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Abstract—An algorithm is proposed for determining asymptotics of the sum of a perturbative series in the
strong coupling limit using given values of the expansion coefficients. Application of the algorithm is illus-
trated, methods for estimating errors are developed, and an optimization procedure is described. Applied to the
ϕ4 theory, the algorithm yields the Gell-Mann–Low function asymptotics of the type β(g) ≈ 7.4g0.96 for large g.
The fact that the exponent is close to unity can be interpreted as a manifestation of the logarithmic branching
of the type β(g) ~ g(lng)–γ (with γ ≈ 0.14), which is confirmed by independent evidence. In any case, the ϕ4

theory is self-consistent. The procedure of summing perturbative series with arbitrary values of the expansion
parameter is discussed. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

This paper presents a systematic description of the
algorithm proposed previously in a brief communica-
tion [1]. Operation of the algorithm is illustrated by test
examples, methods for estimating errors are developed,
and an optimization procedure is described. Using this
algorithm, the Gell-Mann–Low function of the ϕ4 the-
ory—the main physical result of this study—can be
reconstructed with a tenfold greater precision.

The abstract formulation of the problem is as fol-
lows. Let some function W(g) be expanded into a series
of the perturbation theory in powers of a coupling con-
stant g:

(1)

The first several expansion coefficients WN can be
obtained by straightforward diagram calculations. The
high-order terms can be determined using the Lipatov
method [2], which is applicable to most of the impor-
tant problems and yields for WN an asymptotic behavior
of the type (see reviews [3–5]):

(2)

Matching asymptotics (2) to the first coefficients pro-
vides information about all terms of the series and
allows the W(g) function to be approximately restored,
but this procedure requires using special methods for
summing divergent series. Implementation of this
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approach allowed the critical indices of the phase tran-
sition theory to be determined to within the third deci-
mal position [6–8], thus rendering the intermediate
coupling region (g ~ 1) principally accessible. However,
this direction was not developed further because the prob-
lem of renormalon contributions arose that cast doubt [9]
on the applicability of the Lipatov method. The interest in
this field had dropped sharply and no breakthrough into
the strong coupling region took place.

Expanding the theory into the strong coupling
region is required in many fields of theoretical physics.
The most known cases, related to the dependence of the
effective coupling constant g on the spatial scale L, include
the problem of electrodynamics at very small distances
and the confinement problem. The dependence of g
on L in renormalizable theories is determined by the
equation 

. (3)

In the general case, this description requires informa-
tion on the Gell-Mann–Low function β(g) for arbitrary g.
The possible variants were classified by Bogolyubov
and Shirkov [10]. In the case of β2 > 0, the situation
reduces to the following. If the function β(g) possesses
a root at g0, then g(L)  g0 as L  0. If β(g) at large g
behaves as gα with α ≤ 1, then g(L)  ∞ at small L;
should β(g) grow as gα with α > 1, the theory is no
longer self-consistent and cannot describe the behavior
of g(L) in the entire range of L.
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The first attempt at restoring the β function in the ϕ4

theory with the Euclidean action

(4)

was undertaken by Popov et al. [11]. The Shirkov group
attempted to move into the strong coupling region [12]
and obtained for large g asymptotics of the type 0.9g2,
which differs only by a coefficient from a one-loop law
1.5g2 valid for g  0. A close asymptotic behavior
(1.06g1.9) was obtained by Kubyshin [13], while the
more recently developed variational perturbation the-
ory of Sissakian et al. [14] yields 2.99g1.5. All these
results give evidence that the ϕ4 theory is not self-con-
sistent.1 This is, however, rather strange from the stand-
point of condensed-matter applications, where a quite
reasonable disordered system model [16, 17] well
defined in the continuum limit is mathematically
strictly reduced to the ϕ4 theory. Another argument fol-
lows from the author’s recent study [9] showing the ϕ4

theory to contain no renormalon singularities, which
can be considered as evidence of self-consistency. This
situation makes revision of the above results an urgent
task. 

In this paper, an algorithm is proposed for restoring
asymptotics of the sum of a perturbative series in the
strong coupling limit using given values of the expan-
sion coefficients (Section 2). Application of the algo-
rithm is illustrated by test examples with both known
expansion coefficients (Section 4) and the coefficients
obtained by interpolation (Sections 5 and 6). Methods
for estimating errors and an optimization procedure are
developed (Sections 3 and 6). The problem of summing
the perturbative series with finite g is considered, and it
is demonstrated that knowledge of the W(g) asymptot-
ics significantly increases precision of the results (Sec-
tion 7). The main physical result of this study consists
in reconstructing the Gell-Mann–Low function of the
ϕ4 theory (Section 8). The task is solved proceeding
from the same information as that used in [13], namely,
the first four coefficients of expansion of the β(g) func-
tion in the subtraction scheme [15, 18]

(5)

and their asymptotics according to Lipatov, taking into
account the first-order correction [19]:

. (6)

1 It should be noted that Kazakov et al. [12] do not insist on this
conclusion, emphasizing the preliminary character of their results
(see also [15]).
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Note that the interaction term in expression (4) corre-
sponds to the “natural” charge normalization, for which
the parameter a in asymptotics (2) is unity. It will be
demonstrated that the results obtained in [12, 13] are
not artifacts: they objectively reflect the behavior β(g)
in the interval 1 & g & 10. However, the true asymptot-
ics is manifested at still greater g and gives evidence of
self-consistency of the ϕ4 theory.

2. RELATIONSHIP BETWEEN W(g) 
ASYMPTOTICS AND EXPANSION 

COEFFICIENTS

Let us formulate the problem of restoring the
asymptotics

(7)

using the coefficients WN of the series (1). The coeffi-
cients with large N, increasing according to the factorial
law (2), are assumed to be set numerically. By analogy
with the case of critical indices introduced in the phase
transition theory, the slow (logarithmic) corrections to (7)
are considered as overstating the accuracy. For exponen-
tially growing W(g), which can be revealed by abnor-
mally large values of α, the series (1) is considered
upon preliminarily taking the logarithm.

2.1. Standard (Conform-Borel) Summing Procedure

Considering the sum of series (2) in the Borel
sense [20], we use a modified definition of the Borel
image B(g),

(8)

where b0 is an arbitrary parameter (convenient for opti-
mization of the summation procedure [6]). It was sug-
gested by Le Guillou and Zinn-Justin [6] and recently
proved for the ϕ4 by the author [9] that the Borel image
is analytical in the complex plane g cut from –1/a to −∞
(Fig. 1a). The analytical continuation of B(g) from the
convergence circle |g | < 1/a to an arbitrary complex g
value is provided by a conformal mapping g = f(u) of
the plane with a cut into a unity circle |u | < 1 (Fig. 1b).
The re-expansion of B(g) into a series in u,

(9)

gives a series converging for any g. Indeed, all the pos-
sible singular points (P, Q, R, …) of the B(g) function
occur on the cut and their images (P, Q, Q', R, R', …)
fall on the boundary |u | = 1 of the circle. Therefore, the
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SUMMING DIVERGENT PERTURBATIVE SERIES 3
second series in (9) converges at any u < 1, but the inte-
rior of this circle is in a single-valued correspondence
with the region of analyticity in the g plane.

The conformal mapping is defined by the formulas

(10)

from which we readily find a relationship between UN

and BN:

(11)

In order to establish a relationship between asymptotics
(7) and the expansion coefficients, we will use the fact that
the behavior of UN at large N is determined by a sum of the
contributions from singular points occurring on the
boundary |u| = 1. This can be readily checked by
expressing UN in terms of B(u),

(12)

and deforming the integration contour (enclosing the
point u = 0) so as to make it passing around the cuts
from all singular points to infinity. A singularity of the
type A(1 – u/u0)β at the point u0 = eiϕ makes a contribu-
tion to UN of the type

(13)

Now we can readily find the contributions to UN from
the singular points of the initial Borel image B(g). For
power singularities at the points g = ∞, g = –1/a, and
g = g0 with g0 ∈  (–∞, –1/a), the corresponding expres-
sions are as follows:

(14)

where ϕ = .

The singularities of B(g) change depending on the
parameter b0 in formulas (8). For the Borel images B(g)

g
4
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and  corresponding to b0 and b1, we readily obtain
a recalculation formula

(15)

and a rule of singularity transformation at a finite (g0)
or infinite points on the passage from b0 to b1:

(16)

As is seen, an increase in b0 weakens the singularities
at a finite point, while the character of singularity at
infinity remains unchanged. For sufficiently large b0,
the contributions from finite points to UN are sup-
pressed and the corresponding asymptotic behavior is
determined by the singularity of B(g) (and, hence, of
W(g)) at g  ∞:

(17)
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Fig. 1. (a) The Borel image is analytical in the complex
plane with (–∞, –1/a) cut; (b) this analyticity region can be
conformally mapped onto the unity circle; (c) restricting the
consideration to analytical continuation to the positive
semiaxis, the conformal mapping is admitted onto any
region in which the point u = 1 is the closest boundary point
to the origin; (d) in the extremal form (18) of this mapping,
the analyticity region can be conformally mapped onto the
plane with (1, ∞) cut.
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4 SUSLOV
This formula solves the problem: the coefficients UN

are related by a linear transformation (11) to the initial
coefficients WN (see Eq. (8)), while their asymptotic
behavior (17) determine the parameters W∞ and α of
asymptotics (7).

Formulas (14) indicate that a contribution to UN

from the singular point g = ∞ is monotonic, while the
contributions from other points are oscillating. There-
fore, increasing b0 leads to a change in the UN behavior
from oscillating to monotonic. This phenomenon was
observed in [6] and, albeit not given any satisfactory
explanation, regularly employed for improving the
divergence of perturbative series.

2.2. Modified Conformal Mapping

A more effective algorithm is provided by using a
modified conformal mapping.

According to the Riemann theorem [21], the confor-
mal mapping of a simply connected region into a unity
circle is single-valued to within the so-called normal-
ization, which can be defined by setting the images of
two (internal and boundary) points. Under the conven-
tion that the point g = 0 is imaged by u = 0 and g = ∞ by
u = 1, conformal mapping (10) is the only one that
allows the Borel image to be analytically continued to
arbitrary complex g values. However, this is not neces-
sary: to perform the integration in (8), the analytical
continuation to positive semiaxis is sufficient. Then,
any conformal mapping into a region of the type
depicted in Fig. 1c is admissible, in which the point
u = 1 is the boundary point closest to the origin. The
second series in expansion (9) is convergent at u < 1
and, in particular, in the interval 0 < u < 1 imaging the
positive semiaxis. An advantage of this conformal map-
ping is that the contributions from singular points P, Q,
Q', R, R' … to UN are exponentially suppressed and the
UN asymptotics for all b0 is determined by a contribu-
tion of the singular point at u = 1 related to the singu-
larity of W(g) at g  ∞.

Let us use an extremal form of such mapping, imag-
ing the plane with cut (–∞, –1/a) into the plane with cut
(1, ∞) (Fig. 1d). This mapping is given by the formula

, (18)

which leads to the following relationship between UN

and BN:

(19)

The asymptotic behavior of UN for large N is

(20)

g
u

a 1 u–( )
------------------=

U0 B0,=

UN

BK

aK
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k 1=

N
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UN U∞Nα 1– , N ∞,=
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(21)

As a result, we arrive at a simple algorithm: calculate
coefficients BN by formula (8) using preset WN, recalcu-
late BN to UN using relationship (19), and take the power
limit (20) for large N to determine parameters W∞ and
α for asymptotics (7).

2.3. Random Error Growth

The above algorithms possess an implicit drawback
that significantly restricts the accuracy of description.
Let us introduce a reduced coefficient function:

(22)

which varies within finite limits and admits a regular
expansion in the powers of 1/N. The latter can be
checked by calculating sequential corrections to the
Lipatov asymptotics [19]. In practice, FN is set with a
certain accuracy δN (calculation or round-off error),
which leads to a random error in UN. The error disper-
sion for the algorithm considered in Section 2.2 is as
follows:

(23)

For the round-off errors, the value of δK = δ is indepen-
dent of K. A sum calculated by the steepest descent
method for large N,

(24)

demonstrates a catastrophic growth of the error. Calcu-
lation with a double computer accuracy yields δ ~ 10–14,
so that δUN is on the order of unity for N ≈ 45.2 This
restricts the accuracy of determining the parameters of
asymptotics (7) to approximately 1%. According to
expression (23), an increase in b0 decreases the error so
that the permissible N level grows. However, large b0
values delay the process of attaining the asymptote (20),
so that no advantages are eventually gained.

For the algorithm considered in Section 2.1, the
error grows at a still higher rate,

(25)

and the requirement of using sufficiently large b0 signif-
icantly restricts the possibility of optimization (see Sec-
tion 3). Nevertheless, this algorithm may still be useful

2 This error growth is observed in fact in the form of rapidly
increasing irregular oscillations.
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UN

N

U∞ N
α – 1

(a) χ2

Nmin

n

(b)

~√n

Nmin
opt

Fig. 2. The UN treatment according to the power law: (a) a typical situation whereby large N correspond to a large statistical error
and small N, to a large systematic error; (b) the plot of χ2 versus Nmin at a constant number of points n.
to increase the accuracy of calculations in the region of
small g (Section 7). Below we dwell on the algorithm
of Section 2.2 based on a modified conformal mapping,
which offers indisputable advantages in the region of
strong coupling.

The above considerations indicate that the computer
round-off errors restrict the accuracy of the algorithm to
~1% even for test examples where the WN values are
precisely known. In real cases, the accuracy of WN cal-
culations is much worse and the situation might appear
as hopeless. However, this is not so in fact because we
mostly deal with interpolation errors, the influence of
which has a quite different character. The linear rela-
tionship (19) known in mathematics as the Hausdorff
transformation [20] possesses a remarkable property

(26)

that makes smooth errors (well approximated by poly-
nomials) insignificant even despite their large magni-
tude.3 Of course, limitations related to the computer
round-off error are still valid, but a 1% accuracy is quite
sufficient for real problems and this level can hardly be
improved for the level of information accessible at
present.

Strictly speaking, the problem of round-off errors is
purely technical and can be solved by means of special
precise arithmetic programs which allow the calcula-
tions to be performed with arbitrary number of signifi-
cant digits [22], however, the accuracy of α and W∞ res-
toration logarithmically depends on the computation
accuracy. Algorithms that are more perfect in this
respect do exist, but their consideration falls outside the
scope of this paper; such methods, albeit providing for
a high accuracy in the test examples, are insufficiently
robust and work unsatisfactorily under conditions of
restricted information. The algorithm under consider-
ation is quite stable and, in the author’s opinion, ideally

3 This implies that, in the case when many WN values are known
with low precision, the data should be used upon approximation
by a smooth function rather than directly.

Km 1–( )
K

CN 1–
K 1–

K 1=

N

∑ 0, m 0 1 … N 2,–, , ,= =
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suited to obtaining a reliable zero-order approxima-
tion.4 

Treating UN by the power law can involve a standard
procedure of minimization of χ2 [22]:

(27)

where yi are the values set at the points xi with a statis-
tical error σi and fitted to the theoretical function y(x).
In this process, it is important to select properly the
interval Nmin ≤ N ≤ Nmax for the UN treatment. Indeed,
large N values lead to large statistical errors determined
by formula (23), while small N values increase the role
of a systematic error related to the fact that UN still did
not attain asymptote (20) (Fig. 2a). A sufficiently high
upper limit Nmax can be chosen using the condition
δUN ~ UN, since the points with greater N provide no
additional information; this choice is not very critical
since the procedure of χ2 minimization automatically
discriminates the points with large statistical errors,

which are used in averaging with a weight of 1/ . The
lower limit Nmin has to be selected taking into account
the χ2 value, which reaches an extremely high level for

small Nmin but attains a “normal” level of n ± const
(n is the number of points) with increasing Nmin (Fig. 2b).
The optimum value of Nmin corresponds to the left end
of the “plateau,” where a systematic error becomes
smaller than the statistical error and the available infor-
mation is most completely employed.

In fact, the conditions for a strict statistical treat-
ment of χ2 were not fulfilled because the errors δUN for
various N were not independent (see Eq. (23)). This was

4 This situation is well known in computational mathematics [22].
All algorithms can be roughly divided into two groups: those in
the first group possess moderate accuracy and convergence rate
but are highly reliable (an example is offered by seeking for a
root of equation through segment halving); algorithms of the sec-
ond group show high accuracy and ensure rapid convergence but
pose stringent requirements with respect to the function smooth-
ness (e.g., in seeking a root with the forecast for several deriva-
tives).

χ2 yi y xi( )–
σi

--------------------- 
 

2

,
i

∑=

σi
2

n
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6 SUSLOV
manifested by the fact that χ2 values decreased below
the “normal” level (dashed curve in Fig. 2b), while the
statistical uncertainty of α and W∞ became very small
and did not reflect real errors even in the order of mag-
nitude. For this reason, we considered the choice of
Nmin as satisfactory when the χ2 values were on the cor-
rect order of magnitude (~n); small changes in Nmin did
not significantly influence the results.

3. DEPENDENCE ON THE PARAMETER b0 
AND ACCURACY ESTIMATION

Direct application of the algorithm described in Sec-
tion 2.2 is insufficiently effective since the results
depend on the arbitrary parameter b0, which implies
that an additional investigation is necessary to select the
optimum value.

It is naturally expected that corrections to asymp-
tote (7) have the form of a regular expansion with
respect to 1/g. However, even the simplest examples
show that, in the general case, this assumption is not
valid: in the zero-dimensional case, the corrections fol-
low the powers of g–1/2; for an anharmonic oscillator,
the corrections follow the powers of g–2/3 (see Section 4).
For this reason, we admit the power corrections in the
general form:

. (28)W g( ) W∞gα W∞' gα' …+ +=

– α

χ2 (a)

–α' b0

–α

α eff
(b)

–α' b0

α

α'

–α

(c)

–α' b0

U∞

U∞
exact

Fig. 3. Theoretical plots of (a) χ2, (b) αeff , and (c) U∞ ver-
sus b0 constructed with neglect of the correction terms indi-
cated by dots in expression (29).
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Accordingly, the asymptotic behavior of UN written by
analogy with (20) and (21) is described as

(29)

First, let us neglect the correction terms indicated by
dots in expansion (29). A formal treatment of this
expression according to the power law (20) yields quite
satisfactory results because the truncated function (29)
in the double logarithmic scale varies smoothly and is
well approximated by a straight line. However, this
approximation only leads to certain effective values of
α and U∞.

Note that, because of the poles of the gamma function,
the first and second terms in (29) become zero for b0 = –α
and b0 = –α', respectively. These b0 values correspond
to the purely power laws, UN ∝  Nα' – 1 and UN ∝  Nα – 1,
which results in increasing quality of the approxima-
tion and a sharply decreasing χ2 value. Within a fixed
working interval Nmin ≤ N ≤ Nmax, the pattern is as follows
(Fig. 3): the χ2 versus b0 curve exhibits sharp minima at
b0 = –α' and b0 = –α; the effective index αeff drops down
to α' in the vicinity of b0 = –α and is close to α outside
this region (being exactly equal to α at b0 = –α'); the
effective parameter U∞ corresponds to exact W∞ at
b0 = –α ' and crosses the zero level in the vicinity of the
point b0 = −α. The slope of a linear portion of the curve
near this root is

(30)

which provides for an W∞ estimate not too sensitive
with respect to α errors. The rejected terms in (29) may
only slightly perturb this pattern.

The pattern outlined above was actually observed,
but the behavior of αeff and U∞ in the vicinity of b0 = –α is
usually discontinuous (as indicated by dashed branches
in the curves of Fig. 3). However, this circumstance is
not physically significant and only reflects features of
the mathematical procedure involving taking logarithm
of the UN modulus,

(31)

followed by using a linear fitting algorithm [22]. The
sign of U∞ is determined by calculating χ2 for U∞ = |U∞|
and –|U∞| and selecting a variant with the minimum
value. This procedure leads to rather senseless results in
the case of UN changing sign, but this is only possible
in a small vicinity of the point b0 = –α, while the sign
of UN outside this narrow interval is determined by the
sign of the first term in the right-hand part of Eq. (29).

UN

W∞

aαΓ α( )Γ b0 α+( )
----------------------------------------Nα 1–=

+
W∞'

aα'Γ α '( )Γ b0 α'+( )
-------------------------------------------Nα' 1– ….+

U∞
W∞

aαΓ α( )
----------------- b0 α+( ),≈

UNln U∞ln α 1–( ) N ,ln+=
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SUMMING DIVERGENT PERTURBATIVE SERIES 7
Smoothness of the U∞(b0) function is restored when
the treatment according to power law (20) is performed
by varying only U∞ at a fixed (approximate) α value.
Small variations of α virtually do not affect the position
of the root of U∞(b0), while significantly influencing the
W∞ value determined from the slope of the linear rela-
tionship (30). The above considerations suggest four
different methods for estimating the α index, based on (i)
the αeff value at the first minimum of χ2 (counting from
large b0), (ii) the position of the second χ2 minimum, (iii)
the change in the sign of U∞ upon the logarithmic treat-
ment, and (iv) the change in the sign of U∞ upon treatment
at a fixed α value (taken equal to a preliminary estimate).

The first two estimates ensure, in the general case, a
higher precision, since their uncertainty is determined
by the ratio of rejected terms in the right-hand part of
expansion (29) to the characteristic value of the first
term outside the narrow vicinity of b0 ≈ –α. The accu-
racy of the last two estimates is determined by the ratio
of the second term to the first term. When the rejected
terms in (29) are comparable with the second term (this
condition can be monitored by reproducibility of the α'
value), all four methods are on the same footing. In
practice, it is always important to monitor the change in
the sign of U∞ because this point reliably indicates the
minimum in χ2 corresponding to b0 = –α (the number-
ing of minima may change because of their disappear-
ance, appearance of spurious minima, etc. (see below).

There are three possible estimates of W∞, which use
either (i) the U∞ value at the first minimum of χ2 or
(ii, iii) the slope of a linear portion of the U∞(b0) curve
in the vicinity of the root for the treatment at a fixed α
(variation of the latter parameter within the interval of α
uncertainty obtained by the four methods indicated above
provides the upper and lower estimates for W∞, respec-
tively).

As can be readily shown, a difference between vari-
ous estimates of α and W∞ is on the same order of mag-
nitude as the deviation of each estimate from the exact
value. This correlation can be used for estimating
errors. The availability of several estimates is of great
significance: while any two estimated values can acci-
dentally be close to each other (leading to understated
value of the predicted error), the accidental proximity
of three or four estimates is hardly probable.

4. TEST EXAMPLES

The operation of the proposed algorithm can be
illustrated by application to several test systems.

4.1. Zero-Dimensional Case

The first example is offered by the integral

(32)W g( ) ϕϕ n 1– ϕ2– gϕ4–( ),expd

0

∞

∫=
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which can be considered as a zero-dimensional limit of
the functional integral in the n-component ϕ4 theory.
Here, it is easy to calculate the expansion coefficients

(33)

and their behavior for large N:

(34)

where

(35)

Asymptotic behavior of the integral at g  ∞ is
described by the following relationships:

(36)

with the corrections having the form of a series in pow-
ers of g–1/2. In the test, the required number of coeffi-
cients WN was set with a double computer accuracy
(δ ~ 10–14), after which the α and W∞ values were
restored assuming their Lipatov asymptotics to be
known.

(i) n = 1. Figure 4 shows the  against N curves
calculated for various values of the parameter b0
(points) and the results of treatment according to the
power law (solid curves). For better illustration, the
data are presented in the form of coefficients,

(37)

normalized so as to tend to a finite limit for b0  ∞;
N0 is the lower limit of summation in relationship (19),
which can differ from unity when several first terms of
the series (1) are zero. As is seen, all curves in fact
exhibit a power asymptotic behavior for large N.
Attaining the asymptote is delayed for b0 @ 1 and
b0  –N0, because of the existence of the correspond-
ing large parameters in relationship (19). In contrast,
the power law holds even for small N for b0 = 0.82 cor-
responding to the first minimum of χ2.

Figure 5 shows the plots of χ2, αeff, and  =
U∞Γ(b0 + N0) versus b0 calculated in the interval
24 ≤ N ≤ 50. For the first minimum of χ2 corresponding
to b0 = 0.82, estimates obtained according to Section 3
are as follows:

(38)

WN caN

Γ N
n 2+

4
------------+ 

  Γ N
n
4
---+ 

 

Γ N 1+( )
--------------------------------------------------------=

WN caNΓ N b+( ) 1
A1

N
------ …+ +

 
 
 

,=

a 4, b
n 1–

2
-----------,= =

c
2n/2

4 π
----------, A1

n 2–( ) 4 n–( )
16

--------------------------------.= =

W g( ) W∞gα , α n/4,–= =

W∞ Γ n/4( )/4,=

ŨN

ŨN UNΓ b0 N0+( ),=

Ũ∞

α 0.247, W∞– 0.892, α' 0.82.–= = =
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Fig. 4. The plots of  = UNΓ(b0 + 1) versus N calculated
for various b0 (points and dashed curves). Solid curves
show the results of treatment according to the power law
using integral (32) with n = 1. 
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Fig. 5. The plots of χ2, αeff , and  = U∞Γ(b0 + 1) versus
b0 for integral (32) with n = 1 in the averaging interval of
24 ≤ N ≤ 50. Dashed line shows a portion of the U∞(b0)
curve in the vicinity of the root, obtained by the treatment at a
constant index α = –0.25.

Ũ∞
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The second minimum of χ2 taking place at b0 = 0.26
yields

(39)

The U∞ value changes sign at b0 = 0.210 and 0.215 for
the treatment with taking a logarithm and at a fixed
index, which yields the estimates α = –0.210 and
−0.215, respectively. The slope of a linear portion in the
U∞(b0) curve in the vicinity of the root (dashed line in
Fig. 5 constructed upon treatment at a fixed index)
yields the W∞ values depending on the preselected α
value: for α = –(0.21–0.26), the estimates range within
W∞ = 0.883–0.933. Summarizing all these estimates,
we obtain the set of estimates

(40)

which are consistent with the exact values

(41)

Since the α' values in (38) and (39) agree satisfactorily,
we may conclude that the rejected terms in expansion
(29) are small as compared to the second term. There-
fore, the best estimates for α are provided (see Section 3)
by relationships (38) and (39). Restricting to these esti-
mates, we obtain

(42)

instead of set (40). Here, the accuracy of determining α
really increased, but the error of W∞ is somewhat under-
estimated.

The shape of the χ2 curves is highly sensitive to
selection of the lower boundary of the working interval
Nmin ≤ N ≤ Nmax. As the Nmin value decreases, the χ2

minima tend to smear, while an increase in Nmin leads to
flattening of the curves and the appearance of small-
scale fluctuations hindering identification of the min-
ima. In attempts at obtaining the clearest minima corre-
sponding to χ2 values of the correct order in magnitude,
the choice was usually made between two–three Nmin
values.5 A change in the working interval most signifi-
cantly affects the estimates (39), with the α and α' vari-
ations approximately corresponding to a difference
between (38) and (39).

(ii) n = 2. The χ2 plots in Fig. 6 exhibit sharp minima
at b0 = 1.26 and 0.50. The first χ2 minimum yields

(43)

while the other three methods give α = –0.5000 accu-
rate to within the last digit. An estimate for α' obtained
using the second χ2 minimum amounts to about 20,

5 It should be noted that, in displaying the results of calculations
with fixed decimal point, the χ2 minima are well distinguished by
the configuration of digits even in the course of a rapid on-screen
computer survey.

α 0.26, α'– 0.67.–= =

α 0.235– 0.025, W∞± 0.908 0.025,±= =

α' 0.75 0.08,±=

α 0.25, W∞– 0.9064, α' 0.75.–= = =

α 0.253– 0.007, W∞± 0.887 0.005±= =

α 0.4996, W∞– 0.442, α' 1.26,–= = =
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which is inconsistent with (43). Therefore, the rejected
terms in (29) are comparable with the second, so that all
four possible estimates are on the same footing. Treat-
ment of a linear portion of the U∞(b0) curve near the
root yields W∞ = 0.460. As a result, we obtain

, (44)

in good agreement with the exact values

(45)

(iii) n = 3. Here, the χ2(b0) plots exhibit minima at
b0 = 1.07 and 0.77, which yield

(46)

and

(47)

respectively. Estimates obtained using U∞ changing
sign are α = –0.86 for the treatment with taking a loga-
rithm and α = –0.84 for the treatment at a fixed index.
Determining W∞ from the slope of a linear portion in
the U∞(b0) curve in the vicinity of the root yields 0.311,
0.420, and 0.751 for α = –0.704, –0.77, and –0.86,
respectively. Since the two values of α' reasonably
agree with each other, the estimates (46) and (47) for α
must be more precise. Taking only these estimates into
account, we obtain

(48)

in good agreement with the exact values

(49)

An allowance for all four estimates of α yields

(50)

with markedly greater errors.
In this case, we may also point out difficulties aris-

ing due to an additional “spurious” minimum appearing
at b0 = 1.90. However, this minimum can be excluded
from consideration upon identifying the minimum at
b0 = 0.77 as corresponding to b0 = –α (by U∞ changing
sign) and the minimum at b0 = 1.07 as corresponding to
b0 = –α' (by the consistent α' values). In the general
case, the process of identifying useful minima resem-
bles the situation in spectroscopy under high noise con-
ditions: selecting informative signals requires certain
skill.

(iv) n = 4. In this case, application of the algorithm
encounters the “hidden rock” of this method. Based on
the usual estimates, we obtain a quite precise result:

(51)

However, these values do not agree with (36). The dis-
crepancy is caused by the fact that the main contribu-
tion to the UN asymptotics vanish because the gamma

α 0.5000– 0.0004, W∞± 0.451 0.009±= =

α 0.50, W∞– 0.4431.= =

α 0.704, W∞– 0.192, α' 1.07= = =

α 0.77, α'– 1.42,–= =

α –0.737 0.033, W∞± 0.306 0.114,±= =

α' 1.25– 0.18,±=

α 0.75, W∞– 0.3063, α' 1.25.–= = =

α –0.78 0.08, W∞± 0.47 0.28±= =

α –1.500 0.004, W∞± –0.222 0.005.±= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
function exhibits a pole at the exact value of the index
α = –1 (see Eq. (29)), so that the next term of the expan-
sion becomes significant with the parameters

(52)

Therefore, the proposed algorithm is incapable of restor-
ing correct asymptotics described by Eq. (7) in the case of
nonpositive integer α values. In order to avoid these prob-
lems, the algorithm has to be supplemented by the follow-
ing rule: if the treatment yields a negative α value, the
result must be checked by taking a negative or frac-
tional power of series (1) and summing the reexpanded
series.

4.2. Anharmonic Oscillator

The second example is offered by the problem of
determining the ground sate E0(g) of an anharmonic
oscillator described by the Schrödinger equation

(53)

This problem can be reduced to a one-dimensional ϕ4

theory. Consider E0(g) as the W(g) function with the
initial terms of the perturbative series having the fol-
lowing form:

. (54)

Bender and Wu [23] calculated the first 75 coefficients
WN up to the 12th decimal digit and obtained an expres-

α' 1.50, W∞'– π/8– 0.2216.–= = =

– d2

dx2
-------- x2

4
----- gx4

4
--------+ +

 
 
 

ψ x( ) Eψ x( ).=

W g( ) 1
2
---

3
4
---g

21
8
------g2–

333
16
---------g3 30885

128
---------------g4– …+ + +=

logχ2

b01.0 1.5
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2
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~U∞
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Fig. 6. The plots of χ2, αeff , and  = U∞Γ(b0 + 1) versus
b0 for integral (32) calculated with n = 2 in the averaging
interval of 20 ≤ N ≤ 50. Dashed line shows a portion of the
U∞(b0) curve in the vicinity of the root, obtained by the
treatment at a constant index α = –0.5. The αeff for b0 = 0.5
falls far outside the diagram boundaries.

Ũ∞

α
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sion describing behavior of the expansion coefficients
with large N:

(55)

The asymptotics of E0(g) for g  ∞ is revealed by
substituting E0(g) = λ0g1/3and x  xg–1/6, after which
Eq. (53) transforms into

(56)

WN
6

π3/2
--------3NΓ N

1
2
---+ 

  1 95/72
N

--------------– …+
 
 
 

.–=

– d2

dx2
-------- x2

4
----- x2

4g2/3
-----------+ +

 
 
 

ψ x( ) λ0ψ x( ).=

20 N30100

0.2

0.1

0
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Fig. 7. The plots of  = UNΓ(b0 + 1) versus N for an
anharmonic oscillator. The notations are the same as in Fig. 4.
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Fig. 8. The plots of χ2, αeff , and  = U∞Γ(b0 + 1) versus
b0 for an anharmonic oscillator in the averaging interval of
24 ≤ N ≤ 45. Dashed line shows the result of treatment at a
constant index α = 0.34.
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For g  ∞, the last term in braces is insignificant and
λ0 tends to a constant value of 0.6679863 that can be
determined by the variational method [24]. Thus, the
W(g) asymptotics is described by power series (7) with
the parameters

(57)

and the corrections having the form of a series in pow-
ers of g–2/3.

Figure 7 presents the plots of  against N and the
results of their treatment according to the power law.

Figure 8 shows the plots of χ2, αeff , and  versus b0.
As is seen, χ2 exhibits minima b0 = 1.30 and –0.34 corre-
sponding to

(58)

and

(59)

respectively. Estimates obtained using U∞ on the same
footing changing sign are α = 0.285 for the treatment
with taking logarithm and α = 0.337 for the treatment
at a fixed index. Determining W∞ from the slope of a
linear portion in the U∞(b0) curve in the vicinity of the
root yields values in the interval from 0.616 to 0.883.
The two values of α' having nothing in common indi-
cates that all α estimates are on the same footing. As a
result, we obtain

, (60)

in good agreement with the exact values (57).

The above examples show that the accuracy of
restoring the W(g) asymptotics, while depending sig-
nificantly on the particular problem, is generally corre-
lated with the character of corrections to the UN asymp-
totics described by relationship (20). An average accuracy
on the order of 10–2 is attained in the zero-dimensional
case with odd n, where the corrections to (20) have the
form of power series in N–1/2. For even n, every other cor-
rection vanishes due to the poles of the gamma function
to leave a regular expansion in 1/N, which markedly
increases the resulting accuracy. A relatively low accu-
racy in the case of an anharmonic oscillator is related to
the fact that corrections have the form of series in pow-
ers of N–1/3.6 It is important to note, however, that the
algorithm automatically yields an estimate of the error.
The estimate is rather reliable when all four possible
methods for evaluating α are employed.

6 The first term in (28) gives, in addition to the main contribution
to UN proportional to Nα – 1, the regular corrections Nα – 2,

Nα – 3, …; the second term contributes by Nα' – 1, Nα' – 2, …, etc.
As a result, the expansion in g–2/3 converts into the expansion in
N–1/3.

α 1/3, W∞ 0.668,= =

ŨN

Ũ∞

α 0.349, W∞ 0.602, α' 1.80–= = =

α 0.34, α' 20,≈=

α 0.317 0.032, W∞± 0.74 0.14±= =
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5. ALGORITHM OPERATING
WITH INTERPOLATED COEFFICIENT 

FUNCTION

The importance of interpolation was strongly under-
estimated, although this method can obviously provide
for an increase in the accuracy of calculations. In most
investigations in the field under consideration, the algo-
rithms were formulated so as to avoid mentioning the
coefficients WN at intermediate N values. This approach
is conceptually incorrect since, using a finite number of
the initial coefficients and their asymptotics, it is possi-
ble to construct a function with preset behavior in infin-
ity.7 A reasonable problem formulation corresponds to
approximately setting all WN , after which W(g) can be
reconstructed with certain precision.

Thus, a necessary stage in solving the problem con-
sists in interpolating the coefficient function, which
naturally implies that this function is analytical (see
Section 8.2). The interpolation stage allows the param-
eter c in the Lipatov asymptotics (essentially not used
in the standard conform-Borel procedure [6]) to be
effectively employed. In addition, it is possible to take
into account smoothness of the reduced coefficient
function, its regularity with respect to 1/N, and (eventu-
ally) the information concerning asymptotics of the AK

coefficients in expansion (22) [25].
In Section 2.3, some qualitative considerations were

presented suggesting that the influence of the interpola-
tion errors is not as significant as that of the round-off
errors. Unfortunately, no particular estimates illustrat-
ing this were obtained. Validity of this statement will be
experimentally demonstrated for the zero-dimensional
test example with n = 1.

With a view to modeling a situation for the ϕ4 the-
ory, let us assume that several coefficients in the expan-
sion of series (1) are known,

(61)

together with the Lipatov asymptotics (2) and the cor-
responding first corrections in 1/N. The interpolation is
conveniently performed for the reduced coefficient
function, retaining a finite number of terms in expan-
sion (22) and selecting coefficients AK by correspon-
dence to set (61).

Let us consider in detail two examples of the inter-
polation procedure, which correspond to (i) L0 = 1, L = 5
and (ii) L0 = 1, L = 1. Owing to a slow character of vari-
ation of the coefficient function, the accuracy of inter-
polation in both cases is very high: ~10–9 and ~10–4,
respectively. A random error of such amplitude might
only lead to large fluctuations in UN for N ≈ 30 in the
former case and N ≈ 13 in the latter case. Real calcula-

7 A function of the factorial series possesses the same asymptotics
of coefficients (2) but with a different parameter c [17]; the last
statement in the text can be readily proved by taking an appropri-
ate linear combination of several functions.

WL0
WL0 1+ … WL,, , ,
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tions indicate that no catastrophic consequences take
place up to N = 40, when the influence of the round-off
errors becomes significant. This can be seen in Table 1
presenting the values of some coefficients UN calcu-
lated for b0 = 1 using the exact and interpolated coeffi-
cients of WN . An increase in the b0 value improves the
accuracy; when b0 decreases, the accuracy drops some-
what, although the resulting deviations would be indis-
tinguishable on the scale of Fig. 4.

The curve of χ2(b0) is analogous to (albeit not fully
coinciding with) that depicted in Fig. 5. Estimates of
the asymptotic parameters are listed in Table 2; for bet-
ter illustration, all values refer to the same working
interval of 23 ≤ N ≤ 45 and the value α = –0.25 used for
the treatment of a linear portion of the U∞(b0) curve. As
is seen from these data, changes in α and W∞ caused by
the interpolation fall within the scatter of various esti-
mates and virtually do not influence the accuracy of res-
toration of asymptotics (7). Therefore, interpolation
using a single expansion coefficient W1 allowed the
W(g) asymptotics to be restored with an accuracy not
worse than that achieved with the exact coefficients WN.
Of course, this is by no means a typical situation.

Table 1.  Comparison of UN values calculated for b0 = 1
using exact and interpolated coefficients WN

N

UN

Exact WN values Interpolation 
with L0 = 1, L = 5

Interpolation 
with L0 = 1, L = 1

30 –2.911 × 10–3 –2.911 × 10–3 –2.868 × 10–3

35 –2.408 × 10–3 –2.409 × 10–3 –2.369 × 10–3

40 –2.038 × 10–3 –2.041 × 10–3 –2.004 × 10–3

Table 2.  The parameters of asymptotics for integral (32)
with n = 1 calculated using exact and interpolated coeffi-
cients WN

Estimates 
based on

Exact WN
values

Interpolation
with L0 = 1,

L = 5

Interpolation
with L0 = 1,

L = 1

First χ2 mini-
mum

α = –0.246 α = –0.245 α = –0.269

α' = –0.827 α' = –0.830 α' = –0.761

W∞ = 0.893 W∞ = 0.892 W∞ = 0.912

Second χ2 
minimum

α = –0.249 α = –0.245 α = –0.271

α' = –0.792 α' = –0.849 α' = –0.747

U∞ changing 
sign

α = –0.210 α = –0.210 α = –0.218

U∞(b0) slope α = –0.215 α = –0.215 α = –0.225

W∞ = 0.889 W∞ = 0.887 W∞ = 0.885
SICS      Vol. 93      No. 1      2001
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6. OPTIMIZATION
OF THE INTERPOLATION PROCEDURE

Considering an example in the preceding section,
we were lucky to see that the most natural method of
interpolation may give good results. In the general case,
the interpolation procedure requires optimization that
will be demonstrated in the case of an anharmonic
oscillator. Let us first discuss the general strategy of
optimization, which has been significantly modified in
comparison to that used in the previous works.

6.1. General Strategy of Optimization

On an abstract level, the optimization consists in
introducing a certain variation of the summation proce-
dure characterized by a parameter λ, the latter value
being eventually selected in a “optimum manner.” For
example, the initial series (1) can be raised to the λ
power and reexpanded to yield

(62)

The properties of this series are analogous to those of
the initial one, except for a change in the Lipatov

Wλ g( ) W̃0 W̃1g– W̃2g2 …–+=

+ c̃aNΓ N b+( ) g–( )N ….+

1

2

3

3
2

Q

Qexact

λ opt

(a) 1

λ

Q

Qexact

λ opt

(b)

λ

Fig. 9. Schematic diagrams illustrating the optimization
procedure: (a) theoretically, any quantily Q obtained upon
summation of the series must be independent of the optimi-
zation parameter λ; however, such dependence arises under
the conditions of restricted information and weakens (on the
passage from curve 1 to 2, 3, etc.) as the amount of informa-
tion increases (the optimum value λ = λopt occurs at the cen-
ter of the plateau); (b) the choice of λ affects both the
approximate Q value (thick solid curve) and the error of
determination (cross-hatched area), so that a correct estima-
tion of this error must provide for the exact value Qexact
being compatible with all data. In the “ideal” situation
depicted, optimization with respect to λ consists in select-
ing the result characterized by a minimum error.
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asymptotic parameter c [17]. The new series is summed
upon selecting the λ value so as to provide for the best
convergence of the second series in expansion (9). The
optimization procedure is employed, bringing both
advantages and troubles, in most investigations in the
field under consideration. On the one hand, the princi-
pal possibility of improving the convergence is defi-
nitely valuable. On the other hand, the results become
dependent of an arbitrary parameter λ and it is difficult
to get rid of the feeling that any result can be obtained.

Theoretically, the use of series (62) is fully equiva-
lent to the study of initial series (1) and the value of any
quantity Q obtained upon summation must be indepen-
dent of the parameter λ. However, under the conditions
of restricted information concerning coefficients WN,
the Q value begins to depend on the choice of λ, this
dependence weakening as the amount of information
increases. In the general case, no uniform convergence
with respect to λ takes place and an approximate Q
value is close to the exact one only within a certain
“plateau” region (Fig. 9a), the deviations rapidly grow-
ing outside this region. As the amount of necessary
information increases, the plateau expands and flattens
(see, e.g., [26]). Apparently, the best convergence takes
place at the center of the plateau. However, this point is not
always unambiguously selected, since the plateau may be
asymmetric or poorly pronounced, the center may shift in
the course of convergence, etc. Therefore, selecting the
best approximation for Q and estimating the approxima-
tion uncertainty are rather subjective procedures.

In the author’s opinion, the optimization problem can
nevertheless be solved objectively. Indeed, since the
choice of λ affects both the approximate Q value and the
error of determination, a correct estimation of this error
must provide for the exact value Qexact being compatible
with the approximate values obtained for any λ (Fig. 9b).
This criterion eliminates the problem of an apparent
dependence of Q on λ. Once such an “ideal” situation
is attained, optimization of the procedure with respect
to λ reduces to selecting the result characterized by a
minimum error.

The optimization procedure is expediently per-
formed in the interpolation stage, since all the final
errors arise essentially from the uncertainties in WN .
Rewriting expansion (22) in the equivalent form

(63)

and using the interpolation by truncating the series and

selecting coefficients , we obtain a manifold of real-
izations of the interpolation procedure characterized by

two parameters,  and . An analysis of the test exam-
ples shows this parametrization to be sufficiently effec-
tive: the accuracy of interpolation achieved for the opti-
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SUMMING DIVERGENT PERTURBATIVE SERIES 13
mum  and  values can be higher by several orders
of magnitude as compared to that for a random choice
of these parameters. Below, the optimization with

respect to  is based on theoretical consideration, while

the optimum  value is selected based on the results of
numerical calculations.8 

6.2. Optimization with Respect to 

The process of optimization with respect to 
encounters the problem of selecting parametrization for
the Lipatov asymptotics which can be written in various
forms: caNΓ(N + b), caNNb – 1N!, etc. This problem was
actively discussed (see, e.g., [11, 12]), but no satisfac-
tory solutions were proposed.

Note that the values  = b and  = b – 1 lead to
identical results:

(64)

Therefore, the approximate values of any quantity Q
obtained upon summation of the series will coincide for

 = b and b – 1. As the amount of information concern-

ing the coefficients WN increases, the Q( ) function
varies more and more slowly. When the characteristic
scale L of this variation increases, the kth derivative of
the function drops as 1/Lk. As a result, an extremum at

the point  = b – 1/2 appears in the general situation,
with a plateau between the Q values corresponding to

 = b and b – 1and the point  = b – 1/2 being the nat-
ural center of this plateau. The error of restoring Q, like
any other value, exhibits an extremum (which is naturally

expected to be minimum) at  = b – 1/2 (see Section 8).

Thus, the optimum choice is  = b – 1/2; this corre-
sponds to the following parametrization of the Lipatov
asymptotics:

(65)

The first correction A1/N to this asymptotics (see expan-

sion (22)) depends on  as

(66)

8 Further increase in the number of optimization parameters seems
to be inexpedient: this way may lead to absurd results. In particu-
lar, a large number of parameters allows imitation of a rapid con-
vergence of the algorithm to an erroneous result. Even using the
proposed approach, it is possible to ensure coincidence of four
estimates of the α value at a zero error.

b̃ Ñ

b̃

Ñ

b̃

b̃

b̃ b̃

Nb̃Γ N b b̃–+( )

=  
NbΓ N( ), b̃ b=

Nb 1– Γ N 1+( ) NbΓ N( ), b̃ b 1.–= =



b̃

b̃

b̃

b̃ b̃

b̃

b̃

WN
as caN Nb 1/2– Γ N 1/2+( ).=

b̃

A1 A1 b 1/2 b̃––( )2
/2,–=
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where  is the value of A1 for  = b – 1/2. In all known

cases,  < 0 (see [19, 23, 27, 28]) and a minimum cor-
rection corresponds to parametrization (65), which
favors a good matching between the high-order asymp-
totics and the low-order behavior. Note that the asymp-
tote according to the Lipatov method [2] is

The above parametrization (65) corresponds to approx-
imation

and provides for an accuracy of 4% even for N = 1 (thus,
being a “natural” choice). For an anharmonic oscillator,
the optimum parametrization coincides with (55), while
in the zero-dimensional case with n = 1 the expression
is similar to (34) and (35).

6.3. Optimization with Respect to 

The case of an anharmonic oscillator was studied in
detail using the interpolation with L0 = 1, L = 9 (i.e.,
using the first nine WN coefficients), which corresponded
to an accuracy of ~10–3. The interpolation based on
expression (22) was unsatisfactory: the χ2 values obtained
by treatment according to the power law (20) were abnor-
mally large even for reasonable averaging intervals and
gave no clear pattern with minima. The reason for this
behavior is revealed by comparison of the UN coeffi-
cients (obtained by interpolation) to the exact values.
As is seen from Fig. 10a, the difference is very large,
making treatment by the power law practically impos-
sible. Deviations increase by approximately the same
law as those for the random errors, but the variation is
rather smooth and is analogous for different b0 values.
It appears that these deviations can be compensated in

a broad range of b0 by optimization with respect to .

This is really so and the region of optimum  val-
ues can be determined without knowledge of the exact
result. Figure 11 shows the behavior of χ2 in the interval

of 20 ≤ N ≤ 40 depending on  for integer b0 values.
As is seen, small χ2 values are immediately obtained for

b0 = 0, 1, 2, 3 in the interval of  = –(5.0–5.5). This is
evidence that the error of UN can be compensated for all
b0 ≥ 0, since greater b0 correspond to still smaller errors
(see Section 2.3). As is seen from Fig. 10b, deviations

of the resulting UN for  = –5.4 from exact values for
b0 ≥ 0 are in fact virtually indistinguishable.

The possibility of more refined optimization is based
on the fact that the interpolation errors in formula (29)
play the same role as do the high-order scaling correc-

tions indicated by dots. As  is changed, the interpola-

tion errors smoothly vary and (for a certain  value)

A1 b̃

A1

2πc a/e( )N Nb 1/2– NN .

2πe N– NN Γ N 1/2+( )≈

Ñ

Ñ

Ñ

Ñ

Ñ

Ñ

Ñ

Ñ
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10

Fig. 10. Optimization of the interpolation procedure for an
anharmonic oscillator: (a) a comparison of the UN values

obtained by interpolation for  = 0 using the first nine WN
coefficients (solid curves) to exact values (dashed curves);
vertical bars indicate the N values above which behavior of
the exact UN values is visually indistinguishable from that
according to the power law; (b) an analogous pattern after the

optimization with respect to  (for  = –5.4).

Ñ

Ñ Ñ
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Fig. 11. The plots of χ2 versus  for an anharmonic oscil-
lator in the interval of 20 ≤ N ≤ 40 at various fixed b0 values.

Ñ
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become approximately compensated by the scaling cor-
rections. This point can be detected by the maximum
proximity of various estimates obtained for the α and
W∞ values.

A systematic treatment with determination of the α
and W∞ values was carried out for  in the interval
from –5.0 to –5.6 at a step of 0.1. A “correct” pattern of
χ2 minima was observed for  = –5.5, while for  = −5.6

the first minimum disappeared and for  ≥ −5.4 it was
split in two. The reason for this splitting is qualitatively
evident: Figs. 10 and 11 show that, at a fixed , there
is a certain b0 value for which the effect of the interpo-
lation error upon UN is virtually compensated. This
very b0 corresponds to an “extra” minimum of χ2 in
comparison with the pattern of Fig. 8. Since it is diffi-
cult to decide a priori which of the two minima is true,
the estimates were obtained for both (and proved to be
very close to each other).

The results of these numerical calculations are sum-
marized in Table 3 and depicted in Fig. 12. The scatter
of α and W∞ values allows the error to be evaluated by
the order of magnitude. In order to obtain an “ideal”
pattern according to Fig. 9b, the error interval should be
expanded by a factor of 1.3 and 1.1 for α and W∞,
respectively (dotted curves in Fig. 12). Then the values
of α = 0.38 and W∞ = 0.52 (dashed curves in Fig. 12)

are compatible with the results for all . Selecting the

 values in each particular case so as to minimize the
one-side error (as indicated by arrows in Fig. 12), we
obtain the following estimates:

(67)

A comparison to the set (57) shows that the error is esti-
mated adequately, while the average values are some-
what displaced; the shift in W∞ is induced by the shift
in α.

7. SUMMING PERTURBATIVE SERIES
FOR AN ARBITRARY g

When the amount of information concerning the WN

coefficients suffices for restoring the W(g) asymptotics
as g  ∞, summing series (1) for an arbitrary g
encounters no problems: the coefficients UN for N & 40 are
calculated by formula (19) and the subsequent terms can
be obtained according to the U∞Nα – 1 asymptotics, so that
all coefficients of the converging series (9) are known.
The summation error is determined by the accuracy of
restoring the asymptotics,

(68)

which varies logarithmically with N and can be consid-
ered as constant with a restricted interval. Introducing a

Ñ

Ñ Ñ

Ñ

Ñ

Ñ

Ñ

α 0.38 0.05, W∞± 0.52 0.12.±= =

∆as

δUN

UN

----------=
N   @  1 

δ

 

U

 

∞

 U ∞ 
----------

 
δα

 
N

 
,ln+=
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Table 3.  Asymptotic parameters for an anharmonic oscillator obtained by the interpolation with L0 = 1, L = 9 (the values in

parentheses for  = –5.6 were estimated at the point b0 = 2.20 where the first χ2 minimum disappears)

Estimates based on
α for 

–5.0 –5.1 –5.2 –5.3 –5.4 –5.5 –5.6

First χ2 minimum 0.398 0.396 0.393 0.390 0.385
0.378 (0.373)

0.476 0.452 0.422 0.399 0.384

Second χ2 minimum 0.50 0.47 0.42 0.37 0.33 0.29 0.34

U∞ changing sign 0.585 0.535 0.485 0.445 0.405 0.365 0.335

U∞(b0) slope 0.495 0.445 0.40 0.36 0.32 0.29 0.26

W∞ for 

–5.0 –5.1 –5.2 –5.3 –5.4 –5.5 –5.6

First χ2 minimum 0.490 0.495 0.500 0.505 0.513
0.529 (0.540)

0.356 0.390 0.440 0.487 0.517

U∞(b0) slope 0.226 0.290 0.373 0.463 0.572 0.675 0.712

0.502 0.538 0.568 0.698 0.885 1.09 0.953

Ñ

Ñ

Ñ

characteristic scale Nc on which the relative error is
comparable with ∆as and using the approximation

(69)

we obtain for ag @ 1

(70)

δUN

UN

----------
0, N Nc<
∆as, N Nc,≥




=

δB g( ) ∆asUN

Nc

ag
------– 

 exp
N Nc=

∞

∑=

=  
∆asB g( ), ag @ Nc

∆asUNc
ag –Nc/ag( ), ag ! Nc.exp



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Substituting these expressions into (8) and using the
steepest descent method for , we obtain

(71)

(where some preexponential factors are omitted for
clarity). For negative α, the results for ag @ Nc are
somewhat different. In particular, for –1 < α < 0 we
obtain δW(g) = ∆as(W(g) – W(gc)), where agc ~ Nc.
A natural scale for Nc is provided by the middle of the
working interval (Nmin, Nmax), that is, Nc ≈ 30; however,
deviations from this value may be quite large because the
corresponding equality holds in fact on the logarithmic

ag ! Nc

δW g( )
W g( )

---------------
∆as, ag * Nc

∆as 2 Nc/ag( )1/2–{ } , ag & Ncexp



∼
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Fig. 12. The plots of α and W∞ values estimated for an anharmonic oscillator by various methods (see Section 3): (a) α estimates

based on the (1) first χ2 minimum, (2) second χ2 minimum, (3) U∞ changing sign, and (4) U∞(b0) slope; (b) W∞ estimates based on

the (1) first χ2 minimum and (2, 3) U∞(b0) slope (upper and lower bounds, respectively). Small-dash lines indicate the error interval
expanded by a factor of 1.3 and 1.1 for α and W∞ values, respectively.
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Table 4.  Comparative data for the exact integral (32) with n = 1 and the results obtained by summing the perturbative series

g

W(g) × 10

Exact value Summing with exact 
WN

Summing upon interpo-
lation with L0 = 1, L = 5

Summing upon interpo-
lation with L0 = 1, L = 1

1 6.842134 6.842135 6.842134 6.8436

2 6.183453 6.183454 6.183452 6.1867

4 5.497111 5.497110 5.497105 5.5034

8 4.820615 4.820608 4.820594 4.832

16 4.181699 4.181669 4.181637 4.200

32 3.597297 3.59720 3.59714 3.624

64 3.075230 3.07500 3.07490 3.113

128 2.616802 2.61633 2.61617 2.668

256 2.219222 2.2184 2.2182 2.285

512 1.877472 1.8761 1.8758 1.959

1024 1.585578 1.5835 1.5831 1.68

g  ∞ 9.064g–0.25 8.95g–0.247 8.95g–0.247 9.12g–0.269
scale (lnNc ≈ ln30). In practice, approximation (69) with
a constant Nc is expedient only for large g. In the gen-
eral case, estimate (71) is valid with an effective Nc

value, which is determined by the number N of the max-
imum term δUNuN in the series for δB(u) (for small g, this
value is close to L + 1, e.g., to the number of the first
unknown coefficient WN).

Table 5.  Comparative data for the exact ground state energy
E0(g) of an anharmonic oscillator and the results obtained by
summing the perturbative series (the 2E0(g) and 2g values are
given in order to provide for the correspondence with the data
reported in most other papers using a different normaliza-
tion)

2g

2E0(g)

Exact value
Summing with 

exact WN
(b0 = 1.30)

Summing upon 
interpolation 

with L0 = 1, L = 9

(  = –5.3,
b0 = 3.55)

0.5 1.241854 1.241854 1.241857

1 1.392352 1.392352 1.392396

2 1.607541 1.607545 1.60790

3 1.769589 1.769605 1.7706

4 1.903137 1.903178 1.9051

5 2.018341 2.018418 2.0214

10 2.449174 2.44961 2.4599

20 3.009945 3.0117 3.040

50 4.003993 4.0115 4.096

100 4.999418 5.018 5.19

g  ∞ 2 × 0.668g1/3 2 × 0.602g0.349 2 × 0.511g0.387

Ñ
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Table 4 presents the results of calculations for the
zero-dimensional case. Here, the first column gives the
exact values of integral (32) with n = 1, while the col-
umns from second to fourth present the results of sum-
mation obtained using exact WN coefficients and inter-
polated values (with L0 = 1, L = 5 or L0 = 1, L = 1),
respectively. In each case, the calculations were per-
formed for b0 corresponding to the first χ2 minimum.
A comparison to (71) indicates that Nc ~ 200 for the
second and third columns and Nc ~ 10 for the fourth
column.

Table 5 presents the analogous data for an anhar-
monic oscillator. Here, the first column gives the exact
E0(g) values taken from [24], while the second and third
columns present the results of summation obtained
using exact WN coefficients and interpolated values
(with L0 = 1, L = 9), respectively. In this case, the esti-
mates give Nc ~ 200 for the second column and about
50 for the third column.

Information concerning the W(g) asymptotics can
also be taken into account within the framework of the
standard conform-Borel procedure (Section 2.1) by inter-
polating the UN coefficients (with the known asymptotics
(17)) calculated using formula (11). For approximation
(69), we obtain by analogy with (71)

(72)

This procedure is preferred in the case of sufficiently
small g values (when Nc is close to L + 1), leading to
smaller errors as compared to those obtained for (71).
For greater g, the attaining of Nc values indicated above
seems to be impossible.

δW g( )
W g( )

---------------
∆as, ag * Nc

2

∆as –3 Nc
2/ag( )1/3{ } , ag & Nc

2.exp



∼
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According to the standard procedure of calculating
the critical indices [6], the second series (9) is truncated
on the Lth term that corresponds to the error given by
(72) with Nc = L + 1 and ∆as ~ 1. In the three-dimen-
sional case, a large number of expansion coefficients
are known (for L = 6). These values are well matched
with (2), which gives hope for restoring the asymptotics
of scaling functions with an accuracy of ∆as ~ 10–2 and
for increasing Nc at the expense of interpolation. Thus,
it is apparently possible to increase the accuracy of cal-
culation of the critical indices by two–three orders of
magnitude even for the currently available information.
Using the modified conformal mapping may lead to a
further increase in the accuracy, provided that the scale
of Nc * 20 would be accessible in the corresponding
region of ag ~ 0.2.

8. THE ϕ4 THEORY

8.1. Restoration of the Gell-Mann–Low Function

Now let us turn to a real physical problem of restor-
ing the Gell-Mann–Low function in the ϕ4 theory, con-
sidering β(g) as W(g) and proceeding from the informa-
tion contained in relationships (5) and (6).

The interpolation was based on formula (63) with an

optimum value of  = 4. Figure 13 presents the plots of

χ2( ) versus  calculated in the interval 20 ≤ N ≤ 40
for several fixed b0 values. As is seen, promising results can

be expected for  values close to zero, where the curves
obtained at b0 = –1, 0, –1 and 2 exhibit sharp minima. The

interval –0.5 ≤  ≤ 0.5 was studied in more detail.

Figure 14 shows the behavior of the coefficients  =
UNΓ(b0 + 2) in the case of a nearly optimum interpola-

tion with  = 0. If the curves for b0 @ 1 and b0 ≈ –2
(attaining the asymptote with delay) are rejected, the
data for large N asymptotically tend to a constant level,
which correspond to a critical index α close to unity.
This conclusion is consistent with the position of the
second χ2 minimum and with the change of sign in U∞
(Fig. 15). A clear pattern with χ2minima was observed

for  ≤ 0.2; when the  value increased, the first χ2

minimum approached to and eventually merged with
the second minimum. For this reason, no estimates

using the first minimum could be obtained for  ≥ 0.3.

The results of determining the α and W∞ values are
presented in Table 6 and Fig 16. The ideal pattern for α,
corresponding to Fig. 9b, is obtained upon expanding
the error interval by a factor of two (dashed lines in Fig.
16a), after which the value of α = 0.96 is compatible

with the results for all . In the fixed interval of 20 ≤
N < 40, all four estimates of α coincide for  = –0.12
on an accuracy level of 10–3; the main uncertainty is

b̃

Ñ Ñ

Ñ

Ñ

ŨN

Ñ

Ñ Ñ

Ñ

Ñ

Ñ
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related to a weak dependence on the averaging interval.
With an allowance for the double error, we finally obtain

(73)

For W∞ (Fig. 16b), the ideal pattern is obtained imme-
diately and the corresponding value of W∞ = 7.4 is com-

α 0.96 0.01.±=

b0 = 5
15

10

5

–2 0 2 4 6 8

logχ2

– ~N

3
2
1

0

–1

Fig. 13. The plots of χ2 versus  for the ϕ4 theory in the
interval of 20 ≤ N ≤ 40 at various fixed b0 values.

Ñ
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0.5

Fig. 14. The plots of  = UNΓ(b0 + 2) versus N for vari-
ous b0 (points and dashed curves) and the results of treat-

ment according to the power law (solid curves) for the ϕ4

theory. The calculations were performed using a nearly

optimum interpolation with  = 4,  = 0.

ŨN

b̃ Ñ
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Fig. 15. (a) The pattern of minima in χ2 for the ϕ4 theory in
the averaging interval of 20 ≤ N ≤ 40. (b) The plots αeff and

 versus b0 for  = 0. The dashed curve shows the
U∞(b0) curve for fixed α = 1.
Ũ∞ Ñ

α = 0.96 ± 0.01

α

~N

W∞ = 7.4 ± 0.4
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Fig. 16. The plots of various (a) α and (b) W∞ estimates ver-

sus b0 for the ϕ4 theory. The notations are the same as in
Fig. 12. Small-dash lines indicate the error interval for α
expanded by a factor of two.
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patible with all data. Here, the one-side error is mini-

mum at  = –0.08, which yields

. (74)

Correctness of the optimization with respect to 
described in Section 6.2 can be demonstrated in a
somewhat heuristic manner. For an optimum value of

 = –0.12 and the  value varied in an interval from 0
to 6, a clear pattern of χ2 minima was obtained in the
middle of the interval. On approaching the boundaries,
the first χ2 minimum approached to and merged with
the second minimum exactly as it was observed on

increasing . These corresponding results for α and
W∞ are presented in Fig. 17; expanding the error inter-
val by a factor of 2 and 1.1 for α and W∞, respectively,
makes the values (73) and (74) compatible with almost all

data (except for a narrow interval at  = 5.5, where the
proximity of all estimates is obviously accidental. As is
seen, the minimum errors also agree with (73) and (74).

Summation of the perturbative series for the Gell-
Mann–Low function at finite g values was performed
using a procedure analogous to that described in Sec-
tion 7. The accuracy was evaluated by variation with

respect to b0 and . The variation with respect to b0
gave a markedly greater Nc values and allowed the W(g)
asymptotics to be modified without significantly affect-

ing the results for g ~ 1. On varying the  value, with
b0 adjusted so as to maintain a constant value of α =
0.96, the most probable value of W∞ = 7.4 is obtained

for  = –0.067; the uncertainty range indicated in (74)

corresponds to the interval –0.09 ≤  ≤ –0.05. Table 7

lists the data for  = –0.067, with the error estimated

by comparison to the results for  = –0.05 and –0.09.
Note that asymptote (7) is attained rather slowly, the
deviation amounting to about 15% even for g = 100.

Figure 18 presents a comparison of the results
obtained for g ≤ 20 to the data reported by other
researchers.

8.2. The Possibility of Logarithmic Branching

Since the value of α differs only slightly from unity,
a question arises as to whether the accuracy is sufficient
to consider this deviation significant. Formally speak-
ing, this is really so because the error was estimated objec-
tively and there is no ground to expect it to be significantly
understated. Nevertheless, the possibility that the equality
α = 1 is strict is not excluded, since asymptotics (7) may
contain logarithmic corrections of the type

(75)

For γ > 0, these corrections may inspire a small
decrease in α. In this case, formula (20) contains an

Ñ

W∞ 7.4 0.4±=

b̃

Ñ b̃

Ñ

b̃

Ñ

Ñ

Ñ

Ñ

Ñ

Ñ

W g( ) W∞gα gln( )
γ–
, g ∞.=
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Table 6.  Asymptotic parameters for the ϕ4 theory obtained for  = 4 and various  values by the interpolation with L0 = 2,
L = 5

Estimates based on
α for 

–0.5 –0.3 –0.2 –0.12 –0.1 0.0 0.1 0.2 0.3 0.5

First χ2 0.863 0.920 0.945 0.962 0.964 0.975 0.974 0.931 – –

minimum ±0.005

Second χ2 
minimum

0.54 0.78 0.90 0.960 0.970 1.00 1.01 1.01 0.97 1.16

U∞ changing 
sign

0.795 0.865 0.915 0.960
–0.961

0.973 1.035 1.105 1.175 1.255 1.415

U∞(b0) 
slope

0.907 0.90 0.929 0.961
±0.001

0.971 1.022 1.082 1.147 1.218 1.371

W∞ for 

–0.5 –0.3 –0.2 –0.12 –0.1 0.0 0.1 0.2 0.3 0.5

First χ2 4.67 5.22 5.75 6.36 6.63 8.26 11.82 30.9 – –

minimum ±0.16

U∞(b0) 3.02 5.58 6.55 7.35 7.34 7.18 6.78 6.45 5.91 5.05

slope 15.9 10.0 7.85 7.55 7.61 9.07 11.3 16.5 17.3 12.3

b̃0 Ñ

Ñ

Ñ

additional factor (lnN)–γ with unchanged W∞, so that the
results for UN can be treated according to Eq. (75) with
the parameters

(76)

without any increase in χ2. Actually, the possibility of
such a logarithmic branching seems to be quite proba-
ble for the following reasons.

1. It can be ascertained that the logarithmic branch-
ing in the case of strict equality α = 1 is unavoidable.
Indeed, let us write series (1) in the form of the Som-
merfeld–Watson integral [2, 13]:

(77)

where 0(z) is the analytical continuation of WN onto
the complex plane (0(N) = WN) and C is the contour
containing the points N0, N0 + 1, N0 + 2, … (Fig. 19). If
z = α is the extreme right-hand singularity of
0(z)/sinπz, we can modify the contour into the posi-
tion C' and show that this singularity determines the
behavior of W(g) as g  ∞. The purely power law (7)
corresponds to the presence of a simple pole at z = α,
while the law described by Eq. (75) corresponds to a
singularity of the (z – α)γ – 1 type.9 

9 It is clear from the above considerations that the assumption of
analyticity of the coefficient function on the real axis for N ≥ N0,
which is necessary for interpolation, is confirmed in all cases by
the results obtained.

α 1, γ 0.14, W∞ 7.7≈≈=

W g( ) WN g–( )N

N N0=

∞

∑ 1
2i
----- dz

0 z( )
πzsin

-------------gz,

C

∫°–= =
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Note that the first term β0 is absent in the expansion
of the β function (5) simply by its definition, while van-
ishing of the next coefficient β1 is accidental. Indeed, in
the (4 – e)-dimensional ϕ4 theory, the latter term is non-
zero and has a magnitude on the order of e; accordingly,

2

3
4

1

4

2 1

1
2

3

3
3 1

2

320 1 4 5 6

20

15

5

10

0.9

1.3

1.7

W∞

α
(a)

(b)

~b

Fig. 17. The plots of various (a) α and (b) W∞ estimates ver-

sus  for the ϕ4 theory. The notations are the same as in
Fig. 12. Small-dash lines indicate the error interval expanded
by a factor of 2 and 1.1 for α and W∞ values, respectively.

b̃
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0(1) ~ e. The limiting transition e  0 shows that, in
the four-dimensional case, 0(1) = 0 and a simple pole
cannot take place at α = 1. If the function 0 tends to
zero as z  1 by the law 0(z) = ω0(z – 1)γ, then

(78)

and the positive definiteness of γ has a quite clear origin.

β g( )
ω0

Γ 1 γ–( )
--------------------g gln( ) γ– , g ∞=

Table 7.  The Gell-Mann–Low function for the ϕ4 theory
(values in parentheses indicate the error estimated in units of
the last decimal digit)

g β(g) g β(g)

0.2 0.04993(2) 30 138.7(50)

0.4 0.18518(26) 40 193.2(75)

0.6 0.3939(10) 50 248.3(100)

0.8 0.6667(27) 60 303.9(127)

1 0.9952(51) 70 359.7(155)

2 3.272(33) 80 415.6(182)

3 6.278(85) 90 471.7(212)

4 9.758(157) 100 527.7(240)

5 13.57(25) 150 808.1(389)

6 17.64(36) 200 1087(54)

7 21.90(47) 250 1366(70)

8 26.32(60) 300 1644(86)

9 30.87(75) 350 1920(101)

10 35.53(90) 400 2196(127)

15 59.95(175) 450 2471(133)

20 85.59(275) 500 2745(149)

25 111.9(38) g  ∞ 7.41g0.96

500 100

1.0

0.5

N

100 5 15

200

100

β
FN

2.99g1.5

1.96g1.9

0.9g2

7.4g0.96

1.5g2

g

Fig. 18. A comparison of the Gell-Mann–Low function for
the ϕ4 theory calculated in this work (solid curve) to the
results reported by other researchers (dashed curves top to
bottom corresponding to [12, 13, 14], respectively). The
inset shows a reduced coefficient function (in this scale, dif-
ferences between the data obtained using various interpola-
tion methods are insignificant).
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2. Lipatov [29] considered the class of field theories
(generalizing the four-dimensional ϕ4 theory) with a
nonlinearity of the ϕn type and a space dimension of
d = 2n/(n – 2), for which a logarithmic situation takes
place. For all such theories, β1 = 0; however, this coef-
ficient differs from zero when d decreases. Therefore,
0(1) = 0 by analogy with the cases considered above.
In the limit n  ∞, the Gell-Mann–Low function is
exactly calculated [29] and the extreme right-hand sin-
gularity of 0(z) has the form of (z – 1)3/2, which leads
to asymptotics of the type β(g) ∝  g(lng)–3/2. From the
continuity considerations, we may expect for large but
finite n values that a nonanalytical zero of the type (z – 1)γ

is retained and the singularity at z = 1 is still the extreme
right-hand one. Therefore, asymptotics (78) is natural
for such field theories and it is not surprising that it may
be retained up to n = 4. Note that W∞ is negative when
n  ∞, so that the Gell-Mann–Low function pos-
sesses a zero; a direct extrapolation of the results to n = 4
leads to an analogous conclusion for the ϕ4 theory [29].
In fact, with this extrapolation we must take into
account that the index γ series from 3/2 to small values
such as in (76); then the change in sign of the asymptot-
ics naturally takes place according to (78) at γ = 1. The
positiveness of ω0 follows from the matching of
0(2) ~ ω0 and the positiveness of β2 [29].

Anyhow, we have to select between two possibili-
ties: (i) a purely power law (7) with a critical index α
slightly below unity and (ii) an asymptotics of the type
(78) with γ > 0. In both cases, the ϕ4 theory turns out to
be self-consistent.

8.3. On the Results Obtained in [12, 13]

The curves in Fig. 14 display for N < 10 a linear por-

tion where  ≈ 1.1(N – 1), which is stable with
respect to changes both in b0 and in the extrapolation
procedure. This region might be considered as a true

asymptotics for  (assuming the results for N > 10 to
be the interpolation artifacts), corresponding to the
dependence β(g) ≈ 1.1g2, which is close to the result
obtained in [12, 13].

In fact, stability of the above region has a different ori-
gin. This behavior is related to a characteristic “trough” in

ŨN

ŨN

z

α

C

C'

N0

Fig. 19. Integration contour for Eq. (77).
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the reduced coefficient function FN at N & 10 (see the
inset in Fig. 18). Modeling this trough by assuming
F3 = F4 = … = F10 = 0 and taking into account Eqs. (19)
and (22), we obtain

(79)

From this we obtain for N ≤ 10 and all b0 the result

 = 1.5(N – 1), which is determined by the first non-
vanishing coefficient F2 (see the curve for b0 = ∞ in
Fig. 14) and is close to the real situation. For the β
function, this result implies that a single-loop law 1.5g2

is valid up to g ~ 10.
Upon modeling the trough in FN more precisely by

assuming F3 = F4 = … = F10 = e and using (26) we
obtain, in the case when the ratio of gamma functions
in (79) reduces to a polynomial for b0 = b – p with an
integer p and N in the interval p + 2 ≤ N ≤ 10,

(80)

This result indicates that the linear slope varies but
remains independent of b0. More complicated calcula-
tions show that Eq. (80) is valid for arbitrary b0 to
within corrections on the order of e/(N + b0)b + 1; for e = 0.2

(see Fig. 18), we obtain  = 1.1(N – 1) + const, where
the last constant depends on b0 but does not exceed a few
tenths in the interval 0 < b0 < 10. Thus, a notion of the qua-
dratic law with modified coefficient β(g) = 1.5(1 – e/F2)g2

is really meaningful in the interval 1 & g & 10 but is a
consequence of the trough in FN.10 The limited width of
the trough indicates that this law is not related to a real
asymptotics (whatever it is).

The above considerations clearly indicate that the
result obtained in [12, 13] is by no means a computa-
tional error and objectively reflects the behavior of the
β function for g & 10. This result is unavoidably
obtained upon summing a series with a small number of
expansion coefficients, since no other portion obeying the
power law can be found in Fig. 14 for N < 7 (the points on
the curves for b0 < 0 are omitted for clarity, because their
sharp oscillations would overload the pattern).

8.4. The Question of “Triviality” 
of the ϕ4 Theory

The situation when the β function possesses asymp-
totics of the ga type with α > 1 can be given a two-fold
interpretation. From the standpoint of finiteness of a

10This law is more clearly pronounced for the Borel image and is
somewhat distorted for the β function as a result of integration in
Eq. (8); however, β(g) remains downward-convex up to g ~ 100.

ŨN cΓ b0 2+( )=

× FK 1–( )K Γ K b+( )
Γ K b0+( )
-----------------------CN 1–

K 1– .
K 1=

N

∑

ŨN

ŨN W2 1 e
F2
-----– 

  N 1–( ) e
F2
-----

1 b0+
1 b+
--------------+

 
 
 

.=

ŨN
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physical charge at large distances, the ϕ4 theory is
inconsistent: the effective charge g(L) turns into infinity
at a certain Lc (Landau pole), while for L < Lc the g(L)
is undetermined. Considering the field theory as a lim-
iting case of the lattice theories, the ϕ4 theory is “triv-
ial”: the physical charge tends to zero for any value of
the seeding charge.

In recent years, the problems related to the concept
of triviality were actively discussed by several
researchers (see [30, 31] and references therein). On the
one hand, the existing indications of triviality of the ϕ4

theory were emphasized; on the other hand, the ϕ4 the-
ory was declared verified (with a positive result) by
numerical modeling on a lattice. Let us briefly discuss
this problem as well.

The ϕ4 theory is strictly proven to be trivial in a
space with the dimensionality d > 4 and nontrivial for
d < 4 [32, 33]. In the case of d = 4, the obtained inequal-
ities were only slightly insufficient for the statement of
triviality. Such situations are usually considered by
mathematicians as insignificant and not worth special
effort, which explains why triviality of the ϕ4 theory is
considered as “virtually proved.” From the standpoint
of physics, this optimism is by no means justified: on
the modern level, the aforementioned results for d ≠ 4 are
rather primitive, being merely a consequence of the the-
ory of renormalization and a single-loop renorm group.
On the contrary, the situation with d = 4 is physically
highly complicated and no analytical approaches to
solving this problem have been developed so far.

In the author’s opinion, the results of numerical
experiments on the lattice revealed nothing unexpected.
In view of the absence of zeros of the β function, the
effective charge g(L) always decreases with the dis-
tance. However, the numerical methods cannot answer
the question as to whether the “charge zero” does exist,
which is explained by limited lattice dimensions. There
are many cases of misunderstanding related to the
charge normalization: even in the “natural” normaliza-
tion used in this work, the quadratic law is extended to
g ~ 10 (see Section 8.3); traditional normalizations extend
this interval even greater, for example, up to g ~ 600 when
the interaction term is written in the form of gϕ4/8. There-
fore, behavior of any quantities is indistinguishable
from trivial in a broad range of parameters.

Among old publications, only the paper of Freed-
man et al. [34] is worth of mentioning where it was
stated that g(L) uniformly decreases in g0, which is
actually indicative of the “charge zero.” However, judg-
ing by the results, the charge normalization employed
in [34] differed by a factor of about 100 (an expression
for the action obviously contains a misprint) from that
used in this work and all results for finite g0 fell within
a region where the quadratic law is operative. Nontriv-
ial results were only obtained for g0 = ∞ by reduction to
the Ising model. Although this reduction is apparently
possible, there is no method (except for extrapolation)
SICS      Vol. 93      No. 1      2001
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to establish a correspondence between normalization of
the field variable in the Ising model and that in the ini-
tial ϕ4 theory. This leads to uncertainty in the charge
normalization, an allowance for which makes unjusti-
fied any conclusions concerning uniform convergence.

Now let us turn to the original results of [30, 31].
The main idea was illustrated by the example of a non-
ideal Bose gas possessing a well-known spectrum of
the Bogolyubov type: e(k) ~ k for small k and e(k) ~ k2

for k  ∞. Let us pass to the “continuum limit” by
allowing two characteristic scales of the problem (scat-
tering length and interparticle distance) to tend to zero.
If the first value tends to zero rather rapidly, a “quite
trivial theory” appears and a quadratic spectrum of the
ideal gas is restored. If the limiting transition is per-
formed so as to maintain a certain relationship (ensur-
ing constant sound velocity) between the two scales, a
“trivial theory with nontrivial vacuum” appears and the
spectrum becomes strictly linear (i.e., strongly different
from that of the ideal gas), although no interaction of
quasiparticles (phonons) takes place. The latter sce-
nario was suggested for the continuum limit of the ϕ4

theory, stating that it is logically self-consistent.
Even if the last statement is accepted, a question still

remains unanswered as to why this limiting transition
does physically take place. For a Bose gas of neutral
atoms, there is no real possibility of simultaneously
changing both the gas density and the scattering length.
The situation required for the authors of [30, 31] may
take place only in the case of a special long-range inter-
action, whereby a change in the density affects the
Debye screening radius. However, this scenario is not
arbitrary and can be predicted based on the initial
Hamiltonian.

It was stated [30, 31] that the assumption concern-
ing a nontrivial character of the continuum limit was con-
firmed by the results of numerical modeling on the lattice.
However, this conclusion was based only on a particular
interpretation of the “experimental” data, rater than on a
direct experimental evidence: the numerical experiments
were performed deep in the region of the single-loop law
and could not contain any information concerning the triv-
iality. The results, however unusual they might seem,
must by explained within the framework of a weak cou-
pling limit.

Triviality of the ϕ4 theory leads to the non-renormal-
izability of the Higgs spectrum of the Standard Model.
This results in violating one of the basic postulates, the
principle of renormalizability. Thus, papers [30, 31]
were stimulated by the wish to resolve the difficulties.
According to the results obtained in this work, no such
difficulties were inherent in the system studied.

9. CONCLUSION

This paper develops an algorithm for summing
divergent series of the perturbation theory with arbi-
trary values of the coupling constant. Verification on the
JOURNAL OF EXPERIMENTAL 
test examples showed that the algorithm is stable under
conditions of strongly restricted information and con-
firmed reliability of the error estimation. The main
physical result of this study consists in restoring the
Gell-Mann–Low function of the ϕ4 theory and demon-
strating its self-consistency. The latter conclusion
agrees with the absence of renormalon singularities
established previously [9].

The proposed algorithm can be applied to solving
many other problems as well, in particular, to restoring
the Gell-Mann–Low functions in quantum electrody-
namics and quantum chromodynamics. At present,
solving this task is complicated by the absence of cal-
culations of the full-scale Lipatov asymptotics in these
theories, although the basis for such calculations is
fully prepared [27, 35–39]. Application of the proposed
algorithm to the theory of phase transitions may
increase the accuracy of calculation of the critical indi-
ces by at least two–three orders of magnitude.

ACKNOWLEDGMENTS

This study was supported by the INTAS foundation
(grant no. 99-1070) and by the Russian Foundation for
Basic Research (project no. 00-02-17129).

REFERENCES

1. I. M. Suslov, Pis’ma Zh. Éksp. Teor. Fiz. 71, 315 (2000)
[JETP Lett. 71, 217 (2000)].

2. L. N. Lipatov, Zh. Éksp. Teor. Fiz. 72, 411 (1977) [Sov.
Phys. JETP 45, 216 (1977)].

3. Large Order Behavior of Perturbation Theory, Ed. by
J. C. Le Guillou and J. Zinn-Justin (North-Holland,
Amsterdam, 1990).

4. J. Zinn-Justin, Phys. Rep. 70, 109 (1981).
5. E. B. Bogomolny, V. A. Fateyev, and L. N. Lipatov, Sov.

Sci. Rev., Sect. A 2, 247 (1980).
6. J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett. 39,

95 (1977); Phys. Rev. B 21, 3976 (1980).
7. G. A. Baker, Jr., B. G. Nickel, M. S. Green, and

D. I. Meiron, Phys. Rev. Lett. 36, 1351 (1976); Phys.
Rev. B 17, 1365 (1978).

8. J. C. Le Guillou and J. Zinn-Justin, J. Phys. Lett. 46,
L137 (1985); J. Phys. (Paris) 48, 19 (1987); 50, 1365
(1989).

9. I. M. Suslov, Zh. Éksp. Teor. Fiz. 116, 369 (1999) [JETP
89, 197 (1999)].

10. N. N. Bogoliubov and D. V. Shirkov, Introduction to the
Theory of Quantized Fields (Nauka, Moscow, 1976;
Wiley, New York, 1980).

11. V. S. Popov, V. L. Eletskiœ, and A. V. Turbiner, Zh. Éksp.
Teor. Fiz. 74, 445 (1978) [Sov. Phys. JETP 47, 232
(1978)].

12. D. I. Kazakov, O. V. Tarasov, and D. V. Shirkov, Teor.
Mat. Fiz. 38, 15 (1979).

13. Yu. A. Kubyshin, Teor. Mat. Fiz. 58, 137 (1984).
14. A. N. Sissakian et al., Phys. Lett. B 321, 381 (1994).
AND THEORETICAL PHYSICS      Vol. 93      No. 1      2001



SUMMING DIVERGENT PERTURBATIVE SERIES 23
15. A. A. Vladimirov and D. V. Shirkov, Usp. Fiz. Nauk 129,
407 (1979) [Sov. Phys. Usp. 22, 860 (1979)].

