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Abstract—We present measurements of the solar neutrino capture rate on metallic gallium in the Soviet–
American gallium experiment (SAGE) over a period of slightly more than half the 22-year solar cycle. A com-
bined analysis of 92 runs over the twelve-year period from January 1990 until December 2001 yields a capture

rate of (stat (sys) SNU for solar neutrinos with energies above 0.233 MeV. This value is slightly
more than half the rate predicted by the standard solar model, 130 SNU. We present the results of new runs since
April 1998 and analyze all runs combined by years, months, and bimonthly periods beginning in 1990. A simple
analysis of the SAGE results together with the results of other solar neutrino experiments gives an estimate of
(4.6 ± 1.2) × 1010 neutrinos cm–2 s–1 for the flux of the electron pp neutrinos that reach the Earth without chang-
ing their flavor. The flux of the pp neutrinos produced in thermonuclear reactions in the Sun is estimated to be
(7.6 ± 2.0) × 1010 neutrinos cm–2 s–1, in agreement with the value of (5.95 ± 0.06) × 1010 neutrinos cm–2 s–1

predicted by the standard solar model. © 2002 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

The last several years in neutrino astrophysics are
characterized by outstanding achievements in solar
neutrino studies. This is primarily because the large
SuperKamiokande (SK) water Cherenkov detector [1]
and the Sudbury neutrino observatory (SNO) [2] were
put into operation. These telescopes record high-energy
solar neutrinos from 8B decay in real time and have
high count rates.

The data obtained with these two giant new-genera-
tion neutrino telescopes make a crucially important
complement to the available data from chlorine and gal-
lium radiochemical experiments [3–5] and from the
Kamiokande experiment [6]. Comparison of the SK
data on elastic scattering of solar neutrinos by electrons
with SNO data on charged currents indicates that,
together with electron neutrinos, neutrinos of other fla-
vors arrive at the Earth from the Sun. A combined anal-
ysis of the results from all these experiments provides
compelling evidence that some of the electron neutri-
nos produced in thermonuclear reactions in the Sun
change their flavor on their way to the Earth.

Investigating the details of the change in the flavor
of solar neutrinos requires constructing neutrino tele-
1063-7761/02/9502- $22.00 © 20181
scopes of the next generation. These telescopes will
record the low-energy part of the solar neutrino spectrum
below 2 MeV, which contains the continuous spectra of
pp neutrinos and neutrinos from the CNO cycle as well
as monoenergetic lines from 7Be and pep neutrinos.

Despite a number of promising ideas of detecting
low-energy neutrinos in real time widely discussed
today [7], only radiochemical gallium experiments are
currently capable of observing and providing informa-
tion on this part of the solar neutrino spectrum. The low
threshold (233 keV) of the neutrino capture reaction
71Ga(νe, e–)71Ge [8] allows the principal component of the
solar neutrino spectrum, pp neutrinos, to be measured. If
exotic hypotheses are excluded, the flux of these neutrinos
is determined by energy release in the Sun and does not
depend on solar-model parameters. These parameters sig-
nificantly affect the rates of subsequent reactions in the
chain of thermonuclear fusion in the Sun.

The expected neutrino capture rate on 71Ga calcu-

lated using the standard solar model (SSM) is 
SNU1 [9], with the contribution of pp neutrinos being

1 SNU = 1 interaction per second in a target containing 1036 atoms
of the isotope interacting with neutrinos.
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dominant, 69.7 SNU. As follows from the same calcu-
lations, the contributions of neutrinos from 7Be and 8B
decays are 34.2 and 12.1 SNU, respectively. The inde-
pendently calculated value of 127.2 SNU [10] may sug-
gest that the neutrino capture rate on gallium is insensi-
tive to solar-model parameters.

From the SNO and SK measurements, we know the
neutrino flux from 8B decay with a high accuracy and
what part of it is produced by the electron neutrinos
which reach the Earth. In the immediate future, the
KamLAND experiment [11] is expected to signifi-
cantly reduce the range of possible oscillation parame-
ters for electron neutrinos. This experiment and the
BOREXINO experiment [12] will give the 7Be neutrino
flux with a high accuracy. By subtracting the 7Be and 8B
components of the solar neutrino spectrum from the
result of the gallium experiment, we will obtain a fun-
damental astrophysical parameter, the neutrino flux
from the pp reaction (with a minor contribution of neu-
trinos from the pep reaction and the CNO cycle). The
latter can be determined by comparing the SK results
with those of the chlorine experiment. At the end of this
paper, we give a preliminary estimate of the pp-neu-
trino flux by using the currently available experimental
data. Since only a gallium experiment can provide for
these measurements in the foreseeable future, it is cru-
cially important that both gallium experiments, SAGE
[4] and GNO [13] (the successor to GALLEX), con-
tinue their measurements so asto improve the accuracy
of their results.

Previously [4], we described the SAGE experiment
in detail, including germanium extraction from the gal-
lium target, the counting of single 71Ge atoms, and anal-
ysis of the data obtained. In [4], we presented the SAGE
results for the period from January 1990 until Decem-
ber 1997. In this paper, we briefly describe basic prin-
ciples of this experiment, perform a statistical analysis
of the 1998–2001 data, and present the results of new
analyses of some systematic uncertainties. In conclu-
sion, we discuss the importance of the SAGE results for
solar and neutrino physics.

2. AN OVERVIEW OF THE SAGE EXPERIMENT

2.1. The Laboratory of the Gallium–Germanium 
Neutrino Telescope

SAGE measurements are carried out at the gallium–
germanium neutrino telescope (GGNT) placed in a spe-
cially constructed deep underground laboratory at the
Baksan Neutrino Observatory (Institute for Nuclear
Research, Russian Academy of Sciences) in the North-
ern Caucasus, at the foot of Mount Elbrus [14]. The
underground complex of the GGNT laboratory is
located in a horizontal tunnel that runs into the Andyr-
chi Mountain, at a distance of 3.5 km from the entrance.
The main room of the laboratory is an experimental hall
60 m long, 10 m wide, and 12 m high. The rocks above
the laboratory produce a shield from cosmic-ray muons
JOURNAL OF EXPERIMENTAL 
that is equivalent to 4700-m-thick water and attenuate
the muon flux by a factor of 107. The measured muon
flux is (3.03 ± 0.10) × 10–9 cm–2 s–1 [15]. To reduce the
neutron and gamma-ray background from the sur-
rounding rocks, the hall is clad with 600-mm-thick low-
radioactivity concrete and with a 6-mm-thick steel
sheet. The flux of neutrons with energy 1.0–11.0 MeV
in the laboratory does not exceed 2.3 × 10–7 cm–2 s–1

[16]. There are also rooms for research on analytical
chemistry, for a 71Ge decay detection system, and for a
low-background Ge semiconductor detector. Several
rooms for auxiliary measurements are in the laboratory
buildings located on the surface.

2.2. Procedures of the Experiment

The gallium target of the telescope currently con-
tains about 50 t of gallium in the form of a liquid metal
in seven chemical reactors. A measurement of the solar
neutrino capture rate (run) begins with the addition to
the gallium target of a stable germanium carrier in the
form of a Ga–Ge alloy with a known germanium con-
tent, in the amount of 350 µg, which is uniformly dis-
tributed between all reactors. The reactor contents are
well mixed to uniformly distribute germanium in the
bulk of gallium.

On completion of the exposure (four weeks), the
germanium carrier together with 71Ge atoms from the
solar neutrino capture reaction and from background
reactions is extracted from the gallium by using the
operations described in [4, 17]. The final stage of chem-
ical extraction involves the synthesis of monogermane
(GeH4), which is placed in a proportional counter in a
mixture with 70–90% of Xe. The total extraction effi-
ciency, the ratio of the Ge mass in the monogermane to
the initial mass of the Ge carrier, generally lies within
the range of 80–90%. The systematic uncertainty in the
extraction efficiency is 3.4%, mainly due to an uncer-
tainty in the mass of the added and extracted carrier.
About 0.1% of the gallium is dissolved during each
extraction, passing into a muriatic solution in the form
of chloride. The gallium-containing solutions are repro-
cessed to recover and purify gallium; subsequently, gal-
lium must be returned to the target.

After its filling, the proportional counter is placed in
the well of a NaI detector that is within a massive pas-
sive shield, where 71Ge decays are counted for about
five months. 71Ge decays by electron capture with a
half-life of 11.43 days. The low-energy Auger electrons
from the K and L shells and the X-ray photons emitted
when the electron shells are deexcited produce nearly
point ionization in the counter gas. Therefore, the pulse
from 71Ge decay taken from the counter has a rapidly
rising leading edge. In contrast, the ionization tracks
from most of the background events have an apprecia-
ble length, and, accordingly, the fronts of the pulses
from such events rise more slowly. Thus, we select
event candidates for 71Ge decay by the pulse energy in
AND THEORETICAL PHYSICS      Vol. 95      No. 2      2002
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the proportional counter, which must correspond to the
energy of the K or L peak, and by the rise time of the
pulse front. In addition, an event should not have coin-
cidences with the pulse from the NaI detector, because
no γ-ray photons are emitted during 71Ge decay.

The electronics for data acquisition was improved as
the experiment developed. During the first two years,
the amplitude-differentiated pulse (ADP) technique
was used. This technique provided the selection of
events in the K peak (10.4 keV) but could not be used
to select events in the L peak (1.2 keV), which is more
sensitive to instability of the electronics and in which
the background is higher. In 1992, an eight-channel
counting system was constructed. It consists of a
1-GHz digital oscilloscope that was used to record the
pulse shape from the counters. The pulse amplitude and
front rise time (TN) can be determined by fitting the
recorded pulse shape [18]. All results for the L peak and
most of the results for the K peak were obtained from
such an analysis of the pulse shape.

After their filling, the counters are regularly cali-
brated with a 55Fe source (5.9 keV) through a window
in the counter iron cathode. Additional calibrations
with a 109Cd source, whose emission produces the char-
acteristic radiation of the iron cathode (6.4 keV) along
the entire counter length, allow one to make a correc-
tion in the 71Ge peak positions due to the buildups of
polymers on the anode wire during prolonged operation
of the counter. In addition, the characteristic radiation
from a 109Cd–Se source (1.4 and 11.2 keV) is used to
check the energy scale within the measurement range
for linearity.

The pulse energy can be determined by integrating
the pulse shape for 800 ns after the pulse begins. The
positions of the 71Ge peaks corrected for counter poly-
merization and the widths of the energy windows cor-
responding to these peaks, which are taken to be twice
the peak width at half maximum, are calculated from
the 55Fe calibration. Increasing the width of the energy
windows causes no appreciable increase in the counting
efficiency of 71Ge decays but significantly degrades the
signal-to-noise ratio.

If the peak position changes between two calibra-
tions, then the window for energy selection is lin-
early shifted in time between the two calibrations.
The change in amplification between calibrations
typically does not exceed a few percent, which gives
an uncertainty in the counting efficiency of no more
than 3.1%.

In order to determine the rise times of the pulse
fronts during 71Ge decay, we carried out measurements
in each counter channel using counters with 71GeH4
added to the gas mixture. The rise times TN for all the
events selected within the energy windows of the K and
L peaks were arranged in increasing order. Subse-
quently an upper limit was set in such a way as to
exclude 5% of events. The related small loss of count-
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ing efficiency is offset by a significant reduction in the
number of background events. The derived ranges for
TN in the K and L peaks are, respectively, 0.0 to 18.4 ns
and 0.0 to 10.0 ns. The variations attributable to gas fill-
ing of the counters and to differences of the various
counter channels are 1.2 ns, which introduces an uncer-
tainty in the efficiency of about ±1%.

Table 1 gives the parameters of the 35 runs from
1998–2001 that are used for the solar neutrino measure-
ments.

3. STATISTICAL ANALYSIS 
OF THE SOLAR DATA

After the counting of 71Ge decays in the propor-
tional counter is finished, the selected (according to the
criteria) 71Ge events are called a data set. A maximum
of the likelihood function [19] is sought for the events
from each data set. In constructing this function, we
assume that an event is caused by an unknown constant
(in time) background and by 71Ge decays whose num-
ber exponentially decreases with time. To minimize the
possible effect of radon and its daughter elements that
enter the passive shield during periodic counter calibra-
tions and whose decays can imitate 71Ge decays, we
exclude from our analysis 2.6 h after each closure of the
passive shield. The radon that is brought into the gas
volume of the counter itself during its filling (several
atoms) is very dangerous for measurements of the num-
ber of 71Ge decays in the counters. Most of the radon
decays within a counter produce slow pulses with ener-
gies above the energy range of the 71Ge decay detection
system (called overflow pulses), but about 8% of the
decays of radon and its daughter elements produce fast
pulses that are indistinguishable from 71Ge pulses. The
chain of radon decays leads to a long-lived isotope
(210Pb) after about 50 min, on average; excluding
15 min before each overflow pulse and 3 h after, we
remove the overwhelming majority of events from the
radon that decays within the counter.

The 71Ge production rate is determined by the posi-
tion of the maximum of the likelihood function for each
data set. We calculate the statistical error by integrating
this function over all possible background count rates.
In the derived likelihood function, which now depends
on the 71Ge production rate alone, we find the minimum
range of rate which contains 68% of the total area under
the curve. This procedure is carried out separately for
the events selected in the L and K peaks. The likelihood
function for analysis of several runs (and for a com-
bined analysis of the events selected in the L and K
peaks in individual runs) is obtained by multiplying the
likelihood functions for individual data sets with the
additional requirement that the 71Ge production rate per
unit gallium mass be constant and that the background
count rates be different for each data set. In our analy-
sis, we take into account the small change in the 71Ge
SICS      Vol. 95      No. 2      2002
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Table 1.  The parameters of all runs since April 1998 used in our analysis to determine the solar neutrino flux

Exposure 
date

Mean 
exposure 

date

Exposure 
time, days

Ga 
mass, t

Extrac-
tion ef-
ficiency

Counter 
name

Pres-
sure, 

mm Hg
% GeH4

Working 
voltage, 

V

K-peak 
effi-

ciency

L-peak 
effi-

ciency

Polyme-
rization 
coeffi-
cient

Apr. 98 1998.225 44.9 48.05 0.85 A13 695 37.0 1480 0.243 0.219 1.01

May 98 1998.347 30.0 51.17 0.91 LY4 690 29.5 1366 0.238 0.245 1.00

July 98 1998.477 45.6 51.06 0.90 A12 680 32.0 1414 0.235 0.237 1.00

Aug. 98 1998.611 45.7 50.93 0.89 LA51 660 27.0 1356 0.234 0.244 1.04

Oct. 98 1998.745 45.8 50.81 0.92 A13 680 32.0 1404 0.244 0.212 1.00

Nov. 98 1998.883 45.8 50.68 0.92 LY4 680 26.5 1322 0.238 0.244 1.00

Jan. 99 1999.014 44.7 50.54 0.92 A12 700 30.0 1398 0.239 0.241 1.00

Feb. 99 1999.130 38.7 50.43 0.89 LA51 705 11.0 1194 0.248 0.234 1.05

Apr. 99 1999.279 51.7 50.29 0.89 A13 665 13.5 1206 0.253 0.231 1.05

June 99 1999.417 46.7 50.17 0.87 LY4 670 11.0 1140 0.246 0.239 1.00

July 99 1999.551 45.7 50.06 0.90 L116 635 12.5 1164 0.243 0.244 1.03

Sept. 99 1999.685 45.7 49.91 0.91 LA51 660 11.5 1172 0.242 0.238 1.05

Oct. 99 1999.801 38.7 49.78 0.90 A13 665 12.5 1186 0.254 0.202 1.01

Jan. 00 2000.035 28.8 49.59 0.91 LA51 700 13.5 1224 0.324 0.310 1.05

Feb. 00 2000.127 30.7 49.48 0.83 LY4 646 10.4 1130 0.320 0.316 1.01

Mar. 00 2000.207 28.8 49.42 0.91 A13 665 14.5 1206 0.332 0.329 1.10

May 00 2000.359 30.7 49.24 0.92 LA116 705 14.0 1244 0.329 0.315 1.03

June 00 2000.451 33.7 49.18 0.84 LA51 652 12.0 1160 0.317 0.314 1.03

July 00 2000.541 32.0 49.12 0.92 LY5 670 13.8 1182 0.321 0.316 1.01

Aug. 00 2000.626 31.3 49.06 0.73 A13 707 9.5 1176 0.343 0.321 1.08

Sept. 00 2000.701 27.7 49.00 0.89 A12 690 14.7 1224 0.324 0.312 1.00

Oct. 00 2000.796 30.7 48.90 0.84 LA116 734 9.4 1188 0.337 0.303 1.03

Nov. 00 2000.876 28.7 48.84 0.93 LA51 680 11.9 1196 0.345 0.330 1.03

Dec. 00 2000.958 30.7 48.78 0.93 LY4 697 12.0 1174 0.327 0.312 1.02

Feb. 01 2001.122 29.8 41.11 0.87 LA116 287 9.2 1144 0.330 0.314 1.04

Mar. 01 2001.214 33.4 48.53 0.92 LA51 635 13.5 1180 0.314 0.317 1.02

Apr. 01 2001.290 22.7 48.43 0.90 YCT1 695 13.1 1210 0.344 0.333 1.00

May 01 2001.373 31.7 48.37 0.88 YCT2 625 14.9 1178 0.332 0.342 1.00

June 01 2001.469 31.7 48.27 0.92 YCT3 678 12.2 1190 0.342 0.334 1.00

July 01 2001.547 23.7 48.17 0.93 LA116 690 12.7 1196 0.328 0.315 1.03

Aug. 01 2001.624 28.7 48.11 0.59 A12 768 7.2 1148 0.340 0.302 1.00

Sept. 01 2001.701 27.7 48.06 0.90 YCT1 665 15.0 1204 0.338 0.337 1.00

Oct. 01 2001.793 30.7 47.96 0.88 YCT2 758 12.2 1210 0.354 0.326 1.00

Nov. 01 2001.887 34.8 47.91 0.92 YCT3 685 14.2 1210 0.342 0.335 1.00

Dec. 01 2001.955 22.8 47.86 0.86 YCT4 685 11.4 1176 0.344 0.333 1.00

Note: The K- and L-peak efficiencies are defined as the ratio of the number of 71Ge decays recorded in the corresponding energy range to the total
number of 71Ge decays. The efficiencies include the efficiencies of energy selection (0.98) and selection by the pulse-front rise time (0.95);
they take into account the fact that the data acquisition system in 1996–1999 contained an error in the trigger logic (0.76). The polymeriza-
tion coefficient is the correction coefficient of the energy scale determined from the peak ratio in 55Fe and 109Cd calibrations.
production rate due to the orbital eccentricity of the
Earth which leads to a 3% annual change in distance
from the Sun. The position of the maximum of the com-
bined likelihood function sets the global 71Ge produc-
JOURNAL OF EXPERIMENTAL 
tion rate. The 68% confidence interval is determined by
the production rates at which the function decreases by
a factor of 0.606 from its maximum value, all other
variables being maximized. The results of our analysis
AND THEORETICAL PHYSICS      Vol. 95      No. 2      2002
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Table 2.  Results of our analysis of the data from all runs since April 1998

Extraction time Number of 71Ge 
candidate events

Number of
71Ge decays Result, SNU 68% confidence 

interval, SNU Nw2 Probability, %

Apr. 98 39 5.4 75 26–134 0.052 72

May 98 23 3.4 44 10–88 0.051 68

July 98 22 4.8 61 24–108 0.065 52

Aug. 98 33 3.6 46 5–97 0.039 84

Oct. 98 40 3.8 45 4–95 0.028 95

Nov. 98 32 5.9 67 28–116 0.101 30

Jan. 99 21 4.5 56 15–107 0.036 84

Feb. 99 16 1.6 24 0–67 0.114 28

Apr. 99 10 1.8 38 5–83 0.105 36

June 99 14 12.9 172 123–232 0.048 80

July 99 17 5.5 103 49–172 0.118 20

Sept. 99 20 7.1 93 43–154 0.099 28

Oct. 99 16 10.0 138 80–206 0.066 56

Jan. 00 24 5.4 63 23–111 0.060 59

Feb. 00 21 9.1 107 63–157 0.058 55

Mar. 00 19 10.1 117 78–165 0.046 79

May 00 15 0.0 0 0–32 0.143 40

June 00 17 1.4 23 0–75 0.179 17

July 00 29 6.4 69 33–111 0.088 34

Aug. 00 14 5.2 74 39–117 0.086 33

Sept. 00 30 9.2 111 64–166 0.093 24

Oct. 00 14 3.0 37 8–75 0.020 99

Nov. 00 25 2.9 32 0–73 0.208 9

Dec. 00 27 7.6 81 43–127 0.062 68

Feb. 01 21 6.3 79 43–125 0.088 34

Mar. 01 18 3.8 44 14–80 0.120 24

Apr. 01 17 6.7 76 43–117 0.074 45

May 01 21 11.9 127 90–171 0.088 31

June 01 20 9.4 93 57–135 0.025 96

July 01 9 2.1 24 0–58 0.033 92

Aug. 01 21 5.4 90 38–155 0.065 57

Sept. 01 10 2.1 22 0–53 0.139 18

Oct. 01 12 7.5 73 44–109 0.082 41

Nov. 01 15 2.6 23 0–54 0.084 38

Dec. 01 9 5.2 62 34–101 0.063 70

Combined result 711 191.8 67 60–74 0.080 42

Note: The test statistics of Nw2 is described and interpreted in [20]. The probability that the sequence of measured events arose from the
combination of 71Ge decay plus background events at a constant count rate was calculated by the Monte Carlo method and is given
in the last column. The accuracy of the quoted probabilities is approximately 1.5% for individual runs and about 4% for the com-
bined result.
of recent extractions are given in Table 2. The results of
all SAGE runs are shown in Fig. 1.

After the publication of our paper [4], which con-
tains the measurements made from January 1990 until
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
December 1997, we found that we used an erroneous
data acquisition program from June 1996 until Decem-
ber 1999. At the beginning of this period, a failed elec-
tronics module in the data acquisition system was
replaced, which required modifying the system for
SICS      Vol. 95      No. 2      2002
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Fig. 1. The capture rate from all SAGE extractions versus time: the triangles are for the L and K peaks and the circles are for the K
peak alone; the vertical bars near each point correspond to a statistical error of 68%. (1) The results of analysis for the L peak, (2) the
results of analysis for the K peak, and (3) the combined result for the entire data set.
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determining the coincidences of the pulses from events
in the NaI detector and events in the proportional counters.
The new system entailed a change in the data acquisition
program and an error in the trigger logic was introduced.
Because of this error, 23.9 ± 0.4 (stat) ± 0.5 (sys)% of
triggers were lost. This error artificially underestimated
the results of individual runs which were counting dur-

Table 3.  Systematic effects and the related uncertainties in
the measured neutrino capture rate (SNU). The extraction
and counting efficiencies are based on a capture rate of
70.8 SNU

Extraction
efficiency

Ge-carrier mass ±1.5
Extracted Ge mass ±1.8
Ge-carrier residue in reactor ±0.6
Gallium mass ±0.2

Counting
efficiency

Volume efficiency ±1.3
Gain shifts +2.3
Resolution –0.4, +0.5
Rise time limits ±0.7
Exposure time and time before 
counting begins

±0.6

Backgrounds Neutrons < –0.02
U and Th < –0.7
Cosmic-ray muons < –0.7
Internal radon < –0.2
External radon 0
Other Ge isotopes < –0.7

Total –3.2, +3.7
JOURNAL OF EXPERIMENTAL 
ing this period, and affected the combined result. The
corrected results are given in [21].

4. SYSTEMATIC EFFECTS

Table 3 presents the systematic effects that can
affect the measured capture rate of solar neutrinos.
These effects can be arbitrarily broken down into three
main categories: uncertainties related to the extraction
efficiency, the counting efficiency of 71Ge decays, and
backgrounds. Some of these effects were considered
above, and the remaining ones are briefly discussed in this
section. The counter efficiency was determined in a series
of measurements with different gas fillings; these fillings
contained 71Ge, 37Ar, and 69Ge. The uncertainties in the
measured counter efficiency are attributable to uncertain-
ties in the volume efficiency, edge effects, and gas-mixture
composition. A quadratic summation of these effects
yields an uncertainty of ±1.8% in the counter efficiency.

The uncertainties also result from the systematic
effects attributable to the background production
sources of germanium isotopes in the gallium target
and radon decays inside and near the counters. Limits
on the 71Ge production rate by the (n, p) reaction on
71Ga were obtained from the measured fluxes of fast
neutrons [16, 22] and cosmic-ray muons in the under-
ground laboratory [15]. The limiting concentrations of
U and Th in gallium, which can also give rise to germa-
nium isotopes, were measured with a germanium semi-
conductor detector [23] and a mass spectrometer [24].
The total 71Ge production rate from all these processes
does not exceed 1 SNU.
AND THEORETICAL PHYSICS      Vol. 95      No. 2      2002
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Radon is removed from the internal volume of the
passive shield where the counters are located by evapo-
rating liquid nitrogen. Special antiradon gas mixture
purification procedures are used during the filling to
reduce the possibility of radon penetration into the
counter. The effect of the remaining radon on the mea-
sured 71Ge production rate was studied through special
measurements with counters with the addition of some
amount of radon to their gas mixture and when investi-
gating the counter response to external γ-ray radiation
[25, 26]. The upper limits on the systematic error due to
radon decays inside and outside the counter obtained
from these studies are 0.2 and 0.03 SNU, respectively.

The decays of 68Ge and 69Ge produced in the gal-
lium target in background processes can imitate 71Ge
events. The amount of 68Ge produced in cosmic-ray
muon interactions can be estimated from the expected
71Ge production rate in muon interactions. It was found
to be 0.012 ± 0.006 atom per day in 60 t of gallium [4,
27]. For the measured ratio of the 68Ge and 71Ge pro-
duction cross sections in the reactions with gallium of
muons with energy of 280 GeV equal to 2.1 ± 0.05 [28]
in 50 t of gallium per day, 0.022 ± 0.013 68Ge atoms are
produced. For the 68Ge half-life of 271 days, these
pulses are distributed almost uniformly in time during
the counting, increasing only the mean background
count rate. However, during the initial counting period,
these pulses can cause an increase in the 71Ge count
rate. Monte Carlo calculations show that for typical
parameters of our measurements—an exposure time of
30 days, a gallium mass of 50 t, an extraction efficiency
of 0.9, a counting efficiency (L peak + K peak) of 0.6,
and a background count rate (L peak + K peak) of
0.175 event per day—a 68Ge production rate of
0.022 event per day gives a contribution of 0.0085 event
per day to the 71Ge production rate, which is equivalent
to 0.05 SNU.

The 69Ge isotope is produced in the gallium target
through the interaction of α particles from internal
radioactivity of the target and the neutrons emitted by
the surrounding rocks and in the interactions of solar
neutrinos with cosmic-ray muons. The 69Ge production
rate in 60 t of gallium is 0.21 atoms per day [4] with an
uncertainty of about 50%. Since most of the 69Ge
decays are accompanied by γ-ray radiation recorded by
the NaI detector with 90% efficiency and since the
counter begins to count about 1.5 days after extraction,
only 0.045 events from 69Ge are observed in one run;
this is a factor of 100 fewer than the mean number of
recorded 71Ge decays. Thus, the background effect
from 69Ge is no more than 0.7 SNU.

The capabilities of the 71Ge decay detection system
and the large number of measurements allowed us to
search for events related to 68Ge and 69Ge decays in the
solar runs [29]. The event selection techniques and effi-
ciency were determined with allowance made for pecu-
liarities of the decays of these isotopes. The inferred
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
68Ge production rate is  atom in 60 t of gallium
per day, which is approximately a factor of 7 higher
than the expected value, although these values are in
agreement within the error limits. Since the 68Ge pro-
duction rate was derived from muon experiments with
smaller errors, we use this value to determine the uncer-
tainty. The possibility of directly measuring the produc-
tion rate of germanium isotopes in cosmic-ray muon inter-
actions for the underground conditions of the Baksan Neu-
trino Observatory (Institute for Nuclear Research, Russian
Academy of Sciences) was explored in [29].

A similar search for 69Ge events shows that the 69Ge
production rate in 60 t of gallium does not exceed
0.49 atom per day. This is in good agreement with the
above value. The inferred constraint does not rule out
the possibility that the production rate of this isotope
during cosmic-ray muon interactions can be higher
than its predicted value, which may be indicated by
analysis of 68Ge events.

5. RESULTS

In this section, we present the measurements of the
solar neutrino capture rate in gallium performed from
January 1990 until December 2001. The capture rate
determined by analyzing 92 runs and 158 individual

data sets is  SNU. Here, only the statistical
uncertainties are given. We selected 1723 events within
the designated boundaries of the L and K peaks of 71Ge,
406.4 of which were attributed to 71Ge by a time analy-
sis (the total live counting time is 29.5 yr). The results
of our analysis of the events selected separately in the L

and K peaks are  and  SNU, respec-
tively. Agreement between these two results serves as a
check on the quality of the event selection criteria. The
total systematic uncertainty is obtained by a quadratic
summation of all the systematic contributions pre-

sented in Table 3. Thus, the SAGE result is 
SNU. For comparison, the latest GNO result (including

GALLEX data) is  SNU [13]. With the qua-
dratic summation of statistical and systematic uncer-

tainties, the SAGE result is  SNU.

5.1. Checking the 71Ge Extraction Efficiency

The technologies used in the experiment allow a few
71Ge atoms produced by neutrino interactions to be
chemically extracted from the target containing 5 ×
1029 gallium atoms with a high, well-known efficiency.
To measure this efficiency, about 350 µg of a stable ger-
manium carrier is added to the gallium at the beginning
of each exposure. In this case, given the carrier, there
are 1011 gallium atoms per one germanium atom. We
carried out a number of auxiliary measurements, which
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Fig. 2. The distribution of events in energy and in pulse rise time for all the runs in which these quantities were determined from
the pulse shape. (a) The events recorded within the first 22.86 days of counting after extraction for all runs (except the May 1996
extraction). The total live counting time is 1169.9 days. The positions of the L and K peaks of 71Ge determined from calibrations
are indicated in dark gray. (b) The same histogram for all the events that were recorded during an equal live time interval beginning
100 days after extraction.
confirmed the efficiency of our technology for extract-
ing single 71Ge atoms from metallic gallium.

A germanium carrier with a known amount of 71Ge
included in its composition was added to the reactor
containing 7 t of gallium. We made three extractions
and measured the number of atoms of extracted 71Ge in
each of them. Our results [17] showed that the extrac-
tion efficiencies of a stable germanium carrier and 71Ge
are the same.

The objective of the second experiment was to
determine whether 71Ge, whose atoms can be produced
in the reverse β-decay reaction in an excited or ionized
state, forms chemical bonds that prevent its efficient
extraction. We prepared and carried out several mea-
surements to directly test this possibility, in which the
β decay of radioactive gallium isotopes was observed in
liquid metallic gallium. Our result [17] matches the
expected value with 10% accuracy.
JOURNAL OF EXPERIMENTAL 
We checked the entire experiment (i.e., completely
checked all experimental procedures, including the effi-
ciency of chemical extraction, the counter efficiency,
and the techniques of analysis) by using an artificial
source of 51Cr neutrinos with an intensity of 19.1 PBq
(517 kCi) [30, 31]. The result, expressed as the ratio of the
measured 71Ge production rate to the expected rate, was
(0.95 ± 0.12). This is evidence that the experimental effi-
ciencies we use are correct and justifies the fundamental
assumption of radiochemical experiments that the extrac-
tion efficiency of atoms produced in neutrino interactions
does not differ from the carrier extraction efficiency.

5.2. Checking the Results of Analysis

Figure 2 provides clear evidence that we actually
observe 71Ge decay. This figure shows all events that
survive the time cuts and that had no coincidences
with pulses from the NaI detector. The expected posi-
AND THEORETICAL PHYSICS      Vol. 95      No. 2      2002
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tions of the L and K peaks of 71Ge are highlighted in
dark gray. These peaks are clearly present in the upper
histogram, but they are absent in the lower panel,
because 71Ge has decayed by that time. Outside the
peak regions, the numbers of events in Figs. 2a and 2b
are approximately equal, because these events mostly
have a background origin.

5.2.1. The time sequence of events. A major
hypothesis of our analysis is that the time sequence of
observed events for each run is a superposition of events
from the decay of a fixed number of 71Ge atoms and back-
ground events that occur at a constant rate. The quantity
Nw2 [20] and the corresponding fitting probability gives
a quantitative measure of how well the counting data fit
this hypothesis. These quantities, which were calculated
for each data set, are presented in Table 2. There are
runs with a low fitting probability, but the number of
such runs is no more than that expected for normal sta-
tistical variations.

The Nw2 method can also be used to estimate the fit-
ting quality of the combined time sequences for all
events of the L and K peaks for any combination of
runs. The test statistics for the combined data set from
all runs is Nw2 = 0.053; the corresponding fitting prob-
ability is (72 ± 4.5)%. The fitting quality is seen from
Fig. 3, in which the mean count rate of events in the L
and K peaks from all runs is plotted against the time
elapsed after extraction. An additional quantitative con-
firmation that 71Ge is counted in the experiment can be
obtained if the decay constant is allowed in the likeli-
hood function to be a free parameter, as are the 71Ge
production rate and all background count rates. The
half-life determined in this way for all the selected

events in the L and K peaks is  days, in agree-
ment with the measured value of 11.43 days [32].

5.2.2. The 71Ge production rate. Another hypothe-
sis of our analysis is that the 71Ge production rate is
constant with time. As we see from Fig. 1, there are no
appreciable deviations of the rate from its mean value
within large statistical uncertainties.

The constancy of the production rate can also be
considered by using the distribution function of the pro-
duction rate, C(p), defined as the fractional number of
data sets in which the production rate is less than p. Fig-
ure 4 shows this distribution for all experimental data
sets. Also shown here for comparison is the distribution
obtained by the Monte Carlo method by assuming that
the true production rate is 70.8 SNU. The two curves
are close to each other, and they can be compared by
calculating the test statistics Nw2 [20]. This calculation
yields Nw2 = 0.337, which corresponds to a probability
of 11%.

5.3. Combining Data by Time

If vacuum oscillations are responsible for the low
measured capture rate of neutrinos by gallium com-

9.7 1.3–
+1.5
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pared to that predicted by the SSM, then one might
expect seasonal variations in the capture rate [33, 34].
Other phenomena can also lead to temporal variations
(see, e.g., [35, 36]). Table 4 presents the results of our
analysis of the SAGE runs combined in different
ways—by months, by pairs of months, and by years. In
none of these combinations is there irrefutable evidence
of temporal variations. The results of our analysis of the
runs combined by years are shown in Fig. 5. We see
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Fig. 3. The mean count rate of the events selected in the
(a) K and (b) L peaks in all the runs since January 1990. The
solid line represents the curve of 71Ge decay with a half-life
of 11.4 days plus a constant background count rate of
events. The errors indicated by vertical bars near each point
are proportional to the square root of the number of events.
The horizontal bars represent the ±5-day time intervals
within which the mean count rate of events is taken.
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Table 4.  Results of our analysis of the data from SAGE runs combined by years, by months, and by pairs of months

Exposure period Number of 
data sets

Number of 
71Ge-candi-
date events

Number fit 
to 71Ge Result, SNU 68% confidence 

interval, SNU Nw2 Probability, 
%

1990 5 43 4.9 43 2–78 0.260 9

1991 6 59 25.5 112 82–145 0.120 17

1992 13 145 39.8 76 59–95 0.047 68

1993 15 97 33.2 84 62–105 0.199 6

1994 10 155 24.1 73 51–98 0.027 95

1995 13 210 37.7 102 77–129 0.041 82

1996 10 121 19.4 56 34–79 0.064 51

1997 16 183 35.7 62 48–78 0.057 62

1998 12 189 26.7 56 39–75 0.064 60

1999 14 114 40.8 87 66–110 0.068 33

2000 22 235 62.2 67 55–80 0.102 29

2001 22 173 64.4 65 55–76 0.050 70

Jan. 11 129 24.8 58 37–80 0.082 35

Feb. 12 101 25.5 60 44–77 0.045 74

Mar. 9 129 34.5 102 79–127 0.043 78

Apr. 9 80 16.9 54 37–73 0.072 39

May 12 114 34.7 75 59–94 0.051 62

June 11 101 33.6 79 58–102 0.175 5

July 15 176 26.6 52 37–69 0.091 35

Aug. 15 161 38.7 78 60–96 0.058 51

Sept. 20 220 48.5 68 54–84 0.035 91

Oct. 17 169 40.3 73 56–91 0.080 45

Nov. 15 197 37.6 59 44–75 0.033 90

Dec. 12 147 46.4 105 84–127 0.040 89

Jan. + Feb. 23 230 50.5 59 46–73 0.095 34

Mar. + Apr. 18 209 49.2 75 61–91 0.026 >99

May + June 23 215 68.0 77 63–91 0.111 10

July + Aug. 30 337 65.4 65 53–78 0.075 50

Sept. + Oct. 37 389 88.7 71 60–82 0.041 85

Nov. + Dec. 27 344 84.3 78 66–91 0.040 85

Feb. + Mar. 21 230 58.8 77 63–91 0.037 84

Apr. + May 21 194 50.8 66 54–79 0.049 60

June + July 26 277 58.7 63 50–77 0.081 42

Aug. + Sept. 35 381 87.2 73 61–84 0.043 84

Oct. + Nov. 32 366 78.1 66 54–78 0.044 82

Dec. + Jan. 23 276 73.6 84 70–99 0.059 65

Feb. + Nov. 27 298 63.1 59 48–71 0.017 99

Mar. + Oct. 26 298 75.1 84 71–99 0.062 66

Apr. + Sept. 29 300 64.3 63 52–75 0.042 86

May + Aug. 27 275 73.3 77 64–89 0.045 75

Note: The runs are assigned to each time interval in accordance with the mean exposure time. The accuracy of estimating the probability
is approximately 4%.
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from this figure that the neutrino capture rate was con-
stant during the entire data acquisition period. The test
statistics under the assumption of a constant capture
rate, 70.8 SNU, is χ2 = 6.6; for 11 degrees of freedom,
this corresponds to a 83% probability.

6. THE pp-NEUTRINO FLUX

One of the prime objectives of the gallium experi-
ment is to obtain the information required to determine
the pp-neutrino flux that arrives at the Earth. In this sec-
tion, we assess the state of this problem by using the
currently available results of all solar neutrino experi-
ments.

As follows from the SAGE, GALLEX, and GNO
experiments, the mean capture rate of neutrinos in the
gallium experiment is 72 ± 5 SNU. This rate is the sum
of the rates from all components of the solar neutrino
flux, which we designate as [pp + 7Be + CNO + pep +
8B |Ga]exp, where the subscript “exp” indicates that this
is an experimentally measured quantity. Here, we
ignore the hep neutrinos, because the contribution of
this component is negligible, 0.05% of the total capture
rate predicted by the SSM [9]. The only known compo-
nent of the solar electron neutrino flux is 8B neutrinos,
whose flux was measured by SNO: [8B |CNO]exp =
(1.75 ± 0.15) × 106 electron neutrinos cm–2 s–1 [2].
The measured SNO and SK spectra are similar in
shape to the spectrum predicted by the SSM. The mea-
sured SNO flux of electron neutrinos and the capture
cross section for 8B neutrinos from the SSM

(  cm2) can be used to determine the
contribution of neutrinos from 8B to the capture rate
measured in gallium experiments, because the cross
section for neutrino capture by gallium increases
sharply with energy. This yields

Subtracting this value from the total capture rate mea-
sured in gallium yields the contribution in a gallium
experiment from pp neutrinos and intermediate-energy
neutrinos

The measured neutrino capture rate in a chlorine exper-
iment is

[3]. We again ignored the contribution of hep neutrinos,
because it accounts for a mere 0.5% of the total capture
rate predicted by the SSM. Since neutrinos with ener-
gies above 5 MeV give a dominant contribution in a
chlorine experiment, we can again use the measured
SNO flux and the cross section calculated for the SSM,

2.40 0.36–
+0.77 10 42–×

B8 Ga[ ] exp 4.2 0.7–
+1.4 SNU.=

pp Be7 CNO pep Ga+ + +[ ] exp 67.8 5.2–
+5.1 SNU.=

Be7 B8 CNO pe p Cl+ + +[ ] exp 2.56 0.23 SNU±=
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(1.14 ± 0.04) × 10–42 cm2. Thus, the contribution of 8B
neutrinos is

Subtracting this component yields the contribution of
intermediate-energy neutrinos to the chlorine experi-
ment

The effect of neutrino oscillations is generally taken
into account by introducing the so-called survival fac-
tor, the probability that neutrinos will preserve their fla-
vor on their way to the Earth. For intermediate-energy
neutrinos in the chlorine experiment, this factor can be
determined from the ratio of the measured capture rate
to that predicted by the SSM,

If we assume that the survival factor in the range of
intermediate energies changes only slightly, then we
may set it equal to

Since neutrinos from 7Be in the range of intermediate
energies mainly contribute to the result of the chlorine
experiment and since their spectrum is a monoenergetic
line, the error in this factor can be estimated by assum-
ing that the relative contribution of the remaining com-
ponents to the error is the same as their predicted con-
tribution to the SSM, i.e., 36%. Thus, we increase the
uncertainty in the survival factor: 0.17 + 0.31 × 0.36 =
0.28.

The relative contributions of intermediate-energy
neutrinos in Ga to the capture rate are approximately

B8 Cl[ ] exp 2.0 0.2 SNU.±=

Be7 CNO pep Cl+ +[ ] exp 0.56 0.29 SNU.±=

Be7 CNO pep Cl+ +[ ] SSM 1.79 0.23 SNU.±=

Be7 CNO pep Cl+ +[ ] exp

Be7 CNO pep Cl+ +[ ] SSM

---------------------------------------------------------------- 0.31 0.17.±=
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the same as those in Cl (e.g., from 7Be neutrinos, 75%
in Ga and 64% in Cl). This gives grounds to apply the
survival factor determined for Cl to a gallium experi-
ment, i.e.,

Subtracting this contribution of intermediate-energy
neutrinos from the capture rate in gallium obtained
above yields the measured pp-neutrino capture rate in a
gallium experiment,

Since the capture cross section for pp neutrinos
interacting with Ga in the narrow energy range,
0.23−0.42 MeV, does not change appreciably, we divide
the measured capture rate by the calculated electron-neu-
trino capture cross section (11.7 ± 0.3) × 10–46 cm2 for the
SSM and obtain the measured pp-neutrino flux on
Earth: (4.6 ± 1.2) × 1010 electron neutrinos cm–2 s–1.

On the other hand, knowing the capture cross sec-
tion and the survival factor, we can determine the
pp-neutrino flux emitted in thermonuclear reactions in
the Sun from the derived capture rate of neutrinos on
gallium. If the neutrino oscillation parameters lie
within the LMA range (the range of large mixing
angles), which is now considered to be the preferred
one, then the survival factor is 60% and the flux of the
emitted pp neutrinos is (7.6 ± 2.0) × 1010 cm–2 s–1. This
is in agreement with the value predicted by the SSM,
(5.95 ± 0.06) × 1010 neutrinos cm–2 s–1 [37, 38]. A sig-
nificant part of the measurement error in the pp-neu-
trino flux stems from the fact that the energy depen-
dence of the survival factor is not well known.

In calculating these pp-neutrino fluxes, we made
several assumptions; the errors that arise in this case
cannot be determined in a simple way. Therefore, the
errors given here may have been underestimated. As
was pointed out in the Introduction, we will be able to
significantly reduce this error when the range of possi-
ble mass and mixing angle parameters will be limited
by the KamLAND experiment and when the flux of 7Be
neutrinos will be directly measured, as expected in the
BOREXINO experiment. In that case, the dominant
error will be uncertainty in the measurements of the
gallium experiment itself. Therefore, our efforts are
now directed to reducing the statistical and systematic
uncertainties in the SAGE experiment.

Be7 CNO pep Ga+ +[ ] exp

=  0.13 0.28±( ) Be7 CNO pep Ga+ +[ ] SSM

=  14.4 13.0 SNU.±

p p Ga[ ] exp pp Be7 CNO pe p Ga+ + +[ ] exp=

– Be7 CNO pe p Ga+ +[ ] exp 53.4 14.0 SNU.±=
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7. CONCLUSION

We have described the basic principles and tech-
niques of the SAGE experiment and analyzed
92 extractions made over the twelve-year period from
January 1990 until December 2001. The measured cap-

ture rate of solar neutrinos by gallium is  SNU.
Here, only the statistical uncertainties are given. Anal-
ysis of the well-known systematic effects showed that
the total systematic uncertainty is smaller than the sta-

tistical error, being SNU. Finally, we have exam-
ined the counting data and shown that there is good evi-
dence that 71Ge is being counted, that the counting data
fit the hypotheses of our analysis, and that the counting
data are self-consistent.

The SAGE result of 70.8 SNU accounts for 55% of
the value predicted by the SSM [9, 10]. A check of sys-
tematic effects and our additional measurements, in
particular, the experiment with a 51Cr neutrino source
[30, 31], suggest that the difference between our solar
neutrino capture rate and the value predicted by the
SSM (6.0σ, where σ is the standard deviation) is strong
evidence that the flux of solar neutrinos with energies
below 2 MeV is much lower than the expected flux.
This was also shown for the 8B-neutrino flux by the
chlorine neutrino experiment and in the Kamiokande
and CHO experiments. The SAGE result is even
smaller than the minimum astrophysical capture rate of

 SNU [39].

The combined result of all solar neutrino experi-
ments is discussed in several phenomenological papers
[40–42]. Their main conclusion reduces to the follow-
ing: the electron neutrinos produced in the Sun reach
the Earth in a different flavor state, and Mikheev–
Smirnov–Wolfenstein oscillations with the oscillation
parameters in the LMA range are best suited as the
mechanism of change in the flavor of solar neutrinos. A
more accurate determination of the oscillation parame-
ters requires additional data, particularly those obtained
in experiments sensitive to low-energy neutrinos. To
this end, the SAGE collaboration regularly performs
solar neutrino extractions, every four weeks, from
about 50 t of gallium, reducing the statistical error, and
explores further possibilities for reducing the system-
atic uncertainties.
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Abstract—We investigate the propagation of electromagnetic waves in the magnetic dipole and gravitational
fields of a neutron star, which follows the laws of nonlinear electrodynamics in a vacuum. Electromagnetic sig-
nals in these fields are shown to propagate along different rays and at different velocities, depending on their
polarization. We found the law of motion for these signals along rays. We calculate the difference between the
propagation times of electromagnetic signals with different polarizations from the same source to the detector.
This difference is shown to reach a measurable value of 1 µs in some cases. © 2002 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

According to quantum electrodynamics, the effec-
tive Lagrangian of a weak electromagnetic field in a
vacuum is

(1)

where α = e2/"c ≈ 1/137 is the fine-structure constant
and Bq = m2c2/e" ≈ 4.41 × 1013 G is the characteristic
quantum-electrodynamic induction. Therefore, the
electromagnetic-field equations in a vacuum take the
form of nonlinear electrodynamic equations for contin-
uous media:

(2)

differing from these by the meaning of the vectors D
and H:

(3)

Since nonlinear electrodynamics in a vacuum had had
no experimental confirmation for a long time, it was
perceived by many physicists as an abstract theoretical
model. Its current status has changed significantly.
Experiments [1] on inelastic scattering of laser photons

L
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360π2Bq
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---------------------+–=

× B2 E2–( )2
7 B E⋅( )2+{ } ,

curl H
1
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---∂D

∂t
-------, divD 0,= =

curl E
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-------, divB– 0,= =

D E
α

45πBq
2

--------------- 2 E2 B2–( ) E⋅ 7 B E⋅( )B+{ } ,+=

H B
α

45πBq
2

--------------- 2 E2 B2–( ) B⋅  – 7 B E⋅( )E{ } .+=
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by gamma-ray photons confirmed that electrodynamics
in a vacuum is actually a nonlinear theory. Therefore,
its various experimentally testable predictions deserve
serious attention.

In recent years, several experiments have been sug-
gested to study such effects [2–7]. However, for the
fields B, E ~ 106 G achievable in terrestrial laboratories,
the nonlinear corrections to the Maxwell equations are
so small that the effects produced by them in a vacuum
are difficult to measure.

Therefore, several authors [8–10] explored the pos-
sibility of observing nonlinear electrodynamic effects
in strong magnetic fields of neutron stars. Indeed, such
neutron stars as pulsars have magnetic fields compara-
ble in strength to the quantum-electrodynamic field Bq.
The recently discovered magnetars possess even stron-
ger fields, B ~ 1015–1016 G. Thus, the neighborhoods of
neutron stars represent a unique natural laboratory for
the manifestations of various nonlinear electrodynamic
and gravitational effects.

Here, our goal is to investigate one effect of nonlin-
ear electrodynamics in a vacuum that can reach a mea-
surable magnitude in the magnetic fields of pulsars and
magnetars. The basis for this effect is the birefringence
of a vacuum in an external electromagnetic field and, as
a result, the dependence of the propagation velocity of
electromagnetic signals in this field on their polariza-
tion. Therefore, if two signals with two different polar-
izations are emitted at the same instant in time from one
source and then pass through the field of a neutron star,
then they will not reach the detector simultaneously. As
a result, by measuring the time lag between the electro-
magnetic pulse with one normal polarization and the
electromagnetic pulse with the other normal polariza-
tion, we can test in more detail various predictions of
002 MAIK “Nauka/Interperiodica”



        

NONLINEAR ELECTRODYNAMIC LAG OF ELECTROMAGNETIC SIGNALS 195

                                                
nonlinear electrodynamics in a vacuum. Since the mag-
netospheres of pulsars and magnetars may contain mat-
ter that absorbs electromagnetic waves, below by elec-
tromagnetic waves we mean gamma-ray pulses to
which the magnetosphere is definitely transparent.

2. THE RAY EQUATION
IN A MAGNETIC DIPOLE FIELD

Let us consider a neutron star with a magnetic
dipole field whose induction B can reach Bq. In this
case, the electromagnetic-field equations of nonlinear
electrodynamics in a vacuum have two small parame-
ters. One is the relative value of the nonlinear terms in
Eqs. (1) and (3), which can reach approximately 10–4 at
|B | = Bq. The other small parameter is rg/r for the
Schwarzschild gravitational field of the star:

Since the masses of typical neutron stars are close to the
solar mass in order of magnitude and since their radii R
lie within the range 100 to 300 km, we assume that
rg/R ~ 10–2. Therefore, to achieve the same accuracy, we
must perform calculations by taking into account grav-
itation with an accuracy quadratic in rg/r.

Let us rewrite the nonlinear electrodynamic equa-
tions (2) in a vacuum in general covariant form:

(4)

where J2 = FikFki is the electromagnetic-field invariant.

The solution to Eqs. (4) that describes the dipole
magnetic field of the neutron star in the approximation
concerned is

(5)

where m is the magnetic dipole moment of the star.

Let us consider an electromagnetic wave that prop-
agates in the θ = π/2 plane of the stellar magnetic equa-
tor. The eikonal equation for this wave that follows
from the system of equations (4) and (5) depends on its
polarization. In particular, for an electromagnetic wave
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polarized perpendicular to the θ = π/2 plane, the eikonal
S1 satisfies the equation

(6)

while, for an electromagnetic wave polarized in the
plane of the magnetic equator, the eikonal S2 must sat-
isfy the equation

(7)

Consider the first of these equations. Using the standard
formalism, it is easy to derive the ray equation for an
electromagnetic wave of the first type of polarization. If
we denote the ray impact parameter by b1, then we have
in polar coordinates r and ϕ

(8)

where

However, it is inconvenient to use the ray equation in
form (8) for our purposes. Therefore, we make use of
the method by Darwin [11] and transform Eq. (8) to

(9)
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source of electromagnetic waves is at the point with r =
R0 and ϕ = π, then

where, to save space, we designated

Using these expressions, we can easily determine the
gravitational and nonlinear electrodynamic bending
angle of a given ray:

(11)

The minus sign in this expression indicates that the
gravitational and magnetic fields of the neutron star in
the plane of its magnetic equator act on electromagnetic
waves as a converging lens.

The ray equations for electromagnetic waves of the
second type of polarization can be build in a similar
way. If we denote the ray impact parameter in this case
by b, then we have

(12)

where
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where we designated

The bending angle of the electromagnetic ray with this
polarization is smaller than the bending angle (11):

(13)

It should be noted that Eqs. (11) and (13) transform to
the corresponding equations for nonlinear electrody-
namic ray bending [9, 10] when rg  0, and to the
equation for the gravitational bending of these rays,
when |m|2  0 [12].

3. THE LAW OF MOTION 
FOR ELECTROMAGNETIC SIGNALS ALONG 

RAYS IN A MAGNETIC DIPOLE FIELD

Using Eqs. (6) and (7), we can determine the law of
motion for electromagnetic signals along rays. For
electromagnetic waves of the first type of polarization,
we have

(14)

Note that t is the time measured by the clock of an
observer located far from the neutron star.

Differentiating Eq. (14) with respect to r and using
relations (8)–(10), we derive the equation

Integrating this differential equation yields the law of
motion t = t(ϕ)
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where t1 is the integration constant.
Assuming that the electromagnetic signal was emit-

ted from the point with r = R0 and ϕ = π at time t = 0,
we obtain

+ 

Similarly, the law of motion T = T(ϕ) for an electro-
magnetic signal with the other polarization is

(16)

The integration constant t0 under the same initial condi-
tions takes the form

+ 

--× 9Ψ1 ϕ( ) 2 Ψ1 ϕ( )sin
2

5+( ) Ψ1 ϕ( ) Ψ1 ϕ( )cossin–[ ]




,

t1

R0

c
----- 1

rg
2

8b1
2

--------+ ξ1cos=

+
rg

c
---- V1 ξ1/2( )cot W1 W1

2 V1
2––+

V1 ξ1/2( )cot W1 W1
2 V1

2–+ +
-------------------------------------------------------------------------ln

b1

c
-----

15rg
2

8b1
2

---------- π ξ1–( ) 7α m 2

360πBq
2b1

6
------------------------+





--× 9 π ξ1–( ) 2 ξ1sin
2

5+( ) ξ1 ξ1cossin+[ ]




.

T t0
r
c
-- 1

rg
2

8b2
--------+ Ψ ϕ( )cos+=

–
rg

c
----

V
Ψ ϕ( )

2
------------ 

  W W2 V2––+tan

V
Ψ ϕ( )

2
------------ 

  W W2 V2–+ +tan

------------------------------------------------------------------------ln

–
b
c
---

15rg
2

8b2
----------Ψ ϕ( )

α m 2

90πBq
2b6

---------------------+




× 9Ψ ϕ( ) 2 Ψ ϕ( ) 5+sin
2( ) Ψ ϕ( ) Ψ ϕ( )cossin–[ ]





.

t0

R0

c
----- 1

rg
2

8b2
--------+ ξ0cos=

+
rg

c
---- V1 ξ0/2( )cot W W2 V2––+

V1 ξ0/2( )cot W W2 V2–+ +
-----------------------------------------------------------------------ln

b
c
---

15rg
2

8b2
---------- π ξ0–( ) α m 2

90πBq
2b6

---------------------+




JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Equations (15) and (16) together with (9), (10), and
(12) give the law of motion for electromagnetic signals
of the two different polarizations along rays in the mag-
netic dipole and gravitational fields of a neutron star.

4. ANALYSIS OF THE NONLINEAR 
ELECTRODYNAMIC LAG

OF ELECTROMAGNETIC SIGNALS

Consider a gamma-ray source at the point with r =
R0 and ϕ = π. Let us assume that two electromagnetic
signals polarized in mutually perpendicular planes are
emitted from this source at time t = 0. For these signals
to pass through the same detector located on the other
side of the neutron star at distance R1, they must propa-
gate along different rays with different impact parame-
ters: b1 ≠ b. It follows from Eqs. (11) and (13) that, for
R1 @ b1 and R1 @ b, the impact parameters b1 and b
must be related by the equation

Since the nonlinear electrodynamic terms in our case
are proportional to the square of rg/b, this equation has
the following approximate solution:

(17)

Thus, there are two reasons why the signals will not
arrive at the point of their recording simultaneously.
First, the dependences of the propagation velocities for
normal waves on the external magnetic field are differ-
ent. Second, the signals with different polarizations
must propagate along different rays with different
lengths.

If the gamma-ray source lies far from the neutron
star (R0 @ b1), then it follows from Eqs. (15)–(17) that
the first factor mainly contributes to the lag. As a result,
the leading term of the difference δt = t – T at the
recording point takes the form

(18)

where B0 is the magnetic field of the star at distance b1
from its center.

However, the intensity of the recorded signals in this
case will be strongly attenuated, because the gamma-
ray source and detector are far from the neutron star.
Therefore, it is more realistic to observe this effect
when the gamma-ray source lies near the neutron star.
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Let us assume that this source lies at the pericenter of
the first ray, i.e., at the distance

It then follows from Eqs. (15)–(17) that

Substituting these relations into Eqs. (15) and (16), we
can easily verify that the difference between the depen-
dences of the normal-wave velocities on the magnetic
field mainly contributes to the difference δt = t – T in
this case as well. The leading term of the difference δt
in this case is a factor of 2 smaller than Eq. (18):

(19)

Analysis shows that the intensity of the recorded sig-
nals for this location of the source is attenuated only
slightly by nonlinear electrodynamic and gravitational
ray scattering.

It follows from Eq. (19) that when electromagnetic
signals with an impact parameter b1 ~ 103 km pass
through the magnetar magnetic-field regions where B ≤
Bq, the time lag δt is about 1 µs in order of magnitude.
Since modern electronics allows gamma-ray pulses to
be recorded with such a resolution, the effect under
consideration is quite measurable.

CONCLUSION
Thus, at the current state of the art in the develop-

ment of extra-atmospheric gamma-ray astronomy, it is
feasible to measure the nonlinear electrodynamic lag of
electromagnetic signals in strong magnetic fields of
neutron stars. Although such measurements are techni-
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cally difficult to carry out, the results obtained will
allow one not only to elucidate the experimental status
of this prediction of nonlinear electrodynamics in a
vacuum but also to independently estimate the mag-
netic-field strength near various neutron stars.
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Abstract—A compact expression is derived for the part of the cross section for light scattering by axisymmet-
rically polarized atomic systems proportional to the third-rank state multipole. The effect of the second-order
orientation determined by this state multipole on the polarization and angular distribution of the scattered light
is studied. The polarization of the incident light can be arbitrary and is specified by the Stokes parameters. A
number of orientation effects in the scattering process are shown to be induced precisely by the second-order
orientation. In particular, when nonpolarized light is scattered by an oriented atom, the scattering intensity in
the perpendicular direction depends on the second-order orientation alone. The second-order orientation also
preserves circular dichroism in the linear polarization of the forward- and back-scattered light. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Under free-orientation conditions, the magnetic
sublevels of an atom are populated uniformly. The
breakdown of the uniform population of states with dif-
ferent moment projections (atomic polarization) signif-
icantly affects the interaction of an atom with electro-
magnetic radiation. An atom is polarized during light
absorption, collisions, and other processes. A special
optical pumping method was developed for polariza-
tion (see [1, 2]), and some photoprocesses (light emis-
sion and absorption, photoeffect) on polarized atoms
have been studied extensively (see [3] and references
therein and [4, 5]).

Recall that a polarized atom is in a mixed quantum-
mechanical state. The expansion of its density matrix in
irreducible parts called state multipoles [3] allows var-
ious types of polarization to be distinguished. The state
multipole ρKQ, K = 0, 1, 2, …, 2j (j is the quantum num-
ber of the total moment of the polarized atom), Q = –K,
–K + 1, …, K, is an irreducible tensor of rank K. In the
absence of polarization, only the scalar ρ00 is nonzero.
If at least one of the odd-rank state multipoles is non-
zero, then the atom is called oriented. If at least one of
the even-rank state multipoles is nonzero, then the atom
is called aligned. While following this terminology
[3],1 to be more specific, we differentiate the orienta-
tion and alignment of various orders. The first-order
orientation implies that the vector ρ1Q proportional to
the mean moment of the polarized atom is nonzero, the
second-order orientation implies that the tensor ρ3Q is
nonzero, etc.

1 In the first edition of Blum’s book [3], the system was called ori-
ented if the orientation vector ρ1Q was nonzero and aligned if the
alignment tensor ρ2Q was nonzero.
1063-7761/02/9502- $22.00 © 0199
A general theory of light scattering by a polarized
atom was developed in [6]. Thus, we showed that the
differential and total cross sections for dipole scattering
could contain the state multipoles up to the fourth and
second ranks inclusive, respectively. In the expression
for the scattering cross section, we separated out the
dependence on geometric parameters. However, we
wrote the cross section in a cumbersome form that con-
tained the irreducible tensors composed of the polariza-
tion vectors for the incident and scattered photons [see
Eq. (4) below]. For this representation of the cross sec-
tion, the various experimentally observable effects
proved to be difficult to analyze. Subsequently, we
managed to represent the cross section for light scatter-
ing by atoms oriented in the first order [7, 8] and axi-
symmetrically aligned in the first order [9] in a simpler
form by expressing it in terms of the scalar and vector
products of vectors. In this case, the so-called dissipa-
tive-induced effects stood out. These effects must be
observed if the scattering takes place against the back-
ground of open light-energy dissipation channels. A
dissipative system is characterized by a T-odd dissipa-
tive parameter Γ (which changes sign after time rever-
sal), and additional combinations of vectors appear in
the expression for the light scattering cross section.

The effect of the second-order orientation on light
scattering has not yet been analyzed in detail, because
the corresponding part of the cross section (4) has a
more complex structure. Meanwhile, when an atom
with a moment j ≥ 3/2 is polarized, the state multipole
ρ3Q can be nonzero and the second-order orientation
contributes to the scattering.

In this paper, we managed to represent the part of
the cross section for light scattering by axisymmetri-
2002 MAIK “Nauka/Interperiodica”
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cally polarized atoms related to the second-order orien-
tation in a compact, invariant form. We analyze the
effect of the second-order orientation on the polariza-
tion and angular distribution of the scattered light. The
polarization of the incident light may be arbitrary and is
generally specified by the Stokes parameters. In obtain-
ing the main results, we used the identities that express
the pseudoscalars composed of seven vectors according
to the rule for constructing irreducible tensors in terms
of the scalar and triple scalar products of vectors. The
method for deriving these identities, which may be of
interest in their own right, is briefly considered in the
Appendix.

2. THE CONTRIBUTION 
OF THE SECOND-ORDER ORIENTATION 

TO THE CROSS SECTION FOR LIGHT 
SCATTERING

For an axisymmetric polarization with the symme-
try axis specified by a unit vector n, the density matrix
of an atom is diagonal in projections of the moment m

onto the direction n and only the components ρK0 = 
of all state multipoles [3] are nonzero in a coordinate
system with the z axis directed along n. These compo-
nents can be expressed in terms of the diagonal ele-
ments of the density matrix wm (the populations of
atomic magnetic sublevels) as follows:

(1)

The first-order orientation  is proportional to the
mean moment projection onto the direction n

the second-order orientation  can be expressed,

according to (1), in terms of  and :

Note that these quantities, as well as all  with odd K,
are T-odd pseudoscalars (the vector n after space inver-
sion changes to –n).

We can establish what changes the second-order ori-
entation effects make to the cross section for light scat-
tering even from general symmetry considerations.
Indeed, the state multipole ρ1Q is proportional to the
spherical components of the vector n, while ρ3Q is pro-
portional to an irreducible tensor of the third rank com-
posed of n. Therefore, apart from the pseudoscalars that

ρK
n

ρK
n 1–( ) j m– 2K 1+( )1/2 j j K

m m– 0 
 
 

wm.
m

∑=

ρ1
n

m mwm;
m

∑=

ρ3
n

m m3

ρ3
n 7=

× 5m3 m 3 j j 1+( ) 1–[ ]–

j 1–( ) j j 1+( ) j 2+( ) 2 j 1–( ) 2 j 1+( ) 2 j 3+( )[ ] 1/2
----------------------------------------------------------------------------------------------------------------------.

ρK
n
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define the first-order orientation effects, the part of the

cross section proportional to  must contain pseudo-
scalars with three vectors n. Thus, for example, when
nonpolarized light is scattered, the dependence of the
angular distribution of the scattered light on the first-
order orientation, being dissipative-induced, is retained
because of the T-even pseudoscalar

(2)

[7, 8], where k and k' are the unit vectors that specify
the propagation directions of the incident and scattered
light, respectively. In this case, the second-order orien-
tation effects are defined by the pseudoscalar (2) and
the pseudoscalar

(3)

Consequently, the scattering intensity of the nonpolar-
ized light in the perpendicular direction can depend
only on the second-order orientation.

To determine the part of the cross section related to
the second-order orientation, we turn to a general
expression for the differential cross section for light
scattering by a polarized atom [6]:

(4)

Here, ω (ω') and e (e') are the frequency and unit polar-
ization vector of the incident (scattered) photons,
respectively; α is the fine-structure constant (the atomic
system of units is used); j' is the quantum number for
the total moment of the atom in its final state; and Tk

(k = 0, 1, 2) are the reduced matrix elements of the irre-
ducible parts of the scattering tensor, which were deter-
mined in [6, 8]. Formula (4) also includes the spherical
function YKQ(n) and the irreducible tensors composed
of polarization vectors. Of the two irreducible tensors

 and  of ranks k1 and k2, the irreducible tensor
of rank K is composed as follows:

(5)

where  is the Clebsch–Gordan coefficient. The
vector is equivalent to the irreducible tensor of the first
rank a1q = a(q), where a(q) are the spherical components
of this vector:

(6)

ρ3
n

n k' k×( ) k' k⋅( )⋅

n k' k×( ) k' n⋅( ) k n⋅( ).⋅

dσ
dΩ'
--------- 4π( )1/2ωω'3α4 ρK

n 1–( ) j j' k K+ + +

K k k', ,
∑=

× k k' K

j j j' 
 
 

2K 1+( ) 1/2– TkTk'*

× YKQ* n( ) e'∗ e⊗{ } k e' e∗⊗{ } k'⊗{ } KQ.
Q

∑

Ak1q1
Bk2q2

Ak1
Bk2

⊗{ } KQ Ck1q1k2q2

KQ Ak1q1
Bk2q2

,
q1 q2,
∑=

Ck1q1k2q2

KQ

a 0( ) az, a 1±( )
1

2
------- ax iay±( ).+−= =
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In this paper, we do not give standard expressions
for the cross section for light scattering by a nonpolar-
ized atom (see [10, Para. 60] and [6]) and for the addi-
tions to it attributable to the first-order orientation and
alignment [8, 9] but focus our attention on the addition

proportional to the second-order orientation . The
spherical function Y3Q(n) is proportional to the irreduc-
ible tensor of the third rank composed of vectors n [11]:

Therefore, the sum over Q in Eq. (4) at K = 3 is the sca-
lar product of two irreducible tensors of the third rank
composed of the vector n and polarization vectors:

(7)

Using the formulas derived in the Appendix, we can
express pseudoscalars (7) for all possible sets of the
numbers k and k' (k = 1, k' = 2; k = 2, k' = 1; and k =
k' = 2) in terms of the scalar and vector products of the
vectors appearing in them. After separating out all com-
binations of vectors, the expression for the part of cross
section (4) concerned can be written as

(8)

Here,

has the meaning of the degree of circular polarization of
the incident light; the parameter  is given by a simi-
lar expression,

ρ3
n

Y3Q n( ) 35
8π
------ n n⊗{ } 2 n⊗{ } 3Q.=

1–( )QY3 Q– n( ) e'∗ e⊗{ } k e' e∗⊗{ } k'⊗{ } 3Q

Q

∑  = 35
8π
------

× n n⊗{ } 2 n⊗{ } 3 e'∗ e⊗{ } k e' e∗⊗{ } k'⊗{ } 3,( ).

dσ sor( )

dΩ'
--------------- ωω'3α4ρ3

n 1
10
------a+η2n k

1
10
------a–η2' n k'⋅+⋅





=

–
1
2
---a+η2n k n e'⋅ 2 1

2
---a–η2' n k' n e⋅ 2⋅–⋅

+
1
5
---a+η2Re n e'⋅( ) k e'∗⋅( )[ ]

+
1
5
---a–η2' Re n e⋅( ) k' e∗⋅( )[ ]

+ bη2η2' n k' k×( ) bn Re e'∗ e×( ) e' e∗⋅( )[ ]⋅+⋅

--– 5bn Re e'∗ e×( ) e' n⋅( ) e∗ n⋅( )[ ]⋅




.

η2 ik e e∗×( )⋅=

η2'

η2' ik' e' e'∗×( ).⋅=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The coefficients a± and b can be expressed in terms of
the 6j symbols and the reduced matrix elements of the
scattering tensor:

(9)

To determine the addition to the angular distribution
of the scattered light attributable to the second-order
orientation, Eq. (8) must be summed over two indepen-
dent polarizations of the scattered photon. During the
summation, the parameter  becomes zero, while the
summation of the scalars containing the vector e' can be
easily performed by using the identity [10, Para. 45]

(10)

As a result, we obtain the following expression for the
orientation addition to the angular distribution of the
scattered light:

(11)

We showed above that the second-order orientation
gives no contribution to the total cross section for light
scattering [6]. Therefore, integrating Eq. (11) over all
scattering directions must yield zero. The latter can be
easily verified by using the following standard identity
in the integration:

3. THE SCATTERING OF PARTIALLY 
POLARIZED LIGHT

In the preceding section, we assumed the scattered
light to be completely polarized, so its polarization
could be specified by the vector e. In the more general
case of partial polarization, three polarization parame-
ters, for example, the Stokes parameters ηi, i = 1, 2, 3,

a± 5 R12
1

2
-------R22± 

  ,=

b
1–( ) j j'+

5
------------------- j' j 2

3 1 j 
 
 

Im T1T2*( ),=

Rkk' 1–( ) j j'+ j' j k'

3 k j 
 
 

Re TkTk'*( ).=

η2'

a eλ'⋅( ) b eλ'*⋅( )
λ
∑ k' a×( ) k' b×( ).⋅=

dσs
sor

dΩ'
----------- ωω'3α4ρ3

n 1
2
---a+η2n k n k'⋅( )2⋅





=

–
1
10
------a+η2n k⋅ 1

5
---a+η2 n k'⋅( ) k k'⋅( )–

+ bn Re e∗ k'×( ) e k'⋅( )[ ]⋅

---– 5bn Re e∗ k'×( ) e n⋅( )[ ] k' n⋅( )⋅




.

ki'k j' Ω'd∫ 4π
3

------δij.=
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should be specified [3, 12]: η2 defines the degree of cir-
cular polarization, η3 defines the degree of linear polar-
ization along the x and y directions (the z axis is
assumed to be directed along the light-wave propaga-
tion), and η1 defines the degree of linear polarization
along the p and q axes rotated through an angle of 45°
in the xy plane in the positive direction relative to the x
and y axes. The Stokes parameters satisfy the relation

with the equality sign corresponding to complete polar-
ization. For nonpolarized light,

As was shown in [8], the cross section for any pho-
toprocess accompanied by the absorption or stimulated
emission of a partially polarized photon can be
expressed in terms of the Stokes parameters and three
dichroisms of this process:

(12)

Here, dσ0/dΩ' is the cross section for the photoprocess
involving a nonpolarized photon, dσ+ –/dΩ' is the differ-
ence between the cross sections for right- and left-hand
circular polarizations specified by the vectors e± (circu-
lar dischroism of the process), and dσxy/dΩ' is the dif-
ference between the cross sections for linear polariza-
tions along the x and y axes (linear xy dichroism). We
denote the corresponding linear polarization vectors by
ex and ey. Finally, dσpq/dΩ' is the linear pq dichroism of
the process. Formula (12) allows expressions (8) and (11)
to be easily transformed in such a way that they would be
applicable to the scattering of partially polarized light.

Passing to nonpolarized light reduces to averaging
Eqs. (8) and (11) over the two orthogonal polarization
vectors eλ with a statistical weight of 1/2. In this case,
the terms containing η2 vanish and the remaining terms
containing the vector e can be easily averaged by using
an identity similar to (10). The linear dichroism can be
calculated by substituting the corresponding real linear
polarization vectors in Eqs. (8) and (11). When the cir-
cular dichroism is calculated, the parameter η2, which
is equal to ±1 for right-hand (left-hand) circular polar-
ization, is substituted by 2 in all terms of Eqs. (8) and
(11). According to (12), these terms will formally enter
into the final expressions without any changes, but η2
will have the meaning of the degree of circular polariza-
tion of partially polarized light. When determining the
contribution of the other e-dependent terms, it is conve-
nient to use the identity

η1
2 η2

2 η3
2 1,≤+ +

η1 η2 η3 0.= = =

dσ
dΩ'
---------

dσ0

dΩ'
---------=

+
1
2
--- η1

dσpq

dΩ'
----------- η2

dσ+–

dΩ'
----------- η3

dσxy

dΩ'
-----------+ + .

a e±⋅( ) b e±*⋅( ) 1
2
--- k a×( ) k b×( )⋅ ik b a×( )⋅±[ ] .=
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Below, we give the final expression for the addition
to the cross section for the scattering of partially polar-
ized light attributable to the second-order orientation:

(13)

where

The orientation addition to the angular distribution can
be written as

(14)

where

Formula (14) can also be derived by summing (13) over
the two orthogonal polarizations of the scattered light.

dσ sor( )

dΩ'
---------------

1
2
---ωω'3α4ρ3

n 1
2
---a–η2' n k' n k⋅( )2⋅





=

–
1
10
------a–η2' n k'

1
5
---a–η2' k' k⋅( ) n k⋅( )–⋅

+ bn Re k e'∗×( ) k e'⋅( )[ ]⋅

– 5bn Re k e'∗×( ) e' n⋅( )[ ] k n⋅( )⋅

+ η2a+
1
5
---n k⋅ n k n e'⋅ 2⋅–

2
5
---Re n e'⋅( ) k e'∗⋅( )[ ]+

--+ η1∆pq η3∆xy+




,

∆βγ
1
5
---a–η2' n eβ k' eβ⋅( ) eγ k' eγ⋅( )–[ ]⋅=

+
1
2
---a–η2' n k' n eγ⋅( )2 n eβ⋅( )2–[ ]⋅

+ bn Re e'∗ eβ×( ) e' eβ⋅( ) e'∗ eγ×( ) e' eγ⋅( )–[ ]⋅

–5bn Re e'∗ eβ×( ) eβ n⋅( ) e'∗ eγ×( ) eγ n⋅( )–[ ] e' n⋅{ } .⋅

dσs
sor( )

dΩ'
---------------

1
2
---ωω'3α4ρ3

n bn k' k×( ) k' k⋅( )---⋅




=

– 5bn k' k×( ) k' n⋅( ) k n⋅( )⋅

+ η2a+ n k n k'⋅( )⋅ 2 1
5
---n k⋅ 2

5
--- n k'⋅( ) k' k⋅( )––

---+ η1δpq η3δxy+




,

δβγ bn eβ k'×( ) eβ k'⋅( ) eγ k'×( ) eγ k'⋅( )–[ ]⋅=

– 5bn eβ k'×( ) eβ n⋅( ) eγ k'×( ) eγ n⋅( )–[ ] k' n⋅( ).⋅
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4. THE EFFECTS OF ATOMIC ORIENTATION 
AND LIGHT-ENERGY DISSIPATION 

ON LIGHT SCATTERING

Before we discuss the observed effects during light
scattering that are produced by the second-order orien-
tation, we note that two types of terms appear in the
scattering cross section when it is taken into account.
The terms of the first type containing one vector n also
enter into the part of the cross section related to the
first-order orientation [8]. The terms of the second type
containing three vectors n are completely new. Next,

since  is T-odd, all terms in curly brackets in (8),
(11), (13), and (14) must be T-odd. It is easy to notice
that, after time reversal, when each polarization vector
changes to its complex conjugate and when the vectors
k and k' reverse their directions, the pseudoscalars mul-
tiplied by the coefficient b remain unchanged. There-
fore, the coefficient b defined in (9) must be T-odd. The
physical nature of this T-oddness is the dissipation of
light energy during light scattering. While referring the
reader to [7, 8] for details, we note that the coefficient b
proportional to the T-odd dissipative parameter Γ is
nonzero only for an open light-energy dissipation chan-
nel in the scattering process: the photoionization chan-
nel for above-threshold scattering and the radiative or
collisional channel for resonance scattering. The photo-
ionization probability and the resonance-level width
(the resonance level must necessarily have a multiplet
structure [7]) are the parameter Γ, which defines the
light-energy dissipation rate, in the former and latter
cases, respectively.

