1999).

15. N. A. Babushkina, L. M. Belova, D. I. Khomskii, et al.,
Phys. Rev. B 59, 6994 (1999).

16. E. A. Gan’shina, O. Yu. Gorbenko, N. A. Babushkina,
et al., in Non-Linear Electromagnetic Systems (IOS
Press, Amsterdam, 1998), p. 325.

17. H. L. Ju, H.-C. Sohn, and Kannan M. Krishnan, Phys.
Rev. Lett. 79, 3230 (1997).

18. V. R. Galakhov, M. Demeter, S. Bartkowski, et al., sub-
mitted to Phys. Rev. Lett.

19. T. A. Tyson, Q. Qian, C.-C. Kao, et al., Phys. Rev. B 60,
4665 (1999).

20. J.-S. Zhou and J. B. Goodenough, Phys. Rev. B 60,
R15002 (1999).

21. D. Staufer and A. Aharoni, Introduction to Percolation
Theory (Taylor and Francis, London, 1992).

22. A. Urushibara, Y. Moritomo, T. Arima, et al., Phys. Rev.
B 51, 14 103 (1995).

23. K. H. Kim, M. Uehara, C. Hess, et al., Phys. Rev. Lett.
84, 2961 (2000).

24. V. Podzorov, M. Uehara, M. E. Gershenson, et al., Phys.
Rev. B 61, R3784 (2000).

25. J. A. A. Perenboom, P. Wyder, and F. Meyer, Phys. Rep.
78, 173 (1981).

26. Ping Sheng, Phys. Rev. Lett. 45, 60 (1980).

27. N. Del Fatti, F. Vallee, C. Flytzanis, et al., Chem. Phys.
251, 215 (2000).
 AND THEORETICAL PHYSICS      Vol. 92      No. 3      2001



THE ISOTOPE EFFECT AND PHASE SEPARATION 473
28. K. Takenaka, K. Iida, Y. Sawaki, et al., J. Phys. Soc. Jpn.
68, 1828 (1999).

29. J. M. D. Coey, M. Viket, and S. von Molnar, Adv. Phys.
48, 167 (1999).

30. Y. Okimoto, T. Katsufuji, T. Ishikawa, et al., Phys. Rev.
B 55, 4206 (1997).

31. J. H. Jung, K. H. Kim, H. J. Lee, et al., Phys. Rev. B 59,
3793 (1999).

32. N. N. Loshkareva, Yu. P. Sukhorukov, V. E. Arkhipov,
et al., Fiz. Tverd. Tela (St. Petersburg) 41, 475 (1999)
[Phys. Solid State 41, 426 (1999)].

33. E. A. Balykina, E. A. Ganshina, G. S. Krinchik, et al.,
J. Magn. Magn. Mater. 117, 259 (1992).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
34. A. G. Paulusz and H. I. Burrus, Chem. Phys. Lett. 17,
527 (1972).

35. J. F. Lawler, J. G. Lunney, and J. M. D. Coey, Appl. Phys.
Lett. 65, 3017 (1994).

36. S. Yamaguchi, Y. Okimoto, K. Ishibashi, and Y. Tokura,
Phys. Rev. B 58, 6862 (1998).

37. N. N. Loshkareva, Yu. P. Sukhorukov, B. A. Gizhevskii,
et al., Phys. Status Solidi A 164, 863 (1997).

38. O. Yu. Gorbenko, M. A. Novojilov, I. E. Graboy, et al., in
Book of Abstracts of E-MRS Spring Meeting, Stras-
bourg, 2000, p. P-22.

Translated by P. Pozdeev
SICS      Vol. 92      No. 3      2001



  

Journal of Experimental and Theoretical Physics, Vol. 92, No. 3, 2001, pp. 474–479.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 119, No. 3, 2001, pp. 546–552.
Original Russian Text Copyright © 2001 by Barabanenkov, V. Ivanov, S. Ivanov, Taranov, Khazanov.

                                                                                                               

SOLIDS

 

Structure
Investigation of Nanoceramics Based on Aluminum 
and Zirconium Oxides Using the Heat Pulse Method

Yu. N. Barabanenkova, V. V. Ivanovb, *, S. N. Ivanova, A. V. Taranova, and E. N. Khazanova

aInstitute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, 103907 Russia
bInstitute of Electrophysics, Ural Division, Russian Academy of Sciences, Yekaterinburg, 620219 Russia

*e-mail: ivanov@mail.cplire.ru
Received September 20, 2000

Abstract—The processes of phonon transport in ceramics and composites based on aluminum and zirconium
oxides are studied experimentally in the region of helium temperatures. It is demonstrated that, for the ceramic
grain size R within two orders of magnitude and more (up to nanosizes), the phonon diffusion coefficient
Deff ∝  R and exhibits a decreasing temperature dependence. In aluminum-based nanoceramics with R < 200 nm,
the phonon diffusion coefficient decreases abruptly by two orders of magnitude, and its temperature depen-
dence becomes increasing. A model of temperature dependence of the diffusion coefficient is suggested.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Interest in nanocrystal materials is associated with

expectations of high mechanical and other functional
characteristics of such materials, as well as of new
properties resulting from the dimensional effect of the
crystals or grains that form those materials and struc-
tural changes of the boundaries between them [1, 2].

One of the methods of preparing dense nanostruc-
ture ceramics, for example, ZrO2 and Al2O3, and com-
posites on their basis, involves making the process of
compaction more important compared with the process
of subsequent sintering. Such a method was provided
by pulsed compaction using shock waves up to 22 GPa
[3] and soft pressure waves generated by the magnetic
pulse method [4]. The stage of sintering, i.e., the final
operation in the preparation of nanoceramics, differs
from the conventional modes of preparing ceramics by
lower ((0.5–0.6)Tml) temperatures of treatment and
shorter (by two–three orders of magnitude) exposure
times. This stage defines both the grain size and the
structure of interfaces between the grains [4].

A number of methods exist for the investigating the
structure of nanoceramics. They include, first of all,
X-ray techniques whereby one can use the broadening
of X-ray diffraction peaks compared with the lines of
standards such as coarse-grained ceramics to estimate
the average grain size. An analysis of the type of bound-
aries between grains proves to be a more complicated
problem to be solved by high resolution microscopy.
Nevertheless, numerous questions as to the type of
boundaries, the pore structure, and the pore and grain
dispersion remain open.

This paper deals with the investigation of nanocer-
amics and composites on the basis of α-Al2O3 and ZrO2
using the heat pulse method. The use of weakly non-
1063-7761/01/9203- $21.00 © 20474
equilibrium phonons with a temperature of 2 to 4 K
and, accordingly, with the wave vector for the main
group of phonons qs ≈ 2.7kT/"vs ≈ (1.0–2.0) × 106 cm–1 or
λs ≈ 30–60 nm makes it possible to “sense” the size of
nanocrystallites. The transmission of a phonon or
acoustic wave from grain to grain via a boundary layer
of thickness lgb, whose properties differ from those of
the grains, is defined within the laws of acoustic match-
ing [5] by the quantity qlgb ≤ π, which enables one, with
the acoustic wavelengths employed, to identify the
thickness, density, and other quantitative parameters of
this boundary layer.

2. EXPERIMENTAL PROCEDURE

We investigated samples of high-density α-Al2O3
and ZrO2 ceramics and composites on their basis,
which were prepared from nanopowders of oxides pro-
duced by electric explosion of metallic aluminum and
zirconium in an oxygen-containing atmosphere. The
average size of powder particles of a close-to-spherical
shape did not exceed 30 nm. The powder was pressed
by the magnetic pulse technique in a hard mold with the
maximum pressure pulse of 1.2 GPa for a period of
200–300 µs. The compaction was performed in vacuum
(p ≈ 1 Pa) at room temperature with preliminary degas-
sing of the powder. Compacts in the form of disks with
the diameter of 3.0 cm and thickness of up to 0.35 cm
had a relative density of 0.7–0.8.

The compacts were sintered in the air in a laboratory
resistance furnace at temperatures Tbur ≈ 1400°C. The
exposure time at the synthesis temperature ranged from
zero to 60 min; it was this time that defined the obtained
values of the grain size R (crystallites) and the quality of
the boundaries between them. In preparing Al2O3–ZrO2
001 MAIK “Nauka/Interperiodica”
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composites, the sintering temperature of 1410°C was
selected for the composition of 0.4Al2O3–0.6ZrO2
(A40–Z60) and 1450°C for the composition of
0.85Al2O3–0.15ZrO2 (A85–Z15). In both cases, the
exposure time amounted to 15 min; as a result, approx-
imately similar (~70 nm) grain sizes of the ZrO2 phase
could be obtained. As to the grain sizes of the α-Al2O3
phase, they were different for different compositions,
namely, approximately 120 nm for the first composi-
tion and approximately 180 nm for the second compo-
sition in which the α-Al2O3 phase predominates. Also
investigated were ceramics prepared by the conven-
tional technology and produced commercially (sap-
phirite, polycor). The characteristics of the investigated
samples are given in the table.

The microstructure of the surface (spallation) of
ceramic samples was investigated using a JSM-840
scanning electron microscope manufactured by Jeol.

The kinetics of phonons at helium temperatures
were investigated by the “heat pulse” method. A film of
gold, which was heated by a short ((≈10–7 s) pulse of
current and served as an injector of nonequilibrium
phonons, was deposited on one side of a plate of mate-
rial being investigated. A bolometer of Sn in the form
of a meander with an area of 0.3 × 0.25 mm2 was
applied onto the other side of the plate. The displace-
ment of the working point of the bolometer under the
effect of magnetic field (≈160 × 102 A/m) enabled one
to obtain the dependence of scattering of nonequilib-
rium phonons on the temperature in the sample being
investigated in the range from 1.7 to 3.8 K. The power
dissipated in the heater was selected to be sufficiently
low so that the injected phonons could be assigned the
thermostat (bath) temperature with the frequency dis-
tribution close to Planckian.

3. RESULTS AND DISCUSSION

Examples of microphotographs of the spallation
surface of ceramic samples, obtained by scanning
microscopy, are given in Fig. 1 for α-Al2O3 samples.
One can see that, both for commercially produced
ceramic (Fig. 1a) and for nanoceramic prepared by
magnetic pulse compaction with subsequent sintering
(Fig. 1b), the grains of ceramic are close-packed crys-
tallites (or single crystals), which leads one to assume
their high structural perfection. At the same time, the
employed procedure leaves open the question of the
type of boundaries between grains of ceramic.

Before turning to the analysis of the main experi-
mental results, we will briefly dwell on the theoretical
prerequisites of applying the heat pulse method to
ceramic materials, as described in [6]. In the model of
[6], it is assumed that the free path of phonons consid-
erably exceeds the grain size, ltr @ R, as follows obvi-
ously from the perfect structure of the grain (Fig. 1) and
low temperature of the experiment. In this situation, the
scattering of nonequilibrium phonons reflects only the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
structure and properties of boundaries between grains.
According to [6], the expression for the arrival time of
the maximum of the signal tmax of a pulse of nonequi-
librium phonon radiation under conditions of diffuse
propagation of phonons in a ceramic sample of thick-
ness L @ R has a conventional form of

and

(1)

Here, vs is the velocity of sound in a grain of ceramic,
S is the area of the grain surface, Σ is the total area of
contact sites per single grain, and fω is the probability of
transmission of a phonon of frequency ω through a con-
tact site. The expression Σ/S reflects the possibility of
open and closed porosity on the grain boundaries in
ceramic samples. In what follows, we will demonstrate
that, for dense ceramics with open porosity (of approx-
imately 1–2%) investigated in our experiments, Σ/S ≈ 1;
the average velocity of sound in the ceramics and com-
posites being investigated within the experimental
errors and estimates may be assumed to be the same
and equal to vs ≈ 7 × 105 cm/s.

The behavior of the effective diffusion coefficient
Deff as a function of temperature, ceramic grain size,

tmax L2/Deff≈

Deff v sR f ωΣ/S.=

10 µm

(a)

300 nm

Fig. 1. The microstructure of the spallation surface of
ceramic samples: (a) VK-100 (polycor); (b) nanoceramic,
sample no. (N1862).

(b)
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Parameters of samples of Al2O3 and ZrO2 ceramics and composites on their basis investigated by us

No. of sample Powder T of sintering, 
°C Density, g/cm3 Grain size d, nm Exposure

time, min Phase composition

1604 AT-1s2 1410 3.74 200–300 0

1862 AM1-1 1410 3.80 ~300 2

1868 AM1-1 1310 3.62 ~100 3

1863 AM1-1-s5 1410 3.87 ~1000 60

1872 AM1-1-s5 1410 3.86 ~500 20

1623.7 AM1-1-s5 1230 3.25 94 α-Al2O3–96%, spinel–4%

1623.3 AM1-1-s5 1310 3.60 164 α-Al2O3–96%, spinel–4%

1466 AM1-1-s2 1370 3.724 ~100 α-Al2O3–96%, spinel–4%

88 ZrO2 1050 5.28 45 Monoclinic

196 ZrO2 1100 5.52 ~70 Monoclinic

2071 A40-Z60 1410 5.01 120/70* 15

2036 A85-Z15 1450 4.07 180/70* 15

VK100-1 (Polycor) 3.96 20000 99% α-Al2O3

VK98-1 (Sapphirite) 3.88 7000 98% α-Al2O3

VK-94-1 (22KhS) 3.65 12000 98.4% α-Al2O3

* The numerator gives the size of Al2O3 crystallites, and the denominator, that of ZrO2.
and the properties and area of the intergrain boundaries
fully describes the properties of ceramic material.

Examples of curves of heat pulse propagation for a
number of temperatures in an α-Al2O3 sample with an
average grain size R ≥ 0.2 µm are given in Fig. 2; shown
in the inset are analogous curves for a sample with R ≤
0.2 µm. In both cases, the curves of the signal on the
bolometer have a bell shape with a well-defined maxi-
mum, that is characteristic of diffuse propagation of
injected phonons. The condition tmax ∝  L2 is valid for all
investigated samples, which points to the diffuse
behavior of the motion of nonequilibrium phonons.

1

2

1

2

3
4

2000 4000

0

S

t, µs
50 100

0

Fig. 2. The amplitude of the signal of nonequilibrium
phonon radiation as a function of time in samples of
α-Al2O3 nanoceramics: sample no. 1862, R = 300 nm, L =

3.75 × 10–2 cm, T = 3.83 (1), 3.43 (2), 3.03 (3), and 2.62 K (4).
The inset corresponds to sample no. 1868, R ≈ 100 nm, L =
1.7 × 10–2 cm, T = 3.85 (1) and 3.46 K (2).
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Note that, for α-Al2O3 ceramics with R ≥ 0.2 µm and
for all ZrO2 samples, as well as for composites, the time
of the maximum of the bolometer signal tmax increases
with the temperature of injected phonons (∂tmax/∂T > 0);
for α-Al2O3 nanoceramics with R ≤ 0.1 µm, the time tmax
increases by two orders of magnitude, and its temperature
dependence becomes decreasing (∂tmax/∂T < 0).

For investigated samples (see table), the curve of
Deff ≈ L2/tmax dependence on the ceramic grain size was
constructed at the fixed temperature T = 3.8 K (Fig. 3).
For ceramics with ∂tmax/∂T > 0 in the range of values of
R within two orders of magnitude, it turns out that
Deff ∝  R (curve 1); it was for the first time that such cor-
relations were obtained. A deviation from the linear
dependence (decrease in the values of Deff) occurs at
R ≤ 100 nm for ZrO2 ceramics and ZrO2–Al2O3 com-
posites. A deviation from the linear dependence Deff ∝
R may be due either to the variation of the properties of
intercrystallite boundaries, i.e., of the quantity fω, or to
the manifestation of the effects of diffraction (interfer-
ence) of the phonon flux because of the comparability
of the wavelengths of phonons used in the experiment
with the grain size of ceramic crystallites. This inter-
pretation of the behavior of the Deff ∝  ϕ(R) for the grain
size R ≤ 40 nm appears possible, in particular, because
of dispersion in the sizes of nanocrystallites of ceramic
material. The results obtained by a number of authors
for α-Al2O3 ceramics [7, 8] “fit” the linear portion of
curve 1 well (Fig. 3). This points to the validity of for-
mula (1) for describing the diffusion of phonons in
ceramics, and the quantity fωΣ/S defined by the proper-
AND THEORETICAL PHYSICS      Vol. 92      No. 3      2001
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ties of boundaries between crystallites turns out to be
within the experimental error, which is the same for the
samples being investigated (irrespective of the time of
exposure and the temperature during sintering, which
define the size of grain in ceramics) and for high-qual-
ity commercially produced ceramics. A quantitative
comparison of the experimental data with Eq. (1) leads
one to argue that the boundary between grains is fairly
perfect and well formed, and one can assume that Σ/S ≈ 1
and fω ≈ 0.8–0.9.

As was already mentioned above, the situation
changes radically for α-Al2O3 nanoceramics with R <
0.2 µm, which have a decreasing temperature depen-
dence of tmax; the value of Deff at T = 3.8 K decreases by
two orders of magnitude. Therefore, a change of mech-
anism of phonon scattering on the boundaries between
grains occurs as a result of variation of the structure of
those boundaries. One can assume that, because of the
singularities of the process (rapid sintering at a lower
temperature, see table), the boundaries in these samples
are not fully formed and have a low-density interlayer
between them, this leading to effective reflection of
phonons from the boundary. We will perform numeri-
cal estimation; namely, for a value of Deff ≈10–1 cm2/s
and grain size R ≈ 10–5 cm (see Fig. 3), we have leff ≈
Deff /vs ≈ 1.5 × 10–7 cm ! R for the effective free path;
i.e., a phonon “dangles” in crystallite for quite some
time and is reflected from the boundaries before mov-
ing over to the adjacent crystallite (fωΣ/S ≈ 10–2). Note
further that, for these samples, qR @ 1, and this rules
out any significant manifestation of diffraction effects.
Feofilov et al. [9] arrived at the same conclusion study-
ing α-Al2O3 ceramic with a grain size of approximately
10–5 cm by the optical methods. They believe that the
dynamics of phonons with the energy of 29 cm–1 differ
sharply from those for α-Al2O3 with a grain size of the
order of ~10–3 cm. The variation of the phonon dynam-
ics is associated with the variation of the conditions of
phonon transmission between the crystallite bound-
aries rather than with the decrease in the crystallite size.
In some of our previous experiments, ∂tmax/∂T < 0 was
observed for a number of single-phase ceramics with a
large grain size (5.0 to 10 µm), namely, α-Al2O3 [6],
and SiC and AlN [10]. The diffusion coefficients for
these samples at T = 3.8 K are also given in Fig. 3. They
are matched with the data for nanocrystals given by
curve 2, which also obeys the Deff ∝  R correlation. For
a large class of ceramics with ∂tmax/∂T < 0, there is
much in common in the structure of boundaries between
grains, this defining the weak transparency (fωΣ/S ≈ 10–2)
of these boundaries for phonons.

We will treat the possible resonance mechanism
[11] explaining the origin of the experimentally
revealed increasing and decreasing forms of the tem-
perature dependence for the arrival time tmax of the
maximum for the signal of a pulse of nonequilibrium
phonon radiation, as illustrated by the example of the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
structure shown in Fig. 4, which is a simplified model of
a phonon (high-frequency acoustic wave) propagating
from grain 3 to grain 1 via the boundary layer 2. The
materials of the structure of Fig. 4 are assumed to be
isotropic and homogeneous with preassigned values of
density ρi and group velocity of sound vi (i = 1, 2, 3),
with the grains 1 and 3 assumed to be semibounded
plane layers of thickness lgb. We follow the method of
acoustic matching of media [12] to estimate the proba-
bility fω of phonon transmission from grain 3 to grain 1
via the boundary layer 2 as the ratio of the power of
radiation transmitted to grain 1 to the power of radia-
tion incident on the boundary layer, with due regard for
all angles of incidence θ3 and transmission θ1 (Fig. 4).
This determination gives

(2)

Here, the coefficient α(θ3) is written as

(3)

f ω

α θ3( ) θ3 θ3sincos θ3d

0

π/2

∫

θ3 θ3sincos θ3d

0

π/2

∫
---------------------------------------------------------.=

α θ3( ) Z3/Z1( ) W 2,=

1623.7

1623.3

1466
1868

VK 94-1 [6]

VK 98-1

VK 100-1

A85-Z 15

A40-Z 60

VK 100-1
[7]

1

2

AlN [10]

SiC [10]

Al2O3 [8]

ZrO2

ZrO2

101
10–2

10–1

100

101

102

103

102 103 104 105

D, cm2/s

R, nm

Fig. 3. The effective diffusion coefficient of phonons as a
function of the average grain size of ceramic sample, T = 3.8 K.
Curve 1 indicates the increasing temperature dependence of
tmax, and curve 2 indicates the decreasing temperature
dependence of tmax. References for ceramic samples inves-
tigated in other studies or by other authors are given in
square brackets.
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where Zi = ρivi/cosθi is the acoustic impedance of the
medium, i = 1, 2, 3, and W is the coefficient of transpar-
ency of the boundary layer with respect to the wave
amplitude [5], that is equal to

(4)

W
4Z1Z2

Z1 Z2+( ) Z2 Z3+( )
---------------------------------------------=

× 1
iγ2lgb–( )exp V12V23 iγ2lgb( )exp+

---------------------------------------------------------------------------------

1

2

3
ρ3, v3

ρ1, v1

ρ2, v2 l g
b

θ3 θ3

θ2

θ2

θ1

Fig. 4. The acoustic model of phonon transmission from
grain to grain via plane boundary layer.
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Fig. 5. Predicted curves of probability fω of the transmission
of a phonon of frequency ω from grain 3 to grain 1 via
boundary layer 2 of thickness lgb as a function of the layer
thickness q3lgb, where q3 = ω/v3. The other parameters:
v1/v2 = 1.83, v2/v3 = 0.6, ρ2v2/ρ1v1 = 0.32, ρ3v3/ρ2v2 =
3.5. Given in the inset is the value of fω for small values
of q3lgb.
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with the quantities V12 and V23 having the meaning of
the coefficients of wave reflection at the boundaries of
the medium 2, 1 and 3, 2, i.e.,

(5)

and with the wave number γ2 = q2cosθ2 of wave propa-
gation inside the boundary layer in the direction trans-
verse to its boundaries, q2 = ω/v2.

We used Eqs. (3)–(5) and preassigned the parame-
ters of the structure shown in Fig. 4 to perform numer-
ical integration (2) and obtain the dependence of the
coefficient of transmission of phonon flux through the
boundary between grains on the acoustic thickness of
the boundary qlgb. The calculation results are given in
Fig. 5. For a thin (perfect) boundary between grains,
qlgb ! 1 and fω ≈ 0.7 (see the inset in Fig. 5), the value
of fω decreases as the frequency (or the phonon temper-
ature) increases, and, therefore, the value of tmax
increases. The absolute value of fω for this case agrees
with our estimates based on the experimental curve 1 in
Fig. 3 for Σ/S ≈ 1.

In the case of a fairly thick boundary layer, qlgb ≥ 1,
for the preassigned parameters of the layer ρ2/ρ1, 3 ≈ 0.6
and v2/v1, 3 ≈ 0.6, the transparency of the boundary to
the phonon flux decreases, f ≈ 0.1, and may exhibit an
increasing temperature dependence, and, consequently,
tmax will decrease as the temperature increases. The
estimates based on the condition qlgb ≈ 1 give lgb ≥ 5 nm
for the thickness of the intergrain layer, which appears
to be a reasonable value.

The results given in Fig. 3 (curve 2), i.e., for samples
with a decreasing temperature dependence of tmax, were
used to estimate the value of fωΣ/S ≈ 10–2.

For the model shown in Fig. 4 and for the boundary
layer thickness lgb ≥ 5 nm, we have fω ≈ 0.1, and, con-
sequently, Σ/S ≈ 10–1, i.e., the porosity or closed poros-
ity in the region of the boundary between grains in such
ceramics is high, and the contact between grains in the
region of this layer is poor.

In conclusion, note that the method of propagation
of nonequilibrium phonons in ceramic samples,
employed by us, makes it possible to suggest a model
of the boundary between grains in Al2O3 and ZrO2
ceramics and in composites on their basis in the case of
change of process conditions of preparation with a view
to reducing the grain size (for example, in Al2O3
ceramic) to the nanolevel. Of course, the suggested
model is not final, and its development calls for further
studies.
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Abstract—Peculiarities of the superconducting state (s and d pairing) are considered in a simple model of the
pseudogap state caused by short-range fluctuations (e.g., of the antiferromagnetic type), which is based on the
model of a Fermi surface with “hot” regions. A system of Gor’kov recurrence equations is constructed taking
into account all diagrams in perturbation theory in the electron interaction with short-range fluctuations. The
superconducting transition temperature is determined, and the temperature variation of the energy gap depend-
ing on the pseudogap width and the correlation length of short-range fluctuations is analyzed. In a similar
approximation, a microscopic derivation of the Ginzburg–Landau expansion is carried out, and the behavior of
the main physical parameters of the superconductor near the transition temperature is studied depending on the
pseudogap width as well as the correlation length of the fluctuations. The obtained results are in qualitative
agreement with a number of experiments with underdoped HTSC cuprates. © 2001 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

The pseudogap state observed in a wide region on
the phase diagram for HTSC cuprates leads to numer-
ous anomalies in their properties in the normal as well
as superconducting states [1]. These anomalies can be
explained using two basic theoretical scenarios. The
first is based on the model of the formation of Cooper
pairs even above the superconducting transition tem-
perature [2–4], followed by the stabilization of their
phase coherence at T < Tc. The second assumes that the
origin of the pseudogap state is associated with fluctu-
ations of the antiferromagnetic (AFM) short-range
order existing in the region of underdoped composi-
tions on the phase diagram [5–7]. A number of recent
experimental results convincingly demonstrate the
validity of the second scenario [8, 9].

