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Abstract—An agorithm is proposed for determining asymptotics of the sum of a perturbative series in the
strong coupling limit using given values of the expansion coefficients. Application of the algorithm is illus-
trated, methods for estimating errors are devel oped, and an optimization procedure is described. Applied to the
$* theory, the algorithm yields the Gell-Mann—L ow function asymptotics of the type B(g) = 7.4g°% for large g.
The fact that the exponent is close to unity can be interpreted as a manifestation of the logarithmic branching
of the type B(g) ~ g(Ing)™ (with y = 0.14), which is confirmed by independent evidence. In any case, the o*
theory is self-consistent. The procedure of summing perturbanve series with arbitrary values of the expansion
parameter is discussed. © 2001 MAIK “ Nauka/lnterperiodica”

1. INTRODUCTION

This paper presents a systematic description of the
algorithm proposed previously in a brief communica-
tion [1]. Operation of the agorithm isillustrated by test
examples, methods for estimating errors are devel oped,
and an optimization procedure is described. Using this
agorithm, the Gell-Mann-Low function of the ¢* the-
ory—the main physical result of this study—can be
reconstructed with atenfold greater precision.

The abstract formulation of the problem is as fol-
lows. Let some function W(g) be expanded into a series
of the perturbation theory in powers of a coupling con-
stant g:

W@ = 5 Wy-9)" (1)
N=0

The first several expansion coefficients Wy can be
obtained by straightforward diagram calculations. The
high-order terms can be determined using the Lipatov
method [2], which is applicable to most of the impor-
tant praoblems and yields for W), an asymptotic behavior
of the type (see reviews [3-5]):

WS = ca " r(N+b)=ca 'N"""NI. )

Matching asymptotics (2) to the first coefficients pro-
vides information about al terms of the series and
allows the W(g) function to be approximately restored,
but this procedure requires using special methods for
summing divergent series. Implementation of this

approach allowed the critical indices of the phase tran-
sition theory to be determined to within the third deci-
mal position [6-8], thus rendering the intermediate
coupling region (g ~ 1) principally accessible. However,
this direction was not developed further because the prob-
lem of renormaon contributions arose that cast doubt [9]
ontheapplicability of the Lipatov method. Theinterestin
thisfield had dropped sharply and no breakthrough into
the strong coupling region took place.

Expanding the theory into the strong coupling
region is required in many fields of theoretical physics.
The most known cases, related to the dependence of the
effective coupling constant g onthe patial scaleL, include
the problem of eectrodynamics at very small distances
and the confinement problem. The dependence of g
onL in renormalizable theories is determined by the
equation

= B.g° —PBs0’ + Bug’ - 3
dI |_

In the general case, this description requires informa-
tion on the Gell-Mann—Low function 3(g) for arbitrary g.
The possible variants were classified by Bogolyubov
and Shirkov [10]. In the case of B, > 0, the situation
reduces to the following. If the function (g) possesses
aroot a gy, theng(L) — gyasL — 0. If 3(g) at largeg
behaves as g with a < 1, then g(L) — o at small L;
should 3(g) grow as g* with a > 1, the theory is no
longer self-consistent and cannot describe the behavior
of g(L) in the entire range of L.
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2 SUSLOV

Thefirst attempt at restoring the  function in the ¢*
theory with the Euclidean action

S(o) = jd“x%(am%lj—{‘zgw@ @

was undertaken by Popov et al. [11]. The Shirkov group
attempted to move into the strong coupling region [12]
and obtained for large g asymptotics of the type 0.9g2,
which differs only by a coefficient from a one-loop law
1.5¢? valid for g — 0. A close asymptotic behavior
(1.06g'°) was obtained by Kubyshin [13], while the
more recently developed variational perturbation the-
ory of Sissakian et al. [14] yields 2.99g°. All these
results give evidence that the ¢ theory is not self-con-

sistent.! Thisis, however, rather strange from the stand-
point of condensed-matter applications, where a quite
reasonable disordered system model [16, 17] well
defined in the continuum limit is mathematically
strictly reduced to the ¢# theory. Another argument fol-
lows from the author’s recent study [9] showing the ¢*
theory to contain no renormalon singularities, which
can be considered as evidence of self-consistency. This
situation makes revision of the above results an urgent
task.

In this paper, an algorithm is proposed for restoring
asymptotics of the sum of a perturbative series in the
strong coupling limit using given values of the expan-
sion coefficients (Section 2). Application of the algo-
rithm is illustrated by test examples with both known
expansion coefficients (Section 4) and the coefficients
obtained by interpolation (Sections 5 and 6). Methods
for estimating errors and an optimization procedure are
developed (Sections 3 and 6). The problem of summing
the perturbative serieswith finite g is considered, and it
is demonstrated that knowledge of the W(g) asymptot-
ics significantly increases precision of the results (Sec-
tion 7). The main physical result of this study consists
in reconstructing the Gell-Mann—Low function of the
¢* theory (Section 8). The task is solved proceeding
from the same information as that used in [13], namely,
thefirst four coefficients of expansion of the 3(g) func-
tion in the subtraction scheme [15, 18]

_ 32 17 3 15414 4 2338 s

+..., (5

and their asymptotics according to Lipatov, taking into
account the first-order correction [19]:

_ 1.09%
1617

4.7

—_—+ ...

N"ZN! Ea - (6)
0

[

L1t should be noted that Kazakov et al. [12] do not insist on this
conclusion, emphasizing the preliminary character of their results
(seedso [15)).
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Note that the interaction term in expression (4) corre-
spondsto the“ natural” charge normalization, for which
the parameter a in asymptotics (2) is unity. It will be
demonstrated that the results obtained in [12, 13] are
not artifacts: they objectively reflect the behavior B(g)
intheinterval 1 < g = 10. However, the true asymptot-
icsis manifested at still greater g and gives evidence of
self-consistency of the ¢ theory.

2. RELATIONSHIP BETWEEN W(g)
ASYMPTOTICS AND EXPANSION
COEFFICIENTS

Let us formulate the problem of restoring the
asymptotics

W(g) = W..g%,

using the coefficients W), of the series (1). The coeffi-
cientswith large N, increasing according to thefactoria
law (2), are assumed to be set numericaly. By analogy
with the case of critical indices introduced in the phase
trangition theory, the dow (logarithmic) correctionsto (7)
are considered as overstating the accuracy. For exponen-
tially growing W(g), which can be revealed by abnor-
mally large values of a, the series (1) is considered
upon preliminarily taking the logarithm.

g— o, (7)

2.1. Sandard (Conform-Borel) Summing Procedure

Considering the sum of series (2) in the Borel
sense [20], we use a modified definition of the Borel
image B(Q),

0

W(g) = J’ dxe™x™ "B(gx),

) ®
N _ Wy
B(g) = NZOBN(_Q) , By = r(N+bO)',

where b, isan arbitrary parameter (convenient for opti-
mization of the summation procedure [6]). It was sug-
gested by Le Guillou and Zinn-Justin [6] and recently
proved for the $# by the author [9] that the Borel image
isanalytical in the complex plane g cut from —1/ato —oo
(Fig. 18). The analytical continuation of B(g) from the
convergence circle |g| < 1/a to an arbitrary complex g
value is provided by a conforma mapping g = f(u) of
the plane with a cut into a unity circle |u| < 1 (Fig. 1b).
The re-expansion of B(g) into aseriesin u,

BO) = 5 Bu(-9)"[q- 1y — B = Y Un", (9)
N=0 N=0

gives a series converging for any g. Indeed, al the pos-
sible singular points (P, Q, R, ...) of the B(g) function
occur on the cut and their images (P, Q, Q, R R, ...)
fall onthe boundary |u| = 1 of thecircle. Therefore, the
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SUMMING DIVERGENT PERTURBATIVE SERIES 3

second seriesin (9) convergesat any u < 1, but theinte-
rior of this circle isin a single-valued correspondence
with the region of analyticity in the g plane.

The conformal mapping is defined by the formulas

_ (1+ag)”-1
(1+ag)?+1’

g =2t
a(1-u)’

from which we readily find a relationship between Uy
and By:

(10)

Uy = By,

CN+K—1

N
Un = Y B
K=1
(N>1).

In order to establish a relationship between asymptotics
(7) and the expansion coefficients, wewill usethefact that
thebehavior of Uy at large N isdetermined by asum of the
contributions from singular points occurring on the

(11)

boundary |u|] = 1. This can be readily checked by
expressing Uy, in terms of B(u),
_ ¢4u B(u)
N Jom Ny (12)

C

and deforming the integration contour (enclosing the
point u = 0) so as to make it passing around the cuts
from al singular points to infinity. A singularity of the
type A(1 — u/ug)? at the point u, = €% makes a contribu-
tion to Uy, of the type

A e|<I)N

FEBNTF

Now we can readily find the contributions to U, from
the singular points of the initial Borel image B(g). For
power singularities at the points g = o, g = —1/a, and
g = g, With gy O (—0, —1/a), the corresponding expres-
sions are asfollows:

(13)

A " 1
F2a) Bl b2

B(g) = Ag” —~Uy =

— / B*» — A ( 1)
B(g) = A(g+1/a) Uy = A TN
(14
B(g) = A(@—gy)® — Uy

_ 2A cos(¢/2) (Pcos(pN— nB/Z)
- T sin}o/2) NP

where ¢ = arccos(1 + 2/ag,) .

The singularities of B(g) change depending on the
parameter b, in formulas (8). For the Borel images B(g)
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Fig. 1. (&) The Borel image is analytical in the complex
plane with (—eo, —1/a) cut; (b) this analyticity region can be
conformally mapped onto the unity circle; (c) restricting the
consideration to analytical continuation to the positive
semiaxis, the conformal mapping is admitted onto any
region in which the point u = 1 isthe closest boundary point
to the origin; (d) in the extremal form (18) of this mapping,
the analyticity region can be conformally mapped onto the
plane with (1, ) cut.

and é(g) corresponding to b, and b,, we readily obtain
arecalculation formula
o b1 by—1 090
B(g) = dx2 ~B
(9 = (b, — bo).[ (1+x) by [ + )d]

and arule of singularity transformation at a finite (g)
or infinite points on the passage from by to b;:

(15)

B ~
B(g) = L — B
B+b;—by
= AT (-B-by + by 9% , (16)
A

_ A o ad _ a
B(g) = F(O(—+bo)g —B(g) = mg :

As s seen, an increase in b, weakens the singularities
a a finite point, while the character of singularity at
infinity remains unchanged. For sufficiently large by,
the contributions from finite points to Uy are sup-
pressed and the corresponding asymptotic behavior is
determined by the singularity of B(g) (and, hence, of
W(g)) at g — o

W,, A 201
M e e O
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4 SUSLOV

This formula solves the problem: the coefficients Uy
arerelated by alinear transformation (11) to the initia
coefficients Wy (see Eq. (8)), while their asymptotic
behavior (17) determine the parameters W,, and a of
asymptotics (7).

Formulas (14) indicate that a contribution to Uy
from the singular point g = o is monotonic, while the
contributions from other points are oscillating. There-
fore, increasing b, leads to a change in the Uy behavior
from oscillating to monotonic. This phenomenon was
observed in [6] and, albeit not given any satisfactory
explanation, regularly employed for improving the
divergence of perturbative series.

2.2. Modified Conformal Mapping

A more effective algorithm is provided by using a
modified conformal mapping.

According to the Riemann theorem [21], the confor-
mal mapping of asimply connected region into a unity
circle is single-valued to within the so-called normal-
ization, which can be defined by setting the images of
two (internal and boundary) points. Under the conven-
tion that the point g =0isimaged by u=0and g = o by
u= 1, conforma mapping (10) is the only one that
allows the Borel image to be analytically continued to
arbitrary complex g values. However, thisis not neces-
sary: to perform the integration in (8), the analytical
continuation to positive semiaxis is sufficient. Then,
any conformal mapping into a region of the type
depicted in Fig. 1c is admissible, in which the point
u = 1 is the boundary point closest to the origin. The
second series in expansion (9) is convergent at u < 1
and, in particular, in the interval 0 < u < 1 imaging the
positive semiaxis. An advantage of this conformal map-
ping is that the contributions from singular points P, Q,
Q,R R ... to Uy are exponentialy suppressed and the
Uy asymptotics for all b, is determined by a contribu-
tion of the singular point at u = 1 related to the singu-
larity of W(g) at g — oo.

Let ususe an extremal form of such mapping, imag-
ing the plane with cut (o, —1/a) into the plane with cut
(1, ) (Fig. 1d). This mapping is given by the formula

_u
a(l-u’

which leads to the following relationship between Uy
and By

9= (18)

U, = B,,
N

B _ 19
Z—*;(—l)Kcﬁ_i (N=1). (19)
k=1

The asymptotic behavior of Uy for large N is

Uy =

Uy = UN"Y N—> o,

(20)
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U, = — We, : (21)
alr@)r(b,+a)
As aresult, we arrive at a simple algorithm: calculate
coefficients By by formula(8) using preset W, recalcu-
late By to Uy using relationship (19), and take the power
limit (20) for large N to determine parameters W,, and
o for asymptotics (7).

2.3. Random Error Growth

The above agorithms possess an implicit drawback
that significantly restricts the accuracy of description.
Let usintroduce areduced coefficient function:

Wy Wy
FN:_S:N—
N caTlT(N+Db)
(22)
= 1+él+é§+...+A—';+...,
N N N

which varies within finite limits and admits a regular
expansion in the powers of 1/N. The latter can be
checked by calculating sequential corrections to the
Lipatov asymptotics [19]. In practice, Fy is set with a
certain accuracy &y (calculation or round-off error),
which leads to arandom error in Uy. The error disper-
sion for the algorithm considered in Section 2.2 is as
follows:

(5U,)° = z[céKMc*;:iT. (23)

(K + by)

For the round-off errors, the value of & = d isindepen-
dent of K. A sum calculated by the steepest descent
method for large N,

dU, 02V, (24)

demonstrates a catastrophic growth of the error. Calcu-
lation with a double computer accuracy yields 6 ~ 104,
so that dU, is on the order of unity for N = 452 This
restricts the accuracy of determining the parameters of
asymptotics (7) to approximately 1%. According to
expression (23), an increase in by decreases the error so
that the permissible N level grows. However, large by
values delay the process of attaining the asymptote (20),
so that no advantages are eventually gained.

For the algorithm considered in Section 2.1, the
error grows at a still higher rate,

53U, O(/2 +1)*"5 05.8"3, (25)

and the requirement of using sufficiently large b, signif-
icantly restrictsthe possibility of optimization (see Sec-
tion 3). Nevertheless, this algorithm may still be useful

2This error growth is observed in fact in the form of rapidly
increasing irregular oscillations.
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Uy 2
(a) X (b)
‘0\ \/E
\‘N!- i
" WA A
e Y \v IR
| = ~ ~
N Nl'l(‘)lll)l’tl Nmin

Fig. 2. The Uy treatment according to the power law: (a) atypical situation whereby large N correspond to alarge statistical error
and small N, to alarge systematic error; (b) the plot of X versus Ny, a aconstant number of points n.

to increase the accuracy of calculationsin the region of
small g (Section 7). Below we dwell on the algorithm
of Section 2.2 based on amodified conformal mapping,
which offers indisputable advantages in the region of
strong coupling.

The above considerationsindicate that the computer
round-off errorsrestrict the accuracy of the algorithm to
~1% even for test examples where the W, values are
precisely known. In real cases, the accuracy of W, cal-
culations is much worse and the situation might appear
as hopeless. However, thisis not so in fact because we
mostly deal with interpolation errors, the influence of
which has a quite different character. The linear rela
tionship (19) known in mathematics as the Hausdorff
transformation [20] possesses a remarkable property

N
)3 K1) ckl=0, m=01.. N=2 (26
K=1

that makes smooth errors (well approximated by poly-
nomials) insignificant even despite their large magni-
tude Of course, limitations related to the computer
round-off error are gill valid, but a 1% accuracy is quite
sufficient for red problems and this level can hardly be
improved for the level of information accessible at
present.

Strictly speaking, the problem of round-off errorsis
purely technical and can be solved by means of special
precise arithmetic programs which allow the calcula-
tions to be performed with arbitrary number of signifi-
cant digits[22], however, the accuracy of a and W, res-
toration logarithmically depends on the computation
accuracy. Algorithms that are more perfect in this
respect do exist, but their consideration falls outside the
scope of this paper; such methods, albeit providing for
a high accuracy in the test examples, are insufficiently
robust and work unsatisfactorily under conditions of
restricted information. The algorithm under consider-
ation isquite stable and, in the author’s opinion, ideally

3 This implies that, in the case when many Wy, values are known
with low precision, the data should be used upon approximation
by a smooth function rather than directly.
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suitegl to obtaining a reliable zero-order approxima-
tion.

Treating Uy by the power law can involve a standard
procedure of minimization of x?[22]:

X2 _ Zl:yi_y(xi)ljz

0 o U
wherey, are the values set at the points x; with a statis-
tical error o; and fitted to the theoretical function y(x).
In this process, it is important to select properly the
interval Ny, £ N < N, for the Uy treatment. Indeed,
large N valueslead to large statistical errors determined
by formula (23), while small N valuesincrease the role
of asystematic error related to the fact that Uy till did
not attain asymptote (20) (Fig. 2a). A sufficiently high
upper limit N, can be chosen using the condition
oUy ~ Uy, since the points with greater N provide no
additional information; this choice is not very critical
since the procedure of x? minimization automatically
discriminates the points with large statistical errors,

which are used in averaging with aweight of 1/ cri2 .The
lower limit N, has to be selected taking into account
the x? value, which reaches an extremely high level for

small N,;,, but attains a“normal” level of n + const./n
(nisthe number of points) with increasing N, (Fig. 2b).
The optimum value of N, corresponds to the left end
of the “plateau,” where a systematic error becomes
smaller than the statistical error and the available infor-
mation is most completely employed.

In fact, the conditions for a strict statistical treat-
ment of x2 were not fulfilled because the errors U, for
various N were not independent (see EqQ. (23)). Thiswas

(27)

4 This situation is well known in computational mathematics [22].
All algorithms can be roughly divided into two groups: those in
the first group possess moderate accuracy and convergence rate
but are highly reliable (an example is offered by seeking for a
root of equation through segment halving); algorithms of the sec-
ond group show high accuracy and ensure rapid convergence but
pose stringent requirements with respect to the function smooth-
ness (e.g., in seeking a root with the forecast for several deriva-
tives).
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Ue (©)

UCXRCI
00

Fig. 3. Theoretical plots of (a) )(2, (b) g, and (c) U, ver-
sus by constructed with neglect of the correction termsindi-
cated by dotsin expression (29).

manifested by the fact that x? values decreased below
the “normal” level (dashed curvein Fig. 2b), while the
statistical uncertainty of a and W,, became very small
and did not reflect real errors even in the order of mag-
nitude. For this reason, we considered the choice of
Niin @S satisfactory when the x2 values were on the cor-
rect order of magnitude (~n); small changesin N, did
not significantly influence the results.

3. DEPENDENCE ON THE PARAMETER b,
AND ACCURACY ESTIMATION

Direct application of the algorithm described in Sec-
tion 2.2 is insufficiently effective since the results
depend on the arbitrary parameter by, which implies
that an additional investigation is necessary to select the
optimum value.

It isnaturally expected that corrections to asymp-
tote (7) have the form of a regular expansion with
respect to 1/g. However, even the simplest examples
show that, in the general case, this assumption is not
valid: in the zero-dimensional case, the correctionsfol-
low the powers of g2 for an anharmonic oscillator,
the corrections follow the powers of g2° (see Section 4).
For this reason, we admit the power corrections in the
general form:

W(g) = W,g" +W.,g" +.... (28)
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Accordingly, the asymptotic behavior of Uy written by
analogy with (20) and (21) is described as

W,

) a“FI(a)F(bO+0() (29
Woo a' -1
+— N4+ ..
a’r @) (b, +a)

First, let us neglect the correction terms indicated by
dots in expansion (29). A formal treatment of this
expression according to the power law (20) yields quite
satisfactory results because the truncated function (29)
in the double logarithmic scale varies smoothly and is
well approximated by a straight line. However, this
approximation only leads to certain effective values of
aand U,

Notethat, because of the poles of the gammafunction,
thefirgt and second termsin (29) become zero for by = -
and by = —a', respectively. These b, values correspond
to the purely power laws, Uy O N*~1 and Uy O No -1,
which results in increasing quality of the approxima-
tion and a sharply decreasing x? value. Within a fixed
working interva N, < N< N, the patternisasfollows
(Fig. 3): the x2 versus by, curve exhibits sharp minima at
by =—a" and by, =—a; the effective index a4 drops down
to a'inthevicinity of b, =—a and isclose to a outside
this region (being exactly equal to a at b, = —a"); the
effective parameter U,, corresponds to exact W,, at
b, = —a" and crosses the zero leve in the vicinity of the
point b, =—a. The dope of alinear portion of the curve
near thisroot is

W,,
a’r(a)

which provides for an W,, estimate not too sensitive
with respect to a errors. The rejected termsin (29) may
only slightly perturb this pattern.

The pattern outlined above was actually observed,
but the behavior of a4 and U,, inthevicinity of by =—a is
usually discontinuous (asindicated by dashed branches
in the curves of Fig. 3). However, this circumstance is
not physically significant and only reflects features of
the mathematical procedure involving taking logarithm
of the Uy modulus,

InjUy| = InjU,|+ (a—1)InN,

[

(b +a), (30)

(31)

followed by using a linear fitting algorithm [22]. The
sign of U,, isdetermined by calculating x?for U,, = |U.,|
and -{U,,| and selecting a variant with the minimum
value. Thisprocedureleadsto rather senselessresultsin
the case of Uy changing sign, but thisis only possible
in asmall vicinity of the point by = —a, while the sign
of Uy, outside this narrow interval is determined by the
sign of thefirst term in the right-hand part of Eq. (29).
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SUMMING DIVERGENT PERTURBATIVE SERIES 7

Smoothness of the U,,(by) function is restored when
the treatment according to power law (20) is performed
by varying only U,, at a fixed (approximate) a value.
Small variationsof a virtually do not affect the position
of theroot of U, (by), while significantly influencing the
W,, value determined from the slope of the linear rela-
tionship (30). The above considerations suggest four
different methods for estimating the a index, based on (i)
the o« value at the first minimum of x? (counting from
large by), (ii) the position of the second x? minimum, (iii)
the change in the sign of U., upon the logarithmic treat-
ment, and (iv) the changein the sign of U,, upon treatment
at afixed a value (taken equd to aprdiminary estimate).

Thefirst two estimates ensure, in the general case, a
higher precision, since their uncertainty is determined
by the ratio of rejected terms in the right-hand part of
expansion (29) to the characteristic value of the first
term outside the narrow vicinity of b, = —a. The accu-
racy of the last two estimates is determined by theratio
of the second term to the first term. When the rejected
termsin (29) are comparable with the second term (this
condition can be monitored by reproducibility of the o
value), all four methods are on the same footing. In
practice, it isalwaysimportant to monitor the changein
the sign of U,, because this point reliably indicates the
minimum in X2 corresponding to b, = —a (the number-
ing of minima may change because of their disappear-
ance, appearance of spurious minima, etc. (see below).

There are three possibl e estimates of W,,, which use
either (i) the U,, value at the first minimum of x? or

in the vicinity of the root for the treatment at a fixed o
(variation of the latter parameter within the interva of a
uncertainty obtained by the four methods indicated above
provides the upper and lower estimates for W,,, respec-
tively).

As can be readily shown, a difference between vari-
ous estimates of a and W,, is on the same order of mag-
nitude as the deviation of each estimate from the exact
value. This correlation can be used for estimating
errors. The availability of several estimatesis of great
significance: while any two estimated values can acci-
dentally be close to each other (leading to understated
value of the predicted error), the accidental proximity
of three or four estimatesis hardly probable.

4. TEST EXAMPLES

The operation of the proposed algorithm can be
illustrated by application to several test systems.

4.1. Zero-Dimensional Case
Thefirst example is offered by the integral

W(g) = jd¢¢“‘lexp<—¢2—g¢“), (32)
0
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which can be considered as a zero-dimensional limit of
the functional integral in the n-component ¢* theory.
Here, it is easy to calculate the expansion coefficients

n+2, m
W NFE\H 4DFE\I+Z|D 2
N — ca r(N+1) ( )
and their behavior for large N:
W, = ca“r(N+b)E1+5l+..H, (34)
o N §
where
_ _n-1
a=4, b= >
35
.- 2n/2 A = (n—2)(4—n) ( )
a/m 16 '

Asymptotic behavior of the integral at g — o is
described by the following relationships:

W(g) = W,g°, a = -n/4,
W, = [(n/4)/4,

with the corrections having the form of a seriesin pow-
ers of g2, In the test, the required number of coeffi-
cients Wy, was set with a double computer accuracy
(6~ 104, after which the a and W,, values were
restored assuming their Lipatov asymptotics to be
known.

(36)

(i) n = 1. Figure 4 shows the Uy against N curves
calculated for various values of the parameter by
(points) and the results of treatment according to the
power law (solid curves). For better illustration, the
data are presented in the form of coefficients,

~

Un = Uyl(bg + No), (37)

normalized so as to tend to a finite limit for by — o;
Ny isthe lower limit of summation in relationship (19),
which can differ from unity when several first terms of
the series (1) are zero. As is seen, al curves in fact
exhibit a power asymptotic behavior for large N.
Attaining the asymptote is delayed for by, > 1 and
by — —N,, because of the existence of the correspond-
ing large parameters in relationship (19). In contrast,
the power law holds even for small N for b, = 0.82 cor-
responding to the first minimum of x2.

Figure 5 shows the plots of X2, O, and U. =
U.l(b, + Np) versus b, calculated in the interval
24 < N < 50. For thefirst minimum of X2 corresponding
to by = 0.82, estimates obtained according to Section 3
areasfollows:

a = -0247, W, = 0892, o =-082. (38)
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The second minimum of x? taking place at b, = 0.26
yields

= -026, o =-067. (39)

The U,, value changes sigh at b, = 0.210 and 0.215 for
the treatment with taking a logarithm and at a fixed
index, which yields the estimates a = -0.210 and
—0.215, respectively. The dlope of alinear portioninthe
U..(by) curve in the vicinity of the root (dashed linein
Fig. 5 constructed upon treatment at a fixed index)
yields the W,, values depending on the preselected o
value: for a = —0.21-0.26), the estimates range within
W,, = 0.883-0.933. Summarizing all these estimates,
we obtain the set of estimates

o = -0.235+0.025, W, = 0.908+ 0.025,
a' = 0.75+0.08,
which are consistent with the exact values
a =-025 W, =09064, a' =-075. (41
! Sincethea' valuesin (38) and (39) agree satisfactorily,

10 20 30 20 we may conclude that the rejected terms in expansion
N (29) are small as compared to the second term. There-
fore, the best estimates for a are provided (see Section 3)
. by relationships (38) and (39). Restricting to these esti-
Fig. 4. Theplotsof Uy = UNT(bg + 1) versus N calculated mates, we obtain

for various by (points and dashed curves). Solid curves a = —0253+0.007, W, = 0.887+0.005 (42)

show the results of treatment according to the power law

using integral (32) withn = 1. instead of set (40). Here, the accuracy of determining a
really increased, but the error of W,, is somewhat under-
estimated.

logx* The shape of the x? curves is highly sensitive to
8 selection of the lower boundary of the working interval
Nrmin € N < Npa As the N, vaue decreases, the x?
minimatend to smear, whilean increasein N,,,,, leadsto
flattening of the curves and the appearance of small-
scale fluctuations hindering identification of the min-
ima. In attempts at obtaining the clearest minima corre-
L o L sponding to x?2 values of the correct order in magnitude,
0 r 05 ¢ 10 1.5 by the choice was usualy made between two-three N,
' ' values® A change in the working interval most signifi-
cantly affects the estimates (39), with the a and a' vari-
ations approximately corresponding to a difference
between (38) and (39).

(i) n=2.Thex?plotsin Fig. 6 exhibit sharp minima

at by = 1.26 and 0.50. The first 2 minimum yields

= —0.499%, W, = 0442, o' = -126, (43)

while the other three methods give a = -0.5000 accu-
rate to within the last digit. An estimate for a' obtained
using the second X2 minimum amounts to about 20,

0.02

0.01

-0.01 (40)

-0.02

6
4
2

Fig. 5. The plots of X2, 0, and Up = Ul (bg + 1) versus

bo for integral (32) with n = 1 in the averaging interval of 51t should be noted that, in displaying the results of calculations
24< N < 50. Dashed line shows a portion of the Uc,(bp) with fixed decimal point, the X2 minima are well distinguished by
curve in the vicinity of the root, obtained by the treatment at a the configuration of digits even in the course of arapid on-screen
constant index o =-0.25. computer survey.
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which isinconsistent with (43). Therefore, the rejected
termsin (29) are comparable with the second, so that all
four possible estimates are on the same footing. Treat-
ment of a linear portion of the U,(by) curve near the
root yields W,, = 0.460. As aresult, we obtain

o = —0.5000 £ 0.0004, W, = 0.451+0.009, (44)
in good agreement with the exact values

a = -050, W, = 0.4431. (45)

(iii) n = 3. Here, the x?(b,) plots exhibit minima at
by = 1.07 and 0.77, which yield

= 0704, W, = 0192, o' =107 (46)

and
a=-077, o =-142, (47)

respectively. Estimates obtained using U, changing
sign are a = -0.86 for the treatment with taking a loga-
rithm and a = —0.84 for the treatment at a fixed index.
Determining W,, from the slope of a linear portion in
the U,,(by) curvein thevicinity of theroot yields 0.311,
0.420, and 0.751 for a = —0.704, —-0.77, and —0.86,
respectively. Since the two values of a' reasonably
agree with each other, the estimates (46) and (47) for a
must be more precise. Taking only these estimates into
account, we obtain

a = -0.737+0.033, W, = 0.306+0.114,

a' = -125+0.18, (“8)
in good agreement with the exact values
a =-075 W, =03063, o =-125. (49
An alowance for al four estimates of a yields
o =-0.78£0.08, W, = 047+0.28 (50)

with markedly greater errors.

In this case, we may also point out difficulties aris-
ing dueto an additional “spurious’ minimum appearing
at by = 1.90. However, this minimum can be excluded
from consideration upon identifying the minimum at
b, = 0.77 as corresponding to b, = —a (by U,, changing
sign) and the minimum at b, = 1.07 as corresponding to
by = —a' (by the consistent a' values). In the general
case, the process of identifying useful minima resem-
blesthe situation in spectroscopy under high noise con-
ditions: selecting informative signals requires certain
skill.

(iv) n = 4. Inthis case, application of the algorithm
encounters the “hidden rock” of this method. Based on
the usual estimates, we obtain a quite precise result:

= -1500+0.004, W, = -0.222+0.005. (51)

However, these values do not agree with (36). The dis-
crepancy is caused by the fact that the main contribu-
tion to the Uy asymptotics vanish because the gamma
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logX?
6_ -
4L |

O e
-0.45

-0.55
-0.65

Fig. 6. The plots of X2, agy, and U, = U (b + 1) versus
by for integral (32) calculated with n = 2 in the averaging
interval of 20 < N < 50. Dashed line shows a portion of the
U(bg) curve in the vicinity of the root, obtained by the

treatment at a constant index o =-0.5. The ag; for by =0.5
falls far outside the diagram boundaries.

function exhibits a pole at the exact value of the index
a =-1(seeEq. (29)), so that the next term of the expan-
sion becomes significant with the parameters
a' = 150, W, = —/1/8 = -0.2216.  (52)
Therefore, the proposed agorithm is incapable of restor-
ing correct asymptotics described by Eq. (7) in the case of
nonpositive integer a vaues. In order to avoid these prob-
lems, the algorithm hasto be supplemented by thefollow-
ing rule: if the treatment yields a negative a value, the
result must be checked by taking a negative or frac-

tional power of series (1) and summing the reexpanded
series.

4.2. Anharmonic Oscillator

The second example is offered by the problem of
determining the ground sate Ey(g) of an anharmonic
oscillator described by the Schrodinger equation

d2

dx? (53

2 4
+ 2+ %400 = Ep).
4 4 0

This problem can be reduced to a one-dimensional ¢*
theory. Consider Ey(g) as the W(g) function with the
initial terms of the perturbative series having the fol-
lowing form:

_1.3 21> 333 s 30885 4
Bender and Wu [23] calculated the first 75 coefficients
W, up to the 12th decimal digit and obtained an expres-
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Fig. 7. The plots of ON = Unl(bg + 1) versus N for an
anharmonic oscillator. The notations are the same asin Fig. 4.

logx*
3 = -

2L 4
| |

O et

=)
8
I

0.4

|
(]
—_ O
T
.\
~
~N
N
<§
—
[\]
1
o
W

Fig. 8. The plots of X2, dg, and Uy, = Ul (b + 1) versus
by for an anharmonic oscillator in the averaging interval of

24 < N < 45. Dashed line shows the result of treatment at a
constant index a = 0.34.

sion describing behavior of the expansion coefficients
with large N:

Wy = —ﬂ33 rg\HlDD
2

95/ 72 0
N ..0.  (59)

The asymptotics of Ey(g) for g — o is reveaed by
substituting Eq(g) = A,g¥3and x — xg 6, after which
Eqg. (53) transforms into

0 d?
[
Ddx

%w(x) = Ao(X)- (56)
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For g — o, thelast term in bracesisinsignificant and
Ao tends to a constant value of 0.6679863 that can be
determined by the variational method [24]. Thus, the
W(g) asymptoticsis described by power series (7) with
the parameters

o =13 W, = 0.668, (57)
and the corrections having the form of a seriesin pow-

ersof g3,

Figure 7 presents the plots of Un against N and the
results of their treatment according to the power law.

Figure 8 shows the plots of X2, 0, and U versus by,
Asis seen, x2 exhibits minimab, = 1.30 and —0.34 corre-
sponding to

a =0349, W, =0602, a =-180 (58)

and

a =034, ao=20, (59)
respectively. Estimates obtained using U,, on the same
footing changing sign are a = 0.285 for the treatment
with taking logarithm and o = 0.337 for the treatment
at a fixed index. Determining W,, from the slope of a
linear portion in the U,,(by) curve in the vicinity of the
root yields values in the interval from 0.616 to 0.883.
The two values of a' having nothing in common indi-
catesthat all o estimates are on the same footing. Asa
result, we obtain

o =0317+0.032, W, =0.74+£0.14, (60)

in good agreement with the exact values (57).

The above examples show that the accuracy of
restoring the W(g) asymptotics, while depending sig-
nificantly on the particular problem, is generally corre-
lated with the character of correctionsto the Uy asymp-
totics described by relationship (20). An average accuracy
on the order of 107 is attained in the zero-dimensiona
case with odd n, where the corrections to (20) have the
form of power seriesin N2, For even n, every other cor-
rection vanishes due to the pol es of the gammafunction
to leave a regular expansion in /N, which markedly
increases the resulting accuracy. A relatively low accu-
racy in the case of an anharmonic oscillator isrelated to
the fact that correctlons have the form of seriesin pow-
ersof N5 |t is important to note, however, that the
algorithm automatically yields an estimate of the error.
The estimate is rather reliable when al four possible
methods for evaluating o are employed.

6 The first term in (28) gives, in addition to the main contribution
to Uy proportional to N® 1, the regular corrections N®~2,
N3, _..: the second term contributes by N® ~1 N®' =2 etc.

Asaresult, the expansion in g‘2’3 convertsinto the expansion in
NS,

No.1 2001



SUMMING DIVERGENT PERTURBATIVE SERIES 11

5. ALGORITHM OPERATING
WITH INTERPOLATED COEFFICIENT
FUNCTION

Theimportance of interpolation was strongly under-
estimated, although this method can obviously provide
for an increase in the accuracy of calculations. In most
investigationsin the field under consideration, the algo-
rithms were formulated so as to avoid mentioning the
coefficients W), at intermediate N values. This approach
is conceptually incorrect since, using afinite number of
theinitial coefficients and their asymptotics, it is possi-
bleto construct afunction with preset behavior ininfin-
ity.” A reasonable problem formulation corresponds to
approximately setting all Wy, after which W(g) can be
reconstructed with certain precision.

Thus, a necessary stage in solving the problem con-
sists in interpolating the coefficient function, which
naturally implies that this function is analytical (see
Section 8.2). The interpolation stage allows the param-
eter ¢ in the Lipatov asymptotics (essentially not used
in the standard conform-Borel procedure [6]) to be
effectively employed. In addition, it is possible to take
into account smoothness of the reduced coefficient
function, itsregularity with respect to 1/N, and (eventu-
ally) the information concerning asymptotics of the A¢
coefficients in expansion (22) [25].

In Section 2.3, some qualitative considerations were
presented suggesting that the influence of the interpola-
tion errorsis not as significant as that of the round-off
errors. Unfortunately, no particular estimates illustrat-
ing thiswere obtained. Validity of this statement will be
experimentally demonstrated for the zero-dimensional
test example with n = 1.

With a view to modeling a situation for the ¢* the-
ory, let us assume that several coefficientsin the expan-
sion of series (1) are known,

Wi, Wi e, e W (61)
together with the Lipatov asymptotics (2) and the cor-
responding first correctionsin 1/N. The interpolationis
conveniently performed for the reduced coefficient
function, retaining a finite number of terms in expan-
sion (22) and selecting coefficients A¢ by correspon-
dence to set (61).

Let us consider in detail two examples of the inter-
polation procedure, which correspond to (i) Lo =1,L =5
and (ii) Lo =1, L = 1. Owing to aslow character of vari-
ation of the coefficient function, the accuracy of inter-
polation in both cases is very high: ~10° and ~107%,
respectively. A random error of such amplitude might
only lead to large fluctuations in Uy for N = 30 in the
former case and N = 13 in the latter case. Real calcula

7 A function of the factorial series possesses the same asymptotics
of coefficients (2) but with a different parameter ¢ [17]; the last
statement in the text can be readily proved by taking an appropri-
ate linear combination of severa functions.
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Table 1. Comparison of Uy values calculated for by = 1
using exact and interpolated coefficients Wy

Un
N Exact We values Interpolation Interpolation
N withLy=1,L=5|withLy=1,L=1
30| —2911x10° | —2911x10° | -2.868x 103
35| —2408x10° | —2.409x10° | -2.369 x 103
40 | —2.038x10° | —2.041x10° | —2.004x 107

Table 2. The parameters of asymptotics for integral (32)
with n = 1 calculated using exact and interpolated coeffi-
cients Wy

esimates | Exectwy | B RN EREEYT
L=5 L=1
Firstx?mini-| o =-0.246 | a =-0.245 | a =-0.269
mum a'=-0827 | o'=—-0830 | a'=-0.761
W, =0.893 | W,=0.892 | W,=0.912
Secondx® | 0=-0.249 | a=-0.245 | a=-0.271
MINMUM = = 0702 | a'=-0.849 | o' =-0.747
U, changing | 0 =-0.210 | a=-0.210 | o =-0.218
sign
U,(bg) slope| a =-0.215 | a =-0.215 | a =-0.225
W, =0.889 | W,=0.887 | W, =0.885

tions indicate that no catastrophic consequences take
place up to N = 40, when the influence of the round-off
errors becomes significant. This can be seenin Table 1
presenting the values of some coefficients Uy, calcu-
lated for by = 1 using the exact and interpolated coeffi-
cients of Wy. An increase in the b, value improves the
accuracy; when b, decreases, the accuracy drops some-
what, although the resulting deviations would be indis-
tinguishable on the scale of Fig. 4.

The curve of x%(by) is analogous to (albeit not fully
coinciding with) that depicted in Fig. 5. Estimates of
the asymptotic parameters are listed in Table 2; for bet-
ter illustration, all values refer to the same working
interval of 23 <N < 45 and thevalue a =-0.25 used for
the treatment of alinear portion of the U,,(b,) curve. As
is seen from these data, changesin a and W,, caused by
the interpolation fall within the scatter of various esti-
mates and virtually do not influence the accuracy of res-
toration of asymptotics (7). Therefore, interpolation
using a single expansion coefficient W, allowed the
W(g) asymptotics to be restored with an accuracy not
worse than that achieved with the exact coefficients Wy
Of course, thisis by no means atypical situation.
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Qexact B

Fig. 9. Schematic diagrams illustrating the optimization
procedure: (@) theoretically, any quantily Q obtained upon
summation of the series must be independent of the optimi-
zation parameter A; however, such dependence arises under
the conditions of restricted information and weakens (on the
passage from curve 1to 2, 3, etc.) asthe amount of informa-
tionincreases (the optimum value A = g, occurs at the cen-

ter of the plateau); (b) the choice of A affects both the
approximate Q value (thick solid curve) and the error of
determination (cross-hatched area), so that acorrect estima-
tion of this error must provide for the exact value Qgyact

being compatible with all data. In the “ideal” situation
depicted, optimization with respect to A consists in select-
ing the result characterized by a minimum error.

6. OPTIMIZATION
OF THE INTERPOLATION PROCEDURE

Considering an example in the preceding section,
we were lucky to see that the most natural method of
interpolation may give good results. In the general case,
the interpolation procedure requires optimization that
will be demonstrated in the case of an anharmonic
oscillator. Let us first discuss the general strategy of
optimization, which has been significantly modified in
comparison to that used in the previous works.

6.1. General Strategy of Optimization

On an abstract level, the optimization consists in
introducing a certain variation of the summation proce-
dure characterized by a parameter A, the latter value
being eventually selected in a “optimum manner.” For
example, the initial series (1) can be raised to the A
power and reexpanded to yield

W)\(g) = \7\/0_\7\/19+\7\/292_
+ca ' T(N+b)(-g)" +....

The properties of this series are analogous to those of
the initial one, except for a change in the Lipatov

(62)
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asymptotic parameter ¢ [17]. The new seriesis summed
upon selecting the A value so as to provide for the best
convergence of the second series in expansion (9). The
optimization procedure is employed, bringing both
advantages and troubles, in most investigations in the
field under consideration. On the one hand, the princi-
pal possibility of improving the convergence is defi-
nitely valuable. On the other hand, the results become
dependent of an arbitrary parameter A and it is difficult
to get rid of the feeling that any result can be obtained.

Theoretically, the use of series (62) is fully equiva
lent to the study of initial series (1) and the value of any
guantity Q obtained upon summation must be indepen-
dent of the parameter A. However, under the conditions
of restricted information concerning coefficients Wy,
the Q value begins to depend on the choice of A, this
dependence weakening as the amount of information
increases. In the general case, no uniform convergence
with respect to A takes place and an approximate Q
value is close to the exact one only within a certain
“plateau” region (Fig. 9a), the deviations rapidly grow-
ing outside this region. As the amount of necessary
information increases, the plateau expands and flattens
(see, e.g., [26]). Apparently, the best convergence takes
placeat the center of the plateau. However, thispoint isnot
aways unambiguoudy sdlected, since the plateau may be
asymmetric or poorly pronounced, the center may shiftin
the course of convergence, etc. Therefore, selecting the
best approximation for Q and estimating the approxima-
tion uncertainty are rather subjective procedures.

In the author’s opinion, the optimization problem can
nevertheless be solved abjectively. Indeed, since the
choice of A affects both the approximate Q value and the
error of determination, a correct estimation of this error
must provide for the exact vaue Q.. being compatible
with the approximate val ues obtained for any A (Fig. 9b).
This criterion eliminates the problem of an apparent
dependence of Q on A. Once such an “ideal” situation
is attained, optimization of the procedure with respect
to A reduces to selecting the result characterized by a
minimum error.

The optimization procedure is expediently per-
formed in the interpolation stage, since al the final
errors arise essentially from the uncertainties in Wy.
Rewriting expansion (22) in the equivalent form

Wy, = ca"N°r (N +b—b)

A A A 63
xEﬂ+ Ay A2~ 2+__,+A—K~K+__H( )
0 N-N (N—N) T

and using the interpolation by truncating the series and

selecting coefficients Ax , we abtain amanifold of real-
izations of the interpolation procedure characterized by

two parameters, b and N.Anand ysisof thetest exam-
ples shows this parametrization to be sufficiently effec-
tive: the accuracy of interpolation achieved for the opti-
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mum b and N values can be higher by severa orders
of magnitude as compared to that for a random choice
of these parameters. Below, the optimization with

respect to b isbased on theoretical consi deration, while
the optimum N valueis selected based on the results of
numerical calculations.®

6.2. Optimization with Respect to b

The process of optimization with respect to b
encountersthe problem of selecting parametrization for
the Lipatov asymptoticswhich can bewritten in various
forms: caM"(N + b), ca¥NP—IN!, etc. This problem was
actively discussed (see, e.g., [11, 12]), but no satisfac-
tory solutions were proposed.

Note that the values b = band b = b — 1 lead to
identical results:

NPT (N + b —b)
B ENbF(N), b=b
IN°'r(N+1) = N’r(N), b=b-1.

(64)

Therefore, the approximate values of any quantity Q
obtai ned upon summation of the serieswill coincidefor

b =bandb-1. Asthe amount of information concern-
ing the coefficients W), increases, the Q(b) function
varies more and more slowly. When the characteristic

scale L of this variation increases, the kth derivative of
the function drops as 1/L*. As aresult, an extremum at

the point b=b-12 appears in the general situation,
with a plateau between the Q values corresponding to

b = b and b— 1and the point b = b — 1/2 being the nat-
urd center of this plateau. The error of restoring Q, like
any other value, exhibits an extremum (which is naturally

expected to be minimum) at b=b-12 (see Section 8).

Thus, the optimum choice is b = b - 1/2; this corre-
sponds to the following parametrization of the Lipatov
asymptotics.

W = ca"N° YT (N + 1/2). (65)
Thefirst correction A,/N to thisasymptotics (see expan-
sion (22)) dependson b as

A, = A —(b=12-Db)’/2, (66)

8 Further increase in the number of optimization parameters seems
to be inexpedient: thisway may lead to absurd results. In particu-
lar, alarge number of parameters allows imitation of arapid con-
vergence of the algorithm to an erroneous result. Even using the
proposed approach, it is possible to ensure coincidence of four
estimates of the a value at azero error.
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where A; isthevalueof A, for b =b—1/2. Inall known

cases, A; <0(see[19, 23, 27, 28]) and aminimum cor-
rection corresponds to parametrization (65), which
favors agood matching between the high-order asymp-
totics and the low-order behavior. Note that the asymp-
tote according to the Lipatov method [2] is

J2mc(ase)"NP VAN,

The above parametrization (65) corresponds to approx-
imation

J2me "NV = (N + 1/2)

and providesfor an accuracy of 4% evenfor N =1 (thus,
being a “naturd” choice). For an anharmonic oscillator,
the optimum parametrization coincides with (55), while
in the zero-dimensional case with n = 1 the expression
issimilar to (34) and (35).

6.3. Optimization with Respect to N

The case of an anharmonic oscillator was studied in
detail using the interpolation with Ly =1, L =9 (i.e,
using the first nine W, coefficients), which corresponded
to an accuracy of ~10=. The interpolation based on
expression (22) was unsatisfactory: the x? values obtained
by treatment according to the power law (20) were abnor-
mally large even for reasonable averaging intervals and
gave no clear pattern with minima. The reason for this
behavior is revealed by comparison of the Uy coeffi-
cients (obtained by interpolation) to the exact values.
As is seen from Fig. 10a, the difference is very large,
making treatment by the power law practically impos-
sible. Deviations increase by approximately the same
law as those for the random errors, but the variation is
rather smooth and is analogous for different b, values.
It appears that these deviations can be compensated in

abroad range of b, by optimization with respect to N..

Thisisreally so and the region of optimum N val-
ues can be determined without knowledge of the exact
result. Figure 11 showsthe behavior of x?intheinterval
of 20 < N < 40 depending on N for integer b, values.
Asisseen, small x?valuesareimmediately obtained for
by=0, 1, 2, 3intheinterval of N =—5.0-5.5). Thisis
evidence that the error of Uy can be compensated for all
by = 0, since greater b, correspond to still smaller errors
(see Section 2.3). Asis seen from Fig. 10b, deviations

of the resulting Uy for N =-5.4 from exact values for
by = 0 arein fact virtually indistinguishable.

The possibility of more refined optimization is based
on the fact that the interpolation errors in formula (29)
play the same role as do the high-order scaling correc-

tionsindicated by dots. As N is changed, the interpola-
tion errors smoothly vary and (for a certain N val ue)
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Fig. 10. Optimization of the interpolation procedure for an
anharmonic oscillator: (a) a comparison of the Uy values
obtained by interpolation for N =0us ng thefirst nine Wy

coefficients (solid curves) to exact values (dashed curves);
vertical bars indicate the N values above which behavior of
the exact Uy values is visualy indistinguishable from that

according to the power law; (b) an anal ogous pattern after the
optimization with respect to N (for N =-5.4).

Fig. 11. The plots of )(2 versus N for an anharmonic oscil-
lator intheinterval of 20 < N < 40 at variousfixed by val ues.
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become approximately compensated by the scaling cor-
rections. This point can be detected by the maximum
proximity of various estimates obtained for the o and
W,, values.

A systematic treatment with determination of the a

and W,, values was carried out for N in the interval
from-5.0to 5.6 at astep of 0.1. A “correct” pattern of

X2 minimawas observed for N = 5.5, whilefor N =-56

the first minimum disappeared and for N = -5.4 it was
split intwo. Thereason for this splitting is qualitatively
evident: Figs. 10 and 11 show that, at afixed N, there
isacertain b, value for which the effect of the interpo-
lation error upon Uy is virtually compensated. This
very b, corresponds to an “extra’ minimum of x? in
comparison with the pattern of Fig. 8. Since it is diffi-
cult to decide a priori which of the two minimaistrue,
the estimates were obtained for both (and proved to be
very close to each other).

The results of these numerical calculations are sum-
marized in Table 3 and depicted in Fig. 12. The scatter
of a and W,, values allows the error to be evaluated by
the order of magnitude. In order to obtain an “ideal”
pattern according to Fig. 9b, the error interval should be
expanded by a factor of 1.3 and 1.1 for a and W,,,
respectively (dotted curvesin Fig. 12). Then the values
of a = 0.38 and W,, = 0.52 (dashed curves in Fig. 12)

are compatible with the results for all N . Selecti ng the

N values in each particular case so as to minimize the
one-side error (as indicated by arrows in Fig. 12), we
obtain the following estimates.

o =038+0.05, W, =052+0.12. (67)

A comparison to the set (57) showsthat the error is esti-
mated adequately, while the average values are some-
what displaced; the shift in W,, isinduced by the shift
ina.

7. SUMMING PERTURBATIVE SERIES
FOR AN ARBITRARY ¢

When the amount of information concerning the W
coefficients suffices for restoring the W(g) asymptotics
as g — o, summing series (1) for an arbitrary g
encounters no problems: the coefficients Uy for N< 40 are
calculated by formula (19) and the subsequent terms can
be obtained according to the U,,N® ~* asymptotics, so that
al coefficients of the converging series (9) are known.
The summation error is determined by the accuracy of
restoring the asymptotics,

SUy|  _ 8U.,

UN N> 1 o

Aas =

+dalnN, (68)

which varieslogarithmically with N and can be consid-
ered as constant with arestricted interval. Introducing a
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Table 3. Asymptotic parameters for an anharmonic oscillator obtained by the interpolation with Ly = 1, L = 9 (the valuesin
parentheses for N =-5.6 were estimated at the point by = 2.20 where the first x2 minimum disappears)

) o for N

Estimates based on

-5.0 5.1 -5.2 -5.3 5.4 55 -5.6
First X2 minimum 0.398 0.396 0.393 0.390 0.385

0.476 0.452 0.422 0.399 0.384 0-378 (0:373)
Second X2 minimum 0.50 0.47 0.42 0.37 0.33 0.29 0.34
U,, changing sign 0.585 0.535 0.485 0.445 0.405 0.365 0.335
U,.(bg) slope 0.495 0.445 0.40 0.36 0.32 0.29 0.26

W,, for N

-5.0 5.1 5.2 5.3 5.4 55 -5.6
First x2 minimum 0.490 0.495 0.500 0.505 0.513

0.356 0.390 0.440 0.487 0.517 0529 (0540)
U,.(bg) slope 0.226 0.290 0.373 0.463 0.572 0.675 0.712

0.502 0.538 0.568 0.698 0.885 1.09 0.953

characteristic scale N, on which the relative error is
comparable with A, and using the approximation

Substituting these expressions into (8) and using the
steepest descent method for ag << N, we obtain

Epl N < N =
% =0 ¢ (69) 6W(g) DmaS! ag= NC (71)
Uy Mas: N=N, W) 0 y
g masexp{ _2(Nc/ag) 2} , ags= Nc
we obtain for ag > 1 (where some preexponential factors are omitted for
o N clarity). For negative a, the results for ag > N, are
5B(g) = Z A, U expE—H somewhat different. In particular, for <1 < a < 0 we
& Hag! obtain 3W(g) = A.(W(G) — W(QJ)), where ag; ~ N
¢ (70) A natural scale for N, is provided by the middle of the
MA.B(g), ag> N, working interval (Niin, Nimax), that is, N = 30; however,
=0 _ » deviations from this value may be quite large because the
PasUnagexp(-Nc/ag), ag < N. corresponding equality holds in fact on the logarithmic
a T T T We T T T
0.6F 335+ @) 4 1.0F
L e
0.5 I ] \ 7 0,8 —
0.4p - ____f'_____________ S~ ... 4 06F
03F 2T
‘ a =038 +0.05 ] T W,=052+0.12
02— ' ' 0.2 - ' '
5.0 5.2 54 5.6 5.0 5.2 54 5.6
-N -N

Fig. 12. The plots of o and W, values estimated for an anharmonic oscillator by various methods (see Section 3): (a) o estimates

based on the (1) first x2 minimum, (2) second X minimum, (3) U

« changing sign, and (4) U,,(bg) slope; (b) W,, estimates based on

the (1) first X2 minimum and (2, 3) U (bg) slope (upper and lower bounds, respectively). Small-dash linesindicate the error interval

expanded by afactor of 1.3 and 1.1 for a and W,, values, respect
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ively.

No.1 2001



16 SUSLOV

Table 4. Comparative datafor the exact integral (32) with n =1 and the results obtained by summing the perturbative series

W(g) x 10
g Exact value Summing with exact | Summing upon interpo- | Summing upon interpo-
Wy lationwithLy=1, L =5|lationwithLy=1,L=1
1 6.842134 6.842135 6.842134 6.8436
2 6.183453 6.183454 6.183452 6.1867
4 5497111 5.497110 5.497105 5.5034
8 4.820615 4.820608 4.820594 4.832
16 4.181699 4.181669 4.181637 4.200
32 3.597297 3.59720 3.59714 3.624
64 3.075230 3.07500 3.07490 3.113
128 2.616802 2.61633 2.61617 2.668
256 2219222 2.2184 2.2182 2.285
512 1.877472 1.8761 1.8758 1.959
1024 1.585578 1.5835 1.5831 1.68
g—> 90649—025 8.959—0'247 8.959_0'247 9_129—0.269

scae (InN, = In30). In practice, approximation (69) with
aconstant N, is expedient only for large g. In the gen-
era case, estimate (71) is valid with an effective N,
value, whichisdetermined by the number N of the max-
imum term dUuN in the seriesfor 8B(u) (for small g, this
valueiscloseto L + 1, e.g., to the number of the first
unknown coefficient W,).

Table 5. Comparative datafor the exact ground state energy
Ey(0g) of an anharmonic oscillator and the results obtained by
summing the perturbative series (the 2E,(g) and 2g valuesare
giveninorder to providefor the correspondence with the data
reported in most other papers using a different normaliza-
tion)

2E4(9)
Summi nlg upon
S interpolation
9 Exact value Sur&%]%\\lﬁlth With~|—0 =LL=9
(= 1.30 (N =-53,
bo = 3.55)
05 1.241854 1.241854 1.241857
1 1.392352 1.392352 1.392396
2 1.607541 1.607545 1.60790
3 1.769589 1.769605 1.7706
4 1.903137 1.903178 1.9051
5 2.018341 2.018418 2.0214
10 2.449174 2.44961 2.4599
20 3.009945 3.0117 3.040
50 4.003993 4.0115 4.096
100 4,999418 5.018 5.19
g— | 2x0.668gY3 |2 x0.6029%349| 2 x 0.511¢°38"
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Table 4 presents the results of calculations for the
zero-dimensional case. Here, the first column givesthe
exact values of integral (32) with n = 1, while the col-
umns from second to fourth present the results of sum-
mation obtained using exact W), coefficients and inter-
polated values (with Lo =1, L=50r Ly =1, L = 1),
respectively. In each case, the calculations were per-
formed for b, corresponding to the first x? minimum.
A comparison to (71) indicates that N, ~ 200 for the
second and third columns and N, ~ 10 for the fourth
column.

Table 5 presents the analogous data for an anhar-
monic oscillator. Here, the first column gives the exact
Ey(g) valuestaken from[24], while the second and third
columns present the results of summation obtained
using exact W), coefficients and interpolated values
(with Ly =1, L =9), respectively. In this case, the esti-
mates give N, ~ 200 for the second column and about
50 for the third column.

Information concerning the W(g) asymptotics can
also be taken into account within the framework of the
standard conform-Borel procedure (Section 2.1) by inter-
polating the Uy, coefficients (with the known asymptotics
(17)) cdculated using formula (11). For approximation
(69), we obtain by analogy with (71)

5Aa51
[, exp{-3(N2/ag)"} , ag= N2

ag = Ng

This procedure is preferred in the case of sufficiently
small g values (when N, iscloseto L + 1), leading to
smaller errors as compared to those obtained for (71).
For greater g, the attaining of N, valuesindicated above
seems to be impossible.
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According to the standard procedure of calculating
the critical indices[6], the second series(9) istruncated
on the Lth term that corresponds to the error given by
(72) with N, = L + 1 and A, ~ 1. In the three-dimen-
sional case, a large number of expansion coefficients
are known (for L = 6). These values are well matched
with (2), which gives hopefor restoring the asymptotics
of scaling functions with an accuracy of A, ~ 10 and
for increasing N, at the expense of interpolation. Thus,
it is apparently possible to increase the accuracy of cal-
culation of the critical indices by two—three orders of
magnitude even for the currently available information.
Using the modified conformal mapping may lead to a
further increase in the accuracy, provided that the scale
of N, = 20 would be accessible in the corresponding
region of ag ~ 0.2.

8. THE ¢* THEORY
8.1. Restoration of the Gell-Mann—Low Function

Now let usturnto area physical problem of restor-
ing the Gell-Mann—Low function in the ¢* theory, con-
sidering 3(g) asW(g) and proceeding from theinforma-
tion contained in relationships (5) and (6).

Theinterpolation was based on formula (63) with an
optimum value of b = 4. Figure 13 presents the plots of

X2(N) versus N calculated in the interval 20 < N < 40
for saverd fixed by, vaues. Asis seen, promising resultscan

be expected for N vaues dose to zero, where the curves
obtained & b, =—1, 0, —1 and 2 exhibit sharp minima. The

interva -0.5< N < 0.5 was studied in more detail.

Figure 14 shows the behavior of the coefficients Uy =
UNT (bp + 2) in the case of anearly optimum interpola

tion with N = 0. If the curves for by > 1 and b, = -2
(attaining the asymptote with delay) are rejected, the
datafor large N asymptotically tend to a constant level,
which correspond to a critical index a close to unity.
This conclusion is consistent with the position of the
second X2 minimum and with the change of signin U,,
(Fig. 15). A clear pattern with x2minima was observed
for N < 0.2; when the N value increased, the first x2
minimum approached to and eventually merged with
the second minimum. For this reason, no estimates
using the first minimum could be obtained for N = 0.3.

The results of determining the o and W,, values are
presented in Table 6 and Fig 16. Theideal patternfor a,
corresponding to Fig. 9b, is obtained upon expanding
the error interval by afactor of two (dashed linesin Fig.
16a), after which the value of o = 0.96 is compatible
with the results for all N. In the fixed interval of 20 <

N < 40, al four estimates of a coincide for N =-0.12
on an accuracy level of 1073 the main uncertainty is
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Fig. 13. The plots of x2 versus N for the ¢* theory in the
interval of 20 < N < 40 at various fixed by values.

Uy

20

10

-10

=20
0 10 20 30 N

Fig. 14. The plots of CJN = UpI (bg + 2) versus N for vari-
ous by (points and dashed curves) and the results of treat-

ment according to the power law (solid curves) for the ¢*
theory. The calculations were performed using a nearly

optimum interpolation with b= 4, N =0.

related to a weak dependence on the averaging interval.
With an allowance for the double error, wefinally obtain

a = 0.96+0.01. (73)
For W,, (Fig. 16b), the ideal pattern is obtained imme-
diately and the corresponding value of W,, = 7.4 iscom-
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logx?

(b)

0

Fig. 15. (a) The pattern of minimain x2 for the ¢* theory in
the averaging interval of 20 < N < 40. (b) The plots o and
U, versus by for N = 0. The dashed curve shows the
U,(bg) curvefor fixed a = 1.

We=74£04

1 1

-04 -0.2 0 02 04

N

Fig. 16. Theplotsof various (a) a and (b) W,, estimates ver-

sus by for the ¢# theory. The notations are the same as in
Fig. 12. Small-dash lines indicate the error interval for o
expanded by afactor of two.

SUSLOV

patible with all data. Here, the one-side error is mini-
mum at N =-0.08, which yields

W, = 7.4+04. (74)

Correctness of the optimization with respect to b
described in Section 6.2 can be demonstrated in a
somewhat heuristic manner. For an optimum value of

N =-0.12 and the b value varied in an interval from O
to 6, a clear pattern of x? minima was obtained in the
middle of the interval. On approaching the boundaries,
the first x? minimum approached to and merged with
the second minimum exactly as it was observed on

increasing N. These corresponding results for a and
W,, are presented in Fig. 17; expanding the error inter-
val by afactor of 2 and 1.1 for a and W,,, respectively,
makesthe vaues (73) and (74) compatible with aimost al

data (except for a narrow interval a b = 5.5, where the
proximity of al estimates is obvioudy accidental. As is
seen, the minimum errors also agree with (73) and (74).
Summation of the perturbative series for the Gell-
Mann-Low function at finite g values was performed
using a procedure analogous to that described in Sec-
tion 7. The accuracy was evaluated by variation with

respect to b, and N . The variation with respect to by
gaveamarkedly greater N, values and allowed the W(g)
asymptoticsto be modified without significantly affect-

ing the results for g ~ 1. On varying the N val ue, with
b, adjusted so as to maintain a constant value of a =
0.96, the most probable value of W,, = 7.4 is obtained

for N =—0.067; the uncertai nty rangeindicated in (74)
correspondsto the interval -0.09 < N <-0.05. Table 7
lists the datafor N = —-0.067, with the error estimated

by comparison to the results for N =-0.05 and —0.09.
Note that asymptote (7) is attained rather slowly, the
deviation amounting to about 15% even for g = 100.