Note that the orientation-related effects can be sep-
arated from the effects related to the alignment of
atoms, because the difference between the cross sec-
tions for the two opposite directions of vector n
depends on the orientation alone. At the same time,

when  and  are nonzero, the effects related to the
first- and second-order orientations must be observed
simultaneously.

The effect of the first-order orientation on light scat-
tering was discussed in detail in [8]. All qualitatively
new effects in light scattering related to the first-order
orientation must also be observed for the second-order
orientation. Therefore, we only briefly list the principal
orientation effects and dwell below on the differences
caused by the second-order orientation. Thus, a non-
zero circular polarization of scattered light is induced
through the orientation even at η2 = 0. At the same time,
the dependence on the degree of circular polarization of
the incident light η2 is retained in the angular distribu-
tion and linear polarization of the scattered light, which
leads to circular dichroism. Interestingly, the alignment
of an atom can produce such effects only for an open
dissipative channel [9, 13]. Further, the dependences of
the linear polarization and angular distribution of the

scattered light on the orientations  and  at η2 = 0

ρ3
n

ρ1
n ρ3

n

ρ1
n ρ3

n
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are induced by the dissipation of light energy; i.e., these
dependences are retained only for above-threshold or
resonance scattering.

Let us now consider some polarization properties of
the scattered light related to the second-order orienta-
tion. Formula (13) allows these properties to be estab-
lished. Thus, the circular polarization of the scattered
light induced by the second-order orientation is pro-
portional to the difference between expressions (13)
for  = ±1. The absence of a term proportional to

η2  in (13) implies that this circular polarization does
not depend on the Stokes parameter η2. By contrast, the
circular polarization induced by the first-order orienta-
tion depends on η2 for an open dissipative channel [8],
which leads to circular dichroism. The circular dichro-
ism in the linear polarization of the scattered light is
preserved for the second-order orientation [see the
terms containing the vector e' and proportional to the
Stokes parameter η2 in (13)]. In contrast to the first-
order orientation, this effect does not disappear for for-
ward or back scattering, when the linear polarization
vector e' and the vector k are mutually perpendicular. It
is also of interest to note that if the incident light is non-
polarized and if only linearly polarized light with the
polarization vector perpendicular to k is recorded after
scattering, then the scattering intensity retains the
dependence on the second-order orientation [see the
fifth term in (13)], whereas the dependence on the first-
order orientation vanishes. When nonpolarized light is
scattered, the same term ensures that the dependence of
the linear polarization of the scattered light on the sec-
ond-order orientation is retained for forward and back
scattering.

The second-order orientation also produces several
observable effects in the angular distribution of the
scattered light. Thus, for example, for the scattering of
nonpolarized light, when the contribution of the sec-
ond-order orientation to the angular distribution is
determined in (14) only by the first two terms of form
(2) and (3), the dependence of the intensity of the light
scattered in the perpendicular direction on the second-
order orientation is retained, while its dependence on
the first-order orientation vanishes. When the incident
light is linearly polarized, the intensity of the scattering
in the direction perpendicular to its polarization also
depends on the second-order orientation alone [see
(11)]. In addition, for forward and back scattering, the
orientation dependence of the scattering intensity on
the Stokes parameters η1 and η3 is retained precisely
because of the second-order orientation [the second
term that defines δβγ in (14) remains nonzero in this
case].

Finally, recall that the second-order orientation does
not show up in any way in the total cross section for
light scattering.

In conclusion, we emphasize that formulas (8), (11),
(13), and (14) derived here together with the results

η2'

η2'
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from [8] completely describe the orientation effect on
the scattering of light by a polarized atomic system.
The first-order alignment effects were considered in [9,
13]. The second-order alignment effects, which are
determined by the part of the cross section (4) propor-

tional to , should be studied separately.

APPENDIX

When expressing pseudoscalars (7) in terms of the
scalar and triple scalar products of the vectors appear-
ing in them, we used the following two identities:

(A.1)

(A.2)

where n is a unit real vector, so n · n = 1; and the irre-
ducible tensors on the left-hand sides of (A.1) and (A.2)
were constructed according to the rule (5). Yet another
pseudoscalar of the form (7) can be determined by
using identity (A.1), because it follows from the sym-
metry properties of the Clebsch–Gordan coefficients
that

Below, we show how identities (A.1) and (A.2) and
other identities of this kind can be derived.

First, note that irreducible tensors of the zero, first,
and second ranks K can be constructed from the com-
ponents of the Cartesian tensor Aik:

(A.3)

ρ4
n

n n⊗{ } 2 n⊗{ } 3 d e⊗{ } 1 f g⊗{ } 2⊗{ } 3,( )

=  
i

2
------- d e n×( ) f n⋅( ) g n⋅( ) ---⋅





–
1
5
--- d e f×( ) g n⋅( )⋅ d e g×( ) f n⋅( )⋅+[

---+ d e n×( ) f g⋅( )⋅ ]




,

n n⊗{ } 2 n⊗{ } 3 d e⊗{ } 2 f g⊗{ } 2⊗{ } 3,( )

=  
i
4
--- n e f×( ) d n⋅( ) g n⋅( ) n e g×( ) d n⋅( ) f n⋅( )-⋅+⋅





+ n d f×( ) e n⋅( ) g n⋅( ) n d g×( ) e n⋅( ) f n⋅( )⋅+⋅

–
1
5
--- n e g×( ) d f⋅( ) n e f×( ) d g⋅( )⋅+⋅[

---+ n d g×( ) e f⋅( ) n d f×( ) e g⋅( )⋅+⋅ ]




,

n n⊗{ } 2 n⊗{ } 3 d e⊗{ } 2 f g⊗{ } 1⊗{ } 3,( )

=  n n⊗{ } 2 n⊗{ } 3 f g⊗{ } 1 d e⊗{ } 2⊗{ } 3,( ).

AKQ C1q11q2

KQ A q1q2( ),
q1 q2,
∑=
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where  are the spherical tensor components,
which are expressed in terms of the Cartesian compo-
nents in each of the indices similarly to the spherical
components of vector (6). In what follows, the Carte-
sian tensor components are denoted by the lowercase
Roman letters i, j, k, m, and n. If Aik is a symmetric ten-
sor with a zero trace constructed from two vectors,

(A.4)

then only the irreducible tensor of the second rank

is nonzero. If, alternatively, Bik is an antisymmetric ten-
sor constructed from two vectors,

(A.5)

then only the irreducible tensor of the first rank

is nonzero.
We also need the irreducible tensors composed of

the antisymmetric pseudotensor of the third rank, εijk

(ε123 = 1). The irreducible components of this pseudo-
tensor must be defined as

(A.6)

Since the pseudotensor εijk does not change when
rotating the coordinate system, only the irreducible ten-

sor of the zero rank (pseudoscalar), , can be non-
zero. By comparing the expression that defines this
pseudoscalar with the pseudoscalar

(see formulas from [11]), we easily find that

Let us introduce the following pseudoscalars in our
analysis:

(A.7)

where k = 1, 2 and J = 1, 2, 3. The pseudoscalars X1; k
are the scalar products of two irreducible tensors of the
first rank (vectors) and can be easily expressed in terms
of the scalar and triple scalar products of the vectors
appearing in them using formulas from [11].

A q1q2( )

Aik
1
2
--- aibk akbi+( ) 1

3
---a bδik,⋅–=

A2Q a b⊗{ } 2Q=

Bik
1
2
--- diek dkei–( ),=

B1Q d e⊗{ } 1Q=

εKQ
k C1q1kq

KQ C1q21q3

kq ε q1q2q3( ).
q1 q2 q3 q, , ,
∑=

ε00
1

a b c⊗{ } 1⊗{ } 0
i

6
-------a b c×( )⋅–=

=  
i

6
-------a jε jkmbkcm–

ε00
1 i

6
-------ε jkm

2– i 6.–= =

XJ  k;

=  a b⊗{ } 2 c⊗{ } J d e⊗{ } k f g⊗{ } 2⊗{ } J,( ),
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We are interested in X3; k, because pseudoscalars of
this type appear on the left-hand sides of identities
(A.1) and (A.2). To determine them, let us consider the
pseudoscalar

(A.8)

composed of Cartesian tensors. Reversing relations of
type (A.3) and relation (A.6), the pseudoscalar S1 can
be expressed in terms of the sum of products of the irre-
ducible components in all of the tensors appearing in
(A.8) and five Clebsch–Gordan coefficients. The sum
of the product of five Clebsch–Gordan coefficients over
the moment projections is transformed by the graphical
methods described in [14]; S1 can then be written in
terms of the pseudoscalars composed of irreducible
tensors:

(A.9)

The expression for the pseudoscalar

(A.10)

can be derived in a similar way. If the symmetric ten-
sors with a zero trace constructed according to the rule
(A.4) from vectors a and b, d and e, and f and g are
taken as the tensors Aik, Bik, and Dik in (A.8), respec-
tively, then S1 is expressed, according to (A.9), in terms
of the pseudoscalars XJ; 2 (A.7) with J = 1, 2, 3; K = K1 =
K2 = 2. When substituting the antisymmetric tensor
(A.5) for Bik, S1 is expressed in terms of XJ; 1 with J = 1,

S1 Aikc jεinmBknDmj=

=  1–( )
q1 q2 q3 q4 q5+ + + +

q1 q2 q3 q4 q5, , , ,
∑

× A q1q2( )c q3( )ε q1q4q5–( )B –q2 q4–( )D –q5 q3–( )

S1 i 6 1–( )
K1 1+

K K1 K2 J, , ,
∑=

× 2K 1+( ) 2K1 1+( ) 2K2 1+( )[ ] 1/2

× 1 1 1

1 K K1 
 
  1 1 K2

J K1 K 
 
 

× AK c⊗{ } J BK1
DK2

⊗{ } J,( ).

S2 Aikc jεijnBnmDkm i 6 1–( )
K1 K2 1+ +

K K1 K2 J, , ,
∑= =

× 2K 1+( ) 2K1 1+( ) 2K2 1+( )[ ] 1/2

× 1 1 K2

J K1 1 
 
  1 1 K

J 1 1 
 
 

× AK c⊗{ } J BK1
DK2

⊗{ } J,( )
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2, 3 with K = K2 = 2 and K1 = 1 on the right-hand side
of (A.9). The scalars S2 for these choices of tensors Aik,
Bik, and Dik are expressed in terms of XJ; k with J = 1, 2,
because J in the sum (A.10) satisfies the triangle condi-
tion ∆(1, 1, J), ∆(1, K, J), and K = 2.

Identity (A.10) allows X2; k to be expressed in terms
of S2 and X1; k. The sought-for pseudoscalars X3; k can
then be expressed in terms of X2; k, X1; k, and S1 using
(A.9). The pseudoscalars S1 (A.8) and S2 (A.10) can
obviously be written in terms of the scalar and triple
scalar products of the vectors constructed from them.
As a result, X3; k (A.7) is expressed in terms of the scalar
and triple scalar products of the vectors appearing in
them. The formulas simplify in the case of a = b = c =
n and n · n = 1 concerned, because some of the triple
scalar products become zero and some of the scalar
products become unity. We derived identities (A.1) and
(A.2) by the method described here.
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Abstract—The dispersion equation in the problem of electromagnetic field stability in an infinite inverted
homogeneous medium is analyzed rigorously. The instability region for small quantum numbers k is estab-
lished. It is found that, in contrast to the prevailing opinion, a continuous transition is also possible between
polariton waves and electromagnetic waves upon a gradual variation of k; in this case, the two types of waves
cannot be separated. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The instability of waves in inverted media has
become the object of intense investigations. We are
speaking of the situation described by V.V. Zheleznya-
kov, V.V. Kocharovskiœ, and Vl.V, Kocharovskiœ, [1, 2].
In spite of a detailed analysis of the equations for an
electromagnetic field in a homogeneous infinite
medium with inversion [1, 2], some aspects still remain
unclear and will be investigated more thoroughly here.

It should be recalled that, in the semiclassical
approximation, the rf electromagnetic field in a sub-
stance is described by the following equations:

(1)

(2)

Here, we use the notation adopted in [1, 2]: E and B are
the electric and magnetic field vectors, p is the polariza-
tion vector of the substance, ω0 is the frequency of tran-
sition between two levels, 1/T2 is the broadening of the
corresponding spectral line, and ωc is the plasma (coop-
erative) frequency of the substance in the given state.

Above all, we are interested in the case of inverted

state, when  < 0. Irrespective of the direction of
polarization vector, we obtain from Eqs. (1) and (2)

(3)

where ω is the frequency of the electromagnetic field
and k is the wave number. Equation (3) was derived in
[1], but the analysis of this equation made in [1, 2] has
some drawbacks.

curl E
1
c
---∂B

∂t
-------, curl B–

1
c
---∂ E 4πp+( )

∂t
---------------------------- 4πσ

c
----------E,+= =

∂2p

∂t2
--------

2
T2
-----∂p

∂t
------ ω0

2 1

T2
2

-----+ 
  p+ +

ωc
2

4π
------E.=

ωc
2

1 4πiσ
ω

------------
ωc

2

ω i/T2+( )2 ω0
2–

--------------------------------------- k2c2

ω2
----------––+ 0,=
1063-7761/02/9502- $22.00 © 20206
First, the condition for the existence of the instabil-
ity region on the scale of wave numbers,

, (4)

was derived in [1] not quite rigorously, but to a certain
approximation. In fact, it permits a quite exact deriva-
tion on the basis of Eq. (3). Second, the boundedness of
the instability region for large as well as small values of
k was noted in [1, 2], but the second of these statements
may be incorrect in the nonresonance case. Third, two
types of waves (polariton and electromagnetic waves)
are indicated in [1, 2] as two different entities on the
basis of their physical differences. In actual practice, a
continuous transition between them is sometimes pos-
sible upon a gradual change in k; consequently, a wave
cannot be unambiguously attributed to a certain type of
waves. In this paper, we fill these gaps.

2. CRITERION FOR THE EXISTENCE 
OF THE INSTABILITY ZONE

For k  ∞ and invariability of the remaining
parameters, the difference between the two types of
waves is manifested with maximum clarity. We can eas-
ily obtain the corresponding asymptotic form for all
four roots of Eq. (3):

(5)

The solutions (5) obviously satisfy the stability crite-
rion Imω < 0. We will gradually decrease the value of
k. The instant of transition from stability to instability
and back is characterized by a purely real-valued quan-

ωc
2 8πσ

T2
----------–<

ω1 2, kc 2πiσ– O
1
k
--- 

  ,+±=

ω3 4, ω0
i

T2
-----– O

1

k2
---- 

  .+±=
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tity ω. Then the separation of the real and imaginary
components in Eq. (3) leads to two equations

(6)

(7)

It is convenient to eliminate, first, the cumbersome
denominator of fractions in Eqs. (6) and (7), which
gives the values of the roots:

(8)

The form of Eq. (3) rules out the possibility of ω = 0
and ω = ∞ at the very outset. The substitution of Eq. (8)
into any of equations (6) or (7) allows us to obtain the
required relation between the parameters at the critical
point in the form of the quadratic equations for the aux-
iliary quantity K = k2c2:

(9)

In some cases, the instability region does not exist at
all. This is the case for a negative value of discriminant
∆ of Eq. (9) or for the presence of two real-valued but
negative roots for K. To be more precise, ∆ < 0 for

(10)

and both roots for K are negative only if the coefficient
of the first power of K in Eq. (9) has positive sign, i.e.,

(11)

After the deduction of regions (10) and (11), we are

left with the range of , namely, the region specified
by inequality (4), in which a transition from instability
to stability for any real K takes place. Thus, criterion (4)
is confirmed by rigorous calculations.

3. BOUNDEDNESS OF THE INSTABILITY 
REGION FOR SMALL WAVE NUMBERS

Under condition (4), the free term in Eq. (9) is pos-
itive if

1 k2c2

ω2
----------–

ωc
2 ω2 1/T2

2– ω0
2–( )

ω2 1/T2
2– ω0

2–( )2
4ω2/T2

2+
------------------------------------------------------------------– 0,=

4πσ
ω

----------
2ωωc

2/T2

ω2 1/T2
2– ω0

2–( )2
4ω2/T2

2+
------------------------------------------------------------------+ 0.=

ω2 2πσT2 ω0
2 1/T2

2+( ) k2c2+
1 2πσT2+

-------------------------------------------------------------.=

K2 2 ω0
2 1

T2
2

-----+ 
 – 1 2πσT2+( )

ωc
2

2πσT2
---------------- 4

T2
2

-----+
 
 
 

+ K+

+ ω0
2 1

T2
2

-----+ 
  2

2πσT2 1 2πσT2+( )+

× ω0
2 1

T2
2

-----+ 
  ωc

2

2πσT2
---------------- 4

T2
2

-----+
 
 
 

0.=

4

T2
2

-----
ωc

2

2πσT2
---------------- 4ω0

2,< <–

ωc
2

2πσT2
---------------- 4

T2
2

-----–
2 ω0

2 1/T2
2+( )

1 2πσT2+
-------------------------------.+>

ωc
2
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(12)

If this condition is satisfied, the instability region has a
finite left boundary on the K scale; otherwise, the insta-
bility region extends to infinitely small values of K
since one of the roots becomes negative for k2c2.

These relations can be conveniently illustrated for
the particular case of resonance considered in detail in
[1, 2]. In this case, a small correction

is introduced, and the quantities σ, |ωc |, and  are
also regarded as small. In this case, the roots ω from
one of the pairs are also close to kc, and we can set

The relation between the small correction δ and the
renormalized wave number h is given (after disregard-
ing quantities with a higher order of smallness) by the
following simplified equation:

(13)

which is given in [1, 2] in a somewhat different form. In
fact, it is a quadratic equation (the other two roots of
Eq. (3) for ω are symmetric to those obtained by us and
are close to –kc). The problem of the critical point of the
stability–instability condition is solved as before:
assuming that δ is purely real, we separate the real and
imaginary components in Eq. (13). Under the same
condition (4), both critical values for h are always real-
valued:

(14)

A simple analysis of this expression as a function of σ
with respect to its extrema for the same values of the
remaining parameters shows that the maximum and the
minimum are attained at the levels

(15)

where

Consequently, we can make the following refininement
to Fig. 3 in [1]: the curve describing the dependence of
σ on h has the form of an inverted suspended drop only
for µ > 14; otherwise, we obtain a simple “hat” (in [1],
only the condition µ > 4 is used explicitly).

ωc
2

2πσT2
---------------- 4

T2
2

-----+ –
ω0

2 1/T2
2+

2πσT2 1 2πσT2+( )
-----------------------------------------------.>

h kc ω0–=

T2
1–

ω kc δ.+=

2δ 4πiσ
ωc

2

2 δ i/T2 h+ +( )
------------------------------------–+ 0,=

hcr 1 2πσT2+( ) 1
2πσT2
---------------- ωc

2 8πσ
T2

----------+ .±=

σ 2 µ 2 µ+( ) µ 14–( )±+
16πT2

-------------------------------------------------------------,=

µ ωc
2T2

2.–=
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4. MAXIMUM INCREMENT

If we separate the real and imaginary components in
the small correction δ,

the quantity δ2 will characterize the increment (if we
choose solutions with δ2 > 0). The maximum of δ2 with
respect to h can be obtained from the following consid-
erations. We consider, along with Eq. (13), the complex
conjugate relation

(16)

We denote the left-hand sides of Eqs. (13) and (16) by
Q(δ1, δ2, h) and Q*(δ1, δ2, h) and vary h as well as δ1
and δ2. Then we can write

(17)

For a value of h corresponding to the maximum
increment, we must have dδ2 = 0, so that the solvability
condition for system (17) has the form

(18)

According to the rule for differentiation of a complex
function, we have

Evaluating determinant (18) and carrying out elemen-
tary cancellation, we obtain h = 0. In this case, the roots
of Eq. (13) are purely imaginary, δ = iy, and for a grow-
ing wave we have

(19)

Thus, the only maximum of Imδ with respect to h is
attained at the middle of the instability interval. At the
same time, function (19) is monotonic with respect to
σ. It decreases from the maximum value

(20)

δ δ1 iδ2,+=

2δ∗ 4πiσ–
ωc

2

2 δ∗ i/T2– h+( )
---------------------------------------– 0,=

δ∗ δ1 iδ2.–=

∂Q
∂δ1
--------dδ1

∂Q
∂δ2
--------dδ2

∂Q
∂h
-------dh+ +

=  
∂Q∗
∂δ1
----------dδ1

δQ∗
∂δ2
----------dδ2

∂Q∗
∂h

----------dh+ + 0.=

∂Q
∂δ1
-------- ∂Q

∂h
-------

∂Q∗
∂δ1
---------- ∂Q∗

∂h
----------

0.=

∂Q
∂δ1
--------

∂Q
∂δ
-------,

∂Q∗
∂δ1
---------- ∂Q∗

∂δ∗
----------.= =

y
2πσ 1/T2+( ) 2πσ 1/T2–( )2 ωc

2–+–
2

---------------------------------------------------------------------------------------------.=

ym
1
2
--- –

1
T2
----- 1

T2
2

----- ωc
2–+

 
 
 

=
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for σ = 0 to zero for the known critical value  =
−8πσ/T2.

5. SEPARATION OF TWO TYPES OF WAVES

As before, we confine our analysis to the region
close to resonance. The solution of Eq. (13) is given by

(21)

where

(22)

It is worth noting that ImR generally differs from
zero and passes through zero only for h = 0 except in the
special case mentioned in [1, 2], when 2πσT2 = 1. This

means that  as a complex-valued quantity remains
within a quadrant upon a change in h both for h > 0
(otherwise R would be real-valued) and for h < 0 (but
the quadrant will be different). At the point h = 0, we

have R2 < 0 and, hence,  passes through the imagi-
nary axis at this moment.

Let us now consider large values of h > 0, assuming,
for the time being, that 2πσT2 > 1. From Eq. (22), we
asymptotically obtain (see [3])

(23)

For the “upper” solution (corresponding to the larger

value of Reδ), we chose the plus sign. Thus,  <

0 and  are in the fourth quadrant. At point h = 0, a
transition to the third quadrant takes place, while, for

h < 0 and large |h |, the position of  in the third quad-
rant indicates, according to the same formula (23), that
we have also chosen the plus sign. Thus, the choice of

the sign for  is matched on the left and right of scale
h. The same is also true for 2πσT2 < 1 with the only dif-

ference that the values of  in the intermediate region
pass through the upper (first and second) quadrants.

The quantity X from formula (2.5) in [1] in the case
of resonance has the following form in our notation:

(24)

This quantity tends to a finite value if we take the upper
sign in formula (23) and to infinity if we take the lower
sign. According to the terminology used in [1, 2], the
latter case corresponds to a polariton wave and, accord-
ingly, the former case corresponds to an electromag-
netic wave. However, taking the above arguments into
consideration, we can verify that the solution with the

ωc
2

σ πiσ– i
2T2
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2
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R
2

--------,±–=

R h2 2ih
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-------- 1 2πσT2–( ) ωc

2 2πσ 1
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R h
i
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----- 1 2πσT2–( ) O

1
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Im R

R

R

R

R

X
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2

8πkc δ i/T2 h+ +( )
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δ 2πiσ+
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larger value of Imδ in the intermediate region corre-
sponds to a polariton wave for 2πσT2 > 1 and to an elec-
tromagnetic wave for 2πσT2 < 1. This conclusion can
be found in [1], but it is drawn on the basis of energy
considerations, while our arguments are purely alge-
braic. The physical interpretation also changes in our
approach. In the intermediate region (|h | < hcr from
Eq. (14)), unstable solutions form a continuous set. The
interpretation of a wave as an electromagnetic or a
polariton wave must be treated as subjective. This dif-
ference becomes objective only for h  ∞ far away
from the instability region.

6. CONCLUSIONS
A number of results obtained semi-intuitively in [1,

2] are confirmed by rigorous calculations. Above all,
this concerns the criterion for the emergence of the
instability region (4) on the scale of k. A qualitative sep-
aration of the cases when 2πσT2 > 1 and 2πσT2 < 1 is
also confirmed, albeit not for the corresponding waves
directly, but only for their continuous extension to the
nonresonance region. In the instability region, however,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the waist shown graphically in [1] and separating the
two types of waves is not observed necessarily.

In actual practice, a continuous transition may
sometimes occur between polariton and electromag-
netic waves upon a gradual change in k, and hence a
wave cannot be assigned unambiguously to a certain
type. The instability may also be manifested away from
the resonance, but its region may or may not be
bounded for small values of k.
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Abstract—An interpretation of the field-emission images of molecules, impurity ions, and nanostructures
placed on the tip of a field-emission microscope is given. It is shown that often such images represent nothing
else but the visualization of the wave function of the emitted quantum particle in the momentum space. The
results of many earlier experiments are reinterpreted with regard to the results obtained in the present
work. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The field-emission microscopy of metal and semi-
conductor tips has been successfully applied to the
study of various problems of surface physics, to the
analysis of electrophysical properties of metals and
alloys, etc. (see, for example, the monographs [1–3]). It
is believed that the basic principles of the process are
firmly established and the theory is well developed. In
particular, an assertion is widely recognized that the
spatial resolution of the method is limited to several
nanometers, so that, in contrast to the field-ion micros-
copy technique, individual quantum particles cannot be
directly observed.

This assertion is based on the following fact. The
analysis of the motion of emitted particles in the radial
electric field of a field-emission microscope shows that
a particle of mass m and charge e possessing an initial

transverse (radial) momentum of p⊥  =  hits a
point on the detector displaced from its stereographic
projection [1–3] by the quantity H given by

(1)

Here, U is the emitter potential and L is the distance
from the field-emission tip to the detector. In practical
field-emission microscopy, one usually assumes that
every point of the tip can serve as a source of emission.
Then, the statistical distribution of the transverse
momentum of electron gas in metals and alloys deter-
mines, according to (1), the diameter of the image of
each point on the screen δ and, hence, the spatial reso-
lution of the method. The analysis carried out by
Gomer et al. with regard to the Fermi distribution of
electrons in metal [3] yields the following result:
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Here, W is the work function of electrons from metal (a
barrier height) and k ≈ 5 is the coefficient of proportion-
ality between the electric field F on the tip, its potential
U, and the radius of curvature r, F = U/kr. The substitu-
tion of (2) into (1) shows that the resolution of a field-
emission microscope does not depend on the potential
of the tip and is proportional to (r/W1/2)1/2; in the typical
case (r = 100 nm and W = 4 eV), it amounts to about
2 nm, which is substantially greater than the inter-
atomic distance. The spatial resolution cannot be
increased drastically by decreasing the radius of curva-
ture of the tip because the momentum dispersion is
determined by the Heisenberg uncertainty principle: an
electron source localized within a region of diameter δ
necessarily has a transverse momentum on the order of
p⊥  ≈ "/δ. Thus, the observable dimension A of the struc-
ture can be expressed as

(3)

where γ is a numerical coefficient equal to 1.5–2, which
is attributed to the difference between the geometry of
the actual microscope and an ideal spherical condenser.
The minimization of (3) yields the following well-
known expression for the fundamental limit of resolu-
tion:

For r = 10 nm, we have δ ≈ 1 nm, which also cannot
guarantee a single-atom spatial resolution [1–4].
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However, it is known that, if a single particle is
placed on a field-emission tip and this particle has
energy levels admitting resonance tunneling of elec-
trons from the emitter, then the local value of the emis-
sion current increases by several orders of magnitude,
and a bright spot appears on the detector screen (see the
survey papers [5, 6]). Hence, the method of field-emis-
sion microscopy enables one to observe a single quan-
tum particle; this was demonstrated for molecules [7]
and atoms [8] and, later on, also for clusters [9] and
impurity atoms in the dielectric coatings of field-emis-
sion tips [10]. In this case, the particles on the detector
are represented by a wide structureless spot; therefore,
it is more justified to describe such a situation merely as
detecting an individual atomic particle rather than
obtaining its image.

A different situation occurs when the field-emission
processes from a quantum particle can be described as
the ionization of precisely this particle, and a metal tip
only serves as a source of emitted electrons and pro-
vides a radial imaging electric field. (Note that it is this
situation that occurs in the recently developed method
of laser photoelectron projection microscopy [11, 12].)
In this case, one should interpret formula (1) as the
transformation of the transverse momentum distribu-
tion of a quantum particle into its spatial image. Projec-
tion field-emission images of quantum particles on the
tip of a microscope allow one to measure this momen-
tum distribution experimentally and, hence, to observe
the wave function of a quantum particle.

In this paper, we analyze the process of obtaining
field-emission images of isolated quantum particles and
nanostructures located on a field-emission tip. On the
basis of the results obtained, we give another interpre-
tation of the results of some earlier works in which the
authors observed structuralized field-emission images
of adsorbed molecules.

2. FIELD-EMISSION IMAGES OF ISOLATED 
QUANTUM PARTICLES: THEORY

2.1. Momentum Distribution

Consider an isolated quantum particle (an atom, a
molecule, or a nanostructure) located on the tip of a
field-emission microscope. The state of such a particle
differs from the state of an appropriate free quantum
particle. Nevertheless, even when located on a metal
surface, it often preserves its inherent energy levels and
can be considered as a “quasi-free” particle. This is
especially true when the field-emission tip is coated
with a dielectric layer on which a particle under inves-
tigation is situated.

The field ionization of such a particle should be con-
sidered as the tunneling of an external electron from a
quantum system characterized by a well-defined
momentum distribution. Podolsky and Poling [13] were
first to demonstrate that, for a hydrogen atom, this dis-
tribution can be obtained as the Fourier transform of a
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
wave function ψ(r) expressed in the coordinate space.
We will consider a cylindrical coordinate system z, ρ, ϕ
with the z axis coinciding with the symmetry axis of the
field-emission cathode and a particle situated at the ori-
gin. The wave function of the ionized particle can
nearly always be factorized as ψ(r) = g(ρ, z)f(ϕ), so that
the corresponding momentum distribution P(pz, pρ, Φ),
i.e., the Fourier integral

,

can be obtained from the explicit expression for the sca-
lar product p · r in cylindrical coordinates:

(4)

The distribution in ϕ for free atoms is given by the func-
tion f(ϕ) = exp(imϕ), where m is an integer. Often,
instead of the “formal” symmetry law exp(imϕ), the
state of quantum particles adsorbed on the surface can
be characterized by a function of the type cos(vϕ),
which describes the real angular symmetry with integer
or half-integer v. For integer v  = m, the integral with
respect to ϕ is expressed in terms of the Bessel function
of order m by relations of the form

[14]. This allows us to reduce (4) to

(5)

In the case of a real angular symmetry, the function
exp(imΦ) in (5) is replaced by the function cos(mΦ).
Hence, we can draw the following conclusion: The
m-fold angular symmetry of the spatial wave function
is transferred to the wave function in the momentum
space. According to (1), in the case of real symmetry,
this gives rise to the angular symmetry in the field-
emission images.

To analyze the case of arbitrary, including half-inte-
ger, v, the Fourier-transform (4) is expressed in terms of
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Fig. 1. (a) Square of the spatial wave function possessing a threefold angular symmetry and the corresponding probabilities of the
angular momentum distribution for (b) a = 1.1, (c) 3.2, and (d) = 6.8.
the Anger and Weber functions Jv(z) and Ev(z), defined
as

which coincide with the Bessel functions for integer v
and are closely related to the Struve functions [14].
However, these functions are not widely used and are
poorly tabulated; the application of these functions has
no advantages over the direct numerical integration of
appropriate expressions.
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Such integration shows that, to obtain half-integer v,
one does not transfer the angular symmetry of the spa-
tial wave function to the angular symmetry of the
momentum wave function (which is evident from the
structure of the corresponding integral). In Fig. 1, this
result is illustrated by the results of calculating the
wave function w(Φ)w*(Φ), where

for three arbitrarily chosen different values of the
parameter a ≡ pρρ/". This function corresponds to the
nonnormalized probability of the angular momentum
distribution for the spatial electron density distribution

w Φ( ) ia Φ ϕ–( )cos–[ ] 3ϕ
2

------cosexp ϕ ,d
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2π

∫=
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which possesses a threefold angular symmetry (cf. (4)
and (8)). One can see that there is nothing similar to the
threefold angular symmetry in the momentum space:
different angular distributions that often exhibit two- or
fourfold symmetry are observed for different radial
momenta pρ = "a/ρ0. This situation accounts for the fact
that the field-emission image of an adsorbed molecule
having a threefold spatial symmetry never exhibits a
three-leaf structure resembling the molecule itself ([3];
see also Subsection 3.1 and the references cited there).

Consider the case of integer m in greater detail. For
the further analysis, we have to specify the wave func-
tion g(ρ, z). We assume that it can be factorized (at least
approximately) as the product g(ρ, z) = u(ρ)b(z). Then,
the momentum distribution is also factorized as a prod-
uct of the normal momentum distribution of emitted
electrons a(pz) (an ordinary Fourier-transform of b(z))
and the radial momentum distribution

(6)

where, just as everywhere below, we omit the normal-
izing factors. Examples of calculating integral (6) are
known for many functions u(ρ) that can be used as
model examples as applied to the problem under con-
sideration. For example, for the function u(ρ) =
ρnexp(–γρ), by which one can approximate wave func-
tions in many cases, integral (6) is expressed in terms of
elementary functions ([14, Example 2.12.8.4]):

(7)

where m may even be noninteger. If the function u(ρ)
can be approximated by the delta function δ(ρ0), then,
obviously,

(8)

The consideration of these and other examples shows
that one can make another assertion virtually for all
appropriate wave functions of an ionized particle: The
angular symmetry of a spatial wave function leads to
the radial momentum distribution that attains its maxi-
mum at a certain nonzero value of pρ.

In this case, formula (1) shows that the density of the
field-emission current vanishes for H = 0, which
implies that ring-shaped structures appear in the field-
emission images.
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2.2. The Narrowing of the Momentum 
Distribution under Tunneling

Another important factor for analyzing the forma-
tion of field-emission images of isolated quantum par-
ticles situated on a field-emission tip is the narrowing of
the radial momentum distribution (and the correspond-
ing narrowing of the spatial emission pattern) as a result
of tunneling. The tunneling is essentially three-dimen-
sional. An emitted electron moves in a radial three-
dimensional (quasi)-Coulomb field of an impurity par-
ticle in a homogeneous (quasi)-one-dimensional exter-
nal electric field. One can assume that this field acts
only in one direction since the characteristic length at
which it varies (on the order of the curvature radius r of
the tip) is much greater than the barrier width. Such
character of tunneling substantially narrows down the
transverse momentum distribution, because the greater
p⊥ , the greater the effective path passed by the particle
in the classically forbidden region below the barrier,
and the greater the effective width of the barrier [15–
20].

This fact was first pointed out by Kapur and Peierls
in their classical work [15], where they introduced the
concept of imaginary quasiclassical trajectory of a par-
ticle passing below the barrier and showed that, in the
WKB approximation, the tunneling probability can be
obtained by integrating the particle momentum along
this trajectory, by analogy with the well-known one-
dimensional case. Thus, the trajectory of a particle with
energy E0 in a field with potential U(r) can always be
expressed by equation

(9)

while the permeability of the barrier P = constexp(–D)
can be expressed as an integral along this trajectory,
parameterized by its length s:

(10)

Analytic expressions for the wave function of a tun-
neling electron were obtained in the case when its
attractive interaction can be characterized by a Fermi
potential (pseudopotential) of zero radius

i.e., for the Schrödinger equation (in atomic units)

[16–18]. In the absence of an electric field, this equa-
tion describes the only bound state with energy of E0 =
−0.5V2. The relevant solutions in the presence of an
electric field satisfactorily describe the tunneling from
spherically symmetric states of adsorbed particles;
recently, we have used them for describing the pro-
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cesses of field-induced ionization of bivalent samarium
impurity ions (in the quantum ground state 7F0) on the sur-
face of Si/CaF2 tips ([19, 20]; see also Subsection 3.2). In
particular, from appropriate analytic expressions, one
can obtain the evolution of the transverse momentum
distribution χ(z, p⊥ ) of emitted particles during tunnel-
ing (see [18], where it was shown that the same expres-
sions are obtained by the quasiclassical analysis of this
problem):

(11)

Here, κ = /", where I is the barrier height that
coincides with –E0 in the present case. Thus, the mean
kinetic energy associated with the transverse momen-
tum is equal to

(12)

whence, according to (2), one can find the size of the
field-emission image of such quantum particles. In
turn, this size can be interpreted as the measurement of
the tunneling time of an electron [20].

However, in the present paper, we primarily focus
on the field-induced ionization of particles that are not
in spherically symmetric states. We do not know any
analytic solutions to appropriate problems. It seems
that the most adequate approach here is a two-stage
analysis: first, we determine (in momentum space) the
wave function of the emitted particle in the absence of
an external electric field and then analyze its variation
during tunneling. Then, applying formula (1), we can
simulate the field-emission image observed for any
quantum particle situated on the tip. Note that, if the
narrowing of the transverse momentum distribution
during tunneling can be neglected, then the intensity of
the field-emission image on the screen (the density of
the emission current) as a function of distance H from
its center (see (1)) is proportional to

Applying the concept of quasiclassical trajectory in
the classically forbidden region under the barrier, we
can calculate the permeability of the barrier for arbi-
trary initial values of the tunneling electron momen-
tum. In this paper, we only present the final result of
such calculations for the permeability D of a triangular
barrier of height I and width l = I/F. For an electron with

the initial velocity with components  and  and

the respective initial energies  and , the perme-
ability of such a barrier is equal to
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Here,

and E(ϕ, k2) and F(ϕ, k2) are incomplete elliptic inte-
grals of the first and second kind [14]. Formula (13) is
considerably simplified and reduced to complete ellip-

tic integrals when  = 0. If, moreover,  is also
zero, then (13) is reduced to the well-known expression
for the permeability of a one-dimensional triangular
barrier

In the general case, the procedure of simulating
field-emission images described above admits numeri-
cal analysis (see Subsection 3.2), although this is rather
laborious. Qualitatively, we can note the following.
Relatively simple results are obtained when one can
neglect the initial longitudinal momentum of the emit-
ted electron. The narrowing of the transverse momen-
tum distribution during tunneling proves to be indepen-
dent of the initial state of the electron and is sufficiently
large under typical conditions. We also note that this
result coincides with the result of an analytically solv-
able model that uses the contact Fermi pseudopotential
(formulas (11) and (12)), which provides additional
grounds for the applicability of the model used here.

For nonzero values of the initial longitudinal
momentum of the emitted electron, the narrowing of
the transverse momentum distribution strongly depends
on the initial state of the transverse momentum. If E⊥  is

substantially less than the initial value , then the
narrowing of the transverse momentum distribution due
to tunneling can often be neglected in the first approxi-
mation. Such a situation often occurs when obtaining
field-emission images of sufficiently “flat” molecules
adsorbed on the surface of a metal field-emission tip
(see Subsection 3.1).

3. FIELD-EMISSION IMAGES OF ISOLATED 
QUANTUM PARTICLES: A FEW SPECIFIC 

EXAMPLES

In this section, we consider three examples of
obtaining field-emission images of isolated particles
situated on the tip of a field-emission microscope: mol-
ecules, doping rare earth ions, and nanostructures (car-
bon nanotubes).
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3.1. Molecules

The first images of isolated organic molecules
adsorbed on the tip of a field-emission microscope were
obtained as early as the 1950s (see [7, 21–24] and other
works). For some of these images, in particular, for
copper phthalocyanine, pc-Cu, the spatial structure of
the image corresponded to that expected from the sto-
ichiometry of molecules (see Fig. 2): under different
conditions, one observed quartet and doublet structures
(four- and two-blade clover leaves) that usually revers-
ibly turned one into another. Since the spatial size of a
molecule is equal to 1 nm, i.e., is smaller than the lim-
iting resolution of the field-emission microscope, the
attempts to interpret these results as a manifestation of
superhigh spatial resolution met very serious difficul-
ties. Therefore, there were attempts to associate the
images observed with much larger multimolecular
structures (“polymerization”) or with decomposition
products of the initial molecules spread over the emitter
[21], rather than with the molecules themselves. This is
joined by the hypothesis put forward by Komar and
Komar [25]: one observes the distribution (formed due
to the waveguide effect on the adsorbed molecules) of
the density of electrons tunneling from a metal tip,
rather than the molecules themselves. A similar hypoth-
esis about the importance of the diffraction of emitted
electrons by an adsorbed molecule was also made by
Gomer [26]. Gomer and Speer also suggested a quite
general hypothesis that it is important to take into
account the momentum distribution of emitted elec-
trons when analyzing the field-emission images of mol-
ecules [3, 27]; however, this hypothesis was not further
developed and was subsequently neglected.

The hypothesis that accounts for the superhigh spa-
tial resolution by the existence of microprotrusions and
other defects on a field-emission tip in the vicinity of
adsorbed molecules [28, 24] has been recognized as the
most probable. However, it neither explains the whole
array of observed data. For example, it remains unclear
why one never observed a spatial structure in the field-
emission images of many other molecules of compara-
ble size [22, 3]. The frequently observed dependence of
the size of a molecule image on the emitter voltage also
remains unexplained. The difficulties associated with
the interpretation of the data obtained had been the
main reason why the studies of adsorbed molecules by
the field-emission microscopy method were soon virtu-
ally stopped, although similar publications still appear
from time to time [29].

Below, we show that the observed field-emission
images of molecules are quite satisfactorily interpreted
as the visualization of their wave functions in momen-
tum space. In particular, to analyze the images of a pc-
Cu molecule adsorbed on a metal surface, we can use
the available results of quantum-chemical calculations
of the electron density (molecular orbitals) of adsorbed
molecules [30]. In view of the moderate spatial resolu-
tion of the field-emission microscopy of the phthalocy-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
anine molecules, it suffices to approximate this electron
density by a very simple (nonnormalized) function of
the type

where ρ0 = 0.9 nm and ∆ρ = 0.22 nm. Applying the for-
malism exposed in Section 2, we can express the wave
function of a molecule in the momentum space (to be
more precise, the nonnormalized radial and angular
parts of this wave function) as

(14)

The integral in this formula can easily be calculated
numerically. The results of calculations are presented in
Fig. 3. One can see that the radial momentum distribu-

tion attains its maximum for /2m = 0.4 eV and has

the first zero at /2m = 1.2 eV.

It follows from the same paper [30] that the size of
the pc-Cu molecule in the direction perpendicular to the
surface, δz, is much less than in the transverse direc-
tion: δz ≈ 0.5 nm. This means that a typical magnitude
of the longitudinal momentum pz of an emitted electron
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Fig. 2. (a) The stoichiometric formula of a copper phthalo-
cyanine molecule and typical (b) quartet (four-blade clover
leaf), and (c) doublet (two-blade clover leaf) field-emission
images of this molecule.
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is large enough, pz ≈ "/δz, i.e.,  = /2m ≈ 1.5 eV.
The analysis above shows that, for such large values of
the longitudinal momentum, the narrowing of the trans-
verse momentum distribution of emitted electrons dur-
ing tunneling does not play a decisive role; therefore,
we can neglect it in the first approximation when simu-
lating the field-emission images of pc-Cu molecules.

The simulation shows that the copper phthalocya-
nine molecules adsorbed on a field-emission tip are rep-
resented as a quartet structure so as if they have a diam-
eter of

;

for r = 100 nm, U = 4 kV, and γ = 1.5, this yields d =
4.7 nm. These values are estimated on the basis of the
results of Melmed and Mueller [21] and are in good
agreement with the experimental results obtained there.

The images of pc-Cu molecules in the form of dou-
blet structures, just like the doublet field-emission
images of a flavanthrene and certain other molecules
[21–24], can be understood within the concept
described: for a different orientation of adsorbed mole-
cules (“lying sideways”), the electron density of a mol-
ecule must be described by a function with a twofold
angular symmetry of the type

We have no information on the quantum-chemical sim-
ulation of molecules adsorbed with such an orientation;
therefore, we cannot obtain high-quality results on the
simulation of their field-emission images. The doublet
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Fig. 3. The radial part of the momentum wave function of a
copper phthalocyanine molecule adsorbed on a metal sur-
face, calculated using the data of quantum-chemical calcu-
lations of the electron density (molecular orbitals) for these
molecules.
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character of the images qualitatively follows merely
from the form of this wave function. If we additionally
assume that the parameters ρ0 and ∆ρ are close to those
describing a molecule with a different orientation, we
can draw the following conclusion. The radial momen-
tum distribution is given by integral (14) with the only
difference that the Bessel function J2(pρρ/") is replaced
by the function J1(pρρ/"). A decrease in the index of the
function considerably narrows down the momentum
distribution (cf. (8)): both the maximum and the first
zero of the distribution are shifted toward lesser values
of the initial kinetic energy of the transverse motion of
the emitted electron (for example, in our case, by 0.14
and 0.67 eV, respectively). Hence, the visible size of the
field-emission image of such a molecule is consider-
ably smaller than for the molecule whose symmetry
axis is perpendicular to the cathode. This result is well
supported in practice: the doublet images of molecules
always have smaller size (and lower intensity) as com-
pared with the quartet images [21].

Our model also makes clear why the field-emission
images of many molecules with spatial dimensions
comparable with that of a pc-Cu molecule do not have
any structure and have a very small visible dimension
[22]. If the electron density distribution of an adsorbed
molecule has no angular anisotropy, the maximum of
the transverse momentum distribution of emitted elec-
trons is attained at very small (most frequently, at zero)
values of the momentum, which corresponds to small-
size structureless images. It also becomes clear why
one could never succeed in observing field-emission
images of molecules with a threefold angular symmetry
(see Subsection 2.1); it is this circumstance that was
regarded as the main obstacle preventing one from giv-
ing a detailed explanation of obtaining such images.
For example, Gomer pointed out in his classical mono-
graph [3, p.152] that “the absence of threefold patterns
for molecules with that symmetry is extraordinarily
hard to account for on any basis, except that of poly-
merization.” We can see that this is not the case since
the interpretation of field-emission images of mole-
cules as the visualization of their wave functions in the
momentum space quite successfully explains this phe-
nomenon.

Another result that follows from our analysis is the
fact that the visible size of a field-emission image of an
adsorbed molecule is independent of the radius of cur-
vature of the cathode. This result follows immediately
from formula (1), which does not contain r. It is the dif-
ficulties associated with the “apparent” independence
of the image sizes of the radius of curvature of the cath-
ode that were the main factors in favor of the interpre-
tations based on local microprotrusions existing near
adsorbed molecules [28, 24]. Finally, formula (1) also
implies that the visible size should decrease, although
rather slowly, as the tip potential increases.
 AND THEORETICAL PHYSICS      Vol. 95      No. 2      2002
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3.2. Impurity Ions

In recent years, there has been considerable interest
in the study of the field emission from the tips coated
with thin (from several to 100–500 nanometers) dielec-
tric layers rather than from pure metal or semiconduc-
tor tips. In particular, it was demonstrated that diamond
coatings can substantially improve the emissive proper-
ties of isolated tips and arrays of tips due to the negative
electron affinity of diamond [31]. A similar effect can
also be achieved with the use of nondiamond dielectric
coatings with negative or nearly zero electron affinity,
such as lithium or calcium fluoride [32]. Silicon nano-
tips coated with calcium fluoride layers, Si/CaF2, seem
to be especially promising due to the well-developed
manufacturing technique of arrays of silicon tips; the
well-known excellent coincidence of the lattice param-
eters, which guarantees a perfect interface [33, 34];
and an abnormally large work function of electrons
from CaF2 [35]. These factors have stimulated our
interest in the investigation of Si/CaF2 structures [10,
32, 34]. In particular, we also investigated Si/CaF2

structures in which calcium fluoride coating contains
rare earth ions.

In addition, these structures are of great interest in
relation to the problem of obtaining field-emission
images of isolated quantum particles. Rare earth impu-
rity ions in a fluoride matrix are characterized by very
low (1.6–3.8 eV) ionization potentials, which is attrib-
uted to the very large Madelung constant in such crys-
tals [36, 37]. This fact, combined with the presence of
low-lying energy levels of these ions, enables one to
observe their field-emission images. An example of
such an image for bivalent samarium impurity ions is
shown in Fig. 4. The two concentric circles correspond
to the visualization of Sm2+ ions in the states 7F0 (cen-
tral circle) and 7F1 (exterior circle). The details of the
experiment and the procedure of deriving the tunneling
time from the observed width of the central circle were
described by us with the use of the Fermi pseudopoten-
tial model ([19, 20]; see also Subsection 2.2). In the
present paper, we concentrate on the interpretation of
the observed shape of field-emission images (first of all,
the exterior circle) as the visualization of the momen-
tum wave function of doping ions.

The state of a samarium ion in the matrix can be
described within the electrostatic model [36] as the
state of a free ion SmIII with an ionization potential of
Ifr = 23.4 eV placed in a large electrostatic potential
(corrected Madelung energy) of EM = 21.67 eV. Thus,
the ionization potential I of the ion in the matrix is
strongly reduced as compared with the ionization
potential of a free ion (the value I = 1.7 eV was obtained
experimentally [36, 37]), whereas the wave function of
the valence electron of the impurity ion coincides with
the corresponding wave function of a free ion. Hence,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
we deal with large values of E⊥ ,  @ I during tunnel-
ing and, as follows from the analysis of formula (13),
with the strong narrowing of the transverse momentum
distribution during tunneling.

The angular part of the wave function of the valence
electron of a samarium impurity ion in the state 7F1 is
determined by the function exp(iϕ), while the determi-
nation of the radial part represents a separate problem.
The complexity of this problem is associated with the
fact that electrons with a total orbital momentum of L =
3 and spin S = 3 are added up so that they produce a
total momentum of J = 1. In the present paper, we
restrict ourselves to a simple model where we take the
delta function δr0 in spherical coordinates as the radial
wave function. Here, r0 must be equal to the well-
known value of the ion radius of a SmIII ion, r0 =
1.18 Å [36], or can be chosen so that it correctly
describes the experimental ionization potential Ifr =
3e2/2r0, i.e., r01 = 1.03 Å. An interest in such an
approach is associated with the fact that it allows one to
obtain the momentum distribution in an analytic form
and, therefore, provides a good illustration for the pro-
cedure of simulating field-emission images.

Omitting, as before, the normalization coefficients,
we write the momentum wave function in cylindrical
coordinates as (see (5))

E||
0( )

14 nm

Fig. 4. The field-emission image of a Si/CaF2:Sm2+ tip. The
radius of curvature is r = 70 nm, the thickness of the calcium
fluoride coating is 50 nm, and the concentration of samar-
ium impurity ions is 0.02 mol %. The tip potential is U =
1.9 kV, and the distance from the tip to the detector is L =
10 cm. The figure shows two different samarium impurity
ions each of which is represented by two concentric circles.
The simulated field-emission image of the 7F1 level of the
samarium ion (exterior circle) is represented in the same
scale.
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(15)

(The angular part of the wave function is described
by the formally symmetric function exp(iΦ).) By the

change of variables  – z2 = ρ2, we reduce (15) to the
expression

(16)

which represents the tabulated integral no. 2.12.21.5
from [14]:

(17)

Substituting appropriate values into (17) and omit-
ting again all the numerical coefficients, we arrive at the
following nonnormalized wave function in the momen-
tum space:

(18)

Here,

is the Bessel function of half-integer order, and we

introduced the obvious notation  =  +  (the
radial momentum in spherical coordinates).

Expression (18), which cannot be factorized as a
product of radial and normal momentum distributions,
can be used for simulating field-emission images of
impurity ions precisely according to the following pro-
cedure (see Subsection 2.2).

1. The fraction dN1 of electrons possessing a
momentum with components pz and pρ is given by
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Each such electron is assigned a tunneling probability
proportional to ξ = pzexp(–D(pz, pρ)), where D is deter-
mined from (13). Hence, the number dN2 of emitted
electrons that contribute to the field-emission image
and possess the momentum components pz and pρ is
dN2 = ξdN1.

2. This quantity is integrated with respect to pz from
zero to infinity (actually, the integration can be trun-

cated at  ≈ 1.5Ifr). The result obtained, INT =

, is proportional to the total number of elec-

trons possessing the radial momentum pρ and contrib-
uting to the field-emission image. The relative bright-
ness of the field-emission image (the current density) at
a distance of H from its center is INT(pρ)/pρ, where pρ
is determined from formula (1).

The results of calculations for our experimental data
(F = 0.854 V/nm, l = 2.0 nm, and the other data are
given in the figure captions) are represented in Fig. 4.
In a way conventional for the field-emission micros-
copy, the distance H is reduced to the object size on the
field-emission cathode by dividing by the magnifica-
tion factor M (in our case, M = 9.5 × 105). One can see
that, although we used a rather rough approximation to
the real momentum distribution, the experimental
results are in surprisingly good agreement with the
model proposed. Note that the observed radius of the
exterior circle in the field-emission image corresponds
to the kinetic energy of transverse motion of 1.9 eV,
which is greater than the tunneling barrier height I =
1.7 eV. This fact seems very surprising and could not be
adequately explained before, until we developed a
model for interpreting field-emission images as the
visualization of the momentum wave function in the
present paper [19, 20].

Note that, because the radius of a samarium ion is
very small (of the order of 1 Å), there are no interpreta-
tions of the observed field-emission images other than
that as the visualization of the momentum wave func-
tion. Therefore, we consider the experimental results
presented in this section as the most convincing proof
of the validity of the model developed.

3.3. Nanostructures

In recent years, a large number of publications have
been devoted to the study of the field emission from
nanotubes and other similar structures. The majority of
these papers deal with the field emission from multitip
cathodes, so that only current is a measurable parame-
ter, not the field-emission images of nanostructures.
Nevertheless, many authors presented the field-emis-
sion images of nanotubes [38–41]. The images of the
so-called multiwalled nanotubes [38, 39] with a typical
diameter of 5–10 nm can be well interpreted on the
basis of the standard theory of field-emission micros-
copy. However, the interpretation of the field-emission

E||
0( )

N2d pzd∫
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images of single-walled nanotubes with an inner diam-
eter of 2ρ0 = 0.8–1 nm [40, 41] faces the same problems
of abnormally high apparent spatial resolution that
were discussed as applied to molecules and impurity
atoms.

Here, we want to draw one’s attention to the fact that
the field-emission images of single-walled nanotubes
should also be interpreted as the visualization of the
electron wave function in momentum space. It follows
from numerous theoretical models that deal with the
electron energy levels in a single-walled nanotube that
the charge density of the valence electrons possesses a
real angular symmetry along a cylindrical surface (see,
for example, [42], where the authors demonstrated this
symmetry). This symmetry follows from the fact that
the nanotube surface is formed from compact hexagons
of carbon atoms, and the valence electron is largely
localized inside these hexagons. As applied to our prob-
lem of simulating field-emission images, the molecular
orbital of a valence electron in an open single-walled
nanotube can be expressed as (cf. [42])

(19)

(A similar angular symmetry also exists in closed sin-
gle-walled nanotubes [43].) Hence, according to (8),
we have a radial momentum distribution J3(pρρ0/"),
which corresponds to the maximum kinetic energy of
transverse motion equal to 3.3 eV. Based on (1), we can
expect, as a field-emission image, a structure with a
diameter of d = 9.4 mm (for U = 1.5 kV and L = 5 cm)
that is well resolved on the screen and possesses a six-
fold angular symmetry (i.e., bright emission spots
located at the vertices of a regular hexagon).

Similar field-emission images were frequently
obtained indeed in [40, 41]. Moreover, one usually also
observed a central spot. In our opinion, this is naturally
accounted for by the fact that the angular modulation
depth of electron density is not 100%, as required by
(19), but is less. As in the case of samarium impurity
ions considered above (Subsection 3.2), this results in a
bimodal transverse momentum distribution and an
appropriate structure of the field-emission image,
which consists of a central spot and a concentric ring-
shaped structure (in this case, possessing an additional
sixfold angular symmetry).

The experimental data, including those obtained in
[40, 41], are insufficient for a more detailed interpreta-
tion within the present model. Therefore, here we do
not analyze the problem of narrowing down the trans-
verse momentum distribution as a result of tunneling:
although the electron work function from nanotubes
(4–5 eV) is greater than the typical kinetic energy of
transverse motion, in general, this phenomenon can be
quite appreciable.

ψ δ ρ0( ) 3ϕ( ).cos=
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4. CONCLUSION

Thus, in this paper, we demonstrated that the field-
emission images of many isolated molecules adsorbed
on a field-emission tip, as well as the images of impu-
rity ions and nanostructures, can be interpreted as the
visualization of appropriate wave functions of these
quantum particles in momentum space. The first appli-
cation of such an approach can be the determination of
the tunneling time of electrons from the characteristics
of the measured wave function [20].

There is an analogy between electron emission from
individual quantum particles situated on the emitter and
emission from supersharp single-atom field-emission
tips (see, for example, [44, 45]) in which a tunneling
current is provided by a single or several atoms on the
tip. In both cases, the emission current is characterized
by a very sharp angular distribution and a high degree
of coherence, which is of great interest for electron
holography and electron microscopy of superhigh spa-
tial resolution. Here, the application of adsorbed quan-
tum particles allows one to dispense with single-atom
tips, which are difficult to obtain and troublesome; ordi-
nary field-emission tips can be used repeatedly.
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Abstract—We consider a spinor Bose–Einstein condensate in its polar ground state. We analyze magnetization
waves of a finite amplitude and show that their nonlinear coupling to density waves dramatically changes the
dependence of the frequency on the wave number. On the contrary, the density wave propagation is much less
modified by nonlinearity effects. A similar phenomenon in a miscible two-component condensate is also stud-
ied. © 2002 MAIK “Nauka/Interperiodica”.
Recent advances in the experimental creation of
multicomponent atomic Bose–Einstein condensates
(BEC) [1–3] have given rise to the interest in physical
properties of such systems. There are numerous works
on the properties of degenerate Bose gas mixtures in
magnetic traps related to both the ground state [4] and
the collective excitations [5]. In [5], the early work [6]
related to a homogeneous Bose gas mixture was gener-
alized to the case of the external harmonic trap poten-
tial. Evidently, the number of branches of the disper-
sion law is equal to the number of different components
in the mixed BEC. Because of a nonzero interaction
between them, the normal mode oscillations imply a
simultaneous mutually coherent motion of the compo-
nents. In the present paper, however, we first consider a
multicomponent BEC of another kind, namely, a spinor
BEC. Such a degenerate quantum system can be cre-
ated in an optical trap, where all the atoms are confined
practically independently of mf , their momentum pro-
jection to an arbitrary axis. This independence of the
confinement from the spin orientation is a striking fea-
ture and a key advantage of optical traps, well justified
experimentally [2, 3]. The spin orientation then
becomes a new degree of freedom. The differences and
similarities between a two-component BEC with fixed
values of mf for both components and a spinor BEC in
the context of our study are discussed at the end of this
paper.

We note that, in all the cited works on collective
excitations in multicomponent BECs and in the seminal
works on spinor BEC dynamics [7], the oscillation
amplitudes were assumed to be sufficiently small to
provide linearization of the set of the coupled time-
dependent Gross–Pitaevskii equations (GPE). A proper

¶This article was submitted by the authors in English.
1063-7761/02/9502- $22.00 © 20221
linear transformation then yields equations of the har-
monic-oscillator type for the normal modes. But the
GPE is essentially nonlinear, and the effects of a finite
amplitude of oscillations therefore occur. There are
some approaches to taking the nonlinearity into
account. The first is to find particular solutions of the
GPE in the form of solitons (see, e.g., recent work [8]
and references therein). The second approach is to find
the oscillating nonlinear solutions that in the case of an
infinitesimally small oscillation amplitude coincide
with the corresponding eigenfunctions of the linearized
version of the GPE or of the equivalent set of quantum
hydrodynamical equations. An elegant formalism has
been developed for nonlinear oscillations of a scalar
BEC in a harmonic trap in the Thomas–Fermi regime
[9]. It has been found that nonlinear effects become
important if the fraction of mass of the scalar BEC
involved in the oscillatory motion is comparable to
unity.

In the present paper, we investigate the validity of
the approximation based on the linearization of the
GPE by proceeding as follows. We consider plane
waves in a spatially homogeneous multicomponent
BEC. This can serve as a WKB approximation for exci-
tations in a trapped BEC if the excitation wavelength is
much smaller than the atomic cloud size. Moreover,
this approach allows us to use, in the most direct and
straightforward way, the standard technique of expand-
ing a solution into a series in a small parameter, known
as the standard perturbation theory in classical mechan-
ics [10]. The analysis of plane waves in a translationally
invariant BEC also provides a possibility of comparing
the results with the rigorous analytic formulas in [6, 7].

The main result of our work is that certain modes in
a multicomponent BEC exhibit a strongly nonlinear
behavior: the anharmonicity effects become significant
002 MAIK “Nauka/Interperiodica”
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even for a relatively small wave amplitude. This effect
is absent for the scalar BEC.

We consider a spinor BEC composed of atoms with
the spin f = 1 at zero temperature. In the mean-field
approximation, the GPE governing the evolution of the
complex order parameter (the macroscopic wave func-
tion) ψ(r, t) of the BEC is given by [7]

(1)

where  is the single-atom angular momentum opera-
tor, a vector whose Cartesian components are 3 × 3
matrices, M is the mass of the atom, and µ is the chem-
ical potential. The coupling constants are defined as

and aF is the s-wave scattering length for a pair of slow
atoms with the total angular momentum F equal to 0 or
2, respectively. Practically, the magnitudes of these two
scattering lengths are close each to other, and hence,
|c2/c0| ! 1. The order parameter ψ has three compo-
nents corresponding to the momentum projections to
the z axis given by mf = 0, ±1,

where n is the total equilibrium density of the BEC. We
let  denote the transposed vector. In other words, the
ground state components of the vector ζ are normalized
by the condition

(2)

We assume that the interaction of atoms in the BEC
is repulsive, i.e., c0 > 0. For definiteness, we also
assume that c2 > 0. It follows from the latter condition
that the ground state of the system is the so-called polar
state [7]. This implies that, in the mean-field picture, all
the atoms have zero momentum projection on a certain
axis. This state is degenerate with respect to the orien-
tation of this axis. We let this axis be the z axis; in equi-
librium, with the time derivative of ψ in Eq. (1) vanish-
ing, we then have

The chemical potential of the BEC in the polar state is
µ = c0n.
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Before writing Eq. (1) in the explicit form, we intro-
duce the new unknown functions

Equation (1) can then be transformed to the set of equa-
tions

(3)

(4)

(5)

(6)

If we neglect all the nonlinear terms in Eqs. (3)–(6), we
immediately obtain solutions in the form of plane
monochromatic waves and the corresponding disper-
sion laws [7]. The first mode is the density wave; in the
linear approximation, it corresponds to the periodic
oscillations of the mf = 0 component of the order param-
eter only (i.e., of ηp, ηi), while ξ+ and ξ– remain zero.
Density waves in a spinor BEC are the same as sound
waves in a scalar BEC. The dependence of the fre-
quency ωd0 of density waves on the wave number k is of
the Bogolyubov type,

where
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is the recoil frequency associated with the kinetic
momentum "k. Another branch of the excitation spec-
trum in a spinor BEC is related to magnetization waves.
The left and right circularly polarized magnetization
modes are degenerate: in the linear regime; their fre-
quency is given by

The quantum mechanical mean values of the atomic
magnetic momentum operator are proportional to ξ+

and  for the left and right polarization, respectively.

We can now determine the effects of nonlinearity on
the magnetization wave propagation using the perturba-
tion theory of classical mechanics [10]. We expand our
unknown functions into series as

where  is proportional to the jth power of a certain
small parameter ε (in fact, the square of the magnetiza-
tion amplitude can be naturally regarded as this param-
eter). Similar expansions hold for the remaining three
functions. The zeroth order approximation can also be
taken in the form of a plane wave,

but with the frequency ω shifted with respect to the
nonperturbed value ωm0. The validity of this method is
restricted to the case where the resulting correction to
the frequency is small,

We also take

The difference between ω and ωm0 can also be repre-
sented as a series in ε, beginning with the term of the
order ε1.

To find the correction to the frequency of a magne-
tization wave, we make the following transformation of
our set of GPEs. We add to and subtract from the right-
hand side of Eq. (1) the term ω2ξ+/ωr(k). We then note
that our zeroth order approximation satisfies the set of
equations

identically. The remaining terms must be regarded as a
perturbation leading to the frequency shift in higher
orders of the approximation. Equations (3)–(6) must be
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satisfied in every order in ε separately, and therefore, all
the terms of the order ε j on the right-hand side must be
grouped and set equal to the O(ε j) part of the left-hand
side of the equation. We restrict our analysis to the lin-
ear order in ε , where we obtain

(7)

(8)

Here, the symbol {…}(1) means that only the linear con-

tribution in ε ~  to the expression in curly brackets is
retained. The amplitude A+ is taken to be real without
losing generality.

Equations (7) and (8) can be easily reduced to the
differential equation

(9)

where C is a certain combination of various frequency
parameters of the problem; its calculation is not needed
for the determination of the lowest order correction to
the wave frequency.

Equation (9) is inhomogeneous, and the presence of
the resonant source term proportional to sin(ωt – k · r)
leads to the occurrence of oscillations in the solution for

 with the amplitude growing linearly in time. The
essence of the method used here [10] is to avoid these
nonphysical (secular) solutions proportional to
tsin(ωt – k · r) by setting the prefactor of the resonance
term to zero. To the lowest order in the square of the
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wave amplitude, the magnetization wave frequency is
therefore given by

(10)

In the two limiting cases (of the short and long wave-
length), we obtain

(11)

and

(12)

Here,

are the propagation velocities of the density (F = 0) and
magnetization (F = 2) waves of an infinitely small
amplitude in the long-wavelength limit. We can there-
fore conclude that the nonlinearity effects are small
until

(13)

(14)

(15)

Interestingly, the condition that the nonlinearity is

small coincides with the trivial condition that  is
small compared to the sum of squares of the absolute

values of all three components  in the ground
state, which is unity in accordance with Eq. (2) only in
the short-wavelength limit of Eq. (13). In the other
cases [Eqs. (14) and (15)], even a small but finite exci-
tation amplitude can result in a significant modification
of the wave propagation.

It is easy to show that, in the case of magnetization
waves, there are no resonance terms on the right-hand
sides of Eqs. (5) and (6) in the first order in ε, and these
equations therefore do not contribute to the evaluation
of the corresponding correction to the wave frequency.

Density waves can be analyzed similarly, and the
lowest order correction results in the formula

(16)

where Ap is the amplitude of the oscillations of ηp. For
all momenta k, the correction is small provided that
Ap ! 1; i.e., nonlinear effects play a less significant role
for waves of this type than for the magnetization waves.
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Equation (16) also applies to sound waves in a single-
component (scalar) BEC.

Because ωm0 is independent of c0 but the latter quan-
tity appears on the right-hand side of Eq. (10), we con-
clude that the nonlinear coupling to density waves plays
a key role in the modification of the magnetization
wave frequency. On the contrary, Eq. (16) does not con-
tain c2, and a travelling density wave is therefore not
coupled to magnetization modes.

We now briefly discuss the case of a mixture of two
BECs, each of which has a fixed value of mf, or, equiv-
alently, of two scalar BECs. Here, we first must intro-
duce the coupling constants

where Mj is the mass of an atom of the jth kind and aj'j
is the s-wave scattering length for a pair of atoms of the
jth and j'th kind, j', j = 1, 2. The dispersion laws for the
two excitation branches were obtained in the analytic
form in [6] (see also [5]). If all three relevant scattering
lengths are positive, the criterion of stability of a homo-
geneous BEC mixture against phase separation is sim-

ply g12 < . In this case, the eigenmode frequen-
cies are positive for all values of the momentum k. For
simplicity, we consider here the case of equal atomic
masses, M1 = M2 ≡ M. The eigenfrequencies are then
simply

where

n1, n2 are the equilibrium number densities of the com-
ponents, and wr(k) is defined above.

The order parameter perturbation for the jth compo-
nent is given by

After some tedious but straightforward calculations,
which are similar to those described above and are valid
under the same condition of smallness of the frequency
correction, we arrive at the following formula for the
wave frequency shifted due to the nonlinearity effects:
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Here, the upper sign corresponds to the case where B+ ≠
0 and B– = 0, and the lower sign corresponds to the
opposite case, B+ = 0 and B– ≠ 0. The eigenmode ampli-
tudes are defined as

(18)

By definition, we also set

(19)

(20)

(21)

Equation (17) is similar to Eq. (10) and leads to a
similar restriction on the wave amplitude. If the two
BECs are composed of atoms accumulated on two dif-
ferent magnetic or hyperfine sublevels of the ground

internal state, the difference between g12 and  is
relatively small, and the lower frequency mode is
extremely sensitive to the effects of nonlinearity in the
long-wavelength limit. We note that both branches of
the excitation spectrum of a two-component BEC in an
external magnetic field are sensitive to nonlinear effects
for small k, while the spinor BEC collective excitations
exhibit a different behavior: the nonlinearity effects are
much more important for magnetization waves than for
density waves.

In summary, we must note that the nonlinearity
effects in the wave propagation in a BEC studied here
are related to the Beliaev damping [11] (cf. the closely
related recent publication [12] on an efficient damping
of the relative motion of two condensates in a trap by a
nonlinear interaction). The Beliaev damping is also
described by the cubic nonlinear term in the GPE. It is
in fact the decay of a collective excitation quantum into
two quanta of lower energies, provided that the energy
and momentum are conserved. This process results in
the occurrence of an imaginary part of the wave fre-
quency (the damping constant). In the present paper, we
have calculated the real small addend to the wave fre-
quency. While the Beliaev damping becomes less
important as k approaches zero, nonlinear corrections
to the magnetization mode in the spinor BEC and to
each of the modes in the usual two-component BEC
become more pronounced.

Finally, we present a numerical example. The
ground state of a spinor BEC of sodium atoms with f = 1
is simply a polar (antiferfomagnetic) state [2]. We take
(a0 + 2a2)/3 ≈ 5 nm, (a2 – a0)/3 ≈ 0.08 nm and set n ≈
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1014 cm–3. We let the excitation wave number be about
3.5 × 103 cm–1(the corresponding wavelength is several
times smaller than the atomic cloud size in the experi-
ment with a large number of atoms in a trap as in [2],
and therefore, the WKB approximations is still satisfac-
tory). As A+  0, the linear theory [7] gives the mag-
netization wave frequency ωm0 ≈ 300 s–1. But if A+ ≈
0.044, in other words, only

of the total mass of the BEC is involved in the motion,
then the frequency rises by one-third of its primary
value and becomes equal to 400 s–1 in accordance with
Eq. (10). Similarly, a strongly nonlinear behavior of
low-lying magnetization modes of the spinor BEC in a
finite-size optical trap can be expected because the
trapped BEC spectrum must reveal the most important
qualitative features present in the translationally invari-
ant case, as has been shown for two-component BECs
in magnetic traps [5].

This work is supported by the NWO (project NWO-
047-009.010), the state program “Universities of Rus-
sia” (grant VR.01.01.040), and the Ministry of Educa-
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Abstract—The renormalization-group approach is used to obtain an exact solution to the self-consistent Vla-
sov kinetic equations for plasma particles in the quasi-neutral approximation. This solution describes the one-
dimensional adiabatic expansion of a plasma bunch into a vacuum for arbitrary initial particle velocity distri-
butions. Ion acceleration is studied for two-temperature Maxwellian and super-Gaussian initial electron distri-
butions, which predetermine distinctly different ion spectra. The solution found is used to describe the acceler-
ation of ions of two types. The relative acceleration efficiency of light and heavy ions as a function of atomic
weights and number densities is analyzed. The solutions obtained are of practical importance in describing ion
acceleration during the interaction of an ultrashort laser pulse with nanoplasma, for example, cluster plasma or
plasma produced when thin foils are irradiated by a laser. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Although more than thirty years have elapsed since
the first publications [1, 2] on the theory of plasma
expansion into a vacuum, the physics of this process is
still the subject of investigation. This is primarily
because it is necessary not only to understand the phys-
ics of ion acceleration during the interaction of laser
radiation with plasma but also to quantitatively
describe the characteristics of accelerated particles. Ion
acceleration is a key problem for various high-intensity
laser applications, such as laser-driven thermonuclear
fusion; fast-particle injectors, including fast ignitors;
extremely hot cluster plasma; and radiation sources for
medicine, materials science, and nuclear physics.
Although ion acceleration in expanding hot laser
plasma was described in detail [3, 4], recent experi-
ments with nanoplasma bunches [5, 6] and thin foils [7]
have revealed that ions can reach energies above the
predicted level.

The largest number of works on plasma expansion
into a vacuum is based on the model of a semibounded
medium with isothermal electrons and cold ions [8–
12], which implies the presence of a steady source of
particles and admits isothermal plasma expansion. This
model is definitely inadequate in studying the expan-
sion of small plasma bunches, for example, clusters
[13] or foils. This expansion is accompanied by adia-
batic particle cooling and, as we show below, differs
from the previously studied expansion of semibounded
plasma into a vacuum by distinctly different patterns in
the ion number and temperature distributions. It was
studied by using a hydrodynamic phenomenological
theory [14] and numerical simulations [15, 16]. An
1063-7761/02/9502- $22.00 © 200226
important step in its study was the paper by Dorozhkina
and Semenov [17], who obtained an exact self-similar
solution to the Vlasov equations for electrons and ions
in the quasi-neutral approximation. However, the
kinetic solution for the expansion of a plasma bunch
into a vacuum found in [17] corresponds to the special
case of a quadratic spatial dependence of the plasma
electrostatic potential and, accordingly, of the initial
conditions described by identical coordinate and veloc-
ity dependences of the electron and ion distribution
functions. The latter condition significantly restricts the
use of the analytic theory for interpreting experiments.

In this paper, which elaborates and details the ideas
formulated in [18], we found a more general (than in
[17]) class of solutions to the initial-value problem for
the Vlasov equations in the quasi-neutral approxima-
tion for arbitrary initial particle, electron and ion,
velocity distributions. This is achieved by using the
renormalization-group approach [19, 20], in which the
solution to the initial-value problem of the perturbation
theory on short time scales, t  0, is extended to the
range of finite t by means of renormalization-group
symmetries. The solution of Dorozhkina and Semenov
[17] is shown to be a special case of this solution. We
apply the general renormalization-group approach to
the problem of plane expansion. A generalization to the
three-dimensional case involves no fundamental diffi-
culties, although it requires cumbersome calculations.
As the initial electron velocity distributions, we discuss
three typical distributions: Maxwellian, two-tempera-
ture Maxwellian, and super-Gaussian, which are char-
acteristic of certain modes of interaction between laser
radiation and plasma. It is hoped that our results will
02 MAIK “Nauka/Interperiodica”
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shed light on the nature of the experimentally detected
high energy cutoff in the ion spectrum [5, 6], because
this method allows one to analyze essentially nonequi-
librium electron distribution functions similar to those
that emerge under experimental conditions [5, 6],
where accelerated electrons are generated during the
interaction of laser radiation with plasma.

In addition, we solve the initial-value problem as
applied to the expansion of a plasma bunch with two
types of ions. Recently, in connection with experiments
on the laser-plasma method of ion acceleration and
nuclear processes on its basis [7, 21], a need has arisen
to predict the energy of a given type of ions with allow-
ance made for the fact that the laser-irradiated plasma
may contain ions of a different type. In this case, allow-
ance for the hydrogen impurity, which is always present
because of the adsorption of water vapor on the laser-
target surface, is of greatest urgency. Being the lightest
component, protons are well captured by the field and
accelerated most efficiently, thereby suppressing the
acceleration of the heavier ions flying behind. Thus, for
example, in the deuteron acceleration experiment [7]
where no special measures were taken to remove water
from the target surface, the deuteron energy was 2 MeV,
whereas the protons that emerge due to surface contam-
ination were accelerated to 9 MeV. Naturally, for this
kind of problems, it is highly desirable to formulate sur-
face-purity (hydrogen-concentration) requirements for
the target ions to be efficiently accelerated. On the other
hand, even when the surface is well cleaned [22] but the
targets used contain various chemical elements, quantita-
tive criteria for the acceleration of ions of various types of
a given concentration are necessary. The analytic theory
for the expansion of multicomponent plasma developed
below is an important step in this direction.