Most of theoretical publications are devoted to an
analysis of the models of the pseudogap state in the nor-
mal phase at T > Tc. We proposed [10, 11] a very simple
exactly solvable model of the pseudogap, which is
based on the concept of “hot” (planar) regions existing
on the Fermi surface. In the framework of this model,
the Ginzburg–Landau expansion was constructed for
various types of Cooper pairing [10] and the peculiari-
ties of the superconducting state in the range of T < Tc

[11], caused by short-range fluctuations of the AFM
type, were analyzed. We used an extremely simplified
model of Gaussian short-range fluctuations with an
infinitely large correlation length, which allowed us to
obtain the exact solution for the pseudogap state. In real
1063-7761/01/9203- $21.00 © 20480
systems, the correlation length of AFM fluctuations is
finite and comparatively small [6]. The present work is
mainly devoted to the generalization of the main results
obtained by us earlier [10, 11] to the case of finite cor-
relation lengths of the short-range AFM fluctuations
and to the analysis of the main parameters of the super-
conducting state as functions of this correlation length
and the effective width of the pseudogap.

2. MODEL OF THE PSEUDOGAP STATE

The simplified model of the pseudogap state [10,
11] under investigation is based on the pattern of well-
developed fluctuations of the antiferromagnetic short-
range order and is close to the model of “hot points” on
the Fermi surface [6]. We assume that the Fermi surface
of a 2D electronic system has the form depicted in
Fig. 1. Such a Fermi surface was observed in a number
of ARPES experiments on HTSC cuprates [12, 13]. It
should be noted that the assumption concerning the
existence of plane regions is not of fundamental impor-
tance for our model. However, it considerably simpli-
fied the calculations which could also be in principle
made in a more realistic model of hot points. Such a
model of the Fermi surface was applied long ago to
HTSC cuprates by many authors [14–16] who thor-
oughly analyzed, among other things, the microscopic
criteria for the existence of the antiferromagnetic and
superconducting phases. We will be using a purely phe-
nomenological model presuming the existence in a sys-
tem of static Gaussian fluctuations of a short-range
001 MAIK “Nauka/Interperiodica”



        

SUPERCONDUCTIVITY IN THE PSEUDOGAP STATE INDUCED 481

                                                                                           
order with a correlation function (structural factor) of
the form [5]

(1)

where ξ is the correlation length of the fluctuations, and
the scattering vector is taken in the form Qx = ±2kF ,
Qy = 0, or Qy = ±2kF , Qx = 0, which envisages the pres-
ence of incommensurate fluctuations. The factorized
form of correlator (1) introduced in [5] considerably
simplifies the calculations and is virtually identical
quantitatively to the conventional isotropic Lorentzian
in the range |q – Q| < ξ–1, which is the most important
for our analysis [7].

The least physically justified assumption concerns
the static form of fluctuations and can be used only at
high temperatures [6, 7]. At low temperatures, includ-
ing those corresponding to the superconducting phase,
the spin dynamics may naturally turn out to be quite
significant. This also applies to the microscopic theory
of Cooper pairing in the model of a “nearly antiferro-
magnetic” Fermi liquid [17, 18]. However, we
assume that the static approximation used here is
sufficient for an analysis of the qualitative effect of
pseudogap formation on the superconductivity, which
will be described by using a purely phenomenological
approach of the BCS theory.

We present the effective interaction of electrons
with AFM fluctuations in the form

(2)

where parameter W determines the energy scale (width)
of the pseudogap. We assume that only the electrons
belonging to planar (hot) regions on the Fermi surface
interact with fluctuations, so that the value of W effec-
tively differs from zero only for these electrons [10,
11]. We completely disregard the spin structure of the
interaction, which could be easily taken into account
[6], but this would make our calculations more cumber-
some. In this sense, our analysis can be applied literally
to a description of the interaction between short-range
fluctuations and charge density waves rather than spin
density waves. We also assume that this simplifying
assumption is insignificant for an analysis of the quali-
tative effects of the pseudogap state on superconductiv-
ity that we are interested in.

The factorized form of correlator (1), and hence of
the effective interaction (2), makes the scattering from
fluctuations one-dimensional. In the limit of an infi-
nitely large correlation length (ξ  ∞), the model of
scattering from such fluctuations has an exact solution
[10, 11, 19]. For a finite ξ, we can construct an “almost
exact” solution [7] generalizing the one-dimensional
approach proposed in [20]. In this case, the sum of the

S q( ) 1

π2
----- ξ 1–

qx Qx–( )2 ξ 2–+
------------------------------------- ξ 1–

qy Qy–( )2 ξ 2–+
-------------------------------------,=

Veff 2π( )2W2S q( ),=
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entire diagrammatic series for the one-particle Green’s
function for electrons from the planar regions on the
Fermi surface (where the nesting condition ξp ± Q = –ξp
for the electron spectrum is satisfied) can be (approxi-
mately) determined.

For the contribution of an arbitrary diagram, we can
write the following ansatz for the N-order eigenenergy
component in the interaction (2) [7, 20]:

(3)

where κ = vFξ–1 (vF is the Fermi velocity), kj is the
number of interaction curves embracing the jth electron
line in the diagram (starting from the origin), and εn =
2πT(n + 1/2) (we assume for definiteness that εn > 0).
Thus, the contribution of any diagram is actually deter-
mined only by the set of integers kj. Any diagram with
the intersection of the lines of interaction is identical to
a certain diagram of the same order without intersec-
tion of interaction lines, and the contribution of all dia-
grams with intersections can be taken into account
through the combinatorial factors v(kj) ascribed to
interaction lines on diagrams without intersections [20,
7, 6]. In the model of incommensurate fluctuations
under investigation, we have

(4)

As a result, we arrive at the following recurrence proce-
dure (presentation in the form of a chain fraction) for

Σ N( ) εn p,( ) W
2N

G0k j
ε p,( ),

j 1=

2N 1–

∏=

G0k j
εn p,( ) 1

iεn 1–( ) jξp ik jκ+–
-----------------------------------------------,=

v k( )

k 1+
2

------------ for odd k,

k
2
--- for even k.






=

α

py

px

pF–pF

p0
y

–p0
y

Fig. 1. Fermi surface of a two-dimensional system. Hot
regions are shown by bold lines of thickness ~ξ–1.
SICS      Vol. 92      No. 3      2001



482 KUCHINSKIŒ, SADOVSKIŒ
the one-particle Green’s function G(εn, p) for electrons
from hot regions [20, 7, 6]:

(5)

The diagrammatic representation of this procedure is
illustrated in Fig. 2.

Ansatz (3) for the contribution of an arbitrary
N-order diagram is usually not exact [7, 21]. However,
in the 2D case, we can indicate the topologies of the
Fermi surface for which representation (3) is exact [7].
In the remaining cases, it can be proved [7] that this
representation exaggerates (in a certain sense) the role
of the finiteness of the correlation length ξ in the given
order of perturbation theory. In the 1D case, when this
problem is especially vital [7, 21], it turns out that the
calculations of the density of states on the basis of
approximation (3) for incommensurate fluctuations
give a nearly perfect quantitative coincidence [22] with
the results of the exact numerical simulation of this
problem, which was carried out in [23, 24].1 In the limit
ξ  ∞, ansatz (3) can be reduced to the exact solution
[19], while in the limit ξ  0, it leads to a physically
correct limit of free electrons for a fixed value of W.

Outside hot regions, electrons do not interact with
fluctuations altogether in our model, and the Green’s
function remains free:

(6)

The model considered above leads to a non-Fermi-liq-
uid (two-hump) behavior of the spectral density in hot
regions on the Fermi surface and to a blurred
pseudogap in the density of states (cf. similar results in
the model of hot points [6, 7]). In cold regions of the
Fermi surface, we observe the conventional Fermi-liq-
uid behavior (free electrons).

1 In the case of a one-dimensional problem with commensurate
fluctuations, ansatz (3) fails to describe only a weak Dyson singu-
larity in the density of states near the center of the pseudogap [23,
24], also providing a quantitatively good approximation to the
exact results beyond the pseudogap. Note that in the 2D case, the
Dyson singularity in the density of states is just absent in all prob-
ability.

Gk εn p,( )

=  
1

iεn 1–( )kξp ikκ W2v k 1+( )Gk 1+ εnp( )–+–
-----------------------------------------------------------------------------------------------------------,

G εn p,( ) G0 εn p,( ).≡

G εnp( ) G00 εnp( ) 1
iεn ξp–
------------------.= =

= +
Gk G0k G0k Gk +1 Gk

W2
v (k + 1)

Fig. 2. Diagrammatic representation of the recurrence rela-
tion for a one-particle Green’s function.
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3. GOR’KOV EQUATIONS FOR A 
SUPERCONDUCTOR WITH A PSEUDOGAP

In our previous publications [10, 11], we analyzed
the peculiarities of the superconducting state in the
exactly solvable model of the pseudogap state induced
by short-range AFM fluctuations with an infinitely
large correlation length (ξ  ∞). Among other
things, it was proved [11] that AFM fluctuations may
lead to strong fluctuations of the semiconducting order
parameter (energy gap ∆), which violate the standard
assumption concerning the self-averaging of the gap
[25–27]. This assumption makes it possible to average
(over the configurations of the random field of static
short-range fluctuations) the order parameter ∆ and var-
ious combinations of the electron Green’s functions
appearing in the basic equations of the theory. The con-
ventional arguments in favor of such an independent
averaging are usually formulated as follows [25, 27].
The value of ∆ varies over characteristic scales of
length of the order of the coherence length ξ0 ~ vF/∆0
in the BCS theory, while Green’s functions vary rapidly
over much smaller scales of the order of atomic spac-
ings. Naturally, the latter assumption becomes incor-
rect when a new characteristic length ξ  ∞ appears
for the electronic subsystem. At the same time, if the
antiferromagnetic correlation length ξ ! ξ0 (i.e., if
AFM correlations correlate over distances smaller than
the characteristic size of Cooper pairs), the assumption
concerning the self-averaging of ∆ must be preserved,
being violated only in the region where ξ > ξ0. For this
reason, the subsequent analysis will be carried out
assuming self-averaging of the energy gap of a super-
conductor over AFM fluctuations. This allows us to use
the standard approach of the theory of disordered
superconductors (mean-field approximation in the lan-
guage of [11]). In this case, the interesting question
concerning superconductivity in the absence of self-
averaging of the order parameter is not considered. It
should be noted that for real HTSC cuprates, we appar-
ently always have ξ ~ ξ0, so that these materials fall in
the most complicated range of parameters of the theory.

Following [10, 11], we assume that the supercon-
ducting pairing is governed by the attraction potential
of the following simplest form:

(7)

where φ is the polar angle determining the direction of
the electron momentum p in a plane, and for e(φ) we
assume the following simplest model dependence:

(8)

As usual, the constant of attraction V is assumed to be
other than zero in a certain layer of width 2ωc in the
vicinity of the Fermi level (ωc is the characteristic fre-

V p p',( ) V φ φ',( ) Ve φ( )e φ'( ),–= =

e φ( )
1 s-pairing( ),

2 2φ( ) d-pairing( ).cos



=
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Fig. 3. Diagrammatic representation of the recurrence relation for Gor’kov’s equations.
quency of quanta ensuring the attraction of electrons).
In this case, the superconducting gap has the form

(9)

In order to simplify the notation, we will henceforth
assume that the gap ∆ just stands for ∆(φ) and will write
explicitly the angular dependence only when required.

The perturbation theory in the interaction with AFM
fluctuations (1) for the superconducting state must be
constructed on “free” normal and anomalous Green’s
functions for the superconductor:

(10)

In the adopted model with planar regions on the Fermi
surface, the electron spectrum in the regions orthogonal
to the px axis has the form ξp = vF( |px | – pF) since the
electron velocity v is perpendicular of the py axis (a
symmetric situation is also observed in the regions
orthogonal to py). Consequently, in the case of s-pair-
ing, when the value of ∆ is independent of the direction
of the momentum, the problem becomes completely
one-dimensional in the model with an interaction of
form (1) and (2). In the case of d-pairing, the situation
is more complicated since the value of ∆(φ) depends on
py even in the planar regions orthogonal to px (and, sym-
metrically, on the regions orthogonal to py). For this
reason, it is convenient to analyze d-pairing by using
instead of Eq. (1) the correlator of fluctuations in the
form

(11)

In this case, the interaction does not affect py and px in
the planar regions orthogonal, respectively, to px and py,
and the problem becomes completely one-dimensional
again.
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
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
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We can now formulate an analogue of approxima-
tion (3) for the superconducting state also. The details
of the substantiation of the relations presented below
are given in Appendix A. The contribution of an arbi-
trary N-order diagram in interaction (2) to the total nor-
mal or anomalous Green’s function has the form of a
product of N + 1 “free” normal  and anomalous

( ) Green’s functions with frequencies and gaps

renormalized in a certain way (see below). Here kj is the
number of the interaction curves embracing the given
jth electron line (starting from the origin of the dia-
gram). As in the normal phase, the contribution of any
diagram is determined by the set of integers kj, and each
diagram with the intersection of interaction curves is
equivalent to a certain diagram of the same order with-
out intersection of these curves. Consequently, we can
again consider only diagrams without intersections of
interaction curves, taking into account the contribution
of the remaining diagrams through the same combina-
torial factors v(k) ascribed to the interaction curves as
in the normal phase. As a result, we obtain a diagram-
matic analogue of the Gor’kov equations [28] pre-
sented in Fig. 3. Accordingly, we have two coupled
recurrence equations for the normal and anomalous
Green’s functions:

(12)

where

(13)

(14)
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and the renormalized frequency  and gap 

(15)

have been introduced in analogy with the case of super-
conductors with impurities [28].

Equations (12)–(15) can easily be used to derive a
system of recurrence relations directly for the real and
imaginary components of the normal Green’s function
and for the anomalous Green’s function:

(16)

Let us introduce the following notation:

(17)

It turns out that the recurrence relations for Jk and fk are
completely identical in this case so that Jk = fk. Finally,
we arrive at the following system of recurrence rela-
tions for Jk and Rk:

(18)

The normal and anomalous Green’s functions for the
superconductor we are interested in can be defined in
terms of R0 and J0,

(19)

and have the form of a totally summed series in the per-
turbation theory in the interaction of an electron with
short-range antiferromagnetic fluctuations in the semi-
conductor.
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4. SUPERCONDUCTING TRANSITION 
TEMPERATURE AND THE TEMPERATURE 

DEPENDENCE OF THE GAP

The energy gap in a superconductor is defined by
the equation

(20)

The anomalous Green’s function on planar regions of
the Fermi surface can be determined from Eqs. (19) by
using the recurrence procedure (18). In our model, the
scattering from AFM fluctuations on the remaining
(cold) part of the Fermi surface is absent, and the anom-
alous Green’s function has the same form as in Eqs. (10).
As a result, Eq. (20) for s-pairing taking into account
dependence (8) assumes the form

(21)

where λ = VN0(0) is the dimensionless constant of the
pairing interaction (N0(0) is the density of states for free
electrons at the Fermi level) and  = 4α/π, where α is
the angular dimension of a planar region on the Fermi
surface (see Fig. 1). In our further numerical calcula-
tions, we will assume (quite arbitrarily) that = 2/3,
i.e., α = π/6, which is close, for example, to the results
obtained in [12].

In the case of d-pairing, we must take into account
the angular dependence of gap (9), and Eq. (20)
assumes the form

(22)

Figure 4 shows the temperature dependences of the gap
width calculated from Eq. (21) in the case of s-pairing
for various values of correlation length (parameter
κ = vFξ–1) of the fluctuations. In the case of d-pairing,
the corresponding qualitative dependences are quite
similar.
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The equation for the superconducting transition
temperature Tc follows directly from Eqs. (21) and (22)
for ∆  0. In this case, J0(∆  0) is independent of
φ and is the same for s- and d-pairing. Accordingly, the
equation for Tc has the form

(23)

where the “effective” fraction of planar regions on the
Fermi surface is defined as

(24)

The theoretical dependence of Tc on the pseudogap
width W and correlation length (parameter κ = vFξ–1)
are shown in Fig. 5 (Tc0 is the superconducting transi-
tion temperature in the absence of a pseudogap).

The general qualitative conclusion is the same as in
[10, 11]: the pseudogap suppresses superconductivity
due to a partial “dielectrization” of the electron spec-
trum in hot regions on the Fermi surface. The suppres-
sion effect is the strongest for κ = 0 (infinitely large cor-

1 λ α effTc ξ J0 εnξ ; ∆ 0( )d

ωc–

ωc

∫
εn

∑






=

+ 1 α eff–( ) ξ
ξ 2Tc( )⁄tanh
ξ

-------------------------------d

0

ωc

∫






,

α eff

α̃ s-pairing( ),

α̃ 1
π
--- πα̃( ) d-pairing( ).sin+







=

3

2

1

1.6

1.2

0.8

0.4

0 0.2 0.4 0.6 0.8 1.0

∆/Tc0

T/Tc0

Fig. 4. Temperature dependence of the superconducting gap
width in the case of s-pairing for various values of correla-
tion length (parameter κ = vFξ–1) for AFM fluctuations, cal-
culated for λ = 0.4, ωc/W = 3, κ/W = 0 (1), 1.0 (2), and 10.0 (3).
The dashed curve describes ∆(T ) in the absence of a
pseudogap.
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relation length of AFM fluctuations) [10, 11] and
decreases with the correlation length, which is quite in
accordance with the experimental phase diagram of
HTSC systems.

It should be emphasized once again that all the
results described above are valid under the assumption
of the self-averaging of the superconducting order
parameter (gap) in AFM fluctuations (mean-field
approximation [11]), which holds for not very large
values of the correlation length ξ < ξ0, where ξ0 is the
coherence length for the superconductor (the size of
Cooper pairs at T = 0). For ξ @ ξ0, considerable non-
self-averaging effects appear, which are manifested in
the emergence of characteristic “tails” on the tempera-
ture dependence of the averaged gap in the temperature
range Tc < T < Tc0 [11].

5. COOPER INSTABILITY. RECURRENCE 
PROCEDURE FOR THE VERTEX PART

It is well known that the superconducting transition
temperature can also be determined in a different way,
namely, from the equation for the Cooper instability of
the normal phase:

(25)

where the generalized Cooper susceptibility is
described by the graph in Fig. 6. In this case, we are
dealing with the problem of calculation of the “triangu-
lar” vertex component taking into account the interac-
tion with AFM fluctuations. For the one-dimensional
analogue of our problem (and for real frequencies,
T = 0), the corresponding recurrence procedure was
formulated in [29]. For the 2D model considered by us
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Fig. 5. Dependence of the superconducting transition tem-
perature on the pseudogap width W and the correlation
length (parameter κ = vFξ–1) for AFM fluctuations: κ/W =
0.1 (1), 1.0 (2), and 10.0 (3). The dashed curve corresponds
to κ = 0 [10]. The inset shows the dependence of Tc on κ for
W/Tc0 = 5.
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here, this procedure was used for calculating the optical
conductivity [30]. The procedure can easily be general-
ized to the case of Matsubara frequencies. Henceforth,
we will assume for definiteness that εn > 0. This gives

(26)

where Gk = Gk(εn, p + q) and  = Gk(–εn, p) are cal-
culated in accordance with relations (5).

In order to find Tc, we consider the vortex where q =

0. In this case,  = , and the vertices Γk become
real-valued, which considerably simplifies procedure
(26). Using a notation similar to (17), we obtain from
relations (5) and (26)

(27)

while for Rk and Jk we have recurrence relations coin-
ciding with Eqs. (18) for ∆ = 0.

The following exact relation (which will be proved
below) of the type of the Word identity holds:

(28)

A numerical analysis completely confirms the validity
of this relation, demonstrating complete matching
between the recurrence procedures for the one-particle
Green’s function and for the vertex component.2 Since
J0(∆  0) coincides with J0 in the normal phase, rela-
tion (28) just leads to the coincidence of the equation for
Tc obtained from the Cooper instability condition (25),

2 Note that an analytic proof of this relation through a direct com-
parison of the recurrence procedures themselves for the Green’s
function and the vertex component is not at all obvious.

Γ k 1– εn εn q,–,( ) 1 W2v k( )GkGk+=

× 1 2ikκ
2iεn 1–( )kv Fq– W2v k 1+( ) Gk 1+ Gk 1+–( )–
--------------------------------------------------------------------------------------------------------------+

 
 
 

× Γk εn εn q,–,( ),

Γ εn εn q,–,( ) Γ0 εn εn q,–,( ),≡

Gk

Gk Gk*

Γ k 1– 1 W2v k( )
Jk

1 W2v k 1+( )Jk 1++
-------------------------------------------------Γk,+=

G εn p,( )G εn– p,( )Γ εn εn 0,–,( )

=  ξp
2 R0

2 εn ξp,( ) εn
2J0 εn ξp,( )+( )

× Γ0 εn εn 0,–,( ) J0 εn ξp,( )≡ 1
εn

---- εn p,( ).–=

χ(0, q) = 
q q

iεn, p + q

–iεn, p 

Γ

Fig. 6. Diagram for the generalized Cooper susceptibility.
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(29)

and Eq. (23) obtained as a result of the linearization of
the equation for the gap in spite of the apparently dif-
ferent recurrence procedures used for their derivation
and taking into account AFM fluctuations.

6. THE GINZBURG–LANDAU EXPANSION

The Ginzburg–Landau expansion in the exactly
solvable model of a pseudogap with an infinitely large
correlation length of AFM fluctuations was constructed
in [10]. Here, we will generalize these results to the
case of finite correlation lengths.

We write the Ginzburg–Landau expansion for the
difference in the free energy densities of the supercon-
ducting and normal states in the standard form

(30)

where ∆q is the amplitude of the Fourier component of
the order parameter:

(31)

Expansion (30) is determined by the graphs of the loop-
type expansion for the free energy in the field of order
parameter fluctuations with a small wave vector q [10].

We present the Ginzburg–Landau coefficients in the
form

(32)

where A0, C0, and B0 denote the standard expressions
for these coefficients in the case of an isotropic s-pair-
ing:

(33)

In this case, all the peculiarities of the model under
investigation, which are associated with the emergence
of a pseudogap, are contained in the dimensionless coef-
ficients KA, KC, and KB. In the absence of a pseudogap,
all these coefficients are equal to unity (KB = 3/2 only in
the case of d-pairing). For this reason, we will normal-
ize coefficient KB for d-pairing to this value, presenting

the numerical results for  = (2/3)KB.

1 = λ α effTc ξ ξp
2 R0

2 εn ξp,( ) εn
2J0 εn ξp,( )+( )d

ωc–

ωc

∫
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∑






× Γ0 εn εn– 0, ,( ) 1 α eff–( ) ξ
ξ /2Tc( )tanh
ξ

------------------------------d

0

ωc

∫ 



+

Fs Fn– A ∆q
2 q2C ∆q

2 B
2
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4,++=

∆ φ q,( ) ∆qe φ( ).=
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---------------, C0 N0 0( )7ζ 3( )
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Let us consider the generalized Cooper susceptibil-
ity (Fig. 6)

(34)

Using relations (28), we can easily write coefficients KA

and KC in the form

(35)

(36)

The situation with coefficient B in the general case is
much more complicated. Considerable simplifications
can be made by confining the analysis to the case of q = 0
in the order |∆q|4, as is usually done in actual practice.
Then coefficient B can be determined directly from the
anomalous Green’s function F for which we already have
the recurrence procedure (18) and (19). Indeed, let us con-
sider the diagrammatic series for the anomalous Green’s
function presented in Fig. 7a. It can easily be seen that

(37)

which, by the way, immediately proves relation (28)
taking into account Eqs. (19). Consequently, for the

χ q 0; T,( ) T G εn p q+,( )
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∑
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bipartite loop χ(0, 0), we have

(38)

For the “four-tail” diagram in Fig. 7b defining coeffi-
cient B, we similarly obtain

(39)

where J0(∆) is determined through the recurrence pro-
cedure (18). As a result, for the dimensionless coeffi-
cient KB, we have

(40)

where

(41)

The obtained relations allow us to carry out direct
numerical calculations of the coefficients KA, KC, and
KB. Figure 8 shows, by way of an example, the calcu-
lated dependence of KC on the pseudogap width W and
on the correlation length of AFM fluctuations (parame-
ter κ = vFξ–1). The corresponding dependences for KA
and KB are qualitatively similar. In particular, for κ = 0,
we just have KB = KC [10].
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Fig. 7. (a) Diagrammatic series for the anomalous Green’s
function; dashed curves correspond to AFM fluctuations;
(b) diagram defining coefficient KB.
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7. PHYSICAL PARAMETERS
OF SUPERCONDUCTORS WITH A PSEUDOGAP

The Ginzburg–Landau equations define two charac-
teristic lengths for superconductors: the coherence
length and the magnetic field penetration depth.

The coherence length ξ(T ) at a given temperature
determines the characteristic scale of inhomogeneities
in the order parameter ∆:

(42)

In the absence of a pseudogap, we have

(43)

(44)

where ξ0 = 0.18vF/Tc. In the model under investigation,
we can write

(45)

The corresponding dependences of ξ2(T )/  on
the pseudogap width W and on the correlation length of
fluctuations (parameter κ) in the case of d-pairing are
presented in Fig. 9. Note that the coherence length var-
ies insignificantly.

For the magnetic field penetration depth in a super-
conductor without a pseudogap, we have

(46)

ξ2 T( ) C/A.–=

ξBCS
2 T( ) C0/A0,–=

ξBCS T( ) 0.74ξ0/ 1 T /Tc– ,≈
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Fig. 8. Dependence of coefficient KC on the pseudogap

width W and the correlation length (parameter κ = vFξ–1)
for AFM fluctuations: κ/W = 0.1 (1), 1.0 (2), and 10.0 (3).
The dashed curve corresponds to κ = 0 [10]. The inset shows
the dependence of KC on κ for W/Tc0 = 5.
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where  = mc2/4πne2 defines the penetration depth at
T = 0. In the general case, we have

(47)

Then, in the model under investigation, we can write

(48)

The dependences of these quantity in the case of d-pair-
ing are presented graphically in Fig. 10.
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Fig. 9. Dependence of the coherence length on the
pseudogap width W and the correlation length (parameter
κ = vFξ–1) for AFM fluctuations: κ/W = 0.1 (1), 1.0 (2), and
10.0 (3). The dashed curve corresponds to κ = 0 [10]. The
inset shows the dependence of the coherence length on κ for
W/Tc0 = 5.
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10.0 (3). The inset shows the dependence of the penetration
depth on κ for W/Tc0 = 5.
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In the vicinity of Tc, the upper critical field Hc2 can
be expressed in terms of the Landau–Ginzburg coeffi-
cients:

(49)

where φ0 = cπ/e is the magnetic flux quantum. In this
case, the slope of the curve describing the upper critical
field in the vicinity of Tc is given by

(50)

Figure 11 shows graphically the derivative 

normalized to the derivative at temperature Tc0 as a
function of the effective width W of the pseudogap and
the correlation parameter κ in the case of d-pairing. It
can be seen that for large correlation lengths, the deriv-
ative of the field decreases rapidly with increasing
pseudogap width. However, for small correlation
lengths, this parameter can slightly increase for small
values of the pseudogap width. For a fixed pseudogap
width, the function dHc2/dT increases noticeably for a
decreasing correlation length of fluctuations.