Figure 18 presents a comparison of the results
obtained for g < 20 to the data reported by other
researchers.

8.2. The Possihility of Logarithmic Branching

Sincethe value of a differs only slightly from unity,
aqguestion arises asto whether the accuracy is sufficient
to consider this deviation significant. Formally speak-
ing, thisisreally so becausethe error was estimated objec-
tively and thereis no ground to expect it to be significantly
understated. Nevertheless, the possibility that the equality
o = 1lisdtrict is not excluded, since asymptotics (7) may
contain logarithmic corrections of the type

W(g) = W.g’(Ing)”, g — . (75)

For y > 0, these corrections may inspire a small
decrease in a. In this case, formula (20) contains an
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Table 6. Asymptotic parameters for the ¢p* theory obtained for Bo =4 and various N values by the interpolation with Ly = 2,

L=5
. afor N
Estimates based on
-0.5 -0.3 -0.2 -0.12 -0.1 0.0 0.1 0.2 0.3 0.5
First x2 0.863 0.920 | 0.945 0.962 | 0.964 0.975 0.974 0.931 - -
minimum +0.005
Second X? 0.54 0.78 0.90 0.960 | 0.970 1.00 1.01 1.01 0.97 1.16
minimum
U,, changing 0.795 0.865 | 0.915 0.960 0.973 1.035 1.105 1.175 1.255 1.415
sign -0.961
U..(bp) 0.907 0.90 0.929 0.961 0.971 1.022 1.082 1.147 1.218 1.371
dope +0.001
W,, for N
-05 -0.3 -0.2 -0.12 -0.1 0.0 0.1 0.2 0.3 0.5
First x2 4.67 5.22 5.75 6.36 6.63 8.26 11.82 30.9 - -
minimum +0.16
U..(bp) 3.02 5.58 6.55 7.35 7.34 7.18 6.78 6.45 5.91 5.05
slope 15.9 10.0 7.85 7.55 7.61 9.07 11.3 16.5 17.3 12.3

additional factor (InN)~Ywith unchanged W,,, so that the
results for Uy, can be treated according to Eq. (75) with
the parameters

a=1 y=014, W,=77 (76)
without any increase in x2. Actually, the possibility of
such alogarithmic branching seems to be quite proba
ble for the following reasons.

1. It can be ascertained that the logarithmic branch-
ing in the case of strict equality o = 1 is unavoidable.
Indeed, let us write series (1) in the form of the Som-
merfeld-Watson integral [2, 13]:

_ 1. W@ -
= 2if%%5nmY
C

sinTz (77)

W = Y Wy(-9)"

N=N,

where W'(2) is the anaytical continuation of W), onto
the complex plane (W'(N) = W) and C is the contour
containing the points Ny, Np + 1, Ny + 2, ... (Fig. 19). If
Z = da is the extreme right-hand singularity of
W (2)/sinTez, we can modify the contour into the posi-
tion C' and show that this singularity determines the
behavior of W(g) asg — oo. The purely power law (7)
corresponds to the presence of asimple pole at z = q,
while the law described by Eq. (75) corresponds to a
singularity of the (z—a)Y—* type.”

91t is clear from the above considerations that the assumption of
analyticity of the coefficient function on the real axisfor N = N,
which is necessary for interpolation, is confirmed in all cases by
the results obtained.
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Note that the first term 3, is absent in the expansion
of the 3 function (5) simply by its definition, while van-
ishing of the next coefficient 3, isaccidental. Indeed, in
the (4 —e€)-dimensional ¢* theory, the latter termis non-
zero and has amagnitude on the order of €; accordingly,

[\
=
T

—
o
T

—_
=
T

1
2
6b

Fig. 17. Theplotsof various (a) a and (b) W,, estimates ver-

sus b for the ¢4 theory. The notations are the same as in
Fig. 12. Small-dash lines indicate the error interval expanded
by afactor of 2 and 1.1 for a and W,, values, respectively.
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Table 7. The Gell-Mann-Low function for the ¢* theory
(valuesin parentheses indicate the error estimated in units of
the last decimal digit)

g B(9) g B(9)
0.2 0.04993(2) 30 138.7(50)
0.4 0.18518(26) 40 193.2(75)
0.6 0.3939(10) 50 248.3(100)
0.8 0.6667(27) 60 303.9(127)
1 0.9952(51) 70 359.7(155)
2 3.272(33) 80 415.6(182)
3 6.278(85) 90 471.7(212)
4 9.758(157) 100 527.7(240)
5 13.57(25) 150 808.1(389)
6 17.64(36) 200 1087(54)

7 21.90(47) 250 1366(70)

8 26.32(60) 300 1644(86)

9 30.87(75) 350 1920(101)
10 35.53(90) 400 2196(127)
15 59.95(175) 450 2471(133)
20 85.59(275) 500 2745(149)
25 111.9(38) g—> o 7.41g0%

W(1) ~ €. Thelimiting transition e — 0 showsthat, in
the four-dimensional case, W'(1) = 0 and asimple pole
cannot take place at a = 1. If the function W tends to
zero asz — 1 by the law W'(2) = wy(z— 1)Y, then

Wy iy
In y — 00
ra—yon9) " ¢

B9 = (78)

and the positive definiteness of y has a quite clear origin.

B T T T ) 7
Fy : 09¢7/
1.0p----------+ ’

p ////
2001-0.5 10
,//1.96g :
1 .
100} N

0

Fig. 18. A comparison of the Gell-Mann—Low function for
the ¢4 theory calculated in this work (solid curve) to the
results reported by other researchers (dashed curves top to
bottom corresponding to [12, 13, 14], respectively). The
inset shows areduced coefficient function (in this scale, dif-
ferences between the data obtained using various interpola-
tion methods are insignificant).
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2. Lipatov [29] considered the class of field theories
(generdizing the four-dimensional ¢* theory) with a
nonlinearity of the ¢" type and a space dimension of
d = 2n/(n — 2), for which alogarithmic situation takes
place. For al such theories, 3, = 0; however, this coef-
ficient differs from zero when d decreases. Therefore,
W(1) = 0 by analogy with the cases considered above.
In the limit n — o0, the Gell-Mann-Low function is
exactly calculated [29] and the extreme right-hand sin-
gularity of W(2) has the form of (z— 1)¥?, which leads
to asymptotics of the type B(g) O g(Ing)=2. From the
continuity considerations, we may expect for large but
finite n vauesthat a nonanalyticd zero of thetype (z—1)Y
isretained and the singularity at z= 1isstill the extreme
right-hand one. Therefore, asymptotics (78) is natural
for such field theoriesand it isnot surprising that it may
be retained up to n = 4. Note that W,, is negative when
n — oo, so that the Gell-Mann-Low function pos-
sesses a zero; adirect extrapolation of theresultston=4
leads to an anal ogous conclusion for the ¢p# theory [29].
In fact, with this extrapolation we must take into
account that the index y series from 3/2 to small values
such asin (76); then the change in sign of the asymptot-
ics naturally takes place according to (78) at y= 1. The
positiveness of wy, follows from the matching of
W(2) ~ wy, and the positiveness of 3, [29].

Anyhow, we have to select between two possibili-
ties: (i) apurely power law (7) with acritical index a
dlightly below unity and (ii) an asymptotics of the type
(78) with y> 0. In both cases, the ¢* theory turns out to
be self-consistent.

8.3. On the Results Obtained in [12, 13]
Thecurvesin Fig. 14 display for N< 10 alinear por-

tion where Uy = 1L1(N — 1), which is stable with
respect to changes both in by and in the extrapolation
procedure. This region might be considered as a true

asymptoticsfor Uy (assuming theresultsfor N > 10to
be the interpolation artifacts), corresponding to the
dependence B(g) = 1.1g?, which is close to the result
obtained in [12, 13].

Infact, stability of the above region has a different ori-
gin. Thisbehavior isrelated to acharacteristic “trough” in

. @
C
) (o o o o o o
',_J
a No

Fig. 19. Integration contour for Eq. (77).
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the reduced coefficient function Fy a N < 10 (see the
inset in Fig. 18). Modeling this trough by assuming
F;=F,=... =F;;=0andtaking into account Egs. (19)
and (22), we obtain

Un = el (by+2)

z Fe(-1)

From this we obtain for N < 10 and all b, the result

Un = 1.5(N — 1), which is determined by the first non-
vanishing coefficient F, (see the curve for by = o in
Fig. 14) and is close to the rea situation. For the 3
function, thisresult impliesthat asingle-loop law 1.5g?
isvaliduptog~ 10.

Upon modeling the trough in Fy more precisely by
assuming F; = F, = ... = Fjg = € and using (26) we
obtain, in the case when the ratio of gamma functions
in (79) reduces to a polynomial for by = b — p with an
integer pand N intheinterval p+2<N<10,

e 1+bg
F,1+bp

K F(K +b) (79)

r(K+b)CN 2

Uy = szE*L (N 1) + (80)

This result indicates that the linear slope varies but
remains independent of b,. More complicated calcula-
tions show that Eqg. (80) is valid for arbitrary b, to

within correctionsonthe order of e/(N+ )P+ fore =0.2

(see Fig. 18), we obtain Uy = 1.1(N —1) + const, where
the last constant depends on by, but does not exceed afew
tenthsintheinterval 0 <y, < 10. Thus, anotion of the qua
dratic law with modified coefficient B(g) = 1.5(1 —e/F,)g?
is really meaningful intheinterval 1 < g=< 10 butisa
consequence of thetroughin FN.10 Thelimited width of
the trough indicates that thislaw is not related to areal
asymptotics (whatever it is).

The above considerations clearly indicate that the
result obtained in [12, 13] is by no means a computa-
tiona error and objectively reflects the behavior of the
B function for g = 10. This result is unavoidably
obtained upon summing a series with a small number of
expansion coefficients, since no other portion obeying the
power law can befoundin Fig. 14 for N <7 (the pointson
the curves for by < 0 are omitted for clarity, because their
sharp oscillations would overload the pattern).

8.4. The Question of “ Triviality”
of the ¢* Theory

The situation when the 3 function possesses asymp-

totics of the g? type with a > 1 can be given atwo-fold
interpretation. From the standpoint of finiteness of a

10This law is more clearly pronounced for the Borel image and is
somewhat distorted for the  function as aresult of integration in
Eq. (8); however, B(g) remains downward-convex up to g ~ 100.
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physical charge at large distances, the ¢* theory is
inconsistent: the effective charge g(L) turnsinto infinity
at acertain L, (Landau pole), while for L < L, the g(L)
is undetermined. Considering the field theory as alim-
iting case of the lattice theories, the ¢* theory is “triv-
ial”: the physical charge tends to zero for any value of
the seeding charge.

In recent years, the problems related to the concept
of triviaity were actively discussed by severa
researchers (see[30, 31] and referencestherein). Onthe
one hand, the existing indications of triviality of the ¢*
theory were emphasized; on the other hand, the ¢* the-
ory was declared verified (with a positive result) by
numerical modeling on alattice. Let us briefly discuss
this problem as well.

The ¢* theory is strictly proven to be trivia in a
space with the dimensionality d > 4 and nontrivial for
d <4[32, 33]. Inthe case of d = 4, the obtained inequal -
itieswere only dlightly insufficient for the statement of
triviality. Such situations are usually considered by
mathematicians as insignificant and not worth special
effort, which explains why triviality of the ¢* theory is
considered as “virtually proved.” From the standpoint
of physics, this optimism is by no means justified: on
the modern levd, the aforementioned resultsfor d # 4 are
rather primitive, being merely aconsequence of thethe-
ory of renormalization and a single-loop renorm group.
On the contrary, the situation with d = 4 is physically
highly complicated and no analytical approaches to
solving this problem have been developed so far.

In the author’s opinion, the results of numerical
experiments on the lattice reveal ed nothing unexpected.
In view of the absence of zeros of the 3 function, the
effective charge g(L) always decreases with the dis-
tance. However, the numerical methods cannot answer
the question asto whether the “charge zero” does exist,
which is explained by limited lattice dimensions. There
are many cases of misunderstanding related to the
charge normalization: even in the “natural” normaliza-
tion used in this work, the quadratic law is extended to
g ~ 10 (see Section 8.3); traditiona normalizations extend
thisinterval even greater, for example, up to g ~ 600 when
theinteraction termiswritten in the form of g$p#/8. There-
fore, behavior of any quantities is indistinguishable
from trivial in abroad range of parameters.

Among old publications, only the paper of Freed-
man et al. [34] is worth of mentioning where it was
stated that g(L) uniformly decreases in g, which is
actually indicative of the*“ charge zero.” However, judg-
ing by the results, the charge normalization employed
in [34] differed by afactor of about 100 (an expression
for the action obviously contains a misprint) from that
used in thiswork and all results for finite g, fell within
aregion where the quadratic law is operative. Nontriv-
ial resultswere only obtained for g, = e by reduction to
the Ising model. Although this reduction is apparently
possible, there is no method (except for extrapolation)
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to establish a correspondence between normalization of
the field variable in the Ising model and that in the ini-
tial ¢* theory. This leads to uncertainty in the charge
normalization, an allowance for which makes unjusti-
fied any conclusions concerning uniform convergence.

Now let us turn to the original results of [30, 31].
The main ideawasillustrated by the example of a non-
ideal Bose gas possessing a well-known spectrum of
the Bogolyubov type: e(k) ~ k for small k and e(k) ~ k?
for kK — 0. Let us pass to the “continuum limit” by
allowing two characteristic scales of the problem (scat-
tering length and interparticle distance) to tend to zero.
If the first value tends to zero rather rapidly, a “quite
trivia theory” appears and a quadratic spectrum of the
ideal gas is restored. If the limiting transition is per-
formed so as to maintain a certain relationship (ensur-
ing constant sound velocity) between the two scales, a
“trivial theory with nontrivial vacuum” appears and the
spectrum becomes strictly linear (i.e., strongly different
from that of the ideal gas), although no interaction of
guasiparticles (phonons) takes place. The latter sce-
nario was suggested for the continuum limit of the ¢*
theory, stating that it islogically self-consistent.

Evenif thelast statement is accepted, aquestion still
remains unanswered as to why this limiting transition
does physically take place. For a Bose gas of neutral
atoms, there is no real possibility of simultaneously
changing both the gas density and the scattering length.
The situation required for the authors of [30, 31] may
take place only in the case of aspecia long-range inter-
action, whereby a change in the density affects the
Debye screening radius. However, this scenario is not
arbitrary and can be predicted based on the initia
Hamiltonian.

It was stated [30, 31] that the assumption concern-
ing anontrivia character of the continuum limit was con-
firmed by the results of numerical modeling on the lattice.
However, this conclusion was based only on a particular
interpretation of the “experimental” data, rater than on a
direct experimental evidence: the numerical experiments
were performed deep in the region of the single-loop law
and could not contain any information concerning thetriv-
iality. The results, however unusual they might seem,
must by explained within the framework of aweak cou-
pling limit.

Triviality of the $# theory leadsto the non-renormal-
izability of the Higgs spectrum of the Standard Model.
Thisresultsin violating one of the basic postulates, the
principle of renormalizability. Thus, papers [30, 31]
were stimulated by the wish to resolve the difficulties.
According to the results obtained in this work, no such
difficulties were inherent in the system studied.

9. CONCLUSION

This paper develops an agorithm for summing
divergent series of the perturbation theory with arbi-
trary values of the coupling constant. Verification on the
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test examples showed that the algorithm is stable under
conditions of strongly restricted information and con-
firmed reliability of the error estimation. The main
physical result of this study consists in restoring the
Gell-Mann-Low function of the ¢* theory and demon-
strating its self-consistency. The latter conclusion
agrees with the absence of renormalon singularities
established previously [9].

The proposed algorithm can be applied to solving
many other problems aswell, in particular, to restoring
the Gell-Mann—Low functions in quantum electrody-
namics and quantum chromodynamics. At present,
solving this task is complicated by the absence of cal-
culations of the full-scale Lipatov asymptoticsin these
theories, although the basis for such calculations is
fully prepared [27, 35—-39]. Application of the proposed
algorithm to the theory of phase transitions may
increase the accuracy of calculation of the critical indi-
ces by at least two-three orders of magnitude.
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Abstract—The problem of the shape of the line of optical transition of an electron between bound states on the
surface of liquid helium is solved within the independent boson model. Such bound states are realized, for exam-
ple, in the potentia of a positively charged impurity located on a substrate or in the field of a He" ion located
benesath the surface. Reference is made to the importance of the relaxation processes of the dimple on the helium
surface under the electron. The adiabatic approximation, in the case of which the dimple does not change during
thetime of electron trangition, isnot alwaysvalid. At low temperatures, two maximamay appear on the absorption
line. It isdemonstrated that the far tails of the optical absorption line feature auniversal (Urbach rule) exponential
dependence on the electron transition energy. © 2001 MAIK “ Nauka/Interperiodica’” .

1. INTRODUCTION

Electrons on the surface of liquid helium are sub-
jected to numerousinvestigations[1]. They form atwo-
dimensional electron gas and are held on the surface by
image forces and electric field. We will treat the prob-
lem of the line of optical transition of an electron
between bound states that are realized in the impurity
potential and in the magnetic field. If a charged impu-
rity is placed on a substrate beneath a thin film of
helium, thisimpurity devel ops on the surface of aliquid
an attractive potential capable of holding asingle elec-
tron. The lower levels of such apotential coincide with
thelevels of harmonic oscillator. A more exact determi-
nation of levels with due regard for the formation of
dimple, i.e., static deformation of the surface under the
electron, was obtained numerically [2] by varying the
total electron energy and the liquid surface. Electrons
may a so be localized using the magnetic field perpen-
dicular to the surface of helium. Here, the formation of a
dimple is likewise of importance. Because the energy of
dimple is different for different electron leves, a shift of
the cyclotron resonance frequency occurs [3]. The effects
of electron level broadening weretreated only recently [4].
The shape of the optical absorption line or of the cyclo-
tron resonance line is defined both by the natural width
of electron levels and by the processes of relaxation of
static deformation of the helium surface under the elec-
tron. The approximation, in the case of which the dim-
ple does not have enough time to change during the
electron transition from level to level, defines well the
transition energy rather than the shape and width of the
absorption line. Moreover, it is not always that this adi-
abatic approximation isvalid. Wewill demonstrate that,

under some conditions, two maximamay appear on the
absorption line.

The system of electrons on discrete surface levelsin
question is of further interest because it is a good real-
ization of the exactly solvable independent boson
model which we are now going to treat.

2. MODEL

The effects of relaxation of a dimple under an elec-
tron in bound states may be described by the Hamilto-
nian of the independent boson model [5],

H= Y &CIC+ Y hwaga,
| i D
+ Z Mq,i(a; + aq)CrCiv
hq

where C is the operator of electron production on a

level of number i and energy ¢;; and a; is the operator
of production of ripplon, i.e., of a quantum of a capil-
lary-gravity wave on the helium surface with the wave
vector g. The ripplon dispersion law is given by

wp = gq(q2+K2)tanhqd, )

where a isthe surface tension, p istheliquid density, k
is the inverse gravity-capillary length, and d is the
thickness of helium film. The value of k = 20 cm™ is
much less than the characteristic wave vectors in the
problem being treated. Therefore, it is amost aways
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possible to assume that kK = 0. The matrix element of
electron—ipplon interaction My will be determined
below.

The Hamiltonian given by Eq. (1) contains no terms

of the a;C; C; type responsible for electron transitions

with ripplon emission. This is attributed to the small-
ness of the matrix element

a’q]
MQI] D eXpI:l 4 |:|1

where g is the wave vector of emitted ripplon with
energy w, equal to that of electron transition, and a is
the size of the wave function of electron in bound state.
The ripplon spectrum is very soft; therefore, for the
given vector q, it isaways aq > 1. The sole exception
is provided by transitions between very weakly split
discretelevels[4]. Theground and first excited levelsin
the potential of positively charged impurity are not
split. Ripplon transitions in a high magnetic field are
likewise suppressed. The Hamiltonian given by Eq. (1)
is diagonalized using the unitary transformation [5]

H = e°He™®, (3)

where the operator Sis defined by the expression
S= ZCTCiZ%(a;—aq). (4)
i q 1
The new Hamiltonian H is diagonal,
H= Z(si -0)C'C + Zooqa;aq. (5
i a

The shift of electron levels 4, is nothing but the energy
of formation of a dimple under the electron in the ith
bound state,

M2
R
=Y (6)
q

The ripplon spectrum does not vary, but the position of
equilibrium of ripplon modes is shifted,

aqzaq—z%‘:ci*ci. (7)

The new electron operators C; are related to C; by the
unitary transformation

Ci=eCe”,

_ 0 <« M, O €S)
Ci = Ci —a’ - .
expmg—g o, (aq aq)g

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 93

GRIGOR’EV, DYUGAEV

The intensity of light absorption is proportional to
the conductance of the electron system o, which may
be determined by Kubo's formula[5],

o

Re0,p(0) = 50 [€” Da(0Ip(@)Tt, (9

where j, is the current operator, j, = zii P,i.«Ci Cj.
The matrix element of optical transition P;; is taken to
be constant. The calculation of the current—current cor-
relation function on the basis of Egs. (8) and (9) leads
to the expression [5]

1
Zozni(l_nj)Pij,aPij,B
ij

Regp(w) =
w (20
Lit O
X J’exp[|—(mi’L+si—sj—Ai +4A)) —®;(t)gdt,

O

g

where A, is the energy of dimple given by Eq. (6), and
the function ®;;(t) is defined by the relation

_ (Mg =My)°
D R (11)
q q

x[(Ng+ 1)(1—€ ") +ny(1—€e™],

where n; and n, are the occupation numbers of electrons
and ripplons, respectively. At low temperatures, num-
bers n; are equal to 0 or 1, and n, represents the Bose
function,

-1
q hw /T -1
It isour objective to investigate the general solution
given by Egs. (10) and (11) as applied to optical elec-
tron transitions on the surface of liquid helium. Unlike
the analogous problem on electron transitions from
leve tolevel intheimpurity potential inasolid [5], therip-
plon spectrum is continuous and given by expression (2).
The optical phonon spectrum is independent of the
wave vector [5].

The matrix element of electron—ripplon interaction
M, is given by the expression [1]

= [d ’r|yi € Q(a)F(a),

n

2 _ Aqgtanhqd
Q*(a) = 200,
1 1 (12
F(a) = eF + (4( Degal oz’ @0z

where ¢(2) is the electron wave function along the Z
axis perpendicular to the helium surface, Y(r) is the
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electron wave function along the surface, and e is the
permittivity of helium. The pressing electric field Ej
includes the externa field E,,, the impurity field, and
the image field of the substrate,

Z*e de
ED: Eext+?+zd_21
(13
Z* - ZZ 6 - es_l
1+eg et 1’

Z* isthe effective charge of impurity, and eg isthe per-
meability of the substrate. The second term in F(q) in
Eq. (12) is the contribution made by the electron inter-
action with the surface of liquid. In our case, the aver-
age value of [Z[0s much less than a, where a is the char-
acteristic scale of the function i(r). Because the ripplon
momenta g < a* will be important, one can expand the
Bessel function

~L1_
Ki(az) =57 -az

at qZ < 1 (Eq. (12)), which simplifies the expression
for F(q),

- ep. + (e=DET
F(CI) = eED + w

(14
The contribution by these two terms to F(q) is com-
pared for the characteristic values of ga< 1 at E ~
300 V/cm.

Because the problem is axisymmetric, it is conve-
nient to expand the plane wave in Eq. (12) in terms of
cylindrical functions. In so doing, the contribution to
Mg in Eq. (12) is made only by a harmonic with zero
projection of momentum and Eq. (12) yields

Mg = jandr|wi|2Jo(qr)Q(q)F(q), (15)

where Jy(qr) isthe Bessel function. A charged impurity
develops on the surface of liquid the potential,

Z*eZ _ Z*QZ%L__I'_Z_D
2 d 24

V(= ==
r-+d

which may be expanded in terms of the parameter
r/d < 1. Therefore, in theimpurity potential, aswell as
in the magnetic field, the squares of the wave functions
of two lower levels are given by

2 1 22 2
qJO = —¢€ ’ l-|Jl = ’
na’ na?te
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where a2 = Ai/muy,, and %wy, is the distance between the
electron levels. From Egs. (15) and (16) we find the
matrix elements My and M,
2.2
- ggan
Mqo - eXpD_TDF(Q)Q(Q)a
17)

2_2 2_2
Ma: = H - Hem Hm5R ().

We use Egs. (6) and (17) to derive the expression for the
energy of dimplesin the ground state A, and in thefirst
excited state A, of electron,

_ cadg_ pdlat F(q)
Bo = [ama®PO 2 0 2 k2
5 q
. (18)
_ adg q’aly’ , 0 q’aliF(q)
By = 4nanp%l_ 2 0%P0 200
0
It is only the difference Ay — A that is of interest. We
assume, for simplicity, that F(g) = const=F andk =0,
to derive from Eq. (18)

3F?
32na’

Equations (10) and (11) yield the expression for the
intensity of optical absorption I(w),

Dy—A, = (19)

[

—J,(t)

[(w) O Idtcos{ (W=—w)t=J, (e =", (20
where wyh =€, — €y + By — 4y,
2
Jy(t) = Z%gn%t,
q q
, (21)
(Mqo_ Mql)

- Wyq_
J,(1) = Z cothz_l_(l CoSW,t).

q
We derive from Egs. (20) and (21), in view of (17),

2 2
hwy,

2.2 2 (22)
ngap_F

_ qdq(ga)*
5 = i R

64a

0
N (1 - coswgt)
hw

h
cothwi.

» 2T
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The integrals defining the functions J,;(t) and Jx(t)
converge rapidly at ga > 1 (22). Thevalue of a~ 100 A
corresponds to the transition energy Auy, = A%/ma? ~ 10K.
An important parameter of the problem is the ripplon
frequency w(q) at g? = 2/a. It defines approximately
the inverse relaxation time of a dimple. At a =100 A,
this frequency w(a) = 10° s, and the ripplon energy is
hw(a) = 0.03 K. Ripplons with a high energy have an
exponentially small matrix element of interaction with
electron. The short-term asymptotic behavior of the
functions J,(t) and J,(t) given by Eq. (22) is readily
determined intheclassical limit of Aw(a) < T, whenthe
frequency w(a), whichisrelated to the wave vector g by
afairly complex relation (2), drops out completely dur-
ing integration of Eq. (22) in the region of wy(t) <1,

Ft
(1) = 32mha’

We restrict ourselves to this approximation and find,
from Egs. (20) and (23),

LM = HOT. @)

O (o + so—el—A)zg

I(w) Oexp
0 AT

(24)
The shift of transition energy A caused by the deforma-

tion of the helium surfaceis

Ity o F*
t sna’

A=Ny—N + (29)
Thisvaue of A coincides exactly with the result obtained
numerically by Cheng and Platzman [6] in the samelimit.
It appears of interest to treat the case of thin film, d < a,
which has not been experimentally investigated.

3. THIN FILM

In this limiting case, the ripplon frequency «Xq) O ¢
(2). During integration in Eq. (22), it is convenient to
introduce the variable X = (ga)%2 and define the char-
acteristic frequency w(a) by relation (2),

w(g) = w@)X, w(a) = 49%. (26)
Pa
We use Egs. (22) and (26) to find
(1) = A, 1, = w(at,
1+t , (27)
_ F
A= 32ahw(a)’

InEq. (27), the parameter Aistheratio of the difference
of the dimple energies A; — A to 2w(a), and the time t
is reduced to the dimensionless form by multiplying it
by the characteristic frequency wx(a).
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Equations (22) and (26) yield the expression for the
function J,(tp),

[

J,(te) = AIe_X(l—cost* X) coth=2-dX,
0

2T*

(28)

where Tis the reduced temperature, Ty= T/Aw(a). In
the classical limit of T;> 1 and from Eq. (28), we

derive the dependence of the function J, on the reduced
timetn

Jo(te) = AT, In(1+1t3). (29)

In the same limit, we use Egs. (20), (27), and (29) to
find the dependence of the absorption intensity on the
reduced frequency w= (w — wy)/w(a),

t, 0 dt.
1+201 +2)”

I(0g) D'!cos%n* t, —A (30)

v =AT,.

One must distinguish between two cases, namely, A> 1
and A < 1. The strong coupling limit, A> 1, is realized
in a high electric field given by Egs. (14) and (27),
when only small times tjare important in the integral
in Eqg. (30),

(0 —A)T

O
I (w*) Oexp+——%1. (31)
O O

4v

In view of determining the reduced quantities Tjand
wrjand the parameter A, one can see that the expressions
(32) and (24) for I(w) coincide and are independent of the
characteristic ripplon frequency w(a). Consequently, the
specific features of the thin film case being treated do
not show up. Inalow electricfield, A< 1, and the shape
of the line of optical absorption I(w*) is defined by the
value of the parameter v = AT[jin Eq. (30). Because

T> 1, both limitsarerealized, namely, v > 1andv <1,

(<)

[(wy) DJ’cosw*t*L
0

(1+1t5)" 32)
_ o[0T (1/2)
- Kv—]JZ(w )DZD r(V) '
whereK, _,,(w*) isthecylindrical functionand I isthe
gamma function [7].

Asymptotic expansions of |(wp) havetheform[7, 8]

2
() = (O - 752550 ol <1 (33
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"7 o] > .

(I(we)Oe™ (34)

In the case of a high value of the parameter v (v > 1),
the intermediate asymptotic behavior at 1 < |wy{ <V is

also realized [§],

(@) = 10— @,
(1+2h)"

(35

where the function x(2) is defined by the expression

w2y a1t 1+Z

_ 2
X(2) = (1+2) 5

(36)

and the parameter Z is the ratio of wjto v, Z = wrfv.

A comparison of Egs. (33) and (36) reveals that the
asymptotics I(wp) a wp<land 1 < w< v ae
joined, because the expansion of the function x(2) at
Z < 1 hastheform

= %22%——

It isinteresting to follow the transition from the strong
coupling limit (v > 1) to the weak coupling limit (v < 1).
Inahigh electric field at high temperatures (v > 1), the
shape of the absorption line is aimost Gaussian (see
Egs. (35) and (37). The exponential dependence |(w*)
as given by Eq. (34) takes place at |wy]| > v, when the
absorption intensity is very low. At /2 <v < 3/2, the
quantity 1(cwr) depends nonanalyticaly on wpj at w* =0,
the function I (w*) exhibitsakink. At v < 1/2, the value
of 1(0) isundetermined, because theintegral in Eg. (32)
convergesif w= 0. It isapparently this particular case

when the absorption line is neither Gaussian nor
Lorentzian that is of primary interest. The convergence
of the integral in Eq. (32) is provided for either by the
inclusion of the natural width of the absorption line or
by the inclusion of the interaction of the localized elec-
tron with helium vapor [1, 9] whose density is very
strongly dependent on temperature. It isinteresting that
the inclusion of the level width affects only details of
the dependence of the central part of the absorption line
on the reduced frequency wr; The asymptotic behavior

of I(w*) at w> v in Eq. (34) isindependent of v, i.e.,
of temperature and electric field, only because of the
pre-exponential factor |wy{". In other words, eveninthe
classical limit of T;> 1, the exponential wings of the
absorption line are independent of temperature. When
treating the experimental datain low electric fields E,
an indeterminacy appears in calculating the width of
the absorption line. A universally accepted definition of
thiswidth existsfor Lorentzian or Gaussian lines. Inthe

region of low valuesof v, i.e., inlow electric fields, this
definition may be invalid. The nonmonotonic depen-

x(2) (37)
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dence of the absorption line width on E; has been
revealed by Edel’man [9] by the cyclotron resonance,
which may be due to the nonanalytic dependence of
[(w*) onw*at v < 3/2.

In studying the quantum limit of T<< 1, itisconve-
nient to identify the main part, independent of temper-
ature, in expression (28) for the function J,(t[):

2
t +2AJ.(1 ?(c/)Tst*X)e

J(ty) = A dX. (38)

Theintegral in Eq. (38) may be represented as the sum

23
*T*

{dx ) m;(T* FM[GETE+(Te +0)7

(39)

When Tp<< 1, but tjT 7> 1, high values of n areimpor-

tant in the summation with respect to nin Eq. (39), and
Egs. (38) and (39) yield

th

Jo(ty) = A== +viIn(1+t{T3). (40)
t

*
This expression is also vaid in the other limit, Trig< 1,

because the second termin Eq. (40) isin thiscase unim-
portant. We use Egs. (20), (27), and (40) to derive the
final expression for the absorption intensity in the quan-
tum limit of T<< 1,

I(oo*)DIcoan ty — 1+t

2

25(1“ T2)dt, .

(41)
X exp D—A

The parameter v is defined above, v = TFA.

In the region of strong coupling, A > 1, low values
of tare important upon integration in Eq. (41) and the
adiabatic approximation

(00y) O expD—(i'J-i——)—D

4A (42)

isvalid.

In the region of weak coupling, A < 1, thefirst term
of expansion of I(wp)in Eq. (41) in powers of A hasthe
form

oA

e e ], @Y
where 8(w) isastep function: 8(wp) = 1 at w> 0 and
B(wp) = 0 at wp< 0. Expression (43) does not allow the
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Fig. 1. The absorption line for different values of the helium
film thickness. The solid line corresponds to d/a = 1, the
dotted line corresponds to d/a = 0.01, and the dot-and-dash
line corresponds to d/a = 100. In spite of the very wide
range of values of d/a, the absorption linesfor different val-
ues of d/a differ very little.

literal limit of Ty= 0 because, at v = T-FA =0, the inte-
gral in Eq. (41) diverges. The nonphysical singularity
of 1(wp) at w= 0iscut off by w~ y/w(a), whereyis
the natural level width of electron in an excited state
with energy €;. One can see that, in the quantum limit
of weak coupling (Tj<< 1, A < 1), the absorption line
of 1(wr) hasamaximum at wrj= 0 and ishighly asymmet-
ric. With the threshold energy iy, =€, — €, + Ay — A, @
change of the absorption mode occurs. At w7> 0, the
exponential frequency dependence I(wp) is defined by
aripplon emission that is independent of temperature.
However, at w< 0, this dependence is related to the
absorption of redl, i.e., thermal, ripplons, whose density
isexponentially low at T7<< 1. The shift of the electron
transition energy, i.e., the difference between %w, and
€, — &, differs from the adiabatic vaue of A from
Eq. (25) only by afactor of 3/4,

hwy=¢€,—g+ A",

. _ 3F* _ 3

A= Bo=b = o = 2t
The parameter F ~ E (Eq. (14)); therefore, the transi-
tion from the case of strong coupling (A > 1) to weak
coupling (A < 1) brings about a kink on the curve of
dependence of the shift of absorption line zw on the
square of electric field E;. One can demonstrate that
this result is general and independent of the tempera-
ture Try In the classical limit (T7> 1), the adiabatic
approximation is disturbed if v = AT;< 1/2, when the
integral in Eq. (30) diverges at wp= 0. The above-men-
tioned kink was observed in the experiment with cyclo-
tron resonance in low electric fields E; [9].

We have seen that, in the quantum case of T> 1,
the positions of maxima on the absorption line in the

(44)
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strong and weak coupling limits are shifted by A. The
intermediate case of A = 1 is of interest, when both
maxima occur on the absorption line. While the first,
adiabatic, maximum at w= A arises as aresult of inte-

grationin Eq. (41) over theregion of t7<< 1, the second,
“antiadiabatic,” peak at wpj= 0 is associated with inte-
gration in Eq. (41) over the region of tj> 1. Its value

is proportional to e”. At first glance, it might appear
that the second (antiadiabatic) peak cannot be observed,
because the lifetime of the excited level isalways much
lessthan the relaxation time of the dimple. However, no
global rearrangement of the dimple occurs during elec-
tron transition, with only its minor part changing. This
is obvious even from the fact that the difference
between the values of dimple energy for different elec-
tron levels is much less than the dimple energy proper.
A dimpleis formed mainly due to long-wave ripplons
which deform the surface over scales of the order of
1/k > a. However, the long-wave part of a dimple is
almost independent of the electron level number. Elec-
tron transitions cause adimpleto vary over scales of the
order of a, which occurs much faster than the global
rearrangement of the dimple.

4. THICK FILM AND NUMERICAL RESULTS

In this section, we will demonstrate that no qualita-
tive distinction is observed between the cases of thick
(d> a) and thin (d < a) filmsfor the scope of our inves-
tigation. This is due to the similarity between the
w(g) 0 g¥(d < a) and w(qg) O g¥¥(d > a) spectra. We
will also give the results of numerical calculation by
formulas (20), (22), and (2), whichillustrate the forego-
ing conclusions.

Figure 1 givesthe frequency dependence of I(w*) in
the classical limit (T;=100) at v = 1 (A =0.01) for dif-
ferent values of the helium film thickness, d/a=0.01, 1,
100. In order to preclude the emergence of nonphysical

singularities in calculations, the cut-off factor e’ is
introduced in formula (20), wherey = 0.02. One can see
that the absorption spectrum looks not at all Gaussian
or Lorentzian, and the variation of the helium film
thickness by four orders of magnitude fails to result in
qualitative differences in I(wp). The plots are con-

structed on the basis of numerical count by formulas
(20), (22), and (2).

In order to analyze the shape of the absorption line,
its dependence on wyis given on a logarithmic scale

(Fig. 2) for different valuesof v = 0.5, 1, 2. Thetemper-
ature Tywas kept constant (T7= 100), with the cou-

pling constant A being varied. This corresponds to the
experimental situation in which the pressing electric
field is varied, with the temperature T maintained con-
stant [9]. Portions of the linear dependence In I(wp) are

observed in Fig. 2; these portions are the longer, the
lower the values of v. As v increases, the dependence
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Inl(w[) changes to an inverted parabola, which corre-

sponds to the Gaussian shape of the absorption line. On
the contrary, as v decreases, the dependence of | on w;

comesto ever better satisfy the Urbach rule (see Eq. (34))
and the sharp peak at wpj= 0 becomes more explicit.

The plot is constructed on the basis of numerical count
by formulas (20), (22), and (2) for d/a = 100.

Figure 3 illustrates the quantum limit of T< 1,

when the emergence of two maxima on the absorption
line is possible. For this limit to be experimentaly real-
ized, the temperature must be reduced to T~ 102 K. The
fact of the presence of two maxima does not depend on
whether the helium film being treated is thin or thick.
These two maxima are most pronounced & A = 2 for a
thick helium film and a A = 3 for athin helium film.

5. DISCUSSION OF THE RESULTS

We have demonstrated the validity of the exactly
solvable independent boson model [5] for describing
optical transitions between states of an electron local-
ized on the liquid helium surface. The results obtained
within this model are used to analyze the shape, width,
and shift of the absorption line during such transitions.
We have demonstrated that, even in the classical limit
(T* > 1), the absorption linein the region of weak cou-
plingv = AT< lisneither Gaussian nor Lorentzian. Ina

wide range, w> v, the Urbach ruleisvalid (Eq. (34)).

Note that the exponential dependence of absorption
on the dectron transition energy #(w — ) is typical of
numerous optical experiments, but it was never substanti-
ated theoretically [10]. Inthiscase, we are dealingwith the
Urbach law rather than with the empirical Urbach rule. If
v < 1, theabsorption linel(w) hasapeak at w=0, which
isthe sharper, the lower the value of v.

In the quantum limit in the region of weak coupling,
the absorption line is highly asymmetric. Its shape cor-
responds to the Urbach rule (see Eq. (43). IntheA~1
region, the absorption line has two maxima (see Fig. 3).
The shift of the electron transition energy is deter-
mined, which is associated with the deformation of the
helium surface (Egs. (2), (25), and (44)).

A detailed experimenta study of the phenomena
treated here for the case of cyclotron resonance of elec-
trons on the helium surface was performed by Edel’ man
[3, 9] for €, — &, = Ay (Where wy is the cyclotron fre-
guency). In high magnetic fidds (fwy, > T), electrons
populate only one Landau level. Unfortunately, we are
not ready to compare our results with the experimental
results of [3, 9]. The thing isthat the problem on cyclo-
tron resonance of electrons on the surface of liquid
helium does not reduceto the “trivial” problem of inter-
action between a two-level electron system and rip-
plons. This problem is essentially complicated by the
infinitely multiple degeneracy of Landau levels in a
high magnetic field. Rather than interpreting the results
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Fig. 2. Theintensity of absorption on alogarithmic scale as
afunction of reduced frequency w* = (w—wgy—A)/w(a). At
aconstant temperature T* = 100, the coupling constant var-
ies. The solid line correspondstov = 1 (A = 0.01), the dot-
and-dash line correspondsto v = 2, and the dotted line cor-
respondsto v = 0.5 (A = 0.005). For alow value of v, one
can clearly see the linear portions of the dependence
Inl(w*) (Urbach rule, Eq. (34)). If v < 1, a sharp peak at
w* = 0isalso observed.
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Fig. 3. The absorption line in the quantum limit: T* = 0.2,
d/a = 100. One can clearly see two maxima.

of old experiments[3, 9], it is our objective to provoke
new experiments that are simpler from a theoretical
standpoint.

Optical transitions between the levels of diplonsin
the vicinity of the helium surface may also be regarded
as an interesting realization of the phenomena being
treated. A diplon is a bound state of an electron in the
field of a He* ion located beneath the helium surface.
The coupling energy of a diplon may be varied in a
wide range by varying the pressing electric field [1].

Another possible application of the obtained results
is in electronic devices coated with a film of liquid
helium. Because all impurities are frozen out from
helium, it is possible to realize small-sized ideally pure
electronic systems using the method suggested in [11].
These are annular electronic structures, quantum dots,
and electron filaments.
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Abstract—An EPR study of ytterbium dodecaboride (Y bB,) showed the presence of an energy gap with a
width of 2A = 12 meV in the energy spectrum of this Kondo insulator. The temperature dependence of the
energy gap was determined by interpreting the experimental datawithin the framework of the exciton dielectric
model: A(T) =72 K at an absolute zero and A(T) = 0 at ~115 K. The temperature dependence of the EPR line-
width exhibits a feature at 13-15 K, which isindicative of afinite density of states inside the gap. This can be
related to the presence of impurity states or bound polaron excitations in the electron spectrum of YbB5.

© 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The group of Kondo insulators (Kondo semiconduc-
tors) possessing a narrow gap in the energy spectrum
have attracted the attention of researchers for severa
decades by exhibiting certain features in the ground
state and unusual properties at low temperatures.
A classical object for investigations in this field is
samarium hexaboride (SmBg), in which samarium pos-
sesses an average valence of 2.6. However, in recent
years, attention has also been drawn to ytterbium dode-
caboride (Y bB,,)—another compound with intermedi-
ate valence. Thevalence of an ytterbiumioniscloser to
an integer, amounting to 2.9. Despite being probed by a
number of experimental techniques, YbB,, is yet stud-
ied to amuch lower extent as compared to SmBg. Avail-
able data refer to the electrical properties [1, 2], mag-
netic susceptibility [1, 2], heat capacity [3], and photo-
conductivity in the far IR range [4]. Also studied were
the spectra of inelastic neutron scattering [5, 6], photo-
emission [7], and nuclear magnetic resonance [8].

In the papers cited above, the experimental data
were interpreted based on the concept of intermediate
valence of ytterbiumions. It was assumed that the spec-
trum of electron states contains a 10-25 meV energy
gap opened at temperatures below 70 K.

The unusual low-temperature properties of Kondo
insulators were described for a long time within the
framework of a model of the f—d hybridization gap
partly renormalized by the correlation effects[9]. How-
ever, thismodel failed to explain somefinedetailsinthe
behavior of YbB,, at low temperatures. More involved
theories of the ground state of Kondo insulators were
developed by Kikoin and Mishchenko [10], Curnoe and
Kikoin (exciton—polaron model) [11], and Kasuya
(Wigner crystallization or Wigner liquid model) [12].

At present, the nature of the ground state of Kondo
insulators cannot be considered as completely clear. In
order to select between the models available, it is nec-
essary to employ the whole variety of the available
experimental methods. Among these, avery useful tool
is offered by the electron paramagnetic resonance
(EPR). The EPR measurements make it possible to
establish the presence of an energy gap in the spectrum
of electron excitations and to study the temperature
dependence of the gap width (in order to judge on the
nature of the ground state of this Kondo insulator). Pre-
viously [13] this program was fulfilled in the case of
SmBg—aclassical object in the physics of Kondo insu-
lators (Kondo semiconductors). Study of the EPR effect
in SmBg led to the discovery of a dynamic and static
Jahn-Teller effects in this material [14, 15], which is
evidence in favor of the exciton—polaron model of the
ground state of SmBg,

The purpose of this study was to apply the EPR
method to YbB,,. Based on the exciton dielectric modd,
the EPR data were used to determine the temperature
dependence of the correlation gap width in YbB,,. We
observed afinite density of eectron states inside the gap,
which is probably related to additional excitations in
the electron spectrum that also possess a collective
character.

The results of this study were preliminarily partly
published [16] and reported at the All-Russia Confer-
ence (NT-32) [17].

2. EXPERIMENTAL

The EPR measurements were performed using
powdered samples of Y bB,,, both pure and doped with

Gd®* (spin marker) to a concentration of ¢ = 0.1 at.%

1063-7761/01/9301-0111$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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Figi 2. Temperature dependence of the EPR linewidth for
Gd™* ions in YbBj, in the low-temperature region for
the Gd®* ion concentrations ¢ = 0.1 (s), 0.5 (a), and
1.0 at.% (o).

(Y bg,999Gdy 001B12) 0.5 at.% (Y by,995G 0y 005B12), Or 1 at.%
(Y bygeGdy 01B12)- For comparison, we also studied a sam-
ple of lutetium dodecaboride (L uy geGd,y :B4,) doped with
Gd** to a concentration of 1 at.%. TheYbB,, compound
was synthesized in an induction furnace a 1700 K by the
barometric reduction of Yb,O;3 in vacuum. Then the
compound was melted in an arc furnace and dissolved
in nitric acid in order to remove residual YbBg. A sin-
gle-phase sample, appearing as a black powder, was
checked by X-ray diffraction. An analogous procedure
was used for the synthesis of lutetium dodecaboride.
The powder grain size was 10-20 um, which issmaller
than the skin-layer thickness in both YbB,, (semicon-
ductor) and LuB;, (metal). In order to provide for a bet-
ter electromagnetic field penetration into the materials,
the powders were dispersed in melted paraffin. The
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measurements were performed at a frequency of v =
9.4 GHz in the temperature interval from 1.7 to 80 K.

Rare-earth dodecaborides possess simple cubic lat-
tices of the NaCl type, with the metal atoms occupying
Na positions and a cubic octahedron of 12 boron atoms
occupying Cl positions [18]. All such dodecaborides,
except for YbB,,, exhibit a metal conductivity. The
rare-earth (R) ions in RB;, compounds are usually
trivalent. In the crystal field of a cubic symmetry, the
multiplet of Yb3*(4f 13, 8F,,,) splitsinto the I doublet,
I'g quartet, and I'; doublet. Under these conditions, the
ground state of RB,, may represent a Kramers doubl et
g or 5, with the EPR signal observed from both of
these. However, we did not detect an EPR signal from
pureY bB,,. This can be explained by the metal valence
fluctuating between the states of Yb** and Yb?* at afre-
guency exceeding that of the EPR spectrometer (vy,, >
10% Hz), which confirms that the metal actually occurs
in the state of intermediate valence.

All the powdered samples of compounds doped with
gadolinium exhibited intense EPR signals. Figure 1
shows the temperature dependence of the EPR line-
was noted above, the latter compound possesses ametal
conductivity. The EPR spectrum of L ug goGdg 01B12 con-

tained asignal from Gd**, which was characterized by
alinear temperature dependence (typical of metals) of
the linewidth 8H = a + bT with the slope b = dH/3T =
1.25 Oe/K. The same linewidth in the spectrum of
Y by 9eGdy01B12 showed a more complicated variation
with the temperature: below 10 K, the line exhibited a
dlight broadening; above 20 K, the linewidth almost
exponentially increased with the temperature; in the
region of 50 K, the linewidth exhibited saturation. As
the temperature further increases, the EPR signal inten-
sity drops and above 80 K the linewidth cannot be
determined: the error of the linewidth determination
increases from £10 Oe at 15 K up to £150 Oe at 70 K.
In the samples with lower Gd content (Fig. 2), the EPR
signal was observed below 17 K (c = 0.1 at.%) and
beow 25 K (c = 0.5 at.%). The residua linewidth
(dH at T = 0) increased with the Gd concentration, but
this concentration dependence was not manifested
when the temperature increased to 13-14 K or above.

The dH values for all three Gd concentrations stud-
ied fit to the same curve. This behavior implies that the
EPR linewidth at T > 14-15 K is determined by purely
relaxationa effects. It isimportant to note that the temper-
ature dependence of dH in the samples studied exhibited a
clearly pronounced singularity (akink) at T= 13- 14 K.

Figure 3 shows the temperature variation of the g
value for the signals of Gd** ionsin LuB,, and YbB,.
Gadolinium ions (Gd®*) possess magnetism of the purely
spin type (ground state: 4f7, 8S,;,), and hence, their g value
must be close to 2.00. The spectra of Gd-doped LuB,,
(Korringa metal) samples actualy contain a signal with
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the temperature-independent g value close to 2.00
(9Ly = 1.990 £ 0.05).

In the spectra of YbB,,, behavior of the g value of
gadolinium ions at low temperatures (<12 K) is com-
pletely correlated with the linewidth variation. As the
Gd concentration decreases, both the g value and the
linewidth become less dependent on the temperature.
This correlation is explained by the ferromagnetic
ordering of Gdionsat ¢ = 1 at. %.

At T > 12K, the g value depends neither on the tem-
perature nor on the Gd content in the samplesand isequal
t0 1.945 + 0.015. Asis seen, the g vaue in YbB,, exhibits
arather strong shift (8gy,, =—0.045) ascompared tothat in
usual metals (g, , = —0.01in LuyggGdy01B1o)- Asiswell
known, the dengity of states N(gr) at the Fermi level issig-
nificantly higher in Kondo insulators (due to the s
hybridization) than in usua metals. Since g ~ N(g),
this shift isindicative of the intermediate valence man-
ifestationsin Y bB,.

Indeed, thereis aclose correlation between the aver-
age valence of the rare-earth ion and the shift of its g
value in Kondo insulators: for YbinYbB,,, the average
valence is 2.90 and the g value shift is dg = —0.045,
whereas for Sm in SmBg, the corresponding values are
2.65 and &g = —0.080 [19]. In addition to this fact, the
existence of intermediate valenceinY bB,, is confirmed
by a“semiconductor” character of thetemperature vari-
ation of the EPR linewidth dH(T). This curveis similar
to that observed in SmBg (a classical Kondo insulator
[19]), differing sharply from alinear dependence dH(T)
(typical of metals) observed in dodecaborides of other
rare-earth elements. Finaly, as noted above, the
absence of the EPR signal fromY b ionsalso servesan
additional sign of a Kondo insulator.

3. DISCUSSION OF RESULTS

Ytterbium dodecaboride YbB,,, in contrast to the
isostructural compound LuB;, possessing a metal con-
ductivity, is a cubic Kondo insulator with a narrow
energy gap (Kondo semiconductor). The temperature
dependence of the EPR linewidth for Gd** ionsin these
compounds are sharply different (Fig 1). In LuB,,,
OH(T) is a linear function showing a relatively small
Korringa relaxation (typical of metals). In YbB,,, the
OH(T) curve reveals exponential line broadening in the
temperature interval from 14 to 80 K, which is related
to the presence of an energy gap in the spectrum of
electron excitations of this semiconductor compound.
This gap may arise, for example, as a result of hybrid-
ization between s electrons of the conduction band and
f electrons of the valence band of Y b. Interaction of the
spin of Gd** ions with the spin of electrons and holes
leads to broadening of the EPR linewidth. Since the
level of the s excitation increases exponentialy with
the temperature, the dH(T) curve also exhibits an expo-
nential character.
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Fig. 3. Temperature dependence of the g value for Gd®* ions
inYbB1, and LuB1.

However, there are different points of view concern-
ing the origin of the energy gap in Yb. In particular, the
gppearance of this gap was explained by the s
hybridization[9], theWigner crystallization [12], and the
exciton coupling of d eectronswith f holes[13]. Thereare
significant discrepancies between theoretical resultsinthe
region of low temperatures. Indeed, the “hybridization”
gap is not temperature-dependent, whilethe“exciton” gap
gppears as a collective effect and disappears a tempera-
tures on the order of the gap width. Caculations per-
formed within the framework of the s hybridization
model with a constant gap width did not provide ade-
guate description of our experimental results.

Since no detailed theory explaining the ground state
and the unusua low-temperature properties of YbB,,
have been elaborated on the level comparable to that
accessible for SmBg, our considerations will be based
on the theory devel oped for samarium hexaboride.

Apparently, the unusua properties of SmBg, including
anomaliesin the phonon spectrum [20], the dispersion of
magnetic excitations studied by inelastic neutron scatter-
ing [21], and the optica absorption and dispersion in the
submillimeter wavelength range [22] (aswell asthetrans-
port properties[23, 24]), are most adequately described by
the exciton—polaron modd of Kikoin and Mishchenko
[10, 11]. The basic concept of themode! isthat the ground
State of the system is a superposition of the 6 state corre-
sponding to Sm?* ion and the f5p state corresponding to an
intermediate-coupling exciton, comprising a hole in the
samarium f shell (Sm?*) and an electron on the orhit repre-
senting alinear combination of the p states of boron atoms
surrounding (in the first coordination sphere) samarium.
On the whole, the symmetry of this linear combination is
the same as that of the hole state. The exciton occursin a
singlet (i.e., nonmagnetic) state. The valence fluctuations
are essentially the quantum beats between the two system
states described above. A correlation in the state of
excitons at various lattice sites is probably established
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as aresult of the exciton interaction (not arising in the
mean-field approximation). This interaction leads to a
macroscopically coherent state. The exciton formation
leads to the appearance of agap in the eectron spectrum.
Since the vaence fluctuates a a “phonon” frequency
(10'2-10% Hz), it is not surprising that these fluctuations
are coupled to the lattice oscillations. This coupling leads
to “softening” of the phonon modes and renormaliza-
tion of the electron (exciton) states, which resultsin a
mixed exciton—polaron state formation. The phonon
modes mix both with charge excitations (polarons) and
spin excitations (spin-polarons). The latter are related
to the Jahn—Teller effect observed in SmBg[14, 15] (see
aso [25]).

Unfortunately, the spin relaxation rate in a Kondo
insulator was not calculated within the framework of
the Kikoin—-Mishchenko model. For thisreason, we had
to interpret our experimental data using the results of
calculations performed by Khaliulin and Khomskii [13]
based on an exciton dielectric model with large-size
(Mott—Wannier) excitons composed of ad electron and
an f hole. The Khaliulin-Khomskii calculations fol-
lowed in the general part the electron pairwise correla-
tion model for superconductors. Naturaly, this theory
(aswell asthat for superconductors) led to the appear-
ance of a temperature-dependent energy gap in the
electron spectrum of the exciton dielectric. This tem-
perature dependence can be determined by the compar-
ison with experiment.

According to this theory, the spin relaxation rate is
described by the formula[13]:

T, = 2mTf (A) (b5 + b%)

O 0
* [+ o[ 1- F(A)] 22T,
0 0
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f(a) = B+ exp%_l, b = JN,

by + by)?
q = 4 f2) |
by + b}
where A = A(T) isthe exciton gap; Jy and J; arethe inte-
grals of the exchange interaction of Gd with d electron
and f hole; Ny and N; are the corresponding densities of
states at the Fermi level in YbB,,; and T is the momen-
tum relaxation time (characteristic correlation loss
time).
We obtained a satisfactory theoretical description of

the experimental T ;1 values (see the results of calcula
tionsin Fig. 1) for the following values of parameters:

by = -0.701x 107, b, = —1.902x 107,
o =165 T=100K™"

Although the quantities by, by, and T are independent
fitting parameters, these values must be also consistent

with the other experimental data. Asis known, the nbﬁ
value is on the order of the temperature slope of the

EPR linewidth for Gd in LuB,,: Tib; = 1.54 Oe/K and

OH/dT(exp.) = 1.25 Oe/K. A shift of the g value in
Kondo insulators is proportional to the sum of by
and b;:

12

59=by+yb, v=[330+1)] |

89 = —0.09, 8Qe,, = —0.045.

Asisseen from this comparison, the theory agrees quite
well with the experiment. Probably, a difference
between the effects of the intermediate-coupling exci-
tons and the Mott—-Wannier excitons on the Gd®* spin

relaxation rate T;l is not significantly manifested in
the comparison of theory and experiment.

Figure 4 shows the temperature dependence of the
energy gap width in'YbB,, determined from the results
of our experiments. Asis seen, the gap width A(T) at the
lowest temperatures amounts to 72 K. This value
remains amost unchanged when the temperature
increases up to 40 K, but then decreases and, probably,
completely disappears at 115 K. The full gap width of
2A = 140K iscloseto T, = 115 K, in agreement with
theoretical predictions. Our data (2A = 12 meV) can be
compared to the experimental vales obtained from the
photoelectron emission [7] and photoconductivity [4]
measurementsinY bB,,. In the photoemission spectrum
[7], the gap with a width of 10 meV appeared below
75 K (on approaching from higher temperatures). In the
photoconductivity response [4], the gap had a width of
about 25 meV and appeared at temperatures below
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70 K (the optical gap can be greater than the transport
gap, since the main contribution in the optical absorp-
tion is due to direct transitions, whereas the minimum
gap can be dueto indirect transitions in the momentum
space). Thus, our results are in satisfactory agreement
with the data obtained by independent methods.

Note a kink in the temperature dependence of the
EPR linewidth at low temperatures (Fig. 2). This fea
tureis observed for two levels of dopingY bB,, samples
with gadolinium. The kink is not distinguished in the
oH(T) curvefor asample containing 1 at.% Gd because
of the aforementioned ferromagnetic ordering. It is
interesting to note that a similar kink was observed for
a Gd-doped SmBg: the feature occurred in the same
temperature interval and was independent of the impu-
rity concentration. Apparently, an increase in the line-
width at a temperature of 13-14 K can be related to the
presence of adensity of electron states insde the correla
tion gap and, hence, is of considerable interest. The most
smple explanation consists in the presence of impurity
statesin the gap. However, this assumption disagrees with
the fact that the observed feature is independent of the
dopant (Gd) concentration. A more interesting hypothesis
isthat this density of statesis related to certain features of
the ground state of the system, for example, to the forma:
tion of abound polaron analogous to that considered by
Curnoe and Kikoin [11]. The states inside the energy
gap of SmB; were also reported by Sluchanko et al.
[24], where the appearance of these states was related
to a correlation between the exciton—polaron complexes
formed at different lattice sites. Nyhus et al. [25] observed
magnetic excitations in SmBg with the energies faling
inside the energy gap of this Kondo insulator. These exci-
tations were explained by interaction of the ground sate of
Sn®* with the mixed modes of phonons and valence fluc-
tuations (the Jahn-Teller effect). However, the available
experimental data are insufficient to make any find judg-
ments: the question concerning the nature of the observed
additional excitationstill remains open, offering asubject
for further detailed investigation.

In addition, the ground state of the Kondo insulator
was considered, besides the exciton dielectric modd,
within the framework of theWigner crystallization model,
aso leading to the correlation gap formation in the ec-
tron excitation spectrum [12]. This model was criticized
by Curnoeand Kikoin [11] in application to SmBg. One of
the arguments against the Kasuyamode wasthat the state
introduced isincompletely symmetric, which must lead
(at a sufficiently low temperature) to a ferroelectric
ordering not observed in experiment; in addition, the
ground state in the Kasuya model is not homogeneous
and implies acharge ordering of theimpurity ions clos-
est to Sm?* and Sm**, which has also not yet been con-
firmed in experiment.

The results of our EPR measurements showed that
the energy gap in the Kondo insulators YbB,, (this
work) and SmBg [13] has a collective rather than a sin-
gle-particle character (such as in the case of asmple s—f
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hybridization). Unfortunately, based onthe EPR data, it
is impossible to judge between the exciton diglectric and
Wigner crystalization models. Nevertheless, we may
ascertain that the gap width variation is satisfactorily
described within the framework of the exciton dielectric
model. Taking into account the absence of experimental
evidence for the Wigner crydallization, the exciton
dielectric model seems to be advantageous.

4. CONCLUSION

1. We have measured the temperature dependence of
the EPR linewidth and g value of aKondo insulator Y bB;,

doped with Gd®* ions.

2. Thetemperature variation of the energy gap width
in the electron spectrum of YbB,;, and the Kondo con-
stants for electrons and holes (products of exchange inte-
gras by the dendity of states in the corresponding bands)
were determined within the framework of the exciton
dielectric model.

3. The results agree with the data on the energy gap
width and the temperature of the gap vanishing obtained
by methods of photoemission spectroscopy, inelastic neu-
tron scattering, and photoconductivity in thefar IR range.

4. An additional EPR line broadening at a tempera-
ture of 13-14 K was observed, which is indicative of
the presence of asfinite density of states inside the cor-
relation gap. This effect may be caused either by the
impurity levels appearing asaresult of doping or by the
coupled polaron excitations characteristic of the ground
state of the system studied.
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Abstract—The magnetoplastic effect in dislocation silicon is discovered. It is shown that in the presence of
tensile stresses (up to 20 MPa), the mechanically activated path of surface dislocation half-loops is limited
mainly by the dynamics of defects in various slip systems relative to the applied load. The activation barriers
for the motion of dislocations controlled by various conditions in the temperature range T = 850-950 K are
E,=21%0.1¢eV andE,c=1.8+0.1€eV.Anincreasein the path of surface dislocation half-loops and achange
in the activation barriers are detected (E;r = 1.4 + 0.1 eV and E;g= 1.6 £ 0.1 eV) after subjecting silicon to a
magneticfield (B=0.7 T) for 30 min. Possible reasons behind the observed effects are discussed. © 2001 MAIK

“Nauka/Interperiodica” .