16. M. V. Sadovskiœ, Usp. Fiz. Nauk 133, 223 (1981) [Sov.
Phys. Usp. 24, 96 (1981)].

17. I. M. Suslov, Usp. Fiz. Nauk 168, 503 (1998) [Phys. Usp.
41, 441 (1998)].

18. F. M. Dittes, Yu. A. Kubyshin, and O. V. Tarasov, Teor.
Mat. Fiz. 37, 66 (1978).

19. Yu. A. Kubyshin, Teor. Mat. Fiz. 57, 363 (1983).
20. G. H. Hardy, Divergent Series (Clarendon, Oxford,

1949; Inostrannaya Literatura, Moscow, 1951).
21. Yu. V. Sidorov, M. V. Fedoryuk, and M. I. Shabunin, Lec-

tures on Theory of Functions of Complex Variable
(Nauka, Moscow, 1976), Para. 32.

22. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
terling, Numerical Recipes (Cambridge Univ. Press,
Cambridge, 1988).

23. C. M. Bender and T. T. Wu, Phys. Rev. 184, 1231 (1969);
Phys. Rev. D 7, 1620 (1973).

24. J. Cizek and E. R. Vrskay, Int. J. Quantum Chem. 21, 27
(1982).

25. I. M. Suslov, Zh. Éksp. Teor. Fiz. 117, 659 (2000) [JETP
90, 571 (2000)].

26. A. I. Mudrov and K. B. Varnashev, Phys. Rev. E 58, 5371
(1998).

27. S. V. Faleev and P. G. Silvestrov, Nucl. Phys. B 463, 489
(1996).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
28. S. V. Faleev and P. G. Silvestrov, Phys. Lett. A 197, 372
(1995).

29. L. N. Lipatov, Zh. Éksp. Teor. Fiz. 71, 2010 (1976) [Sov.
Phys. JETP 44, 1055 (1976)].

30. M. Consoli and P. M. Stevenson, Z. Phys. C 63, 427
(1994).

31. A. Agodi, G. Andronico, P. Cea, et al., Mod. Phys. Lett.
A 12, 1011 (1997).

32. J. Frolich, Nucl. Phys. B 200 (FS4), 281 (1982);
M. Aizenman, Commun. Math. Soc. 86, 1 (1982).

33. J. P. Eckmann and R. Epstein, Commun. Math. Phys. 64,
95 (1979).

34. B. Freedman, P. Smolensky, and D. Weingarten, Phys.
Lett. B 113B, 481 (1982).

35. E. B. Bogomolny and V. A. Fateyev, Phys. Lett. B 71B,
93 (1977); L. N. Lipatov, A. P. Bukhvostov, and
E. I. Malkov, Phys. Rev. D 19, 2974 (1979).

36. G. Parisi, Phys. Lett. B 66B, 382 (1977).
37. C. Itzykson, G. Parisi, and J. B. Zuber, Phys. Rev. D 16, 996

(1977); R. Balian, C. Itzykson, G. Parisi, and J. B. Zuber,
Phys. Rev. D 17, 1041 (1978).

38. E. B. Bogomolny and V. A. Fateyev, Phys. Lett. B 76B,
210 (1978).

39. I. I. Balitsky, Phys. Lett. B 273, 282 (1991).

Translated by P. Pozdeev
SICS      Vol. 93      No. 1      2001



  

Journal of Experimental and Theoretical Physics, Vol. 93, No. 1, 2001, pp. 103–110.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 120, No. 1, 2001, pp. 119–126.
Original Russian Text Copyright © 2001 by Grigor’ev, Dyugaev.

                     

FLUIDS

                     
Theory of the Resonant Properties of Electrons Localized
on the Surface of Liquid Helium

P. D. Grigor’ev1, 2* and A. M. Dyugaev2, 3
1Landau Institute of Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432 Russia

2Grenoble High Magnetic Field Laboratory, MPI-FRF and CNRS, BP166, Grenoble, F-38042 France
3Max-Plank-Institut für Physik Komplexer Systeme, D-01187, Dresden, Deutschland

*e-mail: pashag@itp.ac.ru
Received February 1, 2001

Abstract—The problem of the shape of the line of optical transition of an electron between bound states on the
surface of liquid helium is solved within the independent boson model. Such bound states are realized, for exam-
ple, in the potential of a positively charged impurity located on a substrate or in the field of a He+ ion located
beneath the surface. Reference is made to the importance of the relaxation processes of the dimple on the helium
surface under the electron. The adiabatic approximation, in the case of which the dimple does not change during
the time of electron transition, is not always valid. At low temperatures, two maxima may appear on the absorption
line. It is demonstrated that the far tails of the optical absorption line feature a universal (Urbach rule) exponential
dependence on the electron transition energy. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Electrons on the surface of liquid helium are sub-
jected to numerous investigations [1]. They form a two-
dimensional electron gas and are held on the surface by
image forces and electric field. We will treat the prob-
lem of the line of optical transition of an electron
between bound states that are realized in the impurity
potential and in the magnetic field. If a charged impu-
rity is placed on a substrate beneath a thin film of
helium, this impurity develops on the surface of a liquid
an attractive potential capable of holding a single elec-
tron. The lower levels of such a potential coincide with
the levels of harmonic oscillator. A more exact determi-
nation of levels with due regard for the formation of
dimple, i.e., static deformation of the surface under the
electron, was obtained numerically [2] by varying the
total electron energy and the liquid surface. Electrons
may also be localized using the magnetic field perpen-
dicular to the surface of helium. Here, the formation of a
dimple is likewise of importance. Because the energy of
dimple is different for different electron levels, a shift of
the cyclotron resonance frequency occurs [3]. The effects
of electron level broadening were treated only recently [4].
The shape of the optical absorption line or of the cyclo-
tron resonance line is defined both by the natural width
of electron levels and by the processes of relaxation of
static deformation of the helium surface under the elec-
tron. The approximation, in the case of which the dim-
ple does not have enough time to change during the
electron transition from level to level, defines well the
transition energy rather than the shape and width of the
absorption line. Moreover, it is not always that this adi-
abatic approximation is valid. We will demonstrate that,
1063-7761/01/9301- $21.00 © 20103
under some conditions, two maxima may appear on the
absorption line.

The system of electrons on discrete surface levels in
question is of further interest because it is a good real-
ization of the exactly solvable independent boson
model which we are now going to treat.

2. MODEL

The effects of relaxation of a dimple under an elec-
tron in bound states may be described by the Hamilto-
nian of the independent boson model [5],

(1)

where  is the operator of electron production on a

level of number i and energy εi; and  is the operator
of production of ripplon, i.e., of a quantum of a capil-
lary-gravity wave on the helium surface with the wave
vector q. The ripplon dispersion law is given by

(2)

where α is the surface tension, ρ is the liquid density, κ
is the inverse gravity-capillary length, and d is the
thickness of helium film. The value of κ ≈ 20 cm–1 is
much less than the characteristic wave vectors in the
problem being treated. Therefore, it is almost always
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possible to assume that κ = 0. The matrix element of
electron–ripplon interaction Mqi will be determined
below.

The Hamiltonian given by Eq. (1) contains no terms

of the Cj type responsible for electron transitions
with ripplon emission. This is attributed to the small-
ness of the matrix element

where q is the wave vector of emitted ripplon with
energy ωq equal to that of electron transition, and a is
the size of the wave function of electron in bound state.
The ripplon spectrum is very soft; therefore, for the
given vector q, it is always aq @ 1. The sole exception
is provided by transitions between very weakly split
discrete levels [4]. The ground and first excited levels in
the potential of positively charged impurity are not
split. Ripplon transitions in a high magnetic field are
likewise suppressed. The Hamiltonian given by Eq. (1)
is diagonalized using the unitary transformation [5]

(3)

where the operator S is defined by the expression

(4)

The new Hamiltonian  is diagonal,

. (5)

The shift of electron levels ∆i is nothing but the energy
of formation of a dimple under the electron in the ith
bound state,

(6)

The ripplon spectrum does not vary, but the position of
equilibrium of ripplon modes is shifted,

(7)

The new electron operators  are related to Ci by the
unitary transformation

(8)
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The intensity of light absorption is proportional to
the conductance of the electron system σ, which may
be determined by Kubo’s formula [5],

(9)

where jα is the current operator, jα = .
The matrix element of optical transition Pij is taken to
be constant. The calculation of the current–current cor-
relation function on the basis of Eqs. (8) and (9) leads
to the expression [5]

(10)

where ∆i is the energy of dimple given by Eq. (6), and
the function Φij(t) is defined by the relation

(11)

where ni and nq are the occupation numbers of electrons
and ripplons, respectively. At low temperatures, num-
bers ni are equal to 0 or 1, and nq represents the Bose
function,

It is our objective to investigate the general solution
given by Eqs. (10) and (11) as applied to optical elec-
tron transitions on the surface of liquid helium. Unlike
the analogous problem on electron transitions from
level to level in the impurity potential in a solid [5], the rip-
plon spectrum is continuous and given by expression (2).
The optical phonon spectrum is independent of the
wave vector [5].

The matrix element of electron–ripplon interaction
Mqi is given by the expression [1]

(12)

where ϕ(Z) is the electron wave function along the Z
axis perpendicular to the helium surface, ψ(r) is the
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electron wave function along the surface, and e is the
permittivity of helium. The pressing electric field E⊥
includes the external field Eext, the impurity field, and
the image field of the substrate,

(13)

Z* is the effective charge of impurity, and  is the per-
meability of the substrate. The second term in F(q) in
Eq. (12) is the contribution made by the electron inter-
action with the surface of liquid. In our case, the aver-
age value of 〈Z〉 is much less than a, where a is the char-
acteristic scale of the function ψ(r). Because the ripplon
momenta q < a–1 will be important, one can expand the
Bessel function

at qZ ! 1 (Eq. (12)), which simplifies the expression
for F(q),

(14)

The contribution by these two terms to F(q) is com-
pared for the characteristic values of qa ≤ 1 at E⊥  ~
300 V/cm.

Because the problem is axisymmetric, it is conve-
nient to expand the plane wave in Eq. (12) in terms of
cylindrical functions. In so doing, the contribution to
Mqi in Eq. (12) is made only by a harmonic with zero
projection of momentum and Eq. (12) yields

(15)

where J0(qr) is the Bessel function. A charged impurity
develops on the surface of liquid the potential, 

which may be expanded in terms of the parameter
r/d ! 1. Therefore, in the impurity potential, as well as
in the magnetic field, the squares of the wave functions
of two lower levels are given by

(16)
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where a2 = "/mω0, and "ω0 is the distance between the
electron levels. From Eqs. (15) and (16) we find the
matrix elements Mq0 and Mq1,

(17)

We use Eqs. (6) and (17) to derive the expression for the
energy of dimples in the ground state ∆0 and in the first
excited state ∆1 of electron,

(18)

It is only the difference ∆0 – ∆1 that is of interest. We
assume, for simplicity, that F(q) = const = F and κ = 0,
to derive from Eq. (18)

(19)

Equations (10) and (11) yield the expression for the
intensity of optical absorption I(ω),

(20)

where ω0" = ε1 – ε0 + ∆0 – ∆1,

(21)

We derive from Eqs. (20) and (21), in view of (17),
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The integrals defining the functions J1(t) and J2(t)
converge rapidly at qa > 1 (22). The value of a ~ 100 Å
corresponds to the transition energy "ω0 = "2/ma2 ~ 10 K.
An important parameter of the problem is the ripplon
frequency ω(q) at q2 = 2/a2. It defines approximately
the inverse relaxation time of a dimple. At a = 100 Å,
this frequency ω(a) ≈ 109 s–1, and the ripplon energy is
"ω(a) ≈ 0.03 K. Ripplons with a high energy have an
exponentially small matrix element of interaction with
electron. The short-term asymptotic behavior of the
functions J1(t) and J2(t) given by Eq. (22) is readily
determined in the classical limit of "ω(a) ! T, when the
frequency ω(a), which is related to the wave vector q by
a fairly complex relation (2), drops out completely dur-
ing integration of Eq. (22) in the region of ωq(t) ! 1,

(23)

We restrict ourselves to this approximation and find,
from Eqs. (20) and (23),

(24)

The shift of transition energy ∆ caused by the deforma-
tion of the helium surface is

(25)

This value of ∆ coincides exactly with the result obtained
numerically by Cheng and Platzman [6] in the same limit.
It appears of interest to treat the case of thin film, d < a,
which has not been experimentally investigated.

3. THIN FILM

In this limiting case, the ripplon frequency ω(q) ∝  q2

(2). During integration in Eq. (22), it is convenient to
introduce the variable X = (qa)2/2 and define the char-
acteristic frequency ω(a) by relation (2),

(26)

We use Eqs. (22) and (26) to find

(27)

In Eq. (27), the parameter A is the ratio of the difference
of the dimple energies ∆1 – ∆0 to "ω(a), and the time t
is reduced to the dimensionless form by multiplying it
by the characteristic frequency ω(a).
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Equations (22) and (26) yield the expression for the
function J2(t∗ ),

(28)

where T∗  is the reduced temperature, T∗  = T/"ω(a). In
the classical limit of T∗  @ 1 and from Eq. (28), we
derive the dependence of the function J2 on the reduced
time t∗ ,

. (29)

In the same limit, we use Eqs. (20), (27), and (29) to
find the dependence of the absorption intensity on the
reduced frequency ω∗  ≡ (ω – ω0)/ω(a),

(30)

One must distinguish between two cases, namely, A > 1
and A < 1. The strong coupling limit, A > 1, is realized
in a high electric field given by Eqs. (14) and (27),
when only small times t∗  are important in the integral
in Eq. (30),

(31)

In view of determining the reduced quantities T∗  and
ω∗  and the parameter A, one can see that the expressions
(31) and (24) for I(ω) coincide and are independent of the
characteristic ripplon frequency ω(a). Consequently, the
specific features of the thin film case being treated do
not show up. In a low electric field, A < 1, and the shape
of the line of optical absorption I(ω*) is defined by the
value of the parameter ν = AT∗  in Eq. (30). Because
T∗  @ 1, both limits are realized, namely, ν > 1 and ν < 1,

(32)

where Kν – 1/2(ω*) is the cylindrical function and Γ is the
gamma function [7].

Asymptotic expansions of I(ω∗ ) have the form [7, 8]
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(34)

In the case of a high value of the parameter ν (ν @ 1),
the intermediate asymptotic behavior at 1 < |ω∗ | < ν is
also realized [8],

(35)

where the function χ(Z) is defined by the expression

(36)

and the parameter Z is the ratio of ω∗  to ν, Z = ω∗ /ν.
A comparison of Eqs. (33) and (36) reveals that the
asymptotics I(ω∗ ) at ω∗  ! 1 and 1 ! ω∗  ! ν are
joined, because the expansion of the function χ(Z) at
Z ! 1 has the form

(37)

It is interesting to follow the transition from the strong
coupling limit (ν @ 1) to the weak coupling limit (ν ≤ 1).
In a high electric field at high temperatures (ν @ 1), the
shape of the absorption line is almost Gaussian (see
Eqs. (35) and (37). The exponential dependence I(ω*)
as given by Eq. (34) takes place at |ω∗ | @ ν, when the
absorption intensity is very low. At 1/2 < ν < 3/2, the
quantity I(ω∗ ) depends nonanalytically on ω∗ : at ω* = 0,
the function I(ω*) exhibits a kink. At ν < 1/2, the value
of I(0) is undetermined, because the integral in Eq. (32)
converges if ω∗  = 0. It is apparently this particular case
when the absorption line is neither Gaussian nor
Lorentzian that is of primary interest. The convergence
of the integral in Eq. (32) is provided for either by the
inclusion of the natural width of the absorption line or
by the inclusion of the interaction of the localized elec-
tron with helium vapor [1, 9] whose density is very
strongly dependent on temperature. It is interesting that
the inclusion of the level width affects only details of
the dependence of the central part of the absorption line
on the reduced frequency ω∗ . The asymptotic behavior
of I(ω*) at ω∗  > ν in Eq. (34) is independent of ν, i.e.,
of temperature and electric field, only because of the
pre-exponential factor |ω∗ |ν. In other words, even in the
classical limit of T∗  @ 1, the exponential wings of the
absorption line are independent of temperature. When
treating the experimental data in low electric fields E⊥ ,
an indeterminacy appears in calculating the width of
the absorption line. A universally accepted definition of
this width exists for Lorentzian or Gaussian lines. In the
region of low values of ν, i.e., in low electric fields, this
definition may be invalid. The nonmonotonic depen-
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dence of the absorption line width on E⊥  has been
revealed by Edel’man [9] by the cyclotron resonance,
which may be due to the nonanalytic dependence of
I(ω*) on ω*at ν < 3/2.

In studying the quantum limit of T∗  ! 1, it is conve-
nient to identify the main part, independent of temper-
ature, in expression (28) for the function J2(t∗ ):

(38)

The integral in Eq. (38) may be represented as the sum

(39)

When T∗  ! 1, but t∗ T∗  @ 1, high values of n are impor-
tant in the summation with respect to n in Eq. (39), and
Eqs. (38) and (39) yield

(40)

This expression is also valid in the other limit, T∗ t∗  ! 1,
because the second term in Eq. (40) is in this case unim-
portant. We use Eqs. (20), (27), and (40) to derive the
final expression for the absorption intensity in the quan-
tum limit of T∗  ! 1,

(41)

The parameter ν is defined above, ν = T∗ A.

In the region of strong coupling, A @ 1, low values
of t∗  are important upon integration in Eq. (41) and the
adiabatic approximation

(42)

is valid.
In the region of weak coupling, A ! 1, the first term

of expansion of I(ω∗ )in Eq. (41) in powers of A has the
form

(43)

where θ(ω∗ ) is a step function: θ(ω∗ ) = 1 at ω∗  > 0 and
θ(ω∗ ) = 0 at ω∗ < 0. Expression (43) does not allow the

J2 t*( ) A
t*

2

1 t*
2+

-------------- 2A
1 t*Xcos–( )e X–

eX /T* 1–
--------------------------------------- X .d

0

∞

∫+=

xd

0

∞

∫ t*
2 T*

3

T* n+( ) t*
2 T*

2 T* n+( )2+[ ]
-------------------------------------------------------------------.

m 1=

∞

∑=

J2 t*( ) A
t*

2

1 t*
2+

-------------- ν 1 t*
2 T*

2+( ).ln+=

I ω*( ) ω*t* A
t*

1 t*
2+

--------------– 
 cos

0

∞

∫∝

× A
t*

2

1 t*
2+

--------------–
 
 
 

exp 1 t*
2 T*

2+( )–ν
t*.d

I ω*( ) ω* A–( )2–
4A

---------------------------
 
 
 

exp∝

I ω*( ) A
T*
ω*
----------e ω

*
/T

*
– e ω

*
– θ ω*( )+ ,∝
SICS      Vol. 93      No. 1      2001



108 GRIGOR’EV, DYUGAEV
literal limit of T∗  = 0 because, at ν = T∗ A = 0, the inte-
gral in Eq. (41) diverges. The nonphysical singularity
of I(ω∗ ) at ω∗  = 0 is cut off by ω∗  ~ γ/ω(a), where γ is
the natural level width of electron in an excited state
with energy ε1. One can see that, in the quantum limit
of weak coupling (T∗  ! 1, A ! 1), the absorption line
of I(ω∗ ) has a maximum at ω∗  = 0 and is highly asymmet-
ric. With the threshold energy "ω0 = ε1 – ε2 + ∆0 – ∆1, a
change of the absorption mode occurs. At ω∗  > 0, the
exponential frequency dependence I(ω∗ ) is defined by
a ripplon emission that is independent of temperature.
However, at ω∗  < 0, this dependence is related to the
absorption of real, i.e., thermal, ripplons, whose density
is exponentially low at T∗  ! 1. The shift of the electron
transition energy, i.e., the difference between "ω0 and
ε1 – ε0, differs from the adiabatic value of ∆ from
Eq. (25) only by a factor of 3/4,

(44)

The parameter F ~ E⊥  (Eq. (14)); therefore, the transi-
tion from the case of strong coupling (A @ 1) to weak
coupling (A ! 1) brings about a kink on the curve of
dependence of the shift of absorption line "ω on the
square of electric field E⊥ . One can demonstrate that
this result is general and independent of the tempera-
ture T∗ . In the classical limit (T∗  @ 1), the adiabatic
approximation is disturbed if ν = AT∗  < 1/2, when the
integral in Eq. (30) diverges at ω∗  = 0. The above-men-
tioned kink was observed in the experiment with cyclo-
tron resonance in low electric fields E⊥  [9].

We have seen that, in the quantum case of T∗  @ 1,
the positions of maxima on the absorption line in the
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Fig. 1. The absorption line for different values of the helium
film thickness. The solid line corresponds to d/a = 1, the
dotted line corresponds to d/a = 0.01, and the dot-and-dash
line corresponds to d/a = 100. In spite of the very wide
range of values of d/a, the absorption lines for different val-
ues of d/a differ very little.
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strong and weak coupling limits are shifted by A. The
intermediate case of A ≈ 1 is of interest, when both
maxima occur on the absorption line. While the first,
adiabatic, maximum at ω∗  = A arises as a result of inte-
gration in Eq. (41) over the region of t∗  ! 1, the second,
“antiadiabatic,” peak at ω∗  = 0 is associated with inte-
gration in Eq. (41) over the region of t∗  @ 1. Its value
is proportional to e–A. At first glance, it might appear
that the second (antiadiabatic) peak cannot be observed,
because the lifetime of the excited level is always much
less than the relaxation time of the dimple. However, no
global rearrangement of the dimple occurs during elec-
tron transition, with only its minor part changing. This
is obvious even from the fact that the difference
between the values of dimple energy for different elec-
tron levels is much less than the dimple energy proper.
A dimple is formed mainly due to long-wave ripplons
which deform the surface over scales of the order of
1/κ @ a. However, the long-wave part of a dimple is
almost independent of the electron level number. Elec-
tron transitions cause a dimple to vary over scales of the
order of a, which occurs much faster than the global
rearrangement of the dimple.

4. THICK FILM AND NUMERICAL RESULTS

In this section, we will demonstrate that no qualita-
tive distinction is observed between the cases of thick
(d @ a) and thin (d ! a) films for the scope of our inves-
tigation. This is due to the similarity between the
ω(q) ∝  q2(d ! a) and ω(q) ∝  q3/2(d @ a) spectra. We
will also give the results of numerical calculation by
formulas (20), (22), and (2), which illustrate the forego-
ing conclusions.

Figure 1 gives the frequency dependence of I(ω*) in
the classical limit (T∗  = 100) at ν = 1 (A = 0.01) for dif-
ferent values of the helium film thickness, d/a = 0.01, 1,
100. In order to preclude the emergence of nonphysical

singularities in calculations, the cut-off factor  is
introduced in formula (20), where γ = 0.02. One can see
that the absorption spectrum looks not at all Gaussian
or Lorentzian, and the variation of the helium film
thickness by four orders of magnitude fails to result in
qualitative differences in I(ω∗ ). The plots are con-
structed on the basis of numerical count by formulas
(20), (22), and (2).

In order to analyze the shape of the absorption line,
its dependence on ω∗  is given on a logarithmic scale
(Fig. 2) for different values of ν = 0.5, 1, 2. The temper-
ature T∗  was kept constant (T∗  = 100), with the cou-
pling constant A being varied. This corresponds to the
experimental situation in which the pressing electric
field is varied, with the temperature T maintained con-
stant [9]. Portions of the linear dependence ln I(ω∗ ) are
observed in Fig. 2; these portions are the longer, the
lower the values of ν. As ν increases, the dependence

e γt
*
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lnI(ω∗ ) changes to an inverted parabola, which corre-
sponds to the Gaussian shape of the absorption line. On
the contrary, as ν decreases, the dependence of I on ω∗
comes to ever better satisfy the Urbach rule (see Eq. (34))
and the sharp peak at ω∗ = 0 becomes more explicit.
The plot is constructed on the basis of numerical count
by formulas (20), (22), and (2) for d/a = 100.

Figure 3 illustrates the quantum limit of T∗  < 1,
when the emergence of two maxima on the absorption
line is possible. For this limit to be experimentally real-
ized, the temperature must be reduced to T ~ 10–2 K. The
fact of the presence of two maxima does not depend on
whether the helium film being treated is thin or thick.
These two maxima are most pronounced at A ≈ 2 for a
thick helium film and at A ≈ 3 for a thin helium film.

5. DISCUSSION OF THE RESULTS

We have demonstrated the validity of the exactly
solvable independent boson model [5] for describing
optical transitions between states of an electron local-
ized on the liquid helium surface. The results obtained
within this model are used to analyze the shape, width,
and shift of the absorption line during such transitions.
We have demonstrated that, even in the classical limit
(T* @ 1), the absorption line in the region of weak cou-
pling ν = AT∗  < 1 is neither Gaussian nor Lorentzian. In a
wide range, ω∗  > ν, the Urbach rule is valid (Eq. (34)).

Note that the exponential dependence of absorption
on the electron transition energy "(ω – ω0) is typical of
numerous optical experiments, but it was never substanti-
ated theoretically [10]. In this case, we are dealing with the
Urbach law rather than with the empirical Urbach rule. If
ν < 1, the absorption line I(ω∗ ) has a peak at ω∗  = 0, which
is the sharper, the lower the value of ν.

In the quantum limit in the region of weak coupling,
the absorption line is highly asymmetric. Its shape cor-
responds to the Urbach rule (see Eq. (43). In the A ~ 1
region, the absorption line has two maxima (see Fig. 3).
The shift of the electron transition energy is deter-
mined, which is associated with the deformation of the
helium surface (Eqs. (2), (25), and (44)).

A detailed experimental study of the phenomena
treated here for the case of cyclotron resonance of elec-
trons on the helium surface was performed by Edel’man
[3, 9] for ε1 – ε0 = "ωH (where ωH is the cyclotron fre-
quency). In high magnetic fields ("ωH @ T), electrons
populate only one Landau level. Unfortunately, we are
not ready to compare our results with the experimental
results of [3, 9]. The thing is that the problem on cyclo-
tron resonance of electrons on the surface of liquid
helium does not reduce to the “trivial” problem of inter-
action between a two-level electron system and rip-
plons. This problem is essentially complicated by the
infinitely multiple degeneracy of Landau levels in a
high magnetic field. Rather than interpreting the results
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of old experiments [3, 9], it is our objective to provoke
new experiments that are simpler from a theoretical
standpoint.

Optical transitions between the levels of diplons in
the vicinity of the helium surface may also be regarded
as an interesting realization of the phenomena being
treated. A diplon is a bound state of an electron in the
field of a He+ ion located beneath the helium surface.
The coupling energy of a diplon may be varied in a
wide range by varying the pressing electric field [1].

Another possible application of the obtained results
is in electronic devices coated with a film of liquid
helium. Because all impurities are frozen out from
helium, it is possible to realize small-sized ideally pure
electronic systems using the method suggested in [11].
These are annular electronic structures, quantum dots,
and electron filaments.
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Fig. 2. The intensity of absorption on a logarithmic scale as
a function of reduced frequency ω* ≡ (ω – ω0 – ∆)/ω(a). At
a constant temperature T* = 100, the coupling constant var-
ies. The solid line corresponds to ν = 1 (A = 0.01), the dot-
and-dash line corresponds to ν = 2, and the dotted line cor-
responds to ν = 0.5 (A = 0.005). For a low value of ν, one
can clearly see the linear portions of the dependence
ln I(ω*) (Urbach rule, Eq. (34)). If ν < 1, a sharp peak at
ω* = 0 is also observed.
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Fig. 3. The absorption line in the quantum limit: T* = 0.2,
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Abstract—An EPR study of ytterbium dodecaboride (YbB12) showed the presence of an energy gap with a
width of 2∆ = 12 meV in the energy spectrum of this Kondo insulator. The temperature dependence of the
energy gap was determined by interpreting the experimental data within the framework of the exciton dielectric
model: ∆(T) = 72 K at an absolute zero and ∆(T) = 0 at ~115 K. The temperature dependence of the EPR line-
width exhibits a feature at 13–15 K, which is indicative of a finite density of states inside the gap. This can be
related to the presence of impurity states or bound polaron excitations in the electron spectrum of YbB12.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
The group of Kondo insulators (Kondo semiconduc-

tors) possessing a narrow gap in the energy spectrum
have attracted the attention of researchers for several
decades by exhibiting certain features in the ground
state and unusual properties at low temperatures.
A classical object for investigations in this field is
samarium hexaboride (SmB6), in which samarium pos-
sesses an average valence of 2.6. However, in recent
years, attention has also been drawn to ytterbium dode-
caboride (YbB12)—another compound with intermedi-
ate valence. The valence of an ytterbium ion is closer to
an integer, amounting to 2.9. Despite being probed by a
number of experimental techniques, YbB12 is yet stud-
ied to a much lower extent as compared to SmB6. Avail-
able data refer to the electrical properties [1, 2], mag-
netic susceptibility [1, 2], heat capacity [3], and photo-
conductivity in the far IR range [4]. Also studied were
the spectra of inelastic neutron scattering [5, 6], photo-
emission [7], and nuclear magnetic resonance [8].

In the papers cited above, the experimental data
were interpreted based on the concept of intermediate
valence of ytterbium ions. It was assumed that the spec-
trum of electron states contains a 10–25 meV energy
gap opened at temperatures below 70 K.

The unusual low-temperature properties of Kondo
insulators were described for a long time within the
framework of a model of the f–d hybridization gap
partly renormalized by the correlation effects [9]. How-
ever, this model failed to explain some fine details in the
behavior of YbB12 at low temperatures. More involved
theories of the ground state of Kondo insulators were
developed by Kikoin and Mishchenko [10], Curnoe and
Kikoin (exciton–polaron model) [11], and Kasuya
(Wigner crystallization or Wigner liquid model) [12].
1063-7761/01/9301- $21.00 © 20111
At present, the nature of the ground state of Kondo
insulators cannot be considered as completely clear. In
order to select between the models available, it is nec-
essary to employ the whole variety of the available
experimental methods. Among these, a very useful tool
is offered by the electron paramagnetic resonance
(EPR). The EPR measurements make it possible to
establish the presence of an energy gap in the spectrum
of electron excitations and to study the temperature
dependence of the gap width (in order to judge on the
nature of the ground state of this Kondo insulator). Pre-
viously [13] this program was fulfilled in the case of
SmB6—a classical object in the physics of Kondo insu-
lators (Kondo semiconductors). Study of the EPR effect
in SmB6 led to the discovery of a dynamic and static
Jahn–Teller effects in this material [14, 15], which is
evidence in favor of the exciton–polaron model of the
ground state of SmB6.

The purpose of this study was to apply the EPR
method to YbB12. Based on the exciton dielectric model,
the EPR data were used to determine the temperature
dependence of the correlation gap width in YbB12. We
observed a finite density of electron states inside the gap,
which is probably related to additional excitations in
the electron spectrum that also possess a collective
character.

The results of this study were preliminarily partly
published [16] and reported at the All-Russia Confer-
ence (NT-32) [17].

2. EXPERIMENTAL

The EPR measurements were performed using
powdered samples of YbB12, both pure and doped with
Gd3+ (spin marker) to a concentration of c = 0.1 at.%
001 MAIK “Nauka/Interperiodica”
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(Yb0.999Gd0.001B12) 0.5 at.% (Yb0.995Gd0.005B12), or 1 at.%
(Yb0.99Gd0.01B12). For comparison, we also studied a sam-
ple of lutetium dodecaboride (Lu0.99Gd0.01B12) doped with
Gd3+ to a concentration of 1 at.%. The YbB12 compound
was synthesized in an induction furnace at 1700 K by the
barometric reduction of Yb2O3 in vacuum. Then the
compound was melted in an arc furnace and dissolved
in nitric acid in order to remove residual YbB6. A sin-
gle-phase sample, appearing as a black powder, was
checked by X-ray diffraction. An analogous procedure
was used for the synthesis of lutetium dodecaboride.
The powder grain size was 10–20 µm, which is smaller
than the skin-layer thickness in both YbB12 (semicon-
ductor) and LuB12 (metal). In order to provide for a bet-
ter electromagnetic field penetration into the materials,
the powders were dispersed in melted paraffin. The
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Fig. 1. Temperature dependence of the EPR linewidth for
Gd3+ ions (c = 1 at.%) in ( ) YbB12 and ( ) LuB12; open cir-
cles show the results of theoretical calculations.
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Fig. 2. Temperature dependence of the EPR linewidth for
Gd3+ ions in YbB12 in the low-temperature region for
the Gd3+ ion concentrations c = 0.1 ( ), 0.5 ( ), and
1.0 at.% ( ).
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measurements were performed at a frequency of ν =
9.4 GHz in the temperature interval from 1.7 to 80 K.

Rare-earth dodecaborides possess simple cubic lat-
tices of the NaCl type, with the metal atoms occupying
Na positions and a cubic octahedron of 12 boron atoms
occupying Cl positions [18]. All such dodecaborides,
except for YbB12, exhibit a metal conductivity. The
rare-earth (R) ions in RB12 compounds are usually
trivalent. In the crystal field of a cubic symmetry, the
multiplet of Yb3+(4f 13, 8F7/2) splits into the Γ6 doublet,
Γ8 quartet, and Γ7 doublet. Under these conditions, the
ground state of RB12 may represent a Kramers doublet
Γ6 or Γ7, with the EPR signal observed from both of
these. However, we did not detect an EPR signal from
pure YbB12. This can be explained by the metal valence
fluctuating between the states of Yb3+ and Yb2+ at a fre-
quency exceeding that of the EPR spectrometer (νYb >
1010 Hz), which confirms that the metal actually occurs
in the state of intermediate valence.

All the powdered samples of compounds doped with
gadolinium exhibited intense EPR signals. Figure 1
shows the temperature dependence of the EPR line-
width δH(T) for Yb0.99Gd0.01B12 and Lu0.99Gd0.01B12. As
was noted above, the latter compound possesses a metal
conductivity. The EPR spectrum of Lu0.99Gd0.01B12 con-
tained a signal from Gd3+, which was characterized by
a linear temperature dependence (typical of metals) of
the linewidth δH = a + bT with the slope b = δH/δT =
1.25 Oe/K. The same linewidth in the spectrum of
Yb0.99Gd0.01B12 showed a more complicated variation
with the temperature: below 10 K, the line exhibited a
slight broadening; above 20 K, the linewidth almost
exponentially increased with the temperature; in the
region of 50 K, the linewidth exhibited saturation. As
the temperature further increases, the EPR signal inten-
sity drops and above 80 K the linewidth cannot be
determined: the error of the linewidth determination
increases from ±10 Oe at 15 K up to ±150 Oe at 70 K.
In the samples with lower Gd content (Fig. 2), the EPR
signal was observed below 17 K (c = 0.1 at.%) and
below 25 K (c = 0.5 at.%). The residual linewidth
(δH at T = 0) increased with the Gd concentration, but
this concentration dependence was not manifested
when the temperature increased to 13–14 K or above.

The δH values for all three Gd concentrations stud-
ied fit to the same curve. This behavior implies that the
EPR linewidth at T > 14–15 K is determined by purely
relaxational effects. It is important to note that the temper-
ature dependence of δH in the samples studied exhibited a
clearly pronounced singularity (a kink) at T = 13– 14 K.

Figure 3 shows the temperature variation of the g
value for the signals of Gd3+ ions in LuB12 and YbB12.
Gadolinium ions (Gd3+) possess magnetism of the purely
spin type (ground state: 4f 7, 8S7/2), and hence, their g value
must be close to 2.00. The spectra of Gd-doped LuB12
(Korringa metal) samples actually contain a signal with
 AND THEORETICAL PHYSICS      Vol. 93      No. 1      2001
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the temperature-independent g value close to 2.00
(gLu = 1.990 ± 0.05).

In the spectra of YbB12, behavior of the g value of
gadolinium ions at low temperatures (<12 K) is com-
pletely correlated with the linewidth variation. As the
Gd concentration decreases, both the g value and the
linewidth become less dependent on the temperature.
This correlation is explained by the ferromagnetic
ordering of Gd ions at c = 1 at. %.

At T > 12 K, the g value depends neither on the tem-
perature nor on the Gd content in the samples and is equal
to 1.945 ± 0.015. As is seen, the g value in YbB12 exhibits
a rather strong shift (δgYb = –0.045) as compared to that in
usual metals (δgLu = – 0.01 in Lu0.99Gd0.01B12). As is well
known, the density of states N(εF) at the Fermi level is sig-
nificantly higher in Kondo insulators (due to the s–f
hybridization) than in usual metals. Since δg ~ N(εF),
this shift is indicative of the intermediate valence man-
ifestations in YbB12.

Indeed, there is a close correlation between the aver-
age valence of the rare-earth ion and the shift of its g
value in Kondo insulators: for Yb in YbB12, the average
valence is 2.90 and the g value shift is δg = –0.045,
whereas for Sm in SmB6, the corresponding values are
2.65 and δg = –0.080 [19]. In addition to this fact, the
existence of intermediate valence in YbB12 is confirmed
by a “semiconductor” character of the temperature vari-
ation of the EPR linewidth δH(T). This curve is similar
to that observed in SmB6 (a classical Kondo insulator
[19]), differing sharply from a linear dependence δH(T)
(typical of metals) observed in dodecaborides of other
rare-earth elements. Finally, as noted above, the
absence of the EPR signal from Yb3+ ions also serves an
additional sign of a Kondo insulator.

3. DISCUSSION OF RESULTS

Ytterbium dodecaboride YbB12, in contrast to the
isostructural compound LuB12 possessing a metal con-
ductivity, is a cubic Kondo insulator with a narrow
energy gap (Kondo semiconductor). The temperature
dependence of the EPR linewidth for Gd3+ ions in these
compounds are sharply different (Fig 1). In LuB12,
δH(T) is a linear function showing a relatively small
Korringa relaxation (typical of metals). In YbB12, the
δH(T) curve reveals exponential line broadening in the
temperature interval from 14 to 80 K, which is related
to the presence of an energy gap in the spectrum of
electron excitations of this semiconductor compound.
This gap may arise, for example, as a result of hybrid-
ization between s electrons of the conduction band and
f electrons of the valence band of Yb. Interaction of the
spin of Gd3+ ions with the spin of electrons and holes
leads to broadening of the EPR linewidth. Since the
level of the s–f excitation increases exponentially with
the temperature, the δH(T) curve also exhibits an expo-
nential character.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
However, there are different points of view concern-
ing the origin of the energy gap in Yb. In particular, the
appearance of this gap was explained by the s–f
hybridization [9], the Wigner crystallization [12], and the
exciton coupling of d electrons with f holes [13]. There are
significant discrepancies between theoretical results in the
region of low temperatures. Indeed, the “hybridization”
gap is not temperature-dependent, while the “exciton” gap
appears as a collective effect and disappears at tempera-
tures on the order of the gap width. Calculations per-
formed within the framework of the s–f hybridization
model with a constant gap width did not provide ade-
quate description of our experimental results.

Since no detailed theory explaining the ground state
and the unusual low-temperature properties of YbB12
have been elaborated on the level comparable to that
accessible for SmB6, our considerations will be based
on the theory developed for samarium hexaboride.

Apparently, the unusual properties of SmB6, including
anomalies in the phonon spectrum [20], the dispersion of
magnetic excitations studied by inelastic neutron scatter-
ing [21], and the optical absorption and dispersion in the
submillimeter wavelength range [22] (as well as the trans-
port properties [23, 24]), are most adequately described by
the exciton–polaron model of Kikoin and Mishchenko
[10, 11]. The basic concept of the model is that the ground
state of the system is a superposition of the f 6 state corre-
sponding to Sm2+ ion and the f 5p state corresponding to an
intermediate-coupling exciton, comprising a hole in the
samarium f shell (Sm3+) and an electron on the orbit repre-
senting a linear combination of the p states of boron atoms
surrounding (in the first coordination sphere) samarium.
On the whole, the symmetry of this linear combination is
the same as that of the hole state. The exciton occurs in a
singlet (i.e., nonmagnetic) state. The valence fluctuations
are essentially the quantum beats between the two system
states described above. A correlation in the state of
excitons at various lattice sites is probably established

5

g

10 15 20 250

2.04

2.02

2.00

1.98

1.96

1.94

T, K

0.1 at. %(Gd3+)
0.5
1
1(LuB12)

Fig. 3. Temperature dependence of the g value for Gd3+ ions
in YbB12 and LuB12.
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as a result of the exciton interaction (not arising in the
mean-field approximation). This interaction leads to a
macroscopically coherent state. The exciton formation
leads to the appearance of a gap in the electron spectrum.
Since the valence fluctuates at a “phonon” frequency
(1012–1013 Hz), it is not surprising that these fluctuations
are coupled to the lattice oscillations. This coupling leads
to “softening” of the phonon modes and renormaliza-
tion of the electron (exciton) states, which results in a
mixed exciton–polaron state formation. The phonon
modes mix both with charge excitations (polarons) and
spin excitations (spin-polarons). The latter are related
to the Jahn–Teller effect observed in SmB6 [14, 15] (see
also [25]).

Unfortunately, the spin relaxation rate in a Kondo
insulator was not calculated within the framework of
the Kikoin–Mishchenko model. For this reason, we had
to interpret our experimental data using the results of
calculations performed by Khaliulin and Khomskii [13]
based on an exciton dielectric model with large-size
(Mott–Wannier) excitons composed of a d electron and
an f hole. The Khaliulin–Khomskii calculations fol-
lowed in the general part the electron pairwise correla-
tion model for superconductors. Naturally, this theory
(as well as that for superconductors) led to the appear-
ance of a temperature-dependent energy gap in the
electron spectrum of the exciton dielectric. This tem-
perature dependence can be determined by the compar-
ison with experiment.

According to this theory, the spin relaxation rate is
described by the formula [13]:

T 2
1– 2πTf ∆( ) bd

2 b f
2+( )=

× 1 α 1 f ∆( )–[ ] ∆
2T
------ 2∆τln+

 
 
 

,

20
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Fig. 4. Temperature dependence of the energy gap width
∆(T) in YbB12.
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where ∆ = ∆(T) is the exciton gap; Jd and Jf are the inte-
grals of the exchange interaction of Gd with d electron
and f hole; Nd and Nf are the corresponding densities of
states at the Fermi level in YbB12; and τ is the momen-
tum relaxation time (characteristic correlation loss
time).

We obtained a satisfactory theoretical description of

the experimental  values (see the results of calcula-
tions in Fig. 1) for the following values of parameters:

Although the quantities bd, bf , and τ are independent
fitting parameters, these values must be also consistent

with the other experimental data. As is known, the 
value is on the order of the temperature slope of the

EPR linewidth for Gd in LuB12:  = 1.54 Oe/K and
δH/δT(exp.) = 1.25 Oe/K. A shift of the g value in
Kondo insulators is proportional to the sum of bd

and bf :

As is seen from this comparison, the theory agrees quite
well with the experiment. Probably, a difference
between the effects of the intermediate-coupling exci-
tons and the Mott–Wannier excitons on the Gd3+ spin

relaxation rate  is not significantly manifested in
the comparison of theory and experiment.

Figure 4 shows the temperature dependence of the
energy gap width in YbB12 determined from the results
of our experiments. As is seen, the gap width ∆(T) at the
lowest temperatures amounts to 72 K. This value
remains almost unchanged when the temperature
increases up to 40 K, but then decreases and, probably,
completely disappears at 115 K. The full gap width of
2∆ = 140 K is close to Tcr ≈ 115 K, in agreement with
theoretical predictions. Our data (2∆ = 12 meV) can be
compared to the experimental vales obtained from the
photoelectron emission [7] and photoconductivity [4]
measurements in YbB12. In the photoemission spectrum
[7], the gap with a width of 10 meV appeared below
75 K (on approaching from higher temperatures). In the
photoconductivity response [4], the gap had a width of
about 25 meV and appeared at temperatures below

f ∆( ) 1 ∆
T
---exp+ 
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, bi JiNi,= =

α
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2 b f
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 AND THEORETICAL PHYSICS      Vol. 93      No. 1      2001



AN EPR STUDY OF THE TEMPERATURE DEPENDENCE 115
70 K (the optical gap can be greater than the transport
gap, since the main contribution in the optical absorp-
tion is due to direct transitions, whereas the minimum
gap can be due to indirect transitions in the momentum
space). Thus, our results are in satisfactory agreement
with the data obtained by independent methods.

Note a kink in the temperature dependence of the
EPR linewidth at low temperatures (Fig. 2). This fea-
ture is observed for two levels of doping YbB12 samples
with gadolinium. The kink is not distinguished in the
δH(T) curve for a sample containing 1 at.% Gd because
of the aforementioned ferromagnetic ordering. It is
interesting to note that a similar kink was observed for
a Gd-doped SmB6: the feature occurred in the same
temperature interval and was independent of the impu-
rity concentration. Apparently, an increase in the line-
width at a temperature of 13-14 K can be related to the
presence of a density of electron states inside the correla-
tion gap and, hence, is of considerable interest. The most
simple explanation consists in the presence of impurity
states in the gap. However, this assumption disagrees with
the fact that the observed feature is independent of the
dopant (Gd) concentration. A more interesting hypothesis
is that this density of states is related to certain features of
the ground state of the system, for example, to the forma-
tion of a bound polaron analogous to that considered by
Curnoe and Kikoin [11]. The states inside the energy
gap of SmB6 were also reported by Sluchanko et al.
[24], where the appearance of these states was related
to a correlation between the exciton–polaron complexes
formed at different lattice sites. Nyhus et al. [25] observed
magnetic excitations in SmB6 with the energies falling
inside the energy gap of this Kondo insulator. These exci-
tations were explained by interaction of the ground sate of
Sn3+ with the mixed modes of phonons and valence fluc-
tuations (the Jahn–Teller effect). However, the available
experimental data are insufficient to make any final judg-
ments: the question concerning the nature of the observed
additional excitations still remains open, offering a subject
for further detailed investigation.

In addition, the ground state of the Kondo insulator
was considered, besides the exciton dielectric model,
within the framework of the Wigner crystallization model,
also leading to the correlation gap formation in the elec-
tron excitation spectrum [12]. This model was criticized
by Curnoe and Kikoin [11] in application to SmB6. One of
the arguments against the Kasuya model was that the state
introduced is incompletely symmetric, which must lead
(at a sufficiently low temperature) to a ferroelectric
ordering not observed in experiment; in addition, the
ground state in the Kasuya model is not homogeneous
and implies a charge ordering of the impurity ions clos-
est to Sm2+ and Sm3+, which has also not yet been con-
firmed in experiment.

The results of our EPR measurements showed that
the energy gap in the Kondo insulators YbB12 (this
work) and SmB6 [13] has a collective rather than a sin-
gle-particle character (such as in the case of a simple s–f
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
hybridization). Unfortunately, based on the EPR data, it
is impossible to judge between the exciton dielectric and
Wigner crystallization models. Nevertheless, we may
ascertain that the gap width variation is satisfactorily
described within the framework of the exciton dielectric
model. Taking into account the absence of experimental
evidence for the Wigner crystallization, the exciton
dielectric model seems to be advantageous.

4. CONCLUSION

1. We have measured the temperature dependence of
the EPR linewidth and g value of a Kondo insulator YbB12

doped with Gd3+ ions.
2. The temperature variation of the energy gap width

in the electron spectrum of YbB12 and the Kondo con-
stants for electrons and holes (products of exchange inte-
grals by the density of states in the corresponding bands)
were determined within the framework of the exciton
dielectric model.

3. The results agree with the data on the energy gap
width and the temperature of the gap vanishing obtained
by methods of photoemission spectroscopy, inelastic neu-
tron scattering, and photoconductivity in the far IR range.

4. An additional EPR line broadening at a tempera-
ture of 13–14 K was observed, which is indicative of
the presence of as finite density of states inside the cor-
relation gap. This effect may be caused either by the
impurity levels appearing as a result of doping or by the
coupled polaron excitations characteristic of the ground
state of the system studied.
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SOLIDS
Structure
The Effect of a Weak Magnetic Field on the Mobility
of Dislocations in Silicon
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Abstract—The magnetoplastic effect in dislocation silicon is discovered. It is shown that in the presence of
tensile stresses (up to 20 MPa), the mechanically activated path of surface dislocation half-loops is limited
mainly by the dynamics of defects in various slip systems relative to the applied load. The activation barriers
for the motion of dislocations controlled by various conditions in the temperature range T = 850–950 K are
EaF = 2.1 ± 0.1 eV and EaS = 1.8 ± 0.1 eV. An increase in the path of surface dislocation half-loops and a change
in the activation barriers are detected (EaF = 1.4 ± 0.1 eV and EaS = 1.6 ± 0.1 eV) after subjecting silicon to a
magnetic field (B = 0.7 T) for 30 min. Possible reasons behind the observed effects are discussed. © 2001 MAIK
“Nauka/Interperiodica”.
An analysis of plastic properties of condensed
media in an external magnetic field revealed [1] the
existence of a magnetosensitive response of the dislo-
cation structure of ionic crystals. In this and subsequent
publications [2–5], the emergence of the magnetoplas-
tic effect is attributed to the detachment of dislocations
from paramagnetic impurities as a result of spin-depen-
dent transitions in the system formed by a dislocation
and an impurity center, followed by the relaxation of
the defect structure. In ionic crystals [2, 3] and metals
[4, 5], this is manifested in a change in the mobility of
individual dislocations after the exposure to a magnetic
field. As regards semiconductors, the number of publi-
cations devoted to magnetosensitive interactions in
these materials is much smaller [6–9]. The information
obtained by us [9] indicates the effect of a weak mag-
netic field on the acoustic emission of silicon, reflecting
the dislocation-type rearrangement of the internal
structure of the semiconductor, although this has not
been confirmed yet by direct visual observations. The
present work aims at filling this gap.

In our experiments, we used n-type silicon wafers of
diameter 76 mm and resistivity ρ = 0.01–0.1 Ω m,
which were oriented in the [111] direction. Cutting

these wafers along [ ], [ ], and [111], we obtained
samples having a size of 30 × 10 × 0.5 mm, respectively,
in these directions. Dislocations were introduced accord-
ing to the method developed in [10, 11] by scratching the
polished surface of silicon by a diamond tip along the

[ ] direction. For this purpose, up to six parallel
scratches were made on all the samples cut from the
nearest regions of the same wafer. The separation
between these scratches was much larger than the max-
imum path of dislocation half-loops, whose density was

110 112

110
1063-7761/01/9301- $21.00 © 20117
determined according to the standard silicon technol-
ogy [9]. The edge regions were not analyzed.

The motion of dislocations was induced by tensile
stresses up to 20 MPa emerging during bending relative

to the [ ] axis by the four-support method [10, 11]
for 120 min in the temperature range 850–950 K. Their
displacement was controlled by the method of repeated
chemical etching. The path lengths of dislocations seg-
ments (half-loops) was recorded using a MII-4 micro-
scope with the help of an eyepiece–micrometer to
within approximately 0.5 µm and was detected from
5 × 102–103 individual dislocations. It is typical that the
motion of dislocation in the absence of loading was not
observed. A similar result was obtained using multiple
chemical etching of the surface of the samples under
investigation. The observed effect indicates that the
influence of surface stoppers on the dislocation dis-
placement dynamics is insignificant, which is typical of
crystals with a high values of Peierls barrier, including
silicon (≈1.3 eV).

Dislocation wafers were treated between the poles
of a permanent electromagnet at room temperature for
30 min. The direction of the magnetic field (B = 0.7 T)

coincided with the [ ] direction. The time between
the magnetic exposure and mechanical deformation did
not exceed 3 min.

The experimental results were analyzed from the
histograms of the path length distribution of the
detected dislocation half-loops (ni) carrying informa-
tion on the presence of obstacles overcome by disloca-
tions during their motion. Since the spectrum of stop-
pers in the crystals under investigation is quite broad,
the experimental histogram carries integrated informa-
tion on overcoming various types of stoppers by a lin-

112

110
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Fig. 1. Histograms of dislocation path length distribution under tensile stresses of 20 MPa at T = 600 K (a) and 625 K (b): dashed
plots were obtained before the magnetic field treatment, while solid plots were recorded after the magnetic exposure for 30 min in
field B = 0.7 T.
ear defect. Indeed, during the stimulated motion of
defects in a Peierls relief, the mobility of a dislocation
segment is determined by the time of its detachment
from a stopper, which, in turn, depends on the effective
decelerating ability of the stopper in the given slip
plane. When a sample is subjected to a mechanical
action, the slip planes present in it can be divided into
favorable and unfavorable from the point of view of dis-
location mobility. Such a division is dictated by the
mutual spatial orientation of the allowed priority slip
planes relative to the direction of mechanical action
exerted on the sample. In the Si sample under investiga-
tion, whose lattice has the diamond-type structure,
there is only one favorable slip plane (the (111) plane).
The remaining slip planes from the {111} family, as
well as {110}, are unfavorable since they are arranged
at various angles to the direction of external action.
Consequently, the stoppers encountered on the path of
dislocations moving in different slip planes have differ-
ent decelerating abilities, which directly affects the spa-
tial distribution of dislocations in a moving dislocation
ensemble. Hence, the clearly manifested peaks detected
on histograms must be associated with dislocations
overcoming of stoppers with various effective deceler-
ating ability.

Typical histograms of the dislocation path distribu-
tions in samples exposed to a magnetic field (solid
curve) and in control samples (dashed curve) presented
in Fig. 1 serve as a convincing illustration of what has
been said above. Obviously, both peaks on the histograms
(indicated by arrows) are determined by the dynamics of
interaction between dislocations and various stoppers in
the case of mechanically activated motion of the dislo-
cations at velocity V.

Indeed, at finite temperatures, an equilibrium con-
centrations of kinks is established on dislocations. If a
kink on a dislocation performs random motion under
JOURNAL OF EXPERIMENTAL
the action of thermal fluctuations, its diffusion coeffi-
cient has the form [12]

(1)

Here, a is the space parameter (the separation between
the grooves of the Peierls relief), β is the correlation
factor, and ω is the frequency of jumps in the corre-
sponding direction. After time t, the defect can move
over a distance

(2)

where n = t/τ is the number of jumps during time t, τ is
the time of settled life of the kink determined by the
delay time of the dislocation (or its segment) at a stop-
per, F is the force acting on the defect, and µm is the
mechanical mobility.

For low stresses, kinks diffuse directionally in the
field of external forces, causing the displacement of the
dislocation as a whole with velocity

(3)

For this reason, the motion of the most rapid disloca-
tions is characterized by the smallest values of τ and is
limited by their interaction with low-energy obstacles
possessing a small delay time, whose concentration on
the dislocation line must be dominating. The predomi-
nance of one type of centers over others determines the
strong difference between the amplitudes of the peaks
on experimental histograms1 (Fig. 1).

An increase in temperature facilitating the move-
ment of dislocations must lead to a natural change in

1 The “low” peak M2 practically does not appear in 15% of the his-
tograms recorded from different scratches under identical condi-
tions of deforming, while the main peak M1 is present in all histo-
grams.

D βa2ω.=

x
a2n
τ

--------≈ µmFt,=

V µmF.=
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the velocity of migration for a fixed mechanical load
and, hence, to an increase in the path length L.

An analysis of the temperature dependence proved
that mechanical deformation of dislocation samples
unexposed to the magnetic field lead to changes in the
dynamics of linear defects in the indicated temperature
range (see Fig. 1). For example, the change in tempera-
ture by only 25 K leads to an increase in the path
lengths of both “slow” (by a factor exceeding 2) and
“fast” (by a factor of 1.8) dislocations.

The temperature dependences of the path lengths
before the exposure to the magnetic field are presented
in Fig. 2. It follows from these dependences that the
path length in the initial samples is of the thermally
activated type for all types of stoppers:

(4)

Here and below, L0 is the preexponential factor, T is the
temperature, and Ea is the apparent activation energy of
the process of defect displacement.

The considerable difference between the path lengths
of fast and slow dislocations at a fixed temperature pre-
sumes different origins of stoppers and, hence, the dif-
ference is the activation barriers overcome by them.
Indeed, these values for fast and slow dislocations were
found to be EaF = 2.1 ± 0.1 eV and EaS = 1.8 ± 0.1 eV,
respectively. The obtained value of activation energy
EaF is in good agreement with the available results of
similar experiments [9]. We attribute the observed dif-
ferences in the activation energy mainly to point defects
limiting the dislocation dynamics in a defect crystal [9].
The relation between the amplitudes of the M1 and M2
peaks on the histograms determines the difference in
the concentrations of low- and high-energy stoppers
overcome by dislocations.

In another series of experiments, we investigated the
effect of magnetic perturbations on the motion of linear
defects under mechanical loading. For this purpose, we
repeated the experiments described above on samples
preliminarily exposed to a magnetic field. The field
itself did not lead to a noticeable displacement of dislo-
cation lines if no external load was subsequently
applied. Its role was manifested only after the applica-
tion of a mechanical perturbation reflecting the “mag-
netic” past history of the sample.

A convincing illustration of this fact is the consider-
able difference of the histograms of dislocation path
lengths (see Figs. 1a and 1b). It can be seen that as in
ionic crystals [2, 13], the dislocation structure of silicon
“remembers” the fact of magnetic exposure, which
eases the motion of linear defects after the withdrawal
of the magnetic field. The role of the field in this case is
reduced to a change in the energy state of a dislocation
core and point defects facilitating the weakening of
their interaction during thermally activated motion.

In order to verify the effect of magnetically stimulated
transitions on the energy barriers for the motion of dislo-

L L0 Ea/kT–( ).exp=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
cations, the temperature variations of the path lengths in
silicon after the magnetic exposure were recorded. The
results of investigations indicated an increase in the dislo-
cation path lengths after the magnetic treatment in the
entire temperature range, indicating the effect of the mag-
netic field on both types of stoppers. A distinguishing fea-
ture of this effect is manifested in different values of acti-
vation energy recorded for slow (EaS = 1.6 ± 0.1 eV) and
fast (EaF = 1.4 ± 0.1 eV) dislocations (curves 3 and 4 in
Fig. 3). Thus, the magnetic field facilitates a certain
decrease in the energy barrier heights in the case of
mechanically activated motion of defects, which is in
accord with the results of publications on the deforma-
tion of LiF and InSb crystals in a constant magnetic
field [8, 13]. The reason behind such a change in the
activation energy of the motion of dislocations is asso-
ciated with spin-dependent detachment of a dislocation
from a paramagnetic center (phosphorus ion). The mag-
netic field “neutralizes” a part of the paramagnetic stop-
pers and hence lowers the energy barriers for the motion
of a linear defect.

The kinetics of displacement of dislocations under
the combined action of temperature and magnetic field
is determined by thermally activated and magnetically
stimulated contributions. The thermally activated com-
ponent increases with temperature, while the magneti-
cally stimulated component remains unchanged. Conse-
quently, the effect of magnetic field on the dislocation path
length is manifested more clearly in the low-temperature
range, while the strong difference in the dynamics of slow
and fast dislocations subjected to magnetic field is deter-

12.65
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Fig. 2. Activation dependences before (dashed lines) and
after (solid lines) magnetic treatment of slow (1, 2) and fast
(3, 4) dislocations.
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mined by the higher concentration of paramagnetic stop-
pers encountered by fast defects during their motion.

Thus, we detected the magnetoplastic effect in sili-
con single crystals, which is manifested in the change
in the velocity of dislocation half-loops under mechan-
ical action following the magnetic exposure. The after-
effect of the magnetic field is associated with residual
changes in the state of point defects and dislocation
cores.

It was found that in the silicon crystals under inves-
tigation, the magnetic field may lower the activation
barriers in the motion of dislocations. The plasticiza-
tion of crystals after annealing in a magnetic field indi-
cates the formation of stoppers with different sensitivi-
ties to the magnetic field in silicon. This is manifested
in different heights of the activation barriers emerging
in the motion of dislocations for two types of stoppers
after exposure to a magnetic field.
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Abstract—The results are given of the investigation of the temperature dependence of the sound velocity v,
internal friction Q–1, and thermal expansion ∆L/L of a single crystal of La0.85Sr0.15MnO3 in the temperature
range from 5 to 400 K. Clearly defined singularities of the elastic properties at a temperature of charge ordering
Tco ≈ 200 K are revealed. The results of X-ray diffraction studies performed at room temperature are used to
determine the orientations and estimate the sizes of twins. The correlation between magnetic and structure inho-
mogeneities is established. Based on the results of analysis of the temperature dependence of internal friction
and thermal expansion, an assumption is made of the presence in a single crystal of La0.85Sr0.15MnO3 of a struc-
tural transition in the temperature range from 15 to 60 K that has not been observed previously. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Lanthanum manganites with colossal magnetoresis-
tance (CMR) exhibit a strong correlation between the
lattice, electron, and magnetic subsystems of crystal.
This brings about the presence of phases differing by
their crystal structure, pattern of conductance, and type
of magnetic ordering. Transitions between these phases
may be induced by the variation of temperature, pres-
sure, or magnetic field.

A series of phase (x, T)-diagrams are suggested for
the La1 – xSrxMnO3 system [1–3], which represent mag-
netic and structural transitions, as well as the regions of
charge and orbital ordering. The most substantial dif-
ferences between diagrams of different authors pertain
to the range of x < xc (xc = 0.17 is the concentration at
which the metal–dielectric transition occurs in the fer-
romagnetic phase). In view of this, we have investigated
the temperature dependence of the sound velocity, internal
friction, and thermal expansion of a single crystal of
La0.85Sr0.15MnO3. The study of the elastic properties of this
compound is of interest per se, because no such data are
available in the literature.

Unlike most publications on the subject of CMR
manganites, we give the results of a detailed X-ray dif-
fraction study of the above-identified single crystal.

2. SAMPLES AND EXPERIMENTAL PROCEDURE

A single crystal of La0.85Sr0.15MnO3 was grown by
the floating-zone method with radiation heating; it had
the form of a cylindrical rod 3.5 mm in diameter and
1063-7761/01/9301- $21.00 © 20121
32 mm long. This rod was used to investigate the elastic
properties. For other measurements, the samples were
cut out from different parts of the initial single crystal.

The samples were oriented in an RKV-86A chamber
under conditions of Mo radiation and investigated in an
RKU-114M chamber and in a DRON diffractometer
under conditions of monochromatized KαCr radiation
at room temperature. In the case of the diffractometer,
the samples were precrushed. The calculation of pow-
der diffraction patterns involved the use of FullProff
computer codes [4].

The elastic properties and thermal expansion were
investigated in the range from 5 to 400 K. The method
of composite vibrator [5] at frequencies of about
70 kHz was used to determine the sound velocity and
internal friction. This method involves measurements
of the resonance frequency and Q factor of a mechani-
cal system consisting of the sample being investigated
and a piezoelectric transducer glued on to it. The sensor
was provided by a quartz-crystal vibrator exciting lon-
gitudinal oscillation. The description of the procedure
for calculating the sound velocity and internal friction
of a sample is found, for example, in [6].

The thermal expansion was determined by the ten-
sometric method using a dc bridge circuit. One strain
gage with a base of 3 mm was glued onto the flat sur-
face of the sample parallel to the direction of crystal
growth, and the other strain gage was glued onto a
quartz plate. High-purity aluminum was used for check
measurements in the investigated temperature range.
001 MAIK “Nauka/Interperiodica”
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All measurements were performed in an atmosphere
of helium gas with the temperature varying at an aver-
age rate of 30 deg/h.

Also performed were resistivity measurements com-
mon with GMR manganites. The Curie temperature was
determined by the Below-Arrott method of thermody-
namic coefficients by treating the magnetization isotherms
measured using a vibrating-coil magnetometer. For the
single crystal investigated by us, TC = 232 K, which is
consistent with the literature data [7].

3. MEASUREMENT RESULTS

According to the data of X-ray studies at room tem-
perature, the single crystal has a Pnma orthorhombic
crystal structure with the parameters

a = 5.546 Å, b = 7.175 Å (b/  = 5.073 Å)

c = 5.509 Å.

These values agree well with the data of De Leon-Gue-
vara et al. [8]. The table gives the results of calculating
diffraction patterns obtained at room temperature,
namely, the positions of atoms in an elementary cell,
the isotropic temperature factor B, and the occupation
of atomic positions. One can see that the composition

2

200

ρ, éhm Òm

T, K
300100 400

Tco

TC

Ts

0.20

0.15

0.10

0.05

0

Fig. 1. The temperature dependence of the resistivity of sin-
gle crystal of La0.85Sr0.15MnO3.
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of the single crystal being studied corresponds to the
chemical formula of La0.85Sr0.15MnO3.

It has been found that the single-crystal sample is
broken up into structural domains in which the [010],

[ 01], and [101] orientations of the axes of the orthor-
hombic lattice coincide. These data agree with the
results of neutron diffraction studies of LaMnO3 [9]. In
a cubic description, the above-identified directions cor-
respond to the [001], [010], and [100] directions. Struc-
tural domains with the [201], [161], and [323] orienta-
tions (for a cubic lattice, it is a direction of the [310]
type) are arranged along the direction of single crystal
growth. X-ray diffraction patterns for a specially pre-
pared needle-shaped sample with a thickness of 0.5 mm
or less exhibit reflexes from three orientations of twins
of almost the same intensity; therefore, one can assume
that the twin size is appreciably less than 0.1 mm.

The curve of temperature dependence of the resis-
tivity of single crystal being investigated, ρ(T) (Fig. 1),
has a shape that is typical of lanthanum manganite sam-
ples of this composition. In the region of Ts ≈ 360 K, a
hysteresis is observed, caused by the structural transi-

tion from the R c high-temperature rhombohedral
phase to the Pnma orthorhombic phase [10]. The Curie
temperature is found as a maximum of the derivative
dρ/dT. In the ferromagnetic region, a minimum is
observed on the ρ(T) curve at a temperature of about
198 K; it is agreed that the temperature of minimum
resistivity in La0.85Sr0.15MnO3 is the temperature Tco of
charge (polaron) ordering [2, 11, 12].

Figure 2 gives the temperature dependence of the
velocity v of longitudinal ultrasonic waves in a single
crystal of La0.85Sr0.15MnO3. The transitions mentioned
above show up as minima at 377, 232, and 208 K,
respectively. As the temperature decreases, a consider-
able decrease in the velocity of sound is observed in the
interval between Ts and TC. Below TC, the velocity of
sound continues to decrease, and at T ≈ Tco it reaches a
minimum; with a further decrease in temperature, the
velocity of sound increases monotonically. The interval
from 50 to 100 K stands out because of the small value
of the derivative dv /dT.

1

3

The positions of atoms, the temperature factor B, and the occupation of atomic positions of single crystal of La0.85Sr0.15MnO3
at room temperature, obtained as a result of calculation of X-ray diffraction patterns

x y z B, Å2 Occupation

La –0.01708 0.25000 –0.00801 0.04047 0.8498

Sr –0.01708 0.25000 –0.00801 0.04047 0.1500

Mn 0.00000 0.00000 0.50000 0.07944 1.0000*

O(1) 0.49666 0.25000 0.05306 0.11620 1.0078

O(2) 0.24762 –0.02380 –0.26813 1.26803 0.9935

Note: * The value was not refined. Reliability factors: Rp = 4.52%, Rwp = 5.32%, Rexp = 6.2%, RBragg = 3.7%
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In the temperature range from 180 to 240 K, which
included TC and Tco, we observed, in addition to the
fundamental resonance on a lower frequency, a reso-
nance whose intensity was maximal in the vicinity of
Tco. The solid line in Fig. 2 indicates the temperature
dependence of the sound velocity for the additional
mode. One can see that the v (T) curves for the funda-
mental and additional modes are similar. The emer-
gence of the additional mode was previously observed
during investigation of the elastic properties of ceramic
HTSC samples [6].

Figure 3 gives the curve of temperature dependence
of internal friction, Q–1(T). Peaks of internal friction are
observed at 377, 232, and 205 K. Note that the peak at
the Curie point is relatively low. The internal friction in
the range from 120 to 190 K is low and depends little
on temperature. A considerable rise of internal friction
is observed with a further decrease in temperature. At
T = 60 K, the value of Q–1 reaches a maximum, after
which it starts to decrease.

The temperature dependence of thermal expansion
∆L/L for samples cut out from different parts of the rod
proved to be somewhat different; however, the position
of the singularities remained unvaried. Figure 4 gives
the ∆L/L(T) curve for one of the samples. At T ≈ 367 K,
a jump is observed associated with the structural transi-

tion from the R c phase to the Pnma phase. The transi-
tion from the paramagnetic to ferromagnetic state
shows up as a characteristic kink on the ∆L/L(T) curve
at T ≈ 234 K. Singularities are observed in the neigh-
borhood of Tco, whose form turned out to be different
for samples cut out from different parts of the initial
rod. With a further decrease in temperature, a smooth
decrease in ∆L/L is observed up to T = 60 K. Then, ∆L/L
increases to reach a maximum at T ≈ 15 K, after which
it decreases rapidly.

In the neighborhood of Ts, a temperature hysteresis
is observed (see the inset in Fig. 4) that is characteristic
of first-order phase transitions. Outside of the region of
structural transition, the curves recorded upon heating
and cooling almost coincide.

4. DISCUSSION
OF THE MEASUREMENT RESULTS

By and large, the anomalies observed in the temper-
ature dependence of the velocity of sound agree well
with the temperatures of the known magnetic and struc-
tural transitions and are indicative of the strong varia-
tion of the elastic moduli of the manganite being inves-
tigated during phase transformations. The most radical
changes of elastic moduli occur during structural tran-
sitions at temperatures Ts and Tco, which points to a
strong rearrangement of the phonon spectrum. Note
that the singularities at T = Tco do not show up on the
curve of temperature dependence of lattice parameters
determined by X-ray techniques.

3
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Note further the increase in the sound velocity with
the temperature in the paramagnetic region increasing
up to the neighborhood of Ts. Because the conductance
of La0.85Sr0.15MnO3 in this temperature range increases
markedly with temperature (see Fig. 1) due to the increase
in the number of current carriers in delocalized states [13],
one can assume that this increase in the sound velocity is
associated with the increase in the contribution made by
the delocalized carriers to elastic moduli.

The presence of additional resonance in the vicinity
of TC and Tco points to the interaction between normal
modes in the rod. Such interaction may be due to the
deviation of the direction of sound propagation from
the principal crystallographic axes. Indeed, the [310]
direction of crystal growth, which coincides in our case
with the direction of sound propagation, deviates some-
what from the [100] axis (in a cubic approximation).
However, additional resonance is absent from the para-
magnetic region. This is indicative of the fact that the
foregoing reason is not the main one.

Another possible reason for the interaction between
normal modes is the presence of inhomogeneities in the
sample [14]. Inhomogeneities of several types may be
identified in manganites, which are realized on differ-
ent scales. First, the magnetic [15] and elastic [16]
properties, as well as the thermal expansion, differ
somewhat for samples cut out from different parts of
the initial single crystals. Second, a sample is broken up
into small-sized structural domains. And, finally,
microdomains of the monoclinic phase may exist [17].
Because no additional resonance is present at T > Tc ,
the presence of structure inhomogeneities per se is
insufficient for explaining the additional resonance.
Because the additional resonance is observed only in
the ferromagnetic region in the vicinity of TC, the rea-
son for its formation is apparently associated with the
nonuniform distribution of magnetization. This nonuni-
formity, however, cannot be due to the magnetic
domain structure, because, at a fairly large distance
from TC , the additional resonance disappears and, in
addition, the singularity on the Q–1(T) curve at T = TC

is defined weakly.

The additional resonance may be caused by the
interrelation between structure and magnetic inhomo-
geneities. According to Kadomtseva et al. [12], the
magnetostriction in La1 – xSrxMnO3 at x < xc is high in
the vicinity of TC and Tco. In the neighborhood of mag-
netic phase transition, spontaneous magnetization in
different parts of the crystal differs appreciably because
of the scatter of the values of the Curie temperature: in
lanthanum manganites, this scatter is of the order of at
least several degrees [15]. Because the sample is broken
up into small-sized structural domains which are appar-
ently characterized by different values of TC, the mag-
netostriction in the vicinity of the temperature of tran-
sition from the paramagnetic to ferromagnetic state must
give rise to inhomogeneous internal stresses. Further away
JOURNAL OF EXPERIMENTAL
from Tco deep into the ferromagnetic region, the magneto-
striction constants and the scatter of magnetization values
decrease, as a result of which the additional resonance
must attenuate (as is the case observed).

The presence of clearly defined anomalies on the
∆L/L(T) and Q–1(T) curves in the range from 15 to 60 K
leads one to assume that a structural phase transition,
which was not previously observed, occurs in this temper-
ature range. Note that, according to the results of neutron
diffraction studies of single crystal of La0.85Sr0.15MnO3
[11], the curve of temperature dependence of the inten-
sity of line (2, 2, –0.5)0 also exhibits a singularity in
the range from 10 to 50 K. Manganite of similar compo-
sition (La0.9Sr0.1MnO3) at T1 ≈ 100 K is characterized by
transition from the orthorhombic to pseudocubic phase,
accompanied by a decrease in volume [18]. Because the
temperature of transition from the rhombohedral to
orthorhombic phase in La1 – xSrxMnO3 decreases with
the increase in the bivalent ion concentration [1, 10],
one can expect that, as x increases, the temperature of
transition from the orthorhombic to pseudocubic phase
decreases as well. Therefore, one can assume that the
low-temperature transition in La0.85Sr0.15MnO3 is, as in
La0.9Sr0.1MnO3, the transition from the orthorhombic to
pseudocubic phase. In order to validate or disprove this
reasoning, one must perform X-ray studies in the
above-identified temperature range.

5. CONCLUSIONS
The investigated single crystal of La0.85Sr0.15MnO3

is broken up into structural domains with a characteris-
tic size of less than 0.1 mm.

The presence of a clearly defined minimum on the
curve of temperature dependence of longitudinal sound
velocity at T = Tco points to a substantial rearrangement
of the lattice upon charge ordering. Delocalized charge
carriers seem to produce an appreciable contribution to
elastic moduli.

The observed interaction between the normal modes
in the ferromagnetic region in the vicinity of TC and Tco
points to relation between structure and magnetic inho-
mogeneities.

The results of analyzing temperature dependence
of internal friction and thermal expansion leads one
to assume that a structural transition occurs in
La0.85Sr0.15MnO3 in the range from 15 to 60 K.
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Abstract—The macroscopic dynamics of regular lattices formed by 2D vortices of various physical origin is
considered. The effective equations describing this dynamics are derived and their properties are analyzed. The
general feature of the evolution of such systems and their peculiarities distinguishing qualitatively vortex
ensembles from ordinary crystals are considered. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In spite of its long history, the dynamics of two-
dimensional pointlike vortices remains a popular object
of investigations. It is inevitably considered in special
chapters of all monographs and reviews devoted to vor-
tex motion in various physical media (see, for example,
[1–5]). This is obviously due to the importance of the asso-
ciated problems (for example, a transition from smooth
distributions of the “vorticity” in space to its local con-
centration at individual points is directly related to the
strategic question on finite-dimensional approxima-
tions of continuous media) and with the novelty and
peculiarity of the “mechanical” behavior of such sys-
tems (the representation of vortices in the form of individ-
ual particles makes it possible to visualize apparently
mathematical abstractions like the phase space). At the
same time, in spite of the persistent attention that has been
paid to this problem for a long time, its analysis is con-
fined, as a rule, to a certain type of vortices (these types are
different in different fields) with a fixed “flow function”
(see below), which strongly exaggerates certain (some-
times accidental) features of the system and masks general
regularities. As a matter of fact, however, the vortex
dynamics in various physical “fluid” media must be
considered from unified positions since the mathemati-
cal basis for this dynamics is a fairly universal freezing-
in equation [6, 7].

This work aims at studying dynamic behavior of
large (infinite in our case) regular ensembles (lattices) of
identical vortices of different types, which possess differ-
ent symmetries (hexagonal, square, or triangular). We are
speaking of the evolution of “long-wave” perturbations of
their regularity, which are similar to acoustic phonons in
ordinary crystals, but differ from them in some properties.
The relevant equations are derived (which describe, so to
speak, the “secondary” hydrodynamics of a vortex
medium) and their properties are considered. In spite of
the observed high sensitivity of the behavior of vortex
“crystals” to the lattice symmetry (see classical works
[8–10]), as well as to the origin of vortices (flow func-
tion), the generality established qualitatively is also
1063-7761/01/9301- $21.00 © 20126
beyond all question. It can be noted, however, that such
a sensitivity to “details” is also a generalizing and univer-
sal feature inherent precisely in vortex “mechanics.”

2. BASIC CONCEPTS AND FORMULATION
OF THE PROBLEM

First of all, we recall the key factors determining the
vortex dynamics. A 2D vortex as a point particle is
characterized, apart from its coordinates r0 in the x, y
plane, by an individual intensity (charge) q0 and the
flow function ψ(r – r0), which is universal for a given
system (for vortices of the given physical origin). Its
main feature is that it creates in the surrounding space
a circular incompressible flow of the initial (primary)
continuous medium in accordance with formula

(divv ≡ 0), which carries away all the remaining vorti-
ces (frozen in the flow). In other words, the dynamics
of an ensemble of vortices is described by the “mechan-
ical” equations

(1)

with the Hamiltonian

and with canonical variables {qiyi , qixi}; i.e., the con-
figuration space of the given system indeed coincides
with the phase space (see above).

In view of the initial isotropy of the plane, the flow
function depends, as a rule, only on the distance to the
vortex: ψ(|r – r0 |). Vortices in the Vlasov equation (in
real phase spaces), which are referred to as the Bern-
stein–Green–Kruskal waves (see, for example, [6]) and
will not be considered here, form a noticeable excep-
tion. As regards the obvious violation of the “chiral”
symmetry in (1), the physical reasons behind this effect

v q0ez ∇ψ×=

ṙi ez ∇× q jψ r j ri–( )
j i≠
∑=

qiq jψ ri r j–( )
i j>
∑
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may be different for different vortex media. Two classes
of vortices can be singled out. In the first class (ordinary
vortices), they themselves are a source of gyrotropy
since they have the form of a δ-functional distribution
of the curl of the generalized momentum of liquid par-
ticles (i.e., curlP ∝  ez · δ(r – ri) and, hence,
charges qi are pseudoscalar quantities). In actual prac-
tice, curlP is naturally not concentrated at a point but is
smeared over a finite region known as the core of a vor-
tex; however, this circumstance virtually does not affect
Eq. (1) in the case when the size of this region is smaller
than the separation between neighbors. In the second
class (drift vortices), cores are ordinary force centers
(e.g., the concentration of the electric charge or gravi-
tating mass with truly scalar qi), but the medium itself
is gyrotropic (e.g., due to a strong magnetic field
applied to it or due to a rapid rotation). In this case,
dominating Lorentz or Coriolis forces make other par-
ticles (force centers experiencing the action of neigh-
boring vortices) to drift (precess) at right angles to the
applied force.

The 2D nature of the motion can be due to the
absence of longitudinal (directed along z) perturbations
in actually three-dimensional infinitely long vortex fil-
aments as well as due to actual two-dimensionality of
the medium having the form of an infinitely thin layer
(film). In this case, flow functions describing the
response of the medium to a vortex perturbation may
depend on the dimension of the medium (2D or 3D);
i.e., function ψ is generally determined not only by the
physical origin of vortices, but also by their geometry.

The behavior of ensembles consisting of just identi-
cal vortices with qi = q0 is often quite interesting. The
actual reason behind such an identity is often associated
with quantum effects (see, for example, [3, 4, 8–12]),
but even in the case of essentially classical system, such
a formulation of the problem is quite popular (see, for
example, [1, 2, 5, 12]) apparently in view of a certain
analogy with ordinary (Newtonian) particles and the
convenience of numerical simulation. We can assume
that the assumption made in this case leads to a consid-
erable advance in the theoretical study of the vortex
system which exhibits, as before, a peculiar (and even
exotic) behavior.

In our formulation, such identical vortices are ini-
tially located at the sites of an infinite regular hexago-
nal, square, or triangular lattice (we mean that vortices
are the apexes of regular n-gons covering the plane as a
tiling) at a distance a from nearest neighbors (whose
number is three, four, or six, respectively). It can easily
be seen that this ensures the steady state (  ≡ 0) of such
a crystalline state. However, even a small displacement
of vortices from their positions sets the system in
motion. We will be interested here (see above) only in
large-scale macroscopic violations of the initial sym-
metry (with the characteristic spatial scale λ @ a),
which are similar to acoustic phonons in ordinary crys-

qi∑

ṙi
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tals, when it is as if pointlike vortices form a certain
secondary continuous medium. Obviously this limit
must correspond to the minimum effect of microscopic
parameters of the crystal on its dynamics; nevertheless,
this effect is significant. In particular, the decisive con-
tribution always comes from the initial discreteness of
the lattice (see below).

The typical distinguishing features of the functions
ψ(r) under investigation require a more detailed analy-
sis. The main feature is the law describing the decrease
of the function as r  ∞. It should be noted that the
requirement of stability of finite-size vortices (with a
nonzero core) leads to a monotonic decrease in ψ(r),
i.e., to a sign-definite value of ψ' < 0 (the constancy of
the direction of the produced circulation of the
medium) [6, 7, 12]. Besides, the flow function for all
known physical types of vortices is also convex; i.e.,
ψ'' > 0 (the circulation rate also decreases monotoni-
cally). The physical reasons behind this property are
not quite clear (in this case, an analogy with the absence
of expansion shock waves in ordinary substances is
possible), but its consequences are quite significant (see
below).

Quite often, ψ is a certain power function of the dis-
tance (ψ = 1/rα, and the version with α = 0 is included
here through – lnr). Such are the cases with an ideal liq-
uid as well as electron plasma and superconductors for
small r(α = 0), or superconducting films (plasma lay-
ers) for large r (α = 1; this case also includes drift vor-
tices in rapidly rotating dust gravitizing disks or in
charged plasma layers in an external magnetic field)
(see the reviews cited above). This version is interesting
due to the absence of its own characteristic scale for ψ
(to be more precise, this scale is variable and is of the
order of r). On the other hand, functions ψ with a quite
definite intrinsic scale b also exists. For instance, func-
tion ψ for vortex lines in bulk superconductors (in infi-
nite electron plasma) has the form of the Macdonald
function K0(r/b) with the London (collisionless skin)
screening length b = c/ωpe. It is interesting to note that
ψ|r → 0  ∞ again in all the cases known to us.