Finally, let us consider the heat capacity jump at the
transition point:

(51)

where Cs and Cn are the heat capacities of the supercon-
ducting and normal states and Ω is the sample volume.
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Fig. 11. Dependence of the slope of the upper critical field
on the pseudogap width and on the correlation length
(parameter κ = vFξ–1) for AFM fluctuations: κ/W = 0.1 (1),
1.0 (2), and 10.0 (3). The dashed curve corresponds to κ = 0
[10]. The inset shows the dependence of the slope of Hc2 on
κ for W/Tc0 = 5.
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At temperature Tc0 (in the absence of a pseudogap, W = 0),
we have

(52)

The relative jump in the heat capacity in the model
under investigation can be written as

(53)

The corresponding dependences on the effective
pseudogap width W and the correlation length parame-
ter κ in the case of d-pairing are presented in Fig. 12. It
can be seen that the heat capacity jump decreases rap-
idly with increasing pseudogap width and, on the con-
trary, increases upon a decrease in the correlation
length of AFM fluctuations.

For superconductors with s-pairing, the depen-
dences of the physical quantities considered above are
basically quite similar. The only difference is a larger
scale of W for which the corresponding changes take
place. This corresponds to a higher stability of isotropic
superconductors to a partial dielectrization of the elec-
tron spectrum due to the formation of a pseudogap in
hot regions on the Fermi surface [10, 11].

From the physical parameters of a superconductor,
detailed experimental data have been obtained for heat
capacity jump [8]. In complete qualitative agreement
with our conclusions, the heat capacity jump for the
Bi-2212 system decreases rapidly upon a transition to
the range of underdoped compositions for which the
pseudogap width increases. According to the results
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Fig. 12. Dependence of the heat capacity on the pseudogap
width and jump on the correlation length (parameter κ =
vFξ–1) for AFM fluctuations: κ/W = 0.1 (1), 1.0 (2), and
10.0 (3). The dashed curve corresponds to κ = 0 [10]. The
inset shows the dependence of the heat capacity jump on κ
for W/Tc0 = 5.
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obtained by Tallon and Loram [8], the pseudogap width
(parameter 2W in our case) varies from a value of the
order of 700 K for the hole concentration p = 0.05 to a
value of the order of Tc ~ 100 K in the vicinity of the
optimal concentration p = 0.16, vanishing for p = 0.19.
In this case, a clearly manifested correlation between
the decrease in the heat capacity jump and the increase
in the effective pseudogap width is observed. Unfortu-
nately, we are not aware of detailed results on the con-
centration dependence of correlation length of fluctua-
tions and, accordingly, of the corresponding depen-
dences of physical parameters of a superconductor.
Qualitatively, the correlation length increases as we go
over to the range of underdoped compositions, so that
the effect of a decrease in the heat capacity jump is
quite justified from this point of view.

8. CONCLUSION

In this work, we continue our study of the peculiar-
ities of the superconducting state on the basis of a rather
rough model of the pseudogap state of a two-dimen-
sional electronic system [10, 11], which nevertheless is
in qualitative agreement with a number of observed sin-
gularities in the electronic structure of underdoped
HTSC cuprates. In our earlier publications [10, 11], we
considered a nonrealistic limit of an infinitely large cor-
relation length of fluctuations with the short-range anti-
ferromagnetic order, which, however, allowed us to
find the exact analytic solution of the problem. Here,
we have carried out a generalization to the realistic case
of finite correlation lengths, which takes into account
all the diagrams of perturbation theory in the interac-
tion of electrons with short-range fluctuations in the
same way as in [10, 11]. The analysis was carried out
using the standard (mean-field in terms of [11])
approach based on the assumption of the self-averaging
of the superconducting order parameter in the fluctua-
tions of the random field induced by AFM fluctuations.
It was proved in [11] that this assumption is not sub-
stantiated in the limit ξ  ∞. At the same time, it is
undoubtedly valid for ξ ! ξ0 (where ξ0 is the coherence
length of the superconductor at T = 0, i.e., the size of
Cooper pairs). Thus, it remains for us to solve the
extremely complicated problem of taking into account
the non-self-averaging effects for ξ > ξ0. It was men-
tioned above that in real HTSC systems, ξ is in all prob-
ability of the order of ξ0 so that non-self-averaging
effects for the superconducting gap of the type of those
considered in [11] can be quite significant. These
effects are manifested of the form of “tails” on the tem-
perature dependence of the averaged gap at T > Tc (the
pattern of superconducting “drops” [11]).

Another significant simplification in our model is
the assumption concerning the static (Gaussian) type of
short-range fluctuations. This assumption is justified
only in the limit of high temperatures T @ ωsf (where
ωsf is the characteristic frequency of spin fluctuations)
JOURNAL OF EXPERIMENTAL
[6, 7]. For this reason, its application to the supercon-
ducting phase for T < Tc is quite dubious. We believe,
however, that the simplified analysis carried out above
can be used for describing the most significant effects
of variation of the electron spectrum (formation of a
pseudogap in hot regions on the Fermi surface) on the
superconductivity in such a system. If we took into
account the dynamics of spin fluctuations, we would
inevitably leave the limits of the simple phenomenol-
ogy of the BCS model and would have to analyze in
detail the microscopic aspects of the pairing interac-
tion. Such a program can hardly be realized at present.
Moreover, the problem of inclusion of all orders of per-
turbation theory in AFM fluctuations appears as com-
pletely futile on account of the dynamics of the spin
subsystem.
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APPENDIX

Coordinate Representation: 
Normal and Anomalous Green’s Functions

Let us consider some technical aspects of the deri-
vation of the recurrence relation for Gor’kov’s equa-
tions (12)–(15). We will confine our analysis to two
regions on the Fermi surface, which are orthogonal to
the px axis and coupled though the scattering vector
Q = (±2pF , 0). In this case, the problem becomes
purely one-dimensional since the velocity component
vy = 0 and the electron spectrum in the linearized form

 = ±vFpx is completely independent of the y-com-
ponent of the momentum. For the sake of brevity, we
will henceforth assume that vF = 1.

It is convenient to carry out the calculations in the
coordinate representation [21], analyzing the motion of
an electron in the field of Gaussian AFM fluctuations
W(x) ≠ W*(x) (incommensurate case) with the correla-
tor

(A.1)

In this case, the propagators corresponding to the nor-
mal and anomalous Green’s functions (10) of the super-
conductor assume the form

ξ px pF+−

W∗ x( )W x'( )〈 〉 W2e κ x x'–– .=

G00 x( )
pxd

2π
--------e

ipx x
G00 px( )

∞–

∞

∫=
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(A.2)

where σ3 = 1 for particles moving to the right and
σ3 = – 1 for particles moving to the left. Scattering at
fluctuations transforms “right” particles to “left” ones,
and vice versa. It can be seen from expressions (A.2)
that a particle traversing a distance of length l gives the

factor exp(– .

For calculating specific diagrams, is it convenient
[21] to go over from the integration with respect to
coordinates xk of interaction vertices to the integration
over paths lk traversed by a particle between individual
scattering acts by fixing the total displacement x – x'.
The interaction curve connecting vertices m and n on
the electron line in this case corresponds to the factor

(A.3)

The integration over all values of lk is carried out from
0 to ∞.

Thus, considering the finiteness of the correlation
length of fluctuations leads to the emergence of a cer-
tain “damping” of the corresponding transition ampli-
tude in each diagram with increasing distance traversed
by an electron. It is very difficult to take into account
this effect exactly. In [7], however, we used the obvious
inequality

(A.4)

and replaced the exponential in (A.3) by the exponen-
tial from the right-hand side of (A.4). This is equivalent
to the replacement of the correlator (A.1) of random
fields by an analogous expression in which the distance
|x – x' | in the exponent is replaced by the total distance
traversed by a particle between the scattering acts at
points x and x'. Therefore, in accordance with Eq. (A.4),
we slightly overestimate the role of the damping factor
κ in each diagram of the series in perturbation theory.
As a result of such a substitution, the diagrams of all
orders can be calculated easily and reproduce exactly
ansatz (3) for the normal phase [21]. It was mentioned
above that the results obtained in this way, for example,
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for the density of states are in good agreement with the
results of exact numerical simulation of the problem
under investigation [23, 24]. This is an additional argu-
ment in favor of the approximation used, extending the
qualitative estimates obtained in [7].

We will use the same approximation for analyzing
the diagrams in perturbation theory in the supercon-
ducting phase, which are constructed on propagators
(A.2). In this case, the role of interaction with fluctua-

tions is reduced only to the addition of the factor 
to each normal or anomalous Green’s function (A.2),
which is embraced by the given interaction curve or,

which is the same, to the addition of κ to  in
the exponent of each such Green’s function. Returning
to the momentum representation, we can easily verify
that the contribution of any higher-order diagram is
determined by the product of the corresponding num-
ber of normal and anomalous Green’s functions of the
form

(A.5)

where εk =  + kκ, k being the number of inter-
action curves embracing a given Green’s function. The
factor (–1)k appears due to the fact that the scattering
transforms “right” particles into “left” ones, and vice
versa. Introducing the renormalized frequency and gap
width in accordance with relations (15), we see that
relations (A.5) can be reduced to the standard form
(14), which completes the justification of the recur-
rence procedure (12) and (15).
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Abstract—Many-phonon optical transitions between Landau levels and size quantization levels in a longitudi-
nal magnetic field are investigated in solitary quantum wells. The developed theory makes it possible to describe
the intensity of the cyclotron resonance line as well as the temperature and field dependences of its half-width. The
theoretical results are compared with experimental data. It is shown that when the interaction between electrons
and optical phonons is taken into account, phonon satellites may appear as a result of an electron transition
between the size quantization levels and magnetic levels. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

If the direction of a magnetic field is normal to the
surface of a quantum well, the electron energy is fully
quantized. For a rectangular quantum well of width a
with infinitely high walls, the energy of an electron
with the effective mass m is defined as

Here, ωc is the cyclotron frequency and ε0 = "2π2/2ma2

is the spatial quantization step.

The experiments on light absorption determined by
an electron transition between Landau levels were
made in superlattices [1], heterostructures [2–6],
metal–insulator–semiconductor systems [7], and in
quantum wells [8, 9]. The experimental results show that
with increasing magnetic field strength, the absorption
peak is displaced to the short-wave region, and the cyclo-
tron resonance line half-width ∆ varies over a wide range
∆ = 0.1–2 meV depending on the quasi-two-dimen-
sional system under investigation. The half-width of the
optical absorption line associated with an electron tran-
sition between discrete states is of fundamental impor-
tance. This is due to the fact that the inelastic scattering
of charge carriers from vibrations, which reflects the
nonstationary nature of electronic states, determines
the value ∆ < 10–3 meV, which is much smaller than the
experimental results. In the theoretical analysis of the
shape of the cyclotron resonance line [10–12], it is
assumed that it is described by a Lorentzian curve. The
half-width of the cyclotron resonance line may be deter-
mined by nonuniform broadening (in the case of superlat-
tices), while for a degenerate electron gas, it is determined
by the Coulomb interaction between electrons [8], long-
range impurity potentials [13], the interaction with soft
magnetoplasmon modes [8], center-of-mass fluctua-

EnN "ωc N
1
2
---+ 

  ε0n2.+=
1063-7761/01/9203- $21.00 © 20493
tions (phonons and impurities are regarded as fluctua-
tions of forces) [14, 15], and the interaction of electrons
with surface phonons [16]. The half-width of the cyclo-
tron resonance line in rectangular quantum wells [17, 18],
heterostructures [5], and structures of the metal–insula-
tor–semiconductor type [7, 14] noticeably depends on
temperature. The value of ∆ increases upon heating, the
increase being nonlinear for T > 1 K. The latter circum-
stance clearly indicates that phonons play a significant
role in the formation of the frequency dependence of
the cyclotron resonance line.

We investigate here the many-phonon absorption of
an electromagnetic wave, which is determined by an
electron transition between Landau levels (cyclotron
resonance) as well as between size quantization levels
(size resonance). The inclusion of many vibrational
quanta in an optical transition makes it possible to
explain the half-width of the cyclotron resonance line
as well as its temperature and field dependences. The
mechanism proposed by us is apparently the only pos-
sible mechanism which provides a description of the
shape of the cyclotron resonance line in solitary quan-
tum wells.

2. FORMULATION OF THE PROBLEM. 
GENERAL RELATIONS

In accordance with the Kubo formula [19], the
absorption coefficient for light of frequency Ω is defined
through the correlation function of dipole moment opera-
tors:

(1)

K Ω( ) 4πΩ
Vn0"c
---------------- dαα 'dββ'

α α ' β β', , ,
∑=

× teiΩt aα
+ t( )aα' t( )aβ

+aβ'〈 〉 .d

∞–

∞

∫
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Here, dαα ' is the matrix element of the dipole moment
on the electron wave functions |α〉 in a limited-size sys-
tem in the presence of a magnetic field directed along
the spatial quantization axis z, α = (N, n, Kx) is the set
of quantum numbers describing the state of a charged
particle, Kx is the wave vector of the electron along the

x axis, (aα) are the creation (annihilation) operators
for a charge carrier in state α, V is the volume of the
quantum system under investigation, n0 is the refractive
index in the quantum well, and c is the velocity of light
in a vacuum:

(2)

(3)

(4)

(5)

where H0 is the Hamiltonian for free electrons and

phonons,  (bq) are the creation (annihilation) opera-
tors for phonons with energy "ωq and the wave vector
q, Cq is the coefficient function of the electron–phonon
interaction, and

(6)

The angle brackets in relation (1) describe statistical
averaging with Hamiltonian (3). While writing Eq. (1),
we consider that the electron spin does not change as a
result of the optical transition (the summation over the
spin states gives factor 2).

In accordance with Eq. (2), the operator (t) satis-
fies the equation of motion:

(7)

While writing Eq. (7), we assume that electrons do
not modify the phonon spectrum of the system, i.e.,

aα
+

aα
+ t( ) e

itH /"
aα

+e
itH /"– ,=

H H0 V ,+=

H0 Eαaα
+aα "ωqbq

+bq,
q

∑+
α
∑=

V CqVαβ bq b q–
++( )aα

+aβ,
q, α , β
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bq
+

Vαβ α eiqr β .=
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+

ȧα
+ t( ) i
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--- Eαaα

+ t( )∫ 
 
 





=

+ Cqaβ
+ t( )

q β,
∑ Vβα bqe

iωqt–
b q–

+ e
iωqt

+( )




.

bq t( ) e
iωqt–

bq, bq
+ t( ) e

iωqt
bq

+.≈≈
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The last approximation is justified for a nondegen-
erate electron gas since the corrections introduced into
ωq are proportional to the charge carrier concentration.

It follows from Eq. (7) that the equation of motion
for the operator

(8)

is defined by the relation

(9)

where β = (n', N ', ).

Subsequent calculations will be carried out in the
approximation diagonal in the quantum numbers (N = N',
n = n'). Putting N = N', n = n' in Eq. (9), we arrive at the

following approximate equation for operators (t):

(10)

where |Kx 〉  are the wave function for a free electron:

(11)

For a rectangular quantum well with infinitely high
walls, we have

(12)

where LN(z) are the Laguerre polynomials.

The solution of Eq. (10) taking into account the ini-

tial conditions (0) =  =  has the form

(13)
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Here, the following notation has been introduced:

(14)

Consequently, in accordance with Eq. (8), we have

(15)

The validity of solution (13) can easily be verified
by substituting it into Eq. (10) and taking into account
the equation of motion for the evolution operators

as well as the condition of the completeness of the wave
functions for a free electron along the x axis:

where I is the unit operator.

The operator aα(t) can be calculated in a similar way.

Substituting the values of (t) and aα(t) into rela-
tion (1), we obtain the following expression for the
optical absorption coefficient:

(16)
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fα is the equilibrium distribution function for electrons
in the nondegenerate limited-size system under investi-
gation, and ne is the electron concentration.

While writing expression (16), we disregarded the
polaron effects; consequently, {…}0 denotes the aver-
aging over the system of the free phonon field. The
averaging over the system of noninteracting electrons
was carried out in the lowest approximation in electron
concentration:

If the linearly polarized electromagnetic wave being
absorbed is incident along the normal to the surface of
a limited-size system, we have

(17)

In accordance with this relation, direct optical tran-
sitions are possible in this case only between nearest
Landau levels without a change in the quantum num-
bers n of size quantization.

We will henceforth consider the case when all elec-
trons are in the lowest state (N = 0, n = 1); i.e.,

The substitution of relation (17) into (16) leads to
the following form of the optical absorption coefficient:

(18)

If an electromagnetic wave propagates along the
surface of a quantum well and the polarization vector is
parallel to the space quantization axis, the matrix ele-
ment of the dipole moment is defined by the relation

(19)

Consequently, direct optical transitions are possible
in the case in question between the space quantization
levels (n ≠ n1) without a change in the number of the
Landau level (N = N1).
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Let us analyze the absorption of light determined by
a transition from the lowest state (N = 0, n = 1) to the
next size-quantized state (N1 = 0, n1 = 2). The substitu-
tion of relation (19) into (16) leads to the following
expression for the optical absorption coefficient:

(20)

The averaging over the system of free phonons in
expressions (18) and (20) can be carried out exactly
using the methods of the theory of many-phonon tran-
sitions [20] or the algebra of Bose operators [21]. This
gives

(21)

(22)

Taking relation (21) into consideration, we can
write, in accordance with (18), the optical absorption
coefficient associated with a transition from the lower
Landau level in the form

(23)

Similarly, we can write the expression for the
absorption coefficient of light whose polarization vec-
tor is directed along the space quantization axis:

(24)

3. DISCUSSION OF RESULTS
AND COMPARISON WITH EXPERIMENT

Relations (23) and (24) describe the frequency depen-
dence of the optical absorption coefficient, associated
with the transition of an electron between Landau lev-
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els and size-quantized states and taking into account
many phonons involved in the process.

Let us consider a quantum system in which electrons
interact most actively with long-wave acoustic phonons.
If electrons are described in the quasiclassical approxi-
mation, the function (t) in (22) can be expanded into

a series in t up to terms with t2 inclusively. (The main cri-
teria of such an approximation can be found in [22].) This
gives

(25)

Consequently, in accordance with Eq. (23), the opti-
cal absorption coefficient associated with an electron
transition from the lowest Landau level [ν

 

(0, 1)] to the
nearest Landau level [

 

ν

 

(1, 1)] assumes the form

(26)
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where 
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 is the density of the quantum well, 
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 is the
deformation potential constant for electrons, and 

 

v

 

 is
the velocity of sound in the limited-size system.

It follows directly from Eqs. (26) that the frequency
dependence of the absorption coefficient for an electro-
magnetic wave is described by a Gaussian curve with
the half-width

(28)
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50 Å, and 
 

E
 

1
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the range of experimental data [1, 4]. In accordance
with (28), the half-width of the cyclotron absorption
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nonlinear temperature dependence of 
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width of the cyclotron resonance line increases with the
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strong magnetic fields (the value of 
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In accordance with Eq. (24), the optical absorption
coefficient for an electromagnetic wave whose polar-
ization vector is directed along the space quantization
axis is defined by the relation

(29)

For an electron transition between two nearest size-
quantized states, we have

(30)

Consequently, the frequency dependence of the
optical absorption coefficient is described by a Gauss-
ian curve whose half-width is smaller than in the case

of the cyclotron resonance by a factor of 1/ .
If a circularly polarized electromagnetic wave prop-

agates along the surface of a quantum well, the optical
absorption coefficient is defined by the sum of Eqs.
(26) and (29):

(31)

Consequently, for "ωc < 3ε0, the frequency depen-
dence K(Ω) is described by two Gaussians. The first

peak with half-width ∆ = 4  and a maximum
at "Ω = "ωc is associated with the cyclotron absorption of

light, while the second peak with half-width ∆1 = ∆/
and a maximum at "Ω = 3ε0 is determined by an elec-
tron transition from the lowest state to the next size-
quantized state. It should be noted that the maximum of
the second absorption peak differs in absolute value
from the cyclotron resonance peak by the quantity δ =
0.55("ωc/ε0). Similar results are obtained when a lin-
early polarized electromagnetic wave being absorbed is
incident at an angle to the surface of a limited-size sys-
tem. It is in this case that the influence of size-quantized
states on the cyclotron resonance was observed in het-
erostructures [23].

For narrow rectangular quantum wells of space quan-

tization, ε0 = (5 × 102/ ) eV (a0 is the quantum well
width); for a0 = 100 Å, 3ε0 = 0.15 eV, which exceeds the
energy "ω0 of the limiting optical phonon. Consequently,
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on account many optical phonons, the absorption of light
is possible between spatially quantized states.

If we consider the interaction between an electron
and optical phonons, the quantity  in Eq. (22) can
be presented in the form

(32)

Here, the following notation has been introduced:

where N0 is the distribution function for equilibrium
phonons with energy "ω0.

If we use the equality [24]

(In(Z) is a modified Bessel’s function), the optical
absorption coefficient determined by an electron transi-
tion from the lowest state (N = 0, n = 1) to the next size-
quantized state (N = 0, n = 2) assumes the form

(33)

The term with n = 0 describes a phonon-free elec-
tron transition. If Z > 1, the processes of light absorp-
tion accompanied by the emission (n > 0) or absorption
(n < 0) of phonons occur actively. Consequently, along
with the phonon-free absorption of light at frequency
"Ω = 3ε0 – B0"ω0, vibrational satellites separated by
"ω0 appear. If we take into account the interaction
between an electron and acoustic vibrations, the shape
of the phonon-free absorption line as well as of phonon
satellites is described by a Gaussian curve with half-

width ∆/ . The constants B and A are calculated
directly. This gives

(34)

c0 = 1/ε∞ – 1/ , where  and ε∞ are the static and
high-frequency dielectric constants, respectively.
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Figure 1 shows the dependence of D(N, ) on  =
π–2(ε0/"ωc) for various values of N0. Curves 1, 2, and 3
are obtained for N0 = 0.5, 1, and 1,5, respectively. Fig-
ures 2 and 3 depict, respectively, the dependences of
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Fig. 1. Dependence of D(N) on . Curves 1, 2, and 3 were
obtained for N0 = 0.5, 1, and 1.5, respectively.
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Fig. 2. Dependence of [(A + B0)/(A – B0)]1/2 on . Curves 1,
2, and 3 were obtained for N0 = 0.5, 1, and 1.5, respectively.
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Fig. 3. Dependence of A/Z0 on . Curves 1, 2, and 3 were
obtained for N0 = 0.5, 1, and 1.5, respectively.
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[(A + B0)/(A – B0)]1/2 and A/Z0 on  for various values
of N0.

For quantum wells with a = 50 Å in GaAs/AlxGa1 – xAs
(c0 = 1.4 × 10–2, "ω0 = 0.03 eV), Z0 ≈ 0.03; for
InP/InxGa1 – xAs (c0 = 1.73 × 10–2, "ω0 = 0.03 eV), we
have Z0 ≈ 0.04, while for GaN/AlGaN (c0 = 9 × 10–2,
"ω0 = 0.05 eV), the value of Z0 ≈ 0.13. In accordance
with Eqs. (34), for ξ = 1 (N = 1.5), for example, for quan-
tum wells in GaN/AlGaN, we have Z ≈ 0.39, while for
GaAs/AlxGa1 – xAs, the value of Z ≈ 0.09. Consequently,
limited-size systems with a strong polar bond must dis-
play vibrational satellites appearing upon the absorp-
tion of an electromagnetic wave whose polarization
vector is directed along the spatial quantization axis.

In an analysis of optical many-phonon transitions,
the diagonal approximation in the quantum numbers N
and n was used (see Eq. (10)). This approximation has
made it possible to carry out the exact averaging over
the vibrational subsystem. The contribution of nondi-
agonal elements to the optical spectra can be estimated
as follows. It can easily be verified that the solution of
Eq. (9) can be written in the form

Here,

Consequently, in accordance with Eq. (8), we can

easily determine (t). The operator aα' (t) can be cal-

culated similarly. If we substitute (t) and aα' (t) into
the sought relation (1) for the optical absorption coeffi-
cient, the averaging over the phonon subsystem can be
carried out approximately by using the cumulative
expansion [25] and confining the analysis to the second
cumulant. According to the results of our earlier inves-
tigations [26], in the theory of magnetooptical phenom-
ena, this approximation corresponds (in the language of
the Konstantinov–Perel diagrammatic technique) to the
summation of graphs which do not intersect phonon
lines [27] and to the ordinary breaking of a chain for the
Green’s function [28]. According to the results of cal-
culations, the contribution of terms with N ≠ N' and n ≠ n'
to the parameter  (25), which determines the half-
width of the absorption line, and to Z (34), which
describes the intensity of vibrational satellites, amounts

to less than 10% for  > 1.