An analysis of plastic properties of condensed
media in an external magnetic field revealed [1] the
existence of a magnetosensitive response of the dislo-
cation structure of ionic crystals. In thisand subsequent
publications [2-5], the emergence of the magnetoplas-
tic effect is attributed to the detachment of dislocations
from paramagnetic impuritiesas aresult of spin-depen-
dent transitions in the system formed by a dislocation
and an impurity center, followed by the relaxation of
the defect structure. Inionic crystals [2, 3] and metas
[4, 5], thisis manifested in a change in the mobility of
individual dislocations after the exposure to amagnetic
field. As regards semiconductors, the number of publi-
cations devoted to magnetosensitive interactions in
these materialsis much smaller [6-9]. The information
obtained by us [9] indicates the effect of a weak mag-
netic field on the acoustic emission of silicon, reflecting
the didocation-type rearrangement of the internal
structure of the semiconductor, athough this has not
been confirmed yet by direct visual observations. The
present work aims at filling this gap.

In our experiments, we used n-type silicon wafers of
diameter 76 mm and resistivity p = 0.01-0.1 Q m,
which were oriented in the [111] direction. Cutting

thesewafersalong[110],[112], and [111], we obtained
samples having asize of 30 x 10 x 0.5 mm, respectively,
in these directions. Didocations were introduced accord-
ing to the method developed in [10, 11] by scratching the
polished surface of silicon by a diamond tip along the

[110] direction. For this purpose, up to six parallel
scratches were made on al the samples cut from the
nearest regions of the same wafer. The separation
between these scratches was much larger than the max-
imum path of dislocation half-loops, whose density was

determined according to the standard silicon technol-
ogy [9]. The edge regions were not analyzed.

The motion of dislocations was induced by tensile
stresses up to 20 M Paemerging during bending rel ative

to the [112] axis by the four-support method [10, 11]
for 120 minin the temperature range 850-950 K. Their
displacement was controlled by the method of repeated
chemical etching. The path lengths of dislocations seg-
ments (half-loops) was recorded using a Ml1I-4 micro-
scope with the help of an eyepiece-micrometer to
within approximately 0.5 pm and was detected from
5 x 10>-10% individual dislocations. It istypical that the
motion of dislocation in the absence of |oading was not
observed. A similar result was obtained using multiple
chemical etching of the surface of the samples under
investigation. The observed effect indicates that the
influence of surface stoppers on the dislocation dis-
placement dynamicsisinsignificant, which istypical of
crystals with a high values of Peierls barrier, including
silicon (=1.3 eV).

Didocation wafers were treated between the poles
of a permanent electromagnet at room temperature for
30 min. The direction of the magnetic field (B=0.7T)

coincided with the [110] direction. The time between
the magnetic exposure and mechanical deformation did
not exceed 3 min.

The experimental results were analyzed from the
histograms of the path length distribution of the
detected dislocation half-loops (n;) carrying informa-
tion on the presence of obstacles overcome by disloca-
tions during their motion. Since the spectrum of stop-
pers in the crystals under investigation is quite broad,
the experimental histogram carries integrated informa-
tion on overcoming various types of stoppers by alin-
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Fig. 1. Histograms of dislocation path length distribution under tensile stresses of 20 MPaat T = 600 K (&) and 625 K (b): dashed
plots were obtained before the magnetic field treatment, while solid plots were recorded after the magnetic exposure for 30 minin

fieldB=0.7T.

ear defect. Indeed, during the stimulated motion of
defects in a Peierls relief, the mobility of a dislocation
segment is determined by the time of its detachment
from a stopper, which, in turn, depends on the effective
decelerating ability of the stopper in the given dip
plane. When a sample is subjected to a mechanical
action, the dlip planes present in it can be divided into
favorable and unfavorable from the point of view of dis-
location mobility. Such a division is dictated by the
mutual spatial orientation of the allowed priority slip
planes relative to the direction of mechanica action
exerted on the sample. Inthe Si sample under investiga-
tion, whose lattice has the diamond-type structure,
thereis only one favorable dip plane (the (111) plane).
The remaining slip planes from the {111} family, as
well as {110}, are unfavorable since they are arranged
at various angles to the direction of external action.
Consequently, the stoppers encountered on the path of
dislocations moving in different slip planes have differ-
ent decelerating abilities, which directly affectsthe spa-
tial distribution of dislocations in a moving dislocation
ensemble. Hence, the clearly manifested peaks detected
on histograms must be associated with dislocations
overcoming of stoppers with various effective deceler-
ating ability.

Typical histograms of the dislocation path distribu-
tions in samples exposed to a magnetic field (solid
curve) and in control samples (dashed curve) presented
in Fig. 1 serve as a corvincing illustration of what has
been said above. Obvioudy, both peaks on the histograms
(indicated by arrows) are determined by the dynamics of
interaction between didocations and various stoppers in
the case of mechanically activated motion of the dislo-
cations at velocity V.

Indeed, at finite temperatures, an equilibrium con-
centrations of kinks is established on dislocations. If a
kink on a didocation performs random motion under

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 93

the action of thermal fluctuations, its diffusion coeffi-
cient hasthe form [12]

D = pa’w. D

Here, a is the space parameter (the separation between
the grooves of the Peierls relief), B is the correlation
factor, and w is the frequency of jumps in the corre-
sponding direction. After time t, the defect can move

over adistance
a’n
X= =7 = HmFt, (2

where n = t/T is the number of jumps during timet, Tis
the time of settled life of the kink determined by the
delay time of the didlocation (or its segment) at a stop-
per, F is the force acting on the defect, and p,, is the
mechanical mobility.

For low stresses, kinks diffuse directionally in the
field of external forces, causing the displacement of the
dislocation as a whole with vel ocity

Vo= Uk, ©)

For this reason, the motion of the most rapid disloca
tions is characterized by the smallest values of T and is
limited by their interaction with low-energy obstacles
possessing a small delay time, whose concentration on
the dislocation line must be dominating. The predomi-
nance of one type of centers over others determines the
strong difference between the amplitudes of the peaks
on experimental histograms! (Fig. 1).

An increase in temperature facilitating the move-
ment of dislocations must lead to a natural change in

1 The*low” peak M,, practically does not appear in 15% of the his-
tograms recorded from different scratches under identical condi-
tions of deforming, while the main peak M, ispresent in all histo-
grams.
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the velocity of migration for a fixed mechanical load
and, hence, to an increase in the path length L.

An analysis of the temperature dependence proved
that mechanical deformation of dislocation samples
unexposed to the magnetic field lead to changes in the
dynamics of linear defects in the indicated temperature
range (see Fig. 1). For example, the change in tempera-
ture by only 25 K leads to an increase in the path
lengths of both “slow” (by a factor exceeding 2) and
“fast” (by afactor of 1.8) dislocations.

The temperature dependences of the path lengths
before the exposure to the magnetic field are presented
in Fig. 2. It follows from these dependences that the
path length in the initial samples is of the thermally
activated type for all types of stoppers:

L = Loexp(=E,/KT). (4)

Here and below, L, isthe preexponential factor, T isthe
temperature, and E, isthe apparent activation energy of
the process of defect displacement.

The considerable difference between the path lengths
of fast and slow dislocations at afixed temperature pre-
sumes different origins of stoppers and, hence, the dif-
ference is the activation barriers overcome by them.
Indeed, these valuesfor fast and slow dislocations were
foundtobeE,-=21+01eVandE,g=18+0.1¢V,
respectively. The obtained value of activation energy
E.r isin good agreement with the available results of
similar experiments [9]. We attribute the observed dif-
ferencesin the activation energy mainly to point defects
limiting the dislocation dynamicsin adefect crystal [9].
The relation between the amplitudes of the M; and M,
peaks on the histograms determines the difference in
the concentrations of low- and high-energy stoppers
overcome by dislocations.

In another series of experiments, we investigated the
effect of magnetic perturbations on the motion of linear
defects under mechanical loading. For this purpose, we
repeated the experiments described above on samples
preliminarily exposed to a magnetic field. The field
itself did not lead to a noticeable displacement of dislo-
cation lines if no externa load was subsequently
applied. Its role was manifested only after the applica-
tion of a mechanical perturbation reflecting the “mag-
netic” past history of the sample.

A convincing illustration of thisfact isthe consider-
able difference of the histograms of didocation path
lengths (see Figs. 1a and 1b). It can be seen that asin
ionic crystals[2, 13], the dislocation structure of silicon
“remembers’ the fact of magnetic exposure, which
eases the motion of linear defects after the withdrawal
of the magnetic field. Therole of thefield in thiscaseis
reduced to achange in the energy state of adislocation
core and point defects facilitating the weakening of
their interaction during thermally activated motion.

In order to verify the effect of magnetically stimulated
trangitions on the energy barriers for the motion of dido-
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Fig. 2. Activation dependences before (dashed lines) and
after (solid lines) magnetic treatment of slow (1, 2) and fast
(3, 4) didocations.

cations, the temperature variations of the path lengths in
slicon after the magnetic exposure were recorded. The
results of investigationsindicated an increasein the diso-
cation path lengths after the magnetic treatment in the
entire temperature range, indicating the effect of the mag-
netic field on both types of stoppers. A distinguishing fea
ture of this effect is manifested in different values of acti-
vation energy recorded for dow (E,s=1.6+ 0.1 €V) and
fast (E;- =14+ 0.1 eV) didocations (curves 3and 4 in
Fig. 3). Thus, the magnetic field facilitates a certain
decrease in the energy barrier heights in the case of
mechanically activated motion of defects, which is in
accord with the results of publications on the deforma-
tion of LiF and InSb crystals in a constant magnetic
field [8, 13]. The reason behind such a change in the
activation energy of the motion of dislocationsis asso-
ciated with spin-dependent detachment of a didocation
from a paramagnetic center (phosphorus ion). The mag-
netic field “neutralizes’ a part of the paramagnetic stop-
pers and hence lowers the energy barriers for the motion
of alinear defect.

The kinetics of displacement of dislocations under
the combined action of temperature and magnetic field
is determined by thermally activated and magnetically
stimulated contributions. The thermally activated com-
ponent increases with temperature, while the magneti-
cally stimulated component remains unchanged. Conse-
quently, the effect of magnetic field on the did ocation path
length is manifested more clearly in the low-temperature
range, while the strong difference in the dynamics of dow
and fast didocations subjected to magnetic field is deter-
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mined by the higher concentration of paramagnetic stop-
pers encountered by fast defects during their motion.

Thus, we detected the magnetoplastic effect in sili-
con single crystals, which is manifested in the change
in the velocity of dislocation half-loops under mechan-
ical action following the magnetic exposure. The after-
effect of the magnetic field is associated with residual
changes in the state of point defects and dislocation
cores.

It was found that in the silicon crystals under inves-
tigation, the magnetic field may lower the activation
barriers in the motion of dislocations. The plasticiza-
tion of crystals after annealing in a magnetic field indi-
cates the formation of stoppers with different sensitivi-
ties to the magnetic field in silicon. This is manifested
in different heights of the activation barriers emerging
in the motion of dislocations for two types of stoppers
after exposure to amagnetic field.
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Abstract—The results are given of the investigation of the temperature dependence of the sound velocity v,
internal friction Q1, and thermal expansion AL/L of a single crystal of Lag gsSrg 1sMNnO5 in the temperature
range from 5to 400 K. Clearly defined singularities of the elastic properties at atemperature of charge ordering
T = 200 K are revealed. The results of X-ray diffraction studies performed at room temperature are used to
determine the orientations and estimate the sizes of twins. The correlation between magnetic and structure inho-
mogeneities is established. Based on the results of analysis of the temperature dependence of internal friction
and thermal expansion, an assumption is made of the presencein asingle crystal of La, g5Srg 15MnO; of astruc-
tural transition in the temperature range from 15 to 60 K that has not been observed previously. © 2001 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

L anthanum manganites with colossal magnetoresis-
tance (CMR) exhibit a strong correlation between the
lattice, electron, and magnetic subsystems of crystal.
This brings about the presence of phases differing by
their crystal structure, pattern of conductance, and type
of magnetic ordering. Transitions between these phases
may be induced by the variation of temperature, pres-
sure, or magnetic field.

A series of phase (x, T)-diagrams are suggested for
the Ly, _,Sr,MnO; system [1-3], which represent mag-
netic and structural transitions, aswell asthe regions of
charge and orbital ordering. The most substantial dif-
ferences between diagrams of different authors pertain
to the range of x < x. (X, = 0.17 is the concentration at
which the metal—dielectric transition occurs in the fer-
romagnetic phase). In view of this, we have investigated
the temperature dependence of the sound vel ocity, internal
friction, and therma expansion of a single crysta of
L&y 555 15MNO;. Thestudy of the elastic propertiesof this
compound is of interest per se, because no such data are
availablein the literature.

Unlike most publications on the subject of CMR
manganites, we give the results of adetailed X-ray dif-
fraction study of the above-identified single crystal.

2. SAMPLESAND EXPERIMENTAL PROCEDURE

A single crystal of LaygsSrg15MNO5 was grown by
the floating-zone method with radiation heating; it had
the form of a cylindrical rod 3.5 mm in diameter and

32 mmlong. Thisrod wasused to investigatethe elastic
properties. For other measurements, the samples were
cut out from different parts of theinitial single crystal.

The sampleswere oriented in an RKV-86A chamber
under conditions of Mo radiation and investigated in an
RKU-114M chamber and in a DRON diffractometer
under conditions of monochromatized K,Cr radiation
at room temperature. In the case of the diffractometer,
the samples were precrushed. The calculation of pow-
der diffraction patterns involved the use of FullProff
computer codes [4].

The elastic properties and thermal expansion were
investigated in the range from 5 to 400 K. The method
of composite vibrator [5] at frequencies of about
70 kHz was used to determine the sound velocity and
internal friction. This method involves measurements
of the resonance frequency and Q factor of a mechani-
cal system consisting of the sample being investigated
and a piezoelectric transducer glued ontoit. The sensor
was provided by a quartz-crystal vibrator exciting lon-
gitudinal oscillation. The description of the procedure
for calculating the sound velocity and internal friction
of asampleisfound, for example, in [6].

The thermal expansion was determined by the ten-
sometric method using a dc bridge circuit. One strain
gage with a base of 3 mm was glued onto the flat sur-
face of the sample parale to the direction of crystal
growth, and the other strain gage was glued onto a
guartz plate. High-purity aluminum was used for check
measurements in the investigated temperature range.

1063-7761/01/9301-0121$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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Fig. 1. The temperature dependence of theresistivity of sin-
glecrystal of Lag ggSrp 15Mn0Os.

All measurementswere performed in an atmosphere
of helium gas with the temperature varying at an aver-
age rate of 30 deg/h.

Also performed were resistivity measurements com-
mon with GMR manganites. The Curie temperature was
determined by the Below-Arrott method of thermody-
namic coefficients by treating the magnetization isotherms
measured using a vibrating-coil magnetometer. For the
single crystd investigated by us, T = 232 K, which is
consistent with the literature data [7].

3. MEASUREMENT RESULTS

According to the data of X-ray studies at room tem-
perature, the single crystal has a Pnma orthorhombic
crystal structure with the parameters

a=5546 A, b=7175A (b/.J/2 =5.073A)
c=5509A.

These values agree well with the data of De Leon-Gue-
varaet al. [8]. The table gives the results of calculating
diffraction patterns obtained at room temperature,
namely, the positions of atoms in an elementary cell,
the isotropic temperature factor B, and the occupation
of atomic positions. One can see that the composition

ZAINULLINA et al.

of the single crystal being studied corresponds to the
chemical formula of La, g5Srg 1sMnOs.

It has been found that the single-crystal sample is
broken up into structural domains in which the [010],

[101], and [101] orientations of the axes of the orthor-
hombic lattice coincide. These data agree with the
results of neutron diffraction studies of LaMnO;[9]. In
a cubic description, the above-identified directions cor-
respond to the [001], [010], and [100] directions. Struc-
tural domains with the [201], [161], and [323] orienta-
tions (for a cubic lattice, it is a direction of the [310]
type) are arranged along the direction of single crystal
growth. X-ray diffraction patterns for a specially pre-
pared needle-shaped samplewith athickness of 0.5 mm
or less exhibit reflexes from three orientations of twins
of almost the sameintensity; therefore, one can assume
that the twin sizeis appreciably lessthan 0.1 mm.

The curve of temperature dependence of the resis-
tivity of single crystal being investigated, p(T) (Fig. 1),
has a shapethat istypical of lanthanum manganite sam-
ples of this composition. In the region of Ty= 360 K, a
hysteresis is observed, caused by the structural transi-

tion from the R3c high-temperature rhombohedral
phase to the Pnma orthorhombic phase [10]. The Curie
temperature is found as a maximum of the derivative
dp/dT. In the ferromagnetic region, a minimum is
observed on the p(T) curve at a temperature of about
198 K; it is agreed that the temperature of minimum
resistivity in Lay gsSrg1sMnO; is the temperature T, of
charge (polaron) ordering [2, 11, 12].

Figure 2 gives the temperature dependence of the
velocity v of longitudinal ultrasonic wavesin asingle
crystal of LaygsSry1sMNO;. The transitions mentioned
above show up as minima at 377, 232, and 208 K,
respectively. As the temperature decreases, a consider-
able decrease in the vel ocity of sound isobserved inthe
interval between T, and T.. Below T, the velocity of
sound continuesto decrease, and at T= T, it reaches a
minimum; with a further decrease in temperature, the
velocity of sound increases monotonically. Theinterval
from 50 to 100 K stands out because of the small value
of the derivative dv/dT.

The positions of atoms, the temperature factor B, and the occupation of atomic positions of single crystal of Lag g5Srg 15sMnO3
at room temperature, obtained as aresult of calculation of X-ray diffraction patterns

X y z B, A2 Occupation
La —0.01708 0.25000 —0.00801 0.04047 0.8498
Sr —0.01708 0.25000 —0.00801 0.04047 0.1500
Mn 0.00000 0.00000 0.50000 0.07944 1.0000*
o 0.49666 0.25000 0.05306 0.11620 1.0078
0O(2) 0.24762 —0.02380 —0.26813 1.26803 0.9935
Note: * The value was not refined. Reliability factors: Rp = 4.52%, pr =5.32%, Rexp = 6.2%, RBragg =3.7%
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 93 No.1 2001
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In the temperature range from 180 to 240 K, which
included T and T, we observed, in addition to the
fundamental resonance on a lower frequency, a reso-
nance whose intensity was maximal in the vicinity of
T The solid line in Fig. 2 indicates the temperature
dependence of the sound velocity for the additional
mode. One can see that the v(T) curves for the funda
mental and additional modes are similar. The emer-
gence of the additional mode was previously observed
during investigation of the elastic properties of ceramic
HTSC samples[6].

Figure 3 gives the curve of temperature dependence
of internal friction, QX(T). Peaksof internal friction are
observed at 377, 232, and 205 K. Note that the peak at
the Curie point isrelatively low. Theinternal frictionin
the range from 120 to 190 K is low and depends little
on temperature. A considerable rise of internal friction
is observed with a further decrease in temperature. At
T=60 K, the value of Q! reaches a maximum, after
which it starts to decrease.

The temperature dependence of thermal expansion
AL/L for samples cut out from different parts of the rod
proved to be somewhat different; however, the position
of the singularities remained unvaried. Figure 4 gives
the AL/L(T) curvefor one of the samples. At T= 367K,
ajump isobserved associated with the structural transi-

tion from the R3c phase to the Pnma phase. The transi-
tion from the paramagnetic to ferromagnetic state
shows up as a characteristic kink on the AL/L(T) curve
at T = 234 K. Singularities are observed in the neigh-
borhood of T, whose form turned out to be different
for samples cut out from different parts of the initial
rod. With a further decrease in temperature, a smooth
decreasein AL/L isobserved upto T=60 K. Then, AL/L
increases to reach amaximum at T = 15 K, after which
it decreases rapidly.

In the neighborhood of T, atemperature hysteresis
isobserved (seetheinset in Fig. 4) that is characteristic
of first-order phase transitions. Outside of the region of
structural transition, the curves recorded upon heating
and cooling almost coincide.

4. DISCUSSION
OF THE MEASUREMENT RESULTS

By and large, the anomalies observed in the temper-
ature dependence of the velocity of sound agree well
with the temperatures of the known magnetic and struc-
tural transitions and are indicative of the strong varia-
tion of the elastic moduli of the manganite being inves-
tigated during phase transformations. The most radical
changes of elastic moduli occur during structural tran-
sitions at temperatures T, and T, which points to a
strong rearrangement of the phonon spectrum. Note
that the singularitiesat T = T, do not show up on the
curve of temperature dependence of |attice parameters
determined by X-ray techniques.
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Fig. 2. The temperature dependence of the velocity of ultra-
sonic waves for a single crystal of Lag gsSrg1sMnO3. The
solid line indicates the velocity of sound calculated for the
additional mode.
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Fig. 3. The temperature dependence of internal friction of a
single crystal of Lag g5Srg 15MNnO3.
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Fig. 4. The temperature dependence of thermal expansion.
Theinset showstemperature hysteresisin the region of tem-
perature Tg of structural transition.
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Note further the increase in the sound velocity with
the temperature in the paramagnetic region increasing
up to the neighborhood of T. Because the conductance
of LaygsSrg15MNnO; in this temperature range increases
markedly with temperature (see Fig. 1) duetotheincrease
inthe number of current carriersin del ocalized states[13],
one can assume that this increase in the sound velocity is
associated with the increase in the contribution made by
the delocalized carriers to elastic moduli.

The presence of additional resonance in the vicinity
of T¢ and T, points to the interaction between normal
modes in the rod. Such interaction may be due to the
deviation of the direction of sound propagation from
the principa crystallographic axes. Indeed, the [310]
direction of crystal growth, which coincidesin our case
with the direction of sound propagation, deviates some-
what from the [100] axis (in a cubic approximation).
However, additional resonance is absent from the para-
magnetic region. Thisis indicative of the fact that the
foregoing reason is not the main one.

Another possible reason for the interaction between
normal modesisthe presence of inhomogeneitiesin the
sample [14]. Inhomogeneities of several types may be
identified in manganites, which are realized on differ-
ent scales. First, the magnetic [15] and elastic [16]
properties, as well as the therma expansion, differ
somewhat for samples cut out from different parts of
theinitial single crystals. Second, asampleisbroken up
into small-sized structural domains. And, finally,
microdomains of the monoclinic phase may exist [17].
Because no additional resonance is present at T > T,
the presence of structure inhomogeneities per se is
insufficient for explaining the additional resonance.
Because the additional resonance is observed only in
the ferromagnetic region in the vicinity of T, the rea-
son for its formation is apparently associated with the
nonuniform distribution of magnetization. Thisnonuni-
formity, however, cannot be due to the magnetic
domain structure, because, at a fairly large distance
from T, the additional resonance disappears and, in
addition, the singularity on the Q}(T) curveat T = T¢
is defined weakly.

The additional resonance may be caused by the
interrelation between structure and magnetic inhomo-
geneities. According to Kadomtseva et al. [12], the
magnetostriction in La, _,Sr,MnO; a X < X is highin
the vicinity of T and T, In the neighborhood of mag-
netic phase transition, spontaneous magnetization in
different parts of the crystal differsappreciably because
of the scatter of the values of the Curie temperature: in
lanthanum manganites, this scatter is of the order of at
least several degrees[15]. Because the sampleishbroken
up into small-sized structural domains which are appar-
ently characterized by different values of T, the mag-
netostriction in the vicinity of the temperature of tran-
sition from the paramagnetic to ferromagnetic state must
giverisetoinhomogeneousinternd stresses. Further away
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from T, deep into the ferromagnetic region, the magneto-
striction constants and the scatter of magneti zation values
decrease, as a result of which the additiona resonance
must attenuate (asis the case observed).

The presence of clearly defined anomalies on the
AL/L(T) and QX(T) curvesin therange from 15 to 60 K
leads one to assume that a structural phase transition,
which was not previoudy observed, occursin thistemper-
ature range. Note that, according to the results of neutron
diffraction studies of single crystal of LaygsSry15sMNO;
[11], the curve of temperature dependence of the inten-
sity of line (2, 2, —0.5), aso exhibits a singularity in
the range from 10 to 50 K. Manganite of smilar compo-
stion (LayoSro:MnO;) a T, = 100 K is characterized by
trangtion from the orthorhombic to pseudocubic phase,
accompanied by adecreasein volume[18]. Becausethe
temperature of transition from the rhombohedra to
orthorhombic phase in La; _,Sr,MnO; decreases with
the increase in the bivalent ion concentration [1, 10],
one can expect that, as x increases, the temperature of
transition from the orthorhombic to pseudocubic phase
decreases as well. Therefore, one can assume that the
low-temperature transition in Lay gsSrp1sMNO; is, asin
L&y oSrp1MnO,, the transition from the orthorhombic to
pseudocubic phase. In order to validate or disprove this
reasoning, one must perform X-ray studies in the
above-identified temperature range.

5. CONCLUSIONS

The investigated single crystal of LayggSrg15MNO;
is broken up into structural domains with a characteris-
tic size of lessthan 0.1 mm.

The presence of a clearly defined minimum on the
curve of temperature dependence of longitudinal sound
velocity at T =T, pointsto asubstantial rearrangement
of the lattice upon charge ordering. Delocalized charge
carriers seem to produce an appreciable contribution to
elastic moduli.

The observed interaction between the norma modes
in the ferromagnetic region in the vicinity of T-and T,
points to relation between structure and magnetic inho-
mogeneities.

The results of analyzing temperature dependence
of internal friction and thermal expansion leads one
to assume that a structural transition occurs in
Lag g5Sr 15MNO; in the range from 15 to 60 K.
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Abstract—The macroscopic dynamics of regular lattices formed by 2D vortices of various physical originis
considered. The effective equations describing this dynamics are derived and their properties are analyzed. The
general feature of the evolution of such systems and their peculiarities distinguishing qualitatively vortex
ensembles from ordinary crystals are considered. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In spite of its long history, the dynamics of two-
dimensional pointlike vortices remainsapopular object
of investigations. It is inevitably considered in specia
chapters of all monographs and reviews devoted to vor-
tex motion in various physical media (see, for example,
[1-5]). Thisisobvioudy dueto theimportance of theasso-
ciated problems (for example, a transition from smooth
distributions of the “vorticity” in space to itslocal con-
centration at individual pointsis directly related to the
strategic question on finite-dimensional approxima-
tions of continuous media) and with the novelty and
peculiarity of the “mechanical” behavior of such sys
tems (the representation of vorticesintheform of individ-
ual particles makes it possible to visudize apparently
mathematical abstractions like the phase space). At the
sametime, in spite of the persistent attention that has been
paid to this problem for a long time, its analysis is con-
fined, asarule, to acertain type of vortices (thesetypesare
different in different fields) with a fixed “flow function”
(see below), which strongly exaggerates certain (some-
timesaccidenta) features of the system and masksgeneral
regularities. As a matter of fact, however, the vortex
dynamics in various physical “fluid” media must be
considered from unified positions since the mathemati-
cal basisfor thisdynamicsisafairly universal freezing-
in equation [6, 7].

This work aims at studying dynamic behavior of
large (infinite in our case) regular ensembles (lattices) of
identical vortices of different types, which possess differ-
ent symmetries (hexagonal, square, or triangular). We are
speaking of the evolution of “long-wave’ perturbations of
their regularity, which are smilar to acoustic phononsin
ordinary crystas, but differ from them in some properties.
The relevant equations are derived (which describe, so to
speak, the “secondary” hydrodynamics of a vortex
medium) and their properties are considered. In spite of
the observed high sendtivity of the behavior of vortex
“crystas’ to the lattice symmetry (see classical works
[8-10]), aswell asto the origin of vortices (flow func-
tion), the generality established qualitatively is aso

beyond all question. It can be noted, however, that such
asendtivity to “detalls’ is also ageneraizing and univer-
sal feature inherent precisaly in vortex “ mechanics.”

2. BASIC CONCEPTS AND FORMULATION
OF THE PROBLEM

First of al, werecall the key factors determining the
vortex dynamics. A 2D vortex as a point particle is
characterized, apart from its coordinates r, in the x, y
plane, by an individua intensity (charge) q, and the
flow function Y(r —rg), which is universal for a given
system (for vortices of the given physical origin). Its
main feature is that it creates in the surrounding space
acircular incompressible flow of the initial (primary)
continuous medium in accordance with formula

V = (o&, x [

(divv = 0), which carries away all the remaining vorti-
ces (frozen in the flow). In other words, the dynamics
of an ensembl e of vorticesisdescribed by the “ mechan-
ical” equations

r = ex qujw(rj—ri) D
j#i
with the Hamiltonian

ZQiqj'qJ(ri—rj)
i>]
and with canonical variables {q;y;, g,x}; i.e., the con-

figuration space of the given system indeed coincides
with the phase space (see above).

In view of the initial isotropy of the plane, the flow
function depends, as arule, only on the distance to the
vortex: Y(Jr —rg|). Vortices in the Vlasov equation (in
real phase spaces), which are referred to as the Bern-
stein-Green—Kruskal waves (see, for example, [6]) and
will not be considered here, form a noticeable excep-
tion. As regards the obvious violation of the “chiral”
symmetry in (1), the physical reasons behind this effect
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may be different for different vortex media. Two classes
of vortices can be singled out. Inthefirst class (ordinary
vortices), they themselves are a source of gyrotropy
since they have the form of a o-functional distribution
of the curl of the generalized momentum of liquid par-
ticles (i.e, curlP O e, - g;o(r — r;) and, hence,
charges q; are pseudoscalar quantities). In actual prac-
tice, curl P is naturally not concentrated at apoint but is
smeared over afinite region known as the core of avor-
tex; however, this circumstance virtually does not affect
Eq. (1) inthe casewhenthesize of thisregionissmaller
than the separation between neighbors. In the second
class (drift vortices), cores are ordinary force centers
(e.g., the concentration of the electric charge or gravi-
tating mass with truly scalar g;), but the medium itself
is gyrotropic (e.g., due to a strong magnetic field
applied to it or due to a rapid rotation). In this case,
dominating Lorentz or Coriolis forces make other par-
ticles (force centers experiencing the action of neigh-
boring vortices) to drift (precess) at right angles to the
applied force.

The 2D nature of the motion can be due to the
absence of longitudinal (directed along 2) perturbations
in actually three-dimensional infinitely long vortex fil-
aments as well as due to actual two-dimensionality of
the medium having the form of an infinitely thin layer
(film). In this case, flow functions describing the
response of the medium to a vortex perturbation may
depend on the dimension of the medium (2D or 3D);
i.e., function Y is generally determined not only by the
physical origin of vortices, but also by their geometry.

The behavior of ensembles consisting of just identi-
cal vortices with g; = qq is often quite interesting. The
actual reason behind such anidentity is often associated
with quantum effects (see, for example, [3, 4, 8-12]),
but eveninthe case of essentially classical system, such
aformulation of the problem is quite popular (see, for
example, [1, 2, 5, 12]) apparently in view of a certain
analogy with ordinary (Newtonian) particles and the
convenience of numerical simulation. We can assume
that the assumption made in this case leads to aconsid-
erable advance in the theoretical study of the vortex
system which exhibits, as before, a peculiar (and even
exotic) behavior.

In our formulation, such identical vortices are ini-
tidly located at the sites of an infinite regular hexago-
nal, square, or triangular lattice (we mean that vortices
are the apexes of regular n-gons covering the planeasa
tiling) at a distance a from nearest neighbors (whose
number isthree, four, or six, respectively). It can easily

be seen that this ensuresthe steady state (r; =0) of such

acrystaline state. However, even asmall displacement
of vortices from their positions sets the system in
motion. We will be interested here (see above) only in
large-scale macroscopic violations of the initial sym-
metry (with the characteristic spatial scale A > a),
which are similar to acoustic phononsin ordinary crys-
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tals, when it is as if pointlike vortices form a certain
secondary continuous medium. Obvioudly this limit
must correspond to the minimum effect of microscopic
parameters of the crystal on its dynamics; nevertheless,
this effect is significant. In particular, the decisive con-
tribution always comes from the initial discreteness of
the lattice (see below).

The typical distinguishing features of the functions
Y(r) under investigation require a more detailed analy-
sis. The main feature is the law describing the decrease
of the function asr — oo. It should be noted that the
requirement of stability of finite-size vortices (with a
nonzero core) leads to a monotonic decrease in Y(r),
i.e., to asign-definite value of ' < O (the constancy of
the direction of the produced circulation of the
medium) [6, 7, 12]. Besides, the flow function for al
known physical types of vorticesis also convex; i.e.,
" > 0 (the circulation rate also decreases monotoni-
cally). The physical reasons behind this property are
not quite clear (in thiscase, an anal ogy with the absence
of expansion shock waves in ordinary substances is
possible), but its consequences are quite significant (see
below).

Quite often, Y isacertain power function of thedis-
tance (Y = 1/r9, and the version with a = 0 isincluded
herethrough —Inr). Such arethe caseswith anideal lig-
uid as well as electron plasma and superconductors for
small r(a = 0), or superconducting films (plasma lay-
ers) for larger (a = 1, this case also includes drift vor-
tices in rapidly rotating dust gravitizing disks or in
charged plasma layers in an external magnetic field)
(seethereviewscited above). Thisversionisinteresting
due to the absence of its own characteristic scale for Y
(to be more precise, this scale is variable and is of the
order of r). On the other hand, functions  with a quite
definite intrinsic scale b also exists. For instance, func-
tion Y for vortex linesin bulk superconductors (in infi-
nite electron plasma) has the form of the Macdonald
function Ky(r/b) with the London (collisionless skin)
screening length b = c/wy,. It isinteresting to note that
Y| _ o — o again in all the cases known to us.

Thus, in accordance with what has been said above, we
are interested in secondary hydrodynamics or mechanics
of regular vortex media, which can be described in terms
of the displacement of each vortex from thelattice site cor-
responding toit; i.e., through theinitialy discrete function
&(t). If thisfunction satisfiesthe inequality [§; —&| < ain
thelinear (for the time being) approximation, the crystal
dynamicsis described by the equation (cf. (1))

allJ(|ri—|’j|)

&= exay ol G-l @
j#i

In spite of the apparent simplicity of this formula, the
summation over the infinite (although regular) lattice
considerably required in this case complicates its anal-
ysisfor arbitrary .

No.1 2001



128

This problem was apparently formulated and rigor-
ously solved for thefirst time by Tkachenko [8-10] for
vorticesin anideal liquid (to be more precise, in super-
fluid helium). However, the degeneracy of the case
under investigation (roughly speaking, the fact that
Alnr| O &(r); see below), which considerably facili-
tated the analytic advance, did not allow us to estimate
properly the specific features of the obtained resultsand
even led to some not quite correct conclusions which
still continue to appear in reviews without noticeable
changes.

As amatter of fact, in the case of an arbitrary func-
tion |, the flow produced by pointlike vortices, which
isincompressible (divv = 0), is generally not avortex-
free flow (curlv # Q!). Consequently, the powerful
methodsin the theory of analytic functions (a2D vector
field v can be presented in this case in the form of a
complex-valued holomorphic function), which are suit-
able for an ideal liquid (for which P [0 v; i.e., the con-
dition curlP = 0 satisfied outside the vortex core is auto-
matically extended to the velocity field: Alnr = 0) and
which were elegantly used by Tkachenko, cannot be
used for a universal analysis. Moreover, a unified
approach to the problem does not exist at all since the
physical properties of vortex crystals differ signifi-
cantly depending on the behavior of Y(r). Each specific
case requires its own approximation, which, unfortu-
nately, does not always lead to exact numerical values
of the sought parametersin Tkachenko's sense. For this
reason, many formulas can be derived only to within a
numerical factor. Nevertheless, their functional depen-
dences and qualitative features of the solutionsare quite
rigorous.

We single out three specific cases of this kind. The
first is typical of rapidly attenuating functions (r)
(which correspond to theversionwitha > 2, i.e., for the

convergence of [Yd’ for r —= oo, for power flow

functions or b < a for screened functions), when the
dominating contribution to the dynamics of each vortex
comes only from its nearest neighbors. Conversely, the
second case is associated with small values of a (or
with the case b > A), when the motion of vortices is
determined by alarge aggregate of neighborslocated at
macroscopic distances ~A. In this case, nonlocal inter-
action effects play a decisive role. Finally, the version
corresponding to a < b < A can be classified aslocally
macroscopic. In any case, an analysis leads to effective
continual equations for & (which is now regarded as a
continuous function of r and t, describing acoustic
deformation of the secondary vortex continuous medium
(A > a)).

3. NEAREST NEIGHBOR APPROXIMATION

Thus, we assume that the contribution to the veloc-
ity field perturbation causing a displacement of agiven
vortex comes only from the neighbors located exactly
at adistance a from it (three neighbors for a hexagonal
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lattice, four for aquadratic lattice, and six for atriangu-
lar lattice). The accuracy of this model can easily be
estimated for each specific case. For arapid (e.g., expo-
nential) law of attenuation for Y(r), the accuracy may
be quite high. In accordance with (2), this contribution,
which appears due to nonuniformity of lattice deforma-
tion (§; # & for i #j), amounts to

v = e, xqo[es%"’ LGt D)D“'D'} NG

where &€ is the difference in the displacements of a
neighbor and agiven vortex and r isthe vector directed
from the given lattice site to a neighboring site. It can
easily be seen that the entire lattice dynamics is deter-
mined in this case by only two positive (see above)
physical parameters A =—'/r|,-,and B=4{"|, ..

In order to go over to a continuous distribution of &,
it is sufficient to present the discrete difference in the
form of thefirst two terms of the Taylor series(it should
berecalled that A > a):

st = 28 4,08, K08,

& y20_2_§
Vot gl + (4)

and sum Eq. (3) over three, four, or six possible direc-
tions of r. In the subsequent formulas, we assume
everywhere that one of the nearest sites in all types of
lattices (true, thisis essentia only for a quadratic lat-
tice) liesat apoint with coordinates (a, 0). The answers
differ significantly, demonstrating the considerablerole
of the geometrical parameters of the problem.

In the case of a hexagonal lattice, the decisive con-
tribution comes from the linear termsin (4), while qua-
dratic terms (in parameter a/A — 0) can be neglected,
and the effective equation in the continual limit has the
form

% _ 3
at - 4q0a(A+B)

P8, 98, , 098 98,
[ Ooy ~ ox0™ O ax  ayd y]'

()

leading to the following (purely acoustic in spite of the
nonstandard form of relation (5)!) dispersion relation
for long-wave phonons:

9
W = 500a (A+B)’K. (6)

However, in the cases with the central symmetry of
the square and triangular lattices, the linear termsin the
Taylor series are mutually cancelled out, thus necessi-
tating the inclusion of quadratic corrections. This con-
siderably affectsthe functional dependenceinthe equa-
tions being derived. For example, in asguare lattice, the
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evolution of acoustic “phonons’ is described by the
equation

37 Te,

3o
ot 0 ay°  ox0

D 2 2
+ |:Aa EZX - Ba 7
0 ay X D

(7)

and their frequency is now a quadratic homogeneous
function of the wave vector components:

W’ = goa’[(A+ B)’K:k; — ABK. )
It can easily be seen that thisversion of the* secondary”

medium is always unstable, e.g., relative to perturba
tionswithk,=0or k,=0.

It isinteresting to notethat in spite of the high lattice
symmetry, phonons behave anisotropically. Their nor-
mal coordinates (in which the matrix on the right-hand
side of the dynamic equation is diagonal) are &, and &,
(i.e., 0, /ot O & and 9 /ot (I &,). A similar behavior,
which differs strongly from the behavior of standard
phonons, is still encountered for certain types of wavesin
ordinary crystals with a considerable spin—orbit interac-
tion. Thisisnot very surprising since the symmetry prop-
erties of rotation in the quantum and classical regions
aresimilar.

In view of the large number of neighbors, atriangu-
lar |attice requires more cumbersome calculations, but
the obtained result is nevertheless compact (and even
more symmetric):

08 _
ot 8qoa (9)

x [((A—3B)e, x OdE + (3A— B)O7E].

Here, the following notation has been introduced for
two scalar characteristics of the 2D vector field &:

d& = divE and F& = e, - curl& (this notation will be
used below). The “phonon” spectrum turns out to be
isotropic again:

9 o4

W = ;%2 (A—3B)(3A~ B)Kk". (10)

It is stable both for power functions ¢ with a > 2 and
for exponentially decreasing functions with b < a (for
which B > A), but differs considerably from the ordi-
nary acoustic spectrum w [0 k. For normal coordinates,

it is convenient to choose just the quantities d& and &
characterizing the bulk compression and torsion (shear)
of the lattice.
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Thus, even in the nearest neighbors approximation,
vortex crystals demonstrate very peculiar polarization
and dispersion properties, distinguishing them from
classical Newtonian elastic analogues. The qualitative
features of the behavior in this case are virtually inde-
pendent of the details of the (r) dependence (if it falls
into the required class), but the lattice geometry is
extremely important.

4. NONLOCAL APPROXIMATION

In the case when macroscopic aggregates of vortices
simultaneously affect the motion, the shot effectswhich
are associated with the discreteness of the lattice (and,
hence, its symmetry) and manifested explicitly in the pre-
vious section should not make asignificant contribution to
the phonon dynamics of vortex crystals. This situation is
indeed encountered, but only in the zeroth gpproximation
(in parameter a/A), which is not always SUffICI entduetoa
specific degeneracy described below.! The continual
limit inthis caseit attained asaresult of transition from
the summation of relation (3) in accordance with for-
mula (2) to its integration. In the corvolution-type inte-
grasemerginginthiscase, it isconvenient to remove both
derivatives of ), integrating once by parts and taking the
second derivative outside the integration symbol:

0§ _ __e x Dfdg(r yw(r=rpdr.  (12)

ot

Here, Sisthe area of the unit cell enclosing each site (a

triangle with side /3 a; i.e., S= 3./3a%4, for ahexag-
onal lattice; a square with side a (S= &?) for a square

|attice; and a hexagon with side 2a/ /3 (S= ./3a2) for
atriangular lattice). The difference 6§ in the sum leads
to an integral in the sense of principal value.

Indeed, expression (11) does not contain any spe-
cific feature of the lattice (except the trivial coefficient
9), while the specific features of Y are very important.
This expression is quite universal and isotropic, but
phonons possess dispersion w = 0 in accordance with
the expression derived above. Nevertheless, in contrast
to the dynamics of ordinary crystal lattices, this law
does not indicate the absence of the system evolution
(0&/at £ Q1), but only points to its power, and not expo-
nential, nature (§ O t).

The reason behind this degeneracy is quite clear:
Eq. (11) hastheintegral d§ = const (i.e., itsright-hand
side is the divergence-free vector function of r only,
which is defined by the initial strain distribution) since
the macroscopic flow, which is incompressible in the
given approximation (of zeroth order in a/A) does not
change the vortex density frozen in it. We can consider

L1t is interesting to note that in [8-10], as well as in subsequent
reviews, there are no indications of this fact, apparently, because
the relation w = 0 does not appear as a solution in analogy with
ordinary crystals.
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another approach to this problem also. From the macro-
scopic point of view, the secondary nonlocal vortex
medium under investigation is a certain smooth distri-
bution of vorticity (curlP for ordinary vortices), which
is not concentrated at the cores of individual vortices,
but isasif “smeared” over the plane; consequently, the
calculation of the macroscopic velocity field requires
the convolution of the flow function with the continu-
ous density p(r, t)e, of thisvorticity. The initial homo-
geneous background p, = qy/Sis stationary and gives
Vmacro = 0 (the actual velocity field between vortices nat-
uraly differs from zero, but the contributions from the
neighbors are compensated at the sites of their loca-
tion), and the situation is determined by its inhomoge-
neities, which are given in the linear approximation, in
accordance with the continuity equation, by

8p = —div(po&) = —podE

(cf. (11)); i.e., only regionswith nonzero bulk compres-
sion are sources of macroscopic flows. Since the
motion produced by these inhomogeneities is incom-
pressible (rotational), it leads only to a slow uniform
(O1) increase in shear strains which do not affect pri-
mary SOUrces.

(12)

Thus, the coupling between the compression and
torsion of vortex latticesis broken macroscopically in the
continual limit, and the corresponding evolution of long-
wave perturbations has the form of inhomogeneous flows
rather than running waves (which meansthat the term sec-
ondary hydrodynamics used here is quite adequate).

5. EFFECT OF LOW COMPRESSIBILITY

Naturally, the inclusion of theinitial discreteness of
the crystal structure in the next approximation changes
the situation. Indeed, athough the incompressibility of
the field of the true microscopic velocity is a necessary
feature of any system of pointlike vortices, this does not
prevent the mutual convergence of pointlike neighbors
and, hence, the possible increase or decrease in the
macroscopic density p of the vorticity, i.e., effective
compressibility of the macroscopic flow. This effect

restorestherelation between d§ and f& so that thelow
(in parameter (a/A\)?) compressibility leads to the emer-
gence of additional termsin Eq. (11), which ensure the
wave type of the phonon evolution. Obvioudy, these
terms have a high sensitivity to the microscopic lattice
symmetry due to a decisive role of discreteness, thus
modifying the universal nature of Eq. (11) consider-
ably.

The method of calculating the corresponding cor-
rections is mathematically rather ssimple: it is sufficient
to compare the integral

1/ S)J'J'f (%, y)dxdy
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with the series

zf(rij)
i

interpolating it (here, the vector function f is defined by
relation (3), and i and j label now not individual vorti-
ces, but the two-dimensional array of sites; it is conve-
nient to assume that the vortex whose motion is inves-
tigated belongs to site (0, 0)). In the first case, we are
dealing with the algebraic volume (normalized to S) of
theinfinite (in x, y) figure bounded in z by the planes
z=0and z=f,(x y) or z=f,(x, y), while in the second
case, we consider asimilar volume occupied by an infi-
nite set of right triangular, quadrangular, and hexagonal
prisms whose bases (unit cells in the sense indicated
above) enclose lattice sites and whose heights are equal
to the values of components of f at the center of the
base.

Thedifference of these quantitiesis obvioudy given by

ézﬂ[f(r”) —f(r)] dxdy,
J

where the integrals are taken over each unit cell. In the
case of a quite smooth (as compared to a) distribution
of f [it should berecalled that it isacombination of the
actually smooth (of the scale of A) function § and (],
we can again use the expansion into the Taylor series
and estimate the terms of series (13) as

(13)

Ay (x—x;;)dxdy = —CAf|.
o .,

(where C = a%/2* for an elementary triangle, a%/(3 x 29)
for a square, and 5a%/(3? x 2°) for a hexagon; the other
first terms of the Taylor expansion make zero contribu-
tion due to the symmetry of unit cells). Consequently,
we have

(14)

f=1ffdxdy—CY Af.
2= 2

On the right-hand side of thisrelation, we can again go
over, in the continual limit, from the sum to the double
integral (the error introduced in this case is of the next
order of smallness). However, the correction for local-
ized perturbations (|f| — O for |[r| — o), aswell as
higher-order corrections in the parameter a/A or a/b,
identically becomes zero due to the presence of thetotal
derivative in the integrand.

This means that in the case of a smooth distribution
of f (which requiresthe smoothness of theflow function
whose physical examples are unknown to us; see Sec-
tion 2), the macroscopic compressibility of thelatticeis
small exponentially not according to a power law. This
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can be seen by using another method of expansion also.
Indeed, the initial discrete vorticity distribution

Po = QOZ5(r—rij)
i

can be presented in the form of atwo-dimensional Fou-
rier series

Po = Q_Soz cos(kr + ;)
i

with a discrete set of k;; (which naturally depends on
the type of the lattice) with lengths proportional to
nfa(n=0, 1, 2, ...). Inthis representation, the contin-
ual limit is attained by discarding the higher-order
terms of the series (which corresponds to the expansion
in parameter a/nA and not in (a/A)", as before; the con-
vergence of this expansion isworse). It was mentioned
above that when expression (12) is used, the term with
n = 0 gives Eq. (11), while the next terms lead to an
exponentially small compressibility upon the convolu-
tion with the smooth function (.

However, al physical examples known to us are
characterized by an irregular behavior of ) at point r = 0.
On the one hand, this circumstance ensures a power-
type smallness of the compressibility of a discrete lat-
tice in macroscopic processes, and on the other hand, it
rules out the replacement of the sum on the right-hand
side of (14) by an integral. Moreover, in the unit cells
closest to zero (which just play the decisive role), the
contribution of the discarded higher-order termsin the
Taylor series for f is not small, and a rigorous mathe-
matical approach requires direct summation. Unfortu-
nately, we failed to find an analytic procedure ensuring
a compact result in this case (for all possible values of
Y which differ significantly).

For thisreason, we haveto confine our analysisto an
estimate (~1) of the correction leading to an adequate
functional expression for the phonon equation, but not
permitting the exact calculation of the coefficients in
this expression. In other words, we obtain an order-of-
magnitude estimate with true sign (which is important
for the stability problem).

The following procedure appears to be ssimplest. In
the zeroth cell with asingular point of  at the center, a
Taylor expansion cannot be obtained, and the integral

W n'in}
| 3&F + (88 Y |axay (15)
must be calculated genuinely (the height of the corre-
sponding prism isidentically equal to zero). Naturally,
this integral exists for power-type functions g only for
o < 2 (the hexagonal lattice must be treated with special
care in this case), but the violation of this condition
automatically transforms the physical system to the
case considered in Section 3.
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Further, only close cellsmake acontribution to the dis-
crete correction, which is comparable with the given con-
tribution [this also follows from the fact that the applica
tion of the Laplace operator to aslowly decreasing power
function (in our terminology) transformsiit into a rapidly
decreasing function], for which formulas of type (14) can
still be used for obtaining estimates. This allows usin
our calculations, first, to expand & into a Taylor series,
confining ourselves only to quadratic terms or to linear
termsin the case of ahexagonal |attice whose unit cells
do not possess the central symmetry (naturally, thiscir-
cumstance is also used while evaluating integral (15)),
and, second, to sum again the contributions only from
the nearest neighbors in correction (14).2 This gives
rise to corrections to the twisting term already present
in Eg. (11), which should be omitted in comparison
with thisterm. Naturally, the retained termsresponsible
for the finite compressibility of the lattice possess the
same symmetry properties as the right-hand sides of
Egs. (5), (7), and (9) for the above reasons. In other
words, the secondary hydrodynamics of vortex lattices
possesses a high sensitivity to their local structure even
in the nonlocal limit (see also [9]).

The formulas existing for hexagonal and square lat-
tices are not presented here in view of their cumbersome
gppearance (since the additional terms in these formulas

differ in structure from theisotropic term [ a& ). The qua-
dratic lattice remains, as before, unstable and has the
phonon spectrum (cf. Eq. (8))

W' = Yy (CKK; —CK), (16)
where C; and C, are positive constants ~q§ EES
(which, by theway, iswell known, at least for ) =—Inr;
i.e., Py, = 21vk? see[8, 9]). Such adynamicsisnot inter-
esting for our analysis.

On the contrary, the expression obtained for the
most symmetric triangular lattice is quite isotropic and
does not explicitly contain the information on the
intrinsic geometry of the crystal:

08 _ %,
x DfA&(r)w(lr —r)dr + Kag g,
where K ~ |W(a)]; i.e., its phonon spectrum is
2
W = q—SOKkak“, (18)

2 We also used other methods of estimation like the replacement of
ZAf by the integral over a plane with deleted zero cell (whose
contribution was again determined by (15)), which, in accordance
with the Gauss divergence theorem, was transformed into a line
integral over the boundaries of this cell. The results display no
qualitative difference.
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which gives w [J k for a power flow function witha =0
(W, = 217k?) and w O k¥2 for a = 1 (Y, = 217K). Natu-
raly, in the former case, the result coincides with the
spectrum of “Tkachenko waves’ determined earlier. It
was mentioned above that in contrast to the present
work, the coefficient in [9, 10] was calculated exactly:
it turns out that in the terms used by us, here K = 1/8
(however, the result is different for any other value of
a¢®?

However, the phonon equations derived by us and pre-
sented in [9, 10] differ considerably. Proceeding from the
obvious coincidence of the spectrum (18) for an idedl lig-

uid with the standard acougtic spectrum o? = kzcé,

Tkachenko [9, 10] proposed that the long-wave dynam-
icsof atriangular vortex latticein superfluid helium can
be described by the ordinary wave equation

2

I8 . 2k = 0 (19)
ot

(this proposition is still encountered in reviews). It can
easily be seen that in the very formulation of the vortex
problem itself (se Eq. (1)), the effective equation must
be of thefirst and not second order in 0/0t. Besides, itis
obvious (see Eq. (11)) that for agiven classof functions,
this equation must be nonlocal. It is interesting, how-

ever, that for the normal coordinates a& , F€ and for
@ = —Inr, it becomes local sinceAgaT; Wd2r' = —2mdE!
In other words, Eq. (19) can berightfully used, but only

for d§ and & and not for § itself. The linearity of
effective equations does not imply that they can be trans-
formed arbitrarily if their spectrum remains unchanged.
From the mathematical point of view, the specific initia
and boundary conditions of the problem, which are differ-
ent for Egs. (17) and (19), are equally important. Other-
wise, the detailed analysis of the polarization of normal
lattice vibrations carried out in [9] would not be required
since Eq. (19), in contrast to Eq. (17), contains no relation
between &, and &,

Summing up, we may conclude that the qualitative
differencein the behavior of vortex latticesis preserved
in the nonlocal limit also (even with new features). In
thiscase, their acoustic dynamics considerably depends
on theform of the flow function aswell ason theintrin-
sic geometry of the crystal.

3 In the calcul ations made by Tkachenko, apart from the method in
the theory of functions of complex variables, which is inapplica-
ble to arbitrary |, there was one more (in our opinion, insignifi-
cant) difference from our approach. He considered waves against
the background of the lattice rotation as a single entity. This is
associated with the specific features of an extremely slow
decrease in the function —In r: the existence of infinitely remote
boundaries of the lattice leadsto its “ solid-state” rotation with the
angular velocity Q = Ty/S. Other functions , as well as —Inr
truncated by the Macdonald function, do not possess this prop-
erty. In any case, a stationary regular state (i.e., 0§ = 0) is the
exact solution of the problem for infinitely large lattices.
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6. LOCAL MACROSCOPIC APPROXIMATION:
INCLUSION OF NONLINEARITY

The phonon equation for a triangular vortex lattice
with aslowly decreasing power function { truncated at
distances b (say, W = K(r/b)) belonging to the interval
a << b < A\ appears as simplest and most universal. It
can be written straightaway on the basis of Eq. (17):

%—% = —Re, x 0d& + DOFE.

Here, R and D are real coefficients of the same sign,
which determine the dynamics of torsion and compres-

sion, respectively, where R = (q/S J’ quzr and D/IR ~

(a/b)® < 1. It can easily be verified that in the given case
the property of virtual independence of the behavior of
the details of Y(r) is restored again.

In order to determine the qualitative difference
between secondary hydrodynamics (mechanics of vor-
tex lattices) and simple propagation of acoustic waves
in ordinary crystals, we analyze in greater detail the
properties of this equation, which is the most symmet-
ric and compact among the effective eguations pre-
sented above (it should be noted, however, that some of
these properties coincide with those of Eq. (17)). In
view of the presence in this equation of small terms
mentioned above, theevolution of theinitia perturbations
of regularity for afairly long timeis of asow power type
withalinear increaseinthetorsion strain of thelatticewith
time. However, thisincrease subsequently terminates, and

a self-consigent oscillatory motion with w = +/RD k?
setsin, in which the characteristic values of shear strain
f& exceed the corresponding valuesfor “bulk compres-

sion” d& by afactor of ,/R/D.

In the continual approach developed herefor [§| < a
(to be more precise, for |8 < a; i.e., for asmall differ-
ence between the displacements of vortices separated in
the given case by distancesmuch larger than b; itisonly
these vortices that make a contribution to Eq. (20)), we
can easily take into account nonlinear effectsalso. Itis
sufficient to supplement expansion (2) with the next
(quadratic in displacement) term and repeat (using the
expansion of & into a Taylor series) the procedure of
replacement of the sum by theintegral, which formerly led
to Eq. (11). As aresult, the right-hand side of Eq. (20)
acquires anew term:

Sex0f(@)"+

(20)

Q_Esf’_i_v] 21)

0X,0Xg
(inthisexpression, the summation over recurring Greek
indices assuming the values 1 and 2 is presumed).

In view of the smallness of coefficient D, it may so
happen in actual practice that the role of compressibil-
ity in the lattice dynamics is much less significant than

the role of nonlinearity (when the condition b > ./a\
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is satisfied). In this connection, an interesting question
arises: isthegrowthin & produced by thefirst (linear)
term in Eq. (20) terminated in this case? In the general
case, the answer to this question is negative; moreover,
term (21) may even accelerate this process, bringing it
independently to the explosive mode.

Indeed, for purely shear strains§ = e, x [ (i.e,

with d& = 0), expressions (11) and (21) after single
integration with respect tor (eliminating e, x [J) lead to
the equation

00 _ R[&P&P_DOZ@DZ}
ot axzayz D?XO),D ’

describing the following effect in which the perturba-
tion amplitude attains infinitely large value during a
finite time (for t — t) near the saddle point (located
at (0, 0)) of field &:

(22)

_ XY
Q= ———.

Naturally, the assumption (J§| < a) made whilederiving
the above equation ceasesto hold near t = t,,, and, hence,
we are speaking of the peculiarities of an effective equa-
tion rather than aphysical system. However, first, the mar-
gin of the applicahility of the formulas can be quite large
and, second, purely mathematical properties of secondary
hydrodynamics are also of interest to us.

The equation derived above al so makesit possibleto
calculate a quantity important for the evolution of per-
turbations such as the nonlinear dispersion of the
phonons under investigation. A one-dimensional travel-
ling wave §(x — ut) is described by the system of equa-
tions

ddg _ ,d’fg
“ax C ° dx®’
uddﬂx = Rdz[aI d_ga )2],
X

which, after the elimination of two derivatives, gives
2
~ ~ n u ~ _
[dg - (d8)7 + =508 = 0.

Carrying out the standard procedure of expansion into
a power series in the small amplitude to determine the
corrections to a monochromatic wave (see, for exam-
ple, [13]),

d& = dcos(kx—wt), w=ku=k/RD (d<1),
we can easily find that the first nonvanishing correction
to frequency is dw/w = —d?/3.

Further, discarding the assumptions of negligibly
small nonlinearity, we can construct the solution in the

(23)
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form of acnoidal wave. Moreover, Eq. (23) can beinte-
grated completely in quadratures:

u” (4/3)(dE)° - (dE)° + const
RD (2d& -1)° '

The subsequent definition of f§ and & itself can be
obtained by the simpleintegration of the obtained equa-
tions.

It is interesting to note that an equation with the
structure similar to Eq. (23) (but with acubic nonlinear-
ity) was derived in [14] for a (potential!) electric field
of high-frequency (near ;) ion-sound waves in a
plasma (these waves possess acompletely different dis-
persion: in fact, the temporal (or frequency) and disper-
sion terms exchange places, and it is only the rather
peculiar nonlinearity (21) that restores status quo, nat-
uraly, in the mathematical sense)

The simple examples considered above show that in
spite of its nonstandard form, the effective equation
proposed here is quite suitable for analytic investiga:
tions and sufficiently informative.

(dg)” =

7. INTERACTION OF THE LATTICE
WITH NONUNIFORM FLOWS

We continue the study of peculiarities of secondary
hydrodynamics by analyzing the interaction between
an ensemble of point vortices and distributed macro-
scopic vortices. The latter produce nonuniform zero-
divergence flows of aviscous medium, which obvioudy
entrain their pointlike anaogues and, hence, perturb the
initial regularity of lattices. Theseflows must be additively
introduced into the right-hand side of Eq. (20) (the time
derivative of the displacement of each vortex is equal to
the velocity of the flow in theregion of itslocation irre-
spective of the source of v). We disregard the opposite
effect of the lattice dynamics on a distributed vortex,
assuming that its vorticity density p and, hence, the

flow created by it (v = e, x Ofppd’r' Oe, x [ ;itis

interesting to note that any smooth distribution of p in
our case is quite stationary; cf. the evolution of the
magnetic field inthe electron plasma[7]) are defined by
functions of r. Ultimately, we are interested in the typ-
ical features of the dynamics of vortex crystals, and
their phonon response to nonuniform flows appears in
concordance with the problem formulated here. In a
multicomponent plasma, such a mode with present and
“external” incompressible flows can be realized in pure
form using the beams of charged particles piercing the
plasma (see [7]).
We choose the simple geometry of such aflow:

vV = v(y)e, = vycos(ky)e,.
The linear (which means that the genera case can be
analyzed using the expansion into a Fourier integral)
equation (20) with the modification indicated above,
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rewritten in normal coordinates, istransformed into the
system

OJ = DAFE, (24)

CE = — RAGE + kvosin(ky). (25)

For zeroinitia conditions(i.e., for zero lattice deforma-
tion at t = 0), this system has the following simple solu-
tion:

dg = :—Fg[cos(wt) —1] sin(ky),

e _ Voo o .
Pg = kA/ﬁ)sm(uot)sm(ky),

whence

§ = %ésin(wt)eﬁJ:g[l—cos(mt)]eyécos(ky),

where, naturally, w = /RD k2. A similar type of solu-
tion with strains proportional to v (y) is aso observed
for v(y) O exp(—ky). For arbitrary initial conditions, the
answers are dightly more complicated.

Thus, nonuniform steady-state flows of the initial
continuous medium indeed excite periodic in time
vibrations of the point-vortex latticesfrozeninit. Thus,
although the concept of elasticity of vortex crystals,
which wasintroduced by Tkachenko [10] (naturally, for
the nonlocal case), isadmissible, it differs significantly
from conventional analogues.

8. DYNAMICS OF VORTEX CHAINS

Another example confirming the generality of the
behavior of vortex ensembles observed along with spe-
cific features determined by their physical origin (flow
function) is the evolution of linear one-dimensional
chains, i.e, infinitely long rows of identical vortices
(discrete anal ogues of tangential discontinuitiesin con-
ventional hydrodynamics) arranged, for instance, along
the straight line y = 0 at a distance a from one another.
The incompressibility of the macroscopic flow in this
case does not lead to a degeneracy evenin the nonlocal
limit (the two-dimensional vector &(x, t) associated
with the abscissa axis is not necessarily a zero-diver-
gence vector); for this reason, the cases with different
functions Y(r) are more alike than in the case of two-
dimensional ensembles.