2. BASIC EQUATIONS
In order to describe the dynamics of a plasma bunch

inhomogeneous in coordinate x, let us consider the
standard system of kinetic equations

(1)

for the distribution functions f α of particles of type α
(with charge eα and mass mα) that depend on time t,
coordinate x, and one velocity component v  along the
plasma inhomogeneity. The quantity E(t, x) is a self-
consistent electric field determined by the plasma-flow
quasi-neutrality condition. In this quasi-neutral approx-
imation, the charge, ρ, and current, j, densities are
assumed to be zero:

(2)

∂t f α v ∂x f α eα

mα
------E∂v f α+ + 0=

ρ v eα f α

α
∑d∫≡ 0,=

j vv eα f α

α
∑d∫≡ 0.=
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Accordingly, the self-consistent electric field E can be
expressed in terms of the moments of the distribution
functions as follows:

(3)

We seek a solution to the system of Eqs. (1) and (2)
with the boundary conditions that correspond to the
electron and ion distribution functions specified at the
initial time t = 0,

(4)

This formulation of the problem can model the expan-
sion of a plasma bunch driven by a short laser pulse,
with duration much shorter than the bunch evolution
time scale. In this case, the interaction of laser radiation
with plasma and its heating, in which electrons play a
major role, are not specified and are modeled by speci-
fying an arbitrary initial electron velocity distribution
function.

3. SYMMETRY OF THE EQUATIONS 
AND RENORMALIZATION-GROUP SYMMETRY 
FOR THE SOLUTION OF THE INITIAL-VALUE 

PROBLEM

The standard method for analyzing Eqs. (1) is the
method of characteristics (see, e.g., [1, 2]). The charac-
teristic equations for (1) contain the electric field (3).
The latter is expressed in terms of the integrals of the
velocity distribution functions, which makes it difficult
to analytically study these equations and forces us to
resort to numerical methods. Therefore, below, we use
a different analytic approach. To solve the initial-value
problem (1), (2), (4), we use the possibility of extend-
ing this solution written in the small neighborhood,
t  0, as a series of the perturbation theory in powers
of the variable t to the range of much longer times, t ≠
0, by means of a special, renormalization-group, sym-
metry. For this extension, we use finite group transfor-
mations that relate the initial distribution functions (4)
to the values of these functions at times t ≠ 0. The
sought-for renormalization-group symmetry is found
as a subgroup of the group of point Lie transformations
admitted by system (1) and (2) specified by the follow-
ing set of infinitesimal operators:

(5)

E vv 2∂x eα f α v
eα

2

mα
------ f α

α
∑d∫ 

 
 

1–

.
α
∑d∫=

f α
t 0= f 0

α x v,( ).=

X0 ∂t, X1 ∂x,= =

X2 t∂t v ∂v , X3– x∂x v ∂v ,+= =

X4 f α∂
f

α , X5

α
∑ t∂x ∂v ,+= =

X6 t2∂t tx∂x x v t–( )∂v ,+ +=

Xα
1

Zα 1+
------------∂

f
α 1+

1
Zα
------∂

f
α–=
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with the general element of the algebra represented by
their linear combination

(6)

In the operators Xα in system (5), Zα = eα/|e | is the
charge number of the particles of type α and the index
α + 1 denotes the type of particles that follows α. The
operators Xα exist only in plasma with the number of
particle types larger than or equal to two, and their
number is less than the number of plasma components
by one.

The dependence of the electric field E(t, x) in the
kinetic equations (1) on time t is described by a func-
tion containing six constants cj, which determine the
contribution of the various operators (5) to the general
element of the algebra (6),

(7)

The dependence of the electric field on coordinate x is
given by the form of function E0 and can be derived
from the quasi-neutrality condition (2) at time t = 0.

The method for calculating the allowable symmetry
group used here qualitatively differs from the method
used in [23] in that the electric field E is treated not as
one of the dependent variables but as an unknown func-
tion of the variables t and x, E = E(t, x). This case of
finding the symmetry logically follows from the sim-
pler quasi-neutral model of plasma description, in con-
trast to the complete system of Vlasov–Maxwell equa-
tions used in [23]. It is easy to verify that the translation
operators X0 and X1, the Galilean transformation opera-
tor X5, and the quasi-neutrality operators Xα are con-
tained in the symmetry group obtained previously [24]
by a different method without assuming that E is an
arbitrary function of two variables to be determined.1

The two dilation operators specified in [24] are
obtained by combining the three dilation operators X2,
X3, and X4 from (5) and by adding the contributions
responsible for the dilation transformation of the elec-
tric field E, charge density ρ, and electric current den-
sity j. The conformal group operator X6 is new among
the operators (5). Below, we make sure that this opera-
tor makes it possible to construct new exact solutions to
the initial-value problem concerned.

1 Since here, in contrast to [24], we chose a different normalization
of the particle distribution functions, the quasi-neutrality opera-
tors Xα contain factors that do not depend on particle mass.

X c j X j

j 0=

6

∑ bα Xα .
α
∑+=

E E0 IE( ) t
c3 2c2– 3c6t–

c0 c2t c6t2+ +
-----------------------------------d∫ 

  ,exp=

IE x t
c3 c6t+

c0 c2t c6t2+ +
---------------------------------d∫– 

 exp=

– t
c1 c5t+

c0 c2t c6t2+ +
--------------------------------- t

c3 c6t+

c0 c2t c6t2+ +
---------------------------------d∫– 

  .expd∫
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In order to obtain the sought-for renormalization-
group symmetry, we should separate out a linear com-
bination from the set of operators (6) that leaves the

solution f α = ^α(t, x, v) ≡ (x, v) + O(t) to the initial-
value problem for t  0 invariant. Checking the sat-
isfaction of the renormalization-group invariance con-
ditions leads to restrictions on the type of initial particle
distribution functions. These restrictions have the form
of a system of equations of the first order in the number
of particle types in plasma:

(8)

where the Kronecker symbol δα, β separates out the type
of particles with α = 0 (e.g., for definiteness, electrons)
and α = p. The solutions to these equations define the
initial particle distribution functions in terms of arbi-
trary functions of the first integrals of the characteristic
equations adjoint with (8), and the electric field at the
initial time, E0(x), is determined from relation (3) or,
equivalently, from the first relation in (2). At c2 = 2c3,
the expressions for these integrals have a comparatively
simple form, which, at the same time, admits an ana-
lytic study for an arbitrary E0(x) (their number is equal
to the number of particle types):

(9)

In this case, the solutions to Eqs. (8) are written in terms
of the integrals Iα for an arbitrary dependence of the
potential Φ0 for the electric field E0 = –∂xΦ0 on coordi-
nate x:

(10)

Here, Fα are arbitrary functions of their arguments.
Using the results (10) in relations (2) generally leads to
integral equations for the potential Φ0(x). A simpler
case in which the problem of calculating the potential
Φ0(x) is significantly simplified and, at the same time,

f 0
α

c4 f 0
α 1

Zα
------ bα 1– 1 δα 0,–( ) bα 1 δα p,–( )–( )+

+ c0v c1– c3x–( )∂x f 0
α
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eα
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Iα 1
2
--- c0v

2 2c3xv– c6x2+( ) c5x+=

– c1v c0

eα

mα
------Φ0 x( ).+

c4 f 0
α 1

Zα
------ bα 1– 1 δα 0,–( ) bα 1 δα p,–( )–( )+

=  c4Fα Iα( )
c4

c0
---- x

2Iα

c0
--------

2eα

mα

--------Φ0 x( )–d∫–




exp

–
c6

c0
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c3
2

c0
2

----–
 
 
 

x2 2
c3c1

c0
2

---------
2c5

c0
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
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.
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it is still possible to construct a broad class of analytic
solutions, is realized for the constants c4 = bα = 0, when
the sought-for renormalization-group symmetry opera-
tor takes the form

(11)

In this case, the absence of contributions responsible
for the transformation of the distribution functions f α in
the operator (11) implies that they are invariants of the
corresponding renormalization-group transformation;
i.e., the relationship

(12)

is also retained at t ≠ 0. The dependence of the distribu-
tion functions f α on time, coordinates, and velocities is
established with allowance made for the form of the
invariants for the renormalization-group symmetry
operator that relate the variables (x', v ') at the initial
time t = 0 with their values (x, v ) at t ≠ 0:

(13)

These formulas essentially define the sought-for finite
group (renormalization-group) transformations and
allow the distribution functions at an arbitrary time, t ≠
0, to be expressed in terms of their initial values, which
are functions of the variables with primes. Thus, identi-
fying x and v  in relations (9) and (12) with x' and v ' and
substituting the expressions from (13) into these rela-
tions yields an explicit dependence of the distribution
functions f α on time t, coordinate x, and velocity v. The
time dependence of the potential Φ is obtained by inte-
grating formula (7) over x to give

(14)

The physical meaning of the constants cj in (9), (13),
and (14) is determined in each specific case by the form
of distribution functions at the initial time. In particular,
the choice of the constants c1 = c3 = c5 = 0 corresponds
to initial particle distributions symmetric in x and v  in
the absence of a mean velocity.

R c0 2c3t c6t2+ +( )∂t c1 c3x c5t c6tx+ + +( )∂x+=

+ c5 c3v c6 x v t–( )+–( )∂v .

f α Fα Iα( )=

x'
x c0

c0 2c3t c6t2+ +
---------------------------------------- c0

c1 c5t+

c0 2c3t c6t2+ +( )3/2
----------------------------------------------,

0

t

∫–=

v '
c1 c3x'+

c0
--------------------– 

  2

v 2 c6

c0
---- x'( )2 x v t–( )2–( )–=

– 2
c5

c0
---- x' x v t–( )–( )

– 2v
c1

c0
----

c3

c0
---- x v t–( )+ 

  c1 c3x'+
c0

-------------------- 
 

2

.+

Φ Φ0 IE( ) c0 2c3t c6t2+ +( ) 1–
.=
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4. DYNAMICS OF THE PARTICLE 
DISTRIBUTIONS IN AN EXPANDING

PLASMA BUNCH

To analyze the space-time behavior of the distribu-
tion functions, let us consider several examples of using
the solution that is given by formulas (9) and (12)–(14)
and that corresponds to different initial conditions (4).
We dwell on four examples: the first three describe elec-
tron–ion plasma (α = {e, i}, mα = {me, mi}, Zα = {–1, Z}),
and the last example corresponds to plasma with sev-
eral types of ions (α = {e, 1, 2, …}, mα = {me, m1,
m2, …}, Zα = {–1, Z1, Z2, …}).

Example 1. For a plasma bunch composed of elec-
trons and one type of ions with Maxwellian initial dis-
tribution functions characterized by the densities ne0(x)
and ni0(x) and temperatures Te0(x) and Ti0(x), respec-
tively, we have from relations (12)

(15)

where the thermal particle velocities are defined in the
standard way,

In this case, the following constants cj in the integrals Iα

are chosen:

(16)

As was pointed out above, zero constants c1, c3, and c5
correspond to initial particle distributions symmetric in
x and v  in the absence of a mean velocity. Without loss
of generality, the constant c0 in (9) may be chosen arbi-
trarily (equal to unity). The physical meaning of the
constant c6, which has the dimensions of frequency
squared, can be established if we introduce the initial
plasma density inhomogeneity scale length. As will be
seen from the subsequent analysis, c6 is defined by the
square of the ratio of the characteristic ion expansion
velocity to this inhomogeneity scale length.

The case of initial conditions (15) corresponds to the
problem of plasma-bunch expansion considered in [17,
25] and will be used below as a test. Using the initial
functions (15) in the quasi-neutrality conditions (2), we
obtain (for Zni0 = ne0) a quadratic dependence of the
potential Φ0 on coordinate x [25],

(17)

Substituting (17) into (15) and using relations (13) and
(14), we derive formulas that explicitly describe the

f 0
α nα0

2πv Tα

-------------------- Iα

v Tα
2

---------–
 
 
 

,exp=

v Tα
Tα0

mα
--------.=

c0 1, c1 c3 c5 0, c6 Ω2.= = = = =

Φ0 x( )
Ω2x2

2e
------------

miTe0 meTi0–
Ti0 ZTe0+

---------------------------------.=
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dynamics of variations fe, i in the plasma particle distri-
bution functions at t ≠ 0:

(18)

Here, the local plasma flow velocity u and the potential
Φ are defined by the relations

(19)

where

is the speed of sound calculated from the initial particle
temperatures.

Example 2. This example matches the previous
example in the initial ion distribution function but dif-
fers from it by the initial electron distribution function.
Here, this function has the form of a two-temperature
Maxwellian distribution with the densities and temper-
atures corresponding to cold (c) and hot (h) electrons:

(20)

This example can model the expansion of a plasma
bunch (e.g., a cluster with a size larger than the Debye
length) rapidly preheated by laser radiation to produce
a group of hot electrons. Using (15) in the quasi-neu-
trality conditions (2) leads (for Zni0 = nc0 + nh0) to the
dependence of the initial potential Φ0 on coordinate x
that is implicitly defined in terms of the characteristic
velocity U0 = Ωx from the equation

(21)
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Substituting (21) into (20) and using (13) and (14), we
derive formulas that describe the dynamics of varia-
tions in the plasma particle distribution functions f e, i at
t ≠ 0 in parametric form:

(22)

Here, the local plasma flow velocity u(t, x) is defined by
formula (19) as before. In this case, the dependence of
the potential on coordinates and time is determined by
the solution of an equation that formally matches
Eq. (21) after the substitution U0  U and %0  %,
but it explicitly includes the time dependences of the
potential Φ and characteristic velocity U,

(23)

Example 3. This is another example of two-compo-
nent plasma with ions whose initial velocity distribu-
tion function is Maxwellian (as in Example 1) but with
electrons whose initial velocity distribution is super-
Gaussian,

(24)

Here, # = 25/4/Γ(1/4), where Γ(ξ) is the gamma
function and ne0 = Zni0. This example can be related to
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the expansion of a plasma bunch rapidly heated by a
moderately intense laser field through backscattered
bremsstrahlung absorption, when an electron distribu-
tion function with a flattening of the main body and a
cutoff of the suprathermal tail can be established [26]:
∝ exp(–vm), 2 ≤ m ≤ 5. The quantity vTe in the expres-

sion for  formally does not match the definition of

the thermal velocity , differing from it by a
factor of the order of unity [26]. Since the difference
between this quantity, which characterizes the thermal

straggling of electrons, and  is of no funda-
mental importance, we use the standard designation for it.
Substituting (20) into the quasi-neutrality conditions (2)
yields the coordinate dependence of the initial potential
implicitly determined, as above, from the relation

(25)

Substituting (25) into (24) and using relations (13) and
(14), we obtain formulas that describe the dynamics of
variations in the plasma particle distribution functions
f e, i at t ≠ 0 in parametric form:

(26)

Here, u, U, and % are given by formulas (19) and (23),
while the equation that reflects the relation between U
and % (i.e., specifies the dependence of the potential Φ
on time and coordinates) formally matches Eq. (25)
after the substitution U0  U and %0  %:

(27)

Example 4. In this example, our results are applied
to plasma that contains ions of several types with initial
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Maxwellian velocity distribution functions,

(28)

where the index q numbers the ion types, q = 1, 2, ….
The electrons at t = 0 are also assumed to be Max-
wellian:

(29)

Thus, this example is a generalization of example 1 to
multicomponent plasma. Using this example, we can
study, in particular, the role of a small number of impu-
rity ions. Such a study was the subject of traditional
research on plasma expansion into a vacuum [27]. It is
of current interest in connection with modern experi-
ments on the heating of solid targets composed of vari-
ous materials by ultrashort laser pulses due to the con-
stant presence of protons; the latter emerge, because the
target surface is not perfectly clean and always contains
a small amount of H2O. Numerous experiments show
efficient proton acceleration from non-hydrogen-con-
taining targets unless precautions are taken to clean the
surface (see, e.g., [28, 29]).

Using (28) and (29) in the quasi-neutrality condi-
tions (2) leads to the dependence of the initial potential
Φ0 on coordinate x that is implicitly determined from
the equations

(30)

Substituting (30) into (28) and (29) and using relations
(13) and (14), we derive the following formulas that
describe the dynamics of the plasma particle distribu-
tion functions f α and potential Φ at t ≠ 0 in parametric
form:

(31)
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Here, the local plasma flow velocity u, the characteris-
tic velocity U, and the characteristic dimensionless
energy % are given by formulas (19) and (23), while the
equation that reflects the relation between U and % (i.e.,
specifies the dependence of the potential Φ on time and
coordinates) formally matches Eq. (30) after the substi-
tution U0  U and %0  %,

(32)

Thus, the above examples clearly show that the renor-
malization-group approach is an efficient tool for con-
structing analytic solutions to the self-consistent Vla-
sov kinetic equations for plasma particles. Below, we
present quantitative characteristics of the plasma-bunch
expansion into a vacuum as a function of the initial particle
velocity distributions in accordance with examples 1–4.

5. INTEGRATED CHARACTERISTICS
FOR THE PARTICLE DISTRIBUTION 

FUNCTIONS

When experimental data are analyzed, apart from
formulas for the plasma particle distribution functions,
the integrated characteristics defined by them are also
of considerable interest. In this section, being con-
cerned with the dynamics of ion acceleration during
plasma-bunch expansion, we use the solutions obtained
to study such practically important characteristics as
the density of ions of type q, nq(t, x), and their spatially
averaged (over coordinate x) distribution, 〈f q〉 , which
characterizes the ion energy spectra. These characteris-
tics are represented by using the standard definitions

(33)

which clearly illustrate the dynamics of adiabatic
plasma-bunch expansion.

For the above examples, the density of ions of type
q depends on coordinate and time as follows:

(34)

where the specific form of the dimensionless ion den-
sity Nq is established by integrating (33) over velocities
using formulas (18), (22), (26), and (31). This integra-
tion allows Nq to be represented as the following depen-
dences on the characteristic velocity
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Example 1

(35)

Example 2

(36)

Example 3

(37)

Example 4

(38)

In examples 2, 3, and 4, the relation between % and U
is given by the corresponding Eqs. (23), (27), and (32).

For the second integrated characteristics, 〈f q〉 , apart
from the results of numerical integration, we can obtain
analytic asymptotic expressions in the limit of large
Ωt  ∞, when we use the saddle-point method to cal-
culate the integrals that define 〈f q〉 . The major contribu-
tions to the asymptotic expressions for the ion energy
spectra, 〈f q〉 , that emerge in this case are related to Nq

by simple relations,

(39)

where the corresponding dependences Nq(U = v) are
given by formulas (35)–(38).

In Figs 1–3, the integrated characteristics Nq under
discussion for one- and two-component plasma ion
compositions and for the dimensionless self-consistent
electric potential Φ are plotted against the dimension-

less coordinate χ2 = U2/ . For electron–ion plasma,
U is normalized to the thermal velocity of the only
plasma ion component; for a two-component ion com-
position, it is normalized, for definiteness, to the ther-
mal velocity of the first, densest, ion component: vTq ≡
vT1. The function φ naturally appears in our theory,
because a factorization similar to that [see (34)] emerg-
ing for the partial densities takes place for the electric
potential,

(40)
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Fig. 1. The distributions of ion density N (a) and potential φ (b) in plasma with one type of ions versus dimensionless coordinate χ
for various initial electron distribution functions: 1 for a super-Gaussian distribution, 2 and 3 for a two-temperature distribution with
Th/Te0 = 10 (2), 100 (3) and the relative density ρ = 0.1. The dashed curve represents the initial Maxwellian electron distribution
function.
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Fig. 2. The distributions of ion density Nq (a) and potential φ (b) in plasma with two types of ions with the atomic and charge num-
bers A1 = 1, Z1 = 1 (H, curve 1) and A2 = 12, Z2 = 6 (C, curve 2). The initial electron and ion distribution functions are Maxwellian
with the temperatures T10/Te0 = T20/Te0 = 0.1; n10/n20 = 2. The dashed curve represents the hydrogen ion distribution function from
example 1.
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Fig. 3. Same as Fig. 2 for A1 = 27, Z1 = 13 (Al, curve 1) and A2 = 1, Z2 = 1 (H, curve 2); n10/n20 = 1300.
Here, the dependence %(U) is determined by the solu-
tions to the corresponding Eqs. (23), (27), and (32). In
order to make the physical meaning of the dependences
on dimensionless coordinate χ discussed below clearer,
we recall that the frequency Ω is the ratio of the charac-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
teristic ion expansion velocity, V, to the initial ion den-
sity inhomogeneity scale length, L0. On comparatively
short time scales, t ! L0/V, the χ dependences of Nq and
φ actually describe the initial ion density and potential
distributions as functions of the dimensionless coordi-
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Fig. 4. The ion distribution F i(v) in plasma with one type of ions (q ≡ i) at the times Ωt = 0 (a), 0.4 (b), 1 (c), and 2 (d) for various
initial electron distributions: 1 for a super-Gaussian distribution, 2 and 3 for a two-temperature distribution with Th/Te0 = 10 (2) and
100 (3) and the relative density ρ = 0.1. The dashed curve represents the initial Maxwellian electron distribution.
nate (x/L0)(V/vTq). On long time scales, t @ L0/V, the
dependence of χ on the initial density inhomogeneity
scale L0 disappears and χ takes the form of an ordinary
self-similar variable, χ  (x/t)(1/vTq). On the other
hand, given relation (39), the χ dependence of Nq on
long time scales, t @ L0/V, may be considered as a
dependence of the ion energy spectrum on the dimen-
sionless velocity v /vTq.

Figure 1 shows the distributions of the dimension-
less ion density and potential in two-component (e, i)
plasma for various initial electron distribution func-
tions but for the same (Maxwellian) initial ion distribu-
tion function. All curves were constructed for the fol-
lowing plasma parameters: Te0/Ti0 = 10, mi/me = 1836,
and Z = 1. Figures 2 and 3 correspond to the presence
of two types of ions in plasma. In the former case
(Fig. 2), the ions of the first and second types with a
comparable initial density correspond to a completely
ionized polyethylene film (CH2); in the latter case
(Fig. 3), the light ions of the second type (H) form an
impurity with a low initial density compared to the
heavier ions of the first type, which constitute the bulk
of the plasma material, for which we chose aluminum.

Figures 4–6 show the ion energy spectra character-
ized by the functions Fq(v, t) = (Ω/nq0)〈fq〉 for various
times. The plasma parameters were chosen to be the same
as in Figs. 1–3. We see that these curves actually take the
form of the Nq curves shown in Figs. 1–3 as the time Ωt
increases, in accordance with asymptotic expression (39).
JOURNAL OF EXPERIMENTAL 
6. DISCUSSION OF THE RESULTS 
AND CONCLUSIONS

As in the classical papers on the theory of plasma
expansion into a vacuum [1, 2, 27], the renormaliza-
tion-group theory owes its progress in finding solutions
of the Vlasov equations to the quasi-neutral-plasma
approximation, when such a length dimension parame-
ter as the Debye length is excluded. Whereas, in the the-
ory [1, 2, 27] with a simplified electron kinetics, this
approximation allowed plasma expansion to be
described by using simple self-similar variables, in our
renormalization-group approach, it is possible to pass
to more complex symmetries that significantly expand
the range of analytically solvable problems. A simple
illustration is the problem of the expansion of a plasma
sheet with initial Maxwellian electron and ion distribu-
tions [17]. The corresponding solution (example 1) is
given by formulas (18) and (19), which, disregarding
the contributions containing the small me/mi ratio,
define the particle distribution functions

(41)

f α nα x t,( ) mα

2πTα t( )
----------------------------

mα v u–( )2

2Tα t( )
---------------------------– ,exp=

u
xtΩ2

1 Ω2t2+
--------------------, Ω2 2Cs

2

L0
2

---------.= =
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Fig. 5. The ion distribution functions F q(v) in plasma with two types of ions for the same Ωt as in Fig. 4. The plasma parameters
correspond to Fig. 2. The dashed line represents the hydrogen ion distribution function from example 1.
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example 1.
Here, we explicitly present the effect of plasma cooling
described by the time-dependent electron and ion tem-
peratures

(42)Tα t( )
Tα0

1 Ω2t2+
--------------------.=
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In this case, according to (35), the electron and ion den-
sity distributions are given by

(43)nα
nα0

1 Ω2t2+
------------------------ e Φ x t,( )

Te t( )
---------------------- ,exp=
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and the electric potential

(44)

that holds electrons and accelerates ions has a quadratic
dependence on coordinate [17]. If we introduce the
time-dependent plasma density inhomogeneity scale
length

(45)

then the variation of the electron and ion density distri-
bution (43) with time can be represented as

(46)

In this case, for t @ L0/ Cs, formulas (43) and (46)
describe plasma expansion with a sonic speed Cs ≈

.

The fundamental difference between our approach
and the approach described in [1, 2, 27], which are
devoted to isothermal quasi-neutral plasma expansion,
lies in relations (42). The cause of the plasma particle
cooling is quite clear. Indeed, when a finite-size plasma
bunch expands, the plasma particles acquire kinetic
energy nαmαu2/2 at the expense of thermal energy nαTα,
which causes the temperature to decrease. For this rea-
son, strictly speaking, the approximation of isothermal
expansion is applicable only to massive targets, for
example, to semi-bounded plasma with a limitless store
of energy. Another difference lies in the distribution of
electrons, which transfer their energy to ions through an
electric field. In [1, 2, 27], the electrons were assumed
to have an equilibrium distribution described by the
Boltzmann formula, while the distribution (43) is a
nonequilibrium one. It corresponds to the Boltzmann
electron distribution only at the initial time, differing
from the latter by a time-independent preexponential
factor.

A common feature of our solutions for various ini-
tial particle distribution functions is nonisothermal
plasma expansion. The form of these functions deter-
mines the specific dependence of the potential Φ on
coordinate x, although qualitatively there is a common
law of monotonic increase in Φ(x) in absolute value
with x for all of the above examples. As was pointed out
above, the quasi-neutrality condition leads to the qua-
dratic dependence Φ(x) discussed in [17, 25] for plasma
composed of electrons and one type of ions when the
velocity dependence of the distribution functions is the
same in form for both types of particles (example 1). In
general, the coordinate dependence of the potential is
not quadratic for various electron and ion velocity dis-

Φ
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--------------------------- 1
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-----------------------------------–=

L t( ) L0 1
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2t2
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-------------+ ,=

nα
nα0

1 2Cs
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  .exp=

2

ZTe0/mi
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tribution functions at t = 0 or for a multicomponent
plasma ion composition.

As for the ion density distribution in a two-compo-
nent plasma, it should be noted that the laws of decrease
in density with increasing distance are different,
depending on the initial electron distribution: the ion
density in plasma depleted of suprathermal electrons
(example 3) decreases most rapidly. The presence of
even a small number of high-energy electrons (example 2)
significantly slows down the decrease of N(χ2) with
increasing χ2. This is easy to notice by comparing the
dependences of the ion distribution curves on the initial
electron distribution function for examples 1 and 2. The
differences between these curves show up at large coor-
dinates χ2, i.e., for such % > %* that ρexp(%*) @ 1. In

this case, the relation between χ2 and %* can be deter-
mined from (23) by taking into account only the last
term under the logarithm associated with hot electrons.
This linear relation between %* and χ2 is valid for χ2 *

 and causes the ion density to decrease exponen-
tially with increasing χ2. This exponential law is iden-
tical in form to (46),

(47)

but has a different characteristic scale of decrease ,
where

(48)

For the parameters of Fig. 1, the domain of exponential

decrease in Ni of the form (47) begins at  for
both curves. In this case, the characteristic scale of

decrease (48) is  ≈ 102 for curve 2 and  ≈ 103 for
curve 3. For a low density of hot electrons, nh0/Zni0 !
1, the quantity Ω is determined, as above, from formula
(41) using the initial ion density inhomogeneity scale
and the speed of sound calculated from the temperature
of most electrons. Consequently, the condition for the
passage to a self-similar variable remains as previously,

t @ L0/ Cs. Formula (47) essentially describes a halo
for x > Cs  that expands at the speed of sound deter-
mined by the temperature of the hot electron compo-
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Fig. 7. The distribution of ion density Nq (a) and potential φ (b) in plasma with two types of ions with the atomic numbers A1 = 27,

A2 = 1 and charges Z1 = 13, Z2 = 1 versus dimensionless coordinate χ2. The initial ion distribution functions are Maxwellian with
the temperatures T10/Te0 = T20/Te0 = 0.1 and n10/n20 = 1300. The initial electron distribution function has the form of a two-temper-
ature Maxwellian distribution with Th/Te0 = 100 and various relative densities: ρ = 0 (curve a, the absence of hot electrons), ρ =
0.01 (curve b), and ρ = 0.1 (curve c). The curves of families 1 and 2 correspond to the plasma ions of the first and second types,
respectively. The dashed curve represents the hydrogen ion distribution function from example 1.
nent, Csh ≈  @ Cs. On the same time scales,
formula (47) describes the Maxwellian ion spectrum

in the velocity range v 2 >  ≈ , where

includes a weak logarithmic dependence on the plasma
particle density.

Let us now discuss the patterns of variations in den-
sity Nq during the expansion of plasma with several
types of ions. As follows from the above formulas (31),
(38) and Figs. 2, 3, 5, and 6, the presence of ions of sev-
eral types significantly changes the dynamics of
plasma-bunch expansion. The light ions ahead of the
heavy ions are accelerated during the expansion most
strongly. On long time scales, going far from the bunch
center, they form a rarefied halo and its potential distri-
bution. Here, Fig. 3 serves as the clearest illustration.
We see that the presence of light low-density impurity
ions changes the asymptotic behavior of the φ depen-
dence for large coordinates χ2. The passage from the
quadratic dependence φ ~ –Cχ2 to the shifted quadratic
dependence φ ~ –A – Bχ2, where A, B, and C are con-
stants (which exactly corresponds to the passage to the
domain where the potential distribution is determined

by impurity ions), takes place for the coordinate 
approximately determined from the relation

ZTh/mi

f i〈 〉 v 2

2v Ti
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(49)

For the parameters of example 4, this quantity is of the

order of  ≈ 248, in good agreement with the numer-

ical results presented in Fig. 3. At the point χ2 ≈ , the
ratio of the local density of impurity ions to the density
of major ions exceeds unity, n2/n1 ≈ (Z1/Z2) @ 1, and is
equal to the ratio of the integrated distribution func-
tions, 〈f 2〉/〈f 1〉  = n2/n1. Note, however, that the local
density of impurity ions does not exceed the local ion
density in a two-component plasma with ions of the
same type as the impurity. This implies that the corre-
sponding density N2 multiplied by σ/(1 + σ) (curve 2)
in Fig. 3 is lower than Ni (dashed curve) shown for com-
parison at any χ2.

Thus, our results on particle acceleration in plasma
with several types of ions are generally consistent with
the general ideas [27] that light impurity ions are accel-
erated more efficiently against the background of the
major heavy component. However, in contrast to [27],
in which the approximation of a specified field was
used to describe the motion of the light ion component,
which breaks down for χ * χ* (49), our theory allows
one to consider also the domain where the impurity sig-
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nificantly affects the form of the potential. In addition,
the dependences given here are applicable to an arbi-
trary number of ion components with an arbitrary par-
tial-density ratio.

Clearly, in this case, just as in plasma with one type
of ions (example 2), the presence of hot electrons may
lead to an even higher energy of the impurity ions. This
physical situation can be easily modeled by using a
combination of the initial conditions from examples 2
and 4. Such a modification of the initial conditions sig-
nificantly changes the dynamics of impurity ions, as
can be seen from Fig. 7 for the ion density and potential
distributions similar to Fig. 3. Figure 7 was obtained by
using formulas (38) in which, however, the function %h

given by the relation

(50)

is substituted for %. We see from Fig. 7 that the differ-
ence in curves a, b, and c for the density of impurity
ions, N2(χ), shows up for sufficiently large %h, such that
ρexp(%h) @ 1, i.e., for large χ (cf. similar relations for
plasma with one type of ions). In this case, the relation
between χ2 and %h can be found from (50) by taking
into account only the two contributions from impurity
ions and hot electrons, which allows a lower limit on %h

to be written as the condition χ2 *  > . For such
coordinates χ2, the impurity ion density distribution
corresponds to a Gaussian function similar to (47),

(51)

but with a different characteristic scale of variation in
χ2 given by the relation

(52)
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For the parameters of Fig. 7, the domain of exponential

decrease in N2 of the form (51) begins at  ≈ 3.8 × 103

for curve b and at  ≈ 2.2 × 103 for curve c. In this
case, the characteristic scale of decrease for both curves

is  ≈ 27 × 103. As in the above example of ion
expansion in electron–ion plasma in the presence of hot
electrons, here, we may also say that there is a halo (51)
formed not from ions of the major, heavy, component
but from light impurity ions. At low densities of impu-
rity ions, (Z2/Z1)(n20/n10) ! 1, and hot electrons,

nh0/Z1n10 ! 1, this halo for t @ L0/  lies in the

region x > tγimp and the ion spectrum is Max-
wellian,

,

in the velocity range v 2 > .

Here, we use the standard notation for the speed of
sound,

determined by the mass of the impurity ions and by the
temperature of the cold or, correspondingly, hot elec-
trons, while the factor

includes a weak logarithmic dependence on the plasma
particle densities.

Presently, the most complete results on the spectra
of laser-accelerated ions are obtained in experiments
with thin films. Therefore, we discuss the possible
applications of our theory to them. In experiments on
the irradiation of thin films by short laser pulses, high-
energy protons are commonly observed (see, e.g.,
[28]). Their energy spectrum is similar to a Maxwellian
distribution that ends with a small plateau with a sharp
cutoff at suprathermal energies. Despite the use of var-
ious substances as the target material, predominant pro-
ton acceleration is observed in experiments, which is
always attributable to contamination of the target sur-
face by water vapor. This corresponds to the accelera-
tion of a minor impurity of light ions against the back-
ground of the major, heavier, ion component. Accord-
ing to the universally accepted view and to our
calculations, hot electrons are responsible for proton
acceleration; the bulk of the energy of a laser pulse is
transferred to them as it is absorbed by the target. Their
number is small compared to the cold electrons, but the
energy contained in them generally exceeds the energy
of the latter. Experimental data and numerical calcula-
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tions suggest a root dependence of the hot-electron
temperature on the laser energy flux density [30, 31].
Below, we follow the scaling for the hot-electron tem-
perature proposed in [31]:

(53)

where the hot-electron temperature Th is in keV, the
laser energy flux density I is in W cm–2, and the laser
wavelength λ is in µm.

Thus, experiments with short laser pulses suggest
adiabatic plasma expansion, because the accelerated-
ion spectrum is similar to a Maxwellian spectrum,
∝ exp(–v 2), rather than to the spectrum ∝ exp(–v ) that
corresponds to the theory of isothermal plasma expan-
sion [1]. Formally, in both cases, the theory does not
predict the existence of a finite maximum plasma
expansion velocity, although this question is fundamen-
tal for explaining experimental observations. At the
same time, it is clear that the breakdown of plasma
quasi-neutrality and one-dimensionality of its expan-
sion on long time scales are the factors that limit the
maximum energy of the expanding ions.

In the classical case of two-component, electron–
ion plasma (example 1), the quasi-neutrality break-
down condition arises when the density inhomogeneity

scale length (45), L(t) ≈ Cst, becomes equal in order
of magnitude to the electron Debye length

calculated using (42) and (46). This condition deter-
mines the characteristic ion energy

(54)

where λD0 is the electron Debye length specified by the
electron temperature and maximum density at the ini-
tial time. Since the growth of the ion energy slows
down sharply as one passes to three-dimensional
plasma expansion, the condition L(t) ~ D (D is the scale
size of a focal spot) can be used to estimate the ion
acceleration time scale. Its substitution in the last for-
mula yields

(55)

where both ratios under the logarithm are large com-
pared to unity. This estimate indicates that the Max-
wellian spectrum is cut off at an energy that exceeds the
electron temperature by several times.

Qualitatively, this reasoning is also valid for the
acceleration of a light ion impurity (protons) with mass
m2 and charge Z2 by hot electrons with a temperature
Th @ Te0 and density nh0 ! ne0, which has a direct bear-
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ing on the experiment. In this case, the analog of for-
mula (54) takes the form

(56)

where the electron Debye length

is determined by the hot-electron temperature and den-
sity, while the speed of sound is determined by the hot-
electron temperature and the impurity-ion mass. This
formula directly follows from comparison (in order of
magnitude) of the second derivative of the electric
potential with respect to the coordinate with the contri-
bution that determines the impurity-proton charge den-
sity using (34), (50), (51), and (52). This estimate is
valid for energies of the accelerated light ions higher
than ε*,

(57)

implying that the hot-electron temperature is much
higher than the cold-electron temperature, Th @ Te0.

Using the time for which the one-dimensionality of
plasma expansion breaks down as an estimate of the
proton acceleration time scale, we obtain the following
formula, according to (56), which defines the boundary
energy at which the Maxwellian proton spectrum is cut
off:

(58)

The main results of [28] (see Fig. 3a) consist in the
observation of a Maxwellian proton spectrum with a
characteristic temperature of 230 keV, which trans-
forms to a plateau-like spectrum at energy of about
1 MeV and is cut off at an energy of about 1.5 MeV.
These results were obtained by irradiating a thin alumi-
num foil by a laser pulse with a wavelength of about
0.5 µm for an energy flux density of 2 × 1018 W cm–2

and a focal spot D ≈ 10 µm. The target electron temper-
ature did not exceed 1–2 keV. The high contrast of the
laser radiation suggested a high initial density gradient
with an inhomogeneity scale length that did not exceed
the laser wavelength. According to the estimate (53),
one might expect the generation of hot electrons with a
temperature Th ≈ 220 keV that significantly exceeds the
cold-electron temperature Te0 ≈ 1–2 keV under experi-
mental conditions [28], so condition (57) is satisfied
with a large margin. The number of hot electrons was
estimated in [28] to be of the order of 1020. In that case,
according to our theory, we obtain from (34), (39),

εimp t( ) 2Z2Th

Ch
impt

λDh

------------
Cst
L0
------- 

  ,ln≈

λDh

Th

4πe2nh0

-------------------=

ε∗ 2Te0 2 1
ρ
---

T2

Z2Te0
------------- σ

ρ
---ln+ln+ 

  ,≈

εmax
imp 2Z2Th

D
λDh

-------- D
L0
-----

Z1m2Te0

Z2m1Th

-------------------- 
 

1/4

.ln≈
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and (51) for the accelerated-proton spectrum (Z2 = 1,
m2 = 1836me)

where

in good agreement with experiment. The characteristic
maximum ion energy, according to the estimate (58), is
1.5 MeV, which is also in agreement with experimental
data.

Note also another possibility of the energy cutoff in
the impurity-ion spectrum. For the halo expansion time

scale, we have an estimate of D/  and the formation
condition for this halo with a Maxwellian energy distri-

bution is 1/Ω ≈ L0/ . For

,

the ion energy spectrum has no time to reach the
asymptotic distribution 〈f imp〉  ∝  Nimp(U = v) and can
have a cutoff similar to that observed in the nonstation-
ary spectra in Fig. 4.

7. CONCLUSION

In conclusion, note that we have obtained an exact
solution to the kinetic equations for electrons and ions
of various types in the quasi-neutral collisionless
approximation by using the renormalization-group
approach. This solution describes the one-dimensional
nonisothermal expansion of a plasma bunch for arbi-
trary initial particle velocity distributions. The expan-
sion is accompanied by the adiabatic cooling of plasma
particles. The analytic solution that describes such an
expansion is illustrated with examples in which two-
temperature (hot and cold) Maxwellian and super-
Gaussian initial electron distributions and Maxwellian
initial ion velocity distributions characterized by vari-
ous densities, temperatures, and velocities of particles
of each type are considered. We deduced formulas for
the distribution functions of particles of various types
and derived expressions for such integrated characteris-
tics as the local ion density and the ion energy distribu-
tion function. We indicated that these dependences (for
an appropriate change of variables) asymptotically
coincide on long time scales. Since the ion spectrum is
determined by the initial electron distribution, its mea-
surement can be used as the basis for diagnosing the
electron distribution function that results from the inter-
action of an ultrashort laser pulse with nanoplasma, for
example, cluster plasma or the plasma produced when
thin foils are irradiated by a laser. For such plasma, the

f imp〈 〉 Nimp ε
Teff
--------– 

  ,exp∝ ∝

ε
m2v

2

2
-------------, Teff

Z2Th T20+
1 Z2me/m2+
------------------------------ 220  keV, ≈  = =

Ch
imp

2Cs

D
L0
-----

ThZ2m1

2Te0Z1m2
-----------------------<
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particle mean free path is generally large compared to
the plasma bunch scale size and the collisionless-
plasma approximation remains good.

The renormalization-group theory owes its success
in finding exact solutions to the Vlasov equations with
a self-consistent electric field to the quasi-neutral
plasma approximation. This approximation requires
that the Debye length be small compared to the spatial
plasma inhomogeneity scale length. The latter cannot
always hold for the high-energy, often relativistic, elec-
trons produced through fast plasma heating by an
intense laser pulse. A generalization of the renormaliza-
tion-group theory to this case is undoubtedly an inter-
esting problem that requires a special analysis.
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Abstract—The absorption spectra of a dense resonance medium were experimentally studied for the example
of thermally heated dense sodium vapor. Several mechanisms that might cause substantial absorption and
enhanced intensity of emission in the IR spectral region, λ > 0.9 µm, were considered. For the first time, a
detailed study of the structure of the absorption spectra of sodium vapor in the specified wavelength range was
performed to determine the influence of the kind and pressure of the buffer gas. It was found that buffer gas
characteristics had a substantial effect on the absorption coefficient of vapor. The presence of the molecular
component (dimers and trimers) in sodium vapor could not explain the experimental dependences of absorption
in the infrared region. Possible influence of microparticles formed in condensation of convective sodium vapor
flows in heated cells on the optical properties of vapor was considered. Microparticles could contribute to the
observed absorption, but were incapable of explaining the substantial intensity of vapor radiation reported ear-
lier. Possible many-particle effects on the absorption in the far spectral line wing were discussed. For the first
time, the method of molecular dynamics was used to show for the example of the distribution function of ionic
microfields in a dense plasma that such effects were in principle capable of substantially raising the profile of
the line and increasing absorption in the region of large detunings from the resonance compared with the simple
quasi-static model in the nearest-neighbor approximation. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Studies of the mechanisms of formation of spectral

lines of atoms and ions and the problems of resonance
radiation transfer in dense gases and plasmas are a top-
ical area primarily because of the necessity of correctly
interpreting the emission and absorption spectra of
dense plasma and gas objects including laser plasmas;
plasmas of Z, X, etc., pinches; and plasmas of high-
pressure gas-discharge lamps. The total intensity of
dense medium radiation is to a substantial extent deter-
mined by the shape of the profiles of far spectral line
wings at large detunings from the resonance ∆ω ~ ω0
(∆ω = ω – ω0, where ω is the current frequency and ω0
is the resonance transition frequency) [1–4]. One of the
problems that arise in studying far line wings is the
question of the origin of intense radiation and substan-
tial absorption in the near-infrared spectral region,
which is currently widely discussed. These effects have
repeatedly been observed in mixtures of dense alkali
metal vapors with buffer gases at atmospheric and
higher pressures (outside the absorption bands of Na2,
K2, etc., at wavelengths λ > 0.9 µm) by many authors
including those of the present communication [3–12].
The theoretical model of the formation of the profile of
far spectral line wings developed earlier [1–4] and
based on the Boltzmann spectral distribution of reso-
nance level population describes the experimental data
1063-7761/02/9502- $22.00 © 0242
on sodium vapor accurate to within an order of magnitude
[3, 4], whereas the standard theory of radiation transfer
[13, 14] gives values that differ by 4–5 orders of magni-
tude from the results of measurements at large detunings.

It has rigorously been shown in [1, 2, 4] that the spec-
tral intensity of spontaneous emission εω can be described
in the two-level approximation by the equation

(1)

where A0 is the probability of spontaneous emission,

and  is the effective spectral population of the
upper level (see [1, 2, 4] for more detail),

(2)

Here, T is the temperature, k is the Boltzmann constant,

a(ω) is the form factor of the line profile (  = 1),

and  is the effective population of the upper level. At
equilibrium, we have the Boltzmann spectral distribu-
tion (g1 and g2 are the statistical level weights, and N1 is
the total population of the lower level),

(3)

εω
1

4π
------"ωA0

ω
ω0
------ 

  3

Ñ2 ω( ),=

Ñ2 ω( )

Ñ2 ω( ) Ñ2a ω( ) " ω ω0–( )/kT–[ ] .exp=

a ω( ) ωd∫
Ñ2

Ñ2 ω( )
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-----N1a ω( ) "ω

kT
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 exp=
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(in the absence of equilibrium, the  effective popu-
lation can be found from the kinetic equations given in
[1, 2]). It follows from (3) that, strictly, the total popu-

lation equal to the integral of  in frequency does
not satisfy the Boltzmann equation even at equilibrium
and coincides with the true population only for a very
narrow line with "Γ ! kT (where Γ is the line width),

whereas the  effective population does satisfy the
Boltzmann equation. Note that, earlier, equations simi-
lar to (1) and (2) but with an incorrect normalization of
the line profile were obtained from simple physical
considerations in [15, 16].

The intensity of the far wing of a wide line (see [2–
4] for more detail) can substantially exceed the inten-
sity calculated by the standard theory [13, 14] because
of the presence of the exponential multiplier. The larger
fraction of the energy emitted in the line can correspond
to precisely its nonresonance “red wing” rather than the
central near-resonance region (even the formation of an
additional low-frequency maximum in the emission
spectrum is then possible [3, 4]), which qualitatively
explains the results obtained in [3, 4] in measuring
intense thermal radiation of sodium vapor at wave-
lengths of 2–3 µm.

The theoretical model [4], which described radia-
tion of sodium vapor at large detunings, was con-
structed on the assumption that the line profile was
formed by buffer-gas-induced quasi-static broadening
in the nearest-neighbor approximation. The validity of
such a description in the region of large detunings is,
however, not obvious. In addition, it was shown in sev-
eral experimental works (e.g., see [17–20]) that, at
wavelengths λ larger than 0.64–0.70 µm (depending on
the kind of the broadening gas), the intensity of the
“red” quasi-static wing of sodium D lines began to
exponentially decrease, which was in satisfactory
agreement with the calculated interaction potentials
between sodium atoms and atoms of various buffer
gases such as argon and xenon. Taking this effect into
account to a great extent balances the influence of the
Boltzmann exponential factor in (1)–(3) and results
(within the framework of the model [4]) in a substantial
gap between the calculation results and the experimen-
tal intensities of sodium vapor radiation at λ > 0.70 µm.
Note, however, that the theory of the formation of spec-
tral line profiles at large detunings ∆ω ~ ω0 currently
remains virtually undeveloped.

It follows that the problem of the nature of intense
radiation and substantial absorption in the infrared
spectral region in dense alkali metal vapors remains
unsolved. An analysis of the available data and the
results obtained by us earlier shows that, in addition to
binary quasi-static broadening of sodium D lines by
buffer gases, the observed special features of the infra-
red emission and absorption spectra of mixtures of
dense alkali metal vapors with buffer gases can be
caused by absorption and emission of the cluster com-

Ñ2

Ñ2 ω( )

Ñ2
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ponents of the vapors including absorption and emis-
sion caused by infrared transitions in dimers, trimers,
and more complex sodium polymers and also absorp-
tion and emission of microscopic liquid alkali metal
droplets. Such droplets were repeatedly observed in
experiments in the form of a fog, in particular, when
heated cells of the “heat pipe” type were used to pro-
duce alkali metal vapors [7–10, 21, 22]. The influence
of clusters and droplets on the optical properties of
vapors in cells was not, however, studied earlier. Nor
were inquiries made into the rules governing the forma-
tion of such microparticles, although their presence was
a priori used to explain the observed characteristics of
emission and absorption. Note that the problem is of
interest in itself, because cells of this type are exten-
sively used in experiments [23, 24].

Another possible reason for the observed effects can
be many-particle broadening of the resonance level in
combination with the Boltzmann character of the spec-
tral distribution of resonance level populations (3). It
may well be that such configurations of the emitting
and several (possibly, many) perturbing atoms are then
realized at which each perturbing atom only insignifi-
cantly shifts the energy levels of the emitting atom,
whereas a set of perturbing atoms shifts these levels
substantially, which results in intense emission at large
detunings from the resonance. This problem also
remains virtually unstudied, although some of its
aspects have been touched upon in several works; e.g.,
see [25]. At the same time, such a mechanism can be
essential at high sodium vapor and buffer gas pressures.
It is pertinent to mention here that high buffer gas pres-
sures, at which many-particle effects might be notice-
able, were used in works [17–20] concerned with mea-
suring far sodium resonance line wings. However, sev-
eral points corresponding only to the onset of an
exponential decrease were obtained in these works,
while the behavior of the spectrum at larger detunings
was not studied; note that, at detunings so substantial
(λ0 ~ 0.59 µm), the accuracy of measurements was
fairly low. Moreover, it remains unclear whether or not
the approximation of complete redistribution of
absorbed and emitted photons over frequencies, which
is explicitly present in absorption–fluorescence meth-
ods for measuring line profiles (used in many works
including [17–20]), is valid. In any event, its applicabil-
ity at large detunings is not obvious.

We have already discussed the possibility of effects
caused by many-particle collisions and the presence of
the cluster and microdroplet components in vapors [5,
26]. In this work, the experimental data on the absorp-
tion spectra of sodium vapor in a wide spectral range
(0.35–1.10 µm) and the results of theoretically model-
ing both effects under consideration are described in
more detail. Our goal was to analyze their influence on
the infrared emission and absorption spectra of mix-
tures of dense alkali metal vapors and buffer gases.
SICS      Vol. 95      No. 2      2002
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2. EXPERIMENTAL UNIT

The absorption and thermal emission spectra of
dense sodium vapor were studied on a unit whose main
elements were specially designed cylindrical cells of
the heat pipe type connected to a vacuum line and a line
for introducing a buffer gas and a spectral diagnostics
device for measuring the spectral intensity of emission
and the spectral absorption coefficients of sodium
vapor.

We used a cell similar to that described in [4]. The
inside radius of the cell was Rp = 10 mm, and the dis-
tance between water-cooled flanges was 2L1 = 150 mm.
Linked up to the flanges were pipes L2 = 7.5 cm long
with sapphire windows 2 mm thick attached vacuum-
tight to their ends. The transmittance of the windows
was varied from 0.3 µm up to wavelengths of the order
of 5 µm and controlled by an infrared spectrophotome-
ter. The vacuum system consisted of a fore and a diffu-
sion pump and allowed the cell to be evacuated to
10−5 Torr or less. Prior to evacuation, the cell was
loaded with sodium metal of VCh (high purity) grade.
After evacuation, the cell was filled with an inert gas
(helium or argon) to a 0.1–1.0 atm pressure and heated
to the required temperature. The heater was nichrome
wires placed into fused quartz tubes thermally insulated
by a layer of asbestos and carbon cloth. The tempera-
ture of the external cell walls was measured by several
chromel–alumel thermocouples accurate to 1 K. Tem-
perature distribution along cells T(z) in the heating zone
approximately corresponded to a fourth-order parabolic
curve with a maximum at the cell center [T(z = 0) = Tc].
The temperature at the water-cooled flanges T(z = L1) =
T0 equaled the temperature of the water (T0 ≈ 293 K),

(4)

Density N of sodium vapor in the cell was deter-
mined from the curve of saturated vapor pressure [27]
at the temperature corresponding to the temperature of
the cell walls. At temperatures up to 800 K, the density
of vapors, integral along the cell axis, was also mea-
sured by the method of Rozhdestvenski hooks [28] with
the use of a Michelson interferometer and a wideband
dye laser. Both methods gave values coinciding to
within 20% in the specified temperature range. This
was evidence that the density of vapor was indeed
determined by the saturated vapor pressure at the tem-
perature of the cell walls, at least in the hot cell zone
where N was maximum.

The source of illumination for measuring the
absorption coefficient in dense sodium vapor was colli-
mated radiation from a SI-8-200 tungsten lamp. Mea-
surements of the intensity of light after passage through
sodium vapor in the near-axis part of the tube were per-
formed as follows. Radiation at the exit from the cell

T z( )
Tc

Tc T0–

L1
4

-----------------z4, 0 z L1,≤ ≤–

T0, L1 z L2.≤<





=
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was modulated by a mechanical chopper at a frequency
of about 800 Hz. The modulated light beam was
directed to the entrance slit of a monochromator
(600 lines/mm grating and 16 Å/mm dispersion). The
grating was rotated for tuning the instrument to the
required wavelengths with the use of a step motor.
Wavelength calibration of the spectrum was performed
based on the spectrum of a neon lamp (the wavelengths
of the spectrum of neon were taken from [29]). The
spectral resolution of measurements was determined
from the observed widths of neon spectral lines; it was
about 15 cm–1. The radiation detector, which was an
FEU-84 photomultiplier (with a multialkali cathode for
measurements at 0.30–0.76 µm) or an FEU-83 photo-
multiplier (with an oxygen–silver–cesium cathode for
measurements at 0.76–1.10 µm), was placed in the
focal plane of the spectrograph immediately behind the
exit slit. The sensitivities of both photomultipliers were
calibrated against the spectrum of a standard radiation
source, which was a similar SI-8-200 tungsten lamp.

The signal from detectors was directed to a narrow-
band amplifier (a V6-9 selective microvoltmeter) and,
from its output, to a synchronous detector. DC voltage
from the synchronous detector output was directed to
an analog-to-digital converter whose output signal was
processed on a computer.

The absorption by heated sodium vapor was deter-
mined as follows. In each experiment, we recorded the
intensity I0 of radiation that passed through the cell at
room temperature, that is, in the absence of vapor, and
the intensity of radiation that passed through the cell
with sodium vapor at various temperatures, I = Ir – Iv ,
where Ir is the recorded intensity of radiation and Iv is
the intensity of intrinsic emission of the vapor (note that
the Iv value was negligibly small compared with Ir in all
experiments). All the data obtained in this way were
used to construct the dependences of the relative frac-
tions of absorbed and scattered radiation intensities K =
(I0 – I)/I0 on the parameters of the medium.

3. ABSORPTION SPECTRA 
OF DENSE SODIUM VAPOR

The absorption spectra of dense sodium vapor in the
wavelength range 0.35–1.10 µm measured at various
temperatures are shown in Fig. 1, and the temperature
Tc dependences of absorbed and scattered radiation
intensities at 0.4 and 1.0 µm, in Fig. 2. Note that the K
values at 0.4 and 1.0 µm are close to each other at all
temperatures except the lowest.

Figure 1 shows that the spectrum of vapor contains
three well-defined absorption regions. One of these is
centered at λ = 0.59 µm and corresponds to absorption
at the 3S–3P atomic resonance transition of sodium;
another centered at λ = 0.49 µm is largely caused by

absorption at the well-known –B1Πu molecular
transition of the Na2 sodium dimer [30] and by satellites

X2Σg
+
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of absorption bands of the –  (0.452 µm) and

a3 –23Πg (0.437 µm) transitions [21, 31]. In addition,
the spectrum contains a broad absorption band at 0.60–

0.82 µm, which corresponds to the A1 –  transi-
tion of sodium dimers [30] (the long-wave edge of this
band is especially sharp at T > 800 K, see Fig. 1). Apart
from these bands, an increase in absorption is observed
in the violet spectrum region (λ < 0.38 µm). This
increase is related to satellites of absorption bands of

the –31  (0.38 µm) and –C1Πu (0.367 µm)
transitions [21, 31] and to closeness of the 3S–4P
atomic transition (λ = 0.330 µm).

In addition, we recorded noticeable absorption at
0.9–1.1 µm, where molecular sodium bands are absent,
as follows from the theoretical calculations performed
in [10, 21, 32, 33]. According to these calculations,
wavelength 0.9 µm corresponds to the long-wave edge

of the absorption and emission band of the a3 –c3

free-bound transition. It follows that, at larger wave-
lengths, the observed absorption cannot be related to
absorption caused by molecular sodium transitions.
Very close agreement between the calculation results
and experiment was attained in the works cited above in
the whole wavelength range 0.3–1.0 µm (we specially
note [21], where absorption spectra were measured
very thoroughly and compared in detail with theoretical
calculation results). There is therefore no reason to
assign absorption at λ > 0.9 µm to some nonidentified
sodium dimer transitions. Nor can atomic absorption
lines be observed in this region because of a vanish-
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Fig. 1. Absorption spectra of sodium vapor at various cell
center temperatures Tc = 903 (1), 806 (2), and 709 K (3);
buffer gas argon, buffer gas pressure 1 atm.
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ingly small thermal population of the resonance and
higher levels in the absence of external excitation.

As mentioned in the Introduction, intense infrared
emission and absorption were also observed in the
spectra of purely thermal radiation of dense potassium
[7, 10] and sodium [3, 4, 8, 10, 11] vapors in vapor jets
and in heat-pipe-type tubes similar to that used in this
work. These effects were explained in [7, 8, 10, 11] by
possible absorption of alkali metal trimers and more
complex polymers and by the presence of fog, that is,
liquid metal droplets. These hypotheses were not, how-
ever, given experimental or theoretical substantiation.
For instance, attempts made in [7, 8] to determine the
activation energies of absorbing particles from the
spectral data on the absorption coefficients in the infra-
red region and compare the results with the supposed
activation energies of sodium and potassium trimers
gave very contradictory results. What is more, intense
emission in the near-infrared region has long since been
observed in the well-known emission spectra of high-
pressure sodium gas-discharge lamps [6, 34], which are
extensively used in outdoor lighting devices. The frac-
tion of infrared radiation energy loss called “mysteri-
ous” many years ago [6] can amount to 20–30% of the
total power balance of sodium lamps. The phenomenon
has not, however, received at least a qualitative expla-
nation within the framework of some theoretical model
as yet.

It should at the same time be noted that no notice-
able absorption at 0.92–1.075 µm is observed in a uni-
formly heated cell in the absence of a buffer gas [21]. In
our experiments, we for the first time obtained data on
the dependence of emission attenuation in the wave-
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Fig. 2. Dependence of K = (I0 – I)/I0 on temperature in cell
center Tc for radiation wavelengths (1, 3, 4) 1.0 and (2) 0.4 µm;
buffer gas (1, 2, 4) argon and (3) helium, buffer gas pres-
sure (1–3) 1 and (4) 0.2 atm.
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length region λ = 1 µm on the buffer gas pressure and
type at various cell temperatures. These dependences
are shown in Figs. 2 and 3. According to our results, the
pressure and the type of the buffer gas fairly strongly
influence the optical properties of the medium under
study. Absorption increases as the buffer gas pressure
grows, and is substantially stronger in the presence of
argon than in the presence of helium. Note that we
observed similar dependences in measuring the inten-
sity of radiation for dense sodium vapor at 2–3 µm [3,
4]. In those experiments, the intensity of radiation was
also approximately proportional to buffer gas pressure
and increased severalfold when helium was replaced by
argon.

4. ESTIMATION OF POSSIBLE INFLUENCE 
OF SODIUM TRIMERS ON ABSORPTION 

IN THE IR REGION

Substantial absorption in the λ > 0.9 µm infrared
region is explained in several works [7–9] by the pres-
ence of alkali metal trimers. These molecules can be
present in fairly large amounts in hot regions where the
density of vapor is the highest. For this reason, we esti-
mated the σtr cross section of possible absorption of Na3
trimers at various Tc temperatures in the cell center on
the assumption that all observed absorption was indeed
caused by trimers. The estimates were obtained by the
equation

(5)

where Ntr is the density of the trimeric component.
Because of a very sharp dependence of Ntr on tempera-
ture (and therefore on z), the integral in (5) is largely
determined by the central region of the cell, and the
details of vapor density distribution in cell peripheral

I/I0( )ln 2 σtr T z( )( )N tr T z( )( ) z,d

0

L1 L2+

∫–=
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Fig. 3. The plot of K = (I0 – I)/I0 versus argon pressure PAr
for radiation at 1 µm; Tc = 955 (1) and 808 K (2).
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regions are unimportant. It can then be assumed that
σtr ≈ σtr(Tc), and the cross section value can be factored
out of the integral. Estimates were made using the
experimental K = (I0 – I)/I0 values and the results
obtained in calculating the equilibrium concentration of
the trimeric component. The Ntr value was determined
from the theoretical data on the fundamental trimer vibra-
tional frequencies reported recently [35] (ω1 = 295.3 cm–1,
ω2 = 56.9 cm–1, and ω3 = 102.9 cm–1) and the disso-
ciation energy calculated in [36–38] (approximately
3000 cm–1). The moments of inertia of the molecule
were calculated from the data on its geometric structure
reported in [39]. Note that, according to [39], the Na3
molecule has weak absorption bands in the near-infra-
red spectral region.

As mentioned, the long-wave absorption edge of
Na2 dimers lies at wavelengths below 900 nm accord-
ing to many measurements and calculations. Accord-
ingly, this vapor component cannot contribute to the
observed absorption at wavelengths above 0.9 µm.
Nevertheless, we performed similar calculations of the
σd cross section for possible absorption by the Na2
dimeric component. The Nd density of the dimeric com-
ponent was calculated using the corresponding con-
stants from [27].

The temperature dependences of the calculated
molecular composition of sodium vapor and of the
cross sections of absorption by sodium dimers and tri-
mers are shown in Fig. 4. According to this figure, the
equilibrium density of the trimeric component is 3–
7 orders of magnitude lower than the atomic sodium
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Fig. 4. Calculated temperature dependences of equilibrium
densities of sodium (1) atoms, (2) dimers, and (3) trimers.
Cell center temperature Tc dependences of cross sections (4)
σtr and (5) σd of possible absorption by trimers and dimers
(estimated from the experimental data on the assumption
that all absorption is caused by the corresponding compo-
nent).
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density. The plots given in Fig. 4 show that the esti-
mated σd and σtr values for the dimeric and trimeric
components strongly depend on temperature and
change by two–three orders of magnitude when tem-
perature changes by a factor of two. At the same time,
actual absorption cross sections cannot depend on T so
strongly.

Because of the low density of trimers, the estimated
σtr value is in the range 10–12–10–15 cm2, which is more
characteristic of narrow atomic lines than of compara-
tively broad molecular bands. In addition, according to
the data reported in reviews [40, 41], the cross section
of the sodium trimer does not exceed 4 × 10–16 cm2 even
at the absorption maximum in the violet spectral region.
It follows that the whole data set is evidence that the
observed absorption cannot be caused by the Na2 and
Na3 molecules, whose equilibrium density can only be
fairly high in the central hot and comparatively uniform
cell zone. As concerns the equilibrium concentrations
of higher sodium polymers such as Na4, their concen-
trations are much lower than those of trimers, and they
cannot contribute to absorption either. In addition, as
mentioned, the intensities of emission and absorption
strongly depend on the type and pressure of the buffer
gas, which is also at variance with the hypothesis of the
influence of molecular components on the optical char-
acteristics of vapor in the λ > 0.9 µm long-wave spec-
tral region.

5. INFLUENCE ON ABSORPTION 
OF THE CLUSTER AND MICRODROPLET 

VAPOR COMPONENTS

As mentioned, absorption in the near-infrared spec-
tral region (outside the spectral region of absorption of
sodium dimers) can also be ascribed to heavy sodium
clusters and to microscopic liquid sodium droplets
formed in condensation in the cold zone of devices for
creating dense alkali metal vapors. Note that there is no
clear distinction in size between clusters and micro-
droplets (aerosols). For this reason, both will be called
microparticles for simplicity.

The suggestion of the formation of microparticles in
vapor jets [10] caused by condensation is quite reason-
able because of sharp vapor medium expansion [41–
43]. At the same time, in heat-pipe-type cells {used to
produce dense stationary alkali metal vapors in [3, 4, 7–
9, 11] at high buffer gas pressures Pbuf and fairly low
vapor pressures Pv (Pv/Pbuf < 0.2–0.1)}, deviations
from equilibrium are comparatively small, and the
problem of the formation of microparticles under these
conditions requires special consideration.

The degree to which condensate influences the opti-
cal characteristics of dense alkali metal vapors can be
estimated based on measured spectral dependences of
absorption. We used the model of a spherical drop of
radius R (nonsphericity effects at fairly high tempera-
tures are negligibly small [43–45]). The experimental
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
spectral dependences of the real and imaginary compo-
nents of complex permittivity ε1 and ε2 obtained in [46]
were used in calculations of the cross section of extinc-
tion σext for such a drop by the Mie theory [44, 47].
Note that the ε1(λ) dependence is well approximated by
the plasma model within the framework of the Drude–
Sommerfeld theory with corrections for the effective
mass of the electron and ionic core polarizability [44,
46] in the wide wavelength range 0.3–2.0 µm. As con-
cerns the ε2 imaginary component, there are substantial
discrepancies in the visible and near-ultraviolet
regions, which are related to interband transitions. The
data reported in [46] were obtained at room tempera-
ture; they were therefore recalculated using the ratio
between the conductivities of sodium [27] at the given
temperature and at T = 293 K. In addition, it was taken
into account that, at a small particle size, an essential
role in permittivity component values and, therefore, in
absorption cross section is played by size effects,
because the frequency of collisions ν at small R is
determined by collisions with microparticle bound-
aries, and ν is therefore a function of the microparticle
size, ν = ν(R) [44].

The calculation results for two wavelengths, 0.4 and
1.0 µm, at T = 1000 K are shown in Fig. 5. According
to this figure, the cross sections of extinction differ sev-
eralfold at these two wavelengths for small-sized clus-
ters, whereas the absorption coefficients measured at
the specified temperature virtually coincide (see
Fig. 2). The σext value calculated at λ = 0.4 µm exceeds
the cross section at λ = 1 µm, whereas the experiment
gives an inverse ratio (note that similar results are
obtained in calculating σext at other temperatures). In
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Fig. 5. Dependences of normalized extinction cross section
on microparticle size R for wavelengths (1) 0.4 and
(2) 1.0 µm; T = 1000 K.
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addition, small-sized sodium microparticles should
have a resonance absorption peak in the ultraviolet
region for the λ ≈ 0.4 µm wavelength caused by the
excitation of surface plasmons [39–44]. In experiments,
we find no peak in this spectral region (see Fig. 1) that
might be related to a plasmon absorption peak. It is,
however, possible that this peak is obscured by the
wings of the strong absorption bands of atomic sodium
and sodium dimers (see above). It follows that small-
sized clusters cannot be responsible for the observed
absorption dependences.

For particles of size R > 0.1 µm (when multipole
terms begin to play a substantial role in Mie expan-
sions), the calculated extinction cross sections
approach each other and become equal (at R @ λ, σext

tends to 2πR2 irrespective of the wavelength), which is,
on the whole, in agreement with the experimental data.
It follows that, to answer the question of a possible con-
tribution of such particles, we must determine whether
or not such microparticles can be formed in heat-pipe-
type cells and estimate their concentration.

As the gradient of temperature and, accordingly, of
saturated vapor pressure along the cell axis is substan-
tial, an important role in establishing a stationary vapor
density distribution must be played by the diffusion of
sodium atoms in the buffer gas from the hot central cell
zone to its cooled ends. In the peripheral cell regions,
the density of vapor N can substantially exceed the
Ns(T) saturated vapor density determined by the tem-
perature at the given cell point. Under these conditions,
homogeneous condensation can in principle cause the
formation of fairly large microparticles. To inquire into
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Fig. 6. Distributions along cell axis of (1) temperature,
(2) saturated vapor density Ns, (3) vapor density N in the
absence of condensation, (4) vapor density in the presence
of diffusion transfer, and (5) vapor density in the presence
of convective transfer; Tc = 1000 K, PAr = 1 atm.
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the role played by condensation, we performed numer-
ical calculations of heat conduction and diffusion pro-
cesses in the cell for given measurement conditions.
The boundary conditions were set in accordance with
cylindrical symmetry of the problem and approxima-
tion (4) to the experimental temperature of cell walls; it
was assumed that N = Ns at cell walls. The calculated
temperature and vapor density distributions along the
cell axis in the absence of condensation and the corre-
sponding distribution of the density of saturated sodium
vapor calculated using the tables from [27] are plotted
in Fig. 6 (curves 1–3). These plots show that the degree
of supersaturation S = N/Ns in the cold region can be
substantial (S ~ 106), which can cause intense conden-
sation and formation of fairly large amounts of micro-
droplets of a substantial size.

Condensation was taken into account based on the
classical theory of homogeneous condensation [48, 49].
According to this theory, condensation nuclei of a crit-
ical radius are largely formed in supersaturated vapor,

(6)

where q = mNa/ρNa is the volume of the liquid sodium
molecule, mNa is the mass of the sodium atom, ρNa is the
density of liquid sodium, and σ is the surface tension
coefficient of liquid sodium. Clusters or microdroplets
of smaller sizes vaporize, and those of larger sizes
grow. Note that the number of atoms in a particle is

where

is the Wigner–Seitz radius [41]. Accordingly, the num-
ber of atoms in a microparticle of radius Rcr is

The rate of the formation of nuclei is determined in the
classical theory by the equation [48, 49]

(7)

where α is the accommodation coefficient (the fraction
of vapor molecules that stick to the drop surface in col-
lisions; for pure alkali metals, α ≈ 1 [50]) and vT =
(8kT/πmNa)1/2 is the thermal velocity of sodium atoms.
Microparticles increase in size as time passes and grad-
ually settle under gravity on the inside cell surface
when their size reaches a maximum value, Rmax [nmax

then equals (Rmax/RW)3].

Let such a microparticle be formed at time t = 0 and
disappear (settle onto the bottom of the cell) at time τ.
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Clearly, the stationary concentration of microparticles
Np will then be determined by the equation

The rate Q of the disappearance of atoms in the cell vol-
ume as a result of condensation can then be determined
as follows:

(8)

where ncr is the number of atoms in a particle of the crit-
ical radius [ncr = (Rcr/RW)3], W(n) is the rate of particle
growth, and F(n) is the particle-size distribution func-
tion.

Growth of a microparticle under the conditions of a
given experiment is largely determined by sticking of
atoms to it from the vapor environment, whereas the
role played by coagulation can easily be shown to be
insignificant. The rate of growth through sticking W(n)
is substantially different for small-sized particles with
R ! λf (free-molecular mode—λf is the free path of
sodium atoms in the buffer gas) and for large-sized par-

N p J0τ .=

Q N pW n( )F n( ) n,d

ncr

nmax

∫=
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ticles with R @ λf (diffusion mode). In our calculations,
we therefore used the interpolation formula given in
[51],

(9)

This formula describes both limiting modes.

Condensation is accompanied by heat release, and,
generally, the microparticle temperature Tp increases
compared with the temperature T of the medium, which
somewhat decreases the rate of its growth compared
with that predicted by (9). In particular, as was shown
in [52], this effect was, however, negligibly small under
the conditions of our experiments, in which the buffer
gas pressure was much higher than the sodium vapor
pressure. In addition, note that the density of saturated
vapor close to a microparticle depends on the curvature
of its surface [51]. Curvature effects are, however, only
substantial for the smallest particles; we will, therefore,
ignore them.

Integrating (9) gives the explicit time dependence
of n,

W n( ) dn
dt
------

απn2/3RW
2 v T

1 3RWn1/3α / 4λ f /v T( )+
--------------------------------------------------------- N Ns–( ).= =
(10)n –b 1– b 2– ncr
2/3 2b 1– ncr

1/3 8/9( )πλf v T RW N Ns–( )t++ ++( )
3
,=
where b = 3αRW/4λf. The particle-size distribution
function will be determined from the stationary kinetic
equation

(11)

It is easily found from (11) that

(12)

Integrating (8) taking into account (9), (10), and
(12) yields

(13)

It follows that the problem reduces to finding the
maximum size of microparticles, which is in turn deter-
mined by time τ of particle settling. Time τ will be
found from the interpolation formula for a stationary
settling rate under gravity (e.g., see [51]), which is valid
for both free-molecular and diffusion modes,

(14)

where x is the vertical coordinate (0 < x < 2Rp), η = η(T)
is the dynamic viscosity of the buffer gas (its value can

n∂
∂

W n( )F n( )[ ] 0, F n( ) nd

ncr

nmax

∫ 1.= =

F n( ) C n 2/3– bn 1/3–+( ),=

C 3 nmax
1/3 ncr

1/3–( ) 3
2
---b nmax

2/3 ncr
2/3–( )+

1–

.=

Q J0 nmax ncr–( ).=

v st
dx
dt
------

CcmNag
6πηRW

------------------n2/3,= =
be found in the tables from [27]), g is the free fall
acceleration, and Cc is the so-called Cunningham cor-
rection [51],

(15)

(λm is the free path of buffer gas molecules). Equa-
tion (14) can be used to obtain the equation for deter-
mining τ,

(16)

We can then use (10) to calculate nmax = n(τ) and,
accordingly, Q.

The results of numerically solving the equation for
sodium vapor diffusion in the buffer gas taking into
account the sink of sodium atoms caused by condensa-
tion are shown in Figs. 6 and 7. The distribution of
vapor density along the cell axis that takes condensa-
tion into account is shown in Fig. 6 (curve 4). It follows
from this distribution that condensation substantially
decreases vapor density in the cold cell zone and
thereby considerably decreases supersaturation. The
microparticle density Np distribution, the distribution of
the maximum number of atoms in microparticles nmax,
and the distribution of the density of sodium atoms con-
densed to microparticles Nt along the cell axis are

Cc 1
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R
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shown in Fig. 7 for Tc = 1000 K and a 1 atm pressure of
argon in the cell. Shown in Figs. 8 and 9 are the depen-
dences of λ = 1µm radiation attenuation caused by
microparticles and calculated at various temperatures and
buffer gas pressures with the use of the calculated extinc-
tion cross section values discussed above (see Fig. 5):

(17)

These plots show that the calculated Kp values are
2–3 orders of magnitude lower than those measured in
the whole range of medium parameter variations. In
addition, the experimental dependences of radiation
absorption and scattering on buffer gas pressure and on
the nature of the buffer gas are at variance with the cal-
culation results.

Note that the question of the validity of describing
condensation processes by (7) was raised in several
works. In particular, Lothe and Pound [53] took into
account all degrees of freedom of a nucleus to introduce
a correction to (7), which increased the classical rate of
nucleation J0 by a factor of 1017. It was, however, shown
in [54] that, in reality, the correction could vary in the
range 10–2–106 {a similar conclusion was drawn in [55],
where it was noted that the introduction of corrections
changed the parameters of condensed microparticles by
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Fig. 7. Distributions along cell axis of (1, 2) microparticle
density Np, (3, 4) density Nt of atoms present in microparti-
cles, and (5, 6) maximum number nmax of atoms in micro-
particles for (1, 3, 5) diffusion and (2, 4, 6) convective trans-
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as little as 5% at J = (10–2–102)J0}. In addition, it was
shown in [56] that the size dependence of the surface
tension coefficient could also have a strong effect on the
rate of nucleation; at large supersaturations S, this
effect considerably increased the J0 value. We therefore
modeled condensation with increasing rate of nucle-
ation up to J = 1010J0. The calculations showed that
even such an increase in J0 did not very substantially
influence the parameters of microparticles and absorp-
tion by vapor. The number of microparticles in the cell
volume and the total number of atoms in them then
increased severalfold, but their mean size simulta-
neously decreased severalfold. For instance, in argon at
1 atm and Tc = 1000 K, the concentration of micropar-
ticles and the total number of atoms in them increased
by as little as 4 and 1.5 times, respectively, and the max-
imum microparticle size decreased 1.6 times, whereas
the Kp value only increased 1.7 times (at Kp ! 1 and at
a large size of microparticles, Kp ~ Npσext ~ 2πNpR2).
Such a situation arises because, at a limited diffusion
flow rate, an increase in the rate of nucleation rapidly
becomes limited by the exhaustion of atomic vapor in
the condensation zone. This considerably decelerates
growth of microparticles (whose rate is proportional to
N – Ns), and microparticles settle down prior to attain-
ing the previous size, because the time of settling is pro-
portional to (N – Ns)–1/2, as can easily be shown. It fol-
lows that, even when possible corrections to the rate of
nucleation are included, purely diffusion flow cannot
provide the concentration of microparticles and their
size required to explain the experimental data.
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and (2, 4) helium at 1 atm.
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Calculations of the temperature field in the cell,
however, showed the existence of small temperature
drops ∆T between the cell axis and cell walls (not larger
than 15 K in the hot tube zone at 1000 K). For this rea-
son, convective vapor transfer from near-wall layers to
the axial zone and then from the hot to cold cell regions
could occur. Such convective processes can hardly be
modeled in detail. In a first approximation, they can,
however, be described using the effective diffusion
coefficient Deff, which can be estimated on the assump-
tion that convective and diffusion flows are equal,

(18)

where v cz is the convective flow rate along the cell axis,
which is assumed to be of the order of the vertical
(radial) convective flow rate, v cz ~ v cr. The v cr value can
in turn be estimated by the Boussinesq equation [57]

(19)

where ν is the kinematic viscosity of the medium, β is
the thermal expansion coefficient (b = 1/T for gases),
and g is the free fall acceleration. Under the conditions
of our experiment, the term caused by viscosity is small
even at low buffer gas pressures. The rate of convection
can then be estimated [on the assumption that (vcr∇ )vcr ~

/Rp] as

(20)

Hence, the Deff value is given by

(21)

if it is assumed that the gradient of vapor density is
established along the length of the hot cell zone and
∇ N ~ N/L1. It follows that the Deff value does not
depend on buffer gas pressure and the type of buffer
gas. Note that, depending on temperature, Deff can be
dozens and hundreds of times larger than the usual dif-
fusion coefficient of a small admixture of sodium vapor
in the buffer gas at atmospheric pressure.