Consequently, the diagonal approximation is quite
reasonable for an analysis of many-phonon processes
in the optical spectra for limited-size systems.
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Electronic Properties
Contribution of the Electron–Electron Interaction 
to the Optical Properties of Dense Arrays of Ge/Si Quantum Dots
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Abstract—We present the results of an investigation of the light absorption due to interband and interlevel tran-
sitions and the photoconductivity in dense arrays of Ge quantum dots (QDs) in Si formed using the effect of
self-organization during molecular-beam heteroepitaxy. It was found that the formation of charged exciton
complexes composed of two holes and one electron, as well as of the be-exciton complexes in QDs of type II,
leads to an increase in the energy of indirect (in real space) exciton transition, which is explained by the spatial
separation of electron and hole. Self-consistent calculations of the wavefunctions for electrons and holes in
exciton and in the exciton complexes showed that an electron in a single exciton is localized in the region of
maximum stress for Si in the vicinity of the Ge pyramid apex, while a hole is localized near the pyramid base.
In a be-exciton complex, electrons exhibit repulsion leading to their spatial separation. As a result, the second
electron is bound at the boundary between Si and a continuous Ge layer in which the pyramid bases reside. The
experimental data show that an increase in the charge carrier concentration in the ground state of QDs leads to
a shortwave shift of the interband resonance and to the narrowing and shape change of the light absorption band,
which is explained by depolarization of the external electromagnetic wave due to interaction with the collective
charge density oscillations in the lateral direction of the array of Ge nanoclusters. It is established that the hole
injection into an excited state of QDs leads to a longwave shift of the photoconductivity peak as a result of
decay of the collective excitations and suppression of the depolarization effect. © 2001 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Quantum dots (QDs) represent a limiting case of the
systems with reduced dimensionality (quantum-con-
fined systems), since the motion of charge carriers in
these structures is spatially restricted in three dimen-
sions. From the standpoint of device operation, the size
of these nanostructures must be on the order of a few
nanometers so as to avoid thermal blurring of the dis-
crete energy spectrum at room temperature. Moreover,
in order to provide for a high modal gain in lasers, a
high quantum efficiency in photodetectors, a significant
shift of the threshold voltage in single-electron transis-
tor memory elements, and fast data transfer in quantum
networks, it is necessary to create dense QD arrays with
a layer density of QDs exceeding ≥1011 cm–2.

The requirement of nanoscale dimensions and large
density of QDs considerably restrict the possibility of
using traditional methods of heterostructure fabrication
based on the lithographic process and require the devel-
opment of new approaches. In the search for new tech-
nologies, very good prospects are offered by the idea of
using changes in the surface morphology involved in
the growth of mismatched heteroepitaxial systems for
the formation of arrays of atomic nanoclusters on the
passage from 2D to 3D growth by the Stranski–Kras-
tanow mechanism. We have implemented this idea for
1063-7761/01/9203- $21.00 © 200500
the first time in 1992 in the Ge/Si system [1]. The inves-
tigation of this system showed evidence of the presence
of single-electron effects in nanostructures of the new
type. Subsequently, this principle of obtaining the QD
arrays was referred to as “self-organization” because it
was necessary to explain the formation of an array of
nanoclusters with sufficiently homogeneous size distri-
bution [2, 3].

A special interest of researchers in the Ge nanoclus-
ters in Si is related to the following circumstances.
First, a decrease in the temperature of heteroepitaxy
and increase in the deposition rate allowed the size of
Ge nanoclusters to be reduced to ~10 nm. These dimen-
sions ensured the manifestation of the quantum-con-
finement and single-electron effects up to room temper-
ature and provided for the QD layer density as high as
3 × 1011 cm–2 [3, 4]. In addition, methods developed for
the formation of Ge nanoclusters proved to be compat-
ible with the world-spread silicon technology used for
the fabrication of discrete devices and integrated cir-
cuits.

The strained layers of Ge/Si(001) belong to the het-
erostructures of type II. The characteristic features of
systems of this type are determined by a special mutual
arrangement of the energy band edges of the compo-
nent semiconductors at the heterojunction. The conduc-
01 MAIK “Nauka/Interperiodica”
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tion band of one material (Si) in this region is close to
the valence band of another component (Ge), which
results in the spatial separation of charge carriers. In the
system under consideration, the holes are localized
within the Ge quantum dots, while electrons in Ge
encounter a potential barrier. However, a positive charge
created by holes and an inhomogeneous deformation of
the structure as a result of the lattice mismatch between
Ge and Si may result in the appearance of a potential
well for nonequilibrium electrons in the conduction
band of silicon near the Ge/Si heterojunction (Fig. 1).
Thus, a distinctive feature of the QDs of type II is the
possibility of formation of an indirect (in real space)
exciton, whereby a hole is localized within the Ge
island and an electron moves in the self-consistent poten-
tial of Si in the vicinity of the hole. At present, the proper-
ties of indirect excitons in QDs are studied rather insuffi-
ciently, although these systems are of considerable interest
from the standpoint of both basic research and the technol-
ogy of devices which cannot be implemented using the
heterostructures of type I [5]. In particular, no data are
available concerning the spectrum and structure of mul-
tiparticle exciton complexes formed in the QDs
described above.

The urgent importance of investigations into the opti-
cal properties of QDs is explained by the pronounced
practical orientation of this research toward the creation of
photodetectors and light-emitting devices, which offer a
number of advantages in comparison with 2D systems.
Important features of QDs are as follows: (i) the possibil-
ity of controlling the spectral band (i.e., the color) of pho-
toemission and photoresponse by populating discrete
states with a necessary transition energy; (ii) reduced
threshold current density and high temperature stability
of diode lasers [2]; (iii) the lateral quantum confine-
ment removes prohibition of the optical transitions with
polarization in the photodetector plane, which provides
for the possibility of photon absorption at normal inci-
dence without using additional gratings and reflectors;
and (iv) large expected lifetimes of photoexcited carri-
ers, which are due to the so-called “phonon bottleneck
effect” [6]. The last property is related to the fact that the
scattering on LO-phonons is suppressed when a distance
between discrete levels differs significantly from the
phonon energy.

Until recently, optical measurements were per-
formed for the most part in low-density systems of QDs,
where the interaction effects can be ignored [7–9]. Basi-
cally, the optical measurements in dense QD arrays
must reveal some new phenomena related to a large-
scale Coulomb interaction. In a high-density system of
atomic islands, where the distance between islands is
comparable with their dimensions (L ~ 10 nm), the
interaction between charge carriers localized in the
neighboring QDs becomes a significant factor determin-
ing, in particular, the dark conductivity along the Ge lay-
ers containing QDs [10]. The characteristic magnitude
of this interaction, U ≈ e2/4πee0L ≈ 10 meV (where e0
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
is the permittivity of vacuum and e is the relative per-
mittivity of the medium), is comparable with room-
temperature kT and is no longer negligibly small in
comparison to the characteristic energy separation of
levels (70–80 meV) in the quantum-confined system
[3, 11].

The purpose of this work was to study the process of
light absorption and photoconductivity in the region of
photon energies corresponding to interband and inter-
level transitions in Ge/Si heterostructures with QDs.
The measurements were performed in the geometry of
normal incidence of the excitation light wave (propa-
gating perpendicularly to the sample surface). The
paper is arranged as follows. Section 2 presents the
results of investigation of the light absorption by exci-
tons in QDs (at a wavelength of .1.6 µm). Based on
these experimental data, it is concluded that the forma-
tion of charged exciton complexes (each comprising
two holes and one electron), as well as of the two-exci-
ton complexes in the QDs of type II leads to an increase
in the energy of exciton transition, which is explained
by the spatial separation of the electron and hole in
these QDs. Section 3 is devoted to the light absorption
and photoconductivity in the region of photon energies
corresponding to the transitions between ground and
excited states of holes in Ge quantum dots (photon wave-
length, .15–18 µm). We observed a shortwave shift of the
interband resonance and the narrowing and shape change
of the absorption band accompanying an increase in the
concentration of carriers in the ground state of QDs. This
is explained by depolarization of the external electromag-
netic wave due to interaction with the collective charge
density oscillations in the lateral direction. It is shown
that the hole lifetime in the excited state is comparable
to the values typical of two-dimensional quantum

V = 0

V > 0

EC

n+-Si

E0

EF

EFp

p-Si p+-Si

EFn

EV

H0
H1

h

e

Ge quantum dots

Fig. 1. Schematic diagrams of the energy band structure of
a p+–p–n+-Si diode with Ge quantum dots under conditions
of zero and reverse bias. The arrow indicates the optical
transition accompanied by the formation of an implicit exci-
ton in the ground state.
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wells, which casts some doubt concerning validity of
the phonon bottleneck effect.

2. EXCITONS AND EXCITON COMPLEXES
IN QUANTUM DOTS OF TYPE II

2.1. The Method of Electron Occupancy Modulation

Effects of the charged state of QDs on the interband
optical transitions were studied by the method of elec-
tron occupancy modulation. Previously, this technique
was successfully employed for the investigation of
luminescence [12] and reflectance [13] in the arrays of
QDs based on InAs/GaAs and InxGa1 – xAs/GaAs sys-
tems. According to this approach, a layer of Ge atomic
islands is introduced into the base region of an n+–p–p+-Si
diode. In this structure, the hole level occupancy in the
QDs is controlled by a bias voltage applied to the diode
(Fig. 1). Once a level in the valence band of Ge is filled
with holes, the transition to the conduction band from
this level is blocked; should the bias voltage be such
that the QD is neutral (i.e., contains no holes), an elec-
tron in the valence band may absorb a photon to form
an indirect exciton. By applying a time-modulated bias
voltage (leading to the time-modulated QD occupancy
by the holes) and measuring the IR photon transmission
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Fig. 2. The plots of (a) room-temperature capacitance of a
p+–p–n+-Si diode with Ge quantum dots measured at
100 kHz, (b) integral IR absorption measured in the region
of H0–E0 and H1–E1 exciton transitions, and (c) energy of
the exciton transitions H0–E0 (left ordinate scale) and
H1–E1 (right ordinate scale) versus reverse bias voltage
amplitude (modulating the QD occupancy by holes).
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through the QD structure at the modulation frequency,
we can obtain the spectrum of absorption due to the
quantum dots. The measurements at various modulated
bias amplitudes allow us to study the effect of the
charge on islands (QDs) on the corresponding transi-
tion energies. An advantage of this method is that the
lock-in detection suppresses the nonmodulated system
response (related to the absorption in substrate, atmo-
sphere, etc.).

The samples were grown by molecular beam epit-
axy (MBE) on (001)-oriented Si substrates with a resis-
tivity of 4.5 Ω cm. The layers of Si preceding and fol-
lowing the Ge layer were grown at 800 and 500°C,
respectively. The growth rates were controlled on a
level of 0.3 nm/s for Si and 0.03 nm/s for Ge. The layer
of Ge islands with a rated thickness corresponding to
10 atomic monolayers (1 monolayer = 1.4 Å) was
formed at 300°C in the middle of a 1-µm-thick p-Si
layer (boron-doped to 5 × 1016 cm–3). The bottom (bur-
ied) contact was provided by depositing a 50-nm-thick
p+-Si layer (boron-doped to 2 × 1018 cm–3). The hetero-
structure growth was completed by forming an n+–p
junction, which was provided by a a 50-nm-thick n+-Si
layer (Sb-doped to 1 × 1019 cm–3). Previously, we stud-
ied Ge quantum dots in these structures by the methods
of scanning tunneling microscopy and high-resolution
transmission electron microscopy. It was established
that Ge islands have the shape of pyramids with a
15 × 15 nm base and a 1.5 nm height [14]. The QD size
scatter was characterized by a standard deviation not
exceeding 20%.

The IR absorption measurements were performed at
room temperature in the normal incidence geometry.
The radiation transmitted through a sample was moni-
tored by a germanium photodetector. The occupancy of
QDs by holes was modulated by applying rectangular
reverse bias pulses at a frequency of 700 Hz. In order to
determine the necessary pulse amplitude and establish
a relationship of this value to the charged state of QDs,
we have measured the capacitance-voltage (C–V) char-
acteristic of the heterostructure at a frequency of 100 kHz.
The results of these measurements are presented in
Fig. 2a. At a zero bias, the QDs are filled by holes and
possess a positive charge. The space charge region
occurs in p-Si above the Ge layer. As the bias amplitude
increases to V ≈ 0.5 V, the boundary of the space charge
region reaches the QD array and the holes begin to
leave the energy levels of islands. Here, the capacitance
C of the structure is virtually independent of the voltage
V and is entirely determined by the depth of QDs. We
can estimate this depth using the approximate relation-
ship x ≈ ee0/C. For C ≈ 20 nF/cm2, this yields x = 0.5 µm
in agreement with the value stipulated by the growth
procedure. At a bias voltage exceeding 8.5 V, the holes
completely leave the QDs (making the ground state
empty). The QDs become electrically neutral and the
structure capacitance begins to decrease again because
the space charge region penetrates into silicon. Note a
AND THEORETICAL PHYSICS      Vol. 92      No. 3      2001
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weakly pronounced maximum in the C–V curve at
V = 6–8 V (see the inset in Fig. 2a), which a character-
istic feature of the δ-shaped spectrum of the density of
states in islands [15]. Based on these data, subsequent
measurements of the differential absorption of QDs
were performed using the QD level occupancy modu-
lated by the reverse bias voltage varying from zero to
V = 2–10 V.

2.2. The Interband Optical Absorption

Figure 3 shows the differential absorption spectra
measured for various values of the bias modulation ampli-
tude. In the region of energies from 650 to 850 meV
(below the fundamental absorption edge of Si equal to
~1.12 eV), we observe an absorption band with a width
of ~70 meV. Previously [14], we observed a similar max-
imum (at 730–750 meV) in the spectra of photocurrent
measured in a silicon p–i–n diode with Ge quantum dots.
Note that the same energy region (~800 meV) contains a
peak (with close width) of the photoluminescence due
to the exciton transition in Ge/Si(001) quantum dots
[16–19]. An analysis of the shape of the absorption
maximum showed that a good approximation is pro-
vided by a superposition of two Gaussian components
(Fig. 4).

We assign the absorption peaked at 760–770 meV to
the electron excitation from the valence band of Ge
quantum dots to the conduction band of Si, which leads
to the formation of the ground state of an indirect exci-
ton (with a hole in the ground state H0 of QD and an
electron localized in the ground state E0 of Si near the
heterojunction). The absorption band of lower intensity
at 850–860 meV is attributed to the excited state of exci-
ton (with both hole and electron in the excited states H1
and E1, respectively). A large width of the bands is related
to fluctuations of the Ge island dimensions.

Photons with higher energies excite the transitions to
localized states of the conduction band, which increases
the probability of absorption. Certain features on this
background are probably related to participation of the
higher excited states of excitons.

The assignment of the H0–E0 absorption band to
the interband transitions in QDs is confirmed by analy-
sis of the integral absorption intensity I as a function of
the bias voltage modulation amplitude (Fig. 2b). The
area under the peak was determined by approximating
the absorption band shape with a Gaussian curve. For
the exciton transition,

(1)

where f is the oscillator strength, n is the concentration
of carriers involved in the absorption, m0 is the free
electron mass, and c is the speed of light. Since I ∝  n,
the plot of I(V) directly reflects a change in the degree
of QD occupancy by holes caused by variation of the
reverse bias applied to the diode. In the region of V >
8.5 V, the integral intensity (I ≈ 1.4 × 10–5 eV) is inde-

I he2nf /2m0e0c 1 e+( ),=
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pendent of the bias voltage because all QDs are neutral
(this situation is most favorable for the interband tran-
sitions). On decreasing the modulation amplitude, the
integral absorption decreases as well because holes
begin to occupy the ground state of QDs and suppress
the interband transitions. This scenario completely
agrees with the C–V characteristic of the heterostruc-
ture presented in Fig. 2a.
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It should be noted that the area of the band corre-
sponding to the excited state of excitons becomes
almost constant when the bias voltage varies from 4 to
10 V, which is explained by the fact that, in this interval,
the energy level corresponding to the excited state of
the islands contains no holes.

The experimental values of the integral absorption
measured for V > 8.5 V can be used for determining the
oscillator strength f characterizing the exciton transi-
tion. Since the maximum number of holes present in
the ground state of QDs is two, n is equal to the double
density of QD (6 × 1011 cm–2). Taking I ≈ 1.4 × 10–5 eV,
we obtain f = 0.5. This value is about 1/20 of the oscil-
lator strength for direct excitons in the InAs/GaAs sys-
tem (f = 10.9 [21]), which is a consequence of the spa-
tial separation of electron and hole in the QD with indi-
rect exciton. In addition, the absolute value of the
absorption intensity (α = 1.6 × 10–4 at V = 10 V) can be
used to estimate the equivalent cross section of inter-
band absorption in Ge quantum dots, which yields
2.5 × 10–16 cm2.

2.3. The Exciton–Hole Interaction

When the bias voltage decreases to 8.5 V and below
(Fig. 2c) and the holes are injected into Ge islands, the
energy of the exciton absorption peak exhibits an 11 meV
shift toward shorter wavelengths. This result is opposite
to that observed previously for the direct (in real space)
excitons in InAs/GaAs quantum dot arrays [12, 21],
where the exciton transition energy decreased upon the
formation of charged complexes. We estimated the
average hole occupancy Nh for the ground state of QDs
at various bias voltages using the oscillator strength
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Fig. 5. Plots of the exciton transition energy versus average
number of holes (occupancy) in the ground state of QDs.
Black squares refer to a situation where the holes injected
into QDs under the action of applied bias (no illumination)
form complexes of the exciton–hole type. Open squares cor-
respond to the case of optical injection of electrons and
holes into QDs at a fixed reverse bias of V = 9 V, which
results in the formation of two-exciton complexes.
JOURNAL OF EXPERIMENTAL
evaluated above and the experimental values of integral
absorption. The Nh values were calculated taking into
account that the hole injection into an island decreases
by one the number of possible interband transitions (the
total number of transitions related to the ground state at
each QD is two). A plot of the exciton transition energy
versus Nh is presented in Fig. 5 (black symbols). Here,
an important point is that the energy sharply increases
when one hole is injected into the ground state of QDs
and then only slightly varies with further increase in the
hole concentration.

It must be noted that QDs occur in the region of suffi-
ciently strong electric field. Under the conditions studied,
the field strength may reach up to 104 V/cm and lead to
a shift of the quantum confinement levels according to
the quantum Stark effect [22]. However, we can present
at least three arguments against using the Stark effect in
explaining the observed shift. First, the Stark shift
would monotonically increase with the electric field
strength, whereas we observe a steplike change in the
transition energy precisely at the bias voltage produc-
ing a change in the charged state of QDs. Second, the
magnitude of the Stark effect should be obviously very
small because the island size in the vertical direction
(QD height) is only 1.5 nm. Indeed, Miesner et al. [23]
observed a Stark shift of about 60 meV for the levels of
Ge/Si structures with 7.5-nm-high quantum dots for a
field strength on the order of 104 V/cm. Since the shift
magnitude is proportional to L4, where L is the quantum
well size [24], the resonance shift in our structures must
be as small as 0.1 meV. Third, the electric field shifts
the hole energy level in Ge/Si heterostructures with
QDs toward delocalized states in the valence bands
[23]. This implies an increase in the interband transi-
tion energy–in contrast to our experimental data. Thus
the shift in the exciton energy observed in our experi-
ments cannot be interpreted within the framework of
the quantum Stark effect.

Let us consider in more detail the interactions between
all particles in the system during the exciton absorption.
Upon the exciton excitation, a singly-charged QD features
the formation of an exciton–hole complex with an elec-
tron bound near two holes in the ground sage. One of
these holes is injected due to the bias application and
the other hole is generated when an electron passes
from the valence band of Ge to the conduction band of
Si. There are two additional contributions to the energy
of charged exciton. The first is the energy of repulsion
between injected and photoexcited holes (Ehh). The sec-
ond is the energy of attraction between the injected hole
and the photoexcited electron (Eeh). The resulting addi-
tional energy for the charged exciton is determined as
the difference ∆Eex – h = Ehh – Eeh. Since two holes in the
ground sate exhibit an antiparallel spin orientation, the
contribution due to exchange interaction is absent [25].
In the case of direct excitons, the electron–hole interac-
tion dominates and the absorption band of charged
 AND THEORETICAL PHYSICS      Vol. 92      No. 3      2001



CONTRIBUTION OF THE ELECTRON–ELECTRON INTERACTION 505
exciton exhibits a “red” (longwave) shift [21]. The spa-
tial separation of carriers in the QDs of type II allows
us to expect that the energy Eeh is smaller than Ehh and
the exciton absorption band would shift toward shorter
wavelengths upon the charged complex formation.

Taking into account experimental values of the exci-
ton shift ∆Eex – h = 11 meV and Ehh = 36 meV [26], we
may estimate the electron–hole interaction energy in QDs
as Eeh = 25 meV. This value agrees with the results of
self-consistent-field (SCF) calculations of the exciton
binding energy in the structures studied (see Section 2.5
below). Note that this value is almost ten times greater as
compared to the free exciton energy in bulk Ge and is
approximately two times the exciton binding energy in
bulk Si. This result, theoretically predicted for the quan-
tum dots of type II by Rorison [27], is related to two
factors. First, the spatial localization of at least one par-
ticle (in our case, a hole) leads to correlated motion of
the second particle (electron). Second, the final height
of the potential barrier in a real system (energy band
breaks) leads to the penetration of particles into the bar-
rier regions, which results in a considerable overlap of
their wavefunctions.

It should be also noted that a shift in the absorption
maximum corresponding to the excited exciton state is
much less pronounced when a hole appears in the
ground state of QDs (Fig. 2). This is related to an obvi-
ous fact that, because of a smaller overlap of the wave-
functions, the energy of interaction between a hole in
the excited state and a hole in the ground states is lower
than the energy of interaction between two holes in the
ground state.

2.4. The Exciton–Exciton Interaction
in Quantum Dots

Additional evidence for assigning the absorption
maximum in the region of 760 meV to an exciton tran-
sition in the QD was obtained in experiments with the
optical pumping of diode structures with the light of a
halogen lamp. Figure 6 shows the absorption spectra mea-
sured at a fixed bias modulation amplitude (V = 9 V) and
various pumping intensities. Under the conditions of
additional interband optical excitation, the levels of
holes in QDs and those of electrons in Si near the het-
erojunction are occupied by nonequilibrium charge
carriers. At a sufficiently high illumination intensity,
the ground state levels are completely filled and the
H0–E0 exciton transition under the action of probing
IR radiation becomes impossible (blocked). Indeed, the
data presented in Fig. 6 show evidence that the absorp-
tion intensity drops with increasing intensity of the
pumping radiation.

Figure 5 (open symbols) shows a plot of the exciton
transition energy versus the average number of holes
(per QD) generated by the interband optical pumping. As
seen, the optical carrier generation leads to a more pro-
nounced shift of the absorption maximum (in the same
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
direction) as compared to the bias-induced hole produc-
tion. A difference between the experiments with electric
and optical pumping consists in that the probing (IR)
photon absorption in the latter case takes place in a QD
with exciton excited by the additional illumination.
Thus, the experiment with illumination corresponds to
the case of two excitons in the same QD, one of which
is excited by the optical pumping and the other is gen-
erated by the probing radiation. In comparison with the
isolated exciton, the interaction between two excitons
increases the energy by ∆Eex – ex = Ehh + Eee – 2Eeh,
where Eee is the energy of interaction between two elec-
trons bound at a QD by the Hartree potential of two
holes. Similarly to the above case, the spatial separation
of the exciton components results in that Ehh > Eeh,
Ehh > Eeh, and ∆Eex – ex > 0. This means that two excitons
formed in the same QD of a heterostructures of type II
exhibit repulsion and a be-exciton molecule is not formed.

2.5. Self-consistent Calculation of the Energy Structure
of Indirect Excitons

The wavefunctions and energy spectra of electrons
and holes in indirect excitons for a Ge pyramid with a
15 × 15 nm base and 1.5 nm height were determined by
numerical modeling. The pyramid occurs in a continu-
ous 5-monolayer (7-Å-thick) layer of Ge surrounded by
Si. The substrate and pyramid orientations corre-
sponded to the experimental situation (see Section 2.1).
The z-axis direction is parallel to the principal symme-
try axis of the pyramid; the x- and y-axes are lying in
the pyramid base (continuous Ge layer). In the first
stage, we calculated the distribution of elastic stresses
in this model structure. The calculation was performed

650
0

P = 0

700 750 800 850
Energy, meV

0.5

1.0

1.5

54

A
bs

or
pt

io
n,

 1
0–

4

73

93

110

Fig. 6. The exciton optical absorption band measured at var-
ious intensities of additional optical pumping P (indicated
in mW/cm2 by figures at the curves).
SICS      Vol. 92      No. 3      2001



506 YAKIMOV et al.
within the framework of the valence force field (VFF)
model with a Keating potential [28], based on the elas-
tic force potential considered as a function of inter-
atomic distances and angles. An advantage of this
model as compared to the continuum theory is the pos-
sibility of determining real atomic positions. The
results of the model calculations showed that a most
stressed region in the vicinity of the pyramid is that out-
side the apex, while the apex region inside the pyramid
is characterized by most relaxed elastic stresses. Taking
into account the obtained 3D distribution of elastic
deformations inside and outside the pyramidal QD and
the known deformation potentials of Si and Ge [29], we
calculated the valence and conduction band breaks at
the Ge/Si heterojunction. In particular, it was estab-
lished that the lowest minima in the stressed structure
are represented by two ∆-valleys oriented in the [001]

and [00 ] directions.
In the second stage of modeling, we solved a set of

two 3D Schrödinger equations for electron and hole in
the effective mass approximation. The electron and
hole were considered as moving in a self-consistent
field created by the band breaks and the second particle.
The system Hamiltonian was written in the following
form:

(2)

where the terms  and  include operators of the
kinetic and potential energy of noninteracting electron

and hole, respectively, and  describes the electron–
hole interaction. For modeling the exciton–hole or
exciton–exciton complexes, the set of equations was
supplemented with one or two self-consistent equations
for the hole or the hole and electron, respectively. The
interaction between particles was described by a Cou-
lomb potential:

The exciton wavefunction was written in the Hartree
form as

where ψh(rh) and ψe(re) are the wavefunctions of hole
and electron, respectively. A solution to the Schrödinger
equation was obtained on a network with a step equal
to half of a lattice constant (0.27 nm) containing 80 ×

1

Ĥ Ĥe Ĥh Ĥeh,+ +=

Ĥe Ĥh

Ĥeh

Uij ri r j,( ) e2/4πee0 ri r j– .=

ψex rh re,( ) ψh rh( )ψe re( ),=

Energy parameters of exciton and exciton complexes

Source
of data El , meV Eeh, meV ∆Eex – h, meV Eex – ex, meV

Experiment – 25 +(11 ± 3) +(19 ± 5)

Calculation 38 31 +9.7 +10.2

Note: sign (+) indicates a shortwave shift.
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80 × 50 nodes with a Dirichlet boundary conditions.
The calculation was performed for the following
energy band parameters. The conduction band break
between the corresponding ∆-minima of unstressed Ge
and Si was taken equal to 340 meV; the analogous
valence band break was taken equal to 610 meV. The
effective masses of carriers were mz = 0.92m0 and mxy =
0.19m0 in the conduction band and mz = 0.2m0 and
mxy = 0.39m0 in the valence band.