Thus, in accordance with what has been said above, we
are interested in secondary hydrodynamics or mechanics
of regular vortex media, which can be described in terms
of the displacement of each vortex from the lattice site cor-
responding to it; i.e., through the initially discrete function
xi(t). If this function satisfies the inequality |xi – xj| ! a in
the linear (for the time being) approximation, the crystal
dynamics is described by the equation (cf. (1))

(2)

In spite of the apparent simplicity of this formula, the
summation over the infinite (although regular) lattice
considerably required in this case complicates its anal-
ysis for arbitrary ψ.

ẋi ez q0
∂

∂ri

------- xi x j–( )
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This problem was apparently formulated and rigor-
ously solved for the first time by Tkachenko [8–10] for
vortices in an ideal liquid (to be more precise, in super-
fluid helium). However, the degeneracy of the case
under investigation (roughly speaking, the fact that
∆ln |r | ∝  δ(r); see below), which considerably facili-
tated the analytic advance, did not allow us to estimate
properly the specific features of the obtained results and
even led to some not quite correct conclusions which
still continue to appear in reviews without noticeable
changes.

As a matter of fact, in the case of an arbitrary func-
tion ψ, the flow produced by pointlike vortices, which
is incompressible (divv = 0), is generally not a vortex-
free flow (curlv ≠ 0!). Consequently, the powerful
methods in the theory of analytic functions (a 2D vector
field v can be presented in this case in the form of a
complex-valued holomorphic function), which are suit-
able for an ideal liquid (for which P ∝  v; i.e., the con-
dition curlP ≡ 0 satisfied outside the vortex core is auto-
matically extended to the velocity field: ∆lnr = 0) and
which were elegantly used by Tkachenko, cannot be
used for a universal analysis. Moreover, a unified
approach to the problem does not exist at all since the
physical properties of vortex crystals differ signifi-
cantly depending on the behavior of ψ(r). Each specific
case requires its own approximation, which, unfortu-
nately, does not always lead to exact numerical values
of the sought parameters in Tkachenko’s sense. For this
reason, many formulas can be derived only to within a
numerical factor. Nevertheless, their functional depen-
dences and qualitative features of the solutions are quite
rigorous.

We single out three specific cases of this kind. The
first is typical of rapidly attenuating functions ψ(r)
(which correspond to the version with α > 2, i.e., for the

convergence of d2r for r  ∞, for power flow

functions or b ! a for screened functions), when the
dominating contribution to the dynamics of each vortex
comes only from its nearest neighbors. Conversely, the
second case is associated with small values of α (or
with the case b @ λ), when the motion of vortices is
determined by a large aggregate of neighbors located at
macroscopic distances ~λ. In this case, nonlocal inter-
action effects play a decisive role. Finally, the version
corresponding to a ! b ! λ can be classified as locally
macroscopic. In any case, an analysis leads to effective
continual equations for x (which is now regarded as a
continuous function of r and t, describing acoustic
deformation of the secondary vortex continuous medium
(λ @ a!)).

3. NEAREST NEIGHBOR APPROXIMATION

Thus, we assume that the contribution to the veloc-
ity field perturbation causing a displacement of a given
vortex comes only from the neighbors located exactly
at a distance a from it (three neighbors for a hexagonal

ψ∫
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lattice, four for a quadratic lattice, and six for a triangu-
lar lattice). The accuracy of this model can easily be
estimated for each specific case. For a rapid (e.g., expo-
nential) law of attenuation for ψ(r), the accuracy may
be quite high. In accordance with (2), this contribution,
which appears due to nonuniformity of lattice deforma-
tion (xi ≠ xj for i ≠ j), amounts to

(3)

where δx is the difference in the displacements of a
neighbor and a given vortex and r is the vector directed
from the given lattice site to a neighboring site. It can
easily be seen that the entire lattice dynamics is deter-
mined in this case by only two positive (see above)
physical parameters A = –ψ'/r|r = a and B = ψ''|r = a.

In order to go over to a continuous distribution of x,
it is sufficient to present the discrete difference in the
form of the first two terms of the Taylor series (it should
be recalled that λ @ a):

(4)

and sum Eq. (3) over three, four, or six possible direc-
tions of r. In the subsequent formulas, we assume
everywhere that one of the nearest sites in all types of
lattices (true, this is essential only for a quadratic lat-
tice) lies at a point with coordinates (a, 0). The answers
differ significantly, demonstrating the considerable role
of the geometrical parameters of the problem.

In the case of a hexagonal lattice, the decisive con-
tribution comes from the linear terms in (4), while qua-
dratic terms (in parameter a/λ  0) can be neglected,
and the effective equation in the continual limit has the
form

(5)

leading to the following (purely acoustic in spite of the
nonstandard form of relation (5)!) dispersion relation
for long-wave phonons:

(6)

However, in the cases with the central symmetry of
the square and triangular lattices, the linear terms in the
Taylor series are mutually cancelled out, thus necessi-
tating the inclusion of quadratic corrections. This con-
siderably affects the functional dependence in the equa-
tions being derived. For example, in a square lattice, the
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evolution of acoustic “phonons” is described by the
equation

(7)

and their frequency is now a quadratic homogeneous
function of the wave vector components:

(8)

It can easily be seen that this version of the “secondary”
medium is always unstable, e.g., relative to perturba-
tions with kx = 0 or ky = 0.

It is interesting to note that in spite of the high lattice
symmetry, phonons behave anisotropically. Their nor-
mal coordinates (in which the matrix on the right-hand
side of the dynamic equation is diagonal) are ξx and ξy

(i.e., ∂ξx/∂t ∝  ξy and ∂ξy/∂t ∝  ξx). A similar behavior,
which differs strongly from the behavior of standard
phonons, is still encountered for certain types of waves in
ordinary crystals with a considerable spin–orbit interac-
tion. This is not very surprising since the symmetry prop-
erties of rotation in the quantum and classical regions
are similar.

In view of the large number of neighbors, a triangu-
lar lattice requires more cumbersome calculations, but
the obtained result is nevertheless compact (and even
more symmetric):

(9)

Here, the following notation has been introduced for
two scalar characteristics of the 2D vector field x:

 = divx and  = ez · curlx (this notation will be
used below). The “phonon” spectrum turns out to be
isotropic again:

(10)

It is stable both for power functions ψ with α > 2 and
for exponentially decreasing functions with b ! a (for
which B @ A), but differs considerably from the ordi-
nary acoustic spectrum ω ∝  k. For normal coordinates,

it is convenient to choose just the quantities  and 
characterizing the bulk compression and torsion (shear)
of the lattice.
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Thus, even in the nearest neighbors approximation,
vortex crystals demonstrate very peculiar polarization
and dispersion properties, distinguishing them from
classical Newtonian elastic analogues. The qualitative
features of the behavior in this case are virtually inde-
pendent of the details of the ψ(r) dependence (if it falls
into the required class), but the lattice geometry is
extremely important.

4. NONLOCAL APPROXIMATION

In the case when macroscopic aggregates of vortices
simultaneously affect the motion, the shot effects which
are associated with the discreteness of the lattice (and,
hence, its symmetry) and manifested explicitly in the pre-
vious section should not make a significant contribution to
the phonon dynamics of vortex crystals. This situation is
indeed encountered, but only in the zeroth approximation
(in parameter a/λ), which is not always sufficient due to a
specific degeneracy described below.1 The continual
limit in this case it attained as a result of transition from
the summation of relation (3) in accordance with for-
mula (2) to its integration. In the convolution-type inte-
grals emerging in this case, it is convenient to remove both
derivatives of ψ, integrating once by parts and taking the
second derivative outside the integration symbol:

(11)

Here, S is the area of the unit cell enclosing each site (a

triangle with side a; i.e., S = 3 a2/4, for a hexag-
onal lattice; a square with side a (S = a2) for a square

lattice; and a hexagon with side 2a/  (S = a2) for
a triangular lattice). The difference δx in the sum leads
to an integral in the sense of principal value.

Indeed, expression (11) does not contain any spe-
cific feature of the lattice (except the trivial coefficient
S), while the specific features of ψ are very important.
This expression is quite universal and isotropic, but
phonons possess dispersion ω = 0 in accordance with
the expression derived above. Nevertheless, in contrast
to the dynamics of ordinary crystal lattices, this law
does not indicate the absence of the system evolution
(∂x/∂t ≠ 0!), but only points to its power, and not expo-
nential, nature (x ∝  t).

The reason behind this degeneracy is quite clear:

Eq. (11) has the integral  = const (i.e., its right-hand
side is the divergence-free vector function of r only,
which is defined by the initial strain distribution) since
the macroscopic flow, which is incompressible in the
given approximation (of zeroth order in a/λ) does not
change the vortex density frozen in it. We can consider

1 It is interesting to note that in [8–10], as well as in subsequent
reviews, there are no indications of this fact, apparently, because
the relation ω = 0 does not appear as a solution in analogy with
ordinary crystals.
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130 SMIRNOV, CHUKBAR
another approach to this problem also. From the macro-
scopic point of view, the secondary nonlocal vortex
medium under investigation is a certain smooth distri-
bution of vorticity (curlP for ordinary vortices), which
is not concentrated at the cores of individual vortices,
but is as if “smeared” over the plane; consequently, the
calculation of the macroscopic velocity field requires
the convolution of the flow function with the continu-
ous density ρ(r, t)ez of this vorticity. The initial homo-
geneous background ρ0 = q0/S is stationary and gives
vmacro ≡ 0 (the actual velocity field between vortices nat-
urally differs from zero, but the contributions from the
neighbors are compensated at the sites of their loca-
tion), and the situation is determined by its inhomoge-
neities, which are given in the linear approximation, in
accordance with the continuity equation, by

(12)

(cf. (11)); i.e., only regions with nonzero bulk compres-
sion are sources of macroscopic flows. Since the
motion produced by these inhomogeneities is incom-
pressible (rotational), it leads only to a slow uniform
(∝ t) increase in shear strains which do not affect pri-
mary sources.

Thus, the coupling between the compression and
torsion of vortex lattices is broken macroscopically in the
continual limit, and the corresponding evolution of long-
wave perturbations has the form of inhomogeneous flows
rather than running waves (which means that the term sec-
ondary hydrodynamics used here is quite adequate).

5. EFFECT OF LOW COMPRESSIBILITY

Naturally, the inclusion of the initial discreteness of
the crystal structure in the next approximation changes
the situation. Indeed, although the incompressibility of
the field of the true microscopic velocity is a necessary
feature of any system of pointlike vortices, this does not
prevent the mutual convergence of pointlike neighbors
and, hence, the possible increase or decrease in the
macroscopic density ρ of the vorticity, i.e., effective
compressibility of the macroscopic flow. This effect

restores the relation between  and  so that the low
(in parameter (a/λ)2) compressibility leads to the emer-
gence of additional terms in Eq. (11), which ensure the
wave type of the phonon evolution. Obviously, these
terms have a high sensitivity to the microscopic lattice
symmetry due to a decisive role of discreteness, thus
modifying the universal nature of Eq. (11) consider-
ably.

The method of calculating the corresponding cor-
rections is mathematically rather simple: it is sufficient
to compare the integral

δρ div ρ0x( )– ρ0d̂x–= =

d̂x r̂x

1/S( ) f x y,( ) xd yd∫∫
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with the series

interpolating it (here, the vector function f is defined by
relation (3), and i and j label now not individual vorti-
ces, but the two-dimensional array of sites; it is conve-
nient to assume that the vortex whose motion is inves-
tigated belongs to site (0, 0)). In the first case, we are
dealing with the algebraic volume (normalized to S) of
the infinite (in x, y) figure bounded in z by the planes
z = 0 and z = fx(x, y) or z = fy(x, y), while in the second
case, we consider a similar volume occupied by an infi-
nite set of right triangular, quadrangular, and hexagonal
prisms whose bases (unit cells in the sense indicated
above) enclose lattice sites and whose heights are equal
to the values of components of f at the center of the
base.

The difference of these quantities is obviously given by

(13)

where the integrals are taken over each unit cell. In the
case of a quite smooth (as compared to a) distribution
of f [it should be recalled that it is a combination of the
actually smooth (of the scale of λ) function x and ψ],
we can again use the expansion into the Taylor series
and estimate the terms of series (13) as

(where C = a2/24 for an elementary triangle, a2/(3 × 23)
for a square, and 5a2/(32 × 25) for a hexagon; the other
first terms of the Taylor expansion make zero contribu-
tion due to the symmetry of unit cells). Consequently,
we have

(14)

On the right-hand side of this relation, we can again go
over, in the continual limit, from the sum to the double
integral (the error introduced in this case is of the next
order of smallness). However, the correction for local-
ized perturbations (|f |  0 for |r |  ∞), as well as
higher-order corrections in the parameter a/λ or a/b,
identically becomes zero due to the presence of the total
derivative in the integrand.

This means that in the case of a smooth distribution
of f (which requires the smoothness of the flow function
whose physical examples are unknown to us; see Sec-
tion 2), the macroscopic compressibility of the lattice is
small exponentially not according to a power law. This
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can be seen by using another method of expansion also.
Indeed, the initial discrete vorticity distribution

can be presented in the form of a two-dimensional Fou-
rier series

with a discrete set of kij (which naturally depends on
the type of the lattice) with lengths proportional to
n/a (n = 0, 1, 2, …). In this representation, the contin-
ual limit is attained by discarding the higher-order
terms of the series (which corresponds to the expansion
in parameter a/nλ and not in (a/λ)n, as before; the con-
vergence of this expansion is worse). It was mentioned
above that when expression (12) is used, the term with
n = 0 gives Eq. (11), while the next terms lead to an
exponentially small compressibility upon the convolu-
tion with the smooth function ψ.

However, all physical examples known to us are
characterized by an irregular behavior of ψ at point r = 0.
On the one hand, this circumstance ensures a power-
type smallness of the compressibility of a discrete lat-
tice in macroscopic processes, and on the other hand, it
rules out the replacement of the sum on the right-hand
side of (14) by an integral. Moreover, in the unit cells
closest to zero (which just play the decisive role), the
contribution of the discarded higher-order terms in the
Taylor series for f is not small, and a rigorous mathe-
matical approach requires direct summation. Unfortu-
nately, we failed to find an analytic procedure ensuring
a compact result in this case (for all possible values of
ψ which differ significantly).

For this reason, we have to confine our analysis to an
estimate (~1) of the correction leading to an adequate
functional expression for the phonon equation, but not
permitting the exact calculation of the coefficients in
this expression. In other words, we obtain an order-of-
magnitude estimate with true sign (which is important
for the stability problem).

The following procedure appears to be simplest. In
the zeroth cell with a singular point of ψ at the center, a
Taylor expansion cannot be obtained, and the integral

(15)

must be calculated genuinely (the height of the corre-
sponding prism is identically equal to zero). Naturally,
this integral exists for power-type functions ψ only for
α < 2 (the hexagonal lattice must be treated with special
care in this case), but the violation of this condition
automatically transforms the physical system to the
case considered in Section 3.
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Further, only close cells make a contribution to the dis-
crete correction, which is comparable with the given con-
tribution [this also follows from the fact that the applica-
tion of the Laplace operator to a slowly decreasing power
function (in our terminology) transforms it into a rapidly
decreasing function], for which formulas of type (14) can
still be used for obtaining estimates. This allows us in
our calculations, first, to expand δx into a Taylor series,
confining ourselves only to quadratic terms or to linear
terms in the case of a hexagonal lattice whose unit cells
do not possess the central symmetry (naturally, this cir-
cumstance is also used while evaluating integral (15)),
and, second, to sum again the contributions only from
the nearest neighbors in correction (14).2 This gives
rise to corrections to the twisting term already present
in Eq. (11), which should be omitted in comparison
with this term. Naturally, the retained terms responsible
for the finite compressibility of the lattice possess the
same symmetry properties as the right-hand sides of
Eqs. (5), (7), and (9) for the above reasons. In other
words, the secondary hydrodynamics of vortex lattices
possesses a high sensitivity to their local structure even
in the nonlocal limit (see also [9]).

The formulas existing for hexagonal and square lat-
tices are not presented here in view of their cumbersome
appearance (since the additional terms in these formulas

differ in structure from the isotropic term ∝ ). The qua-
dratic lattice remains, as before, unstable and has the
phonon spectrum (cf. Eq. (8))

(16)

where C1 and C2 are positive constants ~ |ψ(a)|/a2

(which, by the way, is well known, at least for ψ = –lnr;
i.e., ψk = 2π/k2; see [8, 9]). Such a dynamics is not inter-
esting for our analysis.

On the contrary, the expression obtained for the
most symmetric triangular lattice is quite isotropic and
does not explicitly contain the information on the
intrinsic geometry of the crystal:

(17)

where K ~ |ψ(a)|; i.e., its phonon spectrum is

(18)

2 We also used other methods of estimation like the replacement of
 by the integral over a plane with deleted zero cell (whose

contribution was again determined by (15)), which, in accordance
with the Gauss divergence theorem, was transformed into a line
integral over the boundaries of this cell. The results display no
qualitative difference.
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which gives ω ∝  k for a power flow function with α = 0
(ψk = 2π/k2) and ω ∝  k3/2 for α = 1 (ψk = 2π/k). Natu-
rally, in the former case, the result coincides with the
spectrum of “Tkachenko waves” determined earlier. It
was mentioned above that in contrast to the present
work, the coefficient in [9, 10] was calculated exactly:
it turns out that in the terms used by us, here K = 1/8
(however, the result is different for any other value of
α ≠ 0).3 

However, the phonon equations derived by us and pre-
sented in [9, 10] differ considerably. Proceeding from the
obvious coincidence of the spectrum (18) for an ideal liq-

uid with the standard acoustic spectrum ω2 = k2 ,
Tkachenko [9, 10] proposed that the long-wave dynam-
ics of a triangular vortex lattice in superfluid helium can
be described by the ordinary wave equation

(19)

(this proposition is still encountered in reviews). It can
easily be seen that in the very formulation of the vortex
problem itself (se Eq. (1)), the effective equation must
be of the first and not second order in ∂/∂t. Besides, it is
obvious (see Eq. (11)) that for a given class of functions ψ,
this equation must be nonlocal. It is interesting, how-

ever, that for the normal coordinates ,  and for

ψ = –lnr, it becomes local since ∆ ψd2r' = –2π
In other words, Eq. (19) can be rightfully used, but only

for  and  and not for x itself. The linearity of
effective equations does not imply that they can be trans-
formed arbitrarily if their spectrum remains unchanged.
From the mathematical point of view, the specific initial
and boundary conditions of the problem, which are differ-
ent for Eqs. (17) and (19), are equally important. Other-
wise, the detailed analysis of the polarization of normal
lattice vibrations carried out in [9] would not be required
since Eq. (19), in contrast to Eq. (17), contains no relation
between ξx and ξy.

Summing up, we may conclude that the qualitative
difference in the behavior of vortex lattices is preserved
in the nonlocal limit also (even with new features). In
this case, their acoustic dynamics considerably depends
on the form of the flow function as well as on the intrin-
sic geometry of the crystal.

3 In the calculations made by Tkachenko, apart from the method in
the theory of functions of complex variables, which is inapplica-
ble to arbitrary ψ, there was one more (in our opinion, insignifi-
cant) difference from our approach. He considered waves against
the background of the lattice rotation as a single entity. This is
associated with the specific features of an extremely slow
decrease in the function –ln r: the existence of infinitely remote
boundaries of the lattice leads to its “solid-state” rotation with the
angular velocity Ω = πq0/S. Other functions ψ, as well as –lnr
truncated by the Macdonald function, do not possess this prop-
erty. In any case, a stationary regular state (i.e., δx ≡ 0) is the
exact solution of the problem for infinitely large lattices.
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6. LOCAL MACROSCOPIC APPROXIMATION: 
INCLUSION OF NONLINEARITY

The phonon equation for a triangular vortex lattice
with a slowly decreasing power function ψ truncated at
distances b (say, ψ = K0(r/b)) belonging to the interval
a ! b ! λ appears as simplest and most universal. It
can be written straightaway on the basis of Eq. (17):

(20)

Here, R and D are real coefficients of the same sign,
which determine the dynamics of torsion and compres-

sion, respectively, where R = (q0/S)  and D/R ~

(a/b)2 ! 1. It can easily be verified that in the given case
the property of virtual independence of the behavior of
the details of ψ(r) is restored again.

In order to determine the qualitative difference
between secondary hydrodynamics (mechanics of vor-
tex lattices) and simple propagation of acoustic waves
in ordinary crystals, we analyze in greater detail the
properties of this equation, which is the most symmet-
ric and compact among the effective equations pre-
sented above (it should be noted, however, that some of
these properties coincide with those of Eq. (17)). In
view of the presence in this equation of small terms
mentioned above, the evolution of the initial perturbations
of regularity for a fairly long time is of a slow power type
with a linear increase in the torsion strain of the lattice with
time. However, this increase subsequently terminates, and

a self-consistent oscillatory motion with ω = ± k2

sets in, in which the characteristic values of shear strain
 exceed the corresponding values for “bulk compres-

sion”  by a factor of .

In the continual approach developed here for |x| ! a
(to be more precise, for |δx| ! a; i.e., for a small differ-
ence between the displacements of vortices separated in
the given case by distances much larger than b; it is only
these vortices that make a contribution to Eq. (20)), we
can easily take into account nonlinear effects also. It is
sufficient to supplement expansion (2) with the next
(quadratic in displacement) term and repeat (using the
expansion of δx into a Taylor series) the procedure of
replacement of the sum by the integral, which formerly led
to Eq. (11). As a result, the right-hand side of Eq. (20)
acquires a new term:

(21)

(in this expression, the summation over recurring Greek
indices assuming the values 1 and 2 is presumed).

In view of the smallness of coefficient D, it may so
happen in actual practice that the role of compressibil-
ity in the lattice dynamics is much less significant than

the role of nonlinearity (when the condition b @ 
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is satisfied). In this connection, an interesting question
arises: is the growth in  produced by the first (linear)
term in Eq. (20) terminated in this case? In the general
case, the answer to this question is negative; moreover,
term (21) may even accelerate this process, bringing it
independently to the explosive mode.

Indeed, for purely shear strains x = ez × ∇φ (i.e.,

with  ≡ 0), expressions (11) and (21) after single
integration with respect to r (eliminating ez × ∇ ) lead to
the equation

(22)

describing the following effect in which the perturba-
tion amplitude attains infinitely large value during a
finite time (for t  t0) near the saddle point (located
at (0, 0)) of field x:

Naturally, the assumption (|x| ! a) made while deriving
the above equation ceases to hold near t = t0, and, hence,
we are speaking of the peculiarities of an effective equa-
tion rather than a physical system. However, first, the mar-
gin of the applicability of the formulas can be quite large
and, second, purely mathematical properties of secondary
hydrodynamics are also of interest to us.

The equation derived above also makes it possible to
calculate a quantity important for the evolution of per-
turbations such as the nonlinear dispersion of the
phonons under investigation. A one-dimensional travel-
ling wave x(x – ut) is described by the system of equa-
tions

which, after the elimination of two derivatives, gives

(23)

Carrying out the standard procedure of expansion into
a power series in the small amplitude to determine the
corrections to a monochromatic wave (see, for exam-
ple, [13]),

we can easily find that the first nonvanishing correction
to frequency is δω/ω = –d2/3.

Further, discarding the assumptions of negligibly
small nonlinearity, we can construct the solution in the
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form of a cnoidal wave. Moreover, Eq. (23) can be inte-
grated completely in quadratures:

The subsequent definition of  and x itself can be
obtained by the simple integration of the obtained equa-
tions.

It is interesting to note that an equation with the
structure similar to Eq. (23) (but with a cubic nonlinear-
ity) was derived in [14] for a (potential!) electric field
of high-frequency (near ωpi) ion–sound waves in a
plasma (these waves possess a completely different dis-
persion: in fact, the temporal (or frequency) and disper-
sion terms exchange places, and it is only the rather
peculiar nonlinearity (21) that restores status quo, nat-
urally, in the mathematical sense)

The simple examples considered above show that in
spite of its nonstandard form, the effective equation
proposed here is quite suitable for analytic investiga-
tions and sufficiently informative.

7. INTERACTION OF THE LATTICE 
WITH NONUNIFORM FLOWS

We continue the study of peculiarities of secondary
hydrodynamics by analyzing the interaction between
an ensemble of point vortices and distributed macro-
scopic vortices. The latter produce nonuniform zero-
divergence flows of a viscous medium, which obviously
entrain their pointlike analogues and, hence, perturb the
initial regularity of lattices. These flows must be additively
introduced into the right-hand side of Eq. (20) (the time
derivative of the displacement of each vortex is equal to
the velocity of the flow in the region of its location irre-
spective of the source of v). We disregard the opposite
effect of the lattice dynamics on a distributed vortex,
assuming that its vorticity density ρ and, hence, the

flow created by it (v = ez × ∇  ∝  ez × ∇ρ ; it is

interesting to note that any smooth distribution of ρ in
our case is quite stationary; cf. the evolution of the
magnetic field in the electron plasma [7]) are defined by
functions of r. Ultimately, we are interested in the typ-
ical features of the dynamics of vortex crystals, and
their phonon response to nonuniform flows appears in
concordance with the problem formulated here. In a
multicomponent plasma, such a mode with present and
“external” incompressible flows can be realized in pure
form using the beams of charged particles piercing the
plasma (see [7]).

We choose the simple geometry of such a flow:

The linear (which means that the general case can be
analyzed using the expansion into a Fourier integral)
equation (20) with the modification indicated above,

d̂x( )'
2 u2

RD
-------- 4/3( ) d̂x( )3

d̂x( )2
– const+

2d̂x 1–( )2
-----------------------------------------------------------------.=

r̂x

ρψd2r'∫

v v y( )ex v 0 ky( )ex.cos= =
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rewritten in normal coordinates, is transformed into the
system

(24)

(25)

For zero initial conditions (i.e., for zero lattice deforma-
tion at t = 0), this system has the following simple solu-
tion:

whence

where, naturally, ω = k2. A similar type of solu-
tion with strains proportional to v (y) is also observed
for v (y) ∝  exp(–ky). For arbitrary initial conditions, the
answers are slightly more complicated.

Thus, nonuniform steady-state flows of the initial
continuous medium indeed excite periodic in time
vibrations of the point-vortex lattices frozen in it. Thus,
although the concept of elasticity of vortex crystals,
which was introduced by Tkachenko [10] (naturally, for
the nonlocal case), is admissible, it differs significantly
from conventional analogues.

8. DYNAMICS OF VORTEX CHAINS

Another example confirming the generality of the
behavior of vortex ensembles observed along with spe-
cific features determined by their physical origin (flow
function) is the evolution of linear one-dimensional
chains, i.e., infinitely long rows of identical vortices
(discrete analogues of tangential discontinuities in con-
ventional hydrodynamics) arranged, for instance, along
the straight line y = 0 at a distance a from one another.
The incompressibility of the macroscopic flow in this
case does not lead to a degeneracy even in the nonlocal
limit (the two-dimensional vector x(x, t) associated
with the abscissa axis is not necessarily a zero-diver-
gence vector); for this reason, the cases with different
functions ψ(r) are more alike than in the case of two-
dimensional ensembles.

The version with the dominating effect of the two
nearest neighbors is now described by the system of

∂d̂x
∂t

--------- D∆r̂x,=

∂r̂x
∂t

--------- R∆d̂x– kv 0 ky( ).sin+=

d̂x
v 0

kR
------ ωt( )cos 1–[ ] ky( ),sin=

r̂x
v 0

k RD
--------------- ωt( ) ky( ),sinsin=

x
v 0

ω
------ ωt( )ex

D
R
---- 1 ωt( )cos–[ ] ey+sin

 
 
 

ky( ),cos=

RD
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equations (the condition λ @ a is assumed to be satis-
fied as before)

(26)

(27)

(it is assumed that ∂2ψ/∂y2|y = 0 = (1/x)∂ψ/∂x |y = 0), while
the nonlocal case (in which the boundary between dif-
ferent modes passes through the value α = 1) is
described by

(28)

(29)

(in contrast to the previous formulas, the substitution
x  r is not used in ψ|y = 0 since x may assume nega-
tive values also), where the integrals are considered as
the principal values in Cauchy’s sense.

A transition from Eqs. (28), (29) to the local macro-
scopic version is trivial:

(30)

(31)

Here,

are two positive constants connected through the rela-
tion C4 ~ C3b2 (the possible divergence at zero is
removed by the standard mathematical interpretations
of the “principal value”).

In all cases, chains are unstable formations. For
ψ = – ln r, the increment following from Eqs. (28), (29)
naturally coincides with the classical hydrodynamic
expression (see, for example, [1]; in fact the methods of
the theory of functions of complex variables provide
answers for an arbitrary value of λ).

9. CONCLUSIONS

Let us summarize the main results obtained in this
work.

1. Linear equations describing the evolution of long-
wave perturbations in various two-dimensional lattices
are derived for various classes of vortices (defined by
peculiarities of flow functions). These equations are
used to analyze the dispersion and symmetry properties

∂ξ x

∂t
-------- q0a2A

∂2ξ y

∂x2
----------,=

∂ξ y

∂t
-------- q0a2B

∂2ξ x

∂x2
----------=

∂ξ x

∂t
-------- q0a ξ y x x'–( ) 1

x'
---∂ψ x'( )

∂x'
----------------

y 0=

x',d∫–=

∂ξ y

∂t
-------- q0a ξ x x x'–( )∂

2ψ x'( )
∂x'

2
------------------

y 0=

x'd∫–=

∂ξ x

∂t
-------- q0aC3ξ y,=

∂ξ y

∂t
-------- q0aC4

∂2ξ x

∂x2
----------.–=

C3
1
x
---∂ψ

∂x
-------

y 0=

x, C4d∫– ψ
y 0=∫ dx= =
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of these perturbations, which are similar to acoustic
waves in ordinary crystals.

2. The reasons behind the decisive role of micro-
scopic discreteness of secondary vortex media in the
formation of acoustic spectra even in the macroscopic
limit are determined.

3. For the stablest and most symmetric triangular vor-
tex lattice with flow functions from the local macroscopic
class, a nonlinear phonon equation (which possesses a
peculiar hierarchy of nonlinearity and dispersion) is
derived and its simplest properties are investigated.

4. The response of vortex lattices to the attempt of
their deformation by nonuniform flows of the primary
medium, which is characterized by the phonon genera-
tion even in the case of a steady-state external action in
analogy with the sounding of a violin string caused by
a uniform motion of the bow.

In order to avoid misunderstanding, it should be
emphasized once again that the approximate estimate
obtained by us for one of the coefficients in Eqs. (17)
and (20) does not affect in any way their appearance or
qualitative or quantitative properties of these equations.
For any specific function ψ, this coefficient can be cal-
culated quite rapidly with the help of a computer.

Thus, we have demonstrated that the developed ide-
ology, which declares a unified approach to vortex
problems, indeed makes it possible to determine the
general regularities of the ensemble of pointlike vorti-
ces, simultaneously indicating the high sensitivity of
the pattern of the processes to physical and geometrical
features of specific systems. The effective equations
derived by us for the macroscopic evolution of regular
lattices may be successfully used for studying the spe-
cific features of various phenomena associated with
external effects exerted on these peculiar crystals. The
corresponding dynamics is found to differ considerably
(and often qualitatively) from the phonon dynamics of
conventional solids.
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Abstract—Systems with an arbitrary dependence of exchange integral on the distance between atoms which
are randomly scattered in an amorphous substance are investigated by averaging over random fields of interac-
tion in the framework of the Ising model. This method is also used for describing long-term magnetization
relaxation in a system of single-domain particles scattered in a nonmagnetic matrix. Random field distribution
functions are obtained for the dipole–dipole and the Ruderman–Kittel–Kasuya–Yoshida (RKKY) interactions.
Long-term relaxation in macrospin glasses is investigated. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is generally accepted [1–5] that the most typical
features of the spin-glass state are the irreversibility and
long-term relaxation of the magnetization, which are
associated with nonergodicity of the spin glass phase.
Various versions of constructing the physics of such
systems are based on the assumption concerning the
hierarchical structure of the valley space leading to the
hierarchical structure of relaxation times. Theoretical
descriptions of the properties of spin glasses are often
based on the assumption that exchange integrals are
random quantities obeying the normal distribution law.
Most results were obtained for lattice models, and their
extension to amorphous systems appears at first glance
unjustified.

In this paper, we consider the possibility of applying
the method of random interaction fields to amorphous
media with an arbitrary law of interaction of particles;
systems of particles with the Ruderman–Kittel–
Kasuya–Yoshida (RKKY) interaction and the dipole–
dipole interaction are also considered. The irreversibil-
ity and long-term relaxation in systems of interacting
single-domain particles (macrospin glass) are consid-
ered separately without using the ideas of the hierarchi-
cal structure of states. This work is a continuation of the
analysis of the possibility of applying the random field
method in the theory of ferromagnetism of inhomoge-
neous systems started in [6, 7].

2. DISTRIBUTION FUNCTION
FOR A RANDOM INTERACTION FIELD

The general scheme of computation of the random
field distribution function was considered by several
1063-7761/01/9301- $21.00 © 20136
authors [8–10]. However, we repeat here the main
points of its calculation, taking into account the intrin-
sic volume of particles constituting a system. We assume
that the component Hi of the field created at the origin by
a single arbitrary particle (located at the point with coordi-
nate ri and having spin Si) along the z axis (symmetry axis
in the Ising model) is defined by the law

(1)

If the distribution of particles over ri and Si is known,
the distribution function of the interaction field at a par-
ticle located at the origin is a δ-function of the type

In turn, the probability of this coordinate distribution of
particles in an amorphous body taking into account the
intrinsic volume of the particles is defined by the product

Here,

Hi ϕ ri Si,( ).=

δ Hi ϕ ri Si,( )
i

∑– .

dV1

V
---------

dV2

V V0–
---------------…

dV N

V NV0–
-------------------- 1

v N
------- dVi.

i 1=

N

∏≈

1

V N
------ 1

1 iV0 V⁄–
------------------------ V N– 1 i V0 V⁄( )+( )

i

∏≈
i

∏

=  
1

V N
------

V0 V⁄( )N 1+ Γ N 1 V V0⁄+ +( )
V V0⁄( )Γ 1 V V0⁄+( )

----------------------------------------------------------------------.
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For V/V0 @ 1, we can use the Stirling formula, which
readily gives the following expression for N  ∞:

where V0 is the intrinsic volume of a particle, which
must be taken into account for systems with a consider-
able concentration of scattered ferromagnetic particles.

The particle distribution (Si)dSi over spin

directions in the Ising model is also regarded as inde-
pendent; in this case,

Taking into account the above formulas, we can write
the distribution function for field H in the form

(2)

The characteristic function

can be written in the form

Taking into account normalization conditions, we can
write A(ρ) in the form

where

and n is the number of particles per unit volume. In the
limit N  ∞, we have

1

V N
------ 1

1 kV0 V⁄–
-------------------------- V

1 c+
----------- 

 
N

≈
k

∏ 1

v N
-------,=

c
NV0

V
---------- ! 1,=

τ
i 1=
N∏

τ Si( ) 1

Si
2 γsin

---------------- 1
2π
------δ Si S0–( ) αδ γi( ) βδ γi π–( )+[ ] ,=

α β+ 1.=

W H( ) 1

v N
------- δ H ϕ i

i 1=

N

∑–
 
 
 

τ Si( )
i 1=

N

∏ Sid Vi.d∫∫=

A ρ( ) W H( ) iρH( )exp Hd∫=

A ρ( ) 1

v N
------- iρ ϕ i

i

∑ 
 
 

τ Si( )
i 1=

N

∏exp Sid Vi.d∫=

A ρ( ) 1
n*
N
------ 1 iρϕ( )exp–[ ]τ S( ) Sd Vd∫–

 
 
 

N

= ,

n* N
V
---- N 1 c+( )

V
--------------------- n 1 c+( )= = =

A ρ( ) F ρ( )–{ } .exp
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Thus, the random interaction field distribution function
has the form

(3)

where

Here, the sign reversal of the field upon the spin flip
from direction α (spin up) to direction β (spin down) is
taken into account. Integration in Eq. (3) should be car-
ried out between r = r0 (particle size) to r = R (sample
size). If the function ϕ(r) decreases rapidly, we can pro-
ceed to the limit R  ∞, while in the case of its slow
decrease, the shape of the sample (demagnetizing fac-
tor) must taken into consideration.

The structure of F(ρ) is such that the main contribu-
tion to the integral in Eq. (3) comes from values of F(ρ)
close to zero. Indeed,

(4)

where

and so on. Consequently, rapid oscillations of the inte-
grand for ρ @ 1 lead to a considerable decrease of the
contribution to the integral.

Confining the analysis to the first three terms in the
expansion of the exponential, we obtain from formula (3)

(5)

whence

(6)

3. SELF-CONSISTENT EQUATION
FOR MAGNETIZATION

In the thermodynamic equilibrium state, the mean
value of magnetization M = 0 in the Ising model is obvi-
ously obtained by the Gibbs-distribution averaging and
the averaging over configurations:

(7)

W H( ) F ρ( )–{ } iρH–( )expexp ρ,d

∞–

∞

∫=

F ρ( ) n* V 1 iρϕ( )exp–[ ]τ S( ) Sd∫d∫=

=  α I– βI+,+

I+− n* 1 iρϕ+−( )exp–[ ] V .d

V

∫=

F ρ( ) i α β–( )H0ρ
B2

4
-----ρ2 …,+–=

H0 n* ϕ r( ) V ,
B2

4
-----d

V

∫–
n*
2!
------ ϕ2 r( ) V ,d

V

∫= =

A ρ( ) –i α β–( )H0ρ
B2

4
-----ρ2– ,exp=

W H( ) 1

πB
-----------
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------------------------------------------–

 
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 

.exp=

M
mH
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--------- 

  W H( )tanh H ,d∫=
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where m is the magnetic moment of a particle. Thus, in
zero external field, the equation for magnetization in
the equilibrium state has the form

(8)

Simple estimates can be obtained by replacing the Gauss-
ian distribution function by the approximate function f(H):

For small values of M, we obtain

(9)

This means that Eq. (8) has a nonzero solution (ferro-
glass) when

(10)

For H0/B < 1, the initial susceptibility in field h is
given by

(11)

For high temperatures, for mB/kT ! 1, we have

which corresponds to paramagnetic susceptibility. For
mB/kT @ 1, susceptibility is given by

and is independent of temperature. In this case, spins
are “frozen” in the random exchange interaction fields.
The maximum rate of susceptibility variation is observed
at T* = mB/k; T* can be treated as the temperature of tran-
sition to the spin glass phase.

4. RKKY INTERACTION AND SPIN GLASS

We apply this approach to a system of atoms cou-
pled through the RKKY interaction [11]

(12)

where b is a certain coefficient having the dimensions
of field, kF is the momentum on the Fermi surface, and

M
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r is the separation between interacting atoms. Integra-
tion is carried out from 1 to kFR. In this case,

After integration, we obtain the following relations for
H0 and B2:

where Si is the sine integral. Proceeding to the limit
kFR  ∞, we obtain

The last relation together with relations (10) makes it pos-
sible to construct the theoretical magnetic phase diagram.

5. DIPOLE–DIPOLE INTERACTION
IN A SYSTEM OF SCATTERED MAGNETIC 

GRAINS: MACROSPIN GLASS

Let us consider a system of small ferromagnetic par-
ticles scattered in a nonmagnetic matrix. The magnetic
moment distribution function for such particles has the
form

where angles γ and ψ specify the orientation of m rela-
tive to a chosen direction. In this case,

In the Ising model, we have

(13)

and angle ϑ  determines the orientation of vector r in the
spherical system of coordinates.
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In the case when the shape of a magnetic sample is not
spherical, but, say, ellipsoidal, we must take into account
the dependence of R on ϑ :

(14)

where b is the major semiaxis and e is the eccentricity.

The parameters H0 and B2 of the distribution func-
tion W(H) for a system of magnetic particles (ferro- or
ferrimagnetic grains) with the dipole–dipole interaction
can be calculated approximately using formulas (4):

(15)

where  = mf(m)dm and r0 is the size of a magnetic

particle. In such a system, we have

which means that H0/B ≈ 0.2  < 1 even for e ≈ 1
(it should be recalled that c is the volume concentration
of the ferromagnet).

Thus, ferromagnetic ordering due to dipole–dipole
interaction in an amorphous substance is ruled out.
A similar result was obtained by Meilikhov [12] for
particles located at the sites of a cubic lattice.

At the same time, a transition to the spin-glass state
(macrospin glass) at temperature T* ~ B/k is possible
if the relaxation time, which is determined primarily by
the critical field and the volume of a ferromagnetic par-
ticle, is quite small. Since the system of single-domain
particles makes it possible to interpret visually the
long-term relaxation in macrospin glass, we consider
the transition to the equilibrium state in greater detail.

An analysis of the magnetic properties of such a sys-
tem requires primarily the knowledge of their distribu-
tion over the magnetic moments m and over the critical
fields Hc of magnetization reversal. The field of magne-
tization reversal of a single-domain particle is deter-
mined by its shape (for strongly magnetic materials),
crystallographic anisotropy, and anisotropy of stresses
which inevitably emerge during the interaction of the
particle with the nonmagnetic matrix. For a uniaxial
particle, the magnetization reversal condition can be
presented in the form

where θ is the angle between field H + h and the easy
axis, H is the random field of interaction, and h is the
applied field.
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For fields h small as compared to Hc, these relations
can be written in the following approximate form:

(16)

(17)

Accordingly, an individual hysteresis loop for each par-
ticle from the subsets (16) and (17) is characterized by
the fields a = Hc – H, b = Hc + H, and a = Hc + H, b =
Hc – H, respectively. For a known distribution of parti-
cles over the magnitude of the interaction field, g(H),
which can be obtained if we know W(H), we can easily
calculate the number density of particles on the Prei-
sach–Neel (a, b) phase diagram [13]. The normaliza-
tion condition for particles from subset (16) has the
form

Going over to new variables a = Hc – H and b = Hc + H,
we obtain

where the Jacobian ∆(a, b) = 1/2. Thus, the quantity

is the number density of points on the Preisach–Neel
diagram, corresponding to particles with the critical
fields a, b. Axis a = b is a symmetry axis, and hence, we
can confine the subsequent analysis to the region a > b
only.

6. LONG-TERM RELAXATION
AND IRREVERSIBILITY

The estimation of the relaxation time for single-
domain uniaxial particles with an elementary hysteresis
cycle and critical fields a and b in an external magnetic
field h (h < a, b) is based on the fact that the fluctuation
probability is determined by the minimum work which
must be done to rotate the magnetic moment through
the angle required for a subsequent spontaneous irre-
versible U-process. If h ! a, b, the relaxation time is
defined by the approximate formula

(18)

where f0 ~ 1010–1012 is the frequency factor.
Equation (18) defines the relaxation time isolines on

the Preisach–Neel (a, b) phase diagram. It can easily be
seen that particles with larger and larger values of a and
b are gradually involved in the process of establishment
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of equilibrium. An order-of-magnitude increase in the
relaxation time corresponds to the change in the value
of a (b) by

Naturally, the spread in the particle distribution over
critical fields and volumes leads to long-term relax-
ation, and equilibrium in the system may not be estab-
lished in principle over a reasonable time interval.
Indeed, if

and τ ~ 1, a doubling of m or a increases the relaxation
time to τ ≈ 1010 s for f0 ≈ 1010 s–1.

The possibility of independent establishment of
equilibrium in a subsystem of particles with different
values of a and b is of fundamental importance since in
this case the magnetic susceptibility, the residual mag-
netization, and other characteristics of the system can
be calculated quite easily in the case when the system
as a whole is far from equilibrium. In order to simplify
calculations, we assume that the function p(a, b) = p is
constant in the hatched region in Fig. 1, B coincides in
order of magnitude with the maximum fields of interac-
tion, and D are the maximum critical fields of particles
in the system. The normalization condition in this case
has the form

As the initial conditions, we consider the system in the
so-called zero-field state which can be attained by apply-

ing an alternating field  whose amplitude decreases from

 > D to zero. In this case, all the particles which
belong to the region a > b on the phase diagram are in the
state with a conditionally negative magnetization, while
those from the region a < b have a positive magnetization.
The total magnetic moment is equal to zero. After the
removal of the field, thermodynamic equilibrium will
gradually set in, which corresponds to the emergence

∆a
10ln

α
-----------, α m

2kT
---------.= =

f 0τ( )ln
ma
2kT
---------∼

2 pBD N /2.=

h̃

h̃max

a 

a – 2h = b

DBh

–

+

a = bb

Fig. 1. Preisach–Neel (a, b) diagram.
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on the (a, b) diagram of positively magnetized particles
whose critical fields correspond to region a > b and neg-
atively magnetized particles from region a < b, the total
zero magnetic moment of the system being preserved.
For particles with the given magnetic moment m, such
a process will occupy, by the time t, the region

(19)

For particles with critical fields a and b, a > b, the extent
of “mixing” of the signs “–” and “+” is determined by
the transition probabilities:

Obviously, in view of symmetry relative to the line a =
b, such a mixing in the region b > a leads to the com-
pensation of the emerging magnetic moment.

The application of the external magnetic field h dis-
places the symmetry line to the region a – h = b + h; i.e.,
the compensation is violated. This result is quantita-
tively equivalent to the sign reversal in the magnetic
moment of the particles represented in Fig. 1 by a point
from the region with double hatching,

In our opinion, this circumstance is extremely impor-
tant since only a small fraction of particles (h/B) take
part in the process of magnetization in a low field h,
namely, the particles whose fields of interaction are
close to zero; consequently, the change in the orienta-
tion of the magnetic moment of such particles weakly
affects the state of the entire system as a whole.

Thus, for low fields

,

an additional magnetic moment

(20)

emerges due to thermal fluctuations. For a given value
of α, saturation will be attained for

By the instant t* of the first measurement, which is
determined by the potentialities of the experimental
setup, we have

(21)
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The relatively high value of M0 is possible only if there
exist particles with a large magnetic moment (large
value of α0) such that

(22)

Since we are mainly interested in long-term relaxation,
we will henceforth put M0 ! Mv ≡ M.

Let us now consider the temperature dependence of
magnetic susceptibility ∂M/∂h = χ,

(23)

provided that

(24)

As the temperature increases further, the following two
scenarios of susceptibility variation may take place.

1. At a certain temperature T = TB, the value of B(TB)
becomes equal to h; however, in this case,

In this case, the susceptibility increases for T > TB since

where TC is the Curie point. At the temperature TD for
which

the susceptibility attains its maximum value since all
the particles are “involved” in the process:

A further decrease in χ upon a decrease in T > TD is
associated with a decrease in m for T  TC.

2. TD < TB. In this case, at T = TD, we have

the value of χ remains constant up to T = TB (B(TB) = h)
and decreases further together with m(T). The behavior
of susceptibility as a function of temperature is pre-
sented schematically in Fig. 2. These formulas remain
valid for cooling also if it occurs in zero field. If, how-
ever, the field has not been removed, the particles
whose magnetic moments are blocked during cooling
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preserve their magnetic moment even after the “depar-
ture” of the corresponding points on the (a, b) diagram
from the region a – 2h ≤ b ≤ a, thus increasing the sus-
ceptibility. Since the fraction of particles participating
in the magnetization at a given temperature T is approx-
imately equal to the ratio h/B(T), averaging of this ratio
upon cooling from T to T0 in the field h gives

In the simplest case, when

we have for T1 close to TC

Thus, as regards irreversibility and long-term relax-
ation, a system of magnetostatically interacting single-
domain particles illustrates the properties inherent in
spin glasses. Apparently, cluster spin glasses in which
the interaction between the magnetic moments of inclu-
sions occurs, say, through indirect RKKY exchange
must also possess similar properties [14]. It should be
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Fig. 2. Theoretical curve describing the temperature depen-
dence of susceptibility: zero field cooling (1) and cooling in
the field (2).
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noted that a wide relaxation time spectrum in this case
is ensured by the distribution of particles over critical
fields and volumes, and the establishment of equilib-
rium in all the subsystems with equal relaxation times
is assumed to be independent.

However, even for identical particles with critical
fields Hc and relaxation times τ0 such that

the “inclusion” of interaction leads to the emergence of
the relaxation time spectrum in the interval from
τ0/ (mB/2kT) to τ0, which readily follows from
relation (18).

7. CONCLUSIONS
1. The distribution function for random interaction

fields in an amorphous substance in the Ising model has
the form of a Gauss function whose mathematical expec-
tation H0 and dispersion D are determined by the law gov-
erning the interaction between particles in accordance
with expression (4). The ratio H0/D determines the type of
ordering (paramagnetism, spin glass, ferroglass).

2. The dipole–dipole interaction in an amorphous
substance does not lead to a ferroglass- or ferromag-
netic-type ordering.

3. Long-term relaxation and irreversibility of mag-
netization in weak fields in a system of interacting sin-
gle-domain particles exhibit the spin-glass behavior
even under the assumption concerning the indepen-
dence of the transition of each subsystem with a definite
relaxation time to the equilibrium state.
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Abstract—The magnetic resonance spectrum of spin clusters formed in spin-Peierls magnets in the vicinity of
impurity ions is investigated. The observed temperature dependences of the effective g-factor and the linewidth
of the electron paramagnetic resonance (EPR) in crystals of Cu1 – xNixGeO3 are described in the model of the
exchange narrowing of the two-component spectrum with one component ascribed to spin clusters and exhib-
iting an anomalous value of the g-factor and the other related to triplet excitations. An estimation of the size of
the suppressed dimerization region around the impurity ion is obtained (this region includes about 30 copper
ions). The dependence of the effective g-factor and the EPR linewidth on the impurity concentration at low tem-
peratures indicates the interaction of clusters. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Crystals of quasi-one-dimensional magnet CuGeO3

exhibit magnetic and crystallographic properties char-
acteristic of spin-Peierls magnets [1–3]. The magnetic
structure of this compound is based on one-dimen-
sional chains of Cu2+ ions (S = 1/2) extended along the
c axis of the orthorhombic crystal structure [4]. The
value of the exchange integral along these chains is
10.4 meV [3].

Below the temperature of the spin-Peierls transition
TSP = 14.5 K, the dimerization of chains occurs: i.e.,
magnetic ions approach each other. The dimerization is
accompanied by the alternation of the exchange inte-
gral, which in turn takes one of the two possible values
J1, 2 = J(1 ± δ). An energy gap E ~ δJ opens between the
ground singlet state and triplet excitations. Due to the
presence of the gap in the energy spectrum, the mag-
netic susceptibility decreases and the pure crystal with-
out defects becomes almost nonmagnetic at low tem-
peratures. The lattice transformation due to the dimer-
ization is correlated in space, and the dimers are located
on a regular sublattice.

Interchain exchange interaction in CuGeO3 is rather
large (the value of the exchange integral along the two
directions orthogonal to the chain is only by a factor of
10 or 100 less than the exchange integral along the
chains [2, 3]). For this reason, in the absence of the
spin-Peierls transition, antiferromagnetic ordering had
to be observed. However, the spin-Peierls state is more
advantageous and is preserved down to very low tem-
peratures.
1063-7761/01/9301- $21.00 © 20143
Copper germanate CuGeO3 is the only spin-Peierls
compound in which a controlled substitution of mag-
netic ions is possible. The introduction of impurities
results in a local suppression of the dimerization in the
vicinity of the defect. As a result, the temperature of the
spin-Peierls transition decreases and a the long-range
antiferromagnetic order is established at a sufficiently
low temperatures [5–9].

The occurrence of the antiferromagnetic order and
the suppression of the dimerization order is explained
in [10, 11]. A cluster of antiferromagnetically corre-
lated spins is formed around the impurity ion. In the
chain of spins S = 1/2 with alternating exchange inter-
action, the antiferromagnetic correlations attenuate (see
[12]), thus forming the wings of the cluster. As we
recede from the defect, the mean value of the spin pro-
jection on the z axis decreases exponentially. Overlap-
ping of the clusters’ wings results in the expansion of
the region of antiferromagnetic correlations and the
establishment of the long-range ferromagnetic order.

Substitution of the part of the Cu ions by Ni has two
significant differences compared to other dopants.

First, in the antiferromagnetically ordered phase, the
easy axis of anisotropy is directed along the a axis,
whereas for other substituting impurities the easy axis
of anisotropy is aligned along c [5, 8]. Second, an
anomalous temperature dependence of the g-factor is
observed in the dimerized phase. As the temperature
drops below the transition temperature TSP , the value of
the effective g-factor begins to decrease and achieves
the value of 1.4 at low temperatures for H || c [8]. The
anomalous value of the g-factor can be explained by the
existence of the antisymmetric Dzyaloshinski–Moriya
001 MAIK “Nauka/Interperiodica”
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exchange interaction in the vicinity of the defect. In a
multispin system consisting of more than two spins, the
existence of the Dzyaloshinski–Moriya interaction
along with the symmetric exchange interaction results
in a strong anisotropy of the effective g-factor and in the
decrease of its value [13]. Calculations based on the
six-spin model show that the existence of the antisym-
metric exchange interaction with the value of the
exchange integral of about 30% of the value of the
intrachain exchange interaction is sufficient for the
description of the deviation observed [8].

The present paper continues the study started in [8].
Its purpose is to investigate high-quality samples of
CuGeO3 doped with nickel including those with a low
content of the impurity (x < 1%). The examination of
samples with a small concentration of the impurity
(when the average distance between the impurity ions
exceeds the characteristic cluster size) makes it possi-
ble to observe the magnetic resonance of isolated clus-
ters. A noticeable difference of the g-factor of clusters
from the g-factor of excitations of the spin-Peierls
matrix makes it possible to differentiate between their
EPR signals. In turn, this fact opens the possibility to
investigate the interaction of clusters with the environ-
ment and between themselves. The analysis of the
experimental data allowed us to determine the charac-
teristic size of the cluster that is formed around the
impurity ion, namely, the size of the region where the
dimerization is destroyed and that of the region in
which the antisymmetric exchange interaction exists.

2. EXPERIMENTAL TECHNIQUE AND SAMPLES
For the experiment, high-quality samples of

Cu1 − xNixGeO3 with an impurity concentration x =
0.2% and x = 0.8% were grown. In order to analyze the
dependence of the g-factor on concentration, samples

10
H, kOe
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(a)
7.5 K

6.5 K

5.5 K

7.0 K

6.0 K

4.2 K

1.8 K

×5
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H, kOe

16

(b)
8 K

11 K

13 K

15 K

Fig. 1. The temperature evolution of the EPR line at x =
0.2%, H || c, and f = 36 GHz. The vertical segments in fig-
ures a and b correspond to the same amplitude of the signal.
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with higher concentrations of the impurity (x = 1.9%
and 3.0%) were also used.

To control the quality of the samples, a monocrystal
of the pure compound grown following the same tech-
nology was used. At the temperature of 4 K, the mag-
netic susceptibility of this sample determined by the
integral intensity of the EPR signal was about 4% of the
susceptibility at the transition temperature. This corre-
sponds to the residual concentration of the magnetic
defects per a copper ion equal to x0 ~ 0.05%.

The investigations were performed at a frequency of
36 GHz and the temperatures in the range 1.8–20 K
with the help of an EPR spectrometer with a transmis-
sion type cavity. The magnetic resonance line was reg-
istered as the dependence of the intensity of the micro-
wave power transmitted through the resonator on the
magnetic field applied. In this case, the variation of the
signal is proportional to the imaginary part of the mag-
netic susceptibility.

3. EXPERIMENTAL RESULTS

As the temperature drops below the spin-Peierls
transition temperature (which is equal to 13.5 K for x =
0.2% and 12.0 K for x = 0.8%), the field of the reso-
nance absorption starts to increase. The temperature of
the spin-Peierls transition was determined by the begin-
ning of the decrease of the integral intensity of the EPR
signal. The increase of the resonance absorption field
corresponds to the decrease of the g-factor. The varia-
tion of the EPR line with temperature is shown in
Figs. 1 and 2.

The temperature dependences of the g-factor are
presented in Figs. 3 and 4. At low temperatures (T < 4 K),
the values of the g-factor remain constant and are equal
to ga = 1.75, gb = 1.87, and gc = 1.43 (for x = 0.2%).

15

1.8 ä

2010

2.5 ä
4 ä

6 ä
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14.1 ä

H, kOe

Fig. 2. The temperature evolution of the EPR line at x =
0.8%, H || c, and f = 36 GHz.
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For the sample with the impurity concentration x =
0.2%, the magnetic resonance line splits into two com-
ponents at the temperature T ' ≈ 7 K (Fig. 1). As the tem-
perature decreases, one of those components continues
to move to higher fields and its intensity increases. The
second component remains in the field close to the EPR
field above TSP , but its intensity decreases and it almost
vanishes as the temperature decreases further. The
width of the magnetic resonance line has its maximum
at the temperature close to the splitting temperature T'
(Fig. 5). A similar splitting was observed at other orien-
tations of the sample with respect to the field for x =
0.2%; however, we were able to follow it down to very
low temperatures only for H || c (this is due to the fact

10

g

T, K
150 5

2.2

2.0

1.8

1.6

1.4

Fig. 3. Dependence of the effective g-factor on temperature
for the sample with the impurity content x = 0.2%: d—H ||
a, h—H || b, and ,—H || c. Solid curves correspond to the
theoretical calculation.
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0

(a) (b)

Fig. 5. Dependence of the half-width of the EPR line on
temperature for x = 0.2% (a) and x = 0.8% (b) at H || c and
f = 36 GHz. Solid curves correspond to the theoretical cal-
culation.
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that for this orientation there is the maximal difference
of the g-factors of two spectral components, which
makes it possible to distinguish the faint absorption line
on the wing of the strong one).

For the sample with the impurity concentration x =
0.8%, the magnetic resonance line consists of the single
component at all temperatures; the maximum of the lin-
ewidth is observed in the vicinity of T ' (Fig. 5).

In the paramagnetic phase, the value of the g-factor
is also different from the value characteristic for the
pure compound. The dependence of the g-factor value
on the impurity concentration at T > TSP is shown in
Fig. 6. As the impurity concentration increases, the
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2.2

2.0

1.8

1.6

1.4

Fig. 4. Dependence of the effective g-factor on temperature
for the sample with the impurity content x = 0.8%: d—H ||
a, h—H || b, and ,—H || c. Solid curves correspond to the
theoretical calculation.
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Fig. 6. Dependence of the effective g-factor on impurity
concentration at T = 15 K: —H || a, h—H || b, and ,—H
|| c. Solid curves correspond to the theoretical calculation,
and black symbols correspond to the data of the study [8].
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value of the g-factor decreases for all orientations of the
magnetic field.

For samples with the impurity concentration x =
1.9% and 3.0%, the long-range antiferromagnetic order
is established, which manifests itself in the transition
from the linear gapless EPR spectrum to a spectrum
that is typical to antiferromagnets with orthorhombic
symmetry. The Néel’s temperatures are TN ≈ 2.5 K for
x = 1.9% and TN ≈ 3. 5 K for x = 3.0%.
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Fig. 7. Comparison of the EPR lines for x = 0.2% and x =
0.8% at T = 1.8 K, H || c, and f = 36 GHz.

Fig. 8. Dependence of the half-width of the EPR line on
impurity concentration for H || c: T = TN = 2.5 K for x =
1.9%, T = TN = 3.5 K for x = 3.0%, and T = 1.8 K for x =
0.2% and x = 0.9%.
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Comparison of the EPR lines at the minimal temper-
ature (Fig. 7) shows that the field of resonance absorp-
tion and the width of the line of magnetic resonance are
different for samples with different concentrations of
impurity. Dependences of the linewidth and the g-factor
value on impurity concentration are presented in Fig. 8.
(For samples that exhibit the antiferromagnetic order-
ing, the data were taken at T = TN.) For small x, the
width of the EPR line linearly depends on the concen-
tration. Dependences of the EPR linewidth and of the
g-factor value on the orientation of the magnetic field at
T = 1.8 K for the sample with x = 0.8% are shown in
Fig. 9.

4. DISCUSSION

Before getting down to the quantitative analysis of
the experimental data, we will present a qualitative
description.

According to the concept developed in [10, 11], a
cluster of exchange-correlated spins is formed around
the impurity ion in the spin-Peierls matrix. Due to the
existence of the antisymmetric exchange interaction in
this cluster, the EPR of clusters is characterized by an
unusually small value of the g-factor gcl [8]. Clusters
are surrounded by a dimerized spin-Peierls matrix.
Triplet excitations of the dimerized matrix are charac-
terized by the value of the g-factor of copper ions gCu
close to 2. Due to the exchange interaction of clusters
with excitations, an EPR line with an intermediate
value of the g-factor is observed (the so-called
exchange narrowing). At temperatures close to the spin-
Peierls transition temperature, when the concentration
of spin-Peierls excitations is large, an EPR line with the
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Fig. 9. Angular dependence of the width of the magnetic
resonance line (s) and the effective g-factor (h) for the field
applied in the plane bc. Solid curves correspond to formula
(25), x = 0.8%, T = 1.8 K, and f = 36 GHz; φ = 0 corresponds
to H || c.
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g-factor close to the values characteristic to copper ions
is observed. As the temperature decreases, the concen-
tration of triplet excitations decreases due to the exist-
ence of an energy gap and the EPR lime shifts to the
value characteristic of isolated clusters. As the temper-
ature decreases further, the effectiveness of the interac-
tion of clusters with excitations decreases and the EPR
line splits into two components. A similar phenomenon
was observed for the magnetic resonance of tempera-
ture-activated spins in radicals [14]. At last, at low tem-
peratures, when triplet excitations are practically frozen
out, the EPR line consists of two components—a strong
one, characterized by the g-factor of clusters, and a
faint one, which represents the residual triplet excita-
tions and magnetic defects. This description corre-
sponds to the observed evolution of the magnetic reso-
nance line for the samples with the impurity concentra-
tion of 0.2%.

Similarly, one can explain the dependence of the g-
factor on impurity concentration at temperatures
greater than the transition temperature. In this case, one
should consider the closest neighborhood of the impu-
rity ion in which antisymmetric interaction exists as a
cluster characterized by the anomalous value of the g-
factor gcl. The EPR of copper ion chains is character-
ized by the g-factor gCu. Due to the exchange interac-
tion of the cluster with the surrounding copper matrix,
the EPR line with an intermediate value of the g-factor
is observed. The greater the number of clusters, the
more the magnetic resonance line is shifted from gCu to
gcl. Thus, the value of the effective g-factor must
decrease as the impurity concentration increases.

In this reasoning, we assumed that the g-factor is the
same for all clusters. This is actually true if the interac-
tion between clusters is negligible. In this case, the
parameters of the EPR line would depend only on the
interaction of clusters with triplet excitations. However,
the fact that the resonance absorption fields for the
samples with x = 0.2% and x = 0.8% are different,
shows that even for these impurity concentrations the
interaction between clusters must be taken into
account. Clusters interact due to the fact that their wings
overlap [11]; this makes it possible to obtain a coarse eval-
uation of the cluster size (assuming that clusters do not
interact at x = 0.2% and that the interaction leads to the
widening and shift of the line at x = 0.8%):

(1)

This result is overestimated since the distance
between the majority of clusters is less than the average
one. Since antiferromagnetic correlations at cluster
wings are destroyed by thermal fluctuations, the influ-
ence of the cluster interaction on the EPR line should
decrease with the increase of temperature.

We will assume that an isolated cluster is character-
ized by the values of the g-factor observed for the sam-

ple with x = 0.2% at the minimal temperature (  =

L 1/0.008 100.∼ ∼

gcl
a( )
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1.75,  = 1.87, and  = 1.43). The values of the
g-factor for excitations correspond to the g-factor of
copper ions in undistorted crystal environment, i.e., in

pure CuGeO3 (  = 2.15,  = 2.26, and  = 2.06,
and they are practically independent of temperature
[15]).

In the subsequent analysis we use the following sim-
plified model. We assume that in the close neighbor-
hood of the impurity ion of size Ldim the dimerization is
suppressed and triplet excitations of the spin-Peierls
matrix do not reach this region. Antiferromagnetic cor-
relations decay exponentially with distance from the
defect. This attenuation is characterized by the mag-
netic correlation length of dimerized chains ξ ~ v /∆,
where v  is the speed of spin excitations and ∆ is the
energy gap, (see [12]). In addition, there exists the anti-
symmetric Dzyaloshinski–Moriya exchange interac-
tion in a certain neighborhood of the impurity ion due
to a local reduction of symmetry. The size of this region
is LDM < Ldim. The values of LDM and Ldim are measured
in interatomic distances along the chains.

The analysis of the dependence of magnetic suscep-
tibility on temperature for a similar model was con-
ducted in [16, 17]. The advantage of the EPR method is
in the fact that a noticeable difference in g-factors of
clusters and excitations makes it possible to separate
their contributions.

4.1. Interaction of Clusters with Excitations
in the Molecular Field Approximation

First, we consider the case T < TSP when spin chains
are dimerized. In the vicinity of the impurity ion, a clus-
ter of exchange-coupled spins with the total spin S = 1/2
is formed. At a large distance from the defect, the spin-
Peierls matrix remains unperturbed, and its magnetic
properties are described by triplet excitations, which
are separated by a gap from the ground state.

Propagation of antiferromagnetic correlations from
the cluster into the dimerized matrix results in the
appearance of an interaction between the cluster and
excitations. Since this interaction appears due to the
exchange interaction between spins, the average energy
of the interaction can be written in the form

(2)

Here Jeff is the effective exchange integral, 〈Scl〉  is the
average total spin value of the cluster, and 〈SCu〉  is the
average spin value on the copper ion located outside the
cluster (this value is related to triplet excitations). The
summation is performed over n effective neighbors of
the cluster (since the major role is played by the inter-
action along spin chains, we assume that n = 2).

Following the molecular field theory, we obtain the
following system of self-consistent equations for aver-

gcl
b( ) gcl

c( )

gCu
a( ) gCu

b( ) gCu
c( )

Eint Jeff

i 1 … n, ,=

∑ Scl〈 〉 SCu i( )〈 〉⋅( ).=
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age magnetization of a cluster and a copper ion in the
dimerized matrix:

(3)

Here  are susceptibilities per one cluster and per
one copper ion in the absence of the interaction.

From Eqs. (3) one can derive the following equa-
tions for the magnetizations with regard for the interac-
tion:

(4)

where η = Jeff /(gCugcl ).

The magnetic susceptibility of a single isolated clus-
ter obeys the Curie law

(5)

For the susceptibility due to triplet excitations, we
will use the results obtained in [16, 17]. In those stud-
ies, an approximation of the magnetic susceptibility of
pure CuGeO3 crystals at temperatures below TSP was
obtained experimentally. This approximation of the
molar susceptibility at H || c has the form

(6)

where a0 = 26.0 × 10–3 cgs units/mol, a1 = –41.6 ×
10−3 emu/mol, a2 = 28.2 × 10–3 emu/mol, and A = 2.39.

Then, we have for the magnetic susceptibility per
copper ion in the dimerized matrix:

(7)

Here  is the g-factor of the copper ion in the corre-
sponding direction.

If the impurity concentration is x, then the number
of clusters is xNA and the number of copper ions in the
dimerized matrix is (1 – xLdim)NA. Assuming that clus-
ters do not interact, we obtain the following formulas
for the total susceptibility of clusters and excitations:

(8)

µcl〈 〉 χ cl
0( ) H n

Jeff

gclgCuµB
2

--------------------+ µCu〈 〉 
  ,=

µCu〈 〉 χ Cu
0( ) H n

Jeff

gclgCuµB
2

--------------------+ µCl〈 〉 
  .=

χcl Cu,
0( )

χcl χcl
0( ) 1 nηχCu

0( )+

1 nη2χcl
0( )χCu

0( )–
----------------------------------- ,=

χCu χCu
0( ) 1 ηχ cl

0( )+

1 nη2χcl
0( )χCu

0( )–
----------------------------------- ,=

µB
2

χcl
0( ) gcl

2 µB
2 S S 1+( )
3kT

---------------------------------= .

F t( ) a0 a1t a2t2+ +( ) A
t
---– 

  , texp
T

TSP

--------,= =

χCu
0( ) gCu

i( )

gCu
c( )-------

 
 
 

2
F T /TSP( )

NA

-----------------------.=

gCu
i( )

χ̃cl xNAχcl ,=

χ̃Cu 1 xLdim–( )NAχCu.=
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Equations (4)–(8) allow one to determine the contri-
bution of clusters and triplet excitations to the suscepti-
bility for all temperatures below the spin–Peierls tran-
sition temperature. We will use this result later.

The case T > TSP can be treated in a similar way. As
it has already been mentioned above, in this case the
neighborhood of an impurity ion in which the Dzy-
aloshinski–Moriya exchange interaction exists should
be considered as a cluster; hence, the characteristic size
in Eq. (8) is LDM. Since the susceptibility of spin chains
weakly depends on temperature above the transition
temperature, we must set T = TSP in Eq. (7).

4.2. Dependence of the g-Factor on Temperature

As it has already been mentioned above, the evolu-
tion of the EPR line in the spectrum of a sample with a
nickel concentration equal to 0.2% (Fig. 1) has the form
typical of the exchange-narrowed two-component
spectrum of the magnetic resonance with the frequency
of exchange jumps dependent on temperature.

Following [14, 18], we assume that the influence of
the exchange interaction on the magnetic resonance
spectrum of the system can be considered as random
transitions with the characteristic frequency ωe

between the states with different Zeeman’s frequencies

 > .

The location of the center of gravity of the magnetic
resonance spectrum is independent of ωe and is deter-
mined by the formula

(9)

where  are the susceptibilities of the corresponding
states with regard for the interaction between them.

Analysis of these random transitions by statistical
methods (see [18]) show that the frequencies of the
spectral components and their widths are determined
by the formulas

(10)

where

(11)

(12)

In the limit of ωe @ ∆, we have

(13)

ω2
0( ) ω1

0( )

ω
ω1

0( )χ̃1 ω2
0( )χ̃2+

χ̃1 χ̃2+
------------------------------------,=

χ̃1 2,

ω1 2, ω= Im λ1 2,( ),+

∆ω1 2, Re λ1 2,( ),=

λ1 2,
1
2
--- – ωe iδ–[ ] ωe

2 ∆2– 2iωeδ–±{ } ,=

∆ ω2
0( ) ω1

0( )–= , δ ω1
0( )= ω2

0( ) 2ω.–+

ω1 ω δδ2 ∆2+

4ωe
2

-----------------, ∆ω1–
δ2 ∆2–

4ωe

----------------,= =

ω2 ω δ, ∆ω2+ ωe.–= =
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Thus, the EPR spectrum consists of a narrow line
close to  and a wide background line.

In the absence of the interaction (ωe = 0), we have

(14)

which corresponds to two narrow spectral components

at the frequencies  and .

Qualitatively, this corresponds to the observed tran-
sition from the EPR line consisting of a single compo-
nent to the two-component line. In this model, we
neglect the intrinsic widths of lines in both states of the
system.

Magnetic properties of the doped spin-Peierls sys-
tem at T > TN correspond to free spins of clusters and
triplet excitations of the dimerized matrix. The differ-
ence in g-factors of clusters and excitations lead to dif-
ferences in Zeeman’s frequencies.

The presence of an energy gap leads to a depen-
dence of the concentration of triplet excitations on tem-
perature. In this case, the frequency of exchange jumps
ωe also depends on temperature as

(15)

The dependence of the energy gap on temperature
can be approximated as follows (see [7, 19]):

(16)

The magnitude of the energy gap at T = 0 K is
related to the transition temperature by the equation
(see [20])

(17)

Equations (9)–(12) and (15)–(17) make it possible
to obtain temperature dependences of the resonance
absorption frequencies (g-factors) and widths of spec-
trum components. To take into account the interaction
of clusters with triplet excitations, we use the molecular
field approximation (4)–(8).

The temperature dependences of the g-factor and
the width of the magnetic resonance line are described
with the help of three adjustable parameters—the size
of the region of suppressed dimerization Ldim, the effec-
tive exchange integral value Jeff, and the preexponential
coefficient of the exchange frequency Ωe.

This model assumes that clusters do not directly
interact. As has been mentioned above, the influence of
the interaction of clusters decreases with increasing
temperature. For this reason, when adjusting the param-
eters, we used the temperature dependence of the g-fac-
tor at T > T ' = 7 K for all basic orientations of both sam-
ples and the temperature dependence of the g-factor
below T ' for the sample with the impurity content 0.2%
for H || c.

ω

ω1 2, ω1 2,
0( ) , ∆ω1 2, 0,= =

ω1
0( ) ω2

0( )

ωe t( ) Ωe

E t( )/TSP

t
---------------------–

 
 
 

, texp
T

TSP

--------.= =

E t( ) E 0( ) 1 t–( )a, a 0.1, t≈ T /TSP.= =

E 0( ) 1.76kTSP.=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Thus, the following values of the adjustable param-
eters were obtained:

(18)

Note that "Ωe/k ~ 16K, which is close to Jeff. This
result could be expected since Ωe and Jeff must be deter-
mined by the magnitude of the intrachain exchange
integral.

The comparison of the theoretical and experimental
results is illustrated in Figs. 3, 4. The theoretical depen-
dences provide an accurate description of the experi-
mental data for the sample with the impurity concentra-
tion 0.2%; however, for the sample with x = 0.8%, there
is a disagreement at low temperatures, which we
attribute to the interaction of clusters.

The value of the suppressed dimerization region
obtained here coincides with the result of the paper
[17], which was obtained by the analysis of static sus-
ceptibilities.

We also can make a coarse evaluation of the impu-
rity concentration at which the long-range spin-Peierls
order must be completely destroyed: xc = 1/Ldim ~ 0.03,
which is in good agreement with the result obtained in
[21].

4.3. Dependence of the Width of the Magnetic 
Resonance Line on Temperature

On the basis of the model described above, we can
derive the dependence of the width of the EPR line on
temperature. The comparison with experimental data is
presented in Fig. 5. For convenience, the width of the
line at the spin-Peierls transition point is added to the
theoretical dependences. No additional adjustable
parameters were used.

For the sample with the impurity concentration
0.2%, the agreement of the theory with the experiment
is very good. The theory provides the correct location
of the maximum of the linewidth and the correct value
of at this point. The best agreement between the theory
and the experiment is achieved for H || c. This could be
expected, since in this case one of the basic assumption
of our model is best satisfied, namely, that the intrinsic
linewidth of the spectral components can be neglected
as compared with the splitting between them.

For the sample with x = 0.8%, a disagreement of the
theory and the experiment is observed. The location of
the maximum is determined rather well; however, the
behavior of the linewidth at low temperatures is differ-
ent from that predicted by the model. We attribute this
fact to interaction between clusters.

Ldim 32 2, Jeff± 13 1±( ) K,–= =

Ωe 2.2 0.3±( ) 1012 s 1– .×=
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4.4. Dependence of the g-Factor on Concentration 
above the Temperature of the Spin-Peierls Transition

The approach developed above can be also applied
to the description of the dependence of the g-factor
value on impurity concentration above TSP . In this case,
we consider as a cluster the neighborhood of the impu-
rity ion of size LDM in which the Dzyaloshinski–Moriya
exchange interaction exists.

At temperatures close to TSP , the condition ωe @ ∆
(ωe ~ Ωe ~ 1012 s–1, ∆ ~ 1010 s–1) holds. Hence, simpli-
fied Eqs. (13) can be used. Neglecting the terms of

order ∆2/ , we obtain the following equation for the
mean value of the g-factor (this equation is similar to
(9)):

(19)

As before (see Eqs. (4)–(8)), susceptibilities  are
determined in the molecular field approximation. We
assume that in the absence of interaction, the cluster
susceptibility is described by the Curie law (5), and the
susceptibility of the copper ions surrounding the cluster
is independent of temperature and equals the suscepti-
bility at the point of the spin-Peierls transition (7).

We do not present the expression for the dependence
of the g-factor value on concentration because it is too
cumbersome. This expression includes two parameters:
the effective exchange integral Jeff and LDM. The param-
eter Jeff has already been determined earlier. This leaves
us a single adjustable parameter to describe the depen-
dence of the g-factor on impurity concentration for all
orientations of the sample with respect to the magnetic
field. As it has already been mentioned, the interval of
the impurity concentration at which clusters can be
considered uninteracting increases with temperature.
Thus, at high temperatures our approach can be applied
even in the case of large concentrations. Figure 6 pre-
sents data for samples with nickel concentrations up to
3.3% at the temperature of 15 K along with theoretical
curves. The experimental dependences correspond to
LDM = 18 ± 2.

4.5. Dependence of the EPR Linewidth 
on Concentration at Low Temperatures.

Interaction of Clusters

The difference of the EPR lines of samples with the
impurity concentration 0.2% and 0.8% (Fig. 7) indi-
cates that clusters interact. The dependence of the line-
width on impurity concentration for small x is linear
(Fig. 8). A linear dependence of the EPR linewidth on
the concentration of magnetic centers was observed in
experiments with diluted paramagnets (paramagnetic
centers in a diamagnetic crystal) (see, e.g., [22]).

As a possible cause of the observed linewidth, one
can suggest long-range dipole–dipole interactions or

ωe
2

g
gclχ̃cl gCuχ̃Cu+

χ̃cl χ̃Cu+
-----------------------------------.=

χ̃
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exchange interactions occurring due to overlapping of
wings of nearby clusters.

In order to estimate the contribution of the dipole–
dipole interaction to the linewidth, we notice that the
dipole field magnitude is about 10 Oe at the distance of
10 Å from the magnetic moment µB. Thus, the observed
width of the line (~1 kOe) cannot be explained by the
existence of the dipole–dipole interaction between
impurity ions.

Therefore, the linewidth must be determined by the
antisymmetric or anisotropic exchange interaction of
clusters. Reorientation of clusters due to thermal fluctu-
ations leads to the appearance of a random effective
field Heff, which determines the linewidth.

Due the random distribution of the impurities, the
number of closely spaced clusters (i.e., those spaced by
a distance below average) constitutes a noticeable part
of the total number of clusters. In the one-dimensional
case, the probability of detecting an impurity ion at the
distance of n interatomic distances from the given ion
at the impurity concentration x is

(20)

Then, the probability that the distance between
impurity ions is less than N is

. (21)

In the limiting case x ! 1, we obtain P(n < N) ≈ Nx.
Thus, if the impurity concentration is 1% (and the average
distance between impurity ions in a chain is 100 inter-
atomic distances), the part of the clusters that are closer
than Ldim = 32 to each other is about 30%.

On the basis of the observed values of the width of
the magnetic resonance line, we can give a coarse eval-
uation of the magnitude of the random effective mag-
netic field generated by clusters.

Since antiferromagnetic correlations decrease expo-
nentially when moving away from the defect into the
dimerized matrix, we assume that the average value of
the effective field depends on the distance L from the
region of the destroyed dimerization according to the
law

(22)

where ξ is the magnetic correlation length and H0 is the
effective field on the boundary of the suppressed dimer-
ization region.

Averaging over L with the help of distribution (20)
and taking into account that x is small, we obtain the

p n( ) x 1 x–( )n.=

P n N<( ) p n( )
n 0=

N 1–

∑ 1 1 x–( )N–= =

Heff H0 L/ξ–( ),exp=
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following estimate for the width of the EPR line:

(23)

Hence, setting ξ ≈ 10 (see [23]) and taking into account
that at x ~ 1% the linewidth ∆H ~ 1 kOe (see Fig. 8), we
obtain for H0 the estimate H0 ~ 10 kOe. Such a magni-
tude of the effective field corresponds to energy of
order of 1 K, which is about 1% of the intrachain
exchange integral.

Additional information on the nature of the interac-
tion that determines the width of the magnetic reso-
nance line can be obtained with the help of the angular
dependence of the linewidth. The dependences of the
effective g-factor and the EPR linewidth on the orienta-
tion of the magnetic field in the plane bc of the crystal
with x = 0.8% are presented in Fig. 9. The angular
dependence of the g-factor is accurately approximated
by the function

(24)

where φ is the angle in the plane bc measured from the
axis c. Thus, the anisotropy of the g-factor can be
described in terms of the principal values of the g-ten-
sor.

The contribution of the antisymmetric exchange
interaction to the angular dependence of the linewidth
is π-periodic, and the contribution of the anisotropic
symmetric interaction is π/2-periodic [24]. In the case
under consideration, both contributions are present.
Figure 9 illustrates fitting of experimental data for the
EPR linewidth by the function

(25)

However, one must take into account the fact that the
anisotropy of the g-factor also affects the angular
dependence of the linewidth, and this influence is peri-
odic with the period equal to that of the angular depen-
dence of the g-factor (24), i.e., π.

The magnitude of the parameter D of the anisotropic
symmetric exchange is related to the isotropic
exchange integral J by the equation (see [25])

(26)

where ∆g = g – 2. In CuGeO3, (∆g/g) ~ 0.1, which
yields an estimate of 1 K for D. Thus, it is possible that
the observed magnitude of the EPR line is explained by
the existence of the symmetric anisotropic exchange
interaction.

∆H Heff

L 0=

∞

∑ L( )p L( )∼

=  
xH0

1 1 x–( ) 1/ξ–( )exp–
--------------------------------------------------- ξxH0.≈

geff
2 gc

2 φcos
2

= gb
2 φsin

2
,+

A B 2φ( )cos C 4φ( ).cos+ +

D
∆g
g

------- 
 

2

J ,∼
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5. CONCLUSIONS

When studying high-quality samples of the spin-
Peierls magnet CuGeO3 doped with nickel with a small
impurity concentration x < 1%, it was discovered that
the g-factor decreases with temperature to unusually
small values (down to 1.4). This fact is due to formation
of the clusters of antiferromagnetically correlated spins
with antisymmetric exchange interaction around impu-
rity ions. Above the transition temperature, the value of
the g-factor decreases as the impurity concentration
increases.

The dependence of the g-factor on temperature and
concentration can be explained in the framework of the
model of exchange narrowing. An analysis of data
allows one to evaluate the size of the region around an
impurity in which the dimerization is suppressed
(Ldim ≈ 30 interatomic distances) and the size of the
region in which the antisymmetric exchange interaction
exists (LDM ≈ 20 interatomic distances).