We modeled diffusion and condensation processes
with the use of (21) to estimate the influence of convec-
tion on the formation of microparticles. The ∆T value
was set equal to 15 K over the whole cell length. Note
that the temperature drop can be substantially lower if
convective heat conduction is taken into account. The
calculations results are given in Figs. 6–9. They show
that absorption substantially increases in the presence
of convection, although it does not reach experimental
values. What is more, the calculated dependences of
absorption on buffer gas pressure and the kind of buffer
gas qualitatively reproduce the experimental depen-
dences (cf. Figs. 2 and 8, 3 and 9), because although the
effective diffusion coefficient is independent of buffer
gas kind and pressure, these characteristics to a sub-
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stantial extent determine the rate of settling. As with
diffusive transfer, an increase in the nucleation rate by
ten orders of magnitude compared with the classical
nucleation rate under convective transfer conditions
does not substantially influence the parameters of
microparticles and absorption by vapor. Note that nar-
row condensation zones (see Figs. 6 and 7) situated at
z = 7–11 cm (where temperatures are already fairly
low) formed in usual and convective diffusion virtually
coincide.

It follows that microparticles formed in the conden-
sation of convective sodium vapor flows in cells can in
principle (to within the approximations made in the cal-
culations) contribute to the experimentally observed
weakening of the intensity of transmitted radiation in
the λ > 0.9 µm infrared spectra of sodium vapor. Nev-
ertheless, considering that condensation occurs in the
cold cell zone, the temperature of microparticles should
be low. Even if we assume that microparticles radiate as
a blackbody at the inside boundary of the condensation
zone, the intensity of their radiation should be small.
For instance, at Tc = 1000 K and Pbuf = 1 atm, the inside
condensation zone boundary corresponds to z = 7 cm.
Temperature T in this region (z = 7 cm, r = 0) is about
510 K. The intensity of blackbody radiation at this tem-
perature is about 2 × 10–16 erg/(cm2 sr). However, the
intensity of sodium vapor emission recorded in experi-
ments [3, 4] was many orders of magnitude higher [of
the order of 10–11 erg/(cm2 sr)]. Of the same order was
also the intensity of radiation from a nonuniformly
heated column of sodium vapor in the red wing of res-
onance D lines calculated in the approximation of their
quasi-static broadening by the buffer gas taking into
account the Boltzmann spectral distribution of popula-
tion of resonance levels [4]. This leads us to conclude
that, although condensation processes can in reality
contribute to the observed absorption by sodium vapor,
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Fig. 9. Argon pressure PAr dependences of the calculated
Kp = (I0 – I)/I0 values for radiation wavelength of 1 µm in
(1) diffusion and (2) convective modes; Tc = 1000 K.
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they are incapable of explaining the experimental inten-
sity of sodium vapor radiation.

6. MODELING OF THE INFLUENCE 
OF MANY-PARTICLE EFFECTS ON THE SHAPE 

OF THE FAR SPECTRAL LINE WING

As mentioned above, an alternative mechanism that
explains substantial emission and absorption at the far
spectral line wing in a dense medium can be line broad-
ening caused by many-particle interactions of atomic
and molecular medium components. Such interactions
can in principle substantially modify the profile of
absorption and emission lines in comparison with the
simple quasi-static model, which assumes the existence
only of binary collisions in conformity with the nearest-
neighbor approximation. Although every separate par-
ticle insignificantly perturbs the emitting atom, several
such particles can effect a shift of the transition fre-
quency sufficient for intense emission and absorption to
be observed in the far line wing ∆ω ~ ω0. This problem,
however, requires additional inquiries, because analytic
methods for calculating the influence of many-particle
interactions, which can manifest themselves at large
medium densities, on the profile of spectral lines are
currently lacking. What is more, this problem has not
been solved even in the binary interaction approxima-
tion, when each particle perturbs the emitting atom
independently from the others. Essentially the same
problem arises in describing tails of the density of states
of carriers in heavily doped semiconductors [58], when
it is necessary to take into account interaction of impu-
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Fig. 10. Relative microfield β (β = E/E0, E0 = Ze/ ) dis-

tributions calculated using (1–3) the method of molecular
dynamics and (4–6) the nearest-neighbor asymptotic equa-
tion for various plasma parameters Γ = 18 (1, 4), 36 (2, 5),
and 72 (3, 6).
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rities creating a fluctuating field that acts on electrons
(holes).

For this reason, modeling many-particle effects
requires the use of numerical methods (such as the
method of molecular dynamics). Calculations of many-
particle broadening at large detunings ∆ω ~ ω0 by the
method of molecular dynamics in a neutral gas for the
quasi-static broadening mechanism, when the intensity
of a spectral line decreases fairly slowly [a(ω) ∝ ∆ω –

3/2], however, require computational capacity that is dif-
ficult to attain even at present. For this reason, mod-
eling of many-particle effects for checking the valid-
ity of applying the nearest-neighbor approximation
in the region of large detunings from the resonance
was performed for another simpler example.
Namely, we applied the method of molecular dynam-
ics to numerically calculate the distribution function of
ionic microfields P(E) in a dense plasma at asymptoti-
cally large microfield values. The ast(ω) line intensity
caused by the Stark effect is known to be proportional
to P(E) in the quasi-stationary approximation and to
ast(ω) ∝  ∆ω–5/2 in the nearest-neighbor asymptotics
[59].

The calculations were performed for quasi-particles
(ions) that moved in a cubic cell with periodic boundary
conditions. Ensembles of 1500 particles were used. The
time step of the integration was determined by the
necessity of correctly describing rare strong rapidly
proceeding collisions that formed the statistics of
strong fields. The conservation of the total energy of the
system was controlled in the integration. Test calcula-
tions showed close agreement with the results obtained
by the Monte Carlo method for the distribution function
of ionic microfields [60]. The calculations were per-
formed for the isothermal (Te = Ti) argon plasma (Z =
17) with a density of 11.7 g/cm3 at Ne = 3 × 1024 cm–3

and Ni = 1.76 × 1023 cm–3. The temperature was varied
in such a way that the nonideality parameter

where Re is the mean distance between electrons,
changed in the range 18–170. The modeling showed
(see Fig. 10) that precisely many-particle collisions
(collisions of three and more particles) were responsi-
ble for the formation of the far tail of the distribution
function of microfields in a strongly nonideal plasma.
In other words, the probability of observing configura-
tions comprising two and more ions that create the
given resultant field at the point of the occurrence of the
emitter was much higher than the probability of finding
a single perturbing ion creating the same field but at a
closer approach to the emitter. The calculations showed
that deviations from the nearest-neighbor asymptotic
behavior occurred as Γ increased [59, 61] even at low
relative microfield values β = E/E0 > βcrit ~ 1.5 (E0 is the

Γ Z2e2

T Re

----------,=
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characteristic field equal to Ze/ ) and had a sharply
defined character. Note that βcrit ~ 8 at Γ = 18 and the
microfield distribution function might exceed the
asymptotic function by more than two orders of magni-
tude. To summarize, we for the first time showed that
many-particle effects could have a very substantial
influence on the formation of spectral line profiles. The
nearest-neighbor approximation in the region of strong
fields was quite applicable to a weakly nonideal
plasma.

7. CONCLUSION

To summarize, our experimental data and the results
of theoretical calculations performed in this work show
that the presence of the cluster and microdroplet com-
ponents in vapor cannot explain substantial absorption
and thermal radiation observed in the near infrared
spectral region at λ > 0.9 µm in mixtures of dense
sodium vapor with various buffer gases (although con-
densate microparticles can make some contribution to
the observed weakening of radiation that has passed
through dense vapor). A possible reason for the
observed effects can be many-particle broadening of
the resonance level in combination with the Boltzmann
character of the spectral population distribution for this
level. The results of numerical molecular dynamics
simulations performed for the example of the distribu-
tion of ionic microfields in a dense plasma show that
many-particle effects can indeed cause a substantially
slower line profile decline than that predicted by the
nearest-neighbor approximation, which results in a
substantial increase in absorption in a dense medium
and, accordingly, in medium emission at large detun-
ings. Applying molecular dynamics methods to the par-
ticular problem of resonance sodium line broadening
by a buffer gas for describing the available experimen-
tal data should, however, be left for future work, for
solving this problem requires perfecting computational
methods and the use of much more powerful comput-
ers. It should, however, be noted that the result obtained
for the distribution of microfields can be of importance
for correctly interpreting the emission and absorption
spectra of a hot dense laser spark plasma, plasmas of Z
and X pinches, etc.
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Abstract—Defining a glassy-like state of a system of bound atoms as a frozen, amorphous, thermodynamically
unstable state, we consider a glassy-like state of a condensed rare gas as a configurationally excited state of
bound atoms that tends to the thermodynamic equilibrium by diffusion of voids. The criterion for a critical cool-
ing rate is the minimum cooling rate of the liquid state that leads to formation of a glassy-like state. Comparing
this glassy-like state with that experimentally obtained by deposition of argon atoms on a cold target, we con-
clude that glassy-like states are characterized by short-range parameters. On the basis of cluster studies, pecu-
liarities of the liquid aggregate states and glassy-like states are formulated. A glassy-like state of a cluster or a
bulk system of bound atoms is a configurationally excited state below the freezing point; the liquid aggregate
state exhibits configurational excitations but is characterized by thermal motion of atoms, consistent with the
Lindemann criterion. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

According to the standard definition [1–4], a glassy
state is a frozen, thermodynamically nonequilibrium
state of a condensed system that can be formed by suf-
ficiently fast cooling of the system from a fluid state of
thermodynamic equilibrium to low temperatures, to
attain a persistent state that is not in equilibrium. Pecu-
liarities of these states were first observed and studied
for glasses, and we therefore call these states in other
systems “glassy-like states.” From this standpoint, we
consider a bulk system of bound rare gas atoms, whose
liquid state congeals and is not metastable as a fluid
below the freezing point [5]; in other words, the liquid
state of condensed rare gases can be transformed into a
glassy-like state as a result of fast cooling from temper-
atures above the melting point to temperatures below
the freezing point.

A glassy-like state of condensed rare gases can be
prepared by two methods [4]. The first method involves
a fast cooling of liquid rare gases; in the second, a
glassy-like state can be prepared as a result of deposi-
tion of individual atoms on a target at a low temperature
[4, 6]. Deposited atoms occupy initial positions in a
random array, and because the temperature is low, the
atoms cannot move from their initial positions enough
to attain a distribution in thermodynamic equilibrium.
This amorphous spatial distribution of atoms is a
glassy-like state of the bulk system. A transition to the
crystalline state is possible if the temperature is raised
sufficiently high to allow annealing. Of course, param-
eters of this glassy-like state can differ from those of

¶This article was submitted by the authors in English.
1063-7761/02/9502- $22.00 © 20255
systems obtained by fast cooling of the liquid state.
Below, we compare these states of bulk rare gases.

In comparing these forms of condensed rare gases,
we account for the structures of the liquid and solid
aggregate states that differ because of the presence of
internal voids [7] in the second case. We define an indi-
vidual void [8–10] as the result of the relaxation of indi-
vidual vacancies. When a configurationally excited
state of a system of bound atoms is formed from a com-
pact solid state of this system by formation of some
number of vacancies, these transform into voids when
the system, with its vacancies, relaxes. We therefore
characterize configurationally excited states of a bulk
system of bound atoms by the concentration of voids
and the parameters of an individual void at this concen-
tration. We assume that the voids are the results of indi-
vidual vacancies and that, if voids do become neigh-
bors, their energies can be computed in the same man-
ner as the energies of individual voids. This allows us to
make a quantitative analysis of configurationally
excited states, including glassy-like states. This analy-
sis for condensed rare gases is the goal of this paper.

2. PROPERTIES AND FORMATION 
OF GLASSY-LIKE STATES OF RARE GASES

Characterizing configurationally excited states of
condensed rare gases by only the number of voids
inside it, we prepare our state as follows [8–10]. We
take a bulk crystal of a rare gas consisting of n + v
atoms and remove v  atoms to the outside. This system
is assumed to be sufficiently large such that almost all
the removed atoms come from the inside of the system,
002 MAIK “Nauka/Interperiodica”
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and surface effects are negligible. After relaxation, this
system therefore contains n atoms and v  internal voids,
and according to the definition, an individual void
results from the relaxation of an individual vacancy and
its immediate environment. At temperatures signifi-
cantly above 0 K, crystals in equilibrium have a low
concentration of voids, but we here deal with quenched
systems with much higher concentrations of voids.
Under these conditions, the system is in a thermody-
namically nonequilibrium state that would tend to equi-
librium by migration of voids to the surface of the sys-
tem. (A nonequilibrium state might also arise, in prin-
ciple, from a concentration of voids below the
equilibrium value.) But considering this system during
short time intervals compared to the diffusion times of
voids through the system, we can treat thermodynamic-
like properties of states with any number of voids. In
addition, we assume that the spatial distribution of
voids is uniform throughout the system.

Although strictly the volume and shape of an indi-
vidual void varies in time, we use average parameters of
individual voids that depend only on the void concen-
tration. In Table 1, void parameters are given for the liq-
uid state of condensed rare gases near the triple point
[11]. We assume that the interaction inside condensed
rare gases is mostly determined by the interaction
between nearest neighbors, and that the scaling law is
valid for condensed and dense rare gases [11], which
allows expressing various parameters of these systems
through the atomic mass and two parameters of the pair
interaction potential of atoms, the depth of the potential
well D and the equilibrium distance between atoms Re,
in the same manner. The accuracy of the data given in
Table 1 gives the statistical error due to a difference in
these parameters for different rare gases.

In Table 1, we give the relative number of voids, the
ratio of the number of voids v  to the number of atoms
n, the reduced mean energy εv of the formation of an
individual void, the average reduced volume Vv of an indi-
vidual void, and the average number of nearest neighbors
for a test internal atom. All these parameters pertain to the
liquid state of rare gases near the triple point [11], and we
use them in what follows. We assume that parameters of
a glassy-like state coincide with parameters of the liq-
uid state if this glassy-like state is formed as a result of
a fast cooling of the liquid state.

3. KINETICS OF HEATING AND COOLING 
PROCESSES INVOLVING GLASSY-LIKE STATES

We consider the evolution of the liquid state of rare
gases subjected to fast cooling or transformation of an

Table 1.  Reduced parameters of the liquid aggregate states
for condensed rare gases

v /n εv/D nc

0.320 ± 0.001 3.3 ± 0.2 0.50 ± 0.06 10.2 ± 0.1

Vv 2/Re
3
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amorphous state into the crystal as a result of heating.
We take the transition rate 1/τ in the Arrhenius form

(1)

where the temperature T is expressed in energy units,
i.e., as kBT, and Ea is the activation energy of the pro-
cess.

Considering the cooling process and assuming the
rate of the temperature variation dT/dt to be constant,
we express the typical time τc of the cooling process as

(2)

where ∆T = T 2/Ea is the temperature range in which the
transition rate varies weakly. This implies that the
instantaneous liquid state structure is conserved at tem-
peratures below the melting point if the cooling rate sat-
isfies the relation

(3)

If this criterion is satisfied, subsequent cooling to tem-
peratures below the melting point converts the system
into a glassy-like state.

We now consider another scenario, in which a bulk
system of bound atoms is prepared in an amorphous
state at a low temperature and its heating leads to the
transition into the ordered solid (crystalline) state. Con-
sidering the amorphous state to be a glassy-like one, we
define the glass temperature Tg by the relation

From Eqs. (1) and (2), we then have

(4)

Formula (4) relates the parameters of the processes that
are responsible for the glassy transition.

We now take into account the nature of transitions
involving the aggregate or glassy-like states of a bulk
system of bound rare gas atoms as a result of the diffu-
sion of voids in this system to its boundary or from it.
The rate of transition between aggregate states of a bulk
rare gas system or the rate of the glassy transition in this
system is then expressed through the diffusion coeffi-
cient Dv of voids that is related to the self-diffusion
coefficient of atoms Da by

(5)

1
τ
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1
τ0
----
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T
-----– 
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Table 2.  Parameters of void diffusion in condensed rare gases

Ne Ar Kr Xe Average

D, K [11] 42 143 200 278

Esol, K 480 ± 20 1900 ± 100 2500 ± 100 3700 ± 100

Esol/D 11.4 ± 0.5 13.3 ± 0.7 12.5 ± 0.5 13.3 ± 0.4 12.6 ± 0.9

Eliq, K [13, 14] 113 352 405 607

Eliq/D 2.69 2.46 2.01 2.18 2.3 ± 0.3

εliq/D 2.20 2.29 2.06 2.15 2.2 ± 0.1

D0, 10–2 cm2/s 2.7 3.7 1.5 2.2

l2 |(dT/dt)lim|, 10–2 K cm2/s 0.014 0.11 0.15 0.22
As an activation process, the diffusion of voids is char-
acterized by an activation energy. We note that, for the
solid state, the number of vacancies is

where εv is the energy of vacancy formation. Hence the
activation energies for the self-diffusion coefficient of
atoms Ea, for which the data in Table 2 are taken from
[12], and the diffusion coefficients of voids and vacan-
cies (Esol) differ from those of the solid state by the
energy εv of formation of an individual vacancy (Esol =
Ea + εv). For the liquid state with v  ~ n, the activation
energies for these diffusion processes are identical.
Table 2 contains the activation energies for self-diffusion
of atoms in the solid (Esol) and liquid (Eliq) states. For the
liquid state, the diffusion coefficient of voids is given by

(6)

The parameters of this formula given in Table 2 follow
from measurements of the self-diffusion coefficients of
atoms in liquid rare gases [13, 14] and Eq. (5). In Table 2,
we in addition compare the energy of the formation of
an individual void εliq for the liquid aggregate state near
the triple point [11] with the activation energy Eliq of the
diffusion process for voids in the liquid; we find that
these values are identical with a suitable accuracy. We
can therefore assume that the activation energy Ea for
diffusion of voids in Eq. (1) is equal to the energy of
void formation εv.

For simplicity, we take a condensed rare gas in the
form of a plane film located on a target. A typical diffu-
sion time is given by 

(7)

In particular, Eqs. (3), (6), and (7) give the cooling rate
for the formation of a glassy-like state of a film as a

v εv /T–( ),exp∝

Dv D0
Eliq

T
--------– 

  .exp=

τ l2

Dv

-------= .
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result of fast cooling,

(8)

The threshold values of the parameter l2|dT/dt | given in
Table 2 assure the formation of glassy-like states of rare
gases as a result of cooling liquid rare gases.

4. HEATING PROCESS
IN THE GLASS TRANSITION

Various parameters of the system can be used in
order to distinguish the solid and glassy-like states;
guided by the experiment [6], we use the saturated
vapor pressure over the plane surface of the system for
this purpose. According to the Clausius–Clapeyron law,
the saturated vapor pressure is given by [15, 16]

(9)

where ε(v) is the mean binding energy of a surface
atom, which is the sublimation energy per atom for a
bulk system with a given number of voids v  inside it.
We assume that the saturated vapor pressures referred
to any concentration of voids are identical at the triple
point, as occurs for the solid and liquid states. For the
preexponential coefficient in Eq. (9), this gives

(10)

where εsol is the binding energy per atom for the solid
state, εsol = ε(0), p0 is the preexponential factor in for-
mula (9) for the solid state, and Ttr is the triple point
temperature. It follows from this formula that the pre-
exponential factor in Eq. (9) drops as the density of
voids increases. Evidently, Eq. (10) is correct for the
liquid state.

It then follows that

(11)

dT
dt
------ dT

dt
------ 

 
lim

>
Tm

2

Eliql2
------------D0

Eliq

Tm

--------– 
  .exp=

p v T,( ) pv
ε v( )

T
-----------– 

  ,exp=

pv p0

ε v( ) εsol–
T tr

------------------------- 
  ,exp=

p v T,( )
psol T( )

------------------- εsol ε v( )–( ) 1
T
--- 1

T tr
------– 

  ,exp=
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where psol(T) is the saturated vapor pressure over the
solid surface at a given temperature. In particular, for
the metastable liquid state at a temperature T below the
triple point, Eq. (11) gives

(12)

where ∆Hfus is the specific fusion enthalpy.

Along with the temperature of the glassy transition
given by Eq. (4), which characterizes the equality of the
rate of heating and the process of void diffusion, we
introduce the temperature T∗  from which the subse-

quent growth of the saturated vapor pressure can pro-
ceed. For heating of an amorphous state of a rare gas,
this temperature is defined by the relation

and in accordance with Eq. (11) we have

(13)

We now use these formulas to analyze the results of
the experiment [6] in which amorphous argon was pre-
pared by deposition of an argon stream on a copper sub-
strate at a temperature of 10 K; the triple point of bulk
argon is Ttr = 83.7 K. Amorphous argon is formed under
these experimental conditions if the deposition rate is
less than 3 × 10–9 cm/s. We refer to this amorphous form
of argon as a glassy state. Warming leads to an anneal-
ing transition to the crystal state [6, 4]. A typical film
thickness in this experiment is 10 µm, exceeding the
distance between nearest neighbors of bulk condensed
argon by more than three orders of magnitude. This film
can therefore be considered as bulk condensed argon.
The heating rate dT/dt ≈ 2 K/min leads to the glassy
transition at Tg = 20 ± 1 K and the saturated vapor pres-
sure starts to grow from the temperature T∗  = 24 ± 1 K.
In Table 3, the results of this experiment are compared
with the above formulas, with the amorphous state
assumed to be structurally analogous to the liquid state
and the experimental data treated on the basis of
Eqs. (4) and (13). This comparison shows that the
amorphous state of argon obtained by deposition of
atoms on a cold target is identical to the glassy-like
state that we have described as a frozen liquid state at
low temperatures.

pliq T( )
psol T( )
---------------- ∆Hfus

1
T
--- 1

T tr
------– 

  ,exp=

p v Tg,( ) psol T*( ),=

ε v( ) 1
Tg

----- 1
T tr
------– 

  εsol
1

T*
------ 1

T tr
------– 

  .=

Table 3

Tg, K T*, K ε(v), K Ea, K

Experiment [6] 20 ± 1 24 ± 1 730 ± 90 330 ± 20

Theory for liquid 21 23 790 350
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5. PECULIARITIES OF LIQUID AGGREGATE 
STATES AND GLASSY-LIKE STATES

Assuming a kind of structure for condensed rare
gases allowed us to formulate the concept of glassy-like
states on the basis of elementary configurational excita-
tions in this system. Because this understanding starts
from the study of clusters, systems of a finite number of
bound atoms, we consider the concepts of the glassy-
like and liquid aggregate states for clusters simulta-
neously. On the one hand, taking a cluster to the limit
of very many constituent particles makes it into a bulk
system, allowing us to use and modify the cluster con-
cepts for bulk systems. On the other hand, the cluster is
a convenient vehicle for computer modeling, and the
results for clusters give important information about the
glassy and phase transitions for bulk systems. Next,
considering clusters bound by pair interactions between
atoms, we assume that these atoms can be treated as
classical and examine excitations of two types, config-
urational excitations and phonons. Phonons of course
result from vibrational motion of atoms, while a config-
uration excitation leads to a change of the atomic con-
figuration. Both the true solid–liquid phase transition
and the glassy transition result primarily from transi-
tions involving configurationally excited states of the
cluster. Computer modeling of clusters allows us to
understand these phenomena in detail.

The potential energy surface of a typical cluster of
more than very few particles bound by pair interactions
between atoms has many local minima, determined by
the configuration of atoms; this is possibly the principal
characteristic of such systems [17–20]. Each local min-
imum corresponds to a specific configurational excita-
tion of a cluster, and neighboring local minima are sep-
arated by saddle points of the potential energy surface.
During its evolution at low temperatures, a cluster is
therefore most often found at those local minima, and
spends only a very small fraction of time in intermedi-
ate positions. We base our approach on the supposition
that the cluster aggregate state is a group of configura-
tionally excited states with very similar excitation ener-
gies. Within this definition, each cluster aggregate state
is characterized by a certain energy and entropy that
corresponds to the classical thermodynamic state in the
limit of large cluster size. But the analysis of the cluster
phase transitions on the basis of local minima of the
potential energy does not include the Lindemann crite-
rion [21, 22], which has proved itself very useful for
real systems, and according to which the phase transi-
tion proceeds at the temperature at which the mean
amplitude of atomic oscillations reaches a certain
value. From the analysis of computer simulations of the
phase transition in clusters, the compatibility of these
two perspectives can be seen.

We consider a cluster consisting of 13 atoms bound
by the Lennard-Jones interactions LJ13. This cluster has
icosahedral structure in its ground configurational state,
as shown in Fig. 1. The lowest configurational excita-
AND THEORETICAL PHYSICS      Vol. 95      No. 2      2002
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tion of this cluster corresponds to the transfer of one
atom from an icosahedron vertex to a surface face; the
total number of such configurational excitations, and
hence its statistical weight, is g = 180 (15 positions on
the cluster surface times 12 vertex atoms). There are
three positions of an excited atom on the cluster surface
that correspond to different excitation energies; the
parameters of these excitations are given in Fig. 2 [23].
Naturally, neighboring stable positions of a test atom
are separated by barriers. The barrier character of the
cluster potential surface can be understood in the sim-
plest case where only the nearest neighbors interact. A
test atom then has six bonds with nearest neighbors and
three bonds if it transfers to the icosahedron surface; in
this case, the excitation energy is 3D, where D is the
depth of the Lennard–Jones well. But in the course of a
transition between these states, at the lowest potential
maximum along such a path (the saddle point), the test
atom has bonds to only two atoms, and this transition is
therefore characterized by the barrier height 1D. The
long-range contributions to the total interaction in the
Lennard–Jones interaction coming from nonnearest
neighbors smooth this picture such that the excitation
energy and the barrier threshold slightly decrease in
this case. We note that these data for atom excitations
(Fig. 2) pertain to zero temperature and hence include
no vibrational contributions to the energy.

We now analyze the phase transition that occurs
when this cluster is heated. The important special prop-
erty of any phase change in clusters is the coexistence
of the phases (e.g., solid and liquid) within some non-
zero temperature range [24–27], in contrast to bulk sys-
tems where any phase transition occurs at a specific
temperature (both at a given pressure, of course). This
follows from the cluster consisting of a relatively small,
finite number of particles, and we now focus on the
parameters of the liquid state of this cluster in the range
of the phase transition [24–27]. We note that because
the liquid state is analyzed on the basis of various cor-
relations between cluster atoms, it can be reliably sep-
arated from the ordered solid state. In accordance with
the previous computer simulations [24–27], the temper-
ature range of the phase coexistence for LJ13 is (0.29–
0.31)D, the excitation energy of the liquid state is ∆ε ≈
2.5D on average, and the statistical weight of the liquid
state with respect to the solid state of this cluster is
approximately

where Teq = 0.30D is the classical melting point for this
cluster, the (approximate) temperature at which the free
energies of the solid and the liquid are equal. (The pres-
sure is assumed to be zero.) We note that the model for
the liquid state of this icosahedral cluster is based on
one-atom configurational transitions. Comparing these
data with the data at zero temperature, we find that only
the statistical weight of the excited state varies signifi-

gliq ∆ε/Teq( ) 4 103,×≈exp=
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cantly, whereas changes of other parameters of the clus-
ter excited state are not very important.

This implies that heating of the Lennard-Jones clus-
ter of 13 atoms from zero temperature to the melting
point changes the statistical weight of one-atom excita-
tion from 180 to 4 × 103, and the entropy of this transi-
tion therefore changes from ∆S = 5.2 to ∆S = 8.3. The
latter corresponds to the specific entropy change ∆s =
∆S/13 = 0.64. We note that the specific entropy change
for bulk rare gases is ∆s = 1.68 at the melting point.

From this consideration, it follows that, as a result of
cluster heating, the statistical weight contributed by
vibrations of individual atoms also increases with tem-
perature, making the conditions still less stringent for
the phase transition. This is why the Lindemann crite-
rion is valid for the-phase transition, although the phe-
nomenon results overwhelmingly from the configura-

Fig. 1. The structure of the icosahedral cluster consisting of
13 atoms [30].

3.87

3.70

3.42

2.86 2.88 2.93

0
solid state

liquid state

hexagonal structure
3.69
3.54

face-centered
cubic structure

icosahedral
structure

Fig. 2. The lowest excited states of the Lennard–Jones clus-
ter of 13 atoms and the character of their formation through
saddle points [23]. Values near levels indicate the excitation
energies expressed in units of the binding energy D per one
bond. The energies of the close-packed structures are taken
from [17]. The lowest excited cluster states may be linked
to the cluster’s liquid state in which the clusters spend most
of the time if they begin with a sufficient excitation energy
or temperature [24–27].
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tional excitation of the system. We also note the exam-
ple of a solid–solid phase transition in a large cluster
[28, 29] in which the vibrational contribution to the
thermodynamic parameters is quite small, although this
contribution is significant in the case of the solid–liquid
phase transition.

Returning to the problem under consideration, we
conclude that the liquid and glassy-like cluster states
have virtually identical structural nature, but are char-
acterized by different statistical weights or entropies
because the liquid state, corresponding to higher tem-
peratures than glassy-like states, has significantly

E

Tm T

liquid state

freezing
point

solid stateglass-like
state

phase
coexistence

range

Fig. 3. The caloric curve for a cluster or bulk system with
two aggregate states.

(a)

(b)

Fig. 4. The developed view of the surface of the icosahedral
cluster with the completed layers consisting of 13 (a) and
55 (b) atoms. Solid circles are the surface cluster atoms, and
the open squares are positions of an atom located on the
cluster surface; transitions of this atom on the cluster sur-
face are shown by solid lines, and the boundaries of the sur-
face cluster triangles are denoted by fine solid lines. Arrows
show transitions of a test atom into the ground state, and
double arrows relate to the same atom of the three-dimen-
sional structure; dotted lines connect identical positions for
the three-dimensional cluster. 
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higher vibrational entropy (which reflects the mobili-
ties and higher frequency motions of the atoms of the
liquid). The caloric curve for a bulk rare gas system is
schematically represented in Fig. 3. The liquid state is
a thermodynamically stable or metastable aggregate
state above the freezing point; in the course of a temper-
ature decrease, it is transformed into a glassy state. For
a cluster, this picture can be more complicated because
a cluster can have several aggregate states, e.g., those
based on different aggregate states of its shells (see,
e.g., [31]). Considering a bulk system of bound atoms
for which surface effects are not essential, we obtain
only one kind of configurational excitations in the form
of internal voids, and the caloric curve therefore takes a
simple form.

In contrast to a bulk system, the transition of a clus-
ter from a glassy-like state, or cluster relaxation, pro-
ceeds rapidly, because the elementary excitation does
not become entangled inside the system, as it can in the
case of the void diffusion inside a bulk. Nevertheless,
this tendency occurs in clusters if their size increases.
Figure 4 contains a developed view of clusters with the
icosahedral structure consisting of 13 and 55 atoms;
these clusters have completed shells of atoms in their
ground configurational states. Elementary configura-
tional excitations of these clusters correspond to transi-
tions of one vertex atom (or several atoms) to the clus-
ter surface, such that, in glassy-like states, a promoted
atom drifts over the cluster surface, and the cluster
relaxation corresponds to a transition of an atom to a
free vertex position. Because all the positions of an
excited atom on the cluster surface are almost identical,
such an atom can have random displacements on the
surface, similarly to a diffusion process. Thus, as a clus-
ter increases in size, the character of the relaxation pro-
cess for glassy-like states becomes identical to that of a
bulk system.

From this analysis for the simplest bulk systems of
bound atoms and clusters, it follows that the glassy and
phase transitions have a common feature that consists
in a change of configurational excitation in such transi-
tions. The difference between these phenomena is such
that thermal excitation of bound atoms influences the
phase transition, e.g., as demonstrated by the Linde-
mann criterion. For glassy-like states of a system of
bound atoms, the thermal motion of atoms is not very
important.

6. CONCLUSIONS

On the basis of the above analysis, the glassy state
concept can be carried over from complex (i.e., bulk
macroscopic) systems to simple ones, specifically to
atomic clusters. According to the definition [4], the
glassy state is a thermodynamically unstable configura-
tional state of bound atoms formed by fast cooling of a
system for which extremely slow cooling leads to a
transition, with an activation energy, between two truly
stable aggregate states. For glasses [1–4], this transition
AND THEORETICAL PHYSICS      Vol. 95      No. 2      2002
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involves the change of positions of some constituent
particles, and the system finally takes a crystalline
structure as it undergoes an “infinitely” slow cooling.
One more peculiarity of this transition is the difference
in densities of the structures for the initial and final
states. Together with restructuring of the particle posi-
tions, relaxation to the equilibrium therefore requires
that voids must diffuse to the system boundary or into
the system.

Focusing now on simple bulk systems of bound
atoms, such as condensed rare gases, we find no need to
invoke restructuring of chemical bonds in such sys-
tems, but transport of voids proceeds by analogy with
glasses and has an activation character. The glassy-like
state of such a system can be prepared by two methods,
by fast cooling of the liquid aggregate state or by depo-
sition of an atom flux on a substratum at low tempera-
tures below the melting point with the formation of a
random distribution of atoms.

In the case of clusters, the systems exhibiting a finite
number of locally stable configurationally excited
states formed by the transition of atoms from com-
pleted cluster shells to the surface conform to the model
of a glassy state according to its definition. This corre-
sponds to the formation of surface voids; the annihila-
tion of voids results in a transition of atoms from the
cluster surface to the outermost shell. This glassy-like
state can also be considered from the standpoint of the
concept of the cluster configurational excitation as a
result of the transition to local minima of the potential
energy surface of this cluster. Because neighboring
local minima of the cluster configurational energy are
separated by barriers [19, 20], transitions from the
ground cluster shell to excited configurations have an
activation character. Thus, the known excited structures
of simple systems of bound atoms conform to the defi-
nition of the glassy state. Based on the nature of the
glassy-like states of simple systems as a result of for-
mation of voids, one can analyze these states in more
detail.
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Abstract—This paper is devoted to checking whether the critical Reynolds number is universal in identical
conditions for the flow of different fluids. The laminar-turbulent transition in a circular pipe flow has been tested
experimentally. The flows of inert gases (He, Ne, Ar, Kr, Xe), molecular gases (N2, CO, CO2, SF6), and two
similar liquids (H2O, D2O) have been tested. A considerable, up to 40%, difference in critical Reynolds num-
bers was observed. The possible reasons for nonuniversality of the critical Reynolds number are discussed.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The mystery of turbulent flows has been intriguing
researchers in mechanics, synergetics, hydrodynamics,
plasma physics, geophysics, chemistry, and biology. In
spite of more than two centuries of history, this problem
is still unsolved. Numerous experiments since Rey-
nolds’s paper [1] show that the stationary flow of fluids
is possible only if the Reynolds number is less than
some critical value. It is confidently known that the
Navier–Stokes equations govern laminar flows. The
breakdown of the stationary flow is associated with the
loss of stability with increasing Reynolds number. The
analysis of stability of solutions sometimes allows pre-
dicting the critical Reynolds number. Most part of the
research in the stability of laminar flows was devoted to
incompressible flows. In this case, the analysis is con-
siderably simplified because the only dimensionless
parameter—the Reynolds number—determines the
regime of the flow. Its value depends on the nature of
the flow, but must be universal for different liquids in
the same flow.

The Hagen–Poiseuille flow [2–4]—the flow in a
long circular pipe—is stable with respect to infinitesi-
mal disturbances [5, 6]. The transition to turbulence
occurs as a result of finite perturbations or insufficiently
smooth boundary conditions at the pipe entrance.
Depending on the boundary conditions and external
noise, the critical Reynolds number Rc can vary in a
wide range of magnitudes: from 2 × 103 to more than
105. In the transition to the turbulent regime, the drag
coefficient increases sharply, which makes it possible to
monitor the critical Reynolds number reliably. This
paper reports experimental results on the transition to
turbulence in different gases and some liquids in the
same pipe. The experiments are directed to check
whether the critical Reynolds number is universal for
the flows of different fluids.

¶This article was submitted by the authors in English.
1063-7761/02/9502- $22.00 © 20262
2. EXPERIMENTAL

The experimental setup is shown in Fig. 1. The ves-
sel 1 (with the volume 0.1 m3) can be pumped up to a
pressure of 0.1 Torr and then filled by any gas up to
1500 Torr. To study the transition in liquids, the basin 2
is installed inside. The air in the chamber can be com-
pressed up to 750 Torr above the atmospheric pressure.
Both gases and liquids can outflow into the atmosphere
through the glass pipe 3 having an internal diameter of
1.3 mm and the length of 300 mm. The gas pressure
inside the chamber varies the pressure drop on the pipe.
It is measured by a membrane-type pressure gauge 4.
By varying the quality (roughness) of the pipe inlet, it
was possible to change the critical Reynolds number in
a wide range. The quality of the pipe inlet was chosen
such that the critical Reynolds number was about 3500
for nitrogen. All noble gases (He, Ne, Ar, Kr, Xe), some
molecular gases (N2, CO, CO2, SF6), double distillate
water, and 99.9% heavy water were used in experi-

4

3

2

1

Fig. 1.
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ments. The temperature of the liquids was controlled to
an accuracy of 0.5 K. The flow rate was measured as a
function of the pressure drop. For liquids, it was mea-
sured by collecting the liquid for a definite time period
(normally, 1 min). The gas flow rate was measured by
controlling the rate of pressure decrease. As an exam-
ple, the data reduction for H2O and D2O is shown in
Fig. 2. It is clearly seen that the dependence of the fric-
tion factor on Re is close to the theoretical one in the
laminar flow, 64/Re. The transition to turbulence results
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in a sharp increase in the friction factor, which allows
the critical Reynolds number to be determined with
high accuracy.

3. RESULTS AND DISCUSSION

The data of all measurements are collected in
Tables 1–3. The tables show that the critical Reynolds
number varies in the range 2500–3570 (SF6–Ne). The
experiments were carried out under absolutely identical
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Fig. 3.
Table 1.  Noble gases

Property/Gas He Ne Ar Kr Xe

Molecular mass 4.003 20.18 39.95 83.80 131.3
Density, kg/m3 (101325 Pa, 293 K) 0.1785 0.900 1.784 3.73 5.897
Dyn. visc., 106 Pa s (105 Pa, 300 K) 19.9 31.75 22.75 25.54 23.3
Speed of sound, m/s (300 K) 1012 454 334 222 177.4
Critical Reynolds number 3430 3570 3320 3190 2870
Mach number 0.20 0.17 0.10 0.074 0.048
Second virial coefficient, cm3/mol 11.15 11.02 –16.85 –53 –134.6

Table 2.  Molecular gases

Property/Gas N2 CO* CO2 SF6

Molecular mass 28 28 44 146
Density, kg/m3 (101325 Pa, 293 K) 1.25 1.25 1.977 6.5
Dyn. visc., 106 Pa s (105 Pa, 300 K) 17.9 17.9 15.0 15.9
Speed of sound, m/s (300 K) 334 334 274 134.9
Critical Reynolds number 3290 3560 2970 2530
Mach number 0.105 0.114 0.072 0.04
Second virial coefficient, cm3/mol –5.47 –10.0 –97.9 –292
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background conditions. The data obtained therefore
demonstrate a nonuniversality of the critical Reynolds
number, contrary to the conventional tenet.

For the Navier–Stokes equations, the Reynolds
number is not the only parameter that can influence the
flow stability. For compressible flows, the Mach num-
ber is the second important parameter. Figure 3 shows
the dependence of the critical Reynolds number on the
Mach number for gas flows at the transition point. We
can see some correlation between the value of the crit-
ical Reynolds number and the Mach number. With the
decrease in the Mach number, Rc should reach the limit
determined by incompressible flow. The data for water
plotted by the horizontal solid line demonstrate that Rc

for water is far from the limit. This means that the Mach
number cannot be the parameter that governs the differ-
ence in critical Reynolds numbers for gas flows.

The Navier–Stokes equations include three dissipa-
tive terms: normal viscosity, bulk viscosity, and heat
conductivity. We first consider the role of bulk viscos-
ity. Bulk viscosity is related to the relaxation of the
molecular internal degrees of freedom; in particular, it
is strictly equal to zero for inert gases. In [7, 8], the dif-
ference in the critical Reynolds numbers for N2 and CO

2800

0.01
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3200
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3600
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Fig. 4.

Table 3.  Liquids

Property/Liquids H2O D2O

Molecular mass 18 20

Density, kg/m3

(101325 Pa, 293 K)
1000 1104

Dyn. visc., Pa s (295 K) 0.00096 0.0012

Critical Reynolds number 3020 3480
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was explained by the difference in rotational relaxation.
But additional experiments have shown [8] that the crit-
ical Reynolds numbers differ in a range that is suffi-
ciently wide even for noble gases (see Table 1). This
fact allows one to conclude that the relaxation of
molecular internal degrees of freedom cannot be the
only additional parameter that determines Rc.

The difference in thermal conductivities could be
important for gas flows because of its expansion and
cooling during the flow. The plot of the critical Rey-
nolds number against thermal conductivity is shown in
Fig. 4. In spite of some correlation, we must admit that
the dissipation due to thermal conductivity cannot be an
important parameter.

The next factor that could play a role is the influence
of the external noise. Although the experiments were
carried out under the same external conditions, the role
of the noise could be different for different substances.
To characterize the noise, we suppose that the spectral
components of the noise pressure Pω are the same. The
characteristic dimension of the pressure is ρC2, where
ρ is the density and C is the speed of sound. The char-
acteristic frequency ω is C/D, where D is the character-
istic size of the flow (e.g., the diameter of the pipe).
Finally, to obtain a dimensionless parameter Pω, we
must normalize this value to (ρC2)/(C/D). D is the same

for all experiments, and C is proportional to ,
where γ is the adiabatic exponent, and T is the temper-
ature (it is the same for all gases). The reduction of the
above formulas results in the parameter being normal-
ized as γρ, or γM, where M is the molecular mass. This
plot is shown in Fig. 5. It is clearly seen that the exper-
imental points scatter out of any regular dependence.
We therefore conclude that the difference in suscepti-

γT /ρ
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bilities cannot be the reason for the observed nonuni-
versality of the critical Reynolds number.

We also note the analysis in [9] based on weak non-
ideality of gases at normal conditions that allowed gen-
eralizing the experimental data for all tested gases as a
function of the second virial coefficient. The flows of
incompressible liquids are simpler in theory because
the Reynolds number is the only parameter that should
define the regime of the flow. Contrary to the conven-
tional tenet, even in this case (see Table 3), the critical
Reynolds numbers differ for water and heavy water. For
liquids, the statistical approach similar to that for gases
[9] is considerably more complex. The difficulty is in
the exact calculation of the partition function and the
individual phase volume even for simple liquids [10,
11].

4. CONCLUSION

The data obtained show that the critical Reynolds
number is not universal and that the process of the lam-
inar–turbulent transition is influenced by the individual
molecular properties for both gas and liquid flows. Tak-
ing [12–14] and the present research into account, we
conclude that a rigorous theory of turbulence should be
based on a synthesis of hydrodynamic, statistical, and,
possibly, quantum theories.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
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Abstract—Magnetic field generation in shear flows of an incompressible viscous conducting medium across
the flux lines of the initial field created in them is considered in the framework of the plane 1D problem of mag-
netohydrodynamics. The conditions of free slip and “sticking” are stipulated at the boundary between the flows.
The variations of the magnetic field and velocity of shear flow occurring in the moving medium correspond to
an Alfven wave “spreading” during its propagation due to dissipative processes in the medium associated with
its viscosity and electrical resistance. It is shown that a high-rate shear of metals under explosive or impact load-
ing may lead to generation of megagauss magnetic fields. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Rapid deformation of a conducting medium with a
preliminarily created magnetic field, which is accom-
panied by the emergence of large strains with magnetic
flux line “pulling,” may amplify the field in the medium
considerably. In accordance with the effect of magnetic
field “freezing” in the substance [1], the field intensity
in a poorly compressible conducting medium (in the
case when the effect of its finite conductance and of the
field diffusion associated with it is insignificant) must
increase in direct proportion to the elongation of mate-
rial fibers of the medium oriented initially along the
magnetic flux lines.

In this paper, we consider the effect of magnetic
field generation upon the elongation of its flux lines as
a result of relative shearing motion of two flows of a
conducting material, in which a magnetic field perpen-
dicular to the direction of their subsequent relative
motion has been created preliminarily. The conditions
for such a generation are created, for example, when a
high-speed striker penetrates a conducting obstacle
with a transverse magnetic field preliminarily created in
it at the contact boundary between the obstacle material
and the lateral surface of the striker.

2. FORMULATION OF THE PROBLEM

Proceeding from the results obtained in [3], where
the effect of magnetic field generation in the gap
between rigid (undeformed) conducting half-spaces
during their relative shearing motion was considered, as
well the results from [2] dealing with the magnetic field
generation in an incompressible viscous conducting
medium deformed due to the shear motion of its bound-
ary with a given velocity, we formulate the following
problem.
1063-7761/02/9502- $22.00 © 20266
Two half-spaces occupied by an incompressible vis-
cous conducting medium are in contact and are moving
at the initial instant along the contact plane with the rel-
ative velocity 2v 0 (the velocity of motion of the entire
medium in each half-space is the same). In the material
of the half-spaces, there exists a uniform magnetic field
with induction B0 oriented along the normal to the plane
of the contact. The half-spaces are filled with the same
material.

While determining the mechanical interaction
between the materials of the half-spaces at the contact
boundary, we will consider two limiting cases: free slip
(absence of surface friction and, hence, the mechanical
shear stresses at the contact surfaces) and complete
“sticking” (the absence of slip between the surfaces in
contact, which means that the relative velocity of their
motion is zero at all instants).

Without any loss of generality of the problem, we
choose the frame of reference in which the materials of
the half-spaces at the initial instant move in opposite
directions with the same transverse velocity v 0 (Fig. 1).
We direct the x axis of coordinates along the normal to
the contact surface, assuming this surface to be its ori-
gin and the y axis, along the direction of relative
motion. Obviously, in view of the symmetry in the cho-
sen frame of reference, the velocity v(x, t) of the trans-
verse motion of the medium in the half-spaces is an odd
function of coordinate x. The magnitude of this velocity
will be affected by electromagnetic and viscous forces
emerging in the medium under a shear strain [4] (we
assume that no other force acts in the direction of the
y axis). The motion of the medium along the x axis is
ruled out since we assume that the action of electro-
magnetic forces in this direction is balanced by hydro-
dynamic pressure in the medium.
002 MAIK “Nauka/Interperiodica”
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The magnetic field B(x, t) generated in the medium
as a result of its shearing motion is oriented along the y
axis since it is an even function of coordinate x in view
of the symmetry of the problem. The magnetic induc-
tion vector component directed along the x axis will not
change under the formulated conditions, remaining
equal to the induction B0 of the field initially created in
the medium.

The equations describing the motion of the medium
and the magnetic field evolution in it for the given prob-
lem have the form [4]

(1)

where µ0 = 4π × 10–7 H/m is the magnetic constant, ρ is
the density of the medium, and ν and νm are the kine-
matic and magnetic viscosities, respectively (νm =
1/µ0σ, σ being the electrical conductivity of the
medium).

Taking into account the symmetry of the flow rela-
tive to the plane of contact (v(–x, t) = –v(x, t); B(–x, t) =
B(x, t)), we can consider the system of equations (1) for
the medium in the right half-space (x > 0). The form of
electric and mechanical interactions of the materials in
counterflows is determined by the boundary conditions
for the sought functions at the contact surface (x = 0).

In the case of free slip, no mechanical shear stresses
appear at contacting surfaces. In addition, surface elec-
tric currents are ruled out in the case of finite conduc-
tance of materials of the flows, and, hence, surface elec-
tromagnetic forces cannot appear. As a result, no vis-
cous shear stresses τ will act in the material of the flows
at the contact boundary (τ = ρv(∂v /∂x) = 0 for x = 0),
which leads to the following condition of their mechan-
ical interaction:

(2)

In this case, the velocity function v(x, t) has a disconti-
nuity at the boundary between the flows.

The boundary condition for the electric interaction
in the case of free slip of the flows can be obtained, as
in [3], on the basis of the law of electromagnetic induc-
tion and Ohm’s law in differential form. The flow of
material in a transverse magnetic field B0 must induce
at the boundary of the half-spaces an electric field of
strength v(0, t)B0 oriented along the normal to the coor-
dinate plane xy. Connecting the electric field strength
with the volume density j = (∂B/∂x)/µ0 of induced cur-
rents (taking into account their directions at the bound-
ary of the right half-space) through Ohm’s law, we

∂v
∂t
-------

B0

µ0ρ
---------∂B

∂x
------ ν∂2v

∂x2
---------,+=

∂B
∂t
------ B0

∂v
∂x
------- νm

∂2B

∂x2
---------,+=

∂v
∂x
-------

x 0=

0.=
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arrive at the following condition of electric interaction
of flows on the contact surface:

(3)

In the case of complete sticking at the contact sur-
face, the velocities of the boundaries of the left and
right half-spaces must be identical and obviously equal
to zero in view of symmetry (the flow velocity discon-
tinuity at the contact boundary exists only at the initial
instant t = 0). Thus, the mechanical interaction of flows
in the absence of slip of contacting surfaces is deter-
mined by the boundary condition

(4)

consequently, the condition of electric interaction (3) at
the contact surface in the case of complete sticking has
the form

(5)

Introducing the dimensionless time  = t /

and coordinate  = xcA/ , where cA = B0/  is
the Alfven velocity [1], we can reduce the system of
equations (1) to the form

(6)

defining the dimensionless velocity  and the mag-

netic induction  of the field being generated as

(7)

1
µ0
-----∂B

∂x
------

x 0=

σB0v 0 t,( ).–=

v 0 t,( ) 0;=

∂B
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x 0=

0.=

t cA
2 ννm

x ννm µ0ρ

∂v
∂ t
------- ∂B
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---------,+=

∂B
∂ t
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Fig. 1. Schematic diagram of magnetic field generation dur-
ing shearing motion of a conducting medium.
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The dimensionless parameter γ appearing in the system
of equations (6) characterizes the ratio of the kinematic
and magnetic viscosities of the medium:

(8)

The initial conditions for the system of dimension-
less equations (6) considered in the same spatial region
as system (1) (  > 0) have the form

The boundary conditions (2)–(5) assume the form

(9)

in the case of free slip of the flows and

(10)

when complete sticking of the materials of the flows
takes place.

3. EVOLUTION OF MAGNETIC FIELD
AND SHEAR VELOCITY 

AT THE CONTACT BOUNDARY

Solving the problem formulated above, we will first
analyze the evolution of the sought functions 
and  at the contact boundary of the flows (  = 0).
This analysis can be carried out completely in analytic
form. The application of the Laplace integral transforma-
tion [5] for time to the system of equations (6) leads to a
system of second-order ordinary linear differential
equations with constant coefficients in the maps of
functions of the magnetic induction,

and the velocity of particles of the medium,

namely,

(11)

The characteristic equation for this system has the form

(12)

γ ν/νm.=

x

v x 0,( ) 1, B x 0,( ) 0.= =

∂v
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-------

x 0=

0, ∂B
∂x
-------

x 0=

γv 0 t,( )–= =

v 0 t,( ) 0, ∂B
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λ4 1 p γ 1/γ+( )+[ ]λ 2– p2+ 0.=
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From four roots of this biquadratic equation, the
boundedness condition of the solution of system (11)
for   ∞ is satisfied by the two negative roots,

Taking into account this limitation imposed on the sign
of characteristic values, we can write the general solu-
tion of system (11) for the maps of the required func-
tions in the form

(13)

where A1 and A2 are integration constants that have to
be determined from the boundary conditions (9), (10)
of the problem, written for the maps of the required
functions.

Let us first consider the case of free slip of the flows.
Using Eq. (9), we find the integration constants A1 and
A2 from the system of equations

Substituting the values of these constants into Eqs. (13),
we obtain the following expressions for the maps of the
sought functions on the contact surface:

Since the roots of Eq. (12) satisfy the relations
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Fig. 2. Variation of (a) the magnetic induction of the longitudinal field and (b) the velocity at the slip boundary between flows for
different values of parameter γ.
we assume in the latter relations that

(14)

and write them in the final form

The reversal of the maps written above [6] leads to
the following laws of variation for magnetic induction
of the generated field and the velocity of the material of
the right half-space (see Fig. 1) on the contact surface
in the case of free slip of the flows:

(15)

(16)

where

is the error integral and

is the Dawson integral [7].
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Let us analyze the obtained results. Figure 2 illus-

trates the variation of the quantities  and  as func-
tions of time for various values of parameter γ (8). In
accordance with relation (16), the dimensionless veloc-
ity of the contact surface decreases monotonically from
unity and tends exponentially to zero. The rate of decel-
eration of the boundary decreases with increasing
parameter γ. The variation of the dimensionless mag-
netic induction (15) of the field generated at the contact
boundary between the flows is more interesting. First,
the field increases monotonically from zero value,
exceeds unity, attains its peak value, and then decreases
monotonically, tending to unity in the limit. Using the
asymptotic expansion for the functions erf(z) and F(z)
[7], we can easily establish that the asymptotic behavior
of the field (15) for   ∞ can be described as

Differentiating relation (15) with respect to time and
equating the derivative to zero, we arrive at the equation

which allows us to determine the parameters of the
extreme point. Taking into account the fact that the
function F(z) satisfies the relation [7]

we find that the solution of this equation leads to the
following value of the dimensionless time  corre-

Bs v s

t

Bs 1 O
γ t / γ 1+( )2–( )exp

t t
--------------------------------------------- 
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1
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dz
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t m
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sponding to the attainment of the maximum magnetic
induction:

(17)

where zm ≈ 0.924 is the value of the argument of the
Dawson integral F(z) for which it attains its peak value
[7]. Substituting Eq. (17) into relation (15), we can
determine the maximum amplification of the field 
at the slip boundaries of the flows:

(18)

where Fm = F(zm) ≈ 0.541 is the maximum value of the
Dawson integral.

It follows from relations (17) and (18) that the
parameters of the point corresponding to the maximum
field depend on the ratio of the kinematic and magnetic
viscosities of the material of the flows, which is deter-
mined by parameter γ (8). A decrease in this parameter
leads to an increase in the time  at which the field
attains its maximum value, accompanied by a simulta-
neous decrease in the maximum intensity of the gener-
ated field (Fig. 3).

Obviously, from a physical point of view, the varia-
tion of velocity and magnetic induction at the contact
surface, which is established by formulas (15) and (16),
is determined by the competition of electromagnetic
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Fig. 3. Effect of the ratio of kinematic and magnetic viscos-
ities of the medium on the maximum amplification of the
longitudinal magnetic field at the slip boundary between the
flows.
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and viscous forces acting on the material of the flows
during their relative slip. The electromagnetic forces
emerging as a result of interaction between the electric
currents induced during such a slip and the transverse
magnetic field B0 decelerate the flows. On the contrary,
viscous forces oppose this stagnation. The lower the
magnetic viscosity of the medium (i.e., the higher its
electrical conductivity), the higher the rate of the stag-
nation and hence the intensity of the field generated in
this case. In the case of complete stagnation of the
boundary between the flows, the magnetic field gener-
ation in this region ceases, and the field starts decreas-
ing due to diffusion to the bulk of the flowing material
and stabilizes, on account of the second relation from

(7), at the level Bs = v 0  corresponding to the field
intensity in an Alfven wave [1].

Analyzing dependences (17) and (18) for very high
and very low values of parameter γ, we can establish the
following nature of variation of the maximum amplifi-
cation of the field in the case of a considerable differ-
ence between the magnetic and kinematic viscosities:

for γ  0 (νm @ ν) and

for γ  ∞ (ν @ νm).

These relations imply an unlimited increase in the
field amplification for γ  ∞. For a fixed electrical
conductivity of the medium (and, accordingly, mag-
netic viscosity), this is due to the fact that an increase in
the kinematic viscosity of the medium (leading to an
increase in parameter γ) hampers the shear deformation
of the medium, as a result of which the latter becomes
close to a rigid conductor. At the same time, the shear-
ing motion of rigid conducting half-spaces leads to an
unlimited increase in the field in the gap between [3].

The law of variation of the magnetic field generated
at the contact boundary between rigid infinitely thick
conductors sliding over each other can be established
on the basis of relation (15). After the transition to
dimensional variables, this relation is transformed to
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Making ν tend to infinity, we can easily obtain the
dependence

The results obtained in [3] lead to the same law of
increase in the magnetic field generated at the slip
boundary between rigid conductors if the gap between
the conducting half-spaces is assumed to be equal to
zero.

Let us now consider the realization of the complete
sticking condition for the materials of counterflows at
the contact boundary. Using the boundary conditions
(10) for determining the integration constants A1 and A2
in the general solution for the maps of the sought func-
tions (13), we obtain the system of equations

Substituting the values of A1 and A2 into the first rela-
tion from (13), we arrive at the following expression for
the map of the function of magnetic induction for the
field generated at the contact surface (  = 0):

Taking into account relations (14), we can transform
this map to

;

after reversal [6], we arrive at the following law of mag-
netic field variation at the sticking surface:

(19)

This relation shows that, in the case of “absolute
sticking” of contacting surfaces of the flows, the solu-
tion obtained for the field is symmetric relative to the
magnetic νm and kinematic ν viscosities (the form of
the relation remains unchanged upon the replacement
of γ by 1/γ). In accordance with this solution, the
dimensionless induction of the generated field mono-
tonically tends (as   ∞) to the limiting unit level
with the asymptotic form

Figure 4 illustrates the variation of the quantity  as a
function of time for different values of parameter γ (8).
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It should be noted that, in the case of sticking of con-
tacting surfaces, the symmetry relative to the change of
γ by 1/γ is also preserved for the law of magnetic field
variation in the bulk of the moving medium. This fol-
lows from the expression for the map of the given law,

in which parameter γ appears only through the roots λ1
and λ2 of the characteristic equation (12) that is invari-
ant to the substitution of 1/γ for γ.

The absence of slip between the contacting surfaces
of the flows in the case of their sticking must be ensured
by the action of corresponding mechanical shear
stresses τs at these surfaces. These stresses coincide
with viscous shear stresses in the material of the flows
at the contact boundary and can be calculated using the
formula

Differentiating the second of maps (13) with respect
to the dimensionless coordinate  and inverting it for

 = 0, we find that the dimensionless mechanical shear

stresses  (divided by the dynamic pressure ρ /2)
ensuring the sticking of contacting surfaces vary
according to the law

In accordance with this relation, at the initial instant
(  = 0), when the velocity suffers discontinuity at the
contact boundary of the flows, the contact shear stresses
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Fig. 4. Time variation of the magnetic induction of the lon-
gitudinal field at the sticking boundary of the flows.
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B v
are found to be infinitely large. Subsequently, their val-
ues decrease monotonically, tending to zero.

4. PROPAGATION OF PERTURBATION REGION 
FROM THE CONTACT BOUNDARY

TO THE BULK OF FLOWING MEDIUM

In order to determine the evolution of the functions
 and  in the bulk of the moving medium,

the system of equations (6) with the boundary condi-
tions (9) and (10) was integrated numerically using the
finiteness of the finite-difference methods [8]. The dis-
tributions of the induction of the generated magnetic
field and the velocity of medium particles in the right
half-space at different instants obtained as a result of
numerical calculations (see Fig. 1) are presented in
Fig. 5a (for free slip of flows) and in Fig. 5b (for “stick-
ing” of contacting surfaces of the flows). It can be seen
from Fig. 5 that the generation of the magnetic field and
stagnation of the flow materials are wave processes:
field and velocity perturbations emerging at the contact

B x t,( ) v x t,( )
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boundary gradually propagate to the bulk of the
medium. The physical mechanism of the wave process
corresponds to an Alfven wave [1] propagating in the
medium with dissipation associated with its viscosity
and electrical resistance.

The wave nature of the phenomenon is manifested
in undistorted form for flows of perfectly conducting
materials (νm = 0) with zero viscosity (ν = 0). In this
case, the system of equations (1) can be reduced to
wave equations for functions B(x, t) and v(x, t):

The solution of these equations for the right half-space
(see Fig. 1) can be presented in the form of an Alfven
wave running along the x axis:
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In this case, the sticking mode is realized for the flow
contact surfaces (their slip is physically impossible for
a perfect conductivity of the material since it leads to
instantaneous unlimited amplification of the longitudi-
nal field at the contact boundary and the emergence of
infinitely large surface currents and, hence, unlimited
surface electromagnetic forces tending to level out the
velocities of the contacting surfaces).

The front of the Alfven wave is gradually blurred
due to dissipative processes, the effect of the boundary
conditions (free slip or sticking) being manifested only
at a small distance from the contact boundary (approx-
imately, for  ≤ 5; see Fig. 5). In the bulk of the
medium, the magnetic induction of the longitudinal
field and the velocity of material particles vary identi-
cally for both regimes at the boundary. It was men-
tioned above that, in the absence of slip between the
contacting surfaces, the evolution of the field generated
by the shear motion does not change upon the substitu-
tion of 1/γ for γ (see the curves corresponding to γ = 10
and 0.1 in Fig. 5b). At a considerable distance from the
contact surface, the law of variation of the longitudinal
field in the case of free slip of the flows exhibits the
same property (see Fig. 5a). As regards the evolution of
the velocity of the flows, the rate of stagnation of their
material at a large distance from the boundary (for a
fixed time scale determined by the product of the kine-
matic and magnetic viscosities) increases with the
parameter γ.

Irrespective of the conditions of mechanical interac-
tion of contacting surfaces (free slip or sticking) and the
intensity B0 of the initial transverse field, the induction
of the generated magnetic field attains the steady-state

“Alfven” level B = v 0  at all particles of the
medium at the end of the transient process on account
of the second relation from (7), while the motion of par-
ticles of the medium ceases. The intensity B0 of the ini-
tial magnetic field (which was used for setting the time
and space scales) determines the rate of generation of
the longitudinal field at the particles of the medium, the
dynamics of their stagnation, and the velocity of prop-
agation of the perturbed region to the bulk of the
medium. An increase in B0 accelerates these processes.

It should be noted that, in the limiting cases of a
medium with a finite electrical conductivity and zero
viscosity (νm ≠ 0, ν = 0) and of a perfectly conducting
viscous medium (ν ≠ 0, νm = 0), only the flow regime
with sticking of contact boundaries remains possible
from the physical point of view. Using relation (19), we
can easily prove that the variation of the longitudinal
field at the contact boundary between the flows occurs

in accordance with relation  if the
dimensionless time  is defined in this relation as  =

t /νm for ν = 0 and  = t /ν for νm = 0.

x

µ0ρ

Bs erf t( )=
t t

cA
2 t cA

2
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5. ESTIMATION OF POSSIBLE AMPLIFICATION 
OF MAGNETIC FIELD DURING HIGH-RATE 

SHEAR DEFORMATION OF METALS

The mechanism of magnetic field generation at a
high velocity of shearing motion of a conducting
medium considered above may lead to a significant
amplification of the initial field created in it. Let us con-
sider some estimates. In the case of explosive or impact
loading of a conducting medium (metal) with a level of
developed pressures of 1010–1011 Pa, velocities of the
order of 103 m/s are realized [9]. For such an intense
loading, we can disregard the effect of strength proper-
ties of metals and use hydrodynamic models for
describing their behavior. According to the results
obtained in [10] and corresponding to high strain rates
for metals, the kinematic viscosity of the medium may
be estimated at 0.1–1 m2/s. The magnetic viscosity for
the electrical conductivity typical of such metals as
copper and aluminum amounts to 10–2–10–1 m2/s. Tak-
ing into account these estimates, we obtain the value of
parameter γ (8) in the range 1–10. For such values of γ,
the maximum amplification of the generated field (in
the case of free slip of the flows) exceeds insignificantly

the “Alfven” level v 0  which sets the characteris-
tic value of the induction of the field generated by the
shear flow of a conducting medium. For v 0 ~ 103 m/s,
this value for a metallic conductor is of the order of
100 T. The time of amplification of the field to the given
level and the dynamics of variation of the thickness of
the layer of the material in which the amplification
takes place are determined by the induction B0 of the
field created initially in the medium. For values of B0 of
the order of 10 T, the characteristic time of generation
(see Figs. 2 and 4) is estimated at a few dozen micro-
seconds. The size of the region with enhanced field cor-
responding to this time (see Fig. 5) amounts to a few
millimeters.

The conditions for generation of a strong magnetic
field as a result of a high-rate shear deformation of a
conducting medium, which are close to the one-dimen-
sional model considered above, are created, for exam-
ple, during the penetration of a plane cumulative jet into
a metallic obstacle with a preliminarily created trans-
verse magnetic field in it (Fig. 6). The plane cumulative
jet (cumulative “knife”) is formed during the explosion
of a prolate cumulative charge [9]. The velocity of pen-
etration of a cumulative knife into a metallic obstacle
may be as high as several kilometers per second. The
amplification of the field due to large shear strains must
be observed in a layer of the obstacle material on the
lateral surface of the cavern formed in the region of its
contact with the cumulative knife. In this region, the
particles of the obstacle are involved in motion across
the magnetic flux lines by the knife material. Obvi-
ously, this model can also be employed for estimating
the amplification of the field in the material subjected to
shear strain at the surface of the cavern in the case of

µ0ρ
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penetration of a high-speed axisymmetric striker in a
“magnetized” conducting obstacle if the thickness of
the generation layer remains smaller than the transverse
size of the striker, so that the effect of non-one-dimen-
sionality of the resulting magnetohydrodynamic flow
can be neglected.

It is well known that the magnetic field strength at a
level of 100 T, which can be attained in accordance with
the above estimates in the case of high-rate shear strain
of a conducting medium as a result of its explosive or
shock loading, was exceeded long ago [11]. For exam-
ple, in experiments on generation of ultrastrong mag-
netic fields using magnetocumulative generators and
employing the principle of compression of the initial
field by a conducting envelope collapsing under the
action of pulsed loading, the field intensity within the
envelope at the final stages of its compression may con-
siderably exceed 100 T. In our opinion, the “deforma-
tion mechanism” of magnetic field generation in pre-
liminarily “magnetized” rapidly deformed conductors
may be interesting, above all, in connection with possi-
ble manifestations of strong accompanying mechani-

1

2

3

B0

B

Fig. 6. Schematic diagram of amplification of the magnetic
field at the surface of a cavern formed in a conducting obsta-
cle during the penetration of a plane cumulative jet into it:
prolate cumulative charge (1), cumulative “knife” (2), con-
ducting obstacle with preliminarily created transverse mag-
netic field (3).
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cal, thermal, and electromagnetic effects [11, 12]. The
electromagnetic forces emerging in a conducting mate-
rial during “pumping” of a megagauss magnetic field
and the pressure created by its Joule heating are compa-
rable with the load applied to the materials during det-
onation of explosives and may strongly affect the defor-
mation of the medium. For example, it is shown in [2]
that the penetration of a high-speed striker into a con-
ducting obstacle with a transverse magnetic field may
lead to the collapse of the cavern formed by the striker
due to the explosive scattering of its surface layers in
which intense deformation of the material leads to
strong enhancement of the field. Simultaneously, the
premises for a decrease in the piercing action of the
striker are created. Thus, the effect of magnetic field
amplification in a conducting medium deformed at a
high rate can be used for controlling the mechanisms of
explosive and shock processes.
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The Magneto-Optical Properties of an Ensemble 
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Abstract—The paper deals with an analytical investigation of magnetic birefringence in a dilute suspension of
ellipsoidal dielectric particles in a magnetic fluid. The major axes of particles tend to line up along the field
because of the difference in the “demagnetizing” coefficients along and across the ellipsoid axis, which brings
about a multiple increase in the optical anisotropy of the system. Formulas are derived which describe the field
dependence of magnetization of the system and of the difference between the refractive indices for ordinary and
extraordinary rays. It is demonstrated that, given the bulk concentration of impurity particles of several percent,
the magnetization of the system varies insignificantly, while the birefringence signal may increase by two
orders of magnitude. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the absence of a magnetic field, magnetic fluids
(liquid ferrocolloids), which represent stable colloid
solutions of one-domain ferroparticles with a character-
istic size of about 10 nm, are optically homogeneous.
However, under the effect of an external field, they
assume the properties of a uniaxial crystal with a very
strong (compared with common liquids) optical anisot-
ropy. So, in the case of magnetite colloids with a bulk
concentration of particles of several percent, the Cot-
ton–Mouton constant proves to be six–seven orders of
magnitude higher than in liquid paramagnetics. It is the
anomalously high value of this constant that is mainly
responsible for increased interest of researchers in bire-
fringence (BR) in magnetic fluids. It was subjected to a
number of theoretical and experimental studies [1–12].
By now, the generally recognized viewpoint is that
according to which the BR in magnetic fluids is caused
by the anisometricity of particles, i.e., minor deviation
of the shape of colloid particles from spherical [1]. The
preferred orientation of the major axes of particles
along the magnetic field leads to the emergence of a dif-
ference between the refractive indices of rays polarized
along and across the field and makes the colloid solu-
tion optically anisotropic.

In spite of the anomalously high value of the Cot-
ton–Mouton constant, the integral effect of BR in mag-
netic fluids turns out to be fairly weak, because the
experiments in BR involve the use of either dilute solu-
tions or thin (tenths and hundredths of a millimeter)
layers of magnetic fluid. In view of this, it is of interest
to investigate the problem of intensification of this
effect. At first glance, it may appear that the problem is
solved by a simple increase in the average size of col-
loid particles. Indeed, in weak fields, the difference
1063-7761/02/9502- $22.00 © 20275
between the refractive indices increases with the parti-
cle size as the cube of the particle volume [12]; there-
fore, even a doubling of the particle diameter may
amplify the BR signal by two–three orders of magni-
tude. The problem, however, is that even a much
smaller increase in the particle size brings about the for-
mation of aggregates and the thermodynamic instabil-
ity of colloid. The aggregation parameter λ (i.e., the
ratio of the energy of dipole–dipole interactions to the
heat energy) increases rapidly with the particle size,
and, at λ > 3, a colloid solution separates into weakly
and strongly concentrated phases [13–17]. So-called
drop aggregates are formed in the solution, i.e., droplets
of condensed phase with the characteristic size of sev-
eral micrometers, which are easily observable in a stan-
dard optical microscope [15, 18, 19]. The emergence of
drop aggregates is analogous to the formation of fog in
moist air. It disturbs the homogeneity of the solution on
a mesoscopic level and causes a strong diffraction scat-
tering of light. The average size of one-domain parti-
cles of about 10 nm, mentioned above, is optimal in the
sense that it provides both for the thermodynamic sta-
bility of magnetic fluid and for a fairly high magnetic
permeability. In this paper, we treat another method of
raising the optical anisotropy of a colloid, that of intro-
ducing into the colloid fairly large (compared with one-
domain) nonmagnetic ellipsoidal particles. The major
axes of impurity particles tend to line up along the mag-
netic field because of the difference in the “demagnetiz-
ing” coefficients along and across the ellipsoid axis,
which brings about an increase in the optical anisotropy
of the system. Investigated below are the magnetic and
optical properties of such a binary colloid solution.

In the general case, the properties of the system
being investigated are defined by the interaction of one-
domain particles with an external magnetic field, by the
002 MAIK “Nauka/Interperiodica”
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number and shape of impurity particles, by interparticle
interactions, and by the intensity of Brownian motion.
The problem is solved in a “one-particle” approxima-
tion, within which the interactions between impurity
particles are ignored. A magnetic fluid is treated as a
continuum of a known magnetic susceptibility. In doing
so, the dipole–dipole interactions of magnetic particles
are included indirectly and to the extent to which they
affect the magnetic susceptibility of the carrier (mag-
netic) fluid. Naturally, the impurity particles will also
interact with one another; however, it is hoped that,
given a rather low concentration of these particles, the
interaction energy will be much lower than in the case
of one-domain particles. According to the data of [20,
21], the one-particle approximation describes quite
adequately the properties of magnetic fluids if the vol-
ume fraction of one-domain particles in a colloid solu-
tion does not exceed several percent. A similar restric-
tion must be placed on the “binary” system treated here,
but with respect to nonmagnetic impurity particles.

2. MAGNETIC PROPERTIES

Let nonmagnetic impurity particles shaped as pro-
late ellipsoids of revolution with semiaxes b, b, a (a > b)
be uniformly distributed in a homogeneous magnetic
fluid. We will separate out one such particle and find the
magnetic field within and in the neighborhood of the
particle. We will place at the center of this particle the
origin of a local system of coordinates xyz so that the
axis z will be directed along the principal axis of sym-
metry of the particle (Fig. 1). The external magnetic
field G = (Gx, Gy, Gz) is uniform. The solution of the
magnetostatic problem for an ellipsoidal cavity in a
uniform (with respect to susceptibility) magnetic is
well known (see, for example, [22, 23]). Here, we will

G

zz'

y x

θ

x'

y'

Fig. 1. An ellipsoidal particle in an external field. Coordi-
nate systems.
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write only the results that are of importance for further
treatment (in what follows, formulas (1)–(4)) and will
relate them to the case of linear correlation between the
induction B and the intensity H. The Maxwell equations
curlH = 0, divB = 0 lead to the boundary-value problem
for magnetostatic potential ∆φ = 0 with standard
boundary conditions, i.e., the continuity of the normal
components of induction and the tangential compo-
nents of intensity on the particle surface. In addition,
the magnetostatic potential at long distances from the
particle must coincide with the uniform field potential
G. The solution for the potential is conveniently written
in the coordinates η, ψ, γ of a prolate spheroid, related
to Cartesian coordinates x, y, z of the local system of
coordinates by

where c2 = a2 – b2. This solution has the following form
for regions inside and outside of the particle, respec-
tively,

(1)

Here,  and  are Legendre functions of the first
and second kind, respectively; the constants H1, H2, H3,
M1, M2, and M3 are expressed in terms of the compo-
nents of the external field G,

(2)

where V = 4πab2/3 is the particle volume,

(3)
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µ is the magnetic permeability of the carrier liquid, and
κ is the demagnetizing factor along the major axis of an
ellipsoidal particle with the eccentricity

According to [22], the demagnetizing factor of a prolate
ellipsoid of revolution is

(4)

It follows from Eqs. (1) and (2) that the magnetic
field within a particle is uniform, and the constants H1,
H2, and H3 are nothing but the components of this film
in local coordinates. As to the field H induced by a non-
magnetic particle in the external medium in addition to
G, it is equivalent to a field that would be produced by
a uniformly magnetized (“diamagnetic”) particle with
the total magnetic moment of

(5)

determined relative to the local coordinates. This
expression enables one to estimate the energy W of
interaction between impurity particles and the respec-
tive dimensionless parameter defining the degree to
which these interactions affect the properties of the sys-
tem. It is apparent that the maximal effect is to be
expected in magnetic fluids with a high permeability
(µ @ 1). In this case,

where ρ = Vn is the volume fraction of impurity parti-
cles in a colloid solutions and n is the particle number
density. Under conditions typical of laboratory experi-
ments, µ ≤ 10, ρ ≈ 10–2, G ≤10 Oe, and λ ≤ 10–2. There-
fore, the interaction between impurity particles turns
out to be insignificant, and the one-particle approxima-
tion employed by us is quite justified.

Expression (5) further helps to find the correction to
the system magnetization, associated with the presence
of impurity particles,

where m|| is the projection of the moment given by
Eq. (5) on the external field direction. It is apparent that
this addition is negative. In order to calculate this addi-
tion, we will introduce the spherical angles θ and ϕ
which define the direction of the particle major axis rel-
ative to a laboratory system of coordinates with the axis
z' directed along the field G. In this case, the matrix of

e 1 b2

a2
-----– .=

κ 1 e2–

e2
------------- 1

2e
------ 1 e+

1 e–
-----------ln 1– 

  .=

m
Vµ µ 1–( )

2πµt

------------------------- Gx Gy

µt

2µn

--------Gz, , 
  ,–=

λ W
kT
------ µρVG2

4π2kT
------------------,≈=

∆M m||〈 〉 n,=
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transition from laboratory Cartesian to local coordi-
nates related to the particle will have the form

(6)

By virtue of orthogonality of transformation, the
inverse matrix will coincide with the transposed one.
The sought correction to magnetization will be

(7)

where the scalar parameter of the order of

is the measure of ordering of the major axes of impurity
particles. Note that expression (5) for the effective mag-
netic moment may also be derived from a variation of
free energy associated with the introduction of an ellip-
soidal particle into a magnetic fluid. The calculation
procedure is similar to that employed in [22] for liquid
dielectrics and spherical particles.