The experimental and calculated values of the elec-
tron localization energy on the exciton formation El, the
exciton binding energy Eeh, and the exciton transition
energy shifts for the exciton–hole (∆Eex – h) and exci-
ton–exciton (∆Eex – ex) complexes in comparison with
the energy of a single exciton in QD are summarized in
the table. As seen, the theoretical and experimental data
are in satisfactory agreement in all respects. The mod-
eling gives a somewhat smaller exciton transition
energy shift ∆Eex – ex as compared to the experimental
value. This difference can be explained by the neglect of
a contribution due to the interaction of electrons local-
ized in the neighboring QDs. The calculations show
that El = 38 meV, the main fraction of this value being

due to the electron–hole interaction  =

31 meV and the remainder  = 7 meV, due
to a potential well formed at the Ge/Si interface as a
result of the inhomogeneous strain distribution.

Figure 7a presents the calculated profile (in the
direction of the z-axis passing through the pyramid
apex) of a potential binding electron and hole in an
exciton. Figure 7b shows the absolute values of the
electron and hole wavefunctions in the cross section of
a quantum dot. As is seen, an electron in the ground
state is localized in the vicinity of the pyramid apex in
silicon (the region of maximum compression in the ver-
tical direction and maximum extension in the lateral
direction), while a hole in the ground state is localized at
the pyramid base. The wavefunction of the ground state of
the hole is characterized by a 15% overlap with that of the
ground electron state. If a direct exciton in the InAs/GaAs
heterosystem with an 80% overlap [30] has an oscillator
strength of f = 10.9 [21], the indirect exciton with a 15%
overlap in our system can be expected to have f  ≈  0.4,
which is close to the experimental value (f = 0.5). This
result suggests that a relatively high oscillator strength
observed for indirect excitons in QDs of the Ge/Si het-
erostructure studied is related to the penetration of elec-
trons and holes into the barrier regions.

The structure of a complex composed of two exci-
tons bound at a common quantum dot is illustrated in
Fig. 8. It was found that, upon the excitation of two
excitons, the Coulomb repulsion of electrons leads to
their separation in space; as a result, the second electron
is localized in Si at the rear side of QDs, that is, at the
boundary between Si and the continuous Ge layer.

ψex Ĥeh ψex

ψex Ĥe ψex
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3. INTERLEVEL OPTICAL TRANSITIONS
IN MULTILAYER STRUCTURES

WITH QUANTUM DOTS

3.1. Collective Phenomena in 2D Systems

The motion of electrons in 2D systems is confined
in the transverse direction (i.e., along the z-axis). The
IR radiation polarized in this direction can be absorbed
by a 2D electron gas, which leads to the excitation of
transitions between subbands in the quantum valley. As
is known, the energy of the inter-subband absorption
may significantly differ from the distance between sin-
gle-particle quantum-confinement levels, provided that
the carrier concentration in the subband is sufficiently
high (1011–1012 cm–2) [31]. The difference is explained
by the appearance of collective electron of spin density
oscillations under the action of the incident electromag-
netic wave, which results in a shift of the corresponding
resonance. One of such collective effects is the resonance
screening of an external electric field by self-sustained
electron density oscillations related to a long-range
dynamic electron–electron interaction (depolarization
effect). In experiment, the depolarization effect is mani-
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fested by a shift of the intersubband resonance toward
shorter wavelengths with increasing carrier concentration
in the first subband. In systems with a nonparabolic bind-
ing potential, this effect is additionally manifested by nar-
rowing of the resonance line and by a change in the line
shape [32].

Investigation of the arrays of quantum dots, in which
the charge carriers are additionally confined in the lateral
direction, posed a question as to whether there exist col-
lective excitations polarized in the plane of the QD struc-
ture. Recently, Metzner and Döhler [33] pointed out that
a dynamic multiparticle Coulomb interaction must be
also operative between electrons oscillating in the lateral
direction. However, Sauvage et al. [8], employing the
light polarized in the plane of InAs/GaAs layers contain-
ing QDs, observed the interlevel transitions in this struc-
ture but did not reveal any depolarization shift. The reason
is very simple: the layer density of QDs (4 × 1010 cm–2)
was insufficient for providing a manifestation of the
electron–electron interaction and for binding the opti-
cal excitations in a collective mode. In this context, it
was especially important to study the Ge/Si structures
with a QD density in the array reaching 3 × 1011 cm–2.

Fig. 8. (a) The calculated potential profile and (b) a 2D map
of the absolute values of the electron |ψe | and hole |ψh |
wavefunctions in the cross section of complex of two exci-
tons bound at a common quantum dot. The boundaries of
differently shadowed regions correspond to the wavefunc-
tion amplitude decreasing to 75, 35, and 10% of the maxi-
mum level.
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3.2. The Method of Photoinduced Absorption

The sample structures were grown on n-Si(001)
substrates with a resistivity of 5 Ω cm under the condi-
tions analogous to those described in Section 2.1. A dif-
ference was in the number of Ge island layers, which
was equal to ten. The QD layers were separated by
30-nm-thick Si spacers. The concentration of phospho-
rus (dopant) in the epitaxial Si layers was about 2.5 ×
1016 cm–3.

Since the doping level was relatively low, the islands
contain virtually no free carriers (holes) and exhibit no
interband transitions. Occupation of the ground state
levels with holes can be provided by two methods. First,
by means of the field effect, whereby a gate is formed in
the sample structure and the corresponding potential is
applied. Second, by means of an additional interband opti-
cal excitation ensuring a large concentration of nonequi-
librium charge carriers. A disadvantage of the first method
is the presence of a strong electric field and, hence, of
the unavoidable (more or less pronounced) stark effect.
On the other hand, electrons excited by the optical
pumping may affect the energy spectrum of holes in
QDs. However, the results of numerical calculations of
the exciton structure (see Section 2.5) showed that a
change in the hole energy induced by the electron field
does not exceed 0.1 meV. For this reason, we injected
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Fig. 9. The photoinduced IR absorption spectra of interlevel
transitions in Ge/Si quantum dots measured at various opti-
cal pumping power density (indicated in mW/cm2 by figures
at the curves). For clarity, the curves are shifted upward with
a step of 5 × 10–4. An increase in the optical pumping power
density corresponds to the growing hole concentration in the
ground state of Ge nanocrystal ensemble. Crosses show the
result of modeling of the absorption band for P = 40 mW/cm2

using Eqs. (3) and (4) with the asymmetry parameter γ =
1.25. Dashed curve presents the approximation of the
absorption band for P = 110 mW/cm2 by the Lorentz func-
tion according to Eq. (5) describing the collective mode
excitation.
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holes into QDs by means of a high-power optical
pumping with modulated radiation of a halogen lamp
(Fig. 9). After passage through an interference filter, the
pumping radiation exhibited a maximum intensity at a
wavelength of 0.67 µm (photon energy hν = 1.85 eV).
The integral pumping power density was measured
using a Si photodiode and could be varied from 40 to
140 mW/cm2. The samples were probed by IR radiation
from a Globar source. The probing beam transmitted
through a sample was detected with a lock-in bolometer
circuit tuned to the pumping modulation frequency
(1.7 Hz). Similarly to the experiments described above,
the IR absorption measurements were performed in the
normal incidence geometry. The photoinduced absorp-
tion spectra were normalized to the reference bolome-
ter signal intensity measured without additional illumi-
nation of the sample.

It was very important to know the concentration of
holes optically injected into quantum dots. There are two
channels for the photoproduction of holes during inter-
band optical excitation. The first is the hole generation
immediately in Ge. In a linear regime, the 2D density of
holes in a Ge layer with QDs can be estimated as n = GτGe,
where G = αP/hν is the carrier generation rate, α is the
absorption probability, and τGe is the time of interband
recombination in Ge. For α ≈ 2 × 10–4 (see Section 2.2),
P ≈ 100 mW/cm2, hν = 1.85 eV, and τGe ≈ 10 µs [34, 35],
we obtain n ≈ 5 × 108 cm–2. This value is three orders of
magnitude lower than the QD density (3 × 1011 cm–2).
Therefore, the optical generation of holes immediately
in Ge cannot significantly affect the QD occupancy.

We must take into account that nonequilibrium car-
riers are generated not only in Ge, but in the surround-
ing Si as well (the penetration depth of photons with a
wavelength of 0.67 µm in Si is ≈2 µm). Under the
experimental conditions employed, the characteristic
lengths of the system studied—the hole diffusion
length LD (typically, 100–1000 µm [36]) and the light
attenuation depth da—obey the relationship LD @ da.
For this reason, a considerable part of the photogener-
ated charge carriers is carried away by diffusion from
the absorption region in silicon to be effectively trapped
on the bound states of germanium QDs. In this situa-
tion, the concentration of holes optically injected into
QDs is given by a simple relationship n = PτSi/hν,
where τSi is the lifetime of nonequilibrium holes in sil-
icon. By measuring the kinetics of the intensity of light
absorption by free carriers in analogous Si layers con-
taining no QDs, we established that the latter quantity
is τSi = 15 µs (in agreement with the published data
[37]). Since τSi ≈ τGe, the recombination of electrons
and holes trapped on the QDs does not lead to a change
in the concentration of holes in these islands. For P =
100 mW/cm2, hν = 1.85 eV, and τSi = 15 µs, we obtain
n = 5.1 × 1012 cm–2. Taking into account that the structure
under consideration comprises 10 germanium layers with
QDs and the QD density in each layer is 3 × 1011 cm–2, we
conclude that the optical pumping with a power density of
 AND THEORETICAL PHYSICS      Vol. 92      No. 3      2001
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100 mW/cm2 provides for an almost complete occupation
of the ground state in QDs (two holes per island).

3.3. The Effect of Lateral Depolarization
in Quantum Dot Arrays

Figure 9 shows the photoinduced absorption spectra
measured at room temperature for various intensities of
the optical injection. The absorption peak observed in
the 70–90 meV energy interval (15–18 µm) corre-
sponds to the hole transition from ground to excited
state in QDs. Approximately the same energy separa-
tion (~75 meV) of the first two levels in germanium
QDs was previously observed in experiments on the
resonant tunneling in structures with a single layer of
Ge islands [3]. The fact that the photon absorption is
observed in the normal light incidence geometry is evi-
dence of the lateral polarization of the hole states in QDs.
The spectrum measured with a maximum optical injection
intensity (140 mW/cm2) exhibits a background absorption
increasing with the wavelength, which is probably
explained by the absorption related to free carriers in Si
not trapped by QDs. The integral absorption intensity
(area under curve) for P < 140 mW/cm2 is proportional to
the pumping power density (Fig. 10a). This fact indicates
that recombination of the nonequilibrium carriers occurs
in a linear regime and implies that the concentration of
holes injected into QDs is a linear function of the opti-
cal pumping power density. At P ≈ 140 mW/cm2, the
ground state is completely filled and the absorption
intensity ceases to grow.

For a small concentration of holes in the islands, the
absorption band has a clearly pronounced asymmetric
shape: the absorption intensity drops sharply at lower
energies and exhibits an extended “tail” on the side of
higher energies relative to the peak. The asymmetric
shape can be described within the framework of the fol-
lowing simple model. In the absence of collective
effects, the interlevel resonance exhibits inhomoge-
neous broadening caused by fluctuations of the island
size within the array. Let us make an obvious assump-
tion that the distribution of islands with respect to size
L is described by the Gaussian function (which is valid
with high precision in all the known experimental situ-
ations),

(3)

where L0 is the average island size. The distribution of
distances D(E) between energy levels in QDs is con-
nected to the island size distribution by the relationship
D(E) ∝  D(L)(dE/dL)–1. In the case when the quantum
confinement energy decreases with increasing QD size
by the power law 1/Lγ, we obtain

(4)

D L( ) 1

2πσ
--------------

L L0–( )2

2σ2
----------------------– ,exp=

D E( ) D L( )/E 1 γ+( )/γ.∝
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With neglect of the energy dependence of the oscillator
strength, the distribution (4) must describe the shape of
the absorption band. The result of approximating the
band measured at P = 40 mW/cm2 by the curve corre-
sponding to Eq. (4) is depicted by crosses in Fig. 9. The
fitting parameters were the position of the band maxi-
mum and the asymmetry parameter γ. As seen, the reso-
nance shape is adequately reproduced for γ = 1.25. This
result indicates that the distance between energy levels
varies with a QD size slower than 1/L2. Previously, this
fact was repeatedly pointed out in calculations of the
electron spectrum for nanoclusters of pyramidal and
lenticular shapes [38–40].

As the hole concentration in the ground state of QDs
increases, the absorption band shifts toward greater
energy, decreases in width, and becomes more symmet-
rical (Fig. 10). For P > 110 mW/cm2, the band width
increases again because the interaction between QDs is
screened by the free charge carriers. This behavior is
indicative of the presence of collective electron density
excitations polarized in the lateral direction. It must be
noted that, in the case of electron QDs with a parabolic
potential shape, the positions of interlevel absorption
peaks depend neither on the number of electrons in the
quantum well nor on the Coulomb interaction between
these electrons (generalized Kohn theorem [41]). This
is explained by the possibility of separating the motion
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Fig. 10. The plots of (a) integral IR absorption intensity,
(b) interlevel resonance energy, and (c) full resonance width
at half maximum versus optical pumping power density.
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of the center of mass and the relative motion of elec-
trons. However, the Kohn theorem may fail to be valid
in systems with a nonparabolic potential and in the QDs
with holes [42]. In this case, an increase in the number
of carriers on a given level is accompanied by the
growth in their energy because of the electrostatic Cou-
lomb interaction. Thus, if the observed band shift were
related to the hole interaction, the energy of the transi-
tion from ground to excited state would decrease by Ehh

upon occupation of the ground state. However, this
contradicts our experimental results and we conclude
that the observed shortwave shift cannot be related to
the electrostatic charging of QDs with holes.

In the regime of collective electron modes, the indi-
viduality of QDs in the array is lost as a result of mul-
tiparticle effects. In this case, the width of the interlevel
resonance must be determined only by the carrier life-
time in the excited sate, rather than by the island size
fluctuations. The energy dependence of the absorption
probability is described by the Lorentz function

(5)

were N = 10 is the number of quantum dot layers, Γ is
the rate of the excited carrier relaxation to the ground
state (determined by the scattering mechanism), and nr

is the index of refraction. By approximating the exper-
imental absorption band measured at P = 110 mW/cm2

with a curve according to Eq. (5) (dashed curve in Fig. 9),
we determined the full resonance width at half-maxi-
mum 2Γ = 17 meV and the oscillator strength f = 0.95.
The width 2Γ = 17 meV corresponds to the hole life-
time in the excited state τex = "/Γ = 0.8 × 10–13 s, which
is also a typical value for 2D systems [43]. The pres-
ence of effective relaxation is evidence that the phonon
bottleneck effect does not play any significant role for
the interlevel transitions in QDs. Previously, an analo-
gous conclusion was derived from the analysis of exciton
transitions in InAs/GaAs quantum dots [2]. In our case,
this behavior can be explained by the proximity of the
interlevel resonance energy (~80 meV) to a double value
of the LO-phonon energy in Ge (≈40 meV), which must
simulate the two-phonon scattering processes.

As noted above, the optical transitions are often
characterized by the equivalent absorption cross section in
addition to the oscillator strength and lifetime. Taking into
account the absorption band amplitude (4 × 10–3 for the
system with 10 QD layers) and the carrier concentra-
tion in each QD layer (5 × 1011 cm–2, see Section 3.2), we
estimate the absorption cross section at 8 × 10–16 cm2.
Note that a significantly smaller value (1.6 × 10–16 cm2)
was obtained previously for the interlevel hole transi-
tions in InAs/GaAs quantum dots [8].

The experimental value of the oscillator strength
f = 0.95 corresponds to a dipole length of 〈x〉  =

 = 0.7 nm in the sample plane for

α fNne2
"

2m0Γnrce0
--------------------------- 1

1 E E0+( )/Γ[ ]2+
-------------------------------------------,=

"
2 f /2m0 E1 E0–( )
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E1 – E0 ≈ 70 meV. We performed a theoretical analysis
of the polarization selection rules for the main inter-
level transition in a tight binding approximation using
sp3d5s* atomic orbitals. In calculating the optical tran-
sitions, we also took into account the spatial distribution
of elastic deformations in the structure studied [28]. It was
found that the hole transition from ground to excited
state has a nonzero matrix element only in the lateral
direction and is characterized by an oscillator strength
of  f = 0.7 and a dipole length of 〈x〉 ≈ 0.9 nm, in agree-
ment with experimental data.

3.4. Photoconductivity in the Region
of Interlevel Transitions

The photoconductivity was studied in a multilayer
sample structure with eight QD layers grown on a
highly doped p+-Si substrate, which also served as the
bottom electric contact. The top contact was obtained
by depositing a 50-nm-thick layer of p+-Si doped with
boron to ≈1019 cm–3. The thickness of Si regions sepa-
rating the Ge layers was 110 nm. Within a 10-nm dis-
tance from each Ge layer, Si was δ-doped with boron at
a layer concentration of 6 × 1011 cm–2, which ensured
nearly complete filling of the island ground state with
holes. The photoconductivity measurements were per-
formed in the vertical geometry. The temperature
dependence of the dark conductivity within the ohmic
region of the current–voltage curve in these structures
follows the activation law with an activation energy
close to the depth of the ground energy level of holes
(~400 meV). When the applied voltage increased above
0.1 V, the current exhibited a quadratic dependence on
the voltage explained by the hole injection into the first
excited state. In this regime, the conductivity activation
energy decreased to ~300 meV, which is actually close
to the ionization energy of the excited state in charged
Ge quantum dots [44].

Figure 11 shows the spectra of photoresponse mea-
sured at various applied voltages. The curves exhibit
two photoconductivity peaks: the low-energy peak corre-
sponds to the hole transitions from the ground to the first
excited state, and the high-energy peak apparently reflects
the transitions to a third excited level of QDs. The energy
positions of the peaks agree with the distances from the
first to second and from the first to third levels determined
previously for Ge quantum dots by the method of reso-
nance tunneling spectroscopy [3]. The appearance of
photoconductivity in the vertical geometry of the exper-
iment is determined by two processes. The first is the
photoexcitation of holes from the ground to excited state.
The second is the thermal ionization of the excited level,
which transfers the hole to the band of delocalized states
and allows it to contribute to the photocurrent.

Figure 12 shows the behavior of the photoconduc-
tivity amplitude as a function of the applied voltage. In
the region of voltages above 0.4 V, the signal intensity
begins to decrease because holes are accumulated in the
 AND THEORETICAL PHYSICS      Vol. 92      No. 3      2001
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excited states and the optical transitions are blocked.
Combining these data with the results of noise current
measurements, we evaluated the maximum detection
capacity of the structure studied as a photodetector:
1.7 × 108 (cm Hz1/2)/W at a wavelength of 20 µm and
0.7  × 108 (cm Hz1/2)/W at a wavelength of 10 µm (at
room temperature and a quantum efficiency of 0.1%).
Note that, even without optimization of the structure
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parameters, these values exceed the analogous character-
istics presently achieved using InAs/GaAs heterostruc-
tures with quantum dots [45].

From the standpoint of fundamental knowledge, an
important result consists in the shift of the photocon-
ductivity peaks toward higher energies observed with
increasing applied voltage (independently of the voltage
polarity). The “red” shift of the intersubband resonance
position previously observed for the carrier injection into
excited subbands in 2D systems [46] was related to the
suppression of the depolarization effect [47]. We
believe that a similar phenomenon must take place in the
QD arrays as well. At low applied voltages (in the absence
of injection), the depolarization effect shifts the interlevel
resonance toward greater energies relative to the quantum-
confinement energy. According to the Pauli principle,
occupation of the excited state decreases the probability
of interlevel transitions and leads to the decay of the
collective excitation. As a result, the resonance must
return to the initial position (unperturbed by the collec-
tive interaction). Analogous behavior must be observed
in the photoinduced absorption spectra at large optical
pumping intensities (Section 3.3). However, a strong
background absorption by free carriers hinders the
manifestation of this phenomenon.

4. CONCLUSIONS

The results of this investigation of the optical proper-
ties of Ge/Si heterostructures with quantum dots allowed
us to draw the following conclusions:

1. We have studied the properties of indirect (in real
space) excitons bound at the Ge quantum dots. It was
shown that the binding energy of these excitons exceeds
that of the free excitons both in Si and Ge, which is related
to the spatial confinement of the hole motion in Ge nanoc-
rystals and the underbarrier penetration of electron to the
region of hole localization. The exciton absorption energy
shifts toward shorter wavelengths upon the formation of
exciton–hole and exciton–exciton complexes in charged
quantum dots. This effect is explained by the spatial
separation of exciton components. For this reason, the
Coulomb interaction between two holes in a quantum
dot, as well as that between two electrons localized in
Si near this quantum dot, dominates over the electron–
hole interaction.

Our theoretical analysis, conducted within the
framework of the SCF approximation with allowance
for the inhomogeneous distribution of elastic deforma-
tion in the structure, showed the following. In a quan-
tum dot with single exciton, the electron is localized in
Si in the vicinity of the Ge pyramid apex (the region of
maximum stresses in Si), while the hole is localized at
the pyramid base. In a complex of two excitons, the
repulsion of electrons leads to their spatial separation
and the second electron is localized in Si under the Ge
pyramid base.
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2. We have studied the IR absorption and photocon-
ductivity for the vertical geometry of light incidence in
the region of photon energies from 60 to 100 meV. The
IR and photoconductivity spectra exhibit maxima cor-
responding to the hole transitions between the first two
quantum confinement levels in Ge nanocrystals. It was
found that an asymmetric shape of the absorption band
observed for low occupancies of the ground state of Ge
quantum dots corresponds to a Gaussian distribution of
the nanocrystal dimensions with a 20% dispersion.

The absorption band exhibited a shift toward short-
wave region, a decrease in width, and a change in shape
(from asymmetric to symmetric) with increasing con-
centration of holes in the ground sate of quantum dots.
These observations are explained based on the concept of
self-sustained collective oscillations of the hole density in
the lateral direction. The collective oscillations are due to
a long-range dynamic electron–electron interaction (lat-
eral depolarization effect).

It is established that the hole injection into an excited
state leads to a longwave shift of the photoconductivity
peak, which is caused by decay of the collective excitation
and by suppression of the lateral depolarization effect.
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Abstract—The problem of a nonlinear current flow in a heterophase medium formed by a random mixture of
linear and nonlinear phases is investigated. The duality relation is derived for the critical indices describing the
effective response of a heterogeneous system. The critical index is calculated at the percolation threshold (for
equal concentrations of the phases). The nonlinear percolation problem is simulated numerically for degrees
k = 3, 5, and 7 of the nonlinear phase. The existence of a duality relation for critical indices is established in a
range of phase concentrations. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of determining the effective conductiv-
ity of macroscopically heterogeneous two-phase media
in the linear ohmic approximation was studied most
thoroughly in the 2D case. It was proved that for equal
concentrations of the phases, the effective conductivity
of randomly heterogeneous two-phase media is equal
to the geometrical mean of the conductivities of the
phases:

(1)

and for arbitrary concentrations of the phases, the fol-
lowing duality relation holds:

(2)

These results were obtained in [1, 2] and, according to
Dykhne [2], are consequences of the symmetry of the
2D equations for direct current relative to the linear
transformations of rotation.

However, in the critical region, in the vicinity of the
metal–insulator transitions, nonlinear effects become
significant in view of anomalously strong fluctuations
of fields and currents. The necessity of including non-
linear effects in the critical region was demonstrated in
[3–5], where an anomalous behavior of critical fields
(currents) as a function of the closeness to the percola-
tion threshold was observed. Besides, additional infor-
mation concerning the microscopic structure of hetero-
geneous media can be obtained from higher-order cor-
relators of fields (currents) [6].

In the weak-nonlinearity approximation, the prob-
lem is reduced to the inclusion of the cubic term in the
expansion of the current in the field:

(3)

σe σ1σ2=

σe ε( )σe ε–( ) σ1σ2.=

j σee χe2e.+=
1063-7761/01/9203- $21.00 © 20514
Nonlinear effects become significant when both terms
become of the same order of magnitude [7–9]. The
effective nonlinearity coefficient χ is determined from
the expression for energy dissipation and is defined as

(4)

This expressions also implies that the reason behind the
increase in the effective nonlinearity of the structure are
singularities in the field correlators 〈e4〉1 and 〈e4〉2. An
anomalous increase in the nonlinear conductivity indi-
cates that the system goes over to the nonlinear perco-
lation mode. This is observed for the critical fields

(5)

and the critical currents

(6)

A considerable number of publications is devoted to an
analysis of the properties of the nonlinearity coefficient
in the critical region as well as outside it [10, 11].

We will analyze here the nonlinear percolation
problem in the following formulation. Suppose that we
have a random mixture of two phases: a linear ohmic
phase with j1 = σ1e and a nonlinear cubic phase j2 =
χ2e3. We are interested in the effective response of such
a system at the percolation threshold,

(7)

and in the value of the index ν describing the nonlinear
response of the system.