The version with the dominating effect of the two
nearest neighbors is now described by the system of
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eguations (the condition A > a is assumed to be satis-
fied as before)

Gl 0%t
3t qoa’A—, (26)
Gl 0%E,
_5t—y - QOaZBc)x2 @)

(it isassumed that 02/dy?|, - o = (1/X)0W/0x|, - o), while
the nonlocal case (in which the boundary between dif-

ferent modes passes through the value a = 1) is
described by
0, LOY(X)| 4
at - qu‘IE (X X)X ax y:OdX’ (28)
2 ]
D= e -0 ae (29)
x|,

(in contrast to the previous formulas, the substitution
X —= risnot used in Y|, -, since x may assume nega-
tive values aso), where the integrals are considered as
the principal valuesin Cauchy’s sense.

A transition from Egs. (28), (29) to the local macro-
scopic versionistrivial:

¢,
at = qu’C3Ey1 (30)
(&’ = —qyaC Ciﬁx (31)
ot T
Here,
_ _cloy _
C; = N y:de, C, = J’L|J|y:0dx

are two positive constants connected through the rela-
tion C, ~ Csb? (the possible divergence at zero is
removed by the standard mathematical interpretations
of the “principal value”).

In al cases, chains are unstable formations. For
Y =—Inr, theincrement following from Egs. (28), (29)
naturally coincides with the classical hydrodynamic
expression (see, for example, [1]; in fact the methods of
the theory of functions of complex variables provide
answersfor an arbitrary value of A).

9. CONCLUSIONS

Let us summarize the main results obtained in this
work.

1. Linear equations describing the evol ution of long-
wave perturbations in various two-dimensional lattices
are derived for various classes of vortices (defined by
peculiarities of flow functions). These equations are
used to analyze the dispersion and symmetry properties
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of these perturbations, which are similar to acoustic
wavesin ordinary crystals.

2. The reasons behind the decisive role of micro-
scopic discreteness of secondary vortex media in the
formation of acoustic spectra even in the macroscopic
limit are determined.

3. For the stablest and most symmetric triangular vor-
tex lattice with flow functions from the local macroscopic
class, a nonlinear phonon equation (which possesses a
peculiar hierarchy of nonlinearity and dispersion) is
derived and its ssimplest properties are investigated.

4. The response of vortex lattices to the attempt of
their deformation by nonuniform flows of the primary
medium, which is characterized by the phonon genera-
tion even in the case of a steady-state external action in
analogy with the sounding of aviolin string caused by
a uniform motion of the bow.

In order to avoid misunderstanding, it should be
emphasized once again that the approximate estimate
obtained by us for one of the coefficients in Egs. (17)
and (20) does not affect in any way their appearance or
qualitative or quantitative properties of these equations.
For any specific function y, this coefficient can be cal-
culated quite rapidly with the help of a computer.

Thus, we have demonstrated that the devel oped ide-
ology, which declares a unified approach to vortex
problems, indeed makes it possible to determine the
general regularities of the ensemble of pointlike vorti-
ces, simultaneoudly indicating the high sensitivity of
the pattern of the processesto physical and geometrical
features of specific systems. The effective equations
derived by us for the macroscopic evolution of regular
lattices may be successfully used for studying the spe-
cific features of various phenomena associated with
external effects exerted on these peculiar crystals. The
corresponding dynamicsisfound to differ considerably
(and often qualitatively) from the phonon dynamics of
conventional solids.
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Abstract—Systems with an arbitrary dependence of exchange integral on the distance between atoms which
are randomly scattered in an amorphous substance are investigated by averaging over random fields of interac-
tion in the framework of the Ising model. This method is also used for describing long-term magnetization
relaxation in a system of single-domain particles scattered in a nonmagnetic matrix. Random field distribution
functions are obtained for the dipole—dipole and the Ruderman—Kittel K asuya—Yoshida (RKKY) interactions.
Long-term relaxation in macrospin glassesisinvestigated. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

It is generally accepted [1-5] that the most typical
features of the spin-glass state aretheirreversibility and
long-term relaxation of the magnetization, which are
associated with nonergodicity of the spin glass phase.
Various versions of constructing the physics of such
systems are based on the assumption concerning the
hierarchical structure of the valley space leading to the
hierarchical structure of relaxation times. Theoretical
descriptions of the properties of spin glasses are often
based on the assumption that exchange integrals are
random quantities obeying the normal distribution law.
Most results were obtained for |attice models, and their
extension to amorphous systems appears at first glance
unjustified.

In this paper, we consider the possibility of applying
the method of random interaction fields to amorphous
media with an arbitrary law of interaction of particles;
systems of particles with the Ruderman—Kittel—
Kasuya-Yoshida (RKKY') interaction and the dipole-
dipole interaction are also considered. The irreversibil-
ity and long-term relaxation in systems of interacting
single-domain particles (macrospin glass) are consid-
ered separately without using the ideas of the hierarchi-
cal structure of states. Thiswork isacontinuation of the
analysis of the possibility of applying the random field
method in the theory of ferromagnetism of inhomoge-
neous systems started in [6, 7].

2. DISTRIBUTION FUNCTION
FOR A RANDOM INTERACTION FIELD

The general scheme of computation of the random
field distribution function was considered by several

authors [8-10]. However, we repeat here the main
points of its calculation, taking into account the intrin-
sic volume of particles congtituting a system. We assume
that the component H; of the field created at the origin by
asinglearbitrary particle (located at the point with coordi-
nater; and having spin S) aong thezaxis (symmetry axis
in the Ising model) is defined by the law

Hi = ¢(ri, S). 1

If the distribution of particles over r; and S is known,
the distribution function of theinteraction field at a par-
ticle located at the origin is a d-function of the type

5[Hi-iz¢(ri,si)}.

Inturn, the probability of this coordinate distribution of
particles in an amorphous body taking into account the
intrinsic volume of the particlesis defined by the product

N
dv,.
I

dv, dv, dvy 1
~UN

V V-V, V=NV,

Here,

\%H m:v*ﬂ (1+i(Vy/V))

(Vo/ V)V TN+ 1+V/V,)
(V/V)T (1 +V/Vy)

1
v
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For VIV, > 1, we can use the Stirling formula, which
readily gives the following expression for N —» oco:

1

1 ~0 1
VNUl—kVO/V K]

0" _
g c o

V
+

c—NV°<1
= ,

where V, is the intrinsic volume of a particle, which
must be taken into account for systemswith a consider-
able concentration of scattered ferromagnetic particles.

The particle distribution |_||N: ,T(S)dS over spin

directions in the Ising model is also regarded as inde-
pendent; in this case,

(8) = r0(S ~Sa () + BBy~

a+pB = 1.

Taking into account the above formulas, we can write
the distribution function for field H in the form

1.0 <. 07
W(H) = VNHESEH—i;d)HuT(S«)dS.dVi- e

The characteristic function

A(p) = J’W(H)exp(ipH)dH

can be written in the form
N
A(p) = L eXp%p ¢H 1(S)dS v,
VNI 0 .Z 'D[ll o

Taking into account normalization conditions, we can
write A(p) inthe form

N

AP) = - 11 exp(ipo)T (S)dsav |
U U

where

=g = Ry = o

and nisthe number of particles per unit volume. In the
[imit N — o0, we have

A(p) — exp{-F(p)} .
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Thus, the random interaction field distribution function
has the form

00

W(H) = fexp{—F(p)} exp(—ipH)dp,

©)
F(p) = n*[dV[[1-exp(ip$)IT(S)dS

= al_+pl,,
where

I = n*J’[l— exp(Fipg)]dv.

Here, the sign reversal of the field upon the spin flip
from direction a (spin up) to direction 3 (spin down) is
taken into account. Integration in Eq. (3) should be car-
ried out between r = r, (particle size) tor = R (sample
size). If thefunction ¢(r) decreasesrapidly, we can pro-
ceed to the limit R — oo, while in the case of its Slow
decrease, the shape of the sample (demagnetizing fac-
tor) must taken into consideration.

The structure of F(p) is such that the main contribu-
tionto theintegral in Eq. (3) comesfrom values of F(p)
close to zero. Indeed,

B? 2
F(p) = i(a—B)Hop—Zp + .., (4)
where

Ho = s [o(nav, 5 = Tre*(nav,

and so on. Conseguently, rapid oscillations of the inte-
grand for p > 1 lead to a considerable decrease of the
contribution to the integral.

Confining the analysis to the first three terms in the
expansion of the exponential, we obtain from formula (3)

2

Ap) = exp-i@-B)Hp -0 ©

whence

1 oplLH —Ho(g—s)]zg

W(H) = TPl 5 J-

(6)

3. SELF-CONSISTENT EQUATION
FOR MAGNETIZATION

In the thermodynamic equilibrium state, the mean
value of magnetization M = 0inthelsing model isobvi-
ously obtained by the Gibbs-distribution averaging and
the averaging over configurations:

M = Itanhg:—';EW(H)dH, @)
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where mis the magnetic moment of a particle. Thus, in
zero external field, the equation for magnetization in
the equilibrium state has the form

_ cn(H + HoM)y o HT

M = ﬁTBIt h T eXP Bzde. (8)
Simple estimates can be obtained by replacing the Gauss-
ian distribution function by the approximate function f(H):

(b, H>B, H<-B,
f(H) =
(H) 5?1'—3, —B<H<B.

For small values of M, we obtain

M~—J't hﬂwde
b (9)
Ho mB
Mg tanhis

This means that Eq. (8) has a nonzero solution (ferro-
glass) when

Ho mB Ho
B tanhﬁ >1, 5 >1.
For Hy/B < 1, the initial susceptibility in field h is

given by

(10)

oM 1tanhmB

X = on "B 9M%T
For high temperatures, for mB/KT < 1, we have

(11)

=M
X~k
which corresponds to paramagnetic susceptibility. For
mB/KT > 1, susceptibility is given by

-1
X=B

and is independent of temperature. In this case, spins
are “frozen” in the random exchange interaction fields.
The maximum rate of susceptibility variation is observed
at T* =mB/k; T* can betreated asthe temperature of tran-
sition to the spin glass phase.

4. RKKY INTERACTION AND SPIN GLASS

We apply this approach to a system of atoms cou-
pled through the RKKY interaction [11]

kFrcos(kFr) sm(kFr)
(ker)*

where b is a certain coefficient having the dimensions
of field, ke is the momentum on the Fermi surface, and

o(r) = (12)
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r is the separation between interacting atoms. Integra-
tioniscarried out from 1 to k-R. In this case,

|_ = m

+ ki
kFRTIZT[ K K in(k
J,J,J,Ea exp |pb = cos( Fr)—4$|n( Fr)%
1 (ker)

x (ker)2d(Ker) Sin9d9 do.

After integration, we obtain the following relations for
H, and B
K2 keR ’

Ho = —

4n*b
15kF =8

+3c0s(2k:R) — k2R*cos(2k:R)

B’ = { —5KZR’ + 6k:Rsin(2k:R) — 3

+k2R’sin(2ke:R) + 2ktR"cos(2k:R)
+ 4RSI (2k-R) — 3k R’}

where Si is the sine integral. Proceeding to the limit
keR — oo, we obtain

* 12 H
Ho=1072, B?=250 2 Dorg 0
K KX B K

The last relation together with relations (10) makesit pos-
sibleto construct the theoretical magnetic phase diagram.

5. DIPOLE-DIPOLE INTERACTION
IN A SYSTEM OF SCATTERED MAGNETIC
GRAINS: MACROSPIN GLASS

L et usconsider asystem of small ferromagnetic par-
ticles scattered in a nonmagnetic matrix. The magnetic
moment distribution function for such particles has the
form

t(m)dm = f(m)w(y, y)dydy,

where anglesy and ) specify the orientation of m rela-
tive to a chosen direction. In this case,

mcos
¢ = —MCosy Y
+ 3m(sinycosysind + cosycos$) cosd

3
r

In the Ising model, we have

W(Y, §) = = ad(y) +BE(y— T} .

and angled determinesthe orientation of vector r inthe
spherical system of coordinates.

(13)
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I n the case when the shape of amagnetic sampleisnot
spherical, but, say, dlipsoidal, we must take into account
the dependence of Ron 9:

b 1,2 247"
R(9) = —————— =pHl + Zeb’sin’9
J1+ eb?sin®9 +3 . 1
~b%[—— b2sin sD

where b isthe major semiaxis and e is the eccentricity.

The parameters Hy and B? of the distribution func-
tion W(H) for a system of magnetic particles (ferro- or
ferrimagnetic grains) with the dipole—dipoleinteraction
can be calculated approximately using formulas (4):

Ho= ET[n* me’, B’= ﬂTn* m’, (25)
15 r3
where m = [mf(m)dmand r is the size of a magnetic

particle. In such a system, we have
H
EO = 0.5€¢%,/n*r3,

which means that Hy/B = 0.2./c < 1 even for e = 1
(it should be recalled that ¢ isthe volume concentration
of the ferromagnet).

Thus, ferromagnetic ordering due to dipole—dipole
interaction in an amorphous substance is ruled out.
A similar result was obtained by Meilikhov [12] for
particles located at the sites of acubic lattice.

At the same time, atransition to the spin-glass state
(macrospin glass) at temperature T* ~ mB/kispossible
if the relaxation time, which is determined primarily by
the critical field and the volume of aferromagnetic par-
ticle, is quite small. Since the system of single-domain
particles makes it possible to interpret visually the
long-term relaxation in macrospin glass, we consider
the transition to the equilibrium state in greater detail.

Ananalysisof the magnetic properties of such asys-
tem requires primarily the knowledge of their distribu-
tion over the magnetic moments m and over the critical
fields H, of magnetization reversal. Thefield of magne-
tization reversal of a single-domain particle is deter-
mined by its shape (for strongly magnetic materials),
crystallographic anisotropy, and anisotropy of stresses
which inevitably emerge during the interaction of the
particle with the nonmagnetic matrix. For a uniaxial
particle, the magnetization reversal condition can be
presented in the form

IH +h|(sin®°8 + cos®0)

where 0 is the angle between field H + h and the easy
axis, H is the random field of interaction, and h is the
applied field.
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For fields h small as compared to H,, these relations
can be written in the following approximate form:

h>H.-H, for cos(h,H) >0, (16)
h>H.+H, for cos(h,H)<O0. a7

Accordingly, anindividual hysteresisloop for each par-
ticle from the subsets (16) and (17) is characterized by
thefildsa=H.—H,b=H.+H,anda=H;+H, b=
H. — H, respectively. For a known distribution of parti-
cles over the magnitude of the interaction field, g(H),
which can be obtained if we know W(H), we can easily
calculate the number density of particles on the Prei-
sach—Neel (@, b) phase diagram [13]. The normaliza-
tion condition for particles from subset (16) has the
form

[

[[(HIy(H)dH.aH = %

Going over to new variablesa=H,—Handb=H_+H,
we obtain

00

II fEaHE Eb n(a b)dadb-
02H.-b

where the Jacobian A(a, b) = 1/2. Thus, the quantity

p(a,b) = 3r Iy -2

is the number density of points on the Preisach—Neel
diagram, corresponding to particles with the critical
fieldsa, b. Axisa=bisasymmetry axis, and hence, we
can confine the subsegquent analysisto theregiona> b
only.

6. LONG-TERM RELAXATION
AND IRREVERSIBILITY

The estimation of the relaxation time for single-
domain uniaxial particleswith an elementary hysteresis
cycleand critical fieldsa and b in an external magnetic
field h (h < a, b) isbased on the fact that the fluctuation
probability is determined by the minimum work which
must be done to rotate the magnetic moment through
the angle required for a subsequent spontaneous irre-
versible U-process. If h < a, b, the relaxation time is
defined by the approximate formula

. fogexp[————m(a_h)} +exp| -

m(a+h)1J

KT 5

where f, ~ 10°-10"? is the frequency factor.

Equation (18) definestherelaxation timeisolineson
the Preisach—Neel (a, b) phase diagram. It can easily be
seen that particleswith larger and larger values of a and
b are gradually involved in the process of establishment
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Fig. 1. Preisach-Nedl (a, b) diagram.

of equilibrium. An order-of-magnitude increase in the
relaxation time corresponds to the change in the value
of a (b) by
_ In10 _ _m
Ra = %=
Naturally, the spread in the particle distribution over
critical fields and volumes leads to long-term relax-
ation, and equilibrium in the system may not be estab-
lished in principle over a reasonable time interval.
Indeed, if

ma
2kT

and T ~ 1, adoubling of mor a increases the relaxation
timetot = 10 sfor f,= 10 s,

The possibility of independent establishment of
equilibrium in a subsystem of particles with different
values of aand b is of fundamental importance sincein
this case the magnetic susceptibility, the residual mag-
netization, and other characteristics of the system can
be calculated quite easily in the case when the system
asawholeisfar from equilibrium. In order to simplify
calculations, we assume that the function p(a, b) = pis
constant in the hatched region in Fig. 1, B coincidesin
order of magnitude with the maximum fields of interac-
tion, and D are the maximum critical fields of particles
in the system. The normalization condition in this case
has the form

In(fot) O

2pBD = N/2.

Astheinitial conditions, we consider the system in the
so-called zero-field state which can be attained by apply-

ingan aternating field h whose amplitude decreasesfrom

hmax > D to zero. In this case, dl the particles which
belong to the region a > b on the phase diagram arein the
state with a conditionally negative magnetization, while
those from the region a < b have a positive magneti zation.
The total magnetic moment is equa to zero. After the
remova of the field, thermodynamic equilibrium will
gradually set in, which corresponds to the emergence
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onthe (a, b) diagram of positively magnetized particles
whosecritical fields correspond to region a> b and neg-
atively magnetized particlesfrom region a< b, thetotal
zero magnetic moment of the system being preserved.
For particles with the given magnetic moment m, such
aprocess will occupy, by the timet, the region

2kT
a b= ?ln(fot)

(19)
For particleswith critical fieldsa and b, a> b, the extent
of “mixing” of the signs“—" and “+” is determined by
the transition probabilities:

n, e
e

Obviously, in view of symmetry relativeto thelinea =
b, such amixing in the region b > a leads to the com-
pensation of the emerging magnetic moment.

The application of the external magnetic field h dis-
placesthe symmetry linetotheregiona—h=b+h;i.e,
the compensation is violated. This result is quantita-
tively equivalent to the sign reversal in the magnetic
moment of the particlesrepresented in Fig. 1 by apoint
from the region with double hatching,

h<a<(%|n(fot), a—2h<bs<a.

In our opinion, this circumstance is extremely impor-
tant since only a small fraction of particles (h/B) take
part in the process of magnetization in a low field h,
namely, the particles whose fields of interaction are
close to zero; consequently, the change in the orienta-
tion of the magnetic moment of such particles weakly
affects the state of the entire system as awhole.

Thus, for low fields
1
h < aln(fot),

an additional magnetic moment

4mph
a

M, = 4mph[é|n(fot)—h} =4meh Lt by (20)

emerges due to thermal fluctuations. For a given value
of a, saturation will be attained for

1 -
~In(fot) = D.

By the instant t* of the first measurement, which is
determined by the potentialities of the experimental
setup, we have

1
M* = M +4mph[—|n(f t*)—h},
0 a 0 (21)
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Therelatively high value of M is possible only if there
exist particles with a large magnetic moment (large
value of a,) such that

Lin(tot) <h. 22)
Qo

Since we are mainly interested in long-term relaxation,
we will henceforth put My < M, = M.

Let us now consider the temperature dependence of
magnetic susceptibility oM/oh =¥,

— 4mp KT N x
X = =PIn(fot) = == In(fot*) N
_ Nin(fot*)kT 23)
- 4BD
providedthat
(T) ——In(f t*) <D(T), B(T)<h. (24

Asthe temperature increases further, the following two
scenarios of susceptibility variation may take place.

1. Atacertaintemperature T = Tg, the value of B(Tg)
becomes equal to h; however, in this case,

1
a(Te)
Inthis case, the susceptibility increasesfor T > Tg since
_ NIn(fot*)kT
~ 4hD(T)

where T is the Curie point. At the temperature Ty, for
which

—=—In(fot*) < D(Ty).

D(T) — 0 for T— Tg,

%Dln(fot*) = D(Ty),

the susceptibility attains its maximum value since all
the particles are “involved” in the process:

N
Xmax = m(TD)F

A further decrease in X upon adecrease in T > T is
associated with adecreaseinmfor T — Te.

2. Tp <Tg. Inthiscase, a T = T, we have
_ m(Tp)N,
-~ 2B(Tp)’

the value of x remains constant upto T = Tz (B(Tg) = h)
and decreases further together with m(T). The behavior
of susceptibility as a function of temperature is pre-
sented schematically in Fig. 2. These formulas remain
valid for cooling also if it occursin zero field. If, how-
ever, the field has not been removed, the particles
whose magnetic moments are blocked during cooling
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X

Fig. 2. Theoretical curve describing the temperature depen-
dence of susceptibility: zero field cooling (1) and cooling in
thefield (2).

preserve their magnetic moment even after the “depar-
ture” of the corresponding points on the (a, b) diagram
from theregion a—2h < b < a, thusincreasing the sus-
ceptibility. Since the fraction of particles participating
in the magnetization at agiven temperature T i S approx-
imately equal to theratio h/B(T), averaging of thisratio
upon cooling from T to T, in thefield h gives

T

<B(hT)> ) Tl—Tono B(T) h

dar > .
B(To)

In the simplest case, when

TfﬁdT

"oar TC
- I B(Ty)

_ 2h Tc-
~ B(To)Ti— %l
we havefor T; closeto T

h\ __2h
B/ B(To)

Thus, asregards irreversibility and long-term relax-
ation, a system of magnetostatically interacting single-
domain particles illustrates the properties inherent in
spin glasses. Apparently, cluster spin glasses in which
the interaction between the magnetic moments of inclu-

sions occurs, say, through indirect RKKY exchange
must also possess similar properties [14]. It should be
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noted that a wide relaxation time spectrum in this case
is ensured by the distribution of particles over critical
fields and volumes, and the establishment of equilib-
rium in al the subsystems with equal relaxation times
is assumed to be independent.

However, even for identical particles with critical
fields H, and relaxation times t, such that

0 MHa

1_
r, - 21T

0
the “inclusion” of interaction leads to the emergence of
the relaxation time spectrum in the interval from
To/ cosh (MmB/2KT) to 1,5, which readily follows from
relation (18).

7. CONCLUSIONS

1. The digtribution function for random interaction
fields in an amorphous substance in the Isng model has
the form of a Gauss function whose mathematical expec-
tation Hy and dispersion D are determined by the law gov-
erning the interaction between particles in accordance
with expression (4). Theratio Hy/D determinesthetype of
ordering (paramagnetism, spin glass, ferroglass).

2. The dipole—dipole interaction in an amorphous
substance does not lead to a ferroglass- or ferromag-
netic-type ordering.

3. Long-term relaxation and irreversibility of mag-
netization in weak fieldsin a system of interacting sin-
gle-domain particles exhibit the spin-glass behavior
even under the assumption concerning the indepen-
dence of thetransition of each subsystem with adefinite
relaxation time to the equilibrium state.
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Abstract—The magnetic resonance spectrum of spin clusters formed in spin-Peierls magnetsin the vicinity of
impurity ionsisinvestigated. The observed temperature dependences of the effective g-factor and the linewidth
of the electron paramagnetic resonance (EPR) in crystals of Cu, _,Ni,GeO; are described in the model of the
exchange narrowing of the two-component spectrum with one component ascribed to spin clusters and exhib-
iting an anomalous value of the g-factor and the other related to triplet excitations. An estimation of the size of
the suppressed dimerization region around the impurity ion is obtained (this region includes about 30 copper
ions). The dependence of the effective g-factor and the EPR linewidth on theimpurity concentration at |ow tem-
peratures indicates the interaction of clusters. © 2001 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

Crystals of quasi-one-dimensional magnet CuGeO,
exhibit magnetic and crystallographic properties char-
acteristic of spin-Peierls magnets [1-3]. The magnetic
structure of this compound is based on one-dimen-
sional chains of Cu?* ions (S= 1/2) extended aong the
c axis of the orthorhombic crystal structure [4]. The
value of the exchange integral along these chains is
10.4 meV [3].

Below the temperature of the spin-Peierlstransition
Te = 14.5 K, the dimerization of chains occurs: i.e.,
magnetic ions approach each other. The dimerizationis
accompanied by the alternation of the exchange inte-
gral, which in turn takes one of the two possible values
J1 2=J(1+ 9). Anenergy gap E ~ dJ opens between the
ground singlet state and triplet excitations. Due to the
presence of the gap in the energy spectrum, the mag-
netic susceptibility decreases and the pure crystal with-
out defects becomes almost nonmagnetic at low tem-
peratures. The lattice transformation due to the dimer-
izationiscorrelated in space, and the dimersarelocated
on aregular sublattice.

Interchain exchange interaction in CuGeQ; is rather
large (the value of the exchange integral along the two
directions orthogonal to the chain is only by afactor of
10 or 100 less than the exchange integral along the
chains [2, 3]). For this reason, in the absence of the
spin-Peierls transition, antiferromagnetic ordering had
to be observed. However, the spin-Peierls state is more
advantageous and is preserved down to very low tem-
peratures.

Copper germanate CuGeQO; is the only spin-Peierls
compound in which a controlled substitution of mag-
netic ions is possible. The introduction of impurities
resultsin alocal suppression of the dimerization in the
vicinity of the defect. Asaresult, the temperature of the
spin-Peierls transition decreases and a the long-range
antiferromagnetic order is established at a sufficiently
low temperatures [5-9].

The occurrence of the antiferromagnetic order and
the suppression of the dimerization order is explained
in [10, 11]. A cluster of antiferromagnetically corre-
lated spins is formed around the impurity ion. In the
chain of spins S= 1/2 with alternating exchange inter-
action, the antiferromagnetic correl ations attenuate (see
[12]), thus forming the wings of the cluster. As we
recede from the defect, the mean value of the spin pro-
jection on the z axis decreases exponentially. Overlap-
ping of the clusters wings results in the expansion of
the region of antiferromagnetic correlations and the
establishment of the long-range ferromagnetic order.

Substitution of the part of the Cuionsby Ni hastwo
significant differences compared to other dopants.

First, inthe antiferromagnetically ordered phase, the
easy axis of anisotropy is directed along the a axis,
whereas for other substituting impurities the easy axis
of anisotropy is aligned aong c [5, 8]. Second, an
anomalous temperature dependence of the g-factor is
observed in the dimerized phase. As the temperature
drops below the transition temperature T, the value of
the effective g-factor begins to decrease and achieves
the value of 1.4 at low temperatures for H || c [8]. The
anomal ous val ue of the g-factor can be explained by the
existence of the antisymmetric Dzyal oshinski—Moriya
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Fig. 1. The temperature evolution of the EPR line at x =
0.2%, H || c, and f = 36 GHz. The vertical segmentsin fig-
ures a and b correspond to the same amplitude of the signal.

exchange interaction in the vicinity of the defect. In a
multispin system consisting of more than two spins, the
existence of the Dzyaloshinski—-Moriya interaction
along with the symmetric exchange interaction results
inastrong anisotropy of the effective g-factor and inthe
decrease of its value [13]. Calculations based on the
six-spin model show that the existence of the antisym-
metric exchange interaction with the value of the
exchange integral of about 30% of the value of the
intrachain exchange interaction is sufficient for the
description of the deviation observed [8].

The present paper continues the study started in [8].
Its purpose is to investigate high-quality samples of
CuGeO; doped with nickel including those with alow
content of the impurity (x < 1%). The examination of
samples with a small concentration of the impurity
(when the average distance between the impurity ions
exceeds the characteristic cluster size) makes it possi-
ble to observe the magnetic resonance of isolated clus-
ters. A noticeable difference of the g-factor of clusters
from the g-factor of excitations of the spin-Peierls
matrix makes it possible to differentiate between their
EPR signals. In turn, this fact opens the possibility to
investigate the interaction of clusters with the environ-
ment and between themselves. The analysis of the
experimental data allowed us to determine the charac-
teristic size of the cluster that is formed around the
impurity ion, namely, the size of the region where the
dimerization is destroyed and that of the region in
which the antisymmetric exchange interaction exists.

2. EXPERIMENTAL TECHNIQUE AND SAMPLES

For the experiment, high-quality samples of
Cu, _,Ni,GeO; with an impurity concentration x =
0.2% and x = 0.8% were grown. In order to analyze the
dependence of the g-factor on concentration, samples
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Fig. 2. The temperature evolution of the EPR line at x =
0.8%, H || c, and f = 36 GHz.

with higher concentrations of the impurity (x = 1.9%
and 3.0%) were also used.

To control the quality of the samples, amonocrystal
of the pure compound grown following the same tech-
nology was used. At the temperature of 4 K, the mag-
netic susceptibility of this sample determined by the
integral intensity of the EPR signal was about 4% of the
susceptibility at the transition temperature. This corre-
sponds to the residual concentration of the magnetic
defects per a copper ion equal to X, ~ 0.05%.

Theinvestigations were performed at afrequency of
36 GHz and the temperatures in the range 1.8-20 K
with the help of an EPR spectrometer with a transmis-
sion type cavity. The magnetic resonance line was reg-
istered as the dependence of the intensity of the micro-
wave power transmitted through the resonator on the
magnetic field applied. In this case, the variation of the
signal is proportional to the imaginary part of the mag-
netic susceptibility.

3. EXPERIMENTAL RESULTS

As the temperature drops below the spin-Peierls
transition temperature (whichisequal to 13.5K for x =
0.2% and 12.0 K for x = 0.8%), the field of the reso-
nance absorption starts to increase. The temperature of
the spin-Peierlstransition was determined by the begin-
ning of the decrease of theintegral intensity of the EPR
signal. The increase of the resonance absorption field
corresponds to the decrease of the g-factor. The varia-
tion of the EPR line with temperature is shown in
Figs. 1 and 2.

The temperature dependences of the g-factor are
presented in Figs. 3 and 4. At low temperatures (T < 4 K),
the values of the g-factor remain constant and are equal
tog,=1.75, g, = 1.87, and g. = 1.43 (for x = 0.2%).
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Fig. 3. Dependence of the effective g-factor on temperature
for the sample with the impurity content x = 0.2%: @—H ||
a, 0—H || b, and v—H || c. Solid curves correspond to the

theoretical calculation.
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Fig. 4. Dependence of the effective g-factor on temperature
for the sample with the impurity content x = 0.8%: @—H ||
a, 0—H || b, and v—H || c. Solid curves correspond to the
theoretical calculation.
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Fig. 5. Dependence of the haf-width of the EPR line on
temperature for x = 0.2% (@) and x = 0.8% (b) at H || c and
f = 36 GHz. Solid curves correspond to the theoretical cal-
culation.

For the sample with the impurity concentration x =
0.2%, the magnetic resonance line splits into two com-
ponents at thetemperature T' = 7 K (Fig. 1). Asthetem-
perature decreases, one of those components continues
to moveto higher fields and itsintensity increases. The
second component remainsin thefield closeto the EPR
field above T, but itsintensity decreases and it almost
vanishes as the temperature decreases further. The
width of the magnetic resonance line has its maximum
at the temperature close to the splitting temperature T
(Fig. 5). A similar splitting was observed at other orien-
tations of the sample with respect to the field for x =
0.2%; however, we were able to follow it down to very
low temperatures only for H || ¢ (thisis due to the fact
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Fig. 6. Dependence of the effective g-factor on impurity
concentration at T=15K: o—H ||a, o—H || b, and v—H
|| c. Solid curves correspond to the theoretical calculation,
and black symbols correspond to the data of the study [8].

that for this orientation there is the maximal difference
of the g-factors of two spectral components, which
makesit possibleto distinguish the faint absorption line
on the wing of the strong one).

For the sample with the impurity concentration x =
0.8%, the magnetic resonance line consists of thesingle
component at all temperatures; the maximum of thelin-
ewidth is observed in the vicinity of T' (Fig. 5).

In the paramagnetic phase, the value of the g-factor
is aso different from the value characteristic for the
pure compound. The dependence of the g-factor value
on the impurity concentration at T > Tg is shown in
Fig. 6. As the impurity concentration increases, the
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Fig. 7. Comparison of the EPR lines for x = 0.2% and x =
0.8%at T=18K,H ||c, and f = 36 GHz.

value of the g-factor decreasesfor al orientations of the
magnetic field.

For samples with the impurity concentration x =
1.9% and 3.0%, the long-range antiferromagnetic order
is established, which manifests itself in the transition
from the linear gapless EPR spectrum to a spectrum
that is typical to antiferromagnets with orthorhombic
symmetry. The Néel's temperatures are Ty = 2.5 K for
x=1.9% and Ty = 3. 5K for x = 3.0%.

AH, kOe
3 T T, b

1.4 : : :

0 1 2 3
x, %
Fig. 8. Dependence of the haf-width of the EPR line on
impurity concentration for H ||c: T= Ty = 25K for x =
1.9%, T=Ty=35K forx=3.0%,and T= 18K for x =
0.2% and x = 0.9%.
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Comparison of the EPR lines at the minimal temper-
ature (Fig. 7) shows that the field of resonance absorp-
tion and the width of theline of magnetic resonance are
different for samples with different concentrations of
impurity. Dependences of the linewidth and the g-factor
value on impurity concentration are presented in Fig. 8.
(For samples that exhibit the antiferromagnetic order-
ing, the data were taken at T = Ty.) For small x, the
width of the EPR line linearly depends on the concen-
tration. Dependences of the EPR linewidth and of the
g-factor value on the orientation of the magnetic field at
T = 1.8 K for the sample with x = 0.8% are shown in
Fig. 9.

4. DISCUSSION

Before getting down to the quantitative analysis of
the experimental data, we will present a quditative
description.

According to the concept developed in [10, 11], a
cluster of exchange-correlated spins is formed around
the impurity ion in the spin-Peierls matrix. Due to the
existence of the antisymmetric exchange interaction in
this cluster, the EPR of clusters is characterized by an
unusually small value of the g-factor g4 [8]. Clusters
are surrounded by a dimerized spin-Peierls matrix.
Triplet excitations of the dimerized matrix are charac-
terized by the value of the g-factor of copper ions g,
close to 2. Due to the exchange interaction of clusters
with excitations, an EPR line with an intermediate
value of the g-factor is observed (the so-called
exchange narrowing). At temperatures close to the spin-
Peierls transition temperature, when the concentration
of spin-Peierlsexcitationsislarge, an EPR linewith the

0.5

| | | 05
180° 270° 360°

¢

|
0 90°

Fig. 9. Angular dependence of the width of the magnetic
resonance line (0) and the effective g-factor (O0) for thefield
applied in the plane be. Solid curves correspond to formula
(25),x=0.8%, T=1.8K, and f = 36 GHz; =0 corresponds
toH ||c.
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g-factor closeto the values characteristic to copper ions
is observed. As the temperature decreases, the concen-
tration of triplet excitations decreases due to the exist-
ence of an energy gap and the EPR lime shifts to the
value characteristic of isolated clusters. As the temper-
ature decreases further, the effectiveness of the interac-
tion of clusters with excitations decreases and the EPR
line splitsinto two components. A similar phenomenon
was observed for the magnetic resonance of tempera-
ture-activated spinsin radicals[14]. At last, at low tem-
peratures, when tripl et excitations are practically frozen
out, the EPR line consists of two components—astrong
one, characterized by the g-factor of clusters, and a
faint one, which represents the residua triplet excita-
tions and magnetic defects. This description corre-
sponds to the observed evolution of the magnetic reso-
nance line for the samples with the impurity concentra-
tion of 0.2%.

Similarly, one can explain the dependence of the g-
factor on impurity concentration at temperatures
greater than the transition temperature. In this case, one
should consider the closest neighborhood of the impu-
rity ion in which antisymmetric interaction exists as a
cluster characterized by the anomalous value of the g-
factor gy. The EPR of copper ion chains is character-
ized by the g-factor g.,. Due to the exchange interac-
tion of the cluster with the surrounding copper matrix,
the EPR line with an intermediate value of the g-factor
is observed. The greater the number of clusters, the
more the magnetic resonance lineis shifted from gq, to
gq- Thus, the value of the effective g-factor must
decrease as the impurity concentration increases.

In this reasoning, we assumed that the g-factor isthe
samefor all clusters. Thisisactualy trueif theinterac-
tion between clusters is negligible. In this case, the
parameters of the EPR line would depend only on the
interaction of clusterswith triplet excitations. However,
the fact that the resonance absorption fields for the
samples with x = 0.2% and x = 0.8% are different,
shows that even for these impurity concentrations the
interaction between clusters must be taken into
account. Clugters interact due to the fact that their wings
overlap[11]; thismakesit possibleto obtain acoarse eval-
uation of the cluster size (assuming that clusters do not
interact at X = 0.2% and that the interaction leads to the
widening and shift of theline at x = 0.8%):

L 01/0.0080 100. 1)

This result is overestimated since the distance
between the majority of clustersislessthan the average
one. Since antiferromagnetic correlations at cluster
wings are destroyed by thermal fluctuations, the influ-
ence of the cluster interaction on the EPR line should
decrease with the increase of temperature.

We will assume that an isolated cluster is character-
ized by the values of the g-factor observed for the sam-

ple with x = 0.2% at the minimal temperature (gf:?) =
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1.75, g = 1.87, and ¢\ = 1.43). The values of the

g-factor for excitations correspond to the g-factor of
copper ions in undistorted crystal environment, i.e., in
pure CuGeO; (g&) = 2.15, g&) =2.26, and g = 2.06,
and they are practicaly independent of temperature
[15]).

In the subsequent analysiswe use thefollowing sim-
plified model. We assume that in the close neighbor-
hood of theimpurity ion of size L, thedimerizationis
suppressed and triplet excitations of the spin-Peierls
matrix do not reach this region. Antiferromagnetic cor-
relations decay exponentially with distance from the
defect. This attenuation is characterized by the mag-
netic correlation length of dimerized chains & ~ v/A,
where v is the speed of spin excitations and A is the
energy gap, (see[12]). In addition, there exists the anti-
symmetric Dzyaloshinski-Moriya exchange interac-
tion in a certain neighborhood of the impurity ion due
to alocal reduction of symmetry. The size of thisregion
iSLpw < Lgim- The values of Lpy and Ly, are measured
in interatomic distances along the chains.

The analysis of the dependence of magnetic suscep-
tibility on temperature for a similar model was con-
ducted in [16, 17]. The advantage of the EPR method is
in the fact that a noticeable difference in g-factors of
clusters and excitations makes it possible to separate
their contributions.

4.1. Interaction of Clusters with Excitations
in the Molecular Field Approximation

First, we consider the case T < Tg when spin chains
aredimerized. Inthevicinity of theimpurity ion, aclus-
ter of exchange-coupled spinswith thetotal spin S=1/2
isformed. At alarge distance from the defect, the spin-
Peierls matrix remains unperturbed, and its magnetic
properties are described by triplet excitations, which
are separated by a gap from the ground state.

Propagation of antiferromagnetic correlations from
the cluster into the dimerized matrix results in the
appearance of an interaction between the cluster and
excitations. Since this interaction appears due to the
exchange interaction between spins, the average energy
of theinteraction can be written in the form

Eint =

> Jar( (50T S, (1)D). )

i=1..,n

Here Jy is the effective exchange integral, [$,Cis the
average total spin value of the cluster, and [$¢,is the
average spin value on the copper ion located outside the
cluster (this value is related to triplet excitations). The
summation is performed over n effective neighbors of
the cluster (since the major role is played by the inter-
action along spin chains, we assume that n = 2).

Following the molecular field theory, we obtain the
following system of self-consistent equations for aver-
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age magnetization of a cluster and a copper ion in the
dimerized matrix:

J
Lugd = X ((:(I))E_' - > EluCul:%v
9ci9cuMe 3
J
e =X SEH + n—=— liglE,
gclgCuuB

Here xﬁ?)cU are susceptibilities per one cluster and per

one copper ion in the absence of the interaction.

From Egs. (3) one can derive the following equa-
tions for the magnetizations with regard for the interac-
tion:

()

o = X 1+nnXcy
S 1o O @

1+nxy

XCu = X(O) nX l

Cu 2,,(0),,(0)"
1‘”’1 Xcl XCu

where N = Jgi/(gouGa Ha )-

The magnetic susceptibility of asingleisolated clus-
ter obeysthe Curie law

2 2
0) _ ch“BS(S'l' 1)
X' = __—__3|(T . (5)

For the susceptibility due to triplet excitations, we
will use the results obtained in [16, 17]. In those stud-
ies, an approximation of the magnetic susceptibility of
pure CuGeO; crystals at temperatures below T was
obtained experimentally. This approximation of the
molar susceptibility at H || ¢ has the form

= Nepd A = L

F(t) = (g, +at +a,t )expD—tD, t = To (6)
where a, = 26.0 x 102 cgs units/mol, a; = —41.6 x
1073 emu/mol, a, = 28.2 x 10~3 emu/mol, and A = 2.39.

Then, we have for the magnetic susceptibility per
copper ion in the dimerized matrix:

(i
F(T/T
K9 = oy F0T) ©
[gclj)D A

Here gg& is the g-factor of the copper ion in the corre-
sponding direction.

If the impurity concentration is X, then the number
of clustersis xN, and the number of copper ionsin the
dimerized matrix is (1 — XLgm)Na. Assuming that clus-
ters do not interact, we abtain the following formulas
for the total susceptibility of clusters and excitations:

)ZCI = XNAXCI!

~ (8
Xcu = (1 =XLgim) NaXcy-
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Equations (4)—(8) alow oneto determine the contri-
bution of clusters and triplet excitations to the suscepti-
bility for all temperatures below the spin—Peierls tran-
sition temperature. We will use this result later.

Thecase T > Ty can betreated in asimilar way. As
it has already been mentioned above, in this case the
neighborhood of an impurity ion in which the Dzy-
aloshinski—Moriya exchange interaction exists should
be considered as a cluster; hence, the characteristic size
in Eq. (8) isLpy. Since the susceptibility of spin chains
weakly depends on temperature above the transition
temperature, we must set T = Tg in Eq. (7).

4.2. Dependence of the g-Factor on Temperature

Asit has already been mentioned above, the evolu-
tion of the EPR line in the spectrum of a sample with a
nickel concentration equal t0 0.2% (Fig. 1) hastheform
typical of the exchange-narrowed two-component
spectrum of the magnetic resonance with the frequency
of exchange jumps dependent on temperature.

Following [14, 18], we assume that the influence of
the exchange interaction on the magnetic resonance
spectrum of the system can be considered as random
transitions with the characteristic frequency
between the states with different Zeeman’s frequencies

o > .
Thelocation of the center of gravity of the magnetic

resonance spectrum is independent of w, and is deter-
mined by the formula

0)~ 0)~
00(1 )Xl"'(*)(z)Xz

X1+ X2
where X, , arethe susceptibilities of the corresponding

states with regard for the interaction between them.

Analysis of these random transitions by statistical
methods (see [18]) show that the frequencies of the
spectral components and their widths are determined
by the formulas

W =

9)

Wy, =wW+IM(Ay ),

Aw, ; = Re(hy ), (10

where

ALy = %{—[me—i{)] £ J0i-A2_2ing, (11)

A= —w? 5= w?+w?-2w. (12)
In the limit of w, > A, we have
2 2 2 2
(01:(7)—56;?, Awlzé_A,
Aw; 40, (13)
W, = 0+9d Aw, = —W,.
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Thus, the EPR spectrum consists of a narrow line
closeto @ and awide background line.

In the absence of the interaction (w, = 0), we have

W, = 0 Aw, =0, (14)

which corresponds to two narrow spectral components
at the frequencies w\” and wy .

Qualitatively, this corresponds to the observed tran-
sition from the EPR line consisting of a single compo-
nent to the two-component line. In this model, we
neglect the intrinsic widths of linesin both states of the
system.

Magnetic properties of the doped spin-Peierls sys-
tem at T > T correspond to free spins of clusters and
triplet excitations of the dimerized matrix. The differ-
encein g-factors of clusters and excitations lead to dif-
ferences in Zeeman's frequencies.

The presence of an energy gap leads to a depen-
dence of the concentration of triplet excitations on tem-
perature. In this case, the frequency of exchange jumps
), a so depends on temperature as

() = Qepic W Ted - T (g5
[ t g Tep

The dependence of the energy gap on temperature
can be approximated as follows (see [7, 19]):

E(t) = E(0)(1-t)?, a=01, t= T/Te. (16)

The magnitude of the energy gap at T = 0 K is
related to the transition temperature by the equation
(see [20])

E(0) = 1.76kTep. (17)

Equations (9)—(12) and (15)—17) make it possible
to obtain temperature dependences of the resonance
absorption frequencies (g-factors) and widths of spec-
trum components. To take into account the interaction
of clusterswith triplet excitations, we use the molecular
field approximation (4)—8).

The temperature dependences of the g-factor and
the width of the magnetic resonance line are described
with the help of three adjustable parameters—the size
of the region of suppressed dimerization L, the effec-
tive exchangeintegral value J4, and the preexponential
coefficient of the exchange frequency Q..

This model assumes that clusters do not directly
interact. As has been mentioned above, the influence of
the interaction of clusters decreases with increasing
temperature. For thisreason, when adjusting the param-
eters, we used the temperature dependence of the g-fac-
torat T>T'=7K for al basic orientations of both sam-
ples and the temperature dependence of the g-factor
below T' for the sample with the impurity content 0.2%
forH || c.
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Thus, the following values of the adjustable param-
eters were obtained:

Lym = 3222, Jy = —(13£1) K,

(18)
Q, = (22+03)x10%s™.

Note that 2Q./k ~ 16K, which is close to Jg. This
result could be expected since Q. and J must be deter-
mined by the magnitude of the intrachain exchange
integral.

The comparison of the theoretical and experimental
resultsisillustrated in Figs. 3, 4. The theoretical depen-
dences provide an accurate description of the experi-
mental datafor the samplewith theimpurity concentra-
tion 0.2%; however, for the sample with x = 0.8%, there
is a disagreement at low temperatures, which we
attribute to the interaction of clusters.

The value of the suppressed dimerization region
obtained here coincides with the result of the paper
[17], which was obtained by the analysis of static sus-
ceptibilities.

We also can make a coarse evaluation of the impu-
rity concentration at which the long-range spin-Peierls
order must be completely destroyed: x. = /L, ~ 0.03,

which isin good agreement with the result obtained in
[21].

4.3. Dependence of the Width of the Magnetic
Resonance Line on Temperature

On the basis of the model described above, we can
derive the dependence of the width of the EPR line on
temperature. The comparison with experimental datais
presented in Fig. 5. For convenience, the width of the
line at the spin-Peierls transition point is added to the
theoretical dependences. No additional adjustable
parameters were used.

For the sample with the impurity concentration
0.2%, the agreement of the theory with the experiment
is very good. The theory provides the correct location
of the maximum of the linewidth and the correct value
of at this point. The best agreement between the theory
and the experiment is achieved for H || c. This could be
expected, sincein this case one of the basic assumption
of our model is best satisfied, namely, that the intrinsic
linewidth of the spectral components can be neglected
as compared with the splitting between them.

For the sample with x = 0.8%, a disagreement of the
theory and the experiment is observed. The location of
the maximum is determined rather well; however, the
behavior of the linewidth at low temperaturesis differ-
ent from that predicted by the model. We attribute this
fact to interaction between clusters.
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4.4. Dependence of the g-Factor on Concentration
above the Temperature of the Spin-Peierls Transition

The approach developed above can be aso applied
to the description of the dependence of the g-factor
value on impurity concentration above Te. Inthiscase,
we consider as a cluster the neighborhood of the impu-
rity ion of size Ly inwhich the Dzyaloshinski-Moriya
exchange interaction exists.

At temperatures close to T, the condition w, > A
(W ~ Q. ~ 10 s, A ~ 10'° s%) holds. Hence, simpli-
fied Egs. (13) can be used. Neglecting the terms of

order A% w;, we obtain the following equation for the
mean value of the g-factor (this equation is similar to

(9)):
g - O Xcl + OcuXcu
XC| + XCu

As before (see Egs. (4)—<8)), susceptibilities X are
determined in the molecular field approximation. We
assume that in the absence of interaction, the cluster
susceptibility is described by the Curielaw (5), and the
susceptibility of the copper ions surrounding the cluster
is independent of temperature and equals the suscepti-
bility at the point of the spin-Peierlstransition (7).

We do not present the expression for the dependence
of the g-factor value on concentration because it is too
cumbersome. This expression includes two parameters.
the effective exchange integral Jo; and Ly, The param-
eter J has already been determined earlier. Thisleaves
us a single adjustable parameter to describe the depen-
dence of the g-factor on impurity concentration for all
orientations of the sample with respect to the magnetic
field. Asit has already been mentioned, the interval of
the impurity concentration at which clusters can be
considered uninteracting increases with temperature.
Thus, at high temperatures our approach can be applied
even in the case of large concentrations. Figure 6 pre-
sents data for samples with nickel concentrations up to
3.3% at the temperature of 15 K along with theoretical
curves. The experimental dependences correspond to
Loy =18+ 2.

(19)

4.5. Dependence of the EPR Linewidth
on Concentration at Low Temperatures.
Interaction of Clusters

The difference of the EPR lines of sampleswith the
impurity concentration 0.2% and 0.8% (Fig. 7) indi-
cates that clustersinteract. The dependence of the line-
width on impurity concentration for small x is linear
(Fig. 8). A linear dependence of the EPR linewidth on
the concentration of magnetic centers was observed in
experiments with diluted paramagnets (paramagnetic
centersin adiamagnetic crystal) (see, e.g., [22]).

As a possible cause of the observed linewidth, one
can suggest long-range dipole—dipole interactions or
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exchange interactions occurring due to overlapping of
wings of nearby clusters.

In order to estimate the contribution of the dipole-
dipole interaction to the linewidth, we notice that the
dipole field magnitude is about 10 Oe at the distance of
10 A from the magnetic moment pg. Thus, the observed
width of the line (~1 kOe) cannot be explained by the
existence of the dipole-dipole interaction between
impurity ions.

Therefore, the linewidth must be determined by the
antisymmetric or anisotropic exchange interaction of
clusters. Reorientation of clustersdueto thermal fluctu-
ations leads to the appearance of a random effective
field Hg, which determines the linewidth.

Due the random distribution of the impurities, the
number of closely spaced clusters (i.e., those spaced by
a distance below average) constitutes a noticeable part
of the total number of clusters. In the one-dimensional
case, the probability of detecting an impurity ion at the
distance of n interatomic distances from the given ion
at the impurity concentration x is

p(n) = x(1-x)".

Then, the probability that the distance between
impurity ionsislessthan N is

(20)

N-1

P(n<N) = z p(n) = 1—(1-x)". (21)
n=0

In the limiting case x < 1, we obtain P(n < N) = Nx.
Thus, if theimpurity concentration is 1% (and the average
distance between impurity ionsin a chain is 100 inter-
atomic distances), the part of the clustersthat are closer
than Ly, = 32 to each other is about 30%.

On the basis of the observed values of the width of
the magnetic resonance line, we can give a coarse eval-
uation of the magnitude of the random effective mag-
netic field generated by clusters.

Since antiferromagnetic correl ations decrease expo-
nentially when moving away from the defect into the
dimerized matrix, we assume that the average value of
the effective field depends on the distance L from the
region of the destroyed dimerization according to the
law

Her = Hoexp(-L/g), (22)
where & isthe magnetic correlation length and H, isthe

effectivefield on the boundary of the suppressed dimer-
ization region.

Averaging over L with the help of distribution (20)
and taking into account that x is small, we obtain the
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following estimate for the width of the EPR line:

AHO'S He(L)pP(L)
L=0 (23)

_ XHg

~ 1-(1-x)exp(-1/¢)

= &xH,.

Hence, setting & = 10 (see[23]) and taking into account
that at x ~ 1% the linewidth AH ~ 1 kOe (see Fig. 8), we
obtain for H, the estimate H, ~ 10 kOe. Such a magni-
tude of the effective field corresponds to energy of
order of 1 K, which is about 1% of the intrachain
exchange integral.

Additional information on the nature of the interac-
tion that determines the width of the magnetic reso-
nance line can be obtained with the help of the angular
dependence of the linewidth. The dependences of the
effective g-factor and the EPR linewidth on the orienta-
tion of the magnetic field in the plane bc of the crystal
with x = 0.8% are presented in Fig. 9. The angular
dependence of the g-factor is accurately approximated
by the function

Jar = 0oC0S @+ gosin’g, (24)
where @ isthe angle in the plane bc measured from the
axis c. Thus, the anisotropy of the g-factor can be

described in terms of the principal values of the g-ten-
Sor.

The contribution of the antisymmetric exchange
interaction to the angular dependence of the linewidth
is Teperiodic, and the contribution of the anisotropic
symmetric interaction is Tv2-periodic [24]. In the case
under consideration, both contributions are present.
Figure 9 illustrates fitting of experimental data for the
EPR linewidth by the function

A+ Bcos(2¢) + Ccos(4@). (25)
However, one must take into account the fact that the
anisotropy of the g-factor also affects the angular
dependence of the linewidth, and this influence is peri-
odic with the period equal to that of the angular depen-
dence of the g-factor (24), i.e., Tt

The magnitude of the parameter D of the anisotropic
symmetric exchange is related to the isotropic
exchange integra J by the equation (see[25])

AT
D DDED J, (26)
where Ag = g — 2. In CuGeOs, (Ag/g) ~ 0.1, which
yields an estimate of 1 K for D. Thus, it is possible that
the observed magnitude of the EPR lineis explained by
the existence of the symmetric anisotropic exchange
interaction.
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5. CONCLUSIONS

When studying high-quality samples of the spin-
Peierls magnet CuGeO; doped with nickel with asmall
impurity concentration x < 1%, it was discovered that
the g-factor decreases with temperature to unusually
small values (down to 1.4). Thisfact isdueto formation
of the clusters of antiferromagnetically correlated spins
with antisymmetric exchange interaction around impu-
rity ions. Above the transition temperature, the value of
the g-factor decreases as the impurity concentration
increases.

The dependence of the g-factor on temperature and
concentration can be explained in the framework of the
model of exchange narrowing. An analysis of data
allows one to evaluate the size of the region around an
impurity in which the dimerization is suppressed
(Lgm = 30 interatomic distances) and the size of the
region in which the antisymmetric exchange interaction
exists (Lpy = 20 interatomic distances).

Experimental data show that even at small impurity
concentrations, the interaction between clusters plays
an important role at low temperatures. The magnitude
and the angular dependence of the width of the mag-
netic resonance line suggest the existence of an aniso-
tropic exchange interaction in CuGeOs.
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Abstract—Variationa testsare performed for current order parameters as probabl e sources of the pseudogap normal
state of cuprates. The calculations are carried out based on the stateswith correl ations of the val ence bond type whose
formation can induce in principle both the superconducting order of the d symmetry and current phases. It is shown
for the t—t'-U Hubbard modelswith alarge value of U(~8t) and the Hubbard splitting of the conduction band that (1)
phases of aternating charge and longitudinal spin currents cannot be realized and (2) transverse spin currents are not
compatible with the superconducting order and they could exist againgt the normal-state background only within a
very narrow doping region near the optimal one. This region does not correspond to the region of existence of a
pseudogap in cuprates, which refutes the above-mentioned hypothesis of the pseudogap origin. The requirementsto
the parameters of models for which the consideration of correlations of the valence bond type yields a reasonable
phase curve. The existence of current phasesin the t+'—U-V Hubbard model swith astrong interaction (V > 0.25t) of
particles in neighboring sites is predicted when the d-superconductivity is completely suppressed. © 2001 MAIK

“ Nauka/Interperiodica’ .

Recent measurements [1, 2] of tunneling spectra of
cuprates in different magnetic fields at different tem-
peratures made it possible to distinguish a pseudogap
from a superconducting gap, i.e., demonstrated their
different nature. This refutes the interpretation of the
pseudogap as a precursor of the superconducting gap
[3]. Severa other hypotheses [4-11] have been pro-
posed according to which the pseudogap A, and super-
conducting gap Ay haveadifferent origin. Inall thethe-
ories [4-11], atotal gap, which is manifested in photo-
emission experiments (ARPES), has the form

A DJD2+ D 1)

The main problem is the interpretation of the inverse
dependence A(d) on the doping &, namely, an increase
in A from zero at almost optimal doping d, to large
values a & — 0 in the so-called insufficiently doped
region 4 < Q.

The emergence of a pseudogap was explained in a
number of papers[4-6] by the development of new hid-
den order parametersin the insufficiently doped region.
Thus, the authors of papers [4] considered the charge-
density waves with the vector Q = (11, ) as such an
order parameter. However, the nature of attraction in
the s-channel that is capable of compensating for the
local repulsion U > O remains unclear. The latter is
responsible for antiferromagnetism of undoped sys
tems, i.e., the spin-density waves, which are incompat-
ible with charge-density waves. The authors of [5, 6]
discussed the possible relation of the pseudogap to the
development of the order parameters such as current

states of the orbital antiferromagnetic (the d-density
wave, DDW) or the states with analogous spin currents.
The question of the dependence A.(d) remains open.

In papers [7-11] based on the t—t'-J or t-t'-U mod-
els, the appearance of the pseudogap was explained by
a change in the topology of the Fermi surface at the
optimal doping from a“small” to alarge Fermi surface.
In these models, the splitting into the upper and lower
Hubbard subbandsisretained within arather large dop-
ing region. This splitting was obtained in [8] from vari-
ational calculations on the basis of the correlated state
with correlations of the valence bond type. Some fea-
tures of the dependence of the gap anisotropy A(d) and
of the ratio A™/KT, on doping (see review [12]) can be
explained using this approach [ 13] because theincrease
in A, with decreasing & naturally follows from the
structure of the lower band at t'/t > 0. However, models
involving the lower Hubbard band yield too high an
asymmetry of tunnel spectra[13]. Thelatter are capable
of probing the density of states of a system both below
and above the chemical potential value.

Finaly, slave-boson technique calculations [14]
suggest that the pseudogap is related to the emergence
of the short-range order phase for spin-density waves,
i.e., totheinitial stage of the formation of spin-density
waves and a dielectric Hubbard gap. In this case, the
required inverse dependence An(d) can be naturaly
explained. However, the pseudogap anisotropy, which
is similar to anisotropy of the superconducting gap of
the d symmetry, remains unexplained.

The aim of this paper is to verify the hypothesis
about hidden current order parameters as the cause of
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the pseudogap’s appearance. We verified this hypothe-
sis by performing variational calculations with a corre-
lated state with the formation of valence bonds (a band
analog of the Anderson RVB states). It was shown ear-
lier that the effective Hamiltonian derived in this
approach and, in particular, the interaction of correlated
hops, which appears upon formation of valence bonds,
providesthe attraction of holesin the d-channel and the
corresponding d-superconductivity compatible with the
antiferromagnetic order. Thisinteraction also admitsin
principle the existence of states with current order
parameters—various current phases. As shown below,
this follows from the negativity of constants at the cor-
responding quadratic terms in the average energy.
Therefore, using this effective Hamiltonian, one can
study the phase diagram of such current states and their
compatibility with the superconducting order.

The calculations were performed by the method
proposed in [8] for the t—t'-U-V Hubbard mode!:

H = H(U,t) + AH(V, t"),

AH(V,t) =V Y nn, ()]
2
+t' (CIGCrnc +H.c.).
2.2

Here, H(U, t) is the Hamiltonian of the classical Hub-
bard model with standard parametersU and t. The addi-
tional term AH includes the hopping interaction t' of
next-to-neighboring sites and the interaction V of
neighboring sites. The variationa correlated state W
with correlations of the valence bond type is con-
structed [8] using the unitary transformation of the
uncorrelated state ®:

W = W(a)®, W(a) = exp[a Z znm},
Chnd (3)
an = %Z(Clccmc_H-C')(nn,c_nm,—c)-

The choice of the unitary operator W(a) with the varia-
tional parameter o was substantiated in [8]. In [8], the

effective Hamiltonian H was also derived, which acts
in the basis of uncorrelated states { @} :

Har(a) = W' (a)HW(a)

4
=H+a[H,Z]+%2[[H,Z],Z]. “

Asthe uncorrelated function { @}, afunction with a
doubled magnetic cell was used for testing the possible
system ordering: antiferromagnetic spin order, super-
conducting order of the d-symmetry, and current order
parameters, which were not studied earlier (charge- or
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spin-density waves of the d-symmetry). The average
energy

(HO, = [Hgdd, = H(y,)

of the correlated state (3) is calculated as an explicit
function of a set of one-electron averages y, = [y,
over the uncorrelated state @ (below, the subscript
.04 at averages is omitted). As a result, the function

H (y,) for the effective Hamiltonian (2) proves to be
dependent on quantitiesy, ={r,—d,o, d,, W, J},:

1 T
r = E‘Nz [€r6Ch 1, oL}
n,o

N A TS
dI - ZNZ( 1) |O'| |]:ncxcn+l,cr|:l
n,o

1
w = 55 sn(3-1) e ey +Hell  (5)
n

3, = éi“N PAGUACHN

n ss
x e, ! H.cO
[l[ CnsCn + XS CnsCn + Y, s‘] —hR.C

Here, r, are the density components, d, are similar com-
ponents of the alternating spin, w; are anomalous aver-
ages of the d-symmetry, and J, are current order param-
eters. Because of the symmetry, the quantitiesr,, d;, and
w; depend only on the modulus | = ||, but not on the
direction of the vector | = (l,, l,). In equations (5), g,
(L=0,1, 2, 3) are Pauli matricesand X, y are the unit
vectors along the x and y axes, respectively.