In the limit of weak fields, the distribution of the
major axes of impurity particles is isotropic, and

 = 1/3. From this, one can readily find the cor-
rection to the initial susceptibility of a magnetic fluid
alloyed with ellipsoidal particles,

(8)

In the case of spherical particles (κ = 1/3), formula (8)
coincides with the known expression for the permittiv-
ity of a mixture [22]. For ellipsoidal particles, the cor-
rection ∆χ to susceptibility increases in magnitude;
however, its dependence on eccentricity turns out to be
very weak and shows up only in concentrated magnetic
fluids with a high permeability. In transition from
spherical to needle-shaped particles (κ  0), ∆χ
increases by approximately 10%. By and large, the rel-
ative decrease of the initial susceptibility of a system
due to impurity particles is of the order of

and, in the case of a low concentration of impurity par-
ticles, is small compared with unity. As was mentioned
above, within the one-particle approximation, the vol-
ume fraction ρ of impurity particles is taken to be a
small quantity.

α
θ ϕcoscos θ ϕsincos θsin–

ϕsin– ϕcos 0

θ ϕcossin θ ϕsinsin θcos 
 
 
 
 

.=

∆M 0 0
ρµ µ 1–( ) 4µn µt+( )

12πµnµt

-------------------------------------------------–, ,
=

× G 1
2 2µn µt–( )

4µn µt+
---------------------------S– 

 

 ,

S
3 θcos

2〈 〉 1–
2

-------------------------------=

θcos
2〈 〉

∆χ
ρµ µ 1–( ) 4µn µt+( )

12πµnµt

-------------------------------------------------.–=

4π∆χ
µ 1–
-------------- 3ρµ

2µ 1+
---------------- ≈
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The calculation of the magnetization of a system
that is valid for an arbitrary field calls for the computa-
tion of the potential energy of a particle. This may be
done most simply by treating a virtual turn of the parti-
cle through a small angle δw. The work performed by
the field during such a turn must be compensated by a
decrease in the potential energy U of the particle,

where K is the total mechanical moment acting on the
particle. The mechanical moment is calculated in terms
of the stress tensor σlk in a magnetizing medium [22],
which is written below on the assumption of linear cor-
relation between the susceptibility of magnetic fluid
and the magnetic phase concentration,

(9)

Here, eijl is the Levi-Civita antisymmetric pseudoten-
sor, and n is the unit vector of external normal. The
integration of local moments over the outer surface of
an ellipsoidal particle with a major axis in the xz plane
results in the following expression for the components
of the total torque:

(10)

δU Kδw,=

Ki eijlr jσlknkds, σik∫°
H2

8π
------δik

µHiHk

4π
----------------.+–= =

Kx 0,=

Ky
V
8π
------µ µ 1–( )2 1 3κ–( )

µnµt

-------------------------------------------– G2 2θ( ),sin=

Kz 0.=

0.2

0 4
ξ

0.4

0.6

0.8

1.0

8 12 16 20

S

Fig. 2. The order parameter as a function of external field.
The dashed curves correspond to the asymptotic expres-
sions given by Eqs. (14) and (15) within weak and strong
fields, respectively.
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We rotate the particle about the axis y and integrate
Eqs. (10) with respect to the polar angle to find the
sought expression for the potential energy of impurity
particle,

Here, U0 is the part of the potential energy that is inde-
pendent of the particle orientation relative to the exter-
nal field. It is apparent that, for spherical particles, the
orientation addition ∆U = U – U0 to energy is zero.

We will further introduce into treatment the equilib-
rium one-particle distribution function for the orienta-
tions of the major axes of impurity particles,

(11)

where ξ is the ratio of the characteristic energy of inter-
action of an impurity particle with external field to the
heat energy,

(12)

This parameter may be treated as an analog of the Lan-
gevin parameter for supermagnetic particles; however,
unlike the latter parameter, the quantity ξ increases
with the field by a quadratic, rather than linear, law. The
normalization constant C and the order parameter S(ξ)
are expressed in terms of the Dawson integrals,

(13)

Figure 2 gives the order parameter S as a function of
external field. In weak fields (ξ ! 1), the distribution of
the major axes of particles is close to isotropic, and the
parameter S increases with the field intensity by the
quadratic law

(14)

One can see in the figure that formula (14) derived by
expanding (13) into a power series in ξ approximates
well the dependence S(ξ) up to ξ ≈ 1. In strong fields
(ξ @ 1), the order parameter asymptotically approaches
unity,

(15)

One can readily see from Eqs. (7), (14), and (15) that
the relative correction to the magnetization of the sys-

U U0
V
8π
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2
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tem, associated with the introduction of impurity parti-
cles into a colloid, decreases as the field increases.

A significant orientation of ellipsoidal particles
occurs in fields for which the orientation part of energy
is comparable with the thermal part: ξ ≈ 1. We will esti-
mate the magnitude of these fields in application to
ellipsoidal particles with the semiaxis ratio of 1/3 (κ ≈
0.1) and the volume of the order of 10–15 cm3. The char-
acteristic size of such ellipsoids is an order of magni-
tude higher than the characteristic size of one-domain
magnetic particles; we believe that this provides reason
enough for the foregoing continuum approximation of
magnetic fluid. In view of the fact that the initial perme-
ability of concentrated magnetic fluids µ ≈ 10 and the
temperature is close to room temperature, we have
G ≈10 Oe. Such fields may be referred to as weak in the
sense that they correspond to the linear segment of the
magnetization curve for ferrocolloids [20]. This means
that our assumption of the linear correlation between
the field intensity and induction is well valid under real
conditions.

An increase in the size of impurity particles results
in an increased parameter ξ and in a higher sensitivity
of the system to the external field. However, this
increase has an obvious limit associated with the for-
mation of the Boltzmann distribution of particles over
height and with the sedimentation stratification of the
system in the gravitational field. In any case, in order to
prevent a strong stratification of the system, the vertical
dimension of a cell with colloid solution must be signif-
icantly less than the characteristic thickness h* of the
“atmosphere” of impurity particles h* = kT/V∆ρ*g,
where ∆ρ∗  is the density difference between the mag-
netic fluid and the particle. With a fixed particle vol-
ume, a reduction of ∆ρ∗  is the only way of suppressing
the sedimentation effects. For a magnetic fluid based on
liquid hydrocarbons and polymer impurity particles, a
fairly small density difference may be selected (∆ρ* ≈
0.1 g/cm3). In this case, given the above-identified par-
ticle volume V ≈ 10–15 cm3, we have h* ≈ 4 mm.

3. BIREFRINGENCE

We will follow Skibin et al. [1] and examine the
propagation of a plane electromagnetic wave through
an infinite volume of magnetic fluid in which nonmag-
netic ellipsoidal particles are distributed uniformly. We
take the carrier medium (magnetic fluid) and impurity
particles to be nonconducting media. In the general
case, magnetic fluids are characterized by a strong
absorption of light; however, in the red and near infra-
red spectral regions (with the wavelength ranging from
0.6 to 1.2 µm), the absorption is very weak [24]. Below,
we will keep this particular spectral region in mind: the
effects associated with light absorption are ignored. In
addition, for the above-identified frequency range, the
magnetic permeability of the suspension of particles
may, with good accuracy, be assumed to be unity.
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Because the linear dimensions of particles are small
compared with the wavelength, one can assume that
each one of these particles is in a uniform electric field.
We will express the electric field intensity E(i) and
induction D(i) within a particle in terms of the external
field E, using the known relations [22] and the consti-
tutive equation D(i) = ε1E(i),

(16)

Note that the electro- and magnetostatic problems are
fully equivalent, and the coefficients of depolarization
along and across the major axis of the ellipsoid coincide
with the respective demagnetizing coefficients (see, for
example, formula (4)). The method of calculating the
permittivity of a suspension suggested by Landau and
Lifshits [22] and used by Skibin et al. [1] for a magnetic
fluid is valid in our case as well. The permittivity ε of a
dilute suspension is defined by the correlations between
the fields of electric field induction D and intensity E,
averaged over a volume whose size is much larger than
the size of impurity particle,

In the integral

taken over a volume containing N impurity particles,
the integrand is other than zero only within the impurity
particles (the surrounding medium is taken to be con-
tinuous). Therefore, the given integral must be propor-
tional to the number of particles N and (because the
field within each particle is uniform) equal to

where 〈E(i)〉  is the mean field acting inside the impurity

particles. We average the fields  defined by rela-
tions (16) with the distribution function given by
Eq. (11) to find the principal values of the permittivity
tensor of the suspension,

(17)
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Here, ε|| and ε⊥  denote the permittivity for a light wave
polarized along and normal to the direction of the exter-
nal magnetic field, respectively. Within the terms linear
with respect to the concentration ρ of the impurity par-
ticles, the difference between the respective refractive
indices will be

(18)

The general structure of formula (18) is close to that
of formulas describing the birefringence in magnetic
fluids [1, 7]. However, the difference is that, unlike one-
domain magnetic particles, the impurity particles have
no intrinsic magnetic moment. In magnetic fluids, the
degree of ordering of the major axes of one-domain
ellipsoidal particles is defined both by the external field
and by the energy of magnetic anisotropy of a particle.
The major axis of ellipsoid fluctuates relative to the
magnetic moment if the energy of magnetic anisotropy
is low or comparable with the heat energy. The induced
“diamagnetic” moment of impurity particles is defined
by the external field intensity, by the particle size and
orientation, and by the properties of the surrounding
medium, i.e., magnetic fluid. As a result of these differ-
ences, the field dependence of the signal in two cases
being treated is described by different, though qualita-
tively similar, functions. In strong fields, a signal asso-
ciated with impurity particles reaches saturation much
faster than a signal associated with magnetic particles.
In weak fields, the difference between refractive indices
∆n for a binary system increases with the field intensity
by a quadratic law as in the case of magnetic fluids (see
also formulas (12) and (14)); however, the characteris-
tic magnitude of this difference is of a different order.

We will estimate the magnitude of ∆n. One can see
in formula (18) that this magnitude depends very
strongly on the difference between permittivities ∆ε =
ε1 – ε0, i.e., on the choice of magnetic fluid and material
of impurity particles. The permittivity ε0 of magnetite-
based magnetic fluids in the region of optical frequen-
cies increases from 2.2 to 2.6 as the solid phase concen-
tration increases [24]. The permittivity ε1 of an impu-
rity particle is defined by its material and varies from
2.2 for some polymers to 7.0 for mica and devitrified
glass. For estimation, we take the values of ∆ε = 2 and
G = 10 Oe to derive ∆n ≈ 3 × 10–4 for a suspension with
the volume fraction of particles ρ = 0.01. This value is
two orders of magnitude higher than that which may be
found from experiments in birefringence with typical
magnetic fluids on the basis of magnetite and liquid
hydrocarbons [12].

∆n n|| n⊥–
ρS ξ( )

2
--------------= =

×
ε1 ε0–( )2 1 3κ–( ) ε0

ε0 κ ε1 ε0–( )+[ ] 2ε0 ε1 ε0–( ) 1 κ–( )+[ ]
-------------------------------------------------------------------------------------------------.
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4. CONCLUSION

We have investigated the magneto-optical properties
of a binary colloid solution, an ensemble of ellipsoidal
dielectric particles suspended in a magnetic fluid.
Unlike one-domain magnetic particles, the impurity
particles have no intrinsic magnetic moment. Their
induced “diamagnetic” moment is defined by the parti-
cle size, by the parameters of the surrounding medium
(magnetic fluid), and by the internal field intensity. The
external magnetic field has an orienting effect on the
impurity particles because of the difference in the val-
ues of the longitudinal and transverse “demagnetizing”
coefficients; it is this effect that brings about an
increase in the optical anisotropy. The problem is
solved in a one-particle approximation: the bulk con-
centration of impurity particles is low (of the order of
10–2); therefore, the effects associated with interparticle
interactions are ignored. A magnetic fluid is treated as
a continuum of a known magnetic susceptibility. The
dipole–dipole interactions of magnetic particles are
included indirectly and to the degree to which they
affect the magnetic susceptibility of the carrier (mag-
netic) fluid. Within the assumptions made, formulas
have been derived which describe the field dependence
of magnetization of the system and of the difference of
the refractive indices for ordinary and extraordinary
rays. The main result of this study has been the demon-
stration of a multiple increase in the optical anisotropy
of the system owing to impurity particles. Given the
bulk concentration of impurity particles of several per-
cent, the magnetization of the system varies insignifi-
cantly, while the birefringence signal in weak fields
may increase by two orders of magnitude.

We are not aware of any attempts at synthesizing
systems whose properties are similar to those of the
binary colloid solution investigated by us. It is evi-
dently a fairly serious problem associated with the
choice of material of particles and with the technology
of their preparation. In our opinion, impurity particles
could be provided by rodlike antiferromagnetic goethite
(α-FeOOH) particles. Aqueous suspensions of such
particles were recently investigated by Coey et al. [25]
and Lemaire et al. [26]. In particular, Lemaire et al.
[26] obtained a stable suspension of particles with an
average length of 150 nm, width of 25 nm, and thick-
ness of about 10 nm. In zero field, a transition to the
nematic phase was observed in the suspension at ρ =
0.085. At lower concentrations, the suspension was opti-
cally isotropic. An induced anisotropy was observed in
fields of the order of 102 Oe and higher. Therefore, the
range of concentrations and fields corresponding to an
isotropic suspension of goethite particles agrees well
with the range of validity of the formulas derived by us.
As to the choice of stabilizer that would preclude the
coagulation of particles in magnetic colloids, this stabi-
lizer must apparently be the same for both one-domain
and impurity particles. For liquid hydrocarbon-based
AND THEORETICAL PHYSICS      Vol. 95      No. 2      2002
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ferrocolloids, such a stabilizer is usually provided by
oleic acid.
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Abstract—We consider the diffusion of the low-inertia particle number density field in random divergence-free
hydrodynamic flows. The principal feature of this diffusion is the divergence of the particle velocity field, which
results in clustering of the particle number density field. This phenomenon is coherent, occurs with a unit prob-
ability, and must show up in almost all realizations of the process dynamics. We calculate the statistical param-
eters that characterize clustering in three-dimensional and two-dimensional random fluid flows and in a rapidly
rotating two-dimensional random flow. In the former case, the vortex component of the random divergence-free
flow generates a vortex component of the low-inertia particle velocity field, which generates a potential com-
ponent of the velocity field through advection. By contrast, in the case of rapid rotation, a potential component
of the velocity field is generated directly by the vortex component of the random divergence-free flow (linear
problem). © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Since the classical paper of Stokes published in
1851 [1] (see also the classical book of Lamb [2]), the
dynamics of inertial particles in hydrodynamic flows
has attracted the attention of many researchers. This
attention stems from its importance for various ecological
problems in the Earth’s atmosphere and oceans and from
numerous technical applications (see, e.g., books [3, 4]
and papers of the last decade [5–10], which contain exten-
sive bibliography). Note that Maxey [7] was apparently
the first to draw attention to the fact that, in contrast to iner-
tialess passive particles, the velocity field of inertial parti-
cles in the divergence-free velocity field of a hydrody-
namic flow is a divergence one. This circumstance was
widely used in [11, 12] to analyze numerous applications
in hydrodynamics, geophysics, and astrophysics.

2. DESCRIPTION OF THE FIELD
OF PARTICLE NUMBER DENSITY

2.1. Basic Equations and Formulation
of the Problem

The diffusion of the number-density field, n(r, t), for
particles moving in random hydrodynamic flows is
described by the continuity equation

(1)
t∂

∂
r∂

∂
V r t,( )+ 

  n r t,( ) 0, n r 0,( ) n0 r( ).= =
1063-7761/02/9502- $22.00 © 20282
Here, the velocity field V(r, t) is described by the equa-
tion (see, e.g., [5–10])

(2)

which we consider as a phenomenological equation.
The parameter τ = 1/λ is the standard Stokes time that
depends on the particle size and molecular viscosity.

The total number of particles is conserved during
the evolution, i.e.,

The partial differential equations of the first order
(1) and (2) (Eulerian description) are equivalent to the
system of ordinary differential characteristic equations
(Lagrangian description)

(3)
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∂

+ 
  V r t,( ) λ V r t,( ) u r t,( )–[ ] ,–=

N0 n r r,( ) rd∫ n0 r( ) rd∫ const.= = =

td
d

r t( ) V r t( ) t,( ), r 0( ) r0,= =

td
d

V t( ) λ V t( ) u r t( ) t,( )–[ ] ,–=

V 0( ) V0 r0( ),=

td
d

n t( ) n t( )
∂V r t( ) t,( )

∂r
------------------------, n 0( )– n0 r0( ).= =
002 MAIK “Nauka/Interperiodica”



        

CLUSTERING OF THE LOW-INERTIA PARTICLE NUMBER DENSITY FIELD 283

                                          
The solution to this system depends on the initial
parameter r0 (this is denoted by a vertical bar):

The Eulerian number-density field of inertial particles,
n(r, t), is then described by

We assume that the variance of the random velocity

field,  = , is sufficiently small and deter-
mines the principal small parameter of the problem. For
a large λ (low particle inertia), we can linearize Eq. (2)
relative to the function

(4)

and pass to a simpler vector equation,

which we write in coordinate representation as

(5)

The summation is always assumed to be performed
over repetitive indices.

First, the question arises as to what equality (4)
means statistically and what the conditions for its valid-
ity are. Below, we show that the validity of this equality
in statistical problems essentially depends on the
sequence of passages to the limit.

In order to describe the particle number-density
field in Eulerian representation, we introduce an indica-
tor function

(6)

concentrated on an n(r, t) = n = const surface in the
three-dimensional case and on a contour in the two-
dimensional case. The dynamics of this function is
described by the Liouville equation

(7)

if V(r, t) is a divergence velocity field, i.e., if ∂V(r,
t)/∂r ≠ 0.

The indicator function characterizes the geometric
structure of the particle number-density field n(r, t)
[13–15]. For example, in the two-dimensional case,
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∂
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t∂
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∂
nΦ t r; n,( ),=
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such quantities as the total area of the region bounded
by isolines where n(r, t) > n,

(8)

and the total number of particles contained in these
regions,

(9)

can be expressed in terms of function (6).
If the velocity field V(r, t) is a random divergence

field, then the field n(r, t) is clustered with a unit prob-
ability and the quantities S(t; n)  0, N(t; n)  N0.
This is a coherent physical phenomenon, and it occurs
in almost all realizations of the process. The coherent
phenomena themselves do not depend on a particular
model of the fluctuating parameters. However, the
coherent values of the parameters that characterize a
given phenomenon (e.g., the characteristic time and
spatial scales of clusters) can significantly depend on
the model. Note that the diffusion of a passive scalar in
random flows was numerically simulated in [17–19].

2.2. A Statistical Analysis of Clustering

Calculations can be easily performed for the model
of a random Gaussian field V(r, t) that is statistically
uniform and isotropic in space and stationary in time
with a zero mean and the correlation tensor

The one-point probability density for the solution of
the dynamic equation (1) matches the indicator func-
tion averaged over an ensemble of realizations of the
random field V(r, t):

In the approximation of a delta-correlated (in time)
field V(r, t), it is described by the equation [13–16]

(10)

where the diffusion coefficients

(11)
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D0
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∂
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2

∂
∂
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P 0 r; n,( ) δ n0 r( ) n–( ),=

D0
1
d
--- τ V r t τ+,( )V r t,( )〈 〉d
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∫ 1
d
---τV V2 r t,( )〈 〉 ,= =

D V( ) τ ∂V r t τ+,( )
∂r
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∂r

-------------------d
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d is the space dimension, and τV and τdivV are the time
correlation lengths for the random fields V(r, t) and
∂V(r, t)/∂r.

Knowing the solution to Eq. (10), we can calculate
the time evolution of such functionals for the particle
number-density field as the mean values of expressions
(8) and (9). In particular, for D(V)t @ 1, the mean area
where the particle number-density field exceeds a given
n decreases with time as

while the mean number of particles contained in this
region,

monotonically tends to the total number of particles,

N0 = . This implies that the inertial particles of

a scalar tend to be collected in clusters with time, com-
pact regions of enhanced particle number density n(r, t)
in the random velocity field V(r, t) surrounded by tenu-
ous regions.

Thus, the problem reduces to estimating the diffu-
sion coefficients (11) from the stochastic equations (2)
and (5), i.e., to calculating the time correlation lengths
τV and τdivV for the random fields V(r, t) and ∂V(r, t)/∂r
and their spatial correlation scales and variances. This
can be done for a certain statistical model of the random
field u(r, t).

Below, we calculate the statistical parameters of
V(r, t) in the first nonvanishing order of smallness in

. Note that the statistics of V(r, t) described by the
stochastic equations (2) and (5) are generally not Gaus-
sian. However, it is easy to see that the highest cumu-
lants of the field divV(r, t) are of a higher order of
smallness than the second cumulant. Therefore, the
approximation of a Gaussian field V(r, t) can actually
be used to derive Eq. (10).

We assume that u(r, t) is a divergence-free velocity
field, i.e.,

is a Gaussian random field uniform and isotropic in
space and stationary in time with a zero mean and the
correlation tensor

S t; n( )〈 〉 1

πnD V( )t
----------------------- D V( )t

4
------------– 

  n0 r( ) r,d∫exp=

N t; n( )〈 〉 N0
n

nD V( )t
---------------–=

× D V( )t
4

------------– 
  n0 r( ) r,d∫exp

n0 r( ) rd∫

σu
2

divu r t,( )
r∂

∂
u r t,( ) 0,= =

Bij r r'– t t'–,( ) ui r t,( )u j r' t',( )〈 〉 .=
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The time correlation length of u(r, t) is given by the
equality

For this model, we may introduce a spatial spectral
function and a space-time spectral function of u(r, t)
using the integrals

(12)

where

(13)

Note that

(14)

for the tensor of the fourth order that is important for
our subsequent analysis, we have

(15)

where the coefficient

(16)

The quantity

is related to the vortex structure of the random diver-
gence-free field u(r, t).

Thus, we will calculate the parameters (11) that
characterize the clustering time evolution for the parti-
cle number density n(r, t).

3. RANDOM MULTIDIMENSIONAL FLOWS

Below, we study the statistical parameters of Eq. (5)
in the Eulerian description in the diffusion approxi-
mation.

τ0Bii 0 0,( ) τBii 0 τ,( )d

0

∞

∫ τ u r t τ+,( )u r t,( )〈 〉 .d
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  .=
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d 1–

d
------------ kE k t,( )δij;d∫=

∂2Bij 0 τ,( )
∂rk∂rl

------------------------–
D τ( )

d d 2+( )
--------------------=

× d 1+( )δklδij δkiδlj δkjδli––[ ] ,

D τ( ) kk2E k τ,( )d∫=

=  
1

d 1–
------------ u r t τ+,( )∆u r t,( )〈 〉 .–

D 0( )
1

d 1–
------------ u r t,( )∆u r t,( )〈 〉–=
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3.1. The Diffusion Approximation

The random field u(r, t) correlates with the function
V(r, t), which is the functional of u(r, t). The correla-
tion splitting for a Gaussian field u(r, t) is based on the
Furutsu–Novikov formula

(17)

This formula is valid for a Gaussian random field
u(r, t) with a zero mean and an arbitrary functional R[t;
u(r, τ)] (0 ≤ τ ≤ t) [20, 21] (see also [16]).

The equations for the corresponding means in the
diffusion approximation can be written out exactly. The
corresponding simplification of the problem is made at
the level of a functional dependence of its solution on
fluctuating parameters [22] (see also [14, 16, 23]).

For the variational derivatives in the diffusion
approximation, we have the equation

with the initial condition at t = t'

which follows from Eq. (5). The solution of this equa-
tion is

The field V(r, t) itself in the diffusion approximation
has the structure

and, hence,

Thus, for the variational derivative, we obtain the
expression

uk r t,( )R t; u r τ,( )[ ]〈 〉 r'd t'Bkl r r'– t t'–,( )d

0

t
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× δ
δul r' t',( )
---------------------R t; u r τ,( )[ ] .

t∂
∂ λ+ 
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JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
(18)

3.2. The Spatial Correlation Tensor of  V(r, t)
The equation for the simultaneous spatial correla-

tion tensor of the field V(r, t) follows from Eq. (5):

Using the Furutsu–Novikov formula (17) and
expression (18) for the variational derivative, we obtain
an equation for the time-independent (r – r1  r) sta-
tionary correlation tensor Fij(r – r1) = 〈Vi(r, t)Vj(r1, t)〉:

(19)

For a stationary correlation 〈Vi(r, t)Vj(r1, t)〉  in the
diffusion approximation, we obtain the following equa-
tion by setting r = 0 in Eq. (19):

(20)
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Using formula (15), it can be rewritten as

where the coefficient

(21)

Consequently,

(22)

if λ > D1(d – 1)/d.

Thus, we see that there is a critical value of λ:
λcr = D1(d – 1)/d, and a stationary value exists only if
λ > λcr.

If the inequality

(23)

where l0 is the spatial scale of u(r, t), holds, then we
derive the expression

(24)

Below, we assume that inequality (23) holds always.
The variance of V(r, t) can be estimated from equal-

ity (24). As a result, we obtain for λt @ 1

(25)

where τ0 is the time correlation length of u(r, t). Thus,
we see that the sequence of passages to the limit τ0 
0 and λ  ∞ is not permutable.

3.3. The Correlation Tensor 
of the Spatial Derivatives of   V(r, t)

Let us now discuss such statistical parameters of the
spatial derivatives of the field V(r, t) as
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For these quantities, the equation

(26)

follows from Eq. (19). Note that the last term on the

right-hand side of Eq. (26) is a source of order  and
may be discarded.

Setting i = k and j = l in Eq. (26), we derive the follow-
ing steady-state equation using equality (15) for λ @ D1:

(27)

The quantity

is related to the vortex structure of the field V(r, t), and
Eq. (27) can be rewritten as

(28)
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Now, let i = j and k = l in Eq. (26). Using formula
(15) for λ @ D1, we obtain

i.e.,

(29)

where the coefficient

(30)

Therefore, for the divergence of V(r, t) under the
condition λ/D1 @ 1, we derive the expression

(31)

Note that the coefficient

does not depend on λ. In contrast, the coefficient D2(λ)
for λτ0 @ 1 is given by

Thus, for the three-dimensional and two-dimensional
cases, we obtain the equalities

(32)

which in the limit of low particle inertia, λτ0 @ 1, trans-
form to

(33)

for the three-dimensional and two-dimensional cases,
respectively.
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Based on expression (29), we can estimate the spa-
tial correlation scale lcor of V(r, t). More specifically,
using equality (25), we find that

(34)

regardless of the conditions λτ0 ! 1 or λτ0 @ 1.

3.4. The Time Correlation Tensor of   V(r, t)

For the time correlation function at t > t1, we have
the equation

Using the Furutsu–Novikov formula (17) and expres-
sions (18) for the variational derivative, we obtain an
equation in the steady-state regime with an initial con-
dition for the function :

(35)

where the stationary value of , natu-

rally, does not depend on time. The terms of order 
were discarded in Eq. (35). This can be done for a suf-
ficiently large λ (23).

Now, we can calculate the time correlation lengths
in expressions (11). Integrating Eq. (35) over τ in the
interval (0, ∞), we derive the expression

(36)

Setting r = r1 and i = j in equality (36), we obtain an
expression for the time correlation length of V(r, t):
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which, using equality (24), can be written as

(37)

which does not depend on λ.
Now, differentiating expression (36) with respect to

ri and r1j and setting r = r1, we derive an expression for
the time correlation length of ∂V(r, t)/∂r:

(38)

It is valid for all sufficiently large values of λ and, in
particular, for λτ0 @ 1, when V(r, t) ≈ u(r, t) and, hence,
τV = τ0.

Now, we can calculate the coefficients (11) in
Eq. (10) for the probability density by using equali-
ties (37), (38), and (31):

(39)

In particular, in the three-dimensional case for λτ0 @ 1,
we have

(40)

In the two-dimensional case for λτ0 @ 1, we have

(41)

Thus, we see that the coefficient D(V) ∝  . Initially,
the vortex component of u(r, t) generates a vortex com-
ponent of V(r, t) through the direct linear mechanism
without involving advection. Subsequently, the vortex
component of V(r, t) generates a divergence component
of V(r, t) through advection.

τV V2 r t,( )〈 〉 τ 0Bii 0 0,( ),=

τdivV
1
λ
---.=

D0
1
d
---τV V2 r t,( )〈 〉 1

d
---τ0Bii 0 0,( )= =

=  
d 1–

d
------------τ0 kE k 0,( ),d∫

D V( ) τdivV
∂V r t,( )

∂r
------------------- 

 
2

=

=  
4
λ
--- d2 1–

d d 2+( )
--------------------D1D2 λ( ).

D0 = 
1
3
---τV V2 r t,( )〈 〉  = 

1
3
---τ0Bii 0 0,( ) = 

2
3
---τ0 kE k 0,( ),d∫

D V( ) τdivV
∂V r t,( )

∂r
------------------- 

 
2

=

=  
8
15
------

τ0

λ2
----- u r t,( )∆u r t,( )〈 〉 2.

D0 = 
1
2
---τV V2 r t,( )〈 〉  = 

1
2
---τ0Bii 0 0,( ) = τ0 kE k 0,( ),d∫

D V( ) τdivV
∂V r t,( )

∂r
------------------- 

 
2

=

=  
3
2
---

τ0

λ2
----- u r t,( )∆u r t,( )〈 〉 2.

σu
4
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3.5. The Validity Conditions

The validity conditions for our results are composed
of several constraints:

(1) The validity conditions for the diffusion approx-
imation for Eq. (5) are

and the quantities D1 and D2 are

where l0 is the spatial correlation scale and τ0 is the time
correlation length of u(r, t). Thus, we obtain the condi-
tion

(42)

(2) The validity condition for the approximation
of a delta-correlated field V(r, t) for Eq. (10) is
D(V)/λ ! 1, i.e.,

Thus, we obtain the conditions in the form

(43)

(3) In all calculations, we used condition (23),
which is valid when the condition

(44)

is satisfied.
Therefore, for low-inertia particles (λτ0 @ 1), the

validity conditions for the approximations used above
reduce to condition (42).

4. A RAPIDLY ROTATING 
TWO-DIMENSIONAL FLOW

Let us now discuss the two-dimensional equation
with rotation,

where the matrix

λ D1
d 1–

d
------------ and D1τ0 ! 1, D2 λ( )τ0 ! 1,>

D1

σu
2τ0

l0
2

-----------, D2 λ( )
σu

2τ0/l0
2, λτ 0 ! 1,

σu
2τ0/λ l0

2, λτ 0 @ 1,



∼∼

σu
2τ0

2

l0
2

----------- ! 1.

D1D2 λ( )

λ2
-------------------- ! 1.

σu
2τ0

2/l0
2
 ! λτ 0, λτ 0 ! 1,

σu
2τ0

2/l0
2
 ! λτ 0( )3/2, λτ 0 @ 1.

σu
2τ0

2

l0
2

----------- ! λτ 0

t∂
∂ V r t,( )

r∂
∂

+ 
  Vi r t,( )

=  λ Vi r t,( ) ui r t,( )–[ ]– 2ΩΓ iµVµ r t,( ),+

Γ 0 1

1– 0
, Γ2 E,–= =
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and E is a unit matrix. This equation can be written as

(45)

where the matrix Λ = λE – 2ΩΓ and the random veloc-
ity field has the structure

(46)

When {λ or Ω}  ∞, we obtain the approximate
expression

(47)

Note that a new vector W(r, t) = ΓV(r, t) may be intro-
duced and the quantity

then describes the vortex component of the velocity
field V(r, t).

Equation (45) differs from Eq. (2) in that the param-
eter Λ is a tensor. In addition, U(r, t) in Eq. (45) is a
divergence field, and for the divergence-free field
u(r, t), the quantity

is related to the vortex component of u(r, t).

As previously, we assume that the variance  =
〈u2(r, t)〉  is small and Eq. (45) can be linearized relative
to the flow (47) for large{λ, Ω}. As a result, we obtain
the equation

which in coordinate form is

t∂
∂ V r t,( )

r∂
∂

+ 
  V r t,( )

=  Λ V r t,( ) U r t,( )–[ ] ,–

U r t,( ) λΛ 1– u r t,( ), Λ–1 λE 2ΩΓ+

λ2 4Ω2+
-------------------------.= =

V r t,( ) U r t,( ).≈

ξ r t,( )
∂Wi r t,( )

∂ri

---------------------
∂W r t,( )

∂r
--------------------= =

=  
∂V2 r t,( )

∂r1
--------------------

∂V1 r t,( )
∂r2

--------------------–

divU r t,( ) ∂U r t,( )
∂r

------------------- λ
rk∂
∂ Λkµ

1– uµ r t,( )= =

=  
2λΩ

λ2 4Ω2+
---------------------Γ kµ

∂uµ r t,( )
∂rk

--------------------

σu
2

t∂
∂

V r t,( ) U r t,( )
r∂

∂
 
  V r t,( )+

+ V r t,( )
r∂

∂
 
  U r t,( ) Λ V r t,( ) U r t,( )–[ ] ,–=

∂Vi r t,( )
∂t

------------------- Λ iµVµ r t,( )+

=  –Uk r t,( )
∂Vi r t,( )

∂rk

-------------------
∂Ui r t,( )

∂rk

--------------------Vk r t,( )– Λ iµUµ r t,( ).+
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If {λ, Ω} @ τ0/ , where, as previously, lcor is
the spatial correlation scale of V(r, t), then we may dis-
card the advective terms and pass to the simple linear
equation

(48)

For the variational derivative at t > t', we have the
matrix equation

which in coordinate form is the system of equations

with the initial conditions at t = t'

The solution to this system is

where the matrix

Thus, the final expression for the variational derivative
is

(49)

4.1. The Spatial Correlation Tensor of   V(r, t)

The equation

(50)

follows from Eq. (48) for the simultaneous spatial cor-
relation tensor. Using the Furutsu–Novikov formula

σu
2 lcor

2

∂Vi r t,( )
∂t

------------------- Λ iµVµ r t,( )+ λui r t,( ).=

t∂
∂ δVi r t,( )

δul r' t',( )
--------------------- Λ iµ

δVµ r t,( )
δul r' t',( )
---------------------+ 0,=

t∂
∂ λ+ 

  δVi r t,( )
δul r' t',( )
--------------------- 2Ω

δWi r t,( )
δul r' t',( )
---------------------,=

t∂
∂ λ+ 

  δWi r t,( )
δul r' t',( )
--------------------- –2Ω

δVi r t,( )
δul r' t',( )
---------------------=

δVi r t',( )
δul r' t',( )
--------------------- = λδilδ r r'–( ),

δWi r t',( )
δul r' t',( )
---------------------- = λΓ ilδ r r'–( ).

δ
δul r' l',( )
---------------------

Vi r t,( )

Wi r t,( ) 
 
 

=  λe λ t t'–( )– δ r r'–( )A t t'–( )
δil

Γ il 
 
 

,

A t( ) 2Ωt( )cos 2Ωt( )sin

2Ωt( )sin– 2Ωt( )cos 
 
 

.=

δVi r t,( )
δul r' t',( )
--------------------- λδ r r'–( )e λ t t'–( )–=

× δil 2Ω t t'–( )[ ] Γ il 2Ω t t'–( )[ ]sin+cos{ } .

t∂
∂

Vi r t,( )V j r1 t,( )〈 〉 Λ iµ Vµ r t,( )V j r1 t,( )〈 〉+

+ Λ jµ Vi r t,( )Vµ r1 t,( )〈 〉
=  λ ui r t,( )V j r1 t,( )〈 〉 λ u j r1 t,( )Vi r t,( )〈 〉+
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(17) and expressions (49), we find that the stationary
correlation tensor is described by the equation

(51)

Therefore, setting r = r1 and i = j in (51), we can obtain
a stationary value for the variance 〈V2(r, t)〉 ,

(52)

because

Let us now discuss the statistical parameters of such
spatial derivatives of V(r, t) as 〈(∂Vi(r, t)/∂rk)(∂Vj(r,
t)/∂rl)〉 . For the two-dimensional velocity field u(r, t),
we derive the following expression using equality (15):

(53)

where D(τ) = . Hence, from Eq. (51), we

arrive at the equation

(54)

where the coefficients

2λ Vi r t,( )V j r1 t,( )〈 〉
– 2Ω Wi r t,( )V j r1 t,( )〈 〉 Vi r t,( )W j r1 t,( )〈 〉+[ ]

=  2λ2 τe λτ– 2Ωτ( )Bij r r1– τ,( )cosd

0

∞

∫

+ λ2 τe λτ– 2Ωτsind

0

∞

∫
× Γ jµBiµ r r1– τ,( ) Γ iµB jµ r r1– τ,( )+[ ] .

V2 r t,( )〈 〉 λ τ e λτ– 2Ωτ( )Bii 0 τ,( ),cosd

0

∞

∫=

Bil 0 τ,( )Γ il 0, Γ iµ Vi r t,( )Vµ r t,( )〈 〉 0.≡ ≡

∂2Bij 0 τ,( )
∂rk∂rl

------------------------–
1
8
---D τ( )=

× 3δklδij δkiδlj– δkjδli–( ),

kk2E k τ,( )d∫

2λ
∂Vi r t,( )

∂rk

-------------------
∂V j r t,( )

∂rl

-------------------- 2Ω
∂Wi r t,( )

∂rk

---------------------
∂V j r t,( )

∂rl

--------------------–

+
∂Vi r t,( )

∂rk

-------------------
∂W j r t,( )

∂rl

---------------------

=  
λ2

4
-----D2 λ Ω,( ) 3δklδij δkiδlj– δkjδli–( )

–
λ2

8
-----D3 λ Ω,( ) δkiΓ jl δliΓ jk δljΓ ik δkjΓ il+ + +( ),

D2 λ Ω,( ) τe λτ– 2Ωτ( )D τ( ),cosd

0

∞

∫=

D3 λ Ω,( ) τe λτ– 2Ωτ( )D τ( ).sind

0

∞

∫=
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Setting i = k and j = l in Eq. (54), we obtain the
steady-state equation

(55)

where

Setting now i = j and k = l in Eq. (54), we derive a
steady-state expression for the vortex part of the veloc-
ity field V(r, t):

(56)

Let us now write out the equation for the matrix

:

Multiplying it by Γki yields the equation

(57)

Multiplying now Eq. (54) by ΓkiΓlj yields the third
steady-state equation

(58)

Thus, we derived the system of equations (55)–(58)
whose solution is

(59)

If λ/Ω ! 1 and Ωτ0 @ 1, then D2(λ, Ω) ≈ (λ/4Ω2)D(0)
and we have

(60)

λ d2 r t,( )〈 〉 2Ω ξ r t,( )d r t,( )〈 〉 ,=

d r t,( )
∂V r t,( )

∂r
-------------------, ξ r t,( )

∂W r t,( )
∂r

--------------------.= =

V r t,( )∆V r t,( )〈 〉– λ D2 λ Ω,( ).=

∂Vi r t,( )
∂rk

-------------------d r t,( )

λ
∂Vi r t,( )

∂rk

-------------------d r t,( )

– ΩΓ iµ
∂Vµ r t,( )

∂rk

---------------------d r t,( ) Ω ξ r t,( )
∂Vi r t,( )

∂rk

-------------------– 0.=

λ ξ r t,( )d r t,( )〈 〉 Ω ξ 2 r t,( )〈 〉 d2 r t,( )〈 〉–[ ] .=

λ ξ 2 r t,( )〈 〉 2Ω d r t,( )ξ r t,( )〈 〉+ λ2D2 λ Ω,( ).=

ξ2 r t,( )〈 〉 λ λ2 2Ω2+

λ2 4Ω2
+

---------------------D2 λ Ω,( ),=

d2 r t,( )〈 〉 2λΩ2

λ2 4Ω2
+

---------------------D2 λ Ω,( ),=

ξ r t,( )d r t,( )〈 〉 λ2Ω
λ2 4Ω2

+
---------------------D2 λ Ω,( ).=

ξ2 r t,( )〈 〉 d2 r t,( )〈 〉 λ2

8Ω2
----------D 0( ),= =

ξ r t,( )d r t,( )〈 〉 λ3

16Ω3
-------------D 0( ).=
 AND THEORETICAL PHYSICS      Vol. 95      No. 2      2002



CLUSTERING OF THE LOW-INERTIA PARTICLE NUMBER DENSITY FIELD 291
If, alternatively, λ/Ω @ 1 but Ωτ0 @ 1, then D2(λ, Ω) ≈
D(0)/λ and, hence,

(61)

Thus, the order of the solution to the problem is 
If, however, Ω  0, then, as we saw above, the order

of the solution to the problem is  and advective
effects should be taken into account.

4.2. The Time Correlation Tensor of   V(r, t)

The equation for the space-time correlation tensor at
t > t1 is

It can be written in the steady-state regime by using the
Furutsu–Novikov formula (17) and equality (49) as

(62)

with the initial condition at τ = 0

We are concerned with the quantity

(63)

and quantities (11)

which define the diffusion coefficients in Eq. (10).

ξ2 r t,( )〈 〉 D 0( ), d2 r t,( )〈 〉 2Ω2

λ2
----------D 0( ),= =

ξ r t,( )d r t,( )〈 〉 Ω
λ
----D 0( ).=

σu
2

σu
4

t∂
∂

Vi r t,( )V j r1 t1,( )〈 〉 Λ iµ Vµ r t,( )V j r1 t1,( )〈 〉+

=  λ ui r t,( )V j r1 t1,( )〈 〉 .

τ∂
∂

Vi r t τ+,( )V j r1 t,( )〈 〉 λ Vi r t τ+,( )V j r1 t,( )〈 〉+

– 2ΩΓ iµ Vµ r t τ+,( )V j r1 t,( )〈 〉

=  λ2eλτ τ1Bij r r1 τ1,–( )e
λτ 1–

2Ωτ( )cosd

τ

∞

∫

+ λ2eλτ Γ jµ τ1Biµ r r1– τ1,( )e
λτ 1–

2Ωτ( )sind

τ

∞

∫

Vi r t τ+,( )V j r1 t1,( )〈 〉 τ 0= Vi r t,( )V j r1 t,( )〈 〉 .=

Kij r r1–( ) τ Vi r t τ+,( )V j r1 t,( )〈 〉d

0

∞

∫=

D0
1
2
---Kii 0( )

1
2
---τV V2 r t,( )〈 〉 ,= =

D V( ) ∂2Kij r r1–( )
∂ri∂r1 j

-----------------------------=
r r1=

τdivV
∂V r t,( )

∂r
------------------- 

 
2

,=
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For quantity (63), we derive the following expres-
sion from Eq. (62):

(64)

Setting i = j and r1 = r in (64), we obtain the equality

where τV is the time correlation length of V(r, t). Given
expression (52), the latter equality can be rewritten as

(65)

where Φ(k, ω) is the space-time spectral function (12),
(13) of u(r, t).

Let us act on Eq. (64) with the operator ∂2/∂rk∂r1l

and set r1 = r and  j = l. As a result, we obtain an equa-
tion for the matrix 〈(∂Vi(r, t)/∂rk)d(r, t)〉  using expres-
sion (53) in the form

(66)

Setting now i = k in Eq. (66), we arrive at the steady-
state equation

(67)

λKij r r1–( ) 2ΩΓ iµ r r1–( )– Vi r t,( )V j r1 t,( )〈 〉=

+ λ τ Bij r r1– τ,( ) 1 e λτ––[ ] 2Ωτ( )cosd

0

∞

∫

+ λΓ jµ τBiµ r r1– τ,( ) 1 e λτ––[ ] 2Ωτ( ).sind

0

∞

∫

λτ V V2 r t,( )〈 〉 V2 r t,( )〈 〉=

+ λ τ Bii 0 τ,( ) 1 e λτ––[ ] 2Ωτ( ),cosd

0

∞

∫

D0
1
2
---τV V2 r t,( )〈 〉=

=  
1
2
--- τBii 0 τ,( ) 2Ωτ( )cosd

0

∞

∫ π
2
--- kΦ k 2Ω,( ),d∫=

λ τ
∂Vi r t τ+,( )

∂rk

---------------------------- r t,( )dd

0

∞

∫

– 2ΩΓ iµ τ
∂Vµ r t τ+,( )

∂rk

----------------------------- r t,( )dd

0

∞

∫  = 
∂Vi r t,( )

∂rk

-------------------d r t,( ) .

λ τ r t τ+,( ) r t,( )dd〈 〉d

0

∞

∫

– 2Ω τ ξ r t τ+,( ) r t,( )d〈 〉d

0

∞

∫ d
2 r t,( )〈 〉 .=
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Multiplying (66) by Γki yields the equation

(68)

Thus, we derived the system of equations (67) and
(68) whose solution can be written using expressions
(59) as

If {λ, Ω}τ0 @ 1, then

(69)

where, as previously,

Thus, when the conditions {λ, Ω}τ0 @ 1 are satis-
fied, the generation of the divergence part of V(r, t) in
our problem is described by a linear equation without
advective terms. If, in addition, λ @ Ω , then the follow-

ing correction terms of order  (41), which may be
comparable to (69) in some cases, should be taken into
account; i.e., in this case, we obtain

(70)

The spatial diffusion coefficient D0 does not depend
on λ and is described by expression (65).

5. CONCLUSION

We have derived expressions for the diffusion coef-
ficients that characterize the clustering of the low-iner-
tial particle number density in hydrodynamic flows in

λ τ ξ r t τ+,( ) r t,( )d〈 〉d

0

∞

∫

+ 2Ω τ r t τ+,( )d( ) r t,( )d〈 〉d

0

∞

∫ ξ r t,( )d r t,( )〈 〉 .=

D V( ) τ r t τ+,( ) r t,( )dd〈 〉d

0

∞

∫=

=  
λ d

2 r t,( )〈 〉 2Ω ξ r t,( ) r t,( )d〈 〉+

λ2 4Ω2+
-----------------------------------------------------------------------------

=  
4λ2Ω2

λ2 4Ω2+( )2
---------------------------- τe λτ– 2Ωτ( )D τ( ).cosd

0

∞

∫

D V( ) 4λ3Ω2D 0( )

λ2 4Ω2+( )3
----------------------------=

=  
4Ω2

D 0( )/λ3, λ  @ Ω,

λ3D 0( )/16Ω4, λ  ! Ω,



D 0( ) kk2E k 0,( )d∫ u r t,( )∆u r t,( )〈 〉 .–= =

σu
4

D V( ) 3
2
---

τ0

λ2
----- u r t,( )∆u r t,( )〈 〉 2 4Ω2

λ3
---------- u r t,( )∆u r t,( )〈 〉–=

=  
4Ω2

λ3
---------- u r t,( )∆u r t,( )〈 〉 1

3λτ 0

2Ω2
----------- u r t,( )∆u r t,( )〈 〉–

 
 
 

.–
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various asymptotic regimes. We did not set the goal of
studying these coefficients (and, hence, the clustering
itself) for specific geophysical and astrophysical prob-
lems. These are completely independent problems that
can be solved by using the derived expressions. The
basic equation for us was the phenomenological non-
linear equation (2) in the Eulerian representation.
Although the characteristic equations (3) in the
Lagrangian representation are simple in form, the ini-
tial problem (2) is complex. This is clear at least from
the fact that Eq. (2) is a quasi-linear partial differential
equation and, in general, nonuniqueness of the solution
to the problem, the existence of discontinuities in them,
etc., are possible. In the asymptotic case of low particle
inertia, the situation significantly simplifies and we
pass to a linear problem in the Eulerian representation.
However, even for this problem, it is difficult to specify
the possible orders of smallness for the corresponding
diffusion coefficients, because there are several dimen-
sionless parameters. Thus, for example, for the problem
with rotation, there are three time scales even in the for-
mulation of the problem alone. In addition, two statisti-
cal scales emerge, the diffusion coefficients, which also
have the dimensions of inverse time. Therefore, we
have to perform a detailed analysis of the problem,
which was done here.
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Abstract—The diffusion exchange by oxygen atoms between bulk and (100) surface of tantalum at the earliest
stages of oxygen adsorption was studied by high-temperature Auger electron spectroscopy (AES), whereby the
spectra were recorded immediately in the course of heating the sample up to 2500 K. A difference of the poten-
tial barriers for the inward and outward diffusion of oxygen was determined, and an equilibrium character of
these processes in the temperature interval from 1000 to 2000 K was demonstrated. Heating to higher temper-
atures results in the intense thermodesorption of oxygen. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION 

The interaction of gases (especially of oxygen) with
the surface of refractory metals (in particular, tantalum)
has been extensively studied for a long time, beginning
with the classical work of Langmuir [1]. Reliable data
are now available on the solubility of oxygen, bulk dif-
fusion characteristics, and the oxides formed [2–4], as
well as on the laws of adsorption and desorption [5–
10]. Many of these data can be found in handbooks
(see, e.g., [11]). However, there are many questions
which still remain unanswered. Elucidation of the laws
of high-temperature oxygen adsorption and the diffu-
sion exchange by oxygen atoms between bulk and sur-
face of a metal are among currently important prob-
lems. 

Previously, we have studied in detail the equilibrium
diffusion of carbon atoms between (100) surface and
bulk of several metals including W [12], Mo [13], and
Ta [14]. Since oxygen, as well as carbon, belongs to
interstitial impurities, the bulk diffusion of both pro-
ceeds in a similar manner [15]. However, the behavior
of these atoms in the adsorbed state is significantly dif-
ferent. In particular, the surface oxygen does not pene-
trate into the bulk of tungsten and molybdenum [7],
while it dissolves well in tantalum, which was selected
as the substrate in this study. Our consideration will be
restricted to the earliest stages of oxygen penetration
into the bulk of tantalum, long before the formation of
bulky oxides. 

2. EXPERIMENTAL 

The experiments were performed in an ultrahigh
vacuum (UHV), high-resolution Auger spectrometer
(∆E/E < 0.1%) with a prism energy analyzer [16]. The
1063-7761/02/9502- $22.00 © 20294
Auger electron spectra were taken directly from
strongly (up to 2200 K) heated samples, which was of
principal significance for the study of equilibrium pro-
cesses in the tantalum–oxygen system at medium and
high temperatures. Sensitivity of the spectrometer with
respect to characteristic impurities (C, O, …) was on
the order of 10–2 monolayer. The analysis was per-
formed using an Auger peak of oxygen observed at an
electron energy of E = 504 eV and a triplet peak of tan-
talum at E = 160–179 eV. 

The samples were prepared as thin tantalum ribbons
with dimensions 1 × 0.05 × 40 mm3. The ribbons were
thoroughly purified from various impurities, including
oxygen. For this purpose, the samples were heated by
passing alternating electric current, first, in an oxygen
atmosphere at  ≈ 1 × 10–3 Pa and T = 1800 K for
about 60 min and, then, under UHV conditions (P ≈ 1 ×
10–8 Pa) at T = 2700 K for several minutes. After this
pretreatment, the ribbon texture was represented for not
less than 99.5% by the (100)Ta single crystal face.
Examination in a scanning electron microscope showed
that the average grain size on the sample surface
amounts to approximately 10 µm. The surface of ribbon
samples was homogeneous with respect to the electron
work function, which amounted to eϕ = 4.1 eV, being
typical of the (100)Ta face [17]. The samples purified
by annealing as described above exhibited only the
Auger peaks characteristic of pure tantalum. Cooling of
the samples, either at a slow or at a fast rate, did not lead
to the segregation of any impurity at the surface. Sub-
jected to a series of measurements, the ribbon samples
were regenerated by high-temperature (~2400 K)
annealing, after which the initial properties of the sur-
face were fully restored. All the results reported below
were well reproduced after regeneration of the used rib-
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bons and after changing samples. For the calibration
purposes, a tungsten ribbon with the surface exposing
(100) faces was mounted close to the tantalum sample
and subjected to a cleaning and texturing processing as
described in [12]. 

The temperature of ribbon samples was measured
by a micropyrometer. Outside the pyrometry interval,
the temperature was determined by linear extrapolation
of the heating current versus temperature plot. The
accuracy of temperature measurements in the pyrome-
try interval was ±20 K; the temperature homogeneity of
the ribbons was better than ±10 K. 

Oxygen was admitted, from a source employing
thermal decomposition of cesium bichromate, directly
into the working chamber up to a pressure of (1–5) ×
10–6 Pa at T = 300 K. Immediately after the formation
of a submonolayer surface coverage, the working
chamber was evacuated. Under the conditions when no
bulky oxides were formed, all oxygen that diffused into
the bulk of substrate occurred in the form of a solid
solution at a concentration not exceeding 1–0.1 at. %
[9, 18]. A contribution of this bulk oxygen to the Auger
signal intensity was ignored, and it was assumed that
the Auger peak intensity is entirely due to oxygen
atoms adsorbed on the surface. 

3. THE FORMATION 
OF A SURFACE TANTALUM OXIDE 

As is known (see [5–10] and references therein),
exposure of the (100)Ta face to an oxygen atmosphere
at room temperature leads (as well as in the case of the
(100)W surface [18]) to the dissociative adsorption of
oxygen. The AES data indicate that the surface concen-
tration of oxygen on the sample upon gas admission to
the chamber at T = 300 K rapidly increases to satura-
tion. This result coincides with that reported in [7],
where the same system was studied by the flash desorp-
tion technique. 

In order to determine the absolute oxygen concen-
tration on the (100)Ta surface, a surface oxide layer

with an oxygen concentration of  = 9 × 1014 cm–2

was grown by the well-known method [19] on the aux-
iliary tungsten ribbon surface. Then, by comparing
intensities of the Auger peaks of oxygen on the (100)

surfaces of tantalum ( ) and tungsten ( ) ribbons
measured in the same experiment, we could calculate
the absolute oxygen concentration on the (100)Ta sur-
face by the formula 

In these calculations, we ignored the secondary
effects related to dissimilar properties of the two sub-
strates, in particular, to a difference in the high-energy
electron backscattering [20]. This approximation was

NO
W

IO
Ta IO

W

NO
Ta NO

W IO
Ta

IO
W

------.=
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justified by the fact that Ta and W, being neighbors in
the periodic table, possess close densities and atomic
concentrations. 

Upon the adsorption of oxygen to saturation at room
temperature, the working chamber was evacuated and
the system was heated for a short time to 1000 K, after
which the heating current was switched off. After this,
the atomic oxygen concentration on the sample surface

was  = (7 ± 1) × 1014 cm–2. This is higher than the
value reported in [7], where the Ta/O system was stud-
ied by the flash desorption technique and the concentra-
tion of oxygen on the surface saturated at 300 K was
about 4 × 1014 cm–2. It should be noted that this value
was obtained using a complicated procedure requiring
the knowledge of the exact electron-impact ionization
cross sections of Ta atoms and TaO molecules, as well
as of some other technical characteristics of the mass
spectrometer employed. We believe that such a method
provides only an estimate of the oxygen surface cover-
age on tantalum. 

The maximum density of oxygen atoms on the (100)
surface of tantalum, as well as that on (100)W, is some-
what smaller than the surface concentration of metal
atoms NTa = 9.3 × 1014 cm–2. This is probably related to
the fact that the dissociative adsorption requires two
adjacent vacant adsorption sites. For example, on the
(100) face of a bcc metal, these are the surface wells
with a coordination number of four. Upon saturation of
the oxygen adsorption process, the surface still contains
“single” wells surrounded by adsorbed oxygen species.
According to the model adopted, these single wells are
not suited for the adsorption of oxygen. Computer sim-
ulation of the oxygen adsorption, assuming random
incidence of the molecules onto the substrate surface
and the absence of surface migration, shows that 15–
20% of the single centers (wells) remain free when the
adsorption process ceases, in good agreement with
experiment. For convenience, we took the surface oxy-

gen concentration  = 7 × 1014 cm–2 as correspond-
ing to the unit coverage θO = 1 and considered the cor-
responding adsorption state as an oxygen-deficient sur-
face oxide of tantalum. 

4. OXYGEN THERMODESORPTION
FROM TANTALUM SURFACE 

According to the mass spectrometric data reported
in the literature, the thermal desorption of oxygen from
the surface of tantalum is observed only at rather high
temperatures [7]. During this process, oxygen is
removed from the metal surface only as a result of desorp-
tion of TaO molecules [7], in contrast to tungsten, from
which oxygen is desorbed in the form of isolated
atoms [20]. Using the kinetic parameters of oxygen des-
orption [7], namely, the desorption activation energy
Edes = 5.6 eV and preexponential factor τ0 = 2 × 10–12 s

NO
Ta

NO
Ta
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in the Arrhenius equation, it is possible to estimate the
absolute values of the desorption flux. 

The results of our AES measurements fully con-
firmed the above data. We measured the rate of decrease
in the Auger peak of oxygen in the course of high-tem-
perature annealing of the surface oxide formed on the
(100)Ta face. The results of these experiments are pre-
sented in Fig. 1. For example, the complete removal of
oxygen from the surface oxide at T = 2350 K takes
about 60 s. 

In the other series of experiments, a surface oxide
was created on an auxiliary tantalum ribbon with the
properties completely identical to those of the working
substrate. The auxiliary ribbon was placed at a distance
of about 20 mm from the working ribbon, oriented par-
allel to this ribbon, and tilted so that the surfaces of the
two ribbons would make an angle of 45°. Impurities
desorbed from the auxiliary ribbon partly adsorbed on
the working substrate and could be detected by AES.
The desorption of oxygen and tantalum was monitored
by AES using the surface of an auxiliary tungsten rib-
bon. The experimental conditions and procedures are
described in more detail elsewhere [21]. 

It was found that the AES signal of desorbed oxygen
is observed only upon heating the auxiliary ribbon
above 2100 K. The AES signal of tantalum appears
simultaneously and the two signals grow synchro-
nously at all desorption temperatures studied. The coef-
ficient of transfer from one ribbon to another, deter-
mined taking into account their mutual arrangement
and assuming that the desorbed species are distributed
by the cosine law, amounted to about 2.5% (the same
value was obtained in [21]). Using this coefficient, we

40

0 80

Oxygen Auger peak intensity, rel. units

Annealing time, s

80

120

160 240 320

123

Fig. 1. Variation of the oxygen AES signal intensity on the
(100)Ta surface with increasing time of annealing at various
temperatures T = 2250 (1), 2300 (2), and 2350 K (3). The
initial surface concentration of oxygen is NO = 7 × 1014 cm–2.
The Auger spectra were recorded upon rapid (below 1 s)
cooling of a tantalum ribbon down to room temperature
after switching off the heating current. 
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calculated absolute rates of the oxygen desorption from
tantalum in the temperature interval from 2100 to 2400 K,
which showed good agreement with the data reported
in [7]. 

5. THERMAL STABILITY OF SURFACE OXIDE 
ON TANTALUM 

Based on the above data, we concluded that
adsorbed oxygen atoms do not leave the system at tem-
peratures below 2100 K. The method of thermodesorp-
tion spectroscopy employed in [7, 22] is ineffective in
the temperature range from 300 to 2200 K and provides
information only about the amount of desorbed sub-
stance, rather than on the surface concentration. The
conventional AES measurements, performed upon rap-
idly cooling the annealed sample down to room temper-
ature, does not provide information about the high-tem-
perature composition of the adsorbed layer (modified
by fast diffusion processes). A true physical pattern of
processes on the sample surface was revealed only by
measuring the Auger spectra of oxygen immediately on
the heated sample. 

It was found that the AES signal of oxygen remains
unchanged on heating the sample up to T ≈ 1000 K. The
intensity of the AES signal from the tantalum substrate
also remained constant. Attenuated by a factor of 1.1 due
to the layer of adsorbed oxygen, the substrate signal has
proved to be not very informative in this study. 

Heating above 1000 K led to a gradual decrease in
intensity of the Auger peak of oxygen (Fig. 2, curve 1).
The results of measurements performed upon cooling
give the same experimental points as those obtained in
the course of direct heating, which indicates that the
system behavior is completely reversible. No time
delay was observed in variations of the Auger signal of
oxygen at each particular temperature T = const. This
result implies that the oxygen coverage changes very
rapidly in response to the temperature variations. This
is possible only when a diffusion equilibrium takes
place in the whole system: first, between the tantalum
surface and bulk, whereby the flux of oxygen νS1 leav-
ing the surface is equal to the reverse flux ν1S (Fig. 3)
and, second, between any planes inside the metal,
where the inward and outward fluxes of migrating oxy-
gen atoms must be equal. Here, we ignore a possible
difference between the first subsurface layer and the
bulk layers [21], assuming the whole metal volume to
be homogeneous. 

The observed equilibrium is by no means surprising
in view of a small activation energy for the bulk diffu-
sion of oxygen in tantalum (E0 = 1.2 eV [11]) and small
thickness of the ribbons studied. Indeed, using the pub-
lished data on the diffusion coefficient of oxygen in tan-
talum [11] 

,D D0
E0

kT
------– 

 exp 1.9 10 2– 1.2
eV
kT
------– 

 exp×= =
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we can estimate the time required for an oxygen atom
to travel, for example, from the middle to the surface of
the ribbon at less than 1 s for T = 1100–1200 K and less
than 0.1 s for T > 1300 K. 

It should be noted that the equilibrium surface con-
centration of oxygen NS is much greater then the oxy-
gen concentration Ni in any interstitial plane, including
that (N1) in the first subsurface layer responsible for the
escape of atoms from bulk to the surface (Fig 3).
Indeed, for T = 1600 K, the surface coverage is θ = 0.5
(NS = 3.5 × 1014 cm–2), while the density of oxygen
atoms in the first subsurface layer can be estimated as 

Here, m ≈ 3 × 105 is the number of interatomic planes
in the tantalum ribbon studied (we take into account
that oxygen is adsorbed on both sides of the ribbon). A
large difference between NS and N1 is probably indica-
tive of a significant difference in the magnitude of
energy barriers for the oxygen dissolution (ES1) and lib-
eration (E1S) in the O/(100)Ta system. 

If part of the adsorbed oxygen is removed by des-
orption at T > 2300 K, the new equilibrium curves will
be situated below the initial curve 1 in Fig. 2, while pos-
sessing qualitatively the same shape. At T < 1000 K, all
oxygen present in the system will occur on the surface,
which allows the total balance of oxygen atoms to be
calculated as well. 

6. A MODEL FOR CALCULATING 
THE BALANCE OF PARTICLES IN THE SYSTEM 

The surface concentration of oxygen NS(T) at each
particular temperature is experimentally determined by
AES, while the concentration of oxygen atoms in any
interstitial plane can be calculated by the formula 

taking into account that all oxygen at T < 1000 K occurs
on the surface. The total amount of oxygen dissolved in
the volume of a ribbon with a thickness of h = 0.05 mm
(per cm2) is 

Let us analyze the equilibrium curves presented in
Fig 2. Drawing a section along the y axis and determin-
ing the ratio Nbulk/NS at each temperature T = const, we
obtain an important result: the ratio Nbulk/NS is indepen-
dent of the total amount of oxygen in the system
(Nbulk + NS), but strongly depends on the substrate tem-
perature (Fig. 4). This result probably indicates that the
values of barriers for the dissolution (ES1) and liberation
(E1S) of oxygen are independent of the oxygen concen-
tration on the surface and in the bulk of tantalum.

Ni
7 1014 3.5 1014×–×

m/2
------------------------------------------------ 2.3 109 cm 2– .×= =

Ni

NS 300 K( ) NS T 1000 K>( )–
m/2

-----------------------------------------------------------------------,=

Nbulk Nim.=
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Indeed, the oxygen concentration in the bulk of the tan-
talum substrate in the temperature interval from 1000 to
2000 K is lower by 3–4 orders of magnitude than the
limiting concentration nmax of dissolved oxygen in tan-
talum [9]. For example, nmax = 2.1 at. % for T = 1000 K
and nmax = 5.0 at. % for T = 1900 K. 

Let us process the data of Fig. 2 by drawing a sec-
tion parallel to the x axis. In equilibrium, the fluxes of
dissolution (νS1) and liberation (ν1S) are equal and can
be described by the well-known expressions [10]

(1)

νS1 NSCS 1
N1

N1 max
-------------– 

  ES1

kT
--------– 

  ,exp=

ν1S N1C1 1
NS

NS max
-------------– 

  E1S

kT
--------– 

  ,exp=

0.2
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θO, rel. units
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Fig. 2. Temperature dependence of the equilibrium adsorp-
tion coverage of oxygen on (100)Ta for the initial coverage
of θO = 1.0 (1), 0.82 (2), 0.61 (3), 0.38 (4); θO = 1 corre-

sponds to NO = 7 × 1014 cm–2. 

m

Oxygen vS1 v1SNS

(100)Ta

N1

Ni = N1

Bulk

Fig. 3. Schematic diagram showing the cross section of a
tantalum sample with dissolved and adsorbed oxygen atoms. 
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where CS and C1 are the preexponential factors. In our
experiments with small oxygen concentrations on the
surface and in the bulk (far from the limiting values
N1max and NSmax), we can assume that (1 – N1/N1max) ≈ 1
and (1 – NS/NSmax) ≈ 1. 

For νS1 = ν1S, Eqs. (1) can be transformed to 

(2)

Determining the slopes of the straight lines
lnN1/NS = f(1/kT) for each NS = cost, we obtained ∆E =
ES1 – E1S = 0.85 ± 0.05 eV. Then formula (2) yields
C1/CS = 178 ± 20. 

Using the known values of ∆E, C1/CS, and N1 =
Nbulk/m, relation (2) can be written in the following
form: 

(3)

The calculated temperature dependence θ = f(T) agrees
very well with the experimental curve (see the dashed
line in Fig. 2) in the whole temperature interval studied.
This agreement is evidence in favor of validity of the
proposed pattern of diffusion processes in the
O/(100)Ta system and of the estimated energetic and
kinetic parameters.

It is important to note that particular values of the
surface oxygen concentrations NS = f(T) (but not the
physical pattern or energetics of the involved pro-
cesses) must significantly depend on the ribbon thick-
ness h, because a change in the thickness alters the frac-

N1

NS

------
CS

C1
------ ∆E

kT
-------– 

  .exp=

θ 1

1
CSm
2C1
---------- 0.85 eV

kT
-------------------– 

 exp+

----------------------------------------------------------.=
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Fig. 4. Temperature variation of the ratio of oxygen concen-
trations in the bulk (Nbulk = N1m) and on the surface (NS),
representing a y section of curves 1 (d), 2 (×), and 3 (s) in
Fig. 2. 
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tion of the total amount of oxygen dissolved in the sub-
strate. Indeed, for a ribbon thickness of h ~ 0.5 mm
(about ten times greater than the thickness of our sam-
ples) and the same experimental procedure, the equilib-
rium surface coverage at high temperatures will drop by
almost one order of magnitude and the possibility of
surface oxygen determination by AES will become
problematic, although all values of the barriers will
remain the same. 

It is interesting to note that the equilibrium curves of
variation of the surface concentration of impurity in the
O/(100)Ta system are qualitatively the same as those in
the systems C/(100)W [12, 23], C/(100)Mo [13], and
C/(100)Ta [14]. However, the behavior of the curves in
the “carbon” systems is much more complicated,
which, probably, indicates that the energies of dissolu-
tion and liberation depend on the surface and bulk
impurity concentrations. 

7. CONCLUSION 

The ability to “observe” the surface oxygen by AES
immediately on a hot sample surface, with an allow-
ance for the total particle balance in the system, permit-
ted us to study in detail the equilibrium diffusion pro-
cesses between the bulk and the (100) surface of tanta-
lum involving oxygen at the earliest stages of
adsorption. We have determined a difference ∆E of the
energies of dissolution (ES1) and liberation (E1S) for
oxygen in tantalum: ∆E = 0.85 eV. An analytical
expression was derived for the surface coverage of oxy-
gen as a function of the temperature in the interval from
1000 to 2000 K. Probably, similar equilibrium curves
can be observed for the surface of other refractory met-
als capable of dissolving oxygen. 
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Transition from Antiferromagnetic to Ferromagnetic State
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Abstract—The crystal structure and magnetic and elastic properties of the system LaMnO3 + λ are investigated
for various concentrations of oxygen. Upon an increase in the oxygen concentration, the orbital-ordered phase
is transformed into an orbital-disordered phase via a two-phase crystal-structure state in the interval 0.04 < λ <
0.06. The transition is accompanied by a jumplike increase in the Curie temperature and spontaneous magneti-
zation. An analysis of the magnetic properties in weak fields and of the temperature dependence of the Young
modulus reveals the properties typical of the orbital-ordered antiferromagnetic phase up to λ = 0.08. It is pro-
posed that the two-phase state is associated with the martensite type of the orbital order–disorder phase trans-
formation. The system La1 – xSrx(Mn1 – x/2Nbx/2)O3 in which all manganese ions are in the trivalent state exhibits
a sequence of antiferromagnetic–ferromagnetic (x > 0.2) and ferromagnetic–spin glass (x > 0.4) transitions. In
both systems, the orbital-disordered phases are ferromagnetic, indicating the crucial role of orbital ordering in
the formation of magnetic properties. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Lanthanum manganite is the ancestor in the class of
manganites with perovskite structure that exhibit a vari-
ety of phase transformations. The relation between the
magnetic state and electrical conductivity is of special
interest [1, 2]. Considerable attention is paid at present
to weakly doped compounds in which a transition from
the antiferromagnetic state typical of the stoichiometric
LaMnO3 to the ferromagnetic state takes place.
According to the theory of double exchange [3, 4], this
transformation must occur through the formation of a
noncollinear magnetic structure. However, the possibil-
ity of phase separation is indicated in a number of the-
oretical [5, 6] and experimental [7–9] studies. The role
of orbital ordering in the formation of magnetic struc-
ture is of special importance [5, 10–12]. As a rule, the
magnetic state of manganites changes as a result of sub-
stitution of alkali-earth bivalent ions for lanthanide
ions. It has been established, however, that the proper-

ties of lanthanum manganite La O3 + λ can
be varied in a wide range by changing the oxygen con-
centration in the samples [13, 14]. Excess oxygen cre-
ates equal numbers of lanthanum and manganese
vacancies since it was found that oxygen cannot be
implanted in interstitial positions of the closely packed
perovskite structure [15]. Consequently, the realistic
formula looks like La1 – εMn1 – εO3, where ε = λ/(3 + λ).
The emergence of Mn4+ ions leads to a transition from
the antiferromagnetic to the ferromagnetic state, which
was described in the framework of the double exchange
concept. However, the ferromagnetic phase in

Mn1 2λ–
3+ Mn2λ

4+
1063-7761/02/9502- $22.00 © 20300
LaMnO3 + λ is not metallic [16]. Consequently, charge
carriers in this phase are localized as a rule. According
to the model of double exchange, the ferromagnetic
state is realized as a consequence of actual transitions
of charge carriers between manganese ions with differ-
ent valences [3, 4, 16, 17]. For this reason, we studied

the system  in which the
magnetic state changes not as a result of emergence of
manganese ions with different valences, but through the
substitution of pentavalent niobium ions for manganese
ions. Our experiments revealed that the magnetic prop-
erties of LaMnO3 + λ and La1 – xSrx(Mn1 – x/2Nbx/2)O3 are
qualitatively identical.

It should be noted that, in spite of a large number of
publications devoted to lanthanum manganite, the mag-
netic properties of this material are studied insuffi-
ciently in the interval of oxygen concentrations corre-
sponding to the ferromagnetic state. The elastic proper-
ties for various oxygen concentrations are also poorly
studied. For this reason, the aim of this study is to gen-
eralize the available data describing the behavior of lan-
thanum manganite depending on the oxygen concentra-
tion and to carry out additional measurements required
for constructing phase diagrams and for establishing
the origin of phase transformations in LaMnO3 + λ.

2. EXPERIMENT

The compound LaMnO3.08 was synthesized at T =
1500°C in air with subsequent cooling to room temper-
ature at a rate of 50°C/h. The oxygen content was deter-

La1 x–
3+ Srx

2+ Mn1 x/2–
3+ Nbx/2

5+( )O3
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mined using thermogravimetric analysis in the course
of reduction of lanthanum manganite to La2O3 and
MnO. Manganites with various oxygen concentrations
were obtained by reduction of LaMnO3.08 in evacuated
quartz ampoules in the presence of metallic tantalum or
by annealing in oxygen at T = 900°C for 24 h. Solid
solutions of La1 – xSrx(Mn1 – x/2Nbx/2)O3 (0 ≤ x ≤ 0.5)
were synthesized according to the conventional
ceramic technology at T = 1550°C for 2 h. To minimize
the concentration of the tetravalent manganese, pellets
were annealed after synthesis in an argon flow at T =
900°C. The X-ray diffraction analysis was carried out
on the diffractometer DRON-3 in the Kα radiation of
Cr. Magnetic measurements were made on a commer-
cial vibration magnetometer of the Foner type. Electri-
cal conductivity was measured by the four-probe tech-
nique. The contacts were made of indium deposited by
the ultrasonic method. Elastic properties were mea-
sured using the resonance method in the acoustic fre-
quency range on samples having a length of 40–50 mm
and a diameter of 5 mm.

3. RESULTS AND DISCUSSION

Compounds LaMnO3 + λ crystallize in the concen-
tration range 0 ≤ λ ≤ 0.07 in the orthorhombic symme-
try of the GdFeO3 type (space group Pbnm). The sto-
ichiometric perovskite LaMnO3 exhibits the strongest
distortion. The emergence of excess oxygen leads to a
gradual decrease in structural distortions (up to com-
pounds with λ = 0.04) and then to its abrupt decrease
(for 0.05 ≤ λ ≤ 0.07). In the interval 0.05 ≤ λ ≤ 0.07, the

O' orthorhombic symmetry (with  < a < b) is trans-

formed into the O orthorhombic symmetry (a ≈ c  < b).
As in [15, 16], we did not observe superstructural
reflections that could be interpreted in the model of
ordering of vacancies of lanthanum or manganese. In
our opinion, vacancies of cations are distributed over
the lattice at random. It should be noted that, according
to Goodenough [16], O' orthorhombic distortions in
manganites are associated with orbital ordering. The
compound with λ = 0.05 was successfully calculated in
a model according to which it is a mixture of the O' and
O phases (Fig. 1). The obtained result is in accord with
the data obtained in [14]. The orthorhombic distortions
were minimal for a compound with λ = 0.07. The rhom-

bohedral symmetry (space group R c) was detected in
samples with λ ≥ 0.08, the compound with λ = 0.08
being calculated under the assumption that it is a mix-
ture of the orthorhombic and rhombohedral phases.

All samples in the system La1 – xSrx(Mn1 – x/2Nbx/2)O3
were single-phase perovskites in the concentration
range 0 ≤ x ≤ 0.5. The compounds with x = 0 and x = 0.1
possess the O' orthorhombic symmetry, while the com-
pounds with 0.02 ≤ x ≤ 0.05 exhibit O orthorhombic
distortions. However, the magnitude of orthorhombic
distortions is small, indicating unambiguously the

2

2

3
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removal of cooperative orbital ordering. It is well
known [16] that cooperative orbital ordering must be
violated upon a dilution of the system with non-Jahn–
Teller ions in the case of statistical distribution of dif-
ferent types of ions. Superstructural reflections were
not detected in X-ray diffraction analysis. For this rea-
son, we believe that strontium and niobium ions are dis-
tributed over the crystal lattice statistically. As the nio-
bium concentration increased, the unit cell volume
increased insignificantly. This is due to the fact that Sr2+

ion are larger than La3+ ion, while the ionic radius of
Nb5+ ions is slightly smaller than that of Mn3+ ions.
Niobium ion may, in principle, be in the tetravalent
state, but this state is incompatible with the trivalent
state of manganese ions. X-ray diffraction analysis of
the decay product formed after the reduction of the
La1 – xSrx(Mn1 – x/2Nbx/2)O3 samples revealed the pres-
ence of oxides La2O3, MnO, and Nb2O5. Consequently,
the chemical formula of the solid solutions has the form

.

Figure 2 shows the results of investigation of elastic
properties of some samples in the LaMnO3 + λ system.