In order to solve this problem, we generalize the lin-
ear transformations of rotation to the nonlinear case
and use these generalized transformations to determine
the nonlinear response. This will lead us to the duality

χe
χe4〈 〉
E4

--------------
χ1 e4〈 〉 1 χ2 e4〈 〉 2+

2E4
------------------------------------------.= =

Ec σe/χe=

Jc σeEc.=

J Eν,∝
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relations for the critical indices ν+ and ν– of the nonlin-
ear percolation problem, which describe the response of
the system above and below he percolation threshold:

(8)

Here, k = 3, 5, 7, … is the degree of system nonlinearity.
In the second part of this paper, we present the results
of the numerical simulation of nonlinear percolation for
various values of conductivities of the phases and in a
wide range of concentrations. The numerical simula-
tion is used to establish the existence of a duality rela-
tion for the critical indices (8) of the nonlinear percola-
tion problem in randomly heterogeneous media.

2. ROTATION TRANSFORMATIONS
AND A GENERALIZATION

TO THE NONLINEAR CASE
We will briefly recall the main lines of reasoning

used for solving the problem of the effective character-
istics of a randomly heterogeneous medium. In the 2D
case, the equations for direct current and Ohm’s law
(linear relation between the current and the field),

(9)

are invariant to the linear transformations of rotation:

(10)

Here, n is the unit normal to the plane, j' and e' are the
electric current and the field in the new primed system,
and b and d are constant coefficients. In the primed sys-
tem, Ohm’s law also holds:

(11)

where σ' = b/dσ is the conductivity of the transformed
medium. For an appropriate choice of the coefficients,
i.e., for

(12)

we obtain a system differing from the initial system in
the transmutation of phases:

(13)

Such a system is referred to as dual relative to the initial
one. Repeating the same arguments for averaged quan-
tities, we obtain a similar relation for the effective
parameters of the two-phase medium also:

(14)

Since the initial and primed systems differ only in the
phase transmutation, we have

(15)

Consequently, the effective conductivity of a two-
dimensional randomly heterogeneous two-phase sys-
tem satisfies the duality relation (2). This means that the

ν+ν– k.=

div j 0, curle 0, j σe,= = =

j b n e'×[ ] , e d n e'ˆ×[ ] .= =

j' σ'e,=

b
1
d
--- σ1σ2,= =

σ'
σ1σ2

σ
-----------.=

σe' ε( )σe ε( ) σ1σ2.=

σe' ε( ) σe ε–( ).=
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effective conductivity at the percolation threshold (ε = 0)
is given by

(16)

This duality relation turns out to be helpful for deriving
approximate expressions for the effective conductivity
also. For example, the expressions for the effective con-
ductivity of two-phase media with a low concentration
of inclusions can easily be derived from this relation. It
also allows us to find the conductivity of the system in
the entire range of concentrations if we know the con-
centration dependence of σe above or below the perco-
lation threshold. Besides, the duality relation also
makes it possible to establish the general form of effec-
tive conductivity (structural dependence):

(17)

Here, 2χ(ε) = σe(ε) – σe(–ε) is the odd component of
the effective conductivity as a function of variable ε. It
is described by the functional equation

(18)

where h = σ2/σ1 is the ratio of the conductivities of the
phases.

Note that formula (16) is valid both for randomly
heterogeneous media with an isotropic structure, and
for two-periodic media [12, 13]. Recently, this formula
has been derived anew in a different way for the media
with a staggered structure [14].

We will now generalize the rotation transformations
to the nonlinear case. For the sake of definiteness, we
first consider a cubic nonlinearity. We will seek the gen-
eralized nonlinear transformations in the form

(19)

It can easily be verified that these transformations con-
vert the linear phase with conductivity σ into a nonlin-
ear phase: j' = χ'e'3. Here, the coefficient χ' is given by

(20)

Let us now prove that the same transformations convert
the nonlinear phase into the linear one. The conductiv-
ity of the transformed linear phase in this case is

(21)

Consequently, the proposed generalized nonlinear
transformations make it possible to establish the one-
to-one correspondence (isomorphism) between nonlinear
and linear phases. By averaging transformations (19) over
a random distribution of the phases, we obtain the fol-

σe 0( ) σ1σ2.=

σe ε( ) χ ε( ) χ ε( )2 σ1σ2+ .+=

χ ε 1
h
---, 

  hχ ε h,( ),=

j b n e'×[ ]e'2, e d n j'×[ ] .= =

χ1'
b

dσ1
---------.=

σ2'
b1/3

dχ2
1/3

-----------.=
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lowing relations for the averaged characteristics of the
initial and the primed system:

(22)

where A and B are constant coefficients. Further, we
assume that the average currents in the initial and the
transformed system are nonlinear functions of the field:

(23)

Formulas (22) and (23) readily lead to the following
relation between the critical indices describing the system
response above and below the percolation threshold:

(24)

The relation has a simple meaning. Away from the per-
colation threshold, when the current can flow only
through the linear phase, the effective response is linear
(index ν+ = 1). In this case, the effective response of the
dual primed system (differing from the initial system in
the phase transmutation) away from the percolation
threshold, which is accompanied by the formation of an
infinite cluster from the nonlinear phase, will be nonlin-
ear. The nonlinearity index is equal to the index of the
nonlinear phase: ν– = 3.

At the percolation threshold (for equal concentra-
tions of the phases), when both phases must take part in
the conduction of current, and in the case of the macro-
scopic equivalence of the initial and primed systems,
relation (24) leads to the exact expression for the non-
linearity index at the percolation threshold. It has a root
dependence on the initial nonlinearity:

(25)

The condition of the macroscopic equivalence of the
initial and primed systems is important for deriving
result (25) and will be considered here in greater detail.
In accordance with relations (19), the primed system in
the general case is microscopically nonequivalent to the
initial system since the local field is not of the potential
type:

(26)

Thus, in order to obtain the transformed local electric field
of the potential type, we must impose an additional con-
straint of axial symmetry on randomly heterogeneous
media. In this case, local two-dimensional fields are
directed along the radius, and the condition that the fields
are of the potential type is naturally satisfied. (By way of
an example, we can consider a cylindrical capacitor filled
with a random mixture of linear and nonlinear phases
and study the effective response of such a system.)

In the general case of a power nonlinearity, we must
use the generalized transformations:

(27)

J j〈 〉 AE '3, E e〈 〉 BJ',= = = =

J E
ν+, J' E '

ν–.∝ ∝

ν+ν– 3.=

ν0 3.=

div j bn e'2curle' e' ∇ e'2( )⋅–[ ] 0.= =

j n e'k×[ ] , e n j'×[ ] .= =
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Repeating the above arguments, we derive relation (8)
for the critical indices of type (24) for an arbitrary
power nonlinearity:

(28)

At the percolation threshold and for the macro-
scopic equivalence of the initial and primed systems,
the nonlinear response index for the general case of a
power nonlinearity is given by

(29)

It should be noted that, strictly speaking, the
obtained relations (24) and (28) are valid only for a lim-
ited class of systems with axial symmetry. We will now
verify the applicability of the obtained duality relation
in the absence of such limitations using numerical sim-
ulation, thus extending the region of applicability of the
obtained results.

3. NUMERICAL SIMULATION

Let us briefly describe the algorithm of simulation.
As the initial model, we considered a square network of
conducting links. The values of the conductivities of
the links were chosen at random: a link has conductiv-
ity σ1 with probability p and conductivity σ2 with prob-
ability 1 – p. (In the limit σ2  0, this problem is
transformed into the familiar problem of links in the
percolation theory [15, 16].) Then we calculated the
values of currents I and potentials U in such a medium.
The distributions of currents and potentials in a con-
ducting medium are described by Kirchhoff’s laws:

(30)

Using the simulation program, we studied the flow of
current along the diagonal (from the upper left to the
lower right corner). The current was specified at the ini-
tial point and then was divided into parts depending on
the relation between the conductivities of the phases. The
value of the current arriving at the next node was divided
accordingly, and so on. The operation was repeated until
the paths with a higher conductivity started to converge to
the opposite node (sink) and, accordingly, the currents
started to add up. The distribution of potentials at the
nodes of the network can be determined from the
Kirchhoff’s second law taking into account the magni-
tude of the current and the conductivity of the links; in
other words, the potential drop across each link was
taken into consideration.

The effective conductivity is determined as the pro-
portionality factor between the average current and the
average field:

The correctness of the program operation was verified
by calculating the effective conductivity of a two-phase
medium at the percolation threshold. The results of

ν+ν– k.=

ν0 k.=

Ji

i

∑ 0, JiRi Ui∑+
i

∑ 0.= =

σe J〈 〉 / E〈 〉 .=
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simulation coincide with the exact solution of the prob-
lem to a high degree of accuracy.

In the case of a nonlinear percolation in our formu-
lation of the problem, one phase is a linear ohmic
phase, while the other phase is nonlinear: j = χek, k = 3,
5, 7, 9. As described above, first a random medium con-
sisting of a mixture of the linear and nonlinear phases
was generated, then the current in the system was cal-
culated and the potential drop was determined using the
linear or nonlinear expression depending on the properties
of the conducting phases. Further, the averaging over a
large number of configurations (of the order of 1000) was
carried out to find the effective parameters of the system.
The results of simulation are presented graphically.
Figure 1 shows the values of critical indices above and
below the percolation threshold as well as their prod-
ucts (the value at the percolation threshold) for a cubic
nonlinearity (similar results can also be obtained for
other degrees of nonlinearity). Figure 2 presents the
values of the product of the critical indices for various
degrees of nonlinearity and near the percolation thresh-
old. It can be seen that the results of the numerical sim-
ulation are in good agreement with the predictions of
the above theory based on nonlinear transformations of
rotation.

4. CONCLUSION

Let us discuss our results. A generalization of linear
transformations to the case of nonlinear media has been
carried out. The generalized nonlinear transformations
are used to establish the one-to-one correspondence
(isomorphism) between linear ohmic and nonlinear
phases. The relation for the critical indices describing
the effective response of the system under investigation
above and below the percolation threshold (relation
(28)) is derived for a random mixture of linear and non-
linear phases (with an arbitrary power-type nonlinearity).
In the linear approximation, the problem of current flow
through the system is reduced to determining the effective
conductivity of a heterogeneous medium. Accordingly,
the relation (28) between the indices is transformed into
the duality relation for the effective conductivity of ran-
domly heterogeneous media. At the percolation thresh-
old, as well as in the case when the initial and primed
systems are macroscopically equivalent, this relation in

v+

v0

v–

0.12
1.0

v

ε0.20 0.28 0.36

1.5

2.0

2.5

Fig. 1. Dependence of critical indices on the concentration
of the phase with a cubic nonlinearity (k = 3).
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the linear approximation leads to the exact expression
for the effective conductivity at the percolation thresh-
old (root dependence on the conductivities of the
phases). In our case, we obtain the exact expression for
the critical nonlinearity index at the percolation thresh-
old. It is also a root function of the initial nonlinearity
(formula (29)).

Moreover, it can be verified that although the local
field in the primed system subjected to transforma-
tions (19) is not of the potential type, the averaged electric
field is of the potential nature. For this purpose, we
average Eq. (26) over space. The second term in the
sum vanishes after the averaging over space as the pro-
jection of a two-dimensional vector lying in the plane
on the direction of the electric field. Consequently, the
averaged electric field is of the potential type. Thus, the
initial and primed systems are macroscopically equiva-
lent at the percolation threshold and, hence, the effec-
tive response of the system to the external electric field
can be found and the degree of nonlinearity at the per-
colation threshold can be determined.
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Abstract—There exists a wide temperature region (GiT < T – Tc < T ) where the influence of fluctuations
on the thermodynamic properties of superconductors can be taken into account in the linear (Gaussian) approx-
imation, while their influence on the kinetic properties is strongly nonlinear. The Maki–Thompson contribution
to the conductivity saturates in this region. However, the Aslamazov–Larkin contribution becomes even more
singular. This enhancement is related to the fact that nonlinear effects increase the lifetime of fluctuating pairs.
The pair breaking and energy relaxation processes can decrease the nonlinear effects. © 2001 MAIK
“Nauka/Interperiodica”.

Gi
1. INTRODUCTION

The electron scattering from usual impurities leads
to a temperature-independent residual resistance of
normal metal [1]. The conductivity of bulk samples and
films can be measured with a very high accuracy. This
allows one to study different mechanisms leading to
temperature-dependent conductivity at low tempera-
tures. One of these mechanisms is related to thermal
fluctuations above the superconducting transition tem-
perature Tc [2–5]. There are two kinds of fluctuation
corrections leading to temperature-dependent conduc-
tivity above Tc. The first one is known as the Maki–
Thompson (MT) contribution and the second is the
conductivity of fluctuating pairs (the Aslamazov–Lar-
kin (AL) contribution). These corrections depend dif-
ferently on the spin flip scattering time τs. The charac-
teristic temperature range for the contributions of both
types is determined by the Ginzburg parameter Gi,
which depends on dimensionality; for films, Gi = τ0 =
1/32νDd = e2/16"σh, where ν = mp2/2π2 is the electron
density of states per spin, D = vFltr/3 is the diffusion
coefficient, d is the film thickness, ltr is the electron
mean free path, p is the Fermi momentum, and σh is the
conductance of a square film. It has been found in [6]
that nonlinear fluctuation phenomena lead to a new

temperature scale Tc  (see also [7–10]). In this
paper, we obtain expressions for the conductivity in the

temperature region Gi < τ < , where the Gaussian
approximation works well and the nonlinear fluctuation
effects are important.

In [6], an attempt to find the fluctuating correction to
the conductivity was made. The main point was that

Gi

Gi

¶This article was submitted by the authors in English.
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long-wave fluctuations with Dk2 < Tτ are essential.
These fluctuations can be considered as a Bose conden-
sate. The dynamics of superconductors must be consid-
ered in the background of these fluctuations. They lead
to a pseudogap in the excitation spectrum. In this paper,
we show that shortwave fluctuations with Dk2 @ Tτ can
be important. It was found in [11] that short-wave fluc-
tuations of the order parameter ∆ affect the electron
Green’s functions as paramagnetic impurities with the

depairing factor Γ =  = 〈|∆|2〉/ε. Essential values of

the energy ε are of the order ε ~ ∆ ~ T , and there-

fore, Γ is of the order T . This large value of the
depairing factor leads to saturation of the MT contribu-

tion to conductivity in the temperature region τ < .

A more complicated situation occurs for the AL
contribution. This contribution is proportional to the
density of pairs and their lifetime. For sufficiently large
values of τ, the time-dependent Ginzburg–Landau
(TDGL) equation can be used to obtain this lifetime. It
is proportional to "/(T – Tc), and hence, the AL contri-
bution is proportional to τ–1. If the concentration of
paramagnetic impurities is large or if the energy relax-
ation time is short, the TDGL equation can be used for
all temperatures T. In this case, the AL contribution is
valid in the temperature range τ > Gi. In the opposite
limiting case, the nonlinear fluctuation effects destroy
the applicability of the TDGL equation and increase the
lifetime of fluctuating pairs. As a result, the AL contri-
bution to the conductivity becomes more singular in the

temperature region  > τ > Gi.

τ s
1–

Gi

Gi

Gi

Gi
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2. QUALITATIVE PICTURE
In the temperature region 1 @ τ @ Gi, thermody-

namic fluctuations of the order parameter ∆ can be con-
sidered as Gaussian. The corresponding correlator is
given by

(1)

To calculate thermodynamic quantities in the tem-
perature region τ > Gi, it is sufficient to know only this
correlator. However, a more complicated problem must
be solved in order to calculate kinetic coefficients. One
must find how the Gaussian fluctuations change the
one-particle excitation spectrum. The long-wavelength

fluctuations with k2 <  = 8Tτ/πD can be considered
as a local condensate. They lead to the formation of a
pseudogap in the one-particle spectrum of excitations.
It follows from Eq. (1) that the pseudogap is equal to

(2)

At some distance from the transition (for τ > ),
only excitations with the energy ω > ∆PG are significant.
The pseudogap does not play any role in these excita-
tions. It is therefore sufficient to consider fluctuations
in the linear approximation (see [3–5]). It is important,
however, that the excitations with the energy ω < ∆PG

become essential in the temperature region τ < . In
[6], the fluctuation correction to the conductivity was
considered with the pseudogap taken into account in
the same way as the gap below the transition tempera-
ture. This approximation gives a correct estimate for
the width of the temperature region where the nonlinear
effects are important.

However, the model with a constant ∆ considered
in [6] cannot reproduce the correct temperature
dependence of the conductivity in the temperature

region τ < .
To describe the nonlinear effects, we consider fluc-

tuations of ∆ in the statical approximation. This is eli-
gible, because the fluctuation lifetime (Tτ)–1 is large
compared to the inverse pseudogap. However, the spa-
tial dispersion of the pseudogap changes the physical
picture significantly. To take the spatial variations into
account, we must calculate the conductivity as a func-
tion of the order parameter ∆(r), which is an arbitrary
function of r, and average the result over the Gaussian
fluctuations with correlator (1). We accomplish this
program up to a numerical coefficient in the limiting
case where the energy relaxation rate is large (τε !
(Tτ)–1). In other cases, we obtain a functional form of
the temperature dependence of the conductivity with
undetermined coefficients.

To consider the spatial dependence of the order
parameter, we use the results obtained in [11], where

∆k*∆k〈 〉 T
νd
------ 1

τ πDk2/8T+
------------------------------- 256

π
--------- GiT2

k2 8Tτ /πD+
-------------------------------.= =

kmin
2

∆PG
8
π
--- GiT .=

Gi

Gi

Gi
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the spatial variations of ∆ were shown to act on one-
particle excitations in the same way as the magnetic
impurities. In this case, the total pair breaking rate Γ
can be written as a sum of the pair breaking rate due to
the magnetic impurities and the fluctuation term. Thus,
the self-consistent equation for Γ becomes

(3)

It is important to mention that Eq. (3) is exact if either
ω @ Γ or τs is very small such that the first term in
Eq. (3) is a small correction to the second one. In the
other cases, the self-consistent equation (3) can be con-
sidered as an approximation and gives the result valid
by the order of magnitude only.

In the region where ω < Γ and Γ @ Tτ, we obtain
from Eqs. (1) and (3) that

(4)

which coincides with the value obtained in [7, 12] up to
the logarithmic term. In what follows, we repeat the
derivation in [11] and show that the pseudogap does not
change result (4) qualitatively.

We note that the pair breaking rate Γ is of the order
of the pseudogap ∆PG. Thus, a wide maximum of the
density of states appears at ω ~ ∆PG.

As known from [5], the MT correction to the con-
ductivity saturates for Tτ < Γ and takes the form

(5)

As can be seen from Eqs. (4) and (5), this saturation

occurs for τ < . Similar results have been obtained
in [7, 8, 10]. However, numerical coefficients are dif-
ferent.

We note that the numerical coefficient in Eq. (5)
depends on how the summation of higher-order dia-
grams is made. However, its exact value is not very
important because in the region Tτ < Γ, the MT contri-
bution is less singular than the AL contribution and can
be neglected. The AL contribution does not saturate as
T tends to Tc but becomes more and more singular.

To estimate the AL contribution due to the appear-
ance of fluctuating Cooper pairs, we use the simple
Drude formula

(6)

where n, m, and τfl are the concentration, the mass, and
the lifetime of the fluctuating Cooper pairs. The ratio

Γ k2d

2π( )2
-------------

∆k*∆k〈 〉
ω Dk2/2 Γ+ +
----------------------------------- 1

τs
----.+∫=

Γ 8T
π

------ Gi Γ
Tτ
------ln 

  1/2

,=

δσMT

σ0
-------------

8TGi
πΓ

------------- πΓ
4Tτ
---------.ln=

Gi

δσAL ne2

m
--------τ fl,=
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n/m can be estimated from Eq. (1), while the lifetime
follows from the TDGL equations,

(7)

where ζ is the Langevin noise. In the two-dimensional
case, we have

and

At a sufficient distance from the transition (Tτ > ∆PG) or
for a very large energy relaxation rate, we can set a = 1,
because the quasiparticles are at the thermal equilib-
rium. Thus, we have

(8)

In the presence of the pseudogap, there is no equi-
librium and the coefficient a becomes greater than one.
We recall that below the transition temperature the
coefficient a in the TDGL equations for |∆| similarly
changes (see, e.g., [13–17]). The growth of a and, con-
sequently, the growth of the fluctuation lifetime occur
because the quasiparticles require more time to attain
the thermal equilibrium (let τe denote the correspond-
ing time). A rough estimate gives a ~ ∆PGτe. For a weak
energy relaxation, τe must be determined from the dif-
fusion equation with the pseudogap taken into account
(see [18–20]). We note that in this complicated case, the
coefficient a becomes a nonlocal operator. Rough esti-
mates give the thermal equilibrium transition time τe ~

(D )–1 ~ (Tτ)–1. Taking Eq. (2) into account, we
obtain

(9)

We see that paraconductivity can exceed the normal
conductivity σ0 in the region Gi3/4 > τ > Gi. We empha-
size that corrections to all the thermodynamic coeffi-
cients are small in this region and are adequately
described by the linear theory.

We now discuss the role of the energy relaxation
processes characterized by the quasiparticle lifetime τε.
In the two-dimensional case, the nonelastic electron–
electron scattering in dirty metals leads to the electron–
electron collision time:

Such a large collision time does not change nonlinear
effects. However, the nonelastic electron scattering
from phonons and other possible collective excitations
can decrease τε significantly. These processes, together

a
t∂

∂
Dk2 8

π
---Tτ+ + 

  ∆k t( ) ζ t( ),=

n
m
---- T

2πd"
2

---------------≈

τ fl
π"

8 T Tc–( )a
-------------------------.=

δσAL

σ
------------

Gi
τ

------.=

kmin
2

δσ/σ0 Gi3/2/τ2.=

τε
1– Tdl p2 GiT .∼∼
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with additional pair breaking processes (due to mag-
netic impurities or a magnetic field), decrease the non-
linear effects. The energy relaxation reduces the ther-
mal equilibrium transition time τe. If these processes
are very strong (for example, if the temperature is rela-
tively large), the transport equation for the distribution

function becomes local, and in the limit Tτ ~ Dk2 ! ,
we can write τe = τε. Thus, in the temperature region
under consideration, we have

(10)

The elastic scattering from magnetic impurities and the
magnetic field also tend to diminish the nonlinear fluc-
tuation effects in conductivity, but in a different way.
These scattering processes (as well as scattering from
the static fluctuations of the order parameter) do not
affect the quasiparticle motion nor, hence, τε. However,
if the pair breaking rate is sufficiently large (Γ > ∆PG),
these processes lead to the reduced pseudogap ∆PG ~

〈|∆|2〉/Γ (we recall that ∆PG ~  ~ TGi1/2 without
pair breaking). Thus, the fluctuation correction can be
written as

(11)

In the presence of both a strong pair breaking and a
large energy relaxation, exact expressions for the coef-
ficient a in the TDGL equation, which is local in this
case, and for paraconductivity can be derived with a loga-
rithmic accuracy. The main contribution to a then comes

from the fluctuations with Tτ < Dk2 < . The first ine-
quality allows us to consider only the leading terms in
the expansion of a with respect to ∆, and the second one
implies a local approximation in the transport equation.
The result is

(12)

(13)

We note that Eqs. (9)–(13) are valid only if the param-
eters Γ and τε are such that the contribution to the con-
ductivity δσ is larger than the usual Aslamazov–Larkin

contribution in Eq. (8). If Γ > T and Tτε <  or if
T2τε/Γ < Gi, the nonlinear effects are negligible and the
usual result (8) is valid for all τ > Gi. We note that the
MT contribution saturates at the temperatures such that

Tτ ~ max[Γ, 1/τε, T ].

τε
1–

δσ
σ0
------

Gi3/2Tτε

τ
-------------------.=

∆ 2〈 〉

δσ/σ0 Gi2T /τ2Γ .=

τε
1–

a
τε ∆2〈 〉

2Γ
----------------,=

δσ
σ0
------

32Gi2T2τε

π2Γτ
------------------------- π

8Tτετ
--------------.ln=

Gi

Gi
SICS      Vol. 92      No. 3      2001



522 LARKIN, OVCHINNIKOV
3. DEPAIRING FACTOR INDUCED
BY FLUCTUATIONS

A nonzero fluctuating order parameter ∆ and the
Gor’kov–Green function β [6] exist above the transi-
tion temperature. In the temperature region τ > Gi, the
main contribution to the order parameter ∆ arises from
zero “frequency.” The momentum space can be sepa-
rated into two parts: πDk2/8T < τ and πDk2/8T > τ. The
fluctuations with πDk2/8T > τ can be considered as
“fast” variables created in the background of slow fluc-
tuations with πDk2/8T < τ. The “fast” fluctuations
induce the intrinsic depairing factor Γ even if the exter-
nal depairing factor related to paramagnetic impurities
is missing (τs  ∞). A similar phenomenon was stud-
ied in [11]. Using the method developed in that paper,
we obtain expressions for the statical Green’s functions
α and β and the depairing factor Γ. We start from the
Usadel equation for Green’s functions α and β in the
dirty limit (see [6, 21]),

(14)

Following [11], we present Green’s functions α and
β in the field of “fast” fluctuations of the order parame-
ter ∆(k) as

(15)

The deviations of Green’s functions from their mean
values can be found using the perturbation theory [11]:

(16)

The “mean” Green’s functions 〈α〉 and 〈β〉  are solu-
tions of the system of equations

(17)

The value of the parameter Γ is determined by
Eq. (16) and is equal to

(18)

where 〈∆〉  = 〈|∆|2〉1/2. The quantity 〈∆〉  in Eqs. (16) and
(17) must be understood as the integral over k of
expression (18) over the range πDk2/8T ≤ τ; it then
becomes

(19)

From Eqs. (1) and (18), we obtain

(20)

∆α ωβ–
D
2
---- α∇ 2β β∇ 2α–( )+ αβΓ .=
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-----------------------------------------------------------.–=

α〈 〉 2 β〈 〉 2+ 1, α〈 〉 ∆〈 〉 ω β〈 〉– α〈 〉 β〈 〉 Γ .= =

Γ k2d

2π( )2
-------------

∆k*∆k〈 〉
α〈 〉 ω ∆〈 〉 β〈 〉 Dk2/2+ +

----------------------------------------------------------,∫=

∆〈 〉  = 
T
νd
------ k2d

2π( )2
------------- 1

τ πDk2/8T+
-------------------------------∫

1/2

T
64Gi

π2
------------

1/2

.≈

Γ 16TGi
πτ
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π/4Tτ( ) ω α〈 〉 ∆〈 〉 β〈 〉+( ) 1–

------------------------------------------------------------------------=

× π ω α〈 〉 ∆〈 〉 β〈 〉+( )
4Tτ

----------------------------------------------- 
  .ln
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As can be seen from Eq. (20), Γ(ω) is a function of

the energy ω. In the range τ ≤ , essential values of
ω are of the order Γ. Thus, Γ itself is of the order 〈∆〉
(see (19)). This order of Γ is related to fluctuations of
the order parameter modulus. This value is much larger
than the one due to the phase fluctuations of the order
parameter (see [6]).