Experimental data show that even at small impurity
concentrations, the interaction between clusters plays
an important role at low temperatures. The magnitude
and the angular dependence of the width of the mag-
netic resonance line suggest the existence of an aniso-
tropic exchange interaction in CuGeO3.
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Abstract—Variational tests are performed for current order parameters as probable sources of the pseudogap normal
state of cuprates. The calculations are carried out based on the states with correlations of the valence bond type whose
formation can induce in principle both the superconducting order of the d symmetry and current phases. It is shown
for the t–t'–U Hubbard models with a large value of U(~8t) and the Hubbard splitting of the conduction band that (1)
phases of alternating charge and longitudinal spin currents cannot be realized and (2) transverse spin currents are not
compatible with the superconducting order and they could exist against the normal-state background only within a
very narrow doping region near the optimal one. This region does not correspond to the region of existence of a
pseudogap in cuprates, which refutes the above-mentioned hypothesis of the pseudogap origin. The requirements to
the parameters of models for which the consideration of correlations of the valence bond type yields a reasonable
phase curve. The existence of current phases in the t–t'–U–V Hubbard models with a strong interaction (V > 0.25t) of
particles in neighboring sites is predicted when the d-superconductivity is completely suppressed. © 2001 MAIK
“Nauka/Interperiodica”.
Recent measurements [1, 2] of tunneling spectra of
cuprates in different magnetic fields at different tem-
peratures made it possible to distinguish a pseudogap
from a superconducting gap, i.e., demonstrated their
different nature. This refutes the interpretation of the
pseudogap as a precursor of the superconducting gap
[3]. Several other hypotheses [4–11] have been pro-
posed according to which the pseudogap ∆ps and super-
conducting gap ∆sc have a different origin. In all the the-
ories [4–11], a total gap, which is manifested in photo-
emission experiments (ARPES), has the form

(1)

The main problem is the interpretation of the inverse
dependence ∆ps(δ) on the doping δ, namely, an increase
in ∆ps from zero at almost optimal doping δopt to large
values at δ  0 in the so-called insufficiently doped
region δ < δopt .

The emergence of a pseudogap was explained in a
number of papers [4–6] by the development of new hid-
den order parameters in the insufficiently doped region.
Thus, the authors of papers [4] considered the charge-
density waves with the vector Q = (π, π) as such an
order parameter. However, the nature of attraction in
the s-channel that is capable of compensating for the
local repulsion U > 0 remains unclear. The latter is
responsible for antiferromagnetism of undoped sys-
tems, i.e., the spin-density waves, which are incompat-
ible with charge-density waves. The authors of [5, 6]
discussed the possible relation of the pseudogap to the
development of the order parameters such as current

∆ ∆ps
2 ∆sc

2+ .∼
1063-7761/01/9301- $21.00 © 20153
states of the orbital antiferromagnetic (the d-density
wave, DDW) or the states with analogous spin currents.
The question of the dependence ∆ps(δ) remains open.

In papers [7–11] based on the t–t '–J or t–t '–U mod-
els, the appearance of the pseudogap was explained by
a change in the topology of the Fermi surface at the
optimal doping from a “small” to a large Fermi surface.
In these models, the splitting into the upper and lower
Hubbard subbands is retained within a rather large dop-
ing region. This splitting was obtained in [8] from vari-
ational calculations on the basis of the correlated state
with correlations of the valence bond type. Some fea-
tures of the dependence of the gap anisotropy ∆(ϕ) and
of the ratio ∆max/kTc on doping (see review [12]) can be
explained using this approach [13] because the increase
in ∆ps with decreasing δ naturally follows from the
structure of the lower band at t'/t > 0. However, models
involving the lower Hubbard band yield too high an
asymmetry of tunnel spectra [13]. The latter are capable
of probing the density of states of a system both below
and above the chemical potential value.

Finally, slave-boson technique calculations [14]
suggest that the pseudogap is related to the emergence
of the short-range order phase for spin-density waves,
i.e., to the initial stage of the formation of spin-density
waves and a dielectric Hubbard gap. In this case, the
required inverse dependence ∆ps(δ) can be naturally
explained. However, the pseudogap anisotropy, which
is similar to anisotropy of the superconducting gap of
the d symmetry, remains unexplained.

The aim of this paper is to verify the hypothesis
about hidden current order parameters as the cause of
001 MAIK “Nauka/Interperiodica”
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the pseudogap’s appearance. We verified this hypothe-
sis by performing variational calculations with a corre-
lated state with the formation of valence bonds (a band
analog of the Anderson RVB states). It was shown ear-
lier that the effective Hamiltonian derived in this
approach and, in particular, the interaction of correlated
hops, which appears upon formation of valence bonds,
provides the attraction of holes in the d-channel and the
corresponding d-superconductivity compatible with the
antiferromagnetic order. This interaction also admits in
principle the existence of states with current order
parameters—various current phases. As shown below,
this follows from the negativity of constants at the cor-
responding quadratic terms in the average energy.
Therefore, using this effective Hamiltonian, one can
study the phase diagram of such current states and their
compatibility with the superconducting order.

The calculations were performed by the method
proposed in [8] for the t–t '–U–V Hubbard model:

(2)

Here, H(U, t) is the Hamiltonian of the classical Hub-
bard model with standard parameters U and t. The addi-
tional term ∆H includes the hopping interaction t' of
next-to-neighboring sites and the interaction V of
neighboring sites. The variational correlated state Ψ
with correlations of the valence bond type is con-
structed [8] using the unitary transformation of the
uncorrelated state Φ:

(3)

The choice of the unitary operator W(α) with the varia-
tional parameter α was substantiated in [8]. In [8], the

effective Hamiltonian  was also derived, which acts
in the basis of uncorrelated states {Φ}:

(4)

As the uncorrelated function {Φ}, a function with a
doubled magnetic cell was used for testing the possible
system ordering: antiferromagnetic spin order, super-
conducting order of the d-symmetry, and current order
parameters, which were not studied earlier (charge- or

H H U t,( ) ∆H V t ',( ),+=

∆H V t ',( ) V nnnm

nm〈 〉
∑=

+ t ' cnσ
† cmσ H.c.+( ).

σ
∑

nm〈 〉〈 〉
∑

Ψ Ŵ α( )Φ, Ŵ α( ) α Znm

nm〈 〉
∑ ,exp= =

Znm
1
2
--- cnσ

† cmσ H.c.–( ) nn σ, nm σ–,–( ).
σ
∑=

H̃

Heff α( ) W† α( )HW α( )=

≈ H α H Z,[ ] α2

2
----- H Z,[ ] Z,[ ] .+ +
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spin-density waves of the d-symmetry). The average
energy

of the correlated state (3) is calculated as an explicit
function of a set of one-electron averages yν = 〈yν〉Φ
over the uncorrelated state Φ (below, the subscript
〈…〉Φ at averages is omitted). As a result, the function

(yν) for the effective Hamiltonian (2) proves to be
dependent on quantities yν = {rl – dl0, dl , wl , Jl}ν:

(5)

Here, rl are the density components, dl are similar com-
ponents of the alternating spin, wl are anomalous aver-
ages of the d-symmetry, and Jµ are current order param-
eters. Because of the symmetry, the quantities rl, dl, and
wl depend only on the modulus l = |l |, but not on the
direction of the vector l = (lx , ly). In equations (5), σµ

(µ = 0, 1, 2, 3) are Pauli matrices and ,  are the unit
vectors along the x and y axes, respectively.

Our earlier calculations [8] were related to the states
without current components for models with parame-
ters U/t = 8, V/t = 0–0.1, t '/t = 0.05–0.1. These models
yield solutions with the antiferromagnetic splitting of
the band within a rather broad region of doping and pre-
dict the superconductivity of the d-symmetry within the
same region, which is compatible with the antiferro-
magnetic order. The value of δopt depended on t'/t and
was δopt = 0.18–0.22 for the above values of t'/t. It was
also verified that a consideration of only the first har-
monic l = 1 among all anomalous averages wl describes
the phase curve sufficiently accurately. For this reason,
we will retain in calculations of the phase curves only
the first harmonic both in anomalous averages and in
current order parameters. In this approximation, the
average energy per lattice center is

(6)

where  is related to the normal phase. The current
components Jµ (µ = 0, 1, 2, 3) are related to alternating
charge currents (µ = 0) or spin currents of different

H〈 〉 Ψ Heff〈 〉 Φ H yν( )= =

H

rl
1

2N
------- cnσ

† cn l+ σ,〈 〉 ,
n σ,
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1

2N
------- 1–( )n σ

σ
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† cn l+ σ,〈 〉 ,
n σ,
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1

2N
------- lx
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∑=

Jµ
i

8N
------- 1–( )n σµ( )s s',

s s',
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projections of the spin. We are dealing with circular
currents on elementary plaquettes of the square lattice.
The quantities Jµ =  1, 2 are spin currents with the spin
polarization that is transverse with respect to the quan-
tization axis z of alternating spins in d0.

The expressions for quantities w1 and Jµ in terms of
operators in the k-space have the form

(7)

(8)

Functions ϕd(k) in (7) and (8) have the same angular
dependence of the -symmetry. The fact that the

observed pseudogap has a close anisotropy gave
grounds to the authors of [5, 6] to assume the relation
between the pseudogap and current order parameters.
The summation over k is performed over the entire Bril-
louin zone G of the initial lattice.

Consider the interactions in the effective Hamilto-
nian (4) that can in principle induce both the d-super-
conductivity and current order parameters Jµ. The inter-
action of correlated hops of the type

(9)

appears already in the first-order term over the varia-
tional parameter α in the effective Hamiltonian (4). The
average of (9) over the states with order parameters (5)
per lattice center is

(10)

The required decrease in the normal-state energy upon
formation of valence bonds, i.e., the negative sign of the
first term in (10), results in the sign of α at which con-

stants κ(1) at terms  and  in (10) are negative. This
means that current phases can exist in principle. For
each 〈nm 〉  coupling, the interaction (9) contains the

contribution Vnm ~ αU cnσnn, –σnm, –σ that provides
the attraction of hole in the d-channel. This term was
omitted in the truncated interaction of correlated hops

of the form Vnm ~ cmσ(nn, –σ + nm, –σ). This interaction
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cnσ
†

cnσ
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was applied by Hirsh [15] to the additional holes of an
oxygen system at a low concentration. It can provide
attraction only in the s-channel. However, the single-
band Hubbard model (2) is relevant to the hybridized p–d
band with a high, of the order of unity, total concentra-
tion of holes, and in this case the s-superconductivity is
suppressed by strong repulsion U. Meanwhile, the term

of type ~ cmσnn, –σnm, –σ, which is significant at a high
concentration, can provide attraction in the d-channel.

The total constants κw and κJ of superconducting
and current order parameters in (6), 

(11)

include the first- and second-order contributions over α
and the Coulomb-like interaction between neighbors.
We calculated all the contributions to κw in our earlier
studies of superconductivity [8]. For U/t = 8 and V = 0,
the constant κw takes the values κw(V = 0) = –(1.2–1.5)t
in the region δ ≤ 0.3. This constant provides the d-
superconductivity caused by the formation of valence
bonds. The introduction of the interaction V > 0 sup-

presses the d-superconductivity by decreasing ,
and for V ≥ 0.3t, when the constant κw becomes posi-
tive, the formation of pairs impossible. However, the
same interaction V increases the modulus of the nega-
tive constant κJ. The first-order contributions over α to
κw and κJ are identical. The second-order contribution

 was estimated similarly as  ~ . This esti-
mate is adequate under conditions when the parameter
V was varied within broad limits. Thus, the calculations
were performed for models with constant satisfying of
the following relations:

(12)

The existence of current order parameters and their
compatibility with the superconducting order were
studied based on the mean-field solutions for the prob-
lem with the effective Hamiltonian (4).

The procedure of minimizing ' over Φ is standard.

The self-consistent uncorrelated state Φ =  is
determined by the occupation of the lower one-electron

states of the linearized Hamiltonian:

(13)

Here, the operators  correspond to averages  in
definitions (5) [8]. In the general case, when all the

cnσ
†

κw κw
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order parameters (5) are nonzero, the vector k in the sum
runs through one-fourth of the Brillouin zone G of the ini-
tial lattice, for example, the region {|kx + ky| ≤ π, kx > 0}.

The corresponding linear operator  for each k in (13)
has the form

(14)

in the basis of the following operators of the number
representation:

(15)

The matrix hij(k) is defined by expression (20) in the
Appendix. The diagonalization of hij determines,
according to (24), one-electron energies Ekλ and eigen-

functions  of the linearized Hamiltonian. The latter,
in turn, determine the required order parameters {yν}
according to expressions (25) in Appendix.

Before studying the compatibility of current and
superconducting orders, we performed a search for
phase curves TJ(δ) and Tc(δ). Recall that the normal
phase for solutions under consideration corresponds to
the spin antiferromagnetic disorder and Hubbard split-
ting of the band. The energies of the corresponding
solutions with the two-dimensional antiferromagnetic
order are substantially lower than the energies of para-
magnetic states. This does not mean that there exists a
real long-range order in the system but indicates that
the length of antiferromagnetic correlations is rather
large. Although the mean-field approximation for Heff
cannot give the length of antiferromagnetic correla-
tions, we assume nevertheless that this approximation
can be used to study the short-range interaction effects
produced by correlations of the valence bond type.
Note also that the superconductivity region over tem-
perature and doping proves to be reasonable only for
antiferromagnetic solutions because the density of
states in the lower subband increases. For paramagnetic
solutions, the value of Tc and the doping width of the
superconductivity region are too small.

Temperatures TJ(δ) and Tc(δ) of the appearance of
the current phase with polarization µ or the d-supercon-
ductivity involving the lowest normal state with the
antiferromagnetic order can be determined from equa-
tions, which represent linear expansions of the corre-
sponding equations (25) for Jµ and w1 for Jµ  0 and
w1  0. As a result, we obtain the following equations
for TJ(δ) and Tc(δ)

(16)

ĥk
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d[ ] 2 1
kT
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k

G/2

∑–

× f E1( ) 1 f E1( )–[ ] 0,=
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(17)

(18)

Here, f is the Fermi function, E1 = E1(k) is the energy of
the lower Hubbard band measured relative to the chem-
ical potential, and functions ξk  and ∆k are defined by
expressions (21) in the Appendix. The vector k in the
sum runs the values within the magnetic Brillouin zone
(half the Brillouin zone G of the initial lattice). The
function g(k) reflects the renormalization of pairing
interactions, i.e., of matrix elements for the current
operators Jµ or w1 over the states of the lower Hubbard
band. The constant κw in (17) was calculated as in [8], tak-
ing into account the contributions from anomalous aver-
ages to  from all terms of the effective Hamiltonian (2).
The first-order contributions over the variational
parameter α to constants κJ and κw are identical. Taking
this into account, we estimated κJ from expression (12).

The calculations showed that the alternating charge
and longitudinal current order parameters Jµ = 0, 3 cannot
be realized in models with the antiferromagnetic split-
ting of the band. The reason is that for µ = 0.3, the function
gµ, which characterizes matrix elements of Jµ over the
states of the lower band, vanishes in regions k ~ (π, 0)
which are responsible for the Van Hove singularity in the
density of states. Similar functions for transverse current
polarizations with µ = 1, 2 in (16) and for anomalous aver-
ages of the d-symmetry tend to 1 for k  (π, 0). In the
absence of the real long-range antiferromagnetic order,
we deal only with polarizations with respect to the local
orientation of the alternating spin. The difference
between the properties of transverse and longitudinal
current polarizations has the same nature as that
between longitudinal and transverse spin susceptibili-
ties in models with the antiferromagnetic splitting of
the band [16, 17].

Figure 1 shows phase curves TJ(δ) for transverse
polarizations and Tc(δ) for models with U/t = 8 and two
variants of parameters t' and V. The parameter t' directly
affects the position of the Van Hove singularity and,
hence, the value of δopt. This parameter was chosen to
obtain reasonable values of δopt ~ 0.2–0.24. The intro-
duction of the interaction V > 0 suppresses the super-

1
1
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conducting order but enhances the current order
according to its contributions (12) to constants κw and

κJ, i.e., it reduces  and increases . We are
dealing with the temperatures of emergence of one or
two order parameters, superconducting or current ones,
against the background of the normal state without
these orders. The phase curve of the current phase
restricts only a very narrow doping region near the opti-
mal value. Its width is substantially narrower than that
of the superconductivity region.

The total self-consistent calculations of supercon-
ducting and current order parameters show their incom-
patibility. The iteration converges either to the solution
with the superconducting order without currents (wl ≠
0, J = 0) or to the current state without anomalous aver-
ages (J ≠ 0, wl = 0). The latter exists only in a narrow
doping region around the optimal value and only for the
ratio of constants κJ/κw > 1.45. In particular, for sys-
tems with V = 0 (κJ  ~ κw), no solutions with the current
order exist: the superconducting order suppresses the
current order over the entire doping region. As V
increases, the solutions with J ≠ 0 appear in a narrow
doping region near the optimal value, but with anoma-
lous averages suppressed in this region. Figure 2 shows
the order parameters wl and Jµ = 2 obtained in self-con-
sistent calculation as functions of doping for the model
with parameters U/t = 8, t '/t = 0.05, V/t = 0.1. However,
such a behavior is inconsistent with the experiment
because no suppression of the superconductivity is
observed in cuprates in the middle of the region of its
existence (at δ ~ δopt).

It is interesting to note that for the t–t '–U–V Hub-
bard models with strongly interacting (V > 0.25t) parti-
cles in neighboring sites, the d-superconductivity is
completely suppressed; however, stable current phases
appear with the transverse polarization of spin currents.
Similarly to curves Tc(δ) at V = 0, the corresponding
phase curves Tµ(δ) have a characteristic maximum at
δ = δopt at which the chemical potential coincides with
the Van Hove singularity in the density of states.

For the model with the Hubbard band splitting
(U/t ~ 8), the possibility of superconducting correlation
pairing in itself and the value of Tc depend on the
parameter V. The values V/t ≤ 0.1 used are lower than
estimates V/t ~ 0.2–0.3, which follow from the cluster
derivation of the single-band Hubbard model [18].
Another parameter t '/t ≤ 0.1, which determines δopt, was
also chosen smaller than the values t '/t ~ 0.2–0.3, which
are commonly used in strong-coupling models with the
nonsplit band [19]. For this reason, is was interesting to
calculate phase curves Tc(δ) for systems with large
t '/t ~ 0.3. In such systems, the optimum doping at
which the chemical potential coincides with the Van
Hove singularity proves to be quite high and lies out-
side the region of ferromagnetic spin ordering, where
the lower-energy mean-field solutions for Heff are para-
magnetic. Figure 3 shows the dependences of the super-

Tc
max T J

max
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conducting transition temperature Tc(δ) and the compo-
nent d0(δ) of the alternating spin on doping for models
with large values of t'. They feature large values of δopt

and a drastic decrease in Tc at the moment of disappear-
ance of the antiferromagnetic band splitting (vanishing
of d0). The latter is caused by a decrease in the density
of states at the Fermi boundary. However, current
phases in systems with large t' are absent. It is reason-
able that the mean-field method for Heff only roughly
describes antiferromagnetic correlations. This method
cannot describe antiferromagnetic correlations with a

0.2
δ

0.1 0.3
0

0.01

0.02
Tc

TJ

1

1 2

2

T c
, T

J

Fig. 1. Phase curves Tc(δ) and TJ(δ) corresponding to the
transition of the normal-phase solutions to the supercon-
ducting state or current state with the transverse polariza-
tion for the Hubbard model with U = 8. Curves 1 correspond
to the model with parameters t' = 0.05 and V = 0.1; curves
2, to the model with t' = 0.1 and V = 0. All the quantities Tc,
TJ, U, t', and V are expressed in units of t.
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Fig. 2. Dependences of the anomalous and current order
parameters on doping in the total self-consistent mean-field
solution for the effective Hamiltonian (4) taking into
account correlations of the valence bond type. The model
parameters: U = 8, t' = 0.05, V = 0.1 (in units of t). In Fig. 1,
these parameters correspond to phase curves 1.
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Fig. 3. Phase curves Tc(δ) and the alternating spin d0(δ) for models with U = 8, V = 0, and t' = 0.3 or 0.4 (curves 1 and 2, respec-
tively). All the quantities and Tc are expressed in units of t.
finite radius, except for antiferromagnetic correlations
of neighboring sites caused by the formation of valence
bonds. It seems likely that this causes a drastic increase
in d0 and a decrease in Tc when the paramagnetic solu-
tion transfers to the antiferromagnetic one. Neverthe-
less, the results presented in Fig. 3 show that one can
expect the inclusion of local antiferromagnetic correla-
tions into the region of optimal doping in models with
the large parameter t'. In such systems, the states with
the local antiferromagnetic order or without it are real-
ized in the regions of insufficient doping or excess dop-
ing, respectively, i.e., the initial stage of formation of
the Hubbard band splitting can take place at optimal
doping. This is also indicated by calculations of the
Hubbard model by the slave-boson method [14], which
predict the appearance of a phase with the local spin
order in insufficiently doped systems (δ < δopt). How-
ever, the mean-field treatment of Heff cannot provide
adequate accuracy for the quantitative description of
the evolution of the antiferromagnetic state to the para-
magnetic one.

Thus, the narrow doping region in which solutions
with the current phase exist never coincides with the
region of the pseudogap behavior of cuprates. The
behavior of TJ(δ) and the dependence of the Van Hove
singularity splitting ∆J(δ) on doping related to the cur-
rent order parameter drastically differ from the behav-
ior of the corresponding quantities T*(δ) and ∆ps(δ) for
the pseudogap. The incompatibility of the supercon-
ducting and current orders predicted by the calculations
also contradicts the existence of a gap and a pseudogap
in the insufficiently doped region. Therefore, the
hypothesis about the current phase as a reason for the
pseudogap behavior of cuprates should be ruled out if
the models with large U/t and the Hubbard splitting of
the conduction band are adequate for the description of
doped cuprates.
JOURNAL OF EXPERIMENTAL 
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APPENDIX

The eight-order matrices hij(k) determining the lin-
earized Hamiltonian (14) in the basis (15) have the
form

(19)

(20)

Matrices θν are defined below by expressions (26)–(28).
Empty places in hN and θν are zero matrices. Functions
ξk and ∆k have the form

(21)
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(22)

(23)

The vector l = (lx , ly) in harmonics (22) is one of the lat-

tice vectors with the given modulus (l = |l | = 0, 1, ,

2, , 3 for rl or l = 0, , 2 for dl). The diagonaliza-
tion of hij(k),

(24)

determines the one-electron energies Ekλ and the matrix
Ui λ of eigenvectors in the basis (15). The latter allow
one to calculate the required order parameters

(25)

Matrices θν = θw or θν = θµ for yν = w1, Jµ in (25) are

(26)

(27)

Here, ζµ = (–1)µ and σν are the Pauli matrices.
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=  
1
2
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d k( ) 1

2
--- kxcos kycos–( ).=

2

5 2

hij k( )U jλ UiλEkλ ,=

yν
1

2N
------- ∂H

∂yν
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ν ϕν k( )Uiλ* U jλ f Ekλ( ).
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θµ 0 3,=
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 
 
 
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θµ 1=

 σ2   

σ2    
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  σ2   
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Similar matrices θd and θr for calculations of dl and
rl are

(28)

where σγ = σ0 or σγ = σ3 for calculations of rl with

“even” (l = 0, , 2) or “odd” (l = 1, , 3). The func-
tion ϕν(k) in (25) used for the calculation of yν = dl , rl is

equal to the corresponding l-harmonic (k) of the gen-
eralized s-symmetry defined by expression (22), or the

function ϕν(k) = (k) is equal to the analogous d-har-
monic (23) for the case yν = w1 or Jµ.
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Abstract—The crystal structure parameters and magnetic and electrical properties of La1 – xCaxMnO3 – x/2
reduced manganites with 0 ≤ x ≤ 0.5 are established. These investigations contribute to the understanding of
magnetic interactions in manganites without Mn4+ ions. It is found that these manganites show a long-range
antiferromagnetic order up to x = 0.09 and transform into spin glasses at 0.09 < x ≤ 0.35. The compositions in
the range 0.35 < x ≤ 0.5 show a strong increase in the spontaneous magnetization and critical point associated
with the appearance of spontaneous magnetization and can therefore be viewed as inhomogenious ferromag-
nets. The magnetic and crystal structure peculiarities of La0.5Ca0.5MnO2.75 are established by the neutron dif-
fraction method. The strongly reduced samples show a large magnetoresistance below the point where the spon-
taneous magnetization develops. The magnetic phase diagram of La1 – xCaxMnO3 – x/2 is established by magne-
tization measurements. The magnetic behavior is interpreted assuming that the Mn3+–O–Mn3+ magnetic
interaction is anisotropic (positive-negative) in the orbitally ordered phase and isotropic (positive) in the orbit-
ally disordered phase. Introduction of the oxygen vacancies changes the magnetic interaction sign from positive
to negative, thereby leading to a spin glass state in strongly reduced compounds. The results obtained reveal
unusual features of strongly reduced manganites such as a large ferromagnetic component, a high magnetic
ordering temperature, and a large magnetoresistance despite the absence of Mn3+–Mn4+ pairs. In order to
explain these results, the oxygen vacancies are supposed to be ordered. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The hole-doped  perovs-
kites, where A represents divalent alkaline-earth ele-
ments such as Ca, Sr, and Ba, have recently attracted
much attention because of their unusual magnetic and
transport properties [1, 2]. The parent compound
La3+Mn3+O3 is an antiferromagnetic insulator with the
A-type magnetic order [3]. This compound contains

Mn3+ ions with the  (S = 2) electron configuration,
surrounded by the oxygen octahedron. It is accepted

that the  and  electrons are localized and their total
magnetic moment is determined only by the total spin
because their orbital magnetic moment is frozen. It is
known that Mn3+ is a Jahn–Teller ion with the higher
energy eg and the smaller energy t2g electron levels in
the octahedral oxygen coordination. An orbital order-
ing is observed and the interaction of the magnetic
moments of manganese is anisotropic as a result of the
Jahn–Teller effect. The antiferromagnetic spin axis is
directed almost along the b axis and the ferromagnetic
moment along the c axis [4].

La1 x–
3+ Ax

2+ Mn1 x–
3+ Mnx

4+( )O3

t2g
3 eg

1

t2g
3 eg

1

¶This article was submitted by the authors in English.
1063-7761/01/9301- $21.00 © 20161
La1 – xAx O3 exhibits a ferromagnetic
ground state and a metal–insulator transition occurring
near the Curie point at x > 0.15. In this case, Mn4+ ions

are created from Mn3+. The Mn4+ ion contains  elec-
trons only (S = 3/2). The interplay between the electri-
cal transport and ferromagnetism in these systems is
traditionally interpreted within the framework of dou-
ble exchange interaction [5–7], where the magnetic
coupling between Mn3+ and Mn4+ ions is considered to
result from the motion of the eg electron between two
partially filled d shells with the strong Hund coupling
on site.

However, the double exchange alone is not suffi-
cient to explain all the properties of these com-

pounds [8]. It has been shown that O7 pyro-
chlores also exhibit a colossal magnetoresistance
despite the absence of mixed manganese valence [9].
Recently, many compounds (La(Nd)1 – xPbxMnO3 – xFx,
La0.66Ba0.34Mn1 – xNbxO3, etc.) have been found and
they show the ferromagnetic behavior and large magne-
toresistance in spite of the absence of Mn4+ [10]. Good-
enough [11] adduced arguments for the ferromag-
netism to be due not only to the double exchange but

Mn1 x–
3+ Mnx

4+

t2g
3

A2
3+Mn2

4+
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also to the specific character of superexchange interac-
tions in Mn3+–O–Mn3+, Mn3+–O–Mn4+, and Mn4+–O–
Mn4+ ion systems [11]. In the superexchange model, the
ferromagnetic fraction of the exchange is determined
by a virtual electron transfer from the half-filled eg

orbitals of the Mn3+ ion to the empty ones. Many recent
experimental results have given evidence to the exist-
ence of a phase separation in manganites [12]. There is
no general agreement concerning exchange interaction
mechanisms in the hole-doped manganites. Despite
numerous theoretical and experimental studies, the true
nature of the colossal magnetoresistance in perovskites
is still a matter of discussion.

Because Mn ions play a key role in electrical and
magnetic properties of the manganites by providing
charge carriers, magnetic moments, and local Jahn–
Teller distortions, it is certainly worth investigating the
properties of manganites containing only Mn3+ ions.
The Mn3+/Mn4+ ratio can be changed by various meth-
ods: (i) the substitution of Ln3+ ions by A2+ (Ca, Sr, Ba,
Pb, and Cd) ions in the A sublattice of ABO3 perovs-
kite; (ii) the substitution of Mn ions by different transi-
tion elements (Cr, Fe, Co, etc.) in the B sublattice of
perovskite, and (iii) the removal of oxygen ions, which
produces a reduction process where Mn4+ ions are con-
verted into Mn3+ and their coordination number
decreases.

In this work, the third method is chosen to change
the Mn3+/Mn4+ ratio because there are not enough data
on the results of its application. Moreover, very intrigu-
ing magnetic and magnetoresistance properties have
been revealed for La0.5Ca0.5MnO3 – γ [13] and
Ln0.5Ba0.5MnO3 – γ (Ln = Pr, Nd) [14, 15] systems in our
previous investigations. It was shown that these com-
pounds can exhibit both a large magnetoresistance and
a ferromagnetic component. It is notable that the oxy-
gen content in manganites can vary from 2.5 [16] to
3.27 [17]. A much smaller degree of the oxygen nons-
toichiometry was found for LaVO3 + γ (0 ≤ γ ≤ 0.05) and
LaTiO3 + γ (0 ≤ γ ≤ 0.08), while LaCrO3 and LaFeO3 do
not perfectly reveal the deviation from the stoichiome-
try. This behavior may result from a much larger reduc-
tion in the ionic radius from Mn3+ to Mn4+ than it is
found for other transition metal perovskites [18].

In this paper, we study the oxygen reduction effect
on the magnetization and resistivity of Ca-doped man-
ganites La1 – xCaxMnO3 – x/2 for x ≤ 0.5. These com-
pounds have already been known at the very early stage
of the experimental [3, 4, 19, 20] and theoretical [21,
22] studies of transition-metal oxides. The phase dia-
gram of La1 – xCaxMnO3 compounds with 0 ≤ x ≤ 1 can
be found elsewhere [23–26]. However, the phase dia-
gram for La1 – xCaxMnO3 – x/2 series has not been pro-
posed earlier. Our study shows that both magnetic and
electric properties are very sensitive to the oxygen con-
tent variation.
JOURNAL OF EXPERIMENTAL
2. EXPERIMENT

Polycrystalline La1 – xCaxMnO3 + γ samples with
−0.03 ≤ γ ≤ 0.1, x = 0, 0.05, 0.09, 0.12, 0.15, 0.18, 0.25,
0.30, 0.35, 0.40, 0.45, 0.50 were fabricated using con-
ventional ceramic technology. La2O3, CaCO3, and
MnO2 were mixed, compacted, and prefired at 1000°C
for 2 h in air. The pellets were then again ground and
synthesized at 1550°C during 2 h in air, which was fol-
lowed by quenching the samples with a low concentra-
tion of Ca ions from 900°C and slowly cooling the sam-
ples with a high concentration of Ca ions at a rate of
80°C/h in order to obtain the stoichiometric oxygen
content. The X-ray powder diffraction data were
recorded at room temperature with the DRON-3 dif-
fractometer in CoKα radiation. According to X-ray
measurements, all the as-prepared samples were single-
phase perovskites with the orthorhombic symmetry of
the unit cell. The thermogravimetric study revealed the
as-prepared samples in the range 0 ≤ x ≤ 0.18 to have an
oxygen content slightly above the stoichiometric value
(γ ≤ 0.1). The excess of oxygen decreases gradually as
the calcium content increases. The samples with x =
0.25, 0.30, 0.35 are stoichiometric (γ ≈ 0). The samples
with x = 0.40, 0.45, 0.50 have an oxygen content
slightly less than the stoichiometric value (γ ≥ –0.03).
In order to prepare the stoichiometric samples, the
compositions in the range 0 ≤ x ≤ 0.18 were annealed in
small evacuated silica tubes at 700°C during 30 h using
metallic tantalum as an oxygen getter. The amount of
Ta was calculated assuming that the final products are
Ta2O5 and stoichiometric compositions La1 – xCaxMnO3
according to the relation

(1)

In contrast, the samples with x = 0.40, 0.45, and 0.50
were annealed in air at 900°C during 48 h. These reac-
tions can be described by

(2)

Polycrystalline La1 – xCaxMnO3 – x/2 samples with x =
0, 0.05, 0.09, 0.12, 0.15, 0.18, 0.25, 0.30, 0.35, 0.40,
0.45, 0.50 were obtained by the topotactic reduction
method in the above-mentioned manner. The reduction
of the samples was performed at 900°C during 2 h in
small evacuated silica tubes in presence of metallic Ta.
The final oxygen content was calculated from the change
in the weight of samples during the reduction. The relative
error in oxygen content measurements did not exceed 1%.
Therefore, the chemical formula for the reduced samples
can be written as La1 – xCaxMnO3 – x/2 ± 0.02. The reoxida-
tion process leads to an increase in the weight corre-
sponding to the loss of the weight during the reduction.
According to X-ray measurements, almost all the sam-

La1 x– CaxMnO3 γ+
2γ
5

------Ta+

La1 x– CaxMnO3
γ
5
---Ta2O5.+

La1 x– CaxMnO3 γ+
γ
2
-----O2+ La1 x– CaxMnO3.
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ples from the La1 – xCaxMnO3 – γ series (with γ = 0, x/2)
were single-phase perovskites with the O1-orthorhom-
bic (x ≤ 0.09) or O-orthorhombic (0.12 ≤ x ≤ 0.50) unit
cells similar to the as-prepared ones.

Magnetic and electric measurements have been per-
formed for compositions corresponding to both

La1 − xCax( )O3 and La1 – xCaxMn3+O3 – x/2

series. For the magnetic measurements, an OI-3001
vibrating-sample magnetometer was used in the tem-
perature range from 4 to 300 K. Resistivity measure-
ments were performed using the standard four-probe
method with ultrasonically deposited indium contacts.
The dc-resistivity data were collected for well-sintered
samples in the form of bars with 10 × 2 × 2 mm dimen-
sions over the temperature range from 77 to 350 K. The
magnetoresistance MR was calculated using the for-
mula

(3)

where ρ(H) is the resistivity in the magnetic field of
9 kOe and ρ(H = 0) is the resistivity without the mag-
netic field.

Neutron diffraction measurements for the
La0.5Ca0.5MnO2.75 sample were performed in the Berlin
Neutron Scattering Center using an E2 Flat Cone dif-
fractometer with the wavelength of neutrons λ =
1.79635 Å.

3. RESULTS AND DISCUSSION

The crystal structure parameters for both
La1 − xCaxMnO3 and La1 – xCaxMnO3 – x/2 series are dis-
played in Fig. 1. Both stoichiometric and reduced series
exhibit orthorhombic distortions in the entire range of
the calcium concentration; however, O1-orthorhombic

distortions (c/  < a ≤ b) transform into O-orthorhom-

bic ones (a < c/  < b) at x ~ 0.1. According to Good-
enough, the O1 distortions are caused by the orbital
ordering, which is a result of the cooperative static
Jahn–Teller distortions of Mn3+ in LaMnO3. As a
dopant ion concentration increases, the removal of
cooperative Jahn–Teller distortions is observed [25].
The reduced compounds have only Mn3+ ions; however,
oxygen vacancies destabilize the parent orbital order-
ing, and therefore, the Jahn–Teller distortions. For the
samples with x < 0.1, oxygen vacancies are insufficient
in order to remove the cooperative Jahn–Teller distor-
tions and the unit cell of these samples has the O1-ortho-
rhombic symmetry. For both series, the volume of the unit
cell decreases gradually as the calcium content
increases. This is explained by the decrease in the size
effect contribution to the crystal structure distortions.
However, this process is much less pronounced for
La1 − xCaxMnO3 – x/2 series. The appearance of vacancies
leads to a decrease in the average oxidative state of

Mn1 x–
3+ Mnx

4+

MR
ρ H( ) ρ H 0=( )–

ρ H 0=( )
------------------------------------------ 100%,×=

2

2
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manganese. It is well known that the ionic radius of
Mn3+ is larger than that of Mn4+. The effective ionic
radii of Mn3+ and Mn4+ in the octahedral oxygen coor-
dination are 0.645 and 0.530 Å, respectively [27]. The
vacancies must therefore reduce the unit cell volume,
whereas the transformation of Mn4+ into Mn3+ must
give rise to it. Our data indicate that the latter process
dominates.
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Fig. 1. The crystal structure parameters for La1 – xCaxMnO3
stoichiometric (top panel) and La1 – xCaxMnO3 – x/2
reduced series (medium panel). The bottom panel displays
the unit cell volume as a function of Ca concentration.
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Fig. 2. ZFC magnetization versus temperature for samples
with x = 0.09 (curve 1), 0.12 (2), 0.15 (3), and 0.18 (4).
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Fig. 3. ZFC and FC magnetizations versus temperature for (a) x = 0.30, (b) x = 0.50, H = 100 Oe.
The zero-field-cooled (ZFC) and field-cooled (FC)
magnetizations in the field of 100 Oe for
La1 − xCaxMnO3 – x/2 series are presented in Figs. 2 and 3.
The samples in the ranges 0 ≤ x ≤ 0.12 and 0.30 ≤ x ≤
0.50 show one ZFC-magnetization peak. The samples
with x = 0.15, 0.18, 0.25 have two ZFC-magnetization
peaks. The second magnetization peak at higher tem-
peratures can be ascribed to a large magnetic anisot-
ropy of these samples. The temperature corresponding
to the largest magnetization on the M(T) curve gradu-
ally decreases as the Ca concentration increases. We
adopt two methods of estimating the critical tempera-
ture Tcr at which the magnetic transition occurs: (i) the
onset of magnetic transition; Tcr is defined as the tem-
perature point where ZFC and FC magnetizations
become different in the field of 100 Oe; (ii) the comple-
tion of magnetic transition; Tcr is defined as the temper-
ature point where the ZFC magnetization reaches its
maximum value on the M(T) curve measured in the
field of 100 Oe. In the range 0 ≤ x ≤ 0.09, these two tem-
peratures are close to each other, which indicates a
well-defined transition to the magnetically ordered
state. The samples in the interval 0.12 ≤ x ≤ 0.18 show
an entirely different magnetic behavior. The ZFC mag-
netization for the sample with x = 0.15 demonstrates
two peaks on the M(T) curve, which implies a complex

4

M, µB/f. u.

H, kOe
0 8 12 16

0.4

0.8

1.2

1.6 x = 0.15

0.50
0.25

0.40

0.30
0.05

Fig. 4. The magnetization versus magnetic field curves for
La1 – xCaxMnO3 – x/2 samples with x = 0.05, 0.15, 0.25,
0.30, 0.40, 0.50 measured at 6 K.
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character of the magnetic ordering in this composition.
The transition to the paramagnetic state remains narrow
for all the compositions with x ≤ 0.18. For the x = 0.30
sample (Fig. 3), ZFC and FC magnetizations start to dif-
fer around 140 K, however a ZFC-magnetization peak is
observed at a sufficiently low temperature 35 K. The
ZFC-magnetization peak shifts towards high temperatures
up to 160 K as the Ca concentration reaches x = 0.50.

In Fig. 4, the magnetization is shown as a function
of field at temperature of 6 K. It is difficult to estimate
the spontaneous magnetization because for a majority
of the reduced samples, the magnetization is not satu-
rated in the field up to 1.6 T. The large slope in the M(H)
curve could be attributed to magnetic inhomogeneity or
large magnetic anisotropy of these samples. The spon-
taneous magnetization first increases with increasing
Ca content up to the x = 0.15 composition and then
decreases. The largest spontaneous magnetization Ms =
1.35µB per formula unit (µB/f.u.) corresponds to the x =
0.15 composition; however, even in this case there is no
pure ferromagnetic ordering because the expected
value for the parallel ordering of all Mn3+ magnetic
moments is around 4µB/f.u. The minimum spontane-
ous magnetization Ms = 0.19µB/f.u. occurs for the x =
0.30 composition, where spin-glass properties are most
pronounced. The surprise is that Ms rises again starting
from the x = 0.40 composition and reaches 1.26µB/f.u.
for the x = 0.50 composition.

For the La0.5Ca0.5MnO2.75 sample, two neutron dif-
fraction patterns were collected at 250 K (in the para-
magnetic state) and 1.6 K to check the character of its
magnetic ground state. The patterns were Rietveld
refined with the two-phase model. In the refinements,
the pattern profile was simulated by a split pseudo-Voigt
function and the background was fitted to a seventh-
degree polynomial function. The La0.5Ca0.5MnO2.75
phase shows a clear asymmetric line broadening indi-
cating the existence of large microstrains in this phase.
The problem with the appropriate modeling of the
(hkl)-dependent shape of the lines is the main source of
the difference between the measured pattern and fitted
AND THEORETICAL PHYSICS      Vol. 93      No. 1      2001
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Structural parameters obtained in the Rietveld refinement of the NPD pattern with λ = 1.79635 Å; Pbnm space group

La0.5Ca0.5MnO2.75 phase at 250 K*

Atom x y z Biso, Å2***

La/Ca (4c) 0.013(8) 0.005(10) 0.25 0.75(36)
Mn (4b) 0 0.5 0 0.97(39)
O1 (4c) 0.049(16) 0.485(16) 0.25 3.55(39)
O2 (8d) 0.734(11) 0.263(13) 0.030(6) 3.55(39)

La0.5Ca0.5MnO2.75 phase at 1.6 K**

Atom x y z Biso, Å2

La/Ca (4c) 0.995(13) 0.008(8) 0.25 0.57(35)
Mn (4b) 0 0.5 0 0.78(37)
O1 (4c) 0.054(13) 0.489(13) 0.25 3.12(30)
O2 (8d) 0.733(9) 0.267(9) 0.030(6) 3.12(30)

  * Cell parameters are a = 5.428(4) Å, b = 5.414(5) Å, c = 7.675(6) Å; the total number of reflections is 165; the conventional Rietveld
R factors are RP = 5.72%, RWP = 7.85%, Rexp = 3.72%; the Bragg RB is 7.73%; χ2 = 4.77.

** Cell parameters are a = 5.421(5) Å, b = 5.406(5) Å, c = 7.664(7) Å; the total number of reflections is 165; the conventional Rietveld
R factors are RP = 6.04%, RWP = 8.07%, Rexp = 3.75%; the Bragg RB is 6.73%; χ2 = 4.62; the magnetic R-factor is 5.60%.

*** Biso is an isotropic temperature factor
curve. The La0.5Ca0.5MnO2.75 phase was fitted assuming
orthorhombic Pbnm.

The most important structural parameters and agree-
ment factors of the refinement are listed in the table.
The refined low-temperature value of the magnetic
moment on the manganese atom is µ = 0.81(45)µB. The
refined value of the Mn moment is not sensitive to the
Mn spin direction.

According to electric resistivity measurements, all
the reduced samples are semiconductors. The resistiv-
ity markedly increases as the temperature decreases
(Fig. 5). There is no metal-insulator transition even for
the x = 0.15 sample, which shows the largest ferromag-
netic component in the entire series. The magnetoresis-
tance gradually increases below the point where the
magnetic order develops. However, there is no magne-
toresistance peak observed in the mixed-valence ferro-
magnetic manganites.

Summarizing our magnetization data, we con-
structed a hypothetic magnetic phase diagram of
La1 − xCaxMnO3 – x/2 series (Fig. 6), i.e., a dependence of
the magnetic transition temperature on the calcium
concentration. The phase diagram of La1 – xCaxMnO3
compounds (with 0 ≤ x ≤ 1) can be found elsewhere
[23–26]. The x = 0 and x = 1 members of the
La1 − xCaxMnO3 system (namely, LaMnO3 and
CaMnO3) are antiferromagnetic insulators at low tem-
peratures, with the A- and G-type of magnetic ordering,
respectively [3]. The G-type ordering is the antiferro-
magnetic ordering on the nearest-neighbor magnetic
sites. Adding Ca ions destroys the antiferromagnetic
order. The ferromagnetic behavior starts to manifest
itself at x ≈ 0.1, and the compositions with x up to 0.3
have both antiferromagnetic and ferromagnetic charac-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
teristics. The composition with x = 0.3 is clearly ferro-
magnetic, while the compositions with x > 0.5 are anti-
ferromagnetic. In agreement with extensive NMR data
[12, 28], the concentration phase transitions go through
the mixed two-phase state at the dopant ion values x <
0.1 and x > 0.5 [29].

The diagram of La1 – xCaxMnO3 – x/2 series (Fig. 6)
consists of six regions. The concentration boundaries
are traced through the critical points. The compositions
in the range 0 ≤ x ≤ 0.09 demonstrate a magnetization
peak, whereas the spontaneous magnetization gradu-
ally increases. We assume that the ground state is anti-
ferromagnetic in this range, probably of the A-type
similar to that observed for the parent LaMnO3 compo-
sition [3]. The ferromagnetic component could be
attributed to the noncollinear magnetic structure or fer-
romagnetic clusters. It is well known that noncollinear
magnetic structure must result from the double
exchange between Mn3+/Mn4+ ions [6]. However, the
La1 – xCaxMnO3 – x/2 system does not contain Mn3+/Mn4+

pairs. Therefore, the magnetic behavior results from
superexchange interactions between Mn3+–O–Mn3+. In
this analysis, we assumed that the ferromagnetic com-
ponent develops because of ferromagnetic clusters
associated with the domains where the static Jahn–
Teller distortions are removed. According to Goode-
nough’s considerations [11], the Mn3+–O–Mn3+ super-
exchange magnetic interaction is ferromagnetic and no
static Jahn–Teller correlations occur. The removal of
the static Jahn–Teller distortions is provided by a small
amount of the oxygen vacancies that weakly affect the
anion coordination of the majority of Mn3+ ions. Taking
all this into account, it seems reasonable to assume that
in the range 0 ≤ x ≤ 0.09, our compounds are ferromag-
SICS      Vol. 93      No. 1      2001
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netic clusters in the antiferromagnetic medium. The
open squares in Fig. 6 denote the magnetic transition
onset temperature. The full squares demonstrate the
ZFC-magnetization peak temperature. In the range 0 ≤
x ≤ 0.09, these two temperatures are sufficiently close,
and the dash-and-dot line traced through the filled sym-
bols is not significant.

We note that the appearance of the oxygen vacancies
stabilizes the other local orbital state in the two nearest
Mn3+ ions rather than the state in the parent matrix. This
process gradually destroys the long-range orbital order-
ing inherent to LaMnO3, thereby leading to a collapse
of the long-range orbital order at 0.09 ≤ x ≤ 0.35. How-
ever, the pure ferromagnetic ground state does not
develop in this region. Magnetization data (Figs. 2 and
3) indicate that the ferromagnetic component is
strongly destabilized, which is likely due to a competi-

4

150

108

T, K
100 200 250 300

p, Ω cm

106

104

102

1

2

3 0

–4

–8

–12

–16

MR, %

Fig. 5. The resistivity and magnetoresistance versus temper-
ature for samples with x = 0.15 (curves 1 and 3) and x = 0.50
(curves 2 and 4).
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Fig. 6. Magnetic phase diagram of La1 – xCaxMnO3 – x/2. A
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the paramagnet. The solid line indicates critical tempera-
tures. The dash-and-dot line traced through the full squares
is not significant. The dashed line is traced through x = 0.30
because it is a singular point.
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tion between antiferromagnetic and ferromagnetic
exchange interactions. We think that the nature of the
antiferromagnetic interactions in this region is different
from that for the parent LaMnO3. It is well known that
LnMnO3 (Ln = Y, Er, Ho, Lu, Sc) with the hexagonal
structure are antiferromagnets with TN around 80 K
[30]. In these compounds, the Mn3+ ions are located in
the 5-fold coordination. For example, magnetic proper-
ties of the La0.85Ca0.15MnO2.92 composition can be
understood assuming that Mn3+ (fivefold coordina-
tion)–O–Mn3+ (fivefold coordination) and Mn3+ (five-
fold coordination)–O–Mn3+ (sixfold coordination)
exchange interactions are antiferromagnetic, whereas
the Mn3+ (sixfold coordination)–O–Mn3+ (6-fold coor-
dination) exchange interactions are ferromagnetic. For
compositions in the range 0.09 < x ≤ 0.35, the long-
range ferromagnetic ordering is not realized, which is
likely due to the increasing oxygen vacancy number
above the critical concentration. In this region, the tran-
sition to the magnetic ordering state goes through two
stages. This can be understood from the ZFC and FC
curves. The ZFC magnetization value first starts to
increase, reaches its maximum, and then rapidly
decreases. The FC magnetization behaves differently. It
does not undergo a fall at low temperatures. This mag-
netization fall may be explained by the magnetic inter-
action energy between ferromagnetic clusters being
insufficient to align their magnetic moments after zero-
field cooling. After the field cooling, however, the mag-
netic moment directions remain the same. This magne-
tization behavior is typical of the spin glasses where
magnetic clusters of magnetic moments are gradually
blocked with decreasing temperature. The dashed line
is traced through x = 0.3 because it is a singular point
where the spontaneous magnetization is minimal and
the temperature coincides with that of the ZFC magne-
tization peak. It is possible that the magnetic behavior of
the compounds in the vicinity of this point has sharper
modifications than those presented in this diagram.

The developing ferromagnetic component in the
compositions with the calcium concentration 0.35 < x ≤
0.50 may be the result of a short-range ordering of oxy-
gen vacancies. Apparently, the oxygen vacancies tend
to order such that the ferromagnetic part of the
exchange interaction between Mn3+ placed in the 6-fold
coordination becomes more intense than the antiferro-
magnetic one. In this region, the samples appear to be
inhomogeneous ferromagnets. In support of this
hypothesis, let us recall several research results.
Recently, it was found from high-resolution electron
microscopy and selected-area electron diffraction mea-
surements that the stoichiometric La0.5Ca0.5MnO3 and
reduced La0.5Ca0.5MnO2.75 compounds differ by the
domain sizes. The reduced samples have a much
smaller domain size and a larger number of domains
than the stoichiometric ones. It is therefore reasonable
to assume the oxygen vacancies to be accommodated in
the domain walls [16].
 AND THEORETICAL PHYSICS      Vol. 93      No. 1      2001
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It is interesting to note that the compositions with
x = 0.15 and x = 0.50 show a relatively large magnetore-
sistance despite the absence of the mixed valence in
manganese. We suppose that the electric conductivity
of reduced samples has an impurity nature. There are
impurity levels associated with a small number of Mn2+

or Mn4+ ions. These impurity states are located near the
structure defects, such as the oxygen vacancies, and are
probably characterized by very wide energy spectra.

The magnetoresistance may result from a strong
decrease of the energy gap between shallow impurity
levels and a wide conduction band induced by the exter-
nal magnetic field applied to the magnetically ordered
state.

4. CONCLUSIONS

We can summarize our results as follows.

1. The sign of the Mn3+–O–Mn3+ superexchange
magnetic interaction depends on the orbital orientation
in the orbitally ordered phases of manganites. The mag-
netic structure can be deduced from the orbital ordering
and Goodenough–Kanamori rules [11].

2. Oxygen vacancies remove the orbital ordering in
the manganites. This process is in some aspects analo-
gous to the Mn4+ doping of the LaMnO3 parent com-
pound.

3. In the orbitally disordered phase, the sign of the
Mn3+–O–Mn3+ superexchange interaction depends on
the oxygen neighborhood. When both Mn3+ ions are in
a six-fold oxygen surrounding, the Mn3+(VI)–O–
Mn3+(VI) magnetic interaction is ferromagnetic. In the
case where both Mn3+ ions or one of them are in a five-
fold oxygen surrounding, the Mn3+(V)–O–Mn3+(V)
and Mn3+(VI)–O–Mn3+(V) interactions are antiferro-
magnetic.

4. The La1 – xCaxMnO3 – x/2 system with x ≥ 0.35 is
decomposed into clusters with different chemical com-
positions. The clusters with a high calcium content are
ferromagnetic, whereas those with a low calcium con-
tent are antiferromagnetic.

5. The manganites can exhibit a large magnetoresis-
tance despite the absence of Mn3+–Mn4+ pairs. These
data support the superexchange picture of magnetic
interactions in manganites.
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Abstract—The expression for the electron wave function for a 3D crystal in a constant magnetic field is
obtained in the strong coupling approximation. A 3D Harper-type equation describing the electron spectrum in
magnetic 3D subbands is derived. The Fermi surfaces for monovalent noble metals are constructed for various
orientations and magnitudes of magnetic fields corresponding to a rational number p/q of the magnetic flux
quanta; radical changes in the topology of the Fermi surfaces in a strong magnetic field are observed. As a result,
considerable changes in the physical properties of crystals in a strong magnetic field can be expected. In par-
ticular, a metal–semiconductor transition occurs for all even values of q, while metallic properties are preserved
for odd values of q. The total energy of electrons as a function of the magnetic field is also calculated and shows
a minimum for p/q = 1/2. The type of thermodynamic oscillations in an ultrastrong magnetic field is discussed.
The effects considered by the authors may be observed in fields with a strength of several tens of megagausses.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of Bloch electrons in a strong magnetic
field for which the magnetic flux through a unit cell is
comparable with a flux quantum (the attainment of such
a field is discussed, for example, in [1]) has been con-
sidered for the last several decades. In the pioneering
works by Harper [2], Zilberman [3], Azbel [4], and
Hofstadter [5], basic properties of the quantum states of
a Bloch 2D electron in a transverse magnetic field were
established. For example, it was proved that in the case
of a strong periodic potential, a complex energy spec-
trum is formed, which strongly depends on the number
of magnetic flux quanta through a unit cell and is deter-
mined by the ratio Φ/Φ0 = p/q, where Φ is the magnetic
flux, Φ0 = 2π"c/|e| is the magnetic flux quantum, and p
and q are coprime integers. The corresponding energy
spectrum is known as the Hofstadter “butterfly” [5]. In
the case of a weak periodic potential, the Landau levels
split into magnetic subbands whose number is equal
to p [6, 7].

During the last decade, one-electron states in semi-
conducting 2D superlattices in a transverse magnetic
field were studied intensely. The interest in these
objects is due to the physical effects typical of electrons
with a Hofstadter butterfly-type spectrum, which may
be observed in principle in such structures owing to
considerable advances in nanotechnology. This prob-
lem was considered in many theoretical [6–10] and
experimental [11, 12] works. For example, the effects
of magnetic breakdown in quasi-two-dimensional
organic conductors were studied in [9, 10] by using the
strong coupling method, which is employed for deriv-
ing the Harper equation, and experimental data con-
1063-7761/01/9301- $21.00 © 20168
firming the observation of the energy band structure of
electrons in a magnetic field, which is typical of Hofs-
tadter butterfly-type spectra, were presented in [12].

The problem of quantum states in 3D crystals in a
strong magnetic field was also investigated. Peter et al.
[13] proved that a simple broadening of magnetic bands
occurs in a simple cubic lattice in a field oriented along
(0, 0, 1) upon a transition from the 2D to 3D spectrum.
Fractional quantization of the Hall conductivity was
detected in [14] in a 3D anisotropic lattice in a tilted
field when the vector H lies in the yz plane. The total
energy of electrons and the density of states were cal-
culated by Hasegawa [15] for a simple cubic lattice for
certain field orientations ((0, 0, 1), (0, 1, 1), and (1, 1, 1));
in some cases, a decrease smaller than an increase in the
total electron energy in a magnetic field was observed.
These investigations were carried out for an arbitrary
orientation of the field in a simple cubic lattice by Kun-
szt and Zee [16], who also calculated the total electron
energy and the density of states. They also observed
that the total energy decrease again in a magnetic field.
The constant-energy surfaces in the magnetic Brillouin
zone for a simple cubic lattice in a magnetic field with
orientations (0, 0, 1) and (1, 1, 0) were constructed for
the first time in [17]. These surfaces make it possible to
predict the kinetic and thermodynamic properties of a
metal (the type of magnetic susceptibility, magnetic
breakdown, conductivity oscillations, and so on) for mag-
netic flux values p/q = 1/2 and 1/3. It was also proved that
in the vicinity of prime rational values of p/q (e.g., for
p/q = 1/2 + 1/q', where q' @ 1), a system of narrow mag-
netic subbands (of the type of Landau levels) is formed,
001 MAIK “Nauka/Interperiodica”
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which can be calculated using the Onsager–Lifshits
quantization rule [18] on a new Fermi surface.

In the present work, the electron states of more real-
istic 3D crystals with an fcc structure in an ultrastrong
magnetic field are considered. Vector H may be
directed along any translational axis in the crystal. In a
weak magnetic field, discrete Landau levels (magnetic
tubes in the 3D problem) are formed in a metal, whose
positions are determined by the semiclassical Onsager–
Lifshits quantization rule, while in a strong magnetic
field, magnetic energy subbands (whose number is q)
are formed. Each magnetic subband corresponds to the
range of definition of quasimomentum, which is known
as the Brillouin magnetic band. The kinetic and thermo-
dynamic properties of the electron gas in this case are
determined by the spectrum and by the shape of the
Fermi surface in the magnetic subbands. We studied the
states of a Bloch electron in crystals with an fcc lattice
(Cu, Ag, Au, etc.) placed in a magnetic field oriented
along (0, 0, 1) and (1, 1, 0).

In Section 2, the choice of the unit cell and the Bril-
louin zone in a magnetic field is considered. In Subsec-
tion 3.1, the strong coupling approximation is used for
constructing the wave function satisfying the general-
ized Bloch–Peierls conditions [19]. In Subsections 3.2
and 3.3, the energy spectrum is determined and the
Fermi surfaces are constructed in the vicinity of prime val-
ues of the number of magnetic flux quanta (1/2 and 1/3).
It is shown that the physical properties of metals with
an fcc lattice may change radically in a magnetic field.
For instance, in the H || (0, 0, 1) orientation for even val-
ues of the denominator of p/q, when the energy bands
contact one another, the metal is converted into an insu-
lator (semimetal). For odd values of q, metallic proper-
ties are preserved, but the number of electrons in the
upper partially filled band is of the order of N/q, where
N is the total number of free electrons in the metal. The
quantum states and the Fermi surface for the field ori-
entation along (1, 1, 0) for p/q = 1/2 are investigated in
Section 4. The formation of magnetic subbands for
energies corresponding to open orbits is investigated
for a magnetic flux close to p/q = 1/2. In Section 5,
peculiarities of the de Haas–Van Alphen effect in a
strong magnetic field are considered. It is shown that in
the interval 0 ≤ p/q ≤ 1, several series of magnetic sus-
ceptibility oscillations must be observed in the region
of fields corresponding to values of p/q with small
denominators q. The effect of Landau level broadening
on the type of magnetic oscillations is also considered.
The total energy of the electron gas for H || (0, 0, 1) is
also calculated at characteristic points p/q = 0, 1/4, 1/3,
1/2, 2/3, 3/4, and 1. It is shown that the minimum is
attained for p/q = 1/2. The latter circumstance indicates
that in an ultrastrong magnetic field (with the given ori-
entation), a monovalent metal with an fcc lattice
becomes paramagnetic.

Obviously, the experimental observation of the
effects considered by us here requires crystals with a
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
large lattice period and ultrastrong magnetic fields. The
record value of the magnetic field (H = 28 MG) was
attained recently at the Russian Federal Nuclear Center
(VNIIF) (Sarov). If the crystal lattice period is 3–4 Å,
the magnetic flux in such fields is p/q ~ 0.1, and we can
speak only on the Landau level broadening. In lattices
with a period of 5–6 Å, p/q ~ 0.2–0.3, and the effects
considered below can be observed experimentally.

2. MAGNETIC TRANSLATIONS
AND MAGNETIC UNIT CELL

Let us first determine the law of transformation of
wave eigenfunctions in a magnetic field and the shape
of the magnetic Brillouin zone. This will be done
mainly following [20] as well as [21]; however, it will
be convenient to use the Landau gauge. Let the mag-
netic field H be directed along a certain translation a3.
We choose the Cartesian system of coordinates (x1, x2,
x3) so that one of the axes (we denote it by x3) is directed
along the magnetic field, while the other two axes lie in
the plane perpendicular to H. The law of transformation
of the wave function upon translations is determined by
the vector potential gauge; we choose the vector poten-
tial in the form A = (0, Hx1, 0).

Let ψ(r) be a certain eigenfunction of the Hamilto-

nian (r). Under the translation r  r + a (a is a lat-
tice period), this function is transformed into ψ(r + a),
but it is now an eigenfunction of the Hamiltonian

(r + a) which does not coincide with (r) since the
vector potential has been transformed as follows:

Here, a has components (a1, a2, a3) in the Cartesian system
of coordinates (x1, x2, x3). In order to obtain the eigenfunc-

tion of (r), we must return to the initial Hamiltonian,
which can be carried out through the gauge transforma-
tion

under which the wave function acquires an additional
phase factor:

Denoting the result of all the operations by ψ(r), we
define the magnetic translation operator

(1)

where h = |e|H/"c. It is well known [21] that the opera-

tor  introduced here can be referred to as the transla-
tion operator in a magnetic field.

Ĥ

Ĥ Ĥ

A r( ) A r a+( ) A r( )= Ha1n2.+

Ĥ

A A ∇ f , f+ Ha1x2,–=

ψ ψ ief /"c( ).exp

T̂a

T̂aψ r( ) ψ r a+( ) iha1x2( ),exp=

T̂a
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It follows from definition (1) that after two succes-
sive translations by a and a', we have

(2)

and, hence, the operators  and  generally do not
commute,

and ensure not an ordinary, but a projected representa-
tion of the translational group. The basis of these repre-
sentations are the wave functions of the stationary
states of a Bloch electron in a magnetic field. Obvi-
ously, this representation is not projected, but ordinary
if the condition ω(a, a') = 1 is satisfied in (2). Accord-
ingly, the translations for which this condition is satis-
fied form the group of magnetic translations ensuring
the Bloch law of transformation of the wave function.
We will distinguish between these translations using
the subscript m: am = (a1m, a2m, a3m). It follows from
relations (2) that translations are magnetic if the follow-
ing condition is satisfied:

(3)

i.e., the magnetic flux through the area a1m  is equal
to an integral number of flux quanta Φ0 = 2π"c/|e|. In
formula (3), a1m,  are the components of the two

vectors am and  carrying out magnetic translations
along the axes x1 and x2. In a crystal with a unit cell con-
structed on noncoplanar shortest translations a1 and a2
as well as a3 || H, condition (3) will be satisfied in a
magnetic field satisfying the condition

(4)

where  and  are the components of the basis
vectors a1 and a2 along x1 and x2, respectively, and q is
an integer. In this case, in accordance with relations (3)
and (4), vectors am and  must be chosen so that

a1m  = . Consequently, condition (3)
defines not the entire magnetic translation vector, but
only its components along the axes x1 and x2, lying in
the plane perpendicular to H. Consequently, a magnetic
unit cell in the 3D space of the crystal can be chosen in
various ways. For its optimal choice, we can use the
principles similar to those employed for deriving the
Bravais lattices: if condition (3) is satisfied, the mag-
netic cell symmetry must correspond to the symmetry
of the entire lattice; the number of right angles and
equal sides must be maximum, and the volume of the
magnetic unit cell must be minimal.

T̂aT̂a' T̂a a'+ ω a a',( ),=

ω a a',( ) iha1' a2–( ),exp=

T̂a T̂a'

T̂aT̂a' T̂a'T̂a 2iha1' a2–( ),exp=

ha1ma2m' 2π
Ha1ma2m'

Φ0
--------------------- 2πp,   p 1 2 3 …;, , ,= = =

a2m'

a2m'

am'

Ha1x1
a2x2

Φ0
----------------------

p
q
---,=

a1x1
a2x2

am'

a2m' qa1x1
a2x2
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Since we are studying the quantum states of a Bloch
electron in an fcc lattice, we define a magnetic unit cell
and the magnetic Brillouin zone for this type of lattices.
We direct the Cartesian axes of coordinates (x, y, z)
along the sides of a cube. In such a geometry, the vectors
forming the unit cell have the coordinates (a/2, 0, a/2),
(0, a/2, a/2), (a/2. a/2, 0). For the sake of definiteness,
we consider two field orientations: H || (0, 0, 1) and
H || (1, 1, 0).

(a) Let us assume that the magnetic field is directed
along the axis a3 = a(0, 0, 1) and the vector potential has
the form A = (0, Hx, 0). It follows from relation (4) that
for the given field orientation, the fraction p/q is the
number of magnetic flux quanta through the area a2/4.
It is convenient to choose the vectors defining magnetic
translations for even and odd values of q in different
ways. Namely, for an even q, the magnetic unit cell is
constructed as a right parallelepiped on vectors a1m =
(qa/2, 0, 0), a2m = (0, qa/2, 0), a3m = (0, 0, a). Conse-
quently, the magnetic Brillouin zone is also a right par-
allelepiped with a square base, constructed on the recip-
rocal lattice vectors b1m = (2/qa, 0, 0), b2m = (0, 2/qa, 0),
b3m = (0, 0, 2/a) due to the presence of atoms at the cen-
ters of the faces of the fcc lattice. For odd q, a magnetic
cell is an oblique prism whose basis vectors have the
coordinates (qa/2, 0, a/2), (0. qa/2, a/2), (qa/2, qa/2, 0)
in view of the presence of atoms at the centers of the
faces of the fcc lattice. It should be noted that on these
basis vectors, one can also construct a Wigner–Seitz
cell possessing all the symmetry elements of a mag-
netic lattice. The Brillouin zone for q = 3 and for the
given orientation of the magnetic field will be con-
structed in Subsection 3.3.

(b) In the case when H || a3, where a3 = (a/2, a/2, 0),
it is convenient to choose a new Cartesian system of
coordinates, in which axis x3 || H, and the new coordi-
nates (x1, x2, x3) are connected with old ones through the
following relations:

Once again, we choose the vector potential in the Lan-
dau gauge: A = (–Hx2, 0, 0). It follows from relation (4)
that in this case the fraction p/q is the number of mag-
netic flux quanta through a rectangle with sides

a/ and a/2, lying in the plane (x1x2) ⊥  H. In analogy
with case (a), it is convenient to construct a magnetic
3D cell for even and odd values of q in different ways.
Namely, for an even q, it may be chosen in the form of a
right parallelepiped constructed on the vectors having the
following components in the (xyz) system: (a/2, a/2, 0),
(a/2, –a/2, 0), (0, 0, qa/2). The reciprocal lattice in this
case is a rectangle with the basis vectors b1m = (2/a, 2/a, 0),
b2m = (2/a, –2/a, 0), b3m = (0, 0, 2/qa). If the value of q
is odd, the magnetic cell is an oblique prism con-
structed on the basis vectors (a/2, a/2, 0), (a/2, – a/2, 0),
(a/2, 0, qa/2).

x1
y x–

2
-----------, x2 z, x3

y x+

2
------------.= = =

2 2
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3. QUANTUM STATES AND FERMI SURFACE 
FOR THE FIELD ORIENTATION ALONG (0, 0, 1)

3.1. Derivation of the Harper Equation

The wave function, which is an eigenfunction of the
magnetic translation operator [17], for an fcc lattice in
the strong coupling approximation will be written in the
form

(5)

where the wave function ψ0(r – an) describing the s-
state of an electron in an isolated atom in a magnetic
field satisfies the Schrödinger equation with the atomic
potential U(r – an). Summation in expression (5) is car-
ried out over all sites of the fcc lattice, integral indices
(n, m, l) defining the coordinates of the atoms in the
crystal lattice. The introduction of the phase factor

into relation (5) ensures the correct law of transforma-
tion of the wave function under translations, which was
formulated in Section 2. Coefficients gn describe the
distribution over the sites of a magnetic cell.

Let us now derive the system of equations for coef-
ficients gn. For this purpose, we substitute function (5)
into the Schrödinger equation with the Hamiltonian

where V(r) is the crystal potential. Proceeding in com-
pliance with the method of strong coupling, we calcu-
late the overlap integrals between adjacent sites, thus
obtaining the system of difference equations for coeffi-
cients gn(k). The overlap integrals between adjacent
sites in the xy plane in the presence of a magnetic field
has the form

(6)

where  = ((n ± 1)a/2, (m ± 1)a/2, la/2). Obviously,
in integral (6), the narrow region of maximum overlap
of the wave functions, which is located at points x =
(n ± 1/2)a/2, y = (m ± 1/2)a/2, plays a significant role.

ψk r( ) gn k( ) ikan( )exp
n m l, ,
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× 2πi
p
q
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a/2
--------------------------n– 
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na
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  ,

2πi
p
q
--- y ma/2–( )n

a/2
-----------------------------– 

 exp

Ĥ
1

2m
------- p

e
c
--A– 

 
2

= V r( ),+

A 2πi
p
q
--- y m 1/2±( )a/2– n 1/2±( )a/2±( )

a/2
----------------------------------------------------------------------------------± 

 exp∫=

× ψ0 r an
xy–( ) V r( ) U r an–( )–( )ψ0 r an–( )dτ ,
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Substituting this value of y into the phase factor in the
integrand, we obtain

where α is the value of the overlap integral in zero mag-
netic field. In should also be borne in mind that the inte-
grand in formula (6) contains atomic wave functions in
the presence of a magnetic field. Consequently, the con-
stant in the overlap integral must also differ from its
value for H = 0. We can expect that the change in the
form of the atomic function is significant in the mag-
netic field for which the cyclotron frequency in a plane
perpendicular to H is much larger than the characteris-
tic atomic frequency. In the magnetic field H ≈ 30 MG,
ωc ≈ 5 × 1014 s–1; i.e., energy "ωc is much smaller than
the separation between atomic levels. Consequently, it
can be expected that the form of function ψ0 in such
fields and, hence, the overlap integrals will not differ
significantly from the value obtained above. It can also
be verified easily that the Zeeman splitting in magnetic
fields H ≈ 107 G is also much smaller than the charac-
teristic atomic energy. This means that the positions of
the centers of energy bands will change insignificantly
as compared to the case when H = 0.

The overlap integral in the xz plane has the form

(7)

where  = ((n ± 1)a/2, ma/2, (l ± 1)a/2). In analogy
with the previous case, we put y = ma/2 and find that
B = α. Finally, the overlap integral between the atoms
in the yz plane can be presented in the form

The calculations for the second group of the nearest
neighbors located at points (a, 0, 0), (0, a, 0), (0, 0, a),
etc. can be carried out in a similar way [17]. The over-
lap integral between the wave functions for this group
of neighbors in zero magnetic field will be denoted by r. It
is well known that the ratio r/α ! 1 for most metals
(Cu, Ag, Au, Al) [22].

The final form of the equation for coefficients gn in
the given orientation of the magnetic field is

A 2πi
p
q
--- n

1
2
---± 
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  α ,exp=

B 2πi
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  ψ0 r an
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an
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C 2πi
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  α .exp=

2α gn 1– i
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2

-------- 2πp
q
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(8)

It should be noted that in contrast to the standard
Harper equation [2], the difference equation (8) dis-
plays the modulation of the diagonal as well as nearly
diagonal terms. Besides, system (8) is five-diagonal
when the interaction with the next group of nearest

×
kya
2

-------- 2πp
q
--- n

1
2
---++ 

  kza
2

-------cos+cos 
 

+ 2
kza
2

-------
kya
2

-------- 2πp
q
---n+ 

  gncoscos

+ r gn 2– ikxa–( )exp gn 2+ ikxa( )---exp+

+ 2 kya 4πp
q
---n+ 

 cos kzȧcos+ 
  gn εgn.–=

p/q

p/q = 1/100

p/q = 1/120
A B D C

–4 4 E

Fig. 1. Magnetic subbands (Landau levels) in an fcc lattice
in a weak magnetic field H || (0, 0, 1) for kz = 3π/4a.

A

C

C

B

π/4a

2π/a

2π/a kx

ky

0

Fig. 2. Cross sections of the family of constant-energy sur-
faces defined by relation (9) by the plane kz = 3π/4a for r = 0.
The bold line indicates the boundary of the first Brillouin
zone and arrows indicate the direction of rotation in a mag-
netic field.

0
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neighbors (r ≠ 0) is taken into account. It should also be
noted that in contrast to the standard Harper equation,
system (8) is not symmetric relative to the substitution
ε  –ε. The quasimomentum components (kx, ky, kz)
in the present case vary in the magnetic Brillouin zone
described in Section 2 (item (a)).

Note that the wave function (5) with coefficients gn

satisfying system (8) describes an electron density dis-
tribution which possesses translational invariance only
relative to magnetic translations and which is nonuni-
form within a magnetic cell. However, the electron den-
sity distribution in real crystals can be nonuniform only
within a single unit cell of the crystal due to the Cou-
lomb interaction. In order to make the density of states
homogeneous within a magnetic cell, we must take a
linear combination of functions (5) using the degener-
acy of Eq. (8) in the quantum number ky . Such func-
tions are obviously the regular functions of the zeroth
approximation in the Coulomb interaction. The corre-
sponding calculations are completely similar to those
made in [17] for a simple cubic lattice.

In zero magnetic field (p/q = 0), system (8) leads to
the standard dispersion relation of an fcc lattice for H = 0
[22, 23]:

(9)

Let us first consider the energy spectrum defined by
system (8) for r = 0 in the range of weak magnetic fields
(p/q ! 1) and compare the result with the Onsager–Lif-
shits semiclassical approximation [18]. For this pur-
pose, we determine the spectrum of system (8) for a
fixed kz parallel to H. Figure 1 shows a fragment of the
spectrum defined by Eq.(8) for kz = 3π/4a. It should be
noted at the very outset that in a weak magnetic field,
the energy is virtually independent of kx and ky; i.e., the
spectrum consists of narrow bands. In other words, the
Landau levels are practically not broadened in this case.
At the same time, Fig. 2 shows the sections of the fam-
ily of constant-energy surfaces defined by relation (9) by
the same plane kz = 3π/4a. It is these sections that give the
semiclassical trajectories and discrete Onsager–Lifshits
spectrum for kz = 3π/4. Figure 1 shows several sequences
of energy levels (narrow magnetic subbands) which may
correspond to different semiclassical trajectories. The
energy spectrum in regions A, B, and C in Fig. 1 corre-
sponds to trajectories A, B, and C in Fig. 2. The trajec-
tories in Fig. 2 are of the electron type in regions A and
B and of the hole type in region C. In Fig. 1, this corre-
sponds to different slopes of the levels (as functions of

ε k( ) 4α
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-------coscos
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the magnetic flux) in regions A, B, and C. The region of
condensation of levels in Fig.1 (region D) corresponds
to the separatrix in Fig. 2. It can be verified that the sep-
arations between the levels in Fig. 1 completely corre-
spond to the values obtained in the case of the Onsager–
Lifshits quantization.
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3.2. Dispersion Relation, Magnetic Brillouin Zone, 
and the Fermi Surface for p/q = 1/2

For p/q = 1/2, the spectrum can be determined from
the condition of vanishing of the second-order determi-
nant of system (8). In this case, the energy in the upper
and lower subbands is defined as
(10)ε1 2, 4α
kxa
2

--------2 kya
2

--------
kza
2

-------
kxa
2

--------cos
2 kya

2
--------cos

2
+ 

 cos
2

+sin
2

sin
1 2⁄

±= 2r kxcos a kya kzacos+cos+( ).–
Consequently, ε1 ∈  [–2r, 4α  + 6r] and ε2 ∈
[−4α  – 6r, 2r]; i.e., in region [–2r, 2r], band over-
lapping takes place due to the inclusion of the second
group of nearest neighbors in the lattice. For r = 0, the
bands just touch each other at the point ε = 0. Thus, the
second term in the dispersion relations (9) and (10)
becomes significant in the presence of root-type singu-
larities in the region ε = 0. For the given magnetic field ori-
entation, a similar situation takes place for all even values
of the denominator of the fraction p/q. It follows from the
above analysis (see Section 2) that for p/q = 1/2 and for the
given orientation of the magnetic field, the Brillouin zone
is a cube constructed on vectors (2π/a, 0, 0), (0, 2π/a, 0),
(0, 0, 2π/a). Function (10) is periodic in this region, as
expected. It should be noted that the volume of the
magnetic Brillouin zone is equal to 1/q2 = 1/4 of the
volume of the initial Brillouin zone for H = 0, all the
states in the magnetic band being doubly degenerate
in ky .

The Fermi level and the Fermi surface in a magnetic
field can be determined from the condition that elec-
trons in a monovalent metal (taking into account the
spin) occupy a volume equal to half the volume of the
initial Brillouin zone. This can be done by calculating,
using relation (10), the volume occupied in the k space
by electrons whose energy does not exceed the given
value. The results of such a calculation for r/α = 1/8,
H || (0, 0, 1), and p/q = 1/2 are presented in Fig. 3. These
results show that the Fermi level lies in the region of
band overlapping. The Fermi surface consists of two
types of cavities: the electron type (cavities 1) in the
upper magnetic subband and the hole type (cavities 2)
in the lower subband. Since the region of subband over-
lapping is small (in view of the condition r ! α), the
volumes of the cavities occupied by electrons and holes
constitute a small part of the Brillouin zone. Thus, for
p/q = 1/2, a monovalent metal with an fcc lattice is
transformed into a semimetal or an insulator (for r = 0).
It follows from relation (10) and Fig. 3 that at point t
with the coordinates kx = π/2a, ky = 0, kz = –π/a and at
equivalent points, self-intersection of electron and hole
cavities takes place. In this case, a magnetic breakdown
can obviously take place.

2

2

3.3. Fermi Surface for p/q = 1/3

If the magnetic flux p/q through area a2/4 is equal to
1/3, the spectrum is determined from the condition of
vanishing for the third-order determinant of system (8).
In this case, we can put r = 0 in Eq. (8) since the inclu-
sion of the second term in relation (9) is required only
in the regions of small overlapping of subbands. At the
same time, as will be proved later, the Fermi level in the
case under investigation lies far from the band edge.
Three roots of the cubic equation correspond to three
magnetic subbands defined by

(11)

(12)

(13)

where the energy is measured in the units of α, s =

, and
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0
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2
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H

ky
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1

kx

Fig. 3. Electron (1) and hole (2) Fermi surfaces for a
monovalent metal for p/q = 1/2 and H || (0, 0, 1). Self-inter-
section takes place at point t and at equivalent points. The
diagram of overlapping magnetic subbands and the position
of the Fermi level EF = 0 are shown on the right. The energy
is measured in the units of α.
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The mutual arrangement of the magnetic subbands is
shown on the right side in Fig. 4.

t
3 ky kz–( )a

2
--------------------------cos–

3 ky kz+( )a
2

---------------------------cos–=

– 12 1 kzacos+( ) 2
3kxa

2
-----------

3kza
2

-----------cos
3kya

2
-----------cos– 

  .cos–

kzç

1
2

1

EF ≈ 1.58

EF 

0

ε

2 < ε1 < 4.7

–0.8 < ε2 < 2.7

–4.7 < ε2 < –2

Fig. 4. Two types of the electron Fermi surfaces for a
monovalent metal for p/q = 1/3 and H || (0, 0, 1): “hills” and
valleys” (1) and ellipsoidal-type surfaces (2). The diagram
of magnetic subbands and the position of the Fermi level are
shown at the top.

p/q = 1/3

EF ≈ 1.58

p/q

1.3 1.4 1.5 1.6
E

Fig. 5. A fragment of the spectrum in an fcc lattice in a mag-
netic field H || (0, 0, 1) in the range of p/q close to 1.3 for
kz = 0 and kx = ky = 0. The position of the Fermi level is indi-
cated.
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In accordance with what was said in Section 2, the
magnetic Brillouin band is a truncated parallelepiped con-

structed on the vectors (1, 1, 3), (1, –1, –3),

(−1, –1, 3) and enclosed in the parallelepiped

−2π/3a ≤ kx ≤ 2π/3a, –2π/3a ≤ ky ≤ 2π/3a, –2π/a ≤ kz ≤
2π/a (see Fig. 4). Its volume constitutes 1/q2 = 1/9 part
of the volume of the first Brillouin zone for H = 0, and
all the states are triply degenerate in ky . The functions
defined by relations (11)–(13) are periodic in this Bril-
louin zone.

The Fermi level can also be determined in the same
way as for p/q = 1/2. It lies in the middle band defined
by Eq. (12), for EF ≈ 1.58; the corresponding Fermi sur-
face is depicted in Fig. 4. It should be noted that it con-
sists of two cavities of the electron type: cavities 1,
which can be called “hills” (below) and “valleys”
(above), and ellipsoidal cavities 2. Electrons fill the
regions located between the upper and lower bound-
aries of the Brillouin zone and cavities 1 as well as
between the lateral faces of the Brillouin zone and the
cavities of type 2. In contrast to even values of the
denominator of fraction p/q, a considerable part of the
Brillouin zone is occupied in this case: the regions
depicted in Fig. 4 contain 1/3 of the total number of
electrons. Thus, a monovalent metal with an fcc lattice
for p/q = 1/3 remains a typical metal.

Let us also consider the form of the spectrum for
magnetic flux values close to 1/3:

(14)

It was proved above that in weak fields (p/q ! 1), the
quantization law determined by system (8) is identical
to semiclassical Onsager–Lifshits quantization rules. In
the range of p/q defined by relation (14), both methods
of calculation also lead to the same result. For example,
Fig. 5 shows a fragment of the spectrum for kz = 0 for
the band containing the Fermi level. It should be noted
that for q' @ 1, magnetic subbands are very narrow and
appear as a system of nearly discrete levels. It can be
seen from Fig. 5 that the extreme cross section corre-
sponds to a sequence of equidistant levels in the region
of EF. The separation between these levels is in good
agreement with the value that can be obtained by applying
the Onsager–Lifshits quantization rules to spectrum (12)
for kz = 0.

4. QUANTUM STATES AND FERMI SURFACE 
FOR THE FIELD ORIENTATION ALONG (1, 1, 0)

Let us now consider the case when the field H || a3,
where a3 = (a/2, a/2, 0). In analogy with Subsection 3.1,
we can write the wave function in the strong-coupling
approximation in form (5) with a new phase factor:
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(15)

where the integral indices (n, m, l) define the coordi-
nates of atoms in the crystal lattice. The evaluation of
the overlap integrals in the planes x1x3, x1x2, and x2x3

leads to the following system of difference equations
for coefficients gn:

(16)

The form of this system is the same as for system (8).
The quasimomentum components (k1, k2, k3) run
through all values in the magnetic Brillouin zone
defined in Section 2 (item (b)). It should be noted that
in the given orientation, as well as for H || (0, 0, 1), sys-
tem (16) remains a five-diagonal system, while for r = 0 it
is a three-diagonal system, which is ensured by the opti-
mal choice of the vector potential gauge. The following
interesting features of the solutions of system (16) are
worth noting. It can easily be seen that for even values of
q, the solutions are doubly degenerate: the energy εn cor-
responds to functions {gn} and {(–1)ngn + q/2}. Besides, as
in the standard Harper equation, system (16) for k1 =
k2 = 0 is invariant to the substitution n  q – n. This
symmetry property for the wave functions is reflected
in Figs. 7b and 8b presenting the eigenfunctions of sys-
tem (16). The symmetry k3  –k3 also takes place as
in zero magnetic field.