La1 x–
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Measurements were made in the temperature range
below 800 K. A clearly manifested minimum of the
Young modulus was observed for compounds corre-
sponding to the concentration range 0 ≤ λ ≤ 0.03. The
temperature T0 corresponding to the minimum gradu-
ally decreased upon an increase in the oxygen concen-
tration. For example, in the measurements carried out
in the heating regime, the value of T0 corresponding to
the stoichiometric compound LaMnO3 was 740 K,
while T0 = 660 K for LaMnO3.01. For measurements
made during cooling, the temperature corresponding to
the minimum was shifted towards lower temperatures.
For example, for stoichiometric LaMnO3, the hystere-
sis was 10 K. The temperature hysteresis indicates a
first-order phase transition. For compounds with 0.04 ≤
λ ≤ 0.07, a strongly blurred (on the temperature scale)
minimum of the Young modulus or a kink on the tem-
perature dependence was observed, indicating a grad-
ual phase transformation, which is typical of inhomo-
geneous or two-phase systems. Anomalous behavior of
the curve describing the behavior of the squared reso-
nance frequency was also observed in rhombohedri-
cally distorted manganites. In the compound with λ =
0.08, the Young modulus remains virtually unchanged
in the interval from 270 to 420 K, and then it increases
anomalously with temperature, which may indicate
instability of the crystal structure.
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Fig. 2. Temperature dependence of the squared resonance
frequency (proportional to the Young modulus) for com-
pounds LaMnO3 + λ.
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The minimum of the Young modulus for samples
with λ ≤ 0.03 is due to orbital disordering. This follows
from the fact that temperature T0 in the compound with
λ = 0 coincides with the orbital disordering temperature
determined from neutron diffraction measurements
[18–20]. The temperature variation of the curve
describing the squared resonance frequency in manga-
nites with 0.04 ≤ λ ≤ 0.07 is apparently determined by
a gradual transition from the orbital-ordered phase to
the orbital-disordered one. Such a dependence is possi-
ble for a system containing two phases. The concentra-
tion of one of these phases gradually decreases at the
expense of the increase in the amount of the other
phase. The anomalous behavior of elastic properties of
the orbital-disordered phase with λ = 0.08 can be
explained in two different ways. First, the phase of this
compound is a phase-inhomogeneous system with
competing contributions to lattice dynamics. Second,
the dynamics of orbital transitions in a system of Jahn–
Teller Mn3+ ions changes gradually upon heating; i.e.,
the rate of transitions between different states increases
abruptly with temperature, but the system does not
exhibit any “critical” temperature.

Spontaneous magnetization appears in LaMnO3 at
the Néel temperature TN = 143 K. The transition to the
magnetically ordered state is abrupt, indicating that this
compound is magnetically homogeneous. The sponta-
neous magnetic moment Ms = 0.07µB per Mn3+ ion.
This value is typical of weak ferromagnets. The coer-
cive force at 4.2 K is very large (more than 10 kOe),
indicating a high magnetic anisotropy associated with
orbital ordering and anisotropic nature of exchange
interactions in Mn3+O6 octahedra. In the presence of
extra oxygen, the Néel temperature decreases up to
compounds with λ = 0.04. Figure 3 shows the tempera-
ture variation of magnetization for the LaMnO3 + λ sys-
tem. The dependence obtained during heating after zero
field cooling (ZFC) for a sample with λ = 0.03 has a
peak, while the dependence obtained during heating
after field cooling (FC) exhibits a gradual decrease in
magnetization up to TN = 120 K. Such curves are typical
of hard magnets. A sharp increase in the critical temper-
ature and spontaneous magnetization was observed for
the compound with λ = 0.05 (Fig. 4a). The temperature
of transition to the paramagnetic state is approximately
equal to 160 K. At TN ~ 110 K, the ZFC magnetization
exhibits anomalous behavior. Below this temperature,
magnetic anisotropy increases jumpwise. Anomalous
behavior in the vicinity of TN = 110 K was observed for
all samples in the interval 0.05 ≤ λ ≤ 0.08. Spontaneous
magnetization attained its peak value for the compound
with λ = 0.08 (Fig. 4a); in this case, however, the mag-
netic moment was slightly smaller than the expected
value for complete polarization of all magnetic
moments of tri- and tetravalent manganese ions; i.e., we
can assume that µ(Mn3+) = 4µB and µ(Mn4+) = 3µB. Fur-
ther increase in the concentration of tetravalent manga-
AND THEORETICAL PHYSICS      Vol. 95      No. 2      2002
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nese up to 20% (λ = 0.10) did not lead to a significant
change in the Curie temperature TC.

All compounds in the concentration range 0 ≤ λ ≤
0.10 are semiconductors both above and below the
magnetic ordering temperature. In the vicinity of TC,
we observed a weak anomaly in electrical conductivity
and a peak of magnetoresistance defined by the formula
MR = {[ρ(H = 9 kOe) – ρ(H = 0)]/ρ(H = 0)} × 100%,
which amounted to 30% for the compound with λ =
0.06 in a field H = 10 kOe.

Let us consider the magnetic properties of the sys-
tem La1 – xSrx(Mn1 – x/2Nbx/2)O3. It was mentioned above
that LaMnO3 at T = 5 K is characterized by TN = 143 K
and Ms = 0.07µB per structural unit. For the compound
with x = 0.1, a sharp increase in spontaneous magneti-
zation to Ms = 1.2µB per structural unit was observed
(Fig. 4b) in spite of the fact that the temperature of tran-
sition to the paramagnetic state decreased to 120 K.
Compounds with 0.2 ≤ x ≤ 0.4 possess similar magnetic
properties. The temperature of transition to the para-
magnetic state amounts to 105–120 K, and spontaneous
magnetization at helium temperature is 50–65 A m2/kg.
Figure 5 shows the results of measurements of magne-
tization in a magnetic field of 100 Oe after zero field
cooling (ZFC) and after cooling in a field of 100 Oe
(FC). It can be seen that the values of magnetization
and the critical temperature at which the ZFC and FC
curves diverge for x = 0.5 have become considerably
URNAL OF EXPERIMENTAL AND THEORETICAL PHY
lower (TN = 30 K). The divergence between the ZFC
and FC curves in this case is manifested much more
strongly than for the compound with x = 0.2, indicating
a sharp increase in anisotropy. The magnetization of the
sample with x = 0.5 is comparatively low and does not
attain saturation in fields up to 16 kOe. These facts indi-
cate that the long-range magnetic order is obviously not
realized in a sample with x = 0.5. It should be noted that
a sharp increase in the ZFC magnetization was
observed for perovskites with x = 0.3 and 0.4 upon heat-
ing to 30 K. In all probability, this is due to the presence
of a spin-glass component at low temperatures.

An analysis of the temperature dependence of resis-
tance proved that all the compounds mentioned above
are characterized by an active type of conduction as in
semiconductors. The strongest magnetoresistive effect
was observed in perovskites for 0.2 ≤ x ≤ 0.4, in which
the magnetic state is the closest to the ferromagnetic
state. For a compound with x = 0.3, the magnetoresis-
tance in a field of 9 kOe at T = 80 K approaches a value
of 30% (Fig. 6). Such values of magnetoresistance are
usually observed for manganites with a mixed valence
of manganese ions.

Figure 7 shows the evolution of the magnetic state in
the course of substitution of niobium ions for manga-
nese ions. The basic compound LaMnO3 is a weak fer-
romagnet [16]. The magnetic properties of the com-
pound with x = 0.1 strongly resemble the properties of
SICS      Vol. 95      No. 2      2002
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solid solutions of La1 – xSrxMnO3 in the concentration
range 0.05 ≤ x ≤ 0.07. In accordance with the double
exchange model, a noncollinear magnetic structure
must be realized in La1 – xSrxMnO3 upon weak doping.
However, the sample with niobium ion substitution and
with x = 0.1 does not contain Mn4+ ions; consequently,
double exchange in this sample is insignificant. The
concentration transition in magnetic crystals from the
antiferromagnetic to the ferromagnetic state usually
occurs through the state of spin glass or through a two-
phase state. The properties of the compound with x =
0.1 can be explained using the two-phase model. In
manganites with 0.2 ≤ x ≤ 0.4, the long-range antiferro-
magnetic order is replaced by a long-range ferromag-
netic order. The magnetic moment of these compounds
is slightly smaller than expected for purely ferromag-
netic ordering of magnetic moments; i.e., µ(Mn3+) =
4µB and µ(Mn4+) = 3µB. For example, the calculated
value of the spontaneous magnetic moment of
La0.7Sr0.3(Mn0.85Nb0.15)O3 in the case of ferromagnetic
ordering amounts to 3µB per structural unit, while the
observed value is slightly smaller (2.75µB per structural
unit; see Fig. 4b). Obviously, a part of the manganese
ions in the vicinity of niobium ions are in the para-
magnetic state. In the compound with x = 0.5, the
long-range ferromagnetic order is violated due to a
high concentration of diamagnetic niobium ions. Ferro-
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Fig. 4. Field dependence of magnetization at T = 5 K for com-
pounds (a) LaMnO3 + λ and (b) La1 – xSrx(Mn1 – x/2Nbx/2)O3.
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magnetic clusters freeze at a temperature below 30 K
(see Fig. 5d).

Let us now consider the properties of lanthanum
manganite. It should be noted above all that the removal
of orbital ordering is a phase transition of the martensite
type. In this transition, the shape memory effect and
high plasticity of transformation associated with a rear-
rangement of the ferroelastic domain structure are
observed [21]. The coexistence of orbital-ordered O'
and orbital-disordered O orthorhombic phases was
detected in stoichiometric manganites LnMnO3 (Ln =
La, Pr, Nd) in the temperature interval of phase trans-
formation [14, 22].

In the course of the concentration phase transition
from the O' to O phase, the unit cell parameters become
closer, but the two-phase state can still be detected
using X-ray diffraction methods (see Fig. 1).

The results of NMR studies [7] and neutron diffrac-
tion analysis in a magnetic field [23] indicate the pres-
ence of an inhomogeneous magnetic phase state in
weakly doped manganites. The existence of two mag-
netic phases in such compounds is usually attributed to
the electron phase separation [24]. However, neutron
diffraction and electron microscopic studies of manga-
nites revealed the coexistence of phases with a charac-
teristic size exceeding 1000 Å [25]. The formation of
phases with large volumes during electron phase sepa-
ration is hampered by a strong counteraction of electro-
static forces. In martensite phase transformations of the
orbital order–disorder or charged order–disorder type,
the two-phase state is a natural consequence of the
nature of phase transition and is stabilized by defects
and stress fields. Orbital ordering and magnetic proper-
ties of manganites are obviously interconnected. The
orbital- and charge-ordered state in manganites is anti-
ferromagnetic as a rule, while the orbital-disordered
state is ferromagnetic [26]. Such an approach is in
accord with the theory of superexchange interactions
[26] as well as with the concept of exchange through
charge carriers [3, 4]. According to the model of super-
exchange interactions through oxygen, the exchange
interactions Mn3+–O–Mn3+ and Mn3+–O–Mn4+ are fer-
romagnetic in the case of the dynamic Jahn–Teller
effect, i.e., in the orbital-disordered phase [16, 26]. We
believe that the orbital order–disorder phase transfor-
mation in manganites occurs through a two-phase state
relative to temperature and concentration of the tetrava-
lent manganese ion. A mixed state containing orbital-
ordered and orbital-disordered phases is apparently
realized for 0.05 ≤ λ ≤ 0.08. This statement is also con-
firmed by the results of investigation of magnetic prop-
erties. The antiferromagnetic phase is orbital-ordered,
while the ferromagnetic phase is orbital-disordered.
The magnetic phase diagram of the system LaMnO3 + λ
is shown in Fig. 8. A decrease in the Néel temperature
from 143 to 120 K was observed upon an increase in the
value of λ to 0.04. In our opinion, this is associated with
the emergence of Mn4+ ions. These ions are not of the
AND THEORETICAL PHYSICS      Vol. 95      No. 2      2002
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Fig. 5. Temperature dependences of magnetization for compounds La1 – xSrx(Mn1 – x/2Nbx/2)O3.
Jahn–Teller type and create frustrations of exchange
interactions. In the vicinity of Mn4+ ions, a tendency
to orbital disordering is observed, as a result of
which exchange interactions become ferromagnetic.
The ferromagnetic nature of the exchange interactions
Mn3+–O–Mn3+ in the orbital-disordered phase follows
from the results of investigation of compounds
La1 − xSrx(Mn1 – x/2Nbx/2)O3 (see Figs. 4b and 5) and is
confirmed by the results of analysis of magnetic sus-
ceptibility of the high-temperature orbital-disordered
phase of the stoichiometric compounds LaMnO3 [27].
As a result of doping of lanthanum manganite, Mn4+

ions combine into clusters, and the ferromagnetic phase
is formed subsequently (approximately at λ = 0.04). In
the narrow interval 0.04 ≤ λ ≤ 0.05, the Curie tempera-
ture of the ferromagnetic phase is extremely sensitive to
variation of the concentration of Mn4+ ions. In the
excess oxygen concentration range 0.06 ≤ λ ≤ 0.10, the
Curie temperature remains virtually unchanged. What
is the reason for the anomalies in magnetization near
TN ~ 110 K, which were observed in compounds with
0.05 ≤ λ ≤ 0.08? We consider here the following two
hypotheses. According to the first hypothesis, the
anomalous behavior at 110 K may be due to the forma-
tion of a noncollinear magnetic structure. However, the
results of NMR [7] and neutron diffraction studies in a
magnetic field [23] indicate the presence of two phases
at low temperatures. One of the phases is magnetically
AL OF EXPERIMENTAL AND THEORETICAL PHY
ordered according to the LaMnO3 type, while the other
phase is ferromagnetic. Above TN, exchange frustra-
tions of magnetic bonds disappear, which is manifested
in a decrease in magnetic anisotropy. For this reason,
the second hypothesis, according to which a sample at
a temperature below TN is a mixture of antiferromag-
netic and ferromagnetic phases, appears to us as more
attractive. The chemical compounds in the two phases
are very close, but still differ not only in the magnetic
state but also in the crystal structure. The antiferromag-
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netic phase is orbital-ordered according to the LaMnO3

type, while the ferromagnetic phase has a faster orbital
dynamics. In all probability, the ferromagnetic dielec-
tric phase in manganites is characterized by a short-
range orbital order. This is in accord with the anoma-
lous behavior of the Young modulus in the rhombohe-
dral phase (see Fig. 2).

It is generally accepted that ferromagnetism in
dielectric manganites is associated with double
exchange between tri- and tetravalent manganese ions
[27]. However, the absence of a resistance jump near TC

and the properties of manganites free of Mn4+ ions con-
tradict this statement. It has been proved beyond doubt
that superexchange interaction through oxygen makes a
large contribution to ferromagnetic ordering in manga-
nites. The study of orbital-disordered phase in the sto-
ichiometric LaMnO3 [27] and our results for phases in

0 0.1

T,
 K

x

40

160

0.2 0.3 0.4 0.5

P

SG

A + F80

120

F + P

Fig. 7. Magnetic phase diagram of the system
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La1 – xSrx( )O3 (see Figs. 4b and 5) indi-
cate that the exchange interactions Mn3+–O–Mn3+ may
raise the Curie temperature in manganites to above
200 K. The absence of similarity between the hole-
doped and electron-doped manganites can be attributed
precisely to the ferromagnetic type of the Mn3+–O–
Mn3+ exchange interactions in orbital-disordered man-
ganites. Electron-doped manganites are, as a rule,
charge-ordered antiferromagnetic phases, while hole-
doped manganites are ferromagnets [24, 28]. Antiferro-
magnetic Mn4+–O–Mn4+ superexchange interactions
play a significant role in electron-doped manganites.
Undoubtedly, the Mn3+–O–Mn4+ superexchange inter-
actions in orbital-disordered phases are also of the iso-
tropic ferromagnetic type. Doping with Ru and Cr ions
in electron-doped manganites is in conformity with this
statement [29].
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Abstract—The crystal structure and the magnetic and electric properties of La0.70Ba0.30MnO3 – γ manganite
(0 ≤ γ ≤ 0.30) with a perovskite structure were studied experimentally depending on the concentration of oxy-
gen vacancies. The stoichiometric La0.70Ba0.30MnO3 compound (γ = 0) had cubic unit cell symmetry, which did
not change as oxygen deficiency increased up to γ = 0.30. A decrease in the content of oxygen in the compound
under study caused the occurrence of several sequential magnetic phase transitions in the ground state, from the
ferromagnetic state at γ = 0 through the cluster spin glass state (γ = 0.15) to the antiferromagnetic state (γ = 0.30)
with the presence of a small ferromagnetic component. The specific electric resistance grew to become activa-
tion in character at γ = 0.11, and the metal–semiconductor transition disappeared as oxygen deficiency
increased. The magnetoresistance of anion-deficient compositions included (1) magnetoresistance close to the
temperature of the transition to the magnetically ordered state and (2) low-temperature magnetoresistance. The
magnetoresistance peak at TC disappeared as γ increased (γ = 0.11), whereas the low-temperature magnetore-
sistance component first increased to attain a maximum of about 34% at γ = 0.15 and then decreased. The results
of experimental studies were used to construct a magnetic phase diagram. These results could be interpreted within
the framework of superexchange magnetic ordering theory. The suggestion was made that Mn3+–O–Mn3+ indirect
exchange interactions were positive in the orbitally disordered phase only when manganese was in octahedral
coordination, whereas these interactions became negative if at least one of the Mn3+ ions was five-coordinate
or had a smaller coordination number. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Currently, substituted manganites of rare-earth met-
als with perovskite structures, Ln1 – xDxMnO3, where
Ln is a trivalent rare-earth metal ion and D is a divalent
alkaline-earth ion [1], attract special attention of
researchers in the field of magnetic and magnetoresis-
tance studies. Interest in these compounds stems from
the diversity of physical properties that they exhibit.
Manganites can combine the properties of metals and
dielectric substances, ionic and covalent crystals, and
systems with magnetic, orbital, and charge ordering
and can also experience phase stratification. The diver-
sity of these properties is determined by close interrela-
tion of the orbital, charge, spin, and lattice degrees of
freedom [2].

Manganites with perovskite structures are ther-
modynamically stable phases from the Raddlesden–
Popper family of the general chemical formula
(Ln1 − xDx)n + 1MnnO3n + 1 (n ≥ 1), n = ∞ [3]. The crystal
structure, magnetic, and electric properties of these
compounds were fairly completely studied in the early
1950s [4]. Dutch physicists Jonker and Van Santen dis-
1063-7761/02/9502- $22.00 © 20308
covered an unexpected correlation between conductiv-
ity and magnetization in LaMnO3 caused by the
replacement of lanthanum with Ca2+ ions. In the range
of calcium concentrations 0.20 ≤ x ≤ 0.50, the com-
pound not only became a strong ferromagnet but also
exhibited metallic conduction below the Curie temper-
ature. Strong interest in these compounds, however,
arose much later, in the early 1990s, when the so-called
giant magnetoresistance effect [5, 6] and, especially,
magnetic field-induced metal–semiconductor and
charge order–disorder phase transitions [7] were dis-
covered. The giant magnetoresistance effect is in
essence a sharp decrease in the resistance of substituted
manganites accompanying phase transitions to the fer-
romagnetic state under an applied magnetic field. The
magnetoresistance of manganites is many orders of
magnitude larger than that of multilayer films and gran-
ulated systems, and this effect is observed at room tem-
peratures and in weak magnetic fields [8]. This circum-
stance offers much promise for using manganites in
practical applications.

Currently, interest in manganites is explained not
only by possible technical applications of the giant
002 MAIK “Nauka/Interperiodica”
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magnetoresistance effect but also by the possibility of
using these compounds as very good model objects for
studying the physics of strongly correlated systems. As
mentioned, of particular interest is close correlation
between the orbital, charge, spin, and lattice degrees of
freedom.

The compound most completely studied to date is
LaMnO3. This is an antiferromagnetic semiconductor
with an A-type magnetic structure [9]. The weak ferro-
magnetic component is caused by antisymmetric Dzy-
aloshinski–Moriya exchange. The Néel temperature for
this composition is close to 140 K. Note that the mag-
netic properties of all manganites are determined by
manganese ion spins, because the orbital magnetic
momenta of these ions are “frozen” in the crystal field
of anions. The presence of Mn3+ Jahn–Teller ions with

the  (S = 2) electronic configuration in stoichio-

metric La3+Mn3+  determines O'-orthorhombic
symmetry of its unit cell. The d shell of the Mn3+ ion
octahedrally environed by oxygens splits into a doublet
and a triplet. The triply degenerate t2g level is com-
pletely occupied by three electrons, whereas the doubly
degenerate eg level contains only one electron. Such a
high-spin configuration is caused by strong Hund
exchange coupling, which orients the spins of all elec-

trons in one direction; the  electrons form the S = 3/2

local spin. It is believed that the  electron is localized
on manganese and cannot freely move over the crystal
lattice.

The replacement of La3+, for instance, by Ca2+ ions
formally causes the appearance of Mn4+ ions with the

 (S = 3/2) electronic configuration. At substituent ion
concentrations of x ~ 0.10, the transition from O'-
orthorhombic to O-orthorhombic unit cell symmetry is
observed, which is caused by the removal of static
cooperative Jahn–Teller distortions [10]. At x = 0.20,
spontaneous magnetization and magnetic ordering tem-
perature increase considerably, and the transition to
metallic conduction occurs below TC. It is believed that
the eg electrons are then collectivized and can freely
move over the crystal lattice.

Zener [11] was the first to suggest the so-called dou-
ble exchange mechanism to explain the magnetic and
electric properties of manganites. This model was
developed in more detail in [12]. Double exchange is
based on the actual electron transition from the half-
filled eg orbital of Mn3+ to the free eg orbital of Mn4+.
Such a transition is energetically favorable at a parallel
arrangement of local spins S of the nearest-neighbor
Mn3+ and Mn4+ ions. Ferromagnetic ordering of local
spins increases the probability of eg electron jumps and
facilitates the arising of metallic conduction in the sys-
tem. It follows that double exchange favors ferromag-
netism and the metallic conduction type. Some authors,

t2g
3 eg

1

O3
2–

t2g
3

eg
1

t2g
3
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however, give preference to the superexchange interac-
tion model [13]. This model is based on virtual
exchange of electrons between manganese atoms and
predicts the anisotropic character of their exchange
interactions. Interaction between manganese atoms is
determined by several factors such as the Mn–O bond
length, the Mn–O–Mn bond angle, and the ratio
between the concentrations of manganese ions in dif-
ferent valence states [14]. Note that, according to the
superexchange model, the ferromagnetic order state
does not necessarily correlate with the behavior of elec-
tric conduction. In spite of a wealth of accumulated
data on the properties of manganites, the nature of mag-
netic and electric processes that occur in them remains
poorly understood and is widely discussed.

The mean valence of manganese ions can be
changed by different methods [15]. An analysis of the
literature data shows that, of all the methods for varying
the Mni+/Mnj+ ratio (i, j = 2, 3, and 4), the influence of
oxygen deficiency on the magnetic and electric proper-
ties of substituted manganites has been studied least
completely.

Note that, of all compounds based on 3d transition
metals, manganites provide the best possibilities for
varying oxygen nonstoichiometry. For instance, the
oxygen index value can change in manganites from 2.5
[16] to 3.27 [17]. The degree of nonstoichiometry char-
acteristic of titanates (from 3 to 3.08) and vanadates
(from 3 to 3.05) is much smaller. Deviations from oxy-
gen stoichiometry in chromites and ferrites were not
observed unless their structures were destroyed. Such a
unique behavior of manganites may be a consequence
of substantial changes in the ionic radius of manganese,
much more substantial than with other 3d transition
metals, that accompany changes in its oxidation state
[18]. This circumstance allows oxygen content varia-
tions to be extensively used for varying the Mni+/Mnj+

ratio.
In this work, the object of study was

La0.70Ba0.30MnO3. The electric resistance, magnetiza-
tion, and magnetoresistance effect of anion-deficient
La0.67Ba0.33MnOz were studied in [19]. The specific
resistance of the compound gradually increased as the
content of oxygen z decreased from 2.99 to 2.80, and its
behavior acquired a semiconductor character. Simulta-
neously, the transition temperature to the magnetically
ordered state decreased. A high magnetoresistance
was observed in a wide temperature range for all
samples except that with z = 2.80. The magnetic tran-
sition temperature was, however, measured in a fairly
high (5 kOe) magnetic field, and the structural data
were insufficiently complete. In this work, we per-
formed a detailed study of the crystal structure and the
magnetic and electric properties of anion-deficient
La0.70Ba0.30MnO3 – γ compositions. At the same time, it
should be noted that manganites are fairly sensitive to
the degree of substitution [20], and data on the influ-
ence of oxygen deficiency on the magnetic and electric
SICS      Vol. 95      No. 2      2002
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properties of La0.70Ba0.30MnO3 – γ with 0 ≤ γ ≤ 0.30 are
therefore of obvious interest.

2. EXPERIMENTAL

A ceramic La0.70Ba0.30MnO3 sample was prepared
by the usual ceramic technique. The La2O3 and Mn2O3
oxides and BaCO3 carbonate (of special purity) were
weighed to provide the Ln : Ba : Mn = 0.70 : 0.30 : 1
ratio between the cations and thoroughly mixed. The
mixture was ground in an agate mortar with the addi-
tion of a small amount of ethanol. Lanthanum oxide
was fairly hygroscopic, and La2O3 was calcined in air at
1000°C for 2 h to remove water and carbon dioxide
prior to weighing. The mixture of lanthanum and man-
ganese oxides and barium carbonate obtained in this
way was pressed into a pellet 2 cm in diameter and
1.5 cm high. The pellet was annealed in air at 1100°C
for 2 h and ground. The synthesis was eventually per-
formed in air at 1550°C for 2 h. The chemical reaction
of formation of substituted lanthanum manganite can
be written as

(1)

The sample was placed on a platinum substrate. The
composition with the oxygen content close to stoichio-
metric was prepared by cooling the sample to room
temperature at a rate of 100 K/h. Strongly substituted
compositions (x > 0.30) obtained as described above
are known to contain oxygen in amounts close to sto-
ichiometric [21].

The X-ray diffraction patterns of the sample were
obtained on a DRON-3 diffractometer using chromium
Kα radiation at room temperature in the range of angles
30° ≤ 2θ ≤ 100°. Chromium Kβ radiation was filtered
off by a graphite monochromator. Oxygen contents
were determined thermogravimetrically. According to
our data, the sample synthesized in air had a stoichio-
metric oxygen content.

The reduced La0.70Ba0.30MnO3 – γ compositions (γ =
0.05, 0.11, 0.15, 0.18, 0.20, and 0.30) were obtained in
topotactic reactions. The samples were placed in evac-
uated (P ~ 10–4 Pa) quartz ampules together with a cer-
tain amount of tantalum metal, which was used as an
oxygen absorber. The ampules were held at 900°C for
10 h and then cooled to room temperature at a rate of
100 K/h. The reduction reaction can be described by the
equation

(2)

The contents of oxygen in reduced samples were
determined from weight loss by weighing them prior to
and after reduction. To decrease the relative error of
oxygen content measurements, samples 2–3 g by

0.35La2O3 0.30BaCO3 0.50Mn2O3+ +

La0.70Ba0.30MnOz 0.30CO2↑ .+

La0.70Ba0.30MnO3 2γ/5( )Ta+

La0.70Ba0.30MnO3 γ– γ/5( )Ta2O5.+
JOURNAL OF EXPERIMENTAL
weight were usually placed in a quartz ampule. The
error then did not exceed 0.3%. The reduced samples
were subjected to reoxidation in air at 900°C for 5 h.
The corresponding reaction can be written as

(3)

The content of oxygen in reoxidized samples was
also determined by weighing. Our studies showed that
the accuracy of oxygen index determinations was
±0.01.

Magnetization measurements were performed on an
OI-3001 commercial vibrating-coil magnetometer in
the temperature range 4–400 K. The Curie temperature
was determined as the temperature of a sharp decrease
in magnetization in a fairly weak (100 Oe) magnetic
field. Electric resistance was measured in the tempera-
ture range 77–370 K by the four-point-probe technique
using well-sintered 10 × 2 × 2 mm3 samples without
visible cracks. Magnetoresistance was calculated by
the formula

(4)

where MR is the negative isotropic magnetoresistance
in percent, ρ(H) is the specific electric resistance in a
9 kOe magnetic field, and ρ(0) is the specific resistance
in zero magnetic field. The electric current direction
coincided with that of the longer sample edge. The
magnetic field was applied parallel to the electric cur-
rent in the sample.

The activation energy was calculated by the equa-
tion

(5)

where Eac is the activation energy, kB is the Boltzmann
constant, and ρ is the specific electric resistance.

3. RESULTS

An ideal perovskite unit cell possesses cubic sym-
metry, space group Pm3m. Compounds with cubic per-
ovskite structures are, however, fairly rare. Usually, the
perovskite crystal lattice is distorted (1) because the
cation size does not correspond to the size of the pore it
occupies and (2) as a result of the Jahn–Teller effect. In
case (1), the transition to a free energy minimum is
effected by cooperative rotation of oxygen octahedra.
Rotations about the [100] axis of the initial cubic lattice
produce tetragonal distortions (a = b ≠ c, α = β = γ),
rotations about the [110] axis cause orthorhombic dis-
tortions (a ≠ b ≠ c, α = β = γ), and rotations about the
[111] axis yield rhombohedral distortions (a = b = c,
α = β = γ ≠ 90°). In case (2), distortions arise because
of the removal of degeneracy from the electronic eg lev-
els of Jahn–Teller Mn3+ ions in an octahedral field of
oxygen ions [8].

La0.70Ba0.30MnO3 γ– γ/2( )O2+

La0.70Ba0.30MnO3.

MR %[ ] ρ H( ) ρ 0( )–[ ] /ρ 0( ){ } 100%,×=

Eac 2kB ∂ ρln( )/∂ T 1–( )[ ] ,=
 AND THEORETICAL PHYSICS      Vol. 95      No. 2      2002
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According to the X-ray powder patterns, the synthe-
sized La0.70Ba0.30MnO3 composition had a perovskite
structure with cubic unit cell symmetry. Oxide com-
pounds are known to have perovskite structures if the
Goldschmidt tolerance factor t [22] is in the range
0.82 < t < 1.02. The t value is calculated by the equation

(6)

where 〈r(A)〉, 〈r(B)〉, and 〈r(O)〉  are the mean ionic
radii of ions in the A and B ABO3 perovskite sites and
of oxygen, respectively.

At lower t values, ilmenite structures are formed,
and at higher t values, oxides have calcite or aragonite
structures. The t values for the compositions studied in
this work are listed in the table. The X-ray powder pat-
terns did not contain features indicative of the presence
of some other impurity phases (Fig. 1). The unit cell
symmetry type did not change as oxygen deficiency in
La0.70Ba0.30MnO3 – γ increased up to γ = 0.30. The X-ray
reflections were, however, shifted to smaller angles,
which corresponded to an increase in the unit cell vol-
ume caused by an increase in γ. The unit cell parameters
are listed in the table. The removal of oxygen anions
from the perovskite crystal lattice is accompanied by
several simultaneous processes: (1) vacancies in
anionic sites appear, (2) the coordination number of
cations decreases, and (3) the mean oxidation state of
manganese ions decreases. The first two processes
should cause a decrease in lattice cell parameters, and
the last process should favor their increase. The ionic
radius of Mni+ is known to be larger than that of Mnj+ if
i < j and manganese coordination remains unchanged.
For instance, the radius of Mn3+ ion is 0.645 Å, and that
of Mn4+ is 0.530 Å in the octahedral coordination [23].
The increase in the unit cell volume can therefore be
explained by the transition of manganese ions to a state
with a lower degree of oxidation.

The magnetic properties of the samples were stud-
ied by measuring the temperature dependence of mag-
netization after zero field cooling and after cooling in a
fairly low (100 Oe) field (field cooling) (Fig. 2) and the
field dependence of magnetization at 6 K (Fig. 3). The
stoichiometric La0.70Ba0.30MnO3 compound is a ferro-
magnet with a Curie temperature of 350 K and sponta-
neous magnetic moment value of about 3.6µB per Mn
ion. An increase in the concentration of oxygen vacan-
cies causes the Curie temperature to gradually decrease
to 210 K at γ = 0.11. The spontaneous moment also
decreases to 2.3µB per Mn ion at the same γ value,
which is much lower than the value about 3.92µB for
complete ferromagnetic ordering of manganese spins
expected on the assumption that µ(Mn3+) = 4µB and
µ(Mn4+) = 3µB. The temperature dependences of the
zero-field-cooling and field-cooling magnetizations
insignificantly depend on γ in the range 0 ≤ γ ≤ 0.11.
Such a behavior of magnetization shows that long-

t
r A( )〈 〉 r O( )〈 〉+

2 r B( )〈 〉 r O( )〈 〉+( )
--------------------------------------------------,=
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range ferromagnetic order persists in this composition
range.

A sharp change in the magnetic state occurs in
La0.70Ba0.30MnO2.85; namely, zero-field-cooling magne-
tization increases to a maximum value at 40 K and then

Goldschmidt tolerance factor (t) and unit cell parameters (a and
V) of La0.70Ba0.30MnO3 – γ samples (γ = 0.05, 0.11, 0.15, 0.18,
0.20, and 0.30) calculated on the assumption of cubic symmetry

t, Å a, Å V, Å3

La0.70Ba0.30MnO3 0.9970 3.910 59.79

La0.70Ba0.30MnO2.95 0.9912 3.916 60.04

La0.70Ba0.30MnO2.89 0.9842 3.923 60.38

La0.70Ba0.30MnO2.85 0.9796 3.928 60.61

La0.70Ba0.30MnO2.82 0.9722 3.933 60.84

La0.70Ba0.30MnO2.80 0.9673 3.935 60.93

La0.70Ba0.30MnO2.70 0.9435 3.947 61.51

Note: The ionic radii were taken from [23]: r[La3+(12)] = 1.36 Å,
r[La3+(10)] = 1.27 Å, r[Ba2+(12)] = 1.61 Å, r[Ba2+(10)] =
1.52 Å, r [Mn2+(6)] = 0.90 Å, r [Mn3+(6)] = 0.645 Å,
r[Mn3+(5)] = 0.580 Å, and r[Mn4+(6)] = 0.530 Å.
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Fig. 1. X-ray powder patterns of La0.70Ba0.30MnO3 – γ with
γ = (a) 0, (b) 0.15, and (c) 0.30 at room temperature.
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smoothly decreases to zero, whereas field-cooling
magnetization is constant at low temperatures. The
spontaneous moment value for the composition with
γ = 0.15 is close to 0.3µB per Mn ion. Note that
La0.70Ba0.30MnO2.85 only contains Mn3+ ions. Such a
low spontaneous moment value most likely corresponds
to a nonuniform magnetic state which is a combination of
antiferromagnetically and ferromagnetically ordered clus-
ters. Competition in interaction between these clusters can
lead to the cluster spin glass state [24]. Note also that a
temperature of 40 K is typical of cluster spin glass states
in manganites [25]. This is the Tf temperature of freezing
of cluster magnetic moments.

Similar magnetic properties are characteristic of
samples with 0.15 ≤ γ ≤ 0.30. The region of transition
into the paramagnetic state remains fairly broad. Inter-
estingly, the temperature of the divergence of the zero-
field-cooling and field-cooling curves gradually
increases as γ grows. For instance, this temperature is
60 K for γ = 0.15 and 150 K for γ = 0.30.

The temperature dependences of specific electric
resistance and magnetoresistance for reduced
La0.70Ba0.30MnO3 – γ samples are shown in Fig. 4. The

Fig. 2. Temperature dependences of magnetization after
zero field cooling (ZFC) (open symbols) and after field
cooling (FC) in a 100-Oe field (solid symbols) for
La0.70Ba0.30MnO3 – γ samples with various γ. Arrows indi-
cate critical temperatures of magnetic transitions.
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samples with γ = 0 and γ = 0.05 exhibit the classical
electric resistance behavior characteristic of degenerate
magnetic semiconductors with the metal–semiconduc-
tor transition below TC and have a magnetoresistance
peak, which amounts to 15%. The increase in the mag-

Fig. 3. Applied field dependences of magnetization at 6 K
for La0.70Ba0.30MnO3 – γ samples with various γ.
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γ. The dependences of the logarithm of specific electric
resistance on reciprocal temperature for the same samples
are shown in the inset.
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netoresistance of the stoichiometric sample (γ = 0) as
temperature decreases is likely to be caused by inter-
granule effects, as in other polycrystalline manganites.

The samples with 0.11 ≤ γ ≤ 0.30 show the activa-
tion character of electric resistance, which continu-
ously grows as temperature decreases. Note that the
specific resistance of these samples at low temperatures
is satisfactorily described by the equation lnρ ∝  T–1 (also
see the inset in Fig. 4). The magnetoresistance of sam-
ples with 0.11 ≤ γ ≤ 0.30 correlates with the absence of
any anomalies of electric resistance close to the transi-
tion temperature to the magnetically ordered state.
Below this temperature, magnetoresistance begins to
continuously increase even to liquid nitrogen tempera-
ture and does not show any peak. Increasing γ causes
low-temperature magnetoresistance to first increase to
a maximum of about 34% at γ = 0.15 and then gradually
decrease approximately to 5% at γ = 0.30.

The dependences of magnetoresistance on applied
magnetic field are shown in Fig. 5 for reduced
La0.70Ba0.30MnO3 – γ samples. Measurements were per-
formed at two specially selected temperatures, namely,

–30

–8

M
R

, %

H, kOe

–20

–10

0

–12 –4 0 4 8 12

–10

–15

–5

0

–15

–20

–10

–5

0 γ = 0

γ = 0.05

γ = 0.15

(a)

(b)

(c)

T = 77 K

T = 218 K

T = 342 K

T = 77 K

T = 77 K

Hs = 1.108 kOe

Hs = 1.089 kOe

Hs = 1.207 kOe

Fig. 5. Field dependences of magnetoresistance for
La0.70Ba0.30MnO3 – γ samples with various γ at various tem-
peratures. Arrows indicate the direction of measurements.
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(1) at the temperature corresponding to the magnetore-
sistance peak and (2) at liquid nitrogen temperature.
The figure shows that the field dependence of magne-
toresistance at the peak temperature for the γ = 0 and
0.15 samples is linear and is characterized by a small
hysteresis. The field dependence of magnetoresistance
at 77 K is different. The magnetoresistance then rapidly
increases at low fields and continues to gradually grow
at a very low rate as the field increases. A small hysteresis
is also observed for low-temperature magnetoresistance.
The saturation field approximately equals 1.1 kOe.

The results of measuring the magnetic and electric
properties of reduced La0.70Ba0.30MnO3 – γ samples
allowed us to construct the hypothetical magnetic phase
diagram shown in Fig. 6.

100

0
0.1

γ
0 0.2 0.3

200

300

0

1

2

3

4

0.3

0.2

0.1

0

(b)

(a)

P(I)

Fin(I)

Fin(M) A(I) + Fcl

SG(I)

La0.70Ba0.30MnO3 – γ

T,
 K

M
s, 

µ B
 p

er
 M

n 
io

n

E
ac

, e
V

Fig. 6. (a) Dependences of spontaneous magnetization mea-
sured at 6 K and activation energy determined at 77 K on the
concentration of oxygen vacancies and (b) hypothetical
magnetic phase diagram for La0.70Ba0.30MnO3 – γ. Fin(M)
denotes nonuniform ferromagnetic metallic state, Fin(I) is
the nonuniform ferromagnetic semiconductive state, SG(I)
is the cluster spin glass state with semiconductor-type con-
duction, A(I) + Fcl is the antiferromagnetic state with a
small amount of ferromagnetic clusters, and P(I) is the
semiconducting paramagnet.
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Compounds with γ = 0, 0.05, and 0.11 exhibit a
sharp transition to the paramagnetic state and a gradual
decrease in the temperature of magnetic ordering and in
spontaneous moment as γ increases. Conversely, the
activation energy increases. These compounds can be
treated as nonuniform ferromagnets. The samples with
γ = 0.15, 0.18, 0.20, and 0.30 exhibit properties typical
of cluster spin glasses with a 40 K temperature of freez-
ing of cluster magnetic moments. It is most likely that
a gradual increase in the temperature corresponding to
the beginning of the divergence of the zero-field-cool-
ing and field-cooling curves shows that the Néel tem-
perature of antiferromagnetic interactions, which arise
when the compound is reduced, grows as γ increases.
These compositions are antiferromagnetic matrices
with small amounts of the ferromagnetic phase above
40 K. The sharpest change in the magnetic and electric
properties is observed for the La0.70Ba0.30MnO2.85 com-
pound.

4. DISCUSSION

Substituted manganites with perovskite structures
are of interest for experimentally studying 180° indirect
exchange between manganese cations through oxygen
anions, because direct exchange and 90° indirect
exchange are absent in these compounds [26].

As mentioned, Zener developed a special theory of
indirect exchange interactions through charge carriers
(double exchange theory) to explain the magnetic prop-
erties of substituted manganites. Interactions of this
type are characterized by ferromagnetism and metallic
conduction. Many observations, however, cannot be
explained by double exchange theory [27].

Goodenough formulated the main principles of the
theory of superexchange, which is a special type of
indirect exchange interaction. He suggested that ferro-
magnetism was determined not only by strong double
exchange but also by the special features of exchange
interactions in systems with Mn3+ Jahn–Teller ions.
When static Jahn–Teller distortions are removed, the
orbital configuration of 3d electrons is determined by
the positions of manganese ions; that is, the electronic
configuration and the core vibrational modes should
correlate with each other for Mn3+–O–Mn3+ interac-
tions to become ferromagnetic. This so-called quasi-
static Goodenough hypothesis based on virtual
exchange of electrons between manganese ions pre-
dicts the anisotropic character of their exchange inter-
actions.

According to [13], Mn3+–O–Mn3+ superexchange
interactions are anisotropic in the orbitally ordered
phase [positive in the (001) plane and negative along
the [001] direction] and isotropic in the orbitally disor-
dered state (positive along all directions). Orbital order-
ing is not observed for the La0.70Ba0.30MnO3 stoichio-
metric composition, and Mn3+–O–Mn3+ superexchange
interactions in this compound are therefore positive.
JOURNAL OF EXPERIMENTAL
According to the experimental data reported in [28, 29],
Mn3+–O–Mn3+ superexchange interactions change sign
from positive to negative as the coordination number of
manganese ions decreases. It follows that the antiferro-
magnetic component of exchange interactions should
increase as the concentration of oxygen vacancies
grows. For compounds with 0 ≤ γ ≤ 0.11, this causes a
gradual decrease in the Curie temperature and sponta-
neous magnetic moment without radical changes in the
magnetic state. The γ ≤ 0.15 concentration of oxygen
vacancies appears to be critical: at this concentration,
the volumes of two phases (ferromagnetic and antifer-
romagnetic) become comparable. The system experi-
ences separation into clusters with different magnetic
orders. Competition in interaction between ferromag-
netically and antiferromagnetically ordered clusters
results in the arising of a state of the type of cluster spin
glasses with a 40 K temperature of freezing of cluster
magnetic moments. The presence of the temperature of
the divergence of the zero-field-cooling and field-cool-
ing magnetization curves can be evidence that the tem-
perature of antiferromagnetic phase ordering is lower
than the temperature of ferromagnetic phase ordering.
A gradual increase in the divergence temperature most
likely shows that the volume of the antiferromagnetic
phase continuously increases as the concentration of
oxygen vacancies grows up to γ = 0.30.

The behavior of the electric resistance of reduced
polycrystalline La0.70Ba0.30MnO3 – γ compositions can
be understood taking into account two contributions,
(1) intragranular contribution and (2) the contribution
of intergranular regions (the surface of granules). The
diffusion coefficient of oxygen anions on the surface of
granules is known to be one order of magnitude higher
than that of anions inside granules [30]. Reduction
therefore causes the formation of microregions
depleted of oxygen on the surface of granules. It is also
known that the size of granules decreases as a result of
reduction and their number increases [31]. It follows
that the intergranular contribution should predominate
in reduced samples, which should increase their resis-
tance. The metal–semiconductor transition caused by
the intragranular contribution disappears at a certain γ
value. The higher the concentration of oxygen vacan-
cies, the higher the resistance. The behavior of magne-
toresistance substantiates the predominance of the
intergranular contribution in strongly reduced samples.
The existence of a saturation field is related to a lower
energy of exchange interactions on the surface of gran-
ules; magnetic moments are then oriented in fairly low
fields, which facilitates tunneling of charge carriers
between granules. A further increase in magnetoresis-
tance as the field grows is related to a change in the ori-
entation of magnetic moments inside granules. The
highest magnetoresistance of nonuniform magnetic
systems is observed at low temperatures at which the
degree of magnetic ordering increases.
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5. CONCLUSION

In this work, we performed an experimental study of
the properties of La0.70Ba0.30MnO3 – γ manganites (0 ≤
γ ≤ 0.30) with perovskite structures. The crystal struc-
ture parameters and the magnetic and electric proper-
ties of polycrystalline La0.70Ba0.30MnO3 – γ samples (0 ≤
γ ≤ 0.30) were determined depending on the concentra-
tion of oxygen vacancies. It was found that long-range
ferromagnetic order disappeared and the volume of the
antiferromagnetic phase increased as the concentration
of oxygen vacancies grew. In all probability, competi-
tion between ferromagnetically and antiferromagneti-
cally ordered clusters resulted in the formation of a
cluster spin glass-type state. The data obtained in this
work allowed us to construct a magnetic phase diagram
for La0.70Ba0.30MnO3 – γ depending on the concentration
of oxygen vacancies. The experimental data can be
interpreted within the framework of the theory of indi-
rect superexchange interactions through 180°. Superex-
change Mn3+–O–Mn3+ interactions are anisotropic
[positive in the (001) plane and negative in the [001]
direction] in the orbitally ordered phase and isotropic
(positive in all directions) in the orbitally disordered
phase. The suggestion was made that indirect exchange
Mn3+–O–Mn3+ interactions were positive in the orbit-
ally disordered phase only if manganese ions had an
octahedral environment, whereas exchange interactions
became negative if the coordination number of at least
one of the Mn3+ ions was five or smaller.
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Abstract—The effect of one-electron and many-electron charge-exchange processes involving fast heavy ions
on the formation of tracks in crystals is considered. The proposed model of fluctuations of charge distributions
gives reasonable estimates for the length of defects regions and the distance between defects in discontinuous
tracks. The modified model of a thermal peak predicts the track radius. The validity of the model for explaining
all the properties of formation of discontinuous and continuous tracks is demonstrated by the example of InP
crystals irradiated by 250-MeV xenon ions. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

For fast ions with the kinetic energy E > 1 MeV/au, the
intensity of energy release to the electron subsystem is
103–104 times greater than that to the nuclear sub-
system. The specific energy loss per unit length
(dE/dx)e can be as high as several tens of keV/nm. A
high energy release to the electron subsystem of a solid
enhances the contribution of electronic excitations to
the generation of structural defects and the intense
inelastic sputtering of materials, and induces such spe-
cific effects as the formation of tracks and amorphous
states, local melting, formation of unusual phases
(high-pressure phases, nanotubes, fullerenes), genera-
tion of shock waves, and the destruction of materials
(see, for example, [1, 2]). The most important for appli-
cations (filters, sensors, detectors, elements for nano-
electronics [2]) and interesting scientific result of the
propagation of high-energy ions in solids is the forma-
tion of tracks—macroscopic defects elongated along
the ion trajectory.

In many experimental studies (for example, [3–7])
of formation of tracks upon irradiation of materials by
high-energy ions, along with continuous tracks, dis-
crete discontinuous tracks were observed whose geom-
etry changed from quasi-continuous to bead-shaped
upon penetration of an ion inside a target. These exper-
imental data were interpreted by means of different
mechanisms [5, 8, 9]. The authors of [9] assumed that
tracks were produced predominantly due to the ioniza-
tion of the inner shells of atoms of the medium, which
is accompanied by the intense formation of low-energy
δ electrons. According to [9], the discrete structure of
the tracks is explained by the discrete ionization of the
inner electron shells. Nevertheless, the authors of paper
[9] point out that only a small part of the ion energy can
be released due to ionization of the inner shells of
1063-7761/02/9502- $22.00 © 20316
atoms and assume that the tracks are mainly produced
due to a continuous release of the ion energy to the elec-
tron subsystem of a solid. In addition, they assume that
tracks are not produced in the parts of the ion trajectory
in the target where the inner electron shells are not ion-
ized.

The authors of paper [8] explained the discrete
structure of tracks by the discrete formation of an elec-
tron flux along the ion path caused by the law of con-
servation of momentum. In our opinion, the most fruit-
ful concept was proposed by Dartyge and Sigmund [5],
who suggested that the average number of defects
observed in a track is directly related to fluctuations in
the ionization density rather than to its average value.

2. MECHANISM OF FORMATION
OF DISCONTINUOUS AND CONTINUOUS 

TRACKS

The authors of papers [5, 8, 9] have not considered
the primary processes related to the statistical fluctua-
tions of the charge state of ions moving in a solid due to
the electron stripping and capture. In our opinion, how-
ever, fluctuations of the ion charge state can cause a sig-
nificant change in the energy loss released to the elec-
tron subsystem at certain parts of the ion trajectory. The
role of these processes becomes noticeable when the
energy of the moving ion is close to the energy corre-

sponding to the threshold value  of the mean
energy loss required for the track formation.

Therefore, the discontinuous tracks observed in
experiments can be caused by statistical fluctuations
during charge exchange, when an ion loses one or sev-
eral electrons, and the value of (dE/dx)e becomes
greater, at a certain part of the ion path, than the value

of  required for the track formation. At the

dE/dx( )e
th

dE/dx( )e
th
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initial part of the fast ion path, when (dE/dx)e >

, a continuous track is formed. The mean
path propagated by the ion until a change in its charge
state will determine the length of the defect region in a
discontinuous track and the distance between the
defects. The diameter of the defect or its geometry is
determined by the number of electrons detached per
event. We briefly discussed this idea earlier in papers
[10, 11].

The process of track formation is most often
described by the thermal peak model [12–14].
Although this model qualitatively describes the experi-
mental data, the question remains why the latent heat of
melting is usually not considered. Also, the role of
phonons in the propagation of energy from a highly
excited region and the concept of phonons itself, when
the calculated temperature achieves 2000 K and above,
remain to be discussed. It seems that the plasma
approximation [15, 16] is more adequate.

To consider the problem of formation of continuous
and discontinuous tracks in solids caused be electronic
excitations, it is necessary first to separate two main
processes of the energy dissipation from a strongly
excited region: (i) the relaxation of this region accom-
panied by partial energy transfer to the electron and
atomic subsystems and (ii) partial energy transfer from
the perturbed atomic region to the surrounding matrix
(thermalization of this region).

The first process is substantially determined by the
material type (metal, semiconductor, or dielectric), the
electron concentration in the conduction band (at the
Fermi level), and their mobility; it also depends on the
spectrum of electronic excitations [1, 2, 17]. The
energy transfer from the electron subsystem to the
atomic subsystem also depends on the structural prop-
erties of a material (bulk material, thin film, grain size,
and the concentration of structural defects in polycrys-
tals) [1–3, 18, 19].

The thermalization and structural properties of a
region after its “cooling” depend on the types of mate-
rial and crystal lattice, the matrix structure, the relation
between the volumes of the material in liquid and solid
phases, and the presence of allotropic phases [1, 2, 18,
19].

It is especially important to consider accurately
energy transfer from the excited region around the ion
trajectory in the case of structurally perfect crystals of
metals and narrow-gap semiconductors. Indeed, the
typical time of cooling of an electron plasma in metals
due to the electron heat conduction does not exceed
10−14 s even for plasma temperature of the order of the
Fermi energy EF, when the electron heat conduction is
minimal [16]; therefore, the cooling time of a plasma is
shorter than the typical time of thermal oscillations (of
the order of 10–13 s). Then, during cooling of the elec-
tron plasma, the electrons interact with virtually immo-
bile individual atoms (ions) rather than with collective

dE/dx( )e
th
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atomic oscillations (phonons); i.e., the plasma approxi-
mation will be more realistic. In the presence of grain
boundaries, structural defects, and impurities, the char-
acteristic times of the electron–electron and electron–
phonon relaxation can substantially change [2, 18, 19].

Below, we consider the modified thermal peak
model describing the formation of continuous and dis-
continuous tracks, which includes both processes of
energy dissipation from the initially excited region dis-
cussed above. The model is based on the assumption
that the region surrounding the ion trajectory is a two-
component plasma consisting of electrons and highly
ionized atoms of a target. This approximation is con-
firmed by the initial stage of the penetration of an ion,
which produces a high degree of ionization of target
atoms adjacent to the ion trajectory. The modern theory
of track formation allows one to take into account only
the main factors determining the stages of relaxation
and thermalization of the excited region.

3. STOPPING AND CHARGE-EXCHANGE 
PROCESSES

In the case of penetration of high-energy ions, the
elastic energy losses play a minor role, and more than
90% of the ion energy is lost in inelastic collisions (i.e.,
in collisions with target electrons). This stopping is
described by the Bethe formula [20]

(1)

where Z1, eff is the average effective charge of ions; Z2
and N are the atomic number and atomic density of a
target, respectively; e and m are the electron charge and
mass, respectively; v is the ion velocity; and I is the
average ionization potential of atoms. The numerical
integration of this equation gives the dependence of
(dE/dx)e on the depth x for 250-MeV Xe+ ions (the mid-
dle curve in Fig. 1).

According to the experimental study [4] of the track
formation in InP irradiated by 250-eV Xe+ ions, the
region of formation of a continuous track is character-
ized by high ion energy losses [(dE/dx)e ≥ 14 keV/nm
for depths x ≤ 7 µm], while, in the region without tracks,
the ion energy losses are low [(dE/dx)e ≤ 10 keV/nm
for depths x ≥ 10 µm]. In the intermediate region
7 µm ≤ x ≤ 10 µm, discontinuous discrete tracks
were observed [4].

One of the processes that can lead to the formation
of discontinuous tracks can be fluctuations of the
charge state of moving ions, which is accompanied by
a decrease or an increase in the ion charge by one or
several units (electron capture or stripping, respec-
tively).

To simplify the statistical picture of variations in the
charge distributions of ions over the target thickness,
which is typical for a large ensemble of moving parti-

dE
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e
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2 e4N

mv 2
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I
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cles, we consider the role of such fluctuations relative
to the average effective ion charge in formula (1).
Because the effects of track formation and the real pic-
ture of the track detected by the method of high-resolu-
tion transmission electron microscopy are related to a
single actual ion, such an approach seems to be reason-
able. The statistical nature of the ion distribution over
charges at any depth for the entire flux of particles is
manifested in the scatter of the properties (lengths of
the continuous and discontinuous parts of the track,
their diameters, etc.) of individual tracks relative to the
average characteristics.

It is well known (see, for example, [20–22]) that a
fast ion moving in a solid loses some electrons, so that
its charge can vary from zero to the atomic number Z1
of the ion in the Periodic Table. Due to the loss (cap-
ture) of electrons, this charge does not remain constant
and fluctuates about its average value. Only in the case
of well-channeled ions can their charge state be “fro-
zen” [21, 23–25] because of a low electron density at
the central part of a channel along which the ions are
moving.

The ion charge-exchange processes were described
by several expressions (see, for example, expressions
presented in [21, 22]). The ion beam propagated
through a solid with a sufficient thickness will have the
equilibrium charge distribution

(2)

which is close to a Gaussian and is characterized by two
parameters: the average charge

Fg 2πd2( )
g g0–( )2

2d2
---------------------– ,exp≈

g0 gFg

g

∑=

25

20

15

10

5

0

(dE/dx)e, keV/nm

5 10 15 20
x, µm

Fig. 1. Dependence of the energy loss by 250-MeV xenon
ions on the penetration depth (thick line). The dashed region
corresponds to the possible fluctuations of the dynamic
charge of the ion.
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and the distribution half-width

where g is the ion charge, which can vary from 1 to Z1.
In a broad region of ion velocities, where g0 ≈ (0.3–

0.8)Z1, the value of d is almost independent of v. In the
general case, d is approximately described by the
expression [26]

(3)

where d1 = 0.5 and k = 0.6.
The asymmetry of the experimental distribution (2)

and its width, which exceeds the theoretical value pre-
dicted by expression (2), are mainly caused by many-
electrons losses in one collision.

We will find the average effective ion charge Z1, eff
from the semiempirical expression in [26] and deter-
mine its fluctuations from the Bohr formula [20]:

(4)

where it is assumed for estimates that g0 ≈ Z1, eff (a more
rigorous relation between these quantities is presented
in [27]; σ0 is the cross section for the electron capture
(stripping); v ' = 3.6 × 106 m/s and α = 0.48 are the
model parameters; and v 0 = 2.19 × 106 m/s and a0 ≈
0.053 nm are the Bohr velocity and radius, respectively.
For 250-MeV xenon ions propagating in InP in the
region of a discrete track, these expressions give the
values g0 ≈ 25 and σ0 ≈ 1.8 × 10–17 cm2.

Note that our calculations [27–30] of the distribu-
tions of ions over their penetration paths, taking into
account fluctuations of the charge states, showed that
the depths x at which equilibrium charge distributions
are established are quite large. Thus, x ≈ 0.8 µm for
50-MeV B+ ions in silicon and x = 1 µm for 59-MeV
Ni+ ions in diamond. The depth x decreases with
increasing Z2. Therefore, the average charge of
250-MeV Xe+ ions in InP also will strongly differ from
Z1, eff(E) at the initial part of their trajectory in the crys-
tal, and hence, the energy loss (dE/dx)e of the ion per
unit length will be substantially lower than that pre-
dicted by expression (1). This circumstance can be
responsible for the absence of tracks and weak distortions
in the near-surface region of the crystal (x ≤ 35 nm) and
the presence of discontinuous tracks which we
observed [4, 7, 28] at depths from 35 to 100 nm. The
continuous tracks were observed at depths from 100 nm
to 7 µm. The discontinuous tracks were again observed
at depths 7 µm ≤ x ≤ 10 µm, when the values of (dE/dx)e

become close or smaller than (dE/dx)th. The thickness

d g g0–( )2Fg,
g

∑=

d d1 g0 1 g0/Z1( )k–[ ] ,=

g0 Z1 1
1

Z1
α------ v
v '
----- 

  1/k–
+

k–
,=

σ0 πa0
2 Z1

1/3 Z2
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of these regions for 340-MeV ions increases approxi-
mately proportionally to the ratio of the initial energies
of the ions [28], i.e., η = 340/250 = 1.36.

According to (1), even small variations in the effec-
tive charge can cause fluctuations in the ion energy
losses. For example, the loss (capture) of one electron
results in oscillations of almost 8% of the value of
(dE/dx)e [(gmax/gmin)2 ≈ 1.08, where gmax and gmin are the
ion charge after the charge exchange with the electron
loss or capture, respectively], whereas the loss (cap-
ture) of three electrons causes oscillations amounting to
30%. The dashed region in Fig. 1 shows possible
energy losses when up to two electrons are stripped
(captured). Along with the experimental data available,
these estimates allow us to propose the following
model.

At small distances from the target surface, where the
equilibrium distribution of the ion flux over charges
was not established yet, the energy loss can be lower
than the track-formation threshold. At such depths,
simple point defects and their complexes are formed. It
is known that the crystal surface is an efficient sink for
such defects, which causes a substantial decrease in the
final concentration of structural defects. As the penetra-
tion depth of the ion flux increases, many-electron
charge-exchange processes cause fluctuations of the
average charge when (dE/dx)e > (dE/dx)th (i.e., the
energy losses in a certain part of the ion trajectory
become greater than the threshold track formation
energy losses). The mean free path of an ion in a higher
charge state determines the length of a discontinuous
track. Let us emphasize again that a number of state-
ments of the statistical theory of propagation of the ion
flux in solids are applied to a single ion (i.e., a “statisti-
cally averaged” ion). In the region of a continuous
track, the values of (dE/dx)e considerably exceed
(dE/dx)th. When the energy losses approach the track
formation threshold (they can be associated, for exam-
ple, with melting of a local region), the oscillations of
stopping caused by the charge exchange of ions result
in frequent crossings of this threshold, thereby produc-
ing a discontinuous track. At large depths, such cross-
ings become rare and short in time; i.e., rare and short
defect regions are formed. Note here an important role
of rare head-on or almost head-on elastic collisions of
ions with atoms of the medium, which stimulate
charge-exchange processes accompanied by the loss of
several electrons. At large depths, elastic collisions of
ions with atoms of the medium begin to play a main
role. These processes lead to the formation of usual
structural defects and amorphous regions.

We verified this model by calculating the mean size
of defects in discontinuous tracks. As mentioned above,
their length is equal to the mean free path propagated
by the ion until the next charge exchange. The probabil-
ity of this process at the distance x is calculated from
the expression

p = Nσx,
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where N is the density of target atoms and σ is the total
charge-exchange cross section. Then, the defect length
in a discontinuous track is defined as λ = 1/Nσ. This
value of λ, which takes into account only one-electron
charge-exchange processes, is two to three times
smaller than the size of defects observed in a discontin-
uous track [4, 7, 28]. According to the data reported in
review [22], the relative probability of many-electron
charge-exchange processes for fast ions compared to
one-electron processes is about 60% for the loss (cap-
ture) of two electrons, 40% for three-electron pro-
cesses, 20% for four-electron processes, etc. Many-
electron processes lead to strong fluctuations of energy
losses [see expression (1)]. When two- and three-elec-
tron losses are taken into account, the calculated length
of defects becomes approximately two to three times
larger than that calculated considering only one-elec-
tron processes. This corresponds qualitatively and
quantitatively to the experimental lengths of defect
regions [3, 4, 7, 28].

Note that our theory [27, 29, 30], which describes
the distribution of ions over their paths taking into
account the fluctuations of charge distributions of ions,
provided much better agreement between the theoreti-
cal and experimental distributions of atoms over their
penetration depth in the target compared to conven-
tional calculations neglecting this effect [31]. However,
although the theory gave the distribution widths that
were 1.5–5 times larger than those reported in [31],
these widths were nevertheless always smaller than
experimental widths. Our theory [27, 29, 30] takes into
account only one-electron charge-exchange processes.
It seems that many-electron charge-exchange processes
substantially affect the distribution of high-energy ions
over their paths in a solid. The consideration of many-
electron processes strongly affects the width of the
charge distribution of the ion flux as a function of the
penetration depth in the target.

4. MODEL OF TRACK FORMATION

A particle propagating in a target produces a certain
number of hot electrons. If the particle energy is com-
pletely imparted to atoms, then 250-MeV xenon ions
can melt a cylindrical region of diameter ~25 nm. Nev-
ertheless, some electrons (δ electrons) acquire a kinetic
energy that is sufficient for their departure from the ion
trajectory by large distances. Because the total energy
of such electrons is large, the track formed in this way
will be thin. To take this process into account, one
should know the initial distribution of excited ions.
Free electrons appear in the track region due to inelastic
collisions between an incident particle and target
atoms. The incident particle excites a certain fraction of
electrons in target atoms that are weakly bound to
nuclei. Because the energy Ee of these electrons is
SICS      Vol. 95      No. 2      2002
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much smaller than the energy E of the incident particle
with the mass M1,

we can use the Rutherford formula to describe the
energy imparted to one electron [32]:

(5)

(6)

(7)

where r is the impact parameter of the collision, v  is the
ion velocity, εmax is the maximum energy imparted to
one electron, and ε0 is the dielectric constant.

The maximum distance at which the inelastic colli-
sion of an ion accompanied by energy transfer to elec-
trons takes place is determined by the energy gap of a
semiconductor:

(8)

where εg is the energy gap.
Inelastic collisions can occur at small distances and

depend on the distance between colliding atoms and
ions. Calculations [21] showed that the incident particle
excites in an InP crystal three to five outer-shell elec-
trons, which correspond to all electrons in the outer
shell of In and P atoms. This means that excitation of
any additional electron from a deeper electron shell
requires a much greater energy and, therefore, is
unlikely. Thus, we assume below that target atoms lose
the same number ka of electrons. In this case, the energy
distribution of excited electrons can be found from the
expression

where n(ε) is the energy density of the excited electrons
per unit length of the ion trajectory. By substituting
expression (5), we obtain

(9)

The total energy imparted to electrons is equal to the
energy lost by a particle per unit length

which gives

(10)

Ee max,
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n ε( )dε 2πrkan dr,=

n ε( )
πkanεmax

χ εg ε+( )2
------------------------.=

ε εg+( )n ε( ) εd
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χ dE/dx( )e
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Expression (10) neglects in the first approximation the
contribution of plasmons, i.e., collective plasma excita-
tions in solids, thereby overestimating somewhat the
role of one-particle excitations. This can be corrected
by subtracting from expression (10) for (dE/dx)e the
contribution of plasmons [21], which is calculated from
the expression

where n0 is the number of valence electrons per atom
and vF is the velocity of Fermi electrons.

For the region of discontinuous tracks in InP, when
the energy losses are from 10 to 14 keV/nm, the coeffi-
cient ka = 3–5. This confirms the above assumption that
the target atoms involved in collisions lose all outer-
shell electrons.

The excited electrons have a radial velocity compo-
nent and attempt to leave the excited region around the
ion trajectory. An uncompensated positive charge pro-
duced near the ion trajectory due to the departure of
some electrons from the track region will attract all
electrons. Assuming that this charge is uniformly dis-
tributed inside a cylindrical region of radius r0, we can
write the potential energy of any electron in the estab-
lished electric field in the form

(11)

where ge is the linear charge density in this region, r is
the distance from the ion trajectory, and γε0 is the
dielectric constant of the target.

At first, all the electrons, which have a high energy
and a noticeable transverse energy component (E⊥  =

m /2, where v ⊥  is the electron velocity component
perpendicular to the ion trajectory), go away much fur-
ther from the ion trajectory than electrons with lower
energy. Therefore, any individual electron will be
attracted by an uncompensated charge produced due to
the escape of fast electrons from the region near the ion
trajectory:

(12)

Each fast electron will move from the ion trajectory
until all its kinetic energy is converted to potential
energy. By substituting expressions (12) and (9) into
(11), we obtain the dependence shown in Fig. 2.

Stopped electrons are attracted by a Coulomb force
back to the region of initial excitations. However, the
Coulomb attraction is not sufficient for returning some

dE
dx
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 
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4πγε0
---------------

r/r0( )2 r r0,<
2 r/r0( )ln 1, r r0,>+




=

v ⊥
2

g ε( ) n ε( ) ε.d

ε

εmax

∫=
AND THEORETICAL PHYSICS      Vol. 95      No. 2      2002



FLUCTUATION MECHANISM OF FORMATION OF DISCONTINUOUS TRACKS 321
far removed electrons, which are either captured by
genetic defects (growth defects) or lose their energy,
which was acquired due to the action of a Coulomb
force, during the electron–phonon interaction. Thus, to
separate electrons that are not involved in the track for-
mation, we can introduce a phenomenological energy
Eth, which depends on the properties of the target mate-
rial (density and energy gap Z2), but at the same time is
not a constant for a given material, being dependent on
the value of (dE/dx)e or on the ion velocity when the
values of (dE/dx)e are the same. When ion velocities are
lower (for example, in the case of cluster ions or
fullerene ions), the low-energy electronic excitations
dominate, and almost all excited electrons remain in the
region of localization of a future track.

This energy can be estimated from Fig. 2 as Eth ≈
40 eV for (dE/dx)e = 10 keV/nm and Eth ≈ 50 eV for
(dE/dx)e = 14 keV/nm.

As mentioned above, the introduction of the thresh-
old electron energy results in the fact that a fraction of
energy from the excited region is carried away by fast
electrons and is no longer involved in the formation of

a defect (track) region. The energy  remain-
ing within the track can be obtained by integrating
expression (10) with the upper limit Eth (Fig. 3). It fol-
lows from Fig. 3 that only about half the energy
imparted to the electronic subsystem from the ion is
spent for the track formation, whereas, according to
calculations, about 97–98% of excited electrons remain
within the track. Note that the estimate of the fraction
of energy spent for the track formation is a lower limit
because we did not take the angular distribution of δ
electrons explicitly into account.

dE/dx( )e*

20

0 100

ε, eV

rmax, Å

30

40

50

50 150 200 250 300

1

2

Fig. 2. Relation between the initial energy of an electron
and its maximum distance from the track center at the initial
stage for energy losses 10 (1) and 14 keV/nm (2).
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5. FORMATION OF THE EQUILIBRIUM 
ELECTRONIC DISTRIBUTION

When a small fraction (several percent) of hot elec-
trons leave the track, the remaining electrons are
involved in random motion with frequent collisions.
Because the electronic density is very high (above
1023 cm–3), the characteristic time of these collisions is
very small and does not exceed 10–14 s. Therefore, a
system of free electrons can be described at times
longer than 10–14 s by the Maxwell–Boltzmann distri-
bution [the distribution function has a classical form
because the electron energy is comparatively high (a
few electronvolts)]

(13)

where T is the electron temperature and f00 is a normal-
ization constant. The constant f00 and temperature T can
be determined from the total number Nleft of excited
electrons within the track region and their total energy
Eleft:

(14)

(15)
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Fig. 3. Total energy of electrons remaining in the track
region and involved in the track formation as a function
of the threshold energy Eth for energy losses 10 (1) and
14 keV/nm (2).
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where

(16)

where q(ε, r) is the density of states, f0 is a new normal-
ization constant, and Rmax is the maximum distance
from the ion trajectory at which an electron with energy
Eth can move away. The most important region for the
track formation is located near the ion trajectory; there-
fore, we can neglect the logarithmic part in the potential
energy in Eq. (11):

(17)

(18)

where  is the total number of electrons involved in
the further track formation.

The integration of expressions (14)–(18) shows that,
upon irradiation of InP by 100-MeV xenon ions, the
linear dependence

(19)

between the electron temperature and the average elec-
tron energy is observed, so that the initial temperature
of hot electrons is close to 1.2 eV (14 000 K).

6. HEATING AND MELTING
OF LOCAL REGIONS

In summing the above discussion, note that the tar-
get region adjacent to the fast ion trajectory resembles

q ε r,( ) g0*ε ε ϕ r( )–[ ] 1/2,=
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4πγε0Eth
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  1/2
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4πγε0
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Fig. 4. Dependence of the total energy of the electron gas on
time for energy losses 10 (1) and 14 keV/nm (2).
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a two-component plasma. It consists of highly ionized
target atoms and hot electrons. Nevertheless, the tem-
peratures of these components are substantially differ-
ent, resulting in energy transfer from electrons to
atoms. The energy transfer rate is described by the
expression

(20)

where N is the atomic density of the target, v 1(ε) =

 is the electron velocity, and dσ(E) is the differ-
ential cross section for electron–atom scattering
accompanied by the transfer of energy E. According to
the Rutherford formula [32], we have

(21)

where M2 is the target atom mass, ka is the average
charge of ionized target atoms [see (9)], and ε – ϕ(r) is
the kinetic energy of an electron with the total energy ε.

After substitution of (21) into (20), the rate of
energy transfer to atoms from electrons with a temper-
ature lower than 2 eV will take the form

(22)

where the coefficient µ ≈ 1 × 10–17 eV–1 s–1. Taking into
account (19), we obtain the expression for the total
energy in the electron subsystem as a function of time

(23)

where λ = µ/(2.5Nleft)2 and  is the electron gas
energy at t = 0. This dependence normalized to the unit
path length (dEleft/dx)) of 100-eV xenon ions in InP is
shown in Fig. 4. One can see from this figure that about
5 keV of energy is transferred from electrons to target
atoms during first 10–12 s. The effect of this process on
the target (thermalization of the excited region) can be
studied by using the nonstationary heat conduction
equation

(24)

where C, ρ, ξ, and T are the specific heat, density, heat
conduction, and temperature of the target, respectively,
and dQV/dt is the energy density imparted to atoms.
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The solution of this equation gives the expression
for the temperature at different distances from the ion
trajectory [3, 13]

(25)

Figure 5 shows the dependences T(r, t) taking into
account that all the energy is spent on heating, but no
melting occurs. It would be incorrect in the case of a
real crystal, in which melting occurs after heating up to
1350 K. Nevertheless, in our case, the target need not be
melted. A track can be formed after an addition of a suf-
ficiently large portion of energy after reaching the melt-
ing point. Indeed, this energy addition can cause the
displacement of several nearest atoms, so that the final
structure in the region around the ion trajectory will dif-
fer from the initial one, and the track can be detected
with a high-resolution electron microscope.

Nevertheless, the energy required for the displace-
ment of atoms strongly depends on the radius of a
heated region. The smaller its radius, the greater the
energy required, and one can expect that the tempera-
ture required for the activation of this process will be
substantially higher than 1350 K. Therefore, the values
of T calculated from expression (25) are too small, and
no tracks are formed in the energy loss region where
(dE/dx)e ≤10 keV/nm (Fig. 5a). On the contrary, if the
energy loss reaches approximately 14 keV/nm
(Fig. 5b), the heated region proves to be sufficiently
broad, and the threshold energy for the displacement of
atoms from the equilibrium position can be substan-
tially lower than in the previous case. A temperature
that slightly exceeds the melting temperature will be
sufficient for melting a local quasi-cylindrical region
and track formation at the stage of its sharp cooling.

The results of calculations (Fig. 5b) show that the
track radius can achieve 4–5 nm and more for
(dE/dx)e = 14 keV/nm, in good agreement with experi-
mental data [4, 28] (the diameter of tracks produced by
250-keV xenon ions in InP at depths from 100 nm to
10 µm varied from 7 to 15 nm).

7. CONCLUSIONS

The model that was discussed above describes the
formation of continuous and discontinuous tracks. The
consideration of fluctuations of the charge state of ions,
including many-electron processes, allowed us to cal-
culate the depths in an InP crystal at which discontinu-
ous tracks are formed, as well as linear sizes of defects.
These data are in good agreement with experimental
data.

The radii of continuous and discontinuous tracks
were determined using the plasma approximation,
which assumes that the track region represents a two-
component plasma instead of a heated solid, which was
usually considered in previous papers. Our calculations

T r t,( )
Q/ tdd
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showed that, although only a few percent of fast elec-
trons leave the region of a track being formed, neverthe-
less they carry away almost half the energy released by
the ion to the electron subsystem of the target. In this
case, the rate of energy transfer from the electron sub-
system to the atomic subsystem is substantially higher
than that predicted earlier by the thermal peak model
[3, 12–14] based on the electron–phonon interaction.
For this reason, even half the energy released by the ion
is sufficient for producing changes in the crystal lattice,
which result in the formation of tracks in semiconduc-
tors or metals.
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Abstract—The magnetic field dependence of diffusion thermal electromotive force α22(H) (∇ T || C1) in degen-
erate n-Bi–Sb semiconducting alloys, in which only L electrons participate in transfer phenomena, had a max-
imum at H || C3. The electron relaxation time was determined from the magnetic field value corresponding to
this maximum. The dependences of the electron relaxation time on temperature and the concentration of alloy
components and the dopant (on the concentration of electrons) were used to separate electron relaxation time
components corresponding to scattering by phonons, ionized impurities, and component concentration fluctu-
ations. The latter (“alloy”) mechanism of electron scattering by concentration fluctuations was for the first time
considered for Bi–Sb alloys; its contribution was found to be comparable with those of the other scattering
mechanisms. The obtained relaxation times were used to calculate theoretical magnetic field dependences of
thermal electromotive force and the Nernst–Ettingshausen coefficient. The calculation results were in satisfac-
tory agreement with experiment. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Binary Bi1 – xSbx alloys form a continuous series of
solid solutions with Bi (mBi = 209) and Sb (mSb ≈ 172)
atoms in D3d crystal lattice sites. The differences of the
bismuth and antimony atomic weights and ionic radii
(rBi ≈ 0.62 Å and rSb ≈ 0.74 Å) and of the force con-
stants in the Bi1 – xSbx alloy crystal lattice results in (1)
the formation of local defects, (2) the dependence of the
alloy lattice constant on the concentration of antimony [1],
and (3) rearrangement of the energy spectrum of charge
carriers in alloys depending on the concentration of anti-
mony, from the spectrum corresponding to the semimetal-
lic state (0 ≤ x < 0.07) to that characteristic of the semicon-
ducting state (0.07 < x < 0.22) and then again to a semime-
tallic state spectrum (0.22 < x ≤ 1) [2].

The presence of local defects caused by the differ-
ence of the bismuth and antimony atomic parameters
and by the existence of a fluctuation potential caused by
an irregular arrangement of antimony atoms in alloy
crystal lattice sites results in scattering of charge and
heat carriers, that is, electrons and phonons. The influ-
ence of this scattering in Bi–Sb alloys on phonon ther-
mal conductivity was studied in [3]. Scattering of elec-
trons by the fluctuation potential in Bi–Sb alloys is con-
sidered in this work for the first time.