4. EQUATIONS FOR THE TIME-DEPENDENT 
ORDER PARAMETER

The static Ginzburg–Landau equations are valid the
in the wide temperature region

(21)

The TDGL equations are valid if the energy relax-
ation time τε or the pair breaking time τs = Γ–1 is suffi-
ciently short [13–16]. For large τε, the dynamics of nor-
mal excitations becomes essential. As a result, the
dynamical term in the equation for the order parameter
becomes more complicated. We now derive the corre-
sponding equation.

The order parameters ∆1, 2(t) can be written as

(22)

with Green’s function  presented in the form [18]

(23)

where GR, A, K are the retarded, advanced, and Keldysh
Green’s functions. Each of these is a Gor’kov–Nambu
matrix

(24)

where ∆2(ω) = (–ω).

In the dirty limit, we have the system of equations
for GR, A (see [19])

(25)

Gi

Gi ! 1 T /Tc–  ! 1.

∆1 2, t( )
πλ eff

2
-----------F1 2,

K t t,( )=

Ĝ

Ĝ GR GK

0 GA
 
 
 
 

,=

GR A K, , g1 F1

F2– g2 
 
 

R A K, ,

,=

∆̃ 0 ∆1

∆2– 0 
 
 

,=

∆1*

D∂+−– gR A, ∂+− F1 2,
R A, F1 2,

R A, ∂gR A,

∂r
-------------– 

  2i∆1 2, gR A,+

– 2iεF1 2,
R A, 2

τ s

----gR A, F1 2,
R A,+ I1 2,

Ph R A,( ),–=
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where  is the electron–phonon collision inte-
gral; in the vicinity of the transition temperature Tc for
small energy values |ε| ! T, this quantity is equal to

(26)

The Keldysh–Green function GK can be written as
[20]

(27)

where the distribution function  is given by [20]

(28)

Equations for the distribution functions f1, 2 have
been derived in [20] and have the form

(29)

where

(30)

In the important limiting case where ε ~ Γ @ ∆,
Eqs. (25) and (29) can be simplified and we obtain

(31)
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where

(32)

The general expression for the collision integrals

 is given in [20, 22]. For small energy values |ε| ! T,
these integrals can be taken in the simple form:

(33)

where s is the velocity of sound in the metal and g is the
electron-phonon coupling constant.

In the limiting case of strong energy relaxation with

τε∆ ! 1, the distribution function  can be taken as the
equilibrium one,

(34)

In this case, Eqs. (22), (31), and (34) allow one to
obtain the time-dependent Ginzburg–Landau equation
in the standard form:

(35)

If the condition τε∆ ! 1 is not satisfied, the devia-

tion of the distribution function  from its equilibrium
value can change the last term in Eq. (35).

In the range Γ @ ∆, the crossing term in Eq. (31) has
a smallness of (∆/Γ)2. In the leading approximation,
system (31) is therefore diagonal.
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With the aid of Eqs. (27), (28), and (31), we can
rewrite Eq. (22) as

(36)

where we set

(37)
In (36), the contributions of the second terms are of

the order (∆/Γ)2. This result is due to the cancellation of
the terms coming from δf and f1, but in the next orders
of the perturbation theory, the quantity f1 becomes
small and the main contribution arises from the distri-
bution function δf beyond perturbation theory.

5. THE CONDUCTIVITY OF FLUCTUATING 
PAIRS (THE ASLAMAZOV–LARKIN 

CONTRIBUTION)

The conductivity of fluctuating pairs is given by the
diagrams in Fig. 1a. In what follows, we assume that
the order parameters ∆1, 2 can be written as the sums of
two terms. One of them is related to the statical thermo-
dynamic fluctuations ∆ and ∆*. In the range τ > Gi,
these fluctuations are Gaussian with the correlator
given by Eq. (1). The wavy line in Fig. 1a gives the

dynamical fluctuations  of the order parameter.

The correlators of these fluctuations  must be found
in the background of thermodynamic fluctuations,

(38)

τ π
8T
------ iω1 D

r2

2

∂
∂

–– 
 + ∆1

–
π
2
--- εd

2π
------

∞–

∞

∫ δf F1
R F1

A–( ) f 1 F1
R F1

A+( )–[ ] 0,=

τ π
8T
------ iω1 D

r2

2

∂
∂

–– 
 + ∆2

–
π
2
--- εd

2π
------

∞–

∞

∫ δf F2
R F2

A–( ) f 1 F2
R F2

A+( )–[ ] 0,=

f ε/2T( )tanh δf .+=

∆̃1 2,

K̂ij

K̂ ij ω1( ) ν ∆i*∆ j〈 〉 ω1
.=

(a) (b)

Fig. 1. The Aslamov–Larkin contribution to the conductivity
(a); the Maki–Thompson contributions to the conductivity (b).
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The contribution to the conductivity can be
expressed through the correlators  in the same way as
for weak fluctuations [3].

First, we must find the conductivity as a function of the
Matzubara frequency ω0 and then perform the analytical
continuation in ω0. The correction to the current was
found in [6] with the aid of the equations for the Green’s
function in the dirty limit in high-frequency fields,

(39)

where  is the vector potential of the external field

and the matrix  is given by

(40)

After the analytical continuation with respect to ω0
in Eq. (39), we obtain

(41)

It was found in [6] that the fluctuations are weak in
the range τ > Gi1/2. In this region, we have

(42)

From Eqs. (40)–(42), we obtain the well-known result
for the paraconductivity [3], 

(43)

To obtain the conductivity in the temperature region
τ < Gi1/2, we must find the correlation functions  in
the field of thermodynamic fluctuations ∆. We must
then average the expression for conductivity over ∆.
The correlation functions  can be found from Eq. (36),
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where the operators Cij are given by

(45)

In Eqs. (45), the operators δf (1, 2) and  are such
that

(46)

with δf  and f1 being the respective solutions of system (31)

in the field of  and . System (31) cannot be solved
analytically for an arbitrary function ∆(r). Neverthe-
less, in the range τ < Gi1/2, the expression for the corre-

lation functions  can be found with the logarithmic
accuracy if the value of the external depairing factor Γ
is larger than ∆. In this case, simple expressions for the

Green’s functions  can be used,

(47)

If Dk2 @ |∆|2/Γ, the contribution of δf (1, 2) is can-
celled out in the expressions for C11 and C22. We note

that Dk2 ! |∆|2/Γ implies  ! δf (1, 2). Thus, this
region gives the dominant contribution to Cij. Equa-
tions (44) and (45) can then be reduced to
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(48)

This system can be solved with the logarithmic

accuracy for strong energy relaxation  > Tτ. In this
region, it follows from Eq. (1) that

(49)

Equations (1), (48), and (49) now imply the relations

for the correlators ,
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The nondiagonal elements in  give a logarithmi-
cally small contribution to the conductivity. As a result,
we obtain

(52)

The situation becomes more complicated if the
energy relaxation time τε is large. From (48), we then
obtain the equation for the correlator K11

(53)

We next find the mean value
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This implies that the coefficient at ω1 in the equation for
K11 is logarithmically large. Contrary to the previous

case (  @ Tτ), the last term in the right-hand side of
Eq. (53) is essential; together with off-diagonal ele-

ments in , it leads to the cancellation of large terms
in the conductivity. To verify this, we must find the
mean value of the product of four ∆ in the last term in
Eq. (53). We have

(55)

where

(56)

The ln2 term can be easily separated in expression (55).
As a result, we obtain
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------------------------------------------------------ αk

2 4πα kGi
Γ

-------------------
k2

1d

2π( )2
-------------

πD/8T( ) k1
2 k2–( ) ω1 α k1

α k–( )+

τ πD/8T( )k1
2+( ) k1 k–( )2 τ πD/8T( ) k1 k–( )2 ω1α k1 k–+ +( )

------------------------------------------------------------------------------------------------------------------------------------------------∫–
 
 
 

.=
In Eq. (55), we omitted the “diagonal” term with the
denominator of the type [ω1 + D(k + k1)2]2. This term leads
to a small correction to the coefficient at ω1 in (53).
 

With the same accuracy, we now present the
expression for the nondiagonal elements K12 and
K21 as
(58)

K21

πω1

16TΓ
-------------

k2
1d k2

2d

2π( )4
-------------------

∆k1
*∆k2

*K11 k( )

ω1 D k k1–( )2+( ) τ πD/8T( ) k k1– k2–( )2 ω1α k k1– k2–+ +[ ]
-----------------------------------------------------------------------------------------------------------------------------------------------,∫–=

K12

πω1

16TΓ
-------------

k2
3d k2

4d

2π( )4
-------------------

∆k3
∆k4

K22 k( )

ω1 D k k3+( )2+( ) τ πD/8T( ) k k3 k4+ +( )2 ω1α k k3 k4+ ++ +[ ]
-------------------------------------------------------------------------------------------------------------------------------------------------.∫–=
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Using Eqs. (57) and (58), we obtain the correction
to the conductivity as 

(59)

This expression is valid up to a numerical factor of the
order unity.

If the external depairing factor Γ is zero (a super-
conductor without paramagnetic impurities), the quan-
tity Γ in Eqs. (51) and (59) must be replaced by its
intrinsic value

(60)

(see Eq. (18)). In the temperature region Gi < τ < Gi1/2,
we then obtain

(61)

Equation (61) implies that the AL contribution to the
conductivity is strongly enhanced in the temperature
region Gi < τ < Gi1/2.

6. THE MAKI–THOMPSON CONTRIBUTION 
TO CONDUCTIVITY IN THE NONLINEAR 

FLUCTUATION REGION

The general expression for the MT contribution to
the conductivity (σb) was given in [6]. Equation (28) in
[6] can be considered as the interpolation of the MT
contribution that is valid in the entire temperature
region τ > Gi. The depairing factor Γ in Eq. (28) in [6]
must be changed to a sum of two terms: the external

depairing factor  related to the spin flip scattering on
magnetic impurities and the intrinsic depairing factor
given by Eq. (20). As a result, we obtain

(62)

In the range Gi < τ < Gi1/2, the MT contribution
reaches its saturation value and effectively becomes
temperature independent,

(63)

The correction remains small in the entire region Gi <
τ < Gi1/2, where nonlinear effects are important.

We note that real superconductors are always inho-
mogeneous. The finite value of the transition width
leads to the appearance of an effective depairing factor
[11]. The value of this depairing factor can be suffi-
ciently large in the units of TGi. In this case, the MT
contribution to the conductivity is small compared to
the AL contribution in the entire temperature region.

σa

σ0
----- 4TGi2

πΓτ2
---------------.≈

Γ TGi1/2≈

σa/σ0 4Gi3/2/πτ2.≈

τ s
1–

σb

σ0
-----

π
8dν
--------- k2d

2π( )2
------------- 1

Γ Dk2/2+
------------------------- 1

τ πD/8T( )k2+
------------------------------------∫=

=  
2Gi

τ
--------- 1

πΓ /4Tτ 1–
---------------------------- πΓ

4Tτ
--------- 

  .ln

σb

σ0
----- Gi1/2 Gi1/2

τ
----------- 

  .ln=
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7. CONCLUSIONS

We have seen that nonlinear fluctuation effects are
much stronger in kinetics phenomena than in thermo-
dynamics. If the external depairing factor is absent, the
nonlinear effects lead to a saturation of the MT con-
tribution to the conductivity in the temperature region
τ ≤ Gi1/2. In this temperature region, the AL contribu-
tion becomes even stronger and grows as

. In a superconductor with a suffi-

ciently large external depairing factor Γ =  > TGi1/2

or a short energy relaxation time  > TGi1/2, the MT
contribution saturates in the temperature region Tτ ≤ Γ
or Tτ ≤ . It is not very sensitive to nonlinear effects.
Magnetic impurities and the energy relaxation act on
the AL contribution in different ways. Energy relax-
ation leads to the appearance of a collision integral in
the kinetic equation for the distribution functions of
normal excitations. This collision integral diminishes
the nonequilibrium contributions to the distribution
functions. Magnetic impurities and the magnetic field
act only on the superconductivity and do not lead to the
relaxation of the distribution functions. However, the
TDGL equation essentially depends on the electron dis-

tribution function. If  > TGi1/2, the nonlinear fluctu-
ation effects are not essential and the AL contribution

remains the same, , in the entire tempera-

ture region τ > Gi. If the inequality  < TGi1/2 is sat-

isfied, the law  applies in the tempera-

ture region Tτ > . In the region (Tτε)–1 > τ > Gi, the
correction to the conductivity is given by

Tτε/τ (see Eq. (52)). Magnetic impurities
(or a current) suppress nonlinear fluctuation effects in
σa, but the effect is not as strong as for the energy relax-
ation. In the range TGi/Γ > τ > Gi, the correction to the
conductivity σa is given by Eq. (59), σa/σ0 ~ TGi2/(Γτ2).
In the temperature region τ > TGi/Γ, the correction σa

is given by Eq. (43) in the linear approximation.

It is essential that the conductivity of fluctuating
pairs can be larger than the conductivity of normal elec-
trons in the temperature region where the correction to
the thermodynamic quantities is still small (see
Eq. (61)).
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Abstract—The dynamics of localized waves is analyzed in the framework of a model described by the
Korteweg–de Vries (KdV) equation with account made for the cubic positive nonlinearity (the Gardner equa-
tion). In particular, the interaction process of two solitons is considered, and the dynamics of a “breathing” wave
packet (a breather) is discussed. It is shown that solitons of the same polarity interact as in the case of the
Korteweg–de Vries equation or modified Korteweg–de Vries equation, whereas the interaction of solitons of
different polarity is qualitatively different from the classical case. An example of “unpredictable” behavior of
the breather of the Gardner equation is discussed. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The Korteweg–de Vries (KdV) equation provides a
basis for the description of wave processes in dispersive
media. It includes a nonlinear (quadratic) and a disper-
sive term, which appear in the first order approximation
in perturbation theory with respect to two small param-
eters, the amplitude and the wave number. The KdV
equation, which provides a model for describing sur-
face and internal waves in oceans and the Rossby
waves, can be also used to describe various wave pro-
cesses in the atmosphere, plasma, astrophysics, and
transmission lines (see, e.g., [1–3]). In a number of
physical applications, the nonlinearity of the lowest
order is cubic. In this case, the problem is reduced to
the modified Korteweg–de Vries equation. For exam-
ple, it describes acoustic waves in plasma, the propaga-
tion of an elastic quasi-plane wave in a lattice, and
internal ocean waves under certain stratification [4–6].
If the solution of the modified KdV equation on a ped-
estal is considered (which tends to a constant at infin-
ity), which often corresponds to an external confining
force or flow, then this problem is described by an evo-
lutionary equation with two nonlinear terms, which is a
generalization of the KdV equation and is called the
Gardner equation. It is written as

(1)

Two nonlinear terms in Eq. (1) correspond to the case
of large amplitude waves. The coefficients in Eq. (1)
can take various values depending on a concrete appli-
cation. In physical problems, the KdV equation must be
replaced by the Gardner equation (1) in the case when
the coefficient of the quadratic nonlinearity is very

∂u
∂t
------ c αu α1u2+ +( )+ ∂u

∂x
------ β∂3u

∂x3
--------+ 0.=
1063-7761/01/9203- $21.00 © 20529
small. In physical problems, the nonlinear coefficients
in Eq. (1) can vary within a wide range and can change
their sign (for example, in [7], an analysis of the non-
linear coefficients for model cases of the stratification
of internal ocean waves is given), which results in non-
trivial effects in the wave transformation [8–10]. All
three models mentioned can be integrated by the
inverse scattering transform [11–14] and have an infi-
nite set of time-independent integrals and elastically
interacting soliton solutions.

It is also known that in the case of a positive cubic
nonlinearity, the modified KdV and Gardner equations
have breather solutions corresponding to “breathing”
wave packets [3, 15, 16]. Breathers, along with soli-
tons, determine the asymptotics of the wave field. The
KdV and modified KdV equations have long become
classical, and the dynamics of their solitons is well
understood (see, e.g., [1–3, 15]).

Notwithstanding the increased interest in nonlinear
evolutionary equations with higher order nonlinear and
dispersive terms (see, e.g., [17–19]), the completely
integrable Gardner equation has not been studied from
the viewpoint of soliton interaction. In the papers [20,
21], the interaction of solitons was analyzed for the
case of a negative cubic nonlinearity (α1 < 0), and the
special role played by the limit (“broad”) soliton in the
evolution of the wave field was demonstrated. The phe-
nomenon of peculiar interaction with a “broad” soliton
has been recently validated in the framework of the
fully nonlinear model of the two-layer water [22]. In
this case, the second soliton changes its polarity and
propagates on the back of the “broad” soliton. The
wave dynamics of the Gardner equation (1) with a pos-
itive nonlinearity (α1 > 0) is qualitatively different from
001 MAIK “Nauka/Interperiodica”
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that of the former case. The present paper gives an anal-
ysis of the soliton interaction for this equation.

2. SOLITON SOLUTIONS 
TO THE GARDNER EQUATION

For simplicity, we use dimensionless variables;
then, Eq. (1) for the function v(y, τ) is written in the
form

(2)

It is well known that Eq. (2) has soliton solutions

(3)

The parameter Γ1 determines the size of the soliton, and
the sign s1 = ±1 determines its polarity.

The shape of positive solitons is the same as that of
the solitons of the KdV equation in the limit Γ  0
(small amplitudes), and they tend to the solitons of the
modified KdV equation as Γ (the amplitude) increases
(Fig. 1). The amplitude of negative solitons cannot be
less than the critical one, which is

(4)

A soliton with such an amplitude (for it, Γ1 = 0 and
s1 = –1) is called algebraic, since its value at infinity

∂v
∂τ
------- 6v 1 v+( )∂v∂y

------- ∂3v

∂y3
---------+ + 0.=

v sol y τ,( )
Γ1

2

1 s1 1 Γ1
2

+ Z1cosh+
---------------------------------------------------,=

Z1 Γ1 y V1τ– y1–( ), V1 Γ1
2, s1 1.±= = =

v cr 2.–=

–6
–2

y

v

–4

–2

2

4

0

–1 0 1 2

Fig. 1. Solitons of the Gardner equation with a positive
cubic nonlinearity. The dashed curve represents the “alge-
braic” soliton.
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decreases as a power function rather than as an expo-
nential one (the dashed curve in Fig. 1):

(5)

This soliton does not move and is unstable [16]. In the
limit Γ1  ∞, the shape of negative solitons tends to
that of the solitons of the modified KdV equation.

It must be noted that Γ has a clear physical meaning:
its square equals the propagation speed of the solitary
wave V. For the KdV and modified KdV equations, the
greater soliton propagates faster; however, for the
Gardner equation with a positive cubic nonlinearity,
this is true only for solitons of the same polarity.

Since the Gardner equation is integrable, it pos-
sesses an infinite number of time-independent inte-
grals. The simplest of them are the mass and energy
integrals:

(6)

They are often used for qualitative reasoning and to
control the accuracy of numerical experiments. For
solitons (3), these integrals have the form

(7)

where the signs “+” and “–” correspond to the polarity
of the soliton.

The simplest multisoliton solution (the two-soliton
one) can be obtained by the inverse scattering trans-
form, by the Hirota method, and by the Darboux trans-
formation (these methods were adapted for the Gardner
equation with a negative cubic nonlinearity in [14, 23]
and [21], respectively). In the most compact form, the
two-soliton solution to Eq. (2) is written as

(8)

The expression for v2sol(y, τ) was obtained by the Dar-
boux transformation (see [21]) for Eq. (2); it describes
the real solution, although it is complex in its form.

v alg y τ,( ) v sol y τ,( )
Γ1 0→
lim

2

1 y2+
--------------.–= =

M v y τ,( ) y, Ed

∞–

∞

∫ v 2 y τ,( ) y.d

∞–

∞

∫= =

Msol
+ 2 Γ1,arctan=

Msol
– Msol

+ 2π,–=

Esol
± 2Γ sol Msol

± ,–=

v 2sol y τ,( ) i
2
--- Γ2

2 Γ1
2–( ) 1

Γ2 Z2+ Γ1 Z1+tanh–coth
--------------------------------------------------------

=

–
1

Γ2 Z2– Γ1 Z1–tanh–coth
--------------------------------------------------------

 ,

Z j±
Γ j

2
----- y V jτ– δj y j–±( ),=

Γ jδj( )tanh iΓ j,–=

V j Γ j
2, j 1 2, Γ 2 Γ1 0.> >,= =
 AND THEORETICAL PHYSICS      Vol. 92      No. 3      2001



DYNAMICS OF LOCALIZED WAVES WITH LARGE AMPLITUDE 531
When written in the real form, it is much more compli-
cated:

(9)

The subscript j indexes the solitons, and the sign sj = ±1
in the expression for Dj determines the polarity of the
corresponding soliton.

3. INTERACTION OF SOLITONS
Formulas (8) and (9) describe the interaction of two

solitons of any polarity. In the framework of Eq. (2),
two solitons with an equal speed cannot exist as station-
ary: they would interact. As was already mentioned, the
amplitude of every type of solitons (the positive and the
negative ones) monotonically depends on the speed;
however, the negative of two solitons of different polarity
propagating with the same speed is greater in amplitude
(in the absolute value). Hence, the positive of two solitons
of different polarity and the same amplitude is faster.

The interaction of solitons of the same polarity is
qualitatively similar to that of the KdV solitons or of
the modified KdV solitons of the same polarity: if their
amplitudes are significantly different, then one soliton
overtakes the other, and a single-hump symmetric pro-
file appears; otherwise, an exchange of energy takes
place, but no single hump appears.

It is convenient to introduce a parameter equal to the
ratio of the amplitudes, r = A1/A2, where the soliton
with the subscript 2 is the faster one and Γ2 > Γ1 (for
solitons of the same polarity, A2 > A1 and, therefore, 0 <
r < 1). Then, the boundary value of this parameter,
which separates two possible interaction scenarios, can
be found from the two-soliton solution (9). It depends
on the amplitude of the interacting solitons; the plot is
shown in Fig. 2. The curve A2 = –2/r, which limits the
domain of feasible values of the parameters in Fig. 2,
appears due to the existence of the minimal negative
soliton, the algebraic one. For demonstrative purposes,
Fig. 2 is not to scale. In reality, the range of values of r
is very small for various amplitudes A2: for positive
solitons, it is 0.33 < r < 0.38, and for negative ones,
0.38 < r < 0.40. In the limit, this parameter tends to the
values corresponding to the KdV equation (small
amplitudes) and to the modified KdV equation (infi-
nitely large amplitudes). For this reason, the inclusion
of two nonlinear terms in the equation is of no qualita-

v 2sol y τ,( ) Γ2
2 Γ1

2–( ) Γ2
2d1+ Γ1

2d2––( )=

× Γ2
2d1+d2+ Γ1

2d1–d2–+[

+ 2Γ1Γ2 Γ1Γ2 D1D2 Z1 Z2sinhsinh–( ) ] 1– ,

d j+ 1 D j Z j, d j–cosh+ 1 D j Z j,cosh–= =

D j s j 1 Γ j
2+ ,=

Z j Γ j y V jτ– y j–( ), V j Γ j
2,= =

s j 1, j± 1 2, Γ 2 Γ1 0.> >,= =
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tive importance for describing the interaction of soli-
tons of the same polarity.

While interacting, the solitons of the Gardner equa-
tion of different polarity pass through one another,
forming a single-hump symmetric shape at time τ = 0.
This situation is similar to that for the modified KdV
equation. For interacting solitons of the Gardner equa-
tion, the relation

(10)

holds. For solitons of different polarity, this means that
the height of the central point is equal to the difference
of the amplitudes of the solitons at the moment when
the symmetric wave profile is formed. Thus, the inter-
action of solitons of different polarity increases the
amplitude of the wave. The polarity of the combined
wave is determined by the faster soliton, which is dif-
ferent from the similar problem for the modified KdV
equation, in which the greater soliton is faster. Neglect-
ing the quadratic nonlinearity in Eq. (2) when consider-
ing the interaction of solitons of different polarities,
that is, an attempt to describe the problem by the mod-
ified KdV equation, can give a qualitatively different
result (see Fig. 3). Figure 3a presents the result of the
interaction of two solitons of the Gardner equation (2)
when the smaller (positive) soliton is faster (the param-
eters of the solitons are Γ1 = 3.8, Γ2 = 4, A1 = –4.9, and
A2 = 3.1). As was explained above, the interaction pro-
duces a positive wave with the amplitude equal to the
sum of those (Fig. 3a) of the interacting solitons. Figure 3b

v 2 y 0 τ 0=,=( ) A2 A1–=

2

2
1

1

0.4
1/3 1

r = A1/A2

A2

–5
3 5–

2
---------------- 0.38≈

–2
0

A2
1 3r–

3r 1 r
2

––
-------------------------=

A2
1 3r–

3r 1 r
2

––
-------------------------=

Fig. 2. The domains of parameters of the Gardner equation
solitons interacting with overtaking (domain 1) or energy
exchange (domain 2).
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Fig. 3. Modeling the interaction of two solitons of different polarity for (a) the Gardner equation and (b) the modified KdV equation.
The parameters of the solitons are Γ1 = 3.8, Γ2 = 4, A1 = –4.9, and A2 = 3.1.
demonstrates the results of modeling the same problem by
the modified KdV equation (the amplitudes of the inter-
acting solitons are the same as in the example in Fig. 3a).
In this case, the amplitude of the combined wave is deter-
mined by the greater soliton, and the wave is negative.