Our earlier calculations[8] wererelated to the states
without current components for models with parame-
ters U/t = 8, V/t = 0-0.1, t'/t = 0.05-0.1. These models
yield solutions with the antiferromagnetic splitting of
the band within arather broad region of doping and pre-
dict the superconductivity of the d-symmetry within the
same region, which is compatible with the antiferro-
magnetic order. The value of &, depended on t'/t and
was &, = 0.18-0.22 for the above values of t'/t. It was
also verified that a consideration of only the first har-
monic | = 1 among all anomal ous averagesw, describes
the phase curve sufficiently accurately. For this reason,
we will retain in calculations of the phase curves only
the first harmonic both in anomalous averages and in
current order parameters. In this approximation, the
average energy per lattice center is

1— _
SH) =AY d) +kai ek T I (©)
u

where H" is related to the normal phase. The current
components J, (L =0, 1, 2, 3) arerelated to alternating
charge currents (U = 0) or spin currents of different
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projections of the spin. We are dealing with circular
currents on elementary plaguettes of the square lattice.
The quantities J, - ; , are spin currents with the spin
polarization that is transverse with respect to the quan-
tization axis z of alternating spinsin d,.

The expressions for quantities w; and J,, in terms of
operators in the k-space have the form

G
1
Wy, = ﬁ; (£, Cy, + H.cd (K), (7)

) G
J, = I—NZZ(Gp)ngtlscks.—H.c.E)d(k),
k ss (8)

k=k+(mm, oY%k = %(coskx—cosky).
Functions ¢9(k) in (7) and (8) have the same angular
dependence of the dxz_yz -symmetry. The fact that the

observed pseudogap has a close anisotropy gave
grounds to the authors of [5, 6] to assume the relation
between the pseudogap and current order parameters.
The summation over kis performed over the entire Bril-
louin zone G of theinitial lattice.

Consider the interactions in the effective Hamilto-
nian (4) that can in principle induce both the d-super-
conductivity and current order parameters J,,. Theinter-
action of correlated hops of the type

1
Ve = -5 U D;D (c,T]c,cmo +H.c) ©
g

x (nn,—a + r]m, -0 2nn, —onm, —0)

appears aready in the first-order term over the varia-
tional parameter a in the effective Hamiltonian (4). The
average of (9) over the states with order parameters (5)
per lattice center is

1

N wchiD = —8(XUI’1[I’O(1—TO) + dg"' I’ﬂ

. (10)
+k Ol + ZJZE k® = —8aUr,.
O O

The required decrease in the normal-state energy upon
formation of valence bonds, i.e., the negative sign of the
first term in (10), resultsin the sign of a at which con-
stantsk® at terms w and J;; in (10) are negative. This
means that current phases can exist in principle. For
each hmOcoupling, the interaction (9) contains the
contribution V,,,, ~ aU clo CnoMn, o, o that provides
the attraction of hole in the d-channel. This term was
omitted in the truncated interaction of correlated hops

of theformV,,,~ C:o Crno(Mn, o + Ny, _o)- Thisinteraction
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was applied by Hirsh [15] to the additional holes of an
oxygen system at a low concentration. It can provide
attraction only in the s-channel. However, the single-
band Hubbard modd (2) is relevant to the hybridized p—d
band with a high, of the order of unity, total concentra-
tion of holes, and in this case the s-superconductivity is
suppressed by strong repulsion U. Meanwhile, the term

of type~Cl CmoMn oM _o» Whichissignificant at ahigh
concentration, can provide attraction in the d-channel.

The total constants k,, and k; of superconducting
and current order parametersin (6),

Ky = K\(Nl)+K\(,5)+4V, Ky = K(Jl)+KSZ) 4v, (11)

include thefirst- and second-order contributions over a
and the Coulomb-like interaction between neighbors.
We calculated all the contributions to K, in our earlier
studies of superconductivity [8]. For U/t=8and V=0,
the constant K, takes the values k (V = 0) = (1.2-1.5)t
in the region & < 0.3. This constant provides the d-
superconductivity caused by the formation of valence
bonds. The introduction of the interaction V > 0 sup-

presses the d-superconductivity by decreasing Tg
and for V = 0.3t, when the constant k,, becomes posi-
tive, the formation of pairs impossible. However, the
same interaction V increases the modulus of the nega-
tive constant K ;. The first-order contributions over a to
K,, and K; are identical. The second-order contribution
k? was estimated similarly as k2 ~ k{2 . This esti-
maIe is adequate under conditions when the parameter
V was varied within broad limits. Thus, the cal cul ations
were performed for models with constant satisfying of
the following relations:
16 H
26W1
The existence of current order parameters and their
compatibility with the superconducting order were

studied based on the mean-field solutions for the prob-
lem with the effective Hamiltonian (4).

The procedure of minimizing H ' over ® isstandard.
The self-consistent uncorrelated state ® = [, X/, Ois
determined by the occupation of the lower one-electron
states X, of the linearized Hamiltonian:

K; = K,—8V, K, = (12

oH

HIin = ay ( yv) + H(yv)

(13)

G/4

= hie + const.
ZZ ko

(¢}

Here, the operators §, correspond to averages ¥, in
definitions (5) [8]. In the general case, when al the
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order parameters (5) are nonzero, the vector kin the sum
runsthrough one-fourth of the Brillouin zone G of theini-
tial lattice, for example, the region { |k, + K | < 11, k, > O} .

The corresponding linear operator h for eachkin (13
has the form

hic = hyj(K)bby (14)
in the basis of the following operators of the number
representation:

to_ ot b bt
bi = { € €1 Chir G 1 CkrnC i C b (19)

i=1,..,8 k=k+(mmn.

The matrix hy;(K) is defined by expression (20) in the
Appendix. The diagondization of h;; determines,
according to (24), one-electron energies E,, and eigen-

functions xlA of the linearized Hamiltonian. The latter,
in turn, determine the required order parameters {y,}
according to expressions (25) in Appendix.

Before studying the compatibility of current and
superconducting orders, we performed a search for
phase curves T,;(d) and T.(d). Recall that the normal
phase for solutions under consideration corresponds to
the spin antiferromagnetic disorder and Hubbard split-
ting of the band. The energies of the corresponding
solutions with the two-dimensional antiferromagnetic
order are substantially lower than the energies of para-
magnetic states. This does not mean that there exists a
real long-range order in the system but indicates that
the length of antiferromagnetic correlations is rather
large. Although the mean-field approximation for Hg;
cannot give the length of antiferromagnetic correla-
tions, we assume nevertheless that this approximation
can be used to study the short-range interaction effects
produced by correlations of the valence bond type.
Note also that the superconductivity region over tem-
perature and doping proves to be reasonable only for
antiferromagnetic solutions because the density of
statesin the lower subband increases. For paramagnetic
solutions, the value of T, and the doping width of the
superconductivity region are too small.

Temperatures T;(d) and T,(d) of the appearance of
the current phase with polarization p or the d-supercon-
ductivity involving the lowest normal state with the
antiferromagnetic order can be determined from equa-
tions, which represent linear expansions of the corre-
sponding equations (25) for J, and w, for J, — O and
w; — 0. Asaresult, we obtain the following equations
for T,(8) and T.(d)

1 G/2 1
g 2
Lo X (9000 7 6
xf(E)[1-f(E)] = 0O,
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G/2

1 a2 1
1—mKWZ[gw(k)¢k] £l
x[1—2f(|El|)] =0,
E; = &—H-D,, Dy = J3& +A,

§ = S(E+ ),

(17)

58 = 3(E—E), Gu-12(K) = Gu(k) = 5,

O&

—03(k) = —.

Oy =0,3(K) D,

Here, fisthe Fermi function, E; = E;(K) isthe energy of
the lower Hubbard band measured relative to the chem-
ical potential, and functions &, and A, are defined by
expressions (21) in the Appendix. The vector k in the
sum runs the values within the magnetic Brillouin zone
(half the Brillouin zone G of the initial lattice). The
function g, reflects the renormaization of pairing
interactions, i.e., of matrix elements for the current
operators J, or w; over the states of the lower Hubbard
band. The congtant K, in (17) was caculated asin [ 8], tak-
ing into account the contributions from anomalous aver-

agesto H fromal terms of the effective Hamiltonian (2).
The first-order contributions over the variationa
parameter o to constantsk ; and K, areidentical. Taking
thisinto account, we estimated K ; from expression (12).

The calculations showed that the alternating charge
and longitudinal current order parametersJ;, - o 3 cannot
be realized in models with the antiferromagnetic split-
ting of the band. Thereasonisthat for p = 0.3, thefunction
O which characterizes matrix elements of J, over the
dates of the lower band, vanishes in regions k ~ (11, 0)
which are responsible for the Van Hove singularity in the
dengity of states. Similar functions for transverse current
polarizationswith u =1, 2in (16) and for anomalous aver-
ages of the d-symmetry tend to 1 for k — (11, 0). In the
absence of the real long-range antiferromagnetic order,
we deal only with polarizationswith respect to thelocal
orientation of the aternating spin. The difference
between the properties of transverse and longitudinal
current polarizations has the same nature as that
between longitudinal and transverse spin susceptibili-
ties in models with the antiferromagnetic splitting of
the band [16, 17].

Figure 1 shows phase curves T,(0) for transverse
polarizations and T.(d) for modelswith U/t = 8 and two
variants of parameterst' and V. The parameter t' directly
affects the position of the Van Hove singularity and,
hence, the vaue of d,. This parameter was chosen to
obtain reasonable values of &, ~ 0.2-0.24. The intro-
duction of the interaction V > 0 suppresses the super-
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conducting order but enhances the current order
according to its contributions (12) to constants k,, and

Ky i.€, it reduces Too and increases T . We are

dealing with the temperatures of emergence of one or
two order parameters, superconducting or current ones,
against the background of the normal state without
these orders. The phase curve of the current phase
restrictsonly avery narrow doping region near the opti-
mal value. Its width is substantially narrower than that
of the superconductivity region.

The total self-consistent calculations of supercon-
ducting and current order parameters show their incom-
patibility. The iteration converges either to the solution
with the superconducting order without currents (w; #
0, J=0) or to the current state without anomal ous aver-
ages (J # 0, w; = 0). The latter exists only in a narrow
doping region around the optimal value and only for the
ratio of constants K,/k,, > 1.45. In particular, for sys-
temswith V=0 (k; ~K,,), ho solutions with the current
order exist: the superconducting order suppresses the
current order over the entire doping region. As V
increases, the solutions with J # 0 appear in a harrow
doping region near the optimal value, but with anoma-
lous averages suppressed in thisregion. Figure 2 shows
the order parameters w; and Jj, - , obtained in self-con-
sistent calculation as functions of doping for the model
with parameters U/t = 8, t'/t = 0.05, V/t = 0.1. However,
such a behavior is inconsistent with the experiment
because no suppression of the superconductivity is
observed in cuprates in the middle of the region of its
existence (at 0 ~ Ogy)-

It is interesting to note that for the t-t'-U-V Hub-
bard models with strongly interacting (V > 0.25t) parti-
cles in neighboring sites, the d-superconductivity is
completely suppressed; however, stable current phases
appear with the transverse polarization of spin currents.
Similarly to curves T (d) at V = 0, the corresponding
phase curves T () have a characteristic maximum at
& =y a which the chemical potential coincides with
the Van Hove singularity in the density of states.

For the model with the Hubbard band splitting
(U/t ~ 8), the possibility of superconducting correlation
pairing in itself and the value of T. depend on the
parameter V. The values V/t < 0.1 used are lower than
estimates V/t ~ 0.2-0.3, which follow from the cluster
derivation of the single-band Hubbard model [18].
Another parameter t'/t < 0.1, which determines &, was
also chosen smaller than the valuest'/t ~ 0.2-0.3, which
are commonly used in strong-coupling modelswith the
nonsplit band [19]. For this reason, iswas interesting to
calculate phase curves T.(d) for systems with large
t'/t ~ 0.3. In such systems, the optimum doping at
which the chemical potential coincides with the Van
Hove singularity proves to be quite high and lies out-
side the region of ferromagnetic spin ordering, where
the lower-energy mean-field solutions for Hy; are para-
magnetic. Figure 3 shows the dependences of the super-
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Fig. 1. Phase curves T(d) and T;(d) corresponding to the
transition of the normal-phase solutions to the supercon-
ducting state or current state with the transverse polariza-
tion for the Hubbard model with U = 8. Curves 1 correspond
to the model with parameterst' = 0.05 and V = 0.1; curves
2, tothemodel witht'=0.1and V = 0. All the quantities T,
T3, U, t', and V are expressed in units of t.
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Fig. 2. Dependences of the anomalous and current order
parameters on doping in the total self-consistent mean-field
solution for the effective Hamiltonian (4) taking into
account correlations of the valence bond type. The model
parameters: U = 8,t'=0.05, V=0.1 (inunitsof t). InFig. 1,
these parameters correspond to phase curves 1.

conducting transition temperature T.(d) and the compo-
nent dy(d) of the alternating spin on doping for models
with large values of t'. They feature large values of Oy
and adrastic decrease in T.at the moment of disappear-
ance of the antiferromagnetic band splitting (vanishing
of dy). The latter is caused by a decrease in the density
of states at the Fermi boundary. However, current
phases in systems with large t' are absent. It is reason-
able that the mean-field method for Hg only roughly
describes antiferromagnetic correlations. This method
cannot describe antiferromagnetic correlations with a
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Fig. 3. Phase curves T,(8) and the alternating spin dq(d) for modelswith U =8, V=0, and t' = 0.3 or 0.4 (curves 1 and 2, respec-

tively). All the quantities and T, are expressed in units of t.

finite radius, except for antiferromagnetic correlations
of neighboring sites caused by the formation of valence
bonds. It seemslikely that this causes adrastic increase
in d, and a decrease in T, when the paramagnetic solu-
tion transfers to the antiferromagnetic one. Neverthe-
less, the results presented in Fig. 3 show that one can
expect theinclusion of local antiferromagnetic correla-
tions into the region of optimal doping in models with
the large parameter t'. In such systems, the states with
the local antiferromagnetic order or without it are real-
ized in the regions of insufficient doping or excess dop-
ing, respectively, i.e., the initial stage of formation of
the Hubbard band splitting can take place at optimal
doping. This is aso indicated by calculations of the
Hubbard model by the slave-boson method [14], which
predict the appearance of a phase with the local spin
order in insufficiently doped systems (8 < J,). How-
ever, the mean-field treatment of Hy; cannot provide
adequate accuracy for the quantitative description of
the evolution of the antiferromagnetic state to the para-
magnetic one.

Thus, the narrow doping region in which solutions
with the current phase exist never coincides with the
region of the pseudogap behavior of cuprates. The
behavior of T,(d) and the dependence of the Van Hove
singularity splitting A;(8) on doping related to the cur-
rent order parameter drastically differ from the behav-
ior of the corresponding quantities T* (8) and A(0) for
the pseudogap. The incompatibility of the supercon-
ducting and current orders predicted by the calculations
also contradicts the existence of a gap and a pseudogap
in the insufficiently doped region. Therefore, the
hypothesis about the current phase as a reason for the
pseudogap behavior of cuprates should be ruled out if
the models with large U/t and the Hubbard splitting of
the conduction band are adequate for the description of
doped cuprates.
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APPENDIX

The eight-order matrices h;;(K) determining the lin-

earized Hamiltonian (14) in the basis (15) have the
form

16H
hii(k) = hy 9.J¢ (k)
(19
+2 aJ B840 (k),
1]
0 0
ga+h 0
hN = U a-b ll
T8 e
O —a—-b0U (20)
N N
a_DEkOD b_DOAkD
00 &0 OA, 00

Matrices 8¥ are defined below by expressions (26)—28).
Empty placesin hN and 6" are zero matrices. Functions
& and A, have theform

3 zzarlcb (ORI

k ZZadlq) (k) k: k+(T[,TD,

(21)
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07(K) = (<1)'7(k)

= %[COSkxlxcoskyly + cosk, |, cosk,l,],

(22)

0%(k) = %(coskx—cosky). 23)

The vector | = (l,, ly) in harmonics (22) is one of the lat-
tice vectors with the given modulus (1 = |I| =0, 1, J2,

2, +/5,3forrorl =0, /2, 2 for d). The diagonaliza-
tion of hy;(k),

hij(k)Uj)\ = UjEa, (24)
determines the one-electron energies E,, and the matrix

U;, of eigenvectors in the basis (15). The latter allow
one to calculate the required order parameters

Gl4
1l «0H

Yo = 55 5y_veivi¢v(k)U§UiAf(EkA)' (29
k

Matrices 8’ = 6" or 6¥ = 6" for y, =wjy, J, in (25) are

O O
g i
BW - |:| —03 |:|1
L
003 O
(26)
502 .
eH:0:3 — E Zp02 Z é’
o
0 K720
O 0,0
5 % B
O O
e“ =t = _D 0-2 Dy
0 -0,
O O
O 0, O
(27
5 % ¢
0_, 0
ep =2 = D 02 D
0 -o,U
O O
O 0, O

Here, {, = (-1)" and o, are the Pauli matrices.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 93

159

Similar matrices 69 and 6" for calculations of d, and
r are

O O
o 0
=g % 0,
0 -0, O
U [
O 0.0
(28)
g g
o g
=g % 0,
O -0, O
O [l
O _OVD

where o, = 0, or 0, = a3 for caculations of r; with

“even” (1=0, +/2,2) or“odd” (I =1, ./5, 3). Thefunc-
tion ¢,,(K) in (25) used for the calculation of y, =d,, r is

equal to the corresponding |-harmonic ¢; (k) of the gen-
eralized s-symmetry defined by expression (22), or the
function ¢,,(k) = cl)(lj (k) is equal to the analogous d-har-
monic (23) for the case'y, =w; or J,.

REFERENCES

1. V. M. Krasnov, A. E. Kovaev, A. Yurgens, and D. Win-
kler, cond-mat/0006479 (2000); Phys. Rev. Lett. 86,
2657 (2001).

2. Yu. Il. Latyshev, V. N. Pavlenko, S. J. Kim, et al., cond-
mat/0005116 (2000).

3. V. J Emery and S. A. Kivelson, Nature 374, 4347
(1995).

4. R. S. Markiewicz, Phys. Rev. B 56, 9091 (1997);
R. S. Markiewicz, C. Kusko, and V. Kidambi, Phys. Rev.
B 60, 627 (1999); R. S. Markiewicz and C. Kusko, Phys.
Rev. Lett. 84, 5674 (2000).

5. S. Chekravarty, R. B. Laughlin, D. K. Morr, and
Ch. Nayak, cond-mat/0005443 (2000).

6. T. Dahm, D. Manske, and L. Tewordt, Phys. Rev. B 56,
R11419 (1997).

7. N. M. Plakida, V. S. Oudovenko, R. Horsch, and
A. J. Liechtenstein, Phys. Rev. B 55, 11997 (1997).

8. A.A.Ovchinnikov and M. Ya. Ovchinnikova, Phys. Lett.
A 249, 531 (1998); A. A. Ovchinnikov, M. Ya. Ovchin-
nikova, and E. A. Plekhanov, Pis ma Zh. Eksp. Teor, Fiz.
67, 350 (1998) [JETP Lett. 67, 369 (1998)]; Zh. Eksp.
Teor. Fiz. 114, 985 (1998) [JETP 87, 534 (1998)]; Zh.
Eksp. Teor. Fiz. 115, 649 (1999) [JETP 88, 356 (1999)].

9. R.O.Kuzian, R. Hayn, A. F. Barabanov, and L. A. Mak-
simov, Phys. Rev. B 58, 6194 (1998).

10. F. Onufrieva, P. Pfeuty, and M. Kisilev, Phys. Rev. Lett.
82, 2370 (1999).

No.1 2001



160 OVCHINNIKOV, OVCHINNIKOVA

11. P. Lou and H. Wu, cond-mat/0003229 (2000).

12. T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999).

13. A. A. Ovchinnikov and M. Ya. Ovchinnikova, cond-
mat/9912096 (1999); A. A. Ovchinnikov and
M. Ya. Ovchinnikova, Zh. Eksp. Teor. Fiz. 118, 1434
(2000) [JETP 91, 1242 (2000)].

14. B. Kyung, cond-mat/0003492 (2000).

15. J. E. Hirsch, Phys. Rev. B 67, 10741 (1992); J. E. Hirsch,
cond-mat/0007115 (2000); cond-mat/0007328 (2000).

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 93

16. A.V. Chubukov and K. A. Musaelyan, Phys. Rev. B 51,
12605 (1995).

17. A. A. Ovchinnikov and M. Ya. Ovchinnikova, Zh. EKsp.
Teor. Fiz. 116, 1058 (1999) [JETP 89, 564 (1999)].

18. H. B. Schuttler and A. J. Fedro, Phys. Rev. B 45, 7588
(1992).

19. R. J. Radke and M. R. Norman, Phys. Rev. B 50, 9554
(1994).

Tranglated by M. Sapozhnikov

No.1 2001



Journal of Experimental and Theoretical Physics, Vol. 93, No. 1, 2001, pp. 161-167.

From Zhurnal Eksperimental’ nori Teoreticheskor Fiziki, Vol. 120, No. 1, 2001, pp. 183-190.
Original English Text Copyright © 2001 by Troyanchuk, Trukhanov, Szymczak, Przewoznik, Bérner.

SOLIDS

Electronic Properties

Phase Transitionsin La, _,CaMnO;_,,, Manganites'

|. O. Troyanchuk®*, S. V. Trukhanov?, H. Szymczak® **, J. Przewoznik¢, and K. Barner¢
4 nstitute of Solids and Semiconductor Physics, National Academy of Sciences of Belarus, Minsk, 220072 Belarus
*e-mail: troyan@ifttp.bas-net.by
bl nstitute of Physics, Polish Academy of Sciences, 02-668, Warsaw, Poland
**e-mail: szymh@ifpan.edu.pl
“University of Mining and Metallurgy, 30-059, Krakow, Poland
d1Y Physikalishes I nstitut, D37073, Géttingen, Ger many
Received December 8, 2000

Abstract—The crystal structure parameters and magnetic and electrical properties of La _,CaMnOz_,»
reduced manganites with 0 < x < 0.5 are established. These investigations contribute to the understanding of
magnetic interactions in manganites without Mn** ions. It is found that these manganites show a long-range
antiferromagnetic order up to x = 0.09 and transform into spin glasses at 0.09 < x < 0.35. The compositions in
the range 0.35 < x < 0.5 show a strong increase in the spontaneous magnetization and critical point associated
with the appearance of spontaneous magnetization and can therefore be viewed as inhomogenious ferromag-
nets. The magnetic and crystal structure peculiarities of La,5Ca,sMnO, 75 are established by the neutron dif-
fraction method. The strongly reduced samples show alarge magnetoresi stance bel ow the point where the spon-
taneous magnetization devel ops. The magnetic phase diagram of La; _,CaMnO5_,, is established by magne-

tization measurements. The magnetic behavior is interpreted assuming that the Mn®*—-O-Mn3" magnetic
interaction is anisotropic (positive-negative) in the orbitally ordered phase and isotropic (positive) in the orbit-
ally disordered phase. Introduction of the oxygen vacanci es changes the magnetic interaction sign from positive
to negative, thereby leading to a spin glass state in strongly reduced compounds. The results obtained reveal
unusual features of strongly reduced manganites such as a large ferromagnetic component, a high magnetic
ordering temperature, and a large magnetoresistance despite the absence of Mn®*-Mn** pairs. In order to
explain these results, the oxygen vacancies are supposed to be ordered. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Thehole-doped Las" A2 (Mns" ,Mn.")O, perovs-
kites, where A represents divalent alkaline-earth ele-
ments such as Ca, Sr, and Ba, have recently attracted
much attention because of their unusual magnetic and
transport properties [1, 2]. The parent compound
La*Mn®*O; is an antiferromagnetic insulator with the
A-type magnetic order [3]. This compound contains

Mn2* ionswith the t5,e; (S= 2) electron configuration,
surrounded by the oxygen octahedron. It is accepted

that the t, and e, electronsarelocalized and their total

magnetic moment is determined only by the total spin
because their orbital magnetic moment is frozen. It is
known that Mn®* is a Jahn—Teller ion with the higher
energy €, and the smaller energy t,, electron levelsin
the octahedral oxygen coordination. An orbital order-
ing is observed and the interaction of the magnetic
moments of manganese is anisotropic as aresult of the
Jahn-Teller effect. The antiferromagnetic spin axis is
directed amost along the b axis and the ferromagnetic
moment along the ¢ axis[4].

TThis article was submitted by the authors in English.

La,_,AMnS" ,Mni" O, exhibits a ferromagnetic
ground state and a metal—insulator transition occurring
near the Curie point at x > 0.15. In this case, Mn** ions

are created from Mn®". The Mn** ion contains tgg elec-
trons only (S= 3/2). The interplay between the electri-
cal transport and ferromagnetism in these systems is
traditionally interpreted within the framework of dou-
ble exchange interaction [5-7], where the magnetic
coupling between Mn* and Mn** ionsiis considered to
result from the motion of the e, electron between two
partially filled d shells with the strong Hund coupling
on site.

However, the double exchange alone is not suffi-
cient to explain all the properties of these com-

pounds [8]. It has been shown that A3"Mnj" O, pyro-
chlores also exhibit a colossal magnetoresistance
despite the absence of mixed manganese valence[9].
Recently, many compounds (La(Nd),_,Pb,MnO;_,F,,
Lag gsBagaMn; _ Nb,O;, etc.) have been found and
they show the ferromagnetic behavior and large magne-
toresistance in spite of the absence of Mn** [10]. Good-
enough [11] adduced arguments for the ferromag-
netism to be due not only to the double exchange but
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also to the specific character of superexchange interac-
tions in MnN¥*-O-Mn3, Mn3*—O-Mn**, and Mn*-O—
Mn* ion systems[11]. Inthe superexchange model, the
ferromagnetic fraction of the exchange is determined
by a virtua electron transfer from the half-filled g,

orbitals of the Mn** ion to the empty ones. Many recent
experimental results have given evidence to the exist-
ence of a phase separation in manganites [12]. Thereis
no general agreement concerning exchange interaction
mechanisms in the hole-doped manganites. Despite
numerous theoretical and experimental studies, thetrue
nature of the colossal magnetoresistance in perovskites
is still amatter of discussion.

Because Mn ions play a key role in electrical and
magnetic properties of the manganites by providing
charge carriers, magnetic moments, and local Jahn—
Teller distortions, it is certainly worth investigating the
properties of manganites containing only Mn®* ions.
The Mn®*/Mn** ratio can be changed by various meth-
ods: (i) the substitution of Ln®* ions by A%+ (Ca, Sr, Ba,
Pb, and Cd) ions in the A sublattice of ABO; perovs-
kite; (i) the substitution of Mn ions by different transi-
tion elements (Cr, Fe, Co, etc.) in the B sublattice of
perovskite, and (iii) the removal of oxygenions, which
produces a reduction process where Mn** ions are con-
verted into Mn3 and their coordination number
decreases.

In this work, the third method is chosen to change
the Mn®/Mn** ratio because there are not enough data
on the results of its application. Moreover, very intrigu-
ing magnetic and magnetoresistance properties have
been reveded for LgsCasMnO;_, [13] and
LngsBaysMnO;_, (Ln=Pr, Nd) [14, 15] systemsin our
previous investigations. It was shown that these com-
pounds can exhibit both a large magnetoresi stance and
a ferromagnetic component. It is notable that the oxy-
gen content in manganites can vary from 2.5 [16] to
3.27 [17]. A much smaller degree of the oxygen nons-
toichiometry was found for LavO;., , (0< y< 0.05) and
LaTiO;.,(0<y<0.08), while LaCrO; and LaFeO, do
not perfectly reveal the deviation from the stoichiome-
try. Thisbehavior may result from amuch larger reduc-
tion in the ionic radius from Mn3* to Mn* than it is
found for other transition metal perovskites[18].

In this paper, we study the oxygen reduction effect
on the magnetization and resistivity of Ca-doped man-
ganites L, _,CaMnO;_,, for x < 0.5. These com-
pounds have already been known at the very early stage
of the experimental [3, 4, 19, 20] and theoretical [21,
22] studies of transition-metal oxides. The phase dia-
gram of Lg, _,CaMnO; compounds with0 < x <1 can
be found elsawhere [23-26]. However, the phase dia-
gram for La, _,CaMnO;_,,, series has not been pro-
posed earlier. Our study shows that both magnetic and
electric properties are very sensitive to the oxygen con-
tent variation.
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2. EXPERIMENT

Polycrystalline La _,CaMnO;,, samples with
-0.03<y<0.1,x=0,0.05,0.09, 0.12, 0.15, 0.18, 0.25,
0.30, 0.35, 0.40, 0.45, 0.50 were fabricated using con-
ventional ceramic technology. La,0O;, CaCO;, and
MnO, were mixed, compacted, and prefired at 1000°C
for 2 hin air. The pellets were then again ground and
synthesized at 1550°C during 2 hin air, which was fol-
lowed by quenching the samples with alow concentra-
tion of Caionsfrom 900°C and slowly cooling the sam-
ples with a high concentration of Ca ions at a rate of
80°C/h in order to obtain the stoichiometric oxygen
content. The X-ray powder diffraction data were
recorded at room temperature with the DRON-3 dif-
fractometer in CoK, radiation. According to X-ray
measurements, al the as-prepared sampleswere single-
phase perovskites with the orthorhombic symmetry of
the unit cell. The thermogravimetric study revealed the
as-prepared samplesin therange0< x< 0.18 to have an
oxygen content slightly above the stoichiometric value
(y< 0.1). The excess of oxygen decreases gradually as
the calcium content increases. The samples with x =
0.25, 0.30, 0.35 are stoichiometric (y =0). The samples
with x = 0.40, 0.45, 0.50 have an oxygen content
dightly less than the stoichiometric value (y = —0.03).
In order to prepare the stoichiometric samples, the
compositionsintherange 0 < x< 0.18 wereanneadedin
small evacuated silicatubes at 700°C during 30 h using
metallic tantalum as an oxygen getter. The amount of
Ta was calculated assuming that the final products are
Ta,O5 and stoichiometric compositionsLa, _,CaMnO;
according to the relation

La,_,CaMnO,,, + 2gyTa

()
—La,_,Ca,MnO; + \—S/TaZOS.
In contrast, the sampleswith x = 0.40, 0.45, and 0.50
were annealed in air at 900°C during 48 h. These reac-
tions can be described by

La, ,CaMnO,.,, + %OZH La,_,CaMnO;. (2)

PolycrystallineLa, _,CaMnO;_,,, sampleswithx =
0, 0.05, 0.09, 0.12, 0.15, 0.18, 0.25, 0.30, 0.35, 0.40,
0.45, 0.50 were obtained by the topotactic reduction
method in the above-mentioned manner. The reduction
of the samples was performed at 900°C during 2 h in
small evacuated silica tubes in presence of metdlic Ta
The final oxygen content was calculated from the change
intheweight of samplesduring thereduction. Theredative
error in oxygen content measurements did not exceed 1%.
Therefore, the chemica formulafor the reduced samples
can be written as La; _,CaMnO;_,» 4 002 The reoxida-
tion process leads to an increase in the weight corre-
sponding to the loss of the weight during the reduction.
According to X-ray measurements, almost all the sam-
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plesfromthe La, _,CaMnO;_, series (withy =0, x/2)
were single-phase perovskites with the O'-orthorhom-
bic (x < 0.09) or O-orthorhombic (0.12 < x < 0.50) unit
cellssimilar to the as-prepared ones.

Magnetic and el ectric measurements have been per-
formed for compositions corresponding to both
La,_,Ca(Mns" ,Mni)O; and La_,CaMn®O;
series. For the magnetic measurements, an OI-3001
vibrating-sample magnetometer was used in the tem-
perature range from 4 to 300 K. Resistivity measure-
ments were performed using the standard four-probe
method with ultrasonically deposited indium contacts.
The dc-resistivity data were collected for well-sintered
samplesin the form of barswith 10 x 2 x 2 mm dimen-
sions over the temperature range from 77 to 350 K. The
magnetoresistance MR was calculated using the for-
mula

- p(H)-p(H=0)
MR = x 100%, 3
p(H=0) ©
where p(H) is the resistivity in the magnetic field of
9 kOe and p(H = 0) is the resistivity without the mag-
netic field.

Neutron diffraction measurements for the
L&y sCaysMn0O, 45 sample were performed in the Berlin
Neutron Scattering Center using an E2 Flat Cone dif-
fractometer with the wavelength of neutrons A =
1.79635 A.

3. RESULTS AND DISCUSSION

The crystal structure parameters for both
Ly _,CaMnO; and La, _,CaMnO;_,, series are dis-
played in Fig. 1. Both stoichiometric and reduced series
exhibit orthorhombic distortions in the entire range of
the calcium concentration; however, O-orthorhombic

distortions (¢/ /2 < a< b) transform into O-orthorhom-

bic ones (a < ¢/./2 < b) at x ~ 0.1. According to Good-
enough, the O! distortions are caused by the orbital
ordering, which is a result of the cooperative static
Jahn-Teller distortions of Mn® in LaMnOs;. As a
dopant ion concentration increases, the removal of
cooperative Jahn—Teller distortions is observed [25].
The reduced compounds have only Mn3* ions; however,
oxygen vacancies destabilize the parent orbital order-
ing, and therefore, the Jahn—Teller distortions. For the
sampleswith x < 0.1, oxygen vacancies are insufficient
in order to remove the cooperative Jahn-Teller distor-
tions and the unit cell of these samples has the O*-ortho-
rhombic symmetry. For both series, the volume of the unit
cell decreases gradually as the calcium content
increases. Thisis explained by the decrease in the size
effect contribution to the crystal structure distortions.
However, this process is much less pronounced for
La, _,CaMnO;_,, series. The appearance of vacancies
leads to a decrease in the average oxidative state of
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La 1 7XC21XMIIO 3—x/2

1
m La;_ Ca MnO,
[ ) La 1 7xCaanO 3-x/2

Fig. 1. Thecrystal structure parametersfor La; _,CaMnO3
stoichiometric (top panel) and La; _,CaMnOz_yp»
reduced series (medium panel). The bottom panel displays
the unit cell volume as afunction of Ca concentration.

M, emu/g

1.6r

0.8F

Fig. 2. ZFC magnetization versus temperature for samples
with x = 0.09 (curve 1), 0.12 (2), 0.15 (3), and 0.18 (4).

manganese. It is well known that the ionic radius of
Mn®* is larger than that of Mn**. The effective ionic
radii of Mn® and Mn** in the octahedral oxygen coor-
dination are 0.645 and 0.530 A, respectively [27]. The
vacancies must therefore reduce the unit cell volume,
whereas the transformation of Mn* into Mn® must
giverise to it. Our data indicate that the latter process
dominates.
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M, emu/g M, emu/g
FC
FC
0.2F (a) 6 (b)
4 L
0.1+
2+-7ZFC
ZFC
1 1 ] 1 1 1
0 50 100 150 O 50 100 150 200 250
T,K T,K

Fig. 3. ZFC and FC magnetizations versus temperature for (a) x = 0.30, (b) x = 0.50, H = 100 Oe.

The zero-field-cooled (ZFC) and field-cooled (FC)
magnetizations in the field of 100 Oe for
La _,CaMnO;_,, series are presented in Figs. 2 and 3.
The samplesintheranges0<x<0.12and 0.30< x <
0.50 show one ZFC-magnetization peak. The samples
with x = 0.15, 0.18, 0.25 have two ZFC-magnetization
peaks. The second magnetization peak at higher tem-
peratures can be ascribed to a large magnetic anisot-
ropy of these samples. The temperature corresponding
to the largest magnetization on the M(T) curve gradu-
aly decreases as the Ca concentration increases. We
adopt two methods of estimating the critical tempera-
ture T, at which the magnetic transition occurs: (i) the
onset of magnetic transition; T, is defined as the tem-
perature point where ZFC and FC magnetizations
become different in the field of 100 Oe; (ii) the comple-
tion of magnetic transition; T, is defined as the temper-
ature point where the ZFC magnetization reaches its
maximum value on the M(T) curve measured in the
field of 100 Oe. Intherange 0 < x < 0.09, thesetwo tem-
peratures are close to each other, which indicates a
well-defined transition to the magnetically ordered
state. The samplesin theinterval 0.12 < x < 0.18 show
an entirely different magnetic behavior. The ZFC mag-
netization for the sample with x = 0.15 demonstrates
two peaks on the M(T) curve, which implies acomplex

M, pg/f. u.
1.6/
1.2

0.8
04

0 4 8 12 16
H,kOe

Fig. 4. The magnetization versus magnetic field curves for
La; _,CaMnO3_y;», samples with x = 0.05, 0.15, 0.25,
0.30, 0.40, 0.50 measured at 6 K.
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character of the magnetic ordering in this composition.
Thetransition to the paramagnetic state remains narrow
for al the compositions with x < 0.18. For the x = 0.30
sample (Fig. 3), ZFC and FC magnetizations start to dif-
fer around 140 K, however aZFC-magnetization peak is
observed at a sufficiently low temperature 35 K. The
ZFC-magnetization peak shiftstowards high temperatures
up to 160 K asthe Ca concentration reaches x = 0.50.

In Fig. 4, the magnetization is shown as a function
of field at temperature of 6 K. It is difficult to estimate
the spontaneous magnetization because for a majority
of the reduced samples, the magnetization is not satu-
rated in the field up to 1.6 T. The large dope in the M(H)
curve could be attributed to magnetic inhomogeneity or
large magnetic anisotropy of these samples. The spon-
taneous magnetization first increases with increasing
Ca content up to the x = 0.15 composition and then
decreases. The largest spontaneous magnetization M, =
1.35pg per formulaunit (ug/f.u.) corresponds to the x =
0.15 composition; however, evenin this case thereisno
pure ferromagnetic ordering because the expected
value for the paralel ordering of all Mn* magnetic
moments is around 4pg/f.u. The minimum spontane-
ous magnetization Mg = 0.19ug/f.u. occurs for the x =
0.30 composition, where spin-glass properties are most
pronounced. The surprise isthat M, rises again starting
from the x = 0.40 composition and reaches 1.26z/f.u.
for the x = 0.50 composition.

For the Lay5Ca,sMnO, ;5 sample, two neutron dif-
fraction patterns were collected at 250 K (in the para-
magnetic state) and 1.6 K to check the character of its
magnetic ground state. The patterns were Rietveld
refined with the two-phase model. In the refinements,
the pattern profile was simulated by a split pseudo-Voigt
function and the background was fitted to a seventh-
degree polynomial function. The La,sCaysMnO, 45
phase shows a clear asymmetric line broadening indi-
cating the existence of large microstrainsin this phase.
The problem with the appropriate modeling of the
(hkl)-dependent shape of the linesis the main source of
the difference between the measured pattern and fitted
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Structural parameters obtained in the Rietveld refinement of the NPD pattern with A = 1.79635 A ; Pbnm space group

165

Lay 5CaysMNnO, 55 phase at 250 K*

Atom X y z BiSOl AZ***
La/Ca (4c) 0.013(8) 0.005(10) 0.25 0.75(36)
Mn (4b) 0 0.5 0 0.97(39)
01 (4c) 0.049(16) 0.485(16) 0.25 3.55(39)
02 (8d) 0.734(11) 0.263(13) 0.030(6) 3.55(39)

LagsCaysMNn0O, 75 phase at 1.6 K**

Atom X y z Big, A?
La/Ca (4c) 0.995(13) 0.008(8) 0.25 0.57(35)
Mn (4b) 0 0.5 0 0.78(37)
01 (4c) 0.054(13) 0.489(13) 0.25 3.12(30)
02 (8d) 0.733(9) 0.267(9) 0.030(6) 3.12(30)

* Cell parameters are a = 5.428(4) A, b= 5.414(5) A, ¢ = 7.675(6) A; the total number of reflections is 165; the conventional Rietveld
R factors are Rp = 5.72%, Ryp = 7.85%, Reyp = 3.72%; the Bragg Rg is 7.73%; X2 =477

** Cel|l parametersarea=5.421(5) A, b= 5406(5) A, c=7.664(7) A; thetotal number of reflections is 165; the conventional Rietveld

Rfactors are Rp = 6.04%, Ryp = 8.07%, Reyp = 3.75%; the Bragg Rg is 6.73%; X? = 4.62; the magnetic R-factor is 5.60%.

*** B IS an isotropic temperature factor

curve. The L a,sCa, sMnO, ;5 phase wasfitted assuming
orthorhombic Pbnm.

Themost important structural parameters and agree-
ment factors of the refinement are listed in the table.
The refined low-temperature value of the magnetic
moment on the manganese atom is i = 0.81(45)ug. The
refined value of the Mn moment is not sensitive to the
Mn spin direction.

According to electric resistivity measurements, all
the reduced samples are semiconductors. The resistiv-
ity markedly increases as the temperature decreases
(Fig. 5). Thereis no metal-insulator transition even for
the x = 0.15 sampl e, which shows the largest ferromag-
netic component in the entire series. The magnetoresis-
tance gradually increases below the point where the
magnetic order develops. However, there is no magne-
toresistance peak observed in the mixed-valence ferro-
magnetic manganites.

Summarizing our magnetization data, we con-
structed a hypothetic magnetic phase diagram of
La _,CaMnO;_,, series(Fig. 6), i.e., adependence of
the magnetic transition temperature on the calcium
concentration. The phase diagram of La _,CaMnO;
compounds (with 0 < x < 1) can be found elsewhere
[23-26]. The x = 0 and x = 1 members of the
Ly _,CaMnO; system (namely, LaMnO; and
CaMnQO,) are antiferromagnetic insulators at low tem-
peratures, with the A- and G-type of magnetic ordering,
respectively [3]. The G-type ordering is the antiferro-
magnetic ordering on the nearest-neighbor magnetic
sites. Adding Ca ions destroys the antiferromagnetic
order. The ferromagnetic behavior starts to manifest
itself at x = 0.1, and the compositions with x up to 0.3
have both antiferromagnetic and ferromagnetic charac-

teristics. The composition with x = 0.3 is clearly ferro-
magnetic, while the compositions with x > 0.5 are anti-
ferromagnetic. In agreement with extensive NMR data
[12, 28], the concentration phase transitions go through
the mixed two-phase state at the dopant ion values x <
0.1and x>0.5[29].

The diagram of La, _,CaMnO;_,,, series (Fig. 6)
consists of six regions. The concentration boundaries
are traced through the critical points. The compositions
in the range 0 < x < 0.09 demonstrate a magnetization
peak, whereas the spontaneous magnetization gradu-
aly increases. We assume that the ground state is anti-
ferromagnetic in this range, probably of the A-type
similar to that observed for the parent LaMnO,; compo-
sition [3]. The ferromagnetic component could be
attributed to the noncollinear magnetic structure or fer-
romagnetic clusters. It iswell known that noncollinear
magnetic structure must result from the double
exchange between Mn®*/Mn** ions [6]. However, the
La, _,CaMnO;_,;, system does not contain Mn>/Mn**
pairs. Therefore, the magnetic behavior results from
superexchange interactions between Mn>—-O-Mn3*. In
this analysis, we assumed that the ferromagnetic com-
ponent develops because of ferromagnetic clusters
associated with the domains where the static Jahn—
Teller distortions are removed. According to Goode-
nough’s considerations [11], the Mn**~O-Mn3* super-
exchange magnetic interaction is ferromagnetic and no
static Jahn—Teller correlations occur. The removal of
the static Jahn—Teller distortionsis provided by a small
amount of the oxygen vacancies that weakly affect the
anion coordination of the majority of Mn3* ions. Taking
al thisinto account, it seems reasonabl e to assume that
intherange 0 < x < 0.09, our compounds are ferromag-
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Fig. 5. Theresistivity and magnetoresi stance versus temper-
ature for sampleswith x=0.15 (curves 1 and 3) and x = 0.50
(curves 2 and 4).

T, K
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200
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Fig. 6. Magnetic phase diagram of La; _,CaMnO3_ . A
denotes the antiferromagnet with the magnetic structure of
the A-type, F are ferromagnetic clusters, F + P is the
inhomogeneous ferromagnet, SG is the spin glass, and P is
the paramagnet. The solid line indicates critical tempera-
tures. The dash-and-dot line traced through the full squares
isnot significant. The dashed lineistraced through x = 0.30
because it isasingular point.

netic clusters in the antiferromagnetic medium. The
open squares in Fig. 6 denote the magnetic transition
onset temperature. The full squares demonstrate the
ZFC-magnetization peak temperature. In therange 0 <
x < 0.09, these two temperatures are sufficiently close,
and the dash-and-dot line traced through thefilled sym-
bolsis not significant.

We note that the appearance of the oxygen vacancies
stabilizes the other local orbital state in the two nearest
Mn3* ionsrather than the statein the parent matrix. This
process gradually destroysthelong-range orbital order-
ing inherent to LaMnOs, thereby leading to a collapse
of thelong-range orbital order at 0.09 < x < 0.35. How-
ever, the pure ferromagnetic ground state does not
develop in this region. Magnetization data (Figs. 2 and
3) indicate that the ferromagnetic component is
strongly destabilized, which is likely due to a competi-
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tion between antiferromagnetic and ferromagnetic
exchange interactions. We think that the nature of the
antiferromagnetic interactionsin thisregion isdifferent
from that for the parent LaMnQ;. It iswell known that
LnMnO; (Ln =Y, Er, Ho, Lu, Sc) with the hexagonal
structure are antiferromagnets with Ty around 80 K

[30]. In these compounds, the Mn®* ions are located in
the 5-fold coordination. For example, magnetic proper-
ties of the La;gCay15MNO,4 composition can be
understood assuming that Mn® (fivefold coordina-
tion)—-O-Mn?* (fivefold coordination) and Mn** (five-
fold coordination)-O-Mn®* (sixfold coordination)
exchange interactions are antiferromagnetic, whereas
the Mn3* (sixfold coordination)—O-Mn3* (6-fold coor-
dination) exchange interactions are ferromagnetic. For
compositions in the range 0.09 < x < 0.35, the long-
range ferromagnetic ordering is not realized, which is
likely due to the increasing oxygen vacancy number
above the critical concentration. In thisregion, the tran-
sition to the magnetic ordering state goes through two
stages. This can be understood from the ZFC and FC
curves. The ZFC magnetization value first starts to
increase, reaches its maximum, and then rapidly
decreases. The FC magnetization behaves differently. It
does not undergo afall at low temperatures. This mag-
netization fall may be explained by the magnetic inter-
action energy between ferromagnetic clusters being
insufficient to align their magnetic moments after zero-
field cooling. After thefield cooling, however, the mag-
netic moment directions remain the same. This magne-
tization behavior is typical of the spin glasses where
magnetic clusters of magnetic moments are gradually
blocked with decreasing temperature. The dashed line
is traced through x = 0.3 because it is a singular point
where the spontaneous magnetization is minimal and
the temperature coincides with that of the ZFC magne-
tization pesk. It is possible that the magnetic behavior of
the compounds in the vicinity of this point has sharper
maodifications than those presented in this diagram.

The developing ferromagnetic component in the
compositionswith the calcium concentration 0.35 < x <
0.50 may be the result of a short-range ordering of oxy-
gen vacancies. Apparently, the oxygen vacancies tend
to order such that the ferromagnetic part of the
exchangeinteraction between Mn** placed in the 6-fold
coordination becomes more intense than the antiferro-
magnetic one. In this region, the samples appear to be
inhomogeneous ferromagnets. In support of this
hypothesis, let us recall several research results.
Recently, it was found from high-resolution electron
microscopy and sel ected-area electron diffraction mea-
surements that the stoichiometric La, sCa,sMnO; and
reduced La,5Ca,sMnO, s compounds differ by the
domain sizes. The reduced samples have a much
smaller domain size and a larger number of domains
than the stoichiometric ones. It is therefore reasonable
to assume the oxygen vacanciesto be accommodated in
the domain walls [16].
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It is interesting to note that the compositions with
x =0.15and x = 0.50 show arelatively large magnetore-
sistance despite the absence of the mixed valence in
manganese. We suppose that the electric conductivity
of reduced samples has an impurity nature. There are
impurity levels associated with a small number of Mn?*
or Mn** ions. These impurity states are located near the
structure defects, such asthe oxygen vacancies, and are
probably characterized by very wide energy spectra.

The magnetoresistance may result from a strong
decrease of the energy gap between shallow impurity
levelsand awide conduction band induced by the exter-
nal magnetic field applied to the magnetically ordered
State.

4, CONCLUSIONS
We can summarize our results as follows.

1. The sign of the Mn®*-O-Mn®" superexchange
magnetic interaction depends on the orbital orientation
inthe orbitally ordered phases of manganites. The mag-
netic structure can be deduced from the orbital ordering
and Goodenough—Kanamori rules[11].

2. Oxygen vacancies remove the orbital ordering in
the manganites. This process isin some aspects analo-
gous to the Mn** doping of the LaMnO; parent com-
pound.

3. In the orhitally disordered phase, the sign of the
Mn3*—O-Mn3 superexchange interaction depends on
the oxygen neighborhood. When both Mn3* ions arein
a six-fold oxygen surrounding, the Mn**(VI)-O-
Mn** (V1) magnetic interaction is ferromagnetic. In the
case where both Mn3* ions or one of them arein afive-
fold oxygen surrounding, the Mn**(V)-O-Mn3*(V)
and Mn3(V1)-O-Mn**(V) interactions are antiferro-
magnetic.

4. The La, _,CaMnO;_,;, system with x = 0.35 is
decomposed into clusters with different chemical com-
positions. The clusters with a high calcium content are
ferromagnetic, whereas those with a low calcium con-
tent are antiferromagnetic.

5. The manganites can exhibit alarge magnetoresis-
tance despite the absence of Mn®*-Mn* pairs. These
data support the superexchange picture of magnetic
interactions in manganites.
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Foundation for Basic Research (grant no. F99R-038),
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Abstract—The expression for the electron wave function for a 3D crystal in a constant magnetic field is
obtained in the strong coupling approximation. A 3D Harper-type equation describing the electron spectrumin
magnetic 3D subbands is derived. The Fermi surfaces for monovalent noble metals are constructed for various
orientations and magnitudes of magnetic fields corresponding to a rational number p/q of the magnetic flux
guanta; radical changesin thetopology of the Fermi surfacesin astrong magnetic field are observed. Asaresult,
considerable changes in the physical properties of crystalsin a strong magnetic field can be expected. In par-
ticular, ametal—semiconductor transition occursfor all even values of g, while metallic properties are preserved
for odd values of g. Thetotal energy of electrons as afunction of the magnetic field isalso calculated and shows
aminimum for p/q = /2. The type of thermodynamic oscillationsin an ultrastrong magnetic field is discussed.
The effects considered by the authors may be observed in fields with a strength of several tens of megagausses.
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1. INTRODUCTION

The problem of Bloch electronsin astrong magnetic
field for which the magnetic flux through a unit cell is
comparablewith aflux quantum (the attainment of such
afield is discussed, for example, in [1]) has been con-
sidered for the last severa decades. In the pioneering
works by Harper [2], Zilberman [3], Azbel [4], and
Hofstadter [5], basic properties of the quantum states of
aBloch 2D electron in atransverse magnetic field were
established. For example, it was proved that in the case
of a strong periodic potential, a complex energy spec-
trum is formed, which strongly depends on the number
of magnetic flux quanta through a unit cell and is deter-
mined by theratio ®/d, = p/q, where @ isthe magnetic
flux, ®, = 21thc/|g] is the magnetic flux quantum, and p
and g are coprime integers. The corresponding energy
spectrum is known as the Hofstadter “butterfly” [5]. In
the case of aweak periodic potential, the Landau levels
split into magnetic subbands whose number is equal
top[6, 7].

During the last decade, one-€lectron states in semi-
conducting 2D superlattices in a transverse magnetic
field were studied intensely. The interest in these
objectsisdueto the physical effectstypical of electrons
with a Hofstadter butterfly-type spectrum, which may
be observed in principle in such structures owing to
considerable advances in nanotechnology. This prob-
lem was considered in many theoretical [6-10] and
experimental [11, 12] works. For example, the effects
of magnetic breakdown in quasi-two-dimensiona
organic conductors were studied in [9, 10] by using the
strong coupling method, which is employed for deriv-
ing the Harper equation, and experimental data con-

firming the observation of the energy band structure of
electrons in amagnetic field, which is typical of Hofs-
tadter butterfly-type spectra, were presented in [12].

The problem of quantum states in 3D crystalsin a
strong magnetic field was also investigated. Peter et al.
[13] proved that asimple broadening of magnetic bands
occursinasimple cubic lattice in afield oriented along
(0, 0, 1) upon atransition from the 2D to 3D spectrum.
Fractional quantization of the Hall conductivity was
detected in [14] in a 3D anisotropic lattice in a tilted
field when the vector H lies in the yz plane. The total
energy of electrons and the density of states were cal-
culated by Hasegawa [15] for asimple cubic lattice for
certain fied orientations ((0, 0, 1), (0, 1, 1), and (1, 1, 1));
in some cases, adecrease smaller than anincreasein the
total electron energy in a magnetic field was observed.
These investigations were carried out for an arbitrary
orientation of thefield in asimple cubic lattice by Kun-
szt and Zee [16], who a so calculated the total electron
energy and the density of states. They also observed
that the total energy decrease again in a magnetic field.
The constant-energy surfaces in the magnetic Brillouin
zone for asimple cubic lattice in a magnetic field with
orientations (0, 0, 1) and (1, 1, 0) were constructed for
thefirst timein[17]. These surfaces makeit possible to
predict the kinetic and thermodynamic properties of a
metal (the type of magnetic susceptibility, magnetic
breakdown, conductivity oscillations, and so on) for mag-
netic flux valuesp/q=1/2 and 1/3. It was al so proved that
in the vicinity of prime rational values of p/q (e.g., for
p/g=1/2+ 1/q, whereq > 1), asystem of narrow mag-
netic subbands (of the type of Landau levels) isformed,
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which can be calculated using the Onsager—Lifshits
guantization rule [18] on anew Fermi surface.

In the present work, the el ectron states of morereal-
istic 3D crystals with an fcc structure in an ultrastrong
magnetic field are considered. Vector H may be
directed along any trandational axisin the crystal. In a
weak magnetic field, discrete Landau levels (magnetic
tubes in the 3D problem) are formed in a metal, whose
positions are determined by the semiclassical Onsager—
Lifshits quantization rule, while in a strong magnetic
field, magnetic energy subbands (whose number is Q)
are formed. Each magnetic subband corresponds to the
range of definition of quasimomentum, which isknown
asthe Brillouin magnetic band. Thekinetic and thermo-
dynamic properties of the electron gas in this case are
determined by the spectrum and by the shape of the
Fermi surface in the magnetic subbands. We studied the
states of a Bloch electron in crystals with an fcc lattice
(Cu, Ag, Au, etc.) placed in a magnetic field oriented
along (0, 0, 1) and (1, 1, 0).

In Section 2, the choice of the unit cell and the Bril-
louin zone in amagnetic field is considered. In Subsec-
tion 3.1, the strong coupling approximation is used for
constructing the wave function satisfying the general-
ized Bloch—Peierls conditions [19]. In Subsections 3.2
and 3.3, the energy spectrum is determined and the
Fermi surfaces are constructed in the vicinity of primeval-
ues of the number of magnetic flux quanta (1/2 and 1/3).
It is shown that the physical properties of metals with
an fcc lattice may change radically in a magnetic field.
For instance, intheH || (0, 0, 1) orientation for even val-
ues of the denominator of p/g, when the energy bands
contact one another, the metal is converted into an insu-
lator (semimetal). For odd values of g, metallic proper-
ties are preserved, but the number of electrons in the
upper partialy filled band is of the order of N/qg, where
N isthe total number of free electronsin the metal. The
guantum states and the Fermi surface for the field ori-
entation along (1, 1, 0) for p/q = 1/2 areinvestigated in
Section 4. The formation of magnetic subbands for
energies corresponding to open orbits is investigated
for a magnetic flux close to p/q = 1/2. In Section 5,
peculiarities of the de Haas-Van Alphen effect in a
strong magnetic field are considered. It is shown that in
theinterval 0 < p/q < 1, severa series of magnetic sus-
ceptibility oscillations must be observed in the region
of fields corresponding to values of p/g with small
denominators g. The effect of Landau level broadening
on the type of magnetic oscillations is al'so considered.
The total energy of the electron gasfor H || (0, O, 1) is
also calculated at characteristic points p/q =0, 1/4, 1/3,
1/2, 2/3, 3/4, and 1. It is shown that the minimum is
attained for p/q = 1/2. Thelatter circumstance indicates
that in an ultrastrong magnetic field (with the given ori-
entation), a monovalent metal with an fcc lattice
becomes paramagnetic.

Obvioudly, the experimental observation of the
effects considered by us here requires crystals with a
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large | attice period and ultrastrong magnetic fields. The
record value of the magnetic field (H = 28 MG) was
attained recently at the Russian Federal Nuclear Center
(VNIIF) (Sarov). If the crystal lattice period is 34 A,
the magnetic flux in such fieldsis p/q ~ 0.1, and we can
speak only on the Landau level broadening. In lattices
with a period of 5-6 A, p/q ~ 0.2-0.3, and the effects
considered below can be observed experimentally.

2. MAGNETIC TRANSLATIONS
AND MAGNETIC UNIT CELL

Let us first determine the law of transformation of
wave eigenfunctions in a magnetic field and the shape
of the magnetic Brillouin zone. This will be done
mainly following [20] as well as[21]; however, it will
be convenient to use the Landau gauge. Let the mag-
netic field H be directed along a certain translation as.
We choose the Cartesian system of coordinates (X;, X,
X3) SO0 that one of the axes (wedenoteit by x;) isdirected
along the magnetic field, while the other two axesliein
the plane perpendicular to H. The law of transformation
of the wave function upon translationsis determined by
the vector potential gauge; we choose the vector poten-
tia intheform A = (0, Hx,, 0).

Let Y(r) be a certain eigenfunction of the Hamilto-

nian H (r). Under thetrandationr — r +a(aisalat-
tice period), this function is transformed into Y(r + a),
but it is now an eigenfunction of the Hamiltonian

H (r + a) which does not coincide with H (r) since the
vector potential has been transformed as follows:

A(r) — A(r +a) = A(r) + Ha;n,.

Here, a hascomponents(ay, a,, a3) inthe Cartesian system
of coordinates (X, Xy, X3). In order to obtain the eigenfunc-

tion of H (r), we mugt return to the initid Hamiltonian,

which can be carried out through the gauge transforma-
tion
A"A'}'Df, f :—Ha1X2,

under which the wave function acquires an additional
phase factor:

Y — Pexp(ief/hc).

Denoting the result of all the operationsby T.(r), we
define the magnetic translation operator
Tap(r) = W(r +a)exp(iha,x,), 1

where h = |gJH/Ac. It iswell known [21] that the opera-

tor T, introduced here can be referred to asthe transla-
tion operator in amagnetic field.
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It follows from definition (1) that after two succes-
sivetrandations by aand a', we have

TaTa = Tara)(a ),

. L @)
(A)(a, a) = exp(_l halaZ)l
and, hence, the operators T, and T. generally do not
commuite,

TaTa = TaTaexp(=2ihaja,),

and ensure not an ordinary, but a projected representa-
tion of the trandational group. The basis of these repre-
sentations are the wave functions of the stationary
states of a Bloch electron in a magnetic field. Obvi-
oudly, this representation is not projected, but ordinary
if the condition w(a, @) = 1 is satisfied in (2). Accord-
ingly, the trandlations for which this condition is satis-
fied form the group of magnetic translations ensuring
the Bloch law of transformation of the wave function.
We will distinguish between these translations using
the subscript m: a,, = (a4, @m agm)- It follows from
relations (2) that trand ations are magnetic if the follow-
ing condition is satisfied:
a-lma-|2m

ha, a5, = 2T .

=2mp, p=123,...; B

i.e., the magnetic flux through the area a,,a,,, isequal
to an integral number of flux quanta ®, = 21tic/|e]. In

formula (3), &y, @, are the components of the two

vectors a,, and a,,, carrying out magnetic translations
along the axes x; and x,. In acrystal with aunit cell con-
structed on noncoplanar shortest tranglations a, and a,
as well as a; || H, condition (3) will be satisfied in a
magnetic field satisfying the condition

Halx1a2><2 _Db

D, q’ )

where a,, and a,,, are the components of the basis

vectors a; and a, along x; and x,, respectively, and q is
an integer. In this case, in accordance with relations (3)

and (4), vectors a,, and a,, must be chosen so that
amdom = gauy,asy, - Consequently, condition (3)
defines not the entire magnetic trandation vector, but
only its components along the axes x; and X,, lying in
the plane perpendicular to H. Consequently, amagnetic
unit cell in the 3D space of the crystal can be chosenin
various ways. For its optimal choice, we can use the
principles similar to those employed for deriving the
Bravais lattices. if condition (3) is satisfied, the mag-
netic cell symmetry must correspond to the symmetry
of the entire lattice; the number of right angles and
equal sides must be maximum, and the volume of the
magnetic unit cell must be minimal.
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Since we are studying the guantum states of a Bloch
electron in an fcc lattice, we define a magnetic unit cell
and the magnetic Brillouin zonefor thistype of | attices.
We direct the Cartesian axes of coordinates (X, v, 2)
along the sides of a cube. In such a geometry, the vectors
forming the unit cell have the coordinates (a/2, 0, a/2),
(0, &/2, al2), (a/2. a/2, 0). For the sake of definiteness,
we consider two field orientations: H || (0, O, 1) and
H | (4,1, 0).

(a) Let us assume that the magnetic field is directed
alongtheaxisa; = a(0, 0, 1) and the vector potential has
theformA = (0, Hx, 0). It follows from relation (4) that
for the given field orientation, the fraction p/q is the
number of magnetic flux quanta through the area a%/4.
It is convenient to choose the vectors defining magnetic
trandations for even and odd values of q in different
ways. Namely, for an even g, the magnetic unit cell is
constructed as a right parallelepiped on vectors a,,, =
(ga/2, 0, 0), a,, = (0, ga&/2, 0), azy, = (0, 0, a). Conse-
guently, the magnetic Brillouin zoneis also aright par-
allelepiped with asguare base, constructed on the recip-
rocal lattice vectors by, = (2/ga, 0, 0), by, = (0, 2/ga, 0),
bs,, = (0, 0, 2/a) dueto the presence of atoms at the cen-
ters of the faces of the fcc lattice. For odd g, amagnetic
cell is an oblique prism whose basis vectors have the
coordinates (qa/2, 0, a/2), (0. qa/2, a/2), (qa/2, ga/2, 0)
in view of the presence of atoms at the centers of the
faces of the fcc lattice. It should be noted that on these
basis vectors, one can aso construct a Wigner—Seitz
cell possessing all the symmetry elements of a mag-
netic lattice. The Brillouin zone for g = 3 and for the
given orientation of the magnetic field will be con-
structed in Subsection 3.3.