In transverse magnetic fields, a monotonic depen-
dence of thermal electromotive force (EMF), which
attains a constant value in classically strong magnetic
fields, is observed in semiconductors with isotropic
electronic spectra [4]. Electron scattering by acoustic
phonons or point defects increases the diffusion ther-
1063-7761/02/9502- $22.00 © 20325
mal EMF in transverse magnetic fields in magnitude,
and scattering by ionized impurities decreases it.

A nonmonotonic dependence of thermal EMF in
transverse magnetic fields was for the first time
observed in Bi–Sb semiconducting alloys with L elec-
trons participating in transfer phenomena [5]. Note that
the presence of a thermal EMF maximum in a trans-
verse magnetic field was also observed earlier for bis-
muth samples doped with tellurium, in which L elec-
trons participated in transfer phenomena [6]. At the
same time, the field dependences of thermal EMF of
n-Bi–Sb alloys and n-Bi contained no maxima.

The presence of a maximum in the field dependence
of thermal EMF is explained in [7] by the many-valley
character of the semiconductor and strong anisotropy of
its electron energy spectrum. According to [7], the elec-
tron relaxation time can be determined from the mag-
netic field value corresponding to the maximum of dif-
fusion thermal EMF. This problem is also considered in
this work.

Usually, relaxation time tensor components for
charge carriers in bismuth and Bi–Sb alloys are deter-
mined using specific resistance and magnetoresistance
tensor components [8–13].

Studies of kinetic coefficients in Bi–Sb alloys
showed that the mechanism of electron scattering was
mixed; at low temperatures (T < 10 K), scattering by
ionized impurities and point defects predominated [2,
10], and, at T > 10 K, the predominant mechanism was
scattering by acoustic phonons [10].
002 MAIK “Nauka/Interperiodica”
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Table 1.  Principal parameters of n-Bi1 – xSbx semiconducting alloy samples (0.07 ≤ x ≤ 0.16)

No. x ϕ εgL , meV n, 1017 cm–3 ζ, meV m1/m0, 10–3 m2/m0 m3/m0, 10–3

1 0.07 5.7° 7.5 1.37 18.6 0.91 0.32 1.2

2 0.09 5.55° 11 1.95 19 1.43 0.48 1.74

3 0.12 5.3° 16.4 1.57 15.5 2.42 0.72 2.58

4 0.13 5.14° 19 1.58 14.3 3.1 0.83 3.0

5 0.15 4.97° 22 1.61 13.7 3.86 0.94 3.45

6 0.16 4.88° 23.6 1.71 13.5 4.37 1.0 3.7

Note: Here, x, ϕ, εgL , n, ζ, and mi are the antimony concentration in the alloy, bandgap width in the semiconducting alloy, the electron
concentration in the sample, the chemical potential of electrons in the sample, and the effective masses of electrons in the ellipsoid
at the band bottom in the alloy, respectively.
In this work, we analyze the mechanisms of relax-
ation of L electrons in Bi1 – xSbx semiconducting alloys
(0.07 ≤ x ≤ 0.16). Its results augment and extend the
earlier views on the problem.

2. SAMPLES AND PROCEDURES
FOR MEASUREMENTS

The temperature dependence of thermal EMF α22(0)
(∇ T || C1) in zero field, thermomagnetic effects Q12, 3(H,
T) (∇ T || C1, H || C3), and magnetic field-induced ther-
mal EMF changes ∆α22(H) = α22(H) – α22(0) were mea-
sured for single crystals of Bi1 – xSbx (0.07 ≤ x ≤ 0.16)
semiconducting alloys doped with a donor admixture
(tellurium). The samples were cut out on a unit for elec-
troerosion from the middle of a single crystalline ingot
grown by horizontal zone recrystallization; we used a
modified zone melting procedure with a cooled seed
[14].

The cut out middle part of the ingot was cleaved
along the cleavage (basal) plane, on which an equilat-
eral triangle of cleavage traces along binary axes (C2)
was usually discernible. Cleavage traces along binary
axes in the form of a triangle in the basal plane and the
trigonal axis (C3) normal to the basal plane were used
to cut out samples from the ingot by electroerosion in
the form of rectangular parallelepipeds with faces nor-
mal to the C1, C2, and C3 crystallographic axes. The cut
out samples were etched in a C2H5OH–HNO3 (1 : 1)
solution. The dimensions of the samples for measure-
ments were 3 × 3 × 30 mm3; the longest edge was ori-
ented along the C1 bisector axis. The alloy composition
was determined by X-ray diffraction, and the nonuni-
formity of the concentration of electrons was estimated
by measuring the Hall coefficient along the sample; its
value did not exceed 5%. The conclusion of a low elec-
tron concentration nonuniformity was substantiated by
the presence of quantum oscillations of thermal EMF at
T ≤ 4.2 K. The principal parameters of the samples are
listed in Table 1.

The sample under study with heaters at its ends was
soldered to the bottom of a vacuum chamber (about
JOURNAL OF EXPERIMENTAL 
18 mm in diameter) immersed into a constant-tempera-
ture liquid (helium, hydrogen, or nitrogen). The heater
on the sample at the bottom of the chamber was used to
control the mean temperature of the sample, and the
heater at the opposite end, to create a temperature gra-
dient (∇ T) along the sample. Temperature was mea-
sured at two sample points (lT ≈ 15 mm) at a constant
heat flux by carbon resistance thermometers at 1.5 <
T < 40 K and by copper–constantan thermocouples at
30 < T < 80 K. The thermal EMF of the samples was
measured in a pair with copper, whose thermal EMF
did not exceed 1 µV/K in magnitude in the whole tem-
perature range of our measurements. The experimental
thermal EMF values are given below without the corre-
sponding corrections. Thermomagnetic effects were
measured in magnetic fields 0 ≤ H < 18 kOe at tempera-
tures 1.4 ≤ T < 40 K.

3. EXPERIMENTAL RESULTS

In n-Bi–Sb semiconducting alloys, electron gas in
the region of impurity conduction (T < 40 K) is degen-
erate, and the Fermi surface consists of three electron
ellipsoids with centers at the L Brillouin zone points sit-
uated in the mirror-reflection planes (Fig. 1). One of the
smaller ellipsoid axes coincides with the C2 binary axis
of the crystal. The ellipsoids are rotated about this axis
through small angle ϕ; the ϕ values for the alloys stud-
ied in this work are listed in Table 1. Because of this
rotation, two other ellipsoid axes make angles ϕ with
the C1 and C3 crystallographic axes. The electron ellip-
soids in the alloys are equivalent by crystal symmetry
and have strongly anisotropic effective masses (Table 1),
which are responsible for the nonmonotonic magnetic
field dependence of diffusion thermal EMF.

The thermal EMF changes ∆α22(H) = α22(H) – α22(0)
(∇ T || C1) are shown in Fig. 2 as functions of magnetic
field at H || C3 for Bi1 – xSbx semiconducting alloys with
x = 0.07 and x = 0.13 at various temperatures. The same
dependences at T = 21 K and the theoretical depen-
dences discussed below are plotted in Fig. 3.

The temperature dependence of thermal EMF for
Bi0.93Sb0.07 is shown in Fig. 4. The observed deviations
AND THEORETICAL PHYSICS      Vol. 95      No. 2      2002
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Fig. 2. Field dependences of diffusion thermal EMF changes ∆α22(H) = α22(H) – α22(0) (∇ T || C1) in transverse magnetic field
H || C3 for (a) n-Bi0.93Sb0.07 and (b) n-Bi0.87Sb0.13 semiconducting alloys at various temperatures, (a) at (1) 4.8, (2) 10.6, (3) 12.3,
(4) 15.4, (5) 18.6, (6) 21, (7) 23.2, and (8) 25.1 K and (b) at (1) 9.6, (2) 12.6, (3) 17.2, (4) 18.9, (5) 21, (6) 25.2, (7) 28, and (8) 35.4 K.
Lines given at the ends of curves corresponding to various temperatures correspond to ∆α∞.

Γ

from the linear temperature dependence for α22(0) and
α∞ at T < 18 K are evidence of the predominance of the
phonon thermal EMF component caused by the
entrainment of electrons with phonons. The thermal
EMF linearly depends on temperature at T > 18 K,
which is evidence of the predominance of the diffusion
thermal EMF component. The deviation of the temper-
ature dependence of diffusion thermal EMF from lin-
earity at T > 40 K is related to the transition from the
region of impurity conduction at T < 40 K to intrinsic
conductivity at T > 40 K. Such a transition in the semi-
conducting alloy is caused by a low bandgap width,
which results in thermal injection of electrons from the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
valence band to the conduction band at εg ≈ 2kT. The
injection rate increases as temperature grows. As a
consequence, the concentration of electrons in the
conduction band and the concentration of holes in
the valence band also increase. This results in the
experimentally observed thermal EMF decrease in
magnitude in the region of intrinsic conductivity [α =
(αhσh – αeσe)/(σh + σe), where αe, h and σe, h are the par-
tial thermal EMF and conductivity values, respectively,
for electrons and holes]. Note that such a behavior of
the temperature dependence of thermal EMF is also
characteristic of other alloys. In this work, we study
SICS      Vol. 95      No. 2      2002
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Fig. 3. Experimental and calculated field dependences of diffusion thermal EMF changes ∆α(H) = α(H) – α(0) in transverse mag-
netic field with electron parameters for (a) n-Bi0.93Sb0.07 and (b) n-Bi0.87Sb0.13 alloys: (1) experimental ∆α22(H) (∇ T || C1, H || C3)
curves at T = 21 K, (2) ∆α(H) curves calculated by (7) at T = 21 K with β = (a) 1.33 and (b) 1.04, and (3) straight lines corresponding
to the ∆α∞ values. H1 and H2 are the magnetic fields found from ∆αmax and ∆α22(H2) = ∆α∞, respectively.
transfer phenomena in Bi–Sb alloys in the region of
impurity conduction at T < 40 K.

The ∆α22(H) dependences for the diffusion (T >
18 K) and phonon (T < 10 K) thermal EMFs are shown
in Fig. 2 by curves 5–8 and 1, respectively. The thermal
EMF in the temperature range 10–18 K contains diffu-
sion and phonon components; the corresponding
∆α22(H) dependences are shown by curves 2–4.
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Fig. 4. Temperature dependences of thermal EMF of the n-
Bi0.93Sb0.7 semiconducting alloy (1) in zero magnetic field,
α22(0), at ∇ T || C1 and (2) in a classically strong transverse
magnetic field, α∞, at H || C3. Solid lines pass through the
experimental diffusion thermal EMF values at T > 18 K;
they are extrapolated to T = 0 K.
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According to curves 2–8 (Fig. 2), the diffusion ther-
mal EMF component ∆α22(H) is a nonmonotonic mag-
netic field function, whereas the phonon component
monotonically depends on magnetic field up to quantiz-
ing magnetic fields (curve 1). The maximum observed
in the magnetic field dependence of the diffusion ther-
mal EMF is caused by strong anisotropy of the elec-
tron energy spectrum in alloys and the involvement
of electrons of three equivalent ellipsoids in transfer
phenomena. We have discussed this problem in more
detail in [7].

The diffusion thermal EMF is zero in the absence of
temperature smearing of the Fermi surface. It is only
nonzero in the first approximation with respect to the
ratio between kT and the Fermi energy; that is, it is pro-
portional to the small difference of thermoelectric elec-
tron currents above and below the Fermi surface. The
differential character of diffusion thermal EMF lays
emphasis on the special features of the energy depen-
dence of relaxation time and, if the electron spectrum is
strongly nonparabolic, on the energy dependence of the
effective mass. For this reason, a maximum can appear
under certain conditions in the field dependence of ther-
mal EMF.

Unlike diffusion thermal EMF, phonon thermal
EMF is an integral characteristic, in which the special
features of anisotropy of the electron and phonon spec-
tra and relaxation processes are averaged. It therefore
monotonically depends on magnetic field. In this
respect, phonon thermal EMF is similar to such integral
kinetic coefficients as resistance and the Hall coeffi-
cient, which also monotonically depend on magnetic
field. The phonon entrainment thermal EMF in alloys
with a degenerate electronic spectrum increases in
ND THEORETICAL PHYSICS      Vol. 95      No. 2      2002
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magnitude in a magnetic field (Figs. 2, 4). An analysis
shows that such behavior of thermal EMF can only be
explained by taking into account electronic spectrum
anisotropy.

Note that the behavior of the thermal EMF of Bi–Sb
alloys in a magnetic field allows conclusions to be
drawn as to which of its components, phonon [the
absence of a ∆α22(H) maximum] or diffusion [the pres-
ence of a ∆α22(H) curve maximum], predominates at a
given temperature (see Fig. 2).

4. A THEORY OF ELECTRON RELAXATION

The magnetic field dependence of diffusion thermal
EMF was found by solving the kinetic equation for a
strongly anisotropic nonparabolic dispersion law of L
electrons in Bi–Sb semiconducting alloys within the
framework of the Lax model,

(1)

where εp is the energy of the electron with momentum
p, mi is the effective mass of electrons in the ellipsoid,
and εg is the bandgap width. In solving the kinetic equa-
tion, we restricted ourselves to the isotropic relaxation
time τ approximation for electron scattering. This gave
the following equation for the magnetic field depen-
dence of diffusion thermal EMF at H || C3 [7]:

(2)

where e is the absolute value of the charge of the elec-
tron; ζ is the chemical potential of electrons; Ω =

eH/c  is the cyclotron frequency of electrons,
the same for all three ellipsoids at H || C3; δ = (M1 +
M4)2/4M1M4 is the parameter taking into account
anisotropy of the electron energy spectrum; and Mi =
mi(1 + 2ζ/εg) are the effective masses of electrons at the
Fermi level. Because the ellipsoids make angles ϕ with
the C1 and C3 crystal axes in Bi–Sb alloys, the effective
electron mass along C1 is given by [7]

(3)

The β parameter in (2) appears because of the differen-
tial character of diffusion thermal EMF and is related to
the Fermi energy dependences of relaxation time τ and
effective electron mass M as

(4)
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Equation (2) for n-type semiconductors can be used
to separate out the expressions for diffusion thermal
EMF in both zero and transverse classically strong
magnetic fields, α∞ (Ωτ @ 1), at H || C3 and for diffu-
sion thermal EMF changes in an arbitrary transverse
magnetic field, ∆α(H) = α(H) – α(0), and in a classi-
cally strong magnetic field, ∆α∞ [7]:

(5)

(6)

(7)

(8)

It follows from (7) that only at δ > 2 does the ∆α(H)
function have a maximum at

(9)

For the alloys studied in this work, δ > 2; for instance,
δ = 24.5 for alloys with x = 0.07 and δ = 21.6 for alloys
with x = 0.13.

We compare theoretical formula (7) with the exper-
imental ∆α22(H) dependences at H || C3 to determine
the relaxation time of electrons in alloys by two meth-
ods. First, τ1 can be found by (9) from the magnetic
field H1 value corresponding to the maximum of the
∆α22(H) dependence. In the second method, τ2 is deter-
mined from the magnetic field H2 value in ∆α22(H2) =
∆α∞ by the equation

(10)

obtained from (7). The procedure for determining mag-
netic fields H1 and H2 using the ∆αmax and ∆α∞ values
obtained from the ∆α22(H) dependences is illustrated
by Fig. 3 for the Bi1 – xSbx alloys with x = 0.07 and x =
0.13.

Magnetic fields up to 18 kOe used in our experi-
ments only satisfy the condition of classically strong
magnetic fields (Ωτ @ 1) at low temperatures and do
not satisfy this condition at elevated temperatures. For
this reason, ∆α∞ at elevated temperatures was found by
the Rodo-type extrapolation formula

(11)

The positive term (+1) in the Rodo formula is replaced
by the negative one (−1) in (11) because (11) is applied
in the decreasing region of the ∆α22(H) field depen-
dence (Fig. 2), to the right of the maximum. The lines
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in Fig. 2 separately drawn to the right of the family of
∆α22(H) curves correspond to ∆α∞ values in classically
strong magnetic fields at various temperatures.

Electrons are scattered in semiconductors by
phonons and impurities. We have

(12)

Impurity scattering of electrons in Bi–Sb semiconduct-
ing alloys is the sum of scattering by ionized impurities
and “alloy” scattering (see below),

(13)

When electrons are scattered on ionized impurities, the
relaxation time can rigorously be calculated only for an
isotropic parabolic potential [4],

(14)

where C1 is the coefficient determined by the charge of
impurity particles and crystal permittivity, and Nion is
the concentration of ionized impurities, which equals
the concentration of electrons. For an anisotropic elec-
tron spectrum, the action of the collision operator on
the nonequilibrium current distribution function cannot
be represented in the form of the product of this func-
tion and the inverse relaxation time. Nevertheless, let us
introduce the electron relaxation time for scattering by
ionized impurities in form (14), where m3 in the numer-
ator will be replaced by m1m2m3, and m2 in the denom-
inator, by m1m3. The denominator in (14) is the density
of electron states with energy εp,

(15)

Equation (15) gives the density of electron states in one
ellipsoid. The denominator in (14) is determined by the
Coulomb interaction matrix element between an elec-
tron and a charged impurity atom.

Consider another electron scattering mechanism in
Bi–Sb semiconducting alloys. Bi1 – xSbx (0 ≤ x ≤ 1)
alloys form a continuous series of solid solutions, in
which antimony atoms (mSb = 121.76) replace Bi atoms
(mBi = 209). The concentrations of component atoms
experience fluctuations in alloys because of a statistical
distribution of atoms, which results in the formation of
a fluctuating potential, by which electrons are scattered
(“alloy” scattering). Note that this scattering mecha-
nism in Bi–Sb alloys has not been considered as thor-
oughly as was done in [15] for Ge–Si semiconducting
solid solutions and in [16] for PbTe-based solid solu-
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tions. The authors of [15, 16] were the first to analyze
the contribution of alloy scattering to the mobility of
electrons in solid solutions. For this scattering mecha-
nism, the relaxation time is given by the formula

(16)

where θ is the angle between the initial p and final p'
electron momenta. Alloy component concentration
fluctuations give the usual x(1 – x) dependence, which
shows that the alloy scattering is absent in pure sub-
stances. The U(r) atomic potential is short-range [15],
which allows us to ignore the dependence of the Up – p'
matrix element on its argument, that is, p – p' can be set
equal to zero. The term with cosθ then also vanishes,
and the relaxation time is only determined by the depar-
ture terms in the kinetic equation. Eventually, the

1/  value is proportional to the density of electron
states given by (15),

(17)

(for the alloys under consideration, ρ(ζ) ≈ 1031 erg–1 cm–3).
This relaxation time describes electron transitions
caused by alloy scattering within one valley. Alloy scat-
tering can, however, cause electron transitions between
equivalent valleys. For such a transition,
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electron momenta are counted from the center of the
initial valley. The p0 momentum far exceeds p and p'.
We will therefore only leave momentum p0 in the argu-

ment of the matrix element. Then, 1/  takes a form

similar to 1/ , namely,
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smaller than unity. The total electron relaxation time for
alloy scattering is

(20)

Here, the C2 coefficient is determined by the short-
range potential value and N is the number of equivalent
valleys (N = 3 in the problem under consideration).
Therefore,

(21)

Note that the alloy scattering mechanism is absent in
classic many-valley semiconductors such as Ge and Si.
Intervalley scattering of electrons in these semiconduc-
tors is therefore effected, for instance, by short-wave
phonons [17].

Next consider electron–phonon interaction. Let the
inverse electron relaxation time for electron–phonon
scattering be written in the elastic approximation

(22)

where Cq is the electron–phonon interaction constant
(q = p – p'), ϑ  is the angle between the p and p'
momenta, and Nq is the Planck equilibrium distribution
function for phonons. At temperatures exceeding the
Debye electron temperature, T > Θe (for the electronic
ellipsoid in the alloys under consideration, Θmin ≈ 1 K ≤
Θe ≤ Θmax ≈ 20 K), the number of phonons is large, and
the Planck distribution function transforms into the
Rayleigh function

where ωq is the phonon frequency. In (22), only the
term proportional to temperature is retained. The |Cq |2
and Nq values for isotropic deformation interaction
between electrons and longitudinal acoustic phonons
are proportional to q and 1/q, respectively; that is, the
resulting |Cq |2Nq matrix element does not depend on
the momentum, as with electron scattering by a point
potential. After averaging over momenta p', the term
containing cosϑ  vanishes. The remaining expression is
proportional to the density of states of electrons with
energy εp, and its energy dependence coincides with
dependence (20) for alloy scattering.

We have four deformation potential components for
bismuth and Bi–Sb alloys, and electron–phonon inter-
action is not isotropic. The energy dependence of the
inverse electron relaxation time is, for this reason, dif-
ficult to calculate for different acoustic phonon spec-

1
τalloy
---------- 1

τalloy
1( )----------

N 1–

τalloy
2( )-------------+=

=  C2x 1 x–( ) 1
2εp

εg

--------+ 
  m1m2m3εp 1

εp

εg

----+ 
  .

1
τalloy
----------

1 2ξ+

τalloy
1( )---------------.=

1
τph
------

2π
"

------ p'3d

2π"( )3
----------------- Cp p'–

2∫=

× 2Np p'– 1+( ) 1 ϑcos–( )δ εp εp'–( ),

Nq kT /"ωq,=
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trum branches and for an anisotropic electronic spec-
trum. An important result for the inverse electron relax-
ation time related to scattering by phonons at T > Θe is,
however, its linear temperature dependence.

As we consider a degenerate electron gas, Eqs. (2),
(7), (9), and (10) contain τ values for the energy equal
to the Fermi energy. We ignore small corrections
related to temperature smearing of the Fermi distribu-
tion function.

The electron relaxation time in alloys depends on
temperature; the doping tellurium admixture concen-
tration, which coincides with the concentration of elec-
trons; and the concentrations of alloy component
atoms. The temperature dependence of the total elec-
tron relaxation time is only determined by electron–
phonon scattering (22). Scattering by ionized impuri-
ties (14) contains a direct dependence on the concentra-
tion of impurity particles, but there is also an apprecia-
ble indirect dependence. Indeed, electron concentration
n depends on the chemical potential,

(23)

All three terms of the total inverse relaxation time
indirectly depend on the concentration of electrons.
The dependence on the concentrations of alloy compo-
nents is equally complex. In addition to the direct
dependence of alloy scattering (20) on the concentra-
tions of alloy components, there is a noticeable indirect
dependence contained in the dependences of the effec-
tive masses on the bandgap width, which, in turn,
depends on antimony concentration x [2, 5]. It follows
that each of the three terms of the total electron relax-
ation time in a certain way depends on the concentra-
tions of antimony and bismuth in the alloy. The inverse
relaxation time for each of the electron scattering
mechanisms was separated out in treating theoretical
formulas (14) and (20) taking into account both direct
and indirect dependences on n and x.

5. THE DETERMINATION OF ELECTRON 
RELAXATION TIMES FROM EXPERIMENT

Our goal was to separate out electron relaxation
time components corresponding to different scattering
mechanisms, which would allow us to determine coef-
ficients Ci in (14) and (20) for the inverse relaxation
time related to electron scattering by ionized impurities
and by bismuth and antimony concentration fluctua-
tions.

The experimental ∆α22(H) curves obtained for
Bi1 − xSbx (0.07 ≤ x ≤ 0.16) semiconducting alloys at
various temperatures were used to determine electron
relaxation times τ1 and τ2 by (9) and (10). The charac-
teristic magnetic field dependences of the diffusion
thermal EMF, ∆α22(H), measured at 21 K and the H1
and H2 magnetic field values determined from ∆αmax

n
1

π2
"

3
----------- m1m2m3 2ζ 1 ζ

εg

----+ 
  3

.=
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Fig. 5. Temperature dependences of inverse electron relaxation times (1) 1/τ1 and (2) 1/τ2 for (a) n-Bi0.93Sb0.07 and
(b) n-Bi0.87Sb0.13 semiconducting alloys found from diffusion thermal EMF in a magnetic field by (9) and (10). The dependences
are linearly extrapolated to T = 0 K.
and ∆α∞ are shown in Fig. 3. The electron relaxation
times obtained for the alloys studied in this work at dif-
ferent temperatures were used to plot the temperature
dependences of 1/τ1 and 1/τ2. These dependences are
shown in Fig. 5 for the x = 0.07 and 0.13 alloys. They
were approximated by linear temperature dependences
because of the presence of electron–phonon scattering.
The difference of the 1/τ1 and 1/τ2 values can be a con-
sequence of the inadequacy of the model that we use, in
which the action of the integral scattering operator on
the electron distribution function is replaced by the
product of the inverse relaxation time and this distribu-
tion function. Strictly mathematically, this cannot be
done, and solutions to the integral equation should be
found. At the same time, the closeness of the 1/τ1 and
1/τ2 values and their identical temperature behaviors
show that the model of isotropic relaxation time gives
fairly good results for the alloys under consideration.

The slope of these straight lines equals the inverse
relaxation time component related to electron scatter-
JOURNAL OF EXPERIMENTAL 
ing by phonons, 1/τph, and the y intercept (T = 0 K) cor-
responds to electron scattering by impurities, 1/τim. The
obtained electron relaxation time components for all
Bi–Sb compositions are listed in Table 2.

The 1/τim value includes electron scattering by ion-
ized impurities (14) and alloy scattering (20). To deter-
mine these inverse relaxation time components, 1/τion
and 1/τalloy, we introduced new variables y and Z, which
included both direct and indirect antimony concentra-
tion x and electron concentration n effects,

(24)

(25)

where

(26)

(27)

y x 1 x–( )b/a,=

Z 1/τ ima,=

a
m1m2m3ζ 1 ζ /εg+( ) 1 2ζ /εg+( )n

m1m3ζ
2 1 ζ /εg+( )2

-----------------------------------------------------------------------------------,=

b m1m2m3ζ 1 ζ /εg+( ) 1 2ζ /εg+( ).=
Table 2.  Electron relaxation times in n-Bi1 – xSbx semiconducting alloys (0.07 ≤ x ≤ 0.16)

No. τ, 10–12 s
(T = 21 K)

τph, 10–12 s
(T = 21 K) τim, 10–12 s τion, 10–11 s τalloy, 10–11 s

1 4.4 9.9 7.5 1.3 1.8
2 3.4 8 5.8 1.1 1.2
3 3.5 7.8 5.6 1.2 1
4 2.7 6.2 5 1.2 0.87
5 2.7 6.6 4.5 1.2 0.7
6 2.4 5.9 4.2 1.2 0.64

Note: Here, τ, τph, τim, τion, and τalloy are the total electron relaxation time and its components corresponding to electron scattering by
acoustic phonons, impurity particles, ionized impurity particles, and fluctuations of alloy component concentrations, respectively.
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Equations (14) and (20) written in terms of these vari-
ables take the form

(28)

where coefficients C1 and C2, as in (14) and (20), char-
acterize scattering of electrons by ionized impurities
and alloy component concentration fluctuations,
respectively.

The inverse electron relaxation times related to scat-
tering by impurity particles, 1/τim, which were obtained
for the Bi1 – xSbx alloys (0.07 ≤ x ≤ 0.16), were used to
calculate the Z and y variables by (24)–(28), plot the
Z(y) dependence, and approximate this dependence by
a linear function (Fig. 6). Such an approximation was
possible because of fairly small x values (x ≤ 0.16). Two
straight lines in Fig. 6 correspond to two procedures
used to determine relaxation times [τ1 by (9) and τ2 by
(10)]. The slope of these lines gave the mean C2 value,
which characterized alloy scattering, and the z intercept
at y = 0 gave the mean C1 coefficient value, which char-
acterized electron scattering by ionized impurities in
the alloys. The alloys were doped with a 10–3 at. % Te
donor admixture and had an electron concentration of
approximately 1.5 × 1017 cm–3. The mean coefficient
values were C1 = 1.75 × 10–43 g2 cm6 s–4 and C2 = 1.65 ×
1061 g–2 cm–1. These coefficients and the values of x, n,
and the other parameters of the Bi–Sb samples (see
Table 1) were used to determine the τion and τalloy relax-
ation times listed in Table 2.

The antimony concentration x dependences of the
total electron relaxation time and its components are
plotted in Fig. 7 (curves 1 and 2–4, respectively). These
components are the inverse relaxation times corre-
sponding to electron scattering by acoustic phonons at
T = 21 K (curve 2), by alloy component concentration
fluctuations (curve 3), and by ionized impurities (curve 4).
The antimony concentration dependence of the inverse
relaxation time related to electron scattering by acous-
tic phonons is well extrapolated by a linear function
(curve 2). The y intercept of the corresponding straight
line (x = 0) gives the inverse relaxation time 1/τph =
5 × 1010 s–1, which corresponds to bismuth electrons.
The predominant mechanism of electron scattering in
pure bismuth is intravalley scattering by acoustic
phonons (e.g., see [9, 18, 19]). The relaxation time
components for bismuth electrons were determined in
[8] as functions of temperature (4.2–15.7 K). The
extrapolation of these temperature dependences of the
components of the tensor of inverse relaxation times
toward higher temperatures gives 1/τie (i = 1, 2, 3) at
T = 21 K; their mean value is 1/τe = 1/(∏iτie)1/3 ≈ 6 ×
1010 s–1. The 1/τph ≈ 5 × 1010 s–1value obtained for pure

bismuth by extrapolating the (x) dependence to x =
0 closely agrees with the value reported in [8]. The lin-

ear (x) dependence in alloys with the concentration

Z C2y C1,+=

τph
1–

τph
1–
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of electrons n ≈ 1.5 × 1017 cm–3 (T = 21 K) is described
by the equation

(29)

Equation (29) can be used to find 1/τph at temperatures
T > Θe,

(30)

1/τph s 1–[ ] 7.3 1011x 5 1010.×+×=

1/τph s 1–[ ] 3.48 1010x× 2.38 109×+( )T .=

1

2

6

5

4

3

2

1
0 0.5 1.0 1.5

Z, 10–43 g2 cm6 s–4

y, 10–104 g4 cm7 s– 4

Fig. 6. Dependences of Z (25) on y (24) for n-Bi1 – xSbx
semiconducting alloys (0.07 ≤ x ≤ 0.16) and linear extrapo-
lation of the results to y = 0. Here, (1) Z ∝  1/τ1im and (2) Z ∝
1/τ2im in accordance with two procedures for determining
relaxation times in alloys by (9) and (10).
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Fig. 7. Dependences of inverse electron relaxation time on
antimony concentration in n-Bi1 – xSbx alloys (0.07 ≤ x ≤
0.16) and linear extrapolation of the results to x = 0. (1)
Total electron inverse relaxation time in alloys 1/τ and its
components corresponding to electron scattering (2) by acous-
tic phonons 1/τph, (3) by fluctuations of Bi and Sb concentra-
tions in alloys 1/τalloy, and (4) by ionized impurities 1/τion.
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The data on the antimony concentration x depen-
dence of the inverse relaxation time component related
to alloy electron scattering (straight line 3 in Fig. 7) can
be linearly extrapolated at x ≤ 0.16. For the samples
under consideration, this dependence is described by
the equation

(31)

For Bi1 – xSbx semiconducting alloys, the 1/τalloy compo-
nent of the inverse relaxation time can be found by (20)
using the C2 = 1.65 × 1061 g–2 cm–1 coefficient and the
x, mi, εg, and ζ parameter values.

The inverse relaxation time component related to
scattering by ionized impurity particles is on average a
constant value for the alloys under consideration,
1/τion = 8.5 × 1010 s–1 (Fig. 7, straight line 4). The 1/τion
value depends on the degree of alloy doping and can be
estimated by (25) and (28), 1/τion = C1a, using the C1 =
1.75 × 10–43 g2 cm6 s–4 coefficient.

The determination of the components of the inverse
electron relaxation time allows the total inverse elec-
tron relaxation time to be estimated,

Calculations of the components of the inverse relax-
ation time corresponding to electron scattering by ion-
ized impurities, Eqs. (25) and (28), and fluctuations of
alloy component concentrations, Eq. (20), as functions
of Fermi energy (electron concentration) performed for
the alloys under consideration allow the following con-
clusion to be drawn. At low temperatures (T ≤ 4.2 K),
electrons present in alloys in an n < 1016 cm–3 concen-
tration are predominantly scattered by ionized impuri-
ties, whereas alloy scattering becomes predominant at
n > 1017 cm–3.

Shubnikov–de Haas quantum oscillations in
Bi1 − xSbx (0.1 < x < 0.16) semiconducting alloys were
measured in [11, 12, 20] under the conditions of strong
uniaxial deformation. This caused the electron energy
spectrum to transform from three- to one-valley when
the sample was compressed along the C1 bisector axis
and to two-valley when the sample was compressed
along the C2 binary axis.

Electron scattering by impurities at low tempera-
tures causes broadening of Landau quantum levels in
semiconductors. As a result, the amplitude of quantum
oscillations in a magnetic field exponentially decreases.
Theoretically, such a decrease is described by introduc-
ing the Dingle effective temperature TD = h/2πkτD,
where τD is the characteristic electron relaxation time
[21, 22].

The authors of [11, 12, 20] observed a five- to six-
fold decrease in the Dingle temperature under strong
uniaxial deformation of Bi–Sb semiconducting alloys.
They explained this decrease by switching off of inter-
valley alloy electron scattering, which they believed to

1/τalloy s 1–[ ] 9.1 1011x.×=

1/τ 1/τph 1/τalloy 1/τ ion.+ +=
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essentially predominate over the total impurity intraval-
ley scattering. In these works, the role played by alloy
scattering in Bi–Sb alloys was taken into account, but
only for intervalley scattering. The neglect of intraval-
ley alloy scattering was, however, groundless because
of the universal relation between intravalley and inter-
valley scattering [Eq. (21)], which is a consequence of
the unified nature of alloy scattering phenomena. For
this reason, complete overflow of all electrons into one
ellipsoid having the lowest energy, that is, complete
switching off of intervalley scattering, decreases alloy
scattering 1 + 2ξ times. In addition, determining the
total change in alloy scattering requires taking into
account changes in the density of states at the Fermi
level: as the total concentration of electrons remains
unchanged, redistribution of electrons from three val-
leys into one changes the chemical potential value. The
ratio between the changed and initial chemical poten-
tial values is determined precisely by this condition of
a constant electron concentration. It is important to
know deformation-induced changes in εg and mi.
Assuming these values to remain unchanged allows us
to determine the changed chemical potential and the
changed density of states at the Fermi level. After
deformation, the inverse relaxation time corresponding
to alloy scattering equals

(32)

where ζ is the chemical potential of electrons in the

alloy prior to deformation. If ξ is small, the 1/
value can even be larger than 1/τalloy. For instance, for

alloys with x = 0.07 and 0.13, we have 1/  ≈ 1/τalloy

at ξ = 0.5 and 1/  ≈ 0.75/τalloy at ξ = 1.

In our view, substantial changes in TD under uniaxial
deformation observed in [11, 12, 20] cannot be
explained by switching off of intervalley scattering if
we assume that the εg and mi parameters remain
unchanged.

Consider the influence of various scattering mecha-
nisms contained in coefficient β on the thermal EMF
and the Nernst–Ettingshausen coefficient [7]. The β
value can be written in the form

(33)

The last term is determined by the energy dependence
of the effective mass for nonparabolic spectrum (4),

1

τalloy
3( )----------

31/3 εg
2 4 32/3ζ εg ζ+( )×+

τalloy 1 2ξ+( ) εg 2ζ+( )
---------------------------------------------------------------,=

τalloy
3( )

τalloy
3( )

τalloy
3( )

β β1
τ

τalloy
---------- β2

τ
τ ion
------- β3

τ
τph
------ 2ζ

εg 2ζ+
-----------------.+ +–=

d Mln
d ζln
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2ζ
εg 2ζ+
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Fig. 8. Magnetic field dependences of the Nernst–Ettingshausen coefficient Q12, 3 (∇ T || C1, H || C3) for (a) n-Bi0.93Sb0.07 and
(b) n-Bi0.87Sb0.13 semiconducting alloys at T = 21 K: (1) experimental dependences and (2) dependences calculated by (36) with
β = (a) 1.33 and (b) 1.04.
According to (4), we can calculate coefficients β1 and
β2 corresponding to the alloy scattering mechanism and
electron scattering by ionized impurities,

(34)

(35)

The equation for β2 is determined by dependence (14)
valid for scattering of electrons with an isotropic spec-
trum by ionized impurities. Adopting the hypothesis
that we can use this dependence also for electrons with
an anisotropic spectrum can introduce an error into the
β2 value.

In the model of isotropic interactions between elec-
trons and longitudinal phonons, we have β3 = β1. This
model is, however, insufficient for treating bismuth and
Bi–Sb alloys. In these alloys, the experimental β value
is always positive, in our view, because of a substantial
contribution of the alloy mechanism of electron scatter-
ing. The α22(0) value, thermal EMF (5) in the absence
of a magnetic field, is expressed through β. If β3 was
calculated theoretically, like β1 (34) and β2 (35), we
would be able to use (5) for determining α(0) as a func-
tion of temperature.

Calculations of α(0) with β3 set equal to β1 give poor
agreement with experiment. In our view, the reason for
this is the inapplicability of the model of isotropic elec-
tron–phonon scattering to Bi–Sb alloys, that is, the ine-
quality of β3 to β1. The β coefficient can be found from
the experimental diffusion thermal EMF values in zero
magnetic field, α22(0), with the use of (5) or from diffu-

β1

εg
2 8ζεg 8ζ2+ +

2 εg ζ+( ) εg 2ζ+( )
--------------------------------------------,=

β2

3εg
2 8ζεg 8ζ2+ +

2 εg ζ+( ) εg 2ζ+( )
--------------------------------------------.=
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sion thermal EMF changes in a classically strong mag-
netic field, ∆α∞, with the use of (8). The β value found
from the experimental data allowed us to calculate the
∆α(H) magnetic field dependence by (7). These calcu-
lations use the mean electron relaxation time τ deter-
mined by (9) and (10) following the procedure
described above. The calculated ∆α(H) curves for
alloys with x = 0.07, β = 1.33 and x = 0.13, β = 1.04 are
shown in Figs. 3a and 3b, respectively; these β values
were found from the experimental data.

The last term in (33), 2ζ/(εg + 2ζ) = dlnM/dlnζ,
amounts to about 60% of the experimental β values for
the alloys under consideration. It follows that the sub-
stantial positive contribution to β is not related to elec-
tron scattering mechanisms but is determined by the
nonparabolic character of the electron energy spectrum.

We measured the Nernst–Ettingshausen coefficient
for the alloys studied. This coefficient changes sign at
about T = 10 K as temperature varies. The Nernst–
Ettingshausen coefficient is positive at low and negative
at high temperatures [7]. At low temperatures, Nernst–
Ettingshausen coefficient Q, like thermal EMF, is deter-
mined by the entrainment of electrons with phonons. In
the absence of phonon entrainment (T > 10 K), the
equation for Q obtained with the use of the same model
as with diffusion thermal EMF has the form [7]

(36)

Equation (36) contains the same β coefficient as that
present in (2). The relation between diffusion thermal
EMF growth in a magnetic field and the negative sign
of Q, which are determined by the mechanism of elec-
tron scattering [7], is substantiated experimentally.

Q
π2k2Tβ

6ζ
------------------

M1 M4+( )τ
M1M4c δ Ω2τ2+( )
--------------------------------------------.–=
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Although the Nernst–Ettingshausen coefficient is dif-
ferential, which manifests itself by the presence of
coefficient β in (36), its magnetic field dependence is
monotonic, as distinguished from the magnetic field
dependence of thermal EMF. The experimental results
obtained for alloys with x = 0.07 and 0.13 at T = 21 K
and the results of calculations by (36) with the use of
the averaged τ values found above from the ∆α(H)
dependence are shown in Fig. 8. The calculated ∆α(H)
curves obtained using the averaged electron relaxation
time are shown in Fig. 3. The behavior of the calculated
∆α(H) curves is on the whole similar to that of the
experimental curves, but quantitative discrepancies are
observed near curve maxima. These deviations of the
calculation results from the experimental data on both
∆α(H) and Q can be explained by drawbacks of the
model, which replaces the action of the collision oper-
ator on the nonequilibrium electron distribution func-
tion by the product of this function and the isotropic
relaxation time. We nevertheless believe that the relax-
ation times determined in this work correctly reproduce
the order of magnitude of the collision operator.

6. CONCLUSION

Note that nonmonotonic magnetic field depen-
dences of diffusion thermal EMF observed in semicon-
ducting alloys can not only be qualitatively explained
but also be used to analyze the electron relaxation
mechanisms at various temperatures and concentra-
tions of alloy components and doping admixture atoms
(electron concentrations). In n-Bi–Sb alloys with a
strongly anisotropic electron energy spectrum, an
increase in diffusion thermal EMF in a magnetic field
and the negative sign of the Nernst–Ettingshausen coef-
ficient observed experimentally at T > 18 K and the pre-
dominance of the alloy and electron–phonon scattering
mechanisms over electron scattering by ionized impu-
rities are in agreement with a similar behavior of diffu-
sion thermal EMF in a magnetic field and the negative
sign of Nernst–Ettingshausen coefficients characteris-
tic of degenerate semiconductors with isotropic elec-
tronic spectra [4].

The analysis performed in this work showed that
alloy electron scattering is comparable in magnitude
with the usual mechanism of electron scattering by
acoustic phonons and ionized impurities. We think that
alloy scattering should necessarily be taken into
account in studying kinetic phenomena not only in Bi–
Sb alloys but also in other solid solutions.
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Abstract—It is found that the temperature dependence of the intensity of Bragg maxima arising upon diffrac-
tion of low-energy electrons elastically reflected from the (100) plane of a nickel crystal exhibits a critical sin-
gularity in the neighborhood of the Curie point. A theory is suggested which describes this effect as the scatter-
ing of incident electrons from critical fluctuations of magnetic moment. A comparison is made of the experi-
mentally and theoretically obtained temperature dependences of the intensity of magnetic scattering of
electrons, for both three- and two-dimensional models of magnetic ordering. For these models, the radius of
interatomic spin-exchange interaction is estimated. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is known that anomalous temperature depen-
dences are observed for the scattering cross sections of
X-rays, light, and neutrons in the vicinity of the point of
phase transition [1–5]. Such anomalies in the neighbor-
hood of the Curie point TC exhibit some physical prop-
erties of ferromagnets, such as electric, emission, struc-
tural, optical, and galvanomagnetic properties [6]. All
of these effects turn out to be associated with critical
fluctuations of the order parameter, which arise in the
vicinity of the point of phase transition. However, in the
case of low-energy electrons scattered by magnets, the
question of critical scattering remained open. To a con-
siderable degree, this was due to the imperfection of the
previously employed experimental procedures. As a
result, the scattering of low-energy electron beams in
the immediate vicinity of TC was not studied in detail
(see, for example, [7]). Attention to this phenomenon
was given only by Mroz et al. [8] in studying the tem-
perature dependence of the intensity Ihk(T) of scattering
of elastically reflected electrons from the nickel sur-
face. They pointed out that an abrupt increase in the
spread of experimental data is observed in the neigh-
borhood of TC. For a fairly large deviation from TC, the
dependence Ihk(T) is described by the Debye–Waller
factor. The results of detailed investigation of this phe-
nomenon using an ingenious experimental procedure
have led one to conclude that, in the vicinity of TC, the
intensity of elastically scattered slow electrons exhibits
an anomalous behavior [9]. As was noted in [10], this
feature arises most probably as a result of critical fluc-
tuations of magnetic moment. Further investigations of
this phenomenon performed by us have revealed that
the observed singularity in the behavior of the scatter-
ing intensity of low-energy electrons by magnets
indeed corresponds to the critical scattering of low-
1063-7761/02/9502- $22.00 © 20337
energy electrons by magnets. It is believed that this
inference may be quite important, because the effect of
critical electron scattering could serve as a basis for
developing a new and more perfect method for the
investigation of magnetic phase transitions. Such an
approach based on detection and registration of elec-
tron current would make it possible to determine the
critical exponents and other parameters of magnetic
phase transitions with a much higher degree of accu-
racy and reliability than in the cases of X-rays and neu-
tron scattering.

It is the objective of this study, first, to use the tem-
perature dependences of the intensity of Bragg maxima
of specular reflection to experimentally investigate the
effect of critical scattering of low-energy electrons
from the (100) plane of a nickel crystal and, second, to
use numerical calculations for comparison of the theo-
retically and experimentally obtained temperature
dependences of scattering intensity.

2. EXPERIMENT

The experiments were performed using a DME-
EOS high-vacuum electron spectrometer with photo-
metric recording of diffraction reflections. The residual
gas pressure in the working chamber did not exceed
10−8 Pa. We investigated a cylinder-shaped single crys-
tal of nickel 9 mm in diameter and 2.5 mm thick, ori-
ented along the (100) face. Thanks to the etching by Ar+

ions with simultaneous and subsequent high-tempera-
ture annealing and to the monitoring of the chemical
composition and surface structure of the sample being
investigated (both after cleaning and in the course of
experiment) by means of Auger electron spectroscopy
and slow-electron diffraction, the investigations could
be performed on an atomically clean surface.
002 MAIK “Nauka/Interperiodica”



 

338

        

VASIL’EV 

 

et al

 

.

                                                                     
1

2 3

4

5

6

×1.52

1

8

6

4

2

0 100 200 300 400 500
E0, eV

I00, rel. units

Fig. 1. The intensity of specular reflection as a function of
the energy of primary electrons for a crystal of nickel in the
(100) plane. Curve 1 was obtained at room temperature, and
curve 2, at 1200 K (the values given here are 1.5 times less
than the observed values). The arrows indicate Bragg peaks,
and the numerals indicate their diffraction order n.
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Fig. 2. The experimentally obtained temperature depen-
dence of the intensity of a Bragg maximum with the energy
E0 = 183 eV and n = 4 (curve 1) and various results of its
treatment (see Section 4). Curve 5 describes the temperature
dependence of critical magnetic scattering of electrons
obtained as a result of treatment.
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The diffraction pattern observed at room tempera-
ture for the cleaned (100) surface of nickel exhibited a
bodylike symmetry characteristic of the unrecon-
structed (100) face of an fcc crystal. The atomic struc-
ture of the sample surface at temperatures from 300 to
1200 K remained unvaried. The temperature was mea-
sured by a Chromel–Alumel thermocouple welded
directly to the sample surface. The measurement accu-
racy was ±2 K. The primary beam current was 20 µA,
and the primary electron energy E0 varied in the range
from 20 to 600 eV. The accuracy of measuring the
energy E0 was approximately 2% of its value. The dif-
fraction pattern was observed using a quasi-spherical
four-grid energy analyzer with the grid diameter of
110 mm and a collector screen coated with ZnS lumi-
nophor.

In order to eliminate the effect of “parasitic light”
from a heated sample, the procedure of modulation of
the diffraction pattern was used with subsequent extrac-
tion of useful signal [10]. The modulation was per-
formed by applying an ac voltage to the control elec-
trode of a slow-electron gun. A photometer was used to
convert the intensity of the selected diffraction reflec-
tion to an ac electric signal delivered to the input of a
narrow-band selective amplifier tuned to the frequency
ω. A synchronous detector improving the signal-to-
noise ratio was connected to the amplifier input. The
optimal mode of modulation was selected by measur-
ing the current–voltage characteristics from the control
electrode and selecting linear portions on them. The dc
bias voltage was 3 V, and the ac bias voltage, 6 V; the
working frequency ω = 22 Hz. The modulation proce-
dure was also used for self-tuning of the diffraction
reflection to the intensity maximum, because its energy
position was affected by the thermal expansion of the
sample crystal lattice. In the case of investigations
using the method of slow-electron diffraction, the prin-
cipal experimental objective was the photometering of
the energy or temperature dependences of the intensity
of the selected hk reflection. In this case, the tempera-
ture dependence of reflection was continuously
recorded in the process of cooling off of a sample
heated to T = 1200 K. This made possible the elimina-
tion of the effect of the magnetic field of the heating
spiral on the correctness of the experiment.

The energy dependence of the intensity of specular
reflection for nickel oriented along the (100) plane is
given in Fig. 1. Curve 1 was obtained at room tempera-
ture, and curve 2, at T = 1200 K. The arrows in Fig. 1
indicate Bragg maxima which have the diffraction
order n. The energy of these maxima (in eV) is defined
by the Wulf–Bragg relation [11],

(1)

where ϑ  is the incidence angle of primary electrons rel-
ative to the normal to the surface, which was taken to be
12°. On analyzing Eq. (1) for different diffraction
orders, one can determine the interplane distance d and

E0n 37.6/ ϑcos
2( ) n/d( )2 V0/ ϑ ,cos

2
–=
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internal potential V0 of the face being investigated. As a
result, it was found that, for nickel in the (100) plane,
the best agreement with the experimental data is
reached when d = 1.763 Å and V0 = 16.9 eV.

We have experimentally recorded the temperature
dependence of the intensity of a Bragg maximum with
the energy E0 = 183 eV and n = 4, and the respective
results are given in Fig. 2 (curve 1). One can see in the
figure that this dependence is nonmonotonic in the
neighborhood of the Curie point of nickel (TC = 631 K).
A similar effect caused by the critical scattering of slow
electrons in the vicinity of TC was observed for Bragg
maxima with n = 2, 3, and 5. For higher diffraction
orders, this feature could not be registered because of
the low intensity of the diffracted wave. The choice of
the fourth maximum was defined by the maximal inten-
sity of this peak. This made possible the recording of
the effect of critical scattering of slow electrons with
the least signal-to-noise ratio.

3. THEORY

3.1. Case of Three-Dimensional Magnetic Ordering

It is known that low-energy electrons interacting
with crystal atoms experience a fairly strong scattering.
As a result, the depth of penetration of such electrons
into a crystal is relatively small, of the order of several
nanometers. Therefore, the physical properties of the
crystal surface may have a considerable effect on the
diffraction of slow electrons, which must apparently
occur in the case of a magnetically ordered surface.
Under conditions of ferromagnetic ordering of the sur-
face and adjacent layers, it is of special interest to inves-
tigate the processes of slow-electron scattering at tem-
peratures close to TC. This is associated with the fact
that critical fluctuations of the magnetic moment arise
in the neighborhood of the Curie point. It is natural to
assume that such fluctuations will have a significant
effect on the pattern of scattering of low-energy elec-
trons by magnets. However, it appears quite difficult to
perform a direct investigation, both theoretical and
experimental, of critical fluctuations in the crystal sur-
face region. Therefore, for simplicity, we will ignore
the effect of the crystal boundary on critical fluctua-
tions and assume that a phase transition both in the sur-
face region and in the bulk of the crystal occurs at one
and the same temperature T = TC. In fact, this assump-
tion makes it possible to ignore the relatively minor
variation of the value of magnetic moment associated
with the presence of a surface. At the same time, one
can use this approach to determine critical fluctuations
in the entire crystal, including those in the surface
region. Note further that, according to the approach
suggested by Mills [12], the critical fluctuations in the
crystal surface region were in fact ignored. As a result,
in treating the critical state of low-energy electrons by
the magnet surface alone, Mills has concluded that, in
this case, no anomalous feature is present in the behav-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ior of scattering intensity in the vicinity of TC. This con-
clusion is not at all surprising because Mills [12] did
not take into account the critical fluctuations in the sur-
face region, while it was these fluctuations that could
cause the critical scattering of slow electrons.

We will demonstrate that, within the suggested
approach, a maximum in the temperature range of T ≈
TC is indeed observed in the intensity of scattering of
quasi-elastically reflected electrons due to spin-
exchange interaction of these electrons with crystal
electrons. For simplicity, we will use the kinematic
scattering theory; this theory is known to be quite valid
for describing diffuse electron scattering. As a result,
the following expression may be derived for the mag-
netic component of intensity of diffuse electron scatter-
ing I(k) averaged over spin fluctuations:

(2)

Here, k = k1 – k0 is the scattering vector lying on the
Ewald sphere, and k0 and k1 are the wave vectors of
incident and diffracted waves, with |k0| = |k1| because of

the quasi-elastic pattern of scattering;  and Rn denote
the spin operators and the coordinate of the nth atom;
the angular brackets indicate the quantum-statistical
averaging; κ ≡ κ(E0) is the coefficient allowing for the
layer-by-layer absorption of electrons, where E0 is the
incident electron energy; and d is the lattice constant
along the axis z directed normally to the surface. In
expression (2), the quantities Jn, n' describe the
exchange interaction between incident electrons and
atomic spins. A further line of reasoning does not
depend on the concrete values of their parameters.
Therefore, we will assume the quantities Jn, n' to be pre-
assigned and will not perform the calculation of this
coefficient, which is a fairly complicated problem in the
general case. (For some particular cases, the relevant
calculation is described in [3, 13].)

We will expand the spin correlation function

〈 | 〉 in terms of wave vectors in reciprocal space,

(3)

where N is the number of atoms in the crystal. In view
of the statistical pattern of spin fluctuations, one can
demonstrate that, after averaging, only diagonal terms
are retained in Eq. (3) for the correlator of spin fluctua-
tions in reciprocal space, i.e.,

I k( ) I k( )〈 〉≡ Jn n', Sn
+ Sn'

–〈 〉
n n',
∑=

× ik Rn Rn'–( ){ } κ d nz nz'+( )–{ } .expexp

Sn
±

Sn
+ Sn'

–

Sn
+ Sn'

–〈 〉

=  
1
N
---- iqRn iqRn'–{ } S+ q( ) S– q1( )〈 〉 ,exp

q q1,
∑

S+ q( ) S– q1( )〈 〉 χ q( )∆ q q1–( ).=
SICS      Vol. 95      No. 2      2002



340 VASIL’EV et al.
We will use the simplest expression given in [14] for
describing the behavior of χ(q) in the fluctuation region
in the neighborhood of TC,

(4)

Here, the critical radius of fluctuations is rc = /|τ|ν;

τ = (T – TC)/TC;  denotes some constants character-
izing the radius of interatomic spin-exchange interac-
tion (the values with ± relate to the regions of T > TC

and T < TC, respectively); ν, γ, and η0 are critical expo-
nents: ν = 1/2, γ = 1, and η0 = 0 in the Landau model;
ν ≈ 0.630, γ ≈ 1.241, and η0 ≈ 0.04 in the scale-invariant
theory for a three-dimensional system with one order
parameter (3D Ising model), and ν ≈ 1, γ ≈ 7/4, and
η0 ≈ 1/4 for the 2D Ising model [15]; and Γ± denotes
dimensional coefficients independent of temperature.
Note that, with this definition of the spin correlator, one
can further include the critical fluctuations of the mag-
netic moment on the crystal surface region.

Then, assuming that the quantity Jn, n' is the same for
all atoms, with due regard for Eqs. (3) and (4), we will
derive the following expression for the intensity of
magnetic diffuse scattering of electrons averaged over
spin fluctuations:

(5)

Expression (5) may be simplified if the crystal is
assumed to be infinite along the direction parallel to the
surface ((xy plane) and semi-infinite along the direction
perpendicular to the surface (z axis). In view of this, the
summation in the xy plane yields

(6)

where rn = (xn, yn), k||, q||, and t are components parallel
to the surface of the vectors Rn, k, and q and of the
reciprocal lattice vector g, respectively, and N|| (N|| 
∞) is the number of atoms along the surface. It is clear
that the delta function in Eq. (6) describes the two-
dimensional Bragg conditions of diffraction which, in
the case of t = 0 (i.e., under conditions of specular
reflection), have the form q|| = k||. It is this case that will
be treated below. As a result, in view of Eq. (6), we will

χ q( ) 1

Γ± τ γ------------- 1

1 q2rc
2/ 1 η0/2–( )+[ ]

1 η0– /2
----------------------------------------------------------------.≈

rc0
±

rc0
±

I k( ) J
N
---- i k q–( ) Rn Rn'–( ){exp

q

∑
n n',
∑=

– κ nz nz'+( )d }χ q( ).

i k|| q||–( ) rn rn'–( ){ }exp
n|| n||',
∑

=  N ||
2 ∆ k|| q|| t––( ),

t
∑
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write the respective scattering intensity in the form

(7)

We will investigate the case when, along with the
two-dimensional Bragg conditions described by
expression (6), a third Bragg condition is valid which
corresponds to the electron diffraction on planes paral-
lel to the surface. In doing so, the condition kzd = 2πn
must be valid, where n is the integer characterizing the
diffraction order (see Section 2). Then, one can use the
spin operator in the form given in Eq. (4) to reduce
expression (7) to

(8)

Note that it was assumed during summation over nz

and  that κ is rather small compared with the size of
a reciprocal cell. Indeed, in the case when the incident
electron energy is of the order of several hundred elec-
tronvolts, it is known (see, for example, [11]) that κ ≈
10–1 Å–1.

It follows from the results of experimental investiga-
tions described in Section 2 that, in the case of minor
deviations of the scattering vector from the mirror
point, the following correlation is observed between the
vector k|| and the geometric shift of a diffusely scattered
beam from that point: k|| = kzr/R and kz = 2πn/d, where
r is the shift of the diffusely scattered beam on the
screen and R is the distance from the sample to the
screen. Because the characteristic values of r and R are
of the order of r ~ 10–3 m and R ~ 10–1 m, the correlation
κ @ kd is valid, where kd is the characteristic value of k||
associated with the photometer aperture.

Note that expression (8), which is valid in the case
of three-dimensional magnetic ordering, corresponds to
quite definite experimental conditions in which a pho-
tometer is used to register electrons with Bragg energy
which are formed due to three-dimensional diffraction
processes. However, the approach developed by us also
makes possible the treatment of the case in which the
electrons being recorded satisfy only the two-dimen-
sional Bragg conditions. In the region of energies away
from those defined by expression (1), one only has to

replace the factor 1/(κ2 + ) in expression (8) for the

I k( ) J
N ||

2

N
------ i kz qz–( )d nz nz'–( ){exp

qz

∑
nz nz', 0=

∞

∑=

– κd nz nz'+( ) }χ k|| qz,( ).

I k( ) I k||( )
N ||

2

N
------ J

d2
----- χ k|| qz,( ) 1

κ2 qz
2+

----------------
qz

∑= =

=  
N ||

2

N
------ J

d2
----- 1

Γ± τ γ-------------

× 1

1 k ||
2 qz

2+( )rc
2/ 1 η0/2–( )+[ ]

1 η0– /2
-------------------------------------------------------------------------------- 1

κ2 qz
2+

----------------.
qz

∑

nz'

qz
2
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scattering intensity by 1/κ. Still, it appears that the use
of electron beams with an energy corresponding to a
three-dimensional diffraction pattern is preferable from
the experimental standpoint. This is due, first, to the
higher scattering intensity and, second, to the fact that,
in this case, one can use an experimental procedure
which makes it possible to keep track of the maximal
value of the diffraction spot intensity by varying the
energy slightly. As to the drift of the diffraction spot, it
may be caused, for example, by the fact that, as the tem-
perature varies, the value of the lattice constant also
varies, as well as by some other reasons associated with
the special features of the experimental procedure.

We will start to analyze expression (8) from the case
of the temperature being rather different from the criti-
cal point (weak fluctuations of magnetization) so that

the condition  > κ is valid. Then,

(9)

The scattering intensity I(k||) increases with decreas-
ing values of the transferred momentum and, in the
region where k||rc ! 1, approaches the constant value of
I(0) ∝ |τ| –γ; i.e., the intensity at the maximum point
decreases away from the critical point by the power law
with respect to |τ| with the exponent equal to the critical
exponent γ. In the region of high values of transferred
momentum, when k||rc @ 1, the intensity decreases

fairly rapidly with increasing k|| (I(k||) ∝ 1/ )
and, at the same time, by virtue of the well-known con-
dition γ = ν(2 – η0) [16], ceases to depend on |τ|.

In the temperature range in the vicinity of the criti-
cal point, when fluctuations are rather significant and

the condition  < κ is valid, the dependence on qz in
the second propagator may be omitted from Eq. (8), and
the expression for the scattering intensity takes the
form

(10)

We substitute the expression for the spin correlator
from Eq. (4) into Eq. (10) to derive, in view of the fact
that rc @ d,

(11)

Here, only the temperature-dependent cofactors are
given in an explicit form, while the remaining parame-
ters are included in the coefficient A,

rc
1–

I k||( )
N ||J

2κdΓ± τ γ------------------------ 1

1 k ||
2rc

2/ 1 η0/2–( )+[ ]
1 η0– /2

----------------------------------------------------------------.=

k ||( )
2 η0–

rc
1–

I k||( )
N ||

2

N
------ J

d2κ2
----------- χ k|| qz,( ).

qz

∑=

I k ||( ) A

Γ±----- 1

rc τ γ------------ 1
k ||rc( )2

1 η0/2–( )
------------------------+

– 1 η0/2–( )

.=

A
N ||J

πdκ2
------------ 1

η0

2
-----– 

 
1/2 xd

1 x2+( )
1 η0– /2

--------------------------------.

0

∞

∫=
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It follows from expression (11) that the critical elec-
tron scattering occurs in the neighborhood of TC. When
k||rc ! 1, the intensity tends to the limiting value of
I(k||) ∝  |τ|ν – γ with a lower exponent than away from the

critical point where  > κ; in the case of k||rc @ 1, the

scattering intensity is I(k||) ∝   and is once again
independent of |τ|, with this value turning out to be the
same on the right and left of the critical point because

of the validity of the relation Γ +  = Γ –

(it was a relation of this type that was in fact used in
[14]). The behavior of the I(k||) curve for different val-
ues of |τ| for the 3D Ising model is shown in Fig. 3. Note
further that, if the intensity is treated as a function of τ
for the preassigned value of transferred momentum,
I(k||) will be maximal at point τ = 0 and will exhibit at
this point a kink characteristic of critical scattering. An
example of such dependence for different models is
given in Fig. 4.

3.2. Averaging over the Photometer Aperture

The experimental approach employed by us
involves measuring the overall intensity of scattered
electrons penetrating into the photometer aperture. As
to the expressions for the scattering intensity given
above, they describe the intensity for a preassigned
value of the scattering vector k|| lying on the Ewald
sphere, i.e., for some value of the scattering angle.
Therefore, in order to obtain the experimentally
observed intensity, one must integrate the resulting
expressions over all angles Ja falling within the above-
mentioned aperture. Below, we will assume for sim-

rc
1–

k ||
η0 1–

rc0
+( )

2 η0–
rc0

–( )
2 η0–

5
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Fig. 3. The intensity of critical electron scattering as a func-
tion of the transferred wave vector for the 3D Ising model:

F(x) = I(k||)Γ± /A, x = (k|| )2. Curve 1 corresponds to

|τ| = 0.1, 2 to 0.05, 3 to 0.03, and 4 to 0.01.

rc0
±

rx0
±
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plicity that the aperture is a circle of radius rd and the
center of this circle (in view of the fact that the above-
described self-tuning of the photometer occurs) coin-
cides with the maximum of the intensity of observed
reflection; i.e., it corresponds to k|| = 0. In the case of
minor deviations from the maximum, the angle Ja is
related to the geometric deflection of the ray from the
maximum on the photometer screen r and to the wave
vector k|| by the following relations: Ja = r/R = k||/kz,
where the component kz of the wave vector of the scat-
tered wave in the case of validity of three-dimensional
Bragg conditions is kz = 2πn/d.

So, the observed intensity of scattered electrons as a
function of the photometer aperture angle ϑd = rd/R has
the form

(12)

where kd = ϑd kz = 2πnrd/Rd.

In order to find Ii (kd), we will use the values of I(k||)
determined in Eqs. (10) and (11). As a result, we derive

(13)

Ii ϑ d( ) Ii kd( )≡ I k||( ) Jad∫ 2π
kz

2
------ I k||( )k || k ||,d

0

kd

∫= =

Ii kd( )
A1

Γ±------ 1

rc
3 τ γ------------=

× 1
rckd( )2

1 η0– /2
--------------------+

1 η0+( )/2

1–
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Fig. 4. The intensity of critical electron scattering as a func-

tion of temperature F1(τ) = I(k||)Γ+ /A for the preas-

signed value of the transferred wave vector ((k|| )2 =

0.03). Curve 1 corresponds to the Landau theory in which
m = Γ–/Γ+ = 2; curve 2 corresponds to the 3D Ising model,
m ≈ 5.1.
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where 

Or, in view of the fact that rc = /|τ|ν and using the
well-known coupling relation for the critical exponents
γ = ν(2 – η0), we derive

(14)

It follows from Eqs. (13) and (14) that, on approach-
ing the point of phase transition, the intensity Ii(kd) of
electrons registered by the photometer, as well as the
quantity I(k||), tends to the maximal value equal, in this
case, to

while the kink at the point τ = 0 is retained. Note that
the foregoing value of intensity increases with kd, i.e.,
with the photometer aperture. However, because usu-
ally η0 ! 1, this increase is still less than the increase in

the aperture proper proportional to .

The half-width of the intensity curve may be deter-
mined from the condition rckd ≈ 1. Therefore, the
respective characteristic values of |τ| are of the order of

( kd)1/ν and increase with the photometer aperture.

Expression (14) enables one to directly determine
the asymptotic behavior of the temperature dependence
Ii(kd) quite far away from TC. We assume that rckd ! 1
to derive

(15)

It follows from Eq. (15) that the temperature depen-
dence of Ii(kd) is rather weak. For example, in the Landau
theory, the intensity away from TC decreases as |τ|–1/2.
In the case of a three-dimensional system with one
order parameter, Ii(kd) decreases as |τ|–0.605. Note further
that expression (15) remains valid until condition rc >
κ–1 is valid and, quite far away from the critical point,
when rc < κ–1, the intensity Ii(kd), as I(k||) in Eq. (9),

turns out to be proportional to .
It follows from the expressions derived above that

the behavior of the temperature dependence of the
intensity of scattered low-energy electrons is primarily
defined by the critical exponent ν. Therefore, an accu-
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2
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rate measurement of the temperature dependence of
scattering may provide a convenient method of deter-
mining some of the critical exponents during second-
order phase transitions.

Note further that the intensity of magnetic scattering
of slow electrons depends on their energy E0 as well. As
follows from Eq. (10), the form of this dependence in
the neighborhood of TC will be primarily defined by the
factor J(E0)/κ2(E0), where J(E0) is the energy-depen-
dent coefficient of exchange interaction between inci-
dent electrons and magnetic excitations of the matrix.

3.3. Case of Two-Dimensional Magnetic Ordering

The case of two-dimensional magnetic ordering is
of special interest in studying magnetic structures. The
detection and investigation of quasi-two-dimensional
magnetic structures was reported, for example, by
Alvarado et al. [17, 18] and Weller et al. [19, 20]. Fur-
thermore, this case is of considerable importance for
solving the problem of purely surface magnetism, when
only the surface layer atoms possess the magnetic
moment.

We will demonstrate below that fluctuations of the
order parameter observed in the case of two-dimen-
sional magnetic ordering may also bring about the crit-
ical scattering of low-energy electrons. Indeed, we can
use the simplest correlation function given in [14] for
describing the critical fluctuations (as in the three-
dimensional case) to derive the following expression
for the intensity I2(k||) of two-dimensional magnetic
diffuse scattering, averaged over spin fluctuations and
corresponding to specular reflection:

(16)

Note that Eq. (16), compared with the previously
derived expression, does not contain, in particular, the
large factor (κd)–2. The emergence of the latter factor is
associated with the electron scattering in the bulk of a
crystal away from its surface.

As in the previous subsection, we will calculate the
scattering intensity integral over the aperture. On inte-
grating Eq. (16) with respect to k|| within the circular
aperture, we immediately derive the expression for the
respective integral intensity Ii2(kd) of magnetic diffuse
scattering,

(17)

I2 k||( ) N ||Jχ k||( )=
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We will calculate the asymptotic behavior of Ii2(kd)
at |τ|  0. We assume in Eq. (17) that kdrc @ 1 to
derive

(18)

In this case, the maximal value of intensity is pro-

portional to ; i.e., it is much less dependent on the
photometer aperture width compared with the case of
three-dimensional scattering. As to the width of the line
of critical scattering at half-height, it may be estimated
from the condition rckd ≈ 1, as for the three-dimensional
case. So, the respective values of |τ| once again turn out

to be of the order of ( kd)1/ν.

On assuming in Eq. (17) that kdrc ! 1, one can
readily determine the asymptotic behavior of the inten-
sity Ii2(kd) quite far away from TC,

(19)

So, Ii2(kd), for example, in the 2D Ising model, is
proportional to |τ|–7/4; i.e., it decreases faster than in the
three-dimensional case.

In the two-dimensional case, one can see from
Eq. (17) that the dependence of the intensity of mag-
netic scattering of slow electrons on their energy E0 is

defined by the factor J(E0)/ . It is obvious that this
quantity will decrease significantly with increasing
energy of incident electrons, so that the intensity of
magnetic scattering of electrons will decrease with
increasing E0 in this case as well.

4. NUMERICAL CALCULATIONS 
AND DISCUSSION OF THE RESULTS

We will compare the experimentally and theoreti-
cally obtained integrated temperature dependences of
magnetic scattering intensity. For this purpose, we will
transform the obtained expressions to a form conve-
nient for numerical calculation. So, in the three-dimen-
sional case of magnetic ordering, expression (14) for
the scattering intensity Ii(kd) ; Ii(kd, T) may be reduced
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to the form

(20)

where

In the case of two-dimensional scattering, expres-
sion (18) may be transformed to

(21)

Here, the factors C1, 2 include all quantities which do
not change significantly in the fluctuation region in the
neighborhood of the critical point.

Note that the quantity B, which is a parameter in
expressions (20) and (21), characterizes the correlation
radius of spin-exchange interaction of magnet atoms
which scatter electrons in the critical manner in the
neighborhood of TC. At the same time, the parameter α
also entering these expressions describes the asymme-
try of these curves relative to the straight line τ = 0. It is
clear that the quantities B and α depend on the models
of magnetic ordering. Therefore, the determination of
these quantities is of great interest from the standpoint
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of identifying such models. If we regard the parameters
B and α to be fitting parameters, their values may be
determined using the optimization procedure when
comparing the predicted curves and experimental data.
For this purpose, we have performed the necessary
treatment of both experimentally obtained and pre-
dicted curves.

The contribution due to the lattice vibrations was
subtracted from the experimental data. In order to
correctly perform such subtraction, we used a self-
consistent iterative approach which included the
temperature dependence of diffuse background.
After the iterative subtraction of the background
from the intensity curve and the recovery of the
Debye–Waller factor, this dependence was calcu-
lated in the approximation of two-phonon electron
scattering according to [21, 22]. In a zeroth approx-
imation, the background saturation curve 2 in Fig. 1
was used for the background. As a result, after a
series of converging iterations, the thermodiffuse
background was described by curve 2 in Fig. 2, and
curve 3 in this figure was obtained for the intensity
of Bragg scattering “cleared” of the background.
The approximation curve 4 describing the tempera-
ture dependence of intensity due to the Debye–
Waller factor must be subtracted from curve 3. As a
result, the contribution to the intensity, which is
independent of the lattice vibrations and corre-
sponds to electron–magnon scattering, was described
by curve 5 in Fig. 2.

We will now proceed to describe the treatment of
the predicted curves describing the temperature
dependence of the intensity of magnetic scattering.
These curves are defined by expressions (20) and (21),
and their qualitative form is given in Fig. 4. The need
to significantly adapt these curves when performing a
comparison with experimental data is associated with
the special features of the experimental procedure
employed. The latter procedure consisted essentially
in that the temperature dependence of diffraction
maximum was recorded continuously in the process of
cooling of the sample preheated to 1200 K. As a result,
it was not the value of Ii (kd, T) that was recorded, but
the respective quantity averaged over some tempera-
ture interval ∆T. Therefore, in comparing the pre-
dicted and experimental results, we used the quantity

(T) defined as

(22)

(A similar expression may be written for the quantity

(T) in analyzing the electron scattering from a two-
dimensional magnet system.)

Ĩ i

Ĩ i T( ) 1
∆T
------- Ii kd T',( ) T'.d

T ∆T /2–

T ∆T /2+

∫=

Ĩ i2
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The following estimate may be used to determine
the value of the width of the temperature interval ∆T:
∆T = v 0t0, where v 0 is the rate of cooling the sample and
t0 is the time characterizing the half-width of the pho-
tometer spread function. However, under real experi-
mental conditions, the ∆T broadening was not mea-
sured. Therefore, we performed the broadening of pre-
dicted curves for some preassigned values of this
quantity such as ∆T/2 = 2, 10, and 20 K. The relatively
high values of ∆T selected here are due to restrictions in
the employed experimental procedure, in which, on the
one hand, it was the temperature on the sample surface
that could not be measured with sufficient accuracy
and, on the other hand, a certain time was required for
statistical accumulation of the signal being recorded.

The experimental curves normalized to respective
maximal values and the predicted curves broadened in
accordance with Eq. (22) were compared by minimiz-
ing the reliability factor selected in the form indicated
in [11]. For four models (3D Landau model and 3D and
2D Ising models, as well as the model of Bray and
Moor suggested in [23], in which ν ≈ 1.353, γ ≈
1.066, and η0 ≈ 1.212), the obtained results were
analyzed for different values of ∆T in order to reach
the best agreement between the experimental and
theoretical data. Given by way of example in Fig. 5
(solid curves) are the theoretically obtained results
for the 3D Landau model for three values of ∆T. Also
given in the same figures (dotted curves) are the
experimentally obtained curves of magnetic scatter-
ing (curve 5 in Fig. 2). The numerical minimization
of the reliability factor with respect to two fitting
parameters B and m was determined by the method
of coordinate descent. The values of B and m for the
treated models of magnetic ordering and ∆T intervals
which correspond to the best fit are given in the table.

Also given in the table is the /d ratio.

It is the analysis of this very quantity characterizing
the ratio between the radius of exchange interaction of
magnet atoms and the interatomic distance that may be
of interest from the standpoint of determining the type
of magnetic ordering which causes the observed critical
electron scattering. One can see in the table that the

most realistic value of /d is observed for the 3D and
2D Ising models and for the 3D Landau model. Among
these models, the least value of the ratio being treated

(  @ d ≈ 0.56) is obtained for the 3D Ising model, and

the highest value ( /d ≈ 1.36), for the 2D Ising model.
As to the model of Bray and Moor (which was also used
in [24, 25]), this model, in spite of the fact that it pro-
vides the best fit of the prediction and experimental

data, gives the value of /d ≈ 0.1; i.e., the radius of
exchange interaction (within the layer) turns out to be
much less than the interatomic distance, which appears
to be rather unrealistic.
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It has already been mentioned in Section 3 that
the intensity of magnetic scattering of electrons may
decrease significantly as their energy E0 increases.
This inference is supported by the experimental data
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Fig. 5. The experimentally obtained (dotted curves) and
optimal predicted curves according to expression (22) (solid
curves) for the 3D Landau model for three different values
of instrumental broadening: ∆T/2 = (a) 2, (b) 10, and
(c) 20 K, respectively. The experimental curve is normal-
ized to the maximal value.

The optimal values of predicted parameters obtained by mini-
mization of the reliability factor for different models of magne-
tism for three preassigned values of instrumental broadening. The
energy of Bragg maximum E0 = 183 eV, diffraction order n = 4

Models ∆T/2, K B /d m

3D Landau model 2 0.278 1.101 4.17
10 0.249 0.991 4.48
20 0.170 0.675 5.05

3D Ising model 2 0.209 0.831 5.14
10 0.191 0.761 5.45
20 0.142 0.564 6.16

2D Ising model 2 0.342 1.359 7.34
10 0.337 1.341 7.86
20 0.283 1.124 8.62

Bray and Moor 
model [23]

2 0.0282 0.112 3.01
10 0.0270 0.107 3.07
20 0.0232 0.092 3.36
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+
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which indicate that, as the energy increases, the crit-
ical scattering decreases quite strongly. For energy
E0 > 400 eV, the critical scattering is almost com-
pletely absent.

5. CONCLUSION

In this study, the following has been accomplished.

(i) The effect of critical scattering of low-energy
electrons in the neighborhood of TC has been experi-
mentally confirmed. This effect consists in an abrupt
violation of the monotonicity of the temperature depen-
dence of the intensity of specular Bragg maxima from
the (100) plane of a nickel crystal in the above-identi-
fied temperature region.

(ii) A theory has been suggested which describes the
effect of slow-electron scattering from the critical fluc-
tuations of magnetic moment and takes into account the
fluctuations in the surface region of a ferromagnet.

(iii) The experimentally obtained and predicted tem-
perature dependences of the scattering intensity have
been compared for different models of magnetic order-
ing using the optimization procedure. For these models,
estimates are given of the radius of interatomic spin-
exchange interaction.

The critical scattering of low-energy electrons may
be of great interest from the standpoint of developing
new express methods for the investigation of second-
order magnetic phase transitions. Using this phenome-
non, one can easily estimate TC in the vicinity of the
crystal surface. Detailed analysis of the critical scatter-
ing intensity may further help to determine the pattern
of magnetic ordering.