The presence of two nonlinear terms in the Gardner
equation implies interesting phenomena in the case of
the interaction of slow solitons of different polarity.
Since the amplitude of the positive soliton tends to zero
as its speed decreases, whereas the amplitude of the
negative soliton cannot be less than vcr, we see that the
small positive soliton can be indiscernible at the back-
ground of the negative one (Fig. 4a). However, if the
positive soliton is faster, the wave sharply changes its

–120
–2

v

τ = –2000

y–80 –40 0

–1

0

(a)

–10 –5 0 5 10
–2

0

2
τ = 0

–5
–1 1

5

(b)

y

Fig. 4. Interaction of a negative soliton with a positive
small-amplitude, but faster, one (“unpredictable” soliton):
(a) before interaction (the positive soliton is marked by an
asterisk); (b) sharp change in the wave polarity at the
moment of interaction.

v
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polarity at the moment of overtaking (Fig. 4b), and then
the polarity of the wave is recovered.

As a result of the interaction, the solitons acquire a
coordinate (phase) shift

(11)

which is the same as in the case of the KdV and modi-
fied KdV equations.

4. A NONLINEAR WAVE PACKET (BREATHER)
In addition to solitons, the Gardner equation has one

more solitary solution that corresponds to the “breath-
ing” wave packet, the so-called breather. For example,
a breather can appear as a result of a soliton passing the
domain where the quadratic linearity changes its sign
[10], as a result of a perturbation of the algebraic soli-
ton [16], or from a certain initial perturbation (in [24],
the appearance of a breather for the modified KdV
equation from an initial antisymmetric perturbation is
considered). A formula for the breather of Eq. (2) was
obtained in [16] by solving the inverse scattering prob-
lem. The breathing solution can be also obtained from
the two-soliton solution (8). In this case, the wave
packet corresponds to two coupled solitons of different
polarity with the parameters

(12)

In the most compact form, the breather can be written as

(13)

where

In the real-valued form, Eq. (13) can be written as

∆y1 2,
2

Γ1 2,
---------

Γ2 Γ1+
Γ2 Γ1–
-----------------,ln±=

Γ2 a ib, Γ1+ a ib, a 0, b 0.>>–= =

v br y τ,( ) 2Im γ2( )–=

× Re
1

γ γ
2
--- z δ+( ) γ*

γ*
2

------ z* δ*–( )tanh–tanh

--------------------------------------------------------------------------------------------------

 
 
 
 
 

,

δ 1
2γ
------ i γ+

i γ–
----------, γln a ib, z+ y y0 γ2τ .––= = =
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(14)v br y τ,( ) 2ab

η ψ θ ϕcoshcos+coscosh
a θ ϕ b η ψcossinh+coshsin
-------------------------------------------------------------------- η ψ θ ϕsinhsin+sinsinh

a θ ϕ b η ψsincosh–sinhcos
-------------------------------------------------------------------+

b η ψ a θ ϕsinhcos–sincosh
a θ ϕ b η ψcossinh+coshsin
-------------------------------------------------------------------- b η ψ a θ ϕcoshsin+cossinh

a θ ϕ b η ψsincosh–sinhcos
--------------------------------------------------------------------–

----------------------------------------------------------------------------------------------------------------------------------------------,=
where

The breather as a whole propagates with the speed Vbr;
the quantity ω corresponds to the rate of the change of
the breather filling; and ybr and yph are arbitrary real
constants. For b @ a, the wave packet includes a large
number of wave bunches (Fig. 5a). At time intervals

(15)

the breather repeats its shape. The wave packet of the
Gardner equation tends to the cubic breather of the
modified KdV equation as (a2 + b2) increases (large
amplitudes or dense filling). The presence of a qua-
dratic nonlinearity in the equation only makes the
breather asymmetric with respect to the level v = 0
(Fig. 5).

The case a @ b is of great interest. In this case, the
propagation of the breather is similar to the situation
when two solitons of different polarity (Figs. 4, 5b)
overtake each other in turn. Solution (14) implies that
two solitons of different polarity that are parts of a
breather move apart to the distance

(16)

as a result of such an oscillation.

If we consider two solitons with close parameters
Γ1, 2 ≈ a (close speeds) that differ by a small quantity b,
then formula (16) yields the phase shift acquired by the
solitons as a result of the interaction (cf. formula (11)).
Thus, for a @ b, the breather consists of two coupled
solitons of different polarity with close speeds. In the
process of the interaction, the solitons acquire the phase
shift characteristic of overtakes; then, the roles of the
solitons are interchanged. Up to the moment of being
overtaken, the overtaking soliton accelerates, while the
soliton being overtaken decelerates; then, the faster
soliton decelerates, and the slower one accelerates as is
the case in the ordinary interaction. In this interpreta-
tion, the case when one of the solitons of the wave
packet is close to the algebraic one and the other is very
broad and small in amplitude (a and b are small) is of

η a y Vbrτ– ybr–( ), θ b y ωτ– yph–( )= =

Vbr a2 3b2, ω– 3a2 b2,–= =

ϕ Re γδ( ), ψ Im γδ( ).= =

Tbr
π

b a2 b2+( )
------------------------=

L
2
a
--- 2a

b
------ln=
F EXPERIMENTAL AND THEORETICAL PHY
interest. The amplitude of the well-distinguished nega-
tive soliton undergoes sharp periodic variations due to
the poorly discernible positive soliton, much the same
as in the interaction of two solitons (Figs. 4, 5b).

For the breather, the mass and energy integrals (6)
have the form

(17)

The breather’s energy increases with a and decreases
when b is increased (i.e., when the filling of the wave
packet increases). Increase of the frequency of the wave
packet filling results in decreasing the mass (in absolute
value), which tends to zero for large b. The breather’s
mass is always negative and is maximal in absolute
value (2π) as a and b tend to zero.

Mbr v br y τ,( ) yd

∞–

∞

∫ –4ψ 2π,–= =

Ebr v br
2 y τ,( ) yd

∞–

∞

∫ 4a Mbr.–= =

–2

–20

v

y

τ
21Tbr

4
--------------=

τ 0=

–10 0 10

0

2

(a)

0 20 40

–2

0

y

(b)

v

τ 0=
τ

Tbr

4
-------=

Fig. 5. Breathers of the Gardner equation: (a) a large num-
ber of wave bunches in the packet (a = 1 and b = 3); (b) two
coupled solitons (a = 1 and b = 0.3).
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5. CONCLUSIONS

A detailed analysis of the interaction of solitons in
the framework of the Gardner equation, which is a nat-
ural generalization of the Korteweg–de Vries equation,
is given. The Gardner equation involves the quadratic
and positive cubic nonlinear terms. The analysis is
based on the analytical two-soliton solution to this
equation. It is shown that taking into account two non-
linear terms in this equation does not qualitatively
change the description of the interaction dynamics of
two solitons of the same polarity compared to the clas-
sical and modified Korteweg–de Vries equations; it is
sufficient to allow for the dominant nonlinear term in
the evolutionary equation. However, both nonlinear
terms are important for the describing the interaction of
two solitons of different polarity, especially slow ones.
The polarity of the resultant wave is determined by the
faster of the two solitons; thus, the greater soliton can
sharply change its polarity under the influence of a
small wave of different polarity (Fig. 4). The “breath-
ing” wave packet (breather) becomes asymmetric if the
quadratic nonlinearity is taken into account. The
breather can possess a complicated behavior similar to
that of two coupled solitons (Figs. 4, 5).
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Abstract—The results are given of an experimental investigation of fluctuation phenomena under conditions
of electric arc discharge. Fluctuations are observed whose spectral density is inversely proportional to fre-
quency (1/f noise). Power dependences are revealed of the fluctuation distribution functions. The behavior of
spectral density and of distribution functions is associated with the simultaneous occurrence of various non-
equilibrium phase transitions. Within the framework of the mean field theory, a mathematical model is sug-
gested of interacting nonequilibrium phase transitions in a distributed system, which predicts the self-organization
of the critical state and the generation of fluctuations with diverging spectral characteristics. An adequate agree-
ment is observed between the suggested model and experimental data. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Fluctuation processes, whose power spectrum var-

ies inversely proportionally to frequency (flicker or 1/f
noise), are observed in diverse systems (electrophysi-
cal, geophysical, astrophysical, biological, environ-
mental, etc.).

To date, various models are available in the litera-
ture, which explain the origin of flicker noise. The best
known models of flicker noise in solids include the
model of exponential distribution of relaxation times
(see, for example, [1, 2]), as well as thermal models in
which the mechanisms of thermal conductivity are
taken to be responsible for flicker noise [3]. Theoretical
reasoning, which points to the possibility of switching
off the thermal-conductivity mechanism and to the
responsibility of nonlinear interaction of the diffusion
and thermal-conductivity modes in metals for 1/f α

noise, is given in [4]. According to [5], the scale-invari-
ant power form of the spectrum in phonon systems is
associated with fluctuations of the rate of diffusion of
the phase and of relaxation of the phonon modes. Kli-
montovich [6] treats 1/f noise as anomalous Brownian
motion in bounded space. However, in spite of the
efforts of many years, no generally accepted pattern of
this phenomenon exists until now, and it is often that
the mechanisms leading to fluctuations with 1/f spec-
trum are not clear. Therefore, the problems associated
with the search for new systems with flicker noise and
with the construction of new models of this phenome-
non retain their urgency.

Interest in random processes with diverging spectral
characteristics has sharply increased recently in view of
the discovery of the phenomenon of self-organized criti-
cality [7]. With self-organized criticality, a system comes
to behave critically in the course of its evolution and needs
no fine adjustment of controlling parameters. The concept
1063-7761/01/9203- $21.00 © 20535
of self-organized criticality is very general and can be used
to describe the behavior of diverse dynamic systems. An
important and unresolved problem of the theory of self-
organized criticality is that of how a system with flicker
noise comes to find itself in the critical state.

The low-frequency divergence of the spectral den-
sity of fluctuations points to the absence of a character-
istic time scale of the process with flicker spectrum.
This leads one to assume that the system is in the neigh-
borhood of critical phase transition. The experiments
performed in [8–10] revealed fluctuations with 1/f
spectrum upon changeover of the modes of boiling of
nitrogen on the surface of thin films of high-tempera-
ture superconductors under conditions of Joule self-
heating. In this case, the superposition and interaction
of two nonequilibrium phase transitions occur. In [11],
thermal fluctuations with 1/f and 1/f 2 spectra were
observed experimentally under conditions of film
boiling of water on a vertically oriented wire heater,
and a similarity was observed between the investi-
gated process and the effect of self-organized critical-
ity. A mathematical model has been suggested [9, 10]
for interpreting the experimental results that describes
nonequilibrium phase transitions in a lumped nonpo-
tential system which is a system of two nonlinear sto-
chastic equations that transforms white noise into two
stochastic processes with the values of spectral den-
sity proportional to 1/f and 1/f 2. It appears of interest
to find the possibility of fluctuations of order parame-
ters with 1/f spectrum in spatially distributed potential
systems.

The intersection and interaction of two nonequilib-
rium phase transitions is a phenomenon that is observed
fairly frequently. For this reason, 1/f noise may be
observed in a wide range of processes with phase tran-
sitions. A typical example of nonequilibrium phase
001 MAIK “Nauka/Interperiodica”
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transitions is provided by processes associated with
electric discharge. Thus, different phase transitions
may occur simultaneously and interact in the discharge
plasma and in the electrode regions. For example, an
arc discharge is accompanied by intensive erosion and
evaporation of electrodes [12].

In this paper, the results are given of an experimen-
tal study into fluctuations of the current of a high-pres-
sure electric arc, and a mathematical model is sug-
gested of the emergence of fluctuations with flicker
spectrum under conditions of interaction of phase tran-
sitions in a distributed system.

2. EXPERIMENT

In this study, we investigated electric fluctuations
under conditions of burning arc discharge. The arc was
ignited with contacting carbon electrodes moved 0.3 to

5

0

–5

0 2 4 6 8 10
t, s

∆
U

, V

Fig. 1. An oscillogram of the voltage drop between the
anode and cathode under conditions of arc discharge in
water.

10–4

10–1 f, Hz

Sf, V
2/Hz

10–2

100

102

101

Fig. 2. The spectral density of oscillation of the voltage drop
between the anode and cathode. The dashed line indicates
the S( f ) ∝  f –1 correlation.
JOURNAL OF EXPERIMENTAL
0.5 mm apart. The electrode diameter was 6 mm. The
experiments were performed either in the air or with the
electrodes immersed in water. In the former case, a
high-pressure hot-cathode arc was realized [12], and in
the latter case, a cold-cathode arc. A strong destruction
of the electrodes occurred in the process of arc burning,
first of all, of the anode. Therefore, in order to avoid the
short-circuiting of the interelectrode gap by coal dust,
the anode was located underneath the cathode. The
experiments were performed at direct current.

The fluctuations of transport current and voltage
drop between the anode and cathode were measured in
the experiments. The method of Fourier transform was
used to find the spectral density of fluctuations by the
measured oscillograms. In many of the experiments
performed in the air, the frequency dependence of spec-
tral density had the 1/f form. The 1/f behavior of the
spectrum was also often observed for fluctuations of the
arc current (in this case, the voltage drop was tapped off
a calibrated resistor). A random phase shift was observed
between the electrodes and current, which was due to the
reactive component of the arc conductivity.

When the electrodes were immersed in water, the
arc became less stable, as manifested in a faster extinc-
tion of the arc; however, in this case, the 1/f behavior of
spectra was observed for almost all oscillograms. In
order to extend the frequency range (defined for a sin-
gle oscillogram by the buffer memory of the oscillo-
scope, 2048 points), the measurements were performed
with different time discretization. Figure 1 gives one of
the oscillograms of the voltage drop between the anode
and cathode. Figure 2 gives the spectral density of
oscillation of the voltage drop between the anode and
cathode. The broken line in Fig. 2 corresponds to the
S( f ) ∝ f –1 correlation. One can see in Fig. 2 that the
correlation of the 1/f form extends over more than four
decimal orders of magnitude.

A microscopic study of the electrodes after the
experiments revealed traces of appreciable erosion. In
experiments with a cold cathode (arc discharge in
water), characteristic traces of cathode spots were
clearly observed on the cathode [12]. Special experi-
ments were performed in order to investigate the
dynamics of electrode destruction; in these experi-
ments, cylindrical carbon electrodes were arranged per-
pendicular to the arc column (in our case, horizontally).
In the course of experiments, a moderate transport cur-
rent was passed through the electrodes in the direction
perpendicular to that of the arc current. Simultaneously
with measuring the voltage drop between the elec-
trodes, fluctuations of the voltage drop across the hori-
zontal electrodes were recorded. Figure 3 gives the
spectrum of fluctuations of the voltage drop on the
cathode and the corresponding oscillogram (in the
inset). One can see in Fig. 3 that the spectrum of fluctu-
ations on the cathode corresponds to the white noise
spectrum, and the realization consists of a sequence of
 AND THEORETICAL PHYSICS      Vol. 92      No. 3      2001
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random spikes. A similar pattern was observed for fluc-
tuations of the voltage drop on the horizontal anode.

3. MATHEMATICAL MODEL

We will treat, within the framework of the phenom-
enological mean field theory, two simultaneous and
interacting phase transitions. In this paper, we will not
define the physical meaning of the order parameters
concretely. We will assume that the space-time evolu-
tion of the process is described by two one-dimensional
stochastic equations of the diffusion type,

(1)

where D1 and D2 are the diffusion coefficients, and
Γ1(x, t) and Γ2(x, t) are δ-correlated random forces. The
set of equations (1) is fairly general and describes non-
equilibrium phase transitions in numerous physical and
chemical systems. We will treat the case in which the
characteristic space scales of variation of the order
parameters differ strongly, i.e., D1/D2 @ 1. In a particu-
lar case, this may imply a strong difference between the
coefficients of thermal diffusivity and diffusion. We
will approximate the source functions characterizing
the interaction of the order parameters (as in [9, 10]) by
the expressions

In this case, the set of stochastic equations takes the
form

(2)

The set of equations (2) describes random walks in the
potential

(3)

The form of the potential surface is shown schemati-
cally in Fig. 4. The function Φ(φ, ψ) has a saddle point
at zero. In the absence of uniformity (∇φ  = 0), lines of
stationary points are also available, which are defined
by the condition φψ = 1. When a nonuniformity of the
parameter φ appears, the φψ = 1 hyperbolas incline
towards an increase in the parameter ψ. Figure 5 gives
a phase pattern of the system, obtained by numerical
integration of the set of equations (2) without random
sources (Γ1 = Γ2 = 0). The broken lines in Fig. 5 indicate

∂φ
∂t
------ D1

∂2φ
∂x2
-------- Q1 φ ψ,( ) Γ 1 x t,( ),+ +=

∂ψ
∂t
------- D2

∂2ψ
∂x2
--------- Q2 φ ψ,( ) Γ 2 x t,( ),+ +=

Q1 φ ψ,( ) φψ2 ψ, Q2 φ ψ,( )+– ψφ2 φ.+–= =

∂φ
∂t
------ D1

∂2φ
∂x2
-------- φψ2– ψ Γ1 x t,( ),+ +=

∂ψ
∂t
------- ψφ2– φ Γ2 x t,( ).+ +=

Φ Φ0
1
2
---φ2ψ2 φψ–

1
2
--- ∇ φ( )2+ x.d∫+=
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separatrices. This set of equations has an asymptotic
solution at t  ∞ in the form of power dependences

φ t 1/4– , ψ t1/4.

10–1
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∆U
, V
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1

Fig. 3. The spectrum of erosion-related fluctuations of the
voltage drop on the cathode. An oscillogram is given in the
inset.

ψ φ

Φ

Fig. 4. The system potential defined by expression (3).

ψ

φ

Fig. 5. A phase pattern of a dynamic system, averaged over
spatial variable.
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In the presence of a spatially distributed random
source, an analytic investigation of the set of equations (2)
presents considerable difficulties because of the pres-
ence of nonlinear terms and the absence of stationary
points. The transition from stochastic equations to the
respective nonlinear Fokker–Planck equation fails to
solve the problem of finding spectral characteristics.
Therefore, in this study we have restricted ourselves
to the numerical methods of solving the set of equa-
tions (2).

The explicit integration scheme was used to derive
numerical solutions. Sequences of Gaussian random
numbers were taken to serve as spatially distributed
white noise. The intensities of random sources and the
diffusion coefficient were used as the controlling

10–4

10–1

〈Sφ〉

10–2 100 f, arb. units

101

103

0

〈φ〉

t

Fig. 6. The space-averaged spectral density 〈Sφ〉  of fluctua-
tions of the parameter φ, and the respective averaged realiza-
tion of 〈φ〉. Broken line indicates the 〈Sφ〉 ∝  1/ f1.09 correlation.

x

t

Fig. 7. A contour diagram of space-time realization of φ(x, t).
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parameters. For a low intensity of noise, solutions of
the set of equations (2) had the form of slightly noisy
relaxation correlations φ(t) and ψ(t), i.e., the system
performed random walks along one of the valleys of the
potential Φ(φ, ψ) depending on the initial conditions. In
so doing, the process was non-steady-state. As the
intensity of random sources increased, changes from
one valley to another started. The process became
steady-state (at least by the first two moments of the
distribution function of the parameter φ and during the
final steps of integration). The transition to the steady-
state process is due to the fact that the external random
forces prevent the system from moving too far along
the narrowing valleys of the potential Φ(φ, ψ). The dis-
tribution functions of variables φ(t) and ψ(t) had a sym-
metric cupola shape and were well approximated by
Gaussian distribution.

The method of Fourier transform was used to find
the spectral density of fluctuations by the calculated
realizations of variables. It was found that, in fairly
wide variations of the diffusion coefficient D1 and of
the intensity of random sources, the spectral density Sφ
of fluctuations of the parameter φ varied in inverse pro-
portion to frequency. At the same time, the frequency
dependence of Sψ was inversely proportional to the
square of the frequency. Figure 6 gives the frequency
dependence of spectral density Sφ( f ) obtained by space
averaging of spectra. The same drawing gives the
respective space-averaged realization. The numerical
data in Fig. 6 were obtained for 65 540 time integration
steps and 32 space integration steps, with dt = 0.05,
dx = 0.8, the intensity σ = 3, and zero initial and bound-
ary conditions. The variation of the initial and boundary
conditions had almost no effect on the results of numer-
ical integration of the set of equations (2). One can see
in Fig. 6 that the 1/f behavior is observed in the fre-
quency range of over four decimal orders. One can
extend this range and observe diverging low-frequency
asymptotics if, as the number of integration steps is
increased by a factor of n, the time integration step is

reduced by a factor of  (with a simultaneous
increase in the intensity of random sources). The spec-
trum of the parameter ψ is the same as in the case of
Wiener’s process of random walks. However, as dis-
tinct from the classical Brownian motion, no deviation
of the mean value of the variable, calculated along the
realization of a random process, from the value aver-
aged over the entire realization is observed in our case
in the realizations of ψ(t). This indicates the stationarity
of the process.

The fluctuation spectra of the variable φ at every
space point also had the characteristic 1/f form. In spite
of the fact that the external random forces were δ-corre-
lated, significant space-time correlations are observed
in the solutions of the system of φ(x, t) and ψ(x, t). Fig-
ure 7 gives a contour diagram of the space-time distri-
bution of the parameter φ(x, t). Light-colored in Fig. 7

n
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Fig. 8. The distribution functions of time intervals of passing the preassigned level: (a) experiment, (b) model.
are the regions of strong space-time correlation. Such
regions may be interpreted as avalanches of sorts.

Note that the 1/f behavior of spectral characteristics
was also retained in the case when random forces in
Eq. (1) did not depend on the space coordinate, i.e., the
external noise acting at every point in space was one
and the same.

The above-described results correspond to the case
when one of the diffusion coefficients (in this case, D2)
is zero. The results of numerical analysis have demon-
strated that, as D2 increases from zero to D1, the Sφ( f )
and Sψ( f ) curves exhibit horizontal “shelves” in the
low-frequency region characteristic of Lorentz spectra.
In the case of equality of the diffusion coefficients, the
parameters φ and ψ coincide, and the set of equations
(2) is equivalent to the Ginzburg-Landau equation for a
first-order phase transition with one order parameter.

For better understanding of the physical meaning of
the set of equations (2), we will perform a linear trans-
formation of variables in the expression for potential (3).
We will introduce new variables

This transformation corresponds to a turn of the phase
plane through angle π/4 and causes no variation of the
type of potential surface. In the new variables, the
expression for potential will take the form

(4)

One can see from the structure of expression (4) that the
potential Φ(θ, η) corresponds to an intersection of two

θ ψ φ–

2
-------------, η φ ψ+

2
-------------.= =

Φ θ η,( )
1
8
---θ4 1

8
---η4 1

2
---θ2 1

2
---η2–+ +∫=

+
1
2
--- ∇ θ( )2 1

2
--- ∇ η( )2 1

4
---θ2η2– ∇ θ∇ η–+ dx.
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phase transitions with the order parameters θ and η
[13]. Different signs before the squares of the order
parameters imply an intersection of subcritical and
supercritical phase transitions. The last two terms in
Eq. (4) characterize the interaction of the order param-
eters. The negativity of the coefficients before the term
θ2η2 describing the interaction corresponds to the
absence of nonzero steady-state solutions in a purely
dynamic (noiseless) system.

4. DISCUSSION OF THE RESULTS

A distinguishing feature of self-organized criticality
is the presence of power laws of distribution of physical
quantities (which was largely the reason for the emer-
gence of the very term “criticality”). In the papers deal-
ing with self-organized criticality in distributed models
of the “sand pile” type, power distributions of ava-
lanches with respect to size are analyzed, as well as dis-
tributions of avalanche duration [14–16]. In the case
when we have a time series of data obtained experimen-
tally or as a result of numerical integration of equations,
the concept of “avalanche” must be defined in order to
obtain such distribution functions.

Assume that we have a discrete time series xi(ti). We
will select an arbitrary level, for example, x = 0, and
designate the moments at which this level is passed as
tk. We will refer to the time interval between two suc-
cessive passages of this level as the avalanche duration,

The avalanche size will be defined (by analogy with
[16]) as

(5)

Tk tk 1+ tk.–=

sk
1
N
---- xi ti( ) .

ti tk=

tk 1+

∑=
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Fig. 9. The size distribution functions of avalanches: (a) experiment, (b) model.
Figure 8a gives the distribution functions of time inter-
vals of passing zero level for experimental realization,
and Fig. 8b gives the distribution functions for a numer-
ical solution of the set of equations (2) (the variable
〈φ(t)〉  averaged over space coordinate). Straight lines in
Fig. 8 indicate the fT ∝  T–1.4 correlation. Therefore, the
distribution of time intervals (avalanche durations) both
for experimental realizations and for the model is
described by the power law,

(6)

Figure 9 gives the size distribution functions of ava-
lanches for experimental realization (a) and for the
model (b), determined in accordance with expression (5).
Straight lines in Fig. 9 indicate the fs ∝  s–1.2 correlation.
In other words, the size distribution of avalanches
obeys the power law,

(7)

These results are independent of the choice of the level
from which the time intervals and sizes of avalanches
are reckoned.

Therefore, the distributions of avalanche size and
duration, determined experimentally and from model
realizations, are described by the same power laws. The
suggested model of emergence of fluctuations with
flicker spectrum upon interaction of phase transitions in
a spatially distributed potential system describes quali-
tatively correctly the experimentally observed results.
Note that the spatial distribution of a system is not of
fundamental importance from the standpoint of self-
organization of the critical state of a system and gener-
ation of flicker noise. Such behavior may also be
observed in point systems in the presence of external
flows [9, 10]. As distinct from [9, 10], the model sug-
gested by us is a potential one and predicts the possibil-
ity of both time and space correlations.

f T T τ– , τ∝ 1.4.=

f s s γ– , γ∝ 1.2.=
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The model of interacting phase transitions within
the mean field theory is fairly general and offers a fresh
view of the cause of flicker noise and of self-organized
criticality.

The divergence of the spectral characteristics of
fluctuations and the power behavior of relaxation
dependences are indicative of the critical behavior of a
system. Such behavior is observed in a wide range of
controlling parameters and does not require their fine
adjustment. In this sense, one can refer to self-organi-
zation of the critical state.
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