(b) Inthe casewhen H || a5, where a; = (a/2, a/2, 0),
it is convenient to choose a new Cartesian system of
coordinates, in which axis X5 || H, and the new coordi-
nates (Xy, X,, X3) are connected with old onesthrough the
following relations:

Once again, we choose the vector potentia in the Lan-
dau gauge: A = (-Hx,, 0, 0). It follows from relation (4)
that in this case the fraction p/q is the number of mag-
netic flux quanta through a rectangle with sides

a/2./2and a/2, lying in the plane (x,;x,) O H. In analogy
with case (a), it is convenient to construct a magnetic
3D cell for even and odd values of qin different ways.
Namely, for an even g, it may be chosen in the form of a
right parallel epiped constructed on the vectors having the
following components in the (xy2) system: (a/2, a/2, 0),
(a/2, —al2, 0), (0, 0, ga/2). Thereciprocal lattice in this
caseisarectanglewiththebasisvectorsb,,,= (2/a, 2/a, 0),
b, = (2/a, —2/a, 0), b;,, = (0, 0, 2/ga). If the value of g
is odd, the magnetic cell is an oblique prism con-
structed on the basisvectors(a/2, a/2, 0), (a/2,—a/2, 0),
(a/2, 0, ga/2).
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3. QUANTUM STATES AND FERMI SURFACE
FOR THE FIELD ORIENTATION ALONG (O, 0, 1)

3.1. Derivation of the Harper Equation

The wave function, which isan eigenfunction of the
magnetic tranglation operator [17], for an fcc lattice in
the strong coupling approximation will bewritteninthe
form

Wi(r) = 5 gu(k)exp(ikay)

n,m,l

x expD 2m Ply— maIZ)% (5
_ha ma |
x lIJO y_7l Z_—z%a

where the wave function Yu(r — a,) describing the s-
state of an electron in an isolated atom in a magnetic
field satisfies the Schrédinger equation with the atomic
potential U(r —a,). Summation in expression (5) iscar-
ried out over al sites of the fcc lattice, integral indices
(n, m, I) defining the coordinates of the atoms in the
crystal lattice. The introduction of the phase factor

ma/2
expDZmS—(y N )rE

into relation (5) ensures the correct law of transforma-
tion of the wave function under translations, which was
formulated in Section 2. Coefficients g, describe the
distribution over the sites of a magnetic cell.

Let us now derive the system of equations for coef-
ficients g,,. For this purpose, we substitute function (5)
into the Schradinger equation with the Hamiltonian

~

2
A= Zlmgg_gAg FV(r),

where V(r) isthe crystal potential. Proceeding in com-
pliance with the method of strong coupling, we calcu-
late the overlap integrals between adjacent sites, thus
obtaining the system of difference equations for coeffi-
cients g,(k). The overlap integrals between adjacent
sites in the xy plane in the presence of amagnetic field
has the form

A= J'eXpD+2mg(y (m+1/2)a;/22+(n+ﬂ2)a/2)|]
(6)

X Po(r —ap ) (V(r) =U(r —a,))Wo(r —a,)dt,

where @) = ((n + 1)a/2, (m = 1)a/2, la/2). Obviously,
in integral (6), the narrow region of maximum overlap
of the wave functions, which is located at points x =
(nx 1/2)a/l2, y = (mz 1/2)a/2, plays a significant role.
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Substituting this value of y into the phase factor in the
integrand, we obtain

= expD+2T[| p%\ + :—lz%a,

wherea isthevalue of the overlap integral in zero mag-
netic field. In should also be bornein mind that the inte-
grand in formula (6) contains atomic wave functionsin
the presence of amagnetic field. Consequently, the con-
stant in the overlap integral must also differ from its
value for H = 0. We can expect that the change in the
form of the atomic function is significant in the mag-
netic field for which the cyclotron frequency in aplane
perpendicular to H is much larger than the characteris-
tic atomic frequency. In the magnetic field H = 30 MG,
W, =5 x 10" s i.e., energy #w), is much smaller than
the separation between atomic levels. Consequently, it
can be expected that the form of function Y, in such
fields and, hence, the overlap integrals will not differ
significantly from the value obtained above. It can also
be verified easily that the Zeeman splitting in magnetic
fields H = 10’ G is also much smaller than the charac-
teristic atomic energy. This means that the positions of
the centers of energy bands will change insignificantly
as compared to the casewhen H = 0.

The overlap integral in the xz plane has the form

B:Iap%ngﬂ—E@@Ewd S

x (V(r) =V(r —a,))Wo(r —a,)dr,

where a" = ((n + Da/2, ma/2, (I + 1)a/2). In analogy
with the previous case, we put y = ma/2 and find that
B = a. Finally, the overlap integral between the atoms
in the yz plane can be presented in the form

= expD+2T[| prﬁa.

The calculations for the second group of the nearest
neighbors located at points (a, 0, 0), (0, a, 0), (0, 0, a),
etc. can be carried out in asimilar way [17]. The over-
lap integral between the wave functions for this group
of neighborsin zero magnetic field will be denoted by r. It
is well known that the ratio r/a < 1 for most metals
(Cu,Ag, Au, Al) [22].

The final form of the equation for coefficients g, in
the given orientation of the magnetic field is

1eXpD ;E

E:osEky + 2T[q[ 2]D+ CosS—= ZED

2a[gn

Ky
+ g0 100H %51
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/g = 1/120
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Fig. 1. Magnetic subbands (Landau levels) in an fcc lattice
in aweak magnetic field H || (0, O, 1) for k, = 3174a.

2TVa
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W4a

S

0 21a k,

=00

Fig. 2. Cross sections of the family of constant-energy sur-
faces defined by relation (9) by the plane k, = 3rvda for r = 0.
The bold line indicates the boundary of the first Brillouin
zone and arrows indicate the direction of rotation in a mag-
netic field.

X E:os%%—i + 2T[ap [n + %E + COS— ZaD (8)

k.2 d(y p
+ 2C0S—= 5 COS7 + 211 ngn}

+ r[gn_zexp(—i k.a) + g,..exp(ik,a)

+ 2%:05%(@ + 4115 rH + coskzéggn} =

It should be noted that in contrast to the standard
Harper equation [2], the difference equation (8) dis-
plays the modulation of the diagonal as well as nearly
diagonal terms. Besides, system (8) is five-diagona
when the interaction with the next group of nearest

—€0,-
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neighbors (r # 0) istaken into account. It should also be
noted that in contrast to the standard Harper equation,
system (8) is not symmetric relative to the substitution
€ —= —€. The quasimomentum components (k;, k, k)
in the present case vary in the magnetic Brillouin zone
described in Section 2 (item (a)).

Note that the wave function (5) with coefficients g,
satisfying system (8) describes an electron density dis-
tribution which possesses translational invariance only
relative to magnetic trandations and which is nonuni-
form within amagnetic cell. However, the electron den-
sity distribution in real crystals can be nonuniform only
within a single unit cell of the crystal due to the Cou-
lomb interaction. In order to make the density of states
homogeneous within a magnetic cell, we must take a
linear combination of functions (5) using the degener-
acy of Eq. (8) in the quantum number k. Such func-
tions are obviously the regular functions of the zeroth
approximation in the Coulomb interaction. The corre-
sponding calculations are completely similar to those
made in [17] for asimple cubic lattice.

In zero magnetic field (p/q = 0), system (8) leads to
the standard dispersion relation of an fcc latticefor H =0
[22, 23]:

_ kaa kja
e(k) = -4a %:037 cos7
+ cosk—a cosk 24 cosk—a cosk— O ®)
2 2 2 20

—2r(cosk,a + cosk,a + cosk,a).

Let usfirst consider the energy spectrum defined by
system (8) for r = 0in therange of weak magnetic fields
(p/g < 1) and compare the result with the Onsager—L if-
shits semiclassical approximation [18]. For this pur-
pose, we determine the spectrum of system (8) for a
fixed k, paralléel to H. Figure 1 shows afragment of the
spectrum defined by Eq.(8) for k, = 3rv4a. It should be
noted at the very outset that in a weak magnetic field,
the energy isvirtually independent of k, and k,; i.e., the
spectrum consists of narrow bands. In other words, the
Landau levelsare practically not broadenedin this case.
At the sametime, Fig. 2 shows the sections of the fam-
ily of constant-energy surfaces defined by relation (9) by
the same plane k, = 3r74a. It isthese sectionsthat give the
semiclassical trgectories and discrete Onsager—Lifshits
spectrum for k, = 3174. Figure 1 shows several sequences
of energy levels (narrow magnetic subbands) which may
correspond to different semiclassicd trgectories. The
energy spectrum in regions A, B, and C in Fig. 1 corre-
sponds to trgjectories A, B, and C in Fig. 2. The trgjec-
toriesin Fig. 2 are of the electron type in regions A and
B and of the hole typeinregion C. In Fig. 1, this corre-
sponds to different slopes of the levels (as functions of
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the magnetic flux) inregions A, B, and C. The region of
condensation of levelsin Fig.1 (region D) corresponds
to the separatrix in Fig. 2. It can be verified that the sep-
arations between the levelsin Fig. 1 completely corre-
spond to the values obtained in the case of the Onsager—
Lifshits quantization.

. oka@a ok,a 2k.a
€1,,= i4a[sm2%5| + cos’ == E:os oty

Consequently, & O [-2r, 40./2 + 6r] and &, O

[—40(@ —6r, 2r]; i.e, inregion [-2r, 2r], band over-
lapping takes place due to the inclusion of the second
group of nearest neighborsin the lattice. For r = 0, the
bands just touch each other at the point € = 0. Thus, the
second term in the dispersion relations (9) and (10)
becomes significant in the presence of root-type singu-
laritiesin theregion € = 0. For the given magneticfield ori-
entation, asimilar situation takes place for all even values
of the denominator of the fraction p/q. It follows from the
above analysis (see Section 2) that for p/q= 1/2 and for the
given orientation of the magnetic field, the Brillouin zone
is acube constructed on vectors (2173, 0, 0), (O, 2174, 0),
(0, 0, 21va). Function (10) is periodic in this region, as
expected. It should be noted that the volume of the
magnetic Brillouin zone is equal to 1/g? = 1/4 of the
volume of the initial Brillouin zone for H = 0, al the
states in the magnetic band being doubly degenerate
ink,.

The Fermi level and the Fermi surfacein amagnetic
field can be determined from the condition that elec-
trons in a monovalent metal (taking into account the
spin) occupy avolume equa to half the volume of the
initial Brillouin zone. This can be done by calculating,
using relation (10), the volume occupied in the k space
by electrons whose energy does not exceed the given
value. The results of such a calculation for r/a = 1/8,
H |[(0,0, 1), and p/qg=1/2 are presented in Fig. 3. These
results show that the Fermi level lies in the region of
band overlapping. The Fermi surface consists of two
types of cavities. the electron type (cavities 1) in the
upper magnetic subband and the hole type (cavities 2)
in the lower subband. Since the region of subband over-
lapping is small (in view of the condition r < a), the
volumes of the cavities occupied by electrons and holes
constitute a small part of the Brillouin zone. Thus, for
p/q = 1/2, a monovalent metal with an fcc lattice is
transformed into asemimetal or an insulator (for r = 0).
It follows from relation (10) and Fig. 3 that at point t
with the coordinates k, = 1/2a, k, = 0, k, = —Tva and at
equivalent points, self-intersection of electron and hole
cavitiestakes place. In this case, amagnetic breakdown
can obviously take place.

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 93

2 5}] 1/2
cos - } —2r(cosk,a + cosk,a + cosk,a).

173

3.2. Dispersion Relation, Magnetic Brillouin Zone,
and the Fermi Surface for p/q = 1/2

For p/q = 1/2, the spectrum can be determined from
the condition of vanishing of the second-order determi-
nant of system (8). In this case, the energy in the upper
and lower subbands is defined as

4 (10

3.3. Fermi Surface for p/q = 1/3

If the magnetic flux p/q through areaa?/4 is equal to
1/3, the spectrum is determined from the condition of
vanishing for the third-order determinant of system (8).
In this case, we can put r = 0 in Eq. (8) sincetheinclu-
sion of the second term in relation (9) is required only
in the regions of small overlapping of subbands. At the
sametime, aswill be proved later, the Fermi level inthe
case under investigation lies far from the band edge.
Three roots of the cubic equation correspond to three

magnetic subbands defined by
€ = ZScos%arccos%E, (11)
€, = —Zscos%+ ;arccos T (12
€ = —ZSCOS%T—%arccos T (13)

where the energy is measured in the units of a, s =

/6 +4cosk,a, and

Fig. 3. Electron (1) and hole (2) Fermi surfaces for a
monovalent metal for P/ =1/2and H ||(0, 0, 1). Self-inter-
section takes place at point t and at equivalent points. The
diagram of overlapping magnetic subbands and the position
of the Fermi level Ex = 0 are shown on theright. The energy
is measured in the units of a.
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- +
f= COS3(ky - k)a Cc)SB(ky : k,)a

3ka  3k,a 3K a7
—12(1 + cosk,a) —2cos > E:os > — COS >0

The mutual arrangement of the magnetic subbands is
shown on theright sidein Fig. 4.

Ep=158
€

Er 2<g <47
04-08<g,<27

—47<g<-2

Fig. 4. Two types of the electron Fermi surfaces for a
monovalent metal for p/g=21/3andH || (0, 0, 1): “hills” and
valleys’ (1) and ellipsoidal-type surfaces (2). The diagram
of magnetic subbands and the position of the Fermi level are
shown at the top.

plq

_p/q =1/3

[HHHIBHILHORUHE

1.3 1.4 1.5 1.6
E

Fig. 5. A fragment of the spectrumin anfcc latticein amag-
netic field H || (O, 0, 1) in the range of p/q closeto 1.3 for
k= 0andk, =k, =0. The position of the Fermi level isindi-
cated.
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In accordance with what was said in Section 2, the
magnetic Brillouin band isatruncated parallel epiped con-

21 21
dtructed on the vectors 3a(1’ 1, 3), 3a(1’ -1, -3),

2—2(—1, -1, 3) and enclosed in the parallelepiped

—2m3a<Kk, < 213a, -2m3a<k, < 21/3a, -2ma<k, <
21va (see Fig. 4). Its volume constitutes 1/g° = 1/9 part
of the volume of the first Brillouin zone for H = 0, and
al the states are triply degenerate in k. The functions
defined by relations (11)—13) are periodic in this Bril-
louin zone.

The Fermi level can also be determined in the same
way as for p/q = 1/2. It lies in the middle band defined
by Eq. (12), for Eg = 1.58; the corresponding Fermi sur-
faceisdepicted in Fig. 4. It should be noted that it con-
sists of two cavities of the electron type: cavities 1,
which can be called “hills’ (below) and “valleys’
(above), and ellipsoida cavities 2. Electrons fill the
regions located between the upper and lower bound-
aries of the Brillouin zone and cavities 1 as well as
between the lateral faces of the Brillouin zone and the
cavities of type 2. In contrast to even values of the
denominator of fraction p/q, a considerable part of the
Brillouin zone is occupied in this case: the regions
depicted in Fig. 4 contain 1/3 of the total number of
electrons. Thus, a monovalent metal with an fcc lattice
for p/q = /3 remains atypical metal.

Let us aso consider the form of the spectrum for
magnetic flux values close to 1/3:

p_1,1 s 14

q 3 ql 1 q ( )
It was proved above that in weak fields (p/q < 1), the
guantization law determined by system (8) is identical
to semiclassical Onsager—Lifshits quantization rules. In
the range of p/q defined by relation (14), both methods
of calculation also lead to the same result. For example,
Fig. 5 shows a fragment of the spectrum for k, = O for
the band containing the Fermi level. 1t should be noted
that for g' > 1, magnetic subbands are very narrow and
appear as a system of nearly discrete levels. It can be
seen from Fig. 5 that the extreme cross section corre-
sponds to a sequence of equidistant levelsin the region
of Er. The separation between these levels is in good
agreement with the value that can be obtained by applying
the Onsager—Lifshits quantization rules to spectrum (12)
for k,=0.

4. QUANTUM STATES AND FERMI SURFACE
FOR THE FIELD ORIENTATION ALONG (1, 1, 0)

Let us now consider the case when the field H || as,
wherea; = (a/2, a/2, 0). In analogy with Subsection 3.1,
we can write the wave function in the strong-coupling
approximation in form (5) with anew phase factor:
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Wi(r) = Zgn(k)exr)(ikan)
n,m,|

p(X1 malzﬁ)

qa  a/2.2 D

ma na lapg
X %%1—_ X

23 T2 Ty

where the integral indices (n, m, 1) define the coordi-
nates of atoms in the crystal lattice. The evaluation of
the overlap integrals in the planes x;Xs, XXy, and X X3
leads to the following system of difference equations
for coefficients g,;:

[cos 7 %n 16X

2
[bkj_;+2n [ E

x exp [21'[ (15)

kaD

O

X COSD

1
9n+1exp% ZEECOSDZﬁ 2n§[n+§EE

%%osk— cosd(1 r%gn}

(16)

+ r[gn_zeXP(—i k,a) + g, exp(ikqa)

k.a
+ 4cos—>= cosd(L

a_, p } _
+4AT=r=g, | = —€49,.
Ny qrﬁg 9

The form of this system is the same as for system (8).
The quasimomentum components (K;, Ky, kg) run
through al values in the magnetic Brillouin zone
defined in Section 2 (item (b)). It should be noted that
in the given orientation, aswell asfor H || (0, 0, 1), sys-
tem (16) remains afive-diagona system, whileforr =0it
is athree-diagona system, which is ensured by the opti-
mal choice of the vector potential gauge. The following
interesting features of the solutions of system (16) are
worth noting. It can easily be seen that for even vaues of
g, the solutions are doubly degenerate: the energy €, cor-
responds to functions{g,} and {(-1)"g, . 4.} . Besides, as
in the standard Harper equation, system (16) for k; =
k, = O isinvariant to the substitution n — q—n. This
symmetry property for the wave functions is reflected
in Figs. 7b and 8b presenting the eigenfunctions of sys-
tem (16). The symmetry k; — —k; also takes place as
in zero magnetic field.

For p/g = 1/2, system (16) leads to the spectrum in
two magnetic subbands:

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 93

175
kia . ka ksa
€, , = x8da|siN——=sSin—cos——
' 2.2 2
2 2 an
—20kosK1 + cos’eA
% ﬁ ﬁD

Here we put r = 0 since the Fermi level (see below)
lies far from the edges of the bands in the region of
their strong overlapping. The energy defined by rela-

tion (17) liesin theintervals g, O [-4a, (4.2 + 2)a]
and &, O [-(442 + 2)a, 4a]. In other words, we

(a)

m/2/a

—(4.2+2)

-m.J2/a

Fig. 6. Electron (a) and hole (b) Fermi surfaces correspond-
ing to the upper and lower magnetic subbands (17) for a
monovalent metal for H || (1, 1, 0) and p/q = /2. The dia-
gram of magnetic subbands and the position of the Fermi
level are shown on the | eft side of ().
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Fig. 7. The spectrum (&) and the wave functions (b) for
H || (1, 1, 0), p/q = 51/100, and cross section k3 = 0. In (a),
the following notation is used: Fermi level (1), levelsin the
region of open trgjectories near the bottom of the upper
magnetic subband (17) (2), and levelsin theregion of closed
trajectories near the top of the upper magnetic subband (17)
(3). In (b), the eigenfunctions corresponding to the energy
levelssingled out in () for the values kq = ky = 0.

observe a strong overlapping of magnetic subbands
even when only the first group of nearest neighborsis
taken into account (see the diagram of the magnetic
subbands on theright side in Fig. 6a). We can state that
in contrast of the 2D case, in which magnetic subbands
either touch one another or are separated by forbidden
gaps, the bandsin the 3D problem with the energy depen-
dence on the three quasimomentum components overlap
asarule. For this reason, the contact of energy bands for
even vaues of g, which was considered in Subsection 3.2,
is rather an exception from the general rule.

Figure 6 shows the Fermi surfaces for amonovalent
metal for p/q = 1/2: the electron-type Fermi surface in
the upper magnetic subband is presented in Fig. 6aand
the hole-type Fermi surfaces in the lower subband are
presented in Fig. 6b. Since the overlap region for two
magnetic subbands for the given orientation of H isnot
small, the Fermi surfacesin Fig. 6 occupy a consider-
able part of the Brillouin zone. It follows hence that a
monovaent metal with an fcc lattice for the given field
orientation and for p/q = /2 remains atypical metal in
contrast to the case when H || (0, O, 1). Relations (17)
and theresults presented in Fig. 6 show that the el ectron
and hole cavities touch one ancther in the planes where
the expression in the modulusin (17) vanishes.

L et us now consider the spectrum of system (16) for
magnetic flux values differing insignificantly from 1/2:
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Fig. 8. The spectrum (a) and the wave functions (c) for H ||

(1, 1, 0), p/qg = 51/100, and cross section k3 = 411./2 /5a. In
(a), the following notation is used: Fermi level (1), levelsin
the region of open trgjectories (2), and levelsin the region
of closed trajectories from the upper magnetic subband (17)
(3). Magnetic subbands in the region of open orbits corre-
sponding to region 1 are shown in (b) (with their numbers)
on amagnified scalefor p/q =21/40 = 1/2 + 1/40. In (c), the
eigenfunctions corresponding to the energy levels singled
out in (8) are shown for ky =k, = 0.

p/q =12+ 1/q, whereq > 1. In this case, we must pay
attention to the structure of magnetic subbands in the
energy range corresponding to open orbitsin the semiclas-
sica approximation. It is convenient to construct the
energy spectrum for afixed value of k;. Such aspectrumis
depicted in Fig. 7afor p/q = 51/100 and for k; =k, =0

(section ks = 0) and in Fig. 8a (section ks = 411./2/5a).
Figures 7b and 8c show severa eigenfunctions for the
levels representing a certain spectral region: functions 1
correspond to the Fermi level, 2 to open trgjectoriesand
3 to close orbits. A comparison of Figs. 7 and 8 shows
that as the section k; = const approaches the boundary
of the Brillouin zone, the fraction of energy values in
the continuous spectrum increases in accordance with
the dispersion relation (17) and Fig. 6, where p/q = 1/2.
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In the quantum-mechanical problem, the structures of
magnetic subbands in the region of open and closed
orbits differ significantly. This can be clearly seen in
Fig. 8a: closed orbits correspond to exponentialy nar-
row energy bands (Landau levels in the semiclassical
approximation), whose separations are determined by
the cyclotron frequency, while open orbits correspond
to relatively wide bands separated by narrow forbidden
gaps. We established that at the boundary between the
energies corresponding to open and closed orbits, the
width of the magnetic subband increases sharply, while
the separation between subbands decreases. Such a
behavior can be explained as follows. open orbits cor-
respond to wave functions which are strongly delocal-
ized in theregion of amagnetic cell, while closed orbits
correspond to localized functions (see Figs. 7b and 8c).
The width of a magnetic subband is obviously deter-
mined by the tunneling probability (overlap integral)
between neighboring cells. For this reason, the width of
amagnetic subband for delocalized statesis larger than
for localized states. The structure of magnetic subbands
in the region of the Fermi level is depicted in Fig. 8b.
The Fermi level lies in the region of the eleventh and
twelfth bands, which are in contact with the ninth and
tenth bands. It should be noted that magnetic subbandsare
arranged in pairsin view of the double degeneracy of the
solutions of system (16) described above for even q.

5. TOTAL ENERGY OF ELECTRONS
AND MAGNETIC SUSCEPTIBILITY

The dispersion relation and Fermi surfaces deter-
mined above for an fcc lattice in an ultrastrong magnetic
fidd makeit possible to cdculate the total energy of con-
duction dectrons and to predict qualitatively the type of
magnetic susceptibility oscillations of the electron gas.
Thefollowing two typical features of oscillatory effectsin
ultrastrong magnetic fields are worth noting.

First, a change in the magnetic field in the interval
of p/gfrom 0to 1 must giveriseto several seriesof typ-
ical oscillations of the magnetic susceptibility. These
seriesliein the vicinity of prime rational values of p/q
with small values of g. In particular, in the vicinity of
p/q = 1/3, the oscillations are associated with the passage
of narrow magnetic subbands (see Fig. 5) through the
Fermi level, the period of oscillations being determined by
the area of the extreme cross section k, = 0 of the type (2)
surfacein Fig. 4. It was mentioned above that for the mag-
netic field value corresponding to p/q = 1/2, the Fermi sur-
face conssts of the small éectron and hole cavities
depictedin Fig. 3. Theextreme cross sectionsarethe cross
sections k, = £17a whose areais much smaller than, for
example, the area of the “paunch” (the cross section of
the Fermi surface of a monovalent metal by a plane
passing through the origin). Since the distance between
two cavities on the Fermi surface is small, we can
expect aconsiderabl e effect of the magnetic breakdown
on the form and frequency of the oscillations. A similar
situation in gquasi-two-dimensional organic conductors
was discussed in [9, 10].
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Fig. 9. Oscillations of magnetization in alayer dk, without
taking into account (saw-tooth curve) and taking into

account (smooth curve) the finite width of magnetic sub-
bands.

Second, in each series of the oscillations, level
broadening effect takes place, leading to a decrease in
the oscillation amplitude and to a relative decrease in
the contribution from high harmonics. In order to esti-
mate thiseffect quantitatively, we make use of thefact that
in amagnetic field p/q = 1/q’, where g > 1 and the mag-
netic subband width isAE,, < Aw,. Here, w, = eH/mc and
m = (1/2m)0S de, where (g, k,) is the area bounded by
asemiclassical trgjectory inthe cross section k, = const.
We use a simple model of the spectrum in the nth 3D
magnetic subband: e,(k,, k,, k) = €n(k,, k,) +7%2K2 /2m,
where g.,(K;, k) is the energy spectrum in the nth 2D
magnetic subband, and assumethat T = 0. We also assume
that the center of the magnetic subband &.,(k,, k) in this
field region coincides with the position of the nth Lan-
dau level Ao (n + 1/2). The number of magnetic sub-
bands may change rapidly upon a change in the mag-
netic field, but all of them are grouped near the Landau
levels. In this case, we can disregard the fine structure
of these subbands and speak of the broadening of the
nth level, which remains practically constant and equal
to AE,,. Such apattern of the spectrum in weak fieldsis
typical of any model of the spectrum of 2D Bloch elec-
tronsin aweak magnetic field.

It is well known [24] that the magnetic moment of
an electron system with equidistant Landau levelsin a
layer of thickness &k, near a certain k, is given by

8I
M = —ﬁF(n—no),

where g =g —#2 kﬁ /2mand (n — ny) isthe difference
in the populations of the layer dk, in the given field H

and in zero field. In the absence of Landau level broad-
ening, oM is a periodic function of 1/H with period

eh/mcer depending on k,. For values of H determined
by the condition Aw(n + 1/2) = &, when the upper

Landau level passes through €, the electron concen-
tration in the layer ok, changes jumpwise by
(eH/41ech)dk,, while the magnetization dM experi-
ences sdiscontinuity with thejump (egg /41ech) 8k, (the
saw-tooth curvein Fig. 9).
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In the case when the system of discrete Landau lev-
els is transformed into a system of narrow magnetic
subbands, the form of the dependence of dM on 1/H
changes. This is due to the fact that with increasing
field, the next magnetic subband is vacated from elec-
trons not instantaneoudy, but over the interval AH,
where AH/H = AE/Aiw,, in which the given subband

passes through € . The behavior of the curve SM(1/H)

is determined in this case by the density of statesin the
subbands grouped near the Landau level. The qualita-
tive behavior of magnetization is illustrated in Fig. 9.
The transition region corresponds to the passage of the

subband with number n, n + 1, n + 2, ... through ;.

Obvioudly, the smoothness of the function dM(1/H)
leads to a qualitative change in the form of the Fourier
spectrum for the oscillations, namely, to the suppres-
sion of higher harmonics. In experiments, oscillations
with periods determined by the condition d¢,,/dk, = O
must be observed, which correspondstothevaluek,=0in
the model under investigation.

Concluding this section, we will calculate the total
energy of the electron gas. Thiswill enable usto deter-
mine the constant component of the magnetic moment.
The calculations will be made for zero temperature
since KT < #iw, in astrong magnetic field. We consider
the case when the field H || (0, 0, 1) and disregard the
second term in relation (9), which makes small correc-
tions to the total energy of the electron gas. The values
of the total energy in dimensionless units are given
below:

pla: 0 U4 VU3 VY2 23 34 1
E: -163 -170 -173 -200 -173 -170 -163

These dataindicate that the total energy of electrons
in magnetic fields p/q and 1 —p/q isthe same; inthe p/q
interval from 0 to 1/2, the energy decreases with
increasing field. The fact that the total energy decreasesin
a grong field is associated with a significant rearrange-
ment of the spectrum (cf. (9) and (10)). For p/q = 1/2,
when Er = 0, the maximum of the density of states cor-
responds to € < O (in this case, Ex = 0), while in zero
field, the density of statesfor the dispersion relation (9)
attains its maximum value for € > 0, and E- = 1. This
leadsto adecreasein the total energy on the interval of
p/g from 0 to 1/2. The minimum value is attained for
p/q = 1/2, i.e, for the number of magnetic flux quanta
piercing aunit cell equal to the occupationv of the Bril-
louin zone by electrons. Since p/q = v = 1/2 and the
density of states at the Fermi level is small and varies
smoothly with energy, we can expect that the curve
E(H) exhibits a smooth behavior near its minimum.
This distinguishes the 3D problem from the 2D prob-
lem [25], in which the derivative dE/dH suffers a dis-
continuity in the region of the minimum. A similar
result was obtained in [15, 16], where the problem on a
3D Bloch electron in asimple cubic lattice placed in a
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magnetic field with various orientations was consid-
ered. It should be noted that in the problem of a 2D
Bloch electron in amagnetic field, alocal energy mini-
mum al so takes place for v = p/q [25], when each elec-
tron corresponds to a magnetic flux quantum. In the 3D
problem, such an interpretation is ruled out. The
decreasein the total energy and, in particular, the exist-
ence of aminimum in a3D crystal in astrong magnetic
field indicates that monovalent metals with an fcc lat-
tice(Cu, Ag, Au), which arediamagnetic in weak fields,
become paramagnetic in an ultrastrong field. Indeed,
for absolute zero temperature, the constant component
of the magnetic moment on the p/q interval from 0 to
1/2 is positive:

M T >0;

i.e.,, the electron gas is paramagnetic. The absolute
value of susceptibility defined ask = M/H is compara-
ble in magnitude with that for aweak magnetic field:
K = 10°-105. It should be noted that the inclusion of
the spinin the model under investigation near p/q = 1/2
isimmaterial since the density of states in the vicinity
of the Fermi level (and, hence, the Pauli paramagnet-
ism) has the minimum value.

6. CONCLUSIONS

In the present work, the strong-coupling approxima-
tion is used to construct the explicit expression for the
one-electron wave function which is an eigenfunction
of the magnetic trandation operator ina 3D crystal ina
constant magnetic field. The Harper-type 3D equation
determining the amplitudes of the wave function at the
sites of amagnetic cell is derived and the energy spec-
trum in magnetic subbandsis determined. The transfor-
mation of the Fermi surface upon the application of a
strong magnetic field with the numbers of magnetic
guanta p/q = /2 and 1/3 is studied for a monoval ent
metal with an fcc lattice. The magnetic field was ori-
ented along the crystallographic directions (0, 0, 1) and
(1, 1, 0). A strong effect of the magnitude and orienta
tion of the magnetic field on the topology of the Fermi
surface is discovered. It is shown that a metal—semi-
conductor-type transition occurs in the (0, 0, 1) direc-
tion for even values of g, while for odd g, the upper
magnetic subband is filled approximately by half and
the metallic properties of the initial material are pre-
served.

The form of the de Haas-VVan Alphen oscillationsis
considered. It is shown that in magnetic fields corre-
sponding to the magnetic flux value p/q + 1/q', where p
and g are prime integersand g' >1, regular series of the
de Haas-Van Alphen oscillations similar to magnetic
oscillations in weak fields for p/q < 1 must be
observed. The effect of the Landau level broadening on
the magnetic oscillation spectrum is considered. The
dependence of the total energy on the magnitude of a
magnetic field directed along (0, 0, 1) isanalyzed and a
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minimum is observed for p/g = /2. This indicates that
the electron gas in a crystal placed in a magnetic field
may exhibit not only diamagnetic, but also paramag-
netic properties.
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Abstract—Thetransport properties of textured films and tunneling junctions of Lgg gSry 4MnO3, defined by the
surface state of the granule, are studied in low magnetic fields (below 100 Oe) and at pressures of up to 10 kbar.
Tunneling junctions of two types are investigated, namely, mechanical break junctions and Lgg gSro4MnOs—
insulator—superconductor junctions. Although only one el ectrode represents the magnetic materia in the latter
case, all samples exhibit a low-field magnetoresistive effect. Hydrostatic compression suppresses the magne-
toresistive effect to considerably change the transport properties of ceramic and tunnel samples. The reasons
for such behavior are discussed in connection with the model of spin-polarized inelastic tunneling of charge
carriers through a potential barrier formed both by the intergranular region and by the surface of contacting
granules. Reasons are given for the fact that it is most probable that the magnetic state of the barrier and its
height vary under the effect of pressure because of the transition of the surface of granules to the metallic state.

© 2001 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

It has now been found experimentally that mono-
and polycrystaline samples of lanthanum manganites
exhibit fairly diverse magnetoresistive properties. While
the resistance of monocrystalline samples varieslittle in
low magnetic fidds, polycrystaline and ceramic sys
tems are characterized by a marked decrease in resis-
tance even in alow field (see, for example, [1-4]). In
early studies, this phenomenon was interpreted within
the phenomenological model [5], in which the insulat-
ing barrier transparency to charge carriers depended on
the relative orientation of electrode magnetization
alone. Later, anumber of forcible experimental and the-
oretical arguments appeared, which pointed to more
complicated physics of the tunneling effect in junctions
formed by magnetics, in particular, in tunneling sys-
tems of lanthanum manganites [6-15]. Namely, the pat-
tern of current flow in manganite materials is defined
both by the magnetic state of the granule proper and by
the structure of the intergranular barrier. This is evi-
denced, for example, by marked changes of the trans-
port characteristics as functions of temperature [6, 8,
11, 12, 14], by the dependence of thetunneling junction
properties on the barrier material for one and the same
material of the electrodes [10, 11], by the presence of
magnetoresistive properties even when only one of the
electrodes of the junction is magnetic [10, 11, 15, 16],
and so on. These results indicate that the intergranular
boundaries both serve asthe potential barrier and define
the pattern of tunneling of spin-polarized electrons
from deep within the granule.

At present, severa models have been suggested
which take into account the importance of the inter-

granular potential barrier in forming the transport prop-
erties of ceramic samples of lanthanum manganites.
However, in spite of the efforts made in this direction,
no full understanding has existed until now of the
importance of the intergranular boundaries as regards
the manifestation of the effect of spin-dependent tun-
neling; this lack of understanding shows up in some
inconsistency between the suggested models. For
example, themodel suggestedin[1, 2] isbased on spin-
polarized tunneling between ferromagnetic granules
through an insulating nonmagnetic barrier of the gran-
ule surface. In contrast, the authors of [4, 6] assumed
the emergence of magnetic polarization of the granule
surface due to magnetization inside the granule. A high
probability of tunneling through paramagnetic impurity
states in the intergranular barrier is suggested in [17,
18]. Ziese et al. [11, 19] and Svistunov et al. [15] sug-
gested a description assuming the presence of a sponta-
neous magnetically ordered state (clusters) in the bar-
rier. In parallel with the foregoing, models [14, 20] are
developed in which an additional tunneling barrier
between granules arises because of curving of zones
between the inner volume of the granule and its surface
after the transformation of the granule content to the
magnetically ordered state.

Of interest from the standpoint of investigating the
importance of the surface of granules as the potential
barrier are the procedures that cause a variation of the
pattern of flow of tunneling current through the barrier.
In this respect, unique possibilities are offered by the
method of the hydrostatic compression of the sample,
because the reaction of the conductance of the junction
between metals to pressure depends considerably on
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the barrier structure (see, for example, [21-23]). Note
that most of the previous tunneling experiments with
lanthanum manganites pursued the objective of produc-
ing the maximum magnetoresistive effect in low mag-
netic fields. Thus, the capabilities of the tunneling effect
as atool for spectroscopic investigations were not fully
realized.

It is the objective of our investigation to test the
validity of the assumptions made in [6, 11, 15, 19]
about theimportant part played by the magnetic state of
the boundary region of agranule (interface) in forming
the transport characteristics both of tunneling junctions
and of ceramic samples of lanthanum manganites. We
employed the procedure of hydrostatic compression of
samples and the available data on the variation of the
trangport properties of manganites under pressure [24—
28]. We expected to observe manifestations of theinternal
spatialy nonuniform magnetic structure of theinterfacein
the tunneling characteristics of junctions, as well as the
sengitivity of these characterigtics to low magnetic fields
and pressures. Indeed, the spectroscopic peculiarities of
tunneling enabled us to analyze the observed total sup-
pression of low-field magnetoresistive effect under condi-
tions of hydrostatic compression and relate this phenome-
non to the structure of spatially nonuniform state of the
manganite microsrystal being investigated.

2. MEASUREMENT PROCEDURE AND SAMPLES

The possibility of obtaining tunneling junctions on
a single granule was demonstrated by the results of
numerous investigations of superconducting cuprate
perovskites similar to manganites in morphology and
mechanical properties (see, for example, [29] and the
references cited there), while the procedure we
employed for preparing stable microcrystal junctions
made it possible to perform investigations at high
hydrostatic pressures.

The procedure for preparing single microcrystal
junctions consistsin making aceramic plate sized 0.1 x
1 x 10 mm?3, whose granules are aligned in one direc-
tion and are intimately mated with one another to form
ahighly textured structure. The plateisgluedto an elas-
tic substrate. The substrate is bent until acrack appears
in the ceramic plate that passes through all granulesin
the region of deformation. When the external load is
relieved, the plate returns to the initial position, the
crack “closes,” and the microcrystalsaretightly pressed
against one another on the lines of break. The most
“correct” alignment of the break of microcrystals must
be expected in the plate region in which the shear defor-
mationisminimal. Thisisapparently one of thereasons
why such a procedure results in the realization of only
one effective junction of the microcrystal—microcrystal
type. In the literature, junctions prepared by a similar
procedure came to be known as break junctions [29—
31]. The choice of a single junction with minimal tun-
neling resistance from the competing junctions is fur-
ther assisted by the very specific nature of the tunneling
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effect in which the value of current depends exponen-
tially on the barrier thickness (a variation of the barrier
thickness by 1 A usually causes avariation of the junc-
tion resistance several times over). The small thickness
of the plate according to the present procedure is an
additional important factor in preparing microcrystal—
microcrystal junctions.

We investigated LaySr,,MnO; ceramic samples
prepared by the procedure described in [15]. In partic-
ular, the reduced temperature and short time of anneal-
ing made it possible to prepare plates whose intergrain
bonds exhibited the tunneling pattern of current flow, as
reflected in the observation of a clearly defined low-
field magnetoresistive effect due to spin-dependent tun-
neling of electrons. The resistance of initial plates at
room temperature was in the range from 2 to 10 Q.
Theresistance of current and potential junctions was
R~ 107 Q cm?.

In order to check the quality of prepared plates of
LaysSrp4MnO;, the temperature dependence of their
resistance was measured. The latter had a characteristic
maximum in the neighborhood of 360 K, associated
with the metal—dielectric transition. Also measured was
the magnetoresistive effect, [p(T, 0) — p(T, H)]/p(T, 0),
in alow magnetic field; at T =77 K and H = 100 Oe,
this effect was 3-4%.

As in [15], the tunneling junctions on plates of
L&y gSrp4MnO; ceramic were prepared using two meth-
ods. Junctions of the nonmagnetic metal—ceramic type
(Pb-l-LaSrMnO junctions, where | is the insulator)
were formed by pressing adroplet of lead into the sur-
face of ceramic plates. Such junctions are formed at a
break of microcrystals of manganite and penetration of
metal (Pb) into the break region. The choice of lead as
electrode made possible the observation of the energy
gap of Pb upon transition to the superconducting state.
The presence of superconducting gap was unambigu-
ous proof of the tunneling mechanism of the flow of
current in Pb—l-LaSrMnO junctions.

Symmetric LaSrMnO—--LaSrMnO junctions of the
type of break junction were prepared by the procedure
described above. Note that another reason for the emer-
gence of an additional contribution to the tunneling bar-
rier in junctions of thistype is apparently the depletion
of the break surface of the ceramic plate in charge car-
riers. As in the case of cuprate superconductors, the
oxygen concentration plays an important part in the
position of the lanthanum manganite system in the
phase diagram. In the case of mechanical break of
ceramic, oxygen diffusesfrom the break surface, which
leads to the formation of a dielectric (semiconductor)
interlayer on the granule surface. It isthis fact that pro-
motes the formation of tunneling junction.

The junctions were prepared at both nitrogen and
room temperatures, however, their quality did not
depend much on the temperature at which the break
occurred. The characteristics of junctions prepared
from plates made in asingle production cycle differed lit-
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Fig. 1. The effect of pressure on the magnetoresistive prop-
erties of a Lag gSrg4MnO3 ceramic plate in low magnetic
fields: P =0, 3, 6.5, and 9.8 kbar (curves 14, respectively).

tle from one another. Sampleswith the junction resistance
of severd tensof ohmswere selected for tunneling studies,
which exceeded greatly the plate resistance and obviated
the problem of four-probe connection of thejunction [23].
The hydrostatic compression of sampleswas performed in
achamber of the piston—cylinder type with akerosene-ail
transmisson medium. A manganin pressure cell and a
copper-wire thermometer were placed inside the chamber
for monitoring the parameters.

3. EXPERIMENTAL RESULTS

We started our investigations with studying the
transport characteristics of LaygSry,MnO; ceramic

R(H)/R(0)

1.OF .

2
0.9 M
3

1 1 1
-50 0 50
H, Oe

-100 100

Fig. 2. The effect of pressure on the magnetosensitive part
of tunneling conductance of an asymmetric (Pb-—
Lag gSrg.4MnO3) junction in low magnetic fields: P =0, 3,
and 6 kbar (curves 1-3, respectively).
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platesin the absence of external pressure and the varia-
tion of these characteristics under the effect of pressure.
In accordance with the literature data on samples of the
composition being investigated [24-28], a strong effect
of pressure on conductance was observed in the entire
measured temperature range. Figure 1 gives the
reduced resistance R(H, P)/R(0, 0) of aLayzSr,,MnO;
ceramic plateasafunction of magneticfieldat T=77 K
for different values of applied pressureP. In view of the
fact that, at low temperatures, the magnetic state inside
granules varies little under the effect of pressure, it is
natural to assume that the observed variation of R(H)
with pressure is due to the effect of hydrostatic com-
pression on the conductance of the intergrain bound-
aries (interface). At the sametime, it isindicative of the
significant contribution made by the interface to the
sample impedance.

A similar effect of pressure on conductance is
observed for tunneling junctions. Figures 2 and 3 give
the R(H, P)/R(0, 0) characteristics for an asymmetric
(LaSrMnO——Pb) and a symmetric (LaSrMnO—I—
LaSrMnO) junction depending on magnetic fidd at
T=77 K and for different values of applied pressure.
One can seein Fig. 2 that the magnetoresistive proper-
ties of a junction are retained even if only one of the
junction sides is of a magnetoresistive material. With a
pressure P = 8 kbar, the same as for a bulk sample, the
effect disappears aimost completely.

Note that, in hysteretic dependences R(H) for bulk
samples (Fig. 1) and for tunneling junctions (Figs. 2
and 3), the maxima of resistancein magnetic fieldsH =
30 Oevirtually coincide. Hysteresis on the R(H) curves
is caused by the residual magnetization of microcrys-
tals of the sample, and the field of maximum resistance
correspondsto the field of coercivity Hz = 30 Oe.

R(TR(O) | |
1
1.0 R
2
0.9 M
3
w—o T ———————
| | | |
-100 =50 0 50 100
H, Oe

Fig. 3. The effect of pressure on the magnetosensitive part
of tunneling conductance of asymmetric (L ag gSrg 4MnOz—

I-Lag 6Srg.4MnO3) junction in low magnetic fields: P = 0,
3, and 6.5 kbar (curves 1-3, respectively).

No.1 2001



PRESSURE-INDUCED VARIATION OF THE MAGNETIC STRUCTURE OF THE SURFACE

Figures 4 and 5 give the junction conductance as a
function of biasvoltageat T = 77 K for different values
of pressure for symmetric and asymmetric contacts,
respectively. The junctions of both types demonstrate
the linear pattern of conductance at low temperatures,
0 = ay(1 + yM|), in awide range of values of bias volt-
age, |eV| < Ec ~ 100 meV. It is shown in the subsequent
section that the Coulomb interaction of electrons and
holeson localized levelsin the barrier formsthis anom-
aloudly strong linear dependence of the junction con-
ductance on voltage. The insets in Figs. 4 and 5a give
the conductance of tunneling contactsat T= 4.2 K and
zero pressure in the region of low values of bias volt-
age. Thetunneling pattern of the flow of current isdem-
onstrated especially clearly by the manifestation of
superconducting energy gap of lead, A, = 1.4 meV, in
the conductance of asymmetric contact (indicated by
arrowsin Fig. 5a). The strong diffusion of the gap char-
acteristic in the density of states for lead is apparently
due both to the effect of localized levels on the tunnel-
ing process and to the injection of spin-polarized elec-
trons to superconductor. Also observed for different
junctions were singularities behind the energy gap of
lead (see Fig. 5a), which were due, in all probability, to
inelastic tunneling of electrons through impurity states
in the barrier with emission of real phonons (magnons)
[23]. One can see in Figs. 4 and 5 that, as the hydro-
static compression increases, the normalized conduc-
tance o(V)/a(0) becomes less sensitive to voltage. This
fact points to rearrangement of the intergrain potential
barrier and to the variable pattern of tunneling of elec-
trons under the effect of pressure.

As was noted above, the junctions being investi-
gated meet al of the criteriaof “tunneling,” namely, the
presence of a superconducting energy gap and the man-
ifestation of phonon (magnon) singularities and a Cou-
lomb gap. Nevertheless, the temperature dependence of
the resistance of the LaSrMnO-—Pb junction (curve 1
inFig. 6) differsconsiderably from the classical tunnel-
ing dependence R(T), which is characterized by aweak
temperature decrease of resistance, o(T) = g, + YT +
aT?[23]. Such avariation of o(T) istypical in the tem-
perature range kg T ~ 0.1 eV (~1000 K). In our case, at
T=250K, an anomaloudly fast increase in the junction
resistance is observed with decreasing temperature,
which is hard to explain within the classical tunneling
effect. We attribute the unusually high rate of increase
inthetunneling resistanceevenat T~ T* < 300K tothe
opening of the pseudogap A, on the sides or at theinter-
face of the tunneling junction at atemperature T < T*.
(Notethat, while the Coulomb gap E. characterizesthe
“two-dimensionality” of the barrier, the main contribu-
tion to the pseudogap A, is made by three-dimensional
Coulomb correlations. The presence of a pseudogap in
compounds with a colossal magnetoresistive effect was
directly found recently with the aid of the ARPES
method [32]).
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o(V)/o(0)
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-120 0
V, mV
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—240 240

Fig. 4. The variation of reduced conductance o(V)/o(0) of a
symmetric Lag gSrg 4MnOz——L 8y Srg4MnO3  tunneling
junction at T = 77 K under the effect of pressure: P=0, 3,
6.5, and 10 kbar (curves 14, respectively); the arrowsindi-
cate the energy of the Coulomb gap, Ec = 100 meV. The
inset givesthesamecorrelationfor P=0kbarand T=4.2K in
the range of low values of bias voltage; the arrows indicate
the position of pseudogap A, = 40 meV.

a(V)/a(0)
2.0F g

1
0 15 -150 0 150
V, mV

2.5
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1.0 :
150

|
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\%

Fig. 5. The variation of reduced conductance a(V)/o(0)
of an asymmetric (Pb——Lag gSrg 4MnO3) tunneling junc-
tion at T = 77 K under the effect of pressure: P =0, 3, 6.5,
and 10 kbar (curves 14, respectively); the arrows indicate
the energy of Coulomb gap, Ec = 100 meV. Theinset agives
the same correlation for P = 0 kbar and T = 4.2 K in the
range of low values of bias voltage; the arrows indicate the
energy gap for Pb Ag= 1.4 meV. Theinset b gives the same
correlation for P = 0 kbar and T = 23 K; the arrows indicate
the position of pseudogap A, = 40 meV.

Thereflection of such apseudogap in the correlation
o(V) for LaSrMnO—-—-Pbisgivenintheinsetin Fig. 5b.
A smilar but less pronounced singularity is aso
observed inthe case of symmetric LaSrMnO--LaSrMnO
junctions (see the inset in Fig. 4). Curioudly, the value
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Fig. 6. The temperature dependence of the resistance of an
asymmetric (Pb—1-LaggSrg4sMnO3) tunneling junction at
P=0, 3, and 6 kbar (curves 1-3, respectively) and of a
ceramic plate at P = 0 kbar (curve 4).

Surfaces of granules

Fig. 7. A model of tunneling junction between two granules
of lanthanum manganite. The tunneling barrier is formed
both by the intergranular layer and by the surface regions of
granules.

of pseudogap A, =40 meV and the value of temperature
T* = 280 K, determined by these singularities, are in
adequate agreement with the BCS theory, 2A, = 3.5T*.
As the pressure increases, the R(T) curve is somewhat
smoothed (see curves 2 and 3 in Fig. 6); however, the
behavior of R(T) retainsits singularity (abrupt increase)
at the point T ~ T* = 280 K. Therefore, the pressure
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dependence of the value of pseudogap remainsvirtually
unvaried. The observed smoothing of the R(T) charac-
teristic of tunneling junctions under the effect of pres-
sure pointsto the transformation of the magnetic struc-
ture and to the metallization of the surface layers of the
junction.

Figure 6 (see curve 4) further gives the temperature
dependence of resistance of La,¢Sry,MnO; ceramic
plate in zero external field (note the scale variation).
This dependence is typical of the class of compounds
being treated [24-28]. A comparison of curves 1 and 4
reveal sthat the behavior of the temperature dependence
of tunneling contact resistanceisentirely different from
that of the temperature dependence of ceramic. Thisis
due to the fact that, in the latter case, the sample resis-
tanceisformed both by theinterface regions and by the
internal regions of granules; as the temperature
increases, this contribution to resistance becomes deter-
mining.

4. DISCUSSION OF THE RESULTS

We will treat in more detail the dependence of the
junction conductance on the bias voltage and tempera-
ture. The term qg[V| (“line background”) is due to reso-
nance tunneling of electrons through localized states
located at the center of tunneling barrier [33, 34]. We
will demonstrate that such processes are indlastic; i.e.,
they must be accompanied by emission of some boson
mode.

We will treat the tunneling of electrons through a
system of localized statesin a barrier, characterized by
the importance of the Coulomb interaction of electrons
(or holes) at impurity centers (see Fig. 7). We will
assume that a positive voltage is applied to the right-
hand electrode of atunneling junction. We will reckon
the values of energy E; of localized states starting from
the level of the chemical potential of this electrode. We
will analyze only the resonance processes, i.e., the pro-
cesses of tunneling through localized levels located at
the center of the tunneling barrier. For qualitative anal-
ysis, we will restrict ourselves to the case of zero tem-
perature, when localized levels with energy E; = 0 take
part in the process of tunneling. We assume the system
as awhole to be electroneutral .

The characteristic lifetime of an electron on an
impurity center with energy E; = 0is of the order of #/T,
where ' = yexp(—d/ay) is the energy width of the
impurity state, a, is its radius, and d is the tunneling
barrier thickness (the parameter ', is estimated in
[35]). We will assume that the electron tunnels to
unfilled level 1 with energy E; from the left-hand side
of thejunction. In order to preserve electroneutrality in
a system of barrier states, it is necessary that simulta-
neously (during time t < A/l" in quantum-mechanical
sense), an electron from filled level 2 (with energy E,)
should go to the right-hand side of the junction. There-
fore, apositively charged “hole” emergeson level 2; the
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attraction of electron 1 to this hole reduces the energy
of the system of barrier states by €/4egyr,,. By sum-
ming up the energy losses, wewill arrive at the inequal -
ity

SE,, = E;—E,—€’/4Tg,er, > 0, (1)

wherer, isthe distance between the 1st and 2nd impu-
rities, and g, and € are dielectric constants. Note the
peculiar nature of the tunneling process being analyzed.
The incoming and outgoing €lectrons are spaced apart
at adistancer,, which may befairly long (especialy, in
the case of low voltage V across the junction). In fact,
the system of impurity levels “captures’ the first elec-
tron and emits the other electron.

The fact that the increment of energy given by
Eq. (1) is positive for the overwhelming majority of
tunneling processes implies that the distribution of lev-
els of energy E; of localized states in the barrier corre-
spondsto equilibrium. According to Eq. (1), stateswith
low energies E; and E, must be spaced at aconsiderable
distancer,, from each other. This explainsthe decrease
in the level density g(E) for low values of energy (the
effect of Coulomb gap in impurity semiconductors
[36]). The exact distribution of g(E) over the energiesE
is obtained as a result of numerical simulation of the
above-identified tunneling by the Monte Carlo method.
Theresult of [33, 34] brings about the following depen-
dence for the Coulomb gap: g(E) O |EJY, where the
exponent y depends on the ratio of the width W of the
scatter of impurity states with respect to energies E; to
the Coulomb gap “width” E. = e/4megrp (rp is the
mean distance between impurity states in the central
interlayer of the barrier).

The observed value of the Coulomb gap E. =
100 meV (seeFigs. 4 and 5) enables oneto estimate the
parameters of impurity states of the interface. We
assume that the charges in the interface are screened
similarly with those in cuprate oxides. Then, at € = 4,
we obtain rp = 36 A, which corresponds to the concen-

tration of localized states N, = ry> = 2 x 10%° cmr2. In
semiconductors, the transition from metalic to activa-
tion conductance usually occurs at values of concentra-
tion satisfying the Mott criterion, N,a® = k,, where ais
theradius of impurity states. In view of the fact that the
states in the interface are at the percolation threshold,
forrp =36 A and ky, = 0.02, we obtain theradiusa =9 A,
which is very close to the estimate of the radius of
polaron states in manganites (a = 8 A) (see, for example,
[37, 38]). The value of the Coulomb gap E- = 100 meV
agrees with the values of activation gaps, obtained as a
result of measurements of the thermopower, and with
estimates of the characteristic energy of loca single-
impurity states [38]. Corresponding to the observed
variation of tunneling conductance in the region of the
Coulomb gap Ao =1 Q1isN = Ac/o. = 6 x 10° local-
ized levels with energy width ' = N(2rPaSp,)™ meV
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(here, o = €/h = 77.5 x 10° Q' is the “conductance
qguantum,” p, = Ny/Wisthedensity of statesfor localized
levels, and W= 2E. is the width of the impurity zone).

With narrow energy distribution of impurity states
(W/E < 0.7), the exponent y < 1, and, with a further
decrease in W, awide minimum appears on the function
g(E) with |V| < E. at the expense of the so-called Cou-
lomb blockade of the tunneling current. If W/E; = 1,
theny =1to 1.3, and the function of tunneling conduc-
tance of junction acquires a line background,

o(V) =dJ/dV = g, +gleV]|’,

where q isaconstant and g, is the background nonres-
onance part of junction conductance.

The excess energy OE;, given by Eqg. (1) and arising
upon injection of electron 1 and emission of electron 2
may be transferred with the aid of magnons, phonons,
or other Bose-like excitationsthat are possiblein asys-
tem of charged impurity states. Their presence provides
for the synchronization of the process of entry of elec-
tron 1 and exit of electron 2. Superficially, this process
appearsto be an inelastic tunneling of an electron from
the left-hand side of the junction to the right-hand side,
from the state with energy E, to that with energy E,, for
which the expression for the energy difference AE,, =
OE,, + €l4mgser,, is valid for an impurity system as
well.

We will analyze the effect of temperature on tunnel-
ing current through localized states. In the general case,
the inelastic tunneling current may be represented as
[23,33,34] J=J, + J,, wheree=f =1,

J; DJ’dwF(w)[S(V—w) -S(-V-w)],

S(E) = [dE'f(E)(1~f(E+EY) B

S -
1-exp(-E/KT)’

f(E) denotes the Fermi distribution functions, and
F(w) = F(w, T) isthe effective spectral function of dis-
tribution of boson excitations in a system of impurity
states. For simulation using the Monte Carlo method,
the spectrum of effective excitations in the impurity
system was approximated by the expression

F(w,T) = T—ZTarctanaﬂT

©)

(the value of the parameter a was determined by vary-
ing the integral and was in the range a = 1 to 2). For
leV| > KT, the conductance o; = dJ,/dV I €V|.
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The current component is
J, DJ’dwF(w)n(w)[S(V -w)-Sw-V)

+S(V + w) —S(—w—-V)] : VG,T, @

_ _ F(x, T)
0, = dJ,/dVOG,T, G, = 2[———=dx,
ex -1
.! p(x)

and n(w) denotes the Bose distribution functions.

For [eV| > KT, we have F(w, T) = 1; therefore, at high
voltages, the junction admittance is o(V) ~ g, + gleV|.
On the other hand, at V = 0, the conductanceis

[

ao(T) D2{dwF(w)(S‘(—w)+n(w)) = 2kTaq,

. ®)
_ 1. xF(xT) dx.

" A sink (x/2)

Therefore, the assumption of inelastic behavior of res-
onance tunneling with the emission of collective mode
with the spectrum F(w, T) agrees with experiment if
F(w T) — lat i > KT. Asaresult, for the effective
level density g(E), we derive the temperature depen-
dence

[

g(E) = G,T +J’dcoF((o, T).
0

Further, the value of a in expression (3) was preas-
signed, and the constants G, given by Eq. (4) and a;
given by Eq. (5) were calculated. It was found that the
parameter G, and the coefficient o+ in the temperature
dependence of tunneling conductance a(T)y-o = G, +

200(KT) were related as a; = Go* . The experimen-
tally observed value of the parameter o = 1.1-1.2 is
atained at G, = 1.2.

It was assumed during analysis that the line back-
ground of g|V| is due to resonance tunneling of elec-
trons through localized states (this provides for greater
effect). The process of electron injection from the left-
hand side of the junction to level 1 and of the electron
exit from level 2 to the right-hand side is treated as an
inelastic process during which two excitations form
simultaneously, namely, magnon (phonon) + electron-
hole pair (“exciton”). The effective spectrum of such
combined Bose excitation is given by an expression of
the type of Eq. (3). It brings about the emergence of the
line background of g|V| as a function of junction con-
ductance. The observed independence of the parameter
g of the magnetic field leads one to conclude that for the
junctions investigated by us, in the case of resonance
tunneling, neither the energy nor the spin of tunneling
electrons are preserved. This is possible only if the
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inelastic tunneling is accompanied by the magnon
emission in the region of the junction interface.

5. CONCLUSION

We have studied the effect of hydrostatic compres-
sion on the transport properties of a LaygSry,MnO,
ceramic and of LaygSry,MnO-H—-+Pb  and
L&y gSrg4MNOs—I-L &y Sr, sMNO; tunneling junctions.
An analysis of the experimental data has revealed that
the pressure does not cause a variation of the tunneling
behavior of the passage of electrons in the structures
being studied. To the contrary, the temperature depen-
dence of the current passing through ajunction assumes
amore“classical tunneling form”. At the sametime, the
magnetoresistive effect is suppressed, athough the
magnetic properties of thejunction sidesareretained. A
conclusion has been drawn that the region of the junc-
tion interface (of nanometer width) isin the vicinity of
the metal-insulator phase transition boundary. As is
known, this latter interface may be shifted by applying
a pressure of the order of P ~ 10 kbar [24-28]. It was
this pressure range that was realized in our investiga-
tion. Proceeding from the obtained data and the results
of analysis, it is natural to assume that the surface layer
of electrodes of the investigated tunneling junctions
and ceramic granulesisin the phase of amagnetic insu-
lator (semiconductor). The pressure transfers these
regions to the metallic state, so that the magnetic state
of theinternal regions of agranule extendsto itssurface
areas, and the tunneling assumes a “ standard pattern.”

Therefore, in ceramic systems of lanthanum manga-
nites, the formation of intergrain tunneling junctionsis
responsible for the spin-dependent tunneling of elec-
trons and for the low-field magnetoresistive effect. In
this way, the granule surface represents an additional
tunneling junction. Most effective is the resonance tun-
neling through impurity levelslocated at the center of a
potential barrier formed both by the true (insulating)
barrier and by the interface of contacting granules. The
tunneling through such states |eads to the formation of
a Coulomb gap in the density of states of charge carri-
ers. For afairly large barrier thickness, the resonance
processes with the boson emission (absorption) prevail.
The processes of tunneling through the impurity states
of ananoscale magnetic cluster make a decisive contri-
bution to the low-field magnetoresi stive effect.
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Abstract—Large entropy fluctuations in the equilibrium steady state of classical mechanics are studied in
extensive numerical experimentsin asimple strongly chaotic Hamiltonian model with two degrees of freedom
described by the modified Arnold cat map. The rise and fall of a large separated fluctuation is shown to be
described by the (regular and stable) “macroscopic” kinetics, both fast (ballistic) and slow (diffusive). We aban-
don a vague problem of the “appropriate” initial conditions by observing (in a long run) a spontaneous birth
and death of arbitrarily big fluctuations for any initial state of our dynamical model. Statistics of the infinite
chain of fluctuations similar to the Poincaré recurrencesis shown to be Poissonian. A simple empirical relation-
ship for the mean period between the fluctuations (the Poincaré “cycle’) is found and confirmed in numerical
experiments. We propose a new representation of the entropy via the variance of only afew trgjectories (* par-
ticles”) that greatly facilitates the computation and at the same time is sufficiently accurate for big fluctuations.
The relation of our results to long-standing debates over the statistical “irreversibility” and the “time arrow” is

briefly discussed. © 2001 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION: MACROSCOPIC VERSUS
MICROSCOPIC FLUCTUATIONS

Fluctuations are an inseparable part of statistical
laws. This has been well known since Boltzmann. What
is apparently less known are the peculiar properties of
rare big fluctuations (BF) that are different from, and
even in a sense opposite to, the properties of small sta-
tionary fluctuations. In this paper, we consider the sim-
plest type of chaotic dynamical systems, namely, a
Hamiltonian system with afinite number of the degrees
of freedom that admits the (stable) statistical equilib-
rium (SE). This class of dynamical modelsis still pop-
ular (since Boltzmann!) in debates over the dynamical
foundations of statistical mechanics (see, e.g., “Round
Table on Irreversibility” in[1, 2]).