However, in order to unambiguously determine the
model of magnetic order, the critical electron scattering
must be investigated more thoroughly. For this purpose,
it would be interesting to further improve the experi-
mental procedure, in particular, to provide for a pho-
tometer tracking of the shift of the diffraction spot max-
imum both with respect to energy and in space. Such a
drift of the diffraction spot is an inevitable side effect
observed in experiments and caused, for example, by
the shift of scattered electrons under the effect of the
magnetic field of the sample. Therefore, its correct
inclusion, which could be accomplished with the aid of
appropriate scanning methods, would undoubtedly
improve the accuracy of the experimental results. This
would enable one to use the asymptotic characteristics
of scattering intensity obtained above for determining
the critical exponents with a higher degree of reliability.
Yet another improvement in the experimental proce-
dure employed by us may be the use of the discrete
method of recording the temperature dependence of the
intensity of diffraction maximum. In this case, one
could avoid the temperature spreading of the observed
dependence described by expression (22), which would
JOURNAL OF EXPERIMENTAL 
make it possible to determine the critical exponents
directly by the half-width and shape of the curves
describing the critical electron scattering. Along with
the modernization of the experiment, it apparently
makes sense to further develop the theoretical approach
describing this phenomenon; in particular, it would be
interesting to include the dynamic effects of scattering
which may be quite significant during diffraction of
low-energy electrons.
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Abstract—A nonlinear correction to the magnetic penetration depth into a -wave superconductor is

found that takes into account nonlocal effects. The calculation is carried out for the self-consistent distribution
of the screening supercurrent. An analytical expression for the nonlinear correction is obtained in the limit of
the pure superconductor for orientations that do not admit the formation of surface states. It is shown that the
presence of unitary impurities makes the nonlinear Meissner effect unobservable in the nonlocal regime for
almost all orientations of the crystal either due to the suppression of the nonlocal response of quasi-particles by
impurities or due to a considerable contribution of Andreev low-energy surface states to the penetration depth.
In the Born scattering limit, there exists a broad interval of orientations and mean free paths in which the non-
locality of the response must be taken into account in the calculation of the nonlinear correction to the penetra-
tion depth at rather low temperatures. © 2002 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

The penetration depth of a magnetic field into a
superconductor depends on the type of pairing and
mutual orientation of the crystal and the magnetic field;
this is especially so at low temperatures. The observa-
tion of the linear temperature dependence of the mag-
netic penetration depth at low temperatures shows
beyond doubt that the order parameter has node lines on
the Fermi surface in YBa2Cu3O7 – δ [1, 2]. In addition, in
YBa2Cu3O7 – δ and some other HTSC compounds, the
magnetic penetration depth λ exceeds the coherence
length ξ by several orders of magnitude (λ/ξ ~ 100 for
YBa2Cu3O7 – δ). In most cases, this enables one to con-
sider the relationship between the current and the field
to be local. It was shown in [3, 4] that, at low tempera-
tures, the local response of quasi-particles in supercon-
ductors with  symmetry of the order parameter

leads to a linear (proportional to |H|) correction to the
penetration depth with respect to the magnetic field. In
the presence of impurities, the dependence of the pene-
tration depth becomes quadratic ([4, 5]). Despite all
efforts to discover the nonlinear Meissner effect exper-
imentally in [6–9], no agreement between the theory
and experiment was reached in the magnitude of the
effect nor in its dependence on temperature and field.

It was first shown in [10] that electrodynamics in its
local form is not always applicable to quasi-particles
with momenta close to node directions of the order
parameter. The effective coherence length of such par-
ticles  ~ "v f / |∆(pf)| can easily exceed the magnetic
penetration depth. The fraction of such particles is usu-
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ally small relative to the total number of excited parti-
cles, and their contribution may be neglected. At tem-
peratures T < T* ~ "v f /λ, all quasi-particles are local-
ized (in the momentum space) near the nodes of the
order parameter, and the computation of their response
to the magnetic field must take into account nonlocal
effects. For the nonlinear correction to the penetration
depth, such a computation was carried out in [11],
where it was shown that the inclusion of nonlocality of
the response yields a quadratic field dependence of the
penetration depth. However, the approximation used in
[11] results in an oversized estimate (by about an order
of magnitude). In this paper, we suggest a method for
computing the nonlinear correction to the penetration
depth with regard for the nonlocality of quasi-particle
response that is free of the drawbacks inherent in the
approach used in [11].

The inclusion of impurities changes the effective
coherence length of quasi-particles  and makes the
response of the superconductor local if the concentra-
tion of scatterers is sufficiently high. It is shown that a
moderate amount of Born impurities affects the nonlin-
ear correction to the penetration depth hardly at all,
while even a small amount of resonance scattering
impurities is sufficient to make the superconductor
response completely local.

The change of sign of the order parameter depend-
ing on the direction on the Fermi surface can result in
the formation of low-energy surface states [12–15].
Their contribution to the penetration depth at low tem-
peratures and impurity concentrations becomes signifi-
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cant [16–18], which makes the effect of nonlocality on
the superconductor response unobservable.

2. THE MODEL

The computation of the nonlinear correction to the
penetration depth is based on the quasi-classical theory
of superconductivity. The matrix Matsubara Green’s
2 × 2 function satisfies the Eilenberger equation

(1)

(2)

where pf is the momentum of quasi-particles on the
Fermi surface, v(pf) is the Fermi velocity, A(r) is the
vector potential, ωn = π(2n + 1)T is the Matsubara fre-

quency,  is the matrix of the order parameter, and 
is the impurity self-energy part. The hat over a symbol
denotes the 2 × 2 matrix in the particle–hole space. The
matrix Green’s function and the matrix of the order
parameter have the form

(3)

The distribution of the electric current in a supercon-
ductor is associated with the diagonal element of the
Green’s function

(4)

Here, Nf is the density of states on the Fermi surface of
the normal metal per one spin projection. The angle
brackets  denote the normalized averaging over
the Fermi surface.

The penetration depth of the magnetic field into a
superconductor is determined from the equation

(5)

where H(x) is the distribution of the magnetic field in
the superconductor found by solving the system of
Eqs. (1), (4) and the Maxwell equations. It is assumed
that the superconductor occupies the half-space x > 0,
and the magnetic field is applied along the axis z. In
what follows, we will assume that the electric current
and the vector potential have nonzero components only
along the axis y.
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The nonlinear correction to the penetration depth
heavily depends on the relative position of nodes of the
order parameter and the direction of the screening cur-
rent. This is because, at small temperatures, the contri-
bution to the correction is made by low-energy quasi-
particles (ε ~ T), i.e., quasi-particles with momenta
close to a node of the order parameter. For such parti-
cles, the response to the magnetic field becomes nonlo-
cal at temperatures T & T* only if the magnetic field
varies along the trajectory of the quasi-particle. In this
case, the quasi-particle propagates in a variable mag-
netic field, and the nonlocality of the response becomes
necessary.

The further presentation is based on the analytic
expansion of the solution to Eq. (1) in powers of the
magnetic field. This means that nonanalytic correc-
tions, which appear for certain crystal orientations (see
[3, 4, 11], cannot be found with this approach. Let us
represent all the involved quantities as series in powers
of the external magnetic field

(6)

. (7)

Terms with even powers in the expansion of the electric
current are zero due to symmetry considerations. Let us
explicitly write out the local and linear (with respect to
the field) contribution to the current:

(8)

Here, λ0 is the penetration depth of the magnetic field
at zero temperature in the local approximation, and the

kernel  contains small temperature correc-
tions, accounts for the influence of nonlocality, and
includes the linear response of surface states, which is
assumed to be small. Then, the equation of the vector
potential takes the form

(9)

Considering the terms involving K (1) and j (3) as small
perturbations, we find that the nonlinear correction to
the penetration depth has the form

(10)
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In Eq. (10), the current j(3)(x) is determined from the
Eilenberger equations with the zero-order approxima-
tion of the vector potential

Representing j(3)(x) with the help of (4) in terms of
g(3)(pf , ωn, x), we obtain

(11)

Equation (11) for the nonlinear correction to the pene-
tration depth is rather general. It is applicable in the
case of spatially nonuniform distributions of the order
parameter and includes the contributions both of the
bulk of the superconductor and of the surface states. In
the derivation of this equation, we only assumed that all
the involved quantities could be expanded in powers of
the magnetic field and the smallness of the parameter
ξ/λ.

For arbitrary orientations of the crystal axes with
respect to the plane yz, g(3)(pf , ωn, x) cannot be found
analytically because of the spatial nonuniformity of the
order parameter (suppression near the superconductor–
vacuum boundary). This makes it impossible to find
even the Green’s function for the zero-order approxi-
mation. For this reason, we consider below only the
particular case with the spatially uniform order param-
eter; this case is realized when the order parameters of
the incident and reflected directions of the momentum
are equal (for example, in the model of the d-wave
superconductor with the cylindrical Fermi surface and

the order parameter ∆(pf , r) = ). In
this case, it is easily seen that the Green’s function for
the zero approximation is independent of the spatial
coordinates, which makes it possible to find an explicit
analytical expression for g(3)(pf , ωn, x). We also assume
that the scattering of quasi-particles from impurities
can be neglected. The influence of impurities and the
crystal orientation is qualitatively discussed at the end
of the paper.

3. PENETRATION DEPTH

To find the Green’s function from the magnetic field
using perturbation theory, it is convenient to use the fol-
lowing parametrization [19]:

(12)
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The normalization condition (2) is automatically ful-
filled. The substitution of (12) into (1) yields an inde-
pendent equation for η:

(13)

with the asymptotic condition

(14)

which ensures a proper behavior of the Green’s func-
tion in the bulk of the superconductor. The function
φ(pf , x) is the phase of the order parameter ∆(pf , x) =
|∆(pf , x)|exp{iφ(pf , x)}. The function g satisfies the lin-
ear nonhomogeneous equation. Its solution is simple,
but cumbersome, and is not presented here. The initial
condition is the value of g on the surface x = 0. In the
case of specular reflection, this initial condition has the
form (see [20])

(15)

where pf and  are the momenta of the incident and
reflected quasi-particle, respectively.

For the spatially uniform distribution of the order
parameter and the vector potential A(x) =
A(0)exp(−x/λ0), it is easy to find the solution to Eq. (13)
up to the third order with respect to the magnetic field:

(16)

Here,  =  and α = 2 λ0/ |v f, x(pf)|.
Let us substitute (16) into the expression for the Green’s
function and separate out the third-order terms with
respect to the magnetic field. Then, from (11) some
tedious transformations yield the final expression for
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the nonlinear correction to the penetration depth with
allowance for the influence of nonlocality:

(17)

where

(18)

The dimensionless parameter α describes the degree of
nonlocality influence. The local limit corresponds to
the case α @ 1. The major contribution to the averaging
over the Fermi surface in (17) is made by the regions of
momenta in the vicinity of the nodes of the order
parameter |∆(pf)| & max(T, T*). For the sake of simplic-
ity, the analysis of the nonlinear correction (17) is car-
ried out for the model of  superconductor with

the cylindrical Fermi surface with the symmetry axis
oriented along the magnetic field. The order parameter
is chosen in the form ∆(pf) = ∆0cos2ϕ, where ϕ is the
angle between the normal to the surface of the super-
conductor and the direction of the momentum. In this

model, the parameter λ0 is equal to .

At temperatures T ! T*, the sum over Matsubara
frequencies in (17) can be replaced by an integral,
which is taken analytically:

(19)

Comparing the terms of series (16), we see that, at tem-
peratures T & T*, the parameter of the expansion is
λ0H(0)/4ξ0H*. Thus, expression (17) for the nonlinear
correction is applicable in the entire Meissner region
H ≤ Hc1 except for, possibly, a small region in the
neighborhood of Hc1. As the temperature increases, the
contribution to the nonlinear correction to the penetra-
tion depth is made mainly by the regions of the Fermi
surface for which the parameter α is large (this corre-
sponds to the local limit). In this approximation, com-
putations by formula (17) yield the well-known expres-
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sion for the nonlinear correction to the penetration
depth:

(20)

The inverse temperature dependence of the penetration
depth in this case shows that the response of quasi-par-
ticles must be considered nonlocally for low tempera-
tures. This removes the singularity at T = 0 in (20). In
the range of temperatures 0 < T ! Tc, the nonlinear cor-
rection to the penetration depth can be written as

(21)

The function β(x) is calculated by formula (17), and its
plot is shown in the figure. It is seen that β is not mono-
tonic due to the nonlocality of the response of quasi-
particles at low temperatures. However, the complete
penetration depth

is a monotonic function of temperature for magnetic
fields for which formula (17) is true. The nonlinear cor-
rection turns out to be about an order of magnitude less
than that reported in [11]. This difference can be
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The coefficient in the nonlinear correction to the penetration
depth in the -superconductor model with the cylin-

drical Fermi surface as a function of temperature. The mag-
netic field and the symmetry axis of the Fermi surface are
assumed to be oriented along the axis z. The order parame-
ter is chosen as ∆(pf) = ∆0cos2ϕ, where ϕ is the angle
between the normal to the surface and the direction of the
momentum. The function β(x) is depicted by the solid
curve, and the dashed curve corresponds to the coefficient
obtained when the nonlocality of the quasi-particle
response is neglected (formula (20)).
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explained by an approximate calculation of the penetra-
tion depth at the background of the spatially uniform
distribution of supercurrent in [11], which yields an
exaggerated result in this problem.

When deriving the formula for the nonlinear correc-
tion to the penetration depth, we neglected the depen-
dence of the order parameter on the magnetic field. It
was shown in [4] that this is reasonable in the local
approximation; indeed, it yields a correction of order

When the temperature decreases below T*, this esti-
mate also remains true when the response of quasi-par-
ticles is assumed to be nonlocal and T is replaced by T*.
Hence, it follows that, even though the coefficient in
(19) is abnormally small, the correction to the penetra-
tion depth for type II superconductors with λ0/ξ0 ~ 100,
which appears due to the suppression of the order
parameter by the magnetic field, is negligibly small at
temperatures in the range 0 < T ! Tc.

4. INFLUENCE OF IMPURITIES 
AND SURFACE STATES

The nonlinear correction to the penetration depth at
low temperatures is sensitive to the presence of impuri-
ties in the superconductor since it depends solely on
thermally excited quasi-particles. Nonlocal effects may
be completely ignored if the diagonal element of the self-
energy at zero energy in the bulk of the superconductor
satisfies the inequality |σ(0)| @ v f /λ0. In this case, the

parameter 2λ0 /|v f, x(pf)|,
which describes the degree of influence of the nonlocal-
ity of quasi-particle response, is much greater than
unity at all temperatures and arbitrary orientations of
the momentum. Then, the local approximation to the
calculation of the nonlinear correction to the penetra-
tion depth is applicable. In the case of Born impurities,
this condition is not very severe due to an exponentially
small value of |σ(0)| at small concentrations of impuri-
ties [21]; more precisely, |σ(0)| ≈ a∆0exp(–bt∆0), where
the coefficients a and b are of the order of unity. In this
case, the nonlocality of response is important when the
mean free path satisfies the condition: l = v fτ *

ξ0ln(λ0/ξ0). The presence of strong scatterers (the uni-
tary limit) in the superconductor leads to a much stricter
condition for the mean free path. In the unitary limit,

|σ(0)| ~  with a logarithmic accuracy [22], and
the nonlocality is important only at very small scatter-
ing rates Γu & ∆0(ξ0/λ0)2.

The nonlocal response of the superconductor can
also be disguised by the presence of surface low-energy
Andreev states, which can make a noticeable contribu-
tion to the nonlinear correction to the penetration depth
[17]. If the crystal orientation admits the existence of

λ0
T
∆0
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ωn iσ ωn( )+( )2 ∆ p f( ) 2+
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such states, then the contribution of surface states to the
nonlinear correction to the penetration depth consider-
ably exceeds that from the superconductor bulk when
the concentration of unitary impurities is small. As this
concentration increases, the contribution of the surface
states decreases and the effect of nonlocality becomes
negligible. In the Born limit, the comparison of the non-
linear correction due to surface states with the contribu-
tion of the superconductor bulk shows that the contribu-

tion from the bulk may be neglected at l @ . If

ξ0ln(λ0/ξ0) ! l & , the nonlinear correction
must take into account both the contribution of the sur-
face states and the nonlocal effects due to the bulk of
the superconductor.

5. CONCLUSIONS

It is shown that the spatial dependence of the screen-
ing current substantially affects the magnitude of the
nonlinear correction to the penetration depth. The pre-
vious results obtained in [11] considerably differ from
those obtained in this paper, since they are based on a
simplified model of the distribution of electric current
in a superconductor.

The influence of nonlocality of quasi-particles can
manifest itself only in very pure samples in which the
penetration depth linearly depends on temperature up
to the temperatures T & T*. It is shown that, in the pres-
ence of unitary impurities, the nonlocal effect is impor-
tant only for orientations that do not admit Andreev
low-energy states. In the case of Born scatterers, there
exists an interval of mean free paths in which the non-
linear Meissner effect should be considered in combi-
nation with the nonlocal response of quasi-particles and
the contribution of surface states. The influence of non-
locality can be best observed in an experiment with a
magnetic field oriented along the axis  of a d-wave
superconductor when the surface orientation does not
allow the formation of Andreev low-energy states (for
example, the orientation [100]).
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Abstract—Frequency shift and damping of long-wave optical phonons caused by interaction with elec-
trons are calculated. The equations of the dynamic theory of elasticity are considered together with the
Maxwell equations and the kinetic equation for determining the deformation field, the electric field, and
the distribution function of electrons. Changes in the spectrum of electrons are described using a local
potential. Coulomb screening of the longitudinal electric field is taken into account. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In one of the earliest works in which field theory
methods were applied to condensed matter, Migdal
[1] calculated the renormalization of the electron and
phonon spectra in metals caused by electron–phonon
interaction. He found that the vertex corrections are
small by the adiabatic parameter (the Migdal theo-
rem). He, however, arrived at the conclusion that the
renormalization of the phonon spectrum was sub-
stantial. Namely, the velocity s of acoustic phonons
should change in the order of magnitude,  =

s , where λ is the dimensionless electron–
phonon interaction constant. This shows that consid-
erable softening of the acoustic mode should be
expected as a result of interaction with electrons, and
the electron–phonon system becomes unstable when
λ  1/2. This result contradicts the concept of adi-
abaticity of the electron–phonon system (e.g., see
[2]), according to which light electrons should fol-
low comparatively slow lattice vibrations. Changes
in the phonon spectrum should therefore be small by

the adiabatic parameter , where m and M are
the masses of the electron and the ion, respectively.

At the same time, Akhiezer, Silin, Gurevich, Kon-
torovich, et al. (see review [3]) used the kinetic equa-
tion to calculate sound damping in metals. The influ-
ence of electron–phonon interaction was indeed shown
to be determined by the adiabatic parameter. The
change δs in the velocity of sound and the damping Γ
for phonons with wave vector k and frequency ωk = sk
are described by the equations

s̃

1 2λ–

m/M
1063-7761/02/9502- $22.00 © 20354
(1)

where γ is the electron collision rate, the λ = /ρs2

is the constant of coupling with phonons is proportional
to the density ν0 of electron states on the Fermi surface
(for the isotropic case, ν0 = m*pF/π2, where m* is the
effective mass of electrons), and ρ is the density of the
metal. The deformation potential ζik describes the local
deformation-induced change in the spectrum of elec-
trons,

(2)

where uik is the strain tensor. Equations (1) give correct
results for various limiting conditions: for absorption of
sound in the hydrodynamic limit (ωk ! γ and k  0),
for absorption of zero sound (ωk @ γ and k  0), and
for Landau damping in the ballistic regime (kvF @
|ωk + iγ|). It is obvious that the shift of sound velocity
and damping in the ballistic regime are small by the

adiabatic parameter because s/vF ~ , which con-
tradicts the result obtained by Migdal.

This contradiction was resolved by Brovman and
Kagan [4] (also see work [5] by Geilikman). They
showed the shortcomings of the Fröhlich model, which
predicted anomalously large phonon renormalization:
two large terms compensate each other in perturbation
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theory equations second-order in electron–phonon
interaction. The remaining contribution was therefore
small in conformity with the adiabatic approximation.
This compensation could formally be taken into
account by subtracting from the phonon self-energy its
value at zero frequency: Π(ω, k) – Π(0, k).

Large renormalizations were reported by Engels-
berg and Schrieffer [6] also for the spectrum of optical
phonons. These authors applied the results obtained by
Migdal to nondispersion optical phonons. More
recently, Ipatova and Subashiev [7] considered the
spectrum of optical phonons under collisionless condi-
tions to show that the subtraction suggested in [4]
should be performed in this case too. Nevertheless,
Alexandrov and Schrieffer recently [8] applied the dia-
gram technique to again obtain huge dispersion of opti-

cal phonons, ωk = ω0 + λ k2/3ω0, determined by the
Fermi velocity, which contradicts the adiabatic approx-
imation. Note that the usual dispersion of optical
phonons is of the order of the velocity of sound.
Recently, Reizer [9] somewhat improved the situation
by considering screening of the long-range electric
field that arises in longitudinal optical vibrations.1

Large dispersion disappeared, but the electron–phonon
interaction entered into the result in a nonphysical way.
In [6–9], collisions in the phonon and electron systems
were not taken into account, and damping of optical
phonons caused by both electron–phonon interaction
and Coulomb screening was fully ignored.

In this work, we consider the influence of electron–
phonon interaction and Coulomb screening on the
spectrum of optical phonons. Special attention is given
to the accompanying damping of phonons. We use the
kinetic equation method earlier applied to acoustic
phonons [3] and to problems of surface optical phonons
[11].

2. THE CONTRIBUTION 
OF ELECTRON–PHONON INTERACTION 

TO THE KINETIC EQUATION

Two electron–phonon interaction types are known
for optical phonons. First, the Fröhlich interaction,
which is determined by polarization caused by relative
displacement u of ionic sublattices. For simplicity, con-
sider a cubic crystal with two atoms per unit cell, when
three optical branches exist. The local change in the
electron spectrum can then be written in the form

(3)

where ζ(p) is the scalar function of the electron
momentum. Similarly to (2), interaction of this type
tends to zero in the long-wave limit. Secondly, there can
exist interaction which is directly caused by the optical

1 To my knowledge, the Coulomb screening of optical phonons
was originally considered by Gurevich et al. [10].

v F
2

ε p r t, ,( ) ε0 p( ) ζ p( )divu r t,( ),+=
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shift of sublattices and does not vanish in the long-wave
limit,

(4)

where the coupling ζi(p) is a vector function. These two
interaction types are essentially different because only
the longitudinal phonon mode interacts with electrons
in (3). We will therefore assume that the k wave vector
of phonons is directed along the symmetry axis (below,
axis z) for separating the longitudinal and transverse
modes. We will first consider polarization interaction
(3).

A solution to the kinetic equation for the electronic
distribution function will be sought in the form
f0[ε(p, r, t) + δfp(r, t)], where the f0 equilibrium distri-
bution function depends on the local energy value. Such
an equilibrium function reduces the collision integral to
zero. The chemical potential value is determined by the
condition that the electron charge density should not
change in local equilibrium. It is easy to see that this
requirement results in redefining the coupling constant
with phonons, ζ(p)  ζ(p) – 〈ζ (p)〉 , where angle
brackets denote averaging over the Fermi surface,

It follows that the mean renormalized coupling constant
vanishes,

(5)

The equation for the Fourier component of the non-
equilibrium addition to the distribution function can be
written in the form

(6)

where we use the notation

(7)

We use the relaxation time approximation, which is
valid for scattering of electrons by defects and for elec-
tron–phonon scattering at temperatures above the
Debye temperature when this scattering can be consid-
ered elastic. Electric field E that accompanies optical
vibrations is an unknown function and, along with the
optical shift, should be determined by simultaneously
solving the equations that will be written below. The
addition to the distribution function is sought in the
form

Solving (6) yields

(8)

ε p r t, ,( ) ε0 p t,( ) ζ i p( )ui r t,( ),+=

…〈 〉 1
ν0
----- …( )

2 SFd

v 2π( )3
----------------.∫=

ζ p( )〈 〉 0.=

i ω k v⋅–( )δ f p k ω,( )–

+ γ δf p k ω,( ) δ f p k ω,( )〈 〉–[ ] ψ p k ω,( )
d f 0

dε
--------,–=

ψp k ω,( ) ωζ p( )k u k ω,( )⋅ ev E k ω,( ).⋅+=

δ f p k ω,( ) χ p k ω,( )
d f 0

dε
--------.–=

χ p k ω,( ) i ψp k ω,( ) γ χp k ω,( )〈 〉+[ ] /∆p k( ),=
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where

(9)

and

(10)

This solution to the kinetic equation will be used to
determine the electric field and the optical shift.

3. THE MAXWELL EQUATION
FOR THE ELECTRIC FIELD

The Maxwell equations allow electric field E to be
expressed via polarization P,

(11)

Frequency ω that we are interested in is of the order
of the frequency of optical phonons, that is, 102 cm–1.
The wave vector k of a light-excited phonon equals the
wave vector of light in order of magnitude (in Raman
scattering, the wave vector is determined by the trans-
ferred momentum), which amounts to 105 cm–1. This
means that the condition k @ ω/c is satisfied. We can
then ignore the terms with c2 in (11), and the relation
between field and polarization takes the simple form

(12)

It is clear from (12) that the electric field is longitudinal
and only the longitudinal polarization component Pz is
essential.

Contributions to the electric polarization

(13)

are made, first, by the dipole moment related to the
optical shift (N is the number of unit cells in unit vol-
ume, and Z is the effective charge of ions) and, next, by
polarization α of filled electron shells, and, lastly, there
is the Pe contribution of free carriers determined by the
density of their charge ρe = –ik · Pe. Equation (13) and
solution (8), (9) to the kinetic equation can be used to
recast Maxwell equation (12) as

(14)

where the electronic contribution to permittivity is

(15)

and the high-frequency permittivity is ε∞ = 1 + 4πα.

χ p k ω,( )〈 〉
i ψp k ω,( )/∆p k( )〈 〉

1 i γ/∆p k( )〈 〉–
--------------------------------------------=

∆p k( ) ω k v⋅ iγ.+–=

E k ω,( )
4π k k P⋅( ) ω2P/c2–[ ]

k2 ω2
/c2–

-----------------------------------------------------.–=

E k ω,( ) 4πk k P⋅( )/k2.–=

Pz NZuz k ω,( ) αE k ω,( )+=

+
ie
k
---- 2 p3d

2π( )3
-------------δ f p k ω,( )∫

εe k ω,( )E k ω,( ) 4πβfd k ω,( )uz k ω,( ),–=

εe k ω,( ) ε∞
4πe2ν0 v z/∆p k( )〈 〉
k 1 i γ/∆p k( )〈 〉–( )
--------------------------------------------–=
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The function

(16)

introduced by us is the Coulomb response of longitudi-
nal optical phonons.

4. THE EQUATION OF MOTION 
FOR OPTICAL PHONONS

The equation of motion in the long-wave approxi-
mation for interaction (3) can be written in the form

(17)

where M' is the reduced mass of two atoms in the unit
cell. Let the ωk phonon frequency, which should be cal-
culated in the absence of electric field E ignoring all
nonadiabatic corrections, be known. In the long-wave

approximation, this frequency can be written as  =

 ± s2k2, where s is of the order of the usual velocity
of sound in metals and the sign corresponds to a maxi-
mum or a minimum of the phonon branch. In addition,
it should be borne in mind that optical phonons always

have damping Γnat ≈ ωk  determined by anhar-
monic processes of decay to two or more phonons. The
damping can be added to ωk in the form –iΓnat/2.

The first term on the right-hand side of (17) is the
force with which the electric field acts on the unit cell
dipole moment that arises in optical vibrations. The last
term is the driving force of conduction electrons, which
appears as a result of deviations from adiabaticity con-
ditions. Importantly, the local-equilibrium distribution
function value makes no contribution to this force in
conformity with the adiabatic approximation concept.
As the problem under consideration is essentially clas-
sical, the equation for the driving force can formally be
obtained from the Lagrangian of the electron–phonon
system taking into account interaction (3). The kj wave
vector then appears as a consequence of the integration
by parts.

Using solution (8), (9) to the kinetic equation, we
can rewrite equation of motion (17) in the form

(18)

where  is the renormalized phonon frequency,

(19)

β fd k ω,( ) NZ eων0

ζ p( )/∆p k( )〈 〉
1 i γ/∆p k( )〈 〉–
-----------------------------------–=
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Z
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----------- 2 p3d
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2

m/M
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ω̃

ω̃2 ωk
2=
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ν0ωk2

M'N
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-------------
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and  is the renormalized effective charge of ions,

(20)

Using definition (10) and condition (5), we find

(21)

which allows the expression for the permittivity of the
electron–phonon system to be eventually written as

(22)

Equation (22) has a clear physical meaning: the elec-
tron permittivity is augmented by the contribution of
optical shifts determined by the renormalized (because
of electron–phonon coupling) effective ionic charge
and frequency of optical vibrations.

5. THE SHIFT AND DAMPING 
OF THE LONGITUDINAL OPTICAL MODE

Equation (15) gives known limiting expressions for
the permittivity of the metal,

(23)

where ε∞ is the high-frequency permittivity. Here, the
first formula corresponds to the frequency-dependent
Drude conductivity, and the plasma frequency of elec-
trons is given by the integral over the Fermi surface

The second formula describes the long-wave limit of
Debye screening, and we retain a comparatively small
imaginary term in this expression. The screening

parameter is  = 4πe2ν0/e∞.

The longitudinal mode frequency ω = ωLO is deter-
mined by the ε(k, ω) = 0 condition, that is,

(24)

The electron permittivity is large at frequencies of the
order of the frequency of phonon vibrations and at k !
k0. The ratio between phonon frequency ω and the elec-
tron plasma frequency in metals contains the same adi-

abatic parameter, ω0/ωpe ~ , and (24) can be

Z̃

Z̃ Z
eν0k

N
-----------–=

×
ζ p( )v z
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---------------- iγ
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-----------------------------------------------------------+ 
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3π2ε∞
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solved iteratively. In a first approximation, we obtain
the longitudinal optical mode frequency and damping,

(25)

where  = 4πNZ2/ε∞M' is the square of the plasma

frequency of ions,  ~ .

In the absence of free electrons, the density of states
ν0 = 0, and (24) gives the longitudinal mode frequency,

 =  + . The electric field does not influence

the transverse mode,  = . If two atoms in the cell
are identical, we should set Z = 0, and the longitudinal
mode frequency in the center of the Brillouin zone
coincides with the transverse mode frequency; the dif-
ference, which we do not consider here, only appears in
dispersion.

In the presence of carriers, (25) allows limiting
expressions to be obtained for small and large parame-
ter κ = kvF/|ωk + iγ| values. For small κ values, factoring
∆p(k = 0) out and using the asymptotic behavior of εe(k,
ω) given by (23), we obtain

(26)

where the dimensionless coupling constant is deter-
mined by the equality λ = 〈ζ 2(p)〉ν 0/M'Ns2. The equa-
tion for the density ν0 of electron states in the isotropic
case contains the apFm*/m factor, which takes into
account the size of the Fermi surface and the effective
mass (a is the cell parameter).

In the opposite limiting case, the permittivity is
determined by the second formula in (23), and the prin-
cipal (purely imaginary) contribution of electron–
phonon coupling is given by the integral over the Fermi
surface band on which v z = 0,

where δ(x) is the Dirac function. We can, through intro-
ducing some mean velocity vF on this band, express the
integral via the dimensionless λ constant by assuming
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As a result, we obtain

(27)

Note that λ in (26) and (27) vanishes in the isotropic
case by virtue of condition (5).

It follows that, in the presence of free electrons, the
frequency of longitudinal phonons is substantially, by
ωpi, smaller than the corresponding frequency for a
dielectric. This is a result of Coulomb screening. This
decrease in frequency is accompanied by additional
softening, broadening, and dispersion (26), which are
small in the adiabatic parameter. The most substantial
change is the appearance in limit (27) of positive dis-
persion independent of the electron–phonon coupling

constant. As /  ≈ s2, this dispersion has a reason-
able value determined by the velocity of sound in order
of magnitude. This term is absent at Z = 0, but there
exists a contribution (not given in this work) of the
order of m/M of the same origin as the shift in the first
formula in (1).

Another important change is additional damping
[the terms in first parentheses in (27)]. Although this

damping contains the s/vF ~  small adiabatic
parameter, it is comparable with natural damping Γnat.
Note that the term with λ (electron–phonon coupling) is
comparable here with the term resulting from Coulomb
screening.

6. DEFORMATION ELECTRON–PHONON 
INTERACTION

The question of which one of interactions (3) and
(4) is observed in reality should be answered experi-
mentally. Both are possible in principle, but in case (4),
transverse modes do not interact with free carriers.
Consider the results obtained for deformation interac-
tion (4).

The ψp function in kinetic equation (6) changes as

The right-hand side of the equations of motion [10],

(28)

and the response function

(29)
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of the longitudinal optical mode also change [cf. (16)].
For the longitudinal mode, (19) is replaced by

(30)

The effective renormalized charge  in (18) now
equals

(31)

As is easy to see with the help of (10) and condition (5),
this equation only differs from βfd/N in the sign of the
second term in (29).

Substituting (29)–(31) into the equation of motion
for the longitudinal mode,

(32)

and reducing the terms in parentheses to a common
denominator, we find that large “adiabatic” terms can-
cel each other because of the vector character of inter-
action (4). The result for the frequency takes the form

(33)

The electric field does not participate in transverse
mode vibrations, and the equation for their frequency
and damping is directly obtained from (30),

(34)

where the x axis is perpendicular to the direction k of
phonon propagation.

We will use (33) and (34) to determine mode fre-
quencies and dampings in the limits of small and large
κ = kvF/|ωk + iγ| parameter values.

(1) For the transverse mode in the long-wave
region,

(35)

where dimensionless constant λ is determined by the
relation
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Changes in (a) frequency (quadratic scale) and (b) width for the transverse E2 and longitudinal A1 phonon modes of GaN under
pressure. Straight lines were obtained by linear interpolation; two straight lines for A1 correspond to pressures below and above
23 GPa. Sharp changes at 23 GPa are explained by the metal–dielectric transition.
In the short-wave region, we have

(36)

and λ arises in the integration over the Fermi surface
band on which v z = 0,

(2) For the longitudinal mode,

(37)
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The λ constant in (38) is given by

Note that all the definitions of the electron–phonon
coupling constant λ used in this work give dimension-
less values of the order of one for a typical metal. The
λ constant can vary because of changes in the ν0 density
of electronic states.

7. DISCUSSION

First, consider the results that do not depend on the
electron–phonon interaction model, that is, that do not
contain the λ constant. These are, first, softening of the
longitudinal optical phonon mode by ωpi compared
with its value in the absence of free carriers and an
additional decrease in the square of frequency
(ωkωpi/ωpe)2 [see (26) and (37)] in the region of small κ
values. Secondly, a positive dispersion of the same
mode of the type (ωpik/k0)2 ≈ (sk)2 [see (27) and (38)]
appears at large κ values. Thirdly, we have nonadiabatic
damping induced by carriers in the same κ region. All

1
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2
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these results arise from Coulomb screening of electric
field by free carriers, which accompanies dipole lattice
vibrations. They can be obtained by writing permittiv-
ity merely as the sum of ionic and electronic contribu-
tions and applying limiting equations (23) to it.

In addition, corrections are introduced by electron–
phonon coupling, that is, by terms with λ and collision
frequency γ, which takes into account the contribution
of electron–phonon coupling to conductivity. Clearly,
these corrections depend on the character of coupling.
They increase longitudinal mode damping for polariza-
tion interaction (27). The corresponding term in (38)
for deformation interaction contains an additional

power of the  adiabatic parameter.

The character of the interaction is essential for trans-
verse modes. Polarization interaction has no effect on
these modes, whereas deformation interaction (35) and
(36) increases the mode frequency and introduces addi-
tional damping, as with acoustic modes (1). The only
difference is in the shape of the ωk spectrum, which
now describes optical phonons.

Note that region (27) is most interesting for eluci-
dating the role played by electron–phonon coupling. In
this region, the contribution of electron–phonon cou-
pling to damping competes with screening (terms in
parentheses). In Raman experiments, the wave vector
of phonons is determined by the k ~ ωin/c wave vector
of the incident laser beam of frequency ωin. We there-
fore have κ = kvF/|ω0 + iγ| ≈ 0.3 if ωin ~ 104 K, the fre-
quency of the phonon excited in the center of the Bril-
louin zone is ω0 ~ 102 K, and the typical Fermi velocity
value is vF ~ 108 cm/s. Measurements of λ therefore
require the use of higher incident laser beam frequen-
cies.

There is no experimental data on the influence of
free electrons on damping of optical phonons in metals.
We will, therefore, use the data on doped GaN obtained
in [12]. The metal–dielectric transition occurs in GaN
at 23 GPa as a result of electron band shifts. The density
of free carriers then substantially decreases, from 5 ×
1019 cm–3 to a value determined by the concentration of
defects with shallow levels. The pressure dependence
of the frequencies and widths of two phonon (trans-
verse E2 and longitudinal A1) modes are shown in the
figure borrowed from [13]. In addition to a monotonic
increase in the frequencies and widths of both modes as
pressure grows, the longitudinal mode experiences a
sharp increase in frequency and a sharp decrease in
width at 23 GPa, whereas no distinct changes occur in

m/M
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transverse mode characteristics at this pressure. These
observations are unambiguous evidence that electron–
phonon coupling in GaN results from the polarization
interaction. The abrupt change in damping allows the
frequency of collisions to be estimated by (26); this
gives γ = 3.5 × 1014 s–1. The effective mass is known,
m* = 0.2m; this gives mobility µ = 25 cm2/(s V), which
corresponds with the experimental conductivity data.
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Abstract—A general method is suggested for solving problems on the conductivity and other effective char-
acteristics of two-dimensional ternary two-sublattice models with inclusions of arbitrary shape. The complex
potential outside of the inclusions is expressed in terms of the Weierstrass zeta function and its derivatives. The
electric field induced on a separate inclusion is described using the matrix of multipole polarizabilities, for
which the symmetry relation is found. The suggested approach enables one to find exact virial expansions for
the basic electrophysical characteristics of such systems. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Certain progress has been made in studying the elec-
trophysical properties of binary composites, which is
especially significant in the case of two-dimensional
systems. A number of analytical results were obtained,
such as conductivity [1] and galvanomagnetic [2] and
thermoelectric [3] characteristics of randomly inhomo-
geneous models with the critical composition. As was
demonstrated in [4, 5], the results of [2, 3] may be
extended to the case of arbitrary concentrations; for
this, it is sufficient to know the dimensionless effective
conductivity f. However, in the case of randomly inho-
mogeneous systems, the function  f  in the entire range
of variation of arguments is known only for unordered
lattices as a result of numerical experiment.

Periodic models are in a more advantageous posi-
tion: a number of exact results were obtained for their
conductivity [6, 7] in the case of dielectric or ideally
conducting inclusions. A closed solution of the problem
with finite nonzero conductivity of both components
was given in [1] for a model with a chessboard structure
[6]. The conductivity and other effective characteristics
of the more realistic Rayleigh model [8] were treated in
sufficient detail in [9]. And, finally, a general method
was suggested in [10] for the calculation of various
electrophysical characteristics of two-dimensional
binary periodic systems with inclusions of arbitrary
shape.

The theory of ternary systems with much more var-
ied properties is much less studied. Note the studies
[11, 12] dealing with a two-dimensional two-sublattice
system which is a generalization of the Rayleigh
model—an isotropic matrix with staggered circular
inclusions of two types with different radii and different
conductivities. In [11], an approximate method was
suggested for the calculation of the conductivity of this
system. A solution to the problem on conductivity and
1063-7761/02/9502- $22.00 © 20361
other effective characteristics of a two-sublattice model
(which is valid in the case of arbitrary concentrations)
was given in [12]. Note that the methods used in [11,
12] are valid only for systems with circular inclusions.

In this study, I have treated the basic electrophysical
characteristics of a two-dimensional ternary two-sub-
lattice model with inclusions of arbitrary (though fairly
symmetric—see Section 2) shape. The generalization
of the method strength [10] made it possible to derive
solutions to problems on the conductivity, thermal emf,
Hall coefficient, and second-order partial moments of
the electric field strength. The complex potential out-
side of the inclusions is expressed in terms of the
Weierstrass zeta function [13] and its derivatives. The
properties of the inclusions are entered in the form of
multipole polarizabilities, i.e., of respective coefficients
in the “responses” of these inclusions to various exter-
nal fields. The symmetry relation is determined for the
matrix of multipole polarizabilities.

2. MULTIPOLE POLARIZABILITIES

Let a medium of conductivity σ1 have an inclusion
(body) of conductivity σ2. If a uniform field of devel-
oped in E0 is applied, the electric potential ϕ in the
dipole approximation has the following form (two-
dimensional case) at large distances from the body:

(1)

Here,

(2)

is the dipole moment of the inclusion, and  is the ten-
sor of dipolar polarizability. If field E0 is directed along

ϕ r( ) E0 r⋅– 2p r⋅
r2

---------- …, r ∞.++=

p Λ̂E0=

Λ̂
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one of the principal axes of the tensor  (we will select
this axis to be the coordinate axis x), then

(3)

where Λ(x) is the respective principal value of the tensor

. For simplifying the rather cumbersome problems
treated in Sections 3–7, we will restrict ourselves (as in
[10]) to the case of fairly symmetric inclusions with a
symmetry as that in the case of ellipse or higher.

In what follows, it will be convenient to use the
complex potential

(4)

Here, ϕ is the electric potential, and A is the z compo-
nent of the vector potential determined according to

(5)

so that

(6)

where Ex and Ey are the components of the electric field
strength E outside of the inclusion. The derivative of
the complex potential is related to Ex and Ey as

(7)

The complex potential corresponding to expression (3)
has the form

(8)

with the real constant Λ(x).
When the higher-order (multipole) moments are

included, the expression for Φ(z) at high values of |z |
takes the form

(9)

In Eq. (9), the common factor is omitted; the quantities

 are real. A comparison of Eq. (9) with (8)

reveals that  = –2Λ(x).

In what follows, we will further require the response
of inclusion to a nonuniform external field of the form

where ϑ  is the polar angle. In this case, we have, simi-
larly to Eq. (9),

(10)

Λ̂

ϕ x( ) r( ) E0 x 2
xΛ x( )

r2
------------– …+

 
 
 

, r ∞,–=

Λ̂

Φ z( ) ϕ iA, z– x iy.+= =

E curlA, A 0 0 A, ,{ } ,= =

Ex
∂A
∂y
------, Ey

∂A
∂x
------,–= =

Φ' z( ) Ez– iEy.+=

Φ x( ) z( ) E0 z
2Λ x( )

z
------------– …+

 
 
 

, z ∞–=

Φ x( ) z( ) z
Λ1 2m 1+,

x( )

z2m 1+
-------------------.

m 0=

∞

∑+=

Λ1 2m 1+,
x( )

Λ11
x( )

Rez2n 1+ r2n 1+ 2n 1+( )ϑ ,cos=

Φ x( ) z( ) z2n 1+ Λ2n 1+ 2m 1+,
x( )

z2m 1+
---------------------------

m 0=

∞

∑+=
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with real constants , which will be referred
to as multipole polarizabilities. Similarly, for an exter-
nal field of the form

,

we have

(11)

The constants  are also taken to be real.

Dykhne’s transformation [1] enables one to relate
the complex potentials of the initial and so-called recip-
rocal (differing from the initial one by the substitutions
σ1  σ2, σ2  σ1) systems (compare with [10]),

(12)

Here and below, the tilde indicates the quantities per-
taining to the reciprocal system. The substitution of
Eqs. (10) and (11) into (12) gives the relation [10]

(13)

The following symmetry relation is valid for the

multipole polarizabilities  (see Appendix A):

(14)

From considerations of dimensionality, it follows
from Eqs. (10) and (11) that

(15)

where R is the characteristic dimension (in the xy plane)

of inclusion and  denotes dimensionless quantities
dependent on the shape of inclusion and on the argu-
ment h = σ2/σ1.

3. ELECTRIC FIELD OUTSIDE 
OF INCLUSIONS

The model being investigated is a two-dimensional
isotropic matrix of conductivity σ1 with staggered
inclusions of two types. The inclusions of the first type
(identical and identically oriented) have the conductiv-
ity σ2 and form a square lattice with a period of 2a. The
inclusions of the second type (also identical and identi-
cally oriented) have the conductivity σ3 and form a sim-
ilar lattice shifted by a half-period on the x and y axes.
We will assume that the principal axes of the tensors of
polarizability of inclusions of both types coincide with
the axes of the lattice and with the x and y coordinate
axes. Then, if the average electric field strength 〈E〉 is
directed along the x or y axis, all quantities Λnm in
Eqs. (10) and (11) are real. The problem on finding the

Λ2n 1+ 2m 1+,
x( )

Imz2n 1+ r2n 1+ 2n 1+( )ϑsin=

Φ y( ) z( ) i z2n 1+ Λ2n 1+ 2m 1+,
y( )

z2m 1+
---------------------------

m 0=

∞

∑–
 
 
 

.–=

Λ2n 1+ 2m 1+,
y( )

Φ x( ) z( ) iΦ̃ y( )
z( ).=

Λ̃2n 1+ 2m 1+,
y( ) Λ2n 1+ 2m 1+,

x( ) .–=

Λ2n 1+ 2m 1+,
v( )

2m 1+( )Λ2n 1+ 2m 1+,
v( ) 2n 1+( )Λ2m 1+ 2n 1+,

v( ) ,=

v x y.,=

Λnm
v( ) Rn m+ αnm

v( ),=

αnm
v( )
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potential outside of inclusions is solved with the aid of
an expansion in terms of the formally small parameter
R/a, where, in this case, R is the maximal “radius” of
inclusions.

In a zero approximation, the complex potential cor-
responding to the uniform external field applied along
the x axis has the form

(16)

with the real constant β. The response of inclusion of
the first type, located at the origin of coordinates, to the
field (16) is given, according to Eq. (9), by the expres-
sion

(17)

Here and below, we omit the superscript x on Φ(x)(z) and

. Similarly, for the response of inclusion of the sec-
ond type with the center at the point z = z0 to the field
according to Eq. (16), we have

(18)

where z0 = (1 + i)a. Here, the superscript x is also omit-
ted, and λnm denotes the matrix of multipole polariz-
abilities of inclusions of the second type.

We add up the responses of the type given by
Eqs. (17) and (18) from all inclusions to derive the fol-
lowing expression for the first-approximation correc-
tion to Eq. (16):

(19)

(20)

In Eq. (19), ζ(z) is the Weierstrass zeta function [13],
and ζ(2n)(z) is the derivative of the order 2n of ζ(z). The
functions ζ(z) and ζ(z – z0) (the terms with n = 0 in
Eq. (19)) arise as a result of summation of the dipole
potentials induced by the external field. In doing so, as
in [9, 10], the respective sums are regularized, which
provides for their convergence. The terms with n ≥ 1 in
Eq. (19) correspond to higher-order multipoles.

Φ 0( ) z( ) βz=

ΦI
1( ) z( ) β

Λ1 2n 1+,

z2n 1+
------------------

n 0=

∞

∑=

=  β
Λ1 2n 1+,

2n( )!
------------------ d2n

dz2n
----------1

z
--- 

  .
n 0=

∞

∑

Λnm
x( )

ΦII
1( ) z( ) β

λ1 2n 1+,

z z0–( )2n 1+
---------------------------

n 0=

∞

∑=

=  β
λ1 2n 1+,

2n( )!
----------------- d2n

dz2n
---------- 1

z z0–
------------ 

  ,
n 0=

∞

∑

Φ 1( ) z( )

=  β Bn
1( )ζ 2n( ) z( ) Dn

1( )ζ 2n( ) z z0–( )+{ } ,
n 0=

∞

∑

Bn
1( ) 1

2n( )!
-------------Λ1 2n 1+, , Dn

1( ) 1
2n( )!

-------------λ1 2n 1+, .= =
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In the next approximation, the external (with respect
to the preferred inclusion of the first type) potential is
provided by Φ(1)(z) from Eq. (19) less the eigenfield

, i.e., the quantity Φ(1)(z) – . In searching
for the response to this field, the following expansions
in the neighborhood of the point z = 0 [12] are used:

(21)

(22)

where ζ(z0) = π(1 – i)/4a and δnm is the Kronecker sym-
bol. The coefficients c2n have the following values [13]:

(23)

Here, K(1/ ) = 1.85407… is the complete elliptic
integral of the first kind K(k) with the modulus k =

1/ . The quantities d2n may be expressed in terms of
c2n [12],

(24)

The coefficients cn and dn with odd subscripts in the
case of square lattice being treated are zero [13].

Accordingly, for the inclusion of the second type
(with the center at the point z = z0), the external poten-

tial is provided by Φ(1)(z) – . Here, in searching
for the response, the following expansions in the neigh-
borhood of the point z = z0 [12] are used:

(25)

(26)

with the same coefficients cn and dn.
On finding corrections of the second and subsequent

orders (compare with [10]), we conclude that the total

ΦI
1( ) z( ) ΦI

1( ) z( )

ζ 2n( ) z( ) 2n( )!
z2n 1+
-------------

2n 2k+( )!
2k 1+( )!

-------------------------cn k 1+ + z2k 1+ ,
k 0=

∞

∑–=

ζ 2n( ) z z0–( ) ζ z0( )δn0–=

–
2n 2k+( )!
2k 1+( )!

-------------------------dn k 1+ + z2k 1+ ,
k 0=

∞

∑

c2

g2

20
------, g2

1

a4
----- K

1

2
------- 

  4

,= =

c4
1
3
---c2

2, c6
2

3 13×
---------------c2

3,= =

c8
5

3 13× 17×
---------------------------c2

4 ….,=

2

2

d2n 4–( )n 1–[ ] c2n.=

ΦII
1( ) z( )

ζ 2n( ) z( ) ζ z0( )δn0=

– 2n 2k+( )!
2k 1+( )!

-------------------------
k 0=

∞

∑ dn k 1+ + z z0–( )2k 1+ ,

ζ 2n( ) z z0–( )
2n( )!

z z0–( )2n 1+
---------------------------=

– 2n 2k+( )!
2k 1+( )!

-------------------------
k 0=

∞

∑ dn k 1+ + z z0–( )2k 1+
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potential outside of the inclusions has exactly the same
form as in the case of circular inclusions [12],

(27)

The coefficients Bn and Dn satisfy the set of equations

(28)

(29)

Here,

(30)

(31)

(32)

(33)

If field 〈E〉  is directed along the y axis, the complex
potential outside of the inclusions has the form (the
quantities relating to this case are marked with a bar
above the letter), 

(34)

The coefficients  and  satisfy the set of equations

(35)

(36)

The expressions for the matrices , , , and

 follow from Eqs. (30)–(33) upon the substitutions

Λnm   ≡ , λnm   ≡ . Formulas
(27)–(36) provide the solution to the problem set.

Φ z( )

=  β z Bnζ
2n( ) z( )

n 0=

∞

∑ Dnζ
2n( ) z z0–( )

n 0=

∞

∑+ +
 
 
 

.

Bn FnmBm HnmDm+( )
m 0=

∞

∑+
1

2n( )!
-------------Λ1 2n 1+, ,=

Dn KnmBm LnmDm+( )
m 0=

∞

∑+
1

2n( )!
-------------λ1 2n 1+, .=

Fnm
2k 2m+( )!
2k 1+( )!

--------------------------ck m 1+ +

Λ2k 1+ 2n 1+,

2n( )!
--------------------------,

k 0=

∞

∑=

Hnm
2k 2m+( )!
2k 1+( )!

--------------------------dk m 1+ +

Λ2k 1+ 2n 1+,

2n( )!
--------------------------,

k 0=

∞

∑=

Knm
2k 2m+( )!
2k 1+( )!

--------------------------dk m 1+ +

λ2k 1+ 2n 1+,

2n( )!
-------------------------,

k 0=

∞

∑=

Lnm
2k 2m+( )!
2k 1+( )!

--------------------------ck m 1+ +

λ2k 1+ 2n 1+,

2n( )!
-------------------------.

k 0=

∞

∑=

Φ z( ) iβ–=

× z Bnζ
2n( ) z( )

n 0=

∞

∑ Dnζ
2n( ) z z0–( )

n 0=

∞

∑––
 
 
 

.

Bn Dn

Bn FnmBm HnmDm+( )
m 0=

∞

∑–
1

2n( )!
-------------Λ1 2n 1+, ,=

Dn KnmBm LnmDm+( )
m 0=

∞

∑–
1

2n( )!
-------------λ1 2n 1+, .=

Fnm Hnm Knm

Lnm

Λnm Λnm
y( ) λnm λnm
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4. SOME RELATIONS

We will introduce the “variables” xk and yk in accor-
dance with

(37)

For xk and yk, we have the following set of equations:

(38)

(39)

where δk0 is the Kronecker symbol. The matrices Mkl,
Pkl, Qkl, and Nkl satisfy the equations

(40)

(41)

(42)

(43)

In view of definitions (37), one can readily make sure
that Eqs. (38)–(43) yield the set of equations (28)–(33).

Similarly, we assume that

(44)

to derive from Eqs. (35) and (36) the set of equations

(45)

(46)

Bn
1

2n( )!
------------- Λ2k 1+ 2n 1+, xk,

k 0=

∞

∑=

Dn
1

2n( )!
------------- λ2k 1+ 2n 1+, yk.

k 0=

∞

∑=

xk Mklxl Pklyl+( )
l 0=

∞

∑+ δk0,=

yk Qklxl Nklyl+( )
l 0=

∞

∑+ δk0,=

Mkl
2k 2m+( )!
2k 1+( )!

--------------------------ck m 1+ +

Λ2l 1+ 2m 1+,

2m( )!
--------------------------,

m 0=

∞

∑=

Pkl
2k 2m+( )!
2k 1+( )!

--------------------------dk m 1+ +

λ2l 1+ 2m 1+,

2m( )!
-------------------------,

m 0=

∞

∑=

Qkl
2k 2m+( )!
2k 1+( )!

--------------------------dk m 1+ +

Λ2l 1+ 2m 1+,

2m( )!
--------------------------,

m 0=

∞
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Nkl
2k 2m+( )!
2k 1+( )!

--------------------------ck m 1+ +

λ2l 1+ 2m 1+,

2m( )!
-------------------------.

m 0=

∞
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Bn
1

2n( )!
-------------= Λ2k 1+ 2n 1+, xk,

k 0=

∞

∑

Dn
1

2n( )!
-------------= λ2k 1+ 2n 1+, yk,

k 0=

∞

∑

xk Mklxl Pklyl+( )
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∞
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yk Qklxl Nklyl+( )
l 0=

∞

∑– δk0.=
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The expressions for the matrices , , , and

 follow from Eqs. (40)–(43) upon the substitutions

Λnm  , λnm  .

The introduction of the quantities xk and yk makes it
possible to derive a number of useful relations (identi-
ties). We will treat a system of the same structure as the
initial one but with different conductivities κ1, κ2, and
κ3 (κi may be provided by, for example, thermal con-
ductivity; see below). The quantities related to this sys-
tem will be marked with a double bar. In this case, an
equation similar to Eq. (38) will have the form

(47)

We multiply Eq. (38) by (2k + 1)!  and Eq. (47) by
(2k + 1)! Bk, subtract one from the other, and sum over
all values of k. As a result, in view of definitions (37)
and symmetry relation (14), we have

(48)

In a similar manner, we find one more relation

(49)

Equations (48) and (49) yield the identity

(50)

The summation over k and l in Eqs. (48)–(50) proceeds
from zero to ∞.

We will now multiply Eq. (38) by (2k + 1)!  and
Eq. (45) by (2k + 1)! Bk, add up, and then sum over all
values of k. As a result, we have

Mkl Pkl Qkl

Nkl

Λnm λnm

xk Mklxl Pklyl+( )
l 0=

∞

∑+ δk0.=

Bk

2k 1+( ) Λ2l 1+ 2k 1+, Λ2l 1+ 2k 1+,–[ ] xkxl

l

∑
k

∑

+ 2k 2l+( )! BkDl BkDl–[ ] dk l 1+ +

l

∑
k

∑ B0 B0.–=

2k 1+( ) λ2l 1+ 2k 1+, λ2l 1+ 2k 1+,–[ ] ykyl

l

∑
k

∑

– 2k 2l+( )! BkDl BkDl–[ ] dk l 1+ +

l

∑
k

∑ D0 D0.–=

2k 1+( ) Λ2l 1+ 2k 1+, Λ2l 1+ 2k 1+,–[ ] xkxl

l

∑
k

∑

+ 2k 1+( ) λ2l 1+ 2k 1+, λ2l 1+ 2k 1+,–[ ] ykyl

l

∑
k

∑

=  B0 B0– D0 D0.–+

Bk
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(51)

In a similar manner, we find

(52)

Equations (51) and (52) yield the identity

(53)

The summation over k and l in Eqs. (51)–(53) likewise
proceeds from zero to ∞.

5. EFFECTIVE CONDUCTIVITY

We use the complex potential Φ(z) from Eq. (27) to
calculate the voltage drop Ux across a unit cell and the
total current Ix through the latter in the direction of the
x axis to derive, analogously with [12],

(54)

(55)

We find

(56)

for the effective conductivity σxe = Ix/Ux in the direction
of the x axis (i.e., for the respective principal value σxe

of the effective conductivity tensor ).

In the case when field 〈E〉  is directed along the y
axis, we derive for the effective conductivity σye, simi-
larly to Eq. (56),

2k 1+( ) Λ2l 1+ 2k 1+, Λ2l 1+ 2k 1+,+[ ] xkxl

l

∑
k

∑

+ 2k 2l+( )! BkDl BkDl–[ ] dk l 1+ +

l

∑
k

∑ B0 B0.+=

2k 1+( ) λ2l 1+ 2k 1+, λ2l 1+ 2k 1+,+[ ] ykyl

l

∑
k

∑

– 2k 2l+( )! BkDl BkDl–[ ] dk l 1+ +

l

∑
k

∑ D0 D0.+=

2k 1+( ) Λ2l 1+ 2k 1+, Λ2l 1+ 2k 1+,+[ ] xkxl

l

∑
k

∑

+ 2k 1+( ) λ2l 1+ 2k 1+, λ2l 1+ 2k 1+,+[ ] ykyl

l

∑
k

∑
=  B0 B0 D0 D0.+ + +

Ux 2aβ 1 B0 D0+( ) π
4a2
--------+ ,–=

Ix 2σ1aβ 1 B0 D0+( ) π
4a2
--------– .–=

σxe σ1 f x, f x

1 B0 D0+( ) π
4a2
--------–

1 B0 D0+( ) π
4a2
--------+

------------------------------------------,= =

σ̂xe
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(57)

with the coefficients  and  from Eq. (34).

The system being treated is, generally speaking,
anisotropic. For such systems, the reciprocal relation
has the form

(58)

where tilde indicates a reciprocal system which differs
from the initial one by the substitutions σi /σ1 
σ1/σi, i = 2, 3. The substitution of Eqs. (27) and (34)

into relation (12) written in the form  = i
gives

(59)

It follows from Eqs. (56) and (57), in view of equalities
(59), that reciprocal relation (58) is valid.

With low concentrations of inclusions, Eqs. (28) and
(29) may yield, similarly to [10], the virial expansion
for the coefficients B0 and D0 and, thereby, for the effec-
tive conductivity σxe.

Before turning to the calculation of other electro-
physical characteristics of the model being treated, we
will find the expressions for the complex potentials in
the neighborhood of inclusions of the first (z = 0) and
second (z = z0) types. In the neighborhood of the point
z = 0, we substitute expansions (21) and (22) into
Eq. (27),

(60)

Here, the substitution n  m is performed in the dou-
ble sum. We substitute the expressions for Bm and Dm

written in terms of xl and yl (see Eq. (37)) into the sum
over m from Eq. (60). As a result,

(61)

σye σ1 f y, f y

1 B0 D0+( ) π
4a2
--------–

1 B0 D0+( ) π
4a2
--------+

------------------------------------------= =

B0 D0

f̃ x f y 1,=

Φ̃ z( ) Φ z( )

B̃n Bn, D̃n– Dn.–= =

Φ z( ) β z Bn
2n( )!

z2n 1+
-------------

n

∑+




=

–
2n 2m+( )!
2n 1+( )!

--------------------------- Bmcn m 1+ + Dmdn m 1+ ++( )
m

∑
n

∑

∫ × z2n 1+ D0ζ z0( )–




.

     

Φ z( ) β z Bn
2n( )!

z2n 1+
-------------

n

∑+




=

– Mnlxl Pnlyl+( )
l

∑ z2n 1+

n

∑ D0ζ z0( )–




.

     
JOURNAL OF EXPERIMENTAL
We eliminate the sum over l with the aid of Eq. (38) to
finally derive

(62)

We similarly find from Eq. (34), after the substitution of
(21) and (22),

(63)

In the neighborhood of the point z = 

 

z

 

0

 

, we use
expansions (25) and (26) to derive, respectively,

(64)

(65)

6. THERMAL ELECTROMOTIVE FORCE 

For a structurally anisotropic system, the effective
thermoelectric coefficient is preassigned by the tensor

. In the case of a weak thermoelectric coupling, the

principal values of the tensor  are given by the
expressions [14]

(66)

Here, 

 

〈

 

…

 

〉

 

 is the average over the entire sample volume
(area, in the two-dimensional case), 

 

G

 

 = –

 

∇

 

T

 

 is the
temperature field “surface,” and 

 

T 

 

is the temperature;
the superscript “

 

v

 

” in 

 

E

 

(

 

v

 

)

 

 and 

 

G

 

(

 

v

 

)

 

 indicates that 

 

〈

 

E

 

(

 

v

 

)

 

〉

 

and 

 

〈

 

G

 

(

 

v

 

)

 

〉

 

 are directed along the 

 

v

 

 axis.
For an 

 

N

 

-component system, from Eq. (66) follows

(67)

where

(68)

Here, 

 

〈

 

…

 

〉

 

(

 

i

 

)

 

 is the volume (surface, in the two-dimen-
sional case) integral of the 

 

i

 

th component divided by
the sample volume (surface).

Φ z( ) β Bn
2n( )!

z2n 1+
------------- xnz2n 1++

 
 
 

βD0ζ z0( ).–
n 0=

∞

∑=

Φ z( ) iβ Bn
2n( )!

z2n 1+
------------- xnz2n 1+–

 
 
 

iβD0ζ z0( ).–
n 0=

∞

∑=

Φ z( ) β Dn
2n( )!

z z0–( )2n 1+
--------------------------- yn z z0–( )2n 1++

 
 
 

n 0=

∞

∑=

+ β z0 B0ζ z0( )+[ ] ,

Φ z( ) iβ Dn
2n( )!

z z0–( )2n 1+
--------------------------- yn z z0–( )2n 1+–

 
 
 

n 0=

∞

∑=

– iβ z0 B0ζ z0( )–[ ] .

α̂ e

α̂ e

αv e
1

σv e

-------- ασE v( )G v( )〈 〉
E v( )〈 〉 G v( )〈 〉

----------------------------------, v x y.,= =

σv e α iΨi
v( ), v

i 1=

N

∑ x y,,= =

Ψi
v( ) σi

σv e

-------- E v( )G v( )〈 〉 i( )

E v( )〈 〉 G v( )〈 〉
-------------------------------.=
 AND THEORETICAL PHYSICS      Vol. 95      No. 2      2002



THE THEORY OF CONDUCTIVITY OF TERNARY COMPOSITE FILMS 367

     
For the functions , the “sum rules” similar to
the isotropic case are valid [12],

(69)

(70)

Here, κi is the thermal conductivity of the ith compo-
nent, and κve denotes the principal values of the effec-
tive tensor of thermal conductivity .

For ternary systems, we use Eq. (69) to find from

(67), after elimination of ,

(71)

After a similar procedure, Eq. (70) gives the relation

(72)

which makes possible the elimination of  or 
from Eq. (71).

The problems on thermal conductivity and electrical
conductivity in the absence of thermoelectric effects
change into one another during the permutation κ 
σ. Therefore, the results given in Sections 2–5 are
extended to the problem on thermal conductivity by
means of substitutions σi  κi, σve  κve; the quan-
tities related to this system will be marked with a dou-
ble bar.

In order to calculate the bilinear characteristics of
〈E(v)G(v)〉 (i) (for i = 2, 3), we will use the formula anal-
ogous to that derived in [10] (see expression (A.5) in
[10]),

(73)

On the left here is the area integral for inclusion of the
first (i = 2) or second (i = 3) type. On the right is the
integral over a circle whose radius ρ exceeds the maxi-
mal “radius” of each one of the inclusions.

We calculate the integrals on the right-hand side of
Eq. (73) using the potentials given by Eqs. (62) and (64)
and the respective “temperature potentials” to find

Ψi
v( )

Ψi
v( )

i 1=

N

∑ 1,=

κ i

σi

----Ψi
v( )

i 1=

N

∑ κv e

σv e

--------; v x y.,= =

κ̂ e

Ψ1
v( )

αv e α1 α2 α1–( )Ψ2
v( ) α3 α1–( )Ψ3

v( ).+ +=

κ1

σ1
-----

κ2

σ2
-----– 

  Ψ2
v( ) κ1

σ1
-----

κ3

σ3
-----– 

  Ψ3
v( )+

κ1

σ1
-----

κv e

σv e

--------,–=

Ψ3
v( ) Ψ2

v( )

     

E v( )G v( )( ) rd

Si

∫ 1
κ i

κ1
-----

σi

σ1
-----–

-----------------=

× ϕ v( )∂T v( )

∂r
------------ T v( )∂ϕ v( )

∂r
------------– 

 
r ρ=

ρ ϑ .d

0

2π

∫
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(74)

(75)

The substitution into Eq. (68) of formulas (74) and (75),

 = 

 

U

 

x

 

/2

 

a

 

 with 

 

U

 

x

 

 from (54), and of the similar

(with the replacement of 

 

B

 

0

 

 and 

 

D

 

0

 

 by  and  and

 

β

 

 by ) formula for  gives the sought expres-

sions for the functions  and . One can readily
see that these expressions satisfy relation (72) by virtue

of identity (50). The functions  and  are found
analogously.

Directly related to the effective conductivity tensor
 are the partial quadratic characteristics of the elec-

tric field strength (see, for example, [10]),

(76)

where 

 

〈

 

…

 

〉

 

(

 

i

 

)

 

 is as in Eq. (68).

We will use formula (74) in order to calculate .

We assume in Eq. (74) that 

 

κ

 

1

 

 = 

 

σ

 

1

 

, 

 

κ

 

3

 

 = 

 

σ

 

3

 

, and  = 

 

β

 

,
and then perform the limiting transition 

 

κ

 

2

 

  

 

σ

 

2

 

 to

find 

 

〈

 

E

 

2

 

〉

 

(2)

 

. As a result, in view of the equality  =

 

U

 

x

 

/(2a) (with Ux from Eq. (54)), we find

(77)

(78)

E x( )G x( )〈 〉 2 π
2a2
-------- ββ

κ2

κ1
-----

σ2

σ1
-----–

-----------------=

× 2n 1+( ) Λ2m 1+ 2n 1+, Λ2m 1+ 2n 1+,–[ ] xnxm,
m 0=

∞

∑
n 0=

∞

∑

E x( )G x( )〈 〉 3 π
2a2
-------- ββ

κ3

κ1
-----

σ3

σ1
-----–

-----------------=

× 2n 1+( ) λ2m 1+ 2n 1+, λ2m 1+ 2n 1+,–[ ] ynym.
m 0=

∞

∑
n 0=

∞

∑

Ex
x( )〈 〉

B0 D0

β Gx
x( )〈 〉

Ψ2
x( ) Ψ3

x( )

Ψ2
y( ) Ψ3

y( )

σ̂e

ψi
α( ) e α( )( )2〈 〉

i( )
≡

∂σαe

∂σi

-----------,=

e α( ) r( )
E α( ) r( )

E α( )〈 〉
------------------,=

ψ2
x( )

β

Ex
x( )〈 〉

ψ2
x( ) σ1

π
2a2
-------- 1

∆2
-----–=

× 2n 1+( )
∂Λ2m 1+ 2n 1+,

∂σ2
------------------------------xnxm,

m 0=

∞

∑
n 0=

∞

∑

∆ 1 B0 D0+( ) π
4a2
--------.+=
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We use a similar limiting transition (in view of the fact
that ∂λnm/∂σ2 ≡ 0) to find, from identity (50),

(79)

so that

(80)

One can readily see that the right-hand side of identity
(80) is a derivative of σxe from Eq. (56),

(81)

The functions , as well as  and , are found
analogously.

7. HALL COEFFICIENT

The effective Hall coefficient Re in a low magnetic
field H is expressed in terms of the Hall component σae

of the effective conductivity tensor as follows:

(82)

For an N-component system in a linear (with respect to
H) approximation, we have [12]

(83)

(84)

where 〈…〉 (i) is as in Eqs. (68) and (76).

For the functions ϕai, the “sum rule” is valid [12],

(85)

for both two- and three-dimensional media. Another
relation is available in the two-dimensional case [12],

(86)

which relates the quantities ϕai to the components of the
effective conductivity tensor (at H = 0).

2n 1+( )
∂Λ2m 1+ 2n 1+,

∂σ2
------------------------------xnxm

m 0=

∞

∑
n 0=

∞

∑

=  σ2∂
∂

B0 D0+( ),

ψ2
x( ) σ1

π
2a2
-------- 1

∆2
-----

σ2∂
∂

B0 D0+( ).–=

ψ2
x( ) ∂σxe

∂σ2
----------.=

ψ3
x( ) ψ2

y( ) ψ3
y( )

Re
1
H
----

σae

σxeσye

---------------.=

σae σaiϕai,
i 1=

N

∑=

ϕai

Ex
x( )Ey

y( ) Ey
x( )Ex

y( )–〈 〉 i( )

Ex
x( )〈 〉 Ey

y( )〈 〉
----------------------------------------------------,=

ϕai

i 1=

N

∑ 1,=

σi
2ϕai

i 1=

N

∑ σxeσye,=
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For a ternary system, we use Eq. (85) to eliminate
ϕa1 and find, from Eq. (83),

(87)

After a similar procedure, Eq. (86) gives the relation

(88)

where hi = σi/σ1. Using equality (88) in the two-dimen-
sional case enables one to restrict oneself to calculating
only one of the functions ϕai, for example, ϕa2. On the
other hand, relation (88), as well as (72), may be used
to check the accuracy of calculations of the respective
effective quantities.

In order to calculate the integrals appearing in the
definition of the functions ϕai, we will use the formula
analogous to that derived in [10] (see expression (B.12)
in [10]),

(89)

On the left here is the surface integral for inclusion of
the first (i = 2) or second (i = 3) type; […]z is the z com-
ponent of the vector product. On the right of Eq. (89) is
the integral over a circle of radius ρ within which the
inclusion is located.

We substitute into Eq. (89) ϕ(x) = ReΦ(z), A(x) =

−ImΦ(z), and ϕ(y) =  with Φ(z) and  from
Eqs. (62), (63) and (64), (65), respectively. On calculat-
ing the integrals, we derive the following expressions
for the functions ϕa2 and ϕa3:

(90)

(91)

with ∆ from Eq. (78) and

(92)

Expressions (90) and (91) satisfy relation (88) by virtue
of identity (53).

σae σa1 σa2 σa1–( )ϕa2 σa3 σa1–( )ϕa3.+ +=

1 h2
2–( )ϕa2 1 h3

2–( )ϕa3+ 1 f x f y,–=

E x( ) E y( )×[ ] z rd

Si

∫ 1

1 hi
2–

--------------=

× ϕ x( )1
r
---∂ϕ y( )

∂ϑ
------------ A x( )∂ϕ y( )

∂r
------------+

 
 
 

r ρ=

ρ ϑ .d

0

2π

∫

ReΦ z( ) Φ z( )

ϕa2
π

2a2
-------- 1

∆∆
------- 1

1 h2
2–

--------------=

× 2n 1+( ) Λ2m 1+ 2n 1+, Λ2m 1+ 2n 1+,+[ ] xnxm,
m 0=

∞

∑
n 0=

∞

∑

ϕa3
π

2a2
-------- 1

∆∆
------- 1

1 h3
2–

--------------=

× 2n 1+( ) λ2m 1+ 2n 1+, λ2m 1+ 2n 1+,+[ ] ynym,
m 0=

∞

∑
n 0=

∞

∑

∆ 1 B0 D0+( ) π
4a2
--------.+=
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8. CONCLUSION

Note that, for circular inclusions, the matrices of
multipole polarizabilities are diagonal,

(93)

where R and ρ are the radii of inclusions. We will intro-
duce new “variables” ξn and ηn in the following way:

(94)

One can readily make sure that, upon substitution of
Eqs. (93) and (94) into the relations and formulas
derived in this study, they transform to the respective
expressions from [12].

Note further that, at  = 0 (with Dn = 0 and yn =
0), the investigated ternary two-sublattice model trans-
forms into a binary model treated in [10]. A number of
formulas derived in this study transform to those
derived in [10]. As to the results associated with the
“variables” xn, they represent a further development of
the method employed in [10].

APPENDIX A

We will treat the surface integral

(A.1)

for a circle of radius ρ, within which some inclusion is
located. Here, En = –∇ϕ n and Em = –∇ϕ m, where ϕn(r) =
ReΦn(z) and ϕm(r) = ReΦm(z). The complex potentials
Φn(z) and Φm(z) exhibit the following asymptotic
behavior:

(A.2)

(A.3)

On the one hand, integral (A.1) may be written as

(A.4)

where

(A.5)

Λnm R2n 1 h2–
1 h2+
--------------δnm, λnm ρ2n 1 h3–

1 h3+
--------------δnm,= =

ξn 2n 1+ R2nxn, ηn 2n 1+ ρ2nyn.= =

λnm
v( )

I Enσ r( )Em( ) rd

r ρ≤
∫=

Φn z( ) zn Λnk

zk
--------, n 1,≥

k 1=

∞

∑+=

Φm z( ) zm Λml

zl
--------, m 1.≥

l 1=

∞

∑+=

I jn · Em( ) r,d

r ρ≤
∫=

jn σ r( )En=
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is the current density. By virtue of the equation divjn =
0, integral (A.4) may be transformed to

(A.6)

On the other hand,

(A.7)

We subtract (A.7) from (A.6) to derive

(A.8)

Identity (A.8) is valid for arbitrary values of ρ (ρ >
R, where R is the maximal “radius” of inclusion),
including the case of ρ  ∞. We use asymptotic
expressions (A.2) and (A.3) to derive, from (A.8),

(A.9)

One can readily make sure that the matrix of multipole
polarizabilities for an elliptic inclusion (see [10]) satis-
fies relation (A.9).

APPENDIX B

We will now treat the integral

(B.1)

taken over the surface of inclusion S. Here, En is as in

Eq. (A.1), and Gm = –∇ Tm, where Tm(r) = Re  and

 exhibits asymptotic behavior similar to that of

Eq. (A.3) (with the substitution of Λml by ). We cal-
culate integral (B.1) using formula (73) to derive

(B.2)

Symmetry relation (A.9) was used in deriving formula
(B.2). We make a transition in Eq. (B.2) to the limit
κ2/κ1  σ2/σ1 to find

(B.3)

I jn∇ϕ m( ) rd

r ρ≤
∫– ∇ jnϕm( ) rd

r ρ≤
∫–= =

=  σ1 ϕn

∂ϕn

∂r
---------

r ρ=

ρ ϑ .d

0

2π

∫–

I En · jm( ) rd

r ρ≤
∫ …= =

=  σ1 ϕn

∂ϕm

∂r
---------

r ρ=

ρ ϑ .d

0

2π

∫–

ϕn

∂ϕm

∂r
--------- ϕm

∂ϕn

∂r
---------–

r ρ=

ρ ϑd

0

2π

∫ 0.=

mΛnm nΛmn.=

En · Gm( ) rd

S

∫

Φm z( )

Φm z( )

Λml

En · Gm( ) rd

S

∫ 2π
m Λnm Λnm–( )

κ2

κ1
-----

σ2

σ1
-----–

----------------------------------.=

En · Em( ) rd

S

∫ 2πm
∂Λnm

∂h
------------, h–

σ2

σ1
-----.= =
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In determining the multipole polarizabilities Λnm by
numerical methods, relation (B.3) enables one to find
the derivatives ∂Λnm/∂h without performing difficult
numerical differentiation.
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