For p/q = 1/2, system (16) leads to the spectrum in
two magnetic subbands:
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(17)

Here we put r = 0 since the Fermi level (see below)
lies far from the edges of the bands in the region of
their strong overlapping. The energy defined by rela-

tion (17) lies in the intervals ε1 ∈  [–4α, (  + 2)α]

and ε2 ∈  [–(  + 2)α, 4α]. In other words, we

ε1 2, 8α
k1a

2 2
----------

k2a
2

--------
k3a

2 2
----------cossinsin±=

– 2α
k1a

2
--------cos
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  .

4 2
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π/a
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0

k3

π– 2 a⁄ H

(a)

(b)

Fig. 6. Electron (a) and hole (b) Fermi surfaces correspond-
ing to the upper and lower magnetic subbands (17) for a
monovalent metal for H || (1, 1, 0) and p/q = 1/2. The dia-
gram of magnetic subbands and the position of the Fermi
level are shown on the left side of (a).
SICS      Vol. 93      No. 1      2001



176 DEMIKHOVSKII, KHOMITSKY
observe a strong overlapping of magnetic subbands
even when only the first group of nearest neighbors is
taken into account (see the diagram of the magnetic
subbands on the right side in Fig. 6a). We can state that
in contrast of the 2D case, in which magnetic subbands
either touch one another or are separated by forbidden
gaps, the bands in the 3D problem with the energy depen-
dence on the three quasimomentum components overlap
as a rule. For this reason, the contact of energy bands for
even values of q, which was considered in Subsection 3.2,
is rather an exception from the general rule.

Figure 6 shows the Fermi surfaces for a monovalent
metal for p/q = 1/2: the electron-type Fermi surface in
the upper magnetic subband is presented in Fig. 6a and
the hole-type Fermi surfaces in the lower subband are
presented in Fig. 6b. Since the overlap region for two
magnetic subbands for the given orientation of H is not
small, the Fermi surfaces in Fig. 6 occupy a consider-
able part of the Brillouin zone. It follows hence that a
monovalent metal with an fcc lattice for the given field
orientation and for p/q = 1/2 remains a typical metal in
contrast to the case when H || (0, 0, 1). Relations (17)
and the results presented in Fig. 6 show that the electron
and hole cavities touch one another in the planes where
the expression in the modulus in (17) vanishes.

Let us now consider the spectrum of system (16) for
magnetic flux values differing insignificantly from 1/2:

1

2

3

EF = 0
32 1

E

gn

gn

gn

n

n

n

0 2 4 6 8–2–4–6–8

(a)

(b)

Fig. 7. The spectrum (a) and the wave functions (b) for
H || (1, 1, 0), p/q = 51/100, and cross section k3 = 0. In (a),
the following notation is used: Fermi level (1), levels in the
region of open trajectories near the bottom of the upper
magnetic subband (17) (2), and levels in the region of closed
trajectories near the top of the upper magnetic subband (17)
(3). In (b), the eigenfunctions corresponding to the energy
levels singled out in (a) for the values k1 = k2 = 0.
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p/q = 1/2 + 1/q', where q' @ 1. In this case, we must pay
attention to the structure of magnetic subbands in the
energy range corresponding to open orbits in the semiclas-
sical approximation. It is convenient to construct the
energy spectrum for a fixed value of k3. Such a spectrum is
depicted in Fig. 7a for p/q = 51/100 and for k1 = k2 = 0

(section k3 = 0) and in Fig. 8a (section k3 = 4π /5a).
Figures 7b and 8c show several eigenfunctions for the
levels representing a certain spectral region: functions 1
correspond to the Fermi level, 2 to open trajectories and
3 to close orbits. A comparison of Figs. 7 and 8 shows
that as the section k3 = const approaches the boundary
of the Brillouin zone, the fraction of energy values in
the continuous spectrum increases in accordance with
the dispersion relation (17) and Fig. 6, where p/q = 1/2.

2

EF = 0

3
21

E
0 2 4 6 8–2

(a)

EF = 0(b)

E
0 0.2 0.4–0.4 –0.2

7.8 9.10 11.12 13.14
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(c)

2gn

n

3gn

n

Fig. 8. The spectrum (a) and the wave functions (c) for H ||
(1, 1, 0), p/q = 51/100, and cross section k3 = 4π /5a. In
(a), the following notation is used: Fermi level (1), levels in
the region of open trajectories (2), and levels in the region
of closed trajectories from the upper magnetic subband (17)
(3). Magnetic subbands in the region of open orbits corre-
sponding to region 1 are shown in (b) (with their numbers)
on a magnified scale for p/q = 21/40 = 1/2 + 1/40. In (c), the
eigenfunctions corresponding to the energy levels singled
out in (a) are shown for k1 = k2 = 0.
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In the quantum-mechanical problem, the structures of
magnetic subbands in the region of open and closed
orbits differ significantly. This can be clearly seen in
Fig. 8a: closed orbits correspond to exponentially nar-
row energy bands (Landau levels in the semiclassical
approximation), whose separations are determined by
the cyclotron frequency, while open orbits correspond
to relatively wide bands separated by narrow forbidden
gaps. We established that at the boundary between the
energies corresponding to open and closed orbits, the
width of the magnetic subband increases sharply, while
the separation between subbands decreases. Such a
behavior can be explained as follows: open orbits cor-
respond to wave functions which are strongly delocal-
ized in the region of a magnetic cell, while closed orbits
correspond to localized functions (see Figs. 7b and 8c).
The width of a magnetic subband is obviously deter-
mined by the tunneling probability (overlap integral)
between neighboring cells. For this reason, the width of
a magnetic subband for delocalized states is larger than
for localized states. The structure of magnetic subbands
in the region of the Fermi level is depicted in Fig. 8b.
The Fermi level lies in the region of the eleventh and
twelfth bands, which are in contact with the ninth and
tenth bands. It should be noted that magnetic subbands are
arranged in pairs in view of the double degeneracy of the
solutions of system (16) described above for even q.

5. TOTAL ENERGY OF ELECTRONS
AND MAGNETIC SUSCEPTIBILITY

The dispersion relation and Fermi surfaces deter-
mined above for an fcc lattice in an ultrastrong magnetic
field make it possible to calculate the total energy of con-
duction electrons and to predict qualitatively the type of
magnetic susceptibility oscillations of the electron gas.
The following two typical features of oscillatory effects in
ultrastrong magnetic fields are worth noting.

First, a change in the magnetic field in the interval
of p/q from 0 to 1 must give rise to several series of typ-
ical oscillations of the magnetic susceptibility. These
series lie in the vicinity of prime rational values of p/q
with small values of q. In particular, in the vicinity of
p/q = 1/3, the oscillations are associated with the passage
of narrow magnetic subbands (see Fig. 5) through the
Fermi level, the period of oscillations being determined by
the area of the extreme cross section kz = 0 of the type (2)
surface in Fig. 4. It was mentioned above that for the mag-
netic field value corresponding to p/q = 1/2, the Fermi sur-
face consists of the small electron and hole cavities
depicted in Fig. 3. The extreme cross sections are the cross
sections kz = ±π/a whose area is much smaller than, for
example, the area of the “paunch” (the cross section of
the Fermi surface of a monovalent metal by a plane
passing through the origin). Since the distance between
two cavities on the Fermi surface is small, we can
expect a considerable effect of the magnetic breakdown
on the form and frequency of the oscillations. A similar
situation in quasi-two-dimensional organic conductors
was discussed in [9, 10].
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Second, in each series of the oscillations, level
broadening effect takes place, leading to a decrease in
the oscillation amplitude and to a relative decrease in
the contribution from high harmonics. In order to esti-
mate this effect quantitatively, we make use of the fact that
in a magnetic field p/q = 1/q', where q' @ 1 and the mag-
netic subband width is ∆En ! "ωc. Here, ωc = eH/mc and
m = (1/2π)∂S/∂ε, where S(ε, kz) is the area bounded by
a semiclassical trajectory in the cross section kz = const.
We use a simple model of the spectrum in the nth 3D

magnetic subband: en(kx, ky, kz) = ε⊥ n(kx, ky) + "2 /2m,
where ε⊥ n(kx, ky) is the energy spectrum in the nth 2D
magnetic subband, and assume that T = 0. We also assume
that the center of the magnetic subband ε⊥ n(kx, ky) in this
field region coincides with the position of the nth Lan-
dau level "ωc(n + 1/2). The number of magnetic sub-
bands may change rapidly upon a change in the mag-
netic field, but all of them are grouped near the Landau
levels. In this case, we can disregard the fine structure
of these subbands and speak of the broadening of the
nth level, which remains practically constant and equal
to ∆En. Such a pattern of the spectrum in weak fields is
typical of any model of the spectrum of 2D Bloch elec-
trons in a weak magnetic field.

It is well known [24] that the magnetic moment of
an electron system with equidistant Landau levels in a
layer of thickness δkz near a certain kz is given by

where  = εF – "2 /2m and (n – n0) is the difference
in the populations of the layer δkz in the given field H
and in zero field. In the absence of Landau level broad-
ening, δM is a periodic function of 1/H with period
e"/mc  depending on kz . For values of H determined

by the condition "ωc(n + 1/2) = , when the upper

Landau level passes through , the electron concen-
tration in the layer δkz changes jumpwise by
(eH/4π2c")δkz, while the magnetization δM experi-

ences s discontinuity with the jump (e /4π2c")δkz (the
saw-tooth curve in Fig. 9).

kz
2

δM
εF'

H
----- n n0–( ),–=

εF' kz
2

εF'

εF'

εF'

εF'

n n + 1 n + 2
1/H

∆(1/H)δM

0

Fig. 9. Oscillations of magnetization in a layer δkz without
taking into account (saw-tooth curve) and taking into
account (smooth curve) the finite width of magnetic sub-
bands.
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In the case when the system of discrete Landau lev-
els is transformed into a system of narrow magnetic
subbands, the form of the dependence of δM on 1/H
changes. This is due to the fact that with increasing
field, the next magnetic subband is vacated from elec-
trons not instantaneously, but over the interval ∆H,
where ∆H/H = ∆En/"ωc, in which the given subband

passes through . The behavior of the curve δM(1/H)
is determined in this case by the density of states in the
subbands grouped near the Landau level. The qualita-
tive behavior of magnetization is illustrated in Fig. 9.
The transition region corresponds to the passage of the
subband with number n, n + 1, n + 2, … through .
Obviously, the smoothness of the function δM(1/H)
leads to a qualitative change in the form of the Fourier
spectrum for the oscillations, namely, to the suppres-
sion of higher harmonics. In experiments, oscillations
with periods determined by the condition ∂εn/∂kz = 0
must be observed, which corresponds to the value kz = 0 in
the model under investigation.

Concluding this section, we will calculate the total
energy of the electron gas. This will enable us to deter-
mine the constant component of the magnetic moment.
The calculations will be made for zero temperature
since kT ! "ωc in a strong magnetic field. We consider
the case when the field H || (0, 0, 1) and disregard the
second term in relation (9), which makes small correc-
tions to the total energy of the electron gas. The values
of the total energy in dimensionless units are given
below:

These data indicate that the total energy of electrons
in magnetic fields p/q and 1 – p/q is the same; in the p/q
interval from 0 to 1/2, the energy decreases with
increasing field. The fact that the total energy decreases in
a strong field is associated with a significant rearrange-
ment of the spectrum (cf. (9) and (10)). For p/q = 1/2,
when EF ≈ 0, the maximum of the density of states cor-
responds to ε < 0 (in this case, EF ≈ 0), while in zero
field, the density of states for the dispersion relation (9)
attains its maximum value for ε > 0, and EF ≈ 1. This
leads to a decrease in the total energy on the interval of
p/q from 0 to 1/2. The minimum value is attained for
p/q = 1/2, i.e., for the number of magnetic flux quanta
piercing a unit cell equal to the occupation ν of the Bril-
louin zone by electrons. Since p/q = ν = 1/2 and the
density of states at the Fermi level is small and varies
smoothly with energy, we can expect that the curve
E(H) exhibits a smooth behavior near its minimum.
This distinguishes the 3D problem from the 2D prob-
lem [25], in which the derivative dE/dH suffers a dis-
continuity in the region of the minimum. A similar
result was obtained in [15, 16], where the problem on a
3D Bloch electron in a simple cubic lattice placed in a

p/q: 0 1/4 1/3 1/2 2/3 3/4 1

E: –163 –170 –173 –200 –173 –170 –163

εF'

εF'
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magnetic field with various orientations was consid-
ered. It should be noted that in the problem of a 2D
Bloch electron in a magnetic field, a local energy mini-
mum also takes place for ν = p/q [25], when each elec-
tron corresponds to a magnetic flux quantum. In the 3D
problem, such an interpretation is ruled out. The
decrease in the total energy and, in particular, the exist-
ence of a minimum in a 3D crystal in a strong magnetic
field indicates that monovalent metals with an fcc lat-
tice (Cu, Ag, Au), which are diamagnetic in weak fields,
become paramagnetic in an ultrastrong field. Indeed,
for absolute zero temperature, the constant component
of the magnetic moment on the p/q interval from 0 to
1/2 is positive:

i.e., the electron gas is paramagnetic. The absolute
value of susceptibility defined as κ = M/H is compara-
ble in magnitude with that for a weak magnetic field:
κ ≈ 10–6–10–5. It should be noted that the inclusion of
the spin in the model under investigation near p/q = 1/2
is immaterial since the density of states in the vicinity
of the Fermi level (and, hence, the Pauli paramagnet-
ism) has the minimum value.

6. CONCLUSIONS
In the present work, the strong-coupling approxima-

tion is used to construct the explicit expression for the
one-electron wave function which is an eigenfunction
of the magnetic translation operator in a 3D crystal in a
constant magnetic field. The Harper-type 3D equation
determining the amplitudes of the wave function at the
sites of a magnetic cell is derived and the energy spec-
trum in magnetic subbands is determined. The transfor-
mation of the Fermi surface upon the application of a
strong magnetic field with the numbers of magnetic
quanta p/q = 1/2 and 1/3 is studied for a monovalent
metal with an fcc lattice. The magnetic field was ori-
ented along the crystallographic directions (0, 0, 1) and
(1, 1, 0). A strong effect of the magnitude and orienta-
tion of the magnetic field on the topology of the Fermi
surface is discovered. It is shown that a metal–semi-
conductor-type transition occurs in the (0, 0, 1) direc-
tion for even values of q, while for odd q, the upper
magnetic subband is filled approximately by half and
the metallic properties of the initial material are pre-
served.

The form of the de Haas–Van Alphen oscillations is
considered. It is shown that in magnetic fields corre-
sponding to the magnetic flux value p/q + 1/q', where p
and q are prime integers and q' @1, regular series of the
de Haas–Van Alphen oscillations similar to magnetic
oscillations in weak fields for p/q ! 1 must be
observed. The effect of the Landau level broadening on
the magnetic oscillation spectrum is considered. The
dependence of the total energy on the magnitude of a
magnetic field directed along (0, 0, 1) is analyzed and a

M
∆E
∆H
--------– 0;>=
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minimum is observed for p/q = 1/2. This indicates that
the electron gas in a crystal placed in a magnetic field
may exhibit not only diamagnetic, but also paramag-
netic properties.
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Abstract—The transport properties of textured films and tunneling junctions of La0.6Sr0.4MnO3, defined by the
surface state of the granule, are studied in low magnetic fields (below 100 Oe) and at pressures of up to 10 kbar.
Tunneling junctions of two types are investigated, namely, mechanical break junctions and La0.6Sr0.4MnO3–
insulator–superconductor junctions. Although only one electrode represents the magnetic material in the latter
case, all samples exhibit a low-field magnetoresistive effect. Hydrostatic compression suppresses the magne-
toresistive effect to considerably change the transport properties of ceramic and tunnel samples. The reasons
for such behavior are discussed in connection with the model of spin-polarized inelastic tunneling of charge
carriers through a potential barrier formed both by the intergranular region and by the surface of contacting
granules. Reasons are given for the fact that it is most probable that the magnetic state of the barrier and its
height vary under the effect of pressure because of the transition of the surface of granules to the metallic state.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It has now been found experimentally that mono-
and polycrystalline samples of lanthanum manganites
exhibit fairly diverse magnetoresistive properties. While
the resistance of monocrystalline samples varies little in
low magnetic fields, polycrystalline and ceramic sys-
tems are characterized by a marked decrease in resis-
tance even in a low field (see, for example, [1–4]). In
early studies, this phenomenon was interpreted within
the phenomenological model [5], in which the insulat-
ing barrier transparency to charge carriers depended on
the relative orientation of electrode magnetization
alone. Later, a number of forcible experimental and the-
oretical arguments appeared, which pointed to more
complicated physics of the tunneling effect in junctions
formed by magnetics, in particular, in tunneling sys-
tems of lanthanum manganites [6–15]. Namely, the pat-
tern of current flow in manganite materials is defined
both by the magnetic state of the granule proper and by
the structure of the intergranular barrier. This is evi-
denced, for example, by marked changes of the trans-
port characteristics as functions of temperature [6, 8,
11, 12, 14], by the dependence of the tunneling junction
properties on the barrier material for one and the same
material of the electrodes [10, 11], by the presence of
magnetoresistive properties even when only one of the
electrodes of the junction is magnetic [10, 11, 15, 16],
and so on. These results indicate that the intergranular
boundaries both serve as the potential barrier and define
the pattern of tunneling of spin-polarized electrons
from deep within the granule.

At present, several models have been suggested
which take into account the importance of the inter-
1063-7761/01/9301- $21.00 © 20180
granular potential barrier in forming the transport prop-
erties of ceramic samples of lanthanum manganites.
However, in spite of the efforts made in this direction,
no full understanding has existed until now of the
importance of the intergranular boundaries as regards
the manifestation of the effect of spin-dependent tun-
neling; this lack of understanding shows up in some
inconsistency between the suggested models. For
example, the model suggested in [1, 2] is based on spin-
polarized tunneling between ferromagnetic granules
through an insulating nonmagnetic barrier of the gran-
ule surface. In contrast, the authors of [4, 6] assumed
the emergence of magnetic polarization of the granule
surface due to magnetization inside the granule. A high
probability of tunneling through paramagnetic impurity
states in the intergranular barrier is suggested in [17,
18]. Ziese et al. [11, 19] and Svistunov et al. [15] sug-
gested a description assuming the presence of a sponta-
neous magnetically ordered state (clusters) in the bar-
rier. In parallel with the foregoing, models [14, 20] are
developed in which an additional tunneling barrier
between granules arises because of curving of zones
between the inner volume of the granule and its surface
after the transformation of the granule content to the
magnetically ordered state.

Of interest from the standpoint of investigating the
importance of the surface of granules as the potential
barrier are the procedures that cause a variation of the
pattern of flow of tunneling current through the barrier.
In this respect, unique possibilities are offered by the
method of the hydrostatic compression of the sample,
because the reaction of the conductance of the junction
between metals to pressure depends considerably on
001 MAIK “Nauka/Interperiodica”
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the barrier structure (see, for example, [21–23]). Note
that most of the previous tunneling experiments with
lanthanum manganites pursued the objective of produc-
ing the maximum magnetoresistive effect in low mag-
netic fields.Thus, the capabilities of the tunneling effect
as a tool for spectroscopic investigations were not fully
realized.

It is the objective of our investigation to test the
validity of the assumptions made in [6, 11, 15, 19]
about the important part played by the magnetic state of
the boundary region of a granule (interface) in forming
the transport characteristics both of tunneling junctions
and of ceramic samples of lanthanum manganites. We
employed the procedure of hydrostatic compression of
samples and the available data on the variation of the
transport properties of manganites under pressure [24–
28]. We expected to observe manifestations of the internal
spatially nonuniform magnetic structure of the interface in
the tunneling characteristics of junctions, as well as the
sensitivity of these characteristics to low magnetic fields
and pressures. Indeed, the spectroscopic peculiarities of
tunneling enabled us to analyze the observed total sup-
pression of low-field magnetoresistive effect under condi-
tions of hydrostatic compression and relate this phenome-
non to the structure of spatially nonuniform state of the
manganite microsrystal being investigated.

2. MEASUREMENT PROCEDURE AND SAMPLES

The possibility of obtaining tunneling junctions on
a single granule was demonstrated by the results of
numerous investigations of superconducting cuprate
perovskites similar to manganites in morphology and
mechanical properties (see, for example, [29] and the
references cited there), while the procedure we
employed for preparing stable microcrystal junctions
made it possible to perform investigations at high
hydrostatic pressures.

The procedure for preparing single microcrystal
junctions consists in making a ceramic plate sized 0.1 ×
1 × 10 mm3, whose granules are aligned in one direc-
tion and are intimately mated with one another to form
a highly textured structure. The plate is glued to an elas-
tic substrate. The substrate is bent until a crack appears
in the ceramic plate that passes through all granules in
the region of deformation. When the external load is
relieved, the plate returns to the initial position, the
crack “closes,” and the microcrystals are tightly pressed
against one another on the lines of break. The most
“correct” alignment of the break of microcrystals must
be expected in the plate region in which the shear defor-
mation is minimal. This is apparently one of the reasons
why such a procedure results in the realization of only
one effective junction of the microcrystal–microcrystal
type. In the literature, junctions prepared by a similar
procedure came to be known as break junctions [29–
31]. The choice of a single junction with minimal tun-
neling resistance from the competing junctions is fur-
ther assisted by the very specific nature of the tunneling
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
effect in which the value of current depends exponen-
tially on the barrier thickness (a variation of the barrier
thickness by 1 Å usually causes a variation of the junc-
tion resistance several times over). The small thickness
of the plate according to the present procedure is an
additional important factor in preparing microcrystal–
microcrystal junctions.

We investigated La0.6Sr0.4MnO3 ceramic samples
prepared by the procedure described in [15]. In partic-
ular, the reduced temperature and short time of anneal-
ing made it possible to prepare plates whose intergrain
bonds exhibited the tunneling pattern of current flow, as
reflected in the observation of a clearly defined low-
field magnetoresistive effect due to spin-dependent tun-
neling of electrons. The resistance of initial plates at
room temperature was in the range from 2 to 10 Ω .
The resistance of current and potential junctions was
R ~ 10–7 Ω cm2.

In order to check the quality of prepared plates of
La0.6Sr0.4MnO3, the temperature dependence of their
resistance was measured. The latter had a characteristic
maximum in the neighborhood of 360 K, associated
with the metal–dielectric transition. Also measured was
the magnetoresistive effect, [ρ(T, 0) – ρ(T, H)]/ρ(T, 0),
in a low magnetic field; at T = 77 K and H = 100 Oe,
this effect was 3–4%.

As in [15], the tunneling junctions on plates of
La0.6Sr0.4MnO3 ceramic were prepared using two meth-
ods. Junctions of the nonmagnetic metal–ceramic type
(Pb–I–LaSrMnO junctions, where I is the insulator)
were formed by pressing a droplet of lead into the sur-
face of ceramic plates. Such junctions are formed at a
break of microcrystals of manganite and penetration of
metal (Pb) into the break region. The choice of lead as
electrode made possible the observation of the energy
gap of Pb upon transition to the superconducting state.
The presence of superconducting gap was unambigu-
ous proof of the tunneling mechanism of the flow of
current in Pb–I–LaSrMnO junctions.

Symmetric LaSrMnO–I–LaSrMnO junctions of the
type of break junction were prepared by the procedure
described above. Note that another reason for the emer-
gence of an additional contribution to the tunneling bar-
rier in junctions of this type is apparently the depletion
of the break surface of the ceramic plate in charge car-
riers. As in the case of cuprate superconductors, the
oxygen concentration plays an important part in the
position of the lanthanum manganite system in the
phase diagram. In the case of mechanical break of
ceramic, oxygen diffuses from the break surface, which
leads to the formation of a dielectric (semiconductor)
interlayer on the granule surface. It is this fact that pro-
motes the formation of tunneling junction.

The junctions were prepared at both nitrogen and
room temperatures; however, their quality did not
depend much on the temperature at which the break
occurred. The characteristics of junctions prepared
from plates made in a single production cycle differed lit-
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tle from one another. Samples with the junction resistance
of several tens of ohms were selected for tunneling studies,
which exceeded greatly the plate resistance and obviated
the problem of four-probe connection of the junction [23].
The hydrostatic compression of samples was performed in
a chamber of the piston–cylinder type with a kerosene-oil
transmission medium. A manganin pressure cell and a
copper-wire thermometer were placed inside the chamber
for monitoring the parameters.

3. EXPERIMENTAL RESULTS

We started our investigations with studying the
transport characteristics of La0.6Sr0.4MnO3 ceramic
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Fig. 1. The effect of pressure on the magnetoresistive prop-
erties of a La0.6Sr0.4MnO3 ceramic plate in low magnetic
fields: P = 0, 3, 6.5, and 9.8 kbar (curves 1–4, respectively).
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Fig. 2. The effect of pressure on the magnetosensitive part
of tunneling conductance of an asymmetric (Pb–I–
La0.6Sr0.4MnO3) junction in low magnetic fields: P = 0, 3,
and 6 kbar (curves 1–3, respectively).
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plates in the absence of external pressure and the varia-
tion of these characteristics under the effect of pressure.
In accordance with the literature data on samples of the
composition being investigated [24–28], a strong effect
of pressure on conductance was observed in the entire
measured temperature range. Figure 1 gives the
reduced resistance R(H, P)/R(0, 0) of a La0.6Sr0.4MnO3
ceramic plate as a function of magnetic field at T = 77 K
for different values of applied pressure P. In view of the
fact that, at low temperatures, the magnetic state inside
granules varies little under the effect of pressure, it is
natural to assume that the observed variation of R(H)
with pressure is due to the effect of hydrostatic com-
pression on the conductance of the intergrain bound-
aries (interface). At the same time, it is indicative of the
significant contribution made by the interface to the
sample impedance.

A similar effect of pressure on conductance is
observed for tunneling junctions. Figures 2 and 3 give
the R(H, P)/R(0, 0) characteristics for an asymmetric
(LaSrMnO–I–Pb) and a symmetric (LaSrMnO–I–
LaSrMnO) junction depending on magnetic field at
T = 77 K and for different values of applied pressure.
One can see in Fig. 2 that the magnetoresistive proper-
ties of a junction are retained even if only one of the
junction sides is of a magnetoresistive material. With a
pressure P ≈ 8 kbar, the same as for a bulk sample, the
effect disappears almost completely.

Note that, in hysteretic dependences R(H) for bulk
samples (Fig. 1) and for tunneling junctions (Figs. 2
and 3), the maxima of resistance in magnetic fields H ≈
30 Oe virtually coincide. Hysteresis on the R(H) curves
is caused by the residual magnetization of microcrys-
tals of the sample, and the field of maximum resistance
corresponds to the field of coercivity HC ≈ 30 Oe.
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Fig. 3. The effect of pressure on the magnetosensitive part
of tunneling conductance of a symmetric (La0.6Sr0.4MnO3–
I–La0.6Sr0.4MnO3) junction in low magnetic fields: P = 0,
3, and 6.5 kbar (curves 1–3, respectively).
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Figures 4 and 5 give the junction conductance as a
function of bias voltage at T = 77 K for different values
of pressure for symmetric and asymmetric contacts,
respectively. The junctions of both types demonstrate
the linear pattern of conductance at low temperatures,
σ = σ0(1 + γ|V |), in a wide range of values of bias volt-
age, |eV | ≤ EC ~ 100 meV. It is shown in the subsequent
section that the Coulomb interaction of electrons and
holes on localized levels in the barrier forms this anom-
alously strong linear dependence of the junction con-
ductance on voltage. The insets in Figs. 4 and 5a give
the conductance of tunneling contacts at T = 4.2 K and
zero pressure in the region of low values of bias volt-
age. The tunneling pattern of the flow of current is dem-
onstrated especially clearly by the manifestation of
superconducting energy gap of lead, ∆s ≈ 1.4 meV, in
the conductance of asymmetric contact (indicated by
arrows in Fig. 5a). The strong diffusion of the gap char-
acteristic in the density of states for lead is apparently
due both to the effect of localized levels on the tunnel-
ing process and to the injection of spin-polarized elec-
trons to superconductor. Also observed for different
junctions were singularities behind the energy gap of
lead (see Fig. 5a), which were due, in all probability, to
inelastic tunneling of electrons through impurity states
in the barrier with emission of real phonons (magnons)
[23]. One can see in Figs. 4 and 5 that, as the hydro-
static compression increases, the normalized conduc-
tance σ(V)/σ(0) becomes less sensitive to voltage. This
fact points to rearrangement of the intergrain potential
barrier and to the variable pattern of tunneling of elec-
trons under the effect of pressure.

As was noted above, the junctions being investi-
gated meet all of the criteria of “tunneling,” namely, the
presence of a superconducting energy gap and the man-
ifestation of phonon (magnon) singularities and a Cou-
lomb gap. Nevertheless, the temperature dependence of
the resistance of the LaSrMnO–I–Pb junction (curve 1
in Fig. 6) differs considerably from the classical tunnel-
ing dependence R(T), which is characterized by a weak
temperature decrease of resistance, σ(T) = σ0 + γT +
αT2 [23]. Such a variation of σ(T) is typical in the tem-
perature range kBT ~ 0.1 eV (~1000 K). In our case, at
T ≈ 250 K, an anomalously fast increase in the junction
resistance is observed with decreasing temperature,
which is hard to explain within the classical tunneling
effect. We attribute the unusually high rate of increase
in the tunneling resistance even at T ~ T* < 300 K to the
opening of the pseudogap ∆p on the sides or at the inter-
face of the tunneling junction at a temperature T < T*.
(Note that, while the Coulomb gap EC characterizes the
“two-dimensionality” of the barrier, the main contribu-
tion to the pseudogap ∆p is made by three-dimensional
Coulomb correlations. The presence of a pseudogap in
compounds with a colossal magnetoresistive effect was
directly found recently with the aid of the ARPES
method [32]).
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The reflection of such a pseudogap in the correlation
σ(V) for LaSrMnO–I–Pb is given in the inset in Fig. 5b.
A similar but less pronounced singularity is also
observed in the case of symmetric LaSrMnO–I–LaSrMnO
junctions (see the inset in Fig. 4). Curiously, the value
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Fig. 4. The variation of reduced conductance σ(V)/σ(0) of a
symmetric La0.6Sr0.4MnO3–I–La0.6Sr0.4MnO3 tunneling
junction at T = 77 K under the effect of pressure: P = 0, 3,
6.5, and 10 kbar (curves 1–4, respectively); the arrows indi-
cate the energy of the Coulomb gap, EC ≈ 100 meV. The
inset gives the same correlation for P = 0 kbar and T = 4.2 K in
the range of low values of bias voltage; the arrows indicate
the position of pseudogap ∆p ≈ 40 meV.
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Fig. 5. The variation of reduced conductance σ(V)/σ(0)
of an asymmetric (Pb–I–La0.6Sr0.4MnO3) tunneling junc-
tion at T = 77 K under the effect of pressure: P = 0, 3, 6.5,
and 10 kbar (curves 1–4, respectively); the arrows indicate
the energy of Coulomb gap, EC ≈ 100 meV. The inset a gives
the same correlation for P = 0 kbar and T = 4.2 K in the
range of low values of bias voltage; the arrows indicate the
energy gap for Pb ∆S ≈ 1.4 meV. The inset b gives the same
correlation for P = 0 kbar and T = 23 K; the arrows indicate
the position of pseudogap ∆p ≈ 40 meV.
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of pseudogap ∆p ≈ 40 meV and the value of temperature
T* ≈ 280 K, determined by these singularities, are in
adequate agreement with the BCS theory, 2∆p = 3.5T*.
As the pressure increases, the R(T) curve is somewhat
smoothed (see curves 2 and 3 in Fig. 6); however, the
behavior of R(T) retains its singularity (abrupt increase)
at the point T ~ T* = 280 K. Therefore, the pressure

100

R, Ω

× 10

30

15

200 300

1

2

3

4
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Fig. 6. The temperature dependence of the resistance of an
asymmetric (Pb–I–La0.6Sr0.4MnO3) tunneling junction at
P = 0, 3, and 6 kbar (curves 1–3, respectively) and of a
ceramic plate at P = 0 kbar (curve 4).

Surfaces of granules

Fig. 7. A model of tunneling junction between two granules
of lanthanum manganite. The tunneling barrier is formed
both by the intergranular layer and by the surface regions of
granules.
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dependence of the value of pseudogap remains virtually
unvaried. The observed smoothing of the R(T) charac-
teristic of tunneling junctions under the effect of pres-
sure points to the transformation of the magnetic struc-
ture and to the metallization of the surface layers of the
junction.

Figure 6 (see curve 4) further gives the temperature
dependence of resistance of La0.6Sr0.4MnO3 ceramic
plate in zero external field (note the scale variation).
This dependence is typical of the class of compounds
being treated [24–28]. A comparison of curves 1 and 4
reveals that the behavior of the temperature dependence
of tunneling contact resistance is entirely different from
that of the temperature dependence of ceramic. This is
due to the fact that, in the latter case, the sample resis-
tance is formed both by the interface regions and by the
internal regions of granules; as the temperature
increases, this contribution to resistance becomes deter-
mining.

4. DISCUSSION OF THE RESULTS

We will treat in more detail the dependence of the
junction conductance on the bias voltage and tempera-
ture. The term q|V | (“line background”) is due to reso-
nance tunneling of electrons through localized states
located at the center of tunneling barrier [33, 34]. We
will demonstrate that such processes are inelastic; i.e.,
they must be accompanied by emission of some boson
mode.

We will treat the tunneling of electrons through a
system of localized states in a barrier, characterized by
the importance of the Coulomb interaction of electrons
(or holes) at impurity centers (see Fig. 7). We will
assume that a positive voltage is applied to the right-
hand electrode of a tunneling junction. We will reckon
the values of energy Ei of localized states starting from
the level of the chemical potential of this electrode. We
will analyze only the resonance processes, i.e., the pro-
cesses of tunneling through localized levels located at
the center of the tunneling barrier. For qualitative anal-
ysis, we will restrict ourselves to the case of zero tem-
perature, when localized levels with energy Ei ≥ 0 take
part in the process of tunneling. We assume the system
as a whole to be electroneutral.

The characteristic lifetime of an electron on an
impurity center with energy Ei ≥ 0 is of the order of "/Γ,
where Γ = Γ0exp(–d/a0) is the energy width of the
impurity state, a0 is its radius, and d is the tunneling
barrier thickness (the parameter Γ0 is estimated in
[35]). We will assume that the electron tunnels to
unfilled level 1 with energy E1 from the left-hand side
of the junction. In order to preserve electroneutrality in
a system of barrier states, it is necessary that simulta-
neously (during time τ ! "/Γ in quantum-mechanical
sense), an electron from filled level 2 (with energy E2)
should go to the right-hand side of the junction. There-
fore, a positively charged “hole” emerges on level 2; the
 AND THEORETICAL PHYSICS      Vol. 93      No. 1      2001
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attraction of electron 1 to this hole reduces the energy
of the system of barrier states by e2/4εε0r12. By sum-
ming up the energy losses, we will arrive at the inequal-
ity

(1)

where r12 is the distance between the 1st and 2nd impu-
rities, and ε0 and ε are dielectric constants. Note the
peculiar nature of the tunneling process being analyzed.
The incoming and outgoing electrons are spaced apart
at a distance r12 which may be fairly long (especially, in
the case of low voltage V across the junction). In fact,
the system of impurity levels “captures” the first elec-
tron and emits the other electron.

The fact that the increment of energy given by
Eq. (1) is positive for the overwhelming majority of
tunneling processes implies that the distribution of lev-
els of energy Ei of localized states in the barrier corre-
sponds to equilibrium. According to Eq. (1), states with
low energies E1 and E2 must be spaced at a considerable
distance r12 from each other. This explains the decrease
in the level density g(E) for low values of energy (the
effect of Coulomb gap in impurity semiconductors
[36]). The exact distribution of g(E) over the energies E
is obtained as a result of numerical simulation of the
above-identified tunneling by the Monte Carlo method.
The result of [33, 34] brings about the following depen-
dence for the Coulomb gap: g(E) ∝  |E|γ, where the
exponent γ depends on the ratio of the width W of the
scatter of impurity states with respect to energies Ei to
the Coulomb gap “width” EC ≈ e2/4πεε0rD (rD is the
mean distance between impurity states in the central
interlayer of the barrier).

The observed value of the Coulomb gap EC ≈
100 meV (see Figs. 4 and 5) enables one to estimate the
parameters of impurity states of the interface. We
assume that the charges in the interface are screened
similarly with those in cuprate oxides. Then, at ε ≈ 4,
we obtain rD = 36 Å, which corresponds to the concen-

tration of localized states Nl =  ≈ 2 × 1019 cm–3. In
semiconductors, the transition from metallic to activa-
tion conductance usually occurs at values of concentra-
tion satisfying the Mott criterion, Nla3 ≈ kM, where a is
the radius of impurity states. In view of the fact that the
states in the interface are at the percolation threshold,
for rD = 36 Å and kM ≈ 0.02, we obtain the radius a = 9 Å,
which is very close to the estimate of the radius of
polaron states in manganites (a = 8 Å) (see, for example,
[37, 38]). The value of the Coulomb gap EC ≈ 100 meV
agrees with the values of activation gaps, obtained as a
result of measurements of the thermopower, and with
estimates of the characteristic energy of local single-
impurity states [38]. Corresponding to the observed
variation of tunneling conductance in the region of the
Coulomb gap ∆σ ≈ 1 Ω–1 is N = ∆σ/σC ≈ 6 × 103 local-
ized levels with energy width Γ = N(2π2aSρ1)–1 meV

δE12 E1= E2– e2/4πε0εr12– 0,>

rD
3–
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(here, σC = e2/π" ≈ 77.5 × 10–5 Ω–1 is the “conductance
quantum,” ρ1 = N1/W is the density of states for localized
levels, and W ≈ 2EC is the width of the impurity zone).

With narrow energy distribution of impurity states
(W/EC ≤ 0.7), the exponent γ < 1, and, with a further
decrease in W, a wide minimum appears on the function
g(E) with |V | ≤ EC at the expense of the so-called Cou-
lomb blockade of the tunneling current. If W/EC ≥ 1,
then γ ≈ 1 to 1.3, and the function of tunneling conduc-
tance of junction acquires a line background,

where q is a constant and σ0 is the background nonres-
onance part of junction conductance.

The excess energy δE12 given by Eq. (1) and arising
upon injection of electron 1 and emission of electron 2
may be transferred with the aid of magnons, phonons,
or other Bose-like excitations that are possible in a sys-
tem of charged impurity states. Their presence provides
for the synchronization of the process of entry of elec-
tron 1 and exit of electron 2. Superficially, this process
appears to be an inelastic tunneling of an electron from
the left-hand side of the junction to the right-hand side,
from the state with energy E1 to that with energy E2, for
which the expression for the energy difference ∆E12 =
δE12 + e2/4πε0εr12 is valid for an impurity system as
well.

We will analyze the effect of temperature on tunnel-
ing current through localized states. In the general case,
the inelastic tunneling current may be represented as
[23, 33, 34] J = J1 + J2, where e = " = 1,

(2)

f(E) denotes the Fermi distribution functions, and
F(ω) ≡ F(ω, T) is the effective spectral function of dis-
tribution of boson excitations in a system of impurity
states. For simulation using the Monte Carlo method,
the spectrum of effective excitations in the impurity
system was approximated by the expression

(3)

(the value of the parameter a was determined by vary-
ing the integral and was in the range a = 1 to 2). For
|eV | @ kT, the conductance σ1 = dJ1/dV ∝  e|V |.

σ V( ) dJ /dV σ0= = q eV γ,+

J1 ωF ω( ) S V ω–( ) S –V ω–( )–[ ] ,d∫∼

S E( ) E ' f E '( ) 1 f E E '+( )–( )d

∞–

∞

∫=

=  
E

1 E/kT–( )exp–
---------------------------------------,

F ω T,( ) 2
π
--- ω

aT
------arctan=
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The current component is

(4)

and n(ω) denotes the Bose distribution functions.
For |eV | @ kT, we have F(ω, T) ≈ 1; therefore, at high

voltages, the junction admittance is σ(V) ~ σ0 + q|eV |.
On the other hand, at V = 0, the conductance is

(5)

Therefore, the assumption of inelastic behavior of res-
onance tunneling with the emission of collective mode
with the spectrum F(ω, T) agrees with experiment if
F(ω, T)  1 at "ω @ kT. As a result, for the effective
level density g(E), we derive the temperature depen-
dence

Further, the value of a in expression (3) was preas-
signed, and the constants G2 given by Eq. (4) and αT

given by Eq. (5) were calculated. It was found that the
parameter G2 and the coefficient αT in the temperature
dependence of tunneling conductance σ(T)V = 0 = σ0 +

2qαT(kT) were related as αT ≈ . The experimen-
tally observed value of the parameter αT = 1.1–1.2 is
attained at G2 ≈ 1.2.

It was assumed during analysis that the line back-
ground of q|V | is due to resonance tunneling of elec-
trons through localized states (this provides for greater
effect). The process of electron injection from the left-
hand side of the junction to level 1 and of the electron
exit from level 2 to the right-hand side is treated as an
inelastic process during which two excitations form
simultaneously, namely, magnon (phonon) + electron-
hole pair (“exciton”). The effective spectrum of such
combined Bose excitation is given by an expression of
the type of Eq. (3). It brings about the emergence of the
line background of q|V | as a function of junction con-
ductance. The observed independence of the parameter
q of the magnetic field leads one to conclude that for the
junctions investigated by us, in the case of resonance
tunneling, neither the energy nor the spin of tunneling
electrons are preserved. This is possible only if the

J2 ωF ω( )n ω( ) S V ω–( ) S ω V–( )–[d∫∼

+ S V ω+( ) S –ω V–( ) ]– VG2T ,=

σ2 dJ2/dV G2T , G2∝ 2
F x T,( )

x( )exp 1–
-------------------------- x,d

0

∞

∫= =

σ T( ) 2 ωF ω( ) S ' ω–( ) n ω( )+( )d

0

∞

∫∼ 2kTαT ,=

αT
1
4
--- xF x T,( )

x/2( )sinh
2

------------------------- x.d

0

∞

∫=

g E( ) G2T= ωF ω T,( ).d

0

∞

∫+

G2
0.83
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inelastic tunneling is accompanied by the magnon
emission in the region of the junction interface.

5. CONCLUSION

We have studied the effect of hydrostatic compres-
sion on the transport properties of a La0.6Sr0.4MnO3
ceramic and of La0.6Sr0.4MnO3–I–Pb and
La0.6Sr0.4MnO3–I–La0.6Sr0.4MnO3 tunneling junctions.
An analysis of the experimental data has revealed that
the pressure does not cause a variation of the tunneling
behavior of the passage of electrons in the structures
being studied. To the contrary, the temperature depen-
dence of the current passing through a junction assumes
a more “classical tunneling form”. At the same time, the
magnetoresistive effect is suppressed, although the
magnetic properties of the junction sides are retained. A
conclusion has been drawn that the region of the junc-
tion interface (of nanometer width) is in the vicinity of
the metal–insulator phase transition boundary. As is
known, this latter interface may be shifted by applying
a pressure of the order of P ~ 10 kbar [24–28]. It was
this pressure range that was realized in our investiga-
tion. Proceeding from the obtained data and the results
of analysis, it is natural to assume that the surface layer
of electrodes of the investigated tunneling junctions
and ceramic granules is in the phase of a magnetic insu-
lator (semiconductor). The pressure transfers these
regions to the metallic state, so that the magnetic state
of the internal regions of a granule extends to its surface
areas, and the tunneling assumes a “standard pattern.”

Therefore, in ceramic systems of lanthanum manga-
nites, the formation of intergrain tunneling junctions is
responsible for the spin-dependent tunneling of elec-
trons and for the low-field magnetoresistive effect. In
this way, the granule surface represents an additional
tunneling junction. Most effective is the resonance tun-
neling through impurity levels located at the center of a
potential barrier formed both by the true (insulating)
barrier and by the interface of contacting granules. The
tunneling through such states leads to the formation of
a Coulomb gap in the density of states of charge carri-
ers. For a fairly large barrier thickness, the resonance
processes with the boson emission (absorption) prevail.
The processes of tunneling through the impurity states
of a nanoscale magnetic cluster make a decisive contri-
bution to the low-field magnetoresistive effect.
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Abstract—Large entropy fluctuations in the equilibrium steady state of classical mechanics are studied in
extensive numerical experiments in a simple strongly chaotic Hamiltonian model with two degrees of freedom
described by the modified Arnold cat map. The rise and fall of a large separated fluctuation is shown to be
described by the (regular and stable) “macroscopic” kinetics, both fast (ballistic) and slow (diffusive). We aban-
don a vague problem of the “appropriate” initial conditions by observing (in a long run) a spontaneous birth
and death of arbitrarily big fluctuations for any initial state of our dynamical model. Statistics of the infinite
chain of fluctuations similar to the Poincaré recurrences is shown to be Poissonian. A simple empirical relation-
ship for the mean period between the fluctuations (the Poincaré “cycle”) is found and confirmed in numerical
experiments. We propose a new representation of the entropy via the variance of only a few trajectories (“par-
ticles”) that greatly facilitates the computation and at the same time is sufficiently accurate for big fluctuations.
The relation of our results to long-standing debates over the statistical “irreversibility” and the “time arrow” is
briefly discussed. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION: MACROSCOPIC VERSUS 
MICROSCOPIC FLUCTUATIONS

Fluctuations are an inseparable part of statistical
laws. This has been well known since Boltzmann. What
is apparently less known are the peculiar properties of
rare big fluctuations (BF) that are different from, and
even in a sense opposite to, the properties of small sta-
tionary fluctuations. In this paper, we consider the sim-
plest type of chaotic dynamical systems, namely, a
Hamiltonian system with a finite number of the degrees
of freedom that admits the (stable) statistical equilib-
rium (SE). This class of dynamical models is still pop-
ular (since Boltzmann!) in debates over the dynamical
foundations of statistical mechanics (see, e.g., “Round
Table on Irreversibility” in [1, 2]).

A sufficiently simple picture of BFs in such systems
is well understood by now, although not yet well
known. To Boltzmann, this picture was the basis of his
fluctuation hypothesis for our Universe. It is also well
understood that this hypothesis is totally incompatible
with the present structure of the Universe because it
would immediately imply the notorious “heat death”
(see, e.g., [3]). For this reason, one may even term such
systems the heat death models. Nevertheless, they can
be and actually are widely used in describing and study-
ing local statistical processes in thermodynamically
closed systems. The latter term means the absence of
any heat exchange with the environment. We note, how-
ever, that under conditions of the exponential instability

¶This article was submitted by the authors in English.
1063-7761/01/9301- $21.00 © 20188
of motion, which are typical of chaotic systems, the
only dynamically closed system would be the “entire
Universe.” In particular, this excludes the hypothetical
“velocity reversal” that also is popular in debates over
“irreversibility” since Loschmidt (for a discussion, see,
e.g., [4]).

In any case, dynamical models with the SE do not
tell us the whole story of either the Universe or even a
typical macroscopic process therein. The principal
solution of this problem, unknown to Boltzmann, is
quite clear now: the “equilibrium-free” models are
required. Various classes of such models are intensively
studied today. Moreover, the celebrated cosmic micro-
wave background tells us that our Universe was born
already in the state of a heat death, which, however,
became unstable due to the well-known Jeans gravita-
tional instability [5]. This resulted in developing a rich
variety of collective processes, or synergetics, the term
recently introduced or, better to say, put in use by
Haken [6]. The most important peculiarity of such a
collective instability is that the total overall relaxation
(to somewhere?) with the ever increasing total entropy
is accompanied by an also increasing phase space inho-
mogeneity of the system, particularly with respect to
temperature. In other words, the entire system and its
local parts become more and more nonequilibrium to
the extent of the birth of a secondary dynamics that can
be, and sometimes is, as perfect as, e.g., the celestial
mechanics (see, e.g., [4, 7, 8] for a general discussion).

We stress that all these inhomogeneous nonequilib-
rium structures are not BF like in the SE but are a result
001 MAIK “Nauka/Interperiodica”
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of a regular collective instability; therefore, they are
immediately formed under a certain condition. In addi-
tion, they are typically dissipative structures according
to Prigogine [9] due to the energy and entropy
exchange with the infinite environment. The latter is the
most important feature of such processes, and at the
same time the main difficulty in studying the dynamics
of those models both theoretically and in numerical
experiments, which are so much simpler for SE sys-
tems.

In the latter case, a BF consists of two symmetric
parts: the rise of a fluctuation followed by its return, or
relaxation, back to the SE (see Figs. 1 and 2). Both parts
are described by the same kinetic (e.g., diffusion) equa-
tion, the only difference being in the sign of time. This
relates the time-symmetric dynamical equations to the
time-antisymmetric kinetic (but not statistical!) equa-
tions. The principal difference between the two types of
equations, sometimes overlooked, is that the kinetic
equations are generally understood as describing the
relaxation only, i.e., the increase of the entropy in a
closed system, whereas in fact they do so (at least, in
the SE) for the rise of BF as well, i.e., for the entropy
decrease. All this was qualitatively known already to
Boltzmann [10]. The first simple example of a symmet-
ric BF was considered by Schrödinger [11]. A rigorous
mathematical theorem for the diffusive (slow) kinetics
was proved by Kolmogorov in 1937 in the paper entitled
“Zur Umkehrbarkeit der statistischen Naturgesetze”
(Concerning Reversibility of Statistical Laws in Nature)
[12] (see also [13]). Regrettably, the principal Kolmog-
orov theorem still remains unknown to both the partic-
ipants of heated debates over “irreversibility” and the
physicists actually studying such BFs (see, e.g., [14]).

At present, there exists a well-developed ergodic
theory of dynamical systems (see, e.g., [15]). In partic-
ular, it proves that the relaxation (correlation decay, or
mixing) eventually proceeds in both directions of time
for almost any initial conditions in a chaotic dynamical
system. However, the relaxation must not always be
monotonic, which simply means a BF on the way,
depending on the initial conditions. To eliminate this
apparently confusing (to many) “freedom,” we take a
different approach to the problem: instead of discussing
the “true” initial conditions and/or a “necessary”
restriction of them, we start our numerical experiments
at arbitrary initial conditions (most likely correspond-
ing to the SE) and observe what the dynamics and sta-
tistics of BF are like. This approach is obviously based
on the fundamental hypothesis that all the statistical
laws are contained in, and can be principally derived
from, the underlying fundamental (Hamiltonian)
dynamics. To the best of our knowledge, there is as yet
no contradiction to this principal hypothesis. We note,
however, that this approach can be directly applied to
fluctuations in finite systems with a statistical equilib-
rium only (see [4] and [16] for a discussion). In these
and only these systems, infinitely many BFs grow up
spontaneously, independently of the initial conditions
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of the motion. This is similar to the well-known
Poincaré recurrences (see Section 4).

In spite of essential restrictions, simple SE models
allow us to better understand the mechanism and the
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Fig. 1. Mixed kinetics for two BFs of different sizes.
Filled/open circles show the time dependence of the mean
variance 〈v(t – ti)〉  around the BF maximum at t = ti; the
upper horizontal straight line is the equilibrium and the
lower line indicates the empirical value of the dynamical
scale vd = 0.015, Eq. (3.4), with the parameter Fd ≈ 1/3. The
two oblique straight lines represent the expected fast kinet-
ics, Eq. (3.3), and the two solid curves do so for the initial
diffusive kinetics, Eq. (3.5). The respective run parameters
and results are given by C = 15, N = 1, vb = 3.9 × 10–11/6.25 ×
10–10 (vxb = vpb), v(0) = 1.96 × 10–14/3.1 × 10–13, n =
1971/4459, w = 500. The average period between succes-
sive fluctuations is 〈P〉  ≈ 1.4 × 107/3.5 × 106 iterations.
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Fig. 2. The same as in Fig. 1 for a typical diffusive kinetics
(anti-diffusion/diffusion): the solid curve shows the average
over all n = 20259 fluctuations in a run and the wiggle line
is the same for the first 28 fluctuations. Two oblique straight
lines represent the expected initial diffusive kinetics, Eq. (3.5),

with τd = 0 and the empirical value  = 0.045, while

the theory (3.15) gives vd = 0.02. Other run parame-

ters/results are given by C = 50, N = 5, vb = 0.0256, w = 104,

〈P〉  ≈ 7.7 × 105/8.7 × 105, and B = 306/348; 〈P〉/w ≈ 77/87.
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role of BFs in statistical physics. In addition to the
removal of the vague problem of initial conditions,
these models are very helpful in clarifying the relation
between macroscopic and microscopic descriptions of
chaotic systems. In particular, a spontaneous rise of a
BF out of the SE is a macroscopic event as well as is its
subsequent relaxation back to the SE, even in a system
with a few degrees of freedom. Similarly to other mac-
roscopic processes, BFs are not only perfectly regular
by themselves but also surprisingly stable against any
perturbations, either regular or chaotic. Moreover, the
perturbations must not be small. At a first glance, this
looks very strange in a chaotic, highly unstable dynam-
ics. The resolution of this apparent paradox is that the
dynamical instability of motion affects the BF instant
of time only. The BF evolution is determined by the
kinetics independently of its mechanism, from a purely
dynamical one, as in model (2.2) used in this paper, to
a completely noisy (stochastic) one. As a matter of fact,
the fundamental Kolmogorov theorem [12] is precisely
related to the latter case but remains valid in a much
more general situation. The surprising stability of BFs
is similar to the less known concept of robustness for
the Anosov (strongly chaotic) systems [17] whose tra-
jectories are only slightly deformed under a small per-
turbation (see [4] for a discussion).

In this paper, we consider a particular type of BFs
characterized by a large concentration of “particles” in
a small phase space domain of the dynamical system. In
other words, “our” fluctuations are localized in phase
space and separated in time. A more accurate definition
of these fluctuations is given in Section 3 (see
Eq. (3.6)). The same fluctuations in a stochastic model
(with noise) were studied in detail in [14]. Obviously,
there exist many other fluctuations with their own pecu-
liarities (see, e.g., [18]). The primary object of our
studies is the macroscopic kinetics of big fluctuations
in the background of small stationary microscopic
fluctuations. A brief outline of our results was pre-
sented in [16].

2. A HAMILTONIAN MODEL: 
MOST SIMPLE BUT STRONGLY CHAOTIC

The systems with an SE can be described in terms of
models that are very simple as regards both the theoret-
ical analysis and numerical experiments (of which the
latter are even more important for us). In the present
paper, we use one of the most simple and popular models
specified by the so-called Arnold cat map (see [19, 20]):

(2.1)

which is a linear canonical map on a unit torus. It has
no parameters and is chaotic and even ergodic. The rate
of the local exponential instability, the Lyapunov expo-

nent λ = ln(3/2 + /2) = 0.96, implies a fast (ballistic)

p p x mod 1,+=

x x p mod 1,+=

5
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kinetics with the relaxation time tr ~ 1/λ ≈ 1. Through-
out the paper, t denotes the time in the map iterations.

A minor modification of this map,

(2.2)

where C is a circumference of the phase space torus,
allows studying both the fast (exponential) ballistic
kinetics (for C = 1) and the slow (diffusive) relaxation
in p (for C @ 1) with the characteristic time tp ~ C2/4Dp @
1, where Dp = 1/12 is the diffusion rate in p. In contrast
to the slow diffusion in p, the relaxation time in x does
not depend on C (tr ~ 1) and the subsequent values of x
are therefore practically uncorrelated. Map (2.2) has
the (unstable) fixed point at x = x0 = 1/2 and p = p0 =
C/2.

A convenient characteristic of the BF size is the rms
volume (area) in the 2D phase space (x, p)

(2.3)

occupied by a group of N trajectories (particles). In the
ergodic motion at equilibrium, σ = σ0 = C/12. Because
of a severe restriction to small N & 10 in the numerical
experiments (see below), we have to use simple (aver-
age) characteristics like (2.3) only. On the other hand,
these are precisely the macroscopic variables in which
we are interested.

In what follows, we also restrict ourselves to a par-
ticular case of BFs with the fixed prescribed position in
the phase space,

(2.4)

The variance of the phase space size v  = σ2 =  is
then determined by

, (2.5)

where the brackets 〈…〉  denote averaging over N trajec-
tories. In the ergodic motion at equilibrium, v  = v SE =
C2/122. In what follows, we use the dimensionless mea-
sure  = v /v SE  v  and omit the tilde. In the diffu-
sive approximation of the kinetic equation, the variable
v (t) is especially convenient because it varies propor-
tionally to time. Moreover, v   v p in this case
because of a quick relaxation v x  1 in x.

Among all the advantages of v, the relation of this
variable to the fundamental concept of the entropy is
highly desirable. The standard definition of the entropy,
which can be traced back to Boltzmann, reads

(2.6)

where f(x, p) is a coarse-grained distribution function,
or the phase-space density, and S0 an arbitrary constant
to be fixed later. We note that the distribution calculated
from any finite number of trajectories is always a

p p x 1/2 mod C,–+=

x x p C/2 mod 1,–+=

σ t( ) σp t( )σx t( )=

x fl x0
1
2
---, p fl p0

C
2
----.= = = =

σp
2σx

2

σp
2 p2〈 〉= p0

2– , σx
2 x2〈 〉 x0

2–=

ṽ

S f x p,( )ln〈 〉–= S0,+
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coarse-grained one. However, the direct application of
Eq. (2.6) requires too many trajectories, especially for
a small-size BF. Nevertheless, precisely in the latter
case, which is the main problem under consideration,
we have found a simple approximate relation

(2.7)

that gives at least a rough estimate for the entropy evo-
lution [16]. Moreover, if the distribution is Gaussian,

, (2.8)

estimate (2.7) becomes exact because it is directly
derived from the definition of the entropy in Eq. (2.6).
The two relations for the entropy are compared in the
end of Section 3 for a typical BF.

A great advantage of (2.7) is that the computation of
S does not require very many trajectories as does the
distribution function. In fact, even a single trajectory is
sufficient, as is demonstrated by Fig. 1 in [16] and Fig. 1
in this paper!

A finite number of trajectories used for calculating
the variance v  is similar to a coarse-grained distribu-
tion, as required in relation (2.6), but with a free bin size
that can be arbitrarily small.

We can now turn to the numerical experiments.

3. MACROSCOPIC KINETICS: COMPLETE, 
REGULAR, AND STABLE

In this section, we consider the regular BF kinetics.
The data were obtained by simultaneously running N
trajectories for a very long time in order to collect suf-
ficiently many BFs for a reliable separation of the reg-
ular part of BFs, or the kinetic subdynamics according
to Balescu (see [21] and references therein), from the
stationary fluctuations. The separation was done by the
plain averaging of the individual v i values (i = 1, …, n)
over all the n BFs collected in a run.

The size of the BF chosen for the subsequent analy-
sis is fixed by the condition that

(3.1)

at some time instant t ≈ ti, the moment of a BF. Here, a
prescribed value v b is the main input parameter of the
run. This condition actually determines the border of
the entire fluctuation domain (FD) as 0 < v  < v b.

The event of entering the FD is the macroscopic
“cause” of the BF whose obvious “effect” will be the
subsequent relaxation to the equilibrium. However, the
main point of our study is that the second “effect” of the
same “cause” was preceding the rise of the BF in an
apparent contradiction with the “causality principle”
(for a discussion, see [16] and Section 4 below). In any
event, the second effect requires the permanent mem-

S t( ) 1
2
--- v t( )ln≈

f x p,( ) f p( )
p p0–( )2– /2v( )exp

2πv
-------------------------------------------------=

v t( ) v b<
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ory of trajectory segments within some time window w,
which is another important input parameter of the run.

The exact procedure of data processing during the
run is as follows. Starting from arbitrary (random) ini-
tial conditions, selection rule (3.1) is checked at each
iteration. Suppose that it is satisfied at some instance tin
when the bundle of trajectories enters the FD. In the
first approximation, we could consider it as the fluctua-
tion maximum (or the variance minimum) ti = tin, where
the subscript i is the number of the current fluctuation
in a run. However, this simple procedure would cause
an asymmetry with respect to t = ti. A better choice
would be given by the rule ti = (tin + tout)/2, where tout is
the time instance of the exit from the FD. Instead, we
have accepted a more complicated procedure that better
restores the true BF symmetry, as we hope. Starting
from the moment tin, we search for the minimum of v(t)
inside a sufficiently large interval tin < t < tin + w. If a
minimum is found at some t = tmin, we check that it also
is the minimum inside the next interval tmin < t < tmin +
w. If this is the case, we identify this minimum with the
BF top and set ti = tmin; otherwise, we set tmin equal to
the time of a better minimum and repeat the last step.
Obviously, the parameter w must be small compared to
〈P〉 , the mean period of the BF, but sufficiently long for
the trajectory to leave FD (3.1). Typically, we chose
w * C2, the total diffusion time. After fixing the current
ti value, the computation within the interval ti < t < ti +
w was completed, and only then the search for the next
BF is continued.

As mentioned above, there are two quite simple lim-
iting cases of generally very complicated kinetics,
namely, the fast (ballistic) and the slow (diffusive) lim-
its. An example of both in one run for N = 1 (!) is pre-
sented in Fig. 1 for two fluctuations of different sizes.
In this case, general condition (3.1) was checked sepa-
rately for p and x,

(3.2)

with v pb = v xb ~ 10–5 and v b = v pbv xb ~ 10–10.

The fast part of the kinetics is approximately
described by

(3.3)

where τ = t – ti, λ is the Lyapunov exponent (see Sec-
tion 2) and v(0) ~ 10–13 is the minimal variance aver-
aged over all n fluctuations observed in the run. We note
that the latter value is considerably smaller than the
border value v b ~ 10–10. This is because of the penetra-
tion of trajectories into the FD. Interestingly, the ratio
vb/v(0) = 2000 is the same for both runs in Fig. 1.

A surprisingly sharp crossover to the diffusive kinet-
ics, clearly seen in Fig. 1, is related to the dynamical
scale of the diffusion corresponding to a certain size v d

of the increasing variance at which the exponential
growth stops. Roughly, it occurs at the time instance

v p t( ) v pb and v x t( ) v xb,<<

v τ( ) v 0( ) 4λτ( ),exp≈
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τ = τd, when |x – x0 | ~ |p – p0 | ~ 1/2, whence v xd ~
12/4 = 3 and v pd ~ 3/C2. We can therefore characterize
the dynamical scale as

(3.4)

where Fd is an empirical factor and τd is found from
Eq. (3.3). The data in Fig. 1 imply the dynamical scale
v d ≈ 0.015 independently of v b, which gives the empir-
ical factor Fd ≈ 1/3.

In the diffusion region (v  > v d), the initial kinetics is
described by a simple relation for the free diffusion (see
Section 2),

, (3.5)

which is also shown in Fig. 1. It involves two correc-
tions, τd and v d, due to the exponential ballistic kinetics.
The first one (with opposite signs for the two symmetric
parts of the fluctuation) takes the “lost” time after (or
prior to) the antidiffusion (diffusion) into account,
while the second correction describes a finite fluctua-
tion size at the crossover from (to) the diffusion. The
mean empirical value τd = 7 used in Fig. 1 is close to the
value τd = 6.5 found from Eq. (3.4) with another empir-
ical quantity, v d = 0.015.

The large ratio

(3.6)

v τd( ) v d Fdv pdv xd

9Fd

C2
---------,= = =

τd

v d/v 0( )( )ln
4λ

-------------------------------,=

v τ( )
τ τ d±

C2
------------- v d, τd τ  ! C2<+≈

B
P〈 〉

C2
--------- @ 1=

4
P/ 〈P〉
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Fig. 3. The histogram of integrated distribution (3.9) for
data in Fig. 2. Each circle shows the number of periods Pm >

m∆P, for m = 0, 1, … P0 = n, ∆P = 1.5 × 105; Pmin/w =
1.0027; Pmax/〈P〉  = 12.63; 〈P〉  = 765084. The straight line is
the expected distribution nexp(–P/〈P〉).
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of the mean fluctuation period 〈P〉  to the characteristic
time of the diffusion relaxation (see Eq. (3.5)) is the
definition of a big fluctuation. It guarantees the time
separation of successive fluctuations.

We now turn to the main subject of our study, the
purely diffusive kinetics of BFs. For this, we first elim-
inate the x-statistics by excluding v x from selection
condition (3.1), which now reads

(3.7)

Next, the variance v b must now exceed the new dynam-
ical border,

(3.8)

with some empirical factor fp ≈ 1 (see Eq. (3.4) and the
discussion below).

A typical example of a diffusive BF is shown in Fig. 2.
Both the regular macroscopic kinetics of the antidiffu-
sion/diffusion and the irregular fluctuations around are
clearly seen. We note that their size rapidly decreases
toward the BF maximum. It may even seem that the
motion becomes regular in that region, hence the term
“optimal fluctuational path” [14]. In fact, the motion
remains diffusive down to the dynamical scale v  ~ v d in
Eq. (3.8).

Even though a separate BF is sufficiently regular,
the time instance of its spontaneous appearance ti and,
hence, the individual period P are random in the chaotic
system. Due to the statistical independence of BFs
under condition (3.6), the expected distribution in P is
Poissonian (Fig. 3),

(3.9)

The principal characteristic of the period statistics,
〈P〉 , can be estimated as follows. From the ergodicity of
motion in the N-dimensional momentum space, we
have 

(3.10)

This is an exact relation (in the limit as trun  ∞), with
Ts being the total sojourn time of trajectories within the
FD (under the condition v (t) < v b) during the entire run
time trun and 〈Ts〉  the same per fluctuation. Both ratios
are equal to the ratio of the N-dimensional momentum
volume 3 of the fluctuation at τ = 0 to that in the equi-
librium. The ratio Φ was also measured during the run.
It follows that

(3.11)

The next, more difficult step is the valuation of Ts =
2Tex from the diffusion equation, where Tex is the exit
(or entrance due to symmetry) time from (or to) the FD.

v t( ) v p= v pb< v b.=

v b v d> v pd= f p
12

C2
------≈

f P( ) P/ P〈 〉–( )exp
P〈 〉

---------------------------------= .

Φ
Ts

t f

-----
Ts〈 〉
P〈 〉

----------
3 fl

3eq

---------.= = =

P〈 〉
Ts〈 〉
Φ

----------.=
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A simple crude estimate is Tex ~ v b/Dp = v bC2 (see Sec-
tion 2). However, the first numerical experiments have
already revealed that the actual exit time is much
shorter, roughly by the factor 1/N2. A plausible expla-
nation is that inside the FD, the distribution is concen-
trated in a relatively narrow layer at the surface of the
N-dimensional sphere determined by the selection con-
dition v (t) < v b in Eq. (3.7). The relative width of the
layer ~1/N then implies the observed factor ~1/N2. Fur-
ther, the ratio

(3.12)

with the geometrical function

, (3.13)

admits a relatively accurate approximation down to N = 1
(see Fig. 4).

Collecting all the above formulas, we arrive at our
final empirical relation

(3.14)

with two fitting factors, A for the layer width and F for
all the other approximations made above. The two fac-
tors cannot be united in one because the former enters
a new expression for the dynamical scale that naturally
generalizes Eq. (3.8). Together with inequality (3.6) for
a big fluctuation, the new dynamical scale was used in

Φ v b N,( ) v b
N /2φ N( ),=

φ N( ) πe
6

------ 
 

N /2

≈ 1 1/6N–( )
πN

--------------------------

P〈 〉 F
Φ
----

2v bAC2

N2
-------------------- F

2AC2

N2
-------------

v b
1 N /2–

φ N( )
----------------≈≈

2

î1

N
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1.5
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0

Fig. 4. The comparison of the directly measured ratio Φemp
given by Eq. (3.10) with the theoretical approximation Φth,
Eq. (3.12) for N = 1–10: Φ1 = Φemp/Φth; the average over
71 runs is 〈Φ1〉  = 1.015 ± 0.11 (the standard deviation); the

bars show statistical errors 1/  for each run; the total
number of fluctuations in all runs is 127346.

n
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selecting purely diffusive BFs described by Eq. (3.14).
The corresponding inequality reads (cf. Eq. (3.8))

(3.15)

which means that even a small part (A/N2 < 1) of the FD
must exceed the dynamical scale.

All the empirical parameters were optimized as fol-
lows. The values of two factors, B in Eq. (3.6) and fp in
(3.15), are not crucial; larger values of these factors cor-
respond to a better selection of purely diffusive BF but
reduce the amount of the empirical data available. A
compromise was found at B = 7 and fp = 1, which leaves
36 runs of 61 done and 34429 of the total 75053 BFs
computed with N = 2–10 for comparison to Eq. (3.14).
This was executed as follows. For each selected run
with the parameters N, C, and v b and the computed val-
ues 〈P〉  and Φ, the empirical factor F (which was
assumed to be a constant) was calculated from the first
equation in (3.14). The value of A was chosen by mini-
mizing the relative standard deviation to ∆F/〈F〉  = 0.17.
For a given set of data, the result was A ≈ 6. The final
dependence F(N) is shown in Fig. 5, where the bars are

the statistical errors F/  for each run.

Coming to the analysis of our main theoretical
result, the second equation in (3.14), we first remark
that it does not describe a single trajectory (N = 1). This
is because we excluded v xb from selection condition
(3.7) (cf. Eq. (3.2)) and thus reduced the phase space
dimension to the minimal value, unity. In this case, a
single trajectory repeatedly crosses the FD with the
period P ~ C2, the entire diffusion time around the
phase space torus, which is independent of the FD size.

v b v d> , v d
A

N2
------ f p

12

C2
------,≈

n

2

F

N
4 6 8 10

0

1.5

3.0

Fig. 5. The comparison of the empirical data for 36 runs
selected from 61 runs computed for N = 2–10 by the two
rules, Eq. (3.6) with B > 7 and Eq. (3.15) with A = 6, to the-
oretical relation (3.14) with the main fitting factor Fm, m =
1, …, 36 (see text). The average value is 〈F〉  = 1.51(1 ± 0.17)
(the standard deviation); the bars show statistical errors

Fm/  for each run; the total number of fluctuations in 36
runs is 34429.
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More formally, this also follows from Eq. (3.14),
because condition (3.6) cannot be satisfied for small v b.

For two trajectories (N = 2), the period does not
depend on v b, and for the data in Fig. 5, we have the
ratio 〈P〉/C2 ≈ 8.7. Because of fluctuations, the actual
values of this ratio are in the interval 7.4–11.0, still not
too big for a BF. Apparently, this leads to a relatively
large scattering of points with N = 2, which also persists
for N = 3.

The main dependence in Eq. (3.14), the exponential
of N, is readily derived from a graphic picture of N sta-
tistically independent particles gathering together

inside a small domain with the probability ~1/P ~ .
Such estimates are known for the Poincaré recurrences
since Boltzmann [10]. The estimate is especially vivid
in the geometrical picture of the N-dimensional sphere

of the radius  considered above. Our empirical
relation (3.14) considerably improves the simple esti-
mate by including a weaker power-law dependence,
which is evident in Fig. 5.

In our studies described above, we fixed the position
of a BF in phase space, Eq. (2.4). If we lift this restric-
tion, the probability of a BF increases by the factor

, which corresponds to decreasing N by one
(N  N – 1) because only N – 1 trajectories then
remain independent. With the latter change, all the
above relations presumably remain valid.

Our main relation (3.14) describes the diffusive
kinetics for v b > v d, Eq. (3.15), when a BF is not too

v b
N /2

v b

v b
1/2–

–10000

S

t – t i

–5000 0 5000 10000

–2

–3

0.5

0

Fig. 6. The macroscopic kinetics of the BF entropy: the
lower line is the “exact” entropy given by Eq. (2.6), to be
compared with approximation (2.7), the middle line; the
upper line is the same approximation for the diffusion the-

ory, Eq. (3.5) with τd = 0 and the empirical value  =

0.02. The run parameters/results are C = 50, N = 5, vb =

0.01, w = 104, n = 4580, 〈P〉  ≈ 3.3 × 106, B = 1314; 〈P〉/w ≈
329. The number of partition bins for calculating (2.6) is
Np = 401.

v d
emp( )
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big. In the opposite case v b ! v d of a very big fluctua-
tion, as in Fig. 1, the dependence 〈P(v b)〉  becomes
much simpler (see Eqs. (3.11)–(3.13) and [16]):

(3.16)

This is explained by a fast exponential kinetics near the
BF top (Fig. 1), which implies the shortest exit time
Tex ≈ 1, and hence, Ts ≈ 2. Indeed, for both BFs in
Fig. 1, we have the empirical value 〈P〉Φ = 1.98.

In the conclusion of this section, we show in Fig. 6
the macroscopic kinetics of the BF entropy, both the
“exact” one in Eq. (2.6), calculated for the partition of
the entire interval (0 < p < C) into Np = 401 bins, and
the one given by our approximation (2.7). Both entro-
pies were calculated for the same 5 trajectories in one
run. The necessary statistics for the exact entropy was
obtained at the expense of a large number n = 4580 of
fluctuations in the run. To compare the two entropies,
we must adjust the constant S0 in Eq. (2.6). As is easily
verified, Gaussian distribution (2.8) leads exactly to
relation (2.7) if

(3.17)

Approximation (2.7) is valid for the most part of the BF
except a relatively small domain near the equilibrium,
where the distribution in p approaches the homoge-
neous one. The exact entropy (with constant (3.17)) in
the equilibrium is

(3.18)

instead of zero in approximation (2.7). The difference
is relatively small, the larger the fluctuation. In the main
part of the BF, our simple relation for the entropy in
Eq. (2.7) reproduces exact relation (2.6) to a surpris-
ingly good accuracy. This confirms that the distribution
in p is indeed very close to the Gaussian one in
Eq. (2.8), as expected.

4. CONCLUSION: THERMODYNAMIC ARROW?

We have presented the results of extensive numeri-
cal experiments on big entropy fluctuations (BFs) in a
statistical equilibrium (SE) of classical dynamical sys-
tems and discussed their peculiarities.

All numerical experiments were carried out on the
basis of a very simple model given by Arnold cat map
(2.1) on a unit torus with only two minor, but important
and helpful, modifications:

(1) expanding the torus in the p direction, Eq. (2.2),
for a more impressive diffusive kinetics of BFs out of
the equilibrium (Fig. 2), and

(2) inserting a special (unstable) fixed point for a
better demonstration of the exponential ballistic kinet-

P v b( )〈 〉
Ts〈 〉
Φ

----------=
2

v b
N /2φ N( )

----------------------- 2v b
N /2– .≈ ≈
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2
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ics (Fig. 1). In addition, this point was used as a fixed
position of BFs, which relates our studies of BFs to
another interesting and important problem, the
Poincaré recurrences (see Eq. (2.2)).

The most important distinction of our approach is
that we have abandoned the vague question of the initial
conditions, in particular, a “necessary” restriction of
those in statistical physics. Instead, we started our
numerical experiments at arbitrary initial conditions
(most likely corresponding to the SE), and did observe
the dynamics and statistics of BFs. In other words, we
studied the spontaneous BFs only.

It is also important that such a spontaneous rise of a
BF out of the SE and its subsequent relaxation back to
the SE can be considered as a statistical macroscopic
event, even in a system with a few degrees of freedom
as the one in Eq. (2.2). The term “macroscopic” refers
to average quantities including variance, entropy, mean
period, distribution function, and the like.

We consider a particular class of BFs that we call the
Boltzmann fluctuations. They are obviously symmetric
under the time reversal (see Figs. 1, 2, and 6), and there-
fore, at least in this case, there is no physical reason at
all for the concept of the notorious “time arrow.” Nev-
ertheless, a related concept—the thermodynamic arrow
pointing in the direction of the average increase of
entropy—makes sense in spite of the time symmetry
[16]. The point is that the BF characteristic relaxation
time is determined by the model parameter C only and
does not depend on the BF itself. On the contrary, the
expectation time for a given BF, or the mean period
between successive fluctuations, rapidly grows with the
BF size and with the number of trajectories (or the
degrees of freedom), Eq. (3.14). A large ratio of the two
quantities, B = 〈P〉/C2 @ 1, is our definition of a big
fluctuation, Eq. (3.6). A similar result was recently
obtained in [22], but the authors missed the principal
difference between the time arrow and the thermody-
namic arrow.

A related notion of the causality arrow, which by
definition points from an independent macroscopic
cause to its effect, also makes some physical sense (see
[16] and Section 3 for a discussion). For the Boltzmann
BFs considered in the present paper, the directions of
both arrows coincide independently of the direction of
time. In our opinion, the last statement is the most
important, philosophical “moral” that the principally
well-known Boltzmann fluctuations teach us.

Even though we discuss and interpret our empirical
results in terms of entropy (S), which is the most funda-
mental concept in statistical physics, we actually use
another entropy-like quantity, the variance v(t) for a
group of N trajectories, Eq. (2.5). One reason is techni-
cal: the computation of v  is much simpler than that of
S(t), which is either very time-consuming in numerical
experiments (for exact S given by (2.6)) or approximate
in accordance with (2.7). In addition, for diffusive
kinetics, in which we are mainly interested, the vari-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ance is a natural variable that makes the BF picture
most simple and comprehensible.

Originally, we planned to cover both sides of the BF
phenomenon, the regular macroscopic kinetics and the
accompanying microscopic fluctuations (noise)
around. However, our numerical experiments revealed
a much more complicated structure of the latter, as an
example in Fig. 2 demonstrates. The dependence v (t)
looks like a fractal curve on a variety of time scales,
ranging from the minimal one ~1 iteration up to ~C2,
which is comparable to that of the BF itself. This inter-
esting problem certainly requires and deserves further
studies.

Only the fluctuations in classical mechanics are con-
sidered in this paper. General quantum fluctuations are
quite different. However, according to the Correspon-
dence Principle, the dynamics and statistics of a quan-
tum system in the semiclassical region are close to the
classical ones at the appropriate time scales, the longest
of which corresponds to the diffusive kinetics and
ensures the transition to the classical limit (see [4, 23]
for details). Curiously, the computer classical dynamics
that is the simulation of a classical dynamical system on
digital computer is of a qualitatively similar character.
This is because any quantity is discrete (“overquan-
tized”) in the computer representation. As a result, the
correspondence between the classical continuous
dynamics and its computer representation in numerical
experiments is generally restricted to certain finite time
scales as in quantum mechanics (see the first two refer-
ences in [23]).

The discreteness of the computer phase space leads
to another peculiar phenomenon: generally, the com-
puter dynamics is irreversible due to the rounding-off
operation unless a special algorithm is used in numeri-
cal experiments. However, this does not affect the sta-
tistical properties of the chaotic computer dynamics. In
particular, the statistical laws remain time-reversible in
the computer representation in spite of the (nondissipa-
tive) irreversibility of the underlying dynamics. This
simple example demonstrates that contrary to a com-
mon belief, the statistical reversibility is a more general
property than the dynamical reversibility.
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Abstract—The problem of directional laser synthesis of enantiomers in an isotropic racemic mixture of chiral
molecules is analyzed taking into account rotational degrees of freedom of molecules. It is shown that the
chirality of the polarization structure of a laser field is the most general necessary condition for the laser distil-
lation of an isotropic non-racemic mixture of chiral molecules with the isotropic distribution over the Eulerian
angles. In the approximation of the electric-dipole interaction, the required field configuration can be provided
due to noncoplanarity of the polarization vectors of laser-pump components. A relevant experimental scheme
is proposed and calculated for the transformation of an isotropic racemic mixture with the help of a three-com-
ponent pulsed laser field. It is shown that the possibility of the laser control of chirality in an isotropic medium
corresponds to nonzero information on coupling between the input and output in the laser field-chiral molecular
state information channel. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of directional enrichment of a racemic
mixture of left-oriented (L-enantiomers) and right-ori-
ented (D-enantiomers) chiral molecules with the help
of laser radiation is being recently actively discussed.
At present, two approaches exist to the solution of this
problem. One of them consists in the selection of enan-
tiomers of one type without changing their nuclear con-
figuration (the scenario of laser selection of enanti-
omers in a racemic mixture). This mechanism was pro-
posed in [1], where the mixture deracemization caused
by a circularly polarized laser beam with a nonuniform
intensity profile over the beam cross section was dem-
onstrated.

Another approach is based on photoinduced synthe-
sis of enantiomers of one type from enantiomers of the
other type (laser synthesis of enantiomers in a racemic
mixture). Synthesis of enantiomers, or the so-called
scenario of laser distillation of enantiomers in a race-
mic mixture, is obviously possible only in the case if
the photoinduced dynamics of the L-enantiomer differs
from that of the D-enantiomer. Several models of distil-
lation of a racemic mixture have been proposed [2–5].
In particular, its was suggested to produce deracemiza-
tion of the initially racemic mixture of enantiomers by
irradiating it by circularly polarized light [2, 4]. How-
ever, the estimates of the percent ratio of enantiomers in
this case give an unsatisfactory result, the difference
being only 10–6%. In this respect, a method for coherent
control of chirality proposed by Shapiro et al. [5] seems
to be more efficient. However, a theoretical analysis
1063-7761/01/9301- $21.00 © 20024
performed in [5] can be applied only to media with ori-
ented molecules and requires a qualitative modification
in the case of isotropic media (in gas, liquid, or amor-
phous states). Note also that the coherent control of
chirality is efficient only in the case of small chiral mol-
ecules with the mass M & 103mH, where mH is the pro-
ton mass. For example, hydrogen peroxide vapor, solu-
tions of alkaloid molecules, etc. can be used as active
media. In the case of more complex enantiomers, the
redistribution of the energy of laser pulses over many
degrees of freedom becomes substantial and coherent
control of chirality is strongly hindered.

In this paper, we study the role of the isotropic dis-
tribution of molecules over rotational degrees of free-
dom in the process of laser distillation of enantiomers
from a racemic mixture of chiral molecules for any pos-
sible distillation scenarios (Section 2). We showed that,
in the case of the isotropic distribution of chiral mole-
cules over orientation Eulerian angles in a racemic mix-
ture, the scenario of coherent synthesis of enantiomers
suggested in [5] could not be successful. In Sections 3
and 5, we suggest and analyze a modified scenario of
laser distillation of enantiomers from a racemic mixture
of chiral molecules, which allows the efficient synthesis
of enantiomers of a specified symmetry. The qualitative
interpretation of the described criterion of physical
implementation of schemes of directional laser synthe-
sis in the terms of the information theory is presented in
Section 4. In the Conclusion, the main results of the
paper are presented.
001 MAIK “Nauka/Interperiodica”
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2. ANALYSIS OF SCENARIOS
OF LASER SYNTHESIS OF ENANTIOMERS 

FROM A RACEMIC MIXTURE TAKING 
INTO ACCOUNT THE ROTATIONAL SYMMETRY 

OF MOLECULES

We assume that the ground electronic state of the
nuclear configuration of a stable enantiomer1 depends
on one reaction coordinate θ and Eulerian angles O =

(ϕ, ϑ , , which characterize the rotation of a molecule
as a whole. Below, we assume for simplicity that the
states of all other intramolecular degrees of freedom are
fixed, so that the variation of these states is ignored in
calculating the molecular dynamics. In the case of sta-
ble molecules, a two-well potential of chiral molecules
has a high barrier, so that the tunneling splitting is vir-
tually absent and the eigenstates |L〉  = ψL(θ) and |D〉  =
ψD(θ) of the Hamiltonian in the ground electronic state
are presented with equal probabilities in a thermody-
namically equilibrium statistical racemic mixture of L-
and D-enantiomers corresponding to these states. The
presence of a high potential barrier in practically
interesting cases of large molecules is caused by a
large mass M of the enantiomer. In this case, the rota-
tion of the enantiomer as a whole is classical, because
"ωn,n + 1 ! kT, where ωn,n + 1 are frequencies of rota-
tional transitions. The free dynamics of such an enanti-
omer is described in terms of states which depend on
the only reaction coordinate θ (i.e., |L〉   ψL(θ),
|D〉   ψD(θ)), while the role of Eulerian angles O is
reduced to the classical averaging over the initial distri-
bution, which does not change during laser irradiation.