A sufficiently simple picture of BFsin such systems
is well understood by now, athough not yet well
known. To Boltzmann, this picture was the basis of his
fluctuation hypothesis for our Universe. It is also well
understood that this hypothesis is totally incompatible
with the present structure of the Universe because it
would immediately imply the notorious “heat death”
(see, e.g., [3]). For thisreason, one may even term such
systems the heat death models. Nevertheless, they can
be and actually arewidely used in describing and study-
ing local statistical processes in thermodynamically
closed systems. The latter term means the absence of
any heat exchange with the environment. We note, how-
ever, that under conditions of the exponential instability

TThis article was submitted by the authors in English.

of motion, which are typical of chaotic systems, the
only dynamically closed system would be the “entire
Universe” In particular, this excludes the hypothetical
“velocity reversal” that also is popular in debates over
“irreversibility” since Loschmidt (for adiscussion, see,
e.g., [4]).

In any case, dynamical models with the SE do not
tell us the whole story of either the Universe or even a
typical macroscopic process therein. The principal
solution of this problem, unknown to Boltzmann, is
quite clear now: the “equilibrium-free” models are
required. Various classes of such modelsareintensively
studied today. Moreover, the celebrated cosmic micro-
wave background tells us that our Universe was born
aready in the state of a heat death, which, however,
became unstable due to the well-known Jeans gravita
tional instability [5]. This resulted in developing arich
variety of collective processes, or synergetics, the term
recently introduced or, better to say, put in use by
Haken [6]. The most important peculiarity of such a
collective instability is that the total overal relaxation
(to somewhere?) with the ever increasing total entropy
isaccompanied by an also increasing phase space inho-
mogeneity of the system, particularly with respect to
temperature. In other words, the entire system and its
local parts become more and more nonequilibrium to
the extent of the birth of a secondary dynamics that can
be, and sometimes is, as perfect as, e.g., the celestia
mechanics (see, eq., [4, 7, 8] for agenera discussion).

We stress that al these inhomogeneous nonequilib-
rium structures are not BF like in the SE but are aresult

1063-7761/01/9301-0188%$21.00 © 2001 MAIK “Nauka/Interperiodica’
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of a regular collective instability; therefore, they are
immediately formed under a certain condition. In addi-
tion, they are typically dissipative structures according
to Prigogine [9] due to the energy and entropy
exchange with theinfinite environment. Thelatter isthe
most important feature of such processes, and at the
same time the main difficulty in studying the dynamics
of those models both theoretically and in numerical
experiments, which are so much simpler for SE sys-
tems.

In the latter case, a BF consists of two symmetric
parts: the rise of afluctuation followed by itsreturn, or
relaxation, back to the SE (see Figs. 1 and 2). Both parts
are described by the same kinetic (e.g., diffusion) equa-
tion, the only difference being in the sign of time. This
relates the time-symmetric dynamical equations to the
time-antisymmetric kinetic (but not statistical!) equa-
tions. The principal difference between the two types of
equations, sometimes overlooked, is that the kinetic
equations are generally understood as describing the
relaxation only, i.e., the increase of the entropy in a
closed system, whereas in fact they do so (at least, in
the SE) for the rise of BF as well, i.e., for the entropy
decrease. All this was qualitatively known already to
Boltzmann[10]. Thefirst simple example of a symmet-
ric BF was considered by Schrodinger [11]. A rigorous
mathematical theorem for the diffusive (dow) kinetics
was proved by Kolmogorov in 1937 in the paper entitled
“Zur Umkehrbarkeit der statistischen Naturgesetze”
(Concerning Reversibility of Statistical Laws in Nature)
[12] (see also [13]). Regrettably, the principal Kolmog-
orov theorem still remains unknown to both the partic-
ipants of heated debates over “irreversibility” and the
physicists actually studying such BFs (see, e.g., [14]).

At present, there exists a well-developed ergodic
theory of dynamical systems (see, e.g., [15]). In partic-
ular, it proves that the relaxation (correlation decay, or
mixing) eventually proceeds in both directions of time
for almost any initial conditionsin achaotic dynamical
system. However, the relaxation must not always be
monotonic, which simply means a BF on the way,
depending on the initial conditions. To eliminate this
apparently confusing (to many) “freedom,” we take a
different approach to the problem: instead of discussing
the “true’ initia conditions and/or a “necessary”
restriction of them, we start our numerical experiments
at arbitrary initial conditions (most likely correspond-
ing to the SE) and observe what the dynamics and sta-
tistics of BF are like. This approach is obviously based
on the fundamental hypothesis that al the statistical
laws are contained in, and can be principally derived
from, the underlying fundamenta (Hamiltonian)
dynamics. To the best of our knowledge, thereis as yet
no contradiction to this principal hypothesis. We note,
however, that this approach can be directly applied to
fluctuations in finite systems with a statistical equilib-
rium only (see [4] and [16] for a discussion). In these
and only these systems, infinitely many BFs grow up
spontaneously, independently of the initial conditions
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Fig. 1. Mixed kinetics for two BFs of different sizes.
Filled/open circles show the time dependence of the mean
variance [¥(t — tj)Oaround the BF maximum at t = t;; the

upper horizontal straight line is the equilibrium and the
lower line indicates the empirical value of the dynamical
scale vy = 0.015, Eq. (3.4), with the parameter Fy= 1/3. The
two oblique straight lines represent the expected fast kinet-
ics, Eq. (3.3), and the two solid curves do so for the initial
diffusive kinetics, Eg. (3.5). The respective run parameters

and resultsaregiven by C = 15,N=1, v, = 3.9 x 10711/6.25 x
1070 (vyy = Vi), V(0) = 1.96 x 10431 x 1073, n =
1971/4459, w = 500. The average period between succes-
sive fluctuationsis [Pk 1.4 x 107/3.5 x 10° iterations.
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Fig. 2. Thesame asin Fig. 1 for atypical diffusive kinetics
(anti-diffusion/diffusion): the solid curve showsthe average
over al n= 20259 fluctuations in arun and the wiggle line
isthe samefor thefirst 28 fluctuations. Two oblique straight
lines represent the expected initid diffusivekinetics, Eq. (3.5),
with 14 = 0 and the empirical value vgemp) = 0.045, while
the theory (3.15) gives vq = 0.02. Other run parame-
ters/resultsare given by C =50, N =5, v, = 0.0256, w = 10%,
[Pk 7.7 x 10%/8.7 x 10°, and B = 306/348; [Pw = 77/87.

of the motion. This is similar to the well-known
Poincaré recurrences (see Section 4).

In spite of essential restrictions, simple SE models
allow us to better understand the mechanism and the
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role of BFs in statistical physics. In addition to the
removal of the vague problem of initial conditions,
these models are very helpful in clarifying the relation
between macroscopic and microscopic descriptions of
chaotic systems. In particular, a spontaneous rise of a
BF out of the SE isamacroscopic event aswell asisits
subsequent relaxation back to the SE, even in a system
with afew degrees of freedom. Similarly to other mac-
roscopic processes, BFs are not only perfectly regular
by themselves but also surprisingly stable against any
perturbations, either regular or chaotic. Moreover, the
perturbations must not be small. At a first glance, this
looks very strange in a chagtic, highly unstable dynam-
ics. The resolution of this apparent paradox is that the
dynamical instability of motion affects the BF instant
of time only. The BF evolution is determined by the
kinetics independently of its mechanism, from a purely
dynamical one, asin model (2.2) used in this paper, to
acompletely noisy (stochastic) one. Asamatter of fact,
the fundamental Kolmaogorov theorem [12] is precisely
related to the latter case but remains valid in a much
more general situation. The surprising stability of BFs
is similar to the less known concept of robustness for
the Anosov (strongly chaotic) systems [17] whose tra-
jectories are only dlightly deformed under a small per-
turbation (see [4] for adiscussion).

In this paper, we consider a particular type of BFs
characterized by alarge concentration of “particles’ in
asmall phase space domain of the dynamical system. In
other words, “our” fluctuations are localized in phase
space and separated in time. A more accurate definition
of these fluctuations is given in Section 3 (see
Eqg. (3.6)). The same fluctuations in a stochastic model
(with noise) were studied in detail in [14]. Obviously,
there exist many other fluctuations with their own pecu-
liarities (see, e.g., [18]). The primary object of our
studies is the macroscopic kinetics of big fluctuations
in the background of small stationary microscopic
fluctuations. A brief outline of our results was pre-
sented in [16].

2. A HAMILTONIAN MODEL:
MOST SIMPLE BUT STRONGLY CHAOTIC

The systemswith an SE can be described in terms of
modelsthat are very simple as regards both the theoret-
ical analysis and numerical experiments (of which the
latter are even more important for us). In the present
paper, we use one of the most smple and popular models
specified by the so-called Arnold cat map (see [19, 20]):

p+x modl1,
X+p modl,

el
1

2.1)

X
I

which is alinear canonical map on a unit torus. It has
no parameters and is chaotic and even ergodic. Therate
of the local exponential instability, the Lyapunov expo-

nent A =In(3/2 + ./5/2) = 0.96, impliesafast (ballistic)
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kinetics with the relaxation timet, ~ 1/A = 1. Through-
out the paper, t denotes the time in the map iterations.
A minor modification of this map,

p=p+tx—1/2 modC,
X =x+p-C/2 mod1l,

where C is a circumference of the phase space torus,
allows studying both the fast (exponential) ballistic
kinetics (for C = 1) and the slow (diffusive) relaxation
inp (for C> 1) with the characteristic timet, ~ C%/4D,, >
1, where D, = /12 isthediffusion ratein p. In contrast
to the dow diffusion in p, the relaxation time in x does
not depend on C (t, ~ 1) and the subsequent values of x
are therefore practically uncorrelated. Map (2.2) has
the (unstable) fixed pointat x =X, = 1/2and p = p, =
Cl2.

A convenient characteristic of the BF sizeistherms
volume (area) in the 2D phase space (X, p)

o(t) = g,(t)ou(t) (23

occupied by agroup of N trgectories (particles). In the
ergodic motion at equilibrium, o = g, = C/12. Because
of asevere restriction to small N < 10 in the numerical
experiments (see below), we have to use simple (aver-
age) characterigtics like (2.3) only. On the other hand,
these are precisely the macroscopic variables in which
we areinterested.

In what follows, we also restrict ourselves to a par-
ticular case of BFswith the fixed prescribed positionin
the phase space,

(2.2)

1 C
Xi = Xo = > P = Po = ) (2.4)
The variance of the phase space size v = 62 = 0.0, is
then determined by

o2 = (P 0-py, Oy = KT-xg, (2.5)

where the brackets Ll.. [enote averaging over N trajec-
tories. In the ergodic motion at equilibrium, v = vg =
C2/122. In what follows, we use the dimensionless mea-
sure v = v/vg — v and omit the tilde. In the diffu-
sive approximation of the kinetic equation, the variable
v(t) is especialy convenient because it varies propor-
tiondly to time. Moreover, v —» Vp in this case
because of aquick relaxation v, —= 1inx.

Among all the advantages of v, the relation of this
variable to the fundamental concept of the entropy is
highly desirable. The standard definition of the entropy,
which can be traced back to Boltzmann, reads

S=-0Onf(x, p)+ S, (2.6)

where f(x, p) is a coarse-grained distribution function,
or the phase-space density, and S, an arbitrary constant
to befixed later. We note that the distribution cal cul ated
from any finite number of tragjectories is aways a
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coarse-grained one. However, the direct application of
Eq. (2.6) requires too many trajectories, especialy for
a small-size BF. Nevertheless, precisely in the latter
case, which is the main problem under consideration,
we have found a simple approximate relation

S(t)zglnv(t)

that gives at least arough estimate for the entropy evo-
lution [16]. Moreover, if the distribution is Gaussian,

(2.7

exp(—(p— po)°/2v)
2TV ’

estimate (2.7) becomes exact because it is directly
derived from the definition of the entropy in Eq. (2.6).
The two relations for the entropy are compared in the
end of Section 3 for atypica BF.

A great advantage of (2.7) isthat the computation of
S does not require very many tragjectories as does the
distribution function. In fact, even asingle trgjectory is
sufficient, asisdemonstrated by Fig. 1in[16] and Fig. 1
in this paper!

A finite number of trajectories used for calculating
the variance v is similar to a coarse-grained distribu-
tion, asrequiredinrelation (2.6), but withafreebinsize
that can be arbitrarily small.

We can now turn to the numerical experiments.

f(x, p) — f(p) = (2.8)

3. MACROSCOPIC KINETICS: COMPLETE,
REGULAR, AND STABLE

In this section, we consider the regular BF kinetics.
The data were obtained by simultaneously running N
trajectories for avery long time in order to collect suf-
ficiently many BFs for areliable separation of the reg-
ular part of BFs, or the kinetic subdynamics according
to Balescu (see [21] and references therein), from the
stationary fluctuations. The separation was done by the
plain averaging of theindividua v; values(i =1, ..., n)
over al then BFs collected in arun.

The size of the BF chosen for the subsequent analy-
sisisfixed by the condition that

v(t)<v, (3.1)

at sometimeinstant t = t;, the moment of aBF. Here, a
prescribed value vy, is the main input parameter of the
run. This condition actually determines the border of
the entire fluctuation domain (FD) as0 < v < v,,

The event of entering the FD is the macroscopic
“cause” of the BF whose obvious “effect” will be the
subsequent relaxation to the equilibrium. However, the
main point of our study isthat the second “ effect” of the
same “cause’” was preceding the rise of the BF in an
apparent contradiction with the “causality principle’
(for adiscussion, see[16] and Section 4 below). In any
event, the second effect requires the permanent mem-
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ory of trajectory segments within some time window w,
which is another important input parameter of the run.

The exact procedure of data processing during the
run is as follows. Starting from arbitrary (random) ini-
tial conditions, selection rule (3.1) is checked at each
iteration. Supposethat it is satisfied at some instancet;,
when the bundle of trgjectories enters the FD. In the
first approximation, we could consider it as the fluctua-
tion maximum (or the variance minimum) t; = t;,, where
the subscript i is the number of the current fluctuation
in arun. However, this simple procedure would cause
an asymmetry with respect to t = t,. A better choice
would be given by therulet; = (t;, + t,)/2, wheret,, is
the time instance of the exit from the FD. Instead, we
have accepted amore complicated procedure that better
restores the true BF symmetry, as we hope. Starting
from the moment t;,,, we search for the minimum of v(t)
inside a sufficiently largeinterval t,, <t <t, + w. If a
minimum isfound at somet = t,;,,, we check that it also
isthe minimum inside the next interval t;, <t <t.,, +
w. If thisisthe case, weidentify this minimum with the
BF top and set t; = t,,;,,; otherwise, we set t;,, equal to
the time of a better minimum and repest the last step.
Obvioudly, the parameter w must be small compared to
[PL]the mean period of the BF, but sufficiently long for
the trgjectory to leave FD (3.1). Typicaly, we chose
w = C?, thetotal diffusion time. After fixing the current
t; value, the computation within theinterval t; <t <t; +
w was completed, and only then the search for the next
BF is continued.

Asmentioned above, there are two quite simplelim-
iting cases of generaly very complicated kinetics,
namely, the fast (ballistic) and the slow (diffusive) lim-
its. An example of bothinonerunfor N=1(!) is pre-
sented in Fig. 1 for two fluctuations of different sizes.
In this case, general condition (3.1) was checked sepa-
rately for p and x,

Vo(t) <V, and v,(t) <v,, (3.2

with v, = vy, ~ 10 and v, = v vy, ~ 1079,

The fast part of the kinetics is approximately
described by

v (1) = v(0)exp(4AT), (3.3

wheret =t —t;, A isthe Lyapunov exponent (see Sec-
tion 2) and v(0) ~ 1072 is the minimal variance aver-
aged over al n fluctuations observed in the run. We note
that the latter value is considerably smaller than the
border value v, ~ 1071°. Thisis because of the penetra-
tion of trgectories into the FD. Interestingly, the ratio
v,/v(0) = 2000 is the same for both runsin Fig. 1.

A surprisingly sharp crossover to the diffusive kinet-
ics, clearly seen in Fig. 1, is related to the dynamical
scale of the diffusion corresponding to acertain size vy
of the increasing variance at which the exponential
growth stops. Roughly, it occurs at the time instance
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Fig. 3. The histogram of integrated distribution (3.9) for
datain Fig. 2. Each circle showsthe number of periods P, >

MAP, for m=0, 1, ... P =n, AP = 1.5 x 10% P /w =
1.0027; Pyyax/TPLE 12.63; [PLE 765084. The straight lineis
the expected distribution nexp(—P/P0).

T =Tg4 When [X — Xo| ~ |p — pol ~ /2, whence v,y ~
12/4 = 3 and v,4 ~ 3/C2 We can therefore characterize
the dynamical scale as

9F4
—f,

V(Tg) = Vg = FgVpaVyg =
(3.9

_In(vylv(0))

d - 4A 1

where F is an empirical factor and 14 is found from
Eq. (3.3). Thedatain Fig. 1 imply the dynamical scale
V4= 0.015 independently of v, which gives the empir-
ical factor Fy= 1/3.

Inthediffusion region (v > v), theinitial kineticsis
described by asimplerelation for the free diffusion (see
Section 2),

T*T

V(D) =—+v,, T<1<C
C

(3.5)

which is also shown in Fig. 1. It involves two correc-
tions, T4 and v, dueto the exponential ballistic kinetics.
Thefirst one (with opposite signsfor the two symmetric
parts of the fluctuation) takes the “lost” time after (or
prior to) the antidiffusion (diffusion) into account,
while the second correction describes a finite fluctua-
tion size at the crossover from (to) the diffusion. The
mean empirical valuety=7usedinFig. lisclosetothe
value 1y = 6.5 found from Eq. (3.4) with another empir-
ical quantity, v4 = 0.015.

Thelargeratio

(3.6)
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of the mean fluctuation period [PLIto the characteristic
time of the diffusion relaxation (see Eq. (3.5)) is the
definition of a big fluctuation. It guarantees the time
separation of successive fluctuations.

We now turn to the main subject of our study, the
purely diffusive kinetics of BFs. For this, we first elim-
inate the x-statistics by excluding v, from selection
condition (3.1), which now reads

V() = V<V, = V. (3.7

Next, the variance v, must now exceed the new dynam-
ical border,

12
Vp>Vg=V= = (3.8
C
with some empirical factor f, = 1 (see Eq. (3.4) and the
discussion below).

A typica example of adiffusve BFisshowninFig. 2.
Both the regular macroscopic kinetics of the antidiffu-
sion/diffusion and the irregular fluctuations around are
clearly seen. We note that their size rapidly decreases
toward the BF maximum. It may even seem that the
motion becomes regular in that region, hence the term
“optimal fluctuational path” [14]. In fact, the motion
remains diffusive down to the dynamical scale v ~ v4in
Eq. (3.8).

Even though a separate BF is sufficiently regular,
the time instance of its spontaneous appearance t; and,
hence, theindividual period P are random in the chaotic
system. Due to the statistical independence of BFs
under condition (3.6), the expected distribution in P is
Poissonian (Fig. 3),

f(P) = —eXp(‘EE’DEPD).

The principal characteristic of the period statistics,
[PL]can be estimated as follows. From the ergodicity of
motion in the N-dimensional momentum space, we
have

(3.9)

(3.10)

Thisisan exact relation (in thelimit ast,,,, — ), with
T, being the total sojourn time of trajectories within the
FD (under the condition v (t) < v;,) during the entire run
time t,,, and [T [ithe same per fluctuation. Both ratios
are equal to the ratio of the N-dimensional momentum
volume % of the fluctuation at T = 0 to that in the equi-
librium. The ratio ® was also measured during the run.
It follows that
_ OJ
PO = o
The next, more difficult step isthe valuation of T, =
2T, from the diffusion equation, where T, is the exit
(or entrance due to symmetry) time from (or to) the FD.

(3.11)
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Fig. 4. The comparison of the directly measured ratio ®eny,
given by Eq. (3.10) with the theoretical approximation ®y,,
Eqg. (3.12) for N = 1-10: @1 = P,/ Py,; the average over
71runsis [@4[F 1.015 + 0.11 (the standard deviation); the
bars show statistical errors 1/./n for each run; the total
number of fluctuationsin all runsis 127346.

A simple crude estimate is Ty, ~ v;,/D,, = v;,C? (See Sec-
tion 2). However, the first numerical experiments have
already revealed that the actual exit time is much
shorter, roughly by the factor 1/N2. A plausible expla-
nation is that inside the FD, the distribution is concen-
trated in arelatively narrow layer at the surface of the
N-dimensional sphere determined by the selection con-
dition v(t) < v, in EQ. (3.7). The relative width of the
layer ~1/N then implies the observed factor ~1/N2. Fur-
ther, the ratio

d(vy, N) = vi%g(N), (3.12)
with the geometrical function

_ [Te7"*(1 - U6N)
Ny = em o
WN=T60

admits arelatively accurate approximation downtoN =1
(seeFig. 4).

(3.13)

Collecting all the above formulas, we arrive at our
final empirical relation

|:2vbAC2 2A(:2vé'N/2
(PO~ — = 3.14
N2 N B

with two fitting factors, A for the layer width and F for
all the other approximations made above. The two fac-
tors cannot be united in one because the former enters
anew expression for the dynamical scale that naturally
generalizes Eq. (3.8). Together with inequality (3.6) for
a big fluctuation, the new dynamical scale was used in
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Fig. 5. The comparison of the empirical data for 36 runs
selected from 61 runs computed for N = 2-10 by the two
rules, Eqg. (3.6) with B> 7 and Eq. (3.15) with A =6, to the-
oretical relation (3.14) with the main fitting factor F,, m=
1, ..., 36 (seetext). Theaveragevalueis[F=1.51(1+ 0.17)
(the standard deviation); the bars show statistical errors
Fr/ Jn for each run; the total number of fluctuationsin 36
runsis 34429.

selecting purely diffusive BFs described by Eq. (3.14).
The corresponding inequality reads (cf. Eq. (3.8))

A 12

Vb> Vd, VdN—Z: pr—Z’ (315)

which meansthat even asmall part (A/N? < 1) of the FD
must exceed the dynamical scale.

All the empirical parameters were optimized as fol-
lows. The values of two factors, B in Eq. (3.6) and f,in
(3.15), arenot crucia; larger values of thesefactors cor-
respond to a better selection of purely diffusive BF but
reduce the amount of the empirical data available. A
compromisewasfound at B=7 and f, = 1, which leaves
36 runs of 61 done and 34429 of the total 75053 BFs
computed with N = 2-10 for comparison to Eq. (3.14).
This was executed as follows. For each selected run
with the parameters N, C, and v, and the computed val-
ues POand @, the empirical factor F (which was
assumed to be a constant) was calculated from the first
equation in (3.14). The value of A was chosen by mini-
mizing the relative standard deviation to AF/F[= 0.17.
For a given set of data, the result was A = 6. The final
dependence F(N) isshown in Fig. 5, where the bars are

the statistical errors F/./n for each run.

Coming to the analysis of our main theoretica
result, the second equation in (3.14), we first remark
that it does not describe asingletrgjectory (N=1). This
is because we excluded v,, from selection condition
(3.7) (cf. Eq. (3.2)) and thus reduced the phase space
dimension to the minimal value, unity. In this case, a
single tragjectory repeatedly crosses the FD with the
period P ~ C?, the entire diffusion time around the
phase space torus, which isindependent of the FD size.
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Fig. 6. The macroscopic kinetics of the BF entropy: the
lower line is the “exact” entropy given by Eq. (2.6), to be
compared with approximation (2.7), the middle ling; the
upper line is the same approximation for the diffusion the-

ory, Eg. (3.5) with t4 = 0 and the empirical value vgemp) =

0.02. The run parameters/results are C = 50, N = 5, v, =
0.01, w=10% n = 4580, [P 3.3 x 105 B = 1314; (PIw =

329. The number of partition bins for calculating (2.6) is
Ny = 40L.

More formally, this also follows from Eq. (3.14),
because condition (3.6) cannot be satisfied for small v,

For two trajectories (N = 2), the period does not
depend on v, and for the datain Fig. 5, we have the
ratio P[IC? = 8.7. Because of fluctuations, the actual
values of thisratio arein theinterval 7.4-11.0, still not
too big for a BF. Apparently, this leads to a relatively
large scattering of points with N = 2, which also persists
forN=3.

The main dependence in Eq. (3.14), the exponential
of N, isreadily derived from a graphic picture of N sta-
tigtically independent particles gathering together

insideasmall domain with the probability ~1/P ~ v’

Such estimates are known for the Poincaré recurrences
since Boltzmann [10]. The estimate is especialy vivid
in the geometrical picture of the N-dimensional sphere

of the radius ,/v, considered above. Our empirical

relation (3.14) considerably improves the simple esti-
mate by including a weaker power-law dependence,
which isevident in Fig. 5.

In our studies described above, we fixed the position
of aBF in phase space, Eq. (2.4). If we lift thisrestric-
tion, the probability of a BF increases by the factor

vg”, which corresponds to decreasing N by one
(N— N — 1) because only N — 1 trgjectories then
remain independent. With the latter change, al the
above relations presumably remain valid.

Our main relation (3.14) describes the diffusive
kinetics for v, > v, EQ. (3.15), when a BF is not too
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big. In the opposite case v, < v, of avery big fluctua-
tion, as in Fig. 1, the dependence IP(v,)[1becomes
much ssimpler (see Egs. (3.11)—(3.13) and [16]):

DI'S,D: 2
®  vye(N)

Thisisexplained by afast exponential kinetics near the
BF top (Fig. 1), which implies the shortest exit time
T = 1, and hence, T, = 2. Indeed, for both BFs in
Fig. 1, we have the empirical value IP[® = 1.98.

In the conclusion of this section, we show in Fig. 6
the macroscopic kinetics of the BF entropy, both the
“exact” onein Eg. (2.6), calculated for the partition of
the entire interval (0 < p < C) into N, = 401 bins, and
the one given by our approximation (2.7). Both entro-
pies were calculated for the same 5 trgjectories in one
run. The necessary statistics for the exact entropy was
obtained at the expense of a large number n = 4580 of
fluctuations in the run. To compare the two entropies,
we must adjust the constant S, in Eq. (2.6). Asiseasily
verified, Gaussian distribution (2.8) leads exactly to
relation (2.7) if

[P(v,)0= =2vy"%  (3.16)

S, = —%In(Zne) ~_14189~—J32.  (317)
Approximation (2.7) isvalid for the most part of the BF
except a relatively small domain near the equilibrium,
where the distribution in p approaches the homoge-
neous one. The exact entropy (with constant (3.17)) in
the equilibrium is

_ 1 e
SSE = _élnD€D~_018

(3.18)
instead of zero in approximation (2.7). The difference
isrelatively small, the larger the fluctuation. Inthemain
part of the BF, our ssimple relation for the entropy in
Eq. (2.7) reproduces exact relation (2.6) to a surpris-
ingly good accuracy. This confirmsthat the distribution
in p is indeed very close to the Gaussian one in
Eqg. (2.8), as expected.

4. CONCLUSION: THERMODYNAMIC ARROW?

We have presented the results of extensive numeri-
cal experiments on big entropy fluctuations (BFs) in a
statistical equilibrium (SE) of classical dynamical sys-
tems and discussed their peculiarities.

All numerical experiments were carried out on the
basis of avery smple model given by Arnold cat map
(2.1) on aunit toruswith only two minor, but important
and helpful, modifications:

(1) expanding the torusin the p direction, Eq. (2.2),
for a more impressive diffusive kinetics of BFs out of
the equilibrium (Fig. 2), and

(2) inserting a specia (unstable) fixed point for a
better demonstration of the exponential ballistic kinet-
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ics (Fig. 1). In addition, this point was used as a fixed
position of BFs, which relates our studies of BFs to
another interesting and important problem, the
Poincaré recurrences (see Eq. (2.2)).

The most important distinction of our approach is
that we have abandoned the vague question of theinitial
conditions, in particular, a “necessary” restriction of
those in statistical physics. Instead, we started our
numerical experiments at arbitrary initial conditions
(most likely corresponding to the SE), and did observe
the dynamics and statistics of BFs. In other words, we
studied the spontaneous BFs only.

It isalso important that such a spontaneous rise of a
BF out of the SE and its subsequent relaxation back to
the SE can be considered as a statistical macroscopic
event, even in a system with afew degrees of freedom
asthe onein Eqg. (2.2). The term “macroscopic” refers
to average quantitiesincluding variance, entropy, mean
period, distribution function, and the like.

We consider aparticular class of BFsthat wecall the
Boltzmann fluctuations. They are obviously symmetric
under thetimereversal (seeFigs. 1, 2, and 6), and there-
fore, at least in this case, there is no physical reason at
all for the concept of the notorious “time arrow.” Nev-
ertheless, arelated concept—the thermodynamic arrow
pointing in the direction of the average increase of
entropy—makes sense in spite of the time symmetry
[16]. The point is that the BF characteristic relaxation
timeis determined by the model parameter C only and
does not depend on the BF itself. On the contrary, the
expectation time for a given BF, or the mean period
between successive fluctuations, rapidly growswith the
BF size and with the number of trgjectories (or the
degrees of freedom), Eq. (3.14). A largeratio of thetwo
quantities, B = [PIIC? > 1, is our definition of a big
fluctuation, Eqg. (3.6). A similar result was recently
obtained in [22], but the authors missed the principal
difference between the time arrow and the thermody-
namic arrow.

A related notion of the causality arrow, which by
definition points from an independent macroscopic
cause to its effect, al so makes some physical sense (see
[16] and Section 3 for adiscussion). For the Boltzmann
BFs considered in the present paper, the directions of
both arrows coincide independently of the direction of
time. In our opinion, the last statement is the most
important, philosophical “moral” that the principaly
well-known Boltzmann fluctuations teach us.

Even though we discuss and interpret our empirical
resultsin terms of entropy (S), which isthe most funda-
mental concept in statistical physics, we actualy use
another entropy-like quantity, the variance v(t) for a
group of N trgjectories, Eq. (2.5). One reason is techni-
cal: the computation of v is much simpler than that of
St), which is either very time-consuming in numerical
experiments (for exact Sgiven by (2.6)) or approximate
in accordance with (2.7). In addition, for diffusive
kinetics, in which we are mainly interested, the vari-
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ance is a natural variable that makes the BF picture
most simple and comprehensible.

Originally, we planned to cover both sides of the BF
phenomenon, the regular macrascopic kinetics and the
accompanying microscopic fluctuations (noise)
around. However, our numerical experiments revealed
a much more complicated structure of the latter, as an
example in Fig. 2 demonstrates. The dependence v (t)
looks like a fractal curve on a variety of time scales,
ranging from the minimal one ~1 iteration up to ~C?,
which is comparable to that of the BF itself. Thisinter-
esting problem certainly requires and deserves further
studies.

Only thefluctuationsin classical mechanicsare con-
sidered in this paper. General quantum fluctuations are
quite different. However, according to the Correspon-
dence Principle, the dynamics and statistics of a quan-
tum system in the semiclassical region are close to the
classical ones at the appropriate time scales, the longest
of which corresponds to the diffusive kinetics and
ensures the transition to the classical limit (see [4, 23]
for details). Curioudly, the computer classical dynamics
that isthe simulation of aclassical dynamical system on
digital computer is of a qualitatively similar character.
This is because any quantity is discrete (“overquan-
tized”) in the computer representation. As a result, the
correspondence between the classical continuous
dynamics and its computer representation in numerical
experimentsis generally restricted to certain finite time
scales as in quantum mechanics (see the first two refer-
encesin [23)]).

The discreteness of the computer phase space leads
to another peculiar phenomenon: generally, the com-
puter dynamics is irreversible due to the rounding-off
operation unless a special agorithm is used in numeri-
cal experiments. However, this does not affect the sta-
tistical properties of the chaotic computer dynamics. In
particular, the statistical laws remain time-reversiblein
the computer representation in spite of the (nondissipa-
tive) irreversibility of the underlying dynamics. This
simple example demonstrates that contrary to a com-
mon belief, the statistical reversibility isamore general
property than the dynamical reversibility.
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Abstract—The problem of directional laser synthesis of enantiomersin an isotropic racemic mixture of chiral
molecules is analyzed taking into account rotational degrees of freedom of molecules. It is shown that the
chirality of the polarization structure of alaser field is the most general necessary condition for the laser distil-
lation of an isotropic non-racemic mixture of chiral molecules with the isotropic distribution over the Eulerian
angles. In the approximation of the electric-dipole interaction, the required field configuration can be provided
due to noncoplanarity of the polarization vectors of laser-pump components. A relevant experimental scheme
is proposed and calculated for the transformation of an isotropic racemic mixture with the help of athree-com-
ponent pulsed laser field. It is shown that the possibility of the laser control of chirality in an isotropic medium
correspondsto nonzero information on coupling between the input and output in the laser field-chiral molecular
state information channel. © 2001 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

The problem of directional enrichment of aracemic
mixture of left-oriented (L-enantiomers) and right-ori-
ented (D-enantiomers) chiral molecules with the help
of laser radiation is being recently actively discussed.
At present, two approaches exist to the solution of this
problem. One of them consistsin the selection of enan-
tiomers of onetype without changing their nuclear con-
figuration (the scenario of laser selection of enanti-
omers in aracemic mixture). This mechanism was pro-
posed in [1], where the mixture deracemization caused
by acircularly polarized laser beam with a nonuniform
intensity profile over the beam cross section was dem-
onstrated.

Another approach is based on photoi nduced synthe-
sis of enantiomers of one type from enantiomers of the
other type (laser synthesis of enantiomersin aracemic
mixture). Synthesis of enantiomers, or the so-called
scenario of laser distillation of enantiomers in a race-
mic mixture, is obviously possible only in the case if
the photoinduced dynamics of the L-enantiomer differs
from that of the D-enantiomer. Several models of distil-
lation of aracemic mixture have been proposed [2-5].
In particular, its was suggested to produce deracemiza-
tion of the initially racemic mixture of enantiomers by
irradiating it by circularly polarized light [2, 4]. How-
ever, the estimates of the percent ratio of enantiomersin
this case give an unsatisfactory result, the difference
being only 10-%%. In thisrespect, amethod for coherent
control of chirality proposed by Shapiro et al. [5] seems
to be more efficient. However, a theoretical analysis

performed in [5] can be applied only to mediawith ori-
ented molecules and requires a qualitative modification
in the case of isotropic media (in gas, liquid, or amor-
phous states). Note also that the coherent control of
chirality isefficient only in the case of small chiral mol-
ecules with the mass M =< 10°my,, where my, is the pro-
ton mass. For example, hydrogen peroxide vapor, solu-
tions of alkaloid molecules, etc. can be used as active
media. In the case of more complex enantiomers, the
redistribution of the energy of laser pulses over many
degrees of freedom becomes substantial and coherent
control of chirality is strongly hindered.

In this paper, we study the role of the isotropic dis-
tribution of molecules over rotational degrees of free-
dom in the process of laser distillation of enantiomers
from aracemic mixture of chiral moleculesfor any pos-
sible distillation scenarios (Section 2). We showed that,
in the case of the isotropic distribution of chiral mole-
culesover orientation Eulerian anglesin aracemic mix-
ture, the scenario of coherent synthesis of enantiomers
suggested in [5] could not be successful. In Sections 3
and 5, we suggest and analyze a modified scenario of
laser distillation of enantiomersfrom aracemic mixture
of chiral molecules, which allowsthe efficient synthesis
of enantiomers of a specified symmetry. The qualitative
interpretation of the described criterion of physical
implementation of schemes of directional laser synthe-
sisinthetermsof theinformation theory ispresented in
Section 4. In the Conclusion, the main results of the
paper are presented.
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2. ANALY SIS OF SCENARIOS
OF LASER SYNTHESIS OF ENANTIOMERS
FROM A RACEMIC MIXTURE TAKING
INTOACCOUNT THE ROTATIONAL SYMMETRY
OF MOLECULES

We assume that the ground electronic state of the
nuclear configuration of a stable enantiomer! depends
on one reaction coordinate 8 and Eulerian angles O =

(¢, 9, 8), which characterize the rotation of amolecule
as a whole. Below, we assume for simplicity that the
states of all other intramolecul ar degrees of freedom are
fixed, so that the variation of these states isignored in
calculating the molecular dynamics. In the case of sta-
ble molecules, atwo-well potential of chiral molecules
has a high barrier, so that the tunneling splitting is vir-
tually absent and the eigenstates |LO= () and |D=
Pp(6) of the Hamiltonian in the ground electronic state
are presented with equal probabilities in a thermody-
namically equilibrium statistical racemic mixture of L-
and D-enantiomers corresponding to these states. The
presence of a high potential barrier in practically
interesting cases of large molecules is caused by a
large mass M of the enantiomer. In this case, the rota-
tion of the enantiomer as awhole is classical, because
hwy, n+1 < KT, where w, ., are frequencies of rota-
tiona transitions. The free dynamics of such an enanti-
omer is described in terms of states which depend on
the only reaction coordinate 6 (i.e., |[LO— . (6),
[DO— Yp(0)), while the role of Eulerian angles O is
reduced to the classical averaging over theinitial distri-
bution, which does not change during laser irradiation.

Even this simplest model of the free dynamics of an
isotropic medium reveals the fundamental role of rota-
tional symmetry. Its consideration shows that it is
impossible to realize coherent control of chirality inan
isotropic racemic mixture for the polarization configu-
ration of thefields, in which al the polarization vectors
lie in the same plane; i.e., they are coplanar.

The main quantum-mechanical variable that deter-
mines the excess of L-enantiomers in the mixture, i.e.,
the degree of its deviation from racemism, isthe chiral-

ity operator X = |LOL|— |DID|. The |LCand |[DOstates
are the eigenvectors of the operator ¥ , and its eigenval -

ues are 1. In the matrix representation in the basis of
the states |L[Jand D[] the chirality operator is repre-

sented by the Pauli matrix 6,. The general algorithms

of the construction of the chirality operator in the coor-
dinate representation can be found in papers [6, 7],

according to which the operator X is a pseudoscalar,
ie, R xR = —§%, where R is the inversion operator

LWe consider an enantiomer stable if the time of tunneling
between its different chiral states is much longer than at least the
time of the experiment.
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corresponding to the reflection r — —r of the radius
vector.

The inversion operator R in the subspace of the
eigenfunctions |LCand |DCof the ground electronic state

isdescribed by relations R|LCE [DCand R|DC= LD The
excess of L-enantiomers, or the degree of chirality at
fixed Eulerian angles O, is expressed in terms of the
chirality operator X, the transition superoperator
,(0), which describes the transformation of the den-
sity matrix p, — P, for the timet, and the operator
of free time evolution

Uo(t) = exp[—i%l:lor]

where Hg isthe molecular Hamiltonian. The superop-
erator nature of the transformation of the density matrix
is caused by the presence, in the general case, of decay
processes. For an ensemble of molecules distributed
over the orientation angles, the degree of chirality
includes an additional averaging over the Eulerian
angles:

X = Or[%00%,(0)poUs 10h. )

Below, we assume in this averaging that the angular
distribution isisotropic.

The transition superoperator, which describes the
photoinduced dynamics of achiral moleculetaking into
account relaxation processes over the reaction coordi-
nate and neglecting the rotation of the molecule as a
whole, has the form

¢,(0) = TexpB[ uoHluo,®]+££Ddru, @)

where T isthe time-ordering operator; the expression of

type [A, ©] with the substitution symbol © describes
the superoperator of commutation of the transformed

density matrix with the operator A; F, =—Ed —Ep is
the interaction Hamiltonian of the molecule with amul-
ticomponent laser field,

—ioyt

E = ReE%k(t)e ;

d isthe dipole moment operator of the nuclear config-

uration of the molecule; n is the electronic dipole
moment operator; and &, is the relaxation Liouvillian,
which takes into account relaxation processes in the
molecule [§].

In the superoperator representation, i.e., as applied
to the operators of quantum-mechanical quantities, the
inversion amolecule is performed by the superoperator
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R1=R" o R, whiletheinversion of density matrices

is performed by the superoperator R = R © R . For a
racemic mixture of initially unexcited molecules, we
have

N 1
o = 5(ILIL| + DY),

and, taking into account the symmetry of the molecular
Hamiltonian with respect to inversion, we have R1H, =
Ho (in the model under study, which ignores weak

interactions, the Hamiltonian Ho is represented by a
scalar). Then, it follows from the identity

X = O[(R5) 0% pe00 10

and taking into account the symmetry of theinitial state
(R po = Po), that

X = TrRUo(RS R Do) U510, ©)
where

RYRT =T

t
x expé[g—%[uol(%‘lmuo, o] + %s@,@t‘ﬁdrg.
A 1l
Using expression (3), we show that the effect of
laser digtillation of enantiomers from a racemic isotro-
pic mixture completely vanishes when a multicompo-
nent laser field is not chiral; i.e., the polarization vec-
tors of the laser-field components are coplanar. The
infformation meaning of this qualitative result is
explained in Section 4.

The inversion of the interaction Hamiltonian H, in
(3) is equivalent to the inversion of the dipole moment

operator ?R-1d =—d, which in turn is equivalent to the
inversion of the vector of the electromagnetic field
strength E. Because the relaxation Liouvillian &£, is

invariant with respect to the inversion R © R, it fol-
lows directly from (3) that the degree of chirdity X
changesits sign upon inversion of the polarization con-
figuration of the multicomponent laser field. Theinver-
sion operation can be decomposed into the mirror
reflection relative to an arbitrary plane and the corre-
sponding rotation. If the polarization configuration of
the laser field is coplanar, then the inversion operation
is reduced to a simple rotation because the polarization
configuration of the field in this case is invariant with
respect to the mirror reflection relative to the plane in
which all the polarization vectors of the laser field lie.
When the distribution of molecules is isotropic, the
degree of chirality X, according to (1), is also invariant
with respect to any rotation of the polarization configu-
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ration of the field. It follows from all the above state-
ments that, when the laser field is not chiral, the degree
of chirdity x is invariant with respect to inversion. In
this case, it follows from (3) that x = —x, i.e,, x = 0.

Thus, the analysis presented above shows that in the
case of the coplanar polarization configuration of a
laser field and the isotropic distribution over Eulerian
angles, theD — Land L — D transitions are aways
mutually compensated and the racemic nature of the
initial state is retained.

In the scenario of laser distillation of enantiomers
from an isotropic racemic mixture, the symmetry of the
L — D and D — L transitions, which appears upon
averaging over isotropically distributed Eulerian
angles, can be violated by two methods. The first
method can be based on the additiona orientation of
molecules over Eulerian angles by the laser field. This
scheme was considered in papers [9, 10] as applied to
hydrogen dioxide vapor. However, in the case of
heavier molecules, such an orientation can be achieved
only at very high laser-field strengths, approaching the
intra-atomic field strength. The second method consid-
ered in Section 3 can be based, in accordance with the
above analysis, on the use of a multicomponent laser
field with the noncoplanar polarization configuration,
which acts on the intramolecular degrees of freedom of
enantiomers. The generalization of the scenario of laser
distillation [5] under study is based on the use of three
linearly polarized subpicosecond laser pulses whose
polarization vectors are noncoplanar. The noncoplanar
polarization vectors should be used because only such
a system of vectors possesses chirality, which is inher-
ent only in the three-dimensional space and isabsent in
the one-dimensiona and two-dimensional cases. Such
afield containsinformation on chirality eveninthe case
of the local interaction with a molecule, i.e., in the
dipole approximation. The circularly polarized field in
this approximation (i.e., considered in a single point)
doesnot reveal itschirality, whichisrelated to the prop-
agation direction of the field and is manifested only
upon nonlocal interaction.

3. SCENARIO OF LASER SYNTHESIS
OF ENANTIOMERS IN ISOTROPIC RACEMIC
MEDIA

In the scheme of coherent control of chirality in the
racemic mixture of chiral molecules [5], the following
model of the free dynamics of molecules is adopted.
The potential over the reaction coordinate 6 corre-
sponding to the excited electronic state is quasi-har-
monic, with aminimum at © = 0. The first states of the
nuclear configuration of the excited electronic level |10
and |20are described by the wave functions that are
symmetric and antisymmetric relative to 6 = 0O, respec-
tively. The frequency of the transition from the |1Cktate
tothe |2[tateliesin the IR region. It was shown, ignor-
ing the limitations considered in Section 2, which are
specific for isotropic media, that the scenario of laser
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distillation of enantiomers from a racemic mixture of
chiral molecules can be realized using two subpicosec-
ond pulses (Fig. 1a). The subpicosecond laser pulse €,
with frequency w, is used for the preparation of the
coherent superposition of the states |100and |21 Under
such a condition, the asymmetric transfer of popula-
tions of the L and D states can be induced viathe states
|1Cnd |2Cby the subpicosecond laser pulse €, with fre-
guency ;. Because the polarization vectors of the
pulsed laser field are always coplanar in this scheme,
the expected effect of the transformation of the racemic
mixturein an isotropic medium will completely vanish,
according to Section 2.

Consider the generalization of the scheme of laser
distillation [5] to theisotropic racemic mixture of chiral
molecules using the same free dynamics model
(Fig. 1b). The coherent superposition of the states |1[]
and [2C0sinduced by the biharmonic pump with linearly
polarized amplitudes €,(t) and €(t) of the pump com-
ponents. The pumping of the excited electronic level by
thelinearly polarized pulse €,(t) resultsin theviolation
of the symmetry of transfer of the L and D statesviathe
upper levels [10and |20 The polarization vectors of the
pulses are chosen so that the polarization configuration
of the multicomponent laser field

E(t) = {%.(1), €x(1), €5(t)}
is noncoplanar (see Fig. 2).

In deriving the interaction Hamiltonian H, in the
rotating-wave approximation for a four-level system
shown in Fig. 1b, we take into account the fact that the
transition between vibronic states also includes the
dynamics of anuclear subsystem; i.e., thistransitionis
not a Franck—Condon transition. By denoting the states
of the nuclear configuration of the molecule by ket vec-
tors |LCJ DO |10 and |20(which depend, in the coordi-
nate representation, only on the reaction coordinate 6),
and the states of the el ectronic subsystem by |gCand |el)
we determine the corresponding Rabi frequencies and
the relations between them for fixed Eulerian angles.
The Rabi frequencies of vibronic transitions are

= @8, )9 0= +01J1@ (%, Ch)lgDL)
201 @ (%, ) gD T3 % (8, ) gD

L0218 (%, (W) IgTID 0= —(2{[@(, C)lglIL L

The Rabi frequency Q, for a biharmonic pump of the
transition between vibrational states |1[0and |2[0has the
form [11]

0,01 z(%zmmmtﬂ(mdmms)
n’

Wy p
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(a)

W, W,

Fig. 1. (a) Schematic of laser distillation of aracemic mix-
ture of stable enantiomers using two laser pulses at frequen-
cies wy and w, [5]. (b) Schematic of laser distillation of an
isotropic racemic mixture using three laser pulses at fre-
quencies wy, wy, and w; with noncoplanar polarization vec-
tors. The variable 0 describes the reaction coordinate
responsible for the chira state of a molecule in the ground
electronic state.

€,

X

Fig. 2. Polarization configuration of amulticomponent laser
field: y isthe angle between the field component € at fre-
quency ws and the field projection on the plane formed by
components €, and €, at frequencies w; and wy,, respec-
tively.

where |pOare the intermediate vibrational states of the
upper electronic term.

The dependence of Rabi frequencies on Eulerian
angles is manifested in the matrix elements of the cor-
responding dipole operators. It isimportant to note that
after averaging over the isotropically distributed Eule-
rian angles, the expected distillation of the racemic
mixture completely vanishes for any polarization con-
figuration of the laser field if the geometric configura-

tion of matrix elements @, L|p |1, e [1|d jplJ and

[p|d [20of the transition dipole moments is coplanar.
This statement can be proved in the same way as the
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necessity of using the noncoplanar configuration of the
laser field in scenarios of laser distillation of an isotro-
pic racemic mixture (see Section 2). The only differ-
enceisthat in this case, al the operations of reflection
and rotations are directly applied to the dipole moments
of molecules. Therefore, the method of distillation of a
racemic mixture under study can be applied only to
molecules with the noncoplanar geometric configura-
tion of the transition dipole moments.

The modified Hamiltonian Ho of the free dynamics
of molecules in the rotating-wave approximation and

the interaction Hamiltonian H, expressed in the terms
of the state vectors L[] |DC] |10 and [2Chave the form

Ho = fioo, (JLIY + [2012)),

2
Hi = 7iQy S [IKML| + |L (K
k=1

+ (~1)“"Y(|kID| + [DIK )] coscw, t @

+ ﬁsz K] cosw,t + 7(A |1 —A,|20012 ),

k1l

where w, is the frequency of the laser pulse €,, vy, is
the frequency of the transition between vibrational lev-
els |10and |200f the upper eectronic term, which
exactly coincides with the Raman frequency of the
biharmonic pump. In the rotating-wave approximation,

the Hamiltonian H,(t) in the interaction representation
H, = U5'H, 0, is averaged in time and is time-inde-
pendent for the given choice of the unperturbed Hamil-

tonian Ho. Asaresult, we obtain from the second rela-
tionin (4) inthematrix representation in the basis of the
states |LCJ|DC] |10 and |20

@ 0 0 Q, —ng
f-150 02 o
25 Q, 9,20, Q, E
0-Q; Q; Q, —247,[

where A; and A, are the detunings from the resonances
at the |LgC— |10kCand |LOY— |2[ke transitions,
respectively. Let us represent now the transition super-
operator (2) as an analytic function of the Hamiltonian

H, and restrict ourselvesto the consideration of rectan-
gular laser pulses of duration T, for which the parame-
ters of the interaction Hamiltonian are independent of
time. We will also neglect relaxation processes, assum-
ing that the pump pulses are substantially shorter than
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the characteristic relaxation time. In this case, the tran-
sition superoperator (2) has the form

#.(0) = explhH, ot . ©)

In the final calculations, we used the following rela-
tions: Q, < Wy, A; and Q; ~ wy,. The first relation
determines the maximum admissible order of magni-
tude of the field strengths €, and € in the case of the
resonance approximation, while the second one pro-
vides the possibility of coherent control of chirality
determined by the field €.

Let us represent the Hamiltonian H; as a sum of the

Hamiltonian H1, which determines the one-photon
transfer of populations of the states L and D via states

|1Cand [20) and the Hamiltonian H», which determines
the induction of the coherent superposition of the states
|10and |20) Because in the model of photoinduced
dynamics under study, the racemism of the mixture is
disturbed by the simultaneous action of all the three
pulses, we will retain in expansion (5) the terms con-

taining both Hy and H2 . Moreover, taking into account

that H; > H2, wewill retain in the first-order approx-
imation in (5) only the terms that linearly depend on

H.. The corresponding analytic expression for the
effective transition superoperator has the form

0.1, ~ .0
9’|(O)=eXpEHf[HL olg
O O

. (6)

where

To elucidate the role of the field noncoplanarity, we
consider the expansion of expression (6) in powers of

the Hamiltonian H. by omitting the expansion terms
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that contain only either Hamiltonian H; or Hz. These
terms do not describe Raman transitions induced by all
the pulses applied (see Fig. 1b) and, therefore, do not
affect the process of laser distillation of the racemic
mixture. Taking this circumstance into account, the
required expansion has the form

(7)
[Az, ]11).

By substituting (7) into (1), wefinally obtain the degree
of chirality

xO0y

n=2 i

- Tl
Eﬂ(O) - z 07|
=2

x([Hz, [Hi1...[H1, @]]] +... +[Hy, [H1...

zbmAlmQ Tod, (8)
=0

where 1, isthe pulse duration and by, are the dimension-
less coefficients, which are independent of the parame-
ters of the laser field and amolecule.

It isimportant to notethat it followsfrom (8) that the
degree of chirality linearly depends on parameters of
the biharmonic pump of the |10— |200transition and,
hence, is zero in the absence of the coherent superposi-

tion of states |[1Jand |20]i.e., for H, — 0. One can
easily obtain from (8) the important dependence of the
degree of chirality on the parameter characterizing the
noncoplanarity of the polarization configuration of a
multicomponent laser field

E ={%.(1), €x(1), €5}

In this case, the specific form of coefficients by, is not
important, although it can be obtained analytically
using the methods of computer algebra. The parameter
of interest to usis, for example, the angle y between a
plane formed by the vectors €,(t), €,(t), and €4(t)
(Fig. 2). The analysis of coherent laser synthesis of a
nonracemic mixture in the case of the isotropic distri-
bution of molecules over Eulerian angles performed in
Section 2 showed that the degree of chirality changes
its sign upon mirror reflection of the polarization con-
figuration of a laser field with respect to an arbitrary
plane. For the method of transformation of a racemic
mixture under study, this means that upon the mirror
reflection y — —y of the polarization configuration of
alaser fidd, we havex —= —; i.e., it follows from the
general considerations that the degree of chirality x is
an odd function of y. To obtain the exact dependence of
the degree of chirality on the angley, we consider the

expression EQEQZD) for arbitrary values of k. Let, for

definiteness, the vector €,(t) be directed along the
x axis of the laboratory coordinate system. Then, for
odd k= 1 (inthe case of even k, the corresponding terms
are set to zero), after averaging the expressions contain-
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Fig. 3. Dependence of the degree of chirality x on the fre-
quency detuning A4 of the laser field €4 and the pulse dura-
tion T, for the case of mutually orthogonal polarization vec-
tors €,(t), €,(t), and E4(t) of laser pulses. The followi ng
parameters were used in calculations: Q4 = w;, = 100 cmt

Q,=10cm™.

ing the powers of trigonometric functions over the
Eulerian angles, we obtain

[Q1Q4D U €40p€20E3, 9)

wherea, B=X, Y, Z €, isthe antisymmetric Levi—Civ-
itatensor; and e, and e; are the unit polarization vectors
of the biharmonic-pump components.

Taking into account (9), we obtain from (8) that the
degree of chirality is proportional to the mixed product
of the unit polarization vectors of a multicomponent field
and, hence, x ~ dny. The dependence of the degree of
chirality on the other parameters (the frequency detuning
A, and laser-pulse duration t,) for the model of photoin-
duced dynamics under study can be analyzed only par-
tially. Figure 3 shows the dependence x(4A,, T,) that was
numerically calculated for the case of mutudly orthogonal
polarization vectors €,, €,, and €..

4. CRITERION FOR CONTROL OF THE CHIRAL
STATE OF AN ISOTROPIC MEDIUM

To gain a better qualitative insight into the meaning
of the results obtained, it is expedient to consider the
experiment in the most general terms, ignoring the
details of the laser excitation scheme and the structure
of molecules under study. At this general level, the sys-
tem under study represents an information channel [12]
with a controlling laser field at its input. The output of
the channel is the chiral state of a molecule after laser
excitation, which is averaged over the initial density
matrix and orientation angles and is reduced over

eigenstates |LCand |DCof the chiral variable X . Thelat-
ter became a purely classical quantity after this reduc-
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tion and has values of 1 that correspond to states |L[J
and |DCAlong with states |LOand |DCIwhich describe
only the ground el ectronic state and are of interest to us,

we should also introduce the states in the form of the
third state [e(Dthat sums up the former states. Although

these additional states are of no interest to usin them-

selves, they provide acomplete set of possible states. In

our case, the state [e(Jcorresponds to the excited elec-

tronic states, which provide the conservation of the
total probability in the process of laser excitation. The
result of calculations of the excitation process in the
most general form is described by the conditional

(“transient”) distribution of the channel probabilities

P(XIE) = {p(L|E), p(DIE), p(E|E)} ,

whereE ={%,, €., ...} isthe st of fields represented in
the interaction Hamiltonian and e denotes excited elec-
tronic states. Probabilities (10) in fact enter into expression
(2), which describes the averaging of the chirality opera
tor. Assuming that the initial density matrix

(10)

p = p|LOL| + pp|D D]

isdiagonal, these probabilities are expressed in terms of
the matrix elements of the evolution superoperator as

P(LIE) = S (E)p. + Sp(E)pPp,
P(DIE) = Sop(E)pp + SoL(BE)pLs
p(e[E) = 1-p(L|E)—p(DI|E),

(11)

where

Sup = Triod M| (BB = L (BB jor

for a, B =L, D. The matrix elements S, describe the
conditional probabilities of chiral states at the input for
the fixed initial chiral states of a molecule, over which
the averaging is performed for the channel under study
with the laser field at itsinput.

The information on the laser field for the channel
represented by distribution (10) iscontained not only in
the degree of chirality of the ground el ectronic state but
asointhetotal probability of preparing the moleculein
this state, because afraction of molecules undergo tran-
sitions to the excited electronic state upon laser excita-
tion. Obvioudly, it is interesting to reduce the input
information only to the relative distribution of mole-
culesin the ground state. By describing the state of the
molecule immediately after termination of laser pulses,
we can do this by restricting ourselves to the consider-
ation of the relative distribution of probabilities for the
ground state only, which is specified by conditional
probabilities

P(LIE) = SLE)pL+ So(E)Po
S.L(E)pL+ Sp(E)pp + Soo(E)pp + Sou(E)py 2
p(D|E) = Soo(E)Po + Sou(E)pL

Another situation of interest isrelated to the consid-
eration of the distribution in the ground electronic state,
which appears after the free relaxation of the excited
electronic state. If we assume that the excited state is
not chiral and relaxes after excitation, then the same
probabilities equal to (1/2)p(e]E) are added to each of
the chiral states after the establishment of equilibrium.
Taking this into account, we obtain the following equi-
librium distribution:

p(LjE) = &+ S0 SolE0g
_ Soo(BE)po + Sou(E)pL
2 | (13
o(DIE) = %_&L(E)pL . Sio(E)Po
+ SolE)00 * SuEpc

Thefield E in expressions (12) and (13) isdescribed
by a probability distribution % (dE) in the space of the
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SLE)pL + Sp(E)pp + Son(BE)pp + Soi(E)py’

laser-field parameters. As applied to a series of experi-
ments with a set of different parameters of the laser
field, this distribution corresponds to the relative fre-
guencies of the appearance of different valuesof E. The
distribution % (dE) reflects the nature and amount of
information contained in the laser field. In accordance
with the experimental conditions, we can study the par-
ticular cases of this distribution by restricting our-
selves, for exampl e, to fixed amplitudes of thefield vec-
tors and considering the distribution over their orienta-
tions. Taking into account the laser-field chirality
established in Section 2, of special interest is the sim-
plest variant of the input information, when the fields
under study are distributed only between two configu-
rations obtained upon the reflection. In this case, the
laser field in distributions (12) and (13) is represented
infact only by thetwo-value parametera =1,2: E — q,
which isaminimal requirement for the reflection of the
chirality of the polarization configuration. Correspond-
ingly, the conditional probability distributions are rep-
resented by the 2 x 2 matrices with matrix elements
p(B|a), where 3 describes the chira state of the mole-
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cule and a describes the similar chiral variable of the
laser field.

Consider the case of aracemic initial mixture (p, =
pPo = 1/2). In this case, relations (12) and (13) are
expressed only in terms of combinations of the matrix
elements of the transition superoperator S =S, +Sp
and S, = Syp + S, which transfer to each other upon
the substitution L == D, by realizing the representa-
tion of the inversion superoperator 9R. If the transition
superoperator ¥, isinvariant with respect to this trans-
formation, then expressions (12) and (13) give the
value /2 for al conditional probabilities; i.e., the dis-
tribution of theresulting chiral variablesisindependent
of the chirality of the input configuration. It is obvious
that the corresponding amount of information on the
field chirality contained at the output vanishes at any
distribution of the rest of the field parameters. There-
fore, the criterion for the control of the chiral stateisthe
presence of theinformation on the chiral variable of the
laser-field configuration in the channel under study.
Thisis possible only when the laser field itself contains
this information. As shown in Section 2, this condition
is satisfied when the polarization configuration of the
laser field is chiral, its chirality being realized as the
configuration noncoplanarity in the case of the electric-
dipole interaction. However, this conclusion is not
applied in the general form to the channel (11), in
which, along with the intrinsic chirality of the ground
electronic state, the degree of the state depletion after
laser excitation is also taken into account.

5. DISCUSSION OF THE RESULTS

Analysis of the general relations described in Sec-
tion 3 and the quantitative calculations of the degree of
chirality based on this analysis can be summarized as
the following qualitative results, which characterize the
proposed scenario of laser distillation of enantiomersin
an isotropic racemic mixture of chiral molecules.

First, according to (8), upon the use of three laser
fields, the degree of chirality x is proportiona to the
sine of theangley, X ~ siny, and for y = 0, it isimpos-
sible to transform a racemic mixture in the case of the
isotropic distribution of chiral molecules over rota-
tional degrees of freedom (see Section 2). It is obvious
that the maximum degree of chirality is achieved when
the polarization vectors of laser pulses are mutually
orthogonal (y = 172).

Second, the optimum duration T, of linearly polar-
ized pulses is determined by the Rabi frequency Q; of
the vibronic excitation pulse, the above analysis being
valid under the condition T, = 217Q,. Otherwise, the
approximate expansion (5) of the transition superoper-
ator is not applicable and the dependence of x on the
parameters A, and T, becomes complicated (multifre-
guency), so that the coherent synthesis of enantiomers
in aracemic mixtureis hindered. For 1, < 210/Q,, it fol-
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lowsfrom (8) that the degree of chirality x ~ Q./Q, and,
hence, it does not exceed 10%.

Third, analysis of the dependence of the degree of
chirality on the detuning A; and the laser-pulse duration
T, (Fig. 3) shows that the maximum degree of chirality
Xmax ~ 8% is achieved a A; ~—-150 cmr* and 1, ~ 250 fs.
Our calculations gave the following values of the exci-
tation-pulse intensity corresponding to the Rabi fre-
quencies used for estimating dipole moments p; p, d ~
eag (ag is the Bohr radius). For the vibronic excitation
pulse, we obtained 1, ~ 10° W/cm?; for biharmonic
pump pulses, we havel,, |; ~ 102 W/cm?if the frequen-
cies of these pulsesliein the optical region, and I, I3 ~
10° W/cm? if their frequenciesliein the IR region.