Even this simplest model of the free dynamics of an
isotropic medium reveals the fundamental role of rota-
tional symmetry. Its consideration shows that it is
impossible to realize coherent control of chirality in an
isotropic racemic mixture for the polarization configu-
ration of the fields, in which all the polarization vectors
lie in the same plane; i.e., they are coplanar.

The main quantum-mechanical variable that deter-
mines the excess of L-enantiomers in the mixture, i.e.,
the degree of its deviation from racemism, is the chiral-
ity operator  = |L〉〈 L| – |D〉〈 D|. The |L〉  and |D〉  states
are the eigenvectors of the operator , and its eigenval-
ues are ±1. In the matrix representation in the basis of
the states |L〉  and |D〉 , the chirality operator is repre-
sented by the Pauli matrix . The general algorithms
of the construction of the chirality operator in the coor-
dinate representation can be found in papers [6, 7],
according to which the operator  is a pseudoscalar,

i.e.,  = – , where  is the inversion operator

1 We consider an enantiomer stable if the time of tunneling
between its different chiral states is much longer than at least the
time of the experiment.

θ̃ )

χ̂
χ̂

σ̂z

χ̂

R̂
1– χ̂ R̂ χ̂ R̂
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corresponding to the reflection r  –r of the radius
vector.

The inversion operator  in the subspace of the
eigenfunctions |L〉  and |D〉  of the ground electronic state

is described by relations |L〉  = |D〉  and |D〉  = |L〉 . The
excess of L-enantiomers, or the degree of chirality at
fixed Eulerian angles O, is expressed in terms of the
chirality operator , the transition superoperator
6I(O), which describes the transformation of the den-
sity matrix    for the time t, and the operator
of free time evolution

where  is the molecular Hamiltonian. The superop-
erator nature of the transformation of the density matrix
is caused by the presence, in the general case, of decay
processes. For an ensemble of molecules distributed
over the orientation angles, the degree of chirality
includes an additional averaging over the Eulerian
angles:

(1)

Below, we assume in this averaging that the angular
distribution is isotropic.

The transition superoperator, which describes the
photoinduced dynamics of a chiral molecule taking into
account relaxation processes over the reaction coordi-
nate and neglecting the rotation of the molecule as a
whole, has the form

(2)

where T is the time-ordering operator; the expression of

type  with the substitution symbol ( describes
the superoperator of commutation of the transformed

density matrix with the operator ;  = –E  –E  is
the interaction Hamiltonian of the molecule with a mul-
ticomponent laser field,

 is the dipole moment operator of the nuclear config-

uration of the molecule;  is the electronic dipole
moment operator; and +r is the relaxation Liouvillian,
which takes into account relaxation processes in the
molecule [8].

In the superoperator representation, i.e., as applied
to the operators of quantum-mechanical quantities, the
inversion a molecule is performed by the superoperator
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5–1 =  ( , while the inversion of density matrices

is performed by the superoperator 5 =  ( . For a
racemic mixture of initially unexcited molecules, we
have

and, taking into account the symmetry of the molecular

Hamiltonian with respect to inversion, we have 5–1  =

 (in the model under study, which ignores weak

interactions, the Hamiltonian  is represented by a
scalar). Then, it follows from the identity

and taking into account the symmetry of the initial state
(5  = ), that

(3)

where

Using expression (3), we show that the effect of
laser distillation of enantiomers from a racemic isotro-
pic mixture completely vanishes when a multicompo-
nent laser field is not chiral; i.e., the polarization vec-
tors of the laser-field components are coplanar. The
information meaning of this qualitative result is
explained in Section 4.

The inversion of the interaction Hamiltonian  in
(3) is equivalent to the inversion of the dipole moment

operator 5–1  = – , which in turn is equivalent to the
inversion of the vector of the electromagnetic field
strength E. Because the relaxation Liouvillian +r is
invariant with respect to the inversion 5 ( 5–1, it fol-
lows directly from (3) that the degree of chirality χ
changes its sign upon inversion of the polarization con-
figuration of the multicomponent laser field. The inver-
sion operation can be decomposed into the mirror
reflection relative to an arbitrary plane and the corre-
sponding rotation. If the polarization configuration of
the laser field is coplanar, then the inversion operation
is reduced to a simple rotation because the polarization
configuration of the field in this case is invariant with
respect to the mirror reflection relative to the plane in
which all the polarization vectors of the laser field lie.
When the distribution of molecules is isotropic, the
degree of chirality χ, according to (1), is also invariant
with respect to any rotation of the polarization configu-
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Ĥ0

χ– Tr 5 1– χ̂( )Û06Iρ̂0Û0
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ration of the field. It follows from all the above state-
ments that, when the laser field is not chiral, the degree
of chirality χ is invariant with respect to inversion. In
this case, it follows from (3) that χ = –χ, i.e., χ = 0.

Thus, the analysis presented above shows that in the
case of the coplanar polarization configuration of a
laser field and the isotropic distribution over Eulerian
angles, the D  Land L  D transitions are always
mutually compensated and the racemic nature of the
initial state is retained.

In the scenario of laser distillation of enantiomers
from an isotropic racemic mixture, the symmetry of the
L  D and D  L transitions, which appears upon
averaging over isotropically distributed Eulerian
angles, can be violated by two methods. The first
method can be based on the additional orientation of
molecules over Eulerian angles by the laser field. This
scheme was considered in papers [9, 10] as applied to
hydrogen dioxide vapor. However, in the case of
heavier molecules, such an orientation can be achieved
only at very high laser-field strengths, approaching the
intra-atomic field strength. The second method consid-
ered in Section 3 can be based, in accordance with the
above analysis, on the use of a multicomponent laser
field with the noncoplanar polarization configuration,
which acts on the intramolecular degrees of freedom of
enantiomers. The generalization of the scenario of laser
distillation [5] under study is based on the use of three
linearly polarized subpicosecond laser pulses whose
polarization vectors are noncoplanar. The noncoplanar
polarization vectors should be used because only such
a system of vectors possesses chirality, which is inher-
ent only in the three-dimensional space and is absent in
the one-dimensional and two-dimensional cases. Such
a field contains information on chirality even in the case
of the local interaction with a molecule, i.e., in the
dipole approximation. The circularly polarized field in
this approximation (i.e., considered in a single point)
does not reveal its chirality, which is related to the prop-
agation direction of the field and is manifested only
upon nonlocal interaction.

3. SCENARIO OF LASER SYNTHESIS 
OF ENANTIOMERS IN ISOTROPIC RACEMIC 

MEDIA

In the scheme of coherent control of chirality in the
racemic mixture of chiral molecules [5], the following
model of the free dynamics of molecules is adopted.
The potential over the reaction coordinate θ corre-
sponding to the excited electronic state is quasi-har-
monic, with a minimum at θ = 0. The first states of the
nuclear configuration of the excited electronic level |1〉
and |2〉  are described by the wave functions that are
symmetric and antisymmetric relative to θ = 0, respec-
tively. The frequency of the transition from the |1〉  state
to the |2〉  state lies in the IR region. It was shown, ignor-
ing the limitations considered in Section 2, which are
specific for isotropic media, that the scenario of laser
 AND THEORETICAL PHYSICS      Vol. 93      No. 1      2001



LASER SYNTHESIS OF CHIRAL MOLECULES IN ISOTROPIC RACEMIC MEDIA 27
distillation of enantiomers from a racemic mixture of
chiral molecules can be realized using two subpicosec-
ond pulses (Fig. 1a). The subpicosecond laser pulse %%%%2
with frequency ω2 is used for the preparation of the
coherent superposition of the states |1〉  and |2〉 . Under
such a condition, the asymmetric transfer of popula-
tions of the L and D states can be induced via the states
|1〉  and |2〉  by the subpicosecond laser pulse %%%%1 with fre-
quency ω1. Because the polarization vectors of the
pulsed laser field are always coplanar in this scheme,
the expected effect of the transformation of the racemic
mixture in an isotropic medium will completely vanish,
according to Section 2.

Consider the generalization of the scheme of laser
distillation [5] to the isotropic racemic mixture of chiral
molecules using the same free dynamics model
(Fig. 1b). The coherent superposition of the states |1〉
and |2〉  is induced by the biharmonic pump with linearly
polarized amplitudes %%%%2(t) and %%%%3(t) of the pump com-
ponents. The pumping of the excited electronic level by
the linearly polarized pulse %%%%1(t) results in the violation
of the symmetry of transfer of the L and D states via the
upper levels |1〉  and |2〉 . The polarization vectors of the
pulses are chosen so that the polarization configuration
of the multicomponent laser field

E(t) = {%%%%1(t), %%%%2(t), %%%%3(t)}

is noncoplanar (see Fig. 2).

In deriving the interaction Hamiltonian  in the
rotating-wave approximation for a four-level system
shown in Fig. 1b, we take into account the fact that the
transition between vibronic states also includes the
dynamics of a nuclear subsystem; i.e., this transition is
not a Franck–Condon transition. By denoting the states
of the nuclear configuration of the molecule by ket vec-
tors |L〉 , |D〉 , |1〉 , and |2〉  (which depend, in the coordi-
nate representation, only on the reaction coordinate θ),
and the states of the electronic subsystem by |g〉  and |e〉 ,
we determine the corresponding Rabi frequencies and
the relations between them for fixed Eulerian angles.
The Rabi frequencies of vibronic transitions are

The Rabi frequency Ω2 for a biharmonic pump of the
transition between vibrational states |1〉  and |2〉  has the
form [11]

H̃I
ˆ

Ω1
1
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where |p〉  are the intermediate vibrational states of the
upper electronic term.

The dependence of Rabi frequencies on Eulerian
angles is manifested in the matrix elements of the cor-
responding dipole operators. It is important to note that
after averaging over the isotropically distributed Eule-
rian angles, the expected distillation of the racemic
mixture completely vanishes for any polarization con-
figuration of the laser field if the geometric configura-

tion of matrix elements 〈g, L| |1, e〉 , 〈1| |p〉 , and

〈p| |2〉  of the transition dipole moments is coplanar.
This statement can be proved in the same way as the

m̂ d̂

d̂

D L

ω1 ω1

ω2
|1〉

|2〉

–π π θ0

(a)

D L

ω1 ω1

ω2
|1〉

|2〉

–π π θ0

(b) ω3

Fig. 1. (a) Schematic of laser distillation of a racemic mix-
ture of stable enantiomers using two laser pulses at frequen-
cies ω1 and ω2 [5]. (b) Schematic of laser distillation of an
isotropic racemic mixture using three laser pulses at fre-
quencies ω1, ω2, and ω3 with noncoplanar polarization vec-
tors. The variable θ describes the reaction coordinate
responsible for the chiral state of a molecule in the ground
electronic state.

x

y

z

γ
%%%%3

%%%%2

%%%%1

Fig. 2. Polarization configuration of a multicomponent laser
field: γ is the angle between the field component %%%%3 at fre-
quency ω3 and the field projection on the plane formed by
components %%%%1 and %%%%2 at frequencies ω1 and ω2, respec-
tively.
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necessity of using the noncoplanar configuration of the
laser field in scenarios of laser distillation of an isotro-
pic racemic mixture (see Section 2). The only differ-
ence is that in this case, all the operations of reflection
and rotations are directly applied to the dipole moments
of molecules. Therefore, the method of distillation of a
racemic mixture under study can be applied only to
molecules with the noncoplanar geometric configura-
tion of the transition dipole moments.

The modified Hamiltonian  of the free dynamics
of molecules in the rotating-wave approximation and

the interaction Hamiltonian  expressed in the terms
of the state vectors |L〉 , |D〉 , |1〉 , and |2〉  have the form

(4)

where ω1 is the frequency of the laser pulse %%%%1, ω12 is
the frequency of the transition between vibrational lev-
els |1〉  and |2〉  of the upper electronic term, which
exactly coincides with the Raman frequency of the
biharmonic pump. In the rotating-wave approximation,

the Hamiltonian  in the interaction representation

 =  is averaged in time and is time-inde-
pendent for the given choice of the unperturbed Hamil-

tonian . As a result, we obtain from the second rela-
tion in (4) in the matrix representation in the basis of the
states |L〉 , |D〉 , |1〉 , and |2〉

where ∆1 and ∆2 are the detunings from the resonances
at the |L〉|g〉  |1〉|e〉  and |L〉|g〉  |2〉|e〉  transitions,
respectively. Let us represent now the transition super-
operator (2) as an analytic function of the Hamiltonian

 and restrict ourselves to the consideration of rectan-
gular laser pulses of duration τp, for which the parame-
ters of the interaction Hamiltonian are independent of
time. We will also neglect relaxation processes, assum-
ing that the pump pulses are substantially shorter than
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the characteristic relaxation time. In this case, the tran-
sition superoperator (2) has the form

(5)

In the final calculations, we used the following rela-
tions: Ω2 ! ω12, ∆1 and Ω1 ~ ω12. The first relation
determines the maximum admissible order of magni-
tude of the field strengths %%%%2 and %%%%3 in the case of the
resonance approximation, while the second one pro-
vides the possibility of coherent control of chirality
determined by the field %%%%1.

Let us represent the Hamiltonian as a sum of the

Hamiltonian , which determines the one-photon
transfer of populations of the states L and D via states

|1〉  and |2〉 , and the Hamiltonian , which determines
the induction of the coherent superposition of the states
|1〉  and |2〉 . Because in the model of photoinduced
dynamics under study, the racemism of the mixture is
disturbed by the simultaneous action of all the three
pulses, we will retain in expansion (5) the terms con-

taining both  and . Moreover, taking into account

that  @ , we will retain in the first-order approx-
imation in (5) only the terms that linearly depend on

. The corresponding analytic expression for the
effective transition superoperator has the form

(6)

where

To elucidate the role of the field noncoplanarity, we
consider the expansion of expression (6) in powers of

the Hamiltonian  by omitting the expansion terms
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that contain only either Hamiltonian  or . These
terms do not describe Raman transitions induced by all
the pulses applied (see Fig. 1b) and, therefore, do not
affect the process of laser distillation of the racemic
mixture. Taking this circumstance into account, the
required expansion has the form

(7)

By substituting (7) into (1), we finally obtain the degree
of chirality

(8)

where τp is the pulse duration and bin are the dimension-
less coefficients, which are independent of the parame-
ters of the laser field and a molecule.

It is important to note that it follows from (8) that the
degree of chirality linearly depends on parameters of
the biharmonic pump of the |1〉  |2〉  transition and,
hence, is zero in the absence of the coherent superposi-

tion of states |1〉  and |2〉 , i.e., for   0. One can
easily obtain from (8) the important dependence of the
degree of chirality on the parameter characterizing the
noncoplanarity of the polarization configuration of a
multicomponent laser field

E = {%%%%1(t), %%%%2(t), %%%%3(t)}.

In this case, the specific form of coefficients bin is not
important, although it can be obtained analytically
using the methods of computer algebra. The parameter
of interest to us is, for example, the angle γ between a
plane formed by the vectors %%%%1(t), %%%%2(t), and %%%%3(t)
(Fig. 2). The analysis of coherent laser synthesis of a
nonracemic mixture in the case of the isotropic distri-
bution of molecules over Eulerian angles performed in
Section 2 showed that the degree of chirality changes
its sign upon mirror reflection of the polarization con-
figuration of a laser field with respect to an arbitrary
plane. For the method of transformation of a racemic
mixture under study, this means that upon the mirror
reflection γ  –γ of the polarization configuration of
a laser field, we have χ  –χ; i.e., it follows from the
general considerations that the degree of chirality χ is
an odd function of γ. To obtain the exact dependence of
the degree of chirality on the angle γ, we consider the

expression  for arbitrary values of k. Let, for
definiteness, the vector %%%%1(t) be directed along the
x axis of the laboratory coordinate system. Then, for
odd k ≥ 1 (in the case of even k, the corresponding terms
are set to zero), after averaging the expressions contain-
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ing the powers of trigonometric functions over the
Eulerian angles, we obtain

(9)

where α, β = x, y, z; exαβ is the antisymmetric Levi–Civ-
ita tensor; and e2 and e3 are the unit polarization vectors
of the biharmonic-pump components.

Taking into account (9), we obtain from (8) that the
degree of chirality is proportional to the mixed product
of the unit polarization vectors of a multicomponent field
and, hence, χ ~ sinγ. The dependence of the degree of
chirality on the other parameters (the frequency detuning
∆1 and laser-pulse duration τp) for the model of photoin-
duced dynamics under study can be analyzed only par-
tially. Figure 3 shows the dependence χ(∆1, τp) that was
numerically calculated for the case of mutually orthogonal
polarization vectors %%%%1, %%%%2, and %%%%3.

4. CRITERION FOR CONTROL OF THE CHIRAL 
STATE OF AN ISOTROPIC MEDIUM

To gain a better qualitative insight into the meaning
of the results obtained, it is expedient to consider the
experiment in the most general terms, ignoring the
details of the laser excitation scheme and the structure
of molecules under study. At this general level, the sys-
tem under study represents an information channel [12]
with a controlling laser field at its input. The output of
the channel is the chiral state of a molecule after laser
excitation, which is averaged over the initial density
matrix and orientation angles and is reduced over
eigenstates |L〉  and |D〉  of the chiral variable . The lat-
ter became a purely classical quantity after this reduc-

Ω1
kΩ2〈 〉 O exαβe2αe3β,∝
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Fig. 3. Dependence of the degree of chirality χ on the fre-
quency detuning ∆1 of the laser field %%%%1 and the pulse dura-
tion τp for the case of mutually orthogonal polarization vec-
tors %%%%1(t), %%%%2(t), and %%%%3(t) of laser pulses. The following

parameters were used in calculations: Ω1 = ω12 = 100 cm–1,

Ω2 = 10 cm–1.
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tion and has values of ±1 that correspond to states |L〉
and |D〉 . Along with states |L〉  and |D〉 , which describe
only the ground electronic state and are of interest to us,
we should also introduce the states in the form of the
third state |e〉  that sums up the former states. Although
these additional states are of no interest to us in them-
selves, they provide a complete set of possible states. In
our case, the state |e〉  corresponds to the excited elec-
tronic states, which provide the conservation of the
total probability in the process of laser excitation. The
result of calculations of the excitation process in the
most general form is described by the conditional
(“transient”) distribution of the channel probabilities

(10)

where E = {%%%%1, %%%%2, …} is the set of fields represented in
the interaction Hamiltonian and e denotes excited elec-
tronic states. Probabilities (10) in fact enter into expression
(1), which describes the averaging of the chirality opera-
tor. Assuming that the initial density matrix

is diagonal, these probabilities are expressed in terms of
the matrix elements of the evolution superoperator as

3 χ̂ E( ) p L E( ) p D E( ) p E E( ), ,{ } ,=

ρ̂ ρL L| 〉 L〈 | ρD D| 〉 D〈 |+=
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(11)

where

for α, β = L, D. The matrix elements Sαβ describe the
conditional probabilities of chiral states at the input for
the fixed initial chiral states of a molecule, over which
the averaging is performed for the channel under study
with the laser field at its input.

The information on the laser field for the channel
represented by distribution (10) is contained not only in
the degree of chirality of the ground electronic state but
also in the total probability of preparing the molecule in
this state, because a fraction of molecules undergo tran-
sitions to the excited electronic state upon laser excita-
tion. Obviously, it is interesting to reduce the input
information only to the relative distribution of mole-
cules in the ground state. By describing the state of the
molecule immediately after termination of laser pulses,
we can do this by restricting ourselves to the consider-
ation of the relative distribution of probabilities for the
ground state only, which is specified by conditional
probabilities

p L E( ) SLL E( )ρL SLD E( )ρD,+=

p D E( ) SDD E( )ρD SDL E( )ρL,+=

p e E( ) 1 p L E( )– p D E( ),–=

Sαβ Tr α| 〉 α〈 | 6I β| 〉 β〈 |( ) α〈 | 6I β| 〉 β〈 |( ) α| 〉= =
(12)

p L E( )
SLL E( )ρL SLD E( )ρD+

SLL E( )ρL SLD E( )ρD SDD E( )ρD SDL E( )ρλ+ + +
--------------------------------------------------------------------------------------------------------------,=

p D E( )
SDD E( )ρD SDL E( )ρL+

SLL E( )ρL SLD E( )ρD SDD E( )ρD SDL E( )ρλ+ + +
--------------------------------------------------------------------------------------------------------------.=
Another situation of interest is related to the consid-
eration of the distribution in the ground electronic state,
which appears after the free relaxation of the excited
electronic state. If we assume that the excited state is
not chiral and relaxes after excitation, then the same
probabilities equal to (1/2)p(e|E) are added to each of
the chiral states after the establishment of equilibrium.
Taking this into account, we obtain the following equi-
librium distribution:

(13)

The field E in expressions (12) and (13) is described
by a probability distribution 3(dE) in the space of the

p L E( ) 1
2
---

SLL E( )ρL SLD E( )ρD+
2

---------------------------------------------------+=

–
SDD E( )ρD SDL E( )ρL+

2
----------------------------------------------------,

p D E( ) 1
2
---

SLL E( )ρL SLD E( )ρD+
2

---------------------------------------------------–=

+
SDD E( )ρD SDL E( )ρL+

2
----------------------------------------------------.
A

laser-field parameters. As applied to a series of experi-
ments with a set of different parameters of the laser
field, this distribution corresponds to the relative fre-
quencies of the appearance of different values of E. The
distribution 3(dE) reflects the nature and amount of
information contained in the laser field. In accordance
with the experimental conditions, we can study the par-
ticular cases of this distribution by restricting our-
selves, for example, to fixed amplitudes of the field vec-
tors and considering the distribution over their orienta-
tions. Taking into account the laser-field chirality
established in Section 2, of special interest is the sim-
plest variant of the input information, when the fields
under study are distributed only between two configu-
rations obtained upon the reflection. In this case, the
laser field in distributions (12) and (13) is represented
in fact only by the two-value parameter α = 1, 2: E  α,
which is a minimal requirement for the reflection of the
chirality of the polarization configuration. Correspond-
ingly, the conditional probability distributions are rep-
resented by the 2 × 2 matrices with matrix elements
p(β|α), where β describes the chiral state of the mole-
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cule and α describes the similar chiral variable of the
laser field.

Consider the case of a racemic initial mixture (ρL =
ρD = 1/2). In this case, relations (12) and (13) are
expressed only in terms of combinations of the matrix
elements of the transition superoperator SL = SLL + SLD

and SD = SDD + SDL, which transfer to each other upon
the substitution L  D, by realizing the representa-
tion of the inversion superoperator 5. If the transition
superoperator 6I is invariant with respect to this trans-
formation, then expressions (12) and (13) give the
value 1/2 for all conditional probabilities; i.e., the dis-
tribution of the resulting chiral variables is independent
of the chirality of the input configuration. It is obvious
that the corresponding amount of information on the
field chirality contained at the output vanishes at any
distribution of the rest of the field parameters. There-
fore, the criterion for the control of the chiral state is the
presence of the information on the chiral variable of the
laser-field configuration in the channel under study.
This is possible only when the laser field itself contains
this information. As shown in Section 2, this condition
is satisfied when the polarization configuration of the
laser field is chiral, its chirality being realized as the
configuration noncoplanarity in the case of the electric-
dipole interaction. However, this conclusion is not
applied in the general form to the channel (11), in
which, along with the intrinsic chirality of the ground
electronic state, the degree of the state depletion after
laser excitation is also taken into account.

5. DISCUSSION OF THE RESULTS

Analysis of the general relations described in Sec-
tion 3 and the quantitative calculations of the degree of
chirality based on this analysis can be summarized as
the following qualitative results, which characterize the
proposed scenario of laser distillation of enantiomers in
an isotropic racemic mixture of chiral molecules.

First, according to (8), upon the use of three laser
fields, the degree of chirality χ is proportional to the
sine of the angle γ, χ ~ sinγ, and for γ = 0, it is impos-
sible to transform a racemic mixture in the case of the
isotropic distribution of chiral molecules over rota-
tional degrees of freedom (see Section 2). It is obvious
that the maximum degree of chirality is achieved when
the polarization vectors of laser pulses are mutually
orthogonal (γ = π/2).

Second, the optimum duration τp of linearly polar-
ized pulses is determined by the Rabi frequency Ω1 of
the vibronic excitation pulse, the above analysis being
valid under the condition τp & 2π/Ω1. Otherwise, the
approximate expansion (5) of the transition superoper-
ator is not applicable and the dependence of χ on the
parameters ∆1 and τp becomes complicated (multifre-
quency), so that the coherent synthesis of enantiomers
in a racemic mixture is hindered. For τp & 2π/Ω1, it fol-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
lows from (8) that the degree of chirality χ ~ Ω2/Ω1 and,
hence, it does not exceed 10%.

Third, analysis of the dependence of the degree of
chirality on the detuning ∆1 and the laser-pulse duration
τp (Fig. 3) shows that the maximum degree of chirality
χmax ~ 8% is achieved at ∆1 ~ –150 cm–1 and τp ~ 250 fs.
Our calculations gave the following values of the exci-
tation-pulse intensity corresponding to the Rabi fre-
quencies used for estimating dipole moments µ1, D, d ~
eaB (aB is the Bohr radius). For the vibronic excitation
pulse, we obtained I1 ~ 109 W/cm2; for biharmonic
pump pulses, we have I2, I3 ~ 1012 W/cm2 if the frequen-
cies of these pulses lie in the optical region, and I2, I3 ~
109 W/cm2 if their frequencies lie in the IR region.

6. CONCLUSIONS

The analysis performed in the paper has shown that
in the case of the isotropic distribution of chiral mole-
cules over the rotational degrees of freedom, coherent
control of chirality is possible only when the structure
of a multicomponent laser field is chiral in itself, as is
the case of in fact the nonlocal magnetic-dipole [2] or
quadrupole interaction of a molecule with a circularly
polarized field. In the electric-dipole approximation,
i.e., upon the local interaction, the molecule cannot dis-
tinguish the circular and linear polarizations, and the
chirality of the field is manifested only in the case of the
noncoplanar polarization configuration (Section 2). This
result corresponds to the nonzero information on the
chiral state of the polarization conformation of the
field, which is contained in the chiral molecular state
after laser excitation (Section 4). This information is
also contained in the laser-field structure itself. The
information corresponding to the experimental scheme
under study can be used as a dimensionless character-
istic of the efficiency of laser synthesis of molecules
with the specified chirality. For stable enantiomers with
the mass M & 103mH, we proposed and calculated the
scheme of laser distillation of enantiomers from a race-
mic mixture, which can be also applied, in contrast to
the scheme [5], in the case of the isotropic distribution
of chiral molecules over the Eulerian angles (Sections 3
and 5). The efficiency of the scheme depends on the
polarization configuration of the laser field (Section 5)
and the intensities of laser pulses. It is shown that the
maximum efficiency is achieved with the help of laser
pulses of moderate intensity.
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in a Semi-Infinite Dielectric Waveguide

V. A. Balakirev, I. N. Onishchenko, D. Yu. Sidorenko, and G. V. Sotnikov
Kharkov Institute of Physics and Technology, National Scientific Center, 61108 Kharkov, Ukraine

e-mail: sotnikov@kipt.kharkov.ua
Received December 22, 2000

Abstract—A wake field excited by a relativistic electron bunch in a semi-infinite metal waveguide filled with
a dielectric consists of the Vavilov–Cherenkov radiation, the “quenching”-wave field, and transient radiation,
which interfere with each other. An exact analytic expression for the transient component of the field of a thin
relativistic annular bunch is derived for the first time. The evolution of the space distribution of a field excited
by a finite-size electron bunch is numerically calculated. The excitation of the wake field by a periodic train of
electron bunches in a finite-length waveguide is studied. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The propagation of a wave signal in a dispersion
medium is a classical problem in many fields of phys-
ics. Such problems are encountered in acoustics [1],
solid-state theory [2], plasma physics [3], and radio-
physics [4, 5]. The propagation of signals in dispersion
media is commonly analyzed by expanding the input-
signal phase in a power series [2, 3, 5–7] or by using
asymptotic methods (see [8, 9] and references cited in
review [2]). The exact solution of this problem was
obtained only for the case of sound [1] and electromag-
netic waves in the ionosphere [10] or in a flat
waveguide [11].

The above-mentioned papers considered the situa-
tion when the source of a wave signal was immobile;
i.e., a quasi-monochromatic or a pulsed signal was fed
at the input z = 0 at the instant of time t = 0. At the same
time, the problem of propagation of electromagnetic
radiation during the passage of a charged particle
through the interface between two media arises in a nat-
ural way. Such problems have been considered in detail
in the theory of transient radiation [12]. If the condition
for the appearance of Cherenkov radiation is not satis-
fied in both media, the propagation of transient radia-
tion can also be described within the framework of the
formalism used for studying propagation of pulsed sig-
nals in a dispersion medium. If this condition is satis-
fied, transient radiation can interfere with the Vavilov–
Cherenkov radiation. The transient radiation in the
presence of the Vavilov–Cherenkov radiation has been
studied in many papers (see, for example, references in
[13]). However, the studies that have been performed so
far were restricted to the calculations of total energy
losses by transient and Cherenkov radiation. In the
cases when the total losses could be divided into com-
ponents, the Cherenkov radiation propagated into a
1063-7761/01/9301- $21.00 © 20033
medium where the condition of its appearance was no
longer satisfied was analyzed [14].

The possibility of using Vavilov–Cherenkov radia-
tion for accelerating charged particles in the so-called
wake acceleration method [15–18] has inspired a
renewed interest in this radiation. In this method, an
intense bunch or a train of bunches propagating in a
medium excites an electromagnetic field behind it,
which then is used for the acceleration of another bunch
to higher energies.

The excitation of wake fields is usually theoretically
described in slow-wave media that are infinite in the
direction of the bunch propagation. In this approach, a
wake wave exists within the entire region behind the
bunch and propagates at the phase velocity that is equal
to the bunch velocity. The consideration of the finite-
ness of real systems can qualitatively change the space-
time structure of an electromagnetic wave if only
because the propagation of Cherenkov radiation in a
dispersion medium (as a particular type of the wave sig-
nal [2, 6, 7, 19]) should be greatly complicated. In addi-
tion, the transient radiation appears, which will inter-
fere with Cherenkov radiation.

In this paper, we studied excitation of an electro-
magnetic wave by an electron bunch and by a train of
electron bunches in a semi-infinite slow-wave medium.
We considered the problem in the simplest formulation.
As a slow-wave medium, we considered a dielectric
with ε = const, which filled a cylindrical waveguide
with the metal walls and end. Note that a similar prob-
lem on the radiation of a single charge moving along
the axis of a semi-infinite waveguide filled with a
dielectric has been formulated in paper [20] where
asymptotic solutions have been obtained for large times
t. Below, we will show that there exists an exact solu-
tion to this problem, which is valid at any times t and
for an arbitrary longitudinal coordinate z. This allows
001 MAIK “Nauka/Interperiodica”
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us to analyze in detail the process of the formation of
the space-time structure of the electromagnetic field
excited by an electron bunch or by a train of electron
bunches and to give recommendations concerning the
use of our results for accelerating charge particles. The
results of our paper allow us to determine the length of
the localization region of the electromagnetic field
excited by the electron bunch and thereby to estimate
the duration of the current pulse of accelerated parti-
cles.

2. THE FIELD OF A THIN ANNULAR BUNCH

Consider a cylindrical metal waveguide of radius b
that is filled with a homogeneous dielectric with the
permittivity ε. The waveguide occupies the region 0 ≤
z < ∞ in the longitudinal direction and is shorted with a
metal wall at the end z = 0. We assume that an axially
symmetric monoenergetic electron bunch flies into the
waveguide from the wall side and then propagates at a
constant velocity v 0 along the z axis. The condition

v 0 > c/  for the appearance of Cherenkov radiation in
the waveguide is satisfied. We neglect the influence of a
narrow vacuum drift channel on the electrodynamics of
the system and assume for simplicity that the
waveguide is completely filled with the dielectric.

To determine the field produced by an electron
bunch with an arbitrary density distribution, it is neces-
sary first to find the field of an infinitely short and thin
charged ring whose plane is perpendicular to the
waveguide axis. The charge density of such a ring can
be written in the general case in the form

where –e is the electron charge, N is the number of elec-
trons in the ring, vL(t0, r0, z) and rL(t0, r0, z) are the
Lagrangian velocity and the radius of the annular
bunch, respectively, tL(t0, r0, z) is the Lagrangian time
of a particle, t0 is the instant of the annular bunch flying
in the waveguide, and r0 is the initial radius of the ring.
In the uniform motion approximation, the velocity and
radius of the ring are constant, vL = v 0 and rL = r0, and
the Lagrangian time of the ring is tL = t0 + z/v 0.

The electromagnetic field excited by the charge in
the semi-infinite waveguide satisfies the following
boundary conditions. First, the longitudinal component
of the electric field vanishes at the side conducting sur-
face r = b of the waveguide: Ez|r = b = 0. Second, the
transverse component of the electric field should vanish
at the metal wall z = 0: Er|z = 0 = 0. Taking this into
account, the expression for the Fourier component of
the longitudinal component of the electric field of the

ε

ρ eN
2πrLv L

------------------δ r rL–( )δ t tL–( ),–=
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axially symmetric E-wave has the form [20]

(1)

where λn is the nth root of the cylindrical Bessel func-
tion J0 and 

is the longitudinal wave number of free electromag-
netic oscillations in the dielectric waveguide.

By performing the inverse Fourier transform, we
obtain

(2)

(3)

(4)

where

 

The quantity ω0 is real, and the corresponding poles of
integrands in (3) and (4) are located on the real axis ω.
The contour of integration L is a straight line in the
complex plane ω, which is parallel to the real axis and
is located slightly above it [10].

The integral (3) describes the wake field of the
charge propagating in an infinite waveguide [21]. It can
be easily calculated to be

(5)

Ez
ω 2iNe

πb2ε
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c2
---- 1

v 0
2
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n ω ω
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----------------------------------------------------------------,d
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where

The integral (4) corresponds to free eigenmodes of
the cylindrical waveguide, which appear because the
system is limited over z. The consideration of this addi-
tional term provides the fulfillment of the boundary
condition on the side metal wall. We will show below
that integral (4) gives a “quenching” wave and transient
radiation. Integrals of this type are encountered in the
theory of propagation of signals in dispersion media [2,
6, 7, 19]. They are calculated usually by numerical or
asymptotic methods. In [20], the corresponding inte-
gral was calculated by the saddle point method, so that
only an asymptotic solution was obtained, which is
valid for times that are much longer than the time of the
wave propagation across the waveguide. Note, how-
ever, that the field of free eigenmodes (4) can be found
analytically. The analytic solution for a similar integral
has been obtained for the first time in the study of the
propagation of an electromagnetic signal in an ionized
gas [10]. The exact solution was found later in [11]
by a method that was slightly different from that used
in [10].

Before proceeding to calculating integral (4), note
that the function

has branch points at ω = ±α. Therefore, it is necessary
to make a cut along the segment (–α; α) in the complex
plane ω. Let us choose such a sheet of Riemann surface
k(ω) at which

The signs of the real and imaginary parts of k(ω) on this
sheet and, hence, of kzn(ω) will be equal to the signs of
the real and imaginary parts of ω, respectively. It is this
condition that should be satisfied in our problem,
because we consider only the waves propagating in the
positive direction of the z axis, for which we should
have

In this case, the condition

will be satisfied in the upper half-plane, where the con-
tour of integration L passes; i.e., the wave will decay at
z  +∞.

If τ < ξ, we can easily close the contour of integra-
tion L of integral (4) through a semicircle of an infinite
radius in the upper half-plane ω, the integral over which
is zero. It is obvious that the required integral will be
also zero because the resulting closed contour contains
no singularities.

θ x( )
1 for x 0>
0 for x 0.≤




=

k ω( ) ω2 α2–=

0 arg ω α±( ) 2π.< <

Re kzn( )[ ]sgn Re ω( )[ ] .sgn=

Im kzn( ) 0>
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To calculate integral (4) for τ > ξ, we perform the
integration over the closed contour consisting of the
initial contour L, the upper and lower banks of the cut,
and a semicircle of an infinite radius in the half-plane
Imω ≤ 0. This contour has a clockwise direction and
confines a simply connected region, which contains
two poles at points ω = ±ω0. According to the theorem
of residues, we have

(6)

where Icut is the integral over the banks of cut, I–∞ is the
integral over the semicircle of an infinite radius in the
lower half-plane (equal to zero for τ > ξ), and
Res F(±ω0) is the residue of the integrand in (4) at the
corresponding pole ω = ±ω0.

To calculate the integral Icut over the banks of cut,
we consider a doubly connected region, whose exterior

boundary is the ellipse  and the inner boundary are

the banks of cut.  has focuses at points ω = ±α and
contains poles ω = ±ω0. According to the theorem of
residues, the integration over the boundary of this
region gives

(7)

where Iel is the integral from the integrand in (4) over

. By comparing (6) and (7), we can see that

Thus, we pass from the integration over the infinite
straight line L in the complex plane ω to the integration

over the ellipse  in the clockwise direction. Note
that instead of an ellipse we can use any closed curve
without self-intersections, which encloses all the poles
and the cut, but the elliptic contour can be most simply
transformed.

Let us perform a number of successive transforma-
tions in the integral Iel. First, we introduce the new vari-
able of integration p = –iω. Next, we make the change
of variable

Then, we perform the change of variable

where

As a result, the integral Iel is transformed to the integral

I2
n Icut I ∞–+ +( )

=  2πi Res F ω0–( ) Res F ω0( )+( ),–

Cω
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Cω
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where

w3 = –w1, w4 = –w2, and the contour  is a circle in the
complex plane w with a center at the point w = 0, which
is passed in the positive direction and contains no poles
w = wj, j = 1, 2, 3, 4.

Finally, after simple transformations, we obtain

(8)

Because the contour of integration  does not con-
tain poles w = wj, the expansions

(9)

are valid for it.
Note also that in [22],

(10)

By substituting series (9) into (8) and interchanging the
integration and summation order, we obtain, taking into
account (10), that the required integral (4) is

(11)

The Lommel function Un(q, x) of two arguments is
defined as [23]

(12)

Let us rewrite (11) by using the second-order Lommel
functions of two arguments

(13)
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where

Note that expression (13) gives the exact value of inte-
gral (4).

To calculate the Lommel function Un(q, x) for q ≤ x,
it is convenient to use expression (12) because the
series in Bessel functions in (12) very rapidly con-
verges. For q > x, the expression [23]

(14)

can be used. This series also rapidly converges for q > x.
One can easily see that for x = q, expressions (12) and
(14) give the same result. Therefore, we can write

(15)

Let us introduce the notation

For t – t0 – z/v pr ≥ 0, the following relations are satisfied

(16)

Taking into account (15) and (16) for t – t0 – z/v pr ≥ 0
and t – t0 – z/v gr ≤ 0, we can write
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The first term in the right-hand side of (18) describes an
electromagnetic wave in the region

which coincides with the Vavilov–Cherenkov radiation
field (5) taken with the opposite sign. This is a “quench-
ing” wave [20], which compensates Cherenkov radia-
tion in the corresponding region of z. The rest of the
terms in (18) correspond to a fraction of the transient
radiation that propagates at a velocity slower than v gr.
Expression (17) corresponds to a faster fraction of the
transient radiation.

Let us substitute (13) and (5) into (2), taking into
account (17) and (18). As a result, the field produced in
a semi-infinite waveguide by a charged thin ring mov-
ing at a constant velocity can be conveniently written,
similarly to [20], as a superposition of the Vavilov–

Cherenkov radiation field  limited in space and the

transient radiation field :

(19)

(20)

× 

(21)
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Within this region, the envelope of a Cherenkov signal
is constant (see Fig. 1b). The quantity v gr is the group
velocity of an electromagnetic wave that is synchro-
nous with the electron bunch. The plane

is the trailing edge of the wake field. This edge moves
behind the electron bunch at the group velocity v gr.

The transient radiation field (21) exists in the region

where v pr is the maximum propagation velocity of elec-
tromagnetic signals in a dielectric waveguide. The fast-
est high-frequency part of the transient signal, the so-
called “precursor,” propagates precisely at this velocity.
The envelope of the transient signal is maximal near the
trailing edge (line 1 in Fig. 1c) and decreases away
from it. For the precursor (line 2 in Fig. 1c), the enve-
lope tends to zero. Near the rear wall, the envelope is
small but nonzero and decreases with time. The tran-
sient field (21) undergoes a jump in the trailing-edge
plane (see Fig. 1c). This is explained by the fact that we
artificially separated the continuous total field (19) into

zgr t t0–( )v gr=

0 z t t0–( )v pr,<≤
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Fig. 1. Structure of the first harmonic of the longitudinal
component of the wake field excited by an infinitely short
charged disc in a dielectric waveguide: (a) total field Ez1,

(b) Vavilov–Cherenkov radiation field , (c) transient

radiation . (1) z = zgr, (2) z = zpr, (3) charge position.

The observation time tc/b = 40, t0 = 0, γ = 5, ε = 2.6.
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components. In this case, the separated Vavilov–Cher-
enkov field (20) also abruptly vanishes after passage
through the trailing-edge plane.

As a result, the spatial structure of the field at the
instant of time t has the form shown in Fig. 1a. The field
is zero in front of the bunch. To the left of zpr = (t – t0)v pr

(line 2), the field envelope begins to decrease, while for
z = zgr (line 1), it is equal to half the Cherenkov radia-
tion field. In the region z ! zgr, the field is weak and
deceases with time.

3. RESULTS 
OF NUMERICAL CALCULATIONS

A charged bunch of a finite size is characterized by
the following parameters: the bunch radius a, the bunch
duration Tb, (Tb = Lb/v 0, where Lb is the bunch length;
we assume that the velocity v 0 is constant and the same

E
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un
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Fig. 2. Evolution of the wake field excited at the waveguide
axis by a long relativistic bunch with the asymmetric density
profile (22). Ten harmonics are taken into account: tc/b = 10 (a),
20 (b), 30 (c), 40 (d); γ = 5, ε = 2.6, a/b = 0.143, Lb/b = 3.2.
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for all particles in the bunch), the current density distri-
bution in the bunch jz(r0, t0) (0 ≤ t0 ≤ Tb, 0 ≤ r0 ≤ a, t0 is
the time of arrival of the bunch to the system cross sec-
tion under study), and a total number N0 of charged par-
ticles in the bunch. Such a bunch can be represented as
a set of rings with different charges, radii, and arrival
times. The bunch field can be obtained by summing the
fields produced by all macroparticles that form the
bunch:

where the elementary field Ez(t, r, z, t0i , r0i) of the ith
macroparticle is determined by expressions (19)–(21).

The methods for accelerating particles by wake
fields often use a profiled leading bunch, whose density
gradually increases from its head to tail and then
abruptly drops to zero. Such a bunch can provide a
large transformation coefficient [16], i.e., the ratio of
the field excited by the bunch to the strength of the field
decelerating particles in the bunch. The transformation
coefficient determines the maximum increase in the
energy of accelerated particles. Consider, for example,
the current density distribution in the form

(22)

where j0 is the maximum current density in the bunch.
Such a distribution is often realized in experiments and
is used in numerical calculations. In this case, the total
charge and the maximum current density are related by
the expression

This expression is used for determining the characteris-
tic scale of an electric field in numerical calculations,
provided the total charge of the bunch is specified.

Figure 2 shows the time evolution of the longitudi-
nal distribution of the wake field excited in a semi-infi-
nite dielectric waveguide by a relativistic electron
bunch, whose asymmetric longitudinal profile is
described by expression (22). Note that the field behind
the bunch greatly exceeds the field in the bunch, which
corresponds to a large transformation coefficient. The
electric field in Fig. 2 is normalized to the value
4πj0a/c, which determines the Coulomb field near the
bunch surface. Because many radial harmonics are
excited in a dielectric waveguide, whose amplitudes are
comparable to each other, we took into account here
10 harmonics (a further increase in their number virtu-
ally does not change the numerical results). The inter-
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ference of many radial harmonics resulted in the
appearance of sharp peaks of the field, whose ampli-
tude greatly exceeds that of any harmonic. One can
clearly see that the region where the envelope of the
wake field is maximal is located between the charged
bunch and the boundary moving behind it—the radia-
tion trailing edge, the velocity of this edge being
approximately ε times less than the bunch velocity.
Behind the trailing edge, the field is substantially
weaker than in front of it and has a different structure.
The length of the excited wake field increases with
time.

The presence of the trailing edge of the wake field,
which propagates at the group velocity, restricts the
length of the wave packet and imposes the correspond-
ing requirements on the delay time during which the
bunch of charged particles being accelerated should be
injected to the accelerating system. The finite length of
the region of existence of the excited field restricts the
duration of the current pulse of accelerated particles.

A promising method for obtaining wake fields of a
large amplitude is the use of a sequence of short low-
density bunches, which is modulated so that the fields
of individual bunches are added coherently [24]. Con-
sider the generation of a wake field by a sequence of
short relativistic bunches in a semi-infinite waveguide.
To elucidate a qualitative picture, we first restrict our-
selves to the first harmonic of the field. Each bunch of
the sequence is simulated by a macroparticle—a thin
disc. The charge repetition rate is equal to the resonance
frequency of the first harmonic. The number of bunches
is limited. One can see from Fig. 3a that the field in an
infinite waveguide will increase linearly from the
beginning of the sequence to its end, the field amplitude
being constant behind the last bunch (line 1). When the
boundary z = 0 exists, the situation drastically changes.
One can see from Fig. 3c that now the field increases
from the beginning of the sequence to line 2 and then
decreases, the velocity of the field decrease being
increased behind the last bunch (line 1), and the rear
boundary of the wave packet appears, behind which the
field tends to zero. Line 2 corresponds to the position of
the trailing edge of the wake field excited by the leading
bunch of the sequence and determines the number of
bunches whose fields can be added coherently; i.e., the
fields from all the bunches located to the right from this
line are summed in the cross section shown by this line.
Until the trailing edge of the field of the first charge is
located within the boundaries of the sequence of a finite
number of bunches (as in Figs. 3b and 3c), the maxi-
mum excited field will be less than the maximum field
of the same sequence in an infinite waveguide. When
the last charge of the sequence overtakes this edge
(Fig. 3d), a region appears in which the fields from all
bunches are coherently added and the field amplitude is
the same as in an infinite waveguide. This region is
bounded by lines 1 and 2 in Fig. 3d.
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The spatial distribution of the longitudinal electric
field substantially depends on the system length. If a
semi-infinite system 0 < z < +∞ is considered, then the
field excited by a continuous sequence of electron
bunches will be maximal near the trailing edge of the
wake field produced by the leading bunch of the
sequence:

In this plane, the fields from the number

(23)

of bunches will be added, where ∆z0 is the distance
between the adjacent bunches. This maximum will
increase with time and propagate behind the bunch at
the group velocity. The field will decrease linearly
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Fig. 3. (a) Structure of the first harmonic of the longitudinal
electric wake field excited on the waveguide axis by a
sequence of twenty charged discs ignoring the effect of the
boundary z = 0; (b, c, d) is the same but for a semi-infinite
waveguide: tc/b = 80 (a), 60 (b), 80 (c), 120 (d). (1) Coordi-
nate of the last charge z20 in the sequence, (2) position of the
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behind the maximum and will not exceed the field of
one bunch at the system origin (z ≈ 0) (Fig. 3b).1 

In a slow-wave system of finite length, a different
situation can be realized. Let a waveguide of finite
length Lsyst closed by a metal wall at z = 0 be connected
at its end, z = Lsyst, to an ideally matched load. In this
case, we can neglect the boundary effects at the right
end of the waveguide and use expressions (19)–(21) to
calculate the field inside the system. Consider the field
in the region 0 < z < Lsyst excited by a continuous
sequence of charges. As an example, we can take
Fig. 3b by assuming that Lsyst/b = 20. The field envelope
is maximal at the right boundary of the region z = Lsyst.
In this cross section, the fields of the greatest number of
bunches are added. We can estimate their number from
expression (23), in which we set t = Lsyst/v gr:

(24)

For Lsyst = 70 cm, ε = 2.6, γ = 5, ∆z0 = 11.2 cm, we

obtain  ≈ 10. Figure 3b confirms this with good
accuracy.

When a continuous sequence of bunches modulated
at the frequency of the first resonance harmonic excites
a multimode wake field in an infinite dielectric
waveguide, the following events take place (Fig. 4a). At

1 We can use this figure to illustrate the case of a continuous
sequence of bunches because the figure shows the distribution of
the field at the instant of time when not all of the bunches have
flown in the system.
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Fig. 4. (a) Structure of the longitudinal electric wake field
excited on the waveguide axis by a continuous sequence of
charged discs ignoring the effect of the boundary z = 0; (b) is
the same for a semi-infinite waveguide: tc/b = 100. Ten har-
monics were considered. (1) Coordinate of the first charge
z1 in the sequence, (2) position of the trailing edge of the
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gether, the figure presents 31 bunches; γ = 5, ε = 2.6, a/b =
0.143, ∆z0/b = 3.2.
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the beginning of the sequence, the fields from a few
bunches are added and the total field has a complicated
form because the fields produced by each charge con-
sist of peaks whose repetition rates differ from the
modulation frequency of the sequence (the region 70 <
z/b < 100 in Fig. 4a). Then, with distance from the
sequence head and an increase in the number of
bunches whose fields are added coherently, the reso-
nance modulation frequency begins to be separated,
and the field increases and takes a form close to that of
a single-mode field (the 0 < z/b < 15 region in Fig. 4a).

The number of bunches in a limited system, whose
fields are added in some cross section, increases with
distance between the cross-section plane and a metal
waveguide end and reaches the limiting value (24) at
the matched output end of the waveguide. For this rea-
son, upon multimode excitation of the wake field by a
sequence of bunches, the field at the waveguide input
(the 0 < z/b < 20 region in Fig. 4b near the metal wall)
has approximately the same complicated form as that
near the sequence head in an infinite waveguide. If the
system length is sufficiently long, then oscillations near
the ideally matched right end will be close to single-
mode oscillations because of the separation of the res-
onance modulation frequency (the 30 < z/b < 40 region
in Fig. 4b, if Lsyst/b = 40).

4. CONCLUSIONS

We have found the exact analytic solution for the
problem of propagation of an electromagnetic signal
excited by a charged bunch propagating in a semi-infi-
nite dielectric waveguide. The obtained expressions
exactly describe the field structure at any point at an
arbitrary instant of time, including the situation when a
particle has moved from the wall z = 0 by a distance that
does not exceed a few wavelengths. This is important in
studies of the systems whose length is comparable with
their radius.

The presence of the trailing edge of the excited elec-
tromagnetic field, which propagates at the group veloc-
ity, is essential for the acceleration of a charged particle
by the wake field of the charged bunch. In the model of
an infinite medium, the accelerated bunch can be
injected at an arbitrary period of the wave excited by
the leading bunch. In a semi-infinite medium, an
increase in the delay time leads either to a decrease in
the acceleration rate or completely eliminates the accel-
eration.

When the wake field is excited by a sequence of
bunches in the accelerating system of a finite length, the
maximum amplitude of the longitudinal electric field is
achieved at the output end of the system. The maximum
field strength that can be achieved is determined by the
parameters of the waveguide and sequence of charges,
and is independent of the number of bunches that have
flown through the system.
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Let us discuss the range of applicability of the solu-
tion obtained. We have used the following basic
assumptions to represent the field in the analytic form
(19)–(21). First, this is the linear and uniform motion of
particles in the bunch parallel to the waveguide axis.
Second, we assumed that the frequency dispersion of
the permittivity ε is absent. Third, we assumed that the
waveguide was completely filled with a dielectric that
determined the electrodynamics of the moderating
medium.

Having chosen the approximation of the specified
linear and uniform motion of particles in the bunch, we
neglected the inverse effect of the excited electromag-
netic field on the particles. This approximation is often
used in studies of the radiation from a single charge or
low-current charged bunches [2, 20, 21]. Under real
conditions, the region of applicability of this approxi-
mation imposes a restriction to the number of electrons
in the bunch and the system length. The decelerating
longitudinal electric field Ez, which acts on a short
bunch with a rectangular density distribution, is of the
order of magnitude

The condition of the neglect of variation in the particle
velocity on the system length has the form

For b = 4 cm, Lsyst/b = 100, ε = 2.6, and γ = 5, this ine-
quality is satisfied for N0 ! 4 × 1012. This limiting value
considerably exceeds the value achieved at present in
experiments. In the wake acceleration experiments,
bunches with a much higher energy γ are used, which
allows us to apply the approximation of a specified
velocity for dense bunches. The transverse motion of
charged particles can be ignored upon the application
of a strong external longitudinal magnetic field [25].

Neglecting the dependence ε(ω) is sufficiently justi-
fied and substantially simplifies the calculations.
Expressions (19)–(21) describe the field with good
accuracy, if the required range of the excited resonance
frequencies corresponds to the horizontal part of the
dependence ε(ω) where there are no absorption regions.
This, as a rule, corresponds to the experimental condi-
tions. Thus, the permittivity of polystyrene [26] is vir-
tually constant in the frequency range from 1 to 25 GHz
and is equal to 2.55, the losses being very small. The
consideration of the frequency dispersion ε(ω) will
change poles and branch points of integrands in expres-
sions (3)–(4). Also, new poles can appear. In the fre-

quency regions for which the condition v 0 < c/
is satisfied, the poles ω0 will become purely imaginary.
Correspondingly, along with the Cherenkov wave field,
a quasi-static Coulomb field will emerge, which is

Ez 8eN0/b2ε.∼

8e2N0Lsyst

mv 0
2γ3εb2

------------------------- ! 1.

ε ω( )
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strongly localized in the charge region. Because we
have ε ≈ 1 at ω  ∞, the propagation velocity of the
precursor of transient radiation increases: v pr  c.
Therefore, the field can exist in front of the bunch.
However, these effects are determined by oscillations
with very high frequencies, whose amplitude is small,
so that they can be neglected.

The third assumption is not fundamental. The same
treatment, only more cumbersome, can be performed
for a waveguide with a finite thickness of the drift chan-
nel. The influence of the vacuum drift channel on the
dispersion properties of the medium is negligible if its
cross section is small compared to the dielectric cross
section. In addition, we must keep in mind that the
highest radial harmonics of the field that satisfy the
condition

(d is the transverse size of the channel) will be weakly
excited by the bunch because of a strong penetration of
the field to the vacuum channel.
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Abstract—Perturbation theory for the wave function of a hydrogen-like atom in a homogeneous electric field
of strength F makes it possible to obtain the Rayleigh–Schrödinger series with the coefficients of FN (N =
0, 1, 2, …) being linear combinations of the Sturm function, which represents the unperturbed state, with 8N2

functions of the corresponding complete set with indices adjacent to the parabolic quantum number of the initial
level. A method for recursive analytic calculation of the coefficients of the linear combination for any order N
is developed. General expressions for corrections to the matrix elements and intensities of the radiation transi-
tions between Stark sublevels are obtained. Analytic formulas and numerical values of the corrections up to the
fourth order for the Lyman and Balmer series are presented. A comparison with the available data for transitions
between the Stark components of Rydberg states is given. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Optical properties of an atom in an electric field
depend on the field strength. Shift and splitting of spec-
tral lines, the Stark effect, are caused by the change of
energy of atomic levels. For a hydrogen atom, they are
calculated in an arbitrary order of perturbation theory
for the atom–field interaction [1, 2]. Nevertheless, up to
now there are some features of this phenomenon that
have not yet been completely studied, so the Stark
effect still remains one of the central problems of
atomic physics.

Along with the change of frequencies under the
influence of the field, a change in the intensity of lines
is observed. The effect of the field dependence of inten-
sity provides additional spectroscopic information
about the atomic structure, which can be used for opti-
cal diagnostics of fields exerted on the atom and for
control of the radiation and absorption of light by mat-
ter. The intensity of lines can be used to determine the
change of the radiation matrix element induced by the
field and, thus, find corrections to the wave functions of
the initial and final states of the atom.

Determining the dependence of line intensities on
the electric field requires new approaches (both theoret-
ical and experimental) to the study of the atomic struc-
ture different from those used for determining the
dependence of atomic frequencies on the field. Thus,
the problem of the change of the matrix elements and
intensity of the radiation transitions in the field remains
poorly studied, and in many cases no relevant informa-
tion can be found in the literature.

The change of probability for transitions between
Rydberg states in the hydrogen atom was experimen-
tally observed in [3] by the method of ionization spec-
1063-7761/01/9301- $21.00 © 20043
troscopy. For the theoretical interpretation of the results
obtained, the Hamiltonian of the interaction of the atom
with the field was numerically diagonalized in [3] in the
finite basis of closest energy states. The efficiency of
such calculations is limited not only by the incomplete-
ness of the basis states and the necessity to check the
accuracy and convergence of the results but also by the
absence of any analytic relations that could help ana-
lyze the dependence of the effect on the quantum num-
bers of the initial and final states. Another obstacle is a
substantial amount of calculations for every particular
transition. The possibility of obtaining simple formulas
that represent corrections to the energy of Stark states
in terms of parabolic quantum numbers [1, 2] gives rea-
son to expect that similar analytic expressions can be
obtained for corrections to the wave functions and
matrix elements of radiation transitions.

Expressions for the corrections of the first [4] and
second [5] orders have been recently obtained with the
help of the Coulomb Green function in parabolic coor-
dinates. The corresponding numerical values of the cor-
rections to the probability of radiation transitions in the
field are in good agreement with the experimental data
obtained in [3]. However, in strong fields, the first two
orders are insufficient for the description of the effect in
the vicinity of the ionization threshold. In addition, for
transitions between dipoleless states, the corrections of
the first or second order (depending on the polarization
of radiation) are zero, whereas for estimating the appli-
cability of perturbation theory, at least two nonzero
terms of the asymptotic series must be known. This fact
stimulates the development of a reliable method for
consecutively calculating higher order corrections of
perturbation theory for the wave function and matrix
001 MAIK “Nauka/Interperiodica”
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elements similar to corrections to energy. Thus, the
half-century-long history of the calculation of the Stark
effect by perturbation theory for energy repeats itself
nowadays with respect to the calculation of wave func-
tions (the correct expression of the fourth-order correc-
tion was first obtained only in 1974 in [6], i.e., almost
half a century after the creation of quantum mechanics
and derivation of corrections of the first three orders).
However, availability of computer algebra systems,
which helped calculate Stark energy corrections of an
arbitrary high order (up to several dozens and even hun-
dreds) by the early 1980s [1], allows one to substan-
tially reduce the time required to complete the calcula-
tion of Stark corrections to the wave functions.

At first sight, these calculations can be based on the
same equations with separated parabolic variables as
those used in the calculation of energies (see, e.g., [2, 7,
8]). Although these equations are rather simple, the der-
ivation of Rayleigh–Schrödinger series on their basis is
tedious. This is due to the fact that, in addition to the
recursive procedure for determining coefficients of the
linear combination of the Sturm functions representing
the state vector of the atom in the field, one must derive
an explicit field dependence from the arguments of
those functions and transform their combination to a
power series with field-independent coefficients.

The procedure for deriving the power series for the
Stark wave functions without solving the system of two
coupled equations with separable parabolic variables ξ
and η can be developed on the basis of the integral form
of the Schrödinger equation for an atom in a field with
the help of the closed analytic representation of the
reduced Green function in the parabolic coordinates [4].

An analytic representation of the Coulomb Green
function makes it possible to obtain expressions for the
coefficients of power series in the field strength F for
the wave function, matrix elements, and intensities of
dipole transitions in the form of polynomials depending
on the parabolic quantum numbers of the initial and
final levels. In this paper, we present a general method
for the calculation of the perturbation theory series for
the wave functions of Stark states based on a recurrent
relation between the series coefficients. This relation
provides a basis for developing a computer code for the
analytical and numerical calculation of high-order cor-
rections. The application of this method to the calcula-
tion of the first- and second-order corrections yields the
same results as those obtained in [4, 5]. In this paper,
we derive general symmetry relations, which make it
possible to considerably simplify the calculation of
coefficients for the expansion of the wave function in
the Sturm functions and give analytic expressions for
the coefficients of up to the fourth order. These expres-
sions are obtained as functions of the parabolic quan-
tum numbers. Asymptotic properties of corrections for
transitions to Rydberg states with large quantum num-
bers are discussed. Numerical values of the coefficients
that determine the corrections of the first four orders to
JOURNAL OF EXPERIMENTAL
the matrix elements and line intensities of the Lyman
and Balmer series are obtained.

2. HIGH-ORDER CORRECTIONS FOR THE WAVE 
FUNCTIONS OF STARK STATES OF HYDROGEN

The technique of parabolic variable separation,
which is used when calculating the Stark effect of
hydrogen energy levels [1, 2, 6–8], is inefficient for
deriving the wave function in the form of power series
with field-independent coefficients (the Rayleigh–
Schrödinger series). For this purpose, the use of the
Coulomb Green function in the parabolic coordinates
[9] seems to be the most convenient. Due to the fact that
the interaction operator of the atom with the field is
diagonal in the parabolic coordinates, the hydrogen
Stark states belonging to the shell with the fixed princi-
pal quantum number n are independent in the first order
with respect to the field. Hence, the first-order correc-
tions to the wave function and the second-order correc-
tions to the energy can be calculated with the help of
perturbation theory for nondegenerate states and the
partially reduced Green function [4]. However, already
for the second order, the matrix element of the interac-
tion Hamiltonian of the atom with the field is nondiag-
onal, and the states of the parabolic basis belonging to
the given shell are mixed by the field. Thus, the calcu-
lation of the second- and higher order corrections must
be based on perturbation theory for degenerate states
with the completely reduced Green function [5]. Below,
we develop a generalization of the method presented in
[4, 5] for the case of arbitrary orders of perturbation
theory for the wave function that makes it possible to
automate the calculations with the help of computer
algebra systems. Since the calculations of higher orders
use all corrections of the lower orders, the reliability of
the results is automatically checked by lower orders. As
an example, we present the calculation results up to the
fourth order.

2.1. Perturbation Theory for Parabolic States 

An unperturbed state of the hydrogen-like ion (in
the absence of the external field) is described by the fol-
lowing wave function in the parabolic system of coor-
dinates (a Stark state):1

(1)

where m is the absolute value of the magnetic quantum
number everywhere except for the power of the expo-
nent in which it can be both positive and negative,

(2)

1 We use the atomic system of units with e = m = " = 1.

ψnn1n2m r( ) An1n2m f n1

m Zξ
n

------ 
  f n2

m Zη
n

------- 
  eimϕ

2π
----------,=

An1n2m
1

n2
-----

2Z3 n1 m+( )! n2 m+( )!
n1!n2!

------------------------------------------------------,=
 AND THEORETICAL PHYSICS      Vol. 93      No. 1      2001



        

PERTURBATION THEORY FOR THE INTENSITY OF STARK LINES 45

                                                                 
is the normalizing constant, Z is the charge of the
atomic nucleus, and

(3)

is the Sturm function of the Coulomb wave equation
represented in terms of generalized Laguerre polyno-

mials  and the degenerate hypergeometric func-
tion 1F1(–k; m + 1; x) [10].

Parabolic quantum numbers of the states with iden-
tical principal, n, and magnetic, m, quantum numbers
are reciprocally dependent: n1 + n2 = n – m – 1. There-
fore, along with the parabolic numbers, Stark states can
be unambiguously represented with the help of the so-
called electric quantum number q = n1 – n2 such that the
set n1n2m can be replaced by the set nqm as we do
below.

The use of the parabolic basis is based on the axial
symmetry of the interaction operator of the atom with a
homogeneous electric field:

(4)

where z is the projection of the electron’s position vec-
tor r on the direction of electric field F. The integral
Schrödinger equation for the exact wave function of the
state, which transforms into (1) in a weak field, can be
represented in the following form taking into account
the degeneracy of the states with identical n and m (see
[11]):

(5)

where  +  = n1 + n2 = n – m – 1. The coefficients of the
expansion of the wave function for the atom in a field in the
states of the degenerate basis  =  sat-

isfy the initial condition    (where δ is the

Kronecker symbol);  is the reduced Green’s func-
tion

(6)

f k
m x( )

k!
k m+( )!

--------------------e x/2– xm/2Lk
m( ) x( )=

=  
1

m!
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Here GE(r, r') is the Green’s function for the Hamilto-

nian  of the free atom and the exact value of the
energy E of the atom in the field:

The Green’s function (6) can be written in terms of
the reduced Green’s function with the energy En of the
unperturbed atom:

where

(7)

using the Taylor series expansion

(8)

Due to the axial symmetry of perturbation (4), the
dependence on the angular variable ϕ remains the same
as for the unperturbed wave function (1). It does not
influence on the calculations and is omitted below.

For the coefficients  in the wave function (5), cer-
tain transformations taking into account that the matrix
element of operator (4) is diagonal,

yield the equation

(9)

Ĥ0
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where ∆E(1) =  is the first-order correction to

energy and  ≠ n1. This equation allows an iterative
calculation of those coefficients.

Using (5) and (9), the correction of any order to the
wave function can be expressed in terms of corrections
of the lower orders in the field strength. This is true for
all terms of the sum (5) except for the term with  =
n1, which can be determined with the help of the nor-
malization condition

2.2. Sturm Function Expansion of the Corrections
to the Wave Functions of Stark States

Orthogonality of generalized Laguerre polynomials
allows an analytic computation of integrals over the
parabolic variables in (5), (9). Hence, the exact wave
function can be written as a linear combination of
Sturm functions (3) of the Schrödinger equation for the
unperturbed atom:

(10)

This expansion provides a basis for deriving the Ray-
leigh–Schrödinger series for the wave function of an
atom in the field. The main advantage of expansion (10)
over the functions that appear in the method of para-
bolic variable separation is the fact that the arguments
of the Sturm functions are independent of the field. The
dependence on the field in this expression is hidden in
the superposition coefficients b, which makes it possi-
ble to represent the wave function (10) in the form of a
series in powers of the field F. It must be noted that,
together with Eqs. (5) and (7), expansion (10) follows
from the completeness of the Sturm functions of the
Coulomb Schrödinger equation with a fixed energy;
indeed, this property makes it possible to use the Sturm
functions as a basis for resolving any function with the
same boundary conditions.

Calculation of the coefficients  can be reduced
to a recursive procedure by substituting expansion (10)
into (9) and (5). After certain transformations, we
obtain the following formula for any coefficient in (10)
except for b00:

(11)
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where

(12)

(13)

Here

The formula for  is obtained from 

when replacing  by

The tensor (12) is undefined for k1 = k2 = 0.

Now, we expand every coefficient  in a series in
the field strength separating, for convenience, the scale
factor, which depends on the principal quantum num-
ber:

(14)

A similar expansion for tensor (12) has the form

(15)

Here  and  are independent of the field. The
fact should be noted that the expansion for b includes
the term of the zero order in the field strength, whereas
the expansion for X begins with the first-order term.
This shows that equation (11) reflects a relation
between the higher order coefficients of expansion (14)
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and the lower order ones. In particular, this explains the
fact that Eq. (11) does not hold for k1 = k2 = 0.

Equations (11)–(13) show that the coefficients 

are nonzero for |i1 | = 2M, 2M – 1 and |i2 | ≤ 2N – 2M
(M = 0, …, N). Thus, the total number of nonzero coef-

ficients (n1n2m) is 8N2 + 1. Therefore, expansion

(10) consists of nine nonzero terms of the first order

(one of the indices of (n1n2m) must be zero), 33

terms of the second, 73 terms of the third, and so on.

The technique described makes it possible also to
obtain the correction to energy, ∆E of an arbitrary order,
representing it in terms of . Since the energy cor-

rections in an electric field are calculated for almost
arbitrarily high orders (see [1]), one can assume them
to be known and use them to check the validity of cal-
culations of corrections to the wave functions.

For the first four terms of expansion (14) (except for
the zero-order one), Eq. (11) yields

(16)

(17)

(18)

(19)

It can be demonstrated that, for t1 = t2 = 0, tensor (12) is
nonzero only for N = 1. Hence, for N ≥ 2, the expression
for b(N) does not include X(N), which depends on
∆E(N + 1). Thus the energy corrections of order N and

lower should be known for determining  (X(1) and,

therefore, b(1) depend on ∆E(2)).

Equations (16)–(19) hold for all values of the indi-

ces k1 and k2 except for k1 = k2 = 0. The coefficients 
can be determined from the normalization condition for
the wave function. Let us consider the Nth-order term
in the equation
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take out of it the products b(0)b(N), and solve the equa-

tion obtained for . Then, for N > 0, we have

(20)

For N = 1, the sum over i disappears, and only the sum
over t1, t2 remains on the right-hand side. Thus, to cal-

culate  following Eq. (20), one must determine all

the coefficients  with (i1i2) ≠ (00), which are deter-
mined by similar coefficients of all lower orders.

In the general case, the recurrent relations are rather
cumbersome. However, for the “outside” coefficients,
general formulas can be obtained of the form

(21)

and
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(23)

Here, we used the conventional notation for the Poch-
hammer symbol, (a)n = a(a + 1)…(a + n – 1).

The symmetry of the perturbation operator (4) is
reflected in the symmetry of the coefficients:

(24)

Here i1 and i2 are nonnegative integers. These relations
allow a significant simplification of the calculation of
coefficients. In general, these calculations are based on

recurrent formulas (16)–(19), which express  in
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remain in these formulas; in this case, the relation
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between the coefficients of higher and lower orders
becomes much simpler:

Coefficients with the indices that do not satisfy the con-
ditions listed above are described by more complex
expressions of the general form:

(25)

where the lower index of the polynomials

 and  determines their
order, K = 2N – i1 – i2, with respect to each of the three
arguments. The magnetic quantum number m occurs in
these polynomials only in even powers with an expo-
nent not greater than K. For a zero value of one of the
indices i1 or i2, there is a simple relation between the
polynomials P and R, which follows from the symme-
try relations (24):

The coefficients  possess a specific feature: for
even orders N = 2M, they are polynomials of degree 2M
of the squares of quantum numbers; for odd N = 2M +
1, they are similar polynomials multiplied by the elec-
tric quantum number:
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(29)

while for the polynomials that determine “antidiago-

nal” coefficients, for example,  and , we have

(30)

Equations (21)–(27) supplemented by the polynomials

(31)

(32)

and the relation between  and  mentioned above
completely determine the analytic expressions for the
coefficients of expansion (14) of the first and second
order in F. To complete determination of the coeffi-
cients of the third order, it is sufficient to write out, in
addition to (21)–(30), the polynomials expressing the

coefficients , , , , , and  in
accordance with (25):

P4
1 1,( ) n q m, ,( ) 4q 4n2 n 4+( )[–=

– n q2 24+( ) 13q2– 12m2– 12+ ] ,

P2
2 2,( ) n q m, ,( ) 2q 8n 19+( ),–=

b–1  1
3

 
( ) b–2  2

3
 

( )

R4
1 1,( ) n q m, ,( )

=  2 4n4 n2 3q2 4m2– 20q– 352–( )+[–

– q4 22q3 q2 m2 99+( )+ +

+ q 28m2 180+( ) 52 m2 3+( )+ ] ,

R2
2 2,( ) n q m, ,( ) 2 8n2 2q2 19q 48+ + +( ).=

P2
2 0,( ) 2 2n q–( ) 2n q– 11+( ) 24+[ ]=

P3
1 0,( ) 1

2
--- 2n3 n2 3q 58–( ) 2n m2 33q– 117+( )–+[=

– q3 qm2 36q2– 75q 26m2– 78–+ + ]

bik
1( ) bik

2( )

b40
3( ) b30

3( ) b20
3( ) b10

3( ) b21
3( ) b 21–

3( )

P2
4 0,( ) n q m, ,( )

=  
1
3
--- 24n2 196n 24nq– 6q2 89q– 340+ + +( ),–

P3
3 0,( ) n q m, ,( )

1
12
------ 122n3 n2 201q 2058–( )–[=

+ 2n 48q2 3m2 927q– 4295+ +( ) 13q3–

– 3qm2 504q2 162m2 3161q– 8718+ + + ] ,

P4
2 0,( ) n q m, ,( )

1
96
------ 777n4 4n3 3q 2362+( )–[=

– 6n2 87q2 2508q– 131m2 16511+ +( )

– 4n 3q3 2286q2 3qm2– 1478m2+ +(

– 18303q 70638 ) 201q4 9m4 2072q3+ + + +

– 210q2m2 2920qm2 18810q2–+

– 19738m2 65736q 162671–+ ] ,
 AND THEORETICAL PHYSICS      Vol. 93      No. 1      2001



PERTURBATION THEORY FOR THE INTENSITY OF STARK LINES 49
(33)

All polynomial expressions mentioned above are qua-
dratic functions of the magnetic quantum number m;
this is due to the fact that the vectors of the electric field
and the dipole moment of the atom are polar. Thus, the
corrections to the wave function are independent of the
sign of m, as well as the energy corrections. The same
property is characteristic of the corrections to the
matrix elements and intensities of the radiation transi-
tions, which are discussed in the following section.

3. THE DIPOLE MATRIX ELEMENT 
AND INTENSITY OF RADIATION TRANSITION

The matrix element for the dipole transition
between the Stark levels of the hydrogen atom in a
homogeneous field F,

(34)

can be written in the form of a power series in the field
strength F with the help of expansion (10) for the wave
functions of the initial and final states. In particular, we
have for the third order

(35)

Using expansion (10) for the wave functions in this
equation, we obtain a linear combination of the dipole
matrix elements with the Sturm functions (3). The
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matrix elements can be conveniently expressed in terms
of generalized hypergeometric functions of two vari-
ables [5], which can be transformed into a combination
of the Gauss hypergeometric functions by analogy with
the Gordon formula for the matrix element of the radi-
ation transition between the Stark levels [7]. Let us rep-
resent the transition frequency, the dipole matrix ele-
ment, and the intensity in the form of the series

(36)

(37)

(38)

where the quantities corresponding to the unperturbed
atom are taken out from the parentheses and the coeffi-
cients of the expansion are ratios of the correction
terms to the unperturbed ones. Taking into account the
fact that

(39)

we can write the relation between the coefficients of
expansions (36)–(38) up to the third order in the form

(40)

(41)

(42)

The symmetry relations (24) transform into the
symmetry relations for the coefficients of expansions
(37), (38), which we will refer to as the radiation sus-
ceptibilities

(43)

A discussion of properties and numerical values of
these quantities in the first and second orders of pertur-
bation theory can be found in [4, 5]. In this paper, we
give a thorough analysis of the third- and fourth-order
susceptibilities.
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3.1. Third-Order Radiation Susceptibilities 

Higher order corrections are of specific importance
when the lower-order corrections are zero. In particu-
lar, this is the case for transitions between dipoleless
states (q = 0 and q' = 0). The symmetry of these transi-
tions is such that the unperturbed dipole matrix element
and its even-order corrections are equal to zero for the
π-radiation; for the σ-radiation, all odd-order correc-
tions in field strength are equal to zero.

Each of the 73 nonzero coefficients  describing
the cubic (in F) component of expansion (10) for the
wave functions of the initial and final states is generally
a polynomial of the corresponding parabolic quantum
numbers determined by one of Eqs. (21)–(33). After
calculating the integrals over the parabolic variables in
the matrix elements with corrections to the wave func-
tion in (35), we obtain a combination of expressions
with hypergeometric functions similar to the Gordon
formula for the unperturbed radiation matrix element
[7], but with shifted (with respect to the parabolic quan-
tum numbers) indices of the Sturm functions.

Such expressions become significantly simpler
when one of the states (as a rule, the lower one) has zero
or close to zero parabolic quantum numbers. In partic-
ular, for the Lyman series (transitions to the ground
state with n' = 1 and q' = m' = 0), the third-order correc-
tions to the dipole matrix element and to the intensities
of π-radiation have the form

(44)

(45)

The electric quantum number q in the denominator
appears due to the proportionality to this factor of the
zero-order matrix element and the intensity, as well as

bi1i2
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of the even-order corrections. Thus, in the limit of the
weak field, the Lyman π0-lines, which correspond to
transitions from dipoleless states with q = 0, disappear,
whereas the odd-order corrections (in particular, the
first- and third-order ones) are nonzero. These correc-
tions cause the appearance of π0-lines with intensities
proportional to the square of the field strength (see Sec-
tion 3.2 for details). The contribution of these correc-
tions is important for lines with a small value of q as
compared to the extremal Stark components, which
correspond to q ~ n. For large n, the asymptotic depen-
dence is for the central,

and extremal,

Stark components are also different. The estimate of the
critical field at which the third-order correction
becomes comparable with the first-order correction
does not exceed the estimate of the ionizing field at
which the upper level appears above the potential bar-
rier that separates the inner region of the motion with a
given energy from the outer one (see, e.g., [12]). This
means that perturbation theory is applicable to all prac-
tically important cases when the upper level ionization
decay in the field can be neglected.

Formulas for the corrections to the matrix elements
and intensities of σ-transitions are simpler:

(46)

(47)

These expressions are proportional to q and vanish for
the central Stark line (q = 0) together with all other odd-
order corrections. The line itself has the maximum
intensity among the Lyman σ-components, and its first
nonvanishing correction is determined by the second-

order susceptibility of perturbation theory ; the
asymptotic dependence of this susceptibility on n has
the form (see [5])
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Table 1.  Corrections of the first four orders, β(N), to the intensity of Stark lines of the Lyman series

nqm Line β(1) β(2) β(3) β(4)

210 Lα(π2) 4.80(1) –2.04(3) 4.00(2) –1.45(7)

201 Lα(σ0) 0 –2.93(3) 0 –1.46(7)

320 Lβ(π6) 1.77(2) –5.91(4) 5.40(6) –6.91(9)

311 Lβ(σ3) –6.0 –7.57(4) 7.71(6) –7.15(9)

430 Lγ(π12) 4.99(2) –6.08(5) 2.37(8) –6.10(11)

410 Lγ(π4) 1.56(3) –2.23(4) –6.60(8) –6.78(11)

421 Lγ(σ8) –1.60(1) 7.65(5) 3.45(8) –6.56(11)

401 Lγ(σ0) 0 –7.45(5) 0 –5.73(11)

Note: The number in parentheses determines the power of ten; i.e., a(k) ≡ a × 10k.
The range of validity of this correction can be estimated
by evaluating the fourth-order correction.

Similar formulas for other series are the more cum-
bersome the greater the degeneracy order of the lower
level.

3.2. Fourth-Order Susceptibilities 

In the fourth order of perturbation theory, linear
combination (10) consists of 129 nonzero terms, which
are represented as polynomials of the parabolic quan-
tum numbers. Eight of them have already been deter-
mined by the general relations (21)–(23). The other
ones satisfy Eqs. (25), (26); moreover, the number of
such coefficients and the corresponding polynomials
PK and RK grows approximately by a factor of two in
comparison with the third order.

We calculated the analytic expressions for the coef-

ficients , which are much more complex than those

for . The fourth-order corrections to the matrix ele-
ment (37) and intensity (38) are also more cumbersome
in comparison with the third order. In particular, for the
Lyman series, which is the simplest case, the least cum-
bersome expression is

(48)
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The numerical values of the coefficients for the first
four orders in F of the intensity expansion (38) for
Lyman series transitions are presented in Table 1 and
for the Balmer series in Table 2. For the vast majority
of the lines, the corrections r(N) have the same sign and
the order of magnitude as the corresponding β(N).

We did not include the transitions Lβ(π0) and Hβ(π0)
since the intensity of these lines is zero in the zero
approximation, and the formal values of coefficients of
expansions (37) and (38) can become infinite. Correc-
tions of the first and third orders for these lines differ
from zero; thus, their intensities are quadratic with
respect to the field (this is due to squaring the first-order
matrix element). The corrections to these dependences
determined by the ratio of combinations of the matrix
elements and frequencies of the third and first orders
(the ratio of the cubic and linear corrections) are also
quadratic. In particular, the general expression for the
corrections to the intensity of the “forbidden” π0-lines
of the Lyman series corresponding to transitions
(n00)  (100) can be written in the form

(49)

Numerical values of the first-order corrections show
that the intensities of such “forbidden” lines reach as
much as several percent of the intensity of the corre-
sponding allowed lines in the field with half the
strength of the ionizing field. In this case, the third-
order correction does not exceed 10% of the first-order
one for the field strength of the ionizing field.

For the line Lα(π2), the value of β(3) is less than β(2).
Thus, we can estimate the applicability of lower orders
of perturbation theory for this line in strong fields only
by the ratio of the second- and fourth-order corrections,

– 2052512n10 272464n8 3759648n6+ +

– 10519344n4 10555920n2 3543264–+ ] .

I 3( )/I 1( ) F2 2385n12 2379n10 757n8– 265n6––(–=

+ 4376n4 3024n2– 528– )
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.
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Table 2.  Corrections of the first four orders, β(N), to the intensity of Stark lines of the Balmer series

nqm n' q' m' Line β(1) β(2) β(3) β(4)

320 2 –1 0 Hα(π8) 1.53(3) 9.80(5) 3.63(8) 9.63(11)

320 2 1 0 Hα(π4) 3.80(2) –1.96(4) –2.26(6) –5.38(9)

311 2 0 1 Hα(π3) 2.52(2) –5.38(4) –5.60(6) –5.94(9)

300 2 –1 0 Hα(π2) 1.04(2) –8.46(4) –7.08(6) –6.50(9)

320 2 0 1 Hα(σ6) 8.73(1) 2.48(5) 3.33(7) 1.09(9)

311 2 –1 0 Hα(σ5) 7.56(2) 1.70(5) 1.13(7) –3.72(9)

311 2 1 0 Hα(σ1) 1.65(2) –7.01(4) –1.69(6) –6.15(9)

300 2 0 1 Hα(σ0) 0 –8.76(4) 0 –6.49(9)

302 2 0 1 Hα(σ0) 0 –6.85(4) 0 –5.77(9)

430 2 –1 0 Hβ(π14) 2.44(3) 2.06(6) 1.14(9) 2.85(11)

430 2 1 0 Hβ(π10) 8.13(2) –4.34(5) 1.05(8) –5.25(11)

421 2 0 1 Hβ(π8) 4.32(2) –6.82(5) 8.38(7) –5.49(11)

410 2 –1 0 Hβ(π6) –99.1 –8.86(5) 2.02(8) –5.64(11)

410 2 1 0 Hβ(π2) –3.40(3) 1.42(6) 3.32(9) –1.81(12)

430 2 0 1 Hβ(σ12) 1.54(3) 3.53(5) 9.91(7) –3.62(11)

421 2 –1 0 Hβ(σ10) 1.17(3) –1.38(5) –1.68(8) –4.94(11)

421 2 1 0 Hβ(σ6) 3.00(2) –7.39(5) 1.54(8) –5.70(11)

410 2 0 1 Hβ(σ4) –3.84(2) –8.60(5) 4.03(8) –6.16(11)

412 2 0 1 Hβ(σ4) –1.60(2) –7.22(5) 2.56(8) –5.71(11)

401 2 –1 0 Hβ(σ2) –9.72(2) –5.39(5) 5.69(8) –6.61(11)

Note: The number in parentheses determines the power of ten; i.e., a(k) ≡ a × 10k.
similar to the lines Lα(σ0) and Lγ(σ0), for which the
first- and third-order corrections are identically equal to
zero.

Abnormally large susceptibilities for Hα(π8) com-
pared to the other lines of this series are caused by a
small value of its intensity in the limit of the weak field.
It is only 0.04% of the intensity of the strongest line of
this series.

For the Lyman series, the second- and fourth-order
corrections (both for the matrix elements and intensi-
ties) are negative, while the first- and third-order cor-
rections are sign-alternating. It must be noted that there
is regularity in the behavior of the first nonzero correc-
tions to the intensity of this series: it is seen from Table 1
that they are positive for π-transitions and negative for
σ-transitions. This corresponds to the increase of the
π-line intensities in the electric field (which is similar to
the increase of the probability of optical transitions
from deep impurity centers in semiconductors [13])
and the decrease of the σ-line intensities. For the
Balmer series, no such regularity exists, and the influ-
ence of the field on individual Stark components both
of the π-radiation and σ-radiation becomes selective.
The same selectivity of the effect of the field on the
intensity of lines is observed for other series of radia-
tion and absorption of a hydrogen-like atom [4, 5].
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As in the calculation of the Stark energy, the prob-
lem of the convergence of series in powers of F for the
matrix elements of dipole transitions is of prime impor-
tance for the calculation of radiation characteristics.
The analysis of the formulas and numerical results for
the Lyman and Balmer series and for certain transitions
between Rydberg states shows that the terms of series
(37) up to the fourth order form a decreasing (in abso-
lute value) sequence for the field strength not exceeding
a certain critical value Fcr, which is approximately dou-
ble the strength of the ionizing field for the upper level.
Moreover, the sum of the first terms of the series up to
the ionizing field is almost equal to the exact value of
the matrix element. Table 3 presents data to compare
the square of the matrix element, |d(Int)(F)|2, of the radi-
ation π-transition between the lowest Stark components
((q = –(n – 1), and q' = −(n' – 1)) of the Rydberg hydro-
gen states with n = 30 and n' = 10 obtained by the
numerical integration [3] of the Schrödinger equation
for the atom in the field of a strength close to the ioniz-
ing one with the results of perturbation theory for the first
four orders (N = 1, 2, 3, 4). The relative differences

represented on a percentage basis, are given in adjacent
columns. It is seen from the table that the results

eN
d N( ) F( )

2
d Int( ) F( )

2
–

d Int( ) F( )
2

----------------------------------------------------,=
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Table 3.  Square values of the matrix elements, |d|2, of the radiation transition between the Rydberg states (30, –29, 0) and
(10, –9, 0) obtained by the numerical integration of the Schrödinger equation [3] and the corresponding values calculated by
perturbation theory for the Nth order (N = 1, 2, 3, 4). The relative differences eN are given on the percentage basis

F, V/cm |d(Int)(F)|2
|d(N)(F)|2

N = 1 e1, % N = 2 e2, % N = 3 e3, % N = 4 e4, %

100 0.2901 0.2908 0.24 0.2901 0 0.2901 0 0.2901 0

200 0.2821 0.2851 1.06 0.2824 0.11 0.2822 0.04 0.2821 0

300 0.2722 0.2795 2.68 0.2734 0.44 0.2725 0.11 0.2723 0.04

400 0.2598 0.2738 5.39 0.2630 1.23 0.2609 0.42 0.2603 0.19

500 0.2442 0.2682 9.83 0.2513 2.91 0.2472 1.23 0.2455 0.53

600 0.2235 0.2626 17.49 0.2382 6.58 0.2312 3.45 0.2277 1.88

700 0.1937 0.2569 32.63 0.2237 15.49 0.2126 9.76 0.2062 6.45
obtained by perturbation theory rapidly converge to the
exact value such that even in the vicinity of the ionizing
field (F = 700 V/cm) the difference of the fourth-order
approximation from the exact value does not exceed
7%. Moreover, the terms of the series form a decreasing
sequence with a factor of about one-half. As the field
strength decreases, the convergence rate sharply
increases, and the difference from the exact value tends
to zero. At F = 200 V/cm, the value obtained by the
fourth-order perturbation theory coincides with the
exact value accurate to four decimal places given in the
table; at F = 100 V/cm, an accurate value is obtained
already in the third order.

A similar comparison was performed for the line
next to the extremal one, which corresponds to the tran-
sition from the upper level state with q = –(n – 3) (the
unperturbed matrix element is less by approximately a
factor of two for this level). In this case, the difference
between the values obtained by perturbation theory and
numerical integration is even less than in the preceding
case. For F = 700 V/cm, the difference between the
fourth-order and exact values is less than 5%.

The results of experimental measurements and
numerical calculation of the ratio of probabilities of the
radiation transitions between the lower and adjacent
Stark components of the states with n' = 10 and n = 30,
n = 44 obtained in [3] are in complete agreement with
our data at the field strength F for which fine structure
effects are negligible. Higher order corrections yield a
significant improvement of the agreement with experi-
mental data obtained in the first (linear) approximation,
especially in the vicinity of the upper bound of the
range of field strength used. Moreover, the contribution
of the fourth and higher order corrections is beyond the
accuracy of the graphical representation given in [3]
even for the maximal value of F.

Note that the change both in the frequency of transi-
tion and the change in the dipole matrix element deter-
mine corrections to the intensity; however, they cannot
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
be separated from one another in higher orders (see,
e.g., (42)). Nevertheless, numerical calculations show
that corrections to the matrix element make a signifi-
cant, and sometimes a major, contribution to the correc-
tion to the line intensity. For transitions from Rydberg
states with n @ 1, the contribution of corrections to the
matrix elements of the corresponding order for intensi-
ties is the major one as is seen from (44)–(47) for the
third order and was also noted for the first and second
orders in [4, 5].

4. CONCLUSIONS

The main results of this study are relations (11)–
(14) for the coefficients of expansion (10) of the wave
function of a hydrogen-like atom in the Rayleigh–
Schrödinger series in powers of the electric field. Every
term of this series is a superposition of the Coulomb
Sturm functions in the parabolic coordinates for the
Schrödinger equation of the hydrogen-like atom.

Corrections to dipole matrix elements and intensi-
ties of the radiation transitions between the Stark sub-
levels, which are induced by the field, are represented
in the form of asymptotic series (37) and (38) in powers
of the field F. For the Lyman and Balmer series, ana-
lytic expressions are obtained and numerical values of
the third and fourth orders are presented. These correc-
tions are polynomials of the quantum numbers of the
upper state and sometimes can make a significant con-
tribution to the matrix element of the radiation transi-
tion in the vicinity of the ionization threshold.

Notwithstanding the fact that the perturbation the-
ory series for the Stark effect on atoms are asymptotic
[1, 2, 6, 12], the data obtained for the matrix elements
and intensities of the Lyman and Balmer series do not
systematically confirm this fact, since we have for the
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majority of the radiation π- and σ-polarized transitions
that

(50)

and large deviations (by an order of magnitude) from
these relations to one side or the other occur equally
frequently.

In most cases, the third order is sufficient to deter-
mine the applicability of perturbation theory. However,
if the first- and third-order corrections are zero (e.g., for
σ-transitions between dipoleless states), then the fourth
order must be invoked to analyze the convergence of
the perturbation series.

Calculations presented in this paper are important
not only from the academic point of view but can also
be used in practice. In particular, quantitative data for
the variation of line intensity in a homogeneous electric
field can be used to determine the constant component
of the field in plasma. The calculation technique pro-
posed in this paper for higher order corrections of per-
turbation theory for the Stark states allows a generali-
zation for the interaction of an atom with a charged par-
ticle or a system of particles in the case when the
inverse of the distance from the atomic nucleus is used
as the small parameter for perturbation theory.
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Abstract—Second-order interference with respect to the field strength during spontaneous parametric light
scattering was studied under the conditions of absorption at the frequencies of idler (polariton) modes. An
expression is derived that describes the scattered light intensity as a function of the scattering angle for an arbi-
trary shape of the nonlinear interaction region. The interference was experimentally studied for the light scat-
tering on polaritons in a nonlinear crystal (lithium iodate, iodic acid), with a double slit placed into a pumping
beam in front of the crystal. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Spontaneous parametric down conversion (SPDC)
is a coherent scattering process whereby the pumping
photon decays into two photons (biphoton) of lower
frequencies [1]. At present, this effect is used in the two
fields: quantum optics and spectroscopy.

In quantum optics, the main attention is paid to the
transformation of a biphoton field obtained as a result
of the SPDC process and to the use of its nonclassical
features. A large variety of experiments was reported in
which the interference was observed using the second
and fourth field moments (see [2] and references
therein). These experiments usually reveal a significant
difference between the quantum and classical descrip-
tions of the interference. In recent years, biphoton fields
have been attracting the attention of researchers
engaged in methodological problems of quantum the-
ory [3] and interested in the use of such fields in devices
of quantum cryptography [4], quantum teleportation
[5], etc.

In the spectroscopic applications, the SPDC phe-
nomenon is used to study the properties of a substance
featuring the parametric scattering. For this purpose,
the experimental conditions are selected so as to pro-
vide that the frequency of one (signal) photon falls
within the visible range in the region of transparency of
the scattering substance, whereas the region of conju-
gated (idler) photon occurs in the IR range. The
response is measured in the form of the frequency-
angular spectra of the scattered signal radiation from
which the dispersion characteristics of the medium in
the IR range are determined such as dielectric permit-
tivity, second- and third-order nonlinear susceptibility,
etc. [6]. The main advantages of the SPDC spectros-
copy are the simplicity of experimental implementation
and the possibility of obtaining information in a spec-
tral region near the optical phonon frequencies, which
is difficult to access by other methods [7]. In this
1063-7761/01/9301- $21.00 © 20055
region, it is necessary to take into account a mixed elec-
tromagnetic-mechanical nature of the idler waves
(polaritons), which does not allow the scattered field to
be represented as a pair of free correlated photons [8].

This study was devoted to a situation in which the
approaches of quantum optics and SPDC spectroscopy
are closely related. The second order interference with
respect to the signal field strength, in which case the
parametric scattering involves polaritons, was studied
by theoretical and experimental methods. An analysis
of this phenomenon reveals a relationship between the
concepts and methods of quantum optics and SPDC
spectroscopy and provides a basis for the development
of new methods of the nonlinear spectroscopy [9].

The structure of this paper is as follows. Section 2
briefly outlines the main definitions and approaches
used for the description of interference in quantum
optics. Section 3 is devoted to the three-wave second-
order interference with respect to the field strength
under the condition that the scattering substance is non-
transparent for the idler (polariton) modes. A general
expression is derived for the angular distribution of the
scattered signal intensity and the angular profile of the
signal line is described under the experimental condi-
tions studied. Section 4 presents the results of experi-
mental investigation of the three-wave interference.

2. THREE-WAVE INTERFERENCE 
DURING SPONTANEOUS PARAMETRIC LIGHT 

SCATTERING

The SPDC phenomenon is interpreted as the coher-
ent decay of a pumping photon having the frequency ωp

into two photons, signal and idler with the frequencies
ωs and ωi, respectively, such that ωs, ωi < ωp (it is con-
ventionally adopted that ωi ≤ ωs). A phenomenological
description of the SPDC process is based on the use of
001 MAIK “Nauka/Interperiodica”
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an effective interaction Hamiltonian [10]

(1)

where Ep is the pumping field (assumed to be a preset

classical field);  and  are the field operators of the
signal and idler waves, respectively (superscripts “+”
and “–” denote the positive and negative frequency

parts); χeff = :epesei (eσ are the unit polarization
vectors of the corresponding waves, σ = p, s, i, and the
sign : denotes tensor convolution). In the first-order
perturbation theory, the wavefunction of the scattered
field is as follows:

(2)

where |1〉 s |1〉 i is a two-photon Fock state in the s, i
modes. The F(ks, ki) function can be interpreted as a
shape of the biphoton wave packet in the eight-dimen-
sional (8D) space ω ⊗  k (kσ are the wavevectors of the
interacting waves, |kσ| = ωσn(ωσ)/c). The Fourier image
determines distribution of the biphoton amplitude in the
8D space r ⊗  t. In the most general form, F(r, t) can be
written as follows:

(3)

Here, Ds and Di are the propagators describing propa-
gation of the signal and idler waves; V and τ are the vol-
ume and time of interaction, respectively. It is assumed
that the substance in which the scattering takes place is
transparent at the frequencies of the pumping radiation
and the signal and idler waves. The probability of
detecting a biphoton, that is, simultaneous counts in the
two ideal detectors tuned to the ks and ki modes, is
determined by the square modulus of the biphoton
amplitude [10]:

(4)

The probability that a photoresponse would appear in
the detector tuned to the signal radiation can be calcu-
lated as

(5)

Proceeding from expression (3), we may suggest sev-
eral ways for influencing the space-time structure of the
biphoton field: (i) variation of the spatial distribution of

the quadratic susceptibility (r) [11]; (ii) modula-
tion of the spatial distribution of the pumping field

Ĥ t( ) d3rχeff r( )Ep
+( ) r t,( )

V

∫=

× Ês
–( )

r t,( )Êi
–( )

r t,( ) H.c.,+

Ês Êi

χ̂ 2( )

ψ| 〉 v ac| 〉 F ks ki,( ) 1| 〉s 1| 〉 i,
ki ks,
∑+=

F rs ts; ri ti, ,( ) dt ' drχeff
2( ) r( )Ep r t ',( )

V

∫
t

t r+

∫∝

× Ds rs ts; r t ',,( )Di ri ti; r t ',,( ).

Pc ks ki,( ) F ks ki,( ) 2.=

Ps ks( ) dkiPc ks ki,( ).∫=

χeff
2( )
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amplitude Ep(r) [12]; (iii) using a special form of the
propagators Di, s.

The latter method, widely employed in quantum
optics, provides for the simplest transformation of the
biphoton wave packet in the course of its propagation.
The scattered radiation frequency usually falls within
the visible (or near IR) spectral range in the region of
transparency of the nonlinear crystals employed. The
propagator transformations are performed with the aid
of linear optical (including polarization) devices such
as interferometers, phase shifters, delay lines, etc.

The inhomogeneous spatial distributions of nonlin-

earity (r) and pumping Ep(r) equally affect the
angular distribution of the scattered radiation intensity
in the diffractionless approximation (L/kpa2 ! 1, L is
the nonlinear layer thickness in the direction of the
pumping wavevector, a is the characteristic size of
transverse inhomogeneities). Not specifying the shape
of the spatial inhomogeneities in the scattering volume,
it is possible to show that the angular profile of the scat-
tering line is determined by the Fourier image of these
inhomogeneities [13]:

(6)

where Dk = kp – ks – ki is the wave detuning, f(r) =

(r)Ep(r), and Rs(ks) = Ps(ks)/τ is the rate of protore-
sponse counts proportional to the SPDC intensity. For
example, in the scattering volume having the shape of a
plane infinite layer with a thickness L oriented perpen-
dicularly to the pumping wavevector, the frequency-
angular profile of the line is described by the function

which is characteristic of the parametric processes. If
the scattering takes place in several regions (e.g., in N
crystals), the two-photon probability amplitudes add as

where ∆ϕn =  +  –  is the three-wave phase
shift.

The line shape is determined by the phase gained in
all three frequencies participating in the scattering pro-
cess, which allows the process to be considered as the
three-wave interference. Use of the interaction volume
of a complicated shape leads to modification of the fre-
quency-angular spectra of the scattered field, which
acquires an additional fine structure of the interference
nature.

It should be noted that the term interference implies
here a quantum-mechanical interference of the proba-
bility amplitudes of the biphoton field scattering into

χeff
2( )

Rs ks( ) dki f r( ) iDk r⋅( )drexp∫
2
,∫=

χeff
2( )

Rs ks( ) ∆kL/2( )sin
∆kL/2

-----------------------------
2

,=

F Fn i∆ϕn( ),exp
n 1=

N

∑=

ϕn
s ϕn

i ϕn
p
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preset modes (determined by the boundary conditions),
rather than as the classical field superposition in space-
time.

3. THREE-WAVE INTERFERENCE
IN THE PRESENCE OF ABSORPTION

Consider a scattering substance which is nontrans-
parent only for the idler radiation. For the pumping and
signal waves, the absorption is negligibly small. A spa-
tial distribution of the photon count rate in the detector,
proportional to the radiation intensity in the signal field
mode, is described by the function

(7)

Proceeding from the Hamiltonian (1) and taking into
account that the idler wave field in the substance is not
free, we obtain the following expression within the
framework of the first-order perturbation theory:

(8)

Here G''(ki, ω) is the anti-Hermitian part of the equilib-
rium Green function of the nonlinear medium, and ki is
the wavevector of the idler radiation. In an isotropic
medium, the anti-Hermitian part of the Green function
of the equilibrium idler wave field in the region of not
very strong absorption (where the dielectric permittiv-
ity ε obeys the inequality Imε ! Reε) is as follows [8]:

(9)

where α is the absorption coefficient and  = ωp – ωs.
In the case of negligibly small absorption at the idler
wave frequency (α  0),

(10)

and expression (8) transforms into relationship (6) valid
in the absence of absorption.

Let us proceed from the general formula (8) to the
angular distribution of the signal radiation at a fixed fre-
quency ωs. For convenience, the vectors kp, ks, and ki

are assumed to lie in the same plane (for example, xy),
with kp parallel to the y. The angular distribution of the
scattered signal intensity is observed also in the xy
plane (Fig. 1). Substituting (9) into (8) and integrating
with respect to |ki |, we obtain

Rs ks( ) Es
–( ) ks( )Es

+( ) ks( )〈 〉 .=

Rs ks( ) dki dr'dr'' f r'( ) f * r''( )
V

∫∫∫
× G'' ki ωp ωs–,( ) iDk r' r''–( )⋅[ ] .exp

G'' ki ω̃,( ) 4π
c

2
k ω̃( )

-----------------ω̃2 α /2

ki k ω̃( )–[ ] 2 α /2( )2+
---------------------------------------------------,=

ω̃

G'' ki ω̃,( ) δ ki k ω̃( )–( )∝

Rs θs( ) dθiFx θs θi,( )Fy θs θi,( ),∫=
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where

(11)

∆x, y is the projection of the wave detuning onto x and y
axes; and θs and θi are the angles of scattering of the
signal and idler waves.

Let L and a be the characteristic dimensions of inho-
mogeneities in the interaction region along the y and x
axes. We will consider two typical situations, paying
major attention to the transverse (relative to the pump-
ing wavevector) arrangement of inhomogeneities in the
scattering volume (immediately related to the experi-
ment).

(a) Strong absorption (aL @ 1, aa @ 1). In this
case, Fx and Fy have the form of Lorentz curves (as the
functions of θi at a fixed θs) with comparable widths.
Each function has a maximum at θi such that the corre-
sponding wave detuning ∆x, y = 0. The angular profile of
the signal line also represents a Lorentz curve

(12)

with the width

(13)

Here, θ ≡ θs – θs0; θs0 and θi0 are the scattering angles
of the signal and idler waves for which the condition of
phase synchronism Dk = 0 is strictly fulfilled. Expres-
sion (12) is well known in SPDC spectroscopy [14] and

Fx θs θi,( ) dx'dx'' f x'( ) f * x''( )
V

∫∫=

× i x' x''–( )∆x θs θi,( ) α
2
--- x' x'– θisin– ,exp

Fy θs θi,( ) dy'dy'' f y'( ) f * y''( )
V

∫∫=

× i y' y''–( )∆y θs θi,( ) α
2
--- y' y'– θicos– ,exp

Rs θ( )
σs

2

θ2 σs
2

+
-----------------=

σs ω̃( ) α ω̃( )
2kp θi0 ω̃( )( )sin
-------------------------------------.=

x

y

L
ks, ωs

k i, ωi

kp, ωp

a
d

Fig. 1. A schematic diagram showing configuration of the
scattering region. A pumping radiation is incident onto a
nonlinear crystal of length L. A nontransparent screen
placed in front of the crystal has two slits with equal widths
a and a distance d between their centers.
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is used in this very form in the measurements of the fre-
quency dependence of the absorption coefficient in the
spectral region of the upper polariton branch [15]. In
this region, the idler radiation frequency  is greater
than the maximum frequency of the longitudinal optical

mode in the crystal lattice (  > ).

(b) aL @ 1, aa ≈ 1. In this case, the absorption is
sufficiently high for the longitudinal size of the medium
be insignificant, but not as high as to ignore the trans-
verse inhomogeneity size.

The Fy(θi) function is still Lorentzian, while Fx(θi)
is determined by taking an exact integral along the x
axis. For an arbitrary shape of transverse inhomogene-
ities, expression (11) leads to the following angular
profile of the line:

(14)

Therefore, the effect of transverse inhomogeneities in
the interaction volume on the final shape of the signal
line decreases with increasing absorption of the idler

mode. The quantity lx = α–1sinθi0 =  can be inter-
preted as the polariton “free-path length” in the trans-
verse direction.

Let the interaction region represent two macro-
scopic volumes set as follows (Fig. 1):

(15)

f(r) = 0, in the rest of the space.

This case is convenient both for theoretical analysis and
for experimental verification, for example, using a non-
transparent screen with two slits placed in front of a
nonlinear crystal. Calculating the integral in (14) taking
into account conditions (15), we obtain

ω̃

ω̃ ωLO
max

Rs θ( ) = dx'dx'' f x'( ) f * x''( )∫∫
× ikp x' x''–( )θ α

2 θi0sin
----------------- x' x''–– .exp

α̃ x
1–

f r( ) χeff
2( )E0 p,=

x d a+( )/2– d a–( )/2–,[ ]∈

∪ d a–( )/2 d a+( )/2,[ ] ,

y 0 L,[ ] , z ∞– ∞,( ),∈ ∈

θ
ω

1

23 4

5

6
7

8

9
10

Fig. 2. A schematic diagram of the experimental setup:
(1) Ar+ laser (λ = 488 nm); (2, 3) Glan prisms; (4) nonlinear
crystal (LiIO3, α-HIO3); (5) mask with two slits (a = 85 µm,
d = 195 µm); (6) objective lens; (7) spectrograph (ISP-51);
(8) optical fiber; (9) detector; (10) photon counter.
JOURNAL OF EXPERIMENTAL
(16)

This expression has a simple physical meaning. The

function (θ, ) describes the angular profile of the
scattering line for a layer with the transverse size a (for
a single open slit with the width a) and the length L at a
arbitrary absorption coefficient . In the general case,
the form of this profile is intermediate between a
Lorentz contour and sinc2(x). For a strong absorption,
the line shape corresponds to a Lorentz curve, while for

  0, the line is described by the function
(sinx/x)2 ≡ sinc2x [8]:

(17)

In the expression (16), the factor in braces contains
a modulation term proportional to cos[∆x(θ)d], which is
related to the interference. The amplitude of this term is
determined by the exponential factor exp( d),
which depends on the relationship between the absorp-
tion level and the slit spacing. For the classical interfer-
ence in the Young scheme, the degree of the interfer-
ence pattern manifestation is determined by the ratio of
the radiation coherency radius to the slit spacing [16].

The second term  exhibits an oscillating character
and appears only in the case of distributed absorption.
Estimates show that the second term (for the values of
realistic parameters) is smaller by two orders of magni-

tude than the first term amplitude  and,
hence, can be excluded from consideration.

This, expression (16) shows that the idler wave
absorption must affect both the envelope shape and the
degree of the interference pattern manifestation. The
affect of absorption in the second-order interference
during SPDC was studied by Wang et al. [17], but only
in the case when an element semitransparent for the
idler wave was situated between two regions emitting
the biphoton fields. In the next section, the results
reported in [17] are compared to our conclusions.

4. EXPERIMENTAL RESULTS 
AND DISCUSSION

Figure 2 shows a schematic diagram of the experi-
mental setup representing a traditional SPDC spec-
trograph. The frequency-angular spectra of the scat-
tered signal field intensity are analyzed by the cross dis-
persion technique [18], whereby lens 6 (with a focal
distance of F = 85 mm) is situated so that its focus

Rs θ( ) 2Rs
a θ α̃x,( )=

× 1 α̃ xd–( ) ∆x θ( )d[ ]cosexp+{ } ∆ Rs
a.+

Rs
a α̃ x

α̃ x

α̃ x

Rs
a θ α̃x,( )

α̃ xa

α̃ x
2 ∆x

2 θ( )+
--------------------------=

+ ∆x
2 θ( ) α̃ x

2–[ ] 1 α̃ xa–( ) ∆x θ( )a( )cosexp–[ ]{

– 2α̃ xa α̃ xa–( ) ∆x θ( )a( )sinexp } α̃ x
2 ∆x

2 θ( )+[ ]
2–
.

α̃ x–

∆Rs
a

Rs
a θ α̃x,( )
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would occur in the plane of the entrance slit of the ISP-
51 spectrograph. A two-dimensional pattern of inten-
sity distribution in the angle–wavelength (θs–λs) coor-
dinates formed in the exit slit plane of the spectrograph
was recorded using photographic or photoelectric
methods. The signal radiation wavelength was selected
within the range λs = 600–700 nm in order to ensure
that the conjugated idler wavelength would fall within
the region of λi = 2–5 µm (νi = 2000–5000 cm–1). Thus,
the idler radiation frequency is close to the frequencies
of the crystal lattice eigenmodes, which corresponds to
the case of scattering on polaritons.

Two macroscopic interaction regions were formed
with the aid of a nontransparent screen with two slits
situated in front of a lithium iodate (LiIO3) or iodic acid
(α-HIO3) crystal. When the crystal is situated in the
near diffraction zone, the spatial distribution of the
pumping radiation inside the crystal is determined by
the slit parameters. The slits had equal widths of a =
85 µm at a distance between their centers of d = 195 µm.
The pumping was provided by an Ar+ laser operating in
a single transverse mode with λp = 514.5 nm at a power
of up to 4 W. The transverse coherency radius of the
pumping radiation was significantly greater than the slit
spacing, so that the parametric scattering was coher-
ently excited in both parallel layers (Fig. 1).

It must be noted that, in order to observe the non-
classical interference, it is necessary to satisfy a crite-
rion relating the angular and spatial experimental
parameters [12]. For the second-order interference with
respect to the field strength, which is studied here, the
corresponding criterion in the absence of absorption is
as follows:

(18)

The physical meaning of this criterion consists in that
the idler radiation crosses the transverse inhomogene-
ities in the scattering volume, not going outside of this
volume in the longitudinal direction. Owing to this, the
SPDC in both emitting regions involves the same idler
wave modes.1 In our experiments, the crystal types, slit
dimensions, and scattering angles were determined tak-
ing into account condition (18).

We have experimentally studied two cases. In the
first (weak absorption), the transverse polariton free

path length lx ~  exceeded the size of transverse
inhomogeneities in the scattering volume. In the second
case, the polariton free path length was on the order of
or smaller than the slit spacing: lx < d – a.

(a) Weak absorption (a < 10 cm–1, L = 18 mm).
The nonlinear medium was represented by a LiIO3
crystal. Here, the interference is manifested by a clearly
pronounced splitting of the angular profile in the range
1800 < νi < 3000 cm–1 (the upper frequency was limited

1 Wang et al. [17] interpreted criterion (18) as the induced coher-
ency effect.

L θi0 @ d .tan

α̃ x
1–
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by the condition of spatial synchronism of the crystal
employed). Figure 3 shows the angular profile mea-
sured for a signal wavelength of 588 nm (conjugated
polariton wavelength λi = 2.869 µm, νi = 3485 cm–1)
obtained by the electronic scanning technique.2 The
solid curve in Fig. 3 shows the result of a numerical
approximation based on Eq. (16). The absorption coef-
ficient was estimated at α < 0.3 cm–1, which does not
contradict to the data reported in [19], according to
which α < 2 cm–1. As the idler radiation frequency
increased, the absorption coefficient remained constant
to within the experimental uncertainty.

(b) Not too strong absorption (10 < a < 150 cm–1,
L = 26 mm). In this case, the nonlinear medium was
represented by an α-HIO3 crystal. As is well known, the
coefficient of absorption of a polariton wave increases
when the wave frequency approaches the crystal lattice
eigenmode where Imε(ω) exhibits a significant grows.
We have used this fact, selecting a polariton frequency
variation range (3300 < νi < 5000 cm–1) in the vicinity

of the OH group stretching vibration frequency (  =
2950 cm–1) for the α-HIO3 crystal. The measurements
were performed in the Y(X, Z)Y + ∆X scattering geom-
etry.3 The notation of axes (Fig. 1) coincides with
crystallographic; for the α-HIO3 crystal, the notations
are selected so that the refractive indices in the visible
range obey the inequality nx < ny < nz. For the polariton
frequency range selected, the angle between the
polariton wavevector and the y axis varied within 30° <
θi < 45°.

2 The detector (EG&G avalanche photodiode) operating in the pho-
ton count mode was moved by a step motor in the focal plane of
the spectrograph. Amplified output pulses were fed to a discrimi-
nator and then to a counter circuit. Operation of the step motor
and the counter was controlled by a computer.

3 A standard notation used in the Raman scattering spectroscopy:
indices outside the parentheses indicate directions of the incident
and scattered light, indices in the parentheses indicate the polar-
ization.

ν i
OH

I, rel. units

θ

1.0

0.8

0.6

0.4

0.2

0

–0.4° –0.2° 0.2°0

Fig. 3. Angular profile of the signal radiation intensity at the
output of a nonlinear Young interferometer (scattering crys-
tal, LiIO3; λs = 588 nm; θ = θs – θ0s).
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Fig. 4. Angular profiles of scattering in a nonlinear Young interferometer observed in a crystal of iodic acid (α-HIO3) at various

idler radiation frequencies in the vicinity of the resonance frequency ν = 2950 cm–1: (h) νi = 4569 cm–1, λs = 673 nm (a); (m) νi =

4206 cm–1, λs = 657 nm (a, b); (s) νi = 3357 cm–1, λs = 622 nm (b).
Figure 4 shows three characteristic angular profiles
measured for various signal radiation wavelength. As is
seen, when the idler radiation frequency approaches a
resonance with the crystal lattice eigenmode, the
degree of manifestation of the interference pattern
decreases. The solid curves in Fig. 4 show the results of
theoretical calculations according to Eqs. (16) and (17).
In order to study the behavior of the absorption coeffi-
cient at the idler wave frequencies, a series of such mea-
surements was performed for various wavelengths and
the absorption coefficient α was determined by numer-
ical methods. The results of these calculations are pre-
sented in Fig. 5, where a solid curve shows the dis-
persion of α calculated within the framework of the
oscillator model for the scattering geometry
employed. The parameters of the OH bond oscilla-

4

α, cm–1

ωp, 103 cm–1
5 63

400

300

200

100

0

Fig. 5. A plot of the polariton wave absorption versus
polariton frequency. The black points with error bars repre-
sent experimental data obtained by approximating the angu-
lar spectra (see Fig. 4). Sold curve shows the calculated
absorption of α-HIO3.
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tions were taken from [20]. Measured far from the reso-
nance, the absorption corresponds to a “background”
level (40–50 cm–1) virtually independent of the scatter-
ing geometry [21].

The data presented in Fig. 5 show a good agreement
between experiment and calculation, which is evidence
of the validity of the employed approach. Figure 6
shows a fragment of the frequency-angular parametric
scattering spectrum measured in the vicinity of the fre-
quency of the OH group stretching vibrations.

The fact that the idler wave absorption affects the
second- order interference pattern during SPDC was
established [17] for a situation in which the absorption
is concentrated in the region between scattering vol-
umes. Two nonlinear crystals were arranged so that the
idler radiation emitted from the first crystal would pass

Fig. 6. A photograph of the upper polariton branch of the fre-
quency-angular scattering spectrum of an α-HIO3 crystal in

the region of the OH stretching frequency (νOH = 2950 cm–1).
The measurements were performed using a nontransparent
screen with two slits (a = 85 µm, d = 195 µm) placed into the
pumping beam (λp = 514.5 nm) in front of the scattering crystal.
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through the second crystal and system was adjusted so
that the idler modes would completely coincide, which
ensured that the condition (18) was obeyed. The para-
metric scattering was excited by a general coherent
pumping. A coupling device with a preset transmission
coefficient T was placed between the two crystals in the
idler mode. The intensity of the conjugated signal radi-
ation emitted from both crystals was studied (upon
mixing in the coupler) as a function of the transmission
at the idler frequency. It was found that the degree of
the interference pattern manifestation varied linearly
with the coupler transmission coefficient.

Following the considerations of Section 2, we may
say that the experiments in [17] involved variation of
the idler and signal field propagators during the para-
metric scattering. The biphoton field was “prepared” in
both crystals and then subject to a certain action
(Absorption in the common idler mode). In our experi-
ments, the action took place both in the course of the
biphoton field was “preparation” and during its propa-
gation from one scattering region to another (effect of
the polariton absorption). In other words, we deal with
a distributed absorption, whereas in [17] the absorption
was introduced in a localized manner into a free field of
the idler wave (i.e., independently of the process of
biphoton production). Thus, the approach developed in
Section 3 is more general, including (as the limiting
case) the conclusions derived in [17]. The exponential
dependence of the interference pattern manifestation on
the polariton absorption (see Eq. (16)) agrees with the
linear dependence of this parameter on the transmission
coefficient T, taking into account that (in the absorbing
layer)

At the same time, according to (17), the envelope of the
scattering line observed in the presence of interference
also carries information about absorption. This fact
serves as basis for the method of polariton scattering
spectroscopy [7, 8].

5. CONCLUSION

We have analyzed the effect of the distributed
absorption at the idler mode frequency on the second-
order interference with resect to the field strength dur-
ing the spontaneous parametric light scattering.
Expressions (16) and (17) were derived that describe
the shape of the polariton scattering line for an arbitrary
configuration of the scattering volume. An analysis of
the dispersion of the absorption coefficient of a nonlin-
ear crystal in the IR range can be performed using any
one of the two methods.

1. The first method is a standard polariton scattering
spectroscopy. The sample dimensions are selected so as
to provide for a maximum intensity of scattering and to
ensure the condition a0α @ 1, where a0 is the character-

T
I
I0
----≡ α̃xd–( ).exp=
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istic sample size. The shape of the scattering line is
measured and analyzed.

2. The second method is offered by the “polariton
interferometry.” The size of the transverse inhomoge-
neity a is selected so that aα ≈ 1. For example, the scat-
tering region configuration is determined by a nontrans-
parent screen with two slits situated in the pumping
beam in front of a sample. Here, both the line envelope
and the degree of manifestation of the interference pat-
tern are analyzed. It should be noted that this method
can be used to study the dispersion law in substances
not possessing a quadratic susceptibility [9, 17].

The effect of absorption in and reflection from the
scattering volume boundaries on the shape of the para-
metric scattering line can be also studied using the
method of scattering matrix [22]. However, application
of this method to analysis of the parametric scattering
line shape in the case of the scattering region of an arbi-
trary configuration is a very difficult task.

In conclusion, we should like to note an important
methodological aspect of the problem considered
above. Although more than three decades passed since
the discovery of the phenomenon of spontaneous para-
metric light scattering, the problem of combining the
two historically separated branches of this effect, quan-
tum-optical and spectroscopic, is virtually not yet dis-
cussed in the literature. We hope that this paper will at
least partly fill the gap.
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Abstract—The rectification of the force of induced light pressure in laser fields formed by elliptically polarized
running waves in zero magnetic field is considered. Explicit analytic expressions for the induced and spontane-
ous forces of light pressure exerted on a stationary atom are obtained for two classes of closed optical transi-
tions: Jg = J  Je = J +1 and Jg = J  Je = J (J is half-integral), where Jg and Je are the total angular
momenta of the ground and excited energy levels. It is shown that the ellipticity of waves is the necessary con-
dition for the emergence of the rectification of the induced force in a monochromatic field. The optimal param-
eters of the field and the maximum rectification coefficient are calculated for a number of optical transitions.
The dependence of the rectified force on the velocity is investigated analytically and numerically for the sim-
plest 1/2  1/2 transition. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The force of induced light pressure (dipole force) in
high-intensity laser fields considerably exceeds the
force of spontaneous light pressure, which is limited by
the spontaneous decay rate γ:

where Ω is the Rabi frequency and "k is the photon
momentum. This makes it possible to use the dipole
force for controlling the translational motion of atoms
(acceleration, deceleration, and deflection of atomic
beams and the formation of deep potential wells) [1, 2].
In many cases, the oscillatory nature of the coordinate
dependence of the induced force is the main obstacle in
obtaining a noticeable effect. For this reason, it is
important to analyze situations in which the effect of
rectification of the dipole force takes place; i.e., a force
component appears, having a constant sign over spacial
scales of the wavelength of light λ.

At present, various methods of rectification of the
force in stationary fields have been developed theoreti-
cally and verified experimentally. In their pioneering
works, Kazantsev and Krasnov [3–5] proved (using the
model of a two-level atom) that the induced component
of the light pressure force can be rectified in a bichro-
matic field. In this case, use is made of two standing
waves, one of which (having a moderate intensity and
detuning) exerts a force on the atom, while the other
wave (having a high intensity and considerable detun-
ing from resonance) leads to spatial modulation of
effective detuning for the first field (due to optical shifts
of atomic levels). For an appropriate choice of parame-
ters, effective detuning oscillates synchronously with
the intensity of the first (resonance) field, and the sign

Fdip "kΩ @ "kγ/2,∼
1063-7761/01/9301- $21.00 © 20063
reversal of the intensity gradient is compensated by the
sign reversal of detuning, leading to rectification which
was detected in experiments from the deviation of the
atomic beam [6, 7]. Later, Javanainen [8] demonstrated
for a three-level Λ-atom that the requirement of a con-
siderable difference in the detuning and intensities of
the waves is not necessary. The mechanism of the emer-
gence of a constant-sign component of the dipole force
for approximately equal detunings is based on a spa-
tially nonuniform redistribution of atoms over the sub-
levels of the ground state due to the modulation of the
corresponding rates of optical pumping. These two fac-
tors (spatial nonuniformity of optical shifts of atomic
levels and the rates of optical pumping between these
levels) form the basis of various versions of rectifica-
tion of the dipole force in a bichromatic field in three-
level systems with the Λ- [9–11], V- [12], or cascade-
type [13, 14] configurations of the levels as well as in a
monochromatic nonuniformly polarized field upon the
application of a magnetic field leading to the splitting
of the Zeeman sublevels [15, 16]. The latter case is
equivalent (in the resonance approximation) to the
interaction of a multilevel atom with polychromatic
radiation; this becomes evident when the quantization
axis is chosen along the magnetic field.

It turns out, however, that the rectification effect also
emerges in a monochromatic field in zero magnetic
field, when atoms with the degenerate ground state
interact with the laser field formed by elliptically polar-
ized waves. Namely, we analyzed a one-dimensional
field configuration formed by counterpropagating plane
waves of the same amplitude and ellipticity ε0 (
is equal to the ratio of the semiaxes of the polarization
ellipse, while the sign of sin(2ε0) determines the direc-

ε0tan
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tion of rotation of the electric field vector). The princi-
pal axes of the ellipses of counterpropagating waves are
oriented at an angle θ relative to each other. For such an
ε–θ–ε configuration, the circular components σ± are
standing waves shifted in space relative to each other by
the phase angle θ (see formula (14)). It was shown in
[8] for a three-level Λ-atom that the differences in the
spatial phases and intensities of standing waves are nec-
essary conditions for the rectification of the dipole
force for equal detunings (monochromatic laser field
and zero Zeeman splitting).

The necessary conditions for rectification (ε0 ≠ 0,
±π/4 and θ ≠ 0, ±π/2) can be established from a general
symmetry analysis of the force of light pressure.
Indeed, it can easily be verified that for the ε–θ–ε con-
figuration, the following relation holds for the force
averaged over the spatial period for arbitrary ε0 and θ:

(1)

where v  is the velocity of an atom and δ is the detuning
from resonance. This relation just indicates the possi-
bility of rectification (for v  = 0) of the dipole force
since the force of spontaneous light pressure for v  = 0
has an even dependence on detuning. However, for spe-
cial values of the parameters (ε0 = 0, π/4 or for θ = 0,
±π/2), another relation, which also follows from sym-
metry considerations,

(2)

indicates, on the contrary, the even dependence on
detuning for v= 0. Consequently, the average force in
this case is equal to zero. Our calculations show that for
the optical transitions Jg  Je (Jg and Je are the total
angular momenta for the ground and excited levels), the
necessary conditions for Jg ≥ 1/2 are also sufficient con-
ditions.

2. STEADY-STATE FORCE OF LIGHT PRESSURE
Let us consider the resonant interaction of a one-

dimensional (directed along z) monochromatic field

(3)

with an atom whose degenerate ground and excited
states form the dipole- allowed transition Jg  Je. The
complex-valued vector amplitude of the field can be
written as the product

(4)

where E is the real-valued amplitude, Φ is the phase,
and

is the unit complex-valued vector of elliptic polariza-
tion, eq being its contravariant components in the cyclic

basis {e0 = ez; e±1 = ex ± iey)/ }. The explicit

F〈 〉 v δ,( ) F〈 〉 v δ–,( ),–=

F〈 〉 v δ,( ) F〈 〉 v –δ,–( ),=

E z t,( ) E z( )e iωt– c.c.+=

E z( ) EeiΦe,=

e eqeq

q 0 ±1,=

∑=

(+− 2
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dependence of E, Φ, and e on the coordinate is not spec-
ified here to simplify the notation. Without any loss of
generality, we assume that the real and imaginary com-
ponents of e are orthogonal; i.e., Im(e · e) = 0. For such
a choice of the phase, the two vectors Ree and Ime are
directed along the axes of the polarization ellipse. The
local ellipticity parameter ε can be defined as an invari-
ant:

(5)

In this case, the local polarization vector e can be
decomposed in the cyclic unit vectors e±1 as follows:

(6)

where the angle φ determines the orientation of the
ellipse axes in the xy plane.

It is well known (see, for example, [2]) that the force
of light pressure exerted on an atom in a monochro-
matic field can be presented in the form

(7)

where D(–)(z) is the amplitude of the negative-fre-
quency component of the average dipole moment of the
atom at point z:

the bar indicates averaging over time; and ∇ z = ∂/∂z.
Using the steady-state solution obtained by us for the
density matrix of atoms [17–19], we single out in the
average dipole moment two components, one of which
(proportional to A) rotates in the same direction as the
external field, while the other (proportional to B)
rotates in the opposite direction:

(8)

Here, γ is the rate of spontaneous decay of the excited
level, δ = ω – ω0 is the detuning of the field frequency
from the transition frequency ω0, S = Ω2/(γ2/4 + δ2) is
the saturation parameter of the transition, and the Rabi
frequency is defined in terms of the reduced dipole
moment d and the real field amplitude as follows: Ω =
dE/". The coefficients α0, α1, A, and B are functions of
the scalar product e · e = cos2ε only. Their explicit form
is determined by the type of the optical transition. For
example, for the J  J transitions (J is a half-integer),
it follows from the results obtained in [17] that

(9)

2εcos e e.⋅=

e ε π/4–( )eiφe 1–sin ε π/4–( )e iφ– e+1,cos+=

F D z t,( ) ∇ zE z t,( )⋅–=

=  D –( ) z( )– ∇ zE z( )⋅ c.c.,+

D z t,( ) D +( ) z( )e iωt– D –( ) z( )eiωt;+=

D –( ) 1
α0 2Sα1+
------------------------ Ω*

δ iγ/2–
------------------- Ae* Be+( ).=

α0
4J J 1+( )

e e⋅
------------------------ GLPL

1
e e⋅
--------- 

  ,
L 1 3 …, ,=

2J

∑=

α1 2J 1,+=

A 0, B
2J 1+
e e⋅

---------------,= =
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where PL(x) is the Legendre polynomial and

For another class of transitions (J  J + 1), the
results obtained in [18] lead to

(10)

where

In the relation for α0 in (10), the summation is carried
out over even L (starting from zero) for integral values
of momentum J and over odd J (starting from unity) for
half-integral values of J, and coefficients A and B are
expressed in terms of the derivative  = dPL(x)/dx of
the Legendre polynomials. It should be noted that the
coordinate dependence of the force and its dependence
on the wave parameters are completely determined by
two invariants, E · E and E · E* since S ∝  E · E*, and
(e · e)2 = |E · E|2/(E · E*)2.

3. DIPOLE FORCE IN THE ε–θ–ε FIELD
In this work, we confine our analysis to the ε–θ–ε

configuration described above. It can be proved that in
the case of counter-propagating waves with the same
intensity, the gradients of phase Φ (see Eq. (4)) and the
angle of rotation φ (see Eq. (6)) of the local polarization
ellipse are connected through the following stringent
relation:

(11)

where ε is the local value of the field ellipticity. In this
case, the expression for the force of light pressure
assumes the form

(12)

CL 1–( )L 1– 2L 1+( ) L 1–( )!!
L!!

--------------------- 
 

2

=

× 2J L+( )!! 2J L– 1–( )!!
2J L–( )!! 2J L 1+ +( )!!

-----------------------------------------------------------.

α0
1

2J 1+( ) 4J 1+( )!e e⋅
----------------------------------------------------- CLPL

1
e e⋅
--------- 

  ,
L 0 1( ) 2 3( ) …, ,=

2J

∑=

α1 P2J 1+
1

e e⋅
--------- 

  ,=

A
1

2J 1+( )e e⋅
------------------------------P2J 1+' 1

e e⋅
--------- 

  ,=

B
1

2J 1+( )e e⋅
------------------------------P2J' 1

e e⋅
--------- 

  ,–=

CL 2L 1+( ) 2J L–( )! 2J L 1+ +( )!.=

PL'

∇ zΦ 2ε( )∇ zφ,sin=

F Re
" δ iγ/2+( )S
α0 2Sα1+

-------------------------------




–=

---× α1 A–( )∇ z E E⋅( )ln A∇ z E E*⋅( )ln+[ ]




.
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We can also prove that if the ellipticity parameters of
counterpropagating waves are equal, the gradients of
the phase and rotation angle and, hence, the force of
spontaneous light pressure (which is even in δ and is
proportional to γ) vanish. The resultant force is deter-
mined by the sum of the forces of induced light pres-
sure associated with the gradients of intensity and ellip-
ticity and is an odd function of the detuning. In the gen-
eral case, the intensity as well as the ellipticity of the
resultant field are spatially inhomogeneous:

(13)

where E0 denotes the real amplitude of the waves. The
ellipticity gradient vanishes in the special case θ = 0
(standing elliptically polarized wave), while the inten-
sity is spatially homogeneous for θ = π/2, ε0 = 0 (lin ⊥
lin configuration).

The coordinate dependence of the dipole force for
some transitions is depicted in Fig. 1. It can be seen that
the value of the force averaged over a spatial period,

differs from zero; i.e., the effect of rectification of the
force of induced light pressure takes place.

4. RECTIFICATION MECHANISM

In order to determine the mechanism of the emer-
gence of the constant component of the dipole force in
the ε–θ–ε field, we consider atoms with the momenta
Jg = 1/2  Je = 1/2 in the limit of small saturations,
S ! 1. The specific feature of this case, which consid-
erably simplifies the analysis, is that an atom is insen-
sitive to the interference of the circular field compo-
nents, σ+ and σ– (see the diagram of transitions in Fig. 2).
For such a field configuration, these components are
standing waves with different amplitudes (for ε0 ≠ 0),
which are shifted in space relative to each other by the
phase angle θ:

(14)

Since the optical pumping is carried out through the
independent action of the components E±(z), the situa-
tion is close to the rectification in the three-level Λ sys-
tem under bichromatic excitation considered earlier [8,
9], in which the action of standing waves at adjacent
transitions is also independent for a small value of the

E E⋅ * 2E0
2 1 θ 2kzcoscos+(=

– θ 2ε0 2kz ),sinsinsin

e e⋅ 2ε( )cos=

=  
2ε0 θ 2kzcos+cos( )cos

1 θ 2kz θ 2ε0 2kzsinsinsin–coscos+
-----------------------------------------------------------------------------------------,

F〈 〉 1
λ
--- F z( ) z,d

0

λ

∫=

I± z( ) E± z( ) 2=

=  2E0
2 kz θ/2±( ) 1 2ε0sin±( ).cos

2
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Fig. 1. Coordinate dependence of the force of induced light pressure in the ε–θ–ε field for the following transitions: (a) 1/2  1/2
(dotted curve), 9/2  9/2 (solid curve); (b) 0  1 (dotted curve, rectification is absent), 1/2  3/2 (dashed curve), 4 
5 (solid curve). The field parameters are ε0 = π/8, θ = π/4, and the saturation parameter per wave S0 = 1.
Rabi frequency (as compared to the two-photon detun-
ing or the coherence relaxation rate in the ground state).
In our case of equal detunings, spatial oscillations of
forces are shifted in phase through angle θ:

(15)

where S0 = /(γ2/4 + δ2) is the saturation parameter
per wave and Ω0 is the corresponding Rabi frequency.
The coordinate dependence of the populations of sub-
levels is defined as

(16)

In particular, for equal amplitudes of the circular com-
ponents (linear polarization of waves, ε0 = 0), the pop-

F± z( ) 2
3
---

δS0

E0
2

--------∇ zI+− z( ),–=

Ω0
2

π± z( )
I± z( )

I+ z( ) I– z( )+
------------------------------.=

–1/2 1/2

2/3

1/3

α + α –

1/3

2/3

1/2–1/2

Fig. 2. Diagram of spontaneous (undulating lines) and light-
induced (straight lines) transitions Jg = 1/2  Je = 1/2.
The relative amplitudes of light-induced transitions are pro-
portional to the circular field components α± =

; the numbers indicate the relative probabil-
ity of spontaneous decay.

ε π/4+−( )cos+−
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ulations and partial forces satisfy the relations

and the resultant force F = F+π+ + F–π– vanishes as a
result of averaging. In the case of a nonzero ellipticity,
the emergence of the constant component of the force
is illustrated in Fig. 3, which shows (for ε0 = π/8 and
θ = π/4) the spatial dependences of populations (Fig. 3a),
partial forces (3b), the resultant force and its two com-
ponents, F+π+ and F–π– (Fig. 3c). It can be seen that the
average value of F–π– is positive, F+π+ is negative, and
the resultant force F is positive on the average due to
the difference in their amplitudes.

Thus, the mechanism of the emergence of the con-
stant component of the dipole force in the ε–θ–ε field is
associated with a spatially nonuniform optical pumping
and with the presence of gradients of intensity and
ellipticity. In other words, the rectification effect in a
monochromatic field is due to the presence of addi-
tional (polarization) degrees of freedom as compared to
the model of nondegenerate states.

5. DEPENDENCE OF THE RECTIFICATION 
EFFECT ON THE FIELD PARAMETERS

Using expressions (15) and (16) for partial forces
and populations, we can easily find the resultant force
F = F+π+ + F–π– in the first order in the saturation
parameter S0:

(17)

π– z( ) π+ z–( ), F– z( ) F+ z–( ),–= =

F z( )
4"kδS0

3
------------------=

×
2kz 2ε0 θ 2kzcos+cos( )cos

2
sin

1 2kz θcoscos 2ε0 θ 2kzsinsinsin–+
-----------------------------------------------------------------------------------------.
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The result of averaging over a spatial period can be
written as follows:

(18)

Expressions (17) and (18) demonstrate some fea-
tures typical of all transitions. In particular, it can be
seen that apart from the odd dependence on the detun-
ing of the light field, the force averaged over a spatial
period exhibits an odd dependence on angle θ and on
the ellipticity ε0 of light waves, which is valid for all
types of optical transitions in the general case of an
arbitrary intensity of waves. This can be verified using
the symmetry relations for the force. It was noted above
that the effect of rectification of the dipole force van-
ishes for ε0 = 0, ±π/4 or for θ = 0, ±π/2. Consequently,
we can expect that rectification will be maximum for
intermediate values of ε0 and θ. For example, an analy-
sis of formula (18) shows that for the optical transition
1/2  1/2 with small saturation parameters S0 ! 1,
the average force has a smooth peak 〈F 〉max =
0.114"kδS0 at the point ε0 = 0.35, θ = 0.57.

For small values of saturation parameter, the dipole
force is proportional to S0. In the opposite limit of large
saturations, S0 @ 1, the average force exerted on a sta-
tionary atom decreases in proportion to 1/S0, which can
be proved using the general expression (12). Thus, the
maximum rectification effect takes place for intermedi-
ate (not very large or very small) values of the satura-
tion parameter.

In order to find this maximum and the correspond-
ing optimal values of the field parameters, it is convenient
to present the average force for Ω0, |δ| @ γ in the form

where η is the rectification factor depending on the type
of optical transition, polarization parameters ε0 and θ,
and the ratio δ/Ω0. Using numerical integration, we
determined the maximum rectification factor η and the
optimal values of the parameters ε0, θ, and δ/Ω0 for a
number of optical transitions. The results are presented
in the table for positive detunings and for a positive
value of η. All the remaining peaks of |η| can be
obtained using the antisymmetry of the average force
relative to ε0, θ, and δ.

Another important question is the dependence of the
average force 〈F 〉 on velocity. For slow atoms, kv  ! γ,
in the limit of small saturations S0 ! 1, we can obtain
analytic expressions for the average force for transi-
tions with the ground-state momentum Jg = 1/2 (i.e.,
Jg = 1/2  Je = 1/2 and Jg = 1/2  Je = 3/2) using a
method similar to that used in [20]. For the transition
Jg = 1/2  Je = 1/2, we have

F〈 〉
2"kδS0

3
------------------=

×
2ε0 2ε0 2θ 1 θsin 2ε0cos–( )sinsincos

2

θcos
2

2ε0 θsin
2

sin
2

+( )
2

-----------------------------------------------------------------------------------------------.

F〈 〉 η "kΩ0,=
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(19)

Expressions for f0, f1, and f2 have the form

(20)

F〈 〉 v( )
"kδS0

3
--------------- τe τ– f 0 f 1 f 2+ +( ).d

0

∞

∫=

f 0 2I0 Q
ντsin

ν
-------------- 

  2ντsin–=

× θsin
2

2ε0 θcos
2

sin
2

+( ),

f 1
4
Q
---- I1 Q

ντsin
ν

-------------- 
  2ε0sin=

× 1
2
--- 2ε ντ 2θsincoscos

2
2ε ντsinsin+ 

  ,

(b)

λ/2

F

z
0–λ/2

0

0

F+, F–

0

π+, π–
(‡)

(c)

1

Fig. 3. On the mechanism of dipole force rectification in the
ε–θ–ε field. Transition 1/2 1/2 in the limit S ! 1; ε0 =
π/8 and θ = π/4. Coordinate dependences of (a) populations
of magnetic sublevels π– (solid curve) and π+ (dotted
curve); (b) partial forces F– (solid curve) and F+ (dotted
curve); (c) products F–π– (solid curve), F+π+ (dotted curve),
and their sum F (bold solid curve).
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where Im(z) are modified Bessel’s functions and ν =
9kv /4γS0 is the dimensionless velocity. The dependence

f 2
2

Q2
------ I2 Q

ντsin
ν

-------------- 
  2ε0 2θ 2ε0,cos

2
sinsin–=

Q θcos
2

2ε0 θsin
2

sin
2

+ ,=

0

0.08

ν
–2 –1 1 2

0.04

0

0.2

0.1

0

0.1

–0.1

0.3

F
(a)

(b)

(c)

Fig. 4. Dependence of the average force (in the units of
"kδS0/3) on the dimensionless velocity ν = 9kv /4γS0 in
low-intensity fields, S0 ! 1, for various parameters of light
waves: (a) ε0 = π/10, θ = 0.3; (b) ε0 = π/6, θ = 0.3; (c) ε0 =
π/6, θ = 0.1.

Optimal field parameters and maximum rectification factor
for the dipole force

Jg  Je ε0 θ δ/Ω0 η

1/2  1/2 0.46 0.51 0.87 0.057

3/2  3/2 0.35 0.39 0.49 0.059

5/2  5/2 0.28 0.30 0.39 0.053

7/2  7/2 0.23 0.24 0.33 0.048

9/2  9/2 0.19 0.19 0.29 0.043

1/2  3/2 –0.35 0.43 2.5 0.023

1  2 –0.30 0.37 2.4 0.025

3/2  5/2 –0.25 0.32 2.4 0.022

2  3 –0.22 0.28 2.3 0.019

5/2  7.2 –0.20 0.26 2.3 0.017

3  4 –0.18 0.24 2.3 0.014

7/2  9/2 –0.17 0.22 2.2 0.013

4  5 –0.16 0.20 2.2 0.012
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of force on velocity for various values of the parameters
of light waves is shown in Fig. 4 for S0 ! 1. It can be
seen that for small saturation parameters, the rectifica-
tion of the dipole force in a monochromatic field of the
ε–θ–ε configuration takes place in the velocity range
∆v  ~ γS0/k.

The general case of arbitrary velocities and field
intensities requires the application of numerical meth-
ods. In a one-dimensional periodic field, the approach
to the approximate calculation of the atomic density
matrix involves the expansion into a Fourier series in
the spatial coordinate and the formulation of a system
of equations for the corresponding coefficients. Further,
we assume that only first n harmonics are excited effec-
tively, while the amplitudes of the remaining harmonics
are negligibly small. Discarding harmonics higher than
the nth harmonic, we obtain a finite system of algebraic
equations, which can be solved numerically for the
given values of the parameters. Naturally, the number n
is chosen depending on the required accuracy of calcu-
lations, this choice being determined by the field
parameters and the velocity of the atom. An effective
version of such an approach is the method of chain frac-
tions developed by Minogin and Serimaa [21] for a
two-level atom in the field of a standing wave and was
subsequently generalized to atoms with degenerate lev-
els in fields with polarization gradients (see, for exam-
ple, [22]). We used this method for calculating the
period-averaged force confining the analysis to n = 20
(doubling the value of n led only to insignificant
changes). The result obtained for the optimal values
ε0 = 0.46, θ = –0.51, and δ = –0.87Ω0 = –8.7γ is pre-
sented in Fig. 5a. Apart from the rectification effect, the
figure shows considerable asymmetry in the depen-
dence of force on velocity in the range |kv | < 0.1γ. The
narrow (with a width much smaller than γ) structure
slightly displaced relative to zero is also worth noting.

In order to correctly analyze the change in the veloc-
ity distribution of atoms under the action of the rectified
force, we must also take into account the fluctuations of
the force leading to the diffusion of atoms over
momenta. The mechanism considered above suggests
that rectification in our case must be accompanied by
considerable fluctuations of the force since the effect is
associated with transitions between the states in which
different forces F± are acting on the atom. The corre-
sponding numerical results (for n = 20) for the depen-
dence of the space-averaged diffusion coefficient 〈D〉
on velocity are presented in Fig. 5b. The main qualita-
tive features are the same as for the force: asymmetry
and a sharp peak in the vicinity of zero, which is
shifted, however, in the opposite direction.

Simple estimates for the dynamics of variation of
the distribution function for an atomic ensemble can be
obtained assuming that the localization of atoms at the
minima of the optical potential is insignificant and
going over to the quantities averaged over a spatial
period in the Fokker–Planck equation:
 AND THEORETICAL PHYSICS      Vol. 93      No. 1      2001
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(21)

where 0(p) is the momentum distribution function for
atoms; the momentum and velocity are connected
through the conventional relation p = Mv. Figure 5c
shows the result of numerical integration of Eq. (21) in
the case of the Gaussian initial distribution, 00(p) ∝
exp[–(p/p0)2], with a large (as compared to the photon
momentum "k) width. The functions 〈F 〉(p) and 〈D〉(p)
were chosen in accordance with the results presented in
Fig. 5a and 5b, and the following relation was assumed
between the recoil frequency and the natural width:
ωr = "k2/2M = 2.5 × 10–3γ (which corresponds to 23Na).
It can be seen from Fig. 5c that the rectification effect is
manifested in the asymmetry of the momentum distri-
bution of the atoms (the amplitude of the right peak is
approximately 10% larger than that of the left peak).

The effect of rectification of the dipole force in a
field of the ε–θ–ε configuration can be observed exper-
imentally. By way of an example, we consider the inter-
action of a thermal beam of 23Na atoms with a small
angular divergence (v || ~ 105 cm/s, v ⊥  ~ 150 cm/s) with
transverse laser beams. Let the radiation frequency be
tuned in resonance with the D1 line (transition 3S1/2 
3P1/2, λ = 590 nm). For the beam intensities 5 W/cm2

(power 40 mW focused to a spot of diameter 1 mm), the
Rabi frequency amounts approximately to 10γ, where
γ = 2π × 10 MHz is the spontaneous decay rate for the
3P1/2 level. For obtaining qualitative estimates, we dis-
regard the hyperfine structure. The remaining field
parameters (δ, ε0, and θ) will be chosen so that they cor-
respond to the maximum rectification (see the table and
Fig. 5a); i.e., ε0 = 0.46, θ = –0.51, δ = −0.87Ω0. The ini-
tial spread in transverse momenta (measured in the
units of the photon momentum), p0 ≈ 50"k, and the time
of interaction of atoms with the field, t ≈ 60γ–1, corre-
spond to the final momentum distribution depicted in
Fig. 5c. Modern experimental technique makes it pos-
sible to detect such an asymmetry easily [23, 24].

6. CONCLUSIONS

Thus, we have demonstrated the possibility of recti-
fication of the dipole force in a monochromatic field in
the absence of a magnetic field. In the one-dimensional
case, this requires the application of elliptically polar-
ized waves whose polarization ellipses are oriented at
an angle to one another. In the case of the linear or cir-
cular polarization of waves (in arbitrary combinations)
or in the case of coaxial polarization ellipses, the recti-
fication of the dipole force does not take place, which
can be proved rigorously on the basis of symmetry rela-
tions. It should be noted that for different ellipticities of
counterpropagating waves, both induced (dipole) and
spontaneous forces of light pressure are rectified in the
general case; i.e., the force contains both odd and even

∂0 p( )
∂t

------------------ –
∂

∂p
------ F〈 〉 p( ) ∂2

∂ p2
-------- D〈 〉 p( )+ 0 p( ),=
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contributions in detuning. The uniqueness of the ε–θ–ε
configuration considered here is that the spontaneous
component of the force (which is even in detuning) is
equal to zero. Moreover, it follows from relation (1)
that the average force in the ε–θ–ε configuration is odd
in detuning irrespective of the velocity of the atom.
This circumstance can be used in some spectroscopic
applications.
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Fig. 5. Results of numerical calculations: (a) dependence of
average force (in the units of "kγ on velocity; (b) average
diffusion coefficient (in the units of ("k)2γ) as a function of
velocity; (c) initial (dashed curve) and final (solid curve)
velocity distributions of atoms. In all the figures, the field
parameters are ε0 = 0.46, θ = –0.51 and δ = –0.87Ω0 =

−8.7γ; the time of interaction in (c) is t = 60γ–1 and the ini-
tial momentum spread is p0 = 50"k ≈ 0.25Mγ/k.
SICS      Vol. 93      No. 1      2001



70 PRUDNIKOV et al.
REFERENCES

1. V. G. Minogin and V. S. Letokhov, The Pressure of Laser
Radiation on Atoms (Nauka, Moscow, 1986).

2. A. P. Kazantsev, G. I. Surdutovich, and V. P. Yakovlev,
The Mechanical Action of Light on Atoms (Nauka, Mos-
cow, 1991).

3. A. P. Kazantsev and I. V. Krasnov, Pis’ma Zh. Éksp.
Teor. Fiz. 46, 264 (1987) [JETP Lett. 46, 332 (1987)].

4. A. P. Kazantsev and I. V. Krasnov, Zh. Éksp. Teor. Fiz.
95, 104 (1989) [Sov. Phys. JETP 68, 59 (1989)].

5. A. P. Kazantsev and I. V. Krasnov, J. Opt. Soc. Am. B 6,
2140 (1989).

6. R. Grimm, Y. B. Ovchinnikov, A. I. Sidorov, and
V. S. Letokhov, Phys. Rev. Lett. 65, 1415 (1990).

7. Yu. B. Ovchinnikov, R. Grimm, A. I. Sidorov, and
V. S. Letokhov, Opt. Spektrosk. 76, 188 (1993) [Opt.
Spectrosc. 76, 192 (1993)].

8. J. Javanainen, Phys. Rev. Lett. 64, 519 (1990).
9. A. I. Sidorov, R. Grimm, and V. S. Letokhov, J. Phys. B

24, 3733 (1991).
10. P. R. Hemmer, M. S. Shahriar, M. Prentiss, et al., Phys.

Rev. Lett. 68, 3148 (1992).
11. D. V. Kosachiov, Yu. V. Rozhdestvensky, and G. Nien-

huis, J. Opt. Soc. Am. B 14, 535 (1997).
12. T. Cai and N. P. Bigelow, Opt. Commun. 104, 175

(1993).
JOURNAL OF EXPERIMENTAL
13. T. T. Grove and P. L. Gould, Laser Phys. 4, 957 (1994).
14. H. Pu, T. Cai, N. P. Bigelow, et al., Opt. Commun. 118,

261 (1995).
15. J. Söding and R. Grimm, Phys. Rev. A 50, 2517 (1994).
16. A. Haak, W. Ertmer, and H. Wallis, Laser Phys. 4, 1030

(1994).
17. A. V. Taœchenachev, A. M. Tumaœkin, V. I. Yudin, and

G. Nienhuis, Zh. Éksp. Teor. Fiz. 108, 415 (1995) [JETP
81, 224 (1995)].

18. A. V. Taœchenachev, A. M. Tumaœkin, V. I. Yudin, and
G. Nienhuis, Zh. Éksp. Teor. Fiz. 114, 125 (1998) [JETP
87, 70 (1998)].

19. G. Nienhuis, A. V. Taœchenachev, A. M. Tumaœkin, and
V. I. Yudin, Europhys. Lett. 44, 20 (1998).

20. V. Finkelstein, P. R. Berman, and J. Guo, Phys. Rev. A
45, 1829 (1992).

21. V. G. Minogin and O. T. Serimaa, Opt. Commun. 30, 373
(1979).

22. O. Emile, R. Kaizer, C. Gerz, et al., J. Phys. II 3, 1709
(1993).

23. P. L. Gould, G. A. Ruff, and D. E. Pritchard, Phys. Rev.
Lett. 56, 827 (1986).

24. V. A. Grinchuk, E. F. Kuzin, M. L. Nagaeva, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 57, 524 (1993) [JETP Lett.
57, 548 (1993)].

Translated by N. Wadhwa
 AND THEORETICAL PHYSICS      Vol. 93      No. 1      2001



  

Journal of Experimental and Theoretical Physics, Vol. 93, No. 1, 2001, pp. 71–79.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 120, No. 1, 2001, pp. 85–93.
Original Russian Text Copyright © 2001 by Bliokh, Grinyok.

    

PLASMA, 
GASES

               
On the Criterion for Effectiveness of Wave Linear 
Transformation in a Smoothly Inhomogeneous Medium

and of Nonadiabatic Transitions during Atomic Collisions
K. Yu. Bliokha, * and S. V. Grinyokb

a Institute of Radioastronomy, National Academy of Science of Ukraine, Kharkov, 61002 Ukraine
b Kharkov National University, Kharkov, 61077 Ukraine

* e-mail: kostya@bliokh.kharkiv.com
Received February 14, 2001

Abstract—A universal criterion for effectiveness of linear transformation of waves with locally close charac-
teristic exponents in smoothly inhomogeneous media is obtained. The same criterion is applicable for estimat-
ing the effectiveness of nonadiabatic transitions in slow atomic collisions. The formalism developed for an anal-
ysis of the linear interaction of waves is based of the WKB asymptotic form of the solution of a scalar nth order
ordinary differential equation. The obtained criterion can be applied in any practical problem for drawing a con-
clusion about the effectiveness of the linear interaction of modes if only the characteristic equation of waves in
a homogeneous medium and the coefficients of the initial differential equation are known. In this case, the solu-
tion of the problem is reduced to elementary arithmetic calculations. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem on the linear interaction of waves in
smoothly inhomogeneous media has been studied
extensively and has many applications (see the review
by Zheleznyakov et al. [1] and the references cited
therein), for example, in the physics of plasma and
astrophysics [2–4]. In this paper, we consider the most
frequently encountered case when the interaction of
waves takes place in the region of local closeness of
their dispersion characteristics. The transformation in
this case means the conversion of a wave corresponding
to a branch of the dispersion curve into a wave corre-
sponding to another branch. A similar situation also
takes place for slow atomic collisions [5, 6]. In this
case, linear transformations correspond to so-called
nonadiabatic transitions between quasi-intersecting
terms.

Strictly speaking, the concept of the wave corre-
sponding to a given branch of the dispersion curve is
applicable only to homogeneous media. The geometri-
cal-optics approximation or the WKB approximation
extend this concept and makes it possible to apply it for
waves in smoothly inhomogeneous media. In this
approximation, waves in a smoothly inhomogeneous
medium are assumed to be locally identical to waves in
a homogeneous medium with current characteristics.
The waves corresponding to different branches of dis-
persion curves are regarded as independent. Thus, the
linear transformation of waves is essentially a violation
of the WKB approximation.
1063-7761/01/9301- $21.00 © 20071
Nevertheless, in order to calculate the effectiveness
of a linear transformation, it is sufficient to analyze the
equations and their solutions corresponding to the
WKB approximation. As a rule, the calculations are
made using one of the following two methods. The first
method is that of complex phase integrals, which makes
it possible to travel around singular points of the WKB
approximation along a contour in the complex plane
during integration [2–5]. The second method is based
on an analysis of the polarization of various types of
waves [1]. The latter method possesses a visual general
formalism and deals with equations on the real axis.

The first method is more illustrative from the math-
ematical point of view, while the second reveals the
qualitative physical pattern of the phenomenon more
clearly. However, both methods are quite cumbersome
in calculations when used in various specific applica-
tions. In the first case, this is associated with the need
to evaluate the integrals of rather complex functions
with singularities in the complex plane, while in the
second case, the complexity of calculations is due to a
cumbersome matrix representation of linear algebra.

It should be noted that in many practical problems,
the exact calculation of the coefficients of linear trans-
formation and nonadiabatic transitions is not required,
and it is sufficient to obtain only an order-of-magnitude
estimate of their effectiveness. In this situation, there
are no universal criteria for the effectiveness of the
interaction. Obviously, the wave transformation must
be the stronger, the closer the dispersion characteristics
of interacting modes to each other (resonance condi-
tions). Besides, the effectiveness of the interaction
001 MAIK “Nauka/Interperiodica”
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between the waves must increase with the inhomogene-
ity gradient since it is precisely inhomogeneity that
ensures the coupling between different modes. These
two remarks lead to the following intuitive criterion. It
is often assumed that linear transformation is signifi-
cant when the characteristic scale of variation of the
system parameters is smaller than or of the order of the
period of beats between interacting modes [7]. If the
eigenvalues (frequencies or wave vectors) correspond-
ing to these modes are of the same order p and the sep-
aration between them is of the order of δp (|δp| ! |p|),
the effectiveness criterion can be written in the form

(1)

where the prime denotes the derivative with respect to
an independent variable. A similar criterion is also
introduced in the theory of atomic collisions; in this
case, the parameter corresponding to the left-hand side
of relation (1) is called the Massey parameter. However,
in real situations, criterion (1) is often incorrect. For
this reason, the problem of estimating the effectiveness
of linear transformations must be solved, as a rule,
comprehensively in each specific case.

In this work, we propose a universal criterion for
estimating the effectiveness of a linear transformation
in each practical problem without resorting to the solu-
tion of the problem on linear interaction. We propose an
alternative method for analyzing a linear transforma-
tion in the region of close values of the refractive indi-
ces for different types of waves, which is applicable in
problems with a monotonic smooth inhomogeneity and
in the absence of reflection of the waves. Our method is
based on the WKB formalism of a scalar nth order lin-
ear equation on the real axis and makes it possible to
obtain result with smaller computational time expendi-
ture.1 For example, in order to estimate the effective-
ness of linear transformation in some cases, it is suffi-
cient to know only the dispersion relation for waves in
a homogeneous medium. This is due to the fact that in
scalar WKB solutions, the entire information about a
wave (including its polarization) is contained in the
complex phase; this makes it possible to avoid complex
computations of eigenvectors–solutions for waves in
the matrix method [1]. Apart from the analysis of the
general problem, we also consider several examples of
wave interaction and nonadiabatic transitions, which
were solved earlier by other methods.

1 It should be noted that a matrix equation of the general type con-
tains 2n2 different coefficients, while a scalar equation has only
2n coefficients. The doubling is due to the fact that in the WKB
approximation, the terms of different orders of smallness must be
separated in each coefficient.

pδp
p'

----------  & 1,
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2. GENERAL FORMALISM

2.1. Initial Equations

Let µ be a parameter (or a set of parameters) deter-
mining the inhomogeneity of the problem, which is a
smooth function of coordinate z:

Here, ε ! 1 is a small parameter characterizing the
smoothness of inhomogeneity. Taking into account the
homogeneity of the system under investigation in time
t and coordinates r⊥  transverse to z, we can eliminate
the dependence of variables on these quantities from
the initial equations with the help of factors exp(ik⊥ r⊥  –
iωt). As a result, the system of differential equations
describing linear waves in an inhomogeneous medium
is reduced to a scalar nth order ordinary linear differen-
tial equation. In the geometrical optics approximation,
the solutions asymptotic in ε are considered with an
accuracy of ε1. In this case, the differential equation
under investigation can be linearized in µ' ~ ε (the
prime indicates the derivative with respect to z); dis-
carding higher-order terms, we can write this equation
in the general form:

(2)

where y(z) is the sought function and aj and bj are the
coefficients of the equation, which are inhomogeneous
in view of their dependence on µ. Without any loss of
generality, we can put a0 ≡ 1 and b0 ≡ 0. The first terms
in the sum in Eq. (2) are of the order of ε0 and the sec-
ond, of the order of ε1.

Equation (2) corresponds to the characteristic (dis-
persion) equation

(3)

Its roots (characteristic values) are smooth functions of
z: p = p(εz). The asymptotic WKB solution of Eq. (2)
for the kth mode can be written in the form [8]

(4)

Here and below, the subscripts p indicate derivatives
with respect to the corresponding argument of the char-
acteristic equation.

µ µ εz( ).=

a j εz( ) µ' εz( )b j εz( )+[ ] y n j–( ) z( )
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In Eq. (3), its roots, and expression (4), we single
out the terms corresponding to the zeroth and first
orders of smallness in ε:

(5)

where l (i ) ~ p(i) ~ εi

(6)

(7)

Using the perturbation method, we can easily obtain the
following relation from Eqs. (3), (6), and (7):

(8)

Here and below, the arguments of the known functions
are omitted for the sake of brevity. Expression (4) for
the WKB phase assumes the form

(9)

where the three quantities  ~ εi are equal, respec-
tively, to the three terms on the right-hand side of rela-
tion (9). Substituting relations (6) and (8) into (9), we
obtain the final expression for the WKB phase:

(10)

The quantity  =  forms the ordinary dynamic
phase in the WKB solution (4). The quantity

forms the ε-order correction in the WKB phase, which
is due to the presence of derivatives of the inhomoge-
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neous parameter µ in the initial equation (2). The quan-
tity

forms the ε-order correction in the WKB phase, which
is associated with inhomogeneity of running character-

istic numbers .

2.2. Criterion of the Effectiveness
of Interaction between Waves

The construction of asymptotic WKB solutions pre-
sumes that all the terms proportional to ε1 are much
smaller than the terms of the order of ε0; i.e.,

(11)

The violation of the WKB approximation (violation of
condition (11)) can be interpreted as the violation of
independence of different solutions, i.e., interaction
and transformation of waves.

Let us first consider the case when the term  can

be neglected:  ! . In this case, the waves are

no longer independent for  *  or

(12)

If the distance between the roots of the characteristic

equation is not small (  ~ ), relation
(12) leads us to the well-known estimate

(13)

If, however, two roots of the characteristic equation
approach each other to a small distance,

the WKB approximation is violated in this region under

a less stringent condition imposed on :

(14)

This condition is exactly the criterion (1) given in
the Introduction. It may appear that inequality (14) is
just the condition for the effective transformation of
waves in the region of convergence of their characteris-
tic exponents. However, the following important cir-
cumstance is disregarded in this case. As a matter of
fact, the interaction between two modes with close
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characteristic values is of the resonance nature, and the
effective energy exchange between them takes place
even in the case of a weak coupling. In order to take this
circumstance into account, we proceed in the following
way.

In Eq. (2), we carry out the substitution

(15)

where zmin is the point at which the difference between

the converging roots  and  is minimal. After
such a substitution, the current roots of the new charac-
teristic equation are

(16)

In the new variables, the interaction between the modes
under investigation is described in a nonresonance way
since the two converging roots for z = zmin are arranged
symmetrically and are of the same order of magnitude
as their separation:

(17)

Considering the zeroth approximation in the small
parameter δp/pmid, we can easily see that the converging
roots satisfy the characteristic equation (3) written in
new coordinates:

(18)

where

(19)

Comparing Eq. (18) with Eqs. (5)–(7) and (10) and tak-
ing into account relation (19), we obtain the expression
for the WKB phase in the new variables:

(20)

Now, the condition for the effectiveness of a linear
interaction between waves has the form

(21)

Expression (20) combined with (17) leads to
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(22)

In the case when  ! , the following esti-
mate holds:

(23)

This condition indicates that owing to the resonance
nature of interaction, the transformation of waves
becomes effective for smoother inhomogeneities than

in relations (1) and (14). For  ! , the effec-
tiveness criterion for a transformation is

(24)

In the general case, condition (21) can be written in the
form

(25)

Thus, we obtained criteria (23)–(25) of the effec-
tiveness for the linear interaction of waves in the gen-
eral case. The estimation of the effectiveness of the lin-
ear transformation of waves in each specific case is now
reduced to elementary computations using only the
coefficients of the initial differential equation and the
roots of the dispersion equation.

3. EXAMPLES

3.1. The Case  ! . Linear Transformation 
of Waves in Magnetospheres of Pulsars

Let us consider the problem [9] on the interaction of
waves in the inhomogeneous magnetized ultrarelativis-
tic electron–positron plasma of the magnetosphere of a
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pulsar. The basic equations in this system can be writ-
ten in the form

(26)

where yj are the field variables, the coordinate is
reduced to the dimensionless form with the help of the
characteristic wavelength l = c/ω, ϑ  ! 1 is the angle
between the wave vector and the external magnetic
field, γ @ 1 is the Lorentz factor, β–1 is the ratio of the
plasma flow velocity to the velocity of light, and µ =
µ(εz) is the parameter characterizing the inhomogene-
ity of the plasma and proportional to its density.

System (26) can be reduced to the following fourth-
order scalar differential equation:

(27)

Comparing Eq. (27) with Eq. (2), we see that in the
former equation,

(28)

In the zeroth approximation in ε, Eq. (27) corresponds
to the dispersion equation

(29)

where iλ ≡ p(0).
The dependence λ(µ) is shown in Fig. 1. It can be

clearly seen that in the vicinity of µ = 1, the two roots
whose values are close to unity converge (encircled
region). When ϑ  = 0, the two roots coincide at point
µ = 1 and the reconnection of the dispersion branches
takes place: in this region, they have the form of two
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intersecting straight lines. During passage through the
region of µ ≈ 1, the representative point of the wave
with a finite ϑ  moves along the curve in Fig. 1 and goes
over from one asymptote to the other, while the repre-
sentation point of the wave with ϑ  = 0 moves along the
straight line and remains on the same asymptote. For
small values of ϑ  ! 1, the representation point of the
wave goes over from one curve to the other, remaining
on the same asymptote as in the case of ϑ = 0, which
ensures the continuity of the limiting transition ϑ  0.
This is just the linear transformation of the wave. In the
case of effective transformation (when stringent ine-
qualities (23)–(25) hold), the wave corresponding to
one curve is converted almost completely into the wave
corresponding to another curve, but on the same
asymptote as that for the initial wave. In this case and
in the examples considered below, as in most real cases,
the waves corresponding to the same asymptote have
close polarizations, while those corresponding to dif-
ferent asymptotes have essentially different polariza-
tions. This is exactly the physical reason behind the lin-
ear transformation of waves.

Let us estimate the value of angle ϑ  for which the
linear transformation is quite effective. The following
relations approximately describe the behavior of con-
verging roots of Eq. (29) in the vicinity of the interac-
tion region:

These relation holds when

(30)

Carrying out the transition to new characteristic expo-
nents (λmid = 1) as in relations (15)–(17), we obtain

(31)

λ1 2, 1 1 µ–

8γ2
------------
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------------ 

  2 ϑ 2
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1
γ
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8γ2
------------
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8γ2
------------ 

  2 ϑ 2

8γ2
--------+ .±≈

0

–1

1

λ

1 µ

Fig. 1. Dependence of the refractive indices on the density
of plasma for quasi-longitudinal waves in an electron–
positron magnetized plasma. Here and in the following fig-
ures, the region of possible interaction between the modes
is encircled.
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At the point of maximum convergence µ = 1, we have

(32)

Equation (29) also readily gives the values of the other
two roots for µ = 1 in the zeroth approximation in ϑ :

or

(33)

Substituting relations (28) and (31)–(33) into formulas

(22) (assuming that i  ≡ ), we calculate the WKB
phase for the waves under investigation for µ = 1:

By virtue of condition (30), we have  ! .
Using estimate (25) or (23), we obtain

Considering that µ' ~ l/L (where L is the inhomogeneity
characteristic scale), we find that the linear transforma-
tion is effective for waves propagating at angles

(34)

This estimate coincides with that obtained in [9] by the
Zwan method.
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Fig. 2. Dependence of the squared refractive indices on the
longitudinal component of the external magnetic field for
quasi-transverse waves in the solar corona plasma.
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3.2. The Case  ! . Transformation 
of Waves in the Solar Corona

Following Zheleznyakov [3, Section 24], we con-
sider the transformation of quasi-transverse waves in a
magnetically active plasma in a nonuniform external
magnetic field. This situation takes place in the solar
corona. The basic equations are

(35)

where Fi are complex field variables, the dimensionless
variable ζ = ωz/c is chosen as an independent variable,
and

(36)

Here, the quantity ωz = ωz(εζ) is assumed to vary mono-
tonically and to pass through zero.