6. CONCLUSIONS

The analysis performed in the paper has shown that
in the case of the isotropic distribution of chiral mole-
cules over the rotational degrees of freedom, coherent
control of chirality is possible only when the structure
of a multicomponent laser field is chiral initself, asis
the case of in fact the nonlocal magnetic-dipole [2] or
guadrupole interaction of a molecule with a circularly
polarized field. In the electric-dipole approximation,
i.e., upon thelocal interaction, the molecule cannot dis-
tinguish the circular and linear polarizations, and the
chirality of thefield ismanifested only in the case of the
noncoplanar polarization configuration (Section 2). This
result corresponds to the nonzero information on the
chiral state of the polarization conformation of the
field, which is contained in the chiral molecular state
after laser excitation (Section 4). This information is
also contained in the laser-field structure itself. The
information corresponding to the experimental scheme
under study can be used as a dimensionless character-
istic of the efficiency of laser synthesis of molecules
with the specified chirality. For stable enantiomers with
the mass M =< 10°m,,, we proposed and calculated the
scheme of laser distillation of enantiomers from arace-
mic mixture, which can be also applied, in contrast to
the scheme [5], in the case of the isotropic distribution
of chiral molecules over the Eulerian angles (Sections 3
and 5). The efficiency of the scheme depends on the
polarization configuration of the laser field (Section 5)
and the intensities of laser pulses. It is shown that the
maximum efficiency is achieved with the help of laser
pulses of moderate intensity.
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Abstract—A wake field excited by arelativistic electron bunch in a semi-infinite metal waveguide filled with
adielectric consists of the Vavilov—Cherenkov radiation, the “quenching”-wave field, and transient radiation,
which interfere with each other. An exact analytic expression for the transient component of the field of athin
relativistic annular bunch is derived for the first time. The evolution of the space distribution of afield excited
by afinite-size electron bunch is numerically calculated. The excitation of the wake field by a periodic train of
electron bunches in afinite-length waveguide is studied. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The propagation of a wave signal in a dispersion
medium is a classical problem in many fields of phys-
ics. Such problems are encountered in acoustics [1],
solid-state theory [2], plasma physics [3], and radio-
physics[4, 5]. The propagation of signalsin dispersion
media is commonly analyzed by expanding the input-
signal phase in a power series [2, 3, 5-7] or by using
asymptotic methods (see [8, 9] and references cited in
review [2]). The exact solution of this problem was
obtained only for the case of sound [1] and el ectromag-
netic waves in the ionosphere [10] or in a flat
waveguide [11].

The above-mentioned papers considered the situa-
tion when the source of a wave signal was immobile;
i.e., aquasi-monochromatic or a pulsed signal was fed
at theinput z= 0 at the instant of timet = 0. At the same
time, the problem of propagation of electromagnetic
radiation during the passage of a charged particle
through theinterface between two mediaarisesin anat-
ural way. Such problems have been considered in detall
inthe theory of transient radiation [12]. If the condition
for the appearance of Cherenkov radiation is not satis-
fied in both media, the propagation of transient radia-
tion can also be described within the framework of the
formalism used for studying propagation of pulsed sig-
nals in a dispersion medium. If this condition is satis-
fied, transient radiation can interfere with the Vavilov—
Cherenkov radiation. The transient radiation in the
presence of the Vavilov—Cherenkov radiation has been
studied in many papers (see, for example, referencesin
[13]). However, the studies that have been performed so
far were restricted to the calculations of total energy
losses by transient and Cherenkov radiation. In the
cases when the total |osses could be divided into com-
ponents, the Cherenkov radiation propagated into a

medium where the condition of its appearance was no
longer satisfied was analyzed [14].

The possibility of using Vavilov—Cherenkov radia-
tion for accelerating charged particles in the so-called
wake acceleration method [15-18] has inspired a
renewed interest in this radiation. In this method, an
intense bunch or a train of bunches propagating in a
medium excites an electromagnetic field behind it,
which then isused for the accel eration of another bunch
to higher energies.

The excitation of wakefieldsisusually theoretically
described in slow-wave media that are infinite in the
direction of the bunch propagation. In this approach, a
wake wave exists within the entire region behind the
bunch and propagates at the phase velocity that is equal
to the bunch velocity. The consideration of the finite-
ness of real systems can qualitatively change the space-
time structure of an electromagnetic wave if only
because the propagation of Cherenkov radiation in a
dispersion medium (asaparticular type of thewavesig-
nal [2, 6, 7, 19]) should be greatly complicated. In addi-
tion, the transient radiation appears, which will inter-
fere with Cherenkov radiation.

In this paper, we studied excitation of an electro-
magnetic wave by an electron bunch and by atrain of
electron bunches in a semi-infinite slow-wave medium.
We considered the problem in the simplest formulation.
As a slow-wave medium, we considered a dielectric
with € = congt, which filled a cylindrical waveguide
with the metal walls and end. Note that a similar prob-
lem on the radiation of a single charge moving along
the axis of a semi-infinite waveguide filled with a
dielectric has been formulated in paper [20] where
asymptotic solutions have been obtained for largetimes
t. Below, we will show that there exists an exact solu-
tion to this problem, which is valid at any timest and
for an arbitrary longitudinal coordinate z. This alows
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us to analyze in detail the process of the formation of
the space-time structure of the electromagnetic field
excited by an electron bunch or by atrain of electron
bunches and to give recommendations concerning the
use of our results for accelerating charge particles. The
results of our paper allow us to determine the length of
the localization region of the electromagnetic field
excited by the electron bunch and thereby to estimate
the duration of the current pulse of accelerated parti-
cles.

2. THE FIELD OF A THIN ANNULAR BUNCH

Consider a cylindrical metal waveguide of radius b
that is filled with a homogeneous dielectric with the
permittivity €. The waveguide occupies the region 0 <
z< o inthelongitudinal direction and is shorted with a
metal wall at the end z = 0. We assume that an axially
symmetric monoenergetic electron bunch flies into the
waveguide from the wall side and then propagates at a
constant velocity v, along the z axis. The condition

v, > c/ /e for theappearance of Cherenkov radiationin
the waveguide is satisfied. We neglect the influence of a
narrow vacuum drift channel on the electrodynamics of
the system and assume for simplicity that the
waveguide is completely filled with the dielectric.

To determine the field produced by an electron
bunch with an arbitrary density distribution, it is neces-
sary first to find the field of an infinitely short and thin
charged ring whose plane is perpendicular to the
waveguide axis. The charge density of such aring can
be written in the general casein the form

p=- 2Ttr 6(r

roo(t-t,),
where—eisthe electron charge, N isthe number of elec-
trons in the ring, v (t, ro, 2) and r (to, 1o, 2) are the
Lagrangian velocity and the radius of the annular
bunch, respectively, t, (t,, ro, 2) is the Lagrangian time
of aparticle, tyistheinstant of the annular bunch flying
in the waveguide, and ry istheinitia radius of the ring.
In the uniform motion approximation, the velocity and
radius of the ring are constant, v, = vyandr_ =r,, and
the Lagrangian time of theringist, =ty + Z/v,,.

The electromagnetic field excited by the charge in
the semi-infinite waveguide satisfies the following
boundary conditions. First, the longitudinal component
of the electric field vanishes at the side conducting sur-
face r = b of the waveguide: E,, -, = 0. Second, the
transverse component of the electric field should vanish
at the metal wall z = 0: E|,-, = 0. Taking this into
account, the expression for the Fourier component of
the longitudinal component of the electric field of the
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axially symmetric E-wave has the form [20]

E® _ 2iNe

_ 3 lm(*)eXp[W)(Z/Vo"'to)]
Th’e

K, —wIve

_)\_ﬁ exp(ik,,z+iwty) O
b KV o(Kon — 007/ V5)

)

 JoAo/b) Jo(Anr/b)
JIN)

where A, is the nth root of the cylindrical Bessel func-
tion J, and

K2 = ew’/c’ = N2Ib?

is the longitudinal wave number of free electromag-
netic oscillations in the dielectric waveguide.

By performing the inverse Fourier transform, we
obtain

2iNe [, CAZ 15 O
Eft,r,z,t5,rg) = —— ) O1—
( oo T[bstD1 ﬁvobzs/cz—llvg
Jo(Aaro/0) Jo(A,t /) (2)
I ’

exp[ —iwt+iw(z/vy+ty)]

R RN TS
. . 2 2

i = J’dw exzp(—|(:T+|EA/w -a°) , @)

L Ao —at(w- ) (Wt w)

where
. = An q = A.C
" b el —1v2 b./e’
T=t—-t, &= ic'

The quantity wy isreal, and the corresponding poles of
integrands in (3) and (4) are located on the real axis w.
The contour of integration L is a straight line in the
complex plane w, which is parallel to the real axis and
islocated dlightly above it [10].

The integral (3) describes the wake field of the
charge propagating in an infinite waveguide [21]. It can

be easily calculated to be
17 = —2mi cos[wOB—to—EE}eg—to—viﬁ, (5)
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where

f >0
8(x) = M for x
for x<0.

The integra (4) corresponds to free eigenmodes of
the cylindrical waveguide, which appear because the
systemislimited over z. The consideration of this addi-
tional term provides the fulfillment of the boundary
condition on the side metal wall. We will show below
that integral (4) givesa"“ quenching” wave and transient
radiation. Integrals of this type are encountered in the
theory of propagation of signalsin dispersion media|[2,
6, 7, 19]. They are calculated usually by numerical or
asymptotic methods. In [20], the corresponding inte-
gral was calculated by the saddle point method, so that
only an asymptotic solution was obtained, which is
valid for timesthat are much longer than the time of the
wave propagation across the waveguide. Note, how-
ever, that the field of free eigenmodes (4) can be found
analytically. The analytic solution for asimilar integral
has been obtained for the first time in the study of the
propagation of an electromagnetic signal in an ionized
gas [10]. The exact solution was found later in [11]
by a method that was dlightly different from that used
in[10].

Before proceeding to calculating integral (4), note
that the function

k(w) = J&’—a®

has branch points at w = +a. Therefore, it is necessary
to make acut along the segment (—a; a) inthe complex
plane w. Let us choose such a sheet of Riemann surface
k(w) at which

O<arg(wzx a) <2m.

Thesigns of thereal and imaginary parts of k(w) on this
sheet and, hence, of k,,(w) will be equal to the signs of
thereal and imaginary parts of w, respectively. Itisthis
condition that should be satisfied in our problem,
because we consider only the waves propagating in the
positive direction of the z axis, for which we should
have

sgn[Re(kz)] = sgn[Re(w)].
In this case, the condition
Im(k,,) >0

will be satisfied in the upper half-plane, where the con-
tour of integration L passes; i.e., the wave will decay at
Z—> +oo,

If T <&, we can easily close the contour of integra-
tion L of integral (4) through a semicircle of an infinite
radiusin the upper half-plane w, the integral over which
is zero. It is obvious that the required integral will be
also zero because the resulting closed contour contains
no singularities.
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To calculate integral (4) for T > €, we perform the
integration over the closed contour consisting of the
initial contour L, the upper and lower banks of the cut,
and a semicircle of an infinite radius in the half-plane
Imw< 0. This contour has a clockwise direction and
confines a simply connected region, which contains
two poles at points w = +wy,. According to the theorem
of residues, we have

(12+ oq+ 1)
= —21i (ResF(—wy) + ResF(wy)),

wherel, istheintegral over the banksof cut, I_,, isthe
integral over the semicircle of an infinite radius in the
lower haf-plane (equal to zero for 1 > &), and
Res F(xwy) is the residue of the integrand in (4) at the
corresponding pole w = +wy,.

To calculate the integral |, over the banks of cut,
we consider adoubly connected region, whose exterior

boundary is the ellipse C,, and the inner boundary are

(6)

the banks of cut. C,, has focuses at points w = +a and
contains poles w = *wy,. According to the theorem of
residues, the integration over the boundary of this
region gives

lew + 1o = -2 (ResF(—uwy) + ResF(wy)),  (7)
where |4 is the integral from the integrand in (4) over
C,,- By comparing (6) and (7), we can see that

15 = lg.
Thus, we pass from the integration over the infinite
straight line L in the complex plane wto the integration

over the elipse C,, in the clockwise direction. Note

that instead of an ellipse we can use any closed curve
without self-intersections, which encloses all the poles
and the cut, but the elliptic contour can be most simply
transformed.

Let us perform a number of successive transforma:
tionsintheintegral 1. First, weintroduce the new vari-
able of integration p = —iw. Next, we make the change
of variable

al = Jp*+a’-p.
Then, we perform the change of variable
¢ = Bw,
where
B=J(Tt=8)/(t+8).

Asaresult, theintegral 14 istransformed to the integral

wexp[(a/2) /1% = E4(w — 1/w)]

_ 4
' = g M) W W w) w—wyy
c.
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where

i [1—cl/ev, i [1+clJev,
W=z [————, W,= = [———
BA1+cl/ev, BN1—cl/ev,

W5 = —W;, W, = —-W,, and the contour C;, isacircleinthe
complex plane w with acenter at the point w= 0, which
is passed in the positive direction and contains no poles
W=Wj,j =123 4.

Finally, after simple transformations, we obtain
1 1
lg = — J‘dwexp[%A/TZ—EZBN—\TE}
200/ W/ Ot -1%

®
21 1, 1 110
E\N—Wl W—=W, W-=W; W-—Wg7

Because the contour of integration C;, doesnot con-
tain polesw = wj, the expansions

11w
w—w, W, Z O ©)
arevalid for it.
Note also that in [22],

E%Idwwkexp[m/rz—&%%v—\%g}

C

(10)

W

= (1)1, (a2 = ED).

By substituting series (9) into (8) and interchanging the
integration and summation order, we obtain, taking into
account (10), that the required integral (4) is

no_ -«/§V0b2|:|8 10 - mEF—EDm
e AT a2 Y e

(11)
y Eﬂ—c/ﬁv% _El+c/JEv sz(am).
+cl/Jevdd Ol—clfev

The Lommel function U,(q, X) of two arguments is
defined as [23]

0 m=1

n+2m

‘]n+2m(x)' (12)

Un(a ) = Y (-D"EH
m=20
Let us rewrite (11) by using the second-order Lommel

functions of two arguments

,\/EVObZDE _ iD

O R

X [Ua(ray, y) =Uy(ryy, )1,

l5 = 2mi 13
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where

y= g, 1= p [LoEYe
1+cl/ev,

= 1+clfev,
? 1 - C//\/E VO .
Note that expression (13) gives the exact value of inte-
gra (4).
To calculate the Lommel function U, (q, X) for g< x,
it is convenient to use expression (12) because the

series in Bessel functions in (12) very rapidly con-
verges. For g > X, the expression [23]

2
= cos ¥+ X _NTH

—n+2+2m

+Y DTS Jaeaean()

can be used. This series dso rapidly converges for g > x.
One can easily see that for x = g, expressions (12) and
(14) give the same result. Therefore, we can write

U,(ry,y)

(14)

00

—Z (-1)"r*™J,.(y) for r<1

m=1

(15

Oy, yo, <« (D"
_COSD—2—+2rD+ ZO o Jom(y) for r>1.

Let usintroduce the notation
Vo = CliE, vy = clevy,
Fort—t,—2/v, 20, thefollowing relations are satisfied
O<r;<1,
O<r,<1 for t—t,—2/vy <0,
r,>1 for t—t,—2z/vy >0.

Taking into account (15) and (16) for t —t, —Z/v,,, 2 0
andt—t, —z/vgr < 0, we can write

Us(ray, y) —=Uu(ryy, y)

(16)

- 17
= 5 (D" =12 dan(y)- &

Correspondingly, for t —t, — z/'v, > 0, we have

Us(ray, y) —Uy(ryy, y) = —COS[Q)O% -t VE(E}
o L (18)
+Jo(y) + m;(—l)"ﬁim + gnEsz(y)-
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Thefirst term in the right-hand side of (18) describesan
electromagnetic wave in the region

0<z<(t-ty))Vy

which coincides with the Vavilov—Cherenkov radiation
field (5) taken with the opposite sign. Thisisa* quench-
ing” wave [20], which compensates Cherenkov radia-
tion in the corresponding region of z. The rest of the
terms in (18) correspond to a fraction of the transient
radiation that propagates at a velocity slower than v
Expression (17) corresponds to a faster fraction of the
transient radiation.

Let us substitute (13) and (5) into (2), taking into
account (17) and (18). Asaresult, thefield produced in
a semi-infinite waveguide by a charged thin ring mov-
ing at a constant velocity can be conveniently written,
similarly to [20], as a superposition of the Vavilov—
Cherenkov radiation field E"™" limited in space and the

transient radiation field EY "

E,(t,r,2to,1p)

19
= E(t, 1,2, ty, 1) + EY (L, 1, 2, t, 1), 19)
ANe— Jo(A o/ D) Jg(A /b
EZh (t,r,Z,to,ro) = b2 O( 02) 0( )
e 4 J1(An)
xcos[wOB to— J]} (20)
x Eﬂ%‘to—im—eg—to——z‘%,
O VJ] Vyr
trans 4Ne JO()\nrO/b)JO()‘nr/b)
t,r,zt,, =
( 0 0) bzsg Ji()\n)
Z[]
ﬁeg - —0H - - D}
(21)

Z( 1M(r" =13 oY) +9%—to—i5

Vy

[ o) + z( 1) Ezm

The Vavilov—Cherenkov wake field (20), taking into
account the “quenching wave,” is nonzero for

JZm(y)} g
[l

(t_to)vgr S Z< (t_to)VO
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Fig. 1. Structure of the first harmonic of the longitudinal
component of the wake field excited by an infinitely short
charged disc in a dielectric waveguide: (a) total field E,,

cher

(b) Vavilov—Cherenkov radiation field E;

trans

radiation E,; . (1) z=2¥, (2) z= 2", (3) charge position.
The observation timetc/b = 40,t;=0,y=5, £ =2.6.

, (€) transient

Within this region, the envelope of a Cherenkov signal
is constant (see Fig. 1b). The quantity v, is the group
velocity of an electromagnetic wave that is synchro-
nous with the electron bunch. The plane

' = (t-ty) vy

is the trailing edge of the wake field. This edge moves
behind the electron bunch at the group velocity v .

Thetransient radiation field (21) existsin the region

0sz<(t—to)Vy,
where v/, isthe maximum propagation velocity of elec-
tromagnetic signalsin adielectric waveguide. The fast-
est high-frequency part of the transient signa, the so-
called “precursor,” propagates precisely at thisvelocity.
The envelope of thetransient signal ismaximal near the
trailing edge (line 1 in Fig. 1c) and decreases away
from it. For the precursor (line 2 in Fig. 1c), the enve-
lope tends to zero. Near the rear wall, the envelope is
small but nonzero and decreases with time. The tran-
sient field (21) undergoes a jump in the trailing-edge
plane (see Fig. 1c¢). Thisis explained by thefact that we
artificially separated the continuoustotal field (19) into
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Fig. 2. Evolution of the wake field excited at the waveguide
axishy along relativistic bunch with the asymmetric density
profile(22). Ten harmonicsaretakeninto account: tc/b=10(a),
20(b), 30(c), 40 (d); y=5,£=26,a/b=0.143,L,/b=32

components. In this case, the separated Vavilov—Cher-
enkov field (20) also abruptly vanishes after passage
through the trailing-edge plane.

As aresult, the spatial structure of the field at the
instant of timet hastheform shownin Fig. 1a. Thefield
iszeroinfront of the bunch. To theleft of 2" = (t—to) v,
(line 2), thefield envel ope begins to decrease, while for
z=7" (line 1), it is equal to half the Cherenkov radia-
tion field. In the region z < 2, the field is weak and
deceases with time.

3. RESULTS
OF NUMERICAL CALCULATIONS

A charged bunch of afinite size is characterized by
thefollowing parameters: the bunch radius a, the bunch
duration T, (T, = Ly/v,, where L, is the bunch length;
we assume that the velocity v, is constant and the same
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for all particlesin the bunch), the current density distri-
butioninthebunchj(ro, t)) (0<t;<T,, 0<ro<a, tyis
the time of arrival of the bunch to the system cross sec-
tion under study), and atotal number N, of charged par-
ticlesin the bunch. Such abunch can be represented as
a set of rings with different charges, radii, and arrival
times. The bunch field can be obtained by summing the
fields produced by al macroparticles that form the
bunch:

Et,r,2) = zEz(L rz,toi, o),

where the elementary field Et, r, z ty, ro) of theith
macroparticle is determined by expressions (19)—21).

The methods for accelerating particles by wake
fields often use a profiled |eading bunch, whose density
gradually increases from its head to tail and then
abruptly drops to zero. Such a bunch can provide a
large transformation coefficient [16], i.e., the ratio of
the field excited by the bunch to the strength of thefield
decelerating particles in the bunch. The transformation
coefficient determines the maximum increase in the
energy of accelerated particles. Consider, for example,
the current density distribution in the form

. . t 2
jAroto) = JoJo%\lrgqanp[—‘lEﬁ%—%} (22)

where j, is the maximum current density in the bunch.
Such adistribution is often realized in experiments and
isused in numerical calculations. In this case, the total
charge and the maximum current density are related by
the expression

312 2
_modi(A)a’ly,.
eNg = 7 V. Jo-
Thisexpression isused for determining the characteris-

tic scale of an electric field in numerical calculations,
provided the total charge of the bunch is specified.

Figure 2 shows the time evolution of the longitudi-
nal distribution of the wake field excited in a semi-infi-
nite dielectric waveguide by a relativistic electron
bunch, whose asymmetric longitudinal profile is
described by expression (22). Note that the field behind
the bunch greatly exceeds the field in the bunch, which
corresponds to a large transformation coefficient. The
eectric field in Fig. 2 is normalized to the value
4mjqa/c, which determines the Coulomb field near the
bunch surface. Because many radial harmonics are
excited in adielectric waveguide, whose amplitudes are
comparable to each other, we took into account here
10 harmonics (afurther increase in their number virtu-
ally does not change the numerical results). The inter-
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ference of many radial harmonics resulted in the
appearance of sharp peaks of the field, whose ampli-
tude greatly exceeds that of any harmonic. One can
clearly see that the region where the envelope of the
wake field is maximal is located between the charged
bunch and the boundary moving behind it—the radia-
tion trailing edge, the velocity of this edge being
approximately € times less than the bunch velocity.
Behind the trailing edge, the field is substantialy
weaker than in front of it and has a different structure.
The length of the excited wake field increases with
time.

The presence of the trailing edge of the wake field,
which propagates at the group velocity, restricts the
length of the wave packet and imposes the correspond-
ing requirements on the delay time during which the
bunch of charged particles being accelerated should be
injected to the accelerating system. The finite length of
the region of existence of the excited field restricts the
duration of the current pulse of accelerated particles.

A promising method for obtaining wake fields of a
large amplitude is the use of a sequence of short low-
density bunches, which is modulated so that the fields
of individual bunches are added coherently [24]. Con-
sider the generation of a wake field by a sequence of
short relativistic bunches in a semi-infinite waveguide.
To elucidate a qualitative picture, we first restrict our-
selves to the first harmonic of the field. Each bunch of
the sequence is simulated by a macroparticle—a thin
disc. Thechargerepetition rateisequal to the resonance
frequency of thefirst harmonic. The number of bunches
islimited. One can see from Fig. 3athat thefield in an
infinite waveguide will increase linearly from the
beginning of the sequenceto itsend, thefield amplitude
being constant behind the last bunch (line 1). When the
boundary z= 0 exists, the situation drastically changes.
One can see from Fig. 3c that now the field increases
from the beginning of the sequence to line 2 and then
decreases, the velocity of the field decrease being
increased behind the last bunch (line 1), and the rear
boundary of the wave packet appears, behind which the
field tendsto zero. Line 2 correspondsto the position of
thetrailing edge of the wake field excited by theleading
bunch of the sequence and determines the number of
bunches whose fields can be added coherently; i.e., the
fieldsfrom al the buncheslocated to the right from this
line are summed in the cross section shown by thisline.
Until the trailing edge of the field of the first charge is
located within the boundaries of the sequence of afinite
number of bunches (as in Figs. 3b and 3c), the maxi-
mum excited field will be less than the maximum field
of the same sequence in an infinite waveguide. When
the last charge of the sequence overtakes this edge
(Fig. 3d), aregion appears in which the fields from all
bunches are coherently added and the field amplitudeis
the same as in an infinite waveguide. This region is
bounded by lines1 and 2 in Fig. 3d.
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Fig. 3. (a) Structure of the first harmonic of the longitudinal
electric wake field excited on the waveguide axis by a
sequence of twenty charged discs ignoring the effect of the
boundary z = 0; (b, c, d) is the same but for a semi-infinite
waveguide: tc/b =80 (a), 60 (b), 80 (c), 120 (d). (1) Coordi-
nate of thelast charge z,q in the sequence, (2) position of the

trailing edge of the field produced by thefirst charge zgr of
the sequence; y=5, € = 2.6, a/b = 0.143, Azy/b = 3.2.

The spatial distribution of the longitudinal electric
field substantially depends on the system length. If a
semi-infinite system 0 < z < + is considered, then the
field excited by a continuous sequence of electron
bunches will be maximal near the trailing edge of the
wake field produced by the leading bunch of the
sequence:

Zgr = (t _t01) Vgr'
In this plane, the fields from the number

max t(VO_Vgr)
= e 2
N; A7, 1 (23
of bunches will be added, where Az, is the distance
between the adjacent bunches. This maximum will
increase with time and propagate behind the bunch at
the group velocity. The field will decrease linearly
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Fig. 4. (a) Structure of the longitudinal electric wake field
excited on the waveguide axis by a continuous sequence of
charged discsignoring the effect of theboundary z=0; (b) is
the same for a semi-infinite waveguide: tc/b = 100. Ten har-
monics were considered. (1) Coordinate of the first charge
7, in the sequence, (2) position of the trailing edge of the

field produced by thefirst charge zgr of the sequence. Alto-

gether, the figure presents 31 bunches, y=5, € = 2.6, alb=
0.143, Azylb = 3.2.

behind the maximum and will not exceed the field of
one bunch at the system origin (z= 0) (Fig. 3b).%

In a slow-wave system of finite length, a different
situation can be realized. Let a waveguide of finite
length Ly closed by ametal wall at z= 0 be connected
atits end, z = Ly, to an ideally matched load. In this
case, we can neglect the boundary effects at the right
end of the waveguide and use expressions (19)—(21) to
calculate the field inside the system. Consider the field
in the region 0 < z < Lgy excited by a continuous
sequence of charges. As an example, we can take
Fig. 3b by assuming that Lg./b = 20. Thefield envelope
ismaximal at the right boundary of the region z= L.
In this cross section, the fields of the greatest number of
bunches are added. We can estimate their number from
expression (23), inwhichweset t = Lg/v,:

L
N =2l 1204

v . (24)

For Lgg =70 cm, € = 2.6,y = 5, A7, = 11.2 cm, we

obtain N™ = 10. Figure 3b confirms this with good
accuracy.

When a continuous sequence of bunches modulated
at the frequency of thefirst resonance harmonic excites
a multimode wake field in an infinite dielectric
waveguide, the following eventstake place (Fig. 4a). At

Iwe can use this figure to illustrate the case of a continuous
sequence of bunches because the figure shows the distribution of
the field at the instant of time when not al of the bunches have
flown in the system.
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the beginning of the sequence, the fields from a few
bunches are added and the total field has a complicated
form because the fields produced by each charge con-
sist of peaks whose repetition rates differ from the
modulation frequency of the sequence (the region 70 <
z/lb < 100 in Fig. 44). Then, with distance from the
sequence head and an increase in the number of
bunches whose fields are added coherently, the reso-
nance modulation frequency begins to be separated,
and the field increases and takes aform close to that of
asinglemodefield (the 0 < z/b < 15 region in Fig. 4a).

The number of bunchesin alimited system, whose
fields are added in some cross section, increases with
distance between the cross-section plane and a metal
waveguide end and reaches the limiting value (24) at
the matched output end of the waveguide. For this rea-
son, upon multimode excitation of the wake field by a
sequence of bunches, the field at the waveguide input
(the 0 < z/b < 20 region in Fig. 4b near the metal wall)
has approximately the same complicated form as that
near the sequence head in an infinite waveguide. If the
system length is sufficiently long, then oscillations near
the ideally matched right end will be close to single-
mode oscillations because of the separation of the res-
onance modulation frequency (the 30 < z/b < 40 region
inFig. 4b, if Ly/b = 40).

4. CONCLUSIONS

We have found the exact analytic solution for the
problem of propagation of an electromagnetic signal
excited by a charged bunch propagating in a semi-infi-
nite dielectric waveguide. The obtained expressions
exactly describe the field structure at any point at an
arbitrary instant of time, including the situation when a
particle has moved from thewall z= 0 by adistance that
does not exceed afew wavelengths. Thisisimportant in
studies of the systems whose length is comparable with
their radius.

The presence of thetrailing edge of the excited elec-
tromagnetic field, which propagates at the group veloc-
ity, isessential for the acceleration of acharged particle
by the wake field of the charged bunch. In the model of
an infinite medium, the accelerated bunch can be
injected at an arbitrary period of the wave excited by
the leading bunch. In a semi-infinite medium, an
increase in the delay time leads either to a decrease in
the accel eration rate or completely eliminatesthe accel-
eration.

When the wake field is excited by a sequence of
bunchesin the accel erating system of afinitelength, the
maximum amplitude of the longitudinal electricfieldis
achieved at the output end of the system. The maximum
field strength that can be achieved is determined by the
parameters of the waveguide and sequence of charges,
and is independent of the number of bunches that have
flown through the system.
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Let us discuss the range of applicability of the solu-
tion obtained. We have used the following basic
assumptions to represent the field in the analytic form
(19)—«21). First, thisisthelinear and uniform motion of
particles in the bunch parallel to the waveguide axis.
Second, we assumed that the frequency dispersion of
the permittivity € is absent. Third, we assumed that the
waveguide was completely filled with a dielectric that
determined the electrodynamics of the moderating
medium.

Having chosen the approximation of the specified
linear and uniform motion of particlesin the bunch, we
neglected the inverse effect of the excited el ectromag-
netic field on the particles. This approximation is often
used in studies of the radiation from a single charge or
low-current charged bunches [2, 20, 21]. Under rea
conditions, the region of applicability of this approxi-
mation imposes a restriction to the number of electrons
in the bunch and the system length. The decelerating
longitudinal electric field E,, which acts on a short
bunch with arectangular density distribution, is of the
order of magnitude

E, 08eN,/b’e.

The condition of the neglect of variation in the particle
velocity on the system length has the form

2
mvgyy €b

Forb=4cm, Lyg/b =100, € =2.6, andy =5, thisine-
quality issatisfied for N, < 4 x 102, Thislimiting value
considerably exceeds the value achieved at present in
experiments. In the wake acceleration experiments,
bunches with a much higher energy y are used, which
allows us to apply the approximation of a specified
velocity for dense bunches. The transverse motion of
charged particles can be ignored upon the application
of astrong external longitudinal magnetic field [25].

Neglecting the dependence £(w) is sufficiently justi-
fied and substantially simplifies the calculations.
Expressions (19)—«21) describe the field with good
accuracy, if the required range of the excited resonance
frequencies corresponds to the horizontal part of the
dependence £(w) where there are no absorption regions.
This, as arule, corresponds to the experimental condi-
tions. Thus, the permittivity of polystyrene [26] is vir-
tually constant in the frequency rangefrom 1 to 25 GHz
and is equal to 2.55, the losses being very small. The
consideration of the frequency dispersion &(w) will
change poles and branch points of integrandsin expres-
sions (3)—4). Also, new poles can appear. In the fre-

guency regions for which the condition v, < ¢/ /(W)

is satisfied, the poles wy, will become purely imaginary.
Correspondingly, along with the Cherenkov wave field,
a quasi-static Coulomb field will emerge, which is
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strongly localized in the charge region. Because we
have e =1 at w — o, the propagation velocity of the
precursor of transient radiation increases: v, — C.
Therefore, the field can exist in front of the bunch.
However, these effects are determined by oscillations
with very high frequencies, whose amplitude is small,
so that they can be neglected.

The third assumption is not fundamental. The same
treatment, only more cumbersome, can be performed
for awaveguide with afinite thickness of the drift chan-
nel. The influence of the vacuum drift channel on the
dispersion properties of the medium is negligible if its
cross section is small compared to the dielectric cross
section. In addition, we must keep in mind that the
highest radial harmonics of the field that satisfy the

condition
dA, > by Jevi/c®—1

(d isthe transverse size of the channel) will be weakly
excited by the bunch because of a strong penetration of
the field to the vacuum channel.
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Abstract—~Perturbation theory for the wave function of a hydrogen-like atom in a homogeneous electric field
of strength F makes it possible to obtain the Rayleigh—Schrodinger series with the coefficients of FN (N =
0, 1, 2, ...) being linear combinations of the Sturm function, which represents the unperturbed state, with 8N?
functions of the corresponding complete set with indices adjacent to the parabolic quantum number of theinitial
level. A method for recursive analytic calculation of the coefficients of the linear combination for any order N
is developed. General expressions for corrections to the matrix elements and intensities of the radiation transi-
tions between Stark sublevels are obtained. Analytic formulas and numerical values of the corrections up to the
fourth order for the Lyman and Balmer series are presented. A comparison with the available datafor transitions
between the Stark components of Rydberg statesiis given. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Optical properties of an atom in an electric field
depend on the field strength. Shift and splitting of spec-
tral lines, the Stark effect, are caused by the change of
energy of atomic levels. For a hydrogen atom, they are
calculated in an arbitrary order of perturbation theory
for the atom—field interaction[1, 2]. Nevertheless, up to
now there are some features of this phenomenon that
have not yet been completely studied, so the Stark
effect still remains one of the central problems of
atomic physics.

Along with the change of frequencies under the
influence of the field, a change in the intensity of lines
isobserved. The effect of the field dependence of inten-
sity provides additional spectroscopic information
about the atomic structure, which can be used for opti-
cal diagnostics of fields exerted on the atom and for
control of the radiation and absorption of light by mat-
ter. The intensity of lines can be used to determine the
change of the radiation matrix element induced by the
field and, thus, find corrections to the wave functions of
theinitial and final states of the atom.

Determining the dependence of line intensities on
the electric field requires new approaches (both theoret-
ical and experimental) to the study of the atomic struc-
ture different from those used for determining the
dependence of atomic frequencies on the field. Thus,
the problem of the change of the matrix elements and
intensity of the radiation transitionsin thefield remains
poorly studied, and in many cases no relevant informa:
tion can be found in the literature.

The change of probability for transitions between
Rydberg states in the hydrogen atom was experimen-
tally observed in [3] by the method of ionization spec-

troscopy. For the theoretical interpretation of the results
obtained, the Hamiltonian of the interaction of the atom
with thefield wasnumerically diagonalized in[3] inthe
finite basis of closest energy states. The efficiency of
such calculationsislimited not only by theincomplete-
ness of the basis states and the necessity to check the
accuracy and convergence of the results but also by the
absence of any analytic relations that could help ana-
lyze the dependence of the effect on the quantum num-
bers of the initial and final states. Another obstacleisa
substantial amount of calculations for every particular
transition. The possibility of obtaining simple formulas
that represent corrections to the energy of Stark states
interms of parabolic quantum numbers[1, 2] givesrea
son to expect that similar analytic expressions can be
obtained for corrections to the wave functions and
matrix elements of radiation transitions.

Expressions for the corrections of the first [4] and
second [5] orders have been recently obtained with the
help of the Coulomb Green function in parabolic coor-
dinates. The corresponding numerical values of the cor-
rections to the probability of radiation transitionsin the
field are in good agreement with the experimental data
obtained in [3]. However, in strong fields, the first two
ordersareinsufficient for the description of the effect in
the vicinity of the ionization threshold. In addition, for
transitions between dipol el ess states, the corrections of
thefirst or second order (depending on the polarization
of radiation) are zero, whereas for estimating the appli-
cability of perturbation theory, at least two nonzero
terms of the asymptotic series must be known. Thisfact
stimulates the development of a reliable method for
consecutively calculating higher order corrections of
perturbation theory for the wave function and matrix
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elements similar to corrections to energy. Thus, the
half-century-long history of the calculation of the Stark
effect by perturbation theory for energy repeats itself
nowadays with respect to the calculation of wave func-
tions (the correct expression of the fourth-order correc-
tion was first obtained only in 1974 in [6], i.e., almost
half a century after the creation of quantum mechanics
and derivation of corrections of the first three orders).
However, availability of computer algebra systems,
which helped calculate Stark energy corrections of an
arbitrary high order (up to several dozensand even hun-
dreds) by the early 1980s [1], allows one to substan-
tialy reduce the time required to complete the calcula-
tion of Stark corrections to the wave functions.

At first sight, these cal culations can be based on the
same equations with separated parabolic variables as
those used in the calculation of energies (see, e.9.,[2, 7,
8]). Although these equations are rather simple, the der-
ivation of Rayleigh—Schrddinger serieson their basisis
tedious. This is due to the fact that, in addition to the
recursive procedure for determining coefficients of the
linear combination of the Sturm functions representing
the state vector of the atom in the field, one must derive
an explicit field dependence from the arguments of
those functions and transform their combination to a
power series with field-independent coefficients.

The procedure for deriving the power series for the
Stark wave functions without solving the system of two
coupled equations with separable parabolic variables g
and n can be developed on the basis of theintegral form
of the Schrédinger equation for an atom in afield with
the help of the closed anaytic representation of the
reduced Green function in the parabolic coordinates[4].

An analytic representation of the Coulomb Green
function makesit possible to obtain expressions for the
coefficients of power series in the field strength F for
the wave function, matrix elements, and intensities of
dipoletransitionsin theform of polynomials depending
on the parabolic quantum numbers of the initial and
final levels. In this paper, we present a general method
for the calculation of the perturbation theory series for
the wave functions of Stark states based on a recurrent
relation between the series coefficients. This relation
provides abasisfor devel oping acomputer code for the
analytical and numerical calculation of high-order cor-
rections. The application of this method to the calcula
tion of thefirst- and second-order correctionsyieldsthe
same results as those obtained in [4, 5]. In this paper,
we derive general symmetry relations, which make it
possible to considerably simplify the calculation of
coefficients for the expansion of the wave function in
the Sturm functions and give analytic expressions for
the coefficients of up to the fourth order. These expres-
sions are obtained as functions of the parabolic quan-
tum numbers. Asymptotic properties of corrections for
transitions to Rydberg states with large quantum num-
bers are discussed. Numerical values of the coefficients
that determine the corrections of thefirst four ordersto
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the matrix elements and line intensities of the Lyman
and Balmer series are obtained.

2. HIGH-ORDER CORRECTIONS FOR THE WAVE
FUNCTIONS OF STARK STATES OF HY DROGEN

The technique of parabolic variable separation,
which is used when calculating the Stark effect of
hydrogen energy levels [1, 2, 6-8], is inefficient for
deriving the wave function in the form of power series
with field-independent coefficients (the Rayleigh—
Schrodinger series). For this purpose, the use of the
Coulomb Green function in the parabolic coordinates
[9] seemsto be the most convenient. Dueto the fact that
the interaction operator of the atom with the field is
diagonal in the parabolic coordinates, the hydrogen
Stark states belonging to the shell with the fixed princi-
pal quantum number n areindependent in thefirst order
with respect to the field. Hence, the first-order correc-
tions to the wave function and the second-order correc-
tions to the energy can be calculated with the help of
perturbation theory for nondegenerate states and the
partialy reduced Green function [4]. However, already
for the second order, the matrix element of the interac-
tion Hamiltonian of the atom with the field is nondiag-
onal, and the states of the parabolic basis belonging to
the given shell are mixed by the field. Thus, the calcu-
lation of the second- and higher order corrections must
be based on perturbation theory for degenerate states
with the completely reduced Green function [5]. Below,
we develop a generalization of the method presented in
[4, 5] for the case of arbitrary orders of perturbation
theory for the wave function that makes it possible to
automate the calculations with the help of computer
algebra systems. Sincethe calculations of higher orders
use al corrections of the lower orders, the reliability of
the resultsis automatically checked by lower orders. As
an example, we present the calculation results up to the
fourth order.

2.1. Perturbation Theory for Parabolic States

An unperturbed state of the hydrogen-like ion (in
the absence of the external field) is described by thefol-
lowing wave function in the parabolic system of coor-
dinates (a Stark state):!

MOn0O "On DA/Z.['

where mis the absol ute value of the magnetic quantum
number everywhere except for the power of the expo-
nent in which it can be both positive and negative,

imo
l~|Jnn1n2m(r) = AnlnszmDZED mDZ_r]De_ (1)

A 1 223(n1+m)!(n2+m)! 2
nn,m — "o nl! n2! ) ( )
1 We use the atomic system of unitswithe=m=7% = 1.
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is the normalizing constant, Z is the charge of the
atomic nucleus, and

e—x/2 Xm/ 2 L (k m) ( X)

m k!
fk(x) = (k+m)|

1
= e X2 Fi(=k; m+1; x)

©)

is the Sturm function of the Coulomb wave equation
represented in terms of generalized Laguerre polyno-

mials Lf(m)(x) and the degenerate hypergeometric func-
tion ;F;(—k; m+ 1; x) [10].

Parabolic quantum numbers of the states with iden-
tical principal, n, and magnetic, m, quantum numbers
arereciprocally dependent: n; + n,=n—m-1. There-
fore, along with the parabolic numbers, Stark states can
be unambiguously represented with the help of the so-
called electric quantum number g = n; —n, such that the
set n;n,m can be replaced by the set ngm as we do
below.

The use of the parabolic basis is based on the axial
symmetry of theinteraction operator of the atom with a
homogeneous electric field:

V(r) = zF, (4)

where zis the projection of the electron’s position vec-
tor r on the direction of eectric field F. The integral
Schrodinger equation for the exact wave function of the
state, which transforms into (1) in aweak field, can be
represented in the following form taking into account
the degeneracy of the states with identical n and m (see
[11]):

n-m-1
l'Pnnlnzm(r) = z an'qunn'ln'zm(r)
n;=0
- G;E(r ’ I")\A/(I' ‘) |L|Jnn1n2m(r ') O (5)
n-m-1

= 3 a1+ G, V] Wiy

n;=0

where n} + n; =n, + n, = n—m-1. The coefficients of the
expansion of thewavefunction for theatomin afield in the
states of the degenerate besis a,,, = < Worg | Lpnnlnzm> sat-

isfy theinitial condition a,, — Onn, (Wheredisthe

Kronecker symbol); Gg is the reduced Green's func-
tion

ot nn'n'mr :lcn'n'mrl
Gilr.1) = Gelr, 1) - 3 Lt lmanl) g

n;=0
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Here Gg(r, r') is the Green's function for the Hamilto-

nian Ho of the free atom and the exact value of the
energy E of the atom in the field:

(Ho—E)Gg(r, r") = 3(r —r).

The Green's function (6) can be written in terms of
the reduced Green'’s function with the energy E, of the
unperturbed atom;

o oMo -0
Ge(r.r) = GR(EN; €. m)= :

where

k1+ m)'(kz+ m)!

GWEn; &.n) = gnz Y z ( <
Ky = Ok, =

f DZEDf DZEDf DZ_ﬂDfm[HD
KOpO'Op0 ROp0 OnpO
8 kj+k,+m+1—n
n-m-1
27 (Vi +m)l (v, +m)!
" n° VIZZO v,! v, ("
< P d 9 ...0[
B Eap o ant
x fm 80 m CZE, mDZan [Z np
villp O VanD V20 O In O
V, = N—v;—m-1,

using the Taylor series expansion

Ge(r.r) = 3 (Ge(r.r)" " (aE)" ®
N=0

= G'En(r, r') + AEG'En(r, r'"YGe(r", r').

Due to the axial symmetry of perturbation (4), the
dependence on the angular variable ¢ remainsthe same
as for the unperturbed wave function (1). It does not
influence on the calculations and is omitted below.

For the coefficients a,, inthewavefunction (5), cer-

tain transformations taking into account that the matrix
element of operator (4) is diagonal,

nln1 = <wnnln2mlv(r)|l-pnn1n2m>
yield the equation

an = [< W, nym

+(AE-AED)a, ](Vnana N

3Fn

nny?

V() GRr, 1) (V(r) = AE)| Wi )
€
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where AE® =V, , is the first-order correction to

energy and n; # n,. This equation allows an iterative
calculation of those coefficients.
Using (5) and (9), the correction of any order to the

wave function can be expressed in terms of corrections
of the lower ordersin the field strength. Thisistrue for

all terms of the sum (5) except for the term with n} =

n,, which can be determined with the help of the nor-
malization condition

_ 2
D'IJnn1n2m| l'I'}nnlnsz:J - Z |an'1|
n

+ < l'I'Jnnlnzm \A/(G;E)Z\A/| l'I',nn1n2m> =1

2.2. Surm Function Expansion of the Corrections
to the Wave Functions of Stark States

Orthogonality of generalized Laguerre polynomials
allows an analytic computation of integrals over the
parabolic variables in (5), (9). Hence, the exact wave
function can be written as a linear combination of
Sturm functions (3) of the Schrodinger equation for the
unperturbed atom:

qJnnlnzm(r) = Anlnzm

[Z&em 20
zzb| i (nanm)fn +'1DnD n2+|2[|n|:|

iy iy

(10)

This expansion provides a basis for deriving the Ray-
leigh—Schrodinger series for the wave function of an
atomin thefield. The main advantage of expansion (10)
over the functions that appear in the method of para
bolic variable separation is the fact that the arguments
of the Sturm functions are independent of thefield. The
dependence on the field in this expression is hidden in
the superposition coefficients b, which makes it possi-
ble to represent the wave function (10) in the form of a
series in powers of the field F. It must be noted that,
together with Egs. (5) and (7), expansion (10) follows
from the completeness of the Sturm functions of the
Coulomb Schrodinger equation with a fixed energy;
indeed, this property makesit possible to use the Sturm
functions as a basis for resolving any function with the
same boundary conditions.

Calculation of the coefficients b; ; can be reduced

to arecursive procedure by substituting expansion (10)
into (9) and (5). After certain transformations, we
obtain the following formulafor any coefficient in (10)

except for by
z thtzk k, Mt ty

ltZ

by, = (11)
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where

226k1+k2 (N)
- m z AE Un1+k n,+kn, +tn, +t,

thtZ kl k2

+ Z (un1+t1n2+tzlllz_AEun1+t1n2+t2I1I2) (12)

1415
y E?Zékl +k,, Oan +kin, +Kol4l,
U 3n(k, —k,)F

- 6Iln1 + klalzn2 + kH'

2
n

27°
2n(1 -0y 1k, n,+n,)
K, + K, +m+1—nU

Viakaiik, =

X [%k'l+k'2, n+n, T

+ (6k'1+k'2, n+n,+17

x (K + M)Vig - 1ickek, + (K3 + M) Vigie - 11,

kykokiky

6k'1 +kyng+ nz)

(13)

+ (6k'1+k'2, n1+nz_6k'1+k'z' n1+nz—1)
X ((Ky + 1)Vig s 110k, + (Ko + 1) Vi + 1k1k2)i|'

Here
v _ 2 mem|yyl gmem
Vklkzk'lk‘2 - Ak1k2m< fklsz|V| fk'lfk'2>
The formula for Uy, is obtained from v ..

when replacing \N/klkzk-l K, by

= Al ot ff)-
Thetensor (12) is undefined for k; = k, = 0.
Now, we expand every coefficient b ;, inaseriesin

the field strength separating, for convenience, the scale
factor, which depends on the principal quantum num-
ber:

U,k kK,

b, zF“D”D b, (14)
A similar expansion for tensor (12) has the form
z n
X = 3 F el (15)

Here b{}) and X ., areindependent of thefield. The

fact should be noted that the expansion for b includes
the term of the zero order in the field strength, whereas
the expansion for X begins with the first-order term.
This shows that equation (11) reflects a relation
between the higher order coefficients of expansion (14)
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and the lower order ones. In particular, thisexplainsthe
fact that Eq. (11) does not hold for k; = k, = 0.

Equations (11)(13) show that the coefficients b\’
are nonzero for |i;| = 2M, 2M — 1 and |i,| < 2N — 2M
(M=0,. N) Thus, the total number of nonzero coef-
ficients b (nlnzm) is 8N? + 1. Therefore, expansion
(10) consi sts of nine nonzero terms of the first order
(one of the indices of b,(lll’2 (n;n,m) must be zero), 33
terms of the second, 73 terms of the third, and so on.

The technique described makes it possible also to
obtain the correction to energy, AE of an arbitrary order,

representing it in terms of b, ; . Since the energy cor-
rections in an electric field are calculated for almost
arbitrarily high orders (see [1]), one can assume them
to be known and use them to check the validity of cal-
culations of corrections to the wave functions.

For thefirst four terms of expansion (14) (except for
the zero-order one), Eq. (11) yields

1 1 0 1
( ) z XE t)k k b(lt)2 = X(()O)klkza (16)
tit
(2) (1) (1)
bick, = z X ko, Pty (17)
ltZ
(3) (1) 2 4 x@ (1)
b, = T (X bs + X2ubD), (19)
t1t2
(4)
bk1k2
(19)

= z (X'Ej-t)zklkzbg)z + Xflzt)zk k bgzt)z St)k k bglt))
4t;

It can be demonstrated that, for t; =t, = 0, tensor (12) is

nonzero only for N = 1. Hence, for N > 2, the expression

for b™ does not include X™), which depends on
AEN*D. Thus the energy corrections of order N and

lower should be known for determining by, (X and,
therefore, b™® depend on AE®@).

Equations (16)—(19) hold for al values of the indi-

cesk, and k, except for k, = k, = 0. The coefficients by’

can be determined from the normalization condition for
the wave function. Let us consider the Nth-order term
in the equation

<Lpnnln2m|q',nn1n2m> =1,
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take out of it the products b@b™), and solve the equa-
tion obtained for b(N) Then, for N > 0, we have

2
n;n,m
0 =5

koky | 1t Kyny +Kkom

(i) |(N=1)[7
z z bk kzblllz Un1+k1n2+k2n1+|1n2+|2

Ll,i=1

(20)

_ b(N)U
tyt, 2 NiNoNy + 4Ny + 1y

(tatp) # (00)

For N = 1, the sum over i disappears, and only the sum
over t;, t, remains on the right-hand side. Thus, to cal-

culate bgg') following Eqg. (20), one must determine all
the coefficients b\’ with (i,i,) # (00), which are deter-
mined by similar coefficients of all lower orders.

In the general case, the recurrent relations are rather
cumbersome. However, for the “outside” coefficients,
general formulas can be obtained of the form

n(Ng+m+1),,

bono = (-1
' (21)
b (ny—2N+1),,
and
B _1)N- 12(ng+m+1),,
2N 10 — ( ) 3(N_1)| (22)
x(6n—-3q+ 8N -2)
N _ 2(n;=2N+2),y_,
“eN-DO T T 3(N-1)! (23)

x(6n—3q—-8N + 2).

Here, we used the conventional notation for the Poch-
hammer symbol, (a),=a(@a+1)...(a+ n-1).
The symmetry of the perturbation operator (4) is
reflected in the symmetry of the coefficients:
b (nam) = (=1)"b{3)(n—am),
- " (24)
biy.(nam) = (=1)"b%)_; (-n—qm).

iyip

Herei, and i, are nonnegative integers. These relations
allow a significant simplification of the calculation of
coefficients. In general, these calculations are based on
recurrent formulas (16)—(19), which express b(N) [

terms of the coefficients of lower orders. For certal ni,

and i,, only one nonzero term containing X, can

remain in these formulas; in this case, the relation
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between the coefficients of higher and lower orders
becomes much simpler:

b(N)

+|1 +|2

b(N 1) b(l)

+i; 0 MOxiy

1 =2N-2,2N-3, i,=12
Coefficients with the indicesthat do not satisfy the con-
ditions listed above are described by more complex
expressions of the general form:

bY(ngm) = (n—n,), (n—ny), Pk*“(n, g, m),

(in i) (25)

[y (n, g, m),

—lal2

(nam) = (ny—i; +1); (N—ny);, Ry

index of
(i112)

the lower

(n g,m) and R¢ “(n,q,m) determines their
order, K = 2N —i; —i,, with respect to each of the three
arguments. The magnetic quantum number moccursin
these polynomials only in even powers with an expo-
nent not greater than K. For a zero value of one of the
indices i, or i,, there is a simple relation between the
polynomials P and R, which follows from the symme-
try relations (24):

where the polynomias

N+i, (i1, 0)

P %(n g, m) = (-1)" "RV (=n, —q, m).

The coefficients bé('\,') possess a specific feature: for

even ordersN = 2M, they are polynomials of degree 2M
of the squares of quantum numbers; for odd N = 2M +
1, they are similar polynomials multiplied by the elec-
tric quantum number:

b (nam) = Q5u(n?, o%, m?),

(2M+l) (26)
(ngm) = qQau(n®, o, ).

Thus, Q5 = 1, Q; =6,
1 4 2,5 2 2
Q(n%, o°m?) = —=[65n" —6n*(7q” + 11m° — 249
AN, g = 2 (79 )(27)
+17q" — 18¢°m’ + m* — 749” — 650m” + 1289]

QAn*, o, m?) = [525n

+2n°(31q° + 395m” + 13191) — 99q" + 93m* (28)

+60°m”—818q’ + 6494m” + 31365].

A similar property holds for the diagonal coefficients

b(N) with theindicesk < N: for odd N, they are propor-
tional to g. In particular, the polynomia sthat determine

bt® and b in accordance with (25) have the form
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PS"Y(n, q,m) = —4q[4n’(n +4)
—n(q +24)—13q —12m° +12],
PZ?(n, g, m) = —2q(8n +19),

while for the polynomials that determine “antidiago-
nal” coefficients, for example, b, and b'?,, we have

(29)

R{"Y(n, g, m)
= —2[4n*+ n*(3¢° — 4m” - 20q — 352)
—q"+22q° +q°(m* + 99)
+q(28m’ + 180) + 52(m” + 3)],
RZ2(n, g, m) = 2(8n°+2g° + 19q + 48).
Equations (21)—(27) supplemented by the polynomials
P9 = 2[(2n—q)(2n—q+11) +24]  (31)

(30)

P(l O) _ [2n +n (3q 58) 2n(m 33q+ 117)

(32)
—q +qm —36q +75q—26m - 78]

and the relation between b{” and b® mentioned above

completely determine the analytic expressions for the
coefficients of expansion (14) of the first and second
order in F. To complete determination of the coeffi-
cients of the third order, it is sufficient to write out, in
addition to (21)—(30), the polynomials expressing the

coefficients bl , bS), b, b, b, and b, i
accordance with (25):

PS*9(n, g, m)

- _%(24n2 +196n — 24nq + 6q° — 89q + 340),

P&, g, m) = 2[122n3—n2(201q—2058)

+2n(489° + 3m” — 927q + 4295) — 13¢°
—3qm’ + 504q° + 162m” — 3161q + 8718]

P0(n.qm) = &[777n" ~4n’(3q + 2362)

—6n°(87q° — 2508q + 131m’ + 16511)
—4n(3q° + 2286q° — 3gm’ + 1478m”
—18303q + 70638) + 201q" + 9m" + 2072qg°
—210g°m” + 2920gm” — 18810q°
—19738m’ + 65736 — 162671],
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P O(n, g, m) = —1—12[294n5—n“(243q—928>

—n®(300m” + 132¢° — 340q — 688) (33)

+2n°(69q° + 27qm’ — 246q° — 352m"’ + 249q
-14458) + 2n(27q" + 3m"

—18g°m’ + 2q° + 166qm” — 864q° — 2852m°
+2710q — 22131) — 399" + 148q" + 14q°(3m’ + 29)
—2g°(70m’ + 892) — g(3m" — 5978m’ — 5985)
—32m’ —6052m” — 11676],

P{Y(n, g, m) = —3[66n° ~n’(35q -~ 358)

—2n(8q” + m’ + 41q— 251) + 9q° — qm’
—84q° - 26m’ — 11q + 306],
R D(n, g, m) = —%[62n3— n?(29q + 230)

—2n(8q° —m’” + 23q—133) + 7¢° + gm’
+116¢° + 26m’ + 395q + 462].

All polynomial expressions mentioned above are qua-
dratic functions of the magnetic quantum number m;
thisisdueto thefact that the vectors of the electric field
and the dipole moment of the atom are polar. Thus, the
corrections to the wave function are independent of the
sign of m, as well as the energy corrections. The same
property is characteristic of the corrections to the
matrix elements and intensities of the radiation transi-
tions, which are discussed in the following section.

3. THE DIPOLE MATRIX ELEMENT
AND INTENSITY OF RADIATION TRANSITION

The matrix element for the dipole transition
between the Stark levels of the hydrogen atom in a
homogeneous field F,

dnn'(F) = <L|Jnn1n2m|d| l'lJn'n'ln'zm'>v (34)

can be written in the form of apower seriesin the field
strength F with the help of expansion (10) for the wave
functions of theinitial and final states. In particular, we
have for the third order

di o = OVl WD+ @ 2ld WD
+ 2 wPo+ w Pldedo

Using expansion (10) for the wave functions in this
eguation, we obtain a linear combination of the dipole
matrix elements with the Sturm functions (3). The

(35
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matrix elements can be conveniently expressed interms
of generalized hypergeometric functions of two vari-
ables[5], which can be transformed into a combination
of the Gauss hypergeometric functions by analogy with
the Gordon formula for the matrix element of the radi-
ation transition between the Stark levels[7]. Let usrep-
resent the transition frequency, the dipole matrix ele-
ment, and the intensity in the form of the series

() = 0@+ T FWOE (@)
0 4 "o

e(F) = 4@+ z Fn @

() = @2+ 5 FEOE @
0o & O

where the quantities corresponding to the unperturbed
atom are taken out from the parentheses and the coeffi-
cients of the expansion are ratios of the correction
terms to the unperturbed ones. Taking into account the
fact that

L, D[ don”, (39)
we can write the relation between the coefficients of
expansions (36)—(38) up to the third order in the form

W = @+ 20, (40)
Bl = 4w + 6(wi)” @
+ 8D+ ()7 + 22,
B2 = 4[W(3) + 30w + (W) }
(42)

+4r (1)[2W(2) +3(w®) }

1) (2))

+ 4|:(r(1)) + 2rt(’]2n)i|WI(]]I:1) + 2(r(3) nn nn
The symmetry relations (24) transform into the
symmetry relations for the coefficients of expansions
(37), (38), which we will refer to as the radiation sus-
ceptibilities
(N) — (_1)N (N)

Irnqman‘q‘m' - M- gm - n'—g'm>
(N) — (N)
ngm - n'gm (_1) Bn—qm S n—-gm-

A discussion of properties and numerical values of
these quantitiesin the first and second orders of pertur-
bation theory can be found in [4, 5]. In this paper, we
give athorough analysis of the third- and fourth-order
susceptibilities.

(43)
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3.1. Third-Order Radiation Susceptibilities

Higher order corrections are of specific importance
when the lower-order corrections are zero. In particu-
lar, this is the case for transitions between dipoleless
states (g = 0 and g’ = 0). The symmetry of these transi-
tionsis such that the unperturbed dipole matrix element
and its even-order corrections are equal to zero for the
Teradiation; for the o-radiation, all odd-order correc-
tionsin field strength are equal to zero.

Each of the 73 nonzero coefficients b{ ;. describing

the cubic (in F) component of expansion (10) for the
wave functions of theinitial and final statesisgenerally
a polynomial of the corresponding parabolic quantum
numbers determined by one of Egs. (21)—(33). After
calculating the integrals over the parabolic variablesin
the matrix elements with corrections to the wave func-
tion in (35), we obtain a combination of expressions
with hypergeometric functions similar to the Gordon
formula for the unperturbed radiation matrix element
[7], but with shifted (with respect to the parabolic quan-
tum numbers) indices of the Sturm functions.

Such expressions become significantly simpler
when one of the states (asarule, thelower one) has zero
or close to zero parabolic quantum numbers. In partic-
ular, for the Lyman series (transitions to the ground
statewithn'=1and g' = m' = 0), the third-order correc-
tions to the dipole matrix element and to the intensities
of teradiation have the form

rQr = N [n’q}(171n"—2277n"
384q(n°-1)"2°

+1005n° + 55801n° — 17308n* + 4752n° — 672)
—g°(n®—1)(7587n" - 1353n"* — 24815n"° )
—8571n° + 3880n° + 53768n" — 24144n° + 432)
+n?(n?~1)*(1035n"? — 3120n* — 1391n°
—491n° + 4792n" - 648n° + 216)],

@B)ym  _ n

T ———[n°q’(171n" —822n°
192q(n"-1) Z

+963n° + 472n" — 2064n° + 1152)

—g*(7416n" — 6576n" — 9496n"° + 5952n° “5)
+2992n° + 4864n" — 8688n° + 3408)

+n’(n®—1)(2385n" - 2379n'° - 757n°

—265n° + 4376n* — 3024n° - 528)].

The éectric quantum number g in the denominator
appears due to the proportionality to this factor of the
zero-order matrix element and the intensity, as well as
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of the even-order corrections. Thus, in the limit of the
weak field, the Lyman 1i,-lines, which correspond to
transitions from dipolel ess states with g = 0, disappear,
whereas the odd-order corrections (in particular, the
first- and third-order ones) are nonzero. These correc-
tions cause the appearance of 1y-lines with intensities
proportional to the square of thefield strength (see Sec-
tion 3.2 for details). The contribution of these correc-
tions is important for lines with a small value of q as
compared to the extremal Stark components, which
correspond to g ~ n. For large n, the asymptotic depen-
dence isfor the central,

BWNqO1) O15n°, B®M(qO1) O-10n",
and extremal,

Y (qO1) 01.5n%, B®™(qO1) D20n™

Stark components are also different. The estimate of the
critical field a which the third-order correction
becomes comparable with the first-order correction
does not exceed the estimate of the ionizing field at
which the upper level appears above the potential bar-
rier that separates the inner region of the motion with a
given energy from the outer one (see, e.g., [12]). This
means that perturbation theory is applicableto all prac-
tically important cases when the upper level ionization
decay in the field can be neglected.

Formulas for the corrections to the matrix eleme