The system of equations (35) can be reduced to the
following equation:

(37)

Comparing this equation with Eq. (2), we observe that

(38)

In the zeroth approximation in ε, Eq. (37) corresponds
to the dispersion equation

(39)

where iλ ≡ p(0) as before.

The dependence λ2(ωz) is presented in Fig. 2. In the
encircled neighborhood of ωz = 0, two dispersion
curves converge and the transformation of the waves
becomes possible. The small parameter responsible for
the convergence of the two curves is

(40)
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Besides, we assume that

(41)

For   0, a situation similar to that considered in
the previous subsection takes place: the dispersion
curves are reconnected, and the linear transformation of

waves passing through the region ωz ≈ 0 for small 
ensures the continuity of this limiting transition.

It should be noted that the slope of the dispersion
curves at the point of their maximum convergence is
equal to zero (λ' = 0) and the third term in the WKB

phase (20) for these curves vanishes:  = 0. Thus,
the WKB approximation may be violated in the vicinity

of ωz = 0 due to the second term  in relation (20).
Let us estimate the value of this term.

For ωz = 0, we have B = 0, and the values of the con-
verging roots of the dispersion equation (39) are given
by

A transition to the variables (15)–(17) symmetric rela-
tive to the mean value gives

(42)

Substituting into these expressions relations (36), we
obtain in the first approximation in v,

(43)

For two distant roots of the dispersion equation (39) in
the zeroth approximation in v, we put A = B = 0, C = 1
(see relations (36)), and obtain λ3, 4 = –1 or

(44)

Substituting now relations (38) and (42)–(44) into
the first two expressions from (22) and taking into
account the fact that iλ ≡ p(0), we obtain the values of
the WKB phases at point ωz = 0:

Using relation (40) and considering that  =
(c/ω)dωz/dz, we obtain the following estimate for the
ratio of the parameters, for which the transformation is
effective:

(45)
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This estimate coincides with that obtained in [3] by the
method of phase integrals to within factors of the order
of unity.

3.3. General Case  ~ . 
Nonadiabatic Landau–Zener transitions

Following [10, Section 90], we consider a quantum
system of two colliding atoms with quasi-intersecting
terms (Fig. 3). In the vicinity of point r = rmin, the sys-
tem is described by the equations

(46)

where U1, 2 = U1, 2(r), r = εt is the distance between the
atoms, ε is the velocity of their relative motion, which
is a small parameter of slowness, and |V | ! |U1, 2|.
Equations (46) can be reduced to the form

(47)

Here, the prime indicates the differentiation with
respect to variable "–1t. A comparison of Eqs. (47) and
(2) shows that in this case,

(48)

In the zeroth approximation in ε, Eq. (47) corresponds
to the dispersion equation

(49)

where –iλ ≡ p(0).
The roots of Eq. (49) are given by

(50)
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Fig. 3. Dependence of the terms of a quasimolecule formed
by two colliding atoms on the distance between them.
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It can easily be seen that at the point rmin corresponding
to the minimum distance between the terms, the condi-
tion U1(rmin) = U2(rmin) = U0 is satisfied. In this case,

(51)

A transition to the variables (15)–(17) symmetric rela-
tive to the mean value gives

(52)

Substituting now expressions (48), (51), and (52) into
relations (20) and (22) and considering that –iλ ≡ p(0),
we obtain the values of the WKB phases at point rmin:

It can be seen that the phases  and  here are of
the same order of magnitude and the general estimate
(25) should be used. As a result, going over to the deriv-
atives with respect to r, we find that nonadiabatic tran-
sitions between the terms under investigation are effec-
tive for

(53)

This formula describes the nonadiabatic transitions in
the Landau–Zener model to within a factor of the order
of unity. If the estimate (53) is valid, the probability of
the nonadiabatic transition between the terms is close to
unity for the passage through point r = rmin and is expo-
nentially small in the opposite case.

4. CONCLUSIONS

We have proposed a method for estimating the
effectiveness of linear transformation of waves in a
smoothly inhomogeneous medium in the case when
their characteristic indices (in fact, refractive index)
locally converge. The same method is suitable for esti-
mating the effectiveness of nonadiabatic transitions in
slow atomic collisions. It is based on the WKB formal-
ism for a scalar nth order ordinary linear differential
equation [8]. As compared to the known methods of
complex phase integrals [2–5] and the vector method
[1], our method has the following advantages and draw-
backs.

1. The estimation of the effectiveness of wave inter-
action on the basis of the proposed method virtually
does not require calculations. In each specific case, it is
only necessary to know the dispersion of the waves in
the region of interaction and the values of the coeffi-
cients in the equation in order to use condition (25) for
the effectiveness of the interaction between waves. In
simpler cases which are often encountered, estimates
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(23) and (24) can be used. If, for example, the equation
does not contain the terms proportional to the deriva-

tives of the parameters (

 

b

 

j

 

 

 

≡

 

 0,  = 0), the estimation
of the effectiveness of wave transformation requires
only the knowledge of the dispersion of the interacting
waves (an example of such a problem can be found in
[11]). If the dependences of the refractive indices on the
coordinate at the point of their maximum convergence

have horizontal tangents, then  = 0, and estimate
(24) can be used (see example in Subsection 3.2).

2. The proposed method can be extended virtually
without modification to the case of three and more
interacting waves (see [11]).

3. Besides, this method makes it possible to estimate
easily the interaction of waves for which several param-
eters vary smoothly. All the formulas in this case
remain unchanged, but 

 

µ

 

 now stands for a set of 

 

s

 

smoothly varying parameters: 
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∈
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quantities 
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 are also vectors in 

 

R

 

s

 

, which experience
the convolution in the scalar product with 

 

µ

 

'.

4. A drawback of this method is that while providing
an estimate for the effectiveness of interaction, it does
not directly indicate the energy redistribution between
the interacting waves. However, first, in some prob-
lems, it is sufficient to only estimate the effectiveness of
the interaction (as, for example, in [9]), and second, the
energy redistribution can be easily determined from
other physical considerations (e.g., the form of wave
polarization). For instance, if the stringent inequalities
opposite to (23)–(25) are satisfied, the interaction
between the waves can be neglected and the geometri-
cal optics approximation can be used. If the stringent
inequality in one of the conditions (23)–(25) holds, the
approximation of abrupt jump of the parameters can be
used, and solutions with close polarizations at the
opposite sides of the jump can be joined (see [11]).

5. It should be noted that in some cases, this method
is inapplicable, while the method of complex phase
integrals holds. Such a situation is observed when the
interaction between waves takes place near reflection
points at which the refractive indices vanish or become
infinitely large (see, for example, the interaction of
quasi-longitudinal waves in a magnetically active
plasma [2, 3]).

The general formalism of the proposed method
might probably appear as more complex and less visual
as compared, for example, with the method in [1]. This
is natural since in other methods, all calculations must
be made anew each time, starting from the initial equa-
tions, while in the method proposed by us all main cal-
culations were made by obtaining the universal esti-
mates (23)–(25). The examples considered above make
it possible to speak of the complete coincidence of the
results obtained by the given method with the results
obtained by the classical methods.

Φ̃k1
1( )

Φ̃k2
1( )
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Apart from the applications considered here, the
results obtained can also be used in mechanics and in
the theory of dynamic systems. Conditions (23)–(25)
are the conditions of violation of the adiabatic approx-
imation in the case of close eigenvalues of a system of
the general form (2).
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Abstract—A theoretical model of medium-density polydisperse magnetic fluids is proposed. The model takes
into account that the major fraction of particles in typical ferrofluids is characterized by a magnetic core diam-
eter of about 10 nm. In addition, there is a certain proportion of large particles with a core diameter of about
16 nm. As a result of the magnetic dipole interaction, the large particles form chain aggregates. Small particles,
for which the magnetic dipole interaction energy (both with each other and with large particles) is smaller than
the thermal energy, remain in the individual nonaggregated state. The distribution of chains with respect to the
number of (large) particles and some rheological characteristics of the ferrofluids are determined. The proposed
model is capable of explaining, in principle, the giant magnetoviscosity effect and a strong dependence of the
rheological properties of ferrofluids on the shear rate observed in some recent experiments. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Magnetic fluids (ferrofluids, ferrocolloids) are sta-
ble colloidal suspensions of monodomain ferromag-
netic particles in a carrying liquid medium. A small size
of particles (which are typically on the order of 10 nm
in diameter) accounts for their intensive Brownian
movements and explains a high sedimentation stability
of these colloids. In order to prevent the coalescence of
particles under the action of van der Waals forces, the
particles are usually coated with stabilizing layers of a
polymeric or an ion-electrostatic nature. As a result, the
particles in ferrofluids interact with each other by
means of magnetic dipole, sterical, and hydrodynamic
forces. The thickness of stabilizing polymer layers is
usually on the order of 2–3 nm, so that the hydrody-
namic radius of particles may significantly differ from
the magnetic core radius.

One of the most interesting and important properties
of ferrofluids is the possibility of controlling their
hydrodynamic flows and rheological properties by
applying external magnetic fields. The magnetic inter-
actions of particles may significantly change their
hydrodynamic behavior and the entire system rheology.

Previously [1], the dynamic characteristics of
medium-density ferrofluids were theoretically studied
for the systems composed of individual particles inter-
acting with each other. It was demonstrated that the
magnetic and hydrodynamic interactions of particles
may lead to a significant (reaching several tens per
cent) increase in the effective viscosity of real magnetic
fluids. It should be noted that the well-known models of
dilute ferrocolloids completely ignoring the interac-
tions between particles (see, e.g., [2–4]) predict a field-
1063-7761/01/9301- $21.00 © 20080
induced increase in viscosity by only a few percent
under otherwise equal conditions.

Recently, Odenbach et al. [5–7] experimentally
observed a giant increase in the viscosity of typical fer-
rofluids in moderate and weak magnetic fields and a
strong dependence of the viscosity on the shear rate. In
particular [6], the viscosity observed at a shear rate of
0.1 s–1 and a field strength in a sample on the order of
20 kA/m was greater by a factor of 14–16 as compared
to the value obtained with the field switched off. At a
shear rate of about 1 s–1, the relative increase in viscos-
ity in the same field dropped to 2.5 [5, 6], and an
increase in the shear rate up to 500 s–1 reduced the vis-
cosity growth down to about 5% [7]. It should be noted
that the experimental results reported in [7] satisfacto-
rily agree with the theoretical estimates obtained in [1].
Neither the theories of moderately concentrated homo-
geneous ferrocolloids composed of interacting individ-
ual particles (see, e.g., [1]) nor the models of dilute fer-
rofluids [2–4] can explain this strong dependence of the
effective viscosity on the field strength and shear rate.
A very large (reaching tens and hundreds times) discrep-
ancy between the experimental data [5–7] and the theo-
ries of homogeneous ferrocolloids composed of indi-
vidual particles indicates that real magnetic fluids fea-
ture a qualitatively new physical situation not taken into
account by the aforementioned models.

The results of experiments reported in [5–7] can be
rationalized by taking into account that real ferrofluids
always represent polydisperse systems. The energy of
the magnetic dipole interaction between the largest par-
ticles in typical ferrocolloids (such as those used in the
experiments described in [5–7]) are considerably
001 MAIK “Nauka/Interperiodica”
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greater than their thermal energy at room temperature.
Under these conditions, large particles may combine
with each other to form chainlike aggregates, the influ-
ence of which on the rheological properties of ferroflu-
ids can be very significant [8–10]. This effect can be
especially pronounced when (as in the experiments
described in [5–7]) the external field is oriented along
the flow velocity gradient.

The content of large particles in typical ferrofluids is
usually rather small: on the order of 1% (a typical par-
ticle size distribution histogram from [7] is reproduced
in Fig. 1). The main fraction represents small-size par-
ticles. The interactions of these particles with each
other and with large ones are characterized by small
energies (so that the particles occur in the individual
state) and weakly influence the magnetic and rheologi-
cal properties of the colloidal system. The monodis-
perse models of (actually) polydisperse magnetic fluids
naturally operate with particles possessing an system-
averaged size, that is, with small particles. Therefore,
these models cannot provide for a satisfactory descrip-
tion of the properties of polydisperse systems, except
the case of ultimately diluted solutions where no chain
aggregates or other heterostructures can appear.

In previous papers [9, 10], statistical models of
monodisperse ferrofluids containing chain aggregates
were proposed and rheological characteristics of such
systems were estimated (references to alternative mod-
els of ferrocolloids with particle chains were also
given). In this study, the approach developed in [9, 10]
is expanded so as to include polydisperse media as
well. It is demonstrated that a strong field dependence
of the rheological properties of ferrocolloids are deter-
mined by a small fraction of large particles capable of
combining into chainlike clusters. As the shear rate
increases, the chains break, this leading to a rapid
decrease in the effective viscosity.

2. CHAIN SIZE DISTRIBUTION

As noted above, the models of ferrofluids composed
of individual particles cannot explain large magnetovis-
cosity effects observed in [5–7]. An analysis of the
rheological properties of suspensions indicates that a
strong increase in the effective viscosity under the
action of an orienting field is possible, provided that a
suspension contains nonspherical, sufficiently elon-
gated objects (particles, aggregates, etc.) [9–11]. In a
conventional ferrocolloid, such objects can be repre-
sented only by chainlike or bulky (droplike) aggregates.
The latter acquire elongated shape under the action of
an applied magnetic field. The appearance of droplike
aggregates in polydisperse ferrocolloids characterized
by a particle size histogram such as that determined in
[7] (Fig. 1) is hardly probable. Indeed, simple estimates
show that typical magnetite particles (see the character-
istics in [5– 7]) possess a magnetic core with a diameter
of 10 nm. This core size is so small that the energy of
magnetic dipole interactions is considerably smaller
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
than the thermal energy of the system. Therefore, only
the largest particles are capable of forming linear of
bulky aggregates. However, the volume fraction of
small particles and, hence, the osmotic pressure pro-
duced by this fraction, is large. When a bulky aggregate
of large particles (present in a very small concentration)
appears, small particles (driven by the osmotic pres-
sure) tend inside the aggregate. As a result, the small
particles (neutral with respect to the magnetic dipole
interactions) occupy a part of the aggregate volume. As
a result, the concentration of large particles (involved
into the magnetic dipole interaction) in the aggregate
decreases and the structure breaks. Thus, it is much
more probable that large particles form linear (chain-
like) structures. It must be emphasized that the princi-
pal possibility of the existence of bulky aggregates in
polydisperse ferrocolloids is by no means rejected. This
question is certainly worth special investigation. At the
same time, it is hardly possible to take into account the
effects due to all probable heterostructures within the
framework of a single model. For this reason, the con-
secration below is concentrated on the chainlike clus-
ters that seem more likely to form. Note that the effect
of droplike aggregates on the rheological properties of
monodisperse metastable ferrocolloids featuring the
process of separation into dense and dilute phases was
estimated in [12].

The well-known difficulties encountered in the sta-
tistical physics of dense systems hinder the formulation
of a rigorous theory of ferrofluids containing even a sin-
gle type of linear aggregates. In order to obtain con-
structive results, we will use the following strong
approximations.

First, instead of real polydisperse systems with a
more or less smooth particle size distribution function,

10
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Fig. 1. A histogram of the particle distribution with respect
to the magnetic core diameter dm in a ferrofluid experimen-
tally studied in [5–7, 14] (ρf is the volume concentration of
a given particle fraction).
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we will consider a model bidisperse medium composed
of “small” and “large” particles. It will be assumed that
the size of small particles virtually coincides with an
average particle size in the given ferrocolloid (about 9–
10 nm). The size of large particles and their volume
concentration (assumed to be small) will be estimated
below.

Second, by analogy with models [9, 10], it is
assumed that the chains formed by large particles
appear as straight rigid (rodlike) aggregates The limits
of this approximation were also assessed in [9, 10].

Third, the chains are assumed to include only large
particles, whereas small particles occur only in the non-
aggregated individual state. Inside each chain, only the
energy of the magnetic dipole interaction between adja-
cent (nearest neighbor) particles is taken into account.
The interaction between chains (including monomers)
is ignored. In a real system, the interaction between
chains can be significant, even leading to their conden-
sation. However, it seems reasonable to restrict the con-
sideration initially to the “ideal chain gas.” The prob-
lem of interchain interaction requires special consider-
ation.

Fourth, also by analogy with models [9, 10], the
consideration is restricted to the systems in which the
energy of the magnetic dipole interaction between adja-
cent particles in the chain is greater than the energy of
the particle interaction with the external field. This
assumption is valid under usual experimental condi-
tions [5–7].

In the proposed model, the bidisperse medium is
“formed” as follows. In the first step, we take into
account only the small particles. The ferrocolloid of
small particles is considered as a homogeneous ferro-
fluid, the rheological properties of which can be
described, for example, using the theory developed in
[1] (if the magnetic moments of small particles are rig-
idly bound to their bodies) or using the theory of “neu-
tral” suspensions (if the particles behave as superpara-
magnets). Then large particles are placed in the model
“base” ferrofluid and the chains formed of such parti-
cles are taken into consideration. Simple estimates
show that the energy of interaction between small and
large particles in this ferrofluid (e.g., see the histogram
in Fig. 1 and the particle characteristics in [5, 7]) is
small as compared to the characteristic thermal energy
of the system. Therefore, we may neglect the interac-
tion of large particles with the surrounding weakly
paramagnetic base ferrofluid and describe the chain
formation as a process proceeding in a magnetically
neutral medium.

It is obvious that, employing the above set of strong
assumptions, the proposed model can be used for esti-
mating values by the order of magnitude, rather than for
obtaining precise quantitative results. Nevertheless, the
results of calculations performed within the framework
of this model coincide with the experimental values
reported in [5–7] to within several tens percent. Taking
JOURNAL OF EXPERIMENTAL
into account that the other existing theories deviate
from these experimental data by one–two orders of
magnitude, the observed coincidence can be considered
as evidence of the qualitative adequacy of the proposed
model.

Using the approach proposed in [9, 10], let us esti-
mate the equilibrium distribution function gn of chains
with respect to the number of (large) particles (or the
number of n-member chains per unit volume of the
magnetic fluid under consideration). Within the frame-
work of the approximations adopted, the free energy F
per unit volume of the ferrocolloid containing large-
particle chains can be written as [9, 10]

(1)

Here, T is the absolute temperature (expressed in
energy units), al is the hydrodynamic radius of a large
particle (that is, the magnetic core radius plus stabiliz-
ing layer thickness). The first term in parentheses (1)
represents the entropy of the ideal gas of n-particle
chains determined by their translational motion; fn is a
dimensionless “internal” free energy on an n-particle
chain determined by the interaction of particles with
each other and with the external magnetic field and by
the thermal rotational motion of chains. It should be
recalled that the particle aggregates are modeled by
straight rigid rods, rather than by flexible polymeric
chains; this approximation is justified if the average
chain length is shorter than the persistent length. The
corresponding estimates showing the validity of this
assumption were obtained in [9, 10], where it was also
demonstrated that, within the framework of the approx-
imations adopted, the following relationship can be
used:

(2)

where

(3)

H is the macroscopic magnetic field inside the sample
volume, ml is the absolute value of the magnetic
moment of a large particle, fnH is the free energy of the
interaction between an n-particle chain and the mag-
netic field. The last value can be expressed as

(4)

where e is the unit vector directed along the magnetic
moment of a particle (i.e., along the chain containing
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this particle) and φn(e) is the orientation distribution
function for an n-particle chain (normalized to unity).

In the equilibrium state, the system obeys the fol-
lowing relationships [9, 10]:

(5)

(here and below, the circle superscript refers to quanti-
ties determined in the equilibrium state).

For nonequilibrium systems, such as those in the
state of a stationary shear flow, a possible method of
determining a stable internal structure is based on the
search for a minimum free energy with an allowance for
forces inducing deviations of the chain orientations
from equilibrium direction (along the magnetic field).

Minimization of the free energy functional (1) is
performed with an allowance for the obvious normal-
ization condition

(6)

where ϕ is the volume concentration of large particles
to be determined. Minimizing (1) and taking into
account (6), we obtain

(7)

In order to determine the parameter x, formula (7)
has to be substituted into the normalization condition
(6). In the general case, this leads to a transcendental
equation that can be readily solved by numerical meth-
ods. However, the x value for the equilibrium system
can be determined analytically. Indeed, substituting the
second relationship (5) into (7), then (7) into (6), and
accomplishing the necessary transformations (see [9]),
we eventually obtain

(8)

where

The average number of particles in the chain for
both the equilibrium and nonequilibrium state can be
determined as the ratio of the total number of particles
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per unit volume of the colloid to the total number of
chains in this volume:

(9)

3. RHEOLOGICAL CHARACTERISTICS 
OF FERROCOLLOIDS AT A NEGLIGIBLY SMALL 

SHEAR RATE

Let us consider a magnetic fluid occurring in the
state of shear flow. In this section, it will be assumed
that the shear rate is sufficiently small, so that we may
neglect the deformation of chains in the flow and a
deviation of the distribution function gn from the equi-

librium value . It was previously demonstrated [9]
that the chain deformation can be ignored, provided
that the flow velocity gradient ν obeys the following
strong inequality:

where dl = 2al and η0 is the “base” medium viscosity. In
our model, this medium is represented by the effective
magnetic fluid composed of small particles. Simple
estimates show that the above inequality is valid in
most of the real situations.

Since the appearance of Einstein’s classical paper, it
is well known that the rheological properties of suspen-
sions are determined by the perturbations introduced by
particles into the hydrodynamic flow. It is virtually
impossible to calculate rigorously such a perturbation
introduced by a particle chain, even modeled by a rod-
like aggregate. In order to obtain constructive esti-
mates, let us model (as in [9, 10]) an n-particle chain by
an ellipsoid of revolution with a semiminor axis al and
semimajor axis aln. It is important that the volume of
such a spheroidal body is equal to the sum of volumes
of the component particles.

Using well-known results of the statistical hydrome-
chanics of dilute suspensions composed of solid sphe-
roids (see, e.g., [11]), expressions for the Cartesian
components of the mean stress tensor s can be written
in the following form:

(10)
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Here and in what follows,

Vector u is the average flow velocity in the suspension;
αn…ζn are the parameters determined in [13], and ten-
sors ss and sa represent the symmetric and antisym-
metric parts of the total stress tensor s.1 

In order to calculate the moments entering into
expression (10), it is necessary to determine the non-
equilibrium orientation distribution function φn. This
function can be obtained as a solution to the corre-
sponding Fokker–Planck equation for a spheroidal par-
ticle (see, e.g., [11, 13]):

(11)

where

(12)

D is the rotational diffusion coefficient of a single large
particle in the “base” fluid, Dn is the rotational diffusion
coefficient of a spheroid modeling the n-particle chain,
δn is a parameter determined in [11], U is the potential
energy of an ellipsoid in a magnetic field, n is the tensor

1 The antisymmetric part of the stress tensor in an anisotropic
medium exposed to an external orienting field arises due to the
fact that the rotation speed of particles (molecules) differs (as a
result of the blocking action of the field) from the rotation speed
of the whole fluid (or its element). This leads to an additional (as
compared to the isotropic medium) energy dissipation, which is
reflected by a new rheological characteristic usually referred to as
the rotational viscosity.
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of the average flow velocity gradient, and w and g are
the tensors determined by relationships (10).

An exact solution to Eq. (11) is unknown. In order
to find an approximate solution, we will use an
approach developed in [2, 9] and represent the distribu-
tion function φn as the set-up function

(13)

where a and b are the unknown vector and second-rank
tensor.

In this section, we study the flows with very small
velocity gradients. This implies that deviations of the φn

function from the equilibrium distribution  are small.
Therefore, the parameters a and b are small as well. In
the linear approximation with respect to these parame-
ters, the first relationship (13) can be written as

(14)

According to the approach developed in [2, 9], ai

and bij are determined from equations for the first and
second moments of the orientation distribution func-
tion. Multiplying Eq. (11) by ek, then by eiek – (1/3)δik,
and integrating with respect to e, we obtain (see, e.g.,
[11]):

(15)

and

(16)

where

Substituting (14) into (15) and (16), we arrive in the
linear approximation with respect to a, b, g, and w at a
system of differential equations for the functions ai(t)
and bik(t) corresponding to a given n. Upon solving this
system, we may use the function (14) for determining
the nonequilibrium moments in (10). Note that the lin-
ear approximation in γij, ωij corresponds to the linear
approximation in ai , bij . Within the framework of this
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approximation, the moments 〈…〉n multiplied by ωij or
γij must be replaced in (10), (15), and (16) by the corre-

sponding equilibrium values .

In the general case, the problem of calculating a and
b is formally simple, but rather cumbersome. For defi-
niteness, let us consider an oscillating flow of a ferrof-
luid in which the constant magnetic field is directed
along the velocity gradient. In the Cartesian coordinate
system (x, y, z), the flow velocity is u = (vz, 0, 0) and the
field vector is H = (0, 0, H).

Using the Fourier transform with respect to time in
(10), (15), and (16) and denoting the Fourier images by
the same symbols as their prototypes, we obtain the fol-
lowing system of equations for ax and bxz,

(17)

(18)

and an expression for the hydrodynamic stress:

(19)
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Here, Ω is the Fourier frequency and ηΩ is the complex
effective viscosity of the ferrofluid. Since a characteris-
tic hydrodynamic relaxation time for the “base” mag-
netic medium containing only small particles is much
smaller than the value for the “total” fluid with large
particles and their chains, we may replace (without
introducing large error) the complex effective viscosity
of the “base” medium by its stationary vale η0. An esti-
mate of η0 for a medium-concentration ferrocolloid
with magnetically hard particles can be found, for
example, in [1].

For the following calculations, it is convenient to
introduce diameters dml and dms of the large and small
particles, respectively. The magnetic moments ml and
ms of these particles are related to their diameters by the
obvious formulas

where Mp is the saturation magnetization of the particle
material.

A relationship between the hydrodynamic radii al, s
and core diameters of the particles is also obvious:

where s is the thickness of the stabilizing layer (typical
values for real ferrofluids are s = 2–3 nm).

Figure 2 shows the experimental data (taken from
[6]) for a ferrofluid with a particles size distribution
function represented by a histogram in Fig. 1 (the phys-
ical characteristics can be found in [5, 7]). The experi-
ments were performed using shear flows with various
small velocity gradients. For comparison, Fig. 2 shows
the results obtained by using the proposed model for

ml s, Mp
π
6
---dml s,

3 ,=

2al s, dml s, 2s,+=

0.1

S

κ /(1.65)3

12

10

8

6

4

2

0 0.2 0.3 0.4

1

2
3

Fig. 2. Plots of the magnetoviscosity parameter S versus
dimensionless magnetic field strength κ = mlH/T. Symbols
represent the experimental data taken from [6] for ν = 0.1
(squares), 0.5 (filled circles), and 0.9 s–1 (open circles;
curves 1–3 show the results of model calculations for
ν  0, 0.5, and 0.9 s–1, respectively.
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calculating the stationary (Ω = 0) magnetoviscosity
effect as characterized by the parameter

where η is a stationary value of the effective viscosity
ηΩ . For this calculation, the diameter dml and the vol-
ume hydrodynamic fraction ϕ of large particles were
selected so as to provide for the best fit of the values
calculated for a negligibly small ν/D ratio to the exper-
imental values for a minimum (in this study) shear rate
(ν = 0.1 s–1). The calculation yields dml ≈ 1.65 nm and
ϕ ≈ 0.017. These values agree well with the indepen-
dent estimates obtained in [14], where (in our notation)
dml ≈ 1.6 nm and ϕ ≈ 1.56% (for s = 2 nm) and 2.07%
(s = 3 nm). It should be noted that the results of calcu-
lations are highly sensitive with respect to the magnetic
core diameter dml. This is explained by the fact that rela-
tionships (8) and (9) lead to exponential dependence of
the average number 〈n〉  of particles in the chain on the

S
η κ( ) η 0( )–

η 0( )
-----------------------------,=

0
0.6κ /(1.65)3 
0.2 0.4 0.6

3.2

3.0

2.8

2.6

〈n〉

Fig. 3. The plot of average number of large particles in the
chain n versus dimensionless magnetic field strength κ.

η' /η 0

0
Ω/D, 104

1 3 4

30
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15

2

1

1
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Fig. 4. The ratio of the real part of the complex viscosity to
the viscosity of a solvent medium as a function of the flow
oscillation frequency Ω for κ = 1.73 (1) and 1.15 (2). Solid
curves show the results of calculations, dashed curves rep-
resent the experimental data from [6].
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ε value determined by (3) (for more detail, see [9]). In

turn, the ε value is proportional to . For this reason,
the characteristic chain length and, hence, the effective
viscosity of the ferrocolloid strongly depend on the
magnetic core diameter in large particles.

In the calculations, it was assumed that (in accor-
dance with the data reported in [5, 7]) the total hydro-
dynamic concentration of particles in the ferrocolloid is
0.27. Therefore, the volume fraction of small particles
is ρ = 0.27–0.017. For the small particles, the magnetic
core diameter can be estimated using an obvious rela-
tionship

which yields dms ≈ 8.5 nm. As is known, in particles
with the magnetic core diameter exceeding a certain
threshold dc, the magnetic moment is rigidly bound to
the particle body. The effect of a magnetic field on the
viscosity of such ferrofluids may be significant. If the
core diameter is smaller than dc, the particle behaves as
a superparamagnet, that is, the magnetic moment may
rotate freely with respect to the body. In this case, the
viscosity of the ferrofluid is virtually not affected by the
field. For magnetite particles used in the experiments
described in [5–7, 14], the critical core size is dc ≈ 12–
14 nm. Therefore, the “base” ferrofluid composed of
small particles exhibit no magnetoviscosity effect; the
effective viscosity of this medium can be estimated, for
example, using the Batchelor–Green theory [15].

Figure 3 shows the results of calculations of the
average number of particles in the chain, which eluci-
date the internal structure of ferrocolloids in the case of
negligibly small velocity gradients ν.

Figure 4 presents the results of measurements of the
real part  of the complex viscosity for the aforemen-
tioned ferrofluid (studied in [6]) in comparison with the
vales calculated using relationship (19). As is seen, the
experimental and theoretical values are close to within
the order of magnitude. A more rapid drop in the exper-
imental  values with increasing frequency Ω is
explained by some experimental features. The mea-
surements in [6] were performed in such way that the
amplitude of the oscillating velocity gradient was pro-
portional to the frequency Ω . As will be demonstrated
in the next section, the breakage of chains by a hydro-
dynamic flow leads to a rapid drop in viscosity with
increasing flow velocity gradient; this circumstance
apparently affected the results obtained in [6].

4. RHEOLOGICAL PROPERTIES 
OF FERROCOLLOIDS AT A FINITE VELOCITY 

GRADIENT

In this section, the consideration is restricted to sta-
tionary flows. Within the framework of the proposed
model, the effective viscosity is calculated by the fol-
lowing scheme.

dml
3

dmlϕ dmlρ+ d〈 〉 9–10 nm,≈=

ηΩ'

ηΩ'
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1. Substituting (13) into (15) and (16) and calculat-
ing the corresponding moments, we arrive at a system
of transcendental equations with respect to a and b.
This system can be solved by numerical methods.

2. Substituting the obtained solutions into (13), we
calculate the moments of the distribution function in
(10) and the dimensionless free energy (4). Substituting
this energy into (6) and (7), we determine the nonequi-
librium orientation distribution function gn. The calcu-
lations show that (for finite ν) the gn corresponding to

large n is smaller than the equilibrium function ; for
small n, the nonequilibrium function gn is greater than

. This is explained by the fact that long chains are
more strongly deflected by the flow from the field direc-
tion. As a result, the free energy fnm increases and,
hence, the gn value decreases. The breakage of long
chains leads to an increase in the number of short ones.

3. Odenbach and Stork [5] obtained an estimate in
the order of magnitude for the critical number nc of par-
ticles in the chain, such that the hydrodynamic flow
breaks the chains with n > nc. Therefore, the summation
in (1), (6), and (10) should be truncated at n = nc. Using
the notation adopted here, the estimate obtained in [5]
can be expressed as

Figures 2 and 5 show a comparison of the experi-
mental data obtained in [5, 6] for various finite ν values
to the results of calculations performed according to the
proposed model. As is seen, the theoretical and experi-
mental results show a quite reasonable agreement.

Figure 6 presents the experimental results obtained
in [7] for ν = 500 s–1. The estimates show that, for such
a high shear rate, virtually all chainlike aggregates are
broken and the average number of 〈n〉  particles in the
chain is almost equal to unity. For the comparison,
Fig. 6 shows the results of calculations of the effective
viscosity in the aforementioned model bidisperse fer-
rofluid with all chains broken and the large particles
occurring in the individual state. The contribution of
small superparamagnetic particles into the magnetovis-
cosity effect was still ignored. As is seen, experimental
and theoretical values agree in the order of magnitude.
The fact that the experimental values are higher than the
calculated ones is related, first of all, to the simplicity
of the bidisperse model. Particles with the magnetic
core diameter only slightly exceeding dc ~ 12–14 nm
are still too small to form chains. At small shear rates,
when the effective viscosity is related predominantly to
clusters, such particles virtually do not contribute to the
rheological characteristics of the ferrofluid and do not
influence the procedure of fitting to the bidisperse
medium parameters. Therefore, these particles “fall
out” of the bidisperse model. At large shear rates, when
the chains are broken, these particles play a more sig-

gn
0

gn
0

nc
1
3
--- εD

ν
----.∼
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nificant role because their concentration is relatively
large.

This explanation is confirmed by the fact that calcu-
lations [7] performed within the framework of the
model of individual particles with an allowance of the
histogram in Fig. 1 agree with the experimental data [7]
better than do the values calculated using the bidisperse
model (see Fig. 6). The fact that the experimental data
reported in [7] are greater than the results of calcula-
tions performed in the same study can be explained as
follows. First, the calculations [7] did not took into
account the interactions between individual particles.
In order to assess these interactions, it is necessary to
develop a theory of the rheological properties of poly-
disperse undiluted ferrocolloids containing interacting
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0.1 0.3 0.4
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κ/(1.65)3 
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κ/(1.65)3 

Fig. 5. Plots of the magnetoviscosity parameter S versus
dimensionless magnetic field strength κ = mlH/T. Symbols
represent the experimental data taken from [5] for ν = 1.05
(open squares) and 5.23 s–1 (filled squares); curves 1 and 2
show the results of model calculations for ν = 1.05 and
5.23 s– 1, respectively.

Fig. 6. The plots of effective viscosity of a ferrocolloid at
large shear rates, when all chains are broken. Solid curves
show the results of calculations (1) according to the pro-
posed model and (2) using the model of noninteracting indi-
vidual particles with the size distribution depicted in Fig. 1
[7]; dashed curve show the experimental for ν = 500 s–1 [7].
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individual particles. Second, the difference between
experiment and theory in [7] can be related to the pres-
ence of unbreakable aggregates (dimers) linked by van
der Waals forces due to the presence of defects in the
stabilizing surface layers. The contribution to the effec-
tive viscosity due to dimers oriented along the flow
velocity gradient is greater than the contribution of a
spherical particle with the same volume. The existence
of hard dimers in ferrocolloids, as well as the influence
of these dimers on the system rheology was discussed,
for example, in [5, 14, 16].

5. CONCLUSIONS

The results of our investigations lead to the follow-
ing conclusions. The polydispersity is a property inher-
ent in modern magnetic fluids. The rheological proper-
ties of typical ferrofluids as small flow velocity gradi-
ents are determined by the largest particles, although
their concentration is usually much lower than that of
small particles. The influence of large particles on the
macroscopic dynamic properties of ferrofluids is
related to the formation of internal heterogeneous
structures as a result of the magnetic dipole interaction
with each other. Depending on the fluid type, particle
concentration, etc., these heterogeneous structures may
appear as linear (chainlike) or bulky (droplike) aggre-
gates. The aggregates tend to orient along the magnetic
field lines, which leads to a strong magnetoviscosity
effect. The value of this effect in the ferrofluids with
aggregates exceeds by one–two orders of magnitude
the analogous effect in the systems of individual parti-
cles. For this reason, the standard theories based on
monodisperse models of magnetic fluids, operating
with average (small) particles and ignoring the particles
aggregation effects, fail to adequately describe the
experimental data. As the flow velocity gradient in a
ferrocolloid increases, the aggregates break, this lead-
ing to a rapid drop in the effective viscosity. Under con-
ditions leading to complete breakage of the chains, the
models based on individual particles may provide for a
quite acceptable result.

The model assuming the chain cluster formation
explained the experimental results obtained in [5–7, 14]
for the ferrofluids of a certain type. It is not excluded
that the properties of other ferrofluids can be signifi-
cantly affected by the formation of droplike or other
internal heterostructures. We may expect that a decisive
role of large, albeit not numerous, particles usually not
taken into account can be important in the polar disper-
sions of some other types, such as magneto- and elec-
trorheological suspensions and analogous systems.

It must be noted that a model neglecting the interac-
tion of chains, despite their large effect on the rheolog-
ical characteristics of colloids, is certainly a rather
crude approximation. Taking into account the hydrody-
namic interaction of chains will lead to an additional
increase in the viscosity values predicted by the theory
and to some renormalization of the bidisperse model
JOURNAL OF EXPERIMENTAL 
characteristics. However, the theory of hydrodynamic
properties of the suspensions of hydrodynamically
interacting nonspherical particles (in particular, chains)
is not yet developed. However, even the simple pro-
posed model (linear with respect to the chain concen-
tration) predicts a strong field-induced increase in the
viscosity and provides for the estimates close to the
experimental data for both the rheological characteris-
tics of the medium and for the size and concentration of
large particles.
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Abstract—A theory of the critical behavior of a dilute ionic solution is constructed. An expression for the sus-
ceptibility in a wide temperature range is obtained. It is shown that ionic solutions belong to the universality
class of the Ising model. The Ginzburg parameter of the ionic solutions decreases with the increase of the sol-
vent concentration. In the general case, the critical exponent of susceptibility nonmonotonically depends on the
temperature in the crossover region from the Ising-like to the mean-field behavior. In the vicinity of the transi-
tion point, the Debye–Hückel screening radius is proportional to the correlation length. As T  Tc, the screen-
ing radius tends to infinity and the screening disappears. The voltage between the two phases of the ionic solu-
tion is proportional to the order parameter and changes as |T/Tc – 1|β in the vicinity of the phase transition point.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Critical phenomena in liquids and liquid mixtures
are an extensively studied region of condensed matter
physics [1, 2]. In general, the behavior of physical char-
acteristics near the critical solution point can be
described sufficiently well as a crossover between the
Ising-like asymptotic behavior and the mean-field
behavior [3, 4, 5]. The Ising-like behavior occurs in a
narrow vicinity of the critical point for

where T is the temperature, Tc is the critical tempera-
ture, and G is the so-called Ginzburg parameter. The
mean-field behavior occurs for

For liquids, the parameter G is of the order 0.01–0.1.
The critical behavior of ionic solutions was dis-

cussed in a number of works (see [6, 7, 8, 9, 10]).
Experimental studies show that the critical behavior of
electrolyte solutions significantly differs from that of
ordinary solutions. This difference occurs for both non-
aqueous [11, 12, 13] and aqueous solutions [14]. The
main feature of the electrolyte solutions is their mean-
field behavior in the region

where tx varies from 1 to 10–4 for different solutions
[15]. Numerous attempts to understand the ionic criti-
cality have been made recently (see, e.g., [15, 16, 17]).
In a recent experimental work [14], it was stated that
the crossover behavior is not monotonic and the effec-
tive susceptibility exponent γ has its maximum value in

T /Tc 1–  ! G,

T /Tc 1–  @ G.

T /Tc 1– tx,>

¶This article was submitted by the author in English.
1063-7761/01/9301- $21.00 © 20089
the crossover region exceeding the asymptotic value γ ~
1.24.

2. THEORY

We consider the electrolyte solution near the critical
solution point of the solvent. We let ϕ(r) be a field pro-
portional to the order parameter (the solution density
for the critical point or the concentration for the critical
solution point), φ(r) be the electric potential field, and
ρ1(r) and ρ2(r) be the respective volume densities of the
ion numbers with positive and negative charges. For
simplicity, we assume that these charges are equal to e
and –e respectively.

Near the transition point, the ionic solution consists
of two subsystems: the “fast” subsystem that depends
on the ion densities ρ1 and ρ2 and the “slow” subsystem
that depends on the order parameter ϕ and the electric
potential φ. As in the standard Debye–Hückel (Hartree)
approach, ions can be considered in the average long-
wavelength field φ(r) and, in our case, ϕ(r). We first
evaluate the fluctuation corrections to the Hamiltonian
of the “slow” part of the system that are caused by the
“fast” subsystem and then consider only the part of the
Hamiltonian containing the density field ϕ and the elec-
tric potential field φ.

The main interaction terms of the fields φ, ϕ and ρ1,
ρ2 can be written as

(1)

The first interaction term in Eq. (1) is the ordinary
electrostatic interaction, the second term is some phe-
nomenological interaction between the order parameter

H int rd∫ eρ1 r( ) eρ2 r( )–( )φ r( )(=

+ γ1ρ1 r( ) γ2ρ2 r( )–( )ϕ r( ) ).
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and the ion densities, and γ1 and γ2 are the interaction
constants.

It is easy to see from Eq. (1) that the values

(2)

can be considered as local additional corrections to the
chemical potentials of the respective positive (µ1) and
negative (µ2) ions. The Gauss distribution of the ther-
modynamic fluctuations of the chemical potential is
given by (see [18])

(3)

where T is the absolute temperature in energy units and
 = N/V is the average volume density of particles.
Inserting expressions (2) in Eq. (3), we obtain the

fluctuation correction to the Hamiltonian of the “slow”
part of the system,

(4)

For the ionic solution, we must add expression (4)
and the expression for the electrostatic energy

(where D = εE) to the standard Landau Hamiltonian of
the system near the critical point. Taking into account
that

we obtain the effective Hamiltonian

(5)

There are three different fluctuation corrections in
Hamiltonian (5). The correction proportional to φ2

describes the Debye-Hückel screening. The correction
proportional to ϕ2 shifts the bare temperature of the
phase transition. The correction proportional to φϕ cou-
ples the electric potential field to the order parameter.
Far from the phase transition point, the parameter a is
not small and the last two corrections to the Hamilto-
nian are not relevant. In the near-critical region, the
parameter

is small and we must take these corrections and the ϕ4

term in the Hamiltonian into account.

∆µ1 r( ) eφ r( ) γ1ϕ r( ),+=

∆µ2 r( ) –eφ r( ) γ2ϕ r( )–=

w
∆µ∆ρ

T
---------------– 

 exp∝ ρ
2T2
--------- ∆µ( )2– 

  ,exp=

ρ

∆H rd∫=

×
ρ1

2T
------ eφ r( ) γ1ϕ r( )+( )2 ρ2

2T
------ eφ r( ) γ2ϕ r( )+( )2+ 

  .

rd∫ E D/8π⋅( )

ρ1 ρ2 ρ,= =

Heff r
1
2
--- a

ρ
T
--- γ1

2 γ2
2+( )+ 

 

 ϕ2 1

2
---α ∇ϕ( )2+d∫=

+
ρ
T
---e2φ2 ε

8π
------+ ∇φ( )2 ρ

T
---e γ1 γ2+( )φϕ λϕ4+ + 

 .

a T /Tc 1–∝
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In what follows, the angular brackets denote averag-
ing over effective Hamiltonian (5). The quadratic part
of effective Hamiltonian (5) determines the bare values
of the correlation functions. The inverse correlation
function is equal to

(6)

where κ =  is the inverse Debye–Hückel
radius. Calculating the inverse matrix, we obtain

(7)

The correlation function of the electric potential
field in Eqs. (7) describes the Coulomb screening near
the critical point of the ionic solution. It is easy to see
that the screening has the ordinary form far from the
critical point, where a @ ργ2/T. In the vicinity of the
phase transition point  = 0 in the mean-field approxi-
mation, the screening radius behaves as

As   0, the screening radius tends to infinity and
the screening disappears.

The density correlation function in Eqs. (7) has the
asymptotic behavior

(8)

The interaction between the mass density field (order
parameter) and the charge density field redefines

ϕ k( )ϕ k–( )〈 〉 ϕ k( )φ k–( )〈 〉
φ k( )ϕ k–( )〈 〉 φ k( )φ k–( )〈 〉 

 
 

1–
1
T
---=

× a αk2 ρ γ1
2 γ2

2+( )/T+ + eρ γ1 γ2+( )/T

eρ γ1 γ2+( )/T ε k2 κ2+( )/4π 
 
 
 

,

8πρe2/Tε

ϕ k( )ϕ k–( )〈 〉 T

ã αk2 1 bκ2/ k2 κ2+( )+( )+
-----------------------------------------------------------------,=

ϕ k( )φ k–( )〈 〉 –
T γ1 γ2+( )/2e

ã k/κ( )2 ã bακ 2 α k2 κ2+( )+ +( )+
------------------------------------------------------------------------------------,=

φ k( )φ k–( )〈 〉

=  
4πT /ε

k2 κ2 ã αk2+( )/ ã bακ 2 αk2+ +( )+
-------------------------------------------------------------------------------------,

ã a
ρ

2T
------ γ1 γ2–( )2+= ,

b
ε

16παe2
------------------ γ1 γ2+( )2 ρ

2Tακ 2
---------------- γ1 γ2+( )2.= =

ã

rs
1
κ
--- ã bακ 2+

ã
----------------------.=

ã

ϕ k( )ϕ k–( )〈 〉 T

ã α 1 b+( )k2+
-----------------------------------, k ! κ ,≈

ϕ k( )ϕ k–( )〈 〉 T

ã
ρ

2T
------ γ1 γ2+( )2 αk2+ +

-------------------------------------------------------, k @ κ .≈
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bare correlation function (4) in the long-wavelength
region as:

(9)

The asymptotic forms of correlation function (8) in
the long and short wavelength regions are analogous to
the ordinary form of the correlation function near the
critical point. This means that the behavior of physical
characteristics in the corresponding limits is the same
as in the nonionic case. The bare critical point

and the real singularity point

are now different, both of them are less than the pure
solvent transition point a = 0.

In the mean-field approximation, the correlation
length in vicinity of the transition point is given by

In the vicinity of the transition point, the screening
length is proportional to the correlation length and their
ratio is

The mean-field approximation does not correctly
describe the behavior of the system near the transition
point. It can be used in the region far from the transition
point, where  @ G. In close vicinity of the transition
point, the fluctuation effects must be taken into account.

3. RENORMALIZATION

We now calculate the expression for the susceptibil-
ity, which is an experimentally measured value [13,
14]. We must apply the standard renormalization proce-
dure to effective Hamiltonian (5). The leading correc-
tions to the coefficients  and λ due to fluctuation
effects can be represented by the diagrams in Fig. 1.
The renormalization equations for these coefficients are
given by 

(10)

where Λ is the renormalization equation parameter
([Λ] = k) and

a ã, α α 1 b+( ).

a ρ γ1
2 γ2

2+( )/T–=

a ρ γ1 γ2–( )2/2T–=

rc
α 1 b+( )

ã
---------------------.=

rs

rc

---- ã/ακ 2 b+
1 b+

------------------------.=

ã

ã

dã
dΛ
-------

1
3
---K

ã Λ( )λ Λ( )Λd 5–

1 bκ2/ Λ2 κ2+( )+( )2
--------------------------------------------------,=

dλ
dΛ
------- K

λ2 Λ( )Λd 5–

1 bκ2/ Λ2 κ2+( )+( )2
--------------------------------------------------,=

K
18TSd

2π( )dα2
-------------------,=
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with d being the space dimension and Sd the unit sphere
surface. Equations (10) are written in the one-loop
approximation, which corresponds to the first approxi-
mation in the parameter e = 4 – d. For simplicity, we do
not use the e-expansion but consider the one-loop
renormalization equations directly for d = 3.

It is easy to see from Eqs. (10) that

(11)

The solution of the equation for the interaction vertex is
given by

(12)

Calculating the integral in (12) and taking Eq. (11) into
account, we find

(13)

where

(14)

To obtain the expressions for physical quantities
valid in a wide region near the transition point, it is nec-
essary to choose a matching point Λ* for solutions (13).
The matching point can be chosen in the same way as
in [3] (see also [19]),

(15)

Inserting this in Eq. (13), we obtain the equation for the
susceptibility,

(16)

dã
dλ
------

ã
3λ
------,

ã3 Λ( )
λ Λ( )
-------------- const.= =

1
λ Λ( )
------------ 1

λ
---– K x

1 κ2x2+

1 1 b+( )κ2x2+
------------------------------------- 

 
2

.d

0

1/Λ

∫=

λ Λ( ) λ ∞( )
1 F Λ( )+
----------------------, ã Λ( ) ã ∞( )

1 F Λ( )+( )1/3
--------------------------------,= =

F Λ( ) Kλ ∞( )
2κ 1 b+( )5/2
-----------------------------=

× t 2 b2

1 t2+
-------------+ 

  b b 4+( ) tarctan+ 
  ,

t
κ
Λ
---- 1 b+ .=

Λ* ã Λ*( )
α

---------------.=

ã Λ*( ) 1 Kλ ∞( )
2κ 1 b+( )5/2
-----------------------------+ t* 2 b2

1 t*
2

+
----------------+

 
 
 








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





 1/3

ã ∞( ),=

Fig. 1. One-loop corrections to the effective Hamiltonian
parameters a and λ. The solid line corresponds to the field
ϕ. The circle in the vertex is equal to λ.
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where

Equation (16) determines the susceptibility in a
wide temperature region in the one-loop approxima-
tion. The critical exponent γ is equal to 6/5 in this
approximation. It is necessary to modify this expres-
sion in order to apply it to experimental data. The sim-
plest way is to replace the exponent 1/3 in (16) with 2 –
2/γ, where γ ≈ 1.24.

4. DISCUSSION

The expressions obtained can be used for electrolyte
solutions (strong or weak) if the ion density ρ is small.
As ρ  0, all the expressions transform to the ordi-
nary form valid for nonionic liquids. The pure solvent
limit can also be obtained as b  0, i.e., if the density
is weakly coupled to the charge density.

The Debye–Hückel screening radius in the vicinity
of the transition point is proportional to the correlation
length. As T  Tc , the screening radius tends to infin-
ity and the screening disappears.

The asymptotic forms of the density correlation
function for k @ κ and k ! κ are the same as for the
nonionic liquid, and therefore, the corresponding
(mean-field or Ising-like) asymptotic behavior is the

same. The value of F(Λ)  in the ionic solution is
similar to the Ginzburg parameter G for the ordinary
liquids. It decreases as the salt concentration increases,
and the Ising-like region of ionic solutions therefore
decreases as the concentration increases, which agrees
with the experimental data.

Equation (16) determines behavior of the suscepti-
bility in the crossover region. Dependence of the effec-
tive exponent γ on the temperature for the model system
is presented in Fig. 2. For small values of b, this depen-

t* 1 b+( )ακ 2

ã Λ*( )
---------------------------.=

ã*

γeff

10–7

b = 0.227

10–5 10–3 10–1 101

1.2 b = 3
b = 0

 T/Tc – 1

1.1

1.0

Fig. 2. The dependence of the effective susceptibility criti-
cal exponent γeff on the value of b for the model system. The
curve where b = 0 corresponds to the non-ionic solution.
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dence has the usual shape, but it becomes nonmono-
tonic for b ~ 1. For the real experimental situation in
[14], this specific behavior occurs in a close vicinity of
the transition point and it is difficult to reveal it. The
authors of [14] state that they see this peculiarity.

The shape of the crossover curve depends on the
dimensionless parameter b (Eqs. (7)), i.e., on γ1 + γ2.
This quantity can be estimated from a simple electric
measurement. In the mean-field approximation, Eq. (5)
gives

(17)

for the two-phase state. Therefore, the voltage between
the two phases of the ionic solution is determined by
γ1 + γ2. Near the transition point, this voltage is propor-
tional to the order parameter and behaves as (T/Tc – 1)β.

A detailed comparison of the obtained expressions
to the experimental data is not a simple task. The data
presented in [11–13] have significant error bars. The
ionic solutions in [14, 20] were ternary and their behav-
ior was studied near the critical solution points. These
solutions had a high concentration (10%), and there
were additional problems due to clustering in the vicin-
ity of double critical and tricritical points. The data for
a fixed concentration can be easily fitted in accordance
with Eq. (16). Unfortunately, this fit is not informative
and further experimental studies are necessary.
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Abstract—Mechanical oscillations of free-standing films based on ferroelectric liquid crystals were studied by
optical methods. The intrinsic oscillation modes in the samples were excited by applying an alternating electric
field parallel to the film surface. The surface viscosity of the films determined using the electromechanical
effect was ηs = 8.8 × 10–3 g/s under normal pressure and ηs = 1.5 × 10–3 g/s in vacuum. The surface tension
measured in a special experiment was σ = 35.3 din/cm. It was established that the spectrum of mechanical oscil-
lations in the system studied is affected by the vapors of volatile organic solvents such as kerosene, toluene, and
ethyl alcohol. The linear electromechanical effect in the free-standing films was used to observe inversion of
the sign of spontaneous polarization in a ferroelectric liquid crystal. © 2001 MAIK “Nauka/Interperiodica”.
Free-standing films can be obtained using both lyo-
tropic [1] and thermotropic smectic liquid crystals [1,
2]. The former type includes, for example, the films of
a usual soap. Both classes of film-forming liquid-crys-
talline (LC) materials represent layered systems featur-
ing a liquid order inside layers and a long-range crys-
talline order in the direction of the smectic normal. The
principal possibility that thin layers may exist in the
form of free-standing films is related to the presence of
internal forces holding the centers of mass of the mole-
cules within a single layer. When the liquid crystal
transforms into a nematic or isotropic phase, the lay-
ered structure disappears and the free-standing films
lose stability [3].

Necessary factors always accompanying a free-
standing film are a hard frame and a transition region
between a homogeneous part of the film and the hard
frame. The transition region, called meniscus, pos-
sesses a complicated structure. The mass of the menis-
cus is usually considerably (one or even two orders of
magnitude) greater than the mass of the film as such.
The meniscus plays an important role in the process of
attaining thermodynamic equilibrium in the system.
Involved in the mass exchange with the homogeneous
part of the film, the meniscus maintains a constant
chemical potential of the system [4].

From the standpoint of mechanics, a free-standing
film is usually considered as an elastic membrane, the
motion of which is described by the wave equation [5,
6]. The intrinsic frequencies of such a membrane with
a given geometry depend (provided that the effects of
meniscus can be ignored) only on the isotropic surface
tension σ and a homogeneous two-dimensional density
1063-7761/01/9301- $21.00 © 20094
ρs = hρlc, where ρlc is the liquid crystal density and h is
the film thickness (the latter value may vary from hun-
dreds of molecular lengths to a single bimolecular
layer) [7]. In this approximation, the surface tension of
both liquidlike smectic A (smA) and more ordered
smectic B (smB) free-standing films can be calculated
using the spectrum of mechanical oscillations [8].

In this simplified model, the properties of a free-
standing film are independent of its thickness. At the
same time, there are indications that the film structure
may play an important role. For example, Kraus et al.
[9] demonstrated the effect of a three-dimensional elas-
ticity on the spectrum of mechanical oscillations of a
free-standing film. Cladis et al. [10] established that
topological defects appearing in a free-standing film
correspond to the symmetry of the LC phase employed.
Brazovskaya et al. [11] observed a nonlinear effect in a
free-standing film oscillating with large amplitude,
which was manifested by the appearance of a meniscus
instability threshold. Boudaoud et al. [12] showed that
the thickness of an oscillating thick soap film does not
remain homogeneous in the course of its motion and
that the spectrum of mechanical oscillations of the film
differs significantly from the spectrum of a linearly
elastic membrane.

Thus, there is a sufficiently large number of experi-
mental facts indicative of a more complicated (as com-
pared to the Rayleigh assumptions) organization of
free-standing LC films.

The purpose of this work was to study the features
of mechanical oscillations of free-standing films based
on ferroelectric liquid crystals, depending on various
external factors such as the frequency and amplitude of
001 MAIK “Nauka/Interperiodica”
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the applied electric field, gas pressure, and temperature.
Since all ferroelectric materials possess piezoelectric
properties as well, a natural method of exciting
mechanical oscillations in the free-standing films [13–
16] is offered by the inverse piezoelectric effect or,
using the term suggested by Jakli et al. [17, 18] (having
originally observed this phenomenon in a standard
geometry), the linear electromechanical effect.

1. THE EQUATION OF MOTION OF A FREE-
STANDING FILM WITH AN ALLOWANCE FOR 

THE ENERGY DISSIPATION

Consider a free-standing film of a ferroelectric liq-
uid crystal in a rectangular frame (Figs. 1a and 1b). Let
us analyze how an electric field E interacting with a
spontaneous polarization p (per unit area) would dis-
turb the film surface. For b @ a, we may solve the prob-
lem in a one-dimensional approximation. In the first
step, we will demonstrate that the competition of only
electric and elastic forces is insufficient to violate equi-
librium of a flat elastic film in the small-perturbation
approximation,

The free energy density f of the free-standing film
under consideration can be presented as a sum of the
electrostatic fel and elastic fs contributions:

(1)

A free energy increment per unit length is

(2)

where

∆Fs = fsdx = 2σdl, and dl is the film area increment. The
integration in Eq. (2) can be performed with an allow-
ance for smallness of the angle ϕ describing deviation
of the normal from the vertical direction, which implies
that

and

where z(x) is the film displacement. The free energy per
unit length can be written as

(3)

f f el f s.+=

∆F ∆Fel ∆Fs,+=

∆Fel f eldx Ep π ϕ–( )dx,cos–= =

ϕ ϕ ϕ dz
dx
------≈ ≈sin≈ ,tan

ϕcos 1 ϕ2

2
-----–≈ 1

1
2
--- dz

dx
------ 

 
2

–=

dl 1
dz
dx
------ 

 
2

+ dx,=

F f el f s+( ) xd

a/2–

a/2

∫=
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or

(4)

Minimization of the free energy functional (4) leads to
the following boundary problem:

(5)

F pE 2σ+( ) 1
2
--- 2σ pE–( ) zd

xd
----- 

 
2

+ x.d

a/2–

a/2

∫=

d2z

dx2
-------- 0,=

(a)

(b)

(c)
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Fig. 1. Schematic diagrams of the (a) free-standing film
sample configuration, (b) framework geometry, and (c)
experimental setup. (a) Ferroelectric LC film deformed by
external electric field E parallel to smectic layers in the
undisturbed sample, p is the two-dimensional spontaneous
polarization density, fsz is the density of external forces, and
ϕ is the angle between normals to the disturbed and undis-
turbed films. (b) Framework geometry showing photodiode
(PD) viewing LC film 1 framed between fixed electrodes 2 and
movable thin (100 µm) mylar barriers 3. (c) Experimental
setup for studying the effect of atmospheric pressure upon the
free-standing ferroelectric LC film: (1) sample film; (2) alumi-
num electrodes deposited onto glass; (3) vacuum pump outlet;
(4) He–Ne laser; (5) pressure gauge; (6) fused quartz windows;
(7) slit diaphragm; (8) silicon photodiode; (9) Fourier spec-
trometer or lock-in detector; (10) sound generator with ampli-
fier; (11) vacuum chamber; (12) two glass plates at a variable
distance d from the film surface.
SICS      Vol. 93      No. 1      2001



96 YABLONSKII et al.
(6)

which had a single trivial solution z ≡ 0. It is evident
that the same result will be obtained for any orientation
of p with respect to vector E.

A more complicated mechanism explaining the
appearance of a disturbing moment of forces acting
upon the liquid crystal was proposed by Jakli and Eber
[19]. According to this, the azimuthal motion of the liq-
uid crystal director is accompanied by the so-called
back-flow, which induces a viscous stress acting upon
the free surface of the film as depicted in Fig. 2. This
mechanism assumes a velocity gradient along the nor-
mal to the film surface, which implies the presence of
an internal structure in the free-standing film.

Below we will assume for simplicity that a homoge-
neous density of forces acting upon a unit surface area
of a cylindrical film varies according to a harmonic law
fs = fszeiωt, where fsz = const. The shape of fsz influences
neither the resonance frequency nor the resonance peak
width. In the linear case, a mechanical spectrum of the
film oscillations depends only on the film parameters
and geometry, while fsz influences only the intensity of
spectral bands.

Assuming the ρs and σ values to be homogeneous
and isotropic and taking into account the terms respon-
sible for the internal energy dissipation and aerody-
namic drag, a nonlinear one-dimensional equation of
motion of a free-standing film can be written as fol-
lows:

(7)

z a/2( ) z a/2–( ) 0,= =

2σ pE t( )–( )d2z

dx2
-------- f sz x y,( )eiωt+

=  Cρair
1
2
--- dz

dt
----- 

 
2 η s

a2
-----dz

dt
----- ρs

d2z

dt2
-------,+ +

E

σxy

v

ϕ lc(t)

–v
–σxy

Fig. 2. A mechanism responsible for the development of a
viscous stress σxy in a free-standing ferroelectric film: ϕlc(t)
is the variable azimuthal angle changing under the action of
the back-flow; v is the liquid crystal velocity field inhomo-
geneous along the z axis.
JOURNAL OF EXPERIMENTAL 
where ρair = 1.225 × 10–3 g/cm3 is the air density, C is
the aerodynamic coefficient (C ≤ 1), ηs ≈ ηbh is the sur-
face viscosity of the film, ηb is the volume viscosity of
the liquid crystal, h = Nl is the film thickness, N is the
number of smectic layers, l is the thickness of each
smectic layer, p = PsNl is the spontaneous surface
polarization, Ps is the spontaneous polarization of the
liquid crystal, ν = ω/2π is the frequency of the alternat-
ing electric field E, and a is the distance between elec-
trodes.

In order to simplify the nonlinear equation (7), let us
obtain several estimates. For the typical ferroelectric
LC film parameters and experimental conditions (Ps =
10–7 C/cm2, N ~ 100, l = 40 nm, E < 400 V/cm, σ ~
30 din/cm), the film obeys a strict inequality σ @ p|E |.
This condition simplifies the coefficient at the second
derivative in Eq. (7). The role of the aerodynamic drag
can be estimated by comparing this factor to the inertial
force. For a film performing harmonic oscillations z ~
A0sinωt, the aerodynamic drag has to be taken into
account if the oscillation amplitude is sufficiently large

so that ρair /2 ~ ρsztt or ρairω2 /2 ~ ρlchω2A0. This
condition holds when A0 ~ 2ρlch/ρair . Substituting N =
70, l = 4 nm, and ρlc/ρair ~ 103, we obtain an estimate of
A0 ~ 500 µm that is considerably greater than the exper-
imentally measured oscillation amplitudes (1–5 µm).
Note that A0 would additionally increase upon taking
into account the virtual (associated) air mass. As will be
shown below, an additional reason for ignoring the con-
tribution of air is that the overall losses are determined
predominantly by the internal losses in the film, rather
than by the friction of entrained air layer, since ηs/a >
ηair , where ηair ≈ 2 × 10–4 (g cm)/s is the air viscosity.

Thus, neglecting the square term in Eq. (7), we
obtain a linear equation of motion with an allowance
for the dissipation of mechanical energy:

(8)

which has to be solved with the boundary conditions
(6). An exact solution to Eq. (8) is given by the expres-
sion

(9)

where q0 is the wavevector of the decaying elastic
wave:

(10)

Expression (9) will be used for estimating the sur-
face viscosity and the average two-dimensional density
of the films studied.
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2. EXPERIMENTAL

The experiments were performed with ferroelectric
liquid crystals of two types. The first was a commercial
CS-1029 (Chisso) blend featuring the following phase
sequence:

Samples of the second type were made of an individual
compound, 5-(2-fluoroctyloxy)-2-(4-octylphenyl)pyri-
midine (8PPy06, Chisso), changing the sign of sponta-
neous polarization Ps in the smectic C* phase:

cryst(46.2°C)[smC*(25°C)smC*(45°C)]smA(80°C)isotr.

The free-standing films of both types were prepared
using a standard procedure described in [1]. Each film
was supported by a rectangular frame composed of two
fixed metal electrodes and two mobile poly(ethylene
terephthalate) (mylar) barriers (Fig. 1b). The interelec-
trode distance was fixed at a = 2 or 3 mm, while the
spacing of mylar barriers could be varied from 0 to
11 mm. Some experiments were performed with a glass
frame of fixed geometry (rectangular slit with an area of
2 × 10 mm2 and a thickness of 1 mm). The frame with
a film was mounted on a temperature-controlled table,
and the entire system was placed into a vacuum cham-
ber (Fig. 1c). The film temperature was monitored with
the aid of a calibrated copper-constantan thermocouple.
The vacuum in the chamber was provided by a mechan-
ical roughing pump and measured with piezoelectric
and mercury pressure gauges. The sample film thick-
ness was calculated using the optical reflection spec-
trum as described in [1]. The reflection spectra were
obtained with the aid of a multichannel spectrum ana-
lyzer.

A sinusoidal voltage with variable amplitude (1–
120 V) applied to a sample induced periodic oscilla-
tions of the film resulting in a pattern of deformation
periodic in space and time. The deformation of a given
sample region was determined by measuring deviations
of a laser beam reflected from this area. The angular
deviations of the beam were measured with the aid of a
position-sensitive detector comprising a slit diaphragm
and silicon photodiode (Fig. 1c). The beam of a He–Ne
laser radiation polarized in the direction of the field E
was incident at an angle of 45° relative to the normal to
the film surface. The area of laser-probed region on the
film surface did not exceed 0.5 × 0.5 mm2. The photo-
diode response current was analyzed by a Fourier spec-
trometer and a lock-in amplifier tuned to the first and
second harmonics of the sinusoidal electric field
applied to the sample. The first-harmonic response cor-
responds to the amplitude of the vertical displacement
(due to a linear deformation in the inverse piezoelectric
effect). The second-harmonic optical response compo-
nent is related primarily to variations in the Fresnel
reflection coefficient, which is an even function of the
field E. In our experiments, the second-harmonic signal

cryst 18°C–( )smC* 73°C( )smA 85°C( )N* 95°C( )isotr.
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amplitude was considerably smaller than that of the
first-harmonic response (Fig. 3).

3. LINEAR ELECTROMECHANICAL EFFECT
IN FREE-STANDING FILMS OF CS-1029 LIQUID 

CRYSTAL: RESULTS AND DISCUSSION

For the experimental verification of linearity of the
equation of motion, we have studied the film deforma-
tion as a function of the amplitude of applied sinusoidal
voltage. The results presented in Figs. 4 and 5 give
unambiguous evidence that the linear approximation
(9) is valid.

However, the results obtained by some researchers
[3, 20] led to a conclusion that the air inertia may sig-
nificantly influence the free-standing film dynamics via
the so-called associated air mass effect [21]. For exam-
ple, the data in [3, 20] indicate that the oscillating free-
standing film moves together with an associated air
layer having a thickness of several millimeters. It is
interesting to note that restricting the air space around
the oscillating film by the glass walls parallel to the film

6

4

2

0

1000 1500 2000 2500 3000 3500 4000
ν, Hz

U
, m

V

1680 Hz

U(1680) = 6.7 mV

U(3360) = 0.115 mV

3360 Hz

Fig. 3. A typical Fourier spectrum of the laser beam
reflected from the surface of an oscillating free-standing
film. The inset shows the second-harmonic response signal,
the intensity of which did not exceed 2% of the first-har-
monic signal amplitude.

0
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Amplitude, V
20 40 60 80 100 120

2

1

0

6800 Hz

Fig. 4. The optical response U measured for the laser beam
reflected from the surface of an oscillating free-standing LC
film (CS-1029) as a function of the amplitude of a sinusoi-
dal voltage applied to the film. The applied electric field fre-
quency was fixed at ν0 = 6800 Hz.
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plane, with the spacing d variable from 10 µm to 10 mm
(Fig. 1c), did not significantly affect the spectrum of
mechanical oscillations. At the same time, replacing air
in the chamber by helium, possessing a considerably
smaller density (ρ = 0.17 × 10–3 g/cm3) than air, led to

1000

U, mV

v , Hz
2000 3000 4000

4

3

2

1

0

1

2

3

Fig. 5. The spectra of mechanical oscillations of a free-
standing LC film (CS-1029, N = 73, S = 3 × 11 mm2) mea-
sured for three values of the applied voltage amplitude A =
40 (1), 20 (2), and 4 V (3).

r

1

2

3
4

∆h

Fig. 6. A schematic diagram of the experimental setup for
measuring the surface tension of a smectic liquid crystal:
(1) U-shaped water pressure gauge; (2) glass cylinder;
(3) round lid with a hole of radius r; (4) free-standing film
sample.
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IIIII IV
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Fig. 7. Evolution of the spectra of mechanical oscillations
of a free-standing LC film (CS-1029, N = 57, S = 2 × 10 mm2,
A = 80 V) with a change in the atmospheric pressure.
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a significant (twofold) shift of the spectral bands toward
higher frequencies, in accordance with the decreasing
gas medium density.

Subsequent calculations involve the surface tension
of a CS-1029 film. The surface tension was measured
using a setup schematically depicted in Fig. 6. The
excess air pressure ∆p in a closed volume of glass cyl-
inder 2 was measured by an U-shaped water pressure
gauge 1. As the air pressure was gradually increased,
the LC film in a circular frame of radius r deformed
from plane to hemisphere 3. The surface tension was
calculated by the Laplace formula ∆p = 4σ/r. The
room-temperature surface tension for a CS-1029 liquid
crystal was σ = 35.3 din/cm.

Figure 7 shows the evolution of the spectrum of
mechanical oscillations of a rectangular free-standing
film (CS-1029, N = 57, S = 2 × 10 mm2, A = 80 V) mea-
sured on decreasing the air pressure from 100 kPa to
60 Pa. Measured at atmospheric pressure, the spectrum
contained four rather narrow spectral bands I-IV with
QI = 8, QII = 17, QIII = 17.3, and QIV = 18 peaked at 860,
1690, 2420, and 3240 Hz, respectively. This pattern can
be considered with a good accuracy as a superposition
of two symmetric modes, ν11 and ν33, and two asym-
metric modes, ν22 and ν44, obeying the following rela-
tionships:

(11)

The simultaneous appearance of even and odd
modes in the spectrum indicates that a real distribution
of external forces acting upon the film surface is more
complicated than that in a homogeneous case [5, 6].

As the air pressure decreases, the spectrum shifts
toward high frequencies and transforms in shape until
reaching the following characteristics at a minimum
pressure of 60 Pa (Fig. 8): (I) 860  4970 Hz, QI =
9.4; (II) 1690  5590 Hz, QII = 18.6; (III) 2420 
6750 Hz, QIII = 33.7; (IV) 3240  8180 Hz, QIV = 35.
It is interesting to note that, on reaching rough vacuum
conditions, the Q values of peaks I a II did not change,
whereas the Q values of peaks III and IV almost dou-
bled evidencing a considerable decrease in the level of
dissipation.

Using the values of eigenmodes of a rectangular
membrane [5, 6], it is possible to estimate the average
two-dimensional film density 〈ρs〉  = Neffhρlc and,
assuming the film to be homogeneous, calculate an
effective number of smectic layers Neff. The expressions
for eigenmodes is as follows:

(12)

where n and m are integers. For σ = 35.3 din/cm, ρlc =
0.95 g/cm3, a = 2 mm, b = 10 mm, and n = m = 1, we
obtain at a normal air pressure (for ν11 = 860 Hz) the
average density 〈ρs(100 kPa)〉  = 6.2 × 10–4 g/cm2 and

ν11 ν22/2 ν33/3 ν44/4.≈ ≈ ≈

νnm
1
2
--- 2σ

ρs

------ n2

a2
----- m2

b2
------+ 

  ,=
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the effective number of layers Neff(100 kPa) = 1715. At
a low pressure (for ν11 = 4970 Hz), the corresponding
values are 〈ρs(60 Pa)〉 = 1.9 × 10–5 g/cm2 and Neff(60 Pa) =
52. Therefore, the effective film thickness in a rough
vacuum (heff = 52l almost coincides with the value
(heff = 57l) determined independently using the experi-
mentally measured reflection spectra.

The spectra presented in Fig. 8 were analyzed by a
two-parametric procedure of fitting to formula (9). The
parameters were (i) the experimentally measured reso-
nance frequency and (ii) the resonance bandwidth
determined at an 0.7 peak height level. This treatment
yielded the average two-dimensional film densities
〈ρs(100 kPa)〉  = 6.0 × 10–4 g/cm2 and 〈ρs(60 kPa)〉  =
1.88 × 10–5 g/cm2, which almost exactly coincide with
the analogous values estimated using the eigenmodes
(12) of the two-dimensional membrane. The corre-
sponding surface viscosities at normal and reduced
pressure are ηs(100 kPa) = 8.8 × 10–3 g/s and ηs(60 kPa) =
1.5 × 10–3 g/s, respectively. Note that the pressure depen-
dence of the surface viscosity may be related to a
change in the film oscillation modes.

Figure 9 shows the spectrum of mechanical oscilla-
tions of a thicker film measured at normal pressure and
in a rough vacuum (60 Pa). As expected, the sensitivity
of the film with respect to the pressure decreases with
increasing thickness. As the film thickness grows from
N = 57 to 122, the absolute frequency shift decreased
(see Figs. 8 and 9) by a factor of more than three, from
∆ν11(N = 57) = 4110 Hz to ∆ν11(N = 122) = 1380 Hz.

4000

1.6

ν, Hz
5000 6000 7000 8000 9000

5590 6750
8180

60 P‡

4970

0.8

0

Q I = 9.4
Q II = 18.6
Q III = 33.7
Q IV = 35

4000

8

5000 7000 8000 9000

100 kP‡

4

0

Q I = 8
Q II = 17
Q III = 17.3
Q IV = 18.1

2420

3240

1690

860

U, mV

6000

Fig. 8. The spectra of mechanical oscillations of a free-
standing LC film (CS-1029, N = 57, S = 2 × 10 mm2, A =
80 V) measured at an atmospheric pressure of 100 kPa and
60 Pa. The latter spectrum was measured under the same
conditions as that in Fig. 7, except that a different area was
probed. Figures at the peaks indicate resonance frequencies
(Hz); also indicated are the corresponding Q values (num-
bered as in Fig. 7). The resonance bandwidth was measured
at an 0.7 peak height level. The Q values of overlapped
peaks (I and II) in the bottom spectrum were determined
upon mathematical separation into components.
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Figures 10–12 demonstrate the effect of the vapors
of volatile organic solvents on the intrinsic frequencies
of a free-standing film. Depending on the solvent type,
the spectrum reversibly shifted toward lower (kerosene,
ethanol) or higher (toluene) frequencies. Obviously,
this behavior cannot be explained only by the associ-
ated mass effect or by the adsorption of solvent vapor
(with the corresponding decrease in the surface ten-
sion).

It should be noted that the associated mass effect
was also observed for solid membranes [21]. However,
the frequency shift achieved at a low air pressure in

U
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V

ν, Hz

20
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0

0 2000 4000 6000

1

2

Fig. 9. The spectra of mechanical oscillations of a thick
free- standing LC film (CS-1029, N = 122, S = 2 × 10 mm2,
A = 80 V) measured at (1) normal atmospheric pressure of
100 kPa and (2) in a rough vacuum of 60 Pa.
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Fig. 10. (a) A portion of the spectrum of mechanical oscil-
lations of a thick free-standing film in the vicinity of one
resonance peak and (b) the corresponding plot of phase shift
versus frequency. The data were obtained ( , ) in air at nor-
mal pressure and ( ) in the presence of ethanol vapors
(CS-1029, N = 72, S = 3 × 11 mm2, A = 100 V, T = 24°C).
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Fig. 11. Evolution of the spectrum of mechanical oscilla-
tions of a free-standing film measured under various condi-
tions (a time interval between sequential measurements was
about 12 min): (1) in air; (2) in the presence of kerosene
vapors (a Petri dish with kerosene placed at a distance of
2 cm from the film); (3, 4) two sequential spectra recorded
after removal of the dish with kerosene from the chamber.

Fig. 12. Evolution of the spectrum of mechanical oscilla-
tions of a free-standing film measured under various condi-
tions: (1) in air; (2) in the presence of toluene vapors;
(3) after evacuating toluene vapors.

2000

Pressure, kPa

ν, Hz
4000 6000 8000

100

80

60

40

20

0

I II IV

Fig. 13. The plots of air pressure versus resonance band
positions.
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such membranes was relatively small because it was
difficult to obtain sufficiently thin (i.e., low-weight)
samples. For example, evacuating air in experiments
with a 50-µm-thick silicon membrane led to a reso-
nance band shift as low as 2% [21].

As is seen in Fig. 7, a decrease in the pressure is
accompanied, besides the frequency shift, by a change
in the relationship (11). A comparison of the experi-
mental spectra presented in Fig. 7 to the theoretical for-
mula (12) derived for a Rayleigh membrane shows that
the spectra measured at low pressures disagree with the
model of an elastic membrane with homogeneous ρs

and σ. Apparently, the conditions of low pressure (and
a small associated air mass) increase the role of film
inhomogeneities in the region of meniscus. The spec-
trum of an inhomogeneous linearly elastic film may, in
principle, significantly differ from that determined by
formula (12).

Possessing sufficiently high Q, a small-size thin (h ~
200 nm) free-standing ferroelectric film of CS-1029
represents essentially a nanomechanical pressure
detector free of any moving parts. The range of mea-
sured pressures (760–0.5 Torr) and sensitivity threshold
(0.5 Torr) of this detector are almost the same as those
of a classical U-shaped liquid pressure gauge. Figure 13
shows a typical plot of the air pressure versus resonance
band position.

4. STUDY OF THE SPONTANEOUS 
POLARIZATION SIGN INVERSION 

IN FERROELECTRIC LIQUID CRYSTALS 
OF THE 8PPyO6 TYPE

As was demonstrated above, the free-standing film
shape must not change as a result of interaction of the
electric field with an arbitrarily directed surface polar-
ization. In a real experiment, the film surface is
deformed as a result of the electric field interaction with
a spontaneous volume polarization of the smectic C*
liquid crystal inducing the back-flow. The resulting
crystal deformation depends on the applied field polar-
ity and on the spontaneous polarization sign. This com-
bination of properties makes the measurement of free-
standing film oscillations a useful tool for studying the
phenomenon of spontaneous polarization sign inver-
sion in ferroelectric chiral liquid crystals [22, 23].

The spontaneous polarization is usually measured
by two routine techniques based on detecting a change
in the current passing through a capacitor, when a sub-
stance studied is placed between the capacitor plates
[22]. The current is induced either by applying a volt-
age of some special shape or by heating. In this case,
there is always an open question concerning the ratio of
contributions of the surface and volume polarizations to
the current measured. In most cases, the volume polar-
ization effect dominates. However, in the case of ferro-
electric liquid crystals capable of changing the sponta-
neous polarization sign in the vicinity of the inversion
 AND THEORETICAL PHYSICS      Vol. 93      No. 1      2001
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point or upon transition through this point, the surface
polarization contribution (e.g., due to a thermal or elec-
tric modulation of the electric double layer) may
become comparable to or even greater than the volume
spontaneous polarization contribution.

We have studied the linear electromechanical effect
depending on the temperature in a liquid crystal of the
8PPyO6 type exhibiting inversion of the spontaneous
polarization sign at Ti = 37.7°C, as determined by the
repolarization current and pyroelectric measurements
[22].

The free-standing films were prepared using an smA
phase of 8PPyO6 at T = 54°C, and then the polarization
was measured on slowly (dT/dt = 1 K/min) cooling the
sample down to T = 32°C. Then the procedure was
repeated in the heating mode. The response signal
amplitude and phase were detected on the first har-
monic Ux(ν) = U(ν)cosα of a sinusoidal voltage of con-
stant frequency and amplitude applied to the film. The
results of these experiments are presented in Fig. 14. As
change in the electrooptical response sign in the vicin-
ity of Ti = 37.7°C (Fig. 14a) was accompanied by an
almost 180° phase jump (Fig. 14b). The temperature
variation exhibits a hysteresis, with the points of inver-
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Fig. 14. Plots of (a) Ux(ν) and (b) phase angle α versus tem-

perature for an 8PPyO6 free-standing film (S = 3 × 8 mm2,
ν0 = 2500 Hz, A = 44 V). Arrows indicate the direction of
temperature variation.
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sion (albeit differing by Ti1 – Ti2 = 1.7°C) being close to
the value determined in the independent experiment
[22]. A decrease in the rate of the sample heating and
cooling virtually did not affect the Ti1 and Ti2 values.
The hysteresis curve did not change depending on
whether the sample was (or not) heated above the phase
transition temperature TC*–A = 45°C. It should be noted
that a hysteresis behavior is typical of the contact angle
between meniscus and substrate [24].

Thus, the results of investigation of the linear elec-
tromechanical effect depending on the temperature pro-
vide unambiguous evidence of the inversion of the
spontaneous polarization sign in 8PPyO6.

5. CONCLUSION 

The results of our experimental study of the linear
electromechanical effect in a free-standing ferroelectric
LC film showed that, as the external pressure decreases,
the spectrum of mechanical oscillations varies and
eventually fails to obey the Rayleigh model of a homo-
geneous elastic membrane This deviation from the clas-
sical behavior can be explained by inhomogeneity of
the film, in particular, by dependence of the dynamic
characteristics of the membrane on the properties of
meniscus participating in the system oscillations. 

It was demonstrated that a free-standing ferroelec-
tric LC film oscillating due to the inverted piezoelectric
effect can be used as an air pressure transducer or a sen-
sor of volatile chemical compounds. 

Measurements of the electromechanical effect in the
liquid crystals studied allowed the surface viscosity, an
average two-dimensional density, and the temperature
of inversion of the spontaneous polarization sign of a
free-standing ferroelectric film to be determined. 
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